diff --git a/src/teachers/GA_1_6/GA_1_6_solution.ipynb b/content/GA_1_6/GA_1_6_an_ode_to_pde.ipynb similarity index 92% rename from src/teachers/GA_1_6/GA_1_6_solution.ipynb rename to content/GA_1_6/GA_1_6_an_ode_to_pde.ipynb index e7824cd386c4a333e10027ae0d03bc517c07ef3c..f4d298a394c4b450e0e9dd27e4f69ce55d9174f4 100644 --- a/src/teachers/GA_1_6/GA_1_6_solution.ipynb +++ b/content/GA_1_6/GA_1_6_an_ode_to_pde.ipynb @@ -7,7 +7,7 @@ "id": "9adbf457-797f-45b7-8f8b-0e46e0e2f5ff" }, "source": [ - "# Workshop 6: An ODE to Probably Doing Enough (PDE)\n", + "# GA 1.6: An ODE to Probably Doing Enough (PDE)\n", "\n", "<h1 style=\"position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0\">\n", " <style>\n", @@ -30,11 +30,28 @@ "source": [ "# Overview\n", "\n", - "This assignment contains two parts: treating non-linear ODEs and treating the diffusion equation (PDE).\n", - "\n", - "## Section 1: Solving Non-linear ODEs\n", + "This assignment contains two parts: treating non-linear ODEs and treating the diffusion equation (PDE).\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "453992c1", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "id": "0933143e", + "metadata": {}, + "source": [ + "## Part 1: Solving Non-linear ODEs\n", "\n", - "In task 1 you will solve first a very simple equation unp.np.np.np.sing Newton-Rhapson to understand exactly how to implement it. Task 2 treats the solution of a non-linear ODE in time, first with Explicit Euler and then with Implicit Euler. The latter will require again Newton-Rhapson to find the solution. \n" + "In task 1 you will solve first a very simple equation unp.np.np.np.sing Newton-Rhapson to understand exactly how to implement it. Task 2 treats the solution of a non-linear ODE in time, first with Explicit Euler and then with Implicit Euler. The latter will require again Newton-Rhapson to find the solution. " ] }, { @@ -42,7 +59,7 @@ "id": "735043d3", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Task 1</b>\n", "\n", @@ -60,7 +77,7 @@ "id": "17ca3c02", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Task 1.1</b>\n", "\n", @@ -84,24 +101,10 @@ }, { "cell_type": "markdown", - "id": "c221dccd", + "id": "769c78ae", "metadata": {}, "source": [ - "\n", - "<div style=\"background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", - "<p>\n", - "<b>Solution</b>\n", - "\n", - "$$\n", - "g(x) = x^2-9 \\text{ and } g'(x) = 2*x\n", - "$$\n", - "\n", - "so\n", - "$$\n", - "x = x - \\frac{x^2-9}{2x}\n", - "$$\n", - "</p>\n", - "</div>" + "Write your answer here." ] }, { @@ -109,7 +112,7 @@ "id": "4f3fc628", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Task 1.2</b>\n", "\n", @@ -120,35 +123,23 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "id": "25bcec4e", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The solution found is 3.000000000008298 it took 11 iterations to converge.\n" - ] - } - ], + "outputs": [], "source": [ "import numpy as np\n", "\n", "def g(x):\n", - " return x**2 - 9\n", + " return YOUR_CODE_HERE\n", "\n", "def g_der(x):\n", - " return 2*x\n", + " return YOUR_CODE_HERE\n", "\n", "x = .01\n", "for j in range(100):\n", - " x = x - g(x)/g_der(x)\n", - " if np.abs(g(x)) < 1e-6:\n", - " break\n", - "\n", - " \n", - "print(\"The solution found is \", x, \" it took \" ,j , \" iterations to converge.\")" + " x = YOUR_CODE_HERE\n", + " # Next task will go here" ] }, { @@ -156,7 +147,7 @@ "id": "c210989a", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Task 1.3</b>\n", "\n", @@ -166,22 +157,6 @@ "</div>" ] }, - { - "cell_type": "markdown", - "id": "72af70ed", - "metadata": {}, - "source": [ - "\n", - "<div style=\"background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", - "<p>\n", - "<b>Solution</b>\n", - "\n", - "4 iterations \n", - "\n", - "</p>\n", - "</div>" - ] - }, { "cell_type": "markdown", "id": "728a8de9", @@ -195,7 +170,7 @@ "id": "e4723ca1", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Task 1.4</b>\n", "\n", @@ -205,22 +180,6 @@ "</div>" ] }, - { - "cell_type": "markdown", - "id": "b9a34e8a", - "metadata": {}, - "source": [ - "\n", - "<div style=\"background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", - "<p>\n", - "<b>Solution</b>\n", - "\n", - "It takes 11 iterations, 7 more than in the previous case despite the guess being closer to the solution. This is because at that location the derivative is close to 0 and if first goes far away from the solution.\n", - "\n", - "</p>\n", - "</div>" - ] - }, { "cell_type": "markdown", "id": "99d7f4c8", @@ -234,7 +193,7 @@ "id": "fcb52681", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Task 2</b>\n", "\n", @@ -253,39 +212,23 @@ }, { "cell_type": "markdown", - "id": "8b10ee75", + "id": "6ef1b02a", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", - "<p>\n", - "<b>Task 2.1</b>\n", - "\n", - "Write in paper the Explicit and Implicit Euler schemes of the equation above.\n", - "\n", - "\n", - "</p>\n", - "</div>" + "Write your answer here." ] }, { "cell_type": "markdown", - "id": "7e68e263", + "id": "8b10ee75", "metadata": {}, "source": [ - "\n", - "<div style=\"background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", - "<b>Solution</b>\n", + "<b>Task 2.1</b>\n", "\n", - "The Explicit Euler Scheme:\n", - "$$\n", - "y_{i+1} = y_{i} + \\Delta t (\\sin(y_i^3)+\\sin(t_i))\n", - "$$\n", + "Write in paper the Explicit and Implicit Euler schemes of the equation above.\n", "\n", - "The Implicit Euler scheme:\n", - "$$\n", - "y_{i+1} = y_{i} + \\Delta t (\\sin(y_{i+1}^3)+\\sin(t_{i+1}))\n", - "$$\n", "\n", "</p>\n", "</div>" @@ -304,7 +247,7 @@ "id": "3a0f172f", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Task 2.2</b>\n", "\n", @@ -320,30 +263,6 @@ "</div>" ] }, - { - "cell_type": "markdown", - "id": "7ade5e39", - "metadata": {}, - "source": [ - "\n", - "<div style=\"background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", - "<p>\n", - "<b>Solution</b>\n", - "\n", - "$$\n", - "g(y_{i+1}) = y_{i+1}-y_{i} - \\Delta t (\\sin(y_{i+1}^3)+\\sin(t_{i+1}))\n", - "$$\n", - "\n", - "and\n", - "\n", - "$$\n", - "g'(y_{i+1}) = 1 - \\Delta t * 3y_{i+1}^2\\cos(y_{i+1}^3)\n", - "$$\n", - "\n", - "</p>\n", - "</div>" - ] - }, { "cell_type": "markdown", "id": "e40042c0", @@ -357,7 +276,7 @@ "id": "726c43cb", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Task 2.3</b>\n", "\n", @@ -374,30 +293,16 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "id": "57c0662a", "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHFCAYAAAAOmtghAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACERElEQVR4nO3dd3xN9x/H8dfN3sggQkTs2jGqVkWNCuWnRo2WFrVq71K1qqhabSmlZo3SKlXVVqjdqhkU1arYiU2GjJvc8/vjyCVNQsK9OffefJ6PRx7uPffccz45ieSd8106RVEUhBBCCCFshJ3WBQghhBBCmJKEGyGEEELYFAk3QgghhLApEm6EEEIIYVMk3AghhBDCpki4EUIIIYRNkXAjhBBCCJsi4UYIIYQQNkXCjRBCCCFsioQbkactW7YMnU6Hi4sLFy5cyPB6aGgoFStWNGsNO3fuRKfTsXPnTuO2CRMmoNPpzHpec1MUhdWrV/PSSy9RoEABnJ2dKVGiBP369ePSpUsZ9n/rrbfQ6XTGD3d3d4oXL06rVq1YunQpSUlJGd4TGhqa7j2PfhQvXtwsn1fa98z58+eN21avXs2cOXMy7Hv+/Hl0Oh0zZswwew2ff/45y5YtM+l5cuLIkSM0btwYDw8P8ufPT5s2bTh37ly23vvee+8REhKCt7c3Li4ulChRgl69emX6f1KI7JBwIwSQlJTE2LFjtS7D6O233+b333/XuoynZjAY6NSpE6+//jr+/v4sW7aMX375hcGDB7Np0yYqV67Mvn37MrzP1dWV33//nd9//53NmzczadIk3N3d6dmzJ9WrV+fy5csZ3lOiRAnjex792LBhg1k+txYtWvD7779TuHBh47aswk1u0jLc/PXXX4SGhpKcnMy6detYsmQJf//9N/Xr1+fGjRtPfP/du3fp1KkTy5cv5+eff2b48OFs3ryZWrVqcevWrVz4DIStcdC6ACEsQbNmzVi9ejXDhw+nSpUqWpdD0aJFKVq0qNZlPFZCQgKurq6ZvvbRRx+xdu1apk2bxqhRo4zbQ0ND6dChA7Vq1aJt27b89ddf5M+f3/i6nZ0dL7zwQrpjde3alW7duvHKK6/Qrl079u/fn+51V1fXDO8xJz8/P/z8/HLtfNZg3LhxODs7s3nzZry8vACoXr06pUuXZsaMGXz00UePff+8efPSPQ8NDSU4OJjmzZvz/fff0717d7PVLmyT3LkRAhg5ciQ+Pj7pfhFnJTExkdGjRxMcHIyTkxNFihShX79+3L17N91+xYsX55VXXuHnn3+mWrVquLq6Uq5cOZYsWfLEc2TWLJWT40VHR9O7d2+KFi2Kk5MTwcHBTJw4kZSUlHT7TZw4kVq1auHt7Y2XlxfVqlVj8eLF/Hc93bRzf/fdd4SEhODi4sLEiRMzrT05OZmPP/6Y5557jpEjR2Z4vVChQkydOpVr166xePHiJ14LgKZNm9KzZ0/++OMPdu/ena33PEnNmjVp0aJFum2VKlVCp9Nx8OBB47bvvvsOnU7HiRMngIxNQqGhofz4449cuHAhXbPYf82aNYvg4GA8PDyoXbt2hpCWlf3791O3bl1cXFwICAhg9OjR6PX6dPsUL16ckydPsmvXLrM3y/1XSkoKmzdvpm3btsZgAxAUFETDhg2f+g5aWoB0cJC/wUXOSbgRAvD09GTs2LH88ssv/Prrr1nupygKrVu3ZsaMGXTp0oUff/yRoUOHsnz5cl566aUM/UKOHTvGsGHDGDJkCN9//z2VK1emR48eT/0LOjvHi46O5vnnn+eXX35h3Lhx/PTTT/To0YOpU6fSs2fPdMc7f/48vXv3Zt26dXz33Xe0adOGAQMG8MEHH2Q495EjRxgxYgQDBw7k559/pm3btpnWePjwYe7cuUOrVq2y7DfUsmVL7OzsCA8Pz/bn3qpVK4BMr11KSkqGD4PB8NjjNW7cmN27dxuDwrVr1/jzzz9xdXVNV9e2bdsoVKgQlSpVyvQ4n3/+OXXr1sXf3z9ds9ij5s2bR3h4OHPmzGHVqlXEx8fTvHlz7t2799gaT506RaNGjbh79y7Lli1jwYIFHD16lMmTJ6fbb8OGDZQoUYKQkJBsN8ulpqZmet1yeh3//fdfEhISqFy5cobXKleuzNmzZ0lMTHzsMdKkpKSQkJDA0aNHGTx4MGXKlKFNmzbZeq8Q6ShC5GFLly5VAOXgwYNKUlKSUqJECaVGjRqKwWBQFEVRGjRooFSoUMG4/88//6wAyvTp09MdZ+3atQqgLFy40LgtKChIcXFxUS5cuGDclpCQoHh7eyu9e/c2btuxY4cCKDt27DBuGz9+vPLf/57ZPV7v3r0VDw+PdPspiqLMmDFDAZSTJ09mei1SU1MVvV6vTJo0SfHx8TFeg7Rz29vbK2fOnMn0vY/6+uuvFUBZsGDBY/crVKiQ8txzzxmfv/nmm4q7u3uW+58+fVoBlL59+xq3NWjQQAEy/ejRo8djz79t2zYFUHbv3q0oiqKsXLlS8fT0VN555x2lYcOGxv1Kly6tdO7c2fg87XsmMjLSuK1FixZKUFBQhnNERkYqgFKpUiUlJSXFuP3AgQMKoKxZs+axNXbo0EFxdXVVoqOjjdtSUlKUcuXKZaihQoUKSoMGDR57vEc97to9+vHmm28+9jj79u3L8nOZMmWKAihXr159Yj1RUVHpzlurVi3lypUr2f58hHiU3O8T4gEnJycmT55M586dWbduHR06dMiwT9pdnbfeeivd9vbt29O9e3e2b9+e7u5I1apVKVasmPG5i4sLZcqUeepRINk53ubNm2nYsCEBAQHpmqHCwsIYPnw4u3btonz58sbPZ8qUKRw8eJCYmJh057p+/TqFChUyPq9cuTJlypR5qrozoyhKjkaEKf9pKktTsmRJvv766wzbn9QvJq2pZ9u2bdSvX5/w8HBCQ0Np1qwZixcv5v79+9y6dYt//vmH0aNHZ7vOzLRo0QJ7e3vj87S7HE/6PtixYweNGjVK93Wwt7enQ4cOWTYLZtcXX3xBbGzsE/fz9fXN1vEe97XMztfZ19eXgwcPkpSUxOnTp5k+fToNGzZk586d6TpvC5EdEm6EeETHjh2ZMWMG7733Xqa3w2/duoWDg0OGX5w6nQ5/f/8MIzt8fHwyHMPZ2ZmEhISnqi87x7t27Ro//PADjo6OmR7j5s2bABw4cICmTZsSGhrKokWLjP1zNm7cyIcffpihxuz+gkkLX5GRkVnuEx8fz82bNwkJCcnWMeFhEAgICEi33cXFhRo1amT7OI++r27dumzbto2JEyeyfft2Ro4cSWhoKKmpqezZs4crV64AahPWs/jv183Z2Rngid8Ht27dwt/fP8P2zLblVKlSpbIMjI+ys3t874W0zy2zUU23b99Gp9Ol6zSeFQcHB+PXsW7dujRr1ozg4GCmTZvGJ5988sT3C/EoCTdCPEKn0/HRRx/RpEkTFi5cmOF1Hx8fUlJSuHHjRrqAoygK0dHR1KxZMzfLzZSvry+VK1fmww8/zPT1tHDw9ddf4+joyObNm3FxcTG+vnHjxkzfl927LNWrV6dAgQJs2rSJqVOnZvq+TZs2YTAYaNKkSbaOmfYeUDvwmkqjRo0YN24cBw4c4PLlyzRp0gRPT09q1qxJeHg4V69epUyZMgQGBprsnDnh4+NDdHR0hu2ZbcupRo0asWvXrifu9+abbz52iHnJkiVxdXU1drh+1IkTJyhVqlS676/sKlq0KAEBAfz99985fq8QEm6E+I/GjRvTpEkTJk2alOGXWqNGjZg+fTorV65kyJAhxu3r168nPj6eRo0a5Xa5Gbzyyits2bKFkiVLUqBAgSz30+l0ODg4pGsuSUhI4Kuvvnqm8zs5OTFixAjGjBnDxx9/nGHE1PXr1xk9ejSFChXi7bffztYxw8PD+fLLL6lTpw716tV7pvoe1bhxY8aMGcP7779P0aJFKVeunHH7pk2biI6OzrLj9KOe5W7c4zRs2JBNmzZx7do1Y9NUamoqa9eufeYaTNUs5eDgQMuWLfnuu++YPn06np6eAFy8eJEdO3ak+3+SE2fPnuXy5cvGjuRC5ISEGyEy8dFHH1G9enWuX79OhQoVjNubNGnCyy+/zKhRo4iJiaFu3bocP36c8ePHExISQpcuXTSsWjVp0iTCw8OpU6cOAwcOpGzZsiQmJnL+/Hm2bNnCggULKFq0KC1atGDWrFl07tyZXr16cevWLWbMmGFsMnkWo0aN4tixY8Z/O3ToQL58+Th+/Dgff/wxsbGxbN68mXz58qV7n8FgMA6RTkpK4uLFi/z000+sW7eO5557jnXr1mU4V0JCQpbDqp80/03aXaatW7fSrVs34/bGjRsbR4xlp0mqUqVKfPfdd8yfP5/q1atjZ2f3VE1l/zV27Fg2bdrESy+9xLhx43Bzc2PevHnEx8dnWsPXX3/N2rVrKVGiBC4uLlmO8AIoW7bsM9eXZuLEidSsWZNXXnmFd999l8TERMaNG4evry/Dhg1Lt6+DgwMNGjRg+/btABw/fpwhQ4bQrl07SpQogZ2dHSdOnGD27Nn4+PgwfPhwk9Up8hBt+zMLoa1HR0v9V+fOnRUg3WgpRVFHKI0aNUoJCgpSHB0dlcKFCyt9+/ZV7ty5k26/oKAgpUWLFhmO26BBg3SjWnIyWio7x1MURblx44YycOBAJTg4WHF0dFS8vb2V6tWrK++9954SFxdn3G/JkiVK2bJlFWdnZ6VEiRLK1KlTlcWLF2cYiZPVuR/HYDAoq1atUkJDQ5X8+fMrTk5OSnBwsNK3b98MI7kURR0txSOjZVxdXZVixYopLVu2VJYsWaIkJSVl+rnzmJE+er3+iXW++uqrCqCsWrXKuC05OVlxd3dX7OzsMnxdMxstdfv2baVdu3ZK/vz5FZ1OZ/zapY2W+vjjjzOcF1DGjx//xPr27dunvPDCC4qzs7Pi7++vjBgxQlm4cGGGGs6fP680bdpU8fT0VIBMR2+Z06FDh5RGjRopbm5uipeXl9K6dWvl7NmzGfYD0n2/RkdHK2+88YZSsmRJxc3NTXFyclJKlCih9OnTR7l48WIufgbClugUJRs9yoQQQgghrIRM4ieEEEIImyLhRgghhBA2RcKNEEIIIWyKhBshhBBC2BQJN0IIIYSwKRJuhBBCCGFT8twkfgaDgatXr+Lp6ZmjRfuEEEIIoR1FUYiNjSUgIOCJa57luXBz9epVzdaJEUIIIcSzuXTpEkWLFn3sPnku3KSte3Lp0iW8vLxMemy9Xs/WrVtp2rRplisyi6cn19f85Bqbl1xf85NrbF5aXt+YmBgCAwONv8cfJ8+Fm7SmKC8vL7OEGzc3N7y8vOQ/lRnI9TU/ucbmJdfX/OQam5clXN/sdCmRDsVCCCGEsCkSboQQQghhUyTcCCGEEMKmSLgRQgghhE2RcCOEEEIImyLhRgghhBA2RcKNEEIIIWyKhBshhBBC2BQJN0IIIYSwKRJuhBBCCGFTJNwIIYQQwqZIuBFCCCGETZFwIyxHaiooitZVCCFsSUoK3LolP1vymDy3KriwQLGxMGYMLFwIBgN4eT38yJfP+NjOw4PyN29id+wYFCigbs+fHxo3Bnd3rT8LIYSl2bQJeveG6GhwdoaAAChS5OG///0ICAAXF62rFiYg4UZoa8sW6NMHLl16uO32bfXjP+yB0gAbNqR/oWxZOHBADTtCiDzPIT4e+7ffhhUrHm5MSoLISPXjcby91aBTrRrMmAG+vuYtVpiFhBuhjRs3YPBgWL1afV6iBMyfDxUqQExM+o979yAmhtQ7d4g8dowSPj7YxcWprx06BGfOwNtvw9q1oNNp+mkJIbSl276dhoMGYXfzpvrzYMQIeO89uHMHrlx5/Edi4sM/rk6cUJuzNm2SnytWSMKNyJrBAK1aqX/pdOumfvj4PNsxFQVWrVKDza1bYGcHQ4bApEng5qbuU6RI5uXo9ZzcsoWg5s2xc3RUN+7fD/XrwzffwIsvQv/+z1afEMI6xcfDyJE4fP45DoBSqhS65cuhTh31dS8vCArK+v2KAnfvqiHn9Gno0gU2b4bPP4d+/XLjMxAmJB2KRdbOnIEff4RTp9S/fooUgbfeUpuAnsaFC9CihfpD49YtqFxZDSczZjwMNjn1wgvw8cfq46FD4eDBpzuOEMJ67dsHVaqoQQQ417w5KQcPPgw22aHTqX35KlaE9u3ho4/U7cOGwZ9/mqFoYU4SbkTW0oJCcDCEhKht1suXQ61aULMmLF0K9+8/+TipqfDZZ2qT008/gZMTTJ6sNinVrPnsdQ4aBG3agF6v/lDKpL+OEMIGJSbCyJHq3dt//4XAQFJ++okTvXo9+yCDgQMhLEz9udepEyQkmKZmkSsk3IispYWb1q3h8GH1LkvXruqog0OHoHt3KFpU/cvmn38yP8apU+oPnoED1dvG9erBsWNqG3ha09Kz0ulgyRK1386FC/Dmm2qTmhDCdh0+DNWrq3duFUVtNj9xAqVRI9McX6dT/4ArWFC9czNqlGmOK3KFhBuRtbRwU7Om+h+9Vi31zs3ly+ot2+BgtZPerFlQpgy8/DJ8/706r0RystqPJiQEfv8dPDxg3jzYtQvKlTN9rfnywbffqsFr82aYOdP05xBCaE+vhwkT1J9Hp05BoULqz50lS9SfA6ZUqBAsW6Y+/uwztZleWAUJNyJzej1ERKiP/9t05Our3gr+5x/1P3uLFmr42bpVvctTooTa/j1+vBpyWrRQfwi9847agdhcQkLg00/Vx6NHw5495juXECL3nTyp9rObOFFt7m7fXr2r0qqV+c4ZFqY2fYN6dyg62nznEiYj4UZk7s8/1bbm/PmhZMnM97G3h+bN1Tsl//6r3rb18VHnrPnrL/DzgzVr4IcfIDDwsaeLS45j94XdxCTFPFvdPXvC66+rP/g6doTr15/teEIIy7B5s9oMdeSIOhfN11/DunUZ5qE5f/c8m65vouGKhiyPWG7cHpccxzcnv8GgPEWT9bRp6gCIGzfUQRXS7G3xJNyIzKU1SdWokb05HoKD1R8Aly/DV1/BuHHq3ZqOHR/7/ov3LjIyfCSBswNpsKwBRWcVZcjPQ7gcc/np6tbpYMECeO45uHr1YdARQlivzZuhbVv1D66XX1b/+OrQwfjy6Run+XD3h1RfWJ0yn5dhydUl7Lu8j29OfWPcZ87+Obz27Ws8v+h5wv8Nz9n5XVzUOblcXOCXXx7eIRYWS+a5EZl7tL9NTri4wBtvPHG3yDuRvLv9XdafWk+qooYPd0d3YpNjmfPHHDpV6kRRr6I5rVrl4aH2v6lZE7ZtU0dmjR//dMcSQmgrLdgkJ0O7dmrIeDAYISklieoLq3Pyxknj7nY6O8q7l6dH7R60rdDWuN3VwRUPJw8ORx2m6cqmNApuxNRGU6lZJJs/4ypUUPsXvvOOepc6NBSqVjXhJypMSe7ciMwdOqT+W6OGWQ7vZO/Ed6e/I1VJ5aXgl9jUcRP33r3HT6//xNAXhvJ8keeN+874bQYrjq0gKSUp+ycoX169gwNq+/y2bSb+DIQQZvefYPPHx4P57MgC48vODs74uPngaOdI89LN+bLll1waeInJpSbTr2Y/AvM9bA4fVmcY5waeY1CtQTjZO7E9cjvPf/k87b9pz5mbZ7JXT58+av+e5GR1eHh2psIQmpA7NyKjhAR16nEwyTw0dxPvsujwIs7cOsOXrb4EoIhXET5v/jnPF3meKv5VjPs2K9WMZqWaGZ/fun+LcTvGkZCSwCj3UTT0bEjN+JoE5A948om7dIHdu+HLL6FzZzh6NMvZj4UQFuaRYKO0a8vUfpV5b3k97HR2dKzYET93PwAWtVxEIfdC5HNRR0rp9fosD+nn7secZnMY/MJgxu8cz1fHvuLbU9/iaOfI6rarn1yTTgeLF6v9b/76S50GY/58k3y6wrTkzo3IKCJC7adSqJA6j81TOnv7LAO2DKDorKKM3DaSxUcXc+rGKePrPav3TBdsMuNo78j7L75PgGcA0fHRrIleQ4m5JXh709ucuHbiyUV8+qk6cuvGDbX/T0rKU38+Qohc8p9gM7JHEO/tGgdAu/LtiNfHG3ct41PGGGyyq3j+4ixvvZzjfY/TulxrJjWcZHwtOi6aOwl3sn6zr+/DBTkXLICNG3N0bpE7JNyIjP47v00Onbh2glZrWlHmszLMPTiXeH08lQpWYnGrxZQoUCJHx/Jy9mJ0/dGcH3SeFf9bQWm30iSlJrH46GIqL6jM4iOLH38AV1d13SlPT9i7V508UAhhuR4JNqnt2tLrjXzM+GMWALOazmJtu7UUz1/cJKeqWLAiGzpsoJR3KeO2EeEjKPFpCabvm06qIYvBCI0bw/Dh6uMePdT1qIRFkXAjMnqG/janb5ymwbIG/PD3DygotCjdgm1dtnGszzG6h3THxcHlqUpytHekY4WOTC89nV1dd9GufDtcHVxpXrr5k99curQ6wRfA9Onq0HQhhOV5JNgkt29D5/Y6voxYgp3OjsWtFjOk9hCznj4xJZET105wN/Euo7aNYtS2x8xK/OGHUK2autxL164yPNzCSLixRocPq53aTp588r5P42lHSgH5XfITlD+IWkVq8Ve/v9jceTONSjRC9xR3gDKj0+moXbQ237T/hitDr1DYs7DxtRTDY5qc2rVTl4AAdXmG8+dNUo8QwkT+03n4m9GtWHda7Q+zrt06uod0N3sJLg4uHO51mLlhcwGY+ftMvjr2VeY7OzmpI7fc3ODXX9UFgIXFkHBjjRYvVu8+zJpl+mPHxKirgcNThZvCnoXZ/dZufuz8I2V9y5q4uPQKuBYwPv7sj8+ot6Qe8cnxWb/h44/h+efVJSM6dJD5b4SwFJkM9+5ctSuj641mc+fNtC3f9snHMBF7O3v6Pd+P9+qrTdg9f+jJgSsHMt+5bFn45BP18XvvPbzrLTQn4cYa3bql/rttm7pgnCkdPqweMyhInWE4G5JTk9NNiuXp7ImPm49p63qMm/dvMmn3JP648gddNnTJegZSJyd1RlMvLzhwAH7+OddqFEJk4ZFgc6NDS+KXLQJHR3Q6HVMaTaFpyaaalDWp4SRalmlJUmoSr659lajYqMx37NFDrT8lRR2VGReXu4WKTEm4sUa3b6v/XryoLntgSjnsb6MoCj1/6EnTlU2Z/fts09aSTb5uvmzssBEneyc2/LWBd7e9m/XOQUHw9tvq488/z50ChRCZeyTYXOzUnHp1/+LV717L2ZxWZmKns2Nlm5U85/scCfoEIu9GZr6jTgcLF6ojS//5Bz74IHcLFZmScGON0sINmH5yuhz2t3l/x/usOLYCe5095XzNsNp3NtUtVpel/1sKwMe/fcyiw4uy3rlPH/Xfn36Cc+dyoTohRAaPBJsznV+mXs0T/H37H87cOsO1+GtaVweoozU3ddrEgZ4HqBNYJ+sdvb3VVcMBFi1S5woTmpJwY40sJNx8cegLPtzzofr4lS8IKx1m2lpyqHOlzkxoMAGAvj/2Zdu5LK5N6dLQtKna/PbFF7lXoBBC9euvxmBz9I1G1K96hEsxlyjrU5a93fZSLF8xrSs0KuVdKt1Q8bjkLJqdWrZU7wzfuQNr1+ZSdSIrmoab3bt307JlSwICAtDpdGzMxmRISUlJvPfeewQFBeHs7EzJkiVZkjbMN694NNzs2GG6jrE3bz4cRVS9+mN3/eHMD7yz5R0AxjcYT49qPUxTwzMa12AcnSt1JlVJpd26dlyNvZr5ju+otbN4MSQm5l6BQuR19+6pIxaTk9nbpQGhFQ5y4/4NqhWuxp5ue9ItmWBpfjn7C8GfBLP93PaML9rbP7wrLE3emtM03MTHx1OlShXmzp2b7fe89tprbN++ncWLF3PmzBnWrFlDuXLaNYfkOr1eHdEEagfZ27fVGYVNIa2/TZkykC/rGT//uPwHHb7tgEEx0COkB+MbWM6ilDqdjsWtFvNi0IuMbzCewh6FM9+xRQsIDFQ7Z3/zTeb7CCFMb9gwuHyZrfUDaFr2ADFJMdQvVp9fu/5qXFLBUn198mtu3r9J+2/a8+/tTPo7du+uLup58KCMnNKYpuEmLCyMyZMn06ZNm2zt//PPP7Nr1y62bNlC48aNKV68OM8//zx16jymLdTW3L378HHjxuq/pmqaymaT1K+Rv5KQkkBYqTDmt5hvsjlsTMXFwYVfu/7KkNpDsq7NwQF691Yfy19ZQuSOX35R75bqdPi9OwlHe3XBy5/f+DnHSyhoYX6L+dQMqMmdxDv87+v/EZsUm36HggWhffsHO8uaU1qyqj43mzZtokaNGkyfPp0iRYpQpkwZhg8fTkJe6ryV1iSVPz+8/LL6eHsmt0ifRjbDzej6o/m67desa78OR3tH05zbxOzt7I2P7yXe4+N9H2ccIv722+pfWfv3w5EjuVyhEHnMvXsPRyoOHEhI8x781v03NnTYgJujm7a1ZZOLgwsbOmygsEdhTt44yZsb38z4cyWtyXvNGrX/jdCEVa0Kfu7cOfbu3YuLiwsbNmzg5s2bvPPOO9y+fTvLfjdJSUkkJT0cVhjzoElHr9c/dvXYp5F2PFMf91G669dxABRvb1IaNMARUPbsISU2FlyebmmDNA6HDqEDUkJCUP7zOcQnx2Ons8PV0RWANmXVu23m/Fz/62mub4ohhdBloURci+Buwl1jh2MAvL2xb9MGu7VrMcybR+qCBSau2PrkxvdwXpaXr6/9sGEkXLvMlaqBBE+YAHo9ZQqUAQPoDaa7Hua+xgVdC7Ku7ToarWzEhr82MGHHBN6v//7DHWrWxKFiRXR//knqkiUY0mZGtxFafg/n5JxWFW4MBgM6nY5Vq1aR70GfkFmzZtGuXTvmzZuHq6trhvdMnTqViRMnZti+detW3NzM89dCeHj4k3d6SoUOHeIF4K6dHbsjI3m5QAFc7tzhwJw53Kxc+amP63LrFi9HRWGws+Pn6GhSt2wxvpaqpDI1cirxqfGMDh6Nl4OXCT6Tp5fT61vfqT4RRDBl3xTiL8XT0Luh8TXvKlWov3YthpUr2frSS6R4eJi6XKtkzu9hkfeur9/Ro9RevJhebWBj5esM3TSTGvlyvnZdTpj7GvcO6M1nlz7jgz0f4HDVgSqeVYyvFa9Xjyp//knCrFlsL1EC7KyqkSRbtPgevn//frb3tapwU7hwYYoUKWIMNgDPPfcciqJw+fJlSpcuneE9o0ePZujQocbnMTExBAYG0rRpU7y8TPtLWq/XEx4eTpMmTXB0NE9zje5Bs1S+4GCat2iBfVgYrF7NC/HxGJpnYxHJrI77/ffqvxUq8PKrrxq3K4rCOz+9w6GYQ7g4uFCyRklqBuR8WQZTeNrr25zmuOxw4ePfP+bzy5/T6sVW1C9WX30xLAxl9Woc/vyTZtHRNvdXVk7lxvdwXpYnr29MDA4DBjDveVhdGex1KbxU9yXqFatnltPl1jVuTnN04Tpik2MZ+vJQnB2cH75Yvz7KqlV4XL1KC1dXlEaNzFZHbtPyezit5SU7rCrc1K1bl2+++Ya4uDg8HvyF/ffff2NnZ0fRokUzfY+zszPOzs4Ztjs6OprtC2POY6eNlLLz8cHO0VGdr2X1aux37MD+Wc559CgAuuefT1f75N2TWRyxGDudHWvarqFOkPadt5/m+k5rMo3Ie5F8e+pb2q9vz/4e+ynt8yAM9+sHffti/8UX2A8ZYpN/ZeWUWb+HRd66vmPG8BuXGNJMfTqj6Qwalmz4+PeYQG5c49lhs9GhyzhwwdsbunSBzz/HYdEiaNbMrHVoQYvv4ZycT9Of4nFxcURERBDxYChzZGQkERERXLx4EVDvunTt2tW4f+fOnfHx8aFbt26cOnWK3bt3M2LECLp3755pk5RNSutQ7O2t/pv2F8GhQ+lHUuVUJssuHIk6wrgd4wD4LOwzWpdr/fTH15idzo4VrVfwfJHnuZ1wm1fWvPJwMq7XXwdPT3Xq9F9/1bZQIWzJtm1cW7WQ9u0hxQ46VOjAoFqDtK7KZOx0dsZgk2pIZcGhBehTH/QL6dtX/ff77+HyZY0qzLs0DTeHDh0iJCSEkJAQAIYOHUpISAjjxqm/UKOiooxBB8DDw4Pw8HDu3r1LjRo1eP3112nZsiWffvqpJvVr4r/hpmhRdWVagwF27ny6YyrKw3DzYKSUoigM+WUICgqdKnbinZrvPFvdFsDV0ZVNHTdR1KsosUmxnL19Vn3B0xPSQrQMCxfCNGJiSHm7Ox3aw1UveM73Ob5s9aXFTR1hKp2/60zfH/sa/yCkYkV48UV1ktVFj1kORpiFpuEmNDQURVEyfCxbtgyAZcuWsfM/v7DLlStHeHg49+/f59KlS8ycOTPv3LWBjOEGnn2+m3Pn1OM6OUGlSgBs+GsDuy/sxtXBlY8af/QMBVuWQh6F2NxpM6f6naKqf9WHL8hfWUKY1siRLCh0iV3FwdPJk+86fIeHk+122H+t/GuAurbd0Si1md84LHzRInUCVpFrpHOBtcks3KQ1TT1tuEmb36ZqVTXgAMXzF6dOYB1G1Blh0dOhP40q/lXI75I//cYKFaBBA/UO2MKFmtQlhM3Ytg2++IJeh2FgkTYs/d9STRfWzQ1ty7elffn2pCqp9PyhJymGFHj1VShUCKKi1D+cRK6RcGNtMgs3oaFqJ9gzZ57urkMm/W2qFa7G3m57Gfvi2Kev1cIpisKKYyuY8dsMdUO/fuq/ixZBcrJ2hQlhzWJjjZP1OfXpxydvr6dt+bYaF5U7Pg37lPwu+TkcdZhP//hU/WMxbeJCafLOVRJurE1m4aZAgYfB5GlmK85iZmKdTmexMxCbwq4Lu3hz45uM3j6a49eOQ+vW4O8P0dGQjUVchRAZxY4azEdFL5BSojhMm6Z1ObnK38Ofj5t8DMD7O94n8k4k9Oql/vG5YwecPq1xhXmHhBtrk1m4gadvmkpNhcOH1cc1azLop0G8u+1dYpKyP5+AtWoQ1IBXy71KiiGFtze9Taq9nfqDCOSvLCGegrJtG91vLuHdJtB1WAnIg5Ni9gjpQWjxUO7r79P/p/5QrBi88or6osyCnmsk3FgTg+HhWiX/DTdpnYq3b1dHP2XXmTMQHw/u7pzw1jP34Fw+2vcRx6KPmaZmC6bT6ZjbfC75nPNx8OpBPvnjE+jZE+ztYdcu+PNPrUsUwnrExjJr9mt8WwEcFTsGtJysdUWa0Ol0LHxlIfWL1WfKS1PUjWkdi5ctU3/eCrOTcGNN7t17GFwKFEj/Wp066tpSUVE5u/X5oElKqRbC0G0jMCgG2j7XlvpB9U1UtGUL8AxgZtOZAIz9dSz/uiXB//6nviir+gqRbTvf78KoGuofX3Maz6B2YG2NK9JOaZ/S7O62myr+D5ZkaNIESpZUJ2Fds0bb4vIICTfWJK1JysPDOKrJyMUF6j2YzjwnTVMPws2PtX3Zdm4bTvZOTG8y3QTFWo/uId15KfglElIS6PlDT5S0YeErVqidI4UQj3Xlp7V0cPyeVDvoUrAJfesO1roki3Ip9gr06aM+mTcvZ3fXxVORcGNNsupvk+bRpqnsOniQZHsYlu8PAAbXGkyJAiWeoUjro9PpWNRyEa4Oruw4v4PfSruoEyPGxcHKlVqXJ4RFS753m/ab3+S6B1TW+7Dg7Y02O1FfTimKwvu/vk+JT0vwy0tB4OwMERHwxx9al2bzJNxYk+yGmx07ICXlycdLToZjx5hfA/7WR+Hn5sd7L75nmlqtTIkCJfjilS/Y/dZu6gbVe9hG/vnn8leWEI9xYmwvjudPIl+Sju96b8fN0U3rkiyGTqcurJliSKHPnpHEd3owJF6avM1Owo01eVK4qVpV7YsTG/twePfj/Pknen0SM+qpf2VNfmkyXs6mXSndmnSp0uVhX6OuXcHNTe1UvHevtoUJYalWr6b63PUcXAjfVp9GycAqWldkcSa/NJli+Ypx/u55xoU+2Lh2Ldy6pWVZNk/CjTV5Urixt4eXXlIfZ6dp6uBBHA2w/696jK43mh4hPUxTpw04a7jJr91C1ScyLFyIjE6eVEcXAs/1GUvjtiM1LsgyeTh5sKCFOgR8zoWvOdSwLCQlwdKlGldm2yTcWJMnhRvI2TpTD+7uFKlSnymNpmBvZ/+MBdqG3y79RuX5lelY5HduuQLr16sT+wkhVDExTBsbyi6/++pIoAkTtK7IooWVDqNzpc4YFAM9G99Hb4faNGUwaF2azZJwY02yE27SJvP77bcnzqdw/O896oP/zEyc19UIqEGJAiW4kXyHIW/4qgveLV6sdVlCWAZFYdeAloyuepOGb8GZeZPUu8bisWa/PBtvV28i9JeY1dBFXbB461aty7JZEm6sSXbCTalS6oyYev1j+4psPbmJKo3+pmM7UKpXN3Gh1s3J3onFrRajQ8dXRW7ycynUmUWz00lbCBsXP2sa3fPvBuDtwP9RtvQLGldkHQq6F2RW01m4O7rjVe3BHEDSsdhsJNxYk+yEG53uiU1TKYYUhv40GAB/gxu6okVNWKRtqFW0FoNfGAxA71Z2xF6/DJs3a1uUEFrbs4cx29/jnDcE2hVgxhsrtK7IqnSt0pW/B/xN3x4PQs3mzXDhgrZF2SgJN9YkO+EGnrjO1JdHvuRkfCTe92Gcob4aiEQGHzT8gOD8wVz0MjCmEdKxWORtUVHsHtSaT2upUyN82WlNnh5d+TR0Oh0BngHqPFqNGqEYDLBwodZl2SQJN9Ykp+EmIgJu3kz30r3Ee4zbMQ6ACTvBO6SOaWu0Ie5O7ixquQiAubXgj1Ph8NdfGlclhAb0euI7taN7ffVn0NuV3qJpqZc1Lsq6/dqlHi+8DddWLVTnHBMmJeHGmmQ33BQqBJUqqY9//TXdSx/u+ZAb929Q7p4TfQ4hnYmfoFGJRvSt0ZcJV8sSEg2MGaN1SULkvjFjWBX3G/96Q1E3f2Y0n6N1RVbNoBgYmfgDB4rCoJo34bvvtC7J5ki4sRaKkv1wA5k2Tf17+1/m7J8DwMzNyTgakHCTDfOaz2P8oO9wwh42bMjZ8hZCWLv162HGDHoehhVFB7CkzQryueTTuiqrZqezY2GrRdijY21F+HHVeJkJ3cQk3FiLuLiHo3WyE24yWWfqSuwVCnkUomn+GoT9AxQvDr6+Ji/V1uh0OihfHvr1I8UO7g7vLyOnRN5w5gx06waAbsQIuvT4lCYlm2hclG2oVrgaQyr3BuCdUn9zf4VMN2FKEm6sRdpU3S4u4Or65P1ffBEcHNS5FM6dUzcFvciZ/mdYmvgyOoAaNcxWri06+k4bavS1p0eZv9Sh4ULYsvh4aNuWr4NiufNSbZgyReuKbM7EV2ZSjPxczA8ffTsY7t3TuiSbIeHGWuSkSQrA0xNq1VIfP3L3xs3RjYBDZ9Qn0iSVI04FfPnTT+G78rD1y9GyNoywXYoCvXqxL+YkndtChWbnuJUsv3hNzc3RjZmvqsPCP6oaT+TEwdoWZEMk3FiLnIYbMDZNpWwPZ/Pfm0lKSVK3py2qKeEmRyoUrMCA5/sDMLB+HMnj8uYK6iIP+Pxz7n+zmm6tQdFBszLN8XHz0boqm9S2Ugde8qpKkgN8dXQ5HD+udUk2QcKNtXiGcLPrzC+0XNOSCp9XQLl+/eGkUTIzcY5NaDiJgo4FOOMLnxxbKD+IhO3Zvx+GDOH9hvCPDwR4BjDr5VlaV2WzdDodn72xivUXXuD9nQr06yedi01Awo21eJpw8/zz4O7O2sAYAF4Kfgnd4cPqa2XLgpdMwJVT+VzyMb35bAAmvahwZWRf+UEkbMeNG9C+Pb/565n9YIWARS0Xkd8lv6Zl2bryfuVpM2EtOjc3ddmcVau0LsnqSbixFk8Tbpyc0IfWZ/1z6tMOFTpIk5QJdKnShdp+1YhzhpHuv8kcFcI2KAq8/joJ0Zfp1t4RRQdvVX2L5qWba11Z3lCsGIwdy21X2DZ7gHQufkYSbqzF04QbYNuLgdx2g0LJToQWD5VwYwJ2OjvmvroInQIX8kPCqKGQkKB1WUI8m40bITycaQ0d+NtLrzZHNZXmqNz0z1utKDPIjldfvsvVicO1LseqSbixFk8Zbr72jQag3Z8G7FNS4dAh9QUJN8+kWuFq/P7GDvZsLYLrvxdh5kytSxLi6aWmwvvvAzCo1iDeqPwGX7zyBQVcC2hcWN5S0v85SvuWIc4ZRl1YDCdOaF2S1ZJwYy2eItwkpiSy8fouADpGpMC330J0NNjbQ5Uq5qgyT6lVKhTd9I/VJ1OnwuXL2hYkxNP6+ms4eRLy58d72Fi+evUrXinzitZV5Tl2Ojs+6/QVOgVWVlbYN+YN6dP3lCTcWIunCDd7LuwhJimGInpX6lwCpk1TX6hYEdzcTF9jXtSxIzEv1mJM7ftcHzNI62qEyDm9HsaP51wBUEaMgPz5ta4oT6sRUIMeZTsC0L/IcVJXrdS4Iusk4cZaPEW4aVKyCSffOcmXhXtjp/DwFqc0SZmOTkenjg5MrQ+j730H+/ZpXZEQObNsGVeu/0vld3S0KLqLe4nSkVVrU1p9Sn5ciCgMi5b2h5gYrUuyOhJurMVT9rkp71eeZq8MTr9Rwo1JvffKdACWVIM/xr8NBoPGFQmRTYmJMGkSI5pCvKPCvZQ4vJxligit+bn7MamxutzFezViuDVxlMYVWR8JN9YgpyuC/1dQEJQq9fC5rCllUnUC6/Bm2Q4A9C/xF4alSzSuSIhs+uILdttfZk0l0KHjs7DP1IViheb61h5AFbcStDkNui8Wwp9/al2SVZFwYw0SEiDpwdIJ2Qw3XTd0pcO3HThx7UFTVKNG6r/OzlCpkhmKzNumvTIHL1w4VASWfDVU5qgQli8+npSpHzIgTH3au3pvqhWupm1NwsjBzoH9Q06yyOFVvOMNMnNxDkm4sQZpd20cHMDD44m7xyTFsO7kOtadXEeqkqpubNFC/bd2bXB0NFOheZe/hz8TG30AwLu1Yrn9wRiNKxLiCT79lC+K3eC4P3i7ejP5pclaVyT+w8XBBWbPBldXlN27UVav1rokqyHhxho82iSVjVvGm85sIik1ibI+ZalS6MGQ71degfXrYelSMxaat/WrPYgKrkHccoNJp+bDmTNalyRE5u7e5ean03j/JfXp5IaTZWFMSxUUxD9jetPidVj1RT/pXJxNEm6sQQ7726w9uRZQl1swtp/rdNCmDRQvboYCBYCjvSNzX1tG51sBjNyrwNChWpckROZmzeIyMXinOFK1UFV6Ve+ldUXiMb6t581PpWHk8/eInfie1uVYBQk31iAH4eZOwh1+OfsLAB0qdjBnVSITocVDWdV/BwGJjrBli/ohhCW5cQNmz6ZqNJystYINHTdgb2evdVXiMYbWG0kp5wCiPOGDP+dJ5+JskHBjDXIQbjb8tQG9QU+lgpUo71fezIWJTJUpA4PUCf1uvDsAkpM1LkiIR3z0EcTFQbVqOLfrQPH8xbWuSDyBs4Mzc9osBGBOLYUzI7pL5+InkHBjDXIQbtKapDpW7GjOisQT3Br2Du26OFO56TliPpuhdTlCqK5e5etfP+WTWpDywcRs9eETlqFFmRa0KPoSensY5HsQZc0arUuyaBJurEEOwk3TEk0J8Q/htQqvmbko8TgevgEcL5ufaE+YtGvSw6+hEBq69+H7DGqkZ3AYLCl4RetyRA7NefULnLDnl1Kw6bP+6h04kSlNw83u3btp2bIlAQEB6HQ6Nm7c+Nj9d+7ciU6ny/Dx119/5U7BWslBuBlWZxhHeh+hlHepJ+4rzMfZwZk57RYB8GnVJP6ZMkzjikSeFxnJxHNLue4BZV0DeSukm9YViRwq5V2K4bXVnyXzSt9Rh4mLTGkabuLj46lSpQpz587N0fvOnDlDVFSU8aN06dJmqtBCPMvsxEIzzcu2pFn+GujtYXjUcjh3TuuSRB52asoQPqup9tP4pM0inOydNK5IPI0xoeOYVbALP6wGpk9XO4iLDDQNN2FhYUyePJk2bdrk6H0FCxbE39/f+GFvb+M9/bMRbqLjoll1fBWxSbG5VJTIjlmdV2Cv6NhURmHb5O5alyPyKOXUKQYmf0+KPfyv4Iu8XOplrUsST8ndyZ0hvZfhXLW62iw1WSZfzIyD1gU8jZCQEBITEylfvjxjx46lYcOGWe6blJREUtrSBUDMgwmQ9Ho9er3epHWlHc/Ux3W4dQsdkOLlhZLFsVcfW82wbcN4sdiLbHtjm0nPbynMdX3NqVT+UvQN7sDc818zxGUXB3fvxL52Xa3LypI1XmNrotX13TijB9tLgLPBjo/aLrTpr29e+R7WffghNG/Gzp/m0eCdd6BEiVw5r5bXNyfntKpwU7hwYRYuXEj16tVJSkriq6++olGjRuzcuZMXX3wx0/dMnTqViRMnZti+detW3NzczFJneHi4SY/X5OpV3IB9p09zNyUl030W/q0OEyyTWoYtNj63iqmvr7nV8mjBSv233HVJ4fjwt4kaM8PiR6lY2zW2Nrl5fd3/Pcu7nvsBeM21MX/9/hd/YeP9FLH97+HE1EQmDHLhjFcim4d2RN9rQq6eX4vre//+/Wzvq1MUyxgsr9Pp2LBhA61bt87R+1q2bIlOp2PTpk2Zvp7ZnZvAwEBu3ryJl5fXs5ScgV6vJzw8nCZNmuBowvWbHAoUQBcfj/70aShZMsPrF+5doPS80ujQETkgkgDPAJOd25KY6/rmhoMRP1KlUSfcYxNJWbsW5dVXtS4pU9Z8ja2BFtfXvnVr/jy8hSmdA/li8gncHM3zR52lyEvfw12XtuTrqF+ofwG29d6Prpr5Fz7V8vrGxMTg6+vLvXv3nvj726ru3GTmhRdeYOXKlVm+7uzsjLOzc4btjo6OZvvCmPTYSUkQH68et1ChTBe93HBmAwAvBr1IkHeQac5rwcz5tTOXOjVbw+AR8MEHOLz3HrRuDU6W26HTGq+xNcm167t/P2zZQmV7e77usw3c8pn/nBYiL3wPT++wiO9nBbMnKJVNc3rRbs2xXDu3Ftc3J+ez+nlujh49SuHChbUuw3zu3FH/1ekgX+Y/mGTiPisxYgSphfxY4nmWvz//QOtqRB5wcdKDKQjefFOdOVvYlMB8gYys2g+AEYWOk/jLjxpXZDk0DTdxcXFEREQQEREBQGRkJBEREVy8eBGA0aNH07VrV+P+c+bMYePGjfzzzz+cPHmS0aNHs379evr3769F+bkjbaRUgQJgl/HLdfb2WQ5HHcZeZ0/b59rmcnEiRzw9GT6sEj3+B8MiPoK7d7WuSNiwreunU6Lmb4x82Q7l/fe1LkeYyYgWUyhi8OB8AZi9pBcYDFqXZBE0DTeHDh0iJCSEkJAQAIYOHUpISAjjxo0DICoqyhh0AJKTkxk+fDiVK1emfv367N27lx9//DHHQ8mtyhOGge+5sAeARiUa4eful1tViafUu8snOBhgc7CerR/JSszCPJJTkhi4fzypdqCvWgld8eJalyTMxN3JnWlNPgJgSsmrRK3+QuOKLIOmfW5CQ0N5XH/mZcuWpXs+cuRIRo4caeaqLMwTwk23kG40KtGIe4n3crEo8bTK+Vekn38rPrm+iaGx3xIR+S8OwRk7iQvxLL5Y0o8zHokUjIcJ/dZqXY4ws851+zB3+1Rcoi4Tv2UqvNbDovv05Qar73Nj87IxgV+xfMWoVKhSLhUkntX4N5fio3fkpJ/CwhmdtC5H2Ji429F8cG4pAJOcm5EvqKzGFQlzs9PZsaXfb+z4qSCljl2ChQu1LklzEm4s3WPCjT7VtiepslUF3LyZVG0oAOM8DnLn9181rkjYkjkz2nHD1UCpGAe6j/xa63JELvH2DUQ34cGcbpMmQWzenq1ewo2lyyLcKIpCyBchhK0K49wdWbPI2vRqPZkKSfm45QaTFr8JljHdlLBytw7t4WNlHwAfVB2Co2feGfotgB49uFOhBEOr3WD9jB5aV6MpCTeWLotwExEdwckbJ9l5fid+btKR2No42Dkwu+U8Xriio+PPl2HzZq1LEtbOYODoxD4oOqiakI/X3pimdUUitzk68nm/55ldG4bFfkvi5fNaV6QZCTeWLotwkza3TYvSLfB09sztqoQJNKn9Or/5jKTWFWDkSMhiaQ0hsmXpUhpvPsW5RW6s7Pwtdjr58Z4XDe6+iCIJjlzIpzD7k7w795l891u6TMKNoijGcNOhQgctqhImont3NPj6wl9/kbpIOgGKp3TzphqQAd/RH1ChcmONCxJacXf2YFrICACmOP5B1PF9GlekDQk3li6TcHPw6kHO3z2Pu6M7Lcq00KgwYRL58hE37l3GNIKaJwehv3NL64qEFTo7pg/h+W+jVK4EAwdqXY7QWOfXPuD5uHzEOcPYJV20LkcTEm4sXSbhZsNpdS2pVmVb2fwieHlByltdWVjTjqN+KXwxu7PW5Qhrs2cPY+6up2lXGD+sOjhY/ZKB4hnZ6ez4pMVcAJbmj+TItq80rij3SbixdJmEm4hrEQCEFg/N/XqEyeX39OODkm8DMD55K7f/PaFxRcJq6PUcHv0W31QAnQLtXx6qdUXCQrwQ+gadY4NRdDB20+A8NyJTwo0lS0mBew9mHn4k3DQv1Zz25dtTM6CmRoUJU+vZbS4V49y47QoTPpd+VCKbZs9mTLA6FcTr5drLZJ4inWndV9H7iB1Llt6GrVu1LidXSbixZI8urFiggPHhgFoDWNd+HSGFQ3K/JmEWDvaOzGmorg/zucdpTu/doHFFwuJduMCOpePYWgocsGfiyzL0W6QXWL42C0oNxj8OGDUqTy2qKeHGkqU1SXl5STt6HtCoeX/+F1uEVDsY+k3PPHcbWeSMMnAAo+slAdCrRi9KFCihcUXCIo0ZA/nywbFjXFrxmdbV5BoJN5Ysk/42V2KucP7ueQxK3kngecmMLl/hmAq7PG9xbv2XWpcjLNX337PpzA/8URTc7F0Z++L7WlckLJWPD/dGDaZVJyh/dgjRty5oXVGukHBjyTIJN5/88QnBnwQz7JdhGhUlzKlUlYasSG3J359BiTEfQ3Ky1iUJSxMfDwMH4pICpQ0FGFR7MIU9C2tdlbBgngOHc62AI3GOCuPmv6Z1OblCwo0lyyTcnLxxEoCyvrLSr63qOGolRV0LwT//wLx5WpcjLM2kSXDxIi+nBHFyeCRjXxyrdUXCwtm5ezC7kjqx32L9AU6ctP3FeiXcWLJMws2pG6cAKO9XXouKRG7w8oIPPwRg36L3ib16Xtt6hOX480+YNUt9PHcujp75ZK4rkS11en1A+yhvDHYw7Ks3UGy8T5+EG0v2n3ATnxzP+bvnAajgV0GjokSueOsthr/uR70O8Xw0u63W1QhLYDBA374sr5DC3LcrkxzWVOuKhDWxs2Nah0U4pUC4axQ//zhH64rMSsKNJftPuDl98zQABd0L4uPmo1VVIjfY21O39QAAZjof4dKBbRoXJDS3fDlxB/YyoikMKHqc1SdWa12RsDIlGrZhQLz6h/HwnWNISbHdPn0SbizZf8KNNEnlLa3bjuXFOF8SHWHM8i4yNDwvu3ULRoxgzgtwwx1KeZfi9Uqva12VsEJjB63HJ0HH/ZREzi+ZpXU5ZiPhxpJlEW6kSSpv0Ol0zHxtEQArC0ZzaN0cbQsS2hk1ilv3b/FxffVH9gcNP8DR3lHjooQ1yh9Ulq3egzg9D0q9P/vhLPg2RsKNJftPuGlWqhmj642mRWlZCTyvqFGzNV1S1DA7dPcYlKQkjSsSuW7fPli8mGn1IMbRQFX/qrxWIW8M5xXmUW3wR7iULAvXr8MHH2hdjllIuLFk/wk3ocVDmdJoCmGlwzQsSuS2D/usw1UPewomsvGTPlqXI3LbtGlc9oLP6tgDMOWlKdjp5Ee3eAZOTjBnDil28MWe2Vw4vF3rikxO/odYskyGgou8J7BIeYZ5v0KRGLD7eh3cvKl1SSK3REfDTz8xqQEk6VKpX6w+zUo107oqYQuaNaNv32L0aW5gzNI3bK5Pn4QbS2UwwJ076mNvb6Ljotl+bjvRcdHa1iU0Mfqd1fy9qzL/O3ofxo/XuhyRW1atgtRU+iZVplmpZkxtNBWdTqd1VcJG9O36KToFVvtFc+DrmVqXY1ISbixVTMzDFVwLFCD833Aaf9WYDt920LYuoQk3F0/cZnyiPlmwQJ3MTdg2RYFlywAIaduPn17/ibrF6mpbk7Ap1Z7/H10NFQEYtud9lIQEjSsyHQk3liqtScrNDVxcZKSUgNBQUtu8ytLKBqbMbG1zt5HFfxw5ooZYFxd4TToQC/P4sO96XFN07C2UyHez3ta6HJORcGOp/tPfJm1NKZnjJm/bN/w1ureGCYH/8s/6RVqXI8xp2TIGNYMBvQO5YhevdTXCRhUpXIYRfq0BGHVjDckXzmlbkIlIuLFUMseNyMSLtTsSlloCvT2M+mmorBpuq5KSuLTpK+bXhLkF/jEuuyKEOYzovRz/JEf+LaAwb3p7rcsxCQk3luqRcJOgT+DcHTVNy50bMaPbGuwNsKFYPLs/Gap1OcIcfvyRjyvcQ28PoUENpK+NMCsPZ08mP/8uL56HFzccgb17tS7pmUm4sVSPhJu/bv6FgoKPqw8F3QtqW5fQXPng5+np2QCAoZELMNy4rnFFwtSurfyCRdXUx++9OFbbYkSe0O1/E9jp+DbVo4CBAyE1VeuSnomEG0v1SLh5dE0pGQYqACb2WoOn3o7DhVJZPbWz1uUIU7p2jdlx4SQ6wvPelWkU3EjrikQeYKezQ/fhFMiXD44eRfnyS61LeiYSbizVI+GmbrG6fNnySwbWGqhtTcJiFPQqzJgyPQAYw3b0x49qXJEwldsrFzGvhjoS7r2mH8gfNCL3+Plxd8K7DG8KnXYPfDjXmhWScGOpHgk3xfMXp0e1HrQr307bmoRFGdz5U9rdLcLab8Bx2EgZGm4LFIW5f3xGnDNUdijCK2Ve0boikcdcfS2MOS/A2jLJ7PrAeoeGS7ixVLL0gngCFwcXvhmwm9rXnWDbNvjxR61LEs/q6FF6/XSdEfvtmfDyVFlDSuS68gFV6Bmghuph8d9hOHFc44qejvzPsVQPwk1ifg++OPQFey/uRZG/zMV/lSgBQ4YAcG/UIBkabu2WLcM/Dqbna8erNbpoXY3Ioya+sRjPVAcOB8DqKZ2s8q6whBtL9SDc/O0ST58f+9BqTSuNCxKWyjD6Xd5r6UaR1uc4MX+C1uWIp6QkJcHq1eqTt97StBaRtxV0L8iYmuo0E6MLn+L+t2s0rijnJNxYqgfh5qSdugK0jJQSWbHLl5+/65Ql3glGHJsBsbFalySewvwVA2ja/Ba/V/WFJk20LkfkcYPDJlJMycflfDB79QDQ67UuKUck3FgiRTGGm1P6KEAm7xOPN637ahxT4ZcgPb/M7Kt1OSKH9Kl6PopcSXhJONI8BOzttS5J5HEuDi5MazEbgLklb5O0+AuNK8oZCTeWKD7emJJP3T8PyLIL4vFKFixH/4ItABh+czWpV69oXJHIiZV753HROQH/WOje8SOtyxECgA413mSSa3OOfAHOk6bA/ftal5RtEm4sUdpIKScnTt4+A8idG/FkY7svp0CyPX/6KSyd+YbW5YhsSjWkMnX3FACGXQ7EtVKIxhUJobLT2fH+oO8o7FscoqLgs8+0LinbNA03u3fvpmXLlgQEBKDT6di4cWO237tv3z4cHByoWrWq2erTzINwk+RbgLO3zwISbsSTebv58P5zfQB4X7eTuFMR2hYksuXbU9/wj+EG3vehT/0hWpcjRHrOzjBpEgDHvvzQaib20zTcxMfHU6VKFebOnZuj9927d4+uXbvSqJGNTkueNlIqyJ1UJZV8zvkI8AzQuChhDfp1mkXJRDfuusAf02VGa0tnUAx8uPV9AAYdssej81vaFiREJpROnWj/thdV34hl+6z+WpeTLQ5anjwsLIywsLAcv69379507twZe3v7HN3tsRoPwk1Jx0LsemspN+JvyEgpkS1O9k6saraQgP+9QeC9PdD3D6hVS+uyRBZ++ucnTsSexTMJBhRsCQUKaF2SEBnoHBwoEtIAbvzAqNhvmXrrZa1LeiKr63OzdOlS/v33X8aPH691KebzINy45ffjxaAXaVu+rcYFCWtSq8HrBL76lvpk1CirnIArr2gS2IAvt3vwwa9QoEtPrcsRIkvvv7mE/Hp7jhdUOLFzjtblPJGmd25y6p9//uHdd99lz549ODhkr/SkpCSSkpKMz2NiYgDQ6/XoTTxuP+14z3pcuxs3sAcM+fOTamVzC5iTqa5vnjB2LA5r1vD7uV24r5tH+Ta9s/U2ucbm9d/ra/fjz/TYE4fi74++YUOrm0vEEsn3sHl4OeVjTNmejDy3gE8K/kmPE4fJV6l6rtaQk6+p1YSb1NRUOnfuzMSJEylTpky23zd16lQmTpyYYfvWrVtxc3MzZYlG4eHhz/T+8ocOURp41/kgiV8No1a+Wng4eJimOBvwrNc3rzjUpQyTi56gwa/DGexQGF02/yAAucbmFh4eTqqSSu2PP6YwcPaFFzi1davWZdkU+R42vWCPRhSLX8JFz2SmftKBF9t8mqvnv5+Doeg6xUIWLNLpdGzYsIHWrVtn+vrdu3cpUKAA9o9MbmUwGFAUBXt7e7Zu3cpLL72U4X2Z3bkJDAzk5s2beHl5mfRz0Ov1hIeH06RJExwdHZ/6OPa9e5OyYinu79uRgoF/+/9LoFegCSu1Tqa6vnnF+QvHqLi8JskOsMlnIM16z3jie+Qam1fa9fV4zoOem7vz3urL9DhsQH/0KFSQuaxMQb6HzWvtjx/R5dj7uCXDqZc3E1C7aa6dOyYmBl9fX+7du/fE399Wc+fGy8uLEydOpNv2+eef8+uvv/Ltt98SHByc6fucnZ1xdnbOsN3R0dFs3/jPfOy7dznrDSkY8HTyJNg7WDoUP8KcXztbUrpUDQa5NODjlF2MOvs5YcmTcXD3zNZ75Rqb14wDM4iMvcj+AOhhVxNHW5zSQmPyPWwerzUfyezd07mlxBL12WSCXmyRa+fOyddT0w7FcXFxREREEBERAUBkZCQRERFcvHgRgNGjR9O1a1cA7OzsqFixYrqPggUL4uLiQsWKFXF3d9fq0zC927c56ac+lDWlxLMY0+9rfBLtOF0ghS8/eVPrcgTw7/1/+fnfn7FTYNQ+ZJFMYVV0Oh1DS77L6fn2vPDtfti5U+uSMqVpuDl06BAhISGEhKgzcg4dOpSQkBDGjRsHQFRUlDHo5Cm3b3PqkXAjxNPKn9+f8YU7ATD+7kZios9rW5Dg22vfAtDxBJSKc4KOHTWuSIic8ShaAaduD0b3vfuuRY7I1DTchIaGoihKho9ly5YBsGzZMnY+JhVOmDDBeNfHpjwSbmRNKfGs+vT5ktKxTlx3V/jos05al5Onnbpxiv339gMwZg/QqhV4e2tblBBPwTBmDCnurizS/8H2lR9oXU4GVjfPTZ5w+zYnC6oP5c6NeFaOTi5MDxlJQAyU//kQ5MW7oRZi+u/TUVB49V8nKtxAmqSE9fL3Z+bQF+jVCgYdnUKKPunJ78lFEm4sTUIC+qQE/vZRn0q4Eabwv04TOXu0Hq8fSQFbngDTgl2Nvcrak2sBGLM9GQoVgpctf6ZXIbLSq99SvBN0nMyXxJIF2ZtLK7dIuLE0d+7gYIDIz+z45fWfCcwnQ8DFs9PZ2eE6bab6ZPly+M/IQ2F+AZ4BbHtjG4PPFqHGVaBLF8jB3ENCWJoChYIYl68lAOMuf0XsvRsaV/SQhBtLc/s2OqCIgzdNS72MnU6+RMJEnn8eQ7u2LK+s8MbCZljIFFd5Sl2XMsxcE60+eVNGrwnr13fACkrds+eam4Hp81/Xuhwj+c1paR6sKyWdDIU5XB07iN4tYZXvVX5YP0XrcvKMFEMKAHZr12KXmoqhWjWoWFHjqoR4dk4e+fgouBcAM+PCuXzltMYVqSTcWJrbt5lVG8bWiufUjVNaVyNsTNEq9RmSpE69MPKPyehTkjWuyPbFJ8dT6tNSDP1lKPFrlgOgPJi/Swhb8GqfT6h/3ZUERxi7yDJGZEq4sTS3b7OsKnxY8gqRdyK1rkbYoNED1uEXD2c8Elm4+B2ty7F5i48u5sK9C2w6+R3uh46h6HQY2rXTuiwhTEbn6MjMF8bx4nl4Z9XfcP261iVJuLE0KbducEZGSgkz8gosxQS35gBMOL+Me7E3Na7IdulT9cz8Xe3IPZw62Ctwp0wZKFhQ48qEMK2ab4xi14nqPH82AaZo3+Qt4cbC/Hv3HMkO4KY4EJQ/SOtyhI3qNWQl5e7Yc9Mllcmfywy55rL25Fou3rtIQfeCvLnjDgDRNWpoXJUQZqDTwbRp6uP580k5d1bTciTcWJhTcecBeE7nJyOlhNk45CvAzOLqvBSfxm/n2pUzGldkexRF4aN9HwEwqNo7uG7bCUB0zZoaViWEGTVuTGzTBkysnczqWd00LUV+e1qYk/orAFRwkvlthHk17/8Jw/7yZscyKDR7kdbl2Jwt/2zhz+t/4uHkQd97ZSAxESUoiNgguSMrbJcyfjy9DkPXLw9q2vdGwo2FOaVT+z+U9wzWuBJh8xwcmNF1JXUuAZ9+Cv/+q3VFNmXW/lkA9K7emwI/7QDA0Ly5evteCBvlVachhad8CqdOadq3TMKNhfnXMRaACt7lNK5E5AlhYeoSAHo9F9/rb5yPRTy7Zf9bxtAXhjLk+UGweTMASosWGlclRC4YMABKlNC0BAk3Fua373359xMIDWqgdSkir5gxg5l1dJQt9TNffvOu1tXYjMB8gcx8eSZF/r0OUVHg7o7y4otalyVEniDhxsLY37pDiTvgUbCo1qWIvKJiRVxr1SXRESacnkds8j2tK7JqqYbU9Bt++EH9t2lTcHHJ/YKEyIMk3FiS5GSIVZulZPkFkZt6jVxLxRt23HZK5ccjs7Uux6r1/KEnLVa34Pi14+qGB01StGypXVFC5DESbizIkt/n0bEdbCwH5M+vdTkiD3HwD2B2gDp08xunCE5fOqJxRdbpcsxlVh5fyZZ/tpCgT4CrV+HwYbUTcfPmWpcnRJ4h4caC/HruV9ZWhNOBLmBvr3U5Io9pPHQurS66kmoHI1a8LquGP4XZv89Gb9DTIKgBtYrWenjX5vnnoVAhbYsTIg+RcGNBTt35G4AKyfm1LUTkTS4uTKs/GcdU2Kr7ly37v9K6IqtyJ+EOC48sBGBU3VHqxrRw88orGlUlRN4k4cZCpBpSOf1gduLy+GlbjMizSnXuT6+/vXHRw4U187Uux6p8fvBz4pLjqFyoMs1KNYOEBNi2TX1R+tsIkask3FiI83fPk6gk46KHYJfCWpcj8iqdjhbVBvPXXHhn7h9wRPreZEeCPoFP/vgEgJF1RqLT6eDXX9WAExgIlStrXKEQeYuEGwtx6sYpAMrdBHtvH42rEXlZctnKBIZ1BEWBoUPVf8VjfXX8K27cv0FQviA6VOygbkwbAv7KKzIrsRC5zEHrAoTq5I2TAJS/ARSWYeBCW6mTJ2O3cSO/ndvF74u6MazXMq1LsmhdKnfBoBjwcvbCwc5BDYQyBFwIzUi4sRB3E+/iqNhR/oYBKki4ERorVoy/hr1JXccvsLuynCaXB1C5aHWtq7JYro6u9KnR5+GGiAi4cgXc3KBhQ83qEiKvkmYpCzGt8TTiz7Rj8H5kAj9hEcqN+pj2/7pgsIPByzrK0PBMKIqCQTFkfCGtSapJE5mVWAgNSLixII637+KuR8KNsAyenkyvOwHnFNiRepaNB2Vo+H+Fnwun/LzyrDq+Kv0L0iQlhKYk3FiS27fVfyXcCAtR/O3hDD9bEIDhmweQmJKocUWW5aN9H3Hm1hkOXj34cGNUFBx88FxmJRZCExJuLED4v+HUXFSTcYFn1Q0SboSlsLfn3W6LKRwL5+xjmPPDe1pXZDEOXT3Er5G/4mDnwNDaQx++sGWL+m/NmlBYpnUQQgsSbixARHQEh64e4h+XeHWDhBthQTyavsK0m1UB+PDoJ1yLu6ZtQRbio30fAdCpYieK5Sv28IVHh4ALITSR43Dz1ltvsXv3bnPUkmcZh4Ff0asbJNwIC/PGu6v53xkdczel4vf7Ma3L0dzJ6ydZf2o9ACPrjnz4QmIihIerj6W/jRCayXG4iY2NpWnTppQuXZopU6Zw5coVc9SVp6RN4Ff+xoMNBQpoV4wQmbAr9xwb/Qbw5jGwGz4CUlO1LklT725/FwWFNs+1oWLBig9f2LED7t+HIkWgalXN6hMir8txuFm/fj1Xrlyhf//+fPPNNxQvXpywsDC+/fZb9Hq9OWq0aYqiGMNNhRuApyc4OmpblBCZGTcO8ueH48e58+VnpBhStK5IE8evHWfz35ux19kz5aUp6V+UWYmFsAhP1efGx8eHQYMGcfToUQ4cOECpUqXo0qULAQEBDBkyhH/++cfUddqsi/cuEq+Px1HnQMnbSJOUsFw+PjBuHD+UgefODWX2rx9qXZEmKheqzI43dzC9yXTK+pZ9+ILMSiyExXimDsVRUVFs3bqVrVu3Ym9vT/PmzTl58iTly5dn9uzZpqrRpqXdtSnjUgRHAxJuhGXr358bpQpzzU1h3N4P+PvW31pXpInQ4qHpR0gBHD8Oly6Bqyu89JI2hQkhgKcIN3q9nvXr1/PKK68QFBTEN998w5AhQ4iKimL58uVs3bqVr776ikmTJpmjXpuTlJpEKe9SVLJ/MGRUwo2wZI6OdBu8nCb/QqIulbfXdMp8hl4bpE/VEx0XnfUOaU1SjRurAUcIoZkch5vChQvTs2dPgoKCOHDgAIcOHaJPnz54enoa93n55ZfJnz+/Keu0Wa3LteafAf+w2rGTukHCjbBwuiZNWJgShnsy7Ll1hPkHP9e6pFzx5ZEvKflpSWb/nsVd6bQmKRkCLoTmchxuZs+ezdWrV5k3bx5VsxgNUKBAASIjI5+1tjxFd+eO+kDCjbACxactYNouteP7uz+P4MLdCxpXZF5xyXFM3DWR+/r7ONpn0uH/2jU4cEB9LOFGCM3lONx06dIFF1kIzvRk6QVhTYoV451m71PvAsQpifTa2N2mF9ac9fssrsVfo2SBkvSq3ivjDlu2qB2Kq1eHgIDcL1AIkY7MUKwhRVEo/Vlpqn1Rjev3rqobJdwIK2E3fASLjwbioofCZ6+RlJqkdUlmcT3+Oh//9jEAUxpNwcneKeNOMiuxEBbFQesC8rJ4fTxnb6vrSbnf8lM3SrgR1sLFhTKT5/PX668QFH8G3jgP5cppXZXJTdo1ibjkOGoG1KR9+fYZd0hMhK1b1ccyBFwIiyB3bjR0I16dktjVwRX3mzHqRgk3wpq0aEFQ/VcgJQUGDkQxGGyqeers7bN8cfgLAKY3mY4us4n5du2C+Hh1kcyQkFyuUAiRGU3Dze7du2nZsiUBAQHodDo2btz42P337t1L3bp18fHxwdXVlXLlyln1fDo37qvhxs/dT/rcCOs1Zw44OXH5j3BazanFN6e+0boik9l/eT92Ojual25OaPHQzHd6tEnKTv5eFMISaNosFR8fT5UqVejWrRtt27Z94v7u7u7079+fypUr4+7uzt69e+nduzfu7u706pVJJz8Ll3bnxs/ND24/GG0i4UZYm5IlYeRIlu2ezObYQ/yxpR8vBb+Er5uv1pU9szcqv0HdwLpZz+UjsxILYZE0DTdhYWGEhYVle/+QkBBCHrntW7x4cb777jv27NljneHmwZ0bXzcfuH1U3SjhRlij0aMZuXI5a69d4s9CNxn08yBWtVmldVUmEVwgOOsX//wTLlwAFxdo1Cj3ihJCPJZVdyg+evQov/32G5MnT85yn6SkJJKSHo7iiIlR+7bo9XqTL/SZdrzsHjc6Vp3t1Mc+HxjUvwz1Hh4gC5BmKqfXV+TcU19jR0fspn3MkqEdeeFtWH1iNe3KteOV0tY5emj/5f042jtSvXD1x+5n9/332AOGl14i1dHxif935XvY/OQam5eW1zcn57TKcFO0aFFu3LhBSkoKEyZM4O23385y36lTpzJx4sQM27du3Yqbm5tZ6gsPD8/WfpE3IwlwDkB39T4AKU5ObNmxwyw12ZLsXl/x9J7qGjs7U9uvCsN+P8bHdeHtjW/zadlP8XDwMH2BZpSqpDLkzBAuJl5kcLHBhHqHZrlv/ZUr8QZOFCvG+S1bsn0O+R42P7nG5qXF9b1//36299UpFjK0QafTsWHDBlq3bv3EfSMjI4mLi2P//v28++67zJ07l06dOmW6b2Z3bgIDA7l58yZeXl6mKh9QU2V4eDhNmjTB0TGTWUyzcuQIji+8gFKkCCkys3OWnvr6imx75mt8+jT6WtWo2jOVf3yge9XuLGi+wPSFmtGK4yt4e/Pb5HfJz199/8LbNYum4uvXcQgMRKco6M+dg6JFn3hs+R42P7nG5qXl9Y2JicHX15d79+498fe3Vd65CQ5W28ArVarEtWvXmDBhQpbhxtnZGWdn5wzbHR0dzfaFyfGxHzSV6by95T9jNpjzaydUT32NK1fGsf8QvvxmBg26we4Lu0g0JOLp7Pnk91qABH0CE3ZPAGBMvTEU8iqU9c7btqkdikNCcAx+TL+cTMj3sPnJNTYvLa5vTs5n9eMWFUVJd2fGKskwcGFL3n+fF5MLs34tHIvrYjXBBmDugblcjrlMoFcgA2oNePzOMiuxEBZL0zs3cXFxnD171vg8MjKSiIgIvL29KVasGKNHj+bKlSusWLECgHnz5lGsWDHKPZgFde/evcyYMYMBA57wQ8hC1VtSj3h9PCuTX6ECSLgRtsHLCz7+mDZvvAEfTocu3SEwUOuqnuh2wm2m7J0CwAcNP8DF4TFr6CUmwi+/qI9lCLgQFkfTcHPo0CEaNmxofD506FAA3nzzTZYtW0ZUVBQXL140vm4wGBg9ejSRkZE4ODhQsmRJpk2bRu/evXO9dlM4fu04scmxONqHqhsk3Ahb0bkzLFgAe/diGD6MuUPrUSOgBnUC62hdWZam7pnK3cS7VCpYiTcqv/H4nZcuhbg4NbRVf/yIKiFE7tM03ISGhj52qvZly5alez5gwACrvUvzX0kpScQmxwLgdydZ3SjhRtgKnQ7mzoVq1ZgW9Q3v/fwNwfmD2dt9LwGelrlq9nN+z1HIvRDTGk/D3s4+6x2TkmDqVPXxqFEyK7EQFkj+V2okbQI/BzsH8t+OVzdKuBG2pEoVeOcd+h6EEnGORN6NpNGKRlyLu6Z1ZZnqHtKdc4POEVbqCROLLl8Oly6pa0n16JE7xQkhckTCjUbSll7wdfNFd/uOulHCjbA1kyZRwMOX7V/qCdTl56+bf9H4q8bcvH9T68qMYpNijY/dHN0yXxwzjV4PU9R+OYwapc5MLISwOBJuNPJw6QVfGS0lbFeBAjBtGsXvwq8LkwhwLcif1/+k6VdNuZNwR+vq+P3S7wR/EswPZ37I3htWrFCXWyhUCKxwyRch8goJNxpJ+8tVXTRTwo2wYd26QcOGlLqSwPbNPhR0K8jR6KO0WN0i6wUpc8G+i/tourIptxJuMe/gvMf2/wPUuzYffqg+HjkSXF3NX6QQ4qlIuNGIg50DZXzKULJASQk3wrbZ2cFXX4GPD+X2nGZ7dFP8PfwZ/MJg7HTa/Ajae3EvzVY1Iy45jpeCX+K7Dt89vjkKYPVqiIwEPz+w0hGaQuQVVjlDsS14rcJrvFbhNXWG0/YP2u0l3AhbVaSIOny6VSsqzlrJ2e+/xb1CW01K2X1hN81XNSdeH0/jEo35vuP3uDk+YZ25lJSHd21GjAB3d/MXKoR4anLnRmv370OyDAUXeUDLljBwIADuPfrA1asAXI65TO8fepOYkmj2Enad30XYqjDi9fE0KdGETR03PTnYAHz9NfzzD/j4QN++Zq9TCPFsJNxoLa1JytFR/hoUtu+jj9Qh4jdvQpcuGFL0NF/VnIVHFtJuXTuSU5PNevpvTn3Dff19Xi75Mt93/B5Xx2z0m0lNhcmT1cfDhoGHda1yLkReJOFGI+3WtaPqgqrs+nurusHbW534TAhb5uICa9eCmxv8+it2H8/g07BPcXFw4cd/fqTjtx3Rp+rNdvpPwz7lk2afsLHjxuwFG4BvvoEzZ9T/o/37m602IYTpSLjRyMkbJzl27RiGmHvqBmmSEnlF2bLq7MUA779PaJQz33f8Hid7Jzb8tYEuG7qQakg12emORh0lxZACgJ3OjoG1Bj5+3ahHGQzwwQfq4yFDwNN6FgEVIi+TcKORtEn8/O4/uFsj4UbkJW+9BR07qk0+nTrR1Od51r+2Hkc7R9aeXEv3Td1NMkz8l7O/UHtxbbps6GIMODmyfj2cOgX584ONLP0iRF4g4UYDqYZUbieofW38Yh/8AJdwI/ISnU5dWDM4WJ0Ur3dvXindgrXt1mKvs2fFsRVM3DnxmU7x89mf+d/X/yMpNYn7+vs5D0uP3rUZPBjy5XumeoQQuUfCjQZuJdxCQZ0wzPtukrpRwo3Ia/LlgzVrwMEB1q2DJUt49blXWdVmFZUKVqJPjT4AGBQDR6KOcDfxbrYPveWfLcZg07pca75p/w1O9k45q2/jRjhxAry8jKO8hBDWQea50UBak1QBlwI43pY+NyIPq1VLHYn07rtqs0+dOnSo2IE2z7XB0d4RgOi4aKovrA6o/2dKFChBcIFgSuQvQYkCJahVtBZV/asaD7n57820XdeW5NRk2jzXhq/bfm08VrYpCkyapD4eOFBdRkIIYTUk3GjAuPSCux+cldmJRR43YgRs3w7h4Wo/nD/+wPGRBSlvxN+gkHshrsVf407iHQ5HHeZw1GHj68NrDzeGm/N3z9NyTUsA2j7XljVt1+Q82AD88AMcO6YO+x48+Fk+OyGEBiTcaEBBoZxvOVl6QQhQl2dYsQIqV4bjx9Ww89lnxper+Fcheng08cnxRN6NJPJOJOfunFM/7p6jRkAN475XY9WJAduXb8+qNqueLtg8etdmwAB14j4hhFWRcKOB0OKhnO53Wn2yqKH6r4QbkZf5+6sBJyxMHSbeuDH873/pdnF3cqdiwYpULFgxy8OU8i7F7rd2UyewDvZ29k9Xy5YtcPiwOqnm0KFPdwwhhKakQ7HWbt1S/5U2fZHXNWumzgAM0L07XL6c40MUdC9I/aD6Tx9sHr1r88474Ov7dMcRQmhKwo3WoqPVf/39ta1DCEswZQpUr642177xhjoPTm7auhUOHABXVxg+PHfPLYQwGQk3Gui/pT9VFlTh2+Nfww115BQBAdoWJYQlcHJSF6n08IBdu9Swk1sUBSY+mFunb18oWDD3zi2EMCkJNxr46+ZfHL92nMRbD+7aODpKp0Uh0pQqBfPnq4/Hj4f334eUp5hdOKe2b4fff1fXvxoxwvznE0KYjYQbDdy4/2DphfgHGwoXVkeMCCFUb7yhDsFWFHUenNBQdSZjc3n0rk3v3tJMLISVk9+oGkibxM/33oPVj6VJSoiMZs9Wm6i8vGDfPqhaVV3ryRx27oS9e8HZGUaONM85hBC5RsJNLlMU5eEkfjcT1I0SboTIXIcOEBGhzmR89y60awd9+kBCgmnPkzZC6u235f+jEDZAwk0ui0mKQW9Q79j4XYtVN8oPUyGyFhwMe/bAqFHq8y++gJo14c8/n+24igJ//AFdu6p3bpyc1GUghBBWT8JNLkvrb+Pu6I7r1QcjpYoU0bAiIayAoyNMm6YO1fb3h5Mn1YDzxRdqSMmJ+HhYtEgdcv7CC/DVV+r24cOhaFHT1y6EyHUSbnJZUkoS5XzLUda3LFxVp4qXOzdCZFOTJuqaT82aQWKi2kTVvj3cufPk9548qS6nEBAAvXrB0aNqH5uuXdVRUpMnm79+IUSukHCTyyoUrMDpfqc53OuwhBshnkbBgvDjjzBzpnpHZ/16tbPxvn0Z901OVjslN2gAFSuqSzvExKjDzWfMgCtXYPly9Q6OTpfrn4oQwjwk3GjpyhX1Xwk3QuSMnZ267tNvv6lB5eJFNcBMnqzOanz+PIwZA4GB0KkT7N4N9vbw6qtq09aZM+pSDzK/lBA2SRbO1Mr9++roD5BwI8TTqlEDjhxR14FauVKd8G/pUoiMfNgXJyAAevZUR0JJnxoh8gS5c5PLJu+eTOX5lfli1yx1g6sr5MunbVFCWDNPT7VT8IoV6kre586pwaZxY7XJ6vx5mDBBgo0QeYjcucll/9z+hxPXT3DPs666ISBA2vqFMIUuXaBOHfj+e3jlFShTRuuKhBAakXCTy9JmJzYuvSBNUkKYTsmSal8cIUSeJs1SuSxtnhtZekEIIYQwDwk3ucx45+aWLL0ghBBCmIOEm1xmXFdKll4QQgghzELCTS5K0CcQr1c72/hdfjCjqiy9IIQQQpiUdCjORbHJsTzn+xz3ku7heemaulHu3AghhBAmJeEmFxV0L8ipfqfUJ+M91X8l3AghhBAmJc1SWoiJgbg49XHhwtrWIoQQQtgYCTdaSFsw08sLPDy0rUUIIYSwMZqGm927d9OyZUsCAgLQ6XRs3Ljxsft/9913NGnSBD8/P7y8vKhduza//PJL7hRrAl8e+ZJK8yvx4f6P1Q3SJCWEEEKYnKbhJj4+nipVqjB37txs7b97926aNGnCli1bOHz4MA0bNqRly5YcPXrUzJWaxrk75/jz+p9cv3tZ3SDhRgghhDA5TTsUh4WFERYWlu3958yZk+75lClT+P777/nhhx8ICQkxcXWmlzaBn2/8I6sVCyGEEMKkrHq0lMFgIDY2Fm9v7yz3SUpKIikpyfg8JiYGAL1ej16vN2k9acfL6rjX4tXh3z531ddTCxXCYOIabNmTrq94dnKNzUuur/nJNTYvLa9vTs5p1eFm5syZxMfH89prr2W5z9SpU5k4cWKG7Vu3bsXNzc0sdYWHh2e6/eyVswA4nI0C4NTdu5zbssUsNdiyrK6vMB25xuYl19f85BqblxbX9/79+9ne12rDzZo1a5gwYQLff/89BQsWzHK/0aNHM/SRVYJjYmIIDAykadOmeHl5mbQmvV5PeHg4TZo0wdHRMcPrIxaMgHgoo1cv+3ONGlGueXOT1mDLnnR9xbOTa2xecn3NT66xeWl5fdNaXrLDKsPN2rVr6dGjB9988w2NGzd+7L7Ozs44Oztn2O7o6Gi2L0xWx05bV6rQlbsAOAQFgfznyzFzfu2ESq6xecn1NT+5xualxfXNyfmsLtysWbOG7t27s2bNGlq0aKF1OdlmUAwU8SqCg50DfufVjsXSoVgIIYQwPU3DTVxcHGfPnjU+j4yMJCIiAm9vb4oVK8bo0aO5cuUKK1asANRg07VrVz755BNeeOEFoqOjAXB1dSVfvnyafA7ZZaez40TfE3D7Noz0UTfK7MRCCCGEyWk6z82hQ4cICQkxDuMeOnQoISEhjBs3DoCoqCguXrxo3P+LL74gJSWFfv36UbhwYePHoEGDNKn/qVy5ov7r4wOZNJcJIYQQ4tloeucmNDQURVGyfH3ZsmXpnu/cudO8BeWGtKUXpElKCCGEMAtZWyqX/HDmByrNr8TgkzPUDRJuhBBCCLOwug7F1urCvQv8ef1PyugM6gYJN0IIIYRZyJ2bXJK29IJf2hxEEm6EEEIIs5Bwk0vS5rjxu5eibpBwI4QQQpiFhJtccuP+gzs3txLVDRJuhBBCCLOQcJNLjOHmWpy6QcKNEEIIYRYSbnKJsc/N1bvqhiJFtCtGCCGEsGESbnKJj5sPBV198Ys1gE4HhQppXZIQQghhkyTc5JJdb+3iWpOtVLmGGmwcZBS+EEIIYQ4SbnJT2tIL0t9GCCGEMBsJN7lJll4QQgghzE7CTS44cOUAFT+vyBtX56obJNwIIYQQZiMdP3LBlZgrnLxxEg99QXWDhBshhBDCbOTOTS4wznEjSy8IIYQQZifhJhfI0gtCCCFE7pFwkwuME/jdlqUXhBBCCHOTcJMLjM1SNx60S0m4EUIIIcxGwk0uMIabeNTJ+/z8tC1ICCGEsGESbnJBPud8FHLyplA8ULgw2MllF0IIIcxFfsvmgnXt1xH93GKanUWapIQQQggzk3CTW2TpBSGEECJXSLjJLbL0ghBCCJErZIZiM7t47yJhq8IITL3LzyDhRgghhDAzCTdmFh0Xzakbp4ixc1Y3SLgRQgghzEqapczMODvxfZ26QcKNEEIIYVYSbszMODtxjCy9IIQQQuQGCTdmZpzAT9aVEkIIIXKFhBszM965iQecnaFAAW0LEkIIIWychBszS7tz43sfKFIEdDptCxJCCCFsnIQbM3NzdKOQfT7845AmKSGEECIXSLgxs7nN5xLtOZEeR5FwI4QQQuQCCTe5QZZeEEIIIXKNhJvcIEsvCCGEELlGZig2o+TUZEK+CMHX7wpbHMFdwo0QQghhdhJuzOjm/ZucunEKey9wTUHu3AghhBC5QJqlzChtjhvfBB12ChJuhBBCiFwg4caMjLMTxynqBgk3QgghhNlJuDEj4+zE9wEPD/D01LYgIYQQIg+QcGNG6WYnlrs2QgghRK6QcGNG6daVKlJE22KEEEKIPELTcLN7925atmxJQEAAOp2OjRs3Pnb/qKgoOnfuTNmyZbGzs2Pw4MG5UufTcrJ3wl/nSWFZekEIIYTINZqGm/j4eKpUqcLcuXOztX9SUhJ+fn689957VKlSxczVPbv3G7xP1N23GbsbCTdCCCFELtF0npuwsDDCwsKyvX/x4sX55JNPAFiyZIm5yjItmZ1YCCGEyFU2P4lfUlISSUlJxucxMTEA6PV69Hq9Sc+VdrxHj2t/+TJ2QErBgigmPl9ek9n1FaYl19i85Pqan1xj89Ly+ubknDYfbqZOncrEiRMzbN+6dStubm5mOWd4eDgA7/7zLt4V/mXNn3DhwgVub9lilvPlNWnXV5iPXGPzkutrfnKNzUuL63v//v1s72vz4Wb06NEMHTrU+DwmJobAwECaNm2Kl5eXSc+l1+sJDw+nSZMm2Nnb0eZYGwwBBpxS4YU2baBECZOeL6959Po6OjpqXY5NkmtsXnJ9zU+usXlpeX3TWl6yw+bDjbOzM87Ozhm2Ozo6mu0L4+joyD39PQyKAQCf++BYrBjIfzSTMOfXTqjkGpuXXF/zk2tsXlpc35ycT+a5MZO0OW4KJIBjvgLg6qpxRUIIIUTeoOmdm7i4OM6ePWt8HhkZSUREBN7e3hQrVozRo0dz5coVVqxYYdwnIiLC+N4bN24QERGBk5MT5cuXz+3yH8u4rlQ8MlJKCCGEyEWahptDhw7RsGFD4/O0vjFvvvkmy5YtIyoqiosXL6Z7T0hIiPHx4cOHWb16NUFBQZw/fz5Xas4u44rgsvSCEEIIkas0DTehoaEoipLl68uWLcuw7XH7W5Kb928CDxbNlKUXhBBCiFwjfW7MRKfTUTjVjYBY5M6NEEIIkYsk3JhJr+q9uHqyGZ//iIQbIYQQIhdJuDEnWXpBCCGEyHUSbszpyhX1Xwk3QgghRK6RcGMmbde24cUmlzjqj4QbIYQQIhfZ/AzFWvnj0n6uFAODDvD317ocIYQQIs+QOzdmoCgKNxIeDAV39ZFlF4QQQohcJOHGDGKTY0k2qEuz+xaQOW6EEEKI3CTNUmaQtvSCWzK4FSqqcTVCCCGeJDU1Fb1er3UZFk+v1+Pg4EBiYiKpqakmP76TkxN2ds9+30XCjRmkm51YOhMLIYTFUhSF6Oho7t69q3UpVkFRFPz9/bl06RI6nc7kx7ezsyM4OBgnJ6dnOo6EGzMwhpt4ZOkFIYSwYGnBpmDBgri5uZnlF7YtMRgMxMXF4eHhYZI7LP899tWrV4mKiqJYsWLP9LWQcGMGKYYUApJdKBKbKHduhBDCQqWmphqDjY+Pj9blWAWDwUBycjIuLi4mDzcAfn5+XL16lZSUFByfYTCOdCg2g/+V/R9XfqnAxq+RcCOEEBYqrY+Nm5ubxpWINGnNUc/an0fCjbnI0gtCCGEVpCnKcpjqayHhxhxSUuDaNfWxhBshhBBWqHjx4syZM8f4XKfTsXHjxmy9d8KECVStWtUsdWWHhBsz6Lfxbeq9ZWBbKTvw89O6HCGEEDbmrbfeQqfTZfho1qyZ2c4ZFRVFWFhYtvYdPnw427dvNz5/6623aN26tZkqy0g6FJvB0eijHCoG9/3yg7291uUIIYSwQc2aNWPp0qXptjk7O5vtfP7+/hgMBpKSkp64r4eHBx4eHmar5Unkzo0Z3Ey4BYCfRyGNKxFCCGGrnJ2d8ff3T/dRoEABdu7ciZOTE3v27DHuO3PmTHx9fYmKigIgNDSU/v37079/f/Lnz4+Pjw9jx45FUZQsz/ffZqnLly/TsWNHvL29cXd3p0aNGvzxxx9A+mapCRMmsHz5cr7//nvjHaadO3ea/Ho8Su7cmMEN/V0AfAtIfxshhLAqigL372tzbjc3MEGH2tDQUAYPHkyXLl04duwY58+f57333mPNmjUULlzYuN/y5cvp0aMHf/zxB4cOHaJXr14EBQXRs2fPJ54jLi6OBg0aUKRIETZt2oS/vz9HjhzBYDBk2Hf48OGcPn2amJgY450mb2/vZ/48H0fCjYklGZKIJxkAP98gjasRQgiRI/fvg1bNKXFx4O6e7d03b96coeln1KhRvP/++0yePJlt27bRq1cvTp48SZcuXXj11VfT7RsYGMjs2bPR6XSULVuWEydOMHv27GyFm9WrV3Pjxg0OHjxoDCqlSpXKdF8PDw9cXV1JSkrC398/25/fs5BwY2IxKTEAOKZCPv/i2hYjhBDCZjVs2JD58+en25YWNJycnFi5ciWVK1cmKCgo3ainNC+88EK6ode1a9dm5syZpKamYv+E/qLHjh0jJCTE7HdgnpaEGxNLCze+90FXQRbNFEIIq+Lmpt5B0ercOeDu7p7l3RKA3377DYDbt29z+/Zt3HNwV+hJXF1dTXYsc5BwY2J6RU+R+w4ExKTIHDdCCGFtdLocNQ1Zqn///ZchQ4awaNEi1q1bR9euXdm+fXu6JRP279+f7j379++ndOnST7xrA1CpUiUWL17M7du3s3X3xsnJySyriGdFRkuZWDn3clxakp8Di5BwI4QQwmySkpKIjo5O93Hz5k1SU1Pp0qULTZs2pVu3bixdupQ///yTmTNnpnv/pUuXGDp0KGfOnGHNmjV89tlnDBo0KFvn7tSpE/7+/rRu3Zp9+/Zx7tw51q9fz++//57p/sWLF+f48eOcOXOGmzdvGpe+MBe5c2Nidno9upvqquASboQQQpjLzz//nG70E0DZsmXp3Lkz58+f54cffgDU+Wm+/PJLXnvtNZo0aWIcot21a1cSEhJ4/vnnsbe3Z8CAAfTq1Stb53ZycmLr1q0MGzaM5s2bk5KSQvny5Zk3b16m+/fs2ZOdO3dSo0YN4uLi2LFjB6GhoU/9uT+JhBsTc759W33g5AQW2tFKCCGEdVu2bBnLli3L8vVx48ale/6///0vw+R7jo6OzJkzJ0On5DTnz59P91xRFAwGAzExat/SoKAgvv3220zfO2HCBCZMmGB87ufnx9atW7Os19SkWcrEVl9fR73usLZOPpPMVyCEEEKInJFwY2Lnky6yrxjcLuipdSlCCCFEniTNUiYWkxoDDuDrUVDrUoQQQohMmXv5A63JnRsTu0s8AH75pTOxEEIIoQUJNyZ22y4RkKUXhBBCCK1IuDGhFEMK9xxTAPArXFLjaoQQQoi8ScKNCd26fwsAnQI+gWU0rkYIIYTIm6RDsQnF6eMoGqNDQcG+SKDW5QghhBB5koQbEyrp5M+lWYr6ZLx0KBZCCCG0IM1SphQVBYDi7g6eMs+NEEII67Vs2TLy589vfD5hwgSqVauW7ffrdDo2btxo+sKyQcKNCemuXlUfFC4ssxMLIYQwm7feeovWrVvn6jmHDx9OeHh4tvePiooiLCwMUJdy0Ol0REREmKm69CTcmND80yuo2x0+r6l1JUIIIYRpeXh44OPjk+39/f39cXZ2NmNFWZNwY0J/3f2H34rBVR8nrUsRQgiRR4SGhjJgwAAGDx5MgQIFKFSoEAsXLiQ+Pp5u3brh6elJyZIl+emnn4zv2blzJzqdjh9//JEqVarg4uJCrVq1OHHiRJbnyaxZasmSJVSoUAFnZ2cKFy5M//79ja892iwVHBwMQEhICDqdzqwrgoOEG5O6kXATAB93P40rEUII8Szik+Oz/EhMScz2vgn6hGzt+6yWL1+Or68vBw4cYMCAAfTt25f27dtTp04djhw5wssvv0yXLl24f/9+uveNGDGCGTNmcPDgQQoWLEirVq3Q6/XZOuf8+fPp168fvXr14sSJE2zatIlSpUpluu+BAwcA2LZtG1FRUXz33XfP9gk/gYyWMqGb+nvgBH75CmtdihBCiGfgMdUjy9eal27Oj51/ND4vOKMg9/X3M923QVADdr610/i8+CfFuXn/Zob9lPHK0xcLVKlShbFjxwIwevRopk2bhq+vLz179gRg3LhxzJ8/n+PHj/PCCy8Y3zd+/HiaNGkCqAGpaNGibNiwgddee+2J55w8eTLDhg1j0KBBxm01a2beL8PPT/2j38fHB39//6f7JHNA0zs3u3fvpmXLlgQEBGS7V/WuXbuoXr06Li4ulChRggULFpi/0Gy6aYgDwNenmMaVCCGEyEsqV65sfGxvb4+Pjw+VKlUybitUqBAA169fT/e+2rVrGx97e3tTtmxZTp8+/cTzXb9+natXr9KoUaNnLd0sNL1zEx8fT5UqVejWrRtt27Z94v6RkZE0b96cnj17snLlSvbt28c777yDn59ftt5vbjcckgDwlaUXhBDCqsWNjsvyNXs7+3TPrw+/nsWeYKdLfw/h/KDzz1RXVhwdHdM91+l06bbpHozgNRgMTzyWLhujfV1dXXNYYe7SNNyEhYUZh4llx4IFCyhWrBhz5swB4LnnnuPQoUPMmDFD83CjGAzcdEoFwLeILL0ghBDWzN3JXfN9c8P+/fspVkxtbbhz5w5///035cqVe+L7PD09KV68ONu3b6dhw4ZP3N/JSR1ok5qa+mwFZ5NV9bn5/fffadq0abptL7/8MosXL0av12dIrgBJSUkkJSUZn8fExACg1+uz3WkqO2JvXKFwHFx3h3wBpUx6bKFKu6Zybc1HrrF5yfU1v5xcY71ej6IoGAyGbN3RsCSKohhrT3v+388hs21pn2va9kmTJhlHWI0dOxZfX19atWqVbp9Hz/HosceNG2dsPWnWrBmxsbH89ttv6UZMpR3H19cXV1dXfvrpJwICAnBxcSFfvnwZPi+DwYCiKOj1euzt098hy8n/G6sKN9HR0cZ2wzSFChUiJSWFmzdvUrhwxo68U6dOZeLEiRm2b926FTc3N5PV5hYdzT9feoIhlZ9rHDbZcUVGOZlESjwducbmJdfX/LJzjR0cHPD39ycuLo7k5ORcqMp09Ho9KSkpxMTEkJKSQnJysvGPd1BDQmJiYrptAAkJCcTExBhHTY0dO5aBAwdy7tw5KlasyMqVK0lMTDR+KIpiPEZSUpLxzktsbCyvvvoqd+/eZd68eYwYMQIfHx9atWqV7pxp5wOYNm0a06dPZ/z48dSuXZvNmzdn+LySk5NJSEhg9+7dpKSkpHvtvyO9HkenPBrFNKTT6diwYcNjZ1wsU6YM3bp1Y/To0cZt+/bto169ekRFRWXaAzuzOzeBgYHcvHkTLy8vk34Oer2ebT/9ROOwsEzvIolno9frCQ8Pp0mTJnJ9zUSusXnJ9TW/nFzjxMRELl26RPHixXFxccmlCi3Dzp07adSoEbdu3Uq3xMKTKIpCbGwsnp6e2eqbk1OJiYmcP3+ewMDADF+TmJgYfH19uXfv3hN/f1vVnRt/f3+io6PTbbt+/ToODg5Zzpro7Oyc6QyJjo6OZvnhojg4mO3YQiXX1/zkGpuXXF/zy841Tk1NRafTYWdnh51d3pr2Le3zzennntZElXbdzFFXWmfo/379cvJ/xqq+mrVr185wq3Hr1q3UqFFDflAIIYQQAtA43MTFxREREWFcSCsyMpKIiAguXrwIqBMRde3a1bh/nz59uHDhAkOHDuX06dMsWbKExYsXM3z4cC3KF0IIIaxSaGgoiqLkqEnKmmjaLHXo0KF0Q8iGDh0KwJtvvsmyZcuIiooyBh1Q16bYsmULQ4YMYd68eQQEBPDpp59qPgxcCCGEEJZD03CTlhyzsmzZsgzbGjRowJEjR8xYlRBCCCGsmVX1uRFCCCFMzUIGDQtM97WQcCOEECJPShuIkpP5U4R5pc039N8J/HLKqoaCCyGEEKZib29P/vz5jYtJurm5mWXuFltiMBhITk4mMTHR5EPBDQYDN27cwM3NDQeHZ4snEm6EEELkWWmTv/53tWyROUVRSEhIwNXV1SxB0M7OjmLFij3zsSXcCCGEyLN0Oh2FCxemYMGCsuZXNuj1enbv3s2LL75olvnlnJycTHJHSMKNEEKIPM/e3v6Z+3nkBfb29qSkpODi4mLRk+dKh2IhhBBC2BQJN0IIIYSwKRJuhBBCCGFT8lyfm7QJgmJiYkx+bL1ez/3794mJibHotkhrJdfX/OQam5dcX/OTa2xeWl7ftN/b2ZnoL8+Fm9jYWAACAwM1rkQIIYQQORUbG0u+fPkeu49OyWPzThsMBq5evYqnp6fJx+jHxMQQGBjIpUuX8PLyMumxhVzf3CDX2Lzk+pqfXGPz0vL6KopCbGwsAQEBTxwunufu3NjZ2VG0aFGznsPLy0v+U5mRXF/zk2tsXnJ9zU+usXlpdX2fdMcmjXQoFkIIIYRNkXAjhBBCCJsi4caEnJ2dGT9+PM7OzlqXYpPk+pqfXGPzkutrfnKNzctarm+e61AshBBCCNsmd26EEEIIYVMk3AghhBDCpki4EUIIIYRNkXAjhBBCCJsi4cZEPv/8c4KDg3FxcaF69ers2bNH65JsxtSpU6lZsyaenp4ULFiQ1q1bc+bMGa3LsllTp05Fp9MxePBgrUuxKVeuXOGNN97Ax8cHNzc3qlatyuHDh7UuyyakpKQwduxYgoODcXV1pUSJEkyaNAmDwaB1aVZr9+7dtGzZkoCAAHQ6HRs3bkz3uqIoTJgwgYCAAFxdXQkNDeXkyZPaFJsJCTcmsHbtWgYPHsx7773H0aNHqV+/PmFhYVy8eFHr0mzCrl276NevH/v37yc8PJyUlBSaNm1KfHy81qXZnIMHD7Jw4UIqV66sdSk25c6dO9StWxdHR0d++uknTp06xcyZM8mfP7/WpdmEjz76iAULFjB37lxOnz7N9OnT+fjjj/nss8+0Ls1qxcfHU6VKFebOnZvp69OnT2fWrFnMnTuXgwcP4u/vT5MmTYzrN2pOEc/s+eefV/r06ZNuW7ly5ZR3331Xo4ps2/Xr1xVA2bVrl9al2JTY2FildOnSSnh4uNKgQQNl0KBBWpdkM0aNGqXUq1dP6zJsVosWLZTu3bun29amTRvljTfe0Kgi2wIoGzZsMD43GAyKv7+/Mm3aNOO2xMREJV++fMqCBQs0qDAjuXPzjJKTkzl8+DBNmzZNt71p06b89ttvGlVl2+7duweAt7e3xpXYln79+tGiRQsaN26sdSk2Z9OmTdSoUYP27dtTsGBBQkJCWLRokdZl2Yx69eqxfft2/v77bwCOHTvG3r17ad68ucaV2abIyEiio6PT/d5zdnamQYMGFvN7L88tnGlqN2/eJDU1lUKFCqXbXqhQIaKjozWqynYpisLQoUOpV68eFStW1Locm/H1119z5MgRDh48qHUpNuncuXPMnz+foUOHMmbMGA4cOMDAgQNxdnama9euWpdn9UaNGsW9e/coV64c9vb2pKam8uGHH9KpUyetS7NJab/bMvu9d+HCBS1KykDCjYnodLp0zxVFybBNPLv+/ftz/Phx9u7dq3UpNuPSpUsMGjSIrVu34uLionU5NslgMFCjRg2mTJkCQEhICCdPnmT+/PkSbkxg7dq1rFy5ktWrV1OhQgUiIiIYPHgwAQEBvPnmm1qXZ7Ms+feehJtn5Ovri729fYa7NNevX8+QasWzGTBgAJs2bWL37t0ULVpU63JsxuHDh7l+/TrVq1c3bktNTWX37t3MnTuXpKQk7O3tNazQ+hUuXJjy5cun2/bcc8+xfv16jSqyLSNGjODdd9+lY8eOAFSqVIkLFy4wdepUCTdm4O/vD6h3cAoXLmzcbkm/96TPzTNycnKievXqhIeHp9seHh5OnTp1NKrKtiiKQv/+/fnuu+/49ddfCQ4O1rokm9KoUSNOnDhBRESE8aNGjRq8/vrrRERESLAxgbp162aYvuDvv/8mKChIo4psy/3797GzS//rzN7eXoaCm0lwcDD+/v7pfu8lJyeza9cui/m9J3duTGDo0KF06dKFGjVqULt2bRYuXMjFixfp06eP1qXZhH79+rF69Wq+//57PD09jXfJ8uXLh6urq8bVWT9PT88M/Zfc3d3x8fGRfk0mMmTIEOrUqcOUKVN47bXXOHDgAAsXLmThwoVal2YTWrZsyYcffkixYsWoUKECR48eZdasWXTv3l3r0qxWXFwcZ8+eNT6PjIwkIiICb29vihUrxuDBg5kyZQqlS5emdOnSTJkyBTc3Nzp37qxh1Y/QdrCW7Zg3b54SFBSkODk5KdWqVZNhyiYEZPqxdOlSrUuzWTIU3PR++OEHpWLFioqzs7NSrlw5ZeHChVqXZDNiYmKUQYMGKcWKFVNcXFyUEiVKKO+9956SlJSkdWlWa8eOHZn+3H3zzTcVRVGHg48fP17x9/dXnJ2dlRdffFE5ceKEtkU/QqcoiqJRrhJCCCGEMDnpcyOEEEIImyLhRgghhBA2RcKNEEIIIWyKhBshhBBC2BQJN0IIIYSwKRJuhBBCCGFTJNwIIYQQwqZIuBFCCCGETZFwI4SwGaGhoQwePFjrMoQQGpNwI4QQQgibIssvCCFswltvvcXy5cvTbYuMjKR48eLaFCSE0IyEGyGETbh37x5hYWFUrFiRSZMmAeDn54e9vb3GlQkhcpuD1gUIIYQp5MuXDycnJ9zc3PD399e6HCGEhqTPjRBCCCFsioQbIYQQQtgUCTdCCJvh5OREamqq1mUIITQm4UYIYTOKFy/OH3/8wfnz57l58yYGg0HrkoQQGpBwI4SwGcOHD8fe3p7y5cvj5+fHxYsXtS5JCKEBGQouhBBCCJsid26EEEIIYVMk3AghhBDCpki4EUIIIYRNkXAjhBBCCJsi4UYIIYQQNkXCjRBCCCFsioQbIYQQQtgUCTdCCCGEsCkSboQQQghhUyTcCCGEEMKmSLgRQgghhE2RcCOEEEIIm/J/BnXJe/fYFgMAAAAASUVORK5CYII=", - "text/plain": [ - "<Figure size 640x480 with 1 Axes>" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ - "import matplotlib.pyplot as plt\n", - "\n", - "\n", "def g(y_iplus1,y_i, t_iplus1):\n", - " return y_iplus1-y_i-dt*(np.sin(y_iplus1**3)+np.sin(t_iplus1))\n", + " return YOUR_CODE_HERE\n", "\n", "def g_der(y_iplus1):\n", - " return 1-3*dt*y**2*np.cos(y_iplus1**3)\n", + " return YOUR_CODE_HERE\n", "\n", "\n", "# Define parameters:\n", @@ -409,20 +314,20 @@ "y_IE = np.zeros(t.shape)\n", "\n", "# Define Initial Conditions\n", - "y_EE[0] = 1\n", - "y_IE[0] = 1\n", + "y_EE[0] = YOUR_CODE_HERE\n", + "y_IE[0] = YOUR_CODE_HERE\n", "\n", "# Perform time-integration\n", "newtonFailed = 0\n", "for i in range(0, len(t)-1): \n", " \n", " # Forward Euler:\n", - " y_EE[i+1] = y_EE[i] + dt*(np.sin(y_EE[i]**3)+np.sin(t[i]))\n", + " y_EE[i+1] = YOUR_CODE_HERE\n", "\n", " # Backward Euler:\n", - " y_IE[i+1] = y_IE[i] # initial guess\n", + " y_IE[i+1] = YOUR_CODE_HERE # Initial guess\n", " for j in range(200):\n", - " y_IE[i+1] = y_IE[i+1] - g(y_IE[i+1],y_IE[i],t[i+1])/g_der(y_IE[i+1])\n", + " y_IE[i+1] = YOUR_CODE_HERE\n", " if np.abs(g(y_IE[i+1],y_IE[i],t[i+1])) < 1e-6:\n", " break\n", " \n", @@ -449,7 +354,7 @@ "id": "6b6d9964", "metadata": {}, "source": [ - "## Section 2: Diffusion Equation in 1D\n", + "## Part 2: Diffusion Equation in 1D\n", "\n", "The 1-D diffusion equation reads $$\\frac{\\partial u}{\\partial t}=v\\frac{\\partial^2 u}{\\partial x^2}$$\n", " \n", @@ -457,20 +362,9 @@ "\n", "Unlike the problem of Wednesday, here there is no exchange of heat with the ambient and the temperature evolves in time. The temperature initially is uniform along the rod, equal to $7°C$. Then it is heated at both ends. . \n", "\n", - "\n", + "\n", "\n", - "The problem is schematized as a one-dimensional $30cm$ steel rod of with a diffusivity coefficient of $4 mm^2/s$. Run the simulation for $10,000 s$ to see the progression of the temperature through the model. Start with $200$ steps. " - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "ef5ab0dd", - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import matplotlib.pyplot as plt" + "The problem is schematized as a one-dimensional $0.3 m$ steel rod of with a diffusivity coefficient of $4e-6 m^2/s$. Run the simulation for $10,000 s$ to see the progression of the temperature through the model. Start with $200$ time steps and use 15 points to represent the rod." ] }, { @@ -478,7 +372,7 @@ "id": "c300a7fd", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Task 3</b>\n", "\n", @@ -501,7 +395,7 @@ "id": "84b32366", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Task 3.1:</b>\n", "\n", @@ -510,22 +404,6 @@ "</div>" ] }, - { - "cell_type": "markdown", - "id": "813f4a66", - "metadata": {}, - "source": [ - "\n", - "<div style=\"background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", - "<p>\n", - "<b>Solution</b>\n", - "\n", - "One initial condition and two boundary conditions are needed.\n", - "\n", - "</p>\n", - "</div>" - ] - }, { "cell_type": "markdown", "id": "1b363563", @@ -539,7 +417,7 @@ "id": "4ae351ba", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Task 3.2:</b>\n", "\n", @@ -550,22 +428,6 @@ "</div>" ] }, - { - "cell_type": "markdown", - "id": "a7205bce", - "metadata": {}, - "source": [ - "\n", - "<div style=\"background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", - "<p>\n", - "<b>Solution</b>\n", - "\n", - "Drawing of the grid.\n", - "\n", - "</p>\n", - "</div>" - ] - }, { "cell_type": "markdown", "id": "1d59533c", @@ -579,7 +441,7 @@ "id": "71a1284a", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Task 3.3:</b>\n", "\n", @@ -590,24 +452,6 @@ "</div>" ] }, - { - "cell_type": "markdown", - "id": "be750743", - "metadata": {}, - "source": [ - "\n", - "<div style=\"background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", - "<p>\n", - "<b>Solution</b>\n", - "\n", - "$$ \n", - "\\frac{\\partial T}{\\partial t}\\bigg|_i = \\nu \\frac{T_{i+1}-2T_i+T_{i-1}}{\\Delta x^2}\n", - "$$\n", - "\n", - "</p>\n", - "</div>" - ] - }, { "cell_type": "markdown", "id": "d0d45222", @@ -621,7 +465,7 @@ "id": "6ab571e7", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Task 3.4:</b>\n", "\n", @@ -632,24 +476,6 @@ "</div>" ] }, - { - "cell_type": "markdown", - "id": "b2e63667", - "metadata": {}, - "source": [ - "\n", - "<div style=\"background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", - "<p>\n", - "<b>Solution</b>\n", - "\n", - "$$ \n", - "T^{j+1}_{i} = T^j_i + \\frac{\\nu \\Delta t}{\\Delta x^2} \\left(T^j_{i+1}-2T^j_i+T^j_{i-1}\\right)\n", - "$$\n", - "\n", - "</p>\n", - "</div>" - ] - }, { "cell_type": "markdown", "id": "c46ee55f", @@ -664,44 +490,26 @@ "metadata": {}, "source": [ "\n", - "<div style=\"background-color:#facb8e; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#facb8E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>NOTE</b>\n", "\n", - "If you have doubts of your solution, ask a staff member! It is important to be in the right track!!\n", + "If you have doubts of your solution, <b>stop</b> and ask a staff member! It is important to be in the right track!!\n", "\n", "</p>\n", "</div>" ] }, - { - "cell_type": "markdown", - "id": "852123ea", - "metadata": {}, - "source": [ - "<div style=\"background-color:#ffa6a6; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%\"><p><b>NOTE TO TEACHERS</b>\n", - "EVERYTHING BELOW THIS POINT IS VERY MUCH IN DRAFT. THE GENERAL SCOPE WILL BE AS FOLLOWS:\n", - "\n", - "- implement the solution using forward difference in time and central in space\n", - "- this is an implicit scheme\n", - "- first with constand dirichlet, then with varying (in time) dirichlet condition on one end of the bar\n", - "- implement the solution using backward in time and central in space\n", - "- in both cases we will try to have the students formulate the matrix analytically before implementing it in code so that it is very similar to what we did on wednesday\n", - "- note that the time dependency of the boundary requires that there be a loop in the solution \n", - "\n", - "</p></div>" - ] - }, { "cell_type": "markdown", "id": "2ad1f7c0-14d4-4363-8ed9-681e1e271741", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Task 3.5:</b> \n", "\n", - "Finally, the coding part! Let's start with defining the parameters and creating the grid. **Fill in the missing parts of the code.**\n", + "Finally, some coding! Let's start with defining the parameters and creating the grid. **Fill in the missing parts of the code.**\n", "\n", "</p>\n", "</div>" @@ -709,32 +517,19 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 4, "id": "efd223ed-a7db-4680-8c81-649ea88b5275", "metadata": {}, "outputs": [], "source": [ - "# T_left = \n", - "# T_right = \n", - "# T_initial = \n", - "# length = \n", - "# n_point = \n", - "# nu = \n", - "# dt = \n", - "# nt = \n", - "\n", - "# Solution\n", - "T_left = 38 # Temperature at the left\n", - "T_right = 25 # Temperature at the right\n", - "T_initial = 7 # Initial temperature of the bar\n", - "length = 300 # Length of the bar in mm\n", - "n_point = 15 # Number of points\n", - "nu = 4 # Constant value nu mm^2/s (representative value for steel)\n", - "dt = 50 # Time increment in seconds\n", - "nt = 200 # Number of time increments\n", - "\n", - "dx = length/(n_point-1)\n", - "x = np.linspace(0,length,n_point)" + "T_left = YOUR_CODE_HERE\n", + "T_right = YOUR_CODE_HERE\n", + "T_initial = YOUR_CODE_HERE\n", + "length = YOUR_CODE_HERE\n", + "n_point = YOUR_CODE_HERE\n", + "nu = YOUR_CODE_HERE\n", + "dt = YOUR_CODE_HERE\n", + "nt = YOUR_CODE_HERE" ] }, { @@ -750,12 +545,14 @@ "id": "0e235c76", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Task 3.6:</b> \n", "\n", "Define the initial conditions and the boundary conditions. **Fill in the missing parts of the code.**\n", "\n", + "We define a 2-dimensional Numpy array <code>T</code> where the first index, <code>j</code>, represents time and the second index, <code>i</code>, represents space, for example: <code>T[j, i]</code>. Initialize <code>T</code> with a matrix of zeros.\n", + "\n", "</p>\n", "</div>" ] @@ -767,294 +564,270 @@ "metadata": {}, "outputs": [], "source": [ - "# Initialise empty solution array \"us\"\n", - "us = np.zeros((nt+1,n_point))\n", - "\n", - "# Initialise initial conditions into the solution array t=0\n", - "# us[0] = \n", - "# Solution:\n", - "us[0] = T_initial\n", - "\n", - "# Initialise boundary conditions into the solution array at t=0\n", - "# Remember that the first term is the left boundary and the last term is the right boundary.\n", - "# us[0][0] = \n", - "# us[0][-1] = \n", - "# Solution:\n", - "us[0][0] = T_left\n", - "us[0][-1] = T_right" + "T = YOUR_CODE_HERE\n", + "T[0, :] = YOUR_CODE_HERE\n", + "T[:, 0] = YOUR_CODE_HERE\n", + "T[:, -1] = YOUR_CODE_HERE\n", + "b = YOUR_CODE_HERE" ] }, { "cell_type": "markdown", - "id": "726ef6e5-db85-4d29-936a-681782073a4e", + "id": "e7c5bf2e", "metadata": {}, "source": [ - "The finite difference operation will involve using an array that contains $u$ at every point in the array `x` (code), `dt`, `dx` and `nu` to return an array that contains $u$ at every point in the array `x` at the **next time step**. \n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<p>\n", + "<b>Task 3.7:</b> \n", "\n", - "But what about the boundary points? These will remain the same as the boundaries are held at a constant temperature. Hence, for each array pertaining to $u$, the first and the last values should correspond to the boundary temperatures, before the array is used an a input for the finite difference operation. The rest of the terms can be consded as per the equation in Step 3. In short, while advancing in time, from `0` to `nt*dt`, the first and lasts elements of the array $u$ will not be advanced in time but in fact, be assigned the boundary values of temperature. \n", + "Write in paper the equations that come out from your algebraic representation of the diffusion equation, solving for the unknowns. Use it then to write the matrix A, the unknown vector T and vector b. As in the workshop and textbook, the <code>A</code> matrix consists only of the unknowns in the problem.\n", "\n", - "So if the $u$ array corresponding to the first time-step has the correct boundary values, the finite difference operation need only copy these values to their locations in every successive array in time. This can be done as an if and else statement." + "</p>\n", + "</div>" + ] + }, + { + "cell_type": "markdown", + "id": "7e0147f1", + "metadata": {}, + "source": [ + "Your answer here." ] }, { "cell_type": "code", "execution_count": 6, - "id": "ffd2090f-c5b0-43ee-8516-ae98eb6cff1d", + "id": "787c37f6", "metadata": {}, "outputs": [], "source": [ - "def fdm_step(u, dx, dt, nu):\n", - "\n", - " u_new = np.zeros(len(u))\n", - "\n", - " for i in range(len(u)):\n", - "\n", - " if i == 0 or i == len(u)-1: # Exclue fixed boundary point at ends\n", - "\n", - " u_new[i] = u[i]\n", - " else:\n", - " u_new[i] = u[i] + nu*dt*(u[i+1] - 2*u[i] + u[i-1])/(dx**2)\n", - " \n", - " return u_new" + "for j in range(m-1):\n", + " A = YOUR_CODE_HERE\n", + " b = YOUR_CODE_HERE\n", + " T[j+1,1:-1] = YOUR_CODE_HERE" ] }, { "cell_type": "markdown", - "id": "a0033860-a8fb-41d0-9c39-4d9b1676fdcc", + "id": "794f6329", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", - "<b>Task 1.4:</b> \n", + "<b>Task 3.8:</b> \n", + "\n", + "Use this code cell if you would like to verify your numerical implementation. For example, visualize the temperature profile at different time steps.\n", "\n", - "You now have the finite difference operation and initial arrays. Now write a single line of code to loop over all time steps to obtain the solution at `dt*nt`.\n", "</p>\n", "</div>" ] }, { "cell_type": "code", - "execution_count": 16, - "id": "193daff2", + "execution_count": 7, + "id": "56f6fdea", "metadata": {}, "outputs": [], "source": [ - "for i in range(nt):\n", - " us[i+1] = fdm_step(us[i],dx, dt, nu)\n" + "# plt.plot(x, T[YOUR_CODE_HERE,:])\n", + "# plt.plot(x, T[YOUR_CODE_HERE,:])\n", + "# plt.plot(x, T[YOUR_CODE_HERE,:])\n", + "# plt.xlabel('x')\n", + "# plt.ylabel('T')\n", + "# plt.show()" ] }, { "cell_type": "markdown", - "id": "794f6329", + "id": "17e7be50-79a7-4699-b0d8-908a58ce36d7", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", - "<b>Task XXX:</b> \n", + "<b>Task 3.9:</b> \n", "\n", - "Visualization of the temporal evolution.\n", + "Describe the time evolution of the temperature along the rod. Does the temperature reach a steady-state? What does that mean for heat flow?\n", "\n", + "Write your answer in the following markdown cell. \n", "</p>\n", "</div>" ] }, { - "cell_type": "code", - "execution_count": 7, - "id": "fbdbd830-46f7-48eb-926e-ab6cd093f90a", + "cell_type": "markdown", + "id": "8db518cd", "metadata": {}, - "outputs": [ - { - "ename": "NameError", - "evalue": "name 'widgets' is not defined", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[1;32mIn[7], line 13\u001b[0m\n\u001b[0;32m 10\u001b[0m plt\u001b[38;5;241m.\u001b[39mylabel(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mu\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m 11\u001b[0m plt\u001b[38;5;241m.\u001b[39mshow()\n\u001b[1;32m---> 13\u001b[0m play \u001b[38;5;241m=\u001b[39m widgets\u001b[38;5;241m.\u001b[39mPlay(\u001b[38;5;28mmin\u001b[39m\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0\u001b[39m, \u001b[38;5;28mmax\u001b[39m\u001b[38;5;241m=\u001b[39mnt\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m, step\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m, value\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0\u001b[39m, interval\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m100\u001b[39m, disabled\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\n\u001b[0;32m 14\u001b[0m slider \u001b[38;5;241m=\u001b[39m widgets\u001b[38;5;241m.\u001b[39mIntSlider(\u001b[38;5;28mmin\u001b[39m\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0\u001b[39m, \u001b[38;5;28mmax\u001b[39m\u001b[38;5;241m=\u001b[39mnt\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m, step\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m, value\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0\u001b[39m)\n\u001b[0;32m 15\u001b[0m widgets\u001b[38;5;241m.\u001b[39mjslink((play, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mvalue\u001b[39m\u001b[38;5;124m'\u001b[39m), (slider, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mvalue\u001b[39m\u001b[38;5;124m'\u001b[39m))\n", - "\u001b[1;31mNameError\u001b[0m: name 'widgets' is not defined" - ] - } - ], "source": [ - "def FDM_plot(x, u, step):\n", - " fig = plt.figure()\n", - " ax = plt.axes(xlim=(0, 300), ylim=(0, 40))\n", - " ax.plot(x, u[step])\n", - " plt.xlabel('x')\n", - " plt.ylabel('u')\n", - " plt.show()\n", - "\n", - "play = widgets.Play(min=0, max=nt-1, step=1, value=0, interval=100, disabled=False)\n", - "slider = widgets.IntSlider(min=0, max=nt-1, step=1, value=0)\n", - "widgets.jslink((play, 'value'), (slider, 'value'))\n", - "\n", - "interact(FDM_plot,\n", - " x=fixed(x),\n", - " u=fixed(us),\n", - " step = (play))\n", - "\n", - "widgets.HBox([slider]) " + "Your answer here." ] }, { "cell_type": "markdown", - "id": "dd052188-5e1d-4335-9462-5af07e4ea03b", - "metadata": { - "id": "0491cc69" - }, + "id": "9fcbb39f", + "metadata": {}, + "source": [ + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<p>\n", + "<b>Task 4</b>\n", + "\n", + "Alter the right boundary condition, with the following equation: \n", + "\n", + "\n", + "$$\n", + "u^t_{x=L} = 25 + 10 \\sin \\left(\\frac{2\\pi t}{period}\\right)\n", + "$$\n", + "\n", + "where L refers to the last point of the rod. Put your whole code together in a single cell. Copy the code cells from task 3.5 until task 3.8. Modify the right boundary condition as stated above, the period is 6000 seconds.\n", + "\n", + "\n", + "</p>\n", + "</div>" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "05534522", + "metadata": {}, + "outputs": [], "source": [ - "<div style=\"background-color:#facb8e; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\"> <p><b>Note:</b> Depending on your choice of time step, you may have noticed that your notebook did not converge. This would have looked like a log of oscillations (jagged up-and-down lines) that appear during the animation, which then increase out of control. This happens because the numerical approach used here is conditionally stable; large time steps do not work well. This has to do with the high value of the diffusivity parameter.</p></div>" + "YOUR_CODE_HERE" ] }, { "cell_type": "markdown", - "id": "17e7be50-79a7-4699-b0d8-908a58ce36d7", + "id": "852b05c5", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", - "<b>Task 1.5:</b> \n", + "<b>Task 5</b>\n", + "\n", + "Solve the diffusion equation using Central Differences in space but **now with Backward Differences in time**. You will do this step by step (subtasks). Just as before. \n", "\n", - "Explain what the animation above shows? Does the temperature reach a steady-state? What does that mean for heat flow?\n", "\n", - "Record your answer in the following markdown cell. \n", "</p>\n", "</div>" ] }, { "cell_type": "markdown", - "id": "fb6cc514-2b49-43df-bd26-35ade685e4db", + "id": "81fe7677", "metadata": {}, "source": [ - "<div style=\"background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", - "<b>Solution</b> \n", + "<b>Task 5.1:</b>\n", + "\n", + "Draw the stencils (two in total) of this equation when solving it with Central Differences in space and **Forward Differences in time** and when solving it with Central Differences in space and **Backward Differences in time**. \n", "\n", - "Animated plot above shows how the ends of the rod at temperatures of $38^oC$ and $25^oC$ but $7^oC$ elsewhere. As the animation begins, you can notice how the temperature increases through the rod and eventually becomes a constant gradient across the length of the rod, indicating a steady-state.\n", - " \n", "</p>\n", "</div>" ] }, { "cell_type": "markdown", - "id": "e376cd92-6d55-4d8f-8504-5d0972ed41ca", + "id": "6df8a151", "metadata": {}, "source": [ - "## Task 2: Altering the right boundary\n", - "\n", - "Say the right-end of the bar is heated with the cyclic function:\n", - "$$ u(L,t)=25+10\\sin\\left(\\frac{2\\pi t}{T}\\right)$$\n", - "\n", - "where $T$ is the time period of the cyclic heating. Here are the additional values for this problem." + "Your answer here." ] }, { "cell_type": "markdown", - "id": "032cef25-50fd-4b82-8ec7-8f5a2e8eaac1", + "id": "ca16ee10", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", - "<b>Task 2.1:</b> \n", + "<b>Task 5.2:</b>\n", + "\n", + "Now, the differential equation needs to be expressed in algebraic form using central differences in space and forward differences in time. **Start by just transforming the PDE into a first-order ODE by ONLY applying Central Differences to the spatial derivative term.**\n", + "\n", "\n", - "Based on the initialization of the problem as described in Task 1.4, can you set up the initial and boundary conditions for this situation? (you only need to change one condition).\n", "</p>\n", "</div>" ] }, { - "cell_type": "code", - "execution_count": 29, - "id": "7a2db483-7d49-45ad-beeb-b5ad78024cfe", + "cell_type": "markdown", + "id": "4a25a0d0", "metadata": {}, - "outputs": [], "source": [ - "t = 0\n", - "T = 6000\n", - "\n", - "nt = 600\n", - "us = np.zeros((nt+1,n_point))\n", - "\n", - "# us[0] = \n", - "# Solution:\n", - "us[0] = T_initial\n", - "\n", - "# us[0][-1] = \n", - "# Solution:\n", - "us[0][0] = T_left\n", - "us[0][-1] = 25 + 10*np.sin(2*np.pi*t/T)" + "Your answer here." ] }, { "cell_type": "markdown", - "id": "8711923d-0c98-453c-a1a0-8b687f53e9df", + "id": "139d33af", "metadata": {}, "source": [ - "To pass on the value of the time-dependent boundary condition `T_Right` to the iteration loop, you must copy the value of `us` (the solution) to another array, modify the boundary condition on the right (which element of the array will that be?) and pass the modified array to the solution function `fdm_step`. \n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<p>\n", + "<b>Task 5.3:</b>\n", "\n", - "You can use the following code for dynamic plotting:" + "**Apply Backward Differences to the equation to obtain an algebraic expression.**\n", + "\n", + "</p>\n", + "</div>" ] }, { - "cell_type": "code", - "execution_count": null, - "id": "91182c14-d4d7-4098-9abb-1cee859c8dfe", + "cell_type": "markdown", + "id": "73b82177", "metadata": {}, - "outputs": [], "source": [ - "play = widgets.Play(min=0, max=nt-1, step=1, value=0, interval=100, disabled=False)\n", - "slider = widgets.IntSlider(min=0, max=nt-1, step=1, value=0)\n", - "widgets.jslink((play, 'value'), (slider, 'value'))\n", - "\n", - "interact(FDM_plot,\n", - " x=fixed(x),\n", - " u=fixed(us),\n", - " step=play)\n", - "\n", - "widgets.HBox([slider])\n", - "\n", - "for i in range(nt):\n", - " umod = us[i].copy()\n", - " umod[-1] = 25 + 10*np.sin(2*np.pi*t/T)\n", - " us[i+1] = fdm_step(umod, dx, dt, nu)\n", - " # Update time\n", - " t += dt\n" + "Your answer here." ] }, { "cell_type": "markdown", - "id": "649e7062-eccf-4aab-bd8b-859a00ded411", + "id": "25b64dff", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", - "<b>Task 2.2:</b> \n", + "<b>Task 5.4:</b> \n", "\n", - "Why is the right boundary dealt with differently in the code than previously? What is different in this version compared to the first?\n", + "Write in paper the equations that come out from your algebraic representation of the diffusion equation, solving for the unknowns. Use it then to write the matrix A, the unknown vector T and vector b.\n", "\n", - "Record your answer in the following markdown cell. \n", "</p>\n", "</div>" ] }, { "cell_type": "markdown", - "id": "4ff6ab87", + "id": "8c1db830", "metadata": {}, "source": [ - "<div style=\"background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "Your answer here." + ] + }, + { + "cell_type": "markdown", + "id": "36284ee9", + "metadata": {}, + "source": [ + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", - "<b>Solution</b> \n", + "<b>Task 5.5</b>\n", + "\n", + "Copy the code of task 4 and make sure to use the Dirichlet conditions of task 3: constant Dirichlet conditions. Implement the Implicit scheme by modifying the code of how the matrix A and vector b are built.\n", "\n", - "Replacing the right-hand boundary with a sinusoidal function means that the temperature at the right end of the rod now fluctuates and this then affects the temperature as it diffuses through the rod. \n", - " \n", "</p>\n", "</div>" ] }, + { + "cell_type": "code", + "execution_count": null, + "id": "4edddcaf", + "metadata": {}, + "outputs": [], + "source": [ + "YOUR_CODE_HERE" + ] + }, { "cell_type": "markdown", "id": "3d1dfe3d", diff --git a/content/GA_1_6/GA_1_6_solution.ipynb b/content/GA_1_6/GA_1_6_solution.ipynb index 4166d6c2526a2da9d1a6524a9601593e4a42578e..55f07e196045db63af015519830bebe4973bf62c 100644 --- a/content/GA_1_6/GA_1_6_solution.ipynb +++ b/content/GA_1_6/GA_1_6_solution.ipynb @@ -7,7 +7,7 @@ "id": "9adbf457-797f-45b7-8f8b-0e46e0e2f5ff" }, "source": [ - "# Workshop 6: An ODE to Probably Doing Enough (PDE)\n", + "# GA 1.6: An ODE to Probably Doing Enough (PDE)\n", "\n", "<h1 style=\"position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0\">\n", " <style>\n", @@ -30,11 +30,28 @@ "source": [ "# Overview\n", "\n", - "This assignment contains two parts: treating non-linear ODEs and treating the diffusion equation (PDE).\n", - "\n", - "## Section 1: Solving Non-linear ODEs\n", + "This assignment contains two parts: treating non-linear ODEs and treating the diffusion equation (PDE).\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "453992c1", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "id": "0933143e", + "metadata": {}, + "source": [ + "## Part 1: Solving Non-linear ODEs\n", "\n", - "In task 1 you will solve first a very simple equation unp.np.np.np.sing Newton-Rhapson to understand exactly how to implement it. Task 2 treats the solution of a non-linear ODE in time, first with Explicit Euler and then with Implicit Euler. The latter will require again Newton-Rhapson to find the solution. \n" + "In task 1 you will solve first a very simple equation unp.np.np.np.sing Newton-Rhapson to understand exactly how to implement it. Task 2 treats the solution of a non-linear ODE in time, first with Explicit Euler and then with Implicit Euler. The latter will require again Newton-Rhapson to find the solution. " ] }, { @@ -42,7 +59,7 @@ "id": "735043d3", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Task 1</b>\n", "\n", @@ -60,7 +77,7 @@ "id": "17ca3c02", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Task 1.1</b>\n", "\n", @@ -82,13 +99,21 @@ "</div>" ] }, + { + "cell_type": "markdown", + "id": "4d30d3b8", + "metadata": {}, + "source": [ + "Write your answer here." + ] + }, { "cell_type": "markdown", "id": "c221dccd", "metadata": {}, "source": [ "\n", - "<div style=\"background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Solution</b>\n", "\n", @@ -109,7 +134,7 @@ "id": "4f3fc628", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Task 1.2</b>\n", "\n", @@ -120,7 +145,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 2, "id": "25bcec4e", "metadata": {}, "outputs": [ @@ -133,6 +158,20 @@ } ], "source": [ + "# import numpy as np\n", + "\n", + "# def g(x):\n", + "# return YOUR_CODE_HERE\n", + "\n", + "# def g_der(x):\n", + "# return YOUR_CODE_HERE\n", + "\n", + "# x = .01\n", + "# for j in range(100):\n", + "# x = YOUR_CODE_HERE\n", + "# # Next task will go here\n", + "\n", + "# SOLUTION\n", "import numpy as np\n", "\n", "def g(x):\n", @@ -146,7 +185,6 @@ " x = x - g(x)/g_der(x)\n", " if np.abs(g(x)) < 1e-6:\n", " break\n", - "\n", " \n", "print(\"The solution found is \", x, \" it took \" ,j , \" iterations to converge.\")" ] @@ -156,7 +194,7 @@ "id": "c210989a", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Task 1.3</b>\n", "\n", @@ -172,7 +210,7 @@ "metadata": {}, "source": [ "\n", - "<div style=\"background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Solution</b>\n", "\n", @@ -195,7 +233,7 @@ "id": "e4723ca1", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Task 1.4</b>\n", "\n", @@ -211,7 +249,7 @@ "metadata": {}, "source": [ "\n", - "<div style=\"background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Solution</b>\n", "\n", @@ -234,7 +272,7 @@ "id": "fcb52681", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Task 2</b>\n", "\n", @@ -251,12 +289,20 @@ "</div>" ] }, + { + "cell_type": "markdown", + "id": "6ef1b02a", + "metadata": {}, + "source": [ + "Write your answer here." + ] + }, { "cell_type": "markdown", "id": "8b10ee75", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Task 2.1</b>\n", "\n", @@ -273,7 +319,7 @@ "metadata": {}, "source": [ "\n", - "<div style=\"background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Solution</b>\n", "\n", @@ -304,7 +350,7 @@ "id": "3a0f172f", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Task 2.2</b>\n", "\n", @@ -326,7 +372,7 @@ "metadata": {}, "source": [ "\n", - "<div style=\"background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Solution</b>\n", "\n", @@ -357,7 +403,7 @@ "id": "726c43cb", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Task 2.3</b>\n", "\n", @@ -374,7 +420,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 3, "id": "57c0662a", "metadata": {}, "outputs": [ @@ -390,9 +436,58 @@ } ], "source": [ - "import matplotlib.pyplot as plt\n", + "# def g(y_iplus1,y_i, t_iplus1):\n", + "# return YOUR_CODE_HERE\n", + "\n", + "# def g_der(y_iplus1):\n", + "# return YOUR_CODE_HERE\n", + "\n", + "\n", + "# # Define parameters:\n", + "# dt = .3\n", + "# t_end = 10\n", + "# t = np.arange(0,t_end+dt,dt)\n", + "\n", + "# y_EE = np.zeros(t.shape)\n", + "# y_IE = np.zeros(t.shape)\n", + "\n", + "# # Define Initial Conditions\n", + "# y_EE[0] = YOUR_CODE_HERE\n", + "# y_IE[0] = YOUR_CODE_HERE\n", "\n", + "# # Perform time-integration\n", + "# newtonFailed = 0\n", + "# for i in range(0, len(t)-1): \n", + " \n", + "# # Forward Euler:\n", + "# y_EE[i+1] = YOUR_CODE_HERE\n", + "\n", + "# # Backward Euler:\n", + "# y_IE[i+1] = YOUR_CODE_HERE # Initial guess\n", + "# for j in range(200):\n", + "# y_IE[i+1] = YOUR_CODE_HERE\n", + "# if np.abs(g(y_IE[i+1],y_IE[i],t[i+1])) < 1e-6:\n", + "# break\n", + " \n", + "# if j >= 199:\n", + "# newtonFailed = 1\n", + " \n", + "\n", + "# # Plotting the solution\n", + "# plt.plot(t, y_EE, 'r', t, y_IE, 'g--')\n", + "# if newtonFailed:\n", + "# plt.title('Nonlinear ODE with dt = ' + str(dt) + ' \\nImplicit Euler did not converge')\n", + "# else:\n", + "# plt.title('Nonlinear ODE with dt = ' + str(dt))\n", "\n", + "# plt.xlabel('t')\n", + "# plt.ylabel('y')\n", + "# plt.gca().legend(('Explicit','Implicit'))\n", + "# plt.grid()\n", + "# plt.show()\n", + "\n", + "\n", + "# SOLUTION\n", "def g(y_iplus1,y_i, t_iplus1):\n", " return y_iplus1-y_i-dt*(np.sin(y_iplus1**3)+np.sin(t_iplus1))\n", "\n", @@ -449,7 +544,7 @@ "id": "6b6d9964", "metadata": {}, "source": [ - "## Section 2: Diffusion Equation in 1D\n", + "## Part 2: Diffusion Equation in 1D\n", "\n", "The 1-D diffusion equation reads $$\\frac{\\partial u}{\\partial t}=v\\frac{\\partial^2 u}{\\partial x^2}$$\n", " \n", @@ -457,20 +552,9 @@ "\n", "Unlike the problem of Wednesday, here there is no exchange of heat with the ambient and the temperature evolves in time. The temperature initially is uniform along the rod, equal to $7°C$. Then it is heated at both ends. . \n", "\n", - "\n", + "\n", "\n", - "The problem is schematized as a one-dimensional $30cm$ steel rod of with a diffusivity coefficient of $4 mm^2/s$. Run the simulation for $10,000 s$ to see the progression of the temperature through the model. Start with $200$ steps. " - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "id": "ef5ab0dd", - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import matplotlib.pyplot as plt" + "The problem is schematized as a one-dimensional $0.3 m$ steel rod of with a diffusivity coefficient of $4e-6 m^2/s$. Run the simulation for $10,000 s$ to see the progression of the temperature through the model. Start with $200$ time steps and use 15 points to represent the rod." ] }, { @@ -478,7 +562,7 @@ "id": "c300a7fd", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Task 3</b>\n", "\n", @@ -501,7 +585,7 @@ "id": "84b32366", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Task 3.1:</b>\n", "\n", @@ -516,7 +600,7 @@ "metadata": {}, "source": [ "\n", - "<div style=\"background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Solution</b>\n", "\n", @@ -539,7 +623,7 @@ "id": "4ae351ba", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Task 3.2:</b>\n", "\n", @@ -556,7 +640,7 @@ "metadata": {}, "source": [ "\n", - "<div style=\"background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Solution</b>\n", "\n", @@ -579,7 +663,7 @@ "id": "71a1284a", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Task 3.3:</b>\n", "\n", @@ -596,7 +680,7 @@ "metadata": {}, "source": [ "\n", - "<div style=\"background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Solution</b>\n", "\n", @@ -621,7 +705,7 @@ "id": "6ab571e7", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Task 3.4:</b>\n", "\n", @@ -638,7 +722,7 @@ "metadata": {}, "source": [ "\n", - "<div style=\"background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Solution</b>\n", "\n", @@ -664,11 +748,11 @@ "metadata": {}, "source": [ "\n", - "<div style=\"background-color:#facb8E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#facb8E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>NOTE</b>\n", "\n", - "If you have doubts of your solution, ask a staff member! It is important to be in the right track!!\n", + "If you have doubts of your solution, <b>stop</b> and ask a staff member! It is important to be in the right track!!\n", "\n", "</p>\n", "</div>" @@ -679,7 +763,7 @@ "id": "2ad1f7c0-14d4-4363-8ed9-681e1e271741", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Task 3.5:</b> \n", "\n", @@ -691,7 +775,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 4, "id": "efd223ed-a7db-4680-8c81-649ea88b5275", "metadata": {}, "outputs": [], @@ -706,13 +790,13 @@ "# nt = \n", "\n", "# Solution\n", - "T_left = 38 \n", - "T_right = 25 \n", - "T_initial = 7 \n", - "L = 300 \n", - "nu = 4 \n", - " \n", - "dx = 20\n", + "T_left = 38\n", + "T_right = 25\n", + "T_initial = 7\n", + "L = 0.3\n", + "nu = 4/1000/1000\n", + "\n", + "dx = 0.02\n", "x = np.arange(0,L,dx)\n", "n = len(x)\n", "dt = 50\n", @@ -732,40 +816,37 @@ "id": "0e235c76", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Task 3.6:</b> \n", "\n", "Define the initial conditions and the boundary conditions. **Fill in the missing parts of the code.**\n", "\n", + "We define a 2-dimensional Numpy array <code>T</code> where the first index, <code>j</code>, represents time and the second index, <code>i</code>, represents space, for example: <code>T[j, i]</code>. Initialize <code>T</code> with a matrix of zeros.\n", + "\n", "</p>\n", "</div>" ] }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 5, "id": "673b1ff5-06e2-44c8-b6a4-031a00b0f190", "metadata": {}, "outputs": [], "source": [ - "# Initialise empty solution array \"T\"\n", - "T = np.zeros((m,n))\n", - "\n", - "# Initialise initial conditions into the solution array t=0\n", - "# us[0] = \n", - "# Solution:\n", - "T[0,:] = T_initial\n", - "\n", - "# Set boundary conditions into the solution array for every time step\n", - "# us[:,0] = \n", - "# us[:,-1] = \n", - "# Solution:\n", - "T[:,0] = T_left\n", - "T[:,-1] = T_right\n", - "\n", + "# T = YOUR_CODE_HERE\n", + "# T[0, :] = YOUR_CODE_HERE\n", + "# T[:, 0] = YOUR_CODE_HERE\n", + "# T[:, -1] = YOUR_CODE_HERE\n", + "# b = YOUR_CODE_HERE\n", "\n", - "b = T[j,1:-1] + nu*dt/(dx**2)*(T[j,2:]-2*T[j,1:-1]+T[j,:-2])\n" + "# SOLUTION\n", + "T = np.zeros((m,n))\n", + "T[0, :] = T_initial\n", + "T[:, 0] = T_left\n", + "T[:, -1] = T_right\n", + "b = T[j, 1:-1] + nu*dt/(dx**2)*(T[j, 2:]-2*T[j, 1:-1]+T[j, :-2])" ] }, { @@ -773,23 +854,31 @@ "id": "e7c5bf2e", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Task 3.7:</b> \n", "\n", - "Write in paper the equations that come out from your algebraic representation of the diffusion equation, solving for the unknowns. Use it then to write the matrix A, the unknown vector T and vector b.\n", + "Write in paper the equations that come out from your algebraic representation of the diffusion equation, solving for the unknowns. Use it then to write the matrix A, the unknown vector T and vector b. As in the workshop and textbook, the <code>A</code> matrix consists only of the unknowns in the problem.\n", "\n", "</p>\n", "</div>" ] }, + { + "cell_type": "markdown", + "id": "7e0147f1", + "metadata": {}, + "source": [ + "Your answer here." + ] + }, { "cell_type": "markdown", "id": "641bb333", "metadata": {}, "source": [ "\n", - "<div style=\"background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Solution</b>\n", "\n", @@ -801,16 +890,20 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 6, "id": "787c37f6", "metadata": {}, "outputs": [], "source": [ + "# for j in range(m-1):\n", + "# A = YOUR_CODE_HERE\n", + "# b = YOUR_CODE_HERE\n", + "# T[j+1,1:-1] = YOUR_CODE_HERE\n", + "\n", + "# SOLUTION\n", "for j in range(m-1):\n", - " # Building matrix A\n", " A = np.zeros((len(x)-2,len(x)-2))\n", " np.fill_diagonal(A, 1)\n", - " # Building vector b\n", " b = T[j,1:-1] + nu*dt/(dx**2)*(T[j,2:]-2*T[j,1:-1]+T[j,:-2]) \n", " T_1_to_n_minus1 = np.linalg.inv(A) @ b\n", " T[j+1,1:-1] = T_1_to_n_minus1" @@ -821,11 +914,11 @@ "id": "794f6329", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Task 3.8:</b> \n", "\n", - "Visualization of the temporal evolution.\n", + "Use this code cell if you would like to verify your numerical implementation. For example, visualize the temperature profile at different time steps.\n", "\n", "</p>\n", "</div>" @@ -833,28 +926,17 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 7, "id": "56f6fdea", "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABirElEQVR4nO3dd3iV5f3H8fc52RtCNhkgQ1SWDNkkhCGoOFDrqkIdxTpaq9ZW7U+xtmJra23rrBMnaEXcCIEkLFGWyFAMAkkYIazsnfP8/nhyThJFCJCT55zk87quXA3nOTnny9NIPrnv733fNsMwDERERES8lN3qAkREREROhcKMiIiIeDWFGREREfFqCjMiIiLi1RRmRERExKspzIiIiIhXU5gRERERr+ZrdQHu5nA42Lt3L2FhYdhsNqvLERERkRYwDIPS0lISEhKw24899tLuw8zevXtJSkqyugwRERE5Cfn5+SQmJh7zOe0+zISFhQHmzQgPD7e4GhEREWmJkpISkpKSXD/Hj6Xdhxnn1FJ4eLjCjIiIiJdpSYuIGoBFRETEqynMiIiIiFdTmBERERGvpjAjIiIiXk1hRkRERLyawoyIiIh4NYUZERER8WoKMyIiIuLVFGZERETEqynMiIiIiFdTmBERERGvpjAjIiIiXk1h5iQdrDjCylXPU3DoiNWliIiIdGjt/tRsd3nlzZuY47eNLtueY2q/q5iQMoF+Uf2w25QPRURE2pLCzEk6GBZDUMU3HLJX88qWV3hlyyvEBscyMWUiE1MmMjBmoIKNiIhIG7AZhmFYXYQ7lZSUEBERQXFxMeHh4a32up9u2kfh2zPpGvYlizpFkR0STEVdpet6VFAU45PHMyllEoNiB+FrV24UERFpqRP5+a2fsCcpOiyAu2qns7jyWyZU5FPd/wpWDbmKjLwMMvMyOVh5kHnb5jFv2zwiAyMZlzSOSSmTGBo/FD+7n9Xli4iItBsamTlJeYcqGPtYJiP8cnjT9yFshgN+9iqceRG19bWs3reaxbmLWZq/lOLqYtfXhfuHk56czsSUiQyPH46/j3+r1SQiItJenMjPb4WZk1RZU88ZDywEYNu4NQR8/k8IioRbPoewONfzah21rC1Yy+LcxSzJW8LhqsOua6F+oaQlpTExZSIjE0YS6BvYavWJiIh4M4WZJtwVZgD6PfgZpdV1ZPxmBD3fvwgKvoaeE+Gad8Bm+9Hz6x31rC9cz+LcxWTkZnCg8oDrWpBvEKmJqUxMmcjorqMJ9gtu1VpFRES8icJME+4MM+n/yGLHgXLeumk4I8IOwHNjob4azn8cht5wzK91GA42HtjI4tzFLM5dTEF5getaoE8go7uOZmLKRMYmjiXUP7RV6xYREfF0CjNNuDPMXPHc53yx8zD/unIgFw3sCp8/DZ/dC37BcPMK6NKjRa9jGAabD252BZvdZbtd1/zt/oxMGMnEbhNJS0oj3L91/w4iIiKeSKuZ2khMuNnjcqC02nxg2M3w3aewcxnM/yVc/xn4HP8W22w2+kX3o190P347+Ld8e/hbV7DZVbKLrN1ZZO3Owtfuy/D44UxMmci4pHF0Duzszr+eiIiIV9DIzCn404dbeWnlTmaOPY17zzvDfLB4Nzw9EqqLYdz9kHrPSb++YRhsL9ruCjbbi7a7rvnYfBgaN5SJKRNJT04nKijqVP86IiIiHkPTTE24M8w8m/09j376LdPO7srjVwxsvPD12zD/JrD7wg2LoeugVnm/HcU7yMjNYHHuYr49/K3rcbvNzqCYQUxMmciElAnEBMe0yvuJiIhYRWGmCXeGmXfX7eaudzYyumcUr984rPGCYcD/fgFb3oOo3vDLbPBv3dVJ+SX5LMpdREZuBpsPbW527eyYs5mQPIGJKROJD41v1fcVERFpCwozTbgzzCzPOcC1L37J6bFhfPbbsc0vVhyGp0dAWQGcMxPO+1urvndTe8r2kJGbQUZuBl8d+KrZtX5R/VwjNklhSW6rQUREpDUpzDThzjDzbUEJk59YTudgPzY8MOnHT9ieAa9fan5+7XvQI71V3/9o9pfvJyPPnIpav389Bo3/954ReYbrIMxuEd3cXouIiMjJUphpwp1h5nB5DYMeXgzAd3+egr/vUU7J/vhuWPM8hMXDr1ZBcGSr1nAsBysPsjRvKYtyF7G2YC31Rr3rWs9OPZmUMomJKRPp0akHtqNs8iciImIVhZkm3BlmHA6D3n/8lDqHwao/pJPQKejHT6qpgOfGwKHt0PdSuOylVq2hpY5UHSEzP5NFuYv4Yu8X1Bl1rmvdI7ozIXkCk7pN4vTOpyvYiIiI5RRmmnBnmAEYMXsJ+4qreP/WUQxI6nT0J+1eBy9OBKMeLn0R+l3W6nWciOLqYrLys8jIzWDl3pXUOmpd15LCkpiYMpFJKZM4s8uZCjYiImIJhZkm3B1mLnpyBRt3F/P8dUOYeGbsTz8xczZkPwqBEfCrzyGia6vXcjLKasrI3p3N4tzFrNizgur6ate1hJAEJqSYq6L6R/fHbjvKNJqIiIgbKMw04e4wc+OcNWR8U8hfLunLNcNSfvqJ9bXw4iTYux5OS4Ofvwd2zwoHFbUVLN+znMW5i1m2exmVdZWuazHBMa7l3mfHnI2P3cfCSkVEpL3TcQZtKDrsB0ca/BQfP5j2X3h2DOzIMpuCh810f4EnINgvmHO7ncu53c6lsq6SVXtWsThvMVn5WRRWFPLmt2/y5rdv0iWwi2vEZnDsYHzt+jYSERHr6KfQKYoOCwCg8HhhBiCqF0x6GD65GxY/YI7QRJ/u3gJPUpBvEONTxjM+ZTw19TV8vvdzFuUuIjM/k0NVh5i3bR7zts2jU0An0pPTmZA8geHxw/Hz8bO6dBER6WAUZk5RTEOYOe7IjNPQG2Hbp/D9EvMwyhszzFEbD+bv409qUiqpSanU1tfyZcGXLM5dzJK8JRRVFzE/Zz7zc+YT5hdGalIqE1ImMCphFIG+gVaXLiIiHYB6Zk7RZ1sKmPnaOgYkdeL9W0e1sKh98PRwqCqCsfdA+v2tXldbqHPUsW7/OlewOVh50HUtyDeIMV3HMDFlImMSxxDiF2JhpSIi4m3UANyEu8PMhrwjXPL0Krp2CmLlH05gh9/N883zm2x2uH4RJA1t9draksNwsPHARhbnLiYjN4N95ftc1/zt/ozsOpKJKRNJTUwlIiDCwkpFRMQbKMw04e4ws/tIBaP/mom/j51tf558YvuyvHsTbHobIk+Dm1eAf/sYvTAMg62HtprBJi+D3JJc1zVfmy/D4ocxIWUC6cnpRAa23Y7IIiLiPRRmmnB3mKmuq+f0Py4E4KsHJtIp2L/lX1xZBM+MhJI9MOR6uOCfrV6f1QzDIKcoh4xc87yo7UXbXdfsNjuDYwczIXkC45PHExtyjH16RESkQ1GYacLdYQZgwEOLKK6sZdFvx9I7NuzEvnhHFrx6kfn51e9A76McWNmO7Cre5ToIc+uhrc2uDYgewMSUiYxPHk9iWKJFFYqIiCdQmGmiLcLMxMezySks440bhzGqZ9SJv8DCe2H10xAaa+4OHNKl9Yv0QHvK9pCRm0FGbgZfHfiq2TXnCd8TUibQPaK7NQWKiIhlFGaaaIswc/Xzq1n1/SH+ecUALjn7JEYUaivhv2lw4Fs4Yyr87DXoYGciFVYUsiRvCRm5GazdvxaH4XBd69mpJxNSJjAheQK9O/fWeVEiIh3Aifz8tnQ//WeeeYb+/fsTHh5OeHg4I0aM4NNPP3VdnzFjBjabrdnH8OHDLaz46E54r5kf8gsydwe2+8I3H8LGua1YnXeICY7hqj5X8eK5L5L5s0xmjZjFqK6j8LX7sr1oO89ufJbLPryMC967gH+u+yebD26mnedwERFpIUs3zUtMTOTRRx+lZ8+eAMyZM4eLLrqIDRs2cNZZZwEwefJkXn75ZdfX+PufQINtG4kJNzeHKyw5yTADED8A0u6FpQ/Dp/dAt1HQKbmVKvQukYGRXNr7Ui7tfSklNSVk55sHYa7au4q80jxe2vwSL21+ibiQONd5UQNjBuogTBGRDsrjppkiIyN57LHHuOGGG5gxYwZFRUUsWLCgxV9fXV1NdXVjqCgpKSEpKcmt00zPL9vBXz75hgsHJPDvq84++Reqr4NXzoP8LyBlNEz/0OMOo7RSRW0Fy/YsIyM340cHYUYFRTE+eTwTUiYwJHaIzosSEfFyXjPN1FR9fT1z586lvLycESNGuB7PysoiJiaG3r17c9NNN1FYWHjM15k9ezYRERGuj6SkJHeXTkz4KU4zOfn4wiXPgl8I5K6A1U+1QnXtR7BfMJO7TebvqX9n2RXL+Ne4fzH1tKmE+YVxsPIg87bN46ZFNzHu7XE8sPIBlu1eRk19jdVli4iIm1k+MrNp0yZGjBhBVVUVoaGhvPnmm5x33nkAzJs3j9DQUFJSUti5cyf/93//R11dHevWrSMgIOCor2fFyMyq7Qe5+oUv6BEdwpK70k79Bde9Ah/+Bnz84ZfZEHvmqb9mO1ZbX8sXBV+QkZvB0rylHKk+4roW6hdKalIqE5MnMrLrSIJ8gyysVEREWsqrVjPV1NSQl5dHUVER7777Li+88ALZ2dmceeaPf4Dv27ePlJQU5s6dy7Rp01r0+m2xmml7YSkTHl9GeKAvX88699Rf0DDgrSvhu4UQ2w9uWgK+Rw9v0lydo471+9e7zos6UHnAdS3IN4jRXUeb50V1HUOof6iFlYqIyLF4VZj5oQkTJtCjRw+ee+65o17v1asXN954I7///e9b9HptEWaKK2oZ8KdFAHz78GQC/XxO/UVL98MzI6DiEIy6AyY+dOqv2cE4DAdfH/jadV7U3vK9rmv+dn9GJoxkQsoE0pLSdF6UiIiHOZGf3x7XJWkYRrNpoqYOHTpEfn4+8fHxbVzVsYUH+eLva6emzsGB0mqSIoNP/UXDYmHqv2Dez2Hlv6D3ZEgZcfyvExe7zc7AmIEMjBnI3UPuZuvhra5N+naV7CJrdxZZu7PwtflyTvw55nlRSel0CeoYmxaKiLQXlo7M3HfffUyZMoWkpCRKS0uZO3cujz76KAsXLmTEiBHMmjWLSy+9lPj4eHbt2sV9991HXl4e33zzDWFhLTs2oC1GZgBGPbqUPUWVvPurkQxO6dx6L7zgFvjqDXOZ9s0rIdB9f4eOwjAMthdtN8+LyltMzpEc1zW7zc6gmEGuTfp0XpSIiDW8ZmRm//79XHvttezbt4+IiAj69+/PwoULmThxIpWVlWzatIlXX32VoqIi4uPjGTduHPPmzWtxkGlLMeEB7CmqPPUVTT80+VHYuRyK8uCze+EirXA6VTabjV6de9Grcy9+NfBXrvOiMnIz2HJoC2v3r2Xt/rU8+uWj9I/uz8Rk81gFnRclIuKZPK5nprW11cjML19dy6Kt+3n4orO4dkS31n3xXSvhlfMBA658E/qc37qvLy57y/aaU1F5GXxV+BUGjf95nBF5hjlikzKB0yJOs7BKEZH2z2tGZtqTVttr5mi6jYKRt8Oqf8MHv4bEoRAa0/rvIySEJnDdWddx3VnXcaDigOu8qDX71/DN4W/45vA3/GfDf+gR0YMJKebuwzovSkTEWgozrSQ6tOFIA3eEGYD0P8L2JVC4xQw0V73V4Q6jbGvRwdFc2edKruxzJYerDpOVn8Xi3MWs3rea74u/5/uvv+e5r58jMTSRCSkTGJ88nv7R/XWsgohIG9M0Uyt568s87p2/ifF9YnhxxlD3vEnBZnh+HNTXwIX/gUHXued95Jic50Vl5Gawcu9KqusbA2x0UDTpyemkJ6czNG4ofnY/CysVEfFeXr3PTGtrqzCz5Jv93DBnLf26RvDh7aPd9j6s/BcsfgD8Q+HmFRDZ3X3vJcdVUVvByr0rXedFldWWua6F+4eTlpTG+OTxjEwYSaBvoIWVioh4F4WZJtoqzHy9u4gLn1xJbHgAX9w3wW3vg6Me5kyF3JWQNBx+8QnYW2GTPjllNfU1fFnwJRm5GWTmZ3K46rDrmnP34fHJ4xmbOJYwf89bkSci4kkUZppoqzBTUFzF8NlL8LHbyPnzFOx2N/azHMmFZ0ZBTSmMfwDG3OW+95KTUu+oZ0PhBpbkLWFJ3hL2le9zXfO1+zIsfhgTkicwLmmcNukTETkKhZkm2irM1NY76P3HTzEMWPvHCUSFuvkspQ1vwPu3gM3HHJ1JHu7e95OTZhgG3xz+hozcDJbkLWFH8Q7XNRs2zo4529VAnBCaYGGlIiKeQ2GmibYKMwCDH17MofIaPv3NGM6Id/NOvYYB82+CTe9AWALcvBxCotz7ntIqdhTvYGneUtcmfU259rJJnsBpnbSXjYh0XAozTbRlmJn8xDK+LShlzvXnkNo72q3vBUB1mbm66eB30CMdrnkX7FoW7E32le1jab4ZbNYXrsdhOFzXuoV3cwWbM7ucqb1sRKRDUZhpoi3DzLUvfsHynIP8/fIBXDa4jba+378Vnk+HukoY90dI/V3bvK+0OudeNhm5Gazet5paR63rWlxIHOOTxzM+eTyDYgbho6ZvEWnnFGaaaMswc+fbXzF//R7umXw6t6T1dOt7NePqn7HDde9D97Ft997iFmU1ZSzfs5yM3AyW71lOZV2l61rngM6MSx7H+OTxDI8fjr+Pv4WVioi4h44zsEhMmLmPiFuONDiWs6+B3FXw1evwvxvM/WfCdNqzNwv1D2VK9ylM6T6FqroqVu9bTUZuBlm7szhSfYT5OfOZnzOfEL8QxnYdy/iU8YzpOoZgv2CrSxcRaXMKM60oOsxcweS2Iw2O5bzHYO96KNwK795gjtBoKqJdCPQNJC0pjbSkNOocdazbv46M3AyW5i2lsLKQT3d9yqe7PsXf7s/IhJGMTxlPWmIanQI7WV26iEib0DRTK/pw415uf2sD53SP5O2ZI9z6Xkd1MAf+mwY1ZTD2d+Z5TtJuOQwHmw5uMveyyV1CXmme65qPzYchsUMYnzKe9KR0YkM0Uici3kU9M020ZZhZveMQV/53Nd2jQsi8O82t7/WTNv3PHJkBc3VTLzfuRiwewzAMthdtJyMvgyW5S9h2ZFuz6/2j+jM+xWwgTglPsahKEZGWU5hpoi3DzI4DZaT/I5vQAF82P3SuW9/rmD66E9a+CEGR5v4zEW20sko8Rn5pvmsvm40HNmLQ+J95z049XZv0nd75dC35FhGPpDDTRFuGmbLqOvo++BkAW/90LsH+FrUk1VbBixOh4GtIGgYzPgYfnd7cUR2oOEBmfiYZuRmsKVhDnVHnutY1tCsTkicwIWUC/aP7Y7dpnyIR8QwKM020ZZgxDIMzH/iMytp6su5Oo1tUiFvf75gO74DnUqG6BEb+GiY9bF0t4jGKq4tZtnsZGbkZrNq7iqr6Kte1qKAo0pPSGZ88nqHxQ/GzKwCLiHUUZppoyzADkPpYJrmHKnjn5hEM7Rbp9vc7pq0fwNvXmp9f+Rb0Oc/aesSjVNRWsGrvKjLyMliWv4zS2lLXtTD/MNIS0xifMp6RCSMJ8g2ysFIR6YgUZppo6zBz2TOrWJt7hKeuHsT5/ePd/n7HtfBeWP00BEbAzOXQWc2f8mO19bV8WfAlS/KWsDRvKYeqDrmuBfoEMrrraNKT00lNSiXc3/3/HYmIKMw00dZh5pY31vHJpgJmTT2TGaO6u/39jquuBl6eAnvWQsIguH4h+Lr5RG/xavWOejYe2Ggu+c5bwp6yPa5rvjZfhsUPY3zKeMYljSMqSIebioh7KMw00dZh5sH3NzPn81xuSevBPZP7uP39WqQoH54bA5VH4JyZcN7frK5IvIRhGHx7+FtXsNletN11zYaNs2POJj05nfTkdJLCkiysVETaG4WZJto6zDyVuZ3HPtvG5YMTeezyAW5/vxb77jN482fm55e/AmddYmk54p12Fe9yBZtNBzc1u9arcy/Sk8xgc0bkGVryLSKnRGGmibYOM2+vyeeed78mtXc0c64/x+3vd0IWPwgrnwD/MJiZDV16WF2ReLGC8gKW5i1laf5S1haspd6od12LC4lzBZtBsYO0MkpETpjCTBNtHWYytxXyi5fXcGZ8OJ/8Zozb3++E1NfBnKmQtwri+sENi8FPq1Tk1DmXfGfmZ7Jiz4pmp3yH+4eTmphKenI6IxNG6jBMEWkRhZkm2jrMbN5TzAX/WUFUaABr/+iBRwmU7IVnx0DFQRg8A6b+y+qKpJ2pqqvii31fsDR/KVn5WRyuOuy6FuATwIj4Ea6VUZGBFm9fICIeS2GmibYOM4WlVZzzlyXYbZDzl/PwsXtg38D3S+G1aYABl/wXBlxhdUXSTjlXRi3NW8qSvCXsLtvtuma32RkYPdBsIE5KJylcDcQi0khhpom2DjP1DoNe93+Cw4Av7xtPTHig29/zpGTOhuxHwS8YbsqEGA9ZeSXtlvMwTGefzdZDW5tdVwOxiDSlMNNEW4cZgKF/yeBAaTUf3T6avl0j2uQ9T5ijHl67BHZmQ3QfuGkp+Ft4/IJ0OPvK9pGZn6kGYhE5KoWZJqwIM+f9azlb95Xw8oyhjOsT0ybveVLKCuHZ0VC2HwZcBRc/A/ptWCygBmIR+aET+flt0bHO7VtMeABb98GB0mqrSzm20Bi47CVzhdPGtyBlFAy61uqqpAOKCIhgao+pTO0x9agNxB/u+JAPd3zoaiAelzyO1MRUugR1sbp0EfEACjNuEBNmHhdQWFp1nGd6gG6jIf2PsORP8MndkHA2xPW1uirpwAJ9A0lNSiU1KfWoDcRZu7PI2p3VfAdiNRCLdGiaZnKDxz77lqcyv+e6ESn86SIvCAYOh7k78PbFENkDfpkFgTpMUDzL8RqIe3bq6Tpa4czIM9VALOLl1DPThBVhZs6qXTz4wRam9I3jmZ8PbpP3PGUVh839Z0p2w1nTzOkn/TAQD7avbB9L85eSmZ+pBmKRdkhhpgkrwswnm/ZxyxvrGZzSmXd/NbJN3rNV5H9pnrDtqIPz/g7n3GR1RSItcrwG4rGJY0lPTmdUwig1EIt4CYWZJqwIM2t3HeayZz8nOTKYZfeMa5P3bDWrnoRF94OPP9ywyOyhEfEix9qB2N/uz4iEhh2I1UAs4tEUZpqwIszkHion9bEsAv3sfPOnyd41d28YMO/n8O1H0CkFZi6DoE5WVyVyUo61A7EaiEU8m8JME1aEmYqaOs584DMANs2aRFigl83XVx6B51KhKBf6XABXvK7+GfF6aiAW8S4KM01YEWYA+j74GWXVdSy5K5Ue0aFt9r6tZs96eOlcqK+Bcx+BEbdaXZFIqzreDsTjksaRnpzO4NjBaiAWsYDCTBNWhZn0v2ex42A5c385nOGneem8/JfPm3vP2H3hF59C0jlWVyTiFsdqIA7zD3PtQKwGYpG2ozDThFVh5mfPfc6XOw/z76vO5sIBCW32vq3KMOB/18OW+RDeFWYuhxAvDWYiLaQGYhHPoOMMPIBzF2CPP9LgWGw2mPov2LcRDn8P782Eq98Gu93qykTc5ng7EGfvziZ7d3azBuK0pDRSwlOsLl2kw9LIjJs89OEWXl65i5mpp3HvlDPa7H3domATvDAB6qpg/IMw5k6rKxJpc8drID4t4jTSktIYlzSOflH98LH7WFSpSPtwIj+/Lf0V+5lnnqF///6Eh4cTHh7OiBEj+PTTT13XDcNg1qxZJCQkEBQURFpaGlu2bLGw4paLCQsEvHxkximuH5z3mPn50odh1wpr6xGxgM1mo1fnXswcMJN5F8xj0aWL+MM5f2B4/HB8bb7sKN7BS5tf4tpPryX9nXQeWPkAmXmZzfpvRMQ9LB2Z+fDDD/Hx8aFnz54AzJkzh8cee4wNGzZw1lln8de//pW//OUvvPLKK/Tu3Zs///nPLFu2jG3bthEWFtai97BqZObddbu5652NjOkVxWs3DGuz93Ubw4AFvzJP1w6Ng5uXm6duiwglNSWs3LOSzLxMlu9ZTlltmeta05O+xyaOJSooysJKRbyHVzcAR0ZG8thjj3H99deTkJDAHXfcwe9//3sAqquriY2N5a9//SszZ85s0etZFWaWfXeA6176ktNjw/jst2Pb7H3dqqYcnk+HA99C91S49j3QULpIM7X1tawrXEdmXiZZ+VnsLd/rumbDRr/ofoxLGse4pHGcFnGa9rMR+QleGWbq6+t55513mD59Ohs2bCAwMJAePXqwfv16zj67cUv9iy66iE6dOjFnzpyjvk51dTXV1Y1TOyUlJSQlJbV5mPm2oITJTywnMsSf9f83sc3e1+0ObIP/pkFtBaT+Acbda3VFIh7LMAy+O/IdWflZZOZnsuVQ82nypLAkV5/N2TFn42vXmgwRJ69azbRp0yZGjBhBVVUVoaGhvPfee5x55pmsWrUKgNjY2GbPj42NJTc39ydfb/bs2Tz00ENurbklokPN1UyHy2uoqXPg79tOVgBFnw4XPAHv/RKy/wrJw6BHutVViXgkm83G6ZGnc3rk6cwcMJP95fvJ3p1NZn4mX+z7gvzSfF7b+hqvbX2NiIAIxnYdS1pSGqO6jiLEL8Tq8kW8huUjMzU1NeTl5VFUVMS7777LCy+8QHZ2NkVFRYwaNYq9e/cSHx/vev5NN91Efn4+CxcuPOrrecrIjMNh0PuPn1LnMPj83nTiI4La7L3bxAe/hvVzIDgKbl4B4fHH/xoRcSmvLWfV3lVk5WeRvTub4upi1zU/ux/nxJ3DuKRxpCalEhcSZ12hIhbxymkmpwkTJtCjRw9+//vfn9Q00w9Z1TMDMPyRJRSUVPH+raMYkNSpTd/b7Wor4YWJsH8TJI+E6R+Cj+UDfSJeqc5Rx1eFX7mmo/JK85pdP7PLma7pqNM7n64+G+kQvGZp9tEYhkF1dTXdu3cnLi6OxYsXu67V1NSQnZ3NyJEjLayw5WLC28HGeT/FLwh+Ngf8wyBvFWT+2eqKRLyWr92XIXFDuHvo3Xx0yUe8f9H73DHoDgZGD8SGja2HtvL0V09z+YeXc+675/LIF4+wau8qautrrS5dxCNY+qv0fffdx5QpU0hKSqK0tJS5c+eSlZXFwoULsdls3HHHHTzyyCP06tWLXr168cgjjxAcHMzVV19tZdkt5uybKWyPYQagSw+46D/wzgxY8U9IHgG9z7W6KhGvZrPZOK3TaZzW6TRu6HcDBysPsnz3cjLzM/l87+fsK9/HW9++xVvfvkWoXyiju44mLSmNMYljCPdv29FnEU9haZjZv38/1157Lfv27SMiIoL+/fuzcOFCJk40V//cc889VFZWcsstt3DkyBGGDRvGokWLWrzHjNXa9ciM01mXQO7n8OVzMP+X5v4znZKtrkqk3YgKiuKSXpdwSa9LqKqrYvW+1WTlZ5GVn8WhqkMs3LWQhbsW4mvzZXDsYNKS0khLSiMxLNHq0kXajMf1zLQ2K3tmHl+0jX8v3c41w5L5yyX92vS921RdNbw0Gfauh65DzBO2ff2trkqkXXMYDjYd3OTaz+b74u+bXe/VuRdpiWafzVlRZ2G3eVxXgcgxeXUDcGuzMsy8tjqX/1uwmUlnxvLf64a06Xu3uSO74LmxUFUMw2+BybOtrkikQ8kryXM1EK8vXI/DcLiuRQdFk5qUyrikcQyLH0aAT4B1hYq0kMJME1aGmYWbC7j59XUMTOrEgltHtel7W+LbT2DuVebnV7wOZ0y1th6RDqqoqojle8w+m5V7VlJRV+G6FuQbxMiEkaQlpTE2cSyRgZEWViry07xq07z2rEP0zDTV5zwYeTus+g8suBViz4LI06yuSqTD6RTYiak9pjK1x1Rq6mtYU7CGzPxMMvMzKawoZEneEpbkLcFuszMweqBr2Xe3iG5Wly5yUjQy40a7j1Qw+q+Z+PvY2fbnyR1jb4j6WnjlfMj/AuIHwPWLwC/Q6qpEBHPri28Of+Oajvr28LfNrncL72aeG5U8jv5R/fHR2WtiIU0zNWFlmKmqrafP/5k7FX/1wEQ6BXeQptjiPfDsaKg8DENugAset7oiETmKfWX7yNqdRWZeJmv2r6HOUee61jmgM2MTxzIueRwj4kcQ7BdsYaXSESnMNGFlmAEY8NAiiitrWfzbsfSK9Y4l5a0iJwPeuNT8/NIXod9l1tYjIsdUWlPKyj0ryczPZPme5ZTWlLqu+dv9GZ4w3Fz2nZhGdHC0hZVKR6Ew04TVYWbC49lsLyzjjRuHMapnVJu/v6WWPAzL/w7+ofDLLIjqZXVFItICtY5aNuzf4Oqz2VO2p9n1flH9XH02PTv17BhT6NLmFGaasDrMXP38alZ9f4gnrhjIxWd3bfP3t1R9Hbx2MexaDjFnwY0Z4K+hahFvYhgG24u2k5lv7mez6eCmZte7hnYlLSmN1MRUhsQOwc/Hz5pCpd1RmGnC6jDzm7kbeP+rvdx3Xh9+ObZHm7+/5UoL4NkxUF4IZ/8cLnrK6opE5BQUVhSSvTubrPwsVu9dTY2jxnUt1C/Utex7TNcxdArsZFmd4v20NNuDxIR1sOXZPxQWB5e9CK9eBBteN0/YPvsaq6sSkZMUExzD5b0v5/Lel1NRW8Hnez8na3cWy3Yv43DVYRblLmJR7iLXsu/UpFTSEtPoHtFd01HiNgozbhYd1s4Pm2yJ7mMh7V7I/At8fBcknA2xZ1pdlYicomC/YManjGd8ynjX8QrZ+dlk7c4i50gO6wvXs75wPf9c90+SwpJITUwlLSmNQbGD8LNrOkpaj6aZ3GzBhj3cMe8rRvbowps3DW/z9/cYDoe5uun7pdCll9kQHBBqdVUi4iZ7y/aSlW+O2HxZ8CW1jlrXtTC/MEZ1HUVqUipjuo4hIiDCukLFY6lnpgmrw8zK7Qe55oUv6BkTSsadqW3+/h6l/KDZP1O6F/pdDtOeBw07i7R75bXl5nRUfhbL9yzncNVh1zUfmw8DYwaSlphGalIq3SO6W1eoeBSFmSasDjM5+0uZ+M9lRAT5sfHBSW3+/h4n93Nzh2CjHi74Jwy53uqKRKQN1Tvqzemohibi7UXbm11PCU9xTUcNjBmo6agOTGGmCavDTFFFDQP/tBiAbx+eTKCftgdn5b9g8QPgEwA3LjaPPRCRDml36W6yd2eTnZ/9o12Iw/zDGN11NGmJaYzqOkrTUR2MwkwTVocZwzA4/f8WUlPnYMXvx5HYWfus4HDA3Kvhu0+hc3eYmQ2B+kdKpKMrqylj1d5VZO/OZtnuZRRVF7mu+dh8GBQ7iNTEVFITU3UoZgegMNOE1WEGYNSjS9lTVMn8W0YyKLmzJTV4nIrD8FwqFOfBGRfCz15V/4yIuNQ76vn64Ndk5WeRnZ/N98XfN7veLbybGWySUjk75mx87Vqc294ozDThCWHm4qdW8lV+Ec/+fDCT+8ZZUoNH2r0WXpoMjlqY/FcYfrPVFYmIh8ovzXct+15XsI46o3E6Ktw/3JyOSjKno8L9rfm3XlqXwkwTnhBmfvnqWhZt3c/DF/fl2uEpltTgsVY/Cwt/D3Y/uP4zSBxsdUUi4uFKa0pZuXcl2fnZLN+znOLqYtc1X5uvazoqLSmN5PBkCyuVU6Ew04QnhJn739vEG1/k8ev0ntw56XRLavBYhgFvXwfffAARyWb/THCk1VWJiJeoc9Sx8cBGsvOzyd6dzY7iHc2ud4/o7lr2PSB6gKajvIiOM/AwMWGBABwo68C7AP8Umw0uehIKNsGRnbDgV3DlW2C3W12ZiHgBX7svg2MHMzh2MHcOuZO8kjyzz2Z3Nuv3r2dn8U52Fu/k5S0vExEQwZiuY0hNSmVUwijC/MOsLl9aiUZm2sCbX+Rx33ubGN8nhhdnDLWkBo+3byO8MBHqq2Hin2DUb6yuSES8XElNCSv3rCQrP4sVe1ZQUlPiuuYMQc5Rm6SwJOsKlaPSNFMTnhBmMrbu58ZX19I/MYIPbhttSQ1eYe1L8NFvweYDMz6GlBFWVyQi7USdo44NhRtc01G7SnY1u94jood5KGZSGv2j+uNj155gVlOYacITwszG/CIuemolceGBrL5vvCU1eAXDgPk3waZ3ICwBbl4OIVFWVyUi7dCu4l2uXYg3FG6g3qh3Xesc0JkxiWNITUxlVNdRhPiFWFdoB6Yw04QnhJl9xZWMmL0UX7uN7/48Bbtd+6n8pOoyeH4cHPwOeqTDNe+qf0ZE3Kq4upgVe1aQvTubFXtWUFpT6rrma/dlaOxQ16hN19CuFlbasSjMNOEJYaamzkHvP34KwLo/TqBLaIAldXiN/Vvh+XSoq4Rxf4TU31ldkYh0ELWOWr4q/MrVRJxbktvses9OPUlLSiM1MZV+Uf00HeVGCjNNeEKYARj08GIOl9ew8I4x9InThk7H9dWb5sommx2uex+6j7W6IhHpgHYW73Rt1rehcAMOw+G6FhkYyZiuY0hLSmNEwghNR7UyhZkmPCXMnPvPZWzbX8qr15/D2N7RltXhVd6/FTa8DiExcPMKCIu1uiIR6cCKq4tZvmc52fnmdFRZbZnrmp/dj6FxQxmbOJbUxFQSwxItrLR9UJhpwlPCzLUvfsHynIP84/IBXDpY3+QtUlMBL4yHwq3QbYw5QqMhXRHxALWOWtbvX++ajsovzW92vWennq5gMyB6gKajToLCTBOeEmbunPcV8zfs4feT+/CrtB6W1eF1DubAf9OgpgzG/g7S/2h1RSIizRiGwc6SnSzLX0b27uwfrY5ybdaXmMrIriN1dlQLaQdgDxQdbjb9FpZWWVyJl4nqBVP/Be/eAMseg6Th0GuC1VWJiLjYbDZOiziN0yJOY0bfGRRXF7Nyz0rX6qji6mI+2vERH+34CB+bj+vsqNTEVLpFdLO6/HZBIzNt5MUVO3n4o61c0D+eJ68eZFkdXuujO2HtixAUafbPRGh5pIh4PtfZUbuzyc7/8dlRKeEpjE0cS1piGmfHno2f3c+iSj2Pppma8JQw88HGvfz6rQ2c0z2St2dqZ9sTVlsFL00yjz1IGg4zPgIf/UcvIt4lvySfZXuWkZ2fzZr9a6hz1LmuhfqFMqrrKFITUxnddTSdAztbWKn1FGaa8JQws3rHIa7872pOiwph6d1pltXh1Q7vhOdSoboYRv4aJj1sdUUiIietrKaMz/d9TnZ+Nsv3LOdw1WHXNbvNzoDoAa4m4p6demKzdawNVxVmmvCUMPP9gTLG/yOb0ABfNj90rmV1eL1vPoR5Pzc/v/It6HOetfWIiLQCh+Fg08FNZOdns2z3MrYd2dbsetfQrq5gMzRuKP4+/hZV2nYUZprwlDBTWlVLv1mLANj6p3MJ9lfv9UlbeC+sfhoCI2DmcuicYnVFIiKtqqC8gGW7l5GVn8UX+76gxlHjuhbkG8TIhJGkJqYyJnEMUUHt8ww7hZkmPCXMGIbBGQ8spKrWQfbv0kjpop0iT1pdDbw8BfashYRB8ItPwC/I6qpERNyioraCLwu+JHt3Nsvyl1FYWdjset8ufRmbZDYR94ns026moxRmmvCUMAMw9m+Z5B2u4H83j2BIt0hLa/F6Rfnw3BioPAKnpZlTTv7BVlclIuJWhmHwzeFvXMFm86HNza7HBMUwNsmcjhoWP4wgX+/9RU9hpglPCjOXPrOKdblHePqaQZzXL97SWtqFvNXw+qXmhnrdx8JV8xRoRKRDOVBxwHXEwuf7PqeyrtJ1LcAngGHxw0hNTGVs4ljiQuIsrPTEKcw04Ulh5levr+PTzQU8dOFZTB/ZzdJa2o28LxoCTal55MHV88BfU3gi0vFU11eztmCt64iFfeX7ml3vE9nH1UTcN6ovdpvdmkJbSGGmCU8KMw+8v5lXP8/l1nE9+N25fSytpV3J/xJem2YGmpTRZqAJCLW6KhERyxiGwfai7a7N+jYe2IhB44/7yMBIV7Dx1BO/FWaa8KQw8+TSHP6+6Dt+NiSRv102wNJa2p38NfD6NKgugeSRcM07CjQiIg2OVB1hxZ4VZOVnsWrvqmYnfvvafRkaO5TUpFSPOvFbYaYJTwoz89bk8ft3N5F2ejSv/OIcS2tpl3avg9cuMTfVSxoOP/8fBIRZXZWIiEepra9lfeF616hNXmles+s9Inq4Vkf1j+6Pr92arURO5Oe3pRNms2fPZujQoYSFhRETE8PFF1/Mtm3NNwqaMWMGNput2cfw4cMtqvjUxIQFAlBYUm1xJe1U4mC4boG5/0x+Q3NwVYnVVYmIeBQ/Hz+GxQ/jnqH38PG0j/ng4g+4e8jdDI0bio/Nh++Lv+flzS8zfeF00t5O4w/L/8CnOz+lpMZz/z21dGRm8uTJXHnllQwdOpS6ujruv/9+Nm3axNatWwkJMefvZsyYwf79+3n55ZddX+fv709kZMuWNnvSyMzmPcVc8J8VRIcFsOZ+nfzsNns3wKsXQ1URJA6Fn79rBhwRETmm4upiVu1dRfbubJbvXt4swDQ98Xts4li6R3R3ay1eO8104MABYmJiyM7OZuzYsYAZZoqKiliwYMFJvaYnhZnCkirOeWQJdhvk/OU8fOztY2Mjj7RvI7x6kbkPTdfB8PP5ENTJ6qpERLxGnaOOrw98TdbuLJblL+P74u+bXU8JT2Fg5HCGllQwOvUPdGnln7FeM830Q8XFxQA/GnXJysoiJiaG3r17c9NNN1FYWHi0LwegurqakpKSZh+eoktoAHYbOAw4VK6pJreKHwDXfQBBkbCnoZemssjqqkREvIav3ZdBsYO4c/CdLLh4AZ9M+4Q/nPMHRsSPwNfuS25JLu/vmscfD3/IPW9fbGmtHhNmDMPgzjvvZPTo0fTt29f1+JQpU3jjjTdYunQp//jHP1izZg3p6elUVx89DMyePZuIiAjXR1JSUlv9FY7Lx24jMiQAUN9Mm4jvD9M/hOAusHc9vHaxOVIjIiInLCksiWvOuIb/TvovK0Y+zj9L6ri4tIzOdfX0Cel7/BdwI4+ZZrr11lv5+OOPWbFiBYmJP70sbN++faSkpDB37lymTZv2o+vV1dXNgk5JSQlJSUkeMc0EcN6/lrN1Xwkv/2Io406PsbqcjmH/FpgzFSoOmSM21y6AYB0nISJywgwDVv0bMh4Co55dtkRuqLqdB39xMWN7t+4Ow143zXT77bfzwQcfkJmZecwgAxAfH09KSgo5OTlHvR4QEEB4eHizD08SHWaOzBzQyEzbiT0Lpn8EwVENvTQXQsVhq6sSEfEulUdg7tWw+AEw6qk/6zIuqPoT3xtJ9InvZGlploYZwzC47bbbmD9/PkuXLqV79+N3Rh86dIj8/Hzi473zbKMYZ5gpU5hpU7FnwoyPISQGCjbBnAuh/JDVVYmIeIe9G+C5VNj2Cfj4wwX/ZNvIxykzAokI8iM6NMDS8iwNM7feeiuvv/46b775JmFhYRQUFFBQUEBlpXlQVllZGXfffTeff/45u3btIisri6lTpxIVFcUll1xiZeknzTkyU1hSZXElHVBMH5jxkRlo9m8yp57KD1pdlYiI5zIMWPMCvDgJinKhUwrcsBiGXE/OAXMX4V4xodhs1q7OtTTMPPPMMxQXF5OWlkZ8fLzrY968eQD4+PiwadMmLrroInr37s306dPp3bs3n3/+OWFh3rmzq0ZmLBZ9ujlCExoHhQ29NGUHrK5KRMTzVJfBuzfCx3dBfQ30uQBmLoOEgQBsL2wIM7HWHx1jzR7FDY7XexwUFMRnn33WRtW0jWjtAmy96N5moJlzARRuNf93+ocQqoZsEREACr+Bt6+Dg9+BzQcmPgQjboMmIzA5+50jM9YPLnhEA3BHEhOukRmPENXTDDRhCXDgW3jlAijdb3VVIiLW2zgXnk83g0xYAvziExh5e7MgA/BdYSngGSMzCjNtzNkkVVhSfdyRKXGzLj3MHprwrnBwmzlCU1pgdVUiItaorYQPbof3ZkJtBfRIh5uXQ/KPz0Osrqsn91AFoJGZDsk5MlNZW09ZdZ3F1UhjoEk0fwt55Xwo2Wd1VSIibevQ9/DiRFj/KmCDtPvgmv9BSNRRn77rYAX1DoOwAF9iw61dyQQKM20u2N+X0ACzVelAqaaaPELkaWagiUiCQ9sbAs1eq6sSEWkbWz+A/6aZ21YER8G18yHt92D3+ckvyWkyxWT1SiZQmLGEa3m2wozniOxu9tBEJMPh781AU7zH6qpERNynrgYW3gtvXwvVJZA8wpxW6pF+3C/9zoOaf0FhxhKuXYAVZjxL5xT4xcfmPgqHdzQEmt1WVyUi0vqKd8Mr58Hqp80/j/y1uaozPKFFX77dg5p/QWHGEhqZ8WCdks0Rms7d4MhOePk8KMqzuioRkdaTkwHPjoHdayAwAq58CyY9DD5+LX8J58hMrEZmOqwYjcx4tk5JDYGmu7nj5Svnw5Fcq6sSETk1jnpY+md44zKoPAzxA81N8Pqcd0IvU1vvYOfBcsDc/dcTKMxYoHFkRkcaeKyIRDPQRPYwR2ZeuQCO7LK6KhGRk1O6H169CJY9Bhgw9Ea4/jNzFPoE7TpYTp3DIMTfh/iIwFYv9WQozFggpmEXYI3MeLiIruYqpy49obgh0BzeaXVVIiInZtcKeG4M7FoOfiFw6Ytw/j/A7+SCSE7DMQY9Y8M8YiUTKMxYQg3AXiQ8AaZ/BF16QXF+Q6DZYXVVIiLH53DA8scbzqDbD9FnwC+zoN9lp/Syzn6Z3h4yxQQKM5ZQz4yXCY83R2iiekPJbnj5fHODKRERT1VxGOZeBUseAsMB/a+Em5aYZ9OdohwPW8kECjOWcI7MHCqvobbeYXE10iJhcWYPTXQfKN1rNgUf3G51VSIiP7Z7HTyXCt8tBJ8AmPpvuORZ8A9plZf3pAMmnRRmLBAZ7I+P3ZxnPFRWY3E10mKhMeaUU/QZULqvIdDkWF2ViIjJMOCL/8JL55p9fp27w40ZMHj6jw6JPFl19Q52HGzomdE0U8dmt9uICvUHtKLJ64RGm1NOMWdBWYEZaA5ss7oqEenoqkvhf7+AT38Hjlo4YyrMzIb4/q36NrmHK6itNwj296Frp6BWfe1ToTBjEeeKpsIS9c14nZAomP4BxPY1m+peuQAKv7W6KhHpqAo2m2crbXkP7L5w7mz42WvmhnitLGe/2S/TMyYUu90zVjKBwoxlXE3AZQozXikkCq77AOL6QXkhzLkACr+xuioR6UgMA9a+DC+MNw/JDe8Kv/gURtzSatNKP+Tsl/GkKSY4gTBz/fXXU1pa6s5aOhTXxnkamfFeIV0aAk1/KD9gjtDs32J1VSLSERTlwWuXwEd3QF0V9JwAM5dD0jlufVvnHjOe1PwLJxBm5syZQ2VlpTtr6VAaR2bUM+PVgiPhuvfNbcErDpr7ORRstroqEWmvHA5Y8wI8PQJ2ZIJvIEz6C1z9jvkLlps5w0xvD1qWDScQZgzDcGcdHY5GZtqR4Ei4bgEknA0VhxoCzSarqxKR9ubwTnj1Qvj4Lqgpg+QR8KtVMPI2sLu/a6TeYfD9AS8fmQE8Ztvi9iDaeaSBembah6DOcO0CSBhkHuA2Zyrs22h1VSLSHjgc8MVz8MzIhiMJgmHyX2HGJ9ClR5uVkXe4gpo6B4F+drp29pyVTAC+J/Lk3r17HzfQHD58+JQK6ig0MtMOBXUyR2hemwZ71sKcC80pqISBFhcmIl7r0Pfwwe2Qu9L8c7cxcOG/IfK0Ni/FuZKpR3Soa680T3FCYeahhx4iIqL1l3p1RE1XMxmGoVGv9iIwAq59D16/FHZ/aQ4JX7sAug6yujIR8SaOevjiWVjyMNRVmgdETnwIhtzQJlNKR9PYL+NZU0xwgmHmyiuvJCYmxl21dCjOkZmaOgcllXVEBPtZXJG0msBw+Pm78MZlkP8FvHoxXPcedB1sdWUi4g0O5sD7t5r/fgB0T4UL/wOdUywtq+keM56mxfFOIwetK9DPh/BAM0tqRVM75Aw0ySOgutgMNLvXWl2ViHgyRz2s/Bc8O9oMMv5hcMET5nS1xUEGmi7L9uIwo9VMrU99M+1cQBhc8z9IHgnVJeaeEPlfWl2ViHiiA9vgxUmw+AFz35ge4+GWz2HIL9y2Ad6JqHcYbPfgaaYWhxmHw6EpplYWoxVN7V9AKFzzDqSMbgg00yDvC6urEhFPUV8Hyx+HZ8eYCwcCIuDCJ82R3U5JVlfnsudIJdV1Dvx97SRFBltdzo/oOAMLaWSmgwgIhWveNlch1JTC69Mg93OrqxIRq+3fCi9OgCUPQX019JpkjsYMutYjRmOa+s6DVzKBwoyldD5TB+IfAle/Dd3HmptdvX4p5K6yuioRsUJ9LWQ/Bs+Nhb0bzFWQFz9r/hsR0dXq6o7Kk/tlQGHGUjHhzpEZNQB3CP7BcNU8OC0Nasvh9ctg1wqrqxKRtlSwCZ5Ph8w/g6MWTj8PbvkCBl7lcaMxTeUUmiMznnaMgZPCjIVc00ylGpnpMPyD4aq50CPdDDRvXA47l1tdlYi4W10NZM6G/6ZBwdfmruHTXoAr34TweKurOy5n829PDzvGwElhxkKuBmCFmY7FLwiufMs85ba2wgw0O7KtrkpE3GXvV/D8OMh+FBx1cMZUczSm/+UePRrj5HAY5OxvmGbSyIz8kEZmOjC/QLjiDbPhr64S3vwZfJ9pdVUi0prqqs0dfJ9Ph/2bIbgLXPYy/Ow1CIu1uroW21NUSWVtPf4+dlI8cCUTKMxYytkAXFxZS3VdvcXVSJvzC4QrXode55r7Srx1JWxfYnVVItIa9qyD51Jh+d/BqIezLoFbv4S+07xiNKYp5xTTadEh+Pp4ZmzwzKo6iIggP/wbvjE01dRB+QbAFa9B7ykNgeYq2J5hdVUicrJqqyBjFrwwAQ58AyHR8LNX4fJXICTK6upOyncefIyBk8KMhWw2m2uqSWGmA/MNMP+xO/18c6+Jt66GnMVWVyUiJyp/jbncesU/wXBAv8vN3pgzL7K6slPSuCzbM5t/QWHGclHqmxEAX3/zN7c+F5iBZu7V8N1nVlclIi1RWwmL/ggvTYKD2yA01lyldOkLENLF6upOmSvMeGjzLyjMWC5GIzPi5Aw0Z1wI9TUw9xrY9qnVVYnIseStNg+GXPUfczRmwFVwy2roc77VlbUKwzDYvt+z95gBhRnLaUWTNOPjB5e9BGdebG6oNe9a+PZjq6sSkR+qqYCF98JLk+HQdgiLN3fwveRZCI60urpWs7e4ivKaenztNlK6hFhdzk9SmLGYRmbkR3z84NIX4axpZqB5+zr45kOrqxIRp10r4ZmRsPppwICBPzdHY3qfa3VlrS6nYVSme1QIfh66kgkUZizX2ACsIw2kCR9fmPY89L3M3GTrnRmw9X2rqxLp2KrL4JPfwSvnwZGdEN4VrnkXLn4KgjpZXZ1bbPeCfhlQmLGcdgGWn+TjC5c8B/1+1hBofgFb3rO6KpGOaUe2ORrz5X/NPw+eYY7G9JpgaVnu5tr514NXMgH4Wl1AR6eeGTkmH19zDt5mh6/nwv9uAMMwN94SEferLoXFD8Dal8w/RyTDhf+GHuOsrauNfNdwwKRGZo5h9uzZDB06lLCwMGJiYrj44ovZtm1bs+cYhsGsWbNISEggKCiItLQ0tmzZYlHFra9pz4zDYVhcjXgkuw9c/DQMuNrcSfTdG2HT/6yuSqT9+34pPD2iMcgMvRFuWdVhgoy5ksk7RmYsDTPZ2dnceuutrF69msWLF1NXV8ekSZMoLy93Pedvf/sbjz/+OE8++SRr1qwhLi6OiRMnUlpaamHlrScq1AwzdQ6Dospai6sRj2X3gYueNBsNjXqYfxN8/Y7VVYm0T1XF8MHt8NolUJwPnVJg+odw/j8gwLN/qLem/SXVlFbX4WO30T3Kc1cygcXTTAsXLmz255dffpmYmBjWrVvH2LFjMQyDJ554gvvvv59p08xh9Tlz5hAbG8ubb77JzJkzrSi7Vfn72ukc7MeRiloKS6uIDPG3uiTxVHYfuPA/5rkuG16D937ZsK/FFVZXJtJ+5CyGD38DJXvMP58zEyY8CP6e/cPcHXIappi6dQnG39ezW2w9qrri4mIAIiPNNfo7d+6koKCASZMmuZ4TEBBAamoqq1atOuprVFdXU1JS0uzD06kJWFrMboep/4ZB080g895MyHoUasqP/7Ui8tMqj8CCW+CNy8wg07k7zPgEzvtbhwwyAN95yRQTeFCYMQyDO++8k9GjR9O3b18ACgoKAIiNbX5UemxsrOvaD82ePZuIiAjXR1JSknsLbwWuJuAShRlpAbsdLngChlwPGJA1G/41EL58HupqLC5OxAtt+xSeGg5fvQHYYPit8KtV0G2U1ZVZaruXNP+CB4WZ2267ja+//pq33nrrR9dsPzgu3TCMHz3mdO+991JcXOz6yM/Pd0u9rcnVBFymMCMtZLfD+Y+bm+t17gblhfDJ3fDUULOXxuGwukIRz1dxGOb/Et66EsoKoEtPuP4zmPwI+AdbXZ3lXMuyYzUy0yK33347H3zwAZmZmSQmJroej4uLA/jRKExhYeGPRmucAgICCA8Pb/bh6TQyIyfFZoN+l8Gta8zGxNBYOLIL5t8Iz42B7xaZy7hF5Me++QieGgZfzzO3Phj5a7h5BSQPs7oyj2AYRpPTsjUyc0yGYXDbbbcxf/58li5dSvfu3Ztd7969O3FxcSxevNj1WE1NDdnZ2YwcObKty3WbaI3MyKnw9TeXjP56A6T/HwSEw/7N8Obl8PJ55kF4ImIqPwT/ux7mXWOOaEadDjcshkkPg1+Q1dV5jAOl1RRX1mK34fErmcDiMHPrrbfy+uuv8+abbxIWFkZBQQEFBQVUVlYC5vTSHXfcwSOPPMJ7773H5s2bmTFjBsHBwVx99dVWlt6qGkdmdKSBnAL/EBh7N/xmo/lbpm8g5K2Cl86FN6+E/e1nfyaRk7JlATx1Dmx+F2w+MPpOmLkMEodYXZnHcY7KpHQJIdDPx+Jqjs/SpdnPPPMMAGlpac0ef/nll5kxYwYA99xzD5WVldxyyy0cOXKEYcOGsWjRIsLCPH8Or6Vcq5k0MiOtITjS/C1z2M2Q/VfY8Dp89yl8txAGXAlp90LnFKurFGk7ZQfgk7sazzeLORMuegq6DrK2Lg/mPGDSG6aYwOIwY7RgPt9mszFr1ixmzZrl/oIs4ppmUs+MtKaIrua26yNvh6V/hq0LYONb5u7BQ2+AMXdDaLTVVYq4j2GYozCf/A4qD4Pd1xyNGXs3+AZYXZ1H+85LDph08ogG4I4uJtz8j6q0uo7KmnqLq5F2J6oX/GwO3JQJp40DRy188Sz8awBkPgJVnr8Xk8gJK90P834O795gBpnYfnDTUki/X0GmBbzlGAMnhRkPEBbgS0DD7oraOE/cpusguG4BXPc+JAyC2nJzGupfA+Dzp6BWPVvSDhgGbJxn9sZ8+5E5GpN2nxlk4gdYXZ1XMAzDdcBkTy+ZZlKY8QA2m801OlNYqh8o4manpZn/sP/sVejSy/yt9bP74D+Dzf6a+jqrKxQ5OSX74K2rzKM+qorM8PLLbEj7vbnqT1rkUHkNRRW12GwKM3KCdKSBtCmbDc68CG5ZbZ73FN4VSnbD+7fCMyPNPTi0R414C8OAr96Ep4eZze4+/uY2BTcugbi+Vlfndb5raP5Njgz2ipVMYHEDsDSKDnWOzCjMSBvy8YVB10G/y2HNC7D8H3Bwm7kHR9chMGEWdB9jdZUiP614j3kw5PaG/cgSBsHFT0PMGdbW5cW2e9FmeU4KMx7COc2kkRmxhF+Quepp0HWw6j9mD82etTDnAugxHsY/AAkDra5SxORwwK5lsOEN+OZDqKsEnwAYdx+MuM0M6XLSnMcY9PSS5l9QmPEYjSMz6pkRCwVGQPofYehNsOwxWPcyfL/E/DhrmnmtSw+rq5SO6vBOc3uBr96C4rzGx5OGwYVPQnRv62prR3Iamn97e8mybFCY8RgamRGPEhYL5/8dRtxqLt/e9A5smW9uOjboOkj9PYTHW12ldAQ15eb33YY3IHdF4+MBEdDvUhj4c3Ol3k8cPiwnLsfLlmWDwozHcB1poDAjniSyO1z6PIz6NSx5GHI+M0drNs6F4TfDqN9AUGerq5T2xjAg73MzwGxdADVlDRds0GMcDLwG+pyvs5Tc4FBZNYfKawDoEeP5ZzI5Kcx4CK1mEo8W1w+ueRtyV0HGLMj/Alb8E9a+BKN/C+fMBP9gq6sUb1e8u2Ea6U04vKPx8cjTYODVMOAqiEi0rr4OwNn8mxQZRLC/90QE76m0nXOOzBwsq6beYeBj15CpeKCUkXD9Z+Y5T0v+BIVbzXCz+llzL4+zrwUfP6urFG9SWwnffmzucbQjC2jYEsA/FM662JxGSh6uaaQ2klPofVNMoDDjMbqE+GOzgcOAw+U1rnAj4nFsNjh9CvSaZPbSZP4FivLgo9+aK6HS/whnXgJ2bWMlP8EwYM86+OoN2PQuVBc3Xus2xhyFOeNCCPCeBtT2wtsOmHRSmPEQvj52uoT4c7CshsLSKoUZ8Xx2H/MU7rMugXWvQPbfzKmB/10PcU/AhAfNZd36jVqcSgvg63lmL8zBbY2PRyTDwKvMaaTI7tbVJ66RGW/Z+ddJYcaDRIcFcrCsRn0z4l18A2DYTPO36dXPwMp/Q8HX8Pql5m/ZE2ZB4hCrqxSr1NWYu/JueAO2Z4DRcJiubxCceaHZzNttjEbyPIQzzPSO1TSTnKTosAC+2acVTeKlAsIg9R4YcgOseBy+/C/sWg4vjIc+F5jby8f0sbpKaSv7NpqNvF+/bZ7/5ZR4Dpx9jTmiFxhhXX3yI0UVjb9M99DIjJysmDDtNSPtQEgXOPcvMOxmyH7U/IH27Uew7RMYcDWk/QE6JVldpbhD+UGzj2rDG7B/U+PjYfHmlOTAayCql3X1yTE5R2W6dgoiNMC74oF3VdvOKcxIu9IpCS56Ckb+2lz59O1H8NXrsOltc4fhMXeZwUe8W32deS7Shtfhu8/AUWs+7uMPp58HZ/8cThunIwa8QOMxBt41KgMKMx6lceM8HWkg7Uj06XDlG7B7rbmMe9dyWP0UrH/VPA9qxC3mFJV4l8JvzNVIG+dBeWHj4/EDzQDT91IIjrSsPDlx3niMgZPCjAfRxnnSriUOgekfwvdLzVBT8DVkPWL21oz9HQz5hdlMLJ6r8ghsftecRtq7vvHx4KiGaaSrIfYs6+qTU+KNxxg4Kcx4EB1pIO2ezQY9x5vTDlsXwNI/w+HvYeHvzdGacfdDv8vNZd/iGRz1sCPTDDDffgz1Df8+2X2h17lmM2+vSdossR1wjsz01MiMnAr1zEiHYbdD32lwxlSz1yL7r+bGe+/NhJX/gvEPQO/J2qPGSge3w8Y3zXO4SvY0Ph5zlhlg+v0MQqOtq09aVXFlLftLzJ896pmRU+Icmamoqaesus7ruslFTpiPnzm91P8Kc7ppxePmEQlvXQlJw8w9alJGWl1lx1FdClveM0dh8lc3Ph7YCfr/zJxGih+okNkOOc9kio8IJDzQ+0bZ9NPSg4QE+BLi70N5TT0HSqsVZqTj8A+G0XfA4OnmpnurnzEPs3y54diE8Q+Yh11K63M4IHeFGWC++QBqK8zHbXZzB+ezrzFXJamfqV1zHmPgjaMyoDDjcaLDAig/VEFhSRXdo7zn+HWRVhHU2TwG4ZxfwrK/wbo5kLMIchZDv8tg3H3mCcpy6o7kNp5QXZTb+HiXXmaA6X8lhMdbV5+0KW89YNJJYcbDxIQFsutQBQfK1DcjHVh4PFzwTxhxm3mQ5eZ3zc3YtrwHg2fA2HsgLNbqKr1PTYU5+rLhdXOJvFNAuNnDNPAaSByqaaQOqPEYA43MSCtwrWgqUZgRoUsPuOwlGPUbc+O97Rmw5gVzNGH4r8zHtSX+sRmGOWW34XXYsgBqShsu2KD7WHNPmD4XmFN90mFtd56WrTAjrcEZZjQyI9JE/AD4+buwczkseQh2r4Hl/4C1L5lLuYM6g18w+Ic0/q/r82DwD2383C8EfP2t/hu5X/Ee+HquGfwObW98vHM3cwRmwJXQKdmy8sRzlFbVsrfY3Ky1Z7SmmaQVaGRG5Bi6j4EbFpvnPC35Exz41lwFdaLsfo3Bxt8Zgho+92sIP0f9PKR5YDraY1bukVNbBds+Npt5d2SC4TAf9wuBsy42VyMlj9QJ1dKMcyVTTFgAEcHet5IJFGY8ToyONBA5NpsN+pxv7kOz5T3zdObaCrMfpKas8fPacqgpb/65o858DUctVBWbH63NN/A4wccZokJ+EKhCf3okyT8E/IKO3stiGOZuvBvegM3/a/53Sh5pNvOeeZGOjJCf1Ngv473fIwozHiYmXEcaiLSI3cdc4dTvspZ/TV1NQ7CpMMON8/PahiDk+rwh/Dg/P9pjP/wco+E9qsyPysOt/Be2HSUQBUNlERzKaXxaeCIMvAoGXGX2HIkch3NkxluXZYPCjMeJDtUuwCJu4+tvfgR1bt3XNQwzwPzUiJAr+LRg9Mj1eUNQqqt0von5eG05lP/w7xVoNvGefQ10T9VxEHJCvvPy5l9QmPE4MeFmmDlcUUNtvQM/H81ti3g8m82cBvILArq07ms7HGb4+anRIwzoNgaCOrXu+0qH4c0HTDopzHiYyGB/fOw26h0Gh8pqiIsItLokEbGS3Q4BoeYHMVZXI+1MeXUde4rM0b9eXjzNpF/7PYzdbiMq1Fw2qqkmERFxJ2e/TFRoAJ1DvHfLAoUZDxStFU0iItIGGo8x8N5RGVCY8UgxYVrRJCIi7pdT6P3Nv6Aw45GcK5oKFWZERMSNtjubf714jxlQmPFIzhVNGpkRERF3+s45MqNpJmlt6pkRERF3q6ipY/cR71/JBAozHsl5pIFGZkRExF12HCjHMCAyxJ8uDe0N3kphxgM1jswozIiIiHvktJMpJlCY8UjO1UyFpdUYhmFxNSIi0h5952r+VZgRN3COzNTUOSipqrO4GhERaY/awzEGTgozHijQz4ewQPOkiQNqAhYRETfY3k72mAGLw8yyZcuYOnUqCQkJ2Gw2FixY0Oz6jBkzsNlszT6GDx9uTbFtLEZ9MyIi4iZVtfXkHa4ANDJzysrLyxkwYABPPvnkTz5n8uTJ7Nu3z/XxySeftGGF1onWiiYREXGT7w+U4TCgU7Cf6zxAb2bpqdlTpkxhypQpx3xOQEAAcXFxLX7N6upqqqsbA0BJSclJ12clHWkgIiLusr3JmUw2m83iak6dx/fMZGVlERMTQ+/evbnpppsoLCw85vNnz55NRESE6yMpKamNKm1dWp4tIiLuktNOjjFw8ugwM2XKFN544w2WLl3KP/7xD9asWUN6enqzkZcfuvfeeykuLnZ95Ofnt2HFrUcb54mIiLu0pz1mwOJppuO54oorXJ/37duXIUOGkJKSwscff8y0adOO+jUBAQEEBHj3ToagIw1ERMR92tOybPDwkZkfio+PJyUlhZycHKtLcTv1zIiIiDtU19Wz61A50D6WZYOXhZlDhw6Rn59PfHy81aW4nXpmRETEHXYeLMdhQHigr6ulwdtZOs1UVlbG9u3bXX/euXMnX331FZGRkURGRjJr1iwuvfRS4uPj2bVrF/fddx9RUVFccsklFlbdNpzfYEUVtVTX1RPg62NxRSIi0h5816T5tz2sZAKLw8zatWsZN26c68933nknANOnT+eZZ55h06ZNvPrqqxQVFREfH8+4ceOYN28eYWHtY47vWDoF++HnY6O23uBgWQ1dOwVZXZKIiLQD2/e3r+ZfsDjMpKWlHfMgxc8++6wNq/EsNpuN6NAA9hZXUVhSpTAjIiKtIqdhj5me7SjMeFXPTEejXYBFRKS1OcNM73ayxwwozHi06IYVTWoCFhGR1lBT52DXwfa1kgkUZjxaTLhGZkREpPXsOlROncMgNMCXuPBAq8tpNQozHiw6VMuzRUSk9Tg3y+vZTs5kclKY8WAamRERkdbkPMagdzuaYgKFGY/mHJk5oCMNRESkFbS3YwycFGY8WEy4jjQQEZHW4xyZ6amRGWkrrqXZZdXH3I9HRETkeGrrHexsWMnUnpZlg8KMR4sK9Qegtt6gqKLW4mpERMSb5R6qoLbeIMTfh4SI9rOSCRRmPFqArw+dgv0ArWgSEZFTk9NwjEF7W8kECjMeL0a7AIuISCtoPMagfU0xgcKMx3P2zRRqRZOIiJyCxmMM2lfzLyjMeLwYHWkgIiKtwDnN1J6OMXBSmPFwOmxSREROVV29gx0HGs5k0jSTtLWYMB1pICIipybvcAU19Q6C/Hzo2inI6nJancKMh2scmVHPjIiInJzG5t9Q7Pb2tZIJFGY8XrRGZkRE5BS5+mVi2l+/DCjMeDxnA7B6ZkRE5GS5RmbaYfMvKMx4POfITGlVHVW19RZXIyIi3qi9HjDppDDj4cIDfQnwNf9v0uiMiIicqHqHwfcH2u8eM6Aw4/FsNps2zhMRkZOWf7iC6joHAb52EjsHW12OWyjMeAEdaSAiIifL2S/TIzoUn3a4kgkUZryCVjSJiMjJyilsvzv/OinMeAGtaBIRkZO1fb+zX6Z9Nv+CwoxXcI3MlCjMiIjIifmuYWSmZzvdYwYUZrxCjBqARUTkJDgcBtsLncuyFWbEQq4jDco0MiMiIi23p6iSqloH/r52kiPb50omUJjxCs6eGU0ziYjIiXA2/54WFYKvT/v9kd9+/2btSEy4OTJzqLyGeodhcTUiIuItvnPu/NuOm39BYcYrdAnxx2Yzd3E8XF5jdTkiIuIlGo8xaL/9MqAw4xV8fex0CfEHtDxbRERabnvDNFN7PcbASWHGS0SFakWTiIi0nGEYjadlt9MDJp0UZrxETLg2zhMRkZbbU1RJRU09fj42Urq035VMoDDjNaJDdaSBiIi0nHNUpntUCH7teCUTKMx4DeeKJo3MiIhIS2zvICuZQGHGazhHZhRmRESkJb7b33DAZDtfyQQKM15DIzMiInIiclzHGGhkRjxEtFYziYhICxlGkzOZ2vmybFCY8RpazSQiIi1VUFJFWXUdvnYb3bqEWF2O2ynMeAnnYZPlNfWUV9dZXI2IiHgy5zEG3aJC8Pdt/z/q2//fsJ0IDfAl2N8H0PJsERE5tpwO1PwLCjNeJSZMTcAiInJ8jf0y7b/5FxRmvIpzqklNwCIiciyNK5k0MuN2y5YtY+rUqSQkJGCz2ViwYEGz64ZhMGvWLBISEggKCiItLY0tW7ZYU6wHiAlTE7CIiBybYRiNe8x0gJVMYHGYKS8vZ8CAATz55JNHvf63v/2Nxx9/nCeffJI1a9YQFxfHxIkTKS0tbeNKPUPjyIzCjIiIHF1haTWlVXX42G10j2r/K5kAfK188ylTpjBlypSjXjMMgyeeeIL777+fadOmATBnzhxiY2N58803mTlz5lG/rrq6murqxh/2JSUlrV+4RaLVMyMiIseR07CSKaVLMAG+PhZX0zY8tmdm586dFBQUMGnSJNdjAQEBpKamsmrVqp/8utmzZxMREeH6SEpKaoty24RGZkRE5HhyCjvWSibw4DBTUFAAQGxsbLPHY2NjXdeO5t5776W4uNj1kZ+f79Y625JWM4mIyPE495jpCMcYOFk6zdQSNput2Z8Nw/jRY00FBAQQEBDg7rIs0TjNpNVMIiJydNsLO1bzL3jwyExcXBzAj0ZhCgsLfzRa01E4VzMdKq+hrt5hcTUiIuJpzJVMHW9kxmPDTPfu3YmLi2Px4sWux2pqasjOzmbkyJEWVmadyBB/7DYwDDPQiIiINHWwrIbiylrsNjgtumOsZAKLp5nKysrYvn276887d+7kq6++IjIykuTkZO644w4eeeQRevXqRa9evXjkkUcIDg7m6quvtrBq6/jYbUSFBlBYWs2B0mpiGw6fFBERgcZjDJIjgwn06xgrmcDiMLN27VrGjRvn+vOdd94JwPTp03nllVe45557qKys5JZbbuHIkSMMGzaMRYsWERbWcYbOfig6zAwz5i7AEVaXIyIiHsS582/PDjTFBBaHmbS0NAzD+MnrNpuNWbNmMWvWrLYrysPFhAWwBSgs0YomERFpzrksu3cHav4FD+6ZkaPTxnkiIvJTXM2/CjPiyZwrmrRxnoiI/JDrtOwONs2kMONlYsI1MiMiIj92qKyaw+U12GzQI1ojM+LBokOdRxpo4zwREWnkbP5N6hxMkH/HWckECjNexzUyU6aRGRERaeRclt2RzmRyUpjxMtGhDT0zJdXHXAkmIiIdi2tZdgdr/gWFGa/jXM1UXeegtLrO4mpERMRT5DSsZOrdwZp/QWHG6wT5+xAWYG4PpL1mRETEyTky09GWZYPCjFeK1oomERFp4kh5DQcbeik72komUJjxSlrRJCIiTTlHZbp2CiIkwNLN/S2hMOOFYhoOmNTIjIiIQMc9xsBJYcYLOUdmFGZERAQam397xXa85l9QmPFKzr1mdKSBiIhA48hMzw64xwwozHgljcyIiEhTrpEZhRnxFo0jM2oAFhHp6Ioral0j9ZpmEq/hPDlbIzMiIuKcYkqICCS0A65kAoUZr+TcBfhIRS01dQ6LqxERESs1HmPQMUdlQGHGK3UK8sPPxwbg2iRJREQ6po7eLwMKM17JbrcRFaoVTSIioj1mQGHGa8WEaUWTiIg0jsz07IAHTDopzHgpZ9+MVjSJiHRcJVW1FJSYPwc66h4zoDDjtaK1oklEpMPb3tD8GxseQESQn8XVWEdhxks1jswozIiIdFTbG6aYenfglUwAHXNBejvg7JnJP1zB7iMVFlcjIiJW+Gp3EdCxp5hAYcZrOUdmluccZPRfMy2uRkRErNSrAzf/gsKM1zqnWySnRYew50il1aWIiIiFYsIDGNcn2uoyLKUw46U6h/iz9K40q8sQERGxnBqARURExKspzIiIiIhXU5gRERERr6YwIyIiIl5NYUZERES8msKMiIiIeDWFGREREfFqCjMiIiLi1RRmRERExKspzIiIiIhXU5gRERERr6YwIyIiIl5NYUZERES8msKMiIiIeDVfqwtwN8MwACgpKbG4EhEREWkp589t58/xY2n3Yaa0tBSApKQkiysRERGRE1VaWkpERMQxn2MzWhJ5vJjD4WDv3r2EhYVhs9la9bVLSkpISkoiPz+f8PDwVn3tjkD379TpHp4a3b9Tp3t4anT/fpphGJSWlpKQkIDdfuyumHY/MmO320lMTHTre4SHh+ub8BTo/p063cNTo/t36nQPT43u39Edb0TGSQ3AIiIi4tUUZkRERMSrKcycgoCAAB588EECAgKsLsUr6f6dOt3DU6P7d+p0D0+N7l/raPcNwCIiItK+aWRGREREvJrCjIiIiHg1hRkRERHxagozIiIi4tUUZk7S008/Tffu3QkMDGTw4MEsX77c6pI80qxZs7DZbM0+4uLiXNcNw2DWrFkkJCQQFBREWloaW7ZssbBi6y1btoypU6eSkJCAzWZjwYIFza635J5VV1dz++23ExUVRUhICBdeeCG7d+9uw7+FdY53/2bMmPGj78nhw4c3e05Hvn+zZ89m6NChhIWFERMTw8UXX8y2bduaPUffg8fWknuo78PWpTBzEubNm8cdd9zB/fffz4YNGxgzZgxTpkwhLy/P6tI80llnncW+fftcH5s2bXJd+9vf/sbjjz/Ok08+yZo1a4iLi2PixImuM7U6ovLycgYMGMCTTz551OstuWd33HEH7733HnPnzmXFihWUlZVxwQUXUF9f31Z/Dcsc7/4BTJ48udn35CeffNLseke+f9nZ2dx6662sXr2axYsXU1dXx6RJkygvL3c9R9+Dx9aSewj6PmxVhpywc845x7j55pubPdanTx/jD3/4g0UVea4HH3zQGDBgwFGvORwOIy4uznj00Uddj1VVVRkRERHGs88+20YVejbAeO+991x/bsk9KyoqMvz8/Iy5c+e6nrNnzx7DbrcbCxcubLPaPcEP759hGMb06dONiy666Ce/RvevucLCQgMwsrOzDcPQ9+DJ+OE9NAx9H7Y2jcycoJqaGtatW8ekSZOaPT5p0iRWrVplUVWeLScnh4SEBLp3786VV17Jjh07ANi5cycFBQXN7mVAQACpqam6lz+hJfds3bp11NbWNntOQkICffv21X1tkJWVRUxMDL179+amm26isLDQdU33r7ni4mIAIiMjAX0Pnowf3kMnfR+2HoWZE3Tw4EHq6+uJjY1t9nhsbCwFBQUWVeW5hg0bxquvvspnn33G888/T0FBASNHjuTQoUOu+6V72XItuWcFBQX4+/vTuXPnn3xORzZlyhTeeOMNli5dyj/+8Q/WrFlDeno61dXVgO5fU4ZhcOeddzJ69Gj69u0L6HvwRB3tHoK+D1tbuz81211sNluzPxuG8aPHxPwP1qlfv36MGDGCHj16MGfOHFezm+7liTuZe6b7arriiitcn/ft25chQ4aQkpLCxx9/zLRp037y6zri/bvtttv4+uuvWbFixY+u6XuwZX7qHur7sHVpZOYERUVF4ePj86NkXFhY+KPfVOTHQkJC6NevHzk5Oa5VTbqXLdeSexYXF0dNTQ1Hjhz5yedIo/j4eFJSUsjJyQF0/5xuv/12PvjgAzIzM0lMTHQ9ru/Blvupe3g0+j48NQozJ8jf35/BgwezePHiZo8vXryYkSNHWlSV96iuruabb74hPj6e7t27ExcX1+xe1tTUkJ2drXv5E1pyzwYPHoyfn1+z5+zbt4/Nmzfrvh7FoUOHyM/PJz4+HtD9MwyD2267jfnz57N06VK6d+/e7Lq+B4/vePfwaPR9eIqs6Tv2bnPnzjX8/PyMF1980di6datxxx13GCEhIcauXbusLs3j3HXXXUZWVpaxY8cOY/Xq1cYFF1xghIWFue7Vo48+akRERBjz5883Nm3aZFx11VVGfHy8UVJSYnHl1iktLTU2bNhgbNiwwQCMxx9/3NiwYYORm5trGEbL7tnNN99sJCYmGhkZGcb69euN9PR0Y8CAAUZdXZ1Vf602c6z7V1paatx1113GqlWrjJ07dxqZmZnGiBEjjK5du+r+NfjVr35lREREGFlZWca+fftcHxUVFa7n6Hvw2I53D/V92PoUZk7SU089ZaSkpBj+/v7GoEGDmi25k0ZXXHGFER8fb/j5+RkJCQnGtGnTjC1btriuOxwO48EHHzTi4uKMgIAAY+zYscamTZssrNh6mZmZBvCjj+nTpxuG0bJ7VllZadx2221GZGSkERQUZFxwwQVGXl6eBX+btnes+1dRUWFMmjTJiI6ONvz8/Izk5GRj+vTpP7o3Hfn+He3eAcbLL7/seo6+B4/tePdQ34etz2YYhtF240AiIiIirUs9MyIiIuLVFGZERETEqynMiIiIiFdTmBERERGvpjAjIiIiXk1hRkRERLyawoyIiIh4NYUZERER8WoKMyIiIuLVFGZERETEqynMiIiIiFdTmBERr3LgwAHi4uJ45JFHXI998cUX+Pv7s2jRIgsrExGr6KBJEfE6n3zyCRdffDGrVq2iT58+nH322Zx//vk88cQTVpcmIhZQmBERr3TrrbeSkZHB0KFD2bhxI2vWrCEwMNDqskTEAgozIuKVKisr6du3L/n5+axdu5b+/ftbXZKIWEQ9MyLilXbs2MHevXtxOBzk5uZaXY6IWEgjMyLidWpqajjnnHMYOHAgffr04fHHH2fTpk3ExsZaXZqIWEBhRkS8zu9+9zv+97//sXHjRkJDQxk3bhxhYWF89NFHVpcmIhbQNJOIeJWsrCyeeOIJXnvtNcLDw7Hb7bz22musWLGCZ555xuryRMQCGpkRERERr6aRGREREfFqCjMiIiLi1RRmRERExKspzIiIiIhXU5gRERERr6YwIyIiIl5NYUZERES8msKMiIiIeDWFGREREfFqCjMiIiLi1RRmRERExKv9PzGCerK04ACaAAAAAElFTkSuQmCC", - "text/plain": [ - "<Figure size 640x480 with 1 Axes>" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ - "plt.plot(x, T[0,:])\n", - "plt.plot(x, T[30,:])\n", - "plt.plot(x, T[199,:])\n", - "plt.xlabel('x')\n", - "plt.ylabel('T')\n", - "plt.show()" + "# plt.plot(x, T[YOUR_CODE_HERE,:])\n", + "# plt.plot(x, T[YOUR_CODE_HERE,:])\n", + "# plt.plot(x, T[YOUR_CODE_HERE,:])\n", + "# plt.xlabel('x')\n", + "# plt.ylabel('T')\n", + "# plt.show()" ] }, { @@ -862,7 +944,7 @@ "id": "17e7be50-79a7-4699-b0d8-908a58ce36d7", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Task 3.9:</b> \n", "\n", @@ -873,12 +955,20 @@ "</div>" ] }, + { + "cell_type": "markdown", + "id": "8db518cd", + "metadata": {}, + "source": [ + "Your answer here." + ] + }, { "cell_type": "markdown", "id": "fb6cc514-2b49-43df-bd26-35ade685e4db", "metadata": {}, "source": [ - "<div style=\"background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Solution</b> \n", "\n", @@ -893,7 +983,7 @@ "id": "9fcbb39f", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Task 4</b>\n", "\n", @@ -913,13 +1003,13 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 