From b98cd6ecb55654498d65c26d8ead128881fb9f32 Mon Sep 17 00:00:00 2001
From: johannes <johannes@auterion.com>
Date: Mon, 23 Apr 2018 18:39:19 +0200
Subject: [PATCH] ecl-ekf tools: separate the analysis from the visualization
 and preprocessing

- move the analysis parts of the process_logdata_ekf script to
the 'analyse_ekf' function in a new file analyse_logdata_ekf.py
- return a test_results dictionary from analyse_ekf
- still process log loading, preprocessing and results file output in
process_logdata_ekf
- add command line argument to toggle plotting
- add command line argument to use different dictionary to check_level_dict.csv
---
 Tools/ecl_ekf/analyse_logdata_ekf.py | 1329 ++++++++++++++++++++++++
 Tools/ecl_ekf/process_logdata_ekf.py | 1422 +-------------------------
 2 files changed, 1368 insertions(+), 1383 deletions(-)
 create mode 100644 Tools/ecl_ekf/analyse_logdata_ekf.py

diff --git a/Tools/ecl_ekf/analyse_logdata_ekf.py b/Tools/ecl_ekf/analyse_logdata_ekf.py
new file mode 100644
index 0000000000..064ef19a97
--- /dev/null
+++ b/Tools/ecl_ekf/analyse_logdata_ekf.py
@@ -0,0 +1,1329 @@
+import numpy as np
+
+# matplotlib don't use Xwindows backend (must be before pyplot import)
+import matplotlib
+matplotlib.use('Agg')
+
+import matplotlib.pyplot as plt
+from matplotlib.backends.backend_pdf import PdfPages
+
+def analyse_ekf(estimator_status, ekf2_innovations, sensor_preflight, check_levels,
+                plot=False, output_plot_filename=None):
+
+    if plot:
+        # create summary plots
+        # save the plots to PDF
+        pp = PdfPages(output_plot_filename)
+        # plot IMU consistency data
+        if ('accel_inconsistency_m_s_s' in sensor_preflight.keys()) and (
+                'gyro_inconsistency_rad_s' in sensor_preflight.keys()):
+            plt.figure(0, figsize=(20, 13))
+            plt.subplot(2, 1, 1)
+            plt.plot(sensor_preflight['accel_inconsistency_m_s_s'], 'b')
+            plt.title('IMU Consistency Check Levels')
+            plt.ylabel('acceleration (m/s/s)')
+            plt.xlabel('data index')
+            plt.grid()
+            plt.subplot(2, 1, 2)
+            plt.plot(sensor_preflight['gyro_inconsistency_rad_s'], 'b')
+            plt.ylabel('angular rate (rad/s)')
+            plt.xlabel('data index')
+            pp.savefig()
+            plt.close(0)
+
+    # generate max, min and 1-std metadata
+    innov_time = 1e-6 * ekf2_innovations['timestamp']
+    status_time = 1e-6 * estimator_status['timestamp']
+
+    if plot:
+        # vertical velocity and position innovations
+        plt.figure(1, figsize=(20, 13))
+        # generate metadata for velocity innovations
+        innov_2_max_arg = np.argmax(ekf2_innovations['vel_pos_innov[2]'])
+        innov_2_max_time = innov_time[innov_2_max_arg]
+        innov_2_max = np.amax(ekf2_innovations['vel_pos_innov[2]'])
+        innov_2_min_arg = np.argmin(ekf2_innovations['vel_pos_innov[2]'])
+        innov_2_min_time = innov_time[innov_2_min_arg]
+        innov_2_min = np.amin(ekf2_innovations['vel_pos_innov[2]'])
+        s_innov_2_max = str(round(innov_2_max, 2))
+        s_innov_2_min = str(round(innov_2_min, 2))
+        # s_innov_2_std = str(round(np.std(ekf2_innovations['vel_pos_innov[2]']),2))
+        # generate metadata for position innovations
+        innov_5_max_arg = np.argmax(ekf2_innovations['vel_pos_innov[5]'])
+        innov_5_max_time = innov_time[innov_5_max_arg]
+        innov_5_max = np.amax(ekf2_innovations['vel_pos_innov[5]'])
+        innov_5_min_arg = np.argmin(ekf2_innovations['vel_pos_innov[5]'])
+        innov_5_min_time = innov_time[innov_5_min_arg]
+        innov_5_min = np.amin(ekf2_innovations['vel_pos_innov[5]'])
+        s_innov_5_max = str(round(innov_5_max, 2))
+        s_innov_5_min = str(round(innov_5_min, 2))
+        # s_innov_5_std = str(round(np.std(ekf2_innovations['vel_pos_innov[5]']),2))
+        # generate plot for vertical velocity innovations
+        plt.subplot(2, 1, 1)
+        plt.plot(1e-6 * ekf2_innovations['timestamp'], ekf2_innovations['vel_pos_innov[2]'], 'b')
+        plt.plot(1e-6 * ekf2_innovations['timestamp'], np.sqrt(ekf2_innovations['vel_pos_innov_var[2]']), 'r')
+        plt.plot(1e-6 * ekf2_innovations['timestamp'], -np.sqrt(ekf2_innovations['vel_pos_innov_var[2]']), 'r')
+        plt.title('Vertical Innovations')
+        plt.ylabel('Down Vel (m/s)')
+        plt.xlabel('time (sec)')
+        plt.grid()
+        plt.text(innov_2_max_time, innov_2_max, 'max=' + s_innov_2_max, fontsize=12, horizontalalignment='left',
+                 verticalalignment='bottom')
+        plt.text(innov_2_min_time, innov_2_min, 'min=' + s_innov_2_min, fontsize=12, horizontalalignment='left',
+                 verticalalignment='top')
+        # plt.legend(['std='+s_innov_2_std],loc='upper left',frameon=False)
+        # generate plot for vertical position innovations
+        plt.subplot(2, 1, 2)
+        plt.plot(1e-6 * ekf2_innovations['timestamp'], ekf2_innovations['vel_pos_innov[5]'], 'b')
+        plt.plot(1e-6 * ekf2_innovations['timestamp'], np.sqrt(ekf2_innovations['vel_pos_innov_var[5]']), 'r')
+        plt.plot(1e-6 * ekf2_innovations['timestamp'], -np.sqrt(ekf2_innovations['vel_pos_innov_var[5]']), 'r')
+        plt.ylabel('Down Pos (m)')
+        plt.xlabel('time (sec)')
+        plt.grid()
+        plt.text(innov_5_max_time, innov_5_max, 'max=' + s_innov_5_max, fontsize=12, horizontalalignment='left',
+                 verticalalignment='bottom')
+        plt.text(innov_5_min_time, innov_5_min, 'min=' + s_innov_5_min, fontsize=12, horizontalalignment='left',
+                 verticalalignment='top')
+        # plt.legend(['std='+s_innov_5_std],loc='upper left',frameon=False)
+        pp.savefig()
+        plt.close(1)
+        # horizontal velocity innovations
+        plt.figure(2, figsize=(20, 13))
+        # generate North axis metadata
+        innov_0_max_arg = np.argmax(ekf2_innovations['vel_pos_innov[0]'])
+        innov_0_max_time = innov_time[innov_0_max_arg]
+        innov_0_max = np.amax(ekf2_innovations['vel_pos_innov[0]'])
+        innov_0_min_arg = np.argmin(ekf2_innovations['vel_pos_innov[0]'])
+        innov_0_min_time = innov_time[innov_0_min_arg]
+        innov_0_min = np.amin(ekf2_innovations['vel_pos_innov[0]'])
+        s_innov_0_max = str(round(innov_0_max, 2))
+        s_innov_0_min = str(round(innov_0_min, 2))
+        # s_innov_0_std = str(round(np.std(ekf2_innovations['vel_pos_innov[0]']),2))
+        # Generate East axis metadata
+        innov_1_max_arg = np.argmax(ekf2_innovations['vel_pos_innov[1]'])
+        innov_1_max_time = innov_time[innov_1_max_arg]
+        innov_1_max = np.amax(ekf2_innovations['vel_pos_innov[1]'])
+        innov_1_min_arg = np.argmin(ekf2_innovations['vel_pos_innov[1]'])
+        innov_1_min_time = innov_time[innov_1_min_arg]
+        innov_1_min = np.amin(ekf2_innovations['vel_pos_innov[1]'])
+        s_innov_1_max = str(round(innov_1_max, 2))
+        s_innov_1_min = str(round(innov_1_min, 2))
+        # s_innov_1_std = str(round(np.std(ekf2_innovations['vel_pos_innov[1]']),2))
+        # draw plots
+        plt.subplot(2, 1, 1)
+        plt.plot(1e-6 * ekf2_innovations['timestamp'], ekf2_innovations['vel_pos_innov[0]'], 'b')
+        plt.plot(1e-6 * ekf2_innovations['timestamp'], np.sqrt(ekf2_innovations['vel_pos_innov_var[0]']), 'r')
+        plt.plot(1e-6 * ekf2_innovations['timestamp'], -np.sqrt(ekf2_innovations['vel_pos_innov_var[0]']), 'r')
+        plt.title('Horizontal Velocity  Innovations')
+        plt.ylabel('North Vel (m/s)')
+        plt.xlabel('time (sec)')
+        plt.grid()
+        plt.text(innov_0_max_time, innov_0_max, 'max=' + s_innov_0_max, fontsize=12, horizontalalignment='left',
+                 verticalalignment='bottom')
+        plt.text(innov_0_min_time, innov_0_min, 'min=' + s_innov_0_min, fontsize=12, horizontalalignment='left',
+                 verticalalignment='top')
+        # plt.legend(['std='+s_innov_0_std],loc='upper left',frameon=False)
+        plt.subplot(2, 1, 2)
+        plt.plot(1e-6 * ekf2_innovations['timestamp'], ekf2_innovations['vel_pos_innov[1]'], 'b')
+        plt.plot(1e-6 * ekf2_innovations['timestamp'], np.sqrt(ekf2_innovations['vel_pos_innov_var[1]']), 'r')
+        plt.plot(1e-6 * ekf2_innovations['timestamp'], -np.sqrt(ekf2_innovations['vel_pos_innov_var[1]']), 'r')
+        plt.ylabel('East Vel (m/s)')
+        plt.xlabel('time (sec)')
+        plt.grid()
+        plt.text(innov_1_max_time, innov_1_max, 'max=' + s_innov_1_max, fontsize=12, horizontalalignment='left',
+                 verticalalignment='bottom')
+        plt.text(innov_1_min_time, innov_1_min, 'min=' + s_innov_1_min, fontsize=12, horizontalalignment='left',
+                 verticalalignment='top')
+        # plt.legend(['std='+s_innov_1_std],loc='upper left',frameon=False)
+        pp.savefig()
+        plt.close(2)
+        # horizontal position innovations
+        plt.figure(3, figsize=(20, 13))
+        # generate North axis metadata
+        innov_3_max_arg = np.argmax(ekf2_innovations['vel_pos_innov[3]'])
+        innov_3_max_time = innov_time[innov_3_max_arg]
+        innov_3_max = np.amax(ekf2_innovations['vel_pos_innov[3]'])
+        innov_3_min_arg = np.argmin(ekf2_innovations['vel_pos_innov[3]'])
+        innov_3_min_time = innov_time[innov_3_min_arg]
+        innov_3_min = np.amin(ekf2_innovations['vel_pos_innov[3]'])
+        s_innov_3_max = str(round(innov_3_max, 2))
+        s_innov_3_min = str(round(innov_3_min, 2))
+        # s_innov_3_std = str(round(np.std(ekf2_innovations['vel_pos_innov[3]']),2))
+        # generate East axis metadata
+        innov_4_max_arg = np.argmax(ekf2_innovations['vel_pos_innov[4]'])
+        innov_4_max_time = innov_time[innov_4_max_arg]
+        innov_4_max = np.amax(ekf2_innovations['vel_pos_innov[4]'])
+        innov_4_min_arg = np.argmin(ekf2_innovations['vel_pos_innov[4]'])
+        innov_4_min_time = innov_time[innov_4_min_arg]
+        innov_4_min = np.amin(ekf2_innovations['vel_pos_innov[4]'])
+        s_innov_4_max = str(round(innov_4_max, 2))
+        s_innov_4_min = str(round(innov_4_min, 2))
+        # s_innov_4_std = str(round(np.std(ekf2_innovations['vel_pos_innov[4]']),2))
+        # generate plots
+        plt.subplot(2, 1, 1)
+        plt.plot(1e-6 * ekf2_innovations['timestamp'], ekf2_innovations['vel_pos_innov[3]'], 'b')
+        plt.plot(1e-6 * ekf2_innovations['timestamp'], np.sqrt(ekf2_innovations['vel_pos_innov_var[3]']), 'r')
+        plt.plot(1e-6 * ekf2_innovations['timestamp'], -np.sqrt(ekf2_innovations['vel_pos_innov_var[3]']), 'r')
+        plt.title('Horizontal Position Innovations')
+        plt.ylabel('North Pos (m)')
+        plt.xlabel('time (sec)')
+        plt.grid()
+        plt.text(innov_3_max_time, innov_3_max, 'max=' + s_innov_3_max, fontsize=12, horizontalalignment='left',
+                 verticalalignment='bottom')
+        plt.text(innov_3_min_time, innov_3_min, 'min=' + s_innov_3_min, fontsize=12, horizontalalignment='left',
+                 verticalalignment='top')
+        # plt.legend(['std='+s_innov_3_std],loc='upper left',frameon=False)
+        plt.subplot(2, 1, 2)
+        plt.plot(1e-6 * ekf2_innovations['timestamp'], ekf2_innovations['vel_pos_innov[4]'], 'b')
+        plt.plot(1e-6 * ekf2_innovations['timestamp'], np.sqrt(ekf2_innovations['vel_pos_innov_var[4]']), 'r')
+        plt.plot(1e-6 * ekf2_innovations['timestamp'], -np.sqrt(ekf2_innovations['vel_pos_innov_var[4]']), 'r')
+        plt.ylabel('East Pos (m)')
+        plt.xlabel('time (sec)')
+        plt.grid()
+        plt.text(innov_4_max_time, innov_4_max, 'max=' + s_innov_4_max, fontsize=12, horizontalalignment='left',
+                 verticalalignment='bottom')
+        plt.text(innov_4_min_time, innov_4_min, 'min=' + s_innov_4_min, fontsize=12, horizontalalignment='left',
+                 verticalalignment='top')
+        # plt.legend(['std='+s_innov_4_std],loc='upper left',frameon=False)
+        pp.savefig()
+        plt.close(3)
+        # manetometer innovations
+        plt.figure(4, figsize=(20, 13))
+        # generate X axis metadata
+        innov_0_max_arg = np.argmax(ekf2_innovations['mag_innov[0]'])
+        innov_0_max_time = innov_time[innov_0_max_arg]
+        innov_0_max = np.amax(ekf2_innovations['mag_innov[0]'])
+        innov_0_min_arg = np.argmin(ekf2_innovations['mag_innov[0]'])
+        innov_0_min_time = innov_time[innov_0_min_arg]
+        innov_0_min = np.amin(ekf2_innovations['mag_innov[0]'])
+        s_innov_0_max = str(round(innov_0_max, 3))
+        s_innov_0_min = str(round(innov_0_min, 3))
+        # s_innov_0_std = str(round(np.std(ekf2_innovations['mag_innov[0]']),3))
+        # generate Y axis metadata
+        innov_1_max_arg = np.argmax(ekf2_innovations['mag_innov[1]'])
+        innov_1_max_time = innov_time[innov_1_max_arg]
+        innov_1_max = np.amax(ekf2_innovations['mag_innov[1]'])
+        innov_1_min_arg = np.argmin(ekf2_innovations['mag_innov[1]'])
+        innov_1_min_time = innov_time[innov_1_min_arg]
+        innov_1_min = np.amin(ekf2_innovations['mag_innov[1]'])
+        s_innov_1_max = str(round(innov_1_max, 3))
+        s_innov_1_min = str(round(innov_1_min, 3))
+        # s_innov_1_std = str(round(np.std(ekf2_innovations['mag_innov[1]']),3))
+        # generate Z axis metadata
+        innov_2_max_arg = np.argmax(ekf2_innovations['mag_innov[2]'])
+        innov_2_max_time = innov_time[innov_2_max_arg]
+        innov_2_max = np.amax(ekf2_innovations['mag_innov[2]'])
+        innov_2_min_arg = np.argmin(ekf2_innovations['mag_innov[2]'])
+        innov_2_min_time = innov_time[innov_2_min_arg]
+        innov_2_min = np.amin(ekf2_innovations['mag_innov[2]'])
+        s_innov_2_max = str(round(innov_2_max, 3))
+        s_innov_2_min = str(round(innov_2_min, 3))
+        # s_innov_2_std = str(round(np.std(ekf2_innovations['mag_innov[0]']),3))
+        # draw plots
+        plt.subplot(3, 1, 1)
+        plt.plot(1e-6 * ekf2_innovations['timestamp'], ekf2_innovations['mag_innov[0]'], 'b')
+        plt.plot(1e-6 * ekf2_innovations['timestamp'], np.sqrt(ekf2_innovations['mag_innov_var[0]']), 'r')
+        plt.plot(1e-6 * ekf2_innovations['timestamp'], -np.sqrt(ekf2_innovations['mag_innov_var[0]']), 'r')
+        plt.title('Magnetometer Innovations')
+        plt.ylabel('X (Gauss)')
+        plt.xlabel('time (sec)')
+        plt.grid()
+        plt.text(innov_0_max_time, innov_0_max, 'max=' + s_innov_0_max, fontsize=12, horizontalalignment='left',
+                 verticalalignment='bottom')
+        plt.text(innov_0_min_time, innov_0_min, 'min=' + s_innov_0_min, fontsize=12, horizontalalignment='left',
+                 verticalalignment='top')
+        # plt.legend(['std='+s_innov_0_std],loc='upper left',frameon=False)
+        plt.subplot(3, 1, 2)
+        plt.plot(1e-6 * ekf2_innovations['timestamp'], ekf2_innovations['mag_innov[1]'], 'b')
+        plt.plot(1e-6 * ekf2_innovations['timestamp'], np.sqrt(ekf2_innovations['mag_innov_var[1]']), 'r')
+        plt.plot(1e-6 * ekf2_innovations['timestamp'], -np.sqrt(ekf2_innovations['mag_innov_var[1]']), 'r')
+        plt.ylabel('Y (Gauss)')
+        plt.xlabel('time (sec)')
+        plt.grid()
+        plt.text(innov_1_max_time, innov_1_max, 'max=' + s_innov_1_max, fontsize=12, horizontalalignment='left',
+                 verticalalignment='bottom')
+        plt.text(innov_1_min_time, innov_1_min, 'min=' + s_innov_1_min, fontsize=12, horizontalalignment='left',
+                 verticalalignment='top')
+        # plt.legend(['std='+s_innov_1_std],loc='upper left',frameon=False)
+        plt.subplot(3, 1, 3)
+        plt.plot(1e-6 * ekf2_innovations['timestamp'], ekf2_innovations['mag_innov[2]'], 'b')
+        plt.plot(1e-6 * ekf2_innovations['timestamp'], np.sqrt(ekf2_innovations['mag_innov_var[2]']), 'r')
+        plt.plot(1e-6 * ekf2_innovations['timestamp'], -np.sqrt(ekf2_innovations['mag_innov_var[2]']), 'r')
+        plt.ylabel('Z (Gauss)')
+        plt.xlabel('time (sec)')
+        plt.grid()
+        plt.text(innov_2_max_time, innov_2_max, 'max=' + s_innov_2_max, fontsize=12, horizontalalignment='left',
+                 verticalalignment='bottom')
+        plt.text(innov_2_min_time, innov_2_min, 'min=' + s_innov_2_min, fontsize=12, horizontalalignment='left',
+                 verticalalignment='top')
+        # plt.legend(['std='+s_innov_2_std],loc='upper left',frameon=False)
+        pp.savefig()
+        plt.close(4)
+        # magnetic heading innovations
+        plt.figure(5, figsize=(20, 13))
+        # generate metadata
+        innov_0_max_arg = np.argmax(ekf2_innovations['heading_innov'])
+        innov_0_max_time = innov_time[innov_0_max_arg]
+        innov_0_max = np.amax(ekf2_innovations['heading_innov'])
+        innov_0_min_arg = np.argmin(ekf2_innovations['heading_innov'])
+        innov_0_min_time = innov_time[innov_0_min_arg]
+        innov_0_min = np.amin(ekf2_innovations['heading_innov'])
+        s_innov_0_max = str(round(innov_0_max, 3))
+        s_innov_0_min = str(round(innov_0_min, 3))
+        # s_innov_0_std = str(round(np.std(ekf2_innovations['heading_innov']),3))
+        # draw plot
+        plt.plot(1e-6 * ekf2_innovations['timestamp'], ekf2_innovations['heading_innov'], 'b')
+        plt.plot(1e-6 * ekf2_innovations['timestamp'], np.sqrt(ekf2_innovations['heading_innov_var']), 'r')
+        plt.plot(1e-6 * ekf2_innovations['timestamp'], -np.sqrt(ekf2_innovations['heading_innov_var']), 'r')
+        plt.title('Magnetic Heading Innovations')
+        plt.ylabel('Heaing (rad)')
+        plt.xlabel('time (sec)')
+        plt.grid()
+        plt.text(innov_0_max_time, innov_0_max, 'max=' + s_innov_0_max, fontsize=12, horizontalalignment='left',
+                 verticalalignment='bottom')
+        plt.text(innov_0_min_time, innov_0_min, 'min=' + s_innov_0_min, fontsize=12, horizontalalignment='left',
+                 verticalalignment='top')
+        # plt.legend(['std='+s_innov_0_std],loc='upper left',frameon=False)
+        pp.savefig()
+        plt.close(5)
+        # air data innovations
+        plt.figure(6, figsize=(20, 13))
+        # generate airspeed metadata
+        airspeed_innov_max_arg = np.argmax(ekf2_innovations['airspeed_innov'])
+        airspeed_innov_max_time = innov_time[airspeed_innov_max_arg]
+        airspeed_innov_max = np.amax(ekf2_innovations['airspeed_innov'])
+        airspeed_innov_min_arg = np.argmin(ekf2_innovations['airspeed_innov'])
+        airspeed_innov_min_time = innov_time[airspeed_innov_min_arg]
+        airspeed_innov_min = np.amin(ekf2_innovations['airspeed_innov'])
+        s_airspeed_innov_max = str(round(airspeed_innov_max, 3))
+        s_airspeed_innov_min = str(round(airspeed_innov_min, 3))
+        # generate sideslip metadata
+        beta_innov_max_arg = np.argmax(ekf2_innovations['beta_innov'])
+        beta_innov_max_time = innov_time[beta_innov_max_arg]
+        beta_innov_max = np.amax(ekf2_innovations['beta_innov'])
+        beta_innov_min_arg = np.argmin(ekf2_innovations['beta_innov'])
+        beta_innov_min_time = innov_time[beta_innov_min_arg]
+        beta_innov_min = np.amin(ekf2_innovations['beta_innov'])
+        s_beta_innov_max = str(round(beta_innov_max, 3))
+        s_beta_innov_min = str(round(beta_innov_min, 3))
+        # draw plots
+        plt.subplot(2, 1, 1)
+        plt.plot(1e-6 * ekf2_innovations['timestamp'], ekf2_innovations['airspeed_innov'], 'b')
+        plt.plot(1e-6 * ekf2_innovations['timestamp'], np.sqrt(ekf2_innovations['airspeed_innov_var']), 'r')
+        plt.plot(1e-6 * ekf2_innovations['timestamp'], -np.sqrt(ekf2_innovations['airspeed_innov_var']), 'r')
+        plt.title('True Airspeed Innovations')
+        plt.ylabel('innovation (m/sec)')
+        plt.xlabel('time (sec)')
+        plt.grid()
+        plt.text(airspeed_innov_max_time, airspeed_innov_max, 'max=' + s_airspeed_innov_max, fontsize=12,
+                 horizontalalignment='left', verticalalignment='bottom')
+        plt.text(airspeed_innov_min_time, airspeed_innov_min, 'min=' + s_airspeed_innov_min, fontsize=12,
+                 horizontalalignment='left', verticalalignment='top')
+        plt.subplot(2, 1, 2)
+        plt.plot(1e-6 * ekf2_innovations['timestamp'], ekf2_innovations['beta_innov'], 'b')
+        plt.plot(1e-6 * ekf2_innovations['timestamp'], np.sqrt(ekf2_innovations['beta_innov_var']), 'r')
+        plt.plot(1e-6 * ekf2_innovations['timestamp'], -np.sqrt(ekf2_innovations['beta_innov_var']), 'r')
+        plt.title('Sythetic Sideslip Innovations')
+        plt.ylabel('innovation (rad)')
+        plt.xlabel('time (sec)')
+        plt.grid()
+        plt.text(beta_innov_max_time, beta_innov_max, 'max=' + s_beta_innov_max, fontsize=12, horizontalalignment='left',
+                 verticalalignment='bottom')
+        plt.text(beta_innov_min_time, beta_innov_min, 'min=' + s_beta_innov_min, fontsize=12, horizontalalignment='left',
+                 verticalalignment='top')
+        pp.savefig()
+        plt.close(6)
+        # optical flow innovations
+        plt.figure(7, figsize=(20, 13))
+        # generate X axis metadata
+        flow_innov_x_max_arg = np.argmax(ekf2_innovations['flow_innov[0]'])
+        flow_innov_x_max_time = innov_time[flow_innov_x_max_arg]
