/* Copyright (c) Colorado School of Mines, 2011.*/ /* All rights reserved. */ /* segy.h - include file for SEGY traces * * declarations for: * typedef struct {} segy - the trace identification header * typedef struct {} bhed - binary header * * Note: * If header words are added, run the makefile in this directory * to recreate hdr.h. * * Reference: * K. M. Barry, D. A. Cavers and C. W. Kneale, "Special Report: * Recommended Standards for Digital Tape Formats", * Geophysics, vol. 40, no. 2 (April 1975), P. 344-352. * * $Author: john $ * $Source: /usr/local/cwp/src/su/include/RCS/segy.h,v $ * $Revision: 1.33 $ ; $Date: 2011/11/11 23:56:14 $ */ #include <limits.h> #include "par.h" #ifndef SEGY_H #define SEGY_H #define TRCBYTES 240 #define SU_NFLTS 32767 /* Arbitrary limit on data array size */ /* TYPEDEFS */ typedef struct { /* segy - trace identification header */ int tracl; /* Trace sequence number within line --numbers continue to increase if the same line continues across multiple SEG Y files. byte# 1-4 */ int tracr; /* Trace sequence number within SEG Y file ---each file starts with trace sequence one byte# 5-8 */ int fldr; /* Original field record number byte# 9-12 */ int tracf; /* Trace number within original field record byte# 13-16 */ int ep; /* energy source point number ---Used when more than one record occurs at the same effective surface location. byte# 17-20 */ int cdp; /* Ensemble number (i.e. CDP, CMP, CRP,...) byte# 21-24 */ int cdpt; /* trace number within the ensemble ---each ensemble starts with trace number one. byte# 25-28 */ short trid; /* trace identification code: -1 = Other 0 = Unknown 1 = Seismic data 2 = Dead 3 = Dummy 4 = Time break 5 = Uphole 6 = Sweep 7 = Timing 8 = Water break 9 = Near-field gun signature 10 = Far-field gun signature 11 = Seismic pressure sensor 12 = Multicomponent seismic sensor - Vertical component 13 = Multicomponent seismic sensor - Cross-line component 14 = Multicomponent seismic sensor - in-line component 15 = Rotated multicomponent seismic sensor - Vertical component 16 = Rotated multicomponent seismic sensor - Transverse component 17 = Rotated multicomponent seismic sensor - Radial component 18 = Vibrator reaction mass 19 = Vibrator baseplate 20 = Vibrator estimated ground force 21 = Vibrator reference 22 = Time-velocity pairs 23 ... N = optional use (maximum N = 32,767) Following are CWP id flags: 109 = autocorrelation 110 = Fourier transformed - no packing xr[0],xi[0], ..., xr[N-1],xi[N-1] 111 = Fourier transformed - unpacked Nyquist xr[0],xi[0],...,xr[N/2],xi[N/2] 112 = Fourier transformed - packed Nyquist even N: xr[0],xr[N/2],xr[1],xi[1], ..., xr[N/2 -1],xi[N/2 -1] (note the exceptional second entry) odd N: xr[0],xr[(N-1)/2],xr[1],xi[1], ..., xr[(N-1)/2 -1],xi[(N-1)/2 -1],xi[(N-1)/2] (note the exceptional second & last entries) 113 = Complex signal in the time domain xr[0],xi[0], ..., xr[N-1],xi[N-1] 114 = Fourier transformed - amplitude/phase a[0],p[0], ..., a[N-1],p[N-1] 115 = Complex time signal - amplitude/phase a[0],p[0], ..., a[N-1],p[N-1] 116 = Real part of complex trace from 0 to Nyquist 117 = Imag part of complex trace from 0 to Nyquist 118 = Amplitude of complex trace from 0 to Nyquist 119 = Phase of complex trace from 0 to Nyquist 121 = Wavenumber time domain (k-t) 122 = Wavenumber frequency (k-omega) 123 = Envelope of the complex time trace 124 = Phase of the complex time trace 125 = Frequency of the complex time trace 130 = Depth-Range (z-x) traces 201 = Seismic data packed to bytes (by supack1) 202 = Seismic data packed to 2 bytes (by supack2) byte# 29-30 */ short nvs; /* Number of vertically summed traces yielding this trace. (1 is one trace, 2 is two summed traces, etc.) byte# 31-32 */ short nhs; /* Number of horizontally summed traces yielding this trace. (1 is one trace 2 is two summed traces, etc.) byte# 