8, "id": "05534522", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABhWUlEQVR4nO3dd3hUZfrG8e+kTXogpEPoRBAQFQFBUaSjAopiARUs2N11dYtlV3F3FX/uyrquu1hX0QUpggqo9KYiihQpUkKvISSE9D7n98dhJkRaIJk5M5P7c11zMZmZzDwchuSe9zzv+9oMwzAQERER8VEBVhcgIiIiUhsKMyIiIuLTFGZERETEpynMiIiIiE9TmBERERGfpjAjIiIiPk1hRkRERHxakNUFuJvD4eDgwYNERUVhs9msLkdERERqwDAM8vPzSUlJISDgzGMvfh9mDh48SGpqqtVliIiIyHnYt28fTZo0OeNj/D7MREVFAebBiI6OtrgaERERqYm8vDxSU1Ndv8fPxO/DjPPUUnR0tMKMiIiIj6lJi4gagEVERMSnKcyIiIiIT1OYEREREZ+mMCMiIiI+TWFGREREfJrCjIiIiPg0hRkRERHxaQozIiIi4tMUZkRERMSnKcyIiIiIT1OYEREREZ+mMCMiIiI+TWHmPOWWFLLwm3+TkZ1jdSkiIiL1msLMeXr3f6P5zY43Gf35QGamz6SkosTqkkREROolhZnzlB2VQKjDwYHAIp5f8Tx9P+nLa6tf41DBIatLExERqVdshmEYVhfhTnl5ecTExJCbm0t0dHSdPe9XGw5xcPoDBDVYw8cNGnAg0AZAoC2Q3k17M6LtCDondsZms9XZa4qIiNQX5/L7WyMz5yk+ys6rZaPonR/JF3v38c/QNnRL6kalUcmCPQu4e97dDJ89nE/TP9UpKBERETdSmDlPCVGhFBHKkxUPE2ALpPfmRbybMpCZQ2Zyc9rNhAaGsjVnK8+teI5+n/TjtdWvkVGYYXXZIiIifkenmc5TcVkl7Z6bC8DWPmuxf/s3CI2Bh1ZATBNyS3P5NP1TPt7yMQcLDwJVp6BGthvJpQmX6hSUiIjIaeg0kweEhQQSZQ8CYF+HR6BxZyjJhc8eAoeDGHsMozuM5sthX/LaNa/RNamr6xTU6LmjuWXOLToFJSIiUgcUZmohPtoOwJEiBwx7B4LDYddy+H6C6zGBAYH0adqH9wa8x4whM1ynoLYc3eI6BfXPNf/UKSgREZHzpDBTC/GRZpjJzC+BRq1gwIvmHQtfgMM/n/T4tIZpPN/9eRYOX8gTnZ8gOSKZY6XHeHfDuwycMZAnlz7J6sOr8fMzfyIiInVKYaYWEqJDATiSX2re0PluSBsIlaUwcwxUlJ7y+2LsMdzd4W7zFFSvqlNQ8/fMr3YKqrTy1N8vIiIiVRRmasE5MuMKMzYbDPkXhMfB4Y2w+C9n/P6ggCD6NKs6BXVTm5uqn4KarlNQIiIiZ6MwUwsJ0b8IMwCRCWagAVjxBuz6ukbPldYwjbE9xrLg5gX8pvNvSI5IJqc0p9opqDWH1+gUlIiIyC8ozNRCVc/ML04Htb0WLr0LMODTB6H4WI2fs0FoA+7pcI/rFFSXpC6uU1Cj5o7i1jm36hSUiIjICRRmauGUIzNOA8ZBwxaQtx++/N05P7fzFNR/B/yXTwZ/wk1tbsIeaGfz0c2uU1Cvr3ldp6BERKTeU5iphfioE2Yz/ZI90pyubQuEDdNg44zzfp0LYi9gbI+xLLx5YbVTUO9seIeBMwbymyW/YeWhlToFJSIi9ZLCTC0kRJmzmXKKyimrcJz8gNQucNVvzetzfgO5B2r1eieegvpHr39wWeJlVBqVLNy7kDHzxzD086FM2jyJgrKCWr2OiIiIL9F2BrXgcBik/fErKhwGK57qTUqDsJMfVFkO7/WHg2ugxdVw52cQUHcZMj0nnalbpzJ7x2yKKooACAsKY3DLwdzW9jbaNGxTZ68lIiLiKdrOwEMCAmyuU02n7JsBCAw+YXXgZfD9m3VaQ5uGbfjj5X9k0fBFPNPtGVrGtKS4ophp26YxbNYwRs8dzdzdcyl3lNfp64qIiHgLhZlaSog6zYymE8W1hv5/Na8vHHvK1YFrKzIkktvb3s5nQz/jvf7v0a9ZPwJtgaw+vJrfLfsdAz4ZwH/W/YfMosw6f20RERErKczU0hmbgE902T3QZsDx1YHvP+3qwLVls9nomtyV8b3GM/emuTzY6UHiwuI4UnyECT9NoP8n/Xli6ROsylilhmEREfELCjO1FB/1iy0NTse1OnAjOLwBlrzo9tqSIpJ45OJHmH/TfP521d+4NOFS187d98y7h2GzhjFlyxQKywvdXouIiIi7KMzUUnxNTjM5RSVWrQ787euw+xs3VlYlODCYgS0GMnHQRD4Z/AnD04YTFhTG9mPbefH7F+kzvQ8vrnyRHcd2eKQeERGRuqQwU0sJZ2sA/qW218Eld+JaHbgk133FncIFsRfwXPfnWDR8EU91fYrm0c0pLC9kytYp3PD5Ddw7714W7FlAhaPCo3WJiIicL4WZWjqnkRmngeOgYXPI3Qdf/t49hZ1FVEgUI9uNZNYNs3i739v0Tu1NgC2AHzJ+4ImlTzBgxgDe/OlNsoqzLKlPRESkphRmask5MpN1LmHGHnV8deAAWD8FNs50U3VnZ7PZ6J7SnX/2/ifzbprHmI5jiA2NJbMok3+v+zf9pvfjd8t+x+rDq9UwLCIiXklhppZOXGfmnH7Zp3aFnk+a1+f8BvIOuqG6c5MUkcSvLv0VC25ewMs9X+bi+IupMCqYu3suo+eO5ubZNzNt6zSKyousLlVERMRFKwDXUmlFJRf8cS4A657rR4PwkJp/c2U5vNcPDq6Flr3gjk/rdHXgurDl6BambJnCFzu/oKTSnH4eGRzJ0NZDufWCW2kR08LiCkVExB9pBWAPsgcFEhMWDJxj3wxUrQ4cFAY7l8IPb9V9gbXUNratucnl8IX87rLf0TSqKQXlBUzaPIkhnw3hvvn3MX/3fK0wLCIillGYqQPnPKPpRHFtoP9fzOsLnofMzXVYWd2JscdwV/u7mH3jbN7s+ya9UnsRYAvg+0Pf8+SyJ+k3vR+vr3mdAwW120xTRETkXCnM1IEarwJ8Ol3ug9b9jq8OPAYqyuqwuroVYAvgisZX8K/e/+KrYV8xpuMY4sLiyC7J5p0N7zBoxiAeWvgQi/cu1vRuERHxCEvDzIQJE7jooouIjo4mOjqa7t2789VXX7nuHz16NDabrdrl8ssvt7DiU6vVyAyYqwMP/be5OnCGZ1YHrgspkSn86tJfMf/m+YzvNZ7uyd0xMPjmwDf8esmvGTDD3A8qozDD6lJFRMSPWRpmmjRpwssvv8yPP/7Ijz/+SO/evRk6dCibNm1yPWbgwIEcOnTIdfnyyy8trPjUEqLNLQ0y82qx31JUIgx+3bz+7T9h97d1UJlnBAcE069ZP97u/zZf3PgFd3e4m4b2hmQWZTLhpwkMmDGAxxY/xtf7v6bSUWl1uSIiUpe8YB6RpWFm8ODBXHvttaSlpZGWlsaLL75IZGQkK1eudD3GbreTlJTkusTGxp7xOUtLS8nLy6t2cbf4yPNYOO9U2l0Pl9yBVasD14Wm0U15ovMTLBy+kFeueoXLEi/DYThYum8pDy96mGtnXss769/RYnwiIn7gxy0zuO+Dy9iyY56ldXhNz0xlZSVTpkyhsLCQ7t27u25funQpCQkJpKWlMWbMGDIzM8/4POPGjSMmJsZ1SU1NdXfpJETX8jTTiQa+fHx14L3w1R9q/3wWCQkMYVCLQbw/8H0+v+Fz7rzwTqJDojlYeJDX175Ov+n9eGLpE3x38DschsPqckVEpIYMw+D7Q99z91ejuPv7sXwfUMbbK/5iaU2WrzOzYcMGunfvTklJCZGRkUyePJlrr70WgKlTpxIZGUmzZs3YtWsXf/rTn6ioqGD16tXY7fZTPl9paSmlpVWhIi8vj9TUVLetMwOwYnsWI979nlbxESx6slftn3Dv9/D+QDAcMHwitL+h9s/pBUoqSpi/Zz7Tt05n3ZF1rttTo1IZnjacoa2HEht65pE3ERGxhmEYfHfoO9766S3WZK4BIMgwGFZcwb3DppGSeFGdvt65rDNjeZgpKytj7969HDt2jBkzZvDuu++ybNkyLrzwwpMee+jQIZo1a8aUKVMYNmxYjZ7f3YvmAWzPzKfv+OVEhwaxfuyAunnSRX+Br/8OYQ3hoe8gOrluntdLbMvZxvSt05mzcw4F5QWA2XvTt1lfhqcN57LEy7DZbBZXKSIihmFO7Hhz/ZusP7IegGBbEDfl5nDvsTyShn9kbqJcx3wqzPxS3759adWqFW+9deoF5Nq0acN9993HH/5Qs1MwnggzuUXldPrzfAC2/GUgocGBtX/SynJ4ty8cWgetesPIGV63OnBdKCovYu7uuUzbOo1N2VWN3y1iWjA8bThDWg0hxh5jYYUiIvWTYRgs27+MN3960/Xz2R5oZ3jLwYz+YSqJxw7ApaNgyOtueX2fXgHYMIxqp4lOlJ2dzb59+0hO9q5RiuiwIEKCzENZJ30zUH114B2LYdU7dfO8XiY8OJxhbYYx5fopTL1+Kjen3UxYUBi7cnfxyqpX6DO9D89+8yzrMtdpo0sREQ9wGA4W7VnErXNu5bHFj7EpexNhQWGMunAUc2+ayx8O7jWDTGxLGPCS1eUCFo/MPPPMMwwaNIjU1FTy8/OZMmUKL7/8MnPnzqV79+6MHTuWm266ieTkZHbv3s0zzzzD3r172bx5M1FRUTV6DU+MzABc8fJiDhwrZsZDPejcrGHdPfEP78CXv4WgULh/GSS0rbvn9lIFZQV8uetLpm2dxtacra7b2zRsw/C04Vzf8nqiQmr27y8iIjXjMBws3LOQt9a/xbacbQCEBYVxe9vbuevCu2gU1gjWT4eZ94EtEO6dD00uc1s95/L7O8htVdTA4cOHufPOOzl06BAxMTFcdNFFzJ07l379+lFcXMyGDRv48MMPOXbsGMnJyVxzzTVMnTq1xkHGkxKi7Rw4Vlx3IzNOXe6DbXNh+0JzdeD7FkHQOWxm6YMiQyK55YJbGJ42nPVZ65m+dTrzds8jPSedl75/iX+s/geDWgzilrRbaB/X3upyRUR8WqWjkvl75vPWT2+xI3cHABHBEYxoO4I7L7yThqHHP6Af2wtfPGlev/oPbg0y58rrembqmqdGZu7/8Efm/3yYvwxtz53dm9ftk+dnwH+6Q/FRuPIJ6Pt83T6/D8gtzWXOzjlM3zrd9Z8NoF1sO4a2HsqgFoM0E0pE5BxUOCr4atdXvL3+bXbn7QYgKjiKkReO5I52d1TvV3RUwsQhsOcbaNIF7p4Lge4dD/GZkRl/UqdrzfxSVBIM/idMuxO++Qe06QfNetT963ixGHsMI9uNZETbEazJXMP0bdOZv3s+m49uZvMPm/n7qr9zZZMrGdJqCFc3uZqQQP8evRIROV/ljnK+2PkF76x/h735ewGIDonmzgvvZES7EUSHnCI4rPiXGWSCI2DY224PMufKu6rxYfGRx7c0cEeYAbhwCFw8EtZNgpkPwEPfQqj7Rpq8lc1mo3NiZzonduYPXf7Al7u+ZPaO2WzK3sTSfUtZum8p0SHRDGw+kCGth3BR3EWa4i0iApRXljN752zeWf8O+wv2A9DA3oBR7Udx2wW3ERkSeepvPPQTLP6reX3Q/5mNv15GYaaOuHVkxmngy7D7a/O85Vd/gBsnuO+1fEDD0IaMbDeSke1GsuPYDmbtmMWcnXPILMpk2rZpTNs2jWbRzRjccjDXt7qexpGNrS5ZRMTjyirL+Gz7Z7y34T0OFh4EIDY0ltHtR3PrBbcSHhx++m8uL4YZY8BRDm2dW+54H/XM1JFFmw9z78Qf6dg4htmPXem212HPd/DBtebqwLd8CBcOdd9r+aBKRyU/ZPzA7B2zWbh3IcUVxa77uiR1YXDLwfRr1u/0n0BERPxEaWUpM9Nn8t6G9zhcdBiARqGNuLvD3QxPG37mEOP05e/gh7chMgkeWgERjdxcdRWfXjSvrnkqzKzff4whb3xLYrSd75/p67bXAWDRn+HrV/12deC6UlRexII9C5i9YzY/ZPyAgflWDw0MpXfT3gxtNZRuyd0IDKiDRQ5FRLxESUUJn2z7hP9u/C9Hio8AkBCWwD0d7+GmNjcRGhRasydKXwCTbjav3zEDWrv5d9svKMycwFNhJiO3hMvHLSIwwEb6XwcREODGPo2KMnivr3kes2UvuGMm6BfyGR0qOMScnXOYtWOWq2sfzP/g17W8jsGtBtOmYRvrChQRqaWi8iKmb5vO+xvfJ7skG4DE8ETu63gfN7a5EXvgqfc0PKXCLJjQAwoOQ7cHzV4ZD1OYOYGnwkx5pYO0P36FYcCPf+xLXOQ5vGnOx5Gt8HYvKC+CXk9Dr6fc+3p+wjAMNmZtZNaOWXy1+ytyS3Nd97WLbceQVkMY1GKQuTiUiIgPKCovYsrWKUzcNJGjJUcBSIlI4b6L7mNoq6HnPrvTMGDqHbBlDsS3hfuXQnBY3Rd+FgozJ/BUmAHo/JcFZBeW8dWve9Iu2QMzjX6aAp8+ANiODwH2cf9r+pHyynKW71/OrB2zWH5gORWOCgACbYFc2fj4NO/Uq8/t04yIiIdkFWcxbes0Pt7yMcdKjwHQJLIJ9190P9e3up7ggODze+I1H8KsxyAgGMYshuS63Q27prTOjEXio+xkF5aRmV9KO0+0sXS6DfauhNXvw4z74MGvIaaJB17YPwQHBtOnWR/6NOtDTkkOc3fPZdb2WWzM3siy/ctYtn8ZUSFR5jTvVkPoFN9J07xFxHIbszYyafMk5u6e6/oQ1iy6GWM6juHalteef4gByN4BXx0f6e/zJ8uCzLnSyEwduvO97/k6PYu/D+/EzZ09FCrKS+C//c3+mSZdYfQXfr/dgbvtPLaT2TtnM3vHbNcMAICmUU0Z3Gowg1sN1jRvEfGockc5C/csZNLmSfx05CfX7Z3iOzGy3Uj6NetHUEAtxycqK+C/A+DAj9C8J9z1uaX9mDrNdAJPhpknpq1j5poD/H7gBTzcq7VbX6uanN3w1lVQkguXPwwDx3nutf1YpaOSVYdXMXvHbBbsWVBtmnfnxM4MbTVU07xFxK2yi7P5ZNsnTNs6jcziTACCAoIY1HwQI9qNoENch7p7saUvw9JxYI8xF2ZtkFp3z30eFGZO4Mkw8/JXW3hz2Q7uvqI5zw/28AaIW76EKbeb14dPhPY3ePb1/VxReRGL9i7i8x2f88Ohqmne9kA7VzW5iv7N+3NV46tqtm6DiMhZ/Jz9M5M2T+KrXV9R7igHIC4szrUJb1xYXN2+4L5V5qiMUQk3vQcdb67b5z8P6pmxSHyU2Sjqti0NzqTttXDF4/Dta/D5o5DYAeI8ODrk58KDw12nmDIKM1zTvHfl7mLBngUs2LOA0MBQrmpyFQOaD6Bnk56EBXm++19EfFeFo4JFexcxefNk1mSucd3eoVEHRl44kgHNBhAcWIt+mNMpLYCZY8wg03G4VwSZc6UwU4cSojywpcGZ9P4T7F8Fe76FaXfBfQshRCMFdS0pIon7Ot7HvR3uZcvRLczbPY95u+exv2A/8/fMZ/6e+YQFhdGrSS8GNB/AFY2vqPkiVSJS7+SU5DAjfQZTtkxx9ekF2YLo17wfd7S7g4vi3dyEO+9pyNkF0U3g2r+797XcRKeZ6tDKndnc9vZKWsRFsOS3vdz6WqeVnwFv9oTCTOg0Am74D2gGjtsZhsHPR39m3u55zN89nwMFB1z3hQeF0yu1KthoqreIAGw9upXJWybzxc4vKK00PwTHhsYyPG04t1xwCwnhCe4vYvMcmDoSsMGo2dCip/tfs4bUM3MCT4aZnUcK6P3qMiLtQWx8YYBbX+uMdn0NHw4x928a8i+49C7raqmHDMNgU/Ym14jNocJDrvsigiO4JvUaBjQfQI+UHue+mJWI+LQKRwVL9y1l0uZJ/Hj4R9ft7WLbcceFdzCg+QDPfeDJz4D/dIfio3DFr6Hfnz3zujWkMHMCT4aZgtIKOjw/D4Cf/zyA8BALz+J9PR4WvQCBdvN0k4+sFeBvDMNgQ9YGV7A5cap3ZHAkvZv2ZkDzAXRP7u6ec+Ei4hVyS3OZmT6Tj7d87PqAE2gLpG+zvoxsN5KL4y/27DpWhmHuu7R9ISR1hPsWe92yHgozJ/BkmDEMgwufm0dxeSVLf9uL5nERbn29M3I4zNlN2+ZCw+Zw/zIIa2BdPYLDcLD+yHrzVNSe+WQWZbruiwqJoneqGWwuT75cwUbET6TnpDN5y2Tm7JhDSWUJAA3sDVynkpIikqwp7Id34MvfQlCo+fshoa01dZyBwswJPBlmAK7+2xL2ZBcx/cHudGke6/bXO6Oio/D21XBsL1xwHdw2Sf0zXsJhOPjpyE+uHhvnzrYA0SHR9GnahwHNB9A1uWvtVvMUEY+rdFSyfP9yJm2exPcZ37tuv6DhBYxsN5JBLQZZOykgc4v5u6GiBAb9Dbrdb10tZ6AwcwJPh5mbJ6zgxz05/HvEpVx3kSf2NDiLA2vMtQMqy6DfX+CKX1ldkfyCw3CwNnMtc3fNZcGeBa7dbsH8BOcMNl2SutR+hU8RcZu8sjw+Tf+Uj7d87JoEEGALoE/TPoxoO4LOiZ2t3xKlogze7Q0ZG6B1Xxj5idd+yNU6MxZKiHZOzy6xuJLjGl8KA1+GL56AhWOhyWXQrIfVVckJAmwBdE7sTOfEzjzV9SnWZK5h3u55LNizgKMlR5mRPoMZ6TNoaG9I32Z9GdB8AJ0TOyvYiHiJncd2MnnLZGbtmOVaKTw6JJqb027m1gtuJSUyxeIKT7DkRTPIhMXC0H97bZA5V/ppWMfiIy1cOO90LrvH3JBywzSYfre5IWWkB6b8yTkLDAikS1IXuiR14amuT7H68Grm7Z7Hwj0LySnNYfq26UzfNp3Y0Fj6NevHgOYDuCThEgUbEQ/LLs5m0d5FzN09l1UZq1y3t27QmpHtRnJdy+u8b+HM3d/At/80rw95HaIs6tdxA/0ErGMJ0eZ5UMsWzjsVmw2u/wdkrIcjW+CTeyzfQEzOLiggiG7J3eiW3I1nuj3DqoxVzNs9j0V7F3G05ChTt05l6tapRAVH0SWpCz1SetA9pTupUanWD2WL+KGjJUdZtHcR83bPY1XGKhyGAwAbNq5JvYaR7UbSJamLd/7/Kz4Gnz4IGHDJndBusNUV1Sn1zNSxaav28fsZ67k6LZ6J93R1++udkyNb4e1roLwQev7W3N5dfE65o5xVh1Yxb48ZbHJLc6vd3ziyMd1TutM9uTvdkrsRY4+xqFIR33es5JgrwPyQ8QOVRqXrvvaN2jOg+QAGNB/gXaeSTmXGGHN0vmELePAbsHv/BrlqAD6Bp8PMkq2Z3P3+Ki5MjubLX3vPSoouGz6BGfea10dMgzQLF/eTWqt0VLL56Ga+O/gd3x36jrWZa6lwVLjuD7AF0L5Rey5PvpzuKd25OP5iTfsWOYvc0lwW713MvN3zWHloZbUA0y62HQOaD6B/8/6kRlm7q3SNOX/u2wLhnnmQ2sXqimpEYeYEng4zGw/kcv2/viEu0s6Pf+zr9tc7L1/8Fla9A6ENzP6ZBk2trkjqSFF5ET8e/tEMNwe/Y0fujmr3hwWFVZ2SSu5Oi5gW3jkkLuJhuaW5LNm3xAwwB1dSYVR9KGgb29YMMM360zTax35eHtsHE66A0ly4+im45mmrK6oxzWaykHM209HCUiodBoEBXviLYsCLcGA1HFwD00bBPXMhSPsF+YPw4HCuanIVVzW5CoDDhYf57pAZbFYeWsnRkqMs37+c5fuXA5AYnug6JXV5yuXEhlq8NpKIB+WV5bF031Lm7Z7HioMrqo1qpjVMcwWY5jHNLauxVhwO+OwhM8g0vgyu+q3VFbmNRmbqWKXDoM2zX+Iw4Idn+rgagr3Osb3w1lVQnANdxsB1vrlTqtScw3CwLWcb3x38jhUHV7Dm8BrKHGXVHtMuth2Xp1xOj5QeXJJwiTbFFL9TUFbAkn1LmL97Pt8e/JZyR7nrvtYNWrtOIbWMaWlhlXXk29dhwZ8gOMIchW/UyuqKzolOM53A02EGoMuLCzmSX8qcx66kQ2Mvbr5MX2DuzQFw03vQ8WZr6xGPKqkoYU3mGtcpqa05W6vdbw+00zmxMz1SenB58uWkNUzTKSnxSYXlha4RmG8PfFstxLeMacnA5gPp37w/rRr41i/7M8rYYE74cJTD4Neh8yirKzpnOs1ksfhIO0fyS71revaptOkHV/0Olv8NZv3K3Gws/gKrqxIPCQ0KpUdKD3qkmIsoZhVnsfLQSle4OVJ8hBUHV7Di4AoAGoU2Mk9JHT8tFR8eb2X5ImdUVF7Esv3LmLd7Hl/v/7pagGke3ZyBLQYyoNkAWjdsbWGVblJebM5ecpSbW9lcepfVFbmdwowbJETb+fmQl601czq9noZ938Ou5TD1Thiz2Cem7EndiwuL4/qW13N9y+sxDIMdx3aw4uAKvjv0HasPrya7JJs5O+cwZ+ccwByS757SncsSL6NjXEeFG7FcUXkRyw8sZ/7u+Szfv5zSyqqfwc2im7mmUbdp0Ma/RxkXvgBHNkNkIgz5l9+s8nsmCjNukBDlXAXYS7Y0OJOAQLjpv/BWT8jaCnN+A8Perhdvfjk9m81G64atad2wNXe1v4uyyjLWZa7ju0Nmv83m7M1sP7ad7ce289HPHwGQFJFEx7iOdIjrQMe4jrRv1J7w4HCL/ybi74orivl6/9fM2z2P5fuXu3amBmga1dQVYOrNadLti+D7Ceb1of+BiEbW1uMhCjNuEB/lhVsanElkPNz8PnxwnbmoUtPLocu9VlclXiQkMISuyV3pmtyVX1/6a3JKcvg+43tWHlzJT0d+YsexHWQUZpBRmMGCPQsAc42bVg1auQLORXEX0apBK229IOfNYTjYnbubDVkb2JC1gY1ZG9mas7XaLKQmkU1cAaZtbNv6EWCcio7CZw+b17veD228dHkQN9BPFTdIiPLCLQ3Opll36PcCzP8jzH0KUi4xN6kUOYWGoQ0Z2HwgA5sPBMwGy5+zfzZ/yRwxf9EcLjpMek466TnpzEyfCZjr3LSLbWcGnHgz4CRHJNevXzhSY4cLD7Mxa6MruGzK3kRBecFJj2sc2Zj+zfszoPkALoy9sH6+nwwDZv8KCjIg7gLo+4LVFXmUwowb+NzIjFP3R80NKbfMMdefeWAZhGvdETm7iOAI1waZTplFma5fQhuObGBj9kYKywtZk7mGNZlrXI+LDY2lY1xH16V9XHttwVAP5Zflsyl7U9X7JWsjmcWZJz3ul4G4Q6MONI5sXD8DzInWTYLNsyEg2GwVCKlfp3gVZtzA2TPjUyMzYPbJDP03HN4EObvMTclunwIBAVZXJj4oITyBPk370KdpH6DqFMH6rPWuT9vbjm7jaMlRlu1fxrL9y1zf2zy6uav3pmNcRy6IvYCQwBCr/ipSx8oqy9iWs60q7GZtYFfurpMeF2ALoE2DNq73Qoe4DjpVeSpHd8JXfzCv934WUi62tBwraJ0ZN9iTXcjVf1tKaHAAm/880Pc+MRxaD+/2hcpS6PMc9HzS6orET5VUlLDl6JZqPRD78ved9LjggGDaxratFnCaRjclwKag7e0choM9eXuqnS7acnRLtcXqnBpHNq7WRN42tq2ayM+msgLeHwT7f4BmV8Co2ebEDj+gdWYs5jzNVFLuoKC0gqhQH9vYL/kic0XgWY/B4r9Cky7Q4iqrqxI/FBoUysUJF3NxwsWu23JKctiYtZGNWRtdozjHSo+5As/HfAxAVEgUHeM6ktYwjaSIJJIikkiOSCYpIomG9oa+9yHCTxwpOlJtxGVT1ibyy/NPelwDe4NqIy4d4jpoO43z8fXfzSBjj4Yb3/SbIHOuFGbcIDwkiEh7EAWlFWTml/pemAG45E6zf2bdJPjkHnjga4hOtroqqQcahjakZ5Oe9Gxi7jpvGAb78/e7wsyGrA1szt5Mfll+tUX9TmQPtJsBJzzppKDj/FOf+M+fYRgUlheSWZxJRmEGm7M3u8LL4aLDJz0+NDCUdo3aVQsvTSKbKHDW1vaFsPRl8/p1r9brTYMVZtwkIcpOQWkFR/JLaRXvg4vQ2Wxw7d/h4DrI3GQGmlGzIVBvGfEsm81GanQqqdGpXNvyWgDKHeWk56Sz4cgGduftdk0LP1R4iOySbEorS9mTt4c9eXtO+7zRIdHVwo3rEp5EcmQyCeEJBAf44AeRWjAMg7yyPLKKszhSfIQjRUdO+WdWcRbFFcWnfI4AWwCtG7R2NXN3jOtIqwat6t2xdLuc3fDJvYABnUfDRbdYXJC19JvJTeKi7OzMKvS9GU0nCgmHWz6Et3vB3hWw+M/Q789WVyVCcEAwFza6kAsbXXjSfWWVZRwuOlwt4Jz45+HCw+SX55NXlkdeWR7bcrad8jVs2IgPi68WdE4c3UmMSCQ2NNYn+nYMwyC3NLd6MDlNSDlx1dyziQyOJD48nrSGaa4Rl3ax7TTq5W7lxTD1Dig5Bo07w6BXrK7IcgozbuKzM5p+Ka41DH0Dpo+Cb/8Jqd2g7XVWVyVyWiGBIaRGpZIalXraxxSUFVQFnKIMDhUccgUgZ+gpd5STWZxJZnEm67PWn/J5ggOCaRTWCHugneCAYPMSGExIQAjBAcGEBIa4bnPe77ztl3+e+LiQgJBqz+O6/RTfY7PZyC7OPimcZBVnkVmcSVaROcpyqobb04kOiSY+LJ648DgSwhKq/RkfFu+6HhYUds7/PlJLhmGu1J6xAcLjzA+cQdrdXmHGTeJ9aUuDs2l/A+x7GFb+Bz59yFx/JraF1VWJnLfIkEhah7Q+7SaDDsPB0ZKjHC487Ao3J4afjIIMV0DIKMzwcPXnr4G9AXFhcSSEJ1T7Mz4s3nU9LiyO0KBQq0uV01n1Lvz0MdgCYPj7ENPE6oq8gqVhZsKECUyYMIHdu3cD0L59e5577jkGDRoEmEOjL7zwAm+//TY5OTl069aNf//737Rv397CqmvGJ1cBPpO+L8D+H82u+Wl3wb0LIFg/8MQ/BdgCXL/Y28ed+udNuaOczKJMjhYfpdxRTrmjnLLKMvNPRxnlleZtzj+dt5U5yqrdXu37Kmtw3y+e02E4iA2NrT6SEhZHfHh8tdGUuLA4rdXj6/b9AHOfNq/3fUGzTE9gaZhp0qQJL7/8Mq1bm5+OJk6cyNChQ1m7di3t27fnlVdeYfz48XzwwQekpaXx17/+lX79+rF161aioqKsLP2s/OY0k1NQiPkp4K2rIGM9zP0DDP6n1VWJWCY4IJjGkY1pHNnY0jochsMn+naklvIPmx8kHeVw4Q3Q4zGrK/Iqlv4PGDx4MNdeey1paWmkpaXx4osvEhkZycqVKzEMg9dee41nn32WYcOG0aFDByZOnEhRURGTJ0+2suwacZ1myvOTMAPmcOawdwAbrP4A1n1sdUUi9Z6CTD1QWQ7TR0P+IYhva67Urmnt1XjN/4LKykqmTJlCYWEh3bt3Z9euXWRkZNC/f3/XY+x2O1dffTUrVpy8roRTaWkpeXl51S5WSIg+PjJT4EdhBqB1H+j1lHl9zm/MrQ9ERMR9FjxnzigNiYJb/wd2H1zuw80sDzMbNmwgMjISu93Ogw8+yKeffsqFF15IRobZVJeYmFjt8YmJia77TmXcuHHExMS4Lqmpp5/R4E7xkWaYOVpYRlmFw5Ia3Oaq30Gr3lBRbA57llgTGEVE/N6GT8zJF2Cu8BvXxtp6vJTlYeaCCy5g3bp1rFy5koceeohRo0bx888/u+7/5QqRhmGccdXIp59+mtzcXNdl376T93nxhIbhIQQFmHVmF/rZ6ExAIAx7F6IbQ/Z2mPWoOV1QRETqzuFN5rYyYO6R1+56a+vxYpaHmZCQEFq3bs1ll13GuHHj6NSpE//85z9JSkoCOGkUJjMz86TRmhPZ7Xaio6OrXawQEGAjLtIP+2acIhrB8InmdvM/fw4rJ1hdkYiI/yg+BlNGQnmRORJ+zbNWV+TVLA8zv2QYBqWlpbRo0YKkpCQWLFjguq+srIxly5bRo0cPCyusOVffjL/MaPql1C4w4EXz+oI/mXs5iYhI7Tgc8OkDkLMLYprCTe/V2w0ka8rSqdnPPPMMgwYNIjU1lfz8fKZMmcLSpUuZO3cuNpuNxx9/nJdeeok2bdrQpk0bXnrpJcLDwxkxYoSVZdeYs2/Gp7c0OJuu98O+72HjDLPb/oGvITLe6qpERHzX8r/BtrkQFAq3fgTh2k38bCwNM4cPH+bOO+/k0KFDxMTEcNFFFzF37lz69esHwO9//3uKi4t5+OGHXYvmzZ8/3+vXmHHy+5EZMKcHDn4dMjZC1laYcQ/c+Zk+RYiInI9t82HpOPP6deMh5WJLy/EVNsPw787NvLw8YmJiyM3N9Xj/zPj5W3l98XZGdmvKizd29Ohre9yRrfD2NVBeaDaq9XnO6opERHzL0Z3mxr4luXDZvXD9eKsrstS5/P72up4ZfxIf7WdbGpxJ/AUw5HXz+tevwtavrK1HRMSXlBXB1DvNINOkCwx82eqKfIrCjBvVi56ZE3W8Gbo+YF7/9AE4usvaekREfIFhwOxfw+GNEBF/fCds7aN1LhRm3Khe9Mz8Uv+/mp8qSnLNBfXK/WDXcBERd/rhbdgwDWyBMPwDiE6xuiKfozDjRiduNunnrUlVgkLM/4zhjcwNKb/6ndUViYh4rz3fwbxnzOv9/wLNr7S2Hh+lMONGzkXzyiod5BaXW1yNB8U0gZveBWyw5kNYO8nqikREvE9+BkwfBY4K6HATXP6w1RX5LIUZNwoNDiQmLBioZ6ea4PiKlcc/bXzxBGRssLYeERFvUlEG00ZBwWFIuBCG/Es7YdeCwoybxUfVsybgE/X8LbTuBxUlZpd+8TGrKxIR8Q7zn4V9K8Eebe6EHRJhdUU+TWHGzU7sm6l3AgJg2Nvmctw5u+DzR7QhpYjIT1PNpl8wf0Y2amVtPX5AYcbNqkZm6umsnvBYuGUiBIbAljmw4nWrKxIRsc6h9eY0bICrfg8XDLK2Hj+hMONm9XpkxqnxpTDo/8zrC8fC7m8sLUdExBJFR2HqHVBRDK37Qq+nrK7IbyjMuFm97pk5Uee74aLbwHDA9LvNLn4RkfrCUQkzx8CxPdCgGQx7R3vY1SGFGTdLiKpHWxqcic0G1//D7NovzIRP7oHKCqurEhHxjKUvw/aFx3fC/p92wq5jCjNuppGZE4SEwy0fQUgU7PkWFr1gdUUiIu639StY/op5ffDrkHyRtfX4IYUZN1PPzC/EtYYb/mNeX/E6bJ5tbT0iIu6UvQNmHt+zruv90OlWa+vxUwozbuYcmcktLqekvNLiarzEhUOg+6Pm9c8eNv+zi4j4m7JCs+G3NBdSu0H/F62uyG8pzLhZTFgwIUHmYc4q0OiMS9+x0LQ7lOaZG1KWFVldkYhI3TEMmPUYZP4MkYkwfKJ2wnYjhRk3s9lsxEeqb+YkgcFw8/vmdveHN8IXT2pBPRHxHyv/AxtnQECQGWSik62uyK8pzHiAqwk4T2GmmuhkM9DYAuCnybBmotUViYjU3u5vYP6fzOv9X4Rm3a2tpx5QmPEAVxOwTjOdrEVP6H38P/2Xv4eDa62tR0SkNvIOwvTRYFRCx1ug2wNWV1QvKMx4gHNk5khePd3S4GyueBwuuBYqS83+maKjVlckInLuKo7/DCs8AokdYPA/tRO2hyjMeIBr4TyNzJxaQADcMAEaNodje+HTB8HhsLoqEZFzM/dp2L8KQmPg1o/MtbXEIxRmPEA9MzUQ1gBu+RAC7ZA+D74Zb3VFIiI1t3YS/PgeYINh70JsS6srqlcUZjxAPTM1lNwJrnvVvL7kRdi51NJyRERq5OA6mPMb83qvpyCtv6Xl1EcKMx6gkZlzcOmdcMkd5oaUn9xrNtOJiHiroqMw9U6z5y9tIFz1e6srqpcUZjwgIdoMM1kFpTgcWkvlrK79OyR1hKIsc1ZAZbnVFYmInKyywtw0N3cvNGwBN75l9gCKx+moe0CjCDPMVDgMcorKLK7GBwSHmf0z9hjY9z0seM7qikRETjbvadi5BILDzZ2wwxpYXVG9pTDjASFBAcRGmMtYq2+mhmJbwo1vmtdX/gc2zrS2HhGRE/3wDvzwtnn9xrcgqYO19dRzCjMe4trSQH0zNdf2WnMNGjD3ODmyzdJyREQA2L4QvvqDeb3P8+bmuWIphRkPcfbNHNH+TOem95+geU8oK4Bpd0JpgdUViUh9lrkFpt9trvDbaQRc+RurKxIUZjxGm02ep8AguPm/EJkER7bAnMe1IaWIWKMwCybfAqV50LQHDH5NK/x6CYUZD4mPdoYZbWlwziITYPj7YAuEDdNh1btWVyQi9U1FKUy9A47tMVcrv/V/EGS3uio5TmHGQ1xbGmhk5vw06wH9/mxen/s07F9tbT0iUn8YBsz+Nez9zpxlOWIaRDSyuio5gcKMh7gWzlOYOX/dH4F2Q8BRDtNHQWG21RWJSH3wzT/gp4/N0eHh70P8BVZXJL+gMOMhzi0NshRmzp/NBkP/DbGtIHcfzBwDjkqrqxIRf/bzLFj0gnl90P9B6z7W1iOnpDDjIRqZqSOh0eZutEFhsGMRLP+b1RWJiL86uBZm3m9e73o/dB1jbT1yWgozHuIcmSkoraCorMLianxcYntzFgHA0pdhzYeWliMifijvIHx8O1QUQ6s+MGCc1RXJGSjMeEikPYjQYPNwqwm4DnS6DS5/GDDMBfVWvml1RSLiL8oK4ePbIP8QxLc1+2QCg6yuSs5AYcZDbDabZjTVtQEvQfdHzetz/wBfv2ptPSLi+xwO+PQBOPQThDeCEVMhNMbqquQsFGY8SH0zdcxmg/5/haufMr9e9GfzokX1ROR8Lf4LbJ4NgSFw6yRzTRnxegozHuTsm9HITB2y2eCap6vWoPn6VXMdGgUaETlX6ybDN+PN60P+Bc26W1uP1JjCjAdVjcxoFeA6d8Wv4dq/m9e/nwCzf6Vp2yJSc3tWwKxfmdd7Pmn25YnPUJjxII3MuFnXMXDDBLAFmDOcPn0AKsutrkpEvN3RnTBlpLkgZ7shcM0fra5IzpHCjAepZ8YDLh5hbkwZEGTu4zR9tLmniojIqZTkwuTboPgoJF8MN74FAfrV6Gss/RcbN24cXbp0ISoqioSEBG644Qa2bt1a7TGjR4/GZrNVu1x++eUWVVw7ztlMmXn65epW7W80G/cC7bBljrlWRFmR1VWJiLeprDA/8GRthagUuH0KhIRbXZWcB0vDzLJly3jkkUdYuXIlCxYsoKKigv79+1NYWFjtcQMHDuTQoUOuy5dffmlRxbXjHJk5UqAw43YXDISR0yA4wlwpeNLNUJJndVUi4k3mPgU7FkNwONz+MUQnW12RnCdLVwGaO3duta/ff/99EhISWL16NVdddZXrdrvdTlJSkqfLq3POnpnsglIqHQaBATaLK/JzLXvBnZ+aQWbPt/DRDTDyEwiPtboyEbHa92/DqnfM68PehpSLLS3HV+3OKiSroJQ2iVHEhAVbVodXnRjMzc0FIDa2+i+bpUuXkpCQQFpaGmPGjCEzM/O0z1FaWkpeXl61i7doFGknwAYOA7ILNTrjEU27wajZEBYLB1bDxMFQcMTqqkTESukLzYU2AfqOhXaDLS3Hl01fvY+b3/yOV+ZusbQOrwkzhmHwxBNPcOWVV9KhQwfX7YMGDWLSpEksXryYV199lVWrVtG7d29KS08dBsaNG0dMTIzrkpqa6qm/wlkFBtiIjTjeBKy+Gc9JuRhGfwGRiXB4I7w/yNx3RUTqn8wt8MndYDjg4pFwxeNWV+TTth0uAKBNQqSldXhNmHn00UdZv349H3/8cbXbb731Vq677jo6dOjA4MGD+eqrr9i2bRtffPHFKZ/n6aefJjc313XZt2+fJ8qvsQT1zVgj8UK4+yuIbgLZ6fDfgZCz2+qqRMSTCrNg8i1QmgdNe8D1r5kLb8p52555PMwkRllah1eEmccee4xZs2axZMkSmjRpcsbHJicn06xZM9LT0095v91uJzo6utrFm7iagDUy43mNWsE9X0FsSzi2B/47CI5ss7oqEfGEilJzLZlje8wtCm79HwSFWF2VTyspr2RPtjlhp01iPR6ZMQyDRx99lJkzZ7J48WJatGhx1u/Jzs5m3759JCf7Zte5RmYs1qCpOUIT3xbyD5qnnDI2Wl2ViLiTYZir++5bCfYYGDENIhpZXZXP23mkEIcBMWHBxEfaLa3F0jDzyCOP8L///Y/JkycTFRVFRkYGGRkZFBcXA1BQUMBvf/tbvvvuO3bv3s3SpUsZPHgwcXFx3HjjjVaWft5cC+flaUsDy0QlwegvIekiKMqCD66D/autrkpE3OWb8bB+CtgC4ZYPIP4CqyvyC+mZ+YDZL2Oz+HSdpWFmwoQJ5Obm0qtXL5KTk12XqVOnAhAYGMiGDRsYOnQoaWlpjBo1irS0NL777juioqw9P3e+NDLjJSIambOcmnSFkmPw4RDY/a3VVYlIXfv5c1h0fCPaa1+BVr2trcePVPXLWHuKCSxeZ8Y4y87GYWFhzJs3z0PVeEa8VgH2HmENzHVoptwOu5bD/26C2/4HrftaXZmI1IUDa2DmA+b1rg9Al/usrcfPpLtmMlk/uOAVDcD1SUK0Rma8ij3SPH/eZgBUFJtbH2yeY3VVIlJbeQdhygjz/3XrvjDgJasr8jvbnKeZvGBkRmHGw5xNUpl5pWcdmRIPCQ4zZzZcOBQqy2DaXbDhE6urEpHzVVYIk2+F/EMQ387cfDbQ0hMRfqe0opI92eaedxqZqYecIzPF5ZUUlFZYXI24BIXATf+FTreDUQkz7oPVE62uSkTOlcMBM++HjPUQ3ghGTIHQGKur8ju7s4qodBhE2YNIjLZ2JhMozHhceEgQkXbzE8KRfJ1q8iqBQTD0P3DZvYABs38FKydYXZWInIvFf4YtcyAwBG6bbK4pI3Uu/YRTTFbPZAKFGUu4pmcrzHifgAC47lXo8Zj59dynYPnfra1JRGpm7ST45h/m9SFvQNPLra3Hj23zouZfUJixhGsVYIUZ72SzQb+/QK+nza8X/wUWvmAuvCUi3mnPCpj9a/N6z99Cp1utrcfPbfei5l9QmLGERmZ8gM0GvZ4yQw2Yi27Nfco8Hy8i3uXoTnOrAke52ch/zbNWV+T3XNOyLd6TyUlhxgIJGpnxHVf8yjztBPD9m2YfjaPS2ppEpErxMXPmUvFRSLkEbnjTPF0sblNe6WBX1vE9mSzeLdtJ/+IWqBqZ0ZYGPqHLfeYPSFsArP3InClRWW51VSJSXgzTR0PWNohKgdunQEi41VX5vd1ZhVQ4DCJCAkmOCbW6HEBhxhIJx1cB1siMD7n4drj5fQgIgo2fwLRR5i68ImKNY/vgvwNg5xIIDjenYEclWV1VvZB+fBuD1olRXjGTCRRmLKEGYB/V/gZzqmegHbZ+AR/fBmVFVlclUv/sWQHvXAOHfjLXkhk5HZI7WV1VveHsl0nzklNMoDBjCfXM+LC0AeYPzuAI2LHY3M+pJM/qqkTqj1XvwcTBUHgEkjrC/Uuh+ZVWV1WvpHvZTCZQmLGEc2Qmu7CM8krNjvE5La82N6i0x8DeFcd/sGZZXZWIf6sog9mPwxdPgKMC2g+De+ZDg6ZWV1bveNMGk04KMxaIDQ8hMMA8z5hdUGZxNXJemnaDUbPMIe5D6+D9QZB7wOqqRPxTQSZ8OARWvw/YoM/z5n5Lavb1uIpKBzuzjvfM6DRT/RYQYCMuMgTQjCaflnIx3D0XopuYsyn+OxCyd1hdlYh/ObAG3u4Fe78zR0NHTIOeT5hrQYnH7TlaRHmlQXhIII0bhFldjovCjEWcM5oy89Q349Pi0+CeudCoNeTuNQNNxgarqxLxDz9NNUc98w5AXBqMWQRp/a2uql5LP2z2y7ROiCQgwHsCpcKMRVxNwAUKMz6vQao5QpPUEQoz4f3rYO9Kq6sS8V2VFTDvWfj0fqgogbSBcN9CiGtjdWX1nrNfxptOMcE5hJl77rmH/Px8d9ZSr7gWztPIjH+IjIdRc6BpdyjNhQ9vgO0Lra5KxPcUHYVJN8N3b5hf9/wt3PYxhMZYW5cAVWvMeFPzL5xDmJk4cSLFxcXurKVeqRqZUc+M3whrAHfMhNZ9oaIYJt8Gmz61uioR35G5Gd7pXbUQ3vAPoM+ftD2BF3GGmTQvmpYN5xBmDO0YXKc0MuOnQsLNT5Hth5mb3n1yD6yeaHVVIt5v8xx4ty/k7DKnW987H9rfaHVVcoJKh8GOIz4+MgN4zbLF/iDeuaWBemb8T1AI3PQudB4NhsPcnPLbf1pdlYh3cjhgyTiYOhLKCqB5Txiz1OxBE6+y92gRZRUOQoMDaNzQe2YyAQSdy4PT0tLOGmiOHj1aq4LqC43M+LmAQLj+NQhtAN++BgueM3f37fOcppSKOJXmw6cPwpY55tfdHoL+f4HAYGvrklNyzmRqFR/pWivNW5xTmHnhhReIiVETVl04cTaTYRga9fJHNhv0e8HspVk4Fr4ZDyW5cO3f1QMgkr0DpoyEI5shMMQM/5eMtLoqOYOqfhnvOsUE5xhmbrvtNhISEtxVS73iHJkpq3CQV1xBTLg+ifitK39jjtDM+Q38+J4ZaG58U58+pf7avgg+udv8vxCZBLdNgiaXWV2VnMWJa8x4mxp/PNTIQd0KDQ4kOtTMkprRVA9cdjfc/B4EBMHGT8xPpNpxW+obw4AV/zKnXpfkQpMu5kaRCjI+oWpatg+HGc1mqnvqm6lnOtwEt0+BoDBIn3d8x+1cq6sS8YzyYvj0AZj/R7Mx/pI7YPQXEJ1sdWVSA5UOg+1efJqpxmHG4XDoFFMdS9CMpvqnTT+4cybYo7XjttQfufvNrT7WTwVbIAz6Gwx5A4LsVlcmNXQgp5jSCgchQQGkxnrfBp/qQrSQRmbqqWY9YPQcCI+DQz+ZP+Rz91tdlYh77PnO3Cjy0Dpzl/m7Podu92tWn4/Z5sUzmUBhxlLan6keS+4E98wzd9zOTjcDTdZ2q6sSqVs//vf46OMRSOwIY5ZAi55WVyXnwZv7ZUBhxlIJ0c6RGTUA10txreHeedCoDeTug/cHwqH1VlclUnsVZebsvTm/MVfCbn+j+V5v2MzqyuQ8pWeaIzPeto2Bk8KMhVynmfI1MlNvxTSBu7+CpIvMT68fXGcOy4v4qoJM+HCIOSqDzVwo8ub3ISTC6sqkFpzNv629bBsDJ4UZC7kagBVm6rfIeLOHpmkPKM2Dj26E9AVWVyVy7g6uNftj9n5nNrmPmAo9n1R/jI9zOAzSDx8/zaSRGfkljcyIS2gM3DED2vQ3d9z++DbYOMPqqkRqbv00s/cr74B56nTMYkgbYHVVUgcOHCumuLySkMAAmnnhTCZQmLGUswE4t7ic0opKi6sRy4WEw62TzPVoHBXwyb2w+gOrqxI5M0eluXbMzDFQUQJtBsCYRRDXxurKpI44TzG1jI8gKNA7Y4N3VlVPxIQFE3L8jaFTTQKYO24PewcuuwcwYPav4ZvXrK5K5NQKs83VfFf8y/y655Nw+8fmSKP4jW1evI2Bk8KMhWw2m+tUk8KMuAQEwnXj4conzK8XPm9uVKlVuMWb7FgCE3rAjsUQHA7DPzCbfQMCra5M6ljVtGzvbP4FhRnLxalvRk7FZoO+z0O/P5tff/OP49NcdTpSLFZRZp5W+ugGKMiAuDS4d4E5/Vr8kivMeGnzL5zjrtlS9xI0MiNncsWvzSH72Y/D6veP77j9lnk6SsTTjmyDGfdCxvH1kC67B/q/aPZ7iV8yDIPth717jRlQmLGcZjTJWXUebQaaGWNg00wozYdbPtQvEPEcwzCb0ec+bc62C4uFoW9A2+usrkzc7GBuCYVllQQF2GjWyHvXCtJpJotpZEZqpP2NVTtub1+gHbfFc4qOwtQ7YM7jZpBp2QseWqEgU0+kHx+VaREXQbCXzmQChRnLVTUAa0sDOYs2feGuz8AeY+64/cH1UHDE6qrEn+1cajb5bpkDAcHQ/69wx6cQnWx1ZeIh232gXwYUZiynVYDlnDS93FwtOCLe7Ft4fyBkbrG6KvE3FWUw/0/w4Q2Qf8hs8h2zCHo8BgH6tVGfuFb+9eKZTKAwYzn1zMg5S74I7p4LMamQvR3+0w0m3QI7l2n6ttRe1nZ4rx+seB0woPPdcP8yc6d3qXe2Hd9gUiMzZzBu3Di6dOlCVFQUCQkJ3HDDDWzdurXaYwzDYOzYsaSkpBAWFkavXr3YtGmTRRXXvRN7ZhwO/SKSGoprDffMgwuuA2yQPs/c3O/NK2HdZKhQOJZzZBiweiK81RMOrYOwhnDr/2Dwa2o2r6fMmUwamTmrZcuW8cgjj7By5UoWLFhARUUF/fv3p7Cw0PWYV155hfHjx/PGG2+watUqkpKS6NevH/n5+RZWXnfiIs0wU+EwOFZcbnE14lNiGsPtk+Gx1dBljLlw2eGN8NlD8FpHWP43c4VWkbMpOgrT7oLZv4LyImhxldnk226w1ZWJhQ7nlZJfWkFggI0Wcd47kwnAZhjeMy595MgREhISWLZsGVdddRWGYZCSksLjjz/OH/7wBwBKS0tJTEzk//7v/3jggQfO+px5eXnExMSQm5tLdHS0u/8K5+WSP88np6icuY/3pG2Sd9YoPqDoqDl99oe3zT4HMGc/dboNLn8Y4tMsLU+81K7lMPMByD9oNvn2+RN0V2+MwNfpR7jzvR9oFR/Boid7efz1z+X3t1e9W3NzzammsbGxAOzatYuMjAz69+/veozdbufqq69mxYoVp3yO0tJS8vLyql28nZqApU6Ex0LPJ+DX6839nZI7mVNpV78P/+6ivhqprqLM3CZj4hAzyDRqDfctMBdqVJARYJuPnGICLwozhmHwxBNPcOWVV9KhQwcAMjIyAEhMTKz22MTERNd9vzRu3DhiYmJcl9TUVPcWXgdcTcB5CjNSB4JC4KJbzKbN0V/ABdeivhqpJnsH/Le/uU0GBlw6Ch5YDimXWF2ZeJHtPtL8C14UZh599FHWr1/Pxx9/fNJ9Nput2teGYZx0m9PTTz9Nbm6u67Jv3z631FuXXE3ABfrlInXIZoPmV5q7GKuvRsAclVvzEbzZEw6uhdAGcMtHMOR1CPHungjxPNe07ESNzNTIY489xqxZs1iyZAlNmjRx3Z6UlARw0ihMZmbmSaM1Tna7nejo6GoXb6eRGXG7Rq3gur/DbzZBn+chKhkKDsPiv8I/2pt7Px3ZZnWV4k7FOTB9FMx6FMoLoXlPs8n3wiFWVyZeyDCME3bL1sjMGRmGwaOPPsrMmTNZvHgxLVq0qHZ/ixYtSEpKYsGCBa7bysrKWLZsGT169PB0uW4Tr5EZ8RT11dRPu7+BCVfAz59DQBD0HQt3fW7OiBM5hSP5peQWlxNgw+tnMoHFG00+8sgjTJ48mc8//5yoqCjXCExMTAxhYWHYbDYef/xxXnrpJdq0aUObNm146aWXCA8PZ8SIEVaWXqeqRma0pYF4iLOvpuNw2PMtfPdv2PqV2VeTPg8SO0D3R6DDTRBkt7paOV+V5bDkparemNhWcNO70PhSqysTL+cclWnWKILQ4ECLqzk7S8PMhAkTAOjVq1e1299//31Gjx4NwO9//3uKi4t5+OGHycnJoVu3bsyfP5+oKO8/h1dTrtlMGpkRT3P21TS/0mwKXTkB1k2q6qtZOBa6joHO90BEI6urlXORvQNm3AcH15hfX3IHDPw/sHv/KQOxnnODSV84xQQWh5maLHFjs9kYO3YsY8eOdX9BFnGdZlLPjFjJ2VdzzTPV16tZ/FdY/qrWq/EVhmEG0i9/b/bGhMbA4Neh/Q1WVyY+ZJuPbDDp5BUNwPVdQrQZZvJLKyguq7S4Gqn31Ffju4pzYPpo+PwRM8g0u9Js8lWQkXPkK9sYOCnMeIEoexD2IPOfQgvnidfQejW+Zfe3MOFK+Pkzs8m3z3MwahbENDnrt4qcyDAM1waTrX3kNJPCjBew2Wyu0ZnMfDUBi5c523o14y+E+X8yezTE8yrLYdFfYOL1kLcfYlvCvfOh55MQ4P2Nm+J9sgvLOFZUjs2mMCPnSFsaiE84ab2aFCjKghWvw78uNZfG3zjTXCpf3Mcw4Ogu2PAJ/HcgfP13MBxw8R3wwNfQuLPVFYoP23a8+bdpbLhPzGQCixuApUp8pHNkRmFGfICzr6bHr2DbXLNhePtC2LXMvETEw8UjofMoc6RAaqcw25yVdGA17P/R/LP4aNX9oTEw+J/Q/kbrahS/sd2HFstzUpjxEs7TTBqZEZ8SGATtrjcvOXtgzYew9iNzdeFvXzMvLa+BzqOh7XUQGGxxwT6grAgy1puBxXnJ2X3y4wJDIKkjNOlqrgnUwPv3oRPf4NzGoLWPNP+CwozXqBqZUc+M+KiGzaDPn6DXU+ZozY/vw47FsHOJeYlIMNc66TwKGja3ulrv4KiEI1uPh5bjIy6HfwbjFLMaG7UxTx81ucxc9C6xgxY0FLdIP978m+Yj07JBYcZraGRG/EZgMLQbbF5ydpujNWs+gsJM+Ga8uRptq97maM0Fg+rPaI1hQO7+E0Zc1pibPZYXnvzYyERofDy0NO5s7mYd1sDjJUv9lO5j07JBYcZruLY0UJgRf9KwuTlFuNfTsPVLc7Rm5xLYsci8RCZVjdY0aGp1tXWrOMcMKwdWw/7jAaYw8+THhUSaYaVx56pLdIo5i0zEw7ILSskuNBv4WyV4/55MTgozXkKzmcSvBQbDhUPNy9FdsGYirP0fFGSYM3G+fhVa9zVHa9IGmr04vqS8xJyqfmKfS/b2kx8XEASJ7U8ILpdBXBtNoRav4Wz+TY0NIzzEd/4f+k6lfs45MpNVUEqlwyAwQJ/KxE/FtjB3be71DGz9whyt2bUMti8wL1HJcMmdcOld3tfUWnwMcnbB0Z3HL7sg82fI2AiO8pMfH9uy+ohLUkcIDvN42SI1lZ7pe6eYQGHGazSKCMFmA4cBRwvLXOFGxG8FhZhTidvfaC64t2YirJ1k7ge1/BVY/jdo0w863w1t+ntmtMYwoOjoCWHlhEvOLijKPv33hscdb87tbPa6pFxqTmEX8SG+tsGkk8KMlwgKDKBRRAhZBWVk5pcozEj90qgV9PszXPMsbJljrluzazmkzzcv0Y2Pj9bcWfvl+Q3DnDp+UmDZZV5Kc8/8/ZGJ5ohLbEtzlKlRazO4NGiqPhfxec6RGV9Z+ddJYcaLxEeFklVQpr4Zqb+C7NDhJvOStR3WfGDu/5R3AJa9bI7YtOl/fLSm3+l7TRwO83tOGl3Zbf5ZXnTmOqKbmEHlxNAS2xIatgC7b/2QFzkXzjCTlqjTTHKe4qPsbD6kGU0iAMS1hv5/hd5/gs2zzdGa3V+ba9hsm2sGjkvvMk/pOEOKc4QlZzdUnuH/kS3AHElxBhRXaGlprpejvhaph44VVX2YbqWRGTlfCVFaa0bkJEF26HizeclKN0PNusnmpopLXzr99wUEm8HkxKDivMSkmj07IuLiHJVp3CCMSLtvxQPfqtbPKcyInEVcGxjwYtVozdqPoCCz+qkgV2BpoinPIuegahsD3xqVAYUZr1K1cJ62NBA5o+BQuGi4eRGROuGL2xg4BVhdgFTRwnkiImIVX9zGwElhxotoSwMREbGKc2SmtUZmpDbUMyMiIlbILS7ncJ75u8cXe2YUZryIc2SmqKySgtIKi6sREZH6wrknU3JMKNGhvreTvcKMF4mwBxERYs6+0OiMiIh4inMbA18clQGFGa/j6pvJ04wmERHxDF/dYNJJYcbLuGY0FWhkRkREPKNqGwONzEgdqBqZUZgRERHP2O7cLVthRuqCM8xoZEZERDwhv6Scg7lma0PreJ1mkjqgkRkREfEk50ymhCg7MeG+N5MJFGa8ToK2NBAREQ+q6pfxzVEZUJjxOgnR2tJAREQ8xzky46vTskFhxuvER2oVYBER8ZxtPt78CwozXich2gwzR4vKKK90WFyNiIj4O1/eYNJJYcbLxIaHEBhgwzAgu6DM6nJERMSPFZZWcOBYMQBtdJpJ6kpAgI24yBBAp5pERMS9nP0ycZF2GkaEWFzN+VOY8ULxmtEkIiIeULWNge+OyoDCjFdybWmgkRkREXGj9Ezfb/4FhRmv5JzRlKkwIyIibrTd2fzrw2vMgMKMV3LOaNLIjIiIuNM258iMTjNJXVPPjIiIuFtRWQX7c3x/JhMozHgl55YGGpkRERF32XmkEMOA2IgQGh1vb/BVCjNeqGpkRmFGRETcI91PTjGBwoxXcs5myswvxTAMi6sRERF/tM3V/KswI27gHJkpq3CQV1JhcTUiIuKP/GEbAyeFGS8UGhxIVGgQAEfUBCwiIm6w3U/WmAGLw8zy5csZPHgwKSkp2Gw2Pvvss2r3jx49GpvNVu1y+eWXW1OshyWob0ZERNykpLySvUeLAI3M1FphYSGdOnXijTfeOO1jBg4cyKFDh1yXL7/80oMVWideM5pERMRNdhwpwGFAg/Bg136AvizIyhcfNGgQgwYNOuNj7HY7SUlJNX7O0tJSSkurAkBeXt5512clbWkgIiLusv2EPZlsNpvF1dSe1/fMLF26lISEBNLS0hgzZgyZmZlnfPy4ceOIiYlxXVJTUz1Uad3S9GwREXGXdD/ZxsDJq8PMoEGDmDRpEosXL+bVV19l1apV9O7du9rIyy89/fTT5Obmui779u3zYMV1RwvniYiIu/jTGjNg8Wmms7n11ltd1zt06MBll11Gs2bN+OKLLxg2bNgpv8dut2O3+/ZKhqAtDURExH38aVo2ePnIzC8lJyfTrFkz0tPTrS7F7dQzIyIi7lBaUcnu7ELAP6Zlg4+FmezsbPbt20dycrLVpbidemZERMQddmUV4jAgOjTI1dLg6yw9zVRQUMD27dtdX+/atYt169YRGxtLbGwsY8eO5aabbiI5OZndu3fzzDPPEBcXx4033mhh1Z7hfIMdKyqntKISe1CgxRWJiIg/2HZC868/zGQCi8PMjz/+yDXXXOP6+oknngBg1KhRTJgwgQ0bNvDhhx9y7NgxkpOTueaaa5g6dSpRUf5xju9MGoQHExxoo7zSIKugjMYNwqwuSURE/MD2w/7V/AsWh5levXqdcSPFefPmebAa72Kz2YiPtHMwt4TMvBKFGRERqRPpx9eYae1HYcanembqG60CLCIidc0ZZtL8ZI0ZUJjxavHHZzSpCVhEROpCWYWD3Vn+NZMJFGa8WkK0RmZERKTu7M4upMJhEGkPIik61Opy6ozCjBeLj9T0bBERqTvOxfJa+8meTE4KM15MIzMiIlKXnNsYpPnRKSZQmPFqzpGZI9rSQERE6oC/bWPgpDDjxRKitaWBiIjUHefITGuNzIinuKZmF5SecT0eERGRsymvdLDr+Ewmf5qWDQozXi0uMgSA8kqDY0XlFlcjIiK+bE92EeWVBhEhgaTE+M9MJlCY8Wr2oEAahAcDmtEkIiK1k358GwN/m8kECjNeL0GrAIuISB2o2sbAv04xgcKM13P2zWRqRpOIiNRC1TYG/tX8CwozXi9BWxqIiEgdcJ5m8qdtDJwUZrycNpsUEZHaqqh0sPPI8T2ZdJpJPC0hSlsaiIhI7ew9WkRZpYOw4EAaNwizupw6pzDj5apGZtQzIyIi56eq+TeSgAD/mskECjNeL14jMyIiUkuufpkE/+uXAYUZr+dsAFbPjIiInC/XyIwfNv+CwozXc47M5JdUUFJeaXE1IiLii/x1g0knhRkvFx0ahD3I/GfS6IyIiJyrSofBjiP+u8YMKMx4PZvNpoXzRETkvO07WkRphQN7UABNGoZbXY5bKMz4AG1pICIi58vZL9MqPpJAP5zJBAozPkEzmkRE5HylZ/rvyr9OCjM+QDOaRETkfG0/7OyX8c/mX1CY8QmukZk8hRkRETk3246PzLT20zVmQGHGJySoAVhERM6Dw2GwPdM5LVthRizk2tKgQCMzIiJScweOFVNS7iAkKICmsf45kwkUZnyCs2dGp5lERORcOJt/W8ZFEBTov7/y/fdv5kcSos2RmezCMiodhsXViIiIr9jmXPnXj5t/QWHGJzSKCMFmM1dxPFpYZnU5IiLiI6q2MfDffhlQmPEJQYEBNIoIATQ9W0REam778dNM/rqNgZPCjI+Ii9SMJhERqTnDMKp2y/bTDSadFGZ8REK0Fs4TEZGaO3CsmKKySoIDbTRr5L8zmUBhxmfER2pLAxERqTnnqEyLuAiC/XgmEyjM+AznjCaNzIiISE1sryczmUBhxmc4R2YUZkREpCa2HT6+waSfz2QChRmfoZEZERE5F+mubQw0MiNeIl6zmUREpIYM44Q9mfx8WjYozPgMzWYSEZGaysgroaC0gqAAG80bRVhdjtspzPgI52aThWWVFJZWWFyNiIh4M+c2Bs3jIggJ8v9f9f7/N/QTkfYgwkMCAU3PFhGRM0uvR82/oDDjUxKi1AQsIiJnV9Uv4//Nv6Aw41Ocp5rUBCwiImdSNZNJIzNut3z5cgYPHkxKSgo2m43PPvus2v2GYTB27FhSUlIICwujV69ebNq0yZpivUBClJqARUTkzAzDqFpjph7MZAKLw0xhYSGdOnXijTfeOOX9r7zyCuPHj+eNN95g1apVJCUl0a9fP/Lz8z1cqXeoGplRmBERkVPLzC8lv6SCwAAbLeL8fyYTQJCVLz5o0CAGDRp0yvsMw+C1117j2WefZdiwYQBMnDiRxMREJk+ezAMPPHDK7ystLaW0tOqXfV5eXt0XbpF49cyIiMhZpB+fydSsUTj2oECLq/EMr+2Z2bVrFxkZGfTv3991m91u5+qrr2bFihWn/b5x48YRExPjuqSmpnqiXI/QyIyIiJxNemb9mskEXhxmMjIyAEhMTKx2e2Jiouu+U3n66afJzc11Xfbt2+fWOj1Js5lERORsnGvM1IdtDJwsPc1UEzabrdrXhmGcdNuJ7HY7drvd3WVZouo0k2YziYjIqW3PrF/Nv+DFIzNJSUkAJ43CZGZmnjRaU184ZzNlF5ZRUemwuBoREfE25kym+jcy47VhpkWLFiQlJbFgwQLXbWVlZSxbtowePXpYWJl1YiNCCLCBYZiBRkRE5ERZBWXkFpcTYIOW8fVjJhNYfJqpoKCA7du3u77etWsX69atIzY2lqZNm/L444/z0ksv0aZNG9q0acNLL71EeHg4I0aMsLBq6wQG2IiLtJOZX8qR/FISj28+KSIiAlXbGDSNDSc0uH7MZAKLw8yPP/7INddc4/r6iSeeAGDUqFF88MEH/P73v6e4uJiHH36YnJwcunXrxvz584mKqj9DZ78UH2WGGXMV4BiryxERES/iXPm3dT06xQQWh5levXphGMZp77fZbIwdO5axY8d6rigvlxBlZxOQmacZTSIiUp1zWnZaPWr+BS/umZFT08J5IiJyOq7mX4UZ8WbOGU1aOE9ERH7JtVt2PTvNpDDjYxKiNTIjIiInyy4o5WhhGTYbtIrXyIx4sfhI55YGWjhPRESqOJt/UxuGExZSf2YygcKMz3GNzBRoZEZERKo4p2XXpz2ZnBRmfEx85PGembzSM84EExGR+sU1LbueNf+CwozPcc5mKq1wkF9aYXE1IiLiLdKPz2RKq2fNv6Aw43PCQgKJspvLA2mtGRERcXKOzNS3admgMOOT4jWjSURETpBTWEbW8V7K+jaTCRRmfJJmNImIyImcozKNG4QRYbd0cX9LKMz4oITjG0xqZEZERKD+bmPgpDDjg5wjMwozIiICVc2/bRLrX/MvKMz4JOdaM9rSQEREoGpkpnU9XGMGFGZ8kkZmRETkRK6RGYUZ8RVVIzNqABYRqe9yi8pdI/U6zSQ+w7lztkZmRETEeYopJSaUyHo4kwkUZnyScxXgnKJyyiocFlcjIiJWqtrGoH6OyoDCjE9qEBZMcKANwLVIkoiI1E/1vV8GFGZ8UkCAjbhIzWgSERGtMQMKMz4rIUozmkREpGpkpnU93GDSSWHGRzn7ZjSjSUSk/sorKScjz/w9UF/XmAGFGZ8VrxlNIiL13vbjzb+J0XZiwoItrsY6CjM+qmpkRmFGRKS+2n78FFNaPZ7JBFA/J6T7AWfPzL6jRezPKbK4GhERscK6/ceA+n2KCRRmfJZzZObr9Cyu/L8lFlcjIiJWalOPm39BYcZndW0eS8v4CA7kFFtdioiIWCgh2s41beOtLsNSCjM+qmFECIuf7GV1GSIiIpZTA7CIiIj4NIUZERER8WkKMyIiIuLTFGZERETEpynMiIiIiE9TmBERERGfpjAjIiIiPk1hRkRERHyawoyIiIj4NIUZERER8WkKMyIiIuLTFGZERETEpynMiIiIiE9TmBERERGfFmR1Ae5mGAYAeXl5FlciIiIiNeX8ve38PX4mfh9m8vPzAUhNTbW4EhERETlX+fn5xMTEnPExNqMmkceHORwODh48SFRUFDabrU6fOy8vj9TUVPbt20d0dHSdPnd9oONXezqGtaPjV3s6hrWj43d6hmGQn59PSkoKAQFn7orx+5GZgIAAmjRp4tbXiI6O1puwFnT8ak/HsHZ0/GpPx7B2dPxO7WwjMk5qABYRERGfpjAjIiIiPk1hphbsdjvPP/88drvd6lJ8ko5f7ekY1o6OX+3pGNaOjl/d8PsGYBEREfFvGpkRERERn6YwIyIiIj5NYUZERER8msKMiIiI+DSFmfP0n//8hxYtWhAaGkrnzp35+uuvrS7JK40dOxabzVbtkpSU5LrfMAzGjh1LSkoKYWFh9OrVi02bNllYsfWWL1/O4MGDSUlJwWaz8dlnn1W7vybHrLS0lMcee4y4uDgiIiIYMmQI+/fv9+DfwjpnO36jR48+6T15+eWXV3tMfT5+48aNo0uXLkRFRZGQkMANN9zA1q1bqz1G78Ezq8kx1PuwbinMnIepU6fy+OOP8+yzz7J27Vp69uzJoEGD2Lt3r9WleaX27dtz6NAh12XDhg2u+1555RXGjx/PG2+8wapVq0hKSqJfv36uPbXqo8LCQjp16sQbb7xxyvtrcswef/xxPv30U6ZMmcI333xDQUEB119/PZWVlZ76a1jmbMcPYODAgdXek19++WW1++vz8Vu2bBmPPPIIK1euZMGCBVRUVNC/f38KCwtdj9F78MxqcgxB78M6Zcg569q1q/Hggw9Wu61t27bGU089ZVFF3uv55583OnXqdMr7HA6HkZSUZLz88suu20pKSoyYmBjjzTff9FCF3g0wPv30U9fXNTlmx44dM4KDg40pU6a4HnPgwAEjICDAmDt3rsdq9wa/PH6GYRijRo0yhg4detrv0fGrLjMz0wCMZcuWGYah9+D5+OUxNAy9D+uaRmbOUVlZGatXr6Z///7Vbu/fvz8rVqywqCrvlp6eTkpKCi1atOC2225j586dAOzatYuMjIxqx9Jut3P11VfrWJ5GTY7Z6tWrKS8vr/aYlJQUOnTooON63NKlS0lISCAtLY0xY8aQmZnpuk/Hr7rc3FwAYmNjAb0Hz8cvj6GT3od1R2HmHGVlZVFZWUliYmK12xMTE8nIyLCoKu/VrVs3PvzwQ+bNm8c777xDRkYGPXr0IDs723W8dCxrribHLCMjg5CQEBo2bHjax9RngwYNYtKkSSxevJhXX32VVatW0bt3b0pLSwEdvxMZhsETTzzBlVdeSYcOHQC9B8/VqY4h6H1Y1/x+12x3sdls1b42DOOk28T8D+vUsWNHunfvTqtWrZg4caKr2U3H8tydzzHTcTXdeuutrusdOnTgsssuo1mzZnzxxRcMGzbstN9XH4/fo48+yvr16/nmm29Ouk/vwZo53THU+7BuaWTmHMXFxREYGHhSMs7MzDzpk4qcLCIigo4dO5Kenu6a1aRjWXM1OWZJSUmUlZWRk5Nz2sdIleTkZJo1a0Z6ejqg4+f02GOPMWvWLJYsWUKTJk1ct+s9WHOnO4anovdh7SjMnKOQkBA6d+7MggULqt2+YMECevToYVFVvqO0tJTNmzeTnJxMixYtSEpKqnYsy8rKWLZsmY7ladTkmHXu3Jng4OBqjzl06BAbN27UcT2F7Oxs9u3bR3JyMqDjZxgGjz76KDNnzmTx4sW0aNGi2v16D57d2Y7hqeh9WEvW9B37tilTphjBwcHGe++9Z/z888/G448/bkRERBi7d++2ujSv8+STTxpLly41du7caaxcudK4/vrrjaioKNexevnll42YmBhj5syZxoYNG4zbb7/dSE5ONvLy8iyu3Dr5+fnG2rVrjbVr1xqAMX78eGPt2rXGnj17DMOo2TF78MEHjSZNmhgLFy401qxZY/Tu3dvo1KmTUVFRYdVfy2POdPzy8/ONJ5980lixYoWxa9cuY8mSJUb37t2Nxo0b6/gd99BDDxkxMTHG0qVLjUOHDrkuRUVFrsfoPXhmZzuGeh/WPYWZ8/Tvf//baNasmRESEmJceuml1abcSZVbb73VSE5ONoKDg42UlBRj2LBhxqZNm1z3OxwO4/nnnzeSkpIMu91uXHXVVcaGDRssrNh6S5YsMYCTLqNGjTIMo2bHrLi42Hj00UeN2NhYIywszLj++uuNvXv3WvC38bwzHb+ioiKjf//+Rnx8vBEcHGw0bdrUGDVq1EnHpj4fv1MdO8B4//33XY/Re/DMznYM9T6sezbDMAzPjQOJiIiI1C31zIiIiIhPU5gRERERn6YwIyIiIj5NYUZERER8msKMiIiI+DSFGREREfFpCjMiIiLi0xRmRERExKcpzIiIiIhPU5gRERERn6YwIyIiIj5NYUZEfMqRI0dISkripZdect32/fffExISwvz58y2sTESsoo0mRcTnfPnll9xwww2sWLGCtm3bcskll3Ddddfx2muvWV2aiFhAYUZEfNIjjzzCwoUL6dKlCz/99BOrVq0iNDTU6rJExAIKMyLik4qLi+nQoQP79u3jxx9/5KKLLrK6JBGxiHpmRMQn7dy5k4MHD+JwONizZ4/V5YiIhTQyIyI+p6ysjK5du3LxxRfTtm1bxo8fz4YNG0hMTLS6NBGxgMKMiPic3/3ud3zyySf89NNPREZGcs011xAVFcWcOXOsLk1ELKDTTCLiU5YuXcprr73GRx99RHR0NAEBAXz00Ud88803TJgwweryRMQCGpkRERERn6aRGREREfFpCjMiIiLi0xRmRERExKcpzIiIiIhPU5gRERERn6YwIyIiIj5NYUZERER8msKMiIiI+DSFGREREfFpCjMiIiLi0xRmRERExKf9P80y5ZjuhTTaAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABhE0lEQVR4nO3dd3xV9f3H8dfNutmBkAmETdguRAEXslEBF2pBBQfaOupoa9X+arGtYm211mpxFtGyhwqobAEVUaaAMsIGIYQEyN73/P443JtEEBKSe88d7+fjcR/e3Htz74fjhfu+3/P5fr82wzAMRERERHxUkNUFiIiIiNSHwoyIiIj4NIUZERER8WkKMyIiIuLTFGZERETEpynMiIiIiE9TmBERERGfFmJ1Ae7mcDg4dOgQMTEx2Gw2q8sRERGRWjAMg/z8fJo2bUpQ0JnHXvw+zBw6dIi0tDSryxAREZFzcODAAZo3b37Gx/h9mImJiQHMgxEbG2txNSIiIlIbeXl5pKWluT7Hz8Tvw4zz1FJsbKzCjIiIiI+pTYuIGoBFRETEpynMiIiIiE9TmBERERGfpjAjIiIiPk1hRkRERHyawoyIiIj4NIUZERER8WkKMyIiIuLTFGZERETEpynMiIiIiE9TmBERERGfpjAjIiIiPk1h5hzllhSy5MvXycw5bnUpIiIiAU1h5hy9878xPLbrDcZ8PJg5GXMoqSixuiQREZGApDBzjnJikgh3OPgxuIg/rfoT/Wf155V1r3C44LDVpYmIiAQUm2EYhtVFuFNeXh5xcXHk5uYSGxvbYM/72ebDHJp5PyGN1jO1USN+DLYBEGwLpm+LvozsOJLuyd2x2WwN9poiIiKBoi6f3xqZOUeJMXZeKhtN3/xoPtl/gH+Ft+fSlEupNCpZvG8xdy28ixHzRvBhxoc6BSUiIuJGCjPnKCkmnCLC+U3FAwTZgum7dSnvNB3MnGFzuDn9ZsKDw9l+fDvPrHqGAbMG8Mq6V8gszLS6bBEREb+j00znqLiskk7PLABge78N2L/6O4THwa9WQVxzcktz+TDjQ6Zum8qhwkNA1SmoUZ1GcVHSRToFJSIi8jN0mskDIsKCibGHAHCg64PQrDuU5MJHvwKHgzh7HGO6juHTGz/llatf4ZKUS1ynoMYsGMMt82/RKSgREZEGoDBTD4mxdgCOFjngxrchNBL2rIRvJrgeExwUTL8W/Xh30LvMHjbbdQpq27FtrlNQ/1r/L52CEhEROUcKM/WQGG2Gmaz8EmjSFgY9Z96x5Fk48sMpj09vnM6fev2JJSOW8Hj3x0mNSuVE6Qne2fwOg2cP5jfLf8O6I+vw8zN/IiIiDUphph6SYsMBOJpfat7Q/S5IHwyVpTBnLFSUnvb34uxx3NX1LvMUVJ+qU1CL9i2qcQqqtPL0vy8iIiJVFGbqwTky4wozNhsM+zdEJsCRLbDsL2f8/ZCgEPq1rDoFdVP7m2qegpqpU1AiIiJnozBTD0mxPwkzANFJZqABWPUa7PmiVs+V3jidcb3HsfjmxTzW/TFSo1I5Xnq8ximo9UfW6xSUiIjITyjM1ENVz8xPTgd1vAYuuhMw4MNfQvGJWj9no/BG3N31btcpqB4pPVynoEYvGM2t82/VKSgREZFqFGbq4bQjM06DxkPj1pB3ED79XZ2f23kK6r+D/susobO4qf1N2IPtbD221XUK6tX1r+oUlIiIBDyFmXpIjKk2m+mn7NHmdG1bMGyeAVtmn/PrdIjvwLje41hy85Iap6De3vw2g2cP5rHPH2P14dU6BSUiIgFJYaYekmLM2UzHi8opq3Cc+oC0HnDlb83r8x+D3B/r9XrVT0H9s88/uTj5YiqNSpbsX8LYRWMZ/vFwJm+dTEFZQb1eR0RExJdoO4N6cDgM0v/vMyocBque7EvTRhGnPqiyHN4dCIfWQ+ur4I6PIKjhMmTG8Qymb5/OvF3zKKooAiAiJIKhbYZyW8fbaN+4fYO9loiIiKdoOwMPCQqyuU41nbZvBiA4tNrqwCvgmzcatIb2jdvzfz3/j6UjlvL0pU/TJq4NxRXFzNgxgxvn3siYBWNYsHcB5Y7yBn1dERERb6EwU09JMT8zo6m6hHYw8K/m9SXjTrs6cH1Fh0Xzi46/4KPhH/HuwHcZ0HIAwbZg1h1Zx+9W/I5Bswbxn43/Iasoq8FfW0RExEoKM/V0xibg6i6+G9oPOrk68H0/uzpwfdlsNi5JvYSX+7zMgpsW8Mvzf0lCRAJHi48y4bsJDJw1kMeXP86azDVqGBYREb+gMFNPiTE/2dLg57hWB24CRzbD58+5vbaUqBQevOBBFt20iL9f+XcuSrrItXP33Qvv5sa5NzJt2zQKywvdXouIiIi7KMzUU2JtTjM5xSRXrQ781auw90s3VlYlNDiUwa0HM2nIJGYNncWI9BFEhESw88ROnvvmOfrN7Mdzq59j14ldHqlHRESkISnM1FPS2RqAf6rjtXDhHbhWBy7JdV9xp9EhvgPP9HqGpSOW8uQlT9IqthWF5YVM2z6N6z++nnsW3sPifYupcFR4tC4REZFzpTBTT3UamXEaPB4at4LcA/DpE+4p7CxiwmIY1WkUc6+fy1sD3qJvWl+CbEF8m/ktjy9/nEGzB/HGd2+QXZxtSX0iIiK1pTBTT86Rmey6hBl7zMnVgYNg0zTYMsdN1Z2dzWajV9Ne/Kvvv1h400LGdhtLfHg8WUVZvL7xdQbMHMDvVvyOdUfWqWFYRES8ksJMPVVfZ6ZOH/Zpl8AVvzGvz38M8g65obq6SYlK4dcX/ZrFNy/mhSte4ILEC6gwKliwdwFjFozh5nk3M2P7DIrKi6wuVURExEUrANdTaUUlHf5vAQAbnxlAo8iw2v9yZTm8OwAObYA2feD2Dxt0deCGsO3YNqZtm8Ynuz+hpNKcfh4dGs3wdsO5tcOttI5rbXGFIiLij7QCsAfZQ4KJiwgF6tg3A1WrA4dEwO7l8O2bDV9gPXWM72hucjliCb+7+He0iGlBQXkBk7dOZthHw7h30b0s2rtIKwyLiIhlFGYaQJ1nNFWX0B4G/sW8vvhPkLW1AStrOHH2OO7scifzbpjHG/3foE9aH4JsQXxz+Bt+s+I3DJg5gFfXv8qPBfXbTFNERKSuFGYaQK1XAf45Pe6FdgNOrg48FirKGrC6hhVkC+KyZpfx777/5rMbP2Nst7EkRCSQU5LD25vfZsjsIfxqya9Ytn+ZpneLiIhHWBpmJkyYwHnnnUdsbCyxsbH06tWLzz77zHX/mDFjsNlsNS49e/a0sOLTq9fIDJirAw9/3VwdONMzqwM3hKbRTfn1Rb9m0c2LeLnPy/RK7YWBwZc/fskjnz/CoNnmflCZhZlWlyoiIn7M0jDTvHlzXnjhBdauXcvatWvp27cvw4cP5/vvv3c9ZvDgwRw+fNh1+fTTTy2s+PSSYs0tDbLy6rHfUkwyDH3VvP7Vv2DvVw1QmWeEBoUyoOUA3hr4Fp/c8Al3db2LxvbGZBVlMeG7CQyaPYiHlz3MFwe/oNJRaXW5IiLSkLxgHpGlYWbo0KFcc801pKenk56eznPPPUd0dDSrV692PcZut5OSkuK6xMfHn/E5S0tLycvLq3Fxt8Toc1g473Q6XQcX3o5VqwM3hBaxLXi8++MsGbGEF698kYuTL8ZhOFh+YDkPLH2Aa+Zcw9ub3tZifCIifmDtttnc+97FbNu10NI6vKZnprKykmnTplFYWEivXr1cty9fvpykpCTS09MZO3YsWVlZZ3ye8ePHExcX57qkpaW5u3SSYut5mqm6wS+cXB14P3z2+/o/n0XCgsMY0noIEwdP5OPrP+aOzncQGxbLocJDvLrhVQbMHMDjyx/n60Nf4zAcVpcrIiK1ZBgG3xz+hrs+G81d34zjm6Ay3lr1F0trsnydmc2bN9OrVy9KSkqIjo5mypQpXHPNNQBMnz6d6OhoWrZsyZ49e/jjH/9IRUUF69atw263n/b5SktLKS2tChV5eXmkpaW5bZ0ZgFU7sxn5zje0TYxi6W/61P8J938DEweD4YARk6DL9fV/Ti9QUlHCon2LmLl9JhuPbnTdnhaTxoj0EQxvN5z48DOPvImIiDUMw+Drw1/z5ndvsj5rPQAhhsGNxRXcc+MMmiaf16CvV5d1ZiwPM2VlZezfv58TJ04we/Zs3nnnHVasWEHnzp1Peezhw4dp2bIl06ZN48Ybb6zV87t70TyAnVn59H95JbHhIWwaN6hhnnTpX+CLf0BEY/jV1xCb2jDP6yV2HN/BzO0zmb97PgXlBYDZe9O/ZX9GpI/g4uSLsdlsFlcpIiKGYU7seGPTG2w6ugmAUFsIN+Ue554TeaSM+MDcRLmB+VSY+an+/fvTtm1b3nzz9AvItW/fnnvvvZff/752p2A8EWZyi8o5/8+LANj2l8GEhwbX/0kry+Gd/nB4I7TtC6Nme93qwA2hqLyIBXsXMGP7DL7PqWr8bh3XmhHpIxjWdhhx9jgLKxQRCUyGYbDi4Are+O4N17/P9mA7I9oMZcy300k+8SNcNBqGveqW1/fpFYANw6hxmqi6nJwcDhw4QGqqd41SxEaEEBZiHsoG6ZuBmqsD71oGa95umOf1MpGhkdzY/kamXTeN6ddN5+b0m4kIiWBP7h5eXPMi/Wb24w9f/oGNWRu10aWIiAc4DAdL9y3l1vm38vCyh/k+53siQiIY3Xk0C25awO8P7TeDTHwbGPS81eUCFo/MPP300wwZMoS0tDTy8/OZNm0aL7zwAgsWLKBXr16MGzeOm266idTUVPbu3cvTTz/N/v372bp1KzExMbV6DU+MzABc9sIyfjxRzOxf9aZ7y8YN98Tfvg2f/hZCwuG+FZDUseGe20sVlBXw6Z5PmbF9BtuPb3fd3r5xe0akj+C6NtcRE1a7//8iIlI7DsPBkn1LeHPTm+w4vgOAiJAIftHxF9zZ+U6aRDSBTTNhzr1gC4Z7FkHzi91WT10+v0PcVkUtHDlyhDvuuIPDhw8TFxfHeeedx4IFCxgwYADFxcVs3ryZ999/nxMnTpCamsrVV1/N9OnTax1kPCkp1s6PJ4obbmTGqce9sGMB7Fxirg5871IIqcNmlj4oOiyaWzrcwoj0EWzK3sTM7TNZuHchGcczeP6b5/nnun8ypPUQbkm/hS4JXawuV0TEp1U6Klm0bxFvfvcmu3J3ARAVGsXIjiO5o/MdNA4/+QX9xH745Dfm9at+79YgU1de1zPT0Dw1MnPf+2tZ9MMR/jK8C3f0atWwT56fCf/pBcXH4PLHof+fGvb5fUBuaS7zd89n5vaZrr9sAJ3iOzG83XCGtB6imVAiInVQ4ajgsz2f8damt9ibtxeAmNAYRnUexe2dbq/Zr+iohEnDYN+X0LwH3LUAgt07HuIzIzP+pEHXmvmpmBQY+i+YcQd8+U9oPwBa9m741/FicfY4RnUaxciOI1mftZ6ZO2ayaO8ith7bytZvt/KPNf/g8uaXM6ztMK5qfhVhwf49eiUicq7KHeV8svsT3t70Nvvz9wMQGxbLHZ3vYGSnkcSGnSY4rPq3GWRCo+DGt9weZOrKu6rxYYnRJ7c0cEeYAeg8DC4YBRsnw5z74VdfQbj7Rpq8lc1mo3tyd7ond+f3PX7Pp3s+Zd6ueXyf8z3LDyxn+YHlxIbFMrjVYIa1G8Z5CedpireICFBeWc683fN4e9PbHCw4CEAjeyNGdxnNbR1uIzos+vS/ePg7WPZX8/qQv5mNv15GYaaBuHVkxmnwC7D3C/O85We/hxsmuO+1fEDj8MaM6jSKUZ1GsevELubumsv83fPJKspixo4ZzNgxg5axLRnaZijXtb2OZtHNrC5ZRMTjyirL+GjnR7y7+V0OFR4CID48njFdxnBrh1uJDI38+V8uL4bZY8FRDh2dW+54H/XMNJClW49wz6S1dGsWx7yHL3fb67Dva3jvGnN14Fveh87D3fdaPqjSUcm3md8yb9c8luxfQnFFseu+Hik9GNpmKANaDvj5byAiIn6itLKUORlzeHfzuxwpOgJAk/Am3NX1LkakjzhziHH69Hfw7VsQnQK/WgVRTdxcdRWfXjSvoXkqzGw6eIJhr31Fcqydb57u77bXAWDpn+GLl/x2deCGUlRexOJ9i5m3ax7fZn6LgflWDw8Op2+LvgxvO5xLUy8lOKgBFjkUEfESJRUlzNoxi/9u+S9Hi48CkBSRxN3d7uam9jcRHhJeuyfKWAyTbzav3z4b2rn5s+0nFGaq8VSYycwtoef4pQQH2cj46xCCgtzYp1FRBu/2N89jtukDt88BfSCf0eGCw8zfPZ+5u+a6uvbB/At+bZtrGdp2KO0bt7euQBGReioqL2LmjplM3DKRnJIcAJIjk7m3273c0P4G7MGn39PwtAqzYUJvKDgCl/7S7JXxMIWZajwVZsorHaT/32cYBqz9v/4kRNfhTXMujm6Ht/pAeRH0eQr6POne1/MThmGwJXsLc3fN5bO9n5Fbmuu6r1N8J4a1HcaQ1kPMxaFERHxAUXkR07ZPY9L3kzhWcgyAplFNufe8exnednjdZ3caBky/HbbNh8SOcN9yCI1o+MLPQmGmGk+FGYDuf1lMTmEZnz1yBZ1SPTDT6Ltp8OH9gO3kEGA/97+mHymvLGflwZXM3TWXlT+upMJRAUCwLZjLm52c5p12Vd2+zYiIeEh2cTYzts9g6rapnCg9AUDz6Obcd959XNf2OkKDQs/tide/D3MfhqBQGLsMUht2N+za0jozFkmMsZNTWEZWfimdPNHGcv5tsH81rJsIs++FX34Bcc098ML+ITQ4lH4t+9GvZT+Olxxnwd4FzN05ly05W1hxcAUrDq4gJizGnObddhjnJ56vad4iYrkt2VuYvHUyC/YucH0JaxnbkrHdxnJNm2vOPcQA5OyCz06O9Pf7o2VBpq40MtOA7nj3G77IyOYfI87n5u4eChXlJfDfgWb/TPNLYMwnfr/dgbvtPrGbebvnMW/XPNcMAIAWMS0Y2nYoQ9sO1TRvEfGockc5S/YtYfLWyXx39DvX7ecnns+oTqMY0HIAIUH1HJ+orID/DoIf10KrK+DOjy3tx9Rppmo8GWYen7GROet/5InBHXigTzu3vlYNx/fCm1dCSS70fAAGj/fca/uxSkcla46sYd6ueSzet7jGNO/uyd0Z3na4pnmLiFvlFOcwa8csZmyfQVZxFgAhQSEMaTWEkZ1G0jWha8O92PIXYPl4sMeZC7M2Smu45z4HCjPVeDLMvPDZNt5YsYu7LmvFn4Z6eAPEbZ/CtF+Y10dMgi7Xe/b1/VxReRFL9y/l410f8+3hqmne9mA7Vza/koGtBnJlsytrt26DiMhZ/JDzA5O3TuazPZ9R7igHICEiwbUJb0JEQsO+4IE15qiMUQk3vQvdbm7Y5z8H6pmxSGKM2Sjqti0NzqTjNXDZo/DVK/DxQ5DcFRI8ODrk5yJDI12nmDILM13TvPfk7mHxvsUs3reY8OBwrmx+JYNaDeKK5lcQEeL57n8R8V0VjgqW7l/KlK1TWJ+13nV71yZdGdV5FINaDiI0uB79MD+ntADmjDWDTLcRXhFk6kphpgElxXhgS4Mz6ftHOLgG9n0FM+6Ee5dAmEYKGlpKVAr3druXe7rew7Zj21i4dyEL9y7kYMFBFu1bxKJ9i4gIiaBP8z4MajWIy5pdVvtFqkQk4BwvOc7sjNlM2zbN1acXYgthQKsB3N7pds5LdHMT7sKn4PgeiG0O1/zDva/lJjrN1IBW787htrdW0zohis9/28etr/Wz8jPhjSugMAvOHwnX/wc0A8ftDMPgh2M/sHDvQhbtXcSPBT+67osMiaRPWlWw0VRvEQHYfmw7U7ZN4ZPdn1BaaX4Jjg+PZ0T6CG7pcAtJkUnuL2LrfJg+CrDB6HnQ+gr3v2YtqWemGk+Gmd1HC+j70gqi7SFseXaQW1/rjPZ8Ae8PM/dvGvZvuOhO62oJQIZh8H3O964Rm8OFh133RYVGcXXa1QxqNYjeTXvXfTErEfFpFY4Klh9YzuStk1l7ZK3r9k7xnbi98+0MajXIc1948jPhP72g+Bhc9ggM+LNnXreWFGaq8WSYKSitoOufFgLww58HERlm4Vm8L16Gpc9CsN083eQjawX4G8Mw2Jy92RVsqk/1jg6Npm+LvgxqNYheqb3ccy5cRLxCbmkuczLmMHXbVNcXnGBbMP1b9mdUp1FckHiBZ9exMgxz36WdSyClG9y7zOuW9VCYqcaTYcYwDDo/s5Di8kqW/7YPrRKi3Pp6Z+RwmLObdiyAxq3gvhUQ0ci6egSH4WDT0U3mqah9i8gqynLdFxMWQ980M9j0TO2pYCPiJzKOZzBl2xTm75pPSWUJAI3sjVynklKiUqwp7Nu34dPfQki4+fmQ1NGaOs5AYaYaT4YZgKv+/jn7coqY+cte9GgV7/bXO6OiY/DWVXBiP3S4Fm6brP4ZL+EwHHx39DtXj41zZ1uA2LBY+rXox6BWg7gk9ZL6reYpIh5X6ahk5cGVTN46mW8yv3Hd3qFxB0Z1GsWQ1kOsnRSQtc38bKgogSF/h0vvs66WM1CYqcbTYebmCatYu+84r4+8iGvP88SeBmfx43pz7YDKMhjwF7js11ZXJD/hMBxsyNrAgj0LWLxvsWu3WzC/wTmDTY+UHvVf4VNE3CavLI8PMz5k6raprkkAQbYg+rXox8iOI+me3N36LVEqyuCdvpC5Gdr1h1GzvPZLrtaZsVBSrHN6donFlZzU7CIY/AJ88jgsGQfNL4aWva2uSqoJsgXRPbk73ZO78+QlT7I+az0L9y5k8b7FHCs5xuyM2czOmE1je2P6t+zPoFaD6J7cXcFGxEvsPrGbKdumMHfXXNdK4bFhsdycfjO3driVptFNLa6wms+fM4NMRDwMf91rg0xd6V/DBpYYbeHCeT/n4rvNDSk3z4CZd5kbUkZ7YMqf1FlwUDA9UnrQI6UHT17yJOuOrGPh3oUs2beE46XHmbljJjN3zCQ+PJ4BLQcwqNUgLky6UMFGxMNyinNYun8pC/YuYE3mGtft7Rq1Y1SnUVzb5lrvWzhz75fw1b/M68NehRiL+nXcQP8CNrCkWPM8qGUL552OzQbX/RMyN8HRbTDrbss3EJOzCwkK4dLUS7k09VKevvRp1mSuYeHehSzdv5RjJceYvn0607dPJyY0hh4pPejdtDe9mvYiLSbN+qFsET90rOQYS/cvZeHehazJXIPDcABgw8bVaVczqtMoeqT08M6/f8Un4MNfAgZceAd0Gmp1RQ1KPTMNbMaaAzwxexNXpScy6e5L3P56dXJ0O7x1NZQXwhW/Nbd3F59T7ihnzeE1LNxnBpvc0twa9zeLbkavpr3oldqLS1MvJc4eZ1GlIr7vRMkJV4D5NvNbKo1K131dmnRhUKtBDGo1yLtOJZ3O7LHm6Hzj1vDLL8Hu/RvkqgG4Gk+Hmc+3Z3HXxDV0To3l00e8ZyVFl82zYPY95vWRMyDdwsX9pN4qHZVsPbaVrw99zdeHv2ZD1gYqHBWu+4NsQXRp0oWeqT3p1bQXFyReoGnfImeRW5rLsv3LWLh3IasPr64RYDrFd2JQq0EMbDWQtBhrd5WuNee/+7ZguHshpPWwuqJaUZipxtNhZsuPuVz37y9JiLaz9v/6u/31zsknv4U1b0N4I7N/plELqyuSBlJUXsTaI2vNcHPoa3bl7qpxf0RIRNUpqdRetI5r7Z1D4iIelluay+cHPjcDzKHVVBhVXwo6xnc0A0zLgbSI9bF/L08cgAmXQWkuXPUkXP2U1RXVmmYzWcg5m+lYYSmVDoPgIC/8oBj0HPy4Dg6thxmj4e4FEKL9gvxBZGgkVza/kiubXwnAkcIjfH3YDDarD6/mWMkxVh5cycqDKwFIjkx2nZLq2bQn8eEWr40k4kF5ZXksP7CchXsXsurQqhqjmumN010BplVcK8tqrBeHAz76lRlkml0MV/7W6orcRiMzDazSYdD+D5/iMODbp/u5GoK9zon98OaVUHwceoyFa31zp1SpPYfhYMfxHXx96GtWHVrF+iPrKXOU1XhMp/hO9Gzak95Ne3Nh0oXaFFP8TkFZAZ8f+JxFexfx1aGvKHeUu+5r16id6xRSm7g2FlbZQL56FRb/EUKjzFH4Jm2trqhOdJqpGk+HGYAezy3haH4p8x++nK7NvLj5MmOxuTcHwE3vQrebra1HPKqkooT1Wetdp6S2H99e4357sJ3uyd3p3bQ3PVN7kt44XaekxCcVlhe6RmC++vGrGiG+TVwbBrcazMBWA2nbyLc+7M8oc7M54cNRDkNfhe6jra6oznSayWKJ0XaO5pd61/Ts02k/AK78Haz8O8z9tbnZWGIHq6sSDwkPCad30970bmouophdnM3qw6td4eZo8VFWHVrFqkOrAGgS3sQ8JXXytFRiZKKV5YucUVF5ESsOrmDh3oV8cfCLGgGmVWwrBrcezKCWg2jXuJ2FVbpJebE5e8lRbm5lc9GdVlfkdgozbpAUa+eHw1621szP6fMUHPgG9qyE6XfA2GU+MWVPGl5CRALXtbmO69pch2EY7Dqxi1WHVvH14a9Zd2QdOSU5zN89n/m75wPmkHyvpr24OPliuiV0U7gRyxWVF7Hyx5Us2ruIlQdXUlpZ9W9wy9iWrmnU7Ru19+9RxiXPwtGtEJ0Mw/7tN6v8nonCjBskxThXAfaSLQ3OJCgYbvovvHkFZG+H+Y/BjW8FxJtffp7NZqNd43a0a9yOO7vcSVllGRuzNvL1YbPfZmvOVnae2MnOEzv54IcPAEiJSqFbQje6JnSlW0I3ujTpQmRopMV/EvF3xRXFfHHwCxbuXcjKgytdO1MDtIhp4QowAXOadOdS+GaCeX34fyCqibX1eIjCjBskxnjhlgZnEp0IN0+E9641F1Vq0RN63GN1VeJFwoLDuCT1Ei5JvYRHLnqE4yXH+SbzG1YfWs13R79j14ldZBZmklmYyeJ9iwFzjZu2jdq6As55CefRtlFbbb0g58xhONibu5fN2ZvZnL2ZLdlb2H58e41ZSM2jm7sCTMf4joERYJyKjsFHD5jXL7kP2nvp8iBuoH9V3CApxgu3NDiblr1gwLOw6P9gwZPQ9EJzk0qR02gc3pjBrQYzuNVgwGyw/CHnB/ND5qj5QXOk6AgZxzPIOJ7BnIw5gLnOTaf4TmbASTQDTmpUamB94EitHSk8wpbsLa7g8n3O9xSUF5zyuGbRzRjYaiCDWg2ic3znwHw/GQbM+zUUZEJCB+j/rNUVeZTCjBv43MiMU6+HzA0pt80315+5fwVEat0RObuo0CjXBplOWUVZrg+hzUc3syVnC4XlhazPWs/6rPWux8WHx9MtoZvr0iWhi7ZgCED5Zfl8n/N91fslewtZxVmnPO6ngbhrk640i24WmAGmuo2TYes8CAo1WwXCAusUr8KMGzh7ZnxqZAbMPpnhr8OR7+H4HnNTsl9Mg6AgqysTH5QUmUS/Fv3o16IfUHWKYFP2Jte37R3HdnCs5BgrDq5gxcEVrt9tFdvK1XvTLaEbHeI7EBYcZtUfRRpYWWUZO47vqAq72ZvZk7vnlMcF2YJo36i9673QNaGrTlWezrHd8Nnvzet9/wBNL7C0HCtonRk32JdTyFV/X054aBBb/zzY974xHN4E7/SHylLo9wxc8RurKxI/VVJRwrZj22r0QBzIP3DK40KDQukY37FGwGkR24Igm4K2t3MYDvbl7atxumjbsW01FqtzahbdrEYTecf4jmoiP5vKCpg4BA5+Cy0vg9HzzIkdfkDrzFjMeZqppNxBQWkFMeE+trFf6nnmisBzH4Zlf4XmPaD1lVZXJX4oPCScC5Iu4IKkC1y3HS85zpbsLWzJ3uIaxTlResIVeKYyFYCYsBi6JXQjvXE6KVEppESlkBqVSkpUCo3tjX3vS4SfOFp0tMaIy/fZ35Nfnn/K4xrZG9UYcema0FXbaZyLL/5hBhl7LNzwht8EmbpSmHGDyLAQou0hFJRWkJVf6nthBuDCO8z+mY2TYdbdcP8XEJtqdVUSABqHN+aK5ldwRXNz13nDMDiYf9AVZjZnb2Zrzlbyy/JrLOpXnT3YbgacyJRTgo7zv/rGf+4Mw6CwvJCs4iwyCzPZmrPVFV6OFB055fHhweF0atKpRnhpHt1cgbO+di6B5S+Y1699KaA3DVaYcZOkGDsFpRUczS+lbaIPLkJns8E1/4BDGyHrezPQjJ4HwXrLiGfZbDbSYtNIi03jmjbXAFDuKCfjeAabj25mb95e17Tww4WHySnJobSylH15+9iXt+9nnzc2LLZGuHFdIlNIjU4lKTKJ0CAf/CJSD4ZhkFeWR3ZxNkeLj3K06Ohp/5tdnE1xRfFpnyPIFkS7Ru1czdzdErrRtlHbgDuWbnd8L8y6BzCg+xg47xaLC7KWPpncJCHGzu7sQt+b0VRdWCTc8j681Qf2r4Jlf4YBf7a6KhFCg0Lp3KQznZt0PuW+ssoyjhQdqRFwqv/3SOER8svzySvLI68sjx3Hd5z2NWzYSIxIrBF0qo/uJEclEx8e7xN9O4ZhkFuaWzOY/ExIqb5q7tlEh0aTGJlIeuN014hLp/hOGvVyt/JimH47lJyAZt1hyItWV2Q5hRk38dkZTT+V0A6GvwYzR8NX/4K0S6HjtVZXJfKzwoLDSItJIy0m7WcfU1BWUBVwijI5XHDYFYCcoafcUU5WcRZZxVlsyt502ucJDQqlSUQT7MF2QoNCzUtwKGFBYYQGhRIWHOa6zXm/87af/rf648KCwmo8j+v20/yOzWYjpzjnlHCSXZxNVnEW2UXmKMvpGm5/TmxYLIkRiSREJpAUkVTjv4kRia7rESERdf7/I/VkGOZK7ZmbITLB/MIZot3tFWbcJNGXtjQ4my7Xw4EHYPV/4MNfmevPxLe2uiqRcxYdFk27sHY/u8mgw3BwrOQYRwqPuMJN9fCTWZDpCgiZhZkerv7cNbI3IiEigaTIpBr/TYxIdF1PiEggPCTc6lLl56x5B76bCrYgGDER4ppbXZFXsDTMTJgwgQkTJrB3714AunTpwjPPPMOQIUMAc2j02Wef5a233uL48eNceumlvP7663Tp0sXCqmvHJ1cBPpP+z8LBtWbX/Iw74Z7FEKp/8MQ/BdmCXB/sXRJO/+9NuaOcrKIsjhUfo9xRTrmjnLLKMvO/jjLKK83bnP913lbmKKtxe43fq6zFfT95TofhID48vuZISkQCiZGJNUZTEiIStFaPrzvwLSx4yrze/1nNMq3G0jDTvHlzXnjhBdq1M78dTZo0ieHDh7Nhwwa6dOnCiy++yMsvv8x7771Heno6f/3rXxkwYADbt28nJibGytLPym9OMzmFhJnfAt68EjI3wYLfw9B/WV2ViGVCg0JpFt2MZtHNLK3DYTh8om9H6in/iPlF0lEOna+H3g9bXZFXsfRvwNChQ7nmmmtIT08nPT2d5557jujoaFavXo1hGLzyyiv84Q9/4MYbb6Rr165MmjSJoqIipkyZYmXZteI6zZTnJ2EGzOHMG98GbLDuPdg41eqKRAKegkwAqCyHmWMg/zAkdjRXate09hq85m9BZWUl06ZNo7CwkF69erFnzx4yMzMZOHCg6zF2u52rrrqKVatOXVfCqbS0lLy8vBoXKyTFnhyZKfCjMAPQrh/0edK8Pv8xc+sDERFxn8XPmDNKw2Lg1v+B3QeX+3Azy8PM5s2biY6Oxm6388tf/pIPP/yQzp07k5lpNtUlJyfXeHxycrLrvtMZP348cXFxrkta2s/PaHCnxGgzzBwrLKOswmFJDW5z5e+gbV+oKDaHPUusCYwiIn5v8yxz8gWYK/wmtLe2Hi9leZjp0KEDGzduZPXq1fzqV79i9OjR/PDDD677f7pCpGEYZ1w18qmnniI3N9d1OXDg1H1ePKFxZBghQWadOYV+NjoTFAw3vgOxzSBnJ8x9yJwuKCIiDefI9+a2MmDukdfpOmvr8WKWh5mwsDDatWvHxRdfzPjx4zn//PP517/+RUpKCsApozBZWVmnjNZUZ7fbiY2NrXGxQlCQjYRoP+ybcYpqAiMmmdvN//AxrJ5gdUUiIv6j+ARMGwXlReZI+NV/sLoir2Z5mPkpwzAoLS2ldevWpKSksHjxYtd9ZWVlrFixgt69e1tYYe25+mb8ZUbTT6X1gEHPmdcX/9Hcy0lEROrH4YAP74fjeyCuBdz0bsBuIFlblk7NfvrppxkyZAhpaWnk5+czbdo0li9fzoIFC7DZbDz66KM8//zztG/fnvbt2/P8888TGRnJyJEjrSy71px9Mz69pcHZXHIfHPgGtsw2u+3v/wKiE62uSkTEd638O+xYACHhcOsHEKndxM/G0jBz5MgR7rjjDg4fPkxcXBznnXceCxYsYMCAAQA88cQTFBcX88ADD7gWzVu0aJHXrzHj5PcjM2BODxz6KmRugeztMPtuuOMjfYsQETkXOxbB8vHm9WtfhqYXWFqOr7AZhn93bubl5REXF0dubq7H+2deXrSdV5ftZNSlLXjuhm4efW2PO7od3roaygvNRrV+z1hdkYiIbzm229zYtyQXLr4HrnvZ6oosVZfPb6/rmfEnibF+tqXBmSR2gGGvmte/eAm2f2ZtPSIivqSsCKbfYQaZ5j1g8AtWV+RTFGbcKCB6ZqrrdjNccr95/cP74dgea+sREfEFhgHzHoEjWyAq8eRO2NpHqy4UZtwoIHpmfmrgX81vFSW55oJ65X6wa7iIiDt9+xZsngG2YBjxHsQ2tboin6Mw40bVN5v089akKiFh5l/GyCbmhpSf/c7qikREvNe+r2Hh0+b1gX+BVpdbW4+PUphxI+eieWWVDnKLyy2uxoPimsNN7wA2WP8+bJhsdUUiIt4nPxNmjgZHBXS9CXo+YHVFPkthxo3CQ4OJiwgFAuxUE5xcsfLkt41PHofMzdbWIyLiTSrKYMZoKDgCSZ1h2L+1E3Y9KMy4WWJMgDUBV3fFb6HdAKgoMbv0i09YXZGIiHdY9Ac4sBrsseZO2GFRVlfk0xRm3Kx630zACQqCG98yl+M+vgc+flAbUoqIfDfdbPoF89/IJm2trccPKMy4WdXITIDO6omMh1smQXAYbJsPq161uiIREesc3mROwwa48gnoMMTaevyEwoybBfTIjFOzi2DI38zrS8bB3i8tLUdExBJFx2D67VBRDO36Q58nra7IbyjMuFlA98xU1/0uOO82MBww8y6zi19EJFA4KmHOWDixDxq1hBvf1h52DUhhxs2SYgJoS4Mzsdngun+aXfuFWTDrbqissLoqERHPWP4C7Fxycifs/2kn7AamMONmGpmpJiwSbvkAwmJg31ew9FmrKxIRcb/tn8HKF83rQ1+F1POsrccPKcy4mXpmfiKhHVz/H/P6qldh6zxr6xERcaecXTDn5J51l9wH599qbT1+SmHGzZwjM7nF5ZSUV1pcjZfoPAx6PWRe/+gB8y+7iIi/KSs0G35LcyHtUhj4nNUV+S2FGTeLiwglLMQ8zNkFGp1x6T8OWvSC0jxzQ8qyIqsrEhFpOIYBcx+GrB8gOhlGTNJO2G6kMONmNpuNxGj1zZwiOBRunmhud39kC3zyGy2oJyL+Y/V/YMtsCAoxg0xsqtUV+TWFGQ9wNQHnKczUEJtqBhpbEHw3BdZPsroiEZH62/slLPqjeX3gc9Cyl7X1BACFGQ9wNQHrNNOpWl8BfU/+pf/0CTi0wdp6RETqI+8QzBwDRiV0uwUuvd/qigKCwowHOEdmjuYF6JYGZ3PZo9DhGqgsNftnio5ZXZGISN1VnPw3rPAoJHeFof/STtgeojDjAa6F8zQyc3pBQXD9BGjcCk7shw9/CQ6H1VWJiNTNgqfg4BoIj4NbPzDX1hKPUJjxAPXM1EJEI7jlfQi2Q8ZC+PJlqysSEam9DZNh7buADW58B+LbWF1RQFGY8QD1zNRS6vlw7Uvm9c+fg93LLS1HRKRWDm2E+Y+Z1/s8CekDLS0nECnMeIBGZurgojvgwtvNDSln3WM204mIeKuiYzD9DrPnL30wXPmE1RUFJIUZD0iKNcNMdkEpDofWUjmra/4BKd2gKNucFVBZbnVFIiKnqqwwN83N3Q+NW8MNb5o9gOJxOuoe0CTKDDMVDoPjRWUWV+MDQiPM/hl7HBz4BhY/Y3VFIiKnWvgU7P4cQiPNnbAjGlldUcBSmPGAsJAg4qPMZazVN1NL8W3ghjfM66v/A1vmWFuPiEh1374N375lXr/hTUjpam09AU5hxkNcWxqob6b2Ol5jrkED5h4nR3dYWo6ICAA7l8Bnvzev9/uTuXmuWEphxkOcfTNHtT9T3fT9I7S6AsoKYMYdUFpgdUUiEsiytsHMu8wVfs8fCZc/ZnVFgsKMx2izyXMUHAI3/xeiU+DoNpj/qDakFBFrFGbDlFugNA9a9Iahr2iFXy+hMOMhibHOMKMtDeosOglGTARbMGyeCWvesboiEQk0FaUw/XY4sc9crfzW/0GI3eqq5CSFGQ9xbWmgkZlz07I3DPizeX3BU3BwnbX1iEjgMAyY9wjs/9qcZTlyBkQ1sboqqUZhxkNcC+cpzJy7Xg9Cp2HgKIeZo6Ewx+qKRCQQfPlP+G6qOTo8YiIkdrC6IvkJhRkPcW5pkK0wc+5sNhj+OsS3hdwDMGcsOCqtrkpE/NkPc2Hps+b1IX+Ddv2srUdOS2HGQzQy00DCY83daEMiYNdSWPl3qysSEX91aAPMuc+8fsl9cMlYa+uRn6Uw4yHOkZmC0gqKyiosrsbHJXcxZxEALH8B1r9vaTki4ofyDsHUX0BFMbTtB4PGW12RnIHCjIdE20MIDzUPt5qAG8D5t0HPBwDDXFBv9RtWVyQi/qKsEKbeBvmHIbGj2ScTHGJ1VXIGCjMeYrPZNKOpoQ16Hno9ZF5f8Hv44iVr6xER3+dwwIf3w+HvILIJjJwO4XFWVyVnoTDjQeqbaWA2Gwz8K1z1pPnz0j+bFy2qJyLnatlfYOs8CA6DWyeba8qI11OY8SBn34xGZhqQzQZXP1W1Bs0XL5nr0CjQiEhdbZwCX75sXh/2b2jZy9p6pNYUZjyoamRGqwA3uMsegWv+YV7/ZgLM+7WmbYtI7e1bBXN/bV6/4jdmX574DIUZD9LIjJtdMhaunwC2IHOG04f3Q2W51VWJiLc7thumjTIX5Ow0DK7+P6srkjpSmPEg9cx4wAUjzY0pg0LMfZxmjjH3VBEROZ2SXJhyGxQfg9QL4IY3IUgfjb7G0v9j48ePp0ePHsTExJCUlMT111/P9u3bazxmzJgx2Gy2GpeePXtaVHH9OGczZeXpw9WtutxgNu4F22HbfHOtiLIiq6sSEW9TWWF+4cneDjFN4RfTICzS6qrkHFgaZlasWMGDDz7I6tWrWbx4MRUVFQwcOJDCwsIajxs8eDCHDx92XT799FOLKq4f58jM0QKFGbfrMBhGzYDQKHOl4Mk3Q0me1VWJiDdZ8CTsWgahkfCLqRCbanVFco4sXQVowYIFNX6eOHEiSUlJrFu3jiuvvNJ1u91uJyUlxdPlNThnz0xOQSmVDoPgIJvFFfm5Nn3gjg/NILPvK/jgehg1CyLjra5MRKz2zVuw5m3z+o1vQdMLLC3HV+3NLiS7oJT2yTHERYRaVodXnRjMzc0FID6+5ofN8uXLSUpKIj09nbFjx5KVlfWzz1FaWkpeXl6Ni7doEm0nyAYOA3IKNTrjES0uhdHzICIeflwHk4ZCwVGrqxIRK2UsMRfaBOg/DjoNtbQcXzZz3QFufuNrXlywzdI6vCbMGIbB448/zuWXX07Xrl1dtw8ZMoTJkyezbNkyXnrpJdasWUPfvn0pLT19GBg/fjxxcXGuS1pamqf+CGcVHGQjPupkE7D6Zjyn6QUw5hOIToYjW2DiEHPfFREJPFnbYNZdYDjgglFw2aNWV+TTdhwpAKB9UrSldXhNmHnooYfYtGkTU6dOrXH7rbfeyrXXXkvXrl0ZOnQon332GTt27OCTTz457fM89dRT5Obmui4HDhzwRPm1lqS+GWskd4a7PoPY5pCTAf8dDMf3Wl2ViHhSYTZMuQVK86BFb7juFXPhTTlnO7NOhpnkGEvr8Iow8/DDDzN37lw+//xzmjdvfsbHpqam0rJlSzIyMk57v91uJzY2tsbFm7iagDUy43lN2sLdn0F8GzixD/47BI7usLoqEfGEilJzLZkT+8wtCm79H4SEWV2VTyspr2Rfjjlhp31yAI/MGIbBQw89xJw5c1i2bBmtW7c+6+/k5ORw4MABUlN9s+tcIzMWa9TCHKFJ7Aj5h8xTTplbrK5KRNzJMMzVfQ+sBnscjJwBUU2srsrn7T5aiMOAuIhQEqPtltZiaZh58MEH+d///seUKVOIiYkhMzOTzMxMiouLASgoKOC3v/0tX3/9NXv37mX58uUMHTqUhIQEbrjhBitLP2euhfPytKWBZWJSYMynkHIeFGXDe9fCwXVWVyUi7vLly7BpGtiC4Zb3ILGD1RX5hYysfMDsl7FZfLrO0jAzYcIEcnNz6dOnD6mpqa7L9OnTAQgODmbz5s0MHz6c9PR0Ro8eTXp6Ol9//TUxMdaenztXGpnxElFNzFlOzS+BkhPw/jDY+5XVVYlIQ/vhY1h6ciPaa16Etn2trcePVPXLWHuKCSxeZ8Y4y87GERERLFy40EPVeEaiVgH2HhGNzHVopv0C9qyE/90Et/0P2vW3ujIRaQg/roc595vXL7kfetxrbT1+JsM1k8n6wQWvaAAOJEmxGpnxKvZo8/x5+0FQUWxufbB1vtVViUh95R2CaSPNv9ft+sOg562uyO/scJ5m8oKRGYUZD3M2SWXllZ51ZEo8JDTCnNnQeThUlsGMO2HzLKurEpFzVVYIU26F/MOQ2MncfDbY0hMRfqe0opJ9OeaedxqZCUDOkZni8koKSissrkZcQsLgpv/C+b8AoxJm3wvrJlldlYjUlcMBc+6DzE0Q2QRGToPwOKur8jt7s4uodBjE2ENIjrV2JhMozHhcZFgI0XbzG8LRfJ1q8irBITD8P3DxPYAB834NqydYXZWI1MWyP8O2+RAcBrdNMdeUkQaXUe0Uk9UzmUBhxhKu6dkKM94nKAiufQl6P2z+vOBJWPkPa2sSkdrZMBm+/Kd5fdhr0KKntfX4sR1e1PwLCjOWcK0CrDDjnWw2GPAX6POU+fOyv8CSZ82Ft0TEO+1bBfMeMa9f8Vs4/1Zr6/FzO72o+RcUZiyhkRkfYLNBnyfNUAPmolsLnjTPx4uIdzm229yqwFFuNvJf/QerK/J7rmnZFu/J5KQwY4Ekjcz4jst+bZ52AvjmDbOPxlFpbU0iUqX4hDlzqfgYNL0Qrn/DPF0sblNe6WBP9sk9mSzeLdtJ/8ctUDUyoy0NfEKPe81/IG1BsOEDc6ZEZbnVVYlIeTHMHAPZOyCmKfxiGoRFWl2V39ubXUiFwyAqLJjUuHCrywEUZiyRdHIVYI3M+JALfgE3T4SgENgyC2aMNnfhFRFrnDgA/x0Euz+H0EhzCnZMitVVBYSMk9sYtEuO8YqZTKAwYwk1APuoLtebUz2D7bD9E5h6G5QVWV2VSODZtwrevhoOf2euJTNqJqSeb3VVAcPZL5PuJaeYQGHGEuqZ8WHpg8x/OEOjYNcycz+nkjyrqxIJHGvehUlDofAopHSD+5ZDq8utriqgZHjZTCZQmLGEc2Qmp7CM8krNjvE5ba4yN6i0x8H+VSf/Yc22uioR/1ZRBvMehU8eB0cFdLkR7l4EjVpYXVnA8aYNJp0UZiwQHxlGcJB5njGnoMziauSctLgURs81h7gPb4SJQyD3R6urEvFPBVnw/jBYNxGwQb8/mfstqdnX4yoqHezOPtkzo9NMgS0oyEZCdBigGU0+rekFcNcCiG1uzqb472DI2WV1VSL+5cf18FYf2P+1ORo6cgZc8bi5FpR43L5jRZRXGkSGBdOsUYTV5bgozFjEOaMpK099Mz4tMR3uXgBN2kHufjPQZG62uioR//DddHPUM+9HSEiHsUshfaDVVQW0jCNmv0y7pGiCgrwnUCrMWMTVBFygMOPzGqWZIzQp3aAwCyZeC/tXW12ViO+qrICFf4AP74OKEkgfDPcugYT2VlcW8Jz9Mt50ignqEGbuvvtu8vPz3VlLQHEtnKeRGf8QnQij50OLXlCaC+9fDzuXWF2ViO8pOgaTb4avXzN/vuK3cNtUCI+zti4BqtaY8abmX6hDmJk0aRLFxcXurCWgVI3MqGfGb0Q0gtvnQLv+UFEMU26D7z+0uioR35G1Fd7uW7UQ3oj3oN8ftT2BF3GGmXQvmpYNdQgzhnYMblAamfFTYZHmt8guN5qb3s26G9ZNsroqEe+3dT680x+O7zGnW9+zCLrcYHVVUk2lw2DXUR8fmQG8Ztlif5Do3NJAPTP+JyQMbnoHuo8Bw2FuTvnVv6yuSsQ7ORzw+XiYPgrKCqDVFTB2udmDJl5l/7EiyiochIcG0ayx98xkAgipy4PT09PPGmiOHTtWr4IChUZm/FxQMFz3CoQ3gq9egcXPmLv79ntGU0pFnErz4cNfwrb55s+X/goG/gWCQ62tS07LOZOpbWK0a600b1GnMPPss88SF6cmrIZQfTaTYRga9fJHNhsMeNbspVkyDr58GUpy4Zp/qAdAJGcXTBsFR7dCcJgZ/i8cZXVVcgZV/TLedYoJ6hhmbrvtNpKSktxVS0BxjsyUVTjIK64gLlLfRPzW5Y+ZIzTzH4O175qB5oY39O1TAtfOpTDrLvPvQnQK3DYZml9sdVVyFtXXmPE2tf56qJGDhhUeGkxsuJklNaMpAFx8F9z8LgSFwJZZ5jdS7bgtgcYwYNW/zanXJbnQvIe5UaSCjE+ompbtw2FGs5kanvpmAkzXm+AX0yAkAjIWntxxO9fqqkQ8o7wYPrwfFv2f2Rh/4e0w5hOITbW6MqmFSofBTi8+zVTrMONwOHSKqYElaUZT4Gk/AO6YA/ZY7bgtgSP3oLnVx6bpYAuGIX+HYa9BiN3qyqSWfjxeTGmFg7CQINLivW+DT3UhWkgjMwGqZW8YMx8iE+Dwd+Y/8rkHra5KxD32fW1uFHl4o7nL/J0fw6X3aVafj9nhxTOZQGHGUtqfKYClng93LzR33M7JMANN9k6rqxJpWGv/e3L08Sgkd4Oxn0PrK6yuSs6BN/fLgMKMpZJinSMzagAOSAnt4J6F0KQ95B6AiYPh8CarqxKpv4oyc/be/MfMlbC73GC+1xu3tLoyOUcZWebIjLdtY+CkMGMh12mmfI3MBKy45nDXZ5Bynvnt9b1rzWF5EV9VkAXvDzNHZbCZC0XePBHCoqyuTOrB2fzbzsu2MXBSmLGQqwFYYSawRSeaPTQtekNpHnxwA2Qstroqkbo7tMHsj9n/tdnkPnI6XPEb9cf4OIfDIOPIydNMGpmRn9LIjLiEx8Hts6H9QHPH7am3wZbZVlclUnubZpi9X3k/mqdOxy6D9EFWVyUN4McTxRSXVxIWHERLL5zJBAozlnI2AOcWl1NaUWlxNWK5sEi4dbK5Ho2jAmbdA+ves7oqkTNzVJprx8wZCxUl0H4QjF0KCe2trkwaiPMUU5vEKEKCvTM2eGdVASIuIpSwk28MnWoSwNxx+8a34eK7AQPmPQJfvmJ1VSKnV5hjrua76t/mz1f8Bn4x1RxpFL+xw4u3MXBSmLGQzWZznWpSmBGXoGC49mW4/HHz5yV/Mjeq1Crc4k12fQ4TesOuZRAaCSPeM5t9g4KtrkwaWNW0bO9s/gWFGcslqG9GTsdmg/5/ggF/Nn/+8p8np7nqdKRYrKLMPK30wfVQkAkJ6XDPYnP6tfglV5jx0uZfqOOu2dLwkjQyI2dy2SPmkP28R2HdxJM7br9pno4S8bSjO2D2PZB5cj2ki++Ggc+Z/V7ilwzDYOcR715jBhRmLKcZTXJW3ceYgWb2WPh+DpTmwy3v6wNEPMcwzGb0BU+Zs+0i4mH4a9DxWqsrEzc7lFtCYVklIUE2Wjbx3rWCdJrJYhqZkVrpckPVjts7F2vHbfGcomMw/XaY/6gZZNr0gV+tUpAJEBknR2VaJ0QR6qUzmUBhxnJVDcDa0kDOon1/uPMjsMeZO26/dx0UHLW6KvFnu5ebTb7b5kNQKAz8K9z+IcSmWl2ZeMhOH+iXAYUZy2kVYKmTFj3N1YKjEs2+hYmDIWub1VWJv6kog0V/hPevh/zDZpPv2KXQ+2EI0sdGIHGt/OvFM5lAYcZy6pmROks9D+5aAHFpkLMT/nMpTL4Fdq/Q9G2pv+yd8O4AWPUqYED3u+C+FeZO7xJwdpzcYFIjM2cwfvx4evToQUxMDElJSVx//fVs3769xmMMw2DcuHE0bdqUiIgI+vTpw/fff29RxQ2ves+Mw6EPIqmlhHZw90LocC1gg4yF5uZ+b1wOG6dAhcKx1JFhwLpJ8OYVcHgjRDSGW/8HQ19Rs3mAMmcyaWTmrFasWMGDDz7I6tWrWbx4MRUVFQwcOJDCwkLXY1588UVefvllXnvtNdasWUNKSgoDBgwgPz/fwsobTkK0GWYqHAYnisstrkZ8Slwz+MUUeHgd9BhrLlx2ZAt89Ct4pRus/Lu5QqvI2RQdgxl3wrxfQ3kRtL7SbPLtNNTqysRCR/JKyS+tIDjIRusE753JBGAzDO8Zlz569ChJSUmsWLGCK6+8EsMwaNq0KY8++ii///3vASgtLSU5OZm//e1v3H///Wd9zry8POLi4sjNzSU2Ntbdf4RzcuGfF3G8qJwFj15BxxTvrFF8QNExc/rst2+ZfQ5gzn46/zbo+QAkpltannipPSthzv2Qf8hs8u33R+il3hiBLzKOcse739I2MYqlv+nj8devy+e3V71bc3PNqabx8fEA7Nmzh8zMTAYOHOh6jN1u56qrrmLVqlWnfY7S0lLy8vJqXLydmoClQUTGwxWPwyObzP2dUs83p9Kumwiv91BfjdRUUWZukzFpmBlkmrSDexebCzUqyAiww0dOMYEXhRnDMHj88ce5/PLL6dq1KwCZmZkAJCcn13hscnKy676fGj9+PHFxca5LWlqaewtvAK4m4DyFGWkAIWFw3i1m0+aYT6DDNaivRmrI2QX/HWhuk4EBF42G+1dC0wutrky8yE4faf4FLwozDz30EJs2bWLq1Kmn3Gez2Wr8bBjGKbc5PfXUU+Tm5rouBw4ccEu9DcnVBFygDxdpQDYbtLrc3MVYfTUC5qjc+g/gjSvg0AYIbwS3fADDXoUw7+6JEM9zTctO1shMrTz88MPMnTuXzz//nObNm7tuT0lJAThlFCYrK+uU0Ronu91ObGxsjYu308iMuF2TtnDtP+Cx76HfnyAmFQqOwLK/wj+7mHs/Hd1hdZXiTsXHYeZomPsQlBdCqyvMJt/Ow6yuTLyQYRjVdsvWyMwZGYbBQw89xJw5c1i2bBmtW7eucX/r1q1JSUlh8eLFrtvKyspYsWIFvXv39nS5bpOokRnxFPXVBKa9X8KEy+CHjyEoBPqPgzs/NmfEiZzG0fxScovLCbLh9TOZwOKNJh988EGmTJnCxx9/TExMjGsEJi4ujoiICGw2G48++ijPP/887du3p3379jz//PNERkYycuRIK0tvUFUjM9rSQDzE2VfTbQTs+wq+fh22f2b21WQshOSu0OtB6HoThNitrlbOVWU5fP58VW9MfFu46R1odpHVlYmXc47KtGwSRXhosMXVnJ2lYWbChAkA9OnTp8btEydOZMyYMQA88cQTFBcX88ADD3D8+HEuvfRSFi1aREyM95/Dqy3XbCaNzIinOftqWl1uNoWungAbJ1f11SwZB5eMhe53Q1QTq6uVusjZBbPvhUPrzZ8vvB0G/w3s3n/KQKzn3GDSF04xgcVhpjZL3NhsNsaNG8e4cePcX5BFXKeZ1DMjVnL21Vz9dM31apb9FVa+pPVqfIVhmIH00yfM3pjwOBj6KnS53urKxIfs8JENJp28ogE40CXFmmEmv7SC4rJKi6uRgKe+Gt9VfBxmjoGPHzSDTMvLzSZfBRmpI1/ZxsBJYcYLxNhDsIeY/yu0cJ54Da1X41v2fgUTLocfPjKbfPs9A6PnQlzzs/6qSHWGYbg2mGznI6eZFGa8gM1mc43OZOWrCVi8zNnWq3m5Myz6o9mjIZ5XWQ5L/wKTroO8gxDfBu5ZBFf8BoK8v3FTvE9OYRknisqx2RRmpI60pYH4hFPWq2kKRdmw6lX490Xm0vhb5phL5Yv7GAYc2wObZ8F/B8MX/wDDARfcDvd/Ac26W12h+LAdJ5t/W8RH+sRMJrC4AViqJEY7R2YUZsQHOPtqev8adiwwG4Z3LoE9K8xLVCJcMAq6jzZHCqR+CnPMWUk/roODa83/Fh+ruj88Dob+C7rcYF2N4jd2+tBieU4KM17CeZpJIzPiU4JDoNN15uX4Plj/Pmz4wFxd+KtXzEubq6H7GOh4LQSHWlywDygrgsxNZmBxXo7vPfVxwWGQ0g2aX2KuCdTI+/ehE9/g3MagnY80/4LCjNeoGplRz4z4qMYtod8foc+T5mjN2omwaxns/ty8RCWZa510Hw2NW1ldrXdwVMLR7SdDy8kRlyM/gHGaWY1N2punj5pfbC56l9xVCxqKW2ScbP5N95Fp2aAw4zU0MiN+IzgUOg01L8f3mqM16z+Awiz48mVzNdq2fc3Rmg5DAme0xjAg92C1EZf15maP5YWnPjY6GZqdDC3Nupu7WUc08njJEpgyfGxaNijMeA3XlgYKM+JPGrcypwj3eQq2f2qO1uz+HHYtNS/RKVWjNY1aWF1twyo+boaVH9fBwZMBpjDr1MeFRZthpVn3qktsU3MWmYiH5RSUklNoNvC3TfL+PZmcFGa8hGYziV8LDoXOw83LsT2wfhJs+B8UZJozcb54Cdr1N0dr0gebvTi+pLzEnKpevc8lZ+epjwsKgeQu1YLLxZDQXlOoxWs4m3/T4iOIDPOdv4e+U6mfc47MZBeUUukwCA7StzLxU/GtzV2b+zwN2z8xR2v2rICdi81LTCpceAdcdKf3NbUWn4Dje+DY7pOXPZD1A2RuAUf5qY+Pb1NzxCWlG4RGeLxskdrKyPK9U0ygMOM1mkSFYbOBw4BjhWWucCPit0LCzKnEXW4wF9xbPwk2TDb3g1r5Iqz8O7QfAN3vgvYDPTNaYxhQdKxaWKl2Ob4HinJ+/ncjE04253Y3e12aXmROYRfxIb62waSTwoyXCAkOoklUGNkFZWTllyjMSGBp0hYG/Bmu/gNsm2+uW7NnJWQsMi+xzU6O1txR/+X5DcOcOn5KYNljXkpzz/z70cnmiEt8G3OUqUk7M7g0aqE+F/F5zpEZX1n510lhxoskxoSTXVCmvhkJXCF26HqTecneCevfM/d/yvsRVrxgjti0H3hytGbAz/eaOBzm75wyurLX/G950ZnriG1uBpXqoSW+DTRuDXbf+kdepC6cYSY9WaeZ5BwlxtjZelgzmkQASGgHA/8Kff8IW+eZozV7vzDXsNmxwAwcF91pntJxhhTnCMvxvVB5hr9HtiBzJMUZUFyhpY25Xo76WiQAnSiq+jLdViMzcq6SYrTWjMgpQuzQ7Wbzkp1hhpqNU8xNFZc///O/FxRqBpPqQcV5iUsze3ZExMU5KtOsUQTRdt+KB75VrZ9TmBE5i4T2MOi5qtGaDR9AQVbNU0GuwNJcU55F6qBqGwPfGpUBhRmvUrVwnrY0EDmj0HA4b4R5EZEG4YvbGDgFWV2AVNHCeSIiYhVf3MbASWHGi2hLAxERsYpzZKadRmakPtQzIyIiVsgtLudInvnZ44s9MwozXsQ5MlNUVklBaYXF1YiISKBw7smUGhdObLjv7WSvMONFouwhRIWZsy80OiMiIp7i3MbAF0dlQGHG67j6ZvI0o0lERDzDVzeYdFKY8TKuGU0FGpkRERHPqNrGQCMz0gCqRmYUZkRExDN2OnfLVpiRhuAMMxqZERERT8gvKedQrtna0C5Rp5mkAWhkRkREPMk5kykpxk5cpO/NZAKFGa+TpC0NRETEg6r6ZXxzVAYUZrxOUqy2NBAREc9xjsz46rRsUJjxOonRWgVYREQ8Z4ePN/+CwozXSYo1w8yxojLKKx0WVyMiIv7OlzeYdFKY8TLxkWEEB9kwDMgpKLO6HBER8WOFpRX8eKIYgPY6zSQNJSjIRkJ0GKBTTSIi4l7OfpmEaDuNo8IsrubcKcx4oUTNaBIREQ+o2sbAd0dlQGHGK7m2NNDIjIiIuFFGlu83/4LCjFdyzmjKUpgRERE32uls/vXhNWZAYcYrOWc0aWRGRETcaYdzZEanmaShqWdGRETcraisgoPHfX8mEyjMeCXnlgYamREREXfZfbQQw4D4qDCanGxv8FUKM16oamRGYUZERNwjw09OMYHCjFdyzmbKyi/FMAyLqxEREX+0w9X8qzAjbuAcmSmrcJBXUmFxNSIi4o/8YRsDJ4UZLxQeGkxMeAgAR9UELCIibrDTT9aYAYvDzMqVKxk6dChNmzbFZrPx0Ucf1bh/zJgx2Gy2GpeePXtaU6yHJalvRkRE3KSkvJL9x4oAjczUW2FhIeeffz6vvfbazz5m8ODBHD582HX59NNPPVihdRI1o0lERNxk19ECHAY0igx17Qfoy0KsfPEhQ4YwZMiQMz7GbreTkpJS6+csLS2ltLQqAOTl5Z1zfVbSlgYiIuIuO6vtyWSz2Syupv68vmdm+fLlJCUlkZ6eztixY8nKyjrj48ePH09cXJzrkpaW5qFKG5amZ4uIiLtk+Mk2Bk5eHWaGDBnC5MmTWbZsGS+99BJr1qyhb9++NUZefuqpp54iNzfXdTlw4IAHK244WjhPRETcxZ/WmAGLTzOdza233uq63rVrVy6++GJatmzJJ598wo033nja37Hb7djtvr2SIWhLAxERcR9/mpYNXj4y81Opqam0bNmSjIwMq0txO/XMiIiIO5RWVLI3pxDwj2nZ4GNhJicnhwMHDpCammp1KW6nnhkREXGHPdmFOAyIDQ9xtTT4OktPMxUUFLBz507Xz3v27GHjxo3Ex8cTHx/PuHHjuOmmm0hNTWXv3r08/fTTJCQkcMMNN1hYtWc432AnisoprajEHhJscUUiIuIPdlRr/vWHmUxgcZhZu3YtV199tevnxx9/HIDRo0czYcIENm/ezPvvv8+JEydITU3l6quvZvr06cTE+Mc5vjNpFBlKaLCN8kqD7IIymjWKsLokERHxAzuP+FfzL1gcZvr06XPGjRQXLlzowWq8i81mIzHazqHcErLyShRmRESkQWScXGOmnR+FGZ/qmQk0WgVYREQamjPMpPvJGjOgMOPVEk/OaFITsIiINISyCgd7s/1rJhMozHi1pFiNzIiISMPZm1NIhcMg2h5CSmy41eU0GIUZL5YYrenZIiLScJyL5bXzkz2ZnBRmvJhGZkREpCE5tzFI96NTTKAw49WcIzNHtaWBiIg0AH/bxsBJYcaLJcVqSwMREWk4zpGZdhqZEU9xTc0uKD3jejwiIiJnU17pYM/JmUz+NC0bFGa8WkJ0GADllQYnisotrkZERHzZvpwiyisNosKCaRrnPzOZQGHGq9lDgmkUGQpoRpOIiNRPxsltDPxtJhMozHi9JK0CLCIiDaBqGwP/OsUECjNez9k3k6UZTSIiUg9V2xj4V/MvKMx4vSRtaSAiIg3AeZrJn7YxcFKY8XLabFJEROqrotLB7qMn92TSaSbxtKQYbWkgIiL1s/9YEWWVDiJCg2nWKMLqchqcwoyXqxqZUc+MiIicm6rm32iCgvxrJhMozHi9RI3MiIhIPbn6ZZL8r18GFGa8nrMBWD0zIiJyrlwjM37Y/AsKM17POTKTX1JBSXmlxdWIiIgv8tcNJp0UZrxcbHgI9hDzf5NGZ0REpK4qHQa7jvrvGjOgMOP1bDabFs4TEZFzduBYEaUVDuwhQTRvHGl1OW6hMOMDtKWBiIicK2e/TNvEaIL9cCYTKMz4BM1oEhGRc5WR5b8r/zopzPgAzWgSEZFztfOIs1/GP5t/QWHGJ7hGZvIUZkREpG52nByZaeena8yAwoxPSFIDsIiInAOHw2BnlnNatsKMWMi1pUGBRmZERKT2fjxRTEm5g7CQIFrE++dMJlCY8QnOnhmdZhIRkbpwNv+2SYgiJNh/P/L990/mR5JizZGZnMIyKh2GxdWIiIiv2OFc+dePm39BYcYnNIkKw2YzV3E8VlhmdTkiIuIjqrYx8N9+GVCY8QkhwUE0iQoDND1bRERqb+fJ00z+uo2Bk8KMj0iI1owmERGpPcMwqnbL9tMNJp0UZnxEUqwWzhMRkdr78UQxRWWVhAbbaNnEf2cygcKMz0iM1pYGIiJSe85RmdYJUYT68UwmUJjxGc4ZTRqZERGR2tgZIDOZQGHGZzhHZhRmRESkNnYcObnBpJ/PZAKFGZ+hkRkREamLDNc2BhqZES+RqNlMIiJSS4ZRbU8mP5+WDQozPkOzmUREpLYy80ooKK0gJMhGqyZRVpfjdgozPsK52WRhWSWFpRUWVyMiIt7MuY1Bq4QowkL8/6Pe//+EfiLaHkJkWDCg6dkiInJmGQHU/AsKMz4lKUZNwCIicnZV/TL+3/wLCjM+xXmqSU3AIiJyJlUzmTQy43YrV65k6NChNG3aFJvNxkcffVTjfsMwGDduHE2bNiUiIoI+ffrw/fffW1OsF0iKUROwiIicmWEYVWvMBMBMJrA4zBQWFnL++efz2muvnfb+F198kZdffpnXXnuNNWvWkJKSwoABA8jPz/dwpd6hamRGYUZERE4vK7+U/JIKgoNstE7w/5lMACFWvviQIUMYMmTIae8zDINXXnmFP/zhD9x4440ATJo0ieTkZKZMmcL9999/2t8rLS2ltLTqwz4vL6/hC7dIonpmRETkLDJOzmRq2SQSe0iwxdV4htf2zOzZs4fMzEwGDhzous1ut3PVVVexatWqn/298ePHExcX57qkpaV5olyP0MiMiIicTUZWYM1kAi8OM5mZmQAkJyfXuD05Odl13+k89dRT5Obmui4HDhxwa52epNlMIiJyNs41ZgJhGwMnS08z1YbNZqvxs2EYp9xWnd1ux263u7ssS1SdZtJsJhEROb2dWYHV/AtePDKTkpICcMooTFZW1imjNYHCOZspp7CMikqHxdWIiIi3MWcyBd7IjNeGmdatW5OSksLixYtdt5WVlbFixQp69+5tYWXWiY8KI8gGhmEGGhERkeqyC8rILS4nyAZtEgNjJhNYfJqpoKCAnTt3un7es2cPGzduJD4+nhYtWvDoo4/y/PPP0759e9q3b8/zzz9PZGQkI0eOtLBq6wQH2UiItpOVX8rR/FKST24+KSIiAlXbGLSIjyQ8NDBmMoHFYWbt2rVcffXVrp8ff/xxAEaPHs17773HE088QXFxMQ888ADHjx/n0ksvZdGiRcTEBM7Q2U8lxphhxlwFOM7qckRExIs4V/5tF0CnmMDiMNOnTx8Mw/jZ+202G+PGjWPcuHGeK8rLJcXY+R7IytOMJhERqck5LTs9gJp/wYt7ZuT0tHCeiIj8HFfzr8KMeDPnjCYtnCciIj/l2i07wE4zKcz4mKRYjcyIiMipcgpKOVZYhs0GbRM1MiNeLDHauaWBFs4TEZEqzubftMaRRIQFzkwmUJjxOa6RmQKNzIiISBXntOxA2pPJSWHGxyRGn+yZySs940wwEREJLK5p2QHW/AsKMz7HOZuptMJBfmmFxdWIiIi3yDg5kyk9wJp/QWHG50SEBRNjN5cH0lozIiLi5ByZCbRp2aAw45MSNaNJRESqOV5YRvbJXspAm8kECjM+STOaRESkOueoTLNGEUTZLV3c3xIKMz4o6eQGkxqZERERCNxtDJwUZnyQc2RGYUZERKCq+bd9cuA1/4LCjE9yrjWjLQ1ERASqRmbaBeAaM6Aw45M0MiMiItW5RmYUZsRXVI3MqAFYRCTQ5RaVu0bqdZpJfIZz52yNzIiIiPMUU9O4cKIDcCYTKMz4JOcqwMeLyimrcFhcjYiIWKlqG4PAHJUBhRmf1CgilNBgG4BrkSQREQlMgd4vAwozPikoyEZCtGY0iYiI1pgBhRmflRSjGU0iIlI1MtMuADeYdFKY8VHOvhnNaBIRCVx5JeVk5pmfA4G6xgwozPisRM1oEhEJeDtPNv8mx9qJiwi1uBrrKMz4qKqRGYUZEZFAtfPkKab0AJ7JBBCYE9L9gLNn5sCxIg4eL7K4GhERscLGgyeAwD7FBAozPss5MvNFRjaX/+1zi6sRERErtQ/g5l9QmPFZl7SKp01iFD8eL7a6FBERsVBSrJ2rOyZaXYalFGZ8VOOoMJb9po/VZYiIiFhODcAiIiLi0xRmRERExKcpzIiIiIhPU5gRERERn6YwIyIiIj5NYUZERER8msKMiIiI+DSFGREREfFpCjMiIiLi0xRmRERExKcpzIiIiIhPU5gRERERn6YwIyIiIj5NYUZERER8WojVBbibYRgA5OXlWVyJiIiI1Jbzc9v5OX4mfh9m8vPzAUhLS7O4EhEREamr/Px84uLizvgYm1GbyOPDHA4Hhw4dIiYmBpvN1qDPnZeXR1paGgcOHCA2NrZBnzsQ6PjVn45h/ej41Z+OYf3o+P08wzDIz8+nadOmBAWduSvG70dmgoKCaN68uVtfIzY2Vm/CetDxqz8dw/rR8as/HcP60fE7vbONyDipAVhERER8msKMiIiI+DSFmXqw2+386U9/wm63W12KT9Lxqz8dw/rR8as/HcP60fFrGH7fACwiIiL+TSMzIiIi4tMUZkRERMSnKcyIiIiIT1OYEREREZ+mMFPNf/7zH1q3bk14eDjdu3fniy++OOPjV6xYQffu3QkPD6dNmza88cYbpzxm9uzZdO7cGbvdTufOnfnwww/dVb7lGvr4vffee9hstlMuJSUl7vxjWKoux/Dw4cOMHDmSDh06EBQUxKOPPnraxwXSexAa/hgG2vuwLsdvzpw5DBgwgMTERGJjY+nVqxcLFy485XF6D9bvGAbae/CcGGIYhmFMmzbNCA0NNd5++23jhx9+MB555BEjKirK2Ldv32kfv3v3biMyMtJ45JFHjB9++MF4++23jdDQUGPWrFmux6xatcoIDg42nn/+eWPr1q3G888/b4SEhBirV6/21B/LY9xx/CZOnGjExsYahw8frnHxV3U9hnv27DF+/etfG5MmTTIuuOAC45FHHjnlMYH0HjQM9xzDQHof1vX4PfLII8bf/vY349tvvzV27NhhPPXUU0ZoaKixfv1612P0Hqz/MQyk9+C5Upg56ZJLLjF++ctf1ritY8eOxpNPPnnaxz/xxBNGx44da9x2//33Gz179nT9fMsttxiDBw+u8ZhBgwYZt912WwNV7T3ccfwmTpxoxMXFNXit3qqux7C6q6666rQfxIH0HjQM9xzDQHof1uf4OXXu3Nl49tlnXT/rPVj/YxhI78FzpdNMQFlZGevWrWPgwIE1bh84cCCrVq067e98/fXXpzx+0KBBrF27lvLy8jM+5uee01e56/gBFBQU0LJlS5o3b851113Hhg0bGv4P4AXO5RjWRqC8B8F9xxAC433YEMfP4XCQn59PfHy86za9B+t/DCEw3oP1oTADZGdnU1lZSXJyco3bk5OTyczMPO3vZGZmnvbxFRUVZGdnn/ExP/ecvspdx69jx4689957zJ07l6lTpxIeHs5ll11GRkaGe/4gFjqXY1gbgfIeBPcdw0B5HzbE8XvppZcoLCzklltucd2m92D9j2GgvAfrw+93za4Lm81W42fDME657WyP/+ntdX1OX9bQx69nz5707NnTdf9ll13GRRddxL///W9effXVhirbq7jj/RJI70Fo+D9voL0Pz/X4TZ06lXHjxvHxxx+TlJTUIM/pqxr6GAbae/BcKMwACQkJBAcHn5Kcs7KyTknYTikpKad9fEhICE2aNDnjY37uOX2Vu47fTwUFBdGjRw+//DZyLsewNgLlPQjuO4Y/5a/vw/ocv+nTp3PPPfcwc+ZM+vfvX+M+vQfrfwx/yl/fg/Wh00xAWFgY3bt3Z/HixTVuX7x4Mb179z7t7/Tq1euUxy9atIiLL76Y0NDQMz7m557TV7nr+P2UYRhs3LiR1NTUhinci5zLMayNQHkPgvuO4U/56/vwXI/f1KlTGTNmDFOmTOHaa6895X69B+t/DH/KX9+D9WJF17E3ck6ne/fdd40ffvjBePTRR42oqChj7969hmEYxpNPPmnccccdrsc7pxY/9thjxg8//GC8++67p0wt/uqrr4zg4GDjhRdeMLZu3Wq88MILfjsl0R3Hb9y4ccaCBQuMXbt2GRs2bDDuuusuIyQkxPjmm288/ufzhLoeQ8MwjA0bNhgbNmwwunfvbowcOdLYsGGD8f3337vuD6T3oGG45xgG0vuwrsdvypQpRkhIiPH666/XmDJ84sQJ12P0Hqz/MQyk9+C5Upip5vXXXzdatmxphIWFGRdddJGxYsUK132jR482rrrqqhqPX758uXHhhRcaYWFhRqtWrYwJEyac8pwzZ840OnToYISGhhodO3Y0Zs+e7e4/hmUa+vg9+uijRosWLYywsDAjMTHRGDhwoLFq1SpP/FEsU9djCJxyadmyZY3HBNJ70DAa/hgG2vuwLsfvqquuOu3xGz16dI3n1Huwfscw0N6D58JmGCe7LkVERER8kHpmRERExKcpzIiIiIhPU5gRERERn6YwIyIiIj5NYUZERER8msKMiIiI+DSFGREREfFpCjMiIiLi0xRmRERExKcpzIiIiIhPU5gRERERn6YwIyI+5ejRo6SkpPD888+7bvvmm28ICwtj0aJFFlYmIlbRRpMi4nM+/fRTrr/+elatWkXHjh258MILufbaa3nllVesLk1ELKAwIyI+6cEHH2TJkiX06NGD7777jjVr1hAeHm51WSJiAYUZEfFJxcXFdO3alQMHDrB27VrOO+88q0sSEYuoZ0ZEfNLu3bs5dOgQDoeDffv2WV2OiFhIIzMi4nPKysq45JJLuOCCC+jYsSMvv/wymzdvJjk52erSRMQCCjMi4nN+97vfMWvWLL777juio6O5+uqriYmJYf78+VaXJiIW0GkmEfEpy5cv55VXXuGDDz4gNjaWoKAgPvjgA7788ksmTJhgdXkiYgGNzIiIiIhP08iMiIiI+DSFGREREfFpCjMiIiLi0xRmRERExKcpzIiIiIhPU5gRERERn6YwIyIiIj5NYUZERER8msKMiIiI+DSFGREREfFpCjMiIiLi0/4fgJQS0+apMRkAAAAASUVORK5CYII=", "text/plain": [ "<Figure size 640x480 with 1 Axes>" ] @@ -929,13 +1019,16 @@ } ], "source": [ - "T_left = 38 \n", - "T_right = 25 \n", - "T_initial = 7 \n", - "L = 300 \n", - "nu = 4 \n", - " \n", - "dx = 20\n", + "# YOUR_CODE_HERE\n", + "\n", + "# SOLUTION\n", + "T_left = 38\n", + "T_right = 25\n", + "T_initial = 7\n", + "L = 0.3\n", + "nu = 4/1000/1000\n", + "\n", + "dx = 0.02\n", "x = np.arange(0,L,dx)\n", "n = len(x)\n", "dt = 50\n", @@ -971,7 +1064,7 @@ "id": "852b05c5", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Task 5</b>\n", "\n", @@ -987,7 +1080,7 @@ "id": "81fe7677", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Task 5.1:</b>\n", "\n", @@ -997,12 +1090,20 @@ "</div>" ] }, + { + "cell_type": "markdown", + "id": "6df8a151", + "metadata": {}, + "source": [ + "Your answer here." + ] + }, { "cell_type": "markdown", "id": "1c67a2bf", "metadata": {}, "source": [ - "<div style=\"background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Solution</b> \n", "\n", @@ -1017,7 +1118,7 @@ "id": "ca16ee10", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Task 5.2:</b>\n", "\n", @@ -1028,13 +1129,21 @@ "</div>" ] }, + { + "cell_type": "markdown", + "id": "4a25a0d0", + "metadata": {}, + "source": [ + "Your answer here." + ] + }, { "cell_type": "markdown", "id": "53ca7cc9", "metadata": {}, "source": [ "\n", - "<div style=\"background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Solution</b>\n", "\n", @@ -1051,7 +1160,7 @@ "id": "139d33af", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Task 5.3:</b>\n", "\n", @@ -1061,13 +1170,21 @@ "</div>" ] }, + { + "cell_type": "markdown", + "id": "73b82177", + "metadata": {}, + "source": [ + "Your answer here." + ] + }, { "cell_type": "markdown", "id": "7d201180", "metadata": {}, "source": [ "\n", - "<div style=\"background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Solution</b>\n", "\n", @@ -1084,7 +1201,7 @@ "id": "25b64dff", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Task 5.4:</b> \n", "\n", @@ -1094,13 +1211,21 @@ "</div>" ] }, + { + "cell_type": "markdown", + "id": "8c1db830", + "metadata": {}, + "source": [ + "Your answer here." + ] + }, { "cell_type": "markdown", "id": "ec130a96", "metadata": {}, "source": [ "\n", - "<div style=\"background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Solution</b>\n", "\n", @@ -1115,7 +1240,7 @@ "id": "36284ee9", "metadata": {}, "source": [ - "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", + "<div style=\"background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", "<p>\n", "<b>Task 5.5</b>\n", "\n", @@ -1127,13 +1252,13 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 9, "id": "4edddcaf", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABitElEQVR4nO3deXiU5b3/8fdM9p3sCwkQIGxJ2BXFDURQq6jFLi5t7emmVXsOx7a21nNaen49UO2px55qrdpWra21tuLeKiiLC6Ls2SBsgYQsZN/35Pn98WQmCQmQQCbPzOTzuq65MplMMt88BvPJfX/v+7YZhmEgIiIi4qHsVhcgIiIicj4UZkRERMSjKcyIiIiIR1OYEREREY+mMCMiIiIeTWFGREREPJrCjIiIiHg0X6sLcLXu7m5KSkoICwvDZrNZXY6IiIgMgWEYNDQ0kJSUhN1+5rEXrw8zJSUlpKSkWF2GiIiInIOioiKSk5PP+ByvDzNhYWGAeTHCw8MtrkZERESGor6+npSUFOfv8TPx+jDjmFoKDw9XmBEREfEwQ2kRUQOwiIiIeDSFGREREfFoCjMiIiLi0RRmRERExKMpzIiIiIhHU5gRERERj6YwIyIiIh5NYUZEREQ8msKMiIiIeDSFGREREfFoCjMiIiLi0RRmRERExKMpzHiyrk4wDKurEBERsZTCjKeqLoCHJ8Nr91pdiYiIiKUUZjxV9t+hrQ7yXoPubqurERERsYzCjKc6+Lb5tr0Bao9ZWoqIiIiVFGY8UWM5FO/qfb80y7paRERELKYw44kObQD6NP6WZVtWioiIiNUUZjyRY4opLMl8W6aRGRERGbsUZjxNZxsc2Wzev3S1+VYjMyIiMoYpzHiaYx9CeyOEJsDc2wAbNJRCY4XVlYmIiFhCYcbTOKaYpq2AgDCInmK+r6kmEREZoxRmPIlh9Akz15hvEzLNt5pqEhGRMUphxpNUHIDaQvAJgMlLzMcSZptvNTIjIiJjlMKMJ8n/p/k29XLwDzHvO8OMRmZERGRsUpjxJAffMd9Ov6b3scSeMFN5CNqbRr8mERERiynMeIqmKjjxqXk/7erex0PjIDQeMOBkniWliYiIWElhxlMc3ghGN8RnwriU/h9zNgGrb0ZERMYehRlP4VzFdPXAj6kJWERExjCFGU/Q2Q6H3zPvT7tm4Me1PFtERMYwS8PMmjVrsNls/W4JCQnOjxuGwZo1a0hKSiIoKIglS5aQm5trYcUWKfwY2uohOAbGLxj48cQ55tuTudDVObq1iYiIWMzykZn09HRKS0udt+zs3tGFhx9+mEceeYTHHnuMHTt2kJCQwPLly2loaLCwYgv0nWKyD/KfLDIV/EOhsxWqDo9ubSIiIhazPMz4+vqSkJDgvMXGxgLmqMyjjz7Kgw8+yKpVq8jIyOC5556jubmZF154weKqR5Fh9O4vM9gUE5gBJz7DvK+pJhERGWMsDzOHDh0iKSmJ1NRUbrnlFo4ePQpAQUEBZWVlrFixwvncgIAArrjiCrZt23bar9fW1kZ9fX2/m0erPAQ1BWD3gylLT/88Z9/MvtGpS0RExE1YGmYWLVrEH//4R9555x2efvppysrKWLx4MVVVVZSVlQEQHx/f73Pi4+OdHxvMunXriIiIcN5SUlJO+1yP4JhimnSpebDk6agJWERExihLw8y1117LzTffTGZmJldddRVvvfUWAM8995zzOTabrd/nGIYx4LG+HnjgAerq6py3oqIi1xQ/Wpy7/l575uc5dgIuzTKnpkRERMYIy6eZ+goJCSEzM5NDhw45VzWdOgpTXl4+YLSmr4CAAMLDw/vdPFZLjbmSCQbfX6av2Jlg84GWaqgvcX1tIiIibsKtwkxbWxv79+8nMTGR1NRUEhIS2Lhxo/Pj7e3tbN26lcWLF1tY5Sg6/B4YXWZQiZx05uf6BULsDPO+pppERGQMsTTMfO9732Pr1q0UFBTwySef8LnPfY76+nruuOMObDYbq1evZu3atbzyyivk5OTw1a9+leDgYG677TYryx49zlVMZxmVcdCxBiIiMgb5WvniJ06c4NZbb6WyspLY2Fguuugitm/fzsSJEwG4//77aWlp4e6776ampoZFixaxYcMGwsLO0AjrLbo6zfOY4Oz9Mg4JmZD1osKMiIiMKTbD8O5u0fr6eiIiIqirq/Os/pljH8Gzn4GgSPj+EbD7nP1zCt6H51bCuImwWoFGREQ813B+f7tVz4z0cbBniiltxdCCDPRunFd7HFpqXVKWiIiIu1GYcVeOJdmn2/V3MMFREDHBvH8yZ+RrEhERcUMKM+6o6ghUHgS7L0xdNrzP1eZ5IiIyxijMuCPHqMzExRAYMbzPVZgREZExRmHGHR08y8GSZ9J3J2AREZExQGHG3bTWwfGegzTPJcw4RmYqDkBn+8jVJSIi4qYUZtzNkU3Q3QnRaRA9ZfifH5ECgeOguwMq9o94eSIiIu5GYcbd5Peckj3UXX9PZbOpb0ZERMYUhRl30t0FhzaY94e66+9gEueYbxVmRERkDFCYcScndpinXgdGQMqic/86jpEZNQGLiMgYoDDjTg72TDFNXQ4+fuf+dfpOM3V3n39dIiIibkxhxp2cy66/g4mZBj4B0N4AtcfOuywRERF3pjDjLmqOQ3ke2HyGv+vvqXz8IG6meV99MyIi4uUUZtyFY1RmwkXmGUvnS5vniYjIGKEw4y6cu/6e45LsUyX0hBmNzIiIiJdTmHEHbQ1w7EPz/rTzWJLdl/aaERGRMUJhxh0c2Qxd7RCZCjFpI/M149MBGzSUQFPlyHxNERERN6Qw4w4c/TLTrzV38B0JAWEQNdm8X6a+GRER8V4KM1br7oZDjiXZI9Qv46AmYBERGQMUZqxWshuaKiAgHCYsHtmvrb4ZEREZAxRmrObY9XfKleDrP7JfWyuaRERkDFCYsZrzlOzz3PV3MI4wU3UI2ptH/uuLiIi4AYUZK9WdgJPZgA3SVoz81w+Lh5A4MLrN3YVFRES8kMKMlRxTTCkXQki0a17D2QS8zzVfX0RExGIKM1YaqYMlz0RNwCIi4uUUZqzS3gRHt5r3RyXMaHm2iIh4J4UZqxzdCl1tEDGh94RrV0iYY749mQtdna57HREREYsozFjF0S8z/ZqR2/V3MFGTwS8EOluh+ojrXkdERMQiCjNW6O7u0y8zwrv+nspuh4QM8752AhYRES+kMGOFsn3QWGaOmEy6zPWvp74ZERHxYgozVnCMykxZCr4Brn89507ACjMiIuJ9FGaskP9P8+30a0fn9fouzzaM0XlNERGRUaIwM9rqS6F0r3nfFbv+DiZuFth8oLkKGkpH5zVFRERGicLMaDvUM8U0fgGExo3Oa/oFQux0876agEVExMsozIw25yqmUZpictBOwCIi4qUUZkZTRwsc2Wzed/WS7FM5m4B1RpOIiHgXhZnRVPABdLZA+PjekZLRopEZERHxUgozo8mx6++0q1276+9gHGGm5hi01o3ua4uIiLiQwsxoMQzr+mUAgqMgIsW8X5Yz+q8vIiLiIgozo+VkDtSfAN8gSB2FXX8Ho6kmERHxQgozoyW/Z4pp8hLwC7KmBu0ELCIiXkhhZrT0PSXbKjqjSUREvJDCzGhoLIfiXeb9tFFekt2XI8yUH4DOduvqEBERGUEKM6Ph0AbAgMS5EJ5oXR3jJkBgBHR3QMUB6+oQEREZQQozo8G5JNvCKSYwl4M7+2bUBCwiIt5BYcbVOtus2/V3MGoCFhERL6Mw42rHPoT2RghNMKeZrKbl2SIi4mUUZlzNOcW0AuxucLkT+0wzdXdbW4uIiMgIcIPfrl7MMPqEGQt2/R1MzDTw8Ye2eqg9bnU1IiIi501hxpUqDkBtIfgEwOQrrK7G5OMHcTPN+5pqEhERL6Aw40r5/zTfTr4C/EOsraUvNQGLiIgXUZhxJefBkm6wiqkvLc8WEREvojDjKk1VcOJT876Vu/4OxtEEXKqRGRER8XwKM65yeCMY3RCfCeNSrK6mv/h0821DCTRVWluLiIjIeVKYcRVHv4y7TTEBBIRB1GTzvvpmRETEwynMuEJnOxzZZN6f7iZLsk+lvhkREfESCjOuUPixuY9LSCwkzbe6msFpJ2AREfESCjOu4NgoL+1q99j1dzCJc8y3agIWEREP56a/aT2YYbh3v4yDY2Sm6hC0N1tbi4iIyHlQmBlplYegpsA8MmDKUqurOb3QeHMazOiG8jyrqxERETlnCjMjzTHFNOlSc9WQu7LZtBOwiIh4BYWZkebc9fcaa+sYCjUBi4iIF3CbMLNu3TpsNhurV692PmYYBmvWrCEpKYmgoCCWLFlCbm6udUWeTUuNuZIJ3LtfxkE7AYuIiBdwizCzY8cOnnrqKWbPnt3v8YcffphHHnmExx57jB07dpCQkMDy5ctpaGiwqNKzOPweGF0QOxMiJ1ldzdk5pplO5kJ3l7W1iIiInCPLw0xjYyO33347Tz/9NJGRkc7HDcPg0Ucf5cEHH2TVqlVkZGTw3HPP0dzczAsvvGBhxWfgWMU03QOmmMDcBdgvGDpboOqw1dWIiIicE8vDzD333MN1113HVVdd1e/xgoICysrKWLFihfOxgIAArrjiCrZt23bar9fW1kZ9fX2/26jo6jTPYwLP6JcBsPtAfIZ5X30zIiLioSwNMy+++CK7d+9m3bp1Az5WVlYGQHx8fL/H4+PjnR8bzLp164iIiHDeUlJG6ZDHou3QWgdBUZB8wei85khwNAGX7rO2DhERkXNkWZgpKiri3/7t3/jTn/5EYGDgaZ9ns9n6vW8YxoDH+nrggQeoq6tz3oqKikas5jNy7vq7whzx8BSJOqNJREQ8m69VL7xr1y7Ky8tZsGCB87Guri7ef/99HnvsMfLz8wFzhCYxMdH5nPLy8gGjNX0FBAQQEBDgusJPx7kk2wNWMfXVd3m2YZj7z4iIiHgQy0Zmli1bRnZ2Nnv37nXeFi5cyO23387evXuZPHkyCQkJbNy40fk57e3tbN26lcWLF1tV9uCqjkDlQbD7wtRlVlczPHGzwOYDzZXQUGp1NSIiIsNm2chMWFgYGRkZ/R4LCQkhOjra+fjq1atZu3YtaWlppKWlsXbtWoKDg7ntttusKPn0HKMyExdDYIS1tQyXXxDETIOK/eboTHiS1RWJiIgMi2VhZijuv/9+WlpauPvuu6mpqWHRokVs2LCBsDA3OybgoONgSQ9ZxXSqhEwzzJRmed40mYiIjHk2wzAMq4twpfr6eiIiIqirqyM8PHzkX6C1Dh6eDN2d8J3dED1l5F/D1bb9Gjb8B8y8Ab74vNXViIiIDOv3t+X7zHi8I5vMIBOd5plBBnRGk4iIeDSFmfOV37Mk21N2/R2M41iDmgJzpElERMSDKMycj+4uOLTBvO+p/TIAwVEQnmzeP+nGB3mKiIgMQmHmfJzYAS3V5gqmlIusrub8OHcC1gnaIiLiWRRmzodj19+py8HHrReGnZ12AhYREQ+lMHM+HP0ynjzF5OBsAtbIjIiIeBaFmXNUcmIH2xoLqPfEXX8H42gCLt8Pne3W1iIiIjIMHj43Yp1fv/Mr3kyIw2bAlI1fZ07sHPMWN4fU8NQzHobplsZNgIAIaKuDyvzekRoRERE3pzBzjuLDg0io66bMz87h2sMcrj3My4deBiDcP7xfuMmMySTEL8Tiis/CZjMDzPEPzSZghRkREfEQCjPn6N5VT/Knte/S2lrBPdcF0R1wjH3l+8ityqW+vZ4Pij/gg+IPALDb7KSNS3OGmzmxc5gQNsH9Rm8SZ5thRk3AIiLiQRRmzpGvj50b5ibzh486OHQskcdvWwVAR3cHB6sPsrdiL/vK97GvYh8lTSXk1+STX5PPSwdfAiAyILJfuEmPTifYL9jKb0lNwCIi4pF0NtN5yCmu4/pff4i/r50dD15FRJDfoM8rby5nX8U+Z7jJrcqlo7uj33N8bD5Mi5zWL+AkhyaP7uhNWQ789hIICIcfFppTTyIiIhYYzu9vhZnzYBgGVz/6PgdPNvLzVZnccuGEIX1ee1c7+6v3O8PN3oq9lDeXD3hedGD0gNGbQN/AEf0e+unqgLVJ0NUO/7YPIie57rVERETOYDi/vzXNdB5sNhufnZfMQ28fYP3u4iGHGX8ff2eDsENZU5lzaiqrIou86jyqWqvYVLSJTUWbAPC1+TI9ajpz4+Y6Pz8xJHHkRm98/CBuJpTuM5uAFWZERMQDaGTmPJXWtbD455swDPjg/qWkRI1M30tbVxt5VXn9Rm8qWyoHPC82KNYZbObGzWVm9EwCfALO/YVfuwf2/Akuvx+ufPA8vgMREZFzp5GZUZQYEcTiKdF8dLiKV/cU851laSPydQN8ApgXN495cfMAc0qrpKmkX7jJr86noqWCdwvf5d3CdwHwtfsyK2oWs2NnMyduDnNj55IQkjD0F3ZsnqcmYBER8RAamRkBf991gu/9bR+pMSFs+u4Vo9a029LZQm5lrtlc3HOrbq0e8Ly44Lj+ozdRM/H38R/8ix7/GJ65BsLHw315Lv4OREREBqcG4D5GI8w0tnVywc/epaWji1fuXsy8CZEueZ2zMQyDEw0nzN6bCrP35mDNQbqMrn7P87P7MSt6Vu/GfrFziA+JNz/YWg8/TzHvf/8ohESP8nchIiKiaaZRFxrgy9Xp8by6t4RX9hRbFmZsNhsp4SmkhKewcspKAJo7msmtyu23NLymrcY5kuOQEJLQJ9ykMrOiAL+yLJiy1JLvRUREZKg0MjNC3j9YwVf+8Cnjgv349EdX4e/rnmd4GoZBUUORM8zsLd/LodpDdBvd/Z7n320wKziBuVOudYac2OBYi6oWEZGxRtNMfYxWmOnqNrh43XuUN7Tx1JcXsCJ9GE23FmvqaCKnMqe396ZkO3XdA0/OTgpJ6rfvzfSo6fjZB98oUERE5HwozPQxWmEG4L/fyuPpDwq4Jj2B3355gUtfy5WM/Hc4/rfb2Bc7iX2zb2RvxV4O1xzGoP+PSoBPAOnR6f0O1YwJirGoahER8SbqmbHIqvnJPP1BAZsOlFPX3EFEsGeOWtgSZzOps5NJZUe58V++B/7BNLY3kl2Z7Ry9yarIor69nt3lu9ldvtv5ueNDxzM7Znbv6E3kdPx8PPM6iIiIZ1CYGUEzE8OZkRDGgbIG3swu4fZFE60u6dyEJUBILDRVQPl+SF5AqH8oFyddzMVJFwPQbXRzrP6Ys6k4qzKLwzWHKW4sprixmH8e+yfQO3ozO3a2em9ERMQlFGZG2Kr541n7D/N4A48NMzabeYL2kU3m5nnJA6fM7DY7kyMmMzliMp9N+yzAkEdvHL03joAzI2qGRm9EROScKcyMsBvnjufn/zzAruM1HK9qYmJ0iNUlnZu+YWaITh29MQzDHL3ps6nf4ZrDlDSVUNJU0m/0Zlb0rH7TU3HBcS75tkRExPsozIyw+PBALpkawweHKnllTzGrr5pmdUnnxnmsQfY5fwmbzUZqRCqpEancNPUmwFw5lV2Z3W96qq6tjj3le9hTvgd6Nh1ODEnsN3ozM2qmRm9ERGRQCjMucPP8ZGeY+bdlaaN2vMGIcoSZk7nQ3QV2nxH5siF+IVyUeBEXJV4EmKM3x+uP9x+9qT1MaVMppU2lvH3sbQD87f7OXYsdAce5a7GIyFiV9RLkvgo3/B+EjN3VpAozLrAiPZ5gfx+OVzWzu7CGBROjrC5p+KKngF8wdDRD1RGIdc0Ik81mY1LEJCZFTOLGqTcCA/e9yarIoratlr0Ve9lbsdf5uY5dix3TU2c8c0pExNt0d8OG/4TGMvh4Gly1xuqKLKMw4wLB/r5ck5HA+t3FrN9d7Jlhxu4D8elwYofZN+OiMDOYEL8QFiUuYlHiIsAcvSlsKOx3JMOh2kOUNZVR1lTGO8feAcwzp2ZGzey3ciohJMEzR8ZERM6mbJ8ZZAB2PQdX/AD8gqytySIKMy5y8/xk1u8u5s2sUn68chYBviMzTTOqEjJ7w0zm5ywrw2azMTF8IhPDJ3LDlBsA88ypnMocsiqz+p05lVWZRVZlFn/a/ycAYoNinVNTs2Nnkx6dTqBvoGXfi4jIiMl/u/d+SzVk/x3mf9m6eiykMOMiF02OJiE8kLL6VjYfKOeajESrSxq+EWgCdpVgv2AuTLyQCxMvBHpPDN9XaY7eZFVmkV+dT0VLBe8Wvsu7he8C4GvzZVrUtH69N8mhyRq9ERHPc9BcEUrCbPOPzk+ehHlfMrfXGGMUZlzEx27jxnlJPLn1KC/vLvbsMFOaBYbh1v9A+p4Yfv3k6wFo6WwhryqPrIosZ/9NZUsleVV55FXl8ZcDfwEgKjDK2XczO2Y2GTEZBPsFW/ntiIicWX0JlO4DbHDz7+HJy+FkNhR+DBMXW13dqFOYcaFV85J5cutRtuSXU9PUTmSIhzWnxs8Cmx2aK6GhDMI9K5AF+QaxIH4BC+LNTf8Mw6C0qdQZbrIqssirzqO6tZotJ7aw5cQWwNwQMG1cmnPkZnbsbCaFT9LojYi4j4NmryDjF5g9jXO+CLuehU9+qzAjI2t6QhjpSeHkltTzZlYJX754ktUlDY9fEMRMg4oD5hCmh4WZU9lsNpJCk0gKTeKa1GsAaOtqY3/V/t6AU5lFWVMZ+TX55Nfk87eDfwMg3D/c2XczJ3YOmTGZhPmHWfntiMhYdrCnX2a6+f8yLrzTDDP734S6ExCRbFlpVlCYcbFV85PJLcnj5d3FnhdmwJxqcoSZaVdbXc2IC/AJYG7cXObGzXU+drLppNlI3BNw8qryqG+v58PiD/mw+EMAbNiYMm6KGXBizJAzOWIyPiO0H4+IyGm1N8PRLeb9adeab+NnwaTL4NgHsOP3cNVPLCvPCgozLnbDnCTW/mM/e4tqOVrRyOTYUKtLGp6ETMh+yS2bgF0lPiSe5SHLWT5xOQAdXR0crDnI3oq9zoBT3FjM4drDHK49zPpD6wFzSXlGTIYz3GTGZBIdFG3ltyIi3qjgfehshfBkcwsNh0V3mWFm17Nwxf1japm2woyLxYYFcFlaDFvyK3h1TzH3rZhudUnDk5Bpvi0d+hlN3sbPx4/0mHTSY9K5febtAFS2VJJdYR6qmV2ZTXZlNk0dTXxS+gmflH7i/Nzk0OR+01PTI6frWAYROT99p5j69vJNvxYiJkBdIeS8bK5sGiMUZkbBqvnJbMmvYH3PWU12uwc1kjpWNNUUQGs9BIZbW4+biAmKYemEpSydsBSAru4uDtcedk5PZVVkcbTuKCcaT3Ci8QT/KPgH0HssQ2ZsphlwYrSxn4gMg2H0Nv86ppgc7D5w4Tdg44/NRuC5t7v1KtSRpDAzClbMiic0wJcTNS3sPF7DhaketCNwSDSEj4f6YjiZMya75IfCx+7D9KjpTI+azuenfR6A+vZ6c2O/nnDjOFTz1GMZYoNinaM3s2NmMyt6lpaGi8jgSvdBQwn4hcCkSwd+fN6XYfM6szWgcDtMvHj0a7SAwswoCPTz4dqMBP626wTrd5/wrDAD5uhMfbH5j0NhZsjC/cNZnLSYxUnmNXMcy+Dou8muzOZg9UEqWip4r/A93it8DwAfmw9pkWnO3pvZsbOZGD4Ru81u5bcjIu7AMSozZSn4DbKbeXAUzP4C7H6uZ5m2woyMoFXzk/nbrhO8lV3KmhvSCfTzoFUvCZnmTpNlY7dvZiT0PZZh5ZSVgLmxn2NpeFalGXLKm8s5UH2AA9UHeOngS4AZjDJjM5kTM4fM2EwyYzKJCIiw8tsRESs4dv090+rSRXeaYWb/G1BXDBHjR6c2CynMjJJFqVGMHxdEcW0L7+0v57rZHrRni5qAXSbIN4j58fOZHz/f+VhZUxnZldnO6ancqlzq2+v5qPgjPir+yPm8SeGT+i0NT4tMw9euf9IiXqu+FEr2mPfTzhBm4tN7l2nv/D0s+/Ho1Gch/Z9vlNjtNm6al8Tjm4+wfvcJzwoziT1NwBUHoLMdfD1sJ2MPkxCSQEJIQu/S8G5zaXhWRRbZFdlkVWZxvP44x+qPcaz+GK8feR2AQJ9As7k4JtM5PRUfHK/mYhFvcWiD+Xb8AgiLP/NzF93Zu0z78vsHn5LyIgozo+iz85J5fPMRth6soKqxjejQAKtLGppxEyEgAtrqoDK/d6RGRoWf3Y/06HTSo9O5dcatANS01jhHb7Irs8muyKaho4Hd5bvZXb7b+bmO5mJHwEmPTldzsYincizJnnbN2Z877VqISIG6op5l2re7tjaLKcyMoqlxocxOjiDrRB1v7Cvhq5ekWl3S0NhsZoA5/qHZBKwwY7nIwEguT76cy5MvB6Db6OZY/TGyK7KdIedgzcDmYrvNztRxU3tHb2JmkxqRqp2LRdxdRwsc2WzeH0qY8fGFC74B7/6kZ5n2bV69TFthZpStmjeerBN1rN9T7DlhBvqHGXE7dpudyRGTmRwxmRun3ggMbC7OrsymrKmMgzUHOVhzkJcPvQz07FwcneEcwcmMzSQmKMbKb0dETlXwAXS2mFtlDPUPyvlfgS3rzMUbRZ/AhItcW6OFFGZG2co5Sfzsrf1knajjcHkjU+M85HgDNQF7nMGai8uby519N9mV2eRU5pg7F5d9widlvTsXJ4Uk9Zuemhk9kwAfD5kWFfFGfVcxDXWExblM+4/m6IzCjIyU6NAArpgWy3sHynllzwm+f/UMq0saGkcTcFm2uQOlFw9XerO44DiWTVzGsonLAOjs7uRI7ZF+/TdHao9Q0lRCSVMJbx8z5+h97b5Mj5zer7l4QtgENReLjIYz7fp7NhfeaYaZvNe9epm2zTAMw+oiXKm+vp6IiAjq6uoID3ePrfjfyirlnhd2M35cEB/cv9QzjjfobIe1SdDdAf+2DyInWV2RuEhjeyO5Vbm901MV2VS1Vg14XkRAhPNgzcwYc++bcYHjRr9gEW9XmgVPXgZ+wXB/wfBXJj1zndkmcNn3YNl/uqZGFxjO72+NzFhg2cw4wgJ9Ka5t4ZOCai6e4gEnK/v6Q9xMc+61LFthxouF+oeyKHERixIXAebOxSVNJc7pqayKLPZX7aeurW7A3jcpYSnO0ZuMmAxmRM3Q9JTI+XKsYpq85NyWWC/6lhlmdj0Ll3/fK5dpK8xYINDPh+tnJ/KXT4tYv/uEZ4QZMI81KMsy/0qYudLqamSU2Gw2xoeOZ3zoeK5JNVdRdHT17H3TM3KTXZnNsfpjFDUUUdRQ5DxY89TpqYyYDB3NIDJcw1mSPZjp10F4MtSfgNz15somL6NpJot8WlDNF578mNAAX3Y8eBVB/h6wNPaTJ+Gf95tztre9aHU14mbq2urIrcwlqzKLnMocsiuzqW6tHvC8MP8wMqIzzJPDY8yAEx3kIYFeZLQ1nIRfTjPvfzcfwhLO7et88Ai891NInAPf2uoRfY+aZvIACydGkhwZxImaFjbuP8kNc5KsLunsHCuatDxbBhEREMHi8YtZPL73YM2+01M5lTnkVeXR0N7Ax6Uf83Hpx87PHR86nsyYTLMHJ3Y2M6NmEujrfUPhIsN2qKfxN2neuQcZgPl3wNaHzFO3iz6FCYtGpj43oTBjEbvdxqp54/m/TYdZv/uEZ4SZ+Azzbf0JaK42l/2JnMag01PdHRyqOUROZY5z9VRBXQHFjcUUNxY7V0/52HyYFjmtX8BJjUjV9JSMPee6iulUIdGQ+XnY83zPMm3vCjOaZrJQQWUTS/9nCz52G9sfWEZsmAc0Sv5qLtQUwFdeM5vRRM5TQ3sDuVW5zt6b7MpsKlsqBzzPsblfZmymcxVVbHCsBRWLjJKOVng4FTqazamhpLnn9/XKsuG3l4LdF1ZnQ7h7/xGtaSYPkRoTwtyUcewtquX1fSV8/VIP2BE4IdMMM6VZCjMyIsL8w7go8SIuSjQ39DIMg5PNJ3vPnarMJq8qb9DN/RJCEpyjN5kxmcyKnkWIX4hV34rIyDr2gRlkwpLMXpfzlZAJEy+B4x/Bzj/Alf9x/l/TTSjMWOzm+ePZW1TL+t0nPCPMJM6G/a+rb0ZcxmazOU8OXzFpBdB/cz/HBn9Hao9Q1lRGWVMZG49vND8XG1PGTXGGm8yYTKZGTsXP7mfltyRybpyrmIax6+/ZXPitnjDzjLlM29cDZgSGQGHGYtfPTuK/3swjt6Se/LIGpieEWV3SmSX02QlYZJT42n2ZHjWd6VHT+dy0zwHQ1NFEXlWe81gGx9lTh2sPc7j2MK8efhWAAJ8AZkbNdAacjJgMUsJStHuxuDfDgPzzXJI9mBnXm+c71RdDznqYe+vIfW0LKcxYLDLEn6XT49iQd5L1e07wwLUzrS7pzBwrmioPmqe4+gVZW4+MWSF+IVyQcAEXJFzgfKyiucIZbHIqc8ipyqGhvYG9FXvZW7HX+byIgAgyojP6BRwtDxe3cjLXXGzhGwSTrxi5r+vjCxd8Hd77L7MReM4tHrFM+2wUZtzAqvnj2ZB3ktf2lHD/1TPwcefjDcISITgGmiuhPA/GL7C6IhGn2OBYlk5YytIJSwHoNroprC/sDTeVOeyv7tm9uOQjPirp3b04KSSpX7iZFT2LYL9gq74VGescB0tOXjLyfzTO/ypseQhK98KJHZBy4ch+fQsozLiBpTPiiAjyo6y+le1Hq7hkaozVJZ2ezWaOzhzdbDYBK8yIG7Pb7EyKmMSkiEmsnGLuWu3YvdjRf5NTmUNBXYHzcM0Nxzc4P3fKuCn9GoynjpuKr13/25RRkN+nX2akOZZp7/2TOTqjMCMjIcDXPN7gz58U8vLuE+4dZsBsAj66WX0z4pH8fPxIj0knPSadW7gFMJeH51XlOUdvsiuzOdl8kkM1hzhUc4j1h9YDEOgTyMzo/v03yaHJ6r+RkdVYDsW7zPuuCDNgnte090+Q9xrUl0J4omteZ5RYGmaeeOIJnnjiCY4dOwZAeno6P/7xj7n2WnNzIMMw+OlPf8pTTz1FTU0NixYt4vHHHyc9Pd3Cql1j1fzx/PmTQt7OKeNnN3US7O/GOdPZBJxlbR0iIyTMP6zf4ZoA5c3l/cJNTmUOjR2N7Cnfw57yPc7njQsYR3pMuhluojNIj0knJsjN/yAR93ZoA2CYy7FdtRdM4hyYsBgKt/Us037QNa8zSiz9jZmcnMzPf/5zpk6dCsBzzz3HjTfeyJ49e0hPT+fhhx/mkUce4dlnn2XatGn87Gc/Y/ny5eTn5xMW5uarfoZp/oRIJkYHc7yqmQ25J7lp3nirSzo9RxPwyVzo7gK7B5wrJTJMccFxXDnhSq6ccCVg9t8crz/eL9wcqD5AbVvtgNPDE0MSyYjJID063fk21D/Uqm9FPE1+T7/M+e76ezaLvmWGmV3PwOXf8+hl2kPeAfhrX/sav/rVr1weIqKiovjFL37B1772NZKSkli9ejU/+MEPAGhrayM+Pp6HHnqIO++8c0hfz513AD7Vo+8e5NF3D3FZWgzPf92Nt5ru7oK146GzBe7dCTFpVlckYon2rnbyq/PJqTJHcHIrczladxSD/v9btWFjUsQk5wqqjJgMpkdNJ8DHc395iIt0tsFDqdDRBN/aYp7J5CpdHfCrOeYy7c8+aa5sciPD+f095DDj4+NDaWkpcXFxI1Lkqbq6uvjb3/7GHXfcwZ49ewgMDGTKlCns3r2befN6/2PeeOONjBs3jueee27Qr9PW1kZbW5vz/fr6elJSUjwizByvauKKX2zBboPtDywjLtyND9p7ehkU74Sbfw+Zn7O6GhG30djeyP7q/c4RnNzKXEqaSgY8z9fuy7TIaf0CzuSIyfhopHNsO/wu/OlmCE2A+/aD3cXnkb3/P7Dp/5mh6Zub3WqZtkuOM3DVEU7Z2dlcfPHFtLa2EhoayiuvvMKsWbPYtm0bAPHx8f2eHx8fz/Hjx0/79datW8dPf/pTl9TqahOjQ1g4MZKdx2t4bW8J37x8stUlnV7ibDPMlGUrzIj0EeofOmD/m6qWKnKrcp09ODmVOdS01ZBXlUdeVR4vHXwJgCDfoH4b/KXHpKvBeKzpu4rJ1UEGYMFXYevDULIHTuyElAvO+inuaFg9M674BzV9+nT27t1LbW0tL7/8MnfccQdbt2497WsahnHGOh544AHuu+8+5/uOkRlP8dn549l5vIaXd59w7zDj6JtRE7DIWUUHRXN58uVcnnw5YP5/rKSppF+4ya3KpaWzhd3lu9ldvtv5uY4G474jOGow9lKG0XtK9nQX98s4hMSYf5Du/XPPMu0xEGamTZt21kBTXV09rAL8/f2dDcALFy5kx44d/OpXv3L2yZSVlZGY2LtkrLy8fMBoTV8BAQEEBHjuPPT1mUn89PU8DpQ1kFdSz6wkN50ac6xoKt0HbY0QoOZGkaGy2WyMDx3P+NDxXD3JXHrb1d1FQV2Bs/8mpzKH/Jr8QRuME0IS+oWbWdGzCPP3rkURY1J5HtQVgm8gpI7grr9nc+G3zDCT9yrU/8wjl2kPK8z89Kc/JSIiwlW1AOZfLG1tbaSmppKQkMDGjRudPTPt7e1s3bqVhx56yKU1WCki2I9lM+P4Z04Zr+w5waykWVaXNLj4dAiKhOYqePYzcNtLEJZgdVUiHsvH7sPUyKlMjZzKTVNvAgY2GDs2+HMcsPlu4bvOz58UPqnfCM70qOkE+eq4EY/iOFgy9QrwH8Xdp5PmQspFULTdXNm09Eej99ojZFhh5pZbbhnRBuAf/ehHXHvttaSkpNDQ0MCLL77Ili1bePvtt7HZbKxevZq1a9eSlpZGWloaa9euJTg4mNtuu23EanBHn503nn/mlPHa3hJ+eO1M9zzewC/IDDB/udUcnXl6Gdz+khlyRGRE+Pv4kxmbSWZspvMxR4OxY3m4o8H4WP0xjtUf462jbwHgY/NxniDuWCKeNi4NPx+dIO62HP0y00fwYMmhWnSnGWZ2PgOXfdfjlmkPOcy4ol/m5MmTfPnLX6a0tJSIiAhmz57N22+/zfLlywG4//77aWlp4e6773Zumrdhwwav22PmVEumxxEZ7Ed5QxsfHa7k8mmxVpc0uJQL4Rvvwp8/D1WH4PdXwxeeg6nLrK5MxGudqcE4tyqX3Eqz0biqtYqDNQc5WHPQuYOxv92f6VHT++1/kxqRqhVU7qCxwjwnCSDNRbv+nsnMlRCWBA0lkPsqzPni6NdwHoa8NNtut1NWVuaypdmu4kn7zPT149dy+OPHx7lpbhKP3uLCfQZGQnM1/PXLcPxDsPnA9Y+YHfIiYgnDMDjZfNIMNlW9DcYN7Q0DnhvsG2we0dCze3FGdAbJYVpBNer2vgCvftvsR7zrA2tqeP8XsOlnkDQfvrXZmhr6cMk+M57KU8PMnsIaPvubbQT5+bDzP64iJMCNjzcAc6On1/8Vsl40379kNSz7yegsLRSRszIMg6KGIrP3psqcntpfvZ+WzpYBz40IiCA9Ot289QSc+JDTL7yQEfDXL8P+1+Hy+607WqCpEh6ZBV1t8I33IHmhNXX0cMk+MzK65qaMY3JMCEcrm3g7p4ybFyRbXdKZ+QbAZ38LUamwZR189CjUHDMfG+nj60Vk2Gw2GxPCJzAhfAKfmfwZwFxBdbTuqHPkJrcyl/yafOra6thWso1tJducnx8bFNsbbnqmqCIDI636drxLZxsc2WTet6JfxiEkBjJuhn0vmMu0k39nXS3DpJEZN/br9w7xy40HuWRqNH/+xkVWlzN0+16E1+6F7g5IvhBu/Yv5j0RE3F57VzuHag45A05OVQ5Hao/QbXQPeO740PH9+m9mRs/UEvFzcWQTPP9ZCI2H+w5YO6JdsgeeWgJ2P/j3HEtXqWpkxkvcNG88v9x4kG1HqiitayExwkNGOObcAuHj4a+3w4lP4XfL4Pa/6wwnEQ/g7+NPeow5AuPQ3NHMgeoDzl2Mc6tyOV5/nOLGYoobi9lwfIPzuY4l4o5pqhlRMwj2G8Vlxp7IsYopbYX1U/NJ8yBlERR9Yq5sWvqAtfUMkUZm3NwXnvyYTwuq+eG1M7jriilWlzM8FQfhz5+D2uMQOA5u+TNMutTqqkRkBNS315NXlUdOZQ55VXmnPYPKbrMzOWKyc4oqPTpdh2z2ZRjwq9lQWwi3vAAzrrO6Ish5Gf7+NQiJg3/PBV9/S8pQA3Afnh5mXvy0kB+uz2ZafCjvrL7c81YYNFbAi7eaSw7tfnDj4x635E9Ehqa6tZrcylznMvG8yjzKW8oHPM/X5ktaZBqzomc5G4ynRk7Fzz4G98Ap3w+/uQh8AuAHBeAfYnVF5mnaj2ZCQymsehpmf8GSMhRm+vD0MFPf2sHCn71Le2c3b37nUjLGu3YHZpfoaIFX7oS818z3lzwAV/zArU5nFRHXKG8u7xdwcitzqWmrGfA8xx44s6Jn9dsDx9fu5d0QHzwC7/0Upi6HL/3d6mp6bf0FbP4ZjF8A39xkSQkKM314epgBuOeF3byVVcrXLknlxyvd9HiDs+nuhvfWwEe/Mt+fcyus/D/Lhi9FxBqGYVDaVOoMNo6QM9geOEG+QcyImtFvimpi+ETsNi/a8uH3V5s77173S7jgG1ZX06uxAv53FnS1W7ZMW2GmD28IM+/tP8nXn9tJTGgA2x+4El8fD/6HvPMZeOu7YHTBpMvgi8+bZzyJyJjl2AOnb8DJq8qjubN5wHND/ELM6ak+ASc51EM3+Wuqgv+ZCkY3rM6BcSlWV9TfK3fBvr9A5hfg5qdH/eUVZvrwhjDT0dXNRWvfo6qpnWf+5QKWTvesXZgHOPwuvPRVaG+A6DS4/W/m/jQiIj26urs4Xn+83/TUgeoDtHa1DnhuuH+4M9w4gk5iSKL7B5y9f4FX74L4TPj2h1ZXM1C/Zdq5EDa6GydqabaX8fOxs3JOEs9uO8b63cWeH2amXgVfexte+IJ5ptPvroJbX4SUC87+uSIyJvjYfZg8bjKTx01m5ZSVAHR2d3Kk9oi5eqpnmXh+TT717fV8XPoxH5d+7Pz8yIBIZsWYwcYRcOKD490r4By08GDJoUiaZ+4VduJT8zTtJT+0uqLT0siMh8g6UcsNj31EgK+dnf9xFWGBXtD1X19qBpqyLPANhM8+Cek3WV2ViHiQ9q52DtUeci4Pz6vK41DNITqNzgHPjQ6M7rcHzqzoWcQGW3SQb2c7PDzZHKF2g6MDTiv77/Dy180N/VbnjGqfo6aZ+vCWMGMYBsv/930Olzfy8Odm84WFbja3eq7aGs1/KI6/UJb/Fyz+V610EpFz1tbVxsHqg87em9yqXI7UHqHL6Brw3LigOOcIjiPgRAdFu77II5vh+ZvMvVy+m2/9Znmn09UB/5sBjWWw6ncw+/Oj9tKaZvJCNpuNz84bzy/eyWf97hPeE2YCQs2Not7+IXz6FGz8MVQXwGf+B3z04ykiwxfgE0BmbCaZsZnOx1o6W8ivzncGnLyqPI7WHaW8pZzyonK2FG1xPjchJKH3oM2egDMucNzIFnnwHfPtNDfY9fdMfPzggq/D5v82z2saxTAzHBqZ8SDFtS1c+tAmDAM+/MFSkiO9bIvw7U/A2w8ABkxZBp9/FgI9+7+ZiLivvsc0OELOsbpjGAz8tTg+dHy/VVQzo2YSEXCO+34ZBvzfXPMw3i/+CWauPK/vw+Uay+F/03uWaW+C5AWj8rKaZurDm8IMwK1Pbefjo1V8/+rp3LN0qtXljLwDb8Hfvw6dLRCXDre/BBFufmK4iHiNxvZG9lfvd/bg5FblUthQOOhzJ4RNcAacWdGzhn7QZkU+PH4h+PjD/QXmCLW7W38nZL0Is78Iq54alZdUmOnD28LMSzuLuP/vWUyJDeHd+65wr878kVK8G174IjSVQ2gC3PZXSJprdVUiMkbVt9ezv2p/v31wihuLB33upPBJzIye2RtwomYS6n9KWPnwUXj3J+bKzi+97PpvYCQU74KnrxzVZdoKM314W5hpaO3ggv9+l9aObl6/9xJmJ4+zuiTXqC2EP38BKvaDXwh87g/uu3xRRMac2tZa8qp7V1DlVeUNetCmDRsTwyeae+BEmWdRzXzrAYILPzF7Ay/8pgXVn6PfXWWes7fkR7DkBy5/OYWZPrwtzAD861/28Pq+Er66eBJrbki3uhzXaa2Dl74CR7eAzQ7XPASLvmV1VSIig6purXaO4DhWUZU1lQ14ns0wSO3oZNbkFaQnXsis6FnMiJpBsJ+b90Fm/Q3Wf8McMV+d7fJl2gozfXhjmNmcX86/PLOD6BB/tv9oGX6efLzB2XR1wJv/DnueN9+/6G5Y8TOw+1hbl4jIEFS1VDlHbnKrcskr28nJjoHnUNltdlLDU/vtYjw9ajpBvkEWVH0ane3waAY0noSbfw+Zn3PpyynM9OGNYaazq5uL1m2isrGN39+xkGUzR3eL6VFnGPDhI/Def5nvT7/OPCfEP8TaukREhutvX6Vy/2vkzb+F3JTZZtCpzKO8pXzAU+02O5MjJvdrMrY84Gx5CLasheQL4BvvuvSlFGb68MYwA/D/3szj9x8WcF1mIo/fPt/qckZHzsvwyrehq83cZvvWv476WSEiIuesq8Pc9betHr7+br8jXCqaK/qN4ORW5VLZUjngS/jYzGMe+h7TMC1yGoG+gaPzPTScNJdpd3fANzfBeNct01aY6cNbw8zeolpuevwjwgN92fvjFdjtXriqaTCF2+Evt0JLNUSkwG0vQfwsq6sSETm7o1vhjzdAcAx87+BZp8vLm8t7p6d6lopXtVYNeJ6PzYep46b2G8GZFjWNAJ8A13wf678FWX+F2bfAqidd8xoozPTjrWGmo6ub2Ws20NLRxTurL2d6whD2NvAWVUfgz5+H6iMQEA43/FpnOomI+3v7Adj+G5h7O9z0m2F/umEYnGw+2b8HpyqP6tbqAc/1tfkyNfKUgBM5DX+fEWjaPbELfneluU/Ov+dCqGsOP9ZxBmOAn4+duSnj+PhoFTuPV4+tMBM9xZyr/euX4PhH8Lc74Ng3YMV/g98oDbWKiAyHYUD+P837085tmwmbzUZCSAIJIQlcOeHKni9rBhzHHjh51WYPTk1bDQeqD3Cg+gDrD60HzICTFpnGrOhZzpCTFpk2/ICTvADGL4TinbDrWbji/nP6fkaSRmY82C835PPrTYdZNW88j3xxrtXljL6uDtj0/+CjX5nvJ2TC558zw46IiDupOAiPX9Cz6+9RCHDdH6CGYVDWVNZ/iqoql9q22gHP9bX7kjbODDiOlVTTxk3Dz8fvzC+S9RKs/6ZLl2lrZGaMWDAxEoBdhTUWV2IRHz/zlO1Jl8Erd0JZNjx5Oaz8lcuXDIqIDMvBt823ky51aZABcwQnMTSRxNBElk1cBpgBp7SptN9Bm7lVudS11bG/ej/7q/fz8iFzN2Jfuy/TIqf1m6JKG5fWP+DMugk2/Id5mvb+1y3/f65GZjxYfWsHc366AcOAHQ9eRWyYi5q9PEF9Cbz8DXPaCWD+V8xN9vzdfBMqERkbnvmM+f+na3/hNpt/GoZBSVNJv12Mc6tyqW+vH/BcP7vfgIAzdd/L+L3/C0i+EL6xccTrUwNwH94cZgCuefR9DpQ18NsvzeeajESry7FWVydsfQje/wVgQNws8+Tt2OlWVyYiY1lzNfxiKhhd8G9ZEDnR6opOyzAMihuLB4zgNLQP3OjPz+7H9JYmZrW1MWfhj7jh4pENaZpmGkMWTIzkQFkDO4/VKMz4+MKVD8LExebSwfI8eGoJXPdLmHub1dWJyFh1+D0zyMTNcusgA+YUVXJYMslhyVw96WrADDgnGk/0Czh5VXk0tDeQE+BPToA/tXv/POJhZjgUZjzcwkmR/PmTQnYeH6N9M4OZshTu+tBsTivYCq9+GwreNw91Cwg9++eLiIykg45VTFdbW8c5stlspISlkBKWwjWTzJVY3d3dfP2Fdygs/CdpoXu59tI7La3Riw/1GRsWTowCILekjtaOLourcSNh8fDlV2Dpf5iHVO77Czy9FMpyrK5MRMaSrg441LPt/7Rrra1lBD35fgGbc7opbLqGb974GlfNt3b0W2HGwyVHBhEXFkBHl8G+olqry3Evdh+44vtwx5sQlgiVB+F3y2DnM+aeDyIirla4HdrqIDgakhdaXc2I2HqwgoffOQDAmhvSnStrraQw4+FsNhsLJ5k/SJpqOo1Jl5jTTlOXQ2crvLkaXv46tA7s2BcRGVGOJdlpK856fIEnKKxq5l//sgfDgFsuSOG2CydYXRKgMOMVFvRMNe1SmDm9kBjzHKfl/wU2H/PQyqeugJK9VlcmIt7sPHf9dSfN7Z186/md1LV0MDdlHD+9MR2bzT3OBVSY8QILHZvnHa+hu1vTJ6dlt8Ml/wZfe9s8pLL6KPx+OXzylKadRGTkVR42z5Cz+8GUK62u5rwYhsEPX87mQFkDMaEB/PZLCwjwdZ+RJoUZLzArKZwgPx/qWjo4UtFodTnuL+VCuPN9mP4Z6GqHf34fXvoytNRaXZmIeBPHKqZJl0CgZ+9z9vsPC3h9Xwm+dhu/uX0+CRHudQ6ewowX8POxMyclAlDfzJAFR8EtL8A1Pzf/atr/Bjx5GZzYaXVlIuItDr5jvvXwVUzbDley7p9mw+9/Xj+LC1OjLK5oIIUZL+FYor3zmMLMkNlscNG34esbIHIS1BbCH66Gbb/WtJOInJ+WGji+zbzvofvLAJyoaebev+yhq9vg5vnJfOVi99z0T2HGSyyY5Oibqba4Eg80fr457TTrRujuNA9P+8st5hbkIiLnwrHrb+wMiEq1uppz0trRxV1/2kV1UzsZ48P5789muE3D76kUZrzE/AmR2GxwrKqZioY2q8vxPIER8PnnzKMPfALM5ZS/vdTcI0JEZLgcS7I9dBWTYRj86JVscorriQrx57dfWkCgn/s0/J5KYcZLRAT5MS3OPFZeS7TPkc0GF3wDvvEuRE2B+mLzpNsPfgnd3VZXJyKeoqsTDvWcIu2hYeaPHx9n/e5ifOw2HrttHsmRwVaXdEYKM15EU00jJHE23LkVMj9vDhO/91/w55uhscLqykTEExRth9ZaCIoyV096mE+OVvH/3swD4IFrZ7B4SozFFZ2dwowXcew3oxVNIyAgDFY9DTf8GnyD4Mgmc9qp4AOrKxMRd+fBu/6W1rVwzwu76ew2uHFuEl+/1DP6fRRmvIhjRVNOsQ6dHBE2G8z/CnxzE8RMh8Yy+OMNsOXn0K3rKyKnke/ol/GsVUxtnV3c9afdVDa2MzMxnJ+vmu22Db+nUpjxIilRQcT2HDqZdaLO6nK8R/ws+NZmmPslMLphyzr4443QUGZ1ZSLibqqOQNUhsPvC1GVWVzNkhmHw41dz2VdUy7hgP5768gKC/D1nVElhxovYbLY+U03qmxlR/iFw0+Pw2SfBLwSOfQBPXGIuvxQRcXBMMU28xFwl6SFe+LSQv+4swm6D/7tlHilR7t3weyqFGS/jOIp9lzbPc405t8C3tkB8BjRXwp9uhjdWa08aETF54MGSu47XsOb1XAC+f/UMLp8Wa3FFw6cw42UWTuo5QbtQh066TOw0c/n2wq8BBux6Bn49H3Y9qyXcImNZSy0Ufmzen+4ZYaa8vpVv/2kXHV0Gn8lM4K4rJltd0jlRmPEy6UnhBPrZqW3u4GilDp10Gb8guP5/4av/gLhZ5tblb/wb/P4qKN5tdXUiYoUj75m7iMdMgyj3DwXtnd18+8+7KW9oY1p8KL/43ByPafg9lcKMl/HzsTMneRygc5pGxaRLzKMQrl4H/mFQvAuevlJTTyJjUb5n7fr7X2/msut4DWGBvjz15YWEBPhaXdI5U5jxQgu038zo8vGDi++G7+yE2V9EU08iY1BXJxzu2fV3uvufkv3SjiL+tL0Qmw1+dctcJsWEWF3SeVGY8UILnTsBK8yMqrAEWPXUwKmn3y0zR2xExHud+NT8Nx84DpLde9ffvUW1/MerOQDcd9U0rpwRb3FF509hxgvNn2CGmYLKJiobdejkqDt16qlkNzy9zAw2mnoS8U6OVUxpK8DHfadrKhrauOv5XbR3dbNiVjz3LJ1qdUkjQmHGC40L9ictLhTQ6IxlBp16elZTTyLe6uA75ls3XsXU0dXNPS/spqy+lSmxIfzyC3Ow2z2z4fdUCjNeSlNNbqLf1FO6pp5EvFH1UajMN3f9neK+u/7+91v7+bSgmtAAX5788kLCAv2sLmnEKMx4qQU95zTtPKZpDbfgmHq65ucQEK6pJxFv4ljFNOFiCBpnaSmns373CZ7ddgyAR74wh6k9o/feQmHGSzmONcgprtehk+7Cxxcu+jbcuxNm30K/qaedz2jqScRTOY4wcNNVTDnFdTywPhuAf71yKivSEyyuaOQpzHipidHBxIT6097VTXaxDp10K2HxsOrJ/lNPb67W1JOIJ2qtg+MfmffdcH+Z6qZ27nx+F22d3SydHsvqq6ZZXZJLKMx4KZvN1rvfjDbPc0+aehLxfEc2mbv+RqdB9BSrq+mns6ube1/YTXFtC5Oig3n0lnle0/B7KoUZL7awp29ml07Qdl9nnXrSFKGIW3Pu+nu1tXUM4uF38tl2pIpgfx+e+spCIoK8p+H3VAozXmxBnxVNhqFDJ92aY+rpX/6pqScRd2cYcHQr/PVLkP038zE365d5fV8JT71/FID/+fwcpsWHWVyRaynMeLGMpAgCfO3UNHdwtLLJ6nJkKCYuPmXqaY+mnkTcRWsdfPIkPH4h/PEG2P8GGF2QcbO5kslN7C+t5/6/7wPg20um8JnMRIsrcj1Lw8y6deu44IILCAsLIy4ujptuuon8/Px+zzEMgzVr1pCUlERQUBBLliwhNzfXooo9i79v76GTu9Q34zk09STiXk7mwpv/Dr+cCf+8HyoPgn8oXPANuHs7fO4PYPexukoAapvNht/Wjm4uS4vheyumW13SqLA0zGzdupV77rmH7du3s3HjRjo7O1mxYgVNTb2jCA8//DCPPPIIjz32GDt27CAhIYHly5fT0NBgYeWewzHVtFN9M55HU08i1ulsh5yX4Q/XwhOLYecfoKMJYmfAZ/4HvnsArvslxM20ulKnrm6Df31xL4XVzaREBfHrW+fh46UNv6eyGW7UTFFRUUFcXBxbt27l8ssvxzAMkpKSWL16NT/4wQ8AaGtrIz4+noceeog777xzwNdoa2ujra33PKL6+npSUlKoq6sjPDx81L4Xd/He/pN8/bmdTI4NYdN3l1hdjpyrrk7Y8TvY/N/QVg/YYP5XYNlPICTa6upEvEd9iTkCuvs5aDxpPmbzgZnXwwXfhEmXgs09A8LDbx/gN1uOEOhnZ/23L2FWkmf/zquvryciImJIv7/dqmemrs7cDyUqylyFU1BQQFlZGStWrHA+JyAggCuuuIJt27YN+jXWrVtHRESE85aSkuL6wt2YY3n20YomqpvaLa5GzpmPL1x0lzn1NOdWwDD/Z/vYAvjgEfXTiJwPw4CC9+GvX4b/zYD3HzaDTGgCXPFD+Pcc+MIfIfUytw0y/8wu5TdbjgDw0M2zPT7IDJfbhBnDMLjvvvu49NJLycjIAKCsrAyA+Pj+x5PHx8c7P3aqBx54gLq6OuetqKjItYW7uXHB/s5tq3VOkxcIi4fP/hb+5W2IzzCnnt77KfxvOrx5H1QctLpCEc/RWg+fPAWPL4LnVsL+182G3omXwueeMUPM0gcgPMnqSs/o4MkGvvs3s+H3m5elcuPc8RZXNPrc5pzye++9l6ysLD788MMBH7OdkoQNwxjwmENAQAABAQEuqdFTLZwYyeHyRnYer2b5rPizf4K4v4kXw7e2mstCtz8OZdmw8/fmbepy88TuyUvd9q9IEUudzIMdT8O+v5p9MGA29M7+otnUGz/L2vqGoa6lgzuf30VzexeLp0Tzg2tmWF2SJdwizHznO9/h9ddf5/333yc5Odn5eEKCeX5EWVkZiYm9S8vKy8sHjNbI6S2YGMmLO4q0osnb+PjC3Fthzi1w7EPY/gTk/wMObzRvsTPNVVGzvwB+QVZXK2Ktrg5zKfWO3/UePwAQMx0u/KYZZAI9b2rmp2/kUlDZxPhxZsOvr4/bTLiMKkvDjGEYfOc73+GVV15hy5YtpKam9vt4amoqCQkJbNy4kXnz5gHQ3t7O1q1beeihh6wo2SMtnGT2IGUV19HW2UWAr3ssIZQRYrOZc/mpl0HVEfj0KdjzJ6jYD2/8qzkNtfBr5l+cYd53wJzIGdWXmFsb7Hq2f0PvjOvMEDPJfftgzqa+tYM3s0oB+NUtc4kOHbuzEpaGmXvuuYcXXniB1157jbCwMGcfTEREBEFBQdhsNlavXs3atWtJS0sjLS2NtWvXEhwczG233WZl6R5lUnQw0SH+VDW1k1Ncx4KeYw7EC0VPgWsfgqU/gt3Pmxt81RXC+7+ADx81N/e66NuQNNfqSkVcxzDg2AfmKMz+N80+GIDQeFjwVfPm5n0wQ/FOThntnd2kxYU6F3uMVZaGmSeeeAKAJUuW9Hv8mWee4atf/SoA999/Py0tLdx9993U1NSwaNEiNmzYQFiYd2/NPJIch05uyDvJzmM1CjNjQWAELL4XFt0F+W/Bx7+Bou2Q9aJ5m3iJGWqmf8ZtNvsSOW+t9ZD1VzPEVBzofXzCYrjwGzBjJfj6W1ffCHt9XwkAN85NOm0f6VjhVvvMuMJw1ql7s6feP8Lafxxg+ax4nv7KQqvLESsU74Ltv4Xc9eYpvwDjJpqBZ96XPLJfQASA8v3w6dNmkGlvNB/zC4E5jobedGvrc4HyhlYuWvse3QZs/f4SJkaHWF3SiBvO72+3aAAW13OMxuzuOXRyrKf4MWn8Arj5aVj+U/Mv151/gNrj8M4DsHktzP8yLLoTIidZXanI2dWdMKeQ8l6Fwo97H4+ZZgaYObeYI5Re6h9ZpXQbMDdlnFcGmeFSmBkjMsaH4+9rp6qpnYLKJibHhlpdklglPAmW/Rgu+575l+z2J6AyH7b/Bj75rTn1dPE95sF5Cr3iTioPmSuS9r8BJbt7H7f5wIzPmDv0pl4+Jn5uX+szxSQKM2NGgK8Pc5Ij2HGshp3HaxRmBPyDYeG/wPw74Ogms6/myHtw4E3zljgHLroH0j/rVX0G4kEMA8qyegNM3z4YbGbgnrkSZt0IEWNno7jCqmb2FNZit8F1s73/ROyhUJgZQxZMjGLHsRp2HavhCwvH9jEP0ofdDlOvMm/lB+CTJ2Dfi1C6D175Fmz8T/Mv3oVf0zlQ4nrdXVD0qRleDrwBtYW9H7P7mSMvM1eaS6tD46yr00JvZJmjMounxBAXFmhxNe5BYWYMWThRJ2jLWcTNgJW/Mg+w3PkHs6mysQw2/ww++B9zY7GLvu1WJwWLF+hsN5dS738DDrwFTeW9H/MNgrSrYOYNkLYCgsZZVqa7eG1vMQA3aIrJSWFmDHHsQ3CkoomapnYiQzR1IKcRHAWXfw8W/6vZYPnx41C61zzccvdz5lEJF98DU5aZIzsiw9XebE5r7n8DDr4NrXW9HwuIgOnXmCMwU5aZU6ICwIGyeg6ebMTfx87V6doE00FhZgyJDPFnSmwIRyqa2HW8hqt0TpOcja+/eRxC5ueh6BMz1Bx4E45uNm8x02DubTDlSojPVLCRM2uphUMbzAMdD70LnS29HwuJM6eOZq40d+VVn9agXttrTjEtnRFLRJCfxdW4D4WZMWbhxCiOVDSxU2FGhsNmgwkXmbea4+aRCbv/CJUH4d015i04BiYvMYPNlKVescOqjIDGcnPqaP8bUPA+dHf0fmzcBHP6aMb1kHKhNnA8C8MweH2vYxXT2Gl4HgqFmTFmwaRI/rqziF3qm5FzFTkRrv5vWPJDc2n3oY1Q8AE0V0LO380bQOwMM9hMXgqTLgF/7YUxZtQWmnvA7H+jZw+YPnuzxs4wR19mroSE2WNiGfVI2V1YQ3FtC6EBvlw5Y2w2P5+OwswY42gC3ndCh07KeQoIMzcnu+AbZgPniR1wZJM5/VS821xGW3HA3L/G7meO6kxZaoabxLmakvI2Ffnm9NH+N8yVcH0lze8NMDFp1tTnBRxTTCvS4wn00/+7+1KYGWNSY0L6HDpZP+YPJ5MR4utvjr5MugSW/Sc0V0PBVjiy2bzVFZqrVY59AO/9FwRF9UxJ9YSbcdoqwKMYhrkDb+k+M8Tm/8OccnSw2c3zkBxLqPXf97x1dnXzVs8J2TfM0RTuqRRmxhibzcb8iZFszDvJruPVCjPiGsFR5mZ76Z81f/FVHzVHbY5sNvsmWqrNM6Jy15vPj07r7bWZdKk56iPuwTCg5pgZXEr3mavaSvdBc1X/59n9zP9+M1eau0iHxFhRrdf66EgVVU3tRIf4c8lUXdtTKcyMQQt6wszOYzV863KrqxGvZ7NB9BTzduE3oavDPPTSEW6Kd0LVIfP26ZNg94WUReaIzZQrIWmuGkNHS3e3GTxL9/aGltJ9/ZdNO9h8zP2GEueY/53Slnv1WUhWc+wtc93sRPx8NEV7KoWZMcjRN7NLh06KFXz8eldGLf2RuVy34H2z1+bIJnMU4PhH5m3zzyBwHEy+ojfcRE60+BvwEt1d5llHfUNLaRa0Nwx8ro8/xM0yg0viHDNgxqWDn3afHQ2tHV28k1MGaIrpdBRmxqCM8RH4+5iHTh6raiY1RqtMxEJB42DWDeYNeqakevaxOfo+tNZC3mvmDSBqijmdMeVKcz+SwHCrKvccXR1mM7YjtJTshZM50NE88Lm+gRCfYQYWR3iJnal9Xyy06UA5Te1djB8XxPwJag0YjMLMGBTo50NmcgS7jtew81i1woy4l6jJ5u2Cr0NXJ5Ts6V0lVfQpVB8xbzt+1zvVEZ4EYQkQlgThif3fBkeNreW/nW1QnndKcMmFrraBz/ULgYTMPsFlrrkRoo9+NbiTvscX2O1j6Gd5GPQTO0YtnBjJruM17Dpew+d16KS4Kx9fSLnAvC35AbTWmyuijvRMSVUfMUcYTuac4WsEmEEnPAnCEvsEn8Tex8ISPWvKpLMN2hqgrR6aKs2TpUv2muGlfH//jekcAsJ7R1ocwSV6ivqR3FxdSweb8ysATTGdicLMGLXAeehkjcWViAxDYLi51HfGdeb7tYXm/ib1JdBQBg0lUF/a+7a50hyRqD1u3s4kKKpP4EnsDTl9Q1Bw9LmP8nR19ASQnlt7Y28gaWsc3mODhZV+30tk/9CSOAciU7W3jwd6J7eM9s5upsWHMiNBq/xOR2FmjHKEmcPljdQ2tzMuWPPh4oHGTTBvp9PZ1hNySnsCT9+3fUJPV5u5XLyl+iyjPP4Dp7MCw3sCx1kCSWfryH//fiHmCqL4Wb2hJXGOeU3G0tSaF+t7fIEWa5yewswYFR0awOSYEI5WmodOLpupc5rEC/kGmKufzrQCyjCgpWZgwBl0lKfdHA2qLTyPmgLNfXQCwsA/1Jz+CQg9t8c0ReTVyhta2XakEoCVszXFdCYKM2PYgomRHK00D51UmJExy2Yzm4SDoyA+/fTP62yDxpMDg05bQ0/YCBtCIAkzl6aLDMFbWaV0GzBvwjgmRAdbXY5bU5gZwxZOiuRvu06w65j6ZkTOyjfg7NNaIiPIcRbTjWr8PSt1g41hCyZGAbDvRC3tnd0WVyMiIg6FVc3sLarFboPrNMV0VgozY9iU2BAig/1o6+wmt2SQ7cpFRMQSr+8z95a5ZGoMsWEBFlfj/hRmxjCbzeZc1bRLS7RFRNyCYRjOKaaVmmIaEoWZMc4x1bRTfTMiIm7hQFkDh8ob8fe1c01GgtXleASFmTFu4aTezfMMw7C4GhERcYzKXDk9jvBArX4bCoWZMS6z59DJysY2CqsHOXRORERGTXe3wRv7zDBzw1xNMQ2VwswYF+jnQ8Z489RhTTWJiFhrd2ENxbUthAb4cuWMOKvL8RgKM8LCST19M2oCFhGxlGOK6er0BAL9tMPzUCnMSJ8VTdUWVyIiMnZ1dHXzVnYpoCmm4VKYEWeYOXiykbrms5zGKyIiLvHR4Uqqm9qJDvHnkinRVpfjURRmhJjQAFJjQgBzvlZEREaf44Ts62cn4uujX8/DoaslQO/ozE5NNYmIjLrWji7eyS0DNMV0LhRmBICFjjCjFU0iIqPuvf3lNLV3kRwZxPwJkVaX43EUZgTo3Txv34laOrp06KSIyGh6ba95FtPKOUnYbDaLq/E8CjMCwOSYUMYF+9Ha0U1uSb3V5YiIjBl1LR1sya8A4EZNMZ0ThRkBwG63sWCCY6pJfTMiIqPlnZwy2ru6mR4fxoyEcKvL8UgKM+K0YJJO0BYRGW2v7TOnmNT4e+4UZsRp4cTenYB16KSIiOuV17fy8ZEqAG6YozBzrhRmxGl2cgR+PjYqGtooqm6xuhwREa/3ZlYp3QbMnzCOlKhgq8vxWAoz4mQeOhkBaL8ZEZHR8JrjhGyNypwXhRnpx7nfjPpmRERc6nhVE/uKarHb4LrZCjPnQ2FG+lnQ0zezS5vniYi4lOP4gkumxhAbFmBxNZ5NYUb6cR46Wd5AXYsOnRQRcQXDMDTFNIIUZqSf2LAAJkUHYxg6dFJExFX2lzZwuLwRf187V2ckWF2Ox1OYkQHm94zOaKpJRMQ1HHvLXDk9jvBAP4ur8XwKMzJA734zWtEkIjLSursN3ujpl9HxBSNDYUYGcBw6ubdIh06KiIy0XYU1lNS1Ehbgy9IZcVaX4xUUZmSAqbGhhAf60trRTZ4OnRQRGVGOE7JXpCcQ6OdjcTXeQWFGBrDbbc5VTdpvRkRk5HR0dfOP7DJAU0wjSWFGBrVwUs9+M+qbEREZMR8erqS6qZ2YUH8WT4m2uhyvoTAjg3KOzBzToZMiIiPFsVHedZmJ+ProV/BI0ZWUQc1JHoev3UZ5QxsnanTopIjI+Wpp72JDrjnFdMPc8RZX410UZmRQQf4+pOvQSRGREfPegZM0tXeRHBnE/AnjrC7HqyjMyGkt7DPVJCIi5+e1vb3HF9hsNour8S4KM3JajjCzSyuaRETOS11zB1vzKwC4UVNMI05hRk5rQc/mefknG6hv1aGTIiLn6u3cUtq7upmREMb0hDCry/E6CjNyWnFhgUyIMg+d3FNYa3U5IiIeyzHFtFInZLuEwoyckXOq6ZiagEVEzkV5fSsfH60CzH4ZGXkKM3JGjqkm7QQsInJu3sgqxTBg/oRxpEQFW12OV1KYkTNynKC9t6iWTh06KSIybK/3nMWkxl/XsTTMvP/++6xcuZKkJHOZ2quvvtrv44ZhsGbNGpKSkggKCmLJkiXk5uZaU+wYlRZnHjrZ3N7F/tIGq8sREfEoxyqb2HeiDh+7jc9kJlpdjteyNMw0NTUxZ84cHnvssUE//vDDD/PII4/w2GOPsWPHDhISEli+fDkNDfqlOlrsdhvznYdOqm9GRGQ4Xt9nNv4unhJNbFiAxdV4L0vDzLXXXsvPfvYzVq1aNeBjhmHw6KOP8uCDD7Jq1SoyMjJ47rnnaG5u5oUXXrCg2rFroU7QFhEZNsMweE1TTKPCbXtmCgoKKCsrY8WKFc7HAgICuOKKK9i2bdtpP6+trY36+vp+Nzk/C3r6Znbp0EkRkSHLK63nSEUT/r52rk6Pt7ocr+a2YaaszDyMKz6+/w9AfHy882ODWbduHREREc5bSkqKS+scC+ammIdOltW3UlyrQydFRIbCcUL2shlxhAX6WVyNd3PbMONw6vkVhmGc8UyLBx54gLq6OuetqKjI1SV6vSB/H9KTwgEdbSAiMhTd3QZv9PTL3DhXe8u4mtuGmYSEBIABozDl5eUDRmv6CggIIDw8vN9Nzp9jqkmHToqInN3O4zWU1LUSFuDLkulxVpfj9dw2zKSmppKQkMDGjRudj7W3t7N161YWL15sYWVj00JtniciMmSOxt+rMxII9POxuBrv52vlizc2NnL48GHn+wUFBezdu5eoqCgmTJjA6tWrWbt2LWlpaaSlpbF27VqCg4O57bbbLKx6bHKsaMovq6ehtUPzvyIip9HR1c0/sksBTTGNFkvDzM6dO1m6dKnz/fvuuw+AO+64g2effZb777+flpYW7r77bmpqali0aBEbNmwgLEwnjo62uPBAUqKCKKpuYU9hLZdPi7W6JBERt/ThoUpqmjuICfXn4snRVpczJlgaZpYsWXLGpb42m401a9awZs2a0StKTmvhxCiKqovZebxGYUZE5DQcU0zXz07C18dtuzm8iq6yDNkCxwna2glYRGRQLe1dbMg7CcANmmIaNQozMmSOJuA9hTp0UkRkMO/uP0lzexcpUUHMSxlndTljhsKMDNm0uDDCeg6dPFCm87FERE71Ws9GeTfMSTrjnmgyshRmZMjsdhvzJ/Qs0T6mqSYRkb7qmjvYerAc0FlMo01hRoZFh06KiAzunzmldHQZzEgIY1q8Vt2OJoUZGZYFkxxNwAozIiJ9OaeY1Pg76hRmZFjmpozDx26jtE6HToqIOJysb2V7QRUAK2crzIw2hRkZlmB/X+ehk+qbERExvbGvBMMwt7BIiQq2upwxR2FGhs3RBKypJhERk07ItpbCjAyb89BJnaAtIkJBZRP7TtThY7fxmcxEq8sZkxRmZNgWTowC4EBZPY1tnRZXIyJirdd7Gn8vmRpDTGiAxdWMTQozMmwJEYGMHxdEtwF7CjU6IyJjl2EYvLbPPIvpxjmaYrKKwoycE001iYhAbkk9RyuaCPC1syI93upyxixLT80Wz7VwYiSv7S1h+9EqTtQ0W12OiIglXtpZBMCymXGEBfpZXM3YpTAj52RBT9/MJwXVXPrQZourERGx1g1zdHyBlRRm5JxMTwjjsrQYPi3QXjMiMralJ4WzdEas1WWMaQozck587Dae//oiq8sQERFRA7CIiIh4NoUZERER8WgKMyIiIuLRFGZERETEoynMiIiIiEdTmBERERGPpjAjIiIiHk1hRkRERDyawoyIiIh4NIUZERER8WgKMyIiIuLRFGZERETEoynMiIiIiEdTmBERERGP5mt1Aa5mGAYA9fX1FlciIiIiQ+X4ve34PX4mXh9mGhoaAEhJSbG4EhERERmuhoYGIiIizvgcmzGUyOPBuru7KSkpISwsDJvNNqJfu76+npSUFIqKiggPDx/Rrz0W6PqdP13D86Prd/50Dc+Prt/pGYZBQ0MDSUlJ2O1n7orx+pEZu91OcnKyS18jPDxcP4TnQdfv/Okanh9dv/Ona3h+dP0Gd7YRGQc1AIuIiIhHU5gRERERj6Ywcx4CAgL4yU9+QkBAgNWleCRdv/Ona3h+dP3On67h+dH1Gxle3wAsIiIi3k0jMyIiIuLRFGZERETEoynMiIiIiEdTmBERERGPpjBzjn7zm9+QmppKYGAgCxYs4IMPPrC6JLe0Zs0abDZbv1tCQoLz44ZhsGbNGpKSkggKCmLJkiXk5uZaWLH13n//fVauXElSUhI2m41XX32138eHcs3a2tr4zne+Q0xMDCEhIdxwww2cOHFiFL8L65zt+n31q18d8DN50UUX9XvOWL5+69at44ILLiAsLIy4uDhuuukm8vPz+z1HP4NnNpRrqJ/DkaUwcw7++te/snr1ah588EH27NnDZZddxrXXXkthYaHVpbml9PR0SktLnbfs7Gznxx5++GEeeeQRHnvsMXbs2EFCQgLLly93nqk1FjU1NTFnzhwee+yxQT8+lGu2evVqXnnlFV588UU+/PBDGhsbuf766+nq6hqtb8MyZ7t+ANdcc02/n8l//OMf/T4+lq/f1q1bueeee9i+fTsbN26ks7OTFStW0NTU5HyOfgbPbCjXEPRzOKIMGbYLL7zQuOuuu/o9NmPGDOOHP/yhRRW5r5/85CfGnDlzBv1Yd3e3kZCQYPz85z93Ptba2mpEREQYv/3tb0epQvcGGK+88orz/aFcs9raWsPPz8948cUXnc8pLi427Ha78fbbb49a7e7g1OtnGIZxxx13GDfeeONpP0fXr7/y8nIDMLZu3WoYhn4Gz8Wp19Aw9HM40jQyM0zt7e3s2rWLFStW9Ht8xYoVbNu2zaKq3NuhQ4dISkoiNTWVW265haNHjwJQUFBAWVlZv2sZEBDAFVdcoWt5GkO5Zrt27aKjo6Pfc5KSksjIyNB17bFlyxbi4uKYNm0a3/zmNykvL3d+TNevv7q6OgCioqIA/Qyei1OvoYN+DkeOwswwVVZW0tXVRXx8fL/H4+PjKSsrs6gq97Vo0SL++Mc/8s477/D0009TVlbG4sWLqaqqcl4vXcuhG8o1Kysrw9/fn8jIyNM+Zyy79tpr+fOf/8ymTZv45S9/yY4dO7jyyitpa2sDdP36MgyD++67j0svvZSMjAxAP4PDNdg1BP0cjjSvPzXbVWw2W7/3DcMY8JiY/2AdMjMzufjii5kyZQrPPfecs9lN13L4zuWa6bqavvjFLzrvZ2RksHDhQiZOnMhbb73FqlWrTvt5Y/H63XvvvWRlZfHhhx8O+Jh+BofmdNdQP4cjSyMzwxQTE4OPj8+AZFxeXj7gLxUZKCQkhMzMTA4dOuRc1aRrOXRDuWYJCQm0t7dTU1Nz2udIr8TERCZOnMihQ4cAXT+H73znO7z++uts3ryZ5ORk5+P6GRy6013Dwejn8PwozAyTv78/CxYsYOPGjf0e37hxI4sXL7aoKs/R1tbG/v37SUxMJDU1lYSEhH7Xsr29na1bt+pansZQrtmCBQvw8/Pr95zS0lJycnJ0XQdRVVVFUVERiYmJgK6fYRjce++9rF+/nk2bNpGamtrv4/oZPLuzXcPB6OfwPFnTd+zZXnzxRcPPz8/4/e9/b+Tl5RmrV682QkJCjGPHjlldmtv57ne/a2zZssU4evSosX37duP66683wsLCnNfq5z//uREREWGsX7/eyM7ONm699VYjMTHRqK+vt7hy6zQ0NBh79uwx9uzZYwDGI488YuzZs8c4fvy4YRhDu2Z33XWXkZycbLz77rvG7t27jSuvvNKYM2eO0dnZadW3NWrOdP0aGhqM7373u8a2bduMgoICY/PmzcbFF19sjB8/Xtevx7e//W0jIiLC2LJli1FaWuq8NTc3O5+jn8EzO9s11M/hyFOYOUePP/64MXHiRMPf39+YP39+vyV30uuLX/yikZiYaPj5+RlJSUnGqlWrjNzcXOfHu7u7jZ/85CdGQkKCERAQYFx++eVGdna2hRVbb/PmzQYw4HbHHXcYhjG0a9bS0mLce++9RlRUlBEUFGRcf/31RmFhoQXfzeg70/Vrbm42VqxYYcTGxhp+fn7GhAkTjDvuuGPAtRnL12+wawcYzzzzjPM5+hk8s7NdQ/0cjjybYRjG6I0DiYiIiIws9cyIiIiIR1OYEREREY+mMCMiIiIeTWFGREREPJrCjIiIiHg0hRkRERHxaAozIiIi4tEUZkRERMSjKcyIiIiIR1OYEREREY+mMCMiIiIeTWFGRDxKRUUFCQkJrF271vnYJ598gr+/Pxs2bLCwMhGxig6aFBGP849//IObbrqJbdu2MWPGDObNm8d1113Ho48+anVpImIBhRkR8Uj33HMP7777LhdccAH79u1jx44dBAYGWl2WiFhAYUZEPFJLSwsZGRkUFRWxc+dOZs+ebXVJImIR9cyIiEc6evQoJSUldHd3c/z4cavLERELaWRGRDxOe3s7F154IXPnzmXGjBk88sgjZGdnEx8fb3VpImIBhRkR8Tjf//73+fvf/86+ffsIDQ1l6dKlhIWF8eabb1pdmohYQNNMIuJRtmzZwqOPPsrzzz9PeHg4drud559/ng8//JAnnnjC6vJExAIamRERERGPppEZERER8WgKMyIiIuLRFGZERETEoynMiIiIiEdTmBERERGPpjAjIiIiHk1hRkRERDyawoyIiIh4NIUZERER8WgKMyIiIuLRFGZERETEo/1/eCTe8gv+v+QAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGwCAYAAABcnuQpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABiaUlEQVR4nO3deXicZb3/8fdM9r3ZlyZtuqRpk6Y7tBSkLaUFRHZFBBEVFQWV6lEUPcdTzs9TFo8cPIIIiIAoIEuRTaFlaVnK0j1bm27plqXZ9z15fn88mUnSpEuaTJ5ZPq/rmivTyZPJN8PQfHrf3/u+bYZhGIiIiIh4KLvVBYiIiIiMhMKMiIiIeDSFGREREfFoCjMiIiLi0RRmRERExKMpzIiIiIhHU5gRERERj+ZvdQGu1tPTQ2lpKREREdhsNqvLERERkdNgGAaNjY2kpKRgt5987MXrw0xpaSlpaWlWlyEiIiJn4MiRI6Smpp70Gq8PMxEREYD5YkRGRlpcjYiIiJyOhoYG0tLSnL/HT8brw4xjaikyMlJhRkRExMOcTouIGoBFRETEoynMiIiIiEdTmBERERGPpjAjIiIiHk1hRkRERDyawoyIiIh4NIUZERER8WgKMyIiIuLRFGZERETEoynMiIiIiEdTmBERERGPpjAjIiIiHk1hxpN1d4FhWF2FiIiIpRRmPFVNMdw3GV75vtWViIiIWEphxlPlvQjt9VD4CvT0WF2NiIiIZRRmPNWeN82PHY1Qd9DSUkRERKykMOOJmiqgZGvfn8tyratFRETEYgoznmjvOqBf4295nmWliIiIWE1hxhM5ppgiUsyP5RqZERER36Uw42m62mH/e+b981aZHzUyIyIiPkxhxtMc/BA6miA8CeZcD9igsQyaKq2uTERExBIKM57GMcU0bSUERUDsFPPPmmoSEREfpTDjSQyjX5i52PyYlGN+1FSTiIj4KIUZT1K5G+oOg18QTF5qPpY0y/yokRkREfFRCjOepOhf5sdJ50NgmHnfGWY0MiMiIr5JYcaT7HnL/Jh5cd9jyb1hpmovdDSPfU0iIiIWU5jxFM3VcPQz837GRX2PhydAeCJgwLFCS0oTERGxksKMp9i3HoweSMyBcWkDP+dsAlbfjIiI+B6FGU/hXMV00eDPqQlYRER8mMKMJ+jqgH3vmPenXTz481qeLSIiPszSMLN69WpsNtuAW1JSkvPzhmGwevVqUlJSCAkJYenSpRQUFFhYsUUOfwztDRAaB+PnD/588mzz47EC6O4a29pEREQsZvnITHZ2NmVlZc5bXl7f6MJ9993H/fffz4MPPsjmzZtJSkpixYoVNDY2WlixBfpPMdmH+E8WPQkCw6GrDar3jW1tIiIiFrM8zPj7+5OUlOS8xcfHA+aozAMPPMAvf/lLrr76ambOnMlTTz1FS0sLzzzzjMVVjyHD6NtfZqgpJjADTuJM876mmkRExMdYHmb27t1LSkoKkyZN4rrrruPAgQMAFBcXU15ezsqVK53XBgUFsWTJEjZt2nTC52tvb6ehoWHAzaNV7YXaYrAHwJRlJ77O2Tezc2zqEhERcROWhpmFCxfyl7/8hbfeeovHHnuM8vJyFi9eTHV1NeXl5QAkJiYO+JrExETn54Zy9913ExUV5bylpaWd8FqP4JhiSj/PPFjyRNQELCIiPsrSMHPJJZdwzTXXkJOTw4UXXsgbb7wBwFNPPeW8xmazDfgawzAGPdbfnXfeSX19vfN25MgR1xQ/Vpy7/l5y8uscOwGX5ZpTUyIiIj7C8mmm/sLCwsjJyWHv3r3OVU3Hj8JUVFQMGq3pLygoiMjIyAE3j9Vaa65kgqH3l+kvfgbY/KC1BhpKXV+biIiIm3CrMNPe3s6uXbtITk5m0qRJJCUlsX79eufnOzo62LhxI4sXL7awyjG07x0wus2gEp1+8msDgiF+unlfU00iIuJDLA0zP/nJT9i4cSPFxcV8+umnfPGLX6ShoYGbbroJm83GqlWrWLNmDS+//DL5+fl8/etfJzQ0lOuvv97KsseOcxXTKUZlHHSsgYiI+CB/K7/50aNH+cpXvkJVVRXx8fEsWrSITz75hIkTJwJwxx130Nrayq233kptbS0LFy5k3bp1REScpBHWW3R3mecxwan7ZRySciD3OYUZERHxKTbD8O5u0YaGBqKioqivr/es/pmDH8GTn4eQaPjpfrD7nfprit+Hpy6DcRNhlQKNiIh4ruH8/narnhnpZ0/vFFPGytMLMtC3cV7dIWitc0lZIiIi7kZhxl05lmSfaNffoYTGQNQE8/6x/NGvSURExA0pzLij6v1QtQfs/jB1+fC+VpvniYiIj1GYcUeOUZmJiyE4anhfqzAjIiI+RmHGHe05xcGSJ9N/J2AREREfoDDjbtrq4VDvQZpnEmYcIzOVu6GrY/TqEhERcVMKM+5m/7vQ0wWxGRA7ZfhfH5UGweOgpxMqd416eSIiIu5GYcbdFPWekn26u/4ez2ZT34yIiPgUhRl30tMNe9eZ909319+hJM82PyrMiIiID1CYcSdHN5unXgdHQdrCM38ex8iMmoBFRMQHKMy4kz29U0xTV4BfwJk/T/9ppp6ekdclIiLixhRm3MmZ7Po7lLhp4BcEHY1Qd3DEZYmIiLgzhRl3UXsIKgrB5jf8XX+P5xcACTPM++qbERERL6cw4y4cozITFplnLI2UNs8TEREfoTDjLpy7/p7hkuzjJfWGGY3MiIiIl1OYcQftjXDwQ/P+tBEsye5Pe82IiIiPUJhxB/vfg+4OiJ4EcRmj85yJ2YANGkuhuWp0nlNERMQNKcy4A0e/TOYl5g6+oyEoAmImm/fL1TcjIiLeS2HGaj09sNexJHuU+mUc1AQsIiI+QGHGaqXboLkSgiJhwuLRfW71zYiIiA9QmLGaY9ffKReAf+DoPrdWNImIiA9QmLGa85TsEe76OxRHmKneCx0to//8IiIibkBhxkr1R+FYHmCDjJWj//wRiRCWAEaPubuwiIiIF1KYsZJjiintbAiLdc33cDYB73TN84uIiFhMYcZKo3Ww5MmoCVhERLycwoxVOprhwEbz/piEGS3PFhER76QwY5UDG6G7HaIm9J1w7QpJs82Pxwqgu8t130dERMQiCjNWcfTLZF48erv+DiVmMgSEQVcb1Ox33fcRERGxiMKMFXp6+vXLjPKuv8ez2yFppnlfOwGLiIgXUpixQvlOaCo3R0zSP+f676e+GRER8WIKM1ZwjMpMWQb+Qa7/fs6dgBVmRETE+yjMWKHoX+bHzEvG5vv1X55tGGPzPUVERMaIwsxYayiDsh3mfVfs+juUhCyw+UFLNTSWjc33FBERGSMKM2Ntb+8U0/j5EJ4wNt8zIBjiM837agIWEREvozAz1pyrmMZoislBOwGLiIiXUpgZS52tsP89876rl2Qfz9kErDOaRETEuyjMjKXiD6CrFSLH942UjBWNzIiIiJdSmBlLjl1/p13k2l1/h+IIM7UHoa1+bL+3iIiICynMjBXDsK5fBiA0BqLSzPvl+WP//UVERFxEYWasHMuHhqPgHwKTxmDX36FoqklERLyQwsxYKeqdYpq8FAJCrKlBOwGLiIgXUpgZK/1PybaKzmgSEREvpDAzFpoqoGSreT9jjJdk9+cIMxW7oavDujpERERGkcLMWNi7DjAgeQ5EJltXx7gJEBwFPZ1Qudu6OkREREaRwsxYcC7JtnCKCczl4M6+GTUBi4iId1CYcbWudut2/R2KmoBFRMTLKMy42sEPoaMJwpPMaSaraXm2iIh4GYUZV3NOMa0Euxu83Mn9ppl6eqytRUREZBS4wW9XL2YY/cKMBbv+DiVuGvgFQnsD1B2yuhoREZERU5hxpcrdUHcY/IJg8hKrqzH5BUDCDPO+pppERMQLKMy4UtG/zI+Tl0BgmLW19KcmYBER8SIKM67kPFjSDVYx9afl2SIi4kUUZlyluRqOfmbet3LX36E4moDLNDIjIiKeT2HGVfatB6MHEnNgXJrV1QyUmG1+bCyF5ipraxERERkhhRlXcfTLuNsUE0BQBMRMNu+rb0ZERDycwowrdHXA/nfN+5lusiT7eOqbERERL6Ew4wqHPzb3cQmLh5R5VlczNO0ELCIiXkJhxhUcG+VlXOQeu/4OJXm2+VFNwCIi4uHc9DetBzMM9+6XcXCMzFTvhY4Wa2sREREZAYWZ0Va1F2qLzSMDpiyzupoTC080p8GMHqgotLoaERGRM6YwM9ocU0zp55mrhtyVzaadgEVExCsozIw2566/F1tbx+lQE7CIiHgBtwkzd999NzabjVWrVjkfMwyD1atXk5KSQkhICEuXLqWgoMC6Ik+ltdZcyQTu3S/joJ2ARUTEC7hFmNm8eTOPPvoos2bNGvD4fffdx/3338+DDz7I5s2bSUpKYsWKFTQ2NlpU6SnseweMboifAdHpVldzao5ppmMF0NNtbS0iIiJnyPIw09TUxA033MBjjz1GdHS083HDMHjggQf45S9/ydVXX83MmTN56qmnaGlp4ZlnnrGw4pNwrGLK9IApJjB3AQ4Iha5WqN5ndTUiIiJnxPIwc9ttt3HppZdy4YUXDni8uLiY8vJyVq5c6XwsKCiIJUuWsGnTphM+X3t7Ow0NDQNuY6K7yzyPCTyjXwbA7geJM8376psREREPZWmYee6559i2bRt33333oM+Vl5cDkJiYOODxxMRE5+eGcvfddxMVFeW8paWN0SGPRz6BtnoIiYHUs8bme44GRxNw2U5r6xARETlDloWZI0eOcPvtt/PXv/6V4ODgE15ns9kG/NkwjEGP9XfnnXdSX1/vvB05cmTUaj4p566/K80RD0+RrDOaRETEs/lb9Y23bt1KRUUF8+fPdz7W3d3N+++/z4MPPkhRURFgjtAkJyc7r6moqBg0WtNfUFAQQUFBriv8RJxLsj1gFVN//ZdnG4a5/4yIiIgHsWxkZvny5eTl5bFjxw7nbcGCBdxwww3s2LGDyZMnk5SUxPr1651f09HRwcaNG1m8eLFVZQ+tej9U7QG7P0xdbnU1w5OQBTY/aKmCxjKrqxERERk2y0ZmIiIimDlz5oDHwsLCiI2NdT6+atUq1qxZQ0ZGBhkZGaxZs4bQ0FCuv/56K0o+MceozMTFEBxlbS3DFRACcdOgcpc5OhOZYnVFIiIiw2JZmDkdd9xxB62trdx6663U1taycOFC1q1bR0SEmx0TsMdxsKSHrGI6XlKOGWbKcj1vmkxERHyezTAMw+oiXKmhoYGoqCjq6+uJjIwc/W/QVg/3TYaeLvjBNoidMvrfw9U2/R7W/TvMuBy+/LTV1YiIiAzr97fl+8x4vP3vmkEmNsMzgwzojCYREfFoCjMjVdS7JNtTdv0diuNYg9pic6RJRETEgyjMjERPN+xdZ9731H4ZgNAYiEw17x9z44M8RUREhqAwMxJHN0NrjbmCKW2R1dWMjHMnYJ2gLSIinkVhZiQcu/5OXQF+br0w7NS0E7CIiHgohZmRcPTLePIUk4OzCVgjMyIi4lkUZs5Q6dHNbGoqpsETd/0diqMJuGIXdHVYW4uIiMgwePjciHV+/9bveD0pAZsBU9bfzOz42eYtYTaTIied9DBMtzRuAgRFQXs9VBX1jdSIiIi4OYWZM5QYGUJSfQ/lAXb21e1jX90+Xtr7EgCRgZEDwk1OXA5hAWEWV3wKNpsZYA59aDYBK8yIiIiHUJg5Q9+/+hH+uuZt2toque3SEHqCDrKzYicF1QU0dDTwQckHfFDyAQB2m52McRnOcDM7fjYTIia43+hN8iwzzKgJWEREPIjCzBny97Nz+ZxU/vxRJ3sPJvPQ9VcD0NnTyZ6aPeyo3MHOip3srNxJaXMpRbVFFNUW8fye5wGIDooeEG6yY7MJDQi18kdSE7CIiHgknc00Avkl9Xzh9x8S6G9n8y8vJCokYMjrKloq2Fm50xluCqoL6OzpHHCNn82PadHTBgSc1PDUsR29Kc+HP54LQZHw88Pm1JOIiIgFhvP7W2FmBAzD4KIH3mfPsSbuuTqH686ecFpf19Hdwa6aXc5ws6NyBxUtFYOuiw2OHTR6E+wfPKo/wwDdnbAmBbo74PadEJ3uuu8lIiJyEsP5/a1pphGw2WxcNTeVe9/czdptJacdZgL9Ap0Nwg7lzeXOqancylwKawqpbqvm3SPv8u6RdwHwt/mTGZPJnIQ5zq9PDksevdEbvwBImAFlO80mYIUZERHxABqZGaGy+lYW3/MuhgEf3LGMtJjR6Xtp726nsLpwwOhNVWvVoOviQ+KdwWZOwhxmxM4gyC/ozL/xK7fB9r/C+XfABb8cwU8gIiJy5jQyM4aSo0JYPCWWj/ZV84/tJfxgecaoPG+QXxBzE+YyN2EuYE5plTaXDgg3RTVFVLZW8vbht3n78NsA+Nv9yYrJYlb8LGYnzGZO/BySwpJO/xs7Ns9TE7CIiHgIjcyMghe3HuUnL+xkUlwY7/7bkjFr2m3taqWgqsBsLu691bTVDLouITRh4OhNzAwC/QKHftJDH8MTF0PkePhxoYt/AhERkaGpAbifsQgzTe1dnPXrt2nt7OblWxczd0K0S77PqRiGwdHGo2bvTaXZe7Ondg/dRveA6wLsAWTFZvVt7Bc/m8SwRPOTbQ1wT5p5/6cHICx2jH8KERERTTONufAgfy7KTuQfO0p5eXuJZWHGZrORFplGWmQal025DICWzhYKqgsGLA2vba91juQ4JIUl9Qs3k5hRWUxAeS5MWWbJzyIiInK6NDIzSt7fU8nX/vwZ40ID+OwXFxLo755neBqGwZHGI84ws6NiB3vr9tJj9Ay4LrDHICs0iTlTLnGGnPjQeIuqFhERX6Nppn7GKsx09xicc/c7VDS28+iN81mZPYymW4s1dzaTX5Xf13tT+gn1PYNPzk4JSxmw701mTCYB9qE3ChQRERkJhZl+xirMAPz3G4U89kExF2cn8ccb57v0e7mSUfQWh164np3x6eycdQU7Knewr3YfBgPfKkF+QWTHZg84VDMuJM6iqkVExJuoZ8YiV89L5bEPinl3dwX1LZ1EhXrmqIUteRbpXV2klx/gim/8BAJDaepoIq8qzzl6k1uZS0NHA9sqtrGtYpvza8eHj2dW3Ky+0ZvoTAL8PPN1EBERz6AwM4pmJEcyPSmC3eWNvJ5Xyg0LJ1pd0pmJSIKweGiuhIpdkDqf8MBwzkk5h3NSzgGgx+jhYMNBZ1NxblUu+2r3UdJUQklTCf86+C+gb/RmVvws9d6IiIhLKMyMsqvnjWfNP83jDTw2zNhs5gna+981N89LHTxlZrfZmRw1mclRk7kq4yqA0x69cfTeOALO9JjpGr0REZEzpjAzyq6YM557/rWbrYdqOVTdzMTYMKtLOjP9w8xpOn70xjAMc/Sm36Z++2r3UdpcSmlz6YDRm6zYrAHTUwmhCS75sURExPsozIyyxMhgzp0axwd7q3h5ewmrLpxmdUlnxnmsQd4ZP4XNZmNS1CQmRU3iyqlXAubKqbyqvAHTU/Xt9Wyv2M72iu3Qu+lwcljygNGbGTEzNHojIiJDUphxgWvmpTrDzO3LM8bseINR5QgzxwqgpxvsfqPytGEBYSxKXsSi5EWAOXpzqOHQwNGbun2UNZdR1lzGmwffBCDQHujctdgRcJy7FouI+Krc56HgH3D5/0GY764mVZhxgZXZiYQG+nGouoVth2uZPzHG6pKGL3YKBIRCZwtU74d414ww2Ww20qPSSY9K54qpVwCD973Jrcylrr2OHZU72FG5w/m1jl2LHdNTJz1zSkTE2/T0wLr/gKZy+HgaXLja6oosozDjAqGB/lw8M4m120pYu63EM8OM3Q8Ss+HoZrNvxkVhZihhAWEsTF7IwuSFgDl6c7jx8IAjGfbW7aW8uZzy5nLeOvgWYJ45NSNmxoCVU0lhSZ45MiYicirlO80gA7D1KVjyMwgIsbYmiyjMuMg181JZu62E13PL+NVlWQT5j840zZhKyukLMzlftKwMm83GxMiJTIycyOVTLgfMM6fyq/LJrcodcOZUblUuuVW5/HXXXwGID4l3Tk3Nip9Fdmw2wf7Blv0sIiKjpujNvvutNZD3Isy70bp6LKQw4yKLJseSFBlMeUMb7+2u4OKZyVaXNHyj0ATsKqEBoZydfDZnJ58N9J0YvrPKHL3JrcqlqKaIytZK3j78Nm8ffhsAf5s/02KmDei9SQ1P1eiNiHiePeaKUJJmmf/o/PQRmPtVc3sNH6Mw4yJ+dhtXzE3hkY0HeGlbiWeHmbJcMAy3/h+k/4nhX5j8BQBau1oprC4ktzLX2X9T1VpFYXUhhdWFPLv7WQBigmOcfTez4mYxM24moQGhVv44IiIn11AKZTsBG1zzODxyPhzLg8Mfw8TFVlc35hRmXOjquak8svEAG4oqqG3uIDrMw5pTE7PAZoeWKmgsh0jPCmQh/iHMT5zP/ERz0z/DMChrLnOGm9zKXAprCqlpq2HD0Q1sOLoBMDcEzBiX4Ry5mRU/i/TIdI3eiIj72GP2CjJ+vtnTOPvLsPVJ+PSPCjMyujKTIshOiaSgtIHXc0u58Zx0q0sanoAQiJsGlbvNIUwPCzPHs9lspISnkBKewsWTLgagvbudXdW7+gJOVS7lzeUU1RZRVFvEC3teACAyMNLZdzM7fjY5cTlEBEZY+eOIiC/b09svk2n+XcbZt5hhZtfrUH8UolItK80KCjMudvW8VApKC3lpW4nnhRkwp5ocYWbaRVZXM+qC/IKYkzCHOQlznI8daz5mNhL3BpzC6kIaOhr4sORDPiz5EAAbNqaMm2IGnDgz5EyOmozfKO3HIyJyQh0tcGCDeX/aJebHxCxI/xwc/AA2Pw4X/qdl5VlBYcbFLp+dwpp/7mLHkToOVDYxOT7c6pKGJykH8p53yyZgV0kMS2RF2ApWTFwBQGd3J3tq97Cjcocz4JQ0lbCvbh/76vaxdu9awFxSPjNupjPc5MTlEBsSa+WPIiLeqPh96GqDyFRzCw2Hhd81w8zWJ2HJHT61TFthxsXiI4L4XEYcG4oq+cf2En68MtPqkoYnKcf8WHb6ZzR5mwC/ALLjssmOy+aGGTcAUNVaRV6leahmXlUeeVV5NHc282nZp3xa9qnza1PDUwdMT2VGZ+pYBhEZmf5TTP17+TIvgagJUH8Y8l8yVzb5CIWZMXD1vFQ2FFWytvesJrvdgxpJHSuaaouhrQGCI62tx03EhcSxbMIylk1YBkB3Tzf76vY5p6dyK3M5UH+Ao01HOdp0lH8W/xPoO5YhJz7HDDhx2thPRIbBMPqafx1TTA52Pzj7W7D+V2Yj8Jwb3HoV6mhSmBkDK7MSCQ/y52htK1sO1XL2JA/aETgsFiLHQ0MJHMv3yS750+Fn9yMzJpPMmEy+NO1LADR0NJgb+/WGG8ehmscfyxAfEu8cvZkVN4us2CwtDReRoZXthMZSCAiD9PMGf37ujfDe3WZrwOFPYOI5Y1+jBRRmxkBwgB+XzEziha1HWbvtqGeFGTBHZxpKzP85FGZOW2RgJItTFrM4xXzNHMcyOPpu8qry2FOzh8rWSt45/A7vHH4HAD+bHxnRGc7em1nxs5gYORG7zW7ljyMi7sAxKjNlGQQMsZt5aAzMuha2PdW7TFthRkbR1fNSeWHrUd7IK2P15dkEB3jQqpekHHOnyXLf7ZsZDf2PZbhsymWAubGfY2l4bpUZcipaKthds5vdNbt5fs/zgBmMcuJzmB03m5z4HHLicogKirLyxxERKzh2/T3Z6tKFt5hhZtdrUF8CUePHpjYLKcyMkYWTYhg/LoSSulbe2VXBpbM8aM8WNQG7TIh/CPMS5zEvcZ7zsfLmcvKq8pzTUwXVBTR0NPBRyUd8VPKR87r0yPQBS8MzojPwt+t/aRGv1VAGpdvN+xknCTOJ2X3LtLc8Dst/NTb1WUh/840Ru93GlXNTeOi9/azddtSzwkxybxNw5W7o6gB/D9vJ2MMkhSWRFJbUtzS8x1wanluZS15lHrlVuRxqOMTBhoMcbDjIq/tfBSDYL9hsLo7LcU5PJYYmqrlYxFvsXWd+HD8fIhJPfu3CW/qWaZ9/x9BTUl5EYWYMXTU3lYfe28/GPZVUN7UTGx5kdUmnZ9xECIqC9nqoKuobqZExEWAPIDs2m+zYbL4y/SsA1LbVOkdv8qryyKvMo7GzkW0V29hWsc35tY7mYkfAyY7NVnOxiKdyLMmedvGpr512CUSlQf2R3mXaN7i2NospzIyhqQnhzEqNIvdoPa/tLOXr506yuqTTY7OZAebQh2YTsMKM5aKDozk/9XzOTz0fgB6jh4MNB8mrzHOGnD21g5uL7TY7U8dN7Ru9iZvFpKhJ2rlYxN11tsL+98z7pxNm/PzhrG/B2//Zu0z7eq9epq0wM8aunjue3KP1rN1e4jlhBgaGGXE7dpudyVGTmRw1mSumXgEMbi7Oq8qjvLmcPbV72FO7h5f2vgT07lwcO9M5gpMTn0NcSJyVP46IHK/4A+hqNbfKON1/UM77Gmy421y8ceRTmLDItTVaSGFmjF02O4Vfv7GL3KP17KtoYmqChxxvoCZgjzNUc3FFS4Wz7yavKo/8qnxz5+LyT/m0vG/n4pSwlAHTUzNiZxDk5yHToiLeqP8qptMdYXEu0/6LOTqjMCOjJTY8iCXT4nlndwUvbz/KTy+abnVJp8fRBFyeZ+5A6cXDld4sITSB5ROXs3zicgC6errYX7d/QP/N/rr9lDaXUtpcypsHzTl6f7s/mdGZA5qLJ0RMUHOxyFg42a6/p3L2LWaYKXzVq5dp2wzDMKwuwpUaGhqIioqivr6eyEj32Ir/jdwybntmG+PHhfDBHcs843iDrg5YkwI9nXD7TohOt7oicZGmjiYKqgv6pqcq86huqx50XVRQlPNgzZw4c++bccHjxr5gEW9XlguPfA4CQuGO4uGvTHriUrNN4HM/geX/4ZoaXWA4v781MmOB5TMSiAj2p6SulU+LazhnigecrOwfCAkzzLnX8jyFGS8WHhjOwuSFLExeCJg7F5c2lzqnp3Irc9lVvYv69vpBe9+kRaQ5R29mxs1kesx0TU+JjJRjFdPkpWe2xHrhd8wws/VJOP+nXrlMW2HGAsEBfnxhVjLPfnaEtduOekaYAfNYg/Jc818JMy6zuhoZIzabjfHh4xkfPp6LJ5mrKDq7e/e+6R25yavK42DDQY40HuFI4xHnwZrHT0/NjJupoxlEhms4S7KHknkpRKZCw1EoWGuubPIymmayyGfFNVz7yMeEB/mz+ZcXEhLoAUtjP30E/nWHOWd7/XNWVyNupr69noKqAnKrcsmvyievKo+atppB10UERjAzdqZ5cnicGXBiQzwk0IuMtcZj8Ntp5v1/K4KIpDN7ng/uh3fuguTZ8J2NHtH3qGkmD7BgYjSp0SEcrW1l/a5jXD47xeqSTs2xoknLs2UIUUFRLB6/mMXj+w7W7D89lV+VT2F1IY0djXxc9jEfl33s/Nrx4ePJicsxe3DiZzEjZgbB/t43FC4ybHt7G39T5p55kAGYdxNsvNc8dfvIZzBh4ejU5yYUZixit9u4eu54/u/dfazddtQzwkziTPNjw1FoqTGX/YmcwJDTUz2d7K3dS35VvnP1VHF9MSVNJZQ0lThXT/nZ/JgWPW1AwJkUNUnTU+J7znQV0/HCYiHnS7D96d5l2t4VZjTNZKHiqmaW/c8G/Ow2PrlzOfERHtAo+bs5UFsMX3vFbEYTGaHGjkYKqgucvTd5VXlUtVYNus6xuV9OfI5zFVV8aLwFFYuMkc42uG8SdLaYU0Mpc0b2fOV58MfzwO4Pq/Ig0r3/Ea1pJg8xKS6MOWnj2HGkjld3lnLzeR6wI3BSjhlmynIVZmRURARGsCh5EYuSzQ29DMPgWMuxvnOnqvIorC4ccnO/pLAk5+hNTlwOWbFZhAWEWfWjiIyugx+YQSYixex1GamkHJh4Lhz6CLb8GS7495E/p5tQmLHYNfPGs+NIHWu3HfWMMJM8C3a9qr4ZcRmbzeY8OXxl+kpg4OZ+jg3+9tftp7y5nPLmctYfWm9+LTamjJviDDc5cTlMjZ5KgD3Ayh9J5Mw4VzENY9ffUzn7O71h5glzmba/B8wInAaFGYt9YVYK//V6IQWlDRSVN5KZFGF1SSeX1G8nYJEx4m/3JzMmk8yYTL447YsANHc2U1hd6DyWwXH21L66feyr28c/9v0DgCC/IGbEzHAGnJlxM0mLSNPuxeLeDAOKRrgkeyjTv2Ce79RQAvlrYc5XRu+5LaQwY7HosECWZSawrvAYa7cf5c5LZlhd0sk5VjRV7TFPcQ0IsbYe8VlhAWGclXQWZyWd5XyssqXSGWzyq/LJr86nsaORHZU72FG5w3ldVFAUM2NnDgg4Wh4ubuVYgbnYwj8EJi8Zvef184ezboZ3/stsBJ59nUcs0z4VhRk3cPW88awrPMYr20u546Lp+Lnz8QYRyRAaBy1VUFEI4+dbXZGIU3xoPMsmLGPZhGUA9Bg9HG443BduqvLZVdO7e3HpR3xU2rd7cUpYyoBwkxWbRWhAqFU/ivg6x8GSk5eO/j8a530dNtwLZTvg6GZIO3t0n98CCjNuYNn0BKJCAihvaOOTA9WcOzXO6pJOzGYzR2cOvGc2ASvMiBuz2+ykR6WTHpXOZVPMXasduxc7+m/yq/Ipri92Hq657tA659dOGTdlQIPx1HFT8bfrr00ZA0X9+mVGm2OZ9o6/mqMzCjMyGoL8zeMN/vbpYV7adtS9wwyYTcAH3lPfjHikAL8AsuOyyY7L5jquA8zl4YXVhc7Rm7yqPI61HGNv7V721u5l7d61AAT7BTMjdmD/TWp4qvpvZHQ1VUDJVvO+K8IMmOc17fgrFL4CDWUQmeya7zNGLA0zDz/8MA8//DAHDx4EIDs7m1/96ldccom5OZBhGNx11108+uij1NbWsnDhQh566CGys7MtrNo1rp43nr99epg388v59ZVdhAa6cc50NgHnWluHyCiJCIwYcLgmQEVLxYBwk1+VT1NnE9srtrO9YrvzunFB48iOyzbDTexMsuOyiQtx83+QiHvbuw4wzOXYrtoLJnk2TFgMhzf1LtP+pWu+zxix9Ddmamoq99xzD1OnTgXgqaee4oorrmD79u1kZ2dz3333cf/99/Pkk08ybdo0fv3rX7NixQqKioqIiHDzVT/DNG9CNBNjQzlU3cK6gmNcOXe81SWdmKMJ+FgB9HSD3QPOlRIZpoTQBC6YcAEXTLgAMPtvDjUcGhBudtfspq69btDp4clhycyMm0l2bLbzY3hguFU/iniaot5+mZHu+nsqC79jhpmtT8D5P/HoZdqnvQPwN7/5TX73u9+5PETExMTwm9/8hm9+85ukpKSwatUqfvaznwHQ3t5OYmIi9957L7fccstpPZ877wB8vAfe3sMDb+/lcxlxPH2zG2813dMNa8ZDVyt8fwvEZVhdkYglOro7KKopIr/aHMEpqCrgQP0BDAb+tWrDRnpUunMF1cy4mWTGZBLk57m/PMRFutrh3knQ2Qzf2WCeyeQq3Z3wu9nmMu2rHjFXNrmR4fz+Pu0w4+fnR1lZGQkJCaNS5PG6u7t54YUXuOmmm9i+fTvBwcFMmTKFbdu2MXdu33/MK664gnHjxvHUU08N+Tzt7e20t7c7/9zQ0EBaWppHhJlD1c0s+c0G7Db45M7lJES68UF7jy2Hki1wzeOQ80WrqxFxG00dTeyq2eUcwSmoKqC0uXTQdf52f6ZFTxsQcCZHTcZPI52+bd/b8NdrIDwJfrwL7C4+j+z9/4F3/58Zmr79nlst03bJcQauOsIpLy+Pc845h7a2NsLDw3n55ZfJyspi06ZNACQmJg64PjExkUOHDp3w+e6++27uuusul9TqahNjw1gwMZoth2p5ZUcp3z5/stUlnVjyLDPMlOcpzIj0Ex4YPmj/m+rWagqqC5w9OPlV+dS211JYXUhhdSHP73kegBD/kAEb/GXHZavB2Nf0X8Xk6iADMP/rsPE+KN0OR7dA2lmn/BJ3NKyeGVf8D5WZmcmOHTuoq6vjpZde4qabbmLjxo0n/J6GYZy0jjvvvJMf//jHzj87RmY8xVXzxrPlUC0vbTvq3mHG0TejJmCRU4oNieX81PM5P/V8wPx7rLS5dEC4KaguoLWrlW0V29hWsc35tY4G4/4jOGow9lKG0XdKdqaL+2UcwuLMf5Du+FvvMm0fCDPTpk07ZaCpqakZVgGBgYHOBuAFCxawefNmfve73zn7ZMrLy0lO7lsyVlFRMWi0pr+goCCCgjx3HvoLOSnc9Wohu8sbKSxtICvFTafGHCuaynZCexMEqblR5HTZbDbGh49nfPh4Lko3l95293RTXF/s7L/Jr8qnqLZoyAbjpLCkAeEmKzaLiEDvWhThkyoKof4w+AfDpFHc9fdUzv6OGWYK/wENv/bIZdrDCjN33XUXUVFRrqoFMP/F0t7ezqRJk0hKSmL9+vXOnpmOjg42btzIvffe69IarBQVGsDyGQn8K7+cl7cfJSsly+qShpaYDSHR0FINT34ern8eIpKsrkrEY/nZ/ZgaPZWp0VO5cuqVwOAGY8cGf44DNt8+/Lbz69Mj0weM4GTGZBLir+NGPIrjYMlJSyBwDHefTpkDaYvgyCfmyqZlvxi77z1KhhVmrrvuulFtAP7FL37BJZdcQlpaGo2NjTz33HNs2LCBN998E5vNxqpVq1izZg0ZGRlkZGSwZs0aQkNDuf7660etBnd01dzx/Cu/nFd2lPLzS2a45/EGASFmgHn2K+bozGPL4YbnzZAjIqMi0C+QnPgccuJznI85Gowdy8MdDcYHGw5ysOEgbxx4AwA/m5/zBHHHEvGMcRkE+OkEcbfl6JfJHMWDJU/XwlvMMLPlCfjcv3ncMu3TDjOu6Jc5duwYN954I2VlZURFRTFr1izefPNNVqxYAcAdd9xBa2srt956q3PTvHXr1nndHjPHW5qZQHRoABWN7Xy0r4rzp8VbXdLQ0s6Gb70Nf/sSVO+Fxy+Ca5+CqcutrkzEa52swbiguoCCKrPRuLqtmj21e9hTu8e5g3GgPZDMmMwB+99MipqkFVTuoKnSPCcJIMNFu/6ezIzLICIFGkuh4B8w+8tjX8MInPbSbLvdTnl5ucuWZruKJ+0z09+vXsnnLx8f4so5KTxwnQv3GRgNLTXw9xvh0Idg84Mv3G92yIuIJQzD4FjLMTPYVPc1GDd2NA66NtQ/1DyioXf34pmxM0mN0AqqMbfjGfjH98x+xO9+YE0N7/8G3v01pMyD77xnTQ39uGSfGU/lqWFm++FarvrDJkIC/Njy7xcSFuTGxxuAudHTqz+E3OfMP5+7Cpb/59gsLRSRUzIMgyONR8zem2pzempXzS5au1oHXRsVFEV2bLZ56w04iWEnXngho+DvN8KuV+H8O6w7WqC5Cu7Pgu52+NY7kLrAmjp6uWSfGRlbc9LGMTkujANVzbyZX84181OtLunk/IPgqj9CzCTYcDd89ADUHjQfG+3j60Vk2Gw2GxMiJzAhcgKfn/x5wFxBdaD+gHPkpqCqgKLaIurb69lUuolNpZucXx8fEt8XbnqnqKKDo636cbxLVzvsf9e8b0W/jENYHMy8BnY+Yy7TTv2TdbUMk0Zm3Njv39nLb9fv4dypsfztW4usLuf07XwOXvk+9HRC6tnwlWfN/0lExO11dHewt3avM+DkV+ezv24/PUbPoGvHh48f0H8zI3aGloifif3vwtNXQXgi/Hi3tSPapdvh0aVgD4Af5Vu6SlUjM17iyrnj+e36PWzaX01ZfSvJUR4ywjH7OogcD3+/AY5+Bn9aDje8qDOcRDxAoF8g2XHmCIxDS2cLu2t2O3cxLqgu4FDDIUqaSihpKmHdoXXOax1LxB3TVNNjphMaMIbLjD2RYxVTxkrrp+ZT5kLaQjjyqbmyadmd1tZzmjQy4+aufeRjPiuu4eeXTOe7S6ZYXc7wVO6Bv30R6g5B8Di47m+Qfp7VVYnIKGjoaKCwupD8qnwKqwtPeAaV3WZnctRk5xRVdmy2DtnszzDgd7Og7jBc9wxMv9TqiiD/JXjxmxCWAD8qAP9AS8pQA3A/nh5mnvvsMD9fm8e0xHDeWnW+560waKqE575iLjm0B8AVD3nckj8ROT01bTUUVBU4l4kXVhVS0Vox6Dp/mz8Z0RlkxWY5G4ynRk8lwO6De+BU7II/LAK/IPhZMQSGWV2ReZr2AznQWAZXPwazrrWkDIWZfjw9zDS0dbLg12/T0dXD6z84j5njXbsDs0t0tsLLt0DhK+afl94JS37mVqeziohrVLRUDAg4BVUF1LbXDrrOsQdOVmzWgD1w/O1e3g3xwf3wzl0wdQV89UWrq+mz8Tfw3q9h/Hz49ruWlKAw04+nhxmA257Zxhu5ZXzz3En86jI3Pd7gVHp64J3V8NHvzD/P/gpc9n+WDV+KiDUMw6CsucwZbBwhZ6g9cEL8Q5geM33AFNXEyInYbV605cPjF5k77176WzjrW1ZX06epEv43C7o7LFumrTDTjzeEmXd2HePmp7YQFx7EJ3degL+fB/+PvOUJeOPfwOiG9M/Bl582z3gSEZ/l2AOnf8AprC6kpatl0LVhAWHm9FS/gJMa7qGb/DVXw/9MBaMHVuXDuDSrKxro5e/Czmch51q45rEx//YKM/14Q5jp7O5h0Zp3qG7u4IlvnMWyTM/ahXmQfW/D81+HjkaIzYAbXjD3pxER6dXd082hhkMDpqd21+ymrbtt0LWRgZHOcOMIOslhye4fcHY8C//4LiTmwPc+tLqawQYs0y6AiLHdOFFLs71MgJ+dy2an8OSmg6zdVuL5YWbqhfDNN+GZa80znf50IXzlOUg769RfKyI+wc/ux+Rxk5k8bjKXTbkMgK6eLvbX7TdXT/UuEy+qLaKho4GPyz7m47KPnV8fHRRNVpwZbBwBJzE00b0Czh4LD5Y8HSlzzb3Cjn5mnqa99OdWV3RCGpnxELlH67j8wY8I8rez5d8vJCLYC7r+G8rMQFOeC/7BcNUjkH2l1VWJiAfp6O5gb91e5/LwwupC9tbupcvoGnRtbHDsgD1wsmKziA+16CDfrg64b7I5Qu0GRwecUN6L8NLN5oZ+q/LHtM9R00z9eEuYMQyDFf/7Pvsqmrjvi7O4doGbza2eqfYm838Ux79QVvwXLP6hVjqJyBlr725nT80eZ+9NQXUB++v20210D7o2ISTBOYLjCDixIbGuL3L/e/D0leZeLv9WZP1meSfS3Qn/OxOayuHqP8GsL43Zt9Y0kxey2WxcNXc8v3mriLXbjnpPmAkKNzeKevPn8NmjsP5XUFMMn/8f8NPbU0SGL8gviJz4HHLic5yPtXa1UlRT5Aw4hdWFHKg/QEVrBRVHKthwZIPz2qSwpL6DNnsDzrjgcaNb5J63zI/T3GDX35PxC4Czbob3/ts8r2kMw8xwaGTGg5TUtXLeve9iGPDhz5aRGu1lW4R/8jC8eSdgwJTl8KUnIdiz/5uJiPvqf0yDI+QcrD+IweBfi+PDxw9YRTUjZgZRQWe475dhwP/NMQ/j/fJfYcZlI/o5XK6pAv43u3eZ9ruQOn9Mvq2mmfrxpjAD8JVHP+HjA9X89KJMbls21epyRt/uN+DFm6GrFRKy4YbnIcrNTwwXEa/R1NHErppdzh6cguoCDjceHvLaCRETnAEnKzbr9A/arCyCh84Gv0C4o9gcoXZ3a2+B3Odg1pfh6kfH5FsqzPTjbWHm+S1HuOPFXKbEh/H2j5e4V2f+aCnZBs98GZorIDwJrv87pMyxuioR8VENHQ3sqt41YB+ckqaSIa9Nj0xnRuyMvoATM4PwwOPCyocPwNv/aa7s/OpLrv8BRkPJVnjsgjFdpq0w04+3hZnGtk7O+u+3aevs4dXvn8us1HFWl+QadYfhb9dC5S4ICIMv/tl9ly+KiM+pa6ujsKZvBVVhdeGQB23asDExcqK5B06MeRbVjDfuJPTwp2Zv4NnftqD6M/SnC81z9pb+Apb+zOXfTmGmH28LMwA/fHY7r+4s5euL01l9ebbV5bhOWz08/zU4sAFsdrj4Xlj4HaurEhEZUk1bjXMEx7GKqry5fNB1NsNgUmcXWZNXkp18NlmxWUyPmU5ogJv3Qea+AGu/ZY6Yr8pz+TJthZl+vDHMvFdUwTee2ExsWCCf/GI5AZ58vMGpdHfC6z+C7U+bf150K6z8Ndj9rK1LROQ0VLdWO0duCqoLKCzfwrHOwedQ2W12JkVOGrCLcWZMJiH+IRZUfQJdHfDATGg6Btc8DjlfdOm3U5jpxxvDTFd3D4vufpeqpnYev2kBy2eM7RbTY84w4MP74Z3/Mv+ceal5TkhgmLV1iYgM1wtfp2rXKxTOu46CtFlm0KkqpKK1YtCldpudyVGTBzQZWx5wNtwLG9ZA6lnwrbdd+q0UZvrxxjAD8P9eL+TxD4u5NCeZh26YZ3U5YyP/JXj5e9Ddbm6z/ZW/j/lZISIiZ6y709z1t70Bbn57wBEulS2VA0ZwCqoLqGqtGvQUfjbzmIf+xzRMi55GsH/w2PwMjcfMZdo9nfDtd2G865ZpK8z0461hZseROq586CMig/3Z8auV2O1euKppKIc/gWe/Aq01EJUG1z8PiVlWVyUicmoHNsJfLofQOPjJnlNOl1e0VPRNT/UuFa9uqx50nZ/Nj6njpg4YwZkWM40gvyDX/BxrvwO5f4dZ18HVj7jme6AwM4C3hpnO7h5mrV5Ha2c3b606n8yk09jbwFtU74e/fQlq9kNQJFz+e53pJCLu78074ZM/wJwb4Mo/DPvLDcPgWMuxgT041YXUtNUMutbf5s/U6OMCTvQ0Av1GoWn36Fb40wXmPjk/KoBw1xx+rOMMfECAn505aeP4+EA1Ww7V+FaYiZ1iztX+/atw6CN44SY4+C1Y+d8QMEZDrSIiw2EYUPQv8/60M9tmwmazkRSWRFJYEhdMuKD3ac2A49gDp7DG7MGpba9ld81udtfsZu3etYAZcDKiM8iKzXKGnIzojOEHnNT5MH4BlGyBrU/CkjvO6OcZTRqZ8WC/XVfE79/dx9Vzx3P/l+dYXc7Y6+6Ed/8ffPQ7889JOfClp8ywIyLiTir3wENn9e76ewCCXPcPUMMwKG8uHzhFVV1AXXvdoGv97f5kjDMDjmMl1bRx0wjwCzj5N8l9HtZ+26XLtDUy4yPmT4wGYOvhWosrsYhfgHnKdvrn4OVboDwPHjkfLvudy5cMiogMy543zY/p57k0yIA5gpMcnkxyeDLLJy4HzIBT1lw24KDNguoC6tvr2VWzi101u3hpr7kbsb/dn2nR0wZMUWWMyxgYcLKuhHX/bp6mvetVy//O1ciMB2to62T2XeswDNj8ywuJj3BRs5cnaCiFl75lTjsBzPuaucleoJtvQiUivuGJz5t/P13yG7fZ/NMwDEqbSwfsYlxQXUBDR8OgawPsAYMCztSdLxHw/m8g9Wz41vpRr08NwP14c5gBuPiB99ld3sgfvzqPi2cmW12Otbq7YOO98P5vAAMSssyTt+Mzra5MRHxZSw38ZioY3XB7LkRPtLqiEzIMg5KmkkEjOI0dgzf6C7AHkNnaTFZ7O7MX/ILLzxndkKZpJh8yf2I0u8sb2XKwVmHGzx8u+CVMXGwuHawohEeXwqW/hTnXW12diPiqfe+YQSYhy62DDJhTVKkRqaRGpHJR+kWAGXCONh0dEHAKqwtp7GgkPyiQ/KBA6nb8bdTDzHAozHi4BenR/O3Tw2w55KN9M0OZsgy++6HZnFa8Ef7xPSh+3zzULSj81F8vIjKa9jhWMV1kbR1nyGazkRaRRlpEGhenmyuxenp6uPmZtzh8+F9khO/gkvNusbRGLz7UxzcsmBgDQEFpPW2d3RZX40YiEuHGl2HZv5uHVO58Fh5bBuX5VlcmIr6kuxP29m77P+0Sa2sZRY+8X8x7+T0cbr6Yb1/xChfOs3b0W2HGw6VGh5AQEURnt8HOI3VWl+Ne7H6w5Kdw0+sQkQxVe+BPy2HLE+aeDyIirnb4E2ivh9BYSF1gdTWjYuOeSu57azcAqy/Pdq6stZLCjIez2WwsSDffSJpqOoH0c81pp6kroKsNXl8FL90MbYM79kVERpVjSXbGylMeX+AJDle38MNnt2MYcN1ZaVx/9gSrSwIUZrzC/N6ppq0KMycWFmee47Tiv8DmZx5a+egSKN1hdWUi4s1GuOuvO2np6OI7T2+hvrWTOWnjuOuKbGw29zgXUGHGCyxwbJ53qJaeHk2fnJDdDufeDt980zyksuYAPL4CPn1U004iMvqq9plnyNkDYMoFVlczIoZh8POX8thd3khceBB//Op8gvzdZ6RJYcYLZKVEEhLgR31rJ/srm6wux/2lnQ23vA+Zn4fuDvjXT+H5G6G1zurKRMSbOFYxpZ8LwZ69z9njHxbz6s5S/O02/nDDPJKi3OscPIUZLxDgZ2d2WhSgvpnTFhoD1z0DF99j/qtp12vwyOfg6BarKxMRb7HnLfOjh69i2rSvirv/ZTb8/scXsjh7UozFFQ2mMOMlHEu0txxUmDltNhss+h7cvA6i06HuMPz5Itj0e007icjItNbCoU3mfQ/dXwbgaG0L3392O909BtfMS+Vr57jnpn8KM15ifrqjb6bG4ko80Ph55rRT1hXQ02UenvbsdeYW5CIiZ8Kx62/8dIiZZHU1Z6Sts5vv/nUrNc0dzBwfyX9fNdNtGn6PpzDjJeZNiMZmg4PVLVQ2tltdjucJjoIvPWUefeAXZC6n/ON55h4RIiLD5ViS7aGrmAzD4Bcv55Ff0kBMWCB//Op8ggPcp+H3eAozXiIqJIBpCeax8lqifYZsNjjrW/CttyFmCjSUmCfdfvBb6OmxujoR8RTdXbC39xRpDw0zf/n4EGu3leBnt/Hg9XNJjQ61uqSTUpjxIppqGiXJs+CWjZDzJXOY+J3/gr9dA02VVlcmIp7gyCfQVgchMebqSQ/z6YFq/t/rhQDcecl0Fk+Js7iiU1OY8SKO/Wa0omkUBEXA1Y/B5b8H/xDY/6457VT8gdWViYi78+Bdf8vqW7ntmW109RhcMSeFm8/zjH4fhRkv4ljRlF+iQydHhc0G874G334X4jKhqRz+cjlsuAd69PqKyAkUOfplPGsVU3tXN9/96zaqmjqYkRzJPVfPctuG3+MpzHiRtJgQ4nsPncw9Wm91Od4jMQu+8x7M+SoYPbDhbvjLFdBYbnVlIuJuqvdD9V6w+8PU5VZXc9oMw+BX/yhg55E6xoUG8OiN8wkJ9JxRJYUZL2Kz2fpNNalvZlQFhsGVD8FVj0BAGBz8AB4+11x+KSLi4JhimniuuUrSQzzz2WH+vuUIdhv833VzSYtx74bf4ynMeBnHUexbtXmea8y+Dr6zARJnQksV/PUaeG2V9qQREZMHHiy59VAtq18tAOCnF03n/GnxFlc0fAozXmZBeu8J2od16KTLxE8zl28v+CZgwNYn4PfzYOuTWsIt4sta6+Dwx+b9TM8IMxUNbXzvr1vp7Db4fE4S310y2eqSzojCjJfJTokkOMBOXUsnB6p06KTLBITAF/4Xvv5PSMgyty5/7XZ4/EIo2WZ1dSJihf3vmLuIx02DGPcPBR1dPXzvb9uoaGxnWmI4v/nibI9p+D2ewoyXCfCzMzt1HKBzmsZE+rnmUQgX3Q2BEVCyFR67QFNPIr6oyLN2/f2v1wvYeqiWiGB/Hr1xAWFB/laXdMYUZrzQfO03M7b8AuCcW+EHW2DWl9HUk4gP6u6Cfb27/ma6/ynZz28+wl8/OYzNBr+7bg7pcWFWlzQiCjNeaIFzJ2CFmTEVkQRXPzp46ulPy80RGxHxXkc/M/+fDx4Hqe696++OI3X8+z/yAfjxhdO4YHqixRWNnMKMF5o3wQwzxVXNVDXp0Mkxd/zUU+k2eGy5GWw09STinRyrmDJWgp/7TtdUNrbz3ae30tHdw8qsRG5bNtXqkkaFwowXGhcaSEZCOKDRGcsMOfX0pKaeRLzVnrfMj268iqmzu4fbntlGeUMbU+LD+O21s7HbPbPh93gKM15KU01uYsDUU7amnkS8Uc0BqCoyd/2d4r67/v73G7v4rLiG8CB/HrlxARHBAVaXNGoUZrzU/N5zmrYc1LSGW3BMPV18DwRFaupJxJs4VjFNOAdCxllayoms3XaUJzcdBOD+a2cztXf03lsozHgpx7EG+SUNOnTSXfj5w6Lvwfe3wKzrGDD1tOUJTT2JeCrHEQZuuoopv6SeO9fmAfDDC6ayMjvJ4opGn8KMl5oYG0pceCAd3T3klejQSbcSkQhXPzJw6un1VZp6EvFEbfVw6CPzvhvuL1PT3MEtT2+lvauHZZnxrLpwmtUluYTCjJey2Wx9+81o8zz3pKknEc+3/11z19/YDIidYnU1A3R19/D9Z7ZRUtdKemwoD1w312safo+nMOPFFvT2zWzVCdru65RTT5oiFHFrzl1/L7K2jiHc91YRm/ZXExrox6NfW0BUiPc0/B5PYcaLze+3oskwdOikW3NMPX3jX5p6EnF3hgEHNsLfvwp5L5iPuVm/zKs7S3n0/QMA/M+XZjMtMcLiilxLYcaLzUyJIsjfTm1LJweqmq0uR07HxMXHTT1t19STiLtoq4dPH4GHzoa/XA67XgOjG2ZeY65kchO7yhq448WdAHxv6RQ+n5NscUWuZ2mYufvuuznrrLOIiIggISGBK6+8kqKiogHXGIbB6tWrSUlJISQkhKVLl1JQUGBRxZ4l0L/v0Mmt6pvxHJp6EnEvxwrg9R/Bb2fAv+6Aqj0QGA5nfQtu/QS++Gew+1ldJQB1LWbDb1tnD5/LiOMnKzOtLmlMWBpmNm7cyG233cYnn3zC+vXr6erqYuXKlTQ3940i3Hfffdx///08+OCDbN68maSkJFasWEFjY6OFlXsOx1TTFvXNeB5NPYlYp6sD8l+CP18CDy+GLX+GzmaInw6f/x/4t91w6W8hYYbVlTp19xj88LkdHK5pIS0mhN9/ZS5+Xtrwezyb4UbNFJWVlSQkJLBx40bOP/98DMMgJSWFVatW8bOf/QyA9vZ2EhMTuffee7nlllsGPUd7ezvt7X3nETU0NJCWlkZ9fT2RkZFj9rO4i3d2HePmp7YwOT6Md/9tqdXlyJnq7oLNf4L3/hvaGwAbzPsaLP9PCIu1ujoR79FQao6AbnsKmo6Zj9n8YMYX4KxvQ/p5YHPPgHDfm7v5w4b9BAfYWfu9c8lK8ezfeQ0NDURFRZ3W72+36pmprzf3Q4mJMVfhFBcXU15ezsqVK53XBAUFsWTJEjZt2jTkc9x9991ERUU5b2lpaa4v3I05lmcfqGymprnD4mrkjPn5w6LvmlNPs78CGOZftg/Ohw/uVz+NyEgYBhS/D3+/Ef53Jrx/nxlkwpNgyc/hR/lw7V9g0ufcNsj8K6+MP2zYD8C918zy+CAzXG4TZgzD4Mc//jHnnXceM2fOBKC8vByAxMSBx5MnJiY6P3e8O++8k/r6euftyJEjri3czY0LDXRuW61zmrxARCJc9Uf4xpuQONOcenrnLvjfbHj9x1C5x+oKRTxHWwN8+ig8tBCeugx2vWo29E48D774hBlilt0JkSlWV3pSe4418m8vmA2/3/7cJK6YM97iisae25xT/v3vf5/c3Fw+/PDDQZ+zHZeEDcMY9JhDUFAQQUFBLqnRUy2YGM2+iia2HKphRVbiqb9A3N/Ec+A7G81loZ88BOV5sOVx8zZ1hXli9+RlbvuvSBFLHSuEzY/Bzr+bfTBgNvTO+rLZ1JuYZW19w1Df2sktT2+lpaObxVNi+dnF060uyRJuEWZ+8IMf8Oqrr/L++++TmprqfDwpyTw/ory8nOTkvqVlFRUVg0Zr5MTmT4zmuc1HtKLJ2/j5w5yvwOzr4OCH8MnDUPRP2LfevMXPMFdFzboWAkKsrlbEWt2d5lLqzX/qO34AIC4Tzv62GWSCPW9q5q7XCiiuamb8OLPh19/PbSZcxpSlYcYwDH7wgx/w8ssvs2HDBiZNmjTg85MmTSIpKYn169czd+5cADo6Oti4cSP33nuvFSV7pAXpZg9Sbkk97V3dBPm7xxJCGSU2mzmXP+lzUL0fPnsUtv8VKnfBaz80p6EWfNP8F2eE9x0wJ3JSDaXm1gZbnxzY0Dv9UjPEpLtvH8ypNLR18npuGQC/u24OseG+OythaZi57bbbeOaZZ3jllVeIiIhw9sFERUUREhKCzWZj1apVrFmzhoyMDDIyMlizZg2hoaFcf/31VpbuUdJjQ4kNC6S6uYP8knrm9x5zIF4odgpcci8s+wVse9rc4Kv+MLz/G/jwAXNzr0Xfg5Q5Vlcq4jqGAQc/MEdhdr1u9sEAhCfC/K+bNzfvgzkdb+WX09HVQ0ZCuHOxh6+yNMw8/PDDACxdunTA40888QRf//rXAbjjjjtobW3l1ltvpba2loULF7Ju3ToiIrx7a+bR5Dh0cl3hMbYcrFWY8QXBUbD4+7Dwu1D0Bnz8BzjyCeQ+Z94mnmuGmszPu81mXyIj1tYAuX83Q0zl7r7HJyyGs78F0y8D/0Dr6htlr+4sBeCKOSkn7CP1FW61z4wrDGedujd79P39rPnnblZkJfLY1xZYXY5YoWQrfPJHKFhrnvILMG6iGXjmftUj+wVEAKjYBZ89ZgaZjibzsYAwmO1o6M22tj4XqGhsY9Gad+gxYONPlzIxNszqkkbdcH5/u0UDsLieYzRmW++hk76e4n3S+PlwzWOw4i7zX65b/gx1h+CtO+G9NTDvRlh4C0SnW12pyKnVHzWnkAr/AYc/7ns8bpoZYGZfZ45Qeql/5pbRY8CctHFeGWSGS2HGR8wcH0mgv53q5g6Kq5qZHB9udUlilcgUWP4r+NxPzH/JfvIwVBXBJ3+AT/9oTj2dc5t5cJ5Cr7iTqr3miqRdr0Hptr7HbX4w/fPmDr2TzveJ9+0r/aaYRGHGZwT5+zE7NYrNB2vZcqhWYUYgMBQWfAPm3QQH3jX7ava/A7tfN2/Js2HRbZB9lVf1GYgHMQwoz+0LMP37YLCZgXvGZZB1BUT5zkZxh6tb2H64DrsNLp3l/Sdinw6FGR8yf2IMmw/WsvVgLdcu8O1jHqQfux2mXmjeKnbDpw/DzuegbCe8/B1Y/x/mv3gXfFPnQInr9XTDkc/M8LL7Nag73Pc5e4A58jLjMnNpdXiCdXVa6LVcc1Rm8ZQ4EiKCLa7GPSjM+JAFE3WCtpxCwnS47HfmAZZb/mw2VTaVw3u/hg/+x9xYbNH33OqkYPECXR3mUupdr8HuN6C5ou9z/iGQcSHMuBwyVkLIOMvKdBev7CgB4HJNMTkpzPgQxz4E+yubqW3uIDpMUwdyAqExcP5PYPEPzQbLjx+Csh3m4ZbbnjKPSjjnNpiy3BzZERmujhZzWnPXa7DnTWir7/tcUBRkXmyOwExZbk6JCgC7yxvYc6yJQD87F2VrE0wHhRkfEh0WyJT4MPZXNrP1UC0X6pwmORX/QPM4hJwvwZFPzVCz+3U48J55i5sGc66HKRdAYo6CjZxcax3sXWce6Lj3behq7ftcWII5dTTjMnNXXvVpDemVHeYU07Lp8USFBFhcjftQmPExCybGsL+ymS0KMzIcNhtMWGTeag+ZRyZs+wtU7YG3V5u30DiYvNQMNlOWecUOqzIKmirMqaNdr0Hx+9DT2fe5cRPM6aPpX4C0s7WB4ykYhsGrOxyrmHyn4fl0KMz4mPnp0fx9yxG2qm9GzlT0RLjov2Hpz82l3XvXQ/EH0FIF+S+aN4D46WawmbwM0s+FQO2F4TPqDpt7wOx6rXcPmH57s8ZPN0dfZlwGSbN8Yhn1aNl2uJaSulbCg/y5YLpvNj+fiMKMj3E0Ae88qkMnZYSCIszNyc76ltnAeXQz7H/XnH4q2WYuo63cbe5fYw8wR3WmLDPDTfIcTUl5m8oic/po12vmSrj+Uub1BZi4DGvq8wKOKaaV2YkEB+jv7v4UZnzMpLiwfodONvj84WQySvwDzdGX9HNh+X9ASw0Ub4T975m3+sPmapWDH8A7/wUhMb1TUr3hZpy2CvAohmHuwFu20wyxRf80pxwdbHbzPCTHEmr99x2xru4e3ug9Ifvy2ZrCPZ7CjI+x2WzMmxjN+sJjbD1UozAjrhEaY262l32V+Yuv5oA5arP/PbNvorXGPCOqYK15fWxGX69N+nnmqI+4B8OA2oNmcCnbaa5qK9sJLdUDr7MHmP/9Zlxm7iIdFmdFtV7ro/3VVDd3EBsWyLlT9doeT2HGB83vDTNbDtbynfOtrka8ns0GsVPM29nfhu5O89BLR7gp2QLVe83bZ4+A3R/SFpojNlMugJQ5agwdKz09ZvAs29EXWsp2Dlw27WDzM/cbSp5t/nfKWOHVZyFZzbG3zKWzkgnw0xTt8RRmfJCjb2arDp0UK/gF9K2MWvYLc7lu8ftmr83+d81RgEMfmbf3fg3B42Dykr5wEz3R4h/AS/R0m2cd9Q8tZbnQ0Tj4Wr9ASMgyg0vybDNgJmRDgHafHQttnd28lV8OaIrpRBRmfNDM8VEE+pmHTh6sbmFSnFaZiIVCxkHW5eYNeqekevexOfA+tNVB4SvmDSBmijmdMeUCcz+S4EirKvcc3Z1mM7YjtJTugGP50Nky+Fr/YEicaQYWR3iJn6F9Xyz07u4Kmju6GT8uhHkT1BowFIUZHxQc4EdOahRbD9Wy5WCNwoy4l5jJ5u2sm6G7C0q3962SOvIZ1Ow3b5v/1DfVEZkCEUkQkQKRyQM/hsb41vLfrnaoKDwuuBRAd/vgawPCICmnX3CZY26E6KdfDe6k//EFdrsPvZeHQe9YH7VgYjRbD9Wy9VAtX9Khk+Ku/Pwh7SzztvRn0NZgroja3zslVbPfHGE4ln+S5wgyg05kCkQk9ws+yX2PRSR71pRJVzu0N0J7AzRXmSdLl+4ww0vFroEb0zkERfaNtDiCS+wU9SO5ufrWTt4rqgQ0xXQyCjM+ar7z0MlaiysRGYbgSHOp7/RLzT/XHTb3N2kohcZyaCyFhrK+jy1V5ohE3SHzdjIhMf0CT3JfyOkfgkJjz3yUp7uzN4D03jqa+gJJe9PwHhsqrAz4WaIHhpbk2RA9SXv7eKC3Csrp6OphWmI405O0yu9EFGZ8lCPM7Ktooq6lg3Ghmg8XDzRugnk7ka723pBT1ht4+n/sF3q6283l4q01pxjlCRw8nRUc2Rs4ThFIutpG/+cPCDNXECVm9YWW5Nnma+JLU2terP/xBVqscWIKMz4qNjyIyXFhHKgyD51cPkPnNIkX8g8yVz+dbAWUYUBr7eCAM+QoT4c5GlR3eAQ1BZv76ARFQGC4Of0TFH5mj2mKyKtVNLaxaX8VAJfN0hTTySjM+LD5E6M5UGUeOqkwIz7LZjObhENjIDH7xNd1tUPTscFBp72xN2xEnEYgiTCXpouchjdyy+gxYO6EcUyIDbW6HLemMOPDFqRH88LWo2w9qL4ZkVPyDzr1tJbIKHKcxXSFGn9PSd1gPmz+xBgAdh6to6Orx+JqRETE4XB1CzuO1GG3waWaYjolhRkfNiU+jOjQANq7eigoHWK7chERscSrO829Zc6dGkd8RJDF1bg/hRkfZrPZnKuatmqJtoiIWzAMwznFdJmmmE6LwoyPc0w1bVHfjIiIW9hd3sjeiiYC/e1cPDPJ6nI8gsKMj1uQ3rd5nmEYFlcjIiKOUZkLMhOIDNbqt9OhMOPjcnoPnaxqaudwzRCHzomIyJjp6TF4bacZZi6foymm06Uw4+OCA/yYOd48dVhTTSIi1tp2uJaSulbCg/y5YHqC1eV4DIUZYUF6b9+MmoBFRCzlmGK6KDuJ4ADt8Hy6FGak34qmGosrERHxXZ3dPbyRVwZoimm4FGbEGWb2HGuivuUUp/GKiIhLfLSviprmDmLDAjl3SqzV5XgUhRkhLjyISXFhgDlfKyIiY89xQvYXZiXj76dfz8OhV0uAvtGZLZpqEhEZc22d3bxVUA5oiulMKMwIAAscYUYrmkRExtw7uypo7ugmNTqEeROirS7H4yjMCNC3ed7Oo3V0duvQSRGRsfTKDvMspstmp2Cz2SyuxvMozAgAk+PCGRcaQFtnDwWlDVaXIyLiM+pbO9lQVAnAFZpiOiMKMwKA3W5j/gTHVJP6ZkRExspb+eV0dPeQmRjB9KRIq8vxSAoz4jQ/XSdoi4iMtVd2mlNMavw9cwoz4rRgYt9OwDp0UkTE9Soa2vh4fzUAl89WmDlTCjPiNCs1igA/G5WN7RypabW6HBERr/d6bhk9BsybMI60mFCry/FYCjPiZB46GQVovxkRkbHwiuOEbI3KjIjCjAzg3G9GfTMiIi51qLqZnUfqsNvg0lkKMyOhMCMDzO/tm9mqzfNERFzKcXzBuVPjiI8Isrgaz6YwIwM4D52saKS+VYdOioi4gmEYmmIaRQozMkB8RBDpsaEYhg6dFBFxlV1ljeyraCLQ385FM5OsLsfjKczIIPN6R2c01SQi4hqOvWUuyEwgMjjA4mo8n8KMDNK334xWNImIjLaeHoPXevtldHzB6FCYkUEch07uOKJDJ0VERtvWw7WU1rcREeTPsukJVpfjFRRmZJCp8eFEBvvT1tlDoQ6dFBEZVY4TsldmJxEc4GdxNd5BYUYGsdttzlVN2m9GRGT0dHb38M+8ckBTTKNJYUaGtCC9d78Z9c2IiIyaD/dVUdPcQVx4IIunxFpdjtdQmJEhOUdmDurQSRGR0eLYKO/SnGT8/fQreLTolZQhzU4dh7/dRkVjO0drdeikiMhItXZ0s67AnGK6fM54i6vxLgozMqSQQD+ydeikiMioeWf3MZo7ukmNDmHehHFWl+NVFGbkhBb0m2oSEZGReWVH3/EFNpvN4mq8i8KMnJAjzGzViiYRkRGpb+lkY1ElAFdoimnUKczICc3v3Tyv6FgjDW06dFJE5Ey9WVBGR3cP05MiyEyKsLocr6MwIyeUEBHMhBjz0Mnth+usLkdExGM5ppgu0wnZLqEwIyflnGo6qCZgEZEzUdHQxscHqgGzX0ZGn8KMnJRjqkk7AYuInJnXcsswDJg3YRxpMaFWl+OVFGbkpBwnaO84UkeXDp0UERm2V3vPYlLjr+tYGmbef/99LrvsMlJSzGVq//jHPwZ83jAMVq9eTUpKCiEhISxdupSCggJrivVRGQnmoZMtHd3sKmu0uhwREY9ysKqZnUfr8bPb+HxOstXleC1Lw0xzczOzZ8/mwQcfHPLz9913H/fffz8PPvggmzdvJikpiRUrVtDYqF+qY8VutzHPeeik+mZERIbj1Z1m4+/iKbHERwRZXI33sjTMXHLJJfz617/m6quvHvQ5wzB44IEH+OUvf8nVV1/NzJkzeeqpp2hpaeGZZ56xoFrftUAnaIuIDJthGLyiKaYx4bY9M8XFxZSXl7Ny5UrnY0FBQSxZsoRNmzad8Ova29tpaGgYcJORmd/bN7NVh06KiJy2wrIG9lc2E+hv56LsRKvL8WpuG2bKy83DuBITB74BEhMTnZ8byt13301UVJTzlpaW5tI6fcGcNPPQyfKGNkrqdOikiMjpcJyQvXx6AhHBARZX493cNsw4HH9+hWEYJz3T4s4776S+vt55O3LkiKtL9HohgX5kp0QCOtpAROR09PQYvNbbL3PFHO0t42puG2aSkpIABo3CVFRUDBqt6S8oKIjIyMgBNxk5x1STDp0UETm1LYdqKa1vIyLIn6WZCVaX4/XcNsxMmjSJpKQk1q9f73yso6ODjRs3snjxYgsr800LtHmeiMhpczT+XjQzieAAP4ur8X7+Vn7zpqYm9u3b5/xzcXExO3bsICYmhgkTJrBq1SrWrFlDRkYGGRkZrFmzhtDQUK6//noLq/ZNjhVNReUNNLZ1av5XROQEOrt7+GdeGaApprFiaZjZsmULy5Ytc/75xz/+MQA33XQTTz75JHfccQetra3ceuut1NbWsnDhQtatW0dEhE4cHWsJkcGkxYRwpKaV7YfrOH9avNUliYi4pQ/3VlHb0klceCDnTI61uhyfYGmYWbp06UmX+tpsNlavXs3q1avHrig5oQUTYzhSU8KWQ7UKMyIiJ+CYYvrCrBT8/dy2m8Or6FWW0zbfcYK2dgIWERlSa0c36wqPAXC5ppjGjMKMnDZHE/D2wzp0UkRkKG/vOkZLRzdpMSHMTRtndTk+Q2FGTtu0hAgieg+d3F2u87FERI73Su9GeZfPTjnpnmgyuhRm5LTZ7TbmTehdon1QU00iIv3Vt3SycU8FoLOYxprCjAyLDp0UERnav/LL6Ow2mJ4UwbRErbodSwozMizz0x1NwAozIiL9OaeY1Pg75hRmZFjmpI3Dz26jrF6HToqIOBxraOOT4moALpulMDPWFGZkWEID/Z2HTqpvRkTE9NrOUgzD3MIiLSbU6nJ8jsKMDJujCVhTTSIiJp2QbS2FGRk256GTOkFbRITiqmZ2Hq3Hz27j8znJVpfjkxRmZNgWTIwBYHd5A03tXRZXIyJirVd7G3/PnRpHXHiQxdX4JoUZGbakqGDGjwuhx4DthzU6IyK+yzAMXtlpnsV0xWxNMVlFYUbOiKaaRESgoLSBA5XNBPnbWZmdaHU5PsvSU7PFcy2YGM0rO0r55EA1R2tbrC5HRMQSz285AsDyGQlEBAdYXI3vUpiRMzK/t2/m0+Iazrv3PYurERGx1uWzdXyBlRRm5IxkJkXwuYw4PivWXjMi4tuyUyJZNj3e6jJ8msKMnBE/u42nb15odRkiIiJqABYRERHPpjAjIiIiHk1hRkRERDyawoyIiIh4NIUZERER8WgKMyIiIuLRFGZERETEoynMiIiIiEdTmBERERGPpjAjIiIiHk1hRkRERDyawoyIiIh4NIUZERER8WgKMyIiIuLR/K0uwNUMwwCgoaHB4kpERETkdDl+bzt+j5+M14eZxsZGANLS0iyuRERERIarsbGRqKiok15jM04n8niwnp4eSktLiYiIwGazjepzNzQ0kJaWxpEjR4iMjBzV5/YFev1GTq/hyOj1Gzm9hiOj1+/EDMOgsbGRlJQU7PaTd8V4/ciM3W4nNTXVpd8jMjJSb8IR0Os3cnoNR0av38jpNRwZvX5DO9WIjIMagEVERMSjKcyIiIiIR1OYGYGgoCD+8z//k6CgIKtL8Uh6/UZOr+HI6PUbOb2GI6PXb3R4fQOwiIiIeDeNzIiIiIhHU5gRERERj6YwIyIiIh5NYUZEREQ8msJMP3/4wx+YNGkSwcHBzJ8/nw8++OCk12/cuJH58+cTHBzM5MmT+eMf/zjompdeeomsrCyCgoLIysri5ZdfdlX5lhvt1+/JJ5/EZrMNurW1tbnyx7DUcF7DsrIyrr/+ejIzM7Hb7axatWrI63zpPQij/xr62vtwOK/f2rVrWbFiBfHx8URGRnLOOefw1ltvDbpO78GRvYa+9h48I4YYhmEYzz33nBEQEGA89thjRmFhoXH77bcbYWFhxqFDh4a8/sCBA0ZoaKhx++23G4WFhcZjjz1mBAQEGC+++KLzmk2bNhl+fn7GmjVrjF27dhlr1qwx/P39jU8++WSsfqwx44rX74knnjAiIyONsrKyATdvNdzXsLi42PjhD39oPPXUU8acOXOM22+/fdA1vvQeNAzXvIa+9D4c7ut3++23G/fee6/x2WefGXv27DHuvPNOIyAgwNi2bZvzGr0HR/4a+tJ78EwpzPQ6++yzje9+97sDHps+fbrx85//fMjr77jjDmP69OkDHrvllluMRYsWOf987bXXGhdffPGAay666CLjuuuuG6Wq3YcrXr8nnnjCiIqKGvVa3dVwX8P+lixZMuQvYl96DxqGa15DX3ofjuT1c8jKyjLuuusu55/1Hhz5a+hL78EzpWkmoKOjg61bt7Jy5coBj69cuZJNmzYN+TUff/zxoOsvuugitmzZQmdn50mvOdFzeipXvX4ATU1NTJw4kdTUVL7whS+wffv20f8B3MCZvIanw1feg+C61xB84304Gq9fT08PjY2NxMTEOB/Te3DkryH4xntwJBRmgKqqKrq7u0lMTBzweGJiIuXl5UN+TXl5+ZDXd3V1UVVVddJrTvScnspVr9/06dN58sknefXVV3n22WcJDg7m3HPPZe/eva75QSx0Jq/h6fCV9yC47jX0lffhaLx+v/3tb2lububaa691Pqb34MhfQ195D46E15+aPRw2m23Anw3DGPTYqa4//vHhPqcnG+3Xb9GiRSxatMj5+XPPPZd58+bx+9//nv/7v/8brbLdiiveL770HoTR/3l97X14pq/fs88+y+rVq3nllVdISEgYlef0VKP9Gvrae/BMKMwAcXFx+Pn5DUrOFRUVgxK2Q1JS0pDX+/v7Exsbe9JrTvScnspVr9/x7HY7Z511llf+a+RMXsPT4SvvQXDda3g8b30fjuT1+/vf/87NN9/MCy+8wIUXXjjgc3oPjvw1PJ63vgdHQtNMQGBgIPPnz2f9+vUDHl+/fj2LFy8e8mvOOeecQdevW7eOBQsWEBAQcNJrTvScnspVr9/xDMNgx44dJCcnj07hbuRMXsPT4SvvQXDda3g8b30fnunr9+yzz/L1r3+dZ555hksvvXTQ5/UeHPlreDxvfQ+OiBVdx+7IsZzu8ccfNwoLC41Vq1YZYWFhxsGDBw3DMIyf//znxo033ui83rG0+Ec/+pFRWFhoPP7444OWFn/00UeGn5+fcc899xi7du0y7rnnHq9dkuiK12/16tXGm2++aezfv9/Yvn278Y1vfMPw9/c3Pv300zH/+cbCcF9DwzCM7du3G9u3bzfmz59vXH/99cb27duNgoIC5+d96T1oGK55DX3pfTjc1++ZZ54x/P39jYceemjAkuG6ujrnNXoPjvw19KX34JlSmOnnoYceMiZOnGgEBgYa8+bNMzZu3Oj83E033WQsWbJkwPUbNmww5s6dawQGBhrp6enGww8/POg5X3jhBSMzM9MICAgwpk+fbrz00kuu/jEsM9qv36pVq4wJEyYYgYGBRnx8vLFy5Upj06ZNY/GjWGa4ryEw6DZx4sQB1/jSe9AwRv819LX34XBevyVLlgz5+t10000DnlPvwZG9hr72HjwTNsPo7boUERER8UDqmRERERGPpjAjIiIiHk1hRkRERDyawoyIiIh4NIUZERER8WgKMyIiIuLRFGZERETEoynMiIiIiEdTmBERERGPpjAjIiIiHk1hRkRERDyawoyIeJTKykqSkpJYs2aN87FPP/2UwMBA1q1bZ2FlImIVHTQpIh7nn//8J1deeSWbNm1i+vTpzJ07l0svvZQHHnjA6tJExAIKMyLikW677TbefvttzjrrLHbu3MnmzZsJDg62uiwRsYDCjIh4pNbWVmbOnMmRI0fYsmULs2bNsrokEbGIemZExCMdOHCA0tJSenp6OHTokNXliIiFNDIjIh6no6ODs88+mzlz5jB9+nTuv/9+8vLySExMtLo0EbGAwoyIeJyf/vSnvPjii+zcuZPw8HCWLVtGREQEr7/+utWliYgFNM0kIh5lw4YNPPDAAzz99NNERkZit9t5+umn+fDDD3n44YetLk9ELKCRGREREfFoGpkRERERj6YwIyIiIh5NYUZEREQ8msKMiIiIeDSFGREREfFoCjMiIiLi0RRmRERExKMpzIiIiIhHU5gRERERj6YwIyIiIh5NYUZEREQ82v8HK4YMLTKJkYkAAAAASUVORK5CYII=", "text/plain": [ "<Figure size 640x480 with 1 Axes>" ] @@ -1143,13 +1268,16 @@ } ], "source": [ - "T_left = 38 \n", - "T_right = 25 \n", - "T_initial = 7 \n", - "L = 300 \n", - "nu = 4 \n", - " \n", - "dx = 20\n", + "# YOUR_CODE_HERE\n", + "\n", + "# SOLUTION\n", + "T_left = 38\n", + "T_right = 25\n", + "T_initial = 7\n", + "L = 0.3\n", + "nu = 4/1000/1000\n", + "\n", + "dx = 0.02\n", "x = np.arange(0,L,dx)\n", "n = len(x)\n", "dt = 50\n", diff --git a/content/GA_1_6/figures/thermal_gradient.png b/content/GA_1_6/figures/thermal_gradient.png new file mode 100644 index 0000000000000000000000000000000000000000..37b8a55288b374a9dd4edc576b9f19cf4466c647 Binary files /dev/null and b/content/GA_1_6/figures/thermal_gradient.png differ diff --git a/src/teachers/GA_1_6/GA_1_6_an_ode_to_pde.html b/src/teachers/GA_1_6/GA_1_6_an_ode_to_pde.html new file mode 100644 index 0000000000000000000000000000000000000000..f97dc354fc55ee5e857ea65ea538690127b672c5 --- /dev/null +++ b/src/teachers/GA_1_6/GA_1_6_an_ode_to_pde.html @@ -0,0 +1,8457 @@ +<!DOCTYPE html> + +<html lang="en"> +<head><meta charset="utf-8"/> +<meta content="width=device-width, initial-scale=1.0" name="viewport"/> +<title>GA_1_6_an_ode_to_pde</title><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script><script> +(function() { + function addWidgetsRenderer() { + var mimeElement = document.querySelector('script[type="application/vnd.jupyter.widget-view+json"]'); + var scriptElement = document.createElement('script'); + + var widgetRendererSrc = 'https://unpkg.com/@jupyter-widgets/html-manager@*/dist/embed-amd.js'; + + var widgetState; + + // Fallback for older version: + try { + widgetState = mimeElement && JSON.parse(mimeElement.innerHTML); + + if (widgetState && (widgetState.version_major < 2 || !widgetState.version_major)) { + + var widgetRendererSrc = 'https://unpkg.com/@jupyter-js-widgets@*/dist/embed.js'; + + } + } catch(e) {} + + scriptElement.src = widgetRendererSrc; + document.body.appendChild(scriptElement); + } + + document.addEventListener('DOMContentLoaded', addWidgetsRenderer); +}()); +</script> +<style type="text/css"> + pre { line-height: 125%; } +td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } +span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } +td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +.highlight .hll { background-color: var(--jp-cell-editor-active-background) } +.highlight { background: var(--jp-cell-editor-background); color: var(--jp-mirror-editor-variable-color) } +.highlight .c { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment */ +.highlight .err { color: var(--jp-mirror-editor-error-color) } /* Error */ +.highlight .k { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword */ +.highlight .o { color: var(--jp-mirror-editor-operator-color); font-weight: bold } /* Operator */ +.highlight .p { color: var(--jp-mirror-editor-punctuation-color) } /* Punctuation */ +.highlight .ch { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment.Hashbang */ +.highlight .cm { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment.Multiline */ +.highlight .cp { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment.Preproc */ +.highlight .cpf { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment.PreprocFile */ +.highlight .c1 { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment.Single */ +.highlight .cs { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment.Special */ +.highlight .kc { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword.Constant */ +.highlight .kd { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword.Declaration */ +.highlight .kn { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword.Namespace */ +.highlight .kp { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword.Pseudo */ +.highlight .kr { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword.Reserved */ +.highlight .kt { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword.Type */ +.highlight .m { color: var(--jp-mirror-editor-number-color) } /* Literal.Number */ +.highlight .s { color: var(--jp-mirror-editor-string-color) } /* Literal.String */ +.highlight .ow { color: var(--jp-mirror-editor-operator-color); font-weight: bold } /* Operator.Word */ +.highlight .pm { color: var(--jp-mirror-editor-punctuation-color) } /* Punctuation.Marker */ +.highlight .w { color: var(--jp-mirror-editor-variable-color) } /* Text.Whitespace */ +.highlight .mb { color: var(--jp-mirror-editor-number-color) } /* Literal.Number.Bin */ +.highlight .mf { color: var(--jp-mirror-editor-number-color) } /* Literal.Number.Float */ +.highlight .mh { color: var(--jp-mirror-editor-number-color) } /* Literal.Number.Hex */ +.highlight .mi { color: var(--jp-mirror-editor-number-color) } /* Literal.Number.Integer */ +.highlight .mo { color: var(--jp-mirror-editor-number-color) } /* Literal.Number.Oct */ +.highlight .sa { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Affix */ +.highlight .sb { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Backtick */ +.highlight .sc { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Char */ +.highlight .dl { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Delimiter */ +.highlight .sd { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Doc */ +.highlight .s2 { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Double */ +.highlight .se { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Escape */ +.highlight .sh { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Heredoc */ +.highlight .si { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Interpol */ +.highlight .sx { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Other */ +.highlight .sr { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Regex */ +.highlight .s1 { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Single */ +.highlight .ss { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Symbol */ +.highlight .il { color: var(--jp-mirror-editor-number-color) } /* Literal.Number.Integer.Long */ + </style> +<style type="text/css"> +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/* + * Mozilla scrollbar styling + */ + +/* use standard opaque scrollbars for most nodes */ +[data-jp-theme-scrollbars='true'] { + scrollbar-color: rgb(var(--jp-scrollbar-thumb-color)) + var(--jp-scrollbar-background-color); +} + +/* for code nodes, use a transparent style of scrollbar. These selectors + * will match lower in the tree, and so will override the above */ +[data-jp-theme-scrollbars='true'] .CodeMirror-hscrollbar, +[data-jp-theme-scrollbars='true'] .CodeMirror-vscrollbar { + scrollbar-color: rgba(var(--jp-scrollbar-thumb-color), 0.5) transparent; +} + +/* tiny scrollbar */ + +.jp-scrollbar-tiny { + scrollbar-color: rgba(var(--jp-scrollbar-thumb-color), 0.5) transparent; + scrollbar-width: thin; +} + +/* tiny scrollbar */ + +.jp-scrollbar-tiny::-webkit-scrollbar, +.jp-scrollbar-tiny::-webkit-scrollbar-corner { + background-color: transparent; + height: 4px; + width: 4px; +} + +.jp-scrollbar-tiny::-webkit-scrollbar-thumb { + background: rgba(var(--jp-scrollbar-thumb-color), 0.5); +} + +.jp-scrollbar-tiny::-webkit-scrollbar-track:horizontal { + border-left: 0 solid transparent; + border-right: 0 solid transparent; +} + +.jp-scrollbar-tiny::-webkit-scrollbar-track:vertical { + border-top: 0 solid transparent; + border-bottom: 0 solid transparent; +} + +/* + * Lumino + */ + +.lm-ScrollBar[data-orientation='horizontal'] { + min-height: 16px; + max-height: 16px; + min-width: 45px; + border-top: 1px solid #a0a0a0; +} + +.lm-ScrollBar[data-orientation='vertical'] { + min-width: 16px; + max-width: 16px; + min-height: 45px; + border-left: 1px solid #a0a0a0; +} + +.lm-ScrollBar-button { + background-color: #f0f0f0; + background-position: center center; + min-height: 15px; + max-height: 15px; + min-width: 15px; + max-width: 15px; +} + +.lm-ScrollBar-button:hover { + background-color: #dadada; +} + +.lm-ScrollBar-button.lm-mod-active { + background-color: #cdcdcd; +} + +.lm-ScrollBar-track { + background: #f0f0f0; +} + +.lm-ScrollBar-thumb { + background: #cdcdcd; +} + +.lm-ScrollBar-thumb:hover { + background: #bababa; +} + +.lm-ScrollBar-thumb.lm-mod-active { + background: #a0a0a0; +} + +.lm-ScrollBar[data-orientation='horizontal'] .lm-ScrollBar-thumb { + height: 100%; + min-width: 15px; + border-left: 1px solid #a0a0a0; + border-right: 1px solid #a0a0a0; +} + +.lm-ScrollBar[data-orientation='vertical'] .lm-ScrollBar-thumb { + width: 100%; + min-height: 15px; + border-top: 1px solid #a0a0a0; + border-bottom: 1px solid #a0a0a0; +} + +.lm-ScrollBar[data-orientation='horizontal'] + .lm-ScrollBar-button[data-action='decrement'] { + background-image: var(--jp-icon-caret-left); + background-size: 17px; +} + +.lm-ScrollBar[data-orientation='horizontal'] + .lm-ScrollBar-button[data-action='increment'] { + background-image: var(--jp-icon-caret-right); + background-size: 17px; +} + +.lm-ScrollBar[data-orientation='vertical'] + .lm-ScrollBar-button[data-action='decrement'] { + background-image: var(--jp-icon-caret-up); + background-size: 17px; +} + +.lm-ScrollBar[data-orientation='vertical'] + .lm-ScrollBar-button[data-action='increment'] { + background-image: var(--jp-icon-caret-down); + background-size: 17px; +} + +/* + * Copyright (c) Jupyter Development Team. + * Distributed under the terms of the Modified BSD License. + */ + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Copyright (c) 2014-2017, PhosphorJS Contributors +| +| Distributed under the terms of the BSD 3-Clause License. +| +| The full license is in the file LICENSE, distributed with this software. +|----------------------------------------------------------------------------*/ + +.lm-Widget { + box-sizing: border-box; + position: relative; + overflow: hidden; +} + +.lm-Widget.lm-mod-hidden { + display: none !important; +} + +/* + * Copyright (c) Jupyter Development Team. + * Distributed under the terms of the Modified BSD License. + */ + +.lm-AccordionPanel[data-orientation='horizontal'] > .lm-AccordionPanel-title { + /* Title is rotated for horizontal accordion panel using CSS */ + display: block; + transform-origin: top left; + transform: rotate(-90deg) translate(-100%); +} + +/* + * Copyright (c) Jupyter Development Team. + * Distributed under the terms of the Modified BSD License. + */ + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Copyright (c) 2014-2017, PhosphorJS Contributors +| +| Distributed under the terms of the BSD 3-Clause License. +| +| The full license is in the file LICENSE, distributed with this software. +|----------------------------------------------------------------------------*/ + +.lm-CommandPalette { + display: flex; + flex-direction: column; + -webkit-user-select: none; + -moz-user-select: none; + -ms-user-select: none; + user-select: none; +} + +.lm-CommandPalette-search { + flex: 0 0 auto; +} + +.lm-CommandPalette-content { + flex: 1 1 auto; + margin: 0; + padding: 0; + min-height: 0; + overflow: auto; + list-style-type: none; +} + +.lm-CommandPalette-header { + overflow: hidden; + white-space: nowrap; + text-overflow: ellipsis; +} + +.lm-CommandPalette-item { + display: flex; + flex-direction: row; +} + +.lm-CommandPalette-itemIcon { + flex: 0 0 auto; +} + +.lm-CommandPalette-itemContent { + flex: 1 1 auto; + overflow: hidden; +} + +.lm-CommandPalette-itemShortcut { + flex: 0 0 auto; +} + +.lm-CommandPalette-itemLabel { + overflow: hidden; + white-space: nowrap; + text-overflow: ellipsis; +} + +.lm-close-icon { + border: 1px solid transparent; + background-color: transparent; + position: absolute; + z-index: 1; + right: 3%; + top: 0; + bottom: 0; + margin: auto; + padding: 7px 0; + display: none; + vertical-align: middle; + outline: 0; + cursor: pointer; +} +.lm-close-icon:after { + content: 'X'; + display: block; + width: 15px; + height: 15px; + text-align: center; + color: #000; + font-weight: normal; + font-size: 12px; + cursor: pointer; +} + +/* + * Copyright (c) Jupyter Development Team. + * Distributed under the terms of the Modified BSD License. + */ + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Copyright (c) 2014-2017, PhosphorJS Contributors +| +| Distributed under the terms of the BSD 3-Clause License. +| +| The full license is in the file LICENSE, distributed with this software. +|----------------------------------------------------------------------------*/ + +.lm-DockPanel { + z-index: 0; +} + +.lm-DockPanel-widget { + z-index: 0; +} + +.lm-DockPanel-tabBar { + z-index: 1; +} + +.lm-DockPanel-handle { + z-index: 2; +} + +.lm-DockPanel-handle.lm-mod-hidden { + display: none !important; +} + +.lm-DockPanel-handle:after { + position: absolute; + top: 0; + left: 0; + width: 100%; + height: 100%; + content: ''; +} + +.lm-DockPanel-handle[data-orientation='horizontal'] { + cursor: ew-resize; +} + +.lm-DockPanel-handle[data-orientation='vertical'] { + cursor: ns-resize; +} + +.lm-DockPanel-handle[data-orientation='horizontal']:after { + left: 50%; + min-width: 8px; + transform: translateX(-50%); +} + +.lm-DockPanel-handle[data-orientation='vertical']:after { + top: 50%; + min-height: 8px; + transform: translateY(-50%); +} + +.lm-DockPanel-overlay { + z-index: 3; + box-sizing: border-box; + pointer-events: none; +} + +.lm-DockPanel-overlay.lm-mod-hidden { + display: none !important; +} + +/* + * Copyright (c) Jupyter Development Team. + * Distributed under the terms of the Modified BSD License. + */ + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Copyright (c) 2014-2017, PhosphorJS Contributors +| +| Distributed under the terms of the BSD 3-Clause License. +| +| The full license is in the file LICENSE, distributed with this software. +|----------------------------------------------------------------------------*/ + +.lm-Menu { + z-index: 10000; + position: absolute; + white-space: nowrap; + overflow-x: hidden; + overflow-y: auto; + outline: none; + -webkit-user-select: none; + -moz-user-select: none; + -ms-user-select: none; + user-select: none; +} + +.lm-Menu-content { + margin: 0; + padding: 0; + display: table; + list-style-type: none; +} + +.lm-Menu-item { + display: table-row; +} + +.lm-Menu-item.lm-mod-hidden, +.lm-Menu-item.lm-mod-collapsed { + display: none !important; +} + +.lm-Menu-itemIcon, +.lm-Menu-itemSubmenuIcon { + display: table-cell; + text-align: center; +} + +.lm-Menu-itemLabel { + display: table-cell; + text-align: left; +} + +.lm-Menu-itemShortcut { + display: table-cell; + text-align: right; +} + +/* + * Copyright (c) Jupyter Development Team. + * Distributed under the terms of the Modified BSD License. + */ + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Copyright (c) 2014-2017, PhosphorJS Contributors +| +| Distributed under the terms of the BSD 3-Clause License. +| +| The full license is in the file LICENSE, distributed with this software. +|----------------------------------------------------------------------------*/ + +.lm-MenuBar { + outline: none; + -webkit-user-select: none; + -moz-user-select: none; + -ms-user-select: none; + user-select: none; +} + +.lm-MenuBar-content { + margin: 0; + padding: 0; + display: flex; + flex-direction: row; + list-style-type: none; +} + +.lm-MenuBar-item { + box-sizing: border-box; +} + +.lm-MenuBar-itemIcon, +.lm-MenuBar-itemLabel { + display: inline-block; +} + +/* + * Copyright (c) Jupyter Development Team. + * Distributed under the terms of the Modified BSD License. + */ + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Copyright (c) 2014-2017, PhosphorJS Contributors +| +| Distributed under the terms of the BSD 3-Clause License. +| +| The full license is in the file LICENSE, distributed with this software. +|----------------------------------------------------------------------------*/ + +.lm-ScrollBar { + display: flex; + -webkit-user-select: none; + -moz-user-select: none; + -ms-user-select: none; + user-select: none; +} + +.lm-ScrollBar[data-orientation='horizontal'] { + flex-direction: row; +} + +.lm-ScrollBar[data-orientation='vertical'] { + flex-direction: column; +} + +.lm-ScrollBar-button { + box-sizing: border-box; + flex: 0 0 auto; +} + +.lm-ScrollBar-track { + box-sizing: border-box; + position: relative; + overflow: hidden; + flex: 1 1 auto; +} + +.lm-ScrollBar-thumb { + box-sizing: border-box; + position: absolute; +} + +/* + * Copyright (c) Jupyter Development Team. + * Distributed under the terms of the Modified BSD License. + */ + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Copyright (c) 2014-2017, PhosphorJS Contributors +| +| Distributed under the terms of the BSD 3-Clause License. +| +| The full license is in the file LICENSE, distributed with this software. +|----------------------------------------------------------------------------*/ + +.lm-SplitPanel-child { + z-index: 0; +} + +.lm-SplitPanel-handle { + z-index: 1; +} + +.lm-SplitPanel-handle.lm-mod-hidden { + display: none !important; +} + +.lm-SplitPanel-handle:after { + position: absolute; + top: 0; + left: 0; + width: 100%; + height: 100%; + content: ''; +} + +.lm-SplitPanel[data-orientation='horizontal'] > .lm-SplitPanel-handle { + cursor: ew-resize; +} + +.lm-SplitPanel[data-orientation='vertical'] > .lm-SplitPanel-handle { + cursor: ns-resize; +} + +.lm-SplitPanel[data-orientation='horizontal'] > .lm-SplitPanel-handle:after { + left: 50%; + min-width: 8px; + transform: translateX(-50%); +} + +.lm-SplitPanel[data-orientation='vertical'] > .lm-SplitPanel-handle:after { + top: 50%; + min-height: 8px; + transform: translateY(-50%); +} + +/* + * Copyright (c) Jupyter Development Team. + * Distributed under the terms of the Modified BSD License. + */ + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Copyright (c) 2014-2017, PhosphorJS Contributors +| +| Distributed under the terms of the BSD 3-Clause License. +| +| The full license is in the file LICENSE, distributed with this software. +|----------------------------------------------------------------------------*/ + +.lm-TabBar { + display: flex; + -webkit-user-select: none; + -moz-user-select: none; + -ms-user-select: none; + user-select: none; +} + +.lm-TabBar[data-orientation='horizontal'] { + flex-direction: row; + align-items: flex-end; +} + +.lm-TabBar[data-orientation='vertical'] { + flex-direction: column; + align-items: flex-end; +} + +.lm-TabBar-content { + margin: 0; + padding: 0; + display: flex; + flex: 1 1 auto; + list-style-type: none; +} + +.lm-TabBar[data-orientation='horizontal'] > .lm-TabBar-content { + flex-direction: row; +} + +.lm-TabBar[data-orientation='vertical'] > .lm-TabBar-content { + flex-direction: column; +} + +.lm-TabBar-tab { + display: flex; + flex-direction: row; + box-sizing: border-box; + overflow: hidden; + touch-action: none; /* Disable native Drag/Drop */ +} + +.lm-TabBar-tabIcon, +.lm-TabBar-tabCloseIcon { + flex: 0 0 auto; +} + +.lm-TabBar-tabLabel { + flex: 1 1 auto; + overflow: hidden; + white-space: nowrap; +} + +.lm-TabBar-tabInput { + user-select: all; + width: 100%; + box-sizing: border-box; +} + +.lm-TabBar-tab.lm-mod-hidden { + display: none !important; +} + +.lm-TabBar-addButton.lm-mod-hidden { + display: none !important; +} + +.lm-TabBar.lm-mod-dragging .lm-TabBar-tab { + position: relative; +} + +.lm-TabBar.lm-mod-dragging[data-orientation='horizontal'] .lm-TabBar-tab { + left: 0; + transition: left 150ms ease; +} + +.lm-TabBar.lm-mod-dragging[data-orientation='vertical'] .lm-TabBar-tab { + top: 0; + transition: top 150ms ease; +} + +.lm-TabBar.lm-mod-dragging .lm-TabBar-tab.lm-mod-dragging { + transition: none; +} + +.lm-TabBar-tabLabel .lm-TabBar-tabInput { + user-select: all; + width: 100%; + box-sizing: border-box; + background: inherit; +} + +/* + * Copyright (c) Jupyter Development Team. + * Distributed under the terms of the Modified BSD License. + */ + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Copyright (c) 2014-2017, PhosphorJS Contributors +| +| Distributed under the terms of the BSD 3-Clause License. +| +| The full license is in the file LICENSE, distributed with this software. +|----------------------------------------------------------------------------*/ + +.lm-TabPanel-tabBar { + z-index: 1; +} + +.lm-TabPanel-stackedPanel { + z-index: 0; +} + +/* + * Copyright (c) Jupyter Development Team. + * Distributed under the terms of the Modified BSD License. + */ + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Copyright (c) 2014-2017, PhosphorJS Contributors +| +| Distributed under the terms of the BSD 3-Clause License. +| +| The full license is in the file LICENSE, distributed with this software. +|----------------------------------------------------------------------------*/ + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +.jp-Collapse { + display: flex; + flex-direction: column; + align-items: stretch; +} + +.jp-Collapse-header { + padding: 1px 12px; + background-color: var(--jp-layout-color1); + border-bottom: solid var(--jp-border-width) var(--jp-border-color2); + color: var(--jp-ui-font-color1); + cursor: pointer; + display: flex; + align-items: center; + font-size: var(--jp-ui-font-size0); + font-weight: 600; + text-transform: uppercase; + user-select: none; +} + +.jp-Collapser-icon { + height: 16px; +} + +.jp-Collapse-header-collapsed .jp-Collapser-icon { + transform: rotate(-90deg); + margin: auto 0; +} + +.jp-Collapser-title { + line-height: 25px; +} + +.jp-Collapse-contents { + padding: 0 12px; + background-color: var(--jp-layout-color1); + color: var(--jp-ui-font-color1); + overflow: auto; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/* This file was auto-generated by ensureUiComponents() in @jupyterlab/buildutils */ + +/** + * (DEPRECATED) Support for consuming icons as CSS background images + */ + +/* Icons urls */ + +:root { + --jp-icon-add-above: url(); + --jp-icon-add-below: url(); + --jp-icon-add: url(); + --jp-icon-bell: url(); + --jp-icon-bug-dot: url(); + --jp-icon-bug: url(); + --jp-icon-build: url(); + --jp-icon-caret-down-empty-thin: url(); + --jp-icon-caret-down-empty: url(); + --jp-icon-caret-down: url(); + --jp-icon-caret-left: url(); + --jp-icon-caret-right: url(); + --jp-icon-caret-up-empty-thin: url(); + --jp-icon-caret-up: url(); + --jp-icon-case-sensitive: url(); + --jp-icon-check: url(); + --jp-icon-circle-empty: url(); + --jp-icon-circle: url(); + --jp-icon-clear: url(); + --jp-icon-close: url(); + --jp-icon-code-check: url(); + --jp-icon-code: url(); + --jp-icon-collapse-all: url(); + --jp-icon-console: url(); + --jp-icon-copy: url(); + --jp-icon-copyright: url(); + --jp-icon-cut: url(); + --jp-icon-delete: url(); + --jp-icon-download: url(); + --jp-icon-duplicate: url(); + --jp-icon-edit: url(); + --jp-icon-ellipses: url(); + --jp-icon-error: url(); + --jp-icon-expand-all: url(); + --jp-icon-extension: url(); + --jp-icon-fast-forward: url(); + --jp-icon-file-upload: url(); + --jp-icon-file: url(); + --jp-icon-filter-dot: url(); + --jp-icon-filter-list: url(); + --jp-icon-filter: url(); + --jp-icon-folder-favorite: url(); + --jp-icon-folder: url(); + --jp-icon-home: url(); + --jp-icon-html5: url(); + --jp-icon-image: url(); + --jp-icon-info: url(); + --jp-icon-inspector: url(); + --jp-icon-json: url(); + --jp-icon-julia: url(); + --jp-icon-jupyter-favicon: url(); + --jp-icon-jupyter: url(); + --jp-icon-jupyterlab-wordmark: url(); + --jp-icon-kernel: url(); + --jp-icon-keyboard: url(); + --jp-icon-launch: url(); + --jp-icon-launcher: url(); + --jp-icon-line-form: url(); + --jp-icon-link: url(); + --jp-icon-list: url(); + --jp-icon-markdown: url(); + --jp-icon-move-down: url(); + --jp-icon-move-up: url(); + --jp-icon-new-folder: url(); + --jp-icon-not-trusted: url(); + --jp-icon-notebook: url(); + --jp-icon-numbering: url(); + --jp-icon-offline-bolt: url(); + --jp-icon-palette: url(); + --jp-icon-paste: url(); + --jp-icon-pdf: url(); + --jp-icon-python: url(); + --jp-icon-r-kernel: url(); + --jp-icon-react: url(); + --jp-icon-redo: url(); + --jp-icon-refresh: url(); + --jp-icon-regex: url(); + --jp-icon-run: url(); + --jp-icon-running: url(); + --jp-icon-save: url(); + --jp-icon-search: url(); + --jp-icon-settings: url(); + --jp-icon-share: url(); + --jp-icon-spreadsheet: url(); + --jp-icon-stop: url(); + --jp-icon-tab: url(); + --jp-icon-table-rows: url(); + --jp-icon-tag: url(); + --jp-icon-terminal: url(); + --jp-icon-text-editor: url(); + --jp-icon-toc: url(); + --jp-icon-tree-view: url(); + --jp-icon-trusted: url(); + --jp-icon-undo: url(); + --jp-icon-user: url(); + --jp-icon-users: url(); + --jp-icon-vega: url(); + --jp-icon-word: url(); + --jp-icon-yaml: url(); +} + +/* Icon CSS class declarations */ + +.jp-AddAboveIcon { + background-image: var(--jp-icon-add-above); +} + +.jp-AddBelowIcon { + background-image: var(--jp-icon-add-below); +} + +.jp-AddIcon { + background-image: var(--jp-icon-add); +} + +.jp-BellIcon { + background-image: var(--jp-icon-bell); +} + +.jp-BugDotIcon { + background-image: var(--jp-icon-bug-dot); +} + +.jp-BugIcon { + background-image: var(--jp-icon-bug); +} + +.jp-BuildIcon { + background-image: var(--jp-icon-build); +} + +.jp-CaretDownEmptyIcon { + background-image: var(--jp-icon-caret-down-empty); +} + +.jp-CaretDownEmptyThinIcon { + background-image: var(--jp-icon-caret-down-empty-thin); +} + +.jp-CaretDownIcon { + background-image: var(--jp-icon-caret-down); +} + +.jp-CaretLeftIcon { + background-image: var(--jp-icon-caret-left); +} + +.jp-CaretRightIcon { + background-image: var(--jp-icon-caret-right); +} + +.jp-CaretUpEmptyThinIcon { + background-image: var(--jp-icon-caret-up-empty-thin); +} + +.jp-CaretUpIcon { + background-image: var(--jp-icon-caret-up); +} + +.jp-CaseSensitiveIcon { + background-image: var(--jp-icon-case-sensitive); +} + +.jp-CheckIcon { + background-image: var(--jp-icon-check); +} + +.jp-CircleEmptyIcon { + background-image: var(--jp-icon-circle-empty); +} + +.jp-CircleIcon { + background-image: var(--jp-icon-circle); +} + +.jp-ClearIcon { + background-image: var(--jp-icon-clear); +} + +.jp-CloseIcon { + background-image: var(--jp-icon-close); +} + +.jp-CodeCheckIcon { + background-image: var(--jp-icon-code-check); +} + +.jp-CodeIcon { + background-image: var(--jp-icon-code); +} + +.jp-CollapseAllIcon { + background-image: var(--jp-icon-collapse-all); +} + +.jp-ConsoleIcon { + background-image: var(--jp-icon-console); +} + +.jp-CopyIcon { + background-image: var(--jp-icon-copy); +} + +.jp-CopyrightIcon { + background-image: var(--jp-icon-copyright); +} + +.jp-CutIcon { + background-image: var(--jp-icon-cut); +} + +.jp-DeleteIcon { + background-image: var(--jp-icon-delete); +} + +.jp-DownloadIcon { + background-image: var(--jp-icon-download); +} + +.jp-DuplicateIcon { + background-image: var(--jp-icon-duplicate); +} + +.jp-EditIcon { + background-image: var(--jp-icon-edit); +} + +.jp-EllipsesIcon { + background-image: var(--jp-icon-ellipses); +} + +.jp-ErrorIcon { + background-image: var(--jp-icon-error); +} + +.jp-ExpandAllIcon { + background-image: var(--jp-icon-expand-all); +} + +.jp-ExtensionIcon { + background-image: var(--jp-icon-extension); +} + +.jp-FastForwardIcon { + background-image: var(--jp-icon-fast-forward); +} + +.jp-FileIcon { + background-image: var(--jp-icon-file); +} + +.jp-FileUploadIcon { + background-image: var(--jp-icon-file-upload); +} + +.jp-FilterDotIcon { + background-image: var(--jp-icon-filter-dot); +} + +.jp-FilterIcon { + background-image: var(--jp-icon-filter); +} + +.jp-FilterListIcon { + background-image: var(--jp-icon-filter-list); +} + +.jp-FolderFavoriteIcon { + background-image: var(--jp-icon-folder-favorite); +} + +.jp-FolderIcon { + background-image: var(--jp-icon-folder); +} + +.jp-HomeIcon { + background-image: var(--jp-icon-home); +} + +.jp-Html5Icon { + background-image: var(--jp-icon-html5); +} + +.jp-ImageIcon { + background-image: var(--jp-icon-image); +} + +.jp-InfoIcon { + background-image: var(--jp-icon-info); +} + +.jp-InspectorIcon { + background-image: var(--jp-icon-inspector); +} + +.jp-JsonIcon { + background-image: var(--jp-icon-json); +} + +.jp-JuliaIcon { + background-image: var(--jp-icon-julia); +} + +.jp-JupyterFaviconIcon { + background-image: var(--jp-icon-jupyter-favicon); +} + +.jp-JupyterIcon { + background-image: var(--jp-icon-jupyter); +} + +.jp-JupyterlabWordmarkIcon { + background-image: var(--jp-icon-jupyterlab-wordmark); +} + +.jp-KernelIcon { + background-image: var(--jp-icon-kernel); +} + +.jp-KeyboardIcon { + background-image: var(--jp-icon-keyboard); +} + +.jp-LaunchIcon { + background-image: var(--jp-icon-launch); +} + +.jp-LauncherIcon { + background-image: var(--jp-icon-launcher); +} + +.jp-LineFormIcon { + background-image: var(--jp-icon-line-form); +} + +.jp-LinkIcon { + background-image: var(--jp-icon-link); +} + +.jp-ListIcon { + background-image: var(--jp-icon-list); +} + +.jp-MarkdownIcon { + background-image: var(--jp-icon-markdown); +} + +.jp-MoveDownIcon { + background-image: var(--jp-icon-move-down); +} + +.jp-MoveUpIcon { + background-image: var(--jp-icon-move-up); +} + +.jp-NewFolderIcon { + background-image: var(--jp-icon-new-folder); +} + +.jp-NotTrustedIcon { + background-image: var(--jp-icon-not-trusted); +} + +.jp-NotebookIcon { + background-image: var(--jp-icon-notebook); +} + +.jp-NumberingIcon { + background-image: var(--jp-icon-numbering); +} + +.jp-OfflineBoltIcon { + background-image: var(--jp-icon-offline-bolt); +} + +.jp-PaletteIcon { + background-image: var(--jp-icon-palette); +} + +.jp-PasteIcon { + background-image: var(--jp-icon-paste); +} + +.jp-PdfIcon { + background-image: var(--jp-icon-pdf); +} + +.jp-PythonIcon { + background-image: var(--jp-icon-python); +} + +.jp-RKernelIcon { + background-image: var(--jp-icon-r-kernel); +} + +.jp-ReactIcon { + background-image: var(--jp-icon-react); +} + +.jp-RedoIcon { + background-image: var(--jp-icon-redo); +} + +.jp-RefreshIcon { + background-image: var(--jp-icon-refresh); +} + +.jp-RegexIcon { + background-image: var(--jp-icon-regex); +} + +.jp-RunIcon { + background-image: var(--jp-icon-run); +} + +.jp-RunningIcon { + background-image: var(--jp-icon-running); +} + +.jp-SaveIcon { + background-image: var(--jp-icon-save); +} + +.jp-SearchIcon { + background-image: var(--jp-icon-search); +} + +.jp-SettingsIcon { + background-image: var(--jp-icon-settings); +} + +.jp-ShareIcon { + background-image: var(--jp-icon-share); +} + +.jp-SpreadsheetIcon { + background-image: var(--jp-icon-spreadsheet); +} + +.jp-StopIcon { + background-image: var(--jp-icon-stop); +} + +.jp-TabIcon { + background-image: var(--jp-icon-tab); +} + +.jp-TableRowsIcon { + background-image: var(--jp-icon-table-rows); +} + +.jp-TagIcon { + background-image: var(--jp-icon-tag); +} + +.jp-TerminalIcon { + background-image: var(--jp-icon-terminal); +} + +.jp-TextEditorIcon { + background-image: var(--jp-icon-text-editor); +} + +.jp-TocIcon { + background-image: var(--jp-icon-toc); +} + +.jp-TreeViewIcon { + background-image: var(--jp-icon-tree-view); +} + +.jp-TrustedIcon { + background-image: var(--jp-icon-trusted); +} + +.jp-UndoIcon { + background-image: var(--jp-icon-undo); +} + +.jp-UserIcon { + background-image: var(--jp-icon-user); +} + +.jp-UsersIcon { + background-image: var(--jp-icon-users); +} + +.jp-VegaIcon { + background-image: var(--jp-icon-vega); +} + +.jp-WordIcon { + background-image: var(--jp-icon-word); +} + +.jp-YamlIcon { + background-image: var(--jp-icon-yaml); +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/** + * (DEPRECATED) Support for consuming icons as CSS background images + */ + +.jp-Icon, +.jp-MaterialIcon { + background-position: center; + background-repeat: no-repeat; + background-size: 16px; + min-width: 16px; + min-height: 16px; +} + +.jp-Icon-cover { + background-position: center; + background-repeat: no-repeat; + background-size: cover; +} + +/** + * (DEPRECATED) Support for specific CSS icon sizes + */ + +.jp-Icon-16 { + background-size: 16px; + min-width: 16px; + min-height: 16px; +} + +.jp-Icon-18 { + background-size: 18px; + min-width: 18px; + min-height: 18px; +} + +.jp-Icon-20 { + background-size: 20px; + min-width: 20px; + min-height: 20px; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +.lm-TabBar .lm-TabBar-addButton { + align-items: center; + display: flex; + padding: 4px; + padding-bottom: 5px; + margin-right: 1px; + background-color: var(--jp-layout-color2); +} + +.lm-TabBar .lm-TabBar-addButton:hover { + background-color: var(--jp-layout-color1); +} + +.lm-DockPanel-tabBar .lm-TabBar-tab { + width: var(--jp-private-horizontal-tab-width); +} + +.lm-DockPanel-tabBar .lm-TabBar-content { + flex: unset; +} + +.lm-DockPanel-tabBar[data-orientation='horizontal'] { + flex: 1 1 auto; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/** + * Support for icons as inline SVG HTMLElements + */ + +/* recolor the primary elements of an icon */ +.jp-icon0[fill] { + fill: var(--jp-inverse-layout-color0); +} + +.jp-icon1[fill] { + fill: var(--jp-inverse-layout-color1); +} + +.jp-icon2[fill] { + fill: var(--jp-inverse-layout-color2); +} + +.jp-icon3[fill] { + fill: var(--jp-inverse-layout-color3); +} + +.jp-icon4[fill] { + fill: var(--jp-inverse-layout-color4); +} + +.jp-icon0[stroke] { + stroke: var(--jp-inverse-layout-color0); +} + +.jp-icon1[stroke] { + stroke: var(--jp-inverse-layout-color1); +} + +.jp-icon2[stroke] { + stroke: var(--jp-inverse-layout-color2); +} + +.jp-icon3[stroke] { + stroke: var(--jp-inverse-layout-color3); +} + +.jp-icon4[stroke] { + stroke: var(--jp-inverse-layout-color4); +} + +/* recolor the accent elements of an icon */ +.jp-icon-accent0[fill] { + fill: var(--jp-layout-color0); +} + +.jp-icon-accent1[fill] { + fill: var(--jp-layout-color1); +} + +.jp-icon-accent2[fill] { + fill: var(--jp-layout-color2); +} + +.jp-icon-accent3[fill] { + fill: var(--jp-layout-color3); +} + +.jp-icon-accent4[fill] { + fill: var(--jp-layout-color4); +} + +.jp-icon-accent0[stroke] { + stroke: var(--jp-layout-color0); +} + +.jp-icon-accent1[stroke] { + stroke: var(--jp-layout-color1); +} + +.jp-icon-accent2[stroke] { + stroke: var(--jp-layout-color2); +} + +.jp-icon-accent3[stroke] { + stroke: var(--jp-layout-color3); +} + +.jp-icon-accent4[stroke] { + stroke: var(--jp-layout-color4); +} + +/* set the color of an icon to transparent */ +.jp-icon-none[fill] { + fill: none; +} + +.jp-icon-none[stroke] { + stroke: none; +} + +/* brand icon colors. Same for light and dark */ +.jp-icon-brand0[fill] { + fill: var(--jp-brand-color0); +} + +.jp-icon-brand1[fill] { + fill: var(--jp-brand-color1); +} + +.jp-icon-brand2[fill] { + fill: var(--jp-brand-color2); +} + +.jp-icon-brand3[fill] { + fill: var(--jp-brand-color3); +} + +.jp-icon-brand4[fill] { + fill: var(--jp-brand-color4); +} + +.jp-icon-brand0[stroke] { + stroke: var(--jp-brand-color0); +} + +.jp-icon-brand1[stroke] { + stroke: var(--jp-brand-color1); +} + +.jp-icon-brand2[stroke] { + stroke: var(--jp-brand-color2); +} + +.jp-icon-brand3[stroke] { + stroke: var(--jp-brand-color3); +} + +.jp-icon-brand4[stroke] { + stroke: var(--jp-brand-color4); +} + +/* warn icon colors. Same for light and dark */ +.jp-icon-warn0[fill] { + fill: var(--jp-warn-color0); +} + +.jp-icon-warn1[fill] { + fill: var(--jp-warn-color1); +} + +.jp-icon-warn2[fill] { + fill: var(--jp-warn-color2); +} + +.jp-icon-warn3[fill] { + fill: var(--jp-warn-color3); +} + +.jp-icon-warn0[stroke] { + stroke: var(--jp-warn-color0); +} + +.jp-icon-warn1[stroke] { + stroke: var(--jp-warn-color1); +} + +.jp-icon-warn2[stroke] { + stroke: var(--jp-warn-color2); +} + +.jp-icon-warn3[stroke] { + stroke: var(--jp-warn-color3); +} + +/* icon colors that contrast well with each other and most backgrounds */ +.jp-icon-contrast0[fill] { + fill: var(--jp-icon-contrast-color0); +} + +.jp-icon-contrast1[fill] { + fill: var(--jp-icon-contrast-color1); +} + +.jp-icon-contrast2[fill] { + fill: var(--jp-icon-contrast-color2); +} + +.jp-icon-contrast3[fill] { + fill: var(--jp-icon-contrast-color3); +} + +.jp-icon-contrast0[stroke] { + stroke: var(--jp-icon-contrast-color0); +} + +.jp-icon-contrast1[stroke] { + stroke: var(--jp-icon-contrast-color1); +} + +.jp-icon-contrast2[stroke] { + stroke: var(--jp-icon-contrast-color2); +} + +.jp-icon-contrast3[stroke] { + stroke: var(--jp-icon-contrast-color3); +} + +.jp-icon-dot[fill] { + fill: var(--jp-warn-color0); +} + +.jp-jupyter-icon-color[fill] { + fill: var(--jp-jupyter-icon-color, var(--jp-warn-color0)); +} + +.jp-notebook-icon-color[fill] { + fill: var(--jp-notebook-icon-color, var(--jp-warn-color0)); +} + +.jp-json-icon-color[fill] { + fill: var(--jp-json-icon-color, var(--jp-warn-color1)); +} + +.jp-console-icon-color[fill] { + fill: var(--jp-console-icon-color, white); +} + +.jp-console-icon-background-color[fill] { + fill: var(--jp-console-icon-background-color, var(--jp-brand-color1)); +} + +.jp-terminal-icon-color[fill] { + fill: var(--jp-terminal-icon-color, var(--jp-layout-color2)); +} + +.jp-terminal-icon-background-color[fill] { + fill: var( + --jp-terminal-icon-background-color, + var(--jp-inverse-layout-color2) + ); +} + +.jp-text-editor-icon-color[fill] { + fill: var(--jp-text-editor-icon-color, var(--jp-inverse-layout-color3)); +} + +.jp-inspector-icon-color[fill] { + fill: var(--jp-inspector-icon-color, var(--jp-inverse-layout-color3)); +} + +/* CSS for icons in selected filebrowser listing items */ +.jp-DirListing-item.jp-mod-selected .jp-icon-selectable[fill] { + fill: #fff; +} + +.jp-DirListing-item.jp-mod-selected .jp-icon-selectable-inverse[fill] { + fill: var(--jp-brand-color1); +} + +/* stylelint-disable selector-max-class, selector-max-compound-selectors */ + +/** +* TODO: come up with non css-hack solution for showing the busy icon on top +* of the close icon +* CSS for complex behavior of close icon of tabs in the main area tabbar +*/ +.lm-DockPanel-tabBar + .lm-TabBar-tab.lm-mod-closable.jp-mod-dirty + > .lm-TabBar-tabCloseIcon + > :not(:hover) + > .jp-icon3[fill] { + fill: none; +} + +.lm-DockPanel-tabBar + .lm-TabBar-tab.lm-mod-closable.jp-mod-dirty + > .lm-TabBar-tabCloseIcon + > :not(:hover) + > .jp-icon-busy[fill] { + fill: var(--jp-inverse-layout-color3); +} + +/* stylelint-enable selector-max-class, selector-max-compound-selectors */ + +/* CSS for icons in status bar */ +#jp-main-statusbar .jp-mod-selected .jp-icon-selectable[fill] { + fill: #fff; +} + +#jp-main-statusbar .jp-mod-selected .jp-icon-selectable-inverse[fill] { + fill: var(--jp-brand-color1); +} + +/* special handling for splash icon CSS. While the theme CSS reloads during + splash, the splash icon can loose theming. To prevent that, we set a + default for its color variable */ +:root { + --jp-warn-color0: var(--md-orange-700); +} + +/* not sure what to do with this one, used in filebrowser listing */ +.jp-DragIcon { + margin-right: 4px; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/** + * Support for alt colors for icons as inline SVG HTMLElements + */ + +/* alt recolor the primary elements of an icon */ +.jp-icon-alt .jp-icon0[fill] { + fill: var(--jp-layout-color0); +} + +.jp-icon-alt .jp-icon1[fill] { + fill: var(--jp-layout-color1); +} + +.jp-icon-alt .jp-icon2[fill] { + fill: var(--jp-layout-color2); +} + +.jp-icon-alt .jp-icon3[fill] { + fill: var(--jp-layout-color3); +} + +.jp-icon-alt .jp-icon4[fill] { + fill: var(--jp-layout-color4); +} + +.jp-icon-alt .jp-icon0[stroke] { + stroke: var(--jp-layout-color0); +} + +.jp-icon-alt .jp-icon1[stroke] { + stroke: var(--jp-layout-color1); +} + +.jp-icon-alt .jp-icon2[stroke] { + stroke: var(--jp-layout-color2); +} + +.jp-icon-alt .jp-icon3[stroke] { + stroke: var(--jp-layout-color3); +} + +.jp-icon-alt .jp-icon4[stroke] { + stroke: var(--jp-layout-color4); +} + +/* alt recolor the accent elements of an icon */ +.jp-icon-alt .jp-icon-accent0[fill] { + fill: var(--jp-inverse-layout-color0); +} + +.jp-icon-alt .jp-icon-accent1[fill] { + fill: var(--jp-inverse-layout-color1); +} + +.jp-icon-alt .jp-icon-accent2[fill] { + fill: var(--jp-inverse-layout-color2); +} + +.jp-icon-alt .jp-icon-accent3[fill] { + fill: var(--jp-inverse-layout-color3); +} + +.jp-icon-alt .jp-icon-accent4[fill] { + fill: var(--jp-inverse-layout-color4); +} + +.jp-icon-alt .jp-icon-accent0[stroke] { + stroke: var(--jp-inverse-layout-color0); +} + +.jp-icon-alt .jp-icon-accent1[stroke] { + stroke: var(--jp-inverse-layout-color1); +} + +.jp-icon-alt .jp-icon-accent2[stroke] { + stroke: var(--jp-inverse-layout-color2); +} + +.jp-icon-alt .jp-icon-accent3[stroke] { + stroke: var(--jp-inverse-layout-color3); +} + +.jp-icon-alt .jp-icon-accent4[stroke] { + stroke: var(--jp-inverse-layout-color4); +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +.jp-icon-hoverShow:not(:hover) .jp-icon-hoverShow-content { + display: none !important; +} + +/** + * Support for hover colors for icons as inline SVG HTMLElements + */ + +/** + * regular colors + */ + +/* recolor the primary elements of an icon */ +.jp-icon-hover :hover .jp-icon0-hover[fill] { + fill: var(--jp-inverse-layout-color0); +} + +.jp-icon-hover :hover .jp-icon1-hover[fill] { + fill: var(--jp-inverse-layout-color1); +} + +.jp-icon-hover :hover .jp-icon2-hover[fill] { + fill: var(--jp-inverse-layout-color2); +} + +.jp-icon-hover :hover .jp-icon3-hover[fill] { + fill: var(--jp-inverse-layout-color3); +} + +.jp-icon-hover :hover .jp-icon4-hover[fill] { + fill: var(--jp-inverse-layout-color4); +} + +.jp-icon-hover :hover .jp-icon0-hover[stroke] { + stroke: var(--jp-inverse-layout-color0); +} + +.jp-icon-hover :hover .jp-icon1-hover[stroke] { + stroke: var(--jp-inverse-layout-color1); +} + +.jp-icon-hover :hover .jp-icon2-hover[stroke] { + stroke: var(--jp-inverse-layout-color2); +} + +.jp-icon-hover :hover .jp-icon3-hover[stroke] { + stroke: var(--jp-inverse-layout-color3); +} + +.jp-icon-hover :hover .jp-icon4-hover[stroke] { + stroke: var(--jp-inverse-layout-color4); +} + +/* recolor the accent elements of an icon */ +.jp-icon-hover :hover .jp-icon-accent0-hover[fill] { + fill: var(--jp-layout-color0); +} + +.jp-icon-hover :hover .jp-icon-accent1-hover[fill] { + fill: var(--jp-layout-color1); +} + +.jp-icon-hover :hover .jp-icon-accent2-hover[fill] { + fill: var(--jp-layout-color2); +} + +.jp-icon-hover :hover .jp-icon-accent3-hover[fill] { + fill: var(--jp-layout-color3); +} + +.jp-icon-hover :hover .jp-icon-accent4-hover[fill] { + fill: var(--jp-layout-color4); +} + +.jp-icon-hover :hover .jp-icon-accent0-hover[stroke] { + stroke: var(--jp-layout-color0); +} + +.jp-icon-hover :hover .jp-icon-accent1-hover[stroke] { + stroke: var(--jp-layout-color1); +} + +.jp-icon-hover :hover .jp-icon-accent2-hover[stroke] { + stroke: var(--jp-layout-color2); +} + +.jp-icon-hover :hover .jp-icon-accent3-hover[stroke] { + stroke: var(--jp-layout-color3); +} + +.jp-icon-hover :hover .jp-icon-accent4-hover[stroke] { + stroke: var(--jp-layout-color4); +} + +/* set the color of an icon to transparent */ +.jp-icon-hover :hover .jp-icon-none-hover[fill] { + fill: none; +} + +.jp-icon-hover :hover .jp-icon-none-hover[stroke] { + stroke: none; +} + +/** + * inverse colors + */ + +/* inverse recolor the primary elements of an icon */ +.jp-icon-hover.jp-icon-alt :hover .jp-icon0-hover[fill] { + fill: var(--jp-layout-color0); +} + +.jp-icon-hover.jp-icon-alt :hover .jp-icon1-hover[fill] { + fill: var(--jp-layout-color1); +} + +.jp-icon-hover.jp-icon-alt :hover .jp-icon2-hover[fill] { + fill: var(--jp-layout-color2); +} + +.jp-icon-hover.jp-icon-alt :hover .jp-icon3-hover[fill] { + fill: var(--jp-layout-color3); +} + +.jp-icon-hover.jp-icon-alt :hover .jp-icon4-hover[fill] { + fill: var(--jp-layout-color4); +} + +.jp-icon-hover.jp-icon-alt :hover .jp-icon0-hover[stroke] { + stroke: var(--jp-layout-color0); +} + +.jp-icon-hover.jp-icon-alt :hover .jp-icon1-hover[stroke] { + stroke: var(--jp-layout-color1); +} + +.jp-icon-hover.jp-icon-alt :hover .jp-icon2-hover[stroke] { + stroke: var(--jp-layout-color2); +} + +.jp-icon-hover.jp-icon-alt :hover .jp-icon3-hover[stroke] { + stroke: var(--jp-layout-color3); +} + +.jp-icon-hover.jp-icon-alt :hover .jp-icon4-hover[stroke] { + stroke: var(--jp-layout-color4); +} + +/* inverse recolor the accent elements of an icon */ +.