+        flow_innov_x_max = np.amax(ekf2_innovations['flow_innov[0]'])
+        flow_innov_x_min_arg = np.argmin(ekf2_innovations['flow_innov[0]'])
+        flow_innov_x_min_time = innov_time[flow_innov_x_min_arg]
+        flow_innov_x_min = np.amin(ekf2_innovations['flow_innov[0]'])
+        s_flow_innov_x_max = str(round(flow_innov_x_max, 3))
+        s_flow_innov_x_min = str(round(flow_innov_x_min, 3))
+        # s_flow_innov_x_std = str(round(np.std(ekf2_innovations['flow_innov[0]']),3))
+        # generate Y axis metadata
+        flow_innov_y_max_arg = np.argmax(ekf2_innovations['flow_innov[1]'])
+        flow_innov_y_max_time = innov_time[flow_innov_y_max_arg]
+        flow_innov_y_max = np.amax(ekf2_innovations['flow_innov[1]'])
+        flow_innov_y_min_arg = np.argmin(ekf2_innovations['flow_innov[1]'])
+        flow_innov_y_min_time = innov_time[flow_innov_y_min_arg]
+        flow_innov_y_min = np.amin(ekf2_innovations['flow_innov[1]'])
+        s_flow_innov_y_max = str(round(flow_innov_y_max, 3))
+        s_flow_innov_y_min = str(round(flow_innov_y_min, 3))
+        # s_flow_innov_y_std = str(round(np.std(ekf2_innovations['flow_innov[1]']),3))
+        # draw plots
+        plt.subplot(2, 1, 1)
+        plt.plot(1e-6 * ekf2_innovations['timestamp'], ekf2_innovations['flow_innov[0]'], 'b')
+        plt.plot(1e-6 * ekf2_innovations['timestamp'], np.sqrt(ekf2_innovations['flow_innov_var[0]']), 'r')
+        plt.plot(1e-6 * ekf2_innovations['timestamp'], -np.sqrt(ekf2_innovations['flow_innov_var[0]']), 'r')
+        plt.title('Optical Flow Innovations')
+        plt.ylabel('X (rad/sec)')
+        plt.xlabel('time (sec)')
+        plt.grid()
+        plt.text(flow_innov_x_max_time, flow_innov_x_max, 'max=' + s_flow_innov_x_max, fontsize=12,
+                 horizontalalignment='left', verticalalignment='bottom')
+        plt.text(flow_innov_x_min_time, flow_innov_x_min, 'min=' + s_flow_innov_x_min, fontsize=12,
+                 horizontalalignment='left', verticalalignment='top')
+        # plt.legend(['std='+s_flow_innov_x_std],loc='upper left',frameon=False)
+        plt.subplot(2, 1, 2)
+        plt.plot(1e-6 * ekf2_innovations['timestamp'], ekf2_innovations['flow_innov[1]'], 'b')
+        plt.plot(1e-6 * ekf2_innovations['timestamp'], np.sqrt(ekf2_innovations['flow_innov_var[1]']), 'r')
+        plt.plot(1e-6 * ekf2_innovations['timestamp'], -np.sqrt(ekf2_innovations['flow_innov_var[1]']), 'r')
+        plt.ylabel('Y (rad/sec)')
+        plt.xlabel('time (sec)')
+        plt.grid()
+        plt.text(flow_innov_y_max_time, flow_innov_y_max, 'max=' + s_flow_innov_y_max, fontsize=12,
+                 horizontalalignment='left', verticalalignment='bottom')
+        plt.text(flow_innov_y_min_time, flow_innov_y_min, 'min=' + s_flow_innov_y_min, fontsize=12,
+                 horizontalalignment='left', verticalalignment='top')
+        # plt.legend(['std='+s_flow_innov_y_std],loc='upper left',frameon=False)
+        pp.savefig()
+        plt.close(7)
+
+    # generate metadata for the normalised innovation consistency test levels
+    # a value > 1.0 means the measurement data for that test has been rejected by the EKF
+    # magnetometer data
+    mag_test_max_arg = np.argmax(estimator_status['mag_test_ratio'])
+    mag_test_max_time = status_time[mag_test_max_arg]
+    mag_test_max = np.amax(estimator_status['mag_test_ratio'])
+    mag_test_mean = np.mean(estimator_status['mag_test_ratio'])
+    # velocity data (GPS)
+    vel_test_max_arg = np.argmax(estimator_status['vel_test_ratio'])
+    vel_test_max_time = status_time[vel_test_max_arg]
+    vel_test_max = np.amax(estimator_status['vel_test_ratio'])
+    vel_test_mean = np.mean(estimator_status['vel_test_ratio'])
+    # horizontal position data (GPS or external vision)
+    pos_test_max_arg = np.argmax(estimator_status['pos_test_ratio'])
+    pos_test_max_time = status_time[pos_test_max_arg]
+    pos_test_max = np.amax(estimator_status['pos_test_ratio'])
+    pos_test_mean = np.mean(estimator_status['pos_test_ratio'])
+    # height data (Barometer, GPS or rangefinder)
+    hgt_test_max_arg = np.argmax(estimator_status['hgt_test_ratio'])
+    hgt_test_max_time = status_time[hgt_test_max_arg]
+    hgt_test_max = np.amax(estimator_status['hgt_test_ratio'])
+    hgt_test_mean = np.mean(estimator_status['hgt_test_ratio'])
+    # airspeed data
+    tas_test_max_arg = np.argmax(estimator_status['tas_test_ratio'])
+    tas_test_max_time = status_time[tas_test_max_arg]
+    tas_test_max = np.amax(estimator_status['tas_test_ratio'])
+    tas_test_mean = np.mean(estimator_status['tas_test_ratio'])
+    # height above ground data (rangefinder)
+    hagl_test_max_arg = np.argmax(estimator_status['hagl_test_ratio'])
+    hagl_test_max_time = status_time[hagl_test_max_arg]
+    hagl_test_max = np.amax(estimator_status['hagl_test_ratio'])
+    hagl_test_mean = np.mean(estimator_status['hagl_test_ratio'])
+
+    if plot:
+        # plot normalised innovation test levels
+        plt.figure(8, figsize=(20, 13))
+        if tas_test_max == 0.0:
+            n_plots = 3
+        else:
+            n_plots = 4
+        plt.subplot(n_plots, 1, 1)
+        plt.plot(status_time, estimator_status['mag_test_ratio'], 'b')
+        plt.title('Normalised Innovation Test Levels')
+        plt.ylabel('mag')
+        plt.xlabel('time (sec)')
+        plt.grid()
+        plt.text(mag_test_max_time, mag_test_max,
+                 'max=' + str(round(mag_test_max, 2)) + ' , mean=' + str(round(mag_test_mean, 2)), fontsize=12,
+                 horizontalalignment='left', verticalalignment='bottom', color='b')
+        plt.subplot(n_plots, 1, 2)
+        plt.plot(status_time, estimator_status['vel_test_ratio'], 'b')
+        plt.plot(status_time, estimator_status['pos_test_ratio'], 'r')
+        plt.ylabel('vel,pos')
+        plt.xlabel('time (sec)')
+        plt.grid()
+        plt.text(vel_test_max_time, vel_test_max,
+                 'vel max=' + str(round(vel_test_max, 2)) + ' , mean=' + str(round(vel_test_mean, 2)), fontsize=12,
+                 horizontalalignment='left', verticalalignment='bottom', color='b')
+        plt.text(pos_test_max_time, pos_test_max,
+                 'pos max=' + str(round(pos_test_max, 2)) + ' , mean=' + str(round(pos_test_mean, 2)), fontsize=12,
+                 horizontalalignment='left', verticalalignment='bottom', color='r')
+        plt.subplot(n_plots, 1, 3)
+        plt.plot(status_time, estimator_status['hgt_test_ratio'], 'b')
+        plt.ylabel('hgt')
+        plt.xlabel('time (sec)')
+        plt.grid()
+        plt.text(hgt_test_max_time, hgt_test_max,
+                 'hgt max=' + str(round(hgt_test_max, 2)) + ' , mean=' + str(round(hgt_test_mean, 2)), fontsize=12,
+                 horizontalalignment='left', verticalalignment='bottom', color='b')
+        if hagl_test_max > 0.0:
+            plt.plot(status_time, estimator_status['hagl_test_ratio'], 'r')
+            plt.text(hagl_test_max_time, hagl_test_max,
+                     'hagl max=' + str(round(hagl_test_max, 2)) + ' , mean=' + str(round(hagl_test_mean, 2)), fontsize=12,
+                     horizontalalignment='left', verticalalignment='bottom', color='r')
+            plt.ylabel('hgt,HAGL')
+        if n_plots == 4:
+            plt.subplot(n_plots, 1, 4)
+            plt.plot(status_time, estimator_status['tas_test_ratio'], 'b')
+            plt.ylabel('TAS')
+            plt.xlabel('time (sec)')
+            plt.grid()
+            plt.text(tas_test_max_time, tas_test_max,
+                     'max=' + str(round(tas_test_max, 2)) + ' , mean=' + str(round(tas_test_mean, 2)), fontsize=12,
+                     horizontalalignment='left', verticalalignment='bottom', color='b')
+        pp.savefig()
+        plt.close(8)
+
+    # extract control mode metadata from estimator_status.control_mode_flags
+    # 0 - true if the filter tilt alignment is complete
+    # 1 - true if the filter yaw alignment is complete
+    # 2 - true if GPS measurements are being fused
+    # 3 - true if optical flow measurements are being fused
+    # 4 - true if a simple magnetic yaw heading is being fused
+    # 5 - true if 3-axis magnetometer measurement are being fused
+    # 6 - true if synthetic magnetic declination measurements are being fused
+    # 7 - true when the vehicle is airborne
+    # 8 - true when wind velocity is being estimated
+    # 9 - true when baro height is being fused as a primary height reference
+    # 10 - true when range finder height is being fused as a primary height reference
+    # 11 - true when range finder height is being fused as a primary height reference
+    # 12 - true when local position data from external vision is being fused
+    # 13 - true when yaw data from external vision measurements is being fused
+    # 14 - true when height data from external vision measurements is being fused
+    tilt_aligned = ((2 ** 0 & estimator_status['control_mode_flags']) > 0) * 1
+    yaw_aligned = ((2 ** 1 & estimator_status['control_mode_flags']) > 0) * 1
+    using_gps = ((2 ** 2 & estimator_status['control_mode_flags']) > 0) * 1
+    using_optflow = ((2 ** 3 & estimator_status['control_mode_flags']) > 0) * 1
+    using_magyaw = ((2 ** 4 & estimator_status['control_mode_flags']) > 0) * 1
+    using_mag3d = ((2 ** 5 & estimator_status['control_mode_flags']) > 0) * 1
+    using_magdecl = ((2 ** 6 & estimator_status['control_mode_flags']) > 0) * 1
+    airborne = ((2 ** 7 & estimator_status['control_mode_flags']) > 0) * 1
+    estimating_wind = ((2 ** 8 & estimator_status['control_mode_flags']) > 0) * 1
+    using_barohgt = ((2 ** 9 & estimator_status['control_mode_flags']) > 0) * 1
+    using_rnghgt = ((2 ** 10 & estimator_status['control_mode_flags']) > 0) * 1
+    using_gpshgt = ((2 ** 11 & estimator_status['control_mode_flags']) > 0) * 1
+    using_evpos = ((2 ** 12 & estimator_status['control_mode_flags']) > 0) * 1
+    using_evyaw = ((2 ** 13 & estimator_status['control_mode_flags']) > 0) * 1
+    using_evhgt = ((2 ** 14 & estimator_status['control_mode_flags']) > 0) * 1
+    # calculate in-air transition time
+    if (np.amin(airborne) < 0.5) and (np.amax(airborne) > 0.5):
+        in_air_transtion_time_arg = np.argmax(np.diff(airborne))
+        in_air_transition_time = status_time[in_air_transtion_time_arg]
+    elif (np.amax(airborne) > 0.5):
+        in_air_transition_time = np.amin(status_time)
+        print('log starts while in-air at ' + str(round(in_air_transition_time, 1)) + ' sec')
+    else:
+        in_air_transition_time = float('NaN')
+        print('always on ground')
+    # calculate on-ground transition time
+    if (np.amin(np.diff(airborne)) < 0.0):
+        on_ground_transition_time_arg = np.argmin(np.diff(airborne))
+        on_ground_transition_time = status_time[on_ground_transition_time_arg]
+    elif (np.amax(airborne) > 0.5):
+        on_ground_transition_time = np.amax(status_time)
+        print('log finishes while in-air at ' + str(round(on_ground_transition_time, 1)) + ' sec')
+    else:
+        on_ground_transition_time = float('NaN')
+        print('always on ground')
+    if (np.amax(np.diff(airborne)) > 0.5) and (np.amin(np.diff(airborne)) < -0.5):
+        if ((on_ground_transition_time - in_air_transition_time) > 0.0):
+            in_air_duration = on_ground_transition_time - in_air_transition_time;
+        else:
+            in_air_duration = float('NaN')
+    else:
+        in_air_duration = float('NaN')
+    # calculate alignment completion times
+    tilt_align_time_arg = np.argmax(np.diff(tilt_aligned))
+    tilt_align_time = status_time[tilt_align_time_arg]
+    yaw_align_time_arg = np.argmax(np.diff(yaw_aligned))
+    yaw_align_time = status_time[yaw_align_time_arg]
+    # calculate position aiding start times
+    gps_aid_time_arg = np.argmax(np.diff(using_gps))
+    gps_aid_time = status_time[gps_aid_time_arg]
+    optflow_aid_time_arg = np.argmax(np.diff(using_optflow))
+    optflow_aid_time = status_time[optflow_aid_time_arg]
+    evpos_aid_time_arg = np.argmax(np.diff(using_evpos))
+    evpos_aid_time = status_time[evpos_aid_time_arg]
+    # calculate height aiding start times
+    barohgt_aid_time_arg = np.argmax(np.diff(using_barohgt))
+    barohgt_aid_time = status_time[barohgt_aid_time_arg]
+    gpshgt_aid_time_arg = np.argmax(np.diff(using_gpshgt))
+    gpshgt_aid_time = status_time[gpshgt_aid_time_arg]
+    rnghgt_aid_time_arg = np.argmax(np.diff(using_rnghgt))
+    rnghgt_aid_time = status_time[rnghgt_aid_time_arg]
+    evhgt_aid_time_arg = np.argmax(np.diff(using_evhgt))
+    evhgt_aid_time = status_time[evhgt_aid_time_arg]
+    # calculate magnetometer aiding start times
+    using_magyaw_time_arg = np.argmax(np.diff(using_magyaw))
+    using_magyaw_time = status_time[using_magyaw_time_arg]
+    using_mag3d_time_arg = np.argmax(np.diff(using_mag3d))
+    using_mag3d_time = status_time[using_mag3d_time_arg]
+    using_magdecl_time_arg = np.argmax(np.diff(using_magdecl))
+    using_magdecl_time = status_time[using_magdecl_time_arg]
+
+    if plot:
+        # control mode summary plot A
+        plt.figure(9, figsize=(20, 13))
+        # subplot for alignment completion
+        plt.subplot(4, 1, 1)
+        plt.title('EKF Control Status - Figure A')
+        plt.plot(status_time, tilt_aligned, 'b')
+        plt.plot(status_time, yaw_aligned, 'r')
+        plt.ylim(-0.1, 1.1)
+        plt.ylabel('aligned')
+        plt.grid()
+        if np.amin(tilt_aligned) > 0:
+            plt.text(tilt_align_time, 0.5, 'no pre-arm data - cannot calculate alignment completion times', fontsize=12,
+                     horizontalalignment='left', verticalalignment='center', color='black')
+        else:
+            plt.text(tilt_align_time, 0.33, 'tilt alignment at ' + str(round(tilt_align_time, 1)) + ' sec', fontsize=12,
+                     horizontalalignment='left', verticalalignment='center', color='b')
+            plt.text(yaw_align_time, 0.67, 'yaw alignment at ' + str(round(tilt_align_time, 1)) + ' sec', fontsize=12,
+                     horizontalalignment='left', verticalalignment='center', color='r')
+        # subplot for position aiding
+        plt.subplot(4, 1, 2)
+        plt.plot(status_time, using_gps, 'b')
+        plt.plot(status_time, using_optflow, 'r')
+        plt.plot(status_time, using_evpos, 'g')
+        plt.ylim(-0.1, 1.1)
+        plt.ylabel('pos aiding')
+        plt.grid()
+        if np.amin(using_gps) > 0:
+            plt.text(gps_aid_time, 0.25, 'no pre-arm data - cannot calculate GPS aiding start time', fontsize=12,
+                     horizontalalignment='left', verticalalignment='center', color='b')
+        elif np.amax(using_gps) > 0:
+            plt.text(gps_aid_time, 0.25, 'GPS aiding at ' + str(round(gps_aid_time, 1)) + ' sec', fontsize=12,
+                     horizontalalignment='left', verticalalignment='center', color='b')
+        if np.amin(using_optflow) > 0:
+            plt.text(optflow_aid_time, 0.50, 'no pre-arm data - cannot calculate optical flow aiding start time',
+                     fontsize=12, horizontalalignment='left', verticalalignment='center', color='r')
+        elif np.amax(using_optflow) > 0:
+            plt.text(optflow_aid_time, 0.50, 'optical flow aiding at ' + str(round(optflow_aid_time, 1)) + ' sec',
+                     fontsize=12, horizontalalignment='left', verticalalignment='center', color='r')
+        if np.amin(using_evpos) > 0:
+            plt.text(evpos_aid_time, 0.75, 'no pre-arm data - cannot calculate external vision aiding start time',
+                     fontsize=12, horizontalalignment='left', verticalalignment='center', color='g')
+        elif np.amax(using_evpos) > 0:
+            plt.text(evpos_aid_time, 0.75, 'external vision aiding at ' + str(round(evpos_aid_time, 1)) + ' sec',
+                     fontsize=12, horizontalalignment='left', verticalalignment='center', color='g')
+        # subplot for height aiding
+        plt.subplot(4, 1, 3)
+        plt.plot(status_time, using_barohgt, 'b')
+        plt.plot(status_time, using_gpshgt, 'r')
+        plt.plot(status_time, using_rnghgt, 'g')
+        plt.plot(status_time, using_evhgt, 'c')
+        plt.ylim(-0.1, 1.1)
+        plt.ylabel('hgt aiding')
+        plt.grid()
+        if np.amin(using_barohgt) > 0:
+            plt.text(barohgt_aid_time, 0.2, 'no pre-arm data - cannot calculate Baro aiding start time', fontsize=12,
+                     horizontalalignment='left', verticalalignment='center', color='b')
+        elif np.amax(using_barohgt) > 0:
+            plt.text(barohgt_aid_time, 0.2, 'Baro aiding at ' + str(round(gps_aid_time, 1)) + ' sec', fontsize=12,
+                     horizontalalignment='left', verticalalignment='center', color='b')
+        if np.amin(using_gpshgt) > 0:
+            plt.text(gpshgt_aid_time, 0.4, 'no pre-arm data - cannot calculate GPS aiding start time', fontsize=12,
+                     horizontalalignment='left', verticalalignment='center', color='r')
+        elif np.amax(using_gpshgt) > 0:
+            plt.text(gpshgt_aid_time, 0.4, 'GPS aiding at ' + str(round(gpshgt_aid_time, 1)) + ' sec', fontsize=12,
+                     horizontalalignment='left', verticalalignment='center', color='r')
+        if np.amin(using_rnghgt) > 0:
+            plt.text(rnghgt_aid_time, 0.6, 'no pre-arm data - cannot calculate rangfinder aiding start time', fontsize=12,
+                     horizontalalignment='left', verticalalignment='center', color='g')
+        elif np.amax(using_rnghgt) > 0:
+            plt.text(rnghgt_aid_time, 0.6, 'rangefinder aiding at ' + str(round(rnghgt_aid_time, 1)) + ' sec', fontsize=12,
+                     horizontalalignment='left', verticalalignment='center', color='g')
+        if np.amin(using_evhgt) > 0:
+            plt.text(evhgt_aid_time, 0.8, 'no pre-arm data - cannot calculate external vision aiding start time',
+                     fontsize=12, horizontalalignment='left', verticalalignment='center', color='c')
+        elif np.amax(using_evhgt) > 0:
+            plt.text(evhgt_aid_time, 0.8, 'external vision aiding at ' + str(round(evhgt_aid_time, 1)) + ' sec',
+                     fontsize=12, horizontalalignment='left', verticalalignment='center', color='c')
+        # subplot for magnetometer aiding
+        plt.subplot(4, 1, 4)
+        plt.plot(status_time, using_magyaw, 'b')
+        plt.plot(status_time, using_mag3d, 'r')
+        plt.plot(status_time, using_magdecl, 'g')
+        plt.ylim(-0.1, 1.1)
+        plt.ylabel('mag aiding')
+        plt.xlabel('time (sec)')
+        plt.grid()
+        if np.amin(using_magyaw) > 0:
+            plt.text(using_magyaw_time, 0.25, 'no pre-arm data - cannot calculate magnetic yaw aiding start time',
+                     fontsize=12, horizontalalignment='left', verticalalignment='center', color='b')
+        elif np.amax(using_magyaw) > 0:
+            plt.text(using_magyaw_time, 0.25, 'magnetic yaw aiding at ' + str(round(using_magyaw_time, 1)) + ' sec',
+                     fontsize=12, horizontalalignment='right', verticalalignment='center', color='b')
+        if np.amin(using_mag3d) > 0:
+            plt.text(using_mag3d_time, 0.50, 'no pre-arm data - cannot calculate 3D magnetoemter aiding start time',
+                     fontsize=12, horizontalalignment='left', verticalalignment='center', color='r')
+        elif np.amax(using_mag3d) > 0:
+            plt.text(using_mag3d_time, 0.50, 'magnetometer 3D aiding at ' + str(round(using_mag3d_time, 1)) + ' sec',
+                     fontsize=12, horizontalalignment='left', verticalalignment='center', color='r')
+        if np.amin(using_magdecl) > 0:
+            plt.text(using_magdecl_time, 0.75, 'no pre-arm data - cannot magnetic declination aiding start time',
+                     fontsize=12, horizontalalignment='left', verticalalignment='center', color='g')
+        elif np.amax(using_magdecl) > 0:
+            plt.text(using_magdecl_time, 0.75,
+                     'magnetic declination aiding at ' + str(round(using_magdecl_time, 1)) + ' sec', fontsize=12,
+                     horizontalalignment='left', verticalalignment='center', color='g')
+        pp.savefig()
+        plt.close(9)
+        # control mode summary plot B
+        plt.figure(10, figsize=(20, 13))
+        # subplot for airborne status
+        plt.subplot(2, 1, 1)
+        plt.title('EKF Control Status - Figure B')
+        plt.plot(status_time, airborne, 'b')
+        plt.ylim(-0.1, 1.1)
+        plt.ylabel('airborne')
+        plt.grid()
+        if np.amax(np.diff(airborne)) < 0.5:
+            plt.text(in_air_transition_time, 0.67, 'ground to air transition not detected', fontsize=12,
+                     horizontalalignment='left', verticalalignment='center', color='b')
+        else:
+            plt.text(in_air_transition_time, 0.67, 'in-air at ' + str(round(in_air_transition_time, 1)) + ' sec',
+                     fontsize=12, horizontalalignment='left', verticalalignment='center', color='b')
+        if np.amin(np.diff(airborne)) > -0.5:
+            plt.text(on_ground_transition_time, 0.33, 'air to ground transition not detected', fontsize=12,
+                     horizontalalignment='left', verticalalignment='center', color='b')
+        else:
+            plt.text(on_ground_transition_time, 0.33, 'on-ground at ' + str(round(on_ground_transition_time, 1)) + ' sec',