33-34 */ short duse; /* Data use: 1 = Production 2 = Test byte# 35-36 */ int offset; /* Distance from the center of the source point to the center of the receiver group (negative if opposite to direction in which the line was shot). byte# 37-40 */ int gelev; /* Receiver group elevation from sea level (all elevations above the Vertical datum are positive and below are negative). byte# 41-44 */ int selev; /* Surface elevation at source. byte# 45-48 */ int sdepth; /* Source depth below surface (a positive number). byte# 49-52 */ int gdel; /* Datum elevation at receiver group. byte# 53-56 */ int sdel; /* Datum elevation at source. byte# 57-60 */ int swdep; /* Water depth at source. byte# 61-64 */ int gwdep; /* Water depth at receiver group. byte# 65-68 */ short scalel; /* Scalar to be applied to the previous 7 entries to give the real value. Scalar = 1, +10, +100, +1000, +10000. If positive, scalar is used as a multiplier, if negative, scalar is used as a divisor. byte# 69-70 */ short scalco; /* Scalar to be applied to the next 4 entries to give the real value. Scalar = 1, +10, +100, +1000, +10000. If positive, scalar is used as a multiplier, if negative, scalar is used as a divisor. byte# 71-72 */ int sx; /* Source coordinate - X byte# 73-76 */ int sy; /* Source coordinate - Y byte# 77-80 */ int gx; /* Group coordinate - X byte# 81-84 */ int gy; /* Group coordinate - Y byte# 85-88 */ short counit; /* Coordinate units: (for previous 4 entries and for the 7 entries before scalel) 1 = Length (meters or feet) 2 = Seconds of arc 3 = Decimal degrees 4 = Degrees, minutes, seconds (DMS) In case 2, the X values are longitude and the Y values are latitude, a positive value designates the number of seconds east of Greenwich or north of the equator In case 4, to encode +-DDDMMSS counit = +-DDD*10^4 + MM*10^2 + SS, with scalco = 1. To encode +-DDDMMSS.ss counit = +-DDD*10^6 + MM*10^4 + SS*10^2 with scalco = -100. byte# 89-90 */ short wevel; /* Weathering velocity. byte# 91-92 */ short swevel; /* Subweathering velocity. byte# 93-94 */ short sut; /* Uphole time at source in milliseconds. byte# 95-96 */ short gut; /* Uphole time at receiver group in milliseconds. byte# 97-98 */ short sstat; /* Source static correction in milliseconds. byte# 99-100 */ short gstat; /* Group static correction in milliseconds. byte# 101-102 */ short tstat; /* Total static applied in milliseconds. (Zero if no static has been applied.) byte# 103-104 */ short laga; /* Lag time A, time in ms between end of 240- byte trace identification header and time break, positive if time break occurs after end of header, time break is defined as the initiation pulse which maybe recorded on an auxiliary trace or as otherwise specified by the recording system byte# 105-106 */ short lagb; /* lag time B, time in ms between the time break and the initiation time of the energy source, may be positive or negative byte# 107-108 */ short delrt; /* delay recording time, time in ms between initiation time of energy source and time when recording of data samples begins (for deep water work if recording does not start at zero time) byte# 109-110 */ short muts; /* mute time--start byte# 111-112 */ short mute; /* mute time--end byte# 113-114 */ unsigned short ns; /* number of samples in this trace byte# 115-116 */ unsigned short dt; /* sample interval; in micro-seconds byte# 117-118 */ short gain; /* gain type of field instruments code: 1 = fixed 2 = binary 3 = floating point 4 ---- N = optional use byte# 119-120 */ short igc; /* instrument gain constant byte# 121-122 */ short igi; /* instrument early or initial gain byte# 123-124 */ short corr; /* correlated: 1 = no 2 = yes byte# 125-126 */ short sfs; /* sweep frequency at start byte# 127-128 */ short sfe; /* sweep frequency at end byte# 129-130 */ short slen; /* sweep length in ms byte# 131-132 */ short styp; /* sweep type code: 1 = linear 2 = cos-squared 3 = other byte# 133-134 */ short stas; /* sweep trace length at start in ms byte# 135-136 */ short stae; /* sweep trace length at end in ms byte# 137-138 */ short tatyp; /* taper type: 1=linear, 2=cos^2, 3=other byte# 139-140 */ short afilf; /* alias filter frequency if used byte# 141-142 */ short afils; /* alias filter slope byte# 143-144 */ short nofilf; /* notch filter frequency if used byte# 145-146 */ short nofils; /* notch filter slope byte# 147-148 */ short lcf; /* low cut frequency if used byte# 149-150 */ short hcf; /* high cut frequncy if used byte# 151-152 */ short lcs; /* low cut slope byte# 153-154 */ short hcs; /* high cut slope byte# 155-156 */ short year; /* year data recorded byte# 157-158 */ short day; /* day of year byte# 159-160 */ short hour; /* hour of day (24 hour clock) byte# 161-162 */ short minute; /* minute of hour byte# 163-164 */ short sec; /* second of minute byte# 165-166 */ short timbas; /* time basis code: 1 = local 2 = GMT 3 = other byte# 167-168 */ short trwf; /* trace weighting factor, defined as 1/2^N volts for the least sigificant bit byte# 169-170 */ short grnors; /* geophone group number of roll switch position one byte# 171-172 */ short grnofr; /* geophone group number of trace one within original field record byte# 173-174 */ short grnlof; /* geophone group number of last trace within original field record byte# 175-176 */ short gaps; /* gap size (total number of groups dropped) byte# 177-178 */ short otrav; /* overtravel taper code: 1 = down (or behind) 2 = up (or ahead) byte# 179-180 */ #ifdef SLTSU_SEGY_H /* begin Unocal SU segy.h differences */ /* cwp local assignments */ float d1; /* sample spacing for non-seismic data byte# 181-184 */ float f1; /* first sample location for non-seismic data byte# 185-188 */ float d2; /* sample spacing between traces byte# 189-192 */ float f2; /* first trace location byte# 193-196 */ float ungpow; /* negative of power used for dynamic range compression byte# 197-200 */ float unscale; /* reciprocal of scaling factor to normalize range byte# 201-204 */ short mark; /* mark selected traces byte# 205-206 */ /* SLTSU local assignments */ short mutb; /* mute time at bottom (start time) bottom mute ends at last sample byte# 207-208 */ float dz; /* depth sampling interval in (m or ft) if =0.0, input are time samples byte# 209-212 */ float fz; /* depth of first sample in (m or ft) byte# 213-116 */ short n2; /* number of traces per cdp or per shot byte# 217-218 */ short shortpad; /* alignment padding byte# 219-220 */ int ntr; /* number of traces byte# 221-224 */ /* SLTSU local assignments end */ short unass[8]; /* unassigned byte# 225-240 */ #else /* cwp local assignments */ float d1; /* sample spacing for non-seismic data byte# 181-184 */ float f1; /* first sample location for non-seismic data byte# 185-188 */ float d2; /* sample spacing between traces byte# 189-192 */ float f2; /* first trace location byte# 193-196 */ float ungpow; /* negative of power used for dynamic range compression byte# 197-200 */ float unscale; /* reciprocal of scaling factor to normalize range byte# 201-204 */ int ntr; /* number of traces byte# 205-208 */ short mark; /* mark selected traces byte# 209-210 */ short shortpad; /* alignment padding byte# 211-212 */ short unass[14]; /* unassigned--NOTE: last entry causes a break in the word alignment, if we REALLY want to maintain 240 bytes, the following entry should be an odd number of short/UINT2 OR do the insertion above the "mark" keyword entry byte# 213-240 */ #endif } segy; typedef struct { /* bhed - binary header */ int jobid; /* job identification number */ int lino; /* line number (only one line per reel) */ int reno; /* reel number */ short ntrpr; /* number of data traces per record */ short nart; /* number of auxiliary traces