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent0-hover[fill] { + fill: var(--jp-inverse-layout-color0); +} + +.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent1-hover[fill] { + fill: var(--jp-inverse-layout-color1); +} + +.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent2-hover[fill] { + fill: var(--jp-inverse-layout-color2); +} + +.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent3-hover[fill] { + fill: var(--jp-inverse-layout-color3); +} + +.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent4-hover[fill] { + fill: var(--jp-inverse-layout-color4); +} + +.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent0-hover[stroke] { + stroke: var(--jp-inverse-layout-color0); +} + +.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent1-hover[stroke] { + stroke: var(--jp-inverse-layout-color1); +} + +.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent2-hover[stroke] { + stroke: var(--jp-inverse-layout-color2); +} + +.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent3-hover[stroke] { + stroke: var(--jp-inverse-layout-color3); +} + +.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent4-hover[stroke] { + stroke: var(--jp-inverse-layout-color4); +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +.jp-IFrame { + width: 100%; + height: 100%; +} + +.jp-IFrame > iframe { + border: none; +} + +/* +When drag events occur, `lm-mod-override-cursor` is added to the body. +Because iframes steal all cursor events, the following two rules are necessary +to suppress pointer events while resize drags are occurring. There may be a +better solution to this problem. +*/ +body.lm-mod-override-cursor .jp-IFrame { + position: relative; +} + +body.lm-mod-override-cursor .jp-IFrame::before { + content: ''; + position: absolute; + top: 0; + left: 0; + right: 0; + bottom: 0; + background: transparent; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) 2014-2016, Jupyter Development Team. +| +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +.jp-HoverBox { + position: fixed; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +.jp-FormGroup-content fieldset { + border: none; + padding: 0; + min-width: 0; + width: 100%; +} + +/* stylelint-disable selector-max-type */ + +.jp-FormGroup-content fieldset .jp-inputFieldWrapper input, +.jp-FormGroup-content fieldset .jp-inputFieldWrapper select, +.jp-FormGroup-content fieldset .jp-inputFieldWrapper textarea { + font-size: var(--jp-content-font-size2); + border-color: var(--jp-input-border-color); + border-style: solid; + border-radius: var(--jp-border-radius); + border-width: 1px; + padding: 6px 8px; + background: none; + color: var(--jp-ui-font-color0); + height: inherit; +} + +.jp-FormGroup-content fieldset input[type='checkbox'] { + position: relative; + top: 2px; + margin-left: 0; +} + +.jp-FormGroup-content button.jp-mod-styled { + cursor: pointer; +} + +.jp-FormGroup-content .checkbox label { + cursor: pointer; + font-size: var(--jp-content-font-size1); +} + +.jp-FormGroup-content .jp-root > fieldset > legend { + display: none; +} + +.jp-FormGroup-content .jp-root > fieldset > p { + display: none; +} + +/** copy of `input.jp-mod-styled:focus` style */ +.jp-FormGroup-content fieldset input:focus, +.jp-FormGroup-content fieldset select:focus { + -moz-outline-radius: unset; + outline: var(--jp-border-width) solid var(--md-blue-500); + outline-offset: -1px; + box-shadow: inset 0 0 4px var(--md-blue-300); +} + +.jp-FormGroup-content fieldset input:hover:not(:focus), +.jp-FormGroup-content fieldset select:hover:not(:focus) { + background-color: var(--jp-border-color2); +} + +/* stylelint-enable selector-max-type */ + +.jp-FormGroup-content .checkbox .field-description { + /* Disable default description field for checkbox: + because other widgets do not have description fields, + we add descriptions to each widget on the field level. + */ + display: none; +} + +.jp-FormGroup-content #root__description { + display: none; +} + +.jp-FormGroup-content .jp-modifiedIndicator { + width: 5px; + background-color: var(--jp-brand-color2); + margin-top: 0; + margin-left: calc(var(--jp-private-settingeditor-modifier-indent) * -1); + flex-shrink: 0; +} + +.jp-FormGroup-content .jp-modifiedIndicator.jp-errorIndicator { + background-color: var(--jp-error-color0); + margin-right: 0.5em; +} + +/* RJSF ARRAY style */ + +.jp-arrayFieldWrapper legend { + font-size: var(--jp-content-font-size2); + color: var(--jp-ui-font-color0); + flex-basis: 100%; + padding: 4px 0; + font-weight: var(--jp-content-heading-font-weight); + border-bottom: 1px solid var(--jp-border-color2); +} + +.jp-arrayFieldWrapper .field-description { + padding: 4px 0; + white-space: pre-wrap; +} + +.jp-arrayFieldWrapper .array-item { + width: 100%; + border: 1px solid var(--jp-border-color2); + border-radius: 4px; + margin: 4px; +} + +.jp-ArrayOperations { + display: flex; + margin-left: 8px; +} + +.jp-ArrayOperationsButton { + margin: 2px; +} + +.jp-ArrayOperationsButton .jp-icon3[fill] { + fill: var(--jp-ui-font-color0); +} + +button.jp-ArrayOperationsButton.jp-mod-styled:disabled { + cursor: not-allowed; + opacity: 0.5; +} + +/* RJSF form validation error */ + +.jp-FormGroup-content .validationErrors { + color: var(--jp-error-color0); +} + +/* Hide panel level error as duplicated the field level error */ +.jp-FormGroup-content .panel.errors { + display: none; +} + +/* RJSF normal content (settings-editor) */ + +.jp-FormGroup-contentNormal { + display: flex; + align-items: center; + flex-wrap: wrap; +} + +.jp-FormGroup-contentNormal .jp-FormGroup-contentItem { + margin-left: 7px; + color: var(--jp-ui-font-color0); +} + +.jp-FormGroup-contentNormal .jp-FormGroup-description { + flex-basis: 100%; + padding: 4px 7px; +} + +.jp-FormGroup-contentNormal .jp-FormGroup-default { + flex-basis: 100%; + padding: 4px 7px; +} + +.jp-FormGroup-contentNormal .jp-FormGroup-fieldLabel { + font-size: var(--jp-content-font-size1); + font-weight: normal; + min-width: 120px; +} + +.jp-FormGroup-contentNormal fieldset:not(:first-child) { + margin-left: 7px; +} + +.jp-FormGroup-contentNormal .field-array-of-string .array-item { + /* Display `jp-ArrayOperations` buttons side-by-side with content except + for small screens where flex-wrap will place them one below the other. + */ + display: flex; + align-items: center; + flex-wrap: wrap; +} + +.jp-FormGroup-contentNormal .jp-objectFieldWrapper .form-group { + padding: 2px 8px 2px var(--jp-private-settingeditor-modifier-indent); + margin-top: 2px; +} + +/* RJSF compact content (metadata-form) */ + +.jp-FormGroup-content.jp-FormGroup-contentCompact { + width: 100%; +} + +.jp-FormGroup-contentCompact .form-group { + display: flex; + padding: 0.5em 0.2em 0.5em 0; +} + +.jp-FormGroup-contentCompact + .jp-FormGroup-compactTitle + .jp-FormGroup-description { + font-size: var(--jp-ui-font-size1); + color: var(--jp-ui-font-color2); +} + +.jp-FormGroup-contentCompact .jp-FormGroup-fieldLabel { + padding-bottom: 0.3em; +} + +.jp-FormGroup-contentCompact .jp-inputFieldWrapper .form-control { + width: 100%; + box-sizing: border-box; +} + +.jp-FormGroup-contentCompact .jp-arrayFieldWrapper .jp-FormGroup-compactTitle { + padding-bottom: 7px; +} + +.jp-FormGroup-contentCompact + .jp-objectFieldWrapper + .jp-objectFieldWrapper + .form-group { + padding: 2px 8px 2px var(--jp-private-settingeditor-modifier-indent); + margin-top: 2px; +} + +.jp-FormGroup-contentCompact ul.error-detail { + margin-block-start: 0.5em; + margin-block-end: 0.5em; + padding-inline-start: 1em; +} + +/* + * Copyright (c) Jupyter Development Team. + * Distributed under the terms of the Modified BSD License. + */ + +.jp-SidePanel { + display: flex; + flex-direction: column; + min-width: var(--jp-sidebar-min-width); + overflow-y: auto; + color: var(--jp-ui-font-color1); + background: var(--jp-layout-color1); + font-size: var(--jp-ui-font-size1); +} + +.jp-SidePanel-header { + flex: 0 0 auto; + display: flex; + border-bottom: var(--jp-border-width) solid var(--jp-border-color2); + font-size: var(--jp-ui-font-size0); + font-weight: 600; + letter-spacing: 1px; + margin: 0; + padding: 2px; + text-transform: uppercase; +} + +.jp-SidePanel-toolbar { + flex: 0 0 auto; +} + +.jp-SidePanel-content { + flex: 1 1 auto; +} + +.jp-SidePanel-toolbar, +.jp-AccordionPanel-toolbar { + height: var(--jp-private-toolbar-height); +} + +.jp-SidePanel-toolbar.jp-Toolbar-micro { + display: none; +} + +.lm-AccordionPanel .jp-AccordionPanel-title { + box-sizing: border-box; + line-height: 25px; + margin: 0; + display: flex; + align-items: center; + background: var(--jp-layout-color1); + color: var(--jp-ui-font-color1); + border-bottom: var(--jp-border-width) solid var(--jp-toolbar-border-color); + box-shadow: var(--jp-toolbar-box-shadow); + font-size: var(--jp-ui-font-size0); +} + +.jp-AccordionPanel-title { + cursor: pointer; + user-select: none; + -moz-user-select: none; + -webkit-user-select: none; + text-transform: uppercase; +} + +.lm-AccordionPanel[data-orientation='horizontal'] > .jp-AccordionPanel-title { + /* Title is rotated for horizontal accordion panel using CSS */ + display: block; + transform-origin: top left; + transform: rotate(-90deg) translate(-100%); +} + +.jp-AccordionPanel-title .lm-AccordionPanel-titleLabel { + user-select: none; + text-overflow: ellipsis; + white-space: nowrap; + overflow: hidden; +} + +.jp-AccordionPanel-title .lm-AccordionPanel-titleCollapser { + transform: rotate(-90deg); + margin: auto 0; + height: 16px; +} + +.jp-AccordionPanel-title.lm-mod-expanded .lm-AccordionPanel-titleCollapser { + transform: rotate(0deg); +} + +.lm-AccordionPanel .jp-AccordionPanel-toolbar { + background: none; + box-shadow: none; + border: none; + margin-left: auto; +} + +.lm-AccordionPanel .lm-SplitPanel-handle:hover { + background: var(--jp-layout-color3); +} + +.jp-text-truncated { + overflow: hidden; + text-overflow: ellipsis; + white-space: nowrap; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) 2017, Jupyter Development Team. +| +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +.jp-Spinner { + position: absolute; + display: flex; + justify-content: center; + align-items: center; + z-index: 10; + left: 0; + top: 0; + width: 100%; + height: 100%; + background: var(--jp-layout-color0); + outline: none; +} + +.jp-SpinnerContent { + font-size: 10px; + margin: 50px auto; + text-indent: -9999em; + width: 3em; + height: 3em; + border-radius: 50%; + background: var(--jp-brand-color3); + background: linear-gradient( + to right, + #f37626 10%, + rgba(255, 255, 255, 0) 42% + ); + position: relative; + animation: load3 1s infinite linear, fadeIn 1s; +} + +.jp-SpinnerContent::before { + width: 50%; + height: 50%; + background: #f37626; + border-radius: 100% 0 0; + position: absolute; + top: 0; + left: 0; + content: ''; +} + +.jp-SpinnerContent::after { + background: var(--jp-layout-color0); + width: 75%; + height: 75%; + border-radius: 50%; + content: ''; + margin: auto; + position: absolute; + top: 0; + left: 0; + bottom: 0; + right: 0; +} + +@keyframes fadeIn { + 0% { + opacity: 0; + } + + 100% { + opacity: 1; + } +} + +@keyframes load3 { + 0% { + transform: rotate(0deg); + } + + 100% { + transform: rotate(360deg); + } +} + +/*----------------------------------------------------------------------------- +| Copyright (c) 2014-2017, Jupyter Development Team. +| +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +button.jp-mod-styled { + font-size: var(--jp-ui-font-size1); + color: var(--jp-ui-font-color0); + border: none; + box-sizing: border-box; + text-align: center; + line-height: 32px; + height: 32px; + padding: 0 12px; + letter-spacing: 0.8px; + outline: none; + appearance: none; + -webkit-appearance: none; + -moz-appearance: none; +} + +input.jp-mod-styled { + background: var(--jp-input-background); + height: 28px; + box-sizing: border-box; + border: var(--jp-border-width) solid var(--jp-border-color1); + padding-left: 7px; + padding-right: 7px; + font-size: var(--jp-ui-font-size2); + color: var(--jp-ui-font-color0); + outline: none; + appearance: none; + -webkit-appearance: none; + -moz-appearance: none; +} + +input[type='checkbox'].jp-mod-styled { + appearance: checkbox; + -webkit-appearance: checkbox; + -moz-appearance: checkbox; + height: auto; +} + +input.jp-mod-styled:focus { + border: var(--jp-border-width) solid var(--md-blue-500); + box-shadow: inset 0 0 4px var(--md-blue-300); +} + +.jp-select-wrapper { + display: flex; + position: relative; + flex-direction: column; + padding: 1px; + background-color: var(--jp-layout-color1); + box-sizing: border-box; + margin-bottom: 12px; +} + +.jp-select-wrapper:not(.multiple) { + height: 28px; +} + +.jp-select-wrapper.jp-mod-focused select.jp-mod-styled { + border: var(--jp-border-width) solid var(--jp-input-active-border-color); + box-shadow: var(--jp-input-box-shadow); + background-color: var(--jp-input-active-background); +} + +select.jp-mod-styled:hover { + cursor: pointer; + color: var(--jp-ui-font-color0); + background-color: var(--jp-input-hover-background); + box-shadow: inset 0 0 1px rgba(0, 0, 0, 0.5); +} + +select.jp-mod-styled { + flex: 1 1 auto; + width: 100%; + font-size: var(--jp-ui-font-size2); + background: var(--jp-input-background); + color: var(--jp-ui-font-color0); + padding: 0 25px 0 8px; + border: var(--jp-border-width) solid var(--jp-input-border-color); + border-radius: 0; + outline: none; + appearance: none; + -webkit-appearance: none; + -moz-appearance: none; +} + +select.jp-mod-styled:not([multiple]) { + height: 32px; +} + +select.jp-mod-styled[multiple] { + max-height: 200px; + overflow-y: auto; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +.jp-switch { + display: flex; + align-items: center; + padding-left: 4px; + padding-right: 4px; + font-size: var(--jp-ui-font-size1); + background-color: transparent; + color: var(--jp-ui-font-color1); + border: none; + height: 20px; +} + +.jp-switch:hover { + background-color: var(--jp-layout-color2); +} + +.jp-switch-label { + margin-right: 5px; + font-family: var(--jp-ui-font-family); +} + +.jp-switch-track { + cursor: pointer; + background-color: var(--jp-switch-color, var(--jp-border-color1)); + -webkit-transition: 0.4s; + transition: 0.4s; + border-radius: 34px; + height: 16px; + width: 35px; + position: relative; +} + +.jp-switch-track::before { + content: ''; + position: absolute; + height: 10px; + width: 10px; + margin: 3px; + left: 0; + background-color: var(--jp-ui-inverse-font-color1); + -webkit-transition: 0.4s; + transition: 0.4s; + border-radius: 50%; +} + +.jp-switch[aria-checked='true'] .jp-switch-track { + background-color: var(--jp-switch-true-position-color, var(--jp-warn-color0)); +} + +.jp-switch[aria-checked='true'] .jp-switch-track::before { + /* track width (35) - margins (3 + 3) - thumb width (10) */ + left: 19px; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) 2014-2016, Jupyter Development Team. +| +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +:root { + --jp-private-toolbar-height: calc( + 28px + var(--jp-border-width) + ); /* leave 28px for content */ +} + +.jp-Toolbar { + color: var(--jp-ui-font-color1); + flex: 0 0 auto; + display: flex; + flex-direction: row; + border-bottom: var(--jp-border-width) solid var(--jp-toolbar-border-color); + box-shadow: var(--jp-toolbar-box-shadow); + background: var(--jp-toolbar-background); + min-height: var(--jp-toolbar-micro-height); + padding: 2px; + z-index: 8; + overflow-x: hidden; +} + +/* Toolbar items */ + +.jp-Toolbar > .jp-Toolbar-item.jp-Toolbar-spacer { + flex-grow: 1; + flex-shrink: 1; +} + +.jp-Toolbar-item.jp-Toolbar-kernelStatus { + display: inline-block; + width: 32px; + background-repeat: no-repeat; + background-position: center; + background-size: 16px; +} + +.jp-Toolbar > .jp-Toolbar-item { + flex: 0 0 auto; + display: flex; + padding-left: 1px; + padding-right: 1px; + font-size: var(--jp-ui-font-size1); + line-height: var(--jp-private-toolbar-height); + height: 100%; +} + +/* Toolbar buttons */ + +/* This is the div we use to wrap the react component into a Widget */ +div.jp-ToolbarButton { + color: transparent; + border: none; + box-sizing: border-box; + outline: none; + appearance: none; + -webkit-appearance: none; + -moz-appearance: none; + padding: 0; + margin: 0; +} + +button.jp-ToolbarButtonComponent { + background: var(--jp-layout-color1); + border: none; + box-sizing: border-box; + outline: none; + appearance: none; + -webkit-appearance: none; + -moz-appearance: none; + padding: 0 6px; + margin: 0; + height: 24px; + border-radius: var(--jp-border-radius); + display: flex; + align-items: center; + text-align: center; + font-size: 14px; + min-width: unset; + min-height: unset; +} + +button.jp-ToolbarButtonComponent:disabled { + opacity: 0.4; +} + +button.jp-ToolbarButtonComponent > span { + padding: 0; + flex: 0 0 auto; +} + +button.jp-ToolbarButtonComponent .jp-ToolbarButtonComponent-label { + font-size: var(--jp-ui-font-size1); + line-height: 100%; + padding-left: 2px; + color: var(--jp-ui-font-color1); + font-family: var(--jp-ui-font-family); +} + +#jp-main-dock-panel[data-mode='single-document'] + .jp-MainAreaWidget + > .jp-Toolbar.jp-Toolbar-micro { + padding: 0; + min-height: 0; +} + +#jp-main-dock-panel[data-mode='single-document'] + .jp-MainAreaWidget + > .jp-Toolbar { + border: none; + box-shadow: none; +} + +/* + * Copyright (c) Jupyter Development Team. + * Distributed under the terms of the Modified BSD License. + */ + +.jp-WindowedPanel-outer { + position: relative; + overflow-y: auto; +} + +.jp-WindowedPanel-inner { + position: relative; +} + +.jp-WindowedPanel-window { + position: absolute; + left: 0; + right: 0; + overflow: visible; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/* Sibling imports */ + +body { + color: var(--jp-ui-font-color1); + font-size: var(--jp-ui-font-size1); +} + +/* Disable native link decoration styles everywhere outside of dialog boxes */ +a { + text-decoration: unset; + color: unset; +} + +a:hover { + text-decoration: unset; + color: unset; +} + +/* Accessibility for links inside dialog box text */ +.jp-Dialog-content a { + text-decoration: revert; + color: var(--jp-content-link-color); +} + +.jp-Dialog-content a:hover { + text-decoration: revert; +} + +/* Styles for ui-components */ +.jp-Button { + color: var(--jp-ui-font-color2); + border-radius: var(--jp-border-radius); + padding: 0 12px; + font-size: var(--jp-ui-font-size1); + + /* Copy from blueprint 3 */ + display: inline-flex; + flex-direction: row; + border: none; + cursor: pointer; + align-items: center; + justify-content: center; + text-align: left; + vertical-align: middle; + min-height: 30px; + min-width: 30px; +} + +.jp-Button:disabled { + cursor: not-allowed; +} + +.jp-Button:empty { + padding: 0 !important; +} + +.jp-Button.jp-mod-small { + min-height: 24px; + min-width: 24px; + font-size: 12px; + padding: 0 7px; +} + +/* Use our own theme for hover styles */ +.jp-Button.jp-mod-minimal:hover { + background-color: var(--jp-layout-color2); +} + +.jp-Button.jp-mod-minimal { + background: none; +} + +.jp-InputGroup { + display: block; + position: relative; +} + +.jp-InputGroup input { + box-sizing: border-box; + border: none; + border-radius: 0; + background-color: transparent; + color: var(--jp-ui-font-color0); + box-shadow: inset 0 0 0 var(--jp-border-width) var(--jp-input-border-color); + padding-bottom: 0; + padding-top: 0; + padding-left: 10px; + padding-right: 28px; + position: relative; + width: 100%; + -webkit-appearance: none; + -moz-appearance: none; + appearance: none; + font-size: 14px; + font-weight: 400; + height: 30px; + line-height: 30px; + outline: none; + vertical-align: middle; +} + +.jp-InputGroup input:focus { + box-shadow: inset 0 0 0 var(--jp-border-width) + var(--jp-input-active-box-shadow-color), + inset 0 0 0 3px var(--jp-input-active-box-shadow-color); +} + +.jp-InputGroup input:disabled { + cursor: not-allowed; + resize: block; + background-color: var(--jp-layout-color2); + color: var(--jp-ui-font-color2); +} + +.jp-InputGroup input:disabled ~ span { + cursor: not-allowed; + color: var(--jp-ui-font-color2); +} + +.jp-InputGroup input::placeholder, +input::placeholder { + color: var(--jp-ui-font-color2); +} + +.jp-InputGroupAction { + position: absolute; + bottom: 1px; + right: 0; + padding: 6px; +} + +.jp-HTMLSelect.jp-DefaultStyle select { + background-color: initial; + border: none; + border-radius: 0; + box-shadow: none; + color: var(--jp-ui-font-color0); + display: block; + font-size: var(--jp-ui-font-size1); + font-family: var(--jp-ui-font-family); + height: 24px; + line-height: 14px; + padding: 0 25px 0 10px; + text-align: left; + -moz-appearance: none; + -webkit-appearance: none; +} + +.jp-HTMLSelect.jp-DefaultStyle select:disabled { + background-color: var(--jp-layout-color2); + color: var(--jp-ui-font-color2); + cursor: not-allowed; + resize: block; +} + +.jp-HTMLSelect.jp-DefaultStyle select:disabled ~ span { + cursor: not-allowed; +} + +/* Use our own theme for hover and option styles */ +/* stylelint-disable-next-line selector-max-type */ +.jp-HTMLSelect.jp-DefaultStyle select:hover, +.jp-HTMLSelect.jp-DefaultStyle select > option { + background-color: var(--jp-layout-color2); + color: var(--jp-ui-font-color0); +} + +select { + box-sizing: border-box; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/*----------------------------------------------------------------------------- +| Styles +|----------------------------------------------------------------------------*/ + +.jp-StatusBar-Widget { + display: flex; + align-items: center; + background: var(--jp-layout-color2); + min-height: var(--jp-statusbar-height); + justify-content: space-between; + padding: 0 10px; +} + +.jp-StatusBar-Left { + display: flex; + align-items: center; + flex-direction: row; +} + +.jp-StatusBar-Middle { + display: flex; + align-items: center; +} + +.jp-StatusBar-Right { + display: flex; + align-items: center; + flex-direction: row-reverse; +} + +.jp-StatusBar-Item { + max-height: var(--jp-statusbar-height); + margin: 0 2px; + height: var(--jp-statusbar-height); + white-space: nowrap; + text-overflow: ellipsis; + color: var(--jp-ui-font-color1); + padding: 0 6px; +} + +.jp-mod-highlighted:hover { + background-color: var(--jp-layout-color3); +} + +.jp-mod-clicked { + background-color: var(--jp-brand-color1); +} + +.jp-mod-clicked:hover { + background-color: var(--jp-brand-color0); +} + +.jp-mod-clicked .jp-StatusBar-TextItem { + color: var(--jp-ui-inverse-font-color1); +} + +.jp-StatusBar-HoverItem { + box-shadow: '0px 4px 4px rgba(0, 0, 0, 0.25)'; +} + +.jp-StatusBar-TextItem { + font-size: var(--jp-ui-font-size1); + font-family: var(--jp-ui-font-family); + line-height: 24px; + color: var(--jp-ui-font-color1); +} + +.jp-StatusBar-GroupItem { + display: flex; + align-items: center; + flex-direction: row; +} + +.jp-Statusbar-ProgressCircle svg { + display: block; + margin: 0 auto; + width: 16px; + height: 24px; + align-self: normal; +} + +.jp-Statusbar-ProgressCircle path { + fill: var(--jp-inverse-layout-color3); +} + +.jp-Statusbar-ProgressBar-progress-bar { + height: 10px; + width: 100px; + border: solid 0.25px var(--jp-brand-color2); + border-radius: 3px; + overflow: hidden; + align-self: center; +} + +.jp-Statusbar-ProgressBar-progress-bar > div { + background-color: var(--jp-brand-color2); + background-image: linear-gradient( + -45deg, + rgba(255, 255, 255, 0.2) 25%, + transparent 25%, + transparent 50%, + rgba(255, 255, 255, 0.2) 50%, + rgba(255, 255, 255, 0.2) 75%, + transparent 75%, + transparent + ); + background-size: 40px 40px; + float: left; + width: 0%; + height: 100%; + font-size: 12px; + line-height: 14px; + color: #fff; + text-align: center; + animation: jp-Statusbar-ExecutionTime-progress-bar 2s linear infinite; +} + +.jp-Statusbar-ProgressBar-progress-bar p { + color: var(--jp-ui-font-color1); + font-family: var(--jp-ui-font-family); + font-size: var(--jp-ui-font-size1); + line-height: 10px; + width: 100px; +} + +@keyframes jp-Statusbar-ExecutionTime-progress-bar { + 0% { + background-position: 0 0; + } + + 100% { + background-position: 40px 40px; + } +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/*----------------------------------------------------------------------------- +| Variables +|----------------------------------------------------------------------------*/ + +:root { + --jp-private-commandpalette-search-height: 28px; +} + +/*----------------------------------------------------------------------------- +| Overall styles +|----------------------------------------------------------------------------*/ + +.lm-CommandPalette { + padding-bottom: 0; + color: var(--jp-ui-font-color1); + background: var(--jp-layout-color1); + + /* This is needed so that all font sizing of children done in ems is + * relative to this base size */ + font-size: var(--jp-ui-font-size1); +} + +/*----------------------------------------------------------------------------- +| Modal variant +|----------------------------------------------------------------------------*/ + +.jp-ModalCommandPalette { + position: absolute; + z-index: 10000; + top: 38px; + left: 30%; + margin: 0; + padding: 4px; + width: 40%; + box-shadow: var(--jp-elevation-z4); + border-radius: 4px; + background: var(--jp-layout-color0); +} + +.jp-ModalCommandPalette .lm-CommandPalette { + max-height: 40vh; +} + +.jp-ModalCommandPalette .lm-CommandPalette .lm-close-icon::after { + display: none; +} + +.jp-ModalCommandPalette .lm-CommandPalette .lm-CommandPalette-header { + display: none; +} + +.jp-ModalCommandPalette .lm-CommandPalette .lm-CommandPalette-item { + margin-left: 4px; + margin-right: 4px; +} + +.jp-ModalCommandPalette + .lm-CommandPalette + .lm-CommandPalette-item.lm-mod-disabled { + display: none; +} + +/*----------------------------------------------------------------------------- +| Search +|----------------------------------------------------------------------------*/ + +.lm-CommandPalette-search { + padding: 4px; + background-color: var(--jp-layout-color1); + z-index: 2; +} + +.lm-CommandPalette-wrapper { + overflow: overlay; + padding: 0 9px; + background-color: var(--jp-input-active-background); + height: 30px; + box-shadow: inset 0 0 0 var(--jp-border-width) var(--jp-input-border-color); +} + +.lm-CommandPalette.lm-mod-focused .lm-CommandPalette-wrapper { + box-shadow: inset 0 0 0 1px var(--jp-input-active-box-shadow-color), + inset 0 0 0 3px var(--jp-input-active-box-shadow-color); +} + +.jp-SearchIconGroup { + color: white; + background-color: var(--jp-brand-color1); + position: absolute; + top: 4px; + right: 4px; + padding: 5px 5px 1px; +} + +.jp-SearchIconGroup svg { + height: 20px; + width: 20px; +} + +.jp-SearchIconGroup .jp-icon3[fill] { + fill: var(--jp-layout-color0); +} + +.lm-CommandPalette-input { + background: transparent; + width: calc(100% - 18px); + float: left; + border: none; + outline: none; + font-size: var(--jp-ui-font-size1); + color: var(--jp-ui-font-color0); + line-height: var(--jp-private-commandpalette-search-height); +} + +.lm-CommandPalette-input::-webkit-input-placeholder, +.lm-CommandPalette-input::-moz-placeholder, +.lm-CommandPalette-input:-ms-input-placeholder { + color: var(--jp-ui-font-color2); + font-size: var(--jp-ui-font-size1); +} + +/*----------------------------------------------------------------------------- +| Results +|----------------------------------------------------------------------------*/ + +.lm-CommandPalette-header:first-child { + margin-top: 0; +} + +.lm-CommandPalette-header { + border-bottom: solid var(--jp-border-width) var(--jp-border-color2); + color: var(--jp-ui-font-color1); + cursor: pointer; + display: flex; + font-size: var(--jp-ui-font-size0); + font-weight: 600; + letter-spacing: 1px; + margin-top: 8px; + padding: 8px 0 8px 12px; + text-transform: uppercase; +} + +.lm-CommandPalette-header.lm-mod-active { + background: var(--jp-layout-color2); +} + +.lm-CommandPalette-header > mark { + background-color: transparent; + font-weight: bold; + color: var(--jp-ui-font-color1); +} + +.lm-CommandPalette-item { + padding: 4px 12px 4px 4px; + color: var(--jp-ui-font-color1); + font-size: var(--jp-ui-font-size1); + font-weight: 400; + display: flex; +} + +.lm-CommandPalette-item.lm-mod-disabled { + color: var(--jp-ui-font-color2); +} + +.lm-CommandPalette-item.lm-mod-active { + color: var(--jp-ui-inverse-font-color1); + background: var(--jp-brand-color1); +} + +.lm-CommandPalette-item.lm-mod-active .lm-CommandPalette-itemLabel > mark { + color: var(--jp-ui-inverse-font-color0); +} + +.lm-CommandPalette-item.lm-mod-active .jp-icon-selectable[fill] { + fill: var(--jp-layout-color0); +} + +.lm-CommandPalette-item.lm-mod-active:hover:not(.lm-mod-disabled) { + color: var(--jp-ui-inverse-font-color1); + background: var(--jp-brand-color1); +} + +.lm-CommandPalette-item:hover:not(.lm-mod-active):not(.lm-mod-disabled) { + background: var(--jp-layout-color2); +} + +.lm-CommandPalette-itemContent { + overflow: hidden; +} + +.lm-CommandPalette-itemLabel > mark { + color: var(--jp-ui-font-color0); + background-color: transparent; + font-weight: bold; +} + +.lm-CommandPalette-item.lm-mod-disabled mark { + color: var(--jp-ui-font-color2); +} + +.lm-CommandPalette-item .lm-CommandPalette-itemIcon { + margin: 0 4px 0 0; + position: relative; + width: 16px; + top: 2px; + flex: 0 0 auto; +} + +.lm-CommandPalette-item.lm-mod-disabled .lm-CommandPalette-itemIcon { + opacity: 0.6; +} + +.lm-CommandPalette-item .lm-CommandPalette-itemShortcut { + flex: 0 0 auto; +} + +.lm-CommandPalette-itemCaption { + display: none; +} + +.lm-CommandPalette-content { + background-color: var(--jp-layout-color1); +} + +.lm-CommandPalette-content:empty::after { + content: 'No results'; + margin: auto; + margin-top: 20px; + width: 100px; + display: block; + font-size: var(--jp-ui-font-size2); + font-family: var(--jp-ui-font-family); + font-weight: lighter; +} + +.lm-CommandPalette-emptyMessage { + text-align: center; + margin-top: 24px; + line-height: 1.32; + padding: 0 8px; + color: var(--jp-content-font-color3); +} + +/*----------------------------------------------------------------------------- +| Copyright (c) 2014-2017, Jupyter Development Team. +| +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +.jp-Dialog { + position: absolute; + z-index: 10000; + display: flex; + flex-direction: column; + align-items: center; + justify-content: center; + top: 0; + left: 0; + margin: 0; + padding: 0; + width: 100%; + height: 100%; + background: var(--jp-dialog-background); +} + +.jp-Dialog-content { + display: flex; + flex-direction: column; + margin-left: auto; + margin-right: auto; + background: var(--jp-layout-color1); + padding: 24px 24px 12px; + min-width: 300px; + min-height: 150px; + max-width: 1000px; + max-height: 500px; + box-sizing: border-box; + box-shadow: var(--jp-elevation-z20); + word-wrap: break-word; + border-radius: var(--jp-border-radius); + + /* This is needed so that all font sizing of children done in ems is + * relative to this base size */ + font-size: var(--jp-ui-font-size1); + color: var(--jp-ui-font-color1); + resize: both; +} + +.jp-Dialog-content.jp-Dialog-content-small { + max-width: 500px; +} + +.jp-Dialog-button { + overflow: visible; +} + +button.jp-Dialog-button:focus { + outline: 1px solid var(--jp-brand-color1); + outline-offset: 4px; + -moz-outline-radius: 0; +} + +button.jp-Dialog-button:focus::-moz-focus-inner { + border: 0; +} + +button.jp-Dialog-button.jp-mod-styled.jp-mod-accept:focus, +button.jp-Dialog-button.jp-mod-styled.jp-mod-warn:focus, +button.jp-Dialog-button.jp-mod-styled.jp-mod-reject:focus { + outline-offset: 4px; + -moz-outline-radius: 0; +} + +button.jp-Dialog-button.jp-mod-styled.jp-mod-accept:focus { + outline: 1px solid var(--jp-accept-color-normal, var(--jp-brand-color1)); +} + +button.jp-Dialog-button.jp-mod-styled.jp-mod-warn:focus { + outline: 1px solid var(--jp-warn-color-normal, var(--jp-error-color1)); +} + +button.jp-Dialog-button.jp-mod-styled.jp-mod-reject:focus { + outline: 1px solid var(--jp-reject-color-normal, var(--md-grey-600)); +} + +button.jp-Dialog-close-button { + padding: 0; + height: 100%; + min-width: unset; + min-height: unset; +} + +.jp-Dialog-header { + display: flex; + justify-content: space-between; + flex: 0 0 auto; + padding-bottom: 12px; + font-size: var(--jp-ui-font-size3); + font-weight: 400; + color: var(--jp-ui-font-color1); +} + +.jp-Dialog-body { + display: flex; + flex-direction: column; + flex: 1 1 auto; + font-size: var(--jp-ui-font-size1); + background: var(--jp-layout-color1); + color: var(--jp-ui-font-color1); + overflow: auto; +} + +.jp-Dialog-footer { + display: flex; + flex-direction: row; + justify-content: flex-end; + align-items: center; + flex: 0 0 auto; + margin-left: -12px; + margin-right: -12px; + padding: 12px; +} + +.jp-Dialog-checkbox { + padding-right: 5px; +} + +.jp-Dialog-checkbox > input:focus-visible { + outline: 1px solid var(--jp-input-active-border-color); + outline-offset: 1px; +} + +.jp-Dialog-spacer { + flex: 1 1 auto; +} + +.jp-Dialog-title { + overflow: hidden; + white-space: nowrap; + text-overflow: ellipsis; +} + +.jp-Dialog-body > .jp-select-wrapper { + width: 100%; +} + +.jp-Dialog-body > button { + padding: 0 16px; +} + +.jp-Dialog-body > label { + line-height: 1.4; + color: var(--jp-ui-font-color0); +} + +.jp-Dialog-button.jp-mod-styled:not(:last-child) { + margin-right: 12px; +} + +/* + * Copyright (c) Jupyter Development Team. + * Distributed under the terms of the Modified BSD License. + */ + +.jp-Input-Boolean-Dialog { + flex-direction: row-reverse; + align-items: end; + width: 100%; +} + +.jp-Input-Boolean-Dialog > label { + flex: 1 1 auto; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) 2014-2016, Jupyter Development Team. +| +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +.jp-MainAreaWidget > :focus { + outline: none; +} + +.jp-MainAreaWidget .jp-MainAreaWidget-error { + padding: 6px; +} + +.jp-MainAreaWidget .jp-MainAreaWidget-error > pre { + width: auto; + padding: 10px; + background: var(--jp-error-color3); + border: var(--jp-border-width) solid var(--jp-error-color1); + border-radius: var(--jp-border-radius); + color: var(--jp-ui-font-color1); + font-size: var(--jp-ui-font-size1); + white-space: pre-wrap; + word-wrap: break-word; +} + +/* + * Copyright (c) Jupyter Development Team. + * Distributed under the terms of the Modified BSD License. + */ + +/** + * google-material-color v1.2.6 + * https://github.com/danlevan/google-material-color + */ +:root { + --md-red-50: #ffebee; + --md-red-100: #ffcdd2; + --md-red-200: #ef9a9a; + --md-red-300: #e57373; + --md-red-400: #ef5350; + --md-red-500: #f44336; + --md-red-600: #e53935; + --md-red-700: #d32f2f; + --md-red-800: #c62828; + --md-red-900: #b71c1c; + --md-red-A100: #ff8a80; + --md-red-A200: #ff5252; + --md-red-A400: #ff1744; + --md-red-A700: #d50000; + --md-pink-50: #fce4ec; + --md-pink-100: #f8bbd0; + --md-pink-200: #f48fb1; + --md-pink-300: #f06292; + --md-pink-400: #ec407a; + --md-pink-500: #e91e63; + --md-pink-600: #d81b60; + --md-pink-700: #c2185b; + --md-pink-800: #ad1457; + --md-pink-900: #880e4f; + --md-pink-A100: #ff80ab; + --md-pink-A200: #ff4081; + --md-pink-A400: #f50057; + --md-pink-A700: #c51162; + --md-purple-50: #f3e5f5; + --md-purple-100: #e1bee7; + --md-purple-200: #ce93d8; + --md-purple-300: #ba68c8; + --md-purple-400: #ab47bc; + --md-purple-500: #9c27b0; + --md-purple-600: #8e24aa; + --md-purple-700: #7b1fa2; + --md-purple-800: #6a1b9a; + --md-purple-900: #4a148c; + --md-purple-A100: #ea80fc; + --md-purple-A200: #e040fb; + --md-purple-A400: #d500f9; + --md-purple-A700: #a0f; + --md-deep-purple-50: #ede7f6; + --md-deep-purple-100: #d1c4e9; + --md-deep-purple-200: #b39ddb; + --md-deep-purple-300: #9575cd; + --md-deep-purple-400: #7e57c2; + --md-deep-purple-500: #673ab7; + --md-deep-purple-600: #5e35b1; + --md-deep-purple-700: #512da8; + --md-deep-purple-800: #4527a0; + --md-deep-purple-900: #311b92; + --md-deep-purple-A100: #b388ff; + --md-deep-purple-A200: #7c4dff; + --md-deep-purple-A400: #651fff; + --md-deep-purple-A700: #6200ea; + --md-indigo-50: #e8eaf6; + --md-indigo-100: #c5cae9; + --md-indigo-200: #9fa8da; + --md-indigo-300: #7986cb; + --md-indigo-400: #5c6bc0; + --md-indigo-500: #3f51b5; + --md-indigo-600: #3949ab; + --md-indigo-700: #303f9f; + --md-indigo-800: #283593; + --md-indigo-900: #1a237e; + --md-indigo-A100: #8c9eff; + --md-indigo-A200: #536dfe; + --md-indigo-A400: #3d5afe; + --md-indigo-A700: #304ffe; + --md-blue-50: #e3f2fd; + --md-blue-100: #bbdefb; + --md-blue-200: #90caf9; + --md-blue-300: #64b5f6; + --md-blue-400: #42a5f5; + --md-blue-500: #2196f3; + --md-blue-600: #1e88e5; + --md-blue-700: #1976d2; + --md-blue-800: #1565c0; + --md-blue-900: #0d47a1; + --md-blue-A100: #82b1ff; + --md-blue-A200: #448aff; + --md-blue-A400: #2979ff; + --md-blue-A700: #2962ff; + --md-light-blue-50: #e1f5fe; + --md-light-blue-100: #b3e5fc; + --md-light-blue-200: #81d4fa; + --md-light-blue-300: #4fc3f7; + --md-light-blue-400: #29b6f6; + --md-light-blue-500: #03a9f4; + --md-light-blue-600: #039be5; + --md-light-blue-700: #0288d1; + --md-light-blue-800: #0277bd; + --md-light-blue-900: #01579b; + --md-light-blue-A100: #80d8ff; + --md-light-blue-A200: #40c4ff; + --md-light-blue-A400: #00b0ff; + --md-light-blue-A700: #0091ea; + --md-cyan-50: #e0f7fa; + --md-cyan-100: #b2ebf2; + --md-cyan-200: #80deea; + --md-cyan-300: #4dd0e1; + --md-cyan-400: #26c6da; + --md-cyan-500: #00bcd4; + --md-cyan-600: #00acc1; + --md-cyan-700: #0097a7; + --md-cyan-800: #00838f; + --md-cyan-900: #006064; + --md-cyan-A100: #84ffff; + --md-cyan-A200: #18ffff; + --md-cyan-A400: #00e5ff; + --md-cyan-A700: #00b8d4; + --md-teal-50: #e0f2f1; + --md-teal-100: #b2dfdb; + --md-teal-200: #80cbc4; + --md-teal-300: #4db6ac; + --md-teal-400: #26a69a; + --md-teal-500: #009688; + --md-teal-600: #00897b; + --md-teal-700: #00796b; + --md-teal-800: #00695c; + --md-teal-900: #004d40; + --md-teal-A100: #a7ffeb; + --md-teal-A200: #64ffda; + --md-teal-A400: #1de9b6; + --md-teal-A700: #00bfa5; + --md-green-50: #e8f5e9; + --md-green-100: #c8e6c9; + --md-green-200: #a5d6a7; + --md-green-300: #81c784; + --md-green-400: #66bb6a; + --md-green-500: #4caf50; + --md-green-600: #43a047; + --md-green-700: #388e3c; + --md-green-800: #2e7d32; + --md-green-900: #1b5e20; + --md-green-A100: #b9f6ca; + --md-green-A200: #69f0ae; + --md-green-A400: #00e676; + --md-green-A700: #00c853; + --md-light-green-50: #f1f8e9; + --md-light-green-100: #dcedc8; + --md-light-green-200: #c5e1a5; + --md-light-green-300: #aed581; + --md-light-green-400: #9ccc65; + --md-light-green-500: #8bc34a; + --md-light-green-600: #7cb342; + --md-light-green-700: #689f38; + --md-light-green-800: #558b2f; + --md-light-green-900: #33691e; + --md-light-green-A100: #ccff90; + --md-light-green-A200: #b2ff59; + --md-light-green-A400: #76ff03; + --md-light-green-A700: #64dd17; + --md-lime-50: #f9fbe7; + --md-lime-100: #f0f4c3; + --md-lime-200: #e6ee9c; + --md-lime-300: #dce775; + --md-lime-400: #d4e157; + --md-lime-500: #cddc39; + --md-lime-600: #c0ca33; + --md-lime-700: #afb42b; + --md-lime-800: #9e9d24; + --md-lime-900: #827717; + --md-lime-A100: #f4ff81; + --md-lime-A200: #eeff41; + --md-lime-A400: #c6ff00; + --md-lime-A700: #aeea00; + --md-yellow-50: #fffde7; + --md-yellow-100: #fff9c4; + --md-yellow-200: #fff59d; + --md-yellow-300: #fff176; + --md-yellow-400: #ffee58; + --md-yellow-500: #ffeb3b; + --md-yellow-600: #fdd835; + --md-yellow-700: #fbc02d; + --md-yellow-800: #f9a825; + --md-yellow-900: #f57f17; + --md-yellow-A100: #ffff8d; + --md-yellow-A200: #ff0; + --md-yellow-A400: #ffea00; + --md-yellow-A700: #ffd600; + --md-amber-50: #fff8e1; + --md-amber-100: #ffecb3; + --md-amber-200: #ffe082; + --md-amber-300: #ffd54f; + --md-amber-400: #ffca28; + --md-amber-500: #ffc107; + --md-amber-600: #ffb300; + --md-amber-700: #ffa000; + --md-amber-800: #ff8f00; + --md-amber-900: #ff6f00; + --md-amber-A100: #ffe57f; + --md-amber-A200: #ffd740; + --md-amber-A400: #ffc400; + --md-amber-A700: #ffab00; + --md-orange-50: #fff3e0; + --md-orange-100: #ffe0b2; + --md-orange-200: #ffcc80; + --md-orange-300: #ffb74d; + --md-orange-400: #ffa726; + --md-orange-500: #ff9800; + --md-orange-600: #fb8c00; + --md-orange-700: #f57c00; + --md-orange-800: #ef6c00; + --md-orange-900: #e65100; + --md-orange-A100: #ffd180; + --md-orange-A200: #ffab40; + --md-orange-A400: #ff9100; + --md-orange-A700: #ff6d00; + --md-deep-orange-50: #fbe9e7; + --md-deep-orange-100: #ffccbc; + --md-deep-orange-200: #ffab91; + --md-deep-orange-300: #ff8a65; + --md-deep-orange-400: #ff7043; + --md-deep-orange-500: #ff5722; + --md-deep-orange-600: #f4511e; + --md-deep-orange-700: #e64a19; + --md-deep-orange-800: #d84315; + --md-deep-orange-900: #bf360c; + --md-deep-orange-A100: #ff9e80; + --md-deep-orange-A200: #ff6e40; + --md-deep-orange-A400: #ff3d00; + --md-deep-orange-A700: #dd2c00; + --md-brown-50: #efebe9; + --md-brown-100: #d7ccc8; + --md-brown-200: #bcaaa4; + --md-brown-300: #a1887f; + --md-brown-400: #8d6e63; + --md-brown-500: #795548; + --md-brown-600: #6d4c41; + --md-brown-700: #5d4037; + --md-brown-800: #4e342e; + --md-brown-900: #3e2723; + --md-grey-50: #fafafa; + --md-grey-100: #f5f5f5; + --md-grey-200: #eee; + --md-grey-300: #e0e0e0; + --md-grey-400: #bdbdbd; + --md-grey-500: #9e9e9e; + --md-grey-600: #757575; + --md-grey-700: #616161; + --md-grey-800: #424242; + --md-grey-900: #212121; + --md-blue-grey-50: #eceff1; + --md-blue-grey-100: #cfd8dc; + --md-blue-grey-200: #b0bec5; + --md-blue-grey-300: #90a4ae; + --md-blue-grey-400: #78909c; + --md-blue-grey-500: #607d8b; + --md-blue-grey-600: #546e7a; + --md-blue-grey-700: #455a64; + --md-blue-grey-800: #37474f; + --md-blue-grey-900: #263238; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) 2014-2017, Jupyter Development Team. +| +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/*----------------------------------------------------------------------------- +| RenderedText +|----------------------------------------------------------------------------*/ + +:root { + /* This is the padding value to fill the gaps between lines containing spans with background color. */ + --jp-private-code-span-padding: calc( + (var(--jp-code-line-height) - 1) * var(--jp-code-font-size) / 2 + ); +} + +.jp-RenderedText { + text-align: left; + padding-left: var(--jp-code-padding); + line-height: var(--jp-code-line-height); + font-family: var(--jp-code-font-family); +} + +.jp-RenderedText pre, +.jp-RenderedJavaScript pre, +.jp-RenderedHTMLCommon pre { + color: var(--jp-content-font-color1); + font-size: var(--jp-code-font-size); + border: none; + margin: 0; + padding: 0; +} + +.jp-RenderedText pre a:link { + text-decoration: none; + color: var(--jp-content-link-color); +} + +.jp-RenderedText pre a:hover { + text-decoration: underline; + color: var(--jp-content-link-color); +} + +.jp-RenderedText pre a:visited { + text-decoration: none; + color: var(--jp-content-link-color); +} + +/* console foregrounds and backgrounds */ +.jp-RenderedText pre .ansi-black-fg { + color: #3e424d; +} + +.jp-RenderedText pre .ansi-red-fg { + color: #e75c58; +} + +.jp-RenderedText pre .ansi-green-fg { + color: #00a250; +} + +.jp-RenderedText pre .ansi-yellow-fg { + color: #ddb62b; +} + +.jp-RenderedText pre .ansi-blue-fg { + color: #208ffb; +} + +.jp-RenderedText pre .ansi-magenta-fg { + color: #d160c4; +} + +.jp-RenderedText pre .ansi-cyan-fg { + color: #60c6c8; +} + +.jp-RenderedText pre .ansi-white-fg { + color: #c5c1b4; +} + +.jp-RenderedText pre .ansi-black-bg { + background-color: #3e424d; + padding: var(--jp-private-code-span-padding) 0; +} + +.jp-RenderedText pre .ansi-red-bg { + background-color: #e75c58; + padding: var(--jp-private-code-span-padding) 0; +} + +.jp-RenderedText pre .ansi-green-bg { + background-color: #00a250; + padding: var(--jp-private-code-span-padding) 0; +} + +.jp-RenderedText pre .ansi-yellow-bg { + background-color: #ddb62b; + padding: var(--jp-private-code-span-padding) 0; +} + +.jp-RenderedText pre .ansi-blue-bg { + background-color: #208ffb; + padding: var(--jp-private-code-span-padding) 0; +} + +.jp-RenderedText pre .ansi-magenta-bg { + background-color: #d160c4; + padding: var(--jp-private-code-span-padding) 0; +} + +.jp-RenderedText pre .ansi-cyan-bg { + background-color: #60c6c8; + padding: var(--jp-private-code-span-padding) 0; +} + +.jp-RenderedText pre .ansi-white-bg { + background-color: #c5c1b4; + padding: var(--jp-private-code-span-padding) 0; +} + +.jp-RenderedText pre .ansi-black-intense-fg { + color: #282c36; +} + +.jp-RenderedText pre .ansi-red-intense-fg { + color: #b22b31; +} + +.jp-RenderedText pre .ansi-green-intense-fg { + color: #007427; +} + +.jp-RenderedText pre .ansi-yellow-intense-fg { + color: #b27d12; +} + +.jp-RenderedText pre .ansi-blue-intense-fg { + color: #0065ca; +} + +.jp-RenderedText pre .ansi-magenta-intense-fg { + color: #a03196; +} + +.jp-RenderedText pre .ansi-cyan-intense-fg { + color: #258f8f; +} + +.jp-RenderedText pre .ansi-white-intense-fg { + color: #a1a6b2; +} + +.jp-RenderedText pre .ansi-black-intense-bg { + background-color: #282c36; + padding: var(--jp-private-code-span-padding) 0; +} + +.jp-RenderedText pre .ansi-red-intense-bg { + background-color: #b22b31; + padding: var(--jp-private-code-span-padding) 0; +} + +.jp-RenderedText pre .ansi-green-intense-bg { + background-color: #007427; + padding: var(--jp-private-code-span-padding) 0; +} + +.jp-RenderedText pre .ansi-yellow-intense-bg { + background-color: #b27d12; + padding: var(--jp-private-code-span-padding) 0; +} + +.jp-RenderedText pre .ansi-blue-intense-bg { + background-color: #0065ca; + padding: var(--jp-private-code-span-padding) 0; +} + +.jp-RenderedText pre .ansi-magenta-intense-bg { + background-color: #a03196; + padding: var(--jp-private-code-span-padding) 0; +} + +.jp-RenderedText pre .ansi-cyan-intense-bg { + background-color: #258f8f; + padding: var(--jp-private-code-span-padding) 0; +} + +.jp-RenderedText pre .ansi-white-intense-bg { + background-color: #a1a6b2; + padding: var(--jp-private-code-span-padding) 0; +} + +.jp-RenderedText pre .ansi-default-inverse-fg { + color: var(--jp-ui-inverse-font-color0); +} + +.jp-RenderedText pre .ansi-default-inverse-bg { + background-color: var(--jp-inverse-layout-color0); + padding: var(--jp-private-code-span-padding) 0; +} + +.jp-RenderedText pre .ansi-bold { + font-weight: bold; +} + +.jp-RenderedText pre .ansi-underline { + text-decoration: underline; +} + +.jp-RenderedText[data-mime-type='application/vnd.jupyter.stderr'] { + background: var(--jp-rendermime-error-background); + padding-top: var(--jp-code-padding); +} + +/*----------------------------------------------------------------------------- +| RenderedLatex +|----------------------------------------------------------------------------*/ + +.jp-RenderedLatex { + color: var(--jp-content-font-color1); + font-size: var(--jp-content-font-size1); + line-height: var(--jp-content-line-height); +} + +/* Left-justify outputs.*/ +.jp-OutputArea-output.jp-RenderedLatex { + padding: var(--jp-code-padding); + text-align: left; +} + +/*----------------------------------------------------------------------------- +| RenderedHTML +|----------------------------------------------------------------------------*/ + +.jp-RenderedHTMLCommon { + color: var(--jp-content-font-color1); + font-family: var(--jp-content-font-family); + font-size: var(--jp-content-font-size1); + line-height: var(--jp-content-line-height); + + /* Give a bit more R padding on Markdown text to keep line lengths reasonable */ + padding-right: 20px; +} + +.jp-RenderedHTMLCommon em { + font-style: italic; +} + +.jp-RenderedHTMLCommon strong { + font-weight: bold; +} + +.jp-RenderedHTMLCommon u { + text-decoration: underline; +} + +.jp-RenderedHTMLCommon a:link { + text-decoration: none; + color: var(--jp-content-link-color); +} + +.jp-RenderedHTMLCommon a:hover { + text-decoration: underline; + color: var(--jp-content-link-color); +} + +.jp-RenderedHTMLCommon a:visited { + text-decoration: none; + color: var(--jp-content-link-color); +} + +/* Headings */ + +.jp-RenderedHTMLCommon h1, +.jp-RenderedHTMLCommon h2, +.jp-RenderedHTMLCommon h3, +.jp-RenderedHTMLCommon h4, +.jp-RenderedHTMLCommon h5, +.jp-RenderedHTMLCommon h6 { + line-height: var(--jp-content-heading-line-height); + font-weight: var(--jp-content-heading-font-weight); + font-style: normal; + margin: var(--jp-content-heading-margin-top) 0 + var(--jp-content-heading-margin-bottom) 0; +} + +.jp-RenderedHTMLCommon h1:first-child, +.jp-RenderedHTMLCommon h2:first-child, +.jp-RenderedHTMLCommon h3:first-child, +.jp-RenderedHTMLCommon h4:first-child, +.jp-RenderedHTMLCommon h5:first-child, +.jp-RenderedHTMLCommon h6:first-child { + margin-top: calc(0.5 * var(--jp-content-heading-margin-top)); +} + +.jp-RenderedHTMLCommon h1:last-child, +.jp-RenderedHTMLCommon h2:last-child, +.jp-RenderedHTMLCommon h3:last-child, +.jp-RenderedHTMLCommon h4:last-child, +.jp-RenderedHTMLCommon h5:last-child, +.jp-RenderedHTMLCommon h6:last-child { + margin-bottom: calc(0.5 * var(--jp-content-heading-margin-bottom)); +} + +.jp-RenderedHTMLCommon h1 { + font-size: var(--jp-content-font-size5); +} + +.jp-RenderedHTMLCommon h2 { + font-size: var(--jp-content-font-size4); +} + +.jp-RenderedHTMLCommon h3 { + font-size: var(--jp-content-font-size3); +} + +.jp-RenderedHTMLCommon h4 { + font-size: var(--jp-content-font-size2); +} + +.jp-RenderedHTMLCommon h5 { + font-size: var(--jp-content-font-size1); +} + +.jp-RenderedHTMLCommon h6 { + font-size: var(--jp-content-font-size0); +} + +/* Lists */ + +/* stylelint-disable selector-max-type, selector-max-compound-selectors */ + +.jp-RenderedHTMLCommon ul:not(.list-inline), +.jp-RenderedHTMLCommon ol:not(.list-inline) { + padding-left: 2em; +} + +.jp-RenderedHTMLCommon ul { + list-style: disc; +} + +.jp-RenderedHTMLCommon ul ul { + list-style: square; +} + +.jp-RenderedHTMLCommon ul ul ul { + list-style: circle; +} + +.jp-RenderedHTMLCommon ol { + list-style: decimal; +} + +.jp-RenderedHTMLCommon ol ol { + list-style: upper-alpha; +} + +.jp-RenderedHTMLCommon ol ol ol { + list-style: lower-alpha; +} + +.jp-RenderedHTMLCommon ol ol ol ol { + list-style: lower-roman; +} + +.jp-RenderedHTMLCommon ol ol ol ol ol { + list-style: decimal; +} + +.jp-RenderedHTMLCommon ol, +.jp-RenderedHTMLCommon ul { + margin-bottom: 1em; +} + +.jp-RenderedHTMLCommon ul ul, +.jp-RenderedHTMLCommon ul ol, +.jp-RenderedHTMLCommon ol ul, +.jp-RenderedHTMLCommon ol ol { + margin-bottom: 0; +} + +/* stylelint-enable selector-max-type, selector-max-compound-selectors */ + +.jp-RenderedHTMLCommon hr { + color: var(--jp-border-color2); + background-color: var(--jp-border-color1); + margin-top: 1em; + margin-bottom: 1em; +} + +.jp-RenderedHTMLCommon > pre { + margin: 1.5em 2em; +} + +.jp-RenderedHTMLCommon pre, +.jp-RenderedHTMLCommon code { + border: 0; + background-color: var(--jp-layout-color0); + color: var(--jp-content-font-color1); + font-family: var(--jp-code-font-family); + font-size: inherit; + line-height: var(--jp-code-line-height); + padding: 0; + white-space: pre-wrap; +} + +.jp-RenderedHTMLCommon :not(pre) > code { + background-color: var(--jp-layout-color2); + padding: 1px 5px; +} + +/* Tables */ + +.jp-RenderedHTMLCommon table { + border-collapse: collapse; + border-spacing: 0; + border: none; + color: var(--jp-ui-font-color1); + font-size: var(--jp-ui-font-size1); + table-layout: fixed; + margin-left: auto; + margin-bottom: 1em; + margin-right: auto; +} + +.jp-RenderedHTMLCommon thead { + border-bottom: var(--jp-border-width) solid var(--jp-border-color1); + vertical-align: bottom; +} + +.jp-RenderedHTMLCommon td, +.jp-RenderedHTMLCommon th, +.jp-RenderedHTMLCommon tr { + vertical-align: middle; + padding: 0.5em; + line-height: normal; + white-space: normal; + max-width: none; + border: none; +} + +.jp-RenderedMarkdown.jp-RenderedHTMLCommon td, +.jp-RenderedMarkdown.jp-RenderedHTMLCommon th { + max-width: none; +} + +:not(.jp-RenderedMarkdown).jp-RenderedHTMLCommon td, +:not(.jp-RenderedMarkdown).jp-RenderedHTMLCommon th, +:not(.jp-RenderedMarkdown).jp-RenderedHTMLCommon tr { + text-align: right; +} + +.jp-RenderedHTMLCommon th { + font-weight: bold; +} + +.jp-RenderedHTMLCommon tbody tr:nth-child(odd) { + background: var(--jp-layout-color0); +} + +.jp-RenderedHTMLCommon tbody tr:nth-child(even) { + background: var(--jp-rendermime-table-row-background); +} + +.jp-RenderedHTMLCommon tbody tr:hover { + background: var(--jp-rendermime-table-row-hover-background); +} + +.jp-RenderedHTMLCommon p { + text-align: left; + margin: 0; + margin-bottom: 1em; +} + +.jp-RenderedHTMLCommon img { + -moz-force-broken-image-icon: 1; +} + +/* Restrict to direct children as other images could be nested in other content. */ +.jp-RenderedHTMLCommon > img { + display: block; + margin-left: 0; + margin-right: 0; + margin-bottom: 1em; +} + +/* Change color behind transparent images if they need it... */ +[data-jp-theme-light='false'] .jp-RenderedImage img.jp-needs-light-background { + background-color: var(--jp-inverse-layout-color1); +} + +[data-jp-theme-light='true'] .jp-RenderedImage img.jp-needs-dark-background { + background-color: var(--jp-inverse-layout-color1); +} + +.jp-RenderedHTMLCommon img, +.jp-RenderedImage img, +.jp-RenderedHTMLCommon svg, +.jp-RenderedSVG svg { + max-width: 100%; + height: auto; +} + +.jp-RenderedHTMLCommon img.jp-mod-unconfined, +.jp-RenderedImage img.jp-mod-unconfined, +.jp-RenderedHTMLCommon svg.jp-mod-unconfined, +.jp-RenderedSVG svg.jp-mod-unconfined { + max-width: none; +} + +.jp-RenderedHTMLCommon .alert { + padding: var(--jp-notebook-padding); + border: var(--jp-border-width) solid transparent; + border-radius: var(--jp-border-radius); + margin-bottom: 1em; +} + +.jp-RenderedHTMLCommon .alert-info { + color: var(--jp-info-color0); + background-color: var(--jp-info-color3); + border-color: var(--jp-info-color2); +} + +.jp-RenderedHTMLCommon .alert-info hr { + border-color: var(--jp-info-color3); +} + +.jp-RenderedHTMLCommon .alert-info > p:last-child, +.jp-RenderedHTMLCommon .alert-info > ul:last-child { + margin-bottom: 0; +} + +.jp-RenderedHTMLCommon .alert-warning { + color: var(--jp-warn-color0); + background-color: var(--jp-warn-color3); + border-color: var(--jp-warn-color2); +} + +.jp-RenderedHTMLCommon .alert-warning hr { + border-color: var(--jp-warn-color3); +} + +.jp-RenderedHTMLCommon .alert-warning > p:last-child, +.jp-RenderedHTMLCommon .alert-warning > ul:last-child { + margin-bottom: 0; +} + +.jp-RenderedHTMLCommon .alert-success { + color: var(--jp-success-color0); + background-color: var(--jp-success-color3); + border-color: var(--jp-success-color2); +} + +.jp-RenderedHTMLCommon .alert-success hr { + border-color: var(--jp-success-color3); +} + +.jp-RenderedHTMLCommon .alert-success > p:last-child, +.jp-RenderedHTMLCommon .alert-success > ul:last-child { + margin-bottom: 0; +} + +.jp-RenderedHTMLCommon .alert-danger { + color: var(--jp-error-color0); + background-color: var(--jp-error-color3); + border-color: var(--jp-error-color2); +} + +.jp-RenderedHTMLCommon .alert-danger hr { + border-color: var(--jp-error-color3); +} + +.jp-RenderedHTMLCommon .alert-danger > p:last-child, +.jp-RenderedHTMLCommon .alert-danger > ul:last-child { + margin-bottom: 0; +} + +.jp-RenderedHTMLCommon blockquote { + margin: 1em 2em; + padding: 0 1em; + border-left: 5px solid var(--jp-border-color2); +} + +a.jp-InternalAnchorLink { + visibility: hidden; + margin-left: 8px; + color: var(--md-blue-800); +} + +h1:hover .jp-InternalAnchorLink, +h2:hover .jp-InternalAnchorLink, +h3:hover .jp-InternalAnchorLink, +h4:hover .jp-InternalAnchorLink, +h5:hover .jp-InternalAnchorLink, +h6:hover .jp-InternalAnchorLink { + visibility: visible; +} + +.jp-RenderedHTMLCommon kbd { + background-color: var(--jp-rendermime-table-row-background); + border: 1px solid var(--jp-border-color0); + border-bottom-color: var(--jp-border-color2); + border-radius: 3px; + box-shadow: inset 0 -1px 0 rgba(0, 0, 0, 0.25); + display: inline-block; + font-size: var(--jp-ui-font-size0); + line-height: 1em; + padding: 0.2em 0.5em; +} + +/* Most direct children of .jp-RenderedHTMLCommon have a margin-bottom of 1.0. + * At the bottom of cells this is a bit too much as there is also spacing + * between cells. Going all the way to 0 gets too tight between markdown and + * code cells. + */ +.jp-RenderedHTMLCommon > *:last-child { + margin-bottom: 0.5em; +} + +/* + * Copyright (c) Jupyter Development Team. + * Distributed under the terms of the Modified BSD License. + */ + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Copyright (c) 2014-2017, PhosphorJS Contributors +| +| Distributed under the terms of the BSD 3-Clause License. +| +| The full license is in the file LICENSE, distributed with this software. +|----------------------------------------------------------------------------*/ + +.lm-cursor-backdrop { + position: fixed; + width: 200px; + height: 200px; + margin-top: -100px; + margin-left: -100px; + will-change: transform; + z-index: 100; +} + +.lm-mod-drag-image { + will-change: transform; +} + +/* + * Copyright (c) Jupyter Development Team. + * Distributed under the terms of the Modified BSD License. + */ + +.jp-lineFormSearch { + padding: 4px 12px; + background-color: var(--jp-layout-color2); + box-shadow: var(--jp-toolbar-box-shadow); + z-index: 2; + font-size: var(--jp-ui-font-size1); +} + +.jp-lineFormCaption { + font-size: var(--jp-ui-font-size0); + line-height: var(--jp-ui-font-size1); + margin-top: 4px; + color: var(--jp-ui-font-color0); +} + +.jp-baseLineForm { + border: none; + border-radius: 0; + position: absolute; + background-size: 16px; + background-repeat: no-repeat; + background-position: center; + outline: none; +} + +.jp-lineFormButtonContainer { + top: 4px; + right: 8px; + height: 24px; + padding: 0 12px; + width: 12px; +} + +.jp-lineFormButtonIcon { + top: 0; + right: 0; + background-color: var(--jp-brand-color1); + height: 100%; + width: 100%; + box-sizing: border-box; + padding: 4px 6px; +} + +.jp-lineFormButton { + top: 0; + right: 0; + background-color: transparent; + height: 100%; + width: 100%; + box-sizing: border-box; +} + +.jp-lineFormWrapper { + overflow: hidden; + padding: 0 8px; + border: 1px solid var(--jp-border-color0); + background-color: var(--jp-input-active-background); + height: 22px; +} + +.jp-lineFormWrapperFocusWithin { + border: var(--jp-border-width) solid var(--md-blue-500); + box-shadow: inset 0 0 4px var(--md-blue-300); +} + +.jp-lineFormInput { + background: transparent; + width: 200px; + height: 100%; + border: none; + outline: none; + color: var(--jp-ui-font-color0); + line-height: 28px; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) 2014-2016, Jupyter Development Team. +| +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +.jp-JSONEditor { + display: flex; + flex-direction: column; + width: 100%; +} + +.jp-JSONEditor-host { + flex: 1 1 auto; + border: var(--jp-border-width) solid var(--jp-input-border-color); + border-radius: 0; + background: var(--jp-layout-color0); + min-height: 50px; + padding: 1px; +} + +.jp-JSONEditor.jp-mod-error .jp-JSONEditor-host { + border-color: red; + outline-color: red; +} + +.jp-JSONEditor-header { + display: flex; + flex: 1 0 auto; + padding: 0 0 0 12px; +} + +.jp-JSONEditor-header label { + flex: 0 0 auto; +} + +.jp-JSONEditor-commitButton { + height: 16px; + width: 16px; + background-size: 18px; + background-repeat: no-repeat; + background-position: center; +} + +.jp-JSONEditor-host.jp-mod-focused { + background-color: var(--jp-input-active-background); + border: 1px solid var(--jp-input-active-border-color); + box-shadow: var(--jp-input-box-shadow); +} + +.jp-Editor.jp-mod-dropTarget { + border: var(--jp-border-width) solid var(--jp-input-active-border-color); + box-shadow: var(--jp-input-box-shadow); +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ +.jp-DocumentSearch-input { + border: none; + outline: none; + color: var(--jp-ui-font-color0); + font-size: var(--jp-ui-font-size1); + background-color: var(--jp-layout-color0); + font-family: var(--jp-ui-font-family); + padding: 2px 1px; + resize: none; +} + +.jp-DocumentSearch-overlay { + position: absolute; + background-color: var(--jp-toolbar-background); + border-bottom: var(--jp-border-width) solid var(--jp-toolbar-border-color); + border-left: var(--jp-border-width) solid var(--jp-toolbar-border-color); + top: 0; + right: 0; + z-index: 7; + min-width: 405px; + padding: 2px; + font-size: var(--jp-ui-font-size1); + + --jp-private-document-search-button-height: 20px; +} + +.jp-DocumentSearch-overlay button { + background-color: var(--jp-toolbar-background); + outline: 0; +} + +.jp-DocumentSearch-overlay button:hover { + background-color: var(--jp-layout-color2); +} + +.jp-DocumentSearch-overlay button:active { + background-color: var(--jp-layout-color3); +} + +.jp-DocumentSearch-overlay-row { + display: flex; + align-items: center; + margin-bottom: 2px; +} + +.jp-DocumentSearch-button-content { + display: inline-block; + cursor: pointer; + box-sizing: border-box; + width: 100%; + height: 100%; +} + +.jp-DocumentSearch-button-content svg { + width: 100%; + height: 100%; +} + +.jp-DocumentSearch-input-wrapper { + border: var(--jp-border-width) solid var(--jp-border-color0); + display: flex; + background-color: var(--jp-layout-color0); + margin: 2px; +} + +.jp-DocumentSearch-input-wrapper:focus-within { + border-color: var(--jp-cell-editor-active-border-color); +} + +.jp-DocumentSearch-toggle-wrapper, +.jp-DocumentSearch-button-wrapper { + all: initial; + overflow: hidden; + display: inline-block; + border: none; + box-sizing: border-box; +} + +.jp-DocumentSearch-toggle-wrapper { + width: 14px; + height: 14px; +} + +.jp-DocumentSearch-button-wrapper { + width: var(--jp-private-document-search-button-height); + height: var(--jp-private-document-search-button-height); +} + +.jp-DocumentSearch-toggle-wrapper:focus, +.jp-DocumentSearch-button-wrapper:focus { + outline: var(--jp-border-width) solid + var(--jp-cell-editor-active-border-color); + outline-offset: -1px; +} + +.jp-DocumentSearch-toggle-wrapper, +.jp-DocumentSearch-button-wrapper, +.jp-DocumentSearch-button-content:focus { + outline: none; +} + +.jp-DocumentSearch-toggle-placeholder { + width: 5px; +} + +.jp-DocumentSearch-input-button::before { + display: block; + padding-top: 100%; +} + +.jp-DocumentSearch-input-button-off { + opacity: var(--jp-search-toggle-off-opacity); +} + +.jp-DocumentSearch-input-button-off:hover { + opacity: var(--jp-search-toggle-hover-opacity); +} + +.jp-DocumentSearch-input-button-on { + opacity: var(--jp-search-toggle-on-opacity); +} + +.jp-DocumentSearch-index-counter { + padding-left: 10px; + padding-right: 10px; + user-select: none; + min-width: 35px; + display: inline-block; +} + +.jp-DocumentSearch-up-down-wrapper { + display: inline-block; + padding-right: 2px; + margin-left: auto; + white-space: nowrap; +} + +.jp-DocumentSearch-spacer { + margin-left: auto; +} + +.jp-DocumentSearch-up-down-wrapper button { + outline: 0; + border: none; + width: var(--jp-private-document-search-button-height); + height: var(--jp-private-document-search-button-height); + vertical-align: middle; + margin: 1px 5px 2px; +} + +.jp-DocumentSearch-up-down-button:hover { + background-color: var(--jp-layout-color2); +} + +.jp-DocumentSearch-up-down-button:active { + background-color: var(--jp-layout-color3); +} + +.jp-DocumentSearch-filter-button { + border-radius: var(--jp-border-radius); +} + +.jp-DocumentSearch-filter-button:hover { + background-color: var(--jp-layout-color2); +} + +.jp-DocumentSearch-filter-button-enabled { + background-color: var(--jp-layout-color2); +} + +.jp-DocumentSearch-filter-button-enabled:hover { + background-color: var(--jp-layout-color3); +} + +.jp-DocumentSearch-search-options { + padding: 0 8px; + margin-left: 3px; + width: 100%; + display: grid; + justify-content: start; + grid-template-columns: 1fr 1fr; + align-items: center; + justify-items: stretch; +} + +.jp-DocumentSearch-search-filter-disabled { + color: var(--jp-ui-font-color2); +} + +.jp-DocumentSearch-search-filter { + display: flex; + align-items: center; + user-select: none; +} + +.jp-DocumentSearch-regex-error { + color: var(--jp-error-color0); +} + +.jp-DocumentSearch-replace-button-wrapper { + overflow: hidden; + display: inline-block; + box-sizing: border-box; + border: var(--jp-border-width) solid var(--jp-border-color0); + margin: auto 2px; + padding: 1px 4px; + height: calc(var(--jp-private-document-search-button-height) + 2px); +} + +.jp-DocumentSearch-replace-button-wrapper:focus { + border: var(--jp-border-width) solid var(--jp-cell-editor-active-border-color); +} + +.jp-DocumentSearch-replace-button { + display: inline-block; + text-align: center; + cursor: pointer; + box-sizing: border-box; + color: var(--jp-ui-font-color1); + + /* height - 2 * (padding of wrapper) */ + line-height: calc(var(--jp-private-document-search-button-height) - 2px); + width: 100%; + height: 100%; +} + +.jp-DocumentSearch-replace-button:focus { + outline: none; +} + +.jp-DocumentSearch-replace-wrapper-class { + margin-left: 14px; + display: flex; +} + +.jp-DocumentSearch-replace-toggle { + border: none; + background-color: var(--jp-toolbar-background); + border-radius: var(--jp-border-radius); +} + +.jp-DocumentSearch-replace-toggle:hover { + background-color: var(--jp-layout-color2); +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +.cm-editor { + line-height: var(--jp-code-line-height); + font-size: var(--jp-code-font-size); + font-family: var(--jp-code-font-family); + border: 0; + border-radius: 0; + height: auto; + + /* Changed to auto to autogrow */ +} + +.cm-editor pre { + padding: 0 var(--jp-code-padding); +} + +.jp-CodeMirrorEditor[data-type='inline'] .cm-dialog { + background-color: var(--jp-layout-color0); + color: var(--jp-content-font-color1); +} + +.jp-CodeMirrorEditor { + cursor: text; +} + +/* When zoomed out 67% and 33% on a screen of 1440 width x 900 height */ +@media screen and (min-width: 2138px) and (max-width: 4319px) { + .jp-CodeMirrorEditor[data-type='inline'] .cm-cursor { + border-left: var(--jp-code-cursor-width1) solid + var(--jp-editor-cursor-color); + } +} + +/* When zoomed out less than 33% */ +@media screen and (min-width: 4320px) { + .jp-CodeMirrorEditor[data-type='inline'] .cm-cursor { + border-left: var(--jp-code-cursor-width2) solid + var(--jp-editor-cursor-color); + } +} + +.cm-editor.jp-mod-readOnly .cm-cursor { + display: none; +} + +.jp-CollaboratorCursor { + border-left: 5px solid transparent; + border-right: 5px solid transparent; + border-top: none; + border-bottom: 3px solid; + background-clip: content-box; + margin-left: -5px; + margin-right: -5px; +} + +.cm-searching, +.cm-searching span { + /* `.cm-searching span`: we need to override syntax highlighting */ + background-color: var(--jp-search-unselected-match-background-color); + color: var(--jp-search-unselected-match-color); +} + +.cm-searching::selection, +.cm-searching span::selection { + background-color: var(--jp-search-unselected-match-background-color); + color: var(--jp-search-unselected-match-color); +} + +.jp-current-match > .cm-searching, +.jp-current-match > .cm-searching span, +.cm-searching > .jp-current-match, +.cm-searching > .jp-current-match span { + background-color: var(--jp-search-selected-match-background-color); + color: var(--jp-search-selected-match-color); +} + +.jp-current-match > .cm-searching::selection, +.cm-searching > .jp-current-match::selection, +.jp-current-match > .cm-searching span::selection { + background-color: var(--jp-search-selected-match-background-color); + color: var(--jp-search-selected-match-color); +} + +.cm-trailingspace { + background-image: url(); + background-position: center left; + background-repeat: repeat-x; +} + +.jp-CollaboratorCursor-hover { + position: absolute; + z-index: 1; + transform: translateX(-50%); + color: white; + border-radius: 3px; + padding-left: 4px; + padding-right: 4px; + padding-top: 1px; + padding-bottom: 1px; + text-align: center; + font-size: var(--jp-ui-font-size1); + white-space: nowrap; +} + +.jp-CodeMirror-ruler { + border-left: 1px dashed var(--jp-border-color2); +} + +/* Styles for shared cursors (remote cursor locations and selected ranges) */ +.jp-CodeMirrorEditor .cm-ySelectionCaret { + position: relative; + border-left: 1px solid black; + margin-left: -1px; + margin-right: -1px; + box-sizing: border-box; +} + +.jp-CodeMirrorEditor .cm-ySelectionCaret > .cm-ySelectionInfo { + white-space: nowrap; + position: absolute; + top: -1.15em; + padding-bottom: 0.05em; + left: -1px; + font-size: 0.95em; + font-family: var(--jp-ui-font-family); + font-weight: bold; + line-height: normal; + user-select: none; + color: white; + padding-left: 2px; + padding-right: 2px; + z-index: 101; + transition: opacity 0.3s ease-in-out; +} + +.jp-CodeMirrorEditor .cm-ySelectionInfo { + transition-delay: 0.7s; + opacity: 0; +} + +.jp-CodeMirrorEditor .cm-ySelectionCaret:hover > .cm-ySelectionInfo { + opacity: 1; + transition-delay: 0s; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +.jp-MimeDocument { + outline: none; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/*----------------------------------------------------------------------------- +| Variables +|----------------------------------------------------------------------------*/ + +:root { + --jp-private-filebrowser-button-height: 28px; + --jp-private-filebrowser-button-width: 48px; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +.jp-FileBrowser .jp-SidePanel-content { + display: flex; + flex-direction: column; +} + +.jp-FileBrowser-toolbar.jp-Toolbar { + flex-wrap: wrap; + row-gap: 12px; + border-bottom: none; + height: auto; + margin: 8px 12px 0; + box-shadow: none; + padding: 0; + justify-content: flex-start; +} + +.jp-FileBrowser-Panel { + flex: 1 1 auto; + display: flex; + flex-direction: column; +} + +.jp-BreadCrumbs { + flex: 0 0 auto; + margin: 8px 12px; +} + +.jp-BreadCrumbs-item { + margin: 0 2px; + padding: 0 2px; + border-radius: var(--jp-border-radius); + cursor: pointer; +} + +.jp-BreadCrumbs-item:hover { + background-color: var(--jp-layout-color2); +} + +.jp-BreadCrumbs-item:first-child { + margin-left: 0; +} + +.jp-BreadCrumbs-item.jp-mod-dropTarget { + background-color: var(--jp-brand-color2); + opacity: 0.7; +} + +/*----------------------------------------------------------------------------- +| Buttons +|----------------------------------------------------------------------------*/ + +.jp-FileBrowser-toolbar > .jp-Toolbar-item { + flex: 0 0 auto; + padding-left: 0; + padding-right: 2px; + align-items: center; + height: unset; +} + +.jp-FileBrowser-toolbar > .jp-Toolbar-item .jp-ToolbarButtonComponent { + width: 40px; +} + +/*----------------------------------------------------------------------------- +| Other styles +|----------------------------------------------------------------------------*/ + +.jp-FileDialog.jp-mod-conflict input { + color: var(--jp-error-color1); +} + +.jp-FileDialog .jp-new-name-title { + margin-top: 12px; +} + +.jp-LastModified-hidden { + display: none; +} + +.jp-FileSize-hidden { + display: none; +} + +.jp-FileBrowser .lm-AccordionPanel > h3:first-child { + display: none; +} + +/*----------------------------------------------------------------------------- +| DirListing +|----------------------------------------------------------------------------*/ + +.jp-DirListing { + flex: 1 1 auto; + display: flex; + flex-direction: column; + outline: 0; +} + +.jp-DirListing-header { + flex: 0 0 auto; + display: flex; + flex-direction: row; + align-items: center; + overflow: hidden; + border-top: var(--jp-border-width) solid var(--jp-border-color2); + border-bottom: var(--jp-border-width) solid var(--jp-border-color1); + box-shadow: var(--jp-toolbar-box-shadow); + z-index: 2; +} + +.jp-DirListing-headerItem { + padding: 4px 12px 2px; + font-weight: 500; +} + +.jp-DirListing-headerItem:hover { + background: var(--jp-layout-color2); +} + +.jp-DirListing-headerItem.jp-id-name { + flex: 1 0 84px; +} + +.jp-DirListing-headerItem.jp-id-modified { + flex: 0 0 112px; + border-left: var(--jp-border-width) solid var(--jp-border-color2); + text-align: right; +} + +.jp-DirListing-headerItem.jp-id-filesize { + flex: 0 0 75px; + border-left: var(--jp-border-width) solid var(--jp-border-color2); + text-align: right; +} + +.jp-id-narrow { + display: none; + flex: 0 0 5px; + padding: 4px; + border-left: var(--jp-border-width) solid var(--jp-border-color2); + text-align: right; + color: var(--jp-border-color2); +} + +.jp-DirListing-narrow .jp-id-narrow { + display: block; +} + +.jp-DirListing-narrow .jp-id-modified, +.jp-DirListing-narrow .jp-DirListing-itemModified { + display: none; +} + +.jp-DirListing-headerItem.jp-mod-selected { + font-weight: 600; +} + +/* increase specificity to override bundled default */ +.jp-DirListing-content { + flex: 1 1 auto; + margin: 0; + padding: 0; + list-style-type: none; + overflow: auto; + background-color: var(--jp-layout-color1); +} + +.jp-DirListing-content mark { + color: var(--jp-ui-font-color0); + background-color: transparent; + font-weight: bold; +} + +.jp-DirListing-content .jp-DirListing-item.jp-mod-selected mark { + color: var(--jp-ui-inverse-font-color0); +} + +/* Style the directory listing content when a user drops a file to upload */ +.jp-DirListing.jp-mod-native-drop .jp-DirListing-content { + outline: 5px dashed rgba(128, 128, 128, 0.5); + outline-offset: -10px; + cursor: copy; +} + +.jp-DirListing-item { + display: flex; + flex-direction: row; + align-items: center; + padding: 4px 12px; + -webkit-user-select: none; + -moz-user-select: none; + -ms-user-select: none; + user-select: none; +} + +.jp-DirListing-checkboxWrapper { + /* Increases hit area of checkbox. */ + padding: 4px; +} + +.jp-DirListing-header + .jp-DirListing-checkboxWrapper + + .jp-DirListing-headerItem { + padding-left: 4px; +} + +.jp-DirListing-content .jp-DirListing-checkboxWrapper { + position: relative; + left: -4px; + margin: -4px 0 -4px -8px; +} + +.jp-DirListing-checkboxWrapper.jp-mod-visible { + visibility: visible; +} + +/* For devices that support hovering, hide checkboxes until hovered, selected... +*/ +@media (hover: hover) { + .jp-DirListing-checkboxWrapper { + visibility: hidden; + } + + .jp-DirListing-item:hover .jp-DirListing-checkboxWrapper, + .jp-DirListing-item.jp-mod-selected .jp-DirListing-checkboxWrapper { + visibility: visible; + } +} + +.jp-DirListing-item[data-is-dot] { + opacity: 75%; +} + +.jp-DirListing-item.jp-mod-selected { + color: var(--jp-ui-inverse-font-color1); + background: var(--jp-brand-color1); +} + +.jp-DirListing-item.jp-mod-dropTarget { + background: var(--jp-brand-color3); +} + +.jp-DirListing-item:hover:not(.jp-mod-selected) { + background: var(--jp-layout-color2); +} + +.jp-DirListing-itemIcon { + flex: 0 0 20px; + margin-right: 4px; +} + +.jp-DirListing-itemText { + flex: 1 0 64px; + white-space: nowrap; + overflow: hidden; + text-overflow: ellipsis; + user-select: none; +} + +.jp-DirListing-itemText:focus { + outline-width: 2px; + outline-color: var(--jp-inverse-layout-color1); + outline-style: solid; + outline-offset: 1px; +} + +.jp-DirListing-item.jp-mod-selected .jp-DirListing-itemText:focus { + outline-color: var(--jp-layout-color1); +} + +.jp-DirListing-itemModified { + flex: 0 0 125px; + text-align: right; +} + +.jp-DirListing-itemFileSize { + flex: 0 0 90px; + text-align: right; +} + +.jp-DirListing-editor { + flex: 1 0 64px; + outline: none; + border: none; + color: var(--jp-ui-font-color1); + background-color: var(--jp-layout-color1); +} + +.jp-DirListing-item.jp-mod-running .jp-DirListing-itemIcon::before { + color: var(--jp-success-color1); + content: '\25CF'; + font-size: 8px; + position: absolute; + left: -8px; +} + +.jp-DirListing-item.jp-mod-running.jp-mod-selected + .jp-DirListing-itemIcon::before { + color: var(--jp-ui-inverse-font-color1); +} + +.jp-DirListing-item.lm-mod-drag-image, +.jp-DirListing-item.jp-mod-selected.lm-mod-drag-image { + font-size: var(--jp-ui-font-size1); + padding-left: 4px; + margin-left: 4px; + width: 160px; + background-color: var(--jp-ui-inverse-font-color2); + box-shadow: var(--jp-elevation-z2); + border-radius: 0; + color: var(--jp-ui-font-color1); + transform: translateX(-40%) translateY(-58%); +} + +.jp-Document { + min-width: 120px; + min-height: 120px; + outline: none; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/*----------------------------------------------------------------------------- +| Main OutputArea +| OutputArea has a list of Outputs +|----------------------------------------------------------------------------*/ + +.jp-OutputArea { + overflow-y: auto; +} + +.jp-OutputArea-child { + display: table; + table-layout: fixed; + width: 100%; + overflow: hidden; +} + +.jp-OutputPrompt { + width: var(--jp-cell-prompt-width); + color: var(--jp-cell-outprompt-font-color); + font-family: var(--jp-cell-prompt-font-family); + padding: var(--jp-code-padding); + letter-spacing: var(--jp-cell-prompt-letter-spacing); + line-height: var(--jp-code-line-height); + font-size: var(--jp-code-font-size); + border: var(--jp-border-width) solid transparent; + opacity: var(--jp-cell-prompt-opacity); + + /* Right align prompt text, don't wrap to handle large prompt numbers */ + text-align: right; + white-space: nowrap; + overflow: hidden; + text-overflow: ellipsis; + + /* Disable text selection */ + -webkit-user-select: none; + -moz-user-select: none; + -ms-user-select: none; + user-select: none; +} + +.jp-OutputArea-prompt { + display: table-cell; + vertical-align: top; +} + +.jp-OutputArea-output { + display: table-cell; + width: 100%; + height: auto; + overflow: auto; + user-select: text; + -moz-user-select: text; + -webkit-user-select: text; + -ms-user-select: text; +} + +.jp-OutputArea .jp-RenderedText { + padding-left: 1ch; +} + +/** + * Prompt overlay. + */ + +.jp-OutputArea-promptOverlay { + position: absolute; + top: 0; + width: var(--jp-cell-prompt-width); + height: 100%; + opacity: 0.5; +} + +.jp-OutputArea-promptOverlay:hover { + background: var(--jp-layout-color2); + box-shadow: inset 0 0 1px var(--jp-inverse-layout-color0); + cursor: zoom-out; +} + +.jp-mod-outputsScrolled .jp-OutputArea-promptOverlay:hover { + cursor: zoom-in; +} + +/** + * Isolated output. + */ +.jp-OutputArea-output.jp-mod-isolated { + width: 100%; + display: block; +} + +/* +When drag events occur, `lm-mod-override-cursor` is added to the body. +Because iframes steal all cursor events, the following two rules are necessary +to suppress pointer events while resize drags are occurring. There may be a +better solution to this problem. +*/ +body.lm-mod-override-cursor .jp-OutputArea-output.jp-mod-isolated { + position: relative; +} + +body.lm-mod-override-cursor .jp-OutputArea-output.jp-mod-isolated::before { + content: ''; + position: absolute; + top: 0; + left: 0; + right: 0; + bottom: 0; + background: transparent; +} + +/* pre */ + +.jp-OutputArea-output pre { + border: none; + margin: 0; + padding: 0; + overflow-x: auto; + overflow-y: auto; + word-break: break-all; + word-wrap: break-word; + white-space: pre-wrap; +} + +/* tables */ + +.jp-OutputArea-output.jp-RenderedHTMLCommon table { + margin-left: 0; + margin-right: 0; +} + +/* description lists */ + +.jp-OutputArea-output dl, +.jp-OutputArea-output dt, +.jp-OutputArea-output dd { + display: block; +} + +.jp-OutputArea-output dl { + width: 100%; + overflow: hidden; + padding: 0; + margin: 0; +} + +.jp-OutputArea-output dt { + font-weight: bold; + float: left; + width: 20%; + padding: 0; + margin: 0; +} + +.jp-OutputArea-output dd { + float: left; + width: 80%; + padding: 0; + margin: 0; +} + +.jp-TrimmedOutputs pre { + background: var(--jp-layout-color3); + font-size: calc(var(--jp-code-font-size) * 1.4); + text-align: center; + text-transform: uppercase; +} + +/* Hide the gutter in case of + * - nested output areas (e.g. in the case of output widgets) + * - mirrored output areas + */ +.jp-OutputArea .jp-OutputArea .jp-OutputArea-prompt { + display: none; +} + +/* Hide empty lines in the output area, for instance due to cleared widgets */ +.jp-OutputArea-prompt:empty { + padding: 0; + border: 0; +} + +/*----------------------------------------------------------------------------- +| executeResult is added to any Output-result for the display of the object +| returned by a cell +|----------------------------------------------------------------------------*/ + +.jp-OutputArea-output.jp-OutputArea-executeResult { + margin-left: 0; + width: 100%; +} + +/* Text output with the Out[] prompt needs a top padding to match the + * alignment of the Out[] prompt itself. + */ +.jp-OutputArea-executeResult .jp-RenderedText.jp-OutputArea-output { + padding-top: var(--jp-code-padding); + border-top: var(--jp-border-width) solid transparent; +} + +/*----------------------------------------------------------------------------- +| The Stdin output +|----------------------------------------------------------------------------*/ + +.jp-Stdin-prompt { + color: var(--jp-content-font-color0); + padding-right: var(--jp-code-padding); + vertical-align: baseline; + flex: 0 0 auto; +} + +.jp-Stdin-input { + font-family: var(--jp-code-font-family); + font-size: inherit; + color: inherit; + background-color: inherit; + width: 42%; + min-width: 200px; + + /* make sure input baseline aligns with prompt */ + vertical-align: baseline; + + /* padding + margin = 0.5em between prompt and cursor */ + padding: 0 0.25em; + margin: 0 0.25em; + flex: 0 0 70%; +} + +.jp-Stdin-input::placeholder { + opacity: 0; +} + +.jp-Stdin-input:focus { + box-shadow: none; +} + +.jp-Stdin-input:focus::placeholder { + opacity: 1; +} + +/*----------------------------------------------------------------------------- +| Output Area View +|----------------------------------------------------------------------------*/ + +.jp-LinkedOutputView .jp-OutputArea { + height: 100%; + display: block; +} + +.jp-LinkedOutputView .jp-OutputArea-output:only-child { + height: 100%; +} + +/*----------------------------------------------------------------------------- +| Printing +|----------------------------------------------------------------------------*/ + +@media print { + .jp-OutputArea-child { + break-inside: avoid-page; + } +} + +/*----------------------------------------------------------------------------- +| Mobile +|----------------------------------------------------------------------------*/ +@media only screen and (max-width: 760px) { + .jp-OutputPrompt { + display: table-row; + text-align: left; + } + + .jp-OutputArea-child .jp-OutputArea-output { + display: table-row; + margin-left: var(--jp-notebook-padding); + } +} + +/* Trimmed outputs warning */ +.jp-TrimmedOutputs > a { + margin: 10px; + text-decoration: none; + cursor: pointer; +} + +.jp-TrimmedOutputs > a:hover { + text-decoration: none; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/*----------------------------------------------------------------------------- +| Table of Contents +|----------------------------------------------------------------------------*/ + +:root { + --jp-private-toc-active-width: 4px; +} + +.jp-TableOfContents { + display: flex; + flex-direction: column; + background: var(--jp-layout-color1); + color: var(--jp-ui-font-color1); + font-size: var(--jp-ui-font-size1); + height: 100%; +} + +.jp-TableOfContents-placeholder { + text-align: center; +} + +.jp-TableOfContents-placeholderContent { + color: var(--jp-content-font-color2); + padding: 8px; +} + +.jp-TableOfContents-placeholderContent > h3 { + margin-bottom: var(--jp-content-heading-margin-bottom); +} + +.jp-TableOfContents .jp-SidePanel-content { + overflow-y: auto; +} + +.jp-TableOfContents-tree { + margin: 4px; +} + +.jp-TableOfContents ol { + list-style-type: none; +} + +/* stylelint-disable-next-line selector-max-type */ +.jp-TableOfContents li > ol { + /* Align left border with triangle icon center */ + padding-left: 11px; +} + +.jp-TableOfContents-content { + /* left margin for the active heading indicator */ + margin: 0 0 0 var(--jp-private-toc-active-width); + padding: 0; + background-color: var(--jp-layout-color1); +} + +.jp-tocItem { + -webkit-user-select: none; + -moz-user-select: none; + -ms-user-select: none; + user-select: none; +} + +.jp-tocItem-heading { + display: flex; + cursor: pointer; +} + +.jp-tocItem-heading:hover { + background-color: var(--jp-layout-color2); +} + +.jp-tocItem-content { + display: block; + padding: 4px 0; + white-space: nowrap; + text-overflow: ellipsis; + overflow-x: hidden; +} + +.jp-tocItem-collapser { + height: 20px; + margin: 2px 2px 0; + padding: 0; + background: none; + border: none; + cursor: pointer; +} + +.jp-tocItem-collapser:hover { + background-color: var(--jp-layout-color3); +} + +/* Active heading indicator */ + +.jp-tocItem-heading::before { + content: ' '; + background: transparent; + width: var(--jp-private-toc-active-width); + height: 24px; + position: absolute; + left: 0; + border-radius: var(--jp-border-radius); +} + +.jp-tocItem-heading.jp-tocItem-active::before { + background-color: var(--jp-brand-color1); +} + +.jp-tocItem-heading:hover.jp-tocItem-active::before { + background: var(--jp-brand-color0); + opacity: 1; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +.jp-Collapser { + flex: 0 0 var(--jp-cell-collapser-width); + padding: 0; + margin: 0; + border: none; + outline: none; + background: transparent; + border-radius: var(--jp-border-radius); + opacity: 1; +} + +.jp-Collapser-child { + display: block; + width: 100%; + box-sizing: border-box; + + /* height: 100% doesn't work because the height of its parent is computed from content */ + position: absolute; + top: 0; + bottom: 0; +} + +/*----------------------------------------------------------------------------- +| Printing +|----------------------------------------------------------------------------*/ + +/* +Hiding collapsers in print mode. + +Note: input and output wrappers have "display: block" propery in print mode. +*/ + +@media print { + .jp-Collapser { + display: none; + } +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/*----------------------------------------------------------------------------- +| Header/Footer +|----------------------------------------------------------------------------*/ + +/* Hidden by zero height by default */ +.jp-CellHeader, +.jp-CellFooter { + height: 0; + width: 100%; + padding: 0; + margin: 0; + border: none; + outline: none; + background: transparent; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/*----------------------------------------------------------------------------- +| Input +|----------------------------------------------------------------------------*/ + +/* All input areas */ +.jp-InputArea { + display: table; + table-layout: fixed; + width: 100%; + overflow: hidden; +} + +.jp-InputArea-editor { + display: table-cell; + overflow: hidden; + vertical-align: top; + + /* This is the non-active, default styling */ + border: var(--jp-border-width) solid var(--jp-cell-editor-border-color); + border-radius: 0; + background: var(--jp-cell-editor-background); +} + +.jp-InputPrompt { + display: table-cell; + vertical-align: top; + width: var(--jp-cell-prompt-width); + color: var(--jp-cell-inprompt-font-color); + font-family: var(--jp-cell-prompt-font-family); + padding: var(--jp-code-padding); + letter-spacing: var(--jp-cell-prompt-letter-spacing); + opacity: var(--jp-cell-prompt-opacity); + line-height: var(--jp-code-line-height); + font-size: var(--jp-code-font-size); + border: var(--jp-border-width) solid transparent; + + /* Right align prompt text, don't wrap to handle large prompt numbers */ + text-align: right; + white-space: nowrap; + overflow: hidden; + text-overflow: ellipsis; + + /* Disable text selection */ + -webkit-user-select: none; + -moz-user-select: none; + -ms-user-select: none; + user-select: none; +} + +/*----------------------------------------------------------------------------- +| Mobile +|----------------------------------------------------------------------------*/ +@media only screen and (max-width: 760px) { + .jp-InputArea-editor { + display: table-row; + margin-left: var(--jp-notebook-padding); + } + + .jp-InputPrompt { + display: table-row; + text-align: left; + } +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/*----------------------------------------------------------------------------- +| Placeholder +|----------------------------------------------------------------------------*/ + +.jp-Placeholder { + display: table; + table-layout: fixed; + width: 100%; +} + +.jp-Placeholder-prompt { + display: table-cell; + box-sizing: border-box; +} + +.jp-Placeholder-content { + display: table-cell; + padding: 4px 6px; + border: 1px solid transparent; + border-radius: 0; + background: none; + box-sizing: border-box; + cursor: pointer; +} + +.jp-Placeholder-contentContainer { + display: flex; +} + +.jp-Placeholder-content:hover, +.jp-InputPlaceholder > .jp-Placeholder-content:hover { + border-color: var(--jp-layout-color3); +} + +.jp-Placeholder-content .jp-MoreHorizIcon { + width: 32px; + height: 16px; + border: 1px solid transparent; + border-radius: var(--jp-border-radius); +} + +.jp-Placeholder-content .jp-MoreHorizIcon:hover { + border: 1px solid var(--jp-border-color1); + box-shadow: 0 0 2px 0 rgba(0, 0, 0, 0.25); + background-color: var(--jp-layout-color0); +} + +.jp-PlaceholderText { + white-space: nowrap; + overflow-x: hidden; + color: var(--jp-inverse-layout-color3); + font-family: var(--jp-code-font-family); +} + +.jp-InputPlaceholder > .jp-Placeholder-content { + border-color: var(--jp-cell-editor-border-color); + background: var(--jp-cell-editor-background); +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/*----------------------------------------------------------------------------- +| Private CSS variables +|----------------------------------------------------------------------------*/ + +:root { + --jp-private-cell-scrolling-output-offset: 5px; +} + +/*----------------------------------------------------------------------------- +| Cell +|----------------------------------------------------------------------------*/ + +.jp-Cell { + padding: var(--jp-cell-padding); + margin: 0; + border: none; + outline: none; + background: transparent; +} + +/*----------------------------------------------------------------------------- +| Common input/output +|----------------------------------------------------------------------------*/ + +.jp-Cell-inputWrapper, +.jp-Cell-outputWrapper { + display: flex; + flex-direction: row; + padding: 0; + margin: 0; + + /* Added to reveal the box-shadow on the input and output collapsers. */ + overflow: visible; +} + +/* Only input/output areas inside cells */ +.jp-Cell-inputArea, +.jp-Cell-outputArea { + flex: 1 1 auto; +} + +/*----------------------------------------------------------------------------- +| Collapser +|----------------------------------------------------------------------------*/ + +/* Make the output collapser disappear when there is not output, but do so + * in a manner that leaves it in the layout and preserves its width. + */ +.jp-Cell.jp-mod-noOutputs .jp-Cell-outputCollapser { + border: none !important; + background: transparent !important; +} + +.jp-Cell:not(.jp-mod-noOutputs) .jp-Cell-outputCollapser { + min-height: var(--jp-cell-collapser-min-height); +} + +/*----------------------------------------------------------------------------- +| Output +|----------------------------------------------------------------------------*/ + +/* Put a space between input and output when there IS output */ +.jp-Cell:not(.jp-mod-noOutputs) .jp-Cell-outputWrapper { + margin-top: 5px; +} + +.jp-CodeCell.jp-mod-outputsScrolled .jp-Cell-outputArea { + overflow-y: auto; + max-height: 24em; + margin-left: var(--jp-private-cell-scrolling-output-offset); + resize: vertical; +} + +.jp-CodeCell.jp-mod-outputsScrolled .jp-Cell-outputArea[style*='height'] { + max-height: unset; +} + +.jp-CodeCell.jp-mod-outputsScrolled .jp-Cell-outputArea::after { + content: ' '; + box-shadow: inset 0 0 6px 2px rgb(0 0 0 / 30%); + width: 100%; + height: 100%; + position: sticky; + bottom: 0; + top: 0; + margin-top: -50%; + float: left; + display: block; + pointer-events: none; +} + +.jp-CodeCell.jp-mod-outputsScrolled .jp-OutputArea-child { + padding-top: 6px; +} + +.jp-CodeCell.jp-mod-outputsScrolled .jp-OutputArea-prompt { + width: calc( + var(--jp-cell-prompt-width) - var(--jp-private-cell-scrolling-output-offset) + ); +} + +.jp-CodeCell.jp-mod-outputsScrolled .jp-OutputArea-promptOverlay { + left: calc(-1 * var(--jp-private-cell-scrolling-output-offset)); +} + +/*----------------------------------------------------------------------------- +| CodeCell +|----------------------------------------------------------------------------*/ + +/*----------------------------------------------------------------------------- +| MarkdownCell +|----------------------------------------------------------------------------*/ + +.jp-MarkdownOutput { + display: table-cell; + width: 100%; + margin-top: 0; + margin-bottom: 0; + padding-left: var(--jp-code-padding); +} + +.jp-MarkdownOutput.jp-RenderedHTMLCommon { + overflow: auto; +} + +/* collapseHeadingButton (show always if hiddenCellsButton is _not_ shown) */ +.jp-collapseHeadingButton { + display: flex; + min-height: var(--jp-cell-collapser-min-height); + font-size: var(--jp-code-font-size); + position: absolute; + background-color: transparent; + background-size: 25px; + background-repeat: no-repeat; + background-position-x: center; + background-position-y: top; + background-image: var(--jp-icon-caret-down); + right: 0; + top: 0; + bottom: 0; +} + +.jp-collapseHeadingButton.jp-mod-collapsed { + background-image: var(--jp-icon-caret-right); +} + +/* + set the container font size to match that of content + so that the nested collapse buttons have the right size +*/ +.jp-MarkdownCell .jp-InputPrompt { + font-size: var(--jp-content-font-size1); +} + +/* + Align collapseHeadingButton with cell top header + The font sizes are identical to the ones in packages/rendermime/style/base.css +*/ +.jp-mod-rendered .jp-collapseHeadingButton[data-heading-level='1'] { + font-size: var(--jp-content-font-size5); + background-position-y: calc(0.3 * var(--jp-content-font-size5)); +} + +.jp-mod-rendered .jp-collapseHeadingButton[data-heading-level='2'] { + font-size: var(--jp-content-font-size4); + background-position-y: calc(0.3 * var(--jp-content-font-size4)); +} + +.jp-mod-rendered .jp-collapseHeadingButton[data-heading-level='3'] { + font-size: var(--jp-content-font-size3); + background-position-y: calc(0.3 * var(--jp-content-font-size3)); +} + +.jp-mod-rendered .jp-collapseHeadingButton[data-heading-level='4'] { + font-size: var(--jp-content-font-size2); + background-position-y: calc(0.3 * var(--jp-content-font-size2)); +} + +.jp-mod-rendered .jp-collapseHeadingButton[data-heading-level='5'] { + font-size: var(--jp-content-font-size1); + background-position-y: top; +} + +.jp-mod-rendered .jp-collapseHeadingButton[data-heading-level='6'] { + font-size: var(--jp-content-font-size0); + background-position-y: top; +} + +/* collapseHeadingButton (show only on (hover,active) if hiddenCellsButton is shown) */ +.jp-Notebook.jp-mod-showHiddenCellsButton .jp-collapseHeadingButton { + display: none; +} + +.jp-Notebook.jp-mod-showHiddenCellsButton + :is(.jp-MarkdownCell:hover, .jp-mod-active) + .jp-collapseHeadingButton { + display: flex; +} + +/* showHiddenCellsButton (only show if jp-mod-showHiddenCellsButton is set, which +is a consequence of the showHiddenCellsButton option in Notebook Settings)*/ +.jp-Notebook.jp-mod-showHiddenCellsButton .jp-showHiddenCellsButton { + margin-left: calc(var(--jp-cell-prompt-width) + 2 * var(--jp-code-padding)); + margin-top: var(--jp-code-padding); + border: 1px solid var(--jp-border-color2); + background-color: var(--jp-border-color3) !important; + color: var(--jp-content-font-color0) !important; + display: flex; +} + +.jp-Notebook.jp-mod-showHiddenCellsButton .jp-showHiddenCellsButton:hover { + background-color: var(--jp-border-color2) !important; +} + +.jp-showHiddenCellsButton { + display: none; +} + +/*----------------------------------------------------------------------------- +| Printing +|----------------------------------------------------------------------------*/ + +/* +Using block instead of flex to allow the use of the break-inside CSS property for +cell outputs. +*/ + +@media print { + .jp-Cell-inputWrapper, + .jp-Cell-outputWrapper { + display: block; + } +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/*----------------------------------------------------------------------------- +| Variables +|----------------------------------------------------------------------------*/ + +:root { + --jp-notebook-toolbar-padding: 2px 5px 2px 2px; +} + +/*----------------------------------------------------------------------------- + +/*----------------------------------------------------------------------------- +| Styles +|----------------------------------------------------------------------------*/ + +.jp-NotebookPanel-toolbar { + padding: var(--jp-notebook-toolbar-padding); + + /* disable paint containment from lumino 2.0 default strict CSS containment */ + contain: style size !important; +} + +.jp-Toolbar-item.jp-Notebook-toolbarCellType .jp-select-wrapper.jp-mod-focused { + border: none; + box-shadow: none; +} + +.jp-Notebook-toolbarCellTypeDropdown select { + height: 24px; + font-size: var(--jp-ui-font-size1); + line-height: 14px; + border-radius: 0; + display: block; +} + +.jp-Notebook-toolbarCellTypeDropdown span { + top: 5px !important; +} + +.jp-Toolbar-responsive-popup { + position: absolute; + height: fit-content; + display: flex; + flex-direction: row; + flex-wrap: wrap; + justify-content: flex-end; + border-bottom: var(--jp-border-width) solid var(--jp-toolbar-border-color); + box-shadow: var(--jp-toolbar-box-shadow); + background: var(--jp-toolbar-background); + min-height: var(--jp-toolbar-micro-height); + padding: var(--jp-notebook-toolbar-padding); + z-index: 1; + right: 0; + top: 0; +} + +.jp-Toolbar > .jp-Toolbar-responsive-opener { + margin-left: auto; +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/*----------------------------------------------------------------------------- +| Variables +|----------------------------------------------------------------------------*/ + +/*----------------------------------------------------------------------------- + +/*----------------------------------------------------------------------------- +| Styles +|----------------------------------------------------------------------------*/ + +.jp-Notebook-ExecutionIndicator { + position: relative; + display: inline-block; + height: 100%; + z-index: 9997; +} + +.jp-Notebook-ExecutionIndicator-tooltip { + visibility: hidden; + height: auto; + width: max-content; + width: -moz-max-content; + background-color: var(--jp-layout-color2); + color: var(--jp-ui-font-color1); + text-align: justify; + border-radius: 6px; + padding: 0 5px; + position: fixed; + display: table; +} + +.jp-Notebook-ExecutionIndicator-tooltip.up { + transform: translateX(-50%) translateY(-100%) translateY(-32px); +} + +.jp-Notebook-ExecutionIndicator-tooltip.down { + transform: translateX(calc(-100% + 16px)) translateY(5px); +} + +.jp-Notebook-ExecutionIndicator-tooltip.hidden { + display: none; +} + +.jp-Notebook-ExecutionIndicator:hover .jp-Notebook-ExecutionIndicator-tooltip { + visibility: visible; +} + +.jp-Notebook-ExecutionIndicator span { + font-size: var(--jp-ui-font-size1); + font-family: var(--jp-ui-font-family); + color: var(--jp-ui-font-color1); + line-height: 24px; + display: block; +} + +.jp-Notebook-ExecutionIndicator-progress-bar { + display: flex; + justify-content: center; + height: 100%; +} + +/* + * Copyright (c) Jupyter Development Team. + * Distributed under the terms of the Modified BSD License. + */ + +/* + * Execution indicator + */ +.jp-tocItem-content::after { + content: ''; + + /* Must be identical to form a circle */ + width: 12px; + height: 12px; + background: none; + border: none; + position: absolute; + right: 0; +} + +.jp-tocItem-content[data-running='0']::after { + border-radius: 50%; + border: var(--jp-border-width) solid var(--jp-inverse-layout-color3); + background: none; +} + +.jp-tocItem-content[data-running='1']::after { + border-radius: 50%; + border: var(--jp-border-width) solid var(--jp-inverse-layout-color3); + background-color: var(--jp-inverse-layout-color3); +} + +.jp-tocItem-content[data-running='0'], +.jp-tocItem-content[data-running='1'] { + margin-right: 12px; +} + +/* + * Copyright (c) Jupyter Development Team. + * Distributed under the terms of the Modified BSD License. + */ + +.jp-Notebook-footer { + height: 27px; + margin-left: calc( + var(--jp-cell-prompt-width) + var(--jp-cell-collapser-width) + + var(--jp-cell-padding) + ); + width: calc( + 100% - + ( + var(--jp-cell-prompt-width) + var(--jp-cell-collapser-width) + + var(--jp-cell-padding) + var(--jp-cell-padding) + ) + ); + border: var(--jp-border-width) solid var(--jp-cell-editor-border-color); + color: var(--jp-ui-font-color3); + margin-top: 6px; + background: none; + cursor: pointer; +} + +.jp-Notebook-footer:focus { + border-color: var(--jp-cell-editor-active-border-color); +} + +/* For devices that support hovering, hide footer until hover */ +@media (hover: hover) { + .jp-Notebook-footer { + opacity: 0; + } + + .jp-Notebook-footer:focus, + .jp-Notebook-footer:hover { + opacity: 1; + } +} + +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/*----------------------------------------------------------------------------- +| Imports +|----------------------------------------------------------------------------*/ + +/*----------------------------------------------------------------------------- +| CSS variables +|----------------------------------------------------------------------------*/ + +:root { + --jp-side-by-side-output-size: 1fr; + --jp-side-by-side-resized-cell: var(--jp-side-by-side-output-size); + --jp-private-notebook-dragImage-width: 304px; + --jp-private-notebook-dragImage-height: 36px; + --jp-private-notebook-selected-color: var(--md-blue-400); + --jp-private-notebook-active-color: var(--md-green-400); +} + +/*----------------------------------------------------------------------------- +| Notebook +|----------------------------------------------------------------------------*/ + +/* stylelint-disable selector-max-class */ + +.jp-NotebookPanel { + display: block; + height: 100%; +} + +.jp-NotebookPanel.jp-Document { + min-width: 240px; + min-height: 120px; +} + +.jp-Notebook { + padding: var(--jp-notebook-padding); + outline: none; + overflow: auto; + background: var(--jp-layout-color0); +} + +.jp-Notebook.jp-mod-scrollPastEnd::after { + display: block; + content: ''; + min-height: var(--jp-notebook-scroll-padding); +} + +.jp-MainAreaWidget-ContainStrict .jp-Notebook * { + contain: strict; +} + +.jp-Notebook .jp-Cell { + overflow: visible; +} + +.jp-Notebook .jp-Cell .jp-InputPrompt { + cursor: move; +} + +/*----------------------------------------------------------------------------- +| Notebook state related styling +| +| The notebook and cells each have states, here are the possibilities: +| +| - Notebook +| - Command +| - Edit +| - Cell +| - None +| - Active (only one can be active) +| - Selected (the cells actions are applied to) +| - Multiselected (when multiple selected, the cursor) +| - No outputs +|----------------------------------------------------------------------------*/ + +/* Command or edit modes */ + +.jp-Notebook .jp-Cell:not(.jp-mod-active) .jp-InputPrompt { + opacity: var(--jp-cell-prompt-not-active-opacity); + color: var(--jp-cell-prompt-not-active-font-color); +} + +.jp-Notebook .jp-Cell:not(.jp-mod-active) .jp-OutputPrompt { + opacity: var(--jp-cell-prompt-not-active-opacity); + color: var(--jp-cell-prompt-not-active-font-color); +} + +/* cell is active */ +.jp-Notebook .jp-Cell.jp-mod-active .jp-Collapser { + background: var(--jp-brand-color1); +} + +/* cell is dirty */ +.jp-Notebook .jp-Cell.jp-mod-dirty .jp-InputPrompt { + color: var(--jp-warn-color1); +} + +.jp-Notebook .jp-Cell.jp-mod-dirty .jp-InputPrompt::before { + color: var(--jp-warn-color1); + content: '•'; +} + +.jp-Notebook .jp-Cell.jp-mod-active.jp-mod-dirty .jp-Collapser { + background: var(--jp-warn-color1); +} + +/* collapser is hovered */ +.jp-Notebook .jp-Cell .jp-Collapser:hover { + box-shadow: var(--jp-elevation-z2); + background: var(--jp-brand-color1); + opacity: var(--jp-cell-collapser-not-active-hover-opacity); +} + +/* cell is active and collapser is hovered */ +.jp-Notebook .jp-Cell.jp-mod-active .jp-Collapser:hover { + background: var(--jp-brand-color0); + opacity: 1; +} + +/* Command mode */ + +.jp-Notebook.jp-mod-commandMode .jp-Cell.jp-mod-selected { + background: var(--jp-notebook-multiselected-color); +} + +.jp-Notebook.jp-mod-commandMode + .jp-Cell.jp-mod-active.jp-mod-selected:not(.jp-mod-multiSelected) { + background: transparent; +} + +/* Edit mode */ + +.jp-Notebook.jp-mod-editMode .jp-Cell.jp-mod-active .jp-InputArea-editor { + border: var(--jp-border-width) solid var(--jp-cell-editor-active-border-color); + box-shadow: var(--jp-input-box-shadow); + background-color: var(--jp-cell-editor-active-background); +} + +/*----------------------------------------------------------------------------- +| Notebook drag and drop +|----------------------------------------------------------------------------*/ + +.jp-Notebook-cell.jp-mod-dropSource { + opacity: 0.5; +} + +.jp-Notebook-cell.jp-mod-dropTarget, +.jp-Notebook.jp-mod-commandMode + .jp-Notebook-cell.jp-mod-active.jp-mod-selected.jp-mod-dropTarget { + border-top-color: var(--jp-private-notebook-selected-color); + border-top-style: solid; + border-top-width: 2px; +} + +.jp-dragImage { + display: block; + flex-direction: row; + width: var(--jp-private-notebook-dragImage-width); + height: var(--jp-private-notebook-dragImage-height); + border: var(--jp-border-width) solid var(--jp-cell-editor-border-color); + background: var(--jp-cell-editor-background); + overflow: visible; +} + +.jp-dragImage-singlePrompt { + box-shadow: 2px 2px 4px 0 rgba(0, 0, 0, 0.12); +} + +.jp-dragImage .jp-dragImage-content { + flex: 1 1 auto; + z-index: 2; + font-size: var(--jp-code-font-size); + font-family: var(--jp-code-font-family); + line-height: var(--jp-code-line-height); + padding: var(--jp-code-padding); + border: var(--jp-border-width) solid var(--jp-cell-editor-border-color); + background: var(--jp-cell-editor-background-color); + color: var(--jp-content-font-color3); + text-align: left; + margin: 4px 4px 4px 0; +} + +.jp-dragImage .jp-dragImage-prompt { + flex: 0 0 auto; + min-width: 36px; + color: var(--jp-cell-inprompt-font-color); + padding: var(--jp-code-padding); + padding-left: 12px; + font-family: var(--jp-cell-prompt-font-family); + letter-spacing: var(--jp-cell-prompt-letter-spacing); + line-height: 1.9; + font-size: var(--jp-code-font-size); + border: var(--jp-border-width) solid transparent; +} + +.jp-dragImage-multipleBack { + z-index: -1; + position: absolute; + height: 32px; + width: 300px; + top: 8px; + left: 8px; + background: var(--jp-layout-color2); + border: var(--jp-border-width) solid var(--jp-input-border-color); + box-shadow: 2px 2px 4px 0 rgba(0, 0, 0, 0.12); +} + +/*----------------------------------------------------------------------------- +| Cell toolbar +|----------------------------------------------------------------------------*/ + +.jp-NotebookTools { + display: block; + min-width: var(--jp-sidebar-min-width); + color: var(--jp-ui-font-color1); + background: var(--jp-layout-color1); + + /* This is needed so that all font sizing of children done in ems is + * relative to this base size */ + font-size: var(--jp-ui-font-size1); + overflow: auto; +} + +.jp-ActiveCellTool { + padding: 12px 0; + display: flex; +} + +.jp-ActiveCellTool-Content { + flex: 1 1 auto; +} + +.jp-ActiveCellTool .jp-ActiveCellTool-CellContent { + background: var(--jp-cell-editor-background); + border: var(--jp-border-width) solid var(--jp-cell-editor-border-color); + border-radius: 0; + min-height: 29px; +} + +.jp-ActiveCellTool .jp-InputPrompt { + min-width: calc(var(--jp-cell-prompt-width) * 0.75); +} + +.jp-ActiveCellTool-CellContent > pre { + padding: 5px 4px; + margin: 0; + white-space: normal; +} + +.jp-MetadataEditorTool { + flex-direction: column; + padding: 12px 0; +} + +.jp-RankedPanel > :not(:first-child) { + margin-top: 12px; +} + +.jp-KeySelector select.jp-mod-styled { + font-size: var(--jp-ui-font-size1); + color: var(--jp-ui-font-color0); + border: var(--jp-border-width) solid var(--jp-border-color1); +} + +.jp-KeySelector label, +.jp-MetadataEditorTool label, +.jp-NumberSetter label { + line-height: 1.4; +} + +.jp-NotebookTools .jp-select-wrapper { + margin-top: 4px; + margin-bottom: 0; +} + +.jp-NumberSetter input { + width: 100%; + margin-top: 4px; +} + +.jp-NotebookTools .jp-Collapse { + margin-top: 16px; +} + +/*----------------------------------------------------------------------------- +| Presentation Mode (.jp-mod-presentationMode) +|----------------------------------------------------------------------------*/ + +.jp-mod-presentationMode .jp-Notebook { + --jp-content-font-size1: var(--jp-content-presentation-font-size1); + --jp-code-font-size: var(--jp-code-presentation-font-size); +} + +.jp-mod-presentationMode .jp-Notebook .jp-Cell .jp-InputPrompt, +.jp-mod-presentationMode .jp-Notebook .jp-Cell .jp-OutputPrompt { + flex: 0 0 110px; +} + +/*----------------------------------------------------------------------------- +| Side-by-side Mode (.jp-mod-sideBySide) +|----------------------------------------------------------------------------*/ +.jp-mod-sideBySide.jp-Notebook .jp-Notebook-cell { + margin-top: 3em; + margin-bottom: 3em; + margin-left: 5%; + margin-right: 5%; +} + +.jp-mod-sideBySide.jp-Notebook .jp-CodeCell { + display: grid; + grid-template-columns: minmax(0, 1fr) min-content minmax( + 0, + var(--jp-side-by-side-output-size) + ); + grid-template-rows: auto minmax(0, 1fr) auto; + grid-template-areas: + 'header header header' + 'input handle output' + 'footer footer footer'; +} + +.jp-mod-sideBySide.jp-Notebook .jp-CodeCell.jp-mod-resizedCell { + grid-template-columns: minmax(0, 1fr) min-content minmax( + 0, + var(--jp-side-by-side-resized-cell) + ); +} + +.jp-mod-sideBySide.jp-Notebook .jp-CodeCell .jp-CellHeader { + grid-area: header; +} + +.jp-mod-sideBySide.jp-Notebook .jp-CodeCell .jp-Cell-inputWrapper { + grid-area: input; +} + +.jp-mod-sideBySide.jp-Notebook .jp-CodeCell .jp-Cell-outputWrapper { + /* overwrite the default margin (no vertical separation needed in side by side move */ + margin-top: 0; + grid-area: output; +} + +.jp-mod-sideBySide.jp-Notebook .jp-CodeCell .jp-CellFooter { + grid-area: footer; +} + +.jp-mod-sideBySide.jp-Notebook .jp-CodeCell .jp-CellResizeHandle { + grid-area: handle; + user-select: none; + display: block; + height: 100%; + cursor: ew-resize; + padding: 0 var(--jp-cell-padding); +} + +.jp-mod-sideBySide.jp-Notebook .jp-CodeCell .jp-CellResizeHandle::after { + content: ''; + display: block; + background: var(--jp-border-color2); + height: 100%; + width: 5px; +} + +.jp-mod-sideBySide.jp-Notebook + .jp-CodeCell.jp-mod-resizedCell + .jp-CellResizeHandle::after { + background: var(--jp-border-color0); +} + +.jp-CellResizeHandle { + display: none; +} + +/*----------------------------------------------------------------------------- +| Placeholder +|----------------------------------------------------------------------------*/ + +.jp-Cell-Placeholder { + padding-left: 55px; +} + +.jp-Cell-Placeholder-wrapper { + background: #fff; + border: 1px solid; + border-color: #e5e6e9 #dfe0e4 #d0d1d5; + border-radius: 4px; + -webkit-border-radius: 4px; + margin: 10px 15px; +} + +.jp-Cell-Placeholder-wrapper-inner { + padding: 15px; + position: relative; +} + +.jp-Cell-Placeholder-wrapper-body { + background-repeat: repeat; + background-size: 50% auto; +} + +.jp-Cell-Placeholder-wrapper-body div { + background: #f6f7f8; + background-image: -webkit-linear-gradient( + left, + #f6f7f8 0%, + #edeef1 20%, + #f6f7f8 40%, + #f6f7f8 100% + ); + background-repeat: no-repeat; + background-size: 800px 104px; + height: 104px; + position: absolute; + right: 15px; + left: 15px; + top: 15px; +} + +div.jp-Cell-Placeholder-h1 { + top: 20px; + height: 20px; + left: 15px; + width: 150px; +} + +div.jp-Cell-Placeholder-h2 { + left: 15px; + top: 50px; + height: 10px; + width: 100px; +} + +div.jp-Cell-Placeholder-content-1, +div.jp-Cell-Placeholder-content-2, +div.jp-Cell-Placeholder-content-3 { + left: 15px; + right: 15px; + height: 10px; +} + +div.jp-Cell-Placeholder-content-1 { + top: 100px; +} + +div.jp-Cell-Placeholder-content-2 { + top: 120px; +} + +div.jp-Cell-Placeholder-content-3 { + top: 140px; +} + +</style> +<style type="text/css"> +/*----------------------------------------------------------------------------- +| Copyright (c) Jupyter Development Team. +| Distributed under the terms of the Modified BSD License. +|----------------------------------------------------------------------------*/ + +/* +The following CSS variables define the main, public API for styling JupyterLab. +These variables should be used by all plugins wherever possible. In other +words, plugins should not define custom colors, sizes, etc unless absolutely +necessary. This enables users to change the visual theme of JupyterLab +by changing these variables. + +Many variables appear in an ordered sequence (0,1,2,3). These sequences +are designed to work well together, so for example, `--jp-border-color1` should +be used with `--jp-layout-color1`. The numbers have the following meanings: + +* 0: super-primary, reserved for special emphasis +* 1: primary, most important under normal situations +* 2: secondary, next most important under normal situations +* 3: tertiary, next most important under normal situations + +Throughout JupyterLab, we are mostly following principles from Google's +Material Design when selecting colors. We are not, however, following +all of MD as it is not optimized for dense, information rich UIs. +*/ + +:root { + /* Elevation + * + * We style box-shadows using Material Design's idea of elevation. These particular numbers are taken from here: + * + * https://github.com/material-components/material-components-web + * https://material-components-web.appspot.com/elevation.html + */ + + --jp-shadow-base-lightness: 0; + --jp-shadow-umbra-color: rgba( + var(--jp-shadow-base-lightness), + var(--jp-shadow-base-lightness), + var(--jp-shadow-base-lightness), + 0.2 + ); + --jp-shadow-penumbra-color: rgba( + var(--jp-shadow-base-lightness), + var(--jp-shadow-base-lightness), + var(--jp-shadow-base-lightness), + 0.14 + ); + --jp-shadow-ambient-color: rgba( + var(--jp-shadow-base-lightness), + var(--jp-shadow-base-lightness), + var(--jp-shadow-base-lightness), + 0.12 + ); + --jp-elevation-z0: none; + --jp-elevation-z1: 0 2px 1px -1px var(--jp-shadow-umbra-color), + 0 1px 1px 0 var(--jp-shadow-penumbra-color), + 0 1px 3px 0 var(--jp-shadow-ambient-color); + --jp-elevation-z2: 0 3px 1px -2px var(--jp-shadow-umbra-color), + 0 2px 2px 0 var(--jp-shadow-penumbra-color), + 0 1px 5px 0 var(--jp-shadow-ambient-color); + --jp-elevation-z4: 0 2px 4px -1px var(--jp-shadow-umbra-color), + 0 4px 5px 0 var(--jp-shadow-penumbra-color), + 0 1px 10px 0 var(--jp-shadow-ambient-color); + --jp-elevation-z6: 0 3px 5px -1px var(--jp-shadow-umbra-color), + 0 6px 10px 0 var(--jp-shadow-penumbra-color), + 0 1px 18px 0 var(--jp-shadow-ambient-color); + --jp-elevation-z8: 0 5px 5px -3px var(--jp-shadow-umbra-color), + 0 8px 10px 1px var(--jp-shadow-penumbra-color), + 0 3px 14px 2px var(--jp-shadow-ambient-color); + --jp-elevation-z12: 0 7px 8px -4px var(--jp-shadow-umbra-color), + 0 12px 17px 2px var(--jp-shadow-penumbra-color), + 0 5px 22px 4px var(--jp-shadow-ambient-color); + --jp-elevation-z16: 0 8px 10px -5px var(--jp-shadow-umbra-color), + 0 16px 24px 2px var(--jp-shadow-penumbra-color), + 0 6px 30px 5px var(--jp-shadow-ambient-color); + --jp-elevation-z20: 0 10px 13px -6px var(--jp-shadow-umbra-color), + 0 20px 31px 3px var(--jp-shadow-penumbra-color), + 0 8px 38px 7px var(--jp-shadow-ambient-color); + --jp-elevation-z24: 0 11px 15px -7px var(--jp-shadow-umbra-color), + 0 24px 38px 3px var(--jp-shadow-penumbra-color), + 0 9px 46px 8px var(--jp-shadow-ambient-color); + + /* Borders + * + * The following variables, specify the visual styling of borders in JupyterLab. + */ + + --jp-border-width: 1px; + --jp-border-color0: var(--md-grey-400); + --jp-border-color1: var(--md-grey-400); + --jp-border-color2: var(--md-grey-300); + --jp-border-color3: var(--md-grey-200); + --jp-inverse-border-color: var(--md-grey-600); + --jp-border-radius: 2px; + + /* UI Fonts + * + * The UI font CSS variables are used for the typography all of the JupyterLab + * user interface elements that are not directly user generated content. + * + * The font sizing here is done assuming that the body font size of --jp-ui-font-size1 + * is applied to a parent element. When children elements, such as headings, are sized + * in em all things will be computed relative to that body size. + */ + + --jp-ui-font-scale-factor: 1.2; + --jp-ui-font-size0: 0.83333em; + --jp-ui-font-size1: 13px; /* Base font size */ + --jp-ui-font-size2: 1.2em; + --jp-ui-font-size3: 1.44em; + --jp-ui-font-family: system-ui, -apple-system, blinkmacsystemfont, 'Segoe UI', + helvetica, arial, sans-serif, 'Apple Color Emoji', 'Segoe UI Emoji', + 'Segoe UI Symbol'; + + /* + * Use these font colors against the corresponding main layout colors. + * In a light theme, these go from dark to light. + */ + + /* Defaults use Material Design specification */ + --jp-ui-font-color0: rgba(0, 0, 0, 1); + --jp-ui-font-color1: rgba(0, 0, 0, 0.87); + --jp-ui-font-color2: rgba(0, 0, 0, 0.54); + --jp-ui-font-color3: rgba(0, 0, 0, 0.38); + + /* + * Use these against the brand/accent/warn/error colors. + * These will typically go from light to darker, in both a dark and light theme. + */ + + --jp-ui-inverse-font-color0: rgba(255, 255, 255, 1); + --jp-ui-inverse-font-color1: rgba(255, 255, 255, 1); + --jp-ui-inverse-font-color2: rgba(255, 255, 255, 0.7); + --jp-ui-inverse-font-color3: rgba(255, 255, 255, 0.5); + + /* Content Fonts + * + * Content font variables are used for typography of user generated content. + * + * The font sizing here is done assuming that the body font size of --jp-content-font-size1 + * is applied to a parent element. When children elements, such as headings, are sized + * in em all things will be computed relative to that body size. + */ + + --jp-content-line-height: 1.6; + --jp-content-font-scale-factor: 1.2; + --jp-content-font-size0: 0.83333em; + --jp-content-font-size1: 14px; /* Base font size */ + --jp-content-font-size2: 1.2em; + --jp-content-font-size3: 1.44em; + --jp-content-font-size4: 1.728em; + --jp-content-font-size5: 2.0736em; + + /* This gives a magnification of about 125% in presentation mode over normal. */ + --jp-content-presentation-font-size1: 17px; + --jp-content-heading-line-height: 1; + --jp-content-heading-margin-top: 1.2em; + --jp-content-heading-margin-bottom: 0.8em; + --jp-content-heading-font-weight: 500; + + /* Defaults use Material Design specification */ + --jp-content-font-color0: rgba(0, 0, 0, 1); + --jp-content-font-color1: rgba(0, 0, 0, 0.87); + --jp-content-font-color2: rgba(0, 0, 0, 0.54); + --jp-content-font-color3: rgba(0, 0, 0, 0.38); + --jp-content-link-color: var(--md-blue-900); + --jp-content-font-family: system-ui, -apple-system, blinkmacsystemfont, + 'Segoe UI', helvetica, arial, sans-serif, 'Apple Color Emoji', + 'Segoe UI Emoji', 'Segoe UI Symbol'; + + /* + * Code Fonts + * + * Code font variables are used for typography of code and other monospaces content. + */ + + --jp-code-font-size: 13px; + --jp-code-line-height: 1.3077; /* 17px for 13px base */ + --jp-code-padding: 5px; /* 5px for 13px base, codemirror highlighting needs integer px value */ + --jp-code-font-family-default: menlo, consolas, 'DejaVu Sans Mono', monospace; + --jp-code-font-family: var(--jp-code-font-family-default); + + /* This gives a magnification of about 125% in presentation mode over normal. */ + --jp-code-presentation-font-size: 16px; + + /* may need to tweak cursor width if you change font size */ + --jp-code-cursor-width0: 1.4px; + --jp-code-cursor-width1: 2px; + --jp-code-cursor-width2: 4px; + + /* Layout + * + * The following are the main layout colors use in JupyterLab. In a light + * theme these would go from light to dark. + */ + + --jp-layout-color0: white; + --jp-layout-color1: white; + --jp-layout-color2: var(--md-grey-200); + --jp-layout-color3: var(--md-grey-400); + --jp-layout-color4: var(--md-grey-600); + + /* Inverse Layout + * + * The following are the inverse layout colors use in JupyterLab. In a light + * theme these would go from dark to light. + */ + + --jp-inverse-layout-color0: #111; + --jp-inverse-layout-color1: var(--md-grey-900); + --jp-inverse-layout-color2: var(--md-grey-800); + --jp-inverse-layout-color3: var(--md-grey-700); + --jp-inverse-layout-color4: var(--md-grey-600); + + /* Brand/accent */ + + --jp-brand-color0: var(--md-blue-900); + --jp-brand-color1: var(--md-blue-700); + --jp-brand-color2: var(--md-blue-300); + --jp-brand-color3: var(--md-blue-100); + --jp-brand-color4: var(--md-blue-50); + --jp-accent-color0: var(--md-green-900); + --jp-accent-color1: var(--md-green-700); + --jp-accent-color2: var(--md-green-300); + --jp-accent-color3: var(--md-green-100); + + /* State colors (warn, error, success, info) */ + + --jp-warn-color0: var(--md-orange-900); + --jp-warn-color1: var(--md-orange-700); + --jp-warn-color2: var(--md-orange-300); + --jp-warn-color3: var(--md-orange-100); + --jp-error-color0: var(--md-red-900); + --jp-error-color1: var(--md-red-700); + --jp-error-color2: var(--md-red-300); + --jp-error-color3: var(--md-red-100); + --jp-success-color0: var(--md-green-900); + --jp-success-color1: var(--md-green-700); + --jp-success-color2: var(--md-green-300); + --jp-success-color3: var(--md-green-100); + --jp-info-color0: var(--md-cyan-900); + --jp-info-color1: var(--md-cyan-700); + --jp-info-color2: var(--md-cyan-300); + --jp-info-color3: var(--md-cyan-100); + + /* Cell specific styles */ + + --jp-cell-padding: 5px; + --jp-cell-collapser-width: 8px; + --jp-cell-collapser-min-height: 20px; + --jp-cell-collapser-not-active-hover-opacity: 0.6; + --jp-cell-editor-background: var(--md-grey-100); + --jp-cell-editor-border-color: var(--md-grey-300); + --jp-cell-editor-box-shadow: inset 0 0 2px var(--md-blue-300); + --jp-cell-editor-active-background: var(--jp-layout-color0); + --jp-cell-editor-active-border-color: var(--jp-brand-color1); + --jp-cell-prompt-width: 64px; + --jp-cell-prompt-font-family: var(--jp-code-font-family-default); + --jp-cell-prompt-letter-spacing: 0; + --jp-cell-prompt-opacity: 1; + --jp-cell-prompt-not-active-opacity: 0.5; + --jp-cell-prompt-not-active-font-color: var(--md-grey-700); + + /* A custom blend of MD grey and blue 600 + * See https://meyerweb.com/eric/tools/color-blend/#546E7A:1E88E5:5:hex */ + --jp-cell-inprompt-font-color: #307fc1; + + /* A custom blend of MD grey and orange 600 + * https://meyerweb.com/eric/tools/color-blend/#546E7A:F4511E:5:hex */ + --jp-cell-outprompt-font-color: #bf5b3d; + + /* Notebook specific styles */ + + --jp-notebook-padding: 10px; + --jp-notebook-select-background: var(--jp-layout-color1); + --jp-notebook-multiselected-color: var(--md-blue-50); + + /* The scroll padding is calculated to fill enough space at the bottom of the + notebook to show one single-line cell (with appropriate padding) at the top + when the notebook is scrolled all the way to the bottom. We also subtract one + pixel so that no scrollbar appears if we have just one single-line cell in the + notebook. This padding is to enable a 'scroll past end' feature in a notebook. + */ + --jp-notebook-scroll-padding: calc( + 100% - var(--jp-code-font-size) * var(--jp-code-line-height) - + var(--jp-code-padding) - var(--jp-cell-padding) - 1px + ); + + /* Rendermime styles */ + + --jp-rendermime-error-background: #fdd; + --jp-rendermime-table-row-background: var(--md-grey-100); + --jp-rendermime-table-row-hover-background: var(--md-light-blue-50); + + /* Dialog specific styles */ + + --jp-dialog-background: rgba(0, 0, 0, 0.25); + + /* Console specific styles */ + + --jp-console-padding: 10px; + + /* Toolbar specific styles */ + + --jp-toolbar-border-color: var(--jp-border-color1); + --jp-toolbar-micro-height: 8px; + --jp-toolbar-background: var(--jp-layout-color1); + --jp-toolbar-box-shadow: 0 0 2px 0 rgba(0, 0, 0, 0.24); + --jp-toolbar-header-margin: 4px 4px 0 4px; + --jp-toolbar-active-background: var(--md-grey-300); + + /* Statusbar specific styles */ + + --jp-statusbar-height: 24px; + + /* Input field styles */ + + --jp-input-box-shadow: inset 0 0 2px var(--md-blue-300); + --jp-input-active-background: var(--jp-layout-color1); + --jp-input-hover-background: var(--jp-layout-color1); + --jp-input-background: var(--md-grey-100); + --jp-input-border-color: var(--jp-inverse-border-color); + --jp-input-active-border-color: var(--jp-brand-color1); + --jp-input-active-box-shadow-color: rgba(19, 124, 189, 0.3); + + /* General editor styles */ + + --jp-editor-selected-background: #d9d9d9; + --jp-editor-selected-focused-background: #d7d4f0; + --jp-editor-cursor-color: var(--jp-ui-font-color0); + + /* Code mirror specific styles */ + + --jp-mirror-editor-keyword-color: #008000; + --jp-mirror-editor-atom-color: #88f; + --jp-mirror-editor-number-color: #080; + --jp-mirror-editor-def-color: #00f; + --jp-mirror-editor-variable-color: var(--md-grey-900); + --jp-mirror-editor-variable-2-color: rgb(0, 54, 109); + --jp-mirror-editor-variable-3-color: #085; + --jp-mirror-editor-punctuation-color: #05a; + --jp-mirror-editor-property-color: #05a; + --jp-mirror-editor-operator-color: #a2f; + --jp-mirror-editor-comment-color: #408080; + --jp-mirror-editor-string-color: #ba2121; + --jp-mirror-editor-string-2-color: #708; + --jp-mirror-editor-meta-color: #a2f; + --jp-mirror-editor-qualifier-color: #555; + --jp-mirror-editor-builtin-color: #008000; + --jp-mirror-editor-bracket-color: #997; + --jp-mirror-editor-tag-color: #170; + --jp-mirror-editor-attribute-color: #00c; + --jp-mirror-editor-header-color: blue; + --jp-mirror-editor-quote-color: #090; + --jp-mirror-editor-link-color: #00c; + --jp-mirror-editor-error-color: #f00; + --jp-mirror-editor-hr-color: #999; + + /* + RTC user specific colors. + These colors are used for the cursor, username in the editor, + and the icon of the user. + */ + + --jp-collaborator-color1: #ffad8e; + --jp-collaborator-color2: #dac83d; + --jp-collaborator-color3: #72dd76; + --jp-collaborator-color4: #00e4d0; + --jp-collaborator-color5: #45d4ff; + --jp-collaborator-color6: #e2b1ff; + --jp-collaborator-color7: #ff9de6; + + /* Vega extension styles */ + + --jp-vega-background: white; + + /* Sidebar-related styles */ + + --jp-sidebar-min-width: 250px; + + /* Search-related styles */ + + --jp-search-toggle-off-opacity: 0.5; + --jp-search-toggle-hover-opacity: 0.8; + --jp-search-toggle-on-opacity: 1; + --jp-search-selected-match-background-color: rgb(245, 200, 0); + --jp-search-selected-match-color: black; + --jp-search-unselected-match-background-color: var( + --jp-inverse-layout-color0 + ); + --jp-search-unselected-match-color: var(--jp-ui-inverse-font-color0); + + /* Icon colors that work well with light or dark backgrounds */ + --jp-icon-contrast-color0: var(--md-purple-600); + --jp-icon-contrast-color1: var(--md-green-600); + --jp-icon-contrast-color2: var(--md-pink-600); + --jp-icon-contrast-color3: var(--md-blue-600); + + /* Button colors */ + --jp-accept-color-normal: var(--md-blue-700); + --jp-accept-color-hover: var(--md-blue-800); + --jp-accept-color-active: var(--md-blue-900); + --jp-warn-color-normal: var(--md-red-700); + --jp-warn-color-hover: var(--md-red-800); + --jp-warn-color-active: var(--md-red-900); + --jp-reject-color-normal: var(--md-grey-600); + --jp-reject-color-hover: var(--md-grey-700); + --jp-reject-color-active: var(--md-grey-800); + + /* File or activity icons and switch semantic variables */ + --jp-jupyter-icon-color: #f37626; + --jp-notebook-icon-color: #f37626; + --jp-json-icon-color: var(--md-orange-700); + --jp-console-icon-background-color: var(--md-blue-700); + --jp-console-icon-color: white; + --jp-terminal-icon-background-color: var(--md-grey-800); + --jp-terminal-icon-color: var(--md-grey-200); + --jp-text-editor-icon-color: var(--md-grey-700); + --jp-inspector-icon-color: var(--md-grey-700); + --jp-switch-color: var(--md-grey-400); + --jp-switch-true-position-color: var(--md-orange-900); +} +</style> +<style type="text/css"> +/* Force rendering true colors when outputing to pdf */ +* { + -webkit-print-color-adjust: exact; +} + +/* Misc */ +a.anchor-link { + display: none; +} + +/* Input area styling */ +.jp-InputArea { + overflow: hidden; +} + +.jp-InputArea-editor { + overflow: hidden; +} + +.cm-editor.cm-s-jupyter .highlight pre { +/* weird, but --jp-code-padding defined to be 5px but 4px horizontal padding is hardcoded for pre.cm-line */ + padding: var(--jp-code-padding) 4px; + margin: 0; + + font-family: inherit; + font-size: inherit; + line-height: inherit; + color: inherit; + +} + +.jp-OutputArea-output pre { + line-height: inherit; + font-family: inherit; +} + +.jp-RenderedText pre { + color: var(--jp-content-font-color1); + font-size: var(--jp-code-font-size); +} + +/* Hiding the collapser by default */ +.jp-Collapser { + display: none; +} + +@page { + margin: 0.5in; /* Margin for each printed piece of paper */ +} + +@media print { + .jp-Cell-inputWrapper, + .jp-Cell-outputWrapper { + display: block; + } +} +</style> +<!