+                     fontsize=12, horizontalalignment='right', verticalalignment='center', color='b')
+        if in_air_duration > 0.0:
+            plt.text((in_air_transition_time + on_ground_transition_time) / 2, 0.5,
+                     'duration = ' + str(round(in_air_duration, 1)) + ' sec', fontsize=12, horizontalalignment='center',
+                     verticalalignment='center', color='b')
+        # subplot for wind estimation status
+        plt.subplot(2, 1, 2)
+        plt.plot(status_time, estimating_wind, 'b')
+        plt.ylim(-0.1, 1.1)
+        plt.ylabel('estimating wind')
+        plt.xlabel('time (sec)')
+        plt.grid()
+        pp.savefig()
+        plt.close(10)
+
+    # innovation_check_flags summary
+    # 0 - true if velocity observations have been rejected
+    # 1 - true if horizontal position observations have been rejected
+    # 2 - true if true if vertical position observations have been rejected
+    # 3 - true if the X magnetometer observation has been rejected
+    # 4 - true if the Y magnetometer observation has been rejected
+    # 5 - true if the Z magnetometer observation has been rejected
+    # 6 - true if the yaw observation has been rejected
+    # 7 - true if the airspeed observation has been rejected
+    # 8 - true if the height above ground observation has been rejected
+    # 9 - true if the X optical flow observation has been rejected
+    # 10 - true if the Y optical flow observation has been rejected
+    vel_innov_fail = ((2 ** 0 & estimator_status['innovation_check_flags']) > 0) * 1
+    posh_innov_fail = ((2 ** 1 & estimator_status['innovation_check_flags']) > 0) * 1
+    posv_innov_fail = ((2 ** 2 & estimator_status['innovation_check_flags']) > 0) * 1
+    magx_innov_fail = ((2 ** 3 & estimator_status['innovation_check_flags']) > 0) * 1
+    magy_innov_fail = ((2 ** 4 & estimator_status['innovation_check_flags']) > 0) * 1
+    magz_innov_fail = ((2 ** 5 & estimator_status['innovation_check_flags']) > 0) * 1
+    yaw_innov_fail = ((2 ** 6 & estimator_status['innovation_check_flags']) > 0) * 1
+    tas_innov_fail = ((2 ** 7 & estimator_status['innovation_check_flags']) > 0) * 1
+    hagl_innov_fail = ((2 ** 8 & estimator_status['innovation_check_flags']) > 0) * 1
+    ofx_innov_fail = ((2 ** 9 & estimator_status['innovation_check_flags']) > 0) * 1
+    ofy_innov_fail = ((2 ** 10 & estimator_status['innovation_check_flags']) > 0) * 1
+
+    if plot:
+        # plot innovation_check_flags summary
+        plt.figure(11, figsize=(20, 13))
+        plt.subplot(5, 1, 1)
+        plt.title('EKF Innovation Test Fails')
+        plt.plot(status_time, vel_innov_fail, 'b', label='vel NED')
+        plt.plot(status_time, posh_innov_fail, 'r', label='pos NE')
+        plt.ylim(-0.1, 1.1)
+        plt.ylabel('failed')
+        plt.legend(loc='upper left')
+        plt.grid()
+        plt.subplot(5, 1, 2)
+        plt.plot(status_time, posv_innov_fail, 'b', label='hgt absolute')
+        plt.plot(status_time, hagl_innov_fail, 'r', label='hgt above ground')
+        plt.ylim(-0.1, 1.1)
+        plt.ylabel('failed')
+        plt.legend(loc='upper left')
+        plt.grid()
+        plt.subplot(5, 1, 3)
+        plt.plot(status_time, magx_innov_fail, 'b', label='mag_x')
+        plt.plot(status_time, magy_innov_fail, 'r', label='mag_y')
+        plt.plot(status_time, magz_innov_fail, 'g', label='mag_z')
+        plt.plot(status_time, yaw_innov_fail, 'c', label='yaw')
+        plt.legend(loc='upper left')
+        plt.ylim(-0.1, 1.1)
+        plt.ylabel('failed')
+        plt.grid()
+        plt.subplot(5, 1, 4)
+        plt.plot(status_time, tas_innov_fail, 'b', label='airspeed')
+        plt.ylim(-0.1, 1.1)
+        plt.ylabel('failed')
+        plt.legend(loc='upper left')
+        plt.grid()
+        plt.subplot(5, 1, 5)
+        plt.plot(status_time, ofx_innov_fail, 'b', label='flow X')
+        plt.plot(status_time, ofy_innov_fail, 'r', label='flow Y')
+        plt.ylim(-0.1, 1.1)
+        plt.ylabel('failed')
+        plt.xlabel('time (sec')
+        plt.legend(loc='upper left')
+        plt.grid()
+        pp.savefig()
+        plt.close(11)
+        # gps_check_fail_flags summary
+        plt.figure(12, figsize=(20, 13))
+        # 0 : minimum required sat count fail
+        # 1 : minimum required GDoP fail
+        # 2 : maximum allowed horizontal position error fail
+        # 3 : maximum allowed vertical position error fail
+        # 4 : maximum allowed speed error fail
+        # 5 : maximum allowed horizontal position drift fail
+        # 6 : maximum allowed vertical position drift fail
+        # 7 : maximum allowed horizontal speed fail
+        # 8 : maximum allowed vertical velocity discrepancy fail
+        nsat_fail = ((2 ** 0 & estimator_status['gps_check_fail_flags']) > 0) * 1
+        gdop_fail = ((2 ** 1 & estimator_status['gps_check_fail_flags']) > 0) * 1
+        herr_fail = ((2 ** 2 & estimator_status['gps_check_fail_flags']) > 0) * 1
+        verr_fail = ((2 ** 3 & estimator_status['gps_check_fail_flags']) > 0) * 1
+        serr_fail = ((2 ** 4 & estimator_status['gps_check_fail_flags']) > 0) * 1
+        hdrift_fail = ((2 ** 5 & estimator_status['gps_check_fail_flags']) > 0) * 1
+        vdrift_fail = ((2 ** 6 & estimator_status['gps_check_fail_flags']) > 0) * 1
+        hspd_fail = ((2 ** 7 & estimator_status['gps_check_fail_flags']) > 0) * 1
+        veld_diff_fail = ((2 ** 8 & estimator_status['gps_check_fail_flags']) > 0) * 1
+        plt.subplot(2, 1, 1)
+        plt.title('GPS Direct Output Check Failures')
+        plt.plot(status_time, nsat_fail, 'b', label='N sats')
+        plt.plot(status_time, gdop_fail, 'r', label='GDOP')
+        plt.plot(status_time, herr_fail, 'g', label='horiz pos error')
+        plt.plot(status_time, verr_fail, 'c', label='vert pos error')
+        plt.plot(status_time, serr_fail, 'm', label='speed error')
+        plt.ylim(-0.1, 1.1)
+        plt.ylabel('failed')
+        plt.legend(loc='upper right')
+        plt.grid()
+        plt.subplot(2, 1, 2)
+        plt.title('GPS Derived Output Check Failures')
+        plt.plot(status_time, hdrift_fail, 'b', label='horiz drift')
+        plt.plot(status_time, vdrift_fail, 'r', label='vert drift')
+        plt.plot(status_time, hspd_fail, 'g', label='horiz speed')
+        plt.plot(status_time, veld_diff_fail, 'c', label='vert vel inconsistent')
+        plt.ylim(-0.1, 1.1)
+        plt.ylabel('failed')
+        plt.xlabel('time (sec')
+        plt.legend(loc='upper right')
+        plt.grid()
+        pp.savefig()
+        plt.close(12)
+        # filter reported accuracy
+        plt.figure(13, figsize=(20, 13))
+        plt.title('Reported Accuracy')
+        plt.plot(status_time, estimator_status['pos_horiz_accuracy'], 'b', label='horizontal')
+        plt.plot(status_time, estimator_status['pos_vert_accuracy'], 'r', label='vertical')
+        plt.ylabel('accuracy (m)')
+        plt.xlabel('time (sec')
+        plt.legend(loc='upper right')
+        plt.grid()
+        pp.savefig()
+        plt.close(13)
+        # Plot the EKF IMU vibration metrics
+        plt.figure(14, figsize=(20, 13))
+        vibe_coning_max_arg = np.argmax(estimator_status['vibe[0]'])
+        vibe_coning_max_time = status_time[vibe_coning_max_arg]
+        vibe_coning_max = np.amax(estimator_status['vibe[0]'])
+        vibe_hf_dang_max_arg = np.argmax(estimator_status['vibe[1]'])
+        vibe_hf_dang_max_time = status_time[vibe_hf_dang_max_arg]
+        vibe_hf_dang_max = np.amax(estimator_status['vibe[1]'])
+        vibe_hf_dvel_max_arg = np.argmax(estimator_status['vibe[2]'])
+        vibe_hf_dvel_max_time = status_time[vibe_hf_dvel_max_arg]
+        vibe_hf_dvel_max = np.amax(estimator_status['vibe[2]'])
+        plt.subplot(3, 1, 1)
+        plt.plot(1e-6 * estimator_status['timestamp'], 1000.0 * estimator_status['vibe[0]'], 'b')
+        plt.title('IMU Vibration Metrics')
+        plt.ylabel('Del Ang Coning (mrad)')
+        plt.grid()
+        plt.text(vibe_coning_max_time, 1000.0 * vibe_coning_max, 'max=' + str(round(1000.0 * vibe_coning_max, 5)),
+                 fontsize=12, horizontalalignment='left', verticalalignment='top')
+        plt.subplot(3, 1, 2)
+        plt.plot(1e-6 * estimator_status['timestamp'], 1000.0 * estimator_status['vibe[1]'], 'b')
+        plt.ylabel('HF Del Ang (mrad)')
+        plt.grid()
+        plt.text(vibe_hf_dang_max_time, 1000.0 * vibe_hf_dang_max, 'max=' + str(round(1000.0 * vibe_hf_dang_max, 3)),
+                 fontsize=12, horizontalalignment='left', verticalalignment='top')
+        plt.subplot(3, 1, 3)
+        plt.plot(1e-6 * estimator_status['timestamp'], estimator_status['vibe[2]'], 'b')
+        plt.ylabel('HF Del Vel (m/s)')
+        plt.xlabel('time (sec)')
+        plt.grid()
+        plt.text(vibe_hf_dvel_max_time, vibe_hf_dvel_max, 'max=' + str(round(vibe_hf_dvel_max, 4)), fontsize=12,
+                 horizontalalignment='left', verticalalignment='top')
+        pp.savefig()
+        plt.close(14)
+        # Plot the EKF output observer tracking errors
+        plt.figure(15, figsize=(20, 13))
+        ang_track_err_max_arg = np.argmax(ekf2_innovations['output_tracking_error[0]'])
+        ang_track_err_max_time = innov_time[ang_track_err_max_arg]
+        ang_track_err_max = np.amax(ekf2_innovations['output_tracking_error[0]'])
+        vel_track_err_max_arg = np.argmax(ekf2_innovations['output_tracking_error[1]'])
+        vel_track_err_max_time = innov_time[vel_track_err_max_arg]
+        vel_track_err_max = np.amax(ekf2_innovations['output_tracking_error[1]'])
+        pos_track_err_max_arg = np.argmax(ekf2_innovations['output_tracking_error[2]'])
+        pos_track_err_max_time = innov_time[pos_track_err_max_arg]
+        pos_track_err_max = np.amax(ekf2_innovations['output_tracking_error[2]'])
+        plt.subplot(3, 1, 1)
+        plt.plot(1e-6 * ekf2_innovations['timestamp'], 1e3 * ekf2_innovations['output_tracking_error[0]'], 'b')
+        plt.title('Output Observer Tracking Error Magnitudes')
+        plt.ylabel('angles (mrad)')
+        plt.grid()
+        plt.text(ang_track_err_max_time, 1e3 * ang_track_err_max, 'max=' + str(round(1e3 * ang_track_err_max, 2)),
+                 fontsize=12, horizontalalignment='left', verticalalignment='top')
+        plt.subplot(3, 1, 2)
+        plt.plot(1e-6 * ekf2_innovations['timestamp'], ekf2_innovations['output_tracking_error[1]'], 'b')
+        plt.ylabel('velocity (m/s)')
+        plt.grid()
+        plt.text(vel_track_err_max_time, vel_track_err_max, 'max=' + str(round(vel_track_err_max, 2)), fontsize=12,
+                 horizontalalignment='left', verticalalignment='top')
+        plt.subplot(3, 1, 3)
+        plt.plot(1e-6 * ekf2_innovations['timestamp'], ekf2_innovations['output_tracking_error[2]'], 'b')
+        plt.ylabel('position (m)')
+        plt.xlabel('time (sec)')
+        plt.grid()
+        plt.text(pos_track_err_max_time, pos_track_err_max, 'max=' + str(round(pos_track_err_max, 2)), fontsize=12,
+                 horizontalalignment='left', verticalalignment='top')
+        pp.savefig()
+        plt.close(15)
+        # Plot the delta angle bias estimates
+        plt.figure(16, figsize=(20, 13))
+        plt.subplot(3, 1, 1)
+        plt.plot(1e-6 * estimator_status['timestamp'], estimator_status['states[10]'], 'b')
+        plt.title('Delta Angle Bias Estimates')
+        plt.ylabel('X (rad)')
+        plt.xlabel('time (sec)')
+        plt.grid()
+        plt.subplot(3, 1, 2)
+        plt.plot(1e-6 * estimator_status['timestamp'], estimator_status['states[11]'], 'b')
+        plt.ylabel('Y (rad)')
+        plt.xlabel('time (sec)')
+        plt.grid()
+        plt.subplot(3, 1, 3)
+        plt.plot(1e-6 * estimator_status['timestamp'], estimator_status['states[12]'], 'b')
+        plt.ylabel('Z (rad)')
+        plt.xlabel('time (sec)')
+        plt.grid()
+        pp.savefig()
+        plt.close(16)
+        # Plot the delta velocity bias estimates
+        plt.figure(17, figsize=(20, 13))
+        plt.subplot(3, 1, 1)
+        plt.plot(1e-6 * estimator_status['timestamp'], estimator_status['states[13]'], 'b')
+        plt.title('Delta Velocity Bias Estimates')
+        plt.ylabel('X (m/s)')
+        plt.xlabel('time (sec)')
+        plt.grid()
+        plt.subplot(3, 1, 2)
+        plt.plot(1e-6 * estimator_status['timestamp'], estimator_status['states[14]'], 'b')
+        plt.ylabel('Y (m/s)')
+        plt.xlabel('time (sec)')
+        plt.grid()
+        plt.subplot(3, 1, 3)
+        plt.plot(1e-6 * estimator_status['timestamp'], estimator_status['states[15]'], 'b')
+        plt.ylabel('Z (m/s)')
+        plt.xlabel('time (sec)')
+        plt.grid()
+        pp.savefig()
+        plt.close(17)
+        # Plot the earth frame magnetic field estimates
+        plt.figure(18, figsize=(20, 13))
+        plt.subplot(3, 1, 3)
+        strength = (estimator_status['states[16]'] ** 2 + estimator_status['states[17]'] ** 2 + estimator_status[
+            'states[18]'] ** 2) ** 0.5
+        plt.plot(1e-6 * estimator_status['timestamp'], strength, 'b')
+        plt.ylabel('strength (Gauss)')
+        plt.xlabel('time (sec)')
+        plt.grid()
+        plt.subplot(3, 1, 1)
+        rad2deg = 57.2958
+        declination = rad2deg * np.arctan2(estimator_status['states[17]'], estimator_status['states[16]'])
+        plt.plot(1e-6 * estimator_status['timestamp'], declination, 'b')
+        plt.title('Earth Magnetic Field Estimates')
+        plt.ylabel('declination (deg)')
+        plt.xlabel('time (sec)')
+        plt.grid()
+        plt.subplot(3, 1, 2)
+        inclination = rad2deg * np.arcsin(estimator_status['states[18]'] / strength)
+        plt.plot(1e-6 * estimator_status['timestamp'], inclination, 'b')
+        plt.ylabel('inclination (deg)')
+        plt.xlabel('time (sec)')
+        plt.grid()
+        pp.savefig()
+        plt.close(18)
+        # Plot the body frame magnetic field estimates
+        plt.figure(19, figsize=(20, 13))
+        plt.subplot(3, 1, 1)
+        plt.plot(1e-6 * estimator_status['timestamp'], estimator_status['states[19]'], 'b')
+        plt.title('Magnetomer Bias Estimates')
+        plt.ylabel('X (Gauss)')
+        plt.xlabel('time (sec)')
+        plt.grid()
+        plt.subplot(3, 1, 2)
+        plt.plot(1e-6 * estimator_status['timestamp'], estimator_status['states[20]'], 'b')
+        plt.ylabel('Y (Gauss)')
+        plt.xlabel('time (sec)')
+        plt.grid()
+        plt.subplot(3, 1, 3)
+        plt.plot(1e-6 * estimator_status['timestamp'], estimator_status['states[21]'], 'b')
+        plt.ylabel('Z (Gauss)')
+        plt.xlabel('time (sec)')
+        plt.grid()
+        pp.savefig()
+        plt.close(19)
+        # Plot the EKF wind estimates
+        plt.figure(20, figsize=(20, 13))
+        plt.subplot(2, 1, 1)
+        plt.plot(1e-6 * estimator_status['timestamp'], estimator_status['states[22]'], 'b')
+        plt.title('Wind Velocity Estimates')
+        plt.ylabel('North (m/s)')
+        plt.xlabel('time (sec)')
+        plt.grid()
+        plt.subplot(2, 1, 2)
+        plt.plot(1e-6 * estimator_status['timestamp'], estimator_status['states[23]'], 'b')
+        plt.ylabel('East (m/s)')
+        plt.xlabel('time (sec)')
+        plt.grid()
+        pp.savefig()
+        plt.close(20)
+        # close the pdf file
+        pp.close()
+        # don't display to screen
+        # plt.show()
+        # clase all figures
+        plt.close("all")
+
+    # Do some automated analysis of the status data
+    # find a late/early index range from 5 sec after in_air_transtion_time to 5 sec before on-ground transition time for mag and optical flow checks to avoid false positives
+    # this can be used to prevent false positives for sensors adversely affected by close proximity to the ground
+    late_start_index = np.argmin(status_time[np.where(status_time > (in_air_transition_time + 5.0))])
+    early_end_index = np.argmax(status_time[np.where(status_time < (on_ground_transition_time - 5.0))])
+    num_valid_values_trimmed = (early_end_index - late_start_index + 1)
+    # normal index range is defined by the flight duration
+    start_index = np.argmin(status_time[np.where(status_time > in_air_transition_time)])
+    end_index = np.argmax(status_time[np.where(status_time < on_ground_transition_time)])
+    num_valid_values = (end_index - start_index + 1)
+    # also find the start and finish indexes for the innovation data
+    innov_late_start_index = np.argmin(innov_time[np.where(innov_time > (in_air_transition_time + 5.0))])
+    innov_early_end_index = np.argmax(innov_time[np.where(innov_time < (on_ground_transition_time - 5.0))])
+    innov_num_valid_values_trimmed = (innov_early_end_index - innov_late_start_index + 1)
+    innov_start_index = np.argmin(innov_time[np.where(innov_time > in_air_transition_time)])
+    innov_end_index = np.argmax(innov_time[np.where(innov_time < on_ground_transition_time)])
+    innov_num_valid_values = (innov_end_index - innov_start_index + 1)
+    # define dictionary of test results and descriptions
+    test_results = {
+        'master_status': ['Pass',
+                          'Master check status which can be either Pass Warning or Fail. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'],
+        'mag_sensor_status': ['Pass',
+                              'Magnetometer sensor check summary. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'],
+        'yaw_sensor_status': ['Pass',
+                              'Yaw sensor check summary. This sensor data can be sourced from the magnetometer or an external vision system. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'],
+        'vel_sensor_status': ['Pass',
+                              'Velocity sensor check summary. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'],
+        'pos_sensor_status': ['Pass',
+                              'Position sensor check summary. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'],
+        'hgt_sensor_status': ['Pass',
+                              'Height sensor check summary. This sensor data can be sourced from either Baro or GPS or range finder or external vision system. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no anomalies were detected and no further investigation is required'],
+        'hagl_sensor_status': ['Pass',
+                               'Height above ground sensor check summary. This sensor data is normally sourced from a rangefinder sensor. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'],
+        'tas_sensor_status': ['Pass',
+                              'Airspeed sensor check summary. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'],
+        'imu_sensor_status': ['Pass',
+                              'IMU sensor check summary. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'],
+        'flow_sensor_status': ['Pass',
+                               'Optical Flow sensor check summary. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'],
+        'mag_percentage_red': [float('NaN'),
+                               'The percentage of in-flight consolidated magnetic field sensor innovation consistency test values > 1.0.'],
+        'mag_percentage_amber': [float('NaN'),
+                                 'The percentage of in-flight consolidated magnetic field sensor innovation consistency test values > 0.5.'],
+        'magx_fail_percentage': [float('NaN'),
+                                 'The percentage of in-flight recorded failure events for the X-axis magnetic field sensor innovation consistency test.'],
+        'magy_fail_percentage': [float('NaN'),
+                                 'The percentage of in-flight recorded failure events for the Y-axis magnetic field sensor innovation consistency test.'],
+        'magz_fail_percentage': [float('NaN'),
+                                 'The percentage of in-flight recorded failure events for the Z-axis magnetic field sensor innovation consistency test.'],
+        'yaw_fail_percentage': [float('NaN'),
+                                'The percentage of in-flight recorded failure events for the yaw sensor innovation consistency test.'],
+        'mag_test_max': [float('NaN'),
+                         'The maximum in-flight value of the magnetic field sensor innovation consistency test ratio.'],
+        'mag_test_mean': [float('NaN'),
+                          'The mean in-flight value of the magnetic field sensor innovation consistency test ratio.'],
+        'vel_percentage_red': [float('NaN'),
+                               'The percentage of in-flight velocity sensor consolidated innovation consistency test values > 1.0.'],
+        'vel_percentage_amber': [float('NaN'),
+                                 'The percentage of in-flight velocity sensor consolidated innovation consistency test values > 0.5.'],
+        'vel_fail_percentage': [float('NaN'),
+                                'The percentage of in-flight recorded failure events for the velocity sensor consolidated innovation consistency test.'],
+        'vel_test_max': [float('NaN'),
+                         'The maximum in-flight value of the velocity sensor consolidated innovation consistency test ratio.'],