per record */ unsigned short hdt; /* sample interval in micro secs for this reel */ unsigned short dto; /* same for original field recording */ unsigned short hns; /* number of samples per trace for this reel */ unsigned short nso; /* same for original field recording */ short format; /* data sample format code: 1 = floating point, 4 byte (32 bits) 2 = fixed point, 4 byte (32 bits) 3 = fixed point, 2 byte (16 bits) 4 = fixed point w/gain code, 4 byte (32 bits) 5 = IEEE floating point, 4 byte (32 bits) 8 = two's complement integer, 1 byte (8 bits) */ short fold; /* CDP fold expected per CDP ensemble */ short tsort; /* trace sorting code: 1 = as recorded (no sorting) 2 = CDP ensemble 3 = single fold continuous profile 4 = horizontally stacked */ short vscode; /* vertical sum code: 1 = no sum 2 = two sum ... N = N sum (N = 32,767) */ short hsfs; /* sweep frequency at start */ short hsfe; /* sweep frequency at end */ short hslen; /* sweep length (ms) */ short hstyp; /* sweep type code: 1 = linear 2 = parabolic 3 = exponential 4 = other */ short schn; /* trace number of sweep channel */ short hstas; /* sweep trace taper length at start if tapered (the taper starts at zero time and is effective for this length) */ short hstae; /* sweep trace taper length at end (the ending taper starts at sweep length minus the taper length at end) */ short htatyp; /* sweep trace taper type code: 1 = linear 2 = cos-squared 3 = other */ short hcorr; /* correlated data traces code: 1 = no 2 = yes */ short bgrcv; /* binary gain recovered code: 1 = yes 2 = no */ short rcvm; /* amplitude recovery method code: 1 = none 2 = spherical divergence 3 = AGC 4 = other */ short mfeet; /* measurement system code: 1 = meters 2 = feet */ short polyt; /* impulse signal polarity code: 1 = increase in pressure or upward geophone case movement gives negative number on tape 2 = increase in pressure or upward geophone case movement gives positive number on tape */ short vpol; /* vibratory polarity code: code seismic signal lags pilot by 1 337.5 to 22.5 degrees 2 22.5 to 67.5 degrees 3 67.5 to 112.5 degrees 4 112.5 to 157.5 degrees 5 157.5 to 202.5 degrees 6 202.5 to 247.5 degrees 7 247.5 to 292.5 degrees 8 293.5 to 337.5 degrees */ short hunass[170]; /* unassigned */ } bhed; /* DEFINES */ #define gettr(x) fgettr(stdin, (x)) #define vgettr(x) fvgettr(stdin, (x)) #define puttr(x) fputtr(stdout, (x)) #define vputtr(x) fvputtr(stdout, (x)) #define gettra(x, y) fgettra(stdin, (x), (y)) /* TOTHER represents "other" */ #define TOTHER -1 /* TUNK represents time traces of an unknown type */ #define TUNK 0 /* TREAL represents real time traces */ #define TREAL 1 /* TDEAD represents dead time traces */ #define TDEAD 2 /* TDUMMY represents dummy time traces */ #define TDUMMY 3 /* TBREAK represents time break traces */ #define TBREAK 4 /* UPHOLE represents uphole traces */ #define UPHOLE 5 /* SWEEP represents sweep traces */ #define SWEEP 6 /* TIMING represents timing traces */ #define TIMING 7 /* WBREAK represents timing traces */ #define WBREAK 8 /* NFGUNSIG represents near field gun signature */ #define NFGUNSIG 9 /* FFGUNSIG represents far field gun signature */ #define FFGUNSIG 10 /* SPSENSOR represents seismic pressure sensor */ #define SPSENSOR 11 /* TVERT represents multicomponent seismic sensor - vertical component */ #define TVERT 12 /* TXLIN represents multicomponent seismic sensor - cross-line component */ #define TXLIN 13 /* TINLIN represents multicomponent seismic sensor - in-line component */ #define TINLIN 14 /* ROTVERT represents rotated multicomponent seismic sensor - vertical component */ #define ROTVERT 15 /* TTRANS represents rotated multicomponent seismic sensor - transverse component */ #define TTRANS 16 /* TRADIAL represents rotated multicomponent seismic sensor - radial component */ #define TRADIAL 17 /* VRMASS