-- Load mathjax --> +<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/latest.js?config=TeX-AMS_CHTML-full,Safe"> </script> +<!-- MathJax configuration --> +<script type="text/x-mathjax-config"> + init_mathjax = function() { + if (window.MathJax) { + // MathJax loaded + MathJax.Hub.Config({ + TeX: { + equationNumbers: { + autoNumber: "AMS", + useLabelIds: true + } + }, + tex2jax: { + inlineMath: [ ['$','$'], ["\\(","\\)"] ], + displayMath: [ ['$$','$$'], ["\\[","\\]"] ], + processEscapes: true, + processEnvironments: true + }, + displayAlign: 'center', + CommonHTML: { + linebreaks: { + automatic: true + } + } + }); + + MathJax.Hub.Queue(["Typeset", MathJax.Hub]); + } + } + init_mathjax(); + </script> +<!-- End of mathjax configuration --><script type="module"> + document.addEventListener("DOMContentLoaded", async () => { + const diagrams = document.querySelectorAll(".jp-Mermaid > pre.mermaid"); + // do not load mermaidjs if not needed + if (!diagrams.length) { + return; + } + const mermaid = (await import("https://cdnjs.cloudflare.com/ajax/libs/mermaid/10.6.0/mermaid.esm.min.mjs")).default; + const parser = new DOMParser(); + + mermaid.initialize({ + maxTextSize: 100000, + startOnLoad: false, + fontFamily: window + .getComputedStyle(document.body) + .getPropertyValue("--jp-ui-font-family"), + theme: document.querySelector("body[data-jp-theme-light='true']") + ? "default" + : "dark", + }); + + let _nextMermaidId = 0; + + function makeMermaidImage(svg) { + const img = document.createElement("img"); + const doc = parser.parseFromString(svg, "image/svg+xml"); + const svgEl = doc.querySelector("svg"); + const { maxWidth } = svgEl?.style || {}; + const firstTitle = doc.querySelector("title"); + const firstDesc = doc.querySelector("desc"); + + img.setAttribute("src", `data:image/svg+xml,${encodeURIComponent(svg)}`); + if (maxWidth) { + img.width = parseInt(maxWidth); + } + if (firstTitle) { + img.setAttribute("alt", firstTitle.textContent); + } + if (firstDesc) { + const caption = document.createElement("figcaption"); + caption.className = "sr-only"; + caption.textContent = firstDesc.textContent; + return [img, caption]; + } + return [img]; + } + + async function makeMermaidError(text) { + let errorMessage = ""; + try { + await mermaid.parse(text); + } catch (err) { + errorMessage = `${err}`; + } + + const result = document.createElement("details"); + result.className = 'jp-RenderedMermaid-Details'; + const summary = document.createElement("summary"); + summary.className = 'jp-RenderedMermaid-Summary'; + const pre = document.createElement("pre"); + const code = document.createElement("code"); + code.innerText = text; + pre.appendChild(code); + summary.appendChild(pre); + result.appendChild(summary); + + const warning = document.createElement("pre"); + warning.innerText = errorMessage; + result.appendChild(warning); + return [result]; + } + + async function renderOneMarmaid(src) { + const id = `jp-mermaid-${_nextMermaidId++}`; + const parent = src.parentNode; + let raw = src.textContent.trim(); + const el = document.createElement("div"); + el.style.visibility = "hidden"; + document.body.appendChild(el); + let results = null; + let output = null; + try { + const { svg } = await mermaid.render(id, raw, el); + results = makeMermaidImage(svg); + output = document.createElement("figure"); + results.map(output.appendChild, output); + } catch (err) { + parent.classList.add("jp-mod-warning"); + results = await makeMermaidError(raw); + output = results[0]; + } finally { + el.remove(); + } + parent.classList.add("jp-RenderedMermaid"); + parent.appendChild(output); + } + + void Promise.all([...diagrams].map(renderOneMarmaid)); + }); +</script> +<style> + .jp-Mermaid:not(.jp-RenderedMermaid) { + display: none; + } + + .jp-RenderedMermaid { + overflow: auto; + display: flex; + } + + .jp-RenderedMermaid.jp-mod-warning { + width: auto; + padding: 0.5em; + margin-top: 0.5em; + border: var(--jp-border-width) solid var(--jp-warn-color2); + border-radius: var(--jp-border-radius); + color: var(--jp-ui-font-color1); + font-size: var(--jp-ui-font-size1); + white-space: pre-wrap; + word-wrap: break-word; + } + + .jp-RenderedMermaid figure { + margin: 0; + overflow: auto; + max-width: 100%; + } + + .jp-RenderedMermaid img { + max-width: 100%; + } + + .jp-RenderedMermaid-Details > pre { + margin-top: 1em; + } + + .jp-RenderedMermaid-Summary { + color: var(--jp-warn-color2); + } + + .jp-RenderedMermaid:not(.jp-mod-warning) pre { + display: none; + } + + .jp-RenderedMermaid-Summary > pre { + display: inline-block; + white-space: normal; + } +</style> +<!-- End of mermaid configuration --></head> +<body class="jp-Notebook" data-jp-theme-light="true" data-jp-theme-name="JupyterLab Light"> +<main> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=b5955612-0118-4fd4-8694-5fe52ce1be5a"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<h1 id="GA-1.6:-An-ODE-to-Probably-Doing-Enough-(PDE)">GA 1.6: An ODE to Probably Doing Enough (PDE)<a class="anchor-link" href="#GA-1.6:-An-ODE-to-Probably-Doing-Enough-(PDE)">¶</a></h1><h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> +<style> + .markdown {width:100%; position: relative} + article { position: relative } + </style> +<img alt="No description has been provided for this image" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/tu-logo/TU_P1_full-color.png" style="width:100px"/> +<img alt="No description has been provided for this image" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/mude-logo/MUDE_Logo-small.png" style="width:100px"/> +</h1> +<h2 style="height: 10px"> +</h2> +<p><em><a href="http://mude.citg.tudelft.nl/">CEGM1000 MUDE</a>: Week 1.6. For: 11 October, 2024.</em></p> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=e143a00c-1b09-435f-b581-80190df01a1c"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<h1 id="Overview">Overview<a class="anchor-link" href="#Overview">¶</a></h1><p>This assignment contains two parts: treating non-linear ODEs and treating the diffusion equation (PDE).</p> +</div> +</div> +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=453992c1"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [1]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> +<div class="cm-editor cm-s-jupyter"> +<div class="highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> +<span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span> +</pre></div> +</div> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=0933143e"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<h2 id="Part-1:-Solving-Non-linear-ODEs">Part 1: Solving Non-linear ODEs<a class="anchor-link" href="#Part-1:-Solving-Non-linear-ODEs">¶</a></h2><p>In task 1 you will solve first a very simple equation unp.np.np.np.sing Newton-Rhapson to understand exactly how to implement it. Task 2 treats the solution of a non-linear ODE in time, first with Explicit Euler and then with Implicit Euler. The latter will require again Newton-Rhapson to find the solution.</p> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=735043d3"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<p> +<b>Task 1</b> +<p>The equation to solve using Newton-Rhapson is</p> +$$ +x^2=9 +$$</p> +</div> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=17ca3c02"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<p> +<b>Task 1.1</b> +<p>Formally Newton-Rhapson is implemented iterating the solution as follows: +$$ +z_{j+1} = z_{j} - g(z_j)/g'(z_j) +$$ +where $g(z_j) = 0$ and $z_j$ is a guess and $z_{j+1}$ is the improved guess.</p> +<p>As we do not care about retaining the values of every guess, it can be written in code as:</p> +$$ +x = x - g(x)/g'(x) +$$<p><strong>Transform the equation $x^2=9$ to g(x) and write it below, together with g'(x).</strong></p> +</p> +</div> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=769c78ae"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<p>Write your answer here.</p> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=4f3fc628"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<p> +<b>Task 1.2</b> +<p>Implement your equations $g(x)$ and $g'(x)$ in the code below, as well as the Newton-Rhapson expression inside the loop. Test the code with the initial guess of $x=10$.</p> +</p> +</div> +</div> +</div> +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=25bcec4e"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> +<div class="cm-editor cm-s-jupyter"> +<div class="highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> + +<span class="k">def</span> <span class="nf">g</span><span class="p">(</span><span class="n">x</span><span class="p">):</span> + <span class="k">return</span> <span class="n">YOUR_CODE_HERE</span> + +<span class="k">def</span> <span class="nf">g_der</span><span class="p">(</span><span class="n">x</span><span class="p">):</span> + <span class="k">return</span> <span class="n">YOUR_CODE_HERE</span> + +<span class="n">x</span> <span class="o">=</span> <span class="mf">.01</span> +<span class="k">for</span> <span class="n">j</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">100</span><span class="p">):</span> + <span class="n">x</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> + <span class="c1"># Next task will go here</span> +</pre></div> +</div> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=c210989a"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<p> +<b>Task 1.3</b> +<p>The code is taking 100 iterations without stopping. <strong>Add a condition to the code above to stop the loop once the solution is good enough</strong>, i.e., when the solution is closer than $\epsilon = 1e-6$ to the exact solution. How many iterations does it take now to converge?</p> +</p> +</div> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=728a8de9"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<p>Write your answer here.</p> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=e4723ca1"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<p> +<b>Task 1.4</b> +<p>Change the intial guess to $x=0.01$, which is closer to the exact solution than the initial guess in the previous task. How many iterations does it take to converge? Explain the difference.</p> +</p> +</div> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=99d7f4c8"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<p>Write your answer here.</p> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=fcb52681"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<p> +<b>Task 2</b> +<p>Solve the following ODE using Explicit and Implicit Euler.</p> +$$ +\frac{dy}{dt} = \sin(y^3)+\sin(t) +$$<p>with initial value $y(t=0) = 1$</p> +</p> +</div> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=6ef1b02a"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<p>Write your answer here.</p> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=8b10ee75"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<p> +<b>Task 2.1</b> +<p>Write in paper the Explicit and Implicit Euler schemes of the equation above.</p> +</p> +</div> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=bcaed558"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<p>Write your answer here.</p> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=3a0f172f"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<p> +<b>Task 2.2</b> +<p>Just as before, Newton-Rhapson must be implemented following: +$$ +z_{j+1} = z_{j} - g(z_j)/g'(z_j) +$$ +where $g(z_j) = 0$ and $z_j$ is a guess and $z_{j+1}$ is the improved guess.</p> +<p>Which term from your Implicit Euler scheme represents $z$? <strong>Transform your Implicit Euler scheme into g(<em>) and write it below, together with g'(</em>).</strong></p> +</p> +</div> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=e40042c0"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<p>Write your answer here.</p> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=726c43cb"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<p> +<b>Task 2.3</b> +<p>Implement the Explicit Euler and Implicit Euler schemes by filling the lines of code below:</p> +<ul> +<li>a) Code the functions g() and g'()</li> +<li>b) Implement Explicit Euler</li> +<li>c) Implement Implicit Euler. Tip: use as initial guess the value of the previous time step.</li> +<li>d) Use a dt = 0.25s</li> +</ul> +</p> +</div> +</div> +</div> +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=57c0662a"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> +<div class="cm-editor cm-s-jupyter"> +<div class="highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">g</span><span class="p">(</span><span class="n">y_iplus1</span><span class="p">,</span><span class="n">y_i</span><span class="p">,</span> <span class="n">t_iplus1</span><span class="p">):</span> + <span class="k">return</span> <span class="n">YOUR_CODE_HERE</span> + +<span class="k">def</span> <span class="nf">g_der</span><span class="p">(</span><span class="n">y_iplus1</span><span class="p">):</span> + <span class="k">return</span> <span class="n">YOUR_CODE_HERE</span> + + +<span class="c1"># Define parameters:</span> +<span class="n">dt</span> <span class="o">=</span> <span class="mf">.3</span> +<span class="n">t_end</span> <span class="o">=</span> <span class="mi">10</span> +<span class="n">t</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="n">t_end</span><span class="o">+</span><span class="n">dt</span><span class="p">,</span><span class="n">dt</span><span class="p">)</span> + +<span class="n">y_EE</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">t</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span> +<span class="n">y_IE</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">t</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span> + +<span class="c1"># Define Initial Conditions</span> +<span class="n">y_EE</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> +<span class="n">y_IE</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> + +<span class="c1"># Perform time-integration</span> +<span class="n">newtonFailed</span> <span class="o">=</span> <span class="mi">0</span> +<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">t</span><span class="p">)</span><span class="o">-</span><span class="mi">1</span><span class="p">):</span> + + <span class="c1"># Forward Euler:</span> + <span class="n">y_EE</span><span class="p">[</span><span class="n">i</span><span class="o">+</span><span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> + + <span class="c1"># Backward Euler:</span> + <span class="n">y_IE</span><span class="p">[</span><span class="n">i</span><span class="o">+</span><span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> <span class="c1"># Initial guess</span> + <span class="k">for</span> <span class="n">j</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">200</span><span class="p">):</span> + <span class="n">y_IE</span><span class="p">[</span><span class="n">i</span><span class="o">+</span><span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> + <span class="k">if</span> <span class="n">np</span><span class="o">.</span><span class="n">abs</span><span class="p">(</span><span class="n">g</span><span class="p">(</span><span class="n">y_IE</span><span class="p">[</span><span class="n">i</span><span class="o">+</span><span class="mi">1</span><span class="p">],</span><span class="n">y_IE</span><span class="p">[</span><span class="n">i</span><span class="p">],</span><span class="n">t</span><span class="p">[</span><span class="n">i</span><span class="o">+</span><span class="mi">1</span><span class="p">]))</span> <span class="o"><</span> <span class="mf">1e-6</span><span class="p">:</span> + <span class="k">break</span> + + <span class="k">if</span> <span class="n">j</span> <span class="o">>=</span> <span class="mi">199</span><span class="p">:</span> + <span class="n">newtonFailed</span> <span class="o">=</span> <span class="mi">1</span> + + +<span class="c1"># Plotting the solution</span> +<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">t</span><span class="p">,</span> <span class="n">y_EE</span><span class="p">,</span> <span class="s1">'r'</span><span class="p">,</span> <span class="n">t</span><span class="p">,</span> <span class="n">y_IE</span><span class="p">,</span> <span class="s1">'g--'</span><span class="p">)</span> +<span class="k">if</span> <span class="n">newtonFailed</span><span class="p">:</span> + <span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">'Nonlinear ODE with dt = '</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">dt</span><span class="p">)</span> <span class="o">+</span> <span class="s1">' </span><span class="se">\n</span><span class="s1">Implicit Euler did not converge'</span><span class="p">)</span> +<span class="k">else</span><span class="p">:</span> + <span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">'Nonlinear ODE with dt = '</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">dt</span><span class="p">))</span> + +<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'t'</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'y'</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">gca</span><span class="p">()</span><span class="o">.</span><span class="n">legend</span><span class="p">((</span><span class="s1">'Explicit'</span><span class="p">,</span><span class="s1">'Implicit'</span><span class="p">))</span> +<span class="n">plt</span><span class="o">.</span><span class="n">grid</span><span class="p">()</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> +</div> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=6b6d9964"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<h2 id="Part-2:-Diffusion-Equation-in-1D">Part 2: Diffusion Equation in 1D<a class="anchor-link" href="#Part-2:-Diffusion-Equation-in-1D">¶</a></h2><p>The 1-D diffusion equation reads $$\frac{\partial u}{\partial t}=v\frac{\partial^2 u}{\partial x^2}$$</p> +<p>where $u$ is a continuous function in space and time, $v$ is a constant and often referred to as the <strong>diffusivity coefficient</strong>, giving rise to the name 'diffusion equation'. This is a Partial Differential Equation which independent variable, $u$, varies on space and time. This equation is virtually present across all fields of civil engineering and science. Here, we use it to represent the temperature on a rod (see the sketch below).</p> +<p>Unlike the problem of Wednesday, here there is no exchange of heat with the ambient and the temperature evolves in time. The temperature initially is uniform along the rod, equal to $7°C$. Then it is heated at both ends. .</p> +<p><img alt="Thermal Gradient" src="./figures/thermal_gradient.png"/></p> +<p>The problem is schematized as a one-dimensional $0.3 m$ steel rod of with a diffusivity coefficient of $4e-6 m^2/s$. Run the simulation for $10,000 s$ to see the progression of the temperature through the model. Start with $200$ time steps and use 15 points to represent the rod.</p> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=c300a7fd"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<p> +<b>Task 3</b> +<p>Solve the diffusion equation using Central Differences in space and Forward Differences in time. You will do this step by step (subtasks).</p> +<p>For convenience we write here the diffusion equation with the temperature variable:</p> +$$ +\frac{\partial T}{\partial t}=v\frac{\partial^2 T}{\partial x^2} +$$</p> +</div> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=84b32366"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<p> +<b>Task 3.1:</b> +<p>How many constraints are needed in the 1D diffusion equation to have a well-posed problem?</p> +</p> +</div> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=1b363563"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<p>Write your answer here.</p> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=4ae351ba"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<p> +<b>Task 3.2:</b> +<p>Draw a grid of 6 points with subindexes. Although your actual grid will be much larger, 6 points are enough to visualize the procedure. The initial condition states that the temperature of the rod is $7^o$ C. Does that mean that one single point of your grid is initialized or all of them?</p> +</p> +</div> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=1d59533c"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<p>Write your answer here.</p> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=71a1284a"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<p> +<b>Task 3.3:</b> +<p>Now, the differential equation needs to be expressed in algebraic form using central differences in space and forward differences in time. <strong>Start by just transforming the PDE into a first-order ODE by ONLY applying Central Differences to the spatial derivative term.</strong></p> +</p> +</div> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=d0d45222"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<p>Write your answer here.</p> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=6ab571e7"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<p> +<b>Task 3.4:</b> +<p>Before applying Forward Differences in time to the equation. It is needed to add a superscript to the notation that indicates the time step: $T^j_i$. So, $i$ indicates the spatial location and $j$ the time location. For example, $T^0_2$ indicates the temperature at the node $i=2$ and at the initial moment $j=0 (t=0)$. Furthermore, to express in a general form a node of over the next time step, you can express $T^{j+1}_i$.</p> +<p><strong>Apply Forward Differences to the equation to obtain an algebraic expression.</strong></p> +</p> +</div> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=c46ee55f"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<p>Write your answer here.</p> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=d6b4b1c9"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<div style="background-color:#facb8E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<p> +<b>NOTE</b> +<p>If you have doubts of your solution, <b>stop</b> and ask a staff member! It is important to be in the right track!!</p> +</p> +</div> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=2ad1f7c0-14d4-4363-8ed9-681e1e271741"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<p> +<b>Task 3.5:</b> +<p>Finally, some coding! Let's start with defining the parameters and creating the grid. <strong>Fill in the missing parts of the code.</strong></p> +</p> +</div> +</div> +</div> +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=efd223ed-a7db-4680-8c81-649ea88b5275"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [4]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> +<div class="cm-editor cm-s-jupyter"> +<div class="highlight hl-ipython3"><pre><span></span><span class="n">T_left</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> +<span class="n">T_right</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> +<span class="n">T_initial</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> +<span class="n">length</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> +<span class="n">n_point</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> +<span class="n">nu</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> +<span class="n">dt</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> +<span class="n">nt</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> +</pre></div> +</div> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=a139660e-4185-41a4-99db-c54c68c54b76"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<p>Let's initialise the system with the initial and boundary conditions. Say $t_0 =0$.</p> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=0e235c76"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<p> +<b>Task 3.6:</b> +<p>Define the initial conditions and the boundary conditions. <strong>Fill in the missing parts of the code.</strong></p> +<p>We define a 2-dimensional Numpy array <code>T</code> where the first index, <code>j</code>, represents time and the second index, <code>i</code>, represents space, for example: <code>T[j, i]</code>. Initialize <code>T</code> with a matrix of zeros.</p> +</p> +</div> +</div> +</div> +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=673b1ff5-06e2-44c8-b6a4-031a00b0f190"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [5]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> +<div class="cm-editor cm-s-jupyter"> +<div class="highlight hl-ipython3"><pre><span></span><span class="n">T</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> +<span class="n">T</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="p">:]</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> +<span class="n">T</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> +<span class="n">T</span><span class="p">[:,</span> <span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> +<span class="n">b</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> +</pre></div> +</div> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=e7c5bf2e"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<p> +<b>Task 3.7:</b> +<p>Write in paper the equations that come out from your algebraic representation of the diffusion equation, solving for the unknowns. Use it then to write the matrix A, the unknown vector T and vector b. As in the workshop and textbook, the <code>A</code> matrix consists only of the unknowns in the problem.</p> +</p> +</div> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=7e0147f1"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<p>Your answer here.</p> +</div> +</div> +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=787c37f6"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [6]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> +<div class="cm-editor cm-s-jupyter"> +<div class="highlight hl-ipython3"><pre><span></span><span class="k">for</span> <span class="n">j</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">m</span><span class="o">-</span><span class="mi">1</span><span class="p">):</span> + <span class="n">A</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> + <span class="n">b</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> + <span class="n">T</span><span class="p">[</span><span class="n">j</span><span class="o">+</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">:</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> +</pre></div> +</div> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=794f6329"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<p> +<b>Task 3.8:</b> +<p>Use this code cell if you would like to verify your numerical implementation. For example, visualize the temperature profile at different time steps.</p> +</p> +</div> +</div> +</div> +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=56f6fdea"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [7]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> +<div class="cm-editor cm-s-jupyter"> +<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># plt.plot(x, T[YOUR_CODE_HERE,:])</span> +<span class="c1"># plt.plot(x, T[YOUR_CODE_HERE,:])</span> +<span class="c1"># plt.plot(x, T[YOUR_CODE_HERE,:])</span> +<span class="c1"># plt.xlabel('x')</span> +<span class="c1"># plt.ylabel('T')</span> +<span class="c1"># plt.show()</span> +</pre></div> +</div> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=17e7be50-79a7-4699-b0d8-908a58ce36d7"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<p> +<b>Task 3.9:</b> +<p>Describe the time evolution of the temperature along the rod. Does the temperature reach a steady-state? What does that mean for heat flow?</p> +<p>Write your answer in the following markdown cell.</p> +</p> +</div> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=8db518cd"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<p>Your answer here.</p> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=9fcbb39f"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<p> +<b>Task 4</b> +<p>Alter the right boundary condition, with the following equation:</p> +$$ +u^t_{x=L} = 25 + 10 \sin \left(\frac{2\pi t}{period}\right) +$$<p>where L refers to the last point of the rod. Put your whole code together in a single cell. Copy the code cells from task 3.5 until task 3.8. Modify the right boundary condition as stated above, the period is 6000 seconds.</p> +</p> +</div> +</div> +</div> +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=05534522"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> +<div class="cm-editor cm-s-jupyter"> +<div class="highlight hl-ipython3"><pre><span></span><span class="n">YOUR_CODE_HERE</span> +</pre></div> +</div> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=852b05c5"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<p> +<b>Task 5</b> +<p>Solve the diffusion equation using Central Differences in space but <strong>now with Backward Differences in time</strong>. You will do this step by step (subtasks). Just as before.</p> +</p> +</div> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=81fe7677"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<p> +<b>Task 5.1:</b> +<p>Draw the stencils (two in total) of this equation when solving it with Central Differences in space and <strong>Forward Differences in time</strong> and when solving it with Central Differences in space and <strong>Backward Differences in time</strong>.</p> +</p> +</div> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=6df8a151"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<p>Your answer here.</p> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=ca16ee10"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<p> +<b>Task 5.2:</b> +<p>Now, the differential equation needs to be expressed in algebraic form using central differences in space and forward differences in time. <strong>Start by just transforming the PDE into a first-order ODE by ONLY applying Central Differences to the spatial derivative term.</strong></p> +</p> +</div> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=4a25a0d0"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<p>Your answer here.</p> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=139d33af"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<p> +<b>Task 5.3:</b> +<p><strong>Apply Backward Differences to the equation to obtain an algebraic expression.</strong></p> +</p> +</div> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=73b82177"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<p>Your answer here.</p> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=25b64dff"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<p> +<b>Task 5.4:</b> +<p>Write in paper the equations that come out from your algebraic representation of the diffusion equation, solving for the unknowns. Use it then to write the matrix A, the unknown vector T and vector b.</p> +</p> +</div> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=8c1db830"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<p>Your answer here.</p> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=36284ee9"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<p> +<b>Task 5.5</b> +<p>Copy the code of task 4 and make sure to use the Dirichlet conditions of task 3: constant Dirichlet conditions. Implement the Implicit scheme by modifying the code of how the matrix A and vector b are built.</p> +</p> +</div> +</div> +</div> +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=4edddcaf"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> +<div class="cm-editor cm-s-jupyter"> +<div class="highlight hl-ipython3"><pre><span></span><span class="n">YOUR_CODE_HERE</span> +</pre></div> +</div> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=3d1dfe3d"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<p><strong>End of notebook.</strong></p> +<h2 style="height: 60px"> +</h2> +<h3 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; bottom: 60px; right: 50px; margin: 0; border: 0"> +<style> + .markdown {width:100%; position: relative} + article { position: relative } + </style> +<a href="http://creativecommons.org/licenses/by-nc-sa/4.0/" rel="license"> +<img alt="Creative Commons License" src="https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png" style="border-width:; width:88px; height:auto; padding-top:10px"/> +</a> +<a href="https://www.tudelft.nl/en/ceg" rel="TU Delft"> +<img alt="TU Delft" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/tu-logo/TU_P1_full-color.png" style="border-width:0; width:100px; height:auto; padding-bottom:0px"/> +</a> +<a href="http://mude.citg.tudelft.nl/" rel="MUDE"> +<img alt="MUDE" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/mude-logo/MUDE_Logo-small.png" style="border-width:0; width:100px; height:auto; padding-bottom:0px"/> +</a> +</h3> +<span style="font-size: 75%"> +© Copyright 2023 <a href="https://studiegids.tudelft.nl/a101_displayCourse.do?course_id=65595" rel="MUDE Team">MUDE Teaching Team</a> TU Delft. This work is licensed under a <a href="http://creativecommons.org/licenses/by-nc-sa/4.0/" rel="license">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>. + +</span></div> +</div> +</div> +</div> +</main> +</body> +<script type="application/vnd.jupyter.widget-state+json"> +{"state": {"0163d400cc2c4eb59046d0121727b17c": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"children": ["IPY_MODEL_88035a6b469f4a4891e35659867ff0c6"], "layout": "IPY_MODEL_9c5112e1cfd44ed2a63e5978fc06fccc"}}, "0197503ee5c44b87a3d0c980bc2571da": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": {"description_width": ""}}, "0221bef15fef48a190eccd595775ec95": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "0335767ddbd747b4893969d3e2d93893": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "037d3788952b4be096d7515e475f24e1": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"children": ["IPY_MODEL_b7b5d8c7976e490db14a6f301a8d5fca"], "layout": "IPY_MODEL_ffbdb787fdf940fab9e0d3b457888162"}}, "054b16db968e4b878f5e542f9a1173b3": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": {"_dom_classes": ["widget-interact"], "children": ["IPY_MODEL_d095a4e7d8d4445e86d3db1fdff6244f", "IPY_MODEL_27ce6d6c77074a0e9644172ecbdc2c2a"], "layout": "IPY_MODEL_9e0470afffb74df5adab27914911762d"}}, "0737166ee7324522bb73da03f9a8e778": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "07af3d288027411c8db59e4b27f81a0f": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"children": ["IPY_MODEL_4dcc29bcdeb94273acb042225680f938"], "layout": "IPY_MODEL_3012cdca2fe2499d8a50dee485f62217"}}, "0962612e4e404b54ac1fac8d640cd6c0": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": {"description_width": ""}}, "0f94c44a6e2d4808a7c66c3b1c79bf1f": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": {"description_width": ""}}, "0fcdff9aa34e4e13927e34ae27360da7": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "IntSliderModel", "state": {"behavior": "drag-tap", "layout": "IPY_MODEL_5576cb6864c246b5b1be231eb6fff645", "max": 199, "style": "IPY_MODEL_32b1f33a1556467aaba78f0af3df1e4d", "value": 100}}, "106c527c21f1485f80938702414243e8": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": {"description_width": ""}}, "121945e57f994c77aaeca0c873e63745": {"model_module": "@jupyter-widgets\/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": {"layout": "IPY_MODEL_517f04b914134b6ba5c09a4caa017bdc", "outputs": [{"data": {"image\/png": "iVBORw0KGgoAAAANSUhEUgAAAZ4AAAGRCAYAAABVKtXaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy\/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5gk+V3mi37CpDflvWlvZrrH9EzPtBsJZEZCuwtamZUW6UosD3uAC7tX4uwFVsDsEVdIrMQujAxoFxaY2XNAEkIICbTSzghJ4313V1d1mS7vfVZWehMRv\/tHdWRnZqWtqq6qGcX7PHo0XRUZ8cusyN8bX\/e+khBCYMGCBQsWLOwS5L1egAULFixY+PGCRTwWLFiwYGFXYRGPBQsWLFjYVVjEY8GCBQsWdhUW8ViwYMGChV2FRTwWLFiwYGFXYRGPBQsWLFjYVVjEY8GCBQsWdhUW8ViwYMGChV2FRTwWLFiwYGFXYRGPBQsWLFjYVVjEY8GCBQsWdhUW8ViwYMGChV2FRTwWLFiwYGFXYRGPBQsWLFjYVVjEY8GCBQsWdhUW8ViwYMGChV2FRTwWLFiwYGFXYRGPBQsWLFjYVVjEY8GCBQsWdhUW8ViwYMGChV2FRTwWLFiwYGFXYRGPBQsWLFjYVVjEY8GCBQsWdhUW8ViwYMGChV2FRTwWLFiwYGFXYRGPBQsWLFjYVVjEY8GCBQsWdhUW8ViwYMGChV2FRTwWLFiwYGFXYRGPBQsWLFjYVVjEY8GCBQsWdhUW8ViwYMGChV2FRTwWLFiwYGFXYRGPBQsWLFjYVVjEY2FPIITY6yVYsGBhj6Du9QIs\/HhBCEE6nSaRSKAoCqqqoigKiqIgSdJeL8+CBQu7AElYj54WdgmGYZBOp9F1nWQyCWwQUTweJ5lM0tLSYhGRBQs\/BrAiHgu3HUIIdF1ndHQUu91Oa2srsiwjyzJCCMLhMEtLS9TV1ZFMJpEkCVmWUVXVIiILFt6AsIjHwm2FmVrTdZ1QKITT6WRqaorZ2Vn8fj91dXXoug6AqqoIITL\/SyaTpFIpAIuILFh4A8FKtVm4bdB1nXQ6jWEYyLLMtWvXCIVCaJrGgQMHiMVirK2tEY1GkWWZ9vZ26urqqK2txWazAeQQkWEYAJmIyGazZepEsixbRGTBwusEVsRjYcchhEDTNDRNQwiBLMsEg0GWlpZwOBxcuHAB2CAQSZKYmZlhZmYGIQSjo6PEYjF8Ph+1tbUZIjIjnWwiSiQSmfOYRGQeZxGRBQv7FxbxWNhRGIaBpmmZ9JkkSYyOjjI+Pp4hE7vdnkmhwUaKzWazceLECQCSySRra2sEg0GGh4dJJBKbiMhMtxUjIjMSsojIgoX9B4t4LOwIzFRYOp1GCIEkSSSTSa5du0YikeDcuXPMzMwU3PwlScqZ63E4HLS2ttLa2gpAIpFgbW2NtbU1hoaGSCaTmfpQbW0tNTU1m4jIMAyLiCxY2KewiMfCtpGdWoONjX55eZne3l6am5u57777UFV1E8GYKEcATqeTtrY22traAIjH4xkimp+fJ5VKUVNTU5aIkskkiUQi01FnEZEFC3sDi3gsbAvZsznmxj04OMjMzAynTp2ivb095\/hivSzV9Li4XC5cLhft7e2ZOSCTiGZnZ9E0LUNEdXV1+Hw+FEXJXMds7zbniebm5mhtbcXtdmciI7P+ZMGChZ2HRTwWtgRz89Y0LdO1FovF6OnpAeDixYt4PJ6c10iShGEYmzb0YpFQJZAkCbfbjdvtpqOjAyFEpltubW2N6elpDMPIISKv14uqqpn3MTo6Sl1dXYZsCqXmLCKyYGHnYBGPhaqRPZsDGzM2c3Nz9Pf309XVxfHjx5HlzTKA2QSTvYnv5IYuSRIejwePx0NnZydCCKLRaIaIJicnEUJkGhXq6uoQQqAoCjabLRMRaZpGOp0uSkSF3p8FCxYqg0U8FqqCYRikUqlMlKPrOv39\/SwvL3PvvffS1NRU9LWlIpvbNU4mSRJerxev10tXVxdCCCKRSIaIxsfHARgaGqKxsZG6ujo8Hk9ORFSMiMw5IouILFioDhbxWKgIZmrN7FqTZZlQKERPTw9Op5NLly7hdDpLnqNUc8FuzTFLkoTP58Pn89Hd3Y1hGDz11FN4vV5WV1cZHR1FUZRMo0JdXR1ut7soEUFhVQWLiCxYKA6LeCyURX5qTZIkJicnGR4e5vDhwxw+fLiidNlWu9puJ8xuto6ODtxuN4ZhEAqFWFtbY3l5mZGREVRVzSEil8u1iYjS6XRJeR+LiCxYuAWLeCyURHaUI0kS6XSa3t5ewuEwZ8+epa6uruJzlSKY\/aLcJMsytbW11NbWAmQ05tbW1lhcXOTGjRvY7fZNRGQSS\/Y8kxkRSZKUQ0Rm15wFCz+usIjHQkGY6aSBgQG8Xi\/t7e0EAgGuXbtGbW0tly5dyuipVYr9kGorhmLXN9NuJsHqus76+jpra2vMzc0xNDSEw+HIHFNXV4fD4cg5r0lEqVQqUyMyiSi7a86ChR8XWMRjYRPMjdIwDGKxGDabjZGRESYmJjhx4gRdXV1b2ij3M\/FUCkVRqK+vp76+HgBN0zJEND09TX9\/Py6XK4eI7HZ75vX5RASwurpKS0sLDofDUt628GMBi3gsZJC9KZpda0IIpqamUBSF8+fP4\/P5tn2NfLyeN1lVVWloaKChoQHYIKJgMJhp3b5+\/ToejydHZy6biNLpNP39\/dTW1qJpmuVFZOHHAhbxWAAKz+YsLS2xvLyMz+fj3Llzmen\/rWIv2ql3G6qq0tjYSGNjI7BBLCYRjY+PE41G8Xq9GSLyer2Z15mfr9mybpniWXijwiIeCzmyN7IsYxgGg4ODzM3NZdJF2yUdeGOk2qqFzWajqakpM9+USqUyRGRaQACMjY1RX1+fsYCAW2RsEZGFNxos4vkxRiHZm2g0Sk9PD7Isc\/HiRcbHx3eMFEyC0TSNqakp3G53RqpmL7Gb17fb7TQ3N9Pc3AxANBrlpZdeQtO0HAsIMy1nWkBALhFZ7qwWXs+wiOfHFIVmc2ZnZxkYGKC7u5tjx45lZlxM58\/twmzHfv7551FVFU3TSCQSuN1uNE0jEAhklKV\/XGB2Bp44cQJFUbZkAVHIJtxyZ7Wwn2ERz48h8i2pNU3j+vXrBAIBzpw5k6lPwM6lwYQQBAIB1tfXOXbsGJ2dncCG6dv8\/DwTExMMDAyQTqc3KUv\/OAxfmsRQzgIinU5XRESWO6uF\/QyLeH6MkO+bI8sy6+vr9PT04Ha7uXTpUs4MinmMGRVtFel0mr6+PgKBAD6fj8OHD2eGUp1OJ83NzUxNTXHx4sWcjdZUls4W9PR6vW+oTbMcqZeygJiZmUHX9YIWEJY7q4X9DIt4fkyQ3SZtYmJigpGREY4cOcKhQ4cqcgetFsFgkJ6eHrxeL8eOHWN+fr7gcaYyQr7FQb6gp6ksYG60brd7RzbNvW5uqFRyaCsWEOXcWQ3DQFVVXC6XRUQWdgUW8bzBUciSOpVK0dvbSzQa5YEHHsjIwxTCVms8QogMsR09epSDBw8yPz9fVVdbIUHPcDico6Nms9lyhjXLCZXuN2yH8LZiAeH1epFlOYeITBmgAwcOWO6sFnYFFvG8gVGogWB1dZVr165RX1\/PxYsXy8remEOk1cAktnA4nENs2xUJlWWZmpoaampqOHjwYI6O2uzsLIODgzidzqKqAfsZO7GxF7KACIfDOXNEkiTl6MyZZn1m+i3fnbVQ+7ZFRBa2C4t43qDIn80xn2ynpqa444476Ojo2JaidDGsra3R09OD3+\/fpOe20wOk2Tpqhw8fLqoakE1E5ozMfsHtTPFJkoTf78fv92+KGLMtIMwGk1gsVtACwmy5t9xZLewU9te30MK2UWg2Jx6P09PTg67rXLhwITMtXwkqJR4hBOPj44yOjnLs2DEOHDhQ0OK62DXMc2xnA8tXDcgf1ozH45kZmbq6un3Tur1bm3Z2xAhkLCCGhoaIRqO88sorFVlAlHNntYjIQjlYxPMGghCCUCjEwsIC3d3dyLLM4uIifX19tLe3Z2ZFqkElNZ5UKkXvtR5IBXnwwQczG1ul59op4slH\/rBmMpkkEAiwtrbGwMAAqVSKmpqaTErK7Xbveuv2XjY1mI0abreb2tpa2tvbM6nLhYWFHAsIk4zyLSAsd1YLW4FFPG8QmLM5kUiEiYkJurq66O\/vZ3FxkdOnT9Pa2rql85ar8QQCAW70X+bMwRg21YdchHRg85O9STS79XTscDgyMzLZrcnr6+sMDw9z48aNTa3Ju7G2vY4OzL9DKQsIs4ZWyAKiHBFZpngW8mERz+sc2bM5QggURUHXdV544QVUVeXixYu4XK4tn79Yqk0IwdjYGLHVQS4eS6JIOrphoJeIWsql7Xbz6T+7NXl0dJQzZ84gSVKmI2xiYiJTiN\/p1u1s7HUbt7mGQu9rqxYQ+URkubNayIdFPK9jGIaBpmk5XWvLy8uk02m6u7s5cuTItr\/UhcgimUzSe62HLv8SJw\/GMz9X5DTB6Vn83Z0Vn8v8OeztJpzfEWYYBpFIhEAgsMkC2\/zfdgg9\/9p7CcMwKlrDVi0gCrmzFjLFs4joxwcW8bwOUWg2R9O0jDqALMscO3ZsR66VX5dZXV1lePAK9x2I4bEnNx0fnZ0oSjzm2gtdY6+Rvy5ZljMdYQcPHsQwjMzT\/vz8fFnn0dcTtlpbq9YCora2NqfLMfs+HhkZwel00traatmE\/xjAIp7XGfJlbyRJyqgD+Hw+7rvvPl555ZUdu55Z4xFCMDo6SmJtiEtHk8hSYRkdxVgreq79lGqrFrIs59Q\/CqWdslu38zfZYtjphoqtYKfWUIkFhM\/nyyEis2MuHo9n\/js7IjKHXbObFfb687KwfVjE8zpC9myOmaYYGxtjbGws08KcSCQwDGPHNhNJktB1nVdffZkDNcvccSBe8nhv7eYoKPtc+zXVVi3y007ZT\/tjY2NEo9Gc1u1se4P9httFfoW6Cs0aWr4FhPnf2Z9RodScRURvDFjE8zpAodmcZDJJb28v8Xg8p4V5p1uTw+EwIr3OvQc13LbipGLC1yCIh6PYfZ5Nvys3x\/N6Rv7TfvYmm29vYM4QmdHkXr\/\/3VqDw+GgtbU102GZbQERiUQIhUKsrKxsUt421wgUJCLLi+j1B4t49jkKWVKvrKzQ29tLY2MjZ86cyZnGzy7kbgeGYTAyMkJ6\/QZvOpFAVSo7nyzD+ugoTffevel3r+dUW7XI32SzVaXn5ubQNI2amho8Hs+ORqhbwV5dO9sCIh6P09jYiM1my\/mMssna7\/cXJCLLnfX1B4t49jHML5UZ5QghGBoaYnp6mjvvvJOOjo5NrzGJxzCMLad2EokEvdeucKhulbYyqbVCSAfngOLEY9alTEmXvU617cbGlG9vYKpKLy0toes6zzzzTI6Yp8fj2bUNcz9EXXCLrKu1gADLnfX1Bot49iHM1JrZtSbLMrFYjJ6eHoQQXLx4MSPumA\/zS7VV19Dl5WVGR65xzyk7vpvS+dXCYQsXXZthGPT19bGwsJDZ8MyCfSwWw+FwvOE3hmxVab\/fT09PD\/fcc88mDbX81u3b9bnsB+IxH65MbMUCopgXkeXOuv9gEc8+Q6HU2vz8PP39\/XR0dHDixImScw5bTbUZhsHw8DB6epqLD9iQZR2htCJFC\/vnlEJtq4HQDSQld52JRAJd1wmHw5w7dw5FUTIy\/svLy\/T09GC326mvr3\/dtyhXCnPTN1u3Dxw4kNFQW1tbY3FxMUe6xvxsdvJz2Q\/EYz5gFcNOWUBY7qz7Axbx7CPkW1Lrus7AwABLS0vcfffdme6gUjC73aqJeOLxOL29VzncnaK1WQVukpbTBtHq34fTJ7MyNU3NoQOZny0sLNDb2wvAuXPnMtL7pmjl+Pg4Z8+eJZVKFWxRrq+vz2m\/fSMhf6MzNdRqa2s5dOhQjnSN+bm43e6ciKiS1u1i2A\/EU+kQq4mtWkCUIiJzaLi5udkiotuMN963+HWI\/NkcWZYJh8OZCODSpUtVGZxVQzxLS0uMj\/Vy\/z12nI7cKEmS4qRttdjSwYqvbSI+P0XNoY2n96GhIWZnZzl+\/DiDg4PIsrxpfebTZ36LcqH2W\/Op3+wM2wnsVX2pkutmS9ccOXJk06BmX18fXq83p3W7GoIuF23sBvJTbdWiUguIbCIyRWFNIopGo1y7do2HHnooc07LJvz2wCKePUa+JbUkSUxNTXHjxg0OHTrEkSNHqr7RKzFvMwyDGzdugDHLhQfUogOhwuWDLRAPqRXi8ThXr17N1KUABgYGCh5e6D3abLacOZBEIpFRlza7nmprazNE5PV6X5ebQrVrLjSoWYqgs7vBCmG\/RDw7SX7FLCDMho58CaTa2tpMQ47NZitoE265s+4cLOLZI5g39ezsLMvLy5w6dYp0Ok1fXx+hUIj7778\/I85YLQpFFNmIxWL09V7l6CGN5kaFTGqtAFRbkrim4FILE1MxeGoSPP\/887S2tnLy5EkURSEe3+iQM7\/U+ShHlk6nk\/b29kzXU3aOf3x8PEdd4HYX5HcKOxFp2e12WlpaaGlpATZSp8FgkEAgkNO6nV2Ez97k9wPx3O6oq1D60iQiUwJJVVUMw2B+fj5jAQHkpObMFHEikbCIaBuwiGcPkN1AkE6nMxvotWvX8Pv9XLx4cVuWzaVSbYuLi0yM93L2XgcOe\/l0nCQJorIHF6Gq1lDXpnDMc4Du40dz1lVqzdVswoVEPcPhMIFAIFOQz9ZSq6+v37c22Du9UZmt26b9Q3Y32NTU1KYifLX1lduB3V5DIQuImZkZJiYmqrKAyLcJN1Nz2Tpze\/3Z7kdYxLPLyLekVhSFWCzGa6+9xvHjx+nu7t72jVoo1WYYBoODgyjSPBcfsCEVSa0Vgq\/WjggpSFT+GkmWcEVz26pLzevsxHs2UyvmE61ZB5mamso0Kpjpp\/3SqHC7a0uFusEikUhOpKjrOiMjIzQ1Ne1ZpLjXdSZFUfB4PDidTs6ePbtlCwjLnbUy7P0378cExWRvRkdHSafTnD9\/Hr\/fvyPXyo94YrEYvb1XOH5Yp6mhdGqtEOx2CcPbhhKZqep16fV54EzOuqD4ZruTm7CiKDmNCqZgZSAQyNRBzKl4M+25V9jNjUiSJHw+Hz6fL1OEf+qpp3C73SwuLjI8PIzNZsvZYKtpbNkKzM9\/rzfk7DpTIS0+k4gqtYCw3FmLwyKeXUCh2Zzl5WV6e3vx+\/0YhrFjpGOe39xIFxYWmJzoqzi1VgySQ4JIda9x2HNfUC7iuZ1P\/\/mCldlT8ZqmcfXq1T1pVNhrmSAzOu7q6sLlchV0HXU6nZue9HcS5mew15twqQYHm822JQsIy521MCziuc3In80RQjA4OMjs7Cx33nknTqczM9+yUzBngK5fv47dscKFS14kTQJRvfyNCUlKYLiakeNLFb+mrk1gaDqyqtw8x+1LtVWLbAmbQCDAsWPHMt1h+Y0K9fX1O2b6Vgh7+aRv\/i3MNRRyHS1k9raTKUvzIWmvN10z\/V0JinUWBoPBkhYQljvrBiziuU0oNJsTjUbp6elBkiQuXryI2+0mGAzueJrHMAxGR4c4fZeDxkY7IBCqE5GOs60tzuWGKrjL4ZFZnpyi9sihnJ8Xy+fvpVab2+2mtbU1k34yO54WFhZyGhXMDXennvr3OuLJJ5585Ju9ZXvsjIyMEI\/Hc+wfshWlq13DXm+y29E3zO8sLGUBYXbXZRNLNhHF43FGRkY4ceIEdrsdVVVZW1vL6bR7vcMintuA\/NkcgLm5Ofr7++nq6uL48eOZG65c63O1mJubQ1XjnH3AS3ZqXpLjGHIdUgmjtrKQowibHyldeYdbfOEW8exlqq0csq9dqPXWrA+ZT\/3bGdjMx36KeMohP2WZbW0wMDBAKpXKad32+\/1lCSV7hm0vsZOzRKUsIAYHB0mlUpkaY7YFhJmtWFpa4uTJk6TTadLpNO973\/v4xV\/8Rf7Nv\/k3O7K+vYZFPDuIQpbUZsprdXWVe++9NxOam9gp4tmQ1+nH6Qpw8ZKHQt8fSU0hUioS2pauIQEhYaemitfI2uqt1++jVFs1KNSoYG4iN27cyHjtZA9s7vXTe6WolnjykW1tUEhR2jCMTfpp+dd6IxJPPvI\/p2wiyreAMLsKsx9mzBrSGwUW8ewQ8hsIJEkiFArR09ODy+Xi4sWLBbuDdoJ4IpEIfX1XufNOhfqG4ikgSdIw1BqkLDKoFh6fhFi3Ixmpio731d06Lntjyd9k9jriqQaFBjbX1tYIBAKbNtv6+vqSFgd7Pby5XeLJRiFF6fwhX1M\/zfyf2+3OpF73mnh0Xd8Vl1hJkjbZZGQT9vT0NEIIrly5wtTUFF6vl3g8XlSRvhL8\/u\/\/Pr\/1W7\/Fxz72MR599FFg42\/\/u7\/7u\/zpn\/4pa2trnDt3jj\/+4z\/m1KlTJc\/1jW98g0ceeYTR0VGOHDnCpz\/9ad7znvdUtR6LeHYA+bM5ABMTE4yMjHD48GEOHz5c9EtlNhxs9WlrdnaWublBzp3zYqtkIFSOICQvkqiyRe0mZMmJkTaQ1SiSKG+bUNOqEA4EcdbX7mo79W4ifxOJRqMZaZ\/sRgUzItpPefqdJJ58FBvyNdXITdkan8+X2Xz38rO5nRFPKeQT9traGn19fTQ1NfHXf\/3XfOUrXyGRSPC7v\/u79Pb28pa3vIX77ruvYpJ85ZVX+NM\/\/VPuvjvXI+tzn\/scf\/iHf8hjjz3G8ePH+b3f+z0efvhhhoaG8Pl8Bc\/1wgsv8MEPfpBPfepTvOc97+Gb3\/wmH\/jAB3j22Wc5d+5cxe\/59ZEP2KcwGwhSqVSGdNLpNJcvX2ZycpKzZ8+W1VrLNm6rBpqmce1aD8nkCOcvuCsiHQBJAlSlqkkeTRMkwzJMraL0v4YSmID\/9TTGeBTDKB\/+h8ZHs65fOLLZ66fdnYK52XZ3d3PPPffwpje9ibvuugu32838\/Dwvvvgizz\/\/PIODgywuLpJOp\/d0vbeTePJhDvkePHiQM2fO8KY3vYlTp05lGjXMz2ZgYICFhYVMt9duYa+Ip9A6bDYbnZ2d\/MEf\/AETExP4fD7e9KY38dxzz\/Hwww\/zkY98pKJzRSIRPvzhD\/Nnf\/ZnGZUG2Pi7P\/roo\/z2b\/82733vezl9+jSPP\/44sViMv\/7rvy56vkcffZSHH36YT3ziE5w8eZJPfOITvO1tb8tEUZXCini2iEKzOYFAgGvXrlFbW8ulS5cqkqrfCvGEw2GuX7\/KnadU6uur766S5ASGUo+kB0oeF40a6GsRPME5XFmqBZIeR5w4hdx7BXpBdB1C3HkcyRFHYvP70MOLt157k3hCoRCxWIz6+vrMRPcb0YE0u1EBNrcnRyIRZFlmeHg4Y\/2wG+keE7tJPPkwZWvM7865c+cyM0TZahPZTRzbsX8oB13Xb\/uwbKXryL4HZFkmGAzyS7\/0Sxw9ejTT7FIJfvVXf5V\/\/s\/\/OW9\/+9v5vd\/7vczPx8fHWVhY4B3veEfmZw6Hg5\/4iZ\/g+eef55d+6ZcKnu+FF17g137t13J+9s53vtMint1Aodmc4eFhJicnOXnyJJ2dnRV\/kashHiEEs7OzLCwMce68F5ttGwOhShyh25HIfaoUQiYZAW12Cr+2Xvz1fgkhSUhCIE2PI02PI3w1GGfuQ6qTkUQyc6zDkSudMz09zdTUFDabLdMFlUqliEajNDQ0vGGin0LIb0+enZ1lamoKTdMYGhoimUxmusLq6+s3CXruNMwa015+5qZqQSG1ALPukT0bk01EO0nS+yXiySce00DRbC4wm13K4atf\/SqXL1\/mlVde2fS7hYUFgEyd0kRLSwuTk5NFz7mwsFDwNeb5KoVFPFUgezbHLIgmEgl6enrQNI3z588XzY0WQ6XEo2ka16\/34Xavc+68G0naXkOCJBkYqhdJ24h6hHAgQkmYHcJdQeOApEUQJ07BYN+tn4XXkZ7+IUJR0e68h6ABjUdc1LWDkdbRMTLqv2fPnsXpdGY6xEZHRxkfH2dycnJTPeSNTkR2u5077rgD2GhUMOtD2Y0K5udRqlFhK9jr5gYovuHn22Jkz8bktyTX19dvu5twvxJPNLrhxlhNV9v09DQf+9jHeOKJJ0pGcfl\/+0ruh628Jh8W8VQIwzCIx+Ncu3aNe+65B1mWWVxcpK+vj9bWVu64444tP30pilKSeEKhENevX+Wuu23U1LjYKM1tvzYgK1GMmA95dQ5l9Xr1J2goXAiWdA219zUageXeOtJdnaTWrjMaCiJJEnfffTd+v590Op0pqs7Pz2dkW\/IVps1Nt76+\/ramWvYC+elFl8tFR0dHpivMFPQ0zcyyPWR2olFhPxBPpQKh2bMx2S3JgUCA2dlZdF3Pad32+XxVvbfd6mqrdh1mOraav\/Vrr73G0tIS999\/f855n376ab70pS8xNDQEbEQwbW1tmWOWlpY2RTTZaG1t3RTdlHtNIVjEUwbZszmaprG0tISmaYyMjDA\/P8\/p06czQ2JbRbGWaiEE09PTLK+McOGiB1U1AB1hOBCk2c5+IQwbBMLIkXlYrVwGJ2fd6XX0Q8eRx28UPaZJXoPZNV7tC9Lx3vcwPj5ectjSdJE8ePBgzuDmxMQE169fz6Ra6uvrtzQlvx9RbHMsJOhp1kBMDxlTR80k52qJeT8Qz1YEQgu1JGe3bpvpomwiKhct7teIJxaLVR3pvu1tb9skxfXzP\/\/znDx5kt\/8zd\/k8OHDtLa28uSTT3LmzIaQbyqV4qmnnuKzn\/1s0fNeuHCBJ598MqfO88QTT2SMHiuFRTwlkC97Y26YL7\/8MqqqZmRvtotCxKNpGn19vdTVR3jwQVdOak2SYxiGD0kK55+qLIQAEnakhWEkY+N9BWQ\/DVtUNJDa6mC8\/HHd9nXqjhwpmj8u1FyQP7hpploCgQADAwOk02lqamoy2mLbEfbcz9bXJrL14yC3USHbAjtbR60cMe83VeitIr91WwhR1PraJGqn05nz3vcr8UQikaqJx+fzcfr06ZyfeTweGhoaMj\/\/+Mc\/zmc+8xmOHTvGsWPH+MxnPoPb7eZDH\/pQ5jUf\/ehH6ejo4Pd\/\/\/cB+NjHPsab3\/xmPvvZz\/Lud7+bb33rW3z\/+9\/n2Wefreo9WsRTBNmzOWbxdX5+HoCGhgZOnjy5YzdpPvGsr68zMNDDXXfbqakp\/CeSpAjCcCLJ5WdpTAjdgbS0hBRbyfl5nV9gJOuR46W73AquXVtD7ziAPFu8IAnQ6A4Rml\/eVjt1fqolFotl6iETExM58zLmxvJ6wFY3\/kI6aubnYdZAyjUq7JeIZ6c3fEmSMtHzgQMHMvp7gUBgk\/5etiHefiGe7Mg1Go1ua3i0GH7jN36DeDzOr\/zKr2QGSJ944omcOvXU1FTOZ3Lx4kW++tWv8ju\/8zs88sgjHDlyhK997WtVzfCARTybUMg3Z6Owf521tTUkSeLAgQM77g9vGAZCCKamplgNjHL+ghtVLf40LEkCgUAICUkq\/dQshIyISMhLA0gFJngkBMLjQcTXCv6+HKQD7VCGeGQJFn\/4DFJ7fdHNrloHUtPgzBxONDeW7DSUSUK3uxV3q9jJSMtut+cQc6Fp+OyN1uPx7Avi2Y015Le1ZxsFmkZvkiRlakVbSVvuFPLbuk3i2e5n9KMf\/Sjn35Ik8clPfpJPfvKTFb8G4P3vfz\/vf\/\/7t7UWi3iyUGg2Z319nZ6eHjweDxcvXuSZZ57ZcTVpWZZJpVJcvXqFhsYoDzzgKksmAJKULJtyE5oTaWEaOVla2FPSQhh1B1DWJqpdPpIWQDS2Iq2UbqlUZq8jdbz5toiEFpqXyW7FNVWUzTRUTU3Nvni6hdunGpAvXxOJRAgEAjmNCh6PB13XSSQSexYh7kWkkZ\/GTafTPP\/888iynJO2zK4n7pZjbaGuttsR8ewlLOK5CcMwSKVSOV+C8fFxRkdHOXr0KAcPHsw4CJrEtJPXHh8f5Mx9bvz+6v4kshzGMLzIcq4ETjoNasRADlTerSYRQdg8SOloVWuQEOhHDqKUIZ4ub4DxlLYrygWqqub4pWR3QM3NzWU6oOrr6zOS9HuB3bpudqOCmXpaX19nbm4OwzB44YUXMhGiGRHt1hP\/XtteA5n3evDgQbxeb07rtjlfZbZum0Kwt6uxpViN542EH3viMVNrpqK0GX1cu3aNWCzGAw88kHmKhlsmazt17cnJSdyeJPfd58Fm29omJEkJhFCRpI1mgURYQl2aRK6y5VoSaYyaZpSVCroF8iAba6TcXuyx4hpwDpuBPDyJOHPPtlNt1SJfHdjUU1tdXSWVStHb20tDQ0MmNedwOG7bWvKxF6kusx5m6qedPXs200FoPvHvVgfhfmhwMNdhvsd8W4PstKWpJp1t\/7CTg76FIp43kjI1\/JgTT6HU2urqKteuXaOhoYEzZ85sCq\/LzdxUio3N7hotLXEefNC9rdZoSdIQhgchJAiEcK3PbflcshbA8Lcjh6o7hywJ1NOn4eUXSx5XF5jdcz+e7A6o7u5unnvuObq6ukin08zOzjIwMJCRajHrQ7crzbLXwqhmfSW\/USH7iT\/bZ8eMiHZyo90PRX2zxlpsHfmt27FYLPP5TE1NIYTYsUHfQu3UFvG8QVBI9ubGjRtMTU1xxx130NHRUfDG2YmIZ+PL3MOZMw58VabWikFoOtJqCDm2ddLJQDUQsg3JqDxiEooTSZEQTg9Soniq7pBnjWgB\/5W9fOI101Bmm3K2VIvpHmn67dwOGZu9tkUodP38DsJs6wdzo81uTXa73Vt+H\/uFeKAyF9TsxpbOzs6cQd9AIMDY2FhO63u1ChxWqu0NiEKW1PF4nJ6eHgzD4MKFCyWfLrYT8QghGB8fJxye4NJDbiTJC1Q\/i5N7ThnCAmX9BgIJw16DnCqusVYJJCOOUd+FsjKW+ZmBgmTzILChpw0igTWUVBoPOnIoiJROIAHp+qMoK+NIqcIe2XU+nbmeQZre3rTpd3v99G8iX6qlkIxN9tDmdjbdvUYl9ZVCjQrmjMzKykqOooL5mVTTqLAfajzmd3or6cRCg76mdbqpwGG323OIqNTnk2\/BHY1Gc5Sl3wj4sSKefEtqWZaZn5\/n+vXrtLe3c+LEibI33laN2zZSaz20tSU5fsIFCISofhYnG8KwI62uICWCwEaRP21oyLqEqmxzExc6utGAFFhCX1vGlkrcvMaGYE+xr4EamSK2XofLL5DShd+X1n8N3v6mnJ\/tZyO4fBmbfE8Zm82WI+tjyvxXgr1uZ97K9fNnZHRdz7Syz87OMjg4iMvlytloSzUq5G+0e4FsA8ftopB1uqk4YX4+2Y0ctbW1OfdMoVRbV1fXtte1n\/BjQTzZsjdmWG8YBn19fSwuLnLXXXdVrDW0la62QCDA0NA1ztznxOu9dUOZszi6DtV+74yUE3l5fFM6zC6niNtrUPVgdSe8CaH4YT2Csnod4aiF5TlsRuXvV9JT2Ds9xIaTuJsFkpbcdExTembz614nEUOhTXd9fT2Tgurv769aPWAvsRPEl60IALmt7NmNCtmt7Nmfiek\/s5cw94XbcR8qipJJ08JmxQmzecC8X7INJWEj4tkJhZT9hDc88RRqIIhEIly9ehW73c7FixerEt+rJuIRQjA2NkY0OsnFS26UAlGIJCWJxxW83so2dyEkiEgoweL6aC4lSjDupNZehaqB4oGIhrw0cGttySDG4TuRRnpLvHIz1NQssYBBTPbjrF1DQcv5fXtdgsWxadyduWS\/XyOeUsjfVEy17UAgkFEPyLbBzheufD1GPOWQ38peTOrI\/Ez2Q1fbbkZdhRQnTKIeGRkBoK+vj7W1NZLJ5Ja62r785S\/z5S9\/mYmJCQBOnTrFf\/pP\/4l3vetdQPEHvc997nP8+q\/\/esHfPfbYY\/z8z\/\/8pp\/H4\/GqZ8De0MRTyJJ6enqaoaEhDh48yJEjR6rOLVca8SSTSXp7e+joTHHi5EZqrRi8Xp1oVMHjKX3ejdRaAClRXtrG6zIQeJD00jM5QnYikiry1DCS2EyoUmKBsMOPr8wAas5rDA33hW4i3+ojeaAFX\/M6+Q+0gWeew\/2z7731mn2caqsGdrudlpYWWlpaMkX5QCCQiYiAHFmfvcZuEF8hqaPsjjBd13G73dhstj2rmeVHGbuJ7HsmlUrx7LPP0t7enlGSXl9fZ35+nkAgwFvf+lYeeOCBshFiZ2cn\/\/k\/\/2eOHj0KwOOPP8673\/1urly5wqlTpzLyXya++93v8gu\/8Au8733vK3lev9+fUbY2sZXB4zck8QghSCaTJJNJbDZbxpL6+vXrBINB7rvvvoqMlAqhkq621dVVhod7OXOfE4+nsqcoh0NHCBuSVLiTzEi7kJfGkSrwygFQFYFQnIh4rKAMjpBsCN2NPDOMrBfvXpMQKI1+xFykIDEVvX58BqWzESYXmZ1z0nkGsjuS7YsDjI2NZdILb0QH0uyifGdnZ2ZmJtv2QVEUVFVlaWlpT2RadjvaKNQRdvnyZVRVzdTMVFXNqZntxkzVfuisg1u1pvb2dv7Df\/gP\/Nqv\/RpvetObuHDhAteuXePzn\/88d955J0899VTJ8\/z0T\/90zr8\/\/elP8+Uvf5kXX3yRU6dObVLU\/9a3vsVb3vIWDh8+XPK8kiRtW40f3oDEY6bWJicnWVlZ4f777ycYDNLT04PP5+PSpUtVFX\/zUaqrTQhxU55liouX3Mhy5Rupqm5YFeTbHQghIaIyytpQ8RcXgaSHMNytSLFbTzcCBYEPeXYMOV248ywfbilBtO0QnrnRyq8tDFxnW4nMrFCbTjB91UX3GZGpZXXXhnh5daPrJ51OZ+RbwuHwtlSm9zNkWaampoaamhoOHTqEpmncuHGDUCi0qRZiDm3e7s1wr1N92TNEHR0dmwrxAwMDuN3unJmq20HO+6HBAW41Fph\/E0mSiEajvO997+Md73gHhmGwsrJS5iybz\/n1r3+daDTKhQsXNv1+cXGR73znOzz++ONlzxWJRDK1zXvvvZdPfepTGVuFavCGIp7s2RxVVdF1nbGxMcbGxjh27BgHDhzY9pfMVDbIRyKRoLe3h+5ujZN3lE6tFUO+3cGGZ04QJb665fVK2iqGvR4ptYaQa5EXppDjU1WfxyWHMOpakNcWK36NGptGOdSCPr5IXSrOlEk+MthUqJ9f5Z53v5N4PE5\/fz+JRILLly9nitV7oSKwm1BVFbfbjRCCU6dOkUwmM23b169fR9O0nKHE20HIe008kBt15dfM0ul0phBv2l9nS9fslKLCXqba8teR\/36yazyyLGfa\/Muht7eXCxcukEgk8Hq9fPOb3+TOO+\/cdNzjjz+Oz+fjve99b4Gz3MLJkyd57LHHuOuuuwiFQnz+85\/n0qVL9PT0cOzYsQrf4QbeEMRTaDZHCEEoFCKZTPLggw9SU1OzI9cqFPGsrKwwMtLLffe7cbu36yuy0WKNLiFVkVorej4EQlZh3UAJ9pV\/QRHICIyGGkRwueKUmyQE7nsbCY9vkFVdMs7UNTfddxsoMsiT15Gkn8LtduP1erHZbBw6dCinNddUEchWmb4dT6Z7WV8yN12Hw5Ej62PaPpgyNrIs56SgdkLUc78QT7FN32azbWpUMMm5UKNCta6jlaxhN1GOeKrBiRMnuHr1KsFgkG984xv83M\/9HE899dQm8vmLv\/gLPvzhD5e9n86fP8\/58+cz\/7506RL33XcfX\/ziF\/nCF75Q1dpe98STP5sjSRLLy8sMDQ0hSRIXL17cUbmT7BqPYRiMjIyQSs1y8ZILWd4J1WqBiOnIaxNIbF8TzqAWeXIA4WpEsDGHs1XIiQDGoTuQxioXHlUiM8R8HtzhjSaHuliMG1c9nLhXp8O5hJ7SUOxqZrPInoE4fPhwRkXA7BLbSfO3\/YBihFfK9mFubo6hoSFcLleOqOdW7vP9QDzVDJAWIudsRQUgZ36o0kaF\/Uo8pq7gVpQL7HZ7prng7NmzvPLKK3z+85\/nv\/\/3\/5455plnnmFoaIivfe1rVZ9flmUeeOABhoeHq37t65Z4smdzzC+PEILBwUFmZmbo7u5mYWFhxzW2zIgnkUjQe+0qB7qSNDXXIMub51WqhRASBHWUwCCGoxlJbM0VFCCtg5Kyoyz3AyDFljDqDyIFJra1Rim9gqhtQgouV3Y8AvWoG67c6q5rS0Tpv+zmzvsNxl54jbaf2DCRKrQJZ6sI5HeJmeZvJgm9XtNylWyM+YRszsoEAoFNtg\/19fX4\/f6KNtL9QDxbbXAo1KhgNm9kD\/dmS\/sUuz8KRRp7gULDo0KIHHO2rcJsusrGn\/\/5n3P\/\/fdzzz33bOl8V69e5a677qr6ta9L4smfzZEkiVgsRk9PD7DhkqdpGrOzszt+bVmWSSQSXL3yHPffY8flFAiiNxUItPInKAJNEyhr8Yw4p5xcImJ48TqrJzRDcpOem8Eucud4pNgChrcZObK05XUidERTJ4Zx045b6KCnNgZF03GkAsOmLY1JJu1O\/Klb6+lMxei\/7EaOXoafOFdRV1uhLrG9SMvtJLaa4itk+2CmoHp7ezEMI1MfKqWltl+IZyeijezh3oMHD+Y0KszMzGQaFQpFibcr4hGGgVTFeQspUwNVp9p+67d+i3e96110dXURDof56le\/yo9+9CO+973vZY4JhUJ8\/etf57\/+1\/9a8Bz5tte\/+7u\/y\/nz5zl27BihUIgvfOELXL16lT\/+4z+uam3wOiSe\/NkcSZKYm5vj+vXrdHZ2cuLECWRZJhwO3xbfnMXFRfzeKPecciDLN4kPHZFWwLE14tE0mfTUDDaR22XmJIaBB5nKB0ENqRZ5+gYesXktG7WZNEJ1ImnVyfQYyOBqhvl5pInLGP4DGFc314yEw4lwO4kjIbtcuGr8xMNJkq4ARjKBnLXHdSZjjA\/Mb3nzK5WWMz1UsjffYmm5vd54d+L6TqeT9vb2jHqyKVqZbfpmfg51dXWZJ\/\/9QDy3S6stu1HhyJEjmUaF\/Cixrq6ORCKx45+DnJojMG1Qe6Sz4tcUIh5VVauO5BcXF\/nIRz7C\/Pw8NTU13H333Xzve9\/j4Ycfzhzz1a9+FSEEP\/uzP1vwHPm218FgkF\/8xV9kYWGBmpoazpw5w9NPP82DDz5Y1doAJPE6mdorZEmt6zr9\/f0sLy9z11135XR7xGIxnn76ad75znfuyA0Vj8fp7b3Kwc4k7UXa2A2lFlmtrEXZhNAdiOkxFL0wEQhbLRAta5sgkBFJJ8riSNlrhoUHb2qtonqPUJ1EU3bsC7PYsoQ\/hSSjJ70ws1n+phiGhj102Dd\/Pgvv\/TkSh2oQQnD8+PGKz1dy3XlpubW1taJpuRdffJHjx4\/vyUDn6Ogo6XSakydP3rZrZD\/5BwIBwuFwJjJMJBLYbLbbev1yeO655zh16lSO79VuwDQHXFtbY2lpaZP461YbFQDU5CRy5AZ9L3dy\/F13VPy68fFx4vF4pgGgt7eXd73rXQSDwT1\/QNhJvC4inkKyN+FwmKtXr+J0Orl06dKmjgzzqWEnnuiWlpYYG+29mVorfpykxxGyhFTh\/I5IO5FmbiCXsB+Q0kEMZyuSUbylWsguWA2hhCsjAZ8URa\/tRgkWb6sWdj+GbkeaGMajbV6fJAyUWgVtyYGUqiwd2N6RYGHcQas39\/jkE08h\/fK7d9RSvJq0nK7rOx4dV7vW24lCT\/4mCQUCAXRdJxaL5XSG7Wahfa8K+9nmgGYnrNfrZW1tjYmJCSRJyqkPVWRtIAS25DD2xACzE160eHVdqYUsEd5oXjzwOiCefN8cgMnJSYaHhzl8+DCHDx8ueDOYfzxN07Y8MGoYBjdu3EBoM1x80IYsld6cJJIYWh2SPVb+3EkH8kx\/QVWBTedNLGI4G5CNzXYHhlyLPDNWdepMTixheJqQo7lNAoarARFJIw2PIperucTWUE4fx7hcmZabz60z61SJpHS89lupwPbwFOOrYdTa2yeEWCotl0ql6Ovrqygtt9PYi4RDdsOGqT3o8\/kIBAJMT08DVL\/hbgP7wRZBCIHD4aCrqyvTRWiqkC8tLTE8PJyxNshPV2adBHuiD1tyw05k8J\/WcLVXN8ZRyBLhjebFA\/uYeLJnc8wbM51O09vbm7HqLeVRYf7xtvoUHYvF6O29ytGDaVqaVCodCJVEEKF7kZTCTzpCgIipKAv9Fa9FQkAqglBtSDftrAUSQvOizFV+ntx1GiBpCNUBWgrhakasBpEnBqpquZaDkwRbmvEvVtawcPRghGtXajncEEK9GRnaJIP1b79A\/UfeuoV3sjVkb75ra2uZYvRedMvttUiozWbbZPsQCAQyG67D4cjZcLej\/FEI+0UkNJv8slUmshsVTHLu7+\/Pdamt8eNJ9aLeVF43UOn7h3Hu\/bmOqtahaVqOaHEsFtuWm+l+xb4kHsMw0DQtJ7W2trZGT08PNTU1XLx4sezNL0kSsixnhkqrweLiIuNjvZy914HTUd0TqYRAaAZCEkhy7s1yq116C\/I3RgKDRiTWEZID1pMowerPk3POdBTd24k0NowU6t3yjE9NDRhxP1KovJCoqgiaOhOML9VzrOZW+rBjdpSo8ZNbXMH2IEkSdrudhoaGgmm5wcHBTDfUTnfL7XWJNT8VXagzzFQOmJyc5Pr16xnbB1PWZ7ufxX6YoSnXTl1IUcGsD42O3OB0e4Aa\/62MyPqqCz0lSMcqd\/GFzRHPG9F9FPYZ8RSbzRkZGWFiYoITJ07Q1dVVMftX6xZqGAaDg4MozHPpQRtSmdRaMUhEMYw6JPlWyk0IBVYimXbprUBOrWDY25DnR5FSpVWny0FIMkKuQxm5gl57ACm0dVkeRUsgHelAvxKuKHXY1RonGPRzY8XF8caNZoN2Z4qXn+mHApIeu41KuuXMIdaGhoZtp+X28mm2XLShKAoNDQ0ZUd1UKlVQOWCrKcpqLKdvJ6olv0zE3FiLM7qIklcjvPr9BQDWlgJV6Q8W6mqziOc2Il\/2RpIkEokE165dI5VKcf78+aqHqKoxbYvFYvReu8KxwzrNjQpb0VrLhqSHEbIdSdYRhg1pYQkpXt7OoBQMpRZ5rBfh9m9LgUDYPIhwGnl1EAA5OIXR1IW8PL3lc8rrs4jTdyL6KlM16D4U4sbLbhajGi2ejadC1yvX4Jfev+U13C7kW2FnS9lMTk4iy3KOttxOSNnsFqptvrHb7QUtDrJTlPn1oXLXh9cf8cCGRbwz8jyyEcn5uQBGv7cR\/cfDcS5fvpx5mDHTlcXqZvmacVZzwW1E9myOmSJbXFykr6+PlpYW7r\/\/\/i0pEFRKPAsLC0yNXOXeu914vDvTWSWhYWgeUFSkucltRyiGUos8MYRkaJBKIiQbkqgujAcwnI1IM5PIyVvRmIRA1sIITw1SdHMDQ6WQk\/NoLS1Ii+WFRGsccai3s7zqpcYRxKkKTkhrrE8tUdNdmQjiXqGQ1cHq6uomKRtzkymVwtnrwvp2uj7zlQOybR8WFha4ceNGjsVzIduHbKmrvUS1ygWSHt4gHbG5qSeR8BCa24jkvU4vb3rTmzbZYdjt9oJ26bqu5+x1Zo3njYY9JR4hBKlUimQyiaqqmQ6b\/v5+5ubmOHXqFG1tbVs+fzni0XWdwcFBbKlxLh5LICQvsIMtvXoSZleQjB0kHUBKhjD8HUjJymRrYOMpTDhakEavF0yHSek4wteESESR9OrrYsLXhCGcSPEQSedBFL8DWU4jhVeLktmpY2Guv1rP4IKfezvXsSsw8tg\/cM9\/+oWqr78dbGfTyy5Cm2k5c0jxxo0bOWm57YhY3i7s5ABpIdsH87MwbR9MZWmzPvR6jHhkLYAz+mLRB7+5wVvfLy2W2vS5ZNfNshsV6uvrSaVSOXW\/rQqE7nfsGfGYsznT09PMzc3x4IMPEo1G6enpQZZlLl68uG2f8VLEE41G6b12mZMt6zQ13RxqTCwjXPUVz+GUghAOpJEBDF1Cdysoyta+3PmkY0IOzWLUdiPHF8qvRbEjUg7ksdLq1HJkGaP9EExXJvonbE4MbwtiaRVpYKOFVAJsLUeJPXvrHHJ9LaLOx8rkCi63Tp0vjU0VuO0GrrY49jk3N9ZrOF6zTuP4dXTdQFH2XrBxK8hXU85ORRVKy+235oKdRL7Fs6ksHQgEMrYPfr8fuLXB7hUpV0o8sraMM\/JSSQHf3n+8FfGnE5vJKb9ult2oYLb2r66u8tJLL7G+vk57e3tV76Wc7fW\/+Tf\/ZpP3zrlz53jxxRdLnvcb3\/gGjzzyCKOjoxw5coRPf\/rTvOc976lqbSb2hHjMSMcMK3Vdzwz1dXd3c+zYsR15AipGPHNzc8yM9XDuSBK7cuvGkISGSNrAtT0rAiFsSGOjyKkYMhBLNeNybUFzrQjpZNa7PktcdeMqIVAqHLWwvIocrky3Tl6bQu84ijxbWAFBICFqWhEpGTE+iqQtb6o3KYsjOO4\/SvK1DeM4IxCCQIgGgBDE12HZsBNRVWyqzjoa7pDCqFA5Uptm9BtPcfwDb6lovfsdZlquo6MjJxU1Pz\/P0NAQiqLgcrlYWVmhtrZ2x0Vty2E3JXPylaWj0SiLi4sEg8E992GqJNWmsIQ90VeSdHTDwdgzY5l\/V9LVll1DXFxc5M4776Snp4eJiQlefPHFjF\/V29\/+dt72trdx7733lvyblbO9Bvipn\/op\/vIv\/zLzmnJdwi+88AIf\/OAH+dSnPsV73vMevvnNb\/KBD3yAZ599lnPnzpV9j\/nYE+Ix6zhmfjsajXLjxg3uvffezJPiTiCfeHRdZ2BgAKc2ycXj8cIpp3gA4fSWlagpBiEUmJpFjt9KL7lSKwh3C5IoP1hqwlBqkccHkUTxm1wSOpKWRjhUpALabAm5DsfkOFIJa+tCkMNzJL0NOCK3Ot1SsgPF34aYnUOaubFx\/RLnsMUm0bub0aY2z\/fIkoRf0fALDQSodYK1VR\/JiJ+ga43kkz8k\/Z6Hdt0G+nYjP+WSTqfp6+sjnU4zPDxMIpHY9bTcXmm1SZKUSSHNzMzwpje9qaDzaHYL++0k5XIRjyrNoeiLyFq45HlWZnPvWS1e3XdP13Xcbjdve9vbeNvb3sbP\/uzPcvLkSbq6uvinf\/on\/uqv\/oorV66UPEc522vYeAioxsL60Ucf5eGHH+YTn\/gEAJ\/4xCd46qmnePTRR\/nKV75S1XuEPUy1SZJEKBSiv78fIQSXLl3a8SecbOKJRCL0XbvMHW0hGj3F9dQkI45INYCj+ghFIKPPrGAP59ZeJGEg4imEg4oIrRLSMeEUCQx7br1HSAqhiEJN8EbV7wHYUJiW0ugOD5K7ntRaFHVqClipuJtO0tI4mzQiKw6Ilf4sWzxpFkIpvLqD4QUf93Su8cO\/\/Q71xzozLcu7LeOyG7DZbLhcrkx9KN9bxpRsuZ3dcnstEmo+fGZ3w+XXykxS9vv9mYJ8pbYPlaI48Qhs8hQKy8ih+QK\/z8WNp3Nn2dJVEI9hGAghNrVTHz16lF\/+5V\/mYx\/7WNWp2WK21z\/60Y9obm6mtraWn\/iJn+DTn\/50SWfTF154gV\/7tV\/L+dk73\/lOHn300arWY2LPiGdycpKBgQE6OzuZnZ29LWG1STyzs7PMTVzj3OHc1FpRxENQ5XoEkJwJ4l4vPKcjJ1bRnd1IlO4aq4Z0MufOqvdstEqnqAluzxLC5vIiDBnj+hC2AlYHlUAKreI5c4jocxNljz3dEqFnyUk9Nq4uuGnqm6f1J8+xurrK7OwsQojMJtzQ0LDjm\/Be1Vqyr1suLZfdLbdTEcBeE0+xOaL8Wlk8Hs+Q8szMTEbQ07wnKjV8KwRzfnAz8Qjs8iiqvIQREUhlGo8EMj1\/l6t\/WA3xmA\/J+cST3VxQ6XssZXv9rne9i3\/1r\/4VBw4cYHx8nEceeYS3vvWtvPbaa0X34YWFBVpaWnJ+1tLSwsJC+RpzIewZ8Xg8Hh544AHsdjtTU1O37QuwuLhAuz\/EhWOJioYbAWQthJHuQLJVXuuJzISpCZaeg5FD8wh\/HRKFI4A0PmxVko4JKTSH7u9Enh7OaZXeCnR\/JwwOIetpjENHYXTrCgny0jjirk6k3tJEqMjQXR9mesZDg91F8MYUTY1NmXqA2bJstumam3BDQ8PrwnenFArd94U6xMyNdyfTcvuBeCqJXFwuFy6XK8f2IRAIsLKywujoaMbwzfw8qpH1MVu6c+8hA7t8A1UOoGtu1MRk2fOEQx5SkdyUtxZPI4zNKiaFUIh4ttpOXcr2+oMf\/GDmuNOnT3P27FkOHDjAd77zHd773vcWPWf+fbKde2fPiKepqQlN00gmkwghdvwLEA6HWV2e467OKM3+6uddiCfAVlkovzYToaGE0rMJyUgj0jIUKF2sxxRqVm7c9MypHsJRhzQ6BvLWVZaFJGM4WpGu3+p+kxdGSXYdwTY9uuXzepNzxA+1YIyXnu9ptCcZsst4hRtX1MbAXz\/NXT\/31hwZl\/xNON93p6Gh4XWlbVVppJVv\/JZt+WBaPmdry1UaEe6HOaKqBzclCZ\/Ph8\/n48CBAwV11Lxe7y0dtTIPJpvVEzQcyiCKFEIIBSVU2VP95OXCD5RaUsPmKl+vzPYYg1u211txH63E9tpEW1sbBw4cKGlh3drauim6WVpa2hQFVYo9HyA10wXbUZHOhhCC2dlZFqZ6eeh4HIe6xTRRahWhtSGppWdaAvNxGoPln4ZMyNEF9LpuZHEr5WYotfiXK1OqLgTDWQejo0ipBEZjF7K2VHVzhGH3IKIS0tRm0VH72jTrvgb84a3J6sjCwN2gsbbkwxYtXZw93xHnn4btHHGrLH\/rFcRH37KJRLI34WzfndXVVSYmJnJ0tap9+t0LbIUkXS5XRthzO2m5\/RDxbPf6+TpqqVQq056cL3FUKDrMJZ4UTqUfWdrIGhgJCdWorN579W8LR\/XpWKpi4sknyJ2a4ylke21idXWV6enpkjOTFy5c4Mknn8yp8zzxxBNcvHhxS+vZc+IxnzJ2wg9F0zSuX+\/DL89w\/mjlqbVCkACRMKDE3zy4kqJ+dbzqc8vhFYTXiYR+q6azxbUKuw+m5pBu2krLK9MY7UdRQpXL3+jeFpicQ4oVJgVJGHikKKKuEWltpeLzGooKjV3ocYExMo2tpoGpcYFQBF5XmjpXivwMhCLB6fYIYws1tBHn1cd+wAM\/\/7ai1yjku7O+vs7q6ipTU1P09\/fj8\/lyRC3zn7D3uri+XWwnLbcfiGenIy673U5LSwstLS2ZB5Pspg0gR23b\/AwUOYVDuY4sbWzQhu5CiZbPZAAk026Whwt\/fyqt8xQinlgstqO215FIhE9+8pO8733vo62tjYmJCX7rt36LxsbGnJmcfNvrj33sY7z5zW\/ms5\/9LO9+97v51re+xfe\/\/32effbZqtZmYk+72sz\/VxRlSyrS2QiFQly9ehV3Os3xu6pzAS0GKbGMcDchyZvTX+F1ndqlUeQtEIakxRB6PYZdRR4f2FJNB0CoLsRicBNhSPOjRPxNePXy8je6rwsGrpdN8dkMDeGQMZxupETxGpIhK4TsNTgUN\/LUAmSl6OzrCzj8bpSIDRGzsxixkfY40FMx2n1JHOrGZ9nu1Rl3JkjoLuLffB79oz9ZcQ0nuzsKbolarq6u0tfXl+My2dDQUFZLbDew0xt\/NWk5U6Zqr3C7U33ZDyb5tg+mfI3NZsPvk7BJPRnPLSEkpHCg4i7OhZHiR1baUp1PPIZhbEkktJTt9YaTci\/\/83\/+T4LBIG1tbbzlLW\/ha1\/7Wk5KL9\/2+uLFi3z1q1\/ld37nd3jkkUc4cuQIX\/va17Y0wwN7aH1t6rMB\/PCHP+TMmTNbsr4VQjA9Pc3Q0BCHDh3CGE1zx5lh5CIF\/KrX6W5HcufeONGogXtyFMXY+qCpYauFYAxZ25pwqFDsiHUDaaVwF52m2BEeN3ajMAkbsg2h1CGNVddybTR2IqanN1quzbXICkZDB+FgAtv8Cmqq9EPE2LwPZyp3s9EMQVCXcNUp+AhTYzf43nAdJz0yK2+\/j4c+\/jNVrbMQzKL06uoqgUCA9fV1nE4nmqbR0dFBd3f3rg9w9vX1ZWoVuwEhRMbywfwMHA4HTU1NuzIvk4\/5+Xnm5+e57777du2a2dB1nbXAGG1NS9jUW+QRWQdfunJJqu8+mmDgu4W\/i+\/+sw\/Send59YGlpSWmpqY4e\/YssPEw3dnZyfLyckb94Y2CPU+1QXUq0tnQNI2+vj7W1ta47777aGhooO\/aVcJrTmrqdoZ4pPgKwlmbkdHRdRXn1NC2SEdIKtLkLKQ0RJ295CR04dcrGHEVeWWi6DGqniKRciPs6iblA91ZA4EE0mr1cz7yygzGoaOIsWFEUyeGZkMbm0GamaDS2OFga5ixGT9u49YXXZUlGmUgomPg5kbKoNaVZIYaHE+8RvqX34XNub2B0uyi9MGDBzNaYgMDA8zNzTE5ObmjdgfVrGu3IElSTlruueeeo6Ojg2QymZOWq6ury8xP3c717bUXj00N0tW6kvMe02kFT2qx9IR0FgxhY+B7Y0V\/X6knj6Zpm1qpAUskdCeR\/YdWVbXqVNv6+jo9PT24XC4uXryY6T9PRVLM9SepubRD6xQpgstxalucCKGiTE0h69XZTOdDJF3IaxuSNEbtMSRprfLXImEYPuS58qThTAQxag6jRG8VPXVfO4yOISW38R60NFrDMYyrA0DF388MZAkOtIeZnvFTrPeqyS7TZIfRRBo0g2f\/4Bu85ZF\/vfU1F4CpJeZwODh8+DAejyeTljN11cyUVENDw21pUthrrTYg4z0EuWk50wY7W0V5p1OTe9lVJ8vLOKQRJOnW30AIGTmmI0uV\/10Ci86SLipaAb22Qsg3gYvFYtjt9l2VDtotvO4iHiEEU1NT3Lhxg8OHD3P48OEcEktFkgy8tMwdl6pvQSwGj5REGG6k2SXkaOUkUQiGrRH5+quZf0uzI4Qam\/E7K3v\/htKIPFqZ5w2AvDjGqquBeiWK4e2A\/sLq1JVAIGE0HcboG0QCEl3tOKe3ZmxnUwTNrRFWF7yFusszOOJM8HJMoun5fmKhGG7\/9oRji0EIsalTLBQKsbq6yszMDAMDAznOm7W1tTu2Ye51jSX7+tmfQXZaLn9+yqyjbTcttze21wJFWcTOeIZ0DANEwgaTcygvvYB25ixyhw+Z8g9ofT8onZJLxyrLjuRHPJFIZFuDsfsZ+4J4Ko14TG2rYDDI\/fffn2mfzEYqkmTi+WUMGpDZntinCbucwpgOIYfLS2aUglDcSIMDOT+TELijCQyHvexTluFoRR66VvV1a1PhjeHSgdLq1KWQllQkdxui91aU415fQO\/qRJqe2dI5vQ6dREOc2Kqr5I14X53g1VWN537vazz8uZ\/f0rWqRbYL6ZEjRzItuqurq\/T396Pres7sUDFjr\/2OUl1t+Wk5s1tubW2N0dFR4vF4Rsamvr4ev99f9Wew+6k2garOYRPTSJJACEiEJZTZUezI8Op1JENHfe0lxGsS+l33Ih1sRJYK10qFkBj49mY9wmxU2tWW\/1m8UW2vYZ+k2iqJeILBID09PXi9Xi5dulQ07ZGMbNR2IkEn\/tqdIR7D8CJdvQZHtt5PLwARSCInNnvzqPF1wtEOfN7idSnD1YY00LO1a9sbEaNjGJ4a5Fj1Rm+Gr57YXBj3fO4QqSwM5NgKWlsLzJc3fyuERm+KGykvypqOq8jdqEpw3G8wcXmU0EIQf2vtlq61HeS36Eaj0ZzJedPYq6GhoapIYK\/bmau5fqFuObNN2UzLZasHVJKW291Um4FNnUEVc0iSgZFyIM9O4omuIgTocwmU9K09Q0Kg9F6BXtBPnIZj7ShybkdnLOYhvlb6oXllfjlDIqU+63wTuL22irid2BcRT6l2aiEEk5OTDA8Pc\/ToUQ4ePFjyD5GKbtw4swNp\/BeKHlYdhiaRVucwuu5Ftm9NjkbIDcgzrxX9vTc4R9zZiUvd\/GRluFtgoPpIB0CvPQB9fRtzSc4WDNWOrFVOyEbTAbQbU7iLDJ+RSqDabGj1dRCoLA2p6bC87iSRUPEqOh22CP26m3jUgU3Wafdq2PKiv3q7RETTeeZTX+Wf\/\/EvV7z+2wFTWdnr9dLd3Z0x9goEApsigd0o0G8H2yG+fBkbU9bIbFM23UfN1FwhMt69VJuOzTaFaiwiNDvMz6CGbj0srYdUamaLz+woQ30w1Id++BicPISibuwD073lMzXhtTCvvvoqqqqWtH3QdT1HkT0Wi23bk2y\/Yk+JR5IkhBAZT558mKZIoVCIs2fPZmYzSiF1M+K58U\/L3HFh+xO\/huFFHt4YkhJzAThYvTilsNUgXbta8hgJgbwWRDS7c+Z6DFcjDA4gbaEIHbbX4+q7nin+S4FFRMchjLXpTYObm9YsSRgNN+s55a4dDaPWNaKlPBAp7LYqHE70hi4igQRiegm\/YuB33iLAOxtj9C1LuAwHq1GFlZSOy6bT7TEyykXdboiNzLA8ukDTkcol3cthJybnTWOvY8eOkUgkMk0K2QV6k4iyN5y9bi7YqYirkKxRMTLOTsvtTqpNw26fREqtw2IAdS1XYSApXPiGeys6kzI2DGPDGB3diNMnufat8mnmBn8D5978UEbWx7R98Hg8ObI+uq7nSB1FIpE3pPso7KOIx5zpMbG2tkZPTw9+v5+LFy9W3FGUCm8Qz+izSxjUIbMFnbZsDNxSJpCXpjA67kG2VT6gKiQFY3IBpQKFZ0cyjGG0IUkbsz0bUjhjRY3gSiHprMMxNrupkUCaHUccPA7Lxds\/hd2FrtYj+gaKHrMJaysoLe3oqRSkNj5zw1uLUduKFk6jT83B\/ORGI0GRWdDTTVGuLcp4ZButThVQWYgIgrpOrUej3WZw3Kvx6u\/8Fe\/6yn+ofG27DKfTSXt7O+3t7Rk5m9XVVebm5hgaGsrxmXk9pdqqQb77aLG0XDqdvq1P9ZKUwiaPIc9No6xMbOrAFMiIkTlkozqNRHl2imggzdKN8h1n6Xhq02Bztuuo2cZu7oPBYBC3272l4dHXC\/aFwUl2c4EQgrGxMV599VUOHjzImTNnqmpjNWs8CIisb6\/10zC8yHnKzGIhVOTowkjHHShrldc\/pLkRDLVmQwpnej4jhVMNhNMHcwGUYs6lEzcwGg8Vfq2\/CS2qIsaqlwKSluaQjx4i3XkncWcn8akYyWtj6OPTUGHX4unmMNEsUzuXKtHmUHFpTibDdq4GBY2hFfq\/\/lzV69sLmHI2hw8f5uzZszz00EOZiGBwcDCzEU9NTRGNRnc9Atot4jNTcqdPn+ZNb3oT9957Lz6fj1gsxtzcHC+88AJDQ0MsLy9vW8XEhEQMm34DdeBF1AKkA6CnPDjWKh8UzcaLQ7XYvOWJp5Bygek6euLECS5cuMD58+ex2+2k02n+4R\/+ge7ubr7yla+wsrLC0NBQxffFl7\/8Ze6+++5M9HnhwgW++93vAhtk95u\/+ZvcddddeDwe2tvb+ehHP8rcXOnO1MceewxJkjb9L5HY+kjGvki1mc0FqVSKa9euEY1GefDBB6mpqan6nKnorVrE\/EAa\/\/ltLPD6ZkVmeX6cVPMp7I7ykVRC+HCOVhbCm5CEgQjGMLQ0crQ6kgMQqh09LFBjkdLHzYxjtLYiB28pzhpNB9GHJiC1taYMo76d1MgiUkMTxsLWvsyyBKeaQwyG6nAmc7cKv6riV1UQsPaXPyDy5lN4W2q3dJ29QrbNsRCCy5cv43A4CAQCjI2NYbPZcpoUbqcLq7mZ7fYcTXZaLhaL4XA4qKmpKZqW24oJoCSFsMVHsE1eLSpJpas1yC+\/WvB35WDY3Hzjb0Lcf2f59H8lXW0ulwtVVenq6uK+++7j0KFD\/Mmf\/AmvvfYa99xzD83Nzbz97W\/nS1\/6UskIsZTtdWdnJ5cvX+aRRx7hnnvuYW1tjY9\/\/OP8zM\/8DK++Wvpz8Pv9DA3lPoRvxxNr36TaEokEzz33HLW1tVy8eHHLXzizxgMw9IMVTpzfWqhq6F7k8cICeGIxCt2lo7C0UJFKyIyXvHZCQcRF1eGoQMKQ65EWy19X0jXE2jqG24+UCG\/Uc3qrSK3lQWs5hjY4CZoGoTDOO4+QuD5ZcrCuGBQZjtcE6Zn3UqcUvg\/8CK7+H\/+N83\/zH1C3qWiwVzAt4Ovr62lvb8+R9x8fH+f69esZgdPb4cJqEs9ei4Tmp+XMGtlWu+VkYxVbeBB1Yago6QhJhcGJLc+0jcS7SCZCyI7y9161IqGKovDQQw\/xj\/\/4j3R3d\/Nf\/st\/4dlnn+X5558v+95L2V7\/wi\/8Ak8++WTO77\/4xS\/y4IMPMjU1RXd3d9HzSpJUlVV2Oew58QghWF1dJRQKcccdd9Dd3b3lL4Ke0tBTt260kacXSf3GEezqFm6uvuKbt21hkljDUdye4utMLMbxpasPRQ1fM8bl6yBAP3UMJV65w5\/h74L+yodLpVgY4e1Ed9VCNfWcLAhZRqs7it43kvvzsVGcp46SuD6xJfKxSYI7miL0L\/iotxe+TWu0FK\/82\/\/G+f\/7321789zLIr+59mx5\/6NHj5JMJjNNCvkurDuhIrAfiKdQO3V2jayQqGfxbjmBkp5CDY2iLo+XdAzVow6UwNaicoHEN\/7+ZlZALS9eu1WR0Gg0SktLCy6Xi4cffpiHH364qnUWs73Oxvr6OpIkldXJjEQiGe+je++9l0996lOcOXOmqvVkY0+JJ5VKceXKFSKRCC6Xa9tCiclIXsuvgNVFibaO6jYVQ\/ciTxY3PpMQxGdCuE8UTgVGUm58q5t9bcpBAPpiNNNFZkzMI7W7kfXyzQxG3QHorX5AVEvaENE0kiQjV2lCJ5xeUtQjBkcK\/35sBNsdh0n1TyJVKKyT0iTmIg7iKQW3atDlS\/HqsoqMzEGfgSPvNN7AGs\/+yv\/g1KffR01NzevOibQU4TkcDtra2sq6sJobcLXvfT8QT7l26uy0XLa+Xn5arrGxhgP166iJAOrqZNFIRkgqulSD0vfClte87uxiZDBx83zlP7ut2iJs1YunlO11NhKJBP\/xP\/5HPvShD+H3+4ue7+TJkzz22GPcddddhEIhPv\/5z3Pp0iV6eno4duxY1euDPSaewcFBbDYbp0+f5vr1yp\/UiyEV2VybmB1I0tZReSpGAFJveavn2vUlhN6EpOReMy278YxvLcUWlGrxzkxk\/i1FwxjJJuQCsz3ZMGraMPoHq9ZM01uPYVzeeK\/BhgYaUpUbvRl1baQWE7Beup1UnhjDONKBMlq8wSKcVAlLXiLraRodOg0qkGXg92BTjOtrbtbTduYScTyKwWGXinKzJ7x2cp7X\/n\/fxPYvj2yyPNiv8zPZqGSNpVxYb9y4sSUX1v1CPNWkDwul5SKhORrUMVJL63hSgYwJoiGpCMWL0GSIxZHXViCeIPLSCN4zzSiR0ooDxfDD19zAxiC2XsEzbaWSOfnEcztsrzNrSqf51\/\/6X2MYBn\/yJ39S8nznz5\/n\/PlbxfJLly5x33338cUvfpEvfOELVa8P9ph4Tp8+nXmS2wkjuFR+xAOMPhPk7NubKj6H0LzIU+U7umQERkBHyTq1QEaZDyJp1bdw6zYXzuEC3SVTY6x3d1OjBguv112LMT6LpFfXCWQ0d6NduSU0WrO6in7iOEoF4qN6y1HSQ9OQrux9uudn4e7jJK9ttHDrSKzejGocssCjGvhI4CuSOXKpcLo+xlBMpdu5cdB0QiNuE\/j1BB1OBy03ZpGGDlLzrjpWVlYYGRnB4XBk5mt2W+6\/Umw1xbcTLqz7gXi221Xnsa9S5xnDiArcQidl+NHCEeTgKs7oek6dVMgKkQkXYjlE5FWB7x4vcrJ0E04+NGcN\/+tbQUxp3LRWPkugxct\/N4UQm0RCtzrHU872Op1O84EPfIDx8XF+8IMflIx2CkGWZR544IGSVtnlsKffRLONeieM4KBAqg2YfTmMbrSiyOWJTQDStcGKrydNDpPwH8J5M\/8jDD\/ySvH5mFJIpT2oqcJacM7ZOfSjrSjp3C43YXOiB5JIscJDm8UgfHWkhpc2DYaKoRsYJ44XVb42JBm94Rh6ifpXUYzcQL3vXkKzUdKTS7jQcdkrf9hwKnCHJ8RrAZU6xbvR4SYA2UZfOIrHaaP92y9BdxNn3nVmw2clz4WzWESw11HRdq9fzIXVNH4r5sK6H4hn6wOkArs+iBqdRF\/RUK+8uCFxAxRrcF5YcOAc2ni4E4Ew0SkP3rbNtiGl0LfcjmEEM\/9OpcsTTzpePuIxH7zzI55sc7atItv22iSd4eFhfvjDH9LQ0LCl8129epW77rpry2vaF4+AqqpmGH87XTuFIh4MCAZUGhorIB7Ng5yV6ioHydAwVgW0Sxi2eqSrV6pYbdYS\/a2orxYnPEXXEGsGhu9WHUZIMobuRVqpbt5GqHaS6zJStLD0j3FjGI4dRp7PJdCUYkdTmpEHqicdgYR24CSpl\/uxHTmIpmtUb6YAdhkeaNB4aTVMg3LrC9nu8ICAcBJWP\/99lFovHRcO56RkYrFYplNqfHwcVVUz0dBeNhbcjmtnDyuaAqeFXFjNTe11RzwihZNrEF3HmAhhGy6vYZhyduLsya276qMLrLraaPRXJvUkZIW\/+Xru9yYe14oSnQktoSEMgVRCLsS4OcCaX+Opdri2lO21pmm8\/\/3v5\/Lly\/zjP\/4juq6zsLDRvJQdFefbXv\/u7\/4u58+f59ixY4RCIb7whS9w9epV\/viP\/7iqtWVjXxCP+WHrur4t4gkuFb6BZgdTNDxU+rUCkHqq7+xyLkwj2u9AGhnbUmumkGT06WD5A5fmMOruQE5vyH0Yng4YrL6BIWZrQp2aLrEggTE2hdTdibS8Ub8xaltJzEawx6q3QBBOFylfO1rvRrOGNDqB0dWANBlC3sKGp0pwrl7j5UCIeiU3RSADTi3F4H\/6W\/RH3kP3m28VPvMjArNAPT4+TjQaZWxsjGg0uifaarf7Wna7ndbWVlpbWzMurIFAgOXlja6uF154oaym2u1CtSKhkhbAaRvaGOSenEedLv8gpLsbiX63cBSv9s2zeLaVFnuw7HmWlAMszuXWW2ORdFnigQ1PHpu7+AiGpmmZ9nogI0RbbcRTyvZ6YmKCb3\/72wDce++9Oa\/74Q9\/yE\/+5E8Cm22vg8Egv\/iLv8jCwgI1NTWcOXOGp59+mgcffLCqtQEcPHiQj3\/843s\/QAq3iEfTtC3N75j21yMDhburRp8JcvdDpYdRRdqDXEIksBgkLUl6WsMeCVb9WgDD2wVDlalOixuD6HccAZcbeqsbTAUI+9qxD5UgHROahj6\/itLYjGH3kR6exb6FoVJR30gipmKM5l7Tu7RKyO3FiCZRy4nG5SFhSIyGDWySzng8hFP10GbL7eZShcHI730T\/dd\/mkMP37HpHNkGb0ePHuXll1\/G7\/cTiUSYnp5GkqTbbgBnYrejrWwX1sbGRl5++WWOHTtGIBBgZGQk40C6Wy6s1YiEKskR7I5lpKExWI6hLEyUP7\/NRfjFVShhx25\/dYHE2w\/gjJVWGPnu0zYgl3ii4RTlR0g3OttKEU9+fQe21tX253\/+50V\/d\/DgwYrutx\/96Ec5\/\/6jP\/oj\/uiP\/qiqdZTDvoh4JEnalv319evXCQQCtNa3sMTmLqvJZwMIGpAoooANSFe21lUnVDux7w+iPOhBoXINN9iQttF7K+9Gk4RAXxdIU+NVD5dG3A3YbsyWP9BEPE5SOYyYXUTaAukYHYdITKwi4oXVF\/wiwppswzA2UmhFz2PAXFxmNaFgl2WandDpABxw3ANX12NMpdwEkzE6nHYabBvPn4phMP4H\/4Ch6Rx51+mSazWJqLm5OWMAFwgEMgZw2UOcfr9\/xyf99yrVZUYb+ZpqxVxYCykqbxcVpdoMA3vsFRRXGqmnH7GWQlkt740lkIjNOBCLpQlFAuLPLWC\/VI8cK5w1WcPLM\/+0Tn6KOLyegApq8+lYGkqUU\/I72mDrXW2vB+wL4oGt2V+Hw2GuXr2K0+nk4sWLvHKlsH6XoQmiETdeb+FNUKQ8yAtbMzPT3e2I9UHigQ689dURj5ZyIaWKe\/AUQmo+gVCacBKt2J43YXMhzYaqUrg2GjtIXhtD8nmx19TBeuXOq9rBkyR7x6HM9eqcadaTKklNwaHcOjaSklhM2NF0mTq3hE\/R8RX5\/t1bozJFCnfQiyJUBiIRXF6ZTuFANQwm\/\/B\/oacNjv\/M3SXXki0fYxrAHT58OKc+0tvbi2EYOdHQdmRDsq+7FyjUUVbIhTWbhHfahbVsqk2P4oy+hGwzoG8CliIoocra\/hN0kL5WWTpaiieJ9KfwHXMiFRj8vjbXDoQ3\/dzQBTaPg3S09MNZuSHSfOLRdZ14PG6pU99uVBvxzM7O0t\/fz8GDBzl69CiSJBXsajOxOKzhLTBoK5CQrlSftjKRnNroKEv3jKK9pQW1wM1ZCIa\/A16tLsoyWg+jvTSxcb0zx3BEKmh9lhT0uBM1XvmMjnC6SSynQNMRa+ukGuoQTheORGliFTYb6cZDpK9V3tlX49CIyIKliIO0ZCedMqi1CRrtAEZFqgfdwLQzyHLCS4fDB2kIGGkUjwN7ymDq899FT2nc8f77Kl6Xifz6iDlFbw5xmkrTDQ0NWx5g3cuIp9S1C5Fwtgurpmk5SgpbsWkulWqTY1M4Uv1IsoEYWsYIGsiGgu5p2OhEM7SNMQI9jZQ3\/Jx2d5D4VnU1UGNulVjDAdz+ZM5DmqE6+ObfFu8cNSpQRinX2ZZPPJHIRpv3TnS17SeY3ZT7osYDlROPruv09\/eztLTEmTNnMikCuGUCVwg3ngpw5Mzmp1ORciMvVl80B9CcftL9N+sXmkZ8wY2vtTzxCFklPb5QVbpMKCqJ8VvuoameUeR7O7GFS0dqKU876o3Jyq+DRMrVjpi7Ve8Sq2ukfB5Ut4JSRHxU+GtICv+GyGgVMAxYizrxqgahtIHXvrUIoMvpxKvEuRFJU6v4cco2iBsIICzZ6PnCD0mnde7+2Qe2dH7YPEVvStuvrq4yMDBAOp1+XQ2wVjtDU6kLq\/m\/SpoUiqXabKsvY5MXAQmtPwTPXUVKpYqK4AhZBrsd7A60mhaio9qWNrd07yTJN5\/Aqd36zkxp3YRDxed9PHVeQmUyAuXUC\/Ibq6LRDaJ7o0U8TU1NzM\/P75+Ip5JUWyQS4erVq6iqyqVLlzalOQq2U9\/E0Pfn+amPH8up8wgkpNe2ZicNkND8wK3pZ61vhHRrFzaCpV9na0Jdra6Dzmg6jDGW1TxhGCSH15EP+FCShcluxd6ArwrSAdA6TmY60LJhD0eJKz5sNjuOdC7BG62dJOajiHB19tcpTWIp4qbu5jxPvZxiNuGkXtnaMHGdzcY9NTqvBldpUm8l1FVhoEow\/uWnCM+GuPT\/fduWzp+PfKXp7I240gHW\/ZZqqxSlXFjHxsa4fv16RS6sm1Jt6TjOxSeRvRJGXMa4MoXUU14KSjIMSCTQ7T6GvxsBJLpb3BCr3jE48fQQyjtPYAtvfHf+\/julZ3UUR\/nmk4mRCRyH3UUVxwupFjgcjn059LwdvPWtb+Wxxx7bP8RTLuKZn5+nr6+P7u5ujh07VvApyTSBKwQjLYhF3Xg8t+o8IulCXq5chDMbAgntep7khhDEpxVsXcVfl7J5ka6Xl+TJOa3TTfz65sYAEY6QCHfiskeQ83JSRkMHnr7q6lZ6ywFSfcXTZLZgGJobEbYQ0s0vtH7gBImBqQ0\/62pQW8faVJLarCFSRYJuV4LxsJ0Gu1Fxu7VuCFYkiZlQFKds406Pi1FCTK0m6XT6qFU3HlBkCQL\/cIXvjK7wU1\/6VyjKxj20Uw6c+Rvxfh9g3Ukvnq24sAohctagrI3iCL2MqKtHTC1h9C8jjRbXTMyH4a1j5DUn6fWNGk3oSDf+WOUD4dmI\/mAU31s7iGsqvVfKkJetfO5CpMQmxXHTiVWW5YKptkpkj15v+MQnPsHY2Nj+SbUVi3gMw2BwcJC5ubmML0UxlKrxACwM6xy5d+O\/txvtRNRaKNBZow+Ok+o8jF1aKfy65RS+Kt0ONV8nRAq3ihuTM6TuPoYzfqveI7w1pCfXkKtpJvD4Sc6EyzYEsLSC1t6CgoTe0E2qQHRUDqGaWqSggUct\/Dkc8qWYiaq4FYG9SLt1REhMhNMIZJpsKl5V4YS7NvP7O7Dj8qVYSQgWkuv43U5ahANFBqN\/mm++78\/45499FFft9hSei0FRlIIDrKurqzkDrOl0eseMz6pFtTM01aCQC2sgEMhxYTXdOIVhYB9\/AlVdQ7g9MDyDfmUGablyLTXD7WO0r4bE0q1azPLlJTznD6DMVBf1A5DWiLyyyrPyMSiTwRBS+c+wwV\/PqXP3ZBTHA4FAplmlrq4uQ8Dm\/5vE80aD3+\/na1\/72v5wIIXCEU8sFuPFF18kGAxy8eLFkqQDuSZwhTDydCDz3yLhQlqpLjWUjUSgxO\/GCudzQ0odvqXqhAmFv47k1dLqBKlrw6yKjdSSUG1ocSeUyElvuoakkJLqEeHKXmPMLZJoOE5qovpoUT98FGkxiRQr\/bfq9GgISRC9uSendJiISPSvK0xGVNBUDrpcHHI58BaRpj\/o9HLCm8atpPHpLsJCImiohA0ZWyDMP7z3v7M0uPV7oBqYw6v33HMPb37zm7nzzjux2Wyk02muX7\/Oa6+9xvj4OKFQaNfSb7vlPmq6sB46dGiTC6uTFI7r\/w+yvAyqijG+gv70QFWkIxwuJsaaiM3mNwBIzI\/qG7WfLSCheHl5oPxrKxIKvVnjMRXHT506xUMPPcR9991HTU0NkUiElZUVnn\/+eX75l3+ZH\/zgB9TU1FT19ynlPgobf+9PfvKTtLe343K5+Mmf\/MmKxJm\/8Y1vcOedd+JwOLjzzjv55je\/WfGaimHPiSd7iDT7yW9paYnnn3+e2tpazp8\/X5F0RCF16mwMPjmPQEEgI726NXkb2NBIU4aKe3noY9MkjZbcn8kqzvnKW5JNpKX6smksCbDPxtBddej+Lozp8jMOOddoO44+VXmDhX7kBLHXhkmpPqjQJVbIMumDx4n3zSAZlW2sDQ6dlAETCQdRTaXRodLtlmnI90YoAZ9q50Kdl4gxC8JAMYwNGaW0TFJS+N7\/8Vcsvby4q7UWczbm6NGjOJ1O7rzzTtra2jI1zGeffZbr168zPz9PaotusJVgt4gnH2Zt7I46jZ+sGcPb6EJye1nvXyX67CBSme7JbAibg6n5TsKjheucyeU40cYjW1rnXw74kGzluxS1CpinUFebOcx74MABGhsb6ezs5ODBg0iSxNe\/\/nWuX7\/OuXPneOSRR3jmmWdIlxHlNd1HX331VV599VXe+ta38u53vztDLp\/73Of4wz\/8Q770pS\/xyiuv0NraysMPP0w4XLwh6oUXXuCDH\/wgH\/nIR+jp6eEjH\/kIH\/jAB3jppZfKvudS2HPiMaGqKrquZ1Jr165d49SpU9x5550VpQMM3SgrP66nDOIxDyLuRNqiCRSA5mpDTpdOj8QHwxhZm5lwtiEFg1VdRzS2k7pWoRZbPEFMayc9WJ36gt52hHRf5eky0dJKrH+j3qQvBkilbUiNZYQGPW4SDZ0k+6tb20TYhs8GB5xJVjUDo0q\/oGycranDo64SNjaiOpsMSiKNasDc44O8+t+3ZoG8E3A4HLS3t3PXXXfx0EMPcdddd+FyuZiZmeHZZ5\/llVdeYXR0lGAwmNH02gnsFfGg6ziu\/S3e+adR6nwYDe3EvzcNX+9F3IgTXnSybjSzam8h4Kwn6Sj80CkUldngQYIDwZKXW3hlEaO1vaolLrUe5cmXgugV9PMnU+Xrm5XM8dhsNjo6Ovjyl7\/Mb\/zGb3Du3Dl+9Vd\/lfHxcd7\/\/vczNVX6+\/PTP\/3T\/LN\/9s84fvw4x48f59Of\/jRer5cXX3wRIQSPPvoov\/3bv8173\/teTp8+zeOPP04sFuOv\/\/qvi57z0Ucf5eGHH+YTn\/gEJ0+e5BOf+ARve9vbePTRR8u+51LYV80F0WiUl19+GV3XuXDhQlU5zlKt1NmYH9I4EHplW4ybGi88iJoNMbvAams7TfURDE8DRk9\/1bKYyWAVMyGqyvpAELXpOLXa9Yp04wx\/PYmxyglYt9lJhoAs0tUDIRKaB0drCywUSFs1NxNZN2Cyiny9AWMRB61OI+OtcsxrMBMDBfCqlf\/1YsJgPBoibUCT3cNxr8KLgQnsziZaJC+yELgUCD1xg68OPM6\/+NL78TbuXm49P9LazQHWvSAeeWkE543\/heRR0WvqSdk8pL\/wNMbMrdy1lEihTK9g3v1pIOl0kqx3gceG0w4uLcZiqIPVqyVy3iaExOKCnTZFgQpGNoTdzh98byMVnCghtWMinigvFFpJO3W+QGh9fT0f\/ehH+ehHP1q1mGq+++j4+DgLCwu84x3vyBzjcDj4iZ\/4CZ5\/\/nl+6Zd+qeB5XnjhBX7t134t52fvfOc7X\/\/EYxbUEokES0tLdHR0cMcdd1Q9iFeqlTobff8wwZF7q095mTA8DaSfr0x6xjaVxKiX0QMaklFd15fRcgjt5Srmb7oPk355jvRyCPX+u\/CtXCt9vGojmXJDvHJCiNW2wvjm441QlISm4+zshJlbnXTi4CEioytIycr9iTQd5tNu2lybX9PphqimMxcTtDoL3x+aIZhOxglpOh7FRpvDzWFXbkT25vo2xmNBQoaMqvgwUjoeRcD0Kt94359z9jcf5tQ\/26zxdrtQavO\/nQOs1eikbRuGjuO1v0FNzCP8PgxZRhcekn\/0FMTK3x9yIoVrbuPh0rDZeDXdhRqJU6myY2wmTPzCcVzT5ccYrrmPMDa70RwUiZS3r49XIBRaLfHky+VUSjrF3Eeff\/55AFpacksALS0tTE4W32cWFhYKvsZUtd4q9px4hBAMDw8zOzuL2+3m9OnSulrFUCnxTM3KaOf8qMnyUUshaLofqIx4xPIq8eQ92CerqycJWSYxVYVBld3O+nAw88\/wa5OoD9yBa6n4lyzdcARjoHKFgXBLJ4wWJykRS5CY0nEeOgCTk+hHTxC7NllVlBdLy0Q0G\/Vq8S+pR4UjPoORsKDZqaAgsZrSWEoZSEi0uuy02n20lqkJH3LXkjZ0bqSXUaQ64oZESkjYDJ3Xfu+7DD85xE\/\/l5\/JtFzfLlRTW6p2gLVcXXTXmgtWJ3G++jXwORE2FWF3kI6oxP\/shxtdI1VAeH30r3eyOBKl\/nA9tgq\/iwBzLy9z+K4mpJUS9dmaWv7gG7eiqLVAlHLxbySUorbMMVoZci3UTr2V4dFi7qMm8v\/eldwDW3lNOex5jefq1assLCxw9OjRbQ1LlWulNuHx+5lOVpfvNSEkmURPFUKbwOKAhqZU56lhtBzBWKjChrrzMNpa7qzB2tUlgo7CtRet4zjpKkhHNLcgJstHiSKVJj66ROLkPcSrJJ1gSiWpq0VbrLMhS3DcL5hNwWAkhVtxcNDl4oDLiaOKW9omK5xyuGnxhrGpAqckUATEDYnJ58b5H\/\/8z1ga2XotsFJs9UucKdLfcQcXL17k7Nmz1NVtOLC+9NJLvPDCCwwNDbGyslKwZfu2E48Q2F\/7e1wvPg4OCWQJ0dxEciJG\/C9frJp0jIYmXpttZXFko3stMBZEPXmg8hPoguWwH0q8538ItBJP3LoHV1ciJX104KZQaBmkE9Wn2rbSTm26j549e5bf\/\/3f55577uHzn\/88ra2tAJsilaWlpU0RTTZaW1urfk0l2HPiOXLkCBcuXMDn823L\/rrSiEcT8PQLW+tgMvwdGKtVREo1NQSuLrCQOlH5NWwO4ter6EpzOlkfKDAzlNYIT8ukXLldZ0Z9K8mhyslT2B0kogpShQOiWncXwRfHiHd3ICqknsW4HRkJu1LZ3yWtw+C6zGEnnPSpTCViaFssui+nosxG1kFexu8VGA4FoQs8MijBGH\/74f+HJ\/\/rj25b19tOndccYO3u7ubMmTO8+c1v5tixY0iSxPDwMM888wxXrlxhcnKSSCSyaXhzpyHNjeD6x\/+Mbe4KotaP7m9AtDcReDbI0rcDpDqPo7W2ISq8vtbWxfPXvKwv5H7Pp2+EkT2V17nCo0Gi7YcK\/i7S0sX\/\/b3c75KhC7z1pWe9NoRCS4fY6TIRT74tQiwW2xG5HNN99NChQ7S2tvLkk09mfpdKpXjqqae4ePFi0ddfuHAh5zUATzzxRMnXVII9T7XV1NRk2H5bxFNhc0EyafDyM+v8v97iQ0lUJuiZucZKdZtEur4NxDKrL89R\/5Z23InyLcsxdyuEK\/DMuQm9\/RD6TOHjlXiK1bVaWvxJ5FQCYXeSXAdSVdRcWg+i9VdWa9Ia64gMLSIB+sgS4o5DSNPTRa8nkFjW3XjVyluGoxosxhUOeDY2LFWSOOWzs5hMsZqSaLGXzrYndZ2pRBicNuwpaLb7OOa+KcRopKlR0wRqXcytpHG4bahpjcmvX+HPnhji7Z96F4cf7K54rZXidmz+lQywOp1ODMMgnU5vyQerIJJxbE88hi05i+RyIOoaSBlu7K0eAs+uE\/z2RmdWennju2c4\/PiPN2O368gLs5Dc\/AAZ7zrGiz9MYRTYH5LhJOmj7Sg3Ko\/gF66E6DzgwhHPatuWJP7kZRuwOXpx1zoJr5RWL7B7SytUa2VEQjVN23bEU8p9VJIkPv7xj\/OZz3yGY8eOcezYMT7zmc\/gdrv50Ic+lDlHvvvoxz72Md785jfz2c9+lne\/+91861vf4vvf\/z7PPvtsVWvLx54Tj4mt2CJko5RcTjYS8TRCSMym2ummcukaYXeRfGWiqjWtL978ohgGc1NNHG0uTTwphxvRP1d5isrjIdhbegBSLAYJ1h2hThog5e\/GuDFR6dkxDh8nca0y0jFUlVBEoOi3Io\/YwDSOribsyTAimEfydhuisxPPUOWyPutCJZoStLk2f0ItDpUmu2AoGqXF4cKWFcwvJOPEHTKJSJJ2h49OZ\/3NNWy+hiKgSY9TWy8zHUqRlhTCCYHNiPO\/\/\/03qLm3k\/f\/0buxlzD1qga7NT9UyIF1YmKCaDTKs88+W5GuWjmorz6J2vN95EY3wm5H99SQWgPXGR\/rl2Os\/c3m0QA5qRPpvRnhqw5chztw+hWUwCKEQgQ7TvHa90OUskqfvrLAsZNNpKcrTIumBCG5nSZujRH0OVt5qa\/wg6jNXZ6UVVfpY8o1F+RHPFsxgSvlPgrwG7\/xG8TjcX7lV36FtbU1zp07xxNPPJGjgJ3vPnrx4kW++tWv8ju\/8zs88sgjHDlyhK997WucO3euqrXlY8+JJ3uAdDsRT6U1nsjNIdNnX5H50P2Vn19ztkK6im642lrWr98qUkaHFwl03Ul9srhUe8TwY9cq7zLTmroRk+Wjo8TgDOsXHsTWd7nic4vGZmJDlaf81hsaUQrUgZLTy+i1XtydrRgzG7nilNsBnlrSVZDOQkzBbZepsxdPqcmSxB1eB0Fdoz8cwRA26m1O6lQPNTrgqlwexyYMDvsgnNZZcdhJxg10SWLu8gxfePt\/46F\/9xDnP1S9zUIh7HpL880B1kgkgs1myziQmrpqpgNrQ0MD9fX1ZR1YpYUp7E8+jpQMIdc5MSSVNC6khIHznjbCg0lWHitv4YFmEL+xRByQ3A5Wus4x86MFSpHOzRWwErdRI0tQ4XByaChI3aWjqJMjaHYHX\/qnEteoQItNdpTeSksRjxBiR5oLSrmPwsZ99slPfpJPfvKTRY\/Jdx8FeP\/738\/73\/\/+qtZSDnte4zGhKAqGYWx5QC4RrmzaOby+QVA\/ejKI4ag8lE2OBKtaT7qubZOXzPyVGJpcOB8t6luxjVQh31JTw\/q1CtUG7DamX5pl2l9ZmkjY7SSSNkSFbdCxtmbkEs0HWjBCeCaEfPwQclcbiZRCeq6C+YubmIzY8NkkbEVF8XMxG9O4y1tLjQ00UX0UrQmD8dgqQ\/FVhE2hS9Vo9Ql0XQMhcKZ0XvmvP+K\/vfsvGH9tawaCJvaDOrWpq5Y\/wDo9PV16gDWZQP37\/4Hzm3+IFA0iN3tJ4CWJG6XOhnqyjei0ztKfVKfELg508NxaMy\/+0zKeOzsres3a5DrKiSoaDYDZaxF0p5MfpdtYXit+rwcqGfwu0xhVqqvNrLfdjhrPfsWeRzwmzI62fF+KShCNRpkeLT8VL8kS4eBGDlfXYF7voIPyT2KGtwnt+crrLgDB+c0bnrYWZVG7gw55c3v1+rKOWkUfWLqmDTFa2aYXbqxFjERIDaeJPnAKz1RpfSat7TDa9YmKzq37veiL5bt6RCpNLJiE2lqkRGUde7oBU1Ebra7KNueULhiNaxxxb0Q2h11eDCEYiq3hk9341eL1n7V0nIVkGJ\/Xi1+30+VqurnwjWt7MThRszFHtKTJrCVAmgjwj7\/8ddTuWt7zn\/8FrceaKlpnPvaTOnW5AVYhBHV+H0f7XqFmeQjVpaM5vKgNKqE1FVe7iuwAvamR6IrC7FdWcZ04hJiaQ8TLZCVsKqsdR3jx2QBmlDPWt0xXvYdUoLgRm4mpgTW6\/G6MUGVWCFo4zXhHF3\/698GSx8mKDcrY2osynW9aUsPQDeQC7flmpmcnutpeL9hz4slOtcEt6YhKsbi4SG9vL6pR\/q3YfQ6M1Vs30POXFf5VaUdkANaDUnWqA3V1hHoLP9GvvDxH\/U+04krealEMeRpR+ytvn6a+vuJox1Bl0gu3CpsLry3Qft8JXNOF61vGoaMkeicqOreQZDR3HUYlwqd2G\/EEJK9MYjT5qZUNxFrx5o40MgsxpWLSCWk6K0k45MqNKGVJ4g6Pn6ShMyvF8SZVnIoNTRjMJsJIbhtSXKfNUYNP9WxEqSVmMD0qHFINOh0wl5AIpTSMmSD\/4189Ts2Jev7F\/\/U2Dpzsum2qzzuJStSpcwZYDYP0t7+G46mXkH0Kqksnqnvw1CusB+zUnHCCgLi3BV1zMvh\/9YLYMIyWVBX\/8XacioY+MbdZQaC9mdfm3Sw8u0Z2ai0d19Dq66EC4klHNZJHW7CFKpOZkrxOvtizhq6X\/nbHY+Wj5liifKpfS2jYC3S\/mcRj\/i1Mb6c3mvtoNvbNt0OSpE1CoaVgGAZDQ0P09vZy+vRpnEq52WGw+3I3pe9\/dx3DXnrGxkBG76\/S4Ky2tfgvdYO52VtPxgYSxlJ16aCUqxm0ytJOyfYWjGzxVEMwfzVAon2zcKJoaCA2XIV69omjJCYqO14+0k1yPrjx38sxImGBeqxw6i+uycSEg0ZnZaSzZihENZl2Z\/FahENWOCzZSUtxesPzrKfTdDjraDe8tDkqEzoF0IUgIimsxqHeIXHcCw0iTa3XRmQowF99+G\/5ow\/\/D154+iVmZmaIx8s8Ke+VXlo11xYCfvS\/Uf\/zb+LueQ6lxobDqRNOeVH9CsF5hdqTTiQZYs4WDKeH67\/Zm5NqFprBev8Ci70rBA0vxrEjGK0NCFkifOQ4330NFqYLRypTvYt4j5f4TmVhtmcR28EKjlVkvp6WeHVoHruz9EPr6mp50osnyndmFrO\/Nus72X8LK+LZRVTaYJBIJOjp6SGdTmc03SrpalNduRuTlhYsiQ5aGS76mqitHjVSXR5\/fa50bSQytMBC02FaxRiJ+i7UySrO39RMqLey44VNJT6z+cssNJ35\/ggdJw5gX9zoWhOqjYTmRiQq6wySDnSxfq0y0U\/biQOs5R1rxJKsXZ\/Hc0c3xvAUpvzaekpBQsJOZfWlqSjU2AV1tvK38mwyjtvm4sFaLxEtxVh8kSZbLd4SKTiAkBZnWYuQSqdpd9TjUSU2JNIMkKDVJQEp0rUSsxGd9evrPP3rL2Brc3HwX7bTfrIpU6ivra2tWg7qdqEc8QghML7\/T6gvP4maDqNJNgyPA489TSC5odxsk2T8p3xIMoSVJpSWWnr+369tqm9mQ4umCPTMoXU2MuKsZf3pYMnjQWJuPkatQ8VIlntIk1gMQr0ib+Rqi+BKSwP\/8L97QYLaFjdLk8Xn84KBKA0+P3qJhz2b3YVB6Rm\/YrM8hcoLVo3nNqMSM7hsBAIBenp6aGho4P7778\/UhiqZ45Htm9\/ui9ds\/MsSslxqxE5VvXb19YSule9+m7+apPEBL2IsWM3ZSSi1YFSWw062NWMMFl6LkUwzN6rQcbAN28o8eucRtL6Jyhbh8xBZjFXUQaTU+whNFG8kiA7MkxAO3HKahK7gVARl0uUZjISh3SVX5FQ6EgvTYvfgvJlH86p27vY1bKTgCKIkVeptG1903RCsEmUpGsKnOGlz1HLA7irYfp0NmxAc9EjEHILlZBJlVTD4hSFGmmc4+S+P0HDXUkbWxnTr3A\/NBfkwwhH0r\/8dDA9id0RRSRNPq9gbFFxOnZWYD7tT4PGnSNU1oDog4m7HebSZ3v\/PFcp9YaTORkaiboZeCQIpTjzYwUoZRZDQUoyWB9qI95WvtYZmwzSePYAxUDjltnqknUf\/\/laHp8tffhv0NboJLhSXsUrEtXK3By8\/9xLtoc6MyKsp8Jrf0ZZOp0kmkxbx7BZKRTxCCCYmJhgZGeHEiRN0dXXlfGkqUS4QBVSNn\/jOOu++24mU3lwgFw4PyZcmKn8DQKqmFSifmpMjKeb1u6hbr8LXorWNSF9ltR3JaSc6VXpAVo8mmJv10Hb6NMkrhR1O8yGQ0Opa0G6UVz8QkkTaW4O+WPrzcEoGKwk7sgxOWSvbPasZgvGoTJe7skzx9UiIoy5\/QYJyyAqH8aI7Da6Gponr0OlspF71Uu+p7IsvgJikEE3oOCTw22W6VQCdDh8kohHm\/vwqkx4XHT95hI5\/3cnS0hLDw8MIIZicnKSlpWXXo6F84kkPjZL8yt9hX5khLSl46tKo6ERTdtwtEopqsBLx0dCuodogaNRT1ygT9bXhvKOdy795lZWpNPUnurBLOsnR+dyHkyY\/N5JORl6JA7ceFEd6Fuho8RFdLH2\/jlye5+jBWuJzwbLvbaovwIFGL\/paLllo3c38x3+4mntwBSVlV62zJPHEY+myxHO4+xCKx57jwlpfX4+qqjkRTySycZ03co1n3xFPoYgnnU7T19fH+vo6DzzwALW1tZuOqWSOpxClJRMGy3InzWzeeDVbC+hVFP2B4Exl80QA4\/1xlPaD+AMTFR0f1z1slGrLQzrUjXitPDlokSSj49DW0IiyWtiuOwcnjxG7WtlQqe3OIwQrOFaz2XBoBrIEqykbHlXDrRaOBJI6zCcVutzloxzNEIxrCY67y9dwlkhyxN2AV3WwnIoyHg9S76ihRi5cA4zqSZa0EJqh02Krxae6cBcxqHPKEh1uCd1IsPa9Xl58+ga47TScaME4LqM3NTE4OLgpGnJVMXe0Fei6jnZ9nun\/+TSelTF80jouCUKajfrmJKosCCad1HUINF0lIbtoObCRLgpE\/dSfUkk2d+E61s7448MsX96ohazerIk6av3UHqqDaIJZw82rLy2zoQyQ+znpSYOQMEr1dAAgdAhJ9ooUqbWERqy2CUcW8UgNPn7nhTFSeSm4eKp8V6ZSpg4UDqUod5c5FAddhw5y6NChHIHXhYUF0uk0V69e5dq1axkdtGpqPL\/\/+7\/P3\/3d3zE4OIjL5eLixYt89rOf5cSJW3JdxdKqn\/vc5\/j1X\/\/1gr977LHH+Pmf\/\/lNP4\/H49uy5NhXxGOawWUjHA5z5coV3G43Fy9eLDrMVs72GqBYFu\/5q3LBdFviRgUbcTYaGgj3BCs61NZSx9pYkP50DQ\/U2VC0MjWNzi6iVyuTIpdcDgJDla1dPdFN4MoMk3VuupubUUt0qCXqakj1VVZfsh1o21TXKQhFBr8XObGRH3cqgrShsJyABoeWk3YLpyXiukKro3x6Kq4bzCc1DjrLC7QORAMcctWh3oyIm+wemuweBILx2BIRTafN3khIjxOVU0hpQYezgYOO0lbsAElDEEwZ2GwKfhmaHDLoaQinMV4dg1dh\/CujSD4XarMPcSjEau006VrwHaynqaVp27UhIQSh4QXWXp0gPDhHaiGAPRTAlQ5R40xTU6PhkDcikHXdTlNLAlmGQNJFfZvO6oKK5LPT0rpxj4Y1P\/V3OEi3dmA70s765QUG\/zJ32FiyKegtDbw6YzA5reNVI5QKZYPTMTrvrCU+Giz5XhZHApw820nkevn7cL5viWN3t5MenUNy2vmT+Qjzgc1Ry9r6OmXDHqUCodAyAUp2jccUeG1ubmZ2dpb5+XkaGhr49re\/zVNPPYXT6eQXf\/EX+amf+ine\/va309BQ2mzxqaee4ld\/9Vd54IEH0DSN3\/7t3+Yd73gH\/f39GQKbn8\/9G333u9\/lF37hF3jf+95X8tx+v5+hodwu2O2QDuwD4slm4fxU2+zsLP39\/Rw6dIgjR44UZex0PIWowH42WcTU6cnvhvmZ0zZk\/daNYfia0Seqc8xM+VqoJM0GIBrrYWyB6Nw6E11nOBJ8ueTxsUjlfyrpYDdaJYONqsL6VBCA1FqMSd1FV1sL9qXN70HYbcTjEnIFYqGSy050PVVRDchxRzfxnty8vSyBU4Gg5EIkkzQ4DFaSMqok4beVP+daWiOuQ5ezfKdjX2SVk57Gwu8DicPuBqJ6iun4ChIybrsTu1BRpeIksE4cTbFhSyn4FWh1yhSrnid0QTCtoSQ0mqNxkmOLWeeBgCyjyRKGx4bDa8fhdaIqKqrDhqwqyHYV1W1DEQbpYAwtFEePJTGSadANlGQSh5FCsslIWhKvLUWzK4XLphORFGq8SRzSRgQQdnhp8W88AKym3NhcgsS6QHYqNB\/cOCYSV3EedGC0tKAcaEMLRHnxN28159g7Gwg6vbx2JUBk8lajSuPdLSTKqDgvjkVpbfIQWy7dRTY+GKDd7yIdKjc0LjG\/qNFkV\/nfDhcvDhX+Pi8sBGiSWzFK3K\/pMk1PhiawuR0lXZCLdbUZhoHdbqerq4u\/\/du\/5fnnn+fDH\/4wjY2NfOYzn+FDH\/oQ3\/nOd\/ipn\/qpouf+3ve+l\/Pvv\/zLv6S5uZnXXnuNN7\/5zQAZhWoT3\/rWt3jLW97C4cOHS743SZI2vXa72HPigVtmcGaqTdd1BgcHWVhY4N5776WpqfRgXrJCnbZYkX78RAwCti4a9VtCg+l4dVYGAGtVpNkCy7eOnXh5gcYLR6hZLWJB3X2Q2OUKu83cTgJDlR2rHj9A8uotgkqH4oylFLo6G\/Cs5qYYE63tyDcqjLi6OkhV8ESaavIQv1a8WGxLp0FVmHP6caciOCtQr55LpHDKKk320tGBJgQ3omtFScdEmBShVIITniwZeBfMJVZZTkWxyQ5anY3MxJZJGima7DU02v0bed0iS4hJEqG4hkuRqLfLeM2OvKxGg6RhYDjs2GRwp9PIoTTcHIxMI0ioCrIkoaY1HDc\/l7QAxWVHNXQULYlmgCoL7IqGU07TVn\/rngvrKo21cVRZYAjBOk7a\/CGEgMWUD7dPps4RJpq0Ude1EQmmNRDNdajH2kjb\/aiGwff\/3QCiux28TgaHQ4y\/HAI2RxXj1xa581wH81eL1yjTCQ3DVwtliCcZSZHsrkcuSzwQWYwyd287f\/V3xR\/sNF2noc3H8mzxrrRK2qVtXntJ4tHihfef\/OYCTdPwer187nOf4w\/+4A+Yn5+vut6zvr4OQH19fcHfLy4u8p3vfIfHH3+87LkikQgHDhxA13XuvfdePvWpT3HmzJmq1pOPfTPHAxuptkQiwUsvvUQoFOLixYtlSQcqt0SIhovfFK8N3MqnC1klUWEdI4PGRiITwYoOVRtrCIxndZsJ6B91ki40iyRJRFarMAs72IVWyeehKqzPBDf\/PKEzN6eQ7ui69bNjR0hVSDq2kwcJVUA6sseBlJTLtNGCWuvGqekInwe9q7mkaM6CkKlRbfjU0qQT0dMso3HcUzp9MRNfR9cE7c7N2ft2Zy33+DuoUxWS+hotPicOxWBdC7GcWsPIWqkuDEKqwaoOcV3glwSdboUGh5xjDRNKGczHNSIIXDL4tBTOVApZCHQJEjYV4bbjsEn4hIZbT4EsSNlkJFXglDRsyShOI0qDO8VBf5w2bwKfO02b99Y9saapNNfGUGWBLiCsOmhrjm+4v0Y9NNfGqHOE0XQJ0ejFdjO7HXI04TvTgSbs2FprefbPFvnfgzJ\/84Ml\/ubbU6TLGM\/duDpPTUfpSsjswAqNd5f3y5rrX0W0lL6ebFe43Gbwd8PFxyVM+JtKn2u9As8dWxnh2HJzPCbMGR4zw9PW1lZVh5sQgv\/z\/\/w\/eeihh4oaaz7++OP4fD7e+973ljzXyZMneeyxx\/j2t7\/NV77yFZxOJ5cuXWK4gs+0FPZFxGMimUyyvLycsb+udPq7UuIJBYvfPN\/7Toh3fMyGpKfRfR2IUOXK1QApbzOVptloaYTJ3I08thjmRtudnIrnyekcOEzi1crOK7mdBAYqG+jMj3ayocdSTIwIDhw\/gCMRJlThUKnSVMd6pcZpbY1oQ6XJTABptxNteYOk0+txXO0NOPw20qO5rx2LCDpdAqnMPbOcSqALiSZ76Rz1SHSVdkcNLqV47n8stkSrw4\/n5hxQq\/\/W5hDXk6zIcZbXA0jI2GQbNZ4aVMmDYWy0gAsEa0lByjCocSrUO6CeW2m5hCEIJnUcCjQ7JNyGTjJqENAEGoI6n4rPIeEQaRRDx+Yy8Em30sVpHYRNp9F562drukpn\/UbklDIg4bDR6E+wEvNjKNDVditaWZNraa3ZeEpftrfReLENQ1FRm2t57Zsz\/MV\/yb1\/RvuXaO3ws1YkctCSBjEDZFXGKDETM359heYGN\/HVUmMDEtGkHZ+aQBQ4l+J38nfpGX7wbD\/19XVAaWJRnaVrOKsrERrLbJdlhUJLzPHspFzOv\/t3\/45r166VtC74i7\/4Cz784Q+XrdWcP3+e8+fPZ\/596dIl7rvvPr74xS\/yhS98Yctr3DcRz\/DwMEtLS\/j9fk6dOlWV5EglMzySIhEJFSeoUFAjaN8QJEzNV+4PYyIwVZlIKUCwiCDhwtVVpp1ZT3uyTGi2\/JOWCelAF1olvkSKwvrseslD9ESa8cEo63WdGBWkGVAUUjYXRhnfEQDleDvRMqQDoBxrIZEnPhqfC7I6uAwH21Hb60GRcJzsoMudGz0UwlQiik1WaSxDOtfDSxx01ZcknSkjSLerPkM6+YhpKVwaPFh3kAfqurm3po1DqptmReBV04TVCLJNp8Fj0OAwkI00MWEQlwULiRQxLYld1eiqgVaXjlvVcClpnD6JU3Ua99TpdKtJ6vT4hk+NSOWQTsQAyaNTf5N0DCFYdzrprNvYzJOoaDV2dEVlPeREFzotDbdIZyzio7Vrg3Rm9FoaH+pActjRhczqVIwv\/YfNDy2puEZcF9hcxTfgpYkgTadL1wtSsTTUlX\/CD85HcJ3s2PRzo97Bf515jR\/0bSjBBwJrNDT7S54rqZe+byOhBPYS7wuAMpG2VsSFdKdsrwH+\/b\/\/93z729\/mhz\/8IZ2dhQVWn3nmGYaGhvi3\/\/bfVn1+WZZ54IEHth3x7DnxCCG4fPky8\/PzHDx4EIejfEE4H5W0UksupWxa58oNN8LpI1WhB40J0dBIdKoyZ1KlzsvKSPGOs5FxF9pNGR9x8Aip+dIEYULyuFipNNo50U1yuXxbtutQC4PPz5M8cbz8OU8eIj5ZPtqRGryEK4iKHF0NxEaKt7KHhhdZnQqh3H2E1Fp5ch5LRWmyufH+\/9l77yjJzurc+3cq5xy6qnOe7p6kCQojgWSCRJAQYJJlA7oGAwbbyDgCxldYJvpiZGMb+\/PFkgGDMEEmCiQhzUijCZrpyT3TOedY3VVd1RXP90dP13R1nfNWjySk5sJea9aarvfUqRPf\/e69n\/08AmeSk2UuxuZotQXRSuqvRkdsnGqtE71GeaIZXZlHr4Eyg\/JkN5ieI4wOtyTj1sgETRIhs0SZQUbKZGl1Qo1t9W+3JodTL5GVZZazOYIUTpDTKzksUhKP4crDPZOUMeqTuDSrE106JzOWlggbVp\/R2aSG0ayO6EIWP8tIuRRmezKPIJxNGqmsW\/0jYnQRfnUjkl5HMpYmZ7Hy4KfVn52ZkUU89eIUZufxMfzN4hT6aMcMvh2lU269Z6YwBa9cZ029h\/s6jzIwU\/jsmGziVUlkqfT7a\/OKoya5xGJ5sxFPPB6\/6ohHlmX+4A\/+gO9973s88cQT1NYqq6zCqnzC3r172bVr11X9xtrvnDlzhlAodNXfXW8vueORJInq6moOHDiA1Wp9TmJwm6HL0RhLQ1F\/8qMoKU0ArlKaYSqzeVEwTTgAsvpLkFtK02vYDjodC32bczoAUlUFOUFhM29aLQsjkU3tczmWgZzM4IkJFmrqyanAYXV15UTOlnbWskZDXAYpLb6+klFHMiUrplDWm6bayczxIeZGl8hU+tFXKQMFMhVuKvU29IKJIZnL0heP0CIAG2TkHJdiE2y3q790k8QIGKx4DMoTx4XoCNtMPkWnNa3NUmHOodtwmZfSOfQmifCGtp6JFIQtWezrfOlUSiJgS+G+DDlPZGTiFj3bfKvPRu+ClnhOotkap9x2uSdHp8dtXb3WyYxExm7EZJBJe9w4XtaERr96rFqHlf\/ze12ceHyE2j3qTqH39ARVe4sjkYJjH42is4ojiMHOOUzuErLT6Rzxy5D5RLObP378B8xHi8ENTo84ghifKN1+YLKLF8WlZg01TR4lEbirdTwf+tCH+PrXv843vvEN7HY7k5OTTE5OFnEFLi0t8e1vf1s12nnXu97FRz\/60fzfn\/zkJ\/nZz35Gf38\/Z86c4T3veQ9nzpzhAx\/4wFUd30Z7yR0PgM\/nQ6fTPWcxuE2JwBlKn+rCXJrpns3LQq9ZdmHzpbLFxdLnN9Y+yYBrGzlhjvuKSbbNRzuZKj\/pTZAeWprCRAevrBqnz00z7AiAsdDJSnYL0cloyWgSIFXhgpnSKUlTY3nJ7nRT2E127PL1kSExsMB8f4S41wGV7tXD0UpY2yphJCIkQ4hmkkwl4zRYlBFAAPFsmmlitNrV00SXouOUySYsWgUGYjnHxegI1ziV0x+d8TGqoIguaDaZw6LL4djQ\/jy8nKPWkmb9emoonqPKkcB6GXK+mIakPodXE6cvbqdn2oDTlqPOfeUZ78uYaSq\/8vdAyk55QIawH93epjyN\/0osw48emObc0dVr3nVqnPA29ajl0skxAo3qkU90PoHGI055JmMptP5NNP8OLTLUZucvf\/J9MiqLxuiyOKKJxpaxOsWORWsSL15TGfFLkFFxPEqy11ebavvyl7\/M4uIit9xyC6FQKP\/vW9\/6VsF2Dz30ELIs81u\/9VuK+xkeHi7o94lEIrzvfe+jpaWFW2+9lbGxMZ566imuvfbaqzq+jbYlHM96aYTnFPFsonk0V6IBbM0eG7q6xqi0y83KeOmJHEDrsDAjSLOtt7M9sOLYHGuyVLm5aEeWJJYmNnes8UTxC5wcjTNuDiG7rkA7V5wOsoulnUmuzEFOQMS4ZuamMPNn1SHWAOg0yBotOYW+rOxUnOhAlGWnjXiVm0iPWEU15zCAXk+lSb0GsJCKs5iJU65Rh7R2REfZ4QihU4hkVrJpZrXL7FJwOulcls7YMLsVHFp\/YoagNVcQ0QAMLWdpcWULehoH4llavKm8WOZCRktKm2MmpmMppqeCBHqPnpD9igObWNFSH77y7nRGrLQ1yVATgh31SJe9YDaVZbA\/yzfvv7K4yWZyTAxH8JQrX7dcJsfM9DIWQcQy1RvF1yqGsw+fn8K3XT3C1Lc6+Mrckzw2oq7sCzAwXJrjzeYRZy5Kae6kSkTyoj6e51vjWROT2\/jv7rvvLtjufe97H\/F4HKdTeW45ePAgDz74YP7vL37xiwwNDZFMJpmenuZnP\/sZN9xww1Udm5JtCcezZkrMBZuxzaDacpsgktTptXzzkUky3s0LesVN6qvkjaapCCJv4vQ0TiOLQ3HOroTIllA21NgszG5StmGl3AsCgMWamRtCLPUrO8jo8DzDMSu5UIBkVYD0QGlKIdmsR06UliXWOi1Ex0unF51tlSyPiBVMnRV+kl1LxFNa0pUe0gFrUVBmrQugSYMtp76SHV9ZBI1MWMUxpXNZxqQldjmUU0uL6Thz6UUqKJ5IErk048lpdjuLv9sRHaHJ6ijg\/8qRYxpodRVOcEOpHDt86Xy01B+VWEjL+PUSLc4sDoPMYFyiwXalNpPMgt6tYQ2INZM0Ut+kgeYq2KDkGZnP8jfvLU6lxpeSJDNZzA7lSGFpNo7RY0EjWPQNXJzDGRYX\/od7FzA6CxeElhonB219fOKR\/2BoZpK+frEGTyy2TKhC\/K46\/eLJfnlFXEtcUenTWbOrqfFYSkDTf9ltSzme55pq24zjKREFA2D3W8jlZJ5NBktvfNmiI5tvGo0ub64fx1K9+vuz\/fP0BdqE28qV5eQEeu757SQJeXPBDqVAbCvzy\/TNyMytbI7CxVAVIqVAVVJwfIDW7yJdInqyNQSZOyfuE7LW+vLb5FJZVvoXWRlbIeVwINf5yTmMyOV2YoOzyAJJ4rTXiN9iw6NXngTi2RRjK\/NUq3ClTKeiZElTYylOOS2klllMR2i2FdPuDOTm2OMqK6gDJXNpemLj1OrXsWvIMiOpDG2uFGPLGnpW7PQvGPCaczTZM+ik1ectmoZyX+F5DuVMlLtX37WVjETWacJwTT3UFNZulueT\/O\/fH6FiuzI90OxYFHuZHY0CAS\/AcOcM5bvUI5ZMMkcCjer3ARKLSQxhNwBGt5mR2gR\/eegrPNVxpfVgbnaeyirxe+sJiB1LVhI7jrk5ccSeKIEoFaHa1qN4n0uq7ZfNtoTjWUu1bUYWQck2w1ywCaYXzJdXVf\/3x3NgKk3QmHS5SE5tDkatsZqY2iT3W2Thyvn0PDvBTPU25X3arcx1bC7a0W+rYWVqE6mu+jIW+0qjzmSXlfHOOLGGBmQBjNTUWsXSxdJkpbYd1SyWgFhrrUYSCwlh5KQx6UnFlCmUUnPLxLrm0fi8JBKQLneS81sVd+fcUY5xMYVBVn5FFlJxljJxGlTACEOJOdwmI0Fj8Wp+YiWCRpOmZkNNKStn6YgO02pwFjBpR9MrLGqW2eO+MrEmsil6pXnm09MML2vxaHVUkMTg1OLdIKC3YtfjMl2JknqW9eyovjJJ9qdsOBv9aCoKI305J\/OVL0wz0p+iq32Chv3KUd3QxWl8Depp4YvHRynfoV4bmxpYIFACYj05sEB2r43P9zzMAwd\/rLiNP+gS7gOteBKIJcQ11UxWPF3GBA3qII54dOsyG\/+vq4\/CFnE8a6bVasnlclelUZJOp5mbLJ3uSZfIvwLoLuP0F2MZhlw1JbeP6TavXKmrKkPeTNhl1THZU+igTp1cIu4vfjHlijA5lVVUwXaShqUpccSxZislXi5Ybc6LDa46sdHT40w6ysDnKtpO53ey2Fsa9GAIu5m\/KK7FAFiq\/SRnxedhbwiSEDhYnd1IdHSBzFSClf4oyxMrpO02pIYyqHYjG7RI1XaWLowiqwiJ6QI2XC4bFQqMBgDdsUkqTQ4sCsSTQ4kZ\/CYjQWPhxJLMZeiLT7DPXRhxzCSjrMhRavVWYrkM7fPTPD0zxaXoLC0aN3vsZfgvp2kuxMapMRSGtb1xiRrLlc\/mkxqqKq6cV+eSFY9NJmMtdpAjF5f4+Y+uXO8Lx4epU0GzDV2Yw9ukvkof6JzGJUipXTo+hr+p0PFptBocLQ6GKif4u85\/5wf9h1lcFkgTrIgdx1xEnJ6dmhHPI3PT4haExXnxIlQN1bYx4nkucOpfNttSjmfN62823RaNRjly5IgqB9J6SyY3AZFel4v+6uEkcom6UGxs89FZLLk5cEPGbSqCW2eSGdonbWTWdRlrHFbmOjZLY1PFymTp2ompLsjiJlgKzDUBcqkr92hxaIHeKZnFsnUreI2GrNFUOg2o05CWlYEC683RVsFCh1iLyNESKpmGyzn1yMuFx5SKJFjqnCHat4SxqYJsUo9cGyBT5SLjNhU8B7aGANrlFPqE8jPaER1jm92PUVtcm+uOTVBttmPbgHqLpleIapfZ5SxcXEzl4gwn5hmJJ+mIxMimjTTbytFrcuz3FG47n4rT7C5MCY6uRGkKXZkMczIsm3U4zKsLoLGYDq1eiy26jL2+2In+978VT8Sdp0ap3qGc0hq9uERFm3J9NBnPkJRl9AJ5gcmJKEa7EXuFjWRLhm\/Gfsi9j93Pd48+Qjqb4fz5i5jN6uCf7u5eYeP5wOAwWq36+NTkPEazep9XciWjWs8CkHNi+QQlVJssyy8IuOCXzbaE41mPagM2lW4bHx\/n2LFjlJeXoxMUh9csqYDS2mjpdSvcM11RJixu9Y2DZWRmNscqoDEZmOzanK7Pclw5KlqaWOKipRH5MjBYDofJrZS+TjkkotObg2Wn5NLXUe+yMK3g8DLxNBM9Kyw3NoBOi6m1mvhQ6dSiZVsl8VHxStTgs6uCHa4cl5noiFj5VVNlIzuqXuiyVriJdIwTH40Q654j0RclMZ1mWdaz4nOSrHezmE6S8VnRht1onZYrgAVJxrmznN3OsGLzaUd0lDaHD9OGBtbZVJSJ5BwL0Tgd6RhHZyc5s7BAz9IycirHHmc11zgrqLa40UoaptNL7PEU14wimiU8xiuTcjqXRbJlMK+baI9Fp2koW31mVrIwm9BRp1lkxekrmjBnehfpn7Wj30ADk8vJ9F+aorxZJcXYOUuwTrmIPz28iHljMxJg85vx7LARLYvQXTHEJ4\/9I\/\/82FcZmytMIyeTSZq3qTdGxmLL1DWo9w8lUynCVYLmVgm8YXGKy+oRp+CNDnXHmElmGBoYIhaL5bM6a4vsF5Iy55fBthRXmyRJaDQaoePJ5XJ0dnYyMTGRZ64+GHuk5L6Xo6Un6fiGFcmT0x5+26o8Ka6YPGyWm01XEyLXXnoS1jvMRCeKhbLWbOTcFJ4DbVQtDjKzyWgnEXKSHIqU3M5cG2Squ3S0o6\/wkj2jXrMZOTVO4Jp6LNOb+M2GMuYE7NSwCorQOSzEZ8R1J2PASaJTcE0cBphRz8FLeg0SMrl0cSQjp7NIK1m0iQyppZVC7gCdAb3ThKvWSyKWRNNYAZKEJEE2l2NpaYml+BKaFSOnI7NoJS0GjQ6TVo9Wo4VcjjrLZZi1DDhWFztdy0M0GAvTWlk5S0ZexqwtnNjPREd4Wagw0jgTn+QW35XPLkUj3NS4ChCYX05zYniGW+tXi\/7JYDFw4LEfRpmdShJscDPZM09mXYSbTmUZH10gUONiegMxbiqZZX4+jt1nITpbuODRaCUWZldwt5mIxBYYTYxyabKTkQujcGF1G5vNitFoJJlUrtvKJXS1nS4xGszptTAiAMBZXeJeHqNNDLnWmcXjs1OzDAwNoNfr8Xg8OByr6cc1xyPL8q9EjWdLOR4QQ6pXVlY4c+YM2WyWG264IQ85LMXVpjPqSKvwo623xcXCF+XhQ4u843e8aOeLo5X5vk1CxIDlzObQX+ZqH0yJax3njs9gfUUD8kRpElNZkkhuomEVIKUp\/SjIZi3Tm6jFLC9nGB5Yoe6aOvRdg4pMEFqbidjMcsnGU9fOKubOiJ2Ta2cls4JtZAlsHgexQfWo09sWFv6OPeRkUcmxZXJg1rDQrszcYKvxYo4uEzQE2KiNPCLP0WR0FX2nJzbOXndxLeVibJSbNtT6JlaWuGZDfa1reZ4bK66s7JfSKTxBI3qthmM9cxhWjNzccMXZmOoKv780Mce7vvjXAJhHLLzs+lewOBvHbnFgMTiwGKwYNGYy+hwhv5lsLoPM5d4RcsjEkQ0y+tAKC4k5phYnGZsdYXx6jNxUDueEg2xWSyJRnDGIxZbZv38fp9ovKF1Ozl+4iMFgJpVSfp8jixHFz9csSwnIZgm9J00JuY1SSqXbGpoxuc0sLi4yNzfH8PCqRtDp06cZGRnB5\/NdNZx6M+qjd999d5EEwnXXXcexY8eE+\/7ud7\/LJz7xCfr6+qivr+dTn\/oUb3rTmzZ9bGq2JRyPSAxuzRYWFjhz5gxer5e2trb8CiGbzpJNiqMZg8MEk6Udz9RkYapGluF0NsQ+NkxYZSESJzdXrJcMeqY2mWaLxkunA+UcHD4TZ0\/Aj3FaHAVoGyvgQumozFQdYLqz9Hb2hnJip8U1FHuNl6lLq\/vqfXYcd3WQkCmNPF4Y8enKfcQuims2lmov8xfEiDhTmYv5S2Jn6NlZwfxZ9f04GvzC2pBvVwWR88rjOqsBw0oOxfW5XgMJZRSeudpN41i2yPFG0wnqFaTdZ3Ix9nsK01s5OUdKt4xNfyUlHM9l8LqkAnqgcYtMo9nIYyemudYZ4Ix+CqN2NZWzIhnw1Remj778H4\/l\/59Ixnn00I+45po9PH7yUNFxXXvtfk6cOKV09lx\/\/fUcP36y6PPFpSVuPHAjx44pf296Sv1ZTCQS7N+3nXNnOhXHu7t6sRg9JJPK7\/v0nPidKSWDnZVK6XiUIAqNp9H6bHg8HjweD2VlZZw6dYpQKMTXvvY1HnroIXK5HPfddx9ve9vbuPXWW0tKw2xGfRTgNa95DQ888ED+bzU15zU7evQob3\/727nvvvt405vexMMPP8zb3vY2Dh8+zHXXXSe+DiVsS9R41ttG9gJZlhkcHOTkyZPU19ezY8eOgnzoZnjaDLbSxKNao4bEcrED+\/dHFmDDDUoYrqJptNJPZhO1GJ3NyNgmBNwc9X4WRhc5Pq4jblHPJ8uSRGx+cz1GGb34AQTQ2ozMbMI5xTd0yC4MLXCpN05yW10edm1tqyRSwulojDrSyZyYr00rgV5LTrDwsFZ7WOhQd0xai361d0gFom0J2on2qJ+3s85Hck55EeKo95BVQOFpTXp0iRWU5rBlQwKHVFgHSucyaOTlIsDC+fg4212FdcjezCzV9iuTzfHFGQzpDIM9Ga53BRlPLXND9RUH1mf2FjR4piIx7v9esUMYHx\/FZiuuOzz77Am2b28tPhFgcHAAg0G5WN\/X36cKBBgaHqG8XL0nRysQBEyl09Q3KtMSrR7TCAajOoBgbiGiOgbqKsZrVpIodEM6fw1KHQ6Huf\/+++nu7kaSJGpqavjiF79IWVkZ\/\/zP\/yzc509\/+lPuvvtu2tra2LVrFw888ADDw8O0t7cXbGc0GikrK8v\/UxOJW7P777+fV7\/61Xz0ox9l27ZtfPSjH+WVr3wl999\/v\/B7m7Et53jWp9oymQznzp1jYGCAffv2UVVVVSR\/vRmeNo3gQVszuwrz7OxCijFvoTTsfF9pZuc1m94EUwCApcZPbhOQbyyrTjQ2s0z7spOsiryzoamKlRJ8ZwDGKh\/zl0rXi8x1QVWuqTUzlTuI9hej5+Rsjv4T40xYfWhbK1nYRC3J1hQmUYKZ27W9gtiQejSpMWjJpcVko656PysqTN2SBox2E1kVyLq7NcTiBeVIyNkUJK0CJZeCBjIKzsrRGqJBV5zb74qPUWd1FXw2GJ9nv6\/Q6ZyJTnHDOmTh8HKM5WUZ\/5KVSuNqVDOrX0a\/DnBgbyhs7vzGNw8RChc3fE5NTbN9u3IzcywWLVgMrtnk5BT79ikrVU5OTtLQUK04BlBRqd50eu58hxCdZhIg07K5HOXV6gCDsfFpNAJqnFiJ+aZUYnujQulG1oJ0Ok0ikeC+++7j5MmTTExM8Ja3vKXEXgtNTX304MGDBAIBmpqa+L3f+z2mp8Xv4dGjR7n11lsLPrvttts4cuTIVR2Pkm0Jx6OUalteXubYsWOsrKxw4MAB3G5lhNlmeNokfekai9WjnlP9+vF1E0+onJWpzdV3ZK1EYnpzNZZNnAZIEpPruN6ikwk6TBXkNoT3MhLRhc05vKyxdKOs1mLYVLSjd4iROIuji4xEJGLlYTQe9eKpfVuY+RKwaFudn9mz4m1crWHiAufrbgsxf149BefbVUW0XzkKNbjMrIwpA090VgNElIlTzXVe9KPFfUYahxF5vHgiMFZ5OOAvnIST2TQWcwbjuglrNhln2zpFzuFYltHZFDc5Q\/ntJuQkN6ybdJ9dXMTfeAVGnY2v8Ef3\/4CzZ89x4EAxH9exo0fZubNY0XJgYJDrrttXfLJwOd2j\/G4tLqmjEC9d6kSnkraKxxPU1qlHNdMz4gnVJgAQpNMZPCH1ZzMSKdVkKk7FpTdkP5RE4IB8jScQCBAMbp5JRU199LWvfS3\/9V\/\/xRNPPMEXvvAFTpw4wSte8QpVEAesLg42\/nYwGGRycnPAJpFtCcez3nQ6HZFIhKNHj+L1etm\/f79Qo2dTPG0lyP1gFYCgZs+eXyJeVgVAQucqua8109eEyAgoWdZMa9Yzuok0m6nCQWKD9szopRl6\/Q15mDWAvrk0RBnAWOnbVOOmpsJV8jysFS6mSiDtDH4zM5emGTkzQfd4mkR9OZgK03x6l4VYCb42rcXAyuKKkMHA0VzGnMAxGdxmId+brcpNRCDhbQs5SC8pNwy66\/2kFCIajUVPblZ5sjV69MjLhfdWMuqwsIK0oaE6FTZTby9sxlxxZPGajCytpPlxxxJdIwn2+QprAzPSItrLqaBUNouvugp74Ep08JMfHGf5MpHlsydOUFdXDF2emZ5SLHyfPXsWn0+BGmghwq5dOxTPeXx8gp07ldN0CwsRdu5SHgNwONUXOb29A9js6gvJZEZcx3H41Bdjs9NRoeBgMiXOWmRKRDxrUOqrEcJcb2vqo9\/85jcLPn\/729\/O61\/\/erZv384dd9zBI488Qnd3Nz\/+sTILxJptzDDJslz02XOxLeN4JEnKQwnHxsZoa2vblPz1ZlJtJRYhAORKXInHJuwgScz3bj7NltKXjiZglawymywdGSUk5Ye699QEozWrYm0yErGFzSmoJvWlU5CSUctCv7g\/BlaZt0sh1OwBV36bXDrHyJkZ+uI6liu8+SZNQ7A0X5u1Vj09BqvsBCszMeHxWIMO0kvKE5BGr0Ejq6fovDvLWepUdtju1hCxDmV0nNZnQLNc7MDdOyvQjilc45CR3HTh54a6IOF4YcQ9as3RbDVydHyFgWEL19gq8dkLT74\/scj163pYTixHsfivRA1yKsPvf+67+b\/T6TQyclEBemJikt0KjiQWW6auTjl1dubMadxul+JYLifgykupv9udnV2qc4Msy\/gFiqMTU+IFks6kPhlkMzmsAsbtlRL1XKUaz8bmUavV+pwm982oj65ZKBSiurpaqCRaVlZWFN1MT09fVQSmZlvG8aRSKdrb21lZWSEcDm9a4W4z4IJUqrTnSZUgc\/vGz2ZIVTeyMrNJGLVWw1RP6QkbIJ4pfRtkIDmvvpo6f3SCmfomDE2bi3Y0ATtL3aWjrFzIjrwivjaWcheTF8SRk73cyeSF4hc+u5xh7FKUUZODaI1bGbK8zpytYWF6DMBW5SM5r36fvLvKiQh+x7u9nPhYRHHM5LcR61VOOxqcJjITytdeU2lHN1acYjP67WQGis\/H1hjEMVX4\/OQMWrSJ2VW45dp+gx5qyoJMS01Up4P4jRYmtDHaNkz0CWsyz\/+2mMqwsyWE5LuSUjp28Cw2T+GE0t8\/wL59e4uO7ciRI4qAguPHT9DW1lL0+fJynG3blFVsz547R0ODclPo2XPnKStTRnQtRBbZ1lKnOAbgdKlHRCOj41gEgKN0TrxwE0k9lCIK3eh4NrIW\/KLVR9dsbm6OkZER4Tx7ww038NhjjxV89uijj3LgwIGrOj4l2xKOJ5fLcfz4cTQaDeXl5YqFSjUr1cMDEN8En1k8LnZgmazMsVkBk8EGM9SUkdwEsEBj0DHeVbq51FnnY7mEMNyJZyYZkzZHtbGsLS0FjkFDarr09dW5rCX3ZXBbkQWpsdRiiunhHJNOD8lKj6JIq8FjZWlI7FTdO8TUOuagQ0hG6mzws6ACnUYCk9NEVkVXxVnhIqOUfrPpsShFVxqwug3IG+jANRYj+thCgYMBsDb60EWvONSk3siSwc3cuWUyg1ecYVtbYff+mJTiusorSLbzmTg2o4FA8+oEJ2dz\/N593yIajRUh1545coRdu3YWHfrC\/DwmUzGqMpGIK0YiJ06coKxMeaXsVEmbybJMTa36yt1iVUdjjoyKFydOj7rjiUTFWQ2DVT1TUIoodCNAZ6MIXCwWw2KxXFXEU0p9NBaL8ad\/+qccPXqUwcFBDh48yB133IHP5yvoydmoPvrhD3+YRx99lM997nN0dnbyuc99jscff5x77rln08emZlvC8Wg0Gnbv3s0111yDXq+\/KobqzdR45mZLszIvLJSmlfnRYASNV6wdkj8uw+bSbLb6AKlNyBpIttL7swft\/PzxUWL1NcLtcm4zaQF1TH5\/28pJqaSj1swScjJVItqxhZxMnhdv428LsRJJsDi6xODFJSatbnKNYeTL6CVZhrRJQzqqfjxGv40lAbO2pJHQm\/VkVdIhOouBbFS9duTbVUGsT7lw7d1ZTqxT2eF5Kj1kY8XH7dlZQWqg2Am6Gj3kFgonP\/O2MLqh1SbVrM3JbFkb8\/ZqshfHC47XUOtFM1446dbvvbICns5muaEtzDNns+jNqxNez4k+Lg3NMDk5SThc3Lg6MjpalCobGxtjz55dRdv29fVz3XX7iz5Pp9NUVSk7kZPt7YTDyuzUvb19qpNwZ1eP6tjo6DiBoDpc2O1Xf4\/HJsSZAEmvPm3GIuL3ZSNDtZLs9QutPqrVajl\/\/jx33nknTU1NvPvd76apqYmjR48WMCRsVB89cOAADz30EA888AA7d+7kwQcf5Fvf+tbz7uGBLeJ4ABwOB5IkXbUY3GZqPKlE6VTbTAnmWYCJmXmObqLnBY3EVH+k9HbACqWjOxmYHiydtjOHXOSyMoefmSQqcD7GgK+kKJvGqGOuv3TKTu+1CSMZAKNXHO1ojVrmBgp\/a2kiSs+paUY1NuSWauy7ykmPqt8jWZIwOC1Fxdv15t1ZTnRQPbp0N6rXjqzlblV5B5PPRnJAOf3m3lFOorvYIZnCLtI9xbUge2uYbNdgwWcauxnd4jQZl5e50E6GhgwsnpvAniqOriRt4SJLU1OGbubK7wSu3Uk6E6C6edUZybLMX3zuR\/nx7u6eovTa3NwcFZXFHGhHjhylpaW56PPz58\/h8RRnB5599gTV1VVFn+dyOSqrlFM+U1PT7NipLAsyNzdPU7N6Wqm8Ur3xMplVdxDR6DIWhwCSLaunvDNpGZ0Azp1e2VyN52qslPqo2WzmZz\/7GdPT06RSKYaGhnjwwQeprKws2M9G9VGAt7zlLXR2dpJKpbh06RJvfvObr+rY1GzLOJ41u1oxuM1EPPGoOKKwOE0kS0QdkiQxMTHLv\/28g1wJ3Q9DdZDEfGkCUUmnYby7NKuBo863Si9TwuYnVydNOSfzzOEJlhRy54agi7mLpeGQ1uYQyYi4yG8O2kvWdqwhR8lt\/K0h4vPKEWd8Ps7QpVkuXIwRqy4j4bMoZvVM9W6WetVXqrYar7A25G4NsaAyLmkltFplHjckGZvXQlbB4Rl9NsWIRtJKWEyrBf31pnOa0c4UOzBDY5hZcy1DPRA5M4qcyeLcVkZ2otCJmuv82COFC5S08cp1zYbDEI2SaZ\/EtdMFQLR7gQ\/89d\/yJ3\/yx\/mU2tmz52hsbCjYz7lzF2hp2eAAZJn4cqwIdRqNxmhsrC86D1nO4fW6ij4HOHXqFC6XssyECF9kd6pnAjIZ9blhZFQMxXf61VFxiVJMKXZB\/UgB1farJokAW8jxPFcxuFIRj95iIFUCMWYrwTgL4A7aWEmmyOZkvjUVEW6bNm8uVLbVB1mJla6haDaRZnOUO5lZFxXJMjzz1DiD3g0rT7ejZLQj6bXMD5SOsAwBh6Lg2noz+2zCbTQGLXOD4sjK2xQgPh9nvGOOkcE0U3YPUmsNGs\/qdTaXu0gOqkOwNUYdcjKtqq9jcFlYmYio\/\/6OcuIq0GvfrkqWexUcuSRj9ZjJKdSDPDvLSY0UO0lnpQM5uuooZL2eRG0D0ZbdDB+eYPH8WMF9M2WLHbXFWXh+uoZynCtXzith0TBzYpFUJoerZrU+c+Sby9z0GzfxV3\/1MZ544jE6Os7xhS98nhtuuKEovdY\/0E95eWEqbmhomJ07ixtLjx07rhgNtbeform5sejzlZUVWlobij4HOHPmPB6PS3Gst7dP8XOA3j51NtDpmTlsAokDtYZygJmZiOoYiIlCN9Z4lETg\/l+XRIAt5HjW7IWOeEQ05flt7KXTZw7vlcn\/p+cnydaqKyZOD5auKQGkdKXhzDIwswl2aVNAuent0vk4kxWrk4Xe72ROQB+zZraWMCslal7mgJ3J8+LIyRosvU2gTT3aATDYDExsOOaliShdz47RNZoiVlNONuhFErzsxko7cQELgj3sVIVw22t9LJ5XhkdbQg7FNBqAd2cVib7ic7dUeUl2Dhd97txRTrp3hFR5JXNVrfRG3QydmiU3EykCbjgaA2RHCyMjU40XaaSQqNSw3hE1N8GEEXMkSqwqiCRJJIYX6evVMTw8TDKZxGg0UlVVybve9U7uv\/8LXLp0gf\/5n+\/yoQ\/9Ps3NzaysJDFbzAUTJcDJE+1UVBTXhlKppGINRq\/S0H3hwgVFwEI2m6GpWRnBNjU1Q0OjMox7fn6Bqmr199TlU3cuOY36HBRdEi8WtYKeQCU49fqI51dBiwd+BRyPToB8WbNSjLMAKbkwdfbVgTmUOskMVQGWN5EWk7QS4z2bSLPVeIlOlyYknVWA6q7Z6WfnmKurRfI5S9ZjJL2GhU04OkPQqRpBrJk56CAn2Eaj1zA\/LI6sjCELGRXRNTkng1bHuUPDdE5mWSgLIrVWowtfifJs9V5WetUjKu+uchZVenK0Jh1yIql4zSQtmMw6RZ44c8hJoqc4lSPpNRhJFeuwlwdYlC0M6irovxBl5uw42UQKV6Of5FAxmMGsL04LW72Fz6KuqRLN7GrqUNZoicd0cHE1ArDtWUWXPfutCFa\/jcXFRZ599lkOHz5MZ2cnCwsL6HQ6rFYrr3jFb\/C3f\/s3HDnyFKdOPcvv\/d57+J3fuQuz+cpCTJZz6LTaIofU29vH3r3FlDnnz1+gtbU4GopEIuzerUzLs8birGRuAQuGSA5bY1B\/NmNx9cXQUiSBRqc+daZy6hmbUn088Xj8147npbCrTbWVcjwawepjzTbj5iRd4eRz8PwI8friVV7GvjnUm7UuQGJxE3BrZ2l6dEelm7kRcbf\/2bNzdC3rSiKobdvKScyJHafJZyuJZLMEbEyeE28T2B5meVb9tzQmDbERwbFIEL3s5OWczHTPHJ3Hx+joijJudiG31ZCx2tB6lV9kjdPAUrd6ROZuDrIypXxdfTsrSSgJ3WnAZNYiKzgkz\/Yw6Yl5ZK+LVGMDC9WNDGoCxMxuJk6MktwAbLAoUPTb6rxkBwujLGOlB2losOAzg+3KqnylrI7Mse4r59VoJj0To\/3xLJ5yD7t37+aWW26htbUVjUZDd3c3Bw8e5MyZM4yNjZHJZDCZTDQ2NvK+9\/0eX\/j7v6O75yLffOjrvOe9v0t1dRWDg4Ncd20xbc7Fix2K5KKJhPLEPjDYrwjHHhkZpbW1OEUH0D84qPg5wHJcfdG2nFAfm5pVXxTKsjgVlxQsnJVSbb9qInCwhRzPehXSzUY8qVSK2HyJaKAETTlAMl3a0UkKK5x\/PjWErC1cac4Mb04uYUFFT2SjbSrN5iv9oOp8Wk48PcJFh5OsVqVHQKshMroJieywi5yINRqwljmF0Y6k0zBfQjHUUesWypqHd4RZHFM+3uh0jJUMnD8yxqWhJKN6B8s1FdBag64+hMZmxOq2IqvU\/5xNQSIqInX2ag\/LF5XHvDsrWBlaV78xGaEiiGZnPdNxA8OmEN0DWQbap5i+nIZc7ipO19mrPKz0Fn9utRbfO1ugcHGlb61CM7fq9FNaC\/EzY2guayLFA170DiNn\/2f12lt8q05Zq9Xi9XrZtm0bN910E9dffz1er5eZmRmOHDnCM888Q09PD0tLS+j1epxOJ6997Wv4u7\/7LCfbj3P06NPc9ppX8+pXvxL9OkaM5eW4Yq2nv3+AbduKHcn4+Dh79ihT7FgsyjWZ8bEJausqFce6unpUCUUnBbIikxNzReqr683sVK8PWQQRS3wpTnxdNPWr6ni2hB7PeluDU5fiBIpGo5w6dUq1J2PNcgoyxBsttgmGzrmF4gnuwtAsffUNNMysOht9uY9o9yYodSSIjIsRY7CqbTPYVRrSPD1c2lloJCMQY6RziWjYxB5zBsOG1Ze9Jcz4GbFcgdFrVWQgWG9mn5WJEn07wR1hRk6pI4u0Zm3JaCcmiMz0Zh2zPVcikvhCgvjClWtesTvM6PA81kAQs82AVptDTqcgsYImnSK6uIRkNiBlsrAOzabRa9DmMqQzOXJ6LVqrGclkAIMerc3IYkZDqrGBRCxNbHaZlZk4zEQpbzWx1F2MWPPVe4ieKxaRs7v0rGy4zJYKN9n+wmtmKHcjDa8rokugNyRgGVKSkYGIn\/LEFSep319BdjHB099LARJWv\/IkZ7VasVqtVFdXk8lkmJ+fZ3Z2lo6ODjKZDF6vF6\/Xi8\/nw2g00trWyraWbXzoQ7\/P0tIShw49zWOP\/ZzHH3+SZ589wbZt2+jqKqRnmZubRaORyG1IZc4vKEcbZ86ex263E40WL+78ARcD\/cWLgXg8wc7tzfR0FafqluMJGkNOZiYV3h8J\/OUOxlVaCnQWAWRaAKZJLSc5fvw4JpMJr9dLOp0umOd+DS54iSwv8CaIeiYmJjh27BjhULgkx1m2RE0DICKgV4HLUOpJ5dXRv7WPwuXCdk5BwEvJ9OVOkkulI57NpNmcNR4WxsVgBqvXUgDbjoyvcHJRT8J9Zf+yJDE\/Gin5e+ZytzKseJ3ZysURkaSVWCjxW8GWMEkBHVJoe0gYnYVay1hRaX6VJFieiZJYSDDbN8fI2QkGT00xdH6Bod4EaU+Q3r40PdPQPa+lO2agd8XEoGwj3lDDuaE0nTET3fN6Lo1kuNgT52LHIgtxib5nJxg5Nc5s9wwrl0ET7hqPotPRWw3Ee4sdtDXkZKW72CnbfYYiNgN7qPAzfWsNmoUpMujo6C3Dby58xR21Brp+NoecW53srP7Sk5xOpyMQCNDa2srLXvYy9u\/fj91uZ3x8nMOHD\/Pss88yMDDA8vIyBoMBr9fLnXfewZe+9EUuXGjn5z\/\/Ke98513s27enYJKdnp5h797dRb\/X09NDi0JaLZlM0qqCfBPVgBwCyLWvTD01bhHJYKtlDYBUSv390GQlXvayl9HQ0EAulyOTyXDmzBm+9rWv8dnPfpZ0On1VEc9nPvOZ\/P0IBAK88Y1vpKvrijpxOp3mL\/7iL9ixYwdWq5VwOMy73vUuxsfFC8wHH3wQSZKK\/q2slG4T2YxtmYhnfaoNVqkkNhYrZVmmu7ubkZERdu3ahdPsKEnVUootVpJgVkA4CeAJ2picVu7xmF5cocvjpHlshrnxzfG46d0uoPS2s5uIZJLa0mlJyaWBDavnpdkEx+J6btpdhn5wEn2dh1hXiUK\/x1KSgdrstTJRAskW3BFm5LR6T43eome6Rz0NIgNxQY+Rzqhlrl+9UTS8M8TkOeUXz2A3Mr+Rw05eJTVNy2mmL02QU+Cuc1W6VHWNbA4DEYXP\/dv8xBSiHWfQwspc4YNtKnOQ7d2AWgs5kYb6r3wggV4XJStr6BitRLeQwGBed0+DbvQOA098\/Ur9Zy3VtlmTJAm73Y7dbqeuro5UKsXc3Byzs7OcOXMGIB8Jeb1ejEYj+\/bt4ZprdvGBD7yXmZlZDh58iu9\/\/0ccOXKMwcFBjEYDyWQhUmxFpf4yNa3cqDs0PEpjfTPDQ8X3dWFBPWugMYig\/upjGQU59zVbWcmiFg+lV9LodDr8fj8+n4\/x8XF27tzJ5OQkP\/vZzzhz5gxdXV2cOXOG1772tdx8880FQI6NVkp9NB6Pc+rUKT7xiU+wa9cuFhYWuOeee3jDG97AyZPF6rDrzeFwFDgxQBF1+FxsyzieNdNoNGg0mqKIJ5VKcfbsWVZWVrj++uux2WwslaDPB0gIagQANo+F9Ki4LuP0W0Ag8fGPBzv519fsIHKu9PEATG6ibmOr9jLUXTrNtjhZOmWXiiu\/QMl4miePT3PDTRVYF0rXpswVHhZmShB0VrhZnFZPoUlaiYUS9y3QUsbwSfV9hHaEGBcAF8I7Qoy2q\/GtySQE8O2yJj8TKilAa7WF1KDygsHiMpBS8GX2sIOIAmpOa9CSHCx+qEw+K8nu4pSRM2Qh21V4H20VZhhYF+1sr4GFAToma2E4iveaAKzXptkVZuiZBdaTPqul2jZrBoMhT9EiyzKLi4vMzs4yNDRER0cHDocjP8nabDbC4RCvfe2tlJeX8ZnPfJLx8UmOHj3BD37wE86f78jvt7evn\/q6JgYHC69FX98ATY3N9PUVO+yykFfR8XR192K3BFhJFEfQkUX1xVYirb66T6jw9QEk4mlVx5NNZsllcmh0GnKXnZfdbue3fuu3eMc73sGePXu46667mJ6e5v3vfz+veMUrCuSqN9pPf\/rTgr8feOABAoEA7e3tvPzlL8fpdBYRfX7pS1\/i2muvZXh4mKqqYiaJNZMkibIydTj687Et53igGGCwtLTE6dOnsdvt3HDDDflIaDMEocslGjQtbjOIm5gxWMSXKbaS5qmslmJSkWKzVvsY7YyU3E7nsgJix2OpsLPQJ06z2cusjA+rR3S5rMzQbBqT0UKZKYGsRqhq0TJxQRyemzyWkiwFgR1hRgXRjs6sY7pbPVqRgYQg2tEatcz1qyOSwtvDTKmch96iZ14l0pK0IC0qr3KNHiMRFaE8d9DGwnSk6PPA9jKWzxdPnp4qJysXNkgheKxk+wpTSfqgA836aEcjIadmuDRfh9y\/+kxYLYXPvskPj91XOJlebcQjMkmScLlcuFwuGhoaWFlZYXZ2ltnZWQYGBtDpdNjtdubn56mrq6O6upra2lquv\/5aPvzh32diYpKf\/\/wQP\/\/5QQ4degavz1XkeAB0euU019iE8n3NZLLUN5TTcb6\/aGxgaBij5EOWixdnIhnsRQFnYGwpiQjbml5JY7QZ83PcRnDBrbfeyk033YQsywVAhM2Ymvroxm3W7pXIYrEY1dXVZLNZdu\/ezX333cc11ygryl6tbZkaz\/rc73pI9fj4OMePH6eiooJrrrmmIP22GbqcaAnIcprSziu3iXTWkxP9aJp8JbdDIGC13mZGIiW3sfiUKUbWm6PcVfrH9FrOPzvGmZQB1vXArDdXYwg5Lc5r2qs8ZAX5bUkrsTghdpSBlpBqbQYgtL2MheGI6nh4e4jEgopjkmSSKuJtAKHWoGpdKdAaIKmy32CNDxR8kt5lIHKxeDKUdBJpBfkEg8NEsqfYKbtrnEW9P\/YqK6xL9yRrfQxNB8h0rl5fjVGHduLKpK1rCDE9IhNbF2zqTDqMAnmA52smk4mKioo8XLuyspK5uTl0Oh19fX2cPn2a0dFR0uk0JpOJ6uoq3v3uu3jwwX+ls\/Mkf\/7nf8j7P\/BuGhoLm0eHhoYxKUi+9\/cNEgor87MZTcqLx3hihfA6naL1NjY+rSr6Nj+jniGIRkow3V8G9aw5HjXKHEmSrqreo6Y+ut5WVlb4y7\/8S+666y4cDnX3uG3bNh588EF+8IMf8M1vfhOTycSNN94o1O+5Gtsyjme9abVaMpkMnZ2dXLx4kV27dlFfX1+EcitJECqtNnsJTVeafnx5pXQ6a25+ns+fPISuBFPC1EhpVgON38zShLjuJCMzuQkSz5kS8GiDRcdQx9TlbZc4eG6BZGNh7KZ3mpm+JJYT1tp0TKjUTdYssD1EdFIg4GbSMdMrjnZWBIADrUHLgoB+J9RWRkSlYVVn1LKg8tuSBlJzys+AxWtRVXF1l9sVm2wDbSFSs8XXwdvgRU4WRpx6h5ncwIZox2dHM3xl9Z7TSMzHnKycv\/JseVo8kLqyqNLWunny24XX7oWMdkrZ7Ows\/f39tLW1cfPNN3PgwAH8fj9zc3McPXqUw4cPF8C1bTYbr3zlLfzN3\/wlTz\/9Q44ee4S\/\/dTHeMUrXkY2m1UlDrWrvH+TAvE3t0o7QiqlLoO9tJhAZ1Ru1cikc2Ki0HWOR6vV5ue1NSHM54pqU1Mfzf9uOs073vEOcrkc\/\/Iv\/yLc1\/XXX8\/v\/M7vsGvXLl72spfx3\/\/93zQ1NfGlL33pOR3bRtuSjkeSJLq7u5mdneWGG24gEAgobleSLsduIpcpwSWm0Ny20ebmI8JxSQOjo1OMzMzxlE49zWOp9BAZLw23zgmgmmvmbfDnmydVt6l1MzcqdnSh5gCpdXWwTCrL04eGGS0LgHV1VWmr8RU1vm00W6WHXFoA5NDA0pS4jhRoLVuVtFY71rYy5gUs3eHtZUL6nYwgNRveHlL97dDOMMtTyvfNV+NRRPmZnCaSSscqycQnip241qwnM1jswNyNniJnZK+1w7pU9JS7jnh74W\/ZrOu+o9WwlDExN75B32cTiLYXwiYnJzl\/\/jw7duzIC49ZLBaqqqrYs2cPt9xyC01NTWSzWTo6Ojh48CDnzp1jYmKCXC6HwWCgqamB973vXXzjm\/9Gx8Vn+KM\/eg\/vevdbqagoZLVeSSrPCX19gzhdyueb06g\/204BrY5dMGYQCc1dJgrdKImwsrJCNpstkCrYrJVSH02n07ztbW9jYGCAxx57TBjtKJlGo2H\/\/v0vWMSzZWo8a15\/aWkp7\/WvvfbaImTbeivleFZZYsXRykpKDD7QaCQmJsWrfU\/QysL46sP7rRPtXPuaO9EpqI9q3HagdMQTmy2dQpQspamAjG4LIKblWVFxKJ2nJpgM2rhuWxlTl5TrF\/nfcZlZ6Ckh0NbkY\/qSejSjNWqZLRHBJQWOQ6PXEBGkJ8vagsyosHJrDVoiKpGSpEFVzdTkNLGgQrfjb\/ASOVtcn\/C3lpHsLk6n2WsdZDdAq7UWI\/JQYQFS57WhGbkS7XSY2rBHJViHm9MYtGgnr\/y2YUcVp\/stBdsAWDbRePx8bWxsjK6uLnbt2oXPp5yKXoNrBwIBZFkmFosxOzvLxMQEnZ2dWK1WfD4fPp8Pp9OJy+Xk1bfezCtftRr9dHf388QTz\/Dkz5\/hxLNnCJVVMjVZ\/Ky5vVYWI8WLn9l59XdEZ1Ffm5vsRkB5QaITvJ9ri7iNInBr9ZyriXhkWeYP\/\/APefjhhzl48KCi+uia0+np6eHJJ5\/E61VOLZb6nTNnzrBjh3Jz79XalnE8sFrP6ejowGw2EwqFhE4HNsHTtonJOVpC6MwdtDExJUZyWZ06WJdl+tyxg9zbeID0hglrZqI0csxS7mSuv4Rz0sBEX4k0m1R6G5vXzLAghRaZitFX48Ic9uIYm0VWadZ11niJqqHILh9LZEp8TsG2ECPt6tc52BZk4oK6AyzfEWJMAFrIJdVXteHtISZPKx9\/aHuIWRVi1UCDj9kzxc5Fb9GrymNrFVbkkl5Cmiy+V55tPuTO3oLP7PUO6J8kI2k4J21nuT+OSSpMp7pbPDB35b5mfE4G2osnUOsvONU2PDxMb28vu3fvFha719t6uHZtbS3pdDoP1z579iyyLOP1evH7\/Xm49vbt22hpaeSDH3w3S0tRjh05zeOPHeHQk8eZmblyXR0q9dX+gSFcunIyGzn0EMtg68zq85OIqmst1bYx4onFYkiSJIRPb7QPfehDfOMb3+D73\/9+Xn0UwOl0YjabyWQyvOUtb+HUqVP86Ec\/IpvN5rfxeDwYDKtz5Lve9S7Ky8v5zGc+A8AnP\/lJrr\/+ehobG1laWuIf\/\/EfOXPmDP\/8z\/+86WMT2ZZxPOl0mr6+Pnbv3p0PsUtZqRqPZCh9egslKHecPguIF\/yk5cLjmI4s8qR2jpu4km82h1yM9peGW2vdNkpFRZ4GP33nxVFYoNFPX4f4wP21HmamxOm6uckoEwPzeMrs7Kn3k+svRH0ZnCYmL4p\/x1rnINKrfk4ag6ZktJOKqzsOjU6jSp0DEGwJMKuCOtPqNERH1dN3aQXlUACD1cBij\/I+gy1BFs8WNzR6m\/zEB4qdmL8tTOZiIYW\/rJdIDw4VvKBatwXNcD9xrYHziWZiAxEqrwlCd+Hx222ZK4GuxUT3uC5PmbPerL\/AiGdgYIDBwUH27t2L01kaBKNmer2esrIyysrKiuDaFy5cwOl05qMhu92O1+vhNa+7hdteezOZTIaOCz0cfOIYTz55jDEVOexMNou7zMKMQhpcJIO9kS5rvUkqDNxQXONZs7VMz9XIXn\/5y18G4JZbbin4\/IEHHuDuu+9mdHSUH\/zgBwDs3r27YJsnn3wy\/73h4eECkEMkEuF973sfk5OTOJ1OrrnmGp566imuvfbaTR+byLaM49Hr9bzsZS8DYHp6elN8bSVRbSV42jQ6DXMlmkcNtk2QjCqw0X772LNcd\/ub0F9anQG0fif0l454FkqACgDkTRCfagW68PnfKlEjCtS5Gb5ccJ+fjPL4ZJSd11YQWIySuxwpump96j0zXAYELIqRg+YKK0t96tcm0BIUOrfyneJop4gNep2Fd4SYPKP83bK2IPMqDiu4LcCcQrSjNWhJDCpDsg1amY3uU9KANFvsdP3bw9BVGO3IAQ2LiyYuzFWSvExeapZTBbhMSa9FO3Xlfhh2VvG9B5dpKC9+Ziy\/gBqPLMv09fUxOjrKvn37nlO9Qs2U4Npr0dDg4CBarTbvhLxeLyaTiT17t7Nrdwt\/eM+7mZ1d4MjTZ3n6YDuHD50mGr1SDwyG3YqOZ2x8GgsuxeNJCRg8ZIF63XpU20ZJBKvVelWORwkGvt5qampKbgOr6qPr7Ytf\/CJf\/OIXN30cV2tbxvHA6oMly\/KmGapL9fHEV8SOyeGzkIuKo4vsJrirI4vK+\/jUwUf59I5bSE1HmZ8ujce3VrgZ7osIt5E0EiMlEGYanYbRLvV6CoCvysVIqVSczwKFcx\/nnh3F6jRx7e4yjJMRpkpEO45GN\/Pd6hGFxqAlsyCObjMCxUeNVhI2Egeb\/cx2K18vjVZicUz92DYqhK6ZzqglNqB8fUPby1hUIBd11noUBeN8bSHSXYX9PJJeg2Z6qhChbTWwEsvSNRQkF1tdMGiMGlIbAAnuFg\/MXznfOa2dqfF5qmzFtc4XGlwgyzJdXV1MT0+zf\/\/+XzjZpclkory8nPLycnK5HJFIhNnZWfr6+jh\/\/jxutzvviCwWC+FwkDe95ZXc8cabOXfuHAN9kwz2zfDUwXbSsvJcEo3GcVt9JJeLn4W4QkPqmome6PURz\/pyQjwex2IpTZP1\/4JtScej1WpJpUr316QE0FqA6HIJ6WZXafqHeFK8D71Bq6pIuBBb5gfJUd4YrGR0E4qecV3p9KK+zER6QOzEgs1+us+IGzltARsI0lsarcSISiPn8uIKTx4aYv+r67HOxUCFd02WIKvCmrBmZdvFtR1zuZnZPkFD6M4w4yoRC4Bo7eht8hLpVD7HQHOAhV5lhxXaXsbcmeIoT6OTSI4r32erTY9STKeNxYqWNu7WMnI9hcqaU243051yQa3KWWWFDat0qzWd7zuW\/E6Onc2i0UkkFAASLyS4QJZlLl26xPz8PPv377+qOsULYRqNBo\/Hg8fjoampiXg8nm9e7e3txWg04vP58Hg8jF6WvX7jm29Do9Fwz5\/9DpPjcxx\/qpOjBztoP9JFYp1EdaDCyUhX8TM4PxdDrYosIgpdQ7W9EBHPL6ttKcezZpuVRihV4zEaraihTgD0Aqz9mpWCUntDVmYG1R+yR06dZf+bG2GwdMSTiJSO8vQ2CyDeV04kUg+AzGQJuemK1gDdZ0V9OTKdFyaZm1hi1\/5KArEE2bnC4wpuDzEmoLbR6DXMl6APMhstLKsgEzUaieikesQaaPIxoxLtIMHytKDuJCnfU41OQ1xFzqGsLUS0Q4Hcs9xJrKvYOXpagqT6NkRHGgl9ZD7vjDJaLWdN5ZgHs+Q2LIJ8dkNB6k7WgmbySm0pU1vGo59fxBOwISeLHc8LFfHkcjk6OjpYWlpi3759Lxif1\/OxNbh2VVUV2WyW+fl5ZmZmOH\/+PLlcLi\/54PP5MJvNVNWEKK8M8MbfuonkSoqzJ\/o4eqiDowcvYnIou5e52RghSdnBpgStBWtSH2o1nl8F25KOZ9OpthKOJ7lSgiBUoCIIoNFqGJ8QE17aXKWRcw\/3P8tvbtvPcqd61GMM2pgbLsGSrZOYHRTXgPRmHcMl4M+hZj\/9HeJ0nYh9F6CyJUDvZXjymWdH0Bm0tO7w4ZldRruSQwaW1RgELlvZjrAw2gk0+5nsVCcLtVSbiQquh1ZwDvYaKysqvGu+Rp8qdU54Rxnz54qPWdJAdkH5WBwBC9Hp4hWzMZti4xPsbisj27cKl551+jgzacKpt5BeLLxfGoOG7HDhs+lt9aFbJylwZjhDLgdmm8TGH3qhWAtyuRznzp0jkUiwf\/\/+PEpqK5lWq8Xj8TA8PIzNZqO5uZlIJMLk5CRdXV1FcG29Xs8Nt2znupe38kcfzzE2OMeZg\/2cerKPjuPDpC+zcyRXshh9epLLxcCXWHQFtZgvnbgS8fza8WwBu1oxuFQJHZ1SPG3pEsg5T9DGxGQJB6gtnR4bHZ\/gs5e+xV\/uegvLKg2d5jI3lHA8lko7851iZJy\/yc\/8STH8W19CDtxkMzBQQnPHsAG8kEllOdc+hdlmYP\/eckIGLROCiEmjKx3tiCQtJA1ok+rgEV+9l+lO9WjHkNGhBqQ3qHSkS1pITis7l2BrGcudxedr9lmJdRbfD2eDj+QGJVEkMMSXSGu1dNirGL64DLkUnnoTsQ27CDR4yW1QHbU7c3B5baOtK+PIQQOwgs2mL2rnMgsUNDdr2WyWs2fPkk6n2bdvX4EA3FaybDbLmTNnyOVy7N27F51Oh8vloqamRhWuveaIDAYDNY1lVNUHuP1\/XUtiOcn5I4OcuuyIbA4LyeXid3JpMSFwPFdqPEbjFee\/vLz86xrPS2kvVMSzJOiCB0ioEWJeNofXXCQnsNHiKhK++X04LYyPraZfHhx5kt9x3UhS4bjmN4Fmy5ZMoUFSwJUGoNVrGBZEEQDhbX4uPquub2K06OlTkUdIxFI8dWiA5r3l+LYF0A8vkFOAQpftCDNySt1B+psDTKk5DlbVR0UUPStpAQN1W5A5Fai5p8bDrErEGNoeIqJCMCqpFJo9VU6i54snJquRIsfn3BYkGotzPFlOfOjKIiQ9WRwp2y0UIuS0Erp10h1LnhCDvREAXA4rSxTuI6PP8swzz+Dz+fD7\/bhcLkXJaTXLZDKcPn0aID+Zb0Vb07sBirgeoRiuvbS0xOzsLCMjI3l27TUn5HA4VqOh17Ry3a3byGazjHfP0nV4mEtPDTJ4eoLc5dpONq0ebS9HYmSz2V9HPFvNNh3xCCIaSSsRmxM7nsVFsdNYyZauy0zPiGsl4QofU7OrjufS8ABPun3cqKtBXkflYwm7GBkQRzJag5b5ITEc2+gwlkS8lbcG6GoXc6rFBESaAJWtATpOqDumQKWTiydXaxdmq4Fd15Rjm10mu7B6PTU6DQslSFBlUbQjQVygPuqp9bA4qA5IyCmkRtbM7DAqggCQZLKLytfFv82v2DBqcJpY7laStXaz0lP4eU6jYUzr4uKFBHL2ynPrr3WR3NCFL2khN1Z4n93bvLB4eTuNhvbedaS7CvWqUH2YxsZGZmdn83UPj8eTlzAQpczS6TSnTp1Cr9eza9eugslzK9mac5QkiWuuuabkcUqShNPpxOl0Ul9fTzKZZG5ujpmZmXyfy5oT8ng8GI1GaraHqWwJ8sr37iO+uELnM0N0Pj1E7zFlaXSAyGyEp59+On88iUQCs9lMLBb7lXE8W4qr7WpSbQszC+QUCBjXzOgwbRRrLLL5uRJ9NTrxDqx2I7MzYrSadUMe\/fGzJ+jyFU6K+k10kLsb\/Yq55PWm82rJivjSgIwAbQPgKXeUjIiWS6Q4feVXGgYTyymOHR7gYN8si7VedCEHwR1hYoIeIn+Tn+mNYmzrLLQjJGwYNdvUUz6WSrMqkairwsmMCuFnWWuIqAqowKCiRuhv8JJTgILb19UFZUkiUltHh7uWjqfGkTfcH6+\/OPXiq\/eQXSpcFDncV74nNVXxyI8jV35D4RhsAXteVfTlL385e\/fuxWazMTIywlNPPcWzzz5Lf38\/0Wi0oA8kmUxy8uRJTCYTu3fv3vJOR6PRbMrpKJnRaCQcDrNr1y5uvvlmduzYgV6vp6+vj0OHDnHq1ClGRkZIpVIYDAacPjv7bm\/htz97Gx9\/\/H9x+7\/9Jrt\/dz++lkABvNJusrF\/\/360Wi2xWIwHH3yQ7du3c+7cOebn5zeF6IXS6qOwija89957CYfDmM1mbrnlFjo6OlT2eMW++93v0trauipr3trKww8\/fFXXrpRtyYinVKptZmaGk0+L1fMMNhMi9JfepCNSArGGVuyX\/eUOxkqw2yQUmK0fOv4EH3vdO9F1rI5FSrAHAGTk0hBLrcYMyut1YHU1P1QCVOCpcDCuMsECeMIOhgTgBUkDIwqF+Uw6x6ljQ0gS7LLocTf7yA0sICukBoWnKsGKgHHcU+1iUlCfshksLKig5Kw+C\/EJZYcmJZUnA2+9lyUF2LXOrCfeV3wcljIHK92jyEhEq6u5NJ5l7sgswW3Ki4\/sXPED5nTqyKzPUmokdOsE+gazHlLJK\/cwo6Ads54uR5IkHA4HDocjv9JfgyIPDg7mFTOdTif9\/f04nU7a2tquKjX3Ylo6neb06dPodLoXLCLbCNdOJBL5a9TX14fBYCiIhnQ6HeW7qyjbUc6e372O+PwyY8eHGT06RGo5hclkQq\/XU11dTXNzM1arlQcffJBHHnkEn8\/Hq1\/9at70pjfxO7\/zO6rHVEp9FODzn\/88f\/\/3f8+DDz5IU1MTf\/u3f8urX\/1qurq6VJt7jx49ytvf\/nbuu+8+3vSmN\/Hwww\/ztre9jcOHD3Pdddc972sJIMmbaWt9kSybzZLJZEgkEhw6dIjbbrutANMuyzIDAwP09fVR6ajgsQ\/8QHVfnuYgTx9Tn4A8FQ5O9YhTTobqLCMj6pNs67Vhjhw\/IdyH269jfLx4YpIkiU\/d9h40EZmRQbH30hm1RFKQVuFKg1X6k6nJqDDK8zc7Ge4QRWgy1qCVOUG9qXKXj94z6tekfmeI7rPqtZua1gB9l6MKm9NE2\/YwzkSW9GX5Bl+jTygEF94ZYvK8OkS7fEeZqhhdcFuA+S5lx2twGyCWUuz8CzT7ian09FRsD7DYWfychfeUE1MQegtfE2I2JtM5LTHdf+VeVNbaiG\/oyXFXOLDOFUdn9ZUasvNXtnW3+vAsXV7pmo38+2A9nR1XnOuukJ7MhmfnlX\/zOppf16p4Tustl8uxsLDAxMREnuNrjSvN5\/NtCej0ensp0oBrcO21tFwqlcLj8eQdkdlsJpfLkc1myeVy+X\/t7e00NDTg8\/mQJIl3vvOdHDhwgFtvvZWf\/OQnLC4u8nd\/93ebPo6ZmRkCgQCHDh3i5S9\/ObIsEw6Hueeee\/iLv\/gLYDViDQaDfO5zn+P973+\/4n7e\/va3s7S0xCOPPJL\/7DWveQ1ut1tVcuFqbctGPFDY2ZvNZjl\/\/jyRSITrrruOeIl6h4grCcBcQjdHo9UwMSGGJcuSGADhdFoZH1fO9cqyzGee+gYfu+09UMLxuJsCzJwUO0l3tYvJEgCFZEKchqtoCdCrAhqAyxpAQyUaYUssgo3r0HCxxRWOP7MKHa6o89JQ6QZRkVqCpIDU1V3pYlKF0BNAEnjlQK2PaRUUnkZWTvs6K10sdhVfL41eS3KkMOqTtRpS1WGODstMdBemWm1+c5HTAfCHbcQ3OB5PrYvsdKFjt3vI0\/utVNbQ+eMrTsfhNpFRYPDYLE+bRqPBaDQyPz9PRUUF5eXlzM3NFTBHrzkhp9P5kjY\/ptNp2tvbMRqN7Nq160WLyLRaLX6\/H7\/fT3NzM8vLy8zOzjI1NUVXVxcWiyXvhFwuV77vSafT4XA48mWFvr4+9u3bx549e9izZ89VH8dG9dGBgQEmJye59dZb89sYjUZuvvlmjhw5oup4jh49yh\/\/8R8XfHbbbbdx\/\/33X\/UxqdmWcjzrazxwxfEkEglOnTqFTqfjhhtuwGg0EomJ6f7lEmkyEbMsgLfMxsSEuM4UWRI7DIfHjAI7e96i8ThfvfA\/vLbsZpKT6nWTZAnlT4CFaXG6zlVmY7IEgEEyiicNX42N8QH1c7a7zfQLpK8tdgO955Un99H+OTKZLE+NLlLd6KeyzIlhIUF6HaN3eHuZMI1mdZtYUqGN8zf6mVOpG1n9VmZVHK613MqSCnOCw2MmonC6we1lLF9YjXbSIT8zBhs9F+epShuZUpBEKK\/zMHumOC0sLRXfU7fPSHZ98KUB\/eyVfZ6etMA69jaP3wIzxc\/WZnnaotEo7e3tVFRU5MUY7XZ7Hoq8lm5aK+KvoeS8Xu+LinRLpVKcOnUKk8nEzp07X7I0oCRJ2Gw2bDZb\/hrNz8\/nQRzZbBa9Xk8ul2PPnj3YbDZyuRxf+9rX6O3tLSlHrWZK6qNrEWowGCzYNhgMMjRUHI2v2eTkpOJ31vb3QtiWcjxrptFokCSJTCbD8vIyp0+fpqysjJaWlvwDVQpKnS1RE8mVeC4dPguIWWeYUEihrTdriX4ZjUaic6CPcdMUH9rxThYVJnWdRc+YAFYM4Cp3MFKC3dld6WJCIAqnM2gYvCj+HYfXIXQ8FU0+LhxTf6CrW4NcOD6oOu4vdzE5HGGga5qByymxQLmTulov9rQsZKh2ljuZEDg9vUBp1lPlZuqMsuN2u23MTxZH1waPkcglBVlrLazEVpivr6V\/aJmZ9kXWwpFcXLlOlFFAy9n9VpaHih2eNFcYcbqavBDrBkB22vnxzwrvj91hJKfgbzcT8UQiEU6fPk1tbS01NTVF43q9nlAoRCgUIpfL5ZmjN3Kl+f3+X2h\/SiqVor29HYvFwo4dO7ZU7Umv1xMMBgkGg+RyOc6ePcvi4iImk4lPfepTPProo7S2tvLII4\/wgx\/8gNtuu+05\/c6a+ujhw4eLxjZGobIsl4xMn8t3rsa2pOOB1ahndHSU4eFhtm3bRmVlZcF4KbqctADxBhBbFkOl9WZxqs7lszA4I27UlDQluv+ryuju7WZlJck\/nv1P\/mj33SxukE7wNPiYOSFOs9nK7DAYEW5TSgK7cnuQSyfVWaZNVj0DJWQW5lRUOtdsaUE9KtNoJYYVIpLpsUWmxxapaQky3j9HZb2PoNeKNQfyZJRsdHUyl8w5VMBleOu9zKg4b7PbzKyadHWVi\/lLyqs8Z5mVle5Vh5HVa1jxOlk2mdGYTDzzzDByLlKwvd1rYVZBWtsRsBJRgH6X1ThJXCi8Z84KB5mpwmN1+KQ8nmTKXkUiXvhcW8y6IriJzqjDaBenmufn5zlz5gyNjY1F756SaTQa3G43brebxsbGAq60np4ezGbzc+4ZEtlWdjrrTZZlOjs7WV5e5vrrr8dkMlFdXU02m+WHP\/whWq2Wd77znbz2ta\/lrrvuuioHtKY++tRTTxWoj5aVlQGrEcya8iussv9vjGjWW1lZWVF0U+o7V2tb6i6tedRcLocsy4yMjLBv3z7FB79UxLOyUgKOvSiuEWVL1G98ZaXp3sfHxKFpIHhFHGtuaYF\/OP0AzvpC7ZJEsjQzwnQJpxKo8zAzIt4mKWCABrCFDSQF8tfljT4mBtSjrlCtW9GxrFnjznIWBb05FpuRVDJD38VJjjzdx2PP9PF43zQXDTIz5QbGU1m09V60AVsR3Y\/JpL6+8td7yao03drcxb3nMjKGoIOlnIGZ2krOmT08PgJPn4pw6sgEU2Nzij1I5fUexc\/LalyKDlObKK5leUMbogYN6OeuLEp+frZ4oaNU6ixFDjozM8OZM2cUF3ybtY3S1o2NjWQyGc6fP8+hQ4c4d+4c4+Pjm4YOK9katNtqtf5SOJ35+fkCLrsTJ07w4IMP8o\/\/+I9EIhG++93vEgqFNgV3XtvvH\/zBH\/C9732PJ554okh9tLa2lrKyMh577LH8Z6lUikOHDnHgwAHV\/d5www0F3wF49NFHhd+5WttyEU8ymeT06dPIskxraytut1t5uxKOJxEXT6TZrDiiWU6ImyiNNvH3nW4bk+sIG5UsmSqcXOajEe5v\/w\/u2fe7LPYuYrAaGLsk7qnx1roZ7BbXu8wKE+h6s\/ssJaMZjSROG9pL\/IY7aGNURUoAICdoGDXbDPSppNGmRhexeYJcOn3l+LU6Db6QA5\/fit9rZSydRdccRJOT0WRzkMxAKoNOkpkfWUDjsoBWQtJqV8W9tBoMVj0zSZlkYzmJtEx0Oc3ifIKF6WWaqu30P1UcHRpMWmLjys\/N8ryy488tFzsYi9tEbKD4vmuXFgtAd85GL0RX02zz4XrOPFX821K6+D0QkYNOTU1x4cIF2tra8ivm52sbpa3X2AGGh4e5ePEiDocjD1DYrBBaMpmkvb0du92+paHdsizT3d3N7OxsgdP5yU9+wnve8x4efPBB3vjGNwLwspe9LK9JthkrpT4qSRL33HMPn\/70p2lsbKSxsZFPf\/rTWCwW7rrrrvx+NqqPfvjDH+blL385n\/vc57jzzjv5\/ve\/z+OPP66YxnuutqUcTyKR4MiRI3i93iJZ2I2WLqHFE1PoXVhv8zPiiGdmXozeSmfFvx8u9zI5LXY8w8PFqbqF2CJ\/f\/IrfGT\/ezCarUydEKfzjG4LRURc60zSSoz1iLV5gvUeZlQ4yAB8FQ5GBPo+Wr1E73n149TqNQyqCKoBuP1WVccCUNcWouO4cu1IkiSWpgoXIdlMjqmRCFMjEXZcX8PF48r3Yef1NXQdV0Yd7ryhhm6VsajKs1PTFmTiXHGUa3ToiI0Wf8fqMRPpL753oTo3yYuF21sDVtKjhelCp18Dy4BOx9c7LOQyxb+RVXhP1CKe8fFxOjs72blzJ36\/X3Gb52sb2QFWVlbyKbn+\/v6ifhilOWBlZYX29vZ8P9FWlRGQZZmenh6mpqbYt29fXiri8ccf5+677+bf\/\/3feetb3\/qc919KfRTgz\/\/8z0kkEnzwgx9kYWGB6667jkcffbSgh2ej+uiBAwd46KGH+Ku\/+is+8YlPUF9fz7e+9a0XrIcHtpjjMZvNtLa2EggEOHnypLCJtFTEsxhRHzda9SzPqjserU7D5KQ4AlhYiAjHTRYxYWIg6GFkTHkyXYwt8YXj\/877f+N\/CfeBBBMlxNzKt\/npOStO+c1OlJDarnAyJmgqrW4N0CPQ\/6nfGeJSu7oTrmjws3B0UHU8KmC5rt8eYuC8iqy1XsNwl3rEuKTCniBpJKZV0oahOjczKvU0rUrQ5qu0EleQ\/naFTaz0FNca9Zl0EWu1v8oO6+mQJNDPr6bZ+jyNzA8pP28rkeL9K0U8IyMj9PT0sGvXLrxer\/KJ\/ALMZDJRUVFBRUUF2WyWhYUFZmdn6ezszPfDrO8ZWnM6LpeL1tbWLe10+vr6mJiYYN++fXlwxaFDh7jrrrv453\/+Z37rt37ref9GKZMkiXvvvZd7771XdZuN6qMAb3nLW3jLW97yPI5ObFsqPpUkiWAwiCRJJWlzRCJwWoOWRFQ9IrG4xYVVT5mdjEAuGWBkRAx5S5QgDw1XBITj8VSCfzn0ryTa1Cf8QJOfpdkSrAcl5L\/L6j1MDgqiOwlG+8QRUzYjfgGWY+JjnBpW\/\/1QrYdhNU0dwGBQd\/CNO8LEVFgOKup9TKggAWtbg0RU4OneoHJtz2I3MKFCNWRRSVNqFOpqRqueZYU0mz5ReDyORg8sLSFbrXz+f5awKUgcGM06RUJai7cw4hkcHKS3t5c9e\/a8qE5no61JV2\/bto2bbrqJ6667DpfLxcTEBIcPH+bIkSMcPXoUi8VCS0vLlnU6AP39\/YyNjbFv3748i8Dhw4d529vexhe\/+EXe9a53benj\/0XblnI8sHm+NlHEYyzRHGoQcHnBZVZqgbkDFlZWxKm24SF1hBiATgDvBWhsrGFpKcp\/PfEQ4019oOA\/tCWE7AwWHUMlpKmNTnHtpnp7kIVp9ejQE7IzIGg6dfotjPSopwLr2sqYFvCueYMO1TGb00S\/gMVAFuAyPII6h8WifE0kCeaGI4pjVdsCZNPFz6vDZ2ZOoQ\/I7DKRGCtOb1oCOuQN+zG7zaSHC++jM7D6QByjmtmFFHqFV9kbVE6prUU8a6vywcFB9u7d+5x7SH4RttYPU1tby\/79+7n22mtJpVLo9XoikVWSzY6ODqampjbFZP9i2sDAACMjI+zduzfvdI4fP85b3\/pWPvOZz\/De9773V9rpwBZ0PGtWiq8tJajx6FQmjjXTGMSnrbeIowSTXfzQWO0m5uYiwm2mp8VRhMt9ZcL9ydOPcsZ\/DM26xbZGp2FEkEYCCDUHSCXUr6FGKwlrL7CqEiqyYLVLSNNT0eATOgCNXv1aavUahgTHV9sSyotybTSXz6razKrTaRhXoeUxGLWMqgA6qloCRKaUnbCcUr7O5Q1eZZRbg6eIEBQg4Cx2FraQATbswxCZJOP18w8Pr55HViF6cqpIu1v9tnz9YXR0lH379uFwqDv4l9oSiQRnz54lGAxy4403FhF2Hjx4kPb2doaHh4nHxZmGX7QNDg4yNDSUJ10FaG9v581vfjP33nsvH\/rQh37lnQ5sYcdTMtUmiHgS2RLNpWoNH\/lx8QrK5RV3fXtLwFXNZhMDA2LgQTRauBo+efY0P03+EE1odRYPbvOTWCoBKRfAnwEclWaSMfVzNdsN9AkF4WQmhBLaMuMCeQKTVc+gICJr3BkmKiAEXRSwNVQ1+vPaKButfntItW5UvyPMisqixuZQVuy0u81MqjiyjMpzqlFAm+mMWlYUmkaN6cJjtdQ4IBLh4Ukf6cusFokFBSJQq3JEbPZa6ezszBe9tzIVfzwe5+TJk\/j9frZt24YkSXnCzqamJg4cOMCBAwfw+\/3MzMxw5MgRjhw5Qnd3N\/Pz8+RKiD2+kDY0NMTAwAB79uzJF+\/Pnj3LG97wBv7yL\/+Se+6559dO57JtOcezPtUmjHgEjsdgFafKkgov\/XqLlajPpDLiCd\/rcwnHK6uDwnPT63V0dfUWfT48Mso3+\/4LuTFJtsQDbPOaGS6hzWMucZ0qWgKkBf09NW1lQkLRuu0hIXChfnuYTEp9YkgKhPoq6n2MKSDC1mx2XMDSIIDe5hTSZXAZcKKSMqxo8pHLFJ+Hw6fcNGqyGVjoLY6qws0+shvOWW\/Vo5suTEXq7EkmrG4eenQ2f2yLCulQo0o6d2R2hLm5uYL6w1a0NacTCARobm5WnbTXeob27t3LLbfcQn19Pel0uqBnaGJi4nn1DJWykZER+vv72bNnTz567Ojo4I477uAjH\/kIf\/7nf\/5rp7POtpzjWTOdTvecazwGs3hCjatQl6zZbAko9eyceFxJCmG9ySUiqobGGlZWlOHg0WiM\/zr5X3RlT4FGPXLz13pUV\/wAJruBkS5x\/8\/SQgl2B0FjJoDOKH68RA2jdo9RGA25feoNvNXbAkyp1GJsThODKj1LTp+FERXaoNodQeIqiraJiPJ5lNd7FJtDy5uVHZXVUDwxBRs9sGFbv7TC1zuv9Lc5XAZFHSaNwmpfY9AQzybYv39\/Ht67FW15eZmTJ09SVlZGU1PTpidtnU5HMBikra2Nl7\/85ezZsweLxcLQ0BBPPfUUJ06cYGBggFgstilU2GZsdHSUnp4errnmGpzO1Qbwzs5Obr\/9dj7wgQ\/wV3\/1V792OhtsyzoeUaotm84q5rTz4yV42hYFkthanYbJCfUJWafXMj4mjiRGR8QUN7oSSDOXS8yK0NhYw3\/\/\/CEuBg6iDyhHDAsCoTWA8pYAGYFMtq\/KKWQasNiNwsK+1WEU9uaU13kZVYgG1swVNKvWjrR6LUOCaM7uVJ9Qa1uCquctSs\/pVe6Z3WNibiCiOKaWZtMqPNcanURiqPh6m6XCCMhe72bC4OPYuSuRZnm5MhItHSteAOkcBvbt24fRqJw23Aq25nRCoRCNjY3PedJe6xlqaGjg+uuv56abbiIUChGJRDh+\/DiHDx+ms7OT2dnZTSkeK9nY2Bjd3d1cc801eXBGT08Pt99+O+9+97v5m7\/5m187HQXbco5n7SaJwAWl6HJSJVQ4F+bUV\/LekIOM4CEMhO2kBak6j8\/BTAk57P5+cX2nFAuszb7aE3Dmwlm+N\/IAmrbCVIy3ylmyv2dxXuyYPGGx86tqCZASOP\/qEuPugLiuEJ1TT7OFau0sq8gj6I1aYaS0PK++6IjOKj8XJqueMRVH5wjoFaMap9\/CrAIM3WDRE+lTSLM1+Yoclc6kIzNU+CzYQ0b+7pFCh2K3KTvaxEJx+s0ddgtlrV9qi8VinDx5kvLychoaGl7QSXutZ+iaa67hlltuoaWlBVmWuXTpEgcPHuTMmTOMjo6qZhs22sTEBF1dXezevTvPsDIwMMDtt9\/OW9\/6Vj772c9uWUaFl9q27FURRTzPh6fN5DCoIqEAbG7xStDhE6cnysIe4Xh1TZilJfW6iMGgZ3hEzFYwNXVlYo1Go3z90ANMNp5Fezld71DpNVkzb6WDUYHYmqSBEUE0ArA0L07DLQgadPVGLQMC51C1zafaRwNgNqjXJeraykjElFOp4Rq3KotDWY2bSRVnXdMaVBXhM+SUJ\/FwnXKaraLZp8gNZ7cWpy39jR7kZKED7ljUMTReODHqFSY3jVYiqwAcSWnTipLWW8FisViRBMMvytZ6hlpaWrjpppu49tprcTqdjI+Pc\/jwYY4dO0ZfXx+Li4uK12lycpJLly6xa9euvP7N8PAwr3vd67j99tv54he\/+GunI7AtxVyw3kQRz1CvOvU+QFwAtTY7DSBAECfS4kggV4I81GgSp9F8ARfdxbiBvDU01nD+\/HnVcZfLTm9vf9HnTxx9kvJQF69quFNI1gngDjsYEwi6VW8vo0ugIhqqdSvKW69ZeYOXYRXFTlgFFXS2K9PRAFhVVvAA3jKHMKKJzKuDCvwhJ3NDyuOBkJPIsPKYGuDAE7IxO6B8HdXSbHqpeBKTNJAcLU7v2gw51rsdQ4WHL32v+LpmFRZaHr8VOamg51PuIRqNMjg4iF6vzwuYud3ul3SiXNP9qayspL6+\/kX97TWNIbvdTm1tLalUKk\/js0Yns8as7fF4mJubo6Ojo4DlYXx8nNe\/\/vW8+tWv5p\/+6Z9+7XRK2JZzPKIG0lwux6VLlxjqGRTuIyaAGetVIKZrpi1REJ+dE\/fOlOojyOVKqZaKU1Dh8iBz88qT+tjEOMedj1Pja8C6VE8urnQushANBhSxO280V8DGqGAfDq8FBM5VlIKzOU30nlOvkZXXeIlMqrAKlNmZG1Ye02gkJnqVj1lEkePwWlTTbKEaD8MK6TlnwKqYZtMbtYpptmCDl9QGiXVJJ5Fd\/5lWw2Gtm1g8UvT9hALk3OUxwUTxtQjUBNm1a1eenmZmZoaOjg4ymUyBpPWLmY5bczpVVVXU1dW9aL+rZgaDgXA4TDgcJpfLEYlE8vIOiUQCWZYpLy\/PL4wnJyd5\/etfz4033si\/\/du\/vShy27\/stmXd8kY4dSqV4uTJk0QiERqrG4TfXYqo52ilEg2RGVG3IxBbFiPWRkfFVDpjY+LxSCQiHLeWgEB7PG4eefqHPB57AO224tV4ZWuQBZUmSACz3ShUEdXqJIa61KMZvVHLgIqGDYAv7BAyHdS0lKmmQiUkpoYiqt8tr\/WqAhICNTYWVWo4IoqcykavKuBgWYUsNFzrVkazbfOTUUjZuRTSu4FGbwFzdUfYz\/mp4gWVRqthUeF+ykVsb6u2xlqwPtX0spe9jP3792Oz2RgZGcmjvwYHB19Q9JeSLS0tcfLkSaqrq7eE09lo63uGmpqaAAiHwyQSCW6++Wa2bdvGbbfdRnl5Of\/f\/\/f\/\/drpbNK2rONZg1PLskw0GuXo0aPo9Xquu+46ZAEaWmfWkxR065cAvDEzq56mMpr1zEyrp6i8fiezAmCB2+1gRIB4MxoN9PT0CY+vv39AOD44OAhAZHGRbx99gJHqwxhDV5yptkQqsLLVL6yB1e5Qb74EqNsRUi38A4SqPcKJbEHAkl2\/vUy1L0iSUIVQA3jdLtUxkV5PQgUBGax2MafiBNXSbCYVlobMZPEzZbddeTWXGsr5\/E\/OsrJUDLgIlDkUodQ2FfVbi684ol5LNdXX13Pdddfl0V8LCwscP36cZ555hq6urhe8IXNxcZH29nZqa2uLtGS2ms3NzXH+\/Hl27NhBW1sbe\/fu5Sc\/+QlVVVUAXLhwgXA4zF133UVnZ+dLfLRb37ac41mfaoPVMPbYsWOEw2F2796NTqcTggtK8bQlVfL1ADq9hqkpdccRrHAKJ82ykLJ20JpVVov1TRqbakgm1b1qbV0V09PqqT6Xy8H4eGG0cuLMs3y391\/I7BjC5NQJ6yMAC4LeGoBcCWXXpIDDTpIQpvkqGsRNoQajevqntrVMtWnU4jAy1KEcpekNWoZV+nr8FQ4mVJpG\/eXKFDNqaTatQaOYZvPVuFnZ6Gw1IF+G7MuVfv7sx2cBmBsvdso+BUcC4LAoR8ZWf+mG0Y3or6amJrLZbFFDZjotZsYQ2eLiIqdOnaKurk5RVnsr2fz8PGfPnqWlpSWvwrmwsMC73\/1u3G43HR0dTExM8JOf\/IT6+votDVXfKrblHM+arTmeCxcusGPHjgI8f2pZVMMR3\/RlwXc9ZXayghWd1VmClLNEQ6XBKB632cS69GVlYubgqqoKRceYSqX4wVPfpcv1GJnyCdQ0ogM1LkYF2j3OEro5vrCDfkEarWFnmHmBPLbLqz4pWh1GBgT0PWaVFT5AXUuZKgNDw84QGRWVV2dAPa25pOLkwnUqabZmP+l48UTtVfgNX72H7OIyGpeNT54eZiWVwet1EVOIvuwKrNQAssr5KkU8ItNqtQQCAVpbWwsaMgcHBzl06BAnT55kaGjoqjjSIpEIp06dor6+nurq6qs6nhfbFhYW8mqsa\/LRS0tLvOlNbyIQCPDtb38bg8GAVqvl+uuv57777ntBorcvf\/nL7Ny5E4fDgcPh4IYbbuCRRx7Jj8uyzL333ks4HMZsNnPLLbcUKZcmk0n+8A\/\/EJ\/Ph9Vq5Q1veAOjo2Ly4hfLtqTjyWazXLhwAYCdO3cWKSGKIh5Nicl9QdCNby\/BSo1WvNqPL4vF5RYWxIwHpeo70ah4\/3q92DFm5DTfP\/FVOhz\/g1ReHNk5g+JJqbxezIawShiqPp4T1M8MRh39F9UdS11LSBWUYLLqGbigHsmtCMAmclqQ9lNhzQ43eFgYU3Y8GRW5DotKijM3V7wfp0uPpNfy4FKagYnVYwgHfYrfV6P\/ySgIIWqNOkwlMgIiW9+QecMNN3DjjTcSDAaZm5vLc6T19PSwsLCg+hwsLCxw+vRpGhoa8mmqrWqRSITTp0\/T3NxMOBwGViHfb37zm7Hb7Tz88MN5RdEX2ioqKvjsZz\/LyZMnOXnyJK94xSu48847887l85\/\/PH\/\/93\/PP\/3TP3HixAnKysp49atfXcDxeM899\/Dwww\/z0EMPcfjwYWKxGLfffvtzbpZ9IW3LodpWVlZ49tlnkSQJnU6XF1BabyK6HElJZH5tTCMJU0k6k9gPL8XUV+sg1ujR63X09Q2qjpvNJmF9x2g00NXVJdi\/nkuX1HPLer2e3t7V\/Q8ODzDIADtadlGTvZbctB1JA0MC3RuA6VF1+QJJgtF+9WjJ5jIJ5bXrd4a5dEK9sXZpTiAG1xai84TySi5Y4WRERSfH6bMwrJJ6dJWbiSsU8wEsdh1KT4JLJc2m0UksKsh+u8sdJMaLFwDS9CzP+jz8\/NErsHqHzcY0xYsmNSXehEKDsLUEee3VmtlsprKyksrKSjKZDHNzc8zMzHD27GpqcA2C7PV60el0eafT1NRERUXFC3osL7QtLi5y+vRpGhsbKS8vB1YZFd7ylreg1+v5\/ve\/\/wulHLrjjjsK\/v7Upz7Fl7\/8ZY4dO0Zrayv3338\/H\/\/4x3nzm98MwH\/+538SDAb5xje+wfvf\/34WFxf5yle+wte+9jVe9apXAfD1r3+dyspKHn\/8cW677bZf2LFvxrZcxCPLMi6Xi2uvvVa1l0ckApeT1E\/JYNcJV+zRhNixTEyoT8w+v5M5AYdbbV2FsH7T0FBNKqWeM29urmdlRf28W1ubWF5Wd6ptbS3EYoUR0\/lLZ\/lRz\/9lsbEdX5ue6Lz65F61zc\/USER1vG5HSJxGKzMKr31SwJ9XUecT0uuIRP\/KKtXrbiKKnEDIqfwlCZZUop2QIM2m9Mz6y4sjTHeNkwmXnX96tLCXS6uyRlxUAGM43CZF9NzVptmuxtY40rZv387NN9\/M7t27MRqNedmCY8eO5YEEvwxOZy0VWFlZCaxKM7zjHe8gm83ywx\/+8EVl9M5mszz00EMsLy9zww03MDAwwOTkJLfeemt+G6PRyM0338yRI0eAVSmGdDpdsE04HGb79u35bV5K23KOZ01dUKPRqLIXiLR4MgraJ2vm8os7+pei6hOn3WVifk59xR8Mi4EFTpd4tblGg6NmVps4pC\/FMmyxKH9flmUOnzhEV\/pJMq3nsVQop7OMJfqfNCWE7VICzIK\/3ClkMnAH1O9bsNLFUKfygkCSYEpFphogOqOcdpU0EpFR5bRmZbOfxILy8xebUX4+rAqsBAAsFV+UJY+Jj\/7wTNHnSog2SYLUUvH9cvuUn6UXOuJRM0mScLlcNDY2cuDAAVpbW4nFYpjNZvr6+jh69Ci9vb2qrAAvpUWj0TzoYS0VmEwm+e3f\/m2i0Sg\/\/vGPXzTtovPnz2Oz2TAajXzgAx\/g4YcfprW1NU+ptQZ0WLNgMJgfm5ycxGAw5Kl8lLZ5KW3LpdrWm2rEI0i1iXjaDDZxU1xcEFH4ww5GBCUaY4naUinG6rk5cVPnRrTaRhsZUWcCABTZDtZMr9fT0dHB0tISkvQ41++7ibB8DYu9q+ekN2roO68OA7e5TPReUB+vbPIxIqDoKatyM6NST9HqtQyrpMpg1fHMjipHIHVtZYx2KH83VONmUkX6uqYtyKRK06jTZSKi8LkjYCY2VuysJC0sKWgW2f1W4hu0d7QNXv6zY4i0guz63Hjxvn0BO9klBTkGl5GcwuW2CFRXf1E2NzdHZ2cnra2thMNh0ul0PiV36tSpAlYAr9f7kvbBrDWy1tTU5EEPqVSKd73rXUxPT\/P444+\/qCqtzc3NnDlzhkgkwne\/+13e\/e53c+jQofz4RkohWZZL0gxtZpsXw7ZcxLP+oqhFPKIaT0LQwyPqyNfqJCGU2mQTvxCxEvWfoSF1x2CxmOjtVe\/P8fs9wv6dysoKhofV99\/c3FjA77bRtre1sLS0OnnLsszRE0\/z3ZP\/yFzVIVytK9TvDJNWQX7BahpOxHRtd6lHc5JGEqbRGneGiamIwWkkiXEBGarFrL7Q8Kul0gCLRTm602glZlUYDsrrvIppNnvIRHKx+PjLagp\/P9Hi4SM\/\/yGjQ8XXwuNxKF6DQFD5HCwq6MoXK+JZs9nZ2TwMea04r9frKSsrY8eOHXklUZ1OR3d3NwcPHuT06dNXRdT5QtkaT1xVVVUelZZOp\/nd3\/1dhoaGePTRR\/OcbC+WGQwGGhoa2LdvH5\/5zGfYtWsX\/\/AP\/5AHW22MXKanp\/NRUFlZGalUqgjQtH6bl9K2nOOB0mJwoohnOaZeJ8kKwnpf2ElOMJ6RxT0Lw4LG0FDYz6ygMbWhsUbYE1FZFRb+dlWJcb9fDMM2mZXTcKfPtfOdI\/\/CxcxPcO6OoDMpX5+RAXWnZrLoS0CsQyyoMAAA5ASos7odIRYUBNAAjBY9QyraOpJGYkol2tEbtIyrSIpXtQRYVqmDpVWaZsvKlFOwcmw5fyxD9Sb+8kf\/Q1koSCJe\/GyHgn7FfdjtylBqNXzNL7LGs9FmZmY4d+4cra2teRjyRltjBWhububGG2\/k+uuvx+12MzExUUDUubS09AtNyS0vL+fJSdfYEzKZDO973\/vo7Ozksccew+dTRhW+mCbLMslkktraWsrKynjsscfyY6lUikOHDnHgwAEA9u7di16vL9hmYmKCCxcu5Ld5KW3Lp9qUazzqjicioPtPCIr3No8JBBD3qWl1YIE\/6GJ4VD2VFQr7GBxWH1erv6xZNKpeW1odF8OsJybUJ35JkugWoOW8Xi8Hn3qCbDaL3W7nxmtegXGulujo6uKgotHLUI\/6tanbHubis+qkriIyRU\/AJuzd0RvUo9CG7SF6TygTnda2Bhm\/qOxcarcHGTmn\/JtWqx6lhKgraGWuT2FEkomPRYo+Ntj0qxLXRg2P6uf40WUgQVkgwNJo8bV02uzMUuzwDBrl85dUZDusL1Kqbc3pbN++fdOra0mSsFqtWK1WampqCog6h4aG0Ol0eR45j8fzgqXk4vE47e3thMPhPDlpNpvlQx\/6EKdPn+bgwYMvSYTwsY99jNe+9rVUVlYSjUZ56KGHOHjwID\/96U+RJIl77rmHT3\/60zQ2NtLY2MinP\/1pLBYLd911FwBOp5P3vOc9\/Mmf\/AlerxePx8Of\/umfsmPHjjzK7aW0Le14lFJtck4Wggtii+pjSwIqF51ZHPyJqHKCZW6GRX1ZCozE621uTswmPTWlPrFbrRYhjDocDuVh1ErW1tbCBQEbdvO2Jp55ZhUFE41G+elT3wdgz6791Nr3YDOLo625KfXr5vBYhLWjino\/HdPKEGur08jAeXWnlI6rp1zNZnWghEYlG6vVa5hWIRkN1bqZPF0MVAg1+UgMFqfOKpt95GYW+I+ZS5y8eCWFqiYDnk4oL5hySRWhRBWE4IuRapuenub8+fNX5XSUbCNR5xqhaWdnJ6lUqoDQ9LkyBSQSCdrb2wkGg3ntn1wux4c\/\/GGOHDnCk08+mU8Rvtg2NTXFO9\/5TiYmJnA6nezcuZOf\/vSnvPrVrwbgz\/\/8z0kkEnzwgx9kYWGB6667jkcffRS7\/QoQ54tf\/CI6nY63ve1tJBIJXvnKV\/Lggw9uCT65Le14lMAFqeWUWuM9WrOO3IJ6VDM9FVEdy8gCcbeAjf4pdZmAXIk0nChaslotwsJ\/bV0lvb3dquMtLU2cOHFS\/fu11YyNqXtFZwmEzkYI9pqdOnuC8\/ozVJRXUNfWijQTID1diD4LVDqZGlKP1qqbApw\/Nqg4JiEJuddqW8q4dFy5ruULOVT7cwwmLUMqqT+z3cDYJeVIqKY1wLRK6i6twufmdJlQ2lvKmOXv+o4zMlPoyOSU8uInvqgc4avxyK2oNEn\/osEFU1NTeaaRQCDwgu1Xo9Hg9Xrxer00NzcTi8WYnZ1lbGyMS5cu4XA48k7IZrNtqnieSCQ4efIkfr8\/L62dy+X40z\/9U5544gmefPLJl7TB9Stf+YpwXJIk7r33Xu69917VbUwmE1\/60pf40pe+9AIf3fO3Lel4JElClmW0Wi3JZOFLJ6rvmF0WGFee6DQ6iZjKCwwQi6un6LxlNvoFFGeLS+qTq81mYXBAvfDf0FDFqdNnVMfLyvxCx6PXi2\/hGmhAzfr71aMht8fNhQsdquM7dmzn1KnTDAyurtrr6xpoDj3WrwAAWTBJREFUq76WzIiP5RkIlruZHlG\/NuPD6qCCurYyBlX41QBhz1F5jYdOFekEf5WVuV7lsZrWIIPtygsMkwpq0V1mY06FX255Q5pNZ9IRq9fylz9+mHii+FmMqCjjLs8XL2w0GonFyeJFgdGsI6ngkJ4va0EpW3M6O3fuxO9Xrkm9ELZROyeZTDI7O8vMzAz9\/f0YDIaSGkMrKyu0t7fj8\/lobm7OO52PfvSj\/PjHP+bJJ5\/c8qSlv+y2JR3Pmul0uqKmSBGiTWdRRzFZ3CZkQZ\/OjCDdpTeLV1CzM+rppIqqIHPn1L2WuUR9Z0ng1ABhGs3pdHDx4iXV8W3NjUIm3W3bmjly5Kjq+Eam4r7+Xvr6e5Ekib279zOVS2D2mEkoXNryBg9jvQIUoQCRFq71CDnlZgXOTi+pp9kyClxqsCr1MNWtHAmV1biYXCh2ZMEGD\/GRVYckaSR0LXb+o\/2nGPosik7H53OzMFfsSJxOGwmFKN7jt5JZKk61eYNWWCxebPwi02yTk5NcvHjxF+50lMxoNFJeXk55eTnZbJb5+XlmZ2dVNYaSySTt7e243W62bduWdzr33nsv3\/nOdzh48CANDWLZlV\/b87ctiWpbM6UajwhYIBnU\/ahdQECpN2iZmlSfBFMZ9d8MlrmJRNSjimxOoOHAKuRUzcxmE52d6tFOU1O9kK1627YmVRVXAJ9PjHZLxNWjCr1eT3d3j+KYLMtk5CTffuzf+dngl1ioOITzmjns69LlLo962sdo0dF3Xr1vyVumnh6sbQkwq8IsYHMbme5XdkrugJUxFTRbTWuQ5LKyU1JDs7kv8\/5ZG1w8bu7iEz\/5DwamxlXRURXhcuXPQ8p1EptN+Vl3upQXMhbB8\/98bGJi4iVzOhtNq9Xi9\/vzGkP79u3DZrMxPDzMU089xfHjxzl69ChWq5WWlpZ8ZuUzn\/kMX\/va13j88cdpbm5+Sc\/hV8W2ZMQjglMnFgUsuDr1oplepTcDwBtyMDqiDgCYX4iojvnLXAwKejcltWo1YLdbhf07Tc11nDrVrv7bfp+Qvy2XE5MBinp\/XC4n5y8TtSpZbW0t3d3qTnGNx0qWZc51nOUcq\/xd9XUNtNXuY2Z5tblSVjjEigYvg+eUHbJWp2FExUEA2Ozq\/Fm128roOa5c7wo3eOl\/VnlMp3IP3WU2ZTQbkFpZobsiwkM\/\/07B53JOeV8OqwMojpydDmVEW1nQy+R4cSSt1WYVS6C\/CETb+Pg4nZ2dBRLQW8UkScozO9fX1xONRjl9+jQajYa5uTnuvvtuTCYTVquV73znOzzxxBO0tbW91If9K2Nb0vGs2UY4dTwep+O0es0hJygqyoLmUavbCCpzsEYjMTaqnirTG9SDRo1GQ3+fOpTYH3ATWVRnLLCYxWgdEduBwWCgo0M9zVZbW8OAoL7T0tLCkaPqaTaXS70BU6fTqab4+vp78fk9HD\/+EDabje3bdhG01ZGbdbE0snqPsivq96qyycvIJeXzNhi1jKgwDoA6RQ7Asoo6qcmqZ1JFcXVjmk3SSjgaHYwYJvnYE18hqdCbNTMdUdxXJqm88NHJyq+oXgWZpCGL0nLD8gKn2sbGxujq6mL37t0vemPl1Vo6nebChQu4XC62b9+OLMvMzc3xH\/\/xHzz77LMYDAY+97nP8YY3vIHXvOY1Lyo7wa+q\/dKk2ubn5zl69CgmjfpkLBJ5SwsEzERQan+5U0juGRXUjaprwiwvq092pfR3RgVoNI\/HTVeXesTR1rZNSBpaHlZu6lszEcWP0WgU1o527tzB4qJ6nWXtnsZiMY6dfIbvH\/waP7zwJS4Zv4X9ulGi1h4cNVkkhblVROnesCNMIqZ8r0QUOcFqt2pDaXVLgIwKbDl9mZHAWesg2Zrh24lH+N+Pf5GLkX5Fp+Nw2BkbUXZik6PKzjQZU06VyipMEU4FNneAaHaZ6enpF4QSf3R09JfK6bS3t2M2m9m+fTsajQaNRsPs7Cznzp3jySef5LHHHqOuro7PfOYz\/Pd\/\/\/dLfci\/ErYlHc9aqm0NTj06Okp7ezuNjY147eoP+vy8+mSXSAiIRQVwaJdPXPwfHlaHWXt9YqiyqD7j8ToZHFSXCWhsrBfKEJtV2AjWbGpKvQfG6XSURLOpwaxhNdpSM5vNprrv6ekpIvEpvnfwAf7n7D9yJPGvzFUexLh7EPfOZbz1BqYH1OtpKcE9FlHkqKmJAkhKCxYtWBp1zFuXeEx\/hP\/99P3886NfZXh6tSdJkpVfq9raasUOfJPRwMKs8iJhQQG5BpCIKNeWcivKz7LFZ6Wnp6eAlmYjYnQzNjIyQnd3N9dcc80vhdM5deoURqORnTt3otFokGWZr3zlK9x333386Ec\/4oYbbuC6667jb\/\/2bzl79iy\/93u\/94L89mc+8xn279+P3W4nEAjwxje+sSgtfvfddyNJUsG\/66+\/vmCbrSzm9nxsS6faNBoNqVSKrq4u9uzZg8fjYSSq3vMiYQCUX+BFBb6sNYsKohKtINsVDHkYHO5VHU9n1B2a1WpiYkI9hVdZGWZmRt055HICTjqgp0f9uCoqyoXjLS0tHD12THVc1IBmMBiE0VBbWxvHjx9XHR8bu9JQmkgkOHvhNGc5DcCNNx7gbPwcVRXVBL3lOAw+9GkHqQU9+pSN0UvKdSERRQ7AvIrcg9VpZKJ7Gk15jhXHMnO5GUZmR+kZ6GN3bhfPPnJW8XvjY8pRjd3uAIobZsOhMuaHiiMRp9POogLEWpIklqaUHVJK5Tmv315P5fU1LC8vMzMzk6\/PrPXA+P1+rFarsAdmZGSE3t5e9uzZs+XTUZlMhtOnT6PX69m1a1fe6Xzta1\/j4x\/\/OD\/84Q+56aabir73QhFoHjp0iA996EPs37+fTCbDxz\/+cW699VYuXrxYwCT\/mte8hgceeCD\/98ZF2z333MMPf\/hDHnroIbxeL3\/yJ3\/C7bffTnt7+5ZoBH2utmUdTyaTobOzE1mWue6667BarWSzWZIKyoprlhQQWc7Nqq\/Qp2fVayWilFMg6EQQlDAyoh4NNTbV0t5+WnVcp1MPRrVajZCtYNu2Ji5dUp\/8a6qrGB1RP\/BUWj1yMBqNwmho584dnDypDogQoezq6uro71dfWESXoiwvL3Op6yKXuFgwdtNNL+PC3EXsVgcuhxuj1oRRY8FqcBJ0lbOSXMYU0IAsgSwhyRLkwOGyE01MgS9FigTJ3AqJ9DKxlSh+X4Ann3mGxEjxM6Cq4xPwMz6u7HjUFFTDwRDzQ8Wr2PKQj7kFBR2foJ30YrGj0mglVuaVF1Fr4IL1tDQbe2CMRiN+v59AIIDT6SzogRkeHqavr49rrrlmyzudbDbL6dOn0Wq1BU7nm9\/8Jn\/6p3\/K\/\/zP\/3DLLbf8Qo\/hpz\/9acHfDzzwAIFAgPb2dl7+8pfnPzcajUUKy2u21cXcno9tSceTSCQ4fvx4XsrZaDSSzWbJ5XL4GgNYfFbiCqmJaER5wjSY9UTnlR2P3qBlXECHMyNwSjoBsMDndzM2oT65m0zq6ShJkoQRSU1NFb296uNerzgFMjevfk4Oh53z59XRbDt2bBc6FtEqzOFwcF5Az1NeHlZ1PD6fj46Oi4pjABOTE0QiESKRCCNjhdd9584dnD+v\/N2bbrqJZ55Rju6uv\/4GEgnlhcdAvzIapaamirPzyrW3sRHl1KqkAiBwORzMKXAf+AJ24go1NI\/fSi6pHPErgQs29sCoKYjG43EGBwfZs2cPTqd6ynIr2JrTkSSJ3bt355\/H7373u9xzzz3893\/\/90vCVbZW89yYnjx48CCBQACXy8XNN9\/Mpz71qTzrQykxt19mx7MlazyJRAKPx8M111yT\/1uWZTQaDW2\/uYu3fe\/dNNyznbJXVWIrW6VpkTQSURUKEbuKMBaAN+xQZaU2GLRMjKvXYUSsAOWVYsoQEf9aY1MtCwIId1mZeN\/j4+r8Z4GAn05BtNTa2kIqpR7xiEg9jUaj0Dm0trYK9z0yop67bm5qUq1pOZ1OBgbU0YMiZvD1qb31JkkSfb3K+6ytq1ZVmzUalGtrZaGgqpBgdEHZuelQbgFwqIgCunzKUHKtUYfJKZZp1mq1BAIB2tra8gqiBoOBS5cu0dvbi9VqJRqNPqe60Itl2WyWM2fOIMtygdP5\/ve\/z+\/\/\/u\/zjW98g9e97nUv+nHJssxHPvIRbrrpJrZv357\/\/LWvfS3\/9V\/\/xRNPPMEXvvAFTpw4wSte8Yr8Nd7qYm7Px7ZkxOP1erHb7WQyGdxuN0ePHsXr9RIIBC6nei5Qta+Gprua0Gg0THVMMPBUH1PfvsTMUKRofyaHeqHG5jaBSmASqHQx3asetQwPqafS9Grc9Kzm7vv6BlXHvV6X6hioT5awKoEg0u5paKhjWgAsWFToel8zk8lUMs0m4o1LpdQnrfr6evr61OHdIjBDTU0NZ88pR2mNjY2qXHg+n1cVwNHU2EBvr0rPTyjM8KByfW52JqL4eWVFOYuzg0Wf67RaxodVeoFiygg0g1bZ+dttepTcusUrRk9utDUF0TUtl507d5JIJJ5TXejFslwux9mzZ8lms+zZswedbnVq+\/GPf8x73\/te\/vM\/\/5M3vOENL8mx\/cEf\/AHnzp3j8OHDBZ+\/\/e1vz\/9\/+\/bt7Nu3j+rqan784x\/z5je\/WXV\/W0XM7fnYlnQ8MzMzmEwmNBoNe\/fuJZFIMDU1xcDAAIlEAovFgs1mI51OYzQaCbaFCLaFuP73b2Ksc5rTj3Rz+mfdTPasvtBao7oT0BrVb6DNrZ4OKwt7GBhST3eJGAnqG6o4cUI9kopE1FN\/4XAZAwODquNNTY1MC0hJYwIJBYvFQo8ghbdjx3ahYxG9DC6XU5jCC4dDqo7H43ELIylJEIWVlQVVHU9zczNHjjyrOOb2eFHTyUgllUEjNpuNoUHlxYhWRcKgqqqc+UHl2o8aoi2nwmJtMmgVHY\/1Oejw9Pf3Mzw8zN69e\/OMx1dbF3qxbM3ppNPpAqfz2GOP8b\/+1\/\/i\/\/7f\/8tb3vKWF\/24AP7wD\/+QH\/zgBzz11FNUVFQItw2FQlRXV9PTs8oIsl7MbX3UMz09vSU0dZ6PbclU2x\/\/8R\/T2NjIH\/3RH\/Hzn\/8cSZL4h3\/4B5588kna2tqoqKhgfHycp59+mpMnTzI8PJxXLCzfFuD2P76JT\/z0d\/nEo7\/LHR+5CXtI\/cXLoI48k7TqYIVA0KU6ZjQahBGNQUDtY7NZ6OpSpqKB1RqCyET9MzarlY4O9Yiltk4sSCdyLGazWRgNtba2CPctku7etm2bav+Jw+kQNspOTak7+BWB1PnMjHJ6TqPR0KfSFNzYUKd6nLMzyvcl4FOmmXHYrURUINYrKmS3OhX5jattHu3r6ytyOmu2VhfavXs3t9xyC01Nq7RMZ8+e5amnnuLChQtMTU0JQSQvpOVyOc6fP08ymWTPnj35uvDBgwf57d\/+bf7lX\/6Fd7zjHS\/Ksaw3WZb5gz\/4A773ve\/xxBNPbIp0dG5ujpGRkbxw3lYXc3s+tiUjnq9+9ascPHiQ73znO7zvfe8jk8mg1Wr52Mc+hsfjwWQyUV1dzcrKCjMzM0xNTdHd3Y3D4SAQCBAMBjGbzZTVe3nNh24A4E0feTlHfnKRwz++SM+Z8Xw\/RVTQZLksYKzWCq5csMxNjwqVCiCEUTc21nKyXT2qiMfVod8ul6sElLlFCGU2mdR7f1Ydi3rEsnPndo4fP6E6HhfwvpVKs4k441paWlV\/NxQKqYI0TCYTly4p0w1ZrRbGRpXTkVXVlYwMKd+\/jZP0mmk0GuZmlFOYBq3yNQ+H\/SwoaEtJksSiCpRaVkHNbZYuR5Zl+vr6GBsby\/OciWytLhQIBJBlmcXFRWZmZujt7eXChQt4PJ58Su65auaILJfLceHCBeLxeH6SBjh8+DBvf\/vbuf\/++3nnO9\/5kqSlPvShD\/GNb3yD73\/\/+9jt9nxNxul0YjabicVi3Hvvvfzmb\/4moVCIwcFBPvaxj+Hz+XjTm96U33Yri7k9H9uSjken0\/GqV72K1tZWTp48STqd5vrrr+f\/\/J\/\/w1\/\/9V\/z2te+lje+8Y286lWvorKyksrKSlKpFNPT00xPT9Pb24vNZiMYDBIIBLBarYRqPPzmB2\/iNz94EzNjixx55CLP\/PgSF0fUu\/8nJ9VXy4sCYIHVrj6Bu93iQrjRpM4pZzabhDDp5uZGjgn6b0QRh8lkKoFma+PZZ9UdYi6nznXn8bhLpNnKVB2Py+UURlKiTvy6ulomJ5XTji0tLZw5o4yw27ZtG2dOK19np8PBCMqOJ7qkvCiorq5gclSlEVRFqt3jcLKggGjzBmykl5QdTCamDK7ZjOT1eqezd+\/ekk5no63VhVwuF42Njfl+oYmJCTo7O\/ONlC9UXUiWZTo6OojFYuzbty\/f\/3Ls2DHe+ta38tnPfpb3vOc9L1kt5Mtf\/jJAEWz7gQce4O6770ar1XL+\/Hm++tWvEolECIVC\/MZv\/Abf+ta3fmnE3J6PbUnHA6sP1utf\/3p2797Nv\/7rv2I0Gsnlchw7dozvfve7fOxjH+O9730vt912G2984xu57bbbqKiooKKignQ6nY+E+vr6sFqt+UjIarXiL3dy53tv4M733sDs9CIHf3aaJ358ivZj3WQzqxOZxW5gfFodPKCWy4dVfjc1q6urZHZOPeIREXe2tDTR3n5KdTybVU9v2GziNNu2lm2cPq3eVySSvLdarULn0NKyjWeeUed9GxbIt7a0tHDsqHKUZjabhRGeiK7IokItA2A2qY\/pdMp1P51OR1+fMlAhVFbG5Khy5DU5opzS06nIN\/gDdhIqi57EnHKEbvWLU22yLNPb28v4+Dj79u0raHB8rrZRxnpmZqaoLuT3+3G5XFddF5JlmYsXL7K0tFTgdNrb23nzm9\/MJz\/5ST74wQ++pAV4JYaK9WY2m\/nZz35Wcj9bWczt+diWdTySJPGDH\/yAioqK\/AOk0Wg4cOAABw4c4O\/+7u84deoU3\/nOd7jvvvt4\/\/vfz6te9SruvPNOXve61xEKhQiHw2QyGWZmZpienmZwcBCz2ZxPD9jtdnwBJ2955y285Z23EFmIcehnZ3jiJ6eYmp5m\/LwyOixU7qV\/UL0O0z+gjoTT6dVfsnC4jJERdUSaKF1RGsrcwrOCNJtOwOxdCs22fft2YQovKgA0NDQ0CHuSUgKevLbtbZw8qewsHQ47Fy+qw8ZFdERjY8ppNq1WR2+P8v2prAwzPqIMCpEk5desLOgnOq2cRkwvq9S0bCYSFDseh9tERqVmJQIXyLJMT08Pk5OTL5jT2WgGg0GxX+jcuXPAlX4hr9ebBwaIjvfSpUssLCywb9++\/Dtx9uxZ7rzzTj72sY\/x4Q9\/+Jce9fX\/um1JcMGaVVZWqj5AGo2Gffv28dnPfpbOzk6OHj3Krl27+Pu\/\/3tqamp461vfyle\/+lWWlpYoKytj165d3HLLLdTX1xOPxzl58iTPPPMM3d3dLC4uIssyLreNO99xE\/\/w1T\/i37\/9Mb7wpT\/j1a+5AZOpcMIPBNWb6CqryogsqBf4JybUocyVVcodzGs2MKDulFpbtwnrP7KsDpSwWCxCx9LQ0KDaSAniSKtU42dZmbLeDJRuZtUJCm0tLepghrq6WsbHlfV+KirKVfn3mprqicWUr3FFuTpiaVpF66k8HFb8HGBhSjl6MapMzG5Br5oauECWZbq7u3+hTmejKfULGY1Gent7OXTokJBHTpZlOjs7mZ+fZ9++ffma5IULF7jjjjv4yEc+wp\/92Z\/92un8EtiWdjybNY1Gw65du7jvvvu4cOECp0+f5vrrr+ff\/u3fqKur48477+Q\/\/uM\/mJ+fJxAIsHPnTm6++WaamppIpVKcOnWKw4cP09XVxcLCArIsY7dbuPPNv8GXv\/IJnj3\/Tf7xXz\/K69\/wcqxWsyJr8poFguqsAV6viwFBNJQWNFfW19cKndZG57jejEYjFwWTf9v2VqFjERGO2mw2oXNobm4S1mGGh9WvR01Nrarz0Ol0XOpU1yIC9cknLJjwq6trVMe8AuG8pAo5p9lsYmxUuVZoNSlP9Da7mYVpNSi1SiTkUr\/\/SuACWZbp6upienqaffv2CVOPvyhbqws1NjZy4403cv311+N2u5mYmODpp5\/m+PHjDAwMEIvFyOVydHd3Mzs7y969e\/NO59KlS9xxxx38\/u\/\/Ph\/\/+Md\/7XR+SWzLptqeq0mSRGtrK3\/913\/NJz7xCXp7e\/nOd77DV7\/6Vf74j\/+YAwcO8MY3vpE3vOENlJWVEQgEyOVyzM\/PMzU1xdmzZ5EkKV8TcrlcWCwmXnfHy3jdHS8juZLi4MFjmMwanj12nuXlwgk7p6RsdtlqaiuYViH+1Gg0qoqesMpW0NurPr6G\/VeytrYWTrWr09yIrFT9pqqqiosX1Z2aCN7d2NggpAZKCbrkt2\/fzpmzyuAAnU5Hp8ApLS6qS1mkU+rRWyyqHO1IkkS\/CoVOQ30tvV3KNb1lFfXSilBQEdEGsLKkfE0sJh1Krkpr0BaxFqxFDrOzs+zbty8v2vdSm6gutMa31tLSkk\/H9fT0cPvtt3P33XfzyU9+8tdO55fI\/p+IeNRMkiQaGxv56Ec\/yvHjx+np6eENb3gD3\/nOd2hububWW2\/ln\/7pnxgbG8Pr9dLW1sbLX\/7yPK3F+fPneeqpp7h48SKzs7Pkcjlycha7Q8dH\/uxuzl58hK8\/9EXu+p034LnMNjAhoLIQEX82NdcJkXKiptKWlmZmZtQbVlNJdWLVUv03bW1twmhIFGkFAn5h8T8YVE+zmc1mhobU0X8WQVqora2NpSVl5+J0OlTlxLVaHd09ys2mer2Bnm6Vml9ZgOiScmrM6XSpHufcpPIxup3KMg0iVmq10uHGNNtajWRubm5LOZ2NtlYX2rVrV77x0uv1cuTIEaqqqrjzzju54447eNP\/3955R1dVpn37OgnpvRdSCWkkoaQQWigiIBoIRUARBuYFZySig1KcT5xXbCgwgvoqYAVRMY60UCMgCc2ASWghQAik10Mq6XV\/f2Syh8DZG3RIgmFfa2UtzXPKc0iy7\/3c5febPJl33323SwZXFX4\/D81PS6VS4ebmxuLFizlx4gSZmZnMmDGDffv24e\/vz6hRo\/jggw\/IysrC0tISX19fhg8fTr9+\/dDW1ubSpUvExcXxyy+\/oK+vT0BAAAYG+ox6ZDBr1r7KuYv7+NeOj3n00eHY2WseCszL01xXALCwkPaEMTMzk5w5gdZ2ZSm0tLTIypJOZ\/n5+8nWhuTss83MTGXTbNbW1rKeQXL7CggIkBzwVKm0ZE9Kcq3A3t7eksON3t5eVN7UfGH39u4tuR852+emRs2f39zUhHIJJenGOs37s7IxoqFW85pKIp15ayt1WzdYW43kQQ06t5Kenk5hYSEDBw6kX79+RERE8MEHH1BaWkpVVRVfffUV4eHhfPrpp7KySgoPFg9N4LkVlUqFk5MTL774InFxceTk5PDnP\/+ZI0eO0L9\/f4YNG8bq1atJS0vD3Nwcb29vysvLqa+vx9TUlJqaGo4fP86FCxcoKiqiubkZbW1thg4LZtXq5SRfPMK+\/d\/w1+dm4+TUOoVsbWNJVpZ0q3SpjGK0t7eHbJ0kL0\/GfsHTQ9YlVS49IWfaBq2in3KzQXJ4evaWVSuQa4bo08dX9oQnJykkN\/8gF0DkrABMjKVvGvLzNO\/T2Vm6GaG5VnMrro2t9Ps0V0t1tLWeeNqCTnl5ebvC\/INMeno6OTk5BAUFiY0ParWat956i8DAQNFFdNSoUURFRd21hVnhweGhDDy3olKpsLe3Z8GCBRw6dIiCggIWLlzI6dOnCQ0NZdCgQcyaNYs\/\/\/nPNDU1ERISwtChQ8WC7LVr14iLi+P8+fMUFBTQ1NSElpYWoYMCeWfl3zl34TAHD0fx3HOz6dXLVeMeTEyMZGVy5HB2dpK90FrJnIZaW7Dl0mx9RCkiTdTWSq\/Z29vLegbJXfgMDQ1JkQl4FjKfydPTU7IJQ6XS4upVaYUEKfVogIoK6btpKQVzGxsrbkhYbpiZSHdG1mnw2gHQ0pK++agrk\/DhsTYWhy3Ly8vbFeYfZDIzM0XZnrYTbGFhIY8\/\/jhhYWFs3LgRLS0tvLy8WLp0KbGxsZLKEb+Ve3EPFQSBFStW4OjoiIGBASNHjrzjb6m7uofeDx76wHMrKpUKa2tr5s2bx\/79+8nPz8fJyYn9+\/fj6OjI\/\/7v\/7JixQouXLiAsbExvXv3ZsiQIYSGhmJsbExmZqZoLZyfny+eBgIDA1j00l9IOnOEY8f3snTpQnx8PMX39fR0lzzRqFQqrl6VVldwcZG+c76br49\/gB\/VMpJBcqcsS0sLWQkdDw8P2TvQkhLpE56\/v59sUJObwZGrG\/n4eFFaKhEIzMxIk6jvGBjoS87vyBm\/ubg4S+5F1az55GVkpE+pRB3HUE\/z8KqeQQ\/qJSxBDKyNuHjxojhs+UcIOllZWWRkZBAYGCgGE7VaTXh4OEFBQXz55ZcdOrnf5h566tQpDh06RFNTE2PHjm33t7J69WrWrl3Lxx9\/TEJCAvb29owZM6ZddmHRokXs3LmTqKgoTpw4QVVVFeHh4bJ\/Vw8LSuCRoL6+nr\/+9a9cv35dbNF+\/fXXSU9PZ8yYMfTt25fly5eTmJiIoaEhHh4eDB48mMGDB2Nubk52djZHjx7lzJkz5Obmij40AQG+vLr8JeJPxXD614MsX\/4SLq49Jffh6+sl681TXi691sfXmxs3pGV\/5Ib1TEzkZ2h8fHxkhSDlU4deknM0IK\/N5unZm9xc6dSiXArO2tpadk9SFwRvL08aGjSnFN1cpUVbDQ2kW5TLJARAezpKB059CR92IzPpi3BZfRmVlZUEBQV1iF7a\/SYnJ4f09HQCAwMxNW1NLZaUlDBx4kR8fX3ZsmXLXYdM\/1tiYmKYO3cufn5+9OvXj02bNpGdnU3SvztDBUHggw8+YPny5UyZMgV\/f3++\/vprampq2Lp1K\/Af99D333+fRx99lAEDBvDtt9+SnJzM4cOHO3T\/fwSUwCOBjo4Ofn5+xMfH07t3b0xNTZk5cybbtm2jqKiI1atXU1hYyIQJE\/Dz8+OVV14RGw\/c3d0ZNGgQQ4cOxdLSkvz8fI4dO0ZiYiI5OTli+srLy4MlSxeyadN6zp37hbfeeo3g4MB2dRcLC3PJPVpaWsp2jck9V1dX9671GznTL7mTUs+ejrJpNhsbzc0X0Jr+kxMMtZOwCYbW9J5cS7paLR2UdHRkPJtkUjh6etIniJpqzS3Renq6FORqDsyW5nIpOM0\/D0sr6Q6\/Fj2h3YT\/g0xubi7Xrl1jwIABotNpWVkZERERuLm58f3334tCoJ3J7e6hGRkZFBYWtnMG1dPTY8SIEfzyyy\/A3d1DH3aUwCOBtrY2b7zxhsaCs5GREU8++STff\/89RUVFfPTRR1RUVDB9+nS8vb15+eWXOXbsGDo6Ori5uTFw4ECGDRuGra0thYWFnDhxgoSEBLKyssRW5V693Pjb3yI5cmQvly4lsGrVmwwZEirrrePl1Vu2aywzM1NyLaCvv2wXUFOTdNOAtbW1bNC6mwS8XGDpG+Avm2aTcyn18OgluWZjY0NamvT7ZmVKv27xDelWdinjN5VKRXam5lOdq7MTzU2af266KmkPKClVanNz6ZOVqb0Z5eXlD3x6Jy8vj6tXr9K\/f3+xkaOiooLJkydjZ2fHjz\/+KGqydSaa3EPblKZvT+ve6gzand1D7wfdboC0szEwMCAiIoKIiAgaGho4fPgw27dvZ9asWWhpaREeHs7kyZMZPnw4Li4uuLi4UF9fLyppp6WlYWJiIippGxoa0rOnIwsWzGfBgvmo1Wr27NlPdPRejh\/\/pV16S87R09OzN2lXpVuw5dIVpqbybdLe3l6cPCl916ZWS6f3PDx6cf265loKtM7SSNGzp6NsZ6Cc9ULv3r0pLtZsn+Dm5kpOtuYhT2NjI0n\/HTnjN1dXJ4ryNJ8KrSytUF\/X7CLbVKs5IFnZGNMgoWSt10OF1Cc3sTPj6tWr1NfXiy6+1tbWXXIRlyI\/P5\/U1FT69+8vXqgrKyuZOnUqpqam7Nixo8tObFLuoXBnR+i9OIN2B\/fQ+4Fy4rmP6Orq8vjjj\/Pll19SUFDA1q1b0dXV5dlnn6VXr14899xzxMTEAK06dEFBQQwfPhwnJydKS0v55ZdfiI+PJz09XTyN2NraMm\/eXHbv3sa1axf55JMPGDv2UUxNTWRPHXa20vUMHR0d2RRdnz6+Yk1KEzdlBl1dXJxlmyHkZkd0dXVldd3c3aVPNEZGhrKfSa4eJaezZu9gJ3mq7N1builEToNOR0v6oi+l0SbXSq0lsT9tXW38g\/wZOnQooaGhmJqakp2dLaZ9s7OzZYeDO4PCwkKuXLlCv379xFRWdXU106ZNQ0dHh+jo6C6bN2pzD42NjW3nHmr\/73Tv7ScXtVotnoJudQ+VeszDjBJ4OggdHR0effRRNm7cSF5eHtu3b8fMzIwXX3wRd3d35s2bx549e2hubqZnz54EBgYyYsQI3NzcuHnzJqdPn+aXX37h2rVrVFZWIggCVlaW\/OlPM\/n668\/48stP+H\/\/bynh4Y9r\/MOUm+0JCPCXDR5yQcfW1lY2OLi6am4Zb6O0VLNgZuu+AmTTf8Ul0s9tlVnRfCLQ0dHh8mXpYFhXJ\/15zc2kW7dNTaSDQQ9t6eBSLVGrMTTUo6xI88yVqal0LalFQifO8N+1H5VKhbGxMb169WLQoEFi2vfGjRucPHmSU6dOkZ6eLv6edRZFRUWkpKTQt29fMaVdW1vLjBkzaGlpYe\/evZ0iXHo7d3MPdXd3x97evp0zaENDA0ePHhWdQbuze+j9QEm1dQLa2tqMHDmSkSNH8sEHH4ieQn\/\/+98pLi5m3LhxREREMG7cOBwcHHBwcKCpqYni4mLUajW\/\/vorenp6orPq1atX8fT0ZNy4cahUKqqrq\/npp8NER+\/hp58OYm1lJatkrSvRlgt3T7N5enrK1p0KCqS71by8PGWL\/7oyhWN7e3tSU6WDh4lMEPD29iQlRfNzdXX1uHJFuvYjJYUDUCmh3QZQVqo5gGqptMjP1hxAnRztqLiq+WSmpyP9p9pQofnUYijhPKqvry+mfdu8q27cuEFGRgZ6enqiYZu5uXmHpYXUajUXL16kb9++YrdhXV0dM2fOpLq6moMHD963uZzfyt3cQ1UqFYsWLWLlypV4enri6enJypUrMTQ0ZObMmeJju6t76P1AJSjjvl1GS0sLSUlJbNu2jZ07d5Kbm8uYMWOIiIhg\/PjxYmdPm4dJVlYW5eXl6Ojo4ODggJ2dHWZmZu0uDnV1dRw9epxtP27jwIEYysvbD0X26NEDQyMDKio0n3gGDx5EfLy0i6mfXx\/JE4+bmyuZmdL6asOGDeXEiZMa13R0dDAyNJTc19BhQzl5UvO+tLW1MTExlXyuv78fKSma6139+vbl4kXNwdDczIyqqgaNpwCdHj0w1DfXKKOjr6eHrrYZjY13BhFnJ0cq8zRfzAcFB5Dxq+Zut7BBvck5f2dRWktbRR9zFYIGB9heozx5bE2ExtfTxK1eOTdu3EClUomGbZaWlvdtdqbNiycgIABbW1ug9cQwa9YsCgoKOHTokJh26wqkgm2beyi0noreeOMNPv30U8rKyggNDeWTTz4RGxCg9W9x6dKlbN26VXQPXb9+Pc7O0vNdDwtK4HlAaGlp4cKFC2zbto0dO3aQnp7OI488QkREBOHh4Xz22WekpKSwevVqtLW1xeaEW33vLSws2v3RNDY2Ehd7lOjo3ezZu4+S4hIGDOjPGRmn0QED+nP27DmNa\/b29hQVFUmmY8LChnH8+J1F2DYcHR3Jz9dcVA8MHMDZM5rfFyCgbz\/Jk1jfvn1JTpaud7m6uks6uw4bFkb8L5otvUOCAzlzRnOQ9fXxIv2a5tOdr68Xmdc0t24PDBrA1TOaT4zDQ4NJjdf87xPSx5kbGXd215la6eLcojnVFjB9AGHLRmtcuxstLS1UVFSIv2eNjY3tmhN+b1tzcXEx58+fx9\/fX6x1NDY2MnfuXNLT0\/n5559l560UugdKqu0BQUtLi\/79+9O\/f3\/eeustLl26xLZt21i\/fj0vv\/wyKpWKhQsXoq2tLTo2+vr6UlZWRlFRkejm2GbnYGFhgY6ODmPGPsqYsY\/y4UfrOH78BCdOnCS\/oEBjS6e5udldDOE8ZFtB5QY7fXx8uHJFerZHrmvJwtJCtnHA1FQ6JePi4iRrJ56ZKb2mKzOjY21tLRl4LC0tyURz4NHXlW59lupoAyRVqU3MdKBMosYjYQB3L2hpaWFhYYGFhQVeXl5UVVWhVqvJysoiJSUFCwsLMSV3r2oIJSUlXLhwgT59+ohBp6mpib\/85S9cvXqV2NhYJeg8JCiB5wFEpVLh5+eHl5cXmZmZFBcXM336dH7++Wfef\/99hg4dKnoK2dnZYWVlJQYhtVpNSkoKzc3N4knIysrq33WmEYwcOYJXX\/07p06dZteu3ezevUcU6\/T19ZVNs8nJ3PTq1Yv0dOk2aWsZE7UePXpwWcam2sfbh\/hTv0quy0nouLi4kpOjOVhaW1tRWCBdr5Jba6iX7pITmqXrIg010vM05RIdbRZWxtTXaA4uNrZmNErptEnUeH4rKpUKExMTTExM8PDwoLa2FrVaTVFREampqaKmmY2NjaQyeGlpKefPn8fHxwcHh1bh3ObmZiIjIzl37hxxcXFi2k2h+6MEngeY5cuXc\/bsWRISEnB0dEQQBDIzM9m+fTv\/+te\/WLJkCYMGDRLniHr27ImlpSXe3t5UVFRQVFTElStXaGpqwtraWgxS2traDBkymCFDBrN69bskJSWxc2e0bLfa3dQIHB0dZAOP3Jq\/vx\/nz12QXK+X6bLr3duD69czJdelrKpbn+tJwq\/nNa6ZmpqQKTFUqlKpJOd3AAoLpAN0UX65xu\/r6+tSKuHPY2dvQl265jUDXW2kRn2lmgv+WwwMDHB1dcXV1fUOwzZ9fX0xCLXVH8vLyzl37hze3t6i+2tLSwsvvvgip06dIjY2VgxGCg8HSo3nAaa4uBgdHR2xyeBWBEEgNzeXHTt2sGPHDk6ePElQUJAYhNzc3FCpVAiCwM2bN8U71Pr6emxsbMRc\/e2DpBcuJBMdvZvo6N3tAo1cYwC0ziVJ2Rz4+vrIBq0hQwYT\/4vmk5axsTGNTS2S8j3Dhg3j5Ml4jWtGRoY0NUm3hw\/oH8iFC5pTeHL1HTdXFwryNKsZWFiYU1eleUrBysqC5lLNqTbP3i7clOhoGzioF+rzmk9fYcOdKE3WHARnRM3Bqre0PNH9pq05Qa1Wc+PGDbS0tDAzM6OkpAQvLy+xqN7S0sLixYs5ePAgsbGxuLm5ddoeFR4MumyOZ\/369bi7u6Ovr09QUBDHjx\/vqq08sFhbW2sMOtB61+3s7Mzf\/vY30VNozpw5\/Pzzz\/Tv35+wsDDWrFlDWloapqamoq\/9wIEDMTIyIj09naNHj3Lu3Ll2Stp9+wbwj38sJzHxNGfOJPD666\/Rt2+ArBqBu7ubrLeOnM+NlpYWqRKOoAB9\/PxkNeOKi6VPF76+0oOwKpWKzCxpmRwdXemak4mM0Zybm3THkktPaTFYSwnXUQA9HeluMkFD51wbRtYdc+KRoq3Rxd\/fnxEjRtCrVy+Ki4vR0tIiLS2N2bNn88UXX7B06VL279\/P4cOHlaDzkNIlgeeHH35g0aJFYiopLCyM8ePHk50tnatXkEalUuHg4EBkZCSHDx8mPz+fyMhI4uPjGThwIIMGDWLlypVcvnwZY2NjPDw8RDuHtmn2NiXtvLw88WLt7e3FsmVLiY8\/wY4d\/+Ltt98kJCT4jnbTuw353S3NJjdUKoedna38XJBM8Ojp6MjNCmmDvLxc6SYKfZlJemMj6UYHuTW9HtIFekHCxRSgqVKzrp2Wjjb65l3nMFpVVcW1a9fw9PRk5MiR+Pv7Y2VlxZo1a\/j0009xd3fn8OHDim7ZQ0qXBJ61a9cyb9485s+fj6+vLx988AHOzs5s2LChK7bTrWibvZg\/fz4HDhygsLCQxYsXc+HCBYYNG0ZQUBBvvPEGFy5cwNDQUJxmHzJkCJaWluTm5nLs2DGSkpLIyckRTxvu7u689NLfiIv7mdTUFFavfo+goEC0tLTukAW5FV9fX1kLBBNj6Ytxq4SOdDfb3Tx\/rl+XHqKVU1hwsLcjN1d6z8U3pA3jykqlg1lLg3TTQbNMR1uFWvr9aks0NyQY\/Rcdbf8tlZWVnDlzBjc3N1xdXcXfSWtraxoaGti7dy8TJ07km2++wcnJiWPHjnXZXhW6hk4PPA0NDSQlJbWTCwcYO3asIhd+n1GpVFhaWjJ37lx2795NUVER\/\/jHP7h27RqjR4+mX79+vPbaayQmJqKvr4+bmxuhoaEMHToUa2trCgsLOX78OAkJCWRnZ4t2Do6Ojowd+yhvvvk6Z84ksGzZEkaOHKFReFRuELDV5E76xOIf4C9rv6BpeLMNLy9P2fRgdY30c93cpIOSja01+XmaBUUBigqlg3DpDWk5oHK1dBNEXbnm9gETC32a6jSn2v6bVur\/hqqqKpKSknBxcRGlZgRBYM2aNXz22WccOnSIxx9\/nCVLlnDixAny8vIIDQ29r3s4duwYEyZMwNHREZVKxa5du9qtz507F5VK1e5r0KBB7R6juId2LJ3e1VZcXExzc7OspLhCx2BmZsYzzzzDM888Q1VVFQcOHGD79u2Eh4djYWHBxIkTmTRpEgMHDhS7ltqUtIuKirh69SqmpqYIgkBdXR0hISEYGRnh6dmb+fPnUVJSyt69+9i1K5q4uKM0NDTIWiD4+\/txUWbwU87rxtjYSPY0ZGtrR5qEa6iBgQGpV+SsxqXvx9xdXTlfqrkm5eTkSEmR5gCir69LUZ7mlKKennRHm4mZHo21mluwLa0NoVhzAO3s+g60insmJSXh7OxMr16tgq6CIPDhhx\/y0UcfcejQIfr27dvuOR0hmFldXU2\/fv3485\/\/zNSpUzU+5rHHHmPTpk3i\/9+u1r1o0SL27NlDVFQUVlZWLF68mPDwcJKSkjrU\/fRhocuaC36PpLjC\/cPY2Jhp06YRFRVFYWEhH374IeXl5Tz55JP4+PiInkLa2to4OzsTHBzMwIEDaWhooLq6msbGRpKTk8nIyBBPJVZWlsyZM5udO7eRmXmNr7\/+ipAQabtlM1Np0zMtLW2uyDQd+Pr2kRUzvVv6T0pQFCA7W7pVWi4YOjpKtwQ7OTrQokHWBsDJyU5yzaGn9InR1Fy6htXZJ56amhqSkpJwdHRsF3TWr1\/PmjVrOHDgAEFBQZ2yl\/Hjx\/P2228zZcoUycfo6elhb28vft16MlfcQzueTg881tbWaGtry0qKK3QuhoaGTJo0iW+++YaCggI+++wzUTvL09OTF154gT179vDEE0+wadMmhg0bxogRI3BxcaG8vJxTp04RHx\/P9evXqaqqQhAEzMzMePLJqURFfUdW1nW2bNnE1KmTxQFDFSquXbsmuSc\/fz\/Z4NGjh\/Rdp4WFBVdkTjSGBtIXZWfnnhQWSqfoSorLJdf0dKWDkp2N9O+2sYH088zMpBsEDPWlExb3a3j0XqitrSUpKQl7e3t69+4ttvF\/+eWXvP322+zdu\/e+p9P+W9oGVr28vHj22WfbCd8q7qEdT6cHHl1dXYKCgtrJhQMcOnRIkQt\/ANDX1+eJJ57gq6++oqCggG+\/\/Zampibmzp1LSUkJOjo6xMbG0tLSgqOjIwMGDBDtHKqqqtrZOdy8eRNBEDA2Nmbq1Cls2bKZrKzr\/PDDVhZE\/lWsGWlCTplYW1tb1ubA29tL1pm1oEC6RuPsJO3NY2RkRGaG9Gmooly6HqWNtLaZVov0n6G+jGGfTJd1pwWe2tpaEhMTsbGxwdPTUww6W7Zs4bXXXiM6OpqhQ4d2yl7ulfHjx\/Pdd99x5MgR3n\/\/fRISEnjkkUfERhrFPbTj6RLlgpdffpnZs2cTHBzM4MGD+eyzz8jOzua5557riu0oSKCjo4Ovry8JCQk88cQT\/OUvf2H37t288MILVFVV8fjjjzNp0iRGjx4t2jk0NzeLdg6JiYno6uqK0j1mZmbo6+sTHv4E4eFP8M47b4kipnv37aekbSZHpZJ1Ke3Tpw8XL0qrLMgFHQcHe1l9Npmn4uXZi0sXMzWu6ej0IDtT+qJ0s1TacM1QxxjQXONplvDaAVA1ScvvdEaqra6ujqSkJKytrfH29haDzvfff8\/SpUuJjo5m5MiRHb6P38qMGTPE\/\/b39yc4OBhXV1f27dsnm55TygH3jy4JPDNmzKCkpIQ333yTgoIC\/P392b9\/\/11NxBQ6n3fffZewsDDWr1+PtrY2Y8eO5cMPPyQ+Pp7t27ezbNkySkpKeOyxx0RPITs7O+zs7Ghubqa0tJSioiLOnj0rDhja2dlhbm6Orq4uY8eNYey4MXzU\/AHHj58gOnoPly9d5oSEBQIgOVQLrbWhS5ekLb\/d3d1RF52TXE\/PkA5Kcp4\/7u6u5GhQjwbooa1Nfo70rFK5WvqkdLNY2rCvuVq6M6+jTzxtQcfS0hIfHx\/xgrx9+3YWLVrEjz\/+yOjRv08Zu7NxcHDA1dWVtLTW9Oyt7qG3nnrUarWSlblPdFlzQWRkJJmZmdTX15OUlMTw4cPv+3usWLHijrbJNttaaL2DWbFiBY6OjhgYGDBy5EhSUqS7rB5G1q1bx8aNG9t18mhrazNs2DDWrVsnStm7u7vzxhtv4ObmxsyZM\/nhhx+orq7GxsZGnGTv06cPLS0tnD9\/nmPHjnH58mVKSkpoaWkRRUzXrfsn+w\/s4eDBfTz\/\/HM4Od057Z+VJScK6kx1tXRrcrP0oD\/u7m6UFEsHiMqb0q9rYy0tTePi0pOGes0nF11dHUoKpGd\/mqqk55TqSqX305Ennvr6es6cOYOZmRm+vr5i0ImOjmbBggVs3bqV8ePHd9j7329KSkrIyckR9eIU99COp9tbX\/v5+VFQUCB+JScni2urV69m7dq1fPzxxyQkJGBvb8+YMWOorJS+EDxs6OrqyqYXtLS0GDhwIKtXryY1NZUTJ07g5+fHmjVrcHNzY9q0aXz77bdUVFRgZWVFnz59GD58OAEBAQBcvHiRY8eOkZKSQnFxMS0tLWhpaTFkyCBWrXqHy5fPExd3kJdeeoFevdzp1auXrP2CnDyPtpY2aWnSKTy5rjSdHj3ISJee4xAE6X8jWyvpoGRlaaLRxA3AzMKQuirNnXs9dFXU35RWLTAwl7Zf+G9om8MzMTHBz89P\/N3Yt28f8+fPZ8uWLUycOLFD3vteqaqq4ty5c5w7dw6AjIwMzp07R3Z2NlVVVSxZsoT4+HgyMzOJi4tjwoQJWFtbM3nyZKC9e+jPP\/\/M2bNnmTVrluIeeh\/p1iKhK1asYNeuXeIv4K0IgoCjoyOLFi3ilVdeAVrv5Ozs7Fi1ahV\/\/etfO3m33QtBEEhJSRHdVS9fvszIkSOZNGkS4eHhWFlZiTWB8vJy0XCsqalJFDFtU9K+lZSUy+zYEU109F6NVti9e3tKKhb08fUlNTVTcs8hISGcSUrWuObj40WGhP8OgJeHLznZmpsWRgweyvlTmt83wNcDdYrm+o+XrwMNmZpvghzdzLCQcFw1tjfhT3vv\/+9vW9AxMjLC398fLa3W+9aDBw8ya9YsvvjiC5566qn7\/r6\/lbi4OEaNGnXH9+fMmcOGDRuYNGkSZ8+epby8HAcHB0aNGsVbb73VzhlUcQ\/tWLp94FmzZg1mZmbo6ekRGhrKypUrRe8YDw8Pzpw5w4ABA8TnREREYG5uztdff92FO+9eCILA1atX2b59Ozt27OD8+fMMGzaMSZMmMWHCBOzs7DQqaTc0NIh2Dm1t+Ldy5cpVoqJ+ZMeOaDIyMnFwcJBthQ4bFsYvEm6jWlpaWJhbU16u+WIeNmwIv57SHJRMTIxprteTlO8J8R9IWormU9rw0CBS4zUHtJBBvbghoUrt298OrSzNa\/ouhvRbHio2dciZ7N0rjY2NJCUlYWBgQEBAgBh0YmNjmTFjBuvXr2f27NlK8V3hnujWqbbQ0FC2bNnCTz\/9xOeff05hYSFDhgyhpKREbItUFBQ6HpVKhbe3N6+++ioJCQmkpqby+OOPExUVhZeXF4899hjr168nLy+vnZJ2SEgIhoaGXL9+nbi4OM6fP09BQYGopG1lZcHw4YM5cGAn58+f5pVXXiIoaIDkxU8qqAB4ePSSXZczfnN3d5HVjCvMlZ5HapHuD0BfV2ZOx0i6PdvWzb6d5NGvv\/5KZmYmNTXSNSE5GhsbOXPmDHp6eu2CzvHjx3nqqaf48MMPlaCj8Jvo1iee26mursbDw4Nly5YxaNAghg4dSn5+fjsTqmeffZacnBxiYmK6cKcPB4IgkJOTI3oK\/fLLLwQHB4ueQm0Ck9Caty8qKkKtVlNdXY2xsTFVVVX4+PjgdNvsTW5uHrt3H2D37n2cOpVAS0sLpqYm1NUKNDdrbkEeNnQI8fFnJPdqb9OTsjLp01Diac1+Q\/Z2NtSpdTWuAQT09EWdo1kENGxwb3LOab4JGjrCmfILmmtO\/tP6M\/yV1lpEfX09N27cQK1WU1paipGRkdhZaGRkdNdg0dTUxJkzZ+jRowf9+\/cXg058fDyTJ0\/mvffeY8GCBUrQUfhNdOsTz+0YGRkREBBAWlqa2N2mKCh0HSqVChcXFxYtWsTRo0fJzs5m9uzZHD58mH79+jF8+HD++c9\/kpaWhpGRER4eHgwePBgzMzOqqqrQ19fnypUrJCUlkZubK0roODn1JDJyPjExO0lNPcO6de8xKWKi7MWxVkZw1NXVWTLoANTLnIZ6OjhKruno9KA4X+Z1K6UlgbRkBo4Mb9Fp09PTw8nJicDAwDsGfU+ePElaWhoVFRUaT2zNzc1iG3y\/fv3EoJOYmMjUqVN56623lKCj8Lt4qKyv6+vruXz5MmFhYbi7u2Nvb8+hQ4fEGk9DQwNHjx5l1apVXbzThw+VSoWjoyPPP\/88kZGRFBcXs3PnTnbs2MHbb7+Nj48PERER1NTU8PnnnxMfH4+7uzu1tbWo1Wry8\/O5cuUK5ubmYm1DX18fOztb5s37E8yDN996lf37DrN7TwxH434RA5W2dg+uSQiKQqt3T2FeueR6fq50XcnIwAgo1rjm1NOWmnTphEOlzHxPi8xgqZGN5lZqHR2ddoO+bW6hZ86cEWesbG1tMTc3RxAEzp49i0qlon\/\/\/mJ97dy5c0RERLB8+XJefPFFJego\/C66daptyZIlTJgwARcXF9RqNW+\/\/TZHjx4lOTkZV1dXVq1axbvvvsumTZvw9PRk5cqVxMXFkZqaKivZotB5CIJAWVkZ0dHR4ulnwIABjBo1ikmTJrXrrqqrqxO748rLyzE1NcXOzg5bW1sMbjNvq6ioJCbmZ\/bsjiE3t4CLydK6cUOHDCbx14sa1+ztbakokT7xhPYdSKqENXVIoB\/ZiZrrP2bmhljUSyckQrxNqFFrtlkI\/7+puAx2l3zu7bS0tFBWVib+27VN6Ovo6BAcHCwqN1+8eJHHH3+cl156iVdffVUJOgq\/m2594snNzeXpp5+muLgYGxsbBg0axKlTp0SFhGXLllFbW0tkZCRlZWWEhoZy8OBBJeg8QKhUKiwsLMjJyaGoqIhDhw6JdaE2qZ6IiAgmTZrEgAEDcHFxwcXFRaxtFBUVkZaWhomJiXhHb2RkhJmZCTNmTGLGjElUV9dw6OAx9uw5xOHDx6iual+Ez8+TPtE4OfWkoiRLcr0wV3og1UDHANAceGwdTGnM1BxYtLRV1JXIDY\/+NtUCLS0trKyssLKywsvLi8TEROrq6mhubmbNmjWcPn2aYcOG8fHHHxMZGakEndvYsmULL730Evn5+e06CKdOnYqRkRFbtmzpwt09mHTrE49C9yA7O5sxY8awfft2\/P39xe9XVVWxf\/9+tm\/fzv79+7GyshI9hUJCQsT0UENDg1hgLykpaVdgb1PLbqOurp4jR06yZ\/dBfoqJQ09fj5ul0vWfsGFDSTyt2RfI0NAA3VppW4Oh\/YO4dkaqldqdG+c1BzxreyPs6qUDz58PR\/6uAdI2VYmGhgYCAwPp0aMHycnJrF+\/npiYGEpLSxk3bhxTp05l4sSJWFtb\/+b36I7U1tbi4ODA559\/zrRp04BW37GePXsSExOjcaboYeehai7oDO7mfngvMj2K+2F7XFxcSElJaRd0oNVTaPr06fzwww8UFRWxbt06SktLmTp1Kr6+vixevJjjx4+jpaVFz549ZZW0KysrEQQBfX09Hn\/8ETZsfI8rV4\/x6aerePqZCVhYataHq7wpLf7pLKOEAFBZLP1cfR3pZIS5lbRVgpaONvoyVgpStLS0kJycTH19PYGBgejo6KBSqTA2NubIkSM888wzXLx4keHDh\/Ppp58yYMAA2RbyhwkDAwNmzpzZzljuu+++w8nJ6YEUSX0QUALPfabN\/fDjjz\/WuH4vMj2LFi1i586dREVFceLECaqqqggPD5dsBX4Y0GSrfSuGhoZMnjyZb7\/9loKCAjZu3EhdXR0zZ87E09OTF198kdjYWKBVFLJfv36MGDECDw8PampqSEhIuKPLS1dXl+EjBvHPdcs5n7KfqG3\/x5\/mTsHWtlWWR1tbm+ws6ZkvW2tbybW7dbQh86M2MZFuzza0MvzNabCWlhYuXrxITU2NGHQAsrKyeOKJJ4iIiOD999\/Hx8eHV155hdOnT3Pp0qX7nm77I9+0Pfvssxw8eJC8vNZ63qZNm0SLbYU7UVJtHYhKpWLnzp1MmjQJuDeZnoqKCmxsbPjmm29E+fb8\/HycnZ3Zv38\/48aN66qP84eksbGR2NhYtm3bRnR0NM3NzYSHhxMREcHIkSPFnPytXV43btygR48eYjrOzMys3QWkpaWFxF8vEBf7K3t2nKQgX3NKLCxkKMmJmRrX3FwdqZVupCM0wJWiayUa1wYPd+ZmsuaLqZ2\/A1M3PyP9wrchCAIXL16ksrKyXSNBXl4e48aN49FHH2Xjxo1iA0dHcuDAAU6ePElgYCBTp05t97cDsGrVKt555x02b96Ml5cXb7\/9NseOHWvXDLRgwQL27NnD5s2bRcvq0tLSTrGsDgoK4sknn2TcuHGEhISQmZmpSOxIoASeDuT2wHMvMj1Hjhxh9OjRlJaWtpNk79evH5MmTeKNN97o7I\/RbWhqauL48eNs27aNXbt2UV1dLd7Rjx49Wux8a2lpaReEVCpVOzuH2y\/C58+mEr3jZw7sPcENdbn4\/YBe\/cnJ0ByUggf0ISepXOMagK+dFbU3NdeWwoY7USrRKec+ypPxayJk\/hX+Q5ue3s2bNwkKChKDcGFhIY899hhDhgzhyy+\/7PALtib+iDdtGzZsYN26dYwdO5a0tDR++umnDn2\/PzJKqq0TuReZHsX9sOPo0aMHo0aN4pNPPiE7O5s9e\/ZgY2PD0qVLcXd3Z+7cuezcuZPa2lpsbGzw8\/Nj+PDhYm0pOTmZY8eOcenSJVFJG8DFzZZho3z4cc9q9hz8mIWLnsanjzv5OZpPLACGutJ1GFNzA8mgAyA0SrdvG92jHYIgCFy+fJmKiop2QUetVvPEE08QEhLCF1980SVBRxMZGRkUFha2s6PW09NjxIgRoh11V1tWP\/PMM+Tl5fH555\/zP\/\/zPx3+fn9kunU79YPK7Xnfe3E2VNwP7y\/a2tqEhYURFhbG2rVrSUhIYNu2bbz++uv85S9\/YezYsURERDB+\/Hix1djHx4fy8nKKioq4dOkSzc3NmJmZUVZWhpeXV6t0jxP4+vVi0dLZZKQV8PP+JI7sP8PVlPYGc3Iabbb2pjRlSQ+PNlVKW4bfSyu1IAhcuXKF0tJSgoODxaBTXFzMhAkT8PPzY\/PmzXetq3UmcjdtWVlZ4mO68qbN1NSUqVOnsm\/fvnYpQoU7UU48nci9yPTc6n4o9RiF+4uWlhahoaGsWbOGq1evcvz4cXx9fVm1ahVubm5Mnz6d7777joqKCszNzfHx8SEsLAwHBwdKS0vR1tYmLS2N5ORkioqKxCYQd08H5v8tnK0\/\/S+7TrzDC69Oxa9\/62BnZYl08DA3k2+FrpUxgJNSLWhDEARSU1MpLi4mKCgIfX19AMrKyoiIiKBXr15s3bpVbDB40HjQb9oKCgp45pln7osieHdGCTydyK0yPW20yfS0ORsq7oddi5aWFoGBgaxcuZJLly7x66+\/EhQUxP\/93\/\/h5ubGlClT+Prrr\/nuu+8YPXo09vb2jBgxguDgYPT19bl27ZqopF1YWEhTU2tazMnNljmRj\/H13lfZ++sqJs4fhN9AF7S07rwgGuhKX\/RNLPRpqpWRy5E58QiCQFpaGmq1mqCgILGmVVFRwaRJk3BwcOBf\/\/qX2GDwIPGg37SVlpYSFRXFkSNHeP755zv0vboDD85ZuptQVVXFtWv\/kV9pcz+0tLQUBTFXrlyJp6enKNNjaGjIzJkzgfbuh1ZWVlhaWrJkyRLF\/bALUKlUBAQEEBAQwIoVK0hNTWX79u28\/\/77ZGVlMWLECOLj40XjOlNTU3r37k1VVRVqtZr09HRSUlKwtLTEzs4OGxsbdHR0sHe0JGLeICLmDaJUXUn8gcuc3HeZ5PhMWppboFm638fS2hCKpfN0hjaaA48gCFy7do2CggLRbgKgsrKSqVOnYm5uzvbt2x\/YO\/V70Va89aZt+vTpwH9u2lavXt2h+wsMDKSsrIxVq1bh7e3doe\/VHVACz30mMTGx3aTyyy+\/DLS6H27evPmeZHrWrVtHjx49mD59uuh+uHnz5gem0PswolKp8PHxoX\/\/\/hQUFPD+++9TV1fH999\/z+LFixkyZAgTJ04kIiICR0dHTExM8PDwoLq6GrVaTXZ2NpcuXcLS0lKU7tHV1cXS1oQn5gzkiTkDqSip5tRPV8hPKqQgRU1Tw53DPKbmerRo1hwFpJsL0tPTyc\/PJzg4WAw61dXVTJs2DV1dXXbt2nWHnl1n80e+acvMzOzQ1+9uKO3UCgr3SHl5OZ6enmzYsIEnn3wSaD1JZGdni55C8fHxhISEiNI9Li4uYn2hpqZGFOK8efMmFhYWki6htZX1JP98jXMxV7l0LJPGf1svhIY5U3VR8wyPVg8t\/hr\/0h31jPT0dLKzswkODhYlgmpra5k2bRoNDQ0cOHDggdAnlLOs3rx5M4Ig8MYbb\/Dpp5+KN22ffPJJO0ULxbL6j4ESeLohx44dY82aNSQlJVFQUHDHIN7cuXPvsPYODQ3l1KlT4v\/X19ezZMkSvv\/++3Z\/wLebrj1slJSUYGVlpXFNEATy8\/NFO4fjx4\/Tt29fJk2aREREBB4eHmJQaFPSLioqoqKiAjMzMzEI3X7yqKtuICUunXMxVzFpqKM4KVvj+xvbmfCnfX9t973MzEwyMzMJCgoSg0tdXR1PP\/00FRUV\/PTTT5iZaZYDUlDoKJTA0w252wT43LlzKSoqaqctpauri6XlfwQtu3ICvDsgCAJqtZpdu3axY8cOYmNj8fHxEYOQj4+PGITq6+vFk1BZWRkmJiainUNbWqyNpvomsuMzSP85jczj12mo+k+953bVgqysLNLT0wkKCsLU1BRorYvMmjWLgoICDh8+fEfrsYJCZ6AEnm7O7RPg0Bp4ysvL79DCaqOrJ8C7G4IgUFpaSnR0NDt27ODw4cP06tVLtHPw8\/MT1RDalLSLioooLS3F2Ni4nVX1rTQ3NpP7axbpR9LIOHoNh\/49Gf\/PSUCrovf169cJDAwUTzSNjY3MmTOHjIwMjhw5InlyU1DoaJTA082RCjy7du1CV1cXc3NzRowYwTvvvIOtbauopSLb07GUl5ezZ88eduzYwU8\/\/UTPnj3FINS\/f38xCDU2NrazczAwMBBPQsbGxu3145pbqFZXYuJgRm5urmiYZ25uDrTKBc2fP5+UlBRiY2PFn7WCQlegdLU9hIwfP55p06bh6upKRkYG\/\/jHP3jkkUdISkpCT0+vyyfAuzvm5ubMnj2b2bNnU1lZKXoKjR8\/HmtrayZMmMDkyZMJCQnB0dERR0dHmpqaKC4upqioiMzMTPT19cWakKmpKVraWpg4mJGXl8fVq1cJDAwUg05zczORkZFcuHCBuLg4JegodDlK4HkIaUufAfj7+xMcHIyrqyv79u1jypQpks9TZHvuPyYmJsyYMYMZM2ZQU1NDTEwM27dvZ\/LkyRgbG4vdcYMHD8be3h57e3uam5spLi5GrVaTlJSEjo4Otra2aGtrk5WV1e6k09zczIsvvsjp06eJjY0VBzEVFLoSJfAo4ODggKurK2lpaUD7CfBbTz1qtVpRT+hADA0NmTJlClOmTKGuro5Dhw6xY8cOnnrqKXR1dcWT0NChQ7Gzs8POzo7m5mZKS0vJzMykvLwcHR0dLly4QE1NDY8++ijLli0jLi6OuLi4h74jUeHBQZHMUaCkpIScnBwcHFodMxXZnq5HX1+fCRMmsGnTJgoLC\/n6669RqVTMnTsXDw8PIiMjOXjwIM3Nzezdu5cNGzbQv39\/AgICSE1NZf78+bi5ufH999+L5mkKCg8KSnNBN+TWCfABAwawdu1aRo0ahaWlJZaWlqxYsYKpU6fi4OBAZmYmr776KtnZ2Vy+fLmdodbevXvZvHmzOAFeUlKitFN3MU1NTRw7dkz0FKqrq6OmpoaXXnqJpUuXoq+vT0tLC6+99hoxMTEEBwdz5MgR6uvriYiIYP369aIwqIJClyEodDtiY2MF4I6vOXPmCDU1NcLYsWMFGxsbQUdHR3BxcRHmzJkjZGdnt3uN2tpaYeHChYKlpaVgYGAghIeH3\/EYha4lOjpa0NfXFyZMmCA4OzsLpqamwrRp04TJkycLtra2QkpKiiAIgtDc3CycOHFCeOeddzplX6+\/\/vodv3t2dnbiektLi\/D6668LDg4Ogr6+vjBixAjh4sWLnbI3hQcDJfAoKPwBiY2NFYyMjIQff\/xREITW4BIfHy9ERkYKenp6wsmTJ7tsb6+\/\/rrg5+cnFBQUiF9qtVpcf++99wQTExNh+\/btQnJysjBjxgzBwcFBuHnzZpftWaFzUQKPQoewcuVKITg4WDA2NhZsbGyEiIgI4cqVK+0ecy93vnV1dcLChQsFKysrwdDQUJgwYYKQk5PTmR\/lgaSoqEjYvXu3xrXm5uZO3k17Xn\/9daFfv34a11paWgR7e3vhvffeE79XV1cnmJmZCRs3buykHSp0NUpzgUKHcPToUZ5\/\/nlOnTrFoUOHaGpqYuzYsVRX\/8dZc\/Xq1axdu5aPP\/6YhIQE7O3tGTNmDJWVleJjFi1axM6dO4mKiuLEiRNUVVURHh4umq09rNja2jJhwgSNa20DqF1JWloajo6OuLu789RTT5Geng7cm4W1wkNAV0c+hYcDtVotAMLRo0cFQbi3O9\/y8nJBR0dHiIqKEh+Tl5cnaGlpCTExMZ37ARTumf379wvbtm0TLly4IBw6dEgYMWKEYGdnJxQXFwsnT54UACEvL6\/dc5599llh7NixXbRjhc6m62+NFB4KKioqAEQh0nu5801KSqKxsbHdYxwdHfH391fujh9gxo8fz9SpU0UfnH379gG0U0T\/PRbWCt0HJfAodDiCIPDyyy8zbNgw0TulTXrndkviW2V5FOme7oGRkREBAQGkpaXdk4W1QvdHCTwKHc7ChQu5cOEC33\/\/\/R1rv+fOV7k7\/mNRX1\/P5cuXcXBwaGdh3UabhbUynPzwoAQehQ7lhRdeYPfu3cTGxraTbLmXO99bpXukHqPw4LFkyRKOHj1KRkYGp0+f5sknn+TmzZvMmTMHlUolWljv3LmTixcvMnfu3HYW1grdHyXwKHQIgiCwcOFCduzYwZEjR3B3d2+3fi93vop0zx+T3Nxcnn76aby9vZkyZQq6urqcOnUKV1dXAJYtW8aiRYuIjIwkODiYvLw8Dh48+EDYbyt0DopkjkKHEBkZydatW4mOjsbb21v8vpmZmWjtvGrVKt599102bdqEp6cnK1euJC4ujtTUVEW6R0GhG6MEHoUOQaoGs2nTJubOnQu0noreeOMNPv30U8rKyggNDeWTTz4RGxAA6urqWLp0KVu3bqW2tpbRo0ezfv16nJ2dO+NjKCgodABK4OkG3Lhxg4CAAF588UVeffVVAE6fPk1YWBh79+5t146soKCg0NUoNZ5ugI2NDV999RUrVqwgMTGRqqoqZs2aRWRk5EMfdN59911CQkIwMTHB1taWSZMmkZqa2u4xc+fORaVStfsaNGhQu8fU19fzwgsvYG1tjZGRERMnTiQ3N7czP4qCQrdBOfF0I55\/\/nkOHz5MSEgI58+fJyEh4aGXwH\/sscd46qmnCAkJoampieXLl5OcnMylS5cwMjICWgNPUVERmzZtEp+nq6srDrtCa61pz549bN68GSsrKxYvXkxpaalSa1JQ+B0ogacbUVtbi7+\/Pzk5OSQmJtK3b9+u3tIDx40bN7C1teXo0aMMHz4caA085eXl7Nq1S+NzKioqsLGx4ZtvvhFtw\/Pz83F2dmb\/\/v2MGzeus7avoNAtUFJt3Yj09HTy8\/NpaWkhKyurq7fzQHK7dE8bcXFx2Nra4uXlxbPPPotarRbXFOkeBYX7S4+u3oDC\/aGhoYFnnnmGGTNm4OPjw7x580hOTlYGLW9Bk3QPtGqLTZs2DVdXVzIyMvjHP\/7BI488QlJSEnp6eop0j4LCfUYJPN2E5cuXU1FRwUcffYSxsTEHDhxg3rx57N27t6u39sDQJt1z4sSJdt9vS58B+Pv7ExwcjKurK\/v27WPKlCmSr6dI9ygo\/D6UVFs3IC4ujg8++IBvvvkGU1NTtLS0+Oabbzhx4gQbNmzo6u09EEhJ92jCwcEBV1dX0tLSAEW6R0HhfqMEnm7AyJEjaWxsZNiwYeL3XFxcKC8vZ8GCBV24s67nbtI9migpKSEnJwcHBwfg4ZbuWb9+Pe7u7ujr6xMUFMTx48e7eksK3QAl8Ch0a55\/\/nm+\/fZbtm7diomJCYWFhRQWFlJbWwtAVVUVS5YsIT4+nszMTOLi4pgwYQLW1tZMnjwZaJX5mTdvHosXL+bnn3\/m7NmzzJo1S\/Sb6a788MMPLFq0iOXLl3P27FnCwsIYP3482dnZXb01hT86nWw8p6DQqQAavzZt2iQIgiDU1NQIY8eOFWxsbAQdHR3BxcVFmDNnjpCdnd3udWpra4WFCxcKlpaWgoGBgRAeHn7HY7obAwcOFJ577rl23\/Px8RH+\/ve\/d9GOFLoLyhyPgoLCHTQ0NGBoaMiPP\/4onvwA\/va3v3Hu3DmOHj3ahbtT+KOjpNoUFBTuoLi4mObmZlmHWAWF34sSeBQUOokNGzbQt29fTE1NMTU1ZfDgwRw4cEBcFwSBFStW4OjoiIGBASNHjiQlJaXda3S2ZtzvcYhVULgbSuBRUOgknJyceO+990hMTCQxMZFHHnmEiIgIMbisXr2atWvX8vHHH5OQkIC9vT1jxoyhsrJSfI1Fixaxc+dOoqKiOHHiBFVVVYSHh9Pc3Hxf92ptbY22trasQ6yCwu+ma0tMCgoPNxYWFsIXX3whtLS0CPb29sJ7770nrtXV1QlmZmbCxo0bBUEQhPLyckFHR0eIiooSH5OXlydoaWkJMTEx931vAwcOFBYsWNDue76+vkpzgcJ\/jXLiUVDoApqbm4mKiqK6uprBgweTkZFBYWFhOz04PT09RowYIerBdbZm3Msvv8wXX3zBV199xeXLl3nppZfIzs7mueeeu+\/vpfBwoUjmKCh0IsnJyQwePJi6ujqMjY3ZuXMnffr0EQOHpmJ+m+BrZ2vGzZgxg5KSEt58800KCgrw9\/dn\/\/79uLq63vf3Uni4UAKPgkIn4u3tzblz5ygvL2f79u3MmTOnXWvy7ynm38tjfi+RkZFERkZ2yGsrPLwoqTYFhU5EV1eX3r17ExwczLvvvku\/fv348MMPsbe3B5At5iuacQrdBSXwKCh0IYIgUF9fj7u7O\/b29u304BoaGjh69KioB\/cwa8YpdC+UVJuCQifx6quvMn78eJydnamsrCQqKoq4uDhiYmJQqVQsWrSIlStX4unpiaenJytXrsTQ0JCZM2cC7TXjrKyssLS0ZMmSJd1eM06h+6EEHgWFTqKoqIjZs2dTUFCAmZkZffv2JSYmhjFjxgCwbNkyamtriYyMpKysjNDQUA4ePIiJiYn4GuvWraNHjx5Mnz6d2tpaRo8ezebNm9HW1u6qj6Wg8JtRtNoUFBQUFDoVpcajoKCgoNCpKIFHQUFBQaFTUQKPgoKCgkKnogQeBQUFBYVORQk8CgoKCgqdihJ4FBQUFBQ6FSXwKCgoKCh0KkrgUVBQUFDoVJTAo6CgoKDQqSiBR0FBQUGhU1ECj4KCgoJCp\/L\/AWfGUO994qSoAAAAAElFTkSuQmCC", "text\/plain": "<Figure