+        'vel_test_mean': [float('NaN'),
+                          'The mean in-flight value of the velocity sensor consolidated innovation consistency test ratio.'],
+        'pos_percentage_red': [float('NaN'),
+                               'The percentage of in-flight position sensor consolidated innovation consistency test values > 1.0.'],
+        'pos_percentage_amber': [float('NaN'),
+                                 'The percentage of in-flight position sensor consolidated innovation consistency test values > 0.5.'],
+        'pos_fail_percentage': [float('NaN'),
+                                'The percentage of in-flight recorded failure events for the velocity sensor consolidated innovation consistency test.'],
+        'pos_test_max': [float('NaN'),
+                         'The maximum in-flight value of the position sensor consolidated innovation consistency test ratio.'],
+        'pos_test_mean': [float('NaN'),
+                          'The mean in-flight value of the position sensor consolidated innovation consistency test ratio.'],
+        'hgt_percentage_red': [float('NaN'),
+                               'The percentage of in-flight height sensor innovation consistency test values > 1.0.'],
+        'hgt_percentage_amber': [float('NaN'),
+                                 'The percentage of in-flight height sensor innovation consistency test values > 0.5.'],
+        'hgt_fail_percentage': [float('NaN'),
+                                'The percentage of in-flight recorded failure events for the height sensor innovation consistency test.'],
+        'hgt_test_max': [float('NaN'),
+                         'The maximum in-flight value of the height sensor innovation consistency test ratio.'],
+        'hgt_test_mean': [float('NaN'),
+                          'The mean in-flight value of the height sensor innovation consistency test ratio.'],
+        'tas_percentage_red': [float('NaN'),
+                               'The percentage of in-flight airspeed sensor innovation consistency test values > 1.0.'],
+        'tas_percentage_amber': [float('NaN'),
+                                 'The percentage of in-flight airspeed sensor innovation consistency test values > 0.5.'],
+        'tas_fail_percentage': [float('NaN'),
+                                'The percentage of in-flight recorded failure events for the airspeed sensor innovation consistency test.'],
+        'tas_test_max': [float('NaN'),
+                         'The maximum in-flight value of the airspeed sensor innovation consistency test ratio.'],
+        'tas_test_mean': [float('NaN'),
+                          'The mean in-flight value of the airspeed sensor innovation consistency test ratio.'],
+        'hagl_percentage_red': [float('NaN'),
+                                'The percentage of in-flight height above ground sensor innovation consistency test values > 1.0.'],
+        'hagl_percentage_amber': [float('NaN'),
+                                  'The percentage of in-flight height above ground sensor innovation consistency test values > 0.5.'],
+        'hagl_fail_percentage': [float('NaN'),
+                                 'The percentage of in-flight recorded failure events for the height above ground sensor innovation consistency test.'],
+        'hagl_test_max': [float('NaN'),
+                          'The maximum in-flight value of the height above ground sensor innovation consistency test ratio.'],
+        'hagl_test_mean': [float('NaN'),
+                           'The mean in-flight value of the height above ground sensor innovation consistency test ratio.'],
+        'ofx_fail_percentage': [float('NaN'),
+                                'The percentage of in-flight recorded failure events for the optical flow sensor X-axis innovation consistency test.'],
+        'ofy_fail_percentage': [float('NaN'),
+                                'The percentage of in-flight recorded failure events for the optical flow sensor Y-axis innovation consistency test.'],
+        'filter_faults_max': [float('NaN'),
+                              'Largest recorded value of the filter internal fault bitmask. Should always be zero.'],
+        'imu_coning_peak': [float('NaN'), 'Peak in-flight value of the IMU delta angle coning vibration metric (rad)'],
+        'imu_coning_mean': [float('NaN'), 'Mean in-flight value of the IMU delta angle coning vibration metric (rad)'],
+        'imu_hfdang_peak': [float('NaN'),
+                            'Peak in-flight value of the IMU delta angle high frequency vibration metric (rad)'],
+        'imu_hfdang_mean': [float('NaN'),
+                            'Mean in-flight value of the IMU delta angle high frequency vibration metric (rad)'],
+        'imu_hfdvel_peak': [float('NaN'),
+                            'Peak in-flight value of the IMU delta velocity high frequency vibration metric (m/s)'],
+        'imu_hfdvel_mean': [float('NaN'),
+                            'Mean in-flight value of the IMU delta velocity high frequency vibration metric (m/s)'],
+        'output_obs_ang_err_median': [float('NaN'),
+                                      'Median in-flight value of the output observer angular error (rad)'],
+        'output_obs_vel_err_median': [float('NaN'),
+                                      'Median in-flight value of the output observer velocity error (m/s)'],
+        'output_obs_pos_err_median': [float('NaN'), 'Median in-flight value of the output observer position error (m)'],
+        'imu_dang_bias_median': [float('NaN'), 'Median in-flight value of the delta angle bias vector length (rad)'],
+        'imu_dvel_bias_median': [float('NaN'), 'Median in-flight value of the delta velocity bias vector length (m/s)'],
+        'tilt_align_time': [float('NaN'),
+                            'The time in seconds measured from startup that the EKF completed the tilt alignment. A nan value indicates that the alignment had completed before logging started or alignment did not complete.'],
+        'yaw_align_time': [float('NaN'),
+                           'The time in seconds measured from startup that the EKF completed the yaw alignment.'],
+        'in_air_transition_time': [round(in_air_transition_time, 1),
+                                   'The time in seconds measured from startup that the EKF transtioned into in-air mode. Set to a nan if a transition event is not detected.'],
+        'on_ground_transition_time': [round(on_ground_transition_time, 1),
+                                      'The time in seconds measured from startup  that the EKF transitioned out of in-air mode. Set to a nan if a transition event is not detected.'],
+    }
+    # generate test metadata
+    # reduction of innovation message data
+    if (innov_early_end_index > (innov_late_start_index + 100)):
+        # Output Observer Tracking Errors
+        test_results['output_obs_ang_err_median'][0] = np.median(
+            ekf2_innovations['output_tracking_error[0]'][innov_late_start_index:innov_early_end_index])
+        test_results['output_obs_vel_err_median'][0] = np.median(
+            ekf2_innovations['output_tracking_error[1]'][innov_late_start_index:innov_early_end_index])
+        test_results['output_obs_pos_err_median'][0] = np.median(
+            ekf2_innovations['output_tracking_error[2]'][innov_late_start_index:innov_early_end_index])
+    # reduction of status message data
+    if (early_end_index > (late_start_index + 100)):
+        # IMU vibration checks
+        temp = np.amax(estimator_status['vibe[0]'][late_start_index:early_end_index])
+        if (temp > 0.0):
+            test_results['imu_coning_peak'][0] = temp
+            test_results['imu_coning_mean'][0] = np.mean(estimator_status['vibe[0]'][late_start_index:early_end_index])
+        temp = np.amax(estimator_status['vibe[1]'][late_start_index:early_end_index])
+        if (temp > 0.0):
+            test_results['imu_hfdang_peak'][0] = temp
+            test_results['imu_hfdang_mean'][0] = np.mean(estimator_status['vibe[1]'][late_start_index:early_end_index])
+        temp = np.amax(estimator_status['vibe[2]'][late_start_index:early_end_index])
+        if (temp > 0.0):
+            test_results['imu_hfdvel_peak'][0] = temp
+            test_results['imu_hfdvel_mean'][0] = np.mean(estimator_status['vibe[2]'][late_start_index:early_end_index])
+
+        # Magnetometer Sensor Checks
+        if (np.amax(yaw_aligned) > 0.5):
+            mag_num_red = (estimator_status['mag_test_ratio'][start_index:end_index] > 1.0).sum()
+            mag_num_amber = (estimator_status['mag_test_ratio'][start_index:end_index] > 0.5).sum() - mag_num_red
+            test_results['mag_percentage_red'][0] = 100.0 * mag_num_red / num_valid_values_trimmed
+            test_results['mag_percentage_amber'][0] = 100.0 * mag_num_amber / num_valid_values_trimmed
+            test_results['mag_test_max'][0] = np.amax(
+                estimator_status['mag_test_ratio'][late_start_index:early_end_index])
+            test_results['mag_test_mean'][0] = np.mean(estimator_status['mag_test_ratio'][start_index:end_index])
+            test_results['magx_fail_percentage'][0] = 100.0 * (
+                    magx_innov_fail[late_start_index:early_end_index] > 0.5).sum() / num_valid_values_trimmed
+            test_results['magy_fail_percentage'][0] = 100.0 * (
+                    magy_innov_fail[late_start_index:early_end_index] > 0.5).sum() / num_valid_values_trimmed
+            test_results['magz_fail_percentage'][0] = 100.0 * (
+                    magz_innov_fail[late_start_index:early_end_index] > 0.5).sum() / num_valid_values_trimmed
+            test_results['yaw_fail_percentage'][0] = 100.0 * (
+                    yaw_innov_fail[late_start_index:early_end_index] > 0.5).sum() / num_valid_values_trimmed
+
+        # Velocity Sensor Checks
+        if (np.amax(using_gps) > 0.5):
+            vel_num_red = (estimator_status['vel_test_ratio'][start_index:end_index] > 1.0).sum()
+            vel_num_amber = (estimator_status['vel_test_ratio'][start_index:end_index] > 0.5).sum() - vel_num_red
+            test_results['vel_percentage_red'][0] = 100.0 * vel_num_red / num_valid_values
+            test_results['vel_percentage_amber'][0] = 100.0 * vel_num_amber / num_valid_values
+            test_results['vel_test_max'][0] = np.amax(estimator_status['vel_test_ratio'][start_index:end_index])
+            test_results['vel_test_mean'][0] = np.mean(estimator_status['vel_test_ratio'][start_index:end_index])
+            test_results['vel_fail_percentage'][0] = 100.0 * (
+                    vel_innov_fail[start_index:end_index] > 0.5).sum() / num_valid_values
+
+        # Position Sensor Checks
+        if ((np.amax(using_gps) > 0.5) or (np.amax(using_evpos) > 0.5)):
+            pos_num_red = (estimator_status['pos_test_ratio'][start_index:end_index] > 1.0).sum()
+            pos_num_amber = (estimator_status['pos_test_ratio'][start_index:end_index] > 0.5).sum() - pos_num_red
+            test_results['pos_percentage_red'][0] = 100.0 * pos_num_red / num_valid_values
+            test_results['pos_percentage_amber'][0] = 100.0 * pos_num_amber / num_valid_values
+            test_results['pos_test_max'][0] = np.amax(estimator_status['pos_test_ratio'][start_index:end_index])
+            test_results['pos_test_mean'][0] = np.mean(estimator_status['pos_test_ratio'][start_index:end_index])
+            test_results['pos_fail_percentage'][0] = 100.0 * (
+                    posh_innov_fail[start_index:end_index] > 0.5).sum() / num_valid_values
+
+        # Height Sensor Checks
+        hgt_num_red = (estimator_status['hgt_test_ratio'][late_start_index:early_end_index] > 1.0).sum()
+        hgt_num_amber = (estimator_status['hgt_test_ratio'][late_start_index:early_end_index] > 0.5).sum() - hgt_num_red
+        test_results['hgt_percentage_red'][0] = 100.0 * hgt_num_red / num_valid_values_trimmed
+        test_results['hgt_percentage_amber'][0] = 100.0 * hgt_num_amber / num_valid_values_trimmed
+        test_results['hgt_test_max'][0] = np.amax(estimator_status['hgt_test_ratio'][late_start_index:early_end_index])
+        test_results['hgt_test_mean'][0] = np.mean(estimator_status['hgt_test_ratio'][late_start_index:early_end_index])
+        test_results['hgt_fail_percentage'][0] = 100.0 * (
+                posv_innov_fail[late_start_index:early_end_index] > 0.5).sum() / num_valid_values_trimmed
+
+        # Airspeed Sensor Checks
+        if (tas_test_max > 0.0):
+            tas_num_red = (estimator_status['tas_test_ratio'][start_index:end_index] > 1.0).sum()
+            tas_num_amber = (estimator_status['tas_test_ratio'][start_index:end_index] > 0.5).sum() - tas_num_red
+            test_results['tas_percentage_red'][0] = 100.0 * tas_num_red / num_valid_values
+            test_results['tas_percentage_amber'][0] = 100.0 * tas_num_amber / num_valid_values
+            test_results['tas_test_max'][0] = np.amax(estimator_status['tas_test_ratio'][start_index:end_index])
+            test_results['tas_test_mean'][0] = np.mean(estimator_status['tas_test_ratio'][start_index:end_index])
+            test_results['tas_fail_percentage'][0] = 100.0 * (
+                    tas_innov_fail[start_index:end_index] > 0.5).sum() / num_valid_values
+
+        # HAGL Sensor Checks
+        if (hagl_test_max > 0.0):
+            hagl_num_red = (estimator_status['hagl_test_ratio'][start_index:end_index] > 1.0).sum()
+            hagl_num_amber = (estimator_status['hagl_test_ratio'][start_index:end_index] > 0.5).sum() - hagl_num_red
+            test_results['hagl_percentage_red'][0] = 100.0 * hagl_num_red / num_valid_values
+            test_results['hagl_percentage_amber'][0] = 100.0 * hagl_num_amber / num_valid_values
+            test_results['hagl_test_max'][0] = np.amax(estimator_status['hagl_test_ratio'][start_index:end_index])
+            test_results['hagl_test_mean'][0] = np.mean(estimator_status['hagl_test_ratio'][start_index:end_index])
+            test_results['hagl_fail_percentage'][0] = 100.0 * (
+                    hagl_innov_fail[start_index:end_index] > 0.5).sum() / num_valid_values
+
+        # optical flow sensor checks
+        if (np.amax(using_optflow) > 0.5):
+            test_results['ofx_fail_percentage'][0] = 100.0 * (
+                    ofx_innov_fail[late_start_index:early_end_index] > 0.5).sum() / num_valid_values_trimmed
+            test_results['ofy_fail_percentage'][0] = 100.0 * (
+                    ofy_innov_fail[late_start_index:early_end_index] > 0.5).sum() / num_valid_values_trimmed
+
+        # IMU bias checks
+        test_results['imu_dang_bias_median'][0] = (np.median(estimator_status['states[10]']) ** 2 + np.median(
+            estimator_status['states[11]']) ** 2 + np.median(estimator_status['states[12]']) ** 2) ** 0.5
+        test_results['imu_dvel_bias_median'][0] = (np.median(estimator_status['states[13]']) ** 2 + np.median(
+            estimator_status['states[14]']) ** 2 + np.median(estimator_status['states[15]']) ** 2) ** 0.5
+    # Check for internal filter nummerical faults
+    test_results['filter_faults_max'][0] = np.amax(estimator_status['filter_fault_flags'])
+    # TODO - process the following bitmask's when they have been properly documented in the uORB topic
+    # estimator_status['health_flags']
+    # estimator_status['timeout_flags']
+    # calculate a master status - Fail, Warning, Pass
+
+    # check test results against levels to provide a master status
+    # check for warnings
+    if (test_results.get('mag_percentage_amber')[0] > check_levels.get('mag_amber_warn_pct')):
+        test_results['master_status'][0] = 'Warning'
+        test_results['mag_sensor_status'][0] = 'Warning'
+    if (test_results.get('vel_percentage_amber')[0] > check_levels.get('vel_amber_warn_pct')):
+        test_results['master_status'][0] = 'Warning'
+        test_results['vel_sensor_status'][0] = 'Warning'
+    if (test_results.get('pos_percentage_amber')[0] > check_levels.get('pos_amber_warn_pct')):
+        test_results['master_status'][0] = 'Warning'
+        test_results['pos_sensor_status'][0] = 'Warning'
+    if (test_results.get('hgt_percentage_amber')[0] > check_levels.get('hgt_amber_warn_pct')):
+        test_results['master_status'][0] = 'Warning'
+        test_results['hgt_sensor_status'][0] = 'Warning'
+    if (test_results.get('hagl_percentage_amber')[0] > check_levels.get('hagl_amber_warn_pct')):
+        test_results['master_status'][0] = 'Warning'
+        test_results['hagl_sensor_status'][0] = 'Warning'
+    if (test_results.get('tas_percentage_amber')[0] > check_levels.get('tas_amber_warn_pct')):
+        test_results['master_status'][0] = 'Warning'
+        test_results['tas_sensor_status'][0] = 'Warning'
+    # check for IMU sensor warnings
+    if ((test_results.get('imu_coning_peak')[0] > check_levels.get('imu_coning_peak_warn')) or
+            (test_results.get('imu_coning_mean')[0] > check_levels.get('imu_coning_mean_warn')) or
+            (test_results.get('imu_hfdang_peak')[0] > check_levels.get('imu_hfdang_peak_warn')) or
+            (test_results.get('imu_hfdang_mean')[0] > check_levels.get('imu_hfdang_mean_warn')) or
+            (test_results.get('imu_hfdvel_peak')[0] > check_levels.get('imu_hfdvel_peak_warn')) or
+            (test_results.get('imu_hfdvel_mean')[0] > check_levels.get('imu_hfdvel_mean_warn'))):
+        test_results['master_status'][0] = 'Warning'
+        test_results['imu_sensor_status'][0] = 'Warning - Vibration'
+    if ((test_results.get('imu_dang_bias_median')[0] > check_levels.get('imu_dang_bias_median_warn')) or
+            (test_results.get('imu_dvel_bias_median')[0] > check_levels.get('imu_dvel_bias_median_warn'))):
+        test_results['master_status'][0] = 'Warning'
+        test_results['imu_sensor_status'][0] = 'Warning - Bias'
+    if ((test_results.get('output_obs_ang_err_median')[0] > check_levels.get('obs_ang_err_median_warn')) or
+            (test_results.get('output_obs_vel_err_median')[0] > check_levels.get('obs_vel_err_median_warn')) or
+            (test_results.get('output_obs_pos_err_median')[0] > check_levels.get('obs_pos_err_median_warn'))):
+        test_results['master_status'][0] = 'Warning'
+        test_results['imu_sensor_status'][0] = 'Warning - Output Predictor'
+    # check for failures
+    if ((test_results.get('magx_fail_percentage')[0] > check_levels.get('mag_fail_pct')) or
+            (test_results.get('magy_fail_percentage')[0] > check_levels.get('mag_fail_pct')) or
+            (test_results.get('magz_fail_percentage')[0] > check_levels.get('mag_fail_pct')) or
+            (test_results.get('mag_percentage_amber')[0] > check_levels.get('mag_amber_fail_pct'))):
+        test_results['master_status'][0] = 'Fail'
+        test_results['mag_sensor_status'][0] = 'Fail'
+    if (test_results.get('yaw_fail_percentage')[0] > check_levels.get('yaw_fail_pct')):
+        test_results['master_status'][0] = 'Fail'
+        test_results['yaw_sensor_status'][0] = 'Fail'
+    if ((test_results.get('vel_fail_percentage')[0] > check_levels.get('vel_fail_pct')) or
+            (test_results.get('vel_percentage_amber')[0] > check_levels.get('vel_amber_fail_pct'))):
+        test_results['master_status'][0] = 'Fail'
+        test_results['vel_sensor_status'][0] = 'Fail'
+    if ((test_results.get('pos_fail_percentage')[0] > check_levels.get('pos_fail_pct')) or
+            (test_results.get('pos_percentage_amber')[0] > check_levels.get('pos_amber_fail_pct'))):
+        test_results['master_status'][0] = 'Fail'
+        test_results['pos_sensor_status'][0] = 'Fail'
+    if ((test_results.get('hgt_fail_percentage')[0] > check_levels.get('hgt_fail_pct')) or
+            (test_results.get('hgt_percentage_amber')[0] > check_levels.get('hgt_amber_fail_pct'))):
+        test_results['master_status'][0] = 'Fail'
+        test_results['hgt_sensor_status'][0] = 'Fail'
+    if ((test_results.get('tas_fail_percentage')[0] > check_levels.get('tas_fail_pct')) or
+            (test_results.get('tas_percentage_amber')[0] > check_levels.get('tas_amber_fail_pct'))):
+        test_results['master_status'][0] = 'Fail'
+        test_results['tas_sensor_status'][0] = 'Fail'
+    if ((test_results.get('hagl_fail_percentage')[0] > check_levels.get('hagl_fail_pct')) or
+            (test_results.get('hagl_percentage_amber')[0] > check_levels.get('hagl_amber_fail_pct'))):
+        test_results['master_status'][0] = 'Fail'
+        test_results['hagl_sensor_status'][0] = 'Fail'
+    if ((test_results.get('ofx_fail_percentage')[0] > check_levels.get('flow_fail_pct')) or
+            (test_results.get('ofy_fail_percentage')[0] > check_levels.get('flow_fail_pct'))):
+        test_results['master_status'][0] = 'Fail'
+        test_results['flow_sensor_status'][0] = 'Fail'
+    if (test_results.get('filter_faults_max')[0] > 0):
+        test_results['master_status'][0] = 'Fail'
+        test_results['filter_fault_status'][0] = 'Fail'
+
+    return test_results
\ No newline at end of file
diff --git a/Tools/ecl_ekf/process_logdata_ekf.py b/Tools/ecl_ekf/process_logdata_ekf.py
index b7b2fd2811..eec2abdac5 100755
--- a/Tools/ecl_ekf/process_logdata_ekf.py
+++ b/Tools/ecl_ekf/process_logdata_ekf.py
@@ -5,15 +5,10 @@ from __future__ import print_function
 import argparse
 import os
 
