From b98cd6ecb55654498d65c26d8ead128881fb9f32 Mon Sep 17 00:00:00 2001 From: johannes <johannes@auterion.com> Date: Mon, 23 Apr 2018 18:39:19 +0200 Subject: [PATCH] ecl-ekf tools: separate the analysis from the visualization and preprocessing - move the analysis parts of the process_logdata_ekf script to the 'analyse_ekf' function in a new file analyse_logdata_ekf.py - return a test_results dictionary from analyse_ekf - still process log loading, preprocessing and results file output in process_logdata_ekf - add command line argument to toggle plotting - add command line argument to use different dictionary to check_level_dict.csv --- Tools/ecl_ekf/analyse_logdata_ekf.py | 1329 ++++++++++++++++++++++++ Tools/ecl_ekf/process_logdata_ekf.py | 1422 +------------------------- 2 files changed, 1368 insertions(+), 1383 deletions(-) create mode 100644 Tools/ecl_ekf/analyse_logdata_ekf.py diff --git a/Tools/ecl_ekf/analyse_logdata_ekf.py b/Tools/ecl_ekf/analyse_logdata_ekf.py new file mode 100644 index 0000000000..064ef19a97 --- /dev/null +++ b/Tools/ecl_ekf/analyse_logdata_ekf.py @@ -0,0 +1,1329 @@ +import numpy as np + +# matplotlib don't use Xwindows backend (must be before pyplot import) +import matplotlib +matplotlib.use('Agg') + +import matplotlib.pyplot as plt +from matplotlib.backends.backend_pdf import PdfPages + +def analyse_ekf(estimator_status, ekf2_innovations, sensor_preflight, check_levels, + plot=False, output_plot_filename=None): + + if plot: + # create summary plots + # save the plots to PDF + pp = PdfPages(output_plot_filename) + # plot IMU consistency data + if ('accel_inconsistency_m_s_s' in sensor_preflight.keys()) and ( + 'gyro_inconsistency_rad_s' in sensor_preflight.keys()): + plt.figure(0, figsize=(20, 13)) + plt.subplot(2, 1, 1) + plt.plot(sensor_preflight['accel_inconsistency_m_s_s'], 'b') + plt.title('IMU Consistency Check Levels') + plt.ylabel('acceleration (m/s/s)') + plt.xlabel('data index') + plt.grid() + plt.subplot(2, 1, 2) + plt.plot(sensor_preflight['gyro_inconsistency_rad_s'], 'b') + plt.ylabel('angular rate (rad/s)') + plt.xlabel('data index') + pp.savefig() + plt.close(0) + + # generate max, min and 1-std metadata + innov_time = 1e-6 * ekf2_innovations['timestamp'] + status_time = 1e-6 * estimator_status['timestamp'] + + if plot: + # vertical velocity and position innovations + plt.figure(1, figsize=(20, 13)) + # generate metadata for velocity innovations + innov_2_max_arg = np.argmax(ekf2_innovations['vel_pos_innov[2]']) + innov_2_max_time = innov_time[innov_2_max_arg] + innov_2_max = np.amax(ekf2_innovations['vel_pos_innov[2]']) + innov_2_min_arg = np.argmin(ekf2_innovations['vel_pos_innov[2]']) + innov_2_min_time = innov_time[innov_2_min_arg] + innov_2_min = np.amin(ekf2_innovations['vel_pos_innov[2]']) + s_innov_2_max = str(round(innov_2_max, 2)) + s_innov_2_min = str(round(innov_2_min, 2)) + # s_innov_2_std = str(round(np.std(ekf2_innovations['vel_pos_innov[2]']),2)) + # generate metadata for position innovations + innov_5_max_arg = np.argmax(ekf2_innovations['vel_pos_innov[5]']) + innov_5_max_time = innov_time[innov_5_max_arg] + innov_5_max = np.amax(ekf2_innovations['vel_pos_innov[5]']) + innov_5_min_arg = np.argmin(ekf2_innovations['vel_pos_innov[5]']) + innov_5_min_time = innov_time[innov_5_min_arg] + innov_5_min = np.amin(ekf2_innovations['vel_pos_innov[5]']) + s_innov_5_max = str(round(innov_5_max, 2)) + s_innov_5_min = str(round(innov_5_min, 2)) + # s_innov_5_std = str(round(np.std(ekf2_innovations['vel_pos_innov[5]']),2)) + # generate plot for vertical velocity innovations + plt.subplot(2, 1, 1) + plt.plot(1e-6 * ekf2_innovations['timestamp'], ekf2_innovations['vel_pos_innov[2]'], 'b') + plt.plot(1e-6 * ekf2_innovations['timestamp'], np.sqrt(ekf2_innovations['vel_pos_innov_var[2]']), 'r') + plt.plot(1e-6 * ekf2_innovations['timestamp'], -np.sqrt(ekf2_innovations['vel_pos_innov_var[2]']), 'r') + plt.title('Vertical Innovations') + plt.ylabel('Down Vel (m/s)') + plt.xlabel('time (sec)') + plt.grid() + plt.text(innov_2_max_time, innov_2_max, 'max=' + s_innov_2_max, fontsize=12, horizontalalignment='left', + verticalalignment='bottom') + plt.text(innov_2_min_time, innov_2_min, 'min=' + s_innov_2_min, fontsize=12, horizontalalignment='left', + verticalalignment='top') + # plt.legend(['std='+s_innov_2_std],loc='upper left',frameon=False) + # generate plot for vertical position innovations + plt.subplot(2, 1, 2) + plt.plot(1e-6 * ekf2_innovations['timestamp'], ekf2_innovations['vel_pos_innov[5]'], 'b') + plt.plot(1e-6 * ekf2_innovations['timestamp'], np.sqrt(ekf2_innovations['vel_pos_innov_var[5]']), 'r') + plt.plot(1e-6 * ekf2_innovations['timestamp'], -np.sqrt(ekf2_innovations['vel_pos_innov_var[5]']), 'r') + plt.ylabel('Down Pos (m)') + plt.xlabel('time (sec)') + plt.grid() + plt.text(innov_5_max_time, innov_5_max, 'max=' + s_innov_5_max, fontsize=12, horizontalalignment='left', + verticalalignment='bottom') + plt.text(innov_5_min_time, innov_5_min, 'min=' + s_innov_5_min, fontsize=12, horizontalalignment='left', + verticalalignment='top') + # plt.legend(['std='+s_innov_5_std],loc='upper left',frameon=False) + pp.savefig() + plt.close(1) + # horizontal velocity innovations + plt.figure(2, figsize=(20, 13)) + # generate North axis metadata + innov_0_max_arg = np.argmax(ekf2_innovations['vel_pos_innov[0]']) + innov_0_max_time = innov_time[innov_0_max_arg] + innov_0_max = np.amax(ekf2_innovations['vel_pos_innov[0]']) + innov_0_min_arg = np.argmin(ekf2_innovations['vel_pos_innov[0]']) + innov_0_min_time = innov_time[innov_0_min_arg] + innov_0_min = np.amin(ekf2_innovations['vel_pos_innov[0]']) + s_innov_0_max = str(round(innov_0_max, 2)) + s_innov_0_min = str(round(innov_0_min, 2)) + # s_innov_0_std = str(round(np.std(ekf2_innovations['vel_pos_innov[0]']),2)) + # Generate East axis metadata + innov_1_max_arg = np.argmax(ekf2_innovations['vel_pos_innov[1]']) + innov_1_max_time = innov_time[innov_1_max_arg] + innov_1_max = np.amax(ekf2_innovations['vel_pos_innov[1]']) + innov_1_min_arg = np.argmin(ekf2_innovations['vel_pos_innov[1]']) + innov_1_min_time = innov_time[innov_1_min_arg] + innov_1_min = np.amin(ekf2_innovations['vel_pos_innov[1]']) + s_innov_1_max = str(round(innov_1_max, 2)) + s_innov_1_min = str(round(innov_1_min, 2)) + # s_innov_1_std = str(round(np.std(ekf2_innovations['vel_pos_innov[1]']),2)) + # draw plots + plt.subplot(2, 1, 1) + plt.plot(1e-6 * ekf2_innovations['timestamp'], ekf2_innovations['vel_pos_innov[0]'], 'b') + plt.plot(1e-6 * ekf2_innovations['timestamp'], np.sqrt(ekf2_innovations['vel_pos_innov_var[0]']), 'r') + plt.plot(1e-6 * ekf2_innovations['timestamp'], -np.sqrt(ekf2_innovations['vel_pos_innov_var[0]']), 'r') + plt.title('Horizontal Velocity Innovations') + plt.ylabel('North Vel (m/s)') + plt.xlabel('time (sec)') + plt.grid() + plt.text(innov_0_max_time, innov_0_max, 'max=' + s_innov_0_max, fontsize=12, horizontalalignment='left', + verticalalignment='bottom') + plt.text(innov_0_min_time, innov_0_min, 'min=' + s_innov_0_min, fontsize=12, horizontalalignment='left', + verticalalignment='top') + # plt.legend(['std='+s_innov_0_std],loc='upper left',frameon=False) + plt.subplot(2, 1, 2) + plt.plot(1e-6 * ekf2_innovations['timestamp'], ekf2_innovations['vel_pos_innov[1]'], 'b') + plt.plot(1e-6 * ekf2_innovations['timestamp'], np.sqrt(ekf2_innovations['vel_pos_innov_var[1]']), 'r') + plt.plot(1e-6 * ekf2_innovations['timestamp'], -np.sqrt(ekf2_innovations['vel_pos_innov_var[1]']), 'r') + plt.ylabel('East Vel (m/s)') + plt.xlabel('time (sec)') + plt.grid() + plt.text(innov_1_max_time, innov_1_max, 'max=' + s_innov_1_max, fontsize=12, horizontalalignment='left', + verticalalignment='bottom') + plt.text(innov_1_min_time, innov_1_min, 'min=' + s_innov_1_min, fontsize=12, horizontalalignment='left', + verticalalignment='top') + # plt.legend(['std='+s_innov_1_std],loc='upper left',frameon=False) + pp.savefig() + plt.close(2) + # horizontal position innovations + plt.figure(3, figsize=(20, 13)) + # generate North axis metadata + innov_3_max_arg = np.argmax(ekf2_innovations['vel_pos_innov[3]']) + innov_3_max_time = innov_time[innov_3_max_arg] + innov_3_max = np.amax(ekf2_innovations['vel_pos_innov[3]']) + innov_3_min_arg = np.argmin(ekf2_innovations['vel_pos_innov[3]']) + innov_3_min_time = innov_time[innov_3_min_arg] + innov_3_min = np.amin(ekf2_innovations['vel_pos_innov[3]']) + s_innov_3_max = str(round(innov_3_max, 2)) + s_innov_3_min = str(round(innov_3_min, 2)) + # s_innov_3_std = str(round(np.std(ekf2_innovations['vel_pos_innov[3]']),2)) + # generate East axis metadata + innov_4_max_arg = np.argmax(ekf2_innovations['vel_pos_innov[4]']) + innov_4_max_time = innov_time[innov_4_max_arg] + innov_4_max = np.amax(ekf2_innovations['vel_pos_innov[4]']) + innov_4_min_arg = np.argmin(ekf2_innovations['vel_pos_innov[4]']) + innov_4_min_time = innov_time[innov_4_min_arg] + innov_4_min = np.amin(ekf2_innovations['vel_pos_innov[4]']) + s_innov_4_max = str(round(innov_4_max, 2)) + s_innov_4_min = str(round(innov_4_min, 2)) + # s_innov_4_std = str(round(np.std(ekf2_innovations['vel_pos_innov[4]']),2)) + # generate plots + plt.subplot(2, 1, 1) + plt.plot(1e-6 * ekf2_innovations['timestamp'], ekf2_innovations['vel_pos_innov[3]'], 'b') + plt.plot(1e-6 * ekf2_innovations['timestamp'], np.sqrt(ekf2_innovations['vel_pos_innov_var[3]']), 'r') + plt.plot(1e-6 * ekf2_innovations['timestamp'], -np.sqrt(ekf2_innovations['vel_pos_innov_var[3]']), 'r') + plt.title('Horizontal Position Innovations') + plt.ylabel('North Pos (m)') + plt.xlabel('time (sec)') + plt.grid() + plt.text(innov_3_max_time, innov_3_max, 'max=' + s_innov_3_max, fontsize=12, horizontalalignment='left', + verticalalignment='bottom') + plt.text(innov_3_min_time, innov_3_min, 'min=' + s_innov_3_min, fontsize=12, horizontalalignment='left', + verticalalignment='top') + # plt.legend(['std='+s_innov_3_std],loc='upper left',frameon=False) + plt.subplot(2, 1, 2) + plt.plot(1e-6 * ekf2_innovations['timestamp'], ekf2_innovations['vel_pos_innov[4]'], 'b') + plt.plot(1e-6 * ekf2_innovations['timestamp'], np.sqrt(ekf2_innovations['vel_pos_innov_var[4]']), 'r') + plt.plot(1e-6 * ekf2_innovations['timestamp'], -np.sqrt(ekf2_innovations['vel_pos_innov_var[4]']), 'r') + plt.ylabel('East Pos (m)') + plt.xlabel('time (sec)') + plt.grid() + plt.text(innov_4_max_time, innov_4_max, 'max=' + s_innov_4_max, fontsize=12, horizontalalignment='left', + verticalalignment='bottom') + plt.text(innov_4_min_time, innov_4_min, 'min=' + s_innov_4_min, fontsize=12, horizontalalignment='left', + verticalalignment='top') + # plt.legend(['std='+s_innov_4_std],loc='upper left',frameon=False) + pp.savefig() + plt.close(3) + # manetometer innovations + plt.figure(4, figsize=(20, 13)) + # generate X axis metadata + innov_0_max_arg = np.argmax(ekf2_innovations['mag_innov[0]']) + innov_0_max_time = innov_time[innov_0_max_arg] + innov_0_max = np.amax(ekf2_innovations['mag_innov[0]']) + innov_0_min_arg = np.argmin(ekf2_innovations['mag_innov[0]']) + innov_0_min_time = innov_time[innov_0_min_arg] + innov_0_min = np.amin(ekf2_innovations['mag_innov[0]']) + s_innov_0_max = str(round(innov_0_max, 3)) + s_innov_0_min = str(round(innov_0_min, 3)) + # s_innov_0_std = str(round(np.std(ekf2_innovations['mag_innov[0]']),3)) + # generate Y axis metadata + innov_1_max_arg = np.argmax(ekf2_innovations['mag_innov[1]']) + innov_1_max_time = innov_time[innov_1_max_arg] + innov_1_max = np.amax(ekf2_innovations['mag_innov[1]']) + innov_1_min_arg = np.argmin(ekf2_innovations['mag_innov[1]']) + innov_1_min_time = innov_time[innov_1_min_arg] + innov_1_min = np.amin(ekf2_innovations['mag_innov[1]']) + s_innov_1_max = str(round(innov_1_max, 3)) + s_innov_1_min = str(round(innov_1_min, 3)) + # s_innov_1_std = str(round(np.std(ekf2_innovations['mag_innov[1]']),3)) + # generate Z axis metadata + innov_2_max_arg = np.argmax(ekf2_innovations['mag_innov[2]']) + innov_2_max_time = innov_time[innov_2_max_arg] + innov_2_max = np.amax(ekf2_innovations['mag_innov[2]']) + innov_2_min_arg = np.argmin(ekf2_innovations['mag_innov[2]']) + innov_2_min_time = innov_time[innov_2_min_arg] + innov_2_min = np.amin(ekf2_innovations['mag_innov[2]']) + s_innov_2_max = str(round(innov_2_max, 3)) + s_innov_2_min = str(round(innov_2_min, 3)) + # s_innov_2_std = str(round(np.std(ekf2_innovations['mag_innov[0]']),3)) + # draw plots + plt.subplot(3, 1, 1) + plt.plot(1e-6 * ekf2_innovations['timestamp'], ekf2_innovations['mag_innov[0]'], 'b') + plt.plot(1e-6 * ekf2_innovations['timestamp'], np.sqrt(ekf2_innovations['mag_innov_var[0]']), 'r') + plt.plot(1e-6 * ekf2_innovations['timestamp'], -np.sqrt(ekf2_innovations['mag_innov_var[0]']), 'r') + plt.title('Magnetometer Innovations') + plt.ylabel('X (Gauss)') + plt.xlabel('time (sec)') + plt.grid() + plt.text(innov_0_max_time, innov_0_max, 'max=' + s_innov_0_max, fontsize=12, horizontalalignment='left', + verticalalignment='bottom') + plt.text(innov_0_min_time, innov_0_min, 'min=' + s_innov_0_min, fontsize=12, horizontalalignment='left', + verticalalignment='top') + # plt.legend(['std='+s_innov_0_std],loc='upper left',frameon=False) + plt.subplot(3, 1, 2) + plt.plot(1e-6 * ekf2_innovations['timestamp'], ekf2_innovations['mag_innov[1]'], 'b') + plt.plot(1e-6 * ekf2_innovations['timestamp'], np.sqrt(ekf2_innovations['mag_innov_var[1]']), 'r') + plt.plot(1e-6 * ekf2_innovations['timestamp'], -np.sqrt(ekf2_innovations['mag_innov_var[1]']), 'r') + plt.ylabel('Y (Gauss)') + plt.xlabel('time (sec)') + plt.grid() + plt.text(innov_1_max_time, innov_1_max, 'max=' + s_innov_1_max, fontsize=12, horizontalalignment='left', + verticalalignment='bottom') + plt.text(innov_1_min_time, innov_1_min, 'min=' + s_innov_1_min, fontsize=12, horizontalalignment='left', + verticalalignment='top') + # plt.legend(['std='+s_innov_1_std],loc='upper left',frameon=False) + plt.subplot(3, 1, 3) + plt.plot(1e-6 * ekf2_innovations['timestamp'], ekf2_innovations['mag_innov[2]'], 'b') + plt.plot(1e-6 * ekf2_innovations['timestamp'], np.sqrt(ekf2_innovations['mag_innov_var[2]']), 'r') + plt.plot(1e-6 * ekf2_innovations['timestamp'], -np.sqrt(ekf2_innovations['mag_innov_var[2]']), 'r') + plt.ylabel('Z (Gauss)') + plt.xlabel('time (sec)') + plt.grid() + plt.text(innov_2_max_time, innov_2_max, 'max=' + s_innov_2_max, fontsize=12, horizontalalignment='left', + verticalalignment='bottom') + plt.text(innov_2_min_time, innov_2_min, 'min=' + s_innov_2_min, fontsize=12, horizontalalignment='left', + verticalalignment='top') + # plt.legend(['std='+s_innov_2_std],loc='upper left',frameon=False) + pp.savefig() + plt.close(4) + # magnetic heading innovations + plt.figure(5, figsize=(20, 13)) + # generate metadata + innov_0_max_arg = np.argmax(ekf2_innovations['heading_innov']) + innov_0_max_time = innov_time[innov_0_max_arg] + innov_0_max = np.amax(ekf2_innovations['heading_innov']) + innov_0_min_arg = np.argmin(ekf2_innovations['heading_innov']) + innov_0_min_time = innov_time[innov_0_min_arg] + innov_0_min = np.amin(ekf2_innovations['heading_innov']) + s_innov_0_max = str(round(innov_0_max, 3)) + s_innov_0_min = str(round(innov_0_min, 3)) + # s_innov_0_std = str(round(np.std(ekf2_innovations['heading_innov']),3)) + # draw plot + plt.plot(1e-6 * ekf2_innovations['timestamp'], ekf2_innovations['heading_innov'], 'b') + plt.plot(1e-6 * ekf2_innovations['timestamp'], np.sqrt(ekf2_innovations['heading_innov_var']), 'r') + plt.plot(1e-6 * ekf2_innovations['timestamp'], -np.sqrt(ekf2_innovations['heading_innov_var']), 'r') + plt.title('Magnetic Heading Innovations') + plt.ylabel('Heaing (rad)') + plt.xlabel('time (sec)') + plt.grid() + plt.text(innov_0_max_time, innov_0_max, 'max=' + s_innov_0_max, fontsize=12, horizontalalignment='left', + verticalalignment='bottom') + plt.text(innov_0_min_time, innov_0_min, 'min=' + s_innov_0_min, fontsize=12, horizontalalignment='left', + verticalalignment='top') + # plt.legend(['std='+s_innov_0_std],loc='upper left',frameon=False) + pp.savefig() + plt.close(5) + # air data innovations + plt.figure(6, figsize=(20, 13)) + # generate airspeed metadata + airspeed_innov_max_arg = np.argmax(ekf2_innovations['airspeed_innov']) + airspeed_innov_max_time = innov_time[airspeed_innov_max_arg] + airspeed_innov_max = np.amax(ekf2_innovations['airspeed_innov']) + airspeed_innov_min_arg = np.argmin(ekf2_innovations['airspeed_innov']) + airspeed_innov_min_time = innov_time[airspeed_innov_min_arg] + airspeed_innov_min = np.amin(ekf2_innovations['airspeed_innov']) + s_airspeed_innov_max = str(round(airspeed_innov_max, 3)) + s_airspeed_innov_min = str(round(airspeed_innov_min, 3)) + # generate sideslip metadata + beta_innov_max_arg = np.argmax(ekf2_innovations['beta_innov']) + beta_innov_max_time = innov_time[beta_innov_max_arg] + beta_innov_max = np.amax(ekf2_innovations['beta_innov']) + beta_innov_min_arg = np.argmin(ekf2_innovations['beta_innov']) + beta_innov_min_time = innov_time[beta_innov_min_arg] + beta_innov_min = np.amin(ekf2_innovations['beta_innov']) + s_beta_innov_max = str(round(beta_innov_max, 3)) + s_beta_innov_min = str(round(beta_innov_min, 3)) + # draw plots + plt.subplot(2, 1, 1) + plt.plot(1e-6 * ekf2_innovations['timestamp'], ekf2_innovations['airspeed_innov'], 'b') + plt.plot(1e-6 * ekf2_innovations['timestamp'], np.sqrt(ekf2_innovations['airspeed_innov_var']), 'r') + plt.plot(1e-6 * ekf2_innovations['timestamp'], -np.sqrt(ekf2_innovations['airspeed_innov_var']), 'r') + plt.title('True Airspeed Innovations') + plt.ylabel('innovation (m/sec)') + plt.xlabel('time (sec)') + plt.grid() + plt.text(airspeed_innov_max_time, airspeed_innov_max, 'max=' + s_airspeed_innov_max, fontsize=12, + horizontalalignment='left', verticalalignment='bottom') + plt.text(airspeed_innov_min_time, airspeed_innov_min, 'min=' + s_airspeed_innov_min, fontsize=12, + horizontalalignment='left', verticalalignment='top') + plt.subplot(2, 1, 2) + plt.plot(1e-6 * ekf2_innovations['timestamp'], ekf2_innovations['beta_innov'], 'b') + plt.plot(1e-6 * ekf2_innovations['timestamp'], np.sqrt(ekf2_innovations['beta_innov_var']), 'r') + plt.plot(1e-6 * ekf2_innovations['timestamp'], -np.sqrt(ekf2_innovations['beta_innov_var']), 'r') + plt.title('Sythetic Sideslip Innovations') + plt.ylabel('innovation (rad)') + plt.xlabel('time (sec)') + plt.grid() + plt.text(beta_innov_max_time, beta_innov_max, 'max=' + s_beta_innov_max, fontsize=12, horizontalalignment='left', + verticalalignment='bottom') + plt.text(beta_innov_min_time, beta_innov_min, 'min=' + s_beta_innov_min, fontsize=12, horizontalalignment='left', + verticalalignment='top') + pp.savefig() + plt.close(6) + # optical flow innovations + plt.figure(7, figsize=(20, 13)) + # generate X axis metadata + flow_innov_x_max_arg = np.argmax(ekf2_innovations['flow_innov[0]']) + flow_innov_x_max_time = innov_time[flow_innov_x_max_arg] + flow_innov_x_max = np.amax(ekf2_innovations['flow_innov[0]']) + flow_innov_x_min_arg = np.argmin(ekf2_innovations['flow_innov[0]']) + flow_innov_x_min_time = innov_time[flow_innov_x_min_arg] + flow_innov_x_min = np.amin(ekf2_innovations['flow_innov[0]']) + s_flow_innov_x_max = str(round(flow_innov_x_max, 3)) + s_flow_innov_x_min = str(round(flow_innov_x_min, 3)) + # s_flow_innov_x_std = str(round(np.std(ekf2_innovations['flow_innov[0]']),3)) + # generate Y axis metadata + flow_innov_y_max_arg = np.argmax(ekf2_innovations['flow_innov[1]']) + flow_innov_y_max_time = innov_time[flow_innov_y_max_arg] + flow_innov_y_max = np.amax(ekf2_innovations['flow_innov[1]']) + flow_innov_y_min_arg = np.argmin(ekf2_innovations['flow_innov[1]']) + flow_innov_y_min_time = innov_time[flow_innov_y_min_arg] + flow_innov_y_min = np.amin(ekf2_innovations['flow_innov[1]']) + s_flow_innov_y_max = str(round(flow_innov_y_max, 3)) + s_flow_innov_y_min = str(round(flow_innov_y_min, 3)) + # s_flow_innov_y_std = str(round(np.std(ekf2_innovations['flow_innov[1]']),3)) + # draw plots + plt.subplot(2, 1, 1) + plt.plot(1e-6 * ekf2_innovations['timestamp'], ekf2_innovations['flow_innov[0]'], 'b') + plt.plot(1e-6 * ekf2_innovations['timestamp'], np.sqrt(ekf2_innovations['flow_innov_var[0]']), 'r') + plt.plot(1e-6 * ekf2_innovations['timestamp'], -np.sqrt(ekf2_innovations['flow_innov_var[0]']), 'r') + plt.title('Optical Flow Innovations') + plt.ylabel('X (rad/sec)') + plt.xlabel('time (sec)') + plt.grid() + plt.text(flow_innov_x_max_time, flow_innov_x_max, 'max=' + s_flow_innov_x_max, fontsize=12, + horizontalalignment='left', verticalalignment='bottom') + plt.text(flow_innov_x_min_time, flow_innov_x_min, 'min=' + s_flow_innov_x_min, fontsize=12, + horizontalalignment='left', verticalalignment='top') + # plt.legend(['std='+s_flow_innov_x_std],loc='upper left',frameon=False) + plt.subplot(2, 1, 2) + plt.plot(1e-6 * ekf2_innovations['timestamp'], ekf2_innovations['flow_innov[1]'], 'b') + plt.plot(1e-6 * ekf2_innovations['timestamp'], np.sqrt(ekf2_innovations['flow_innov_var[1]']), 'r') + plt.plot(1e-6 * ekf2_innovations['timestamp'], -np.sqrt(ekf2_innovations['flow_innov_var[1]']), 'r') + plt.ylabel('Y (rad/sec)') + plt.xlabel('time (sec)') + plt.grid() + plt.text(flow_innov_y_max_time, flow_innov_y_max, 'max=' + s_flow_innov_y_max, fontsize=12, + horizontalalignment='left', verticalalignment='bottom') + plt.text(flow_innov_y_min_time, flow_innov_y_min, 'min=' + s_flow_innov_y_min, fontsize=12, + horizontalalignment='left', verticalalignment='top') + # plt.legend(['std='+s_flow_innov_y_std],loc='upper left',frameon=False) + pp.savefig() + plt.close(7) + + # generate metadata for the normalised innovation consistency test levels + # a value > 1.0 means the measurement data for that test has been rejected by the EKF + # magnetometer data + mag_test_max_arg = np.argmax(estimator_status['mag_test_ratio']) + mag_test_max_time = status_time[mag_test_max_arg] + mag_test_max = np.amax(estimator_status['mag_test_ratio']) + mag_test_mean = np.mean(estimator_status['mag_test_ratio']) + # velocity data (GPS) + vel_test_max_arg = np.argmax(estimator_status['vel_test_ratio']) + vel_test_max_time = status_time[vel_test_max_arg] + vel_test_max = np.amax(estimator_status['vel_test_ratio']) + vel_test_mean = np.mean(estimator_status['vel_test_ratio']) + # horizontal position data (GPS or external vision) + pos_test_max_arg = np.argmax(estimator_status['pos_test_ratio']) + pos_test_max_time = status_time[pos_test_max_arg] + pos_test_max = np.amax(estimator_status['pos_test_ratio']) + pos_test_mean = np.mean(estimator_status['pos_test_ratio']) + # height data (Barometer, GPS or rangefinder) + hgt_test_max_arg = np.argmax(estimator_status['hgt_test_ratio']) + hgt_test_max_time = status_time[hgt_test_max_arg] + hgt_test_max = np.amax(estimator_status['hgt_test_ratio']) + hgt_test_mean = np.mean(estimator_status['hgt_test_ratio']) + # airspeed data + tas_test_max_arg = np.argmax(estimator_status['tas_test_ratio']) + tas_test_max_time = status_time[tas_test_max_arg] + tas_test_max = np.amax(estimator_status['tas_test_ratio']) + tas_test_mean = np.mean(estimator_status['tas_test_ratio']) + # height above ground data (rangefinder) + hagl_test_max_arg = np.argmax(estimator_status['hagl_test_ratio']) + hagl_test_max_time = status_time[hagl_test_max_arg] + hagl_test_max = np.amax(estimator_status['hagl_test_ratio']) + hagl_test_mean = np.mean(estimator_status['hagl_test_ratio']) + + if plot: + # plot normalised innovation test levels + plt.figure(8, figsize=(20, 13)) + if tas_test_max == 0.0: + n_plots = 3 + else: + n_plots = 4 + plt.subplot(n_plots, 1, 1) + plt.plot(status_time, estimator_status['mag_test_ratio'], 'b') + plt.title('Normalised Innovation Test Levels') + plt.ylabel('mag') + plt.xlabel('time (sec)') + plt.grid() + plt.text(mag_test_max_time, mag_test_max, + 'max=' + str(round(mag_test_max, 2)) + ' , mean=' + str(round(mag_test_mean, 2)), fontsize=12, + horizontalalignment='left', verticalalignment='bottom', color='b') + plt.subplot(n_plots, 1, 2) + plt.plot(status_time, estimator_status['vel_test_ratio'], 'b') + plt.plot(status_time, estimator_status['pos_test_ratio'], 'r') + plt.ylabel('vel,pos') + plt.xlabel('time (sec)') + plt.grid() + plt.text(vel_test_max_time, vel_test_max, + 'vel max=' + str(round(vel_test_max, 2)) + ' , mean=' + str(round(vel_test_mean, 2)), fontsize=12, + horizontalalignment='left', verticalalignment='bottom', color='b') + plt.text(pos_test_max_time, pos_test_max, + 'pos max=' + str(round(pos_test_max, 2)) + ' , mean=' + str(round(pos_test_mean, 2)), fontsize=12, + horizontalalignment='left', verticalalignment='bottom', color='r') + plt.subplot(n_plots, 1, 3) + plt.plot(status_time, estimator_status['hgt_test_ratio'], 'b') + plt.ylabel('hgt') + plt.xlabel('time (sec)') + plt.grid() + plt.text(hgt_test_max_time, hgt_test_max, + 'hgt max=' + str(round(hgt_test_max, 2)) + ' , mean=' + str(round(hgt_test_mean, 2)), fontsize=12, + horizontalalignment='left', verticalalignment='bottom', color='b') + if hagl_test_max > 0.0: + plt.plot(status_time, estimator_status['hagl_test_ratio'], 'r') + plt.text(hagl_test_max_time, hagl_test_max, + 'hagl max=' + str(round(hagl_test_max, 2)) + ' , mean=' + str(round(hagl_test_mean, 2)), fontsize=12, + horizontalalignment='left', verticalalignment='bottom', color='r') + plt.ylabel('hgt,HAGL') + if n_plots == 4: + plt.subplot(n_plots, 1, 4) + plt.plot(status_time, estimator_status['tas_test_ratio'], 'b') + plt.ylabel('TAS') + plt.xlabel('time (sec)') + plt.grid() + plt.text(tas_test_max_time, tas_test_max, + 'max=' + str(round(tas_test_max, 2)) + ' , mean=' + str(round(tas_test_mean, 2)), fontsize=12, + horizontalalignment='left', verticalalignment='bottom', color='b') + pp.savefig() + plt.close(8) + + # extract control mode metadata from estimator_status.control_mode_flags + # 0 - true if the filter tilt alignment is complete + # 1 - true if the filter yaw alignment is complete + # 2 - true if GPS measurements are being fused + # 3 - true if optical flow measurements are being fused + # 4 - true if a simple magnetic yaw heading is being fused + # 5 - true if 3-axis magnetometer measurement are being fused + # 6 - true if synthetic magnetic declination measurements are being fused + # 7 - true when the vehicle is airborne + # 8 - true when wind velocity is being estimated + # 9 - true when baro height is being fused as a primary height reference + # 10 - true when range finder height is being fused as a primary height reference + # 11 - true when range finder height is being fused as a primary height reference + # 12 - true when local position data from external vision is being fused + # 13 - true when yaw data from external vision measurements is being fused + # 14 - true when height data from external vision measurements is being fused + tilt_aligned = ((2 ** 0 & estimator_status['control_mode_flags']) > 0) * 1 + yaw_aligned = ((2 ** 1 & estimator_status['control_mode_flags']) > 0) * 1 + using_gps = ((2 ** 2 & estimator_status['control_mode_flags']) > 0) * 1 + using_optflow = ((2 ** 3 & estimator_status['control_mode_flags']) > 0) * 1 + using_magyaw = ((2 ** 4 & estimator_status['control_mode_flags']) > 0) * 1 + using_mag3d = ((2 ** 5 & estimator_status['control_mode_flags']) > 0) * 1 + using_magdecl = ((2 ** 6 & estimator_status['control_mode_flags']) > 0) * 1 + airborne = ((2 ** 7 & estimator_status['control_mode_flags']) > 0) * 1 + estimating_wind = ((2 ** 8 & estimator_status['control_mode_flags']) > 0) * 1 + using_barohgt = ((2 ** 9 & estimator_status['control_mode_flags']) > 0) * 1 + using_rnghgt = ((2 ** 10 & estimator_status['control_mode_flags']) > 0) * 1 + using_gpshgt = ((2 ** 11 & estimator_status['control_mode_flags']) > 0) * 1 + using_evpos = ((2 ** 12 & estimator_status['control_mode_flags']) > 0) * 1 + using_evyaw = ((2 ** 13 & estimator_status['control_mode_flags']) > 0) * 1 + using_evhgt = ((2 ** 14 & estimator_status['control_mode_flags']) > 0) * 1 + # calculate in-air transition time + if (np.amin(airborne) < 0.5) and (np.amax(airborne) > 0.5): + in_air_transtion_time_arg = np.argmax(np.diff(airborne)) + in_air_transition_time = status_time[in_air_transtion_time_arg] + elif (np.amax(airborne) > 0.5): + in_air_transition_time = np.amin(status_time) + print('log starts while in-air at ' + str(round(in_air_transition_time, 1)) + ' sec') + else: + in_air_transition_time = float('NaN') + print('always on ground') + # calculate on-ground transition time + if (np.amin(np.diff(airborne)) < 0.0): + on_ground_transition_time_arg = np.argmin(np.diff(airborne)) + on_ground_transition_time = status_time[on_ground_transition_time_arg] + elif (np.amax(airborne) > 0.5): + on_ground_transition_time = np.amax(status_time) + print('log finishes while in-air at ' + str(round(on_ground_transition_time, 1)) + ' sec') + else: + on_ground_transition_time = float('NaN') + print('always on ground') + if (np.amax(np.diff(airborne)) > 0.5) and (np.amin(np.diff(airborne)) < -0.5): + if ((on_ground_transition_time - in_air_transition_time) > 0.0): + in_air_duration = on_ground_transition_time - in_air_transition_time; + else: + in_air_duration = float('NaN') + else: + in_air_duration = float('NaN') + # calculate alignment completion times + tilt_align_time_arg = np.argmax(np.diff(tilt_aligned)) + tilt_align_time = status_time[tilt_align_time_arg] + yaw_align_time_arg = np.argmax(np.diff(yaw_aligned)) + yaw_align_time = status_time[yaw_align_time_arg] + # calculate position aiding start times + gps_aid_time_arg = np.argmax(np.diff(using_gps)) + gps_aid_time = status_time[gps_aid_time_arg] + optflow_aid_time_arg = np.argmax(np.diff(using_optflow)) + optflow_aid_time = status_time[optflow_aid_time_arg] + evpos_aid_time_arg = np.argmax(np.diff(using_evpos)) + evpos_aid_time = status_time[evpos_aid_time_arg] + # calculate height aiding start times + barohgt_aid_time_arg = np.argmax(np.diff(using_barohgt)) + barohgt_aid_time = status_time[barohgt_aid_time_arg] + gpshgt_aid_time_arg = np.argmax(np.diff(using_gpshgt)) + gpshgt_aid_time = status_time[gpshgt_aid_time_arg] + rnghgt_aid_time_arg = np.argmax(np.diff(using_rnghgt)) + rnghgt_aid_time = status_time[rnghgt_aid_time_arg] + evhgt_aid_time_arg = np.argmax(np.diff(using_evhgt)) + evhgt_aid_time = status_time[evhgt_aid_time_arg] + # calculate magnetometer aiding start times + using_magyaw_time_arg = np.argmax(np.diff(using_magyaw)) + using_magyaw_time = status_time[using_magyaw_time_arg] + using_mag3d_time_arg = np.argmax(np.diff(using_mag3d)) + using_mag3d_time = status_time[using_mag3d_time_arg] + using_magdecl_time_arg = np.argmax(np.diff(using_magdecl)) + using_magdecl_time = status_time[using_magdecl_time_arg] + + if plot: + # control mode summary plot A + plt.figure(9, figsize=(20, 13)) + # subplot for alignment completion + plt.subplot(4, 1, 1) + plt.title('EKF Control Status - Figure A') + plt.plot(status_time, tilt_aligned, 'b') + plt.plot(status_time, yaw_aligned, 'r') + plt.ylim(-0.1, 1.1) + plt.ylabel('aligned') + plt.grid() + if np.amin(tilt_aligned) > 0: + plt.text(tilt_align_time, 0.5, 'no pre-arm data - cannot calculate alignment completion times', fontsize=12, + horizontalalignment='left', verticalalignment='center', color='black') + else: + plt.text(tilt_align_time, 0.33, 'tilt alignment at ' + str(round(tilt_align_time, 1)) + ' sec', fontsize=12, + horizontalalignment='left', verticalalignment='center', color='b') + plt.text(yaw_align_time, 0.67, 'yaw alignment at ' + str(round(tilt_align_time, 1)) + ' sec', fontsize=12, + horizontalalignment='left', verticalalignment='center', color='r') + # subplot for position aiding + plt.subplot(4, 1, 2) + plt.plot(status_time, using_gps, 'b') + plt.plot(status_time, using_optflow, 'r') + plt.plot(status_time, using_evpos, 'g') + plt.ylim(-0.1, 1.1) + plt.ylabel('pos aiding') + plt.grid() + if np.amin(using_gps) > 0: + plt.text(gps_aid_time, 0.25, 'no pre-arm data - cannot calculate GPS aiding start time', fontsize=12, + horizontalalignment='left', verticalalignment='center', color='b') + elif np.amax(using_gps) > 0: + plt.text(gps_aid_time, 0.25, 'GPS aiding at ' + str(round(gps_aid_time, 1)) + ' sec', fontsize=12, + horizontalalignment='left', verticalalignment='center', color='b') + if np.amin(using_optflow) > 0: + plt.text(optflow_aid_time, 0.50, 'no pre-arm data - cannot calculate optical flow aiding start time', + fontsize=12, horizontalalignment='left', verticalalignment='center', color='r') + elif np.amax(using_optflow) > 0: + plt.text(optflow_aid_time, 0.50, 'optical flow aiding at ' + str(round(optflow_aid_time, 1)) + ' sec', + fontsize=12, horizontalalignment='left', verticalalignment='center', color='r') + if np.amin(using_evpos) > 0: + plt.text(evpos_aid_time, 0.75, 'no pre-arm data - cannot calculate external vision aiding start time', + fontsize=12, horizontalalignment='left', verticalalignment='center', color='g') + elif np.amax(using_evpos) > 0: + plt.text(evpos_aid_time, 0.75, 'external vision aiding at ' + str(round(evpos_aid_time, 1)) + ' sec', + fontsize=12, horizontalalignment='left', verticalalignment='center', color='g') + # subplot for height aiding + plt.subplot(4, 1, 3) + plt.plot(status_time, using_barohgt, 'b') + plt.plot(status_time, using_gpshgt, 'r') + plt.plot(status_time, using_rnghgt, 'g') + plt.plot(status_time, using_evhgt, 'c') + plt.ylim(-0.1, 1.1) + plt.ylabel('hgt aiding') + plt.grid() + if np.amin(using_barohgt) > 0: + plt.text(barohgt_aid_time, 0.2, 'no pre-arm data - cannot calculate Baro aiding start time', fontsize=12, + horizontalalignment='left', verticalalignment='center', color='b') + elif np.amax(using_barohgt) > 0: + plt.text(barohgt_aid_time, 0.2, 'Baro aiding at ' + str(round(gps_aid_time, 1)) + ' sec', fontsize=12, + horizontalalignment='left', verticalalignment='center', color='b') + if np.amin(using_gpshgt) > 0: + plt.text(gpshgt_aid_time, 0.4, 'no pre-arm data - cannot calculate GPS aiding start time', fontsize=12, + horizontalalignment='left', verticalalignment='center', color='r') + elif np.amax(using_gpshgt) > 0: + plt.text(gpshgt_aid_time, 0.4, 'GPS aiding at ' + str(round(gpshgt_aid_time, 1)) + ' sec', fontsize=12, + horizontalalignment='left', verticalalignment='center', color='r') + if np.amin(using_rnghgt) > 0: + plt.text(rnghgt_aid_time, 0.6, 'no pre-arm data - cannot calculate rangfinder aiding start time', fontsize=12, + horizontalalignment='left', verticalalignment='center', color='g') + elif np.amax(using_rnghgt) > 0: + plt.text(rnghgt_aid_time, 0.6, 'rangefinder aiding at ' + str(round(rnghgt_aid_time, 1)) + ' sec', fontsize=12, + horizontalalignment='left', verticalalignment='center', color='g') + if np.amin(using_evhgt) > 0: + plt.text(evhgt_aid_time, 0.8, 'no pre-arm data - cannot calculate external vision aiding start time', + fontsize=12, horizontalalignment='left', verticalalignment='center', color='c') + elif np.amax(using_evhgt) > 0: + plt.text(evhgt_aid_time, 0.8, 'external vision aiding at ' + str(round(evhgt_aid_time, 1)) + ' sec', + fontsize=12, horizontalalignment='left', verticalalignment='center', color='c') + # subplot for magnetometer aiding + plt.subplot(4, 1, 4) + plt.plot(status_time, using_magyaw, 'b') + plt.plot(status_time, using_mag3d, 'r') + plt.plot(status_time, using_magdecl, 'g') + plt.ylim(-0.1, 1.1) + plt.ylabel('mag aiding') + plt.xlabel('time (sec)') + plt.grid() + if np.amin(using_magyaw) > 0: + plt.text(using_magyaw_time, 0.25, 'no pre-arm data - cannot calculate magnetic yaw aiding start time', + fontsize=12, horizontalalignment='left', verticalalignment='center', color='b') + elif np.amax(using_magyaw) > 0: + plt.text(using_magyaw_time, 0.25, 'magnetic yaw aiding at ' + str(round(using_magyaw_time, 1)) + ' sec', + fontsize=12, horizontalalignment='right', verticalalignment='center', color='b') + if np.amin(using_mag3d) > 0: + plt.text(using_mag3d_time, 0.50, 'no pre-arm data - cannot calculate 3D magnetoemter aiding start time', + fontsize=12, horizontalalignment='left', verticalalignment='center', color='r') + elif np.amax(using_mag3d) > 0: + plt.text(using_mag3d_time, 0.50, 'magnetometer 3D aiding at ' + str(round(using_mag3d_time, 1)) + ' sec', + fontsize=12, horizontalalignment='left', verticalalignment='center', color='r') + if np.amin(using_magdecl) > 0: + plt.text(using_magdecl_time, 0.75, 'no pre-arm data - cannot magnetic declination aiding start time', + fontsize=12, horizontalalignment='left', verticalalignment='center', color='g') + elif np.amax(using_magdecl) > 0: + plt.text(using_magdecl_time, 0.75, + 'magnetic declination aiding at ' + str(round(using_magdecl_time, 1)) + ' sec', fontsize=12, + horizontalalignment='left', verticalalignment='center', color='g') + pp.savefig() + plt.close(9) + # control mode summary plot B + plt.figure(10, figsize=(20, 13)) + # subplot for airborne status + plt.subplot(2, 1, 1) + plt.title('EKF Control Status - Figure B') + plt.plot(status_time, airborne, 'b') + plt.ylim(-0.1, 1.1) + plt.ylabel('airborne') + plt.grid() + if np.amax(np.diff(airborne)) < 0.5: + plt.text(in_air_transition_time, 0.67, 'ground to air transition not detected', fontsize=12, + horizontalalignment='left', verticalalignment='center', color='b') + else: + plt.text(in_air_transition_time, 0.67, 'in-air at ' + str(round(in_air_transition_time, 1)) + ' sec', + fontsize=12, horizontalalignment='left', verticalalignment='center', color='b') + if np.amin(np.diff(airborne)) > -0.5: + plt.text(on_ground_transition_time, 