size 640x480 with 1 Axes>"}, "metadata": {}, "output_type": "display_data"}]}}, "12a14e08898b4abf991365cd41d07a93": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "13187a1f6c2a44f9a3ccd12f5eff4464": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "146343a7a95746e6bd0c8bac2c97a33d": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "148898f7302f4f45809429230ac34e24": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "14edd910ef6d411ebd1f6a033170c065": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "1691534cae544c41ac19238706d81934": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "PlayModel", "state": {"description": "step", "layout": "IPY_MODEL_85007844bdc54cdf992dc43ba5b83a41", "max": 149, "style": "IPY_MODEL_e2a00839a46e4bb39cd41f9aa4edaaea"}}, "17a0e3715b704af5b5bb4230d0ea690b": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "1a5c301c330f49dd867d1a112b4b011c": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": {"source": ["IPY_MODEL_d095a4e7d8d4445e86d3db1fdff6244f", "value"], "target": ["IPY_MODEL_e0fa11145e0d4e40ad744eba44c54f34", "value"]}}, "1af575622d2045659ef592a3a3d82a91": {"model_module": "@jupyter-widgets\/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": {"layout": "IPY_MODEL_ea5d62a115f443e4bf326bbe2a8d0260", "outputs": [{"data": {"image\/png": "iVBORw0KGgoAAAANSUhEUgAAAZ4AAAGRCAYAAABVKtXaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy\/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eXwkd33njz+r+u5Wd+uWRhodc2jusWfGY89Yg7ltYHcTAjiwgYWQza6TDUuA7DfJkoX8YAkkQDYYCOGb7BIMvyTgZVkHEgixCWDwBfbY0twajUb3LbVafR91fP\/oqZ7uVld1dUsjyaZej4cfIE1VdXWr6\/P6vN\/v1\/v1FlRVVbFgwYIFCxY2CeJW34AFCxYsWPj5gkU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGNhS6Cq6lbfggULFrYI9q2+AQs\/X1BVlWw2SyqVwmazYbfbsdls2Gw2BEHY6tuzYMHCJkBQra2nhU2Coihks1lkWSadTgM5Ikomk6TTadra2iwismDh5wBWxGPhlkNVVWRZZmRkBKfTSXt7O6IoIooiqqoSjUZZWFigoaGBdDqNIAiIoojdbreIyIKFlyAs4rFwS6Gl1mRZJhKJ4Ha7mZiYYHp6mkAgQENDA7IsA2C321FVNf9fOp0mk8kAWERkwcJLCFaqzcItgyzLZLNZFEVBFEXOnTtHJBJBkiR6enpIJBKsrKwQj8cRRZGOjg4aGhqor6\/H4XAAFBGRoigA+YjI4XDk60SiKFpEZMHCiwRWxGNhw6GqKpIkIUkSqqoiiiLhcJiFhQVcLhd33303kCMQQRCYmppiamoKVVUZGRkhkUjg9\/upr6\/PE5EW6RQSUSqVyl9HIyLtOIuILFjYvrCIx8KGQlEUJEnKp88EQWBkZITR0dE8mTidznwKDXIpNofDwf79+wFIp9OsrKwQDocZHh4mlUqtISIt3aZHRFokZBGRBQvbDxbxWNgQaKmwbDaLqqoIgkA6nebcuXOkUilOnTrF1NRU2cVfEISivh6Xy0V7ezvt7e0ApFIpVlZWWFlZYWhoiHQ6na8P1dfXEwwG1xCRoigWEVmwsE1hEY+FdaMwtQa5hX5xcZHz58\/T2trKiRMnsNvtawhGQyUCcLvd7Nixgx07dgCQTCbzRDQ7O0smkyEYDFYkonQ6TSqVyivqLCKyYGFrYBGPhXWhsDdHW7ivXLnC1NQUhw8fpqOjo+h4PS1LNRoXj8eDx+Oho6Mj3wekEdH09DSSJOWJqKGhAb\/fj81my7+OJu\/W+olmZmZob2\/H6\/XmIyOt\/mTBgoWNh0U8FmqCtnhLkpRXrSUSCQYHBwHo7+\/H5\/MVnSMIAoqirFnQ9SIhMxAEAa\/Xi9frpbOzE1VV82q5lZUVJicnURSliIjq6uqw2+359zEyMkJDQ0OebMql5iwismBh42ARj4WqUdibA7kem5mZGS5dukRXVxf79u1DFNfaABYSTOEivpELuiAI+Hw+fD4fO3fuRFVV4vF4nojGx8dRVTUvVGhoaEBVVWw2Gw6HIx8RSZJENpvVJaJy78+CBQvmYBGPhaqgKAqZTCYf5ciyzKVLl1hcXOTYsWO0tLTonmsU2dyqdjJBEKirq6Ouro6uri5UVSUWi+WJaHR0FIChoSGam5tpaGjA5\/MVRUR6RKT1EVlEZMFCdbCIx4IpaKk1TbUmiiKRSITBwUHcbjdnzpzB7XYbXsNIXLBZfcyCIOD3+\/H7\/XR3d6MoCo8\/\/jh1dXUsLy8zMjKCzWbLCxUaGhrwer26RATlXRUsIrJgQR8W8VioiNLUmiAIjI+PMzw8zO7du9m9e7epdFmtqrZbCU3N1tnZidfrRVEUIpEIKysrLC4ucu3aNex2exEReTyeNUSUzWYN7X0sIrJg4SYs4rFgiMIoRxAEstks58+fJxqNcvLkSRoaGkxfy4hgtotzkyiK1NfXU19fD5D3mFtZWWF+fp6rV6\/idDrXEJFGLIX9TFpEJAhCERFpqjkLFn5eYRGPhbLQ0kmXL1+mrq6Ojo4OQqEQ586do76+njNnzuT91MxiO6Ta9KD3+lraTSNYWZZZXV1lZWWFmZkZhoaGcLlc+WMaGhpwuVxF19WIKJPJ5GtEGhEVquYsWPh5gUU8FtZAWygVRSGRSOBwOLh27RpjY2Ps37+frq6umhbK7Uw8ZmGz2WhsbKSxsREASZLyRDQ5OcmlS5fweDxFROR0OvPnlxIRwPLyMm1tbbhcLst528LPBSzisZBH4aKoqdZUVWViYgKbzcbp06fx+\/3rfo1SvJgXWbvdTlNTE01NTUCOiMLhcF66ffHiRXw+X5HPXCERZbNZLl26RH19PZIkWbOILPxcwCIeC0D53pyFhQUWFxfx+\/2cOnUq3\/1fK7ZCTr3ZsNvtNDc309zcDOSIRSOi0dFR4vE4dXV1eSKqq6vLn6d9vppk3RqKZ+GlCot4LBTZ3oiiiKIoXLlyhZmZmXy6aL2kAy+NVFu1cDgctLS05PubMplMnoi0ERAA169fp7GxMT8CAm6SsUVEFl5qsIjn5xjlbG\/i8TiDg4OIokh\/fz+jo6MbRgoawUiSxMTEBF6vN29Vs5XYzNd3Op20trbS2toKQDwe56c\/\/SmSJBWNgNDSctoICCgmIms6q4UXMyzi+TlFud6c6elpLl++THd3N319ffkeF23y53qhybGfeuop7HY7kiSRSqXwer1IkkQoFMo7S\/+8QFMG7t+\/H5vNVtMIiHJjwq3prBa2Myzi+TlE6UhqSZK4ePEioVCI48eP5+sTsHFpMFVVCYVCrK6u0tfXx86dO4Hc0LfZ2VnGxsa4fPky2Wx2jbP0z0PzpUYMlUZAZLNZU0RkTWe1sJ1hEc\/PEUrn5oiiyOrqKoODg3i9Xs6cOVPUg6Ido0VFtSKbzXLhwgVCoRB+v5\/du3fnm1Ldbjetra1MTEzQ399ftNBqztKFhp51dXUvqUWzEqkbjYCYmppCluWyIyCs6awWtjMs4vk5QaFMWsPY2BjXrl1jz5497Nq1y9R00GoRDocZHBykrq6Ovr4+Zmdnyx6nOSOUjjgoNfTUnAW0hdbr9W7IornV4gazlkO1jICoNJ1VURTsdjsej8ciIgubAot4XuIoN5I6k8lw\/vx54vE4d955Z94ephxqrfGoqpontr1799Lb28vs7GxVqrZyhp7RaLTIR83hcBQ1a1YyKt1uWA\/h1TICoq6uDlEUi4hIswHq6emxprNa2BRYxPMSRjkBwfLyMufOnaOxsZH+\/v6KtjdaE2k10IgtGo0WEdt6TUJFUSQYDBIMBunt7S3yUZuenubKlSu43W5d14DtjI1Y2MuNgIhGo0V9RIIgFPnMacP6tPRb6XTWcvJti4gsrBcW8bxEUdqbo+1sJyYmOHjwIJ2dnetylNbDysoKg4ODBAKBNX5uG91AWuijtnv3bl3XgEIi0npktgtuZYpPEAQCgQCBQGBNxFg4AkITmCQSibIjIDTJvTWd1cJGYXs9hRbWjXK9OclkksHBQWRZ5u677853y5uBWeJRVZXR0VFGRkbo6+ujp6en7IhrvdfQrrGeBazUNaC0WTOZTOZ7ZBoaGraNdHuzFu3CiBHIj4AYGhoiHo\/z7LPPmhoBUWk6q0VEFirBIp6XEFRVJRKJMDc3R3d3N6IoMj8\/z4ULF+jo6Mj3ilQDMzWeXGptEEhy11135Rc2s9faKOIpRWmzZjqdJhQKsbKywuXLl8lkMgSDwXxKyuv1brp0eytFDZpQw+v1Ul9fT0dHRz51OTc3VzQCQiOj0hEQ1nRWC7XAIp6XCLTenFgsxtjYGF1dXVy6dIn5+XmOHDlCe3t7TdetVOMJhUJcvXqO48fdOF0dCJQnHVi7s9eIZrN2xy6XK98jUyhNXl1dZXh4mKtXr66RJm\/GvW11dKD9HYxGQGg1tHIjICoRkTUUz0IpLOJ5kaOwN0dVVWw2G7Is8\/TTT2O32+nv78fj8dR8fb1Um6qqXL9+nURinLv7vdhsKoqcxSg4qpS228zdf6E0eWRkhOPHjyMIQl4RNjY2li\/Eb7R0uxBbLePW7qHc+6p1BEQpEVnTWS2UwiKeFzEURUGSpCLV2uLiItlslu7ubvbs2bPuh7ocWaTTac6fH2RnV4b9BzzAjX8X0lVfS\/s9bO0iXKoIUxSFWCxGKBRaMwJb+289hF762lsJRVFM3UOtIyDKTWctNxTPIqKfH1jE8yJEud4cSZLy7gCiKNLX17chr1Val1leXmZ4+DzHT7jx+Wwlx6Yr1mm26zye0vsSRTGvCOvt7UVRlPxuf3Z2tuLk0RcTaq2tVTsCor6+vkjlWPg9vnbtGm63m\/b2dmtM+M8BLOJ5kaHU9kYQhLw7gN\/v58SJEzz77LMb9npajUdVVUZGRkilJuk\/40EUyxGIgiJnsNnLL8DbKdVWLURRLKp\/lEs7FUq3SxdZPWy0oKIWbNQ9mBkB4ff7i4hIU8wlk8n8\/y+MiLRm10KxwlZ\/XhbWD4t4XkQo7M3R0hTXr1\/n+vXreQlzKpVCUZQNW0wEQUCWZZ577md090gcOOgmn1ore3waqI54tkOqrVqUpp0Kd\/vXr18nHo8XSbcLxxtsN9wq8iunKtRqaKUjILT\/X\/gZlUvNWUT00oBFPC8ClOvNydVZzpNMFkuYN1qaHI1GUdUEtx8L4PVWzr0LQsbg34z7eF7MKN3tFy6ypeMNtB4iLZrc6ve\/Wffgcrlob2\/PKywLR0DEYjEikQhLS0trnLe1ewTKEpE1i+jFB4t4tjnKjaReWlri\/PnzNDc3c\/z48aJu\/MJC7nqgKArXrl0jk53iZff4sNtN+rUZCAxezKm2alG6yBa6Ss\/MzCBJEsFgEJ\/Pt6ERai3YqtcuHAGRTCZpbm7G4XAUfUaFZB0IBMoSkTWd9cUHi3i2MbSHSotyVFVlaGiIyclJDh06RGdn55pzNOJRFKXm1E4qleL8+QF6d8ns2FGdcqtSxKMtcuFwOG\/pstWpts1YmErHG2iu0gsLC8iyzE9+8pMiM0+fz7dpC+Z2iLrgJllXOwICrOmsLzZYxLMNoaXWNNWaKIokEgkGBwdRVZX+\/v68uWMptIeq1qmhi4uLjIyc58iROuobqieCnLJN799yCrkLFy4wNzeXX\/C0gn0ikcDlcr3kF4ZCV+lAIMDg4CC33377Gg+1Uun2rfpctgPxaJsrDbWMgNCbRWRNZ91+sIhnm6Fcam12dpZLly7R2dnJ\/v37Dfscak21KYrC8PAwsjJD\/xkvgmADqh8AZ0Q8qVQKWZaJRqOcOnUKm82Wt\/FfXFxkcHAQp9NJY2Pji16ibBbaoq9Jt3t6evIeaisrK8zPzxdZ12ifzUZ+LtuBeLQNlh42agSENZ11e8Ainm2E0pHUsixz+fJlFhYWuO222\/LqICNoardqIp5kMsn58wPs3qPQ3p5TralqFlWFap9BvVTb3Nwc58+fB+DUqVN5633NtHJ0dJSTJ0+SyWTKSpQbGxuL5LcvJZQudJqHWn19Pbt27SqyrtE+F6\/XWxQRmZFu62E7EI\/ZJlYNtY6AMCIirWm4tbXVIqJbjJfeU\/wiRGlvjiiKRKPRfARw5syZqgacVUM8CwsLjI5e4I6TPgpfQhBUVNUBZKt5KwiiRDaZxuHM7cgVRWFoaIjp6Wn27dvHlStXEEVxzf1pu89SiXI5+a2269eUYRuBraovmXndQuuaPXv2rGnUvHDhAnV1dUXS7WoIulK0sRkoTbVVC7MjIAqJSDOF1YgoHo9z7tw5Xvayl+WvaY0JvzWwiGeLUTqSWhAEJiYmuHr1Krt27WLPnj1Vf9HNDG9TFIWrV68Cc9zd70UUyxCVagehOuIBUNVcL08ymWRgYCBflwK4fPly2XPKvUeHw1HUB5JKpfLu0prqqb6+Pk9EdXV1L8pFodp7LteoaUTQhWqwctguEc9Gkp\/eCAhN0FFqgVRfX58X5Dgcjnw0VDgm3JrOunGwiGeLoH2pp6enWVxc5PDhw2SzWS5cuEAkEuGOO+7ImzNWi3IRRSESiQQXLgyyd69Ka5sLvYZQFRu1PFKikGFhYYHz58\/T3t7OgQMHsNlsJJPJ3HVvPNRrXq8CWbrdbjo6OvKqp8Ic\/+joaJG7wK0uyG8UNiLScjqdtLW10dbWBuRSp+FwmFAoVCTdLizCFy7y24F4bnXUVS59qRGRZoFkt9tRFIXZ2dn8CAigKDWnpYhTqZRFROuARTxbgEIBQTabzS+g586dIxAI0N\/fv66RzUaptvn5ecbGLnLyTh8uV6V0XG0P0MLiJBcvLXH48GE6OjqK7kv3lUwOnCs8vtTUMxqNEgqF8gX5Qi+1xsbGbTsGe6MXKk26rY1\/KFSDTUxMrCnCV1tfuRXY7HsoNwJiamqKsbGxqkZAlI4J11JzhT5zW\/3ZbkdYxLPJKB1JbbPZSCQSnD17ln379tHd3b3uL2q5VJuiKFy5cgWbfeGGaq02ubUZSHK87KRTo36djXjPWmpF29FqdZCJiYm8UEFLP20XocKtri2VU4PFYrGiSFGWZa5du0ZLS8uWRYpbXWey2Wz4fD7cbjcnT56seQSENZ3VHLb+yfs5gZ7tzcjICNlsltOnTxMIBDbktUojnkQiwfnzA+zbBy2t+qm1NdepQU4NsHNnM6K4drx2pUbRjVyEbTZbkVBBM6wMhUL5OojWFa+lPbcKm7kQCYKA3+\/H7\/fni\/CPP\/44Xq+X+fl5hoeHcTgcRQtsNcKWWqB9\/lu9IBfWmcp58WlEZHYEhDWdVR8W8WwCyvXmLC4ucv78eQKBAIqibBjpaNfXFtK5uTnGxi9y5511JlJrJRCkml7fZsuW7eWpFPHcyt1\/qWFlYVe8JEkMDAxsiVBhq22CtOi4q6sLj8dTduqo2+1es9PfSGifwVYvwkYCB4fDUdMICGs6a3lYxHOLUdqbo6oqV65cYXp6mkOHDuF2u\/P9LRsFrQfo4sWLOF1L3HVXPU6nvpWNPmrs5REzqGWCpVuZaqsWhRY2oVCIvr6+vDqsVKjQ2Ni4YUPfymErd\/ra30K7h3JTR8sNe9vIlKW2SdrqRVdLf5uBnrIwHA4bjoCwprPmYBHPLUK53px4PM7g4CCCINDf34\/X6yUcDm94mkdRFEZGhjhy1EVzs7PmXbUgqKiKverIRxAyyJKETWdB0svnb6VXm9frpb29PZ9+0hRPc3NzRUIFbcHdqF3\/Vkc8pcRTitJhb4Uzdq5du0YymSwa\/1DoKF3tPWz1Irsef8NSZaHRCAhNXVdILIVElEwmuXbtGvv378fpdGK321lZWSlS2r3YYRHPLUBpbw7AzMwMly5doquri3379uW\/cJWkz9ViZmYGuz3JyTvrChpCa4tcAFTVgUC1xAOZTAKPPVDy+61LtVVC4WuXk95q9SFt17+ehs1SbKeIpxJKU5aFow0uX75MJpMpkm4HAoGKhFLYw7aV2MheIqMREFeuXCGTyeRrjIUjILRsxcLCAgcOHCCbzZLNZnnLW97CAw88wLvf\/e4Nub+thkU8G4hyI6m1lNfy8jLHjh3Lh+YaNop4cvY6l3B7QvSf8VH4\/AgCqKoTqCHdJtS2AxTLWOdsp1RbNSgnVNAWkatXr+Zn7RQ2bG717t0sqiWeUhSONijnKK0oyhr\/tNLXeikSTylKP6dCIiodAaGpCgs3M1oN6aUCi3g2CKUCAkEQiEQiDA4O4vF46O\/vL6sO2gjiicViXLgwwKFDNhqbyqeAVNVuOLJAH7U9iKKoTzyl\/1\/7eavTTmZRrmFzZWWFUCi0ZrFtbGw0HHGw1c2b6yWeQpRzlC5t8tX807T\/vF5vPvW61cQjy\/KmTIkVBGHNmIxCwp6cnERVVV544QUmJiaoq6sjmUzqOtKbwR\/\/8R\/zB3\/wB7zvfe\/jwQcfBHJ\/+49+9KP81V\/9FSsrK5w6dYovfOELHD582PBa3\/zmN\/nwhz\/MyMgIe\/bs4eMf\/zhvetObqrofi3g2AKW9OQBjY2Ncu3aN3bt3s3v3bt2HShMc1Lrbmp6eZmbmCqdO1eFwGhFYrQ9UbaQoGBDPZsipNxOli0g8Hs9b+xQKFbSIaDvl6TeSeEqh1+SruZFrtjV+vz+\/+G7lZ3MrIx4jlBL2ysoKFy5coKWlhb\/7u7\/ja1\/7GqlUio9+9KOcP3+eV73qVZw4ccI0ST777LP81V\/9FbfddlvR7z\/1qU\/xZ3\/2Zzz00EPs27ePP\/qjP+Lee+9laGgIv99f9lpPP\/00b3vb2\/jYxz7Gm970Jh555BHe+ta38sQTT3Dq1CnT7\/nFkQ\/YptAEBJlMJk862WyW559\/nvHxcU6ePFnRa61wcFs1kCSJc+cGSaevcfpubwXSgVpdCJLJeE3nCWL5SaR6kc1W73Y3Ctpi293dze23384999zD0aNH8Xq9zM7O8swzz\/DUU09x5coV5ufnyWar98LbSNxK4imF1uTb29vL8ePHueeeezh8+HBeqKF9NpcvX2Zubi6v9tosbBXxlLsPh8PBzp07+fSnP83Y2Bh+v5977rmHJ598knvvvZd3vvOdpq4Vi8V4xzvewf\/8n\/8z79IAub\/7gw8+yH\/7b\/+NN7\/5zRw5coSvfOUrJBIJ\/u7v\/k73eg8++CD33nsvH\/zgBzlw4AAf\/OAHec1rXpOPoszCinhqRLnenFAoxLlz56ivr+fMmTOmrOprIZ5oNMrFiwMcOmynsdGsuqq2yMVmqy0KEcXyC6pGPJFIhEQiQWNjY76j+6U4gbRQqABr5cmxWAxRFBkeHs6PftiMdI+GzSSeUmi2Ndqzc+rUqXwPUaHbRKGIYz3jHypBluVb3ixr9j4KvwOiKBIOh\/mN3\/gN9u7dmxe7mMF73vMe\/vW\/\/te89rWv5Y\/+6I\/yvx8dHWVubo777rsv\/zuXy8UrXvEKnnrqKX7jN36j7PWefvppPvCBDxT97nWve51FPJuBcr05w8PDjI+Pc+DAAXbu3Gn6Qa6GeFRVZXp6mrm5IU6drsPhME8mglCbC4HLJaCq1XeVi2JGdyDc5OQkExMTOByOvAoqk8kQj8dpamp6yUQ\/5VAqT56enmZiYgJJkhgaGiKdTudVYY2NjWsMPTcaWo1pKz9zzbWgnFuAVvco7I0pJKKNJOntEvGUEo82QFETF2hil0r4+te\/zvPPP8+zzz675t\/m5uYA8nVKDW1tbYyPj+tec25uruw52vXMwiKeKlDYm6MVRFOpFIODg0iSxOnTp3Vzo3owSzySJHHx4gV8daucOl2L11ptKR1BUEmlVNzuKonHlkHKFhfONbKenZ3l5MmTuN3uvEJsZGSE0dFRxsfH19RDXupE5HQ6OXjwIJATKmj1oUKhgvZ5GAkVasFWixtAf8EvHYtR2BtTKklubGxct5pwuxJPPJ5Ld1ejapucnOR973sfjz76qGEUV\/q3N\/N9qOWcUljEYxKKopBMJjl37hy33347oigyPz\/PhQsXaG9v5+DBgzXvvmw2myHxRCIRLl4c4OhtDvx1jQhCrOrXEAQJVRUQhOrTWdmMSrUZCEFQSUSj+G5YAUUiEQYGBhAEgdtuu41AIEA2m80XVWdnZ\/O2LaUO09qi29jYeEtTLVuB0vSix+Ohs7MzrwrTDD21YWaFM2Q2QqiwHYjHrEFoYW9MoSQ5FAoxPT2NLMtF0m2\/31\/Ve9ssVVu196GlY6v5W589e5aFhQXuuOOOouv++Mc\/5s\/\/\/M8ZGhoCchHMjh078scsLCysiWgK0d7evia6qXROOVjEUwGFvTmSJLGwsIAkSVy7do3Z2VmOHDmSbxKrFXqSalVVmZycZHHpGnf3+7DbFdanvHYC5Yv+RpDk2hYmTb49NTXF5cuX2b17N6Ojo4bNltoUyd7e3qLGzbGxMS5evJhPtTQ2NtbUJb8dobc4ljP01Gog2gwZzUdNI+dqiXk7EE8tBqHlJMmF0m0tXVRIRJWixe0a8SQSiaoj3de85jVrrLh+7dd+jQMHDvD7v\/\/77N69m\/b2dh577DGOHz8O5PrTHn\/8cT75yU\/qXvfuu+\/mscceK6rzPProo\/lBj2ZhEY8BSm1vtAXzZz\/7GXa7PW97s16UIx5Jkrhw4TwNjTHuusuTT63VWqsBrZeneuIxaWZd5rQUFy5cYH5+nuPHj9Pc3KybPy4nLiht3NRSLaFQiMuXL5PNZgkGg3lvsfUYe27n0dcaCv3joFioUDgCu9BHrRIxbzdX6FpRKt1WVVV39LVG1G63u+i9b1fiicViVROP3+\/nyJEjRb\/z+Xw0NTXlf\/\/+97+fT3ziE\/T19dHX18cnPvEJvF4vb3\/72\/PnvOtd76Kzs5M\/\/uM\/BuB973sfL3\/5y\/nkJz\/JG9\/4Rr71rW\/x\/e9\/nyeeeKKq92gRjw4Ke3O04uvs7CwATU1NHDhwYMO+pKXEs7q6yuXLgxy9zUkwWPonWo\/8tsb7rXFdmp0dJRrNEbSWJliPnLo01ZJIJPL1kLGxsaJ+GW1heTGg1oW\/nI+a9nloNZBKQoXtEvFs9IIvCEI+eu7p6cn774VCoTX+e4UD8bYL8RRGrvF4fF3No3r4vd\/7PZLJJL\/1W7+VbyB99NFHi+rUExMTRZ9Jf38\/X\/\/61\/nQhz7Ehz\/8Yfbs2cPDDz9cVQ8PWMSzBuXm5uQK+xdZWVlBEAR6eno2fD68oiioqsrExATLoRFO3+3Fbi+3QNdeq6kVdlttC1Ow3sXuvSeLPiuNeMotdtVOINUGnGnNidrCUpiG0kjoVktxa8VGRlpOp7OImMt1wxcutD6fb1sQz2bcQ6msvXBQoDboTRCEfK2olrTlRqFU1q0Rz3o\/ox\/96EdFPwuCwEc+8hE+8pGPmD4H4P777+f+++9f171YxFOAcr05q6urDA4O4vP56O\/v5yc\/+cmGu0mLokgmk2Fg4AWamuPceaenArHUVquptZfHXuPz19TkW0PQRhHPehbhcv0yhVJczUVZS0MFg8FtsbuFW+caUGpfE4vFCIVCRUIFn8+HLMukUqktixC3ItIoTeNms1meeuopRFEsSlsW1hM3a2JtOVXbrYh4thIW8dyAoihkMpmih2B0dJSRkRH27t1Lb29vfoKgRkwb+dqjo1c4fsJLIFD5T1JrrSaVilNLScrppCZ3a9FW3jZnM5wL7HZ70byUQgXUzMxMXgHV2NiYt6TfCmzW6xYKFbTU0+rqKjMzMyiKwtNPP52PELWIaLN2\/Fs99hrIv9fe3l7q6uqKpNtaf5Um3daMYG+VsEWvxvNSws898WipNc1RWos+zp07RyKR4M4778zvouHmkLWNeu3x8XG8vjQnTvhwOMwuQrU9pC5XTadhswnIsojNVl3EJNoyKGU+qo1ItVWLUndgzU9teXmZTCbD+fPnaWpqyqfmXLV+WDVgK1JdWj1M8087efJkXkGo7fg3S0G4HQQO2n1o77F0rEFh2lJzky4c\/7CRjb7lIp6XkjM1\/JwTT7nU2vLyMufOnaOpqYnjx4+vCa8r9dyYRW6xO0dbW5K77vLWNCunWthsoKpiDc2n1EY8okIsHMfrv7lbu1WptmpQqIDq7u7mySefpKuri2w2y\/T0NJcvX85btWj1oVuVZtlqY1RtE1AqVCjc8RfO2dEioo1caLdDUV+rserdR6l0O5FI5D+fiYkJVFXdsEbfcnJqi3heIihne3P16lUmJiY4ePAgnZ2dZb84GxHx5FRHgxw77sbvr\/5PINRYq8nBCaSqPktRalsYZCkJlCceozEJmwktDaXJlAutWrTpkdq8nVthY7PVYxHKvX6pgrBw9IO20BZKk71eb83vY7sQD5ibgloobNm5c2dRo28oFOL69etF0vdqHTisVNtLEOVGUieTSQYHB1EUhbvvvttwd7GeiEdVVUZHR4lGx7i731d1BJHHunp5bLVFVzVuzEvn8hg9fFu9+9dQatVSzsamsGlzPYvuVsNMfaWcUEHrkVlaWipyVNA+k2qECtuhxqM907WkE8s1+mqj0zUHDqfTWURERp9P6QjueDxe5Cz9UsDPFfGUjqQWRZHZ2VkuXrxIR0cH+\/fvr\/jFq3VwWy61NsiOHWn27fcASu1TQWs6R0NtD3itlCDa1xLPVqfaqkWpjU3pTBmHw1Fk66PZ\/JvBVsuZa3n90h4ZWZbzUvbp6WmuXLmCx+MpWmiNhAqlC+1WoHCA43pRbnS65jihfT6FQo76+vqi70y5VFtXV9e672s74eeCeAptb7SwXlGUfFf90aNHTXsN1aJqC4VCDA2d4\/gJN3V1N79QtU4FFQTlxrlS1efWilrqQgA2W3HD64t9Hk+5RXd1dTWfgrp06VLV7gFbiY0gvkJHACiWshcKFQql7IWfiTZ\/ZiuhrQu34ntos9nyaVpY6zihiQe070vhQEnIRTwb4ZCynfCSJ55yAoJYLMbAwABOp7Ooq94Mqol4VFXl+vXrxOPj9J\/xlplts44FSXVADcRTa31IUbLUYmEgmiQe2D6ptmpQuqhobtuhUCjvHlA4BrvUuPLFGPFUQqmUXc\/qSPtMtoOqbTOjrnKOExpRX7t2DYALFy6wsrJCOp2uSdX2xS9+kS9+8YuMjY0BcPjwYf7wD\/+QN7zhDYD+Ru9Tn\/oUv\/u7v1v23x566CF+7dd+bc3vk8lk1T1gL2niKTeSenJykqGhIXp7e9mzZ0\/VuWWzEU86neb8+UE6d2bYf8BD+WRV7Q+biq22s9cxl6cWlPbyvBhTbdXA6XTS1tZGW1tbvigfCoXyERFQZOuz1dgM4itndVSoCJNlGa\/Xi8Ph2LKaWWmUsZko\/M5kMhmeeOIJOjo68k7Sq6urzM7OEgqFePWrX82dd95ZMULcuXMnf\/Inf8LevXsB+MpXvsIb3\/hGXnjhBQ4fPpy3\/9LwT\/\/0T\/z6r\/86b3nLWwyvGwgE8s7WGmppPH5JEo+qqqTTadLpNA6HIz+S+uLFi4TDYU6cOGFqkFI5mFG1LS8vMzx8nuMn3Ph8Rruo2tVpta\/RtdWHclLs6tN7NnsWteRtqqrK0tISS0tL+fTCS3ECaWFRfufOnfmemcKxDzabDbvdzsLCwpbYtGx2tFFOEfb8889jt9vzNTO73V5UM9uMnqrtoKyDm7Wmjo4O\/st\/+S984AMf4J577uHuu+\/m3LlzfPazn+XQoUM8\/vjjhtf5hV\/4haKfP\/7xj\/PFL36RZ555hsOHD69x1P\/Wt77Fq171Knbv3m14XUEQ1u3GDy9B4tFSa+Pj4ywtLXHHHXcQDocZHBzE7\/dz5syZqoq\/pTBStamqesOeZYL+M15E0XghXU+NJhKJ0NBQ\/YOSqw\/ZanO5riG9J4oSyUQap\/vm4jE3N0coFKKpqYkrV66QzWbz9i3RaHRdLtPbGaIoEgwGCQaD7Nq1C0mSuHr1KpFIZE0tRGvavNWL4Van+gp7iDo7O9cU4i9fvozX6y3qqboV5LwdBA5wU1ig\/U0EQSAej\/OWt7yF++67D0VRWFpaqvqa3\/jGN4jH49x9991r\/n1+fp7vfOc7fOUrX6l4rVgslq9tHjt2jI997GP5sQrV4CVFPIW9OXa7HVmWuX79OtevX6evr4+enp51P2Sas0EpUqkU588P0t0tceCgXmqtFLU7TXs8TqBG4lIdNaXcaknvCQLEoxGc7hay2SyxWAxBELjrrrtwuVwIgkAymeTSpUukUimef\/75fLF6K1wENhN2ux2v14uqqhw+fJh0Op2XbV+8eBFJkoqaEm8FIW818UBx1FVaM8tms\/lCvDb+utC6ZqMcFbYy1VZ6H6Xvp7DGI4piXuZfCefPn+fuu+8mlUpRV1fHI488wqFDh9Yc95WvfAW\/38+b3\/xmw+sdOHCAhx56iKNHjxKJRPjsZz\/LmTNnGBwcpK+vz+Q7zOElQTzlenNUVSUSiZBOp7nrrrsIBoMb8lrlIp6lpSWuXTvPiTu8eL3mv7yCINccfbhctT8kKvYaq0u1nWWzZYhEIrzwwgsIgsCuXbvw+\/1kMpl8Oqqurg6Hw8GuXbuKpLmai0Chy\/St2JluZX1JW3RdLleRrY829kGzsRFFsSgFtRGmntuFePQWfYfDsUaooJFzOaFCtVNHzdzDZqIS8VSD\/fv3MzAwQDgc5pvf\/Ca\/+qu\/yuOPP76GfP76r\/+ad7zjHRW\/T6dPn+b06dP5n8+cOcOJEyf4\/Oc\/z+c+97mq7u1FTzylvTmCILC4uMjQ0BCCINDf37+hdieFNR5FUbh27RqZzDT9ZzyIYg01mxqjD8jUZNyZw+YuNPH4MheuXGL37t2srKyUJQ5tsSjsgdi9e3feRUBTiW3k8LftAD3CMxr7MDMzw9DQEB6Pp8jUs5bv+XYgnmoaSMuRc6GjAlDUP2RWqLBdiUfzFazFucDpdObFBSdPnuTZZ5\/ls5\/9LH\/5l3+ZP+YnP\/kJQ0NDPPzww1VfXxRF7rzzToaHh6s+90VLPIW9OdrDo6oqV65cYWpqiu7ububm5jbcY0uLeHKptQF6emVaW\/2IYm1ps1qjD0FgHQ2otaFWKXY0tsSxY8doaWnh+eefr0pOXegiUKoS04a\/aST0Yk3LmVkYSwlZ65UJhUJrxj40NjYSCARMLaTbgXhqFTiUEypo4o3C5t5Cax+970e5SGMrUK55VFXVouFstUITXRXiS1\/6EnfccQe33357TdcbGBjg6NGjVZ\/7oiSe0t4cQRBIJBIMDg4CuSl5kiQxPT294a8tiiKpVIqBgae446QPj0dEUVzUXq9ZR8qs1gbUWtV0NYohurpb8PhyqZL1yKnLqcS2Ii23kag1xVdu7IOWgjp\/\/jyKouTrQ0ZeatuFeDYi2ihs7u3t7S0SKkxNTeWFCuWixFsV8aiqgiCYv245Z2qg6lTbH\/zBH\/CGN7yBrq4uotEoX\/\/61\/nRj37E9773vfwxkUiEb3zjG\/yP\/\/E\/yl6jdOz1Rz\/6UU6fPk1fXx+RSITPfe5zDAwM8IUvfKGqe4MXIfGU9uYIgsDMzAwXL15k586d7N+\/H1EUiUajt2Ruzvz8PIFgittv9xWk1tbz4K6ntlDjoirUSpK1ned03SS6jXQuMErLaTNUChdfvbTcVi+8G\/H6brebjo6OvHuyZlpZOPRN+xwaGhryO\/\/tQDy3yqutUKiwZ8+evFChNEpsaGgglUpt+Odgs4UJLWQJNrWYPqcc8djt9qoj+fn5ed75zncyOztLMBjktttu43vf+x733ntv\/pivf\/3rqKrKr\/zKr5S9RunY63A4zAMPPMDc3BzBYJDjx4\/z4x\/\/mLvuuquqe4MXEfGUG0ktyzKXLl1icXGR22+\/vUjtoTV6btSDlUwmOX9+gN5emY5OL+sjjJsQWA851va+VDUD1OLRVZsU22YvJqxb5VzwYkzL3QpRQ6lpZeHOXxvzrEWGqVRqW9jVbAb5lQoVtOGAmu+eoiik0+mi0Q+13pfNvoTTOc7wCz5OvnZ9xOP1eqsm5i996UsVj3nggQd44IEHdP+9dOz1Zz7zGT7zmc9UdR96eFEQTznbm2g0ysDAAG63mzNnzqxRZGh\/vI0gnoWFBa6PXuCOO3yUc9dZF3msy2+ttpSZKIKqOqhJjl2DGMJmz5JJ3+xP0It4NnKkeDVpOVmWNzw6rvZebyXK7fy1yDAUCiHLMolEokgZtpmF9q0q7BcOB9SUsHV1daysrDA2NoYgCEX1IXOjDVTsjjmczhmkrJ3l2XhV91RuJMJLbRYPvAiIp3RuDsD4+DjDw8Ps3r2b3bt3l\/0yaH88SZJqbhhVFIWrV6+iqrP093v1VWvrIo\/a1Wk1NYFqqNHrrRYxhCBAJBSmoaVpy0xCjdJymUyGCxcumErLbTS2QsZdGBlq3oN+v59QKMTk5CRADQtu7dgOYxFUVcXlctHV1ZVXEWou5AsLCwwPD+dHG5SmKwuugsM5hcOxAEB0BZLx6mqw5UYivNRm8cA2Jp7C3hzti5nNZjl\/\/nx+VK\/RjArtj1frLjqRSHD+\/CB796q0tbsxTq2thzwgHlfw+Wp58GpXtNXs9VZrek\/JDZ\/bLiahhYvvyspKvhi9FWm5rTYJdTgca8Y+hEKh\/ILrcrmKFtz1OH+Uw3YxCS0kv0KXiUKhgkbOWrrypqNCAK9vGrs9lL\/GwlSadLK6uqgkSUWmxYlEYl3TTLcrtiXxKIqCJElFqbWVlRUGBwcJBoP09\/dX\/PILgoAoivmm0mowPz\/P6NgFTp6sw+2uTFzrlTbbbLW5EOQaUGsbZb3ZvTw2e+796T1AW+3V5nQ6aWpqKpuWu3LlSl4NtdFqua02Ri1NRZdThmnOAePj41y8eDE\/9kGz9VnvZ7EdemgqyanLOSpo9aGRkWEOHxEJBIuX07HLUVLx6v6+pRHPS3H6KGwz4tHrzbl27RpjY2Ps37+frq4u0+xf7bRQRVG4cuUKNtsCZ\/p9CFU0hKqqoyZpM9ROPDnUNsq6VtQqxbbfGAj3YnCnNqOW05pYm5qa1p2W28rdbKVow2az0dTUlDfVzWQyZZ0Dak1RVjNy+laiWvK7GTE34nKr2Gxrazkv\/GSKTMZTlf9gOXGBRTy3EKW2N4IgkEqlOHfuHJlMhtOnT1fdRFXN0LZcam2Avn3Q2uqietVa7Q\/OehaeXC9PDa9ZoyBCUTM1ibg1Zdt2IhizKB2FXWhlMz4+jiiKRd5yG2Fls1moVnzjdDrLjjgoTFGW1ocqvT68+IgHQBAyuNzDiGL5jd\/Fp5bZsa+R559\/Pr+Z0dKVenWzUs84S1xwC1HYm6OlyObn57lw4QJtbW3ccccdNTkQmCWeubk5xicucfyED69345RVZiEI61mIayStGgUROSl2da+pqgKz373Is\/\/0dzgOd7P3Nadyt1CS4nmxEFK5UQfLy8trrGy0RcYohbPVhfX1qD5LnQMKxz7Mzc1x9erVohHP5cY+FFpdbSWqdS4QhOQN0ilfw5ElG4tTCXYf6eKee+5ZMw7D6XSWHZcuy3LRWqfVeF5q2FLiUVWVTCZDOp3GbrfnFTaXLl1iZmaGw4cPs2PHjpqvX4l4ZFnmypUrOByL9Pd7QXUByZpeq2Y3ANapTqsZ2ZoEEXa7UFUvjyrbmfyziyS+N8RhgJlR4t8b4v86s4gHO9n\/i6+i7\/SxLa\/x1IrCIrSWltOaFK9evVqUlluPieWtwkY2kJYb+6B9FtrYB81ZWqsPvRgjHlGM43IPGz4DsUjuM03FM2s+l8K6WWlfVSaTKXoOajUI3e7YMuLRenMmJyeZmZnhrrvuIh6PMzg4iCiK9Pf3r3vOuBHxxONxzp8f4MABkeaWXGpNUWtVerEuSbVQs5MA1NrLIwjqOgQRDjCRqpNiDq697wekx1aKfu+zOTkoO5HPh3juJ59nsb6FSa+EeLCTnS3t1Lc113BP2wOlTYqFqahyabmtjvJupXNB6YhnzVk6FArlxz4EAgHg5gK7VaRslnhEcRWX+3pFQc\/idO6ZTpVRtZXWzQqFCpq0f3l5mZ\/+9Kesrq7S0dFR1XupNPb63e9+95rZO6dOneKZZ54xvO43v\/lNPvzhDzMyMsKePXv4+Mc\/zpve9Kaq7k3DlhCPFuloYaUsy\/mmvu7ubvr6+jZkB6RHPDMzM0xNXeauU3U4nQV2LutSeq1HUq2QSim43dW\/50wmTq0lhVq93szUlRLDKtfe9y3UdHlCjmRTTCZXOdmwE4CWpAueDzPz6w\/yFAmyu5rp\/VdnOHLfy7a935oRtLRcZ2dnUSpqdnaWoaEhbDYbHo+HpaUl6uvrN9zUthI20zKn1Fk6Ho8zPz9POBze8jlMZlJtNlsIu2PRlIp0YigG5CKeSiisIc7Pz3Po0CEGBwcZGxvjmWeeyc+reu1rX8trXvMajh07Zvg3qzT2GuD1r389X\/7yl\/PnVFIJP\/3007ztbW\/jYx\/7GG9605t45JFHeOtb38oTTzzBqVOnKr7HUmwJ8Wh1HC2\/HY\/HuXr1at7BeKNQSjyyLHP58mXc7mXu7veu+QKpqDVTTy6CcFCrn1kmUxvxOJ2sYzxCrQu6\/oupqsjSPywy89kndY+ZSISxiyKHA21r\/s0h2ujDz9nBEZxjSZ7\/\/HeZ9il4bt\/NkfvvpfPA3hrveetRmnLJZrNcuHCBbDbL8PAwqVRq09NyW+XVJghCPoU0NTXFPffcU3byaKGE\/VaScqWIx26fx+maQpbNpb2unl0GzBFPIWRZxuv18prXvIbXvOY1\/Mqv\/AoHDhygq6uLf\/mXf+Fv\/\/ZveeGFFwyvUWnsNeQ2AdWMsH7wwQe59957+eAHPwjABz\/4QR5\/\/HEefPBBvva1r1X1HmELU22CIBCJRLh06RKqqnLmzJkN3+EUEk8sFuPChQEOHrTR1Fye3ddba8lJqmsjnhrajYBC+5v1pOs2BopkZ+KPB1n90YjuMedWZ9nra8JrL\/83yCgyFyJz3FGfi4Tq7W7q08DP5kj87P\/Pv0hRljv9dPTfxh33vw6P\/8Wb\/3Y4HHg8nnx9qHS2jGbZcivVclttEqptPgvVcKW1Mo2UA4FAviBvduyDWegTj4rDMYPDOXfjZ3NrxAs\/ngWoqoFUURRUVV0jp967dy+\/+Zu\/yfve976qU7N6Y69\/9KMf0draSn19Pa94xSv4+Mc\/bjjZ9Omnn+YDH\/hA0e9e97rX8eCDD1Z1Pxq2jHjGx8e5fPkyO3fuZHp6+paE1RrxTE9PMzNzZU1qbS3WN9smlcpSa1lKVdfx8Kv2dThOV49yQorsqoNr7\/0+melV3fOmVQe3BfXFIsvpOCvZJCfqO3WPiSYS7J124n\/kHMP\/5ywT9jTqvnb6\/s3L2f\/yu2peRLeq1lL4upXScoVquY2KALaaePT6iEprZclkMk\/KU1NTKIpSJNs2O\/CtHLT+wbXEo+J0TmB3LOV\/I5io5SqKyPjlMFBdxKNtkkuJp1BcYPY9Go29fsMb3sAv\/\/Iv09PTw+joKB\/+8Id59atfzdmzZ3XX4bm5OdraijMUbW1tzM3NlT2+EraMeHw+H3feeSdOp5OJiYlb9gDMz8\/T0aFw+u61qbVSrM8JAFKpdFWjrwuxns1b7cPkaozwSs6LXZIZ+cA\/gqTzuXkcZAJuOuejupecyEbwCTb21ukLC55bmeJ4fQe2G\/NNPDYH+1UHDMVg6Lt8\/xNfI9VVj+dQD8d++fU0d9WuiNxMlPvel1OIaQvvRqbltgPxmIlcPB4PHo+naOxDKBRiaWmJkZGR\/MA37fOoxtZHk3QX13gUnK5R7PZw\/jeqKpjKaCSiN99PKpFFUVRE0VzzaOl91CqnNhp7\/ba3vS1\/3JEjRzh58iQ9PT185zvf4c1vfrPuNUu\/J+v57mwZ8bS0tCBJEul0GlVVN\/wByPVWzHH0qIuW1iq8pVQXCLVJqoPBOiBR07l2+1Y8\/Ouby6OqIgvfmGXuL3+qe6TS6EOVZJwGpPN8eJqjwR04dAZmJeUsV2NLeSFCOUwkwrhEkd4FFRbGWPzhX3BWiZPsrqfrtXdx2795NQ7XxnqMbQTMRlqlg98KRz5oI58LveXMpuW2Qx9R9Y2bN8c+9PT0lPVRq6urK\/BRM7Y4WuueIONyX8Nmi5XcqxNRTFMJS7PFUVEmlcXtrfzdK5wxlnu9nACjlumjZsZea9ixYwc9PT2GI6zb29vXRDcLCwtroiCz2PIGUi1dsB4X6UKoqsr09DRzc0OceZmXajN4tZtnou9ebQIu19YQj6JUH20JgoycdjL+seeIPj2mf\/XOIPaFGGK2fGSVVWTOR+YMU2shJUUkneR2gxTd+cgcu72N+ArqRnZBZLfND9My0kNP8s0vPIKn3o\/jSDeH33wvPccOVn6jm4RaNlwejydv7LmetNx2iHjW+\/qlPmqZTCYvTy61OCoXHRYRj5DF7RpGtK3dfKqqHahMPJNXi+1zUvGMaeIpJciN6uMpN\/Zaw\/LyMpOTk4Y9k3fffTePPfZYUZ3n0Ucfpb+\/v6b72XLi0XYZGzEPRZIkLl68QCAQ4dRpb41Kr\/Xs\/mqvETmdQk0kALWnzAQBMhmqJudMyM74Hz0LsoCjrYHsfHGfDgKkO+txTYV1r7GcibOcMa7nXIku0OEJ0ust70KuqCrPh6c5Ud+JqPPHXs2mmElFuMPfnrPDG1gmM\/B1fpSNEWpx03zmKMruresb2oja0nrSctuBeDY64nI6nbS1tdHW1pYfCFgo2gCK3La1z8Bmy+JyX0UU9Z5jc5\/T8Auhop9T8QyYEOuWI55EIrGhY69jsRgf+chHeMtb3sKOHTsYGxvjD\/7gD2hubi7qySkde\/2+972Pl7\/85Xzyk5\/kjW98I9\/61rf4\/ve\/zxNPPFHVvWnYUlWb9r82m60mF+lCRCIRBgYG8DgF+k6uZ6LiehwIlBs9LrW9F1m2I4q1nFu7sMDh8GI2PaiqEBvIcP13\/yH3ww3Ym4M42xtQshKpuRAZl82QdMZTEbyCjX0G9Zyz4SluD+zALpZPkSTkDJPZWMX0m10UOehfq9bpdNTRGYaBv\/sX9gVaeUb9DsreNna9Idc7tJmL8Ua\/VjVpOc2maqtwq1N9hQMBS8c+aPY1DoeDQEDE4bxUIWthbpMw+JPilFS5JtJyKCUeRVFqMgk1Gnudm6R8nq9+9auEw2F27NjBq171Kh5++OGilF7p2Ov+\/n6+\/vWv86EPfYgPf\/jD7Nmzh4cffrimHh4AQd0iOY\/mzwbwwx\/+kOPHj1NfX1\/1dVRVZXJykqGhIXbt2sXqpMyp+0KVT9S9ngehxhoPgKp4EMTazk+nHLjc1ZOI9hesZf1QFD+iqF9\/0ZDNqix\/bZb5rzynf62mOlRJxl3vxxHwIa1EyUwtFR0zGhPY6VNw6NxsWpG4FJnnuEEkNJeKkFZkenQiIYALq3Ps8hWn3wohqwovhGfKElcom2TWD96Tfdx+\/+to292t+zrrxYULF\/K1is2Aqqr5kQ+hUIjV1VVcLhctLS2b0i9TitnZWWZnZzlx4sSmvWYhZFlmJTzGjh0rOBzGD5CiuCrWeBRF5F81f6fod5945Fc5cLKr4r0sLCwwMTHByZMngdxmeufOnSwuLubdH14q2PJUG1TnIl0ISZK4cOECKysrnDhxgqamJr739HPIsh2brdYIan2y5FoVZgDJZAaXu\/qzc\/OAXJjJP5c5u+IRUsrOld99HOXSsu4xmc56HAtRxKxMdjWZ\/xRtQR\/OzmZUVGxOB7sGRnRfM6ykWUrEDEnnSnSBdrefdndA95ircoSDgda8+q0UMSnDWCKkGy01OjzEQiu4vn+Z8E8mOSfHiHcGaH\/FcY6\/+T5cXmPH5Wqx2dFVYVruySefpLOzk3Q6XZSWa2hooKmp6ZY3sW71LB6HM0JXV7jie8w1aVd+vlLxte\/FrKRakqQ1UmrAMgndSBT+oe12e9WpttXVVQYHB\/F4PPT39+f154lYmmTUTV19rfclrUtSvT6o1DzhU7WbejDWwvh9phdsDP+nf0IJ60RxFeo58mqctKLiaAkSvzzJimonKimkUgvs9jXkU2nDsSVaPH721jXp3svZlWluD7brpt9Scpah2CK3B\/W9rWZSEWRF4UhAv2v7QmSOXQVihV67H+ZV+N\/Pc+VrP2XMnsZ1Yjd77utn72lj+5JK2GqvNiA\/ewiK03LaGOxCF+VKYw6qxVaq6mz2RRyOeVOZArO10ND82g10KmFuM1s6BC6RSOB0OjfVOmiz8KKLeFRVZWJigqtXr7J79252795d9OAnIilCC\/aaiSf3Ik4Qah2uVvtC4nKvZyBcbQ+vnjBBVSHy0yRj\/+0x\/ZO9TjJ1TsN6jrOrBSWRIn0918ndIEg0OABHM1EpzVh0kZVskj2+Rupt5R+wjCJzMTLHHQ36kdBCKkZMzhiSzpXoAp3eevw2fYVRaa\/QWqjIqzH2nF2As3\/PE9m\/ZanRQf2pQxx76+tpaK\/e8mmrayyFr1+olitMy2ljDjS1nNa8ud603NaMvVaxO+ZwOmeQZXMd33a7uVro1MjaY1KJ2iKeWCy2rsbY7YxtQTxmIx7N2yocDnPHHXfk5ZOFiEfSzI7Z6N5X+y5hPemy9dju2GxbEWWt3Y2pio2Z\/3WdpYcHdc9SmusgLeFciOke4znUQ+raNGqm\/N\/WI9rJqDIvb94FwFRylVVBQshK7PY24bbZWU4nCGUThum34dgSjU4vu91rvw8aKokVsqrChdU5Q7HCQipGQslytCBaanf4aI8C37\/G3KOf5TtqCP\/unXS\/9i6O\/qtXYndsi0dMF0aqttK0nKaWy417HiGZTOZtbBobGwkEAlUvkpufalNxOKdwOBZu\/Gz2tc0dN\/jU1JrfpeLmI57SIXAvxTQbbJNUm5mIJxwOMzg4SF1dHWfOnNHt+UlEU4xezHLqPn3foUqIrEapb6iVemqXVNvtSu0O1zWPR5BudGTnIjU55eD67z1J4qK+FYZWzxF0+nMQBbyHekhcGNO9RhyVqXiIOwoIZacnyE4Ady5t9uTyGKIg0OUO6l7nmhKh21uPSyz\/VZYUmXMF3m\/lsJyJk7TB8Xr9aOnaDXLrdesLGs5F5rgj0I59PA1f+gkDf\/kYU14F9229HH7LvXQd3rfmnK2WM1fz+uXUcppMWUvLFboHmEnLbW6qTcHpGsNuL5T\/m8xQmEyJXn1urWXU\/OxCnkSMPuvSIXBbPSriVmJbbMeM5NSqqjI+Ps7w8DB79+6lt7fX8A+RiKa5\/GwcqJ14HE47Zs0AS7Ee2511GX6uy+DUCaRJTYsMv+cfUaI6tSJRIN0RMEytiX4vztagIeksJMHrEdnv109LXYktcrJ+Jy5b7isaVjNcX13EIdjY5WvAbXMwsDrDSQNCWc0mmUvFDHuFRuMhfHYnO236vRKDq7McqGvJ30spJFVhcHVmDbkF7W6CGeC5Beaf\/l+cd6uk6920vOw2Ttz\/erzB6jvSNxrrIb5SGxttEqsmU9amj2qpuXJpuc1Ltcm4XNex2SMlvzeZ2jbxfKmqwJWfLa75\/cpyhOeeew673W449kGW5aIJrYlEYt0zybYrtpR4tKmT2kyeUmhDkSKRCCdPnqShQX+3qSEeSTFyfg5VPVxjAyl4vU5qnUQKrKtGVLvDde1qPFWxE35imYn\/\/gPdY2S3HSXgxjWlbwLq3NmCkkqTGpnVv87OZuonlnDq7DQVVeX51ek1hFIvOPMEspJJcCm6gIjAZDZKp71uTQPpTCaKoGBIbudWZ9lb14zXVr7vS2tQNUq\/xaQM44kVw4hqKrmKgECfHIBl4FsXGPm\/A4zbkoTbvPTcd5rO+zu3ZGe7URGXIAgEAgECgcCa6aNGabnNSbVJuNzD2Gxr6y\/6zaLVH5dO2imXuKn3N\/Hyl788b+ujjX3w+XxFtj6yLBdZHcVisZfk9FHYRhGP1tOjYWVlhcHBQQKBAP39\/abtdBLRNPHVDLJkx+548Umq1yMSyGRUnM7qXlmV7cz8ryESF5ex1fuQw\/E1x8jNdajJDA7Dek43qWuzqBmdz04A75FdJM6PYtN5i5FsiqlUxDCKmUqEEQSRuxpu9kWsZJOMJ1ZAhW5vPTOpSE6VZvCdeW5lytDxIClnGY4tG5LOipommkmWnSuk4Up0gQ53gICj2DvNbbOzHz\/Mw9nPP8LPvvokMz4F\/x37uP2tb6Clp7qpk7XiVqX6SqeP6qXlstnsLd3VC0LmhhvB2iheVewIJhq2zTaFryyUj4pSiUzR2Aconjqqydi1dTAcDuP1emtqHn2xYFsQj91uJ5nMRRiqqjI6OsrIyAh9fX309PRU9WDEI7lIIxERCOgrcw2xfkn1enZwtS8CdrsHMB9pSQkHI7\/zOKnhm02ezp3N2Bv8yLEk6fF5MjuCOOYjCHrO04KA90gvifOjuq8j+Fy4OpoNj5lMhBEFkUNlXAY0jGRWaXN6qLMXpygaHB4agrl6wrMrkzQ5fVyOLtDqD9IheosEBSk5yzSpiiKCuJzhtqC+5PpqbJEd3iDd3nrdY14IT3Mk0I5DR9CQS9HN5qOlxgTwkwmWf\/xFnlfiJHcG6XjNnRz7xdfgdN8aSe1m1ZjKpeW0EQfhcJiVlZWKablqIQhJXO5hRLH8ZkhRHdhMpNoUxWGqL3BmtHyWJF1G1VY4dRRyxDw4OEg2m+Uf\/uEf+N3f\/V0OHDiAKIoMDQ2xb98+U38no7HX2WyWD33oQ3z3u9\/l+vXrBINBXvva1\/Inf\/InhuO1H3roIX7t135tze+TyWTNM6K2RapNExdkMhnOnTtHPB7nrrvuIhjULyrrIXmjPrE8J9VMPMCWSarXd675P2dyTODae\/8BpeShyEwt5dwGRIFUZxCPzYF7fxfRsVnsJY1wYp0HZ3uDIaE4djSCrJAantY95sLqHL2+hjWEUoiz4SmOB\/UjlJQscSW2wJ03IqHdvpzCLSalGY0tklVkAnYXgiCwx6f\/xRiJLVPv9LDLQCE3EJ7hYKBVV9AgqwqXksuGSryYlGY8ES4SV2iw3TA4nRkNk\/7rf+HiQz9hwpXFcbiLA7\/0anafPKp73Wqg9RBtdh9NYVoukUjgcrkIBoO6aTm\/31\/1PYpiDJf7WgWVqdkJvOZee+RcuOzvkyZUbR6PB7vdTldXFydOnGDXrl38xV\/8BWfPnuX222+ntbWV1772tfz5n\/+5YYRoNPZ6586dPP\/883z4wx\/m9ttvZ2Vlhfe\/\/\/384i\/+Is89p+9IAhAIBBgaGir63XoGE26LiMdms5FKpXjyySepr6+nv7+\/qMhWDeI3iGfmeoJdh2tvdltfuqx237n1TUGtfMeqKhB6dIWpT\/1Y\/yCvi6zPgXsyjEqu2mUH7O0NOFvqURJplGwWJZkhdW1G9zLu\/V1kJuZRkvr58Up9MxqhGNVQVpUMS6kox8r08NTZXRwNtDMSWybocJNWJK5kVpBTGfb4GnEX1HcuJ5fZ7QnqigjM1HwScoaRWIijBtHSfCpKWpENU3TDsSVaXD7qHbnv8CHZCedCyOf+D49nHyLU7Kb55bdx2y+9lmBLbTssjXi22iS0NC2XSqXWNLFWo5YTbau4XCN5peb6YXL42tMLZX9vto9H82qz2Wy87GUv4x\/\/8R\/p7u7mT\/\/0T3niiSd46qmnKr53o7HXv\/7rv85jjxX35X3+85\/nrrvuYmJigu5ufWsoQRCqGpVdCVtOPKqqsry8TCQS4eDBg3R3d9f8IGTTEtl0btEfubDCmV9YT5d17Q9jNptYx5iD9U1BNYIq25n8s4usfG9I9xi5uQ4hlcWxuLaeI82tIM2t4DnYjbwYxtHemHOnngshLRWrhbxHd+WUbToy1IwM81nRcBFfTMeJSumyhKJhJLZMo9tnGMUMhGc54G8uIhmckJYlLkXnSUhZUopEf2OPfkSlSFyNLla835iUNiSdaSmGR7TR5tZXtA2uznDArx9Rtdt9zIxN075qZ+pb53mSBNk9LfTedzdHXn+P4eyZQmwH4iknp3a73XR0dKxJy5lRy9lsyzhdYyaFRWY3eWYUbXDuJ+VFNWmTzgWlJqHxeJy2tjY8Hg\/33nsv9957r7nbLbheubHXhVhdXUUQhIo+mbFYLD\/76NixY3zsYx\/j+PHjVd1PIbaUeDKZDC+88AKxWAyPx7Nuo0StvgNw6WeLwOYUaEvhdApFvTHVYD1ybMHgAZFiDq697wekx1Z0j8nurMc+Z1DP4Qah3EityZGbKiFHWwOO1nrkVBrRbjdMvyXtdqIpiS63\/uuMJlcI2Fz5lFk5DKzOcLCu1TBCOR9f4Fh9+TkjLpudXd5Ghm8MmVtIx1gRJNLJJLt8jfhvpP6W0nGyDsFwbPf1+DIBu5tdBvc7uDrLfn8LboP6RSXRQ1qRuFJAgE7RRh9+GE3BX\/6Qs1\/4J0brZBpP7Ofwm15Dx\/7duq+1HYinkpy6MC3X29trqJbr6hJxeyKm1axm1aNmjsuk7aSTOuICk15t5YinFlWb0djrovtKpfiv\/\/W\/8va3v51AQN\/78MCBAzz00EMcPXqUSCTCZz\/7Wc6cOcPg4CB9fX1V3x9sMfFcuXIFh8PBkSNHuHjx4rqvl4jdVK5cfGa+5sUfzM1W1z83N62wNtNOyPXV1FBf0rnnxLDKtfd9CzWt855EgfQO4\/4cxWXD1dmiSyjZ+RVQFHDYySwt4u7rRLYJJGeWsBdsCGzdLdhnQrQapIdfCE9zxGAiqZGztIacKm3JcICcFqFohNLqqst1fznrkRSZ4dgS86kYfruLo079KObc6ix9dc14dGTZUJlQMorMhBo3fE+r2SQL6bjhe4pnUnSEbbQ\/NUX0yYf4vhwjusNP+yuOcexN9+Lx31zItgvxVFO\/KZ+WW8brWyQQlAmHZerrK0d8qiqaGkFi9rjVJf11ptpUm4ZbMfZaQzab5d\/+23+Loij8xV\/8heH1Tp8+zenTp\/M\/nzlzhhMnTvD5z3+ez33uc1XfH2wx8Rw5ciQfSm\/EILhE5OZCn03LZNIiLnet112npLpm007t3FrOzBY5H8iySug7IWY++6T+KT4XWa8D17R+f46jo4lULE72ur6bgXtvB5nZEEo8dx1NTGAHHC1BHG0NCG4H8YvjOKTyf5ObKi\/9onxKlblWIeWlWdsYRSizShKngG6EYhdtJOUsdzR04rE5iCoZRiJLqCp0e4M0OXMLwmBsnqOBdl1CySoyFyLGVjyr2RRzqahhz9F0MpcS6TOYYVQq3RYFgR67HxaB\/zPA8MPPctGbom5XB\/t+4eX03nU7sPWptvW8vtvtorc3i92R+055PHWY6cHL9ctVfj5V1YlgQmQ0O6Z\/jBmTUFVV15iE1trHU2nsdTab5a1vfSujo6P84Ac\/MIx2ykEURe68807DUdmVsKXEo3m0bcQgOChOtQHMTcXo2VtbnefFKKkWBPVGpJVBytgY+v89g\/Qzg2bOFj9CMlO2nqPBc6CL9Ng8tpT+rs17ZBeJS+O5iKcMsqEojrYG4s8Ng8NGuqmOqbE4QYdK843IJ9fDs2pIOrOpCKLTYegsPRxboqmCtc3g6gwHAm24nPo749IIxS8687UmRVUZji0xk4rQ5qpDVhVEYe21YkqW6XjYUN02k4qgqqoh6QzHlmh11RF06IeJA6szHPK34dSRbgNcjMxz0rYTrkThynd4Lvu\/mXFm+OHgBMd++fU07dy44rFZrK+BVMHpuo7dfnPTZNdrEitBNiuYcptWVXP1stGL+hs3M6k2beNdGvEUDmerFYVjrzXSGR4e5oc\/\/CFNTdULU1RVZWBggKNHa1dXbrm4AHIEpDH+eqSd8Wgx8STC65lEyjol1VsDVbUjRVSG\/\/NjSDOl9iA3kdlZj8OonqM1fBoIBHDa8eztIHFBv54jBrw4mgI3LXSyMq7lGHtuPE+rWbgcmwRV4UhAP0IZii7S7vYTFPUX3xfCMxwykDmbUaWlFYmh+JLhMVEphaKqvKI5Vz9JqhJDkTkyskyHJzcraCYZweV2VSSUQuVaOVQSGkCOJI3uNxd1za85ptXho1X1wQ9HGX30z3imTiDbUkfXa+7itn\/zKhwuc03b60Htz7yEyz2CzVayaTK5UYzH4rhcJkhFNbcJvPjMWqscDelkFkVREUX9ayk3Nm2lNZ5qm2uNxl5LksT999\/P888\/zz\/+4z8iyzJzc7ksRmNjY75Jv3Ts9Uc\/+lFOnz5NX18fkUiEz33ucwwMDPCFL3yhqnsrxLYgHu3DlmV5XcSzNF9cOJ8bS3HwZO2WE+tyqV7HCO10OkGtY0+iZyNMfvJx5JW1DgSAqXqO4HXh6jRu+LQ3BRC9LpKXJnSPce5sRkmmSY\/qp+hWM3B7sAOPaCOryAzFFolJ6VzU4s2lwZ5fmeZoUL8R00zNJyVnuRozJpSVTIKlTILb\/Po7\/6nkKqIgFBGKR7AXRWHPrkyiAq3OeryIZWs\/ZgnFqC4kKTKjFepCMSnNZHLV0ABVk3fvS9fDlARfeYpzX\/ohU24J59EeDr\/lXrpvO6B7\/npQk0mokMXtGka0rU2pmbXACdb7MTXy3QSRqSq88Lh+WwHkyMfj0ydySZIQBCH\/WaiqSjwerzriMRp7PTY2xre\/\/W0Ajh07VnTeD3\/4Q175ylcCa8deh8NhHnjgAebm5ggGgxw\/fpwf\/\/jH3HXXXVXdG0Bvby\/vf\/\/7t76BFG4SjyRJNfXv5MdfXyzOOY6cW+FV96\/H62gdue+a\/NZunCpIVb+2qoosfGOWub\/8KYgCjp3NxJAI2JykJxZyfak+N1mP3bies6MRFNWw4dO1ux1pKUJmUj+i8hzsJjViYKEDjEQFdtWp+TSVQ7Sxv+7mgr6ipDkfmqHe4SYpZ8sST6VpopCbbBpKxQ1rPhOJcE4hZlBDmVTiBO2uNfY3hXghPMPtwY58yiutSFyOLpCQs7Q4fXR76ysSil6EUgiNUA4aOD2Eskmi2ZThMWOJEHU2F93e4gUuYHdxSHLBC0u88PiDjNXXsxS00XzmNo7f\/zr8jfW616wG1ZqECkLqhhvBWoLJpcbN1XTNiodkOUkldbqUtRMLGxNeKp4xJJ7S+g7Upmr70pe+pPtvvb29pgYP\/uhHPyr6+TOf+Qyf+cxnqrqPStgWEY8gCOsaf33x4kVCoRBN9W3A9fy\/XfjpAlB51vmtQabmEQcul1DVuUrWwdhHzxJ9euzGL1SyU0tow7BFv4dMWx2qpOBcSuh6I5hp+PQc6SV5ZRJ0BAKFnmx6UG0CYbuXPehEZeQUXDGbkp\/VI6kKw7ElVrMpOoNNtAlu5tNRshWmiV6PL9PsDRjKsi9G5unx1hs6Jzwfnua24A7sjvK7cz1zU5dozy\/8GUXmZyuTOASRkewqbYJ7DYklVInxeMgwQllIxUgq2YqE0uCuo8ehX+u6HFmg21ufn7RaDi+EZzgaaMOu2NixAvzjJca\/fY5xMYm8p41db+jnyL0vq1kgUE2qTRATuN3DuqRhVgiQe7YqR0aqCg5H5YU6Eqp8TKU6T6miDWpXtb0YsC2IB2obfx2NRhkYGMDtdtPf38\/1x39Y9O9Dzy2iKLlxA7VgYyTV1TeEVnNuJmRn+Lf+GclAIJAKunCMLiPICqoo4OppxRb0Ia3EyEzmctOVGj5VUcCxdwdJg3EHZlJ0Yr2PtKjSENInnYlEGIdoo8txcxduF8SiaGQgPIOsKthFkWDWRbBMnWRwdZb9dc24BWOZ87H6DuwG0u2B8Kzh9NOULHEtGaowoiGnXCs0Ny0k0waHB6\/dgc3pNCSU0XgIv91Fj1efUC5F5unxNuATjQnlSKBNN30J8Fx4qux7col29uFHuhbj3B99heRn\/5HpOqg70cdtv3wfbbv1O+BLYTbVJooRXO4RQ7GPWSGAqjp0\/duKj3OVNRctxex4ZbJLJY1fr5R4ZFkmmUxa7tS3GtVGPNPT01y6dIne3l727t2LIAjEI8VfElVVScYFfP7aenlUNVPzaIXc+Q5TO6vy59oNz1VViL6QYfT3\/sGALCCzI1hcz1FU0uM3rT3srfW4ulpQEmlEnwsltvYhsgV9ZFwi0lX9PLajrQEEjFN0Pa1kw3EcIf3c+oXVOXb5Gg134YPROQ4XLJqyqjASXyaiZPGLDnq9DQyEZyrWRy7EFirb38RDhqQTyiQIZRIcqdMnCz3lWiGZjsSWySoKkWySmWSILk89Ta7iwvKV+BJdrkCFCGWao4F23UmroE8oGiRV4dzqrOExKTnLcHw5P6qiIQk8OUn4if\/FOTlGbGeAHa86yfE3vgaXV79gaSbVZrOt4HSNVu7JMykEMDvzSlXtmOnFO\/e0\/ndeQ7URTyyW20huhKptO0EUxdwonK28iWqnkELuD3Tp0iUWFhY4fvx4vpEMbhqEFiK8LOPz1xbyiKKMLFMxx2twhVpPxMjAUFVtzH11goWvntU\/ps5N1iUa13NaG8AmED97ozYmirh627D5vUgrUTJTS7i6W5GiCWwLUd3ruPs6yUwvoST0H1LvoR6Sw9OoWf0ospJvm97ANZsg5i1z0orMQHgGhygyuDpLj7eeRmfxAr6aTTGTinDMQEW3IqdYTSeLxlyXQqsL7TWoC00rCXw2h6Fy7fyNuUB5EYKrAUVVGUussJyJU2dz5ayDDCIzqKxu06axGhFKWpUZji4aDs\/TGlnLfTaiINBr9zM\/FiH7lR9y+W+eZMKRQTy0kwO\/+Cr2nLq96LmvlGqz2ZZwusbNbQDNtj6oZp9Lc0Q2PVSZnMwQT+HnEI\/nMgIvtYinpaWF2dnZ7RPxmEm1xWIxBgYGsNvtnDlzZo07aqmcGmBxKk1nb+2ebaLgpiYXAWBd4gSdc+W0g9EPPUP8ef1dltzqR4incS7r37d7304yU4vFZKEopMfm8z96j+2BrIzodZFIpBDKOB94j+4icXEMFJ3dqCDgPWw8BjurwIIoVJAwp5lMhI1HWKfjpB3F11FUldF4iIzbhpjM4hLt2ATBMJ01ElumxRegt0I6q8tbn7fVKYfB1RkOBtpwOvQ3EWdvpPpKyVYUBHq9DXR76nlhdZqD\/lam1ATLq2E63AF2uG82\/UmqwvlV4ybVhJxhNL5iSCjhTJKYaFwzm0tFkFTVUIQxlljBb3fmm2wPKk64EEa98AhPZP+GpSYnjS87ym2\/9FqDVJuK3TGLzVaNBc76ewGLYY7Inv+Rfq+chpHhMToP+WloaCgroCrnWuByuTZkPMR2wqtf\/Woeeuih7UM8lSKe2dlZLly4QHd3N319fWW\/rKUNpABTw3GOvWxrXKqNvNMqn7v2S5+et3PtPd9FWtHvzM7srMcxG0GQK\/itGfXniALeQz0kBkYKbkgg21xHXWsjaiRJZj6EZ29n5Tk8O5oMSSeahbgEnR79NMpMMoKCyiEDN+fReIg6u4sOsTi6EQUh705wRV3AIYospuPMp2N0e+ppdhUXb\/P2NwZ1oedXprktWCGdVUkKrSoMpUPcUaGn6Ep0MU+2Ppz01ud2wNPJCHPpKA5EHE6HoRhhORNnNZs2dMOeTUVQVNjp1O9in5UTOEUb7U79gvdQdJEOT0CXkNsdPhYmZ2n5ziXm\/vEiMSnCP+15gl2v6+foG16B3WEHVBzOSRyORWTZ3I7frGAAMD0m3szzK2XtrMxXdkqQMjKjo6NcvHgRv99fNIlVFMWyqTafz7elrhK3Ah\/84Ae5fv369km16UU8iqJw5coVZmZm8nMp9JAok2obOR8G9HdnJu5yHaeuYwdWcK6qQuSnScb+22P6x9tE0u1+4\/4ctwN3T7tx8b\/Og7OtYQ1ZCKqKYylGeimGvdGPu7cdRAHPgS5SEwuoJWk2R3sDqBiOTVhIg1uEdoN9wbXUCi12j2HXvhmvtCuZFfb4mnCItqJoYVaKMx1dwW93sZrNDYjTIwtZVbgQX+SEQc0no8g5h4AK0cf1eMgwsljNJpk38GXr9ARwCCJJJUu728\/VxDKRdJJWl4\/ugkhtUUkhK4qhqm8ktkyj00uDU\/8PcTm6QG9dEx6DvPPg6iwH\/C2GvUlnw9McC+7IRXgCHHA2wKQE\/+vHvPD\/PspsEF72iXvZeUR7D+bqs2YFA2C+10cwISyIhk1dimBdI6dOnSSdTudHPpw\/fx5FUWhoaMhbB2n\/qxHPSw2BQICHH354XUWIDUW5iCeRSPDMM88QDofp7+83JB0oTzwXnyk\/I8M81jPTI6MbVJg5F0BVbMz8z3FD0lH9brINngr1nHrsjQGSQ5O6xzg7mxHdTlIj+mTh6m1HvTHYLXlxnOSVSdR0FteudrxHd+HsbM4ZhEYSOeNQvXfXGaTRCQGDtq2z4Wl6nQFD0nluZYojgXZd0pFVhefCUxxwNpRVcO2w+7gtuIOEnOVwoI2L0XmeD08znyquaSXkDJeiC9xepx81xJQsoxWk0EvpOPOpmCHpLMlJYlKGfRXSWYIg0ONtyKnMvE2cbNhJt7eBxXScF8LTPBOaQBQE2g1GMFyMzLPDEzAknYHVGfb4mvCUsQXKHxOd40igzbghNjzFHfWdujW8YJ2Xe\/7g7gLSgei0cWOmhpxgwMxxNlO9PoriMJXiW5wyR2LpG6o2l8vFjh07OHz4MC972cs4ceIEwWCQWCzG0tISTz31FL\/5m7\/JD37wA4LBYFURzxe\/+EVuu+22vJv33XffzT\/90z\/l\/11VVT7ykY\/Q0dGBx+Phla98pSlz5m9+85scOnQIl8vFoUOHeOSRR0zfkx62PNVWOIW0MOJZWFjg3LlzdHR05EfAVkKiTKpt4soq2ayKw1Gr\/1ntDgSCoCJJInZ7DSMOBAUp5mL0D35C4qJ+57\/U6keMpXEsGdRz+jrJzCyjxPWP8RzsInV9DjWtv2sU97aTGVtELe3hkZW8O4H36C4yM8u4d7WjSArpiXnUgr4gFUh3BnFPr+oGk1oR3NAsVJaYkGMVmixvNJcaypyTLCvpPFkUFsznpQST0RAOQcRndxoKDWZSEZwuY4ucscQKXpvDcHTCtdgSza46mj3603cvRxbo8gZ1+45aXD5mUxGOB9uwY8tLtuudHnZ5G\/IL\/0BkjiN1LYYpw0qTX6GyqEG+Yf5q9HdQ\/Da6Pn4nzYeLN5d1DSbT5CYFA6riQLCZma9jTvk2fkVfdFOIcuICQRDw+\/34\/X5SqRSCIOTTa9\/4xjeYnJzk1KlT3Hfffdx3332cPn3asMHeaPro4cOH+dSnPsWf\/dmf8dBDD7Fv3z7+6I\/+iHvvvZehoSFd9dzTTz\/N2972Nj72sY\/xpje9iUceeYS3vvWtPPHEE5w6dcrUey8HQTXTynoLkclkUFWVq1evks1mOXjwIFevXmVqaorDhw+zY4e+8qgQsqzwxo6PlP23v73yWppaa\/Nty8maa0+Zra7KBIPVy+JS0yLjH\/sposeNHI6RnlxcE3yZqee4DnWTvjJpUPyv3PCJTUTpakQcW9I\/xmHD09e51kLHbsPV3YrqshOfX8bucyNMhnQvoynOjIr\/y+kEK9kke+v0DQ7nU1FSimTY76LZ33S49esaWu3IZ3cyGg+RUiR2BZtpFG4u+mY81y5F5+nxNBhKoc+tzrK\/rkV3vhDAsLTKLrGuYn1JTx24mk0xllghnE1wW0MnDbby0aReQ2whJEXmfGTO0AQ1o8hciS4YukZITXb6Pt1PoKe++PerGexBc35xsuzDZtPvDav6OKkOm12\/N07D5\/\/Ldb7zZf3Bihp+4T+e4tf+UH+Q26VLl\/B4POzalWuY\/upXv8rf\/M3f8J\/+03\/i0Ucf5bHHHuOpp55iz549FV+rEI2NjXz605\/m3\/\/7f09HRwfvf\/\/7+f3f\/30A0uk0bW1tfPKTn+Q3fuM3yp7\/tre9jUgkUhQ5vf71r6ehoYGvfe1rVd1LIbY84tFgs9mIx+P87Gc\/Q5Zl7r777qpynOWk1BoW51I1E896Xap9XpOeUDegqhB+PMrEx4qbYW0BL86dzaCqJKcWSQdcxvUcl4N0kxcMvNRMNXz6vThagqSv6yt3bA112P3e8r5tkkz6+iyS34nT7UaMZYh3BAnW1ZEYmcVWQJorWUjKmYoNlD6705B0ppUEXtFuOOXzcnSBnZ6goSptVI7R5vbjvZHGKyzO54r7EZJSbvyCkY3OYHSOwz7jyOK58BQn1hlZKKrKC6vGnnU+mwNZVXhFc24BG0+ssJiOU2d3stvXhFO0kVUVLkXmDUknKWe5Hg8Zkk5USjOTihqSTqbTyZE\/vQdP69pnPbucMk08q9cnaOwz4bRsstfHLM7+oHIPD9xMtemh3BC4xsZG3vWud\/Gud72rajPV0umjo6OjzM3Ncd999+WPcblcvOIVr+Cpp57SJZ6nn36aD3zgA0W\/e93rXseDDz5o+l7KYcuJR0u1pVIpFhYW6Ozs5ODBg6bH92ooV9\/RMDee5MBt62nEqnEwGyAa7F5LkU4pzH5hmNXvrt1ByZEEyUsTqH43ksuGT3TgPLqL7HKE7Mxy0bH2liCi0446vbzmOhryxX+Dhk9nZzNKOmNIOq6eVqTVRM4PTgeZljpcSQl1MYIMuFcgzSqiKDKdgJQsACodXmhw6Ecf51bn2FvXlCeCchhYneFQoA2nwciD58PT3FahyfLsyhTHDVRpnZ4As6kI\/U29ZBWZS5F5UopMq8vHzhtpMjNu2LKqMFAhDWXGuy2tSAxFFw3Tk+Uk1T3ehnxUmJAyXFidI21T6XHp\/x1Ws0kW0wlDldxyOkFUTrPfoE4lH6rj2MfP4AiUJ385bt7v0Ndk0sXZ7AbSRJZDlm3MjVeOiqD6BtJSuxyzpKM3ffSpp54CoK2t+G\/W1tbG+Pi47vXm5ubKnqO5WteKLSceVVUZHh5menoar9fLkSNHarpOOSm1hsmrMcBYmGCE2gezmXepluIOht\/7feRxfYGA1BZAjKZwLKWQiCNN5lJf9kY\/jh1NqJKMqqhkZ5eRFvWv49m3k3RpD0\/pMQe6SY3OGtZ8PIe6SQ3PGDaFZrsacM6sopZJBwqKQqcXRqLQW5eTVs8oSRLJVfb4GvHabu52zycXORJo0yWCahZ5o8U5X18yuE5GkbmaXM6\/lstmL5J6z6WiTCbDJOQsd1ZQt80pKcP7MeMurSngjCKLUCZBOJsyJIuEnKXJ5c0T0Wwqwkwqiku0sfvG32NFTROXMsYRZ3IVmyAa9kGljvk4+fGXY3PrL0HJbBYzYmo5kcXVaK4WpCppo97sPMwo3+IR84tCLc4FtTSP6k0f1VAqVjAziK+Wcyphy4lnYGCASCTC3r17mZ+fr3yCDso1j2q4fl7fRdkcbq2kOjkmcO0\/fwslqX9spqsex\/QqQplajRSKIoWieI\/uInl1CldXC6KnnejELLbV4s+lYg+PdoxRzUcQ8B7pNTYCFUDpbsIxrh91IQpcj8CeG5ZG9U6oxwMODxlF5nJ0gZiUJqPInGnq1b2MmZEHcSnDaCJkuMhHpTSTyXCFrv2c59oRg3SgS7RR7\/BwZ0NXvsZh87lxpRS6vfVALiJYlVKGMmczZqBaQ6eRAm5JSZFVJMPXmkyEcdnsRTWxHQWNqhlF5qfLE\/jrA3gNvjtmpNnpe4Lc9aF7EOzGu3i321x6PLuYwtZT+Vglq2ATVSo9z2aVb4vT5iOyar3a4vF4TXJqvemjWl1nbm6uqG6+sLCwJqIpRHt7+5roptI5ZrDlxLNnzx7cbjcrKyvMzJiTTpZDIqK\/ex96Tl\/We+th5LcmEPrnFaY+\/WP90+0i6VY\/rsmw\/jFOO549HXki0HpnbIDY7Mfd3oScziI67MYNnx4n7q7Wyk2hHcZ1IcVlR2wOYDMgHaHOg6M5wO6x8psNp2ij1eXDIYjsrWtmRc1wfXURl2BjT11TXj4dUTMspWKGu31tFLaRhDmkpIllkhzy6z9QZqaFLqkpsoqc7+x3ijYOaMThhYV0jKuxJRyCaBh9jCVWqLO76DGYpDoaDxFwuGl36qeZrsWXaXX7aTYQUJiZcDoaD3Eo2Ibf5gJvThY+eUOc0eutJ+jwcD2zyg63H6+BgCL7hibu+n\/O6P57IZxBEyNCATlqjgCyC0lcnZUXc1VxIpSZ9VOKXCbFHCpFPKVjERKJBB0d+lGuWWjTR3ft2kV7ezuPPfYYx48fB3LCrscff5xPfvKTuufffffdPPbYY0V1nkcffZT+\/v513deWE08wGMyzfS1jETQY1XhCMylkWcRmq00gsD6XaqXsDkqR7Uz92UVWvqeviFEDbmSHDdeMftrM3hxAdDtJXi4vIlCWomQEEdFhJxWK4t63E0UUSE4tYIvd\/MwcrfVgE0lendJ\/M40+7A6nYV0oG3TjtDtQp\/WVa9mgB7fdQUaHdCBn6++1OfM+aA2CMx+tpBWJS9F5wukkHfXNFZsj650ew1HY12JLtHkD+WikHMwo14aii+z01dPs1l\/AlzMJbg\/uwG935QbfRReJq1ka7e784LtKcmnI9d\/s8jYYLvIXInO5\/huDmtjV9Ao9nnpDJV25xtBmly\/v+iCrCj9ZGqW1oZGZZIRdvsayijrxXd0c7O\/RfZ1CqIqKo8Vk+sxA1VkIaTVtiniWhqdoPVBZqDB0Vv87XopKxCNJ0rojHqPpo4Ig8P73v59PfOIT9PX10dfXxyc+8Qm8Xi9vf\/vb89conT76vve9j5e\/\/OV88pOf5I1vfCPf+ta3+P73v88TTzxR1b2VYsuJR0MtYxEKkTBIteX+XcBfX+vVax\/qBtwYoX1zByVFHQz\/9g\/ITOhHYnJbACGSwm5Qu3Lv2UF2IUxmST+VKHa3oIRi+ZpP6gax2ABHRxOOpgCqAOnROZSowS5vZxMsRcim9KWo2fYAztUU6qp+b4Nn306U0VnkrP5rXU2G2eny64oIXKIdSVE53tCJx+ZgNhVlJhXBLdrZ42vEfeO8c6uz7Ktrzv9cDoOrsxyoM+62NzMtdCB8Q9RgIFg4H5vngK8538jqEG1F0dNyJs751XmCDjeKQTrrmhJlf12zoTgiPz\/IwFTUTI+OnpdcIQZWZzjT1Ju7Tt1NybaiqnR5gjR76vC+t4++XzxAxqDfrBDZpRTOVnPEI+jMSCqFmjFHUN60uQ6TF35c2aNNQyVVW2nEU8sQOKPpowC\/93u\/RzKZ5Ld+67dYWVnh1KlTPProo0U9PKXTR\/v7+\/n617\/Ohz70IT784Q+zZ88eHn744XX18MA2IJ7CKaTriXiMxAUAy\/NZ\/PW1GTWsV1KtYstnleNXVa799t9DVv+9pnfW45wpX8\/R4D3aS+LiBCj69yT1NGGfXNLt4cnOLONoCpC8MI7oceI52A0CpKeWUCI3JeBm6kLZ7kYcUyuohvecMxQVDY4ZiQr01Rl3bJf6oO1w+9lxQzqdliUuRuZZSsfo87cako4pCfMGyJy16xgp1wBG4yu8smU3kPNym1YSzK6GaHR66PU2IgqCudfaxGPOhqfWGLcGHe681Y\/qFAn+18P0vmIXclrC2awfDRZCCqdNE48tYE5yjd1crVYwEDxokCWBsYvmU\/hJg4hHVdUNERcYTR+F3Fr7kY98hI985CO6x5ROHwW4\/\/77uf\/++6u6l0rYcuLRYLPZUBSlar26htiqcU52dixB7\/71WIzXLqkGAVUVWfrWAjOff0r3KNUmkGk19lvDab9hzjmmf4zDhqdvJ8lL+jJJ7RitVqPEUzfTdYKAq7sVW70PwWkn\/tyw7mVUUUDtajQWEdhtePbtNKwLZRWYSgg3hAY6I6FVhQsVXJgFQSCryLyiJdenMpOKMJuK4BYd7PE14bbZb17HgAjynmsV5tZUcoXOS6GrvI5dEOkUvHQ25Oo3S+k4l6ML+B0uwtlk2ZSfpMhcy65WHI1wPmJ8z+aPmTd0C1d9Nnb89xO0HcuRkLSYwrbT3DNoJLQphdNkSs5WZ7KXr8F4WVQVla9+5NuA+d5Ao1Sbqqp59xYNiUTiJTcSoRDbhng0++\/SuRRmEI\/HGb2m3ygJMH45wt2vq\/0PmUkruMxt1tZASclM\/Y8LrP7omu4xasCDZBNwzeqnzexNAUSvy5BQ7I1+RJ\/b8JibDZ86x6gqUjSRi37GF7AFfShNPmRJxrYcQ43nakOyx4G93odqQDq2oBd7vd\/wfmJZiEqwq04\/EgpnksTsiqGsOJxJspCJc6zgmA53IO9MkJKzPB+exuH30u7W\/y5oyjWj14pkU6wIWcNjolKa6QpS6JiUZkFJVTgmw0Imxj03xoDLqsJEJsJCPEK9w80uXyMpWWI8sWLo4K318Rg1fZppDE2rMsOxRcN7lhts7PqTu2nYe7P+JkWzmJMLmEdmMWmaeOwtlR9gKZnF16r\/3VBlhU+\/9yH+4C+\/xhtaf5ds2lyWJpOSkGUFm23t2qZlejZC1fZiwZYTT2GqDXJ\/BCM\/olLMz89z\/vx5kI3F+VdfCAG1q0Ri8QQuEyF4KbJhB9f+83eQVjN4DnSDCOnJJZTozVSW3B5AWE3iiOjngV27dyAtrZKZ1CcmV297boDbjXHW5eDsaUNejRk2fGrD37RJpfJqHFbjiIBqExE6G0nYVeoEJ7KBQMC5sxklmSY9rn+M3OBHmo+yw2Dt0Aau7RT1m4CnEmFsomgsK84kaHP56bQFwJbrN5lLR\/GIDvbUNeES7cykIigVlGuzqQiyqtJj4Kc2n4qSVuSbirYy0OTSuw36XUJSkkgmVaS2swki3c4A3TdGGEzEV5hNR3GJdqJqFn+ZkQ4ROc1iKmaopAtnkixljBtDV7NJwqqxQjDbZufgn96Dr6P476WaXKQBJJMMlQmlTBFPcimBp7lyk6m0mMLeXX79UTIyH\/mPf8kn\/iZnkumpF8nOm39PmWQWT93aN6YRj7bhVlWVeDz+kps+WogtJx4NgiCsMQo1gqIoDA8PMzk5yZEjR3gS407ai0+vz6U6GAxQjfUNQOyCxMjv\/APIuZ188sqNqEwUcPW0onidRJMJ3BMr+l5q3PBSuzwORjN2jvSSuDIJpQaeBfAc7iU1NLnW5LPwmEM9pK5No2Z0\/g6yQhoZ72wcOSNhb\/Lj3NGEmpFIjc\/nG07dB7pIj82jpvRTDO59naTGFqg3SNFfjMzT4603VHgNxZbocPsN7W+uRBfY4S52uu70BOm8QR5JOcsLyQUyyRQ9Buq2a\/FlmhzGfSqjyRUCNpehZc9YYgWfzWnoJTeRCON3ewwbMaeSqzhtdk41dgM3B98tZxIE7G52+xpYyMQREPJTWsth7gaZGjWGLqRipBXJ8POR9no5+icvw9VQJrqwme+H85h0IkgmUqaaTNWVDJggHj1ptpyS+N13fpbP\/d\/v5X8XbPUQmTcvPErGM7rEY7PZiuqaVsSziTArMEilUgwODpLNZvOebkZyaoDVpTSybMdmq005V42Dj6qKLDw8y9z\/\/Gn5AxSV9MwymWYf7tkItoY6nB1NJKNxmF25KTxw2PDu20nigkEzp13Ee6DbcNhafrCb0TEmzEJVQO5pwjm+nPcrlZajSMs5FZvgsOPu68TW6CczNmdIOs6DXaSGpgwJ92x4ituDxuOez4anub2C\/c0L4WmOBNrLjkXQcDW2yCF\/Ky5P7pGYSq4yfyMa2lvXjFO0mVLJXVidY3cFWx8zcukr0QU6PUH8ov4x5fpvtMF3mgP2pcg8aSX3nXfb7TTY1xLmvJrEUWHA20QijNtmp8uAdFKHPdzxJ6\/A7i3\/3kWvueVGzsi4WswRj5FUvBBma0aqtHZzJ8Wz\/Ke3fpovf6\/YPxFX5Xk9hUglyj8P5coLVo3nFsPMMLhChEIhBgcHaWpq4o477sjXhioRT+6Y9Uiqzc3dUDIOxj76HNFn9GsaatCDbBNw3qjnyCsxkiu5ZjTVLuLp60TwuiArk7hoUKsJ+rA3+I0JxevEvaPZ8BgzZqGKXURu8RuKCFQBBLuN+E+vAOBoq8fR2oCSSJManwNJAbtIpi0Al\/XnAskqzAl2w8K1GfsbRVUZllcN6xVQflroTk8w77mWkLOcTy2BIrOaTekSz9nwNLdXkDBfyazQV9dkSJQD4VkOBVoNpdlXksv0eoKGJHgxMs8uX2MRCRaagu7xNTESX6anrhGP08AR20SDafp0gDs\/cg+iwZhvscGc+iw9H8fbpd\/wWoiUUzUV8ZgdqyWU3H82kuFXf+lj\/O\/Hn1lzbEJeBcwXfp\/6yU85EO\/OTx913+j3KlW0ZbNZ0um0RTybBaOIR1VVxsbGuHbtGvv376erq6uItMrN4inFyrxcM\/GYkVRnlu0Mv+efkRb1O5ql9gC2cBJ7qnyILkgKqiSTHZtHXo3j2NGIozmIHE+RHpvLRwiu7lbkaDL3Oz00+0FSDAe7OVrrQRQMm0KlOic2lxPHrH4ja16wUNDImp0Pk50PAyC6nbgPdCJ4nMiX9AkuIUEoAzu9+hsQM\/Y3KVniamzR2BnZxLRQSVW4El3IvdaNNWYyEWYhE8Nrc9JX14yIUNEnDsxLmI1GZkPJFE8dvBCe4WigbQ3BFZqCnl2ZwiHaGMtEaFQdZVODQ4kluj1Bw8gi+7om7vx\/+hFE\/XvOJrK4zfqpRc1nJQIt5uogosfcUmcvyPtmQinu\/9d\/yL8MXip77HJ8Fthl6roAPV278PnczMzMMDQ0hNfrpbGxEbvdXhTxxGK59eOlXOPZNhNIAd0aTzabZWBggPHxce688066u7vX9HnETUQ8s2PV1WjWovyOTVUh8nyay297xJB00jvrsS9EEXRIB0DpbSE9uZgr6APZ2RCJ86Okr88iunO9Nr479yHFkkgr+o2a7gNdEElCWL\/h093XiRxPkZ0zmBTaUocDEWFZ\/325unMFdCPBgq3RT2YuRPzZIWzxDEJrAM+RXhzdrXkb1VAakjLsNMiyLGYSLGXihsXt5UycqeSqIenEVanitNC4lGEourjGu63LW88d9Ts56G8liczToXFEQWAhVf4zyioyL4SNxxXIqsLZG+RlZIT63IrxFE+Aq0qE4\/UdFdy3pzlW38FtwR0cdDXS5vYzlVzlufAUlyMLpBWJF8LT7PE0Gqez3tbJyd87Y0g6ANJSZQsaDWrWXL+cnJRwNpmLOOyNlY9TZSXfO5RaSPCG1\/w+3\/3ZC7ozwaaXxky9dv4eBCe7du3i5MmTvOxlL2PXrl1IksTU1BSJRIKBgQG++tWv8uyzzwJUVeP54z\/+Y+688078fj+tra380i\/9EkNDxa4ogiCU\/e\/Tn\/607nUfeuihsuekUrW2luSwrYjHbreviXii0ShPP\/00sizT399PfX192XPNpNpGL67PLFRV1+6aVEVk7itTjP7uP+s3WDpspHcEcv05ejUNuw1xbzvi2KKuQEBJZhBsIvFnryKHY7h6WlF3t5JtKF6pvUd35eonegIB7ZiRWcOppNmuBpyhBGrMaHJpN5m5FeQVfWJy79uJvBJFWroZMakLEZIXxshOLCC4nCx4\/KwqIi6Db+RIbBkRKhTkV5AU4yL5TCpCVEobKtcW03EWM\/GKKrBQNsmZpl5O1HfS6q5jIhHmuZUpriVDZBWZmJTmWnzZkOBScpZLWlSlg6wicy4ya4q89onGaarnVqa4o2Etee30BDlZv5ODgVYGw7M4RTujaoyZVJnnRgTlrTu4\/YE7DF9Lg1JFFEMFEtOQXTRHZlIya6pxNbOQRLCLJKajvPqVv8Pj53KRTmNj+e\/b9ekrpl5fQ2GNx+Fw0NraysGDB9m9ezeBQICmpia+\/e1v8+\/+3b\/D7XbzwAMP8PDDD7O8bNAjdwOPP\/4473nPe3jmmWd47LHHkCSJ++67j3j85sZzdna26L+\/\/uu\/RhAE3vKWtxheOxAIrDnXbWALZQZbnmorjFxKU23T09NcunSJXbt2sWfPHt1u9lQ8g2LCr+nycwusZzxCKU9HV7LM\/dEgiQH9VJYa9CCLxv05toY67AEv6Wv6aTOxzoOzreFmrUZRSY8vIJBrY7M3+nHubEF0OYgNjuiToIlmTlPO0phwseamW4GRiMC9u43Wq9PgUVAFgaTHw0pCxkmaRlVFFAQGV2fZX6Gwfz2zSqvTa1i0N+O5Np5cwSs6DdVk0zcMMntKzDe7vfV5z7fpVISZ5Cp2QWQpHc97mxUiJ2GOG47VTioSY\/EQx4JG5CVxNbZUceTDxfhixWFyz69Oc1dj181fuosbcffWN9P6+7fR1KwvJy9FuaK9Hmw+c4IBs+ag0kIKuwn3aimcIZPOcs9rfocLYzdrkHqLbDqTpL7bS3jRXCZFr4lUURScTiddXV38n\/\/zf3jqqad4xzveQXNzM5\/4xCd4+9vfzne+8x1e\/\/rX6177e9\/7XtHPX\/7yl2ltbeXs2bO8\/OUvB3JO04X41re+xate9Sp2795teN+CIKw5d73YcuKBm8PgtFSbLMtcuXKFubk5jh07RkuL\/s4UjEciFOLck3Oo6pGaZ+sUVijT8zauP\/BPue5HHUg7gthWErr1HABnb1tutPW4fprK0XlDrmxQq8Em5vp8ZpYRHHZcfR2kFQVlaRXhhquDrd6HPegzbOZUXDbE5qCxs7TLgXtXuzHp2EU8+7tMqeQKhQaCquJJJNBoIeu2MyzHsNtzkzH19llnw1McC3ZiM\/jjDoRnORgw9mW7GJlnT10TboNjzBTbxxIh6t0+7nTfXMC1wn5boIEdgpuFTBxVJW+EWg7L6TiSQzQcjbCaTTGfjnFb0IC8bjSG3m7Uf6PIXIyWd1nQGnFVj0jrHx6j466dLJybw3QVogoptcNEoyeYJzM5ak4YtDC1zBv+\/Ue4NlPcd2bgFIWvyUFYv22uCKmEjlS7RFwgSRJ1dXV86lOf4tOf\/jSzs7NV13tWV3PZhcbG8ga68\/PzfOc73+ErX\/lKxWvFYjF6enqQZZljx47xsY99LO9wXSu2BfFosNvtpFIpfvrTnyIIAv39\/Xg8lQuSRiMRCpGMZpElO3ZHbZJqQZBRVVh9OsH4h79veGy6qx7X1Krx3JvDvSQr9dUc6CJVqR9mTweZ+ZW8EaialUgN50hKABw7GnF2NqEkM7ou1mDOWdreFED0OEle0VeliX4vjuYASQNFnuB2YO9oQrhuII6wifh3dbD\/yiT4PKiiQMilsppOYItl6PbW31C3zRgq4MBs0b6yfLucU3MpLkXm6fE24BOLa4KFhf2LN2TOAgJu0UZTmWhoMhHGKdppE\/WfAa23xqhx1kxjaEqVuR5fMoyqlICN7k\/cRdPB3EYwEDA59ROw+cwtNVI0g91v1nvNXKUglk5TqVqyeH6eX3rPp9aQDkAyqR\/R2HzmG0iN5NTlXAu0DI9ejUkPqqryO7\/zO7zsZS\/THaz5la98Bb\/fz5vf\/GbDax04cICHHnqIo0ePEolE+OxnP8uZM2cYHBykr6+vqvsqxLYinnQ6zeLiYn78tVnrnEoGoYUIL0s01xg1qorE7JdnWPrac\/oHOW2km3zG83PsIt793bkUlB5M9NWAObNQe4OfxLlR1IyE6HPnxACCQHpyMe+gYMZZWmrxY8vIZKaWdI\/JTUKVSI\/qE4qt0Y\/gsiMZkI7stiMEfaQKCE5QVBqT0IgXvF4SXhuTqRheu5OknC1bBM8oMiMZY\/8yM9NLAa7KEY4G2g3J64XwNEcr9BWNZCPs9t0s2iuqylhihZgg45Rgd10j12Mh2t11BAyiqvHECn6nh1a7vuzWTGPoSiZBDNlwFpHUbGffp8\/g776ZXnM0m1OpVXNsdillmnhUv7nmOq\/b2AZh9uw0J+79bVo6y6cpl5b0o\/+ssP6ZPBs1BE7Df\/7P\/5lz584Zji7467\/+a97xjndUrNWcPn2a06dP538+c+YMJ06c4POf\/zyf+9znar7HbUM8w8PDLCwsEAwGOXz4cFXnJmLmG7kmroVpbq+v8u5ATjq4\/ns\/IXFpPi9xXp1bxLEUy2fg1HovsoBxPSfow95QZ0g6gseJq8JANuw2PPt3GpuFAkpvc1FqrcgMVBSQWwPIQTfehIyU1L9vR18H6vU5ZINamruvk8zUIkrSoHG0p5VsKIoa0ic4R3sDtqyMPG8s3w56XXinZairQ7GJLDokliKr1Cs2drgDec+1gwYigtz00uWKkupzq7OGk0nBvJvzsWDxmIHcMLWb9aTnVqawiyIjiRDdniBNZRo78w2mBvWssUQIv91l2BiaIybo8ugLEpReD4c\/eQZ3Qed\/NZFJejWFK2gufSYbpK5L4W0xtzg7Avqf0fgTY9zxr95HOJ5g94EDZY+ZnZ1FFEWUMpu71fQSoB9tFsIo1eZy3bzHWsdeA7z3ve\/l29\/+Nj\/+8Y\/ZubP8d\/EnP\/kJQ0NDPPzww1VfXxRF7rzzToaH9Y2DzWDLiUdVVZ5\/\/nmi0Si9vb0kEtVLns308GiILlX\/llNTIsO\/9Q8oN3Ys2dkQ2dkQDnITOZ07W4hmktiX44bzc1w9rUiRBGkDfzMp6MHjcefn5pRDvlZjlMryuhBaAjCmn4BWAcHjwDm8gMQNgUJHrp6UHJvLqeIKIi+jLL33SC+JS+PGIoIDXbnpqAapRdeeHWRnQygJ\/c1EttGLmpEQpm\/uNkVZoUUWaXHmFvBwwM58JIuazkU95ZoxQ5kEq3LasDYSlzKMJVYMSSeryFyKLVSMql5Yna6YEryczkm8NWLSLHAybhtCMsNuXxMXI\/MV030Tcoxmp89QaDGWWMFvdxoSU3q\/m+OfegWOumKSqSYyUUIZMEk8sUzaVENodjmFw4SUWlVUnG3lo63h7w9zxy9+gEQ6913TmtFLIcsyHR07mJlZO39nfmUSv2niMRfxJBKJqiMeVVV573vfyyOPPMKPfvQjdu3S7y\/60pe+xB133MHtt99e1WtorzMwMMDRo0erPrcQWy6nFgSBnp4e+vv78fl8NQ2Di5us8QCMXTIvqVZVgZUfRhn61b\/Pk86aY+JpIokYzrEQYjyDe\/cOvEd7c42ZBfAc7iUzEzKUHdt3tyMms4Z9Na6eG2kyIzFCawP2gBdlXJ90ZI8DoS2IWCAikEJREhfGSF6dQiAnla67cz+ZWQN1m03Ee\/iGHY8B6XiO9ObSZhW85NJj84ak497XiTOeRTCQeDt72mhUHezHz4G6FmwuB4teuJhYYimdk5dOJsJkFJldHn3l2lI6zkLa2FhTk0vfHjBuVD23OmtIOoqq8lx4ioOuxjXR0C5fI\/ttQfbVtfDcyhQqKpciC4Qy5Tdpg6uztAueipY8TU5v2WhKQ\/pEHXd85tVrSAdAiZt\/TrMxc8V9AL\/HHEFlQyYHyi0mEZ1rNx0X\/uEit\/2r9+ZJB3L9gnpobi5PLuNz5nf+Rqq29aba3vOe9\/A3f\/M3\/N3f\/R1+v5+5uTnm5uZIJosl55FIhG984xv8h\/\/wH8pe513vehcf\/OAH8z9\/9KMf5Z\/\/+Z+5fv06AwMD\/Pqv\/zoDAwP85m\/+ZlX3V4otj3gg90fVPvxahsGZVbUBXPrpAmZcqlXZztTnrxD6h\/JdywCKQyTbVHezniOrpK7f3BU52hqwt9UjupzEnx82Nvm8MWxNNBIjHOohOTyNmtV\/6N17O8jMhoz7cxq8OFUBdTase4wt4EVejefTcra2epJOAb\/dlXObVlTEOg+O1npDWx+cdly72klW8InzHO41PoYceSUrRFWZjiDq9CJCgeLJllVoyUKLN7d4LNTbSCgiYjJNi1pXVgk3JyUQUfOeZ+WguUsbKc4SqsREPFQ0qmHNPSsyl3XUZBo0mfPpG2ag2u8m0hEWEhHqnR52eRsYCM9UnBh6LbvKLl+jYcSUeWUDd37wDIJOAV+pQh6dMVjQSyH5zO2FzXqvSStpnG3FIohzf3+RO3\/5d5BLUmeLi\/q1Sz0imFue4o52R8UJowBpnVRbubHX1abavvjFLwLwyle+suj3X\/7yl3n3u9+d\/\/nrX\/86qqryK7\/yK2WvUzqBNBwO88ADDzA3N0cwGOT48eP8+Mc\/5q677qrq\/kqxLYincDRCLRFP0kTzqIZLP1tAVQUEQX\/xkuIORn7ncVLX9L+Iar0XRVVxzelHUHIyjRhNkjw3iuh14erJ7ZzTk4sosdxOJCdN3mFczxGEXCprA4QGmY4grqW4vvs04NrdjrQYKRqpLc+HcQJpQPS58RzoQlVUEkP6KjlbvQ+hzkN6SD9tKLiduLpajElHFPAc7DZFTFwcM\/Tlch\/sonV4mlYxAD6QnTbGszFisSg7nX6CDg+XIvPs8jfh0Um9QK5+4rO5DJtZF1IxcNoMRyNoM3tuN1CTZRWZq8nQGmISBYFuV4BuV64+80xoArfNzvnIHL2eBurLOGifDU9zPNhhKJBQ3tjGnb9tPNo4LcimpdQel3FxvxD+dpNXNem9ppSMYvjxl5\/hv\/7Vt9eQDsDion6GwEjoVN\/mYX6sMvHopdpKI55aajyqkea7AA888AAPPPCA7r+XTiD9zGc+w2c+85mq7sUMtgXxaCjnXGAG1ajasmkZKWPH4Sr\/RUmOwrX3fstwR5XdEcQeimNP6x\/j7GpBiafy6i4lkS4q6rt627A1+HP1FAOhgVjnxtneWFlosM9YaFDOWbocPDck3kYpMWdHE8lLEyjJNKoAjq4WHPU+pOUo2ZlcWs6xsxk5lkQ2UMDZGv2IbqehT5zgdeHc0WhYz8Im4tm\/syIxZbob1piT2jIyPXhycm0BpgMCouRiKZuk01FXdoHOy6Xt+jUObexBi4EUejEdJyFnDIkpJmWYTIY5bHBMboLpbFE0JKsKM0qSmdVlGhween0NFW17EMD27h5u\/3eVc\/+egPnOddFvriE0u5Q0rX4z671W2LT3T3\/+Q37hfZ\/gzJn+sofGYjGCwWC+B6YQ5X6nwRU016OUjJvr40kkEjQ16asQXwrYVsRTa6rNjF1OIaJhaCxJ26uqQOh7K0z96Y8Nz03vrMc1HTbccXkP9ZA0mmmjqAg2kfS1aeRoEntLEKGxjnh4FcdiDM2H1LGjCWQ5V5DXgammULuI0NGA3ciJwHRUVexEIKggTS4i3Rg+Z2v04967g+TSKlI0oVtEdHa3IK8m8kRVDvbmAILdRnpkbVE3f9s+N862epKXDCbQ2kTcfZ1g0HsEub6qzgtjYK8HIOOyMScliEUidLsC1NldDKzOcMS\/1nyzEJejC3R5jMceTCTCeO3G83iW0wmictowlZeUsywI6TUO3DZBpEPw0NGwE1lVeG5lCpfNzsDqDHvqmvHbSkjTJuD97X30\/Zv9uq9VCFeTeSm106yUOpQ2TTxqvbmlS7zRP\/SNP\/kuv\/Lfcjt3o6xKe3t7WZKJRPQzG6rD3MY3bXIsQi2pthcbtgXxaKk2M2MRyqGaiAdgaSZDY9vNXYoi25n60wusPHpV\/ySXnUyDN+e3pgczc2+4oQC7PJGv+UiLq7C4ihNQHDY8e3dg83tITy4iLei\/Xumk0HKQfE4cPg\/qhIETgYmxCNgE0u0BqEBMzo4m4s9eBRVEhw337nYEl53sXAhpKSehdh\/oIn191jDd5+xpu+HvZjAKvCWIIIqkDfqBBJ8bZ2t9UT9QKVQR5I6GNRGTMy3TjQt8Lag2gUmviivjYUlO0S6Wz\/m\/EJ7hSKDNcPaPGSn01A2rHSPbHq0x1KhHJ61IDEUX84PiIBcNXYstE84m89FQ+E4ft5skHSmawR4wp2jLhtM46s2l2pSUySGQadlwPHUhHE1uvvyh\/8t\/\/OMv5n8XDutHL8FgeRsgo16epdgMUDlCMVK1FSrqXurTR2GbEI8Gm82Goiioqqrry1aKbDbL\/IxJz4obmLoWZ9\/x3BdXijoY\/u0fkJnQV5KpDT4UVcFpUM8R\/V6cLUFj0skPdtM\/RsjKCE4b8eevATlysQV9uZHWBWkrz8FuUiMzhot3ptmHPZ5BXdB\/0Bxt9SCIhukusc6NrTkIBjJwbCLufZ3Fi3dWLrquY0cjzq4WsourqFkDddvBnOza6BhnTxtSKIIS1TeKzBOTQTOr4HXhbGsgY3AMNhHPvk66Lk\/CDbl2ym1jNhMlFYmzy1OP2+bgqrxqaAYKMLg6wwF\/q2Fhf0ZN4Le7DC15zDSGxqQM02Vcum2CmD9PUmTOhqe5o8u4plMIadm8lFpaTpkmHrN1m8xCEndXZeLJRjP8vx\/9Bh\/4XLEtzOysfgTtcJT\/uyQSCRobGwmF1rp6hOJzeMwQj0GqrTDiqUVO\/WLDtiIejfVLdwB6iEajPP\/886SqkHYCXDu3wqt\/uY74VYVrv\/33Nyd+lkG2I4h9OY7NqJ6zswUllS5StJVCm1djqABzOcg0uBEu3DymcNSAvdGPo6MJ0eMkPnjd0H0629WAc2bVUEnn3rODzNyKoQLO0d4AikrWgHTEOg+2Jj8pg+Fu2G3Y6+uI\/yxn1S763Li6WlARck2nN8QWnqO9JC+MG1oNuQ90kR6pREytSKGoMTE1+xHsdkPSURwiapn35k7J7MILdV4Uu8CEU8aZcjKbiLDDXb4Z8+zKFMcr2PZciMzR52\/BZTBQzUxjqJamM3LgTslZrsWXuauhix27zdt5yFU8b3LC\/LGi29xylImkcFfo9lEkhb\/7H99fQzqQS5vp1XIkg9pmW1trWeJZis3SReWm93IRj6qqGyIueLFhWxBPoaoNcjnYSsQzMzPDxYsXc41S8kBVr3fhqTnmv+1l7rNPGh5npp5DbwvZmTBqxoQRqMG8GntzANHlgGn9kF5OZbCns8QvjCE4Hbj27UR02EnPLOX7g1RA6W3CMWbsLO050psTOxgQk2tvB9mZZcO+GseORuRMlqxBuk\/0e3E0+Yt84pR46qbfmyji3N2OozlIZmrRkHRME1OlVN6NGpO0pB\/p2hrqsLudSLP63nW4HHi6W+gengE84PaQ8NiYTa4ixVLs9jZgE0ReWJ3hjgquBs+Hp7mtwgTTodgine6AYf1oOrmKrUKaLqFKTCdX83ONXB3mfdfMzssBDKXvaxA0STwGm0AAJSPzoX\/\/F3zfQE25Y0f5Wk40qp\/V8PvLbyhGp4fo9r3W0EwUIJOSGBsdo7mlOe\/FptW0N9Iy58WAbUE8GgRBQBRFwzqPoihcuXKF2dnZvHN1Nc4FAOFQhv2\/8mv86pn7eH33YTpXVdRQQWOny06mwWNczxEEhD1tqNfmDHnJe6SX5BVjI1D3nh1kF8JF8uVSlKbE1Ey2yN3AtqORuEPF7XFjG9KPvKqqQ1XomXHt7SA9tQgG7tuO9gZUSTF0axC9LgRFzUdD9kY\/jh2NKBkp1zOUkW4q1ypYBHmO9OYUcEbEtK+T9PgCatrgvjuaUJJpQ9KRPXaoc5MeLhZ\/eJMye6iDujokl41JMY076WI5HS9rBgrm7HYGV2c5GGjFKRj4wMWWaXR6aSgjpdawlI4jO0T6CoxFPZ3mF7oYWXPjplk7SloPSlbG02ruHjxO\/TSfnJT4wDs+w19861F6enp0jwsEypPI\/LxBY7ZOGi6TTRNs9RGe1x+6qGFhbomx8TEcDgeNjY35+9CIR1XVn4saz5Y7F5TCSFKdSqX42c9+xsrKCnfffXd+XEI1Xm0AnnobsVSSL\/zLt\/iFL3+CE\/\/3j\/nD1Wc532ljsdWN7HHgnNP3EhPrPLh370A1mJ+DTcwt3hfGDEnHe6SX1Ng8skFKyLW3AzmWIjunvwim4gk8cQmGZrHV+\/Ae7sG5twOloAFQrHPneoYq9Mxo921EOra+HaSvzxqSjmtvB3IkUTQArhSOtnpEj7OImKRQlOTFcdLD0zkHhUPdeE\/sJXNjjLbefXsO9+RqTEYR05HeXP3IgHRcezuQV6KGLhOO1gacPi+2Rf3vieB14e1opidp57C3mUa3j6hH5KoS4Vp8GVlVkFXFlEHp2ZVpjgTaDEnncmSBHW6\/IelMJVeRVbXI8TrrtuNsMN9rEwyaJympzlytNrOQrDjFVINNR54txbI88OY\/4S++9SiQm+el13\/jcJS\/xvLysm60kTVo3PY1mtvD7929n3vuuYeDBw9it9uZmMhlAV544QX+\/u\/\/nieffJJEIoHXaz4CNTN99N3vfveaKaKF5p96+OY3v8mhQ4dwuVwcOnSIRx55xPR9GWFbEI\/RMDgNKysrPP3003i9Xk6fPp3\/w2QzEhmTapg8nGuJ6jsvPMO7\/\/ZB\/uvVR\/nVZ\/83P2hKkdjViOAs\/kI5O5tzvScGs3HEgBdXd6vxAm8vsJoxcjQ40kv6+pxhHSbT5seZVVCXc4ugHI6TuDhO5toMgqri7uvEe2w3jvZG4\/v2mSMmdrciD88aW+Qc7iE9OmeYpnPtbkeOpfLjHMrBFsz1ByWevYq8HMHR0YTnSC\/O3rZ8j4bgceLavcO410e4EQ1VsvY51J27b0Oj0zbkRArZIEKVfE5kt53M6E1CFVTwJxX2iQH2+pqQPA6u21O4HE5Ws\/obj7M6E0MLcU2KsLeuCa9Bb9FIbBmfzUmbuzheSTVXl9ZxNFXRENpmbucur5q31XG0rCXW7Gqat\/\/rj\/CVRx\/P\/06SJN2RAkb2OB0d5c8xSsPZvObWoFQii81mo7Gxkb6+Po4cOYLNZmPHjh386Ec\/4v777yeVSvGxj32Mv\/3bvzVsatVgZvoowOtf\/\/qiKaLf\/e53Da\/79NNP87a3vY13vvOdDA4O8s53vpO3vvWt\/PSnPzX1Xo2wrVJtsNa9QFVVxsfHGR4eZv\/+\/XR1dRURldlZPIVIob9L9Xg8DEwP8rvf\/J8ABL11\/PuXvY57Ow\/S5vGTHZk33C07u1pQEinjsQB5h2qDhVJzn66QEst2N+KcWkHVWUwFWUUFUlenURJpnJ1N2BsDSJEEmYn5fP3K0dYAqIbEJHhdONobyBjIl1UBHPs6jUmA3AKfvDpt3KhaRrmWnVnO9\/6IPjeuvg4Emy036lv3QnbclWx7KCAmA7j37yQ9OmdYP3J0NCIm0igh\/dSL4HMjemz0Lcng86IKAmE3zEVWcGVUdvkakBSZ85H5irWhs+EpjgeNRQuXIvP0ehvKEpPQXkUEE8tgN3B7LkRiIY7XZPpMMVk3yoZSOBqL1X6ZUJI3vf7D\/PPZwTXHt7Q0Mz29VrG5uqpPIvX19WV\/v7CgTwIZoXKaDdb6tWlCqo6ODh588EH++3\/\/7\/T19dHb28tnPvMZ3vWud\/G5z32O97znPbrXNDN9FMDlclU1SfTBBx\/k3nvvzXu3ffCDH+Txxx\/nwQcf5Gtf+5rp65TDtiOewlSbJElcvHiRUCjEyZMnaWhYWyytxqdNQzihX2+IxYrTK6uJGJ959Jt8Bti\/fx9Hgjt4y4E72Sd5EGbCRcfmJM6zxkIDzdHAoOYh+D04G40HqamigNrVhGNc3xkAINUZhJHZvI1OZnqZzA0Bgy3gxbmzBcH1\/7F35eFRldf7nX0myUwms89kB0LYwhKC7IsLUJRVRBQ3WrWtaBXXti4Va6tVq9LW2trWn6itYstiEBAJOyggJCwhkBCy7\/s2ySSz3d8fw1wyyXxnJsgScd7n4Xl07sydO5M73\/udc97zHgm6SmrgIkYViA1qcOBI0oFMAoFBCWceW5oNBLnAB6FcE0VFwF5S60mJCYWQxhvBhUnQUd0ASZOHrISqMIjVETQxBel8EIxXnGzAeXdtG3tD5FRKAQEgqb+wWAk4DmoboJaoAQnQFSZGSVcHpBIxrE47IhiRTGZzeUDH67yuRgyK0Pl16AaAsNjgiaejth0qP6ahftHiCHrSfLBpNmdjlw\/x2KrbsXDeb7Az66Tf57NSVlVV7A2WlFFDamhoQFhYmF8H\/RZbLYL5sP6Ip7uwwOFwwGaz4eWXX4ZKpUJtbW3Qdjj8tTCmj+7ZswcGgwFqtRrTp0\/H73\/\/exgM7Gs+ePAgHn\/8cZ\/HZs+ejdWrV\/fpevyhXxCPv1Rbe3s7jh07BolEgkmTJvnMq+iOvroWAEBVI7vLndrVVFZWIS\/vLNZ\/6wnnR8UPxG1Dx+MG02BEqpSwnSwm31cxLM5TXyB2y05tOCROeIrqDLgUEojUERBQpCMSQp4cAxAd\/a7WDkAoQMfJQo+s0xSJcE0knHUtPukvaaIJjpomcETazGt\/4ygj1HRiISQJxuAW+AACAVlSNOxlteC8NSa3G\/bz35nk\/PXIEo3gnG5y6qpAIeUtgAJeU6DrHhqLzvxKsqYnNKkhaGmHyMbeMAkjFIiIisDgMqcnGhIJ0CBxo7alCUqXEDFh6vPRUHVA0gnGm01gDM7SBgBEtuAXQbcteBcSUVhwS1F3eXZ7eStuuPEpZJ4rglarRUND73uPdQu1trZBqVSira33ZotyTzGbzSgoKOj1eHVzGSKDIZ4eRqH+hsABFwiTIgZ\/YE0fnTNnDpYsWYL4+HgUFRXhhRdewA033IDMzEzm2lpdXQ2j0dfixWg0orqa2HwGiX5BPN0hFovR3NyM3NxcREdHIzk5mTTo66uiDQAKK3L9Pi6VSlFb61\/Volar0dzc7PPYiZICnCgpwJ\/1OqDLifunzMYMwyBoa2wQdnerDdKORjEsDh1ny8lZ8o4oBaScEFwVWwYsVIZBoo9EJ7WY9lC3CQCIqlvQWe0hHLFRDYleDYFE5Llu4pqCsb+BUgG3QgLHOUJxF2zkMfy8FJwwQxWpwtCZVwG31QaBVAxZUjQEUjHsVY18ZCeKioBQISMteSAWQT7IcknIUhCrhbO6GSIiinMppeDEQrjLLmyABC4OWpcAWplnB9sRLkJphxVysRSdLifkIv8\/42CUcqdaqjEjwb93mT\/0SUrdl526JkjyO3\/O1sImTL7xcZwp9UTXUVFqv8TT0cFOgen1Or\/E0zPr0R1RUWq\/jxdXncUojKWuHEDvXh7W9NFgpy\/3BGv66NKlS\/n\/HjFiBNLS0hAfH48tW7aQ4697NvL3pbmfQr8hHoFAALfbjfb2drS3t2PkyJFBzRrvyyweAAhTSdFc5l8dZjabUVLiP71lMhl7EY8XBoMROTk5+MPWz\/AHACKhELePn4FFg9OQ4JAhPDw8gPt0cMPWgnGWlpwf5NZFNLMKw+WQmjVk\/chZ2wyJPhIdxwrglnlGG4hFInSW1YHrJnQIpmdGEq0F12mHs5aYhaSQQmKMoiOPYMcn9HA+4OxOXwcFixZikwawdV3oJfL3dkHY7QR7TUjQw11aDyGRppNYtBBabXA3EbWhCDnUGhXC2i9MXq0VO1DX0gyLLAJRAhlcnBsnWqoCkk62tQZDlXqo+pBqY41J8AehLDgptcvqgCIqOBWXUC5CY249xt\/wGIq6SZ\/1ej3OnesdiVRWslNqrCZNKuvBig7qmqogt0iY7gReBEq1Wa1Wvsenrwhm+qgXZrMZ8fHx5CRRk8nUK7qpra3tFQVdDPoN8djtdpw4cQKdnZ2wWCxBkQ4AdPSxxiMJZ\/\/wtVoNk3hYHk4AoFT63sAutxufHtyFTw\/uwoQJ4yFobMe9Y6djtEQHaUWzj4otmDHXvLN0aQO5iVQMjkFXWS2pyJIY1IBAQBqPCuQSSGP1nkZNAMIuJxz5lXAAgEgIWaIJwnA5IBHBdrwwYErMEWAcNqLC4QbtjtAngUCAyEMYJkPXmRK4bXYIIxSQxuogADyken7AnEirglAiIkUikIggH2AOeE3uRD0ERXXkpkI2wARHVRNZG3KFyyCUiWHv1ogsdLlhcIlgkHssW6wKIYo7WhAulsLhdjE947wuCm6JCEpT8IafwvDgyAQARJFB+rnV2yCKCC7iaahuwZTbnkFFo2\/EL2TUiOrq6pkekKyoora2FnK5HJ2dvdcWf+OvvYg0KNBZRBNPz5k8PV0LLvf0US8aGhpQVlZGrrMTJ05ERkaGT51n+\/btmDQp+AiZhX5BPG63G4cPH0ZYWBiio6P7VEzra41HpZcD\/jNtUCjYP0BWwRGg3W4lEgn2nz2Fg2dPAQCitXrcP2k2pusGQOsQQujiyDHXQTlLo7drtD8EY5Ej0ig9YoN8BjG53Ogqq4M8KRqdp4ohNqghMajh7ujy1KW6kWowKTGvcg1EHxMi5JBEBRAIBDuzZ1gcbHnl\/HW6rbYLdjhCoWdchSYCrjYb+zuAJ\/KQ6iLpaxJ4NgyiIloSKx8Si65zdG1IYoqCoNMOroGdBhLIpdCYNYgodAMRgEsiRJXAjobmJlgk4dBIPFGFR57t2RF3aIPvFwEQ1LhpAOBcHKR+ZM\/+4LIGJ0UuOVyKHz\/3z16kAwAdHez7JzY2BkVFxb0e90csXlgsFhQWFvZ6vKdEuTtk\/ntSfWDrkWrrOQTOarUiLCysTxHPww8\/jE8++QTp6en89FHAs1lWKBSwWq1YtWoVFi9eDLPZjOLiYjz77LPQ6XRYtGgRf557770X0dHRePXVVwEAjz32GKZNm4bXXnsNCxYsQHp6Onbs2NErjXcx6BfEIxQKMXr0aISHh6OgoMCvaoSFvjpTC+TsnTeVV3URvTbU9fb0fqpoqMNvv\/g3AGD61CkYIFBi3oBRSGgXgavzTUU5w6WQRNDO0hdm8QQYZ9DDEdsfpHF6OJqs4Ah1m9f+pvN8wd5Z28w7aAsVMkjjDIAIEEql6DjeO\/XRHcEo16BVwm13wFHGFlII5FJIY3SBJdyBBAJuNyAWwXa6DFynHWKtEhKTBu4uh4dUz18nHw1REZpYCKdRBXEw1kUBIjRpvAHOhjZwVvbi6lZIIFQpfFSHIocbZohhDtODA9CqEKCorQGRUgVcnBsigRAuU\/CeYC6rI2gptaPe1mvyJwstnTYE2uMX7SvC2Fsew4jRo\/0ep6aHajQav8RDkYhGEwU\/vEO6VLuDGI\/QM9Xmb+z1pZ4+KhKJkJ2djY8++gjNzc0wm824\/vrr8dlnn\/k4JPScPjpp0iSsXbsWzz\/\/PF544QUMHDgQn332GcaPD95QloV+QTyAx8LC7Xb3eRhcXyOedmcz81hXF\/tc1E1K7U6oprPm1jZ8cOIAPtj3JQDg+mFjMH\/QGIySaKEQiCDrcoOroZorwyBWK8lZPBwA2dDYgP1AiqGxsJ2rJA1TJWYNOIeLueC6bV3oKqn2pA5zCyGNN0KsUsBR3wpHD+uZoJRrA8wetwZCTSeIDIM4XIEuInUYtGihRzTkbGiD83xTrlegIAyXw9nY5pPu6n0iKZxKGcQVzfT7BaGUkyVFw15K2\/uItEoIAbiJe0UgFkEfa4LqLAeIAYdUiFJ7KxSm4Ae6ORo6g06JdTV1Bk08kUSmAQDytuchbcETsNnZm8aKigpmSk0u9\/8ZGxrYTiCsBtOqqirm+3S4moAAFNoz1dbTENlb4+kLAmWIFAoFvvrqq4Dn6Tl9FABuu+023HbbbX26nmDQb4jHi74Og+trxNNgZRfdqTkdDQ3sHVV9PfsY1XncU4Wz+\/Qx7D59DAAwdex1mBU7DFMS4xBZ3Q6uR41EGqOH29ZJyq4F4TI4IqQQUK7ROG+8GcADLRjDUJFGCaHiwkRRe0kNvFct1qogMUXB3eWAQCYNggTiYTtbTjaYcnolXB1d4Ag1XdBy6QDfAWd3gnO70ZlXBrfN7hEoaJVwtdlgL6nlCVSgDoMDHMS17KgRQgEUQ2L7TIT+ILFo4O6ww93MTsFxEhEEhkh0ne0msLC7kYgI2KODyA+dh8saeLyzF3aqptcDLAscADiZno3xS56G4\/ya4E+FBngW3+hoC0pKev+d3W7\/91BHRwfTpbp7FNLzfcxmM8rKev+m6toqIUIS87MA\/lVt3dP4P4SRCEA\/Ip6LHQbXV+eC8jp2SoqlTxeJRKiu9r\/ASyQSpgpGJpMxj4lEInIuyLG809if+S0AIEwmx72TZ+Lm+BGIaRVArlejs6iaNrk0qAGhAFw1W3YNqUetFtB4M5haTawertYOOBju2s6GVrg67ZAao9BVUAF5coxnCmtFPdwtvqnKoImwoh4CYoETqMMhDpPTcmkvCQR4P\/mwOHR2c1rwcVCIUHjmDHEudFY3QtJM1KtkEsjjDJekb0iaYISzroWs2QkiFBAq5XBX+N\/dK2OCr\/G02ToDpsS8kImC7w3yZ4EDAIc\/OYop9z7rs6Nn\/Q4BQKfT+SWetjZ2tsJgMDDGI7DXIFYtuLyuCPGBiIfhXODFD2H6KNCPiMeLvkY8HdbgIx6BACiqzPN7jLXzATyyQn+2G4AnF8xytLVYzH5zy55jFr+7Jn\/X0tHVib\/v+gJ\/xxcQi8WYlZKGJcMnYDiiIKpo7pWukg80w17TzM+48QdhZBhEyjB0kcXxbsabBOTJMegqpq2ExDoVBCIRL\/Pmi\/ICAaRxeohU4XC0WCGJCAuCCOM9MmgiEnDrlOBsXeAqiRSptzb0HUnAbbXB3mqFs74VEoeLV\/05G9rgqLpAxMIIBcQaJTl0L5j3AwB5UjS6SmpIGbtIo4RQIoaD6PnSxge\/u5YG6TQNBC+ldjR0+hUsfPvpcUy+59e9Hq+rq0N4eLjf1DcrpVZTwyYrlcq\/lxyVqWARQ3HlWSQoZzPtqwD\/DaTd6yo\/hFk8QD8xCe2Ovqfago94FJFidNn9E5XJxNamazTsuSaUfXlPy4ru0GrZx3Q69jRDi8WCrccO4cf\/Xo3r\/v1bLMvbiB2aDrQnaiCQSXi3a4p0JNE6QCiAo5wu2AfbONl5toL2r4s3wt3lgKPGzwLIcbCX1qGruAYikQj26kYohsdDlhQN+Fno+NpQgDlC4vYuiNoJIUlkGCQ6FV0bCpJ4Ea+Hq7oZwi4n4ObQVVQN26liOKoaINaqoBgeD\/nQWIgiw+jakEgIeZDKvM5AvVNmz\/3l9zs\/D5dMDE108FJqhSr454qigpxQ2tj797t59Q7c9cJfma+Jjo72+zgrpVZXV8eMUlgu1VVV1Uwlq1zuX2DhcNoRHkVHeoEaSDs6On4QxNPvIp6+ptr6UuOREka5ajW7T4fS7rMaygBank3lcaljWq2Wt1IHgLzKMvxyw\/sAgGHJybjeMQST1bEYaJdBbO298MoHx6CzuJqcXirSeobSkTtzkRCK5MB1imCUa2KDGgKAFy3YvEPtxEK4o6MQHqmEo7YZUn1kcLWhvADRUFQYnA4n3ATxQiqGPMEUUCnHJRqA4loIGJtcZ0MrBHIp3FYb3LYuyJOiIZBKYK9q8PHGE8glkEbrebUg8\/MFk4KL08PZaCU3H4IwGdwD9BBJgt97ButK7Xa4IdUGKaW2+d6Hn\/7uC9zz4p8hFoshFAr9\/vZYv9XWVnadKyYmGvn553o9bid8Fc1mk9\/UHSXDDosSw9rA3vAEaiBtb2+\/JA2a\/R39hni6TyENNuKx2+1obiCKuD3A+RmH4IVUyv5RUbMxLtY+grLlYBU2ASA8nH0tUoUcf92Vjr+ev675qZMwb8BoDHYoENbcBVe8Frb8cuYiCXiku67mdjga2Go8QZgMUpOGVNMBwU0LlSYY4axv9btICpxuiCqa0NVig9SghqvVBsWIBLha2mEv650KCaY2JE00wVnbDDcRDQki5JBqI8n+KgBwJeogKiIiGPQ2DfVxUIjWQqxRwtXR6VELEs7gQJAquEEW2MvrLnjY+YFQFQaxMgzNruAFAH2RUnfUWhERrGih273xz1\/9Fw+94XGFdzqdiI2N9ZuOZkUplIcYy3GalV4HPJs8f8TT1MSOIuWR9HrQ1tLhM2+HZZlzraPfEI8XXjl1IE+gtrY2ZGVlwd6Hme52AaH84dg7ZKq\/h5rrQe2MqKiOIl7qO3E6L1wLx3FIz\/wa6Zme8d5zpk3HhGozxqnN0Le6IHT1JoNg7G\/E+kiPKICw5Al2WmhQ0RBfGzq\/qFR4ohRRZDik0VpwTjc6y+ugSDBekvdzKWXgBABHqAUhFMAZHQVxEe0MHqgx1FHRAK7LDoFQBFdHF+RD4wCOQ1cPW6JgVXDBNKKKdUpAKIK9oh6C5MAd7vy19kFKLWgLPlUulInAuTisfvxjPP3Xj32O6fU6v8RjZ8iqGxoamMafrLQZRVZyuf+orbKSfe\/bBW2gKhi29i4cPnwYcrkcWq0WDofD5zf9QxEX9MsaD0AvvlVVVTh06BDMZgvsnX2oBznYuv32dnYTaGsre\/ff1sYms8ZG9vtRIT7VM0SRWXg4+4atbGnEi1+txc0b38aPvv0QH4vLUGwQw6nw7D3cAwzozCsjSUeaYIS70w4HoZQThMshizcGVbDvzCsnSUAapwdnd\/qtU7ha2mE7XYquslrIo3Xg7E4ohid4FtaLfb8YHaRCMcRU+lYmgdOghJjh99fr\/Sg3AosWnJODo7b5vINCKTpzy8DZ7JAlmqAYkQBxtA7ygZbA3+fweHSepd9PbNaAc3F8w6\/EHLyirS9Saq6rD8QTIcFbj\/+nF+kAgELhXyxA\/a5YQ9xYG7329naiFus\/Uu\/q6uKnH\/dEs42OgN0OYOrUqRg0aBDcbjecTieOHz+Ojz\/+GH\/4wx\/gcDj6FPEEmj7qcDjwy1\/+EikpKQgPD4fFYsG9995LetgBwJo1a3pNLBUIBOT60xf0m4ine6oN8Nwo3WWGgGcXf\/bsWZSVlWHUqFEIkyn7ZK\/TYGXvbqibmZJwUq+rqmK\/HyWlbvRjCRLMMdZOEAAE3aZXNrS1YPWOz7EaHkPTH9+8EJNa3RisUkDR4j8dqRgah85zFYGjE7GIjoaEAiiGBC6gywfHoKuYHrjmdZfuWYuSmDUQa1VwWW2wl9Z66j5BpajqwXWyv0NXmARuuQSSasLsFEHWYRJNcNY0+e+LcrvRVVQNQbgcEl0knI1tUAxPgLvL7uOg0Kf381P3ieiDOWiwg9oAgDSl6wZnpxMvPPUv7M73n9Jsamr2+3h5Obv2yEqpUZtHk8no93dMOZIYDHq\/yrfq5jKowR621tXhgFgshl6vh06nQ2VlJUaOHInq6mp89dVXOH78OPLy8nD8+HHMmTMH06dPJ2vF3umj48aNg9PpxHPPPYdZs2bh9OnTHnPijg5kZWXhhRdewKhRo9DU1ISVK1di\/vz5OHr0KPO8gKepv+cIbZZysK\/oN8TjhVAohFAo7BXxdDcRnTBhAiIiIlBb1tync9c0+7\/BBQIBM3xWKpXMnK5Op2VaaBgMemYPj1arYXZNy2QyModMERZl58FaDVxuN840VeNfX28AAKQNGII7UiZhlESDqEY7BG4OGGQkZ9oA58dBN7XBSYyDFoTJIDUHURsKYuCaJFoLd0eX31EMjqpGj1OCVAzF0DjA5fakoUpr\/c4UCkaQINQq4bTbIWkk7JyCTYklx3hSmtSQO3UEhAopP2PIeb7mJpBJIBtsgkAiQVdVA2QWbWBSHWiGvaKhF6mq++RKHXwtU6QKvDi5bE6UHnVj1k8egurQYbjdbpw8me37HMbfo6urC2azye\/Grudm1QsqPcZSplK\/J9ZriiryMAbjmK+zdznhcrohEl8QTiiVStx555244447kJqaimXLlqG2thY\/+9nPcMMNN+CDDz5gni\/Q9NHIyEhkZGT4POcvf\/kLrrvuOpSWliIuLo55boFA0KeJpX1BvyMeoLfAoLW1FceOHYNSqcTEiRP5m6svdjkSmQg1df6JR6fTMXX7JpOR2S1tMBiYN6deb2ASj9FoZBKPyWT0W9D0vB+bzDxNruwIi3JXsHUbSna0MBdHCz0uqia1BvfdeAsmtkpgkYkgYqRQgqkNiTRKCGUSupkzyBEDsoFmOCrpKZ\/CCAUk2h5TXMUiyAaYIAyTw3HeYy4YQYLQEgVHoxViomDvFgvh0kWQg\/eA8z1IZ0ppUjWqwTndvWyGAIDrcngaWUVCyAfHwNnU5hFctHagq7S21\/ZCnny+rtUjBccB0McHn2oThfVhWJyKXlacVgfKTophHjsBJo7DhAnj8eijj6Cysgo7d+7Cjh07sWfPXnKTxRL8sKL+lpYWZq8em6wqmWInlgCooaUWihgpbG2Esq3DjnCVnD9vT3HBrFmzMGXKFHAc1yffSoA9fbTncwQCATM69MJqtSI+Ph4ulwujR4\/Gyy+\/jDFjxvTpeljoNzWe7gW27pLqyspKHD58GDExMRgzZoxvl28fRiKoDeHMtBxVzKNk1kolW7kTFsYOj1Uq9uvUanbPEDWN0Gw2MYUOgUiJlS6sbm7EnvI8LPzvW5i84x282ZmDHD3QqbxQqBUmmQPXhmL1gMv\/QnrhSWLIk4LxU4tHV3ENSTpinQqicHlvOyGnC12Fnh4bZ10LwkYPBDhAlmgCGLb6gjgdnHUtEFEqMWUY5GZt4BRcyvkeJIJ0pHF6uDq6+AjH\/5PEkA8wo\/NMKRwVDbCdKvb0BykkkA2JhXxILARhMk\/dJ99\/3adTJYdMEXxDqMQQHEm5u1yQatgRj6PFjqw9bTjd2IZjx46hvLwcDocDcrkcCQnxWL78Xnz00QfIzz+DNWv+Dw8\/\/BCSknq7AWi1\/nvdKP811ggAh8M\/SbjdbmbNiEprR+rpiM\/r1+Ylnu7ipe6WOQKBoE\/1Htb00e7o7OzEr371Kyxbtoxch4YMGYI1a9Zg06ZN+PTTTyGXyzF58mRyfk9f0G8jHqfTidzcXJSXl2PUqFF+F92+TB9VqNk\/MqPRgKIi\/1Y6VE5TKmXvAm02ooGTIQcN9H6snRngidpYuW+LxYyyMnaakdpZendQDpcTnxzahU8O7QIATElOwS2jJ+C6xkZEgp3Wlw+ORlcJbXIpVIVBHBkeUL4clFw6Tg9XczucRE7f06Nj9HHPFobLIY3VewqoZbWeuTyJBrhL6sjhbWKdCgKh0K+82wsOgDNWAwSyAWKkxLrDW\/fx12MlsDnQdX5onSIlAW5rJxTD4uFs6G3Sajf2wZXa5oI4IrilwlFngyzG\/7ntDZ2oLonCqJumoKOjA\/X19aivr0d+fj7kcjlf94iKioJEIsFNN92A66+fjt\/+dhWKioqxY8cO7NixEwcOfAOx2P\/vubycfQ9FRvpfaFm1JMBDcP5+Oy0t7PtLGkBJ7m0i9UqpvZtujuO+k6qNNX3UC4fDgTvuuANutxvvvvsuea4JEyZgwoQJ\/P9PnjwZqamp+Mtf\/oI\/\/\/nPF3V93dEviUcgEODs2bMAPMOIWKzfF9cCoYIYjkYQASVe6DnyoDsoAumLM0N3UI2s1PvpdDom8ZhMJpJ4WMcO5GWjPUyEXx87jjidEfeMux4TlNEwNrsgsns+nzg5Gp35lXRayawB53CSC3fQ8uykaE8dhyI5ZRjEURGedFU3uNs7L0waFQrgSjbDZeuEQqeCq9Z\/r4ckWge31QYnsQhBLIJ8gMnHoNPvtQchhRZFhUOokPN1HxYUI3oTtFingsToMWntKq6BcCDbHaMnHLUdEMUT3dfd4Gy1w1+3T1etDXU1RhiHDQHgSZXFxcUhLi4OTqcTjY2NqK+vR05ODpxOJzQaDXQ6HXQ6HaRSKZKTB2PQoIH46U8fRHt7Ow4ePIQhQ4YgI2Onj+TabrdDr\/df+Ge1RVD1H1ZKj8oguMX0hth2voes50iEzs5OuFwu0g2FhUDTRx0OB26\/\/XYUFRVh165dZLTjD0KhEOPGjbv2Ih4v67e2tvKsf91115G7\/A5r8MTTybEbTamemu71j56wWtnnpCIeVs0o0OsodQvVkEo1wOr1Oia5REWpyd2g1127tL4Gv\/9yLQBALpXhzutmYFxcEkZX1EFGkI4s0eSRElMml8G6SwdhZCrWRwICAW1bIwBcsRqI8qogAuA6\/zqJMcoz9qHYM+yuZ2Oo31OFySA1RQUkHWe81uNdR2xyxAY14Hb7FVNceEOBx9HaT7rSWd\/KCz\/kg2PQaQze\/qZPUmo\/6rfOynY0NMdCnzTI72vEYjEMBgMMBgM4joPVakV9fT2qqqqQm5uL8PBwnoQiIyOhVqsxe\/YszJx5E1wuF\/Ly8pCRsRM7duzEoUOHYTIZ\/RIPKw3X3t4OrVbbyy2eQmtrK1QqJVpbe\/+Wrc5GAOyoxZtq6zkEzlvP6UvEE8z0US\/p5OfnY\/fu3cw0ZaD3OX78OFJSUvr8Wn\/oN8QDeOo5OTk5UCgUMJvNJOkAfUu1Ufp6SmpJ3YzU8ClqbjtlQNjczFa0UddJuR1QTafUTW4ymZjEIxKJ\/O4UO+1d+ODAVzgyohynTuXghuGpuDU5DUM5JSKb7bxrgnRwNOyF1QF2+B65NClIQPByYldzO1ytRLFWIoJTr+w17dVZ1wJnnSfqESqkUKQkwt3eBTDSPcB5E9YIxYXGVwZkw+OAHJpUJTE6uFs76GsXCSEfFB3Q4keeHIOugirIbwlerdQnKXWPWllHqRUtnQOgG5AQ1MsFAgGUSiWUSiUSExPhcDjQ0NCA+vp6nDhxAhzHQavVQq\/XQ6vVQiaTISUlBcOGDcOjjz6ClpZWHDhwANu2fYUdO3b6GPiyvNwAj3DH32+d2niaTCa\/xNPQVgkRBjNf50219Yx4rFYrBAIBucHsiUDTR51OJ2677TZkZWVh8+bNcLlc\/HM0Gg3fWNtz+uhLL72ECRMmICkpCa2trfjzn\/+M48eP469\/ZXvo9QX9hngcDgcKCgowevRoVFVVkWklL\/ri01ZU4d+VGqAJhNWLI5VKUVvrn8zkcjmTXGQyGdPNWiAQkD1DlMsu1XRKRVGUK4NKxRZWUHUjAPx3sysnC7tysgAAAwwW3DtuBgaqjRhSVA0h1VxJyKV5nFd2XYphaoJwGRxhEogrm+lzDbSg\/chZT3QiFEAab4BIGQZnUxs\/EsITnXDMERGeNzwv4w5AFG5TJBz1LQAhbvD4vOnQmRdg7tKw867ebjciY4NXtPVJSh3WTfxT2AqrYCg0cf5NPYOBRCKByWSCyWQCx3FoaWlBfX09SkpKcOrUKURGRvLRkFKphE6nxbx5czF37i1wOp04eTIbGRk7kJGxA3l5Z5nvwwo2qT69yEj\/v4+yukIkUMTT7lvj8cKb6emLDVeg6aPl5eXYtGkTAGB0j+mtu3fv5l\/Xc\/poc3MzfvrTn6K6uhqRkZEYM2YM9u3bh+uuuy7oa6PQb4hHIpFg6tSpADyLVjB1kL7IqSsb\/f\/AKZIwmYxMIjCbzSgp8X9O1rx2zzH2qASz2czsKFYqI8jmUaoTmeoLoqauSiS0mIFFPGFhYX4jvsLaSqza8gmGDx+GkoIi3DX+BlxvHIT4dhGk7RcWVukAE5xVTUGksTSBTTW7LbbMc0VFwOF2QVzHTlcCfiIrN+cZAnceYq0S0gQTuC6H5z1ZEAkhTwocnUgGmuEoqQGcxLVHyCHRqIKLCrtNfNUnBK+WkkQFT1Li8yMO2s62oFM+CmpCidlXeCXAarUagwYNQmdnJx8NFRcXQyQS8SSk1Wohl8sxblwaUlPH4Omnn0RdXR127dqDjIwd2Llzl08GgeVAX1FRDoFA4LfWy7LhKa7Mx4DIOXD7saUCLoxG8DcSITw8vE\/EE6iBPiEhIagm+57TR99++228\/fbbQV9HX9FviAcA\/wcO1qE6WOKRh0vQVOk\/qjGbTUwi0On0TOKh5NKsee2eY\/7nvwMeBQ2LQEwmM9ra\/Bf2WMVUL6jiKUVmDgf7b0DVjSwWC86d6+0E7EV1dTWsnTa8t3cL3jv\/2JyR12FBUipMMiViims8jasM8Ck4yiEBwaXghEY1HG0dEHewxSfBNoaK1BGw5ZSA67RDIJdANsAMgcTji+Zq9kSkArmnZtVJERPOTx\/NLScJk1PKIVTI6JoVeqsBu8IkCI8Mvi9HGB5c14WrwwGJWoaWnGY4NGlQRbF7SS4F5HI5oqOjER0dDbfbjebmZtTX16OgoADZ2dmIioriiSgsLAzR0dFYtuwO3H77bThx4iTOnj2LvLyzyMjYwZRUO50uZsM3a3PsdDmgNoSjscr\/Rqa7qq17OaG7eei1jn5JPCKRiNTJexFsqi3KFA4wAoKoKDYRKJXs+gdVf6IUZlT+ljIqjYpSM48ZjQYm8RiNRjJFV1XFjpRaW9nOvRQiIti7aZVK5fdH\/OXJb\/HlyW+RkjICjsY23D1mGtIURmibHBB22\/GLLRpwNjudgguSKISxWjhrmnkVnl\/IJJDF6gOLG4bGwpZfyU8o5TodF+ThAgGksXqItUpwbg62k+wpuECQhKlVwu10wc1Q3Pmcq4fCzW7og5T6PJkEA0ddJ1qb2wDzRCiJNO3lgFAohEajgUajweDBg33k2ufOnYNMJoNOp4NGo0F5eTkEAuD225dAKBTihReeQ3l5BXbu3IWMjB3Yt2+fj3ejxRLt956lMgnhGhEaGfui7qm27xrxfF\/Rr4jHi2BHI3QE2UBKzeGhIheKXFg9Ad8F1GwfCpT80mg0MIknUKRE1ZuouhEVrZrNJlIkUVNTg9raOjxf4TGNjAyLwD0TbsAM\/QBoIUNEfQuEl4AokKCHq6zer0u3Fx7pdTg9LA6901i9wHFw2zrhqHTAUdsMUVQEpGYtOKcTncU1PrORgulVkkTr4G7rACixgQCQJPkf5OcyBJ9mc9R3QhQXXHTUUm2HbNA0KPqBrX93ubbL5UJjYyPq6uqQnZ0Nt9sNrVaLuro66HQ6KBQKDBiQiPj45Vi+\/F50dnbi4MFDyMjYiYyMHcyNFCUgEsjZv4HuqTZ\/NZ4fAvol8QSbagu2j4eaw0OBSjV1dbEjMmpRptxdRSL2n+Pi5\/ewFwGj0b\/sFPBEJtSOjvKxotIFlE1HeHh4rx9zS4cV7+zahHcApKaOQZwgDHMTRyHZGYawZt+\/q7cRNRBRcAMMQGFve5nu4BtDS4n+IgQXnUgsGrg77HA2NwMAXE1WftidQCqGbJAFkEkAiQi244wc7XlIE4yeeUL+zEX5ixfCbVLDcdb\/9yCODp4YXB3B9ZzVHa6HIvkGyC6RieSlhEgkgkajQWlpKSIiIpCcnIzm5mZUV1cjLy+vl1zb07x6I2644Xr8\/ve\/RUFBIXbu3ImMjJ34+utv+LpoU1MTZDKp37XA6mgA4P+7CCQu+CGgXxFPX4fBBVvj6XA1M49RxXWqT4fqb6GUMJSlR3Mz+5ydnezrpAiSIiUqlUhFJkKhkGw6pfylWAVZwCO88Dcl0ova2jpklZfj8\/MzhkYnDMKdI6dgjEwHpUMAkdsNN9WICsCVoIOokK6JSGJ0cLcFaAwNMp0nTTDCWdfC7FXi7E50ltRAnmhGZ06JZzhcVASstY0Q1rb5kKMsKRr2khrSnshTQ9KQMm6FpQ8RCRc47VPzTT3CRtxIDlO8mnC5XDh+\/DjcbjfGjh0LsVgMtVqNhIQEply7e\/PqkCHJGDw4CT\/72U9htVqxb98B7NixAxkZOyEWi\/2KjKqbyyBFb6sfwLfG0z3L0d7eHqrxXE0ELy4ILtXWaGUvkhSBsOTSAN25fLHjEKqrL24xp2oxFLFSpER51FksZtKanvreKJKMimL71InF4l7f3fHiczhe7CGqm6ZNw0ipDlONCbC0cBB39ngfkRBOcyTExfTwNk9jaAPcNqLGeN5yJ1A6Tz44Gl3FAYhCIfWo887XgxwVDXBUNEAETwQnjdZ5BAYikUcuTTloRyggjooI2Dukiu+D\/1eA32Hl\/npEjpkJsTh4scKVhHfeDYBeXo9Ab7l2a2sr6uvrUVZWhpycHKhUKp6EVCoVoqKiMG\/eLbjlljlwuVw4ffoMduzwpOS+\/fYIv2FudzSCtcVqbbLC5XKFIp7+hksd8VQ0sIu5LALxyKz9L1IaTRRTDeapqfhfeKljLOdcwPPjoBZzigSo0b6UgEMiYUcmlC8cS0rtBUWSVI0rJiYaxcVs+XFpdTV2nN2Ht+CZMXRb2jTMiR+BQXY5ZB0OONVhkJazU4dAcLY1ggg5JNrIXpY7PRGMjFuoCoNYFYauIv\/3oLu1A52tpZ6hcmfLIUswQqiQwVHd2Gv8BD9GIUDEpxiRAG0feni69+X0RPmeBmjGzSJTxFcTTqcTx44dg0AgwJgxY8iNFuDJuERGRiIyMhIDBw5EV1cXGhoaUFdXx\/e5eElIo9FAJpNh9OhRSEkZgZUrH0VzczN27dqNHTt2IvPwCbC2UQ11zdi\/fz9\/PTabDQqFAlar9QdDPP3GnRroW6qtvrYRLqK\/ofs5Cyv8N45FRamZtRO1Ws3UvxuNRub76fXsvgXKqsJsZneSWyxmZkOtSqUiLXio6Ku5mU0ClA8dVTeyWCzMY4Guh4pyA9l8dJehu9xufPbtHiz\/3zuYkv5H\/MaahX0d5WjSycAxXKiDmRgqioqAWBkWnFfa6RLavkenhEguhb2cjsC8NSTO7kRXQZXHWbu+FRJTFBQjEiBNMEJsVEMgFtLu3+fP1Xq2DFGG4FNi3r6cnijb3QTtdbP7PekIhcKgSMcfZDIZLBYLRo0ahenTpyMlJQUSiQQFBQXYu3cvsrKyUFZWBrvdDqlUCr1ej9tuW4y\/\/e2v+ObbPfjdhrtx22OTMXCUGd2FagpZOMaNGweRSASr1Yo1a9ZgxIgROHnyJBobG4NS9AKBp48Cnj6fVatWwWKxQKFQYMaMGcjJyQl47vXr12PYsGGQyWQYNmwYNm7c2KfvLhD65V0TKNVWV1eHb\/Z+G9S5VDoFbOf8d\/UbjWxLGJ1Oy4yGKIM9qm5CNXKxuqABQKPRMmf0ULUY1vx5L6h0YVsbu75B\/TAo2XcgwQKldqNk6IF8tkpbG\/DLg\/sBABaNDveOuwETI2NhbnFB2OUCBhgCCwTMGnBdjqAW98Dn0sLd2QVnffNFn8tR3QRHdRMk0VoIhEKINCqIdZHsYXfDPVNYOy3BqzFdHc5eUmrOzaF0bwsM42eSrhdXEw6HA8eOHYNYLMaoUaMuinR6oqdc22az8XLtgoICSKVSn2hILBZj2LgEJKfGYsljU9BcZ8WJfUU4tqcQHW1dkMvlkEgkiI+PR3JyMsLDw7FmzRp8+eWX0Ol0mDlzJhYtWoS7776beU2Bpo8CwOuvv4633noLa9asweDBg\/G73\/0OM2fORF5eHlMNe\/DgQSxduhQvv\/wyFi1ahI0bN+L222\/HgQMHMH78+O\/8XQL9lHi8EQ\/HcT6ado7jUFRUhIKCAsRYEgAcDngupVYKMOrVajU1F0fNPEYVyGkJNptcqMU8PJy96FK1GLPZzCSeQAagrJQgQIsgqHSZxWImyYV0\/CWiB7PZRBJP9++gsrEef\/jqv55rFUvwk5sXYbIVGKCUQsYY3iWNN8DZ0OYzNroXghUbxBvgrG8ljVEhFECe3Ldz8YQoEvLD7py1LXDUN3vOdd4lwW0KPpXjqLdBFHdhceJcbpzeVos2TSyclZXQ6XSXbBTypYLD4UBWVhYkEsklIx1\/UCgUiI2NRWxsLC\/XbmhoQG5uLux2u4+7tkKhgCFaihtuj8SM20bC7XbD4XDAbreD4zioVCrcfffd+Oqrr7B48WLMmjULW7duxYkTJ0jiCTR9lOM4rF69Gs899xxuvfVWAMCHH34Io9GITz75BD\/72c\/8nnf16tWYOXMmfv3rXwMAfv3rX2Pv3r1YvXo1Pv3000vy\/fVL4vEu3t07e10uF7Kzs9Hc3Izx48ejKj+45kZxOGHJT9QxKFBpQNYwNg+oEQvU69jKIuozsGxAAA8JsognPDycnFhKSclZ44o976lmHmM1lnpBedGpVOw+JrFYzHRu6HI6cKK+DH\/7xkNE04eOwuIh12GEUA1VY6fH0DROB0dVIykQgFQMeXxgsUEwnnFe4UIgKyDZIAvsZXW9z+VyXxAXiEUIG+6xTJENMHnGIZj6IKVuu3But8ONkq9tMF53PcQNDT7O0d45OpGRkVe1+dHhcCAzMxMymQyjRo26YhGZSCSCXq+HXq9HcnIy2tvbUV9fj5qaGuTl5SEsLIwnIbVaDbfbjZycHIjFYqhUKn49KSgoQFpaGlJTU5Gamtrn6+g5fbSoqAjV1dWYNWsW\/xyZTIbp06fjm2++YRLPwYMH8fjjj\/s8Nnv2bKxevbrP18RCvyKe7jUe4ALx2Gw2ZGVlQSwWY+LEiZDJZDjXRktivXCK2AsWtYum+m2onhoqtdXSwj5GkQvlkEst9FT0FRUVxSzWm81mpuWNx8j04lJ01OA8s5mOhqgITChk72qjoy3MNCUAWK0X7o+9Z05g75kTAIB4vQl3T5mJCZ1SmDiOWQwVhMshZQxm646ezgZ+zxUmg9QYFVC44HWYJkUQcgmkFh06si8Ia4RhMigGBO8o4B1x4O5yoeSwE+bxM3j3aK8U2Ztu8hbxdTod7xwdyF3+UsJutyMrKwtyuRwjR468amlAgUCAiIgIRERE8N+Rd9ZQdnY2XC4XJBIJ3G43UlNTERERAbfbjY8\/\/hjnzp0LOI6aBX\/TR72\/0541aaPRyPSZ9L7O32uo331f0a+IxwuhUAiBQACn04n29nYcO3YMJpMJQ4cO5W+oYBVtVjt7F00pvqg0FBUNUPY0tbXsY5RDdlMT+zNQJEjVySiBgFxO99pUVLAbNGkpNXunT6UM5XI5+b1SmwStVkcSD+t6S+qqsbeuEL8\/8DHCZHLcNf4G3GBKQkKHGFLr+YhPpYAozM+I7R4I6GyA8wo3JVvhxp8rGNPTcDkkOlUvLzt3RxciDH2I8kUCuDqcKD8ugOW6qb0OSyQSmM1mmM0e8YvXObqnV5per7+s\/Sl2ux2ZmZkICwtDSkpKv6o9SSQSGI1GGI1GuN1unDhxAi0tLZDL5fj973+P7du3Y9iwYfjyyy+xadMmzJ49+6Leh5o+2jMK7VnC8IeLeU1f0C+JB\/BEPeXl5SgtLcWQIUMQGxvrczzYWTy1rezdI7WYsXpqxGIxYRwaxuzoj4iIYKaSpFIpeS2UySdleUNFEBQpUY2AOp2OSTyBpNQU0VN1s+joaBQUFDCPUw27lChBoVCQ37s3Iu7o6sQ\/923FP88\/PjtlHOYmj0WyWAFNdRPpgBCM2ECkVUEoEsJeEZzCjYIwMgyicIWPa3Z3aPrQwwORAOXZUphS0wI+VSgUIioqClFRUUhKSuo12lqhUPAkpFarLxk59GfS6Q6O45Cbm4v29nZMmDABcrkc8fHxcLlc+OKLLyASiXDPPfdgzpw5WLZsWZ8IiDV91GTyKGWrq6thNpv5x2tra0llrslk6hXdBHpNX9Gv\/kpeRnW73eA4DmVlZUhLS+tFOgDQHmTzaFmt\/wVLIBAwoxqtVuNjEtgd3t2dP+h0OuZ1eG8Cf7BYLKR0m7Wj98z2ubj5PRQpyeVs4qHSJ99FSk1FQxqNmnlMIBCQfUwAOzKIjo4mlYasaPKr7CN4\/9xBzFr7Ou4+m44tEc2o1cvgFvv+nLxKMgoSs8YzWbS2mXyeIiVIApNJmQaqLpEQWktwYgBHqx0NHSaYRgUmHX\/weqWlpqZixowZSEpKgtPpRHZ2Nvbu3YuTJ0+isrIyaOmwP3R1deHo0aMIDw\/\/XpBOY2Mj0tLSeEHGkSNHsGbNGvz5z39Gc3Mz1q9fD7PZHJTc2XveRx55BBs2bMCuXbt6TR9NTEyEyWRCRkYG\/5jdbsfevXsxadIk5nknTpzo8xoA2L59O\/mavqLfRTxdXV04duwYOI7DsGHDmN3sHUH4tIklQpRU+a9VULNvjEYjMzrR6bQ+M967Q6Fg\/6gpU1GNRoPi4mK\/xwwGPZNAoqMtKCz03xyrVCrJYj1lAEqNSqCEFZSUWq2OJNVwLYQ9jUzG\/l41Gk0ARRs7FUmJLwBaZedt9MutLMVvKi8Ymt49\/gbM0A+ERiIHAszbkcYa4GwKoJbD+bHegYxDjWq4HS44CQLr1IZByOhj6g57QydqyjQwna8VfFf0HG3tdQcoLS3F6dOnoVKpeIFCsIPQurq6kJmZCaVSieHDh\/dr0jl79izq6+t9SGfr1q24\/\/77sWbNGixcuBAAMHXqVH4mWTAINH1UIBBg5cqVeOWVV5CUlISkpCS88sorCAsLw7Jly\/jz9Jw++thjj2HatGl47bXXsGDBAqSnp2PHjh1+03gXi35FPDabDd988w20Wm2vsbA9EUyNR20Ih7ueFZ2wZ98olWySoHLVVJMjtaOn0kEREWzFloeU\/ROPyWRiCh1UKhWZnqJIifqbUD9+s9lMNqxSVkKUgEKv9z+y2AtKlECl9\/wZlnaHv0ippcOKv+7ehE81UWhqasbc0RMwb8BoJDvDENHiu7OXDTTDXtEArpOeA+SRQhezn4MgR2MDwIjAk0C7amyorzPBMCQ54HMvBj3dATo7O\/mUXGFhYa9+GH\/3W2dnJzIzMxEZGYnhw4f32zECHMchPz8fNTU1SEtL43\/nO3bswPLly\/HPf\/4TS5YsuejzB5o+CgDPPPMMbDYbVqxYgaamJowfPx7bt2\/36eHpOX100qRJWLt2LZ5\/\/nm88MILGDhwID777LNL1sMD9DPiUSgUGDZsGAwGA44ePUrWIYKZxRMWxf541IJOqa+oxZX6AVALNvW7EYvZ7yeXswkrKopdrDeZjMxUm1QqJWsxFGFRQgeqhylQNEQp5bRa9rAxT82JTTzU\/RUdbcHZs\/4H7wG0vNtstqCxsQlfHDuIL44dBACkxA3AstFTkSrTI1wkBVdcDQExkgESEeSJpoCy6qDcqs+P2W4T0b5rtop2NLXGQzdoAPm8Swm5XI6YmBjExMTA5XKhqakJ9fX1Pv0w3mhILpfzpKNWqzFs2LB+TToFBQWoqqpCWloav2Hdu3cvli1bhr\/+9a+48847v\/N7BIJAIMCqVauwatUq5nN6Th8FgNtuuw233Xbbd7g6Gv2KeAQCAV\/ACmSbE0zEI1SwowyRiL2gU+9LmW5SRp7UPdLRwU612O0X1xdECQQoyWZMTDQzfScQCEihA0XK1DGLxUJGQ1QERi08gSahUgSrVtNpOIrQ\/PUVZZcW4telnpEHI4cMxQ0xyZhmSER0GyC2+RLCBeNQWlbN7OXpDqEAiuQY2HJKIElLYT6to6QNrY4kaBPjyPe8nOg+utrbD1NXV8f3DIWFhaGrqwtqtRpDhw7tt6QDAIWFhaioqEBaWhqvID1w4ABuv\/12vP3227j33nv79fVfbvQr4gF8p5BSBBBMxNNgvbhiNrVzp2TWlMKsoYGSS7NrKtTiSBEW1aNEpZg0Gg2TeEwmE5kSo8QMVKREWRBFRESQ8nWWCAQIXMOhSFQmY39HcrmcFEpQC4pEIsHpc\/k4mXsGq+ExNF00dgpujk\/BYIcC0i4XBBHSgLJqeXIsugpoQ1OIRZAPMMN2xlOTVMb6V7RZC1rRIRqOqBiz3+NXA937YRITE9Ha2so7EjQ3e0w2vSR1pXuGAqGoqIgXRnlJ5\/Dhw1iyZAleffVVPPDAAz9o0gH6IfF4EcivLZiIp8XG3pVSqi5qoaus9L8LFQgEzHqCUCgkd+30qAT264K1iekJitApCxS9Xse81kBSairio5VyZjLlVV\/Pfk+aYNkO4wBtYRQTE0NGUtSQvJiYaJ9R6y63G+uO7MO6I\/sAALfPvgXX2Y0YrdNC3dgFgbv3FxdMLw9kEshidBfGbwOI8uNK3ZrbAnvEaETq9OxzXWXYbDacOHECRqMRQ4YMAcdxaG5u7tUz5E3JXc2ZNsXFxSgpKcHYsWN5AUpmZiZuvfVWrFq1Cg8\/\/PAPnnSAfkw8gVNtgSMeq5O9sLBSJVSfTkREBDMaMhioEdM6Jin508x7oVKpmLWPQMPYqIZUipSoSIkyQA2U1qJmDVFET6UFKTscINAIbjNJPFTNKVAk1dHBrv9otTof4umJM5Ul+G\/2FgCASa3BvdfdiEnqWFha3BB1ueBO1MN2poTKsnocEPRqdBVc+G7cAkAX57sgt5xqgkM7Dsoodp3saqOjowOZmZm8HY1AIIBAIPAx7PT2DNXV1eHs2bO9LGqulOKtpKQERUVFGDt2LF+8P3HiBObPn49f\/epXWLlyZYh0zqPfEU\/3VBvVkR7M2OuSav87ZYVCztyVms1mplxap9MyiUer1TKJR6VSMYlHr9cxiYdynjabTcxGzkD9PVSaqLuFTE8IBOwfMCWlDhRdUKo1qqYWyA6HSlNS6T0ApDsDZYQqEolIJR3VIwX4\/m2qmxvx+vb\/AQAkIjF+\/KP5mNruMTSVt\/qPyITK8zN+ergpdKoVkEgv\/P0ajzdCYJkEZYDv4Wqio6MDR48ehdFoxODBg5mLtrdnKC4uDk6nk58omp2dDbfbDa1Wy9v4UFHwd0FZWRkKCwuRmprK31s5OTmYN28ennjiCTzzzDMh0umG\/il+h2c3+10iHnm4BDUN\/hcPvZ6dVqBUUgYDu3OX42jJLwtUaouykaGaVaOj2Q2pMpmMrLdQdSpqI0AtxlTzLED3y1ApL+o7AOgaDqUy1Ol0ZJ2Pqg9aLBbyOHVPq1QqZvTncDlxuqUG9\/z3L5i86U08VrUHB6JsaNHKL0ynVsohUEj8OiA4jRei1fqjDRDFTUNYPyad9vZ2HD16FCaTiSSdnhCLxTAajRg+fDimTZuG1NRUhIWFoaSkBPv27cORI0dQVFQEq9UalCosGJSXlyM\/Px9jxozh1Zu5ubmYO3cufv7zn+P5558PkU4P9LuIxwsq1eZ0uGDvOdq4B9SGMICxaaV2u5SHGSWzps5JhfrUYk4p0yIi2NdJ9ffodFrmbj6Qdc\/FNpaqVGwCDTRLhxpIR8vJ6bEPVCRlNpvJ9B8VSen1embE7Hktu7YYHW0J2uboQF42DuRlAwDidEbce90NGBlhRkKDFf4olTvvSr3r03KkzbkZsn42zqA7vKRjsVgwaNCgi160u\/cMDRo0iO8Zqqur43uGvHWhqKioixqhUFFRgbNnz2LMmDF8Wjg\/Px9z587Ffffdh9\/+9rch0vGDfkc83j8SJS4IRtEmj2T\/sakFnSKJYMZx+wO1yFGFUGrnTKW9qIZUk4mdorNYzOR4aVbDLUArAcVi9g\/aZKJn6VCyZauVvUibTGaSeKioj6plAXQaLiyM\/d0D9HdI9ToBbMIrra\/BJ7mH8LvCIsilMtx53QzMtCQjsUPCG5pKLeHY+Pdi7N3QhsmL+i\/pWK1WZGZmIjo6GgMHDryki7a\/nqG6ujqcOXMGdrsdWq2Wrw0FM2eoqqoKeXl5GD16NO+wUlRUhLlz52LJkiX4wx\/+0G8dFa42+h3xeEFFPMEo2jgpO0VDpcXIuhIh3W1tpcYhsBdIavdMRR8UmVEpBIqUNBotk3iMRuNF+8JRBErN0gkctbDPS1kUCQQCkjyoxSJQhEbdW4FqXYEkwdQ1a7UeGXynvQsfHPgKH+ArAMCNw1NxS+JIOA80Y3t6LYZMMqGwsBB6vT5oe5orBS\/pxMTEYMCAAZf12rr3DHEcB6vVivr6elRWViI3NxcRERF8NKRSqXpdS3V1Nc6cOYNRo0bx829KS0tx8803Y+7cuXj77bdDpEOg3xIPFfEUnC0O+Hqbu5l5jFq0qXoD1YtDO12zz0nJpak5PFTvD93Iyl4YKVIyGtmqvUBSakohRqU3zGY6aqHOS5Ed5dMHeOS77NfSEVprKzvy8zoasEDdlzqdjkz\/sfzsduZkYWdOFpaNfBEAYIrVoq2tDcXFxZBIJPwAs6ioqKu6ULa1tSEzMxOxsbEYOHDgFX1v74whpVKJxMRE2O123sbHayfjddb2egPm5ORg1KhRvE1WZWUlbrnlFsycORPvvPNOiHQCoN8RT\/dhcD0jHrfbjTNnzqDgrP\/6RXc0tl+cMzNroROJRKTMmpW68djB+I9qKLm0VCol00yUIzO1QFGqNUqj6+1J8IdAUmqqyE9NM6XqZoFGGlCLuF6vJ4mH6sMJtKBQmwwqugPoviyLha47UdJxkUiMxirPZiRuoAmjRo3ySTXl5OTA6XTy6i+dTnfZ1F\/+4CWduLg4DBhw5ex6WJBKpbBYLLBYLHC73XzPUH5+Pmw2GziOQ3R0NP+dV1dX45ZbbsHkyZPx3nvvXbZx29cS+h3xeCESiXx+THa7HcePH4fD4UBi7CAAJ8jXVzYUM4+xFhalUsnscTEY9EwZstFoZNY4jEYjk3gozzSLxcJ0rKZ2vyKRKMD8HsoFgE1K1IJLSakDpaZqatgLtUTCFnNER0eTZEelTCUS9m0vEolQUcEmdSr9o1QqSVVgIINVajPR3dTRH6joLyl2GJxNnk2cxqTkr8WbahoyZAisVitqa2tRVlaG06dPIzIykieh8PDwy5b2am1tRWZmJhISEnrZ+vcHCIVCvmcoKioKJ06cgMVigc1mw\/Tp0yEQCCCTyRAbG4t\/\/OMfIdIJEv02HvTKqTmOQ1tbGw4ePAiJRILx48fD0RVYBllUedbv41FRUcxFyWxmy34pEQA1L4ZqgKSOefPG\/kANZFKr1czamEQiIXfk1E6fiiC+i5SaStFRUmqK7AC6iE+dNzraQkYPVB0mOpqeR0SRYUxM9HeaTUORVoLxgtN0lKE3gXlTTQMHDsT48eMxZcqU82nOJhw+fBhff\/018vLy0NjYSDYY9xUtLS3IzMxEYmJivySd7mhoaEB2djZSUlIwfPhwjB07Flu3bkVcnMfb7tSpU7BYLFi2bBlyc3Ov8tX2f\/Q74umeagM8YeyhQ4dgsVgwevRoiMXigNNHVRoF2tr9Rxl6Pbv3g1IVUb041MJL7dqpdAZVb6F2vxRhRUdbmAuHWCwmnRComhKl9qOuldoEBHpPSnVkNBpJHztqVxoVoIufit6ojQRAp0AD9SRRdTsq4gYAXcSFcQjeiIeCV\/01ZswYzJgxA4MHD4bL5fIZ4lZVVUXW0QKhpaUFWVlZGDBgABISEi76PFcCjY2NOHHiBIYOHcpv+pqamnDfffchKioKOTk5qKqqwtatWzFw4EByPQjBg35HPF54F4dTp04hJSUFSUlJPCkFUrUp9ew\/PLUQUkRA7XQpFRm1Q6SO0aMS2AsnRayUjNxsNpMEcrFSaomEfa0xMfR8GErFRUUlRqOBPC+VDnO5qFqJiLwmapPhGeXOjkoC+YtRbgiBRhLLuAsbKo2Blor3hEgkgsFgwLBhw3waMouLi7F3714cPXoUJSUlJDH2RHNzM7KysjBw4EDEx8f36XquNJqamnD8+HEMGTKEHx\/d2tqKRYsWwWAw4H\/\/+x+kUilEIhEmTJiAl19++ZJEb3\/7298wcuRIqFQqqFQqTJw4EV9++SV\/nOM4rFq1ChaLBQqFAjNmzOg1ubSrqwu\/+MUv+HTp\/PnzUV5e3vOtrgr6JfG4XC6cOnUKADBy5Mhe6ZpAY68lEWwiuFi1CT0Ogb27phZlqqZC\/ZCpRZf6fJTEmNpxGwwG8jPSRX52+ojaBOh0OvL7oQQigTYXVA2MEjRYLGZyl0\/dI7GxMeTfjdqEeNyw2dccqOfE2eYhf6lcjAg13WdEwduQOWjQIEycOBGTJ08+P623Ad988w2++eYb5Ofno6mpibkZa2pqwrFjxzBo0CA+TdVf0dzcjGPHjiE5OZkf6261WnHrrbdCqVRi48aNQfX7XAxiYmLwhz\/8AUePHsXRo0dxww03YMGCBTy5vP7663jrrbfwzjvv4MiRIzCZTJg5c6ZPjXrlypXYuHEj1q5diwMHDsBqtWLu3LkX3Y94KdHviKezsxPffvstbDYbxGKx351goLHXLtGlJwKqF4caMU2lV6hCP9XgSF0L7YRAKZXYZE3tqL+LlJoiSZOJ3sVTtSqAHS7GxESTizxloBrIZ42SSgdKpVFEGhMTQ0bV7e3sexoAmqo9v4eoPkY7gaBQKBAbG4vU1FTMmDEDAwcORFdXF06cOIG9e\/fi1KlTqKmp4QnXSzpJSUmIjY29pNdyqdHS0sJfa3S0JzJvb2\/HbbfdBolEgvT0dDId\/l0xb9483HzzzRg8eDAGDx6M3\/\/+94iIiMChQ4fAcRxWr16N5557DrfeeitGjBiBDz\/8EB0dHfjkk0\/463\/\/\/ffx5ptv4qabbsKYMWPw73\/\/G9nZ2dixY8dlu+5g0e+Ih+M4qNVqXHfddcxenkDOBVYHe9Gm1Dl0g6T\/hU4gEDB3o55ivv9zelyw2eekduV0rxH7s1NRFPW9UPY83p0gC1RqiooQKOmxSqUiPyfVh0PVwABa+q3X0yk8Sg0XaGdMRTSB3LApUrLo4\/iNmsYYuL5zsfB6pI0YMQLTp0\/H6NGjIZPJUFBQgD179uDQoUO8kCAmJuayXcelgLf+NHDgQJ4gbTYb7rjjDrhcLnzxxRdke8Glhsvlwtq1a9He3o6JEyeiqKgI1dXVmDVrFv8cmUyG6dOn45tvvgHgGcXgcDh8nmOxWDBixAj+OVcT\/Y54wsLCMHToUAiFQqZ7QYeVjnjq29iLHWsHLhAImBGISqViRhkmk4mZfrFYzMzdNXXMZDIxFU4qlZIsulMLGN1xzzxEpogodVmgdBkV1QmF7NqQxUIPLKOiTIoAwsLCyO+IglarJQmPSm+o1ZEkkQbqqaFeOyhmOP\/fUZeReLpDIBBArVYjKSkJkyZNwrBhw2C1WqFQKFBQUICDBw\/i3LlzaGlpuWRGnZcKbW1tvOjBmwrs6urCXXfdhba2NmzZsiWgs\/mlQnZ2NiIiIiCTyfDzn\/8cGzduxLBhw\/iNZ89MhNFo5I9VV1dDKpXyVj7+nnM10e+IpztYEU8gVVtZbaHfxynLeo1Gw1xgqbQPVcyndtfejue+npNSThmNRmaqzTO\/h4qU2AsuRR6UgieQ99jFRkORkWrmMU8fE\/u8FAEEioba2tgprUBkSFkqBYoaqbpSeHg4Gamb1BeK9xrjldule9HQ0IDc3FwMGzYMkydPxvTp05GYmAibzYasrCzs27cPOTk5qK2tveq1B28ja0JCAi96sNvtuPfee1FbW4tt27YFVC5eSiQnJ+P48eM4dOgQHnroIdx33304ffo0f7xnloLjuID9VsE850qg3xFP9y+FFfFQs3iEIgFKqvzP4TGbTcybm0rtUOMJKDdrSqlEHaPCeKpwbjCwU0FmMzsyCzRUjuovsdvZfwuFgh1dmM1msh5FRUNUA2igPhyqhvNdxjcEIllKTRTotVTtKJAyMEJ0YYPjr4fncqK+vp6XIXvJVSKRwGQyISUlBdOnT0dKSgrEYjHOnj2LPXv24NixYygvLyfvjcsBr09cXFwcr0pzOBz4yU9+gpKSEmzfvj3gxuRSQyqVYtCgQUhLS8Orr76KUaNG4U9\/+hN\/n\/a8H2tra\/koyJs16Zkd6f6cq4l+RzyAby+P34iHULWpDeFwOP0vsFSUYTSyFx2JhJ3qoHpCqJ0FdexiXQKoWoyOGG1MkRJA1z0ogQS1oBoM9KhlKhpyONjEEqiIT6vDaBk+JcOmUkYqlZI0gw3U7V5RwSYttTpA\/cd24TMF08NzqVBXV4eTJ09i2LBhvAy5J7yuAMnJyZg8eTImTJiAqKgoVFVV4cCBAzh06BAKCgrQ2tp6WVNy7e3tPuakgCe9\/NOf\/hS5ubnIyMgIeF9dCXAch66uLiQmJsJkMiEjI4M\/ZrfbsXfvXkyaNAkAMHbsWEgkEp\/nVFVV4dSpU\/xzrib6rWUOwB4GR\/XxiMLY4ToVnVC9MVRNhYoGqF0bdYw6p9vN\/gFSC1hEBDvC0un0zIVer9eTCy6VhqM+BxXVmc1mkiCam9l\/D4WC\/TkDiRIoQrNYLMjLy2Mep76HmJgYnD59hnk8UBRGRVpU9AcA1voLG4rLKS7oDi\/pjBgxIujdtUAgQHh4OMLDw5GQkOBj1FlSUgKxWMxb+Gg0mktmTeMdrW2xWHhzUpfLhYcffhjHjh3Dnj17rkqE8Oyzz2LOnDmIjY1FW1sb1q5diz179mDbtm0QCARYuXIlXnnlFSQlJSEpKQmvvPIKwsLCsGzZMgCeTd\/999+PJ598ElqtFhqNBk899RRSUlJw0003XfHP0xP9mnhYRqE2K3tBc4nYyi0qkqB2\/NRNThuOshdI6hjL2w2g5eC05Qr7s1OkZDQamMQTSEpNRS1UxOfxxWMTDxWBUe7bFov5ov9egXL7VJ2Fqkl5Xks3h1LEQ9XClOGRaK65QIhXosZTW1uL7OzsPpGOP\/Q06vQamubm5vKzc7xEdLFOATabDZmZmTAajfzAObfbjcceewzffPMNdu\/eHbD+drlQU1ODe+65B1VVVYiMjMTIkSOxbds2zJw5EwDwzDPPwGazYcWKFWhqasL48eOxfft2n1T822+\/DbFYjNtvvx02mw033ngj1qxZ0y\/85Po18fgTF9isdjLslqnYCxpVN6B2nZQ1PyWhpRZP6hi10FDRB0VYXV1UzpxNSlRNKZArNdXDQ418oCLTQOMBqMgjEAFQogRq+qxCoSDHW4hE7O9XJBIFUNLRKSYqghscOwJct9vsckc8NTU1vNMIVW\/sK4RCIbRaLbRaLZKTk\/nZORUVFThz5gxUKhVPQsHOGLLZbDh69Cj0ej0\/WtvtduOpp57Crl27sHv37qva4Pr++++TxwUCAVatWoVVq1YxnyOXy\/GXv\/wFf\/nLXy7x1X139EviEQgE4DgOIpGo144uUA9Paxd7UaLkrqxdp1AoZBIB5WZNLZBU+kqtVjMXbJlMRi5wF9vf09l5sb5mauaxQCm6yko2YQdqLKWIh4oehEL2ghToeqnIIiYmGvn5bAIO9NqSklLmcSoSFwqF5MYnRjcI7eeJ57u6FgSCl3RGjhxJ+hp+V\/ScndPV1eV3nDU1Y6izsxOZmZnQ6XRITk7mSefXv\/41tmzZgt27d\/d709LvO\/qluMALfxFPINeCmmb2vHtWRED1b5hMpouSWVOFfqqwTtnaWCxmZrSn0USRaSQqwqIiwYuddEp9N0KhkHTCpjYIVAQWaEYPFbkGckqgXhtI7UQJMAIVrSnit1gs5N9HLb\/wmS61a0F3VFdXIycn57KTjj\/IZDJER0dj9OjRmDFjBoYMGQKO45CTk4M9e\/bgxIkTqKys5NPQXV1dyMzMRFRUFIYMGcKTzqpVq7Bu3Trs2LEDgwYNuqKf4YeIfk08\/mo8HVY64imtKfD7uFLJbrykZLQ6HVsJR+X9KQWdUskmF6o57WJHJVD9PYFcEqj0HU0QlHjg4lV0gRZiigwpQUegeTeUsoxq8Aw03yeQ7Qo1DDCQhY\/YeWHzc7mk1FVVVTh9+vRVIZ2eEIlE0Ov1GDp0KKZOnYq0tDRERESgtLQU+\/btw+HDh3Hw4EGEh4dj6NChfGbl1Vdfxccff4wdO3YgOTk58BuF8J3Rb1NtgH85dWsTWzwgU4hRWe0\/bWE0GplpMY0mCoX+e07JyIUqalILCtX7QkmQqa57lYr9OmpsdaDiNRUpUaCcB\/R6topOKBRedMpLq41Cgf99BwB6EafSe0ajkYykKBKNjragtJQdhVNNkxEREWTqUK\/X49w59gfubLpAwpdDSl1ZWYnc3FyfEdD9BQKBgHd2HjhwINra2nDs2DEIhUI0NDRg+fLlkMvlCA8Px7p167Br1y4MHz488IlDuCTo1xFPTzl1R0cHTmadYj5fbWSrs6gmUIpAqAWUMpt0OtkLCrXY0N3b7BoFJaulivXULlWn05EquoslCOp6AjWAUuRBjX3wOGyzNy1U9BY4DcdWwwWKAihHg0CD5agaulAoQkPFhb\/dpU61VVRUIDc3F6NHj+53pNMTDocDp06dglqtxpQpUzBjxgzMnTsXpaWl+PDDD+FwOPDaa69h7dq1pCAmhEuHfk083VNtjY2NOHjwIEQCYuga8du6WPtySqJMLWRtbex6C7VDphYxm40alcAmLCo9RaXEqLk2gaTU1OegVEeBG0DZ0RlFWIHIg6rDBDKEpGTjgVJplJKup89WT1Au5QMsg+F0XNgYOdBxyWxpysvLkZeXh9GjR1\/xbv6+wuFwIDMzEwqFAiNGjIBQKDxfY6zHyZMnsXv3bmRkZGDAgAF49dVX8d\/\/\/vdqX\/IPAv2SeLwLk1dcUF5ejszMTCQlJSEynP1jbOu6uM5yStpLFewppRi1KNMu2OwdPfV+1HVS0QeVYqJqUaxudC+oBZUi7LAwdjRkNpvJjQBFdhR5BPJ3o2AwGMiokIqKo6LU5DVTwwcBuhY2MNo3bRRljEB+fr6PLQ11X7BQVlaGs2fPYsyYMd8L0snKyoJMJsPIkSMhFArBcRzef\/99vPzyy9i8eTMmTpyI8ePH43e\/+x1OnDiBBx988JK896uvvopx48ZBqVTCYDBg4cKFvRqQly9fDoFA4PNvwoQJPs\/pz8Pcvgv6JfF4IRQKYbfbkZeXh9TUVMTGxsLawk6JQM6OJKhUCtUJz5IvU\/5mCoWCmYYKDw9jEohcLmeG+oH81Cgyo9IH1OJDTQ+lrPoDjZ6m5NBU38p3sdmhCDYmJpqMlqjPEiiSolJplE0TQP9tNJookrS6j7sGgGEjB\/nY0lRWVmL\/\/v349ttvUVRUBKvVGtCWpqysDOfOnUNqamrAaOxqw+l04tixY5BIJBg1ahRPOh9\/\/DGee+45pKenY8qUKb1ed6kMNPfu3YuHH34Yhw4dQkZGBpxOJ2bNmtWrz+xHP\/oRqqqq+H9bt271Od6fh7l9F\/RLcQHguXFyc3PBcRzGjx+P8PBwuFwuso+nw8VWYFFGi6z0jUqlYi7aJpOJuUs2m80oZKgV1OootLf73\/FbLBbm67RaDTMdFBERQTYhUjtjavGyWi\/OlZoSM3iiC\/b1sL4bgBZ6REZGkn5oVGOpVqsje2nq6thRaKA0HLVZoBpLATrCtVgs5D0tRySAC5GYV1zQ3ZamZw+MTCaDXq+HwWBAZGSkD1mXlpaioKAAY8aMuaIOzRcDl8uFY8eOQSQS+ZDOp59+iqeeegqff\/45ZsyYcVmvYdu2bT7\/\/8EHH8BgMCAzMxPTpk3jH5fJZExVrXeY28cff8zb3Pz73\/9GbGwsduzYgdmzZ1++D3CZ0S8jHpvNxk\/aAzx\/HJfLBbfbjYRhRkQxrD+qGkqY52Qpt3Q6HTMaomoclMya2g1STZdUFEFZd1CRgFarJRddKsVEiQcCqbFYCCQeqK9nvyclrgg0LI2SNIeFseswMpmMJEoqkvJ4w7E3BFTdUSAQkNdMuakDgLPNd0\/pT07dswdm8ODBcDqdOHHiBPbt28dPEC0qKkJBQQFSU1O\/N6QjEAgwevRovr65fv16rFy5Ev\/973+vileZd1PUMz25Z88eGAwGDB48GA8++KCPeKa\/D3P7Lui3xKPRaDBmzBj+\/zmOg1AoxI\/uScO7Xz+Eu343DhMWDIAu+kIdoqjqrN\/z6fV6Zg8HRS6UEo5aXKlxANQPl1qIKCWYRMK2c6FSQR6lF5WCvDjPOGoxpsQDEomEXOSpdCn1\/YhEIjI6oOowXq8wFqh6VWBVGptIo6Pp5lBKbQkAzdUX7nepXAxlFC1yEIlEMBgMGD58OD9BVCqV4syZMzh37hzCw8PR1tZ2UXWhKwWXy4Xjx4+D4zgf0klPT8dDDz2ETz75BDfffPMVvy6O4\/DEE09gypQpGDFiBP\/4nDlz8J\/\/\/Ae7du3Cm2++iSNHjuCGG27gv+P+Psztu6Bfptq0Wi2USiWcTieioqJw8OBBaLVaGAwGyGQyjzXHpAG4bfmPIBQKkX+8Aoe3n0HRvz9HS1vv9ITBwDa6pBoHZTI2EVCLK5Urv9hjgRbzvDz\/pBsRwf58RqOBKU\/WaKLIxZqqKVGLE+UeHRMTjaKiYuZxqjZE9T8F6qWhfsQ6nRZFRUXM45QaLlB0QEWUBoMB5eXsiIciPJM2Bu0tF4hHre+blNo7QdSbhh05ciRsNhvft+P1RtPr9QgPD+8Xg8XcbjdOnDgBl8uF1NRUXpixZcsWPPDAA\/jwww8xf\/78q3JtjzzyCE6ePIkDBw74PL506VL+v0eMGIG0tDTEx8djy5YtuPXWW5nn6y\/D3L4L+iXx1NXVQS6XQygUYuzYsbDZbHzIb7PZEBYWhoiICDgcDshkMiSNjkbS6Gjc\/cwxZGefwuefpyM9fRPOnMkFQEcnlHKI2ulS6ipqZ06lvajo42Kta9rb2ZEJ9b2YTCYm8QSSUlO1CUo8oNVqmcQjFovJaIiSqOt0OpJ4KFkyFYV6IjR2qpKSsYvF4gAybDZBA7RqMiluBNCtVHgx5qCFhYUoLS3F2LFj+c1ZX+tCVwpe0nE4HD6kk5GRgR\/\/+Mf417\/+hdtuu+2KXxcA\/OIXv8CmTZuwb98+xMTEkM81m82Ij49Hfr5nkGX3YW7do57a2tp+MVPnu6Bfptoef\/xxJCUl4dFHH8XOnTshEAjwpz\/9Cbt378bw4cMRExPDq3KOHj2K0tJSPpWWkjICL7zwHI4ePYysrCN48cXnERcXy3wvqv+F2lVShWwqr095lFGvo5RpVNqLWjiphZFyQggkpaYK6pR4gLKACVQbokQS1CIeSJhB\/Z1jY2PIWlcgc1Dq81DjHaRSKUl4psh4n\/9n1URZKCgo6EU6XgRbF6I+26WE2+1GdnY2urq6kJqayqed9+zZg7vuugvvvvsu7rjjjityLd3BcRweeeQRbNiwAbt27QrKdLShoQFlZWX876u\/D3P7LuiXEc9HH32EPXv2YN26dfjpT38Kp9MJkUiEZ599FhqNBnK5HPHx8ejs7ERdXR1qampw9uxZqFQqGAwGGI1GKBQKJCcPxjPPPA0A+M1vnkN6+hf4\/PN0ZGZm8VGC1cqWu1LmmSyZtcf7zP+iIBKJmGmdQHJpegooe\/dLkRL1+ajBeBoN25om0OAySiFGRW5arZZUnlHRA8BexKOjLcw0JUBvPrRaDQoL2Wk4apOh0+lQXMwWw1Ay7JiYGKb6EQAixFo04UKqLdiIh+M4FBQUoKKigvc5o+CtCxkMBnAch5aWFtTV1eHcuXM4deoUNBoNn5K72Jk5FNxuN06dOoWOjg5+kQaAAwcOYOnSpVi9ejXuueeeq5KWevjhh\/HJJ58gPT0dSqWS\/01ERkZCoVDAarVi1apVWLx4McxmM4qLi\/Hss89Cp9Nh0aJF\/HP78zC374J+STxisRg33XQThg0bhqNHj8LhcGDChAn44x\/\/iN\/85jeYM2cOFi5ciJtuugmxsbGIjY2F3W5HbW0tamtrce7cOURERMBoNMJgMCA8PBwDBgzA448\/hscffwzl5eVIT\/8C6embmAuHQCAgZdasnXBUVBRzQTebTcy8vdlsYi6e1IiFQKMSqE5\/KvqgUlfUImIw6JnEI5VKyetpa2OnIcPCqGF1tJdaWxubfAPVYSjyoNpehEIh2egXyEmjqopNpDqdhiQeQacc8CGewBFPd9IZO3ZsQNLp9Z7n60JqtRpJSUlob29HXV0dqqqqkJubyzdSXqq6kNeB2mq1Ii0tjTdqPXToEJYsWYI\/\/OEPuP\/++69aLeRvf\/sbAPSSbX\/wwQdYvnw5RCIRsrOz8dFHH6G5uRlmsxnXX389Pvvss+\/NMLfvgn5JPIDnxrrlllswevRo\/P3vf4dMJoPb7cahQ4ewfv16PPvss3jggQcwe\/ZsLFy4ELNnz0ZMTAxiYmLgcDj4SKigoADh4eF8JBQeHo6YmBg8\/PBDePjhh1BdXYPNmzdj48Z0HDjwNZ8iMJlMzAjEZDIynQJ0Oh2TeHQ6HZN4dDodk3iMRgOTeCwWM7MuEhnJJkiA9j27WCk1ZcETHW0hxQMUeVDO0gYDu28o0HkpZ2mPs0Az8zhV5zMajWQES32HanUkWSejPOkAwFrnu2kIFPFwHIdz586hsrISaWlppEIwWPQcY11XV9erLqTX66FWq\/tcF+I4DqdPn0Zra6sP6WRmZuLWW2\/FSy+9hBUrVlzVAnygZlyFQoGvvvoq4Hn68zC374J+SzwCgQCbNm1CTEwMfwMJhUJMmjQJkyZNwhtvvIGsrCysW7cOL7\/8Mn72s5\/hpptuwoIFC3DzzTfDbDbDYvHUBerq6lBbW4vi4mIoFAo+PaBUKmEyGfHAA\/fjgQfuR0NDIzZv3oL09E38bs0f6HEIbBsR6gdNHaOUd1FRGuZibjabmYVzlUpJpnOo4jWVvhMI2IsIJR5QKBQkEVJpQYrswsLCSBsiijwsFgtJPFR9MNDiTQkaLBYLKWWnotFwRQSaanwjR4p4OI5Dfn4+qqurLxnp9IRUKkV0dDSio6PhcrnQ0NCAuro6nDx5EoBn06XX66HVagPaBHEchzNnzqCpqQlpaWl89H3ixAksWLAAzz77LB577LHvverrWke\/JR4AiI1liwKEQiHS0tKQlpaGV155BdnZ2Vi3bh3eeustrFixAjfeeCPmz5+PuXPnwmQywWw2w+Vyob6+HjU1NTh69CikUikfCalUKmi1Gtx33z2477570Nraiq1bt+Hzz9OxY8dOH6UatUumaiPUj4Ha9VF9OlTzIyUxNpstaG3N83ss0E6fSpdRkQmVXrJYLCggZhpQaUHqu4uOtpDTQanPSQksALr5NtCsHOq1gUZ0U9ecHJ\/iM+4aAKIYxMNxHM6ePYuamhqkpaWR6cxLhe9SF+I4Drm5uWhsbERaWhp\/P506dQrz5s3DE088gaeffjpEOt8D9GviCRZCoRCjRo3CqFGj8Nvf\/hZnzpzBunXr8N577+HRRx\/FtGnTsHDhQsybN48nGu\/Oq7a2FllZWRCLxfwPQq1WQ6VS4Y47bscdd9yO9vZ2fPXVdqSnb8K2bdtJmXVXF3sHTamcqNdRO1wqpKcIi3JQMJlMzMVNLpeT\/TRUZEIptbRaDZN45HIZGQ1R8vVAnmKUOwBlaROoz4ka6BcVRfusBbLSoWpHMdpB6OhBPP4iHo7jkJeXh7q6uitGOj3Rl7pQWFgY8vPzUV9f70M6Z86cwbx58\/DQQw\/hueeeC5HO9wTXBPF0h0AgwLBhw\/Cb3\/wGL7zwAs6dO4d169bho48+wuOPP45JkyZh4cKFmD9\/PkwmEwwGA9xuNxobG1FTU4MTJ05AIBDwBKVWqxEeHo5bb12EW29dhM7OTmRk7IRSGYGvvz7YK+1EuURTkmjqGHVOqveHkrRSKQ26GTOaSRAemxf2Tv5ivd+io2PIaIgiQuq8er2erGVR0ZvZTHulUYKGyEgVSTzU+wYSUkQpTOjAhRSgRCbq5VrgjRy8i3ig0Q1XClRdyOu3NnToUP7ezc\/Px9y5c7F8+XK89NJLIdL5HqFf9vFcKggEAiQlJeHXv\/41Dh8+jPz8fMyfPx\/r1q1DcnIyZs2ahXfeeQcVFRXQarUYPnw4pk2bxttaZGdnY9++fTh9+jTq6+vhdrvBcRy02ig8\/\/yzKC4+h40b12P58nt57zZKYUZJoqlCNHXOhgb2osuauArQURRFSpQnmlarJaM6KmqhSJJ6z0Cmo3Y7+3OazbQ7NBW9BfJKoyTlgVypKTIM5IYtdvrWu3p6tHlrJA0NDf2KdHrCWxcaNWoU33ip1WrxzTffIC4uDgsWLMC8efOwaNEivPrqq1elcTWEi8cP5q8lEAiQkJCAJ598EgcOHEBxcTGWLl2KLVu2YMSIEbj++uuxevVqlJSUQKPRYOjQoZg2bRpGjRoFkUiE06dPY8+ePfjmm28gl8uRkpIChUKBWbNuwl\/\/+hcUFuZj69YvsHTpEr9us5RZp0ajYRbslUolcwH09P6wFzhq8aPUbhcrpaa8yeRyOUmglNCBek+LxUJeb0tLM\/MYJRn2yKGpNBw1XE9Jkgc1LVYkEpHvG0jm3Nnsm3rtPnnUqwbz1kj6K+l0R2FhIaqrq3Hddddh1KhRWLBgAVavXo3GxkZYrVb83\/\/9H+bOnYv33nuPFL2E0L\/wgyGe7hAIBIiJicGjjz6KPXv2oKysDD\/+8Y+xa9cujB49GlOmTMHrr7+O\/Px8qNVqJCcno7m5GV1dXVCpVOjo6MD+\/ftx8uRJ1NTUwOVyQSQSYfr0aXjrrT8iP\/8Mduz4Cg8\/vIIXSBgMbDNSahfLskwHPDt21qIbFsae+wPQERaV2qPqW9SiGBWlJutR1dUXJz3W6wNNLL04Z2mLhR46R9WVApmDBnrtxc5aEQqFaKz0FWF4xyF4Sae5udmnRtKfUVhYiLKyMowdO5ZX29XW1uLll19GamoqP0X0+uuvx9q1awNKmEPoP\/hBEk93CAQCmEwmPPTQQ8jIyEBVVRUeeeQRHD58GOPHj8eECRNw991348c\/\/jGcTifGjRuHyZMn8wXZc+fOYc+ePThx4gSqqqrgdDohFAoxceIEvP76q8jNPYV9+3bhzjuXYuDAAX6vgZr0SYkA9Hr2OATKWVutjiTlvFTqikrfUWMLoqOjmceUSuVFT1el7HA0Gg35Oan6mF7P3igA9HcU2ByUnR6lNigAnf4bGDMEji7flKXGEME3WzY3N2Ps2LHfC9IpLi7mbXu8G5rq6mrcfPPNmDp1Kv7+979DKBRi8ODBePrpp7F7926y7aAvCGZ6KMdxWLVqFSwWCxQKBWbMmIGcnByf51yr00MvBX7wxNMdAoEAOp0O999\/P7Zu3YrKykrExMRg69atsFgs+M1vfoNVq1bh5MmTiIiIwKBBgzBp0iSMHz8eERERKC4u5kcLV1ZW8tHI2LFj8eSTj+PkyWM4ePAAfvWrZzB06BD+faVStvqMkm5TSiSKlEwmttdaoKbTi23ypBa7yEg28QJ0ypBSygWq4VCihPBw9ncrFAovOpUWyFg0EClQ6cpE05Bej0UZI3Dq1Cm+2fL7QDolJSUoKipCamoqTya1tbWYO3cuxo4di\/fff\/+ydu4HMz309ddfx1tvvYV33nkHR44cgclkwsyZM302Ztfq9NBLgWtO1Xap0NXVhZ\/97GcoKCjAqVOnYDAYsHnzZmzYsAEzZ86EwWDAggULsHDhQowdOxYDBw7EwIED0d7ejtraWpSWluL06dPQaDS8TFsqlWLkyBSMHJmCF154Dnl5Z\/H55+k4deoU8zqo1BaVKqJ2f9RCbzZbmFFCYFdqtr0M9TmioqKYdQ3PMDX2Lp9SylGSZo\/bNZsAqOv12AJRYyHYKbpAox+oplSlUkmq4aIUZvT8C3Q4WtDWJsbYsWMvi1\/apUZZWRkKCwuRmprK\/\/0aGhowf\/58DB06FB999FHAJtPvikDTQzmOw+rVq\/Hcc8\/x4ws+\/PBDGI1GfPLJJ\/jZz352TU8PvRQIRTwMSCQSDB8+HAcPHsSgQYOgUqmwbNkyrFu3DjU1NXj99ddRXV2NefPmYfjw4fjlL3\/JCw8SExMxYcIETJ48GRqNBpWVldi3bx+OHj2KsrIyPjJITh6MX\/7yaXz88YfIzj6G3\/3utxg3Ls1HFkotrFSE4XazFzAqiqJJiR0pCYVCciGnUnSUfDvQZFFKKUftigO5XVPjKwLVcCgC1mrZk2sBWgwR6H2d1t6fVxIGnw7\/\/ozy8nKcO3cOY8aM4e+JpqYmLFiwAAkJCfj000\/J3rTLhZ7TQ4uKilBdXe0zGVQmk2H69On8ZNBreXropUCIeBgQiUR46aWX\/C4U4eHhuO222\/Dpp5+ipqYGf\/7zn9HS0oLbb78dycnJeOKJJ7Bv3z5IJBIkJCTguuuuw5QpU2AwGFBdXY0DBw7gyJEjKCkp4QvNXhPTPXt2Ii8vB2+88RomT55EyqWpPhKKsCiJMfXDpkjAbDaRxXgqRUcRAEVKcrn8olN\/1CRUgE5pUXWlQL1MgVJdFHkHqh1FiHrfq\/roKDQ3N\/f79E5FRQXOnj2L0aNH85+zpaUFixYtgtFoxP\/+9z9yw3S54G96qDf1azT6ioK6Twa9lqeHXgqEUm3fEQqFAgsWLMCCBQtgt9uxY8cOrF+\/HnfffTeEQiHmzp2LRYsWYdq0aYiLi0NcXBy6urp4J+38\/HwolUreSTssLAzR0dFYseLnWLHi56ipqcUXX3yBzz\/fhP37D\/gs0tQiRaXEWlvZNRyKBAI1Y7IW3PDwcPJ6qJoSlS4zGg3kqAQqRUeNJw8PDycJjR6VbSaJh0qlabVaMloKlGJqqendQ6UzR+Ls2bPo6urip\/jqdLqrsoizUFlZiby8PIwePZpfqNva2rB48WKoVCps2LDhqkVsrOmhQG8LrGAmg14L00MvBUIRzyWEVCrFzTffjPfffx9VVVX45JNPIJVK8eCDD2LAgAH4+c9\/zuePY2NjMXbsWEybNg0xMTFobGzEN998g4MHD6KwsJDvSTAaDXjggfuxeXM6Cgvz8e67dE7bcgAAM8xJREFU72D27FmIjrYwd\/QymYxcOKndPEUC1IJLmUtaLPTgOLoBlB1FUeIKai4SALjdbOltoOul0oaBVGkU6Qd6X6o516i1wNrsez9IZCKMGZeCyZMnY\/z48VCpVCgtLeXTvqWlpaS0+0qguroaubm5GDVqFJ\/Kam9vx5IlSyCRSJCenn7V+o2800N3797tMz3U2+LQM3Kpra3lo6Du00NZz\/khI0Q8lwkSiQQ33XQT\/v73v6OiogLr169HZGQkHn30USQmJuL+++\/HF198AZfLhejoaKSmpmL69OlISEhAa2srDh8+jG+++Qbnzp1DW1vbeccEj4npRx99gD\/\/eTVeeuk3mDv3ll4\/zOhoC7OnQaWi7VooUqIWXGoXR\/mlaTRRJNlRx6h6iclkIhdq6rN4F0AWqKbdQJ5nVDQUSA5MqfAGRQ\/v9ViU3iNDFggEiIiIwIABAzBhwgQ+7VtXV4evv\/4ahw4dQmFhIX+fXSnU1NQgJycHI0eO5P+WNpsNS5cuhdvtxubNmy+LW3YgBJoempiYCJPJ5DMZ1G63Y+\/evfxk0Gt5euilQCjVdgUgEokwY8YMzJgxA6tXr+ZnCv3qV79CfX09Zs+ejQULFmD27Nkwm80wm81wOp2or69HbW0tvv32W8hkMn6y6tmzZ5GUNAizZ8+CQCDoZWKq0bAnY5rNJmZfTCBSoqIoaudMOQuYTCayVkVFQ1TainLtBmiCpUhUpVKRBEAhUCqNUimKRCKatCR69EySslyp5XI5n\/b1zq6qq6tDUVERZDIZb8ypVqsvW1qotrYWp06dwsiRI\/l6W2dnJ5YtW4b29nZs3779kvXl9BWBpocKBAKsXLkSr7zyCpKSkpCUlIRXXnkFYWFhWLZsGf\/ca3V66KVAiHiuMEQiESZPnozJkyfjj3\/8IzIzM31mCs2cORMLFizAnDlzYDKZYDKZeCftkpISFBcXQyKRwOl0oqWlBZGRkb1MTPft24\/\/\/ncdvvzyy15zXajGUoqUAkmpqUmdFPFQ4oFACzXVWGo0mlBQ4H9Kp1IZQfbhUIatFouFfF\/KHNRsNpGfhxr9EB1tQWlpGfO4UqxFT\/oOZuS1RCKBxWKBxWLxmZXjNcv1jijQaDSXrHemrq4O2dnZSElJ4fvN7HY77r33XtTX1yMjI4O8Ly43Ak0PBYBnnnkGNpsNK1asQFNTE8aPH9+LLK\/V6aGXAiHiuYoQCoUYN24cxo0bh1dffRUnT57EunXr8Mc\/\/hErVqzADTfcgAULFmDu3Ln44IMPkJOTg9dffx0ikQi1tbU4duyYz3yTqKgoyOVyzJo1E7NmzYTD4cDu3XuRnp6OzZu3oL6+ARIJJaVWM4+ZzWamQ3QgKTVVT6HmFwVaqCk7HGqjHhkZSRIEJbCgiBsAamrYaThKKAEAdXVsabheryeJJ0KsQxN8NxnBjLzuju73ktvtRktLC2pra5GbmwuHw+EjTrhYWbPX5mbEiBF8PczhcODHP\/4xysrKsHPnzoCpzsuNYNKNAoEAq1atwqpVq5jPuVanh14KhIinn0AoFGL06NEYPXo0Xn75ZZw+fRrr1q3Du+++iyeeeAICgQCPPPIIRCIRP7Fx6NChaGpqQk1NDT\/N0TvOISoqChKJBLNm3YRZs27Cn\/+8Gvv3H8D+\/Qdw7lyBX0mnTMYmJY0mCqzJBNHRFpSVsa1AqMWYarakUi1qdSSZFqT6cEwmE2nESaXhKFeCiIgIctoplUqTyWRkWjFQgb2jsXfakZVqCwZCoRBRUVGIiorC4MGDYbVaUVtbi5KSEuTk5CAqKopPyQXrhtDQ0ICTJ09i2LBhfIHd6XTipz\/9Kc6ePYvdu3cHlLmHcG0gRDz9EAKBAMOHD8fgwYNRXFyM+vp63H777di5cyfefPNNTJ48mZ8pZDQaodVqeRKqra1FTk4OXC4Xv3vVarXn60zTMWPGdDz33K9x6NBhfP75Jmza9AXKyjw76Yt1pdZqdUziCeQ8QE3TpFISZrOZHA9NpQWphTLQkLbOTrZgITo6upenV3dQdbCYGHrmENWHo5CHo6m6N9EGk2oLBgKBAEqlEkqlEgMHDoTNZkNtbS1qamqQl5fnM7CNZRTb2NiIEydOYMiQIXwjssvlwooVK3D8+HHs2bMnoCIwhGsHIeLpx3juuedw7NgxHDlyBBaLR6lWXFyM9evX47\/\/\/S+eeuopTJgwge8jio6OhkajQXJyMlpaWlBTU4Pc3Fw4nU7odDqepEQiESZNmohJkybi9ddfRWZmJjZuTEdW1jHmtdCu1Gwll9lsJmsiVIqOUqVRNQCZTEY26VEEazDoSeKhiDJQgyflskBNYAVAmp0mx6XAXdM7PXSpiKcnFAoF4uPjER8f32tgm1wu50koMjISAoEAzc3NOH78OJKTk2GxeNwX3G43Hn30URw6dAi7d+8mXTFCuPYQIp5+jGeeeQbPPfccv8gKBAIkJibiqaeewpNPPony8nJs2LABGzZswK9\/\/WuMHTuWJ6GEhASo1WoMHjwYra2tqK2t5RsJ9Xo9n6sXiz0+XmPHjgUAnDyZjfT0TUhP34QzZ3L5a7lYV2qqJhJoAijlxEw1U1osFhQV+Vf1ASCJRafTgghaSHdhyuzVYw7KTqUFauikCDpWPwg2P9nBqD7WeC4G3oFt0dHRPuPkjx07BqFQiMjISDQ0NGDw4MG8Q7nb7caTTz6JPXv2YPfu3fzokBB+OLhqfTzvvvsuEhMTIZfLMXbsWOzfv\/9qXUq\/hU6nY+7sBQIBYmNj8dhjj\/Ezhe677z7s3LkTo0ePxtSpU\/HGG28gPz8fKpUKSUlJmDx5Mq677jqEh4ejsLAQe\/fuxfHjx32ctL0GpkePHkZW1hG8+OLzGDkyhdytU7021IJKzRoCLr6x1DsNlgVKliwQsH8Ser2OtOGhIrTY2BgyXUZFYRqNhlTaaRT+o4XLFfGw4BUnjBgxAtOnT8eAAQNQX18PoVCI\/Px83HPPPfjXv\/6Fp59+Glu3bsWOHTuQkJBwRa8xhP6Bq0I8n332GVauXMmnkqZOnYo5c+agtJRtfxICGwKBAGazGStWrMCOHTtQWVmJFStW4ODBg7juuuswYcIEvPLKKzhz5gwiIiIwcOBAfpyDt5t97969yMrKQkVFBb+oJycPxjPPPI2DBw9g587tfk1MAbq\/h1pQlUr2jtxkMpE1ESrlRdWjDAYDKTzo6KAkzeyZQgAdoQUyB6U+T6DxDmJn7yZLsVQElYZuZr2csFqtOHfuHJKSkjBjxgyMGDECWq0Wb7zxBt577z0kJiZix44dId+yHyiuCvG89dZbuP\/++\/HAAw9g6NChWL16NWJjY3n9fAgXD2\/vxQMPPIAvv\/wS1dXVePLJJ3Hy5ElMmTIFY8eOxUsvvYSTJ08iLCyM72afNGkSNBoNysvLsW\/fPmRmZqKsrIzfxScmJvqYmL7++h8wdmwqxGIx2QBK1SYolVegQnNFBVuVRkUWgWb\/UM2hgcZOU3LnQF5j1OcRCukmzq6W3sc1hsufZmOhra0NWVlZSEhIQHx8PH9P6nQ62O12bN68GfPnz8fHH3+MmJgY7Nu376pdawhXB1eceOx2OzIzM33swgFg1qxZIbvwSwyBQACNRoPly5dj06ZNqKmpwQsvvIBz587hxhtvxKhRo\/D888\/j6NGjkMvlSEhIwPjx4zF58mTodDpUV1dj\/\/79OHLkCEpLS\/k0k8ViwaxZN+G3v30RR48exptvvo4ZM6b7rbtQvTZUaoqKhgwGAxmZUGIGStEmkUjINBzV3xFoVDbVG2Q0GskoTCRi17M84657v\/a7SKm\/C6xWKzIzMxEXF8dbzXAchzfeeAP\/+Mc\/kJGRgZtvvhlPPfUUDhw4gIqKCowfP\/6SXsO+ffswb948WCwWCAQCfP755z7Hly9fDoFA4PNvwoQJPs8JTQ+9vLji4oL6+nq4XC7SUjyEy4PIyEjcdddduOuuu2C1WvHll19i\/fr1mDt3LqKiojB\/\/nwsXLgQ1113Ha9a8jpp19TU4OzZs1CpVOA4Dp2dnRg3bhzCw8ORlDQIDzxwPxoaGrF58xZ8\/nk69uzZi7AwBVmboNwOKMGCyWQka06UlxrVGxQdbUFxcQnzOEUOBoOBrElR6Uij0Ugep2xrEi2DYW\/rTWpXur4DeL6fzMxMxMbGYsAAz5h3juPwpz\/9CX\/+85+RkZGBkSNH+rzmchhmtre3Y9SoUfjxj3+MxYsX+33Oj370I3zwwQf8\/\/esRa5cuRJffPEF1q5dC61WiyeffBJz585FZmZmyHngEuCqqdouxlI8hEuHiIgILFmyBEuWLEFHRwe2b9+O9evX47bbbkNYWBjmzZuHhQsXYtKkSYiNjUVsbCxaW1tx8uRJ2O12uN1uZGdn8+McwsPDeRPT++67By0tLdixYyf+97\/1yMjY0asoH8g92mZjRzRUyisyUkXWWqgoS6fTkcRDkUMgM8u6OnYKj4ruPK9lK\/8SzUMBP4LDqCucauvo6EBmZiYsFosP6bz77rt44403sG3bNl45ebkxZ84czJkzh3yOTCZjiltC00MvP654qk2n00EkEpGW4iFcWYSFhWHhwoX4+OOPUVVVhX\/84x+w2+24++67kZSUhF\/84hf44osvcMstt+CDDz7AlClTMH36dMTFxaG5uRmHDh3CwYMHUVBQAKvVCo7jEBkZicWLb8Xatf9BSUkBPvroAyxevIgnDbPZTJIAFQ1RtSFvnwgL1CJOpeEUCgXpaEBBp9PxYy78gVLKyeVyMpIyKP1LkTWmKxfx2Gw2ZGZmwmQyYdCgQRAIBOA4Du+\/\/z5+97vfYfPmzZc8nfZd4W1YHTx4MB588EGfCDo0PfTy44oTj1QqxdixY33swgEgIyMjZBfeDyCXy3HLLbfg\/\/7v\/1BVVYV\/\/\/vfcDqdWL58ORoaGiCRSLB792643W5YLBaMGTOGH+dgtVp9xjm0traC4zhERERg8eJb8dFHa1BSUoDPPvsEt912K1MqLhKJAkRD7IWaaiwVi8XkIu5ysZtkY2KiyRoPRSyBVGlUj1R0dDTZvKsQ+P+8VyrVZrPZcPToUej1eiQlJfGk89FHH+H5559Heno6Jk+efEWuJVjMmTMH\/\/nPf7Br1y68+eabOHLkCG644QZ+IxSaHnr5cVVSbU888QTuuecepKWlYeLEifjHP\/6B0tJS\/PznP78alxMCAxKJBEOHDsWRI0dwyy234Kc\/\/Sk2bdqEX\/ziF7Barbj55puxcOFC3Hjjjfw4B5fLxY9zOHr0KKRSKW\/dExkZCblcjrlzb8HcubfgpZde5E1Mt2zZykc5gZyYqXHgVGNpTEw0mUqjhrQFMq6kPNpUKpoEWlvZxBPIpdnV7r9p9Uo0j3Z2diIzMxM6nQ7Jyck86Xz66ad4+umnkZ6e3svhuT9g6dKl\/H+PGDECaWlpiI+Px5YtW3DrrbcyXxcqB1w6XBXiWbp0KRoaGvDb3\/4WVVVVGDFiBLZu3Yr4+PircTkhEHj11VcxdepUvPvuuxCJRJg1axb+9Kc\/4eDBg1i\/fj2eeeYZNDQ04Ec\/+hE\/U8hoNMJoNMLlcqGxsRE1NTU+TtpGoxFqtRpSqRSzZ8\/E7Nkz4XK5sH\/\/AaSnb0JBQSGTeIRCIak8o6IhrVZLEg+1m6UaYQONyqYSC4Fea7ez05EA0FLt\/\/jljni8pKPRaDBkyBB+QV6\/fj1WrlyJ\/\/3vf7jxxhsv6zVcKpjNZsTHxyM\/Px+A7\/TQ7lFPbW1tKCtziXDVnAtWrFiB4uJidHV1ITMzE9OmTbvk77Fq1apessnuBUWO47Bq1SpYLBYoFArMmDEDOTk5l\/w6vs94++238fe\/\/91HySMSiTBlyhS8\/fbbKCwsxM6dO5GYmIiXXnoJCQkJWLZsGT777DO0t7dDr9fznezDhg2D2+3GiRMnsG\/fPpw5cwYNDQ1wu928ienbb7+Jzz9fj4yMbXj44RU+I4cBTzRENaVS5EE5PEdG0mam1HtSE18BWihhNpvJ11ITTfVRZrQ1+W+y1RguH\/F0dXUhKysLkZGRGDp0KE866enpeOihh\/DJJ58ELO73JzQ0NKCsrIz3iwtND738uOZHXw8fPhxVVVX8v+zsbP7Y66+\/jrfeegvvvPMOjhw5ApPJhJkzZwbwJfthQSqVkukFoVCI6667Dq+\/\/jry8vJw4MABDB8+HG+88QYSEhKwZMkS\/Pvf\/0ZLSwu0Wi2GDRuGadOmISUlBQBw6tQp7Nu3Dzk5Oaivr4fb7YZQKOQNTHNzT2Hv3l14\/PHHMGBAYkDbfErRRtVKAokSKH83arQ3QJuDSqV00oFyNLBEJfh9XCwVQaW9PK4F3j48pVKJ4cOH8\/fGli1b8MADD+Cjjz7C\/PnzL8t7Bwur1Yrjx4\/j+PHjAICioiIcP34cpaWlsFqteOqpp3Dw4EEUFxdjz549mDdvHnQ6HRYtWgTAd3rozp07cezYMdx9992h6aGXEALuSg5Zv8JYtWoVPv\/8c\/4G7A6O42CxWLBy5Ur88pe\/BODZyRmNRrz22mv42c9+doWv9toCx3HIycnBunXrsHHjRpw5cwYzZszAwoULMXfuXGi1Wr4m0NzcjNraWtTW1sLpdPImpl4n7e7IyTmN9es3ID19E3Jzfd08dTod6TyQkjIC2dmn\/B6bMGECDh06xHxtREQEU0AwdeoU7N9\/wO8xmUwGh8PBJL3U1DGkK3hYmAIdHf6jmkVTfoK2bHWvx3XRKrx\/5HHmOS8WXtIJDw\/HiBEjeHXh9u3bcffdd+Nf\/\/oX7rjjjkv+vn3Fnj17cP311\/d6\/L777sPf\/vY3LFy4EMeOHUNzczPMZjOuv\/56vPzyyz5mpZ2dnXj66afxySef8NND33333ZCh6SXCNU88b7zxBiIjIyGTyTB+\/Hi88sorGDBgAAoLCzFw4EBkZWVhzJgx\/GsWLFgAtVqNDz\/88Cpe+bUFjuNw9uxZrF+\/Hhs2bMCJEycwZcoULFy4EPPmzYPRaORJyOukXVNTA7vdzo9z8MrwuyM3Nw+ffroWGzZsRGFhEUaOTMHJk9mMq6CJaerUydi\/\/2u\/xwwGAxm1XHfdOHz77RG\/x7z3Ggvjxo3DkSP+X2s2m0nnhx\/f9GuUHeld4zENVOKnq6fzoo5Adj3BwOFwIDMzEwqFAikpKTzp7N69G0uXLsW7776Le+65J1R8DyEoXNOptvHjx+Ojjz7CV199hX\/+85+orq7GpEmT0NDQwNcCQg4Klx8CgQDJycl49tlnceTIEeTl5eHmm2\/G2rVrMXjwYPzoRz\/Cu+++i4qKCh8n7XHjxiEsLAwFBQXYs2cPTpw4gaqqKr7eotVqMH36VGzbtgXZ2cfwk5\/8GGlpY\/0ufkqlkoyGqAFvJhPdX0alwwI5ZVOpQaOR9qsTdPmvWcUONPlYHn377bcoLi4mbYYoOBwOZGVlQSaT+ZDO\/v37cccdd+BPf\/pTiHRC6BOu6Xk83QucKSkpmDhxIgYOHIgPP\/yQ92YKOShcWQgEAgwYMABPP\/00nnrqKZSVlfEzhX71q18hLS2NnykUHx8PpVKJQYMGwWq1oqamBsXFxcjJyeFTX0OGDOFdowcMGIAHH7wf5eXlSE\/\/Aunpm3Dw4KHzPUdm5OWxa3dUDYey2QGAigpqRg9bDScQCEhz0EBuCB0N\/s1Q9Ra1j+VRXV0damtrce7cOYSHh\/PKwvDw8ID3utPpxLFjxyCRSDBq1CiedA4ePIglS5bgtddew09+8pPQbyaEPuGajnh6Ijw8HCkpKcjPz+fVbSEHhasHgUCAuLg4rFy5Env37kVpaSnuuece7NixA6NGjcK0adPwxz\/+Efn5+QgPD8fAgQMxceJEREZGwmq1Qi6XIzc3F5mZmSgvL+dNOmNiYvDwww9h+\/YvkZ+fiz\/96S1MnDiR2eMjEAhQXs4mAGpRNZlMzBoMQJuDWixm0rWAyoLLZQo0VvmvOXXv4ZHJZIiJiUFqamqvRt+vv\/4a+fn5aGlp8fteLpeLl8F3J52jR49i8eLFePnll\/HQQw+FSCeEPuOajnh6oqurC2fOnMHUqVORmJgIk8mEjIwMvsZjt9uxd+9evPbaa1f5Sn94EAgEsFgsePjhh7FixQrU19dj48aN2LBhA373u99hyJAhWLBgATo6OvDPf\/4TBw8eRGJiImw2G2pra1FZWYnc3Fyo1Wq+tiGXy2EyGfHAA\/cDAH7721XYvHkL0tM3YffuPTxRWSxmsjeISlEZjQYyNUuZpBoMBvJ9KTeEwXEpcNf6JyZWD49EIvFp9PVOC83KyuJ7rAwGA9RqNTiOw7FjxyAQCDB69Gi+vnb8+HEsWLAAzz33HB599NEQ6YRwUbimxQVPPfUU5s2bh7i4ONTW1uJ3v\/sd9u7di+zsbMTHx+O1117Dq6++ig8++ABJSUl45ZVXsGfPHuTl5QVMr4RwZcBxHJqampCens5HP2PGjMH111+PhQsX+qirOjs7eXVcc3MzVCoVb2Las4enpaUFW7duQ3r6JtTU1OLbb79lXkNMTAzTEn\/KlEk4cIDt3xUeHs50tZ48eTK+\/tq\/oAGgR4PPm3wXbKf8R+YvfnIXUmcMYp63J9xuN5qamvjvzptulkgkSEtL49OFp06dws0334zHH38czz77bIh0QrhoXNMRT3l5Oe68807U19dDr9fzklmvQ8IzzzwDm82GFStWoKmpCePHj8f27dtDpNOPIBAIEBUVhbKyMtTU1CAjI4OvC3mtehYsWICFCxdizJgxiIuLQ1xcHF\/bqKmpQX5+PpRKJb+jDw8PR2RkJO68cynuvHMp2tvbsW3bV0hP34SvvsrwiTSkUinpG8dx7MVXp9OSZqccx+4rUqlUpKFplMIMG\/y\/vq\/No0KhEFqtFlqtFoMHD8bRo0fR2dkJl8uFN954A4cPH8aUKVPwzjvvYMWKFSHS6YGPPvoIjz\/+OCorK30UhIsXL0Z4eDg++uijq3h1\/RPXdMQTwrWB0tJSzJw5E+vXr8eIESP4x61WK7Zu3Yr169dj69at0Gq1\/EyhcePG8ekhu93OF9gbGhp8Cuw9Ryx0dnZix46d2LgxHV9+uQ1arZaUQ48ePQrHj5\/we2zAgEQUFhYxX0v1FQ0ZMgS5ubnM195\/\/SqUZPkfePdx9tMX1UDqdZWw2+1ITfVMl83Ozsa7776Lbdu2obGxEbNnz8bixYsxf\/78gM28PxTYbDaYzWb885\/\/xJIlSwB45o5FR0dj27ZtfnuKfuj4QYkLrgQCTT8MxqYnNP3QF3FxccjJyfEhHcDT1Hn77bfjs88+Q01NDd5++200NjZi8eLFGDp0KJ588kns378fQqEQ0dHRpJN2W1sbOI7jTUzff\/8fKC4+h9Wr38J9990Drda\/SSjlsxbI0YAaWKdW0+agdj\/jrgGPa4FSw7YGYsE7X6mrqwupqamQSCQQCASIiIjArl27cNddd+HUqVOYNm0a3nvvPYwZM4YUP\/yQoFAosGzZMp\/Bcv\/5z38QExPTL01S+wNCxHOJ4Z1++M477\/g9HoxNz8qVK7Fx40asXbsWBw4cgNVqxdy5c+Fy+ZfP\/hBAuU4DHk+zRYsW4d\/\/\/jeqqqrw97\/\/HZ2dnVi2bBmSkpLw6KOPYvfu3QA8jZmjRo3C9OnTMXDgQHR0dODIkSO9VF5SqRQ33ng93n33HRQVncPmzel48MH7edVjoBk9lDecSqUi+4qozysQCNBY6V\/wEKWP6HMazO1249SpU+jo6OBJBwBKSkpwyy23YMGCBXjzzTcxZMgQ\/PKXv8Thw4dx+vTpS55u+z5v2h588EFs376dl8d\/8MEH\/IjtEPyAC+GyAQC3ceNG\/v\/dbjdnMpm4P\/zhD\/xjnZ2dXGRkJPf3v\/+d4ziOa25u5iQSCbd27Vr+ORUVFZxQKOS2bdt2xa79WoHdbue++uor7sEHH+QMBgOn1Wq5++67j9uwYQPX2NjItbe3c+3t7VxraytXVFTEHT58mNu8eTO3bds2Lisri6uoqOCsViv\/vPb2dq6trY3LyNjB\/fKXv+ZiYhI4QOz335gxacxjQ4eOYB4DxFxa2njmscTo4dxNkc\/4\/bfi+j\/5XGugf1arlTt06BCXkZHBNTU18Y+fPXuWS0xM5B588EHO5XJdkb\/V1q1bueeee45bv359r98Ox3HcH\/7wB06pVHLr16\/nsrOzuaVLl3Jms5lrbW3ln\/Pzn\/+ci46O5jIyMrisrCzu+uuv50aNGsU5nc7Lfv2pqancK6+8wmVmZnJCoZArLS297O\/5fUWIeC4jev54CgoKOABcVlaWz\/Pmz5\/P3XvvvRzHcdzOnTs5AFxjY6PPc0aOHMn95je\/uezXfC3D4XBwu3bt4lasWMFZLBYuMjKSW7ZsGffZZ59x9fX1PsRSXFzMffvtt9yWLVu4rVu3ckePHuXKysq4tra2Xov33r37uIceepgzm2N8CCI6Oo5JHhMmTCGJJyFhEPPYTeNuYxLP83f8X59I5\/Dhw1xGRoYPCRcUFHBJSUncfffdd0UWbH\/4Pm7a3n33XS4pKYl7+OGHuVmzZl329\/s+I5Rqu4IIxqYnNP3w8kEsFuP666\/HX\/\/6V5SWluKLL76AXq\/H008\/jcTERCxfvhwbN26EzWaDXq\/H8OHDMW3aNL62lJ2djX379uH06dO8kzYADBw4ADff\/CPs2bMTBw8ewK9+9QxGjkwhazhisYh5TCQSkekhvTKGeSzKENwAOI7jcObMGbS0tGDs2LG8Gqu2tha33HILxo0bh3\/961+9\/PGuFoqKilBdXe0zjlomk2H69On8OOqrPbL6rrvuQkVFBf75z3\/iJz\/5yWV\/v+8zQsRzFXAxNj3BPCeE4CESiTB16lSsXr0aRUVFyMjIQHx8PF588UUkJCTgrrvuwn\/\/+1+0t7dDq9Vi6NChmDZtGt\/Bf\/r0aezduxdZWVnIyspCUlISYmJiMHJkCl544TkcPHgAR44cwm9+8zxGjkzp9f6UY0FsbAzpeBAmYIsWNKbAUmqO45Cbm4vGxkYf0qmvr8e8efMwfPhwrFmzJmBd7Uri+7BpU6lUWLx4MSIiIrBw4cLL\/n7fZ4SI5woiGJue7tMPWc8J4dJCKBRi\/PjxeOONN3D27Fns378fQ4cOxWuvvYaEhATcfvvt+M9\/\/oOWlhao1WoMGTIEU6dOhdlsRmNjI0QiEfLz85GdnY2amhpeBDJkSDJ++cuncfDgAWRnH8PLL7+EtLSxAED29wSSKbs6\/I+7BgJPHuU4Dnl5eaivr8fYsWMhl8sBeLzqFixYgAEDBuCTTz7hBQb9Df1901ZVVYW77rrrkjiCX8sIEc8VRHebHi+8Nj3eyYah6YdXF0KhEKmpqXjllVdw+vRpfPvttxg7diz+8pe\/ICEhAbfeeis+\/PBD\/Oc\/\/8GNN94Ik8mE6dOnIy0tDXK5HOfOneOdtKurq\/nIZcCAAXjiiZXYu3cX8vJy8MgjD2HSpIm860J3eMmABda4a4AmHo7jkJ+fj9raWowdO5ZX3bW0tGDhwoUwm83473\/\/SxqbXi30901bY2Mj1q5di127duHhhx++rO91LaD\/xNLXCKxWK86dO8f\/v3f6oUaj4Q0xX3nlFSQlJfE2PWFhYVi2bBkA3+mHWq0WGo0GTz31VGj64VWAQCBASkoKUlJSsGrVKuTl5WH9+vV48803UVJSgunTp+PgwYP84DqVSsU7adfW1qKwsBA5OTnQaDQwGo3Q6\/WQSCSIiYnBQw\/9HA899HNUV9fgiy++wOefb8L+\/QfgcrngdLJl8zq1AW2NbFNSFvFwHIdz586hqqqKHzcBAG1tbVi8eDHUajXWr1\/fb3fqwXgrdt+03X777QAubNpef\/31y3p9qampaGpqwmuvvYbk5OTL+l7XAkLEc4lx9OhRn07lJ554AoBn+uGaNWuCsul5++23IRaLcfvtt\/PTD9esWdNvCr0\/RAgEAgwZMgSjR49GVVUV3nzzTXR2duLTTz\/Fk08+iUmTJmH+\/PlYsGABLBYLlEolBg4ciPb2dtTW1qK0tBSnT5+GRqPhrXukUilMJiMefPABPPjgA6ivb8CWLVvw9dffICsrizcx7Y6kuBSghH2d3Z2pu6OwsBCVlZVIS0vjSae9vR1LliyBVCrF559\/TvYdXQl8nzdtxcXFl\/X81xpCljkhhBAkmpubkZSUhL\/97W+47bbbAHgiidLSUn6m0MGDBzFu3DjeuicuLo6vL3R0dPBGnK2trYiKimJOCe1uYpqRsYMXIyye\/gBajqv8Xp9YIsS64ud71TMKCwtRWlqKtLQ03iLIZrNhyZIlsNvt+PLLL\/uFPyE1snrNmjXgOA4vvfQS3nvvPX7T9te\/\/tXH0SI0svr7gRDxXIPYt28f3njjDWRmZqKqqgobN270UdksX76812jv8ePH49ChQ\/z\/d3V14amnnsKnn37q8wOOiWFLeX8IaGhogFbrf6oox3GorKzkxzns378fI0eOxMKFC7FgwQIMHDiQJwWvk3ZNTQ1aWloQGRnJk1DPyMNqteKrr7YjPX0TtLYUFH7tf1yCzqLC+0cf93msuLgYxcXFGDt2LE8unZ2duPPOO9HS0oKvvvoKkZG0PU8IIVxqhIjnGsSXX36Jr7\/+GqmpqVi8eLFf4qmpqfHxlpJKpdBoLviRPfTQQ\/jiiy+wZs0aaLVaPPnkk2hsbERmZmYo5RcEOI5DbW0tPv\/8c2zYsAG7d+\/GkCFDeBIaMmQIT0JdXV18JNTU1ASlUsmPc\/CmxbywdzqRtfscDm49gyMZeWhvvSA0GJwajTc2P8D\/f0lJCQoLCzF27FioVJ4oyW634+6770ZVVRV27NgR0E8uhBAuB0LEc41DIBD4JZ7m5uZeXlhetLS0QK\/X4+OPP8bSpUsBAJWVlYiNjcXWrVsxe\/bsK3Dl1w44jkNjYyPS09OxYcMG7NixAwMGDODHOQwfPpxXt3mdtGtqatDY2IiIiAifUdXd4bC7cPJAIb7ZcgbffpWHodfF4dn\/8\/y9SktLUVBQgNTUVD6icTgcuO+++1BUVIRdu3YxI7cQQrjcCBHPNQ4W8Xz++eeQSqVQq9WYPn06fv\/738NgMAAAdu3ahRtvvBGNjY0+O+JRo0Zh4cKFeOmll670x7im0NzcjC+++AIbNmzAV199hejoaJ6ERo8ezZOQw+HwGeegUCj4SCgiwtcM1OVyo6GqFYYYNcrLy\/mBeWq1GoBnBPcDDzyAnJwc7N69m\/9bhxDC1UBI1fYDxJw5c7BkyRLEx8ejqKgIL7zwAm644QZkZmZCJpNd9Q7wax1qtRr33HMP7rnnHrS1tfEzhebMmQOdTod58+Zh0aJFGDduHCwWCywWC5xOJ+rr61FTU4Pi4mLI5XK+JqRSqSASCWGIUaOiogJnz55FamoqTzoulwsrVqzAyZMnsWfPnhDphHDVESKeHyC86TMAGDFiBNLS0hAfH48tW7bg1ltvZb4uZNtz6aFUKrF06VIsXboUHR0d2LZtG9avX49FixYhIiKCV8dNnDgRJpMJJpMJLpcL9fX1qK2tRWZmJiQSCQwGA0QiEUpKSnwiHZfLhUcffRSHDx\/G7t27+UbMEEK4mggRTwgwm82Ij49Hfn4+AN8O8O5RT21tbcg94TIiLCwMt956K2699VZ0dnYiIyMDGzZswB133AGpVMpHQpMnT4bRaITRaITL5UJjYyOKi4vR3NwMiUSCkydPoqOjAzfddBOeeeYZ7NmzB3v27PnBKxJD6D8IWeaEgIaGBpSVlcFsNgMI2fb0B8jlcsybNw8ffPABqqur8eGHH0IgEGD58uUYOHAgVqxYge3bt8PlcmHz5s3429\/+htGjRyMlJQV5eXl44IEHkJCQgE8\/\/ZQfnhZCCP0FIXHBNYjuHeBjxozBW2+9heuvvx4ajQYajQarVq3C4sWLYTabUVxcjGeffRalpaU4c+YM3+vx0EMPYfPmzVizZg3fAd7Q0BCSU19lOJ1O7Nu3D+vWrcPnn3+Ozs5OdHR04PHHH8fTTz8NuVwOt9uN559\/Htu2bUNaWhp27dqFrq4uLFiwAO+++25AL7gQQrjsuEJzf0K4gti9ezcHoNe\/++67j+vo6OBmzZrF6fV6TiKRcHFxcdx9993Xa1qizWbjHnnkEU6j0XAKhYKbO3duaKJiP0N6ejonl8u5efPmcbGxsZxKpeKWLFnCLVq0iDMYDFxOTg7HcRzncrm4AwcOcL\/\/\/e+vyHW9+OKLve49o9HIH3e73dyLL77Imc1mTi6Xc9OnT+dOnTp1Ra4thP6BEPGEEML3ELt37+bCw8O5\/\/3vfxzHecjl4MGD3IoVKziZTMZ9\/fXXV+3aXnzxRW748OFcVVUV\/6+2tpY\/HswI6xCubYSIJ4TLgldeeYVLS0vjIiIiOL1ezy1YsIDLzc31eU4wO9\/Ozk7ukUce4bRaLRcWFsbNmzePKysru5IfpV+ipqaG27Rpk99jLpfrCl+NL1588UVu1KhRfo8FM8I6hGsfIXFBCJcFe\/fuxcMPP4xDhw4hIyMDTqcTs2bNQnt7O\/+c119\/HW+99RbeeecdHDlyBCaTCTNnzkRbWxv\/nJUrV2Ljxo1Yu3YtDhw4AKvVirlz5\/LD1n6oMBgMmDdvnt9j\/mb8XGnk5+fDYrEgMTERd9xxBwoLCwEEN8I6hB8ArjbzhfDDQG1tLQeA27t3L8dxwe18m5ubOYlEwq1du5Z\/TkVFBScUCrlt27Zd2Q8QQtDYunUrt27dOu7kyZNcRkYGN336dM5oNHL19fXc119\/zQHgKioqfF7z4IMPcrNmzbpKVxzClcbV3xqF8INAS0sLAPBGpMHsfDMzM+FwOHyeY7FYMGLEiNDuuB9jzpw5WLx4MT8HZ8uWLQDg44h+MSOsQ7h2ECKeEC47OI7DE088gSlTpvCzU7zWOz1HEne35QlZ91wbCA8PR0pKCvLz84MaYR3CtY8Q8YRw2fHII4\/g5MmT+PTTT3sdu5idb2h3\/P1CV1cXzpw5A7PZ7DPC2gvvCOtQc\/IPByHiCeGy4he\/+AU2bdqE3bt3+1i2BLPz7W7dw3pOCP0PTz31FPbu3YuioiIcPnwYt912G1pbW3HfffdBIBDwI6w3btyIU6dOYfny5T4jrEO49hEinhAuCziOwyOPPIINGzZg165dSExM9DkezM43ZN3z\/UR5eTnuvPNOJCcn49Zbb4VUKsWhQ4cQHx8PAHjmmWewcuVKrFixAmlpaaioqMD27dv7xfjtEK4MQpY5IVwWrFixAp988gnS09ORnJzMPx4ZGcmPdn7ttdfw6quv4oMPPkBSUhJeeeUV7NmzB3l5eSHrnhBCuIYRIp4QLgtYNZgPPvgAy5cvB+CJil566SW89957aGpqwvjx4\/HXv\/6VFyAAQGdnJ55++ml88sknsNlsuPHGG\/Huu+8iNjb2SnyMEEII4TIgRDzXAOrq6pCSkoJHH30Uzz77LADg8OHDmDp1KjZv3uwjRw4hhBBCuNoI1XiuAej1evzf\/\/0fVq1ahaNHj8JqteLuu+\/GihUrfvCk8+qrr2LcuHFQKpUwGAxYuHAh8vLyfJ6zfPlyCAQCn38TJkzweU5XVxd+8YtfQKfTITw8HPPnz0d5efmV\/CghhHDNIBTxXEN4+OGHsWPHDowbNw4nTpzAkSNHfvAW+D\/60Y9wxx13YNy4cXA6nXjuueeQnZ2N06dPIzw8HICHeGpqavDBBx\/wr5NKpXyzK+CpNX3xxRdYs2YNtFotnnzySTQ2NoZqTSGEcBEIEc81BJvNhhEjRqCsrAxHjx7FyJEjr\/Yl9TvU1dXBYDBg7969mDZtGgAP8TQ3N+Pzzz\/3+5qWlhbo9Xp8\/PHH\/NjwyspKxMbGYuvWrZg9e\/aVuvwQQrgmEEq1XUMoLCxEZWUl3G43SkpKrvbl9Ev0tO7xYs+ePTAYDBg8eDAefPBB1NbW8sdC1j0hhHBpIb7aFxDCpYHdbsddd92FpUuXYsiQIbj\/\/vuRnZ0darTshv9v7\/5CmuwCOI5\/08w\/6CQzmFIOIekPYheKMTAUw0AwoqCCKLzwRlfQKolIhOhCxQstCfVCLDBiEeFN5QiCSYMuMhQiuvDCWIQLkhZqM2OdLqLB0Op9fX2f1fx9YDfP83B2dvVj52y\/s1x1D3zvFjty5AgOh4OpqSlaW1uprq7m+fPnpKamqrpHZJUpeBJES0sLHz9+pKenh8zMTEZGRmhoaOD+\/fvxntof40d1j9\/vj7n+Y\/kMoLi4mLKyMhwOBw8ePODw4cM\/HU\/VPSIro6W2BODz+bh69SpDQ0PYbDaSkpIYGhrC7\/fT19cX7+n9EX5W3bOcvLw8HA4Hk5OTgKp7RFabgicBVFVV8eXLFyoqKqLXCgoKCIVCNDU1xXFm8fe76p7lzMzM8ObNG\/Ly8oC1Xd3T29tLYWEhaWlplJaW8uTJk3hPSRKAgkcS2qlTp7h16xa3b98mKyuLYDBIMBgkHA4DMDc3R3NzM0+fPuX169f4fD4OHDhAbm4uhw4dAr7X\/DQ0NHD+\/HkeP37M+Pg4J06ciJ43k6ju3LmD2+2mpaWF8fFx9u7dS21tLYFAIN5Tk7+dxQfPiVgKWPZ148YNY4wxnz59Mvv37zebN282KSkppqCgwNTX15tAIBAzTjgcNqdPnzY5OTkmPT3d1NXVLXkm0ZSXl5vGxsaYazt27DAXL16M04wkUeh\/PCKyxOLiIhkZGdy9ezf6zQ\/gzJkzTExMMDo6GsfZyd9OS20issT79++JRCK\/PCFWZKUUPCIW6evro6SkBJvNhs1mw+l0MjIyEr1vjOHy5cvk5+eTnp5OVVUVL1++jBnD6s64lZwQK\/I7Ch4Ri2zZsoWOjg7GxsYYGxujurqagwcPRsOls7OTrq4url+\/zrNnz7Db7dTU1DA7Oxsdw+12Mzw8jMfjwe\/3Mzc3R11dHZFIZFXnmpubS3Jy8i9PiBVZsfhuMYmsbRs3bjQDAwPm69evxm63m46Ojui9hYUFk52dbfr7+40xxoRCIZOSkmI8Hk\/0mbdv35qkpCTj9XpXfW7l5eWmqakp5trOnTv14wL5z\/SNRyQOIpEIHo+H+fl5nE4nU1NTBIPBmD641NRUKisro31wVnfGnTt3joGBAQYHB3n16hVnz54lEAjQ2Ni46u8la4sqc0Qs9OLFC5xOJwsLC2RmZjI8PMyuXbuiwbHcZv6PwlerO+OOHTvGzMwMV65cYXp6muLiYh4+fIjD4Vj195K1RcEjYqHt27czMTFBKBTi3r171NfXx\/w0eSWb+f\/kmZVyuVy4XK7\/ZWxZu7TUJmKhDRs2sG3bNsrKymhvb2f37t1cu3YNu90O8MvNfHXGSaJQ8IjEkTGGz58\/U1hYiN1uj+mDW1xcZHR0NNoHt5Y74ySxaKlNxCKXLl2itraWrVu3Mjs7i8fjwefz4fV6WbduHW63m7a2NoqKiigqKqKtrY2MjAyOHz8OxHbGbdq0iZycHJqbmxO+M04Sj4JHxCLv3r3j5MmTTE9Pk52dTUlJCV6vl5qaGgAuXLhAOBzG5XLx4cMH9uzZw6NHj8jKyoqO0d3dzfr16zl69CjhcJh9+\/Zx8+ZNkpOT4\/WxRP41dbWJiIiltMcjIiKWUvCIiIilFDwiImIpBY+IiFhKwSMiIpZS8IiIiKUUPCIiYikFj4iIWErBIyIillLwiIiIpRQ8IiJiqW\/9VsG5oCgnEAAAAABJRU5ErkJggg==", "text\/plain": "<Figure size 640x480 with 1 Axes>"}, "metadata": {}, "output_type": "display_data"}]}}, "1ca2a7bb9b014ae1b78b7354b28675e1": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": {"description_width": ""}}, "1cb2605db91a4ce1bac51f5960e5afc9": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "IntSliderModel", "state": {"behavior": "drag-tap", "layout": "IPY_MODEL_a20388231297411295366afa518f917b", "max": 199, "style": "IPY_MODEL_3ca3ead3f99b45b2bf5a79d0f022dcfa", "value": 199}}, "1f57714e5c02432eaabed41e07209103": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": {"_dom_classes": ["widget-interact"], "children": ["IPY_MODEL_57644913df96434395a7d95953ca96ed", "IPY_MODEL_5e9038896edd4da0abab5fadd1a41130"], "layout": "IPY_MODEL_b49c03f7736a47e5987fbc229507c0fe"}}, "203d095fdbec4a809af8ff2adf77a8fb": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "246b67cae6d04400856fb146b0a764d3": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "27ce6d6c77074a0e9644172ecbdc2c2a": {"model_module": "@jupyter-widgets\/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": {"layout": "IPY_MODEL_0737166ee7324522bb73da03f9a8e778", "outputs": [{"data": {"image\/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG2CAYAAACXuTmvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy\/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA3p0lEQVR4nO3deXgU5532+7u1tdZuENqREDIIMGaxjW1AE1YbAt7AJOfYsV8fmCSOHQMnvCRjghmPhZOAlzGvkyFmssxg7DEDJxODdwIOSEAUbMBgZMAsRiABEgIhqbW2tjp\/CDXIYhG0pOpWfT\/X1Ze6nqou\/fSkTN956qkqm2EYhgAAACwkwOwCAAAAuhoBCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWI7PBKClS5fKZrNp3rx5njbDMJSZmamkpCSFhYVp\/Pjx2r9\/v3lFAgCAbsEnAtDOnTv1+9\/\/XsOGDWvV\/vLLL2vZsmVavny5du7cqYSEBE2aNEkVFRUmVQoAALoD0wNQZWWlHnvsMf3hD39Qz549Pe2GYei1117TokWLNGPGDA0ZMkSrVq1SdXW1Vq9ebWLFAADA3wWZXcDs2bN133336Z577tEvf\/lLT3teXp6Kioo0efJkT5vdbte4ceOUk5OjJ5988rL7c7vdcrvdnuWmpiadP39evXr1ks1m67w\/BAAAdBjDMFRRUaGkpCQFBHT8eI2pAWjNmjX6\/PPPtXPnzjbrioqKJEnx8fGt2uPj43XixIkr7nPp0qVavHhxxxYKAABMUVBQoOTk5A7fr2kBqKCgQD\/5yU+0ceNGhYaGXnG7b47aGIZx1ZGchQsXav78+Z7l8vJy9enTRwUFBXI4HN4XDgAAOp3L5VJKSoqioqI6Zf+mBaDdu3eruLhYI0aM8LQ1NjZq69atWr58uQ4dOiSpeSQoMTHRs01xcXGbUaFL2e122e32Nu0Oh4MABACAn+ms6SumTYK+++67lZubq71793ped9xxhx577DHt3btXN910kxISErRp0ybPZ+rq6pSdna2MjAyzygYAAN2AaSNAUVFRGjJkSKu2iIgI9erVy9M+b948LVmyROnp6UpPT9eSJUsUHh6uRx991IySAQBAN2H6VWBX88wzz6impkZPP\/20SktLNXLkSG3cuLHTzgcCAABrsBmGYZhdRGdyuVxyOp0qLy9nDhAAAH6is7+\/Tb8RIgAAQFcjAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMuxTADq5k\/8AAAA18EyAegHb+zSoaIKs8sAAAA+wDIB6LPj53Xvb7Yp8739Kq+uN7scAABgIssEoEmD49TYZOiNnOOa8GqW\/vuzfDU2cVoMAAArshndfHKMy+WS0+lUeXm59p2p0+L39+tIcaUkaUhvhxY\/eItGpEabXCUAALjUpd\/fDoejw\/dvqQDkcDhU39ikt\/5+Qv\/nk8OqqG2QJD10W2\/9fOogxTtCTa4WAABIBCCvXakDz1W69a9\/OaS1uwpkGFJESKDm3p2uf\/yHvrIHBZpYMQAAIAB56Vod+EVBmTLf3689+WWSpLSYCP3L\/YM1YVBcF1cKAABaEIC81J4ObGoytG7PKS39+Cudq3RLkiYOitO\/3D9YfWMiurJcAAAgApDXrqcDK2rrtXzzUf3n3\/JU32goJDBAPxiTpjkT+ivCHtRFFQMAAAKQl26kA78+W6nF7x\/Q1sNnJUnxDruevfdmPTg8STabrTPLBQAAIgB57UY70DAM\/fVgsV744IDyz1dLku5I7anMB2\/RkN7OzioXAACIAOQ1bzuwtr5R\/7E9T8s3H1VNfaNsNul7d\/XRzyYPVHRESCdUDAAACEBe6qgOLCyv0dKPvtJ7X5yWJDlCg\/TTyQP12Mg+Cgq0zA21AQDoEgQgL3V0B356rESZ7x\/QwUKXJGlQQpSef+AWje7Xy+t9AwCAZgQgL3VGBzY2GVr9Wb5e3XhIZRcerHrfsEQ9e+\/N6t0jrEN+BwAAVkYA8lJndmBpVZ2WbTqstz89oSZDCg0O0NPj++tHY29SaDB3kwYA4EYRgLzU2R0oSftPl2vxewf02fHzkqSU6DD9832DNXlwPJfNAwBwAwhAXuqKACQ1Xzb\/\/r5CLfnwoIpctZKkMekxev6BweofF9VpvxcAgO6IAOSlrgpALarrGvT6lq\/1+63HVNfYpKAAm2Zm9NVP7kmXIzS4038\/AADdAQHIS10dgFqcKKnSLz44qE8OnpEkxUSG6Jkpg\/Td25MVEMBpMQAAroYA5CWzAlCLrEPFeuH9Azp2rkqSNDylh55\/YLBu79Ozy2sBAMBfEIC8ZHYAkqS6hia9kZOn3\/z1qCrdDZKkabcmacGUQUrisnkAANogAHnJFwJQi2JXrf514yH9afdJGRcum\/\/RmJv05Lh+PG0eAIBLEIC85EsBqMWXp8r1wgcH9Fle82Xz8Q67nvn2ID10W2\/mBwEAoM7\/\/jb1IVYrVqzQsGHD5HA45HA4NHr0aH388cee9bNmzZLNZmv1GjVqlIkVd4whvZ1a+6NRWvHY7UqJDtMZl1s\/\/dMXmv7637Trwr2EAABA5zF1BOj9999XYGCg+vfvL0latWqVXnnlFe3Zs0e33HKLZs2apTNnzmjlypWez4SEhCg6Orrdv8MXR4AuVVvfqDdyjmv55ovzg+4blqifTxmklOhwk6sDAMAcljsFFh0drVdeeUU\/+MEPNGvWLJWVlWn9+vU3vD9fD0Atzla4tWzTIa3ZWSDDkEKCAvTEmDT9eHx\/RTI\/CABgMd36FNilGhsbtWbNGlVVVWn06NGe9qysLMXFxWnAgAF64oknVFxcfNX9uN1uuVyuVi9\/EBtl19IZw\/Th3DEafVMv1TU06bdbvtaEf83S\/7erQE1NPpVTAQDwa6aPAOXm5mr06NGqra1VZGSkVq9erXvvvVeStHbtWkVGRio1NVV5eXl67rnn1NDQoN27d8tut192f5mZmVq8eHGbdl8fAbqUYRjadOCMfvXRQZ0oqZYk3ZLk0HP3D9aom3qZXB0AAJ2v258Cq6urU35+vsrKyvTnP\/9Zf\/zjH5Wdna3Bgwe32bawsFCpqalas2aNZsyYcdn9ud1uud1uz7LL5VJKSopfBaAW7oZGvZlzQr\/ZfEQVtc3zg6YOSdDCqTerTy\/mBwEAuq9uH4C+6Z577lG\/fv30u9\/97rLr09PT9cMf\/lALFixo1\/78ZQ7Q1ZRUuvV\/Pjms1Z\/mq8mQQgID9I\/f6qs5E\/oriueLAQC6IcvMAWphGEarEZxLlZSUqKCgQImJiV1clbl6Rdr1y+lD9fFPxmpMeozqGpv0u+xjmvCvWfrvz\/LVyPwgAACui6kB6Nlnn9W2bdt0\/Phx5ebmatGiRcrKytJjjz2myspK\/exnP9Pf\/\/53HT9+XFlZWXrggQcUExOjhx56yMyyTTMwIUpvfv8u\/eesO3RTTITOVdZp4Tu5uu8325Rz9JzZ5QEA4DdMvb76zJkzevzxx1VYWCin06lhw4Zpw4YNmjRpkmpqapSbm6s333xTZWVlSkxM1IQJE7R27VpFRUWZWbapbDabJg6K15j0WL319xN67ZPD+qqoQo\/+8VNNGhyvZ++9WWkxEWaXCQCAT\/O5OUAdrTvMAbqa0qo6\/fqvR\/TWjhNqbDIUHGjTrIy+mjMxXc4w5gcBAPyT5SZBd7TuHoBaHC2u0C8\/PKisQ2clSdERIfrfkwboe3emKCjQ56Z6AQBwVQQgL1klALXYcqhYv\/rwoI4WV0qSBsRH6p\/vG6yxA2JNrgwAgPYjAHnJagFIkuobm\/Tfn+Vr2abDKquulyRNHBSnRffdrH6xkSZXBwDAtRGAvGTFANSivLpev\/7rEb359+NqaDIUFGDT46NT9ZO709UjPMTs8gAAuCICkJesHIBafH22Uks\/OqhPDjY\/R61HeLD+9z0D9OjIPgpmfhAAwAcRgLxEALpo25Gz+uUHB3XoTIUkqV9shBbdd7MmDIyTzWYzuToAAC4iAHmJANRaQ2OT1u4q0KsbD+t8VZ0k6a60aP186iDd3qenydUBANCMAOQlAtDlldfU6\/UtR7Uy57jqGpokSZMHx+uZKQPVP866N5oEAPgGApCXCEBXV1heo9c2HdGfdheoyZACbNJ3RyRr3j0DlNQjzOzyAAAWRQDyEgGofY4WV+jlDYe08cAZSVJIUIBmZfTV0+P7ccUYAKDLEYC8RAC6PrtPlOqlDV\/ps7zzkqSo0CD9eHw\/\/WNGmsJCAk2uDgBgFQQgLxGArp9hGMo6dFYvbfhKXxU1XzEW77DrJ3cP0P99RzKP1gAAdDoCkJcIQDeuscnQu3tP6dWNh3WqrEaSdFNMhH727YGaOiSBS+cBAJ2GAOQlApD33A2NentHvpZvOeq5dH54slMLpgxSRv8Yk6sDAHRHBCAvEYA6TkVtvf6wLU9\/3HZM1XWNkqQx6TFaMGWQhvR2mlwdAKA7IQB5iQDU8c5WuLV88xGt\/ixf9Y3Nh8+Dw5P008kDlNorwuTqAADdAQHISwSgzpNfUq1XNx3Su3tPS5KCAmx6dGQfzZ2Yrtgou8nVAQD8GQHISwSgzvflqXK9\/JdD2nr4rCQpPCRQPxxzk54Yk6ao0GCTqwMA+CMCkJcIQF0n5+tzemnDIX1RUCZJio4I0ZwJ\/fXYqD6yB3EPIQBA+xGAvEQA6lqGYWjDl0V65S+HdOxclSQpuWeY5k8aoGm39lZgAJfOAwCujQDkJQKQORoam\/Sn3Sf12ieHdcblliQNSojSM1MGasLAOO4hBAC4KgKQlwhA5qqpa9QbOce1IuuoXLUNkqS7+kZrwdRBGpHa0+TqAAC+igDkJQKQbyirrtOKrK\/1Rs5xuRuaJEmTBsfrmW8PVHp8lMnVAQB8DQHISwQg31JYXqPXNh3Rn3YXqMmQAmzSd0cka949A5TUI8zs8gAAPoIA5CUCkG86WlyhV\/5ySH\/Zf0aSFBIUoFkZffWjsTcpJpJ7CAGA1RGAvEQA8m2f55fqxY+\/0md55yVJocEBemxkqp4ce5PiHKEmVwcAMAsByEsEIN9nGIayDp3Va58c1hcnyyU1jwg9fEeKnhrfT705NQYAlkMA8hIByH8YhqGtR87p3\/56RLtOlEpqfrzGd25P1tMT+vGcMQCwEAKQlwhA\/scwDP39WImWbz6qnK9LJEmBATZNG56kpyf0V\/+4SJMrBAB0NgKQlwhA\/m33ifP6t81HlXWo+TljNpt079BEzZ3YX4MS+N8TALorApCXCEDdw76TZfq3zUe16cAZT9ukwfH6fyema2iy08TKAACdgQDkJQJQ93Kw0KXlW47qo9xCtRy54wfGau7EdO4sDQDdCAHISwSg7ulocYVe3\/K13v3itBqbmg\/hjH69NHdiukbdFM2zxgDAzxGAvEQA6t5OlFTp9S1f68+fn1TDhSB0Z9+emjMxXWPTYwhCAOCnCEBeIgBZw8nSav0u+5jW7ixQXWPzs8aGp\/TQ3An9dffNPH0eAPxNZ39\/B3T4Hq\/DihUrNGzYMDkcDjkcDo0ePVoff\/yxZ71hGMrMzFRSUpLCwsI0fvx47d+\/38SK4auSe4brF9OHaNuCCfrBt9IUGhygLwrK9MM3d+ne32zXR7mFamrq1lkfAHAdTA1AycnJevHFF7Vr1y7t2rVLEydO1LRp0zwh5+WXX9ayZcu0fPly7dy5UwkJCZo0aZIqKirMLBs+LN4RqufuH6ztCybqqXH9FBESqIOFLj399uea\/NpWrd9zSg0XRogAANblc6fAoqOj9corr+j73\/++kpKSNG\/ePC1YsECS5Ha7FR8fr5deeklPPvlku\/bHKTBrK62q08qc41r5tzxV1DZIkvr2CtfTE\/rrodt6KzjQ1P8PAAC4gm59CuxSjY2NWrNmjaqqqjR69Gjl5eWpqKhIkydP9mxjt9s1btw45eTkmFgp\/EnPiBDNnzRAf\/v5RP3TtweqZ3iwjpdU65n\/2afxr2Tpv3ackLuh0ewyAQBdzPQAlJubq8jISNntdj311FNat26dBg8erKKiIklSfHx8q+3j4+M96y7H7XbL5XK1egGO0GDNntBf2xdM1LP3DlJMpF2nymr0z+u\/1NiXt+g\/t+eppo4gBABWYXoAGjhwoPbu3asdO3boxz\/+sWbOnKkDBw541n\/z6h3DMK56Rc\/SpUvldDo9r5SUlE6rHf4nwh6kH43tp+0LJijzgcFKcITqjMutFz44oDEvb9bvsr9WlbvB7DIBAJ3M5+YA3XPPPerXr58WLFigfv366fPPP9dtt93mWT9t2jT16NFDq1atuuzn3W633G63Z9nlciklJYU5QLgsd0Oj\/rz7lF7POqqTpTWSpB7hwfrBP6Tp\/8noK2dYsMkVAoA1WWYOUAvDMOR2u5WWlqaEhARt2rTJs66urk7Z2dnKyMi44uftdrvnsvqWF3Al9qBAPTqyj7b8bLxe+e4wpcVEqKy6Xq9uOqxRS\/6qRetydfgMVx0CQHcTZOYvf\/bZZzV16lSlpKSooqJCa9asUVZWljZs2CCbzaZ58+ZpyZIlSk9PV3p6upYsWaLw8HA9+uijZpaNbig4MED\/1x0pmnF7sj7Yd1orsr7WV0UVevvTfL39ab4y+vXSzIy+uufmeAUGcFNFAPB3pgagM2fO6PHHH1dhYaGcTqeGDRumDRs2aNKkSZKkZ555RjU1NXr66adVWlqqkSNHauPGjYqKijKzbHRjgQE2Tbu1tx4cnqQdx85rVc5xbTxQpJyvS5TzdYl69wjT46NT9cidKeoRHmJ2uQCAG+Rzc4A6GvcBgrdOldXov3ac0JrP8lVaXS9JsgcFaPqtvTUzo68GJ3FcAUBH41lgXiIAoaPU1jfqvb2n9UbOcR0ovHh7hbv6RmvWP\/TV5MHxCuLGigDQIQhAXiIAoaMZhqFdJ0r1Rs5xbfiySI0XnjGW6AzV\/xrVfHqsV6Td5CoBwL8RgLxEAEJnKiqv1dufntDqT\/NVUlUnSQoJCtADw5I0K6OvhiY7Ta4QAPwTAchLBCB0BXdDoz7cV6hVOcf1xclyT\/vtfXpoZkZfTR2SqJAgTo8BQHsRgLxEAEJX25NfqlU5x\/VhbqHqG5v\/84qLsuvRkX306Mg+iosKNblCAPB9BCAvEYBgluKKWq2+cB+hsxXNdycPDrTp3qGJmpXRV7f16WlyhQDguwhAXiIAwWx1DU36+Mvm02Of55d52ocnOzUzo6\/uG5Yoe1CgeQUCgA8iAHmJAARfknuyXG\/kHNf7X5xWXWOTJCkmMkTfu6uPHhuZqgQnp8cAQCIAeY0ABF9UUunWmp0F+q8dJ1RYXitJCgqw6dtDEjQro6\/uSO0pm41HbgCwLgKQlwhA8GUNjU3aeOCM3vjbcX12\/LynfXCiQ7My+urBW5MUGszpMQDWQwDyEgEI\/uLAaZdW5RzX+r2n5G5oPj3WMzxYD9\/ZR\/9rVB8l9ww3uUIA6DoEIC8RgOBvSqvqtHZXgd76+wmdKquRJNls0qi0Xpp+W5KmDEmUMyzY5CoBoHMRgLxEAIK\/amwy9MnBM1qVc1w5X5d42kOCAjRxYJym39ZbEwbFcgUZgG6JAOQlAhC6g5Ol1Xp372m9u\/eUDp+p9LQ7QoN079BETbu1t0amRSsggInTALoHApCXCEDoTgzD0MHCCr2795Te3XtaRa5az7pEZ6geHJ6k6bf11s2JHOsA\/BsByEsEIHRXjU2GPs0r0bt7TuujLwtVUdvgWTcwPkrTbkvStFt7q3ePMBOrBIAbQwDyEgEIVlBb36isQ8Vav+e0Nn9V7LnJoiTd1Tda025L0n1DE9UjPMTEKgGg\/QhAXiIAwWrKq+v18ZeFWr\/3lD7NO6+W\/8KDA20aPzBO02\/trbtvjuP+QgB8GgHISwQgWFlheY3e23ta6\/ee1sFCl6c90h6kKUMSNP3W3hrdr5cCmTwNwMcQgLxEAAKaHSqq0Pq9p\/Te3tOe+wtJUlyU3TN5+pYkB4\/gAOATCEBeIgABrTU1Gdp1olTr957Sh\/sKVV5T71nXLzZC02\/trWm39lafXtx5GoB5CEBeIgABV1bX0KSsQ8V6d+9pfXLwjOcRHJI0IrWnpt+apPuGJSk6gsnTALoWAchLBCCgfSpq67XhyyK9u\/e0cr4+p6YL\/zIEBdg0dkCspt2apMmDExQWwuRpAJ2PAOQlAhBw\/c64avX+F6e1fu8pfXnq4uTp8JBAffuWBE0eHK+M\/jE8kwxApyEAeYkABHjnaHGl3t17Suv3nlLB+YuTpwMDbLq9Tw+NGxCrcQPidEuSg0dxAOgwBCAvEYCAjmEYhj7PL9UH+wqVffisjp2tarW+V0SIxqTHaNzAWI1Jj1VMpN2kSgF0BwQgLxGAgM5RcL5a2YfPauvhs\/rb0XOqqmtstX5ob6fGDYjV2AGxuq1PDwUHBphUKQB\/RADyEgEI6Hx1DU36PL9UWw+fVfbhs9p\/2tVqfZQ9SP\/Qv3l0aOyAWJ5PBuCaCEBeIgABXa+4olbbDp9T9uGz2nbkrEqr61utT4+L1NgBsRo3IFZ3pUXzWA4AbRCAvEQAAszV2GToy1Plyr4wOrQnv9Rzib0khQYHaNRNvTQ2PVbjBsbqppgI7kYNgADkLQIQ4FvKq+v1t6\/PKftQcyAqctW2Wp\/cM+zClWWxyugfo0h7kEmVAjATAchLBCDAdxmGocNnKj1zhz7LO6+6xot3ow4KsGlEak+NG9gciAYn8qwywCoIQF4iAAH+o7quQTuOlSj70FltPXJOeedaX2ofG2XX2PRYjR0QozHpsTyiA+jGCEBeIgAB\/utESZVndCjn6xJVX3Kpvc0mDUvuoYx+vTQ82amhyT2U5AxlhAjoJghAXiIAAd2Du6FRu0+UNk+mPnRWXxVVtNmmV0SIhiY7Nax3cyAaluxUvCPUhGoBeIsA5CUCENA9nXHVauvhs\/o8v1T7TpbrUFGFGpra\/nMWF2XXsGSnhvZuDkRDejsVG8VdqgFf160D0NKlS\/XOO+\/oq6++UlhYmDIyMvTSSy9p4MCBnm1mzZqlVatWtfrcyJEjtWPHjnb9DgIQYA219Y36qqhCuafKlXuyTPtOlutIcaUaLxOKEp2hGtrb2RyMkntoaG8n84kAH9OtA9CUKVP0yCOP6M4771RDQ4MWLVqk3NxcHThwQBEREZKaA9CZM2e0cuVKz+dCQkIUHR3drt9BAAKsq6auUQcKXc2B6FS5ck+W6+jZSl3uX73knmGtR4qSnHKG87R7wCyd\/f1t6g02NmzY0Gp55cqViouL0+7duzV27FhPu91uV0JCQleXB8DPhYUEakRqT41I7elpq3I3aP9pl\/adLLswWlSuY+eqdLK0RidLa\/RRbpFn2769wpvnEvV2amiyU7ckORQVSigCOothGCqvqdcZl1vHTp\/r1N\/lU3cYKy8vl6Q2oztZWVmKi4tTjx49NG7cOP3qV79SXFzcZffhdrvldrs9yy6X67LbAbCmCHuQ7kqL1l1pF\/+dcdXW68sLYahlpCj\/fLWOlzS\/3v\/itKTmK8\/SYiJaTbK+Jcmh8BCf+qcU8DmGYajS3aAzLreKXbU6U1GrMy63zrhqVXzhZ0tbXUPzvcCa3NWdWpPPTII2DEPTpk1TaWmptm3b5mlfu3atIiMjlZqaqry8PD333HNqaGjQ7t27Zbe3nciYmZmpxYsXt2nnFBiA61FWXdc8QtQSjE6W61RZTZvtAmxS\/7hIDe3dQ0N6O9Q3JkIpPcOU3DOcZ5zBEqrrGjxhpiXQFF8acCqaf156G4tr6RkerOjgRm1+9t7uOQfoUrNnz9aHH36o7du3Kzk5+YrbFRYWKjU1VWvWrNGMGTParL\/cCFBKSgoBCIDXSirdFwPRhZ\/ffJTHpWKj7EruGaaUnuHNP6PDPe+TeoQpJCigC6sHrk9tfaPOVrQEm4ujNMXfCDsV7oZ27zMqNEjxjlDFO+yKjwpVXMv7Cz\/jokIVG2VXaHBg954D1GLu3Ll67733tHXr1quGH0lKTExUamqqjhw5ctn1drv9siNDAOCtXpF2jR8Yp\/EDL56CL3bVKvdU8wjRgUKXCs5X62RpjSrdDTpb4dbZCrf25Je12VeATUpwhCq5Z7iSo5tHjFIuhKTknmFKdIYpMICbOqLjGIahqrpGlVS6VVJVp5LKOp2vcutc5cX3JVV1zQGnolZl1fXt3nd4SKASHKGK84SZUMVF2ZsDTlRzW5zD7lOni02txDAMzZ07V+vWrVNWVpbS0tKu+ZmSkhIVFBQoMTGxCyoEgKuLc4Tqbkeo7r453tPWMpHzZGmNCs5Xq6C02vP+ZGmNCkqrVVvfpNPltTpdXqvPjrfdb1CATYk9QpXSM7zVCFLLz9hIuwIISJZXXdegkso6lVRdDDPnq+qaQ86F9pIqt85X1ulcVZ1nfk172YMCLo7OOEIVH3VxxObSsOOPDy02teLZs2dr9erVevfddxUVFaWiouarL5xOp8LCwlRZWanMzEx95zvfUWJioo4fP65nn31WMTExeuihh8wsHQCuyGazqUd4iHqEh2hIb2eb9YZh6FxlnU6WVqugtKb55\/nmnydLa3SqtEZ1jU0qOF+jgvM1kkra7CMkKEDJPcKUHB3umXOUcslIUnRECI8F8UO19Y3NYaayTucuBJeSqktHbJrDTUvQqalv\/7yaFmHBgeoVGaJeESHqFWlXdESIekWGKCai+b0n2ESFyhEW1G2PI1PnAF2pU1euXKlZs2appqZG06dP1549e1RWVqbExERNmDBBv\/jFL5SSktKu38F9gAD4m6YmQ2cqaluPGl0yklRYXnvZGzxeKjwkUDGRdkWFBinSHqSo0GA5QoOal0Obl6NaftqDLr6\/sD4yJIgRpuvQ1GSoqq5BVe5GVbobVHXhVeluUFVdgyrdja3b3Be3ddXWe8JN5XXMp2kREhSgmG+EmZZw08uzfHGdL52GuppufSPErkAAAtDd1Dc2qai8tjkQXRg5KrgkLJ2pqL3szR6vh80mRYZcDEaRoa1DUpvQZL\/43nHJ9sGBvjnR2zAM1dY3ecKIJ5RcIay0aftG2LmeK5yuJTjQ1iqwXDpSExMZougI+8URm8gQRYQEdstRGktMggYAtF9wYEDzFWXR4VK\/tuvdDY06VVqj0up6VdTWq6K24cKrXpXu5vcuT\/vFtpbl+kZDhiFVuBuar\/Apv\/KVbtcSGhygqNBghYdcvCWAYUiGjIvvLwlrLf+f3NDFdkPGJe9b2i\/5\/CWfvfi+9b7U6vOGauobdY1BtBsSGGBTREigIu1Birjwan4feMn7Cz9DmtscYcEXR2wiQxRl776nnXwJAQgAuhl7UKBuio28oc8ahiF3Q5MnDLUEo0p3vVyXhKSK2gZV1jaowl1\/IVBdCFMXtmmZm1Jb36Taevc1fqt5bDYpIuRCQAlpCS2XCTAhrdsvrm\/dZg8KILz4CQIQAMDDZrMpNDhQocGBio268VuK1Dc2ecJQhbteNRdOEV3MBjbZbFLLos1mu+S91LLUsr3n54XPXbrdxXVt93+xvfX+w4KbR1\/CggOZ62RRBCAAQIcLDgxQz4gQ9YwIMbsU4LJ8c3YaAABAJyIAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyzE1AC1dulR33nmnoqKiFBcXp+nTp+vQoUOttjEMQ5mZmUpKSlJYWJjGjx+v\/fv3m1QxAADoDkwNQNnZ2Zo9e7Z27NihTZs2qaGhQZMnT1ZVVZVnm5dfflnLli3T8uXLtXPnTiUkJGjSpEmqqKgwsXIAAODPbIZhGGYX0eLs2bOKi4tTdna2xo4dK8MwlJSUpHnz5mnBggWSJLfbrfj4eL300kt68sknr7lPl8slp9Op8vJyORyOzv4TAABAB+js7++gG\/nQCy+8cNX1\/\/Iv\/3JDxZSXl0uSoqOjJUl5eXkqKirS5MmTPdvY7XaNGzdOOTk5lw1Abrdbbrfbs+xyuW6oFgAA0H3dUABat25dq+X6+nrl5eUpKChI\/fr1u6EAZBiG5s+fr29961saMmSIJKmoqEiSFB8f32rb+Ph4nThx4rL7Wbp0qRYvXnzdvx8AAFjHDQWgPXv2tGlzuVyaNWuWHnrooRsqZM6cOdq3b5+2b9\/eZp3NZmu1bBhGm7YWCxcu1Pz581vVlZKSckM1AQCA7qnDJkE7HA698MILeu655677s3PnztV7772nLVu2KDk52dOekJAg6eJIUIvi4uI2o0It7Ha7HA5HqxcAAMClOvQqsLKyMs88nvYwDENz5szRO++8o82bNystLa3V+rS0NCUkJGjTpk2etrq6OmVnZysjI6PD6gYAANZyQ6fAfvOb37RaNgxDhYWFeuuttzRlypR272f27NlavXq13n33XUVFRXlGepxOp8LCwmSz2TRv3jwtWbJE6enpSk9P15IlSxQeHq5HH330RkoHAAC4scvgvzlSExAQoNjYWE2cOFELFy5UVFRU+375FebxrFy5UrNmzZLUHK4WL16s3\/3udyotLdXIkSP129\/+1jNR+lq4DB4AAP\/T2d\/fPnUfoM5AAAIAwP909vc3zwIDAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWY2oA2rp1qx544AElJSXJZrNp\/fr1rdbPmjVLNput1WvUqFHmFAsAALoNUwNQVVWVhg8fruXLl19xmylTpqiwsNDz+uijj7qwQgAA0B0FmfnLp06dqqlTp151G7vdroSEhC6qCAAAWIHPzwHKyspSXFycBgwYoCeeeELFxcVX3d7tdsvlcrV6AQAAXMqnA9DUqVP19ttva\/PmzXr11Ve1c+dOTZw4UW63+4qfWbp0qZxOp+eVkpLShRUDAAB\/YDMMwzC7CEmy2Wxat26dpk+ffsVtCgsLlZqaqjVr1mjGjBmX3cbtdrcKSC6XSykpKSovL5fD4ejosgEAQCdwuVxyOp2d9v1t6hyg65WYmKjU1FQdOXLkitvY7XbZ7fYurAoAAPgbnz4F9k0lJSUqKChQYmKi2aUAAAA\/ZuoIUGVlpY4ePepZzsvL0969exUdHa3o6GhlZmbqO9\/5jhITE3X8+HE9++yziomJ0UMPPWRi1QAAwN+ZGoB27dqlCRMmeJbnz58vSZo5c6ZWrFih3NxcvfnmmyorK1NiYqImTJigtWvXKioqyqySAQBAN+Azk6A7S2dPogIAAB2vs7+\/\/WoOEAAAQEcgAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMsxNQBt3bpVDzzwgJKSkmSz2bR+\/fpW6w3DUGZmppKSkhQWFqbx48dr\/\/795hQLAAC6DVMDUFVVlYYPH67ly5dfdv3LL7+sZcuWafny5dq5c6cSEhI0adIkVVRUdHGlAACgOwky85dPnTpVU6dOvew6wzD02muvadGiRZoxY4YkadWqVYqPj9fq1av15JNPdmWpAACgG\/HZOUB5eXkqKirS5MmTPW12u13jxo1TTk7OFT\/ndrvlcrlavQAAAC7lswGoqKhIkhQfH9+qPT4+3rPucpYuXSqn0+l5paSkdGqdAADA\/\/hsAGphs9laLRuG0abtUgsXLlR5ebnnVVBQ0NklAgAAP2PqHKCrSUhIkNQ8EpSYmOhpLy4ubjMqdCm73S673d7p9QEAAP\/lsyNAaWlpSkhI0KZNmzxtdXV1ys7OVkZGhomVAQAAf2fqCFBlZaWOHj3qWc7Ly9PevXsVHR2tPn36aN68eVqyZInS09OVnp6uJUuWKDw8XI8++qiJVQMAAH9nagDatWuXJkyY4FmeP3++JGnmzJl644039Mwzz6impkZPP\/20SktLNXLkSG3cuFFRUVFmlQwAALoBm2EYhtlFdCaXyyWn06ny8nI5HA6zywEAAO3Q2d\/fPjsHCAAAoLMQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOX4dADKzMyUzWZr9UpISDC7LAAA4OeCzC7gWm655RZ98sknnuXAwEATqwEAAN2BzwegoKAgRn0AAECH8ulTYJJ05MgRJSUlKS0tTY888oiOHTtmdkkAAMDP+fQI0MiRI\/Xmm29qwIABOnPmjH75y18qIyND+\/fvV69evS77GbfbLbfb7Vl2uVxdVS4AAPATNsMwDLOLaK+qqir169dPzzzzjObPn3\/ZbTIzM7V48eI27eXl5XI4HJ1dIgAA6AAul0tOp7PTvr99\/hTYpSIiIjR06FAdOXLkitssXLhQ5eXlnldBQUEXVggAAPyBT58C+ya3262DBw9qzJgxV9zGbrfLbrd3YVUAAMDf+PQI0M9+9jNlZ2crLy9Pn376qb773e\/K5XJp5syZZpcGAAD8mE+PAJ08eVLf+973dO7cOcXGxmrUqFHasWOHUlNTzS4NAAD4MZ8OQGvWrDG7BAAA0A359CkwAACAzkAAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAluMXAej1119XWlqaQkNDNWLECG3bts3skgAAgB\/z+QC0du1azZs3T4sWLdKePXs0ZswYTZ06Vfn5+WaXBgAA\/JTNMAzD7CKuZuTIkbr99tu1YsUKT9vNN9+s6dOna+nSpdf8vMvlktPpVHl5uRwOR2eWCgAAOkhnf38HdfgeO1BdXZ12796tn\/\/8563aJ0+erJycnMt+xu12y+12e5bLy8slNXckAADwDy3f2501TuPTAejcuXNqbGxUfHx8q\/b4+HgVFRVd9jNLly7V4sWL27SnpKR0So0AAKDzlJSUyOl0dvh+fToAtbDZbK2WDcNo09Zi4cKFmj9\/vme5rKxMqampys\/P75QOtBKXy6WUlBQVFBRwOtEL9GPHoS87Dn3ZMejHjlNeXq4+ffooOjq6U\/bv0wEoJiZGgYGBbUZ7iouL24wKtbDb7bLb7W3anU4nB2MHcTgc9GUHoB87Dn3ZcejLjkE\/dpyAgM65XsunrwILCQnRiBEjtGnTplbtmzZtUkZGhklVAQAAf+fTI0CSNH\/+fD3++OO64447NHr0aP3+979Xfn6+nnrqKbNLAwAAfsrnA9DDDz+skpISvfDCCyosLNSQIUP00UcfKTU1tV2ft9vtev755y97WgzXh77sGPRjx6EvOw592THox47T2X3p8\/cBAgAA6Gg+PQcIAACgMxCAAACA5RCAAACA5RCAAACA5XTrAPT6668rLS1NoaGhGjFihLZt22Z2ST4vMzNTNput1SshIcGz3jAMZWZmKikpSWFhYRo\/frz2799vYsW+Y+vWrXrggQeUlJQkm82m9evXt1rfnr5zu92aO3euYmJiFBERoQcffFAnT57swr\/CfNfqx1mzZrU5RkeNGtVqG\/qx+bFAd955p6KiohQXF6fp06fr0KFDrbbhmGyf9vQlx2X7rFixQsOGDfPcKHL06NH6+OOPPeu78pjstgFo7dq1mjdvnhYtWqQ9e\/ZozJgxmjp1qvLz880uzefdcsstKiws9Lxyc3M9615++WUtW7ZMy5cv186dO5WQkKBJkyapoqLCxIp9Q1VVlYYPH67ly5dfdn17+m7evHlat26d1qxZo+3bt6uyslL333+\/Ghsbu+rPMN21+lGSpkyZ0uoY\/eijj1qtpx+l7OxszZ49Wzt27NCmTZvU0NCgyZMnq6qqyrMNx2T7tKcvJY7L9khOTtaLL76oXbt2adeuXZo4caKmTZvmCTldekwa3dRdd91lPPXUU63aBg0aZPz85z83qSL\/8PzzzxvDhw+\/7LqmpiYjISHBePHFFz1ttbW1htPpNP793\/+9iyr0D5KMdevWeZbb03dlZWVGcHCwsWbNGs82p06dMgICAowNGzZ0We2+5Jv9aBiGMXPmTGPatGlX\/Az9eHnFxcWGJCM7O9swDI5Jb3yzLw2D49IbPXv2NP74xz92+THZLUeA6urqtHv3bk2ePLlV++TJk5WTk2NSVf7jyJEjSkpKUlpamh555BEdO3ZMkpSXl6eioqJW\/Wq32zVu3Dj69Rra03e7d+9WfX19q22SkpI0ZMgQ+vcbsrKyFBcXpwEDBuiJJ55QcXGxZx39eHnl5eWS5HmwJMfkjftmX7bguLw+jY2NWrNmjaqqqjR69OguPya7ZQA6d+6cGhsb2zwwNT4+vs2DVdHayJEj9eabb+ovf\/mL\/vCHP6ioqEgZGRkqKSnx9B39ev3a03dFRUUKCQlRz549r7gNpKlTp+rtt9\/W5s2b9eqrr2rnzp2aOHGi3G63JPrxcgzD0Pz58\/Wtb31LQ4YMkcQxeaMu15cSx+X1yM3NVWRkpOx2u5566imtW7dOgwcP7vJj0ucfheENm83WatkwjDZtaG3q1Kme90OHDtXo0aPVr18\/rVq1yjOhj369cTfSd\/Rvaw8\/\/LDn\/ZAhQ3THHXcoNTVVH374oWbMmHHFz1m5H+fMmaN9+\/Zp+\/btbdZxTF6fK\/Ulx2X7DRw4UHv37lVZWZn+\/Oc\/a+bMmcrOzvas76pjsluOAMXExCgwMLBNGiwuLm6TLHF1ERERGjp0qI4cOeK5Gox+vX7t6buEhATV1dWptLT0itugrcTERKWmpurIkSOS6Mdvmjt3rt577z1t2bJFycnJnnaOyet3pb68HI7LKwsJCVH\/\/v11xx13aOnSpRo+fLh+\/etfd\/kx2S0DUEhIiEaMGKFNmza1at+0aZMyMjJMqso\/ud1uHTx4UImJiUpLS1NCQkKrfq2rq1N2djb9eg3t6bsRI0YoODi41TaFhYX68ssv6d+rKCkpUUFBgRITEyXRjy0Mw9CcOXP0zjvvaPPmzUpLS2u1nmOy\/a7Vl5fDcdl+hmHI7XZ3\/TF5g5O2fd6aNWuM4OBg4z\/+4z+MAwcOGPPmzTMiIiKM48ePm12aT\/vpT39qZGVlGceOHTN27Nhh3H\/\/\/UZUVJSn31588UXD6XQa77zzjpGbm2t873vfMxITEw2Xy2Vy5earqKgw9uzZY+zZs8eQZCxbtszYs2ePceLECcMw2td3Tz31lJGcnGx88sknxueff25MnDjRGD58uNHQ0GDWn9XlrtaPFRUVxk9\/+lMjJyfHyMvLM7Zs2WKMHj3a6N27N\/34DT\/+8Y8Np9NpZGVlGYWFhZ5XdXW1ZxuOyfa5Vl9yXLbfwoULja1btxp5eXnGvn37jGeffdYICAgwNm7caBhG1x6T3TYAGYZh\/Pa3vzVSU1ONkJAQ4\/bbb291ySIu7+GHHzYSExON4OBgIykpyZgxY4axf\/9+z\/qmpibj+eefNxISEgy73W6MHTvWyM3NNbFi37FlyxZDUpvXzJkzDcNoX9\/V1NQYc+bMMaKjo42wsDDj\/vvvN\/Lz8034a8xztX6srq42Jk+ebMTGxhrBwcFGnz59jJkzZ7bpI\/rRuGwfSjJWrlzp2YZjsn2u1Zccl+33\/e9\/3\/O9HBsba9x9992e8GMYXXtM2gzDMK5vzAgAAMC\/dcs5QAAAAFdDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAALgV86ePauEhAQtWbLE0\/bpp58qJCREGzduNLEyAP6EZ4EB8DsfffSRpk+frpycHA0aNEi33Xab7rvvPr322mtmlwbATxCAAPil2bNn65NPPtGdd96pL774Qjt37lRoaKjZZQHwEwQgAH6ppqZGQ4YMUUFBgXbt2qVhw4aZXRIAP8IcIAB+6dixYzp9+rSampp04sQJs8sB4GcYAQLgd+rq6nTXXXfp1ltv1aBBg7Rs2TLl5uYqPj7e7NIA+AkCEAC\/80\/\/9E\/6n\/\/5H33xxReKjIzUhAkTFBUVpQ8++MDs0gD4CU6BAfArWVlZeu211\/TWW2\/J4XAoICBAb731lrZv364VK1aYXR4AP8EIEAAAsBxGgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOX8\/0tIVApx8v+kAAAAAElFTkSuQmCC", "text\/plain": "<Figure size 640x480 with 1 