-# matplotlib don't use Xwindows backend (must be before pyplot import)
-import matplotlib
-matplotlib.use('Agg')
-
-import matplotlib.pyplot as plt
-import numpy as np
-
 from pyulog import *
 
+from analyse_logdata_ekf import *
+
 """
 Performs a health assessment on the ecl EKF navigation estimator data contained in a an ULog file
 Outputs a health assessment summary in a csv file named <inputfilename>.mdat.csv
@@ -22,6 +17,10 @@ Outputs summary plots in a pdf file named <inputfilename>.pdf
 
 parser = argparse.ArgumentParser(description='Analyse the estimator_status and ekf2_innovation message data')
 parser.add_argument('filename', metavar='file.ulg', help='ULog input file')
+parser.add_argument('--no-plots', action='store_true',
+                    help='Whether to only analyse and not plot the summaries for developers.')
+parser.add_argument('--check-level-thresholds', type=str, default=None,
+                    help='The csv file of fail and warning test thresholds for analysis.')
 
 def is_valid_directory(parser, arg):
     if os.path.isdir(arg):
@@ -31,1392 +30,50 @@ def is_valid_directory(parser, arg):
         parser.error('The directory {} does not exist'.format(arg))
 
 args = parser.parse_args()
-ulog_file_name = args.filename
 
-ulog = ULog(ulog_file_name, None)
+## load the log and extract the necessary data for the analyses
+ulog = ULog(args.filename, None)
 data = ulog.data_list
 
 # extract data from innovations and status messages
 for d in data:
     if d.name == 'estimator_status':
-        estimator_status = d.data
+        estimator_status_data = d.data
         print('found estimator_status data')
 for d in data:
     if d.name == 'ekf2_innovations':
-        ekf2_innovations = d.data
+        ekf2_innovations_data = d.data
         print('found ekf2_innovation data')
 
-# extract data from sensor reflight check message
+# extract data from sensor preflight check message
 sensor_preflight = {}
 for d in data:
     if d.name == 'sensor_preflight':
-        sensor_preflight = d.data
+        sensor_preflight_data = d.data
         print('found sensor_preflight data')
 
-# create summary plots
-# save the plots to PDF
-from matplotlib.backends.backend_pdf import PdfPages
-output_plot_filename = ulog_file_name + ".pdf"
-pp = PdfPages(output_plot_filename)
-
-# plot IMU consistency data
-if ('accel_inconsistency_m_s_s' in sensor_preflight.keys()) and ('gyro_inconsistency_rad_s' in sensor_preflight.keys()):
-    plt.figure(0,figsize=(20,13))
-    plt.subplot(2,1,1)
-    plt.plot(sensor_preflight['accel_inconsistency_m_s_s'],'b')
-    plt.title('IMU Consistency Check Levels')
-    plt.ylabel('acceleration (m/s/s)')
-    plt.xlabel('data index')
-    plt.grid()
-    plt.subplot(2,1,2)
-    plt.plot(sensor_preflight['gyro_inconsistency_rad_s'],'b')
-    plt.ylabel('angular rate (rad/s)')
-    plt.xlabel('data index')
-    pp.savefig()
-    plt.close(0)
-
-# generate max, min and 1-std metadata
-innov_time = 1e-6*ekf2_innovations['timestamp']
-status_time = 1e-6*estimator_status['timestamp']
-
-# vertical velocity and position innovations
-plt.figure(1,figsize=(20,13))
-
-# generate metadata for velocity innovations
-innov_2_max_arg = np.argmax(ekf2_innovations['vel_pos_innov[2]'])
-innov_2_max_time = innov_time[innov_2_max_arg]
-innov_2_max = np.amax(ekf2_innovations['vel_pos_innov[2]'])
-
-innov_2_min_arg = np.argmin(ekf2_innovations['vel_pos_innov[2]'])
-innov_2_min_time = innov_time[innov_2_min_arg]
-innov_2_min = np.amin(ekf2_innovations['vel_pos_innov[2]'])
-
-s_innov_2_max = str(round(innov_2_max,2))
-s_innov_2_min = str(round(innov_2_min,2))
-#s_innov_2_std = str(round(np.std(ekf2_innovations['vel_pos_innov[2]']),2))
-
-# generate metadata for position innovations
-innov_5_max_arg = np.argmax(ekf2_innovations['vel_pos_innov[5]'])
-innov_5_max_time = innov_time[innov_5_max_arg]
-innov_5_max = np.amax(ekf2_innovations['vel_pos_innov[5]'])
-
-innov_5_min_arg = np.argmin(ekf2_innovations['vel_pos_innov[5]'])
-innov_5_min_time = innov_time[innov_5_min_arg]
-innov_5_min = np.amin(ekf2_innovations['vel_pos_innov[5]'])
-
-s_innov_5_max = str(round(innov_5_max,2))
-s_innov_5_min = str(round(innov_5_min,2))
-#s_innov_5_std = str(round(np.std(ekf2_innovations['vel_pos_innov[5]']),2))
-
-# generate plot for vertical velocity innovations
-plt.subplot(2,1,1)
-plt.plot(1e-6*ekf2_innovations['timestamp'],ekf2_innovations['vel_pos_innov[2]'],'b')
-plt.plot(1e-6*ekf2_innovations['timestamp'],np.sqrt(ekf2_innovations['vel_pos_innov_var[2]']),'r')
-plt.plot(1e-6*ekf2_innovations['timestamp'],-np.sqrt(ekf2_innovations['vel_pos_innov_var[2]']),'r')
-plt.title('Vertical Innovations')
-plt.ylabel('Down Vel (m/s)')
-plt.xlabel('time (sec)')
-plt.grid()
-plt.text(innov_2_max_time, innov_2_max, 'max='+s_innov_2_max, fontsize=12, horizontalalignment='left', verticalalignment='bottom')
-plt.text(innov_2_min_time, innov_2_min, 'min='+s_innov_2_min, fontsize=12, horizontalalignment='left', verticalalignment='top')
-#plt.legend(['std='+s_innov_2_std],loc='upper left',frameon=False)
-
-# generate plot for vertical position innovations
-plt.subplot(2,1,2)
-plt.plot(1e-6*ekf2_innovations['timestamp'],ekf2_innovations['vel_pos_innov[5]'],'b')
-plt.plot(1e-6*ekf2_innovations['timestamp'],np.sqrt(ekf2_innovations['vel_pos_innov_var[5]']),'r')
-plt.plot(1e-6*ekf2_innovations['timestamp'],-np.sqrt(ekf2_innovations['vel_pos_innov_var[5]']),'r')
-plt.ylabel('Down Pos (m)')
-plt.xlabel('time (sec)')
-plt.grid()
-plt.text(innov_5_max_time, innov_5_max, 'max='+s_innov_5_max, fontsize=12, horizontalalignment='left', verticalalignment='bottom')
-plt.text(innov_5_min_time, innov_5_min, 'min='+s_innov_5_min, fontsize=12, horizontalalignment='left', verticalalignment='top')
-#plt.legend(['std='+s_innov_5_std],loc='upper left',frameon=False)
-
-pp.savefig()
-plt.close(1)
-# horizontal velocity innovations
-plt.figure(2,figsize=(20,13))
-
-# generate North axis metadata
-innov_0_max_arg = np.argmax(ekf2_innovations['vel_pos_innov[0]'])
-innov_0_max_time = innov_time[innov_0_max_arg]
-innov_0_max = np.amax(ekf2_innovations['vel_pos_innov[0]'])
-
-innov_0_min_arg = np.argmin(ekf2_innovations['vel_pos_innov[0]'])
-innov_0_min_time = innov_time[innov_0_min_arg]
-innov_0_min = np.amin(ekf2_innovations['vel_pos_innov[0]'])
-
-s_innov_0_max = str(round(innov_0_max,2))
-s_innov_0_min = str(round(innov_0_min,2))
-#s_innov_0_std = str(round(np.std(ekf2_innovations['vel_pos_innov[0]']),2))
-
-# Generate East axis metadata
-innov_1_max_arg = np.argmax(ekf2_innovations['vel_pos_innov[1]'])
-innov_1_max_time = innov_time[innov_1_max_arg]
-innov_1_max = np.amax(ekf2_innovations['vel_pos_innov[1]'])
-
-innov_1_min_arg = np.argmin(ekf2_innovations['vel_pos_innov[1]'])
-innov_1_min_time = innov_time[innov_1_min_arg]
-innov_1_min = np.amin(ekf2_innovations['vel_pos_innov[1]'])
-
-s_innov_1_max = str(round(innov_1_max,2))
-s_innov_1_min = str(round(innov_1_min,2))
-#s_innov_1_std = str(round(np.std(ekf2_innovations['vel_pos_innov[1]']),2))
-
-# draw plots
-plt.subplot(2,1,1)
-plt.plot(1e-6*ekf2_innovations['timestamp'],ekf2_innovations['vel_pos_innov[0]'],'b')
-plt.plot(1e-6*ekf2_innovations['timestamp'],np.sqrt(ekf2_innovations['vel_pos_innov_var[0]']),'r')
-plt.plot(1e-6*ekf2_innovations['timestamp'],-np.sqrt(ekf2_innovations['vel_pos_innov_var[0]']),'r')
-plt.title('Horizontal Velocity  Innovations')
-plt.ylabel('North Vel (m/s)')
-plt.xlabel('time (sec)')
-plt.grid()
-plt.text(innov_0_max_time, innov_0_max, 'max='+s_innov_0_max, fontsize=12, horizontalalignment='left', verticalalignment='bottom')
-plt.text(innov_0_min_time, innov_0_min, 'min='+s_innov_0_min, fontsize=12, horizontalalignment='left', verticalalignment='top')
-#plt.legend(['std='+s_innov_0_std],loc='upper left',frameon=False)
-
-plt.subplot(2,1,2)
-plt.plot(1e-6*ekf2_innovations['timestamp'],ekf2_innovations['vel_pos_innov[1]'],'b')
-plt.plot(1e-6*ekf2_innovations['timestamp'],np.sqrt(ekf2_innovations['vel_pos_innov_var[1]']),'r')
-plt.plot(1e-6*ekf2_innovations['timestamp'],-np.sqrt(ekf2_innovations['vel_pos_innov_var[1]']),'r')
-plt.ylabel('East Vel (m/s)')
-plt.xlabel('time (sec)')
-plt.grid()
-plt.text(innov_1_max_time, innov_1_max, 'max='+s_innov_1_max, fontsize=12, horizontalalignment='left', verticalalignment='bottom')
-plt.text(innov_1_min_time, innov_1_min, 'min='+s_innov_1_min, fontsize=12, horizontalalignment='left', verticalalignment='top')
-#plt.legend(['std='+s_innov_1_std],loc='upper left',frameon=False)
-
-pp.savefig()
-plt.close(2)
-
-# horizontal position innovations
-plt.figure(3,figsize=(20,13))
-
-# generate North axis metadata
-innov_3_max_arg = np.argmax(ekf2_innovations['vel_pos_innov[3]'])
-innov_3_max_time = innov_time[innov_3_max_arg]
-innov_3_max = np.amax(ekf2_innovations['vel_pos_innov[3]'])
-
-innov_3_min_arg = np.argmin(ekf2_innovations['vel_pos_innov[3]'])
-innov_3_min_time = innov_time[innov_3_min_arg]
-innov_3_min = np.amin(ekf2_innovations['vel_pos_innov[3]'])
-
-s_innov_3_max = str(round(innov_3_max,2))
-s_innov_3_min = str(round(innov_3_min,2))
-#s_innov_3_std = str(round(np.std(ekf2_innovations['vel_pos_innov[3]']),2))
-
-# generate East axis metadata
-innov_4_max_arg = np.argmax(ekf2_innovations['vel_pos_innov[4]'])
-innov_4_max_time = innov_time[innov_4_max_arg]
-innov_4_max = np.amax(ekf2_innovations['vel_pos_innov[4]'])
-
-innov_4_min_arg = np.argmin(ekf2_innovations['vel_pos_innov[4]'])
-innov_4_min_time = innov_time[innov_4_min_arg]
-innov_4_min = np.amin(ekf2_innovations['vel_pos_innov[4]'])
-
-s_innov_4_max = str(round(innov_4_max,2))
-s_innov_4_min = str(round(innov_4_min,2))
-#s_innov_4_std = str(round(np.std(ekf2_innovations['vel_pos_innov[4]']),2))
-
-# generate plots
-
-plt.subplot(2,1,1)
-plt.plot(1e-6*ekf2_innovations['timestamp'],ekf2_innovations['vel_pos_innov[3]'],'b')
-plt.plot(1e-6*ekf2_innovations['timestamp'],np.sqrt(ekf2_innovations['vel_pos_innov_var[3]']),'r')
-plt.plot(1e-6*ekf2_innovations['timestamp'],-np.sqrt(ekf2_innovations['vel_pos_innov_var[3]']),'r')
-plt.title('Horizontal Position Innovations')
-plt.ylabel('North Pos (m)')
-plt.xlabel('time (sec)')
-plt.grid()
-plt.text(innov_3_max_time, innov_3_max, 'max='+s_innov_3_max, fontsize=12, horizontalalignment='left', verticalalignment='bottom')
-plt.text(innov_3_min_time, innov_3_min, 'min='+s_innov_3_min, fontsize=12, horizontalalignment='left', verticalalignment='top')
-#plt.legend(['std='+s_innov_3_std],loc='upper left',frameon=False)
-
-plt.subplot(2,1,2)
-plt.plot(1e-6*ekf2_innovations['timestamp'],ekf2_innovations['vel_pos_innov[4]'],'b')
-plt.plot(1e-6*ekf2_innovations['timestamp'],np.sqrt(ekf2_innovations['vel_pos_innov_var[4]']),'r')
-plt.plot(1e-6*ekf2_innovations['timestamp'],-np.sqrt(ekf2_innovations['vel_pos_innov_var[4]']),'r')
-plt.ylabel('East Pos (m)')
-plt.xlabel('time (sec)')
-plt.grid()
-plt.text(innov_4_max_time, innov_4_max, 'max='+s_innov_4_max, fontsize=12, horizontalalignment='left', verticalalignment='bottom')
-plt.text(innov_4_min_time, innov_4_min, 'min='+s_innov_4_min, fontsize=12, horizontalalignment='left', verticalalignment='top')
-#plt.legend(['std='+s_innov_4_std],loc='upper left',frameon=False)
-
-pp.savefig()
-plt.close(3)
-
-# manetometer innovations
-plt.figure(4,figsize=(20,13))
-
-# generate X axis metadata
-innov_0_max_arg = np.argmax(ekf2_innovations['mag_innov[0]'])
-innov_0_max_time = innov_time[innov_0_max_arg]
-innov_0_max = np.amax(ekf2_innovations['mag_innov[0]'])
-
-innov_0_min_arg = np.argmin(ekf2_innovations['mag_innov[0]'])
-innov_0_min_time = innov_time[innov_0_min_arg]
-innov_0_min = np.amin(ekf2_innovations['mag_innov[0]'])
-
-s_innov_0_max = str(round(innov_0_max,3))
-s_innov_0_min = str(round(innov_0_min,3))
-#s_innov_0_std = str(round(np.std(ekf2_innovations['mag_innov[0]']),3))
-
-# generate Y axis metadata
-innov_1_max_arg = np.argmax(ekf2_innovations['mag_innov[1]'])
-innov_1_max_time = innov_time[innov_1_max_arg]
-innov_1_max = np.amax(ekf2_innovations['mag_innov[1]'])
-
-innov_1_min_arg = np.argmin(ekf2_innovations['mag_innov[1]'])
-innov_1_min_time = innov_time[innov_1_min_arg]
-innov_1_min = np.amin(ekf2_innovations['mag_innov[1]'])
-
-s_innov_1_max = str(round(innov_1_max,3))
-s_innov_1_min = str(round(innov_1_min,3))
-#s_innov_1_std = str(round(np.std(ekf2_innovations['mag_innov[1]']),3))
-
-# generate Z axis metadata
-innov_2_max_arg = np.argmax(ekf2_innovations['mag_innov[2]'])
-innov_2_max_time = innov_time[innov_2_max_arg]
-innov_2_max = np.amax(ekf2_innovations['mag_innov[2]'])
-
-innov_2_min_arg = np.argmin(ekf2_innovations['mag_innov[2]'])
-innov_2_min_time = innov_time[innov_2_min_arg]
-innov_2_min = np.amin(ekf2_innovations['mag_innov[2]'])
-
-s_innov_2_max = str(round(innov_2_max,3))
-s_innov_2_min = str(round(innov_2_min,3))
-#s_innov_2_std = str(round(np.std(ekf2_innovations['mag_innov[0]']),3))
-
-# draw plots
-plt.subplot(3,1,1)
-plt.plot(1e-6*ekf2_innovations['timestamp'],ekf2_innovations['mag_innov[0]'],'b')
-plt.plot(1e-6*ekf2_innovations['timestamp'],np.sqrt(ekf2_innovations['mag_innov_var[0]']),'r')
-plt.plot(1e-6*ekf2_innovations['timestamp'],-np.sqrt(ekf2_innovations['mag_innov_var[0]']),'r')
-plt.title('Magnetometer Innovations')
-plt.ylabel('X (Gauss)')
-plt.xlabel('time (sec)')
-plt.grid()
-plt.text(innov_0_max_time, innov_0_max, 'max='+s_innov_0_max, fontsize=12, horizontalalignment='left', verticalalignment='bottom')
-plt.text(innov_0_min_time, innov_0_min, 'min='+s_innov_0_min, fontsize=12, horizontalalignment='left', verticalalignment='top')
-#plt.legend(['std='+s_innov_0_std],loc='upper left',frameon=False)
-
-plt.subplot(3,1,2)
-plt.plot(1e-6*ekf2_innovations['timestamp'],ekf2_innovations['mag_innov[1]'],'b')
-plt.plot(1e-6*ekf2_innovations['timestamp'],np.sqrt(ekf2_innovations['mag_innov_var[1]']),'r')
-plt.plot(1e-6*ekf2_innovations['timestamp'],-np.sqrt(ekf2_innovations['mag_innov_var[1]']),'r')
-plt.ylabel('Y (Gauss)')
-plt.xlabel('time (sec)')
-plt.grid()
-plt.text(innov_1_max_time, innov_1_max, 'max='+s_innov_1_max, fontsize=12, horizontalalignment='left', verticalalignment='bottom')
-plt.text(innov_1_min_time, innov_1_min, 'min='+s_innov_1_min, fontsize=12, horizontalalignment='left', verticalalignment='top')
-#plt.legend(['std='+s_innov_1_std],loc='upper left',frameon=False)
-
-plt.subplot(3,1,3)
-plt.plot(1e-6*ekf2_innovations['timestamp'],ekf2_innovations['mag_innov[2]'],'b')
-plt.plot(1e-6*ekf2_innovations['timestamp'],np.sqrt(ekf2_innovations['mag_innov_var[2]']),'r')
-plt.plot(1e-6*ekf2_innovations['timestamp'],-np.sqrt(ekf2_innovations['mag_innov_var[2]']),'r')
-plt.ylabel('Z (Gauss)')
-plt.xlabel('time (sec)')
-plt.grid()
-plt.text(innov_2_max_time, innov_2_max, 'max='+s_innov_2_max, fontsize=12, horizontalalignment='left', verticalalignment='bottom')
-plt.text(innov_2_min_time, innov_2_min, 'min='+s_innov_2_min, fontsize=12, horizontalalignment='left', verticalalignment='top')
-#plt.legend(['std='+s_innov_2_std],loc='upper left',frameon=False)
-
-pp.savefig()
-plt.close(4)
-
-# magnetic heading innovations
-plt.figure(5,figsize=(20,13))
-
-# generate metadata
-innov_0_max_arg = np.argmax(ekf2_innovations['heading_innov'])
-innov_0_max_time = innov_time[innov_0_max_arg]
-innov_0_max = np.amax(ekf2_innovations['heading_innov'])
-
-innov_0_min_arg = np.argmin(ekf2_innovations['heading_innov'])
-innov_0_min_time = innov_time[innov_0_min_arg]
-innov_0_min = np.amin(ekf2_innovations['heading_innov'])
-
-s_innov_0_max = str(round(innov_0_max,3))
-s_innov_0_min = str(round(innov_0_min,3))
-#s_innov_0_std = str(round(np.std(ekf2_innovations['heading_innov']),3))
 