0.33, 'air to ground transition not detected', fontsize=12, + horizontalalignment='left', verticalalignment='center', color='b') + else: + plt.text(on_ground_transition_time, 0.33, 'on-ground at ' + str(round(on_ground_transition_time, 1)) + ' sec', + fontsize=12, horizontalalignment='right', verticalalignment='center', color='b') + if in_air_duration > 0.0: + plt.text((in_air_transition_time + on_ground_transition_time) / 2, 0.5, + 'duration = ' + str(round(in_air_duration, 1)) + ' sec', fontsize=12, horizontalalignment='center', + verticalalignment='center', color='b') + # subplot for wind estimation status + plt.subplot(2, 1, 2) + plt.plot(status_time, estimating_wind, 'b') + plt.ylim(-0.1, 1.1) + plt.ylabel('estimating wind') + plt.xlabel('time (sec)') + plt.grid() + pp.savefig() + plt.close(10) + + # innovation_check_flags summary + # 0 - true if velocity observations have been rejected + # 1 - true if horizontal position observations have been rejected + # 2 - true if true if vertical position observations have been rejected + # 3 - true if the X magnetometer observation has been rejected + # 4 - true if the Y magnetometer observation has been rejected + # 5 - true if the Z magnetometer observation has been rejected + # 6 - true if the yaw observation has been rejected + # 7 - true if the airspeed observation has been rejected + # 8 - true if the height above ground observation has been rejected + # 9 - true if the X optical flow observation has been rejected + # 10 - true if the Y optical flow observation has been rejected + vel_innov_fail = ((2 ** 0 & estimator_status['innovation_check_flags']) > 0) * 1 + posh_innov_fail = ((2 ** 1 & estimator_status['innovation_check_flags']) > 0) * 1 + posv_innov_fail = ((2 ** 2 & estimator_status['innovation_check_flags']) > 0) * 1 + magx_innov_fail = ((2 ** 3 & estimator_status['innovation_check_flags']) > 0) * 1 + magy_innov_fail = ((2 ** 4 & estimator_status['innovation_check_flags']) > 0) * 1 + magz_innov_fail = ((2 ** 5 & estimator_status['innovation_check_flags']) > 0) * 1 + yaw_innov_fail = ((2 ** 6 & estimator_status['innovation_check_flags']) > 0) * 1 + tas_innov_fail = ((2 ** 7 & estimator_status['innovation_check_flags']) > 0) * 1 + hagl_innov_fail = ((2 ** 8 & estimator_status['innovation_check_flags']) > 0) * 1 + ofx_innov_fail = ((2 ** 9 & estimator_status['innovation_check_flags']) > 0) * 1 + ofy_innov_fail = ((2 ** 10 & estimator_status['innovation_check_flags']) > 0) * 1 + + if plot: + # plot innovation_check_flags summary + plt.figure(11, figsize=(20, 13)) + plt.subplot(5, 1, 1) + plt.title('EKF Innovation Test Fails') + plt.plot(status_time, vel_innov_fail, 'b', label='vel NED') + plt.plot(status_time, posh_innov_fail, 'r', label='pos NE') + plt.ylim(-0.1, 1.1) + plt.ylabel('failed') + plt.legend(loc='upper left') + plt.grid() + plt.subplot(5, 1, 2) + plt.plot(status_time, posv_innov_fail, 'b', label='hgt absolute') + plt.plot(status_time, hagl_innov_fail, 'r', label='hgt above ground') + plt.ylim(-0.1, 1.1) + plt.ylabel('failed') + plt.legend(loc='upper left') + plt.grid() + plt.subplot(5, 1, 3) + plt.plot(status_time, magx_innov_fail, 'b', label='mag_x') + plt.plot(status_time, magy_innov_fail, 'r', label='mag_y') + plt.plot(status_time, magz_innov_fail, 'g', label='mag_z') + plt.plot(status_time, yaw_innov_fail, 'c', label='yaw') + plt.legend(loc='upper left') + plt.ylim(-0.1, 1.1) + plt.ylabel('failed') + plt.grid() + plt.subplot(5, 1, 4) + plt.plot(status_time, tas_innov_fail, 'b', label='airspeed') + plt.ylim(-0.1, 1.1) + plt.ylabel('failed') + plt.legend(loc='upper left') + plt.grid() + plt.subplot(5, 1, 5) + plt.plot(status_time, ofx_innov_fail, 'b', label='flow X') + plt.plot(status_time, ofy_innov_fail, 'r', label='flow Y') + plt.ylim(-0.1, 1.1) + plt.ylabel('failed') + plt.xlabel('time (sec') + plt.legend(loc='upper left') + plt.grid() + pp.savefig() + plt.close(11) + # gps_check_fail_flags summary + plt.figure(12, figsize=(20, 13)) + # 0 : minimum required sat count fail + # 1 : minimum required GDoP fail + # 2 : maximum allowed horizontal position error fail + # 3 : maximum allowed vertical position error fail + # 4 : maximum allowed speed error fail + # 5 : maximum allowed horizontal position drift fail + # 6 : maximum allowed vertical position drift fail + # 7 : maximum allowed horizontal speed fail + # 8 : maximum allowed vertical velocity discrepancy fail + nsat_fail = ((2 ** 0 & estimator_status['gps_check_fail_flags']) > 0) * 1 + gdop_fail = ((2 ** 1 & estimator_status['gps_check_fail_flags']) > 0) * 1 + herr_fail = ((2 ** 2 & estimator_status['gps_check_fail_flags']) > 0) * 1 + verr_fail = ((2 ** 3 & estimator_status['gps_check_fail_flags']) > 0) * 1 + serr_fail = ((2 ** 4 & estimator_status['gps_check_fail_flags']) > 0) * 1 + hdrift_fail = ((2 ** 5 & estimator_status['gps_check_fail_flags']) > 0) * 1 + vdrift_fail = ((2 ** 6 & estimator_status['gps_check_fail_flags']) > 0) * 1 + hspd_fail = ((2 ** 7 & estimator_status['gps_check_fail_flags']) > 0) * 1 + veld_diff_fail = ((2 ** 8 & estimator_status['gps_check_fail_flags']) > 0) * 1 + plt.subplot(2, 1, 1) + plt.title('GPS Direct Output Check Failures') + plt.plot(status_time, nsat_fail, 'b', label='N sats') + plt.plot(status_time, gdop_fail, 'r', label='GDOP') + plt.plot(status_time, herr_fail, 'g', label='horiz pos error') + plt.plot(status_time, verr_fail, 'c', label='vert pos error') + plt.plot(status_time, serr_fail, 'm', label='speed error') + plt.ylim(-0.1, 1.1) + plt.ylabel('failed') + plt.legend(loc='upper right') + plt.grid() + plt.subplot(2, 1, 2) + plt.title('GPS Derived Output Check Failures') + plt.plot(status_time, hdrift_fail, 'b', label='horiz drift') + plt.plot(status_time, vdrift_fail, 'r', label='vert drift') + plt.plot(status_time, hspd_fail, 'g', label='horiz speed') + plt.plot(status_time, veld_diff_fail, 'c', label='vert vel inconsistent') + plt.ylim(-0.1, 1.1) + plt.ylabel('failed') + plt.xlabel('time (sec') + plt.legend(loc='upper right') + plt.grid() + pp.savefig() + plt.close(12) + # filter reported accuracy + plt.figure(13, figsize=(20, 13)) + plt.title('Reported Accuracy') + plt.plot(status_time, estimator_status['pos_horiz_accuracy'], 'b', label='horizontal') + plt.plot(status_time, estimator_status['pos_vert_accuracy'], 'r', label='vertical') + plt.ylabel('accuracy (m)') + plt.xlabel('time (sec') + plt.legend(loc='upper right') + plt.grid() + pp.savefig() + plt.close(13) + # Plot the EKF IMU vibration metrics + plt.figure(14, figsize=(20, 13)) + vibe_coning_max_arg = np.argmax(estimator_status['vibe[0]']) + vibe_coning_max_time = status_time[vibe_coning_max_arg] + vibe_coning_max = np.amax(estimator_status['vibe[0]']) + vibe_hf_dang_max_arg = np.argmax(estimator_status['vibe[1]']) + vibe_hf_dang_max_time = status_time[vibe_hf_dang_max_arg] + vibe_hf_dang_max = np.amax(estimator_status['vibe[1]']) + vibe_hf_dvel_max_arg = np.argmax(estimator_status['vibe[2]']) + vibe_hf_dvel_max_time = status_time[vibe_hf_dvel_max_arg] + vibe_hf_dvel_max = np.amax(estimator_status['vibe[2]']) + plt.subplot(3, 1, 1) + plt.plot(1e-6 * estimator_status['timestamp'], 1000.0 * estimator_status['vibe[0]'], 'b') + plt.title('IMU Vibration Metrics') + plt.ylabel('Del Ang Coning (mrad)') + plt.grid() + plt.text(vibe_coning_max_time, 1000.0 * vibe_coning_max, 'max=' + str(round(1000.0 * vibe_coning_max, 5)), + fontsize=12, horizontalalignment='left', verticalalignment='top') + plt.subplot(3, 1, 2) + plt.plot(1e-6 * estimator_status['timestamp'], 1000.0 * estimator_status['vibe[1]'], 'b') + plt.ylabel('HF Del Ang (mrad)') + plt.grid() + plt.text(vibe_hf_dang_max_time, 1000.0 * vibe_hf_dang_max, 'max=' + str(round(1000.0 * vibe_hf_dang_max, 3)), + fontsize=12, horizontalalignment='left', verticalalignment='top') + plt.subplot(3, 1, 3) + plt.plot(1e-6 * estimator_status['timestamp'], estimator_status['vibe[2]'], 'b') + plt.ylabel('HF Del Vel (m/s)') + plt.xlabel('time (sec)') + plt.grid() + plt.text(vibe_hf_dvel_max_time, vibe_hf_dvel_max, 'max=' + str(round(vibe_hf_dvel_max, 4)), fontsize=12, + horizontalalignment='left', verticalalignment='top') + pp.savefig() + plt.close(14) + # Plot the EKF output observer tracking errors + plt.figure(15, figsize=(20, 13)) + ang_track_err_max_arg = np.argmax(ekf2_innovations['output_tracking_error[0]']) + ang_track_err_max_time = innov_time[ang_track_err_max_arg] + ang_track_err_max = np.amax(ekf2_innovations['output_tracking_error[0]']) + vel_track_err_max_arg = np.argmax(ekf2_innovations['output_tracking_error[1]']) + vel_track_err_max_time = innov_time[vel_track_err_max_arg] + vel_track_err_max = np.amax(ekf2_innovations['output_tracking_error[1]']) + pos_track_err_max_arg = np.argmax(ekf2_innovations['output_tracking_error[2]']) + pos_track_err_max_time = innov_time[pos_track_err_max_arg] + pos_track_err_max = np.amax(ekf2_innovations['output_tracking_error[2]']) + plt.subplot(3, 1, 1) + plt.plot(1e-6 * ekf2_innovations['timestamp'], 1e3 * ekf2_innovations['output_tracking_error[0]'], 'b') + plt.title('Output Observer Tracking Error Magnitudes') + plt.ylabel('angles (mrad)') + plt.grid() + plt.text(ang_track_err_max_time, 1e3 * ang_track_err_max, 'max=' + str(round(1e3 * ang_track_err_max, 2)), + fontsize=12, horizontalalignment='left', verticalalignment='top') + plt.subplot(3, 1, 2) + plt.plot(1e-6 * ekf2_innovations['timestamp'], ekf2_innovations['output_tracking_error[1]'], 'b') + plt.ylabel('velocity (m/s)') + plt.grid() + plt.text(vel_track_err_max_time, vel_track_err_max, 'max=' + str(round(vel_track_err_max, 2)), fontsize=12, + horizontalalignment='left', verticalalignment='top') + plt.subplot(3, 1, 3) + plt.plot(1e-6 * ekf2_innovations['timestamp'], ekf2_innovations['output_tracking_error[2]'], 'b') + plt.ylabel('position (m)') + plt.xlabel('time (sec)') + plt.grid() + plt.text(pos_track_err_max_time, pos_track_err_max, 'max=' + str(round(pos_track_err_max, 2)), fontsize=12, + horizontalalignment='left', verticalalignment='top') + pp.savefig() + plt.close(15) + # Plot the delta angle bias estimates + plt.figure(16, figsize=(20, 13)) + plt.subplot(3, 1, 1) + plt.plot(1e-6 * estimator_status['timestamp'], estimator_status['states[10]'], 'b') + plt.title('Delta Angle Bias Estimates') + plt.ylabel('X (rad)') + plt.xlabel('time (sec)') + plt.grid() + plt.subplot(3, 1, 2) + plt.plot(1e-6 * estimator_status['timestamp'], estimator_status['states[11]'], 'b') + plt.ylabel('Y (rad)') + plt.xlabel('time (sec)') + plt.grid() + plt.subplot(3, 1, 3) + plt.plot(1e-6 * estimator_status['timestamp'], estimator_status['states[12]'], 'b') + plt.ylabel('Z (rad)') + plt.xlabel('time (sec)') + plt.grid() + pp.savefig() + plt.close(16) + # Plot the delta velocity bias estimates + plt.figure(17, figsize=(20, 13)) + plt.subplot(3, 1, 1) + plt.plot(1e-6 * estimator_status['timestamp'], estimator_status['states[13]'], 'b') + plt.title('Delta Velocity Bias Estimates') + plt.ylabel('X (m/s)') + plt.xlabel('time (sec)') + plt.grid() + plt.subplot(3, 1, 2) + plt.plot(1e-6 * estimator_status['timestamp'], estimator_status['states[14]'], 'b') + plt.ylabel('Y (m/s)') + plt.xlabel('time (sec)') + plt.grid() + plt.subplot(3, 1, 3) + plt.plot(1e-6 * estimator_status['timestamp'], estimator_status['states[15]'], 'b') + plt.ylabel('Z (m/s)') + plt.xlabel('time (sec)') + plt.grid() + pp.savefig() + plt.close(17) + # Plot the earth frame magnetic field estimates + plt.figure(18, figsize=(20, 13)) + plt.subplot(3, 1, 3) + strength = (estimator_status['states[16]'] ** 2 + estimator_status['states[17]'] ** 2 + estimator_status[ + 'states[18]'] ** 2) ** 0.5 + plt.plot(1e-6 * estimator_status['timestamp'], strength, 'b') + plt.ylabel('strength (Gauss)') + plt.xlabel('time (sec)') + plt.grid() + plt.subplot(3, 1, 1) + rad2deg = 57.2958 + declination = rad2deg * np.arctan2(estimator_status['states[17]'], estimator_status['states[16]']) + plt.plot(1e-6 * estimator_status['timestamp'], declination, 'b') + plt.title('Earth Magnetic Field Estimates') + plt.ylabel('declination (deg)') + plt.xlabel('time (sec)') + plt.grid() + plt.subplot(3, 1, 2) + inclination = rad2deg * np.arcsin(estimator_status['states[18]'] / strength) + plt.plot(1e-6 * estimator_status['timestamp'], inclination, 'b') + plt.ylabel('inclination (deg)') + plt.xlabel('time (sec)') + plt.grid() + pp.savefig() + plt.close(18) + # Plot the body frame magnetic field estimates + plt.figure(19, figsize=(20, 13)) + plt.subplot(3, 1, 1) + plt.plot(1e-6 * estimator_status['timestamp'], estimator_status['states[19]'], 'b') + plt.title('Magnetomer Bias Estimates') + plt.ylabel('X (Gauss)') + plt.xlabel('time (sec)') + plt.grid() + plt.subplot(3, 1, 2) + plt.plot(1e-6 * estimator_status['timestamp'], estimator_status['states[20]'], 'b') + plt.ylabel('Y (Gauss)') + plt.xlabel('time (sec)') + plt.grid() + plt.subplot(3, 1, 3) + plt.plot(1e-6 * estimator_status['timestamp'], estimator_status['states[21]'], 'b') + plt.ylabel('Z (Gauss)') + plt.xlabel('time (sec)') + plt.grid() + pp.savefig() + plt.close(19) + # Plot the EKF wind estimates + plt.figure(20, figsize=(20, 13)) + plt.subplot(2, 1, 1) + plt.plot(1e-6 * estimator_status['timestamp'], estimator_status['states[22]'], 'b') + plt.title('Wind Velocity Estimates') + plt.ylabel('North (m/s)') + plt.xlabel('time (sec)') + plt.grid() + plt.subplot(2, 1, 2) + plt.plot(1e-6 * estimator_status['timestamp'], estimator_status['states[23]'], 'b') + plt.ylabel('East (m/s)') + plt.xlabel('time (sec)') + plt.grid() + pp.savefig() + plt.close(20) + # close the pdf file + pp.close() + # don't display to screen + # plt.show() + # clase all figures + plt.close("all") + + # Do some automated analysis of the status data + # find a late/early index range from 5 sec after in_air_transtion_time to 5 sec before on-ground transition time for mag and optical flow checks to avoid false positives + # this can be used to prevent false positives for sensors adversely affected by close proximity to the ground + late_start_index = np.argmin(status_time[np.where(status_time > (in_air_transition_time + 5.0))]) + early_end_index = np.argmax(status_time[np.where(status_time < (on_ground_transition_time - 5.0))]) + num_valid_values_trimmed = (early_end_index - late_start_index + 1) + # normal index range is defined by the flight duration + start_index = np.argmin(status_time[np.where(status_time > in_air_transition_time)]) + end_index = np.argmax(status_time[np.where(status_time < on_ground_transition_time)]) + num_valid_values = (end_index - start_index + 1) + # also find the start and finish indexes for the innovation data + innov_late_start_index = np.argmin(innov_time[np.where(innov_time > (in_air_transition_time + 5.0))]) + innov_early_end_index = np.argmax(innov_time[np.where(innov_time < (on_ground_transition_time - 5.0))]) + innov_num_valid_values_trimmed = (innov_early_end_index - innov_late_start_index + 1) + innov_start_index = np.argmin(innov_time[np.where(innov_time > in_air_transition_time)]) + innov_end_index = np.argmax(innov_time[np.where(innov_time < on_ground_transition_time)]) + innov_num_valid_values = (innov_end_index - innov_start_index + 1) + # define dictionary of test results and descriptions + test_results = { + 'master_status': ['Pass', + 'Master check status which can be either Pass Warning or Fail. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'], + 'mag_sensor_status': ['Pass', + 'Magnetometer sensor check summary. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'], + 'yaw_sensor_status': ['Pass', + 'Yaw sensor check summary. This sensor data can be sourced from the magnetometer or an external vision system. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'], + 'vel_sensor_status': ['Pass', + 'Velocity sensor check summary. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'], + 'pos_sensor_status': ['Pass', + 'Position sensor check summary. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'], + 'hgt_sensor_status': ['Pass', + 'Height sensor check summary. This sensor data can be sourced from either Baro or GPS or range finder or external vision system. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no anomalies were detected and no further investigation is required'], + 'hagl_sensor_status': ['Pass', + 'Height above ground sensor check summary. This sensor data is normally sourced from a rangefinder sensor. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'], + 'tas_sensor_status': ['Pass', + 'Airspeed sensor check summary. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'], + 'imu_sensor_status': ['Pass', + 'IMU sensor check summary. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'], + 'flow_sensor_status': ['Pass', + 'Optical Flow sensor check summary. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'], + 'mag_percentage_red': [float('NaN'), + 'The percentage of in-flight consolidated magnetic field sensor innovation consistency test values > 1.0.'], + 'mag_percentage_amber': [float('NaN'), + 'The percentage of in-flight consolidated magnetic field sensor innovation consistency test values > 0.5.'], + 'magx_fail_percentage': [float('NaN'), + 'The percentage of in-flight recorded failure events for the X-axis magnetic field sensor innovation consistency test.'], + 'magy_fail_percentage': [float('NaN'), + 'The percentage of in-flight recorded failure events for the Y-axis magnetic field sensor innovation consistency test.'], + 'magz_fail_percentage': [float('NaN'), + 'The percentage of in-flight recorded failure events for the Z-axis magnetic field sensor innovation consistency test.'], + 'yaw_fail_percentage': [float('NaN'), + 'The percentage of in-flight recorded failure events for the yaw sensor innovation consistency test.'], + 'mag_test_max': [float('NaN'), + 'The maximum in-flight value of the magnetic field sensor innovation consistency test ratio.'], + 'mag_test_mean': [float('NaN'), + 'The mean in-flight value of the magnetic field sensor innovation consistency test ratio.'], + 'vel_percentage_red': [float('NaN'), + 'The percentage of in-flight velocity sensor consolidated innovation consistency test values > 1.0.'], + 'vel_percentage_amber': [float('NaN'), + 'The percentage of in-flight velocity sensor consolidated innovation consistency test values > 0.5.'], + 'vel_fail_percentage': [float('NaN'), + 'The percentage of in-flight recorded failure events for the velocity sensor consolidated innovation consistency test.'], + 'vel_test_max': [float('NaN'), + 'The maximum in-flight value of the velocity sensor consolidated innovation consistency test ratio.'], + 'vel_test_mean': [float('NaN'), + 'The mean in-flight value of the velocity sensor consolidated innovation consistency test ratio.'], + 'pos_percentage_red': [float('NaN'), + 'The percentage of in-flight position sensor consolidated innovation consistency test values > 1.0.'], + 'pos_percentage_amber': [float('NaN'), + 'The percentage of in-flight position sensor consolidated innovation consistency test values > 0.5.'], + 'pos_fail_percentage': [float('NaN'), + 'The percentage of in-flight recorded failure events for the velocity sensor consolidated innovation consistency test.'], + 'pos_test_max': [float('NaN'), + 'The maximum in-flight value of the position sensor consolidated innovation consistency test ratio.'], + 'pos_test_mean': [float('NaN'), + 'The mean in-flight value of the position sensor consolidated innovation consistency test ratio.'], + 'hgt_percentage_red': [float('NaN'), + 'The percentage of in-flight height sensor innovation consistency test values > 1.0.'], + 'hgt_percentage_amber': [float('NaN'), + 'The percentage of in-flight height sensor innovation consistency test values > 0.5.'], + 'hgt_fail_percentage': [float('NaN'), + 'The percentage of in-flight recorded failure events for the height sensor innovation consistency test.'], + 'hgt_test_max': [float('NaN'), + 'The maximum in-flight value of the height sensor innovation consistency test ratio.'], + 'hgt_test_mean': [float('NaN'), + 'The mean in-flight value of the height sensor innovation consistency test ratio.'], + 'tas_percentage_red': [float('NaN'), + 'The percentage of in-flight airspeed sensor innovation consistency test values > 1.0.'], + 'tas_percentage_amber': [float('NaN'), + 'The percentage of in-flight airspeed sensor innovation consistency test values > 0.5.'], + 'tas_fail_percentage': [float('NaN'), + 'The percentage of in-flight recorded failure events for the airspeed sensor innovation consistency test.'], + 'tas_test_max': [float('NaN'), + 'The maximum in-flight value of the airspeed sensor innovation consistency test ratio.'], + 'tas_test_mean': [float('NaN'), + 'The mean in-flight value of the airspeed sensor innovation consistency test ratio.'], + 'hagl_percentage_red': [float('NaN'), + 'The percentage of in-flight height above ground sensor innovation consistency test values > 1.0.'], + 'hagl_percentage_amber': [float('NaN'), + 'The percentage of in-flight height above ground sensor innovation consistency test values > 0.5.'], + 'hagl_fail_percentage': [float('NaN'), + 'The percentage of in-flight recorded failure events for the height above ground sensor innovation consistency test.'], + 'hagl_test_max': [float('NaN'), + 'The maximum in-flight value of the height above ground sensor innovation consistency test ratio.'], + 'hagl_test_mean': [float('NaN'), + 'The mean in-flight value of the height above ground sensor innovation consistency test ratio.'], + 'ofx_fail_percentage': [float('NaN'), + 'The percentage of in-flight recorded failure events for the optical flow sensor X-axis innovation consistency test.'], + 'ofy_fail_percentage': [float('NaN'), + 'The percentage of in-flight recorded failure events for the optical flow sensor Y-axis innovation consistency test.'], + 'filter_faults_max': [float('NaN'), + 'Largest recorded value of the filter internal fault bitmask. Should always be zero.'], + 'imu_coning_peak': [float('NaN'), 'Peak in-flight value of the IMU delta angle coning vibration metric (rad)'], + 'imu_coning_mean': [float('NaN'), 'Mean in-flight value of the IMU delta angle coning vibration metric (rad)'], + 'imu_hfdang_peak': [float('NaN'), + 'Peak in-flight value of the IMU delta angle high frequency vibration metric (rad)'], + 'imu_hfdang_mean': [float('NaN'), + 'Mean in-flight value of the IMU delta angle high frequency vibration metric (rad)'], + 'imu_hfdvel_peak': [float('NaN'), + 'Peak in-flight value of the IMU delta velocity high frequency vibration metric (m/s)'], + 'imu_hfdvel_mean': [float('NaN'), + 'Mean in-flight value of the IMU delta velocity high frequency vibration metric (m/s)'], + 'output_obs_ang_err_median': [float('NaN'), + 'Median in-flight value of the output observer angular error (rad)'], + 'output_obs_vel_err_median': [float('NaN'), + 'Median in-flight value of the output observer velocity error (m/s)'], + 'output_obs_pos_err_median': [float('NaN'), 'Median in-flight value of the output observer position error (m)'], + 'imu_dang_bias_median': [float('NaN'), 'Median in-flight value of the delta angle bias vector length (rad)'], + 'imu_dvel_bias_median': [float('NaN'), 'Median in-flight value of the delta velocity bias vector length (m/s)'], + 'tilt_align_time': [float('NaN'), + 'The time in seconds measured from startup that the EKF completed the tilt alignment. A nan value indicates that the alignment had completed before logging started or alignment did not complete.'], + 'yaw_align_time': [float('NaN'), + 'The time in seconds measured from startup that the EKF completed the yaw alignment.'], + 'in_air_transition_time': [round(in_air_transition_time, 1), + 'The time in seconds measured from startup that the EKF transtioned into in-air mode. Set to a nan if a transition event is not detected.'], + 'on_ground_transition_time': [round(on_ground_transition_time, 1), + 'The time in seconds measured from startup that the EKF transitioned out of in-air mode. Set to a nan if a transition event is not detected.'], + } + # generate test metadata + # reduction of innovation message data + if (innov_early_end_index > (innov_late_start_index + 100)): + # Output Observer Tracking Errors + test_results['output_obs_ang_err_median'][0] = np.median( + ekf2_innovations['output_tracking_error[0]'][innov_late_start_index:innov_early_end_index]) + test_results['output_obs_vel_err_median'][0] = np.median( + ekf2_innovations['output_tracking_error[1]'][innov_late_start_index:innov_early_end_index]) + test_results['output_obs_pos_err_median'][0] = np.median( + ekf2_innovations['output_tracking_error[2]'][innov_late_start_index:innov_early_end_index]) + # reduction of status message data + if (early_end_index > (late_start_index + 100)): + # IMU vibration checks + temp = np.amax(estimator_status['vibe[0]'][late_start_index:early_end_index]) + if (temp > 0.0): + test_results['imu_coning_peak'][0] = temp + test_results['imu_coning_mean'][0] = np.mean(estimator_status['vibe[0]'][late_start_index:early_end_index]) + temp = np.amax(estimator_status['vibe[1]'][late_start_index:early_end_index]) + if (temp > 0.0): + test_results['imu_hfdang_peak'][0] = temp + test_results['imu_hfdang_mean'][0] = np.mean(estimator_status['vibe[1]'][late_start_index:early_end_index]) + temp = np.amax(estimator_status['vibe[2]'][late_start_index:early_end_index]) + if (temp > 0.0): + test_results['imu_hfdvel_peak'][0] = temp + test_results['imu_hfdvel_mean'][0] = np.mean(estimator_status['vibe[2]'][late_start_index:early_end_index]) + + # Magnetometer Sensor Checks + if (np.amax(yaw_aligned) > 0.5): + mag_num_red = (estimator_status['mag_test_ratio'][start_index:end_index] > 1.0).sum() + mag_num_amber = (estimator_status['mag_test_ratio'][start_index:end_index] > 0.5).sum() - mag_num_red + test_results['mag_percentage_red'][0] = 100.0 * mag_num_red / num_valid_values_trimmed + test_results['mag_percentage_amber'][0] = 100.0 * mag_num_amber / num_valid_values_trimmed + test_results['mag_test_max'][0] = np.amax( + estimator_status['mag_test_ratio'][late_start_index:early_end_index]) + test_results['mag_test_mean'][0] = np.mean(estimator_status['mag_test_ratio'][start_index:end_index]) + test_results['magx_fail_percentage'][0] = 100.0 * ( + magx_innov_fail[late_start_index:early_end_index] > 0.5).sum() / num_valid_values_trimmed + test_results['magy_fail_percentage'][0] = 100.0 * ( + magy_innov_fail[late_start_index:early_end_index] > 0.5).sum() / num_valid_values_trimmed + test_results['magz_fail_percentage'][0] = 100.0 * ( + magz_innov_fail[late_start_index:early_end_index] > 0.5).sum() / num_valid_values_trimmed + test_results['yaw_fail_percentage'][0] = 100.0 * ( + yaw_innov_fail[late_start_index:early_end_index] > 0.5).sum() / num_valid_values_trimmed + + # Velocity Sensor Checks + if (np.amax(using_gps) > 0.5): + vel_num_red = (estimator_status['vel_test_ratio'][start_index:end_index] > 1.0).sum() + vel_num_amber = (estimator_status['vel_test_ratio'][start_index:end_index] > 0.5).sum() - vel_num_red + test_results['vel_percentage_red'][0] = 100.0 * vel_num_red / num_valid_values + test_results['vel_percentage_amber'][0] = 100.0 * vel_num_amber / num_valid_values + test_results['vel_test_max'][0] = np.amax(estimator_status['vel_test_ratio'][start_index:end_index]) + test_results['vel_test_mean'][0] = np.mean(estimator_status['vel_test_ratio'][start_index:end_index]) + test_results['vel_fail_percentage'][0] = 100.0 * ( + vel_innov_fail[start_index:end_index] > 0.5).sum() / num_valid_values + + # Position Sensor Checks + if ((np.amax(using_gps) > 0.5) or (np.amax(using_evpos) > 0.5)): + pos_num_red = (estimator_status['pos_test_ratio'][start_index:end_index] > 1.0).sum() + pos_num_amber = (estimator_status['pos_test_ratio'][start_index:end_index] > 0.5).sum() - pos_num_red + test_results['pos_percentage_red'][0] = 100.0 * pos_num_red / num_valid_values + test_results['pos_percentage_amber'][0] = 100.0 * pos_num_amber / num_valid_values + test_results['pos_test_max'][0] = np.amax(estimator_status['pos_test_ratio'][start_index:end_index]) + test_results['pos_test_mean'][0] = np.mean(estimator_status['pos_test_ratio'][start_index:end_index]) + test_results['pos_fail_percentage'][0] = 100.0 * ( + posh_innov_fail[start_index:end_index] > 0.5).sum() / num_valid_values + + # Height Sensor Checks + hgt_num_red = (estimator_status['hgt_test_ratio'][late_start_index:early_end_index] > 1.0).sum() + hgt_num_amber = (estimator_status['hgt_test_ratio'][late_start_index:early_end_index] > 0.5).sum() - hgt_num_red + test_results['hgt_percentage_red'][0] = 100.0 * hgt_num_red / num_valid_values_trimmed + test_results['hgt_percentage_amber'][0] = 100.0 * hgt_num_amber / num_valid_values_trimmed + test_results['hgt_test_max'][0] = np.amax(estimator_status['hgt_test_ratio'][late_start_index:early_end_index]) + test_results['hgt_test_mean'][0] = np.mean(estimator_status['hgt_test_ratio'][late_start_index:early_end_index]) + test_results['hgt_fail_percentage'][0] = 100.0 * ( + posv_innov_fail[late_start_index:early_end_index] > 0.5).sum() / num_valid_values_trimmed + + # Airspeed Sensor Checks + if (tas_test_max > 0.0): + tas_num_red = (estimator_status['tas_test_ratio'][start_index:end_index] > 1.0).sum() + tas_num_amber = (estimator_status['tas_test_ratio'][start_index:end_index] > 0.5).sum() - tas_num_red + test_results['tas_percentage_red'][0] = 100.0 * tas_num_red / num_valid_values + test_results['tas_percentage_amber'][0] = 100.0 * tas_num_amber / num_valid_values + test_results['tas_test_max'][0] = np.amax(estimator_status['tas_test_ratio'][start_index:end_index]) + test_results['tas_test_mean'][0] = np.mean(estimator_status['tas_test_ratio'][start_index:end_index]) + test_results['tas_fail_percentage'][0] = 100.0 * ( + tas_innov_fail[start_index:end_index] > 0.5).sum() / num_valid_values + + # HAGL Sensor Checks + if (hagl_test_max > 0.0): + hagl_num_red = (estimator_status['hagl_test_ratio'][start_index:end_index] > 1.0).sum() + hagl_num_amber = (estimator_status['hagl_test_ratio'][start_index:end_index] > 0.5).sum() - hagl_num_red + test_results['hagl_percentage_red'][0] = 100.0 * hagl_num_red / num_valid_values + test_results['hagl_percentage_amber'][0] = 100.0 * hagl_num_amber / num_valid_values + test_results['hagl_test_max'][0] = np.amax(estimator_status['hagl_test_ratio'][start_index:end_index]) + test_results['hagl_test_mean'][0] = np.mean(estimator_status['hagl_test_ratio'][start_index:end_index]) + test_results['hagl_fail_percentage'][0] = 100.0 * ( + hagl_innov_fail[start_index:end_index] > 0.5).sum() / num_valid_values + + # optical flow sensor checks + if (np.amax(using_optflow) > 0.5): + test_results['ofx_fail_percentage'][0] = 100.0 * ( + ofx_innov_fail[late_start_index:early_end_index] > 0.5).sum() / num_valid_values_trimmed + test_results['ofy_fail_percentage'][0] = 100.0 * ( + ofy_innov_fail[late_start_index:early_end_index] > 0.5).sum() / num_valid_values_trimmed + + # IMU bias checks + test_results['imu_dang_bias_median'][0] = (np.median(estimator_status['states[10]']) ** 2 + np.median( + estimator_status['states[11]']) ** 2 + np.median(estimator_status['states[12]']) ** 2) ** 0.5 + test_results['imu_dvel_bias_median'][0] = (np.median(estimator_status['states[13]']) ** 2 + np.median( + estimator_status['states[14]']) ** 2 + np.median(estimator_status['states[15]']) ** 2) ** 0.5 + # Check for internal filter nummerical faults + test_results['filter_faults_max'][0] = np.amax(estimator_status['filter_fault_flags']) + # TODO - process the following bitmask's when they have been properly documented in the uORB topic + # estimator_status['health_flags'] + # estimator_status['timeout_flags'] + # calculate a master status - Fail, Warning, Pass + + # check test results against levels to provide a master status + # check for warnings + if (test_results.get('mag_percentage_amber')[0] > check_levels.get('mag_amber_warn_pct')): + test_results['master_status'][0] = 'Warning' + test_results['mag_sensor_status'][0] = 'Warning' + if (test_results.get('vel_percentage_amber')[0] > check_levels.get('vel_amber_warn_pct')): + test_results['master_status'][0] = 'Warning' + test_results['vel_sensor_status'][0] = 'Warning' + if (test_results.get('pos_percentage_amber')[0] > check_levels.get('pos_amber_warn_pct')): + test_results['master_status'][0] = 'Warning' + test_results['pos_sensor_status'][0] = 'Warning' + if (test_results.get('hgt_percentage_amber')[0] > check_levels.get('hgt_amber_warn_pct')): + test_results['master_status'][0] = 'Warning' + test_results['hgt_sensor_status'][0] = 'Warning' + if (test_results.get('hagl_percentage_amber')[0] > check_levels.get('hagl_amber_warn_pct')): + test_results['master_status'][0] = 'Warning' + test_results['hagl_sensor_status'][0] = 'Warning' + if (test_results.get('tas_percentage_amber')[0] > check_levels.get('tas_amber_warn_pct')): + test_results['master_status'][0] = 'Warning' + test_results['tas_sensor_status'][0] = 'Warning' + # check for IMU sensor warnings + if ((test_results.get('imu_coning_peak')[0] > check_levels.get('imu_coning_peak_warn')) or + (test_results.get('imu_coning_mean')[0] > check_levels.get('imu_coning_mean_warn')) or + (test_results.get('imu_hfdang_peak')[0] > check_levels.get('imu_hfdang_peak_warn')) or + (test_results.get('imu_hfdang_mean')[0] > check_levels.get('imu_hfdang_mean_warn')) or + (test_results.get('imu_hfdvel_peak')[0] > check_levels.get('imu_hfdvel_peak_warn')) or + (test_results.get('imu_hfdvel_mean')[0] > check_levels.get('imu_hfdvel_mean_warn'))): + test_results['master_status'][0] = 'Warning' + test_results['imu_sensor_status'][0] = 'Warning - Vibration' + if ((test_results.get('imu_dang_bias_median')[0] > check_levels.get('imu_dang_bias_median_warn')) or + (test_results.get('imu_dvel_bias_median')[0] > check_levels.get('imu_dvel_bias_median_warn'))): + test_results['master_status'][0] = 'Warning' + test_results['imu_sensor_status'][0] = 'Warning - Bias' + if ((test_results.get('output_obs_ang_err_median')[0] > check_levels.get('obs_ang_err_median_warn')) or + (test_results.get('output_obs_vel_err_median')[0] > check_levels.get('obs_vel_err_median_warn')) or + (test_results.get('output_obs_pos_err_median')[0] > check_levels.get('obs_pos_err_median_warn'))): + test_results['master_status'][0] = 'Warning' + test_results['imu_sensor_status'][0] = 'Warning - Output Predictor' + # check for failures + if ((test_results.get('magx_fail_percentage')[0] > check_levels.get('mag_fail_pct')) or + (test_results.get('magy_fail_percentage')[0] > check_levels.get('mag_fail_pct')) or + (test_results.get('magz_fail_percentage')[0] > check_levels.get('mag_fail_pct')) or + (test_results.get('mag_percentage_amber')[0] > check_levels.get('mag_amber_fail_pct'))): + test_results['master_status'][0] = 'Fail' + test_results['mag_sensor_status'][0] = 'Fail' + if (test_results.get('yaw_fail_percentage')[0] > check_levels.get('yaw_fail_pct')): + test_results['master_status'][0] = 'Fail' + test_results['yaw_sensor_status'][0] = 'Fail' + if ((test_results.get('vel_fail_percentage')[0] > check_levels.get('vel_fail_pct')) or + (test_results.get('vel_percentage_amber')[0] > check_levels.get('vel_amber_fail_pct'))): + test_results['master_status'][0] = 'Fail' + test_results['vel_sensor_status'][0] = 'Fail' + if ((test_results.get('pos_fail_percentage')[0] > check_levels.get('pos_fail_pct')) or + (test_results.get('pos_percentage_amber')[0] > check_levels.get('pos_amber_fail_pct'))): + test_results['master_status'][0] = 'Fail' + test_results['pos_sensor_status'][0] = 'Fail' + if ((test_results.get('hgt_fail_percentage')[0] > check_levels.get('hgt_fail_pct')) or + (test_results.get('hgt_percentage_amber')[0] > check_levels.get('hgt_amber_fail_pct'))): + test_results['master_status'][0] = 'Fail' + test_results['hgt_sensor_status'][0] = 'Fail' + if ((test_results.get('tas_fail_percentage')[0] > check_levels.get('tas_fail_pct')) or + (test_results.get('tas_percentage_amber')[0] > check_levels.get('tas_amber_fail_pct'))): + test_results['master_status'][0] = 'Fail' + test_results['tas_sensor_status'][0] = 'Fail' + if ((test_results.get('hagl_fail_percentage')[0] > check_levels.get('hagl_fail_pct')) or + (test_results.get('hagl_percentage_amber')[0] > check_levels.get('hagl_amber_fail_pct'))): + test_results['master_status'][0] = 'Fail' + test_results['hagl_sensor_status'][0] = 'Fail' + if ((test_results.get('ofx_fail_percentage')[0] > check_levels.get('flow_fail_pct')) or + (test_results.get('ofy_fail_percentage')[0] > check_levels.get('flow_fail_pct'))): + test_results['master_status'][0] = 'Fail' + test_results['flow_sensor_status'][0] = 'Fail' + if (test_results.get('filter_faults_max')[0] > 0): + test_results['master_status'][0] = 'Fail' + test_results['filter_fault_status'][0] = 'Fail' + + return test_results \ No newline at end of file diff --git a/Tools/ecl_ekf/process_logdata_ekf.py b/Tools/ecl_ekf/process_logdata_ekf.py index b7b2fd2811..eec2abdac5 100755 --- a/Tools/ecl_ekf/process_logdata_ekf.py +++ b/Tools/ecl_ekf/process_logdata_ekf.py @@ -5,15 +5,10 @@ from __future__ import print_function import argparse import os -# matplotlib don't use Xwindows backend (must be before pyplot import) -import matplotlib -matplotlib.use('Agg') - -import matplotlib.pyplot as plt -import numpy as np - from pyulog import * +from