Axes>"}, "metadata": {}, "output_type": "display_data"}]}}, "29a880f5e6de435795b50f46a66a942e": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "29adfb5bcde241fc8e8984961ab42ea5": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "2c2ed815b0f545a9948793c1bc4b5fdf": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": {"_dom_classes": ["widget-interact"], "children": ["IPY_MODEL_68fb9a92340e434d85fbcc8de67c1970", "IPY_MODEL_47b1a57cdbeb4a11abc8e9166acedb90"], "layout": "IPY_MODEL_6373a42bb1db4fb4aa1cf6ffaac1075e"}}, "2df005db5f0d49dda9dd0c4e6e958c48": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": {"description_width": ""}}, "2f094b8f56ff4ac3b16dacdf8948dda6": {"model_module": "@jupyter-widgets\/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": {"layout": "IPY_MODEL_66636bdd455c4d54a22c62b30195f3fb", "outputs": [{"data": {"image\/png": "iVBORw0KGgoAAAANSUhEUgAAAZ4AAAGRCAYAAABVKtXaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy\/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eXwkd33njz+r+u5Wd+uWRhodc2jusWfGY89Yg7ltYHcTAjiwgYWQza6TDUuA7DfJkoX8YAkkQDYYCOGb7BIMvyTgZVkHEgixCWDwBfbY0twajUb3LbVafR91fP\/oqZ7uVld1dUsjyaZej4cfIE1VdXWr6\/P6vN\/v1\/v1FlRVVbFgwYIFCxY2CeJW34AFCxYsWPj5gkU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGNhS6Cq6lbfggULFrYI9q2+AQs\/X1BVlWw2SyqVwmazYbfbsdls2Gw2BEHY6tuzYMHCJkBQra2nhU2Coihks1lkWSadTgM5Ikomk6TTadra2iwismDh5wBWxGPhlkNVVWRZZmRkBKfTSXt7O6IoIooiqqoSjUZZWFigoaGBdDqNIAiIoojdbreIyIKFlyAs4rFwS6Gl1mRZJhKJ4Ha7mZiYYHp6mkAgQENDA7IsA2C321FVNf9fOp0mk8kAWERkwcJLCFaqzcItgyzLZLNZFEVBFEXOnTtHJBJBkiR6enpIJBKsrKwQj8cRRZGOjg4aGhqor6\/H4XAAFBGRoigA+YjI4XDk60SiKFpEZMHCiwRWxGNhw6GqKpIkIUkSqqoiiiLhcJiFhQVcLhd33303kCMQQRCYmppiamoKVVUZGRkhkUjg9\/upr6\/PE5EW6RQSUSqVyl9HIyLtOIuILFjYvrCIx8KGQlEUJEnKp88EQWBkZITR0dE8mTidznwKDXIpNofDwf79+wFIp9OsrKwQDocZHh4mlUqtISIt3aZHRFokZBGRBQvbDxbxWNgQaKmwbDaLqqoIgkA6nebcuXOkUilOnTrF1NRU2cVfEISivh6Xy0V7ezvt7e0ApFIpVlZWWFlZYWhoiHQ6na8P1dfXEwwG1xCRoigWEVmwsE1hEY+FdaMwtQa5hX5xcZHz58\/T2trKiRMnsNvtawhGQyUCcLvd7Nixgx07dgCQTCbzRDQ7O0smkyEYDFYkonQ6TSqVyivqLCKyYGFrYBGPhXWhsDdHW7ivXLnC1NQUhw8fpqOjo+h4PS1LNRoXj8eDx+Oho6Mj3wekEdH09DSSJOWJqKGhAb\/fj81my7+OJu\/W+olmZmZob2\/H6\/XmIyOt\/mTBgoWNh0U8FmqCtnhLkpRXrSUSCQYHBwHo7+\/H5\/MVnSMIAoqirFnQ9SIhMxAEAa\/Xi9frpbOzE1VV82q5lZUVJicnURSliIjq6uqw2+359zEyMkJDQ0OebMql5iwismBh42ARj4WqUdibA7kem5mZGS5dukRXVxf79u1DFNfaABYSTOEivpELuiAI+Hw+fD4fO3fuRFVV4vF4nojGx8dRVTUvVGhoaEBVVWw2Gw6HIx8RSZJENpvVJaJy78+CBQvmYBGPhaqgKAqZTCYf5ciyzKVLl1hcXOTYsWO0tLTonmsU2dyqdjJBEKirq6Ouro6uri5UVSUWi+WJaHR0FIChoSGam5tpaGjA5\/MVRUR6RKT1EVlEZMFCdbCIx4IpaKk1TbUmiiKRSITBwUHcbjdnzpzB7XYbXsNIXLBZfcyCIOD3+\/H7\/XR3d6MoCo8\/\/jh1dXUsLy8zMjKCzWbLCxUaGhrwer26RATlXRUsIrJgQR8W8VioiNLUmiAIjI+PMzw8zO7du9m9e7epdFmtqrZbCU3N1tnZidfrRVEUIpEIKysrLC4ucu3aNex2exEReTyeNUSUzWYN7X0sIrJg4SYs4rFgiMIoRxAEstks58+fJxqNcvLkSRoaGkxfy4hgtotzkyiK1NfXU19fD5D3mFtZWWF+fp6rV6\/idDrXEJFGLIX9TFpEJAhCERFpqjkLFn5eYRGPhbLQ0kmXL1+mrq6Ojo4OQqEQ586do76+njNnzuT91MxiO6Ta9KD3+lraTSNYWZZZXV1lZWWFmZkZhoaGcLlc+WMaGhpwuVxF19WIKJPJ5GtEGhEVquYsWPh5gUU8FtZAWygVRSGRSOBwOLh27RpjY2Ps37+frq6umhbK7Uw8ZmGz2WhsbKSxsREASZLyRDQ5OcmlS5fweDxFROR0OvPnlxIRwPLyMm1tbbhcLst528LPBSzisZBH4aKoqdZUVWViYgKbzcbp06fx+\/3rfo1SvJgXWbvdTlNTE01NTUCOiMLhcF66ffHiRXw+X5HPXCERZbNZLl26RH19PZIkWbOILPxcwCIeC0D53pyFhQUWFxfx+\/2cOnUq3\/1fK7ZCTr3ZsNvtNDc309zcDOSIRSOi0dFR4vE4dXV1eSKqq6vLn6d9vppk3RqKZ+GlCot4LBTZ3oiiiKIoXLlyhZmZmXy6aL2kAy+NVFu1cDgctLS05PubMplMnoi0ERAA169fp7GxMT8CAm6SsUVEFl5qsIjn5xjlbG\/i8TiDg4OIokh\/fz+jo6MbRgoawUiSxMTEBF6vN29Vs5XYzNd3Op20trbS2toKQDwe56c\/\/SmSJBWNgNDSctoICCgmIms6q4UXMyzi+TlFud6c6elpLl++THd3N319ffkeF23y53qhybGfeuop7HY7kiSRSqXwer1IkkQoFMo7S\/+8QFMG7t+\/H5vNVtMIiHJjwq3prBa2Myzi+TlE6UhqSZK4ePEioVCI48eP5+sTsHFpMFVVCYVCrK6u0tfXx86dO4Hc0LfZ2VnGxsa4fPky2Wx2jbP0z0PzpUYMlUZAZLNZU0RkTWe1sJ1hEc\/PEUrn5oiiyOrqKoODg3i9Xs6cOVPUg6Ido0VFtSKbzXLhwgVCoRB+v5\/du3fnm1Ldbjetra1MTEzQ399ftNBqztKFhp51dXUvqUWzEqkbjYCYmppCluWyIyCs6awWtjMs4vk5QaFMWsPY2BjXrl1jz5497Nq1y9R00GoRDocZHBykrq6Ovr4+Zmdnyx6nOSOUjjgoNfTUnAW0hdbr9W7IornV4gazlkO1jICoNJ1VURTsdjsej8ciIgubAot4XuIoN5I6k8lw\/vx54vE4d955Z94ephxqrfGoqpontr1799Lb28vs7GxVqrZyhp7RaLTIR83hcBQ1a1YyKt1uWA\/h1TICoq6uDlEUi4hIswHq6emxprNa2BRYxPMSRjkBwfLyMufOnaOxsZH+\/v6KtjdaE2k10IgtGo0WEdt6TUJFUSQYDBIMBunt7S3yUZuenubKlSu43W5d14DtjI1Y2MuNgIhGo0V9RIIgFPnMacP6tPRb6XTWcvJti4gsrBcW8bxEUdqbo+1sJyYmOHjwIJ2dnetylNbDysoKg4ODBAKBNX5uG91AWuijtnv3bl3XgEIi0npktgtuZYpPEAQCgQCBQGBNxFg4AkITmCQSibIjIDTJvTWd1cJGYXs9hRbWjXK9OclkksHBQWRZ5u677853y5uBWeJRVZXR0VFGRkbo6+ujp6en7IhrvdfQrrGeBazUNaC0WTOZTOZ7ZBoaGraNdHuzFu3CiBHIj4AYGhoiHo\/z7LPPmhoBUWk6q0VEFirBIp6XEFRVJRKJMDc3R3d3N6IoMj8\/z4ULF+jo6Mj3ilQDMzWeXGptEEhy11135Rc2s9faKOIpRWmzZjqdJhQKsbKywuXLl8lkMgSDwXxKyuv1brp0eytFDZpQw+v1Ul9fT0dHRz51OTc3VzQCQiOj0hEQ1nRWC7XAIp6XCLTenFgsxtjYGF1dXVy6dIn5+XmOHDlCe3t7TdetVOMJhUJcvXqO48fdOF0dCJQnHVi7s9eIZrN2xy6XK98jUyhNXl1dZXh4mKtXr66RJm\/GvW11dKD9HYxGQGg1tHIjICoRkTUUz0IpLOJ5kaOwN0dVVWw2G7Is8\/TTT2O32+nv78fj8dR8fb1Um6qqXL9+nURinLv7vdhsKoqcxSg4qpS228zdf6E0eWRkhOPHjyMIQl4RNjY2li\/Eb7R0uxBbLePW7qHc+6p1BEQpEVnTWS2UwiKeFzEURUGSpCLV2uLiItlslu7ubvbs2bPuh7ocWaTTac6fH2RnV4b9BzzAjX8X0lVfS\/s9bO0iXKoIUxSFWCxGKBRaMwJb+289hF762lsJRVFM3UOtIyDKTWctNxTPIqKfH1jE8yJEud4cSZLy7gCiKNLX17chr1Val1leXmZ4+DzHT7jx+Wwlx6Yr1mm26zye0vsSRTGvCOvt7UVRlPxuf3Z2tuLk0RcTaq2tVTsCor6+vkjlWPg9vnbtGm63m\/b2dmtM+M8BLOJ5kaHU9kYQhLw7gN\/v58SJEzz77LMb9npajUdVVUZGRkilJuk\/40EUyxGIgiJnsNnLL8DbKdVWLURRLKp\/lEs7FUq3SxdZPWy0oKIWbNQ9mBkB4ff7i4hIU8wlk8n8\/y+MiLRm10KxwlZ\/XhbWD4t4XkQo7M3R0hTXr1\/n+vXreQlzKpVCUZQNW0wEQUCWZZ577md090gcOOgmn1ore3waqI54tkOqrVqUpp0Kd\/vXr18nHo8XSbcLxxtsN9wq8iunKtRqaKUjILT\/X\/gZlUvNWUT00oBFPC8ClOvNydVZzpNMFkuYN1qaHI1GUdUEtx8L4PVWzr0LQsbg34z7eF7MKN3tFy6ypeMNtB4iLZrc6ve\/Wffgcrlob2\/PKywLR0DEYjEikQhLS0trnLe1ewTKEpE1i+jFB4t4tjnKjaReWlri\/PnzNDc3c\/z48aJu\/MJC7nqgKArXrl0jk53iZff4sNtN+rUZCAxezKm2alG6yBa6Ss\/MzCBJEsFgEJ\/Pt6ERai3YqtcuHAGRTCZpbm7G4XAUfUaFZB0IBMoSkTWd9cUHi3i2MbSHSotyVFVlaGiIyclJDh06RGdn55pzNOJRFKXm1E4qleL8+QF6d8ns2FGdcqtSxKMtcuFwOG\/pstWpts1YmErHG2iu0gsLC8iyzE9+8pMiM0+fz7dpC+Z2iLrgJllXOwICrOmsLzZYxLMNoaXWNNWaKIokEgkGBwdRVZX+\/v68uWMptIeq1qmhi4uLjIyc58iROuobqieCnLJN799yCrkLFy4wNzeXX\/C0gn0ikcDlcr3kF4ZCV+lAIMDg4CC33377Gg+1Uun2rfpctgPxaJsrDbWMgNCbRWRNZ91+sIhnm6Fcam12dpZLly7R2dnJ\/v37Dfscak21KYrC8PAwsjJD\/xkvgmADqh8AZ0Q8qVQKWZaJRqOcOnUKm82Wt\/FfXFxkcHAQp9NJY2Pji16ibBbaoq9Jt3t6evIeaisrK8zPzxdZ12ifzUZ+LtuBeLQNlh42agSENZ11e8Ainm2E0pHUsixz+fJlFhYWuO222\/LqICNoardqIp5kMsn58wPs3qPQ3p5TralqFlWFap9BvVTb3Nwc58+fB+DUqVN5633NtHJ0dJSTJ0+SyWTKSpQbGxuL5LcvJZQudJqHWn19Pbt27SqyrtE+F6\/XWxQRmZFu62E7EI\/ZJlYNtY6AMCIirWm4tbXVIqJbjJfeU\/wiRGlvjiiKRKPRfARw5syZqgacVUM8CwsLjI5e4I6TPgpfQhBUVNUBZKt5KwiiRDaZxuHM7cgVRWFoaIjp6Wn27dvHlStXEEVxzf1pu89SiXI5+a2269eUYRuBraovmXndQuuaPXv2rGnUvHDhAnV1dUXS7WoIulK0sRkoTbVVC7MjIAqJSDOF1YgoHo9z7tw5Xvayl+WvaY0JvzWwiGeLUTqSWhAEJiYmuHr1Krt27WLPnj1Vf9HNDG9TFIWrV68Cc9zd70UUyxCVagehOuIBUNVcL08ymWRgYCBflwK4fPly2XPKvUeHw1HUB5JKpfLu0prqqb6+Pk9EdXV1L8pFodp7LteoaUTQhWqwctguEc9Gkp\/eCAhN0FFqgVRfX58X5Dgcjnw0VDgm3JrOunGwiGeLoH2pp6enWVxc5PDhw2SzWS5cuEAkEuGOO+7ImzNWi3IRRSESiQQXLgyyd69Ka5sLvYZQFRu1PFKikGFhYYHz58\/T3t7OgQMHsNlsJJPJ3HVvPNRrXq8CWbrdbjo6OvKqp8Ic\/+joaJG7wK0uyG8UNiLScjqdtLW10dbWBuRSp+FwmFAoVCTdLizCFy7y24F4bnXUVS59qRGRZoFkt9tRFIXZ2dn8CAigKDWnpYhTqZRFROuARTxbgEIBQTabzS+g586dIxAI0N\/fv66RzUaptvn5ecbGLnLyTh8uV6V0XG0P0MLiJBcvLXH48GE6OjqK7kv3lUwOnCs8vtTUMxqNEgqF8gX5Qi+1xsbGbTsGe6MXKk26rY1\/KFSDTUxMrCnCV1tfuRXY7HsoNwJiamqKsbGxqkZAlI4J11JzhT5zW\/3ZbkdYxLPJKB1JbbPZSCQSnD17ln379tHd3b3uL2q5VJuiKFy5cgWbfeGGaq02ubUZSHK87KRTo36djXjPWmpF29FqdZCJiYm8UEFLP20XocKtri2VU4PFYrGiSFGWZa5du0ZLS8uWRYpbXWey2Wz4fD7cbjcnT56seQSENZ3VHLb+yfs5gZ7tzcjICNlsltOnTxMIBDbktUojnkQiwfnzA+zbBy2t+qm1NdepQU4NsHNnM6K4drx2pUbRjVyEbTZbkVBBM6wMhUL5OojWFa+lPbcKm7kQCYKA3+\/H7\/fni\/CPP\/44Xq+X+fl5hoeHcTgcRQtsNcKWWqB9\/lu9IBfWmcp58WlEZHYEhDWdVR8W8WwCyvXmLC4ucv78eQKBAIqibBjpaNfXFtK5uTnGxi9y5511JlJrJRCkml7fZsuW7eWpFPHcyt1\/qWFlYVe8JEkMDAxsiVBhq22CtOi4q6sLj8dTduqo2+1es9PfSGifwVYvwkYCB4fDUdMICGs6a3lYxHOLUdqbo6oqV65cYXp6mkOHDuF2u\/P9LRsFrQfo4sWLOF1L3HVXPU6nvpWNPmrs5REzqGWCpVuZaqsWhRY2oVCIvr6+vDqsVKjQ2Ni4YUPfymErd\/ra30K7h3JTR8sNe9vIlKW2SdrqRVdLf5uBnrIwHA4bjoCwprPmYBHPLUK53px4PM7g4CCCINDf34\/X6yUcDm94mkdRFEZGhjhy1EVzs7PmXbUgqKiKverIRxAyyJKETWdB0svnb6VXm9frpb29PZ9+0hRPc3NzRUIFbcHdqF3\/Vkc8pcRTitJhb4Uzdq5du0YymSwa\/1DoKF3tPWz1Irsef8NSZaHRCAhNXVdILIVElEwmuXbtGvv378fpdGK321lZWSlS2r3YYRHPLUBpbw7AzMwMly5doquri3379uW\/cJWkz9ViZmYGuz3JyTvrChpCa4tcAFTVgUC1xAOZTAKPPVDy+61LtVVC4WuXk95q9SFt17+ehs1SbKeIpxJKU5aFow0uX75MJpMpkm4HAoGKhFLYw7aV2MheIqMREFeuXCGTyeRrjIUjILRsxcLCAgcOHCCbzZLNZnnLW97CAw88wLvf\/e4Nub+thkU8G4hyI6m1lNfy8jLHjh3Lh+YaNop4cvY6l3B7QvSf8VH4\/AgCqKoTqCHdJtS2AxTLWOdsp1RbNSgnVNAWkatXr+Zn7RQ2bG717t0sqiWeUhSONijnKK0oyhr\/tNLXeikSTylKP6dCIiodAaGpCgs3M1oN6aUCi3g2CKUCAkEQiEQiDA4O4vF46O\/vL6sO2gjiicViXLgwwKFDNhqbyqeAVNVuOLJAH7U9iKKoTzyl\/1\/7eavTTmZRrmFzZWWFUCi0ZrFtbGw0HHGw1c2b6yWeQpRzlC5t8tX807T\/vF5vPvW61cQjy\/KmTIkVBGHNmIxCwp6cnERVVV544QUmJiaoq6sjmUzqOtKbwR\/\/8R\/zB3\/wB7zvfe\/jwQcfBHJ\/+49+9KP81V\/9FSsrK5w6dYovfOELHD582PBa3\/zmN\/nwhz\/MyMgIe\/bs4eMf\/zhvetObqrofi3g2AKW9OQBjY2Ncu3aN3bt3s3v3bt2HShMc1Lrbmp6eZmbmCqdO1eFwGhFYrQ9UbaQoGBDPZsipNxOli0g8Hs9b+xQKFbSIaDvl6TeSeEqh1+SruZFrtjV+vz+\/+G7lZ3MrIx4jlBL2ysoKFy5coKWlhb\/7u7\/ja1\/7GqlUio9+9KOcP3+eV73qVZw4ccI0ST777LP81V\/9FbfddlvR7z\/1qU\/xZ3\/2Zzz00EPs27ePP\/qjP+Lee+9laGgIv99f9lpPP\/00b3vb2\/jYxz7Gm970Jh555BHe+ta38sQTT3Dq1CnT7\/nFkQ\/YptAEBJlMJk862WyW559\/nvHxcU6ePFnRa61wcFs1kCSJc+cGSaevcfpubwXSgVpdCJLJeE3nCWL5SaR6kc1W73Y3Ctpi293dze23384999zD0aNH8Xq9zM7O8swzz\/DUU09x5coV5ufnyWar98LbSNxK4imF1uTb29vL8ePHueeeezh8+HBeqKF9NpcvX2Zubi6v9tosbBXxlLsPh8PBzp07+fSnP83Y2Bh+v5977rmHJ598knvvvZd3vvOdpq4Vi8V4xzvewf\/8n\/8z79IAub\/7gw8+yH\/7b\/+NN7\/5zRw5coSvfOUrJBIJ\/u7v\/k73eg8++CD33nsvH\/zgBzlw4AAf\/OAHec1rXpOPoszCinhqRLnenFAoxLlz56ivr+fMmTOmrOprIZ5oNMrFiwMcOmynsdGsuqq2yMVmqy0KEcXyC6pGPJFIhEQiQWNjY76j+6U4gbRQqABr5cmxWAxRFBkeHs6PftiMdI+GzSSeUmi2Ndqzc+rUqXwPUaHbRKGIYz3jHypBluVb3ixr9j4KvwOiKBIOh\/mN3\/gN9u7dmxe7mMF73vMe\/vW\/\/te89rWv5Y\/+6I\/yvx8dHWVubo777rsv\/zuXy8UrXvEKnnrqKX7jN36j7PWefvppPvCBDxT97nWve51FPJuBcr05w8PDjI+Pc+DAAXbu3Gn6Qa6GeFRVZXp6mrm5IU6drsPhME8mglCbC4HLJaCq1XeVi2JGdyDc5OQkExMTOByOvAoqk8kQj8dpamp6yUQ\/5VAqT56enmZiYgJJkhgaGiKdTudVYY2NjWsMPTcaWo1pKz9zzbWgnFuAVvco7I0pJKKNJOntEvGUEo82QFETF2hil0r4+te\/zvPPP8+zzz675t\/m5uYA8nVKDW1tbYyPj+tec25uruw52vXMwiKeKlDYm6MVRFOpFIODg0iSxOnTp3Vzo3owSzySJHHx4gV8daucOl2L11ptKR1BUEmlVNzuKonHlkHKFhfONbKenZ3l5MmTuN3uvEJsZGSE0dFRxsfH19RDXupE5HQ6OXjwIJATKmj1oUKhgvZ5GAkVasFWixtAf8EvHYtR2BtTKklubGxct5pwuxJPPJ5Ld1ejapucnOR973sfjz76qGEUV\/q3N\/N9qOWcUljEYxKKopBMJjl37hy33347oigyPz\/PhQsXaG9v5+DBgzXvvmw2myHxRCIRLl4c4OhtDvx1jQhCrOrXEAQJVRUQhOrTWdmMSrUZCEFQSUSj+G5YAUUiEQYGBhAEgdtuu41AIEA2m80XVWdnZ\/O2LaUO09qi29jYeEtTLVuB0vSix+Ohs7MzrwrTDD21YWaFM2Q2QqiwHYjHrEFoYW9MoSQ5FAoxPT2NLMtF0m2\/31\/Ve9ssVVu196GlY6v5W589e5aFhQXuuOOOouv++Mc\/5s\/\/\/M8ZGhoCchHMjh078scsLCysiWgK0d7evia6qXROOVjEUwGFvTmSJLGwsIAkSVy7do3Z2VmOHDmSbxKrFXqSalVVmZycZHHpGnf3+7DbFdanvHYC5Yv+RpDk2hYmTb49NTXF5cuX2b17N6Ojo4bNltoUyd7e3qLGzbGxMS5evJhPtTQ2NtbUJb8dobc4ljP01Gog2gwZzUdNI+dqiXk7EE8tBqHlJMmF0m0tXVRIRJWixe0a8SQSiaoj3de85jVrrLh+7dd+jQMHDvD7v\/\/77N69m\/b2dh577DGOHz8O5PrTHn\/8cT75yU\/qXvfuu+\/mscceK6rzPProo\/lBj2ZhEY8BSm1vtAXzZz\/7GXa7PW97s16UIx5Jkrhw4TwNjTHuusuTT63VWqsBrZeneuIxaWZd5rQUFy5cYH5+nuPHj9Pc3KybPy4nLiht3NRSLaFQiMuXL5PNZgkGg3lvsfUYe27n0dcaCv3joFioUDgCu9BHrRIxbzdX6FpRKt1WVVV39LVG1G63u+i9b1fiicViVROP3+\/nyJEjRb\/z+Xw0NTXlf\/\/+97+fT3ziE\/T19dHX18cnPvEJvF4vb3\/72\/PnvOtd76Kzs5M\/\/uM\/BuB973sfL3\/5y\/nkJz\/JG9\/4Rr71rW\/x\/e9\/nyeeeKKq92gRjw4Ke3O04uvs7CwATU1NHDhwYMO+pKXEs7q6yuXLgxy9zUkwWPonWo\/8tsb7rXFdmp0dJRrNEbSWJliPnLo01ZJIJPL1kLGxsaJ+GW1heTGg1oW\/nI+a9nloNZBKQoXtEvFs9IIvCEI+eu7p6cn774VCoTX+e4UD8bYL8RRGrvF4fF3No3r4vd\/7PZLJJL\/1W7+VbyB99NFHi+rUExMTRZ9Jf38\/X\/\/61\/nQhz7Ehz\/8Yfbs2cPDDz9cVQ8PWMSzBuXm5uQK+xdZWVlBEAR6eno2fD68oiioqsrExATLoRFO3+3Fbi+3QNdeq6kVdlttC1Ow3sXuvSeLPiuNeMotdtVOINUGnGnNidrCUpiG0kjoVktxa8VGRlpOp7OImMt1wxcutD6fb1sQz2bcQ6msvXBQoDboTRCEfK2olrTlRqFU1q0Rz3o\/ox\/96EdFPwuCwEc+8hE+8pGPmD4H4P777+f+++9f171YxFOAcr05q6urDA4O4vP56O\/v5yc\/+cmGu0mLokgmk2Fg4AWamuPceaenArHUVquptZfHXuPz19TkW0PQRhHPehbhcv0yhVJczUVZS0MFg8FtsbuFW+caUGpfE4vFCIVCRUIFn8+HLMukUqktixC3ItIoTeNms1meeuopRFEsSlsW1hM3a2JtOVXbrYh4thIW8dyAoihkMpmih2B0dJSRkRH27t1Lb29vfoKgRkwb+dqjo1c4fsJLIFD5T1JrrSaVilNLScrppCZ3a9FW3jZnM5wL7HZ70byUQgXUzMxMXgHV2NiYt6TfCmzW6xYKFbTU0+rqKjMzMyiKwtNPP52PELWIaLN2\/Fs99hrIv9fe3l7q6uqKpNtaf5Um3daMYG+VsEWvxvNSws898WipNc1RWos+zp07RyKR4M4778zvouHmkLWNeu3x8XG8vjQnTvhwOMwuQrU9pC5XTadhswnIsojNVl3EJNoyKGU+qo1ItVWLUndgzU9teXmZTCbD+fPnaWpqyqfmXLV+WDVgK1JdWj1M8087efJkXkGo7fg3S0G4HQQO2n1o77F0rEFh2lJzky4c\/7CRjb7lIp6XkjM1\/JwTT7nU2vLyMufOnaOpqYnjx4+vCa8r9dyYRW6xO0dbW5K77vLWNCunWthsoKpiDc2n1EY8okIsHMfrv7lbu1WptmpQqIDq7u7mySefpKuri2w2y\/T0NJcvX85btWj1oVuVZtlqY1RtE1AqVCjc8RfO2dEioo1caLdDUV+rserdR6l0O5FI5D+fiYkJVFXdsEbfcnJqi3heIihne3P16lUmJiY4ePAgnZ2dZb84GxHx5FRHgxw77sbvr\/5PINRYq8nBCaSqPktRalsYZCkJlCceozEJmwktDaXJlAutWrTpkdq8nVthY7PVYxHKvX6pgrBw9IO20BZKk71eb83vY7sQD5ibgloobNm5c2dRo28oFOL69etF0vdqHTisVNtLEOVGUieTSQYHB1EUhbvvvttwd7GeiEdVVUZHR4lGx7i731d1BJHHunp5bLVFVzVuzEvn8hg9fFu9+9dQatVSzsamsGlzPYvuVsNMfaWcUEHrkVlaWipyVNA+k2qECtuhxqM907WkE8s1+mqj0zUHDqfTWURERp9P6QjueDxe5Cz9UsDPFfGUjqQWRZHZ2VkuXrxIR0cH+\/fvr\/jFq3VwWy61NsiOHWn27fcASu1TQWs6R0NtD3itlCDa1xLPVqfaqkWpjU3pTBmHw1Fk66PZ\/JvBVsuZa3n90h4ZWZbzUvbp6WmuXLmCx+MpWmiNhAqlC+1WoHCA43pRbnS65jihfT6FQo76+vqi70y5VFtXV9e672s74eeCeAptb7SwXlGUfFf90aNHTXsN1aJqC4VCDA2d4\/gJN3V1N79QtU4FFQTlxrlS1efWilrqQgA2W3HD64t9Hk+5RXd1dTWfgrp06VLV7gFbiY0gvkJHACiWshcKFQql7IWfiTZ\/ZiuhrQu34ntos9nyaVpY6zihiQe070vhQEnIRTwb4ZCynfCSJ55yAoJYLMbAwABOp7Ooq94Mqol4VFXl+vXrxOPj9J\/xlplts44FSXVADcRTa31IUbLUYmEgmiQe2D6ptmpQuqhobtuhUCjvHlA4BrvUuPLFGPFUQqmUXc\/qSPtMtoOqbTOjrnKOExpRX7t2DYALFy6wsrJCOp2uSdX2xS9+kS9+8YuMjY0BcPjwYf7wD\/+QN7zhDYD+Ru9Tn\/oUv\/u7v1v23x566CF+7dd+bc3vk8lk1T1gL2niKTeSenJykqGhIXp7e9mzZ0\/VuWWzEU86neb8+UE6d2bYf8BD+WRV7Q+biq22s9cxl6cWlPbyvBhTbdXA6XTS1tZGW1tbvigfCoXyERFQZOuz1dgM4itndVSoCJNlGa\/Xi8Ph2LKaWWmUsZko\/M5kMhmeeOIJOjo68k7Sq6urzM7OEgqFePWrX82dd95ZMULcuXMnf\/Inf8LevXsB+MpXvsIb3\/hGXnjhBQ4fPpy3\/9LwT\/\/0T\/z6r\/86b3nLWwyvGwgE8s7WGmppPH5JEo+qqqTTadLpNA6HIz+S+uLFi4TDYU6cOGFqkFI5mFG1LS8vMzx8nuMn3Ph8Rruo2tVpta\/RtdWHclLs6tN7NnsWteRtqqrK0tISS0tL+fTCS3ECaWFRfufOnfmemcKxDzabDbvdzsLCwpbYtGx2tFFOEfb8889jt9vzNTO73V5UM9uMnqrtoKyDm7Wmjo4O\/st\/+S984AMf4J577uHuu+\/m3LlzfPazn+XQoUM8\/vjjhtf5hV\/4haKfP\/7xj\/PFL36RZ555hsOHD69x1P\/Wt77Fq171Knbv3m14XUEQ1u3GDy9B4tFSa+Pj4ywtLXHHHXcQDocZHBzE7\/dz5syZqoq\/pTBStamqesOeZYL+M15E0XghXU+NJhKJ0NBQ\/YOSqw\/ZanO5riG9J4oSyUQap\/vm4jE3N0coFKKpqYkrV66QzWbz9i3RaHRdLtPbGaIoEgwGCQaD7Nq1C0mSuHr1KpFIZE0tRGvavNWL4Van+gp7iDo7O9cU4i9fvozX6y3qqboV5LwdBA5wU1ig\/U0EQSAej\/OWt7yF++67D0VRWFpaqvqa3\/jGN4jH49x9991r\/n1+fp7vfOc7fOUrX6l4rVgslq9tHjt2jI997GP5sQrV4CVFPIW9OXa7HVmWuX79OtevX6evr4+enp51P2Sas0EpUqkU588P0t0tceCgXmqtFLU7TXs8TqBG4lIdNaXcaknvCQLEoxGc7hay2SyxWAxBELjrrrtwuVwIgkAymeTSpUukUimef\/75fLF6K1wENhN2ux2v14uqqhw+fJh0Op2XbV+8eBFJkoqaEm8FIW818UBx1FVaM8tms\/lCvDb+utC6ZqMcFbYy1VZ6H6Xvp7DGI4piXuZfCefPn+fuu+8mlUpRV1fHI488wqFDh9Yc95WvfAW\/38+b3\/xmw+sdOHCAhx56iKNHjxKJRPjsZz\/LmTNnGBwcpK+vz+Q7zOElQTzlenNUVSUSiZBOp7nrrrsIBoMb8lrlIp6lpSWuXTvPiTu8eL3mv7yCINccfbhctT8kKvYaq0u1nWWzZYhEIrzwwgsIgsCuXbvw+\/1kMpl8Oqqurg6Hw8GuXbuKpLmai0Chy\/St2JluZX1JW3RdLleRrY829kGzsRFFsSgFtRGmntuFePQWfYfDsUaooJFzOaFCtVNHzdzDZqIS8VSD\/fv3MzAwQDgc5pvf\/Ca\/+qu\/yuOPP76GfP76r\/+ad7zjHRW\/T6dPn+b06dP5n8+cOcOJEyf4\/Oc\/z+c+97mq7u1FTzylvTmCILC4uMjQ0BCCINDf37+hdieFNR5FUbh27RqZzDT9ZzyIYg01mxqjD8jUZNyZw+YuNPH4MheuXGL37t2srKyUJQ5tsSjsgdi9e3feRUBTiW3k8LftAD3CMxr7MDMzw9DQEB6Pp8jUs5bv+XYgnmoaSMuRc6GjAlDUP2RWqLBdiUfzFazFucDpdObFBSdPnuTZZ5\/ls5\/9LH\/5l3+ZP+YnP\/kJQ0NDPPzww1VfXxRF7rzzToaHh6s+90VLPIW9OdrDo6oqV65cYWpqiu7ububm5jbcY0uLeHKptQF6emVaW\/2IYm1ps1qjD0FgHQ2otaFWKXY0tsSxY8doaWnh+eefr0pOXegiUKoS04a\/aST0Yk3LmVkYSwlZ65UJhUJrxj40NjYSCARMLaTbgXhqFTiUEypo4o3C5t5Cax+970e5SGMrUK55VFXVouFstUITXRXiS1\/6EnfccQe33357TdcbGBjg6NGjVZ\/7oiSe0t4cQRBIJBIMDg4CuSl5kiQxPT294a8tiiKpVIqBgae446QPj0dEUVzUXq9ZR8qs1gbUWtV0NYohurpb8PhyqZL1yKnLqcS2Ii23kag1xVdu7IOWgjp\/\/jyKouTrQ0ZeatuFeDYi2ihs7u3t7S0SKkxNTeWFCuWixFsV8aiqgiCYv245Z2qg6lTbH\/zBH\/CGN7yBrq4uotEoX\/\/61\/nRj37E9773vfwxkUiEb3zjG\/yP\/\/E\/yl6jdOz1Rz\/6UU6fPk1fXx+RSITPfe5zDAwM8IUvfKGqe4MXIfGU9uYIgsDMzAwXL15k586d7N+\/H1EUiUajt2Ruzvz8PIFgittv9xWk1tbz4K6ntlDjoirUSpK1ned03SS6jXQuMErLaTNUChdfvbTcVi+8G\/H6brebjo6OvHuyZlpZOPRN+xwaGhryO\/\/tQDy3yqutUKiwZ8+evFChNEpsaGgglUpt+Odgs4UJLWQJNrWYPqcc8djt9qoj+fn5ed75zncyOztLMBjktttu43vf+x733ntv\/pivf\/3rqKrKr\/zKr5S9RunY63A4zAMPPMDc3BzBYJDjx4\/z4x\/\/mLvuuquqe4MXEfGUG0ktyzKXLl1icXGR22+\/vUjtoTV6btSDlUwmOX9+gN5emY5OL+sjjJsQWA851va+VDUD1OLRVZsU22YvJqxb5VzwYkzL3QpRQ6lpZeHOXxvzrEWGqVRqW9jVbAb5lQoVtOGAmu+eoiik0+mi0Q+13pfNvoTTOc7wCz5OvnZ9xOP1eqsm5i996UsVj3nggQd44IEHdP+9dOz1Zz7zGT7zmc9UdR96eFEQTznbm2g0ysDAAG63mzNnzqxRZGh\/vI0gnoWFBa6PXuCOO3yUc9dZF3msy2+ttpSZKIKqOqhJjl2DGMJmz5JJ3+xP0It4NnKkeDVpOVmWNzw6rvZebyXK7fy1yDAUCiHLMolEokgZtpmF9q0q7BcOB9SUsHV1daysrDA2NoYgCEX1IXOjDVTsjjmczhmkrJ3l2XhV91RuJMJLbRYPvAiIp3RuDsD4+DjDw8Ps3r2b3bt3l\/0yaH88SZJqbhhVFIWrV6+iqrP093v1VWvrIo\/a1Wk1NYFqqNHrrRYxhCBAJBSmoaVpy0xCjdJymUyGCxcumErLbTS2QsZdGBlq3oN+v59QKMTk5CRADQtu7dgOYxFUVcXlctHV1ZVXEWou5AsLCwwPD+dHG5SmKwuugsM5hcOxAEB0BZLx6mqw5UYivNRm8cA2Jp7C3hzti5nNZjl\/\/nx+VK\/RjArtj1frLjqRSHD+\/CB796q0tbsxTq2thzwgHlfw+Wp58GpXtNXs9VZrek\/JDZ\/bLiahhYvvyspKvhi9FWm5rTYJdTgca8Y+hEKh\/ILrcrmKFtz1OH+Uw3YxCS0kv0KXiUKhgkbOWrrypqNCAK9vGrs9lL\/GwlSadLK6uqgkSUWmxYlEYl3TTLcrtiXxKIqCJElFqbWVlRUGBwcJBoP09\/dX\/PILgoAoivmm0mowPz\/P6NgFTp6sw+2uTFzrlTbbbLW5EOQaUGsbZb3ZvTw2e+796T1AW+3V5nQ6aWpqKpuWu3LlSl4NtdFqua02Ri1NRZdThmnOAePj41y8eDE\/9kGz9VnvZ7EdemgqyanLOSpo9aGRkWEOHxEJBIuX07HLUVLx6v6+pRHPS3H6KGwz4tHrzbl27RpjY2Ps37+frq4u0+xf7bRQRVG4cuUKNtsCZ\/p9CFU0hKqqoyZpM9ROPDnUNsq6VtQqxbbfGAj3YnCnNqOW05pYm5qa1p2W28rdbKVow2az0dTUlDfVzWQyZZ0Dak1RVjNy+laiWvK7GTE34nKr2Gxrazkv\/GSKTMZTlf9gOXGBRTy3EKW2N4IgkEqlOHfuHJlMhtOnT1fdRFXN0LZcam2Avn3Q2uqietVa7Q\/OehaeXC9PDa9ZoyBCUTM1ibg1Zdt2IhizKB2FXWhlMz4+jiiKRd5yG2Fls1moVnzjdDrLjjgoTFGW1ocqvT68+IgHQBAyuNzDiGL5jd\/Fp5bZsa+R559\/Pr+Z0dKVenWzUs84S1xwC1HYm6OlyObn57lw4QJtbW3ccccdNTkQmCWeubk5xicucfyED69345RVZiEI61mIayStGgUROSl2da+pqgKz373Is\/\/0dzgOd7P3Nadyt1CS4nmxEFK5UQfLy8trrGy0RcYohbPVhfX1qD5LnQMKxz7Mzc1x9erVohHP5cY+FFpdbSWqdS4QhOQN0ilfw5ElG4tTCXYf6eKee+5ZMw7D6XSWHZcuy3LRWqfVeF5q2FLiUVWVTCZDOp3GbrfnFTaXLl1iZmaGw4cPs2PHjpqvX4l4ZFnmypUrOByL9Pd7QXUByZpeq2Y3ANapTqsZ2ZoEEXa7UFUvjyrbmfyziyS+N8RhgJlR4t8b4v86s4gHO9n\/i6+i7\/SxLa\/x1IrCIrSWltOaFK9evVqUlluPieWtwkY2kJYb+6B9FtrYB81ZWqsPvRgjHlGM43IPGz4DsUjuM03FM2s+l8K6WWlfVSaTKXoOajUI3e7YMuLRenMmJyeZmZnhrrvuIh6PMzg4iCiK9Pf3r3vOuBHxxONxzp8f4MABkeaWXGpNUWtVerEuSbVQs5MA1NrLIwjqOgQRDjCRqpNiDq697wekx1aKfu+zOTkoO5HPh3juJ59nsb6FSa+EeLCTnS3t1Lc113BP2wOlTYqFqahyabmtjvJupXNB6YhnzVk6FArlxz4EAgHg5gK7VaRslnhEcRWX+3pFQc\/idO6ZTpVRtZXWzQqFCpq0f3l5mZ\/+9Kesrq7S0dFR1XupNPb63e9+95rZO6dOneKZZ54xvO43v\/lNPvzhDzMyMsKePXv4+Mc\/zpve9Kaq7k3DlhCPFuloYaUsy\/mmvu7ubvr6+jZkB6RHPDMzM0xNXeauU3U4nQV2LutSeq1HUq2QSim43dW\/50wmTq0lhVq93szUlRLDKtfe9y3UdHlCjmRTTCZXOdmwE4CWpAueDzPz6w\/yFAmyu5rp\/VdnOHLfy7a935oRtLRcZ2dnUSpqdnaWoaEhbDYbHo+HpaUl6uvrN9zUthI20zKn1Fk6Ho8zPz9POBze8jlMZlJtNlsIu2PRlIp0YigG5CKeSiisIc7Pz3Po0CEGBwcZGxvjmWeeyc+reu1rX8trXvMajh07Zvg3qzT2GuD1r389X\/7yl\/PnVFIJP\/3007ztbW\/jYx\/7GG9605t45JFHeOtb38oTTzzBqVOnKr7HUmwJ8Wh1HC2\/HY\/HuXr1at7BeKNQSjyyLHP58mXc7mXu7veu+QKpqDVTTy6CcFCrn1kmUxvxOJ2sYzxCrQu6\/oupqsjSPywy89kndY+ZSISxiyKHA21r\/s0h2ujDz9nBEZxjSZ7\/\/HeZ9il4bt\/NkfvvpfPA3hrveetRmnLJZrNcuHCBbDbL8PAwqVRq09NyW+XVJghCPoU0NTXFPffcU3byaKGE\/VaScqWIx26fx+maQpbNpb2unl0GzBFPIWRZxuv18prXvIbXvOY1\/Mqv\/AoHDhygq6uLf\/mXf+Fv\/\/ZveeGFFwyvUWnsNeQ2AdWMsH7wwQe59957+eAHPwjABz\/4QR5\/\/HEefPBBvva1r1X1HmELU22CIBCJRLh06RKqqnLmzJkN3+EUEk8sFuPChQEOHrTR1Fye3ddba8lJqmsjnhrajYBC+5v1pOs2BopkZ+KPB1n90YjuMedWZ9nra8JrL\/83yCgyFyJz3FGfi4Tq7W7q08DP5kj87P\/Pv0hRljv9dPTfxh33vw6P\/8Wb\/3Y4HHg8nnx9qHS2jGbZcivVclttEqptPgvVcKW1Mo2UA4FAviBvduyDWegTj4rDMYPDOXfjZ3NrxAs\/ngWoqoFUURRUVV0jp967dy+\/+Zu\/yfve976qU7N6Y69\/9KMf0draSn19Pa94xSv4+Mc\/bjjZ9Omnn+YDH\/hA0e9e97rX8eCDD1Z1Pxq2jHjGx8e5fPkyO3fuZHp6+paE1RrxTE9PMzNzZU1qbS3WN9smlcpSa1lKVdfx8Kv2dThOV49yQorsqoNr7\/0+melV3fOmVQe3BfXFIsvpOCvZJCfqO3WPiSYS7J124n\/kHMP\/5ywT9jTqvnb6\/s3L2f\/yu2peRLeq1lL4upXScoVquY2KALaaePT6iEprZclkMk\/KU1NTKIpSJNs2O\/CtHLT+wbXEo+J0TmB3LOV\/I5io5SqKyPjlMFBdxKNtkkuJp1BcYPY9Go29fsMb3sAv\/\/Iv09PTw+joKB\/+8Id59atfzdmzZ3XX4bm5OdraijMUbW1tzM3NlT2+EraMeHw+H3feeSdOp5OJiYlb9gDMz8\/T0aFw+u61qbVSrM8JAFKpdFWjrwuxns1b7cPkaozwSs6LXZIZ+cA\/gqTzuXkcZAJuOuejupecyEbwCTb21ukLC55bmeJ4fQe2G\/NNPDYH+1UHDMVg6Lt8\/xNfI9VVj+dQD8d++fU0d9WuiNxMlPvel1OIaQvvRqbltgPxmIlcPB4PHo+naOxDKBRiaWmJkZGR\/MA37fOoxtZHk3QX13gUnK5R7PZw\/jeqKpjKaCSiN99PKpFFUVRE0VzzaOl91CqnNhp7\/ba3vS1\/3JEjRzh58iQ9PT185zvf4c1vfrPuNUu\/J+v57mwZ8bS0tCBJEul0GlVVN\/wByPVWzHH0qIuW1iq8pVQXCLVJqoPBOiBR07l2+1Y8\/Ouby6OqIgvfmGXuL3+qe6TS6EOVZJwGpPN8eJqjwR04dAZmJeUsV2NLeSFCOUwkwrhEkd4FFRbGWPzhX3BWiZPsrqfrtXdx2795NQ7XxnqMbQTMRlqlg98KRz5oI58LveXMpuW2Qx9R9Y2bN8c+9PT0lPVRq6urK\/BRM7Y4WuueIONyX8Nmi5XcqxNRTFMJS7PFUVEmlcXtrfzdK5wxlnu9nACjlumjZsZea9ixYwc9PT2GI6zb29vXRDcLCwtroiCz2PIGUi1dsB4X6UKoqsr09DRzc0OceZmXajN4tZtnou9ebQIu19YQj6JUH20JgoycdjL+seeIPj2mf\/XOIPaFGGK2fGSVVWTOR+YMU2shJUUkneR2gxTd+cgcu72N+ArqRnZBZLfND9My0kNP8s0vPIKn3o\/jSDeH33wvPccOVn6jm4RaNlwejydv7LmetNx2iHjW+\/qlPmqZTCYvTy61OCoXHRYRj5DF7RpGtK3dfKqqHahMPJNXi+1zUvGMaeIpJciN6uMpN\/Zaw\/LyMpOTk4Y9k3fffTePPfZYUZ3n0Ucfpb+\/v6b72XLi0XYZGzEPRZIkLl68QCAQ4dRpb41Kr\/Xs\/mqvETmdQk0kALWnzAQBMhmqJudMyM74Hz0LsoCjrYHsfHGfDgKkO+txTYV1r7GcibOcMa7nXIku0OEJ0ust70KuqCrPh6c5Ud+JqPPHXs2mmElFuMPfnrPDG1gmM\/B1fpSNEWpx03zmKMruresb2oja0nrSctuBeDY64nI6nbS1tdHW1pYfCFgo2gCK3La1z8Bmy+JyX0UU9Z5jc5\/T8Auhop9T8QyYEOuWI55EIrGhY69jsRgf+chHeMtb3sKOHTsYGxvjD\/7gD2hubi7qySkde\/2+972Pl7\/85Xzyk5\/kjW98I9\/61rf4\/ve\/zxNPPFHVvWnYUlWb9r82m60mF+lCRCIRBgYG8DgF+k6uZ6LiehwIlBs9LrW9F1m2I4q1nFu7sMDh8GI2PaiqEBvIcP13\/yH3ww3Ym4M42xtQshKpuRAZl82QdMZTEbyCjX0G9Zyz4SluD+zALpZPkSTkDJPZWMX0m10UOehfq9bpdNTRGYaBv\/sX9gVaeUb9DsreNna9Idc7tJmL8Ua\/VjVpOc2maqtwq1N9hQMBS8c+aPY1DoeDQEDE4bxUIWthbpMw+JPilFS5JtJyKCUeRVFqMgk1Gnudm6R8nq9+9auEw2F27NjBq171Kh5++OGilF7p2Ov+\/n6+\/vWv86EPfYgPf\/jD7Nmzh4cffrimHh4AQd0iOY\/mzwbwwx\/+kOPHj1NfX1\/1dVRVZXJykqGhIXbt2sXqpMyp+0KVT9S9ngehxhoPgKp4EMTazk+nHLjc1ZOI9hesZf1QFD+iqF9\/0ZDNqix\/bZb5rzynf62mOlRJxl3vxxHwIa1EyUwtFR0zGhPY6VNw6NxsWpG4FJnnuEEkNJeKkFZkenQiIYALq3Ps8hWn3wohqwovhGfKElcom2TWD96Tfdx+\/+to292t+zrrxYULF\/K1is2Aqqr5kQ+hUIjV1VVcLhctLS2b0i9TitnZWWZnZzlx4sSmvWYhZFlmJTzGjh0rOBzGD5CiuCrWeBRF5F81f6fod5945Fc5cLKr4r0sLCwwMTHByZMngdxmeufOnSwuLubdH14q2PJUG1TnIl0ISZK4cOECKysrnDhxgqamJr739HPIsh2brdYIan2y5FoVZgDJZAaXu\/qzc\/OAXJjJP5c5u+IRUsrOld99HOXSsu4xmc56HAtRxKxMdjWZ\/xRtQR\/OzmZUVGxOB7sGRnRfM6ykWUrEDEnnSnSBdrefdndA95ircoSDgda8+q0UMSnDWCKkGy01OjzEQiu4vn+Z8E8mOSfHiHcGaH\/FcY6\/+T5cXmPH5Wqx2dFVYVruySefpLOzk3Q6XZSWa2hooKmp6ZY3sW71LB6HM0JXV7jie8w1aVd+vlLxte\/FrKRakqQ1UmrAMgndSBT+oe12e9WpttXVVQYHB\/F4PPT39+f154lYmmTUTV19rfclrUtSvT6o1DzhU7WbejDWwvh9phdsDP+nf0IJ60RxFeo58mqctKLiaAkSvzzJimonKimkUgvs9jXkU2nDsSVaPH721jXp3svZlWluD7brpt9Scpah2CK3B\/W9rWZSEWRF4UhAv2v7QmSOXQVihV67H+ZV+N\/Pc+VrP2XMnsZ1Yjd77utn72lj+5JK2GqvNiA\/ewiK03LaGOxCF+VKYw6qxVaq6mz2RRyOeVOZArO10ND82g10KmFuM1s6BC6RSOB0OjfVOmiz8KKLeFRVZWJigqtXr7J79252795d9OAnIilCC\/aaiSf3Ik4Qah2uVvtC4nKvZyBcbQ+vnjBBVSHy0yRj\/+0x\/ZO9TjJ1TsN6jrOrBSWRIn0918ndIEg0OABHM1EpzVh0kZVskj2+Rupt5R+wjCJzMTLHHQ36kdBCKkZMzhiSzpXoAp3eevw2fYVRaa\/QWqjIqzH2nF2As3\/PE9m\/ZanRQf2pQxx76+tpaK\/e8mmrayyFr1+olitMy2ljDjS1nNa8ud603NaMvVaxO+ZwOmeQZXMd33a7uVro1MjaY1KJ2iKeWCy2rsbY7YxtQTxmIx7N2yocDnPHHXfk5ZOFiEfSzI7Z6N5X+y5hPemy9dju2GxbEWWt3Y2pio2Z\/3WdpYcHdc9SmusgLeFciOke4znUQ+raNGqm\/N\/WI9rJqDIvb94FwFRylVVBQshK7PY24bbZWU4nCGUThum34dgSjU4vu91rvw8aKokVsqrChdU5Q7HCQipGQslytCBaanf4aI8C37\/G3KOf5TtqCP\/unXS\/9i6O\/qtXYndsi0dMF0aqttK0nKaWy417HiGZTOZtbBobGwkEAlUvkpufalNxOKdwOBZu\/Gz2tc0dN\/jU1JrfpeLmI57SIXAvxTQbbJNUm5mIJxwOMzg4SF1dHWfOnNHt+UlEU4xezHLqPn3foUqIrEapb6iVemqXVNvtSu0O1zWPR5BudGTnIjU55eD67z1J4qK+FYZWzxF0+nMQBbyHekhcGNO9RhyVqXiIOwoIZacnyE4Ady5t9uTyGKIg0OUO6l7nmhKh21uPSyz\/VZYUmXMF3m\/lsJyJk7TB8Xr9aOnaDXLrdesLGs5F5rgj0I59PA1f+gkDf\/kYU14F9229HH7LvXQd3rfmnK2WM1fz+uXUcppMWUvLFboHmEnLbW6qTcHpGsNuL5T\/m8xQmEyJXn1urWXU\/OxCnkSMPuvSIXBbPSriVmJbbMeM5NSqqjI+Ps7w8DB79+6lt7fX8A+RiKa5\/GwcqJ14HE47Zs0AS7Ee2511GX6uy+DUCaRJTYsMv+cfUaI6tSJRIN0RMEytiX4vztagIeksJMHrEdnv109LXYktcrJ+Jy5b7isaVjNcX13EIdjY5WvAbXMwsDrDSQNCWc0mmUvFDHuFRuMhfHYnO236vRKDq7McqGvJ30spJFVhcHVmDbkF7W6CGeC5Beaf\/l+cd6uk6920vOw2Ttz\/erzB6jvSNxrrIb5SGxttEqsmU9amj2qpuXJpuc1Ltcm4XNex2SMlvzeZ2jbxfKmqwJWfLa75\/cpyhOeeew673W449kGW5aIJrYlEYt0zybYrtpR4tKmT2kyeUmhDkSKRCCdPnqShQX+3qSEeSTFyfg5VPVxjAyl4vU5qnUQKrKtGVLvDde1qPFWxE35imYn\/\/gPdY2S3HSXgxjWlbwLq3NmCkkqTGpnVv87OZuonlnDq7DQVVeX51ek1hFIvOPMEspJJcCm6gIjAZDZKp71uTQPpTCaKoGBIbudWZ9lb14zXVr7vS2tQNUq\/xaQM44kVw4hqKrmKgECfHIBl4FsXGPm\/A4zbkoTbvPTcd5rO+zu3ZGe7URGXIAgEAgECgcCa6aNGabnNSbVJuNzD2Gxr6y\/6zaLVH5dO2imXuKn3N\/Hyl788b+ujjX3w+XxFtj6yLBdZHcVisZfk9FHYRhGP1tOjYWVlhcHBQQKBAP39\/abtdBLRNPHVDLJkx+548Umq1yMSyGRUnM7qXlmV7cz8ryESF5ex1fuQw\/E1x8jNdajJDA7Dek43qWuzqBmdz04A75FdJM6PYtN5i5FsiqlUxDCKmUqEEQSRuxpu9kWsZJOMJ1ZAhW5vPTOpSE6VZvCdeW5lytDxIClnGY4tG5LOipommkmWnSuk4Up0gQ53gICj2DvNbbOzHz\/Mw9nPP8LPvvokMz4F\/x37uP2tb6Clp7qpk7XiVqX6SqeP6qXlstnsLd3VC0LmhhvB2iheVewIJhq2zTaFryyUj4pSiUzR2Aconjqqydi1dTAcDuP1emtqHn2xYFsQj91uJ5nMRRiqqjI6OsrIyAh9fX309PRU9WDEI7lIIxERCOgrcw2xfkn1enZwtS8CdrsHMB9pSQkHI7\/zOKnhm02ezp3N2Bv8yLEk6fF5MjuCOOYjCHrO04KA90gvifOjuq8j+Fy4OpoNj5lMhBEFkUNlXAY0jGRWaXN6qLMXpygaHB4agrl6wrMrkzQ5fVyOLtDqD9IheosEBSk5yzSpiiKCuJzhtqC+5PpqbJEd3iDd3nrdY14IT3Mk0I5DR9CQS9HN5qOlxgTwkwmWf\/xFnlfiJHcG6XjNnRz7xdfgdN8aSe1m1ZjKpeW0EQfhcJiVlZWKablqIQhJXO5hRLH8ZkhRHdhMpNoUxWGqL3BmtHyWJF1G1VY4dRRyxDw4OEg2m+Uf\/uEf+N3f\/V0OHDiAKIoMDQ2xb98+U38no7HX2WyWD33oQ3z3u9\/l+vXrBINBXvva1\/Inf\/InhuO1H3roIX7t135tze+TyWTNM6K2RapNExdkMhnOnTtHPB7nrrvuIhjULyrrIXmjPrE8J9VMPMCWSarXd675P2dyTODae\/8BpeShyEwt5dwGRIFUZxCPzYF7fxfRsVnsJY1wYp0HZ3uDIaE4djSCrJAantY95sLqHL2+hjWEUoiz4SmOB\/UjlJQscSW2wJ03IqHdvpzCLSalGY0tklVkAnYXgiCwx6f\/xRiJLVPv9LDLQCE3EJ7hYKBVV9AgqwqXksuGSryYlGY8ES4SV2iw3TA4nRkNk\/7rf+HiQz9hwpXFcbiLA7\/0anafPKp73Wqg9RBtdh9NYVoukUjgcrkIBoO6aTm\/31\/1PYpiDJf7WgWVqdkJvOZee+RcuOzvkyZUbR6PB7vdTldXFydOnGDXrl38xV\/8BWfPnuX222+ntbWV1772tfz5n\/+5YYRoNPZ6586dPP\/883z4wx\/m9ttvZ2Vlhfe\/\/\/384i\/+Is89p+9IAhAIBBgaGir63XoGE26LiMdms5FKpXjyySepr6+nv7+\/qMhWDeI3iGfmeoJdh2tvdltfuqx237n1TUGtfMeqKhB6dIWpT\/1Y\/yCvi6zPgXsyjEqu2mUH7O0NOFvqURJplGwWJZkhdW1G9zLu\/V1kJuZRkvr58Up9MxqhGNVQVpUMS6kox8r08NTZXRwNtDMSWybocJNWJK5kVpBTGfb4GnEX1HcuJ5fZ7QnqigjM1HwScoaRWIijBtHSfCpKWpENU3TDsSVaXD7qHbnv8CHZCedCyOf+D49nHyLU7Kb55bdx2y+9lmBLbTssjXi22iS0NC2XSqXWNLFWo5YTbau4XCN5peb6YXL42tMLZX9vto9H82qz2Wy87GUv4x\/\/8R\/p7u7mT\/\/0T3niiSd46qmnKr53o7HXv\/7rv85jjxX35X3+85\/nrrvuYmJigu5ufWsoQRCqGpVdCVtOPKqqsry8TCQS4eDBg3R3d9f8IGTTEtl0btEfubDCmV9YT5d17Q9jNptYx5iD9U1BNYIq25n8s4usfG9I9xi5uQ4hlcWxuLaeI82tIM2t4DnYjbwYxtHemHOnngshLRWrhbxHd+WUbToy1IwM81nRcBFfTMeJSumyhKJhJLZMo9tnGMUMhGc54G8uIhmckJYlLkXnSUhZUopEf2OPfkSlSFyNLla835iUNiSdaSmGR7TR5tZXtA2uznDArx9Rtdt9zIxN075qZ+pb53mSBNk9LfTedzdHXn+P4eyZQmwH4iknp3a73XR0dKxJy5lRy9lsyzhdYyaFRWY3eWYUbXDuJ+VFNWmTzgWlJqHxeJy2tjY8Hg\/33nsv9957r7nbLbheubHXhVhdXUUQhIo+mbFYLD\/76NixY3zsYx\/j+PHjVd1PIbaUeDKZDC+88AKxWAyPx7Nuo0StvgNw6WeLwOYUaEvhdApFvTHVYD1ybMHgAZFiDq697wekx1Z0j8nurMc+Z1DP4Qah3EityZGbKiFHWwOO1nrkVBrRbjdMvyXtdqIpiS63\/uuMJlcI2Fz5lFk5DKzOcLCu1TBCOR9f4Fh9+TkjLpudXd5Ghm8MmVtIx1gRJNLJJLt8jfhvpP6W0nGyDsFwbPf1+DIBu5tdBvc7uDrLfn8LboP6RSXRQ1qRuFJAgE7RRh9+GE3BX\/6Qs1\/4J0brZBpP7Ofwm15Dx\/7duq+1HYinkpy6MC3X29trqJbr6hJxeyKm1axm1aNmjsuk7aSTOuICk15t5YinFlWb0djrovtKpfiv\/\/W\/8va3v51AQN\/78MCBAzz00EMcPXqUSCTCZz\/7Wc6cOcPg4CB9fX1V3x9sMfFcuXIFh8PBkSNHuHjx4rqvl4jdVK5cfGa+5sUfzM1W1z83N62wNtNOyPXV1FBf0rnnxLDKtfd9CzWt855EgfQO4\/4cxWXD1dmiSyjZ+RVQFHDYySwt4u7rRLYJJGeWsBdsCGzdLdhnQrQapIdfCE9zxGAiqZGztIacKm3JcICcFqFohNLqqst1fznrkRSZ4dgS86kYfruLo079KObc6ix9dc14dGTZUJlQMorMhBo3fE+r2SQL6bjhe4pnUnSEbbQ\/NUX0yYf4vhwjusNP+yuOcexN9+Lx31zItgvxVFO\/KZ+WW8brWyQQlAmHZerrK0d8qiqaGkFi9rjVJf11ptpUm4ZbMfZaQzab5d\/+23+Loij8xV\/8heH1Tp8+zenTp\/M\/nzlzhhMnTvD5z3+ez33uc1XfH2wx8Rw5ciQfSm\/EILhE5OZCn03LZNIiLnet112npLpm007t3FrOzBY5H8iySug7IWY++6T+KT4XWa8D17R+f46jo4lULE72ur6bgXtvB5nZEEo8dx1NTGAHHC1BHG0NCG4H8YvjOKTyf5ObKi\/9onxKlblWIeWlWdsYRSizShKngG6EYhdtJOUsdzR04rE5iCoZRiJLqCp0e4M0OXMLwmBsnqOBdl1CySoyFyLGVjyr2RRzqahhz9F0MpcS6TOYYVQq3RYFgR67HxaB\/zPA8MPPctGbom5XB\/t+4eX03nU7sPWptvW8vtvtorc3i92R+055PHWY6cHL9ctVfj5V1YlgQmQ0O6Z\/jBmTUFVV15iE1trHU2nsdTab5a1vfSujo6P84Ac\/MIx2ykEURe68807DUdmVsKXEo3m0bcQgOChOtQHMTcXo2VtbnefFKKkWBPVGpJVBytgY+v89g\/Qzg2bOFj9CMlO2nqPBc6CL9Ng8tpT+rs17ZBeJS+O5iKcMsqEojrYG4s8Ng8NGuqmOqbE4QYdK843IJ9fDs2pIOrOpCKLTYegsPRxboqmCtc3g6gwHAm24nPo749IIxS8687UmRVUZji0xk4rQ5qpDVhVEYe21YkqW6XjYUN02k4qgqqoh6QzHlmh11RF06IeJA6szHPK34dSRbgNcjMxz0rYTrkThynd4Lvu\/mXFm+OHgBMd++fU07dy44rFZrK+BVMHpuo7dfnPTZNdrEitBNiuYcptWVXP1stGL+hs3M6k2beNdGvEUDmerFYVjrzXSGR4e5oc\/\/CFNTdULU1RVZWBggKNHa1dXbrm4AHIEpDH+eqSd8Wgx8STC65lEyjol1VsDVbUjRVSG\/\/NjSDOl9iA3kdlZj8OonqM1fBoIBHDa8eztIHFBv54jBrw4mgI3LXSyMq7lGHtuPE+rWbgcmwRV4UhAP0IZii7S7vYTFPUX3xfCMxwykDmbUaWlFYmh+JLhMVEphaKqvKI5Vz9JqhJDkTkyskyHJzcraCYZweV2VSSUQuVaOVQSGkCOJI3uNxd1za85ptXho1X1wQ9HGX30z3imTiDbUkfXa+7itn\/zKhwuc03b60Htz7yEyz2CzVayaTK5UYzH4rhcJkhFNbcJvPjMWqscDelkFkVREUX9ayk3Nm2lNZ5qm2uNxl5LksT999\/P888\/zz\/+4z8iyzJzc7ksRmNjY75Jv3Ts9Uc\/+lFOnz5NX18fkUiEz33ucwwMDPCFL3yhqnsrxLYgHu3DlmV5XcSzNF9cOJ8bS3HwZO2WE+tyqV7HCO10OkGtY0+iZyNMfvJx5JW1DgSAqXqO4HXh6jRu+LQ3BRC9LpKXJnSPce5sRkmmSY\/qp+hWM3B7sAOPaCOryAzFFolJ6VzU4s2lwZ5fmeZoUL8R00zNJyVnuRozJpSVTIKlTILb\/Po7\/6nkKqIgFBGKR7AXRWHPrkyiAq3OeryIZWs\/ZgnFqC4kKTKjFepCMSnNZHLV0ABVk3fvS9fDlARfeYpzX\/ohU24J59EeDr\/lXrpvO6B7\/npQk0mokMXtGka0rU2pmbXACdb7MTXy3QSRqSq88Lh+WwHkyMfj0ydySZIQBCH\/WaiqSjwerzriMRp7PTY2xre\/\/W0Ajh07VnTeD3\/4Q175ylcCa8deh8NhHnjgAebm5ggGgxw\/fpwf\/\/jH3HXXXVXdG0Bvby\/vf\/\/7t76BFG4SjyRJNfXv5MdfXyzOOY6cW+FV96\/H62gdue+a\/NZunCpIVb+2qoosfGOWub\/8KYgCjp3NxJAI2JykJxZyfak+N1mP3bies6MRFNWw4dO1ux1pKUJmUj+i8hzsJjViYKEDjEQFdtWp+TSVQ7Sxv+7mgr6ipDkfmqHe4SYpZ8sST6VpopCbbBpKxQ1rPhOJcE4hZlBDmVTiBO2uNfY3hXghPMPtwY58yiutSFyOLpCQs7Q4fXR76ysSil6EUgiNUA4aOD2Eskmi2ZThMWOJEHU2F93e4gUuYHdxSHLBC0u88PiDjNXXsxS00XzmNo7f\/zr8jfW616wG1ZqECkLqhhvBWoLJpcbN1XTNiodkOUkldbqUtRMLGxNeKp4xJJ7S+g7Upmr70pe+pPtvvb29pgYP\/uhHPyr6+TOf+Qyf+cxnqrqPStgWEY8gCOsaf33x4kVCoRBN9W3A9fy\/XfjpAlB51vmtQabmEQcul1DVuUrWwdhHzxJ9euzGL1SyU0tow7BFv4dMWx2qpOBcSuh6I5hp+PQc6SV5ZRJ0BAKFnmx6UG0CYbuXPehEZeQUXDGbkp\/VI6kKw7ElVrMpOoNNtAlu5tNRshWmiV6PL9PsDRjKsi9G5unx1hs6Jzwfnua24A7sjvK7cz1zU5dozy\/8GUXmZyuTOASRkewqbYJ7DYklVInxeMgwQllIxUgq2YqE0uCuo8ehX+u6HFmg21ufn7RaDi+EZzgaaMOu2NixAvzjJca\/fY5xMYm8p41db+jnyL0vq1kgUE2qTRATuN3DuqRhVgiQe7YqR0aqCg5H5YU6Eqp8TKU6T6miDWpXtb0YsC2IB2obfx2NRhkYGMDtdtPf38\/1x39Y9O9Dzy2iKLlxA7VgYyTV1TeEVnNuJmRn+Lf+GclAIJAKunCMLiPICqoo4OppxRb0Ia3EyEzmctOVGj5VUcCxdwdJg3EHZlJ0Yr2PtKjSENInnYlEGIdoo8txcxduF8SiaGQgPIOsKthFkWDWRbBMnWRwdZb9dc24BWOZ87H6DuwG0u2B8Kzh9NOULHEtGaowoiGnXCs0Ny0k0waHB6\/dgc3pNCSU0XgIv91Fj1efUC5F5unxNuATjQnlSKBNN30J8Fx4qux7col29uFHuhbj3B99heRn\/5HpOqg70cdtv3wfbbv1O+BLYTbVJooRXO4RQ7GPWSGAqjp0\/duKj3OVNRctxex4ZbJLJY1fr5R4ZFkmmUxa7tS3GtVGPNPT01y6dIne3l727t2LIAjEI8VfElVVScYFfP7aenlUNVPzaIXc+Q5TO6vy59oNz1VViL6QYfT3\/sGALCCzI1hcz1FU0uM3rT3srfW4ulpQEmlEnwsltvYhsgV9ZFwi0lX9PLajrQEEjFN0Pa1kw3EcIf3c+oXVOXb5Gg134YPROQ4XLJqyqjASXyaiZPGLDnq9DQyEZyrWRy7EFirb38RDhqQTyiQIZRIcqdMnCz3lWiGZjsSWySoKkWySmWSILk89Ta7iwvKV+BJdrkCFCGWao4F23UmroE8oGiRV4dzqrOExKTnLcHw5P6qiIQk8OUn4if\/FOTlGbGeAHa86yfE3vgaXV79gaSbVZrOt4HSNVu7JMykEMDvzSlXtmOnFO\/e0\/ndeQ7URTyyW20huhKptO0EUxdwonK28iWqnkELuD3Tp0iUWFhY4fvx4vpEMbhqEFiK8LOPz1xbyiKKMLFMxx2twhVpPxMjAUFVtzH11goWvntU\/ps5N1iUa13NaG8AmED97ozYmirh627D5vUgrUTJTS7i6W5GiCWwLUd3ruPs6yUwvoST0H1LvoR6Sw9OoWf0ospJvm97ANZsg5i1z0orMQHgGhygyuDpLj7eeRmfxAr6aTTGTinDMQEW3IqdYTSeLxlyXQqsL7TWoC00rCXw2h6Fy7fyNuUB5EYKrAUVVGUussJyJU2dz5ayDDCIzqKxu06axGhFKWpUZji4aDs\/TGlnLfTaiINBr9zM\/FiH7lR9y+W+eZMKRQTy0kwO\/+Cr2nLq96LmvlGqz2ZZwusbNbQDNtj6oZp9Lc0Q2PVSZnMwQT+HnEI\/nMgIvtYinpaWF2dnZ7RPxmEm1xWIxBgYGsNvtnDlzZo07aqmcGmBxKk1nb+2ebaLgpiYXAWBd4gSdc+W0g9EPPUP8ef1dltzqR4incS7r37d7304yU4vFZKEopMfm8z96j+2BrIzodZFIpBDKOB94j+4icXEMFJ3dqCDgPWw8BjurwIIoVJAwp5lMhI1HWKfjpB3F11FUldF4iIzbhpjM4hLt2ATBMJ01ElumxRegt0I6q8tbn7fVKYfB1RkOBtpwOvQ3EWdvpPpKyVYUBHq9DXR76nlhdZqD\/lam1ATLq2E63AF2uG82\/UmqwvlV4ybVhJxhNL5iSCjhTJKYaFwzm0tFkFTVUIQxlljBb3fmm2wPKk64EEa98AhPZP+GpSYnjS87ym2\/9FqDVJuK3TGLzVaNBc76ewGLYY7Inv+Rfq+chpHhMToP+WloaCgroCrnWuByuTZkPMR2wqtf\/Woeeuih7UM8lSKe2dlZLly4QHd3N319fWW\/rKUNpABTw3GOvWxrXKqNvNMqn7v2S5+et3PtPd9FWtHvzM7srMcxG0GQK\/itGfXniALeQz0kBkYKbkgg21xHXWsjaiRJZj6EZ29n5Tk8O5oMSSeahbgEnR79NMpMMoKCyiEDN+fReIg6u4sOsTi6EQUh705wRV3AIYospuPMp2N0e+ppdhUXb\/P2NwZ1oedXprktWCGdVUkKrSoMpUPcUaGn6Ep0MU+2Ppz01ud2wNPJCHPpKA5EHE6HoRhhORNnNZs2dMOeTUVQVNjp1O9in5UTOEUb7U79gvdQdJEOT0CXkNsdPhYmZ2n5ziXm\/vEiMSnCP+15gl2v6+foG16B3WEHVBzOSRyORWTZ3I7frGAAMD0m3szzK2XtrMxXdkqQMjKjo6NcvHgRv99fNIlVFMWyqTafz7elrhK3Ah\/84Ae5fv369km16UU8iqJw5coVZmZm8nMp9JAok2obOR8G9HdnJu5yHaeuYwdWcK6qQuSnScb+22P6x9tE0u1+4\/4ctwN3T7tx8b\/Og7OtYQ1ZCKqKYylGeimGvdGPu7cdRAHPgS5SEwuoJWk2R3sDqBiOTVhIg1uEdoN9wbXUCi12j2HXvhmvtCuZFfb4mnCItqJoYVaKMx1dwW93sZrNDYjTIwtZVbgQX+SEQc0no8g5h4AK0cf1eMgwsljNJpk38GXr9ARwCCJJJUu728\/VxDKRdJJWl4\/ugkhtUUkhK4qhqm8ktkyj00uDU\/8PcTm6QG9dEx6DvPPg6iwH\/C2GvUlnw9McC+7IRXgCHHA2wKQE\/+vHvPD\/PspsEF72iXvZeUR7D+bqs2YFA2C+10cwISyIhk1dimBdI6dOnSSdTudHPpw\/fx5FUWhoaMhbB2n\/qxHPSw2BQICHH354XUWIDUW5iCeRSPDMM88QDofp7+83JB0oTzwXnyk\/I8M81jPTI6MbVJg5F0BVbMz8z3FD0lH9brINngr1nHrsjQGSQ5O6xzg7mxHdTlIj+mTh6m1HvTHYLXlxnOSVSdR0FteudrxHd+HsbM4ZhEYSOeNQvXfXGaTRCQGDtq2z4Wl6nQFD0nluZYojgXZd0pFVhefCUxxwNpRVcO2w+7gtuIOEnOVwoI2L0XmeD08znyquaSXkDJeiC9xepx81xJQsoxWk0EvpOPOpmCHpLMlJYlKGfRXSWYIg0ONtyKnMvE2cbNhJt7eBxXScF8LTPBOaQBQE2g1GMFyMzLPDEzAknYHVGfb4mvCUsQXKHxOd40igzbghNjzFHfWdujW8YJ2Xe\/7g7gLSgei0cWOmhpxgwMxxNlO9PoriMJXiW5wyR2LpG6o2l8vFjh07OHz4MC972cs4ceIEwWCQWCzG0tISTz31FL\/5m7\/JD37wA4LBYFURzxe\/+EVuu+22vJv33XffzT\/90z\/l\/11VVT7ykY\/Q0dGBx+Phla98pSlz5m9+85scOnQIl8vFoUOHeOSRR0zfkx62PNVWOIW0MOJZWFjg3LlzdHR05EfAVkKiTKpt4soq2ayKw1Gr\/1ntDgSCoCJJInZ7DSMOBAUp5mL0D35C4qJ+57\/U6keMpXEsGdRz+jrJzCyjxPWP8RzsInV9DjWtv2sU97aTGVtELe3hkZW8O4H36C4yM8u4d7WjSArpiXnUgr4gFUh3BnFPr+oGk1oR3NAsVJaYkGMVmixvNJcaypyTLCvpPFkUFsznpQST0RAOQcRndxoKDWZSEZwuY4ucscQKXpvDcHTCtdgSza46mj3603cvRxbo8gZ1+45aXD5mUxGOB9uwY8tLtuudHnZ5G\/IL\/0BkjiN1LYYpw0qTX6GyqEG+Yf5q9HdQ\/Da6Pn4nzYeLN5d1DSbT5CYFA6riQLCZma9jTvk2fkVfdFOIcuICQRDw+\/34\/X5SqRSCIOTTa9\/4xjeYnJzk1KlT3Hfffdx3332cPn3asMHeaPro4cOH+dSnPsWf\/dmf8dBDD7Fv3z7+6I\/+iHvvvZehoSFd9dzTTz\/N2972Nj72sY\/xpje9iUceeYS3vvWtPPHEE5w6dcrUey8HQTXTynoLkclkUFWVq1evks1mOXjwIFevXmVqaorDhw+zY4e+8qgQsqzwxo6PlP23v73yWppaa\/Nty8maa0+Zra7KBIPVy+JS0yLjH\/sposeNHI6RnlxcE3yZqee4DnWTvjJpUPyv3PCJTUTpakQcW9I\/xmHD09e51kLHbsPV3YrqshOfX8bucyNMhnQvoynOjIr\/y+kEK9kke+v0DQ7nU1FSimTY76LZ33S49esaWu3IZ3cyGg+RUiR2BZtpFG4u+mY81y5F5+nxNBhKoc+tzrK\/rkV3vhDAsLTKLrGuYn1JTx24mk0xllghnE1wW0MnDbby0aReQ2whJEXmfGTO0AQ1o8hciS4YukZITXb6Pt1PoKe++PerGexBc35xsuzDZtPvDav6OKkOm12\/N07D5\/\/Ldb7zZf3Bihp+4T+e4tf+UH+Q26VLl\/B4POzalWuY\/upXv8rf\/M3f8J\/+03\/i0Ucf5bHHHuOpp55iz549FV+rEI2NjXz605\/m3\/\/7f09HRwfvf\/\/7+f3f\/30A0uk0bW1tfPKTn+Q3fuM3yp7\/tre9jUgkUhQ5vf71r6ehoYGvfe1rVd1LIbY84tFgs9mIx+P87Gc\/Q5Zl7r777qpynOWk1BoW51I1E896Xap9XpOeUDegqhB+PMrEx4qbYW0BL86dzaCqJKcWSQdcxvUcl4N0kxcMvNRMNXz6vThagqSv6yt3bA112P3e8r5tkkz6+iyS34nT7UaMZYh3BAnW1ZEYmcVWQJorWUjKmYoNlD6705B0ppUEXtFuOOXzcnSBnZ6goSptVI7R5vbjvZHGKyzO54r7EZJSbvyCkY3OYHSOwz7jyOK58BQn1hlZKKrKC6vGnnU+mwNZVXhFc24BG0+ssJiOU2d3stvXhFO0kVUVLkXmDUknKWe5Hg8Zkk5USjOTihqSTqbTyZE\/vQdP69pnPbucMk08q9cnaOwz4bRsstfHLM7+oHIPD9xMtemh3BC4xsZG3vWud\/Gud72rajPV0umjo6OjzM3Ncd999+WPcblcvOIVr+Cpp57SJZ6nn36aD3zgA0W\/e93rXseDDz5o+l7KYcuJR0u1pVIpFhYW6Ozs5ODBg6bH92ooV9\/RMDee5MBt62nEqnEwGyAa7F5LkU4pzH5hmNXvrt1ByZEEyUsTqH43ksuGT3TgPLqL7HKE7Mxy0bH2liCi0446vbzmOhryxX+Dhk9nZzNKOmNIOq6eVqTVRM4PTgeZljpcSQl1MYIMuFcgzSqiKDKdgJQsACodXmhw6Ecf51bn2FvXlCeCchhYneFQoA2nwciD58PT3FahyfLsyhTHDVRpnZ4As6kI\/U29ZBWZS5F5UopMq8vHzhtpMjNu2LKqMFAhDWXGuy2tSAxFFw3Tk+Uk1T3ehnxUmJAyXFidI21T6XHp\/x1Ws0kW0wlDldxyOkFUTrPfoE4lH6rj2MfP4AiUJ385bt7v0Ndk0sXZ7AbSRJZDlm3MjVeOiqD6BtJSuxyzpKM3ffSpp54CoK2t+G\/W1tbG+Pi47vXm5ubKnqO5WteKLSceVVUZHh5menoar9fLkSNHarpOOSm1hsmrMcBYmGCE2gezmXepluIOht\/7feRxfYGA1BZAjKZwLKWQiCNN5lJf9kY\/jh1NqJKMqqhkZ5eRFvWv49m3k3RpD0\/pMQe6SY3OGtZ8PIe6SQ3PGDaFZrsacM6sopZJBwqKQqcXRqLQW5eTVs8oSRLJVfb4GvHabu52zycXORJo0yWCahZ5o8U5X18yuE5GkbmaXM6\/lstmL5J6z6WiTCbDJOQsd1ZQt80pKcP7MeMurSngjCKLUCZBOJsyJIuEnKXJ5c0T0Wwqwkwqiku0sfvG32NFTROXMsYRZ3IVmyAa9kGljvk4+fGXY3PrL0HJbBYzYmo5kcXVaK4WpCppo97sPMwo3+IR84tCLc4FtTSP6k0f1VAqVjAziK+Wcyphy4lnYGCASCTC3r17mZ+fr3yCDso1j2q4fl7fRdkcbq2kOjkmcO0\/fwslqX9spqsex\/QqQplajRSKIoWieI\/uInl1CldXC6KnnejELLbV4s+lYg+PdoxRzUcQ8B7pNTYCFUDpbsIxrh91IQpcj8CeG5ZG9U6oxwMODxlF5nJ0gZiUJqPInGnq1b2MmZEHcSnDaCJkuMhHpTSTyXCFrv2c59oRg3SgS7RR7\/BwZ0NXvsZh87lxpRS6vfVALiJYlVKGMmczZqBaQ6eRAm5JSZFVJMPXmkyEcdnsRTWxHQWNqhlF5qfLE\/jrA3gNvjtmpNnpe4Lc9aF7EOzGu3i321x6PLuYwtZT+Vglq2ATVSo9z2aVb4vT5iOyar3a4vF4TXJqvemjWl1nbm6uqG6+sLCwJqIpRHt7+5roptI5ZrDlxLNnzx7cbjcrKyvMzJiTTpZDIqK\/ex96Tl\/We+th5LcmEPrnFaY+\/WP90+0i6VY\/rsmw\/jFOO549HXki0HpnbIDY7Mfd3oScziI67MYNnx4n7q7Wyk2hHcZ1IcVlR2wOYDMgHaHOg6M5wO6x8psNp2ij1eXDIYjsrWtmRc1wfXURl2BjT11TXj4dUTMspWKGu31tFLaRhDmkpIllkhzy6z9QZqaFLqkpsoqc7+x3ijYOaMThhYV0jKuxJRyCaBh9jCVWqLO76DGYpDoaDxFwuGl36qeZrsWXaXX7aTYQUJiZcDoaD3Eo2Ibf5gJvThY+eUOc0eutJ+jwcD2zyg63H6+BgCL7hibu+n\/O6P57IZxBEyNCATlqjgCyC0lcnZUXc1VxIpSZ9VOKXCbFHCpFPKVjERKJBB0d+lGuWWjTR3ft2kV7ezuPPfYYx48fB3LCrscff5xPfvKTuufffffdPPbYY0V1nkcffZT+\/v513deWE08wGMyzfS1jETQY1XhCMylkWcRmq00gsD6XaqXsDkqR7Uz92UVWvqeviFEDbmSHDdeMftrM3hxAdDtJXi4vIlCWomQEEdFhJxWK4t63E0UUSE4tYIvd\/MwcrfVgE0lendJ\/M40+7A6nYV0oG3TjtDtQp\/WVa9mgB7fdQUaHdCBn6++1OfM+aA2CMx+tpBWJS9F5wukkHfXNFZsj650ew1HY12JLtHkD+WikHMwo14aii+z01dPs1l\/AlzMJbg\/uwG935QbfRReJq1ka7e784LtKcmnI9d\/s8jYYLvIXInO5\/huDmtjV9Ao9nnpDJV25xtBmly\/v+iCrCj9ZGqW1oZGZZIRdvsayijrxXd0c7O\/RfZ1CqIqKo8Vk+sxA1VkIaTVtiniWhqdoPVBZqDB0Vv87XopKxCNJ0rojHqPpo4Ig8P73v59PfOIT9PX10dfXxyc+8Qm8Xi9vf\/vb89conT76vve9j5e\/\/OV88pOf5I1vfCPf+ta3+P73v88TTzxR1b2VYsuJR0MtYxEKkTBIteX+XcBfX+vVax\/qBtwYoX1zByVFHQz\/9g\/ITOhHYnJbACGSwm5Qu3Lv2UF2IUxmST+VKHa3oIRi+ZpP6gax2ABHRxOOpgCqAOnROZSowS5vZxMsRcim9KWo2fYAztUU6qp+b4Nn306U0VnkrP5rXU2G2eny64oIXKIdSVE53tCJx+ZgNhVlJhXBLdrZ42vEfeO8c6uz7Ktrzv9cDoOrsxyoM+62NzMtdCB8Q9RgIFg4H5vngK8538jqEG1F0dNyJs751XmCDjeKQTrrmhJlf12zoTgiPz\/IwFTUTI+OnpdcIQZWZzjT1Ju7Tt1NybaiqnR5gjR76vC+t4++XzxAxqDfrBDZpRTOVnPEI+jMSCqFmjFHUN60uQ6TF35c2aNNQyVVW2nEU8sQOKPpowC\/93u\/RzKZ5Ld+67dYWVnh1KlTPProo0U9PKXTR\/v7+\/n617\/Ohz70IT784Q+zZ88eHn744XX18MA2IJ7CKaTriXiMxAUAy\/NZ\/PW1GTWsV1KtYstnleNXVa799t9DVv+9pnfW45wpX8\/R4D3aS+LiBCj69yT1NGGfXNLt4cnOLONoCpC8MI7oceI52A0CpKeWUCI3JeBm6kLZ7kYcUyuohvecMxQVDY4ZiQr01Rl3bJf6oO1w+9lxQzqdliUuRuZZSsfo87cako4pCfMGyJy16xgp1wBG4yu8smU3kPNym1YSzK6GaHR66PU2IgqCudfaxGPOhqfWGLcGHe681Y\/qFAn+18P0vmIXclrC2awfDRZCCqdNE48tYE5yjd1crVYwEDxokCWBsYvmU\/hJg4hHVdUNERcYTR+F3Fr7kY98hI985CO6x5ROHwW4\/\/77uf\/++6u6l0rYcuLRYLPZUBSlar26htiqcU52dixB7\/71WIzXLqkGAVUVWfrWAjOff0r3KNUmkGk19lvDab9hzjmmf4zDhqdvJ8lL+jJJ7RitVqPEUzfTdYKAq7sVW70PwWkn\/tyw7mVUUUDtajQWEdhtePbtNKwLZRWYSgg3hAY6I6FVhQsVXJgFQSCryLyiJdenMpOKMJuK4BYd7PE14bbZb17HgAjynmsV5tZUcoXOS6GrvI5dEOkUvHQ25Oo3S+k4l6ML+B0uwtlk2ZSfpMhcy65WHI1wPmJ8z+aPmTd0C1d9Nnb89xO0HcuRkLSYwrbT3DNoJLQphdNkSs5WZ7KXr8F4WVQVla9+5NuA+d5Ao1Sbqqp59xYNiUTiJTcSoRDbhng0++\/SuRRmEI\/HGb2m3ygJMH45wt2vq\/0PmUkruMxt1tZASclM\/Y8LrP7omu4xasCDZBNwzeqnzexNAUSvy5BQ7I1+RJ\/b8JibDZ86x6gqUjSRi37GF7AFfShNPmRJxrYcQ43nakOyx4G93odqQDq2oBd7vd\/wfmJZiEqwq04\/EgpnksTsiqGsOJxJspCJc6zgmA53IO9MkJKzPB+exuH30u7W\/y5oyjWj14pkU6wIWcNjolKa6QpS6JiUZkFJVTgmw0Imxj03xoDLqsJEJsJCPEK9w80uXyMpWWI8sWLo4K318Rg1fZppDE2rMsOxRcN7lhts7PqTu2nYe7P+JkWzmJMLmEdmMWmaeOwtlR9gKZnF16r\/3VBlhU+\/9yH+4C+\/xhtaf5ds2lyWJpOSkGUFm23t2qZlejZC1fZiwZYTT2GqDXJ\/BCM\/olLMz89z\/vx5kI3F+VdfCAG1q0Ri8QQuEyF4KbJhB9f+83eQVjN4DnSDCOnJJZTozVSW3B5AWE3iiOjngV27dyAtrZKZ1CcmV297boDbjXHW5eDsaUNejRk2fGrD37RJpfJqHFbjiIBqExE6G0nYVeoEJ7KBQMC5sxklmSY9rn+M3OBHmo+yw2Dt0Aau7RT1m4CnEmFsomgsK84kaHP56bQFwJbrN5lLR\/GIDvbUNeES7cykIigVlGuzqQiyqtJj4Kc2n4qSVuSbirYy0OTSuw36XUJSkkgmVaS2swki3c4A3TdGGEzEV5hNR3GJdqJqFn+ZkQ4ROc1iKmaopAtnkixljBtDV7NJwqqxQjDbZufgn96Dr6P476WaXKQBJJMMlQmlTBFPcimBp7lyk6m0mMLeXX79UTIyH\/mPf8kn\/iZnkumpF8nOm39PmWQWT93aN6YRj7bhVlWVeDz+kps+WogtJx4NgiCsMQo1gqIoDA8PMzk5yZEjR3gS407ai0+vz6U6GAxQjfUNQOyCxMjv\/APIuZ188sqNqEwUcPW0onidRJMJ3BMr+l5q3PBSuzwORjN2jvSSuDIJpQaeBfAc7iU1NLnW5LPwmEM9pK5No2Z0\/g6yQhoZ72wcOSNhb\/Lj3NGEmpFIjc\/nG07dB7pIj82jpvRTDO59naTGFqg3SNFfjMzT4603VHgNxZbocPsN7W+uRBfY4S52uu70BOm8QR5JOcsLyQUyyRQ9Buq2a\/FlmhzGfSqjyRUCNpehZc9YYgWfzWnoJTeRCON3ewwbMaeSqzhtdk41dgM3B98tZxIE7G52+xpYyMQREPJTWsth7gaZGjWGLqRipBXJ8POR9no5+icvw9VQJrqwme+H85h0IkgmUqaaTNWVDJggHj1ptpyS+N13fpbP\/d\/v5X8XbPUQmTcvPErGM7rEY7PZiuqaVsSziTArMEilUgwODpLNZvOebkZyaoDVpTSybMdmq005V42Dj6qKLDw8y9z\/\/Gn5AxSV9MwymWYf7tkItoY6nB1NJKNxmF25KTxw2PDu20nigkEzp13Ee6DbcNhafrCb0TEmzEJVQO5pwjm+nPcrlZajSMs5FZvgsOPu68TW6CczNmdIOs6DXaSGpgwJ92x4ituDxuOez4anub2C\/c0L4WmOBNrLjkXQcDW2yCF\/Ky5P7pGYSq4yfyMa2lvXjFO0mVLJXVidY3cFWx8zcukr0QU6PUH8ov4x5fpvtMF3mgP2pcg8aSX3nXfb7TTY1xLmvJrEUWHA20QijNtmp8uAdFKHPdzxJ6\/A7i3\/3kWvueVGzsi4WswRj5FUvBBma0aqtHZzJ8Wz\/Ke3fpovf6\/YPxFX5Xk9hUglyj8P5coLVo3nFsPMMLhChEIhBgcHaWpq4o477sjXhioRT+6Y9Uiqzc3dUDIOxj76HNFn9GsaatCDbBNw3qjnyCsxkiu5ZjTVLuLp60TwuiArk7hoUKsJ+rA3+I0JxevEvaPZ8BgzZqGKXURu8RuKCFQBBLuN+E+vAOBoq8fR2oCSSJManwNJAbtIpi0Al\/XnAskqzAl2w8K1GfsbRVUZllcN6xVQflroTk8w77mWkLOcTy2BIrOaTekSz9nwNLdXkDBfyazQV9dkSJQD4VkOBVoNpdlXksv0eoKGJHgxMs8uX2MRCRaagu7xNTESX6anrhGP08AR20SDafp0gDs\/cg+iwZhvscGc+iw9H8fbpd\/wWoiUUzUV8ZgdqyWU3H82kuFXf+lj\/O\/Hn1lzbEJeBcwXfp\/6yU85EO\/OTx913+j3KlW0ZbNZ0um0RTybBaOIR1VVxsbGuHbtGvv376erq6uItMrN4inFyrxcM\/GYkVRnlu0Mv+efkRb1O5ql9gC2cBJ7qnyILkgKqiSTHZtHXo3j2NGIozmIHE+RHpvLRwiu7lbkaDL3Oz00+0FSDAe7OVrrQRQMm0KlOic2lxPHrH4ja16wUNDImp0Pk50PAyC6nbgPdCJ4nMiX9AkuIUEoAzu9+hsQM\/Y3KVniamzR2BnZxLRQSVW4El3IvdaNNWYyEWYhE8Nrc9JX14yIUNEnDsxLmI1GZkPJFE8dvBCe4WigbQ3BFZqCnl2ZwiHaGMtEaFQdZVODQ4kluj1Bw8gi+7om7vx\/+hFE\/XvOJrK4zfqpRc1nJQIt5uogosfcUmcvyPtmQinu\/9d\/yL8MXip77HJ8Fthl6roAPV278PnczMzMMDQ0hNfrpbGxEbvdXhTxxGK59eOlXOPZNhNIAd0aTzabZWBggPHxce688066u7vX9HnETUQ8s2PV1WjWovyOTVUh8nyay297xJB00jvrsS9EEXRIB0DpbSE9uZgr6APZ2RCJ86Okr88iunO9Nr479yHFkkgr+o2a7gNdEElCWL\/h093XiRxPkZ0zmBTaUocDEWFZ\/325unMFdCPBgq3RT2YuRPzZIWzxDEJrAM+RXhzdrXkb1VAakjLsNMiyLGYSLGXihsXt5UycqeSqIenEVanitNC4lGEourjGu63LW88d9Ts56G8liczToXFEQWAhVf4zyioyL4SNxxXIqsLZG+RlZIT63IrxFE+Aq0qE4\/UdFdy3pzlW38FtwR0cdDXS5vYzlVzlufAUlyMLpBWJF8LT7PE0Gqez3tbJyd87Y0g6ANJSZQsaDWrWXL+cnJRwNpmLOOyNlY9TZSXfO5RaSPCG1\/w+3\/3ZC7ozwaaXxky9dv4eBCe7du3i5MmTvOxlL2PXrl1IksTU1BSJRIKBgQG++tWv8uyzzwJUVeP54z\/+Y+688078fj+tra380i\/9EkNDxa4ogiCU\/e\/Tn\/607nUfeuihsuekUrW2luSwrYjHbreviXii0ShPP\/00sizT399PfX192XPNpNpGL67PLFRV1+6aVEVk7itTjP7uP+s3WDpspHcEcv05ejUNuw1xbzvi2KKuQEBJZhBsIvFnryKHY7h6WlF3t5JtKF6pvUd35eonegIB7ZiRWcOppNmuBpyhBGrMaHJpN5m5FeQVfWJy79uJvBJFWroZMakLEZIXxshOLCC4nCx4\/KwqIi6Db+RIbBkRKhTkV5AU4yL5TCpCVEobKtcW03EWM\/GKKrBQNsmZpl5O1HfS6q5jIhHmuZUpriVDZBWZmJTmWnzZkOBScpZLWlSlg6wicy4ya4q89onGaarnVqa4o2Etee30BDlZv5ODgVYGw7M4RTujaoyZVJnnRgTlrTu4\/YE7DF9Lg1JFFEMFEtOQXTRHZlIya6pxNbOQRLCLJKajvPqVv8Pj53KRTmNj+e\/b9ekrpl5fQ2GNx+Fw0NraysGDB9m9ezeBQICmpia+\/e1v8+\/+3b\/D7XbzwAMP8PDDD7O8bNAjdwOPP\/4473nPe3jmmWd47LHHkCSJ++67j3j85sZzdna26L+\/\/uu\/RhAE3vKWtxheOxAIrDnXbWALZQZbnmorjFxKU23T09NcunSJXbt2sWfPHt1u9lQ8g2LCr+nycwusZzxCKU9HV7LM\/dEgiQH9VJYa9CCLxv05toY67AEv6Wv6aTOxzoOzreFmrUZRSY8vIJBrY7M3+nHubEF0OYgNjuiToIlmTlPO0phwseamW4GRiMC9u43Wq9PgUVAFgaTHw0pCxkmaRlVFFAQGV2fZX6Gwfz2zSqvTa1i0N+O5Np5cwSs6DdVk0zcMMntKzDe7vfV5z7fpVISZ5Cp2QWQpHc97mxUiJ2GOG47VTioSY\/EQx4JG5CVxNbZUceTDxfhixWFyz69Oc1dj181fuosbcffWN9P6+7fR1KwvJy9FuaK9Hmw+c4IBs+ag0kIKuwn3aimcIZPOcs9rfocLYzdrkHqLbDqTpL7bS3jRXCZFr4lUURScTiddXV38n\/\/zf3jqqad4xzveQXNzM5\/4xCd4+9vfzne+8x1e\/\/rX6177e9\/7XtHPX\/7yl2ltbeXs2bO8\/OUvB3JO04X41re+xate9Sp2795teN+CIKw5d73YcuKBm8PgtFSbLMtcuXKFubk5jh07RkuL\/s4UjEciFOLck3Oo6pGaZ+sUVijT8zauP\/BPue5HHUg7gthWErr1HABnb1tutPW4fprK0XlDrmxQq8Em5vp8ZpYRHHZcfR2kFQVlaRXhhquDrd6HPegzbOZUXDbE5qCxs7TLgXtXuzHp2EU8+7tMqeQKhQaCquJJJNBoIeu2MyzHsNtzkzH19llnw1McC3ZiM\/jjDoRnORgw9mW7GJlnT10TboNjzBTbxxIh6t0+7nTfXMC1wn5boIEdgpuFTBxVJW+EWg7L6TiSQzQcjbCaTTGfjnFb0IC8bjSG3m7Uf6PIXIyWd1nQGnFVj0jrHx6j466dLJybw3QVogoptcNEoyeYJzM5ak4YtDC1zBv+\/Ue4NlPcd2bgFIWvyUFYv22uCKmEjlS7RFwgSRJ1dXV86lOf4tOf\/jSzs7NV13tWV3PZhcbG8ga68\/PzfOc73+ErX\/lKxWvFYjF6enqQZZljx47xsY99LO9wXSu2BfFosNvtpFIpfvrTnyIIAv39\/Xg8lQuSRiMRCpGMZpElO3ZHbZJqQZBRVVh9OsH4h79veGy6qx7X1Krx3JvDvSQr9dUc6CJVqR9mTweZ+ZW8EaialUgN50hKABw7GnF2NqEkM7ou1mDOWdreFED0OEle0VeliX4vjuYASQNFnuB2YO9oQrhuII6wifh3dbD\/yiT4PKiiQMilsppOYItl6PbW31C3zRgq4MBs0b6yfLucU3MpLkXm6fE24BOLa4KFhf2LN2TOAgJu0UZTmWhoMhHGKdppE\/WfAa23xqhx1kxjaEqVuR5fMoyqlICN7k\/cRdPB3EYwEDA59ROw+cwtNVI0g91v1nvNXKUglk5TqVqyeH6eX3rPp9aQDkAyqR\/R2HzmG0iN5NTlXAu0DI9ejUkPqqryO7\/zO7zsZS\/THaz5la98Bb\/fz5vf\/GbDax04cICHHnqIo0ePEolE+OxnP8uZM2cYHBykr6+vqvsqxLYinnQ6zeLiYn78tVnrnEoGoYUIL0s01xg1qorE7JdnWPrac\/oHOW2km3zG83PsIt793bkUlB5M9NWAObNQe4OfxLlR1IyE6HPnxACCQHpyMe+gYMZZWmrxY8vIZKaWdI\/JTUKVSI\/qE4qt0Y\/gsiMZkI7stiMEfaQKCE5QVBqT0IgXvF4SXhuTqRheu5OknC1bBM8oMiMZY\/8yM9NLAa7KEY4G2g3J64XwNEcr9BWNZCPs9t0s2iuqylhihZgg45Rgd10j12Mh2t11BAyiqvHECn6nh1a7vuzWTGPoSiZBDNlwFpHUbGffp8\/g776ZXnM0m1OpVXNsdillmnhUv7nmOq\/b2AZh9uw0J+79bVo6y6cpl5b0o\/+ssP6ZPBs1BE7Df\/7P\/5lz584Zji7467\/+a97xjndUrNWcPn2a06dP538+c+YMJ06c4POf\/zyf+9znar7HbUM8w8PDLCwsEAwGOXz4cFXnJmLmG7kmroVpbq+v8u5ATjq4\/ns\/IXFpPi9xXp1bxLEUy2fg1HovsoBxPSfow95QZ0g6gseJq8JANuw2PPt3GpuFAkpvc1FqrcgMVBSQWwPIQTfehIyU1L9vR18H6vU5ZINamruvk8zUIkrSoHG0p5VsKIoa0ic4R3sDtqyMPG8s3w56XXinZairQ7GJLDokliKr1Cs2drgDec+1gwYigtz00uWKkupzq7OGk0nBvJvzsWDxmIHcMLWb9aTnVqawiyIjiRDdniBNZRo78w2mBvWssUQIv91l2BiaIybo8ugLEpReD4c\/eQZ3Qed\/NZFJejWFK2gufSYbpK5L4W0xtzg7Avqf0fgTY9zxr95HOJ5g94EDZY+ZnZ1FFEWUMpu71fQSoB9tFsIo1eZy3bzHWsdeA7z3ve\/l29\/+Nj\/+8Y\/ZubP8d\/EnP\/kJQ0NDPPzww1VfXxRF7rzzToaH9Y2DzWDLiUdVVZ5\/\/nmi0Si9vb0kEtVLns308GiILlX\/llNTIsO\/9Q8oN3Ys2dkQ2dkQDnITOZ07W4hmktiX44bzc1w9rUiRBGkDfzMp6MHjcefn5pRDvlZjlMryuhBaAjCmn4BWAcHjwDm8gMQNgUJHrp6UHJvLqeIKIi+jLL33SC+JS+PGIoIDXbnpqAapRdeeHWRnQygJ\/c1EttGLmpEQpm\/uNkVZoUUWaXHmFvBwwM58JIuazkU95ZoxQ5kEq3LasDYSlzKMJVYMSSeryFyKLVSMql5Yna6YEryczkm8NWLSLHAybhtCMsNuXxMXI\/MV030Tcoxmp89QaDGWWMFvdxoSU3q\/m+OfegWOumKSqSYyUUIZMEk8sUzaVENodjmFw4SUWlVUnG3lo63h7w9zxy9+gEQ6913TmtFLIcsyHR07mJlZO39nfmUSv2niMRfxJBKJqiMeVVV573vfyyOPPMKPfvQjdu3S7y\/60pe+xB133MHtt99e1WtorzMwMMDRo0erPrcQWy6nFgSBnp4e+vv78fl8NQ2Di5us8QCMXTIvqVZVgZUfRhn61b\/Pk86aY+JpIokYzrEQYjyDe\/cOvEd7c42ZBfAc7iUzEzKUHdt3tyMms4Z9Na6eG2kyIzFCawP2gBdlXJ90ZI8DoS2IWCAikEJREhfGSF6dQiAnla67cz+ZWQN1m03Ee\/iGHY8B6XiO9ObSZhW85NJj84ak497XiTOeRTCQeDt72mhUHezHz4G6FmwuB4teuJhYYimdk5dOJsJkFJldHn3l2lI6zkLa2FhTk0vfHjBuVD23OmtIOoqq8lx4ioOuxjXR0C5fI\/ttQfbVtfDcyhQqKpciC4Qy5Tdpg6uztAueipY8TU5v2WhKQ\/pEHXd85tVrSAdAiZt\/TrMxc8V9AL\/HHEFlQyYHyi0mEZ1rNx0X\/uEit\/2r9+ZJB3L9gnpobi5PLuNz5nf+Rqq29aba3vOe9\/A3f\/M3\/N3f\/R1+v5+5uTnm5uZIJosl55FIhG984xv8h\/\/wH8pe513vehcf\/OAH8z9\/9KMf5Z\/\/+Z+5fv06AwMD\/Pqv\/zoDAwP85m\/+ZlX3V4otj3gg90fVPvxahsGZVbUBXPrpAmZcqlXZztTnrxD6h\/JdywCKQyTbVHezniOrpK7f3BU52hqwt9UjupzEnx82Nvm8MWxNNBIjHOohOTyNmtV\/6N17O8jMhoz7cxq8OFUBdTase4wt4EVejefTcra2epJOAb\/dlXObVlTEOg+O1npDWx+cdly72klW8InzHO41PoYceSUrRFWZjiDq9CJCgeLJllVoyUKLN7d4LNTbSCgiYjJNi1pXVgk3JyUQUfOeZ+WguUsbKc4SqsREPFQ0qmHNPSsyl3XUZBo0mfPpG2ag2u8m0hEWEhHqnR52eRsYCM9UnBh6LbvKLl+jYcSUeWUDd37wDIJOAV+pQh6dMVjQSyH5zO2FzXqvSStpnG3FIohzf3+RO3\/5d5BLUmeLi\/q1Sz0imFue4o52R8UJowBpnVRbubHX1abavvjFLwLwyle+suj3X\/7yl3n3u9+d\/\/nrX\/86qqryK7\/yK2WvUzqBNBwO88ADDzA3N0cwGOT48eP8+Mc\/5q677qrq\/kqxLYincDRCLRFP0kTzqIZLP1tAVQUEQX\/xkuIORn7ncVLX9L+Iar0XRVVxzelHUHIyjRhNkjw3iuh14erJ7ZzTk4sosdxOJCdN3mFczxGEXCprA4QGmY4grqW4vvs04NrdjrQYKRqpLc+HcQJpQPS58RzoQlVUEkP6KjlbvQ+hzkN6SD9tKLiduLpajElHFPAc7DZFTFwcM\/Tlch\/sonV4mlYxAD6QnTbGszFisSg7nX6CDg+XIvPs8jfh0Um9QK5+4rO5DJtZF1IxcNoMRyNoM3tuN1CTZRWZq8nQGmISBYFuV4BuV64+80xoArfNzvnIHL2eBurLOGifDU9zPNhhKJBQ3tjGnb9tPNo4LcimpdQel3FxvxD+dpNXNem9ppSMYvjxl5\/hv\/7Vt9eQDsDion6GwEjoVN\/mYX6sMvHopdpKI55aajyqkea7AA888AAPPPCA7r+XTiD9zGc+w2c+85mq7sUMtgXxaCjnXGAG1ajasmkZKWPH4Sr\/RUmOwrX3fstwR5XdEcQeimNP6x\/j7GpBiafy6i4lkS4q6rt627A1+HP1FAOhgVjnxtneWFlosM9YaFDOWbocPDck3kYpMWdHE8lLEyjJNKoAjq4WHPU+pOUo2ZlcWs6xsxk5lkQ2UMDZGv2IbqehT5zgdeHc0WhYz8Im4tm\/syIxZbob1piT2jIyPXhycm0BpgMCouRiKZuk01FXdoHOy6Xt+jUObexBi4EUejEdJyFnDIkpJmWYTIY5bHBMboLpbFE0JKsKM0qSmdVlGhween0NFW17EMD27h5u\/3eVc\/+egPnOddFvriE0u5Q0rX4z671W2LT3T3\/+Q37hfZ\/gzJn+sofGYjGCwWC+B6YQ5X6nwRU016OUjJvr40kkEjQ16asQXwrYVsRTa6rNjF1OIaJhaCxJ26uqQOh7K0z96Y8Nz03vrMc1HTbccXkP9ZA0mmmjqAg2kfS1aeRoEntLEKGxjnh4FcdiDM2H1LGjCWQ5V5DXgammULuI0NGA3ciJwHRUVexEIKggTS4i3Rg+Z2v04967g+TSKlI0oVtEdHa3IK8m8kRVDvbmAILdRnpkbVE3f9s+N862epKXDCbQ2kTcfZ1g0HsEub6qzgtjYK8HIOOyMScliEUidLsC1NldDKzOcMS\/1nyzEJejC3R5jMceTCTCeO3G83iW0wmictowlZeUsywI6TUO3DZBpEPw0NGwE1lVeG5lCpfNzsDqDHvqmvHbSkjTJuD97X30\/Zv9uq9VCFeTeSm106yUOpQ2TTxqvbmlS7zRP\/SNP\/kuv\/Lfcjt3o6xKe3t7WZKJRPQzG6rD3MY3bXIsQi2pthcbtgXxaKk2M2MRyqGaiAdgaSZDY9vNXYoi25n60wusPHpV\/ySXnUyDN+e3pgczc2+4oQC7PJGv+UiLq7C4ihNQHDY8e3dg83tITy4iLei\/Xumk0HKQfE4cPg\/qhIETgYmxCNgE0u0BqEBMzo4m4s9eBRVEhw337nYEl53sXAhpKSehdh\/oIn191jDd5+xpu+HvZjAKvCWIIIqkDfqBBJ8bZ2t9UT9QKVQR5I6GNRGTMy3TjQt8Lag2gUmviivjYUlO0S6Wz\/m\/EJ7hSKDNcPaPGSn01A2rHSPbHq0x1KhHJ61IDEUX84PiIBcNXYstE84m89FQ+E4ft5skHSmawR4wp2jLhtM46s2l2pSUySGQadlwPHUhHE1uvvyh\/8t\/\/OMv5n8XDutHL8FgeRsgo16epdgMUDlCMVK1FSrqXurTR2GbEI8Gm82Goiioqqrry1aKbDbL\/IxJz4obmLoWZ9\/x3BdXijoY\/u0fkJnQV5KpDT4UVcFpUM8R\/V6cLUFj0skPdtM\/RsjKCE4b8eevATlysQV9uZHWBWkrz8FuUiMzhot3ptmHPZ5BXdB\/0Bxt9SCIhukusc6NrTkIBjJwbCLufZ3Fi3dWLrquY0cjzq4WsourqFkDddvBnOza6BhnTxtSKIIS1TeKzBOTQTOr4HXhbGsgY3AMNhHPvk66Lk\/CDbl2ym1jNhMlFYmzy1OP2+bgqrxqaAYKMLg6wwF\/q2Fhf0ZN4Le7DC15zDSGxqQM02Vcum2CmD9PUmTOhqe5o8u4plMIadm8lFpaTpkmHrN1m8xCEndXZeLJRjP8vx\/9Bh\/4XLEtzOysfgTtcJT\/uyQSCRobGwmF1rp6hOJzeMwQj0GqrTDiqUVO\/WLDtiIejfVLdwB6iEajPP\/886SqkHYCXDu3wqt\/uY74VYVrv\/33Nyd+lkG2I4h9OY7NqJ6zswUllS5StJVCm1djqABzOcg0uBEu3DymcNSAvdGPo6MJ0eMkPnjd0H0629WAc2bVUEnn3rODzNyKoQLO0d4AikrWgHTEOg+2Jj8pg+Fu2G3Y6+uI\/yxn1S763Li6WlARck2nN8QWnqO9JC+MG1oNuQ90kR6pREytSKGoMTE1+xHsdkPSURwiapn35k7J7MILdV4Uu8CEU8aZcjKbiLDDXb4Z8+zKFMcr2PZciMzR52\/BZTBQzUxjqJamM3LgTslZrsWXuauhix27zdt5yFU8b3LC\/LGi29xylImkcFfo9lEkhb\/7H99fQzqQS5vp1XIkg9pmW1trWeJZis3SReWm93IRj6qqGyIueLFhWxBPoaoNcjnYSsQzMzPDxYsXc41S8kBVr3fhqTnmv+1l7rNPGh5npp5DbwvZmTBqxoQRqMG8GntzANHlgGn9kF5OZbCns8QvjCE4Hbj27UR02EnPLOX7g1RA6W3CMWbsLO050psTOxgQk2tvB9mZZcO+GseORuRMlqxBuk\/0e3E0+Yt84pR46qbfmyji3N2OozlIZmrRkHRME1OlVN6NGpO0pB\/p2hrqsLudSLP63nW4HHi6W+gengE84PaQ8NiYTa4ixVLs9jZgE0ReWJ3hjgquBs+Hp7mtwgTTodgine6AYf1oOrmKrUKaLqFKTCdX83ONXB3mfdfMzssBDKXvaxA0STwGm0AAJSPzoX\/\/F3zfQE25Y0f5Wk40qp\/V8PvLbyhGp4fo9r3W0EwUIJOSGBsdo7mlOe\/FptW0N9Iy58WAbUE8GgRBQBRFwzqPoihcuXKF2dnZvHN1Nc4FAOFQhv2\/8mv86pn7eH33YTpXVdRQQWOny06mwWNczxEEhD1tqNfmDHnJe6SX5BVjI1D3nh1kF8JF8uVSlKbE1Ey2yN3AtqORuEPF7XFjG9KPvKqqQ1XomXHt7SA9tQgG7tuO9gZUSTF0axC9LgRFzUdD9kY\/jh2NKBkp1zOUkW4q1ypYBHmO9OYUcEbEtK+T9PgCatrgvjuaUJJpQ9KRPXaoc5MeLhZ\/eJMye6iDujokl41JMY076WI5HS9rBgrm7HYGV2c5GGjFKRj4wMWWaXR6aSgjpdawlI4jO0T6CoxFPZ3mF7oYWXPjplk7SloPSlbG02ruHjxO\/TSfnJT4wDs+w19861F6enp0jwsEypPI\/LxBY7ZOGi6TTRNs9RGe1x+6qGFhbomx8TEcDgeNjY35+9CIR1XVn4saz5Y7F5TCSFKdSqX42c9+xsrKCnfffXd+XEI1Xm0AnnobsVSSL\/zLt\/iFL3+CE\/\/3j\/nD1Wc532ljsdWN7HHgnNP3EhPrPLh370A1mJ+DTcwt3hfGDEnHe6SX1Ng8skFKyLW3AzmWIjunvwim4gk8cQmGZrHV+\/Ae7sG5twOloAFQrHPneoYq9Mxo921EOra+HaSvzxqSjmtvB3IkUTQArhSOtnpEj7OImKRQlOTFcdLD0zkHhUPdeE\/sJXNjjLbefXsO9+RqTEYR05HeXP3IgHRcezuQV6KGLhOO1gacPi+2Rf3vieB14e1opidp57C3mUa3j6hH5KoS4Vp8GVlVkFXFlEHp2ZVpjgTaDEnncmSBHW6\/IelMJVeRVbXI8TrrtuNsMN9rEwyaJympzlytNrOQrDjFVINNR54txbI88OY\/4S++9SiQm+el13\/jcJS\/xvLysm60kTVo3PY1mtvD7929n3vuuYeDBw9it9uZmMhlAV544QX+\/u\/\/nieffJJEIoHXaz4CNTN99N3vfveaKaKF5p96+OY3v8mhQ4dwuVwcOnSIRx55xPR9GWFbEI\/RMDgNKysrPP3003i9Xk6fPp3\/w2QzEhmTapg8nGuJ6jsvPMO7\/\/ZB\/uvVR\/nVZ\/83P2hKkdjViOAs\/kI5O5tzvScGs3HEgBdXd6vxAm8vsJoxcjQ40kv6+pxhHSbT5seZVVCXc4ugHI6TuDhO5toMgqri7uvEe2w3jvZG4\/v2mSMmdrciD88aW+Qc7iE9OmeYpnPtbkeOpfLjHMrBFsz1ByWevYq8HMHR0YTnSC\/O3rZ8j4bgceLavcO410e4EQ1VsvY51J27b0Oj0zbkRArZIEKVfE5kt53M6E1CFVTwJxX2iQH2+pqQPA6u21O4HE5Ws\/obj7M6E0MLcU2KsLeuCa9Bb9FIbBmfzUmbuzheSTVXl9ZxNFXRENpmbucur5q31XG0rCXW7Gqat\/\/rj\/CVRx\/P\/06SJN2RAkb2OB0d5c8xSsPZvObWoFQii81mo7Gxkb6+Po4cOYLNZmPHjh386Ec\/4v777yeVSvGxj32Mv\/3bvzVsatVgZvoowOtf\/\/qiKaLf\/e53Da\/79NNP87a3vY13vvOdDA4O8s53vpO3vvWt\/PSnPzX1Xo2wrVJtsNa9QFVVxsfHGR4eZv\/+\/XR1dRURldlZPIVIob9L9Xg8DEwP8rvf\/J8ABL11\/PuXvY57Ow\/S5vGTHZk33C07u1pQEinjsQB5h2qDhVJzn66QEst2N+KcWkHVWUwFWUUFUlenURJpnJ1N2BsDSJEEmYn5fP3K0dYAqIbEJHhdONobyBjIl1UBHPs6jUmA3AKfvDpt3KhaRrmWnVnO9\/6IPjeuvg4Emy036lv3QnbclWx7KCAmA7j37yQ9OmdYP3J0NCIm0igh\/dSL4HMjemz0Lcng86IKAmE3zEVWcGVUdvkakBSZ85H5irWhs+EpjgeNRQuXIvP0ehvKEpPQXkUEE8tgN3B7LkRiIY7XZPpMMVk3yoZSOBqL1X6ZUJI3vf7D\/PPZwTXHt7Q0Mz29VrG5uqpPIvX19WV\/v7CgTwIZoXKaDdb6tWlCqo6ODh588EH++3\/\/7\/T19dHb28tnPvMZ3vWud\/G5z32O97znPbrXNDN9FMDlclU1SfTBBx\/k3nvvzXu3ffCDH+Txxx\/nwQcf5Gtf+5rp65TDtiOewlSbJElcvHiRUCjEyZMnaWhYWyytxqdNQzihX2+IxYrTK6uJGJ959Jt8Bti\/fx9Hgjt4y4E72Sd5EGbCRcfmJM6zxkIDzdHAoOYh+D04G40HqamigNrVhGNc3xkAINUZhJHZvI1OZnqZzA0Bgy3gxbmzBcH1\/7F35eFRldf7nX0myUwms89kB0LYwhKC7IsLUJRVRBQ3WrWtaBXXti4Va6tVq9LW2trWn6itYstiEBAJOyggJCwhkBCy7\/s2ySSz3d8fw1wyyXxnJsgScd7n4Xl07sydO5M73\/udc97zHgm6SmrgIkYViA1qcOBI0oFMAoFBCWceW5oNBLnAB6FcE0VFwF5S60mJCYWQxhvBhUnQUd0ASZOHrISqMIjVETQxBel8EIxXnGzAeXdtG3tD5FRKAQEgqb+wWAk4DmoboJaoAQnQFSZGSVcHpBIxrE47IhiRTGZzeUDH67yuRgyK0Pl16AaAsNjgiaejth0qP6ahftHiCHrSfLBpNmdjlw\/x2KrbsXDeb7Az66Tf57NSVlVV7A2WlFFDamhoQFhYmF8H\/RZbLYL5sP6Ip7uwwOFwwGaz4eWXX4ZKpUJtbW3Qdjj8tTCmj+7ZswcGgwFqtRrTp0\/H73\/\/exgM7Gs+ePAgHn\/8cZ\/HZs+ejdWrV\/fpevyhXxCPv1Rbe3s7jh07BolEgkmTJvnMq+iOvroWAEBVI7vLndrVVFZWIS\/vLNZ\/6wnnR8UPxG1Dx+MG02BEqpSwnSwm31cxLM5TXyB2y05tOCROeIrqDLgUEojUERBQpCMSQp4cAxAd\/a7WDkAoQMfJQo+s0xSJcE0knHUtPukvaaIJjpomcETazGt\/4ygj1HRiISQJxuAW+AACAVlSNOxlteC8NSa3G\/bz35nk\/PXIEo3gnG5y6qpAIeUtgAJeU6DrHhqLzvxKsqYnNKkhaGmHyMbeMAkjFIiIisDgMqcnGhIJ0CBxo7alCUqXEDFh6vPRUHVA0gnGm01gDM7SBgBEtuAXQbcteBcSUVhwS1F3eXZ7eStuuPEpZJ4rglarRUND73uPdQu1trZBqVSira33ZotyTzGbzSgoKOj1eHVzGSKDIZ4eRqH+hsABFwiTIgZ\/YE0fnTNnDpYsWYL4+HgUFRXhhRdewA033IDMzEzm2lpdXQ2j0dfixWg0orqa2HwGiX5BPN0hFovR3NyM3NxcREdHIzk5mTTo66uiDQAKK3L9Pi6VSlFb61\/Volar0dzc7PPYiZICnCgpwJ\/1OqDLifunzMYMwyBoa2wQdnerDdKORjEsDh1ny8lZ8o4oBaScEFwVWwYsVIZBoo9EJ7WY9lC3CQCIqlvQWe0hHLFRDYleDYFE5Llu4pqCsb+BUgG3QgLHOUJxF2zkMfy8FJwwQxWpwtCZVwG31QaBVAxZUjQEUjHsVY18ZCeKioBQISMteSAWQT7IcknIUhCrhbO6GSIiinMppeDEQrjLLmyABC4OWpcAWplnB9sRLkJphxVysRSdLifkIv8\/42CUcqdaqjEjwb93mT\/0SUrdl526JkjyO3\/O1sImTL7xcZwp9UTXUVFqv8TT0cFOgen1Or\/E0zPr0R1RUWq\/jxdXncUojKWuHEDvXh7W9NFgpy\/3BGv66NKlS\/n\/HjFiBNLS0hAfH48tW7aQ4697NvL3pbmfQr8hHoFAALfbjfb2drS3t2PkyJFBzRrvyyweAAhTSdFc5l8dZjabUVLiP71lMhl7EY8XBoMROTk5+MPWz\/AHACKhELePn4FFg9OQ4JAhPDw8gPt0cMPWgnGWlpwf5NZFNLMKw+WQmjVk\/chZ2wyJPhIdxwrglnlGG4hFInSW1YHrJnQIpmdGEq0F12mHs5aYhaSQQmKMoiOPYMcn9HA+4OxOXwcFixZikwawdV3oJfL3dkHY7QR7TUjQw11aDyGRppNYtBBabXA3EbWhCDnUGhXC2i9MXq0VO1DX0gyLLAJRAhlcnBsnWqoCkk62tQZDlXqo+pBqY41J8AehLDgptcvqgCIqOBWXUC5CY249xt\/wGIq6SZ\/1ej3OnesdiVRWslNqrCZNKuvBig7qmqogt0iY7gReBEq1Wa1Wvsenrwhm+qgXZrMZ8fHx5CRRk8nUK7qpra3tFQVdDPoN8djtdpw4cQKdnZ2wWCxBkQ4AdPSxxiMJZ\/\/wtVoNk3hYHk4AoFT63sAutxufHtyFTw\/uwoQJ4yFobMe9Y6djtEQHaUWzj4otmDHXvLN0aQO5iVQMjkFXWS2pyJIY1IBAQBqPCuQSSGP1nkZNAMIuJxz5lXAAgEgIWaIJwnA5IBHBdrwwYErMEWAcNqLC4QbtjtAngUCAyEMYJkPXmRK4bXYIIxSQxuogADyken7AnEirglAiIkUikIggH2AOeE3uRD0ERXXkpkI2wARHVRNZG3KFyyCUiWHv1ogsdLlhcIlgkHssW6wKIYo7WhAulsLhdjE947wuCm6JCEpT8IafwvDgyAQARJFB+rnV2yCKCC7iaahuwZTbnkFFo2\/EL2TUiOrq6pkekKyoora2FnK5HJ2dvdcWf+OvvYg0KNBZRBNPz5k8PV0LLvf0US8aGhpQVlZGrrMTJ05ERkaGT51n+\/btmDQp+AiZhX5BPG63G4cPH0ZYWBiio6P7VEzra41HpZcD\/jNtUCjYP0BWwRGg3W4lEgn2nz2Fg2dPAQCitXrcP2k2pusGQOsQQujiyDHXQTlLo7drtD8EY5Ej0ig9YoN8BjG53Ogqq4M8KRqdp4ohNqghMajh7ujy1KW6kWowKTGvcg1EHxMi5JBEBRAIBDuzZ1gcbHnl\/HW6rbYLdjhCoWdchSYCrjYb+zuAJ\/KQ6iLpaxJ4NgyiIloSKx8Si65zdG1IYoqCoNMOroGdBhLIpdCYNYgodAMRgEsiRJXAjobmJlgk4dBIPFGFR57t2RF3aIPvFwEQ1LhpAOBcHKR+ZM\/+4LIGJ0UuOVyKHz\/3z16kAwAdHez7JzY2BkVFxb0e90csXlgsFhQWFvZ6vKdEuTtk\/ntSfWDrkWrrOQTOarUiLCysTxHPww8\/jE8++QTp6en89FHAs1lWKBSwWq1YtWoVFi9eDLPZjOLiYjz77LPQ6XRYtGgRf557770X0dHRePXVVwEAjz32GKZNm4bXXnsNCxYsQHp6Onbs2NErjXcx6BfEIxQKMXr0aISHh6OgoMCvaoSFvjpTC+TsnTeVV3URvTbU9fb0fqpoqMNvv\/g3AGD61CkYIFBi3oBRSGgXgavzTUU5w6WQRNDO0hdm8QQYZ9DDEdsfpHF6OJqs4Ah1m9f+pvN8wd5Z28w7aAsVMkjjDIAIEEql6DjeO\/XRHcEo16BVwm13wFHGFlII5FJIY3SBJdyBBAJuNyAWwXa6DFynHWKtEhKTBu4uh4dUz18nHw1REZpYCKdRBXEw1kUBIjRpvAHOhjZwVvbi6lZIIFQpfFSHIocbZohhDtODA9CqEKCorQGRUgVcnBsigRAuU\/CeYC6rI2gptaPe1mvyJwstnTYE2uMX7SvC2Fsew4jRo\/0ep6aHajQav8RDkYhGEwU\/vEO6VLuDGI\/QM9Xmb+z1pZ4+KhKJkJ2djY8++gjNzc0wm824\/vrr8dlnn\/k4JPScPjpp0iSsXbsWzz\/\/PF544QUMHDgQn332GcaPD95QloV+QTyAx8LC7Xb3eRhcXyOedmcz81hXF\/tc1E1K7U6oprPm1jZ8cOIAPtj3JQDg+mFjMH\/QGIySaKEQiCDrcoOroZorwyBWK8lZPBwA2dDYgP1AiqGxsJ2rJA1TJWYNOIeLueC6bV3oKqn2pA5zCyGNN0KsUsBR3wpHD+uZoJRrA8wetwZCTSeIDIM4XIEuInUYtGihRzTkbGiD83xTrlegIAyXw9nY5pPu6n0iKZxKGcQVzfT7BaGUkyVFw15K2\/uItEoIAbiJe0UgFkEfa4LqLAeIAYdUiFJ7KxSm4Ae6ORo6g06JdTV1Bk08kUSmAQDytuchbcETsNnZm8aKigpmSk0u9\/8ZGxrYTiCsBtOqqirm+3S4moAAFNoz1dbTENlb4+kLAmWIFAoFvvrqq4Dn6Tl9FABuu+023HbbbX26nmDQb4jHi74Og+trxNNgZRfdqTkdDQ3sHVV9PfsY1XncU4Wz+\/Qx7D59DAAwdex1mBU7DFMS4xBZ3Q6uR41EGqOH29ZJyq4F4TI4IqQQUK7ROG+8GcADLRjDUJFGCaHiwkRRe0kNvFct1qogMUXB3eWAQCYNggTiYTtbTjaYcnolXB1d4Ag1XdBy6QDfAWd3gnO70ZlXBrfN7hEoaJVwtdlgL6nlCVSgDoMDHMS17KgRQgEUQ2L7TIT+ILFo4O6ww93MTsFxEhEEhkh0ne0msLC7kYgI2KODyA+dh8saeLyzF3aqptcDLAscADiZno3xS56G4\/ya4E+FBngW3+hoC0pKev+d3W7\/91BHRwfTpbp7FNLzfcxmM8rKev+m6toqIUIS87MA\/lVt3dP4P4SRCEA\/Ip6LHQbXV+eC8jp2SoqlTxeJRKiu9r\/ASyQSpgpGJpMxj4lEInIuyLG809if+S0AIEwmx72TZ+Lm+BGIaRVArlejs6iaNrk0qAGhAFw1W3YNqUetFtB4M5haTawertYOOBju2s6GVrg67ZAao9BVUAF5coxnCmtFPdwtvqnKoImwoh4CYoETqMMhDpPTcmkvCQR4P\/mwOHR2c1rwcVCIUHjmDHEudFY3QtJM1KtkEsjjDJekb0iaYISzroWs2QkiFBAq5XBX+N\/dK2OCr\/G02ToDpsS8kImC7w3yZ4EDAIc\/OYop9z7rs6Nn\/Q4BQKfT+SWetjZ2tsJgMDDGI7DXIFYtuLyuCPGBiIfhXODFD2H6KNCPiMeLvkY8HdbgIx6BACiqzPN7jLXzATyyQn+2G4AnF8xytLVYzH5zy55jFr+7Jn\/X0tHVib\/v+gJ\/xxcQi8WYlZKGJcMnYDiiIKpo7pWukg80w17TzM+48QdhZBhEyjB0kcXxbsabBOTJMegqpq2ExDoVBCIRL\/Pmi\/ICAaRxeohU4XC0WCGJCAuCCOM9MmgiEnDrlOBsXeAqiRSptzb0HUnAbbXB3mqFs74VEoeLV\/05G9rgqLpAxMIIBcQaJTl0L5j3AwB5UjS6SmpIGbtIo4RQIoaD6PnSxge\/u5YG6TQNBC+ldjR0+hUsfPvpcUy+59e9Hq+rq0N4eLjf1DcrpVZTwyYrlcq\/lxyVqWARQ3HlWSQoZzPtqwD\/DaTd6yo\/hFk8QD8xCe2Ovqfago94FJFidNn9E5XJxNamazTsuSaUfXlPy4ru0GrZx3Q69jRDi8WCrccO4cf\/Xo3r\/v1bLMvbiB2aDrQnaiCQSXi3a4p0JNE6QCiAo5wu2AfbONl5toL2r4s3wt3lgKPGzwLIcbCX1qGruAYikQj26kYohsdDlhQN+Fno+NpQgDlC4vYuiNoJIUlkGCQ6FV0bCpJ4Ea+Hq7oZwi4n4ObQVVQN26liOKoaINaqoBgeD\/nQWIgiw+jakEgIeZDKvM5AvVNmz\/3l9zs\/D5dMDE108FJqhSr454qigpxQ2tj797t59Q7c9cJfma+Jjo72+zgrpVZXV8eMUlgu1VVV1Uwlq1zuX2DhcNoRHkVHeoEaSDs6On4QxNPvIp6+ptr6UuOREka5ajW7T4fS7rMaygBank3lcaljWq2Wt1IHgLzKMvxyw\/sAgGHJybjeMQST1bEYaJdBbO298MoHx6CzuJqcXirSeobSkTtzkRCK5MB1imCUa2KDGgKAFy3YvEPtxEK4o6MQHqmEo7YZUn1kcLWhvADRUFQYnA4n3ATxQiqGPMEUUCnHJRqA4loIGJtcZ0MrBHIp3FYb3LYuyJOiIZBKYK9q8PHGE8glkEbrebUg8\/MFk4KL08PZaCU3H4IwGdwD9BBJgt97ButK7Xa4IdUGKaW2+d6Hn\/7uC9zz4p8hFoshFAr9\/vZYv9XWVnadKyYmGvn553o9bid8Fc1mk9\/UHSXDDosSw9rA3vAEaiBtb2+\/JA2a\/R39hni6TyENNuKx2+1obiCKuD3A+RmH4IVUyv5RUbMxLtY+grLlYBU2ASA8nH0tUoUcf92Vjr+ev675qZMwb8BoDHYoENbcBVe8Frb8cuYiCXiku67mdjga2Go8QZgMUpOGVNMBwU0LlSYY4axv9btICpxuiCqa0NVig9SghqvVBsWIBLha2mEv650KCaY2JE00wVnbDDcRDQki5JBqI8n+KgBwJeogKiIiGPQ2DfVxUIjWQqxRwtXR6VELEs7gQJAquEEW2MvrLnjY+YFQFQaxMgzNruAFAH2RUnfUWhERrGih273xz1\/9Fw+94XGFdzqdiI2N9ZuOZkUplIcYy3GalV4HPJs8f8TT1MSOIuWR9HrQ1tLhM2+HZZlzraPfEI8XXjl1IE+gtrY2ZGVlwd6Hme52AaH84dg7ZKq\/h5rrQe2MqKiOIl7qO3E6L1wLx3FIz\/wa6Zme8d5zpk3HhGozxqnN0Le6IHT1JoNg7G\/E+kiPKICw5Al2WmhQ0RBfGzq\/qFR4ohRRZDik0VpwTjc6y+ugSDBekvdzKWXgBABHqAUhFMAZHQVxEe0MHqgx1FHRAK7LDoFQBFdHF+RD4wCOQ1cPW6JgVXDBNKKKdUpAKIK9oh6C5MAd7vy19kFKLWgLPlUulInAuTisfvxjPP3Xj32O6fU6v8RjZ8iqGxoamMafrLQZRVZyuf+orbKSfe\/bBW2gKhi29i4cPnwYcrkcWq0WDofD5zf9QxEX9MsaD0AvvlVVVTh06BDMZgvsnX2oBznYuv32dnYTaGsre\/ff1sYms8ZG9vtRIT7VM0SRWXg4+4atbGnEi1+txc0b38aPvv0QH4vLUGwQw6nw7D3cAwzozCsjSUeaYIS70w4HoZQThMshizcGVbDvzCsnSUAapwdnd\/qtU7ha2mE7XYquslrIo3Xg7E4ohid4FtaLfb8YHaRCMcRU+lYmgdOghJjh99fr\/Sg3AosWnJODo7b5vINCKTpzy8DZ7JAlmqAYkQBxtA7ygZbA3+fweHSepd9PbNaAc3F8w6\/EHLyirS9Saq6rD8QTIcFbj\/+nF+kAgELhXyxA\/a5YQ9xYG7329naiFus\/Uu\/q6uKnH\/dEs42OgN0OYOrUqRg0aBDcbjecTieOHz+Ojz\/+GH\/4wx\/gcDj6FPEEmj7qcDjwy1\/+EikpKQgPD4fFYsG9995LetgBwJo1a3pNLBUIBOT60xf0m4ine6oN8Nwo3WWGgGcXf\/bsWZSVlWHUqFEIkyn7ZK\/TYGXvbqibmZJwUq+rqmK\/HyWlbvRjCRLMMdZOEAAE3aZXNrS1YPWOz7EaHkPTH9+8EJNa3RisUkDR4j8dqRgah85zFYGjE7GIjoaEAiiGBC6gywfHoKuYHrjmdZfuWYuSmDUQa1VwWW2wl9Z66j5BpajqwXWyv0NXmARuuQSSasLsFEHWYRJNcNY0+e+LcrvRVVQNQbgcEl0knI1tUAxPgLvL7uOg0Kf381P3ieiDOWiwg9oAgDSl6wZnpxMvPPUv7M73n9Jsamr2+3h5Obv2yEqpUZtHk8no93dMOZIYDHq\/yrfq5jKowR621tXhgFgshl6vh06nQ2VlJUaOHInq6mp89dVXOH78OPLy8nD8+HHMmTMH06dPJ2vF3umj48aNg9PpxHPPPYdZs2bh9OnTHnPijg5kZWXhhRdewKhRo9DU1ISVK1di\/vz5OHr0KPO8gKepv+cIbZZysK\/oN8TjhVAohFAo7BXxdDcRnTBhAiIiIlBb1tync9c0+7\/BBQIBM3xWKpXMnK5Op2VaaBgMemYPj1arYXZNy2QyModMERZl58FaDVxuN840VeNfX28AAKQNGII7UiZhlESDqEY7BG4OGGQkZ9oA58dBN7XBSYyDFoTJIDUHURsKYuCaJFoLd0eX31EMjqpGj1OCVAzF0DjA5fakoUpr\/c4UCkaQINQq4bTbIWkk7JyCTYklx3hSmtSQO3UEhAopP2PIeb7mJpBJIBtsgkAiQVdVA2QWbWBSHWiGvaKhF6mq++RKHXwtU6QKvDi5bE6UHnVj1k8egurQYbjdbpw8me37HMbfo6urC2azye\/Grudm1QsqPcZSplK\/J9ZriiryMAbjmK+zdznhcrohEl8QTiiVStx555244447kJqaimXLlqG2thY\/+9nPcMMNN+CDDz5gni\/Q9NHIyEhkZGT4POcvf\/kLrrvuOpSWliIuLo55boFA0KeJpX1BvyMeoLfAoLW1FceOHYNSqcTEiRP5m6svdjkSmQg1df6JR6fTMXX7JpOR2S1tMBiYN6deb2ASj9FoZBKPyWT0W9D0vB+bzDxNruwIi3JXsHUbSna0MBdHCz0uqia1BvfdeAsmtkpgkYkgYqRQgqkNiTRKCGUSupkzyBEDsoFmOCrpKZ\/CCAUk2h5TXMUiyAaYIAyTw3HeYy4YQYLQEgVHoxViomDvFgvh0kWQg\/eA8z1IZ0ppUjWqwTndvWyGAIDrcngaWUVCyAfHwNnU5hFctHagq7S21\/ZCnny+rtUjBccB0McHn2oThfVhWJyKXlacVgfKTophHjsBJo7DhAnj8eijj6Cysgo7d+7Cjh07sWfPXnKTxRL8sKL+lpYWZq8em6wqmWInlgCooaUWihgpbG2Esq3DjnCVnD9vT3HBrFmzMGXKFHAc1yffSoA9fbTncwQCATM69MJqtSI+Ph4ulwujR4\/Gyy+\/jDFjxvTpeljoNzWe7gW27pLqyspKHD58GDExMRgzZoxvl28fRiKoDeHMtBxVzKNk1kolW7kTFsYOj1Uq9uvUanbPEDWN0Gw2MYUOgUiJlS6sbm7EnvI8LPzvW5i84x282ZmDHD3QqbxQqBUmmQPXhmL1gMv\/QnrhSWLIk4LxU4tHV3ENSTpinQqicHlvOyGnC12Fnh4bZ10LwkYPBDhAlmgCGLb6gjgdnHUtEFEqMWUY5GZt4BRcyvkeJIJ0pHF6uDq6+AjH\/5PEkA8wo\/NMKRwVDbCdKvb0BykkkA2JhXxILARhMk\/dJ99\/3adTJYdMEXxDqMQQHEm5u1yQatgRj6PFjqw9bTjd2IZjx46hvLwcDocDcrkcCQnxWL78Xnz00QfIzz+DNWv+Dw8\/\/BCSknq7AWi1\/nvdKP811ggAh8M\/SbjdbmbNiEprR+rpiM\/r1+Ylnu7ipe6WOQKBoE\/1Htb00e7o7OzEr371Kyxbtoxch4YMGYI1a9Zg06ZN+PTTTyGXyzF58mRyfk9f0G8jHqfTidzcXJSXl2PUqFF+F92+TB9VqNk\/MqPRgKIi\/1Y6VE5TKmXvAm02ooGTIQcN9H6snRngidpYuW+LxYyyMnaakdpZendQDpcTnxzahU8O7QIATElOwS2jJ+C6xkZEgp3Wlw+ORlcJbXIpVIVBHBkeUL4clFw6Tg9XczucRE7f06Nj9HHPFobLIY3VewqoZbWeuTyJBrhL6sjhbWKdCgKh0K+82wsOgDNWAwSyAWKkxLrDW\/fx12MlsDnQdX5onSIlAW5rJxTD4uFs6G3Sajf2wZXa5oI4IrilwlFngyzG\/7ntDZ2oLonCqJumoKOjA\/X19aivr0d+fj7kcjlf94iKioJEIsFNN92A66+fjt\/+dhWKioqxY8cO7NixEwcOfAOx2P\/vubycfQ9FRvpfaFm1JMBDcP5+Oy0t7PtLGkBJ7m0i9UqpvZtujuO+k6qNNX3UC4fDgTvuuANutxvvvvsuea4JEyZgwoQJ\/P9PnjwZqamp+Mtf\/oI\/\/\/nPF3V93dEviUcgEODs2bMAPMOIWKzfF9cCoYIYjkYQASVe6DnyoDsoAumLM0N3UI2s1PvpdDom8ZhMJpJ4WMcO5GWjPUyEXx87jjidEfeMux4TlNEwNrsgsns+nzg5Gp35lXRayawB53CSC3fQ8uykaE8dhyI5ZRjEURGedFU3uNs7L0waFQrgSjbDZeuEQqeCq9Z\/r4ckWge31QYnsQhBLIJ8gMnHoNPvtQchhRZFhUOokPN1HxYUI3oTtFingsToMWntKq6BcCDbHaMnHLUdEMUT3dfd4Gy1w1+3T1etDXU1RhiHDQHgSZXFxcUhLi4OTqcTjY2NqK+vR05ODpxOJzQaDXQ6HXQ6HaRSKZKTB2PQoIH46U8fRHt7Ow4ePIQhQ4YgI2Onj+TabrdDr\/df+Ge1RVD1H1ZKj8oguMX0hth2voes50iEzs5OuFwu0g2FhUDTRx0OB26\/\/XYUFRVh165dZLTjD0KhEOPGjbv2Ih4v67e2tvKsf91115G7\/A5r8MTTybEbTamemu71j56wWtnnpCIeVs0o0OsodQvVkEo1wOr1Oia5REWpyd2g1127tL4Gv\/9yLQBALpXhzutmYFxcEkZX1EFGkI4s0eSRElMml8G6SwdhZCrWRwICAW1bIwBcsRqI8qogAuA6\/zqJMcoz9qHYM+yuZ2Oo31OFySA1RQUkHWe81uNdR2xyxAY14Hb7FVNceEOBx9HaT7rSWd\/KCz\/kg2PQaQze\/qZPUmo\/6rfOynY0NMdCnzTI72vEYjEMBgMMBgM4joPVakV9fT2qqqqQm5uL8PBwnoQiIyOhVqsxe\/YszJx5E1wuF\/Ly8pCRsRM7duzEoUOHYTIZ\/RIPKw3X3t4OrVbbyy2eQmtrK1QqJVpbe\/+Wrc5GAOyoxZtq6zkEzlvP6UvEE8z0US\/p5OfnY\/fu3cw0ZaD3OX78OFJSUvr8Wn\/oN8QDeOo5OTk5UCgUMJvNJOkAfUu1Ufp6SmpJ3YzU8ClqbjtlQNjczFa0UddJuR1QTafUTW4ymZjEIxKJ\/O4UO+1d+ODAVzgyohynTuXghuGpuDU5DUM5JSKb7bxrgnRwNOyF1QF2+B65NClIQPByYldzO1ytRLFWIoJTr+w17dVZ1wJnnSfqESqkUKQkwt3eBTDSPcB5E9YIxYXGVwZkw+OAHJpUJTE6uFs76GsXCSEfFB3Q4keeHIOugirIbwlerdQnKXWPWllHqRUtnQOgG5AQ1MsFAgGUSiWUSiUSExPhcDjQ0NCA+vp6nDhxAhzHQavVQq\/XQ6vVQiaTISUlBcOGDcOjjz6ClpZWHDhwANu2fYUdO3b6GPiyvNwAj3DH32+d2niaTCa\/xNPQVgkRBjNf50219Yx4rFYrBAIBucHsiUDTR51OJ2677TZkZWVh8+bNcLlc\/HM0Gg3fWNtz+uhLL72ECRMmICkpCa2trfjzn\/+M48eP469\/ZXvo9QX9hngcDgcKCgowevRoVFVVkWklL\/ri01ZU4d+VGqAJhNWLI5VKUVvrn8zkcjmTXGQyGdPNWiAQkD1DlMsu1XRKRVGUK4NKxRZWUHUjAPx3sysnC7tysgAAAwwW3DtuBgaqjRhSVA0h1VxJyKV5nFd2XYphaoJwGRxhEogrm+lzDbSg\/chZT3QiFEAab4BIGQZnUxs\/EsITnXDMERGeNzwv4w5AFG5TJBz1LQAhbvD4vOnQmRdg7tKw867ebjciY4NXtPVJSh3WTfxT2AqrYCg0cf5NPYOBRCKByWSCyWQCx3FoaWlBfX09SkpKcOrUKURGRvLRkFKphE6nxbx5czF37i1wOp04eTIbGRk7kJGxA3l5Z5nvwwo2qT69yEj\/v4+yukIkUMTT7lvj8cKb6emLDVeg6aPl5eXYtGkTAGB0j+mtu3fv5l\/Xc\/poc3MzfvrTn6K6uhqRkZEYM2YM9u3bh+uuuy7oa6PQb4hHIpFg6tSpADyLVjB1kL7IqSsb\/f\/AKZIwmYxMIjCbzSgp8X9O1rx2zzH2qASz2czsKFYqI8jmUaoTmeoLoqauSiS0mIFFPGFhYX4jvsLaSqza8gmGDx+GkoIi3DX+BlxvHIT4dhGk7RcWVukAE5xVTUGksTSBTTW7LbbMc0VFwOF2QVzHTlcCfiIrN+cZAnceYq0S0gQTuC6H5z1ZEAkhTwocnUgGmuEoqQGcxLVHyCHRqIKLCrtNfNUnBK+WkkQFT1Li8yMO2s62oFM+CmpCidlXeCXAarUagwYNQmdnJx8NFRcXQyQS8SSk1Wohl8sxblwaUlPH4Omnn0RdXR127dqDjIwd2Llzl08GgeVAX1FRDoFA4LfWy7LhKa7Mx4DIOXD7saUCLoxG8DcSITw8vE\/EE6iBPiEhIagm+57TR99++228\/fbbQV9HX9FviAcA\/wcO1qE6WOKRh0vQVOk\/qjGbTUwi0On0TOKh5NKsee2eY\/7nvwMeBQ2LQEwmM9ra\/Bf2WMVUL6jiKUVmDgf7b0DVjSwWC86d6+0E7EV1dTWsnTa8t3cL3jv\/2JyR12FBUipMMiViims8jasM8Ck4yiEBwaXghEY1HG0dEHewxSfBNoaK1BGw5ZSA67RDIJdANsAMgcTji+Zq9kSkArmnZtVJERPOTx\/NLScJk1PKIVTI6JoVeqsBu8IkCI8Mvi9HGB5c14WrwwGJWoaWnGY4NGlQRbF7SS4F5HI5oqOjER0dDbfbjebmZtTX16OgoADZ2dmIioriiSgsLAzR0dFYtuwO3H77bThx4iTOnj2LvLyzyMjYwZRUO50uZsM3a3PsdDmgNoSjscr\/Rqa7qq17OaG7eei1jn5JPCKRiNTJexFsqi3KFA4wAoKoKDYRKJXs+gdVf6IUZlT+ljIqjYpSM48ZjQYm8RiNRjJFV1XFjpRaW9nOvRQiIti7aZVK5fdH\/OXJb\/HlyW+RkjICjsY23D1mGtIURmibHBB22\/GLLRpwNjudgguSKISxWjhrmnkVnl\/IJJDF6gOLG4bGwpZfyU8o5TodF+ThAgGksXqItUpwbg62k+wpuECQhKlVwu10wc1Q3Pmcq4fCzW7og5T6PJkEA0ddJ1qb2wDzRCiJNO3lgFAohEajgUajweDBg33k2ufOnYNMJoNOp4NGo0F5eTkEAuD225dAKBTihReeQ3l5BXbu3IWMjB3Yt2+fj3ejxRLt956lMgnhGhEaGfui7qm27xrxfF\/Rr4jHi2BHI3QE2UBKzeGhIheKXFg9Ad8F1GwfCpT80mg0MIknUKRE1ZuouhEVrZrNJlIkUVNTg9raOjxf4TGNjAyLwD0TbsAM\/QBoIUNEfQuEl4AokKCHq6zer0u3Fx7pdTg9LA6901i9wHFw2zrhqHTAUdsMUVQEpGYtOKcTncU1PrORgulVkkTr4G7rACixgQCQJPkf5OcyBJ9mc9R3QhQXXHTUUm2HbNA0KPqBrX93ubbL5UJjYyPq6uqQnZ0Nt9sNrVaLuro66HQ6KBQKDBiQiPj45Vi+\/F50dnbi4MFDyMjYiYyMHcyNFCUgEsjZv4HuqTZ\/NZ4fAvol8QSbagu2j4eaw0OBSjV1dbEjMmpRptxdRSL2n+Pi5\/ewFwGj0b\/sFPBEJtSOjvKxotIFlE1HeHh4rx9zS4cV7+zahHcApKaOQZwgDHMTRyHZGYawZt+\/q7cRNRBRcAMMQGFve5nu4BtDS4n+IgQXnUgsGrg77HA2NwMAXE1WftidQCqGbJAFkEkAiQi244wc7XlIE4yeeUL+zEX5ixfCbVLDcdb\/9yCODp4YXB3B9ZzVHa6HIvkGyC6RieSlhEgkgkajQWlpKSIiIpCcnIzm5mZUV1cjLy+vl1zb07x6I2644Xr8\/ve\/RUFBIXbu3ImMjJ34+utv+LpoU1MTZDKp37XA6mgA4P+7CCQu+CGgXxFPX4fBBVvj6XA1M49RxXWqT4fqb6GUMJSlR3Mz+5ydnezrpAiSIiUqlUhFJkKhkGw6pfylWAVZwCO88Dcl0ova2jpklZfj8\/MzhkYnDMKdI6dgjEwHpUMAkdsNN9WICsCVoIOokK6JSGJ0cLcFaAwNMp0nTTDCWdfC7FXi7E50ltRAnmhGZ06JZzhcVASstY0Q1rb5kKMsKRr2khrSnshTQ9KQMm6FpQ8RCRc47VPzTT3CRtxIDlO8mnC5XDh+\/DjcbjfGjh0LsVgMtVqNhIQEply7e\/PqkCHJGDw4CT\/72U9htVqxb98B7NixAxkZOyEWi\/2KjKqbyyBFb6sfwLfG0z3L0d7eHqrxXE0ELy4ILtXWaGUvkhSBsOTSAN25fLHjEKqrL24xp2oxFLFSpER51FksZtKanvreKJKMimL71InF4l7f3fHiczhe7CGqm6ZNw0ipDlONCbC0cBB39ngfkRBOcyTExfTwNk9jaAPcNqLGeN5yJ1A6Tz44Gl3FAYhCIfWo887XgxwVDXBUNEAETwQnjdZ5BAYikUcuTTloRyggjooI2Dukiu+D\/1eA32Hl\/npEjpkJsTh4scKVhHfeDYBeXo9Ab7l2a2sr6uvrUVZWhpycHKhUKp6EVCoVoqKiMG\/eLbjlljlwuVw4ffoMduzwpOS+\/fYIv2FudzSCtcVqbbLC5XKFIp7+hksd8VQ0sIu5LALxyKz9L1IaTRRTDeapqfhfeKljLOdcwPPjoBZzigSo0b6UgEMiYUcmlC8cS0rtBUWSVI0rJiYaxcVs+XFpdTV2nN2Ht+CZMXRb2jTMiR+BQXY5ZB0OONVhkJazU4dAcLY1ggg5JNrIXpY7PRGMjFuoCoNYFYauIv\/3oLu1A52tpZ6hcmfLIUswQqiQwVHd2Gv8BD9GIUDEpxiRAG0feni69+X0RPmeBmjGzSJTxFcTTqcTx44dg0AgwJgxY8iNFuDJuERGRiIyMhIDBw5EV1cXGhoaUFdXx\/e5eElIo9FAJpNh9OhRSEkZgZUrH0VzczN27dqNHTt2IvPwCbC2UQ11zdi\/fz9\/PTabDQqFAlar9QdDPP3GnRroW6qtvrYRLqK\/ofs5Cyv8N45FRamZtRO1Ws3UvxuNRub76fXsvgXKqsJsZneSWyxmZkOtSqUiLXio6Ku5mU0ClA8dVTeyWCzMY4Guh4pyA9l8dJehu9xufPbtHiz\/3zuYkv5H\/MaahX0d5WjSycAxXKiDmRgqioqAWBkWnFfa6RLavkenhEguhb2cjsC8NSTO7kRXQZXHWbu+FRJTFBQjEiBNMEJsVEMgFtLu3+fP1Xq2DFGG4FNi3r6cnijb3QTtdbP7PekIhcKgSMcfZDIZLBYLRo0ahenTpyMlJQUSiQQFBQXYu3cvsrKyUFZWBrvdDqlUCr1ej9tuW4y\/\/e2v+ObbPfjdhrtx22OTMXCUGd2FagpZOMaNGweRSASr1Yo1a9ZgxIgROHnyJBobG4NS9AKBp48Cnj6fVatWwWKxQKFQYMaMGcjJyQl47vXr12PYsGGQyWQYNmwYNm7c2KfvLhD65V0TKNVWV1eHb\/Z+G9S5VDoFbOf8d\/UbjWxLGJ1Oy4yGKIM9qm5CNXKxuqABQKPRMmf0ULUY1vx5L6h0YVsbu75B\/TAo2XcgwQKldqNk6IF8tkpbG\/DLg\/sBABaNDveOuwETI2NhbnFB2OUCBhgCCwTMGnBdjqAW98Dn0sLd2QVnffNFn8tR3QRHdRMk0VoIhEKINCqIdZHsYXfDPVNYOy3BqzFdHc5eUmrOzaF0bwsM42eSrhdXEw6HA8eOHYNYLMaoUaMuinR6oqdc22az8XLtgoICSKVSn2hILBZj2LgEJKfGYsljU9BcZ8WJfUU4tqcQHW1dkMvlkEgkiI+PR3JyMsLDw7FmzRp8+eWX0Ol0mDlzJhYtWoS7776beU2Bpo8CwOuvv4633noLa9asweDBg\/G73\/0OM2fORF5eHlMNe\/DgQSxduhQvv\/wyFi1ahI0bN+L222\/HgQMHMH78+O\/8XQL9lHi8EQ\/HcT6ado7jUFRUhIKCAsRYEgAcDngupVYKMOrVajU1F0fNPEYVyGkJNptcqMU8PJy96FK1GLPZzCSeQAagrJQgQIsgqHSZxWImyYV0\/CWiB7PZRBJP9++gsrEef\/jqv55rFUvwk5sXYbIVGKCUQsYY3iWNN8DZ0OYzNroXghUbxBvgrG8ljVEhFECe3Ldz8YQoEvLD7py1LXDUN3vOdd4lwW0KPpXjqLdBFHdhceJcbpzeVos2TSyclZXQ6XSXbBTypYLD4UBWVhYkEsklIx1\/UCgUiI2NRWxsLC\/XbmhoQG5uLux2u4+7tkKhgCFaihtuj8SM20bC7XbD4XDAbreD4zioVCrcfffd+Oqrr7B48WLMmjULW7duxYkTJ0jiCTR9lOM4rF69Gs899xxuvfVWAMCHH34Io9GITz75BD\/72c\/8nnf16tWYOXMmfv3rXwMAfv3rX2Pv3r1YvXo1Pv3000vy\/fVL4vEu3t07e10uF7Kzs9Hc3Izx48ejKj+45kZxOGHJT9QxKFBpQNYwNg+oEQvU69jKIuozsGxAAA8JsognPDycnFhKSclZ44o976lmHmM1lnpBedGpVOw+JrFYzHRu6HI6cKK+DH\/7xkNE04eOwuIh12GEUA1VY6fH0DROB0dVIykQgFQMeXxgsUEwnnFe4UIgKyDZIAvsZXW9z+VyXxAXiEUIG+6xTJENMHnGIZj6IKVuu3But8ONkq9tMF53PcQNDT7O0d45OpGRkVe1+dHhcCAzMxMymQyjRo26YhGZSCSCXq+HXq9HcnIy2tvbUV9fj5qaGuTl5SEsLIwnIbVaDbfbjZycHIjFYqhUKn49KSgoQFpaGlJTU5Gamtrn6+g5fbSoqAjV1dWYNWsW\/xyZTIbp06fjm2++YRLPwYMH8fjjj\/s8Nnv2bKxevbrP18RCvyKe7jUe4ALx2Gw2ZGVlQSwWY+LEiZDJZDjXRktivXCK2AsWtYum+m2onhoqtdXSwj5GkQvlkEst9FT0FRUVxSzWm81mpuWNx8j04lJ01OA8s5mOhqgITChk72qjoy3MNCUAWK0X7o+9Z05g75kTAIB4vQl3T5mJCZ1SmDiOWQwVhMshZQxm646ezgZ+zxUmg9QYFVC44HWYJkUQcgmkFh06si8Ia4RhMigGBO8o4B1x4O5yoeSwE+bxM3j3aK8U2Ztu8hbxdTod7xwdyF3+UsJutyMrKwtyuRwjR468amlAgUCAiIgIRERE8N+Rd9ZQdnY2XC4XJBIJ3G43UlNTERERAbfbjY8\/\/hjnzp0LOI6aBX\/TR72\/0541aaPRyPSZ9L7O32uo331f0a+IxwuhUAiBQACn04n29nYcO3YMJpMJQ4cO5W+oYBVtVjt7F00pvqg0FBUNUPY0tbXsY5RDdlMT+zNQJEjVySiBgFxO99pUVLAbNGkpNXunT6UM5XI5+b1SmwStVkcSD+t6S+qqsbeuEL8\/8DHCZHLcNf4G3GBKQkKHGFLr+YhPpYAozM+I7R4I6GyA8wo3JVvhxp8rGNPTcDkkOlUvLzt3RxciDH2I8kUCuDqcKD8ugOW6qb0OSyQSmM1mmM0e8YvXObqnV5per7+s\/Sl2ux2ZmZkICwtDSkpKv6o9SSQSGI1GGI1GuN1unDhxAi0tLZDL5fj973+P7du3Y9iwYfjyyy+xadMmzJ49+6Leh5o+2jMK7VnC8IeLeU1f0C+JB\/BEPeXl5SgtLcWQIUMQGxvrczzYWTy1rezdI7WYsXpqxGIxYRwaxuzoj4iIYKaSpFIpeS2UySdleUNFEBQpUY2AOp2OSTyBpNQU0VN1s+joaBQUFDCPUw27lChBoVCQ37s3Iu7o6sQ\/923FP88\/PjtlHOYmj0WyWAFNdRPpgBCM2ECkVUEoEsJeEZzCjYIwMgyicIWPa3Z3aPrQwwORAOXZUphS0wI+VSgUIioqClFRUUhKSuo12lqhUPAkpFarLxk59GfS6Q6O45Cbm4v29nZMmDABcrkc8fHxcLlc+OKLLyASiXDPPfdgzpw5WLZsWZ8IiDV91GTyKGWrq6thNpv5x2tra0llrslk6hXdBHpNX9Gv\/kpeRnW73eA4DmVlZUhLS+tFOgDQHmTzaFmt\/wVLIBAwoxqtVuNjEtgd3t2dP+h0OuZ1eG8Cf7BYLKR0m7Wj98z2ubj5PRQpyeVs4qHSJ99FSk1FQxqNmnlMIBCQfUwAOzKIjo4mlYasaPKr7CN4\/9xBzFr7Ou4+m44tEc2o1cvgFvv+nLxKMgoSs8YzWbS2mXyeIiVIApNJmQaqLpEQWktwYgBHqx0NHSaYRgUmHX\/weqWlpqZixowZSEpKgtPpRHZ2Nvbu3YuTJ0+isrIyaOmwP3R1deHo0aMIDw\/\/XpBOY2Mj0tLSeEHGkSNHsGbNGvz5z39Gc3Mz1q9fD7PZHJTc2XveRx55BBs2bMCuXbt6TR9NTEyEyWRCRkYG\/5jdbsfevXsxadIk5nknTpzo8xoA2L59O\/mavqLfRTxdXV04duwYOI7DsGHDmN3sHUH4tIklQpRU+a9VULNvjEYjMzrR6bQ+M967Q6Fg\/6gpU1GNRoPi4mK\/xwwGPZNAoqMtKCz03xyrVCrJYj1lAEqNSqCEFZSUWq2OJNVwLYQ9jUzG\/l41Gk0ARRs7FUmJLwBaZedt9MutLMVvKi8Ymt49\/gbM0A+ERiIHAszbkcYa4GwKoJbD+bHegYxDjWq4HS44CQLr1IZByOhj6g57QydqyjQwna8VfFf0HG3tdQcoLS3F6dOnoVKpeIFCsIPQurq6kJmZCaVSieHDh\/dr0jl79izq6+t9SGfr1q24\/\/77sWbNGixcuBAAMHXqVH4mWTAINH1UIBBg5cqVeOWVV5CUlISkpCS88sorCAsLw7Jly\/jz9Jw++thjj2HatGl47bXXsGDBAqSnp2PHjh1+03gXi35FPDabDd988w20Wm2vsbA9EUyNR20Ih7ueFZ2wZ98olWySoHLVVJMjtaOn0kEREWzFloeU\/ROPyWRiCh1UKhWZnqJIifqbUD9+s9lMNqxSVkKUgEKv9z+y2AtKlECl9\/wZlnaHv0ippcOKv+7ehE81UWhqasbc0RMwb8BoJDvDENHiu7OXDTTDXtEArpOeA+SRQhezn4MgR2MDwIjAk0C7amyorzPBMCQ54HMvBj3dATo7O\/mUXGFhYa9+GH\/3W2dnJzIzMxEZGYnhw4f32zECHMchPz8fNTU1SEtL43\/nO3bswPLly\/HPf\/4TS5YsuejzB5o+CgDPPPMMbDYbVqxYgaamJowfPx7bt2\/36eHpOX100qRJWLt2LZ5\/\/nm88MILGDhwID777LNL1sMD9DPiUSgUGDZsGAwGA44ePUrWIYKZxRMWxf541IJOqa+oxZX6AVALNvW7EYvZ7yeXswkrKopdrDeZjMxUm1QqJWsxFGFRQgeqhylQNEQp5bRa9rAxT82JTTzU\/RUdbcHZs\/4H7wG0vNtstqCxsQlfHDuIL44dBACkxA3AstFTkSrTI1wkBVdcDQExkgESEeSJpoCy6qDcqs+P2W4T0b5rtop2NLXGQzdoAPm8Swm5XI6YmBjExMTA5XKhqakJ9fX1Pv0w3mhILpfzpKNWqzFs2LB+TToFBQWoqqpCWloav2Hdu3cvli1bhr\/+9a+48847v\/N7BIJAIMCqVauwatUq5nN6Th8FgNtuuw233Xbbd7g6Gv2KeAQCAV\/ACmSbE0zEI1SwowyRiL2gU+9LmW5SRp7UPdLRwU612O0X1xdECQQoyWZMTDQzfScQCEihA0XK1DGLxUJGQ1QERi08gSahUgSrVtNpOIrQ\/PUVZZcW4telnpEHI4cMxQ0xyZhmSER0GyC2+RLCBeNQWlbN7OXpDqEAiuQY2HJKIElLYT6to6QNrY4kaBPjyPe8nOg+utrbD1NXV8f3DIWFhaGrqwtqtRpDhw7tt6QDAIWFhaioqEBaWhqvID1w4ABuv\/12vP3227j33nv79fVfbvQr4gF8p5BSBBBMxNNgvbhiNrVzp2TWlMKsoYGSS7NrKtTiSBEW1aNEpZg0Gg2TeEwmE5kSo8QMVKREWRBFRESQ8nWWCAQIXMOhSFQmY39HcrmcFEpQC4pEIsHpc\/k4mXsGq+ExNF00dgpujk\/BYIcC0i4XBBHSgLJqeXIsugpoQ1OIRZAPMMN2xlOTVMb6V7RZC1rRIRqOqBiz3+NXA937YRITE9Ha2so7EjQ3e0w2vSR1pXuGAqGoqIgXRnlJ5\/Dhw1iyZAleffVVPPDAAz9o0gH6IfF4EcivLZiIp8XG3pVSqi5qoaus9L8LFQgEzHqCUCgkd+30qAT264K1iekJitApCxS9Xse81kBSairio5VyZjLlVV\/Pfk+aYNkO4wBtYRQTE0NGUtSQvJiYaJ9R6y63G+uO7MO6I\/sAALfPvgXX2Y0YrdNC3dgFgbv3FxdMLw9kEshidBfGbwOI8uNK3ZrbAnvEaETq9OxzXWXYbDacOHECRqMRQ4YMAcdxaG5u7tUz5E3JXc2ZNsXFxSgpKcHYsWN5AUpmZiZuvfVWrFq1Cg8\/\/PAPnnSAfkw8gVNtgSMeq5O9sLBSJVSfTkREBDMaMhioEdM6Jin508x7oVKpmLWPQMPYqIZUipSoSIkyQA2U1qJmDVFET6UFKTscINAIbjNJPFTNKVAk1dHBrv9otTof4umJM5Ul+G\/2FgCASa3BvdfdiEnqWFha3BB1ueBO1MN2poTKsnocEPRqdBVc+G7cAkAX57sgt5xqgkM7Dsoodp3saqOjowOZmZm8HY1AIIBAIPAx7PT2DNXV1eHs2bO9LGqulOKtpKQERUVFGDt2LF+8P3HiBObPn49f\/epXWLlyZYh0zqPfEU\/3VBvVkR7M2OuSav87ZYVCztyVms1mplxap9MyiUer1TKJR6VSMYlHr9cxiYdynjabTcxGzkD9PVSaqLuFTE8IBOwfMCWlDhRdUKo1qqYWyA6HSlNS6T0ApDsDZYQqEolIJR3VIwX4\/m2qmxvx+vb\/AQAkIjF+\/KP5mNruMTSVt\/qPyITK8zN+ergpdKoVkEgv\/P0ajzdCYJkEZYDv4Wqio6MDR48ehdFoxODBg5mLtrdnKC4uDk6nk58omp2dDbfbDa1Wy9v4UFHwd0FZWRkKCwuRmprK31s5OTmYN28ennjiCTzzzDMh0umG\/il+h2c3+10iHnm4BDUN\/hcPvZ6dVqBUUgYDu3OX42jJLwtUaouykaGaVaOj2Q2pMpmMrLdQdSpqI0AtxlTzLED3y1ApL+o7AOgaDqUy1Ol0ZJ2Pqg9aLBbyOHVPq1QqZvTncDlxuqUG9\/z3L5i86U08VrUHB6JsaNHKL0ynVsohUEj8OiA4jRei1fqjDRDFTUNYPyad9vZ2HD16FCaTiSSdnhCLxTAajRg+fDimTZuG1NRUhIWFoaSkBPv27cORI0dQVFQEq9UalCosGJSXlyM\/Px9jxozh1Zu5ubmYO3cufv7zn+P5558PkU4P9LuIxwsq1eZ0uGDvOdq4B9SGMICxaaV2u5SHGSWzps5JhfrUYk4p0yIi2NdJ9ffodFrmbj6Qdc\/FNpaqVGwCDTRLhxpIR8vJ6bEPVCRlNpvJ9B8VSen1embE7Hktu7YYHW0J2uboQF42DuRlAwDidEbce90NGBlhRkKDFf4olTvvSr3r03KkzbkZsn42zqA7vKRjsVgwaNCgi160u\/cMDRo0iO8Zqqur43uGvHWhqKioixqhUFFRgbNnz2LMmDF8Wjg\/Px9z587Ffffdh9\/+9rch0vGDfkc83j8SJS4IRtEmj2T\/sakFnSKJYMZx+wO1yFGFUGrnTKW9qIZUk4mdorNYzOR4aVbDLUArAcVi9g\/aZKJn6VCyZauVvUibTGaSeKioj6plAXQaLiyM\/d0D9HdI9ToBbMIrra\/BJ7mH8LvCIsilMtx53QzMtCQjsUPCG5pKLeHY+Pdi7N3QhsmL+i\/pWK1WZGZmIjo6GgMHDryki7a\/nqG6ujqcOXMGdrsdWq2Wrw0FM2eoqqoKeXl5GD16NO+wUlRUhLlz52LJkiX4wx\/+0G8dFa42+h3xeEFFPMEo2jgpO0VDpcXIuhIh3W1tpcYhsBdIavdMRR8UmVEpBIqUNBotk3iMRuNF+8JRBErN0gkctbDPS1kUCQQCkjyoxSJQhEbdW4FqXYEkwdQ1a7UeGXynvQsfHPgKH+ArAMCNw1NxS+JIOA80Y3t6LYZMMqGwsBB6vT5oe5orBS\/pxMTEYMCAAZf12rr3DHEcB6vVivr6elRWViI3NxcRERF8NKRSqXpdS3V1Nc6cOYNRo0bx829KS0tx8803Y+7cuXj77bdDpEOg3xIPFfEUnC0O+Hqbu5l5jFq0qXoD1YtDO12zz0nJpak5PFTvD93Iyl4YKVIyGtmqvUBSakohRqU3zGY6aqHOS5Ed5dMHeOS77NfSEVprKzvy8zoasEDdlzqdjkz\/sfzsduZkYWdOFpaNfBEAYIrVoq2tDcXFxZBIJPwAs6ioqKu6ULa1tSEzMxOxsbEYOHDgFX1v74whpVKJxMRE2O123sbHayfjddb2egPm5ORg1KhRvE1WZWUlbrnlFsycORPvvPNOiHQCoN8RT\/dhcD0jHrfbjTNnzqDgrP\/6RXc0tl+cMzNroROJRKTMmpW68djB+I9qKLm0VCol00yUIzO1QFGqNUqj6+1J8IdAUmqqyE9NM6XqZoFGGlCLuF6vJ4mH6sMJtKBQmwwqugPoviyLha47UdJxkUiMxirPZiRuoAmjRo3ySTXl5OTA6XTy6i+dTnfZ1F\/+4CWduLg4DBhw5ex6WJBKpbBYLLBYLHC73XzPUH5+Pmw2GziOQ3R0NP+dV1dX45ZbbsHkyZPx3nvvXbZx29cS+h3xeCESiXx+THa7HcePH4fD4UBi7CAAJ8jXVzYUM4+xFhalUsnscTEY9EwZstFoZNY4jEYjk3gozzSLxcJ0rKZ2vyKRKMD8HsoFgE1K1IJLSakDpaZqatgLtUTCFnNER0eTZEelTCUS9m0vEolQUcEmdSr9o1QqSVVgIINVajPR3dTRH6joLyl2GJxNnk2cxqTkr8WbahoyZAisVitqa2tRVlaG06dPIzIykieh8PDwy5b2am1tRWZmJhISEnrZ+vcHCIVCvmcoKioKJ06cgMVigc1mw\/Tp0yEQCCCTyRAbG4t\/\/OMfIdIJEv02HvTKqTmOQ1tbGw4ePAiJRILx48fD0RVYBllUedbv41FRUcxFyWxmy34pEQA1L4ZqgKSOefPG\/kANZFKr1czamEQiIXfk1E6fiiC+i5SaStFRUmqK7AC6iE+dNzraQkYPVB0mOpqeR0SRYUxM9HeaTUORVoLxgtN0lKE3gXlTTQMHDsT48eMxZcqU82nOJhw+fBhff\/018vLy0NjYSDYY9xUtLS3IzMxEYmJivySd7mhoaEB2djZSUlIwfPhwjB07Flu3bkVcnMfb7tSpU7BYLFi2bBlyc3Ov8tX2f\/Q74umeagM8YeyhQ4dgsVgwevRoiMXigNNHVRoF2tr9Rxl6Pbv3g1IVUb041MJL7dqpdAZVb6F2vxRhRUdbmAuHWCwmnRComhKl9qOuldoEBHpPSnVkNBpJHztqVxoVoIufit6ojQRAp0AD9SRRdTsq4gYAXcSFcQjeiIeCV\/01ZswYzJgxA4MHD4bL5fIZ4lZVVUXW0QKhpaUFWVlZGDBgABISEi76PFcCjY2NOHHiBIYOHcpv+pqamnDfffchKioKOTk5qKqqwtatWzFw4EByPQjBg35HPF54F4dTp04hJSUFSUlJPCkFUrUp9ew\/PLUQUkRA7XQpFRm1Q6SO0aMS2AsnRayUjNxsNpMEcrFSaomEfa0xMfR8GErFRUUlRqOBPC+VDnO5qFqJiLwmapPhGeXOjkoC+YtRbgiBRhLLuAsbKo2Blor3hEgkgsFgwLBhw3waMouLi7F3714cPXoUJSUlJDH2RHNzM7KysjBw4EDEx8f36XquNJqamnD8+HEMGTKEHx\/d2tqKRYsWwWAw4H\/\/+x+kUilEIhEmTJiAl19++ZJEb3\/7298wcuRIqFQqqFQqTJw4EV9++SV\/nOM4rFq1ChaLBQqFAjNmzOg1ubSrqwu\/+MUv+HTp\/PnzUV5e3vOtrgr6JfG4XC6cOnUKADBy5Mhe6ZpAY68lEWwiuFi1CT0Ogb27phZlqqZC\/ZCpRZf6fJTEmNpxGwwG8jPSRX52+ojaBOh0OvL7oQQigTYXVA2MEjRYLGZyl0\/dI7GxMeTfjdqEeNyw2dccqOfE2eYhf6lcjAg13WdEwduQOWjQIEycOBGTJ08+P623Ad988w2++eYb5Ofno6mpibkZa2pqwrFjxzBo0CA+TdVf0dzcjGPHjiE5OZkf6261WnHrrbdCqVRi48aNQfX7XAxiYmLwhz\/8AUePHsXRo0dxww03YMGCBTy5vP7663jrrbfwzjvv4MiRIzCZTJg5c6ZPjXrlypXYuHEj1q5diwMHDsBqtWLu3LkX3Y94KdHviKezsxPffvstbDYbxGKx351goLHXLtGlJwKqF4caMU2lV6hCP9XgSF0L7YRAKZXYZE3tqL+LlJoiSZOJ3sVTtSqAHS7GxESTizxloBrIZ42SSgdKpVFEGhMTQ0bV7e3sexoAmqo9v4eoPkY7gaBQKBAbG4vU1FTMmDEDAwcORFdXF06cOIG9e\/fi1KlTqKmp4QnXSzpJSUmIjY29pNdyqdHS0sJfa3S0JzJvb2\/HbbfdBolEgvT0dDId\/l0xb9483HzzzRg8eDAGDx6M3\/\/+94iIiMChQ4fAcRxWr16N5557DrfeeitGjBiBDz\/8EB0dHfjkk0\/463\/\/\/ffx5ptv4qabbsKYMWPw73\/\/G9nZ2dixY8dlu+5g0e+Ih+M4qNVqXHfddcxenkDOBVYHe9Gm1Dl0g6T\/hU4gEDB3o55ivv9zelyw2eekduV0rxH7s1NRFPW9UPY83p0gC1RqiooQKOmxSqUiPyfVh0PVwABa+q3X0yk8Sg0XaGdMRTSB3LApUrLo4\/iNmsYYuL5zsfB6pI0YMQLTp0\/H6NGjIZPJUFBQgD179uDQoUO8kCAmJuayXcelgLf+NHDgQJ4gbTYb7rjjDrhcLnzxxRdke8Glhsvlwtq1a9He3o6JEyeiqKgI1dXVmDVrFv8cmUyG6dOn45tvvgHgGcXgcDh8nmOxWDBixAj+OVcT\/Y54wsLCMHToUAiFQqZ7QYeVjnjq29iLHWsHLhAImBGISqViRhkmk4mZfrFYzMzdNXXMZDIxFU4qlZIsulMLGN1xzzxEpogodVmgdBkV1QmF7NqQxUIPLKOiTIoAwsLCyO+IglarJQmPSm+o1ZEkkQbqqaFeOyhmOP\/fUZeReLpDIBBArVYjKSkJkyZNwrBhw2C1WqFQKFBQUICDBw\/i3LlzaGlpuWRGnZcKbW1tvOjBmwrs6urCXXfdhba2NmzZsiWgs\/mlQnZ2NiIiIiCTyfDzn\/8cGzduxLBhw\/iNZ89MhNFo5I9VV1dDKpXyVj7+nnM10e+IpztYEU8gVVtZbaHfxynLeo1Gw1xgqbQPVcyndtfejue+npNSThmNRmaqzTO\/h4qU2AsuRR6UgieQ99jFRkORkWrmMU8fE\/u8FAEEioba2tgprUBkSFkqBYoaqbpSeHg4Gamb1BeK9xrjldule9HQ0IDc3FwMGzYMkydPxvTp05GYmAibzYasrCzs27cPOTk5qK2tveq1B28ja0JCAi96sNvtuPfee1FbW4tt27YFVC5eSiQnJ+P48eM4dOgQHnroIdx33304ffo0f7xnloLjuID9VsE850qg3xFP9y+FFfFQs3iEIgFKqvzP4TGbTcybm0rtUOMJKDdrSqlEHaPCeKpwbjCwU0FmMzsyCzRUjuovsdvZfwuFgh1dmM1msh5FRUNUA2igPhyqhvNdxjcEIllKTRTotVTtKJAyMEJ0YYPjr4fncqK+vp6XIXvJVSKRwGQyISUlBdOnT0dKSgrEYjHOnj2LPXv24NixYygvLyfvjcsBr09cXFwcr0pzOBz4yU9+gpKSEmzfvj3gxuRSQyqVYtCgQUhLS8Orr76KUaNG4U9\/+hN\/n\/a8H2tra\/koyJs16Zkd6f6cq4l+RzyAby+P34iHULWpDeFwOP0vsFSUYTSyFx2JhJ3qoHpCqJ0FdexiXQKoWoyOGG1MkRJA1z0ogQS1oBoM9KhlKhpyONjEEqiIT6vDaBk+JcOmUkYqlZI0gw3U7V5RwSYttTpA\/cd24TMF08NzqVBXV4eTJ09i2LBhvAy5J7yuAMnJyZg8eTImTJiAqKgoVFVV4cCBAzh06BAKCgrQ2tp6WVNy7e3tPuakgCe9\/NOf\/hS5ubnIyMgIeF9dCXAch66uLiQmJsJkMiEjI4M\/ZrfbsXfvXkyaNAkAMHbsWEgkEp\/nVFVV4dSpU\/xzrib6rWUOwB4GR\/XxiMLY4ToVnVC9MVRNhYoGqF0bdYw6p9vN\/gFSC1hEBDvC0un0zIVer9eTCy6VhqM+BxXVmc1mkiCam9l\/D4WC\/TkDiRIoQrNYLMjLy2Mep76HmJgYnD59hnk8UBRGRVpU9AcA1voLG4rLKS7oDi\/pjBgxIujdtUAgQHh4OMLDw5GQkOBj1FlSUgKxWMxb+Gg0mktmTeMdrW2xWHhzUpfLhYcffhjHjh3Dnj17rkqE8Oyzz2LOnDmIjY1FW1sb1q5diz179mDbtm0QCARYuXIlXnnlFSQlJSEpKQmvvPIKwsLCsGzZMgCeTd\/999+PJ598ElqtFhqNBk899RRSUlJw0003XfHP0xP9mnhYRqE2K3tBc4nYyi0qkqB2\/NRNThuOshdI6hjL2w2g5eC05Qr7s1OkZDQamMQTSEpNRS1UxOfxxWMTDxWBUe7bFov5ov9egXL7VJ2Fqkl5Xks3h1LEQ9XClOGRaK65QIhXosZTW1uL7OzsPpGOP\/Q06vQamubm5vKzc7xEdLFOATabDZmZmTAajfzAObfbjcceewzffPMNdu\/eHbD+drlQU1ODe+65B1VVVYiMjMTIkSOxbds2zJw5EwDwzDPPwGazYcWKFWhqasL48eOxfft2n1T822+\/DbFYjNtvvx02mw033ngj1qxZ0y\/85Po18fgTF9isdjLslqnYCxpVN6B2nZQ1PyWhpRZP6hi10FDRB0VYXV1UzpxNSlRNKZArNdXDQ418oCLTQOMBqMgjEAFQogRq+qxCoSDHW4hE7O9XJBIFUNLRKSYqghscOwJct9vsckc8NTU1vNMIVW\/sK4RCIbRaLbRaLZKTk\/nZORUVFThz5gxUKhVPQsHOGLLZbDh69Cj0ej0\/WtvtduOpp57Crl27sHv37qva4Pr++++TxwUCAVatWoVVq1YxnyOXy\/GXv\/wFf\/nLXy7x1X139EviEQgE4DgOIpGo144uUA9Paxd7UaLkrqxdp1AoZBIB5WZNLZBU+kqtVjMXbJlMRi5wF9vf09l5sb5mauaxQCm6yko2YQdqLKWIh4oehEL2ghToeqnIIiYmGvn5bAIO9NqSklLmcSoSFwqF5MYnRjcI7eeJ57u6FgSCl3RGjhxJ+hp+V\/ScndPV1eV3nDU1Y6izsxOZmZnQ6XRITk7mSefXv\/41tmzZgt27d\/d709LvO\/qluMALfxFPINeCmmb2vHtWRED1b5hMpouSWVOFfqqwTtnaWCxmZrSn0USRaSQqwqIiwYuddEp9N0KhkHTCpjYIVAQWaEYPFbkGckqgXhtI7UQJMAIVrSnit1gs5N9HLb\/wmS61a0F3VFdXIycn57KTjj\/IZDJER0dj9OjRmDFjBoYMGQKO45CTk4M9e\/bgxIkTqKys5NPQXV1dyMzMRFRUFIYMGcKTzqpVq7Bu3Trs2LEDgwYNuqKf4YeIfk08\/mo8HVY64imtKfD7uFLJbrykZLQ6HVsJR+X9KQWdUskmF6o57WJHJVD9PYFcEqj0HU0QlHjg4lV0gRZiigwpQUegeTeUsoxq8Aw03yeQ7Qo1DDCQhY\/YeWHzc7mk1FVVVTh9+vRVIZ2eEIlE0Ov1GDp0KKZOnYq0tDRERESgtLQU+\/btw+HDh3Hw4EGEh4dj6NChfGbl1Vdfxccff4wdO3YgOTk58BuF8J3Rb1NtgH85dWsTWzwgU4hRWe0\/bWE0GplpMY0mCoX+e07JyIUqalILCtX7QkmQqa57lYr9OmpsdaDiNRUpUaCcB\/R6topOKBRedMpLq41Cgf99BwB6EafSe0ajkYykKBKNjragtJQdhVNNkxEREWTqUK\/X49w59gfubLpAwpdDSl1ZWYnc3FyfEdD9BQKBgHd2HjhwINra2nDs2DEIhUI0NDRg+fLlkMvlCA8Px7p167Br1y4MHz488IlDuCTo1xFPTzl1R0cHTmadYj5fbWSrs6gmUIpAqAWUMpt0OtkLCrXY0N3b7BoFJaulivXULlWn05EquoslCOp6AjWAUuRBjX3wOGyzNy1U9BY4DcdWwwWKAihHg0CD5agaulAoQkPFhb\/dpU61VVRUIDc3F6NHj+53pNMTDocDp06dglqtxpQpUzBjxgzMnTsXpaWl+PDDD+FwOPDaa69h7dq1pCAmhEuHfk083VNtjY2NOHjwIEQCYuga8du6WPtySqJMLWRtbex6C7VDphYxm40alcAmLCo9RaXEqLk2gaTU1OegVEeBG0DZ0RlFWIHIg6rDBDKEpGTjgVJplJKup89WT1Au5QMsg+F0XNgYOdBxyWxpysvLkZeXh9GjR1\/xbv6+wuFwIDMzEwqFAiNGjIBQKDxfY6zHyZMnsXv3bmRkZGDAgAF49dVX8d\/\/\/vdqX\/IPAv2SeLwLk1dcUF5ejszMTCQlJSEynP1jbOu6uM5yStpLFewppRi1KNMu2OwdPfV+1HVS0QeVYqJqUaxudC+oBZUi7LAwdjRkNpvJjQBFdhR5BPJ3o2AwGMiokIqKo6LU5DVTwwcBuhY2MNo3bRRljEB+fr6PLQ11X7BQVlaGs2fPYsyYMd8L0snKyoJMJsPIkSMhFArBcRzef\/99vPzyy9i8eTMmTpyI8ePH43e\/+x1OnDiBBx988JK896uvvopx48ZBqVTCYDBg4cKFvRqQly9fDoFA4PNvwoQJPs\/pz8Pcvgv6JfF4IRQKYbfbkZeXh9TUVMTGxsLawk6JQM6OJKhUCtUJz5IvU\/5mCoWCmYYKDw9jEohcLmeG+oH81Cgyo9IH1OJDTQ+lrPoDjZ6m5NBU38p3sdmhCDYmJpqMlqjPEiiSolJplE0TQP9tNJookrS6j7sGgGEjB\/nY0lRWVmL\/\/v349ttvUVRUBKvVGtCWpqysDOfOnUNqamrAaOxqw+l04tixY5BIJBg1ahRPOh9\/\/DGee+45pKenY8qUKb1ed6kMNPfu3YuHH34Yhw4dQkZGBpxOJ2bNmtWrz+xHP\/oRqqqq+H9bt271Od6fh7l9F\/RLcQHguXFyc3PBcRzGjx+P8PBwuFwuso+nw8VWYFFGi6z0jUqlYi7aJpOJuUs2m80oZKgV1OootLf73\/FbLBbm67RaDTMdFBERQTYhUjtjavGyWi\/OlZoSM3iiC\/b1sL4bgBZ6REZGkn5oVGOpVqsje2nq6thRaKA0HLVZoBpLATrCtVgs5D0tRySAC5GYV1zQ3ZamZw+MTCaDXq+HwWBAZGSkD1mXlpaioKAAY8aMuaIOzRcDl8uFY8eOQSQS+ZDOp59+iqeeegqff\/45ZsyYcVmvYdu2bT7\/\/8EHH8BgMCAzMxPTpk3jH5fJZExVrXeY28cff8zb3Pz73\/9GbGwsduzYgdmzZ1++D3CZ0S8jHpvNxk\/aAzx\/HJfLBbfbjYRhRkQxrD+qGkqY52Qpt3Q6HTMaomoclMya2g1STZdUFEFZd1CRgFarJRddKsVEiQcCqbFYCCQeqK9nvyclrgg0LI2SNIeFseswMpmMJEoqkvJ4w7E3BFTdUSAQkNdMuakDgLPNd0\/pT07dswdm8ODBcDqdOHHiBPbt28dPEC0qKkJBQQFSU1O\/N6QjEAgwevRovr65fv16rFy5Ev\/973+vileZd1PUMz25Z88eGAwGDB48GA8++KCPeKa\/D3P7Lui3xKPRaDBmzBj+\/zmOg1AoxI\/uScO7Xz+Eu343DhMWDIAu+kIdoqjqrN\/z6fV6Zg8HRS6UEo5aXKlxANQPl1qIKCWYRMK2c6FSQR6lF5WCvDjPOGoxpsQDEomEXOSpdCn1\/YhEIjI6oOowXq8wFqh6VWBVGptIo6Pp5lBKbQkAzdUX7nepXAxlFC1yEIlEMBgMGD58OD9BVCqV4syZMzh37hzCw8PR1tZ2UXWhKwWXy4Xjx4+D4zgf0klPT8dDDz2ETz75BDfffPMVvy6O4\/DEE09gypQpGDFiBP\/4nDlz8J\/\/\/Ae7du3Cm2++iSNHjuCGG27gv+P+Psztu6Bfptq0Wi2USiWcTieioqJw8OBBaLVaGAwGyGQyjzXHpAG4bfmPIBQKkX+8Aoe3n0HRvz9HS1vv9ITBwDa6pBoHZTI2EVCLK5Urv9hjgRbzvDz\/pBsRwf58RqOBKU\/WaKLIxZqqKVGLE+UeHRMTjaKiYuZxqjZE9T8F6qWhfsQ6nRZFRUXM45QaLlB0QEWUBoMB5eXsiIciPJM2Bu0tF4hHre+blNo7QdSbhh05ciRsNhvft+P1RtPr9QgPD+8Xg8XcbjdOnDgBl8uF1NRUXpixZcsWPPDAA\/jwww8xf\/78q3JtjzzyCE6ePIkDBw74PL506VL+v0eMGIG0tDTEx8djy5YtuPXWW5nn6y\/D3L4L+iXx1NXVQS6XQygUYuzYsbDZbHzIb7PZEBYWhoiICDgcDshkMiSNjkbS6Gjc\/cwxZGefwuefpyM9fRPOnMkFQEcnlHKI2ulS6ipqZ06lvajo42Kta9rb2ZEJ9b2YTCYm8QSSUlO1CUo8oNVqmcQjFovJaIiSqOt0OpJ4KFkyFYV6IjR2qpKSsYvF4gAybDZBA7RqMiluBNCtVHgx5qCFhYUoLS3F2LFj+c1ZX+tCVwpe0nE4HD6kk5GRgR\/\/+Mf417\/+hdtuu+2KXxcA\/OIXv8CmTZuwb98+xMTEkM81m82Ij49Hfr5nkGX3YW7do57a2tp+MVPnu6Bfptoef\/xxJCUl4dFHH8XOnTshEAjwpz\/9Cbt378bw4cMRExPDq3KOHj2K0tJSPpWWkjICL7zwHI4ePYysrCN48cXnERcXy3wvqv+F2lVShWwqr095lFGvo5RpVNqLWjiphZFyQggkpaYK6pR4gLKACVQbokQS1CIeSJhB\/Z1jY2PIWlcgc1Dq81DjHaRSKUl4psh4n\/9n1URZKCgo6EU6XgRbF6I+26WE2+1GdnY2urq6kJqayqed9+zZg7vuugvvvvsu7rjjjityLd3BcRweeeQRbNiwAbt27QrKdLShoQFlZWX876u\/D3P7LuiXEc9HH32EPXv2YN26dfjpT38Kp9MJkUiEZ599FhqNBnK5HPHx8ejs7ERdXR1qampw9uxZqFQqGAwGGI1GKBQKJCcPxjPPPA0A+M1vnkN6+hf4\/PN0ZGZm8VGC1cqWu1LmmSyZtcf7zP+iIBKJmGmdQHJpegooe\/dLkRL1+ajBeBoN25om0OAySiFGRW5arZZUnlHRA8BexKOjLcw0JUBvPrRaDQoL2Wk4apOh0+lQXMwWw1Ay7JiYGKb6EQAixFo04UKqLdiIh+M4FBQUoKKigvc5o+CtCxkMBnAch5aWFtTV1eHcuXM4deoUNBoNn5K72Jk5FNxuN06dOoWOjg5+kQaAAwcOYOnSpVi9ejXuueeeq5KWevjhh\/HJJ58gPT0dSqWS\/01ERkZCoVDAarVi1apVWLx4McxmM4qLi\/Hss89Cp9Nh0aJF\/HP78zC374J+STxisRg33XQThg0bhqNHj8LhcGDChAn44x\/\/iN\/85jeYM2cOFi5ciJtuugmxsbGIjY2F3W5HbW0tamtrce7cOURERMBoNMJgMCA8PBwDBgzA448\/hscffwzl5eVIT\/8C6embmAuHQCAgZdasnXBUVBRzQTebTcy8vdlsYi6e1IiFQKMSqE5\/KvqgUlfUImIw6JnEI5VKyetpa2OnIcPCqGF1tJdaWxubfAPVYSjyoNpehEIh2egXyEmjqopNpDqdhiQeQacc8CGewBFPd9IZO3ZsQNLp9Z7n60JqtRpJSUlob29HXV0dqqqqkJubyzdSXqq6kNeB2mq1Ii0tjTdqPXToEJYsWYI\/\/OEPuP\/++69aLeRvf\/sbAPSSbX\/wwQdYvnw5RCIRsrOz8dFHH6G5uRlmsxnXX389Pvvss+\/NMLfvgn5JPIDnxrrlllswevRo\/P3vf4dMJoPb7cahQ4ewfv16PPvss3jggQcwe\/ZsLFy4ELNnz0ZMTAxiYmLgcDj4SKigoADh4eF8JBQeHo6YmBg8\/PBDePjhh1BdXYPNmzdj48Z0HDjwNZ8iMJlMzAjEZDIynQJ0Oh2TeHQ6HZN4dDodk3iMRgOTeCwWM7MuEhnJJkiA9j27WCk1ZcETHW0hxQMUeVDO0gYDu28o0HkpZ2mPs0Az8zhV5zMajWQES32HanUkWSejPOkAwFrnu2kIFPFwHIdz586hsrISaWlppEIwWPQcY11XV9erLqTX66FWq\/tcF+I4DqdPn0Zra6sP6WRmZuLWW2\/FSy+9hBUrVlzVAnygZlyFQoGvvvoq4Hn68zC374J+SzwCgQCbNm1CTEwMfwMJhUJMmjQJkyZNwhtvvIGsrCysW7cOL7\/8Mn72s5\/hpptuwoIFC3DzzTfDbDbDYvHUBerq6lBbW4vi4mIoFAo+PaBUKmEyGfHAA\/fjgQfuR0NDIzZv3oL09E38bs0f6HEIbBsR6gdNHaOUd1FRGuZibjabmYVzlUpJpnOo4jWVvhMI2IsIJR5QKBQkEVJpQYrswsLCSBsiijwsFgtJPFR9MNDiTQkaLBYLKWWnotFwRQSaanwjR4p4OI5Dfn4+qqurLxnp9IRUKkV0dDSio6PhcrnQ0NCAuro6nDx5EoBn06XX66HVagPaBHEchzNnzqCpqQlpaWl89H3ixAksWLAAzz77LB577LHvverrWke\/JR4AiI1liwKEQiHS0tKQlpaGV155BdnZ2Vi3bh3eeustrFixAjfeeCPmz5+PuXPnwmQywWw2w+Vyob6+HjU1NTh69CikUikfCalUKmi1Gtx33z2477570Nraiq1bt+Hzz9OxY8dOH6UatUumaiPUj4Ha9VF9OlTzIyUxNpstaG3N83ss0E6fSpdRkQmVXrJYLCggZhpQaUHqu4uOtpDTQanPSQksALr5NtCsHOq1gUZ0U9ecHJ\/iM+4aAKIYxMNxHM6ePYuamhqkpaWR6cxLhe9SF+I4Drm5uWhsbERaWhp\/P506dQrz5s3DE088gaeffjpEOt8D9GviCRZCoRCjRo3CqFGj8Nvf\/hZnzpzBunXr8N577+HRRx\/FtGnTsHDhQsybN48nGu\/Oq7a2FllZWRCLxfwPQq1WQ6VS4Y47bscdd9yO9vZ2fPXVdqSnb8K2bdtJmXVXF3sHTamcqNdRO1wqpKcIi3JQMJlMzMVNLpeT\/TRUZEIptbRaDZN45HIZGQ1R8vVAnmKUOwBlaROoz4ka6BcVRfusBbLSoWpHMdpB6OhBPP4iHo7jkJeXh7q6uitGOj3Rl7pQWFgY8vPzUV9f70M6Z86cwbx58\/DQQw\/hueeeC5HO9wTXBPF0h0AgwLBhw\/Cb3\/wGL7zwAs6dO4d169bho48+wuOPP45JkyZh4cKFmD9\/PkwmEwwGA9xuNxobG1FTU4MTJ05AIBDwBKVWqxEeHo5bb12EW29dhM7OTmRk7IRSGYGvvz7YK+1EuURTkmjqGHVOqveHkrRSKQ26GTOaSRAemxf2Tv5ivd+io2PIaIgiQuq8er2erGVR0ZvZTHulUYKGyEgVSTzU+wYSUkQpTOjAhRSgRCbq5VrgjRy8i3ig0Q1XClRdyOu3NnToUP7ezc\/Px9y5c7F8+XK89NJLIdL5HqFf9vFcKggEAiQlJeHXv\/41Dh8+jPz8fMyfPx\/r1q1DcnIyZs2ahXfeeQcVFRXQarUYPnw4pk2bxttaZGdnY9++fTh9+jTq6+vhdrvBcRy02ig8\/\/yzKC4+h40b12P58nt57zZKYUZJoqlCNHXOhgb2osuauArQURRFSpQnmlarJaM6KmqhSJJ6z0Cmo3Y7+3OazbQ7NBW9BfJKoyTlgVypKTIM5IYtdvrWu3p6tHlrJA0NDf2KdHrCWxcaNWoU33ip1WrxzTffIC4uDgsWLMC8efOwaNEivPrqq1elcTWEi8cP5q8lEAiQkJCAJ598EgcOHEBxcTGWLl2KLVu2YMSIEbj++uuxevVqlJSUQKPRYOjQoZg2bRpGjRoFkUiE06dPY8+ePfjmm28gl8uRkpIChUKBWbNuwl\/\/+hcUFuZj69YvsHTpEr9us5RZp0ajYRbslUolcwH09P6wFzhq8aPUbhcrpaa8yeRyOUmglNCBek+LxUJeb0tLM\/MYJRn2yKGpNBw1XE9Jkgc1LVYkEpHvG0jm3Nnsm3rtPnnUqwbz1kj6K+l0R2FhIaqrq3Hddddh1KhRWLBgAVavXo3GxkZYrVb83\/\/9H+bOnYv33nuPFL2E0L\/wgyGe7hAIBIiJicGjjz6KPXv2oKysDD\/+8Y+xa9cujB49GlOmTMHrr7+O\/Px8qNVqJCcno7m5GV1dXVCpVOjo6MD+\/ftx8uRJ1NTUwOVyQSQSYfr0aXjrrT8iP\/8Mduz4Cg8\/vIIXSBgMbDNSahfLskwHPDt21qIbFsae+wPQERaV2qPqW9SiGBWlJutR1dUXJz3W6wNNLL04Z2mLhR46R9WVApmDBnrtxc5aEQqFaKz0FWF4xyF4Sae5udmnRtKfUVhYiLKyMowdO5ZX29XW1uLll19GamoqP0X0+uuvx9q1awNKmEPoP\/hBEk93CAQCmEwmPPTQQ8jIyEBVVRUeeeQRHD58GOPHj8eECRNw991348c\/\/jGcTifGjRuHyZMn8wXZc+fOYc+ePThx4gSqqqrgdDohFAoxceIEvP76q8jNPYV9+3bhzjuXYuDAAX6vgZr0SYkA9Hr2OATKWVutjiTlvFTqikrfUWMLoqOjmceUSuVFT1el7HA0Gg35Oan6mF7P3igA9HcU2ByUnR6lNigAnf4bGDMEji7flKXGEME3WzY3N2Ps2LHfC9IpLi7mbXu8G5rq6mrcfPPNmDp1Kv7+979DKBRi8ODBePrpp7F7926y7aAvCGZ6KMdxWLVqFSwWCxQKBWbMmIGcnByf51yr00MvBX7wxNMdAoEAOp0O999\/P7Zu3YrKykrExMRg69atsFgs+M1vfoNVq1bh5MmTiIiIwKBBgzBp0iSMHz8eERERKC4u5kcLV1ZW8tHI2LFj8eSTj+PkyWM4ePAAfvWrZzB06BD+faVStvqMkm5TSiSKlEwmttdaoKbTi23ypBa7yEg28QJ0ypBSygWq4VCihPBw9ncrFAovOpUWyFg0EClQ6cpE05Bej0UZI3Dq1Cm+2fL7QDolJSUoKipCamoqTya1tbWYO3cuxo4di\/fff\/+ydu4HMz309ddfx1tvvYV33nkHR44cgclkwsyZM302Ztfq9NBLgWtO1Xap0NXVhZ\/97GcoKCjAqVOnYDAYsHnzZmzYsAEzZ86EwWDAggULsHDhQowdOxYDBw7EwIED0d7ejtraWpSWluL06dPQaDS8TFsqlWLkyBSMHJmCF154Dnl5Z\/H55+k4deoU8zqo1BaVKqJ2f9RCbzZbmFFCYFdqtr0M9TmioqKYdQ3PMDX2Lp9SylGSZo\/bNZsAqOv12AJRYyHYKbpAox+oplSlUkmq4aIUZvT8C3Q4WtDWJsbYsWMvi1\/apUZZWRkKCwuRmprK\/\/0aGhowf\/58DB06FB999FHAJtPvikDTQzmOw+rVq\/Hcc8\/x4ws+\/PBDGI1GfPLJJ\/jZz352TU8PvRQIRTwMSCQSDB8+HAcPHsSgQYOgUqmwbNkyrFu3DjU1NXj99ddRXV2NefPmYfjw4fjlL3\/JCw8SExMxYcIETJ48GRqNBpWVldi3bx+OHj2KsrIyPjJITh6MX\/7yaXz88YfIzj6G3\/3utxg3Ls1HFkotrFSE4XazFzAqiqJJiR0pCYVCciGnUnSUfDvQZFFKKUftigO5XVPjKwLVcCgC1mrZk2sBWgwR6H2d1t6fVxIGnw7\/\/ozy8nKcO3cOY8aM4e+JpqYmLFiwAAkJCfj000\/J3rTLhZ7TQ4uKilBdXe0zGVQmk2H69On8ZNBreXropUCIeBgQiUR46aWX\/C4U4eHhuO222\/Dpp5+ipqYGf\/7zn9HS0oLbb78dycnJeOKJJ7Bv3z5IJBIkJCTguuuuw5QpU2AwGFBdXY0DBw7gyJEjKCkp4QvNXhPTPXt2Ii8vB2+88RomT55EyqWpPhKKsCiJMfXDpkjAbDaRxXgqRUcRAEVKcrn8olN\/1CRUgE5pUXWlQL1MgVJdFHkHqh1FiHrfq\/roKDQ3N\/f79E5FRQXOnj2L0aNH85+zpaUFixYtgtFoxP\/+9z9yw3S54G96qDf1azT6ioK6Twa9lqeHXgqEUm3fEQqFAgsWLMCCBQtgt9uxY8cOrF+\/HnfffTeEQiHmzp2LRYsWYdq0aYiLi0NcXBy6urp4J+38\/HwolUreSTssLAzR0dFYseLnWLHi56ipqcUXX3yBzz\/fhP37D\/gs0tQiRaXEWlvZNRyKBAI1Y7IW3PDwcPJ6qJoSlS4zGg3kqAQqRUeNJw8PDycJjR6VbSaJh0qlabVaMloKlGJqqendQ6UzR+Ls2bPo6urip\/jqdLqrsoizUFlZiby8PIwePZpfqNva2rB48WKoVCps2LDhqkVsrOmhQG8LrGAmg14L00MvBUIRzyWEVCrFzTffjPfffx9VVVX45JNPIJVK8eCDD2LAgAH4+c9\/zuePY2NjMXbsWEybNg0xMTFobGzEN998g4MHD6KwsJDvSTAaDXjggfuxeXM6Cgvz8e67dE7bcgAAM8xJREFU72D27FmIjrYwd\/QymYxcOKndPEUC1IJLmUtaLPTgOLoBlB1FUeIKai4SALjdbOltoOul0oaBVGkU6Qd6X6o516i1wNrsez9IZCKMGZeCyZMnY\/z48VCpVCgtLeXTvqWlpaS0+0qguroaubm5GDVqFJ\/Kam9vx5IlSyCRSJCenn7V+o2800N3797tMz3U2+LQM3Kpra3lo6Du00NZz\/khI0Q8lwkSiQQ33XQT\/v73v6OiogLr169HZGQkHn30USQmJuL+++\/HF198AZfLhejoaKSmpmL69OlISEhAa2srDh8+jG+++Qbnzp1DW1vbeccEj4npRx99gD\/\/eTVeeuk3mDv3ll4\/zOhoC7OnQaWi7VooUqIWXGoXR\/mlaTRRJNlRx6h6iclkIhdq6rN4F0AWqKbdQJ5nVDQUSA5MqfAGRQ\/v9ViU3iNDFggEiIiIwIABAzBhwgQ+7VtXV4evv\/4ahw4dQmFhIX+fXSnU1NQgJycHI0eO5P+WNpsNS5cuhdvtxubNmy+LW3YgBJoempiYCJPJ5DMZ1G63Y+\/evfxk0Gt5euilQCjVdgUgEokwY8YMzJgxA6tXr+ZnCv3qV79CfX09Zs+ejQULFmD27Nkwm80wm81wOp2or69HbW0tvv32W8hkMn6y6tmzZ5GUNAizZ8+CQCDoZWKq0bAnY5rNJmZfTCBSoqIoaudMOQuYTCayVkVFQ1TainLtBmiCpUhUpVKRBEAhUCqNUimKRCKatCR69EySslyp5XI5n\/b1zq6qq6tDUVERZDIZb8ypVqsvW1qotrYWp06dwsiRI\/l6W2dnJ5YtW4b29nZs3779kvXl9BWBpocKBAKsXLkSr7zyCpKSkpCUlIRXXnkFYWFhWLZsGf\/ca3V66KVAiHiuMEQiESZPnozJkyfjj3\/8IzIzM31mCs2cORMLFizAnDlzYDKZYDKZeCftkpISFBcXQyKRwOl0oqWlBZGRkb1MTPft24\/\/\/ncdvvzyy15zXajGUoqUAkmpqUmdFPFQ4oFACzXVWGo0mlBQ4H9Kp1IZQfbhUIatFouFfF\/KHNRsNpGfhxr9EB1tQWlpGfO4UqxFT\/oOZuS1RCKBxWKBxWLxmZXjNcv1jijQaDSXrHemrq4O2dnZSElJ4fvN7HY77r33XtTX1yMjI4O8Ly43Ak0PBYBnnnkGNpsNK1asQFNTE8aPH9+LLK\/V6aGXAiHiuYoQCoUYN24cxo0bh1dffRUnT57EunXr8Mc\/\/hErVqzADTfcgAULFmDu3Ln44IMPkJOTg9dffx0ikQi1tbU4duyYz3yTqKgoyOVyzJo1E7NmzYTD4cDu3XuRnp6OzZu3oL6+ARIJJaVWM4+ZzWamQ3QgKTVVT6HmFwVaqCk7HGqjHhkZSRIEJbCgiBsAamrYaThKKAEAdXVsabheryeJJ0KsQxN8NxnBjLzuju73ktvtRktLC2pra5GbmwuHw+EjTrhYWbPX5mbEiBF8PczhcODHP\/4xysrKsHPnzoCpzsuNYNKNAoEAq1atwqpVq5jPuVanh14KhIinn0AoFGL06NEYPXo0Xn75ZZw+fRrr1q3Du+++iyeeeAICgQCPPPIIRCIRP7Fx6NChaGpqQk1NDT\/N0TvOISoqChKJBLNm3YRZs27Cn\/+8Gvv3H8D+\/Qdw7lyBX0mnTMYmJY0mCqzJBNHRFpSVsa1AqMWYarakUi1qdSSZFqT6cEwmE2nESaXhKFeCiIgIctoplUqTyWRkWjFQgb2jsXfakZVqCwZCoRBRUVGIiorC4MGDYbVaUVtbi5KSEuTk5CAqKopPyQXrhtDQ0ICTJ09i2LBhfIHd6XTipz\/9Kc6ePYvdu3cHlLmHcG0gRDz9EAKBAMOHD8fgwYNRXFyM+vp63H777di5cyfefPNNTJ48mZ8pZDQaodVqeRKqra1FTk4OXC4Xv3vVarXn60zTMWPGdDz33K9x6NBhfP75Jmza9AXKyjw76Yt1pdZqdUziCeQ8QE3TpFISZrOZHA9NpQWphTLQkLbOTrZgITo6upenV3dQdbCYGHrmENWHo5CHo6m6N9EGk2oLBgKBAEqlEkqlEgMHDoTNZkNtbS1qamqQl5fnM7CNZRTb2NiIEydOYMiQIXwjssvlwooVK3D8+HHs2bMnoCIwhGsHIeLpx3juuedw7NgxHDlyBBaLR6lWXFyM9evX47\/\/\/S+eeuopTJgwge8jio6OhkajQXJyMlpaWlBTU4Pc3Fw4nU7odDqepEQiESZNmohJkybi9ddfRWZmJjZuTEdW1jHmtdCu1Gwll9lsJmsiVIqOUqVRNQCZTEY26VEEazDoSeKhiDJQgyflskBNYAVAmp0mx6XAXdM7PXSpiKcnFAoF4uPjER8f32tgm1wu50koMjISAoEAzc3NOH78OJKTk2GxeNwX3G43Hn30URw6dAi7d+8mXTFCuPYQIp5+jGeeeQbPPfccv8gKBAIkJibiqaeewpNPPony8nJs2LABGzZswK9\/\/WuMHTuWJ6GEhASo1WoMHjwYra2tqK2t5RsJ9Xo9n6sXiz0+XmPHjgUAnDyZjfT0TUhP34QzZ3L5a7lYV2qqJhJoAijlxEw1U1osFhQV+Vf1ASCJRafTgghaSHdhyuzVYw7KTqUFauikCDpWPwg2P9nBqD7WeC4G3oFt0dHRPuPkjx07BqFQiMjISDQ0NGDw4MG8Q7nb7caTTz6JPXv2YPfu3fzokBB+OLhqfTzvvvsuEhMTIZfLMXbsWOzfv\/9qXUq\/hU6nY+7sBQIBYmNj8dhjj\/Ezhe677z7s3LkTo0ePxtSpU\/HGG28gPz8fKpUKSUlJmDx5Mq677jqEh4ejsLAQe\/fuxfHjx32ctL0GpkePHkZW1hG8+OLzGDkyhdytU7021IJKzRoCLr6x1DsNlgVKliwQsH8Ser2OtOGhIrTY2BgyXUZFYRqNhlTaaRT+o4XLFfGw4BUnjBgxAtOnT8eAAQNQX18PoVCI\/Px83HPPPfjXv\/6Fp59+Glu3bsWOHTuQkJBwRa8xhP6Bq0I8n332GVauXMmnkqZOnYo5c+agtJRtfxICGwKBAGazGStWrMCOHTtQWVmJFStW4ODBg7juuuswYcIEvPLKKzhz5gwiIiIwcOBAfpyDt5t97969yMrKQkVFBb+oJycPxjPPPI2DBw9g587tfk1MAbq\/h1pQlUr2jtxkMpE1ESrlRdWjDAYDKTzo6KAkzeyZQgAdoQUyB6U+T6DxDmJn7yZLsVQElYZuZr2csFqtOHfuHJKSkjBjxgyMGDECWq0Wb7zxBt577z0kJiZix44dId+yHyiuCvG89dZbuP\/++\/HAAw9g6NChWL16NWJjY3n9fAgXD2\/vxQMPPIAvv\/wS1dXVePLJJ3Hy5ElMmTIFY8eOxUsvvYSTJ08iLCyM72afNGkSNBoNysvLsW\/fPmRmZqKsrIzfxScmJvqYmL7++h8wdmwqxGIx2QBK1SYolVegQnNFBVuVRkUWgWb\/UM2hgcZOU3LnQF5j1OcRCukmzq6W3sc1hsufZmOhra0NWVlZSEhIQHx8PH9P6nQ62O12bN68GfPnz8fHH3+MmJgY7Nu376pdawhXB1eceOx2OzIzM33swgFg1qxZIbvwSwyBQACNRoPly5dj06ZNqKmpwQsvvIBz587hxhtvxKhRo\/D888\/j6NGjkMvlSEhIwPjx4zF58mTodDpUV1dj\/\/79OHLkCEpLS\/k0k8ViwaxZN+G3v30RR48exptvvo4ZM6b7rbtQvTZUaoqKhgwGAxmZUGIGStEmkUjINBzV3xFoVDbVG2Q0GskoTCRi17M84657v\/a7SKm\/C6xWKzIzMxEXF8dbzXAchzfeeAP\/+Mc\/kJGRgZtvvhlPPfUUDhw4gIqKCowfP\/6SXsO+ffswb948WCwWCAQCfP755z7Hly9fDoFA4PNvwoQJPs8JTQ+9vLji4oL6+nq4XC7SUjyEy4PIyEjcdddduOuuu2C1WvHll19i\/fr1mDt3LqKiojB\/\/nwsXLgQ1113Ha9a8jpp19TU4OzZs1CpVOA4Dp2dnRg3bhzCw8ORlDQIDzxwPxoaGrF58xZ8\/nk69uzZi7AwBVmboNwOKMGCyWQka06UlxrVGxQdbUFxcQnzOEUOBoOBrElR6Uij0Ugep2xrEi2DYW\/rTWpXur4DeL6fzMxMxMbGYsAAz5h3juPwpz\/9CX\/+85+RkZGBkSNH+rzmchhmtre3Y9SoUfjxj3+MxYsX+33Oj370I3zwwQf8\/\/esRa5cuRJffPEF1q5dC61WiyeffBJz585FZmZmyHngEuCqqdouxlI8hEuHiIgILFmyBEuWLEFHRwe2b9+O9evX47bbbkNYWBjmzZuHhQsXYtKkSYiNjUVsbCxaW1tx8uRJ2O12uN1uZGdn8+McwsPDeRPT++67By0tLdixYyf+97\/1yMjY0asoH8g92mZjRzRUyisyUkXWWqgoS6fTkcRDkUMgM8u6OnYKj4ruPK9lK\/8SzUMBP4LDqCucauvo6EBmZiYsFosP6bz77rt44403sG3bNl45ebkxZ84czJkzh3yOTCZjiltC00MvP654qk2n00EkEpGW4iFcWYSFhWHhwoX4+OOPUVVVhX\/84x+w2+24++67kZSUhF\/84hf44osvcMstt+CDDz7AlClTMH36dMTFxaG5uRmHDh3CwYMHUVBQAKvVCo7jEBkZicWLb8Xatf9BSUkBPvroAyxevIgnDbPZTJIAFQ1RtSFvnwgL1CJOpeEUCgXpaEBBp9PxYy78gVLKyeVyMpIyKP1LkTWmKxfx2Gw2ZGZmwmQyYdCgQRAIBOA4Du+\/\/z5+97vfYfPmzZc8nfZd4W1YHTx4MB588EGfCDo0PfTy44oTj1QqxdixY33swgEgIyMjZBfeDyCXy3HLLbfg\/\/7v\/1BVVYV\/\/\/vfcDqdWL58ORoaGiCRSLB792643W5YLBaMGTOGH+dgtVp9xjm0traC4zhERERg8eJb8dFHa1BSUoDPPvsEt912K1MqLhKJAkRD7IWaaiwVi8XkIu5ysZtkY2KiyRoPRSyBVGlUj1R0dDTZvKsQ+P+8VyrVZrPZcPToUej1eiQlJfGk89FHH+H5559Heno6Jk+efEWuJVjMmTMH\/\/nPf7Br1y68+eabOHLkCG644QZ+IxSaHnr5cVVSbU888QTuuecepKWlYeLEifjHP\/6B0tJS\/PznP78alxMCAxKJBEOHDsWRI0dwyy234Kc\/\/Sk2bdqEX\/ziF7Barbj55puxcOFC3Hjjjfw4B5fLxY9zOHr0KKRSKW\/dExkZCblcjrlzb8HcubfgpZde5E1Mt2zZykc5gZyYqXHgVGNpTEw0mUqjhrQFMq6kPNpUKpoEWlvZxBPIpdnV7r9p9Uo0j3Z2diIzMxM6nQ7Jyck86Xz66ad4+umnkZ6e3svhuT9g6dKl\/H+PGDECaWlpiI+Px5YtW3DrrbcyXxcqB1w6XBXiWbp0KRoaGvDb3\/4WVVVVGDFiBLZu3Yr4+PircTkhEHj11VcxdepUvPvuuxCJRJg1axb+9Kc\/4eDBg1i\/fj2eeeYZNDQ04Ec\/+hE\/U8hoNMJoNMLlcqGxsRE1NTU+TtpGoxFqtRpSqRSzZ8\/E7Nkz4XK5sH\/\/AaSnb0JBQSGTeIRCIak8o6IhrVZLEg+1m6UaYQONyqYSC4Fea7ez05EA0FLt\/\/jljni8pKPRaDBkyBB+QV6\/fj1WrlyJ\/\/3vf7jxxhsv6zVcKpjNZsTHxyM\/Px+A7\/TQ7lFPbW1tKCtziXDVnAtWrFiB4uJidHV1ITMzE9OmTbvk77Fq1apessnuBUWO47Bq1SpYLBYoFArMmDEDOTk5l\/w6vs94++238fe\/\/91HySMSiTBlyhS8\/fbbKCwsxM6dO5GYmIiXXnoJCQkJWLZsGT777DO0t7dDr9fznezDhg2D2+3GiRMnsG\/fPpw5cwYNDQ1wu928ienbb7+Jzz9fj4yMbXj44RU+I4cBTzRENaVS5EE5PEdG0mam1HtSE18BWihhNpvJ11ITTfVRZrQ1+W+y1RguH\/F0dXUhKysLkZGRGDp0KE866enpeOihh\/DJJ58ELO73JzQ0NKCsrIz3iwtND738uOZHXw8fPhxVVVX8v+zsbP7Y66+\/jrfeegvvvPMOjhw5ApPJhJkzZwbwJfthQSqVkukFoVCI6667Dq+\/\/jry8vJw4MABDB8+HG+88QYSEhKwZMkS\/Pvf\/0ZLSwu0Wi2GDRuGadOmISUlBQBw6tQp7Nu3Dzk5Oaivr4fb7YZQKOQNTHNzT2Hv3l14\/PHHMGBAYkDbfErRRtVKAokSKH83arQ3QJuDSqV00oFyNLBEJfh9XCwVQaW9PK4F3j48pVKJ4cOH8\/fGli1b8MADD+Cjjz7C\/PnzL8t7Bwur1Yrjx4\/j+PHjAICioiIcP34cpaWlsFqteOqpp3Dw4EEUFxdjz549mDdvHnQ6HRYtWgTAd3rozp07cezYMdx9992h6aGXEALuSg5Zv8JYtWoVPv\/8c\/4G7A6O42CxWLBy5Ur88pe\/BODZyRmNRrz22mv42c9+doWv9toCx3HIycnBunXrsHHjRpw5cwYzZszAwoULMXfuXGi1Wr4m0NzcjNraWtTW1sLpdPImpl4n7e7IyTmN9es3ID19E3Jzfd08dTod6TyQkjIC2dmn\/B6bMGECDh06xHxtREQEU0AwdeoU7N9\/wO8xmUwGh8PBJL3U1DGkK3hYmAIdHf6jmkVTfoK2bHWvx3XRKrx\/5HHmOS8WXtIJDw\/HiBEjeHXh9u3bcffdd+Nf\/\/oX7rjjjkv+vn3Fnj17cP311\/d6\/L777sPf\/vY3LFy4EMeOHUNzczPMZjOuv\/56vPzyyz5mpZ2dnXj66afxySef8NND33333ZCh6SXCNU88b7zxBiIjIyGTyTB+\/Hi88sorGDBgAAoLCzFw4EBkZWVhzJgx\/GsWLFgAtVqNDz\/88Cpe+bUFjuNw9uxZrF+\/Hhs2bMCJEycwZcoULFy4EPPmzYPRaORJyOukXVNTA7vdzo9z8MrwuyM3Nw+ffroWGzZsRGFhEUaOTMHJk9mMq6CJaerUydi\/\/2u\/xwwGAxm1XHfdOHz77RG\/x7z3Ggvjxo3DkSP+X2s2m0nnhx\/f9GuUHeld4zENVOKnq6fzoo5Adj3BwOFwIDMzEwqFAikpKTzp7N69G0uXLsW7776Le+65J1R8DyEoXNOptvHjx+Ojjz7CV199hX\/+85+orq7GpEmT0NDQwNcCQg4Klx8CgQDJycl49tlnceTIEeTl5eHmm2\/G2rVrMXjwYPzoRz\/Cu+++i4qKCh8n7XHjxiEsLAwFBQXYs2cPTpw4gaqqKr7eotVqMH36VGzbtgXZ2cfwk5\/8GGlpY\/0ufkqlkoyGqAFvJhPdX0alwwI5ZVOpQaOR9qsTdPmvWcUONPlYHn377bcoLi4mbYYoOBwOZGVlQSaT+ZDO\/v37cccdd+BPf\/pTiHRC6BOu6Xk83QucKSkpmDhxIgYOHIgPP\/yQ92YKOShcWQgEAgwYMABPP\/00nnrqKZSVlfEzhX71q18hLS2NnykUHx8PpVKJQYMGwWq1oqamBsXFxcjJyeFTX0OGDOFdowcMGIAHH7wf5eXlSE\/\/Aunpm3Dw4KHzPUdm5OWxa3dUDYey2QGAigpqRg9bDScQCEhz0EBuCB0N\/s1Q9Ra1j+VRXV0damtrce7cOYSHh\/PKwvDw8ID3utPpxLFjxyCRSDBq1CiedA4ePIglS5bgtddew09+8pPQbyaEPuGajnh6Ijw8HCkpKcjPz+fVbSEHhasHgUCAuLg4rFy5Env37kVpaSnuuece7NixA6NGjcK0adPwxz\/+Efn5+QgPD8fAgQMxceJEREZGwmq1Qi6XIzc3F5mZmSgvL+dNOmNiYvDwww9h+\/YvkZ+fiz\/96S1MnDiR2eMjEAhQXs4mAGpRNZlMzBoMQJuDWixm0rWAyoLLZQo0VvmvOXXv4ZHJZIiJiUFqamqvRt+vv\/4a+fn5aGlp8fteLpeLl8F3J52jR49i8eLFePnll\/HQQw+FSCeEPuOajnh6oqurC2fOnMHUqVORmJgIk8mEjIwMvsZjt9uxd+9evPbaa1f5Sn94EAgEsFgsePjhh7FixQrU19dj48aN2LBhA373u99hyJAhWLBgATo6OvDPf\/4TBw8eRGJiImw2G2pra1FZWYnc3Fyo1Wq+tiGXy2EyGfHAA\/cDAH7721XYvHkL0tM3YffuPTxRWSxmsjeISlEZjQYyNUuZpBoMBvJ9KTeEwXEpcNf6JyZWD49EIvFp9PVOC83KyuJ7rAwGA9RqNTiOw7FjxyAQCDB69Gi+vnb8+HEsWLAAzz33HB599NEQ6YRwUbimxQVPPfUU5s2bh7i4ONTW1uJ3v\/sd9u7di+zsbMTHx+O1117Dq6++ig8++ABJSUl45ZVXsGfPHuTl5QVMr4RwZcBxHJqampCens5HP2PGjMH111+PhQsX+qirOjs7eXVcc3MzVCoVb2Las4enpaUFW7duQ3r6JtTU1OLbb79lXkNMTAzTEn\/KlEk4cIDt3xUeHs50tZ48eTK+\/tq\/oAGgR4PPm3wXbKf8R+YvfnIXUmcMYp63J9xuN5qamvjvzptulkgkSEtL49OFp06dws0334zHH38czz77bIh0QrhoXNMRT3l5Oe68807U19dDr9fzklmvQ8IzzzwDm82GFStWoKmpCePHj8f27dtDpNOPIBAIEBUVhbKyMtTU1CAjI4OvC3mtehYsWICFCxdizJgxiIuLQ1xcHF\/bqKmpQX5+PpRKJb+jDw8PR2RkJO68cynuvHMp2tvbsW3bV0hP34SvvsrwiTSkUinpG8dx7MVXp9OSZqccx+4rUqlUpKFplMIMG\/y\/vq\/No0KhEFqtFlqtFoMHD8bRo0fR2dkJl8uFN954A4cPH8aUKVPwzjvvYMWKFSHS6YGPPvoIjz\/+OCorK30UhIsXL0Z4eDg++uijq3h1\/RPXdMQTwrWB0tJSzJw5E+vXr8eIESP4x61WK7Zu3Yr169dj69at0Gq1\/EyhcePG8ekhu93OF9gbGhp8Cuw9Ryx0dnZix46d2LgxHV9+uQ1arZaUQ48ePQrHj5\/we2zAgEQUFhYxX0v1FQ0ZMgS5ubnM195\/\/SqUZPkfePdx9tMX1UDqdZWw2+1ITfVMl83Ozsa7776Lbdu2obGxEbNnz8bixYsxf\/78gM28PxTYbDaYzWb885\/\/xJIlSwB45o5FR0dj27ZtfnuKfuj4QYkLrgQCTT8MxqYnNP3QF3FxccjJyfEhHcDT1Hn77bfjs88+Q01NDd5++200NjZi8eLFGDp0KJ588kns378fQqEQ0dHRpJN2W1sbOI7jTUzff\/8fKC4+h9Wr38J9990Drda\/SSjlsxbI0YAaWKdW0+agdj\/jrgGPa4FSw7YGYsE7X6mrqwupqamQSCQQCASIiIjArl27cNddd+HUqVOYNm0a3nvvPYwZM4YUP\/yQoFAosGzZMp\/Bcv\/5z38QExPTL01S+wNCxHOJ4Z1++M477\/g9HoxNz8qVK7Fx40asXbsWBw4cgNVqxdy5c+Fy+ZfP\/hBAuU4DHk+zRYsW4d\/\/\/jeqqqrw97\/\/HZ2dnVi2bBmSkpLw6KOPYvfu3QA8jZmjRo3C9OnTMXDgQHR0dODIkSO9VF5SqRQ33ng93n33HRQVncPmzel48MH7edVjoBk9lDecSqUi+4qozysQCNBY6V\/wEKWP6HMazO1249SpU+jo6OBJBwBKSkpwyy23YMGCBXjzzTcxZMgQ\/PKXv8Thw4dx+vTpS55u+z5v2h588EFs376dl8d\/8MEH\/IjtEPyAC+GyAQC3ceNG\/v\/dbjdnMpm4P\/zhD\/xjnZ2dXGRkJPf3v\/+d4ziOa25u5iQSCbd27Vr+ORUVFZxQKOS2bdt2xa79WoHdbue++uor7sEHH+QMBgOn1Wq5++67j9uwYQPX2NjItbe3c+3t7VxraytXVFTEHT58mNu8eTO3bds2Lisri6uoqOCsViv\/vPb2dq6trY3LyNjB\/fKXv+ZiYhI4QOz335gxacxjQ4eOYB4DxFxa2njmscTo4dxNkc\/4\/bfi+j\/5XGugf1arlTt06BCXkZHBNTU18Y+fPXuWS0xM5B588EHO5XJdkb\/V1q1bueeee45bv359r98Ox3HcH\/7wB06pVHLr16\/nsrOzuaVLl3Jms5lrbW3ln\/Pzn\/+ci46O5jIyMrisrCzu+uuv50aNGsU5nc7Lfv2pqancK6+8wmVmZnJCoZArLS297O\/5fUWIeC4jev54CgoKOABcVlaWz\/Pmz5\/P3XvvvRzHcdzOnTs5AFxjY6PPc0aOHMn95je\/uezXfC3D4XBwu3bt4lasWMFZLBYuMjKSW7ZsGffZZ59x9fX1PsRSXFzMffvtt9yWLVu4rVu3ckePHuXKysq4tra2Xov33r37uIceepgzm2N8CCI6Oo5JHhMmTCGJJyFhEPPYTeNuYxLP83f8X59I5\/Dhw1xGRoYPCRcUFHBJSUncfffdd0UWbH\/4Pm7a3n33XS4pKYl7+OGHuVmzZl329\/s+I5Rqu4IIxqYnNP3w8kEsFuP666\/HX\/\/6V5SWluKLL76AXq\/H008\/jcTERCxfvhwbN26EzWaDXq\/H8OHDMW3aNL62lJ2djX379uH06dO8kzYADBw4ADff\/CPs2bMTBw8ewK9+9QxGjkwhazhisYh5TCQSkekhvTKGeSzKENwAOI7jcObMGbS0tGDs2LG8Gqu2tha33HILxo0bh3\/961+9\/PGuFoqKilBdXe0zjlomk2H69On8OOqrPbL6rrvuQkVFBf75z3\/iJz\/5yWV\/v+8zQsRzFXAxNj3BPCeE4CESiTB16lSsXr0aRUVFyMjIQHx8PF588UUkJCTgrrvuwn\/\/+1+0t7dDq9Vi6NChmDZtGt\/Bf\/r0aezduxdZWVnIyspCUlISYmJiMHJkCl544TkcPHgAR44cwm9+8zxGjkzp9f6UY0FsbAzpeBAmYIsWNKbAUmqO45Cbm4vGxkYf0qmvr8e8efMwfPhwrFmzJmBd7Uri+7BpU6lUWLx4MSIiIrBw4cLL\/n7fZ4SI5woiGJue7tMPWc8J4dJCKBRi\/PjxeOONN3D27Fns378fQ4cOxWuvvYaEhATcfvvt+M9\/\/oOWlhao1WoMGTIEU6dOhdlsRmNjI0QiEfLz85GdnY2amhpeBDJkSDJ++cuncfDgAWRnH8PLL7+EtLSxAED29wSSKbs6\/I+7BgJPHuU4Dnl5eaivr8fYsWMhl8sBeLzqFixYgAEDBuCTTz7hBQb9Df1901ZVVYW77rrrkjiCX8sIEc8VRHebHi+8Nj3eyYah6YdXF0KhEKmpqXjllVdw+vRpfPvttxg7diz+8pe\/ICEhAbfeeis+\/PBD\/Oc\/\/8GNN94Ik8mE6dOnIy0tDXK5HOfOneOdtKurq\/nIZcCAAXjiiZXYu3cX8vJy8MgjD2HSpIm860J3eMmABda4a4AmHo7jkJ+fj9raWowdO5ZX3bW0tGDhwoUwm83473\/\/SxqbXi30901bY2Mj1q5di127duHhhx++rO91LaD\/xNLXCKxWK86dO8f\/v3f6oUaj4Q0xX3nlFSQlJfE2PWFhYVi2bBkA3+mHWq0WGo0GTz31VGj64VWAQCBASkoKUlJSsGrVKuTl5WH9+vV48803UVJSgunTp+PgwYP84DqVSsU7adfW1qKwsBA5OTnQaDQwGo3Q6\/WQSCSIiYnBQw\/9HA899HNUV9fgiy++wOefb8L+\/QfgcrngdLJl8zq1AW2NbFNSFvFwHIdz586hqqqKHzcBAG1tbVi8eDHUajXWr1\/fb3fqwXgrdt+03X777QAubNpef\/31y3p9qampaGpqwmuvvYbk5OTL+l7XAkLEc4lx9OhRn07lJ554AoBn+uGaNWuCsul5++23IRaLcfvtt\/PTD9esWdNvCr0\/RAgEAgwZMgSjR49GVVUV3nzzTXR2duLTTz\/Fk08+iUmTJmH+\/PlYsGABLBYLlEolBg4ciPb2dtTW1qK0tBSnT5+GRqPhrXukUilMJiMefPABPPjgA6ivb8CWLVvw9dffICsrizcx7Y6kuBSghH2d3Z2pu6OwsBCVlZVIS0vjSae9vR1LliyBVCrF559\/TvYdXQl8nzdtxcXFl\/X81xpCljkhhBAkmpubkZSUhL\/97W+47bbbAHgiidLSUn6m0MGDBzFu3DjeuicuLo6vL3R0dPBGnK2trYiKimJOCe1uYpqRsYMXIyye\/gBajqv8Xp9YIsS64ud71TMKCwtRWlqKtLQ03iLIZrNhyZIlsNvt+PLLL\/uFPyE1snrNmjXgOA4vvfQS3nvvPX7T9te\/\/tXH0SI0svr7gRDxXIPYt28f3njjDWRmZqKqqgobN270UdksX76812jv8ePH49ChQ\/z\/d3V14amnnsKnn37q8wOOiWFLeX8IaGhogFbrf6oox3GorKzkxzns378fI0eOxMKFC7FgwQIMHDiQJwWvk3ZNTQ1aWloQGRnJk1DPyMNqteKrr7YjPX0TtLYUFH7tf1yCzqLC+0cf93msuLgYxcXFGDt2LE8unZ2duPPOO9HS0oKvvvoKkZG0PU8IIVxqhIjnGsSXX36Jr7\/+GqmpqVi8eLFf4qmpqfHxlpJKpdBoLviRPfTQQ\/jiiy+wZs0aaLVaPPnkk2hsbERmZmYo5RcEOI5DbW0tPv\/8c2zYsAG7d+\/GkCFDeBIaMmQIT0JdXV18JNTU1ASlUsmPc\/CmxbywdzqRtfscDm49gyMZeWhvvSA0GJwajTc2P8D\/f0lJCQoLCzF27FioVJ4oyW634+6770ZVVRV27NgR0E8uhBAuB0LEc41DIBD4JZ7m5uZeXlhetLS0QK\/X4+OPP8bSpUsBAJWVlYiNjcXWrVsxe\/bsK3Dl1w44jkNjYyPS09OxYcMG7NixAwMGDODHOQwfPpxXt3mdtGtqatDY2IiIiAifUdXd4bC7cPJAIb7ZcgbffpWHodfF4dn\/8\/y9SktLUVBQgNTUVD6icTgcuO+++1BUVIRdu3YxI7cQQrjcCBHPNQ4W8Xz++eeQSqVQq9WYPn06fv\/738NgMAAAdu3ahRtvvBGNjY0+O+JRo0Zh4cKFeOmll670x7im0NzcjC+++AIbNmzAV199hejoaJ6ERo8ezZOQw+HwGeegUCj4SCgiwtcM1OVyo6GqFYYYNcrLy\/mBeWq1GoBnBPcDDzyAnJwc7N69m\/9bhxDC1UBI1fYDxJw5c7BkyRLEx8ejqKgIL7zwAm644QZkZmZCJpNd9Q7wax1qtRr33HMP7rnnHrS1tfEzhebMmQOdTod58+Zh0aJFGDduHCwWCywWC5xOJ+rr61FTU4Pi4mLI5XK+JqRSqSASCWGIUaOiogJnz55FamoqTzoulwsrVqzAyZMnsWfPnhDphHDVESKeHyC86TMAGDFiBNLS0hAfH48tW7bg1ltvZb4uZNtz6aFUKrF06VIsXboUHR0d2LZtG9avX49FixYhIiKCV8dNnDgRJpMJJpMJLpcL9fX1qK2tRWZmJiQSCQwGA0QiEUpKSnwiHZfLhUcffRSHDx\/G7t27+UbMEEK4mggRTwgwm82Ij49Hfn4+AN8O8O5RT21tbcg94TIiLCwMt956K2699VZ0dnYiIyMDGzZswB133AGpVMpHQpMnT4bRaITRaITL5UJjYyOKi4vR3NwMiUSCkydPoqOjAzfddBOeeeYZ7NmzB3v27PnBKxJD6D8IWeaEgIaGBpSVlcFsNgMI2fb0B8jlcsybNw8ffPABqqur8eGHH0IgEGD58uUYOHAgVqxYge3bt8PlcmHz5s3429\/+htGjRyMlJQV5eXl44IEHkJCQgE8\/\/ZQfnhZCCP0FIXHBNYjuHeBjxozBW2+9heuvvx4ajQYajQarVq3C4sWLYTabUVxcjGeffRalpaU4c+YM3+vx0EMPYfPmzVizZg3fAd7Q0BCSU19lOJ1O7Nu3D+vWrcPnn3+Ozs5OdHR04PHHH8fTTz8NuVwOt9uN559\/Htu2bUNaWhp27dqFrq4uLFiwAO+++25AL7gQQrjsuEJzf0K4gti9ezcHoNe\/++67j+vo6OBmzZrF6fV6TiKRcHFxcdx9993Xa1qizWbjHnnkEU6j0XAKhYKbO3duaKJiP0N6ejonl8u5efPmcbGxsZxKpeKWLFnCLVq0iDMYDFxOTg7HcRzncrm4AwcOcL\/\/\/e+vyHW9+OKLve49o9HIH3e73dyLL77Imc1mTi6Xc9OnT+dOnTp1Ra4thP6BEPGEEML3ELt37+bCw8O5\/\/3vfxzHecjl4MGD3IoVKziZTMZ9\/fXXV+3aXnzxRW748OFcVVUV\/6+2tpY\/HswI6xCubYSIJ4TLgldeeYVLS0vjIiIiOL1ezy1YsIDLzc31eU4wO9\/Ozk7ukUce4bRaLRcWFsbNmzePKysru5IfpV+ipqaG27Rpk99jLpfrCl+NL1588UVu1KhRfo8FM8I6hGsfIXFBCJcFe\/fuxcMPP4xDhw4hIyMDTqcTs2bNQnt7O\/+c119\/HW+99RbeeecdHDlyBCaTCTNnzkRbWxv\/nJUrV2Ljxo1Yu3YtDhw4AKvVirlz5\/LD1n6oMBgMmDdvnt9j\/mb8XGnk5+fDYrEgMTERd9xxBwoLCwEEN8I6hB8ArjbzhfDDQG1tLQeA27t3L8dxwe18m5ubOYlEwq1du5Z\/TkVFBScUCrlt27Zd2Q8QQtDYunUrt27dOu7kyZNcRkYGN336dM5oNHL19fXc119\/zQHgKioqfF7z4IMPcrNmzbpKVxzClcbV3xqF8INAS0sLAPBGpMHsfDMzM+FwOHyeY7FYMGLEiNDuuB9jzpw5WLx4MT8HZ8uWLQDg44h+MSOsQ7h2ECKeEC47OI7DE088gSlTpvCzU7zWOz1HEne35QlZ91wbCA8PR0pKCvLz84MaYR3CtY8Q8YRw2fHII4\/g5MmT+PTTT3sdu5idb2h3\/P1CV1cXzpw5A7PZ7DPC2gvvCOtQc\/IPByHiCeGy4he\/+AU2bdqE3bt3+1i2BLPz7W7dw3pOCP0PTz31FPbu3YuioiIcPnwYt912G1pbW3HfffdBIBDwI6w3btyIU6dOYfny5T4jrEO49hEinhAuCziOwyOPPIINGzZg165dSExM9DkezM43ZN3z\/UR5eTnuvPNOJCcn49Zbb4VUKsWhQ4cQHx8PAHjmmWewcuVKrFixAmlpaaioqMD27dv7xfjtEK4MQpY5IVwWrFixAp988gnS09ORnJzMPx4ZGcmPdn7ttdfw6quv4oMPPkBSUhJeeeUV7NmzB3l5eSHrnhBCuIYRIp4QLgtYNZgPPvgAy5cvB+CJil566SW89957aGpqwvjx4\/HXv\/6VFyAAQGdnJ55++ml88sknsNlsuPHGG\/Huu+8iNjb2SnyMEEII4TIgRDzXAOrq6pCSkoJHH30Uzz77LADg8OHDmDp1KjZv3uwjRw4hhBBCuNoI1XiuAej1evzf\/\/0fVq1ahaNHj8JqteLuu+\/GihUrfvCk8+qrr2LcuHFQKpUwGAxYuHAh8vLyfJ6zfPlyCAQCn38TJkzweU5XVxd+8YtfQKfTITw8HPPnz0d5efmV\/CghhHDNIBTxXEN4+OGHsWPHDowbNw4nTpzAkSNHfvAW+D\/60Y9wxx13YNy4cXA6nXjuueeQnZ2N06dPIzw8HICHeGpqavDBBx\/wr5NKpXyzK+CpNX3xxRdYs2YNtFotnnzySTQ2NoZqTSGEcBEIEc81BJvNhhEjRqCsrAxHjx7FyJEjr\/Yl9TvU1dXBYDBg7969mDZtGgAP8TQ3N+Pzzz\/3+5qWlhbo9Xp8\/PHH\/NjwyspKxMbGYuvWrZg9e\/aVuvwQQrgmEEq1XUMoLCxEZWUl3G43SkpKrvbl9Ev0tO7xYs+ePTAYDBg8eDAefPBB1NbW8sdC1j0hhHBpIb7aFxDCpYHdbsddd92FpUuXYsiQIbj\/\/vuRnZ0darTshv9v7\/5CmuwCOI5\/08w\/6CQzmFIOIekPYheKMTAUw0AwoqCCKLzwRlfQKolIhOhCxQstCfVCLDBiEeFN5QiCSYMuMhQiuvDCWIQLkhZqM2OdLqLB0Op9fX2f1fx9YDfP83B2dvVj52y\/s1x1D3zvFjty5AgOh4OpqSlaW1uprq7m+fPnpKamqrpHZJUpeBJES0sLHz9+pKenh8zMTEZGRmhoaOD+\/fvxntof40d1j9\/vj7n+Y\/kMoLi4mLKyMhwOBw8ePODw4cM\/HU\/VPSIro6W2BODz+bh69SpDQ0PYbDaSkpIYGhrC7\/fT19cX7+n9EX5W3bOcvLw8HA4Hk5OTgKp7RFabgicBVFVV8eXLFyoqKqLXCgoKCIVCNDU1xXFm8fe76p7lzMzM8ObNG\/Ly8oC1Xd3T29tLYWEhaWlplJaW8uTJk3hPSRKAgkcS2qlTp7h16xa3b98mKyuLYDBIMBgkHA4DMDc3R3NzM0+fPuX169f4fD4OHDhAbm4uhw4dAr7X\/DQ0NHD+\/HkeP37M+Pg4J06ciJ43k6ju3LmD2+2mpaWF8fFx9u7dS21tLYFAIN5Tk7+dxQfPiVgKWPZ148YNY4wxnz59Mvv37zebN282KSkppqCgwNTX15tAIBAzTjgcNqdPnzY5OTkmPT3d1NXVLXkm0ZSXl5vGxsaYazt27DAXL16M04wkUeh\/PCKyxOLiIhkZGdy9ezf6zQ\/gzJkzTExMMDo6GsfZyd9OS20issT79++JRCK\/PCFWZKUUPCIW6evro6SkBJvNhs1mw+l0MjIyEr1vjOHy5cvk5+eTnp5OVVUVL1++jBnD6s64lZwQK\/I7Ch4Ri2zZsoWOjg7GxsYYGxujurqagwcPRsOls7OTrq4url+\/zrNnz7Db7dTU1DA7Oxsdw+12Mzw8jMfjwe\/3Mzc3R11dHZFIZFXnmpubS3Jy8i9PiBVZsfhuMYmsbRs3bjQDAwPm69evxm63m46Ojui9hYUFk52dbfr7+40xxoRCIZOSkmI8Hk\/0mbdv35qkpCTj9XpXfW7l5eWmqakp5trOnTv14wL5z\/SNRyQOIpEIHo+H+fl5nE4nU1NTBIPBmD641NRUKisro31wVnfGnTt3joGBAQYHB3n16hVnz54lEAjQ2Ni46u8la4sqc0Qs9OLFC5xOJwsLC2RmZjI8PMyuXbuiwbHcZv6PwlerO+OOHTvGzMwMV65cYXp6muLiYh4+fIjD4Vj195K1RcEjYqHt27czMTFBKBTi3r171NfXx\/w0eSWb+f\/kmZVyuVy4XK7\/ZWxZu7TUJmKhDRs2sG3bNsrKymhvb2f37t1cu3YNu90O8MvNfHXGSaJQ8IjEkTGGz58\/U1hYiN1uj+mDW1xcZHR0NNoHt5Y74ySxaKlNxCKXLl2itraWrVu3Mjs7i8fjwefz4fV6WbduHW63m7a2NoqKiigqKqKtrY2MjAyOHz8OxHbGbdq0iZycHJqbmxO+M04Sj4JHxCLv3r3j5MmTTE9Pk52dTUlJCV6vl5qaGgAuXLhAOBzG5XLx4cMH9uzZw6NHj8jKyoqO0d3dzfr16zl69CjhcJh9+\/Zx8+ZNkpOT4\/WxRP41dbWJiIiltMcjIiKWUvCIiIilFDwiImIpBY+IiFhKwSMiIpZS8IiIiKUUPCIiYikFj4iIWErBIyIillLwiIiIpRQ8IiJiqW\/9VsG5oCgnEAAAAABJRU5ErkJggg==", "text\/plain": "<Figure size 640x480 with 1 Axes>"}, "metadata": {}, "output_type": "display_data"}]}}, "3012cdca2fe2499d8a50dee485f62217": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "32b1f33a1556467aaba78f0af3df1e4d": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": {"description_width": ""}}, "3500924f544141ef8070a2456337d727": {"model_module": "@jupyter-widgets\/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": {"layout": "IPY_MODEL_e4081c6091bb48838c726ff8e86ca60b", "outputs": [{"data": {"image\/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG2CAYAAACXuTmvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy\/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA5rElEQVR4nO3dfXSU5Z3H\/8\/kaZKQZCBAnkgI4UkrEUTCQ6JWpAs\/WWVFtluq1IO7radW8Lcc6vor5WyLPS3xeI6s3cOWPa3WtRaKu6u27hYRXAQfAE0QJKJFlIQESAiEZCYJYfIw9++PZEYTAgSYzDUz9\/t1zpzj3DOZ+ebyPicfrvt7X5fDsixLAAAANhJjugAAAIBQIwABAADbIQABAADbIQABAADbIQABAADbIQABAADbIQABAADbIQABAADbIQABAADbIQABAADbCZsAVFpaKofDoRUrVgSOWZalNWvWKCcnR0lJSZo9e7YOHTpkrkgAABAVwiIAlZWV6de\/\/rUmT57c6\/hTTz2ldevWaf369SorK1NWVpbmzp2r5uZmQ5UCAIBoYDwAtbS0aMmSJfrNb36jYcOGBY5blqVnnnlGq1ev1qJFi1RYWKgXXnhB586d06ZNmwxWDAAAIl2c6QKWLVumu+66S3\/1V3+ln\/\/854HjlZWVqqur07x58wLHnE6nbr\/9du3evVvf\/\/73+\/08r9crr9cbeO7z+XT27FkNHz5cDodj8H4RAAAQNJZlqbm5WTk5OYqJCf58jdEAtHnzZn344YcqKyu74LW6ujpJUmZmZq\/jmZmZOnbs2EU\/s7S0VE888URwCwUAAEbU1NQoNzc36J9rLADV1NToH\/\/xH7Vt2zYlJiZe9H19Z20sy7rkTM6qVau0cuXKwHO3263Ro0erpqZGaWlp1144AAAYdB6PR3l5eUpNTR2UzzcWgPbt26f6+npNmzYtcKyrq0tvv\/221q9fr8OHD0vqngnKzs4OvKe+vv6CWaGvcjqdcjqdFxxPS0sjAAEAEGEGq33FWBP0N77xDVVUVOjAgQOBR1FRkZYsWaIDBw5o7NixysrK0vbt2wM\/097erl27dqmkpMRU2QAAIAoYmwFKTU1VYWFhr2NDhgzR8OHDA8dXrFihtWvXasKECZowYYLWrl2r5ORk3X\/\/\/SZKBgAAUcL4XWCX8vjjj6utrU2PPPKIGhsbNXPmTG3btm3QrgcCAAB7cFiWZZkuYjB5PB65XC653W56gAAAiBCD\/ffb+EKIAAAAoUYAAgAAtkMAAgAAtkMAAgAAtkMAAgAAtkMAAgAAtkMAAgAAtkMAAgAAtkMAAgAAtkMAAgAAtkMAAgAAtmObAHS2xWu6BAAAECZsE4DKqhpNlwAAAMKEbQLQ3soG0yUAAIAwYZsA9EHlWdMlAACAMGGbAHSs4ZxONrWZLgMAAIQB2wQgSdr9BZfBAACA7QLQGdMlAACAMGCvAPR5gyzLMl0GAAAwzDYBKD42RnWe86o802q6FAAAYJhtAtBNeS5J9AEBAAAbBaCZBcMl0QcEAADsFIDGDpMk7fmiQT4ffUAAANiZbQJQ4aihSk6IVeO5Dv2lrtl0OQAAwCDbBKD42BjNKEiXxGUwAADszjYBSJJuGTdCEo3QAADYna0CUPG47kbo9482qKPLZ7gaAABgiq0C0A3ZaRqaHK\/W9i4dPO42XQ4AADDEVgEoJsah4rHds0B76AMCAMC2bBWAJKlknH89IPqAAACwK9sFoOKeRujyY40639FluBoAAGCC7QLQuJFDlJnmVHunTx8eazRdDgAAMMB2AcjhcKiE2+EBALA12wUg6cvb4d+jERoAAFuyZQDyN0IfPO5W8\/kOw9UAAIBQMxqANmzYoMmTJystLU1paWkqLi7W66+\/Hnj9wQcflMPh6PWYNWvWNX9v7rBk5Q9PVpfPUlnV2Wv+PAAAEFmMBqDc3Fw9+eSTKi8vV3l5uebMmaN77rlHhw4dCrznzjvvVG1tbeCxZcuWoHy3fxbovc\/pAwIAwG7iTH75ggULej3\/xS9+oQ0bNmjv3r2aNGmSJMnpdCorKyvo310yboT+8EENjdAAANhQ2PQAdXV1afPmzWptbVVxcXHg+M6dO5WRkaGJEyfqoYceUn19\/SU\/x+v1yuPx9Hr0Z1bPitCf1np0trU9eL8IAAAIe8YDUEVFhVJSUuR0OvXwww\/r1Vdf1Q033CBJmj9\/vjZu3KgdO3bo6aefVllZmebMmSOv13vRzystLZXL5Qo88vLy+n3fyFSnrstMlSTtYRYIAABbcViWZZksoL29XdXV1WpqatLLL7+sZ599Vrt27QqEoK+qra1Vfn6+Nm\/erEWLFvX7eV6vt1dA8ng8ysvLk9vtVlpaWq\/3PvE\/h\/T8e1VaMnO0fnHvjcH9xQAAwFXzeDxyuVz9\/v0OBuMzQAkJCRo\/fryKiopUWlqqKVOm6Je\/\/GW\/783OzlZ+fr6OHDly0c9zOp2Bu8r8j4vxL4jIDBAAAPZiPAD1ZVnWRS9xNTQ0qKamRtnZ2UH5rplj0xXjkI6eaVWtuy0onwkAAMKf0QD04x\/\/WO+8846qqqpUUVGh1atXa+fOnVqyZIlaWlr02GOPac+ePaqqqtLOnTu1YMECjRgxQvfee29Qvj8tMV435g6VJO3mdngAAGzD6G3wp06d0gMPPKDa2lq5XC5NnjxZW7du1dy5c9XW1qaKigr97ne\/U1NTk7Kzs3XHHXfopZdeUmpqatBqKBk3XB\/VNGn3Fw3622m5QftcAAAQvowGoOeee+6iryUlJemNN94Y9BpuGTdCG3Z+od1fnJFlWXI4HIP+nQAAwKyw6wEKtWn5w5QQG6Na93lVNZwzXQ4AAAgB2wegpIRYTR09VJK0m93hAQCwBdsHIEm6ZXz37fA0QgMAYA8EIH25Meqeow3y+YyuCwkAAEKAACRpcu5QJSfE6mxruw6fajZdDgAAGGQEIEkJcTGaUZAuSXrvc\/qAAACIdgSgHoHLYGyLAQBA1CMA9fDvC\/Z+5Vl1dvkMVwMAAAYTAajHDdlpciXFq8XbqYMn3KbLAQAAg4gA1CMmxqHisVwGAwDADghAX1EyvjsAsSAiAADRjQD0Ff4+oPKqRp3v6DJcDQAAGCwEoK8YN3KIMlKd8nb69GF1o+lyAADAICEAfYXD4eB2eAAAbIAA1EdJz75gLIgIAED0IgD14Z8B+ui4Wy3eTsPVAACAwUAA6iN3WLJGpyery2eprPKs6XIAAMAgIAD145ae2+G5DAYAQHQiAPWjuOd2+N00QgMAEJUIQP3wrwj9Sa1Hja3thqsBAADBRgDqx8hUp67LTJUk7TnKLBAAANGGAHQRxePYFgMAgGhFALoI\/+3wuz9nBggAgGhDALqImWOHK8YhHT3Tqlp3m+lyAABAEBGALsKVFK8bR7kksS0GAADRhgB0Cf7b4d\/jMhgAAFGFAHQJ\/gUR93xxRpZlGa4GAAAECwHoEory0xUf69BJ93kdazhnuhwAABAkBKBLSEqI1dTRwyRJ73E7PAAAUYMAdBm3sC0GAABRhwB0GSU9fUB7v2iQz0cfEAAA0YAAdBlTcocqKT5WDa3tOnyq2XQ5AAAgCAhAl5EQF6MZBemSuAwGAEC0IAANgH9bjD00QgMAEBUIQANQ0tMI\/f7Rs+rs8hmuBgAAXCujAWjDhg2aPHmy0tLSlJaWpuLiYr3++uuB1y3L0po1a5STk6OkpCTNnj1bhw4dCnmdN+SkyZUUr2ZvpypOuEP+\/QAAILiMBqDc3Fw9+eSTKi8vV3l5uebMmaN77rknEHKeeuoprVu3TuvXr1dZWZmysrI0d+5cNTeHthk5NsahWWPpAwIAIFoYDUALFizQX\/\/1X2vixImaOHGifvGLXyglJUV79+6VZVl65plntHr1ai1atEiFhYV64YUXdO7cOW3atCnktZYE1gOiDwgAgEgXNj1AXV1d2rx5s1pbW1VcXKzKykrV1dVp3rx5gfc4nU7dfvvt2r17d8jr8+8LVl7VqPMdXSH\/fgAAEDzGA1BFRYVSUlLkdDr18MMP69VXX9UNN9yguro6SVJmZmav92dmZgZe64\/X65XH4+n1CIZxI1M0MtUpb6dP+6ubgvKZAADADOMB6LrrrtOBAwe0d+9e\/eAHP9DSpUv1ySefBF53OBy93m9Z1gXHvqq0tFQulyvwyMvLC0qdDocjcDs8l8EAAIhsxgNQQkKCxo8fr6KiIpWWlmrKlCn65S9\/qaysLEm6YLanvr7+glmhr1q1apXcbnfgUVNTE7Ra2RcMAIDoYDwA9WVZlrxerwoKCpSVlaXt27cHXmtvb9euXbtUUlJy0Z93Op2B2+r9j2Ap7pkB+qimSS3ezqB9LgAACK04k1\/+4x\/\/WPPnz1deXp6am5u1efNm7dy5U1u3bpXD4dCKFSu0du1aTZgwQRMmTNDatWuVnJys+++\/30i9eenJyktPUs3ZNpVVntUd12cYqQMAAFwbowHo1KlTeuCBB1RbWyuXy6XJkydr69atmjt3riTp8ccfV1tbmx555BE1NjZq5syZ2rZtm1JTU43VfMu4Edp8tka7vzhDAAIAIEI5LMuyTBcxmDwej1wul9xud1Auh\/3pwAn94+YDmpSTpj\/\/v7cFoUIAANBXsP9+9xV2PUDhzt8H9EmtR42t7YarAQAAV4MAdIUyUhM1MTNFliXtPcrdYAAARCIC0FUo4XZ4AAAiGgHoKvgvg73HgogAAEQkAtBVmDV2uGIc0tHTrapznzddDgAAuEIEoKvgSopX4SiXJGnPUWaBAACINASgqxS4DPY5fUAAAEQaAtBV8u8LtueLBkX5UkoAAEQdAtBVKhozTPGxDp1oalP12XOmywEAAFeAAHSVkhPiNDVvmCQugwEAEGkIQNegZHx3H9BubocHACCiEICuQQl9QAAARCQC0DW4KW+okuJj1dDarsOnmk2XAwAABogAdA0S4mI0vSBdkrSbPiAAACIGAegalYzz9wERgAAAiBQEoGvkD0DvH21QZ5fPcDUAAGAgCEDXaFKOS2mJcWr2durjkx7T5QAAgAEgAF2j2BiHZo3ldngAACIJASgIAn1ANEIDABARCEBBcMv47vWAyqrOytvZZbgaAABwOQSgIBifkaIRKU55O33aX91kuhwAAHAZBKAgcDgcX7kMRh8QAADhjgAUJLeMZz0gAAAiBQEoSPz7gh2oaVKrt9NwNQAA4FIIQEGSl56s3GFJ6vRZ+qDqrOlyAADAJRCAguiWr+wODwAAwhcBKIhKxrMgIgAAkYAAFETFPStCHzrpUdO5dsPVAACAiyEABVFGWqImZKTIsqS9R7kMBgBAuCIABVlgPSD6gAAACFsEoCAr7mmEfo8FEQEACFsEoCArHjtcDof0xelWnfKcN10OAADoBwEoyFzJ8SrMcUnibjAAAMIVAWgQfLkvGH1AAACEIwLQICgZ390HtPuLBlmWZbgaAADQFwFoEEwfM0xxMQ6daGpT9dlzpssBAAB9GA1ApaWlmj59ulJTU5WRkaGFCxfq8OHDvd7z4IMPyuFw9HrMmjXLUMUDk5wQp6mjh0ridngAAMKR0QC0a9cuLVu2THv37tX27dvV2dmpefPmqbW1tdf77rzzTtXW1gYeW7ZsMVTxwPl3hycAAQAQfuJMfvnWrVt7PX\/++eeVkZGhffv26etf\/3rguNPpVFZWVqjLuyYl44brl\/93RHu+OCPLsuRwOEyXBABAxPjT\/hOD+vlh1QPkdrslSenp6b2O79y5UxkZGZo4caIeeugh1dfXX\/QzvF6vPB5Pr4cJN40eqsT4GJ1paddnp1qM1AAAQCRyn+vQz7d8MqjfETYByLIsrVy5UrfeeqsKCwsDx+fPn6+NGzdqx44devrpp1VWVqY5c+bI6\/X2+zmlpaVyuVyBR15eXqh+hV6ccbGaPqY7yLEeEAAAA7fpg2q1tfsG9TvCJgAtX75cBw8e1B\/+8IdexxcvXqy77rpLhYWFWrBggV5\/\/XV99tln+vOf\/9zv56xatUputzvwqKmpCUX5\/SoJbItBHxAAAAPR3unTf+yuHPTvMdoD5Pfoo4\/qtdde09tvv63c3NxLvjc7O1v5+fk6cuRIv687nU45nc7BKPOK+RdEfP9ogzq7fIqLDZu8CQBAWNpSUatTHq9GpCRoMKcwjP5FtixLy5cv1yuvvKIdO3aooKDgsj\/T0NCgmpoaZWdnh6DCa1M4yqXUxDg1ezt16KSZXiQAACKFZVl69t2jkqT7Zowe1O8yGoCWLVum3\/\/+99q0aZNSU1NVV1enuro6tbW1SZJaWlr02GOPac+ePaqqqtLOnTu1YMECjRgxQvfee6\/J0gckNsahWWO7Z4Heow8IAIBLer\/yrD4+4VFifIz+rmhwe3iNBqANGzbI7XZr9uzZys7ODjxeeuklSVJsbKwqKip0zz33aOLEiVq6dKkmTpyoPXv2KDU11WTpA+a\/DLaH9YAAALikZ9\/pnv3525tzlT4kYVC\/y2gP0OX2yUpKStIbb7wRomoGxy09+4KVVZ2Vt7NLzrhYwxUBABB+jp5u0Zufdi9z891bCyTZ5C6waDUhI0UjUhJ0vsOn\/dVNpssBACAs\/fa97ju\/\/uprGRo7MmXQv48ANMgcDoeK2RYDAICLamxt13\/vOy5J+u6tY0PynQSgELgl0AdEIzQAAH1tfP+Yznf4NCknTbPGpl\/+B4KAABQC\/gUR91c3qdXbabgaAADCh7ezSy\/sOSZJeui2sSHbO5MAFAJ56UkaNTRJnT5LZVVnTZcDAEDY+J+PanW62austET99Y2hW+OPABQCDodDt4zndngAAL7KsqzAre9LS8YoIS50sYQAFCKBfcHoAwIAQFL3Xpl\/qWtWckKs7h\/klZ\/7IgCFSHFPI\/Shkx41nWs3XA0AAOb5t734VlGeXMnxIf1uAlCIZKYlanxGiixL2nuUPiAAgL0dOdWsnYdPy+GQ\/v6WMSH\/fgJQCBX37Au29yh9QAAAe\/MvfDjvhkzlDx8S8u8nAIXQjILutQ24EwwAYGdnWrx6+cMTkqTv3RaahQ\/7IgCF0PQx3QHo01qPms93GK4GAAAzfr\/3mNo7fZqSN1RF+cOM1EAACqEsV6Ly0pPks6QP2RcMAGBD5zu69GLPwoffu7UgZAsf9kUACjH\/LFBZJZfBAAD286cDJ9TQ2q5RQ5M0vzDLWB0EoBALBCD6gAAANtO98GF38\/ODJWMUF2suhhCAQswfgA7UNMnb2WW4GgAAQmfXZ6d1pL5FKc44LZ6RZ7QWAlCIjRs5ROlDEuTt9OnjEx7T5QAAEDLPvds9+7N4ep7SEkO78GFfBKAQczgcgY53LoMBAOziL3UevXPkjGIc3Ze\/TCMAGUAjNADAbvy9P\/MLs5WXnmy4GgKQEdN7FkQsP9Yon88yXA0AAIOr3nNefzrQvfDhd28rMFxNNwKQAZNy0pQUHyt3W4eO1LeYLgcAgEH14t5j6uiyNC1\/mG4ebWbhw74IQAbEx8Zo6uihkugDAgBEt7b2Lv1+75cLH4YLApAhrAcEALCDlz88rsZzHcpLT9K8SeYWPuyLAGSIPwCVVzUargQAgMHh81n6bc+t739fUqDYGDPbXvSHAGTI1NFDFRvj0ImmNp1oajNdDgAAQffW4XodPdOq1MQ4fWu62YUP+yIAGTLEGafCnDRJ3A4PAIhO\/lvf758xWinOOMPV9EYAMqiIPiAAQJT6+IRbe442KDbGoaVhsPBhXwQgg2iEBgBEK\/+2F3fdmK2coUmGq7kQAcigojHdayF8dqpFTefaDVcDAEBw1LnP638+OilJ+l6YLHzYFwHIoBEpTo0dOUQSd4MBAKLHC3uq1OmzNKMgXZNzh5oup18EIMOm5\/dcBjvGZTAAQORr9XZqYxgufNgXAcgw\/75g3AkGAIgG\/73vuDznOzVmeLK+8bVM0+VcFAHIsBk9jdAVJ9w639FluBoAAK5el8\/Sb9\/rbn7+7q3htfBhXwQgw\/LSk5SR6lRHl6UDNU2mywEA4Kq9+ekpHWs4J1dSvP52Wq7pci6JAGSYw+HgMhgAICo817Pw4ZKZo5WcEF4LH\/ZlNACVlpZq+vTpSk1NVUZGhhYuXKjDhw\/3eo9lWVqzZo1ycnKUlJSk2bNn69ChQ4YqHhzT87tvhy87xp1gAIDI9FFNkz6oOqv42PBc+LAvowFo165dWrZsmfbu3avt27ers7NT8+bNU2tra+A9Tz31lNatW6f169errKxMWVlZmjt3rpqbmw1WHlz+GaAPjzWqy2cZrgYAgCv3bM\/Chwum5CgzLdFwNZdndH5q69atvZ4\/\/\/zzysjI0L59+\/T1r39dlmXpmWee0erVq7Vo0SJJ0gsvvKDMzExt2rRJ3\/\/+902UHXTXZ6Up1RmnZm+nPq31qHCUy3RJAAAM2ImmNm2pqJXU3fwcCa4qAP3sZz+75Os\/+clPrqoYt9stSUpP754RqaysVF1dnebNmxd4j9Pp1O23367du3f3G4C8Xq+8Xm\/gucfjuapaQik2xqGb84dp12enVVZ1lgAEAIgoL+yuUpfPUsm44ZqUExl\/w64qAL366qu9nnd0dKiyslJxcXEaN27cVQUgy7K0cuVK3XrrrSosLJQk1dXVSZIyM3uvI5CZmaljx471+zmlpaV64oknrvj7TZtRkB4IQH9\/S2SkZwAAms936A\/vV0sK320v+nNVAWj\/\/v0XHPN4PHrwwQd17733XlUhy5cv18GDB\/Xuu+9e8JrD0XsdAcuyLjjmt2rVKq1cubJXXXl5eVdVUygV+Ruhqxov+fsBABBO\/rP8uJq9nRo7cohmT8wwXc6ABa0JOi0tTT\/72c\/0z\/\/8z1f8s48++qhee+01vfXWW8rN\/XLdgKysLElfzgT51dfXXzAr5Od0OpWWltbrEQmm5A1VQmyMTjd7dazhnOlyAAC4rM4un57vWfjwe7eOVUwYL3zYV1DvAmtqagr08QyEZVlavny5XnnlFe3YsUMFBb2nzgoKCpSVlaXt27cHjrW3t2vXrl0qKSkJWt3hIDE+Vjfmdl83LatiPSAAQPjb9skpHW9s07DkeC26eZTpcq7IVV0C+9d\/\/ddezy3LUm1trV588UXdeeedA\/6cZcuWadOmTfrTn\/6k1NTUwEyPy+VSUlKSHA6HVqxYobVr12rChAmaMGGC1q5dq+TkZN1\/\/\/1XU3pYmz4mXfuONaqs6qz+rij8L9sBAOztN+8clSQ9MCtfifGxhqu5MlcVgP7lX\/6l1\/OYmBiNHDlSS5cu1apVqwb8ORs2bJAkzZ49u9fx559\/Xg8++KAk6fHHH1dbW5seeeQRNTY2aubMmdq2bZtSU1OvpvSwNqNgmP59l1RexYKIAIDwtu9Yo\/ZXNykhNkbfKc43Xc4Vu6oAVFlZGZQvt6zLL\/rncDi0Zs0arVmzJijfGc6mjU6XwyEdPdOq081ejUx1mi4JAIB+Pfdu9+zPwqk5ykgN\/4UP+2IvsDDiSo7XdZndM1vl9AEBAMJUzdlz2vpxd9vKd28da7iaq0MACjNFY768HR4AgHD02\/cq5bOk2yaM0HVZkdmSQgAKM9PH9OwMzwwQACAMuds69J9lNZKk790WmbM\/EgEo7PgD0KGTbrV4Ow1XAwBAby+VVau1vUsTM1P09QkjTJdz1QhAYSZnaJJGDU2Sz5L2V3MZDAAQPjq6fPqP96okdS98GMm7FhCAwtCMgp7LYJVcBgMAhI8tFbU66T6vESkJ+pubckyXc00IQGGIRmgAQLixLEvPvdu9DM4Ds8ZE3MKHfRGAwtCMnj6g\/TWNau\/0Ga4GAIDuf5QfPO6WMy5G35k12nQ514wAFIbGjUzR0OR4ne\/w6dDJge+tBgDAYHm2Z9uLRTfnanhK5C\/USwAKQzExDhXlczs8ACA8VJ5p1fZPT0mSvnvrGLPFBAkBKEzNKKAPCAAQHp5\/r1KWJd1x3UiNz4jMhQ\/7IgCFqaKePqDyqrPy+S6\/ZxoAAIOh6Vy7\/qv8uCTpoQhe+LAvAlCYKsxxKTE+Ro3nOvTF6RbT5QAAbGrTB9Vq6+jS17LTVDxuuOlygoYAFKYS4mJ0U95QSVwGAwCY0d7p0wu7qyRJ37u1IKIXPuyLABTGZrAvGADAoP89eFKnPF5lpDq1YEpkL3zYFwEojBURgAAAhliWpWff6V74cGnJGCXERVdkiK7fJsrcnD9MMQ7peGObat1tpssBANjInqMN+qTWo6T4WC2ZGfkLH\/ZFAApjKc44TcpxSaIPCAAQWs\/1zP58c1quhiYnGK4m+AhAYS6wLxgbowIAQuTz+hb931\/q5XBIf3\/LGNPlDAoCUJijERoAEGq\/fa979ucb12dq7MgUw9UMDgJQmPM3Qh8+1Sz3uQ7D1QAAot3Z1na9vM+\/8GGB4WoGDwEozI1MdapgxBBZlrSvmlkgAMDg2rj3mLydPt04yqUZBemmyxk0BKAIMH0M+4IBAAbf+Y4uvbDnmCTpe7dF18KHfRGAIkBgPSAaoQEAg+i1j07qTItX2a5E\/fWN2abLGVQEoAjgb4Q+eNyt8x1dhqsBAEQjy7ICt74\/WDJG8bHRHRGi+7eLEvnDkzUixan2Lp8OHnebLgcAEIXe\/fyMDp9qVnJCrL49I\/oWPuyLABQBHA6HZhT4+4C4DAYACL7f9fT+\/N20XLmS4g1XM\/gIQBGiKJ\/1gAAAg6PW3ab\/+\/SUJOmB4nzD1YQGAShC+G9F3FfVqC6fZbgaAEA02fxBjXyWNLMgXeMzUk2XExIEoAhxfVaqUpxxavZ26nBds+lyAABRoqPLp81l1ZKkJbPsMfsjEYAiRlxsjKaOHiqJy2AAgOD5v0\/rdcrj1fAhCbpzUpbpckKGABRB2BcMABBsG9\/vbn7+1vQ8JcTZJxbY5zeNAkVfCUCWRR8QAODaVJ1p1TtHzsjhkO63wa3vX0UAiiBTRw9VfKxDpzxe1ZxtM10OACDC\/eGD7t6f2yeOVF56suFqQosAFEES42N14yiXJC6DAQCuzfmOLv1neY0kaclM+zQ\/+xkNQG+\/\/bYWLFignJwcORwO\/fGPf+z1+oMPPiiHw9HrMWvWLDPFhonp9AEBAIJg68d1ajzXoWxXou64bqTpckLOaABqbW3VlClTtH79+ou+584771RtbW3gsWXLlhBWGH4IQACAYPA3P983Y7Tionzfr\/7Emfzy+fPna\/78+Zd8j9PpVFaWfW7Lu5xp+d1bYnxxulUNLV4NT3EarggAEGn+UudRWVWjYmMcWjw9z3Q5RoR95Nu5c6cyMjI0ceJEPfTQQ6qvr7\/k+71erzweT69HNBk2JEETM1MkSeXHGg1XAwCIRJve725+nvu1TGWmJRquxoywDkDz58\/Xxo0btWPHDj399NMqKyvTnDlz5PV6L\/ozpaWlcrlcgUdeXvQl28Dt8JVcBgMAXJlWb6de+fCEJOk7Nlr5ua+wDkCLFy\/WXXfdpcLCQi1YsECvv\/66PvvsM\/35z3++6M+sWrVKbrc78KipqQlhxaHBgogAgKv12kcn1eLt1JjhySoZN9x0OcYY7QG6UtnZ2crPz9eRI0cu+h6n0ymnM7r7Yqb3bIz68UmPzrV3Kjkhov43AgAMsSxLv9\/b3fx8\/8zRiolxGK7InLCeAeqroaFBNTU1ys7ONl2KUaOGJinHlagun6X91U2mywEARIiDx906dNKjhLgYfXNa9LWIXAmjAailpUUHDhzQgQMHJEmVlZU6cOCAqqur1dLSoscee0x79uxRVVWVdu7cqQULFmjEiBG69957TZYdFvyzQFwGAwAMlH\/2564bs5U+JMFwNWYZDUDl5eWaOnWqpk6dKklauXKlpk6dqp\/85CeKjY1VRUWF7rnnHk2cOFFLly7VxIkTtWfPHqWmpposOywU0QcEALgC7nMd+p+DJyVJS2baa9+v\/hhtHpk9e\/YlN\/V84403QlhNZPE3Qn94rEkdXT7F23ARKwDAwL2y\/7jOd\/h0fVZqYE05O+OvZoSakJEiV1K82jq69MnJ6FrrCAAQXJZlaWPP2j9LZo6Ww2Hf5mc\/AlCEiolxqKgnwXMZDABwKe9XntXn9S1KTojVwqmjTJcTFghAEYxGaADAQPhnf+65aZRSE+MNVxMeCEARbPqY7hmg8qrGS\/ZSAQDs63SzV1s\/rpVE8\/NXEYAiWOEol5xxMWpobdfRM62mywEAhKH\/2lejji5LU\/KGqnCUy3Q5YYMAFMGccbGakjdUEvuCAQAu5PNZgY1Pv8PsTy8EoAjnvx3+A\/qAAAB97DpyWscb25SWGKe7J+eYLiesEIAinL8Ruryq0XAlAIBws3Fv9+zP307LVVJCrOFqwgsBKMLdPHqoYhxS9dlzOuU5b7ocAECYONnUph1\/OSVJWjIz33A14YcAFOFSE+P1tew0SdwODwD40uYPquWzpFlj0zU+I8V0OWGHABQFpvv3BaMRGgAgqaPLp81lNZKY\/bkYAlAUCAQg+oAAAJL+79NTqm\/2akRKgv6fSVmmywlLBKAo4F8Q8dM6jzznOwxXAwAw7fc9zc\/fKspTQhx\/6vvDqESBjLRE5Q9PlmVJ+44xCwQAdlZ5plXvfn5GDod03wzW\/rkYAlCU8F8GK6cRGgBs7Q8fdM\/+zJ44UnnpyYarCV8EoCjhvwxWVskMEADY1fmOLv1XOc3PA0EAihL+GaADx5vk7ewyXA0AwITXP65V47kO5bgSdcf1GabLCWsEoChRMGKIRqQkqL3Tp4rjbtPlAAAM8K\/8fN+M0YqNcRiuJrwRgKKEw+FQUT63wwOAXf2lzqPyY42KjXFo8fQ80+WEPQJQFPHvC8aK0ABgP\/7Zn3k3ZCojLdFwNeGPABRF\/I3Q5VVn5fNZhqsBAIRKq7dTr+4\/IUn6ziyanweCABRFbshOU3JCrDznO\/VZfbPpcgAAIfKnAyfV4u1UwYghKh473HQ5EYEAFEXiYmN082j\/7fBcBgMAO7AsSxvfPyZJun\/GaMXQ\/DwgBKAow75gAGAvHx1369BJjxLiYvTNabmmy4kYBKAoE1gQseqsLIs+IACIdr\/f2z37c\/eN2Ro2JMFwNZGDABRlpo4eprgYh2rd53Wiqc10OQCAQeQ+16H\/+eikJGnJLPb9uhIEoCiTlBCrwlEuSdwODwDR7uUPj8vb6dP1WamBHlAMDAEoCvkvg33AvmAAELW+2vy8ZFa+HA6an68EASgKsTM8AES\/vUfP6ovTrUpOiNXCm3JMlxNxCEBRqKgnAB2pb1Fja7vhagAAg8E\/+7Nw6iilJsYbribyEICiUPqQBI3PSJEklR\/jMhgARJvTzV69cahOUvfaP7hyBKAo9eV6QFwGA4Bo85\/lNerosnRT3tDAjS+4MgSgKPVlIzQBCACiSZfP0h8+6N74lH2\/rh4BKEr5Z4A+PuFWW3uX4WoAAMHy9mendbyxTWmJcbp7crbpciIWAShK5Q5LUlZaojp9lvbX0AcEANHC3\/z8zWl5SoyPNVxN5DIagN5++20tWLBAOTk5cjgc+uMf\/9jrdcuytGbNGuXk5CgpKUmzZ8\/WoUOHzBQbYRwOh6YX+G+HJwABQDQ40dSmHX+pl8TKz9fKaABqbW3VlClTtH79+n5ff+qpp7Ru3TqtX79eZWVlysrK0ty5c9Xc3BziSiPTV\/cFAwBEvs0fVMtnScVjh2vcyBTT5US0OJNfPn\/+fM2fP7\/f1yzL0jPPPKPVq1dr0aJFkqQXXnhBmZmZ2rRpk77\/\/e+HstSI5O8D+vBYozq7fIqL5YonAESqji6fNpfVSGL2JxjC9i9iZWWl6urqNG\/evMAxp9Op22+\/Xbt3777oz3m9Xnk8nl4Pu7ouM1WpiXFqbe\/Sp7XMmgFAJHvzk1M63ezViBSn5t2QZbqciBe2AaiurnuBp8zMzF7HMzMzA6\/1p7S0VC6XK\/DIy8sb1DrDWUyMQ0X5PbfDcxkMACLa73uanxdPz1VCXNj++Y4YYT+CfTd3syzrkhu+rVq1Sm63O\/CoqakZ7BLD2peN0AQgAIhUR0+36L3PG+RwSN+ezuWvYDDaA3QpWVnd03t1dXXKzv5ynYP6+voLZoW+yul0yul0Dnp9keKrK0JfLjwCAMKTf+HDO67LUF56suFqokPYzgAVFBQoKytL27dvDxxrb2\/Xrl27VFJSYrCyyDI516WEuBidaWlXVcM50+UAAK7Q+Y4u\/de+45KkJTOZ\/QkWozNALS0t+vzzzwPPKysrdeDAAaWnp2v06NFasWKF1q5dqwkTJmjChAlau3atkpOTdf\/99xusOrI442J1U+5QfVB1VmWVZ1UwYojpkgAAV2BLRa2aznVo1NAkzb4uw3Q5UcNoACovL9cdd9wReL5y5UpJ0tKlS\/Uf\/\/Efevzxx9XW1qZHHnlEjY2NmjlzprZt26bU1FRTJUekojHDugNQ1Vl9a7p9m8IBIBJtfL\/78td9M\/IUG0MbQ7AYDUCzZ8+WZVkXfd3hcGjNmjVas2ZN6IqKQtML0qWdX7AgIgBEmE9rPdp3rFFxMQ59q4h\/wAZT2PYAIXhuHj1MDodU1XBO9c3nTZcDABgg\/75f8yZlKiMt0XA10YUAZAOupHhdn5UmiX3BACBStHg79eqHJyRJ35mZb7ia6EMAsgn\/vmAfVHIZDAAiwZ8OnFBre5fGjhii4nHDTZcTdQhANuFfD6j8GAEIAMKdZVn6\/d7u5uf7Z45mDbdBQACyCX8A+uSkR83nOwxXAwC4lAM1Tfq01qOEuBh9c1qu6XKiEgHIJrJcicpLT5LPkvZXN5kuBwBwCf7Zn7snZ2tocoLhaqITAchGvrotBgAgPDWda9f\/HjwpSVpC8\/OgIQDZiD8A0QgNAOHr5Q9PyNvp09ey03Tz6KGmy4laBCAb8QegAzVNau\/0Ga4GANCXZVmBtX+W0Pw8qAhANjJu5BClD0mQt9OnihNu0+UAAPrYc7RBR0+3akhCrBZOHWW6nKhGALIRh8Ohovzu9YDK6QMCgLDj3\/dr4dRRSnEa3a0q6hGAbGZGAY3QABCO6pvP642P6yTR\/BwKBCCbKQosiNgon+\/iG9ECAELrv8qPq9NnaeroobohJ810OVGPAGQzk3LSlBQfq6ZzHfr8dIvpcgAAkrp8ljb1XP5i36\/QIADZTHxsjKb23FbJ7fAAEB52fVavE01tciXF667J2abLsQUCkA0F9gWjDwgAwsLGnpWfvzktV4nxsYarsQcCkA192QjdaLgSAMDxxnPacbheUvfGpwgNApAN3ZQ3VLExDp1oatOJpjbT5QCArW3+oEaWJZWMG65xI1NMl2MbBCAbGuKMU2HPHQZcBgMAczq6fNpcViOJW99DjQBkU0XsCwYAxm3\/5JTOtHg1MtWpeZMyTZdjKywzaVPTx6TruXcrtfH96sDKowAAMxYX5Sk+ljmJUGK0bap43HBlpjlNlwEAtjc0OV5LZtH8HGrMANmUKyle7\/5\/c+Rp6zBdCgDYWkpinJxx3PoeagQgG4uPjdHwFGaBAAD2wyUwAABgOwQgAABgOwQgAABgOwQgAABgOwQgAABgOwQgAABgOwQgAABgOwQgAABgOwQgAABgOwQgAABgOwQgAABgO2EdgNasWSOHw9HrkZWVZbosAAAQ4cJ+M9RJkybpzTffDDyPjWXHXAAAcG3CPgDFxcUx6wMAAIIqrC+BSdKRI0eUk5OjgoICffvb39bRo0dNlwQAACJcWM8AzZw5U7\/73e80ceJEnTp1Sj\/\/+c9VUlKiQ4cOafjw4f3+jNfrldfrDTz3eDyhKhcAAEQIh2VZlukiBqq1tVXjxo3T448\/rpUrV\/b7njVr1uiJJ5644Ljb7VZaWtpglwgAAILA4\/HI5XIN2t\/vsL8E9lVDhgzRjTfeqCNHjlz0PatWrZLb7Q48ampqQlghAACIBGF9Cawvr9erTz\/9VLfddttF3+N0OuV0OkNYFQAAiDRhPQP02GOPadeuXaqsrNT777+vb37zm\/J4PFq6dKnp0gAAQAQL6xmg48eP67777tOZM2c0cuRIzZo1S3v37lV+fr7p0gAAQAQL6wC0efNm0yUAAIAoFNaXwAAAAAYDAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANhORASgX\/3qVyooKFBiYqKmTZumd955x3RJAAAggoV9AHrppZe0YsUKrV69Wvv379dtt92m+fPnq7q62nRpAAAgQjksy7JMF3EpM2fO1M0336wNGzYEjn3ta1\/TwoULVVpaetmf93g8crlccrvdSktLG8xSAQBAkAz23++4oH9iELW3t2vfvn360Y9+1Ov4vHnztHv37n5\/xuv1yuv1Bp673W5J3QMJAAAig\/\/v9mDN04R1ADpz5oy6urqUmZnZ63hmZqbq6ur6\/ZnS0lI98cQTFxzPy8sblBoBAMDgaWhokMvlCvrnhnUA8nM4HL2eW5Z1wTG\/VatWaeXKlYHnTU1Nys\/PV3V19aAMoJ14PB7l5eWppqaGy4nXgHEMHsYyeBjL4GAcg8ftdmv06NFKT08flM8P6wA0YsQIxcbGXjDbU19ff8GskJ\/T6ZTT6bzguMvl4mQMkrS0NMYyCBjH4GEsg4exDA7GMXhiYgbnfq2wvgssISFB06ZN0\/bt23sd3759u0pKSgxVBQAAIl1YzwBJ0sqVK\/XAAw+oqKhIxcXF+vWvf63q6mo9\/PDDpksDAAARKuwD0OLFi9XQ0KCf\/exnqq2tVWFhobZs2aL8\/PwB\/bzT6dRPf\/rTfi+L4cowlsHBOAYPYxk8jGVwMI7BM9hjGfbrAAEAAARbWPcAAQAADAYCEAAAsB0CEAAAsB0CEAAAsJ2oDkC\/+tWvVFBQoMTERE2bNk3vvPOO6ZLC3po1a+RwOHo9srKyAq9blqU1a9YoJydHSUlJmj17tg4dOmSw4vDx9ttva8GCBcrJyZHD4dAf\/\/jHXq8PZOy8Xq8effRRjRgxQkOGDNHf\/M3f6Pjx4yH8Lcy73Dg++OCDF5yjs2bN6vUexrF7W6Dp06crNTVVGRkZWrhwoQ4fPtzrPZyTAzOQseS8HJgNGzZo8uTJgYUii4uL9frrrwdeD+U5GbUB6KWXXtKKFSu0evVq7d+\/X7fddpvmz5+v6upq06WFvUmTJqm2tjbwqKioCLz21FNPad26dVq\/fr3KysqUlZWluXPnqrm52WDF4aG1tVVTpkzR+vXr+319IGO3YsUKvfrqq9q8ebPeffddtbS06O6771ZXV1eofg3jLjeOknTnnXf2Oke3bNnS63XGUdq1a5eWLVumvXv3avv27ers7NS8efPU2toaeA\/n5MAMZCwlzsuByM3N1ZNPPqny8nKVl5drzpw5uueeewIhJ6TnpBWlZsyYYT388MO9jl1\/\/fXWj370I0MVRYaf\/vSn1pQpU\/p9zefzWVlZWdaTTz4ZOHb+\/HnL5XJZ\/\/7v\/x6iCiODJOvVV18NPB\/I2DU1NVnx8fHW5s2bA+85ceKEFRMTY23dujVktYeTvuNoWZa1dOlS65577rnozzCO\/auvr7ckWbt27bIsi3PyWvQdS8vivLwWw4YNs5599tmQn5NROQPU3t6uffv2ad68eb2Oz5s3T7t37zZUVeQ4cuSIcnJyVFBQoG9\/+9s6evSoJKmyslJ1dXW9xtXpdOr2229nXC9jIGO3b98+dXR09HpPTk6OCgsLGd8+du7cqYyMDE2cOFEPPfSQ6uvrA68xjv1zu92SFNhYknPy6vUdSz\/OyyvT1dWlzZs3q7W1VcXFxSE\/J6MyAJ05c0ZdXV0XbJiamZl5wcaq6G3mzJn63e9+pzfeeEO\/+c1vVFdXp5KSEjU0NATGjnG9cgMZu7q6OiUkJGjYsGEXfQ+k+fPna+PGjdqxY4eefvpplZWVac6cOfJ6vZIYx\/5YlqWVK1fq1ltvVWFhoSTOyavV31hKnJdXoqKiQikpKXI6nXr44Yf16quv6oYbbgj5ORn2W2FcC4fD0eu5ZVkXHENv8+fPD\/z3jTfeqOLiYo0bN04vvPBCoKGPcb16VzN2jG9vixcvDvx3YWGhioqKlJ+frz\/\/+c9atGjRRX\/OzuO4fPlyHTx4UO++++4Fr3FOXpmLjSXn5cBdd911OnDggJqamvTyyy9r6dKl2rVrV+D1UJ2TUTkDNGLECMXGxl6QBuvr6y9Ilri0IUOG6MYbb9SRI0cCd4MxrlduIGOXlZWl9vZ2NTY2XvQ9uFB2drby8\/N15MgRSYxjX48++qhee+01vfXWW8rNzQ0c55y8chcby\/5wXl5cQkKCxo8fr6KiIpWWlmrKlCn65S9\/GfJzMioDUEJCgqZNm6bt27f3Or59+3aVlJQYqioyeb1effrpp8rOzlZBQYGysrJ6jWt7e7t27drFuF7GQMZu2rRpio+P7\/We2tpaffzxx4zvJTQ0NKimpkbZ2dmSGEc\/y7K0fPlyvfLKK9qxY4cKCgp6vc45OXCXG8v+cF4OnGVZ8nq9oT8nr7JpO+xt3rzZio+Pt5577jnrk08+sVasWGENGTLEqqqqMl1aWPvhD39o7dy50zp69Ki1d+9e6+6777ZSU1MD4\/bkk09aLpfLeuWVV6yKigrrvvvus7Kzsy2Px2O4cvOam5ut\/fv3W\/v377ckWevWrbP2799vHTt2zLKsgY3dww8\/bOXm5lpvvvmm9eGHH1pz5syxpkyZYnV2dpr6tULuUuPY3Nxs\/fCHP7R2795tVVZWWm+99ZZVXFxsjRo1inHs4wc\/+IHlcrmsnTt3WrW1tYHHuXPnAu\/hnByYy40l5+XArVq1ynr77betyspK6+DBg9aPf\/xjKyYmxtq2bZtlWaE9J6M2AFmWZf3bv\/2blZ+fbyUkJFg333xzr1sW0b\/Fixdb2dnZVnx8vJWTk2MtWrTIOnToUOB1n89n\/fSnP7WysrIsp9Npff3rX7cqKioMVhw+3nrrLUvSBY+lS5daljWwsWtra7OWL19upaenW0lJSdbdd99tVVdXG\/htzLnUOJ47d86aN2+eNXLkSCs+Pt4aPXq0tXTp0gvGiHG0+h1DSdbzzz8feA\/n5MBcbiw5LwfuH\/7hHwJ\/l0eOHGl94xvfCIQfywrtOemwLMu6sjkjAACAyBaVPUAAAACXQgACAAC2QwACAAC2QwACAAC2QwACAAC2QwACAAC2QwACAAC2QwACAAC2QwACAAC2QwACAAC2QwACEFFOnz6trKwsrV27NnDs\/fffV0JCgrZt22awMgCRhL3AAEScLVu2aOHChdq9e7euv\/56TZ06VXfddZeeeeYZ06UBiBAEIAARadmyZXrzzTc1ffp0ffTRRyorK1NiYqLpsgBECAIQgIjU1tamwsJC1dTUqLy8XJMnTzZdEoAIQg8QgIh09OhRnTx5Uj6fT8eOHTNdDoAIwwwQgIjT3t6uGTNm6KabbtL111+vdevWqaKiQpmZmaZLAxAhCEAAIs4\/\/dM\/6b\/\/+7\/10UcfKSUlRXfccYdSU1P1v\/\/7v6ZLAxAhuAQGIKLs3LlTzzzzjF588UWlpaUpJiZGL774ot59911t2LDBdHkAIgQzQAAAwHaYAQIAALZDAAIAALZDAAIAALZDAAIAALZDAAIAALZDAAIAALZDAAIAALZDAAIAALZDAAIAALZDAAIAALZDAAIAALZDAAIAALbz\/wMREW7fVwuaSAAAAABJRU5ErkJggg==", "text\/plain": "<Figure size 640x480 with 1 Axes>"}, "metadata": {}, "output_type": "display_data"}]}}, "372d2a496a5f46259db10a571b9ffb16": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "3b2d03cd328c49529d82b802d05a9a90": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "3ca3ead3f99b45b2bf5a79d0f022dcfa": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": {"description_width": ""}}, "3dfd829e56824d288459d82647e0ac61": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "3f7daa758bd548edbe29ba88cd0b8388": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": {"_dom_classes": ["widget-interact"], "children": ["IPY_MODEL_99f37541ac7b4dbfac2f489c1a5b0353", "IPY_MODEL_53fc46cd75c548ca80cf284ac572e639"], "layout": "IPY_MODEL_d46db30322c046b3a3b40e07893e8e0f"}}, "409e5ad2c8d1498aa37ebe59663d605c": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "40b159f172e843e0be00be922ba726d0": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "40ddbc947f924670b1c89507cec96d03": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "40f923003f624e14ba2a6eeff1edb42c": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "41ceba8688ab4ce8b71fd02a6e2ab2c4": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "PlayModel", "state": {"description": "step", "layout": "IPY_MODEL_87d61c25a76c41e1a826e0e1bcdaf617", "max": 599, "style": "IPY_MODEL_e84b526ca1ae4e019432105a43b87ec1", "value": 19}}, "420a354128d1426c915435db89be0486": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": {"source": ["IPY_MODEL_b361054bfbfd4aa193975eb438f70d68", "value"], "target": ["IPY_MODEL_abc536027e9f46dca983b3512682b4b6", "value"]}}, "4252ab6bb32e4e3aadefa67e72c98374": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": {"description_width": ""}}, "43adcc6e3cae436381914fa8b1f71de2": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": {"_dom_classes": ["widget-interact"], "children": ["IPY_MODEL_ffd206a2fd774da69a72e07e90044435", "IPY_MODEL_af86ac9bb8014c268c8513ac6ee499e7"], "layout": "IPY_MODEL_7aac04d137c84a4d95a975fc42549096"}}, "47b1a57cdbeb4a11abc8e9166acedb90": {"model_module": "@jupyter-widgets\/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": {"layout": "IPY_MODEL_17a0e3715b704af5b5bb4230d0ea690b", "outputs": [{"data": {"image\/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG2CAYAAACXuTmvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy\/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAxiklEQVR4nO3de2zUdb7\/8df0Ni10OgWhnWmn9HQVdLVQXXAR4gXZQ3\/2rKzKnvzcdWMgJzG6gjmE3WMWyTlWs0uN+cnBE85yzl7iQY+kJmfF4++oCAYpa1j2V1iKXXQ57LFKgZYKtjNtaae3z++PMtOWtlDamfnOzPf5SCZxvnP5vvvJJLz8XB3GGCMAAAAbSbG6AAAAgFgjAAEAANshAAEAANshAAEAANshAAEAANshAAEAANshAAEAANshAAEAANshAAEAANshAAEAANuJmwBUVVUlh8Oh9evXh68ZY1RZWamCggJlZWVp2bJlOn78uHVFAgCApBAXAai2tla\/+MUvtGDBghHXX3zxRW3ZskXbtm1TbW2tPB6PVqxYofb2dosqBQAAycDyANTR0aEf\/OAH+uUvf6kZM2aErxtjtHXrVm3atEmrVq1SaWmpduzYoYsXL2rnzp0WVgwAABJdmtUFrF27Vt\/+9rf1l3\/5l\/rpT38avt7Q0KDm5maVl5eHrzmdTt1zzz06ePCgHn\/88TG\/LxgMKhgMhp8PDAzoq6++0nXXXSeHwxG9PwQAAESMMUbt7e0qKChQSkrk+2ssDUDV1dX6wx\/+oNra2lGvNTc3S5Ly8\/NHXM\/Pz9cXX3wx7ndWVVXpueeei2yhAADAEo2NjfL5fBH\/XssCUGNjo\/72b\/9We\/bsUWZm5rjvu7zXxhhzxZ6cjRs3asOGDeHnfr9fc+bMUWNjo3JycqZeOAAAiLpAIKCioiK5XK6ofL9lAejIkSNqaWnRwoULw9f6+\/t14MABbdu2TSdOnJA02BPk9XrD72lpaRnVKzSc0+mU0+kcdT0nJ4cABABAgonW9BXLJkF\/61vfUn19verq6sKPRYsW6Qc\/+IHq6ur0ta99TR6PR3v37g1\/pqenRzU1NVq6dKlVZQMAgCRgWQ+Qy+VSaWnpiGvTp0\/XddddF76+fv16bd68WXPnztXcuXO1efNmTZs2TY888ogVJQMAgCRh+SqwK3n66afV1dWlJ598Uq2trVq8eLH27NkTtfFAAABgDw5jjLG6iGgKBAJyu93y+\/3MAQIAIEFE+99vyzdCBAAAiDUCEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB3bBCB\/V6\/VJQAAgDhhmwB0tu2i1SUAAIA4YZsAdKat2+oSAABAnLBNAGpq67K6BAAAECdsE4DoAQIAACG2CUDMAQIAACH2CUB+eoAAAMAg+wSgVuYAAQCAQbYJQIHuPrV3sxcQAACwUQCSpDOsBAMAALJZADr9FQEIAADYLQC1shIMAADYLAAxBAYAACSbBaDTrAQDAAAiAAEAABuyVQBiCAwAAEg2C0BfdfaoM9hndRkAAMBitglArsxUSfQCAQAAGwWggtxpkqQzzAMCAMD2bBSAMiWxFxAAALBVAMqSJJ1mCAwAANuzTwByh3qACEAAANidfQLQpTlABCAAAGCbAFR4aQ4Qk6ABAIClAWj79u1asGCBcnJylJOToyVLlui9994Lv75mzRo5HI4RjzvuuGNS9wrNATrfEVR3b39E6gcAAIkpzcqb+3w+vfDCC7rhhhskSTt27NADDzygo0eP6pZbbpEk3XfffXrllVfCn8nIyJjUvdxZ6cp2pqkj2KfTrV26IS976n8AAABISJYGoJUrV454\/rOf\/Uzbt2\/XoUOHwgHI6XTK4\/FM+V4Oh0O+GVn6U3O7zrQRgAAAsLO4mQPU39+v6upqdXZ2asmSJeHr+\/fvV15enubNm6fHHntMLS0tV\/yeYDCoQCAw4hFSGFoKz15AAADYmuUBqL6+XtnZ2XI6nXriiSe0a9cu3XzzzZKkiooKvf7669q3b59eeukl1dbWavny5QoGg+N+X1VVldxud\/hRVFQUfs03IxSAmAgNAICdOYwxxsoCenp6dOrUKbW1tek3v\/mNfvWrX6mmpiYcgoZrampScXGxqqurtWrVqjG\/LxgMjghIgUBARUVF8vv9eqPuvH727qf6TlmB\/un7t0XtbwIAAFMTCATkdrvl9\/uVk5MT8e+3dA6QNDipOTQJetGiRaqtrdXLL7+sf\/3Xfx31Xq\/Xq+LiYp08eXLc73M6nXI6nWO+VjiDITAAABAHQ2CXM8aMO8R14cIFNTY2yuv1Tuq7GQIDAACSxT1AzzzzjCoqKlRUVKT29nZVV1dr\/\/792r17tzo6OlRZWanvfve78nq9+vzzz\/XMM89o1qxZeuihhyZ1P9+Mwd2gW9qDCvb1y5mWGsk\/BwAAJAhLA9C5c+f06KOPqqmpSW63WwsWLNDu3bu1YsUKdXV1qb6+Xq+++qra2trk9Xp177336o033pDL5ZrU\/WZMS1dWeqq6evt1tq1bJbOmR\/gvAgAAicDSAPTrX\/963NeysrL0\/vvvR\/R+ob2ATrZ06HTrRQIQAAA2FXdzgKItNA+IM8EAALAv2wWgQiZCAwBge7YLQKGJ0CyFBwDAvmwYgC4NgbXRAwQAgF3ZLgANnQdGAAIAwK5sF4BCQ2DNgW719A1YXA0AALCC7QLQrOwMOdNSZIzU7O+2uhwAAGAB2wUgh8PBmWAAANic7QKQNHwlGPOAAACwI5sGoEs9QKwEAwDAlmwZgIZWgjEEBgCAHdkyAPnYDRoAAFuzaQAanAPEeWAAANiTTQPQYA9Qc6Bbff3sBQQAgN3YMgDNznYqIzVF\/QNGTewFBACA7dgyAKWkDO0FxJlgAADYjy0DkMSZYAAA2JltA5CP3aABALAt2wcgVoIBAGA\/tg1AhewFBACAbdk2AIXPA2tjCAwAALuxcQAa7AFqautW\/4CxuBoAABBLtg1Aea5MpaU41DdgdC7AXkAAANiJbQNQaopDBSyFBwDAlmwbgKRhK8GYBwQAgK3YOgCFN0P8ih4gAADsxNYBKLwSjCEwAABsxeYBiPPAAACwI1sHoEKOwwAAwJZsHYBCPUBn27o1wF5AAADYhq0DkCcnU6kpDvX0D+jLjqDV5QAAgBixdQBKS02RJydTEsNgAADYia0DkDQ0DMZKMAAA7IMAxFJ4AABsx\/YBqJAeIAAAbMfSALR9+3YtWLBAOTk5ysnJ0ZIlS\/Tee++FXzfGqLKyUgUFBcrKytKyZct0\/PjxiNbgYyk8AAC2Y2kA8vl8euGFF3T48GEdPnxYy5cv1wMPPBAOOS+++KK2bNmibdu2qba2Vh6PRytWrFB7e3vkamAzRAAAbMfSALRy5Ur91V\/9lebNm6d58+bpZz\/7mbKzs3Xo0CEZY7R161Zt2rRJq1atUmlpqXbs2KGLFy9q586dEavBlzs4B+hMa5eMYS8gAADsIG7mAPX396u6ulqdnZ1asmSJGhoa1NzcrPLy8vB7nE6n7rnnHh08eDBi9\/W4M5XikIJ97AUEAIBdpFldQH19vZYsWaLu7m5lZ2dr165duvnmm8MhJz8\/f8T78\/Pz9cUXX4z7fcFgUMHgUJAJBAJXvH9G2uBeQGf93TrT2qU8V+YU\/hoAAJAILO8BuvHGG1VXV6dDhw7phz\/8oVavXq1PPvkk\/LrD4RjxfmPMqGvDVVVVye12hx9FRUVXrYGVYAAA2IvlASgjI0M33HCDFi1apKqqKpWVlenll1+Wx+ORJDU3N494f0tLy6heoeE2btwov98ffjQ2Nl61BvYCAgDAXiwPQJczxigYDKqkpEQej0d79+4Nv9bT06OamhotXbp03M87nc7wsvrQ42qGVoKxFB4AADuwdA7QM888o4qKChUVFam9vV3V1dXav3+\/du\/eLYfDofXr12vz5s2aO3eu5s6dq82bN2vatGl65JFHIlpHYS5DYAAA2ImlAejcuXN69NFH1dTUJLfbrQULFmj37t1asWKFJOnpp59WV1eXnnzySbW2tmrx4sXas2ePXC5XROtgCAwAAHtxmCTf\/CYQCMjtdsvv9487HPb5+U4t+z\/7lZWeqk+e\/19XnGQNAACibyL\/fk9F3M0BsoI3d3Dpe1dvv77q7LG4GgAAEG0EIEnOtFTl5zglMQwGAIAdEIAuCc0D4kwwAACSHwHokqGVYCyFBwAg2RGALvGxGzQAALZBALokPARGAAIAIOkRgC7hPDAAAOyDAHTJ0BDYRSX51kgAANgeAeiS0CTozp5++bt6La4GAABEEwHoksz0VM3KZi8gAADsgAA0zPBhMAAAkLwIQMMwERoAAHsgAA3DXkAAANgDAWiY0F5ABCAAAJIbAWgY36WVYJwHBgBAciMADcMkaAAA7IEANExoEnR7dx97AQEAkMQIQMNMy0jTzOkZkjgTDACAZEYAugzDYAAAJD8C0GVYCg8AQPIjAF2mkJVgAAAkPQLQZYb2AmIIDACAZEUAugxDYAAAJD8C0GVCS+EZAgMAIHkRgC4TmgPUdrFX7d3sBQQAQDIiAF3GlZmu3GnpkugFAgAgWRGAxhBeCcY8IAAAkhIBaAxMhAYAILkRgMbAUngAAJIbAWgMbIYIAEByIwCNgSEwAACSGwFoDENDYAQgAACSEQFoDKHNEL\/q7NHFnj6LqwEAAJFGABqDOytdrsw0SSyFBwAgGRGAxsEwGAAAyYsANI7QSrDTrAQDACDpWBqAqqqqdPvtt8vlcikvL08PPvigTpw4MeI9a9askcPhGPG44447ol7b0Eow9gICACDZWBqAampqtHbtWh06dEh79+5VX1+fysvL1dnZOeJ99913n5qamsKPd999N+q1sRQeAIDklWblzXfv3j3i+SuvvKK8vDwdOXJEd999d\/i60+mUx+OJaW2hAMQkaAAAYu\/tujNR\/f64mgPk9\/slSTNnzhxxff\/+\/crLy9O8efP02GOPqaWlZdzvCAaDCgQCIx6TwSRoAACs0dM3oGf\/7ydRvUfcBCBjjDZs2KA777xTpaWl4esVFRV6\/fXXtW\/fPr300kuqra3V8uXLFQwGx\/yeqqoqud3u8KOoqGhS9YR6gM53BNXd2z+p7wAAANfuT80B9fYNRPUelg6BDbdu3Tp9\/PHH+uijj0Zcf\/jhh8P\/XVpaqkWLFqm4uFjvvPOOVq1aNep7Nm7cqA0bNoSfBwKBSYUgd1a6pmekqrOnX2faunT97Oxr\/g4AAHDt6hrbon6PuAhATz31lN5++20dOHBAPp\/viu\/1er0qLi7WyZMnx3zd6XTK6XROuSaHwyHfjGk6ca5dp1sJQAAAxErdqbao38PSITBjjNatW6c333xT+\/btU0lJyVU\/c+HCBTU2Nsrr9Ua9PpbCAwAQe3Wn26J+D0sD0Nq1a\/Xv\/\/7v2rlzp1wul5qbm9Xc3KyursGJxx0dHfrxj3+s3\/3ud\/r888+1f\/9+rVy5UrNmzdJDDz0U9foKWQkGAEBM+S\/26rMvO6\/+ximyNABt375dfr9fy5Ytk9frDT\/eeOMNSVJqaqrq6+v1wAMPaN68eVq9erXmzZun3\/3ud3K5XFGvj72AAACIrY\/PtEmSimZmRfU+ls4BMsZc8fWsrCy9\/\/77MapmtKGl8AyBAQAQC6H5P\/ML3DoYxfvEzTL4eBQ6D+wM54EBABATxy7N\/5nvc0f1PgSgKwgNgZ0LBBXsYy8gAACiyRgTXgJfWkgAsszM6RnKSk+VJJ1t67a4GgAAktuZti6d7+hRWopDX\/fmRPVeBKArcDgcrAQDACBGQr0\/X\/fmKPNSB0S0EICugr2AAACIjWOXAtCtRblRvxcB6CpYCg8AQGyEeoDKCEDWK8wdXArPSjAAAKKnr39A9Wf8kugBigsMgQEAEH0nzrWru3dArsw0fW3W9KjfjwB0FQyBAQAQfccaB3t\/yny5SklxRP1+BKCrKAzvBdStnr4Bi6sBACA51TW2SpLKiqK7\/08IAegqZmc75UxL0YCRmv3sBQQAQDSEeoBuLZoRk\/sRgK5i+F5AzAMCACDyOoJ9+u+Wdkn0AMWV0Jlgp1kJBgBAxH18uk3GDP57m+fKjMk9CUATMHQqPAEIAIBIGxr+yo3ZPQlAE8BSeAAAoifWE6AlAtCE+DgPDACAqIn1BGiJADQh7AUEAEB0NPu71RzoVmqKQ6WF0T0BfjgC0ASE5gA1B7rV189eQAAAREro\/K95+S5Ny0iL2X0JQBMwO9upjNQU9Q8YNQfYCwgAgEipC58AH7v5PxIBaEJSUhwqyB1clscwGAAAkXMsHIByY3pfAtAEsRQeAIDI6h8w+vh0mySpjAAUn0KbIbISDACAyPifLzvU2dOvaRmpmpvnium9CUATxF5AAABEVt2pNknS\/EK3UmNwAvxwBKAJ8s1kKTwAAJFUd2n469Y5uTG\/NwFoggpzB+cAneE8MAAAIiLUA3SrLzfm9yYATVBoCOxsW5f6B4zF1QAAkNi6evp14tzgCfD0AMWx\/JxMpaU41DdgdI69gAAAmJI\/nvWrf8AoP8cprzsr5vcnAE1QaopD3kt7ATEMBgDA1ISGv8osGP6SCEDXxJcb2guIlWAAAEyFlROgJQLQNQkvhf+KHiAAAKbCygnQEgHomhReCkAMgQEAMHlftgd1pq1LDoc03xfbM8BCCEDXgOMwAACYutD5XzfMzpYrM92SGghA14DdoAEAmLpjofk\/MT7\/azgC0DUInQd2tq1bA+wFBADApNRd6gGK9QGowxGAroHXnanUFId6+gf0ZUfQ6nIAAEg4AwMmPARm2x6gqqoq3X777XK5XMrLy9ODDz6oEydOjHiPMUaVlZUqKChQVlaWli1bpuPHj1tSb1pqijw5g3sBMQwGAMC1a7jQqUB3n5xpKbrRE9sT4IezNADV1NRo7dq1OnTokPbu3au+vj6Vl5ers7Mz\/J4XX3xRW7Zs0bZt21RbWyuPx6MVK1aovb3dkpoLZ3AoKgAAkxXq\/Zlf6FZ6qnUxJM2yO0vavXv3iOevvPKK8vLydOTIEd19990yxmjr1q3atGmTVq1aJUnasWOH8vPztXPnTj3++OMxr9k3I0v\/r4EABADAZMTD\/B9pkgHo+eefv+Lr\/\/AP\/zCpYvx+vyRp5syZkqSGhgY1NzervLw8\/B6n06l77rlHBw8eHDMABYNBBYND83MCgcCkahkPS+EBAJi8eJj\/I00yAO3atWvE897eXjU0NCgtLU3XX3\/9pAKQMUYbNmzQnXfeqdLSUklSc3OzJCk\/P3\/Ee\/Pz8\/XFF1+M+T1VVVV67rnnrvn+E+XLZTNEAAAmo7u3X580DXZMJGQAOnr06KhrgUBAa9as0UMPPTSpQtatW6ePP\/5YH3300ajXHA7HiOfGmFHXQjZu3KgNGzaMqKuoqGhSNY2FvYAAAJicT5sC6u03um56RvjfU6tEbPZRTk6Onn\/+ef393\/\/9NX\/2qaee0ttvv60PP\/xQPp8vfN3j8Uga6gkKaWlpGdUrFOJ0OpWTkzPiEUmhIbAzrV0yhr2AAACYqLphw1\/jdWTESkSnX7e1tYXn8UyEMUbr1q3Tm2++qX379qmkpGTE6yUlJfJ4PNq7d2\/4Wk9Pj2pqarR06dKI1X0tPO5MORxSsG9A5zt6LKkBAIBEdCxOJkBLkxwC+6d\/+qcRz40xampq0muvvab77rtvwt+zdu1a7dy5U\/\/5n\/8pl8sV7ulxu93KysqSw+HQ+vXrtXnzZs2dO1dz587V5s2bNW3aND3yyCOTKX3KMtIG9wJq8nfrdOtFzXY5LakDAIBEUxcnE6ClSQagf\/zHfxzxPCUlRbNnz9bq1au1cePGCX\/P9u3bJUnLli0bcf2VV17RmjVrJElPP\/20urq69OSTT6q1tVWLFy\/Wnj175HJZt3mSb0bWpQDUpdvmzLCsDgAAEkVrZ48+vzA4f7bMl2ttMZpkAGpoaIjIzScyh8bhcKiyslKVlZURuWckFOZmqVatrAQDAGCCQgegfm3WdLmnWXMC\/HCcBTYJQ3sBsRIMAICJiJcNEEMIQJPAcRgAAFybeNkAMYQANAmhvQvOEIAAALgqYww9QMlg+HEY7AUEAMCVNX7VpdaLvcpITdHXvdYtYhqOADQJXnemJKmrt19fdbIXEAAAV3K0sVWS9PWCHDnTUi2uZhABaBIy01OVd2n\/H1aCAQBwZccaBzdJvi1Ohr8kAtCk+ZgIDQDAhNRd6gEqK3JbXMkQAtAkFbIUHgCAq+rtH9Afz4ZOgI+fzYMJQJPESjAAAK7uT03t6ukbkDsrXX9x3TSrywkjAE0SQ2AAAFxd3aUdoMvi4AT44QhAk1SYSwACAOBq6k61SYqfDRBDCECTFNoL6EwbewEBADCe0Blgt8bRBGiJADRpoSGwjmCf\/F29FlcDAED8CXT36n++7JAUHyfAD0cAmqTM9FTNys6QxDAYAABjqT\/tlzFS0cwsXZfttLqcEQhAU1A47EgMAAAwUl34ANT4Wf4eQgCagqGVYOwFBADA5Y5emgBd5ouv+T8SAWhKfKwEAwBgTMNPgL9tTq6ltYyFADQF4c0QOQ8MAIARzvq7db4jqLQUh24poAcoqfiYAwQAwJiOXer9ucnrUmZ6fJwAPxwBaAoKmQMEAMCYQsNf8bb8PYQANAWh3aDbu9kLCACA4YZWgOVaWsd4CEBTMN2ZppnTB\/cC4lBUAAAG9fUPqP60XxIBKGkNnQnGMBgAAJJ0sqVDXb39ynam6frZ2VaXMyYC0BSxEgwAgJFCw18LfG6lpMTPCfDDEYCmaGgzRAIQAADS0AqweB3+kghAU8YQGAAAI8X7BGiJADRlob2AGAIDAEDqDPbpv8+1SyIAJTXfTIbAAAAIqT\/j14CRCtyZysvJtLqccRGApig0BNZ2sVcdwT6LqwEAwFqh+T9lcdz7IxGApsyVmS53Vrok9gICACAR5v9IBKCI8HEkBgAAkoYdgUEASn5DK8HoAQIA2Ne5QLea\/N1KcUjzC+PvBPjhCEARwEowAACGen\/m5bs03ZlmbTFXQQCKAIbAAABIjA0QQwhAEVDIbtAAACTM\/B\/J4gB04MABrVy5UgUFBXI4HHrrrbdGvL5mzRo5HI4RjzvuuMOaYq8gfB4YAQgAYFMDA0Yfx\/kJ8MNZGoA6OztVVlambdu2jfue++67T01NTeHHu+++G8MKJyY0B+hCZ48u9rAXEADAfv7nyw51BPuUlZ6quXnxeQL8cJbOUKqoqFBFRcUV3+N0OuXxeGJU0eS4s9LlcqapPdinM61dmpvvsrokAABiKjT8Nd\/nVlpq\/M+wifsK9+\/fr7y8PM2bN0+PPfaYWlparvj+YDCoQCAw4hEL4XlArAQDANhQomyAGBLXAaiiokKvv\/669u3bp5deekm1tbVavny5gsHguJ+pqqqS2+0OP4qKimJSa2gYjInQAAA7Ona6TVLiBKC4XqT\/8MMPh\/+7tLRUixYtUnFxsd555x2tWrVqzM9s3LhRGzZsCD8PBAIxCUEshQcA2FV3b7\/+1BT\/J8APF9cB6HJer1fFxcU6efLkuO9xOp1yOp0xrGoQK8EAAHZ1\/KxffQNGs11Oed3xewL8cHE9BHa5CxcuqLGxUV6v1+pSRvGxFxAAwKaOnmqTNNj743A4rC1mgiztAero6NCf\/\/zn8POGhgbV1dVp5syZmjlzpiorK\/Xd735XXq9Xn3\/+uZ555hnNmjVLDz30kIVVj60wlzlAAAB7OpZA+\/+EWBqADh8+rHvvvTf8PDR3Z\/Xq1dq+fbvq6+v16quvqq2tTV6vV\/fee6\/eeOMNuVzxt8w81AN0viOo7t5+ZaanWlwRAACxUdfYKokANGHLli2TMWbc199\/\/\/0YVjM1udPSNT0jVZ09\/TrT1qXrZ8f\/JlAAAEzVhY6gGr\/qksMxuAdQokioOUDxzOFwcCYYAMB2Qsvfr5+drZzMdGuLuQYEoAgK7QXESjAAgF3UXZoAXebLtbSOa0UAiiD2AgIA2E1daAL0nFxrC7lGBKAIKsxlCAwAYB\/GGB0LHYFBD5B9hYfAOA8MAGADn1+4KH9XrzLSUnSTN\/5WaF8JASiCGAIDANhJaPl7aUGO0hPgBPjhEqvaOBdaBXYuEFSwr9\/iagAAiK5jjaENEGdYXMm1IwBF0HXTM5SZPtikTW3dFlcDAEB0Hb00\/6esKHH2\/wkhAEWQw+EIzwNiIjQAIJkF+\/r16dmAJOk2eoAwtBKMeUAAgOT1aVO7evoHNHN6hopmZlldzjUjAEVYaCI0K8EAAMkstPy9zOdOmBPghyMARRhDYAAAO6gL7f+TgMNfEgEo4gpZCg8AsIFjCTwBWiIARVx4CIweIABAkvJf7NVn5zslSbcW5VpbzCQRgCIsFICaA93q6RuwuBoAACIvdAL8X1w3TbnTMqwtZpIIQBE2a7pTGWkpGjBSs5+9gAAAyWdo\/k+upXVMBQEowlJSHPKFlsK3MQ8IAJB8hub\/5Fpax1QQgKJgaCI084AAAMnFGEMPEMbmIwABAJLU6dYuXejsUXqqQ1\/35lhdzqQRgKIgtBcQK8EAAMkm1PtzszdHmemp1hYzBQSgKPCxFxAAIEnVJcH8H4kAFBVD54HRAwQASC7HkmD+j0QAiorQEFhzoFt9\/ewFBABIDr39A6o\/45dEDxDGkOdyKj3Vof4Bo+YAewEBAJLDieZ2BfsGlJOZppLrpltdzpQQgKIgJcWhAobBAABJZvj8n5SUxDsBfjgCUJRwJhgAINkky\/wfiQAUNb7cwXlA9AABAJJFMmyAGEIAipJClsIDAJJIe3ev\/vxlh6TEnwAtEYCiJjwE1kYPEAAg8dWf9suYwX\/fZmU7rS5nyghAURJaCs8QGAAgGdSdbpOUHL0\/EgEoakJDYGfbutQ\/YCyuBgCAqak71SZJuo0AhCvJdzmVluJQ34BRSzt7AQEAEtsxeoAwEWmpKfLmZkpiGAwAkNia\/F06FwgqNcWh0gK31eVEBAEoiobOBGMlGAAgcYWGv27MdykrI3FPgB+OABRFoYnQbIYIAEhkoQnQt87JtbSOSLI0AB04cEArV65UQUGBHA6H3nrrrRGvG2NUWVmpgoICZWVladmyZTp+\/Lg1xU6CbwbHYQAAEl+oB+hWX66ldUSSpQGos7NTZWVl2rZt25ivv\/jii9qyZYu2bdum2tpaeTwerVixQu3t7TGudHIKOQ8MAJDg+gdM+AT4ZOoBSrPy5hUVFaqoqBjzNWOMtm7dqk2bNmnVqlWSpB07dig\/P187d+7U448\/HstSJyU8BMZmiACABHWypV0Xe\/o1PSNV18\/OtrqciInbOUANDQ1qbm5WeXl5+JrT6dQ999yjgwcPjvu5YDCoQCAw4mGV4QeiDrAXEAAgAYUOQF3gy1Vqgp8AP1zcBqDm5mZJUn5+\/ojr+fn54dfGUlVVJbfbHX4UFRVFtc4r8bgzleKQevoH9GVH0LI6AACYrPABqEk0\/CXFcQAKcThGpk1jzKhrw23cuFF+vz\/8aGxsjHaJ40pPTZHXzTwgAEDiqmscnP9TlkQToKU4DkAej0eSRvX2tLS0jOoVGs7pdConJ2fEw0rsBQQASFQXe\/p0onlwKslt9ADFRklJiTwej\/bu3Ru+1tPTo5qaGi1dutTCyq4NS+EBAInqj2cCGjCSJydT+TmZVpcTUZauAuvo6NCf\/\/zn8POGhgbV1dVp5syZmjNnjtavX6\/Nmzdr7ty5mjt3rjZv3qxp06bpkUcesbDqaxOeCM1KMABAgqlrbJUk3Zok538NZ2kAOnz4sO69997w8w0bNkiSVq9erX\/7t3\/T008\/ra6uLj355JNqbW3V4sWLtWfPHrlcLqtKvmaF9AABABLUsdD8HwJQZC1btkzGjL883OFwqLKyUpWVlbErKsJCewExBwgAkGjCK8CSMADF7RygZDF8L6ArhT0AAOJJS3u3zrR1yeGQ5vuS4wT44QhAUeZ1Z8nhkIJ9Azrf0WN1OQAATEho+GtenkvZTksHjKKCABRlGWkpyncNzpxnGAwAkChCO0CXFSVf749EAIoJVoIBABLN0PyfGdYWEiUEoBhgJRgAIJEMDBh6gDB1Q5shMgQGAIh\/n53vVHuwT5npKboxP3G2nrkWBKAYCC2FP0MPEAAgAYSGv+YXupWWmpxRITn\/qjgzdB4YAQgAEP+OJfH+PyEEoBgYfh4YewEBAOJdsk+AlghAMVFwqQeoq7dfrRd7La4GAIDxdff269OmwRPgk3UCtEQAionM9FTNdjklMREaABDfjp8NqG\/AaFa2MzyFIxkRgGLEx1J4AEACGJr\/45bD4bC2mCgiAMUIK8EAAIkgmQ9AHY4AFCNDK8EYAgMAxK9jp9skSWUEIEQCQ2AAgHj3VWePvrgw+D\/qC3y51hYTZQSgGOE8MABAvAv1\/nxt9nS5s9KtLSbKCEAxwl5AAIB4V3eqTVLyz\/+RCEAxU5g7OAm6I9gnfxd7AQEA4k+oB4gAhIjJykjVrOwMScwDAgDEH2OMLY7ACCEAxRBnggEA4tWpry6q9WKvMtJSdJMnx+pyoi7N6gLsxDdjmo6d9uuJfz9idSkAAIzploIcZaQlf\/9I8v+FceSeG2criTfVBAAkgfsXFFhdQkzQAxRD\/3tRkSpKPerpG7C6FAAARklPS1FOZnIvfw8hAMWYyyY\/LAAA4hlDYAAAwHYIQAAAwHYIQAAAwHYIQAAAwHYIQAAAwHYIQAAAwHYIQAAAwHYIQAAAwHYIQAAAwHYIQAAAwHYIQAAAwHbiOgBVVlbK4XCMeHg8HqvLAgAACS7uD0O95ZZb9MEHH4Sfp6amWlgNAABIBnEfgNLS0uj1AQAAERXXQ2CSdPLkSRUUFKikpETf+9739Nlnn1ldEgAASHBx3QO0ePFivfrqq5o3b57OnTunn\/70p1q6dKmOHz+u6667bszPBINBBYPB8PNAIBCrcgEAQIJwGGOM1UVMVGdnp66\/\/no9\/fTT2rBhw5jvqays1HPPPTfqut\/vV05OTrRLBAAAERAIBOR2u6P273fcD4ENN336dM2fP18nT54c9z0bN26U3+8PPxobG2NYIQAASARxPQR2uWAwqE8\/\/VR33XXXuO9xOp1yOp0xrAoAACSauO4B+vGPf6yamho1NDTo97\/\/vf76r\/9agUBAq1evtro0AACQwOK6B+j06dP6\/ve\/r\/Pnz2v27Nm64447dOjQIRUXF1tdGgAASGBxHYCqq6utLgEAACShuB4CAwAAiAYCEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsJ2ECEA\/\/\/nPVVJSoszMTC1cuFC\/\/e1vrS4JAAAksLgPQG+88YbWr1+vTZs26ejRo7rrrrtUUVGhU6dOWV0aAABIUA5jjLG6iCtZvHixvvGNb2j79u3ha1\/\/+tf14IMPqqqq6qqfDwQCcrvd8vv9ysnJiWapAAAgQqL973daxL8xgnp6enTkyBH95Cc\/GXG9vLxcBw8eHPMzwWBQwWAw\/Nzv90sabEgAAJAYQv9uR6ufJq4D0Pnz59Xf36\/8\/PwR1\/Pz89Xc3DzmZ6qqqvTcc8+Nul5UVBSVGgEAQPRcuHBBbrc74t8b1wEoxOFwjHhujBl1LWTjxo3asGFD+HlbW5uKi4t16tSpqDSgnQQCARUVFamxsZHhxCmgHSOHtowc2jIyaMfI8fv9mjNnjmbOnBmV74\/rADRr1iylpqaO6u1paWkZ1SsU4nQ65XQ6R113u938GCMkJyeHtowA2jFyaMvIoS0jg3aMnJSU6KzXiutVYBkZGVq4cKH27t074vrevXu1dOlSi6oCAACJLq57gCRpw4YNevTRR7Vo0SItWbJEv\/jFL3Tq1Ck98cQTVpcGAAASVNwHoIcfflgXLlzQ888\/r6amJpWWlurdd99VcXHxhD7vdDr17LPPjjkshmtDW0YG7Rg5tGXk0JaRQTtGTrTbMu73AQIAAIi0uJ4DBAAAEA0EIAAAYDsEIAAAYDsEIAAAYDtJHYB+\/vOfq6SkRJmZmVq4cKF++9vfWl1S3KusrJTD4Rjx8Hg84deNMaqsrFRBQYGysrK0bNkyHT9+3MKK48eBAwe0cuVKFRQUyOFw6K233hrx+kTaLhgM6qmnntKsWbM0ffp0fec739Hp06dj+FdY72rtuGbNmlG\/0TvuuGPEe2jHwWOBbr\/9drlcLuXl5enBBx\/UiRMnRryH3+TETKQt+V1OzPbt27VgwYLwRpFLlizRe++9F349lr\/JpA1Ab7zxhtavX69Nmzbp6NGjuuuuu1RRUaFTp05ZXVrcu+WWW9TU1BR+1NfXh1978cUXtWXLFm3btk21tbXyeDxasWKF2tvbLaw4PnR2dqqsrEzbtm0b8\/WJtN369eu1a9cuVVdX66OPPlJHR4fuv\/9+9ff3x+rPsNzV2lGS7rvvvhG\/0XfffXfE67SjVFNTo7Vr1+rQoUPau3ev+vr6VF5ers7OzvB7+E1OzETaUuJ3ORE+n08vvPCCDh8+rMOHD2v58uV64IEHwiEnpr9Jk6S++c1vmieeeGLEtZtuusn85Cc\/saiixPDss8+asrKyMV8bGBgwHo\/HvPDCC+Fr3d3dxu12m3\/5l3+JUYWJQZLZtWtX+PlE2q6trc2kp6eb6urq8HvOnDljUlJSzO7du2NWezy5vB2NMWb16tXmgQceGPcztOPYWlpajCRTU1NjjOE3ORWXt6Ux\/C6nYsaMGeZXv\/pVzH+TSdkD1NPToyNHjqi8vHzE9fLych08eNCiqhLHyZMnVVBQoJKSEn3ve9\/TZ599JklqaGhQc3PziHZ1Op265557aNermEjbHTlyRL29vSPeU1BQoNLSUtr3Mvv371deXp7mzZunxx57TC0tLeHXaMex+f1+SQofLMlvcvIub8sQfpfXpr+\/X9XV1ers7NSSJUti\/ptMygB0\/vx59ff3jzowNT8\/f9TBqhhp8eLFevXVV\/X+++\/rl7\/8pZqbm7V06VJduHAh3Ha067WbSNs1NzcrIyNDM2bMGPc9kCoqKvT6669r3759eumll1RbW6vly5crGAxKoh3HYozRhg0bdOedd6q0tFQSv8nJGqstJX6X16K+vl7Z2dlyOp164okntGvXLt18880x\/03G\/VEYU+FwOEY8N8aMuoaRKioqwv89f\/58LVmyRNdff7127NgRntBHu07eZNqO9h3p4YcfDv93aWmpFi1apOLiYr3zzjtatWrVuJ+zczuuW7dOH3\/8sT766KNRr\/GbvDbjtSW\/y4m78cYbVVdXp7a2Nv3mN7\/R6tWrVVNTE349Vr\/JpOwBmjVrllJTU0elwZaWllHJElc2ffp0zZ8\/XydPngyvBqNdr91E2s7j8ainp0etra3jvgejeb1eFRcX6+TJk5Jox8s99dRTevvtt\/Xhhx\/K5\/OFr\/ObvHbjteVY+F2OLyMjQzfccIMWLVqkqqoqlZWV6eWXX475bzIpA1BGRoYWLlyovXv3jri+d+9eLV261KKqElMwGNSnn34qr9erkpISeTyeEe3a09Ojmpoa2vUqJtJ2CxcuVHp6+oj3NDU16Y9\/\/CPtewUXLlxQY2OjvF6vJNoxxBijdevW6c0339S+fftUUlIy4nV+kxN3tbYcC7\/LiTPGKBgMxv43OclJ23GvurrapKenm1\/\/+tfmk08+MevXrzfTp083n3\/+udWlxbUf\/ehHZv\/+\/eazzz4zhw4dMvfff79xuVzhdnvhhReM2+02b775pqmvrzff\/\/73jdfrNYFAwOLKrdfe3m6OHj1qjh49aiSZLVu2mKNHj5ovvvjCGDOxtnviiSeMz+czH3zwgfnDH\/5gli9fbsrKykxfX59Vf1bMXakd29vbzY9+9CNz8OBB09DQYD788EOzZMkSU1hYSDte5oc\/\/KFxu91m\/\/79pqmpKfy4ePFi+D38Jifmam3J73LiNm7caA4cOGAaGhrMxx9\/bJ555hmTkpJi9uzZY4yJ7W8yaQOQMcb88z\/\/sykuLjYZGRnmG9\/4xoglixjbww8\/bLxer0lPTzcFBQVm1apV5vjx4+HXBwYGzLPPPms8Ho9xOp3m7rvvNvX19RZWHD8+\/PBDI2nUY\/Xq1caYibVdV1eXWbdunZk5c6bJysoy999\/vzl16pQFf411rtSOFy9eNOXl5Wb27NkmPT3dzJkzx6xevXpUG9GOZsw2lGReeeWV8Hv4TU7M1dqS3+XE\/c3f\/E343+XZs2ebb33rW+HwY0xsf5MOY4y5tj4jAACAxJaUc4AAAACuhAAEAABshwAEAABshwAEAABshwAEAABshwAEAABshwAEAABshwAEAABshwAEAABshwAEAABshwAEIKF8+eWX8ng82rx5c\/ja73\/\/e2VkZGjPnj0WVgYgkXAWGICE8+677+rBBx\/UwYMHddNNN+m2227Tt7\/9bW3dutXq0gAkCAIQgIS0du1affDBB7r99tt17Ngx1dbWKjMz0+qyACQIAhCAhNTV1aXS0lI1Njbq8OHDWrBggdUlAUggzAECkJA+++wznT17VgMDA\/riiy+sLgdAgqEHCEDC6enp0Te\/+U3deuutuummm7RlyxbV19crPz\/f6tIAJAgCEICE83d\/93f6j\/\/4Dx07dkzZ2dm699575XK59F\/\/9V9WlwYgQTAEBiCh7N+\/X1u3btVrr72mnJwcpaSk6LXXXtNHH32k7du3W10egARBDxAAALAdeoAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDt\/H+Rca6BQhfqwwAAAABJRU5ErkJggg==", "text\/plain": "<Figure