-# draw plot
-plt.plot(1e-6*ekf2_innovations['timestamp'],ekf2_innovations['heading_innov'],'b')
-plt.plot(1e-6*ekf2_innovations['timestamp'],np.sqrt(ekf2_innovations['heading_innov_var']),'r')
-plt.plot(1e-6*ekf2_innovations['timestamp'],-np.sqrt(ekf2_innovations['heading_innov_var']),'r')
-plt.title('Magnetic Heading Innovations')
-plt.ylabel('Heaing (rad)')
-plt.xlabel('time (sec)')
-plt.grid()
-plt.text(innov_0_max_time, innov_0_max, 'max='+s_innov_0_max, fontsize=12, horizontalalignment='left', verticalalignment='bottom')
-plt.text(innov_0_min_time, innov_0_min, 'min='+s_innov_0_min, fontsize=12, horizontalalignment='left', verticalalignment='top')
-#plt.legend(['std='+s_innov_0_std],loc='upper left',frameon=False)
-
-pp.savefig()
-plt.close(5)
-
-# air data innovations
-plt.figure(6,figsize=(20,13))
-
-# generate airspeed metadata
-airspeed_innov_max_arg = np.argmax(ekf2_innovations['airspeed_innov'])
-airspeed_innov_max_time = innov_time[airspeed_innov_max_arg]
-airspeed_innov_max = np.amax(ekf2_innovations['airspeed_innov'])
-
-airspeed_innov_min_arg = np.argmin(ekf2_innovations['airspeed_innov'])
-airspeed_innov_min_time = innov_time[airspeed_innov_min_arg]
-airspeed_innov_min = np.amin(ekf2_innovations['airspeed_innov'])
-
-s_airspeed_innov_max = str(round(airspeed_innov_max,3))
-s_airspeed_innov_min = str(round(airspeed_innov_min,3))
-
-# generate sideslip metadata
-beta_innov_max_arg = np.argmax(ekf2_innovations['beta_innov'])
-beta_innov_max_time = innov_time[beta_innov_max_arg]
-beta_innov_max = np.amax(ekf2_innovations['beta_innov'])
-
-beta_innov_min_arg = np.argmin(ekf2_innovations['beta_innov'])
-beta_innov_min_time = innov_time[beta_innov_min_arg]
-beta_innov_min = np.amin(ekf2_innovations['beta_innov'])
-
-s_beta_innov_max = str(round(beta_innov_max,3))
-s_beta_innov_min = str(round(beta_innov_min,3))
-
-# draw plots
-plt.subplot(2,1,1)
-plt.plot(1e-6*ekf2_innovations['timestamp'],ekf2_innovations['airspeed_innov'],'b')
-plt.plot(1e-6*ekf2_innovations['timestamp'],np.sqrt(ekf2_innovations['airspeed_innov_var']),'r')
-plt.plot(1e-6*ekf2_innovations['timestamp'],-np.sqrt(ekf2_innovations['airspeed_innov_var']),'r')
-plt.title('True Airspeed Innovations')
-plt.ylabel('innovation (m/sec)')
-plt.xlabel('time (sec)')
-plt.grid()
-plt.text(airspeed_innov_max_time, airspeed_innov_max, 'max='+s_airspeed_innov_max, fontsize=12, horizontalalignment='left', verticalalignment='bottom')
-plt.text(airspeed_innov_min_time, airspeed_innov_min, 'min='+s_airspeed_innov_min, fontsize=12, horizontalalignment='left', verticalalignment='top')
-
-plt.subplot(2,1,2)
-plt.plot(1e-6*ekf2_innovations['timestamp'],ekf2_innovations['beta_innov'],'b')
-plt.plot(1e-6*ekf2_innovations['timestamp'],np.sqrt(ekf2_innovations['beta_innov_var']),'r')
-plt.plot(1e-6*ekf2_innovations['timestamp'],-np.sqrt(ekf2_innovations['beta_innov_var']),'r')
-plt.title('Sythetic Sideslip Innovations')
-plt.ylabel('innovation (rad)')
-plt.xlabel('time (sec)')
-plt.grid()
-plt.text(beta_innov_max_time, beta_innov_max, 'max='+s_beta_innov_max, fontsize=12, horizontalalignment='left', verticalalignment='bottom')
-plt.text(beta_innov_min_time, beta_innov_min, 'min='+s_beta_innov_min, fontsize=12, horizontalalignment='left', verticalalignment='top')
-
-pp.savefig()
-plt.close(6)
-
-# optical flow innovations
-plt.figure(7,figsize=(20,13))
-
-# generate X axis metadata
-flow_innov_x_max_arg = np.argmax(ekf2_innovations['flow_innov[0]'])
-flow_innov_x_max_time = innov_time[flow_innov_x_max_arg]
-flow_innov_x_max = np.amax(ekf2_innovations['flow_innov[0]'])
-
-flow_innov_x_min_arg = np.argmin(ekf2_innovations['flow_innov[0]'])
-flow_innov_x_min_time = innov_time[flow_innov_x_min_arg]
-flow_innov_x_min = np.amin(ekf2_innovations['flow_innov[0]'])
-
-s_flow_innov_x_max = str(round(flow_innov_x_max,3))
-s_flow_innov_x_min = str(round(flow_innov_x_min,3))
-#s_flow_innov_x_std = str(round(np.std(ekf2_innovations['flow_innov[0]']),3))
-
-# generate Y axis metadata
-flow_innov_y_max_arg = np.argmax(ekf2_innovations['flow_innov[1]'])
-flow_innov_y_max_time = innov_time[flow_innov_y_max_arg]
-flow_innov_y_max = np.amax(ekf2_innovations['flow_innov[1]'])
-
-flow_innov_y_min_arg = np.argmin(ekf2_innovations['flow_innov[1]'])
-flow_innov_y_min_time = innov_time[flow_innov_y_min_arg]
-flow_innov_y_min = np.amin(ekf2_innovations['flow_innov[1]'])
-
-s_flow_innov_y_max = str(round(flow_innov_y_max,3))
-s_flow_innov_y_min = str(round(flow_innov_y_min,3))
-#s_flow_innov_y_std = str(round(np.std(ekf2_innovations['flow_innov[1]']),3))
-
-# draw plots
-plt.subplot(2,1,1)
-plt.plot(1e-6*ekf2_innovations['timestamp'],ekf2_innovations['flow_innov[0]'],'b')
-plt.plot(1e-6*ekf2_innovations['timestamp'],np.sqrt(ekf2_innovations['flow_innov_var[0]']),'r')
-plt.plot(1e-6*ekf2_innovations['timestamp'],-np.sqrt(ekf2_innovations['flow_innov_var[0]']),'r')
-plt.title('Optical Flow Innovations')
-plt.ylabel('X (rad/sec)')
-plt.xlabel('time (sec)')
-plt.grid()
-plt.text(flow_innov_x_max_time, flow_innov_x_max, 'max='+s_flow_innov_x_max, fontsize=12, horizontalalignment='left', verticalalignment='bottom')
-plt.text(flow_innov_x_min_time, flow_innov_x_min, 'min='+s_flow_innov_x_min, fontsize=12, horizontalalignment='left', verticalalignment='top')
-#plt.legend(['std='+s_flow_innov_x_std],loc='upper left',frameon=False)
-
-plt.subplot(2,1,2)
-plt.plot(1e-6*ekf2_innovations['timestamp'],ekf2_innovations['flow_innov[1]'],'b')
-plt.plot(1e-6*ekf2_innovations['timestamp'],np.sqrt(ekf2_innovations['flow_innov_var[1]']),'r')
-plt.plot(1e-6*ekf2_innovations['timestamp'],-np.sqrt(ekf2_innovations['flow_innov_var[1]']),'r')
-plt.ylabel('Y (rad/sec)')
-plt.xlabel('time (sec)')
-plt.grid()
-plt.text(flow_innov_y_max_time, flow_innov_y_max, 'max='+s_flow_innov_y_max, fontsize=12, horizontalalignment='left', verticalalignment='bottom')
-plt.text(flow_innov_y_min_time, flow_innov_y_min, 'min='+s_flow_innov_y_min, fontsize=12, horizontalalignment='left', verticalalignment='top')
-#plt.legend(['std='+s_flow_innov_y_std],loc='upper left',frameon=False)
-
-pp.savefig()
-plt.close(7)
-
-# generate metadata for the normalised innovation consistency test levels
-# a value > 1.0 means the measurement data for that test has been rejected by the EKF
-
-# magnetometer data
-mag_test_max_arg = np.argmax(estimator_status['mag_test_ratio'])
-mag_test_max_time = status_time[mag_test_max_arg]
-mag_test_max = np.amax(estimator_status['mag_test_ratio'])
-mag_test_mean = np.mean(estimator_status['mag_test_ratio'])
-
-# velocity data (GPS)
-vel_test_max_arg = np.argmax(estimator_status['vel_test_ratio'])
-vel_test_max_time = status_time[vel_test_max_arg]
-vel_test_max = np.amax(estimator_status['vel_test_ratio'])
-vel_test_mean = np.mean(estimator_status['vel_test_ratio'])
-
-# horizontal position data (GPS or external vision)
-pos_test_max_arg = np.argmax(estimator_status['pos_test_ratio'])
-pos_test_max_time = status_time[pos_test_max_arg]
-pos_test_max = np.amax(estimator_status['pos_test_ratio'])
-pos_test_mean = np.mean(estimator_status['pos_test_ratio'])
-
-# height data (Barometer, GPS or rangefinder)
-hgt_test_max_arg = np.argmax(estimator_status['hgt_test_ratio'])
-hgt_test_max_time = status_time[hgt_test_max_arg]
-hgt_test_max = np.amax(estimator_status['hgt_test_ratio'])
-hgt_test_mean = np.mean(estimator_status['hgt_test_ratio'])
-
-# airspeed data
-tas_test_max_arg = np.argmax(estimator_status['tas_test_ratio'])
-tas_test_max_time = status_time[tas_test_max_arg]
-tas_test_max = np.amax(estimator_status['tas_test_ratio'])
-tas_test_mean = np.mean(estimator_status['tas_test_ratio'])
-
-# height above ground data (rangefinder)
-hagl_test_max_arg = np.argmax(estimator_status['hagl_test_ratio'])
-hagl_test_max_time = status_time[hagl_test_max_arg]
-hagl_test_max = np.amax(estimator_status['hagl_test_ratio'])
-hagl_test_mean = np.mean(estimator_status['hagl_test_ratio'])
-
-# plot normalised innovation test levels
-plt.figure(8,figsize=(20,13))
-
-if tas_test_max == 0.0:
-    n_plots = 3
-else:
-    n_plots = 4
-
-plt.subplot(n_plots,1,1)
-plt.plot(status_time,estimator_status['mag_test_ratio'],'b')
-plt.title('Normalised Innovation Test Levels')
-plt.ylabel('mag')
-plt.xlabel('time (sec)')
-plt.grid()
-plt.text(mag_test_max_time, mag_test_max, 'max='+str(round(mag_test_max,2))+' , mean='+str(round(mag_test_mean,2)), fontsize=12, horizontalalignment='left', verticalalignment='bottom',color='b')
-
-plt.subplot(n_plots,1,2)
-plt.plot(status_time,estimator_status['vel_test_ratio'],'b')
-plt.plot(status_time,estimator_status['pos_test_ratio'],'r')
-plt.ylabel('vel,pos')
-plt.xlabel('time (sec)')
-plt.grid()
-plt.text(vel_test_max_time, vel_test_max, 'vel max='+str(round(vel_test_max,2))+' , mean='+str(round(vel_test_mean,2)), fontsize=12, horizontalalignment='left', verticalalignment='bottom',color='b')
-plt.text(pos_test_max_time, pos_test_max, 'pos max='+str(round(pos_test_max,2))+' , mean='+str(round(pos_test_mean,2)), fontsize=12, horizontalalignment='left', verticalalignment='bottom',color='r')
-
-plt.subplot(n_plots,1,3)
-plt.plot(status_time,estimator_status['hgt_test_ratio'],'b')
-plt.ylabel('hgt')
-plt.xlabel('time (sec)')
-plt.grid()
-plt.text(hgt_test_max_time, hgt_test_max, 'hgt max='+str(round(hgt_test_max,2))+' , mean='+str(round(hgt_test_mean,2)), fontsize=12, horizontalalignment='left', verticalalignment='bottom',color='b')
-
-if hagl_test_max > 0.0:
-    plt.plot(status_time,estimator_status['hagl_test_ratio'],'r')
-    plt.text(hagl_test_max_time, hagl_test_max, 'hagl max='+str(round(hagl_test_max,2))+' , mean='+str(round(hagl_test_mean,2)), fontsize=12, horizontalalignment='left', verticalalignment='bottom',color='r')
-    plt.ylabel('hgt,HAGL')
-
-if n_plots == 4:
-    plt.subplot(n_plots,1,4)
-    plt.plot(status_time,estimator_status['tas_test_ratio'],'b')
-    plt.ylabel('TAS')
-    plt.xlabel('time (sec)')
-    plt.grid()
-    plt.text(tas_test_max_time, tas_test_max, 'max='+str(round(tas_test_max,2))+' , mean='+str(round(tas_test_mean,2)), fontsize=12, horizontalalignment='left', verticalalignment='bottom',color='b')
-
-pp.savefig()
-plt.close(8)
-
-# extract control mode metadata from estimator_status.control_mode_flags
-# 0 - true if the filter tilt alignment is complete
-# 1 - true if the filter yaw alignment is complete
-# 2 - true if GPS measurements are being fused
-# 3 - true if optical flow measurements are being fused
-# 4 - true if a simple magnetic yaw heading is being fused
-# 5 - true if 3-axis magnetometer measurement are being fused
-# 6 - true if synthetic magnetic declination measurements are being fused
-# 7 - true when the vehicle is airborne
-# 8 - true when wind velocity is being estimated
-# 9 - true when baro height is being fused as a primary height reference
-# 10 - true when range finder height is being fused as a primary height reference
-# 11 - true when range finder height is being fused as a primary height reference
-# 12 - true when local position data from external vision is being fused
-# 13 - true when yaw data from external vision measurements is being fused
-# 14 - true when height data from external vision measurements is being fused
-tilt_aligned    = ((2**0 & estimator_status['control_mode_flags']) > 0)*1
-yaw_aligned     = ((2**1 & estimator_status['control_mode_flags']) > 0)*1
-using_gps       = ((2**2 & estimator_status['control_mode_flags']) > 0)*1
-using_optflow   = ((2**3 & estimator_status['control_mode_flags']) > 0)*1
-using_magyaw    = ((2**4 & estimator_status['control_mode_flags']) > 0)*1
-using_mag3d     = ((2**5 & estimator_status['control_mode_flags']) > 0)*1
-using_magdecl   = ((2**6 & estimator_status['control_mode_flags']) > 0)*1
-airborne        = ((2**7 & estimator_status['control_mode_flags']) > 0)*1
-estimating_wind = ((2**8 & estimator_status['control_mode_flags']) > 0)*1
-using_barohgt   = ((2**9 & estimator_status['control_mode_flags']) > 0)*1
-using_rnghgt    = ((2**10 & estimator_status['control_mode_flags']) > 0)*1
-using_gpshgt    = ((2**11 & estimator_status['control_mode_flags']) > 0)*1
-using_evpos     = ((2**12 & estimator_status['control_mode_flags']) > 0)*1
-using_evyaw     = ((2**13 & estimator_status['control_mode_flags']) > 0)*1
-using_evhgt     = ((2**14 & estimator_status['control_mode_flags']) > 0)*1
-
-# calculate in-air transition time
-if (np.amin(airborne) < 0.5) and (np.amax(airborne) > 0.5):
-    in_air_transtion_time_arg = np.argmax(np.diff(airborne))
-    in_air_transition_time = status_time[in_air_transtion_time_arg]
-elif (np.amax(airborne) > 0.5):
-    in_air_transition_time = np.amin(status_time)
-    print('log starts while in-air at '+str(round(in_air_transition_time,1))+' sec')
-else:
-    in_air_transition_time = float('NaN')
-    print('always on ground')
-
-# calculate on-ground transition time
-if (np.amin(np.diff(airborne)) < 0.0):
-    on_ground_transition_time_arg = np.argmin(np.diff(airborne))
-    on_ground_transition_time = status_time[on_ground_transition_time_arg]
-elif (np.amax(airborne) > 0.5):
-    on_ground_transition_time = np.amax(status_time)
-    print('log finishes while in-air at '+str(round(on_ground_transition_time,1))+' sec')
-else:
-    on_ground_transition_time = float('NaN')
-    print('always on ground')
-
-if (np.amax(np.diff(airborne)) > 0.5) and (np.amin(np.diff(airborne)) < -0.5):
-    if ((on_ground_transition_time - in_air_transition_time) > 0.0):
-        in_air_duration = on_ground_transition_time - in_air_transition_time;
-    else:
-        in_air_duration = float('NaN')
+if args.check_level_thresholds:
+    check_level_dict_filename = args.check_level_thresholds
 else:
-    in_air_duration = float('NaN')
-
-# calculate alignment completion times
-tilt_align_time_arg = np.argmax(np.diff(tilt_aligned))
-tilt_align_time = status_time[tilt_align_time_arg]
-yaw_align_time_arg = np.argmax(np.diff(yaw_aligned))
-yaw_align_time = status_time[yaw_align_time_arg]
-
-# calculate position aiding start times
-gps_aid_time_arg = np.argmax(np.diff(using_gps))
-gps_aid_time = status_time[gps_aid_time_arg]
-optflow_aid_time_arg = np.argmax(np.diff(using_optflow))
-optflow_aid_time = status_time[optflow_aid_time_arg]
-evpos_aid_time_arg = np.argmax(np.diff(using_evpos))
-evpos_aid_time = status_time[evpos_aid_time_arg]
-
-# calculate height aiding start times
-barohgt_aid_time_arg = np.argmax(np.diff(using_barohgt))
-barohgt_aid_time = status_time[barohgt_aid_time_arg]
-gpshgt_aid_time_arg = np.argmax(np.diff(using_gpshgt))
-gpshgt_aid_time = status_time[gpshgt_aid_time_arg]
-rnghgt_aid_time_arg = np.argmax(np.diff(using_rnghgt))
-rnghgt_aid_time = status_time[rnghgt_aid_time_arg]
-evhgt_aid_time_arg = np.argmax(np.diff(using_evhgt))
-evhgt_aid_time = status_time[evhgt_aid_time_arg]
-
-# calculate magnetometer aiding start times
-using_magyaw_time_arg = np.argmax(np.diff(using_magyaw))
-using_magyaw_time = status_time[using_magyaw_time_arg]
-using_mag3d_time_arg = np.argmax(np.diff(using_mag3d))
-using_mag3d_time = status_time[using_mag3d_time_arg]
-using_magdecl_time_arg = np.argmax(np.diff(using_magdecl))
-using_magdecl_time = status_time[using_magdecl_time_arg]
-
-# control mode summary plot A
-plt.figure(9,figsize=(20,13))
-
-# subplot for alignment completion
-plt.subplot(4,1,1)
-plt.title('EKF Control Status - Figure A')
-plt.plot(status_time,tilt_aligned,'b')
-plt.plot(status_time,yaw_aligned,'r')
-plt.ylim(-0.1, 1.1)
-plt.ylabel('aligned')
-plt.grid()
-if np.amin(tilt_aligned) > 0:
-    plt.text(tilt_align_time, 0.5, 'no pre-arm data - cannot calculate alignment completion times', fontsize=12, horizontalalignment='left', verticalalignment='center',color='black')
-else:
-    plt.text(tilt_align_time, 0.33, 'tilt alignment at '+str(round(tilt_align_time,1))+' sec', fontsize=12, horizontalalignment='left', verticalalignment='center',color='b')
-    plt.text(yaw_align_time, 0.67, 'yaw alignment at '+str(round(tilt_align_time,1))+' sec', fontsize=12, horizontalalignment='left', verticalalignment='center',color='r')
-
-# subplot for position aiding
-plt.subplot(4,1,2)
-plt.plot(status_time,using_gps,'b')
-plt.plot(status_time,using_optflow,'r')
-plt.plot(status_time,using_evpos,'g')
-plt.ylim(-0.1, 1.1)
-plt.ylabel('pos aiding')
-plt.grid()
-
-if np.amin(using_gps) > 0:
-    plt.text(gps_aid_time, 0.25, 'no pre-arm data - cannot calculate GPS aiding start time', fontsize=12, horizontalalignment='left', verticalalignment='center',color='b')
-elif np.amax(using_gps) > 0:
-    plt.text(gps_aid_time, 0.25, 'GPS aiding at '+str(round(gps_aid_time,1))+' sec', fontsize=12, horizontalalignment='left', verticalalignment='center',color='b')
+    file_dir = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__)))
+    check_level_dict_filename = os.path.join(file_dir, "check_level_dict.csv")
 