analyse_logdata_ekf import * + """ Performs a health assessment on the ecl EKF navigation estimator data contained in a an ULog file Outputs a health assessment summary in a csv file named <inputfilename>.mdat.csv @@ -22,6 +17,10 @@ Outputs summary plots in a pdf file named <inputfilename>.pdf parser = argparse.ArgumentParser(description='Analyse the estimator_status and ekf2_innovation message data') parser.add_argument('filename', metavar='file.ulg', help='ULog input file') +parser.add_argument('--no-plots', action='store_true', + help='Whether to only analyse and not plot the summaries for developers.') +parser.add_argument('--check-level-thresholds', type=str, default=None, + help='The csv file of fail and warning test thresholds for analysis.') def is_valid_directory(parser, arg): if os.path.isdir(arg): @@ -31,1392 +30,50 @@ def is_valid_directory(parser, arg): parser.error('The directory {} does not exist'.format(arg)) args = parser.parse_args() -ulog_file_name = args.filename -ulog = ULog(ulog_file_name, None) +## load the log and extract the necessary data for the analyses +ulog = ULog(args.filename, None) data = ulog.data_list # extract data from innovations and status messages for d in data: if d.name == 'estimator_status': - estimator_status = d.data + estimator_status_data = d.data print('found estimator_status data') for d in data: if d.name == 'ekf2_innovations': - ekf2_innovations = d.data + ekf2_innovations_data = d.data print('found ekf2_innovation data') -# extract data from sensor reflight check message +# extract data from sensor preflight check message sensor_preflight = {} for d in data: if d.name == 'sensor_preflight': - sensor_preflight = d.data + sensor_preflight_data = d.data print('found sensor_preflight data') -# create summary plots -# save the plots to PDF -from matplotlib.backends.backend_pdf import PdfPages -output_plot_filename = ulog_file_name + ".pdf" -pp = PdfPages(output_plot_filename) - -# plot IMU consistency data -if ('accel_inconsistency_m_s_s' in sensor_preflight.keys()) and ('gyro_inconsistency_rad_s' in sensor_preflight.keys()): - plt.figure(0,figsize=(20,13)) - plt.subplot(2,1,1) - plt.plot(sensor_preflight['accel_inconsistency_m_s_s'],'b') - plt.title('IMU Consistency Check Levels') - plt.ylabel('acceleration (m/s/s)') - plt.xlabel('data index') - plt.grid() - plt.subplot(2,1,2) - plt.plot(sensor_preflight['gyro_inconsistency_rad_s'],'b') - plt.ylabel('angular rate (rad/s)') - plt.xlabel('data index') - pp.savefig() - plt.close(0) - -# generate max, min and 1-std metadata -innov_time = 1e-6*ekf2_innovations['timestamp'] -status_time = 1e-6*estimator_status['timestamp'] - -# vertical velocity and position innovations -plt.figure(1,figsize=(20,13)) - -# generate metadata for velocity innovations -innov_2_max_arg = np.argmax(ekf2_innovations['vel_pos_innov[2]']) -innov_2_max_time = innov_time[innov_2_max_arg] -innov_2_max = np.amax(ekf2_innovations['vel_pos_innov[2]']) - -innov_2_min_arg = np.argmin(ekf2_innovations['vel_pos_innov[2]']) -innov_2_min_time = innov_time[innov_2_min_arg] -innov_2_min = np.amin(ekf2_innovations['vel_pos_innov[2]']) - -s_innov_2_max = str(round(innov_2_max,2)) -s_innov_2_min = str(round(innov_2_min,2)) -#s_innov_2_std = str(round(np.std(ekf2_innovations['vel_pos_innov[2]']),2)) - -# generate metadata for position innovations -innov_5_max_arg = np.argmax(ekf2_innovations['vel_pos_innov[5]']) -innov_5_max_time = innov_time[innov_5_max_arg] -innov_5_max = np.amax(ekf2_innovations['vel_pos_innov[5]']) - -innov_5_min_arg = np.argmin(ekf2_innovations['vel_pos_innov[5]']) -innov_5_min_time = innov_time[innov_5_min_arg] -innov_5_min = np.amin(ekf2_innovations['vel_pos_innov[5]']) - -s_innov_5_max = str(round(innov_5_max,2)) -s_innov_5_min = str(round(innov_5_min,2)) -#s_innov_5_std = str(round(np.std(ekf2_innovations['vel_pos_innov[5]']),2)) - -# generate plot for vertical velocity innovations -plt.subplot(2,1,1) -plt.plot(1e-6*ekf2_innovations['timestamp'],ekf2_innovations['vel_pos_innov[2]'],'b') -plt.plot(1e-6*ekf2_innovations['timestamp'],np.sqrt(ekf2_innovations['vel_pos_innov_var[2]']),'r') -plt.plot(1e-6*ekf2_innovations['timestamp'],-np.sqrt(ekf2_innovations['vel_pos_innov_var[2]']),'r') -plt.title('Vertical Innovations') -plt.ylabel('Down Vel (m/s)') -plt.xlabel('time (sec)') -plt.grid() -plt.text(innov_2_max_time, innov_2_max, 'max='+s_innov_2_max, fontsize=12, horizontalalignment='left', verticalalignment='bottom') -plt.text(innov_2_min_time, innov_2_min, 'min='+s_innov_2_min, fontsize=12, horizontalalignment='left', verticalalignment='top') -#plt.legend(['std='+s_innov_2_std],loc='upper left',frameon=False) - -# generate plot for vertical position innovations -plt.subplot(2,1,2) -plt.plot(1e-6*ekf2_innovations['timestamp'],ekf2_innovations['vel_pos_innov[5]'],'b') -plt.plot(1e-6*ekf2_innovations['timestamp'],np.sqrt(ekf2_innovations['vel_pos_innov_var[5]']),'r') -plt.plot(1e-6*ekf2_innovations['timestamp'],-np.sqrt(ekf2_innovations['vel_pos_innov_var[5]']),'r') -plt.ylabel('Down Pos (m)') -plt.xlabel('time (sec)') -plt.grid() -plt.text(innov_5_max_time, innov_5_max, 'max='+s_innov_5_max, fontsize=12, horizontalalignment='left', verticalalignment='bottom') -plt.text(innov_5_min_time, innov_5_min, 'min='+s_innov_5_min, fontsize=12, horizontalalignment='left', verticalalignment='top') -#plt.legend(['std='+s_innov_5_std],loc='upper left',frameon=False) - -pp.savefig() -plt.close(1) -# horizontal velocity innovations -plt.figure(2,figsize=(20,13)) - -# generate North axis metadata -innov_0_max_arg = np.argmax(ekf2_innovations['vel_pos_innov[0]']) -innov_0_max_time = innov_time[innov_0_max_arg] -innov_0_max = np.amax(ekf2_innovations['vel_pos_innov[0]']) - -innov_0_min_arg = np.argmin(ekf2_innovations['vel_pos_innov[0]']) -innov_0_min_time = innov_time[innov_0_min_arg] -innov_0_min = np.amin(ekf2_innovations['vel_pos_innov[0]']) - -s_innov_0_max = str(round(innov_0_max,2)) -s_innov_0_min = str(round(innov_0_min,2)) -#s_innov_0_std = str(round(np.std(ekf2_innovations['vel_pos_innov[0]']),2)) - -# Generate East axis metadata -innov_1_max_arg = np.argmax(ekf2_innovations['vel_pos_innov[1]']) -innov_1_max_time = innov_time[innov_1_max_arg] -innov_1_max = np.amax(ekf2_innovations['vel_pos_innov[1]']) - -innov_1_min_arg = np.argmin(ekf2_innovations['vel_pos_innov[1]']) -innov_1_min_time = innov_time[innov_1_min_arg] -innov_1_min = np.amin(ekf2_innovations['vel_pos_innov[1]']) - -s_innov_1_max = str(round(innov_1_max,2)) -s_innov_1_min = str(round(innov_1_min,2)) -#s_innov_1_std = str(round(np.std(ekf2_innovations['vel_pos_innov[1]']),2)) - -# draw plots -plt.subplot(2,1,1) -plt.plot(1e-6*ekf2_innovations['timestamp'],ekf2_innovations['vel_pos_innov[0]'],'b') -plt.plot(1e-6*ekf2_innovations['timestamp'],np.sqrt(ekf2_innovations['vel_pos_innov_var[0]']),'r') -plt.plot(1e-6*ekf2_innovations['timestamp'],-np.sqrt(ekf2_innovations['vel_pos_innov_var[0]']),'r') -plt.title('Horizontal Velocity Innovations') -plt.ylabel('North Vel (m/s)') -plt.xlabel('time (sec)') -plt.grid() -plt.text(innov_0_max_time, innov_0_max, 'max='+s_innov_0_max, fontsize=12, horizontalalignment='left', verticalalignment='bottom') -plt.text(innov_0_min_time, innov_0_min, 'min='+s_innov_0_min, fontsize=12, horizontalalignment='left', verticalalignment='top') -#plt.legend(['std='+s_innov_0_std],loc='upper left',frameon=False) - -plt.subplot(2,1,2) -plt.plot(1e-6*ekf2_innovations['timestamp'],ekf2_innovations['vel_pos_innov[1]'],'b') -plt.plot(1e-6*ekf2_innovations['timestamp'],np.sqrt(ekf2_innovations['vel_pos_innov_var[1]']),'r') -plt.plot(1e-6*ekf2_innovations['timestamp'],-np.sqrt(ekf2_innovations['vel_pos_innov_var[1]']),'r') -plt.ylabel('East Vel (m/s)') -plt.xlabel('time (sec)') -plt.grid() -plt.text(innov_1_max_time, innov_1_max, 'max='+s_innov_1_max, fontsize=12, horizontalalignment='left', verticalalignment='bottom') -plt.text(innov_1_min_time, innov_1_min, 'min='+s_innov_1_min, fontsize=12, horizontalalignment='left', verticalalignment='top') -#plt.legend(['std='+s_innov_1_std],loc='upper left',frameon=False) - -pp.savefig() -plt.close(2) - -# horizontal position innovations -plt.figure(3,figsize=(20,13)) - -# generate North axis metadata -innov_3_max_arg = np.argmax(ekf2_innovations['vel_pos_innov[3]']) -innov_3_max_time = innov_time[innov_3_max_arg] -innov_3_max = np.amax(ekf2_innovations['vel_pos_innov[3]']) - -innov_3_min_arg = np.argmin(ekf2_innovations['vel_pos_innov[3]']) -innov_3_min_time = innov_time[innov_3_min_arg] -innov_3_min = np.amin(ekf2_innovations['vel_pos_innov[3]']) - -s_innov_3_max = str(round(innov_3_max,2)) -s_innov_3_min = str(round(innov_3_min,2)) -#s_innov_3_std = str(round(np.std(ekf2_innovations['vel_pos_innov[3]']),2)) - -# generate East axis metadata -innov_4_max_arg = np.argmax(ekf2_innovations['vel_pos_innov[4]']) -innov_4_max_time = innov_time[innov_4_max_arg] -innov_4_max = np.amax(ekf2_innovations['vel_pos_innov[4]']) - -innov_4_min_arg = np.argmin(ekf2_innovations['vel_pos_innov[4]']) -innov_4_min_time = innov_time[innov_4_min_arg] -innov_4_min = np.amin(ekf2_innovations['vel_pos_innov[4]']) - -s_innov_4_max = str(round(innov_4_max,2)) -s_innov_4_min = str(round(innov_4_min,2)) -#s_innov_4_std = str(round(np.std(ekf2_innovations['vel_pos_innov[4]']),2)) - -# generate plots - -plt.subplot(2,1,1) -plt.plot(1e-6*ekf2_innovations['timestamp'],ekf2_innovations['vel_pos_innov[3]'],'b') -plt.plot(1e-6*ekf2_innovations['timestamp'],np.sqrt(ekf2_innovations['vel_pos_innov_var[3]']),'r') -plt.plot(1e-6*ekf2_innovations['timestamp'],-np.sqrt(ekf2_innovations['vel_pos_innov_var[3]']),'r') -plt.title('Horizontal Position Innovations') -plt.ylabel('North Pos (m)') -plt.xlabel('time (sec)') -plt.grid() -plt.text(innov_3_max_time, innov_3_max, 'max='+s_innov_3_max, fontsize=12, horizontalalignment='left', verticalalignment='bottom') -plt.text(innov_3_min_time, innov_3_min, 'min='+s_innov_3_min, fontsize=12, horizontalalignment='left', verticalalignment='top') -#plt.legend(['std='+s_innov_3_std],loc='upper left',frameon=False) - -plt.subplot(2,1,2) -plt.plot(1e-6*ekf2_innovations['timestamp'],ekf2_innovations['vel_pos_innov[4]'],'b') -plt.plot(1e-6*ekf2_innovations['timestamp'],np.sqrt(ekf2_innovations['vel_pos_innov_var[4]']),'r') -plt.plot(1e-6*ekf2_innovations['timestamp'],-np.sqrt(ekf2_innovations['vel_pos_innov_var[4]']),'r') -plt.ylabel('East Pos (m)') -plt.xlabel('time (sec)') -plt.grid() -plt.text(innov_4_max_time, innov_4_max, 'max='+s_innov_4_max, fontsize=12, horizontalalignment='left', verticalalignment='bottom') -plt.text(innov_4_min_time, innov_4_min, 'min='+s_innov_4_min, fontsize=12, horizontalalignment='left', verticalalignment='top') -#plt.legend(['std='+s_innov_4_std],loc='upper left',frameon=False) - -pp.savefig() -plt.close(3) - -# manetometer innovations -plt.figure(4,figsize=(20,13)) - -# generate X axis metadata -innov_0_max_arg = np.argmax(ekf2_innovations['mag_innov[0]']) -innov_0_max_time = innov_time[innov_0_max_arg] -innov_0_max = np.amax(ekf2_innovations['mag_innov[0]']) - -innov_0_min_arg = np.argmin(ekf2_innovations['mag_innov[0]']) -innov_0_min_time = innov_time[innov_0_min_arg] -innov_0_min = np.amin(ekf2_innovations['mag_innov[0]']) - -s_innov_0_max = str(round(innov_0_max,3)) -s_innov_0_min = str(round(innov_0_min,3)) -#s_innov_0_std = str(round(np.std(ekf2_innovations['mag_innov[0]']),3)) - -# generate Y axis metadata -innov_1_max_arg = np.argmax(ekf2_innovations['mag_innov[1]']) -innov_1_max_time = innov_time[innov_1_max_arg] -innov_1_max = np.amax(ekf2_innovations['mag_innov[1]']) - -innov_1_min_arg = np.argmin(ekf2_innovations['mag_innov[1]']) -innov_1_min_time = innov_time[innov_1_min_arg] -innov_1_min = np.amin(ekf2_innovations['mag_innov[1]']) - -s_innov_1_max = str(round(innov_1_max,3)) -s_innov_1_min = str(round(innov_1_min,3)) -#s_innov_1_std = str(round(np.std(ekf2_innovations['mag_innov[1]']),3)) - -# generate Z axis metadata -innov_2_max_arg = np.argmax(ekf2_innovations['mag_innov[2]']) -innov_2_max_time = innov_time[innov_2_max_arg] -innov_2_max = np.amax(ekf2_innovations['mag_innov[2]']) - -innov_2_min_arg = np.argmin(ekf2_innovations['mag_innov[2]']) -innov_2_min_time = innov_time[innov_2_min_arg] -innov_2_min = np.amin(ekf2_innovations['mag_innov[2]']) - -s_innov_2_max = str(round(innov_2_max,3)) -s_innov_2_min = str(round(innov_2_min,3)) -#s_innov_2_std = str(round(np.std(ekf2_innovations['mag_innov[0]']),3)) - -# draw plots -plt.subplot(3,1,1) -plt.plot(1e-6*ekf2_innovations['timestamp'],ekf2_innovations['mag_innov[0]'],'b') -plt.plot(1e-6*ekf2_innovations['timestamp'],np.sqrt(ekf2_innovations['mag_innov_var[0]']),'r') -plt.plot(1e-6*ekf2_innovations['timestamp'],-np.sqrt(ekf2_innovations['mag_innov_var[0]']),'r') -plt.title('Magnetometer Innovations') -plt.ylabel('X (Gauss)') -plt.xlabel('time (sec)') -plt.grid() -plt.text(innov_0_max_time, innov_0_max, 'max='+s_innov_0_max, fontsize=12, horizontalalignment='left', verticalalignment='bottom') -plt.text(innov_0_min_time, innov_0_min, 'min='+s_innov_0_min, fontsize=12, horizontalalignment='left', verticalalignment='top') -#plt.legend(['std='+s_innov_0_std],loc='upper left',frameon=False) - -plt.subplot(3,1,2) -plt.plot(1e-6*ekf2_innovations['timestamp'],ekf2_innovations['mag_innov[1]'],'b') -plt.plot(1e-6*ekf2_innovations['timestamp'],np.sqrt(ekf2_innovations['mag_innov_var[1]']),'r') -plt.plot(1e-6*ekf2_innovations['timestamp'],-np.sqrt(ekf2_innovations['mag_innov_var[1]']),'r') -plt.ylabel('Y (Gauss)') -plt.xlabel('time (sec)') -plt.grid() -plt.text(innov_1_max_time, innov_1_max, 'max='+s_innov_1_max, fontsize=12, horizontalalignment='left', verticalalignment='bottom') -plt.text(innov_1_min_time, innov_1_min, 'min='+s_innov_1_min, fontsize=12, horizontalalignment='left', verticalalignment='top') -#plt.legend(['std='+s_innov_1_std],loc='upper left',frameon=False) - -plt.subplot(3,1,3) -plt.plot(1e-6*ekf2_innovations['timestamp'],ekf2_innovations['mag_innov[2]'],'b') -plt.plot(1e-6*ekf2_innovations['timestamp'],np.sqrt(ekf2_innovations['mag_innov_var[2]']),'r') -plt.plot(1e-6*ekf2_innovations['timestamp'],-np.sqrt(ekf2_innovations['mag_innov_var[2]']),'r') -plt.ylabel('Z (Gauss)') -plt.xlabel('time (sec)') -plt.grid() -plt.text(innov_2_max_time, innov_2_max, 'max='+s_innov_2_max, fontsize=12, horizontalalignment='left', verticalalignment='bottom') -plt.text(innov_2_min_time, innov_2_min, 'min='+s_innov_2_min, fontsize=12, horizontalalignment='left', verticalalignment='top') -#plt.legend(['std='+s_innov_2_std],loc='upper left',frameon=False) - -pp.savefig() -plt.close(4) - -# magnetic heading innovations -plt.figure(5,figsize=(20,13)) - -# generate metadata -innov_0_max_arg = np.argmax(ekf2_innovations['heading_innov']) -innov_0_max_time = innov_time[innov_0_max_arg] -innov_0_max = np.amax(ekf2_innovations['heading_innov']) - -innov_0_min_arg = np.argmin(ekf2_innovations['heading_innov']) -innov_0_min_time = innov_time[innov_0_min_arg] -innov_0_min = np.amin(ekf2_innovations['heading_innov']) - -s_innov_0_max = str(round(innov_0_max,3)) -s_innov_0_min = str(round(innov_0_min,3)) -#s_innov_0_std = str(round(np.std(ekf2_innovations['heading_innov']),3)) -# draw plot -plt.plot(1e-6*ekf2_innovations['timestamp'],ekf2_innovations['heading_innov'],'b') -plt.plot(1e-6*ekf2_innovations['timestamp'],np.sqrt(ekf2_innovations['heading_innov_var']),'r') -plt.plot(1e-6*ekf2_innovations['timestamp'],-np.sqrt(ekf2_innovations['heading_innov_var']),'r') -plt.title('Magnetic Heading Innovations') -plt.ylabel('Heaing (rad)') -plt.xlabel('time (sec)') -plt.grid() -plt.text(innov_0_max_time, innov_0_max, 'max='+s_innov_0_max, fontsize=12, horizontalalignment='left', verticalalignment='bottom') -plt.text(innov_0_min_time, innov_0_min, 'min='+s_innov_0_min, fontsize=12, horizontalalignment='left', verticalalignment='top') -#plt.legend(['std='+s_innov_0_std],loc='upper left',frameon=False) - -pp.savefig() -plt.close(5) - -# air data innovations -plt.figure(6,figsize=(20,13)) - -# generate airspeed metadata -airspeed_innov_max_arg = np.argmax(ekf2_innovations['airspeed_innov']) -airspeed_innov_max_time = innov_time[airspeed_innov_max_arg] -airspeed_innov_max = np.amax(ekf2_innovations['airspeed_innov']) - -airspeed_innov_min_arg = np.argmin(ekf2_innovations['airspeed_innov']) -airspeed_innov_min_time = innov_time[airspeed_innov_min_arg] -airspeed_innov_min = np.amin(ekf2_innovations['airspeed_innov']) - -s_airspeed_innov_max = str(round(airspeed_innov_max,3)) -s_airspeed_innov_min = str(round(airspeed_innov_min,3)) - -# generate sideslip metadata -beta_innov_max_arg = np.argmax(ekf2_innovations['beta_innov']) -beta_innov_max_time = innov_time[beta_innov_max_arg] -beta_innov_max = np.amax(ekf2_innovations['beta_innov']) - -beta_innov_min_arg = np.argmin(ekf2_innovations['beta_innov']) -beta_innov_min_time = innov_time[beta_innov_min_arg] -beta_innov_min = np.amin(ekf2_innovations['beta_innov']) - -s_beta_innov_max = str(round(beta_innov_max,3)) -s_beta_innov_min = str(round(beta_innov_min,3)) - -# draw plots -plt.subplot(2,1,1) -plt.plot(1e-6*ekf2_innovations['timestamp'],ekf2_innovations['airspeed_innov'],'b') -plt.plot(1e-6*ekf2_innovations['timestamp'],np.sqrt(ekf2_innovations['airspeed_innov_var']),'r') -plt.plot(1e-6*ekf2_innovations['timestamp'],-np.sqrt(ekf2_innovations['airspeed_innov_var']),'r') -plt.title('True Airspeed Innovations') -plt.ylabel('innovation (m/sec)') -plt.xlabel('time (sec)') -plt.grid() -plt.text(airspeed_innov_max_time, airspeed_innov_max, 'max='+s_airspeed_innov_max, fontsize=12, horizontalalignment='left', verticalalignment='bottom') -plt.text(airspeed_innov_min_time, airspeed_innov_min, 'min='+s_airspeed_innov_min, fontsize=12, horizontalalignment='left', verticalalignment='top') - -plt.subplot(2,1,2) -plt.plot(1e-6*ekf2_innovations['timestamp'],ekf2_innovations['beta_innov'],'b') -plt.plot(1e-6*ekf2_innovations['timestamp'],np.sqrt(ekf2_innovations['beta_innov_var']),'r') -plt.plot(1e-6*ekf2_innovations['timestamp'],-np.sqrt(ekf2_innovations['beta_innov_var']),'r') -plt.title('Sythetic Sideslip Innovations') -plt.ylabel('innovation (rad)') -plt.xlabel('time (sec)') -plt.grid() -plt.text(beta_innov_max_time, beta_innov_max, 'max='+s_beta_innov_max, fontsize=12, horizontalalignment='left', verticalalignment='bottom') -plt.text(beta_innov_min_time, beta_innov_min, 'min='+s_beta_innov_min, fontsize=12, horizontalalignment='left', verticalalignment='top') - -pp.savefig() -plt.close(6) - -# optical flow innovations -plt.figure(7,figsize=(20,13)) - -# generate X axis metadata -flow_innov_x_max_arg = np.argmax(ekf2_innovations['flow_innov[0]']) -flow_innov_x_max_time = innov_time[flow_innov_x_max_arg] -flow_innov_x_max = np.amax(ekf2_innovations['flow_innov[0]']) - -flow_innov_x_min_arg = np.argmin(ekf2_innovations['flow_innov[0]']) -flow_innov_x_min_time = innov_time[flow_innov_x_min_arg] -flow_innov_x_min = np.amin(ekf2_innovations['flow_innov[0]']) - -s_flow_innov_x_max = str(round(flow_innov_x_max,3)) -s_flow_innov_x_min = str(round(flow_innov_x_min,3)) -#s_flow_innov_x_std = str(round(np.std(ekf2_innovations['flow_innov[0]']),3)) - -# generate Y axis metadata -flow_innov_y_max_arg = np.argmax(ekf2_innovations['flow_innov[1]']) -flow_innov_y_max_time = innov_time[flow_innov_y_max_arg] -flow_innov_y_max = np.amax(ekf2_innovations['flow_innov[1]']) - -flow_innov_y_min_arg = np.argmin(ekf2_innovations['flow_innov[1]']) -flow_innov_y_min_time = innov_time[flow_innov_y_min_arg] -flow_innov_y_min = np.amin(ekf2_innovations['flow_innov[1]']) - -s_flow_innov_y_max = str(round(flow_innov_y_max,3)) -s_flow_innov_y_min = str(round(flow_innov_y_min,3)) -#s_flow_innov_y_std = str(round(np.std(ekf2_innovations['flow_innov[1]']),3)) - -# draw plots -plt.subplot(2,1,1) -plt.plot(1e-6*ekf2_innovations['timestamp'],ekf2_innovations['flow_innov[0]'],'b') -plt.plot(1e-6*ekf2_innovations['timestamp'],np.sqrt(ekf2_innovations['flow_innov_var[0]']),'r') -plt.plot(1e-6*ekf2_innovations['timestamp'],-np.sqrt(ekf2_innovations['flow_innov_var[0]']),'r') -plt.title('Optical Flow Innovations') -plt.ylabel('X (rad/sec)') -plt.xlabel('time (sec)') -plt.grid() -plt.text(flow_innov_x_max_time, flow_innov_x_max, 'max='+s_flow_innov_x_max, fontsize=12, horizontalalignment='left', verticalalignment='bottom') -plt.text(flow_innov_x_min_time, flow_innov_x_min, 'min='+s_flow_innov_x_min, fontsize=12, horizontalalignment='left', verticalalignment='top') -#plt.legend(['std='+s_flow_innov_x_std],loc='upper left',frameon=False) - -plt.subplot(2,1,2) -plt.plot(1e-6*ekf2_innovations['timestamp'],ekf2_innovations['flow_innov[1]'],'b') -plt.plot(1e-6*ekf2_innovations['timestamp'],np.sqrt(ekf2_innovations['flow_innov_var[1]']),'r') -plt.plot(1e-6*ekf2_innovations['timestamp'],-np.sqrt(ekf2_innovations['flow_innov_var[1]']),'r') -plt.ylabel('Y (rad/sec)') -plt.xlabel('time (sec)') -plt.grid() -plt.text(flow_innov_y_max_time, flow_innov_y_max, 'max='+s_flow_innov_y_max, fontsize=12, horizontalalignment='left', verticalalignment='bottom') -plt.text(flow_innov_y_min_time, flow_innov_y_min, 'min='+s_flow_innov_y_min, fontsize=12, horizontalalignment='left', verticalalignment='top') -#plt.legend(['std='+s_flow_innov_y_std],loc='upper left',frameon=False) - -pp.savefig() -plt.close(7) - -# generate metadata for the normalised innovation consistency test levels -# a value > 1.0 means the measurement data for that test has been rejected by the EKF - -# magnetometer data -mag_test_max_arg = np.argmax(estimator_status['mag_test_ratio']) -mag_test_max_time = status_time[mag_test_max_arg] -mag_test_max = np.amax(estimator_status['mag_test_ratio']) -mag_test_mean = np.mean(estimator_status['mag_test_ratio']) - -# velocity data (GPS) -vel_test_max_arg = np.argmax(estimator_status['vel_test_ratio']) -vel_test_max_time = status_time[vel_test_max_arg] -vel_test_max = np.amax(estimator_status['vel_test_ratio']) -vel_test_mean = np.mean(estimator_status['vel_test_ratio']) - -# horizontal position data (GPS or external vision) -pos_test_max_arg = np.argmax(estimator_status['pos_test_ratio']) -pos_test_max_time = status_time[pos_test_max_arg] -pos_test_max = np.amax(estimator_status['pos_test_ratio']) -pos_test_mean = np.mean(estimator_status['pos_test_ratio']) - -# height data (Barometer, GPS or rangefinder) -hgt_test_max_arg = np.argmax(estimator_status['hgt_test_ratio']) -hgt_test_max_time = status_time[hgt_test_max_arg] -hgt_test_max = np.amax(estimator_status['hgt_test_ratio']) -hgt_test_mean = np.mean(estimator_status['hgt_test_ratio']) - -# airspeed data -tas_test_max_arg = np.argmax(estimator_status['tas_test_ratio']) -tas_test_max_time = status_time[tas_test_max_arg] -tas_test_max = np.amax(estimator_status['tas_test_ratio']) -tas_test_mean = np.mean(estimator_status['tas_test_ratio']) - -# height above ground data (rangefinder) -hagl_test_max_arg = np.argmax(estimator_status['hagl_test_ratio']) -hagl_test_max_time = status_time[hagl_test_max_arg] -hagl_test_max = np.amax(estimator_status['hagl_test_ratio']) -hagl_test_mean = np.mean(estimator_status['hagl_test_ratio']) - -# plot normalised innovation test levels -plt.figure(8,figsize=(20,13)) - -if tas_test_max == 0.0: - n_plots = 3 -else: - n_plots = 4 - -plt.subplot(n_plots,1,1) -plt.plot(status_time,estimator_status['mag_test_ratio'],'b') -plt.title('Normalised Innovation Test Levels') -plt.ylabel('mag') -plt.xlabel('time (sec)') -plt.grid() -plt.text(mag_test_max_time, mag_test_max, 'max='+str(round(mag_test_max,2))+' , mean='+str(round(mag_test_mean,2)), fontsize=12, horizontalalignment='left', verticalalignment='bottom',color='b') - -plt.subplot(n_plots,1,2) -plt.plot(status_time,estimator_status['vel_test_ratio'],'b') -plt.plot(status_time,estimator_status['pos_test_ratio'],'r') -plt.ylabel('vel,pos') -plt.xlabel('time (sec)') -plt.grid() -plt.text(vel_test_max_time, vel_test_max, 'vel max='+str(round(vel_test_max,2))+' , mean='+str(round(vel_test_mean,2)), fontsize=12, horizontalalignment='left', verticalalignment='bottom',color='b') -plt.text(pos_test_max_time, pos_test_max, 'pos max='+str(round(pos_test_max,2))+' , mean='+str(round(pos_test_mean,2)), fontsize=12, horizontalalignment='left', verticalalignment='bottom',color='r') - -plt.subplot(n_plots,1,3) -plt.plot(status_time,estimator_status['hgt_test_ratio'],'b') -plt.ylabel('hgt') -plt.xlabel('time (sec)') -plt.grid() -plt.text(hgt_test_max_time, hgt_test_max, 'hgt max='+str(round(hgt_test_max,2))+' , mean='+str(round(hgt_test_mean,2)), fontsize=12, horizontalalignment='left', verticalalignment='bottom',color='b') - -if hagl_test_max > 0.0: - plt.plot(status_time,estimator_status['hagl_test_ratio'],'r') - plt.text(hagl_test_max_time, hagl_test_max, 'hagl max='+str(round(hagl_test_max,2))+' , mean='+str(round(hagl_test_mean,2)), fontsize=12, horizontalalignment='left', verticalalignment='bottom',color='r') - plt.ylabel('hgt,HAGL') - -if n_plots == 4: - plt.subplot(n_plots,1,4) - plt.plot(status_time,estimator_status['tas_test_ratio'],'b') - plt.ylabel('TAS') - plt.xlabel('time (sec)') - plt.grid() - plt.text(tas_test_max_time, tas_test_max, 'max='+str(round(tas_test_max,2))+' , mean='+str(round(tas_test_mean,2)), fontsize=12, horizontalalignment='left', verticalalignment='bottom',color='b') - -pp.savefig() -plt.close(8) - -# extract control mode metadata from estimator_status.control_mode_flags -# 0 - true if the filter tilt alignment is complete -# 1 - true if the filter yaw alignment is complete -# 2 - true if GPS measurements are being fused -# 3 - true if optical flow measurements are being fused -# 4 - true if a simple magnetic yaw heading is being fused -# 5 - true if 3-axis magnetometer measurement are being fused -# 6 - true if synthetic magnetic declination measurements are being fused -# 7 - true when the vehicle is airborne -# 8 - true when wind velocity is being estimated -# 9 - true when baro height is being fused as a primary height reference -# 10 - true when range finder height is being fused as a primary height reference -# 11 - true when range finder height is being fused as a primary height reference -# 12 - true when local position data from external vision is being fused -# 13 - true when yaw data from external vision measurements is being fused -# 14 - true when height data from external vision measurements is being fused -tilt_aligned = ((2**0 & estimator_status['control_mode_flags']) > 0)*1 -yaw_aligned = ((2**1 & estimator_status['control_mode_flags']) > 0)*1 -using_gps = ((2**2 & estimator_status['control_mode_flags']) > 0)*1 -using_optflow = ((2**3 & estimator_status['control_mode_flags']) > 0)*1 -using_magyaw = ((2**4 & estimator_status['control_mode_flags']) > 0)*1 -using_mag3d = ((2**5 & estimator_status['control_mode_flags']) > 0)*1 -using_magdecl = ((2**6 & estimator_status['control_mode_flags']) > 0)*1 -airborne = ((2**7 & estimator_status['control_mode_flags']) > 0)*1 -estimating_wind = ((2**8 & estimator_status['control_mode_flags']) > 0)*1 -using_barohgt = ((2**9 & estimator_status['control_mode_flags']) > 0)*1 -using_rnghgt = ((2**10 & estimator_status['control_mode_flags']) > 0)*1 -using_gpshgt = ((2**11 & estimator_status['control_mode_flags']) > 0)*1 -using_evpos = ((2**12 & estimator_status['control_mode_flags']) > 0)*1 -using_evyaw = ((2**13 & estimator_status['control_mode_flags']) > 0)*1 -using_evhgt = ((2**14 & estimator_status['control_mode_flags']) > 0)*1 - -# calculate in-air transition time -if (np.amin(airborne) < 0.5) and (np.amax(airborne) > 0.5): - in_air_transtion_time_arg = np.argmax(np.diff(airborne)) - in_air_transition_time = status_time[in_air_transtion_time_arg] -elif (np.amax(airborne) > 0.5): - in_air_transition_time = np.amin(status_time) - print('log starts while in-air at '+str(round(in_air_transition_time,1))+' sec') -else: - in_air_transition_time = float('NaN') - print('always on ground') - -# calculate on-ground transition time -if (np.amin(np.diff(airborne)) < 0.0): - on_ground_transition_time_arg = np.argmin(np.diff(airborne)) - on_ground_transition_time = status_time[on_ground_transition_time_arg] -elif (np.amax(airborne) > 0.5): - on_ground_transition_time = np.amax(status_time) - print('log finishes while in-air at '+str(round(on_ground_transition_time,1))+' sec') -else: - on_ground_transition_time = float('NaN') - print('always on ground') - -if (np.amax(np.diff(airborne)) > 0.5) and (np.amin(np.diff(airborne)) < -0.5): - if ((on_ground_transition_time - in_air_transition_time) > 0.0): - in_air_duration = on_ground_transition_time - in_air_transition_time; - else: - in_air_duration = float('NaN') +if args.check_level_thresholds: + check_level_dict_filename = args.check_level_thresholds else: - in_air_duration = float('NaN') - -# calculate alignment completion times -tilt_align_time_arg = np.argmax(np.diff(tilt_aligned)) -tilt_align_time = status_time[tilt_align_time_arg] -yaw_align_time_arg = np.argmax(np.diff(yaw_aligned)) -yaw_align_time = status_time[yaw_align_time_arg] - -# calculate position aiding start times -gps_aid_time_arg = np.argmax(np.diff(using_gps)) -gps_aid_time = status_time[gps_aid_time_arg] -optflow_aid_time_arg = np.argmax(np.diff(using_optflow)) -optflow_aid_time = status_time[optflow_aid_time_arg] -evpos_aid_time_arg = np.argmax(np.diff(using_evpos)) -evpos_aid_time = status_time[evpos_aid_time_arg] - -# calculate height aiding start times -barohgt_aid_time_arg = np.argmax(np.diff(using_barohgt)) -barohgt_aid_time = status_time[barohgt_aid_time_arg] -gpshgt_aid_time_arg = np.argmax(np.diff(using_gpshgt)) -gpshgt_aid_time = status_time[gpshgt_aid_time_arg] -rnghgt_aid_time_arg = np.argmax(np.diff(using_rnghgt)) -rnghgt_aid_time = status_time[rnghgt_aid_time_arg] -evhgt_aid_time_arg = np.argmax(np.diff(using_evhgt)) -evhgt_aid_time = status_time[evhgt_aid_time_arg] - -# calculate magnetometer aiding start times -using_magyaw_time_arg = np.argmax(np.diff(using_magyaw)) -using_magyaw_time = status_time[using_magyaw_time_arg] -using_mag3d_time_arg = np.argmax(np.diff(using_mag3d)) -using_mag3d_time = status_time[using_mag3d_time_arg] -using_magdecl_time_arg = np.argmax(np.diff(using_magdecl)) -using_magdecl_time = status_time[using_magdecl_time_arg] - -# control mode summary plot A -plt.figure(9,figsize=(20,13)) - -# subplot for alignment completion -plt.subplot(4,1,1) -plt.title('EKF Control Status - Figure A') -plt.plot(status_time,tilt_aligned,'b') -plt.plot(status_time,yaw_aligned,'r') -plt.ylim(-0.1, 1.1) -plt.ylabel('aligned') -plt.grid() -if np.amin(tilt_aligned) > 0: - plt.text(tilt_align_time, 0.5, 'no pre-arm data - cannot calculate alignment completion times', fontsize=12, horizontalalignment='left', verticalalignment='center',color='black') -else: - plt.text(tilt_align_time, 0.33, 'tilt alignment at '+str(round(tilt_align_time,1))+' sec', fontsize=12, horizontalalignment='left', verticalalignment='center',color='b') - plt.text(yaw_align_time, 0.67, 'yaw alignment at '+str(round(tilt_align_time,1))+' sec', fontsize=12, horizontalalignment='left', verticalalignment='center',color='r') - -# subplot for position aiding -plt.subplot(4,1,2) -plt.plot(status_time,using_gps,'b') -plt.plot(status_time,using_optflow,'r') -plt.plot(status_time,using_evpos,'g') -plt.ylim(-0.1, 1.1) -plt.ylabel('pos aiding') -plt.grid() - -if np.amin(using_gps) > 0: - plt.text(gps_aid_time, 0.25, 'no pre-arm data - cannot calculate GPS aiding start time', fontsize=12, horizontalalignment='left', verticalalignment='center',color='b') -elif np.amax(using_gps) > 0: - plt.text(gps_aid_time, 0.25, 'GPS aiding at '+str(round(gps_aid_time,1))+' sec', fontsize=12, horizontalalignment='left', verticalalignment='center',color='b') + file_dir = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) + check_level_dict_filename = os.path.join(file_dir, "check_level_dict.csv") -if np.amin(using_optflow) > 0: - plt.text(optflow_aid_time, 0.50, 'no pre-arm data - cannot calculate optical flow aiding start time', fontsize=12, horizontalalignment='left', verticalalignment='center',color='r') -elif np.amax(using_optflow) > 0: - plt.text(optflow_aid_time, 0.50, 'optical flow aiding at '+str(round(optflow_aid_time,1))+' sec', fontsize=12, horizontalalignment='left', verticalalignment='center',color='r') - -if np.amin(using_evpos) > 0: - plt.text(evpos_aid_time, 0.75, 'no pre-arm data - cannot calculate external vision aiding start time', fontsize=12, horizontalalignment='left', verticalalignment='center',color='g') -elif np.amax(using_evpos) > 0: - plt.text(evpos_aid_time, 0.75, 'external vision aiding at '+str(round(evpos_aid_time,1))+' sec', fontsize=12, horizontalalignment='left', verticalalignment='center',color='g') - -# subplot for height aiding -plt.subplot(4,1,3) -plt.plot(status_time,using_barohgt,'b') -plt.plot(status_time,using_gpshgt,'r') -plt.plot(status_time,using_rnghgt,'g') -plt.plot(status_time,using_evhgt,'c') -plt.ylim(-0.1, 1.1) -plt.ylabel('hgt aiding') -plt.grid() - -if np.amin(using_barohgt) > 0: - plt.text(barohgt_aid_time, 0.2, 'no pre-arm data - cannot calculate Baro aiding start time', fontsize=12, horizontalalignment='left', verticalalignment='center',color='b') -elif np.amax(using_barohgt) > 0: - plt.text(barohgt_aid_time, 0.2, 'Baro aiding at '+str(round(gps_aid_time,1))+' sec', fontsize=12, horizontalalignment='left', verticalalignment='center',color='b') - -if np.amin(using_gpshgt) > 0: - plt.text(gpshgt_aid_time, 0.4, 'no pre-arm data - cannot calculate GPS aiding start time', fontsize=12, horizontalalignment='left', verticalalignment='center',color='r') -elif np.amax(using_gpshgt) > 0: - plt.text(gpshgt_aid_time, 0.4, 'GPS aiding at '+str(round(gpshgt_aid_time,1))+' sec', fontsize=12, horizontalalignment='left', verticalalignment='center',color='r') - -if np.amin(using_rnghgt) > 0: - plt.text(rnghgt_aid_time, 0.6, 'no pre-arm data - cannot calculate rangfinder aiding start time', fontsize=12, horizontalalignment='left', verticalalignment='center',color='g') -elif np.amax(using_rnghgt) > 0: - plt.text(rnghgt_aid_time, 0.6, 'rangefinder aiding at '+str(round(rnghgt_aid_time,1))+' sec', fontsize=12, horizontalalignment='left', verticalalignment='center',color='g') - -if np.amin(using_evhgt) > 0: - plt.text(evhgt_aid_time, 0.8, 'no pre-arm data - cannot calculate external vision aiding start time', fontsize=12, horizontalalignment='left', verticalalignment='center',color='c') -elif np.amax(using_evhgt) > 0: - plt.text(evhgt_aid_time, 0.8, 'external vision aiding at '+str(round(evhgt_aid_time,1))+' sec', fontsize=12, horizontalalignment='left', verticalalignment='center',color='c') - -# subplot for magnetometer aiding -plt.subplot(4,1,4) -plt.plot(status_time,using_magyaw,'b') -plt.plot(status_time,using_mag3d,'r') -plt.plot(status_time,using_magdecl,'g') -plt.ylim(-0.1, 1.1) -plt.ylabel('mag aiding') -plt.xlabel('time (sec)') -plt.grid() - -if np.amin(using_magyaw) > 0: - plt.text(using_magyaw_time, 0.25, 'no pre-arm data - cannot calculate magnetic yaw aiding start time', fontsize=12, horizontalalignment='left', verticalalignment='center',color='b') -elif np.amax(using_magyaw) > 0: - plt.text(using_magyaw_time, 0.25, 'magnetic yaw aiding at '+str(round(using_magyaw_time,1))+' sec', fontsize=12, horizontalalignment='right', verticalalignment='center',color='b') - -if np.amin(using_mag3d) > 0: - plt.text(using_mag3d_time, 0.50, 'no pre-arm data - cannot calculate 3D magnetoemter aiding start time', fontsize=12, horizontalalignment='left', verticalalignment='center',color='r') -elif np.amax(using_mag3d) > 0: - plt.text(using_mag3d_time, 0.50, 'magnetometer 3D aiding at '+str(round(using_mag3d_time,1))+' sec', fontsize=12, horizontalalignment='left', verticalalignment='center',color='r') - -if np.amin(using_magdecl) > 0: - plt.text(using_magdecl_time, 0.75, 'no pre-arm data - cannot magnetic declination aiding start time', fontsize=12, horizontalalignment='left', verticalalignment='center',color='g') -elif np.amax(using_magdecl) > 0: - plt.text(using_magdecl_time, 0.75, 'magnetic declination aiding at '+str(round(using_magdecl_time,1))+' sec', fontsize=12, horizontalalignment='left', verticalalignment='center',color='g') - -pp.savefig() -plt.close(9) - -# control mode summary plot B -plt.figure(10,figsize=(20,13)) - -# subplot for airborne status -plt.subplot(2,1,1) -plt.title('EKF Control Status - Figure B') -plt.plot(status_time,airborne,'b') -plt.ylim(-0.1, 1.1) -plt.ylabel('airborne') -plt.grid() - -if np.amax(np.diff(airborne)) < 0.5: - plt.text(in_air_transition_time, 0.67, 'ground to air transition not detected', fontsize=12, horizontalalignment='left', verticalalignment='center',color='b') -else: - plt.text(in_air_transition_time, 0.67, 'in-air at '+str(round(in_air_transition_time,1))+' sec', fontsize=12, horizontalalignment='left', verticalalignment='center',color='b') - -if np.amin(np.diff(airborne)) > -0.5: - plt.text(on_ground_transition_time, 0.33, 'air to ground transition not detected', fontsize=12, horizontalalignment='left', verticalalignment='center',color='b') -else: - plt.text(on_ground_transition_time, 0.33, 'on-ground at '+str(round(on_ground_transition_time,1))+' sec', fontsize=12, horizontalalignment='right', verticalalignment='center',color='b') - -if in_air_duration > 0.0: - plt.text((in_air_transition_time+on_ground_transition_time)/2, 0.5, 'duration = '+str(round(in_air_duration,1))+' sec', fontsize=12, horizontalalignment='center', verticalalignment='center',color='b') - -# subplot for wind estimation status -plt.subplot(2,1,2) -plt.plot(status_time,estimating_wind,'b') -plt.ylim(-0.1, 1.1) -plt.ylabel('estimating wind') -plt.xlabel('time (sec)') -plt.grid() - -pp.savefig() -plt.close(10) - -# innovation_check_flags summary - -# 0 - true if velocity observations have been rejected -# 1 - true if horizontal position observations have been rejected -# 2 - true if true if vertical position observations have been rejected -# 3 - true if the X magnetometer observation has been rejected -# 4 - true if the Y magnetometer observation has been rejected -# 5 - true if the Z magnetometer observation has been rejected -# 6 - true if the yaw observation has been rejected -# 7 - true if the airspeed observation has been rejected -# 8 - true if the height above ground observation has been rejected -# 9 - true if the X optical flow observation has been rejected -# 10 - true if the Y optical flow observation has been rejected -vel_innov_fail = ((2**0 & estimator_status['innovation_check_flags']) > 0)*1 -posh_innov_fail = ((2**1 & estimator_status['innovation_check_flags']) > 0)*1 -posv_innov_fail = ((2**2 & estimator_status['innovation_check_flags']) > 0)*1 -magx_innov_fail = ((2**3 & estimator_status['innovation_check_flags']) > 0)*1 -magy_innov_fail = ((2**4 & estimator_status['innovation_check_flags']) > 0)*1 -magz_innov_fail = ((2**5 & estimator_status['innovation_check_flags']) > 0)*1 -yaw_innov_fail = ((2**6 & estimator_status['innovation_check_flags']) > 0)*1 -tas_innov_fail = ((2**7 & estimator_status['innovation_check_flags']) > 0)*1 -hagl_innov_fail = ((2**8 & estimator_status['innovation_check_flags']) > 0)*1 -ofx_innov_fail = ((2**9 & estimator_status['innovation_check_flags']) > 0)*1 -ofy_innov_fail = ((2**10 & estimator_status['innovation_check_flags']) > 0)*1 - -# plot innovation_check_flags summary -plt.figure(11,figsize=(20,13)) - -plt.subplot(5,1,1) -plt.title('EKF Innovation Test Fails') -plt.plot(status_time,vel_innov_fail,'b',label='vel NED') -plt.plot(status_time,posh_innov_fail,'r',label='pos NE') -plt.ylim(-0.1, 1.1) -plt.ylabel('failed') -plt.legend(loc='upper left') -plt.grid() - -plt.subplot(5,1,2) -plt.plot(status_time,posv_innov_fail,'b',label='hgt absolute') -plt.plot(status_time,hagl_innov_fail,'r',label='hgt above ground') -plt.ylim(-0.1, 1.1) -plt.ylabel('failed') -plt.legend(loc='upper left') -plt.grid() - -plt.subplot(5,1,3) -plt.plot(status_time,magx_innov_fail,'b',label='mag_x') -plt.plot(status_time,magy_innov_fail,'r',label='mag_y') -plt.plot(status_time,magz_innov_fail,'g',label='mag_z') -plt.plot(status_time,yaw_innov_fail,'c',label='yaw') -plt.legend(loc='upper left') -plt.ylim(-0.1, 1.1) -plt.ylabel('failed') -plt.grid() - -plt.subplot(5,1,4) -plt.plot(status_time,tas_innov_fail,'b',label='airspeed') -plt.ylim(-0.1, 1.1) -plt.ylabel('failed') -plt.legend(loc='upper left') -plt.grid() - -plt.subplot(5,1,5) -plt.plot(status_time,ofx_innov_fail,'b',label='flow X') -plt.plot(status_time,ofy_innov_fail,'r',label='flow Y') -plt.ylim(-0.1, 1.1) -plt.ylabel('failed') -plt.xlabel('time (sec') -plt.legend(loc='upper left') -plt.grid() - -pp.savefig() -plt.close(11) - -# gps_check_fail_flags summary -plt.figure(12,figsize=(20,13)) -# 0 : minimum required sat count fail -# 1 : minimum required GDoP fail -# 2 : maximum allowed horizontal position error fail -# 3 : maximum allowed vertical position error fail -# 4 : maximum allowed speed error fail -# 5 : maximum allowed horizontal position drift fail -# 6 : maximum allowed vertical position drift fail -# 7 : maximum allowed horizontal speed fail -# 8 : maximum allowed vertical velocity discrepancy fail -nsat_fail = ((2**0 & estimator_status['gps_check_fail_flags']) > 0)*1 -gdop_fail = ((2**1 & estimator_status['gps_check_fail_flags']) > 0)*1 -herr_fail = ((2**2 & estimator_status['gps_check_fail_flags']) > 0)*1 -verr_fail = ((2**3 & estimator_status['gps_check_fail_flags']) > 0)*1 -serr_fail = ((2**4 & estimator_status['gps_check_fail_flags']) > 0)*1 -hdrift_fail = ((2**5 & estimator_status['gps_check_fail_flags']) > 0)*1 -vdrift_fail = ((2**6 & estimator_status['gps_check_fail_flags']) > 0)*1 -hspd_fail = ((2**7 & estimator_status['gps_check_fail_flags']) > 0)*1 -veld_diff_fail = ((2**8 & estimator_status['gps_check_fail_flags']) > 0)*1 - -plt.subplot(2,1,1) -plt.title('GPS Direct Output Check Failures') -plt.plot(status_time,nsat_fail,'b',label='N sats') -plt.plot(status_time,gdop_fail,'r',label='GDOP') -plt.plot(status_time,herr_fail,'g',label='horiz pos error') -plt.plot(status_time,verr_fail,'c',label='vert pos error') -plt.plot(status_time,serr_fail,'m',label='speed error') -plt.ylim(-0.1, 1.1) -plt.ylabel('failed') -plt.legend(loc='upper right') -plt.grid() - -plt.subplot(2,1,2) -plt.title('GPS Derived Output Check Failures') -plt.plot(status_time,hdrift_fail,'b',label='horiz drift') -plt.plot(status_time,vdrift_fail,'r',label='vert drift') -plt.plot(status_time,hspd_fail,'g',label='horiz speed') -plt.plot(status_time,veld_diff_fail,'c',label='vert vel inconsistent') -plt.ylim(-0.1, 1.1) -plt.ylabel('failed') -plt.xlabel('time (sec') -plt.legend(loc='upper right') -plt.grid() - -pp.savefig() -plt.close(12) - -# filter reported accuracy -plt.figure(13,figsize=(20,13)) -plt.title('Reported Accuracy') -plt.plot(status_time,estimator_status['pos_horiz_accuracy'],'b',label='horizontal') -plt.plot(status_time,estimator_status['pos_vert_accuracy'],'r',label='vertical') -plt.ylabel('accuracy (m)') -plt.xlabel('time (sec') -plt.legend(loc='upper right') -plt.grid() - -pp.savefig() -plt.close(13) - -# Plot the EKF IMU vibration metrics -plt.figure(14,figsize=(20,13)) - -vibe_coning_max_arg = np.argmax(estimator_status['vibe[0]']) -vibe_coning_max_time = status_time[vibe_coning_max_arg] -vibe_coning_max = np.amax(estimator_status['vibe[0]']) - -vibe_hf_dang_max_arg = np.argmax(estimator_status['vibe[1]']) -vibe_hf_dang_max_time = status_time[vibe_hf_dang_max_arg] -vibe_hf_dang_max = np.amax(estimator_status['vibe[1]']) - -vibe_hf_dvel_max_arg = np.argmax(estimator_status['vibe[2]']) -vibe_hf_dvel_max_time = status_time[vibe_hf_dvel_max_arg] -vibe_hf_dvel_max = np.amax(estimator_status['vibe[2]']) - -plt.subplot(3,1,1) -plt.plot(1e-6*estimator_status['timestamp'] , 1000.0 * estimator_status['vibe[0]'],'b') -plt.title('IMU Vibration Metrics') -plt.ylabel('Del Ang Coning (mrad)') -plt.grid() -plt.text(vibe_coning_max_time, 1000.0 * vibe_coning_max, 'max='+str(round(1000.0 * vibe_coning_max,5)), fontsize=12, horizontalalignment='left', verticalalignment='top') - -plt.subplot(3,1,2) -plt.plot(1e-6*estimator_status['timestamp'] , 1000.0 * estimator_status['vibe[1]'],'b') -plt.ylabel('HF Del Ang (mrad)') -plt.grid() -plt.text(vibe_hf_dang_max_time, 1000.0 * vibe_hf_dang_max, 'max='+str(round(1000.0 * vibe_hf_dang_max,3)), fontsize=12, horizontalalignment='left', verticalalignment='top') - -plt.subplot(3,1,3) -plt.plot(1e-6*estimator_status['timestamp'] , estimator_status['vibe[2]'],'b') -plt.ylabel('HF Del Vel (m/s)') -plt.xlabel('time (sec)') -plt.grid() -plt.text(vibe_hf_dvel_max_time, vibe_hf_dvel_max, 'max='+str(round(vibe_hf_dvel_max,4)), fontsize=12, horizontalalignment='left', verticalalignment='top') - -pp.savefig() -plt.close(14) - -# Plot the EKF output observer tracking errors -plt.figure(15,figsize=(20,13)) - -ang_track_err_max_arg = np.argmax(ekf2_innovations['output_tracking_error[0]']) -ang_track_err_max_time = innov_time[ang_track_err_max_arg] -ang_track_err_max = np.amax(ekf2_innovations['output_tracking_error[0]']) - -vel_track_err_max_arg = np.argmax(ekf2_innovations['output_tracking_error[1]']) -vel_track_err_max_time = innov_time[vel_track_err_max_arg] -vel_track_err_max = np.amax(ekf2_innovations['output_tracking_error[1]']) - -pos_track_err_max_arg = np.argmax(ekf2_innovations['output_tracking_error[2]']) -pos_track_err_max_time = innov_time[pos_track_err_max_arg] -pos_track_err_max = np.amax(ekf2_innovations['output_tracking_error[2]']) - -plt.subplot(3,1,1) -plt.plot(1e-6*ekf2_innovations['timestamp'] , 1e3*ekf2_innovations['output_tracking_error[0]'],'b') -plt.title('Output Observer Tracking Error Magnitudes') -plt.ylabel('angles (mrad)') -plt.grid() -plt.text(ang_track_err_max_time, 1e3 * ang_track_err_max, 'max='+str(round(1e3 * ang_track_err_max,2)), fontsize=12, horizontalalignment='left', verticalalignment='top') - -plt.subplot(3,1,2) -plt.plot(1e-6*ekf2_innovations['timestamp'] , ekf2_innovations['output_tracking_error[1]'],'b') -plt.ylabel('velocity (m/s)') -plt.grid() -plt.text(vel_track_err_max_time, vel_track_err_max, 'max='+str(round(vel_track_err_max,2)), fontsize=12, horizontalalignment='left', verticalalignment='top') - -plt.subplot(3,1,3) -plt.plot(1e-6*ekf2_innovations['timestamp'] , ekf2_innovations['output_tracking_error[2]'],'b') -plt.ylabel('position (m)') -plt.xlabel('time (sec)') -plt.grid() -plt.text(pos_track_err_max_time, pos_track_err_max, 'max='+str(round(pos_track_err_max,2)), fontsize=12, horizontalalignment='left', verticalalignment='top') - -pp.savefig() -plt.close(15) - -# Plot the delta angle bias estimates -plt.figure(16,figsize=(20,13)) - -plt.subplot(3,1,1) -plt.plot(1e-6*estimator_status['timestamp'] , estimator_status['states[10]'],'b') -plt.title('Delta Angle Bias Estimates') -plt.ylabel('X (rad)') -plt.xlabel('time (sec)') -plt.grid() - -plt.subplot(3,1,2) -plt.plot(1e-6*estimator_status['timestamp'] , estimator_status['states[11]'],'b') -plt.ylabel('Y (rad)') -plt.xlabel('time (sec)') -plt.grid() - -plt.subplot(3,1,3) -plt.plot(1e-6*estimator_status['timestamp'] , estimator_status['states[12]'],'b') -plt.ylabel('Z (rad)') -plt.xlabel('time (sec)') -plt.grid() - -pp.savefig() -plt.close(16) - -# Plot the delta velocity bias estimates -plt.figure(17,figsize=(20,13)) - -plt.subplot(3,1,1) -plt.plot(1e-6*estimator_status['timestamp'] , estimator_status['states[13]'],'b') -plt.title('Delta Velocity Bias Estimates') -plt.ylabel('X (m/s)') -plt.xlabel('time (sec)') -plt.grid() - -plt.subplot(3,1,2) -plt.plot(1e-6*estimator_status['timestamp'] , estimator_status['states[14]'],'b') -plt.ylabel('Y (m/s)') -plt.xlabel('time (sec)') -plt.grid() - -plt.subplot(3,1,3) -plt.plot(1e-6*estimator_status['timestamp'] , estimator_status['states[15]'],'b') -plt.ylabel('Z (m/s)') -plt.xlabel('time (sec)') -plt.grid() - -pp.savefig() -plt.close(17) - -# Plot the earth frame magnetic field estimates - -plt.figure(18,figsize=(20,13)) -plt.subplot(3,1,3) -strength = (estimator_status['states[16]']**2 + estimator_status['states[17]']**2 + estimator_status['states[18]']**2)**0.5 -plt.plot(1e-6*estimator_status['timestamp'] , strength,'b') -plt.ylabel('strength (Gauss)') -plt.xlabel('time (sec)') -plt.grid() - -plt.subplot(3,1,1) -rad2deg = 57.2958 -declination = rad2deg * np.arctan2(estimator_status['states[17]'],estimator_status['states[16]']) -plt.plot(1e-6*estimator_status['timestamp'] , declination,'b') -plt.title('Earth Magnetic Field Estimates') -plt.ylabel('declination (deg)') -plt.xlabel('time (sec)') -plt.grid() - -plt.subplot(3,1,2) -inclination = rad2deg * np.arcsin(estimator_status['states[18]'] / strength) -plt.plot(1e-6*estimator_status['timestamp'] , inclination,'b') -plt.ylabel('inclination (deg)') -plt.xlabel('time (sec)') -plt.grid() - -pp.savefig() -plt.close(18) - -# Plot the body frame magnetic field estimates -plt.figure(19,figsize=(20,13)) - -plt.subplot(3,1,1) -plt.plot(1e-6*estimator_status['timestamp'] , estimator_status['states[19]'],'b') -plt.title('Magnetomer Bias Estimates') -plt.ylabel('X (Gauss)') -plt.xlabel('time (sec)') -plt.grid() - -plt.subplot(3,1,2) -plt.plot(1e-6*estimator_status['timestamp'] , estimator_status['states[20]'],'b') -plt.ylabel('Y (Gauss)') -plt.xlabel('time (sec)') -plt.grid() - -plt.subplot(3,1,3) -plt.plot(1e-6*estimator_status['timestamp'] , estimator_status['states[21]'],'b') -plt.ylabel('Z (Gauss)') -plt.xlabel('time (sec)') -plt.grid() - -pp.savefig() -plt.close(19) - -# Plot the EKF wind estimates -plt.figure(20,figsize=(20,13)) - -plt.subplot(2,1,1) -plt.plot(1e-6*estimator_status['timestamp'] , estimator_status['states[22]'],'b') -plt.title('Wind Velocity Estimates') -plt.ylabel('North (m/s)') -plt.xlabel('time (sec)') -plt.grid() - -plt.subplot(2,1,2) -plt.plot(1e-6*estimator_status['timestamp'] , estimator_status['states[23]'],'b') -plt.ylabel('East (m/s)') -plt.xlabel('time (sec)') -plt.grid() - -pp.savefig() -plt.close(20) - -# close the pdf file -pp.close() - -# don't display to screen -#plt.show() - -# clase all figures -plt.close("all") - -# Do some automated analysis of the status data - -# find a late/early index range from 5 sec after in_air_transtion_time to 5 sec before on-ground transition time for mag and optical flow checks to avoid false positives -# this can be used to prevent false positives for sensors adversely affected by close proximity to the ground -late_start_index = np.argmin(status_time[np.where(status_time > (in_air_transition_time+5.0))]) -early_end_index = np.argmax(status_time[np.where(status_time < (on_ground_transition_time-5.0))]) -num_valid_values_trimmed = (early_end_index - late_start_index +1) - -# normal index range is defined by the flight duration -start_index = np.argmin(status_time[np.where(status_time > in_air_transition_time)]) -end_index = np.argmax(status_time[np.where(status_time < on_ground_transition_time)]) -num_valid_values = (end_index - start_index +1) - -# also find the start and finish indexes for the innovation data -innov_late_start_index = np.argmin(innov_time[np.where(innov_time > (in_air_transition_time+5.0))]) -innov_early_end_index = np.argmax(innov_time[np.where(innov_time < (on_ground_transition_time-5.0))]) -innov_num_valid_values_trimmed = (innov_early_end_index - innov_late_start_index +1) -innov_start_index = np.argmin(innov_time[np.where(innov_time > in_air_transition_time)]) -innov_end_index = np.argmax(innov_time[np.where(innov_time < on_ground_transition_time)]) -innov_num_valid_values = (innov_end_index - innov_start_index +1) - -# define dictionary of test results and descriptions -test_results = { -'master_status':['Pass','Master check status which can be either Pass Warning or Fail. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'], -'mag_sensor_status':['Pass','Magnetometer sensor check summary. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'], -'yaw_sensor_status':['Pass','Yaw sensor check summary. This sensor data can be sourced from the magnetometer or an external vision system. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'], -'vel_sensor_status':['Pass','Velocity sensor check summary. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'], -'pos_sensor_status':['Pass','Position sensor check summary. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'], -'hgt_sensor_status':['Pass','Height sensor check summary. This sensor data can be sourced from either Baro or GPS or range finder or external vision system. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no anomalies were detected and no further investigation is required'], -'hagl_sensor_status':['Pass','Height above ground sensor check summary. This sensor data is normally sourced from a rangefinder sensor. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'], -'tas_sensor_status':['Pass','Airspeed sensor check summary. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'], -'imu_sensor_status':['Pass','IMU sensor check summary. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'], -'flow_sensor_status':['Pass','Optical Flow sensor check summary. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'], -'mag_percentage_red':[float('NaN'),'The percentage of in-flight consolidated magnetic field sensor innovation consistency test values > 1.0.'], -'mag_percentage_amber':[float('NaN'),'The percentage of in-flight consolidated magnetic field sensor innovation consistency test values > 0.5.'], -'magx_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the X-axis magnetic field sensor innovation consistency test.'], -'magy_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the Y-axis magnetic field sensor innovation consistency test.'], -'magz_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the Z-axis magnetic field sensor innovation consistency test.'], -'yaw_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the yaw sensor innovation consistency test.'], -'mag_test_max':[float('NaN'),'The maximum in-flight value of the magnetic field sensor innovation consistency test ratio.'], -'mag_test_mean':[float('NaN'),'The mean in-flight value of the magnetic field sensor innovation consistency test ratio.'], -'vel_percentage_red':[float('NaN'),'The percentage of in-flight velocity sensor consolidated innovation consistency test values > 1.0.'], -'vel_percentage_amber':[float('NaN'),'The percentage of in-flight velocity sensor consolidated innovation consistency test values > 0.5.'], -'vel_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the velocity sensor consolidated innovation consistency test.'], -'vel_test_max':[float('NaN'),'The maximum in-flight value of the velocity sensor consolidated innovation consistency test ratio.'], -'vel_test_mean':[float('NaN'),'The mean in-flight value of the velocity sensor consolidated innovation consistency test ratio.'], -'pos_percentage_red':[float('NaN'),'The percentage of in-flight position sensor consolidated innovation consistency test values > 1.0.'], -'pos_percentage_amber':[float('NaN'),'The percentage of in-flight position sensor consolidated innovation consistency test values > 0.5.'], -'pos_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the velocity sensor consolidated innovation consistency test.'], -'pos_test_max':[float('NaN'),'The maximum in-flight value of the position sensor consolidated innovation consistency test ratio.'], -'pos_test_mean':[float('NaN'),'The mean in-flight value of the position sensor consolidated innovation consistency test ratio.'], -'hgt_percentage_red':[float('NaN'),'The percentage of in-flight height sensor innovation consistency test values > 1.0.'], -'hgt_percentage_amber':[float('NaN'),'The percentage of in-flight height sensor innovation consistency test values > 0.5.'], -'hgt_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the height sensor innovation consistency test.'], -'hgt_test_max':[float('NaN'),'The maximum in-flight value of the height sensor innovation consistency test ratio.'], -'hgt_test_mean':[float('NaN'),'The mean in-flight value of the height sensor innovation consistency test