Explore projects
-
Updated
-
Updated
-
Project to use the energy system model Calliope for local neighborhood-level modeling
Updated -
Project to use the energy system model Calliope for local neighborhood-level modeling
Updated -
QuTech QDLabs / CryoAlert / CryoAdmin
MIT LicenseUpdated -
-
SteeleLab / Data Explorer
MIT LicenseA library of functions to facilitate interactive data exploration
Updated -
Data-Centric Design / dcd-hub
MIT LicenseEntry point of the Data-Centric Design ecosystem of tools.
Updated -
Marcel Heijink / Django Auth Lti
Apache License 2.0Updated -
Marcel Heijink / django-suit
Creative Commons Attribution Non Commercial 3.0 UnportedUpdated -
Updated
-
Repository for "Endogenous Macrodynamics in Algorithmic Recourse" (Altmeyer et al., 2023)
Updated -
TeachBooks / Engineering Systems Optimization
Creative Commons Attribution 4.0 InternationalMoved to: https://github.com/TeachBooks/engineering-systems-optimization Book on optimization using python: https://teachbooks.tudelft.nl/engineering-systems-optimization
Archived 0Updated -
TUmux / GMC
European Union Public License 1.2Gas Multiplexer Controller firmware. Suitable for old NI Fieldpoint & compactFP controllers.
Updated -
Ido Akkerman / hypre
GNU Lesser General Public License v2.1 onlyParallel solvers for sparse linear systems featuring multigrid methods. This repository houses releases and test releases. Pull requests can still be addressed. LLNL users should use the main repository on MyStash.
Updated -
TeachBooks / Jupyter Book Manual
GNU General Public License v3.0 or laterMoved to: https://github.com/TeachBooks/manual
Archived 3Updated -
Max Ramgraber / Jupyter Book Manual with HTML element guide
GNU General Public License v3.0 or laterBook describing how to use interactive textbooks, our extensions and our workflow https://teachbooks.tudelft.nl/jupyter-book-manual
Updated -
LR-FPP-MDO / KADMOS
Apache License 2.0Updated -
Timo Heimovaara / LandfillEmissionModelling
MIT LicenseUpdated -
This repository is to brainstorm,and organize ideas to apply machine learning algorithms to meaningful biological problems. One of our focus is predicting genetic/physical interactions between unknown genes pairs in budding yeast. We would like to extend this analysis to multiple knockout mutants.
Updated