-if np.amin(using_optflow) > 0:
-    plt.text(optflow_aid_time, 0.50, 'no pre-arm data - cannot calculate optical flow aiding start time', fontsize=12, horizontalalignment='left', verticalalignment='center',color='r')
-elif np.amax(using_optflow) > 0:
-    plt.text(optflow_aid_time, 0.50, 'optical flow aiding at '+str(round(optflow_aid_time,1))+' sec', fontsize=12, horizontalalignment='left', verticalalignment='center',color='r')
-
-if np.amin(using_evpos) > 0:
-    plt.text(evpos_aid_time, 0.75, 'no pre-arm data - cannot calculate external vision aiding start time', fontsize=12, horizontalalignment='left', verticalalignment='center',color='g')
-elif np.amax(using_evpos) > 0:
-    plt.text(evpos_aid_time, 0.75, 'external vision aiding at '+str(round(evpos_aid_time,1))+' sec', fontsize=12, horizontalalignment='left', verticalalignment='center',color='g')
-
-# subplot for height aiding
-plt.subplot(4,1,3)
-plt.plot(status_time,using_barohgt,'b')
-plt.plot(status_time,using_gpshgt,'r')
-plt.plot(status_time,using_rnghgt,'g')
-plt.plot(status_time,using_evhgt,'c')
-plt.ylim(-0.1, 1.1)
-plt.ylabel('hgt aiding')
-plt.grid()
-
-if np.amin(using_barohgt) > 0:
-    plt.text(barohgt_aid_time, 0.2, 'no pre-arm data - cannot calculate Baro aiding start time', fontsize=12, horizontalalignment='left', verticalalignment='center',color='b')
-elif np.amax(using_barohgt) > 0:
-    plt.text(barohgt_aid_time, 0.2, 'Baro aiding at '+str(round(gps_aid_time,1))+' sec', fontsize=12, horizontalalignment='left', verticalalignment='center',color='b')
-
-if np.amin(using_gpshgt) > 0:
-    plt.text(gpshgt_aid_time, 0.4, 'no pre-arm data - cannot calculate GPS aiding start time', fontsize=12, horizontalalignment='left', verticalalignment='center',color='r')
-elif np.amax(using_gpshgt) > 0:
-    plt.text(gpshgt_aid_time, 0.4, 'GPS aiding at '+str(round(gpshgt_aid_time,1))+' sec', fontsize=12, horizontalalignment='left', verticalalignment='center',color='r')
-
-if np.amin(using_rnghgt) > 0:
-    plt.text(rnghgt_aid_time, 0.6, 'no pre-arm data - cannot calculate rangfinder aiding start time', fontsize=12, horizontalalignment='left', verticalalignment='center',color='g')
-elif np.amax(using_rnghgt) > 0:
-    plt.text(rnghgt_aid_time, 0.6, 'rangefinder aiding at '+str(round(rnghgt_aid_time,1))+' sec', fontsize=12, horizontalalignment='left', verticalalignment='center',color='g')
-
-if np.amin(using_evhgt) > 0:
-    plt.text(evhgt_aid_time, 0.8, 'no pre-arm data - cannot calculate external vision aiding start time', fontsize=12, horizontalalignment='left', verticalalignment='center',color='c')
-elif np.amax(using_evhgt) > 0:
-    plt.text(evhgt_aid_time, 0.8, 'external vision aiding at '+str(round(evhgt_aid_time,1))+' sec', fontsize=12, horizontalalignment='left', verticalalignment='center',color='c')
-
-# subplot for magnetometer aiding
-plt.subplot(4,1,4)
-plt.plot(status_time,using_magyaw,'b')
-plt.plot(status_time,using_mag3d,'r')
-plt.plot(status_time,using_magdecl,'g')
-plt.ylim(-0.1, 1.1)
-plt.ylabel('mag aiding')
-plt.xlabel('time (sec)')
-plt.grid()
-
-if np.amin(using_magyaw) > 0:
-    plt.text(using_magyaw_time, 0.25, 'no pre-arm data - cannot calculate magnetic yaw aiding start time', fontsize=12, horizontalalignment='left', verticalalignment='center',color='b')
-elif np.amax(using_magyaw) > 0:
-    plt.text(using_magyaw_time, 0.25, 'magnetic yaw aiding at '+str(round(using_magyaw_time,1))+' sec', fontsize=12, horizontalalignment='right', verticalalignment='center',color='b')
-
-if np.amin(using_mag3d) > 0:
-    plt.text(using_mag3d_time, 0.50, 'no pre-arm data - cannot calculate 3D magnetoemter aiding start time', fontsize=12, horizontalalignment='left', verticalalignment='center',color='r')
-elif np.amax(using_mag3d) > 0:
-    plt.text(using_mag3d_time, 0.50, 'magnetometer 3D aiding at '+str(round(using_mag3d_time,1))+' sec', fontsize=12, horizontalalignment='left', verticalalignment='center',color='r')
-
-if np.amin(using_magdecl) > 0:
-    plt.text(using_magdecl_time, 0.75, 'no pre-arm data - cannot magnetic declination aiding start time', fontsize=12, horizontalalignment='left', verticalalignment='center',color='g')
-elif np.amax(using_magdecl) > 0:
-    plt.text(using_magdecl_time, 0.75, 'magnetic declination aiding at '+str(round(using_magdecl_time,1))+' sec', fontsize=12, horizontalalignment='left', verticalalignment='center',color='g')
-
-pp.savefig()
-plt.close(9)
-
-# control mode summary plot B
-plt.figure(10,figsize=(20,13))
-
-# subplot for airborne status
-plt.subplot(2,1,1)
-plt.title('EKF Control Status - Figure B')
-plt.plot(status_time,airborne,'b')
-plt.ylim(-0.1, 1.1)
-plt.ylabel('airborne')
-plt.grid()
-
-if np.amax(np.diff(airborne)) < 0.5:
-    plt.text(in_air_transition_time, 0.67, 'ground to air transition not detected', fontsize=12, horizontalalignment='left', verticalalignment='center',color='b')
-else:
-    plt.text(in_air_transition_time, 0.67, 'in-air at '+str(round(in_air_transition_time,1))+' sec', fontsize=12, horizontalalignment='left', verticalalignment='center',color='b')
-
-if np.amin(np.diff(airborne)) > -0.5:
-    plt.text(on_ground_transition_time, 0.33, 'air to ground transition not detected', fontsize=12, horizontalalignment='left', verticalalignment='center',color='b')
-else:
-    plt.text(on_ground_transition_time, 0.33, 'on-ground at '+str(round(on_ground_transition_time,1))+' sec', fontsize=12, horizontalalignment='right', verticalalignment='center',color='b')
-
-if in_air_duration > 0.0:
-    plt.text((in_air_transition_time+on_ground_transition_time)/2, 0.5, 'duration = '+str(round(in_air_duration,1))+' sec', fontsize=12, horizontalalignment='center', verticalalignment='center',color='b')
-
-# subplot for wind estimation status
-plt.subplot(2,1,2)
-plt.plot(status_time,estimating_wind,'b')
-plt.ylim(-0.1, 1.1)
-plt.ylabel('estimating wind')
-plt.xlabel('time (sec)')
-plt.grid()
-
-pp.savefig()
-plt.close(10)
-
-# innovation_check_flags summary
-
-# 0 - true if velocity observations have been rejected
-# 1 - true if horizontal position observations have been rejected
-# 2 - true if true if vertical position observations have been rejected
-# 3 - true if the X magnetometer observation has been rejected
-# 4 - true if the Y magnetometer observation has been rejected
-# 5 - true if the Z magnetometer observation has been rejected
-# 6 - true if the yaw observation has been rejected
-# 7 - true if the airspeed observation has been rejected
-# 8 - true if the height above ground observation has been rejected
-# 9 - true if the X optical flow observation has been rejected
-# 10 - true if the Y optical flow observation has been rejected
-vel_innov_fail = ((2**0 & estimator_status['innovation_check_flags']) > 0)*1
-posh_innov_fail = ((2**1 & estimator_status['innovation_check_flags']) > 0)*1
-posv_innov_fail = ((2**2 & estimator_status['innovation_check_flags']) > 0)*1
-magx_innov_fail = ((2**3 & estimator_status['innovation_check_flags']) > 0)*1
-magy_innov_fail = ((2**4 & estimator_status['innovation_check_flags']) > 0)*1
-magz_innov_fail = ((2**5 & estimator_status['innovation_check_flags']) > 0)*1
-yaw_innov_fail = ((2**6 & estimator_status['innovation_check_flags']) > 0)*1
-tas_innov_fail = ((2**7 & estimator_status['innovation_check_flags']) > 0)*1
-hagl_innov_fail = ((2**8 & estimator_status['innovation_check_flags']) > 0)*1
-ofx_innov_fail = ((2**9 & estimator_status['innovation_check_flags']) > 0)*1
-ofy_innov_fail = ((2**10 & estimator_status['innovation_check_flags']) > 0)*1
-
-# plot innovation_check_flags summary
-plt.figure(11,figsize=(20,13))
-
-plt.subplot(5,1,1)
-plt.title('EKF Innovation Test Fails')
-plt.plot(status_time,vel_innov_fail,'b',label='vel NED')
-plt.plot(status_time,posh_innov_fail,'r',label='pos NE')
-plt.ylim(-0.1, 1.1)
-plt.ylabel('failed')
-plt.legend(loc='upper left')
-plt.grid()
-
-plt.subplot(5,1,2)
-plt.plot(status_time,posv_innov_fail,'b',label='hgt absolute')
-plt.plot(status_time,hagl_innov_fail,'r',label='hgt above ground')
-plt.ylim(-0.1, 1.1)
-plt.ylabel('failed')
-plt.legend(loc='upper left')
-plt.grid()
-
-plt.subplot(5,1,3)
-plt.plot(status_time,magx_innov_fail,'b',label='mag_x')
-plt.plot(status_time,magy_innov_fail,'r',label='mag_y')
-plt.plot(status_time,magz_innov_fail,'g',label='mag_z')
-plt.plot(status_time,yaw_innov_fail,'c',label='yaw')
-plt.legend(loc='upper left')
-plt.ylim(-0.1, 1.1)
-plt.ylabel('failed')
-plt.grid()
-
-plt.subplot(5,1,4)
-plt.plot(status_time,tas_innov_fail,'b',label='airspeed')
-plt.ylim(-0.1, 1.1)
-plt.ylabel('failed')
-plt.legend(loc='upper left')
-plt.grid()
-
-plt.subplot(5,1,5)
-plt.plot(status_time,ofx_innov_fail,'b',label='flow X')
-plt.plot(status_time,ofy_innov_fail,'r',label='flow Y')
-plt.ylim(-0.1, 1.1)
-plt.ylabel('failed')
-plt.xlabel('time (sec')
-plt.legend(loc='upper left')
-plt.grid()
-
-pp.savefig()
-plt.close(11)
-
-# gps_check_fail_flags summary
-plt.figure(12,figsize=(20,13))
-# 0 : minimum required sat count fail
-# 1 : minimum required GDoP fail
-# 2 : maximum allowed horizontal position error fail
-# 3 : maximum allowed vertical position error fail
-# 4 : maximum allowed speed error fail
-# 5 : maximum allowed horizontal position drift fail
-# 6 : maximum allowed vertical position drift fail
-# 7 : maximum allowed horizontal speed fail
-# 8 : maximum allowed vertical velocity discrepancy fail
-nsat_fail = ((2**0 & estimator_status['gps_check_fail_flags']) > 0)*1
-gdop_fail = ((2**1 & estimator_status['gps_check_fail_flags']) > 0)*1
-herr_fail = ((2**2 & estimator_status['gps_check_fail_flags']) > 0)*1
-verr_fail = ((2**3 & estimator_status['gps_check_fail_flags']) > 0)*1
-serr_fail = ((2**4 & estimator_status['gps_check_fail_flags']) > 0)*1
-hdrift_fail = ((2**5 & estimator_status['gps_check_fail_flags']) > 0)*1
-vdrift_fail = ((2**6 & estimator_status['gps_check_fail_flags']) > 0)*1
-hspd_fail = ((2**7 & estimator_status['gps_check_fail_flags']) > 0)*1
-veld_diff_fail = ((2**8 & estimator_status['gps_check_fail_flags']) > 0)*1
-
-plt.subplot(2,1,1)
-plt.title('GPS Direct Output Check Failures')
-plt.plot(status_time,nsat_fail,'b',label='N sats')
-plt.plot(status_time,gdop_fail,'r',label='GDOP')
-plt.plot(status_time,herr_fail,'g',label='horiz pos error')
-plt.plot(status_time,verr_fail,'c',label='vert pos error')
-plt.plot(status_time,serr_fail,'m',label='speed error')
-plt.ylim(-0.1, 1.1)
-plt.ylabel('failed')
-plt.legend(loc='upper right')
-plt.grid()
-
-plt.subplot(2,1,2)
-plt.title('GPS Derived Output Check Failures')
-plt.plot(status_time,hdrift_fail,'b',label='horiz drift')
-plt.plot(status_time,vdrift_fail,'r',label='vert drift')
-plt.plot(status_time,hspd_fail,'g',label='horiz speed')
-plt.plot(status_time,veld_diff_fail,'c',label='vert vel inconsistent')
-plt.ylim(-0.1, 1.1)
-plt.ylabel('failed')
-plt.xlabel('time (sec')
-plt.legend(loc='upper right')
-plt.grid()
-
-pp.savefig()
-plt.close(12)
-
-# filter reported accuracy
-plt.figure(13,figsize=(20,13))
-plt.title('Reported Accuracy')
-plt.plot(status_time,estimator_status['pos_horiz_accuracy'],'b',label='horizontal')
-plt.plot(status_time,estimator_status['pos_vert_accuracy'],'r',label='vertical')
-plt.ylabel('accuracy (m)')
-plt.xlabel('time (sec')
-plt.legend(loc='upper right')
-plt.grid()
-
-pp.savefig()
-plt.close(13)
-
-# Plot the EKF IMU vibration metrics
-plt.figure(14,figsize=(20,13))
-
-vibe_coning_max_arg = np.argmax(estimator_status['vibe[0]'])
-vibe_coning_max_time = status_time[vibe_coning_max_arg]
-vibe_coning_max = np.amax(estimator_status['vibe[0]'])
-
-vibe_hf_dang_max_arg = np.argmax(estimator_status['vibe[1]'])
-vibe_hf_dang_max_time = status_time[vibe_hf_dang_max_arg]
-vibe_hf_dang_max = np.amax(estimator_status['vibe[1]'])
-
-vibe_hf_dvel_max_arg = np.argmax(estimator_status['vibe[2]'])
-vibe_hf_dvel_max_time = status_time[vibe_hf_dvel_max_arg]
-vibe_hf_dvel_max = np.amax(estimator_status['vibe[2]'])
-
-plt.subplot(3,1,1)
-plt.plot(1e-6*estimator_status['timestamp'] , 1000.0 * estimator_status['vibe[0]'],'b')
-plt.title('IMU Vibration Metrics')
-plt.ylabel('Del Ang Coning (mrad)')
-plt.grid()
-plt.text(vibe_coning_max_time, 1000.0 * vibe_coning_max, 'max='+str(round(1000.0 * vibe_coning_max,5)), fontsize=12, horizontalalignment='left', verticalalignment='top')
-
-plt.subplot(3,1,2)
-plt.plot(1e-6*estimator_status['timestamp'] , 1000.0 * estimator_status['vibe[1]'],'b')
-plt.ylabel('HF Del Ang (mrad)')
-plt.grid()
-plt.text(vibe_hf_dang_max_time, 1000.0 * vibe_hf_dang_max, 'max='+str(round(1000.0 * vibe_hf_dang_max,3)), fontsize=12, horizontalalignment='left', verticalalignment='top')
-
-plt.subplot(3,1,3)
-plt.plot(1e-6*estimator_status['timestamp'] , estimator_status['vibe[2]'],'b')
-plt.ylabel('HF Del Vel (m/s)')
-plt.xlabel('time (sec)')
-plt.grid()
-plt.text(vibe_hf_dvel_max_time, vibe_hf_dvel_max, 'max='+str(round(vibe_hf_dvel_max,4)), fontsize=12, horizontalalignment='left', verticalalignment='top')
-
-pp.savefig()
-plt.close(14)
-
-# Plot the EKF output observer tracking errors
-plt.figure(15,figsize=(20,13))
-
-ang_track_err_max_arg = np.argmax(ekf2_innovations['output_tracking_error[0]'])
-ang_track_err_max_time = innov_time[ang_track_err_max_arg]
-ang_track_err_max = np.amax(ekf2_innovations['output_tracking_error[0]'])
-
-vel_track_err_max_arg = np.argmax(ekf2_innovations['output_tracking_error[1]'])
-vel_track_err_max_time = innov_time[vel_track_err_max_arg]
-vel_track_err_max = np.amax(ekf2_innovations['output_tracking_error[1]'])
-
-pos_track_err_max_arg = np.argmax(ekf2_innovations['output_tracking_error[2]'])
-pos_track_err_max_time = innov_time[pos_track_err_max_arg]
-pos_track_err_max = np.amax(ekf2_innovations['output_tracking_error[2]'])
-
-plt.subplot(3,1,1)
-plt.plot(1e-6*ekf2_innovations['timestamp'] , 1e3*ekf2_innovations['output_tracking_error[0]'],'b')
-plt.title('Output Observer Tracking Error Magnitudes')
-plt.ylabel('angles (mrad)')
-plt.grid()
-plt.text(ang_track_err_max_time, 1e3 * ang_track_err_max, 'max='+str(round(1e3 * ang_track_err_max,2)), fontsize=12, horizontalalignment='left', verticalalignment='top')
-
-plt.subplot(3,1,2)
-plt.plot(1e-6*ekf2_innovations['timestamp'] , ekf2_innovations['output_tracking_error[1]'],'b')
-plt.ylabel('velocity (m/s)')
-plt.grid()
-plt.text(vel_track_err_max_time, vel_track_err_max, 'max='+str(round(vel_track_err_max,2)), fontsize=12, horizontalalignment='left', verticalalignment='top')
-
-plt.subplot(3,1,3)
-plt.plot(1e-6*ekf2_innovations['timestamp'] , ekf2_innovations['output_tracking_error[2]'],'b')
-plt.ylabel('position (m)')
-plt.xlabel('time (sec)')
-plt.grid()
-plt.text(pos_track_err_max_time, pos_track_err_max, 'max='+str(round(pos_track_err_max,2)), fontsize=12, horizontalalignment='left', verticalalignment='top')
-
-pp.savefig()
-plt.close(15)
-
-# Plot the delta angle bias estimates
-plt.figure(16,figsize=(20,13))
-
-plt.subplot(3,1,1)
-plt.plot(1e-6*estimator_status['timestamp'] , estimator_status['states[10]'],'b')
-plt.title('Delta Angle Bias Estimates')
-plt.ylabel('X (rad)')
-plt.xlabel('time (sec)')
-plt.grid()
-
-plt.subplot(3,1,2)
-plt.plot(1e-6*estimator_status['timestamp'] , estimator_status['states[11]'],'b')
-plt.ylabel('Y (rad)')
-plt.xlabel('time (sec)')
-plt.grid()
-
-plt.subplot(3,1,3)
-plt.plot(1e-6*estimator_status['timestamp'] , estimator_status['states[12]'],'b')
-plt.ylabel('Z (rad)')
-plt.xlabel('time (sec)')
-plt.grid()
-
-pp.savefig()
-plt.close(16)
-
-# Plot the delta velocity bias estimates
-plt.figure(17,figsize=(20,13))
-
-plt.subplot(3,1,1)
-plt.plot(1e-6*estimator_status['timestamp'] , estimator_status['states[13]'],'b')
-plt.title('Delta Velocity Bias Estimates')
-plt.ylabel('X (m/s)')
-plt.xlabel('time (sec)')
-plt.grid()
-
-plt.subplot(3,1,2)
-plt.plot(1e-6*estimator_status['timestamp'] , estimator_status['states[14]'],'b')
-plt.ylabel('Y (m/s)')
-plt.xlabel('time (sec)')
-plt.grid()
-
-plt.subplot(3,1,3)
-plt.plot(1e-6*estimator_status['timestamp'] , estimator_status['states[15]'],'b')
-plt.ylabel('Z (m/s)')
-plt.xlabel('time (sec)')
-plt.grid()
-
-pp.savefig()
-plt.close(17)
-
-# Plot the earth frame magnetic field estimates
-
-plt.figure(18,figsize=(20,13))
-plt.subplot(3,1,3)
-strength = (estimator_status['states[16]']**2 + estimator_status['states[17]']**2 + estimator_status['states[18]']**2)**0.5
-plt.plot(1e-6*estimator_status['timestamp'] , strength,'b')
-plt.ylabel('strength (Gauss)')
-plt.xlabel('time (sec)')
-plt.grid()
-
-plt.subplot(3,1,1)
-rad2deg = 57.2958
-declination = rad2deg * np.arctan2(estimator_status['states[17]'],estimator_status['states[16]'])
-plt.plot(1e-6*estimator_status['timestamp'] , declination,'b')
-plt.title('Earth Magnetic Field Estimates')
-plt.ylabel('declination (deg)')
-plt.xlabel('time (sec)')
-plt.grid()
-
-plt.subplot(3,1,2)
-inclination = rad2deg * np.arcsin(estimator_status['states[18]'] / strength)
-plt.plot(1e-6*estimator_status['timestamp'] , inclination,'b')
-plt.ylabel('inclination (deg)')
-plt.xlabel('time (sec)')
-plt.grid()
-
-pp.savefig()
-plt.close(18)
-
-# Plot the body frame magnetic field estimates
-plt.figure(19,figsize=(20,13))
-
-plt.subplot(3,1,1)
-plt.plot(1e-6*estimator_status['timestamp'] , estimator_status['states[19]'],'b')
-plt.title('Magnetomer Bias Estimates')
-plt.ylabel('X (Gauss)')
-plt.xlabel('time (sec)')
-plt.grid()
-
-plt.subplot(3,1,2)
-plt.plot(1e-6*estimator_status['timestamp'] , estimator_status['states[20]'],'b')
-plt.ylabel('Y (Gauss)')
-plt.xlabel('time (sec)')
-plt.grid()
-
-plt.subplot(3,1,3)
-plt.plot(1e-6*estimator_status['timestamp'] , estimator_status['states[21]'],'b')
-plt.ylabel('Z (Gauss)')
-plt.xlabel('time (sec)')
-plt.grid()
-
-pp.savefig()
-plt.close(19)
-
-# Plot the EKF wind estimates
-plt.figure(20,figsize=(20,13))
-
-plt.subplot(2,1,1)
-plt.plot(1e-6*estimator_status['timestamp'] , estimator_status['states[22]'],'b')
-plt.title('Wind Velocity Estimates')
-plt.ylabel('North (m/s)')
-plt.xlabel('time (sec)')
-plt.grid()
-
-plt.subplot(2,1,2)
-plt.plot(1e-6*estimator_status['timestamp'] , estimator_status['states[23]'],'b')
-plt.ylabel('East (m/s)')
-plt.xlabel('time (sec)')
-plt.grid()
-
-pp.savefig()
-plt.close(20)
-
-# close the pdf file
-pp.close()
-
-# don't display to screen
-#plt.show()
-
-# clase all figures
-plt.close("all")
-
-# Do some automated analysis of the status data
-
-# find a late/early index range from 5 sec after in_air_transtion_time to 5 sec before on-ground transition time for mag and optical flow checks to avoid false positives
-# this can be used to prevent false positives for sensors adversely affected by close proximity to the ground
-late_start_index = np.argmin(status_time[np.where(status_time > (in_air_transition_time+5.0))])
-early_end_index = np.argmax(status_time[np.where(status_time < (on_ground_transition_time-5.0))])
-num_valid_values_trimmed = (early_end_index - late_start_index +1)
-
-# normal index range is defined by the flight duration
-start_index = np.argmin(status_time[np.where(status_time > in_air_transition_time)])
-end_index = np.argmax(status_time[np.where(status_time < on_ground_transition_time)])
-num_valid_values = (end_index - start_index +1)
-
-# also find the start and finish indexes for the innovation data
-innov_late_start_index = np.argmin(innov_time[np.where(innov_time > (in_air_transition_time+5.0))])
-innov_early_end_index = np.argmax(innov_time[np.where(innov_time < (on_ground_transition_time-5.0))])
-innov_num_valid_values_trimmed = (innov_early_end_index - innov_late_start_index +1)
-innov_start_index = np.argmin(innov_time[np.where(innov_time > in_air_transition_time)])
-innov_end_index = np.argmax(innov_time[np.where(innov_time < on_ground_transition_time)])
-innov_num_valid_values = (innov_end_index - innov_start_index +1)
-
-# define dictionary of test results and descriptions
-test_results = {
-'master_status':['Pass','Master check status which can be either Pass Warning or Fail. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'],
-'mag_sensor_status':['Pass','Magnetometer sensor check summary. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'],
-'yaw_sensor_status':['Pass','Yaw sensor check summary. This sensor data can be sourced from the magnetometer or an external vision system. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'],
-'vel_sensor_status':['Pass','Velocity sensor check summary. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'],
-'pos_sensor_status':['Pass','Position sensor check summary. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'],
-'hgt_sensor_status':['Pass','Height sensor check summary. This sensor data can be sourced from either Baro or GPS or range finder or external vision system. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no anomalies were detected and no further investigation is required'],
-'hagl_sensor_status':['Pass','Height above ground sensor check summary. This sensor data is normally sourced from a rangefinder sensor. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'],
-'tas_sensor_status':['Pass','Airspeed sensor check summary. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'],
-'imu_sensor_status':['Pass','IMU sensor check summary. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'],
-'flow_sensor_status':['Pass','Optical Flow sensor check summary. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'],
-'mag_percentage_red':[float('NaN'),'The percentage of in-flight consolidated magnetic field sensor innovation consistency test values > 1.0.'],
-'mag_percentage_amber':[float('NaN'),'The percentage of in-flight consolidated magnetic field sensor innovation consistency test values > 0.5.'],
-'magx_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the X-axis magnetic field sensor innovation consistency test.'],
-'magy_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the Y-axis magnetic field sensor innovation consistency test.'],
-'magz_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the Z-axis magnetic field sensor innovation consistency test.'],
-'yaw_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the yaw sensor innovation consistency test.'],
-'mag_test_max':[float('NaN'),'The maximum in-flight value of the magnetic field sensor innovation consistency test ratio.'],
-'mag_test_mean':[float('NaN'),'The mean in-flight value of the magnetic field sensor innovation consistency test ratio.'],
-'vel_percentage_red':[float('NaN'),'The percentage of in-flight velocity sensor consolidated innovation consistency test values > 1.0.'],
-'vel_percentage_amber':[float('NaN'),'The percentage of in-flight velocity sensor consolidated innovation consistency test values > 0.5.'],
-'vel_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the velocity sensor consolidated innovation consistency test.'],
-'vel_test_max':[float('NaN'),'The maximum in-flight value of the velocity sensor consolidated innovation consistency test ratio.'],
-'vel_test_mean':[float('NaN'),'The mean in-flight value of the velocity sensor consolidated innovation consistency test ratio.'],
-'pos_percentage_red':[float('NaN'),'The percentage of in-flight position sensor consolidated innovation consistency test values > 1.0.'],
-'pos_percentage_amber':[float('NaN'),'The percentage of in-flight position sensor consolidated innovation consistency test values > 0.5.'],
-'pos_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the velocity sensor consolidated innovation consistency test.'],
-'pos_test_max':[float('NaN'),'The maximum in-flight value of the position sensor consolidated innovation consistency test ratio.'],
-'pos_test_mean':[float('NaN'),'The mean in-flight value of the position sensor consolidated innovation consistency test ratio.'],
-'hgt_percentage_red':[float('NaN'),'The percentage of in-flight height sensor innovation consistency test values > 1.0.'],
-'hgt_percentage_amber':[float('NaN'),'The percentage of in-flight height sensor innovation consistency test values > 0.5.'],
-'hgt_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the height sensor innovation consistency test.'],
-'hgt_test_max':[float('NaN'),'The maximum in-flight value of the height sensor innovation consistency test ratio.'],
-'hgt_test_mean':[float('NaN'),'The mean in-flight value of the height sensor innovation consistency test ratio.'],
-'tas_percentage_red':[float('NaN'),'The percentage of in-flight airspeed sensor innovation consistency test values > 1.0.'],
-'tas_percentage_amber':[float('NaN'),'The percentage of in-flight airspeed sensor innovation consistency test values > 0.5.'],
-'tas_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the airspeed sensor innovation consistency test.'],
-'tas_test_max':[float('NaN'),'The maximum in-flight value of the airspeed sensor innovation consistency test ratio.'],
-'tas_test_mean':[float('NaN'),'The mean in-flight value of the airspeed sensor innovation consistency test ratio.'],
-'hagl_percentage_red':[float('NaN'),'The percentage of in-flight height above ground sensor innovation consistency test values > 1.0.'],
-'hagl_percentage_amber':[float('NaN'),'The percentage of in-flight height above ground sensor innovation consistency test values > 0.5.'],
-'hagl_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the height above ground sensor innovation consistency test.'],
-'hagl_test_max':[float('NaN'),'The maximum in-flight value of the height above ground sensor innovation consistency test ratio.'],
-'hagl_test_mean':[float('NaN'),'The mean in-flight value of the height above ground sensor innovation consistency test ratio.'],
-'ofx_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the optical flow sensor X-axis innovation consistency test.'],
-'ofy_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the optical flow sensor Y-axis innovation consistency test.'],
-'filter_faults_max':[float('NaN'),'Largest recorded value of the filter internal fault bitmask. Should always be zero.'],
-'imu_coning_peak':[float('NaN'),'Peak in-flight value of the IMU delta angle coning vibration metric (rad)'],
-'imu_coning_mean':[float('NaN'),'Mean in-flight value of the IMU delta angle coning vibration metric (rad)'],
-'imu_hfdang_peak':[float('NaN'),'Peak in-flight value of the IMU delta angle high frequency vibration metric (rad)'],
-'imu_hfdang_mean':[float('NaN'),'Mean in-flight value of the IMU delta angle high frequency vibration metric (rad)'],
-'imu_hfdvel_peak':[float('NaN'),'Peak in-flight value of the IMU delta velocity high frequency vibration metric (m/s)'],
-'imu_hfdvel_mean':[float('NaN'),'Mean in-flight value of the IMU delta velocity high frequency vibration metric (m/s)'],
-'output_obs_ang_err_median':[float('NaN'),'Median in-flight value of the output observer angular error (rad)'],
-'output_obs_vel_err_median':[float('NaN'),'Median in-flight value of the output observer velocity error (m/s)'],
-'output_obs_pos_err_median':[float('NaN'),'Median in-flight value of the output observer position error (m)'],
-'imu_dang_bias_median':[float('NaN'),'Median in-flight value of the delta angle bias vector length (rad)'],
-'imu_dvel_bias_median':[float('NaN'),'Median in-flight value of the delta velocity bias vector length (m/s)'],
-'tilt_align_time':[float('NaN'),'The time in seconds measured from startup that the EKF completed the tilt alignment. A nan value indicates that the alignment had completed before logging started or alignment did not complete.'],
-'yaw_align_time':[float('NaN'),'The time in seconds measured from startup that the EKF completed the yaw alignment.'],
-'in_air_transition_time':[round(in_air_transition_time,1),'The time in seconds measured from startup that the EKF transtioned into in-air mode. Set to a nan if a transition event is not detected.'],
-'on_ground_transition_time':[round(on_ground_transition_time,1),'The time in seconds measured from startup  that the EKF transitioned out of in-air mode. Set to a nan if a transition event is not detected.'],
-}
-
-# generate test metadata
-
-# reduction of innovation message data
-if (innov_early_end_index > (innov_late_start_index + 100)):
-    # Output Observer Tracking Errors
-    test_results['output_obs_ang_err_median'][0] = np.median(ekf2_innovations['output_tracking_error[0]'][innov_late_start_index:innov_early_end_index])
-    test_results['output_obs_vel_err_median'][0] = np.median(ekf2_innovations['output_tracking_error[1]'][innov_late_start_index:innov_early_end_index])
-    test_results['output_obs_pos_err_median'][0] = np.median(ekf2_innovations['output_tracking_error[2]'][innov_late_start_index:innov_early_end_index])
-
-# reduction of status message data
-if (early_end_index > (late_start_index + 100)):
-    # IMU vibration checks
-    temp = np.amax(estimator_status['vibe[0]'][late_start_index:early_end_index])
-    if (temp > 0.0):
-        test_results['imu_coning_peak'][0] = temp
-        test_results['imu_coning_mean'][0] = np.mean(estimator_status['vibe[0]'][late_start_index:early_end_index])
-    temp = np.amax(estimator_status['vibe[1]'][late_start_index:early_end_index])
-    if (temp > 0.0):
-        test_results['imu_hfdang_peak'][0] = temp
-        test_results['imu_hfdang_mean'][0] = np.mean(estimator_status['vibe[1]'][late_start_index:early_end_index])
-    temp = np.amax(estimator_status['vibe[2]'][late_start_index:early_end_index])
-    if (temp > 0.0):
-        test_results['imu_hfdvel_peak'][0] = temp
-        test_results['imu_hfdvel_mean'][0] = np.mean(estimator_status['vibe[2]'][late_start_index:early_end_index])
-
-    # Magnetometer Sensor Checks
-    if (np.amax(yaw_aligned) > 0.5):
-        mag_num_red = (estimator_status['mag_test_ratio'][start_index:end_index] > 1.0).sum()
-        mag_num_amber = (estimator_status['mag_test_ratio'][start_index:end_index] > 0.5).sum() - mag_num_red
-        test_results['mag_percentage_red'][0] = 100.0 * mag_num_red / num_valid_values_trimmed
-        test_results['mag_percentage_amber'][0] = 100.0 * mag_num_amber / num_valid_values_trimmed
-        test_results['mag_test_max'][0] = np.amax(estimator_status['mag_test_ratio'][late_start_index:early_end_index])
-        test_results['mag_test_mean'][0] = np.mean(estimator_status['mag_test_ratio'][start_index:end_index])
-        test_results['magx_fail_percentage'][0] = 100.0 * (magx_innov_fail[late_start_index:early_end_index] > 0.5).sum() / num_valid_values_trimmed
-        test_results['magy_fail_percentage'][0] = 100.0 * (magy_innov_fail[late_start_index:early_end_index] > 0.5).sum() / num_valid_values_trimmed
-        test_results['magz_fail_percentage'][0] = 100.0 * (magz_innov_fail[late_start_index:early_end_index] > 0.5).sum() / num_valid_values_trimmed
-        test_results['yaw_fail_percentage'][0] = 100.0 * (yaw_innov_fail[late_start_index:early_end_index] > 0.5).sum() / num_valid_values_trimmed
-
-    # Velocity Sensor Checks
-    if (np.amax(using_gps) > 0.5):
-        vel_num_red = (estimator_status['vel_test_ratio'][start_index:end_index] > 1.0).sum()
-        vel_num_amber = (estimator_status['vel_test_ratio'][start_index:end_index] > 0.5).sum() - vel_num_red
-        test_results['vel_percentage_red'][0] = 100.0 * vel_num_red / num_valid_values
-        test_results['vel_percentage_amber'][0] = 100.0 * vel_num_amber / num_valid_values
-        test_results['vel_test_max'][0] = np.amax(estimator_status['vel_test_ratio'][start_index:end_index])
-        test_results['vel_test_mean'][0] = np.mean(estimator_status['vel_test_ratio'][start_index:end_index])
-        test_results['vel_fail_percentage'][0] = 100.0 * (vel_innov_fail[start_index:end_index] > 0.5).sum() / num_valid_values
-
-    # Position Sensor Checks
-    if ((np.amax(using_gps) > 0.5) or (np.amax(using_evpos) > 0.5)):
-        pos_num_red = (estimator_status['pos_test_ratio'][start_index:end_index] > 1.0).sum()
-        pos_num_amber = (estimator_status['pos_test_ratio'][start_index:end_index] > 0.5).sum() - pos_num_red
-        test_results['pos_percentage_red'][0] = 100.0 * pos_num_red / num_valid_values
-        test_results['pos_percentage_amber'][0] = 100.0 * pos_num_amber / num_valid_values
-        test_results['pos_test_max'][0] = np.amax(estimator_status['pos_test_ratio'][start_index:end_index])
-        test_results['pos_test_mean'][0] = np.mean(estimator_status['pos_test_ratio'][start_index:end_index])
-        test_results['pos_fail_percentage'][0] = 100.0 * (posh_innov_fail[start_index:end_index] > 0.5).sum() / num_valid_values
-
-    # Height Sensor Checks
-    hgt_num_red = (estimator_status['hgt_test_ratio'][late_start_index:early_end_index] > 1.0).sum()
-    hgt_num_amber = (estimator_status['hgt_test_ratio'][late_start_index:early_end_index] > 0.5).sum() - hgt_num_red
-    test_results['hgt_percentage_red'][0] = 100.0 * hgt_num_red / num_valid_values_trimmed
-    test_results['hgt_percentage_amber'][0] = 100.0 * hgt_num_amber / num_valid_values_trimmed
-    test_results['hgt_test_max'][0] = np.amax(estimator_status['hgt_test_ratio'][late_start_index:early_end_index])
-    test_results['hgt_test_mean'][0] = np.mean(estimator_status['hgt_test_ratio'][late_start_index:early_end_index])
-    test_results['hgt_fail_percentage'][0] = 100.0 * (posv_innov_fail[late_start_index:early_end_index] > 0.5).sum() / num_valid_values_trimmed
-
-    # Airspeed Sensor Checks
-    if (tas_test_max > 0.0):
-        tas_num_red = (estimator_status['tas_test_ratio'][start_index:end_index] > 1.0).sum()
-        tas_num_amber = (estimator_status['tas_test_ratio'][start_index:end_index] > 0.5).sum() - tas_num_red
-        test_results['tas_percentage_red'][0] = 100.0 * tas_num_red / num_valid_values
-        test_results['tas_percentage_amber'][0] = 100.0 * tas_num_amber / num_valid_values
-        test_results['tas_test_max'][0] = np.amax(estimator_status['tas_test_ratio'][start_index:end_index])
-        test_results['tas_test_mean'][0] = np.mean(estimator_status['tas_test_ratio'][start_index:end_index])
-        test_results['tas_fail_percentage'][0] = 100.0 * (tas_innov_fail[start_index:end_index] > 0.5).sum() / num_valid_values
-
-    # HAGL Sensor Checks
-    if (hagl_test_max > 0.0):
-        hagl_num_red = (estimator_status['hagl_test_ratio'][start_index:end_index] > 1.0).sum()
-        hagl_num_amber = (estimator_status['hagl_test_ratio'][start_index:end_index] > 0.5).sum() - hagl_num_red
-        test_results['hagl_percentage_red'][0] = 100.0 * hagl_num_red / num_valid_values
-        test_results['hagl_percentage_amber'][0] = 100.0 * hagl_num_amber / num_valid_values
-        test_results['hagl_test_max'][0] = np.amax(estimator_status['hagl_test_ratio'][start_index:end_index])
-        test_results['hagl_test_mean'][0] = np.mean(estimator_status['hagl_test_ratio'][start_index:end_index])
-        test_results['hagl_fail_percentage'][0] = 100.0 * (hagl_innov_fail[start_index:end_index] > 0.5).sum() / num_valid_values
-
-    # optical flow sensor checks
-    if (np.amax(using_optflow) > 0.5):
-        test_results['ofx_fail_percentage'][0] = 100.0 * (ofx_innov_fail[late_start_index:early_end_index] > 0.5).sum() / num_valid_values_trimmed
-        test_results['ofy_fail_percentage'][0] = 100.0 * (ofy_innov_fail[late_start_index:early_end_index] > 0.5).sum() / num_valid_values_trimmed
-
-    # IMU bias checks
-    test_results['imu_dang_bias_median'][0] = (np.median(estimator_status['states[10]'])**2 + np.median(estimator_status['states[11]'])**2 + np.median(estimator_status['states[12]'])**2)**0.5
-    test_results['imu_dvel_bias_median'][0] = (np.median(estimator_status['states[13]'])**2 + np.median(estimator_status['states[14]'])**2 + np.median(estimator_status['states[15]'])**2)**0.5
-
-# Check for internal filter nummerical faults
-test_results['filter_faults_max'][0] = np.amax(estimator_status['filter_fault_flags'])
-
-# TODO - process the following bitmask's when they have been properly documented in the uORB topic
-#estimator_status['health_flags']
-#estimator_status['timeout_flags']
-
-# calculate a master status - Fail, Warning, Pass
 # get the dictionary of fail and warning test thresholds from a csv file
+with open(check_level_dict_filename, 'r') as file:
+    check_levels = {}
+    for line in file:
+        x = line.split(",")
+        a = x[0]
+        b = x[1]
+        check_levels[a] = float(b)
 