represents vibrator reaction mass */ #define VRMASS 18 /* VBASS represents vibrator baseplate */ #define VBASS 19 /* VEGF represents vibrator estimated ground force */ #define VEGF 20 /* VREF represents vibrator reference */ #define VREF 21 /*** CWP trid assignments ***/ /* ACOR represents autocorrelation */ #define ACOR 109 /* FCMPLX represents fourier transformed - no packing xr[0],xi[0], ..., xr[N-1],xi[N-1] */ #define FCMPLX 110 /* FUNPACKNYQ represents fourier transformed - unpacked Nyquist xr[0],xi[0],...,xr[N/2],xi[N/2] */ #define FUNPACKNYQ 111 /* FTPACK represents fourier transformed - packed Nyquist even N: xr[0],xr[N/2],xr[1],xi[1], ..., xr[N/2 -1],xi[N/2 -1] (note the exceptional second entry) odd N: xr[0],xr[(N-1)/2],xr[1],xi[1], ..., xr[(N-1)/2 -1],xi[(N-1)/2 -1],xi[(N-1)/2] (note the exceptional second & last entries) */ #define FTPACK 112 /* TCMPLX represents complex time traces */ #define TCMPLX 113 /* FAMPH represents freq domain data in amplitude/phase form */ #define FAMPH 114 /* TAMPH represents time domain data in amplitude/phase form */ #define TAMPH 115 /* REALPART represents the real part of a trace to Nyquist */ #define REALPART 116 /* IMAGPART represents the real part of a trace to Nyquist */ #define IMAGPART 117 /* AMPLITUDE represents the amplitude of a trace to Nyquist */ #define AMPLITUDE 118 /* PHASE represents the phase of a trace to Nyquist */ #define PHASE 119 /* KT represents wavenumber-time domain data */ #define KT 121 /* KOMEGA represents wavenumber-frequency domain data */ #define KOMEGA 122 /* ENVELOPE represents the envelope of the complex time trace */ #define ENVELOPE 123 /* INSTPHASE represents the phase of the complex time trace */ #define INSTPHASE 124 /* INSTFREQ represents the frequency of the complex time trace */ #define INSTFREQ 125 /* DEPTH represents traces in depth-range (z-x) */ #define TRID_DEPTH 130 /* 3C data... v,h1,h2=(11,12,13)+32 so a bitmask will convert */ /* between conventions */ /* CHARPACK represents byte packed seismic data from supack1 */ #define CHARPACK 201 /* SHORTPACK represents 2 byte packed seismic data from supack2 */ #define SHORTPACK 202 #define ISSEISMIC(id) (( (id)==TUNK || (id)==TREAL || (id)==TDEAD || (id)==TDUMMY || (id)==TBREAK || (id)==UPHOLE || (id)==SWEEP || (id)==TIMING || (id)==WBREAK || (id)==NFGUNSIG || (id)==FFGUNSIG || (id)==SPSENSOR || (id)==TVERT || (id)==TXLIN || (id)==TINLIN || (id)==ROTVERT || (id)==TTRANS || (id)==TRADIAL || (id)==ACOR ) ? cwp_true : cwp_false ) /* FUNCTION PROTOTYPES */ #ifdef __cplusplus /* if C++, specify external linkage to C functions */ extern "C" { #endif /* get trace and put trace */ int fgettr(FILE *fp, segy *tp); int fvgettr(FILE *fp, segy *tp); void fputtr(FILE *fp, segy *tp); void fvputtr(FILE *fp, segy *tp); int fgettra(FILE *fp, segy *tp, int itr); /* get gather and put gather */ segy **fget_gather(FILE *fp, cwp_String *key,cwp_String *type,Value *n_val, int *nt,int *ntr, float *dt,int *first); segy **get_gather(cwp_String *key, cwp_String *type, Value *n_val, int *nt, int *ntr, float *dt, int *first); segy **fput_gather(FILE *fp, segy **rec,int *nt, int *ntr); segy **put_gather(segy **rec,int *nt, int *ntr); /* hdrpkge */ void gethval(const segy *tp, int index, Value *valp); void puthval(segy *tp, int index, Value *valp); void getbhval(const bhed *bhp, int index, Value *valp); void putbhval(bhed *bhp, int index, Value *valp); void gethdval(const segy *tp, char *key, Value *valp); void puthdval(segy *tp, char *key, Value *valp); char *hdtype(const char *key); char *getkey(const int index); int getindex(const char *key); void swaphval(segy *tp, int index); void swapbhval(bhed *bhp, int index); void printheader(const segy *tp); void tabplot(segy *tp, int itmin, int itmax); #ifdef __cplusplus /* if C++, end external linkage specification */ } #endif #endif