ratio.'], -'tas_percentage_red':[float('NaN'),'The percentage of in-flight airspeed sensor innovation consistency test values > 1.0.'], -'tas_percentage_amber':[float('NaN'),'The percentage of in-flight airspeed sensor innovation consistency test values > 0.5.'], -'tas_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the airspeed sensor innovation consistency test.'], -'tas_test_max':[float('NaN'),'The maximum in-flight value of the airspeed sensor innovation consistency test ratio.'], -'tas_test_mean':[float('NaN'),'The mean in-flight value of the airspeed sensor innovation consistency test ratio.'], -'hagl_percentage_red':[float('NaN'),'The percentage of in-flight height above ground sensor innovation consistency test values > 1.0.'], -'hagl_percentage_amber':[float('NaN'),'The percentage of in-flight height above ground sensor innovation consistency test values > 0.5.'], -'hagl_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the height above ground sensor innovation consistency test.'], -'hagl_test_max':[float('NaN'),'The maximum in-flight value of the height above ground sensor innovation consistency test ratio.'], -'hagl_test_mean':[float('NaN'),'The mean in-flight value of the height above ground sensor innovation consistency test ratio.'], -'ofx_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the optical flow sensor X-axis innovation consistency test.'], -'ofy_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the optical flow sensor Y-axis innovation consistency test.'], -'filter_faults_max':[float('NaN'),'Largest recorded value of the filter internal fault bitmask. Should always be zero.'], -'imu_coning_peak':[float('NaN'),'Peak in-flight value of the IMU delta angle coning vibration metric (rad)'], -'imu_coning_mean':[float('NaN'),'Mean in-flight value of the IMU delta angle coning vibration metric (rad)'], -'imu_hfdang_peak':[float('NaN'),'Peak in-flight value of the IMU delta angle high frequency vibration metric (rad)'], -'imu_hfdang_mean':[float('NaN'),'Mean in-flight value of the IMU delta angle high frequency vibration metric (rad)'], -'imu_hfdvel_peak':[float('NaN'),'Peak in-flight value of the IMU delta velocity high frequency vibration metric (m/s)'], -'imu_hfdvel_mean':[float('NaN'),'Mean in-flight value of the IMU delta velocity high frequency vibration metric (m/s)'], -'output_obs_ang_err_median':[float('NaN'),'Median in-flight value of the output observer angular error (rad)'], -'output_obs_vel_err_median':[float('NaN'),'Median in-flight value of the output observer velocity error (m/s)'], -'output_obs_pos_err_median':[float('NaN'),'Median in-flight value of the output observer position error (m)'], -'imu_dang_bias_median':[float('NaN'),'Median in-flight value of the delta angle bias vector length (rad)'], -'imu_dvel_bias_median':[float('NaN'),'Median in-flight value of the delta velocity bias vector length (m/s)'], -'tilt_align_time':[float('NaN'),'The time in seconds measured from startup that the EKF completed the tilt alignment. A nan value indicates that the alignment had completed before logging started or alignment did not complete.'], -'yaw_align_time':[float('NaN'),'The time in seconds measured from startup that the EKF completed the yaw alignment.'], -'in_air_transition_time':[round(in_air_transition_time,1),'The time in seconds measured from startup that the EKF transtioned into in-air mode. Set to a nan if a transition event is not detected.'], -'on_ground_transition_time':[round(on_ground_transition_time,1),'The time in seconds measured from startup that the EKF transitioned out of in-air mode. Set to a nan if a transition event is not detected.'], -} - -# generate test metadata - -# reduction of innovation message data -if (innov_early_end_index > (innov_late_start_index + 100)): - # Output Observer Tracking Errors - test_results['output_obs_ang_err_median'][0] = np.median(ekf2_innovations['output_tracking_error[0]'][innov_late_start_index:innov_early_end_index]) - test_results['output_obs_vel_err_median'][0] = np.median(ekf2_innovations['output_tracking_error[1]'][innov_late_start_index:innov_early_end_index]) - test_results['output_obs_pos_err_median'][0] = np.median(ekf2_innovations['output_tracking_error[2]'][innov_late_start_index:innov_early_end_index]) - -# reduction of status message data -if (early_end_index > (late_start_index + 100)): - # IMU vibration checks - temp = np.amax(estimator_status['vibe[0]'][late_start_index:early_end_index]) - if (temp > 0.0): - test_results['imu_coning_peak'][0] = temp - test_results['imu_coning_mean'][0] = np.mean(estimator_status['vibe[0]'][late_start_index:early_end_index]) - temp = np.amax(estimator_status['vibe[1]'][late_start_index:early_end_index]) - if (temp > 0.0): - test_results['imu_hfdang_peak'][0] = temp - test_results['imu_hfdang_mean'][0] = np.mean(estimator_status['vibe[1]'][late_start_index:early_end_index]) - temp = np.amax(estimator_status['vibe[2]'][late_start_index:early_end_index]) - if (temp > 0.0): - test_results['imu_hfdvel_peak'][0] = temp - test_results['imu_hfdvel_mean'][0] = np.mean(estimator_status['vibe[2]'][late_start_index:early_end_index]) - - # Magnetometer Sensor Checks - if (np.amax(yaw_aligned) > 0.5): - mag_num_red = (estimator_status['mag_test_ratio'][start_index:end_index] > 1.0).sum() - mag_num_amber = (estimator_status['mag_test_ratio'][start_index:end_index] > 0.5).sum() - mag_num_red - test_results['mag_percentage_red'][0] = 100.0 * mag_num_red / num_valid_values_trimmed - test_results['mag_percentage_amber'][0] = 100.0 * mag_num_amber / num_valid_values_trimmed - test_results['mag_test_max'][0] = np.amax(estimator_status['mag_test_ratio'][late_start_index:early_end_index]) - test_results['mag_test_mean'][0] = np.mean(estimator_status['mag_test_ratio'][start_index:end_index]) - test_results['magx_fail_percentage'][0] = 100.0 * (magx_innov_fail[late_start_index:early_end_index] > 0.5).sum() / num_valid_values_trimmed - test_results['magy_fail_percentage'][0] = 100.0 * (magy_innov_fail[late_start_index:early_end_index] > 0.5).sum() / num_valid_values_trimmed - test_results['magz_fail_percentage'][0] = 100.0 * (magz_innov_fail[late_start_index:early_end_index] > 0.5).sum() / num_valid_values_trimmed - test_results['yaw_fail_percentage'][0] = 100.0 * (yaw_innov_fail[late_start_index:early_end_index] > 0.5).sum() / num_valid_values_trimmed - - # Velocity Sensor Checks - if (np.amax(using_gps) > 0.5): - vel_num_red = (estimator_status['vel_test_ratio'][start_index:end_index] > 1.0).sum() - vel_num_amber = (estimator_status['vel_test_ratio'][start_index:end_index] > 0.5).sum() - vel_num_red - test_results['vel_percentage_red'][0] = 100.0 * vel_num_red / num_valid_values - test_results['vel_percentage_amber'][0] = 100.0 * vel_num_amber / num_valid_values - test_results['vel_test_max'][0] = np.amax(estimator_status['vel_test_ratio'][start_index:end_index]) - test_results['vel_test_mean'][0] = np.mean(estimator_status['vel_test_ratio'][start_index:end_index]) - test_results['vel_fail_percentage'][0] = 100.0 * (vel_innov_fail[start_index:end_index] > 0.5).sum() / num_valid_values - - # Position Sensor Checks - if ((np.amax(using_gps) > 0.5) or (np.amax(using_evpos) > 0.5)): - pos_num_red = (estimator_status['pos_test_ratio'][start_index:end_index] > 1.0).sum() - pos_num_amber = (estimator_status['pos_test_ratio'][start_index:end_index] > 0.5).sum() - pos_num_red - test_results['pos_percentage_red'][0] = 100.0 * pos_num_red / num_valid_values - test_results['pos_percentage_amber'][0] = 100.0 * pos_num_amber / num_valid_values - test_results['pos_test_max'][0] = np.amax(estimator_status['pos_test_ratio'][start_index:end_index]) - test_results['pos_test_mean'][0] = np.mean(estimator_status['pos_test_ratio'][start_index:end_index]) - test_results['pos_fail_percentage'][0] = 100.0 * (posh_innov_fail[start_index:end_index] > 0.5).sum() / num_valid_values - - # Height Sensor Checks - hgt_num_red = (estimator_status['hgt_test_ratio'][late_start_index:early_end_index] > 1.0).sum() - hgt_num_amber = (estimator_status['hgt_test_ratio'][late_start_index:early_end_index] > 0.5).sum() - hgt_num_red - test_results['hgt_percentage_red'][0] = 100.0 * hgt_num_red / num_valid_values_trimmed - test_results['hgt_percentage_amber'][0] = 100.0 * hgt_num_amber / num_valid_values_trimmed - test_results['hgt_test_max'][0] = np.amax(estimator_status['hgt_test_ratio'][late_start_index:early_end_index]) - test_results['hgt_test_mean'][0] = np.mean(estimator_status['hgt_test_ratio'][late_start_index:early_end_index]) - test_results['hgt_fail_percentage'][0] = 100.0 * (posv_innov_fail[late_start_index:early_end_index] > 0.5).sum() / num_valid_values_trimmed - - # Airspeed Sensor Checks - if (tas_test_max > 0.0): - tas_num_red = (estimator_status['tas_test_ratio'][start_index:end_index] > 1.0).sum() - tas_num_amber = (estimator_status['tas_test_ratio'][start_index:end_index] > 0.5).sum() - tas_num_red - test_results['tas_percentage_red'][0] = 100.0 * tas_num_red / num_valid_values - test_results['tas_percentage_amber'][0] = 100.0 * tas_num_amber / num_valid_values - test_results['tas_test_max'][0] = np.amax(estimator_status['tas_test_ratio'][start_index:end_index]) - test_results['tas_test_mean'][0] = np.mean(estimator_status['tas_test_ratio'][start_index:end_index]) - test_results['tas_fail_percentage'][0] = 100.0 * (tas_innov_fail[start_index:end_index] > 0.5).sum() / num_valid_values - - # HAGL Sensor Checks - if (hagl_test_max > 0.0): - hagl_num_red = (estimator_status['hagl_test_ratio'][start_index:end_index] > 1.0).sum() - hagl_num_amber = (estimator_status['hagl_test_ratio'][start_index:end_index] > 0.5).sum() - hagl_num_red - test_results['hagl_percentage_red'][0] = 100.0 * hagl_num_red / num_valid_values - test_results['hagl_percentage_amber'][0] = 100.0 * hagl_num_amber / num_valid_values - test_results['hagl_test_max'][0] = np.amax(estimator_status['hagl_test_ratio'][start_index:end_index]) - test_results['hagl_test_mean'][0] = np.mean(estimator_status['hagl_test_ratio'][start_index:end_index]) - test_results['hagl_fail_percentage'][0] = 100.0 * (hagl_innov_fail[start_index:end_index] > 0.5).sum() / num_valid_values - - # optical flow sensor checks - if (np.amax(using_optflow) > 0.5): - test_results['ofx_fail_percentage'][0] = 100.0 * (ofx_innov_fail[late_start_index:early_end_index] > 0.5).sum() / num_valid_values_trimmed - test_results['ofy_fail_percentage'][0] = 100.0 * (ofy_innov_fail[late_start_index:early_end_index] > 0.5).sum() / num_valid_values_trimmed - - # IMU bias checks - test_results['imu_dang_bias_median'][0] = (np.median(estimator_status['states[10]'])**2 + np.median(estimator_status['states[11]'])**2 + np.median(estimator_status['states[12]'])**2)**0.5 - test_results['imu_dvel_bias_median'][0] = (np.median(estimator_status['states[13]'])**2 + np.median(estimator_status['states[14]'])**2 + np.median(estimator_status['states[15]'])**2)**0.5 - -# Check for internal filter nummerical faults -test_results['filter_faults_max'][0] = np.amax(estimator_status['filter_fault_flags']) - -# TODO - process the following bitmask's when they have been properly documented in the uORB topic -#estimator_status['health_flags'] -#estimator_status['timeout_flags'] - -# calculate a master status - Fail, Warning, Pass # get the dictionary of fail and warning test thresholds from a csv file +with open(check_level_dict_filename, 'r') as file: + check_levels = {} + for line in file: + x = line.split(",") + a = x[0] + b = x[1] + check_levels[a] = float(b) -__location__ = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) -filename = "check_level_dict.csv" - -file = open(os.path.join(__location__, filename)); - -check_levels = { } -for line in file: - x = line.split(",") - a=x[0] - b=x[1] - check_levels[a]=float(b) -file.close() - -# print out the check levels -print('Using test criteria loaded from '+filename) -#for N in check_levels: -# val = check_levels.get(N) -# print(N+' = '+str(val), end='\n') - -# check test results against levels to provide a master status - -# check for warnings -if (test_results.get('mag_percentage_amber')[0] > check_levels.get('mag_amber_warn_pct')): - test_results['master_status'][0] = 'Warning' - test_results['mag_sensor_status'][0] = 'Warning' -if (test_results.get('vel_percentage_amber')[0] > check_levels.get('vel_amber_warn_pct')): - test_results['master_status'][0] = 'Warning' - test_results['vel_sensor_status'][0] = 'Warning' -if (test_results.get('pos_percentage_amber')[0] > check_levels.get('pos_amber_warn_pct')): - test_results['master_status'][0] = 'Warning' - test_results['pos_sensor_status'][0] = 'Warning' -if (test_results.get('hgt_percentage_amber')[0] > check_levels.get('hgt_amber_warn_pct')): - test_results['master_status'][0] = 'Warning' - test_results['hgt_sensor_status'][0] = 'Warning' -if (test_results.get('hagl_percentage_amber')[0] > check_levels.get('hagl_amber_warn_pct')): - test_results['master_status'][0] = 'Warning' - test_results['hagl_sensor_status'][0] = 'Warning' -if (test_results.get('tas_percentage_amber')[0] > check_levels.get('tas_amber_warn_pct')): - test_results['master_status'][0] = 'Warning' - test_results['tas_sensor_status'][0] = 'Warning' - -# check for IMU sensor warnings -if ((test_results.get('imu_coning_peak')[0] > check_levels.get('imu_coning_peak_warn')) or -(test_results.get('imu_coning_mean')[0] > check_levels.get('imu_coning_mean_warn')) or -(test_results.get('imu_hfdang_peak')[0] > check_levels.get('imu_hfdang_peak_warn')) or -(test_results.get('imu_hfdang_mean')[0] > check_levels.get('imu_hfdang_mean_warn')) or -(test_results.get('imu_hfdvel_peak')[0] > check_levels.get('imu_hfdvel_peak_warn')) or -(test_results.get('imu_hfdvel_mean')[0] > check_levels.get('imu_hfdvel_mean_warn'))): - test_results['master_status'][0] = 'Warning' - test_results['imu_sensor_status'][0] = 'Warning - Vibration' - -if ((test_results.get('imu_dang_bias_median')[0] > check_levels.get('imu_dang_bias_median_warn')) or -(test_results.get('imu_dvel_bias_median')[0] > check_levels.get('imu_dvel_bias_median_warn'))): - test_results['master_status'][0] = 'Warning' - test_results['imu_sensor_status'][0] = 'Warning - Bias' - -if ((test_results.get('output_obs_ang_err_median')[0] > check_levels.get('obs_ang_err_median_warn')) or -(test_results.get('output_obs_vel_err_median')[0] > check_levels.get('obs_vel_err_median_warn')) or -(test_results.get('output_obs_pos_err_median')[0] > check_levels.get('obs_pos_err_median_warn'))): - test_results['master_status'][0] = 'Warning' - test_results['imu_sensor_status'][0] = 'Warning - Output Predictor' +print('Using test criteria loaded from {:s}'.format(check_level_dict_filename)) -# check for failures -if ((test_results.get('magx_fail_percentage')[0] > check_levels.get('mag_fail_pct')) or -(test_results.get('magy_fail_percentage')[0] > check_levels.get('mag_fail_pct')) or -(test_results.get('magz_fail_percentage')[0] > check_levels.get('mag_fail_pct')) or -(test_results.get('mag_percentage_amber')[0] > check_levels.get('mag_amber_fail_pct'))): - test_results['master_status'][0] = 'Fail' - test_results['mag_sensor_status'][0] = 'Fail' -if (test_results.get('yaw_fail_percentage')[0] > check_levels.get('yaw_fail_pct')): - test_results['master_status'][0] = 'Fail' - test_results['yaw_sensor_status'][0] = 'Fail' -if ((test_results.get('vel_fail_percentage')[0] > check_levels.get('vel_fail_pct')) or -(test_results.get('vel_percentage_amber')[0] > check_levels.get('vel_amber_fail_pct'))): - test_results['master_status'][0] = 'Fail' - test_results['vel_sensor_status'][0] = 'Fail' -if ((test_results.get('pos_fail_percentage')[0] > check_levels.get('pos_fail_pct')) or -(test_results.get('pos_percentage_amber')[0] > check_levels.get('pos_amber_fail_pct'))): - test_results['master_status'][0] = 'Fail' - test_results['pos_sensor_status'][0] = 'Fail' -if ((test_results.get('hgt_fail_percentage')[0] > check_levels.get('hgt_fail_pct')) or -(test_results.get('hgt_percentage_amber')[0] > check_levels.get('hgt_amber_fail_pct'))): - test_results['master_status'][0] = 'Fail' - test_results['hgt_sensor_status'][0] = 'Fail' -if ((test_results.get('tas_fail_percentage')[0] > check_levels.get('tas_fail_pct')) or -(test_results.get('tas_percentage_amber')[0] > check_levels.get('tas_amber_fail_pct'))): - test_results['master_status'][0] = 'Fail' - test_results['tas_sensor_status'][0] = 'Fail' -if ((test_results.get('hagl_fail_percentage')[0] > check_levels.get('hagl_fail_pct')) or -(test_results.get('hagl_percentage_amber')[0] > check_levels.get('hagl_amber_fail_pct'))): - test_results['master_status'][0] = 'Fail' - test_results['hagl_sensor_status'][0] = 'Fail' -if ((test_results.get('ofx_fail_percentage')[0] > check_levels.get('flow_fail_pct')) or -(test_results.get('ofy_fail_percentage')[0] > check_levels.get('flow_fail_pct'))): - test_results['master_status'][0] = 'Fail' - test_results['flow_sensor_status'][0] = 'Fail' -if (test_results.get('filter_faults_max')[0] > 0): - test_results['master_status'][0] = 'Fail' - test_results['filter_fault_status'][0] = 'Fail' +# perform the ekf analysis +test_results = analyse_ekf( + estimator_status_data, ekf2_innovations_data, sensor_preflight_data, + check_levels, plot=not args.no_plots, output_plot_filename=args.filename + ".pdf") # print master test status to console if (test_results['master_status'][0] == 'Pass'): @@ -1427,19 +84,18 @@ elif (test_results['master_status'][0] == 'Fail'): print('Major anomalies detected') # write metadata to a .csv file -test_results_filename = ulog_file_name + ".mdat.csv" -file = open(test_results_filename,"w") +with open(args.filename + ".mdat.csv", "w") as file: -file.write("name,value,description\n") + file.write("name,value,description\n") -# loop through the test results dictionary and write each entry on a separate row, with data comma separated -# save data in alphabetical order -key_list = list(test_results.keys()) -key_list.sort() -for key in key_list: - file.write(key+","+str(test_results[key][0])+","+test_results[key][1]+"\n") + # loop through the test results dictionary and write each entry on a separate row, with data comma separated + # save data in alphabetical order + key_list = list(test_results.keys()) + key_list.sort() + for key in key_list: + file.write(key+","+str(test_results[key][0])+","+test_results[key][1]+"\n") -file.close() +print('Test results written to {:s}.mdat.csv'.format(args.filename)) -print('Test results written to ' + test_results_filename) -print('Plots saved to ' + output_plot_filename) +if not args.no_plots: + print('Plots saved to {:s}.pdf'.format(args.filename)) -- GitLab