-__location__ = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__)))
-filename = "check_level_dict.csv"
-
-file = open(os.path.join(__location__, filename));
-
-check_levels = { }
-for line in file:
-    x = line.split(",")
-    a=x[0]
-    b=x[1]
-    check_levels[a]=float(b)
-file.close()
-
-# print out the check levels
-print('Using test criteria loaded from '+filename)
-#for N in check_levels:
-#    val = check_levels.get(N)
-#    print(N+' = '+str(val), end='\n')
-
-# check test results against levels to provide a master status
-
-# check for warnings
-if (test_results.get('mag_percentage_amber')[0] > check_levels.get('mag_amber_warn_pct')):
-    test_results['master_status'][0] = 'Warning'
-    test_results['mag_sensor_status'][0] = 'Warning'
-if (test_results.get('vel_percentage_amber')[0] > check_levels.get('vel_amber_warn_pct')):
-    test_results['master_status'][0] = 'Warning'
-    test_results['vel_sensor_status'][0] = 'Warning'
-if (test_results.get('pos_percentage_amber')[0] > check_levels.get('pos_amber_warn_pct')):
-    test_results['master_status'][0] = 'Warning'
-    test_results['pos_sensor_status'][0] = 'Warning'
-if (test_results.get('hgt_percentage_amber')[0] > check_levels.get('hgt_amber_warn_pct')):
-    test_results['master_status'][0] = 'Warning'
-    test_results['hgt_sensor_status'][0] = 'Warning'
-if (test_results.get('hagl_percentage_amber')[0] > check_levels.get('hagl_amber_warn_pct')):
-    test_results['master_status'][0] = 'Warning'
-    test_results['hagl_sensor_status'][0] = 'Warning'
-if (test_results.get('tas_percentage_amber')[0] > check_levels.get('tas_amber_warn_pct')):
-    test_results['master_status'][0] = 'Warning'
-    test_results['tas_sensor_status'][0] = 'Warning'
-
-# check for IMU sensor warnings
-if ((test_results.get('imu_coning_peak')[0] > check_levels.get('imu_coning_peak_warn')) or
-(test_results.get('imu_coning_mean')[0] > check_levels.get('imu_coning_mean_warn')) or
-(test_results.get('imu_hfdang_peak')[0] > check_levels.get('imu_hfdang_peak_warn')) or
-(test_results.get('imu_hfdang_mean')[0] > check_levels.get('imu_hfdang_mean_warn')) or
-(test_results.get('imu_hfdvel_peak')[0] > check_levels.get('imu_hfdvel_peak_warn')) or
-(test_results.get('imu_hfdvel_mean')[0] > check_levels.get('imu_hfdvel_mean_warn'))):
-    test_results['master_status'][0] = 'Warning'
-    test_results['imu_sensor_status'][0] = 'Warning - Vibration'
-
-if ((test_results.get('imu_dang_bias_median')[0] > check_levels.get('imu_dang_bias_median_warn')) or
-(test_results.get('imu_dvel_bias_median')[0] > check_levels.get('imu_dvel_bias_median_warn'))):
-    test_results['master_status'][0] = 'Warning'
-    test_results['imu_sensor_status'][0] = 'Warning - Bias'
-
-if ((test_results.get('output_obs_ang_err_median')[0] > check_levels.get('obs_ang_err_median_warn')) or
-(test_results.get('output_obs_vel_err_median')[0] > check_levels.get('obs_vel_err_median_warn')) or
-(test_results.get('output_obs_pos_err_median')[0] > check_levels.get('obs_pos_err_median_warn'))):
-    test_results['master_status'][0] = 'Warning'
-    test_results['imu_sensor_status'][0] = 'Warning - Output Predictor'
+print('Using test criteria loaded from {:s}'.format(check_level_dict_filename))
 
-# check for failures
-if ((test_results.get('magx_fail_percentage')[0] > check_levels.get('mag_fail_pct')) or
-(test_results.get('magy_fail_percentage')[0] > check_levels.get('mag_fail_pct')) or
-(test_results.get('magz_fail_percentage')[0] > check_levels.get('mag_fail_pct')) or
-(test_results.get('mag_percentage_amber')[0] > check_levels.get('mag_amber_fail_pct'))):
-    test_results['master_status'][0] = 'Fail'
-    test_results['mag_sensor_status'][0] = 'Fail'
-if (test_results.get('yaw_fail_percentage')[0] > check_levels.get('yaw_fail_pct')):
-    test_results['master_status'][0] = 'Fail'
-    test_results['yaw_sensor_status'][0] = 'Fail'
-if ((test_results.get('vel_fail_percentage')[0] > check_levels.get('vel_fail_pct')) or
-(test_results.get('vel_percentage_amber')[0] > check_levels.get('vel_amber_fail_pct'))):
-    test_results['master_status'][0] = 'Fail'
-    test_results['vel_sensor_status'][0] = 'Fail'
-if ((test_results.get('pos_fail_percentage')[0] > check_levels.get('pos_fail_pct')) or
-(test_results.get('pos_percentage_amber')[0] > check_levels.get('pos_amber_fail_pct'))):
-    test_results['master_status'][0] = 'Fail'
-    test_results['pos_sensor_status'][0] = 'Fail'
-if ((test_results.get('hgt_fail_percentage')[0] > check_levels.get('hgt_fail_pct')) or
-(test_results.get('hgt_percentage_amber')[0] > check_levels.get('hgt_amber_fail_pct'))):
-    test_results['master_status'][0] = 'Fail'
-    test_results['hgt_sensor_status'][0] = 'Fail'
-if ((test_results.get('tas_fail_percentage')[0] > check_levels.get('tas_fail_pct')) or
-(test_results.get('tas_percentage_amber')[0] > check_levels.get('tas_amber_fail_pct'))):
-    test_results['master_status'][0] = 'Fail'
-    test_results['tas_sensor_status'][0] = 'Fail'
-if ((test_results.get('hagl_fail_percentage')[0] > check_levels.get('hagl_fail_pct')) or
-(test_results.get('hagl_percentage_amber')[0] > check_levels.get('hagl_amber_fail_pct'))):
-    test_results['master_status'][0] = 'Fail'
-    test_results['hagl_sensor_status'][0] = 'Fail'
-if ((test_results.get('ofx_fail_percentage')[0] > check_levels.get('flow_fail_pct')) or
-(test_results.get('ofy_fail_percentage')[0] > check_levels.get('flow_fail_pct'))):
-    test_results['master_status'][0] = 'Fail'
-    test_results['flow_sensor_status'][0] = 'Fail'
-if (test_results.get('filter_faults_max')[0] > 0):
-    test_results['master_status'][0] = 'Fail'
-    test_results['filter_fault_status'][0] = 'Fail'
+# perform the ekf analysis
+test_results = analyse_ekf(
+    estimator_status_data, ekf2_innovations_data, sensor_preflight_data,
+    check_levels, plot=not args.no_plots, output_plot_filename=args.filename + ".pdf")
 
 # print master test status to console
 if (test_results['master_status'][0] == 'Pass'):
@@ -1427,19 +84,18 @@ elif (test_results['master_status'][0] == 'Fail'):
     print('Major anomalies detected')
 
 # write metadata to a .csv file
-test_results_filename = ulog_file_name + ".mdat.csv"
-file = open(test_results_filename,"w")
+with open(args.filename + ".mdat.csv", "w") as file:
 
-file.write("name,value,description\n")
+    file.write("name,value,description\n")
 
-# loop through the test results dictionary and write each entry on a separate row, with data comma separated
-# save data in alphabetical order
-key_list = list(test_results.keys())
-key_list.sort()
-for key in key_list:
-    file.write(key+","+str(test_results[key][0])+","+test_results[key][1]+"\n")
+    # loop through the test results dictionary and write each entry on a separate row, with data comma separated
+    # save data in alphabetical order
+    key_list = list(test_results.keys())
+    key_list.sort()
+    for key in key_list:
+        file.write(key+","+str(test_results[key][0])+","+test_results[key][1]+"\n")
 
-file.close()
+print('Test results written to {:s}.mdat.csv'.format(args.filename))
 
-print('Test results written to ' + test_results_filename)
-print('Plots saved to ' + output_plot_filename)
+if not args.no_plots:
+    print('Plots saved to {:s}.pdf'.format(args.filename))
-- 
GitLab