size 640x480 with 1 Axes>"}, "metadata": {}, "output_type": "display_data"}]}}, "4dcc29bcdeb94273acb042225680f938": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "IntSliderModel", "state": {"behavior": "drag-tap", "layout": "IPY_MODEL_14edd910ef6d411ebd1f6a033170c065", "max": 149, "style": "IPY_MODEL_a7c8a0264f214268bfafc38c4c68055d", "value": 149}}, "4ed234d89eda4e43ac8997df827fca2b": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "4f582ece1f6c4bffb37cc399e7ef4d24": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": {"source": ["IPY_MODEL_ebe4490fa75a4192ba04152508adf1b4", "value"], "target": ["IPY_MODEL_b7b5d8c7976e490db14a6f301a8d5fca", "value"]}}, "50615551594a42e7a11ed3bdcdb1d54d": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "51133886767c414982d9467cbffad013": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": {"_dom_classes": ["widget-interact"], "children": ["IPY_MODEL_a6e490f9a95046848e772f941811ea6e", "IPY_MODEL_8d43b8903d1c4542ac1d493441e99717"], "layout": "IPY_MODEL_66863e16ccde42d696e20af577f2f832"}}, "5167c4cc034847b4b27e66350ad543ed": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": {"source": ["IPY_MODEL_68fb9a92340e434d85fbcc8de67c1970", "value"], "target": ["IPY_MODEL_b0c6e5b072744bb8aad4aa1c343ebe1e", "value"]}}, "517f04b914134b6ba5c09a4caa017bdc": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "51e8446de9bf4b1492c6377090f082a9": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "PlayModel", "state": {"description": "step", "layout": "IPY_MODEL_40f923003f624e14ba2a6eeff1edb42c", "max": 199, "style": "IPY_MODEL_961bbf4dea01495c90b3a8be804ceea6", "value": 199}}, "524aceb8e5864ec0b0558674c565b80e": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": {"_dom_classes": ["widget-interact"], "children": ["IPY_MODEL_41ceba8688ab4ce8b71fd02a6e2ab2c4", "IPY_MODEL_894a4ad9cfb04c80bd06a8491a9b3c14"], "layout": "IPY_MODEL_e043ddd08fa044f0805e72d08d64fb52"}}, "53fc46cd75c548ca80cf284ac572e639": {"model_module": "@jupyter-widgets\/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": {"layout": "IPY_MODEL_fe5db7fffd844d8983fe53f0eaa44849", "outputs": [{"data": {"image\/png": "iVBORw0KGgoAAAANSUhEUgAAAkkAAADqCAYAAAC2l9FdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy\/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABpZElEQVR4nO29fbAcV3nn\/z2nu2f0Yuli83KvFL+gDXIcbHC8hnhtSMxLLOJgYkJVIDhFTN7KrGwvQmxsHHYXiyIScmqFt9Zg4iQVe9mwphIwSyWwkVLBcrzaLDYYcEzWYRfFdojvTwSErixLM9N9zu+P06f79Olz+mVm7szcq+dDGc10n+npO3em53O\/z9OnmZRSgiAIgiAIgijAp70DBEEQBEEQswhJEkEQBEEQhAOSJIIgCIIgCAckSQRBEARBEA5IkgiCIAiCIByQJBEEQRAEQTggSSIIgiAIgnBAkkQQBEEQBOGAJIkgCIIgCMIBSRJBEARBEISDqUrSQw89hLe85S3YvHkzGGP4\/Oc\/X1gvpcTtt9+OzZs3Y+3atXjd616HJ554ojCm1+vh5ptvxote9CKsX78eP\/\/zP49\/\/Md\/nOBPQRAEQRDEamSqknTixAlcfPHFuOuuu5zr77jjDuzbtw933XUXHnnkESwsLOCqq67C8ePHszE7duzAAw88gPvvvx8PP\/wwnnvuOVxzzTVIkmRSPwZBEARBEKsQNisXuGWM4YEHHsBb3\/pWACpF2rx5M3bs2IFbb70VgEqN5ufnsXfvXtxwww04duwYXvziF+NTn\/oU3vGOdwAA\/umf\/gnnnHMOvvjFL+JNb3rTtH4cgiAIgiBWOOG0d8DH4cOHsbi4iG3btmXLut0urrzyShw6dAg33HADvvrVr2IwGBTGbN68GRdddBEOHTrklaRer4der5fdF0LgBz\/4AV74wheCMbZ8PxRBEARBEGNDSonjx49j8+bN4Hz8xbGZlaTFxUUAwPz8fGH5\/Pw8nnrqqWxMp9PBmWeeWRqjH+9iz5492LVr15j3mCAIgiCIafDMM8\/g7LPPHvt2Z1aSNHayI6WsTXvqxtx2223YuXNndv\/YsWM499xz8Q+P\/wHm4h7Yc88BR48BS88DSychfngSYqmP5JhA\/xhD70SE55\/v4LleB8\/1IywNIjyXhPhhn2MggUQwDCQwEOl\/kmEgJGIBxAIYSCAWUq1LJAZCYgCBgRCIIZBIAQGJBAkEVDU0YQkSJJAQiFkMAYEEA0hIxGwAIQeQxrJEDvLXA6o\/K5ExAECk\/0op0n8HhfvmWLW83N8lrGXCGJ8\/TpSWuZCOxzal6XMQBEHUwdjwSQRjzb5O7efgjsdxFjgely8L0seY22IsKizT283GIkjvp+PAECACAwdnEUIZZcs4OEIZgoEjQIBABuBgCJD+yzg4GDosQMgYIs4RMoaQAxEHIs4QBeq2Wg9wyHQdEDEg4BJrOLAxSnBGkGCu08f6zgAb1\/awdl0fnXUJOmdKBBsD8I1dsDPXABvXA3NnABvPgNy4AXLuBViSHC897+3YsGFDo9e\/LTMrSQsLCwBUWrRp06Zs+ZEjR7J0aWFhAf1+H0ePHi2kSUeOHMEVV1zh3Xa320W32y0t37hhHTYiAuMSEOkXt5SQAhCSIxExYgB9xtGVAToI0eUhOjxEOIgQsQA9wTBIJSm2ZKkvclkaFGRJoq9lSQpICcRSpEokS9KUIEacrgWAGDEE04IkELNBJkl6TALrfqVEDRDpdZaECONx8Iwxt+XCJV0+XPK1Elip+00Qk8AlBiuBpvvNHJJjEji24xI0ziLvGL3OJ0FqmRofICrez6SI51IEJUUhAgQyzKRIPVcuRgEYQsbBGBAxjogzdAKGiDOEnCFiqRylstThRTkKuUzHSKzhAhsijrkI2BCFOKMrsG5NiHXrBTobOcIzGIKNIdjcGrANa4Ez1gDr1wAvSCVpwzpA8vS1WZ5WmZl9p27ZsgULCws4cOAALrnkEgBAv9\/HwYMHsXfvXgDApZdeiiiKcODAAbz97W8HADz77LP427\/9W9xxxx2j7QDjAGdAGACdACzi4F0OfkogiCQ6nQRxHGMgOLoBxxmSYyDUG2UgmJIlBoQSiBjDgANRmh71BUMoJCIBDFj6xuJalhgEgETwVJCkIU1huizySFMHMYsRSiWAthgBQMwGznUJBoiYW6I0WqY0LhHSEmW\/sdokPi4RGwVKmwiCGCUlcmELzDDPbW\/DKU8IrDHNJAgAQhk5x3GZJ0UASmJkpkWmFAWMqWVcPbJejqRTjrrpupAJrAsSrAkSdKMY3U6MTjdGEEnwCGAdBkQBWBSo7+MgUN\/JE2SqkvTcc8\/h\/\/7f\/5vdP3z4ML7+9a\/jrLPOwrnnnosdO3Zg9+7d2Lp1K7Zu3Yrdu3dj3bp1uO666wAAc3Nz+PVf\/3W8\/\/3vxwtf+EKcddZZ+Lf\/9t\/iFa94BX7mZ35muJ0KQvVLCAP1C4lCsIBDhhysw8A7AI8kglCg04mxJuGIEw4hGQYhQ09wsPR\/AWMIBEPMgECoeJMD4EwiYEqiAi4RCKCPXJZiAchAIhFAImU7aZISCVPyEqdSkyVOLEZHroXwpEtqTFGi7PUaLVUm9jiXaLmw5asNVYkVQRBEU1yC0gZbZvzPY6VDjpl4ApQFzBznk6DssRLgWoBkWBgT6sRpCCkKGEPA1XdZyDGSHEVcImIS68IYa8IEa8IYUZQgCAV4V4J1ABYysDANLKL0u5lz9d+EmKokPfroo3j961+f3dd9Qtdffz3uvfde3HLLLTh58iS2b9+Oo0eP4rLLLsP+\/fsLtcePfexjCMMQb3\/723Hy5Em88Y1vxL333osgGNE2OU9\/IQzgDKwTQJ6MwSIG3pGI1iRIYo5uR6VJAgwDwdNESMnSQDAMGMNAsqwuOxBATzBETGLAgYFgCNM30CCTJSARKkWMBVM9RowhSWdraCpNAJCkAiIgAYlMoIB6iVKPL4qOS5i0WJkkcoCIrfW+vK7tuLCf38YWtVmj6c9JEKsdlwysJFzi4qPuZ7VFCciFp2ob2T40lCAA4GDG44Ns2TBSxAAEXG2vjRwFTAlRlI7pciVJHZ6gEwh0ggRhKBBGCcKuSpF4l4N1ONAJ1JPo72OdJE1IlGZmnqRpsrS0hLm5Ofzg6fsxxxLVuH3ieeDYceDEKeDEKchjJyGXehAnYiTHBOITwOB5jpMnOuj1QjzX6+LEIMRA8Pw\/qUpvcVqK8\/UrJVLJ0kAAsVQJkhIhtU7dlpBQjd8SdsokS8IEAAm0VKXClC63BaqwzEqhNPaXfcwcpTY7SaoRnKrtt8UlagRBEE2wBaUtTQXQJVrc8VgtPr7t+0QoMNKsbJlu5M7GqH\/bipFaBwRczUIdGE3ZUSpEIUeaFgGhliKHHIVMgDOJNUGCtVGMM7p9rFkzwJr1A0RnCITrgWAuAFsfgZ3RAZtbq3qRNqwD1q+D3LgBWL8ecm4OSwOBs868BseOHcPGjRsb\/R7aMLM9SVODc8ggfRuZSVIUAGtCsIEA6wjwARAMJDrdGEIwdOIEiWAImMz+C6Xq+O+lpTYGhi539CtJpI9R\/UqCKQGSaaIkgDRJQmXKpIUpNP5y0OmTlACYLVBhWaCMD2diiZIeqzaYjrFkqShXawrrmoqQS8Dq6Eh\/amViixxBEKsXl4CMA1tiqvAJVOgozwWO7ZpJEFBMg7JlFSIEALqnOUhv+KQIQK0YsfQxnKGyKdtVWou4QMSFSpa4yMpsnU6MqJPkvUhRXsFhUdr6EgSqV1hXiSbUm0SS5MP8hQSGLIUMvMsh+0L1Jg0EwlCgG8UQAIIkQCAkeCLBhQRL37YBy5u66\/qVhAQSqaTIJUwImEqSOCDA0pSJlXqZAGRKkAh1vwNuiFGVQAGmRJkkZiO0UdorjKnpM3I9Jt+mta0hpGm1Yid8BLFcuL7ET1dc8uLDlhrn9hyvbUmGXGe7FUpn9SIE5OUxtSwf0zQtYsZjOEvXM6nahFqmRxFXCVInULfDIEG3EyMMBYJI9SLxjmrYZrqWp3uSdK\/w6dSTNLPoX0L2S0nfCZ0A6AdgHQHWAfgACBMJkSQQgiFO1N8tjElwyFKqFItUjhhLUybkKROTiBlDILUMSSVJqTABqRTJZikTUmkCVHlOixVQFihASZRLoDSFu4ZQmSQFuwnT52hWzU2qzkBrEIU3fR6CIAibJmJThUtomj5P4FgWWtuzz273iRB3jAnShWZSpO43S4tyKVLVDv08thxxhsr0yEyQwlSSOmmzdmSe0RYxsA4HWxNacsTy7+UJQpJkY\/4CuDkNQAjWT1JZ4uBdCdkXkCJNk2KBbidGHHMEgmPAuTNVCsFKJTg7VUrSN3eseq3TniMUpMmXMmlhAvIPA9K0CVyHNJZAIX9OU45sbdFpFKASKTWmKCe2XJlUdr8ZBwGXgI2ThISKIFY9LvkYF7bEVOGbvidwrHBKFGfWmPLjq0TI3Eb+2FyK9OPdYqRum\/IUpusYQ6G0xtA8PdKiFIYJwigts5kpUmi0uaRVnMJ38wRFiSTJJAyRqUFo1D31\/AycqTTpVKx+kR2ACyBIy26RSMCYhK4OuVKlgeBgnGVvSDtVCpmSIYlUkqQSmFyYyimTFiYASLjMxgFGuS2ToPTHaiBQQC5RAApplIlLjOo0xxQum47x99BKToiqhJEgTldccrASaJM22WJT3pbjMdbrEjgGMWMf6kRIbbO4rTopAurFKGT6sXlpLeRolR6FoUAQqFaVIFStK1mKFDIg0me0GS0vTJ\/hpn+YyZTcSJJchAEwSH8h\/fSXxGNgTQQMErA1IeRAgHc5IFQdNRJJlpRwLhEkHHHMgThEwEUhVRoIfapmOVUaSAauRSaVIAnZWJgiWNKk+47S95MtT0CVQKEkRdLxvoxF+YAga+QmaXGgXOmyQa3iBOEWg5VEG7lzCY4JcwhXyO0xru26+ouKz1mQJFukdJnOSov0dpqIEU+X66lrdILUJD0KuCgJUhCpBClLkTo8b9hOqzhZaKGbtoPJqQtJko1pp3p2T\/3fIAaLAsh+oprKhASLGXgkIWOVJjEGJLFupFNvsDjJt2mnSuAcDKKQKsW6EVsCESQSyVoJU2A4RdbPlC6z5QloJlD59sovmf3hNrflwyVbPlwSthKpE0eCWG24ZGCl4jrO+aj7qV1Jkztdsh9XHu8TIQAFAVL\/ymy5liK9jaZipJ7Lnx4Fxm2dHgVmeS0UKkjQzdpWL1KWIukJJM1yW3r2ef6CBGoenWWEJMlFEKppALJYjxlToqsGbiaUqbC+BO9IyERNCcB4\/gsTxpd7wAX6AAZpLTvg\/l4lVXJTqVCc3gfSOZQaChOgZCfKGrHTZfrUfUueAEf6BHVqp4lLflxv0bqkyCVbPtocnGab+i+MqjIkQcwadWWl1USbw5AtN6X1jo05JakiXTJTIfs5TRky19lSBDQTI5Z+j6gz4WS2vio9Yqks6fIaYzKbMJIxIIhUihSshZpdO+1FymbYXhMVL0VildfkhNIkkqQ6dDe9LrmFAViQQHIGMKZ+sTEDjyWCtRKsBwACPBBZosS5RJJwAHHW1B0n+mKE5VRJ9SMxJURMCxEDE0DEdMpULUyA6mnS6Ju5QBXlCagWqGyM48PvKofVJUV1SVPhOZsPXfnUHF3bvG4EMQp1JaPTjVaSVFtuczzG1chtJ0kNRAjwp0xALkUAasUo73uS1noJBjjTo4DLQnN2EOTlNR7kJTbGkTVrZ7NrR\/paqcbs2qHRj0RTAMwQ5hQAfV4ouekpAdiaUKVJsQRLJFSIlKYwAgAc5TerqTtO386c5amSBEMEmU4W6RImIAKMslxZmIBckkyHsQXK1JsqgdK4gg4tVcVlvhc23U7LP0BXel\/S2BjTsYFezdXN6ZPvTIa2zeZ1AZvrbyEtLlXbqRIhoJgOmds0dz8vmfnFSCdHLjEK0z4kPS1AxAU6gQCHLDRnMwZ3eS2Q4JEECwEepT8It67Tphu2dRVnipAkWcggBOPWJS7CABgYJbc1EZiQkLFQaVI6wSSEsgzGJUQf6W1\/+Q1xmN5WSZJOlRLJICQD48wrTEIiXe8WJkA1fgO5xKixKnHSv3hpjIkCd\/qkSQRKR1+zpJeNk\/Be5ahNNcmUr2jKh\/025UGCIMZLXflqUrhExscwomT\/DeQ+wy3HJ0MhK48vJ0\/txShfL53pEQdqy2ssSNOjCEqU7BQp0GexMRRm1w4Cmidp6pjvSH2GWxAAGOS\/pI4EkiSbDkD3Jsk4Abjq0M8vTK8ixdrym+DFVCmVA5EJUS5MecnNLUxmSQ5Aofk7+9FMeWLV8qTREmUSW2P0XVuQCiWimgOHOdSWr2EYl9yMdmUngiBmgXHL1qglONfuhI6Ftpy1kSFzmd14PYwY6X8DLrP0KDAatV3lNcaRzYXEeC5Iqllbza6dpUgdq9TmKrHRPElTJgyQXZtV\/3J0TTRJsgZuJqTqTYoCsI4qt8k4nWsifbgUxfIbAIikWH4LuEDfSJUSwdLLjTDwVJIiIC25MUePUrkkp86lYmnKpMYBaCVParzCFBYtR+abx1UN09u25crGlq021D2U5IYgiKaM4lAuuXHhSqNc1TzX9oqN2+VkyH4sM46QZn+RHu8SIz3GFiP9GC1HdnrkKq\/xwOo\/itRXKesALFCCZF7RIkuRzLPaWJ4eFc5so3mSpo+60G2aIvUHxqSSsZq7IRZ5mpROCZDBlSjJtE8pT5dE9oHQ5TcpGYqpEoeU6qpvEdBYmEKme5FYJkpC5tI9rDxle67lyFiVjTOWucTKxJaiqjfhSm9Fcr2OBHG60qZcNYu0aU2qkyZ383aTviS\/DJlnApsyZG9rFDEC1B\/4rvSIc1kor9n9R7YgsTBNkXR6ZKZI5hQ8gDFX0mS1hSTJRxAiK7MJof6VAujH6TKZp0mdAIgFmJQAhMpg+1Club56cwioOZKAvE9JTxqpZYml1y7V73MRAIkYTph0wqSJJTPkp1qeANXjpJGOj7MWHVOEfEJg9yHVHTwK2xmTY0zr0DyOkiFBEKOxHH+qjKM\/ybUNd4JUHFclQ+4ymzTG623IkhipxxfLaYCqcGgxUhNOqhKbTo84l87ymu4\/YoFqRQG3BElfoy3keYoUGKIEqMQoMG6b\/04AkiQb88W3b5slN\/1LjIW6xkwngIyFakDTnTWpKDF9nTQOmH1K+hJlZvktCASShKtT+YW6YK5A+rSGMOnrEpnCpHuZtDBpzObvOnkC4BQoE1Omsu0YqZQ5rgl2stRWLCitIQhiFMaRcDUtt9nCA7jngnONc6VC5nItQ4XmbiMpMse3FSO1LJejIMibs13lNZcg8S5XotTh+eVHdFmtY9zWPyAzpGgKggSQJLmx5Uh31Jslt1Aqm4gTlSaFUl2u5FSsRImrVIkJBtET4B1A9NPGbqtPySy\/CcHAmISUDCwBwkC0EqbESpgA1QAO\/bjsTLe0X6hCnvR6wBaRXKY0RakqjsvvuY8irr4h8\/pxddhyNgpNxY4giOnjEolJ0G72bf8+Nimvucb5kiH7+UwJci3TYgQgK6dpMVLLimIE5HLEuawsr5UatENWEiSWXp8tuwRJYP1rltuAiZ\/ZBpAk+UnFSAqh+pKAvOQmzDPc0pcwSROlNaFKlJAA4JB9dY03GStDl3G5T8ksv4mEF2QJQCZM+o1rChNLTdsUpkRowSmLUlN5Ypak2BJlEhti5JYqTXELVdMBVH0Wljc5ovIYQRDDp0tNpvVxl9kcDd2Ox2oZUutdfUfNlpl9Rvq7xi6nASikRgAyOeJcOstrzv6jMG\/SLggSZ6kg8TxF0lUaxvNSWxgUm7azH2z5UyWSpCboviSepL84K00KJVgkVEIUC7BQBZZalOyGbt2n5Cu\/8SCXJQCFdAlAJkyJ4IjSf7UwSckQcWSiFBgfM72MG5KhRcle5k6GFHbaotOowrKsIbw5cUP5aVqOozIcQRA2424ed8mNjzrpKY6tK7f5ZchcHhjbt0tp6nZzMcpuBypZss9eU2U2d\/+REqI0OXKd7m+mSN4mrjAVphAI6bIks4Eut+mSmxDlNEnPwC0C9Ra0REnGyqjNhm4m\/OU3QL1Js8ZuI11S65QwhVD9S1qYsoZv5AkTgEyueFZiUw3gmkQUy3NAMXkC3MIhjGVVUmVSVc5yyc8oF7cdZxluWKa\/BwQxO6z0P1t8QuOjrhzoLrdVy5E9pk6Gsn0ppEi5GOn7Woz0WJcYqXVKjhiHt7zWVJBUs7YjRXLNkTThXiQNSZJNGKoSWygAEQJxUh7jSZMQC7AoUHMn9ZNclJiAHAj15gEKfUoyBsRAWXg+TYAqwelkSQuTbvB2CZPdv6QTJiCfoFH3Mmmq5CmxkyFUnb3GCuNQMbbqsS6alKApMSIIYlTGkTC5BKfpczWRI8AtQ+ZyW4byscVlvj4jAIVymtom8tupHOnm7EJ5LRWkrEE7PYNNnQaXClKaHrGA+1Mkq9Q2TUiSGiCDIJWmtOSGVJzMM930hFixUNdf66AoSkAmSjKWWZ+SnnhSirz8Bqj3iBSASBiCVJj0G9rsXeJcOvuXgOIHRMuR6eIuedLiFHH9uLIACcffgy6pAtoLTJ00uWgzYSQJFUGcPiz3vExNpUhTJz2FbbvKbRXJUP648jLzti1GQLHPCEBWTstup2IEoCBHurxm9x81FqQ1UXHiSFezNtJJJHWqNGFmWpLiOMbtt9+OP\/7jP8bi4iI2bdqEd7\/73fh3\/+7fgXP9pS6xa9cu3HPPPTh69Cguu+wyfPzjH8eFF17Y\/gntX0B2Vpso3tcltzgpp0lAUZSEKjBpUYKUAJeQfaHeTEDWpwTo8hvAQpUs6aqZFHmDtxYmuxwHoCRMGpZ5nciv12akSi55AoplO410iIbZB1VYDrdUVeHazrioEioSKIJYeUxrgkqf3PhwSU\/VdphTqMoyZC83+4qyZYEpSdV9RkAuRuq2zG5rOQLg7j+yG7S1IHXy5uyCIJlyZKZIQLHUZkJTAOTs3bsXn\/zkJ3HffffhwgsvxKOPPopf\/dVfxdzcHN773vcCAO644w7s27cP9957L84\/\/3x85CMfwVVXXYUnn3wSGzZsGP7JOUeWGGW\/qFSKdAM3EkealBqwFiWks3Kn11ZT\/UpA1tBt9Snps99kosxcilSWgjxdQuAvx+lkCSheULdKnAB36pTuZQnf2fkuodK4xMqHT7iWG+9FeVd8JwVBrHx8kjEN2gqSS3jybZWPqL4jaV06BBT7irLt8fLtJuU0oCxGapm\/vOY6g80rSFlCxIoJkl1q47w40zZNJqn4X\/\/rf+Haa6\/Fm9\/8ZgDAS1\/6Uvy3\/\/bf8OijjwJQKdKdd96JD37wg3jb294GALjvvvswPz+PT3\/607jhhhtG34nA6EvSqZIvTQKKZ7KZohSmnT8hz6YIkDEKfUq6\/MaQyxILVBnOTJeAZuU4\/WHQZTl9W2N+iJrIk4kpUpq6t22LqY9K\/VMrnTaSSBCrjSpJWGn4jok+qo5ivm35ltelQ4BfiLJlQTFp8pXTAGQlNUB9F2XrzebsqvKaLUgdQ4p0cmTe1hM2G+W2wqn\/NE9Skde+9rX45Cc\/ib\/\/+7\/H+eefj2984xt4+OGHceeddwIADh8+jMXFRWzbti17TLfbxZVXXolDhw55JanX66HX62X3l5aWigM4VyGSUWqTQQAmRLouQT4DN\/Iz3cJASVNkvKyWKBXOfGMivTiZgIxlVn6TiVT13TRZ0kKUp0v+cpyZLmU\/jnF80s3fQFGYmsiTCXP0s5ulPBdtpcdsPicIgpg2bQWpbrzvWnCmABXHV8tQ6XbgTpvalNP0bSCXIzW2orzWVJBc12gzZ9bWt11y5Jo3aRmYaUm69dZbcezYMVxwwQUIggBJkuB3fud38M53vhMAsLi4CACYn58vPG5+fh5PPfWUd7t79uzBrl27mu+IliWz5BanUjQQ+S8dlihxBiCuFCXoS5lwmZXfslQpQLoc5XSpqhyHvH8JyJcBo8mTie8vw6rERE9Z0IYw\/ZCv9AvdEgSxcmlzYVsTn+zk2\/U0bfuauYeQoWw5N5cXxQgop0YFMQKy5Egty9OjWkHSk0W6BMn810yR7FKb8a+kC9zmfOYzn8F\/\/a\/\/FZ\/+9Kdx4YUX4utf\/zp27NiBzZs34\/rrr8\/GMesdLKUsLTO57bbbsHPnzuz+0tISzjnnnOI2ghBM9PNUSSdIZsktRjFNAlAQJQRAB+n0AAlYH35RClEov+kptVmohMmXLrnKcTJhWc1c9zABeWkuWw69nCMIcxnhQXGdC588+ZZrhondqVRFEMS0GebY5ZOduvXe5ZZ01QmRLqGZy4CiGOl1pXIaUBYjvSy73aBBu0qQdBrkFaLpnv4PzLgk\/dZv\/RY+8IEP4Jd+6ZcAAK94xSvw1FNPYc+ePbj++uuxsLAAANmZb5ojR46U0iWTbreLbrfrXhkEQBxby1RfUqHkBpTTpCwStERJ3wfAYgYIqeZSEhIsfROZfUpA\/iaVsVQTclWkS+VyXCpIcf7GH0ac1I9e\/FDqRIdb71093vXhNsWp7qDheswsT8lYJ4UEQTSj6bFhFhhmX6seY8uPxve3vtlknS+rFqLsvqcJO1tnlNPUMpYv88mRr0G7TpB8KRJQbM7W6RFNAVDk+eefz0711wRBACHUG2TLli1YWFjAgQMHcMkllwAA+v0+Dh48iL17946+A+YZbmbJLYQ7TerHjUSpWZ8SywQpS6k86VJVOQ7IUyagKE5A8cNUKMtZtXTp\/gwDKCZRhcd4hKpqO5rlPmCOS25W0oGdIE4XJvm59AmOjzrxKY13eEETIWLWt3txXL6sTWpUWDcuQTJn1gaQTbVj3y5c6HZy6jLTkvSWt7wFv\/M7v4Nzzz0XF154IR577DHs27cPv\/ZrvwZAldl27NiB3bt3Y+vWrdi6dSt2796NdevW4brrrhvPTtjzJCXGtABAnibFUL9wLTR2j1ILUcrWRwyQslG65CrHAbk0AUVxytY55MlMnfQ4OERHJOrDYjcnVglVeRv5J9clWsPQpH+pqbgRBLE6GbbPyEcbWaqYLaUgQFWP8QmRS4ac6xxN2GoH9HorNQLyFy3k6ZgxCJI5L5JRXiuU2qZ0SRJgxiXpP\/\/n\/4x\/\/+\/\/PbZv344jR45g8+bNuOGGG\/Af\/sN\/yMbccsstOHnyJLZv355NJrl\/\/\/7R5kgKQ6Dfz+\/rviSkZ7kBKCRMMdQrqacE0GLURpQ6QV5+E9IpS03SpawcB2QJE1AWJ8AtT7Y4meNMbJHKlnuEykTLFdD+bJHScxEEQYyRKoFpik90mj6XXSIrrGsgRCWhMr\/pXeW0dHllagTkyZEeY8tROqaRIGnsmbTt+3aj9oSFiUlJ5w0tLS1hbm4OP\/je57HxjLUqLYpjsEFfzYcUJ+rfJAb6A7AkKS7vGeO0KAmZz6+UGPf1dAH6fpx+0wsJmYh0eb4MAKS+r\/+VMp1TyRyTi1HhPlTKlGGIhbRar0zpkI5T\/O0xheWxe3m+veH+bCMRIghiFhhFnppKT9Pn9AlRaVsFiTKmeRk2NUrHZMtd6ZEe4xMkvV6nSGEAdKJ0PM8kSUZRmi6F2XIZddLbYTZ+6fkezjrzGhw7dgwbN270v5hDMtNJ0rTJznAz4fm12JxpUvZvw0RJL3OkSgCyMhyAxulSfl8Nz1ImIEt5sn4mIB8HIz3y9SpZKZGWKbOMZz9G7UO9i7tEy5VijZNh5Y0giNmjSkaW7TmH+BZtIj91j2ktRNa41qlRuqzwGF95TY\/xJUimIDlSpNJZbVO6bhtAklSP2ahto+VIYzZzm6KUYYlSgHxaASATJSCdKgDI35SxUKdXCpmdDZctz3qV1L\/mh0fLEeukb86W4gSgcFEOW2SaylQ2xpNQqX30r3M9xzhoIm8EQZx+jKPs1uSPvKrn8QpYSyFyr2uZGhn3WWCV3OzyGtBckLLrtlkvhJkiTRGSpKZwjuzlilFOk\/QY4RAlIT1nvQGuPiUAlbIEoFG6BJhyZJTfWoqTSUFk7LTIuO0rv1UdEJoI0HInS5oqmSMIYrpM6jhQx7Ai1UR+So8JWHmZKT41QuR8nK8R21hWEiNze77+Iz2mSpAK+2eU2VzC5CMMAfRqh40CSdKo2GlSjOaiBLgbuoFchniaHgVQPUt2Kc6XLmXCpBlenEzMXie7QdsUKm8qVCFCbQpfdT1QozKOvyIJglh5DFM+89LgOOKSn3xffPMFVIzzCVG2YITUyFzv6z8yl1UJkpkiDcOEEiaSpHFhzsitRQlANoeSS5T0fVOUOqG1HMOnSxq9vqU4AZYUmeOAcpJkfBjtx2XUfB7s5MpHk9LcRKDGcoIYHyvsj5MqwfE+xic+msryW8OECEBpjoOQW2MdqZGxzcZypG+bQtRGkFwpktWwrdbp++HErtsGkCS50b+AOIZECIY4b8p2ldy0BAVBUZT0clOUgKIo6fuZKFnLTSxZqk2XNGbKZG+rQpwAW4qqBcb7OJMaqag9gFQ851SYkdifIIjRaHvsqaWh8NVLk3t9ayFybbMuNTLHmHIEuPuP9PLlTJAmDEmSje4ravuYTKJQL0pmLJkY9wt9SoBXloD6dMkYA6BenMyxJXHK1qjn8oiJL42qYxTR8cqYD0p+COL0YYLJVGvJ8shPo+1VSJFXiBxjG6dG5rrAkiXXddjM7ziXIGXb9KRIMwRJkkmTqc5dDdyJ1bwNlEUpHe8UJfWAXJSyN7UlS7oUZ+KTJaD01wSsNKnwYapIm2xYlO6fd4ot1kp8SqLTUrIIgiAmTo3k+KiVqbqpwJumRI6x9vpGJTWgmPqYcqTvu+ZAAvyCVNecbZbapgxJUlO4kQRZZLNwZwLkECW7mRvwTxEAYz2AYk2nYSkufZhMDNGx0yTjcYA7bQJQlicbx\/pMpIBm1wkpPrq0ZOplNYIgTlvGUoprKT\/lfagWHuc27J4l3xlq2eNbypEeM6wgNTmjTfcjTQmSpAbIIARLrNOpgjxNKpTnzLKZ3aNkipIU+Vi7oRsoLouNZYE1To9xNHoDljTBSpqAWnECHPJk40qhqmgzVu9D1OIgRZPIEwRRx7gv3mZTIz3ZbtSN8yVWbYTINcaXGgHlklrVOLv\/CGguSKWfKShfhiTbd5pMcjZx9Sg5lmVpkilCQjQXJaCcKmlsWQJQKsWVHm9gShMvC09JnKo+tL4SXCd97ialMsf2W0nWJJnV\/SKI05GG4jFpakXHRZNynW+7jseWpKguZRpVjvQ6u0G78BhLkErb9KRIvlJbk5aYMUOSVEUYArGVIBUarFGUH6A8oWQbUSr1KSFv7NbPBbj7llzjfNhJkS1OdpnOpKkMtZSLTLKabHuSzOhBmSCIKTNkTxKA+uNKXVN3nRC5nqM0gWODkppvnC1OTQWJWwmTvX9TvpitC5KkNpgJkm7gNspwMghUE7c9rk6UgGJDd6H8ZuJInKr6ljRNpMmOamtOCymlTzajygUlOARBzCqjHt\/aSlDd413745MizShyZD\/GFCS7nFYhSN4UyaDUjzThqQNIknxoqUkp9CVVpEkFUTIbuStFyTFFAFDuS7L7kWr7llBMmMz9raNKUoSs\/RDXSlQdlOAQBDGrjJIiYQgJsqlLiXzbcImR+XhXSc233uw\/0vfbCpK5LVOGSoI3ve8DkqQmuJIhTWCkSem6TJQAo5TmESUApbmUNLFHhmxZ0s9jPibfQccP1DJpsmmQ8tQlUbVUlfwIgiCmRK3gNKGtBJXWN5AiV+Li+4N5GDkCyg3a5vrAWm7clq51nrHThiRpFExhstMlc32lKBmpE5CLk+5VAsqplV6m32i+fqTYkSLZSZPaQHnMqPNTjKFcNrJoEQRBjJMRE6SMYSSobj+aSJG9bV8ztmu9LUfmsjpBMlKmkiBVpEiFUpvZtD1BgSJJqsNo3vaW3KrSpDaiZJffgLIsVTVn26W10lxKQ0pT6TWZYE2YepMIgpgVxtEG0PT4WSVkwwiRa1xdv5G93LzydxtB8jHJ75IhIUlyUXdpEl\/5zRKekUQJaCZLvtSnaS+SnX45palmuzZjSaJ0uZLSJIIgZoxRj29NE6mqY\/EwUuTa7rByBDQXpKoym06LfKW2KZfdSJKa4hInV5o0LlHS2wfay1Khbwl5A7r5AdCn2deV5+zxdQJlP09T7NP+V8BfGARBECOV4JqeqVX1HHVnsfmeaxxyZC5vK0jOeZA8pTbfzzABSJKqsM5wAzyzb9sCNQ5RAkaXJb3OfmO50iBX+mOmTFUf0iYCZWO9rmOr9Y+LWZqriSCIIrN2vDAZ5ou86c\/j++OxaY9SlVC1lSNz3bCCVJcizQAkScPiSpaC4rxJ5rhWogSMR5bMx+j1wPDSZBO3SI5s6VjuvwhsCWvLLB+ECYIYjUkmEm2PJU1S9GGlyPX4JnIEVKdH5vphEqSq5QCmMdN29tRTe+aVhGvm7WydLTtW2c2gsSjp7QJ+WdLbrpMlTVVS1ESa7G2Z++ijaRI1DHVJzxRiWYIgVgnL+UfSOBq3Af8xrmlf0ihyZD6\/a33dqf6AO0Uq7ff0U6WZl6Tvfve7uPXWW\/GlL30JJ0+exPnnn48\/\/MM\/xKWXXgoAkFJi165duOeee3D06FFcdtll+PjHP44LL7xw\/DuTpUKOkpsLV5+RtS2nKAH1smRPD+CSJXN9XT+SOdb14UtaCE9TiaqjNOeTASU9BEFMg3H1S46jeRtoLkWusYz71\/vkyNynJoLk2r7db1R67OyoyezsiYOjR4\/iNa95DV7\/+tfjS1\/6El7ykpfg\/\/2\/\/4cXvOAF2Zg77rgD+\/btw7333ovzzz8fH\/nIR3DVVVfhySefxIYNG5Z3B72iY5TdfP1JVY8H3LIUG48D\/LIkrf4oja88VlWa0zRp2M5el4Yf\/ro0aCU2b1eJHUEQRVbiZ7yOYf+Aa5p+t+lL8o1vKkf2Old5zRzjSn6qymyjJEUTKsExKeXMdqh+4AMfwP\/8n\/8Tf\/3Xf+1cL6XE5s2bsWPHDtx6660AgF6vh\/n5eezduxc33HBDo+dZWlrC3NwcfnD0z7BxXVct1LKiBUCX29LlWZKkx2WzYxuCoseYX5zZ48vLXOMK+6DxjbPXAUVhqhqXba\/uwrUtJGDUvqA6qLmaIIhxs9wpdZtWgDqJHEWM7HFN5cge6xAkZ5mtqlnblyRxnstQqbdJLV9aOoGzzrwGx44dw8aNG0s\/4qjMdJL0hS98AW9605vwi7\/4izh48CB+5Ed+BNu3b8dv\/uZvAgAOHz6MxcVFbNu2LXtMt9vFlVdeiUOHDjWWpEboviS75FaZBjXoTyo8h5UWVaVKQH2\/ElD8YNQlTIC7LGfvowuXPLXtC2orVVRyIwhi2oza\/9g2TWs6PxLgFiPX+CaltaqxbQXJtS8uQZoBZlqSvvOd7+Duu+\/Gzp078du\/\/dv4yle+gn\/zb\/4Nut0ufuVXfgWLi4sAgPn5+cLj5ufn8dRTT3m32+v10Ov1svtLS0vlQa5m6qZUzalkrCs1cpvj9HaAoiyZ+1JXggP8wgTk0uTrTWrSvG3ui4+m6dNyNVsvd6JFEMTsM82TOcYhQk232VSMgOHTI3OsS5DaPu8MM9OSJITAq171KuzevRsAcMkll+CJJ57A3XffjV\/5lV\/JxjFWfENJKUvLTPbs2YNdu3a5V1adyVaHIzGqmhYAaCBK1vjKVMkea67XtE2Z7Mdk+1Qz6aTJsH0H4+rvoTPdCIIYF+Pso2qThlc9bxsxAqrlCGiWHlnLpatfqSBd9SnSLDLTkrRp0ya8\/OUvLyz78R\/\/cXz2s58FACwsLAAAFhcXsWnTpmzMkSNHSumSyW233YadO3dm95eWlnDOOee03r9Syc2kbobuJqIEVKdKQHVjtzne3AdNE2GyH2PSRp5MmvYSzWJTJzVmE8TkmMVjQFOGbQdo+jO3FSNgNDmq2LZTkArbbXZx2lkrtQEzLkmvec1r8OSTTxaW\/f3f\/z3OO+88AMCWLVuwsLCAAwcO4JJLLgEA9Pt9HDx4EHv37vVut9vtotvtDr9jVdd2q0uTfH1Hvm1XpUqAf24lc7zGJ0z2\/prTCVTRJHFyMU6RmjQr+aBNEMR4GGc\/ZJtjik+MqrbjE45RBanqTDbf\/tStL+3j9BVl+ntQwfve9z5cccUV2L17N97+9rfjK1\/5Cu655x7cc889AFSZbceOHdi9eze2bt2KrVu3Yvfu3Vi3bh2uu+668e9Q21Kcq4nbg3NqgOx5W4iSa7z5OKC9LBV2tEKchpUmF6MehGZVsgiCmD7TOumj7R9ZVVJUt82qNGaMglTbh1Q359EMpUYuZlqSXv3qV+OBBx7Abbfdhg9\/+MPYsmUL7rzzTvzyL\/9yNuaWW27ByZMnsX379mwyyf379y\/\/HEk2VemSTV3ZzbW9YUQJGI8smfiav100OSAsV\/mKznwjCGKSjJoyNxGiJs\/VNDkChiuv1fUhNdkvx3YrJ5CcYl\/pTM+TNCkK8yRtXF+aEwmAd74kwDFnElAx51FcHlPYliUNdfMgucb4zubyzo1UI3dtRaauTDcs1A9EEMSkWa4SexspqtuPNqmRZsTymleQfClSTfO3sx\/JniPJXE\/zJM04bZKjFtsqzZ\/kO1utTapU9Vj9eI3rZ2pbRvN9+EeVp2n1A5GcEcT0Wan9gG1lSNPk5x1GjoDx9B+1ocHZcbMKSdI4qZrvyNWb1KTsZj9e06T8BrSTJd9z+R6vaSoRVQeL5UqfxsFKPTgTBDEZhhUhkzbHmXHJkWtbDQSpdYo0LqYgVSRJM0ojUWpC1WSYbRu8fTTpZaqjbZM4QRDENBiHEJm0nmhyGQWpAc5G7RFx9iPNwJltAElSexxnuGXzJS03bZu5NcOIkt4eMFlZMqk7GJFEEQQxbsYtQT7GKUd12xv24rnDNmM3nBdpJUCSVMWofUcjlNwAz\/Xdht3nYUVJbxNoL0vA8vbztDmYkVARxOnJpKSnCcOU7ptIxjCC1HCiSJORU6QV1o8EkCSNn3E2dDfZfp3gmIwiSvq5gXY\/3zjnThqFWTpQzgIkjasber9Pn1F6GZsKxLDpUZPtV53NtlzMoDiRJM0aw6RJTctuwPAN3fY+atoKoetDTWePTR76EiWI8TKOEzzaSMI4BWmYs9km2bA9RVofKd\/97nfjoYceWo59WXmMy3rHXZtuOmZWoLPHCIJYqYTB5AWJmBitfyvHjx\/Htm3bskuAfPe7312O\/SIIgiAIgpgqrSXps5\/9LL773e\/ipptuwp\/8yZ\/gpS99Ka6++mr86Z\/+KQaDwXLsI0EQBEEQxMQZKt974QtfiPe+97147LHH8JWvfAUve9nL8K53vQubN2\/G+973Pnz7298e934SBEEQBEFMlJGKoM8++yz279+P\/fv3IwgC\/NzP\/RyeeOIJvPzlL8fHPvaxce0jQRAEQRDExGktSYPBAJ\/97GdxzTXX4LzzzsOf\/Mmf4H3vex+effZZ3Hfffdi\/fz8+9alP4cMf\/vBy7C9BEARBEMREaH2u3qZNmyCEwDvf+U585StfwU\/8xE+UxrzpTW\/CC17wgjHs3owzrvmQ2p4Cv5zzMBEEQRDNiZPxnN0mBJ3hNoO0lqSPfexj+MVf\/EWsWbPGO+bMM8\/E4cOHR9qx0xZLgBrNuO2SrCqRqtpmU2EbRdRoXiSCIFYTrmPaMOKkj6tNZKlKzpLEP1eSS8bsbTURNnOM+fgkXlVzJbX+Sd71rnctx36sHpY75Wmyfd+YUeVomJ9tFoWIZpsmiNXPtCdMHUWcmsrSOEWpZgxLkuWfdXsG07TVo3vLwajCY35IzG2ZF8P1jcGQKdJyCNIsyxEJD0EQLtoeGyYhVfq42FaWAL88VG1TH\/ddcmMLybjKhlWYzzGDQuSCJKktcVxaxJLysmXBlpXlFqS2cjRuMSIBIghiUjQ53oxLpMxj5bjSpWFTpapt1KVJTUpuK0SGfKzcPV\/llFKkYVOtYQRJiHbPFyfjESQpiv8RBEHMEvYxahzHqbbHz6pjc9V2XN8FQ3yvNKpwtN6mI2hwBBLTgJKkcWK+4UYotY2lzLbc6dGwUnQ6yM8s9mERxCyxmq7XWHVMa5M8tUmXqlKltuW3urJbXRLkS5OWgymkUiRJw7JMDdqNEqRhBWlYOWr7pb\/cIkQSQhArm1n\/DI\/ri35YgWra9D2KLI0gSo2auH0ltxXWl0SS1ISKVKa2H2mIhm3v8nHL0bjEaFQpmvUDJkEQpxdtj0nDSJV93KxLnaqSpqoGb58sjVOUxjkdwIyJ0+zsSQP27NkDxhh27NiRLZNS4vbbb8fmzZuxdu1avO51r8MTTzwx+Z3zldpcNCmzjSpIus7tm0PJl1DV1cfb1uTNbfr+W26EpP\/oP\/rvdP9vOWlynKs71g1zXHVRd3w3SZLid4f9WNf3TtPvLNd++baLmsBhGfqgmrJiJOmRRx7BPffcg1e+8pWF5XfccQf27duHu+66C4888ggWFhZw1VVX4fjx4+PfibaNZL4UycHYBcm3P00\/PJq2TYrjFKCVcHAkCGJlMAvHk1GkyXX8HeWPYZOqNg\/X+LoeWnN8m2rLDLIiym3PPfccfvmXfxm\/\/\/u\/j4985CPZcikl7rzzTnzwgx\/E2972NgDAfffdh\/n5eXz605\/GDTfcsDw7NEqZqq7MNm5BGmZfm5bPRpGg001eqKRInK6spiZtoNmxi7Nm22o74aR5bLbLc76ymq9vyS6njVh+Ky1zNXG3bfKOYyCcrqasCEm68cYb8eY3vxk\/8zM\/U5Ckw4cPY3FxEdu2bcuWdbtdXHnllTh06NDySVJKFg\/WyY7LpF0mXiVI45KjYcSo7Rf8OAWI5IIgVjar5TPcRvZGEamm4uQTJl\/vkqtvyRYr++y3hhNOevuTNG3nTZqhvqSZl6T7778fX\/va1\/DII4+U1i0uLgIA5ufnC8vn5+fx1FNPebfZ6\/XQ6\/Wy+0tLS\/nKUeZmcL25Xc3abaJKa7zaZtJ8rG+\/AL8YNTmoDSNCs3awnGKdmyCIZWK5Lp0x7PHLJ1e+Y6hLnurEaVhh8qU6ZqrkGqu3Z8iM84y3uiZuvT7dDktiyBm77tts7Y3FM888g\/e+973Yv39\/5QV1GSu+qaSUpWUme\/bswa5du6qffJQ6aUNRcfYhDZse1ZXpNG3FqI0MjUOCSFwIghiFSR5Dms5iXUWpJFVxzDUFyidAbYTJFKBhUyWXKLUpu804TEo5s80hn\/\/85\/ELv\/ALCIw3YpIkYIyBc44nn3wSL3vZy\/C1r30Nl1xySTbm2muvxQte8ALcd999zu26kqRzzjkHPzj6Z9i4rqsW6jePfqPExdJaqdTmSImyFMkhMyMJUlV65PpAthGjJlLUVIYmebA63XqcCIIYH017iEalTcrVpLzn2m\/f41xTDJhjbWkx19n7bY7V44xlWaKklxW2Fbq3kd6X9nrdk1Taplq+tHQCZ515DY4dO4aNGzeWfsRRmekk6Y1vfCMef\/zxwrJf\/dVfxQUXXIBbb70V\/+Jf\/AssLCzgwIEDmST1+30cPHgQe\/fu9W632+2i2+0u675X9SFVCtK45Mh3JoQLn2BMQoZIbgiCmDbjOg7VyZbvWOmSJ9\/xt1A2M\/ZbP3ebhMkunQGe+Y4qUiVHopTvn8hTKrvsZo+3S27ZY9PmbV0CnHAKNdOStGHDBlx00UWFZevXr8cLX\/jCbPmOHTuwe\/dubN26FVu3bsXu3buxbt06XHfddZPbUZ\/g1K2rTKEaltbq5GicYtRGhqh5myCI1USTZKfpcc+Wqapjq6vPx7VPdcJkjtffE8whRHUluAai5GzkHnfZbUJnvs20JDXhlltuwcmTJ7F9+3YcPXoUl112Gfbv348NGzYs23NWntUGlMtsVWey1QlS074jWSFOQDspaiJDTQ8GkxIcSqQIghiWJuW2cRzLMhGpOV6Z+1OVPvkkyN6+L2UyZckWIp8smalSU1HS6DF2E3dVGjVlZronaVIsLS1hbm7O35PUpB8pG9+gD8knSOOUo1GlaLkkaJoyQ03hBHH6sVxnuzWhba9T02kGXNt1\/Zy+7ZmPN8cwR68R4O9XsvuEzHVZj1FNf5K93NWbVNGXdFr3JM00rmbrJn1IdYLUtO+oqRy1SYpcAtNUgoaVn9UsLpRuEUSZSTVJa6Z5tlvb8lvTM+FcpTXz59T7UZc0cVZMiXzJkq9fydUn5EuUfGW3qnKcZoqTSpIkVeH4cDmvL+NLekYRpFHkaJS0qOpD2uQDP+oBicSCIFY3q+kz3qa3yEXgkJ6q53BJj6u0Zu+HS5rMxw4jS77vClN46kTJNXfSjJXcSJKaUjf3kacPqbUgjUuORpGiuoPYOHuW6qCmbYIgZoU2cxpV4Up\/bOoEyhQbc\/+aSlNBfkaUJVeq1CZRcixzTixpXzplApAkuWhzNWOX1IwqSOOSo1GkqE6ExjmfUhviESb5JAiCaEPouT7a0Ntr0bhdJ1AuGWorTeOQpRai5KQuTZpyskSSVIdxmRLmusQIUH2V42EFqY0cVYlREykapnG7ycFinEKzmiJ6giBWBv1kvD1UsSiLl41LbEo4kqGhpGlEWWoiSgaN0qQZgyRpFJqkSI51TkEalxyVGr8bpkRN5KqwvoEAjUlsZELpEUEQUyI9FLJgTF\/g4\/jjsdTg7Dpe10xQWRAmx+ObyFKMelGyxjgvXWKmSb6Sm9m8PUGhIklqgq+8BhRTJFeZbRhBcslRXUmt6gw3W4qalOHqPsgNBGgsckMJEkEQM4AU40mVGGq+3IeRKFuafH1IvjaN7PR7x+PqZGlUUYrhTpNmJFkiSfJhvVG8pTbrfqkPybxtCpKrvJaJU02\/kWu9uWwcUlQjJ40EaByCQz1IBEHMCnWlsgZIVB\/TaiUKqD8uOk+lt9MiQ4zsiSR9PVGh9RhTlABlFG1FCcif35EmAZiqMJEkDYsQpRTJ2ag9rCCNIkdNSmc1UlQrQY0at0cUHEqRCIKYJcbRo1QjWrUSFXDHMb6BNJWOp\/p7wZARW5bMcXbfUmE8jD4lvS00EyXAeQ237Oe1z3Kb8BluJElVxFZDtlkay8Yk7tSoiSDZ5TUhm\/cb6WVN+pIapEQlKaoSlDGU4nxISo4IglghsGGSpSaiVbFdV9mvlD7Zx1FXw3gmQoYE2d8hrr4lW5ayVAnlhm5blPS2XWe82WkSMBMlN5KkOqouTGvAkmR4QTLfmOOQo7YpUZu\/SurKcG0lZ5JSRFfgIYjTD7Z8M3yXjnctpckrWf30WF4lU8ZjS+KUOBrNfcdaW5YAZOmSq2\/JlqU2ogSUpgZgQDlN0s9tlw2nMPM2SVIDnLNsJ3E5RQLcZbI2gtS2pGY+n\/4QGONbC5FHgmrlp4nsjFlSZEzSQxBEHc2PEywcUagGjtaGCknLjqs1cuWUqRpBK5XtbHEqPd5RYqvqW4JDoFzltjpRKvxMepthWZqmlCqRJDXFVWpLyVIk84y1UQSpjRzViVFLKSrJUJ38VIjPyBJDPUkEQUwQ2W9wzGndk5Rv0ythWq48QuWTqYI8ucp4FeKUlej0ts2SXEmEqvqWrNKc3dBdK0rwp0l6X12zb08IkiSTOAbQrR6jG7ZdKVK2vkKQfP1H5v02JbV0eSZGhSRqRCEaRYCGEJyZTYaoTYogps\/0zwZPKR6n2qRPmYR5RUtWb3OQFERKOnqNmopTVqIzEyZvuuTpW8p6lqxUqU6UgOpkKIkBhOl40IzbM0XdJUksCilSW0FKrPu2HFX1GvnkyDEGaC9EXmGp7UlqITrLKB8zK1wEQUydkctqBqX0qdH3ebUMVcuULD6uRpxKpTrz2K+FKT0Yl9KlbJwWm9jYJ\/tst6TYp2Se+WaLEmCd8WakSaZIzQAkSS6SRKVKQqh+pIIEVVyCZFyC1DQ1MpaVxphv8jZC5DrzrUo4KkRnVFGRCYkOQRDjZ5RjCwuGFyxbigqC5ZQrd6lO9qUlUH5xcpXqMnGy1pVkSSdR3lKcdcaanSiZDd0+UZpxSJKGIZWgUopkrMtu+wTJFCEh28lRnRiZUtRCiIrr\/D9+lfy0OvgsQ5IkKxyWIAjChA3xDShrL05b8Vjr+FglXPVCVUyjWotTKj0s5MWyXMgLZ8tVp0tGz5J5ppsOAZqIEvRyK01SGzDWxZAIVYBB8yStMHSZbVRBipPqRuwqOdLLDCkaVohcElQpPx7ZGUVY5DIIFEEQhInsD\/c4NmSLjC1lBeGytmkec10yVZSj7FHldYAhT4Y4pdKkn6VxuuSVJUOUABQaul2iBKhlwwiPazbwZYIkqQ1Gw3bpjDbALUiuM9hMcbIFadjUSOrlcmghKohQZZJUsa6h3Mgxv8dJqgiCGJa20lN3\/GKe731byqqe1xQql0zp47UpUG5xAkw5MhMnFiKXJV+6ZMlS1uhdSJ8comQ2dDtFCaohO2tTQTFNcl2g18ae8HkZIEmqwy6nmZjN2lmJrIEgaTkCSoI0TGqUiY6w7gMF2fEKUWlc+UetkhDfAWNYcVmpJTOZLN+kdQSxWmHB9HsPh9mDqlKd79hnS5F57LTFyhQql0zp55dCFsTJTp18iRMLmSFMqUS50iWrFKcebaRLWfJkiFI\/bfA2S3I+UdLHe9dkkuqBaCRMywRJUgXOSSTNFEmjZamNIJmJkilIQg6VGuWihOJ9NBci+4M9jPw0EZxxyAQlRwSxOpBitv64aJoq1adJjrYFe0whLfLvh0umZL+8ryw0UqcaccqlKRWm2NinFumSW5SAYvmtRpTgONPNvmTJlFyJJMmHnRzpUps9xqyNthUkQ4YKgjRMaiTy25kUlUprxV3Nbifu5fZjbHyy00ZgxDKkLyRQBEHU4ZWhEVoBuCFGdfLHuFu0tFy50i0lQe7HsyBPn8yfrU6clCBJDJUuhdwjSkC5T8kjSuZUAvaFbmMUruXGkhiSdxyvzPIx05K0Z88efO5zn8P\/+T\/\/B2vXrsUVV1yBvXv34sd+7MeyMVJK7Nq1C\/fccw+OHj2Kyy67DB\/\/+Mdx4YUXjm9HbGEye5HMFKmtIDnkaNjUyBQjW2yaCFFBoBzi4hOPKslpKysimdyEYXQZN4JYvTS6XNuY+iJ5kB\/okgapWCYw1vNrwXLJFcvkxlhmCJlPnmrFiefC1DZdYiHPpgbIRKmf5NMFOBu6LVECirKkxahj7GwSA6YYtZzLcFRmWpIOHjyIG2+8Ea9+9asRxzE++MEPYtu2bfjWt76F9evXAwDuuOMO7Nu3D\/feey\/OP\/98fOQjH8FVV12FJ598Ehs2bBjuic1mMKsxm2W9REaKpMts4xCkWFSnRlY5TSbmstGEyBzjkx+\/LLkFZ1gZmaQwjYKYsVIBQaxUOF85f7kUxChufqxiDE4544FwClaVUGmZKkqRNBKfanHS22YhICFbp0uZLAm1TobqX2+fkkuUfGmSvvCtTpaEwLT6kpiUK+dv6u9973t4yUtegoMHD+Knf\/qnIaXE5s2bsWPHDtx6660AgF6vh\/n5eezduxc33HBDo+0uLS1hbm4OP\/je57HxjLVAr6d+SYN+nhRlywbGsn6eIg0G5dP8hxSkYVIj\/WGQyWhCVFzeTnzqxGZYoSARIQhi2gwrcVWPM2XLxpeGmY8x0yGz1FdIjazEyRyj+5sYN9ZpeUrTpcKykBlnxjG1kzpV0r1KnKmz3\/R9nRoFQd7Mre\/r21GkbneidBwHOhFkoJeFxrL0drcLcI6l53s468xrcOzYMWzcuNH7eg7LTCdJNseOHQMAnHXWWQCAw4cPY3FxEdu2bcvGdLtdXHnllTh06FBjSSrgmn8hbeCuTZHaClI\/qZajhqmR\/gtBmtI0ghDZEuSTH5+8NJGacYiPlCRPBEGMF8bcUtPmmGWKke9xnEsIUU5HfFKl5UgnV2YqZSZRjJvLqxMnFubLmbDSJdEsXdKn7DvLb00SpU4aecXIe5LSNCm7zInuSxJi4oHSipEkKSV27tyJ1772tbjooosAAIuLiwCA+fn5wtj5+Xk89dRT3m31ej30er3s\/tLSUmlMdmabrn+acyDpf4XIm7XrBKmfNEqPtBy5mrDN1MgUIyCVplSA9DJh3VfL3DJkLrc\/1G1lqKm8JGMoqa2cHJQgiFmmUR9TA4JAIGlwQopwzNytxKn8WJdQaZnigRhKnDI5CmRWmtPpUuHMudDfu8RCQA4EmJTl8lunYooAU5REej\/ieVkt\/ZcliSq52X1JE2TFSNJNN92Eb37zm3j44YdL65j17pZSlpaZ7NmzB7t27Wr+5Nnkj+kv20yRgLwXySVIpwaNy2uyL0vlNKCcGvnEyJaiNkJkfjDtD6lPenyS00RcEjGaII36eIIgCB8BH745OE54o8f7vqICRwkuScoJVyZJxvHaTKHM47D5XDL9HmPcEKbEky4ZwuRKl5COl3FarotFnir1E8hQgkVBtSjpf800SSdIHZc4TfYMtxUhSTfffDO+8IUv4KGHHsLZZ5+dLV9YWACgEqVNmzZly48cOVJKl0xuu+027Ny5M7u\/tLSEc845Jx9gp0awSm36XzNFGsStBUkO9P08PZIDXW5TT2OnRmY5zUyMTDHSHw5fOuS6bYqQLT8+6fGJSp3AjHJuAskRQRDLzSA9zgwrS02OU75t+463tlRpmTITKVOS6uSJMUuYBLzpkl2O0+kS+lAHdC4B8LIopbd1WU491hIl3adkpklJ4i+5afSYZWamJUlKiZtvvhkPPPAAHnzwQWzZsqWwfsuWLVhYWMCBAwdwySWXAAD6\/T4OHjyIvXv3erfb7XbR7Xab7UTiONNNixGQS1FTQToVO8troieyklrT1MgnRnXpkEuIzA+m\/QH3feBdH\/EmB4e2vURNTqslCIIYN7HxB2PQsnHb19uk8emX7xhqS5UpO9kYI4VyyZNZtuNcloRJSxAXADP6l7zluFBtQJXgBCCYv09pkKhSHFAUJV2B0WmSlqcgQKHkBuTp0gSZaUm68cYb8elPfxr\/\/b\/\/d2zYsCHrQZqbm8PatWvBGMOOHTuwe\/dubN26FVu3bsXu3buxbt06XHfddaM9uTkXgxDFUpudIgmZC1I\/dp7BJvX8Eb7ymgBEvzo1EgVJyuXGFiOXECWe0pv+QJofTPvD6\/vQumSnTmgESJBGIaFmdWJCBDVf8qcbA9FelHjFBU9UWa683ts4bt1PHGmXq8Rm9kjZ4sQFywRKyvwxWpjqynF63u1ig3exT4mtCYsN3fpyK1qU4vyMOXCmNt7hafjA85Kb2Zc0wbmSZlqS7r77bgDA6173usLyP\/qjP8K73\/1uAMAtt9yCkydPYvv27dlkkvv37x9ujqSqSSPN+64UySdI9hlsfVEqr+n0SCdHOjWqKqdpSTKlSAgGKZlTiEzRcQmRucyWH5eo+GSnSmrafsGLFSAEJC3EamUw4edbCVI2EABvuZ9VP5fwSJRLruzjspYp81vLPI5reaoSJyFkobeJc5k1gjcpx4mBUYbrSGf5TZ6KVUM34BYlIdV3ZweqiVvqUCLIA4rAaFqf8BluK2qepOUimyfp\/\/scNq5fA\/T7ao6k\/gDo9dTcSP2BmgupP8jnRerHqhdJ\/2uW2PpJZf+RXV4Tg6Ic1ZXTbDECVFokZX06pJcXym56eygvs3GJgU9o2kjEckgRSQxBEJrlELE20uR7ftc2XGPN5MkUKXO5liczYTJrAXp5wAUYy0t0jClhMktzPFunzpbLynGBTEtvEryjSnC6uZtF6fxKXJXhWIcX51PqBPlcSp1ATQEQpP9GYfpvpOZH6nbUv5xDRpGaG6kTQUYdoNMBoojmSZo4caxO\/7ev02ai50UyU6S07FYnSLKfl9dknMpRdptlclTVZ1QnRnY65JIhIBcic5mWCpewjFuOZMvSmyamEhxBEEPQJh0Lm5bWrGGsosSmn98lQLYoucYORHGsXmeWArU8meU8s4Rnfj8EXBT6koJAZCU5XY7Tt53lOKFeAF2CM8tvvMvTqWyEEiXd0A0AnaCYKHWQl93MNMksuU0JkqQqkjiP+8xSm92LpPuObEEaJM7+I9nPy2uqD0mJUTJg3nKaeRZaYghUIngmRqYUDSNDPkHyCY9LcnwC0\/bvt3jKCRAlUAQxu0yiNDeomOsorHx+VnEv3bbejiliWlZQL0takgbG8sQoCgVZKa6cPGl5YkxCQJ3Jx4FMmMySnC7HCcGc\/UtZOS4BeFdm5TfeUdWSfKoAUWzoBnJRiplqAM++S5O8N0lPBzBFSJKaYjZsO1IkOUjqBcnoPzLLa8kglaSYe8tp5llophgB6r4WI1uIzC97LT91y7T8tBEel9S0K7U1HloJyQ1BrH4GQ6bQNsPKlv38vMXuFJKhVMSK0sWM\/zef05AqmcuUKUq2PNk9VKY8cciSMJnN4FqEzKkG7P4l5WV5GU6X30S\/3KfEOmlDN4qiVBCjrInbUhMdVCQxEHMwHkPGXJXllhmSJB9pcsSSpFh6c6VI\/fy+KUjqlMhig7Yur4le3nuUDFQyFA+CynKafgPrN7OZGAmo24lktemQXuaSIf1xaio9LrlZjlKbnouMIAhiXDSVrbCu2tOq5KaesyBL6TKXbPmlKp97SDrkSTiSJ2GlTgGTmTDp7xxTmAIusskxXcKkBUKlT6JQfuMRlCCFRr+UFiUpM1GSnJXTJCHLJTeXEE3gLDeSJBe+s9zMuZB0inRqoMpssSjMgaQFSTdo69P7XeW1JFbpURzzQjnN7jPSYqSWsYIYAUqETEmyZQjIhcj8CMfWeFt8XNLjLrW5X842QhT7jy0jQQkTQZy+jFqeGzhaVMPKQ0p5ZbmMlgqPKWCOkptLqhJjcqSASQwSZqRRSp5cyZOdOgkmc2ESEgG3hCkVpSphKpThjPIbIMt9SuD5mW9IlCj1k3xOJZ0m2SW3KFLzJcUcWP7wqABJko1vfiRdagOMBCnOE6R+UjjF32zQtgXJLq\/FmSQF2eRlw4hRIlkpHXIlQy4ZKqdL5ZfGKUZDJEltSmsrUW6Wv1uCIFY+k\/xkL0d5rq4JvJwKFRdkTdeGgOXilY\/Ny2r5Mi1WSnyYEiUrjaqTJyZzaTKFSZfpTGFiTGJgCZOUqtIRhkmhV8kuvwHFPiXe5SpESEUJIc\/6erM0KUnyBm6g\/F08QUiSfOiZtnVipG+bF7M1m7VjURIk3aCt+4\/02Wt2eS1JRSkRHIO0rDasGEn4kyF331HxPlAUn1FKbE1kYZTkiCavIAhi3FRd6HZQ80dbIV3yHJ\/0EFN6AqOXSMMdwmSKlXoulokSkMqTbC5PqtylhEkYCVPQUJgiPZ2AkSoB5fKb7lMqNnQrUcKpGIwzSJ7kaZII09m1w3JwYf47AUiSKmC2HJmXHTH6kWR6mr\/doG33H7nKa3EcQEqgH4cYWA3YZvO1LUaAEhtTjNT69jJUlSypx5RxyY33Gm8t0qBxltvIoQiCMBl3emWX3GL3MAD+kh9jRfnKtmkMt8VKyY8WH2NZS3niDAikzIQpbClMgKp2dNLLQ5jTByi0zKg+JcBq6IZIL2mSGJcwMRu5E\/UAsy8piTHJmhtJkgt7lm0gvwyJFiXdiySkatTWKZJDkFzltSRR\/8VJnh7p20BZjPSyOjFS69vLkLTGuoTHJTtOWap4aZMWfwDMQq92QqZFEDNBMG7DGRKzhahKigAgMAbbKZTrxwlZeZu2XJlSpYVKldFYJk8AwJlbntT\/S4QcqRDlPU4+YeIsL81pYRKQSARDGAggDpEIoW4DhfJbEHr6lNKGbhkKMMZUNcZMk\/Rs3Pq7V\/claUGaUJpEkmSSCHUVYiAVIiPaMy89YqZIp+L8MiMD6ew\/Mstrujk7jjn6cQgBIE6CVJSY+rehGBXXp4Ikh5chPcYUH5cjuETHXtRULoY59X8l9ikRBDEaK+EyKXYfkqvh2yV72qVMQdKCZcqV+VAtVHo\/S\/IkffKktqSEiOXChBphgiVMQmblNilZJhNSAmFYLL+5+pSyhu6+VLNS6jSpn17sVldwdMnNlKI4mViYRJJkwRLL443ZtJ0pUtqsLXoCol\/sPzLLa3Zztu4\/ihMOAYZ+miKZfUZtxai4XmHLkCkY2Tr9o2ontF4Tl\/A06Utqk8KMOk9SQg1KBEEMSeBoRGrT7N10nqSAlWXPPft2WbBMueLIhSrgOh1S2PIEQCU1KMqTEiL1yGGFCVDH\/U76rZEInopTnDV1A4BIeJoo5X1K+ueQsQRLKzLo83RKgERdokR\/\/0ZRPlfhBAUJIElyY8+wLY3bdorUT3uRUkEy+4+qymtxEmTJkU6P9O0mpTRTjGwpkrKcCpkfQ1uGtMz4epKaS1JxYRttaVOGczELpTmCIFYmrgvKtsEsq1XhcimXoLnnSzJv5\/ur23\/0eluezOfV5bmASTDGELJcmFSPk1+YXD1MiWRZmpSI\/LaIw+w2YPYo5dME6G8IFuo0SZ3hxvSZbkmiGrj1ZJOdCZ\/7n0KSVIdZakt\/WYUUKb3UiBakuvKabs4eCF5Ij2LJMRAMPcEN8cmbrn1ipKUIUMtiqd56PhECyme7uSXJeFM7XpZGJbcW5jJK7w8JEkEQozLK1cGChgchl0y5BM01zvQmLVa8IE763zSlseQJKAoUg5KmgjDJvDznFCYpjfXqu0FCtYdkggSGyGjqNstvQjCEkRolEoYgkar8xgU4B1io0iRExkzccQJ0jKAiskpvywxJkoskVme2ZT1JRqktVoJUSpH6yATJPnvN1Zxtp0cDyTAQSpbMM9GqxEhLkRqrpERACYfrtH9bhrQI2eU2oCgeLtlxpkv2mIY1tFELZTQbN0EQo1I7q3YFTQtzgaOf0vW0LukyxUmLlblMb9kWKFueACVQgS7LlYRJ9TaplMktTJIzMCkBcMRSImKq8pFIhkjmyZJu6rbLb4AxTcBANXPLQEJ20hRpkICdGlglt+KLwpJ4ImcwkyTZmIZqXpIkLbVl12iT6XxIA4mkp3qQ4n6xvGbOfaSbs\/uJSo4GghfSo4FQktRUjEyxMcVIvVHLIgT4e4\/0\/ULaZLwkLtlxvTltWZEN38KjltqoH4kgiFHxXauyCU3LbRDSuJiIwiVnzrKcIVj6IaZM6X2wBcqWJ0AJVJBKkU+YdF9TXpYrC5OERMgEwAEpeJYqmcmSlAwCKJTfhGBZuhT0JBiXYB3V38vCBIgDIJLAIE4bt\/Vf+CI9wy0lsRq3lgGSJB+6zCYF0OurX9KpQSFFypq10zKbr7yWJUlmcuRIj\/T9KjHSUgS4xShJr4njSoVsGcqXl0XKFB6X7LjTpeK4pu7TNHFyISbytwRBEKsdPsosSkmxB6j6eYrHLJecOcttxgE1tAWIs6zR2xYopzylzdsBYxXClE9MXCrLpcIUSyBiHImUiLgspUqlpm4hCuU3AIh7Ql0YNzLSpH4CdALVwG1P4gykcyV1q1\/oMUGSZBLH6TujnCBlPUlmipQ2a+smbbu81iY96qW3BxViVJUWFcYJvwiZH8+8rCfTMfn2NC7RsaXGJSpN0p02AVAsR4ybCIIghiBkDWOi9BBVNWO3xm7WLgmaU7pkJkC9JN9GwFFIqEoCZSdQSSpFXIlTwN3CBJEnTu6yXCpCXEL\/L2QCCWOFXiUhGRJuNXWncyoJkYAHAsFAQgxk2sQtwCI1JQCiIE+TsrkKjal5JgBJko09kaRuHhMSMhFqdu00Rconi+To90IMBkEpParqPVKypEUJGAigl96uEiOfFKnbsjINskXIlihTeEpnqzmkxiUviSfdaZP6JMssRZRAEcTqZaRUyMZxqAiqxMka79uXwLG8IGQe6cp6jvRM25kEKYlqKlCBZOBQiZNKm9TjfdLkKstJLlMZQpYqRVxCyHKvkkqVVFO3TpUAIB4IBKEA70uwAGCRhOykZ7mZ\/8VJHh7Fy19m05AkubCnANCltn6Szq6tjMRMkfr9EKfisJAeuc5cG2SJkZYllsmRKrnlUgSglRips+BkYxEq9CulN7X02KJjS4VLYpyJEpq9mUeVloTVzX1LEARRJpBDfA02FKHScyEoLSs8VjoETJa3rwUrZBwQuUgV+o7AjETKJVBKnkKuZsMOeFGaqlImLUwS6o\/3kKOQKjGombnVfXeqpC9rEgQCnEswHoOFqpFb9gXkqbhYchMy\/16eTKVNvcaTe6oVRpL2IyXG6f8iPeU\/lkhOAslJ1azd7wfoDUL0BmGr9GggVT16IFWKNBBAX7BKKQL8YpRIma2zRchMgWwRyseKwn01piw5JWFyCErcQI5ki5P3Y5IggiCWgwZ+E7YQKdZgMoHQkqWCqKWHV5d4mZLFwXKpMkSqIFBQp\/VnjzdSKJUkScSCKRkSSOdFKqdMWpjUz6e2E3H1\/TJgQCQZYob0u4whMkpwKmXy9yoF\/RBBIBAMOIKehIgkWCSBdVJ9wcVGRUeX22gKgCmSds8DKEweKQfG5JHp5Ud0s\/ZgoNKjU2mKNEi7\/NukR2qMejM1TYtsKTKFqKkIaQnK7hsyYouOS2pseREV4pO0uLBAG4FqS8wmfYEDgiAmTSjHN\/lg3\/KVJiKkCRzTQ\/cAcHMb6fZdMmY\/lxYsLVbc6DnSEtVEoJhMEyJLmABPymT1MsWZEKnvooQBoWTOElxVqhQGCfr9EGEokAxUkqTTJEQJ0EnUd7IOLjQTKrmRJJkIAQTIIz1tr6cG6uJ7AzUvUnJSnfI\/SPuQTsUh+kmAXhJ4S2uJrE6PBkIqYRpCjLQUJdDLmomQKUFaSrT02LJjC45bmMrykchmQjKqFLURMGpHIojVT6\/FWJfItKGpNAWs\/DymzGkZs7dn7l8mWCyXKj3eFqiiIJUFioMhAEMoOBhzS1NVyhRxiSRtDxFcHcV9JThfqhQNQnAAYT9t4k7TJN6XYB19wlQMrJXZGW7ZNABxjNGmAa1n1UjSJz7xCfzu7\/4unn32WVx44YW488478VM\/9VPDb9AUJSEh+3qeJCNFijl6fdWHdCoOVJLUsrSm5EiqZRKIU1lqK0UCEgkSrwj5JEjLRb4+lw1bcFwiU5ATWS07zYVp+f5CSCSV7QjidCFgzb7i2mbLzNFb5N+HXHAG8qSxDfXlbsqcS9ZKwpRuL5RRSar043laaquSKC4ZAgSpKPEskSpJU8KMJIkVUqaBZIgEEHOJAQciztDhEhF3l+C6nCGWEgMmEEmGtWA4lagz3QaDAGEoEKZpkugJsDUcrJ8AXSu4AOjstjZ85jOfwY4dO\/CJT3wCr3nNa\/B7v\/d7uPrqq\/Gtb30L5557bruNJXFxToYkvQxJrFIkdRFblSL1+6oHSQvS8wkfSY4GQqKftEuKtBglLEacjohZ7JUgIBchLS3SHGuJjktsbIlxiYeoESLZ4uy1um0R7Wnz+hMrD9b0tPVVzjiPHNyRAvmoe\/1d2wpYWNhfl4gFLMpEyxaj7L4lUaZkmRIVyhAMHCECJU0oS1MAVijNAcikKRJKlJI0MepA\/XE\/EM1lKZEMIRPoJAJRHCIcCIT9BEFPQnbTBu7YONONepKGY9++ffj1X\/91\/MZv\/AYA4M4778Rf\/MVf4O6778aePXuG37CO+foJ5CCdPHKQp0hxwtEbhKkgBTiZBCPJ0aBFWuSSogSD9H6FBCH\/gszX59KjhccUE9cXqktc7HFtUhspR0uPBCVEBEEMCW+UOJ30rmGsWbKUJ1tGopQKlXlEtSXKli69XouVFqpWEoUIDBwBomppkqxYmkulacAYIsnV9xxHLkcB0tIaS0tx\/n6lWHB0eYAoFoi4QCfmiAcBwoGaO4n3pTqjfJCADWJMYoZtmxUvSf1+H1\/96lfxgQ98oLB827ZtOHToUPsNalPVE1fpa7X1hZo8spenSKfiEM+n\/51MAjwXc6ccJTJvyh6IdCaBVJRiITGQEgMhEAuJnkyGkqJEqtsJBiUJAnIRsiVIj7XvuwTHJTK2nPhkpU1yIZdJeCg9IYjTj+VK1VjDUp75\/PaflraccadEWWfCsTBbr7etpcm+75MoBo44lSS9fBhp6ooAA+6TpWJzdyRVj1PIgW46m\/eASURxgIirZu0wSLI0KUxPkpJ9ARZb5bY4SWfdXn5WvCT98z\/\/M5Ikwfz8fGH5\/Pw8FhcXnY\/p9Xro9fJK8LFjxwAAx48dBxMx2LETwNIJ4LlTkEsnIY+dQnJ8gPiERO85jlMnGZ47GWKpl+C5QYylGDg2kDgRD9A3zliLLTkaFORILxeIpURfJhjIBAPEqRQlSJxSJBFjAGFIkSqRyVSUEiQyzmRFi4GskCAtPyL711xXFAuXwLiTpjrjb\/4XwXJJ00pk1MSNIJrSNB05XWgqRYrq1447XluXzNnPaY7RQqW3pX9fOq0yx7KSRIUIWKi0h0VgkiFIJYmzCKGMsgkobWkKECAQqiwXIUQkAnRYgJAxRJwjZEqEorRHKQrU7TCdNiBkEhFTjd3dQF3KZCATzCUx+lLglBA4Awm6iNHlAiHn4IFUl1VhDAgDgHFIHkIiwlL688pluobnipckDbOmJZVSlpZp9uzZg127dpWWn3fxDcuybwRBECsNum50kXG+HpRpj5\/vf\/\/7mJubG\/t2V7wkvehFL0IQBKXU6MiRI6V0SXPbbbdh586d2f0f\/vCHOO+88\/D0008vy4t8OrG0tIRzzjkHzzzzDDZu3Djt3Vmx0Os4Pui1HB\/0Wo4Heh3Hx7Fjx3DuuefirLPOWpbtr3hJ6nQ6uPTSS3HgwAH8wi\/8Qrb8wIEDuPbaa52P6Xa76HbL85rPzc3RG3ZMbNy4kV7LMUCv4\/ig13J80Gs5Huh1HB+cL0\/v2YqXJADYuXMn3vWud+FVr3oVLr\/8ctxzzz14+umn8Z73vGfau0YQBEEQxAplVUjSO97xDnz\/+9\/Hhz\/8YTz77LO46KKL8MUvfhHnnXfetHeNIAiCIIgVyqqQJADYvn07tm\/fPtRju90uPvShDzlLcEQ76LUcD\/Q6jg96LccHvZbjgV7H8bHcryWTy3XeHEEQBEEQxAqG5q4nCIIgCIJwQJJEEARBEAThgCSJIAiCIAjCAUkSQRAEQRCEg9Nekj7xiU9gy5YtWLNmDS699FL89V\/\/9bR3aea5\/fbbwRgr\/LewsJCtl1Li9ttvx+bNm7F27Vq87nWvwxNPPDHFPZ4NHnroIbzlLW\/B5s2bwRjD5z\/\/+cL6Jq9br9fDzTffjBe96EVYv349fv7nfx7\/+I\/\/OMGfYjaoey3f\/e53l96j\/+pf\/avCGHot1SWaXv3qV2PDhg14yUtegre+9a148sknC2PofdmMJq8lvS+bcffdd+OVr3xlNtnm5Zdfji996UvZ+km+J09rSfrMZz6DHTt24IMf\/CAee+wx\/NRP\/RSuvvpqPP3009PetZnnwgsvxLPPPpv99\/jjj2fr7rjjDuzbtw933XUXHnnkESwsLOCqq67C8ePHp7jH0+fEiRO4+OKLcddddznXN3ndduzYgQceeAD3338\/Hn74YTz33HO45pprkCSn14Vv615LAPjZn\/3Zwnv0i1\/8YmE9vZbAwYMHceONN+Jv\/uZvcODAAcRxjG3btuHEiRPZGHpfNqPJawnQ+7IJZ599Nj760Y\/i0UcfxaOPPoo3vOENuPbaazMRmuh7Up7G\/ORP\/qR8z3veU1h2wQUXyA984ANT2qOVwYc+9CF58cUXO9cJIeTCwoL86Ec\/mi07deqUnJubk5\/85CcntIezDwD5wAMPZPebvG4\/\/OEPZRRF8v7778\/GfPe735Wcc\/k\/\/sf\/mNi+zxr2aymllNdff7289tprvY+h19LNkSNHJAB58OBBKSW9L0fBfi2lpPflKJx55pnyD\/7gDyb+njxtk6R+v4+vfvWr2LZtW2H5tm3bcOjQoSnt1crh29\/+NjZv3owtW7bgl37pl\/Cd73wHAHD48GEsLi4WXtdut4srr7ySXtcKmrxuX\/3qVzEYDApjNm\/ejIsuuoheWwcPPvggXvKSl+D888\/Hb\/7mb+LIkSPZOnot3Rw7dgwAsouF0vtyeOzXUkPvy3YkSYL7778fJ06cwOWXXz7x9+RpK0n\/\/M\/\/jCRJMD8\/X1g+Pz+PxcXFKe3VyuCyyy7Df\/kv\/wV\/8Rd\/gd\/\/\/d\/H4uIirrjiCnz\/+9\/PXjt6XdvR5HVbXFxEp9PBmWee6R1DKK6++mr88R\/\/Mf7qr\/4K\/\/E\/\/kc88sgjeMMb3oBerweAXksXUkrs3LkTr33ta3HRRRcBoPflsLheS4Del214\/PHHccYZZ6Db7eI973kPHnjgAbz85S+f+Hty1VyWZFgYY4X7UsrSMqLI1Vdfnd1+xStegcsvvxw\/+qM\/ivvuuy9rQqTXdTiGed3otS3zjne8I7t90UUX4VWvehXOO+88\/Pmf\/zne9ra3eR93Or+WN910E775zW\/i4YcfLq2j92U7fK8lvS+b82M\/9mP4+te\/jh\/+8If47Gc\/i+uvvx4HDx7M1k\/qPXnaJkkvetGLEARBySqPHDlSMlSimvXr1+MVr3gFvv3tb2dnudHr2o4mr9vCwgL6\/T6OHj3qHUO42bRpE8477zx8+9vfBkCvpc3NN9+ML3zhC\/jyl7+Ms88+O1tO78v2+F5LF\/S+9NPpdPCyl70Mr3rVq7Bnzx5cfPHF+E\/\/6T9N\/D152kpSp9PBpZdeigMHDhSWHzhwAFdcccWU9mpl0uv18Hd\/93fYtGkTtmzZgoWFhcLr2u\/3cfDgQXpdK2jyul166aWIoqgw5tlnn8Xf\/u3f0mtbw\/e\/\/30888wz2LRpEwB6LTVSStx000343Oc+h7\/6q7\/Cli1bCuvpfdmcutfSBb0vmyOlRK\/Xm\/x7cshG81XB\/fffL6Mokn\/4h38ov\/Wtb8kdO3bI9evXy3\/4h3+Y9q7NNO9\/\/\/vlgw8+KL\/zne\/Iv\/mbv5HXXHON3LBhQ\/a6ffSjH5Vzc3Pyc5\/7nHz88cflO9\/5Trlp0ya5tLQ05T2fLsePH5ePPfaYfOyxxyQAuW\/fPvnYY4\/Jp556SkrZ7HV7z3veI88++2z5l3\/5l\/JrX\/uafMMb3iAvvvhiGcfxtH6sqVD1Wh4\/fly+\/\/3vl4cOHZKHDx+WX\/7yl+Xll18uf+RHfoReS4t\/\/a\/\/tZybm5MPPvigfPbZZ7P\/nn\/++WwMvS+bUfda0vuyObfddpt86KGH5OHDh+U3v\/lN+du\/\/duScy73798vpZzse\/K0liQppfz4xz8uzzvvPNnpdOS\/\/Jf\/snC6JuHmHe94h9y0aZOMokhu3rxZvu1tb5NPPPFEtl4IIT\/0oQ\/JhYUF2e125U\/\/9E\/Lxx9\/fIp7PBt8+ctflgBK\/11\/\/fVSymav28mTJ+VNN90kzzrrLLl27Vp5zTXXyKeffnoKP810qXotn3\/+eblt2zb54he\/WEZRJM8991x5\/fXXl14nei2l8zUEIP\/oj\/4oG0Pvy2bUvZb0vmzOr\/3ar2Xfyy9+8YvlG9\/4xkyQpJzse5JJKWW77IkgCIIgCGL1c9r2JBEEQRAEQVRBkkQQBEEQBOGAJIkgCIIgCMIBSRJBEARBEIQDkiSCIAiCIAgHJEkEQRAEQRAOSJIIgiAIgiAckCQRBEEQBEE4IEkiCIIgCIJwQJJEEARBEAThgCSJIIhVx\/e+9z0sLCxg9+7d2bL\/\/b\/\/NzqdDvbv3z\/FPSMIYiVB124jCGJV8sUvfhFvfetbcejQIVxwwQW45JJL8OY3vxl33nnntHeNIIgVAkkSQRCrlhtvvBF\/+Zd\/iVe\/+tX4xje+gUceeQRr1qyZ9m4RBLFCIEkiCGLVcvLkSVx00UV45pln8Oijj+KVr3zltHeJIIgVBPUkEQSxavnOd76Df\/qnf4IQAk899dS0d4cgiBUGJUkEQaxK+v0+fvInfxI\/8RM\/gQsuuAD79u3D448\/jvn5+WnvGkEQKwSSJIIgViW\/9Vu\/hT\/90z\/FN77xDZxxxhl4\/etfjw0bNuDP\/uzPpr1rBEGsEKjcRhDEquPBBx\/EnXfeiU996lPYuHEjOOf41Kc+hYcffhh33333tHePIIgVAiVJBEEQBEEQDihJIgiCIAiCcECSRBAEQRAE4YAkiSAIgiAIwgFJEkEQBEEQhAOSJIIgCIIgCAckSQRBEARBEA5IkgiCIAiCIByQJBEEQRAEQTggSSIIgiAIgnBAkkQQBEEQBOGAJIkgCIIgCMIBSRJBEARBEISD\/x\/yg5u9iiDQvgAAAABJRU5ErkJggg==", "text\/plain": "<Figure size 640x480 with 1 Axes>"}, "metadata": {}, "output_type": "display_data"}]}}, "55226787171c4752aa32a82a887b8b98": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "5576cb6864c246b5b1be231eb6fff645": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "57644913df96434395a7d95953ca96ed": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "PlayModel", "state": {"description": "step", "layout": "IPY_MODEL_a37fd745c2154e37a420c30c21efe3c9", "max": 1999, "style": "IPY_MODEL_ab8b9c40294846d9820000b7038b3311", "value": 792}}, "5a437050674241259e1208543a3a72f0": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "5b00930d74a04c2d8edce165ad2f10fb": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "5d52cc6b2314438da6e9896470a62a61": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "5e9038896edd4da0abab5fadd1a41130": {"model_module": "@jupyter-widgets\/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": {"layout": "IPY_MODEL_c249b3bb2eff444bbbec6fd556309218", "outputs": [{"data": {"image\/png": "iVBORw0KGgoAAAANSUhEUgAAAkkAAADqCAYAAAC2l9FdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy\/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACdm0lEQVR4nO2dfbAlR3nen545916tZGkt8bGrDULIsQgG8SFLWOHDlgzWOgRhiKpsDISIOJUSkSAsIsYoJEFQ8QopZaEkCiKQFMg4iigby6ESbEsug4hKIZZkAUKkMC4UIWNtbYzFroDVvffMdP7o6Zm3e97+mplz77lLP1u39pyZnu6eOXNmfud53+4RUkqJrKysrKysrKwsQ8V2dyArKysrKysraxmVISkrKysrKysri1GGpKysrKysrKwsRhmSsrKysrKysrIYZUjKysrKysrKymKUISkrKysrKysri1GGpKysrKysrKwsRhmSsrKysrKysrIYZUjKysrKysrKymKUISkrKysrKysri9G2QtIXvvAFvOY1r8G+ffsghMDv\/d7vGeullLjmmmuwb98+7Nq1CxdddBEeeugho8z6+jre\/va346lPfSpOOukk\/MIv\/AL+4i\/+Ygv3IisrKysrK+t41LZC0ve\/\/3288IUvxE033cSuv\/7663HDDTfgpptuwr333ou9e\/fi4osvxhNPPNGWOXDgAG6\/\/XbcdtttuPvuu\/G9730Pl1xyCaqq2qrdyMrKysrKyjoOJZblAbdCCNx+++143eteB0C5SPv27cOBAwfwa7\/2awCUa7Rnzx5cd911uPzyy3HkyBE87WlPwyc\/+Um8\/vWvBwD85V\/+Jc444wx89rOfxc\/\/\/M9v1+5kZWVlZWVl7XDNtrsDLj388MM4dOgQ9u\/f3y5bW1vDhRdeiHvuuQeXX3457r\/\/fmxubhpl9u3bh3POOQf33HOPE5LW19exvr7evq\/rGn\/913+NpzzlKRBCLG6nsrKysrKysiaTlBJPPPEE9u3bh6KYPji2tJB06NAhAMCePXuM5Xv27MEjjzzSllldXcWpp57aK6O353Tttdfi\/e9\/\/8Q9zsrKysrKytoOPfroo3jGM54xeb1LC0latrMjpQy6PaEyV199Na666qr2\/ZEjR\/DMZz4T\/\/cbn8QpMwGxvg6sb0A8eQx4cgN48klgfQPY2AR+sAGsbwLrc8hjm5Drc8hjc9TrNepjEnITqCug3gRQC1SbAnUtUM8LVPMCVSUwr0rUlcC8LlFJgXlVYLMuUNUC87pAJQUqWaCWwGZdQAKoIJrl6m9eAxIC81qgBlBJ9TeXQC0FZPNaAk093esaAnWzrpIStQTmNVA369HUVTfHspLNdk1gVgKoakBCQsqujhqyWy8lakjUzf+AWq+ju3O1tl2uy1SigoRE3ayrxLx9rf\/X21WYq+VCr69Qy02jjETVlK2ac6PLVautMgBQyblRTqKLRsumbvW6Zl\/rOgGgrkl5mFFtug0A1E27rvX2e7Vs3lum2uqXVeVdkfVw\/p6rLbMQ325wMyxFxH+0BAa40CLul68QMZfq0rEt3y\/hSEm12xJMH+1lhWcb+7gUxUr3mvTB2MZ4vdKrRwi1ryVpVzT7r+vUZQCgbNYJlO1+F029hd5OFk3ZWVO2aOvTdZZy1tUPgVLqNgWKpn8CBWZtH4Sxrmjel0LtTbccaplo6i2g1gv1p\/ZV16deQwAzAaNsW68ACkiUQi9X\/wuobYQACiHV9u2fbP8vBDATdbOtRAkJAWClUMtWihoCErOiRllIrBQ1ZmWNUkjMigpFKTErK5SlRDmrUcxqFIVEuSIhSoliFShmgJgBxa4CYq2AWCshdq1ArM2AXSvA2gpwwgpwwhqwtgqsrgInngC5ugbsav4\/YQ1H1ys868xfwsknn4xFaGkhae\/evQCUW3T66ae3yw8fPty6S3v37sXGxgYef\/xxw006fPgwXvrSlzrrXltbw9raWm\/5KSefiFNWS4hjJbBaQqwWwKwAVgpgdQYcexIoCmClBGabkEUBWZbAygz19yrURQ05B+QGUK8qUJIzBUpVUaAuC8znBepaYD4vMa8KVHWBzaIDpM26UJAD0bzuQGkuGVAqBTYNUBKYN\/\/boKRhRwJqGwpKRQc\/dfN\/1dy7OFiShURV6\/V9WNLvIdDCEgBUQgHRLAhLas0KFHhUogEiAkwzUGBSQFIXNWoNRgSYSjQw1FxwKszVsgaGdL2lWOvAioCBlBUgVgwAqRloKsj7slwx6gYIODX90PUVzVcxDZ5mjuW0PNnearOTeXPl6urfpNMGRvgga1CAeyCQRSsSXqKri4IcKh54zDrdfYwFIF9d3DIfDHHtpgKRBhe7PgN4hIYYE4pouRJ9eNJ1lWKFAaMVQJhgRP9v4UgosCnlrOmvgh693QxFC6VFg2S0XNmsE009FI6KBo5UX0ULSDYcCaEhqA9IFHK65R0grRQKnoQGLAJGM9EHpBUhUQgekFYMQKpQComVskJRFg0gFShnNcpZDSEaQJpJFCtAUQJiFSjWBMQJBYoTCohdK8AJM4iVEjhpTd1z11aBE1aBXSc0r9cgd50ArJ0AubYGnHACsD5vjuliUmWWFpLOOuss7N27F3feeSfOPfdcAMDGxgbuuusuXHfddQCA8847DysrK7jzzjvxS7\/0SwCAxx57DF\/96ldx\/fXXD2+cxjWLonsviuasa+BpVkDMCsh5DbEqIOZCEcQMEBIoVtSNX30d1UV9BmA+LzCb2TeZoi2j4WilqLFZF+3\/M2H94i4E5rXESqFgSH0NZPu\/hDpxpAQ2yWaqbtmAk4CAwBzqfam7Uah9kI2zVAuBsvllUjVulSiaVmqBWkiUEN16qC+z3r4QQgGQBEqIFpZWUELKAnPUKFCjgC43Qwk0cFSgkKuoG9ipxBwFigY+igaY1tTNX26qdaJGIUoDmASKFhBmKBtomjXApD4lBU1NnaLsXCYxQyXn7QVXygqlUKAtUbd3eg1OQhQtbJToXhfFWnM2WDBUd9u1dQIoxWrTXlOeXAcoQNEbDYUcYW9vVtGsMwHGvvHxzlT\/BuoCNVWn66Y\/cBTq0qYOhuHGlg922jIRA5FTAMi3PARCXH8oDAEmuNh1uKCI1umDIlq\/6RaZ5Wh9JeMalVgxynFgpN9rx0fBUgdBU8BRu03hhiO1D31AKi33yAaklcJyjyYEpEJIlEIBUAHlTAkBlEWt2iokhJBOQBIzqPuMtsOKppOz5p47K9Vf2XzGsxKwQWgLcoi3FZK+973v4c\/\/\/M\/b9w8\/\/DC+9KUv4bTTTsMzn\/lMHDhwAAcPHsTZZ5+Ns88+GwcPHsSJJ56IN77xjQCA3bt34x\/9o3+Ed73rXXjKU56C0047Df\/sn\/0zPP\/5z8fP\/dzPjeuc\/sC0yuYDq0oVmyoKiLKA1Gd0IdSHDQBQJ0292VRRNHxVqnBTUSinRRQSpaxRS4GyqCFlCdGciLUUBiCFQGkmTEACBOYACilRC4EVQL0XXfhN2biq7AwCUij3RxRqF9FYuhqWKijHqjTCIxqWtAslmwuEBKT6tmpYKiFQabeIvhcwYKmExhSJQq6ghmzAqGyW8cBUAy0slVK5SxwwASY0tcAEGNBEgQkAC03qCJStI6WcKBNoarnZwQ8BJ\/o+FZ5UW6vtawNQ2nbDEKXWrRrve+sBaz3vCrluuq7wn1K6Y+ODsSkVAy9J9SXua8h9CvUvxgnyleX6mwJD9vsYIAL8ITRa3oYiWm8pqIPVd41iwEj9HwdHbTkIFBSWGDhS\/TPdIwpHan28e0QByRteg2yhqYgEpJVCQkCygERDbWUTbpvNKhSFxGxWoyiVi1SuqHuKEOo+KGbN\/6WAWC3UfVPfQwvRmRLk3ooZ8+NjAUnanLYVku677z787M\/+bPte5wlddtll+MQnPoF3v\/vdOHbsGK644go8\/vjjuOCCC3DHHXcYsccPfehDmM1m+KVf+iUcO3YMr3zlK\/GJT3wCZZn+i45VC0Zz80PTf6slRC2BqoacNQTSnAj6I6w3JPka6wt8AR30WUGl2ijVjXazLpoTuo4GJRXOMkFJNOAzlxIVhHKxZPcLo5LdF0aH38oGtmYEfFTITP1GLqFgSYGP7EJyUqAsFCBVdQdGlexgSQMUhaUCqu8mLEnMm7bacFQDSx0Y8cDEuUs2MKlDNtxlUp+icpoAtGVVXabbBLjBCcBgeALMnKchENXWE3KSAlDFlTHKO9dE5jrZ9U0ML1MqPawWvz+hci4Acm3rgjYbhIA0GFJ94cNmqmzfJVJl+k5Rr3yiW9Rt13eNYsBIv\/flG6n6h8OROl7+0Jqqd3x4bUpAKlrXSKr\/G+eoKCREIVGUDRwV6PKQVhpIWlGmgijUQRJNZMa4tzKSsxlQznhoWpCWZp6k7dTRo0exe\/du\/PWhT6ucpPV1YP1JiCfXgc1NlbT9pErmVgncc\/W3vgn55FwlcT85h1yvIOcScqOG3JRdflKTyC3nTX7SvEBdOfKT6gKycZGkRHqOErqcJB0WU2UVtNQQRhI3zVOqyXY6v0ifHDpXqdauEknsBmDmK0G2rpI+u3R9ALNcJ3ZrWGreK1gyk7VpEjjQ5S6pZV2yN33fT\/ju4IImfav+0GRrJrEbVp6SrofACZcIbpen9bd1yE3Yikng5gAKMCHK1WaovV6dCVAzleOzVc5RSFPAWWodPvAJ1ZcCQUAfhLj6QzBktxvjEtltc1BEy8e4RWrbYeE0tUwY\/08FR205R2hNrU9zj2xAKgUfXtOAtCIAMSLEpgHJzEPqErWLQpouEhNmEyudiyTWSogTZsDarPl\/xcxHWlvt8pHW1oA1lbAtV1aBtTUcfXITp516CY4cOYJTTjkFU2tpc5K2XeUMclZBVFVztjVxUnqRKAqIQrQhN9E6SULZICQ\/yRd2s\/OTOPdIuTzKJYkNvRUQ2IRELQVmAm34baVokrrJprrb2onSLpSGmzZXqXGVZtopYkJwtRSGE9U6SMLjLDVJ3i5nCehCccaNnuQuhcJxtsMEICksB4ANzQEg4Tm07QD9EJ2qswvTAabjBHv\/hAlPNNdJy3af2tPB40IBPEQZYTlmO6c7xYn5MZgCWVyfdpJCgMNpivykFAhytcmH6tzukNomDojsvoSgiLZlu0WAGUazy6eE0\/R7CkYAFgZHgN890kcoBpBWdEoP\/PlHyrjhAalMACRfHhIHSL0wWyGaZZ1z1Iba7HykLQqruZQhyZb+gObz\/nI7LwlVEy\/tErjVe7RhN+hY7Ew5I2X7Pe7CblWFXn5SxYBSt12BWSExr4UXlOaQWIFKqq6axG6apzTrNmHzlGj4rZawwKcLwenEbgVOdBScGYIbCktokr5nzcWQhuJ0orcrHIfm4ofGXbKBCegurjFhOXUU06FJfXIMOOntaP5QCJ4IfNgApbZLgyjaN5dCQKUVcqpKJlTH9W0naQzExeYpucCnXe+pJyVxO+QMqe3cMNRtk+YS2dv4wmhAH4xoeRuMABhD92NcI6CfjK3aGw5Hqu60xGwKR2r7DpBS8484QKL\/zwKApPsmhFoWFWYTjTFghdkwayvjQ212uE3D0zYAU4akkOwPhvsgRfeedZNWgWJDFa03JYpSjWDWJ1ZdN4nbdYlCQ08DSqWoUYEHJRTAvG6+ZBSWLFAqGhiheUqbdQdKXJ5Sl9sEr6sEgS6xm4yC69TA1khY0se5GxHXd5foyDhVvu8uAXA6TEA\/8RuA12VSe2hCkzp6JE8pEpza7dpD14cnO2Tncp+AfvjOBVGqb8RBYtanAJUtDrBspYBGCMSmUmqidUgh0OmVD7Q\/LHGb7wO3r9yIRBuIfA6RXUfIJeraGBZGo681ANFlriRsWhd1jfR6OlKtXTYCjlS58e4RB0il4POPNCCtNNt3oCVZQCqFAqRCu0samggg0TCbPZqtKCVQSAVGAq1hgEJ1VMwExErRjhKHHtWmR7kB3T3Wzj\/aYlDKkOQT\/TBsd0llrSkXqZbdKLdaf7DkB\/9mWthtXjXtFg0M1QqUSsM16kBJJQcpWlHuj+pfLdWJvwkYoFRL0UwboKfxEy0oGbsvdB6R6SoBMEa06RCcdpUg+ondU8GSTvq2gUl\/MnQaAae7BLQg1QcmXYsZloM0gUkdHxOagDS3SbVvg08AnqyQXXd0TfcJ6ABKbc8nbnN5UL6RcKrP5kUq5AJRwGrb3SLQ2S6FAIdTVKgtmLwdD0GqPj4BdgwMtXVEQBEHRAAPRXRbHxiZ64S1rg9HHBipdqeDI1VPH47augTvHumvqg+QVjRkBRK0dRK2C5BmhWwBSYfeVpowmuEcEXDSYTY6ms12kXxhNu0iGaE2oLlBWvdfMtpcbmEIPkMSFR3yb39AVdUt1x9QawHWXcitlu1UABJwht2om1TOFPDQsBuaBG4KSiiKNkqnTus+KK0UEpu1\/gKqfqxANqPc9DIzT6mEmqGcm09Jh98UyDS5Sk0PqKuk+dA3t1JzkAfDkp5ryXCXAG\/uUgww2TlMAHouE5fHpMupPvDgFHSbgJ7jBPDwRMGCdZ5oXREQBXhAqtuwFQdUAH\/jDoGTDVop2y6LRoXZErZ1gU9bl+dYxkJQV1e\/fAiIfGEzu39DoYj2ww6jmesEs26ca6T6PQ0cqXJ8aE1t53ePdH2++Y80INEEbRcgFU2bs0Iv6wOSngupLLp1s9IdZqOzanMukg6zGdYafa3zkYDmfkvvy9Yv+S1QhqSQ9Aekk7eBLi+pJvYL\/dBroe5VEUnc5axGNS+MsFtHPQBqBWFSlgBqQtBduVoWKl\/IA0q1DCd00\/mUjEMAtGDkc5VoYjd1lXRiN4WlWjYXn0I2dBWGpbYLTadc7hLNXQIUXlDZwKRLqXVdWM6Xx2S4TEDrNLXlA9CkdqEw6jAcJyDCder6bTszvbwnWqdrniMHSLXtc6E9lyLgyrmpByC2EqCmThgPwU6v\/YAb5Z6gUymUK0TFj2zzu0NcfTGhMyAOimi\/hoIRfR3KNQJ4OKIQpMr0ockHR6pcvHuk6vG7Rz5AWika+IkAJPUYkQ6QVDnZhu1KoeZCKotacQ7JQ+ImjbTDbEEXSQMTDbW1BErOLS7ENtsafMmQxEiK5uvAUWtZAvOKfJBmyE27SagaQAokcVebohd20\/lJZTOpZCEFZmWFeVViVtSYN7lJdeOuqMRrlai3GQFKNKF7s+6Dkp3QDZiuEtqLDu8qQag\/6ipRWKJ1dyPh4mBp1jheNBQH3S2tQO4S1XBgUu\/GQhOQDk6A6ToB6QAFMC6U3UYApgA3UBl9E2a4bVRO0db\/kBysITlNIfAB3C5Q1248CLnaDMGQWuYGItVeGIrsergwGjANGAHwwhHnGtGyHBwBGnL8cKTqNeGo29btHql9iAMkbgQbBSRjFBsU8MyauZBK0eUilUIqMBLdXEgK5tSkkUVJwm6eZG09o7bXRaKhNn3wjP+7c0BqKMo5SUuo9gMs0I5oA5oP2gy5tTQRcJOKFXcSN6BOPNQCK2WFzapEIYUqA9F+OfrTBMjmyypbUKJhLsAEpcIo0x\/5Zucp6XwnV66SPQLOcJWA3ig4fQg5WKqb\/Kt29m5AwRJgrIsJxQFo3aUpgIkPy6l3qdCkjkEaOKn6GafIA1AABzQ8RLVthGCKtKn6HDe8PxWydpJiIMdWCHoAN\/hQpUAQ0AchV1sc7PmACJgOiujymFAarX9G6ksNqenlNKym19lwpOoiv5sFD0dtOZhwpOu3AYnCkd7WBiTfCLZuIshuUkgKSHq5TtZWsCRREFdpVlZtndo5aieQbB5e60vW9rpI7QesoUnbcTYwbS0U2cqQ5FLzwcjZTM2VZEyV3nz6s2YqACvkFuMmGf8XMNykum6cI5RAraCnBnpTAxTN6ANuDiUNSnrUm4DEXN8UpXvkm0ry7oOShhk9vJ+6SrWEcniEewRcLRVclOhGwblgychXEsQ9auovmjaHhOKA4cDE5TEBw6CJ5jW12wXACejDE5i+swAF9MJ3bV8CYTaQm40v4Xpm3Yy9cEX65FIsdG21YqDGpxjg0QqPcAuE3JhLvKv9ITAEmECk2pwGitTracBI9csNR5xrpNepuuLhSNXDh9a67Xn3SNdJAYnCka6vS8Z2A9KsUOU4QFKX5c5lcg3113WuNCPYRBtaQxtm8yVre10kGmrTO67zkWhqC9C9L7ceWTIkxYh+YHqEm07mVn5kF3KLdJMwhzuJu5mJuyyaUW1NIrfqizk1ADfiTc+hZIKSwAw1pBDNI0h4UFqBOUXAilAhM85V0vFrPVO37SqVRQMQAVgypwwAWofKgiWgu9AZ7pJICMUBg4FJbdvduMdAExAHTgCS4QnwA5RazkNUWx8DU2rfQkBFFQdXLtnQZSsKwgYoBWJilTrabQj8GNsngBDQhyHA7w6pPoTnVJoCiujyoWAEIDqkptfb60LD+VXZPhy1yxPcI11vKP8oNAeSC5DsuZC4of72SDZRWMP9SZjNNeTf6yLRUJs+uDQfyQYlqi10lzIk2ZrNOhAqZyr\/CCBQVJh5SdQSLOp2CoCgm+SYEqCu1AkIoM1PUhuZI950IrdvxBsHSjp3ST3GhAclY4oA7frABCWdhM25SvqZQtRVorCkb5eh5G4OlmwgGhOKU02MACbAgCYKBXHQpJb4wEntmwlAtusEuOEJ6AMUwIfwqJxuVFsBH9pzqSQ33OlCbNtrw4c0KPQ2EH7MMsNBqF2e4A51dbkBKQaK+uWmASNjXWS+kbGNBUdd+a79EByp7U33qKuHT87W28QCkj0HUgiQ6FxINFHbHsnGJWrbydquIf+si6R33HhfmOu6D7d7vU1htwxJKTI+MOvDK8gNx3KTVI4RDDdJOUd9N6kom\/dAm5\/EJXLr\/CQ64k0nctMRby5Q0nMp+UCJS+ieN2Evw79ikrptVwnoQnBFA0o10D7eROcrAeg5S8ZIOKBNNOJCcRwsQXcNbfeigUkjAAWmdtJKmNBk5jKpkq3Ixd8uNwScbNeprUf0wccHUAAPUYDbjaLyOlMuJQLWTlMIdDiNgZ+2Xc\/ouZgwWVtPokPEvaewY68PuUX26xgwUv3WwMOsi8w3otvFwpGqg2wvum9+yD3S5W1A0nCk+7UIQNKRAFeidgtIostDagHJStZmJ44E+o8f0TusXaQZgaNZCfuxX+QD715v4cNtgQxJYdn0SoFI5yVpCtAht8Y9ovMmyQ2pzvCAm4Ra0TkKsIncOj+py0vqJ3IXQnTPd5sYlGLDbz5XSW2AFlh0cndMvhLAwxIAY0SczluyYakNxaFrnwMmnfDdjZAzp0awpxVo5YAhYyJLq5xdVpX3gxMQD09tfQxAAWGIAtwgpRUDVLZm1F1aUOhsqzQ0RBc7As4HQIDbEQJ4GOJAyNWfMUCk3qdBkd0P18g0oA9GdH1MSI1bb+ccmdv4Q2s2HOltQ0P7dd2u8BowPSBxido0D0kDUi8PiRvyL0wXqT1A1EUCzGH\/7Y4TUAJMV0m\/30ZlSOJkfyjq7OiXoZNMlto9qrs7bJvxrP4XMHOTODephuiF3bj8JJrIrfOTaCL3IkCphDv8psWF34DOVdJlgiE49POVNCzRMFxTsPmvn7dkJ3nT9Rww6ebahG\/wwIQmJKf7zLlMqj7yFXPkM7FlrfJqmz4oxcIT4Aaotm4HRAEKpAAEYUorBFW27JvzVj16ZIimeFxJCHq0fPDTlnE4QsA4GOKW2UDElYkJodmvOSgCOiCh5WPASG1rrvPBEXWNaFkKMLo\/KaE13Z4JTMPCa2r76QCJ5iFpQOLykIz5kAorxKb3N5SLpHdeu0ftB1dY68j5ThO47fJbqAxJLrkecss9nkQnn6EyE7g3qmQ3CVVD8yTsBnT5STrsxuUn0UTuqUFpRSh+cIXfOoAxQUnP1N2F33Sd6lUoBEfzlfoSZNoB6YUl9V93JbKBSRfR+Ut0GZUGJoDmMLldJldoTrVtu0cmOBnzNLW73A9RxcIT4AYoQEEU4Aapti0PTLXlEqEqRqngNZVigSakGOAxynvgB3ADkJYL5mJgqG0jwSXiy6dBEeAHI6CDoxgwUuVhlFMA0mybCEd6WUpoTZebIrym9m0aQOJm1DbCbIXsh9k0IKW4SM1OCxJaM0JtNviUfTiSs1n\/FznQTCi52OtChiSfXNSqk7dr62ah7\/TEPTJyk5r3IsJNMsJuQC\/sFspPAqYDpVLIJkk7Pfym1M9Vig3BdZv7YMmcZ8lO8m6do6ZNVacJVF0iOLz5S9RhojlMLpdJvfNARTDsFgFOQAI86R758ozcIAX4HSmuD1oxcOWty0qEnhLA2jYWMbItADuchgJQ22YCIHHuEFc2BYi4ZSluEeAHI8AdLlPl\/WVi4IiG1fQyXVdKaE1t23+0iCu8pttwhdcAjAYkmqhN85D0hJE0D4m6SBqQjCH\/HhfJPGD2ASQuks5HskGIc5O2WBmSQiqEmivJTvLVonlJOuSmbzA6gbupRzQukgTaE4pzk9S4oy7sJiGMx5ZUKNj5k2h+kpYGJcVnMghKtTCnBygB5VgJgMtTAtzhN7LroOThC8G192ZhheB0FRGwBFihOME4R9rdIf2JyV8im\/bbJmVcLpM9Yq4XngOCYTcwNzoXPPWTyWM1DqQ4pcBVjIY8RHarFYIdTkMBKLQ+Foa65WlQFJNX1K5LACNaJiacRsstAo70utjQmn4t2mUwlqXkH3GPGXEBEn1grQ1IrjwkvZ+uPCQAxpB\/\/Z51kQD3sH\/9vmTOPQ1QNFl7G5UhKUWzxj2yR7NRNSdAL4F7o+q+ZTMAG1INkWTcJAERDLvNmbCbnZ+kRSebDIGSerRJB0oAvHlKAHrhN3rBMacJUNvbrpJeTmfstl0lwIQl10i4bp8ZWAIXitN9Qs9dMsrRZhKByXSZ+s\/G8zpNQNBtojXFbO+vI15DfKEh0LBTNSR3KQb8QmXGwhBXR8glAvr7m+oWATwYAWmuEVduLBzpslO5R7psSv5RKiDRx43YgOTKQ6JhNgDOMBvrIsFykQoBkyyFCT4ahmg+UoprtEUOU4akMdI5SrLuPvCquXXoEJt+rUNtbU6SUHk02lFCZ1\/Kgg+7odYTnPFhNzs\/qWhdGj2ENQ6U9IVKh5h8Cd0An6dku6ZDXCVjIkqYsERHwqllw2BJbduBGuB3l0gxvQvsciMsBzhdJiAMTVFuE6aBp7j6dK1+t8m11ZCJJXeihjhdQwEotD0HOb76UlwirancoracBUa0TIxrBAzPOTLqa+uNd48oCNG2KDT55j9qy2M4IBVte31AcuYhCT7MhqYfdMg\/0LlI7QFiXKT2wNCZtYcATjkDikKllOTJJHewSMhNFKKXwG1MLkncJGMW7s3G0oREVftHu9Gwm52fxI14iwGlkrg9AJyzc6t17vmUAB6WYl0lfThpCA6YBpbavCWMcJd0Pe1UBfbINrYrBjABfWgCzJwmtSQSLBLgiR1hF1FfTN0+DYOrnaUhgBQCoJh6x8KQa7nPJQJMIOK2jwEjzgmyy7hyjWg5GsGZCo50vSYMNX1o35uhta4cjOUajlTd4QTtoYBUtg\/V7gNSYbURGu5vzKyNvotEn9HW7ayGpS7XqBdqs\/ORdNK2dpV02G0b85IyJIVUztQdXH9Q+gOsa7TJ2zQvSSduN3DU2o2OySUlGekGmG6SgGjnTnKF3ei0AJUURn4SUGMu+yPeQqCkH2QbBiUgdj4lfQh0P4A0V0m9aYsab+1pA9QyPywBw90lCMAcpUau1ANcJthwhbDbxM0G7pXrBhwAnBiQciaTezRFuG9ZFQM7tuLCbDzQxLQdC0NAukvE1ZMaRlN18vUNdY3otmPhSNU73D3Sy2MTtNW6cYCkXSQOkOwwG4DoMFs7cSTnIkEvJwfTTthul28f+KQoQ5JDUhQQRdEfwRaSDrm1jymRbAK3MR1A1ViY2kVqXCUJRe41BGSTo2SH3QC0FikNu4USuX2gpJO89cWjc3ssUGpXhRO6m10HMCxXCfDDkjFtAMKwpNppyqS6S0A3nQBccAU3MNnruL5Z5ftuUx+cVPtp8NR7zAqnKJgZcMEbABM7QcPCbMMBKKaOWBgC+kAEjIMiu\/xYMKJlY1wjVYe5HwXS4EivH+oeAWkJ2t26cYDUAhADSKlhNrVDXd\/b\/xsXqe00+QB6CduACUd2PpIdelgCLTXKzedz\/It\/8S9w1llnYdeuXfixH\/sxfOADH0BNwEVKiWuuuQb79u3Drl27cNFFF+Ghhx4a13As4WoanpUmMZNvruBOGELUohDdCaaT4TShF53FaRB9S\/loE+1UlbIdqaClYs+W5cp8mWYFudG3CYfSeN+WFd0XWV9s2i+r4K1kwB2fpxccmuwooC5KhVW2LBqntmmf\/lApRRfLVxccASFEt5z5E80\/GHWLFjL1n5q6QBh9KkRX1lse1p8w\/\/Sz5vSfXV7vB\/2boej9qePca41Z0j3s07VO\/5VyFvwL1cH\/Ha\/\/0o\/FFMfY91lySwGw5xB3rvX6a5+v1vncK0++C\/Q7Yn4nuu8UV57un\/6eCvLP\/l7r64xOytbukb5mtX1ov8fNurbu7tqk+2Rfr\/RtwCxHry3q+pc6gs0HSPq6GwNI+prf9pMAkj2arb01ETjS4bXWRQJMF8lwkJhh\/7phLTvUxkmH2JZg+D+w5E7Sddddh4985CO45ZZb8LznPQ\/33Xcf\/uE\/\/IfYvXs33vGOdwAArr\/+etxwww34xCc+gWc\/+9n41\/\/6X+Piiy\/G17\/+dZx88snpjYY+FDrCjXOZCsGH3Iz1kp0OQABtbpJEF3ZD3YXdAKHmq4DKTdInPR3txoXduBFv1FGqZPeFtRO5ATP8Rh0lANEj3wA+qbvrj37ndpX0MsBylkT3EoA5bQDSnCVVtxmKUy\/VMmn0iTQCRDlM+rEphuxjEnKaIHu\/7gHecQJ41wkAQrlO+sHAoTKpIaZKzIP17mQNC7mFj0eoTIo7BPQdIlc7KU4RYH8\/0hwjX3lXIjZ9XZJlqSPWVN12faJd3i1LS85WfeB+NPYBSa1zA5KGs1hA0i4SFTeajX02m5Ws3f6I1\/3ULlIBd8K2PuAsNDnmRyJyTiS5RVpqSPpf\/+t\/4bWvfS1e\/epXAwCe9axn4b\/+1\/+K++67D4BykW688Ua8973vxaWXXgoAuOWWW7Bnzx7ceuutuPzyy6ftkA+MdF7Sxhz9UW79kBuXwN3mJ8EKvxXqC0aTuOncSb7RbiFQ0l9n5Sa5Rryp9SwoyeYLx4GSTuVqQAlAMKm7Wy5RtaE\/tZyDJQkEk7vJJm0\/pBFO7MsOxVV1d7Gm8DMWmIBpoKlrp79MSsneJOdqNi5vfVNAFLfNEIjYSRoKgEMhSGssDGmNhSLVJl9+KBgBcXBkjqqz15nbUEDywZFePiS8ptqZDpC0i0T3PwRItouk9rkmoTMSRuPmRGqOnc5B4lyk7gBoWPKE2rjQGjPTtqFtcpWW+kr18pe\/HB\/5yEfwZ3\/2Z3j2s5+NL3\/5y7j77rtx4403AgAefvhhHDp0CPv372+3WVtbw4UXXoh77rnHCUnr6+tYX19v3x89etTfkaKZUHLTmgiPm3lb39XtUW7cnEk0gVtPB1DDyEni3CQ7ibuqutFusjJHu7lAqZL0YhMzNYAblAD3XEpqHXp5SoB7qgDR9otkSsOEpUpKE6A8+UqAG5bUOpNAqKvVm0JAbUxejgMm1b4fmmp00zJwVbfbOYCFAyfA7TppTQFRP8waAkpDIcioIwGI7HOvLTsSiuxtYsDI3mZovpGqx15nbse5Rz44Usvjk7N1m1yCtqqTnwNJt2cDUgtnzbYCnYvUHaM4QPI9m81O1gY6F0m\/pi4SPZi9hG39fxtfJKE2Lc4h8oXZ6LPdtkhLDUm\/9mu\/hiNHjuA5z3kOyrJEVVX49V\/\/dbzhDW8AABw6dAgAsGfPHmO7PXv24JFHHnHWe+211+L9739\/f8WMORxFgd7TD3Qe0ga5Qej5kgC0ITegH3LT3wD7eW50cslmU+0mKcpQXzhfErf9bDcOlKoWNDo3JnZqAFW+D0oSOsTWByUAbPhNNrs9b9wgDpbM8JtqU0NUVAiu66YTloARoTi1MXmZDkz2dqoffiBioYkpF5ILnrSmgChbEvVxHWazNWRCyRAIuSBIK9Ydassz9bFA5QmhcdtMBUa0rpiQGl0fA0dmvYKFI\/2erot1j9rl7bbTARJ1kUDqDwGSHsWmw2wA2GRtr4sEdMP+uRAbZ\/e5Qm4cFC1BPhKw5JD0qU99Cr\/1W7+FW2+9Fc973vPwpS99CQcOHMC+fftw2WWXteXsi4aUfL6G1tVXX42rrrqqfX\/06FGcccYZcZ3SD7K1l9XNMh1yAzpYoiE3bs6k5nlubbiNuEkomntf0Z+Ju5oLY+4kKWGE3XR+EpVrRu4YUOrCX2mgpH9djQm\/qdwkM1dJ7Y8bllSIrPsIgD4sVV2EMwqWVBvDgUk7YIZGQlMr5pSvpWRvji7Xqd3OkfPUdsERwvNpCFSFlPpolJCm7h8Q5\/4YfQhAEBB2qbjPnAVrT11joCi0fQoY0dcx+Ua0rRQ44peb7pFeFxq9pvtgh9d0P6cGJOoiUbkASbtIdDSbLt9L1na5SEa4zTzwwVAb0HeFCtEHI+6c3WJ4WmpI+tVf\/VW85z3vwS\/\/8i8DAJ7\/\/OfjkUcewbXXXovLLrsMe\/fuBaAcpdNPP73d7vDhwz13iWptbQ1ra2vhDthuUe8qUQBF3TGTIABFpwKwQm50ziQxg5nA3UwHQE\/10JQABfpJ3F2XZXR+kp3IPSvkJKCk1vvDb3MSZuvmabLDb119oRCcQN9VSoUlLm\/JDMWZF\/UYYGJDa2SR4mSyLfk1qvrEhzrYvCYgCZzaukYClC39SJZUWOBkT7K5CKihmqLPWinHDBgGQsb2kQ4REBc+47ZfJBjR90PhyCiXGFqj781tzOW+8Fq37dYAEjdhpC0aZgNgJGsDnYukVkqviwR0ByAp1NYeQCY3ibvPbqOWGpJ+8IMfoLAOUFmW7RQAZ511Fvbu3Ys777wT5557LgBgY2MDd911F6677rrFdq73QQrzdZuXVPEhN\/0\/l8ANGe0m2UncnJsUyk8CTHcEUF88CeEEJV0mBpTULipXSaILv0mpLiqxo9\/Mw2wmdgvEh+CmgCWuf\/piLyHbNo2E7wDwDHGZuHqM+qybmjNU1+7HOICy2wLS4YCKPvMOmBZahmjMvmilhBuHgFCoHe5cAaaBIrueXi5Tgmuk6qf1jocjWiaUmM1vEw9I3bbuWbR13TYg0X3gcpBSE7XtMBuaZXaytnfIP+EaNmGb+9+3zvigLVfJdpnK7UOVpYak17zmNfj1X\/91PPOZz8Tznvc8PPDAA7jhhhvwK7\/yKwDUl+bAgQM4ePAgzj77bJx99tk4ePAgTjzxRLzxjW+ctjMU1myHiSZv0xOgtv+3Qm6uBO5IN8k3JYB+ZAkHSvOqn\/zmenSJRHchiU3m5h0lYGieEjXg1NHS69yuUtdet82UsKT7xCkmHKfe+sNqIZdJ9VuyNzcOnJxuEzqgGQNQbTu6rgQYoH2gmgJKFqkx+VUxxxLwfyahPqQAkauuFLeIq2MMGKn6Fw9HarnfPdLr9HYp+Ue6X7GA5Jos0t7Xdp8jAcnlIgEwhvyrBea1hbpI9ED7Qm1dWUeojcKQ7Rj5HCQuf3hBWmpI+vf\/\/t\/jX\/7Lf4krrrgChw8fxr59+3D55ZfjX\/2rf9WWefe7341jx47hiiuuwOOPP44LLrgAd9xxx7A5kqjoMP5yBtSb7nI0H2mz7k8F4A258QncMW4SAOeUAHbYjYp7vpuWLz8pFZTatqRADX2hGZenpPtorutgyYAiIWC7SlPAklrfHTMKTK5wHHWXANNhUu3GhNVMiOCgiaur6zN\/Z\/TBk64PCN+s2zm1EsCBPp7leEjoTtl3rdBxBeKOzRRApPrjrzfGcUoNp6l2aBtkG3Z9f3sXHNFyocRsut1UgNQxRDfMX9cXC0h0m1AeEpULkFxD\/oE4Fykq1AbiNPlkGxAx5bZQQtp+9g+hjh49it27d+Ovv\/MZnLJrFdjYAOoaopoDG5vKJdrchNjYUHevebNcSvX\/vAKqSv1vvK6bbSv1\/0alkrM3K5WHtKH+R1VDziXkXALN\/7JSkCRrQDbNyhqQc0BWArIG6ub\/al5ASgFZC9S1QFUJSClQ1QVkE4Kr6kKFuxpgqWq1jcofLyClckAqKZqwWLdOzUckMK\/1DV+VrYGmPFoo0u\/psrkEpH5QLNCOsNPhNw1EUkI5ZM3rdjl0eTRtdO\/764TxXq\/XD6G1lwMdC9Nsl5r0qS0n++VUGdkrQ+uwX0sLdmgf2vJWGftbWjm+tjW\/2PnokdC339VOTN3ebY7zy04M+PS2GQFCWmOByNVGilsEmGBkt5MCRv0yTH1WH1xwRNdxgOSDI73tkPwjVSZ9HiQKSCl5SDEuknaQdC5SOauNEW1i1uUiiQIoVtSBbiFpRY1qE6tqR8RMQM+iLVabJ1CslAqSVpvRayv64bWFgqGyVP\/PSmBlptatrpDlM8iVlWbbFeUezUrIcgasrrbLj37vGE479RIcOXIEp5xyCqbWUjtJyyZjrqSiUDAEqBPCniaAU0TITblF6iIjmzseDbWpetxuEqAvJOGwm52fxN3r1EytpqOkdsV2lJR7ZI5AM0NvUjZptsLMU4qZT0mH2HRSNzXk9KFtPqXmf85V6tanOktSkos1hR90F3dXOM6X7K2qm8Jl4nOa2uPDhOkA901VM4zvpqwBKjVHCRgGEWydE8PWVP0y6kx0l0IgBLg\/N1+brh\/1sQ7UGDCy3y8THPHru\/d63aIAqdtfE5DafZ8YkKhr5HOR1HrrPHC5SK5QWygfyfhAmfDcEihDUkihh9zS9dwJQPOSjO2EM+Qm5minA9A3eQDGvEkScOYmAWjDbkm7Sr4sOuxmDsPvQEmXVNBjghI9BLGgJMEndNM8JVov4M5Vck0XoGGJwkQMLNWyu1BQWDJCcQjDEicbmlKBSfcJcOQgMW27wnS6fiAMT1x7nKgTNTSc5nOqFgE1zrYmCAfGHDOtmKK+Po2FIq7+RYCRasdVrl+PDUeqH1x78YDkc4+AxQBSuz\/CBCQteyRbrEKAJASicpHsEW108shewjZ9bYfaQkP\/7aTt3g6R66PYenjKkDRE3FxJOnk7Ni8JME+qnjUyzk1qu5XoJrnykypZ9EBJAw7QQYmeGoDO6D0lKFEYssXNq2SPgFN9Va\/sKQOADpb0HEto+qnrT4ElwJ+7pPtK+58CTKq9NGiy26RtA8PhyW5bKxYKfGG9nZCrlAI\/VLGbhY6BD8Rjh\/e72hkDRqp92m73xgVGdv\/ayyTTpxg40utT3CO6fugQf72tnaTd7mMLQOZDyQV4QIp1kWI1ykUCjLI9g6BN0moK2ScRwOcfGZniy\/G9z5DEaTZTeUlUnBsU9Lz13bpJ7mYeeMuG3JoEblVHAwZN2\/SZbkCcmxQLSpV1n7JHvFXNDMzcc95UYrYJSjrkNQUoAYgOvwnQi1EXfgNM14kLwbUg1RxEdkJKaX70xlc9MRTXlrWWxQATEAdNqn13iA7o94f2g2vHblMr9ro2FKZ2iobsTtQDbgNFpkrenhKMVPthOOLAqFc+IbRmrgsDkg+OVD\/iR7B1ZfqAZM+FVJB6bECi+zFFmC3oIjX7KygZUBcJ6GbYRmSojao9yJa7FJu8vQ3KkJQq1pNuIEj\/TyeVbMsIM36jgQndsjbkBnUi6ukAVBl14mo4EgKQkW5SrOzZuOl8SOaIN1XenkNJM6SGoklBCerxK77wm5Yr\/KZdJV0G8MMSF4JrDojZVvM+NRSny9n7kQpMbV0Opwnon7ahnKNYeALibu52yGwKJlpU7vfUvDbECRsKQ1pjnKK2jpFgpPqxdXBE19twpJdxcETfbzUggdRDAandbysPKVUuQHK6SGQknQ1LgsYR9Y7Zr+1QG7POeXIv4cg2IEOSV1IUEK6MbD1Xkj1nkpadlwTAORWALqcfgkvGP9HpAIDmS+twk2TT1TFuEh92E2SXwnMouSabVHXpi4jAXF9EIudSAuANv9GZulVb5kcBAn8uWArlK9EwnMtdig3FcZNU2i5TCJhU\/xqr37qOpEBT1yf1\/1B4MtpKBCm2Dk8+0naYT1OE\/mKOndZQGALiXaK2Lqb8GMdI9cFXlq+XgyPVP7OsD47U+uHhNQpHtK9TARLd15ih\/nSfUlwkn3wukh12Mz6UmYgLtQG8U+Taju2kB4626AKQISlG3ENue2WEKsNajEV\/jDeXkSj0LR9mAjfQjnzj3CQ9SSGdhRsFDFAa+qubPgiXOlR2fpJa1oGSdpB0HWaOUruLnSMEwpLCAqUGQLjwmwuUwkndGJyvBIyDJb2NDUyq\/a68Pl66XvqeLouBJld4TvXFHy6LSdbmcopCMOCarsCoYwfkI1GlAJBWbKgxeNObAIqAMBgB2wtHqk5hrKPrbfeIqyM0ek31Z3pA6vofHslGNWWYzXaRALhdJAOGLIeIHBx2AkkuH4mbRNLYUQ9UbZMyJKWIfoC+EW928jbQz0sC+lMBAEbITbWlLmaytm5khTnqTYekpAPmYmbi5tykzkUK5yfRrx3NT6JTAwwOvdmg1ITfaJ6S6mcYlAB3CE6X41ylqWCp+VjbbdTnYwKTHZLj4IjLa1KHkNTlcZm0xoITkD7SDRgGFFQxkJWqsX3iNCTfaigQtW2OcItcy1PAiC\/P1x2CI1p+qHukl6WE1+j7qQDJzkPSislDmlp0XqR2meUiqY7ASNjWnetNIGmtj1qmR7alQFF+wO0Okp4rSUMTfTxJW0ZYw664Zf3QGw25qWXNDZw+b9ce8Qa\/m5SaxE1Hc4zNT1okKNnhN1+eEjDOVWq619YzFJZUvX13SX2Goinvd5d0\/VpDXaa2PyPByWiHuaZPMdKNahFAE6uxieYpmw8FIiDeLXItC4ERsDVwpOoVzvU2HNFyQ\/KP6PtYQOL7bIfQ6PtwHhLVlC4SBSNVOTPgw0rY1jvKhtrIa28+kiqAJOnntm1TQneGpEWJJm\/TvKR2tWcqAC0r5KbKMHDUJHAXkKhq+0wfplJ0bpE5f5IwysDKT2rLk\/ykKUCpORzRoGSH37r+D3OVlGS7ruliuzQVltTx6\/oVE44LJXzTvsW4TKrv5OI8AJxUX\/tQMwSi2n4cByPdFjW6zQdEQBoUuZaHErCBNDCy2xkKR7RMintE+xcDSBSOzDYJ4JA27HmQdDu6X748JCqah9QtM8NsU6qdXdvKP3IlbLtCbW3ne8s8eUh0vf6\/\/RDUe7mFz2fzaTl6sROl50qiHywd4Qb0TwgyXxIA44SiUwGIGfiQG0ngBtCbDqBdVk\/jJumwG72h0bBb7ESTU4GSQHdBMh6OGwlK3DxFsa6SKwTXdLMrkwBLQB+YhoTjjO0ioIkyN3dTTQEn1Vf\/1XsIRPm0VU80mfKmlDzrdsSPbRcQAWlQBAwDI267KeFI1S+cZWLcI9pHDpB87pFZX+fq6q5zE0XqdjhASpkw0hVmm8pF6uUkWWAEoJ+w3S4zQ23efCSggyDjYbY754dQhqSQ9Oi15iG3xqNJXKInAM1Lapf185La7eyQG50zCegeXUKkE7jpdABTKWZaAO04qd2R7ESTdLuxoGSH31JHvo3NVVJ18LCkP5sYWAL6wJQSjlPbmCE5vZ1WTC4TXaf2Ix2c2ra5gZ4RgJDy\/LdlNJqGJpjHwBDgByLAf8+JdYuA8eE0rr0xcETLDXWP7HIx4TWz3ekAie6THWbT29vD\/WmYbUpxw\/4B9BO2AWNuJKOzodehSSR12SWbG4kqQ9KUKgKQopO3dVk7L6mtwzppC2vOJDAhN90FMrnkFG6SmfMSH3YTunxvoskOlOxdp8uFkO1DcTsXyA1KMTN0d6Pt+qAEpLtKar07uRtAO3s31Mdg5Gp1x7LZ\/2ZZrLuktvEDk7E906aWy4Fq2wmAk1YqQLXtD4SMIQ\/X9WkRo+liQUhrDBD5yqSAETAtHAHDQ2u0jG\/kmlmuX\/eiAInbD3skW1fGP9yfiguzTeUi2WlBOmHb\/kx7cyO1K3goYvOR7Nc+aVhaol9CGZJcCo1go+LmStIj3AAGiNRLNi8J4ENuQG\/OJFUHjOe5LULaTQqF3QB1caDTAgAdHNigpB9fYkKGVHMoyeYC0ELWNKCk2+HCbzxQmY82UftIICgCljhXCegDUyos0TrUdn1gotsbdQSgKOQ2Ae6bOQdPQBgWfBDl0nZPEZAKQFQhGNIK3V9868eCEVfHVsIRLTc0vKbLjQGkth4CPLEj2VRb5o9MvX0vzScQZptcXMI2+FCbKk9CbUAXagMscCqMbcyKG4We2WZvu03KkDRE7beKgSM6ws2VvB3KS9IqmFFu4ENuqnw45FYUcrCbxI1207vmG+1WN6Ezc8Rbc7gS5lAaC0oAn6dE2+aBig+\/6frUfghjosVQCE7vlz5y3XGMhyVaB61HbRsPTLRtqlS3qW3bc\/N3ARQwDjiWVbEgRDUGioDFgJHa3t+PIXCk2uIByRdeo2VD4TVgPCDZI9liAKntC9kngfTRbFRTuUh2wrY+Fr5QW39qANK5UD5S76A4yriUZ9zeIaKg01sX4TzRSSVj8pK0uFFu6EJusKDJF3KrB4x+0xBEc49Ck0zao93qNsdoeCL3WFAC+m6RL08JRjkT5vS+U1hKCcEB42FJ97s9zt3LZGCy66L9aOuMcJtcZdu+RECDD6SWSUMASCvlB\/JQKAKmByOuPz44AoaH1lSZtPAaV24KQNKKHeqvlxXtMvdoNnNZN5qtq7tL1l6E2LmREAi1DQmlhbSEE0kCGZL6So2F6rmS7GXcCLfetgSI2JCcfVdSF2Y75AbAmaOUIpebJIlrpN0kmpPEJXHbk0yGErntQ8DlJ6WCku6vBiVgujylfn\/drhIwLSwB0wOTXZddH+0PlQuGhgCU1hj4WCYNuXeMASKtsWCk6gj3a2o46pdzA1JMeA2YDpCGJGp3fe9ehyaNpOKStaca0aYTtseE2trOu95zM23bZVKBaBsAKkNSjFLyk9ptyInAzbwd2gZQs2\/Pwd5VQiE3PYdQSgK3a2i1ELKbEoB1kwRZZobdAMuZQT\/sFpuflAJKqi1zegAA0XlKNvzYIUKA66+S7SoB\/Tp1OSAdloC+uwSMAyZVVxo00b7Z8oFQCAQWMZP2IjTmB3TKtiEwckERwN\/rXHXGuEZcnT44susY6h7R8tsBSF3drr5R50e22xctQJnJ2qqcO1mbakoXyZ5h21jHhNoA8KE2tm6L\/LjXzo25E205HKUMSUPFgVMRAKBQ8jaYvCQ0QGRNBdCVx8KStgugdZOMNoXbTXIlcQt0QNMPu6nyofykECjZfeQmnDTqAxdW84MSEO4vrdeVq6TLAdPAEpAGTBzy+1wmu067XlsprlPMti5NCVSLyhFNrXcMFLVtJtTrqm5MWI3bfjsByVYqIKWE2ej2tA312p2sbSwTcS7SWLlGtQFQkQvXyVuIuKRtWztwrqQMSVPI+U0kI9xsOZK31TrBXv25qQC6dehNLOlS0fyiCSVwSws8\/LlJgizjk7hVHcPCbi5QMo4BPPlJA0FJ7Rtfzt4HHygB\/NxKdlkgHpZ69TTL+89Va+pzuEu07q4u87OPgSa7DVtDXKeQluk6O6QvMeEzIAxGvt\/cKXA0hXNk1xMDR6rc4gDJdpHMvsYBkh1m69rtu0i0XmBxLtLghG1HqE0fgN6z2miDdsdnnrPPOFADE7S32VHKkJSq0AdWCPfoMuIg9USTt42yDCyVHVJIqz4huoklXSE3mZi8XSbmJtluEp07yRd2A3josEHJ6JuIy08aCkpmP+JACYgbAafL6WNDy6rjbj8WpNmGlBniLrFhM\/J6iMtkt0HlAydg+5yjGE0JYbFABAx3i0JtxbpGXP3c6EN7syndI7rNlIBku0hG\/3V9DCDZffQN97f7pesY6yItVIWHY7h8pGa5IdfINlt0+P8STyQJZEgaJ\/1oEp+EVcY1wg1gHSRfXpLaRlmmMQ5Sigoh2wTu\/k15sW5Sf7Sb2behidxTgRLATxMAxCV1q3JxsGS7SkA8LKlj1dQXEYqz69cKuUyq\/jRwcrUd0jI5Ry6lwJDWWCgKtRvrGrnaGRNas8unhNf65d1lhwASNxeSlg1IKWE2OprNNeSfKtZFCiVsp4p7VpshXz5SbNI2Vzag4HPbttBdWo7MKI++\/e1v4+\/\/\/b+PpzzlKTjxxBPxohe9CPfff3+7XkqJa665Bvv27cOuXbtw0UUX4aGHHpqm8ZQPgtKwPUmW7wTxnWhEKpwmnDFi9YXxd7GzXWVnyTZfxLKoG3sWbKxbfxHtNmMnSOte693shseqC0S\/LGdpdxdC81dbd\/GURjuh5E2jDOlz92uxv8xVVu9LqLwqZy4pRL88LVEWzHUH\/S+wrqf3GYjuz+yH+cepAN+WWb\/o\/YVkt839LZum6HPKsQode1+7rs+cOz9oW0b91nlnn5d2XaUQPfdopwASl6hta0yYbStcpJRQmxOMACTlI8FTFug7Ra776pI6SksNSY8\/\/jhe9rKXYWVlBb\/\/+7+Pr33ta\/iN3\/gN\/OiP\/mhb5vrrr8cNN9yAm266Cffeey\/27t2Liy++GE888cS0nZlyqGLpP8HsE7Bft3uVmDUXhcL8YgwdHSEIzLTNM19ktbzfBt01Oy4PmLsSuoCGQClW2wlKBvhYNxS7vN0GwIc8XDdR183Qxy9TAFPXTho0hfqzaJBaRFtD4HEMGKk23c5RLBwB07tHiwYko2+eHCRVT3weUr8vfhfJ3g\/bRbJlz65t19vWs6B5ksyG4c5HAuIuKCmu0ZKMYPNpqcNt1113Hc444wx8\/OMfb5c961nPal9LKXHjjTfive99Ly699FIAwC233II9e\/bg1ltvxeWXX76QfkU95NaW\/aBbX36SXg84YxLcI0qmFj9qTDIJ3WaoSS0D7HmTuNwkrZgk7pBS5k\/iQm\/tPrL964fe7LIxCd1c\/TRXKao8E4JT+6RknxJ8yLJ77YqU+XKYaHtaoVMxNUwXq2VynIbAYOxtIjzqzVG\/B3jZdhITs4H48JoqOwyQuPopINluMZUvD8ld1gSkqVykQpjb6+3sz087\/HY5LtQ2Wr58JKi0j6h4ng09kZGSGMmYxO8FaKkx7jOf+QzOP\/98\/OIv\/iKe\/vSn49xzz8XHPvaxdv3DDz+MQ4cOYf\/+\/e2ytbU1XHjhhbjnnnu2ppPGkMYRcVjXCSgcCXN6dezPeodSQ25M9\/rLeheA7rV54fD\/ghriJtlht6j+NsuMCy7bH76f7ot7OCG1K2uDp9+FAvgQHMA7Ay4XAXCHZbq+xTkphfUXI85pGeM8bYXG9jnlOMW6RlM5RzHukS+8Zm8zJSB114C+OECaMswW6n+Mi2SLu0axDn2wV2pfuVBbzHa+sJu6v3jO61DUwyeXi0TPp3L7fZylhqRvfvObuPnmm3H22WfjD\/\/wD\/HWt74V\/\/Sf\/lP85m\/+JgDg0KFDAIA9e\/YY2+3Zs6ddx2l9fR1Hjx41\/rZEPaq2Dn9gKKWf9P2gr0Nudl5SjGJDblzyIS3D5SYB\/EnI5SZxeUshxf7i5EDJbh+YHpTooiHhN8APS71lHlgC\/LCk+hjv3AyBJrMvbhhZFEgtos3U4xADpaHPaSwcAcPCa1sJSL65kGI\/ptgw2xgXqSs7PmE7Vb58JO\/9pBD8xdDuKJV9\/+qt9+QcLXHYbfsxzaO6rnH++efj4MGDAIBzzz0XDz30EG6++Wb8g3\/wD9py3JwuvovZtddei\/e\/\/\/2L6bQ9oaQ9V5IdZosY4WbI8Rw3LT1fEubWVADVsBtKSsjNLkd3hb6OGemmxS3Tip1kUqA\/G3fbRz1NAlcvXKG0caE3YHz4DWBCgkwYzheC0+JOpVA4LmViSbsvbbvhTYJaRsdpyOU+LuE70K4Pmrg2XT\/kI+r2uUd8+fGARBWbh5Qyms2lLjcxzUXiyqoy\/S8L99nGuvmTK3ACi1kRDqPZ0GMT2Yiw21ZrefENwOmnn47nPve5xrKf+ImfwLe+9S0AwN69ewGg5xodPny45y5RXX311Thy5Ej79+ijj47r6NQUHHMCLfCTc4XcCvSXlaJm8vb6Q17buiPcJPZXsMNNssNuIaVONOf6JMY4SvY6rp2Qo+TtW0Jyt657jLsEDEtwth2WkZHjLdeY\/qccrxjXyJd3FAtIthPkqnu7AEm\/TM1D6uoanqzd9SHsIvFl+QfZUsWG2ux8JB1qG61Q0jawo+BmKi31NellL3sZvv71rxvL\/uzP\/gxnnnkmAOCss87C3r17ceedd7brNzY2cNddd+GlL32ps961tTWccsopxl+yxvyCjchdYmndLlOKST5BOy+JbStyBAY3UoOTKzeJbp8SVmvrausx6+aOZGx+UtfP5O5sCShx3XK5BL7TZQpYattPBCajH46\/7dJU\/Uk9JmPgCHDDUUxoTdff237BgORS6vc3tG2sOBcpJF\/Cdr9+\/zUBiP8BmJqP1G3oD701nXB+UL3h\/66Lj6\/uJdZSQ9I73\/lOfPGLX8TBgwfx53\/+57j11lvx0Y9+FFdeeSUAZbUfOHAABw8exO23346vfvWreMtb3oITTzwRb3zjG6fvUGwSWe\/uNya5LXwCpVafmpfE\/kpiockPUimQwcHFmNwkKp9Vz2noL15OiwAlV5spuUp2G1PBEjAclnr9cvxNpUXUPwQWp4CjseE1TlMBkr8Nd31A\/Hc3lE6jleIicf1KTdiOuWbFXltj6jHykbgyEbc038ChKPVOjJ2Vm7TUOUkvfvGLcfvtt+Pqq6\/GBz7wAZx11lm48cYb8aY3vakt8+53vxvHjh3DFVdcgccffxwXXHAB7rjjDpx88snb2PMIlWbukv2gW0NCIPgI2wLembeLsntEiZ1PlKrS8dDb\/lD6bih\/KcLTAeicolSl5iYF+90s43KYbKXmJ3Hico5ScpRc27XbF\/HTBfj61WuvOY1iR\/GHZvoequW7rA6DwqgR1qFoiGP5mPwjYBwg+doc+qMj1UVyhdpS5Aq1hcSF2ox6ueO9iHwkK2k76odO6ITr51oM7l5y21skIaeYqGSH6+jRo9i9ezf++jufwSknrgFVBcznQF0Dda3mRGpeo3kt5nNVrq6BedVsU5FyenuplstazZNUy+avBjb19qqcrLrXqCUkeQ0pIefqD3OpErdrKLCqm2e41YCcd+wl580NrBaQNVBX6n8phXotBWQtUDd\/Uqp1VV1ANu8BoKoL1FKV119T\/Sw3fROtZAEp1aNJdJJyLQUkzDL6tYRok7f1CVjT+kndGqjoMnudhhkNgF09Xd20LXObbplO4tbLKCTRbSk80Bt+7Sjf30Y417m2r5ivasx27faea2zo8hs7V9WQq8mUwLSdWhQYAcPhCIgPr7naSQUktU16mG1sLpJryL+qL5yP5BrRVrYh+249fU4bDenrUBt98gAd1UZn2dYj24ToQEqPbKOzbHOPIgEw+KG2FJLEDF24TeckFYBYLdrh\/+0cSY2F2aaCFAJYKVW4rRBqENKsVCdc0ZRZnTU71awrBLCy0mzflFuZqf9nJTBTw7TlbNbUNWvLyZWVbpvVVdWn2QxHv3cMp516CY4cOTIsdSagZfwRtjNlX+18lmJsHVyRiE9sqjm32LlX7PeBC6Rdhr7mhsmGNDaBO\/VXKTd3Em0fWEzYjdvevln5tuPa9qUKhEJLoRBP27YYHo5b9keSaI3tb8oxGhpaa\/u6RIDk0yJcpK6+uITtGKWMavNp7CzbY57XFpL3ESNUvSH\/ETeeoeG0bXxkSYak7dRQO3FsjNgjOqkkt26ydgaOcouVK4GbKjU3Kbrt6F\/OYVBKbS+kUE5lTL5SrFJhydayQNNU\/Ug9HmPcI2B6QIrR2DCbS1PnIqUqbW42GpbjR\/YC\/DVpSD4SdZFGK5YIpgqFLenz2qgyJG2lYk6IyBlMo2k\/UnqEm3P9wC906LlFMRqaoD2VXBfe1Av9EMW4SbHbtnVsISgB40CJaiuBaeq2Uo\/BIgBpaFtaMS7SWMU6sVRTjmhzhdqoUvKRQorNR4qvL3FkG902eu6OicstuTIkjdF2Z+JP0HzKzNtbKd\/Fyb6QpSrWwo\/dNkVb7SYNvlkMbM+lqcMCi37A7VQa4qYtCpAWfcvynctTtT31eWSPaktVaJbtqZQKTsmuf+S9JPjw9eNQP3x7vGziQCvhDhRN\/9y2kV+kMc9xCyn0LLcY2XlJLqXWP2oqrAlvELFu0pRhtxgNAaVF5FC4coRS\/6bWkH0dC0hTtTckF2lIm1Med35uM38+0qLkysOMfV7bFNJJ2zHlRisGnoIn93LiyHL26njRmA99gVblGEs2RfSCMHS+pCFyPfSW09i8pCku+FO5SS4tKuwGDOvrks8dN4m2C5CmcJGmyEUacl64flgsKncwVVsZPeI+xqHfGy8EpdyijpPwWaoyJG21FhLIjy86xa8GdqK6Bf0aWpbvpWuU2xBNsU+pbtKiQWlZXKXt1tDw2iTnRCIgDc1FStUiP+apZ9hm22CAbCtGtk2qQM5pePuJY8Y7SMm3zLe85S34whe+sIi+LI+WxPZLif\/GwM8Q92g7bmRbcfR32ld4p\/U3a1otxxVJabvuf1t9LRqSoD3lIJNFhwRjZtvOGvDde+KJJ7B\/\/36cffbZOHjwIL797W8vol9ZWVlZWVlZWduqZEj69Kc\/jW9\/+9t429veht\/+7d\/Gs571LLzqVa\/C7\/zO72Bz0\/FMjKysrKysrKysHaZBLu5TnvIUvOMd78ADDzyAP\/mTP8GP\/\/iP481vfjP27duHd77znfjGN74xdT+zsrKysrKysrZUo0Ldjz32GO644w7ccccdKMsSf\/fv\/l089NBDeO5zn4sPfehDU\/UxKysrKysrK2vLlQxJm5ub+PSnP41LLrkEZ555Jn77t38b73znO\/HYY4\/hlltuwR133IFPfvKT+MAHPrCI\/mZlZWVlZWVlbYmS89tPP\/101HWNN7zhDfiTP\/kTvOhFL+qV+fmf\/3n86I\/+6ATd2ybVixnOnio5j++HXFCXhzzVfayW4+gvl5ZvTvSsrVSN5RnhVsvtGeEm5daOcKukmPQRJKmSUix8hFtWWMmQ9KEPfQi\/+Iu\/iBNOOMFZ5tRTT8XDDz88qmPHreoFnPSRVFFXYhKY4qqo5GIu4Ys4XEA6dMzJBmO7tKh98tXtarIKnA8xp8uQ\/dkO+N4KDbmR6+M3Fjyqmp8rSYKfQiIWdlzbx2rs9t66meM9dXsSwju0n7YXKgvw8LVw8KwFpDVXkpwDYjV2+8QObhdJL0DJd7Y3v\/nNXkDKmkgLvJNKuTUnb03aobuzSEgAuv3TN\/jK096cWVcnXGLpvvja8amyPo+Y41MlUMZQQIpRBqS+pBy2j6FjuVUOa8q51W2Tfg7botvQzbnv6HbIuIZtQ\/tDvzfeH8YpO7LoC\/eSalkc3ONTMWE7rkzCySgH3pnrSkTDUlX3TxNu2ZAv8bymIDUM3mQDNaGL6dD6h8h1wR8ie3vXTSzlGhYDSKEiywJIlZzmb2ptByi5PldXtbGfoV1szP1yih8W3A8Z3\/dft6MPz6J\/KLp+FHLXIM6FnwLCZK2u8zHlRismNSR4ci9nokWGpDHa7g91guZlLVDXy2eL2r9M6TL9XRt6oeY2425o7LJhTbay+8zt5xT1ag3t79SANNRdcWkRcLMIWBqy31sNSmwdE3xYU\/5QaOtJPpb+75cGKzlBgG6+wOso96PUp2QIjLyXpOTJHi\/KkLSVmlcRZeJOQjmx9RkCJe5iE\/NFpBefoXlLU1zAxsj1C3WKX8S+OoF4FylFY\/OQhgDSFFqk67PodpYFlIa0pRVyk6YA\/iFgNeWPGfsHmO\/Hmio3bp+5vqcCkVmfiHKP2G1jT\/gfsrBbhqSdqAUF6dWvXuH8ksZAUexFg4IP3Zupf6e0NjvTr7H5SC65LvShm8rQa0+Ki7SVgDTWPVp0OGyr+5B6PBaRo5QSdpsiN8nVduoPjEV9V2OV8kPN9cMwpg7uGhu6ptZNNEBO4WTFnlQxF4KYMjHGwTYrQ9JUsi8oVcSH37MNwifVoob699sRURd0\/uLqvvmn3GR9ZfU6Ox\/JTtq2NVWozXWRj92\/mF\/dMS4S155ktgX8gFTDf32sZdy+aRBIvb9uRY7QFJoinynlGIWOu+9zq2r+Mx8DSiE3KaZOTq7vUOr3lYWp5rvmyktK+c3pSt4ecrra8MN+lx3XiaouIGXcNTpV0VEKO+oxNAc3qq3tg6kMSQGJqahkpEUp53F3KSkVSMl5c+GYOE4eO\/w\/xlFyJW1TgNAQZOcjjVXsL9MuZ4GUGxCeMKGK+7Xo3lZtEw9InFyANAUcDQGjnQBEKRoLTCHFuEo+WOq1C\/5cmQKUfD+ShnyPtMZ8Z2OkrzUxITejD2S9eU0D+zqmToD\/PNX1fQsctLmcKKF7+Z2ikHYUJF177bUQQuDAgQPtMiklrrnmGuzbtw+7du3CRRddhIceemj7Ohkr68rlpfeoq6gCI3bzZpSDrNMT+saMbIuxnae4P7pcJDvUNsZFcinmF3Dqr+0QILnAJQWQQnDE9avX3gjHaErVE\/xNqSHAFAOaMcCaAkrA1oGSa9sYR3aK763tJg2ReT2Lv47aPyJjRrjFXneT1EQH5DwhIhFzEUgpn6IlyX3aMZB077334qMf\/She8IIXGMuvv\/563HDDDbjppptw7733Yu\/evbj44ovxxBNPTN+JykEhtnp3vRGX4Rj3KLF6Pfw\/dmRbbNI2Vy4pvObYzjWqbWhC91Qu0hRhtiGAxCkVkHwK3YzHuEZjtSjAWRQ8jQEml4aG4LYTlMaG3bSmcpNcITfbTWK3pX0ky6Xxmr82ccvjnMT0a526xsM5ibAGpmA9U+fA+lJRtnvEOKMdAUnf+9738KY3vQkf+9jHcOqpp7bLpZS48cYb8d73vheXXnopzjnnHNxyyy34wQ9+gFtvvXWxnRoTDLZPBNc3Mio5bng3uu6IQUnbMflIrvIpobYhWoSLNHWYbaqRbFwpVz7KmNBaChyNBaOtcHy2uh+pxyR0rGNgqdeHkaAU2i4WlFKcVq4dYLwLHKPYkBtVbMhNLRs2atgllUuaOMIt5oSW7pOtFwWxT7JUN2rJtCMg6corr8SrX\/1q\/NzP\/Zyx\/OGHH8ahQ4ewf\/\/+dtna2houvPBC3HPPPVvXwanpt5bh+ShqDJ5IMiSdtG0DU43+skoWjOMqemXaugeOanO5SLEJ21pdedq26C0L\/RJNDbNN4SBx27gAyZbv5j4FHA3JMdqq8NciNLbfscdqbBjOBUqxeUp96JGTOUru7wq\/XL8c6ibFJnD7fpy5Qm4hp4cLudnXhEoWvWNXg4cmWQsjebseOd+djD2BlyQEtpVKfnbbVuu2227Dn\/7pn+Lee+\/trTt06BAAYM+ePcbyPXv24JFHHnHWub6+jvX19fb90aNHJ+ot+sBkJ67ZJ1lvhEDgJJxLb\/6SnbQ9NvluaKhNQjh\/RYVm2Q4lObv6E8pFWnSYLQaQYnKJQiE2J7h5krN7yyb4cZfK6IuCHznRL1ExwdNTuX0M\/RK1j2Pp6IbeTVc39WdqPzJL98nuhz5f7Oe96e7oarh6KylRko5ImM9Lq6VdvnteGV1Ht6PLK9kdB7suQH1HZwLGs9tqCBSQxrK2XNNOLQUKIY36XdLt6v9d+1CjO7Z0f1zPceOWc8+gq+oCZVGzyxb1oF9Zqd75Tlo5ryFmhfmh9OiuBoqSbFQDKM3yO8KiWfJuPvroo3jHO96B3\/qt3\/I+L86+uEkpvRe8a6+9Frt3727\/zjjjjMn67BV3IlH53KPaP9qgBSNuU5K0nZqPBIwLtaUkbLtCbSEXKVX6OFFA8g8hpn3klw8BJO6X+xBA8oXWUgEp5FqkuEVTuENSyuDfVFpUW6nHIXSMQ+6Sy1ny5SrFTBXAuUpp5cc7SrQs5wq3dUZ+VLG5SWZ\/w25Syig3bioA+5ormXKxMvKSIpO3ZS1jnvNkvk\/9wW+UXV7\/eKkh6f7778fhw4dx3nnnYTabYTab4a677sK\/+3f\/DrPZrHWQtKOkdfjw4Z67RHX11VfjyJEj7d+jjz46vJPUKYrNNUqRlN7EuWib1CE7H2mKUJttV7tcJFo3V5aDrlCYLeQipc6JtEhAorLDGK7wmrHNADhinazATTcWjIZA0VYB0FSaor8pxyl03H2f3RSwFANK9Ly1wX9KUHL1CYj74dN9p\/1hN59c\/Y9J4B4yys2u2yUacqN5SaF9CiVvq\/uL5wRMeUxJL6riSpCjJ0DkYKkFaqkh6ZWvfCUefPBBfOlLX2r\/zj\/\/fLzpTW\/Cl770JfzYj\/0Y9u7dizvvvLPdZmNjA3fddRde+tKXOutdW1vDKaecYvylSMwHfHChsJvrKufTguF7ylFtXJw\/JmGb+yUXUgwgpeYhLRqQzP73y9NFU8ORS6Eb9BRQdLxpUdAUA6pTwpJRL\/rneYqrNBUoTZGfFKOtcJP6PyT5iSFdUwFIaeYljVYdcJbmgYtFW88CjIJGk81ZmKilzkk6+eSTcc455xjLTjrpJDzlKU9plx84cAAHDx7E2WefjbPPPhsHDx7EiSeeiDe+8Y3TdibVDvSVD8yRJOe1\/+QKJG3TfCTX8M9YSSl6F9Ja9n\/xcLYxl4gIWBdDq15an7081kUKKTUPabsBySjvgCNOrlMoBEY+pZ5KU4DQskw2Gcph4WTvf0zekyuHSIseD65PrtwlX85STL6SRCjvyJ2nNFWO0pj8JFq\/nZukj4GUAkJIksvUzx8ak5tUyQKlsPKMSH1aKmVH9aXte3MtLsQCvxA1ICEh7INsdMxaJ60zo5ZG+lF\/e\/reylVaQi01JMXo3e9+N44dO4YrrrgCjz\/+OC644ALccccdOPnkk7e2I76ZRb3AI\/3vjTbcSdvql4XbOuXykVyhNk7cLxY1KtSfsK2XAeqXlV6V4iIZdQQAKeQixdjxtO2pAGm74WjRYDQEhpYFfmIV218fTLmOEwdP9nHnoMkHTCmwRNui7VR1H5QAd1K3Pq81LNHy\/bLjQImWiwGlUBK3DUr2MaNJ3KqfFH7ovogWZOa1wKzo76PeXi2jIARUMEGqqgugqKPDPnUtVNkCqKsmf7qW7fEQEJCFBOaAWHVV0sASN9KvVqOvxWoHN7L2gNW8AlYJatQ1UDJgNK+A1eULbgl5PHreiTp69Ch2796Nv\/7OZ3DKiWtAVQHzOTCfK4tv3ryv5kAtITY21Nk8n6t1dQ1sztX\/xmsJbG6q\/+dV93\/VrNtQ9UmVqQdsVO0JqD1tuVk3ZdBBknaSGijSSdvcyDZf0rYvH0nZvx2IaEiiLpKGJOoi6S8+dZEkRGs9S3QgU6ODCmpB02U+F2koIIVCbD5AcsER7be9Thpl0uAI6ANSSjK2L8\/IpxAYpV42pgSiCR18p1zX+6FKdaFCjlPoVuJqz1Utt792G\/YoOK4qux7qLAlHOeqi0OXu8uYyWm6ml5GFRfOt0stm1naFkF2duu2mT11Z2bap2y2FNJbr\/SjQgY8AWkgSkGTbGoXQy2RbXyEkhEALSYVQfSkJJImmnB7lJgr9Wm1bFBJFISEKqcqW6n9RQL0uABSqrJgBolDHRqyiWQeIUqj\/CwHMBETzpxpQf2JWAPpPCFV2tQSKZuTbyqw7YLNSgdGsbNatNOsKYHWlqbd5Xaj65OpqU3ZVLZuVkOWseT1r6pvh6PeO4bRTL8GRI0eSU2ditOOdpC1XKOyW4hpRcQlwvhuRL4bsAKQh4hK2dddSXCT12qy3fc04MSFA6vVzGwEpNrxmJ2bbCrlHY+EolF\/kUywUDZ48csl+qqX2JwRVruPiHu5vbmBDU8hlcjlMQ9wlXbcdgrNdJV2PKwTndohMR0n3w3ahpnaUqFLCbiE3qQaAxk2S6NwkdX2UxvFZlJs0SHVzLLlGagk5B8SK48Rh66vNaQCoqgooGvyYVwqollTL523tRLluIN4QHLnM9YeIuU8+Rz6S4SI5u5nuItFtuS7F5CKlzq49JMxGtQyAJMk23Mg1KloW6Cdm2wm2+vTo1SO7PypXwm8oWTiUgGxPIBk1LYDk\/3a6hu5X7DEMfRa+z5Kr13WucP2267XPT\/v8tetwjX6j5SprckXOiTXrNJfR9n0DNai6erWDrcvq7a1rD\/kRqNxy0Vsek8StyvXzNWOnA+DETSxpj3LjpgJg5ct5lcwJQn\/g+6YBiEmO5UyIbZ4eYHnxbdmV+mHSk4W8ZpO2OTnykUJgNEaci8QN+wfcLhINs9F629cRwDHmAbbbBUhdGT8cUQ11jlJcI9\/lJsYtik6OH3lOLjs4xYbjXPvh2z6cmN0VCOUyGflFkq+Tc5dczpKdrwS4nSVaB5erFOMq2XlKIUdJt885Snpfh+QnUfcppr++JO6hblJbr0410JNN1gKiGPaFkXMAM0Bwhk8gL8msiOylz0Gy69gBNk2GpBgNIVnjLk8cJde0yPY2ZBn7cELXz8bEXKQYcS6SnYukxf1Cor\/YOsARBEK6X5FcmE33AWSXh8yHZKw39sWuk+s73cdx4bUQHAH9j5a9JjFKhaMQGAVzlwZcm5cdgGIU2ocQRMXCU2g27tiwHAdLdn20KkGAgPaLrS8iuZsmdseAkuqbTAYlWs4GpSkSuVPCbiB1AmYStypXAKh7o\/7U8TavHQUEOwP3VJISKpF7hj64zCXkTPTCcN7k7Vp2g9bse+Eqgx3s3BWRsLVgZUiylWrLjLEHHe5S47Gyk0jqhO3e8oGOkivURpO127KNixSbizRVmG3sSDbXKDaffe8uN9w9CsFRCIyAeNdoCBTFhstiNAUISdYb3H6xv6wt+fbfB1D2dlNBU8hdsuuy3aUQLNFzmXOWXK6Sq4zqm2hBSS+XbH2LByXQuogbpPqh+kmXV1IAQqIgdQpoUMJgN6nNTWLcpAoaomT7NIWYUW726SjrBl5tPuHykuhBt1XVKskaMOGIOkg1KROj1PITKENSikJJaqFtaBlXHJdrg4xqo6Kj2owmJ0jYNuqT3Yg2Le0i2TPK1tJygNDBjG80G431Tw1IlDVjAIl+AnyuQb8+VYaHo165RDhaFBhN4RINgaFlhZ9YxfbfBVMpAJUKTYANO12BIcDkgiXdF64uLgwX4yoBHAD1XSWuPgpKettJQWnisFt3LE03if6Y5Nwke2qCKeQKuTmf4yabe1HBnBRT\/DpyTRGwTcqQNETeSWdIaE064MeRtN3LRxoYaut3Ny1hm3ORdFe5p1dzEEXnRILV3ZQ8JLrtGEDiwae\/zAdIY0NrY+Fo0WAUur6lXP\/GgJAvIr1MsofE2\/IdgxSA8j1H1F4P+NyhdGCyYUlta\/Yl5C6VRZyrBPhDcDYo0fo0KOk+20A1PSip8JoNdKUAWe4b7dZNK9Dtq7CWqT5SN0lftydzk2iYVIINuclaQswBrHoIfl4DK2X3Ws93RENmRgiOgJCeUNI3seQ2TjqZIWmMdK4RN4rNeKYbT9rSReBbFGqLkQag\/igY0QuzaRfIDrOl5iFNNRfSlPlHY0JrU8PRVGA0FoqGgNBOAaAYxeyLC6RSACrkJvnWjwWmFHfJB0suV0lvFxOCC4XfQlMEjAUlte\/T5CfpcrWUAIUgck2l80dx+UuTqI4Puall9BOEmZfkSt42Dg6BHToNgLN\/crvYqFWGJJfGJmtzMsZ1OwCJqWNMqG2Mi2R3JTVZe2geEtCF2dS2Xfu6biANkFLzj\/jHotA6zB2OAaRFwNFUYBTjEsVC0RgQqndYKK4I5Cf5jkUsQI2BpkUA0xBYcrlKeruYEBwFJbodBSXdPhd+GwtKOvIkpcAcclR+UlISN6Q1Qm8aN8kAoISQm5xL5TaBfPBNx6OSt33Ss24v6lf\/AGVICkk7Qs3TiKMebmvYkJzLFJePpGfZ7i2zgUkCrlDbWIWStWmYTbtItMdj85BSACmUoD0mvOYCpFQ4GpJvZH+sHBhNDUUhIEoFoUXAz6KuoxGPV2sVu18cTMUCFPdZCMcPjbY9wa+jbkvbViQwpcKSbi8GlmJCcBSU1Pr08Buw\/aCkxSVx67Cb+r87kDqJe0o3qa5GhtyM5Cvm4gqYydtaXBL3Ek8ouZy92gnSTlN7l67N\/wHrxGHWc\/lIOtRmAxMTauOe1Tali2SH2bhkbb2brjDbogApdQTb1O7R1HC0aDDyQdEUQDQEgpbox6Khsf3iICt0fGyI4o75GHDi7mUcMAEUfkxgst0lG7RCeUtjYMn+rsaE37py\/fCbvk7oG2At4kAJADviTffNl8itQUnnJ+lPKxR2U\/shm3obUMJ4N6k9qjX\/LLeokFtMXlK73jHCbcmVIWlRciVtt6sZ8rbLcaPaavRzkMjcSIsQF2bTEEUhB+jCbIsApKFD\/F2j12Jzj6aCoynCaWzydgIsjQWiFBgaCxt2SHNZVAasplC3UyCKwlMqOLmgaYjLpM\/DkLukt\/GF4sbC0lBXKZSnVDedLZr25uiDEiAHJ3IbYUgm7Ka2jQ+7jZWs1TW0JGE\/2RAgbSYUcgvmJbmSt7X0sH5qOGzxMH+fMiSNke0OVUxoLQRDjmW90FmN3jIuYXtqF8kezcY9wBboRrOx0+qPACTdxBBAmtI92ko4CoFRagiNA6Mp3KEhDLMI8IlNdwgpNoyRsg8cUKVAFPcZxIKTC5piXCa9vA8\/3QLOXQLMMNfUsDTUVYoFJTv8po36mZgGlHQoTkuiP9qty08yw250tNsUblI5U\/Uqd8hM4JZNyE0CbThOh9yMiSX1wXTlJcEqpxvUo9k8Q\/3FfK4eclvNgWK1CcltPTxlSEoRFzLjxOUh6asAk49Eh\/73RrXV6D1Hx5ewnaLYMFtb1rKAgS7MRhdrF4lzalRd3XJuqL9uzy7jA6Q+\/Jjv7fW0Tz73aFFwlApGdt3c+66f\/AoXGMW4QzFcMASApgKcKTS2LxxkxRwTG6S4TcaAUwo0cdMN2A5TyF1S\/ZkelnyuUleSd5W4z3bIyLepQImG3YDwJJN6v6aUlKLn7LAJ3LU6d0Tv5LA+TNePf1\/ydswIN1tb\/Cy3DEkxivlQuBNFwxK3vWTK06sj96w2KweJS9hOcZHCu9SF2VyTRrrykDo4SR\/qHxtiGxpeS3WPthOOYsBoSiiaGoamgqDtHvUWGsUGxO1rCkhReBoDTjHQ5HOZbIgKuUuqP7oP08BSyFWyQ3AxrhLdp60EJSAuPwmuSSYncpP0la1N4IYASrWsTeAmOUotLOlr8Fy2s2+3ITcuL4mbedt+PEnMXEnbpAxJHgmfNeObIwlw0HXjHAXImzarE7aNZRYs0WH\/XVPThNmG5iGp5dMB0pD8I+5XpO0e+eCIrk+Fo0WC0RRQNAUMDQGgZR7l5sv3GNpvG65SQCoET679bgHE6rMPmlyJ4DYgpQITB0uAeRsUpF4fLKk+0T7Ipt14V8kXfgP4hG5A5SlNBUrGaDYA4fwkc94ltcYNSoh0nOpK9KYD6MFR3R239kOjz3JTF2cz5BbKS2o7IJtdlP0kbh2K8z2\/bYtyFjMkpYr7YOwwHAdXNhgxQ\/9pqC0lYbt9S1yksUrNQ7LBIQRIMTlIMflHqe5RamhtKjhaBBjxD8blLxy+68kUMHQ8jG5bBGwNmSLAdbzHwJNyRuKhCeg7TWOAqSYHxecupcISN2UAB0v6G83lX0XnKU0MSjQ\/yZw\/KZyf5FMtxXA3qc0\/atYTYOolcHtCbt68JCvE12pJpwFYvh4tg7i5kNg4R+CEbe\/QVj4S2U5ay3pzIzlcpBYgFuQiqe4LA5DaPpA8JHvCSBcgpSZpU0AaM3otddSaD46GhNTojWIsGE0BRT4gCsFQ7A1\/DGws64g2l4YkZmvFwpSGmSHw5AInDpp0WyGnaQwwudylFFii+Up2CI7uswlS\/ceamDBl9h9YHCgBNKwmjPmTJMLzJ7X9HBF2K7RjZbtJ3HQA2k2yErixKvwhN19eki95W08oSbWNI94yJA0Rl2NUWeE3Ox+J28Z2l4zwG4yE7bEu0pAwm++xI0ZXYAISLb8VgBTrHsXAEdDBCOccDQmpcZNYut6HwCgFilzAMRaGUjlmKvDZrrwkXz7SmJFusaPcQtMD+ODJ7p8Pmuy2OKdpDDDFwBJgmgxtGQJL+kVsvpLPVfKF3yQc8yk1+6CnCEgFJdNBavrlSeSGb\/4kAkql+zTtqa5FtJvUVmslcMsaXciNOko05MblJfEd6q9fkh9MGZJCCiVtc5NHctDTqJePZIfarIRte4ZtG5ZiXaQUDU3Utof6TwlIHBzR9z5AMgAoIrQ2FI5iXaOxYJTqErluomNhaNBotm0CnTEa02dj1Fnk8Rqac2S3aX\/uHDTp9mKcJttlSgEmFywBiArF2bA0NF+Jc5UA\/jvim0+JThHQTSYp2nYhFCgBaGbm5kDJPeKtwzk+kZtT6uNKbDfJnlyy7YM9AzdN4NYhN+ZgtiE3Oy\/JTt6mI9zYdBbZkrOQNcx5yxevDEkJMh5J4ppZm5MNRvbQfxpqa0Rn2O49p82aPNJ2kcYma9Nuc4Ak0Qckre0CpFj3yAdHun\/G9iPgaNFglAJFY0a0xdzch4BEvSS\/FKdWQW76Q3KSpk7Y1vVz0MS1FwNNqcDkUkoojobh9OFKgSUYyzsMiRn9BoRBSV8X3Y8wcYMSgN6IN53I3QelcWG3WamiHLabpCeX1G6Sng5Au0m9Gbjn0gy50U65Qm52XlItCXzVXeVLNKFkhqRUUTiiI9vspO1QPpLLUaoJHCW4SHTIv62hYbaYkWwdjAgvIOndiB3BNjY5OwWOYp2jVDDqt0u2icgv6uc99e86KUA0Knk78mY\/FHyqHegwUZVGmDl+XzRQxTy2xPcZcWCj5XKFXO5JCJrGANMQd0lXxYXhUmDJPWO3bPsD8N8pGn5bBCjZz3iLGfHmAyWfZLPP+l5RFjLJTdIJ3BISqIURcjNm39ayQ252XpLeOQaW2gklt1HLgWoOXXvttXjxi1+Mk08+GU9\/+tPxute9Dl\/\/+teNMlJKXHPNNdi3bx927dqFiy66CA899ND4xikMVZ6H2nLQ5MhHigm1Aeg9py3GRTLKWi6SSymAZI9k44b6bxUgSbJO9dVuX29jApLerqrVH2XQdlvZwUQlmz6TclLK9mKu19Pt6WvVl+6fbreDM2n8SdK+lKr\/9M+uu23Pqqc7D8w\/fUy4P64eu85ayuBfe25BJv3Z8vVlGf5sDd3f2OMZ6ovvc+XOA\/dn3D+\/QvXZ9dDzvKrN74Bdf\/cdNr9P9Humv3\/m+qZt\/Ue+o1275g8pvQ+x1w967aHr5rJzvmuI1vlul6O5TkphXD+kbEb2knCobr+X\/9nUIaGvvYLsR\/\/Ha+98rIu2zVrfD6T6Ma1\/JOtzQd0nujwjOjGxnOsf42jXG78Wm+eMts8bpSdO7I8Fl\/HgK7eFWmpIuuuuu3DllVfii1\/8Iu68807M53Ps378f3\/\/+99sy119\/PW644QbcdNNNuPfee7F3715cfPHFeOKJJ6btjO+DpI8jcYBQ+38o1Ga5SHo+JN+INttFig2zsbvJfAldgKTLpACSvkDpi4y+0OjX+iIj2770L1L0cNoXN4nuYthbPhCO9AVbSmlczF0XfHpTAGlXfbxumAHpuwuKuJtbChDZfUgBIa0kCJgIQuhnsB1\/ve\/JyP2KPYZjAMp1DrjOF7Ye6\/wLQRh3jtPzn34vXD8s6HdsSliy94G7luj3\/W2677zeLi5FQBhOdAwotf0AD0rGeUh\/4Epy7W7AyAdKAIz7Rpe2oSs3f2TLeXdwjXSQ7hdkU65uD2pnDJiGATvPoA1BPijiRqAvSEsdbvuDP\/gD4\/3HP\/5xPP3pT8f999+Pn\/mZn4GUEjfeeCPe+9734tJLLwUA3HLLLdizZw9uvfVWXH755YvrnH3h5KgjJdTWJGzHuEhtk8RFosnaQyeN5L6EKYDUbiM7QBqTf+SbGDIm96hdNjCslppr5Aqn0ZujfdrYoQ3uNLKhgfuB5sxPYoBDtcMvb+tzbBeq1yUONMZoDs8FdKRmzG\/Hsf0XkWE1rQLC+xmUbZ6KY3sh2La4sJ0rVMeF1ej5aYfmuHpqOq8PSQWgD1U1ZpN2heOafhjPi9PrmARvVxjODLVJb66S7gOMbWAsn0v\/yLdu\/2RbfWGF3rr2+3Mo1QDM0Jten56fZE8yKUm\/ZK3igvqZbnSkmy83SdaOBO5axuclAeg9nsSeBkA\/v20btNSQZOvIkSMAgNNOOw0A8PDDD+PQoUPYv39\/W2ZtbQ0XXngh7rnnnvGQZDtGvSuAdaG285FIGV+obQoXSXWv+4Vga0geUiog0YkiQ4AUE16zAcj4leWBI2O5BUhD4WgMGPXb84PRUChKBaKxIDQEHBYJN1Npyj5q4Eo5VsIBOFpDAcoFTtyiUB6S2s7+UeWGL7p9P4eJByZOY2FJ5yt13znZ9lUvd82rxIGSxMA8JQJKOh\/JBUog28eCEheJ4yaZnJWVkZsENPeWFmgCuUmF8CdwN\/vhzEtqDzqsbWjHazhn3d4C7RhIklLiqquuwstf\/nKcc845AIBDhw4BAPbs2WOU3bNnDx555BFnXevr61hfX2\/fHz16NL4jPUtQgg3FcaPfuFBbz5bsNnO5SFIK1kVS9fAuEtVWAdKY\/KNY92goHHEj1XxwFANGqq5unQuMQlBkb2tv79pG1Z0GRGNBaAhQyB0ASmPVjBtKOj4xQDUUoMaCU2nddUMuk12JkdguzO3M57Q1EORI9u7qI98nneQdAUsgbQEmLOnEbp+rxDm9mhMAdUOljzLRQaGZGA5KerLJECjR493O1O0Z7SbQuUl1LVAMcZNqtcyeM0nOazKfkmMqADQV0ZR8+9lt3Hdhi0e+7RhIetvb3oavfOUruPvuu3vrtJWtJaXsLaO69tpr8f73v7+\/Yj4HYFl67CSQdd9lmlf9O6q2HFWneuu4hG3qIrlm11bVidZF0mE2HXMOhdmMYzUSkLgcJJp\/1K1r9mFAeG1MaC0FjriQGgdHY8FoCiiaCoamgKAh0JMarttpKgYck5gsi5n03xySn0jE3vQZcApAU22FcvrQFAammHCcLToqzoYl1VZTh17AwJIOwXGukrmROQM2lS\/8RmfoDoFSpz4oqS70Qals+0TClp6wmwYlIep27iQhZDslgCgl6ybpWbhtN0mB04CQG33IbV33HaUlmQZgR0DS29\/+dnzmM5\/BF77wBTzjGc9ol+\/duxeAcpROP\/30dvnhw4d77hLV1Vdfjauuuqp9f\/ToUZxxxhnuDnA\/HwD1IVYVX5bcSdlQm05yo6E2DUAEjKQE6yKp5vvJ2qr6YQ+vXSQgpYbXqHsUE1qLhSN667LhiAuppeYZxYLRFFDkGhXGyQVDU0HQEOg5XkGpgN\/tcW0TOs4ChffzmqFwfs4cPDnDdlwV\/shaEJrM0NyCgEnn93imD6CwlBKCazfyuErO8JuVp9Ttg2RzlGh7vhwlLfv5bm1\/PKAEIdt7C4qmr80Ek+oe05g+lapHQAClNGbhbt2jWu20nCkaNEJu7b2OCbnp9RSWAPVeCBiOEl23kieTbCWlxNvf\/nbcfvvt+PznP4+zzjrLWH\/WWWdh7969uPPOO3HuuecCADY2NnDXXXfhuuuuc9a7traGtbW1pL6I+Zx3lYDmRCDuEs3k50JthtNEEraBDpRoTlLduUh04khXsvaQ+ZBUF\/uARMNpNiB1IbQ+IPnCa\/p7HOse+eAIMAEpBEex+UacazQGjMZC0Vgg8t1cQzfnmBv+EOCpxNaNUNkqlXK2MPgLuVOuo+mCp1jXiQ3VjYGmgcBEw3ExsMTmLekq6T54QnCADUumqyRgfueBcPjNfpTJEFAq0H90SQwoadH8pKq2ZuIGehNMlkUDVbab1ETHjARuGnJrnuUmhTBDbuaBVqoqdfBc7tE2OUtLDUlXXnklbr31Vvy3\/\/bfcPLJJ7c5SLt378auXbsghMCBAwdw8OBBnH322Tj77LNx8OBBnHjiiXjjG984rNHQXAzzSmO3Y3sKQEyoTecgORK2ORepXRdI1tZhNq2hE0ZODUi+8FqMezQk7ygFjnwhtanAaBFQlOoOuWAodFOPvekPgZ7jzk0acAxiwCrGnXJBlBOeHKG7EDylQpMrgVuVSwAmxl3S17uUvCWdszQ0X4lOQjkk\/MaOfLNASa3TlTKgNDCR2w67lVD3Ey6Jm04wqXKQeDcJXAK3kN2HYh+kWnawNK9IObAS8zlkUbDG0lZoqSHp5ptvBgBcdNFFxvKPf\/zjeMtb3gIAePe7341jx47hiiuuwOOPP44LLrgAd9xxB04++eThDcdOWqU\/bJqPBDhDbcGEbY+LBIBN1qZzItlhtrYPEYBEXSS9a8AwQLLzj4aE11oQkhIpcNTW3e67bJfBKu8LqXGwMyUYTQFFU8JQ6AYcA0BDgac+ThK5CxSDwmxRcCn9l2ofRKXAE+c6jYYmaZZtiyQCE+8umbDk7qPsnCWplzVV2X0O5CvFht\/0cttVoqDUXXNtUAKkcVyZHKUIUNKj41yJ3BUZ7SYL1Q87iVsICf24EmVhqZ2Rjauk7129Gbh9ITe93PUwOikbgCqAcvtGtgFLDkkxw2aFELjmmmtwzTXXTNq2kHU8LGlpaALQC7UZsKSXq7u5Tthun9Gm3aRaGEP+uTAbgBaWADgTtVNHsrkeVss9h80GpKHhNZd7lAJHen1KvhEXUuNgJxWMUqAoxiWyoSgVhlzLQzfp2Bv\/ENg5nkJuFZQrlCL1ozwihBA4TkPa5uBps7kdUtmOkw1NNWT\/URj0lHEAk3J1HCE2Bph87lJU3lKT5NwbDdfuh9VfAku2q6TaoYXjXSUKSgDNUzJBSa0bB0o6bYHLTyqKug27zcou7BaTxC3U4YSom8NI3aSiOS6NMcCG3CrRTQWg85I0adoj3LZZSw1JS6GqyUXSIbbWOapVDJXmI7lCbT2ibtwih4ukljFD\/snM2vTRI3Q0mysPKQWQ7JwgG5A0HAE8INnhNZ975Mo9MoBpAjga6hpNBUapUBQDRCkw5IORcLgtDD\/DQm3Hh4NkaMBxiAGcKJhytT0SnnrgJPsTbvrcpkrKzg2CNB4A7HKZeGCSvbK6XF2jBbWQu9RL8I6AJTME10DbQFepzVOSCl7MhO4OlAAwI9\/iQakQtXEMbFCqgTbspn+UVyggRBd2EwWfxC2bHbHdJD0dgJHArR0j+164zfMfxSpD0tSqOgdKEljiEraBzkUCTBeJS9YGwM6JRMNsrjwk3WwMINHnCLkAyZ4DiQKSHV4b6x7FwJFaLoNw5HONuHDaVGA0Foo4kEmBITdQTQNAQ4DneISkGnWcM2RrgpCbC6Rqsck+9DTFfbLBye5tyG0yRE\/FiLBcC0ISZD+ks1zXuCRwQ8o19+wUWFIQpmCpkrrbw1wlX54SBSXANUVAHCip\/XQncqeE3QA+iVsWyk1ipwOgCdx0ziQ75EZdJJ28rUe4LcE0ABmSxko7SDTUBhiuUbse6Cds63gufZCglawdmhOJ5iFxgKRdpFhAspO2Y4f4u8JrY92jKeEo1TViAcp2hSLAiELREJfIfj8VDIVDbWGQGQI7x\/OEkhUTsgopBq5qsREGMCf0OLNie4ti4GkyaBoITDHuEm2Yc5eGwJIdgtOTQKa4SqE8pbq5\/hZCeuZSCoNSaGqAQnagJAJhN53EjbqfxC3naBO50bhIbAK3njMJgBFyi1Fdq6hOUUDIrR3ukSEpRXRkmw1FWjTU1rzvJWyTYf+2i6TDbNo9sudE4sJsQAdLvpFsKYA0ZAQbDa\/Z7lEXckt3j6aEo1TXiD4UtisfhiLdPy0KRiGXKMYhSoEhN1CNB6AhsFNhM3mbnagSK0nlh8BVT8kht0h4CjpOleFW2SE6Ck0xwGSE5RhgGuou+UJxUbAUHYLzu0q+PKXQyLdYUBKFhG\/Emz52bX4SwmE3OhN3O8JN9t0kbwK3HXKrNURVwCwy\/KZTX7ZAGZJCqqV\/jiSaj8SF2sgJwbpIsFwkwDsnkms0mw6zuQCpkkU0IFUyLkFbreMBaQr3aJFwlOoaTekWpbpE\/fJprpCr\/FgAGgI7tTh+HSRbNdZRBGbI5uSDqxBIuRwplwvldo1sJ8gM2aW6TfTMpMBUQRoP\/zXCguTHiw1MPndJuzu0nA+WtKOk5YMln6ukC5dCkJAc7ypVUk1FYOcpxSR0x4JSNzqOByU64k3nJ3FhNwDtA3B1ErcKu8HITUJhTi7JJnCDCblRUQMiYuDWVihDkk\/OuZDqLmnbWO4hZvLecJHqvovkC7O5Jo3s8o14QKpkOiBpOAL6gOTLP0p1j1yhtSEJ2RSOUsDIKOcBoyFukeFCJQKRWmaehxwMpYLQWABKhZ0aVbhQoiq5GEeqFGkOkE+1UPtdJIzWiYGrISCVAlA8BFnbWuehvY0JPZ3TNMplal2Wrm4NQgq4dHkrHCcblycClrxhuAZuUlwlNaeRWq4fkEt3MzWhe1OqSadDoLRZ03J9UCpkPz9Jh93oJJP6NsiF3fSUAG1uUo12cknUop\/ATR9TQkNuOi\/Jlp4GYBuVIckl+9lsANhnttn5SPOaTdi2h\/1zLpIdZmNHs0m0YTYNSDTMNjUgxeQf0V9HFJDGhtZS4SjkGsWAkSrf1MmA0aKhKAREHPSkgpAPgGLgJwV4pgKZrcxhmsv13rKxYTB9zGMBrBaVF6xqqD76YIoDqZSQng1PfQhiEsUjw3TUZTKgSXYj56jL1PaBjJTzAZMzHNfAUgtUETlL3NQBJRrYEUhK7FYOkuzlKrV5SrIBI0dCdwUFaZu1GA1KtRS9\/CQddqPPdvONdisL9HKTUDWzb2s3Sd00ugRu3cd53UwDoGmrOVBVH5jaCSW3QRmSYmW7SjYw6VAbvdO3iUDNzbn2u0h2mK1mwmzccP\/N2j3UfwpAGhpeGxpaiw2rxYbUnOs9YGRup\/6PDaHR1xRyxgIRB0OpIOSDoBD8pADPWKiRC3Cexsjujxg4j4sGsBhQiQErH0z5HCkboGLhKRWcaJiOlrVDa6HQXCwwtV8xSR4n4kj2LtHBkp5CwDt9AIWlpspQCI4mdtshOF9SN5enVEnRwhcmACU6h5KGSR12o\/lJvtFuQ90kY84klN06qvYZbkT2fXi++HnWMiRxsj8Iaj3QSSIBc34kLmGb3t0DLlJMmC2Uh7QoQHLNf+QLr0mE4UgfXldozYhYMiE1+vFwcBSTZ+QDI6CDoymhaIhDZINHKgj5ICgEQLHQMwRuKueDM5ZZ\/T6XCZdTfZxiYGsu170AU2HTCVIuiHIB1CB4CoTdjDAdLZsYmvMBE8h3vpfwLa1QGwNLgIKpbr4l2YBOH5bK5tMTGpZkF4Kr0ZgggRAcBSV9ndPmCRd+k1LBnB1+GwNK3f9dftK8KjErKyM\/iXu2mw67aTdJFhFuEp0OgKaj0AfecmG3ut7WWbczJIVEgcmApYZsdBmSb9QmbOtlcxnlIgEwwmwakELD\/TUg6SH+iwIk1\/D+Dpj64bWhobWhcBRyjXx5RlODkQuKpgCiVBByQVAIfmKgZyjkSLlcbtFYzTX4iJQLujp2IcCSqLxA5XOoXBDFAVQMPNngxOY6kfPddJA6p6k3f1MgNMcBk85hMiDLBUzSCrV5YKmrXJIQmnnzLiF7ITi9j6EQ3FThtxRQmtfozcqt98mXn6Q\/NZqfpMNuQjRTAhTNj36fm6SnAwA6N0mH3AATkGgKC2Dee+cVUG4dumRIskXtu4q81qE1nbQNmBYhDbXV\/LD\/9qdGzbtI1bywwmz94f4akKq6n4fUQROCgDSv1etUQIoJr3HukQ+O1GEyQ2shOEoNqcXkGfnAaEooGgtEU4FQCIBC8DMEco7HCSR7kt0+xk4sOSefhRuywkDlgimXG8UBVCw8JYFTIjS5QnMamNraZJfD5AMmOxxnhNpkE2rSoTHPiLjeaDgSglP1xIyC40fApYbfbFASAlghO8yBkrQcJTUrN7BZF1gp6vj8pHmBclY3+bMeN4k+qkTfC\/UBpG6SngoAMA+CHcXZBmVIilGblE1uCnMCSlVtJmzX3cnAuUj0GW1tLhITZtOANK\/6eUgakDZ1jhI6J2mzLpyAtFmb8yBxgLRZm3AEuMNr9tB+6h4NyTty5RzF5BstCoymhKKxQMSBUCoEjYWfFNCZMreoktsTlivF8MtkReEnNo+pgSwXYIUdKx6mXCE+DqC4fCgbnlLAaSw0oQdMTEjOA0w6f6l1lwgsqfL6wtPBUs95Is6SD5Z8IThAw5I9CWV8+M0FSoUU2IS+qSs4CoXeNBzRRG4Nje06wJmfVFcCQkhUmwLlShM1oW5S3fzYJW5SG3LTbpIe5TYruws7Td6eV8DM+g5uITBlSHKp+RCEdpbaB9fKPjTR5JoYF0n2XSQdZpvPC2ce0iZ5LpudqL1Zd7Npc4A0bwDKB0ibul6He6R3lQIShSO6XrtHvryjoXA0xDWKDaX5wGgsFI0FIg6GUkDIBz8x4BMLPGNgZhlDcHNPn4aE1rRC8FU5oKZVBEzx\/ZsPBijbeUoBp1hoApMI7gcmJiTHABPZ2RaW2pFxNhB5krxtWDL3NT5fibpKLaQId\/htUyrOmYkugdv9cNxmjqQiDEoKyLpE7nldYFbw8yfN5yVmswoalETRPDKr7qYECI90syhwXpuANLcAqSy7e2417wPTgpUhKUUUlKR2jGq0obZYF0mfRJaLRPOQ5vOyl4ekAWneuEfKMTJn01ZOUQdI+s8HSF1ekhuQYpKzNRwBpnsUm5TtgqOYkJrLNRrrGHFgNASKKBBx4bIQENmA4nKDXJDhniYgNKItDDxDwOZ4eSyJlP39iB1ib8NX0BlyQJXXrXKAlNuN4gGK1jsWnELQ1Ju3yXKZhgKTTvhuy2oISQzFUVgqC2nkK+l7vw+WQEBJXQfdrhLlCXvyyQoCUsoGdvqgNBMC81rlTXUhtn6OknaMfIncKjcJvfmTilqgakJvbdjNcpMkZDsLd89NotCkR4y7Hny3TcqQxEi0Cdn67kwuhJXlHjV3dtmCUYSLRB5iS10kbj6kqlZf+XlVoss5MkeyaViaE0DarHUIzg1Im3V8\/lH3nh\/arwHJFVqLScqOgaPYkBqFo6nBaAwUDXGHbCBKASGn0xSAnxD4DIGcegGTP3KQMkZCTD8XSxE5N5LeFxdkUahKBSqnKyX7Sdc8QJnwFANOqh9q3yk4jYKmgcDUzmJNEr5doTjtLnGhOOos0dFwPliyk7vb20HdJXbbrlJMUrcOv23WsslH4kFJhdUECiEwQw0KSmhASUNRm5xeo0mo7idy6\/wkoMZ8XmA2q9uwG+cmCV0f5ybRkBuIm0R3mER15Iy4SlukDEkh6bu2lGDDbNpBMog44CJJQM55F6mqC9RVP1FbA5JK2DYTtTUgVZGAtCkBX4J2ZcGR3lWXewT0AYnLO\/LBkT7EdlgtJqQWco1SwIgLo00FRUPcIRtWxoLQWPhJAZ2pAGZqEBra1lCAqsjklKl1uAArBqicobaBANUP3\/nBCTDPf+o4DYWm4cCkcphsd4kLxTUHoxeKq0WXrwNIc7kDllSdVnK35F0lda3uHCtfUjeXp6TykdygpD6xop1JHEKigBrkow5p5yQB3Yg3+iBcAJhXBWYwE7l12I1zk6Q6EdxuEtCE3Opmckl90a+AmjwQ154GYD7fkqkBMiS5RGmVJmxTULJCbe3s2pt6mWRdJB1mqytlVVbzonWR6Ei2qnGVuJFsesi\/HuqvAUk7TDYgbdb+EWyb9WLcoyngKMU1AtSN3gVGXOK1D4ymgqJUd6g\/Ao4L0cWH3HzwEwKfWEgZAjM7arRbxP6FRrOx4TkPOGnAioErG6hcIKUdKS7UBpguVGWDjxW+67tOZtK4z3FKhSZ95Dhg0snfHDB16xT0GO6S5ENxbKJ3IiyFkrvbUXAi3lXS12QdfgO4577pdiVWwD\/vjWpmPRDXHvHWjnxjHoQrC9GG3Ww3qd5Q9Rcr6O6DnJtEXwNNHlLzsFv7GW7bEILLkEQlrQ\/ABqU2u7iBICvURj9wudG4SZyLxITZ6lrlIemRbBqQuJFsNiBJoAUkmoMUmgOpkmnhtZjcIwpHADksE8HRENfIB0ZcGE3XNRUUUSAa4gzZMORygzgQcgFQCGhC64fATV0v5llrU+U3jX30CAC2J0URCLdZx5oDLfvz4KAp5FgNh6g4eLJdp64ONzilQpPtMhkJ4M132gYmug4EllzuUm+yyubalA5LYEfC6XylGqJ1lfTjTYa4ShIqerZS9Ee+bULBnpT9571RzYTsQVHd3C8K9NdtViVWygpVbbpJ1Vy5USUAzPpTArBuEg256UeUSP1an1DmCDchuadcLkYZkkKqrQ+LAhETauuF2eaA3Oi7SFyYjY5ksx85YgOSaloDjzAAyTcHUmgEm4akFPeIG7U2FRzF5BqFXCMXGHFhNA6MNBT58olioCjkDoVgaAoI8sFPCHxSIGf0Y0m2MMTWthnZ59SQWVWnPQuO9sIJWIG5mFoAIn0dAlG0nyF4YsN2BJ7McN18EDRxLhMHTNplcjlMtrukgYnmLrncpbGwVAsrX0nG5yrpEXArhTRAqRBq6hbfyDc9lxKdIkA0\/wM8KOn\/uakBNit19OfqSXYAmLmTmCkBtJskN5twm76R6JCbkY8kuxFu7bKtvTZkSLLFPcRWL68qtU6H2oAWlCSFJSbMVm8AshKoNrswG03W1mE2OtTfBiRuLqQYQAolaOvoYIx71FreDvfIDq1NAUcxrtEUYMS5RRqMYkNnLigyICrCGbJv2DYMpUKQC4BC4BMDDoPCbNs059EkCvyELSLmVeKOK+sOWYDFwZUXqhyj21IhigIUB092rhJgwlMLThNAk89l8uUxOUNyxkzfYXdpClgiB7PJTxLOXCVuBNxmLdrwW\/cZ9Ue+uRK6tSs1R9EmcxdQITo1IKgPTK6pAYSovWG3npukz7FVAFUNuVEpWOostO6PyjYstkgZklyq5mqOJB0T5T6cujZCbcFkbSvMNm9ykXSYraqLqLmQbEAywUa0oTTfDNqbrWPEA9KcwIzLPdJHhHOPpoajFNfIBUZcfpHtFqk+ucFoiEtEoSjkDoVgaAoICj6KJBRqSwScqV2hrXKZhidqbwyry3AG+Esz\/ex8UGXDlN4qBaI4gHLBExe6M+FpngxNgArRcdBkTDvQDsgKh+XaPKYWjIa5S+qYpMOSPccSDcFRV6lqioZylYDuuqocJndCdy2VA+UCpU0IrADsHEo2KOmpAYTsIiFcErcKvqk+Fu3XQppht7K5f9ayC7m1eUlN8vY2zbYNZEhKU60pR0LPsm0knUUka\/vCbMqR4edCsgGpJoCkJ4rUOUguQGpzlMADknacXKE1wO0etesJIE0NR0PCaalhNF2eC5+NdYmMqQginCF7GfvMtwQI8obaglMCxF2kxgCMXDJ3yU5RdEnEOEfJCdsb4XIeqHLBVBJEMQDFwZMvdEddJx80qT6VvTY7cOo7TRwwcWE5O\/FblRvuLo2DJRhzLGlXSSdat64SzMRu3Xk6W7cayWbmKW3Wqg0JYAUdKOk8JTUVQJfQrT0tFyi14TZmssl2xBsTdgM54qGwW\/frWpohN52XZCdvb7GOG0j68Ic\/jH\/zb\/4NHnvsMTzvec\/DjTfeiJ\/+6Z8eX3EbXpP831zZhXKz7pK1N1UuUr0JNsxWzQtUlVBzH1UkQbsuogBpngBI9iNGKCBx+Ueh3CMKRwDvHo2Bo9AItdhwmkQ9OIw2FIpigCjGGepNVlm7c6GCdTlHwI1zk1SZREcpInQ3RFM5S0OdI8k4R22dntwj13Xfhq64pO0Nd5mmHQpSIYgCur73AMoCGV\/oji4rxIrhOHE5Tj63iQvP2cCktjXDcq6QnC8cVwvJuksF6ihYqqVybDhY0hNSUpeIThmgXaVakukCmjwmHYKrJTBv6nLlKW3CPUP3JhQo0ceYhECJThEwJw++LRpgGhR2mwkI2SVwGyE3W3XdzZU0nwFx04+N1nEBSZ\/61Kdw4MABfPjDH8bLXvYy\/Mf\/+B\/xqle9Cl\/72tfwzGc+c1ilmgyoaD6SDrWRWbZjw2x2HpIOs1W1mASQXDNo2\/Mf2YC0WcvJQmsuOHKNVHPBEXWNYsBI1d3B0VC3iIOiVCBS5Wr2dYwr1JtXaSQE+WAiBnhiIWcctGzfY0mGPRLFP0+L75i5oMyGLhu0OLhygZUJLg53yuFI6b7rsrYLFYIn3Y92e8t1crlNqk0yKk7MOmhiw3MdMKn+9V2mVGCCJ9lbh+IkzLwlG5ag51pqYKlqjqgOjekJKXvPhBPEVfKE4GaF+pS4PCUVWvPnKWlQigm9UVCqpVRTAsgC7Wg0otmsUpNMtkvqxhVTJ5oRdtuoIWeiH3IDLDOiAtZgaotCcELKbfSxJtIFF1yAn\/zJn8TNN9\/cLvuJn\/gJvO51r8O1114b3P7o0aPYvXs3\/vrQp3HKaglx7Biwvg6xvg784BiwvqH+ntwAjq0D65vAk5uQxzYhn5wDmxXqJ2vU36\/a0Wx1pZwkOVcuUjUvUFcFm4dUA5hXZQtKIUDihvlzgDQ2vOYLrXEzZU8BRyHXKAaM1PoOjlLdIs4pSnWJXEAUEx7rhdl6Iby0cBoHQNMkZA94HMmShdQWrZhQXF9+8Ao5Xi73ytUXV339\/KOZd73drp3\/ROGJbsuBk12fdpDoNATaadL10uRxHZrTZXRdOiynE7\/tkJwuVzT\/gO7hu2qJaJd1s3qLdjsKS3rW7oK+F2qEmX6vk7GF0PMrKVeJPtxWheiaEFwTrisEdaHU+5kwn\/0myPaFAFb0tmhAicBYKZTLpLedibrZRqrwXKGeCqpCb2hfl4X6f1ZWKIXESlmhKKV6X0qUsxrlrEZRSpQrKv+oWG3mTiqAYk1AnFCg2FVCnDADTphBrJTASWvA6gxYWwVO2gWsrqjXJ6xB7joBWDsBcm0N2LULR5\/cxGmnXoIjR47glFNOwdTa8U7SxsYG7r\/\/frznPe8xlu\/fvx\/33HNPeoXGcP+6+5\/mI1l\/ci4hNzRdIDkPaWpAcs1\/FAqvtaPcGDgC\/KG1dlQbXRaAI1e+USgJOwaMADS1uhOufW4RB0UxQGTXS6FoLAzx7pDDSUoIyXUKzMadAjhjcpOotbHEMmZVdsgZivOCjnmc+y6R\/TmZUOUKpdG+UAChP5NpW7YbpZ2ots5mOw1PMc4TdZ1ouI66TXa\/dZhOh+js8Bx1mQBYoTk+LBdymNSlnA\/HUXepC8XJLslbdrN512icJIjmyiWMMJx+1ElMCM6eW0lHv4aE30qohO525Jv1v89RUnXXKkepBlonqazC+UkA6o3GUVoB5KaEmDUTMM9IyK3SN6MaxszbgBmK2wKPZ8dD0l\/91V+hqirs2bPHWL5nzx4cOnSI3WZ9fR3r613s\/ciRIwCAo0\/8QMVI19eBY09CbKw3zlHz\/8Ym8AP1vzw2B56cQ67PUR+rINdr1Mck6jnMPKRaoO7lIdWY1yUqWTeTR84xrwvM6wKVLHqAVIEf5q\/BSAPQvAEvX3ithj+8Bq97pMpK2ynS7hH6cKQBKJyMXUFCopaWayRN10jDjgFGsgMYO5RWofK6RVwIjd6kpa430SUy6xgHQzacuAHIdcFwTD4Zgp5Q3tIgmNm+cNrUCu+9xxHyPf7Egq\/ebOs9wDLdSRN0XP2hz4GjQ9K7c8J2hmxY0yBT63mePc5TW7bSc0KLtgdFsdIBF+M21dhsXwuxAjTfSVXHes9lqqCTwNHADSnTOkulCv9p54g4TPpHVudGde5SRdylAgU2sQ4BgVJqV0s0Sd6AkEXPWSpkl+DdOkvou0qieV4KdYp6rlINNayfhN\/aOgCs18o10q6SDr8JqCTuQihHadbUqx0l\/b\/tKKkx1mjdpJWiRilqzAr1V1bKcSqqZtmsQlFIzKoaxbxGMVNlxExCbEA5Sqsqf6moC4hqDlGtAPNKhdw2m9SWeQ1szBWpbcwhT6iBjQryhArYqHB0vbluLwiYdjwkaRlfdKCJvfK\/9K699lq8\/\/3v7y1\/1tlvXkjfsrKyfhg1LLQYvNQHCuz8BIqsrHR95zvfwe7duyevd8dD0lOf+lSUZdlzjQ4fPtxzl7SuvvpqXHXVVe377373uzjzzDPxrW99ayEH+YdJR48exRlnnIFHH310IfHhHxbl4zid8rGcTvlYTqN8HKfTkSNH8MxnPhOnnXbaQurf8ZC0urqK8847D3feeSf+3t\/7e+3yO++8E6997WvZbdbW1rC2ZqfKA7t3784n7EQ65ZRT8rGcQPk4Tqd8LKdTPpbTKB\/H6VQUw6bwCGnHQxIAXHXVVXjzm9+M888\/Hy95yUvw0Y9+FN\/61rfw1re+dbu7lpWVlZWVlbVDdVxA0utf\/3p85zvfwQc+8AE89thjOOecc\/DZz34WZ5555nZ3LSsrKysrK2uH6riAJAC44oorcMUVVwzadm1tDe973\/vYEFxWmvKxnEb5OE6nfCynUz6W0ygfx+m06GN5XEwmmZWVlZWVlZU1tRaT6ZSVlZWVlZWVtcOVISkrKysrKysri1GGpKysrKysrKwsRhmSsrKysrKysrIY\/dBD0oc\/\/GGcddZZOOGEE3Deeefhf\/7P\/7ndXVp6XXPNNRBCGH979+5t10spcc0112Dfvn3YtWsXLrroIjz00EPb2OPl0Be+8AW85jWvwb59+yCEwO\/93u8Z62OO2\/r6Ot7+9rfjqU99Kk466ST8wi\/8Av7iL\/5iC\/diORQ6lm95y1t65+jf\/tt\/2yiTj6V6RNOLX\/xinHzyyXj605+O173udfj6179ulMnnZZxijmU+L+N088034wUveEE72eZLXvIS\/P7v\/367fivPyR9qSPrUpz6FAwcO4L3vfS8eeOAB\/PRP\/zRe9apX4Vvf+tZ2d23p9bznPQ+PPfZY+\/fggw+2666\/\/nrccMMNuOmmm3Dvvfdi7969uPjii\/HEE09sY4+3X9\/\/\/vfxwhe+EDfddBO7Pua4HThwALfffjtuu+023H333fje976HSy65BFV1\/Dw4NkahYwkAf+fv\/B3jHP3sZz9rrM\/HErjrrrtw5ZVX4otf\/CLuvPNOzOdz7N+\/H9\/\/\/vfbMvm8jFPMsQTyeRmjZzzjGfjgBz+I++67D\/fddx9e8YpX4LWvfW0LQlt6TsofYv3UT\/2UfOtb32ose85zniPf8573bFOPdobe9773yRe+8IXsurqu5d69e+UHP\/jBdtmTTz4pd+\/eLT\/ykY9sUQ+XXwDk7bff3r6POW7f\/e535crKirztttvaMt\/+9rdlURTyD\/7gD7as78sm+1hKKeVll10mX\/va1zq3yceS1+HDhyUAedddd0kp83k5RvaxlDKfl2N06qmnyv\/0n\/7Tlp+TP7RO0sbGBu6\/\/37s37\/fWL5\/\/37cc88929SrnaNvfOMb2LdvH8466yz88i\/\/Mr75zW8CAB5++GEcOnTIOK5ra2u48MIL83H1KOa43X\/\/\/djc3DTK7Nu3D+ecc04+tow+\/\/nP4+lPfzqe\/exn4x\/\/43+Mw4cPt+vyseR15MgRAGgfFprPy+Gyj6VWPi\/TVFUVbrvtNnz\/+9\/HS17yki0\/J39oIemv\/uqvUFUV9uzZYyzfs2cPDh06tE292hm64IIL8Ju\/+Zv4wz\/8Q3zsYx\/DoUOH8NKXvhTf+c532mOXj2uaYo7boUOHsLq6ilNPPdVZJkvpVa96Ff7Lf\/kv+OM\/\/mP8xm\/8Bu6991684hWvwPr6OoB8LDlJKXHVVVfh5S9\/Oc455xwA+bwcKu5YAvm8TNGDDz6IH\/mRH8Ha2hre+ta34vbbb8dzn\/vcLT8nj5vHkgyVEMJ4L6XsLcsy9apXvap9\/fznPx8veclL8Df\/5t\/ELbfc0iYh5uM6TEOOWz62fb3+9a9vX59zzjk4\/\/zzceaZZ+J\/\/I\/\/gUsvvdS53Q\/zsXzb296Gr3zlK7j77rt76\/J5mSbXscznZbz+1t\/6W\/jSl76E7373u\/j0pz+Nyy67DHfddVe7fqvOyR9aJ+mpT30qyrLsUeXhw4d7hJrl10knnYTnP\/\/5+MY3vtGOcsvHNU0xx23v3r3Y2NjA448\/7iyTxev000\/HmWeeiW984xsA8rG09fa3vx2f+cxn8LnPfQ7PeMYz2uX5vEyX61hyyuelW6urq\/jxH\/9xnH\/++bj22mvxwhe+EP\/23\/7bLT8nf2ghaXV1Feeddx7uvPNOY\/mdd96Jl770pdvUq52p9fV1\/J\/\/839w+umn46yzzsLevXuN47qxsYG77rorH1ePYo7beeedh5WVFaPMY489hq9+9av52Ab0ne98B48++ihOP\/10APlYakkp8ba3vQ2\/+7u\/iz\/+4z\/GWWedZazP52W8QseSUz4v4yWlxPr6+tafkwMTzY8L3XbbbXJlZUX+5\/\/8n+XXvvY1eeDAAXnSSSfJ\/\/t\/\/+92d22p9a53vUt+\/vOfl9\/85jflF7\/4RXnJJZfIk08+uT1uH\/zgB+Xu3bvl7\/7u78oHH3xQvuENb5Cnn366PHr06Db3fHv1xBNPyAceeEA+8MADEoC84YYb5AMPPCAfeeQRKWXccXvrW98qn\/GMZ8g\/+qM\/kn\/6p38qX\/GKV8gXvvCFcj6fb9dubYt8x\/KJJ56Q73rXu+Q999wjH374Yfm5z31OvuQlL5F\/42\/8jXwsLf2Tf\/JP5O7du+XnP\/95+dhjj7V\/P\/jBD9oy+byMU+hY5vMyXldffbX8whe+IB9++GH5la98Rf7zf\/7PZVEU8o477pBSbu05+UMNSVJK+R\/+w3+QZ555plxdXZU\/+ZM\/aQzXzOL1+te\/Xp5++ulyZWVF7tu3T1566aXyoYceatfXdS3f9773yb1798q1tTX5Mz\/zM\/LBBx\/cxh4vhz73uc9JAL2\/yy67TEoZd9yOHTsm3\/a2t8nTTjtN7tq1S15yySXyW9\/61jbszfbKdyx\/8IMfyP3798unPe1pcmVlRT7zmc+Ul112We845WMp2WMIQH784x9vy+TzMk6hY5nPy3j9yq\/8SntfftrTniZf+cpXtoAk5daek0JKKdO8p6ysrKysrKys418\/tDlJWVlZWVlZWVk+ZUjKysrKysrKymKUISkrKysrKysri1GGpKysrKysrKwsRhmSsrKysrKysrIYZUjKysrKysrKymKUISkrKysrKysri1GGpKysrKysrKwsRhmSsrKysrKysrIYZUjKysrKysrKymKUISkrK+u40\/\/7f\/8Pe\/fuxcGDB9tl\/\/t\/\/2+srq7ijjvu2MaeZWVl7STlZ7dlZWUdl\/rsZz+L173udbjnnnvwnOc8B+eeey5e\/epX48Ybb9zurmVlZe0QZUjKyso6bnXllVfij\/7oj\/DiF78YX\/7yl3HvvffihBNO2O5uZWVl7RBlSMrKyjpudezYMZxzzjl49NFHcd999+EFL3jBdncpKytrBynnJGVlZR23+uY3v4m\/\/Mu\/RF3XeOSRR7a7O1lZWTtM2UnKyso6LrWxsYGf+qmfwote9CI85znPwQ033IAHH3wQe\/bs2e6uZWVl7RBlSMrKyjou9au\/+qv4nd\/5HXz5y1\/Gj\/zIj+Bnf\/ZncfLJJ+O\/\/\/f\/vt1dy8rK2iHK4basrKzjTp\/\/\/Odx44034pOf\/CROOeUUFEWBT37yk7j77rtx8803b3f3srKydoiyk5SVlZWVlZWVxSg7SVlZWVlZWVlZjDIkZWVlZWVlZWUxypCUlZWVlZWVlcUoQ1JWVlZWVlZWFqMMSVlZWVlZWVlZjDIkZWVlZWVlZWUxypCUlZWVlZWVlcUoQ1JWVlZWVlZWFqMMSVlZWVlZWVlZjDIkZWVlZWVlZWUxypCUlZWVlZWVlcUoQ1JWVlZWVlZWFqP\/D3GRTqw9agneAAAAAElFTkSuQmCC", "text\/plain": "<Figure size 640x480 with 1 Axes>"}, "metadata": {}, "output_type": "display_data"}]}}, "5ff479af5a804d60b2dabf6348fe9989": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": {"source": ["IPY_MODEL_41ceba8688ab4ce8b71fd02a6e2ab2c4", "value"], "target": ["IPY_MODEL_a0998547957e4b50bb0570d6e89b4c2e", "value"]}}, "6353f692403c49e1ac433f1fbcbf728e": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "6373a42bb1db4fb4aa1cf6ffaac1075e": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "66636bdd455c4d54a22c62b30195f3fb": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "66863e16ccde42d696e20af577f2f832": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "68c14ca25ed0479898eac1351d769142": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": {"description_width": ""}}, "68fb9a92340e434d85fbcc8de67c1970": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "PlayModel", "state": {"description": "step", "layout": "IPY_MODEL_814fc2ce5f98478d93e7d2977c35599d", "max": 599, "style": "IPY_MODEL_db46a3c449cf4e6d85de539fd7e30166"}}, "69d0279f5aa04a24b8ef28051f31a77d": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": {"_dom_classes": ["widget-interact"], "children": ["IPY_MODEL_b361054bfbfd4aa193975eb438f70d68", "IPY_MODEL_121945e57f994c77aaeca0c873e63745"], "layout": "IPY_MODEL_0335767ddbd747b4893969d3e2d93893"}}, "6f20477e70534303aec0ee8da489b89f": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "72d3e88fdf024cba8257fa4e8a109544": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": {"description_width": ""}}, "754124660050415e84f351699e0454bd": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "PlayModel", "state": {"description": "step", "layout": "IPY_MODEL_e9f56784337d42cbbf92f7219b1e0c47", "max": 199, "style": "IPY_MODEL_b9b135e17db64c5c95f90edcb6aeed01", "value": 100}}, "75be4fb6e3894ef2ac842e505a05bca9": {"model_module": "@jupyter-widgets\/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": {"layout": "IPY_MODEL_5b00930d74a04c2d8edce165ad2f10fb", "outputs": [{"data": {"image\/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG2CAYAAACXuTmvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy\/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA2sUlEQVR4nO3de3xU9Z3\/8ffkNrnNDISQTEJCiBBEQBBBIfGGF6isN8Raq9ZC7fanW\/S3PGhXi\/66ha6Cl60Pdx+0bm+LeGFBV7HYKhKrBBGhXAIiIkIJSYBcSEhmcp3czu+PJAMhASKT5GRyXs\/HYx6Z+Z4zk0++Hpz343u+53xthmEYAgAAsJAQswsAAADoawQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOf0mAC1btkw2m00LFizwtxmGocWLFys5OVlRUVGaPn269u3bZ16RAABgQOgXAWj79u363e9+pwkTJnRof+655\/TCCy9o+fLl2r59u9xut2bMmKGqqiqTKgUAAAOB6QGourpa999\/v37\/+99r8ODB\/nbDMPTiiy\/qySef1Jw5czR+\/HitXLlStbW1WrVqlYkVAwCAYBdmdgHz58\/XLbfcoptuuklPPfWUvz0vL0\/FxcWaOXOmv81ut+u6667Tli1b9NBDD3X5eT6fTz6fz\/+6paVFJ0+e1JAhQ2Sz2XrvDwEAAD3GMAxVVVUpOTlZISE9P15jagBavXq1du3ape3bt3faVlxcLElKTEzs0J6YmKj8\/PyzfuayZcu0ZMmSni0UAACYorCwUCkpKT3+uaYFoMLCQv3zP\/+zNmzYoMjIyLPud+aojWEY5xzJWbRokRYuXOh\/7fF4NHz4cBUWFsrpdAZeOAAA6HVer1epqalyOBy98vmmBaCdO3eqtLRUkydP9rc1Nzdr06ZNWr58uQ4cOCCpdSQoKSnJv09paWmnUaHT2e122e32Tu1Op5MABABAkOmt6SumTYK+8cYbtXfvXu3evdv\/mDJliu6\/\/37t3r1bF110kdxut7Kzs\/3vaWhoUE5OjrKysswqGwAADACmjQA5HA6NHz++Q1tMTIyGDBnib1+wYIGWLl2qjIwMZWRkaOnSpYqOjtZ9991nRskAAGCAMP0qsHN57LHHVFdXpx\/\/+MeqqKjQ1KlTtWHDhl47HwgAAKzBZhiGYXYRvcnr9crlcsnj8TAHCACAINHb39+m3wgRAACgrxGAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5VgmADU1t5hdAgAA6CcsE4Bm\/ccn+v2mw\/LWN5pdCgAAMJllAlCRp15Pv7dfmUv\/qsXr9im\/vMbskgAAgEksE4CW3D5WoxNjVdPQrJe3HNH0f9+oH72yQ1sPl8swDLPLAwAAfchmDPBvf6\/XK5fLJY\/HI4fDoc2HyvTfm\/P08YET\/n3GJTv14FXpum1isiLCLJMJAQDot07\/\/nY6nT3++ZYKQKd34KHSaq34NE9v7Tqq+sbWCdJDHXZ9f1qa7ps6XENi7WaVDACA5RGAAnS+DqysbdCqvxXolS35KvbWS5LsYSG6c9IwPXh1ukYnOvq6ZAAALI8AFKDudmBjc4ve21ukP27O0+dHPf72azLi9eDV6bouY6hCQmx9UTIAAJZHAArQN+1AwzC0M79Cf9ycpw\/2FaulrXdGDo3RD65K112XpygqIrSXqwYAwNoIQAEKpAMLT9Zq5ZYjWrO9UFW+JknSoOhw3XflcH0\/c4TcrsjeKBkAAMsjAAWoJzqwqr5Rb+44qhVb8lR4sk6SFBZi0y0TkvTDq9M1IWVQD1YMAAAIQAHqyQ5sbjH04f4S\/XFznv6Wd9LffsWIwXrwqnTNHOdWKPOEAAAIGAEoQL3VgV8c8+i\/N+fp3c+Pq7G5tQtTBkdpXtYI3XNFqhyR4T32uwAAsBoCUIB6uwNLvPV69bN8vb4tXxW1reuMxdrDdPeUFP0gK13Dh0T3+O8EAGCgIwAFqLc7sF1dQ7Pe2X1M\/705TwdLqyVJITZpxthEPXhVuq5Mj5PNxukxAAC6gwAUoL4KQO0Mw9Cmg2X64+Y8bfr61HIb44c59cOr03XLpSy3AQDA+RCAAtTXAeh0B0uq9N+fHtHbu47K19S63EaCw64HpqXp3qnDFc9yGwAAdIkAFCAzA1C7kzUNWrUtX698lq\/SKp8kKSI0RLdNTNYPrhqh8cNcptQFAEB\/RQAKUH8IQO0amlqX21jxaZ72nLbcxhUjBmteVrq+NS5RYaGcHgMAgAAUoP4UgE6XW1Chl7cc0V8+L1JT23obSa5IfW9amu69crjiYiJMrhAAAPMQgALUXwNQuxJvvV7fmq\/XtxWovKZBUutq9LMvG6a5WSM0Nrn\/1QwAQG8jAAWovwegdr6mZv15T5FWbMnTF8e8\/vap6XH6wVUjdNMlnB4DAFgHAShAwRKA2hmGoV0FFVrx6RG9\/0WxmttOjw0bFKXvZ6bpnitSNSia02MAgIGNABSgYAtApyvy1Om1rflata3Af5fpyPAQ3TkpRfOyRuhit8PkCgEA6B0EoAAFcwBqV9\/YrHV7jmvFp0e0v+jU6bGskUP0g6vSdcOYBBZhBQAMKL39\/W3qpJKXXnpJEyZMkNPplNPpVGZmpt5\/\/33\/9nnz5slms3V4TJs2zcSKzREZHqrvTEnVe\/\/3aq35P9M0a7xbITZpy9\/L9aNXdmj6v3+sP3xyWJ66RrNLBQAgKJg6AvTuu+8qNDRUo0aNkiStXLlSzz\/\/vHJzczVu3DjNmzdPJSUlWrFihf89ERERiouL6\/bvGAgjQF05VlmnVz\/L1+rtBapsOz0WHRGquy5P0dysNI1K4PQYACB4We4UWFxcnJ5\/\/nn98Ic\/1Lx581RZWal33nnngj9voAagdnUNzfrT7mNa8ekRHSip8rdfkxGvH1w1QtNHJyiE02MAgCDT29\/fYT3+iReoublZb775pmpqapSZmelv37hxoxISEjRo0CBdd911evrpp5WQkHDWz\/H5fPL5fP7XXq\/3rPsOBFERofrulcN1zxWp+uxwuV7+9Iiy95fok4Nl+uRgmUYMidb3M0fo7ikpckSGm10uAAD9gukjQHv37lVmZqbq6+sVGxurVatW6R\/+4R8kSWvWrFFsbKzS0tKUl5enn\/\/852pqatLOnTtlt3e9kOjixYu1ZMmSTu0DdQSoK4Una\/Xq1nyt\/luBvPVNkqSYiFDdPSVV389M00VDY02uEACAcxvwp8AaGhpUUFCgyspKvfXWW\/rDH\/6gnJwcjR07ttO+RUVFSktL0+rVqzVnzpwuP6+rEaDU1FRLBaB2tQ1NenvXMb285YgOlVb726dfPFTzskbo2oyhnB4DAPRLAz4Anemmm27SyJEj9dvf\/rbL7RkZGfrHf\/xHPf744936vIE+B6g7DMPQp4fK9fKWPP31q1K1\/xe\/aGiMvj8tTXMmp8jJ6TEAQD9imTlA7QzD6DCCc7ry8nIVFhYqKSmpj6sKbjabTVdnxOvqjHjll9folc\/y9cb2Qh0+UaPF736pZ9cf0OxJybp\/aprGD3OZXS4AAL3O1BGgJ554QrNmzVJqaqqqqqq0evVqPfPMM1q\/fr0yMzO1ePFi3XXXXUpKStKRI0f0xBNPqKCgQPv375fD0b3LvBkB6lq1r0lv7zqq17bm6+uSU6fHLksdpO9NS9OtE5IUGR5qYoUAACsb0CNAJSUleuCBB1RUVCSXy6UJEyZo\/fr1mjFjhurq6rR371698sorqqysVFJSkq6\/\/nqtWbOm2+EHZxdrD9P3M0fogWlp+lveSb22rUDrvyjS7sJK7S6s1FN\/+VJ3T07R\/VPTNCI+xuxyAQDoUf1uDlBPYwSo+05U+fTGjkKt2lagY5V1\/vZrMuJ1\/9Q03XRJAivSAwD6hOUmQfc0AtA319xiaOOBUr22NV8bvz7hnzTtdkbq3iuH67tXpirRGWlukQCAAY0AFCACUGAKT9bq9W0FemNHoU7WNEiSQkNsmjk2Ud+blqaskUNks3EpPQCgZxGAAkQA6hm+pmat\/6JYr23N1\/YjFf72i4bG6P6pafr25SlyRXMpPQCgZxCAAkQA6nlfFXv1+tYCvb3rqGoamiVJkeEhum1Csr43LU0TUweZWyAAIOgRgAJEAOo91b4mvZN7TK9tzddXxacWYp2Q4tL3pqbptonJiorgUnoAwDdHAAoQAaj3GYahXQUVem1rgf7yeZEamlskSc7IMN3Vdin9qATWHwMAdB8BKEAEoL5VXu3TmzuP6vVt+So8eepS+syLhuiBzDTNGJuocC6lBwCcBwEoQAQgc7S0GMo5eEKvb83XR1+VqqXtKEtw2PXdK1J179ThSnJFmVskAKDfIgAFiABkvmOVdfqfbQVavb1QZdWt67yF2KQbL0nUA9PSdPWoeFalBwB0QAAKEAGo\/2hoatEH+1ovpd+Wd9LfnjYkWvdPHa67J6dqcEyEiRUCAPoLAlCACED908GSKr2+rUBv7TyqKl+TJCkiLETfGufWd6ak6KqRjAoBgJURgAJEAOrfahua9Kfdx\/Xa1nztO+71tw8bFKW7Jqfo7skpSo2LNrFCAIAZCEABIgAFB8Mw9MUxr97YUag\/7T4mb32Tf9tVo4boO1NS9a1xbkWGc18hALACAlCACEDBp76xWR\/sK9abO45q86Eyf7sjMkx3XJas70xJ1aXDXKxBBgADGAEoQASg4FZ4slZv7TqqN3cc1bHKU\/cVGuN26O4pqbpz0jDFMXEaAAYcAlCACEADQ0uLoc8Ol+uNHYV6\/4tiNTS13m06PNSmGWMTdfeUVF2bMVShTJwGgAGBABQgAtDA46lt1Lo9x\/TGjqPae8zjb3c7I3XX5GG6e3KqRsTHmFghACBQBKAAEYAGti+Pe\/XmzkK9k3tMFbWN\/vYr0+P0nSmp+odL3YqOCDOxQgDAhSAABYgAZA2+pmb9dX+p3thRqE1fn\/AvvRFrD9OtE5J095RUXT58EBOnASBIEIACRACyniJPnd7aeVRv7DiqgpO1\/vZRCbH6zpQU3TkpRUMddhMrBACcDwEoQAQg62ppMfS3Iyf1xo5Cvbe3SPWNrROnQ0NsumFMgr4zJVXTLx7K6vQA0A8RgAJEAIIkVdU36s+fF+mNHYXKLaj0t8fH2nXX5cN095RUjUqINa9AAEAHBKAAEYBwpoMlVXpz51G9veuoyqob\/O2XDx+ke65I1S0TkhVrZ+I0AJiJABQgAhDOprG5RR99Vao3dxTq4wMn1Nw2czoqPFS3TEjSnMuHaWr6EO4tBAAmIAAFiACE7ij11uvt3GN6Y0ehDp+o8bcnOOy6dUKybr8sWRNTWH4DAPoKAShABCB8E4ZhaFdBhd7ccVTv7S3qsChr2pBo3TYhWXdclqyMRIeJVQLAwEcAChABCBfK19SsTV+Xad2e4\/rwyxLVNTb7t41xO3T7Zcm6bUKyUuOiTawSAAYmAlCACEDoCbUNTcr+skTv7jmunK9PqLH51D+by4cP0u0Tk3XLhGTuLwQAPYQAFCACEHpaZW2D3v+iWOt2H9fWvHK1\/wsKsUlZI+N1+2XJ+tY4t1xR4eYWCgBBjAAUIAIQelOJt15\/\/rxI6\/Yc157CSn97RGiIpl88VLdflqwbxyQqKiLUvCIBIAgRgAJEAEJfyS+v0bt7jutPu4\/rYGm1vz0mIlQzxibqjsuG6eqMeO48DQDdQAAKEAEIfc0wDH1VXKV1e47r3T3HdbSizr9tcHS4Zl2apNsnJuvKEXEK4R5DANAlAlCACEAwU+tl9ZV6d89x\/fnzIpVV+\/zb3M5I3TohSbdflqxLh3GPIQA4HQEoQAQg9BdNzS367HC51u0+rvX7ilV12j2G0uNjdNvEZN0+MZk1yQBABKCAEYDQH\/mamrXxwAmt23Ncf91f4l+pXpLGJjlb7zE0MVnDBkWZWCUAmKe3v79NnY350ksvacKECXI6nXI6ncrMzNT777\/v324YhhYvXqzk5GRFRUVp+vTp2rdvn4kVAz3DHhaqb41z69f3Xa4d\/2+GXrznMt0wJkFhITZ9WeTVM+9\/paue+UjffmmLXvnsSIdTZwCAwJk6AvTuu+8qNDRUo0aNkiStXLlSzz\/\/vHJzczVu3Dg9++yzevrpp\/Xyyy9r9OjReuqpp7Rp0yYdOHBADkf3liJgBAjBpKKmQe99UaR1u4\/rb0dOdrjH0OS0wZoxNlEzxrqVHh9jbqEA0MssdwosLi5Ozz\/\/vB588EElJydrwYIFevzxxyVJPp9PiYmJevbZZ\/XQQw916\/MIQAhWxZ56\/fnz41q357g+P+rpsG1UQmxbGErUZSmDuJoMwIBjmQDU3NysN998U3PnzlVubq4iIyM1cuRI7dq1S5MmTfLvd8cdd2jQoEFauXJltz6XAISB4GhFrf66v1TZX5Zo6+FyNbWc+mcbH2vXTZckaMbYRF01Kl6R4dx0EUDw6+3v77Ae\/8RvaO\/evcrMzFR9fb1iY2O1du1ajR07Vlu2bJEkJSYmdtg\/MTFR+fn5Z\/08n88nn+\/UfAmv19s7hQN9KGVwtOZmjdDcrBHy1DVq44HWMJRz4ITKqn1avb1Qq7cXKio8VNeOjtdNlyTqxksSFRcTYXbpANAvmR6ALr74Yu3evVuVlZV66623NHfuXOXk5Pi3n3lvFMMwznm\/lGXLlmnJkiW9Vi9gNldUuO64bJjuuGyYGppatC2vXNlflij7yxIVeer1wb4SfbCvRCE2aUpanP9U2QjmDQGAX785Bdbupptu0siRI\/X4449f0CmwrkaAUlNTOQWGAc8wDO077tWGtjC0v6jj6GdG27yhm5g3BCAIDPhTYGcyDEM+n0\/p6elyu93Kzs72B6CGhgbl5OTo2WefPev77Xa77HZ7X5UL9Bs2m03jh7k0fphLC2eM1tGKWn34ZYmy95do2+GTOlharYOl1frNxr9rqOPUvKGskcwbAmA9pgagJ554QrNmzVJqaqqqqqq0evVqbdy4UevXr5fNZtOCBQu0dOlSZWRkKCMjQ0uXLlV0dLTuu+8+M8sGgkLK4GjNuypd865Kl6e2URu\/LtWGtnlDJ6p8+p+\/Fep\/\/lao6IhQXZsxVDeNTdSNYxI0mHlDACzA1ABUUlKiBx54QEVFRXK5XJowYYLWr1+vGTNmSJIee+wx1dXV6cc\/\/rEqKio0depUbdiwodv3AALQyhXdcd7Q1sOt84Y+3N86b2j9vmKt31fcOm9oRJxmts0bShvCvCEAA1O\/mwPU07gMHjg7wzD0xTGvsr8sVvb+0rPOG5oxNlETmTcEoA9Z5j5AvYUABHRf4clafbi\/dRL1tryTaj7tfkMJDrtuvCRRM8cmatpFQxQVwbwhAL2HABQgAhBwYTy1jfr4QKmy97fOG6r2nVq9PiI0RJPTBuuqUUN01ah4XTrMpbBQU5cWBDDAEIACRAACAudratbWwyeV\/WWx\/rq\/VEWe+g7bHZFhyryoNQxdNSpeI4fGnPN+XQBwPgSgABGAgJ5lGIbyymr06aEybT5Ups\/+Xi5vfVOHfdzOSGWNGqKr2wJRojPSpGoBBCsCUIAIQEDvam4x9MUxjzYfKtOWv5dp+5EKNTS1dNhnVEKsPwxNvShOzshwk6oFECwIQAEiAAF9q76xWTuOVOjTv5fp00Nl2nvMo9P\/LxMaYtOEFJc\/EE0aPkj2MCZUA+iIABQgAhBgrsraBm09XK7Nh8r06aFy5ZXVdNgeGR6iK9OH6OpRQ5Q1Ml5jk5xcbg+AABQoAhDQvxyrrNOnh8r8j7Lqhg7b42IilDmydf7Q1aPilRoXbVKlAMxEAAoQAQjovwzD0Ncl1W2jQ2XadrhcNQ3NHfZJjYvyny7LGhmvOJbqACyBABQgAhAQPBqbW7SnsNIfiHILKtXU0vF\/UWOTnLo6I15ZI4foyvQ4RUf0uzWdAfQAAlCACEBA8KrxNelveSf9geir4qoO28NDbZqYMkiXpw3W5cMHadLwwVxyDwwQBKAAEYCAgeNElU9b\/l6mLYdaJ1Ufq6zrtE+yK1KT0gZrUmprIBqX7FRkOFeZAcGGABQgAhAwMBmGofzyWu3Ir1BuQYV2FVTqQLFXZ5wxU0RoiMYmOzWpbYRoUuogpQyO4k7VQD9HAAoQAQiwjhpfkz4\/6lFuYYV25Vdqd2FFp6vMJGmow+4fIZo0fJAmpLiYSwT0MwSgABGAAOsyDENHK+q0q6BCuQWVyi2o0L7j3k4Tq0NDbBrjdrSOEqUO1uVpgzViSDSjRICJCEABIgABOF19Y7O+OOZpDURtI0XF3vpO+w2KDtek1EG6fPhgTRo+WBNTXXKwhAfQZwhAASIAATifIk+df4RoV0Gl9h7zdFrPzGaTMhJi2wJR6+mzUUNjuWs10EsIQAEiAAH4phqaWrS\/yOsPRLmFFSo82fmKM4c9TJcNH+SfT3RZ6iAN5kaNQI8gAAWIAASgJ5yo8im3oEK5ha0jRXsKPaprbO60X5IrUhe7HbrY7dAYt0Nj3E6NHBqriLAQE6oGghcBKEAEIAC9oam5RQdKqtpOnbWOEh0+UdPlvmEhNl00NEYXu50a43bo4sTWgMTl+MDZEYACRAAC0Fe89Y36urhKXxVX6atirw60Pa+qb+pyf4c9TKNPGy26OLF1xMgVzWRrgAAUIAIQADMZhqEiT70\/DB0o9uqr4ir9\/US1Gpu7\/t+v29l6Gm1MUnswcmpkQozsYdzRGtZBAAoQAQhAf9TY3KLDJ2r8I0XtAamr5T2k1nsVXRQfc2q0qO10GqfRMFARgAJEAAIQTE4\/jXYqGHnlPctptFh7mEYnxp6aX9QWkAZFczUaghsBKEAEIADBzjAMFXvrW+cWFXXvNFqi065RCbEaHhejtCHRGh7X+kgbEs0NHREUCEABIgABGKgam1uUV1Zzam5R0blPo7WLi4nwh6G0uGilxkUrbUhrUEpw2Dmlhn6BABQgAhAAq6mqb9TXJVXKK6tVQXmN8k\/WKr+8VoUna1Ve03lx2NNFhoe0jRbF+EPS8LaglDI4mvsZoc8QgAJEAAKAU6rqG1VwslYF5bX+YFRwskYFJ2t1rKJOLef4RgixSUmuqDOCUYz\/uZNTa+hBBKAAEYAAoHsam1t0rKJO+SfbRo7Ka1vDUltQ6urO16cbFB2utLhoDR8S0\/azdeQobUiMEhx21k3DN9Lb399hPf6JAICgFB4aohHxMRoRHyNpaIdthmHoRLWvdeSobfSo8GSt8stbR4\/KqhtUWduoylqP9hz1dPrsiNAQJTjtSnRGKtFpV4Ij8ozndiU4I+WMDGMOEvoEAQgAcF42m00JjkglOCI1ZURcp+3VviYVnHY6rX30KL+8Vscq69TQ3KKjFXU6WnHuCdqR4SGtwcgR2SEwJTpbf3d7W6ydry8EhiMIABCwWHuYxiY7NTa586mKxuYWFXvqVVrlU6m3XiXeepVU+VTirVept\/Vnibde3vom1Te2tI4wldee8\/fFRIS2hiJ\/SIpUguPU8\/aRpagI7p6NrhGAAAC9Kjw0RKltl9ufS31jc2sgqmoLSd7TAlNbe6nXp2pfk2oamnW4rEaHy7pegLadIzLs1CiSI1IJbc\/jYiI0KDpCg6PDNTg6QoOiwxVr5\/SblRCAAAD9QmR4qIa3XVF2LjW+JpVWnRo58o8i+UeVWgNTXWOzquqbVFVfrUOl1ef9\/WEhNg2KDvcHo9N\/DmoLSoOjw+WKitDgmFPBiTXaghMBCAAQVGLsYUq3hyk9Puas+xiGoWpf06lRpKq2UaS2wHSypkEVtW0Tt+saVN\/YoqYWQ2XVDSqrPve9ks4UHRGqQVFtgSmmLTBFnQpIg9vaXVGnRpycUeEK5ao4UxGAAAADjs1mkyMyXI7IcI1KiD3v\/vWNzaqobVBFTaMqaxtUWdfoD0gVNQ2qqG2Up671pz841TaoxZBqG5pV29Cs4576b1Cf5IwMbx1Rio6Qwx6mWHuYYiPbfp723NH2M8be8XVsZBijTwEwNQAtW7ZMb7\/9tr766itFRUUpKytLzz77rC6++GL\/PvPmzdPKlSs7vG\/q1KnaunVrX5cLABigIsNDleSKUpIrqtvvaWkxVFXfpMoOwagtRNW1BqSK2vaf7aGpUdW+JhmG5KlrlKeuUTrPhO9ziQgNUYw9tC0shbcGqdMCk+OMQNW+PcYe1nHfiDDL3afJ1ACUk5Oj+fPn64orrlBTU5OefPJJzZw5U19++aViYk4Nbd58881asWKF\/3VEBKscAwDMFRJikys6XK7ocKUN6f77GppaVFl3anTJU9eomoYmVdc3qcrXpBrfqefV9U2tk759HV\/XNrTelLKhuUUNtS2qqG2UdO5bDJxPa2gKVUxEmKIiQhUdEaroiDBFR4QqKqK1\/fTnZ+5z5vOottf99VSfqQFo\/fr1HV6vWLFCCQkJ2rlzp6699lp\/u91ul9vt7uvyAADocRFhIf57Kl2o5hbDH4yqfU2qagtGrQGpUdW+5tOen9pec\/q+bfs3ta1\/0t4m+XroL21lDws5a1A6M0zF2MMUFd76XI2BBbrz6VdzgDye1ruHxsV1vMnWxo0blZCQoEGDBum6667T008\/rYSEhC4\/w+fzyec79R\/P6\/X2XsEAAJggNMQmV1S4XFGBrb9mGIZ8TS2nhafWkFTb2Ky6hmbV+JpU19g6x6m2beSpq22d9mtsVvtCW76mFvma2kepuq\/Fd+GnBruj36wFZhiG7rjjDlVUVOiTTz7xt69Zs0axsbFKS0tTXl6efv7zn6upqUk7d+6U3W7v9DmLFy\/WkiVLOrWzFhgAAH2jPVjVtIWmrkJU7Wnb\/Ps1NKumoUl1Dc3yeLx6a8FNA38x1Pnz5+svf\/mLNm\/erJSUlLPuV1RUpLS0NK1evVpz5szptL2rEaDU1FQCEAAAQcQSi6E++uijWrdunTZt2nTO8CNJSUlJSktL08GDB7vcbrfbuxwZAgAAaGdqADIMQ48++qjWrl2rjRs3Kj09\/bzvKS8vV2FhoZKSkvqgQgAAMBCFmPnL58+fr9dee02rVq2Sw+FQcXGxiouLVVfXOvO7urpaP\/3pT\/XZZ5\/pyJEj2rhxo2677TbFx8frzjvvNLN0AAAQxEydA3S2RedWrFihefPmqa6uTrNnz1Zubq4qKyuVlJSk66+\/Xv\/2b\/+m1NTUbv2O3j6HCAAAet6AngN0vuwVFRWlDz74oI+qAQAAVmHqKTAAAAAzEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlmBqAli1bpiuuuEIOh0MJCQmaPXu2Dhw40GEfwzC0ePFiJScnKyoqStOnT9e+fftMqhgAAAwEpgagnJwczZ8\/X1u3blV2draampo0c+ZM1dTU+Pd57rnn9MILL2j58uXavn273G63ZsyYoaqqKhMrBwAAwcxmGIZhdhHtTpw4oYSEBOXk5Ojaa6+VYRhKTk7WggUL9Pjjj0uSfD6fEhMT9eyzz+qhhx4672d6vV65XC55PB45nc7e\/hMAAEAP6O3v77ALedMvf\/nLc27\/13\/91wsqxuPxSJLi4uIkSXl5eSouLtbMmTP9+9jtdl133XXasmVLlwHI5\/PJ5\/P5X3u93guqBQAADFwXFIDWrl3b4XVjY6Py8vIUFhamkSNHXlAAMgxDCxcu1NVXX63x48dLkoqLiyVJiYmJHfZNTExUfn5+l5+zbNkyLVmy5Bv\/fgAAYB0XFIByc3M7tXm9Xs2bN0933nnnBRXyyCOP6PPPP9fmzZs7bbPZbB1eG4bRqa3dokWLtHDhwg51paamXlBNAABgYOqxSdBOp1O\/\/OUv9fOf\/\/wbv\/fRRx\/VunXr9PHHHyslJcXf7na7JZ0aCWpXWlraaVSond1ul9Pp7PAAAAA4XY9eBVZZWemfx9MdhmHokUce0dtvv62PPvpI6enpHbanp6fL7XYrOzvb39bQ0KCcnBxlZWX1WN0AAMBaLugU2H\/+5392eG0YhoqKivTqq6\/q5ptv7vbnzJ8\/X6tWrdKf\/vQnORwO\/0iPy+VSVFSUbDabFixYoKVLlyojI0MZGRlaunSpoqOjdd99911I6QAAABd2GfyZIzUhISEaOnSobrjhBi1atEgOh6N7v\/ws83hWrFihefPmSWoNV0uWLNFvf\/tbVVRUaOrUqfr1r3\/tnyh9PlwGDwBA8Ont7+9+dR+g3kAAAgAg+PT29zdrgQEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMsxNQBt2rRJt912m5KTk2Wz2fTOO+902D5v3jzZbLYOj2nTpplTLAAAGDBMDUA1NTWaOHGili9fftZ9br75ZhUVFfkf7733Xh9WCAAABqIwM3\/5rFmzNGvWrHPuY7fb5Xa7+6giAABgBf1+DtDGjRuVkJCg0aNH60c\/+pFKS0vPub\/P55PX6+3wAAAAOF2\/DkCzZs3S66+\/ro8++ki\/+tWvtH37dt1www3y+Xxnfc+yZcvkcrn8j9TU1D6sGAAABAObYRiG2UVIks1m09q1azV79uyz7lNUVKS0tDStXr1ac+bM6XIfn8\/XISB5vV6lpqbK4\/HI6XT2dNkAAKAXeL1euVyuXvv+NnUO0DeVlJSktLQ0HTx48Kz72O122e32PqwKAAAEm359CuxM5eXlKiwsVFJSktmlAACAIGbqCFB1dbUOHTrkf52Xl6fdu3crLi5OcXFxWrx4se666y4lJSXpyJEjeuKJJxQfH68777zTxKoBAECwMzUA7dixQ9dff73\/9cKFCyVJc+fO1UsvvaS9e\/fqlVdeUWVlpZKSknT99ddrzZo1cjgcZpUMAAAGgH4zCbq39PYkKgAA0PN6+\/s7qOYAAQAA9AQCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBxTA9CmTZt02223KTk5WTabTe+8806H7YZhaPHixUpOTlZUVJSmT5+uffv2mVMsAAAYMEwNQDU1NZo4caKWL1\/e5fbnnntOL7zwgpYvX67t27fL7XZrxowZqqqq6uNKAQDAQBJm5i+fNWuWZs2a1eU2wzD04osv6sknn9ScOXMkSStXrlRiYqJWrVqlhx56qC9LBQAAA0i\/nQOUl5en4uJizZw5099mt9t13XXXacuWLWd9n8\/nk9fr7fAAAAA4Xb8NQMXFxZKkxMTEDu2JiYn+bV1ZtmyZXC6X\/5GamtqrdQIAgODTbwNQO5vN1uG1YRid2k63aNEieTwe\/6OwsLC3SwQAAEHG1DlA5+J2uyW1jgQlJSX520tLSzuNCp3ObrfLbrf3en0AACB49dsRoPT0dLndbmVnZ\/vbGhoalJOTo6ysLBMrAwAAwc7UEaDq6modOnTI\/zovL0+7d+9WXFychg8frgULFmjp0qXKyMhQRkaGli5dqujoaN13330mVg0AAIKdqQFox44duv766\/2vFy5cKEmaO3euXn75ZT322GOqq6vTj3\/8Y1VUVGjq1KnasGGDHA6HWSUDAIABwGYYhmF2Eb3J6\/XK5XLJ4\/HI6XSaXQ4AAOiG3v7+7rdzgAAAAHoLAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFhOvw5Aixcvls1m6\/Bwu91mlwUAAIJcmNkFnM+4ceP04Ycf+l+HhoaaWA0AABgI+n0ACgsLY9QHAAD0qH59CkySDh48qOTkZKWnp+u73\/2uDh8+bHZJAAAgyPXrEaCpU6fqlVde0ejRo1VSUqKnnnpKWVlZ2rdvn4YMGdLle3w+n3w+n\/+11+vtq3IBAECQsBmGYZhdRHfV1NRo5MiReuyxx7Rw4cIu91m8eLGWLFnSqd3j8cjpdPZ2iQAAoAd4vV65XK5e+\/7u96fAThcTE6NLL71UBw8ePOs+ixYtksfj8T8KCwv7sEIAABAM+vUpsDP5fD7t379f11xzzVn3sdvtstvtfVgVAAAINv16BOinP\/2pcnJylJeXp23btunb3\/62vF6v5s6da3ZpAAAgiPXrEaCjR4\/q3nvvVVlZmYYOHapp06Zp69atSktLM7s0AAAQxPp1AFq9erXZJQAAgAGoX58CAwAA6A0EIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDlBEYB+85vfKD09XZGRkZo8ebI++eQTs0sCAABBrN8HoDVr1mjBggV68sknlZubq2uuuUazZs1SQUGB2aUBAIAgZTMMwzC7iHOZOnWqLr\/8cr300kv+tksuuUSzZ8\/WsmXLzvt+r9crl8slj8cjp9PZm6UCAIAe0tvf32E9\/ok9qKGhQTt37tTPfvazDu0zZ87Uli1bunyPz+eTz+fzv\/Z4PJJaOxIAAASH9u\/t3hqn6dcBqKysTM3NzUpMTOzQnpiYqOLi4i7fs2zZMi1ZsqRTe2pqaq\/UCAAAek95eblcLlePf26\/DkDtbDZbh9eGYXRqa7do0SItXLjQ\/7qyslJpaWkqKCjolQ60Eq\/Xq9TUVBUWFnI6MQD0Y8+hL3sOfdkz6Mee4\/F4NHz4cMXFxfXK5\/frABQfH6\/Q0NBOoz2lpaWdRoXa2e122e32Tu0ul4uDsYc4nU76sgfQjz2Hvuw59GXPoB97TkhI71yv1a+vAouIiNDkyZOVnZ3doT07O1tZWVkmVQUAAIJdvx4BkqSFCxfqgQce0JQpU5SZmanf\/e53Kigo0MMPP2x2aQAAIEj1+wB0zz33qLy8XL\/85S9VVFSk8ePH67333lNaWlq33m+32\/WLX\/yiy9Ni+Gboy55BP\/Yc+rLn0Jc9g37sOb3dl\/3+PkAAAAA9rV\/PAQIAAOgNBCAAAGA5BCAAAGA5BCAAAGA5AzoA\/eY3v1F6eroiIyM1efJkffLJJ2aX1O8tXrxYNputw8Ptdvu3G4ahxYsXKzk5WVFRUZo+fbr27dtnYsX9x6ZNm3TbbbcpOTlZNptN77zzToft3ek7n8+nRx99VPHx8YqJidHtt9+uo0eP9uFfYb7z9eO8efM6HaPTpk3rsA\/92Los0BVXXCGHw6GEhATNnj1bBw4c6LAPx2T3dKcvOS6756WXXtKECRP8N4rMzMzU+++\/79\/el8fkgA1Aa9as0YIFC\/Tkk08qNzdX11xzjWbNmqWCggKzS+v3xo0bp6KiIv9j7969\/m3PPfecXnjhBS1fvlzbt2+X2+3WjBkzVFVVZWLF\/UNNTY0mTpyo5cuXd7m9O323YMECrV27VqtXr9bmzZtVXV2tW2+9Vc3NzX31Z5jufP0oSTfffHOHY\/S9997rsJ1+lHJycjR\/\/nxt3bpV2dnZampq0syZM1VTU+Pfh2Oye7rTlxLHZXekpKTomWee0Y4dO7Rjxw7dcMMNuuOOO\/whp0+PSWOAuvLKK42HH364Q9uYMWOMn\/3sZyZVFBx+8YtfGBMnTuxyW0tLi+F2u41nnnnG31ZfX2+4XC7jv\/7rv\/qowuAgyVi7dq3\/dXf6rrKy0ggPDzdWr17t3+fYsWNGSEiIsX79+j6rvT85sx8NwzDmzp1r3HHHHWd9D\/3YtdLSUkOSkZOTYxgGx2QgzuxLw+C4DMTgwYONP\/zhD31+TA7IEaCGhgbt3LlTM2fO7NA+c+ZMbdmyxaSqgsfBgweVnJys9PR0ffe739Xhw4clSXl5eSouLu7Qr3a7Xddddx39eh7d6budO3eqsbGxwz7JyckaP348\/XuGjRs3KiEhQaNHj9aPfvQjlZaW+rfRj13zeDyS5F9YkmPywp3Zl+04Lr+Z5uZmrV69WjU1NcrMzOzzY3JABqCysjI1Nzd3WjA1MTGx08Kq6Gjq1Kl65ZVX9MEHH+j3v\/+9iouLlZWVpfLycn\/f0a\/fXHf6rri4WBERERo8ePBZ94E0a9Ysvf766\/roo4\/0q1\/9Stu3b9cNN9wgn88niX7simEYWrhwoa6++mqNHz9eEsfkheqqLyWOy29i7969io2Nld1u18MPP6y1a9dq7NixfX5M9vulMAJhs9k6vDYMo1MbOpo1a5b\/+aWXXqrMzEyNHDlSK1eu9E\/oo18v3IX0Hf3b0T333ON\/Pn78eE2ZMkVpaWn6y1\/+ojlz5pz1fVbux0ceeUSff\/65Nm\/e3Gkbx+Q3c7a+5Ljsvosvvli7d+9WZWWl3nrrLc2dO1c5OTn+7X11TA7IEaD4+HiFhoZ2SoOlpaWdkiXOLSYmRpdeeqkOHjzovxqMfv3mutN3brdbDQ0NqqioOOs+6CwpKUlpaWk6ePCgJPrxTI8++qjWrVunjz\/+WCkpKf52jslv7mx92RWOy7OLiIjQqFGjNGXKFC1btkwTJ07Uf\/zHf\/T5MTkgA1BERIQmT56s7OzsDu3Z2dnKysoyqarg5PP5tH\/\/fiUlJSk9PV1ut7tDvzY0NCgnJ4d+PY\/u9N3kyZMVHh7eYZ+ioiJ98cUX9O85lJeXq7CwUElJSZLox3aGYeiRRx7R22+\/rY8++kjp6ekdtnNMdt\/5+rIrHJfdZxiGfD5f3x+TFzhpu99bvXq1ER4ebvzxj380vvzyS2PBggVGTEyMceTIEbNL69d+8pOfGBs3bjQOHz5sbN261bj11lsNh8Ph77dnnnnGcLlcxttvv23s3bvXuPfee42kpCTD6\/WaXLn5qqqqjNzcXCM3N9eQZLzwwgtGbm6ukZ+fbxhG9\/ru4YcfNlJSUowPP\/zQ2LVrl3HDDTcYEydONJqamsz6s\/rcufqxqqrK+MlPfmJs2bLFyMvLMz7++GMjMzPTGDZsGP14hn\/6p38yXC6XsXHjRqOoqMj\/qK2t9e\/DMdk95+tLjsvuW7RokbFp0yYjLy\/P+Pzzz40nnnjCCAkJMTZs2GAYRt8ekwM2ABmGYfz617820tLSjIiICOPyyy\/vcMkiunbPPfcYSUlJRnh4uJGcnGzMmTPH2Ldvn397S0uL8Ytf\/MJwu92G3W43rr32WmPv3r0mVtx\/fPzxx4akTo+5c+cahtG9vqurqzMeeeQRIy4uzoiKijJuvfVWo6CgwIS\/xjzn6sfa2lpj5syZxtChQ43w8HBj+PDhxty5czv1Ef1odNmHkowVK1b49+GY7J7z9SXHZfc9+OCD\/u\/loUOHGjfeeKM\/\/BhG3x6TNsMwjG82ZgQAABDcBuQcIAAAgHMhAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEIKidOnJDb7dbSpUv9bdu2bVNERIQ2bNhgYmUAgglrgQEIOu+9955mz56tLVu2aMyYMZo0aZJuueUWvfjii2aXBiBIEIAABKX58+frww8\/1BVXXKE9e\/Zo+\/btioyMNLssAEGCAAQgKNXV1Wn8+PEqLCzUjh07NGHCBLNLAhBEmAMEICgdPnxYx48fV0tLi\/Lz880uB0CQYQQIQNBpaGjQlVdeqcsuu0xjxozRCy+8oL179yoxMdHs0gAECQIQgKDzL\/\/yL\/rf\/\/1f7dmzR7Gxsbr++uvlcDj05z\/\/2ezSAAQJToEBCCobN27Uiy++qFdffVVOp1MhISF69dVXtXnzZr300ktmlwcgSDACBAAALIcRIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDn\/Hz999b6yX+7TAAAAAElFTkSuQmCC", "text\/plain": "<Figure size 640x480 with 1 Axes>"}, "metadata": {}, "output_type": "display_data"}]}}, "7a2ac2d705c34d2599661107d0b6a5a5": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "IntSliderModel", "state": {"behavior": "drag-tap", "layout": "IPY_MODEL_3b2d03cd328c49529d82b802d05a9a90", "max": 199, "style": "IPY_MODEL_0f94c44a6e2d4808a7c66c3b1c79bf1f", "value": 199}}, "7aac04d137c84a4d95a975fc42549096": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "7b2a2ede6a7b4fd5bd79db693da37fd2": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"children": ["IPY_MODEL_e1d833787d964958adf9bf27c7c8465d"], "layout": "IPY_MODEL_8dd363de61704f07a67c5ec15fad0230"}}, "7cc9130632e24968ac7630fa1302ec66": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "7ff77fdec3124342917adff7a7e22968": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": {"source": ["IPY_MODEL_a6e490f9a95046848e772f941811ea6e", "value"], "target": ["IPY_MODEL_7a2ac2d705c34d2599661107d0b6a5a5", "value"]}}, "814fc2ce5f98478d93e7d2977c35599d": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "8330e0092c10467f85f9264bfaf88a6f": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "PlayModel", "state": {"description": "step", "layout": "IPY_MODEL_d1b23fb8d92a428ebfbc64e7b3117db4", "max": 149, "style": "IPY_MODEL_a813b3e4592a4ba6a5ac586705a144b1", "value": 149}}, "84db1e5aacf844f2b99f65c3e1097e2a": {"model_module": "@jupyter-widgets\/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": {"layout": "IPY_MODEL_409e5ad2c8d1498aa37ebe59663d605c", "outputs": [{"data": {"image\/png": "iVBORw0KGgoAAAANSUhEUgAAAZ4AAAGRCAYAAABVKtXaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy\/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eXQk533ei3\/equq9G411gAFmAMy+k8N9FpK2FmrJvYksiZFi6dhx4vuTc20nkpIbO7Kte6XIkiM5cSjJtm6cxCZ9Eku8tixTliKZshauQ3JIzgCYwQADYLDvQANo9N5V9f7+AKunu9ErBgOAVD3nzJEIVFdVN6rf5\/1uzyOklBIbNmzYsGFji6Bs9w3YsGHDho2fLtjEY8OGDRs2thQ28diwYcOGjS2FTTw2bNiwYWNLYROPDRs2bNjYUtjEY8OGDRs2thQ28diwYcOGjS2FTTw2bNiwYWNLYROPDRs2bNjYUtjEY8OGDRs2thQ28diwYcOGjS2FTTw2bNiwYWNLYROPDRs2bNjYUtjEY8OGDRs2thQ28diwYcOGjS2FTTw2bNiwYWNLYROPDRs2bNjYUtjEY8OGDRs2thQ28diwYcOGjS2FTTw2bNiwYWNLYROPDRs2bNjYUtjEY8OGDRs2thQ28diwYcOGjS2FTTw2bNiwYWNLYROPDRs2bNjYUtjEY8OGDRs2thQ28diwYcOGjS2FTTw2bNiwYWNLYROPDRs2bNjYUtjEY8OGDRs2thQ28diwYcOGjS2FTTw2bNiwYWNLYROPDRs2bNjYUtjEY8OGDRs2thQ28diwYcOGjS2FTTw2tgVSyu2+BRs2bGwTtO2+ARs\/XZBSkk6nSSQSqKqKpmmoqoqqqgghtvv2bNiwsQUQ0t562tgimKZJOp3GMAySySSwRkTxeJxkMklzc7NNRDZs\/BTAjnhs3HZIKTEMg6GhIZxOJy0tLSiKgqIoSClZXV1lbm6Ouro6kskkQggURUHTNJuIbNh4C8ImHhu3FVZqzTAMwuEwbrebsbExJicnqampoa6uDsMwANA0DSll5l8ymSSVSgHYRGTDxlsIdqrNxm2DYRik02lM00RRFLq7uwmHw+i6TkdHB7FYjKWlJaLRKIqi0NraSl1dHbW1tTgcDoAcIjJNEyATETkcjkydSFEUm4hs2HiTwI54bGw6pJTouo6u60gpURSF5eVl5ubmcLlcnD17FlgjECEEExMTTExMIKVkaGiIWCxGIBCgtrY2Q0RWpJNNRIlEInMei4is42wismFj58ImHhubCtM00XU9kz4TQjA0NMTw8HCGTJxOZyaFBmspNofDwZEjRwBIJpMsLS2xvLzMwMAAiURiHRFZ6bZiRGRFQjYR2bCx82ATj41NgZUKS6fTSCkRQpBMJunu7iaRSPDAAw8wMTFRcPEXQuTM9bhcLlpaWmhpaQEgkUiwtLTE0tIS\/f39JJPJTH2otraWYDC4johM07SJyIaNHQqbeGzcMrJTa7C20M\/Pz9PT08OuXbu4++670TRtHcFYKEcAbreb3bt3s3v3bgDi8XiGiKanp0mlUgSDwbJElEwmSSQSmY46m4hs2Nge2MRj45aQPZtjLdx9fX1MTExw4sQJWltbc44v1stSTY+Lx+PB4\/HQ2tqamQOyiGhychJd1zNEVFdXRyAQQFXVzHWs9m5rnmhqaoqWlha8Xm8mMrLqTzZs2Nh82MRjY0OwFm9d1zNda7FYjK6uLgDOnTuHz+fLeY0QAtM01y3oxSKhSiCEwOv14vV6aWtrQ0qZ6ZZbWlpifHwc0zRziMjv96NpWuZ9DA0NUVdXlyGbQqk5m4hs2Ng82MRjo2pkz+bA2ozN1NQUvb297N27l8OHD6Mo62UAswkmexHfzAVdCIHP58Pn87Fnzx6klESj0QwRjY6OIqXMNCrU1dUhpURVVRwORyYi0nWddDpdlIgKvT8bNmxUBpt4bFQF0zRJpVKZKMcwDHp7e5mfn+f06dM0NTUVfW2pyOZ2jZMJIfD7\/fj9fvbu3YuUkkgkkiGi4eFhAPr7+2lsbKSurg6fz5cTERUjImuOyCYiGzaqg008NiqClVqzutYURSEcDtPV1YXb7eb8+fO43e6S5yjVXLBVc8xCCAKBAIFAgPb2dkzT5JlnnsHv97O4uMjQ0BCqqmYaFerq6vB6vUWJCAqrKthEZMNGcdjEY6Ms8lNrQghGR0cZGBhg\/\/797N+\/v6J02Ua72m4nrG62trY2vF4vpmkSDodZWlpifn6ewcFBNE3LISKPx7OOiNLpdEl5H5uIbNi4CZt4bJREdpQjhCCdTtPT08Pq6ir33nsvdXV1FZ+rFMHsFOUmRVGora2ltrYWIKMxt7S0xOzsLNevX8fpdK4jIotYsueZrIhICJFDRFbXnA0bP62wicdGQVjppGvXruH3+2ltbSUUCtHd3U1tbS3nz5\/P6KlVip2QaiuGYte30m4WwRqGwcrKCktLS0xNTdHf34\/L5cocU1dXh8vlyjmvRUSpVCpTI7KIKLtrzoaNnxbYxGNjHayF0jRNYrEYDoeDwcFBRkZGOHLkCHv37t3QQrmTiadSqKpKfX099fX1AOi6niGi8fFxent78Xg8OUTkdDozr88nIoDFxUWam5txuVy28raNnwrYxGMjg+xF0epak1IyNjaGqqqcOXOGQCBwy9fIx5t5kdU0jYaGBhoaGoA1IlpeXs60bl+9ehWfz5ejM5dNROl0mt7eXmpra9F13fYisvFTAZt4bACFZ3Pm5uaYn58nEAjwwAMPZKb\/N4rtaKfeamiaRmNjI42NjcAasVhENDw8TDQaxe\/3Z4jI7\/dnXmd9vlbLum2KZ+OtCpt4bOTI3iiKgmma9PX1MTU1lUkX3SrpwFsj1VYtHA4HTU1NmfmmVCqVISLLAgLgxo0b1NfXZywg4CYZ20Rk460Gm3h+ilFI9iYajdLV1YWiKJw7d47h4eFNIwWLYHRdZ2xsDK\/Xm5Gq2U5s5fWdTie7du1i165dAESjUV5++WV0Xc+xgLDScpYFBOQSke3OauPNDJt4fkpRaDZncnKSa9eu0d7ezqFDhzIzLpbz563Casd+8cUX0TQNXddJJBJ4vV50XScUCmWUpX9aYHUGHjlyBFVVN2QBUcgm3HZntbGTYRPPTyHyLal1Xefq1auEQiHuuuuuTH0CNi8NJqUkFAqxsrLCoUOH2LNnD7Bm+jY9Pc3IyAjXrl0jnU6vU5b+aRi+tIihnAVEOp2uiIhsd1YbOxk28fwUId83R1EUVlZW6Orqwuv1cv78+ZwZFOsYKyraKNLpNFeuXCEUChEIBNi\/f39mKNXtdrNr1y7GxsY4d+5czkJrKUtnC3r6\/f631KJZjtRLWUBMTExgGEZBCwjbndXGToZNPD8lyG6TtjAyMsLg4CAHDhxg3759FbmDVovl5WW6urrw+\/0cOnSI6enpgsdZygj5Fgf5gp6WsoC10Hq93k1ZNLe7uaFSyaGNWECUc2c1TRNN0\/B4PDYR2dgS2MTzFkchS+pUKkVPTw\/RaJT77rsvIw9TCBut8UgpM8R28OBBOjs7mZ6erqqrrZCg5+rqao6OmsPhyBnWLCdUutNwK4S3EQsIv9+Poig5RGTJAHV0dNjurDa2BDbxvIVRqIFgcXGR7u5u6uvrOXfuXFnZG2uItBpYxLa6uppDbLcqEqooCsFgkGAwSGdnZ46O2uTkJH19fbjd7qKqATsZm7GwF7KAWF1dzZkjEkLk6MxZZn1W+i3fnbVQ+7ZNRDZuFTbxvEWRP5tj7WzHxsY4duwYbW1tt6QoXQxLS0t0dXVRU1OzTs9tswdIs3XU9u\/fX1Q1IJuIrBmZnYLbmeITQlBTU0NNTc26iDHbAsJqMInFYgUtIKyWe9ud1cZmYWd9C23cMgrN5sTjcbq6ujAMg7Nnz2am5StBpcQjpWR4eJihoSEOHTpER0dHQYvrYtewznErC1i+akD+sGY8Hs\/MyNTV1e2Y1u2tWrSzI0YgYwHR399PNBrl4sWLFVlAlHNntYnIRjnYxPMWgpSScDjMzMwM7e3tKIrC7OwsV65cobW1NTMrUg0qqfGkUil6ursgtcz999+fWdgqPddmEU8+8oc1k8kkoVCIpaUlrl27RiqVIhgMZlJSXq93y1u3t7OpwWrU8Hq91NbW0tramkldzszM5FhAWGSUbwFhu7Pa2Ahs4nmLwJrNiUQijIyMsHfvXnp7e5mdneXkyZO0tLRs6LzlajyhUIjrva9zV2cMhxZAKUI6sH5nbxHNVu2OXS5XZkYmuzV5ZWWFgYEBrl+\/vq41eSvubbujA+vvUMoCwqqhFbKAKEdEtimejXzYxPMmR\/ZsjpQSVVUxDIMLFy6gaRrnzp3D4\/Fs+PzFUm1SSm7cuEFssY9zh5KowsAwTYwSUUu5tN1W7v6zW5OHhoa46667EEJkOsJGRkYyhfjNbt3Oxna3cVv3UOh9bdQCIp+IbHdWG\/mwiedNDNM00XU9p2ttfn6edDpNe3s7Bw4cuOUvdSGySCaT9HR3sbdmjqOd8czPVSXN8vgkNe17Kj6X9XPY3kU4vyPMNE0ikQihUGidBbb171YIPf\/a2wnTNCu6h41aQBRyZy1kimcT0U8PbOJ5E6LQbI6u6xl1AEVROHTo0KZcK78us7i4yEDfJe7uiOFzJtcdH5scLUo81r0XusZ2I\/++FEXJdIR1dnZimmZmtz89PV3WefTNhI3W1qq1gKitrc3pcsx+jgcHB3G73bS0tNg24T8FsInnTYZ82RshREYdIBAIcPfdd3Px4sVNu55V45FSMjQ0RGKpn\/MHkyiisIyOYoaKnmsnpdqqhaIoOfWPQmmn7Nbt\/EW2GDa7oWIj2Kx7qMQCIhAI5BCR1TEXj8cz\/z87IrKGXbObFbb787Jx67CJ502E7NkcK01x48YNbty4kWlhTiQSmKa5aYuJEALDMHj11VfoCM5zrCNe8nh\/7fooKPtcOzXVVi3y007Zu\/0bN24QjUZzWrez7Q12Gm4X+RXqKrRqaPkWENb\/z\/6MCqXmbCJ6a8AmnjcBCs3mJJNJenp6iMfjOS3Mm92avLq6ikyvcLpTx+soTioWAg2SeCSK0+9b97tyczxvZuTv9rMX2Xx7A2uGyIomt\/v9b9U9uFwuWlpaMh2W2RYQkUiEcDjMwsLCOuVt6x6BgkRkexG9+WATzw5HIUvqhYUFenp6aGxs5K677sqZxs8u5N4KTNNkcHCQ9Mp1HjqSQFMrO5+iwMrQEE133rHud2\/mVFu1yF9ks1Wlp6am0HWdYDCIz+fb1Ah1I9iua2dbQMTjcRobG3E4HDmfUTZZ19TUFCQi2531zQebeHYwrC+VFeVIKenv72d8fJzjx4\/T1ta27jUW8ZimueHUTiKRoKf7EvvqFtldJrVWCOnlaaA48Vh1KUvSZbtTbVuxMOXbG1iq0nNzcxiGwXPPPZcj5unz+bZswdwJURfcJOtqLSDAdmd9s8Emnh0IK7Vmda0pikIsFqOrqwspJefOncuIO+bD+lJt1DV0fn6eocFu7jzhIvCGdH61cKrhovdmmiZXrlxhZmYms+BZBftYLIbL5XrLLwzZqtI1NTV0dXVx5513rtNQy2\/dvl2fy04gHmtzZWEjFhDFvIhsd9adB5t4dhgKpdamp6fp7e2lra2NI0eOlJxz2GiqzTRNBgYGMNLjnLvPgaLoSLUFES3sn1MKtS0G0jARau59JhIJDMNgdXWVBx54AFVVMzL+8\/PzdHV14XQ6qa+vf9O3KFcKa9G3Wrc7OjoyGmpLS0vMzs7mSNdYn81mfi47gXisDVYxbJYFhO3OujNgE88OQr4ltWEYXLt2jbm5Oe64445Md1ApWN1u1UQ88Xicnp7L7G9P0bJLA94gLbcTotW\/D0+NyuL4BDWd7ZmfzczM0NPTA8ADDzyQkd63RCuHh4e59957SaVSBVuU6+vrc9pv30rIX+gsDbXa2lr27duXI11jfS5erzcnIqqkdbsYdgLxVDrEamGjFhCliMgaGt61a5dNRLcZb71v8ZsQ+bM5iqKwurqaiQDOnz9flcFZNcQzNzfH8I0e7rnTiduVGyUJESOtBXHoK5W\/mTcQnRqlpnNNir+\/v5\/JyUkOHz5MX18fiqKsuz9r95nfolyo\/dba9VudYZuB7aovVXLdbOmaAwcOrBvUvHLlCn6\/P6d1uxqCLhdtbAXyU23VolILiGwiskRhLSKKRqN0d3fz4IMPZs5p24TfHtjEs83It6QWQjA2Nsb169fZt28fBw4cqPpBr8S8zTRNrl+\/DuYkZ+\/Tig6ESm8NhKsnHpFaJB6Pc\/ny5UxdCuDatWuFjy\/wHh0OR84cSCKRyKhLW11PtbW1GSLy+\/1vykWh2nsuNKhZiqCzu8EKYadEPJtJfsUsIKyGjnwJpNra2kxDjsPhKGgTbruzbh5s4tkmWA\/15OQk8\/PznDhxgnQ6zZUrVwiHw9xzzz0ZccZqUSiiyEYsFuNKz2UO7tPZ1aiSSa0VgOZIkjAU3Gp1zQq+mjgvvvgiLS0tHD16FFVVicfXOuSsL3U+ypGl2+2mtbU10\/WUneMfHh7OURe43QX5zcJmRFpOp5Pm5maam5uBtdTp8vIyoVAop3U7uwifvcjvBOK53VFXofSlRUSWBJKmaZimyfT0dMYCAshJzVkp4kQiYRPRLcAmnm1AdgNBOp3OLKDd3d3U1NRw7ty5W7JsLpVqm52dZWS4h3tPu3A5y5OJEJIIftwU7lQrhtrdKocCnbQfOpBzX6XuuZpFuJCo5+rqKqFQKFOQz9ZSq6+v37E22Ju9UFmt25b9Q3Y32NjY2LoifLX1lduBrb6HQhYQExMTjIyMVGUBkW8TbqXmsnXmtvuz3YmwiWeLkW9JraoqsViM1157jcOHD9Pe3n7LD2qhVJtpmvT19aGKac7d50AUSa0Vgr\/OiQwrCCqPehRV4Imu5vys1LzOZrxnK7Vi7WitOsjY2FimUcFKP+2URoXbXVsq1A0WiURyIkXDMBgcHKSpqWnbIsXtrjOpqorP58PtdnPvvfdu2ALCdmetDNv\/zfspQTHZm6GhIdLpNGfOnKGmpmZTrpUf8cRiMXp6LnF4v0FTQ+nUWiG4nALTtxs1OlnV6\/TlaeB0zn1B8cV2MxdhVVVzGhUswcpQKJSpg1hT8Vbac7uwlQuREIJAIEAgEMgU4Z955hm8Xi+zs7MMDAzgcDhyFthqGls2Auvz3+4FObvOVEiLzyKiSi0gbHfW4rCJZwtQaDZnfn6enp4eampqME1z00jHOr+1kM7MzDA6cqXi1FoxCLdSdWu101FdxHM7d\/\/5gpXZU\/G6rnP58uVtaVTYbpkgKzreu3cvHo+noOuo2+1et9PfTFifwXYvwqUaHBwOx4YsIGx31sKwiec2I382R0pJX18fk5OTHD9+HLfbnZlv2SxYM0BXr17F6Vrg7Hk\/Qhcgq5e\/sSBEAtPdiJJYqPg1tbtlziDp7Uy1VYtsCZtQKMShQ4cy3WH5jQr19fWbZvpWCNu507f+FtY9FHIdLWT2tpkpS2uTtN2LrpX+rgTFOguXl5dLWkDY7qxrsInnNqHQbE40GqWrqwshBOfOncPr9bK8vLzpaR7TNBka6ufkKReNjU5AIjUPpDdOPAB4\/VAF8bj9Cgtj4wT3deT8vFg+fzu12rxeLy0tLZn0k9XxNDMzk9OoYC24m7Xr3+6IJ5948pFv9pbtsTM4OEg8Hs+xf8hWlK72HrZ7kb0VfcP8zsJSFhBWd102sWQTUTweZ3BwkCNHjuB0OtE0jaWlpZxOuzc7bOK5DcifzQGYmpqit7eXvXv3cvjw4cwDV671uVpMTU2haXHuvc9PdmpeKDFMpQ7FXNr4yZUoUvMh9MpzbrGp0QzxbGeqrRyyr12o9daqD1m7\/lsZ2MzHTop4yiE\/ZZltbXDt2jVSqVRO63ZNTU1ZQsmeYdtObOYsUSkLiL6+PlKpVKbGmG0BYWUr5ubmOHr0KOl0mnQ6zQc\/+EE+9rGP8Uu\/9Eubcn\/bDZt4NhGFLKmtlNfi4iKnT5\/OhOYWNot41uR1enF7Qpw776PQ90doKWRKQ6Bv6BoCCEs3wSqKPSK9ePP\/76BUWzUo1KhgLSLXr1\/PeO1kD2xu9+69UlRLPPnItjYopChtmuY6\/bT8a70ViScf+Z9TNhHlW0BYXYXZmxmrhvRWgU08m4T8BgIhBOFwmK6uLjweD+fOnSvYHbQZxBOJRLhy5TLHj6vUNxRPAQmhY2pBhL5Y9Jhy8AYU5LKKoLJ27GxH0uyFJX+R2e6IpxoUGthcWloiFAqtW2zr6+tLWhxs9\/DmrRJPNgopSucP+Vr6adY\/r9ebSb1uN\/EYhrElLrFCiHU2GdmEPT4+jpSSS5cuMTY2ht\/vJx6PF1WkrwS\/93u\/x2\/91m\/x8Y9\/nMceewxY+9t\/9rOf5U\/+5E9YWlrigQce4I\/+6I84ceJEyXN985vf5NOf\/jRDQ0McOHCAz3\/+87z\/\/e+v6n5s4tkE5M\/mAIyMjDA4OMj+\/fvZv39\/0S+V1XCw0d3W5OQkU1N9PPCAH0clA6FKBCl8CLkB9U9AVZ2YogFFhiqKnGpbFCIrq7iDgS1tp95K5C8i0Wg0I+2T3ahgRUQ7KU+\/mcSTj2JDvpYauSVbEwgEMovvdn42tzPiKYV8wl5aWuLKlSs0NTXxF3\/xF3z9618nkUjw2c9+lp6eHt72trdx9913V0ySFy9e5E\/+5E+4445cj6wvfelL\/MEf\/AGPP\/44hw8f5nd\/93d55JFH6O\/vJxAIFDzXhQsX+PCHP8znPvc53v\/+9\/Otb32LD33oQzz\/\/PM88MADFb\/nN0c+YIfCaiBIpVIZ0kmn07z++uuMjo5y7733ltVayzZuqwa6rtPd3UUyOciZs96KSAdACEBzVDXJI6UkFddgLo64ehl1fhh+cBFzDiSlFwqhCFaHBrKuXziy2e7d7mbBWmzb29u58847eeihhzh16hRer5fp6WleeuklXnzxRfr6+pidnSWdTm\/r\/d5O4smHNeTb2dnJXXfdxUMPPcSJEycyjRrWZ3Pt2jVmZmYy3V5bhe0inkL34XA42LNnD7\/\/+7\/PyMgIgUCAhx56iBdeeIFHHnmEX\/iFX6joXJFIhI9+9KP81\/\/6XzMqDbD2d3\/sscf47d\/+bT7wgQ9w8uRJnnjiCWKxGH\/xF39R9HyPPfYYjzzyCJ\/61Kc4evQon\/rUp3jHO96RiaIqhR3xbBCFZnNCoRDd3d3U1tZy\/vz5iqTqN0I8q6urXL16meMnNOrrq++uEkocU6lDlGk0SCYlyaUkrtAkHjPLFE6PIjv2o7z0PBKBefwU7G9FKBEKLV96eObmtd8gnnA4TCwWo76+PjPR\/VZ0IM1uVID17cmRSARFURgYGMhYP2xFusfCVhJPPizZGuu788ADD2RmiLLVJrKbOG7F\/qEcDMO47cOyld5H9jOgKArLy8v8yq\/8CgcPHsw0u1SCX\/u1X+N\/+9\/+N975znfyu7\/7u5mfDw8PMzMzw7ve9a7Mz1wuFz\/zMz\/Diy++yK\/8yq8UPN+FCxf45Cc\/mfOzd7\/73TbxbAUKzeYMDAwwOjrK0aNH2bNnT8Vf5GqIR0rJ5OQkMzP9PHDGj8NxCwOhWhKZciDI3XFLIBVXiU9OU5tYwFMsNmpY+4IKJKK3G3q7kS17ME8dR3iSOTUglzOS89Lx8XHGxsZwOByZLqhUKkU0GqWhoeEtE\/0UQn578uTkJGNjY+i6Tn9\/P8lkMtMVVl9fv07Qc7Nh1Zi28zO3VAsKqQVYdY\/s2ZhsItpMkt4pEU8+8VgGilZzgdXsUg7f+MY3eP3117l48eK6383MrG0GrTqlhebmZkZHR4uec2ZmpuBrrPNVCpt4qkD2bI5VEE0kEnR1daHrOmfOnCmaGy2GSolH13WuXr2C17vCA2e8CHFrDQlCGJhaTabRQEoNGRPoE4N40pEyCTRQ0isY+w+j3Lh+85wzE4iZCaTXT\/rkaRIiTaDZQe1uiakbGNLMqP\/ee++9uN3uTIfY0NAQw8PDjI6OrquHvNWJyOl0cuzYMWCtUcGqD2U3KlifR6lGhY1gu5sboPiCn2+LkT0bk9+SXF9ff8vdhDuVeKLRtXpsNV1t4+PjfPzjH+fpp58uGcXl\/+0reR428pp82MRTIUzTJB6P093dzZ133omiKMzOznLlyhVaWlo4duzYhndfqqqWJJ5wOMzVq5c5dYeDYNDDWmnu1msDQolgGgHEUggxew1VmlU9EGJ3Pdwo8PNYBMcrz6OaMK22oB7cTSLSz8DSAkII7rjjDmpqakin05mi6vT0dEa2JV9h2lp06+vrb2uqZTuQn170eDy0tbVlusIsQU\/LzCzbQ2YzGhV2AvFUKhCaPRuT3ZIcCoWYnJzEMIyc1u1AIFDVe9uqrrZq78NKx1bzt37ttdeYm5vjnnvuyTnvs88+yx\/+4R\/S398PrEUwu3fvzhwzNze3LqLJRktLy7roptxrCsEmnjLIns3RdZ25uTl0XWdwcJDp6WlOnjyZGRLbKIq1VEspGR8fZ35hkLPnfGiaCRhI04Ukza2sF1JqsJxCWRlHLE4hqhQOBVDSIYzWdpSpscK\/V2C3nIGBGV5eDtH2\/vcxPDxcctjScpHs7OzMGdwcGRnh6tWrmVRLfX39hqbkdyKKLY6FBD2tGojlIWPpqFnkXC0x7wTi2YhAaKGW5OzWbStdlE1E5aLFnRrxxGKxqiPdd7zjHeukuP7ZP\/tnHD16lN\/8zd9k\/\/79tLS08IMf\/IC77roLWJtPe+aZZ\/jiF79Y9Lxnz57lBz\/4QU6d5+mnn84YPVYKm3hKIF\/2xlowX3nlFTRNy8je3CoKEY+u61y50kNdfYT77\/fkpNaEEsM0Awixmn+qimAm3SgzQwh9rWEgpARpMJc3dC7R2QZFiCcbnY4V6g8cKJo\/LtRckD+4aaVaQqEQ165dI51OEwwGM9pityLsuZOtry1k68dBbqNCtgV2to5aOWLeaarQG0V+67aUsqj1tUXUbrc7573vVOKJRCJVE08gEODkyZM5P\/P5fDQ0NGR+\/olPfIIvfOELHDp0iEOHDvGFL3wBr9fLRz7ykcxrfvEXf5G2tjZ+7\/d+D4CPf\/zjPPzww3zxi1\/kfe97H0899RR\/\/\/d\/z\/PPP1\/Ve7SJpwiyZ3Os4uv09DQADQ0NHD16dNMe0nziWVlZ4dq1Lk7d4SQYLPwnEiKClG6ESBT8fSFI0wmLK6jhoZyf19UoyHgNIlmd2RuA0EPIhl2IxbmSxzV6VogsLN1SO3V+qiUWi2XqISMjIznzMtbC8mbARhf+Qjpq1udh1UDKNSrslIhnsxd8IUQmeu7o6Mjo74VCoXX6e9mGeDuFeLIj12g0ekvDo8XwG7\/xG8TjcX71V381M0D69NNP59Spx8bGcj6Tc+fO8Y1vfIPf+Z3f4dOf\/jQHDhzgySefrGqGB2ziWYdCvjlrhf2rLC2tLZwdHR2b7g9vmiZSSsbGxlgMDXHmrBdNK74bFkK+ISwoEKL0rllKAXENMTuAMNcPfQoMzEA96kaIB4k8dADKEI+qSGZ+9BxiV03Rxa5aB1LL4MwaTrQWluw0lEVCt7sVd6PYzEjL6XTmEHOhafjshdbn8+0I4tmKe8hva882CrSM3oQQmVrRRtKWm4X8tm6LeG71M\/rJT36S899CCD7zmc\/wmc98puLXADz66KM8+uijt3QvNvFkodBszsrKCl1dXfh8Ps6dO8dzzz236WrSiqKQSqW4fPkSDY1R7rvPU5ZMAIRIlk25ScOFmJtFxErL5Cj6EkZwD+rKRNX3L+QyMhBErK6UvsbYFUTz+dsiElpoXia7FddSUbbSUMFgcEfsbuH2qQbky9dEIhFCoVBOo4LP58MwDBKJxLZFiNsRaeSncdPpNC+++CKKouSkLbPriVvlWFuoq+12RDzbCZt43oBpmqRSqZwvwfDwMENDQxw8eJDOzs6Mg6BFTJt57eHhPu6620tNTXV\/EkVZxTR9KEquBI6hg4gJlPlrFTcOCDWFVJwIs7qJcSENjMNHUF97peRxezwLjOrGligXaJqW45eS3QE1NTWV6YCqr6\/PSNJvB7bqutmNClbqaWVlhampKUzT5MKFC5kI0YqItmrHv92210DmvXZ2duL3+3Nat635Kqt12xKCvV2NLcVqPG8l\/NQTj5VasxSlreiju7ubWCzGfffdl9lFw02Ttc269ujoKF5fkrvv9uFwbGwREiKJlBpCrKXREhEFZW4Ml0yWeWXeecwkZv0e1IUCPdJlIEUYQ3Oi6sVJy+MyYHAceecdt5xqqxb56sCWntri4iKpVIqenh4aGhoyqTmXy3Xb7iUf25Hqsuphln7avffem+kgtHb8W9VBuBMaHKz7sN5jvq1BdtrSUpPOtn\/YzEHfQhHPW0mZGn7KiadQam1xcZHu7m4aGhq466671oXX5WZuKsXaYtdNc3Oc++\/33lJrtBA60vQhEbAUw7NUvsus6Ln0RUxfE0p0vqrXORQT4+QdcPnVksfVzk9sux9PdgdUe3s7L7zwAnv37iWdTjM5Ocm1a9cyUi1Wfeh2pVm2WxjVqq\/kNypk7\/izfXasiGgzF9qdUNS3aqzF7iO\/dTsWi2U+n7GxMaSUmzboW6id2iaetwgKyd5cv36dsbExjh07RltbW8EHZzMinrUvcxd33eUiUGVqrRikYSIWwiixqVs6jwCk24WMKgiqI1jFoyMVFWEW\/3w6PCGSBfxXtnPHa6WhrDblbKkWyz3S8tu5HTI2222LUOj6+R2E2dYP1kKb3Zrs9Xo3\/D52CvFAZS6o2Y0te\/bsyRn0DYVC3LhxI6f1vVoFDjvV9hZEIUvqeDxOV1cXpmly9uzZkruLW4l4pJQMDw+zujrC+Qe9COEHNjaLc\/OcAhlVUJf6kShIRw0iXX13WjaEsYpZ34EaGs69FgJUNwZOIqtxhCHxOZwoyTgiEobwOMbuo6hT1xCy8GfUFNTpvXZjnSHe2nvZGbYI+VIthWRssoc2b2XR3W5UUl8p1KhgzcgsLCzkKCpYn0k1jQo7ocZjfac3kk4sNOhrWadbChxOpzOHiEp9PvkW3NFoNEdZ+q2AnyriybekVhSF6elprl69SmtrK0eOHCn74G3UuG0ttdbF7t1JDh\/xABIpI0jTjVAqn8XJhjQdsLiMmljrWBOYpKSJaoJ6i99jIVKYahPEE8QWF3ClEmixMMI00IDaIq\/TEjMkRDsuRhFFiCTVfRkezu3738lGcPkyNvmeMg6HI0fWx5L5rwTb3c68kevnz8gYhpFpZZ+cnKSvrw+Px5Oz0JZqVMhfaLcD2QaOt4pC1umW4oT1+WQ3ctTW1uY8M4VSbXv37r3l+9pJ+KkgnmzZGyusN02TK1euMDs7y6lTpyrWGtpIV1soFKK\/v5u77nbj9998oISQSCSGAdV+72Tag5gbXteB5lSSxLQ6vGUsD4qeV3EhU06UsetIdwPKwDWqyS6LxCrCXUsy3o6LsYIddfXx9TWoN0vEUGjRXVlZyaSgent7q1YP2E5sBvFlKwJAbit7dqNCdit79mdi+c9sJ6x14XY8h6qqZtK0sF5xwmoesJ6XbENJWIt4NkMhZSfhLU88hRoIIpEIly9fxul0cu7cuarE96qJeKSU3Lhxg2h0lHPnvahqoaJ6knhcxe+vjMykFMiYihrqL3qMV4uwEnERdFbe1SaFA2l4USYGUIw1AVIRn8fsOIoy2lfxeQBcrhDLzy\/CfftwGaPrPHr21MVYmpzD2VSbew87NOIphfxFxVLbDoVCGfWAbBvsfOHKN2PEUw75rezFpI6sz2QndLVtZdRVSHHCIurBwUEArly5wtLSEslkckNdbV\/72tf42te+xsjICAAnTpzg\/\/6\/\/2\/e+973AsU3el\/60pf4t\/\/23xb83eOPP84\/+2f\/bN3P4\/F41TNgb2niKWRJPT4+Tn9\/P52dnRw4cKDq3HKlEU8ymaSnp4u2PSmOHF1LrRWD328QjSr4fKUJTUoHhMKosfIdZ16PROJGGKXTeBIVSQBl8gZKOl7ggBXiqhtPmfNkQ6SieB8+TOzpKyTuaKfWn6tqoCgw\/8zztD36v998zQ5OtVUDp9NJc3Mzzc3NmaJ8KBTKRERAjqzPdmMriK+Q1FF2R5hhGHi9XhwOx7bVzPKjjK1E9jOTSqV4\/vnnaW1tzShJr6ysMD09TSgU4u1vfzv33Xdf2Qhxz549\/If\/8B84ePAgAE888QTve9\/7uHTpEidOnMjIf1n43ve+xy\/\/8i\/zwQ9+sOR5a2pqMsrWFjYyePyWJB4pJclkkmQyicPhyFhSX716leXlZe6+++6KjJQKoZKutsXFRQYGerjrbjc+X2W7KJfLzJnFyYfUPYi5EYRRWRTjUCWmFoBYoqArqEQgRS3KzBhKonj7tWKmSTc345kqbg5VCE5tnpjPDd1j3Aj42H8q9zNTJq5w48bxTHrhrehAml2U37NnT2ZmJtv2QVVVNE1jbm5uW2RatjraKNQR9vrrr6NpWqZmpmlaTs1sK2aqdkJnHdysNbW2tvJv\/s2\/4ZOf\/CQPPfQQZ8+epbu7my9\/+cscP36cZ555puR5\/uE\/\/Ic5\/\/35z3+er33ta7z00kucOHFinaL+U089xdve9jb2799f8rxCiFtW44e3IPFYqbXR0VEWFha45557WF5epquri0AgwPnz56sq\/uajVFeblPINeZYxzp33oiiVL6Saxht2B3rOTI+UAhnXUBb7CxJIKSj6MqanBRG\/6Z8hAanUocxPo0Qqk8epUaLEmvbinR+v+NoiHcf70EFi379C\/WqU4Ss+9p28ST7tNcu8vhxmdnaWdDqdkW9ZXV29JZXpnQxFUQgGgwSDQfbt24eu61y\/fp1wOLyuFmINbd7uxXC7U33ZM0RtbW3rCvHXrl3D6\/XmzFTdDnLeCQ0OcLOxwPqbCCGIRqN88IMf5F3vehemabKwsFD1Of\/yL\/+SaDTK2bNn1\/1+dnaW7373uzzxxBNlzxWJRDK1zdOnT\/O5z30uY6tQDd5SxJM9m6NpGoZhcOPGDW7cuMGhQ4fo6Oi45S+ZpWyQj0QiQU9PF+3tOkePlU6tFYNQojnaa2uptQhqbHbD9yuMEKYziJJawVRrEYuLqCtXqj6P060j3T5EIlr+YOs1yhzxgBe5GqMuHGX4qp99J9YiOrdTUj+\/wh3v+Vni8Ti9vb0kEglef\/31TLF6O1QEthKapuH1epFScuLECZLJZKZt++rVq+i6njOUeDsIebuJB3KjrvyaWTqdzhTiLfvrbOmazVJU2M5UW\/595L+f7BqPoiiZNv9y6Onp4ezZsyQSCfx+P9\/61rc4fvz4uuOeeOIJAoEAH\/jAB0qe7+jRozz++OOcOnWKcDjMl7\/8Zc6fP09XVxeHDh2q8B2u4S1BPIVmc6SUhMNhkskk999\/P8FgcFOuVSjiWVhYYHCwh7vv8eL13qqvyJrdAQaI+bGMZ86Gz4dEqi5kzIE6f3XD59FkGrN9H+J65aQl0gm8Dx0g+r\/WDKnqViIM9wfYd2SteUEOdiPE2\/B6vfj9fhwOB\/v27ctpzbVUBLJVpm\/HznQ760vWoutyuXJkfSzbB0vGRlGUnBTUZoh67hTiKbboOxyOdY0KFjkXalSo1nW0knvYSpQjnmpw5MgRLl++zPLyMt\/85jf5p\/\/0n\/LMM8+sI58\/\/dM\/5aMf\/WjZ5+nMmTOcOXMm89\/nz5\/n7rvv5qtf\/Spf+cpXqrq3Nz3x5M\/mCCGYn5+nv78fIQTnzp3bVLmT7BqPaZoMDg6SSk1y7rwHRbl1KR0hJGZUooSGqlYOKART1L7RGt14y+dSYjOYbQdQJofKH\/wGHHKGlEPDmV7bFNQtrnKtN8Cx42la1JnMwmctFtkzEPv378+oCFhdYptp\/rYTUIzwStk+TE1N0d\/fj8fjyRH13MhzvhOIp5oB0kLknK2oAOTMD1XaqLBTicfSFdyIcoHT6cw0F9x7771cvHiRL3\/5y\/yX\/\/JfMsc899xz9Pf38+STT1Z9fkVRuO+++xgYGKj6tW9a4smezbG+PFJK+vr6mJiYoL29nZmZmU3X2LIinkQiQU\/3ZTr2JmnaFURRqhPkLAQpgTCoC72YrmaEDG34XIYJwvCjTvcCIKLTmLV7UZYrr9MUgnCmkU43IlVZJCb0JKl9tTiv38xL715e5epVPydO6Ay\/2sOu++4ACi\/C2SoC+V1ilvmbRUJv1rRcJQtjPiFbszKhUGid7UN9fT01NTUVLaQ7gXg22uBQqFHBat7IHu7NlvYp9nwUijS2A4WGR6WUOeZsG4XVdJWN\/\/7f\/zv33HMPd95554bOd\/nyZU6dOlX1a9+UxJM\/myOEIBaL0dXVBay55Om6zuTk5KZfW1EUEokEly+9wD13OvG4JZLoGwoEhTvSKoFhgLKURHnDD0dJzhKRPvyu6iwKAEzhJjo9S9DI1W0TyUVMTy1KfHnD9ynSMcyOwzA+Auk44o2Zn1JobTeYG9Bwy5ufT9tKhN5ePzJ+Ee67o6KutkJdYtuRlttMbDTFV8j2wUpB9fT0YJpmpj5USkttpxDPZkQb2cO9nZ2dOY0KExMTmUaFQlHi7Yp4pGkiqjhvIWVqoOpU22\/91m\/x3ve+l71797K6uso3vvENfvKTn\/D9738\/c0w4HOYv\/\/Iv+U\/\/6T8VPEe+7fVnP\/tZzpw5w6FDhwiHw3zlK1\/h8uXL\/NEf\/VFV9wZvQuLJn80RQjA1NcXVq1fZs2cPR44cQVEUVldXb4tvzuzsLDX+KHeecKEobxAfBjKtgmtjxGMYCsmxKXxmbuHeJeOYeFConHxMJYgyOULQWD+TI0wdXD5kUivoRFoO0lmDaTgRg73oehAGx5BOF\/h9CK8XPG6Ey4EuIBKP4nQ58HldpMJRInUm7lCuUVzrcoShwTVy3MjiVyotZ3moZC++xdJy273wbsb13W43ra2tGfVkS7Qy2\/TN+hzq6uoyO\/+dQDy3S6stu1HhwIEDmUaF\/Cixrq6ORCKx6Z+DkppiaUIS3N9W8WsKEY+maVVH8rOzs\/zCL\/wC09PTBINB7rjjDr7\/\/e\/zyCOPZI75xje+gZSSn\/\/5ny94jnzb6+XlZT72sY8xMzNDMBjkrrvu4tlnn+X++++v6t4AhHyTTO0VsqQ2DIPe3l7m5+c5depUTrdHLBbj2Wef5d3vfvemPFDxeJyenst07knSWqSN3VRrUbQCQ5glIE0n5sQYWrpwt5jprEfIcNn3IBFII4Ay2V\/W+G3F9BNMV57GiysBjJU43tB0Rn9Nunzoo6uIaKSicxgGTNxw05AXwZkSlv+PXydcu9YQcvjw4YrvqxTy03JLS0tF03IvvfQShw8f3paBzqGhIdLpNEePHr1t18je+YdCIVZXVzORYSKRwOFw3Nbrl8MLL7zAiRMncnyvtgKWOeDS0hJzc3PrxF832qgAoCVHUSLXufrKHg6991jFrxseHiYej2caAHp6enjve9\/L8vLytm8QNhNvioinkOzN6uoqly9fxu12c\/78+XUdGdauYTN2dHNzc9wY6nkjtVb8OGHEkYpAVDi\/I3U3YnIIrUTnmpIKrc3iGMWtq6VwwqqOGqpM2iaoRMraXEuhIN27YH4B98L6ZgKRjKIe7cB8rbJOOVUFLQixsIrXeTMSVQQsP\/X3qL\/07k21FK8mLWcYxqZHx9Xe6+1EoZ2\/RUKhUAjDMIjFYjmdYVtZaN+uwn62OaDVCev3+1laWmJkZAQhRE59qCJrAylxJAdwJq4xOeInHa8uVV7IEuGt5sUDbwLiyffNARgdHWVgYID9+\/ezf\/\/+gg+D9cfTdX3DA6OmaXL9+nWkPsG5+x0oovTiJEhi6nUIZ6z8uVNulPFrFXWuifgcprsWxVxvoSCVGsT0JCJZnb2CklpCuoOIRG76S6oupFYHEyOIaHfpcyyPY544BlevVXTNtl0JuuaCdGqrOerZu+cHmYq9HeG6fYtPqbRcKpXiypUrFaXlNhvbkXDIbtiwtAcDgQChUIjx8bXmk6oX3FvATrBFkFLicrnYu3dvpovQUiGfm5tjYGAgY22Qn67MOgnOxBUcyTUH3\/4fLeHeXd0YRyFLhLeaFw\/sYOLJns2xHsx0Ok1PT0\/GqreUR4X1x9voLjoWi9HTc5mDnWmamzQqHQgVchlp+hBK8aK7jDtRpq5WrEQgMCGdRKoqgpvkZ8ogymh\/Ue+bkuc000i3H5mMIKRxs34zNohIV975pqTniXl9uGOVDZZ2dMS4cT3AoaabROkROqHvvET9B9ZPVd8uZC++S0tLmWL0dnTLbbdIqMPhWGf7EAqFMguuy+XKWXBvRfmjEHaKSGg2+WWrTGQ3Kljk3Nvbm+tSG6zBl+pBS69lEUw0rnx7mNP\/tPL6DqxtlLNFi2Ox2C25me5U7EjiMU0TXddzUmtLS0t0dXURDAY5d+5c2YdfCIGiKJmh0mowOzvL8I0e7j3twu2qbkcqkMg0UGCdkhLkqoI6X1mEkHNeI4qp7ULIJaTQILax8+ScM7GEUdsJC3OIgSGUDey+FSOF80Az8spwUf+dbNQG0rgCMJGoYY\/7pmFdw\/U+THmmxCtvH4QQOJ1OGhoaCqbl+vr6Mt1Qm90tt90l1vxUdKHOMEs5YHR0lKtXr2ZsHyxZn1v9LHbCDE25dupCigpWfWho8DonW0MEa25uClcWPRgpSTpWvuszG\/kRz1vRfRR2GPEUm80ZHBxkZGSEI0eOsHfv3orZv1q3UNM06evrQ2Wa8\/c7EGVSa8UgiGDqdSjazZSblAosJVGXigtyloOSnMNwtaDOTyBiG\/PbyYbpbkYZ6EL6mysijWJwxhYw7jiB7KpM1eDAvlWudjcyZzjY5Vv7Yu53x3itewyOVV6IvV2opFvOGmJtaGi45bTcdu5my0UbqqrS0NCQEdVNpVIFlQM2mqKsxnL6dqJa8stEzI21uKOzqHk1wq4frukjLs2FqtIfLNTVZhPPbUS+7I0QgkQiQXd3N6lUijNnzlQ9RFWNaVssFqOn+xKH9hvsalTZiNZaNoQRQSoaQllTnWZuGSWycc01AKkGUMcG1hRFb+U8QkPKAMrAmpQN0TlkTSMiXJ34YDaU2CT67t2IPLn1QnA5TBr36Uxe81PjWsatrX3W4plX4cPv3vA93C7kW2FnS9mMjo6iKEqOttxmSNlsFaptvnE6nQUtDrJTlPn1oXLXhzcf8QAIM4478iKKmdvZKYEbf7cWzcdX47z++uuZzYyVrixWN8vXjLObC24jsmdzrBTZ7OwsV65cobm5mXvuuWdDCgSVEs\/MzAxjg5c5fYcXn39zOqsEaUzdB5qBmJ5GJJZv6XxSDSDGRxHpONLTgETZkKSOdASQSxGUpZueGsJIg9ePdDgR6eoHVoE1S+xdbvQ5DWGUT2\/uqQsx7ainb6aG03vWGhyOJGdJrkRxBXf2Dq+Q1cHi4uI6KRtrkSmVwtnuwvqtdH3mKwdk2z7MzMxw\/fr1HIvnQrYP2VJX24lqlQuEsbpGOnJ9R2oy6WNlYm2swu\/289BDD62zw3A6nQXt0g3DyFnrrBrPWw3bSjxSSlKpFMlkEk3TMh02vb29TE1NceLECXbv3r3h85cjHsMw6Ovrw5Ea5tyhBFL4YRP00SwIIw7TIYS+fEvnySYdABFfxAy2IxIzZV6ZC9PdhBgdQikgdyNiS8hde6EKHbb1EHDiDoz5FZTIImJ1ueiRioCWzijLgzVcnfNxYlcUn0PS\/\/j\/4uTH\/\/Et3EP1uJVFL7sIbaXlrCHF69ev56TlbkXE8nZhMwdIC9k+WJ+FZftgKUtb9aE3Y8Sj6CHc0ZcQsnD9ZqrvZrYkHUut+1yy62bZjQr19fWkUqmcut9GBUJ3OraNeKzZnPHxcaamprj\/\/vuJRqN0dXWhKArnzp27ZZ\/xUsQTjUbp6X6do80rNDW9MfSZWEB66iqewykFKR2I4SGMtAQvKMrGvtz5pGNBWRnDrN2DEp8r8sqscyCQjibEwNWSw6XK0jhG2yGUycpF\/6TTi+lrQs6HEH3DKEDKuY9UzypKXS3angZUn4qMrSCW5tCy7L87diWZmU7jiLiYTpjsdsfxdL0GbC3xbCby1ZSzU1GF0nI7rblgM5Fv8WwpS4dCoYztQ01NDXBzgd0uUq6UeBR9Hnfk5Zzu0nxc+e7N76SeWE9O+XWz7EYFq7V\/cXGRl19+mZWVFVpbW6t6L+Vsr3\/pl35pnffOAw88wEsvvVTyvN\/85jf59Kc\/zdDQEAcOHODzn\/8873\/\/+6u6NwvbQjxWpGOFlYZhZIb62tvbOXTo0KbsgIoRz9TUFBM3unjgQBKnevPBEDKNTGrgqa4TJR9SqoixKZT4CgoQSzXjcVdvb1CMdDL3uzpPQnXgFiVatzU3MiZQxisr\/CvL45gNbSiLxXXupFCQwVZkXEeODCOM2ZzWcJeYRd9Vizm3TGrpZtu0YQqiOElrCg63xB\/QOXRgleHuOpbnPXiakrS7o0w818Oeh6oXHtyJsNJybW1tOamo6elp+vv7UVUVj8fDwsICtbW1my5qWw5bKZmTrywdjUaZnZ1leXl5232YKkm1qczjTFwpSTqGdDH0zI3Mf1fS1ZZdQ5ydneX48eN0dXUxMjLCSy+9lPGreuc738k73vEOTp8+XfJvVs72GuA973kPf\/Znf5Z5Tbku4QsXLvDhD3+Yz33uc7z\/\/e\/nW9\/6Fh\/60Id4\/vnneeCBB8q+x3xsC\/FYdRwrvx2NRrl+\/TqnT5\/O7BQ3A\/nEYxgG165dw62Pcu5wvODuX8SX1gzPNvhllCgwtYiyenPX40kuIt31CCpXsJZqADExVpR0AISRxJQOpCYQYv17Sak1OObmUaIrBV5d5JzSRDHj6A4PWt61pa8eU\/Ujx8YQ42ut3IU+JZGM4T0QJLKorMlkvwFVEdSgr2UzY2v\/orpCXE0RMFzcWAhwR+sKc09+h+YzR7fcBvp2Iz\/lkk6nuXLlCul0moGBARKJxJan5bZLq00IkUkhTUxM8NBDDxV0Hs1uYb+dpFwu4tHEFKoxi6KHix4DsDiV+8ym49VtYg3DwOv18o53vIN3vOMd\/PzP\/zxHjx5l7969\/PCHP+R\/\/s\/\/yaVLl0qeo5ztNaxtAqqxsH7sscd45JFH+NSnPgXApz71KZ555hkee+wxvv71r1f1HmEbU21CCMLhML29vUgpOX\/+\/KbvcLKJJxKJcKX7dY7tDtPoK7GYm3HMVAPCVb3NgQT0qTCupdxoQUgdmRJQ4dxdhnRS5RUQvGYE09ueY28NsJzyEpy7sbHh0mSEuMuPX0+C5iTpqic1M49vYnTt9xWcQwlN4z13iNhzpWtGAc3kZFOUrkkHtarG61M+TrZM85Pv\/5C63Y2ZluWtlnHZCjgcDjweT6Y+lO8tY0m23M5uue0WCbU2n9ndcPm1MouUa2pqMgX5Sm0fKkVx4pE4lDFUMY+yVL5jc+DZXAURvQriMU0TKeW6duqDBw\/yL\/7Fv+DjH\/941anZYrbXP\/nJT9i1axe1tbX8zM\/8DJ\/\/\/OdLOpteuHCBT37ykzk\/e\/e7381jjz1W1f1Y2DbiGR0d5dq1a+zZs4fJycnbElZbxDM5OcnUSDcP7M9NrRWDiK+Cq\/rp7MRMHF9otODvlNgspqsdIUtHH9WQjgWxPIYZbENJzCMVDWn6qZ29XtW95yMgUuhNh6H7Mg59no3EHtrcAM479pHqLvyZWFAVaK2PElqpoQE3w8tpmvoWab73ThYXF5mcnERKmVmEGxoaNn0R3q5aS\/Z1y6XlsrvlNisC2G7iKTZHlF8ri8fjGVKemJjICHpaz0Slhm+FYM0PriceiVMZQlPmMCKU7SKVKHR9cyTnZ9VEPNYmOZ94spsLKn2PpWyv3\/ve9\/KP\/\/E\/pqOjg+HhYT796U\/z9re\/nddee63oOjwzM0Nzc3POz5qbm5mZqa7BycK2EY\/P5+O+++7D6XQyNjZ2274As7MztNaEOXsoUVa12YKir2Cm2xCOyluLwzNxahdulDxGrM4jfV6EKNxurONFq5J04I0IJLqI6WuA+RDK8q2RjumtQy5GUccuYe7ZByPVOwxacDFDot6HEiotqdPiSzOfNiCmoMT8GN3X2L37o5l6gNWybLXpWotwQ0PDm8J3pxQKPfeFOsSshXcz03I7gXgqiVw8Hg8ejyfH9iEUCrGwsMDQ0FDG8M36PKqR9bFaunOfIROnch1NCWHoXrRE6c0TQHTVR3I197utx9NIUyIqaC4qRDwbbacuZXv94Q9\/OHPcyZMnuffee+no6OC73\/0uH\/jAB4qeM\/85uZVnZ9uIp6mpCV3XSSaTSCk3\/QuwurrK4vwUp\/ZE2VWzgWaBeBIcld3P0myChjKkAyD0ONKsB3W9lUA0qeJdHEekq29CAEBxImfCObWljcAMtiEHb2QcRkVonHRDC9rixnY2IhlH2xvEXMmt9xTCsZplfrxQywGvQngBhn94mX3vOJ0j45K\/COf77jQ0NLyptK0qjbTyjd+yLR8sy+dsbblKI8KdMEdU9eCmEAQCAQKBAB0dHQV11Px+\/00dtTIbk\/XqCToutQ9VhJFSRQlXNvg9ernwRlVP6jg85XMG2R5jcNP2eiPuo5XYXlvYvXs3HR0dJS2sW1pa1kU3c3Nz66KgSrHtA6RWuuBWVKSzIaVkcnKSmbEeHjwcx6VtUPYmtYA0diPU0sOQS\/NJ6uYrn30Rq5OYdW0o8ib5SNWPc+4Girmxbjrp8CJnQijhEGbLAdRw9fbWUghMXxuiN1e8VBg6miNO0unGVaHddT78iRX0Cuo9mgJHW6JMzPlpdmsMP\/4c+95xev1xWYtwtu\/O4uIiIyMjObpa1e5+twMbIUmPx5MR9ryVtNxOiHhu9fr5OmqpVCrTnpwvcVQoOswlnhRutRdFrGUdzISKZlb23Hf99VTBn6djqYqJJ58gN2uOp5DttYXFxUXGx8dLzkyePXuWH\/zgBzl1nqeffppz585t6H62nXisXcZm+KHous7Vq1eoUSY4c7Dy1FohCEAmJJSIcsMrOnVza7Mr1ZxXRCNIz1onmlT9iIlxnBslHdWJDCUR4TVjN2VmCKNlP2q4uNfOunM4PJi6G9Ff2FtHSUQxfAGkqSM2ILoqa+oRCqQPHGC5a4J6bzLHFiEbe\/1phkMpkoaLltAiQ8\/3cuDB40XPXch3Z2VlhcXFRcbGxujt7SUQCOSIWubvsLe7uH6ruJW03E4gns2OuJxOJ83NzTQ3N2c2JtlNG0CO2rb1GahKCpd6FUUk37g3N2q0sk1cSvcy21s461Fpg0Eh4onFYptqex2JRPjMZz7DBz\/4QXbv3s3IyAi\/9Vu\/RWNjY85MTr7t9cc\/\/nEefvhhvvjFL\/K+972Pp556ir\/\/+7\/n+eefr+reLGxrV5v1v6qqbkhFOhvhcJjLly\/jTac5fKo6F9BiEIkFpKcBoaxPEUWjJjXTIyiyesJUUisYnnZQDcTEeNU1HQtSqJhxB8piLsmIhQkSHi9uowJfIH8TcnoRES6dSvOnVjHb98GNyuo9ur8O4WvEmFtG9s0CC\/g0B3MpLwtJjQTgdBo0+NM488RYz7RFeXrQyfGAYOir3ylJPPnI7o6Cm6KWi4uLXLlyJcdlsqGhoayW2FZgsxf+atJylkzVduF2p\/qyNyb5tg+WfI3D4aAmIHCIroznlpRAZLVi65LZG8WPrLTBIJ94TNPckEhoKdvrNSflHv78z\/+c5eVldu\/ezdve9jaefPLJnJRevu31uXPn+MY3vsHv\/M7v8OlPf5oDBw7w5JNPbmiGB3ZAxANkhkg3Aikl4+Pj9Pf3s2\/fPsyhNCZRlCpmZopBSB2ZUMGbSzyJhMQzMYqib\/waSmwJGUlvnHQAadagTPWv+53QU5B0YThU1BLEaAb3Ivv7KtJWA1BmhzEPHIGh9dcEiLtriEs33piOuL4A5LqmCj3NrpYoi9Ne\/EJAWmVlSWUpDWgmzf4UQZeBU4WTLatcn6nhgIzR9\/3XOfqeuyu6x3zki1pGIhEWFxczXjNutxtd1wmHw9s2wHm7kZ2Wk1JmLB+mp6eJx+P09fXR1NS0JfMy+dhqL55Ctg9LoRvsbppDU29+V6JhCKSXKz7vtR8Ut5KvlHgKmcABVdd4\/vt\/\/+9Ff+fxePi7v\/u7suf4yU9+su5njz76KI8++mhV91IMO4J4qlGRzoau61y5coWlpSXuvvtuGhoauNp9mdUlF8G6WyceAJEIId0BxBvkb5oqytgwWnpjhAFvSNjMRSCeRHo3luowtV0og8XVCFypVWKuZnzGevsEKVRMdzOi90rFOzoLYvYG5p59iInhtXPVNZNWfMTHZnBPLZfKTALgd+nEG5IkFl2oQqAADQ4ABT3qZjimspJM0uTXcblTRIWH0H\/53oaJJ+fes4rSnZ2dGS2xa9euMTU1xejo6KbaHVRzX1sFIUROWu6FF16gra2NZDKZk5arq6vLzE\/dzvvbbi8eh7bM3paFnPeo6yre1FxlA2uAiYPe7xZvLtIr9OTRdb0g8dgioZuI7D+0pmlVp9pWVlbo6urC4\/Fw7ty5TP95KpJiqjdF8Pwm3aeZYGXRSbDJhZQKytQC7lR1NtP5kKIeZeo1AMzAUYRZnR2B6WpB6S9tSw3gXZ3F2H0QdeWmB5Dp8iOjAjGxMRM5ISVKcgW97Tj68BRcXRuqq2aqpimQZDylQmR9wbVGGtQ4NUhptLlMBpMO9ss4l598ntMffnBD91wMlpaYy+Vi\/\/79+Hy+TFrO0lWzUlINDQ23pUlhu7XagIz3EOSm5Swb7GwV5c1OTW5nV52qzOMUgzmqH1KCSEhUUfng9fK8m1IZ93QBvbZCyI94YrEYTqdzS6WDtgpvuohHSsnY2BjXr19n\/\/797N+\/P4fEUpEk\/S\/Pc+x89S2IxeCWKaR0I2ZXUZYLd65UCtMRRHRfvvmDiSHijXV4nJU96KanBXGtPOlYEDM3WHHXEBQxzEALcmwSEVvfzl0pZKABfVlHJsbR4+kNP0B7G2LcSAVwp4ovOnVOwT65ypUVaPofP0J+6Pxt231LKdd1ioXDYRYXF5mYmODatWs5zpu1tbWbtmBud40l+\/rF0nL581NWHe1W03LbY3stUdVZnIzkkI6RcsP4LOqrr2Dccw9KrYKgPGlc\/fFiyd+nY5XNA+ZHPJFI5JYGY3cydgTxVBrxWNpWy8vL3HPPPZn2yWwkI0mGX5zHpAGFjXnL5MOtJDBnXCiLI7d0Hik0xOg0wrxJsoqZRk0oUAHxmJ5d0FeZ2KcFIU38Zhq9tgPRf2VDEjqZ6ze2YwxMQDKBAEx\/DVJ3IpIb+5w7W1YZnqjBYxb\/YjW6TFprNKLRFBf\/2w+4\/\/\/3rg3efXXIdiE9cOBApkV3cXGR3t5eDMPImR0qZuy101Gqqy0\/LWd1yy0tLTE0NEQ8Hs\/I2NTX11NTU1P1Z7D1qTaJpk7hYBzxRlSTjKmYE2N49AR0DSHiUdRnn0G6XBh334dochZdS6SE3m+XnvOptKst\/7N4q9peww5JtVUS8SwvL9PV1YXf7+f8+fNF0x6pyFptJ7LspqZ2c4hH4oNLV6H91lItMuVFWRpc93NneIZV514C7uLdeKa7AQavb4g4pLcROT4LiKprOrBWk1pQawleHcqxyPbGwsiODozBcajCYtyCImBPS4Sp2VpcJf7+h9w6L0UUlr51AeOfv2NbVAryW3Sj0WjO5Lxl7NXQ0FBVJLDd7czVXL9Qt5zVpmyl5bLVAypJy21tqs3EoU2gySmEMDF1F2J2Ds\/SWleovqigxm8qbIhkEvXC80hNQ7\/zHpS2AAq5Mz3xhJ\/YfGlimZ+ez5BIqc863wRuu60ibid2RMRTqp1aSsno6CgDAwMcPHiQzs7Okn+IVHSNbKaupak5W\/SwqiBvzKLMjGC23omibaxV23Q0oFx9rejvvaEZUi2NOJX1D7F01cDI2IbcQc3gbuTVawjTQLYfgsXhql4vnW50rYHaG4VfJ6ZHUY8exOhdT6iVIBLXMH0qY1MKu71pHEXWoLvrDV5eSHPhK9\/lwU\/+ow1da7NgKSv7\/X7a29szxl6hUGhdJLAVBfpbwa0QX76MjSVrZLUpW+6jVmquEBlvXarNwOkYQzXnkKYDOb+EunBzWDoccxEY6in4SqHraK+9jHxNYJw6jehsRBFr68Bkb\/kSwerSKq+++iqappW0fTAMI0eRPRaL3bIn2U7FthKPEAIpZdF2assUKRwOc++992ZmM0rBiniu\/3iBo2dvPUyV+FCurA1JydkItFW\/25aqG9FfuAXZgmqmSYZ1nLV5r3V4kVMhRKK01lkhJDUf6o3JTGpPjA1g7juMMlde3gdA1jSih1KwUJqsxPgg6vHDGL3lNeIMRWN23kEyqeFTdLwOk2bCGH4HM2E\/CSkJuE12OVNky1s5FcGxoE7Pd18n\/X++F4d78ywTNmNy3jL2OnToEIlEItOkkF2gt4goe8HZ7uaCzYq4CskaFSPj7LTc1qTadJzOEZR0GBmKoc4O5kT+aZx4+ss\/uwKJ2nMJesA4cgIO7qHn28V9qyw01jRw\/8MPZmR9LNsHn8+XI+tjGEaO1FEkEnlLuo\/CDop40uncnf7S0hJdXV3U1NRw7ty5ijuKkqtrxDP07Czmbx1BqaA4WApycDrzkIrJG8iWUwi1OukYM6SjxssX9L2RecyGoyjGWpdbRpVgtfiMQDEYqhN9MY4WzyUsOTKIuacdJVRa2cBs6sC4PgZFZDbyIcavoxw5iNm\/PvIxA\/WYNbvQozrp0ek1Tx5XbvTW6k+TMmI4E14UQ2MiqhJO6TS4dXZ71xbnRpdgbyrJD\/\/jU7zndzZnnuB2wO1209raSmtra0bOZnFxkampKfr7+3N8Zt5MqbZqkO8+Wiwtl06nb+uuXogUDu0GYn4OZfo6SgE1k\/REGE+6uvELtf8qibF5prrL93Om46l1g83ZrqNWG7u1Di4vL+P1ejc0PPpmwY4wOMluLpBScuPGDV599VU6Ozu56667qmpjtSIeJETDt9b6KfGh9N7sIBNIzPnqSCcla1EnKk9DialRpHCvzdrEVMRieQ+QfEihkEp5cK+ut2AQ0kTOzWH61zdmrL1WYDQewLgyWDHpWFBmbiD2dSCFirGrnVTrcWJaG7GRKInuYfSh8ZKSO53BJNKx9vl6FEGz24GGh8FlN4O6m\/mkycEAmM92E1mqPgLcDlhyNvv37+fee+\/lwQcfzEQEfX19mYV4bGyMaDS65RHQVhGflZI7efIkDz30EKdPnyYQCBCLxZiamuLChQv09\/czPz9\/yyomFoSI42AQre9VHNP9BUlHpw7P1FiBV5fHxeEGHP5KiGf95tdyHT1y5Ahnz57lzJkzOJ1O0uk0f\/u3f0t7eztf\/\/rXWVhYoL+\/v+Ln4mtf+xp33HFHJvo8e\/Ys3\/ve99buI53mN3\/zNzl16hQ+n4\/W1lZ+8Rd\/kamp0p26jz\/+OEKIdf8SiQ0KGrNDUm1Wc0EqlaK7u5toNMr9999PMBis+pyp6M3FcrovTeD+jd+fHJhaV4wX44PoDUfQHOVzuyk8qFW0PgOIdBwzqSEdbpTpjdkbmP49OK8V1l2DNYdQmfRiOlwoWTs96fRgqPXIKxub8cE0MR1ekrWd6NcmgMpUfbNxuD5O74LAZd78QgedCqTAlF56Ymk0JcWPPvln\/KPHf31j97mNyLY5llLy+uuv43K5CIVC3LhxA4fDkdOkcDtdWK3FbKvnaLLTcrFYDJfLRTAYLJqW24gJoCJW0VI30Ea6UIzCGyhT9aK8dnlD78HUXHzz\/wtz6kD59H8lXW0ejwdN09i7dy933303+\/bt44\/\/+I957bXXuPPOO9m1axfvfOc7+cM\/\/MOSEWIp2+s9e\/bw+uuv8+lPf5o777yTpaUlPvGJT\/CP\/tE\/4tVXXy15fzU1NfTnlQtuxRNrx6TaEokEL7zwArW1tZw7d27DX7hMxANc\/\/Eih+\/fWBgvpQ\/l2noBPCFN9Pk0WmvpL4IpBanRafwb6UJLmMgy\/jXFYNR1QE\/5lmuxvIBs7cRcmUABZLAJfT4OoeqaDyxIzUHa34nZ3Y\/m9SJbmzCm5jd0ruONMfoiThyx3M9YEQotLhfgIja3xHN\/+H0e+vX3bOgaOwGWBXx9fT2tra058v7Dw8NcvXo1I3B6O1xYLeLZbpHQ\/LScVSPbaLecIkNokes4pvoRZvGGHHMijJramMLJmN7OajiC4iy\/hFar1aaqKg8++CDf+c53aG9v5z\/+x\/\/I888\/z4svvlj2vZeyvf7lX\/5lfvCDH+T8\/qtf\/Sr3338\/Y2NjtLe3Fz2vEKIqq+xy2HbikVKyuLhIOBzm2LFjtLe3b\/iLYKR0jNTNSGTwmVnS\/2Y\/Dq369IW8PlG09dg5NUKyYT+lBorDKwq10eXqr+v0YvQOgW4g9jWgpCtXSVjrYOutuGVaTI0gOw9jYmL0j0BqY+3n0ldLKulFDrxhexCL4fAryF11mHPrJXsqwRHfMq+GfdRrhT9kL7Dyty8z\/57TNB289S\/Edhb5rec9W97\/4MGDJJPJTJNCvgvrZqgI7ATiKdROnV0jKyTqWbxbTqIakzhWBlAXxkqSji7rUMdf3vB9\/8131jaUwlG+2Wij6tTRaJTm5mY8Hg+PPPIIjzzySFX3WMz2OhsrKysIITLKFcUQiUQy3kenT5\/mc5\/7HHfddVdV95ONbSWeVCrFpUuXiEQieDweOjo6bul8yUju7kUakoU5we7W6hYVKf0o\/cXlvoWpE5mI4jpQuPAXM70EJzeWrjKoRUTXcq7migLeygpx0luHeWMSUeU8jUzo6FGBskHSMRv2kppYgUieunUkgjOokqyvQYbCVZ9XCDi5K8ZrUyq73YUf06CqcPVf\/TdavvRBdrU2EwwG33ROpKUIz+VysXv37rIurNYCXO173wnEU66dOl\/Us1i3XENjkI6mCI7oDOrSDKKEzYip+lAuvr7he171tNFzeU2rUVYQgW5UnXqjXjylbK+zkUgk+Hf\/7t\/xkY98hJqamqLnO3r0KI8\/\/jinTp0iHA7z5S9\/mfPnz9PV1cWhQ4eqvj\/YZuLp6+vD4XBw8uRJrl4tXpOoFKnI+sVzqi\/J7tbq0nayb7Rs1FATmkXuP7zOxtoUDjzjUxvyAoqoAZw9125ee3oc89hxlFTpDjTpcGMsxhHx6tJzsm4X6SujSN0g3FhHbby66ERvPozee6P48OjKCtLrxfR7UCKVzT\/NxzQWY06EqVDvNjlSk+bigoouVTqC4M\/zva9HMv3Z\/8XCxx9A1\/V1lgc7dX4mG5XcYykX1uvXr2\/IhXWnEE816cNCabnV1Wnq1WHk3BLElhBKlvaaUDFVPxgqMp5EhJeJ9c3iDToR+sY6Xl+4WgMsA2BU8DWvVDInn3huh+115p7Saf7JP\/knmKbJH\/\/xH5c835kzZzhz5kzmv8+fP8\/dd9\/NV7\/6Vb7yla9UfX+wzcRz8uTJzE5uM4zgUpH1+dobzy1zz9ubKj6HafpRBsqbG2lSx1xRUWvzOnCiGiKyXPH1LEgE5nRkHWHJ69eJdTThFYVJRQoF0\/AjNjAYmppNQyqNAHzLUeTuFkSovMW1VFX04P61zrcycMdi0NhEEoGMrFf0TugKoZgLU3NBIkXAIdntksAbz4MK9zUm6F7yEE86uZFMogqDg14Vl7q2YDZEYyS\/NcZd\/\/59LC4usrCwwODgIC6XKzNfsx2WB5Vgoym+zXBh3QnEc6tddV7nMnW+YWQ0hZKOY6gBIgkdIxxBCy\/jTYTJjgNj8Rb0128QO9yKb1ciR76qEhhOH3\/zVze7RdNm+b+fHi\/fpSelXCcSutE5nnK21+l0mg996EMMDw\/zox\/9qGS0UwiKonDfffeVtMouh239Jlpt1JthBAeFiWfylVUMsxm1gJlbQVyrYgEfHkQ\/tQdNW\/vimFojynDp7pBiSHpa8CytT88JQ8ecjWLuVguazpn+NrjWW9W1JIK01gQLozevk0phhGKo\/tqSxCm9QVJpP7K\/crtvFuZxNbeQNE3MeIpVX4ClcR1Vgl8z8QnASEKRwNSpwh31cXqWBa1vFNbmkiYhM0VASbHf68Z5bYgbf\/I8pz757oyaQL4LZ7GIYLujolu9fjEXVsv4rZgL604gnlsZIHXI6zgig5irKsq1aygrCygUfYyYSwRwPL\/WKapfnyJedxCvWrlTL8D11b2kUzeJJ5Uqv66k4+UjHmvjnR\/xVOvFUwjZttcW6QwMDPDjH\/+YhoaGDZ3v8uXLnDp1asP3tCO2gJqmZRj\/Vrp28ms8AFKH5SUHDQ3lu1dM048yVLmVq5KOE19S0ZpMpOZD9FYn4Jm5R5cfca24moA7GsZUjqIYuf32lXaw5SPV0Ak9BYhjNYzhakJ1ehCp9amxdLAFYzYOqxuYLVpYQDl4kpXeWeR0lNoqnzynAqdqY1yJevEaDjyqQpvqBtxci8RJmCmO\/fB1buxtYP+j96Kqak5KJhaLZTqlhoeH0TQtEw1tZ2PB7bh29rCiJXBayIXVWtTedMQjdVyyG2V1HnNeR+2+UFbD0PA2ov1kNOdnqZcHSZzdS72orPtSCsFf\/XXu7EoirlNuylBP6EhTIpTin7P5Rro6v8ZT7XBtKdtrXdd59NFHef311\/nOd76DYRjMzKxlOLKj4nzb689+9rOcOXOGQ4cOEQ6H+cpXvsLly5f5oz\/6o6ruLRs7gnisD9swjFsinpUiHVTT\/SkazlVwgqtV7OLfgHtmCtnYhpyLoKQ3NlBl6H6UZJk6zvV+jBMHURNrszFmbWtVHWwWEnWt0DNU\/HUL85h79qLoUzlpiEV3M97hRcQGUqKmP0hKqUV\/\/Rre5kZWExpKBemHfDgVuCMQ4+KCSp12MwXR5PAAHsIxyfKfPYfaVEPHzxzOeW1+RGAVqIeHh4lGo9y4cYNoNLot2mq3+1qFXFhDoRDz82sL7oULF8pqqt0uVC0Sqq\/i0a4gQ1HkxBLq4JWy9VTpcBN5KYRIr392xYVxls7vok6Wb4BZcrYzMpS7gY3FUmWJB0BPpHF4ix+p63qmvR7ICNFWG\/GUsr0eGRnh29\/+NgCnT5\/Oed2Pf\/xjfvZnfxZYb3u9vLzMxz72MWZmZggGg9x11108++yz3H9\/9UOSnZ2dfOITn9j+AVK4STy6rm9ofseyvx68VrjmMPTcCifPlc5jmoYfZbjyaMeCiIcxQvvRZqonLQCzZjfyYvkOOIHEHJ1DtLoQbi\/m0HjVHWwpdwB9YKZoKsKCnBjHPHAAZW4IFAW97iC+vo2JgJq72kjMJTFX3qgdzS7gqPGRTCpoG1C01oB763VeXYpQp+bmvxUhUBIprv\/uU8DP0fEzhTtusg3eDh48yCuvvEJNTQ2RSITx8XGEELfdAM7CVkdb2S6sjY2NvPLKKxw6dIhQKMTg4GDGgXSrXFirEQlVk2M4nRNwYxJWUmg3yqeYJYLolBdzdq7g7wVgvhYifa4BR2K90kc2fnjRA3n2CJFwmtoK7j0dL008+fUd2FhXWynb687Ozoqet3zb6\/\/8n\/8z\/\/k\/\/+eq7qMcdkTEI4S4Jfvrq1evEgqFaK5vZo71kcPIc4vI36xHUGKXfWVjhTIpBLEXxvAfUFGo7v6loqKPhSqfu4msYOhHEAtLiHh11tuGohEPSdypyiINOTSEcfQYxmIEuUHSMdoPE++bhHTuNd3hKMLnJrIM7iq7n9MmjMYkmkgzHA8TUL005g3xqabJ9d\/9GyQ\/R2cR8smGRUS7du3KGMCFQqGMAVz2EGdNTc2mT\/pvV6rLijbyNdWKubAWUlS+VVSUapMSR+wSqieOuNyNNHxoo6VFdy0klT2kL5fumFUSOtHeJMEjbkSRrEVEePi7by+T74cdXo5DBUFJOpaGEuWU\/I422HhX25sBO4J4YGP216urq1y+fBm32825c+e4eOmFgseZaUks6sXnKxxOm4YfZXSjEUsbxguDJFqP4fWUV6rNea2vrSo3UQA9AtKsxUV1qgARtQH3cuW1GYkgMZVC9QWqFvSTQkHfc4RkT\/G6lUtPYLhU4kmtJPmYEmbiglBSRUGhyQW7HGv\/Dnklr60kGDN9RGIR9nm8eN748qqmycDnnwLeVxH5ZMvHWAZw+\/fvz6mP9PT0YJpmTjR0K7Ih2dfdDhTqKCvkwppNwpvtwlo21WYmcUVfRnHoiEu9mGkv2mRlpJP27ib+VIVjGjPLxBr34g2mCtaLri3uQbJe6NfUJZrXiR4r3Zpdbog0n3gMwyAej9vq1Lcb1UY8k5OT9Pb20tnZycGDBxFCFOxqszA7aLD\/zvU\/l4DoqexBLoTUG663yctjuM+6K1bDlu4ajO6+qmo0MlBL4vVhEArqqWa0aGVaaNHavbh7R8sfmIV06zGMniEMwHniCMpIZZ+RdHtI+lrRr5S3XvA6DISQRBJOvOrNBXg5qbCY1DClQq0b\/KqJv0CNVRGC+2pVrpspAnoNq7pkMBahqcZNk6GiYjDw+acQvK9o2q0c8usj1hS9NcRpKU03NDRseIB1OyOeUtcuRMLZLqzZc1P19fUbsmkulWpTknO44pcRIg1XhpEJB9psZRtE01VD9MfViX+mr4yTfOgwbiP3dVLR+OZfF19bZAXVgXKdbfnEE4mskdxmdLXtJFjdlDuixgOVE49hGPT29jI3N8ddd92VSRHATRO4Qhh8LsT+O9enCaTuRxnbmD6ZqblJXhxZ+49IlMRqO95AZVFPKu6sWi0grTaCPgwYxMdNfE2uogKImdfUtqD1jVd1HaN5H6ks4kj1DpPc20JwsfSMj1m\/i0RExbxReYuqRzNRPCkmVzzoUgNTEnBImlwAldWADismV9QFVL2edncQUjCejmE4JXvw0v+7f0Opmk+lyJ+it6TtFxcXuXbtGul0+k01wFrtDE2lLqzWv0qaFIql2rTlKzjNYZAG5ngMozeMmJ7FcLvA5QSHExwOcGhr\/1QVoSqgKkhFJT4UR4arN21MPHcd5V1HcEZubtRmlQ7mZ4qntr1BP6srpYevy6kX5DdWRaNrc3tvtYinqamJ6enpnRPxVJJqi0QiXL58GU3TOH\/+\/Lo0R6mIp\/\/paR759QOIrDqMBETXBpWYgYTWCOnlzH8nLw\/jeqgGldLdbSlvM8ql6qIs2bCb5Os3CVLOL5Jo2IeX4jvAhOZCTISrsqU2\/UES4ytrZvKZi0mc4yFW97YQKEI+xp79JIYWkInqRBd1A+YibupcBosJFZ9jY6mnk34vN+JLrCSDuBUndQ4vSIinJbqi8tK\/\/y7y\/\/nf6Xz44IbOXwj5StPZC3GlA6w7LdVWKUq5sN64cYOrV69W5MK6LtVmGrhmfojqiiENDbMvhOy6jrL6hmZhVIdocYUOqahMxQ6Sjgoaix5VGrEfDqC8sx1tde1Z\/18\/KR3Fap7yIc\/o4Aiu\/d6iiuOFVAtcLteOHHq+Fbz97W\/n8ccf3znEUy7imZ6e5sqVK7S3t3Po0KGCuyTLBK4Q9KRJPObD671Z55FpP8pkdSmobKSG82pGiQTx5U78tcX9LUyhkhyYpNrKQHLVSX7XqN43TPLew7hW19snSFUlFnHgC1eukyaFSpJ65Or6+xdSok6E0Pe3o03npiL0jmMkeoZzyaoCxNMKS3E3tc61v3uTJ8mc6cO\/QSmT\/R4PM8oqEzEvPnVNQFMgcJgmmCYXf+cpov\/6nZz4udyc62Y5cOYvxDt9gHUzvXg24sIqpcy5BxFbwD3\/I0TQhxnSkdcnkN0DJT2cct4Pgjl5mIXX14wUg+cP4xjdgLWIYRK9MEfgvhpSuHnhJ2HymwpyoJVPr8qUXKc4bjmxKopSMNVWiezRmw2f+tSnuHHjxs5JtRWLeEzTpK+vj6mpqYwvRTGUingA5oYMOt8Ytl2LdjauDxfTAjC8vkUzfXkI422NqLLwriyU8hGMLFZ1LbO5k\/TLhdNlycsjqHesr\/cYtZ34xqvr1EvvPoxRoiFAMSX66AJqZztiagzpcJJu6CTVXZmVds616uuJjMcJZPkaKQJa1CgjMQf1jrUaTqXQTclYIslS2kRTY4waSVy6RovrZqpCQ9L3Bz9geXSZ8x\/\/marvuRoUG2BdXFzMGWBNp9ObZnxWLaqeoakChVxYQ6FQjgur5cYppcQx8yqOxHVksA76bmAuCET3tapqoCH3MWZ+dLPpZvLSCp2dNVDF5suCDMeIDPq4JBqwdNmKHlvBZ1hfU8+JB+7MKI6HQqFMs0pdXV2GgK3\/tYjnrYaamhqefPLJneFACoUjnlgsxksvvcTy8jLnzp0rSTqQawJXCIPPL2f+v0z7EFPV1T5y7i1apK00nSY+X3hmKKF6qRmvbupfCoXEeIlcta4THoyTztpDmC0HMXqqIx2jZT+pKxXUutJpkmMhzPYDJJzNpPqrjxiX6+uJzSZwF5Ex6gykCRuypA6WKWEyrtMd1rm6arKU1mhyBDjsDXLA4+eMz43LZ3IjFqE3usiqvvZsKMDsNy\/yvz7511ua5rKGV++8804efvhhjh8\/jsPhIJ1Oc\/XqVV577TWGh4cJh8Nbdl9b5T5qubDu27dvnQsrmND9dZT4daTTBVcH0EcTiO7qNoUrNceZ+FFup6cR01lSd2\/4vtPLOs+8Uj6NVklLlNXVZimOnzhxggcffJC7776bYDBIJBJhYWGBF198kX\/xL\/4FP\/rRjwgGg1X9fUq5j8La3\/szn\/kMra2teDwefvZnf7YiceZvfvObHD9+HJfLxfHjx\/nWt75V8T0Vw7YTT\/YQafbOb25ujhdffJHa2lrOnDlTkXREIXXqbFz7uykkKhKBuLQxeRtYyyOL6wtFf5\/uHkRnPfmoKQ8iXV0ayWw5gDFV\/FoAWjhC0ty7dm\/1LaRLRC0FrxGoIzEcqjhVJqVkZU7FEFWqfiNY2rUbZTKKopf+uu7x6ejCJFvgYCEJ\/WGF\/rBGSHdSo3nY5\/HQ7nbhztt1qkJwyuGi0RVjl6MGQ7qYECmiqoaUkHztBn\/184+jJ29arm8VrNmYgwcP4na7OX78OLt3787UMJ9\/\/nmuXr3K9PQ0qQ3aVVSCrSKefFi1scOtQd7pH6ChyYHq8aD3TxC5PI0Yqu75jdYfYeT7hQdEQz0L6O0HNnSffxtqwazE6K0CiepCXW3WMG9HRweNjY3s2bOHzs5OhBD85V\/+JVevXuWBBx7g05\/+NM899xzpMmuH5T766quv8uqrr\/L2t7+d973vfRly+dKXvsQf\/MEf8Id\/+IdcvHiRlpYWHnnkEVat+lkBXLhwgQ9\/+MP8wi\/8Al1dXfzCL\/wCH\/rQh3j55Y17GcEOIB4LmqZhGEYmtdbd3c2JEyc4fvx4RekA0zDLyo\/rcYNE3IdMeREz1c3c5Fwr0Ia6WqKBwDCITedWcczgHhisblZIOl0krhX+Qq27p4FREjXHSE3F1g1slryGopLUa5CxyjuA0rv3kxqZITYehva9lV3H4SBU14Q2WvnAbJPbICVNBsMaU3EHLsVBq0el1SNwVWg7cdwfpNUTJWauEky7MZMmEamyaGqkZ8P85c\/9CcnwxlwoNwsul4vW1lZOnTrFgw8+yKlTp\/B4PExMTPD8889z8eJFhoaGWF5ezmh6bQa2i3gAHMMvEBz6G9z1HmRtPen+VaI\/XIB4kFhtJ9GaZtJFTACzkWg8yOB3FilVg5m6GoMqNc+izXv5n99fQFbw8VQmFFq+q83hcNDW1sbXvvY1fuM3foMHHniAX\/u1X2N4eJhHH32UsbHS7eH\/8B\/+Q\/7BP\/gHHD58mMOHD\/P5z38ev9\/PSy+9hJSSxx57jN\/+7d\/mAx\/4ACdPnuSJJ54gFovxF3\/xF0XP+dhjj\/HII4\/wqU99iqNHj\/KpT32Kd7zjHTz22GNl33Mp7Kjmgmg0yiuvvIJhGJw9e7aqHGepVupszA4ZtK1cviXGTc2VX9j1q0Os1jURcCeQqhP9+mTVump6XSfm9cpVA2ILAocI4iyTk85GuvkIxpXKCdHsPEi8Zy29JpMpYsMhfPs7kKPFU25GIMBKWsM5VVqSJB+TUQcuRdDh15kx3VBAnbsS7HJ6CGoGr4VnqVObEabEiURPgqHD5f\/nIv5\/H9xUa99KkR9pbeUA67YQTzKK+9KTqI4oZk0tKU8N5t+NkvzxNUBgzN18RhJIEvW1yCY\/psNAMWL4khHUNzQEE3Xt9H93hZKFfyC9kiJ8oJ2aWF9l9ygEf\/yKE0iSrKD+lkhUIBRa5QBpNBqlvr6eX\/zFX+QXf\/EXqxZTzXcfHR4eZmZmhne9612ZY1wuFz\/zMz\/Diy++yK\/8yq8UPM+FCxf45Cc\/mfOzd7\/73W9+4rEKaolEgrm5Odra2jh27FjVg3jlGgssXHlqmM5TlQ1eFoJ0+Ui+PFL2OCElcs4H7QkMVzNiuae66\/hqSHRVMQBXX8dK1ySK103j3nq0SKjsS\/TWg6QKqVQXQTpQQ3wwN+0nUzqRwXl8R\/bDjfUpkmRjI\/GFBI4qJX5urLhocEnesNxhr5JgKCKocyg4NlAQn08l8CoGSc8ys6EUra5GNEVBNQz8wKu\/9TTR\/2OVs\/\/8TNlzbTZKLf63c4C1Gp20zYA28hrO4R8h6vyY7lpMXKz86Ws4x5cpTB4CQquI0GrGUyeqCGRTA+FggNAPY5UVWID51+fwnelAnShfkxzfdZhXvrM2lxOtYF2JRcsLhVYS8ZQygauUdIq5j7744osANDc35xzf3NzMaIlN48zMTMHXWKrWG8W2E4+UkoGBASYnJ\/F6vZw8eXJD56mUeEbGBcY9ftTUevmLSqA7msGorCvN6B8muf8koutq1dFO2tUCicpJIeXfBfoEZjjG0kojDa4oil78MzFrGkgMVi67YwqFqOFDxJfX\/1I3iF6bxnf8IAzdjNBWW3Yjx5ZRjcrTQ4YJs2aAXe71937AL5lLGMTTUOMo\/UVcSKWYSaVQVI064aBOC1L3xtPeFFS5sjJHUqp01LagJQw0RXL9v73I6AsjfPCPH8Xh2pqvRjW1pWoHWMvVRbcs4tHTuF98AoUwBP2YQsWQbla\/9grOCr+3FoQpSTkbeP37afad7kD2jVT6SqYHDfYEXZAsoULg9vD7377Zkbq8FC9LKtFwqqxQaLqMpE6hduqNDI8Wcx+1kP\/3ruQZ2MhrymHbazyXL19mZmaGgwcP3tKwVKXE4w0EmdLbNnydRImmgkJYHtGqdjmUtU0kL1deYBVNjax236xZpScWWHEdolhTmNQcJJM+iFdu47C6aw9idrn4AaZJtHcCDh5CCoWlpt0wHEJUQTopQzAfd1NTQo1hlxvqXQaz8dzPNKwbXI+mGDJgPG7gUbzsc9fS4fBTk1crqFXdPFjfQKMzTSKaICYEK4YgKQWpa1M88d7\/l6neW9vRVYONfomtIv2xY8c4d+4c9957L3V1dSwsLPDyyy9z4cIF+vv7WVhYKNiyvRXEo0z34X36P6IYy+BQwe8lnfAR+fLziCpJB2B171Ge+2ESU5eMXllCra9cUia5ECdSv7\/kMa9o+5heuJm2X1woXnjP3NNK+e+Rnqg+1baRdmrLffTee+\/l937v97jzzjv58pe\/nEkj50cqc3Nz6yKabLS0tFT9mkqw7cRz4MABzp49SyAQuCX760ImcIVgmPDCqxv7spmBZoyRyor9AGgaUy\/OEnIfL39sFpIpP0VZowASzvp1x8d7x5l2dRQ8PtVwEGOq8nSjbN+HHKogOjIlkZ5xppr2oI2VT\/VlI5JSCSed+LXyROVR4WCNyXBUpz8pGY1JhHTS5vLSIjXqHZUpKN8ZaKLFHSMhl3AC0oQVXZBMSZ7651\/n+T+5UNV72Ag2q5vOGmBtb2\/nrrvu4uGHH+bQoUMIIRgYGOC5557j0qVLjI6OEolE1g1vbjoMHeez\/wPPK38BLgEeF+xpJjqhEn16GjaQLl3YfYKXfxjFSsvpCZ1ITXUOmrMXZ0nvKlzL0+sb+fI3czeW6aSBr7Z0HU1PSxze0h2e5SKefFuEWCy2KXI5lvvovn37aGlp4Qc\/+EHmd6lUimeeeYZz54qblZ09ezbnNQBPP\/10yddUgm1PtQWDwQzb3wrxVNpckNRNLj69wofO+FBSxaU3Cl4j7qnqeLOtHWNkhenLcWqOu9DM8uSYrG0hfbny2o5oaSZypUiH3sAyq6f3E1i6GT3prYeqareWgRoiY2FEhevjcks96vUlxB2HMK8PlXWGBAglHAgpcKuVL8I3VgV7vSpxRSUUTVc1bJqNRqeXeoekNz2HSDfgRIW0jgQu\/pcL3Lgwyof+8P24fZtrB5CN27H4VzLA6na7MU2TdDq9IR+sYlD6X8PV9bcoLhNZX4fh8qHuCbL0wjKhJ0cAEO4Azo5aTDNKTSRcMv2FqjIRPEbfM+ubU6avzHHkdBvpwUq7VAXjI5JOv4KS1yH4lxONpPX1GyZvnYfocumoxuFzlSSXciKhuq7fcsRTyn1UCMEnPvEJvvCFL3Do0CEOHTrEF77wBbxeLx\/5yEcy58h3H\/34xz\/Oww8\/zBe\/+EXe97738dRTT\/H3f\/\/3PP989d5l2dh24rGwEVuEbKRKyOVkIxHXMXSYMdtopXI5DaloJC9XNywZTbiBFfRQhDnzOK1cKn0NIDlnVFUPihMAWbheJYDV3hXcx1pxLE9h1jYR75+u+PwSQcLdiDlV2dBrrDaAOrFG5qvdo3iPdKy1rSeKf+mWlBo0ElVtgPvCCns8CkIInJj4vQrXozFanG40UdmJ0tJkLL5MxNDxq272u+pYlVHGDB2n2oiaMPBqgnjvNH\/63v\/KfR9\/mPs+eEflN1khtmp+qJAD68jICNFolOeff74iXbWyiK7i+u7\/i2osIfwuTG8thuFCa60h3BPLkA6ATKRJ9q9F0YuaE++BNpx+BXV+BiJZz7PLxYA4yOhLxToiBROTKVqcGrJSr6mQTvTgQQJTN7\/\/k4FG\/vq7haN0l7+8EaBWwuQNyne15Uc8GzGBK+U+CvAbv\/EbxONxfvVXf5WlpSUeeOABnn766RwF7Hz30XPnzvGNb3yD3\/md3+HTn\/40Bw4c4Mknn+SBBx6o6t7yse3Ekz1AeksRT4Wptujq2iL40mWND1TRx2AE2pDhKoQ9HQ4Wr918kBdemab+oV24k8VTdauBFkRP5QV\/0dZGtKcMKaR0QhNeGprriC4J1FTlA6zG\/qOkukYqO9ahgXRDVn0m1j+Ja28jTtcqciU3Vy4VBXFwP46esXLdsBnoUjC0qrDXu35Y9JjfyWwyxXJa0OhcH50YUjKdjLCsp3AqDlqcAdrcuTKSQYeXUw6YTS8RddewHJE4vSpaLMVrX\/ohXU9e4sN\/\/CiBxs2VMtnqlmZrgDUSieBwODIOpJaumuXA2tDQQH19fUUOrNqLf4vjyrNQ5wO3A93hwxQaamc9kWGd+f9WYpOnm8T6Z1nre5S497XjbnAj4qtcnQgyO1Ra8iY6H0Pe2w59lUfyc68u4j\/djJibRSqC\/3bRBxSeZRPO8psZ1V16KS3V1Sal3JTmglLuo7D2nH3mM5\/hM5\/5TNFj8t1HAR599FEeffTRqu6lHLadeCyoqoppmlX3q1tIrFY2ABleWVsYf\/C9Zd5\/lweRrux1qanqJsjN1r0Ywzd3aVI3mJrdzf7awsQjVQ1jNFLVHySWrGyGw1gMM1zbRtPKSMXnlm17ifZU0c7d0YF+db0EUXJ8AaM+gLelCXNmjVR1p4Zs2k2yivNHdUFEuNnjLb6rbXZpGE7J9WiM3U43S+k083oKgWCX00ujM0hjBS7WzQ4fYLDcqDKzpGMIhUjSxDG2xH97759w9KN38O5\/9bZN0TnbCerU+bpqlvnb+Pg4vb29JR1YxfQozqefQIkvQcADGqS9daguE7G7gURIMPuVq+sEbotDkBheJCb3cnGkAV+Fyg3Dl+Y4tK8Ofaa0PUEGJswt+tglBFe9e7kyVHwdCC0vlz9fGaHQUmk4q952O2o8OxU7hnisjrZ8X4pKEI1GGR+qYBETb1jVAqmkZE7soZnymmbSEyB5YaSqFFjkjTRbNlZ7p1l5x2GC8fW7v7C3GS1cRSfV3nZiXZUdr3tdxPpWWDxwhF3LfYgy0+\/S6yU6m6zYTkEc2kf0SnHdOz20SiTuJLBvLzISJRpOo96ovLkhlFTQpYpfK59KUYVgl1Nh2WEQTujscwcrvk4+ag0DTxAmwhLcGkKXSOD1P7tE13eucfaTpzlwZ2fGe2ej2Enq1OUGWKWU1NXV0eR1s\/vC3+EOD65N9zfVomsuDM2Jy2+Sqm8Fh4\/p\/3SxCtIBHBqLbQd46fkQIPDd2QLh8v5O0pAsK378VEg8QGR0BXl6H1\/9m9KbT83holg0lLl+mTXLSOqYhomirj\/OyvRsRlfbmwXbTjzZqTa4KR1RKWZnZ+np6UEzy78Vp9+FGbpZJHy5x8E\/OlL+GisJL6KananTSehq4VmfqSsm\/oMaqry5iKY1J1yvTrE6Gq6cnNNNTbAQItI3g+POk9RPl7bbTgbbMK5XZuYm6oOs3ijfYm7GU0RCKZTdu1EnKhcwnYppeDWBr8K5yPF4Go+q0WKqtPg8DMaXceKizlEZMejSZDweImqk8asedrtrafeBgc6y18X4QhKPx4FjOc1r\/89Feo4NcOjDbQQba3K8d26X6vNmohJ16nUDrEshtKe+TmD6Os46BUNREY0BYnENz14XTjdElCaE00v3v+pCcXqoPbQXp57AGC1uFwIgmht4fbGGqeeXsPKvo13THD7VTGSg\/EZl7nqI2nva0fsrjKQVwV\/dgNBK6RR\/PFG+BBAr1RzxBvSEjtO3PuS2iMf6W1jeTm8199Fs7JhvhxBinVBoKZimSX9\/Pz09PZw8eRK3Wr7ryBXITU09\/d0wsgI9qHR\/lTYGre0YicLvIzW7woKaW1yKOnehJKsQD+3cR2K4slqQ6XMTHboZeS11TbCyt3iR3DhwlGSFpCMVhaSrBjNW\/ksnFYWU00Po1RHCu+rAXX5zMRJxEHAIysyKZnA9mqJWc+LP2jke9PjZ7VIZS4ZImIX\/JjPJMFcjswxEF0kYJnvcTRzxtdLmrkN5YwFUgQYjyR114DfT6A6VlaRJ+OoyPf++l6G\/niGVSHPt2jWeffZZurq6mJiYIB4vs1PeRr20qq4tJeIH36b+j3+XmsVRnHUKuuJG1voJz4Cv04vDI1gVjait9fR8shtMiZnQCfXMMHNtmRVPExw5gNJUt+708YMH+X63g6mR\/E5TwcxcAsVZ2c5jbDCK4q2sA\/Hanmb+6sIQilL6M1gOle9+jZdooLGgF+lss+o72X8LO+LZQlTaYJBIJOjq6iKdTmc03SrpasvvPInHDBbVPTTqxRUCos46HAvVWRlEoqUX1blX5qi5N4DHXEX31aD2VzEbJASRhcqbMFKNTcj5XOJceG0C7b4T+EZzJdFl824iVyq3rRZHDpK4PFLRsY7j+1i6tLYTFZMRErtq8NaCObOe1A0TlhUvTe7KyfhaJMU+T+Gal0NROOGrYVVPM68lcSRU5lIxTAmNDh8NjiANjspScgrQ5gUpkyzVO5he0UmlVIZ\/PMqN58Y490v3cf9H7iEUCjE3N8fAwAAejydTqK+tra1aDup2oVLika9cQP3hU6jJMKbbjcufJi5qMFWBWNXxH6pHdQoiogHn\/mYuf+wiUl+fIUgtRplfjAISX8ceHD4TlsOMq7u59pPiOn7h2Si77m0lViKdayGxkiB9dxvq9dKNBuEDrXzxby4DUNvsJTRdnFxC8xF8Hh+yxGydw+nFpHQTRCqWppCWRKHygl3juc2oxAwuG6FQiK6uLhoaGrjnnnsytaFK5nhEARmUV6+5eE+JYWY1XUOaKojH5WKxt\/TwpJlIMzDZyB27VzHVJtBHKj9\/536Sr1VW2zH9HlYHC+e8Z16bofWuI3jG1zr1pMtNLMyaF3UFEO1trHRX1l6udbSw1JW7aKTnwiw7FJSWIP6Zm4tOyhCspB14tcpIJ2VIJmKCfd7yjRYBzcGSSIFMoyBpd9ehiupIYC4ZJiyTNHmb8abTHKkRrKR1FpKQwsmFP77AS\/\/zdX72V89x7sN3ZZxIFxcX6evry8jaWGm5ndBcUOx35g+fgRf\/HpcRAgFJXy3+QIzQqgfpkNTvShMPNOOqlcRcTbiO7aHn\/3wZM1HuPQlikyuE23ZxddaJY6W8fNXQpRn2d9YSn1wue+zopRmOHG0iPV44KyDbGvjN7920RfHWOUsSj2lKAg1ewvPFj6lEKPSVF16mNbwnI\/JqCbzmd7Sl02mSyaRNPFuFUhGPlJKRkREGBwc5cuQIe\/fuzfnSVKRcUKDz5PvfCfPuTzoQxvqFTqoOEq9VN7tj7N6LOVS+wCmHI4RP3Il4vQpfIEVhdapymZt4XR3MLRf+pSmZ7g7Rdnwfrulh0rs60HsrzI173URDiYrUFYTHSXQlXfBYkTaR4zEWHF7qzBgJUyFpaHi1yhbjiC5ZSiq0esvv2g1T0h+PcMgTBBe0uHyE0nHGEzHaXA04ihBQzEgxmVxCdTrwGQ4anDXUr51wzTIVCDoEQQcYMkXY52BiMcrf\/Ycf89zXLnD8fz\/GP\/jEwzQ1NWVy94uLi5loSErJ6Ogozc3NWx4NFSIeU9cxvvW38NIFVI\/EpUUxEUQVD\/WBGPPLXrx1An+tzmIsSOMBSby2BdfRvYz8+QTphAMovQkMNwfpHhWsXFgjnEP37mb5Sun6jzQkqzgrW7CkYC7moE4R6547EfTy7y9PEU\/e3OCq7vK5XE+tuyTxVCIUur99H6rPmePCWl9fj6ZpORFP5I05JrvGs0UoVuNJp9NcvnyZ0dFR7rvvPtrb29d9YSqZ4yk0mrkaNlhy7Cl8vL8NYpUv9ACRSOWNEWMTAQy1ionxfQdITS9XdKhSFyA2VDx9ASDTBlPX4yQO30m8UtIBjJZW9MXyGlawFhml5kunIFzpNNMJF5G0A1eF6gULCUlMV2hylyedhGkwlIitkU4W6h0eTvkb0ESSWbFMwkhhSJPJxDIDiXlGEyFUobHP00y7Wk+Ds\/RCoApB0EhzoMFBk6rjicXo\/+vLfPbMV\/gfv\/kdoitx\/H4\/HR0d3H333Tz00EPATXv35557ruLa0GYgW53aiEZJ\/dn\/xPi\/fhPxkx9iONZIR5cqCZeH2sY088teGvZK\/LUmS6se6o86SbfswXWig8lvj3L18VFm59PIfXtwHW6DvA4utaOZa\/42nrtkshK6ucEceHUKV2v5esbcUIjAycLf1Xwsja6gHunM\/aGm8j8iBjdmcr8XKaN8tsRZRhLHmg8sBZfqKujCOjExQSwW4\/Lly\/z5n\/85Fy9eBKiqxvN7v\/d73HfffQQCAXbt2sXP\/dzP0d+fO3cohCj47\/d\/\/\/eLnvfxxx8v+JpEorp1MR87KuKxzOCysbq6yqVLl\/B6vZw7d67oMFs522sAvYhT4Cu9joLptmQpy+lCcLsI9VbWiCA0lZFLcxh3nGb\/4sXyL9A0VkYqW+wBzOYWmCwvIyINyUBfiraWFtQKpM7FkQNEuyuzDHcc7STUU0ErrKaiaS6MRIrFpEKdQy+pZDBnaLgUA5dannSimCym0uxzFyeNGs1FDS66YjOYUuBTfexzNpU9t4XldIRV0tT5mnDEdTyYtHmtyMXE0GDxR7187Yd9BI+08LMff4jD93egaRpCCA4cOIDb7V4XDd3u2pCUEnVgnOWv\/x3e2QFUqaObkHQ5aHBHSaRVzBonQhUsJevZtW9tsYnGHQQO+THb2lD3txG9vsjlxyast8ti31rN0hn0U3+kDpFIMRx30XVhgWL2ByurEo9DQaZLt\/AP9y7SWusltVzeZmPk6hKddT6MlbVI5ZXGen7wg\/VWzyuR8qk+tNLP2upyAspkxrJneSyB1127djE5Ocn09DQNDQ18+9vf5plnnsHtdvOxj32M97znPbzzne+koaG0Jt0zzzzDr\/3ar3Hfffeh6zq\/\/du\/zbve9S56e3szBDY9nVsy+N73vscv\/\/Iv88EPfrDkuWtqataR2K34QMEOIJ7syCU\/1TY5OUlvby\/79u3jwIEDRfPR6XgKWYH9bDJVOI33ve+u8u5\/pSKyjMakt5b0hSoGKAGjpR1zsDJxTMe+3aQvLXHj5Vka7++kJjRS8njZcQD9YmWFf6WuhrmeyupAysG9xC5NMBJw07GnBW26+OtSQR\/J\/grP2xBkpYI2awDnoT3EeiZRAKcC8UANWiyGS66PfidiCvUuE6UC0plNpnE7nex2lrYHMKSkL7bICf9N8ciJRIgoJnUigCevYzJtGkwlQsSMFM3+Ouq0AEGApJFJv2VDBXa5VQKGSfj6JC\/8X9\/kOVXBu7sWdZ9G9GAEz14Pfr8\/ExHpul6yNrTRuaH4XJi5v3sNcamX4PwkqlPic62iiLX6mvQpNASSRFMaosZBPCzweA1qO9ZIRzdUlLZ61I5G5N5WjHCc5z5ZwGBNEdBcz2uTkpGJNH5Fp5RExep8nN33t7LUXXqzlIqlMQ\/uggqIJx1LEz\/YhHMlyvyBVv74jWaCfEzPhgiyvtMuG3qZmTY9LdE8zpLSOMW62kzTxOl0snfvXv7qr\/6KF198kY9+9KM0NjbyhS98gY985CN897vf5T3veU\/Rc3\/\/+9\/P+e8\/+7M\/Y9euXbz22ms8\/PDDAOuMDp966ine9ra3sX9\/acVuIcSmmyRuO\/HATTM4K9VmGAZ9fX3MzMxw+vRpmppK7z6TFeq0xWKFGxciKxD27CUYG8n8LE09yOqk8VdXK\/844+KNxcyU9I75uS\/oQC1QZwLA6SRcIaEBmLuakRVEOzg0lkbW6lHp1QTDY052NdQQDK9PjUlVJWY4UZLlW0ulUNC9AYyZ8rMXRmst0Z7cezWXY+guDc\/BZvTrkyhiraQyHVdpdFeWihuJpWh0OnGV8S5OmQbDiTBHvLnyOXveGDzVMRmMTKGbgrgp8Thc7NKCtHt2lb0HU0oSmspqLI1bgaBTwaupgLn2hiYWYAKefe4JpFNDrQ8Q2FNHYE8Q764aajrqaTu4m8OHDxOLxSqKhqSUJBaihIcXiEyESMytoE+EiA1N40qsEBQR6twpVAVWTJVd7rUFPIGGs1HBqyUIJ52kVAcBI0V90CRZU4PmMJESVhx1NBxvIeUMoAl47XeH0CM3F2VHnY9EcwOvX1lh8ZmbG4+Gk80kytgHXH9lkkMnG1keLL1hGeueZd+xepLD5b8TE91zND+wn9\/+y1eKHhOPJWhv9LGyUPzZjpexNQBwBlwliScdL7z+5DcX6LqO3+\/nS1\/6Er\/\/+7\/P9PR01fWelZW1dGJ9fX3B38\/OzvLd736XJ554ouy5IpEIHR0dGIbB6dOn+dznPsddd91V1f3kY0cQjwVN00gkErz88ssIITh37lxFO7tqddoKoWvIx8O71\/6\/RJC4Ul0LNR4Pod7KdvhCU5m+fvNLE5laYaT9NAdChVNu5t591UU7Fd67eqid1KWb5zWiKWalE1\/HbrS8sDzdsQflWmXndRzfx1IFCtvC7yaxWPhvZyZ1Vnpn8R\/YjaYnUF1uGgcrUzu4Hk3S7najlmkVDutJQukkBzzFd7saCgHVhdflwqlojMeXibpipGIqNY71uZWVdJT59DIul5NGEcBnuvAVKV4bElalSSJlEtBNguklYrNLxF67eYxEkjIVhFPF5VTQnCqmbhIxTOZME0MVKEjcQqKZEpnWMU2JKiROYaBpJm5Vpzlg0OBbW\/illKxKlba6NdJZ1TV89QZeLcVCzI0j6KTZvZZ+WjCDNNetEcu8Xs+un91LKq3g2F1Hzx9dZ+DFME3HWhFOB5NLOq+\/Po9ZwMto5Mosxx\/Yw\/SlUhsiwfxCAo9bQy8yB2cdNzUVp8GhQJnUHIca+K8jE6TK+ELVNZcmntXV8jUNzVO6vaCYQnUxLx4rw7N79+6y186GlJJ\/\/a\/\/NQ8++GBRY80nnniCQCDABz7wgZLnOnr0KI8\/\/jinTp0iHA7z5S9\/mfPnz9PV1cWhQ4equq9s7CjiSSaTzM\/PZ+yvK53+rpR4wiV2XP\/rO6s89DEFIU3MYCvmTOXunwBG817kQGX1HUdnC6nLyzk\/G35llrp79lC\/kkcwbjfhvsrN5yqOdjSN5bHldT82Y2lGxhU697aiTa91Gin720n0VUg67c0sVVDXAYj53TBROr8eGZrHdbQVp1NDlFEgNkwYiifZV8FmZT699izscdeUPG4otsgeb92aXQJwxL8W6ZgeyVRygVAqjpQK7hovImrQ4qqntkRqL6qbpDUVDJOgAo2qAp7c5zwpJUspHb\/HSY0CftNcky9KgBGXpAxwezRc0kBJmaRNiSFBKgZuzcQTgICq4yVN2gShmtQ50m98RpKU18lu19rnvpx2UN+URgiTiQUvrXuTOLS1BXI+VUPL\/rUFO6QHaXpXJ1LV0BqCLFyco++Sm4XmZp59dhHdlHQcaiipstT\/2iSd++sIjRTv+lyeidJ0XyvLPaWf4eRKGvfdrSR6iz9rkSO1fOb736GjvXxDgqOMNEZoIUqwjGiWUsa1Vi+i17ZZJnAWfv3Xf53u7u6S1gV\/+qd\/ykc\/+tGytZozZ85w5sxNO\/jz589z991389WvfpWvfOUrG77HHUM8AwMDzM3NEQwGOXHiRFWvrciLR4HVUHHimZ9NE\/HsIRAbI7VcfRE3vFL59HlC8wDLuT80JdfGA9wfVHFk1ZqMtk6Mi5UV85X6YOXRzuG9JIvsPvVIkpEx6OxoxREJszoVrkhvS7gdRFZ1ZAWuo8m2WszR8kVd2VnHyhs7aK3WTU1HgPTA+vcoHSoxh5t9FTRqjiYi1GluvGrpx\/9aZI5DvibUAudUhGCPu45IOs4hfyMKgiVPnKn4BCnTxClcNHkaUE2FycQ8STNFa6CRWocXkDnFaiklcU1lJZrEqwrqnQp+jwaYSMMklDZx+Fy4DQM\/Eq8GpkNiJE2QOjU+BZcqcSg6QeXmJixhgttjElDWFry0AbpT0PQG6SyknTQ3J1mOB1CTcRpb0jjeaGUPJ53U7137\/1FHgLq3H0I4NFIJSK\/o\/MY\/GSLfWHd+Noqv3kM0VLgpx9AlS5E0Do9WNO0EMHBxksMnm1gqY80+fHmGAwfqiY3npdwEXK6L8+ffewGAkbEJmj0dJEp44hii9PzgylKMhmANepE6MYBwlBEKLZKuMwwDl+tmHXGjttcA\/\/Jf\/ku+\/e1v8+yzz7JnT2HCfe655+jv7+fJJ5+s+vyKonDfffcxMFC57FXB89zSqzcBUkpef\/11pqen6ezszPkDVIpKIh7Fo5VdPK+MBpAOF8lLI1VdX3o8LF6tMCpRFGYHlwv+Kj4ToUfJKvT5vCxX2CQAYDbtKtsVBICmsjRa+B4s6NEkIyNpoq2dGCvlC7kAsr2N1Fzp1mkAvcaFMVM+deFqCaJP3kx\/6MsJQtfmiTYEkE03v5havQ9HUy3uSPkuxOuxMM1Ob0nSMaWkNzrHUX8zagl\/n6HUPMcCu9EUFUUoNKg+jvlbubNmD8cCTUTSiwgtSr1TIehQWI7Ns6CFGI6PE9ZSrAiTBWmynNYxk0kaAw40RbKS1plPplh1KSymUgh0ZCyKqpks6klqtBhtYpW97jit3jQekcblSOeSjlD5\/7P331GSndW5P\/45lXPOnadz92SNspBkDBICSQSTjC8CG4yxhY2wcQCMfwKZ5IAIDte+Xy4yYBAgEAgLoTwjjTQzmumJ3TOdc05VHSvX+f3RU9VdXSf0CIXmwl5r1pqu99TJ9e537\/3s57Ea0gWnk8gJCHbw29a2mU4b0RpEFud0uMVFsnY9VvPapJrJCWiCdgwGSNsdmF\/TtOZ0VtJoPHY+847OEqcDsDS3it5pQquTv2fz40u46nyy42smMDWTQKciNSDmIJbWFAE6NCY9R3xJvnXi5Pp2oojTpzyvLK6o1y7tPmWQihpRqBxD9eaIZ3V19ZIjHlEU+chHPsKPf\/xjnnrqKWpqamS3\/cY3vsFll13Gnj17LukY+eOcPn36ktN\/m+1VdzyCIFBVVcU111yD1Wp9UWJwWwEXCFtoEvv5z1fImMsUhcukbN7oQNgakTOG6hDxmAIFe2eCRW81AHF3GLZQ1IS1aGd2i9FOrjpMagv8U\/qQi\/MvTJOprVY\/fl05Sx3qKb6cICBYHYhJlees0ZDVG8hKbJebirM8mSBZ4SEdtJBIZImPqjft9mdW2WF2KIrFpXJZJjUJmq3ymvKZXJbO5QnqDPITaPfyOJUmNz6tlUqzlyZbmF2Ocmpw0mILsroyTo0+S4MxS60NKi0QFNKEzCI2g0iLA3aQoNmhocGuocYK6UScnfYc1g3R0nw6h0aTwi6u\/wbG4yIW7SoW\/dpLGcto0FgzuPRr2\/QmzWiMIn5jEqc5TfeqkZB3fSEwrvfhtKXA70Z7RROaiyt5wWbhf3+8B4NLumANMNo1R3inMgKqu22C8G7liWthahlbvfwzyNvsYAxbSxkAereZH+bG+OGxEyXbeYPKlEhT0+ppcpND2XmpAWvlgAdSInCX6njuvPNOvvOd7\/Dd734Xu93O5OQkk5OTJf1gi4uL\/PCHP+SDH\/yg5H7uuOMOPvGJTxT+\/sxnPsOjjz5Kf38\/p0+f5gMf+ACnT5\/mwx\/+8CWd32Z71R0PgM\/nQ6fTvWgxuC3VeLbANDk+kmSu59IdXza19ZckaVCpP4jQMWQjabOzfH7r0gHZLUY7okbD\/PDWqONTgp5sMkPvmTlWauVXUDitxLYInTY2V5IYUT++bWcFy0MKk4EI4lyadMKIEPGATWFS0GmwNkeo1CqvWJcySaZSq4RF+e1WsylGEvM02+Qn1+74BE22MAZN6Yp9JZNgOhujxV5WMpYQRJJZkcimS8kiMpvJ0bgJ2DSdyOI2ZnDp1p\/7yGqOGmcK68V+x5mcFoc9iceQYSCq5+S0nibnCiFD4uI+tNRXrr\/znTELNeEERPyIexvQXIxe4otpjvw8ysGHFui\/ME2wVt75dL4wSuW+iOw4QG\/HNEa38kTec3wMd716P9VA+yzGBj9fHT\/Hc53SKaB0VnmOmJmJYTQrR1hqEVhahclDTgxOSvb6UlNt\/\/7v\/87CwgI33ngj4XC48G9zOu3+++9HFEV+93d\/V3I\/w8PDRf0+sViMD33oQzQ3N3PTTTcxNjbGM888wxVXXHFJ57fZtkWNZ6M0wouJeLbSPCoqhP8b7ciUjd+6hGNnTSaWVBQSCyYITG0Qh5OzlfEFTrkrqM9sja5H43UyraZEetFWQy4YUK+tmKr8THWupfnEnMjwqRnsdUHKpqcRNuQsRQQWtXo0yS10f1cFVKlRAMzVfubOqgMUjBE30fMTJGaW0ei1eFoqyUzNk53bcH1mHVqvjYXzysedy8QRRWWwwZKYZDkdZ4dFOtLJiTm6VibZZZeedOdSS2RJUWUqRdHNpBYx6wV8huJFTCKbYyWboWYTLdBYIkuNI4dhw8eD8RytnnQh8zS8CtXeOONxI7NLGiDN\/vL130o6B\/qAAZNh7bOpFR01dVqoDkNjVaGUnktnmZ3X8LVPrEW0qUSGmZllXCEbsUnpd6nr5DhVdR6m+6Qhz6l4hqRHj6AVFHrwBKam4lgUUG4avZblGi3fjnXROyG\/UBsZHwcU2AcEsPuNJIfl5x9RpXcslVLp9VHo4\/ll1Ue3yvn3oQ99iA996EOy45sVSO+9917uvffeSzqXrdi2iHjyJsVcsBXbSsST2wILr6AR+L8PTSA6ti4elvCE1GPsi2aoCrI6twU2BAEmRjTMV2wNrpj1BhAz6tFOThDILW8NBJHWl0JDl3pXWKipL+K8Wy3zoJlST9tpzAZWF9OKDL+wlqOPL6tv59xZTvT8urPNpbPMnh1jYTaBsbkCY8SNIWBHsBhJjsSUTy5gwe9y49XLRzoTiQVymSwRGWG5ZC7NwOq0rNOZyixi0EKZhNMZWp3BodPi0xU7naVsEo1JpHKT0xmOZ6i1ZzEI6\/doYDXLrg1Op3dFJC2IzCzqKddl8RnSuL05Nq6\/elNGQhdrPqkMZF0WLHsqobGq6HixuQyf+l\/FbM9L83FSgohZJv2UTeeYnVnF6paP8KNjcTzNyhHNwvSKbMrN3Oji+6nj\/MOj32NiVpnhfXJyBodLOeJ1B5QRjnGVxVVCEQJ+aTUei0X5XH\/VbVs5nhebatsKQehW4ii710IinuW8DHeblC3Nbx3NljJvLSVnrfKxNL1C27k4SZcyVYbW62Rui7UdQ1MVyRl12h1TpY\/5C9Kghokz40x5K8kYdKS8dkQVOHTedNXhrR27LkxCBaBgCjiI9shIiGdFZs+Ns7iUIetxofc5SzjDiqzCDtEUWYV3aDgVxaU345IRk1vJJZlNLdIok37rX53CrdXj0Zc+\/6HUDFUWB85N+55MRBHEFdxi8YJiLJOjxbXuQLKiyIxWw27v2hs+Fxc4OSdQbtfQaBcJmtec02hGLJKZ6F\/Rsbtm\/e8xo4+K394B1cWOM76Y4v5vpFldLl3YzIwsYvab0clo5SzOrqJ3mQvpOinrPTlFoEnZ+WxOuZmDVs6FZvnk4\/+XzpHBtW16+rBalaHB4Ur59CCAqFNevM3PK2cr4gry1qCMatvYOvJiUm2\/arYtHE8+1bYVWQQp24oWT0ZCH2SzWVxrL+7\/fXwJdOpZyIzJxEr\/FtNswPTQFrnW7GurndRyilMrPrIK55LZYrQjajTEJrbmJDIq2P75nhmG9V5Em3tLxzY1VRBV6csAsDZHmFdLsWkEBKuJrEKHOIAx6GD23DhT7VMkzRYsu6owhlzFu6p2Io4uI6blFzvO1gjVZg8WGTLXmdQSyUyKKrP0AqFzeYwdFg9WCaHCC8sj1JncmDbte5plfEYdwQ38clkxS8fyEI3W9d9HKicync4Q1sTpXjHRvWBmKaljjy+LTbN+TYNx2BlaX62vihoC4XUw2IWoiap9LigrdQAPfGOGRx8YoXq3tFMd6ZrDWib\/vox2zRLZpQw2GBtZwuxSeucEJqfiGF1mVpv13HPmB\/zkhWeKtshms9TUldbNNppeBWC0mlTORuSyynDp5QXleUipj0e34Tf+\/7r6KGwTx5M3rVZLLpe7JI2SdDrNnISYWMl2W\/BnBttaeml4IsFsQKGYftFWHH7YIppNXxFgeVo9JQUwNbLuzOYGovQFpPuatD4Xc+fUayYA+oZKElPqTtJY5mHuvHoEZfR56OxLIFYrF5F1HhsLg+rUJjqXhUW1lBjg3FXBYp9yf4d7VznRDRFbKhZn6tQos6NLUO4nXe5AV+8jO6jcn2RtDrDYMSbblxTTJbHp9ASM0pNE58o4rfYQek3phHV+eZh9zrISuHb38jhhQYNTvz4RJ7JpxolypXcdCbaQSjCgWWCFJImUkTKNSEifxerIYdxwuNWcQLk\/U0QhNyHq8NrWrmlqVUdljY4FbWkKcbJ3ie9\/M0Y2m6O3Y4LKVmmaoPGeRYIt8uwPncdGqdwrj2JbjsbRB+QnWovPwlIgwSFnP\/\/86PeJp6QneJ1eOfuwHFde+M3MKYNeZqeVF24LUeUWATlwweaI58XAqX\/VbFs5nrzX32q6bWlpieeff56MQjNa3pIJdQ8hbEgJPHBW\/dasRLd++zJ25fxxwbxGFjcVbHtemGC2sql0n27flshRRUHDwhbqMAA5m1W130nQaoiOLpBcTNDVESPZVCv5FRHIOZ1ktpAK1QZcpBeVf7iWSg9zKpGTKWhnvlu+yLw0OI\/WaCHatYi2KoR1VxXGSPGkKWgFzHVeVi\/I78fZGCags2LXlq7Us2KOC8tj7LKH0GyqLWZyWcaIst9Zms49vzTMLqe3KAJaSieYyczSbHKwnM1wfG6aw9NTTCSWacZFg8FWABh0paYIG4ontxkxi8u4\/ns6v6KnpXzt95LOCSzpzYxcSOKuK30\/H\/g\/69efSWcZ7J6mXCYt1n92lpoD8hFH16kJ\/DvkU11D7dOENyDhNFoNjmYHA2WjfOnc\/+Yrj32D80Pdst8HGBtXfjcGh5QbscfHZxV7kOKrKYxWeVqcXFZEa5KPiqQcjyiKLwm44FfNtoXj2YhqA7aUbhsfH+fo0aOUlZWhy6kzDSS24HgyGyKtJ49FiVoVnIXDQXxwa6krgJmRrW2bski\/2G2nlkh411ecWp9ry7UdfWMF8Ul1NJ0x4ma2Qz2CsjdHWJ1Zux4xJ9J\/fJwRt5essThlZN5ZzVKPOiTctquShU7lRllBryWdEpVTexrQWIxkFXqfTCE7q31RxGyOWO8MkydHmR1aJONyYm6txNoYwdkYJqFAVGmq87DSM0lOosdI0GvIenXsdpSu8NdE5WaolYguLqyMcLk7XNRjFM3GGUhOM5dIc3Z+iWzaRLOtHK0mR4ujGFk3GJ\/jMk\/xZNWRitEaWL8XczkDzdXrTuj0tAlXPIG3zIV2E1R4aWKVXzxSvGBIJTOMDs4SqZdOK3YcG6ZSJiWXTeeYGI9hdMgjyzrbxvHv9JFthR\/GH+GeJ7\/GQ8efIHexztXfP0hZuXzabnh4FJ\/fJTseW1gkEJYfz+ZyeCPKKS6bV7kdwuiQH88mMwwNDLG8vFzI6uQX2S8lZc6vgm0LOHXeBEFAo9EoOp68aNbExESBufrQ8iOq+44vqTdiJjY1jr6wGuJmGR31jDcConLKJ2\/6Mh+LXVur7yzPS197Jp6mbd7JVYYY2lSKtNuPOLyFhk1gcWZrukKi0w6iSjpOEIhNll7LyvAq4yEPle4M4uQchjIv8x1bSNmFXMyrOB0AR3OE2dPK9R\/3rgpmTiusarUCWr2eXLp0ERCfWSY+s4xvd4Sps2NYgi7MPht6oxZxNUlyKkZ2OYGzJcyKTCpS7zBj9prRDZU6raVsgtXMcoHrLW9ZMUvvyhhNVi998UWiyTjprIhJo8dj1LDbVlm0\/VgiyuXeYpRXMpfBbQfDhpTedHqVFt\/6JJ\/MZlmxxIhcJDbtnjfSbItj1YuMh0pTaD+5b5y6A2X0tY2xMfOdWE0zOR4jWONmaqA4NSWK0Ns+SVW9lwkJ3sLEYgbXDguplUwhUrcEDQjeHFPpCV7oOc6JSRftZ+XpWCJlfsZG5d+XiqoAszMx2XFfyMG0gpii3WNmelh+kWa0KxOBqhGFzk7NMjA0gF6vx+Px4HCsLW43sov\/psbzKpgSpDqRSPDCCy8QjUa5+uqrC3IJalxtWoOWZFw94llYLJ6gv\/fUEqLMyiM2s8XiDpB1uba0naXMTWJO3kHGRhbodjeh9buZ30I\/DMBq0MnqeEx1O2PIxewW9imWWVmRcDwAy5OLdI+kyDZWkchoFIv2AGg1ZPV6ychho9nrg8yeUXY61koPs+3Kjti3q4JlheZZT2uokMpbnVpirmOCyZOjTHXOEIumse2rJb4qYmiqwLSzCmNrObraAGLITtZvImcTiM8vo3GY0TotaB1mNHYTxoib8pZKympqmLVr6c4u80JsgvPpJU5ER3DoXGRFCwGdl0ZrOTsdFaRJUGUpTgFmchn02hSGTXWhzvgoleZ1+G1OzLGoXcSuX19XnozPUe+1kczkOHhuEUN6Dqt+bfI317qK9peKrvLIsxq6z45Tsy9con20upRkbm4Jf0Vp5JZOZZkYX8SzKXKwuk34au3kbDlcV5qY3zHOT1e\/z7+c\/Spff\/rr\/ODwAwxODXHm9FkCAXlGiM1iZiXHzyindQW98u9Wo6JvplMhAlUjCm2ua+Q1r3kNzc3N6HQ6hofXWNxPnTrFT37yE5577rlLhlNvRX30\/e9\/f4mK6EbyTzn70Y9+REtLC0ajkZaWFh588MEtn5eSbYuIR0kMLm\/RaJTTp0\/j9XppbW0trBCy6awkrcpGMzpMMKWe6pqejBX9vbKapc9aRd3K+eINnU4Wtqg0CjAzurX6itbngD7lyKi\/bRLHa3dgGLqguj9REEgsbc1Bim4H4ojysUVBQEwopzUziQxzGSOCSYfVuoqo0Nxra61gVilCAXQ2IyuzK4p1J0GvJZPJKabhHDv8zCog5gxOMytjMYXv+5g9OSRZU9PoNNgjDlYkaHsEvQaHSWT5wloUZEQgjIuw1UUmqKdJV7qynWGJ\/a7SVF3nyhjX+Io\/71md5tpgcd3l5MoEN1atT95nlua5viFI\/\/QKc0NZdFaRKtfagiopGPDWFqeH7vvOE\/yg\/ScAnD5dxpX7rmF5bhmL0YZRb8GoM6PXZMga0oQjJlLpJKKQJZvLkhUzZHOLzGqzLFuWGZ4ZpH+8j5W5db4\/vd6A1+NlbqkUdCKKIh6Pjelp6VRnX\/8AO6rrGBuVTuH29fUD8u9obDEmOwaQUHFcWZUCqCpR6Goai8+Gx+PB4\/EQCoU4efIk4XCYb3\/729x\/\/\/3kcjnuuece3vnOd3LTTTep6pFtRX0U4A1veAPf\/OY3C3\/LqTnn7ciRI7zrXe\/innvu4a1vfSsPPvgg73znOzl8+DBXXnml4nfVbFs4no22mb1AFEWGhobo6emhsbGRioqKIke1FSi13mYElB2PRiewslgaOX3z4Cqf26lhI9972hMBUblhLW\/aoIuFLTIbzE5uoRFTp+G5I7Nc3lCObUQ5CtDWlUO7eo3FEHBuqbbjbI4wdlYlfaYTmOmbJRlLYPFaqKr1kusr3be5ZmvsBOZKn2p052qJKKbYtCY96WVllVpbmZOojN6Q1qhDVFC59e2KED0jfXxzpZ3kQKlD0jtNWFZKwRQpMYNJTKMTipfeY6kol3uKU2KJXJqQXVOEjJsUE1xVth4pzScT1FW7eLZ9ljrBQ7VVQ9K\/7gTGrT7qN0Q02ZUEH\/vq\/xT+np4f42dP\/pD9l13GMy88VnK+Bw7sp63tjOS1X3vtdZzrP1fyeTqdoraumpkZ6cXb5NQUWq2GrAyacC3dJv1ez0djNNXtZGhQ+ln2Dwxh1vjIyTQoRxeUf6upjHIUr0oUuglgkIdSRyIRvvKVr\/DZz36W+vp6qquruffee7njjjv42te+xp133im7z62ojwIYjcZLUhL9yle+wutf\/\/oCd9snPvEJDh06xFe+8hW+973vbXk\/UratU22ZTIazZ88yMDDAgQMHqKysLJG\/3krzqNakQJVx0WxeM1Io7u6BVRZCxdDqhamt9xrNb1FTyBx2MqfCGA3grg+wGk1w+PQSi0558IOIwHJ0azpFgs+lio4TQVEoK2\/mGjfJ2NqEujq3yoUzs6zWVYJpfXWlMeuJL6XU2Qlay1Sdjr0+wIzMpJ83V0OIVQUouW93RNbpAHibw8Qnpb\/v2OEjJqM\/5Kz3k5PRntHYQZDodA\/trSSyCZ6dymUwazIlsOzexDjllvUVbTKbIaddwrSBWaIns8Sp0zH2GYLY9XrOpqYpc6ynccTKYmf285+9QCBYOjkN9Pfj9Zai0k6cOMlll0mrUZ49ewanzDt68uQprFbpdNLs7By7djdLjgEMDA7KjgF4FRgI4okkkUr5puyxceW67YoKPZcaHje9Wry43cxakE6nicfj3HPPPZw4cYKJiQne\/va3q+y12OTURw8ePEggEKChoYE\/\/MM\/ZHpaefF85MgRbrrppqLPbr75Zp5\/\/vlLOh8p2xaORyrVtrKywtGjR0kkElxzzTW43dJ9AlvhaRP06oGdzSMPX\/xZ94aQ1OVioWfrMtTpuLrTA9AFXFvaLnER4ZNN5jg9ayHjlC5C6hsqWFVIHRW28zuY2UK0Y6kPsDyuvBrU6DUkZkqjxpHTk\/RnDGQuwpZNO0IkppXTegavjdiAcjpTZzUQn19VTMO5mkKK9SGT38aCQl+QuyHA\/Flpx6Y1aCEh7UC1Jj0sSp+bttKKToLjzFLjJX2hVLnVuMNFtbW4ntK5MsG1wWKncS4xSYN7fdJ9enwK77Kdy11r2yXFLM3l6+9L\/8oKoeb131UumeIPP\/8D9AY9JlNxw2s0GqWyQprRY3h4CJuttBa6tLRES4s07VM8nqCyUr63J5OW\/12PjU0QCMhDs5dXlN9Tl08eMRaPJ3EH5OeCWFQZqJNWWcBt5pyTEoEDCjWeQCBAMKjO0p03OfXRW265hf\/+7\/\/mqaee4p\/\/+Z85fvw4r33ta0km5e\/z5ORkybGDwSCTk1uXapGzbeF4NppOpyMWi3HkyBG8Xi+XX365okbPlnjaNOq0NnoFZtqfHpoj413Ls6bd4S2JosFazWZxi5Qy89PqmjeCVmCsa30yXppZ4WTcTW7TJCEisBTborSD16HKPiAC0S3Q3bhbIqzOSUdF6ViKvp4Vpqq8zHQpv7gioHNZVft\/rDV+ErPy91dvN7EqA4QAQBAxuc1kVqXvlc5qWJOPkHne3pawLEzd2xiQpAgSbDrMUpOXXgMLUTaH3ZZqH\/apWNFnGZ1A46aGy8HcCq8pX1vJLyXT\/Ox8jN3mIBWW9Um0IzNH2L5ez4m6PDiC6wujZx8\/xUxshb6+fkmtllOnTnH11aW5\/enpGXbtkm5yPnbsBcrLpZuM+wcGZaOeM2fPEQ5LN6wCVNXINy53XuhGp5OvtWRRRrg6A\/KF\/VmV30FKQSgO1COePJR6q+rLmy2vPro5Ffaud72LN73pTezcuZPbbruNRx55hO7ubh5++GHF\/W3OMImiWPLZi7Ft43gEQShACcfGxmhtbd2S\/PVWHE9G3MKNUmGePZFc8\/yxiUug9AkqFwXzZgo4mJGoA2w2fdhCehM6b2YwynlreVFuWV9fzspmVUYJ07gszJ5XX70IZTbSsypoIa1AdES5V0gUIRnTMZoxkazyyfpv9+4KFmS42PLmao2oNpPaKj0ko\/IO3b+nXPE47lo\/SRlH6qoPED0nHQm5G4Msyo1FHIgSLMW+1jDaTfVKUSfA6gKb9aS9rQFcG9JuSUHE78ih1Wg4PLhA76AJvUbEtpGGJZuhObK+0j+zuEhZde36sTJZPvS5HxT+PnrsGFdJOJlTJ09SWVlR8vmRI0dpbm4s+TybzRAMSqe2Vlfj7JZJqYmiSGWVvHOZnJJ\/b5OpFKGIPJPCzLyyhIdBQQY7k8piVaD3SSRUHI9EjWdz86jVan1Rk3teffTpp5+WVR\/NWzgcpqqqSlFJNBQKlUQ309PTlxSBydm2cTypVIq2tjYSiQSRSGTLCndbEYFLb0GnJq3ClvCNR+YRA0EWe7eeZpuf2VqNxaDQ1LbRTC5pZuShc9MMlNUV\/l5e2ppzXLHqt8SsLaCuCutpLWNlRjm687WEiA5HSSwkGWyPMecLoKnYBJ31mFRh3Qa3hYUh5efg2VXGvEKDrbXMKUuECmvRjBy\/nM6sJyuTRtNZDWTnpFM97p1hkv2ljs7RECB5vlQCw90SRrdQ7Pg0NW7oHyz6zLWnAq87wKhYww6hEqfRxD5\/8bvSkZ4hcJFEMyeKWMI2tP71tFxnWx8jm2p4bW0nqa2tLfoskUhgNBqKuMXgonx3PF7yOcCJEydobm4o+RzgQmcXRqM0uqqzs1M2cuntHSASkY+IAiH5VNzAwDB6g3yGI61CKWz1yDeJqhGFbhaD28xa8HKrj+Ztbm6OkZERxXn26quv5vHHHy\/67LHHHuOaa665pPOTsm3heHK5HMeOHUOj0VBWVlb0INRMrYcHYFWFUHIr28QWM5zLVSlus9F0Xgdz\/VsTXIvObUG6W6dhrEt+sr1wbILJHQ3o6lQE1C5azqonM67eWGprCLE4pHIdGoGYSv0HIL5U\/KzmBua5cD5GvLYCjdsGOg1ag1E19Wf020kvydPrGH1WFvrkV7WCRkCr15JLSU8wBqeZuELvk7shQEIm5eLZ4ZNUdzX6rGSGSpFYWrMB7eJiaYqtNkCuu9gZCXYTlpXid0DcEWB51chMvx7N8NqY\/7IqXBugsgkxy97KdUd0bHGRpjIPnvq1CU7Mifzh3f9NS0tx9JFKpUgkE9jtxTWPnu5urrzyQMm1DAwMcMUVpZ8D5HLSv9O5uXn27dslOyYXEQGUVcg7ntk5+bpdNpfD7Zd3HgvLKvVHBdqc5UXl3\/LmiGezCNzy8jIWi+WSIh419dHl5WU+\/vGPc+TIEQYHBzl48CC33XYbPp+Pt771rYX9bFYf\/ehHP8pjjz3Gl770JTo7O\/nSl77EE088wV133bXlc5OzbeF4NBoNe\/fuZd++fej1+ktiqN5Kqm1uVp0uZmFBvcbyyEgSYQsIOQBCW0uzGb02phQmyby56wMkVKK7tucmGNNurePZXBUip5KPBvXUAYCnNcLylPKP1dscYl6GLHT49AQ90xm0++tIxZT52swNPqJd8hBxETC5bWQUFiS+PWUsKThnR7mL1IK0U3Y3B2VRbJ6WEIsdEmOCiN1rJieRYvM0+MjMFd87jUmPMbFU4oycNQ608fX7s+iPEB3NsXJyDDGvFWPUYZgpjtQcl9fhtaxFrclcjh11Xo525TBeTCmNnhvmSMcwp06dprW1pei7o6Oj1DeURivPPfc8ra2lTuH48eOUl5dytnV2dnHgwN6Sz2GtN0dusZlIyv8up6bk34Oenn5sdvlajS8kr7k1qUI6LBjkp82lmIrjWVWOeF4O9VGtVsu5c+d485vfTENDA+973\/toaGjgyJEjRQwJm9VHr7nmGu6\/\/36++c1vsnv3bu677z6+\/\/3v\/9I9PLCN+ngcDge5XO6SxeC24niSynMZAPMqaSKAnvF5RloClPepU9VEo1sr7hvLPDCmjipTkkbIm9Vv48knRrju6kosfaXoqLxpnWbmOtX7kGz1QSYuqNACaQQWt9CcG5cp4Bd2Y9DRfngUQdBRszOMbnSa3FLx5K\/3W1nuV06x+fZUKFLr2KuViUb9u8qIyjAg6O1GUjJaQQa7ifSmBuT1cyon3l6aSnM2hkhIpNhcTUEyF4qF12y7yxEH1vLxiUgN0QUDNqMe3Xxv0XZiuRmiG1KIFiOGpfXrMezbhX8lRlK\/nor6u3\/+eeH\/589foKWlmfPn1xuU29rauPzyA5w43rbhQCLzc7PYbFaWl9cjvFQqhcvlZHS09B6Ojg5jMOhJpYon38nJSa6+6kpeeOFUyXfOnm2nsnIH42OladGe3n6qK3cwIQGBzuVy1NRGOHe6t2QMICPKZzjm5xepsjhJrkovgLMK7PmZdA6d2VCSUiuMJ6T7ePKWr\/Fciqmx+ZvNZh599FHV\/WxWHwV4+9vffslw7q3Ytoh4NtqlisFtpY9nVYWnzWjRs6TCjAwwOTXLl5+8gGBT5tXQum3MSHBVSdnCgrqD0ug0jHSqR0W2che5rMizz0+xWlspu52+IqDK9gCQVM9Q4mmJsDShnGbzNAWZV3EYnlo\/6dU0qZUUXcfG6J4TyTRVob3YYY9GAIMOUaFeZ\/BbFes2gl6LmM7IyhyYfFaWBuQdravaS0oGrOCqcpOOlY6Zgw6SPaULC63NiBAtTWFaG0IlTkfns6OdGCEZrmbC1sTY6QUS49HSBYtBiy9TnOaLl1kRLurM5CxWdJkoqxeyOFvXVvyrAzHe\/bG\/5S\/+4mPs2bMbURQZGRktKU6fONFGZVXxOzUxMUlrS2nUc+7cOa688vKSzycmJmSjnvGJcdn0UkWFfNNjeYV8oVurl5+QxxWiJQRwBeWjpaRMijZvBpt8TVQK1fbrJokA28jxvFgxOLWIR2fWk1JJF9kUcP15szpNLCwsM7+U4LBK+lUTCcAWkHQGt4XJni2k2erU02wA8xelD8ScyOEj0s5Hazcxq0D3nzdbbYD5XpVoRxBYmlFvKk2qSAIb7EYmzhefUzqRoeeFMS5MZkg1VKJr8hMflU+ZihqBrIAi75tvZ5iVcZl9CGD1yqfovDvDxDqkIyFva4TF8xJjGrA6dOQkPLh7h4dstDhS1FiM6Bc3OSMBdNVBJvXVjJ5ZZPUiOMHbEkBcKnZ0jp0RWNqQtrNZ8Avrfy9FvIydz5GejeLZsVbjeOGBJa77rev427\/9JE899TgdHWf53Oc+y+te91rcblfhu3nEqWsT7+CxY8fYu3d3yfVduHBBsvdOrql0aGiE\/fulaz3nz59HL9OLp9QEOaLA7DE6Oo7JLJ82dyjMCTMKJKQAOhmGeZBnLsjbr4P6KGwjx5O3S4141ByP0aHC+geyuvEbzRNcfxm+fXwMjV8+Rxxb2Nr5myp8iOqAO7JbaIC1RxxMD6xHFfnIZ8JTXPPRVwUVZQPylhLVXw1PS5hFuYk8v01jkLk+5ejPUx8gJafOmMoy0jXD2bYYsXAQXWMZSPBh+XdXkJmSrwfYatzMKjAcBPZUsCCj42NwmYmPSkdsRpeZ5Kj04sG\/p5z4QOnE6GwJk5RoFHXVe8lF1xyFaDAQr61npXk3o8+OsdK3vh9Br0EzvelcdRr00WIUn6k1jJBai+RFvx9jyoJtaJrlsiCCViA1ucT5M2tElclkEqPRSGVlBXfc8V6+\/OV\/4sKFdn7ykx9x551\/TGNjI7Ozs5RXlJdEJj3dXSUOaWFhgfr6UnTVWlOpNMJtPip9j6PRGLt2l+pRAXT39BEKS9dTR0fHCQTl0W2eoLxzETXyP8xllQyKElHo5hTc5ojn10GLB34NHI\/equ5UtEZ1FF1Gs36cRDrLcxrp1ZLWYWF6C1EMwOIWpBq2mmazhEpXkWJO5OyFJIsXUxUaq5G5LvXajnWHn7lu5e1E1pQj1Uytoc5gMzJxXvlYppCZXCrHZNcc7cenGMqYyTZVoQuvrajt1V5mz8rXbQSTlvj8smwjqCXkYKFLHnrtKHPKitQ5Ig4yEgg7S8RJvKt0xa1zmBCmSp+nvTlMpnOQTChEtLqZ3mUnQ23TZKdK03GelmDBQRXOY1cEFtYXAYLDgm5+sPB3yhskeaQPAPPetfTUqR9HsfptLCws8MILL3D48GE6OzuJRqPodDqsViuvfe1v8fd\/\/1mef\/4ZTp58gfe+9z28947\/hdm8jgpbWVmlLFKaDjt27DgtLaUO49ixY4TDpSmy3t5+9uyRbkRdjctH1hWV8qm4yGa4\/gbTKaxJlxVADYvROIJCU3oqJx91q\/XxrK6u\/sbxvBp2qak2tRqPxqQeLWxhcY\/GWPyi\/eeTFxDKSl9qTXkQcQt+U+8wM96lruez1TTb7Lg0qkzMwZETUVZqyjDuCMl26W+0jEb9nnlawiyoSFV7GgPMKgiqwcVoRwGBprfpWBoungTiCwl6XhijvWuJaChIwu1C45ZfvXobguQkCGCBtVSWSUtWJh3o213GggyPm3dXhKXO0jFBA2azBlGiFuCucq31AG3c3mEhbrAy6qyhtzPO1OlxsqspvM1BUpujKQ3oYpsiA62AfrHYeRtbQgjptWtOBcIsPT+I9uKCztNoIRNb5fmH0njKPOzdu5cbb7yRlpYWNBoN3d3dHDx4kNOnTzM2NkYmk8FkMlFfX8+HPvSH3HvvP9Hdc57v3f8dPvDBP6CqqpKOjg6uuaaUZn9qagq9vniRls1m8Plckvc0IYMEaj\/XQXmFdM\/J1Ix86jiTka\/dxhWcy8ysfAtBLidi98nXgFIKC2c1x\/PrIAIH2wjVtlGFdKsRTyqVYmVeBVGlQJ2Rt6SabgygM5Q2zP1sIcWtm7ZbXN4an07GY4Rp9YhnK2k2R6WbIYXGVjEn8tzxWepbbMgnHtbMWu1jslO5BiQCqyr9CgDpjPK9MFgNTKo432BjiKET8rl6vdXIuUNryDBPpRd\/yIo+Hic9PAs5EU9LWBHFZq33sCrDvWfyWlmRARuYvFZW+6SBDL495ayeGyz53NUaJtG5lmLLBX0knW4WFzJYnUYWj5ai20xiis132d0SItdfDD6w7yyDkXX9FcFlRze7fvy50Qz25bVJdtXpxOU2cu47oyAKWHxrq2utVovX68XrXWMZWFlZYXZ2lpmZGbq7uzGbzfh8Pnw+H263G6fTyS23vIGbb76JbDZLb08vTz71NBaLhUOHniWdXnu3Z2dnufrqqzh69HjROZ89e5aamjoGB4vTn+fPX2DXzl2cP1+sJwNQVhZgdKTU0fd091FVsYPJidJn1dvbj9w0NzUzgwbplPnExCwRfRkZmbnB7DSxOC0dhZltNpaQTkHHF1eL9HZ+43i2ieXh1GqcQEtLS5w8eVJ2pZq3nKAezqyuqk+iscXSiOKBI71c91s7cF3kC9PYTEx2by3NFt8CqcFW02wmnxVUGBX89T7ajk\/RuMtO5Zx8z01WRaMDwNMcZrxdmWrHXedjQsWpeBqDDB1XIPB0mhjvUHCCGljaAOWeH44xPxwDwOy0UNbiY0UPuoiHzGSshHrGVuEmNSgHNhDRO\/QkhqQXNoIFxGjpu2etcBO\/UFpL0rgsJAU9K7UNREcWifcsAxPorQaYLp3cXLU+kgOlaDhjYqmYAVkjYFgtvs+mJj\/CRWh3f7acwOT6frSXV5JbSXLw+0lAwOKXnuSsVitWq5WqqioymQzz8\/PMzs7S0dFBJpMpOCmfz7cmEtbaQlNzE3\/8x3\/E4uIihw49y+OPP8kTTzzNsWPHqa2toa9voOgYctGIVif9u29vPy8JxwaoqAxKOp5obIHmhl0M9pfey8WlFWr8ZUQl+P5yooi3zM7UYEzyXPQWeWCCElFoaiXJsWPHMJlMeL1e0ul00Tz3G3DBq2QFgTeFqGdiYoKjR48SCUfIJpWjlYwK9T5ATAIGu9nGJ6UdwH8Px+Die6OtCCGqrPJhTRYgNqKOBttqmm1sCw2oSytr9Ziuc8tMVpYhSuSojREnM1vgbosvq6frsiqvlt6qZ7JT2TH56nwlqYmNVr47woIMY0J8IUEqC2cPj9LeuUhv3EA0GFyrDTWVows70Wo15GRWtI7GAAkZxgZDjR1xTIIAVCdg0omIDitibQXJplpi1TWM2IIsByL0HJ9i\/NQ48Q0TXbApQFYi\/WmzlD4fV3OQ7KaeFdvOCMytLzo0HjvambUJvnulErtQnBJy1Jnof2qOTGpt\/1a\/+iSn0+kIBAK0tLTwmte8pqB2OT4+zuHDh3nhhRcYGBhgZWUFg8GA1+vlzW++ja9\/\/V7a29t4\/PGH+f3ffy8HDuwvmmRHRkbZv78UEXf69Fl27ChlCVlYWJAFGUzPyNcJvT75pupgmUt2zOaRLwIJMs4RIKUA+ReyAq95zWuoq6sjl8uRyWQ4ffo03\/72t\/niF79IOp2+pIhHTX00nU7z13\/91+zatQur1UokEuGOO+5gfFy5d\/C+++4rUSwVBIFEYgtNkVuwbRPxbEy1wRqVhBQfVHd3NyMjI+zZswen2aHKFJ1MqcPGZqeV03V2t5nJBek8\/\/G+eRZu3YlzaJqlxNZoLmx1IXLHVQTV2FqazRSyEB1WdmJak4a5DSv3c0fHie8JUrM0BxsQbitboN12NYWYUIpCAHednwkVEIO3MaQc7TiMjJ9XiXYUmn4NVj3TGyKuTDLDVM8c+T1WXVbGhVNjWNwOrC4TZpsBg1GLXiNi0EIml0VbG0bMieQyaTLpDJlMGkED2ZSIviaI1mhCFDSkMyKZdA6r20TH2XFSy2kYWl8MmJwmFiRqQVqDlsRg6X2yV7hI9JSmB01ivDjaEcCYLHaOxgYfwmSMgVQZ8XNxIs3rDlK0mzD6jDxx3yz51VI+1bZVEwQBu92O3W5nx44dpFIp5ubmmJ2d5fTp0wCFSMjr9WI0GjlwYD\/79u3hwx\/+Q2ZmZjl48Bl++tP\/4fnnjzIxMYZery+k5vKm0Ui\/i8vL0guN7u4+qsprmJRYIC4uySMvtQrYI41B\/vecycnPK4l4Brm8QSaRRqfT4ff78fl8jI+Ps3v3biYnJ3n00Uc5ffo0XV1dnD59mltuuYUbbrihCMix2dTUR1dXVzl58iSf\/vSn2bNnD9FolLvuuovbb7+dEydOyF88a039myW0TSZ1lPBWbNs4nrxpNBo0Gk1JxJNKpThz5gyJRIKrrroKm82mCuUFSKg0SlpcJpITyhO3O2hDJmULwH+cGeNvKpxMdm0tzbaaUHeGW02zYVOn8HHXuFg4U7yv3jNTrNZ6aHXEYXEVc7mb6SH1+5mMqwM\/sio8U3qLnimVNJyv3q9Y2ynfHWH0tPyqLdQUZLhN+vsarUBsdAFEWJ1fZXW+OOKtvizCxGnpyM\/f5GapJwoUr\/w0Og1Ot1ESZRmo9xKVUEgNtoZYaS+FVTu9RhKb\/JGjzkd2uHhbW2sExtfZhQWfE81UP2OZIIunMjh2uGFhvXNfvGwH48djxJfXn49VJtW2VTMYDAWKFlEUWVhYYHZ2lqGhITo6OnA4HIVJ1mazEYmEueWWmygrC\/GFL3yG8fFJjhw5wUMPPcK5c+sS813dvVRXVTMyUvyMOzouUFNdV\/I5QEVVSNLxdHX3YNS7SadL310lp5RIKwATFFoS4itpWceTTWbJZXJodBpyF52X3W7nd3\/3d3n3u9\/N\/v37ec973sP09DR\/9Ed\/xGtf+9oiuerNpqY+6nQ6S4g+v\/71r3PFFVcwPDxMZaV8o7kgCJekWHoptu0cD5QCDBYXFzl16hR2u52rr766EAltiSBUBbJsc5tBJfgwO5TrHudHogxc3UJuQp36RmcxMLYVNFt9gKlTakV+kZUZdYBCLiMNsBjvmycesnEg7AKbBURlx6ONWJnvV+7JcdX6mFSh4\/E1hRhUiHaMEg2lRSbAsoIaqt6sY7pH\/h6X74kwdkoacOAI2pg6J\/1CWHxmVvql75G10ixZD9Jb9Cz1lF6LoBXITJam8iwBOwkJGLbFlCtRtzRmi88lEzIwu+Rh7owWsmmcIT0Mro+bwlp++k\/F9+1SIx4lEwQBl8uFy+Wirq6ORCLB7Owss7OzDAwMoNPpsNvtzM\/Ps2PHDqqqqqipqeGqq67gox\/9MBMTkzz55DM8+eQhDh16jmDIL+lgLDIknTOz0s88mUzRsruMTgl6ooHhUXQyAIP5mPzvYUmBpHZlKSmzxzXLJNIYbMbCHLcZXHDTTTdx3XXXIYoiq6vqZYCNJqc+unmb\/LNSsuXlZaqqqshms+zdu5d77rmHffuk1WYv1bZNjWdj7ncjpHp8fJxjx45RXl7Ovn37itJvW+FpW1xQzklmtFuAbuvUU1APTQxj2EK+3FITILuF9F9Wq74m8Nb5WVRhDrB6zIxckHcE0cllzixomI6rn5NWqw48EFWYxXVmnSoAw9\/ol20oBSjbHV6LWGQs3BoiIYO602gFFhUofrwVTnIylDqBKo\/kmKAFQ1w6yvPscEqyIQR3hknOltaJPOU22FSXtFZ6yPYXOyNrSxim1p9r2mVBXE4y1W5GvMiUYIitO1BNyE1sOktsw6ugM+kwKtC7\/LJmMpkoLy8vwLUrKiqYm5tDp9PR19fHqVOnGB0dJZ1OYzKZqKqq5H3v+13uu+\/f6Ox8gb\/8y4\/wRx9+H3X1O4r2OzIygsFQGul3dfUSCEhr\/1ht0u\/u8vIK4XLpSXp0XP53M6+w8FlUIwq9WLfMOx45yhxBEC6p3iOnPrrREokEf\/M3f8N73vMeHA55ifCmpibuu+8+HnroIb73ve9hMpm49tprFfV7LsW2bcSTyWTo7OxkdHSUPXv2EAiUUqCrOh4BFmMqTY4qAnAAcYWQO2+T83M8Zk5zo2BWrDttIVOFoBUY2ULaTlCgZ8+bp9rD1KSyc7J4LTx1eJgrXlOJrX8cJOZdZ0OASRXCUEuZnSkVOh5fU4ihE\/Lw5rVoRyFiEmB1Xv6Z6kw6ZhQaeMt2hxmXSdHZvBamOmSiHa9FFngR2RlhXoJYVKPXkBiRACgIIiyURkdGl5mkRG3H7taS3XRJJqH4maZDLmbP6Mgtre3XUeuG2HqaTdsc5pkfF\/9eXspoR81mZ2fp7++ntbWVcDjM6upqIRrq6enBZDIVUnJutxu9Xs9v\/\/YN3Hjjddx9918xODjMk08+y1NPPsvzz7\/A3j17OXHiXMlxnG4L09OlUfmUAvjAE7QxIcFMkUym8YTszEuo2C5EV\/G6HGQkwE2ZdA6dSV8ic523jY5Hq9UWFt15WqIXi2rLq48ePnxY+rjpNO9+97vJ5XL827\/9m+K+rrrqKq66ar0v69prr2X\/\/v18\/etf52tf+9qLOr+Ntm0ino0mCALd3d0XewCulnQ6oN48arAZyaaVoxWLXf0hRxfUtWbGx6d56PhJYlXyjWVak56xLTgUfdiijmbTwESfuihdbFY9VJ8aiSGKcOyZYQacHgRnaTFTIj1eYhkVJ64z6ZjsVnZe\/ga\/Ygq1bHeYqELjamRniLhMlCtoYEUBSOLf4SYrw7QQqPFIjwki6ai0Y4\/sCpNbKY3cTOVW4mOlDslX6ylpOjVHnGQ3MY1bmkKwgb4+4XQw32kmM7d+bc5w8ZpyBTMT\/ZsiqS1E6C+FTU5Ocu7cOXbt2lUQHrNYLFRWVrJ\/\/35uvPFGGhoayGazdHR0cPDgQc6ePcvExAS5XA6DwUBDQx0f+tAdfPd7\/0HH+ef4s7s+wB3vezvl5cVNpemM9LvT2zuAXUYmQdTKI2OdCro9dq\/8b91gly\/C55u4N0siJBIJstlskVTBVk1NfTSdTvPOd76TgYEBHn\/8ccVoR8o0Gg2XX375\/3sRT97rLy4uFrz+FVdcIalomLe0muOxm9hcBN5sakyzABMyUOq82ZwGRufXnNOXn3+GL+y9kbTEBGfdESBzUp2gM70FEShPnZ++dhV56IiD0V7lmkyw3kv\/hlRcf8c0s14LVzT4EYfWnISzzq\/a6Oms9jCl4git1U6mO+S3MdoMqvWhVQWaHp1Jy6wCL1z57gjjZ6SjHYvbzHSHdERjcpiYlWG9Du8MEzsvwV6gFUhOSMOxnQZ9yVupNelISchtOIMmsrFih2HWr397xWBj0VhPary4R8awsP6e6RoidIyYgeLzsWyBHPeXtbGxMbq6utizZw8+nzR9TR6uHQgEEEWR5eVlZmdnmZiYoLOzE6vVWmhedTqduFxOXv\/6G\/jt334N2WyW7u5+nn7qeZ5+6jmOv3CGULCc6ani90AURTx+K0tLpQuxuXn5d0ZnkU8dmxxGkGEM2QpR6GYRuHw951IiHlEU+dM\/\/VMefPBBDh48KKk+mnc6PT09PP3004Um4UsxURQ5ffo0u3ZJE7leqm0bxwNr9ZyOjg7MZjPhcFjR6YB6xKP08PO2vKK8D4fXwmRUGX3g8BkhdnF\/iSQPJ8e5SeMsydUntsDNo9FpmB9V50DbiiCdLWQHmQa4vBklCFIX51Z58licq6+rxNQ7SgZ1RyiYle+1oBeYl2vWvGj+xoAiki2yO8T4Wfk+o0hrWBbJJgiwOiefcgzWeRg\/Kf3dUIOPyVPSY6IMBVF4Z4glCTZrT72PxGDp4sNaaS04+rwZfFayvcUFcUt9EMbWmAsWLF7ax\/yULxR\/z77DDdENaLZyL91PlD5D68ucahseHqa3t5e9e\/cqFrs32ka4dk1NDel0ugDXPnPmDKIo4vV68fv9Bbj2zp1NNDfX88d\/cgeLi0scPXKKJx8\/wqGnX2BmZn2h43LbGaJ0AdU\/MIxDFyIroXyrpNujU2C3ViIKzTuezRHP8vIygiAowqc325133sl3v\/tdfvrTnxbURwGcTidms5lMJsPb3\/52Tp48yf\/8z\/+QzWYL23g8HgwXG8bvuOMOysrK+MIXvgDAZz7zGa666irq6+tZXFzka1\/7GqdPn+Zf\/\/Vft3xuSrZtHE86naavr4+9e\/cWQmw1U6vxKD38vEUlZIo3mjtg3bxQLDVdcdT0i1PnuO7W27Cc39DYp9cyvoU0m3OHl6mzytsJWoGxLTAkzIyooNT0GoZlmjjFnMjzzwyx9\/oq0hJElRvNUelmUoXJwFxpJ9otz5igt+pVo6rEgvzz1hq1zA7IR1Nlu8NMnJVeQJicRqZlalNGm0GWMDXQFGBBArGGIJKLydCpGAQ2x8IagxZzbKUEtSY4sjBZ\/DvQ69cWJbOOcjq6zDgCBrJTxefnjGxAs+m09M8a0Eg0Ur+cEc\/AwACDg4NcdtllOJ1KGC9l0+v1hEIhQqFQCVy7vb0dp9NZiIbsdjter4c33HIjN7\/hBjKZDOc7enj6qWMcfOoYI2PSi4d0JoM7YmF2ojRLEVuSf2eV1pGCBIN63jKbajx5y2d6LkX2+t\/\/\/d8BuPHGG4s+\/+Y3v8n73\/9+RkdHeeihhwDYu3dv0TZPP\/104XvDw8NFIIdYLMaHPvQhJicncTqd7Nu3j2eeeYYrrrhiy+emZNvG8ej1el7zmtcAaxobW+FrUwUXqPC0CRqBuWllyWaTCpQaQBRKneQXnniMfzjw2yQv9hrZ6oKMnlJnht6K0qin3k\/vWeWUnX+HhwGVPqBIc4DOk8pqqourac6OrXDl3jCC1CTLmqiZkgl6geSsckrTGDKy0Ctff4nsCjF+TiHa2RlipE3mWgRIKIBM\/DtcTMtEUuGmgGy0o5NCYQCh1jArnaUpPWe1m+Xu0uMEWoNkzg8WfaZ3mXHMFS8cciEruskJxhw1dJ0VyaUSeJqdZDc9FuPi+gf6XVU89NNVyt2l79XLUeMRRZG+vj5GR0c5cODAi6pXyJkUXDsfDQ0ODqLVagtOyOv1YjKZ2Ld\/J7v3NPOnH72DmZl5jhw+x7MHT\/LcodNFabdQmUfS8YxNzGBBuh6SVpijRI28V9oILtgsiWC1Wi\/J8aipj1ZXV6tuA6Xqo\/feey\/33nvvls\/jUm3bOB5Ye7FEUdwyQ7VaH89qQnnc5rGQHVFmLRC16pHXigTWfiWR5McLg9yq9SBmRZKCOlnpWtOoeo\/PQlwdMGBwqncYZ1ReSL1Ry8D5SeLLKZ5+ZpDGPWEqMilyGxou7RUuJlSineDOMkUkm96iJzGl\/KySCmALjV7D\/KB8VFa+K8yETG+OwaJjViai0Zt0RGXoiHx1PqIyvUIamffO7jSytOk2CFoBYbo0UnPXuhEvFNcejJY0ndodjLalC8hJcWpTmq3aCfPrJKKLFheDvVGCTaULKMtL7HhEUaSrq4vp6Wkuv\/zyl53s0mQyUVZWRllZGblcjlgsxuzsLH19fZw7dw63211wRBaLhbKyEG99u5\/b3nI9Z8+eY6BvgsG+WZ49eIq0KP3MFhdWcFvcJFdLncyqAuRfadm80fFsLCdsJA\/9f922pePRarWkUurNoUqTEcDiivIEbfWYQV4bDIBESq1XSGRaJhX15LnzXP+mW3H0LDDRrS6FrQ+bSfUon7Ogg9ioyjYaGFeR3jY7jAyqUN9UtAY4f2L9BnWdmWDYauCKAxE03ZMICOgdZhBjsvvQGLTMDiin6oLNQcXajr3aypyKYxlWiNySCs1+1jIjq\/3Si4\/IzhBTMtGOyaRFKpnmb\/Kz1Ft6X21hB0sSUZC\/NUS6q7iOo7MYYBNrc9ZvZk4sZ\/TM+nO1hszk5oodoz2sX3+nrSbaOkUEjUBcor5lfQlTbaIocuHCBebn57n88ssvqU7xUphGo8Hj8eDxeGhoaCiCa\/f29mI0GvH5fHg8HkZHRwGRt7ztZjQaDXf95e8xNT7HsWe6OHKwg7bnu4nna3cC+CtcjHaV\/p7m55aQq\/JkFIhC86i2lyLi+VW1bQmn3qo0gqr6qFH5h2VQYJjN2\/yCcp3EHbCSUIisvvj4o5h2l5PYArGmaFBv5rPXeEjHle9NsNHPkkKvC0CwwUtGRaQtIUELEl9JcejQICNeJ7amIOMykUTeAi1hVubkHaXerGNKRThPm5WPFjU6DfOK8OqgbDSkMQhkZqSfi9agZXFQumbkrnIzJ4NyM8r8otyh0sZQBBGdRA3B0+RD3EBfntZomLLsYPh48eQXqpRIAc2tOyyxsZyHH1rA47eQkyicv1QRTy6Xo729nWg0yoEDB15xpyNlm+HajY2N5HI5zp07x9zcHHq9npmZGbLZLCaTiYrqMG\/9vdfwxf\/4EP9z\/At8+b4\/5p2\/fwMVNQHMdul5Yl6C1TpvSQWi0PTFZj65Gs+vg22riCdvW061qTiepApztaBX97vjElTrG83lN4NC4BBPpfl5rI+dVidphdSgoNUwP6KeQtPo1WtOgkH9sS5ElWHmzoCVAQXamt72KbRXV2CrD2AeiZKTYJHW6DXMDsUUjxNsVSYLDe8MMtEufx7OHXai3fKLg81SwxutfGeQqTPSjrNsV4jp09JRlM1lJCFxyp4dXkn5bLPXwlJXabTjaw6T2tSjozHqYGx92xm7i75EAPPZ0nSgLrbAxquzVTkxr647p3NTOVJJEbNVgE2v3kvFWpDL5Th79izxeJzLL7+8gJLaTqbVavF4PAwPD2Oz2WhsbCQWizE5OUlXV1cJXFuv13P1jTu58voW\/vRTOcYH5zh9cICTT\/dx\/tgw6YsLtmQii9GnJynRq7WylEDO\/abj6xHPbxzPNrBLFYNLqUChV5eVecyyonL9xuW3MjmnvKLXGdXD4vaRXtLOMnYlvIgyIbinPsD0aeXUl9aoYUSlz0Vr0DJ8XtlZuiMORlUQZP4aN1OT8hO63qil99wEq0tJHB4LTTV2LGPLCOL6\/QjsjCjWdnQmHdMq6Ly0Qh5d0Aok5uSdebglwLQMXZDOqGVRxilqtAIrY9LX7og4mZNhMLDadHlUfZF5q90snS2NbIzZRInQm7clgNjVSw6BC64KhjtTVO4ykZoo\/j04wnbS48Xn4So3wsWsnRB0ceKsGVjFZjfApiZXs0Lz41Ytm81y5swZ0uk0Bw4cKFEa3S6WzWY5ffo0uVyOyy67DJ1Oh8vlorq6WhaunXdEBoOBqvoQFbUB3vT7lxNfSXLu+SFOHezj5NP92BwWkiul78riQlzW8WxEtRmN685\/ZWXlNzWeV9O2GvGo9fEsxpRX9asKDLMATr8FVEozqYzyOQiCwODAKOdXe6i86R04OqUdanYLSqnmCgez55XrJaEmP10nlMlKnWV2RoeV9zM9GlMcr9oVouP42mp9cX6VF+ZXKavx0BK2k+mbQ6PTMKcS7YRaldVFw61BRQmG8j0RRhRqO3GJZsHCd3eFmJCp35TtjjBzVnq\/rqCVmalYyefOcicxCYlsg93Iak\/p5656H8nB4uck6AQ0U1MsmC2cTgZYbF87fxO5zQELvnIrXCj+zLiyvphIlFfQ8b21VJDbZWVp0\/NO67M899xz+Hw+\/H4\/LperqN6gZplMhlOnTgEUJvPtaHm9G6CE6xFK4dqLi4vMzs4yMjJSYNfOOyGHw7EWDb2hmStvaiSbzTLePUvX4WEuPDPI4KkJchcXltm0\/IJ0JbZMNpv9TcSz3WyrEU9aoW4iaAWW5pWdwvKismNKqbAeAMxHY4rj5RU+uvvXVvVffeyH3P2G95E9X7z61eg0jG4BfKDRqadGUqpCdCKTMgJneYs0eOlXkb+OSzROjg3MMzYwT\/PeMlrKHUwclXcqOqOW6V7laEeO6wrWnm9MJioB8Dd4mJeRtNbqNSwMS48JWkjMSEPsrX4rcxIsBbC2SIlKsE0HGnwsnS2VPrAZSjk1XM1BeufidI8KZC8iF3VGraT8tn5lqSjNZq10wuw6mu3MqBEudgzpJcgDI7UR6uvrmZ2d5dy5c+RyOTweT4EvTSlllk6nOXnyJHq9nj179hRNntvJ8s5REAT27dunep6CIOB0OnE6ndTW1pJMJpmbm2NmZqbQ55J3Qh6PB6PRSPXOCBXNQX77gwdYXUjQ+dwQnc8O0XtUHrUUm43x7LPPFs4nHo9jNptZXl7+tXE82wpccCmptuhMVJZFGMBoNyGqqI\/OzylDqTV6Fe4xvZaJceXJ0+svLgB\/\/on\/RldeDHV21fmJy7Ap581gNTCqQtKpNWkYUoE2hxr8zMnQfOTNJMFmsNG8EQcDCkqlF06PcbhjgmiVHUOldPNgaGeYuEJEGmoJMqNAf1O2O1wke73ZtArwdWeNlVUZwEPZzghLMuzV3gqXZJHeFrBJ0uZojTriA6WpPkelm0RvcbSTsZg5Pi5yoT1LdgOTbKTRR3ZTZG7xWUiPFL8L7or1ZybURHj44Vjh7838bwDWgL2gKnr99ddz2WWXYbPZGBkZ4ZlnnuGFF16gv7+fpaWloj6QZDLJiRMnMJlM7N27d9s7HY1GsyWnI2VGo5FIJMKePXu44YYb2LVrF3q9nr6+Pg4dOsTJkycZGRkhlUphMBhw+uwcuLWZ3\/vizXzqid\/nTf\/xO+z9g8vxNQfYSP5hM9m4\/PLL0Wq1LC8vc99997Fz507Onj3L\/Pz8lhC9oK4+Cmtow7vvvptIJILZbObGG2+ko6NDdd8\/+tGPaGlpWZM1b2nhwQcfvKR7p2bbMuJRS7XNzMzQ9qyyet4aT5t8qkWn1xKdU56ANTplvxwodzDbr4LH1hRPVKlMhv\/oepyP1LyB+PRa3j23hTSFq9bHlEK9BNbEzxZeUN5GL0MPXxg3ahlUYZi2B02MKxymotHHYNcU4wNztAONuyJUWIwk+9YiAq1Rq+hUAFmyTliLdhYlGIPzFmz0MSNDRqrRCuRiMilWAdIL0u+M2W1mXiKVBuApdxCdL3VWwdYgK+dKox2H20Di4i3O6fWMhysYnlhGN1oKebboYfOeA9UO2NTvZVxdXwBNGIMsL8YKf2ckUtIb6XIEQcDhcOBwOAor\/TwUeXBwsKCY6XQ66e\/vx+l00traekmpuVfS0uk0p06dQqfTvWQR2Wa4djweL9yjvr4+DAZDUTSk0+ko21tJaFcZ+\/7gSlbnVxg7NszokSHSKylMJhN6vZ6qqioaGxuxWq3cd999PPLII\/h8Pl7\/+tfz1re+lf\/1v\/6X7DmpqY8C\/MM\/\/ANf\/vKXue+++2hoaODv\/\/7vef3rX09XV5dsc++RI0d417vexT333MNb3\/pWHnzwQd75zndy+PBhrrzyyl\/6XgII4lbaWl8hy2azZDIZ4vE4hw4d4uabby7CtIuiyMDAAH19fVQ6ynn8ww\/J7svdEODZY\/ITqCts52y\/cnRgqdPQ3y8\/wzYdCHP0eJviPirrXHR19pV8fnlDC7dqdpFLZVnUGFQjHlt9gBE1yelaLyMKUZFGL5DWCiQUQBc79oeLendKTACdU8tKVH5V1nRFOR0vlIpuVTcEqPXb8VtNDMuxDACh5gCTChpC5XuV1UfDTf4i2euNVrk\/wtQZGbRalYWMTI9U5YFyZk6V3hezy4QhlSK3KaoQdAI+n4nUpqjaErJjWZhHFGG+egdnLyyxOh+nZq+X5U1MExqdQLlLU+I4Gnc5SA+sO0FruYMQF0lCtRq+v7STF46uO+a9EUMJuu+3P\/tGGt7YInmtGy2XyxGNRpmYmChwfOW50nw+30smhfxS2auRBsxms8zPzxfScqlUCo\/HU3BEZrOZXC5HNpsll8sV\/rW1tVFXV4fP50MQBN773vdyzTXXcNNNN\/Hzn\/+chYUF\/vEf\/3HL5zEzM0MgEODQoUNcf\/31iKJIJBLhrrvu4q\/\/+q+BtYg1GAzypS99iT\/6oz+S3M+73vUuFhcXeeSRRwqfveENb8DtdvO9733vl7tZF23bRjxQ3NmbzWY5d+4csViMK6+8klUJtceNpgYptriUfzCCIDA+rpza0qiAeLRaDQMDpStegOPd56m+OsQ19gamTisfx+gyqaqW2nxWRlVYD\/y1LvrblVODiaQy4MJbZWV8QF4mwmTR0yejaTPYPc1QzzTVO0NEWn3oxpdJS8C6pdJZBdPAkoK0QaDeK+t0BC2sTslHSlatgQWJKNlg1RPtkpHCrvMRPV36jEM7w6x2lDoqT8TGtMNGx0iW+efWnasYLV14hBt8ZPqL76XRYSQ9VLwAcVWZC2i2TE0VL\/zn+jXaXUYy8dJFwlZ52jQaDUajkfn5ecrLyykrK2Nubq6IOTrvhJxO56va\/JhOp2lra8NoNLJnz55XLCLTarX4\/X78fj+NjY2srKwwOzvL1NQUXV1dWCyWghNyuVzkcjk6OjrQ6XQ4HI5CWaGvr48DBw6wf\/9+9u\/ff8nnsVl9dGBggMnJSW666abCNkajkRtuuIHnn39e1vEcOXKEj33sY0Wf3XzzzXzlK1+55HOSs23leDbWeGDd8cTjcU6ePIlOp+Pqq6\/GaDQSW1YpxmuVXzq9ArMsrEGpJ2aV0WErq8oEo16\/jaFReWfwwyNPYbzOgA3lScBZ7WVyWr5QD+CudDGpUrsRdMrXbPeZGVCJqmwuO6XJn3WraQ3Sfrw02snbjt1hus6M0QNotBpadpcRNptI9s5DViTYFGBKATJevivCqIy0AUA2J+84K3aHmTor\/d1QS5BYl\/S1m0IG0oOlzs5gNbAkwb2GBnLzxc9CFAQy1WGODMP4pi744A43K+OlYAe7VVdyp4N1Lugu3ta0Ic3WseBmI6utx2+B2VLHs1WetqWlJdra2igvL6e2trbAHp2HIufTTfkifh4l5\/V6X1GkWyqV4uTJk5hMJnbv3v2qpQEFQcBms2Gz2Qr3aH5+vgDiyGaz6PV6crkc+\/fvx2azkcvl+Pa3v01vb6+qHLWcSamP5iPUYDBYtG0wGGRoSP43Ojk5Kfmd\/P5eCttWjidvGo0GQRDIZDKsrKxw6tQpQqEQzc3NhRdKrXk0q0LlL6qIljkDVlAhgJ6eVt7A5bEwpOwveLT3Wd7cehO6DvkfyrJKGg4gOq0ige02qVLkGL1axGn5zKvFYWRARrMmb0uLyowJwoYFQS6bo\/3UCO2Ay2ulpTlMxqRE+QvLCtIG9jIrsX5ppyhoIKHwXY0MmEVn0iHMS9cb3TucrErUw4ItIRJda+m8nMtO1Ouju2eBcMbEVJeEVELAwuwmxyNoIDFc+n6Zc6kiNJulzA4zgxcHTfz8yWKH53CaECVe061EPLFYjFOnTlFTU0N1dXXJuF6vJxwOEw6HyeVyBebozVxpfr\/\/Ze1PSaVStLW1YbFY2LVr17aqPen1eoLBIMFgkFwux5kzZ1hYWMBkMvG5z32Oxx57jJaWFh555BEeeughbr755hd1HCX10c1RqCiKqpHpi\/nOpdi2dDywFvWMjo4yPDxMU1MTFRUVReNqjietojy6LEHsudGMNuVbY7YamJxQbi41W5TTeTabhbGxKf519FvcedMd6NpLfzBmr4VxlSZLd4WTERURNn+tl+mj0mm\/vKWWle9ZeXOAc0cHZceDVW6GuuSjFafXQo9Mf0xsboXBsXkOD8wSiDiprfFjT0NqcAEu9kaU7Q4zJsM0AKA1yP8wynaFmGmX\/m6gwc98r3RkGmkNMnO6dPWg0WtIDEtH3UIySaKmnJFlgf72acTc2jUH\/dKTb2JKAphQ7yM1VOzk9RY9maHia3BXWeDiY435q5md3SRvbS7llNMZdRgVFDIB5ufnOX36NPX19SW\/PSnTaDS43W7cbjf19fUl0tZms\/lF9wwp2XZ2OhtNFEU6OztZWVnhqquuwmQyUVVVRTab5Wc\/+xlarZb3vve93HLLLbznPe+5JAeUVx995plnitRHQ6EQsBbB5JVfYY39f3NEs9FCoVBJdKP2nUu1bfWU8h41l8shiiIjIyMcOHBA8sVXax5NqCiLxiQ07zdaTqMM5w6UO1TpxufmlJ1BzY6ywj7+9bFvkdlZWtuwV7pVYeFbSZvEFFb7sNa7M62i3zM+olxD8oaVz6O83i8ptpU3T3ANZTM9vsCR53p57IVejscXWdhhQ9\/kIa5Af2MNW1iSSIcBa\/LUCj1bBhnYvFavYVmm0bZsV5jcyvo7ltVrmPdYmCh38+iFBAefn6bv7FTh2Tl8FmYk2Kz91S6WJeDbTgk5jmC9BzFd\/F4aE+vO79ne0u8YJCJ7tWhnZmaG06dPSy74tmqbudLq6+vJZDKcO3eOQ4cOcfbsWcbHx7cMHZayPLTbarX+Sjid+fl5Dhw4UABkHD9+nPvuu4+vfe1rxGIxfvSjHxEOh7cEd87v9yMf+Qg\/\/vGPeeqpp0rUR2tqagiFQjz++OOFz1KpFIcOHeKaa66R3e\/VV19d9B2Axx57TPE7l2rbLuJJJpOcOnUKURRpaWnB7XZLbqcW8ShRlgPkssqXHk8oN49ancq9Ljq9lkGVPJtpU53pXx\/7Fh+56X1o29cni0UVsk+AKRWGAE+5gxEVtmq13p1gjZvhfvnIS6vXMChTI8nb5Kh846reqKVfohdmZSnJqeOD1O2M0N8+SbDMSVm5G5fRgBBLkB5fBhFcPjuTk3K9OSFmZfqOfLUeZmVqSuGdYebOSkQ7OoH4ZIxcuY9lo5nJuSSjPXNk03EaDjhZjUk4kqCBZYk0pC9kZVai8TQ1UbposeoyxWm2iA1hei1XHw+Wc\/hHEtefLl1AKZGDTk1N0d7eTmtra2HF\/MvaZmnrPDvA8PAw58+fx+FwFAAKWxVCSyaTtLW1YbfbtzW0WxRFuru7mZ2dLXI6P\/\/5z\/nABz7Afffdx1ve8hYAXvOa1xQ0ybZiauqjgiBw11138fnPf576+nrq6+v5\/Oc\/j8Vi4T3veU9hP5vVRz\/60Y9y\/fXX86UvfYk3v\/nN\/PSnP+WJJ56QTOO9WNtWjicej\/P888\/j9XpLZGE3m5oWz\/Ki8nhUJQKYU2EkEAVlx1Ze6eeCQtoJILpQeox\/eey\/Cs7HErAxpuIw\/HVeBlS42RxhOyjICmyld8cZsIKC4wnXORm6ID9e0xqip0MeFFC\/O6IISjAa15z01NgCUxsYCwwmLbsvq2Y4ncbU6kefziEupUjPrSJe7AXKSaC68ma2GkoUQeEig8HUAiIiGo8N0WEhrdezmgWDxcDJF8ZILBd\/U6vXEBuSrjFJ9dIAJCWECAM73CQ3ISq1Bi2ZTak3d7V1Lc0mCPxo1EsmVXpsqWuXk0MYHx+ns7OT3bt34\/f7Jbf5ZW0zO0AikSik5Pr7+0v6YaTmgEQiQVtbW6GfaLvKCIiiSE9PD1NTU0Ws3U888QTvf\/\/7+T\/\/5\/\/wjne840XvX019FOCv\/uqviMfj\/Mmf\/AnRaJQrr7ySxx57rKiHZ7P66DXXXMP999\/P3\/7t3\/LpT3+a2tpavv\/9779kPTywzRyP2WympaWFQCDAiRMnFJtI1SKeJYWueL1Zx9K8fFpJEAQmJpXrKovLyqk6l1u5mKrTaenrHZQcyzsfu94Jo8pINYNKrh5ExhUkoaFUd6fkXA0a+hWYqgGyCiwSsHbPlWxVYSFhd1noOSfttFKJLOlsjtNHi52WIAi4\/VYaWsN0L6XQ13jR6QS0goBOI6AFzEYdU+ks2YYQWRGyokgmK5LJ5nC6LZzojTIbFUiNLwDr70vzvoikzEWVDCmpxWUgMVn6PjpDZpbGS99Dt8\/M0qbLDTZ6EAcGiz4zJtee61y4lu5j0iv+ZLQ0CpKKeEZGRujp6WHPnj14vV7Jfb0cZjKZKC8vp7y8nGw2SzQaZXZ2ls7OzkI\/zMaeobzTcblctLS0bGun09fXx8TEBAcOHCiAKw4dOsR73vMe\/vVf\/5Xf\/d3f\/aWPoWaCIHD33Xdz9913y26zWX0U4O1vfztvf\/vbf4mzU7Zt5XgEQSgUsNRoc5QVKZUbHK0eMyg4HnfQxsS0MpR6ZEQZ3ZUTlWtM1TvK6Dgvn8v9l8f+i999w5vRa5yQk\/5xCVqBMRXgQbjJT6+CrADAqkJEAFC1M8T5NnnH5AnZGO+Vj6jMdoMsqAAgWOGSTLPlbUdziHNHBiXHdHoNwxKRpSiKzE8vs1iRoqtNOuW556pqOo9JX1fz3nLG+0sdts1lkqUuMpmkf06VjX6mTklIYftNxGOljiEzXfpu2o1iUZrNFLIhTA2BTsdXnsziCBlLQAQGo1ZS8tvqLY54BgcHGRgYYP\/+\/S8azvtS2Ebp6nw\/zMzMTKFnyGKxkEwmcblcNDc3b1unA9Df38\/Y2BgHDhwosAgcPnyYd77zndx7773ccccd2\/r8X27bdonRrfK1KUU8RodyFGC0KfezOGXQR3mzuYwsqoATxieUHZPLrVyIt9ksfPcXP6AjfAJB5nSCjX6Wo8o1IJ1Kv5LDb2FIJZpJqgA1wtUecgoACH+VvaBhIjleJs3nlrcZBTLQht1lLMncA6vDyIAMd51Or5WVhnB6LQyfl06TVjcFJBtc9UYtkzL7y8oskvTx0v2YfHrim+QoBK1AdqT4GXl2rE1mfZ56OvtXMEikpLxB6ZRaPuLJr8oHBwe57LLLXlWns9ny\/TA1NTVcfvnlXHHFFaRSKfR6PbHYGslmR0cHU1NTW2KyfyVtYGCAkZERLrvssoLTOXbsGO94xzv4whe+wAc\/+MFfa6cD29Dx5E2Nr02pxqOzKvORaQzKl22wKgeCVpcyDYdOp2V8TLm+k0gqgxdq6yrJZrMcO3mCg8Iv0PglJnYVOhCdUcugzASaN4NHQClidwVtir07ggCjAypsCMvyTker0zAgwwoAa9HOpIKEQzYln+Lb0RwhlZR+h+p2hVmWScdWNgRk0XcJmZ6qmp1BUhKAFnfIxmxvaZ3OU+5gUUJ6oqyqNM3lqrSRWyk+V1Mqimi18k8\/Wavr5CQcu8sjvQCz+m2F+sPo6CgHDhzA4ZBQM90mFo\/HOXPmDMFgkGuvvbaEsPPgwYO0tbUxPDzMqkqbxMttg4ODDA0NFUhXAdra2njb297G3XffzZ133vlr73RgGzueXybiSWSV6z8ymav1cRUotSeg\/CP1BW2q7NqDMlQ6eTOZ1iOVvv4BHpz4AZrq9UlUb9LKrsrzFmkJkFABYcQXVGS0a9yK0cyOXWHmFWhoKhsDjMtISAOEauyyEQuAxSqPtvOFnfQrsHEvKjWMKpSklmakJy9fmYMJmdSmXD9yuNol+XmgXJqgUViUqMlYik\/W4DMjTE5wTKhmNrrm7BILEkSgFukFmNlrpbOzs1D03s5U\/Kurq5w4cQK\/309TUxOCIBQIOxsaGrjmmmu45ppr8Pv9zMzM8Pzzz\/P888\/T3d3N\/Pw8uZxy7fGltKGhoULKMl+8P3PmDLfffjt\/8zd\/w1133fUbp3PRtp3j2Zhqe7HgAoNVWfM9mVYOzVcTyumrrEr9JhRWLs6GIj7m5lSE2KaL0zZzc\/N8+\/R\/kW1eS\/EFGgOkFPpaAJIyq\/28BWtdzI0rpQxFxoeUgQkalSqhRQV2bjTKPyuL3UC3Qm2orNojW2Atr\/UxKhFpALh8VtkUXKTGw6REbQcgUiUN7TfbDIzLkJqmJGosABmJor8zZGN1ZNOxNWCJFTtQfRCWzFa++qO1d0QQYEGCrdso0580MjvC3NxcUf1hO1re6QQCARobG2Un7XzP0GWXXcaNN95IbW0t6XS6qGdoYmLil+oZUrORkRH6+\/vZv39\/IXrs6Ojgtttu48\/\/\/M\/5q7\/6q984nQ227RxP3nQ6nTK4QMnxmJUdz6rKhD2rADwAdfE3NcdktarUmJx2ensHSj5PJlP818Fvs9AyQVKhZgJgdZtVKXKsKsi7ypYgs+PyvGx2t4leGbQZrE3Icmg0AH\/EKUsoCuANW8jIpNI0Gg0TMg4CwO2TjigAqur9BaXIzeYLyUezMZl7Ea5zkk2Xnqc7bGdO4hxdYRsLEg7dX1F6bN8OD9mFYscTNOd4NFZOfl1mdxpJJ0vfB62EtLvGoGE1G+fyyy8vwHu3o62srHDixAlCoRANDQ1bnrR1Oh3BYJDW1lauv\/569u\/fj8ViYWhoiGeeeYbjx48zMDDA8vLyllBhW7HR0VF6enrYt28fTudavbKzs5Nbb72VD3\/4w\/zt3\/7tb5zOJtu2jkcp1ZZNZ8kqrOaVyI0BlhbkIxqNRmBiUrkvZmxMeUKfUeFwcziVU3U7aisUfxSPHHuUw8uPoFOoyftrPbKTK4DOoN67o1OBQFc0+slITLh5q2kNkVRw8qEqt+J1plblx+p2hmRTfHqjliEFWYXohHSUp9EITPZKO7OKBh9zo9KOJyEjsR2ukhHBkxHHE5ZL9+P2FC9STH4rq+j4\/hPrEXOk3CO5v9Ry6Xuucxg4cOAARqO6mu2rZXmnEw6Hqa+vf9GTdr5nqK6ujquuuorrrruOcDhMLBbj2LFjHD58mM7OTmZnZ7ekeCxlY2NjdHd3s2\/fvgI4o6enh1tvvZX3ve99fPazn\/2N05Gwbed48g9JCVygytOmMOECROflC5CekJ2UAorLH7YTX5U\/vsmkZ3hYGYo9OaU84adSyqm+hoZann3hMI8u34+hQfpcojPKDbIVOwOsKkDSzXYDfTLcZnmbkehBKToHpRqLVmCoR\/4+hKvdzCj0MK2uyO+7flcZKzIUOdWNfqZkpL9rd4VZlFEmdXulU1JGu5alceljpWRqVxkJBgOr18LKYOmCRZguThe6am1841Sx03A4pCOXxHzpPXJH3Iqy1q+2LS8vc+LECcrKyqirq3tJJ+18z9C+ffu48cYbaW5uRhRFLly4wMGDBzl9+jSjo6MkVFhL8jYxMUFXVxd79+4tMKwMDAxw66238o53vIMvfvGL25ZR4dW2bXtXlCIeNceTSMg7DqNNTyohv7qxeZWh2G4ZiGreyqsCiqsnu8PK0KAylY4ax5vJvDZxTE\/P8K2j\/4fVXSOwAeDmrXQxrqLwqVb\/qWgOklK4j5WNfkW0WVmtlxEZ4k1YYyqIzco7D3\/QJTvm8lqZGZL\/blrh+Tpd8s\/PqJeO8LQ6DZMy9aLqpiCixELHW2ZnTqJx1xG0sjBQuq9QjQs27cZd7SQzW+zcR7NGnj1Z\/JkUlFrQCGSXS59fUpuWlLTeDra8vFwiwfByWb5nqLm5meuuu44rrrgCp9PJ+Pg4hw8f5ujRo\/T19bGwsCB5nyYnJ7lw4QJ79uwp6N8MDw\/zxje+kVtvvZV77733N05HwbZVA+lGU4p4hnrlqVUAVlbk0ztmlxEUMmmJjHKkIOiV83h2p7Ljqq6OMDsvj8Ty+tyMjirLVw8Orl+\/KIr89OBP2Nncyn7ht0hPCdiCVuiXdzwOv1VV3iAmsVreaBYJEsuiY\/is0Cd\/o5WYDkwWPb0K0VZ1fYD2o9LvgM1tpF\/m2gxGLcMyvGxmu4GhDumxmtYgEzJj2bj0OxqqcDE+U5rSC1e7mD9T+rk2UbqY8gbM5DYEQYLLwjcfK3X2okS9z+O3IKYkUndlHpaWlhgcHESv1xcEzNxu96s6UeZ1fyoqKqitrX1Fj53XGLLb7dTU1JBKpQo0Pnk6mTyztsfjYW5ujo6OjiKWh\/Hxcd70pjfx+te\/nn\/5l3\/5jdNRsW3neJQaSHO5HBcuXGCoZ1BxH8sS0NK8GVQK+zqZ7vO8zc4r12\/SaeVozKjS0FlTU8bUlLzjCQS9jI2VTsrtFzoYsg\/x5v3vUI12AjvcTE\/Jp8mCNW6GJZiU82a2GRRBAQaTThk0ELTT267A27ZTWjo7b9Oj8ue+ozFCh4z8Q93OCH0npY9b2xKm97j0fTfJqNl6QjameqTfBzntn9xyaRrH7DCx0l\/q2LTRKBvdc5szQt9wKegkLvG+Oz0mkCBNDVYH2bNnT4GeZmZmho6ODjKZTJGk9SuZjss7ncrKSnbs2PGKHVfODAYDkUiESCRCLpcjFosV5B3i8TiiKFJWVlZYGE9OTvKmN72Ja6+9lv\/4j\/94ReS2f9Vt2zmevG2GU6dSKU6fPk06naa+qo4humS\/u6jA06YxKL8U2c35jk2WSChDMqemlYEJsVhMcVwQlI+\/Y0cVEzI6QEtLy7RNH8ZiMlNmvxyWpAvI02PK5+BQIQStbg3SfmxQ\/hx3hRUJPyM7PMwoOL5lGQgyrDkIOaYFjSAwMSCf\/luYkz9mYkn6uZosesbk2Kt3eBg6UTq5+8qdzEvUkew+CzGJ+xquc5M4XxwFOcrspDewX6zWlXFmvNTBCAIsTJVGUIIgfT151oKN9DRNTU0sLy8zPT3NyMgI58+fx+l0FpyQ1Wp92dJei4uLtLW1UV1dXULrvx0s3zPk8Xhwu92cOXOGSCRCPB7nhhtuQBAEjEYjFRUV\/Od\/\/udvnM4WbdvGg3k4tSiKLC0tceTIEfR6\/RpDqsLcrzPrScqkP0C9eXR2PqZwThqmJuWjCbPVyKgCh5ter6O3b1Dx+CMqaTa1wqcg5Dhx9jhPzP8X+j2zbBZijTR4mR6OyX5fqxMUxdwAFqPKabiVJflzFAQYVXBq5Tt8DHXLH98s0xQJa+AAOaSbJ2hjbkSmMTRiZ7RTesFQ0xokJfM+rcjUqILl0qjFyA53SR0HQJ8t3b8\/sqEWFfHy1492kF4pTan5AnbSErU4m8x9svpKm0Xzqaba2lquvPLKAvorGo1y7NgxnnvuObq6ul7yhsyFhQXa2tqoqanZlk5no83NzXHu3Dl27dpFa2srl112GT\/\/+c+prKwEoL29nUgkwnve8x46Oztf5bPd\/rbtHM\/GVBushbFHjx4lEomwd+9edDqdYg+PmrJiSqF5VKMVmJiQnxSDFS4yGfnCdUWlX\/GHWV0TISmRy89bKORjdEQ+BaXX6+ns7JYdB4hG11baKysrPHDo23S4foY+su4I1HR3qnaFFZkEwjs8DHfLR3WhKjcDnfJotbrdEeYUmA68Afn+G5vDRP85+RSeXi+fxqys9csK6pmd8qvUbEK6XhiocjErIzURn5WGa4sSaEijRS+ZZtMtr0G3NTYz\/9A5zdJqiuhkqaPzydwvh0wTtcWv3jC6Gf3V0NBANpstachMp5X74ZRsYWGBkydPsmPHDklZ7e1k8\/PznDlzhubm5gKJcTQa5X3vex9ut5uOjg4mJib4+c9\/Tm1t7baGqm8X23aOJ295x9Pe3s6uXbuK8PzpFfnJW6\/C06YkEOcJ2hUdi82j\/EJZ7crjLrf8pApQXqEsvNXYWMvKijwUPBDwMj5ePDH3DvTyYNd\/Mld5Go05R79C7QUgo9LP4AooT1yesHKPkijR1Jg3g1GnKL+wozkky71md5rpU3BKMzJRniBAdlE6DLa6jYx3SS9EAmXS1xmodBKVOJbNY5ZMs4UavOQ2ibVZfFbSIzOg0fCgqOP80Bw2u5nodKlDs9tkFloyLQFSEY+SabVaAoEALS0tRQ2Zg4ODHDp0iBMnTjA0NHRJHGmxWIyTJ09SW1tLVVXVJZ3PK23RaLSgxpqXj15cXOStb30rgUCAH\/7whxgMBrRaLVdddRX33HPPSxK9\/fu\/\/zu7d+\/G4XDgcDi4+uqreeSRRwrjoihy9913E4lEMJvN3HjjjSXKpclkkj\/90z8tpEtvv\/12RkeVEbWvlG1Lx5PNZmlvbwdg9+7dJUqIShGPxqRcvFdCazl8yp3cWr1y\/SWVUk6DxZNqaqIqiDmH8qRfVyf9wmezWQ6ffZqJiiOkQ\/IRldNvVezd0Rk0DF6QTyXqDFoGOuXHnR4zvQqOr363fP8NwIJCb1J1c4iMDJvDjpYgs2PSzZ9VzUHmJ6QjMFfQgJyfXJBhMfBHpBcXkTqPZMRlkiCNC1av7aOrIsiDR\/sAKA8HJPdr0ElHaxmJHi2tUafK3K5kGxsyr776aq699lqCwSBzc3MFjrSenh6i0agsVDsajXLq1Cnq6uoKaartarFYjFOnTtHY2EgkEgHWIN9ve9vbsNvtPPjggwVF0ZfaysvL+eIXv8iJEyc4ceIEr33ta3nzm99ccC7\/8A\/\/wJe\/\/GX+5V\/+hePHjxMKhXj961\/P0tL6u3zXXXfx4IMPcv\/993P48GGWl5e59dZbX3Sz7Etp287xJBIJXnjhBeLxODqdriCgtNEU+3j08mkTQSMwL9MgCKC3KBcGV1aVaxsTk8q1ETVi0MFBec0bgMlJ5cbTlRVl0ThRyPLwyf9mJPIElppSJ+ittCuyHdTuCrO8IO8YaneFWVIABtgDBsX9S4mr5a2y3s+YAkQ8JlFgz5vNJr+gsNvlx7Qp6ffBX20nKuN4ViUg1ACCBChFZ9Sy2l+atjQkVlipK+ML\/3Om8Jlbhu0iJdPMHJdYYFlklEdfrJnNZioqKti\/f3+BIy2ZTHLmzBkOHTpEe3t7kWxB3unU19dTUVHxkp7LS20LCwuFcy0rKwPW0tdvf\/vb0ev1\/PSnP31ZKYduu+023vjGN9LQ0EBDQwOf+9znsNlsHD16FFEU+cpXvsKnPvUp3va2t7Fz507+67\/+i9XVVb773e8Wzv8b3\/gG\/\/zP\/8zrXvc69u3bx3e+8x3OnTvHE0888bKd91Zt2zkeURRxuVxcccUVsr08KYWO+5wgf0kGm1Zx4luKK0\/ck1Py9R+b3czYqPxqP1IWUCQGLSsPKToWv99Lb2+\/\/PFtVs6fly9q6nQ6zp+\/AEDHhXZ+fPo\/WGpow1q2vuIeG1JrOlUjJZUfFxFZicrX18JVHgYUKHxcbvlJs7IhIKuyajTrGDov19ejY0SGWsdfbmduWPp9sDqko+pAtYvYSClyzuIyEZXoaYo0+EpqSCaXiXQmw1\/\/or34XAXpFPLSbOk52l1GMhJURZeaZrsUy3Ok7dy5kxtuuIG9e\/diNBoLsgVHjx4tAAnKy8tftvN4KSxff6qtrS04yHg8zrvf\/W6y2Sw\/+9nPXlFG72w2y\/3338\/KygpXX301AwMDTE5OctNNNxW2MRqN3HDDDTz\/\/PPAmhRDOp0u2iYSibBz587CNq+mbTvHY7FYaG5uRqPRyLIXKGnxZBQo\/J0qcgZKctZmm0ER0VZe4VPcdyiizFhdViadSslbzQ7ltERTU50i++7OnS0sLhZPUs8df5afdv8buV09VOxzszgjH814I3bZxkxYE3PrUxjf0RJUBBUEwi7ZMaNZr9jw6lQgO63fVUZCpqG4dldYNsoKV0rznwkageSc9P6sdumfU1m9R5LdwGIorS05alx8qWOK5U2OI70qkR4RILUo0TwakL4fL3XEI2eCIOByuaivr+eaa66hpaWF5eVlzGYzfX19HDlyhN7eXllWgFfTlpaWCqCHfCowmUzye7\/3eywtLfHwww+\/YtpF586dw2azYTQa+fCHP8yDDz5IS0sLk5Nrv4U80CFvwWCwMDY5OYnBYChQ+Uht82ratu3jAXn2AqUaT0qBtNJoUwYexBVW7IEyBxMKKEmzyr5FUTmvmsko9wdlJSC3G00rJwhz0SwW6Vx0JpPhscMPc\/1rYlj3ehFGKonPle7L6BARx+UniUCli4kx+YjOaJa\/Pzq9hsEu+WinYWeEC8el05AGo05R7E5pkSJmpK9HEGBuWLrnp7LJz1yvdOSbikq\/lxqJQr9GJ7A6VBwFaa0Gvj8xx4Xh0gVOdKo0debxWiUh1g6HCVECeGj1v\/K6O3Nzc3R2dtLS0kIkEiGdTjM3N8fMzAwnT54sYgXwer2vah9MvpG1urq6AHpIpVLccccdTE9P88QTT7yiKq2NjY2cPn2aWCzGj370I973vvdx6NChwvjm3ipRFFX7rbayzSth287xbLwpshGPkghcXH6CF3TyAZ5GKzAxKZ9KszqVHUtCBTgwqVL\/6VPo7xEEge7uXsXxnp4ele\/Lj2s0Gjo62pmbm8doNHL9Fa\/HOFnLyvTasxA0sDwnf1\/XCD\/lr8\/hMSvq6jTsrqCzTb6+tSqj+glrnG+dMowDgTInQzJOyeWzMiwjG1HZFGC2Rzq6tTuNSI2EatysSjTm6s0a5iXuTbjBT6Z\/Hehh8Nn4VqyHuenS98xqMxGVqGEFQg5W+0prTRazFqlq5CsV8eRtdnaWs2fP0tzcXECE6fV6QqEQoVCowAowMzNDd3c3yWQSj8dTaFx9uQr3UpbniausrCyg0tLpNH\/wB3\/A0NAQTz31VIGT7ZUyg8FAXV0dAAcOHOD48eN89atf5a\/\/+q+Btagmf18BpqenC1FQKBQilUoRjUaLop7p6WmuueaaV\/AqpG3bpdpAXQxOyfGsKECtswphvTdsV1TazKEccYyPy4evDqeNoSF5GGN1dbkiMWhtXTWxmHzXfVNTveL3m5sbmZmRd6qtrc2F7yeTSR5\/9n\/4xcC\/Iuy8gK0sx45dYaIyRXOAQLVNkfCzqiFIJi3vuDIKhKWRKo9iQ2tyVaFuJJMugzWwgly9zyHDt6fVa5iWIQv1BqWjicrmAEi8V2bD+meGSjf\/OHiCnpk55qZLHUl5OFjyGcizUhtkot+Xs8az2WZmZjh79iwtLS1Fk+NGy7MCNDY2cu2113LVVVfhdruZmJgoIupcXFx8WVNyKysrBXLSPGVPJpPhQx\/6EJ2dnTz++OP4fMqp9FfCRFEkmUxSU1NDKBTi8ccfL4ylUikOHTpUcCqXXXYZer2+aJuJiQna29u3hePZdhHPRpMTg0spOJeoAmpNKZVm91pAQc1gakZhRe+yMjkhj1irqg4zMycPIw6GPPT2yR9br1deH3g8yjlnt9ulOO6wl05ImUyGp557FI3mcW6\/5XdwN\/iIdku\/LkaTCZB3jFMKKbg1MTiF2lHYyfRQTHIsUO5kQCZq0QgC0zINniCPgtPptUzKRDtVLQGmZcAIyxPSKDe9FB5bEFkdWcuFJSos\/P+OPcFSPMGeXc0MSSww3E4HC5QuHKRYqQEEmV60VyrVlnc6O3fuLKlDyJkgCFitVqxWK9XV1UVEnUNDQ+h0ukIk5PF4XrKU3OrqKm1tbUQikQI5aTab5c477+TUqVMcPHhwy9fwUtonP\/lJbrnlFioqKlhaWuL+++\/n4MGD\/OIXv0AQBO666y4+\/\/nPU19fT319PZ\/\/\/OexWCy85z3vAcDpdPKBD3yAv\/iLv8Dr9eLxePj4xz\/Orl27eN3rXveKX89m29aORyrVJuZExbz98oL82JKEDkre9GblyX12NiY7VlbuZWpW3vEYVXqL1GhwUillNNnEhLL+z9CQPG+aIAh0dcmzIVgsFn7x1M+Ix+PU1zWws+waFjsdZC6esidoZ0BBdC1U42BcgT8tUuVlblwadKDTaxhWiHZCFR7mRqUdSO3OEMPt0t8tq\/UyPRCTHNuxM8jYOWlnZpIhkA3XelgcKb1Go81AVKIeFGrww9Aki3V27nniUbIXIyIN0pOpnOihKFPPzMoszF6JVNv09DTnzp27JKcjZZuJOvOEpp2dnaRSqSJC0xfLFBCPx2lrayMYDBa0f3K5HB\/96Ed5\/vnnefrppwv9O6+0TU1N8d73vpeJiQmcTie7d+\/mF7\/4Ba9\/\/esB+Ku\/+ivi8Th\/8id\/QjQa5corr+Sxxx7Dbl\/vI7v33nvR6XS8853vJB6P89u\/\/dvcd99924JPbls7HilwQWolJcl3BaA168hF5SdpJUbmjEIqzem1MDSrMLlrlIEDSsSggiCowqT7+koZifMWiQQVx2tra+jtla8P7Wxt4dy5s7Ljra0tHD12DICe3m56ertxOp1cvfe1aKcqCFd5FO+r2SY\/KWi0GkYUWLAbdpXTfVI6RanRaBiTSXsBmEzyNTm9ST5to9dKL0D0Ri2TXdLn6vFbGJdwPOWNXhY7St8bh9NAR62Jrz72i6LPtUgvUBJL0u90QoaFPSnTS\/VyRzxTU1MFppFAQBmleSmm0Wjwer14vV4aGxtZXl5mdnaWsbExLly4gMPhKDghm822peJ5PB7nxIkT+P3+grR2Lpfj4x\/\/OE899RRPP\/30q9rg+o1vfENxXBAE7r77bu6++27ZbUwmE1\/\/+tf5+te\/\/hKf3S9v29LxCIKAKIpotVqSyeIfl1J9x+yywnhMep9agWWFIvWyAuWHL2xjSEENYVmhcVONGHRHbSVdXRdkx5ua6jj2wnHZ8erqCsbG5KOtcDio6HjsDuXJKC1RY1tYWOAXhx5Eo9FwleNaDFUBcpMhssniH7zVaWK4S945\/qZbgAAAWXJJREFUVDZ4Gb4gP56VYSIAqNsdpu+0dIrOYjcw2C49ptEILIxJR5gWu4FRGTBCzc4g4+ek97kk00wqlWYzukz8ZLKLnx89WTK2uiC9+InLLKYWJODpBpOWhITj+WVZC9Qs73R2796N3+9\/2Y6zWTsnmUwyOzvLzMwM\/f39GAwGVY2hRCJBW1sbPp+PxsbGgtP5xCc+wcMPP8zTTz+97UlLf9VtWzqevOl0OlY2SRwrQal1FvmUltVtQlTo05mZV4ACW5VD01hUeuIBqKwKcb5T3rH4\/S665BUe0KjApFdW5K8JlNkOBEGgVwEN53DYOXfunOx4TU0Nz7\/wLABWq5Ur9l6HPb2Dua61+1XTHOTsUfloLKcgBucLOxX7hrQa+WdS2xKm+wXpSKm8wcN0t3SEVt0SZKhNOrKVewyROi9Lw6XADoNFT2yDAqtGpyHXaOY7XYcZOi+FRDMxOVa6H4vFyHK0NH3s9lpJSQArfEEbLErs\/2VMs01OTnL+\/PmX3elImdFopKysjLKyMrLZLPPz88zOzspqDCWTSdra2nC73TQ1NRWczt13380DDzzAwYMHC0iy39jLZ9va8UjVeJQIQgUZwS4Au88KI9Jhi06vYWJSHhWWzsnXjTxeO2NTg\/LnpFVG42x2rJttYEB+31arhQsX5JuLysrC9PTIRzstLU10tLfLjre2tvD8kaOy42bz+gp6ZWWFp597FIBIpIy9DVezmJKf7DxBO+O9MdnxQMROTIZDzeGxKLJUryroMdltVqZlgBBZGYSc2WZgQkY2we2zEJdwPOVNPpbOrzkxS6OL+\/ue5cwjPRw4sA+GSx1DVWU5E92lUXd5WZDFrtKIx+bQgkRTqdNtBIl1kNX78jieiYkJLly4wO7du1915JdWqy1EO01NTSwtLTEzM8Pw8DDnz5\/HbrcTj8dxuVw0NzcXMitf+MIX+Pa3v81TTz1FY2Pjq3oNvy62LR2PEpx6dUGBBVeGMBFAr6D86Qk7FOWmo1H5GkYo4lZ0PEajfK1Bq9XS0yMPZ6uurqCvX368ubme48dfUPh+lSIbrcvllB0DiCuAHgRBkI2mxsfHsFpP09PzAJUVVbTs2I9uJch8r4Y8KrZih59zMvdNoxEY61MQomsIyqqMhirdjHZLf9fqNDLULn3OnqBNVvCtqiXA6GnpSGhxNCb5uVEQyUbsHGeIHz\/+48LnZpM0q4DH5WaC0nfb43SwKNE5FAr5mJK4\/1qtdBRpeRnqO+Pj43R2dhZJQG8XEwShwOxcW1vL0tISp06dQqPRMDc3x\/vf\/35MJhNWq5UHHniAp556itbW1lf7tH9tbFs6nrxthlOvrq5y\/lSH7PY5paKiQsrK7jGBzPwsCDA2Kp+uMpqVb+HQkHxjZDjsZXBoUH48ElR0PDqdchpOTe20VyEacnvcnDsnHw3t2rWTs2fl03DBYJCenl6GR4YYHllD1fl9fnY1HcCWrWRyRL62U78rQt8Z+YhmVqamAhAqcxEdkR6vaQrJyluX7fDSPyf9EogyEgNlDV6WByXSbE49vbkp\/rPtpyQ3adbIISsFUQaqrpUGZ8ixUmvJIlUZs77EqbaxsTG6urrYu3fvK95YeamWTqdpb2\/H5XKxc+dORFFkbm6O\/\/t\/\/y8vvPACBoOBL33pS9x+++284Q1veEXZCX5dbVs2kOZtY6ptfn6eI0eOYNLIo6SSCk2KaQWBNp0ClNofcRKPKzSsKjBWl5UrE4N6vMoRx0aK882mxmbg9XoKpKBS1trSxNSUvENtamqSbN7NmxpJYl9fqcOcmZ3hqcOPMLD8PL\/ou5dEzTE8++fw1Ips5HbVKhC9BqscTMlo62g0AuMKSLe4DAoMYEmmQdbmNjMhg2ZzedYbODU6Dc4WJ+PVMzxlPs7XH32gxOlotVqGB6XrVjPj0u+JFCXO2oD0++yUYHMHWMquMD09\/ZJQ4o+Ojv5KOZ22tjbMZjM7d+5Eo9Gg0WgKrApPP\/00jz\/+ODt27OALX\/gCP\/jBD17tU\/61sG3pePKptjycenR0lLa2Nurr6\/HY5V\/0uXn5lFg8Ll+nSYvyE6zLr0x9PjYqvzIPhZXTD0oRicGgp7NTHnXQ1FTH3Jz8JNvQUK+ohqrWVKoEWtDr9SWiUxtt586dTEzIAwPsdtsasuj0cX729Pf42cl\/5Wz2W+QazhC6Is7cyigamcyoPyj\/\/GtaAizIMCgEyp2MyaTgIjs8zAzGJMcqG32SDAeCAIsjMZxVDlKtWX6w+nM++8RX+eHzD2OxSEcX1dUVxCVkDLQaDfMyWkMLM9Kp5YQMQjMn0yRt8Vnp6enh4MGDnDp1itHR0RLE6FZsZGSE7u5u9u3b9yvhdE6ePInRaGT37t1oNBpEUeQb3\/gG99xzD\/\/zP\/\/D1VdfzZVXXsnf\/\/3fc+bMGf7wD\/\/wJTn2F77wBS6\/\/HLsdjuBQIC3vOUtdG1CEb3\/\/e9HEISif1dddVXRNttZzO2XsW2datNoNKRSKbq6uti\/fz8ej4eRJfmeFwEDSLJUweKCfPPoskLUojPJp7O8Pgejk\/KoLVFB2E2r1SrS7NTWVtHecV523ONRjpYSCWXuOKmIJG9en5f2dnnHsmfPbk6caJMddzjklVbXnFbpdS0uLnLk+LNce22O5048h8FgoL62gTJ\/DVYhQHbOQnLewKAMUwFAWmEiDVV6WByXfs6+kJ0FGVLQzfB9jUUkF0mDO8sTA2c5duZUyXdWlqXvfSAQYHyoNIoNhwIsT5RGIhaLkflJ6ah3YVJ6YZCWec937Kyl4qpqVlZWmJmZKdRn8j0wfr8fq9Wq2AMzMjJCb28v+\/fv3\/bpqEwmw6lTp9Dr9ezZs6fgdL797W\/zqU99ip\/97Gdcd911Jd97qQg0Dx06xJ133snll19OJpPhU5\/6FDfddBPnz5\/Hal1fmLzhDW\/gm9\/8ZuFvg6G4JnzXXXfxs5\/9jPvvvx+v18tf\/MVfcOutt9LW1rYtGkFfrG1bx5PJZOjs7EQURa688kqsVivZbJbkknzBO5mUn+jn5+Sdy4xCOkyJ\/DNU5lZ0PBMTCozLjdWKUGWXS5kGZ2xMHgxht9sUHUdLcyPnz8s7tcbGRp577jnZcaUXXqfTKSLt1JxWNLpWM0mlUnRcaKfjwnqd6bprr2N+Noq\/MoTD5MOQc5JbNhGf1mLQmJgdlH7GggAzMvQ5gkZgVmbMFbAyszpNqmWJ6dQUfRP9DAwOkRvI8ZrrruVYZ6nT0et09PdJ1\/U0Mj+38rIInRIRYnkkyGJ3aQTj9VtJLZd+rtEKrMpQRuWbRzfS0mzugTEajfj9fgKBAE6ns6gHZnh4mL6+Pvbt27ftnU42m+XUqVNotdoip\/O9732Pj3\/84\/zkJz\/hxhtvfFnP4Re\/KG4O\/uY3v0kgEKCtrY3rr7++8LnRaCxRWM5bXszt29\/+doHm5jvf+Q4VFRU88cQT3HzzzS\/fBbzMti0dTzwe59ixY+j1a\/kWo9FINpsll8vhqw9g8VlZlUipLMWk02kGs45FmTSc3qBlTAFKPavglAxG+QlYjRjU6VSukYwooOx8PrcizLq5uYljF9kGpMzjccuOASwsxGTHzGazIuhg9+5dnDxZOiHnTaqhL29lZRHFulQiEedC13kuUOo0L7vsANNTs\/g8fmwWBxaDDZ1oRExrMGltTC1PoavWoTfo0en0hfNwOGwsJEZJBFdZzaywlFgkthRlPhalwVfHc89JN+8uLUlP8HV1O+jvlU6\/zs1Igx4MWunGTrdLGtHmCziIL5fuy+2zIKakz0uqj2dzD0xeruDMmTXl07xcwerqKoODg+zfvx+nUznSfrUt73QEQWDv3r2FRdKPfvQj7rrrLn7wgx+8KlxlCwtr88\/m9OTBgwcJBAK4XC5uuOEGPve5zxVYH9TE3H7jeF5ii8fjeDwe6urqeOqpp4jH45jNZjQaDa2\/s4eaW+p57sfPsNy+wHJ7jOXJJQSNwFJUOhqyeS0g43g8YTsjI9K9NnqDlvExeaqcZYU6iBoxaFShvhMOBxTRcA0NtczMyKfp1LR\/+vvlo7RgKCiZCsvb7t27OHZMHsKt18vDx61WK+0KfUM1NTWMydxvp8Oh6PAWlxYZGRthZKz0vl133bU8d066H+mqq67h2DHpCCwvebzZTCYTPT3S99Dn80k6HqvVwsiwdAQcl4heAEwyiDanw0xcolnH7TPDeKnj0Rp1mJzKtUqtVksgECAQCCCKIgsLC0xPT3PhwgXS6TROp5OlpSVMJtOL5kZ7uS2bzXL69GlEUWTfvn0Fp\/PTn\/6UP\/7jP+Z73\/seb3zjG1\/x8xJFkT\/\/8z\/nuuuuY+fOnYXPb7nlFt7xjndQVVXFwMAAn\/70p3nta19LW1sbRqNx24u5\/TK2LR2P1+vFbreTyWRwu90cOXIEr9dLIBDAaDTS3t5OxYFqGt7TgEajYbpjgv5n+pj84QVmJJiMzTI09wA2jwlk5vhAuZMZmbQJwMiwfFSiRAxqNpvoUUCkVVaVMzomHy0pFf51Op3iBN3UWE9np3wqLBwOKb7USqgos9ms6Fh27typGIkpoexaWls5KtPM6nA46O8flP2uEped3JjBYKCrS7oO1tRYT3u79FhKprhfU1NNX6f09U2OSEfc6VXp1LEclNpuNyB1dItXXqFVyvIKotHoWrS\/e\/du4vH4i6oLvVKWy+U4c+YM2WyW\/fv3o9OtTW0PP\/wwH\/zgB\/mv\/\/ovbr\/99lfl3D7ykY9w9uxZDh8+XPT5u971rsL\/d+7cyYEDB6iqquLhhx\/mbW97m+z+touY2y9j29LxzMzMYDKZ0Gg0XHbZZcTjcaamphgYGCAej2OxWLDZbKTTaYxGI4HWMIHWMFf98XWMdU5z6pFuTj3aXaC31yqkxHQm+dSP3WMEmRp8IOhiaEy+QK+EWKurq+TU6dOy4+mUfJFcja1g165WTp4s5QHLm8\/vAwUl1fxkI2VOp0Oxd0ctGkqn5ZGFNTXViiwLSYVm1tbWVo4clT5uU1ODrAOprq5maEg6Kq2vr6XzgvT37DLSx4IgMDggHbFZZWDO4VCApSnpOuLCtHTNSsxIOySTUSvpeF6MDk9\/fz\/Dw8NcdtllBcbjS60LvVKWdzrpdLrI6Tz++OP8\/u\/\/Pv\/f\/\/f\/8fa3v\/0VPy+AP\/3TP+Whhx7imWeeoby8XHHbcDhMVVVVQdRxu4u5\/TK2LeHUH\/vYx6ivr+fP\/uzPePLJJxEEga9+9as8\/fTTtLa2Ul5ezvj4OM8++ywnTpxgeHi4IC1Q1hTg1o9dx6d\/8Qd8+rE\/4LY\/vw5HWB5lpQSlFmS6wAECYZfsmF6vo6dHHn1nscqnPbRaLZ1d8vxpzc11ijBYJVZmgC4FiLbP72NwUF5CobW1hVRK3nkoRUNut0sxElP6Uap9N56Qvx9+vzxLcnl5heyYEhfc\/Jx0raa6upJYTHpsISbtRMrC0oVls1ke0SbHSq2ToW2\/VJ62vr6+EqeTt3xdaO\/evdx44400NDSQyWQ4c+YMzzzzDO3t7UxNTSn2gL2UlsvlOHfuHMlkkv379xfqwgcPHuT3fu\/3+Ld\/+zfe\/e53vyLnstFEUeQjH\/kIP\/7xj3nqqae2RDo6NzfHyMhIQThvu4u5\/TK2LSOeb33rWxw8eJAHHniAD33oQ2QyGbRaLZ\/85CfxeDyYTCaqqqpIJBLMzMwwNTVFd3c3DoeDQCBAMBjEbDYTqvXyhjuvBuAtf\/4ajvz8As89fJ6e02MF6pZFhbTVSlyenkdvUGhyDLvp65ePHObm5OlgGhtrOaeQrtIpyXdrNIraOvX1tfR0y483NjQwMyMvU7CyIn8\/1KKh5uZmnn\/+iOz40JA8w3ZzczNHnpdOs7lcLkUEn1zNCJB1EgArqzL1QpuF3t5BybFIOMS4TNpsaUGGEdtkBQmRt\/LyAEtd0pP3ooyIHTIMC1uVQxBFkb6+PsbGxjhw4IBqk7BUXWhmZobe3l7a29sLMtZ+v\/9lqQvlcjna29tZXV0tTNIAhw8f5l3vehdf+cpXeO973\/uqpKXuvPNOvvvd7\/LTn\/4Uu91eSF87nU7MZjPLy8vcfffd\/M7v\/A7hcJjBwUE++clP4vP5eOtb31rYdjuLuf0yti0dj06n43Wvex0tLS2cOHGCdDrNVVddxT\/90z\/xd3\/3d9xyyy285S1v4XWvex0VFRVUVFSQSqWYnp5menqa3t5ebDYbwWCQQCCA1WolXO3hbX9yLW\/7k2uZGVvgyCMXeP7h83SMyKd3JiflJ+FFCQbgvDkc8jl1m82iGA05VWDUaqSfShDtYDCg6HjGxpWQdD7FqKO1tVXRsSixMDQ01NPdLR\/lra7KQ9qbm5s4clQaeVZVVcnAgHQE53S66OyUPmYoFGBwQNoRlpdX0NsjXfcTRekJzu\/3ykZJ6YR0VO11OlmSQLR5fFaSK9J1pMySnACcuuPZ6HQuu+wyVaez2fJ1IZfLRX19faFfaGJigs7OzkIj5UtVFxJFkY6ODpaXlzlw4ECh\/+Xo0aO84x3v4Itf\/CIf+MAHXrVayL\/\/+78DlMC2v\/nNb\/L+978frVbLuXPn+Na3vkUsFiMcDvNbv\/VbfP\/73\/+VEXP7ZWxbOh5Ye7He9KY3sXfvXv73\/\/7fGI1GcrkcR48e5Uc\/+hGf\/OQn+eAHP8jNN9\/MW97yFm6++WbKy8spLy8nnU4XIqG+vj6sVmshErJarfjLnNz+wau4\/YNXMTu9wKFHT\/Pkwyc5ebSb7MX8ucVuYHxKfrU8rAAs0MiIiQHU1lXS1iYf8UxPyytuNjXVceGC\/Ore6VR2WkMKabSysogiRLupqZHDh+V7e5YVJCdCoZBiVBIIBGQdj9frpV3B4SUV1FkrKipkn1NzcyPHjp2WHNtRU8PMtDQk3OfzyTqekWFpUEZVVSUdUWlHNiMjmS3H0eYPOoj3S38nPi+dzrP4lVNtoijS29vL+Pg4Bw4cKGpwfLG2WcZ6ZmampC7k9\/txuVyXXBcSRZHz58+zuLhY5HTa2tp429vexmc+8xn+5E\/+5FUtwIuiMiu92Wzm0UcfVd3PdhZz+2Vs2zoeQRB46KGHKC8vL7xAGo2Ga665hmuuuYZ\/\/Md\/5OTJkzzwwAPcc889\/NEf\/RGve93rePOb38wb3\/hGwuEwkUiETCbDzMwM09PTDA4OYjabC+kBu92OL+Dkd957A7\/z3huIRZd55tEzPPXzk0xNzzB+blDy3MIRD\/3D8iv0wUF5JJxJAe3m8boU2aq9XpfsGKwVhOWsvr6Onm75+k7NjhpGFZpSZ2bknWUgEFB0LHV1tYpIOSUWhabGRtlIyuGw094uD\/2en4\/Jjomi\/GSXVdAJmpqSpinyeT1My4zJMVK7nHZmZdRb5RBtDodJEkptdxnJyNBCKYELRFGkp6eHycnJl8zpbDaDwSDZL3T27Jrybb5fyOv1FoABSud74cIFotEoBw4cKKTwzpw5w5vf\/GY++clP8tGPfvRXHvX1\/7ptS3BB3ioqKmRfII1Gw4EDB\/jiF79IZ2cnR44cYc+ePXz5y1+murqad7zjHXzrW99icXGRUCjEnj17uPHGG6mtrWV1dZUTJ07w3HPP0d3dzcLCAqIo4nLbuP3d1\/KVb\/0p\/\/nDv+Gfvv4XvP4NV5UU7H0h+SY6NWLQ6Wn59F1tbbXiSmlqSn7yrq+vZXxcvm8oGFDWShkfl4\/u\/H5\/Cc\/URlPjhVOK4nbubFXkdVPio2tukQc7BAJ+Wa47rVYnm2bTanV0dUs7Qq\/Xw0C\/dORSV7dD9jyjc9JpxsoKeUCFHEebQWZi9gTk07ty4AJRFOnu7n5Znc5my9eFWltbueGGG9i7dy9Go5He3l4OHTqkyCMniiKdnZ3Mz89z4MABTKa1Non29nZuu+02\/vzP\/5y\/\/Mu\/\/I3T+RWwbRvxXIppNBr27NnDnj17+OxnP8uFCxd44IEH+I\/\/+A\/+7M\/+jOuvv563vOUt3HbbbYWUW37lNT09zcmTJ9HpdIVIyOVyYbdbePPbbuTNb7uR1dUEh548waM\/f56DT55AKb0aCnvpH5SeuJxOO7298j0lyKCSYE3CWikaCgb9dCvUb4aH5aOwmh019PXJR0uNjcqgA6Wx6upqxfqNUie8x+NRrGllMgrS2HV1zMxIQ6xbW1s4d07aKTU1NdB5QfqYdXW1tJ2Qjux0Omk0oUarYXRY2vE67U6QEKUzmQzMy6TgkIFSOx0mcjKPQQpcIIoiXV1dzMzMcODAASwycO+X0y6lLmSxWOjp6WF2drbI6Vy4cIHbbruNP\/7jP+ZTn\/rUb5zOr4j9P+F4NpogCLS0tPB3f\/d3fPrTn6a3t5cHHniAb33rW3zsYx\/jmmuu4S1veQu33347oVCIQCBALpdjfn6eqakpzpw5gyAIBQflcrmwWEzcctt13HLbdSQTKQ4dPIbRLHD8WDsrK8WFbyVi0B21Fcwdl2+SVHIsNTUVjI\/LI7+Uop3a2hr6euUn8EgkrJimU5LPDgYDiki6iopyBgcHJcc0Go0iA3dZWYSojCS5zWajo0OeXicel+\/7cTgUnJ1bnk5Ip5VPk46OSEdtNdWVksSgAIll6WitvCzIco80Qk0OSm02ayXpcbUGbQlrQT5yyE\/iZrMyq8ErZUp1oTzfWnNzcyEd19PTw6233sr73\/9+PvOZz\/zG6fwK2bZOtf2yJggC9fX1fOITn+DYsWP09PRw++2388ADD9DY2MhNN93Ev\/zLvzA2NobX66W1tZXrr7++QGtx7tw5nnnmGc6fP8\/s7Cy5XI6cmMXm0PLnf\/k+Tnc8zLe\/9+X\/f3tnHlZVufb\/z2aeQWaQGREQEGUQB5wyNRUENbVj+up5rU7ScCyHzs\/qTU9lqSet3lIbNSu1k6g4pybghAY4oDiByKBMMsqMwPr9wWG9bt1r6ekIGK7PdXldxdp786Cb\/V3Pc9\/398ufno3E8l\/1FzljUF1d6a2Sl5c7paXSnnG1Mg7azs7dZXcsJvc5QsnLk3ZJ8PBwJ1NGtLy8vGRfW65NOiAgQPYoTWiR3gH28vMTZ7fuxszMVFaU8vKkjxVLZP4Nrl\/XLC4mpiYUFmiugbX5bmmiXCLCwaqbtDDeKtbcxKEnEXR49zFbW42ktLT0kRKdu2mrCwUGBoozXlZWVhw\/fhwXFxeioqKIjIxkwoQJfPDBB50yuKrw+3ls\/rVUKhVubm7MmzePo0ePkp2dzdSpU9m9ezf+\/v4MHz6cjz\/+mJycHCwtLfH19WXIkCEEBgaira3NhQsXSEhI4Pjx4xgYGBAQEIChoQHDn+jPipX\/j9PndvJT7P8y4slw7OxsNK5BbldibSOdbWJkZChrnuniIj0ICXDzpnSNxcurBzk5ct1umv3K2pCLDHdy6k5urrTwGBlJf+jZ29vJ\/sxytbBevXpx+7bmbjcXFxdyczULbbdu3ciU8GBzdHTgxg3NwuPkaC+5HilHagN9PcolMnhaGjTvdrpZSbdSqySOHe9spW7rBmurkTyqonMnWVlZFBYW0q9fPwIDA4mKiuLjjz+mrKyM6upqvv32WyIiIvjiiy9kOysVHi0eG+G5E5VKhZOTE6+++ioJCQnk5eXx5z\/\/mUOHDtGnTx\/Cw8NZvnw5GRkZWFhY4O3tTUVFBQ0NDZiZmVFbW8uRI0dIS0ujqKiI5uZmtLW1GRQezIfLFpF2\/iC79mzgLy9Ox8mpdQrZyrob2dnSH8IVFdIhdr6+XrJuBWVl0nfpTk7d5ZsO7OwkrwGyouTl5SV5jAatH\/JSSOXytNHDs4fkh7mRkZFsF12LzE7J2Vl6TT179pBsknBzdZV8nrW15hsNkHakdnN1keyea2mQmAeyk3bgaK7R\/P5oi7xuE52Kigq1GsmjTFZWFnl5eQQHB4uND8XFxbz77rsEBQWJKaLDhw9n8+bN921hVnh0eCyF505UKhX29vbMmTOHAwcOUFBQwMsvv8zJkycJCwujf\/\/+TJ8+nT\/\/+c80NTURGhrKoEGDxIJsZmYmCQkJnD17loKCApqamtDS0iIsrC\/vvf8Gp8\/uZ\/+BTbw4ZwYeHpo\/vExMjbksY5Mjd0RnY2Mt693m5ib9QQtwLVu62cHb21u2KcHOTvoYSaVSybZJe3i4yw7hynnG+fn7SdZw9PX1uXBB+u+jqkr6yFJLJf33LKNl3JKwwzEyknaktrSQriU13NIsSNoyFk715VJxCCbisGVFRQXBwcF\/CNHJzs4WbXvahlkLCwsZO3YsgwcPZu3atWhpadGzZ08WLFhAfHz8PfY+v5cHSQ8VBIHFixfj6OiIoaEhw4YNuyeVt6umhz4MHnvhuROVSoW1tTWzZ89mz5495Ofn4+TkxJ49e3B0dOR\/\/ud\/WLx4MWlpaZiYmNCjRw8GDhxIWFgYJiYmZGdni9HC+fn54nFP3yB\/5s59ntRThzh8ZBcLFryMj8\/\/1UZ6enlIHg0B96mxeMre6d2QeaN7+3jLHpXZ2Mi3YGdmSgtLQIA\/RUXSR3xyXVSOjvK5PCqV9NvW39+PmhrNQmBubsbFi5obIVQqlazDdU625r8nQ0NDsrI0i7OHh5vkDkpHpblRQV9fV9KjzchA81CpnoE2DVKWPNatURRtw5Z\/BNHJycnh2rVrBAUFiWJSXFxMREQEwcHBfPPNN+06ud+WHnrixAkOHDhAU1MTo0aNUntfLV++nJUrV\/LZZ5+RnJyMvb09I0eOVHPomDt3Ltu2bWPz5s0cPXqU6upqIiIiZD0NHxe6XFfbw6KhoYG\/\/OUvXL16lfPnz2Nra8uuXbvYunUrI0eOxNbWlqioKKKjowkODsbT0xNPT09qamooLi4mNzeXCxcuYGlpKbZp6+npERDgS0CAL4vefI0rV66yI24vFy5eIlkildPbuweXLkkfK0l9yEKr4\/O1LGlxsLa2krymUqlkW5kDAvxlLXTkLFeMjIxk54Ls7ewokDgeNDAwkG0ckPME8\/Hx5bffzmi85uXlydVMzUeh7u6u5OVq7lX26uHB5Yuan2dhbg5o3vFUVWgWCufudlRnav5gMpBo2TYx1wGJeabyhnKMqloIDg5+ZHN07iQvL4+srCyCgoIw+5cLeGlpKePHj8fX15cNGzbcd8j0P+V+6aGCIPDxxx\/z5ptvivEF3333HXZ2dmzcuJG\/\/OUvXTo99GGg7Hgk0NXVbbXbT0qiR48emJmZMW3aNLZs2UJRURHLly+nsLCQyMhI\/Pz8eOONN8TGA3d3d\/r378+gQYOwtLQkPz+fw4cPk5KSQl5entiN1bOnJ\/MXvMy3337GmTNHePfdNwkJ6avWFmptbSG5xtbuLek6SXdHB9mfUW7H4u\/vL5uPI3escb\/6jb+\/v6z\/mlykhH+Av6TYamlpc0Um50ju7W5nK13rcnR0lLwmFwN9u1HzTlRbS4v8XM3dfFbdpF+v4ZbmOo6ljPt0s76gNuH\/KHP9+nUyMzPp27evON9VXl5OVFQUbm5ubNq0STQC7UjuTg+9du0ahYWFasmg+vr6DB06lOPHjwP3Tw993FGERwJtbW2WLFmCldW9uwJjY2OefvppNm3aRFFREZ9++imVlZVMmTIFb29vXn\/9dQ4fPoyuri5ubm7069eP8PBwbG1tKSws5OjRoyQnJ5OTk0NdXesHsIeHG3\/964scOrSDCxdOsmzZEgYO7Cc7nOnr6y17RFdQIN027OfXS9bGxsxMeseio6MjW1fq3TtA\/GXVRH29tOg4OzvJesbJ2dn06uUr2ZLeKkrSQlt5S9rEtL5eOgqiplr6Z8m\/rvnfztnZkYZ6zf9u+hK7GoBKCVdqC3PpY0sze3MqKioe+eOdGzducOXKFfr06SOKeWVlJRMmTMDOzo6ff\/5Z9GTrSDSlh7b93tzdmHNnMmhXTg99GChHbf8hhoaGREVFERUVRWNjIwcPHiQ2Npbp06ejpaVFREQEEyZMYMiQIbi4uODi4kJDQ4PopJ2RkYGpqanopG1kZET37g7MmfPfzJnz3xQXF7Nz5x7i4nZx5MhxtZwTucwTN1cX2dkeC5k7ax0dHdkCfe\/evWXD5uSOQkxNTWXrN25ublzP01xP0dXV5dIl6WFVCwvp+ZdevXxJT9fcwGFqasIVibA4LS0tMjOyNV7T0dEhK0tzDc3OzoaSmxWar9naUiFhKNpcr3mXJNdKra+rQmpc1szOnCtXrtDQ0CCm+FpbW3fKh7gU+fn5XL58mT59+ogf1FVVVUyaNAkzMzO2bt3aaTs2qfRQ4J6B1QdJBu0K6aEPA2XH8xDR09Nj7NixfPPNNxQUFLBx40b09PR4\/vnn8fDw4MUXXxTPj52dnQkODmbIkCE4OTlRVlbG8ePHSUpKIisrS5xJsLW1ZfbsWezYsYXMzPN8\/vnHjBr1JKamprItxU7O0vM3KpVK1l6nd+8A2a4yXV1pYTEyMpKNZnB2dpIVTDmXhN69A8QdoiakIhAALGS6yHy8e0ruHB0d7e9xp2jD09ONWolrzjLBdvo60gX+W8Wau9PkWqm1BYkuOD1t\/IL9GTRoEGFhYZiZmZGbmyse++bm5sr+fXYEhYWFXLp0icDAQPEoq6amhsmTJ6Orq0tcXFynzRu1pYfGx8erBRXa29uLa7+T4uJicRd0Z3qo1GMeZxThaSd0dXV58sknWbt2LTdu3CA2NhZzc3NeffVV3N3dmT17Njt37qS5uZnu3bsTFBTE0KFDcXNz49atW5w8eZLjx4+TmZlJVVUVgiBgZWXJf\/3XNL777ku+\/fZz\/va3+UREjNX4i1koY7zpH+Ana1YqdzdsaGgo21QQECBfv9HWlhYtV1cXMmUaGnT1pO96nZ2dZOeVpIY\/AfRk7qbb0iA1YWsjPb9jaCh9\/FVfrVl49fV1KS3QfORnZi794dtSp1k0jaxaaz8qlQoTExM8PDzo37+\/eOx78+ZNjh07xokTJ8jKyhLfZx1FUVER6enp9O7dWzzSrqurY+rUqbS0tLBr164OMS69m\/ulh7q7u2Nvb6+WDNrY2EhiYqKYDNqV00MfBspRWwegra3NsGHDGDZsGB9\/\/LGYKfS3v\/2NkpISRo8eTVRUFKNHj8bBwQEHBweampooKSmhuLiY3377DX19fTFZ9cqVK3h5eTF69GhUKhU1NTX88stB4uJ28ssv+7GyspRtwZZrDDAwMJDdSfXuHcDJk5rNN0H++M\/a2ooLF6SbDlxcXMjN0dyarKure595JTeuX9csPI6OjrLDu7k50i3lcqWRxkbpi9W3pL3iCiRSSp2621Ej0dGmL3N82VipWeiNJJJHDQwMxGPftuyqmzdvcu3aNfT19UVjTgsLi3Y7FiouLub8+fP07t0ba+vWtv36+nqmTZtGTU0N+\/fvf2hzOf8u90sPValUzJ07l6VLl+Ll5YWXlxdLly7FyMiIadOmiY\/tqumhDwOVoIz7dhotLS2kpqayZcsWtm3bxvXr1xk5ciRRUVGMGTNG7Oxpc9LOycmhoqICXV1dHBwcsLOzw9zcXO3Dob6+nsOHj\/DzP7ewd+++exwRtLW1MTM3k3Q76NcvlN9+05zoCRAcHERqqub6TrduFlRX10geW4WHD+ToUemOHk8PD7KyNA+09u3bl9Nn0iSf6+XlRWam5pqWn58\/Fy5oru+4urpIGnzq6uphoG8iOaxqb+tEedm9TRTa2tqYG9tRV3tvF5qdnTUNxZp3lP2C\/chN1vzvEj6gB7ln7hVWLW0VfhYqjb527sO9eGpFlMbX08SdWTk3b95EpVKJgW2WlpYPbXamLYsnICBA9LJrbGxk+vTpFBQUcODAAfHYrTOQEtu29FBo3RUtWbKEL774gvLycsLCwvj888\/FBgRo\/V1csGABGzduFNNDV69ejbOzvMXV44AiPI8ILS0tpKWlsWXLFrZu3UpWVhZPPPEEUVFRRERE8OWXX5Kens7y5cvR1tYWmxPuzL3v1q2b2i\/N7du3SYhPJC5uBzt37aa0pJQ+fQI5feaM5DpCQ0NITk7ReM3CwpyamlpJYRk0aADHjknHX\/v59ZJss\/bwcOeazADngAEDSDqheafVvXt38vOlj9ICA4NIS9O8iwsfNICkJM0zVP5+vbh0SfOaXF2cKcyv0HjN09NN0pE6uE9vrp7VbCg6JCyIK0mad20hfs4UZ90rSmaWergImv89\/Kf0ZfDCERqv3Y+WlhYqKyvF99nt27fVmhN+b1tzSUkJZ8+exd\/fX6x13L59m1mzZpGVlcWvv\/4q7oAUui5KjecRQUtLiz59+vDee++Rnp5OamoqYWFhrF69mp49e\/LRRx\/Ro0cPtLW1sba2FoO0\/Pz8RNFKTEzkwoULlJaW0tLSgq6uLiNHPclnn39KVtYVdu2O46kxo8Xi6N2YmprK1m\/kzDcBbsm0JDs4OMh2s8mZkWpra3NRppvt7jP4OzE1NZF0KwAoKpKudXWTuevu7iQ92yPnSG1sKF2zaJHoaANpV2pTC2kBkAqAexC0tLTo1q0b3t7ehIeHExoaiomJCTk5OSQmJpKamqo2k\/YglJaWkpaWRq9evUTRaWpq4oUXXuDKlSscOHBAEZ3HBKXG8wiiUqnw8\/OjZ8+eZGdnU1JSwpQpU\/j111\/56KOPGDRokJgpZGdnh5WVFb6+vpSXl1NcXEx6ejrNzc3iTsjKyupfdaahDBs2lEWL\/saJEyfZvn0HO3bsJC+vta7i7+9HUtIJyXXJuf\/a29vL1oY8PT0oKJAu\/ku1UEPr0OjZs9KCKGew6uPjS0qK5iM6fX098vOlu+gqK6SFVCUTnS3lSA1wu156DqnypuZajYWlkWR2j42NOU0SPm2aAuB+DyqVClNTU0xNTfH09KSuro7i4mKKioq4fPmyWmCblGNFWVkZZ8+excfHR2zYaG5uJiYmhjNnzpCQkCAr2ApdC0V4HmHefPNNTp8+TXJyMo6OjgiCQHZ2NrGxsfzzn\/9k\/vz59O\/fX5wj6t69O5aWlnh7e1NZWUlRURGXLl2iqakJa2trUaS0tbUZOHAAAwcOYPnyD0hNTWXbtjhZtwE7OztZYenRw0N2ME4u\/rpHjx5clXFRMDaW\/gC1srKSbTrQ0ZHeEfj6+nAuTfNz9fT1uXJFeg4q\/4b0z1NaIm1+WiLhw6avp0upROqojZ0ZDdman2dooI2UPD4s4bnnexoa4urqiqur6z2BbQYGBqIItdUfKyoqOHPmDN7e3qILREtLC6+++ionTpwgPj5etntQoeuh1HgeYUpKStDV1dUYDy0IAtevX2fr1q1s3bqVY8eOERwcLIqQm5sbKpUKQRC4deuWeIfa0NCAjY2NeFZ\/97BnWto54uJ2EBe3Q+0DPTx8EEePHpNcq6enh+TAqpubK9nZ0jM2gweHc\/SI5tfW0tKmm6WlpCPBwIEDSErSXPtRqbSwtLSlTCLFNCQ4iNOnNe+kAgMDSD+vWQztbG2oKJMw5TQyQtVkrNEc1MLMFKo0d2p5uHen9qrm3VDIAHeKz2gWusFDnShP07xbnLJ5JlY9pFu+HzZ3xsnfvHkTLS0tzM3NKS0tpWfPnmJRvaWlhXnz5rF\/\/37i4+Nxc3PrsDUqPBp0Wo1n9erVuLu7Y2BgQHBwMEeOHOmspTyyWFtbaxQdaD3+cHZ25q9\/\/auYKTRz5kx+\/fVX+vTpw+DBg1mxYgUZGRmYmZnh5eXFoEGD6NevH8bGxmRlZZGYmMiZM2fUnLR79w7g7bffJCXlJKdOJfPOO2\/Ru3cAJSWaC+IATk5Osi4J9+viyZVJKfXz95NNZm1okLaz8fX1kRQdkE+LlYvHtrKWrv3IOVI7ywz1Wss4Sci1UiMRGgdgbN0+Ox4p2hpd\/P39GTp0KB4eHpSUlKClpUVGRgYzZszg66+\/ZsGCBezZs4eDBw8qovOY0inC89NPPzF37lzxKGnw4MGMGTNGNq1SQRqVSoWDgwMxMTEcPHiQ\/Px8YmJiSEpKol+\/fvTv35+lS5dy8eJFTExM8PT0FOMc2qbZExMTOXXqFDdu3KDxX07H3t49WbhwAUlJR9my5Sfee+\/vhIaG3NNuKmdVA\/LR2j17eslm\/sjNcpiYGMs6VVtaSrtvW1paUlgo3VhQclNa7EyMpddkIXGjAGBhKn3NUE8mruC29LxQU7Vm41AtXW0MLDovYbS6uprMzEy8vLwYNmwY\/v7+WFlZsWLFCr744gvc3d05ePCg4lv2mNIpwrNy5Upmz57Nc889h6+vLx9\/\/DHOzs6sWbOmM5bTpWibvXjuuefYu3cvhYWFzJs3j7S0NMLDwwkODmbJkiWkpaVhZGQkTrMPHDgQS0tLrl+\/zuHDh8WupbbkU3d3d1577a8kJPzK5cvpLF\/+IcHBQWhpackW9728esimlMq5QqtUWrLRDL169ZJNZi0slK7DePfsIXnN3NyMq1elb4JuVWou5t\/vmtAs\/evWVCfddFAhkWIKUFem2anb+D\/oaPtPqaqq4tSpU7i5ueHq6iq+J62trWlsbGTXrl2MHz+e77\/\/HicnJw4fPtxpa1XoHDpceBobG0lNTVWzCwcYNWqUYhf+kFGpVFhaWjJr1ix27NhBUVERb7\/9NpmZmYwYMYLAwEDeeustUlJSMDAwwM3NjbCwMAYNGoS1tTWFhYUcOXKE5ORkcnNzxdZZR0dHRo16kr\/\/\/R1On05hwYLXGTZsqEZz0Pv5Ul27Jp2A2svPl5s3pY\/4tLSk377du3fn6tVsyety8dheXtIR2GZmppKhcAA3iyokr1WUSGcnVZVI2wzVV2huYTftZkCTlF1OJwlPdXU1qampuLi4iG3ugiCwYsUKvvzySw4cOMDYsWOZP38+R48e5caNG4SFhT3UNRw+fJjIyEgcHR1RqVRs375d7fqsWbNQqVRqf\/r376\/2GCU9tH3p8K62kpISmpubZS3FFdoHc3Nznn32WZ599lmqq6vZu3cvsbGxRERE0K1bN8aPH090dDT9+vUTu5banLSLioq4cuUKZmZmCIJAfX09oaGhGBsb06OHJ889N5vS0jJ27drN9u1xJCQk0tjYKOlEAODr48OlS9KBcHLGnrq6urIO2m5u7uTnaxYtbW0dLstEJBgYSB9R9ejhQXqa5nqWra01FWWaW871dHUkrXL09HQoyde8qzE20+N2reY6jqW1IZRo3vEZdXB9B1rNPVNTU3F2dsbDwwNoFZ1PPvmETz\/9lAMHDtC7d2+157SHYWZNTQ2BgYH8+c9\/ZtKkSRof89RTT7Fu3Trx\/+\/2J5w7dy47d+5k8+bNWFlZMW\/ePCIiIkhNTW3X9NPHhU5rp\/49luIKDw8TExMmT57M5MmTqa2tZf\/+\/cTGxvL0009jZGREZGQk0dHRDBw4EGdnZ5ydnbl16xZpaWk0NjbS0tLCuXPnxDgHY2NjrKwsmTlzBjNnzqCyspIDBw6yZctWysrKNA4atg4LSgiPSnWfoDo\/zpyRdsGWMyr19fHi4kXp1y7Ilz6iM5Fp7XZxcSa9TPMRXXdHB8pzNddqnLrbSXa0OXS3pFGildrc3IAWiQ1hRx+11dbWkpqaiqOjo5rorF69mhUrVrBv3z6Cg4M7ZC1jxoxhzJgxso\/R19eXHKRW0kPbnw4\/arO2tkZbW1vWUlyhYzEyMiI6Oprvv\/+egoICvvzyS9E7y8vLi1deeYWdO3cybtw41q1bR3h4OEOHDsXFxYWKigpOnDhBUlISV69epbq6GkEQMDc35+mnJ7F584\/k5Fxlw4Z1TJo0QRwwVCEvLL18fSkqkhYAIyNp92djYyNZt4Ju3aS70mxtbciRMQ2tKJceojU0kF6Tg8SHHICJkfQOy0LGldrQUCaeop1meDRRV1dHamoq9vb29OjRQ2zj\/+abb3jvvffYtWvXQz9O+09pG1jt2bMnzz\/\/vNqcmZIe2v50uPDo6ekRHBysZhcOcODAAcUu\/BHAwMCAcePG8e2331JQUMAPP\/xAU1MTs2bNorS0FF1dXeLj42lpacHR0ZG+ffuKcQ7V1dVqcQ63bt1CEARMTEyYNGkiGzasJyfnKj\/9tJGYmBepq5MuxMvZ1ahUKjIypEXL17eXbJt1SYl0x5q7h7T9jr6+PteypDvw5BypdZAeZNWR+TXUl8k+0pM58Wmv4dG7qaurIyUlBRsbG7y8vETR2bBhA2+99RZxcXEMGjSoQ9byoIwZM4Yff\/yRQ4cO8dFHH5GcnMwTTzwhNqoo6aHtT6cctb3++uvMmDGDkJAQBgwYwJdffklubi4vvvhiZyxHQQJdXV18fX1JTk5m3LhxvPDCC+zYsYNXXnmF6upqxo4dS3R0NCNGjBDjHJqbm8U4h5SUFPT09ETrHnNzcwwMDIiIGEdExDjee\/\/voonprt17KC0pFb93loxhqK+vj+yORltb+kPe0rIbGRnSM0faWtK\/El5eHmRc0lxg1tbWJidb2hKoulK6+85Ixxgk\/AeaG6S98VS3pWd4OqK5oL6+ntTUVKytrfH29hZFZ9OmTSxYsIC4uDiGDRvW7uv4d5k6dar43\/7+\/oSEhODq6sru3buZOHGi5POUcsDDo1OEZ+rUqZSWlvL3v\/+dgoIC\/P392bNnD66urp2xHAUZPvjgAwYPHszq1avR1tZm1KhRfPLJJyQlJREbG8vChQspLS3lqaeeEjOF7OzssLOzo7m5mbKyMoqKijh9+rQ4YGhnZ4eFhQV6enqMGj2SUaNH8mnzxxw5cpS4uJ1cSL\/AseMnJdckN5+jUqm4dElzBAJAT68eJCeflbyem5Mvea31Dliz8Li5OUs6UmuptMjPLdV4DaCyRKY9W6aVurlWelfX3jueNtGxtLTEx8dH\/ECOjY1l7ty5\/Pzzz4wY8fucsTsaBwcHXF1dychofd\/cmR56566nuLhYOZV5SHSac0FMTAzZ2dk0NDSQmprKkCFDHvr3WLx48T1tk3cWFAVBYPHixTg6OmJoaMiwYcNIT5f2I3scWbVqFWvXrlXr5NHW1iY8PJxVq1aJVvbu7u4sWbIENzc3pk2bxk8\/\/URNTQ02NjbiJHuvXr1oaWnh7NmzHD58mIsXL4pO2m0mpqtW\/YO9+3axf\/9uXnrpRZyc7p32lxtIdXZ2knXJVqmk3\/LOTt1lZ3\/qaqR3LbY20gaXzs4O1NdpFgldHW1Kbkivt0m6A5t6CXNQaN8dT0NDA6dOncLc3BxfX19RdOLi4pgzZw4bN268b3H\/UaK0tJS8vDzRL05JD21\/unwsgp+fHwUFBeKfc+f+rxNq+fLlrFy5ks8++4zk5GTs7e0ZOXIkVVXSHwSPG3p6erLHC1paWvTr14\/ly5dz+fJljh49ip+fHytWrMDNzY3Jkyfzww8\/UFlZiZWVFb169WLIkCEEBAQAcP78eQ4fPkx6ejolJSW0tLSgpaXFwIH9WbbsfS5ePEtCwn5ee+0VPDzc8fBwl3U6sJUdSFWRmZkted3ZRdraR1tbm6yr0oKnpZI+PLCXcV22sjLTGOIGYGZhSH2VZrHT0VPRUKm5pqSlq42hhXSjw39C2xyeqakpfn5+4ntj9+7dPPfcc2zYsIHx48e3y\/d+UKqrqzlz5gxn\/pU7de3aNc6cOUNubi7V1dXMnz+fpKQksrOzSUhIIDIyEmtrayZMmACop4f++uuvnD59munTpyvpoQ+RLm0SunjxYrZv3y6+Ae9EEAQcHR2ZO3cub7zxBtB6J2dnZ8eyZcv4y1\/+0sGr7VoIgkB6erqYrnrx4kWGDRtGdHQ0ERERWFlZiTWBiooKMXCsqalJNDFtc9K+k\/T0i2zdGkdc3C4uX763zuPl5SuZROrd04vMTGmz0v79+5OSrDlCwcvLk9xr0rshHy9\/cq5prvEMGTCQtBPZGq\/5+7pTkq5ZQLx87SVdqR1dzbG8pfkYzsTelBm7Hv77t010jI2N8ff3Fwd49+\/fz\/Tp0\/n666955plnHvr3\/XdJSEhg+PDh93x95syZrFmzhujoaE6fPk1FRQUODg4MHz6cd999V81TUEkPbV+6vPCsWLECc3Nz9PX1CQsLY+nSpXh4eJCVlYWnpyenTp2ib9++4nOioqKwsLDgu+++68SVdy0EQeDKlSvExsaydetWzp49S3h4ONHR0URGRmJnZ6fRSbuxsVGMc2hrw7+TS5eusHnzz2zdGse1a9nY29tTVCRtCjp48ECOH9OcrqpSqbC1caS0VPPzwwcNIPmkZidrOUdqgH69+3HlnObdklzqaHB\/d26e1Sx2vn3s0M7RfM3AxYjeb4aJTR36+voaH\/fvcPv2bVJTUzE0NCQgIEAUnfj4eKZOncrq1auZMWOGUnxXeCC69FFbWFgYGzZs4JdffuGrr76isLCQgQMHUlpaKrZFKg4K7Y9KpcLb25tFixaRnJzM5cuXGTt2LJs3b6Znz5489dRTrF69mhs3bqg5aYeGhmJkZMTVq1dJSEjg7NmzFBQUiE7aVlbdGDJkAHv3buPs2ZO88cY8goP7SH74yQW7eXi4SYoOQFOTtJeanCM1QNF16ddtkS4bYSDTSm1iLN25Z+tmr2Z59Ntvv5GdnU1trXRNSI7bt29z6tQp9PX11UTnyJEjPPPMM3zyySeK6Cj8W3TpHc\/d1NTU4OnpycKFC+nfvz+DBg0iPz9fLYTq+eefJy8vj3379nXiSh8PBEEgLy9PzBQ6fvw4ISEhYqZQm8EktJ7bFxUVUVxcTE1NDSYmJlRXV+Pj44OTk5Pa616\/ns+OHXvZsWMPJ06k0NLSgqmpCY0NLTQ1aW5BDh80kBMnzkiu1dHOmdLSConnDiD1pOb2blsbKxpLpHccgU6+FOVKvO7AHuSe1rwbGjTUmco0zbso\/8l9GPxGay2ioaGBmzdvUlxcTFlZGcbGxmJnobGx8X3FoqmpiVOnTqGjo0OfPn1E0UlKSmLChAl8+OGHzJkzRxEdhX+LLr3juRtjY2MCAgLIyMgQu9sUB4XOQ6VS4eLiwty5c0lMTCQ3N5cZM2Zw8OBBAgMDGTJkCP\/4xz\/IyMjA2NgYT09PBgwYgLm5OdXV1RgYGHDp0iVSU1O5fv26GOfg5ORITMxs9u2L5fLlZFatWkp0dITsWhpk5mVcXJwkRQfgdqP0bsepu3Sypq6utEcbQINEYwGAtiD9Pe\/0adPX18fJyYmgoKB7Bn2PHTtGRkYGlZWVaLr\/bG5uFtvgAwMDRdFJSUlh0qRJvPvuu4roKPwuHqsdT0NDA56enrzwwgu8\/fbbODo68tprr7Fw4UKgtXhqa2urNBd0MoIgUFJSwrZt29i6dSuHDh3Cx8eHqKgoamtr+eqrr0hKSsLd3Z26ujqxJnTr1i0sLCzE2oaBgXrGTVlZOXt2H2THzn0kJhwXhUpbWxtTU0uqqzT3Lg\/o349TKdK5Py6OPbhZrPk4bciAAaSd0NzQ4ObqQL20hyredpbU3dIsPuGhtlRkas4TGv4\/o\/EZHyD9wtybFto2Y2Vra4uFhQWCIHD69GkA+vbtK9bXzpw5w7hx41i0aBHz589XREfhd9GlhWf+\/PlERkbi4uJCcXEx7733HomJiZw7dw5XV1eWLVvGBx98wLp16\/Dy8mLp0qUkJCRw+fJl2QAyhY5DEATKy8uJi4sTdz99+\/Zl+PDhREdHq3VX1dfXi91xFRUVmJmZiSamhobqnmeVlVXs2\/crO3fs4\/r1QsmYa4BBAweQ8pvmxgJbW2uqyqR\/hcICQ7ksEU0dGtSLvBTNgmVmYYhFg\/SBRD9vU2qLNfvGjfvfSbgMkLb+uZuWlhbKy8vFv7u2CX1dXV1CQkJE5+bz588zduxYXnvtNRYtWqSIjsLvptPcqTuC69ev86c\/\/YmSkhJsbGzo378\/J06cEB0SFi5cSF1dHTExMZSXlxMWFsb+\/fsV0XmEUKlUdOvWjby8PIqKijhw4IBYF2qz6omKiiI6Opq+ffvi4uKCi4uLWNsoKioiIyMDU1NT8Y7e2NgYc3NTpk6NZurUaGpqajlw4DC7dh7k4IEj1NSoF+ELJOIVQN6RGqDwurQvnKGudOqonYMZDdmahUVLW0VdqXSjwL8bea2lpYWVlRVWVlb07NmTlJQU6uvraW5uZsWKFZw8eZLw8HA+++wzYmJiFNG5iw0bNvDaa6+Rn5+v1kE4adIkjI2N2bBhQyeu7tGkS+94FLoGubm5jBw5ktjYWPz9\/cWvV1dXs2fPHmJjY9mzZw9WVlZiplBoaKh4PNTY2CgW2EtLS9UK7G1u2W3U1zcQf+gYO3cc4JdfEtHT16OqXNqaZnD4IFJOaM4FMjI0QK9e2ux0cJ8gMk5JtFKHuXEzTfNRmrW9MfYN0sIz62DM7xogbXOVaGxsJCgoCB0dHc6dO8fq1avZt28fZWVljB49mkmTJjF+\/Ph\/xVoo1NXV4eDgwFdffcXkyZOB1tyx7t27s2\/fPo0zRY87j1VzQUdwv\/TDB7HpUdIP1XFxcSE9PV1NdKA1U2jKlCn89NNPFBUVsWrVKsrKypg0aRK+vr7MmzePI0eOoKWlRffu3WWdtKuqqhAEAQMDfcaMfYLVaz\/g4uVEvvjiQ56ZFkk3S3ONa5NzpJZrLAC4VSqdGWSgJ90u3c1KOipBS1cbA5koBSna8pUaGhoICgpCV1cXlUqFiYkJhw4d4tlnn+X8+fMMGTKEL774gr59+2psSHgcMTQ0ZNq0aWrBcj\/++CNOTk6PpEnqo4AiPA+ZtvTDzz77TOP1B7HpmTt3Ltu2bWPz5s0cPXqU6upqIiIiaG7WHCT2OKApVvtOjIyMmDBhAj\/88AMFBQWsXbuW+vp6pk2bhpeXF6+++irx8fFAqylkYGAgQ4cOxdPTk9raWpKTk+\/p8tLT02XI0P78Y9X\/48z5XWz++VP+a9YEbG1bTUrv50htay1tlaOjo02pTEebqln6Q93EVE\/ympGV0b99DNbS0sL58+epra0VRQcgJyeHcePGERUVxUcffYSPjw9vvPEGJ0+e5MKFCw\/9uO2PfNP2\/PPPs3\/\/fm7caK3nrVu3TozYVrgX5aitHVGpVGzbto3o6GjgwWx6KisrsbGx4fvvvxft2\/Pz83F2dmbPnj1K+uG\/ye3bt4mPj2fLli3ExcXR3NxMREQEUVFRDBs2TDyTv7vLS0dHRzyOMzc3V\/sAaWlpISX5HAnxv7Er9rhkDWhw6EDOpWRrvObq6kCDTEdbaIALRZmaHa0HDHGmSsIJwdbfgUnrn5V+4bsQBIHz589TVVWl1khw48YNRo8ezZNPPsnatWvFBo72ZO\/evRw7doygoCAmTZqk9rsDsGzZMt5\/\/33Wr19Pz549ee+99zh8+LBaM9CcOXPYuXMn69evFyOry8rKOiSyOjg4mKeffprRo0cTGhpKdna2YrEjgSI87cjdwvMgNj2HDh1ixIgRlJWVqVmyBwYGEh0dzZIlSzr6x+gyNDU1ceTIEbZs2cL27dupqakR7+hHjBghdr61tLSoiZBKpVKLc7j7Q\/js6SvEbT3Evl1HuVlcKX49wCOQvGua6zRyHW0APvaW1Epk+Awe6kS5RKec+3AvnloRJfv30Eabn96tW7cIDg4WRbiwsJCnnnqKgQMH8s0337T7B7Ym\/og3bWvWrGHVqlWMGjWKjIwMfvnll3b9fn9klKO2DuRBbHqU9MP2Q0dHh+HDh\/P555+Tm5vLzp07sbGxYcGCBbi7uzNr1iy2bdtGXV0dNjY2+Pn5MWTIELG2dO7cOQ4fPsyFCxdEJ20AFzcbwof35J87P2TH\/k95ae5UfHq5k58nncEj19Fmam4gKToANP7nAXCCIHDx4kUqKyvVRKe4uJhx48YRGhrK119\/3Smio4lr165RWFioFketr6\/P0KFDxTjqzo6sfvbZZ7lx4wZfffUV\/\/3f\/93u3++PTJdup35Uufvc90GSDZX0w4eLtrY2gwcPZvDgwaxcuZLk5GS2bNnCO++8wwsvvMCoUaOIiopizJgxYquxj48PFRUVFBUVceHCBZqbmzE3N6e8vJyePXu2Wvc4ga+fO3MXTOdaRgGH9pzi0J7TXElXj3IQpBvlsHMwpzFHcys1QFOVdEPDg7RSC4LApUuXKCsrIyQkRBSdkpISIiMj8fPzY\/369fetq3UkcjdtOTk54mM686bNzMyMSZMmsXv3brUjQoV7UXY8HciD2PTcmX4o9RiFh4uWlhZhYWGsWLGCK1eucOTIEXx9fVm2bBlubm5MmTKFH3\/8kcrKSiwsLPDx8WHw4ME4ODhQVlaGtrY2GRkZnDt3jqKiIrEJxN3Lgdl\/HcePv7zFtqPv8cqiifj1cQOgqkRaPMzv05VWVyYzw2Mjv+MRBIHLly9TUlJCcHCw6O5QXl5OVFQUHh4ebNy4UWwweNR41G\/aCgoKePbZZx+KI3hXRhGeDsTd3R17e3u1ZMPGxkYSExPFZEMl\/bBz0dLSIigoiKVLl3LhwgV+++03goOD+d\/\/\/V\/c3NyYOHEi3333HT\/++CMjRozA3t6eoUOHEhISgoGBAZmZmaKTdmFhoWhK6uRmw3\/FjGb9rv\/Hzt8+IPK5MHr1c0FL694PRLlWatNuBjTVSfvKGcnseARBICMjg+LiYoKDg8WaVmVlJdHR0Tg4OPDPf\/5TbDB4lHjUb9rKysrYvHkzhw4d4qWXXmrX79UVeHT20l2E6upqMjMzxf9vSz+0tLQUDTGXLl2Kl5eXaNNjZGTEtGnTAPX0QysrKywtLZk\/f76SftgJqFQqAgICCAgIYPHixVy+fJnY2Fg++ugjcnJyGDp0KElJSWJwnZmZGT169KC6upri4mKysrJIT0\/H0tISOzs7bGxs0NXVxd7RkvGz+zN+dn\/Ki6tI2nuJ47svcC4pm5ZmQbaV2tLaCEqk6z\/GNpqFRxAEMjMzKSgoEOMmAKqqqpg0aRIWFhbExsY+snfqd960tTXmtN20LVu2DFC\/aZsyZQrwfzdty5cvb9f1BQUFUV5ezrJly\/D29m7X79UVUITnIZOSkqI2qfz6668DremH69evfyCbnlWrVqGjo8OUKVPE9MP169c\/MoXexxGVSoWPjw99+vShoKCAjz76iPr6ejZt2sS8efMYOHAg48ePJyoqCkdHR0xNTfH09KSmpobi4mJyc3O5cOEClpaWonWPnp4e3WxNGTszlLEzQ6ksreHkL5fJTy0gP72YpsZ757bMzfVokXbwkWwuyMrKIj8\/n5CQEFF0ampqmDx5Mnp6emzfvv0eP7uO5o9805adnd2ur9\/VUNqpFRQekIqKCry8vFizZg1PP\/000LqTyM3NFTOFkpKSCA0NFa17XFxcxPpCbW2taMR569YtunXrJpkSWlfVwLlfMzmz7woXDmdzu6H1yC5ssDM15zXP8GjpaPFC0mv31DOysrLIzc0lJCREtAiqq6tj8uTJNDY2snfv3kfCn1Ausnr9+vUIgsCSJUv44osvxJu2zz\/\/XM3RQoms\/mOgCE8X5PDhw6xYsYLU1FQKCgruGcSbNWvWPdHeYWFhnDhxQvz\/hoYG5s+fz6ZNm9R+ge8OXXvcKC0txcrKSuM1QRDIz88X4xyOHDlC7969iY6OJioqCk9PT1EU2py0i4qKqKysxNzcXBShu3ce9TWNpCdkcWbfFcwa6ylJ1WxKamJnyozd6nEe2dnZZGdnExwcLIpLfX09f\/rTn6isrOSXX37B3FyzHZCCQnuhCE8X5H4T4LNmzaKoqEjNW0pPTw9Ly\/8ztOzMCfCugCAIFBcXs337drZu3Up8fDw+Pj6iCPn4+Igi1NDQIO6EysvLMTU1FeMc2o7F2mhqaCIv6RpZv2aQfeQqjdX\/V++527UgJyeHrKwsgoODMTMzA1rrItOnT6egoICDBw\/e03qsoNARKMLTxbl7AhxahaeiouIeL6w2OnsCvKshCAJlZWXExcWxdetWDh48iIeHhxjn4OfnJ7ohtDlpFxUVUVZWhomJiVpU9Z00327m+m85ZB3KIDsxE4c+3XnqH9FAq6P31atXCQoKEnc0t2\/fZubMmVy7do1Dhw5J7twUFNobRXi6OFLCs337dvT09LCwsGDo0KG8\/\/772Nq2mloqtj3tS0VFBTt37mTr1q388ssvdO\/eXRShPn36iCJ0+\/ZttTgHQ0NDcSdkYmKi7h\/X3EJNcRWmDuZcv35dDMyzsLAAWu2CnnvuOdLT04mPjxf\/rRUUOgOlq+0xZMyYMUyePBlXV1euXbvG22+\/zRNPPEFqair6+vqdPgHe1bGwsGDGjBnMmDGDqqoqMVNozJgxWFtbExkZyYQJEwgNDcXR0RFHR0eampooKSmhqKiI7OxsDAwMxJqQmZkZWtpamDqYc+PGDa5cuUJQUJAoOs3NzcTExJCWlkZCQoIiOgqdjiI8jyFtx2cA\/v7+hISE4Orqyu7du5k4caLk8xTbnoePqakpU6dOZerUqdTW1rJv3z5iY2OZMGECJiYmYnfcgAEDsLe3x97enubmZkpKSiguLiY1NRVdXV1sbW1bYxpyctR2Os3Nzbz66qucPHmS+Ph4cRBTQaEzUYRHAQcHB1xdXcnIyADUJ8Dv3PUUFxcr7gntiJGRERMnTmTixInU19dz4MABtm7dyjPPPIOenp64Exo0aBB2dnbY2dnR3NxMWVkZ2dnZVFRUoKurS1paGrW1tTz55JMsXLiQhIQEEhISHvuORIVHB8UyR4HS0lLy8vJwcGhNzFRsezofAwMDIiMjWbduHYWFhXz33XeoVCpmzZqFp6cnMTEx7N+\/n+bmZnbt2sWaNWvo06cPAQEBXL58meeeew43Nzc2bdokhqcpKDwqKM0FXZA7J8D79u3LypUrGT58OJaWllhaWrJ48WImTZqEg4MD2dnZLFq0iNzcXC5evKgWqLVr1y7Wr18vToCXlpYq7dSdTFNTE4cPHxYzherr66mtreW1115jwYIFGBgY0NLSwltvvcW+ffsICQnh0KFDNDQ0EBUVxerVq0VjUAWFTkNQ6HLEx8cLwD1\/Zs6cKdTW1gqjRo0SbGxsBF1dXcHFxUWYOXOmkJubq\/YadXV1wssvvyxYWloKhoaGQkRExD2PUehc4uLiBAMDAyEyMlJwdnYWzMzMhMmTJwsTJkwQbG1thfT0dEEQBKG5uVk4evSo8P7773fIut5555173nt2dnbi9ZaWFuGdd94RHBwcBAMDA2Ho0KHC+fPnO2RtCo8GivAoKPwBiY+PF4yNjYWff\/5ZEIRWcUlKShJiYmIEfX194dixY522tnfeeUfw8\/MTCgoKxD\/FxcXi9Q8\/\/FAwNTUVYmNjhXPnzglTp04VHBwchFu3bnXamhU6FkV4FNqFpUuXCiEhIYKJiYlgY2MjREVFCZcuXVJ7zIPc+dbX1wsvv\/yyYGVlJRgZGQmRkZFCXl5eR\/4ojyRFRUXCjh07NF5rbm7u4NWo88477wiBgYEar7W0tAj29vbChx9+KH6tvr5eMDc3F9auXdtBK1TobJTmAoV2ITExkZdeeokTJ05w4MABmpqaGDVqFDU1NeJjli9fzsqVK\/nss89ITk7G3t6ekSNHUlVVJT5m7ty5bNu2jc2bN3P06FGqq6uJiIgQw9YeV2xtbYmMjNR4rW0AtTPJyMjA0dERd3d3nnnmGbKysoAHi7BWeAzobOVTeDwoLi4WACExMVEQhAe7862oqBB0dXWFzZs3i4+5ceOGoKWlJezbt69jfwCFB2bPnj3Cli1bhLS0NOHAgQPC0KFDBTs7O6GkpEQ4duyYAAg3btxQe87zzz8vjBo1qpNWrNDRdP6tkcJjQWVlJYBoRPogd76pqancvn1b7TGOjo74+\/srd8ePMGPGjGHSpEliDs7u3bsB1BzRf0+EtULXQREehXZHEARef\/11wsPDxeyUNuuduyOJ77TlUax7ugbGxsYEBASQkZHxQBHWCl0fRXgU2p2XX36ZtLQ0Nm3adM+133Pnq9wd\/7FoaGjg4sWLODg4qEVYt9EWYa0MJz8+KMKj0K688sor7Nixg\/j4eDXLlge5873TukfqMQqPHvPnzycxMZFr165x8uRJnn76aW7dusXMmTNRqVRihPW2bds4f\/48s2bNUouwVuj6KMKj0C4IgsDLL7\/M1q1bOXToEO7u7mrXH+TOV7Hu+WNy\/fp1\/vSnP+Ht7c3EiRPR09PjxIkTuLq6ArBw4ULmzp1LTEwMISEh3Lhxg\/379z8S8dsKHYNimaPQLsTExLBx40bi4uLw9vYWv25ubi5GOy9btowPPviAdevW4eXlxdKlS0lISODy5cuKdY+CQhdGER6FdkGqBrNu3TpmzZoFtO6KlixZwhdffEF5eTlhYWF8\/vnnYgMCQH19PQsWLGDjxo3U1dUxYsQIVq9ejbOzc0f8GAoKCu2AIjxdgJs3bxIQEMCrr77KokWLADh58iSDBw9m165dau3ICgoKCp2NUuPpAtjY2PDtt9+yePFiUlJSqK6uZvr06cTExDz2ovPBBx8QGhqKqakptra2REdHc\/nyZbXHzJo1C5VKpfanf\/\/+ao9paGjglVdewdraGmNjY8aPH8\/169c78kdRUOgyKDueLsRLL73EwYMHCQ0N5ezZsyQnJz\/2FvhPPfUUzzzzDKGhoTQ1NfHmm29y7tw5Lly4gLGxMdAqPEVFRaxbt058np6enjjsCq21pp07d7J+\/XqsrKyYN28eZWVlSq1JQeF3oAhPF6Kurg5\/f3\/y8vJISUmhd+\/enb2kR46bN29ia2tLYmIiQ4YMAVqFp6Kigu3bt2t8TmVlJTY2Nnz\/\/fdibHh+fj7Ozs7s2bOH0aNHd9TyFRS6BMpRWxciKyuL\/Px8WlpayMnJ6ezlPJLcbd3TRkJCAra2tvTs2ZPnn3+e4uJi8Zpi3aOg8HDR6ewFKDwcGhsbefbZZ5k6dSo+Pj7Mnj2bc+fOKYOWd6DJugdavcUmT56Mq6sr165d4+233+aJJ54gNTUVfX19xbpHQeEhowhPF+HNN9+ksrKSTz\/9FBMTE\/bu3cvs2bPZtWtXZy\/tkaHNuufo0aNqX287PgPw9\/cnJCQEV1dXdu\/ezcSJEyVfT7HuUVD4fShHbV2AhIQEPv74Y77\/\/nvMzMzQ0tLi+++\/5+jRo6xZs6azl\/dIIGXdowkHBwdcXV3JyMgAFOseBYWHjSI8XYBhw4Zx+\/ZtwsPDxa+5uLhQUVHBnDlzOnFlnc\/9rHs0UVpaSl5eHg4ODsDjbd2zevVq3N3dMTAwIDg4mCNHjnT2khS6AIrwKHRpXnrpJX744Qc2btyIqakphYWFFBYWUldXB0B1dTXz588nKSmJ7OxsEhISiIyMxNramgkTJgCtNj+zZ89m3rx5\/Prrr5w+fZrp06eLeTNdlZ9++om5c+fy5ptvcvr0aQYPHsyYMWPIzc3t7KUp\/NHp4OA5BYUOBdD4Z926dYIgCEJtba0watQowcbGRtDV1RVcXFyEmTNnCrm5uWqvU1dXJ7z88suCpaWlYGhoKERERNzzmK5Gv379hBdffFHtaz4+PsLf\/va3TlqRQldBmeNRUFC4h8bGRoyMjPj555\/FnR\/AX\/\/6V86cOUNiYmInrk7hj45y1KagoHAPJSUlNDc3yybEKij8XhThUVDoINasWUPv3r0xMzPDzMyMAQMGsHfvXvG6IAgsXrwYR0dHDA0NGTZsGOnp6Wqv0dGecb8nIVZB4X4owqOg0EE4OTnx4YcfkpKSQkpKCk888QRRUVGiuCxfvpyVK1fy2WefkZycjL29PSNHjqSqqkp8jblz57Jt2zY2b97M0aNHqa6uJiIigubm5oe6Vmtra7S1tWUTYhUUfjedW2JSUHi86datm\/D1118LLS0tgr29vfDhhx+K1+rr6wVzc3Nh7dq1giAIQkVFhaCrqyts3rxZfMyNGzcELS0tYd++fQ99bf369RPmzJmj9jVfX1+luUDhP0bZ8SgodALNzc1s3ryZmpoaBgwYwLVr1ygsLFTzg9PX12fo0KGiH1xHe8a9\/vrrfP3113z77bdcvHiR1157jdzcXF588cWH\/r0UHi8UyxwFhQ7k3LlzDBgwgPr6ekxMTNi2bRu9evUShUNTMb\/N8LWjPeOmTp1KaWkpf\/\/73ykoKMDf3589e\/bg6ur60L+XwuOFIjwKCh2It7c3Z86coaKigtjYWGbOnKnWmvx7ivkP8pjfS0xMDDExMe3y2gqPL8pRm4JCB6Knp0ePHj0ICQnhgw8+IDAwkE8++QR7e3sA2WK+4hmn0FVQhEdBoRMRBIGGhgbc3d2xt7dX84NrbGwkMTFR9IN7nD3jFLoWylGbgkIHsWjRIsaMGYOzszNVVVVs3ryZhIQE9u3bh0qlYu7cuSxduhQvLy+8vLxYunQpRkZGTJs2DVD3jLOyssLS0pL58+d3ec84ha6HIjwKCh1EUVERM2bMoKCgAHNzc3r37s2+ffsYOXIkAAsXLqSuro6YmBjKy8sJCwtj\/\/79mJqaiq+xatUqdHR0mDJlCnV1dYwYMYL169ejra3dWT+WgsK\/jeLVpqCgoKDQoSg1HgUFBQWFDkURHgUFBQWFDkURHgUFBQWFDkURHgUFBQWFDkURHgUFBQWFDkURHgUFBQWFDkURHgUFBQWFDkURHgUFBQWFDkURHgUFBQWFDkURHgUFBQWFDkURHgUFBQWFDuX\/A4gVzc4ux\/doAAAAAElFTkSuQmCC", "text\/plain": "<Figure size 640x480 with 1 Axes>"}, "metadata": {}, "output_type": "display_data"}]}}, "85007844bdc54cdf992dc43ba5b83a41": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "851af3a043f1495ea899768d977eda65": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "86d909bc42c141caa23af6d60020a0db": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "IntSliderModel", "state": {"behavior": "drag-tap", "layout": "IPY_MODEL_246b67cae6d04400856fb146b0a764d3", "max": 199, "style": "IPY_MODEL_2df005db5f0d49dda9dd0c4e6e958c48"}}, "87d61c25a76c41e1a826e0e1bcdaf617": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "88035a6b469f4a4891e35659867ff0c6": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "IntSliderModel", "state": {"behavior": "drag-tap", "layout": "IPY_MODEL_a687e87123924c42ad280c3d1993286b", "max": 1999, "style": "IPY_MODEL_b08f9008f0f040808e2c22dbf9b7d636", "value": 792}}, "8851479464964c8a8ed0ae1f204a6c9a": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"children": ["IPY_MODEL_93f14a52f3064949b531de7e08a42ee6"], "layout": "IPY_MODEL_0221bef15fef48a190eccd595775ec95"}}, "894a4ad9cfb04c80bd06a8491a9b3c14": {"model_module": "@jupyter-widgets\/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": {"layout": "IPY_MODEL_c1912c587d5a48f6a85f569f08c3365e", "outputs": [{"data": {"image\/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG2CAYAAACXuTmvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy\/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABKE0lEQVR4nO3deVxU5eIG8GdmgGEfBVkFERXcwV0hzaUkrcylxbK82uJPS715rTS1brZcMSvbNLst18oyKtfKJekquCsoKKIiCggqiKLMsM4wM+f3Bzo33BWGd2bO8\/185lOcOTM8vs2neTznPe9RSJIkgYiIiEhGlKIDEBERETU2FiAiIiKSHRYgIiIikh0WICIiIpIdFiAiIiKSHRYgIiIikh0WICIiIpIdFiAiIiKSHRYgIiIikh0WICIiIpIdmylA8fHxUCgUmDZtmmWbJEmYO3cugoOD4ebmhgEDBiAzM1NcSCIiInIINlGAUlJS8MUXXyAqKqrO9gULFmDhwoVYtGgRUlJSEBgYiMGDB6OsrExQUiIiInIEwgtQeXk5nnzySXz55Zdo2rSpZbskSfjoo48wZ84cjBo1Cp06dcK3336LyspKLF++XGBiIiIisndOogNMnjwZDzzwAO6991688847lu25ubkoKipCXFycZZtarUb\/\/v2xc+dOTJw48Zrvp9frodfrLT+bzWZcuHABvr6+UCgU1vuDEBERUYORJAllZWUIDg6GUtnwx2uEFqCEhATs378fKSkpVz1XVFQEAAgICKizPSAgACdPnrzue8bHx+PNN99s2KBEREQkREFBAUJCQhr8fYUVoIKCArz44ovYtGkTXF1dr7vflUdtJEm64ZGcWbNmYfr06ZaftVotWrRogYKCAnh7e9c\/OBEREVmdTqdDaGgovLy8rPL+wgrQvn37UFxcjO7du1u2mUwmbN26FYsWLUJWVhaA2iNBQUFBln2Ki4uvOir0V2q1Gmq1+qrt3t7eLEBERER2xlrTV4RNgr7nnnuQkZGB9PR0y6NHjx548sknkZ6ejlatWiEwMBCJiYmW1xgMBiQnJyM2NlZUbCIiInIAwo4AeXl5oVOnTnW2eXh4wNfX17J92rRpmDdvHiIiIhAREYF58+bB3d0dY8aMERGZiIiIHITwq8BuZMaMGaiqqsILL7yAixcvonfv3ti0aZPVzgcSERGRPCgkSZJEh7AmnU4HjUYDrVbLOUBERER2wtrf38IXQiQiIiJqbCxAREREJDssQERERCQ7LEBEREQkOyxAREREJDssQERERCQ7LEBEREQkOyxAREREJDssQERERCQ7LEBEREQkOyxAREREJDuyKUDpBRdFRyAiIiIbIZsC9MbaTOiNJtExiIiIyAbIpgCdOFeBxVtOiI5BRERENkA2BQgAPttyHEcKdaJjEBERkWCyKUAD2\/nBaJYwc+VBGE1m0XGIiIhIINkUoNcf6AAvVyccPKXFf3bkio5DREREAsmmAPl7u+K1B9oDAD7YdAx55ysEJyIiIiJRZFOAAOCxHqG4q40v9EYzZq48CLNZEh2JiIiIBJBVAVIoFIgfGQU3ZxX25F5AQkqB6EhEREQkgKwKEAC08HXHy\/e1BQDMW38EhdoqwYmIiIioscmuAAHA+NiW6BLaBOV6I+asPgRJ4qkwIiIiOZFlAVIpFVjwSBScVQpsPlqMXw+cER2JiIiIGpEsCxAARAZ4YeqgCADAm78dRkm5XnAiIiIiaiyyLUAAMKl\/a7QL9MKFCgPe+v2w6DhERETUSGRdgFyclHj34SgoFcDa9DP475GzoiMRERFRI5B1AQKA6NAmeK5fKwDAnNWHoKuuEZyIiIiIrE32BQgA\/nFvJFr6uqNIV435G46KjkNERERWxgIEwM1FhfhRUQCA5XvysetEieBEREREZE0sQJfEtPbFmN4tAACvrjqIKoNJcCIiIiKyFhagv3h1aDsEerviZEklPvzzmOg4REREZCUsQH\/h7eqMeaM6AQC+2paDAwWlYgMRERGRVbAAXWFQuwAM7xIMswTMXHkQBqNZdCQiIiJqYCxA1\/DPBzvAx8MFR4vKsCTphOg4RERE1MBYgK7B11ONuQ91BAAs2pKNY2fLBCciIiKihiS0AC1ZsgRRUVHw9vaGt7c3YmJisGHDBsvz48ePh0KhqPPo06dPo2QbFhWEe9v7o8YkYcaKgzCZecd4IiIiRyG0AIWEhGD+\/PlITU1FamoqBg0ahOHDhyMzM9Oyz5AhQ1BYWGh5rF+\/vlGyKRQKvD2iE7zUTkgvKMU3O\/Ma5fcSERGR9QktQMOGDcP999+PyMhIREZG4l\/\/+hc8PT2xe\/duyz5qtRqBgYGWh4+PT6PlC9K4Ydb97QEA7\/+RhfySykb73URERGQ9NjMHyGQyISEhARUVFYiJibFsT0pKgr+\/PyIjIzFhwgQUFxff8H30ej10Ol2dR3080SsUMa18UVVjwqurDkKSeCqMiIjI3gkvQBkZGfD09IRarcakSZOwevVqdOjQAQAwdOhQ\/PDDD9i8eTM++OADpKSkYNCgQdDr9dd9v\/j4eGg0GssjNDS0XvkUCgXiR3WGq7MSO0+U4OfUgnq9HxEREYmnkAQf0jAYDMjPz0dpaSlWrlyJr776CsnJyZYS9FeFhYUICwtDQkICRo0adc330+v1dQqSTqdDaGgotFotvL297zjnl1tz8K\/1R+Dl6oQ\/p\/dHgLfrHb8XERER3ZhOp4NGo6n39\/f1CD8C5OLigjZt2qBHjx6Ij49HdHQ0Pv7442vuGxQUhLCwMGRnZ1\/3\/dRqteWqssuPhvD0XS0RHaJBWbURr605xFNhREREdkx4AbqSJEnXPcVVUlKCgoICBAUFNXIqwEmlxIJHouGsUiDx8Fmsyyhs9AxERETUMIQWoNmzZ2Pbtm3Iy8tDRkYG5syZg6SkJDz55JMoLy\/Hyy+\/jF27diEvLw9JSUkYNmwYmjVrhpEjRwrJ2zbQCy8MaAMAeGNtJi5WGITkICIiovoRWoDOnj2LsWPHom3btrjnnnuwZ88ebNy4EYMHD4ZKpUJGRgaGDx+OyMhIjBs3DpGRkdi1axe8vLyEZX5hYGtEBniipMKAt38\/LCwHERER3Tnhk6CtzRqTqNLyL+LhJTthloClT\/fEwLb+DfK+REREVMvhJ0Hbo64tmuKZu8IBAHNWZaCsukZwIiIiIrodLEB3aHpcJFr4uOOMthoLNmaJjkNERES3gQXoDrm7OGH+qM4AgGW7T2Jv7gXBiYiIiOhWsQDVQ2ybZniiV+1K0zNXHkR1jUlwIiIiIroVLED19OrQ9gjwViP3fAU++vP6CzQSERGR7WABqieNmzPeGVF7KuzLbTnIOKUVnIiIiIhuhgWoAQzuEIAHo4JgMkuYsfIgakxm0ZGIiIjoBliAGsjchzqiqbszjhTq8MXWHNFxiIiI6AZYgBpIM0813hjWEQDw8Z\/ZOF5cJjgRERERXQ8LUAMa3iUYA9v6wWAyY8aKgzCZHXqRbSIiIqvJKtJZ9f1ZgBqQQqHAv0Z2hqfaCfvzS7FsV57oSERERHanQm\/E1B\/TrPo7WIAaWHATN7w6tB0AYMEfWSi4UCk4ERERkX2J33AEZ0qrrfo7WICsYEyvFugV7oNKgwmzV2fAwe83S0RE1GB2HD+P73fnW\/33sABZgVKpwPxRnaF2UmJb9nms2HdKdCQiIiKbV643YsaKgwCA0T1DrPq7WICspJWfJ\/4xOBIA8Pbvh1FcZt1DeURERPZu3vojOF1ahZCmbpg+uK1VfxcLkBU91zccnZtroKs24o21maLjEBER2axt2eewfE\/tqa\/3HomGh9rJqr+PBciKnFRKvPtwFJyUCmw4VIQNGYWiIxEREdmcsuoazLx06mtcTBhiWvta\/XeyAFlZh2BvPD+gNQDg9bWZKK00CE5ERERkW\/617gjOaKvRwscdMy9dSW1tLECNYMqgNmjj74nz5Xq8s+6I6DhEREQ2I\/nYOSSkFAAA3nskCu4u1j31dRkLUCNQO6nw7sNRUCiAFftOISmrWHQkIiIi4bRV\/zv1NT62JXq3sv6pr8tYgBpJ97CmGB\/bEgAwc+VBaCtrxAYiIiIS7J3fD6NIV42Wvu6YMcS6V31diQWoEc24rx1a+XngrE6P19ceEh2HiIhImC1Hi\/HLvlNQKID3Ho1utFNfl7EANSI3FxUWPtYFKqUCvx44g98OnBEdiYiIqNFpK2vw6qraU1\/P3BWOni19Gj0DC1Aj6xLaBJMHtgEAvLbmEM7quEAiERHJy1u\/H8ZZnR6tmnng5bjGPfV1GQuQAFMHtUHn5hpoq2owY8VB3iuMiIhk48\/DZ7Fy\/+VTX1Fwc1EJycECJICzSokPR0fDxUmJ5GPn8MMe69\/0jYiISLTSSgNmr84AAEzo1wrdwxr\/1NdlLECCtPH3wswhtYs9\/WvdEeSdrxCciIiIyLre\/O0wisv0aOXngemX7pcpCguQQE\/HtkRMK19U1Zgw\/ed0mMw8FUZERI5pU2YRVqedhlIBvP9oNFydxZz6uowFSCClUoH3H4uGl9oJ+\/NL8XnyCdGRiIiIGtzFCgNmr65d\/mXC3a3QrUVTwYlYgIRr3sQNcx\/qCAD46M9jyDyjFZyIiIioYc39LRPny\/Vo4++Jf9wr9tTXZSxANmBUt+a4r2MAakwSpv90ANU1JtGRiIiIGsTGQ0VYm37GZk59XcYCZAMUCgXmjeyMZp4uyDpbhg8Tj4mOREREVG8XKgx4bU3tVV+T+rdGl9AmYgP9BQuQjfD1VGP+qCgAwBfbcrAnp0RwIiIiovr559pDOF9uQGSAJ168N0J0nDpYgGzIvR0CMLpHKCQJeOmXAyjXG0VHIiIiuiPrMwrx+8FCqJQKvP9oNNROtnHq6zIWIBvz2oPtEdLUDacuVuHt3w6LjkNERHTbSsr1eH1N7VVfz\/dvjaiQJmIDXYPQArRkyRJERUXB29sb3t7eiImJwYYNGyzPS5KEuXPnIjg4GG5ubhgwYAAyMzMFJrY+L1dnfPBoNBQK4KfUAvx5+KzoSERERLfln2szUVJhQLtAL0y9p43oONcktACFhIRg\/vz5SE1NRWpqKgYNGoThw4dbSs6CBQuwcOFCLFq0CCkpKQgMDMTgwYNRVlYmMrbV9W7liwn9WgEAXl11ECXlesGJiIiIbs3vB89gXUYhnGz01NdlCsnG7sTp4+OD9957D8888wyCg4Mxbdo0zJw5EwCg1+sREBCAd999FxMnTryl99PpdNBoNNBqtfD29rZm9AZVXWPC8EU7kHW2DPd1DMDnT3WHQqEQHYuIiOi6zpXpEfdhMi5W1uDv90TU63YX1v7+tpk5QCaTCQkJCaioqEBMTAxyc3NRVFSEuLg4yz5qtRr9+\/fHzp07BSZtHK7OKiwcHQ1nlQJ\/ZJ7Fqv2nRUciIiK6LkmS8NqaDFysrEH7IG9MGWibp74uE16AMjIy4OnpCbVajUmTJmH16tXo0KEDioqKAAABAQF19g8ICLA8dy16vR46na7Ow151DNZg2qUVM+f+monTpVWCExEREV3brwfO4I\/Ms5dOfUXBxUl4xbgh4enatm2L9PR07N69G88\/\/zzGjRuHw4f\/d\/XTlad9JEm64amg+Ph4aDQayyM0NNRq2RvDxLtboVuLJijTG\/Hyzwdg5g1TiYjIxhSXVeONX2vn704dFIGOwRrBiW5OeAFycXFBmzZt0KNHD8THxyM6Ohoff\/wxAgMDAeCqoz3FxcVXHRX6q1mzZkGr1VoeBQUFVs1vbU4qJRY+1gVuzirsyinBNzvzREciIiKykCQJc1YfQmllDToGe+OFga1FR7olwgvQlSRJgl6vR3h4OAIDA5GYmGh5zmAwIDk5GbGxsdd9vVqttlxWf\/lh71o288CcB9oDAN7deBTHix37KjgiIrIfa9PPIPHwWTiraq\/6clbZXLW4JqEpZ8+ejW3btiEvLw8ZGRmYM2cOkpKS8OSTT0KhUGDatGmYN28eVq9ejUOHDmH8+PFwd3fHmDFjRMYW4sneLdA\/0g96oxn\/+OkAakxm0ZGIiEjminX\/O\/X190ERaB9kPwcdnET+8rNnz2Ls2LEoLCyERqNBVFQUNm7ciMGDBwMAZsyYgaqqKrzwwgu4ePEievfujU2bNsHLy0tkbCEUCgUWPBKFuA+3IuO0Fp9uPl6vywuJiIjqQ5IkzF6dAW1VDTo312DSAPs49XWZza0D1NDsdR2g6\/ntwBlM\/TENKqUCK5+Ptak76xIRkXys3HcKL\/1yAC4qJX6b2hdtAxv24IRs1gGiWzMsOhgPRQfDZJYw\/ad0VBlMoiMREZHMFGmr8eZvtae+Xrw3osHLT2NgAbJDbw3viABvNXLOV+DdjUdFxyEiIhmRJAmzVh2ErtqI6BANJt7dSnSkO8ICZIeauLtgwSPRAIBvduZhW\/Y5wYmIiEguVuw7hS1Z5+CiUuL9R6PhZCdXfV3JPlMT+kf6YWyfMADAK78chLayRnAiIiJydIXaKrz1W+1ixdPjIhERYH+nvi5jAbJjs+5vh\/BmHijSVeONXw+JjkNERA5MkiS8ujIDZXojuoQ2wYR+9nnq6zIWIDvm7uKEDx6LhlIBrEk\/g3UHC0VHIiIiB\/VzagGSj52Di1PtqS+V8vq3pbIHLEB2rluLpnhhQO0dd+esyUCxrlpwIiIicjSnS6vwzu9HAAAvx0Wijb+n4ET1xwLkAP5+TwQ6BnujtLIGM1cehIMv7URERI2o9tTXQZTpjejWogme7Wvfp74uYwFyAC5OSnw4ugtcnJTYknUOP+617xvAEhGR7fhxbwG2ZZ+H2kFOfV3GAuQgIgO8MOO+tgCAd9YdxsmSCsGJiIjI3p26WIl\/rau96uuV+9qilZ\/9n\/q6jAXIgTxzVzh6h\/ug0mDCSz8fgMnMU2FERHRnJEnCzJUHUWEwoUdYUzx9V7joSA2KBciBKJUKvP9oNDzVTkg9eRFfbM0RHYmIiOzUD3vyseN4CVydlXjPgU59XcYC5GBCfdzxz2EdAAALE7NwpFAnOBEREdmbgguVmLe+9qqvGffVrjnnaFiAHNCj3UMwuEMAakwS\/vFTOvRG3jCViIhujdksYcaKg6g0mNCrpQ\/Gx7YUHckqWIAckEKhQPyozvD1cMHRojJ8mJgtOhIREdmJ7\/ecxK6cErg5q\/Deo1FQOtipr8tYgBxUM0815o3qDAD499YTSMm7IDgRERHZuvySSsSvPwoAeHVoO4T5Ot6pr8tYgBzYfR0D8Uj3EEgSMP3ndJTrjaIjERGRjTKbJby84gCqakzo08rHcsNtR8UC5OD+OawDmjdxQ8GFKstaDkRERFf6ensu9uZegLuLCu89Eu2wp74uYwFycN6uznj\/0WgAtat5bj56VnAiIiKyNekFpXh3Y+2przkPtEeoj7vgRNbHAiQDMa198Wzf2gWsZqzIwIUKg+BERERkK7RVNZj6434YzRLu7xyIMb1aiI7UKFiAZOKV+9oiwt8T58v1mLM6gzdMJSIiSJKEWasOouBCFUJ93BA\/KgoKhWOf+rqMBUgmXJ1V+HB0FzgpFdhwqAhr0k+LjkRERIJ9vycf6zOK4KxSYNET3aBxcxYdqdGwAMlIp+YavHhPBADgn2szcaa0SnAiIiIS5fAZHd7+vfbimJlD2iE6tInYQI2MBUhmnh\/QGl1Cm6Cs2ohXVhyAmTdMJSKSnQq9EVOW74fBaMY97fwt80TlhAVIZpxUSix8LBquzkrsOF6Cb3fliY5ERESN7PU1h5BzvgJBGle8\/2i0bOb9\/BULkAy18vPE7PvbAwDiNxxFximt4ERERNRYVuw7hVVpp6FSKvDJE13R1MNFdCQhWIBkamyfMNzb3h8GoxmTvt+Hi7w0nojI4R0vLsPraw4BAP5xbwR6tvQRnEgcFiCZUigU+OCxLgjzdcfp0iq8+FM6TJwPRETksKprTJj8Qxqqakzo26YZnh\/QRnQkoViAZEzj5ozPn+oOV2clth47h4\/\/y7vGExE5qjd\/O4yss2Vo5qnGwtHRUDn4rS5uhgVI5toHeSP+0l3jP\/lvNm+VQUTkgH47cAY\/7s2HQgF8NLoL\/L1cRUcSjgWIMLJriOWuv9MS0pFfUik4ERERNZSTJRWYtSoDADB5QBv0jWgmOJFtYAEiAMBrD7ZHl9Am0FUbMen7faiuMYmORERE9aQ3mjBleRrK9Ub0bNkU0+6NEB3JZrAAEQBA7aTCkqe6wdfDBYcLdXhtzSHeL4yIyM69uyELGae1aOrujE+e6AonFb\/2L+NIkEWQxg2fPtEVSkXtOhE\/7i0QHYmIiO5Q4uGz+M+OXADA+49GI0jjJjiRbWEBojpi2zTDK\/e1AwDM\/TUTBwpKxQYiIqLbdrq0Ci\/\/cgAA8FzfcNzTPkBwItvDAkRXmdS\/FeI6BMBgMuP57\/fhAhdJJCKyGzUmM\/7+Yxq0VTWIDtFgxpB2oiPZJKEFKD4+Hj179oSXlxf8\/f0xYsQIZGVl1dln\/PjxUCgUdR59+vQRlFgeFAoF3n8sGuHNPHBGW40XE9K4SCIRkZ34MPEY9p28CC9XJywa0w0uTjzWcS1CRyU5ORmTJ0\/G7t27kZiYCKPRiLi4OFRUVNTZb8iQISgsLLQ81q9fLyixfHi71i6S6Oaswrbs8\/gw8ZjoSEREdBPJx87hs6QTAIB3H45CqI+74ES2y0nkL9+4cWOdn5cuXQp\/f3\/s27cPd999t2W7Wq1GYGBgY8eTvbaBXpj\/cGe8mJCORVuOo0toE9zbgeeRiYhsUbGuGtN\/SgcAPNWnBe7vHCQ2kI2zqeNiWm3tXcl9fOrenC0pKQn+\/v6IjIzEhAkTUFxcfN330Ov10Ol0dR5054Z3aY7xsS0BAP\/4OR155ytu\/AIiImp0JrOEaT+lo6TCgHaBXnjtgQ6iI9k8mylAkiRh+vTp6Nu3Lzp16mTZPnToUPzwww\/YvHkzPvjgA6SkpGDQoEHQ6\/XXfJ\/4+HhoNBrLIzQ0tLH+CA5r9v3t0T2sKcouLZJYZeAiiUREtmTxluPYeaIE7i4qLH6yG1ydVaIj2TyFZCOr3U2ePBnr1q3D9u3bERISct39CgsLERYWhoSEBIwaNeqq5\/V6fZ1ypNPpEBoaCq1WC29vb6tkl4MibTUe\/HQbzpcbMKprc3zwWDQUCnnfSI+IyBbszinBmC93wywBCx+Lxqhu1\/8OtSc6nQ4ajcZq3982cQRo6tSp+PXXX7Fly5Yblh8ACAoKQlhYGLKzr33ncrVaDW9v7zoPqr9AjSs+faIbVEoFVqWdxvd78kVHIiKSvZJyPV5MSINZAh7pHuIw5acxCC1AkiRhypQpWLVqFTZv3ozw8PCbvqakpAQFBQUICuLkrsYW09oXM4e0BQC89Vsm9udfFJyIiEi+zGYJL\/1yAGd1erT288BbwzuKjmRXhBagyZMn4\/vvv8fy5cvh5eWFoqIiFBUVoaqqCgBQXl6Ol19+Gbt27UJeXh6SkpIwbNgwNGvWDCNHjhQZXbYm9GuFoZ0CUWOSMPmH\/Sgpv\/ZcLCIisq6vtucgKesc1E5KLH6yG9xdhF7YbXeEFqAlS5ZAq9ViwIABCAoKsjx++uknAIBKpUJGRgaGDx+OyMhIjBs3DpGRkdi1axe8vLxERpcthUKBBY9EoZWfBwq11Zj6YxqMJrPoWEREsrI\/\/yIWbKxdOPiNYR3RLpDTPW6XzUyCthZrT6KSq+yzZRi+eAcqDSY8P6A1ZnKpdSKiRqGtrMH9n2zD6dIqPBgVhE+f6OqQF6XIYhI02Z+IAC+8+3AUAGBJ0gn8kVkkOBERkeOTJAkzVx7E6dIqtPBxR\/yozg5ZfhoDCxDdsWHRwXjmrtqJ6y\/\/fAC5XCSRiMiqlu0+iY2ZRXBWKbBoTFd4uTqLjmS3WICoXmbd3w49WzZFmd6IScv2odJgFB2JiMghZZ7R4p3fjwAAZg1tj6iQJmID2TkWIKoXZ5USi8d0g5+XGllnyzBrVQYcfFoZEVGjK9cbMWV5GgwmM+5tH4Cn72opOpLdYwGievP3dsXiMbWLJK5NP4Pvdp0UHYmIyGFIkoQ5qzOQe74CwRpXvP9oFOf9NAAWIGoQvcJ9MGto7ZVgb\/9+GPtOXhCciIjIMfySegpr089ApVTgkye6oom7i+hIDoEFiBrMs33D8UBUEIxmCS\/8sB\/nyrhIIhFRfWSfLcM\/fz0EAHgpLhI9WvoITuQ4WICowSgUCrz7cBTa+HvirE6PqT\/u5yKJRER3qMpgwuTl+1FdY0a\/iGaYdHdr0ZEcCgsQNShPtRM+f6o7PFxU2J1zAe\/9kSU6EhGRXXrzt0wcO1sOPy81Fj7WBUol5\/00JBYganBt\/D3x3qPRAIB\/b83BhoxCwYmIiOzL2vTTSEgpgEIBfDy6C\/y81KIjORwWILKK+zsHYUK\/2kUSX1lxECfOlQtORERkH3LPV2D2qgwAwNRBEYht00xwIsfEAkRWM3NIO\/QO90H5pUUSK\/RcJJGI6Eb0RhOm\/rgfFQYTeoX74O+D2oiO5LBYgMhqnFRKfDqmK\/y91MguLsfMlQe5SCIR0Q3Erz+KQ6d1aOrujE8e7wonFb+mrYUjS1bl7+WKz57sBielAr8fLMTSHXmiIxER2aQ\/Movwzc48AMDCx7ogUOMqNpCDYwEiq+vR0gdzHmgPAJi3\/ghS8rhIIhHRX526WIlXfjkAAJh4dysMbOcvOJHjYwGiRjE+tiUeig6G0Sxh8g\/7UVxWLToSEZFNqDGZMfXHNOiqjegS2gQv39dWdCRZYAGiRqFQKBA\/qjMiAzxRXKbHlOVpqOEiiURE+GDTMaTll8LL1QmfPtEVzpz30yg4ytRoPC4tkuipdsLe3At4d8NR0ZGIiIRKyirG58knAADvPRKFUB93wYnkgwWIGlUrP0+8f2mRxK+252LdQS6SSETylFVUhr\/\/mAYA+FtMGIZ0ChKcSF5YgKjRDekUiIn9WwEAZqw4gOPFZYITERE1rlMXK\/G3\/+yBrtqI7mFNMfv+9qIjyQ4LEAnxSlxbxLTyRYXBhInL9qGciyQSkUyUlOvxt6\/34qxOj8gAT\/xnXE+4OqtEx5IdFiAS4vIiiYHerjhxrgIzV3CRRCJyfOV6I57+JgU55yvQvIkbvnumNzTuzqJjyRILEAnTzFONxU92g7NKgXUZhfh6e67oSEREVqM3mjBp2T4cPKWFj4cLvnu2Fxc7FIgFiITqHtYUrz\/YAQAQv+Eoko+dE5yIiKjhmcwSXvr5ALYfPw93FxWWju+J1n6eomPJGgsQCTe2TxhGdWsOk1nCxGWpXCmaiByKJEl487dM\/H6wEM4qBf49tjuiQ5uIjiV7LEAknEKhwPxRURjQ1g\/VNWY8szQFh05rRcciImoQn24+ju92nYRCUXuPr34RfqIjEViAyEa4OCnx+VPd0TvcB2V6I\/72n728PJ6I7N73u09iYeIxAMDcYR0xLDpYcCK6jAWIbIarswpfjeuB6BANLlQY8ORXe1BwoVJ0LCKiO7I+oxCvrz0EAPj7oDYYF9tSbCCqgwWIbIqXqzO+eboXIgM8cVanx5Nf7cFZHW+cSkT2Zefx85iWkA5JAsb0boF\/DI4UHYmuwAJENqephwu+f7Y3wnzdkX+hEk99tQcXKgyiYxER3ZJDp7X4v2X7YDCZMbRTIN4e3gkKhUJ0LLoCCxDZJH9vV3z\/bG8Eersiu7gc4\/6zF7rqGtGxiIhuKO98BcYv3YtyvRExrXzx4eguUClZfmwRCxDZrFAfd3z\/XG\/4ergg47QWz32TiiqDSXQsIqJrKtZVY+x\/9uB8uQEdg73xxd+68xYXNowFiGxaG39PfPtML3i5OmFv3gVM+n4fDEaz6FhERHVoq2rwt\/\/sRcGFKoT5uuObp3vBy5W3uLBlLEBk8zo11+Cbp3vCzVmF5GPn8GJCGowmliAisg3VNSZM+C4VR4vK4OelxrJnesPPSy06Ft0ECxDZhe5hPvjib93holJiw6EivLoqA2Yzb55KRGIZTWZM\/TENe3MvwEvthG+f7oUWvu6iY9EtEFqA4uPj0bNnT3h5ecHf3x8jRoxAVlZWnX0kScLcuXMRHBwMNzc3DBgwAJmZmYISk0j9Ivzw6ZiuUCkVWLHvFN76\/TDvIE9EwkiShNmrM5B4+CxcnJT4alwPdAj2Fh2LbpHQApScnIzJkydj9+7dSExMhNFoRFxcHCoqKiz7LFiwAAsXLsSiRYuQkpKCwMBADB48GGVlXCVYju7rGIj3H40CAHyzM8+ywioRUWN7748s\/Jx6CkoF8OkTXdG7la\/oSHQbFJIN\/RX63Llz8Pf3R3JyMu6++25IkoTg4GBMmzYNM2fOBADo9XoEBATg3XffxcSJE2\/6njqdDhqNBlqtFt7ebOaOYtmuPLy+tvZI4Kyh7TCxf2vBiYhITr7enou3fz8MAJg\/qjMe79VCcCLHY+3vb6c7edFbb711w+f\/+c9\/3lEYrbb2Bpg+Pj4AgNzcXBQVFSEuLs6yj1qtRv\/+\/bFz585rFiC9Xg+9Xm\/5WafT3VEWsm1jY1qiXG\/CuxuPIn7DUXi6OuHJ3mGiYxGRDKxJO20pP6\/c15blx07dUQFavXp1nZ9ramqQm5sLJycntG7d+o4KkCRJmD59Ovr27YtOnToBAIqKigAAAQEBdfYNCAjAyZMnr\/k+8fHxePPNN2\/795P9eX5Aa5RV1+CzpBN4bc0heKqdMLxLc9GxiMiBbckqxsu\/HAAAPH1XS7wwgEef7dUdFaC0tLSrtul0OowfPx4jR468oyBTpkzBwYMHsX379queu3IJcUmSrrus+KxZszB9+vQ6uUJDQ+8oE9m+V+5ri3K9Ed\/tOonpPx+Au4sTBncIuPkLiYhu0\/78i3jh+\/0wmiUM7xKM1x\/owFtc2LEGmwTt7e2Nt956C6+\/\/vptv3bq1Kn49ddfsWXLFoSEhFi2BwYGAvjfkaDLiouLrzoqdJlarYa3t3edBzkuhUKBucM6YlS35jCZJUxevh87jp8XHYuIHMzx4jI8800KqmpMuDvSD+89Eg0lb3Fh1xr0KrDS0lLLPJ5bIUkSpkyZglWrVmHz5s0IDw+v83x4eDgCAwORmJho2WYwGJCcnIzY2NgGy032TalUYMHDUbivYwAMRjMmfJeKfScvio5FRA7iTGkVxn69F6WVNegS2gSfP9UNLk5cRs\/e3dEpsE8++aTOz5IkobCwEMuWLcOQIUNu+X0mT56M5cuXY+3atfDy8rIc6dFoNHBzc4NCocC0adMwb948REREICIiAvPmzYO7uzvGjBlzJ9HJQTmplPjkia547ttUbMs+j6eX7kXC\/8VwTQ4iqpeLFQaM\/XoPCrXVaO3ngaXje8Ld5Y6+OsnG3NFl8FceqVEqlfDz88OgQYMwa9YseHl53dovv86506VLl2L8+PEAasvVm2++iX\/\/+9+4ePEievfujcWLF1smSt8ML4OXl0qDEX\/7ei9ST15EM08X\/DwxBq38PEXHIiI7VGkwYsyXe5BeUIogjStWPB+L5k3cRMeSDWt\/f9vUOkDWwAIkP9qqGoz5cjcyz+gQrHHFz5NiENKUS9MT0a0zGM147rtUbD12Dk3cnfHLxBhEBNzaX+6pYVj7+5snMcnhaNyc8d0zvdDazwNntNV46qs9KC6rFh2LiOyE2SzhlRUHsPXYObg5q\/Cf8T1ZfhwQCxA5JF9PNb5\/rjdCmrohr6QSf\/t6L0orDaJjEZGNkyQJb687jLXpZ+CkVOCzp7qhW4umomORFbAAkcMK0rjhh+d6w99LjaNFZRi3NAXleqPoWERkwz5LOoGlO\/IAAO8\/Go2Bbf3FBiKrYQEihxbm64Hvn+uNJu7OOFBQignfpqK6xiQ6FhHZoIS9+XjvjywAwOsPdsCIrlxZ3pGxAJHDiwzwwnfP9IKn2gm7ckow+Yf9qDGZRcciIhvyR2YRZq\/OAFB7m51n+4bf5BVk71iASBaiQprg63E9oHZS4r9HizH95wMwmR36AkgiukV7ckow9cc0mCXgsR4hmHFfW9GRqBGwAJFs9G7li8\/HdoezSoHfDpzBnNUZcPBVIIjoJg6f0eG5b1NhMJoxuEMA5o3szPt7yQQLEMnKwLb++Gh0VygVQEJKAeatP8ISRCRT+SWVGLd0L8r0RvRq6YNPn+gKJxW\/FuWC\/6VJdh6ICsL8h6MAAF9uy8Wnm48LTkREje1cmR5j\/7MH58r0aBfohS\/H9YCrs0p0LGpELEAkS4\/1CMU\/H+wAAFiYeAz\/2Z4rOBERNZay6hqMX7oXJ0sqEdLUDd890wsaN2fRsaiRsQCRbD3TNxzTB0cCAN76\/TB+TikQnIiIrK3KYML\/fbcPmWd08PVwwbJne8Pf21V0LBKABYhkbeqgNvi\/u1sBAF5ddRDrDhYKTkRE1lKorcKj\/96JXTkl8FQ74dtneiG8mYfoWCSIk+gARCIpFArMGtoOZdVG\/Lg3H9N+SoO7iwoD23H1VyJHkpZ\/Ef+3bB\/Olenh4+GCL8Z2R6fmGtGxSCAeASLZUygUeGdEJzwUHYwak4RJ3+\/D7pwS0bGIqIGsTT+N0V\/sxrkyPdoGeGHt5LvQo6WP6FgkGAsQEQCVUoEPHovGve39oTea8dy3qUgvKBUdi4jqwWyW8N4fR\/FiQjoMRjPubR+AlS\/EItTHXXQ0sgEsQESXOKuUWDSmG2Jb+6Jcb8TjX+zCrwfOiI5FRHegQm\/EpO\/3YfGWEwBqb2\/xxdju8FRz5gfVYgEi+gtXZxW+\/FsP3B3ph+oaM\/7+YxrmrT8CI+8dRmQ3Tl2sxMNLdmLT4bNwcVLiw9HRmDmkHZRKrvBM\/8MCRHQFD7UTlo7viecHtAYAfLE1B+OXpuBihUFwMiK6mdS8Cxi+aAeOFpWhmacaCf\/XByO7hoiORTaIBYjoGlRKBWYOaYfFY7rBzVmF7cfP46HF23H4jE50NCK6jl9SC\/DEl7tRUmFAhyBv\/DrlLnRr0VR0LLJRLEBEN\/BAVBBWvRCLFj7uKLhQhVFLdnBeEJGNMZklzFt\/BK+sOIgak4ShnQKx4vkYBDdxEx2NbBgLENFNtL\/0N8l+Ec0s84LiOS+IyCaUVddgwnep+GJrDgDg74PaYPGYbnB34WRnujEWIKJb0MTdBd883QuT+tfOC\/r31hw8\/U0KSis5L4hIlPySSoz6bCc2Hy2G2kmJT5\/oiulxbTnZmW4JCxDRLVIpFXh1aDt8+kRXuDmrsC37PIYt2o4jhZwXRNTYdp0owfDF25FdXI4AbzV+mRSDYdHBomORHWEBIrpNw6KDseqFWIT6uNXOC\/psJ37jvCCiRvPj3nyM\/XoPLlbWIDpEg1+n9EVUSBPRscjOsAAR3YH2Qd74bUpf9ItohqoaE6b+mIb4DUdgMkuioxE5LKPJjLm\/ZmLWqgwYzRKGRQfjp4kxCODd3OkOsAAR3aEm7i5YOr4nJl66m\/y\/k3MwfulezgsisgJtVQ2e\/iYF3+zMAwC8NDgSnzzeBa7OKrHByG6xABHVg5NKiVn3t68zL+ihRTs4L4ioAeWcK8fIz3ZgW\/Z5uDmr8PlT3TD1nggoFJzsTHeOBYioAQyLDsbK52MR0tQN+Rdqr0z5\/SDnBRHV1\/bs8xixeAdyzlUgWOOKFc\/HYEinINGxyAGwABE1kA7BtfOC+rapnRc0ZXka5m84ynlBRHfou115GLd0L3TVRnRt0QRrptyFjsEa0bHIQbAAETWgph4u+Obp\/80L+jz5BNcLIrpNNSYzXluTgX+uzYTJLGFUt+b4cUIf+HtxsjM1HBYgogZ2eV7QJ090hauzEluPncNDi3bgaBHnBRHdzMUKA\/729V58vzsfCgXw6tB2+ODRaE52pgbHAkRkJQ9dMS9o5GLOCyK6kePFZRjx2Q7syimBh4sKX47tgUn9W3OyM1kFCxCRFXUM1uC3KX1xVxtfzgsiuoEtWcUYuXgnTpZUIqSpG1a+EIt7OwSIjkUOjAWIyMqaerjg26d74f84L4joKpIk4attOXj2mxSU6Y3o1dIHayffhXaB3qKjkYNjASJqBE4qJWbf3x4fP96F84KILjEYzXh1ZQbeWXcEZgkY3SMU3z\/XG76eatHRSAaEFqCtW7di2LBhCA4OhkKhwJo1a+o8P378eCgUijqPPn36iAlL1ACGd2mOlc\/HonmT\/60XtD6jUHQsokZXUq7HU1\/twU+pBVAqgNcf7ID5D3eGixP\/Xk6NQ+gnraKiAtHR0Vi0aNF19xkyZAgKCwstj\/Xr1zdiQqKG1zFYg9+m1s4LqjSY8MIP+7FgI+cFkXwcLdJh+OId2Jt3AV5qJ3w9viee7RvOyc7UqJxE\/vKhQ4di6NChN9xHrVYjMDCwkRIRNQ6fS\/OC3t14FF9uy8VnSSeQeUaHTx7vCo27s+h4RFbz5+GzeDEhDRUGE8J83fH1uB5o4+8lOhbJkM0fa0xKSoK\/vz8iIyMxYcIEFBcX33B\/vV4PnU5X50Fki5xUSsx5oINlXlDysXN4aPF2ZBWViY5G1OAkScLnyScwYVkqKgwmxLb2xZoX7mL5IWFsugANHToUP\/zwAzZv3owPPvgAKSkpGDRoEPR6\/XVfEx8fD41GY3mEhoY2YmKi2ze8S3OsmFQ7L+hkSSVGfraD84LIoVTXmPDSzwcwf8NRSBLwZO8W+PaZXmjq4SI6GsmYQpIkm5h4oFAosHr1aowYMeK6+xQWFiIsLAwJCQkYNWrUNffR6\/V1CpJOp0NoaCi0Wi28vXlZJdmuCxUGTFm+HztPlAAAXhjQGi\/FtYVKyXkRZJ8kScKfR4oRv+EIcs5VQKVUYO6wDhgb01J0NLIDOp0OGo3Gat\/fQucA3a6goCCEhYUhOzv7uvuo1Wqo1byEkuyPj4cLvnumF+I3HMXX22vnBR0u1OHj0ZwXRPbn0Gkt3ll3GLtzLgAAmnm64KPRXdE3opngZES17KoAlZSUoKCgAEFBQaKjEFmFk0qJ1x\/sgM7NNZi58iCSsmrnBX0xtgfaBnKuBNm+M6VVeP+PLKxKOw0AUDsp8WzfcDw\/oDW8XFnkyXYILUDl5eU4fvy45efc3Fykp6fDx8cHPj4+mDt3Lh5++GEEBQUhLy8Ps2fPRrNmzTBy5EiBqYmsb0TX5mjj74mJy\/bhZEklhi\/ejqfvCseku1vzaBDZpHK9EZ8nncCX23KgN5oBACO7NsfL97VF8yZugtMRXU3oHKCkpCQMHDjwqu3jxo3DkiVLMGLECKSlpaG0tBRBQUEYOHAg3n777dua2Gztc4hE1lRSrseLCenYfvw8AMDb1QmTBrTG07HhcHPh3bFJPKPJjJ9TT2Fh4jGcL6+df9kr3AevPdAeUSFNxIYju2bt72+bmQRtLSxAZO8kSULi4bN4f1MWjp0tBwD4eanx90FtMLpnC66cS8IkZRVj3vojls9lS193zLq\/PeI6BHBRQ6o3FqB6YgEiR2EyS1ibfhoLE4\/h1MUqAEALH3dMHxyJh6KDoeTVYtRIjhbp8K91R7Atu\/bIZBN3Z7x4TwSe7B3GQk4NhgWonliAyNEYjGYkpOTjk\/8et5xyaBfohZfj2uKe9v78mzdZTXFZNRZuOoafUwtglgBnlQLjY1tiysAIzk2jBscCVE8sQOSoKg1GLN2Rh8+TT6Cs2ggA6B7WFK\/c1xZ9WvkKTkeOpMpgwpfbcvB58glUGkwAgAc6B2HmkHZo4esuOB05KhagemIBIkdXWmnA58k5+GZnLqpraq++6R\/ph1fua4tOzTWC05E9M5slrEo7jff\/yEKRrhoA0LVFE7z2QHt0D\/MRnI4cHQtQPbEAkVyc1VXj083ZSNhbAOOlO8s\/EBWElwZHopWfp+B0ZG92njiPf607gswztfdTDGnqhplD2uHBqCCeZqVGwQJUTyxAJDcnSyqwMPEYfj1wBpIEqJQKPNYjBH+\/JwJBGq7HQjd2vLgc8zccwZ9Ham887eXqhCkD22BcbEu4OnPpBWo8LED1xAJEcnWkUIf3\/8jCf4\/WfpG5OCkxLiYMLwxow5tQ0lVKyvX46M9sLN+bD5NZgkqpwFO9W+DFeyPhw88LCcACVE8sQCR3qXkXsGBjFvbm1d6TyVPthAn9WuHZfuHwVNvV3XDICqprTFi6Iw+fbTmOMn3tZPp72wdg1v3t0JqnTkkgFqB6YgEiql1MMenYOby3MQuHC2vndPh6uGDywDZ4sk8LqJ14akNuJEnCrwfOYMHGLJwurV1XqlNzb8y+vz1iW\/OGpSQeC1A9sQAR\/Y\/ZLGFdRiEWJh5D7vkKAEDzJm6Ydm8ERnULgYqLKcpCat4FvL3uCA4UlAIAAr1d8cp9bTGya3MuqEk2gwWonliAiK5WYzLjl9RT+Pi\/x3BWV7uYYht\/T7wcF4n7OgbyKh8HdbKkAvM3HMWGQ0UAAHcXFZ7v3xrP9WvFe8uRzWEBqicWIKLrq64x4btdefgs6QRKK2sAANEhGswY0g53teFpEEehrazBJ5uz8d2uPNSYJCgVwOieofjH4Ej4e7mKjkd0TSxA9cQCRHRzuuoafLU1B19tz7Ws9HtXG1+8cl87dAltIjYc3TGD0Yxlu0\/ik\/9mQ1tVW3DvjvTDnPvbo22gl+B0RDfGAlRPLEBEt+5cmR6LtxzH8j35MJhqV5W+r2MAXo5ri4gAfmHai3K9Ef89chYfJh5DXkklAKBtgBdmP9Ae\/SP9BKcjujUsQPXEAkR0+05drMRHf2Zj1f5TMEuAUgGM6haCafdGIKQp7\/1kayRJwolzFUjKKsaWrGLszb2AGlPt\/9qbearxUlwkHusRyknuZFdYgOqJBYjozmWfLcP7m7LwR+ZZAICLSokxvVvgsR6haBfoxSuGBKquMWHXiRJsuVR6Ci5U1Xm+pa87hndpjgl3t+J6T2SXWIDqiQWIqP7SC0rx3h9HseN4iWVbE3dn9A73QUwrX\/Rp7YtIfxYiayu4UFlbeI4WY+eJEuiNZstzLiolerfywcC2\/hjYzh\/hzTwEJiWqPxagemIBImo4O46fx1fbcrAn94JlsvRlPh4utYWotS\/6tPJFhL8nL6evJ4PRjJS8C9hytPYoz4lzFXWeD9a4YmA7fwxs64\/YNr5wd+GRHnIcLED1xAJE1PBqTGZknNZid04Jdp0oQWreRVTV1C1Evh4u6HPp6FBMKx+09mMhuhWF2iokZZ3DlqPF2HH8PCr+UjSdlAr0aNnUcpSHJZMcGQtQPbEAEVmfwWhGxulS7DpRgt05F5B68gKqa8x19mnmqUafVv87QtSqmQe\/vAEYTWbszy+1nNo6WlRW53k\/LzUGRPphYDt\/9I1oBm9XZ0FJiRoXC1A9sQARNT690YSDp7SXClEJ9p28WGe+CgD4e6nRp5WvpRC19HWXTSE6X65HctY5bMkqxtZj56CrNlqeUyiArqFNLEd5OgR5c24VyRILUD2xABGJV11jwoGCUuzKqS1E+\/NLYbiiEAV6u9Y5QtTCx3EKkdks4eBpLbYcLUZSVjEOnNLWeb6puzP6XzrK0y\/CDz4eLoKSEtkOFqB6YgEisj3VNSak5f+vEKXnl1oWXrwsWOP6lzlEvgj1sa\/1h0orDdiafR5JR4uRfOwcSioMdZ7v1NwbA9v6Y0Bbf3QJbcI1eoiuwAJUTyxARLavymDC\/vyLlknVB06VWhbyu6x5EzfL0aGY1r5o3sRNSFZJkmAySzCaJdSYzDCaJNSYa\/9ZUm7A1uxzSMoqxr6TF2H+yx\/BS+2EfpHNMKCtPwZE+sHfm\/fgIroRFqB6YgEisj+VBiP2nfxfITp4Sgujue7\/qkJ93NAn3Bet\/T1hNJlRY6otJpfLiNFkRo259p+1JUWy7Ge8tE+NyXzpNX\/d73qvv7TdfOv\/y2wb4IUB7fwwsK0\/uoc1hbNK2dBDReSwWIDqiQWIyP5V6I1I\/Ushyjithek2ikhjcFYp4OasQq9wHwy4NIFZ1FEqIkdg7e9vrppFRDbPQ+2E\/pF+lht5luuNSMm7gN05JThXpoezUgknlQLOKiWclAo4qZRwVingdGn7tbZd\/ve625RQKRVXbXNSXvrnX19z+XcpFVApFQ4zYZtILliAiMjueKqdai8Tb+svOgoR2SmekCYiIiLZYQEiIiIi2WEBIiIiItlhASIiIiLZYQEiIiIi2WEBIiIiItlhASIiIiLZEVqAtm7dimHDhiE4OBgKhQJr1qyp87wkSZg7dy6Cg4Ph5uaGAQMGIDMzU0xYIiIichhCC1BFRQWio6OxaNGiaz6\/YMECLFy4EIsWLUJKSgoCAwMxePBglJWVNXJSIiIiciRCV4IeOnQohg4des3nJEnCRx99hDlz5mDUqFEAgG+\/\/RYBAQFYvnw5Jk6c2JhRiYiIyIHY7Byg3NxcFBUVIS4uzrJNrVajf\/\/+2Llz53Vfp9frodPp6jyIiIiI\/spmC1BRUREAICAgoM72gIAAy3PXEh8fD41GY3mEhoZaNScRERHZH5stQJddeYdlSZJueNflWbNmQavVWh4FBQXWjkhERER2xmbvBh8YGAig9khQUFCQZXtxcfFVR4X+Sq1WQ61WWz0fERER2S+bPQIUHh6OwMBAJCYmWrYZDAYkJycjNjZWYDIiIiKyd0KPAJWXl+P48eOWn3Nzc5Geng4fHx+0aNEC06ZNw7x58xAREYGIiAjMmzcP7u7uGDNmjMDUREREZO+EFqDU1FQMHDjQ8vP06dMBAOPGjcM333yDGTNmoKqqCi+88AIuXryI3r17Y9OmTfDy8hIVmYiIiByAQpIkSXQIa9LpdNBoNNBqtfD29hYdh4iIiG6Btb+\/bXYOEBEREZG1sAARERGR7LAAERERkeywABEREZHssAARERGR7LAAERERkeywABEREZHssAARERGR7LAAERERkeywABEREZHssAARERGR7LAAERERkeywABEREZHssAARERGR7LAAERERkeywABEREZHssAARERGR7LAAERERkeywABEREZHssAARERGR7LAAERERkeywABEREZHssAARERGR7LAAERERkeywABEREZHssAARERGR7LAAERERkeywABEREZHssAARERGR7LAAERERkeywABEREZHssAARERGR7LAAERERkeywABEREZHssAARERGR7Nh0AZo7dy4UCkWdR2BgoOhYREREZOecRAe4mY4dO+LPP\/+0\/KxSqQSmISIiIkdg8wXIycmJR32IiIioQdn0KTAAyM7ORnBwMMLDw\/H4448jJydHdCQiIiKyczZ9BKh379747rvvEBkZibNnz+Kdd95BbGwsMjMz4evre83X6PV66PV6y886na6x4hIREZGdUEiSJIkOcasqKirQunVrzJgxA9OnT7\/mPnPnzsWbb7551XatVgtvb29rRyQiIqIGoNPpoNForPb9bfOnwP7Kw8MDnTt3RnZ29nX3mTVrFrRareVRUFDQiAmJiIjIHtj0KbAr6fV6HDlyBP369bvuPmq1Gmq1uhFTERERkb2x6SNAL7\/8MpKTk5Gbm4s9e\/bgkUcegU6nw7hx40RHIyIiIjtm00eATp06hSeeeALnz5+Hn58f+vTpg927dyMsLEx0NCIiIrJjNl2AEhISREcgIiIiB2TTp8CIiIiIrIEFiIiIiGSHBYiIiIhkhwWIiIiIZIcFiIiIiGSHBYiIiIhkhwWIiIiIZIcFiIiIiGSHBYiIiIhkhwWIiIiIZIcFiIiIiGSHBYiIiIhkhwWIiIiIZIcFiIiIiGSHBYiIiIhkhwWIiIiIZIcFiIiIiGSHBYiIiIhkhwWIiIiIZIcFiIiIiGSHBYiIiIhkhwWIiIiIZIcFiIiIiGSHBYiIiIhkhwWIiIiIZIcFiIiIiGSHBYiIiIhkhwWIiIiIZIcFiIiIiGSHBYiIiIhkhwWIiIiIZIcFiIiIiGSHBYiIiIhkhwWIiIiIZIcFiIiIiGSHBYiIiIhkxy4K0GeffYbw8HC4urqie\/fu2LZtm+hIREREZMdsvgD99NNPmDZtGubMmYO0tDT069cPQ4cORX5+vuhoREREZKcUkiRJokPcSO\/evdGtWzcsWbLEsq19+\/YYMWIE4uPjb\/p6nU4HjUYDrVYLb29va0YlIiKiBmLt72+nBn\/HBmQwGLBv3z68+uqrdbbHxcVh586d13yNXq+HXq+3\/KzVagHUDiQRERHZh8vf29Y6TmPTBej8+fMwmUwICAiosz0gIABFRUXXfE18fDzefPPNq7aHhoZaJSMRERFZT0lJCTQaTYO\/r00XoMsUCkWdnyVJumrbZbNmzcL06dMtP5eWliIsLAz5+flWGUA50el0CA0NRUFBAU8n1gPHseFwLBsOx7JhcBwbjlarRYsWLeDj42OV97fpAtSsWTOoVKqrjvYUFxdfdVToMrVaDbVafdV2jUbDD2MD8fb25lg2AI5jw+FYNhyOZcPgODYcpdI612vZ9FVgLi4u6N69OxITE+tsT0xMRGxsrKBUREREZO9s+ggQAEyfPh1jx45Fjx49EBMTgy+++AL5+fmYNGmS6GhERERkp2y+AI0ePRolJSV46623UFhYiE6dOmH9+vUICwu7pder1Wq88cYb1zwtRreHY9kwOI4Nh2PZcDiWDYPj2HCsPZY2vw4QERERUUOz6TlARERERNbAAkRERESywwJEREREssMCRERERLLj0AXos88+Q3h4OFxdXdG9e3ds27ZNdCSbN3fuXCgUijqPwMBAy\/OSJGHu3LkIDg6Gm5sbBgwYgMzMTIGJbcfWrVsxbNgwBAcHQ6FQYM2aNXWev5Wx0+v1mDp1Kpo1awYPDw889NBDOHXqVCP+KcS72TiOHz\/+qs9onz596uzDcay9LVDPnj3h5eUFf39\/jBgxAllZWXX24Wfy1tzKWPJzeWuWLFmCqKgoy0KRMTEx2LBhg+X5xvxMOmwB+umnnzBt2jTMmTMHaWlp6NevH4YOHYr8\/HzR0Wxex44dUVhYaHlkZGRYnluwYAEWLlyIRYsWISUlBYGBgRg8eDDKysoEJrYNFRUViI6OxqJFi675\/K2M3bRp07B69WokJCRg+\/btKC8vx4MPPgiTydRYfwzhbjaOADBkyJA6n9H169fXeZ7jCCQnJ2Py5MnYvXs3EhMTYTQaERcXh4qKCss+\/EzemlsZS4Cfy1sREhKC+fPnIzU1FampqRg0aBCGDx9uKTmN+pmUHFSvXr2kSZMm1dnWrl076dVXXxWUyD688cYbUnR09DWfM5vNUmBgoDR\/\/nzLturqakmj0Uiff\/55IyW0DwCk1atXW36+lbErLS2VnJ2dpYSEBMs+p0+flpRKpbRx48ZGy25LrhxHSZKkcePGScOHD7\/uaziO11ZcXCwBkJKTkyVJ4meyPq4cS0ni57I+mjZtKn311VeN\/pl0yCNABoMB+\/btQ1xcXJ3tcXFx2Llzp6BU9iM7OxvBwcEIDw\/H448\/jpycHABAbm4uioqK6oyrWq1G\/\/79Oa43cStjt2\/fPtTU1NTZJzg4GJ06deL4XiEpKQn+\/v6IjIzEhAkTUFxcbHmO43htWq0WACw3luRn8s5dOZaX8XN5e0wmExISElBRUYGYmJhG\/0w6ZAE6f\/48TCbTVTdMDQgIuOrGqlRX79698d133+GPP\/7Al19+iaKiIsTGxqKkpMQydhzX23crY1dUVAQXFxc0bdr0uvsQMHToUPzwww\/YvHkzPvjgA6SkpGDQoEHQ6\/UAOI7XIkkSpk+fjr59+6JTp04A+Jm8U9caS4Cfy9uRkZEBT09PqNVqTJo0CatXr0aHDh0a\/TNp87fCqA+FQlHnZ0mSrtpGdQ0dOtTy7507d0ZMTAxat26Nb7\/91jKhj+N65+5k7Di+dY0ePdry7506dUKPHj0QFhaGdevWYdSoUdd9nZzHccqUKTh48CC2b99+1XP8TN6e640lP5e3rm3btkhPT0dpaSlWrlyJcePGITk52fJ8Y30mHfIIULNmzaBSqa5qg8XFxVc1S7oxDw8PdO7cGdnZ2ZarwTiut+9Wxi4wMBAGgwEXL1687j50taCgIISFhSE7OxsAx\/FKU6dOxa+\/\/ootW7YgJCTEsp2fydt3vbG8Fn4ur8\/FxQVt2rRBjx49EB8fj+joaHz88ceN\/pl0yALk4uKC7t27IzExsc72xMRExMbGCkpln\/R6PY4cOYKgoCCEh4cjMDCwzrgaDAYkJydzXG\/iVsaue\/fucHZ2rrNPYWEhDh06xPG9gZKSEhQUFCAoKAgAx\/EySZIwZcoUrFq1Cps3b0Z4eHid5\/mZvHU3G8tr4efy1kmSBL1e3\/ifyTuctG3zEhISJGdnZ+nrr7+WDh8+LE2bNk3y8PCQ8vLyREezaS+99JKUlJQk5eTkSLt375YefPBBycvLyzJu8+fPlzQajbRq1SopIyNDeuKJJ6SgoCBJp9MJTi5eWVmZlJaWJqWlpUkApIULF0ppaWnSyZMnJUm6tbGbNGmSFBISIv3555\/S\/v37pUGDBknR0dGS0WgU9cdqdDcax7KyMumll16Sdu7cKeXm5kpbtmyRYmJipObNm3Mcr\/D8889LGo1GSkpKkgoLCy2PyspKyz78TN6am40lP5e3btasWdLWrVul3Nxc6eDBg9Ls2bMlpVIpbdq0SZKkxv1MOmwBkiRJWrx4sRQWFia5uLhI3bp1q3PJIl3b6NGjpaCgIMnZ2VkKDg6WRo0aJWVmZlqeN5vN0htvvCEFBgZKarVauvvuu6WMjAyBiW3Hli1bJABXPcaNGydJ0q2NXVVVlTRlyhTJx8dHcnNzkx588EEpPz9fwJ9GnBuNY2VlpRQXFyf5+flJzs7OUosWLaRx48ZdNUYcR+maYwhAWrp0qWUffiZvzc3Gkp\/LW\/fMM89Yvpf9\/Pyke+65x1J+JKlxP5MKSZKk2ztmRERERGTfHHIOEBEREdGNsAARERGR7LAAERERkeywABEREZHssAARERGR7LAAERERkeywABEREZHssAARERGR7LAAERERkeywABEREZHssAARkV05d+4cAgMDMW\/ePMu2PXv2wMXFBZs2bRKYjIjsCe8FRkR2Z\/369RgxYgR27tyJdu3aoWvXrnjggQfw0UcfiY5GRHaCBYiI7NLkyZPx559\/omfPnjhw4ABSUlLg6uoqOhYR2QkWICKyS1VVVejUqRMKCgqQmpqKqKgo0ZGIyI5wDhAR2aWcnBycOXMGZrMZJ0+eFB2HiOwMjwARkd0xGAzo1asXunTpgnbt2mHhwoXIyMhAQECA6GhEZCdYgIjI7rzyyitYsWIFDhw4AE9PTwwcOBBeXl74\/fffRUcjIjvBU2BEZFeSkpLw0UcfYdmyZfD29oZSqcSyZcuwfft2LFmyRHQ8IrITPAJEREREssMjQERERCQ7LEBEREQkOyxAREREJDssQERERCQ7LEBEREQkOyxAREREJDssQERERCQ7LEBEREQkOyxAREREJDssQERERCQ7LEBEREQkOyxAREREJDv\/D4EKy8Dw4IC\/AAAAAElFTkSuQmCC", "text\/plain": "<Figure size 640x480 with 1 Axes>"}, "metadata": {}, "output_type": "display_data"}]}}, "8d43b8903d1c4542ac1d493441e99717": {"model_module": "@jupyter-widgets\/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": {"layout": "IPY_MODEL_7cc9130632e24968ac7630fa1302ec66", "outputs": [{"data": {"image\/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG2CAYAAACXuTmvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy\/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAiRklEQVR4nO3dfWyV9f3\/8dfhpocCbSNCe05HaTptdVhgG0Voo1JQGjplQF2CYkzJNiJykzXVEQvZOJrZEhL44tLZTWcYOFhJpjh\/47b+oEXW1W9BkA4Nq6NAda2djN5Q8FTg8\/tj4fw4tMXK2l7n9PN8JFfidXNO3\/14JT5znYO4jDFGAAAAFhnk9AAAAAD9jQACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1gmZACoqKpLL5VJeXl7gmDFGPp9P8fHxioyMVGZmpk6cOOHckAAAYEAIiQCqrq7WK6+8ookTJwYdX7dunTZs2KDi4mJVV1fL4\/Fo1qxZamtrc2hSAAAwEDgeQBcuXNATTzyhV199VbfddlvguDFGGzdu1OrVq5WTk6PU1FRt3rxZFy9e1LZt2xycGAAAhLshTg+wbNkyPfzww3rooYf0i1\/8InC8rq5OjY2NysrKChxzu92aPn26Kisr9dRTT3X5fn6\/X36\/P7B\/9epV\/fvf\/9btt98ul8vVd78IAADoNcYYtbW1KT4+XoMG9f7zGkcDqLS0VO+\/\/76qq6s7nWtsbJQkxcXFBR2Pi4vTmTNnun3PoqIiPf\/88707KAAAcER9fb3Gjh3b6+\/rWADV19frJz\/5ifbt26dhw4Z1e92NT22MMTd9klNQUKD8\/PzAfktLi8aNG6e\/n6pT3O2j\/vvB+8nFjsu698X\/K0n639UPaniE4w\/rJIXmXKE2E\/MwD\/PYM48UmjNJoTtXT1zsuKy0n\/8ffVqySFFRUX3yMxxbjSNHjqipqUmTJ08OHLty5YoOHjyo4uJinTx5UtJ\/ngR5vd7ANU1NTZ2eCl3P7XbL7XZ3Oh4VFa3o6Ohe\/A361pCOyxrkHi5Jio6ODpkbNxTnCrWZmId5mMeeeaTQnEkK3bl64vrZ++rrK459CfrBBx9UTU2Njh07FtjS0tL0xBNP6NixY\/rmN78pj8ejsrKywGs6OjpUUVGhjIwMp8YGAAADgGM5GBUVpdTU1KBjI0aM0O233x44npeXp8LCQiUnJys5OVmFhYUaPny4Fi5c6MTIAABggAjp52ErV67UpUuXtHTpUp0\/f15Tp07Vvn37+uzzQAAAYIeQCqDy8vKgfZfLJZ\/PJ5\/P58g8AABgYHL8f4QIAADQ3wggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdawJoMihg50eAQAAhAhrAsjlcjk9AgAACBHWBBAAAMA1BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6zgaQCUlJZo4caKio6MVHR2t9PR07d69O3B+0aJFcrlcQdu0adMcnBgAAAwEQ5z84WPHjtXatWt15513SpI2b96suXPn6ujRo7rnnnskSbNnz9amTZsCr4mIiHBkVgAAMHA4GkBz5swJ2n\/xxRdVUlKiqqqqQAC53W55PB4nxgMAAANUyHwH6MqVKyotLVV7e7vS09MDx8vLyxUbG6uUlBQtXrxYTU1NN30fv9+v1tbWoA0AAOB6jgdQTU2NRo4cKbfbrSVLlmjHjh0aP368JCk7O1tbt27V\/v37tX79elVXV2vmzJny+\/3dvl9RUZFiYmICW0JCQn\/9KgAAIEw4+hGYJN111106duyYmpub9cYbbyg3N1cVFRUaP368FixYELguNTVVaWlpSkxM1M6dO5WTk9Pl+xUUFCg\/Pz+w39raSgQBAIAgjgdQRERE4EvQaWlpqq6u1ksvvaTf\/OY3na71er1KTExUbW1tt+\/ndrvldrv7bF4AABD+HP8I7EbGmG4\/4jp37pzq6+vl9Xr7eSoAADCQOPoEaNWqVcrOzlZCQoLa2tpUWlqq8vJy7dmzRxcuXJDP59Ojjz4qr9er06dPa9WqVRo9erTmz5\/v5NgAACDMORpAn332mZ588kk1NDQoJiZGEydO1J49ezRr1ixdunRJNTU12rJli5qbm+X1ejVjxgxt375dUVFRTo4NAADCnKMB9Nprr3V7LjIyUnv37u3HaQAAgC1C7jtAAAAAfY0AAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUcDaCSkhJNnDhR0dHRio6OVnp6unbv3h04b4yRz+dTfHy8IiMjlZmZqRMnTjg4MQAAGAgcDaCxY8dq7dq1Onz4sA4fPqyZM2dq7ty5gchZt26dNmzYoOLiYlVXV8vj8WjWrFlqa2tzcmwAABDmHA2gOXPm6Hvf+55SUlKUkpKiF198USNHjlRVVZWMMdq4caNWr16tnJwcpaamavPmzbp48aK2bdvm5NgAACDMhcx3gK5cuaLS0lK1t7crPT1ddXV1amxsVFZWVuAat9ut6dOnq7Ky0sFJAQBAuBvi9AA1NTVKT0\/XF198oZEjR2rHjh0aP358IHLi4uKCro+Li9OZM2e6fT+\/3y+\/3x\/Yb21t7ZvBAQBA2HL8CdBdd92lY8eOqaqqSk8\/\/bRyc3P14YcfBs67XK6g640xnY5dr6ioSDExMYEtISGhz2YHAADhyfEAioiI0J133qm0tDQVFRVp0qRJeumll+TxeCRJjY2NQdc3NTV1eip0vYKCArW0tAS2+vr6Pp0fAACEH8cD6EbGGPn9fiUlJcnj8aisrCxwrqOjQxUVFcrIyOj29W63O\/DH6q9tAAAA13P0O0CrVq1Sdna2EhIS1NbWptLSUpWXl2vPnj1yuVzKy8tTYWGhkpOTlZycrMLCQg0fPlwLFy50cmwAABDmHA2gzz77TE8++aQaGhoUExOjiRMnas+ePZo1a5YkaeXKlbp06ZKWLl2q8+fPa+rUqdq3b5+ioqKcHBsAAIQ5RwPotddeu+l5l8sln88nn8\/XPwMBAAArhNx3gAAAAPoaAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6jgZQUVGRpkyZoqioKMXGxmrevHk6efJk0DWLFi2Sy+UK2qZNm+bQxAAAYCBwNIAqKiq0bNkyVVVVqaysTJcvX1ZWVpba29uDrps9e7YaGhoC265duxyaGAAADARDnPzhe\/bsCdrftGmTYmNjdeTIET3wwAOB4263Wx6Pp7\/HAwAAA1RIfQeopaVFkjRq1Kig4+Xl5YqNjVVKSooWL16spqambt\/D7\/ertbU1aAMAALheyASQMUb5+fm67777lJqaGjienZ2trVu3av\/+\/Vq\/fr2qq6s1c+ZM+f3+Lt+nqKhIMTExgS0hIaG\/fgUAABAmQiaAli9fruPHj+sPf\/hD0PEFCxbo4YcfVmpqqubMmaPdu3fr73\/\/u3bu3Nnl+xQUFKilpSWw1dfX98f4AACgl0QOHaz\/Xf1gn\/4MR78DdM2KFSv09ttv6+DBgxo7duxNr\/V6vUpMTFRtbW2X591ut9xud1+MCQAA+oHL5dLwiL5NFEcDyBijFStWaMeOHSovL1dSUtJXvubcuXOqr6+X1+vthwkBAMBA5OhHYMuWLdPvf\/97bdu2TVFRUWpsbFRjY6MuXbokSbpw4YKeffZZ\/fWvf9Xp06dVXl6uOXPmaPTo0Zo\/f76TowMAgDDm6BOgkpISSVJmZmbQ8U2bNmnRokUaPHiwampqtGXLFjU3N8vr9WrGjBnavn27oqKiHJgYAAAMBI5\/BHYzkZGR2rt3bz9NAwAAbBEyfwoMAACgvxBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsI6jAVRUVKQpU6YoKipKsbGxmjdvnk6ePBl0jTFGPp9P8fHxioyMVGZmpk6cOOHQxAAAYCBwNIAqKiq0bNkyVVVVqaysTJcvX1ZWVpba29sD16xbt04bNmxQcXGxqqur5fF4NGvWLLW1tTk4OQAACGdDnPzhe\/bsCdrftGmTYmNjdeTIET3wwAMyxmjjxo1avXq1cnJyJEmbN29WXFyctm3bpqeeesqJsQEAQJi7pQB64YUXbnr+5z\/\/+S0N09LSIkkaNWqUJKmurk6NjY3KysoKXON2uzV9+nRVVlZ2GUB+v19+vz+w39raekuzAACAgeuWAmjHjh1B+19++aXq6uo0ZMgQ3XHHHbcUQMYY5efn67777lNqaqokqbGxUZIUFxcXdG1cXJzOnDnT5fsUFRXp+eef\/9o\/HwAA2OOWAujo0aOdjrW2tmrRokWaP3\/+LQ2yfPlyHT9+XIcOHep0zuVyBe0bYzodu6agoED5+flBcyUkJNzSTAAAYGDqtS9BR0dH64UXXtDPfvazr\/3aFStW6O2339aBAwc0duzYwHGPxyPp\/z8JuqapqanTU6Fr3G63oqOjgzYAAIDr9eqfAmtubg58j6cnjDFavny53nzzTe3fv19JSUlB55OSkuTxeFRWVhY41tHRoYqKCmVkZPTa3AAAwC639BHYL3\/5y6B9Y4waGhr0+uuva\/bs2T1+n2XLlmnbtm3605\/+pKioqMCTnpiYGEVGRsrlcikvL0+FhYVKTk5WcnKyCgsLNXz4cC1cuPBWRgcAALi1APqf\/\/mfoP1BgwZpzJgxys3NVUFBQY\/fp6SkRJKUmZkZdHzTpk1atGiRJGnlypW6dOmSli5dqvPnz2vq1Knat2+foqKibmV0AACAWwugurq6XvnhxpivvMblcsnn88nn8\/XKzwQAAODvAgMAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdRwPo4MGDmjNnjuLj4+VyufTWW28FnV+0aJFcLlfQNm3aNGeGBQAAA4ajAdTe3q5JkyapuLi422tmz56thoaGwLZr165+nBAAAAxEQ5z84dnZ2crOzr7pNW63Wx6Pp58mAgAANgj57wCVl5crNjZWKSkpWrx4sZqamm56vd\/vV2tra9AGAABwvZAOoOzsbG3dulX79+\/X+vXrVV1drZkzZ8rv93f7mqKiIsXExAS2hISEfpwYAACEA0c\/AvsqCxYsCPxzamqq0tLSlJiYqJ07dyonJ6fL1xQUFCg\/Pz+w39raSgQBAIAgIR1AN\/J6vUpMTFRtbW2317jdbrnd7n6cCgAAhJuQ\/gjsRufOnVN9fb28Xq\/TowAAgDDm6BOgCxcu6OOPPw7s19XV6dixYxo1apRGjRoln8+nRx99VF6vV6dPn9aqVas0evRozZ8\/38GpAQBAuHM0gA4fPqwZM2YE9q99dyc3N1clJSWqqanRli1b1NzcLK\/XqxkzZmj79u2KiopyamQAADAAOBpAmZmZMsZ0e37v3r39OA0AALBFWH0HCAAAoDcQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALCOowF08OBBzZkzR\/Hx8XK5XHrrrbeCzhtj5PP5FB8fr8jISGVmZurEiRPODAsAAAYMRwOovb1dkyZNUnFxcZfn161bpw0bNqi4uFjV1dXyeDyaNWuW2tra+nlSAAAwkAxx8odnZ2crOzu7y3PGGG3cuFGrV69WTk6OJGnz5s2Ki4vTtm3b9NRTT\/XnqAAAYAAJ2e8A1dXVqbGxUVlZWYFjbrdb06dPV2VlZbev8\/v9am1tDdoAAACuF7IB1NjYKEmKi4sLOh4XFxc415WioiLFxMQEtoSEhD6dEwAAhJ+QDaBrXC5X0L4xptOx6xUUFKilpSWw1dfX9\/WIAAAgzDj6HaCb8Xg8kv7zJMjr9QaONzU1dXoqdD232y23293n8wEAgPAVsk+AkpKS5PF4VFZWFjjW0dGhiooKZWRkODgZAAAId44+Abpw4YI+\/vjjwH5dXZ2OHTumUaNGady4ccrLy1NhYaGSk5OVnJyswsJCDR8+XAsXLnRwagAAEO4cDaDDhw9rxowZgf38\/HxJUm5urn73u99p5cqVunTpkpYuXarz589r6tSp2rdvn6KiopwaGQAADACOBlBmZqaMMd2ed7lc8vl88vl8\/TcUAAAY8EL2O0AAAAB9hQACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdUI6gHw+n1wuV9Dm8XicHgsAAIS5IU4P8FXuuecevfPOO4H9wYMHOzgNAAAYCEI+gIYMGcJTHwAA0KtC+iMwSaqtrVV8fLySkpL02GOP6dSpU06PBAAAwlxIPwGaOnWqtmzZopSUFH322Wf6xS9+oYyMDJ04cUK33357l6\/x+\/3y+\/2B\/dbW1v4aFwAAhImQfgKUnZ2tRx99VBMmTNBDDz2knTt3SpI2b97c7WuKiooUExMT2BISEvprXAAAECZCOoBuNGLECE2YMEG1tbXdXlNQUKCWlpbAVl9f348TAgCAcBDSH4HdyO\/366OPPtL999\/f7TVut1tut7sfpwIAAOEmpJ8APfvss6qoqFBdXZ3ee+89\/eAHP1Bra6tyc3OdHg0AAISxkH4C9Mknn+jxxx\/X559\/rjFjxmjatGmqqqpSYmKi06MBAIAwFtIBVFpa6vQIAABgAArpj8AAAAD6AgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOmERQC+\/\/LKSkpI0bNgwTZ48We+++67TIwEAgDAW8gG0fft25eXlafXq1Tp69Kjuv\/9+ZWdn6+zZs06PBgAAwlTIB9CGDRv0ox\/9SD\/+8Y\/1rW99Sxs3blRCQoJKSkqcHg0AAISpIU4PcDMdHR06cuSInnvuuaDjWVlZqqys7PI1fr9ffr8\/sN\/S0iJJam1t7btB+8DFjsu66r8o6T+zX44IjX9VoThXqM3EPMzDPPbMI4XmTFLoztVT1\/67bYzpmx9gQtinn35qJJm\/\/OUvQcdffPFFk5KS0uVr1qxZYySxsbGxsbGxDYDtH\/\/4R580RljkoMvlCto3xnQ6dk1BQYHy8\/MD+83NzUpMTNTZs2cVExPTp3MOdK2trUpISFB9fb2io6OdHidssY69h7XsPaxl72Ade09LS4vGjRunUaNG9cn7h3QAjR49WoMHD1ZjY2PQ8aamJsXFxXX5GrfbLbfb3el4TEwMN2MviY6OZi17AevYe1jL3sNa9g7WsfcMGtQ3X1cO6S9BR0REaPLkySorKws6XlZWpoyMDIemAgAA4S6knwBJUn5+vp588kmlpaUpPT1dr7zyis6ePaslS5Y4PRoAAAhTIR9ACxYs0Llz5\/TCCy+ooaFBqamp2rVrlxITE3v0erfbrTVr1nT5sRi+Htayd7COvYe17D2sZe9gHXtPX6+ly5i++vNlAAAAoSmkvwMEAADQFwggAABgHQIIAABYhwACAADWGdAB9PLLLyspKUnDhg3T5MmT9e677zo9Usjz+XxyuVxBm8fjCZw3xsjn8yk+Pl6RkZHKzMzUiRMnHJw4dBw8eFBz5sxRfHy8XC6X3nrrraDzPVk7v9+vFStWaPTo0RoxYoS+\/\/3v65NPPunH38J5X7WOixYt6nSPTps2Lega1lEqKirSlClTFBUVpdjYWM2bN08nT54MuoZ7smd6spbclz1TUlKiiRMnBv5Hkenp6dq9e3fgfH\/ekwM2gLZv3668vDytXr1aR48e1f3336\/s7GydPXvW6dFC3j333KOGhobAVlNTEzi3bt06bdiwQcXFxaqurpbH49GsWbPU1tbm4MShob29XZMmTVJxcXGX53uydnl5edqxY4dKS0t16NAhXbhwQY888oiuXLnSX7+G475qHSVp9uzZQfforl27gs6zjlJFRYWWLVumqqoqlZWV6fLly8rKylJ7e3vgGu7JnunJWkrclz0xduxYrV27VocPH9bhw4c1c+ZMzZ07NxA5\/XpP9snfMBYC7r33XrNkyZKgY3fffbd57rnnHJooPKxZs8ZMmjSpy3NXr141Ho\/HrF27NnDsiy++MDExMebXv\/51P00YHiSZHTt2BPZ7snbNzc1m6NChprS0NHDNp59+agYNGmT27NnTb7OHkhvX0RhjcnNzzdy5c7t9DevYtaamJiPJVFRUGGO4J\/8bN66lMdyX\/43bbrvN\/Pa3v+33e3JAPgHq6OjQkSNHlJWVFXQ8KytLlZWVDk0VPmpraxUfH6+kpCQ99thjOnXqlCSprq5OjY2NQevqdrs1ffp01vUr9GTtjhw5oi+\/\/DLomvj4eKWmprK+NygvL1dsbKxSUlK0ePFiNTU1Bc6xjl1raWmRpMBfLMk9eetuXMtruC+\/nitXrqi0tFTt7e1KT0\/v93tyQAbQ559\/ritXrnT6C1Pj4uI6\/cWqCDZ16lRt2bJFe\/fu1auvvqrGxkZlZGTo3LlzgbVjXb++nqxdY2OjIiIidNttt3V7DaTs7Gxt3bpV+\/fv1\/r161VdXa2ZM2fK7\/dLYh27YoxRfn6+7rvvPqWmpkrinrxVXa2lxH35ddTU1GjkyJFyu91asmSJduzYofHjx\/f7PRnyfxXGf8PlcgXtG2M6HUOw7OzswD9PmDBB6enpuuOOO7R58+bAF\/pY11t3K2vH+gZbsGBB4J9TU1OVlpamxMRE7dy5Uzk5Od2+zuZ1XL58uY4fP65Dhw51Osc9+fV0t5bclz1311136dixY2pubtYbb7yh3NxcVVRUBM731z05IJ8AjR49WoMHD+5Ug01NTZ3KEjc3YsQITZgwQbW1tYE\/Dca6fn09WTuPx6OOjg6dP3++22vQmdfrVWJiomprayWxjjdasWKF3n77bR04cEBjx44NHOee\/Pq6W8uucF92LyIiQnfeeafS0tJUVFSkSZMm6aWXXur3e3JABlBERIQmT56ssrKyoONlZWXKyMhwaKrw5Pf79dFHH8nr9SopKUkejydoXTs6OlRRUcG6foWerN3kyZM1dOjQoGsaGhr0t7\/9jfW9iXPnzqm+vl5er1cS63iNMUbLly\/Xm2++qf379yspKSnoPPdkz33VWnaF+7LnjDHy+\/39f0\/e4pe2Q15paakZOnSoee2118yHH35o8vLyzIgRI8zp06edHi2kPfPMM6a8vNycOnXKVFVVmUceecRERUUF1m3t2rUmJibGvPnmm6ampsY8\/vjjxuv1mtbWVocnd15bW5s5evSoOXr0qJFkNmzYYI4ePWrOnDljjOnZ2i1ZssSMHTvWvPPOO+b99983M2fONJMmTTKXL1926tfqdzdbx7a2NvPMM8+YyspKU1dXZw4cOGDS09PNN77xDdbxBk8\/\/bSJiYkx5eXlpqGhIbBdvHgxcA33ZM981VpyX\/ZcQUGBOXjwoKmrqzPHjx83q1atMoMGDTL79u0zxvTvPTlgA8gYY371q1+ZxMREExERYb773e8G\/ZFFdG3BggXG6\/WaoUOHmvj4eJOTk2NOnDgROH\/16lWzZs0a4\/F4jNvtNg888ICpqalxcOLQceDAASOp05abm2uM6dnaXbp0ySxfvtyMGjXKREZGmkceecScPXvWgd\/GOTdbx4sXL5qsrCwzZswYM3ToUDNu3DiTm5vbaY1YR9PlGkoymzZtClzDPdkzX7WW3Jc998Mf\/jDw3+UxY8aYBx98MBA\/xvTvPekyxpiv98wIAAAgvA3I7wABAADcDAEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQgr\/\/rXv+TxeFRYWBg49t577ykiIkL79u1zcDIA4YS\/CwxA2Nm1a5fmzZunyspK3X333frOd76jhx9+WBs3bnR6NABhggACEJaWLVumd955R1OmTNEHH3yg6upqDRs2zOmxAIQJAghAWLp06ZJSU1NVX1+vw4cPa+LEiU6PBCCM8B0gAGHp1KlT+uc\/\/6mrV6\/qzJkzTo8DIMzwBAhA2Ono6NC9996rb3\/727r77ru1YcMG1dTUKC4uzunRAIQJAghA2PnpT3+qP\/7xj\/rggw80cuRIzZgxQ1FRUfrzn\/\/s9GgAwgQfgQEIK+Xl5dq4caNef\/11RUdHa9CgQXr99dd16NAhlZSUOD0egDDBEyAAAGAdngABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACs8\/8AtbWCzAbd7joAAAAASUVORK5CYII=", "text\/plain": "<Figure size 640x480 with 1 Axes>"}, "metadata": {}, "output_type": "display_data"}]}}, "8dd363de61704f07a67c5ec15fad0230": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "93f14a52f3064949b531de7e08a42ee6": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "IntSliderModel", "state": {"behavior": "drag-tap", "layout": "IPY_MODEL_50615551594a42e7a11ed3bdcdb1d54d", "max": 1999, "style": "IPY_MODEL_1ca2a7bb9b014ae1b78b7354b28675e1", "value": 132}}, "95d2ea1d34c947c9a61397dc75af7d2d": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": {"description_width": ""}}, "95f53f8f40c649b39f598db4f0e8da4f": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"children": ["IPY_MODEL_1cb2605db91a4ce1bac51f5960e5afc9"], "layout": "IPY_MODEL_203d095fdbec4a809af8ff2adf77a8fb"}}, "960f46250b0944599227534c8b8fe510": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"children": ["IPY_MODEL_b0c6e5b072744bb8aad4aa1c343ebe1e"], "layout": "IPY_MODEL_b4929e71adfe4fd7a3084599938b8a62"}}, "961bbf4dea01495c90b3a8be804ceea6": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": {"description_width": ""}}, "99f37541ac7b4dbfac2f489c1a5b0353": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "PlayModel", "state": {"description": "step", "layout": "IPY_MODEL_29adfb5bcde241fc8e8984961ab42ea5", "max": 1999, "playing": true, "style": "IPY_MODEL_68c14ca25ed0479898eac1351d769142", "value": 132}}, "9a7563fbc02148c9bdac79a88a31221b": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": {"description_width": ""}}, "9ab997a6587c4746904cd3476fe428de": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "IntSliderModel", "state": {"behavior": "drag-tap", "layout": "IPY_MODEL_efb79abbdfb2428e84cb236aa84bc460", "max": 199, "style": "IPY_MODEL_bc360c0bab0f4addb40d8aecfb729f92", "value": 1}}, "9c44cf9efe144da9b5dfcbe527ac3102": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "9c5112e1cfd44ed2a63e5978fc06fccc": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "9e0470afffb74df5adab27914911762d": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "9e913bb98541408496f49af403c639af": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "9f27a61d3d764ea5ac7b2042ff4e679c": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": {"source": ["IPY_MODEL_754124660050415e84f351699e0454bd", "value"], "target": ["IPY_MODEL_0fcdff9aa34e4e13927e34ae27360da7", "value"]}}, "a0998547957e4b50bb0570d6e89b4c2e": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "IntSliderModel", "state": {"behavior": "drag-tap", "layout": "IPY_MODEL_cd847b071b4e47ea8ae6cd18c02e2b45", "max": 599, "style": "IPY_MODEL_fb3e5d085e2d43b7a3490b9ff0cd3738", "value": 19}}, "a1cb4b44b1f54cde815f8e713ca3e68d": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "PlayModel", "state": {"description": "step", "layout": "IPY_MODEL_13187a1f6c2a44f9a3ccd12f5eff4464", "max": 199, "style": "IPY_MODEL_9a7563fbc02148c9bdac79a88a31221b", "value": 1}}, "a20388231297411295366afa518f917b": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "a37fd745c2154e37a420c30c21efe3c9": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "a687e87123924c42ad280c3d1993286b": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "a6e490f9a95046848e772f941811ea6e": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "PlayModel", "state": {"description": "step", "layout": "IPY_MODEL_55226787171c4752aa32a82a887b8b98", "max": 199, "style": "IPY_MODEL_0197503ee5c44b87a3d0c980bc2571da", "value": 199}}, "a7c8a0264f214268bfafc38c4c68055d": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": {"description_width": ""}}, "a8120820b9c8411dba949b22cd333241": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "a813b3e4592a4ba6a5ac586705a144b1": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": {"description_width": ""}}, "a926a010639c46938c18e60b9cb1cfc8": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"children": ["IPY_MODEL_e0fa11145e0d4e40ad744eba44c54f34"], "layout": "IPY_MODEL_e17d149775dd4f96bcd56c6c7455e2b0"}}, "aa3568c9e4d040d4a33c7bcc314f221a": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": {"_dom_classes": ["widget-interact"], "children": ["IPY_MODEL_1691534cae544c41ac19238706d81934", "IPY_MODEL_2f094b8f56ff4ac3b16dacdf8948dda6"], "layout": "IPY_MODEL_fc190c980cf64f58821e1fed76b8dc9b"}}, "ab8b9c40294846d9820000b7038b3311": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": {"description_width": ""}}, "abc536027e9f46dca983b3512682b4b6": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "IntSliderModel", "state": {"behavior": "drag-tap", "layout": "IPY_MODEL_851af3a043f1495ea899768d977eda65", "max": 149, "style": "IPY_MODEL_cfe6894555d9429bafafa321a999ad79", "value": 94}}, "af438b7498634a0896c9e60d78805898": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"children": ["IPY_MODEL_9ab997a6587c4746904cd3476fe428de"], "layout": "IPY_MODEL_d405cdb662334ea1920afee0c3ff1475"}}, "af86ac9bb8014c268c8513ac6ee499e7": {"model_module": "@jupyter-widgets\/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": {"layout": "IPY_MODEL_4ed234d89eda4e43ac8997df827fca2b", "outputs": [{"data": {"image\/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG2CAYAAACXuTmvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy\/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAxiklEQVR4nO3de2zUdb7\/8df0Ni10OgWhnWmn9HQVdLVQXXAR4gXZQ3\/2rKzKnvzcdWMgJzG6gjmE3WMWyTlWs0uN+cnBE85yzl7iQY+kJmfF4++oCAYpa1j2V1iKXXQ57LFKgZYKtjNtaae3z++PMtOWtlDamfnOzPf5SCZxvnP5vvvJJLz8XB3GGCMAAAAbSbG6AAAAgFgjAAEAANshAAEAANshAAEAANshAAEAANshAAEAANshAAEAANshAAEAANshAAEAANshAAEAANuJmwBUVVUlh8Oh9evXh68ZY1RZWamCggJlZWVp2bJlOn78uHVFAgCApBAXAai2tla\/+MUvtGDBghHXX3zxRW3ZskXbtm1TbW2tPB6PVqxYofb2dosqBQAAycDyANTR0aEf\/OAH+uUvf6kZM2aErxtjtHXrVm3atEmrVq1SaWmpduzYoYsXL2rnzp0WVgwAABJdmtUFrF27Vt\/+9rf1l3\/5l\/rpT38avt7Q0KDm5maVl5eHrzmdTt1zzz06ePCgHn\/88TG\/LxgMKhgMhp8PDAzoq6++0nXXXSeHwxG9PwQAAESMMUbt7e0qKChQSkrk+2ssDUDV1dX6wx\/+oNra2lGvNTc3S5Ly8\/NHXM\/Pz9cXX3wx7ndWVVXpueeei2yhAADAEo2NjfL5fBH\/XssCUGNjo\/72b\/9We\/bsUWZm5rjvu7zXxhhzxZ6cjRs3asOGDeHnfr9fc+bMUWNjo3JycqZeOAAAiLpAIKCioiK5XK6ofL9lAejIkSNqaWnRwoULw9f6+\/t14MABbdu2TSdOnJA02BPk9XrD72lpaRnVKzSc0+mU0+kcdT0nJ4cABABAgonW9BXLJkF\/61vfUn19verq6sKPRYsW6Qc\/+IHq6ur0ta99TR6PR3v37g1\/pqenRzU1NVq6dKlVZQMAgCRgWQ+Qy+VSaWnpiGvTp0\/XddddF76+fv16bd68WXPnztXcuXO1efNmTZs2TY888ogVJQMAgCRh+SqwK3n66afV1dWlJ598Uq2trVq8eLH27NkTtfFAAABgDw5jjLG6iGgKBAJyu93y+\/3MAQIAIEFE+99vyzdCBAAAiDUCEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB3bBCB\/V6\/VJQAAgDhhmwB0tu2i1SUAAIA4YZsAdKat2+oSAABAnLBNAGpq67K6BAAAECdsE4DoAQIAACG2CUDMAQIAACH2CUB+eoAAAMAg+wSgVuYAAQCAQbYJQIHuPrV3sxcQAACwUQCSpDOsBAMAALJZADr9FQEIAADYLQC1shIMAADYLAAxBAYAACSbBaDTrAQDAAAiAAEAABuyVQBiCAwAAEg2C0BfdfaoM9hndRkAAMBitglArsxUSfQCAQAAGwWggtxpkqQzzAMCAMD2bBSAMiWxFxAAALBVAMqSJJ1mCAwAANuzTwByh3qACEAAANidfQLQpTlABCAAAGCbAFR4aQ4Qk6ABAIClAWj79u1asGCBcnJylJOToyVLlui9994Lv75mzRo5HI4RjzvuuGNS9wrNATrfEVR3b39E6gcAAIkpzcqb+3w+vfDCC7rhhhskSTt27NADDzygo0eP6pZbbpEk3XfffXrllVfCn8nIyJjUvdxZ6cp2pqkj2KfTrV26IS976n8AAABISJYGoJUrV454\/rOf\/Uzbt2\/XoUOHwgHI6XTK4\/FM+V4Oh0O+GVn6U3O7zrQRgAAAsLO4mQPU39+v6upqdXZ2asmSJeHr+\/fvV15enubNm6fHHntMLS0tV\/yeYDCoQCAw4hFSGFoKz15AAADYmuUBqL6+XtnZ2XI6nXriiSe0a9cu3XzzzZKkiooKvf7669q3b59eeukl1dbWavny5QoGg+N+X1VVldxud\/hRVFQUfs03IxSAmAgNAICdOYwxxsoCenp6dOrUKbW1tek3v\/mNfvWrX6mmpiYcgoZrampScXGxqqurtWrVqjG\/LxgMjghIgUBARUVF8vv9eqPuvH727qf6TlmB\/un7t0XtbwIAAFMTCATkdrvl9\/uVk5MT8e+3dA6QNDipOTQJetGiRaqtrdXLL7+sf\/3Xfx31Xq\/Xq+LiYp08eXLc73M6nXI6nWO+VjiDITAAABAHQ2CXM8aMO8R14cIFNTY2yuv1Tuq7GQIDAACSxT1AzzzzjCoqKlRUVKT29nZVV1dr\/\/792r17tzo6OlRZWanvfve78nq9+vzzz\/XMM89o1qxZeuihhyZ1P9+Mwd2gW9qDCvb1y5mWGsk\/BwAAJAhLA9C5c+f06KOPqqmpSW63WwsWLNDu3bu1YsUKdXV1qb6+Xq+++qra2trk9Xp177336o033pDL5ZrU\/WZMS1dWeqq6evt1tq1bJbOmR\/gvAgAAicDSAPTrX\/963NeysrL0\/vvvR\/R+ob2ATrZ06HTrRQIQAAA2FXdzgKItNA+IM8EAALAv2wWgQiZCAwBge7YLQKGJ0CyFBwDAvmwYgC4NgbXRAwQAgF3ZLgANnQdGAAIAwK5sF4BCQ2DNgW719A1YXA0AALCC7QLQrOwMOdNSZIzU7O+2uhwAAGAB2wUgh8PBmWAAANic7QKQNHwlGPOAAACwI5sGoEs9QKwEAwDAlmwZgIZWgjEEBgCAHdkyAPnYDRoAAFuzaQAanAPEeWAAANiTTQPQYA9Qc6Bbff3sBQQAgN3YMgDNznYqIzVF\/QNGTewFBACA7dgyAKWkDO0FxJlgAADYjy0DkMSZYAAA2JltA5CP3aABALAt2wcgVoIBAGA\/tg1AhewFBACAbdk2AIXPA2tjCAwAALuxcQAa7AFqautW\/4CxuBoAABBLtg1Aea5MpaU41DdgdC7AXkAAANiJbQNQaopDBSyFBwDAlmwbgKRhK8GYBwQAgK3YOgCFN0P8ih4gAADsxNYBKLwSjCEwAABsxeYBiPPAAACwI1sHoEKOwwAAwJZsHYBCPUBn27o1wF5AAADYhq0DkCcnU6kpDvX0D+jLjqDV5QAAgBixdQBKS02RJydTEsNgAADYia0DkDQ0DMZKMAAA7IMAxFJ4AABsx\/YBqJAeIAAAbMfSALR9+3YtWLBAOTk5ysnJ0ZIlS\/Tee++FXzfGqLKyUgUFBcrKytKyZct0\/PjxiNbgYyk8AAC2Y2kA8vl8euGFF3T48GEdPnxYy5cv1wMPPBAOOS+++KK2bNmibdu2qba2Vh6PRytWrFB7e3vkamAzRAAAbMfSALRy5Ur91V\/9lebNm6d58+bpZz\/7mbKzs3Xo0CEZY7R161Zt2rRJq1atUmlpqXbs2KGLFy9q586dEavBlzs4B+hMa5eMYS8gAADsIG7mAPX396u6ulqdnZ1asmSJGhoa1NzcrPLy8vB7nE6n7rnnHh08eDBi9\/W4M5XikIJ97AUEAIBdpFldQH19vZYsWaLu7m5lZ2dr165duvnmm8MhJz8\/f8T78\/Pz9cUXX4z7fcFgUMHgUJAJBAJXvH9G2uBeQGf93TrT2qU8V+YU\/hoAAJAILO8BuvHGG1VXV6dDhw7phz\/8oVavXq1PPvkk\/LrD4RjxfmPMqGvDVVVVye12hx9FRUVXrYGVYAAA2IvlASgjI0M33HCDFi1apKqqKpWVlenll1+Wx+ORJDU3N494f0tLy6heoeE2btwov98ffjQ2Nl61BvYCAgDAXiwPQJczxigYDKqkpEQej0d79+4Nv9bT06OamhotXbp03M87nc7wsvrQ42qGVoKxFB4AADuwdA7QM888o4qKChUVFam9vV3V1dXav3+\/du\/eLYfDofXr12vz5s2aO3eu5s6dq82bN2vatGl65JFHIlpHYS5DYAAA2ImlAejcuXN69NFH1dTUJLfbrQULFmj37t1asWKFJOnpp59WV1eXnnzySbW2tmrx4sXas2ePXC5XROtgCAwAAHtxmCTf\/CYQCMjtdsvv9487HPb5+U4t+z\/7lZWeqk+e\/19XnGQNAACibyL\/fk9F3M0BsoI3d3Dpe1dvv77q7LG4GgAAEG0EIEnOtFTl5zglMQwGAIAdEIAuCc0D4kwwAACSHwHokqGVYCyFBwAg2RGALvGxGzQAALZBALokPARGAAIAIOkRgC7hPDAAAOyDAHTJ0BDYRSX51kgAANgeAeiS0CTozp5++bt6La4GAABEEwHoksz0VM3KZi8gAADsgAA0zPBhMAAAkLwIQMMwERoAAHsgAA3DXkAAANgDAWiY0F5ABCAAAJIbAWgY36WVYJwHBgBAciMADcMkaAAA7IEANExoEnR7dx97AQEAkMQIQMNMy0jTzOkZkjgTDACAZEYAugzDYAAAJD8C0GVYCg8AQPIjAF2mkJVgAAAkPQLQZYb2AmIIDACAZEUAugxDYAAAJD8C0GVCS+EZAgMAIHkRgC4TmgPUdrFX7d3sBQQAQDIiAF3GlZmu3GnpkugFAgAgWRGAxhBeCcY8IAAAkhIBaAxMhAYAILkRgMbAUngAAJIbAWgMbIYIAEByIwCNgSEwAACSGwFoDENDYAQgAACSEQFoDKHNEL\/q7NHFnj6LqwEAAJFGABqDOytdrsw0SSyFBwAgGRGAxsEwGAAAyYsANI7QSrDTrAQDACDpWBqAqqqqdPvtt8vlcikvL08PPvigTpw4MeI9a9askcPhGPG44447ol7b0Eow9gICACDZWBqAampqtHbtWh06dEh79+5VX1+fysvL1dnZOeJ99913n5qamsKPd999N+q1sRQeAIDklWblzXfv3j3i+SuvvKK8vDwdOXJEd999d\/i60+mUx+OJaW2hAMQkaAAAYu\/tujNR\/f64mgPk9\/slSTNnzhxxff\/+\/crLy9O8efP02GOPqaWlZdzvCAaDCgQCIx6TwSRoAACs0dM3oGf\/7ydRvUfcBCBjjDZs2KA777xTpaWl4esVFRV6\/fXXtW\/fPr300kuqra3V8uXLFQwGx\/yeqqoqud3u8KOoqGhS9YR6gM53BNXd2z+p7wAAANfuT80B9fYNRPUelg6BDbdu3Tp9\/PHH+uijj0Zcf\/jhh8P\/XVpaqkWLFqm4uFjvvPOOVq1aNep7Nm7cqA0bNoSfBwKBSYUgd1a6pmekqrOnX2faunT97Oxr\/g4AAHDt6hrbon6PuAhATz31lN5++20dOHBAPp\/viu\/1er0qLi7WyZMnx3zd6XTK6XROuSaHwyHfjGk6ca5dp1sJQAAAxErdqbao38PSITBjjNatW6c333xT+\/btU0lJyVU\/c+HCBTU2Nsrr9Ua9PpbCAwAQe3Wn26J+D0sD0Nq1a\/Xv\/\/7v2rlzp1wul5qbm9Xc3KyursGJxx0dHfrxj3+s3\/3ud\/r888+1f\/9+rVy5UrNmzdJDDz0U9foKWQkGAEBM+S\/26rMvO6\/+ximyNABt375dfr9fy5Ytk9frDT\/eeOMNSVJqaqrq6+v1wAMPaN68eVq9erXmzZun3\/3ud3K5XFGvj72AAACIrY\/PtEmSimZmRfU+ls4BMsZc8fWsrCy9\/\/77MapmtKGl8AyBAQAQC6H5P\/ML3DoYxfvEzTL4eBQ6D+wM54EBABATxy7N\/5nvc0f1PgSgKwgNgZ0LBBXsYy8gAACiyRgTXgJfWkgAsszM6RnKSk+VJJ1t67a4GgAAktuZti6d7+hRWopDX\/fmRPVeBKArcDgcrAQDACBGQr0\/X\/fmKPNSB0S0EICugr2AAACIjWOXAtCtRblRvxcB6CpYCg8AQGyEeoDKCEDWK8wdXArPSjAAAKKnr39A9Wf8kugBigsMgQEAEH0nzrWru3dArsw0fW3W9KjfjwB0FQyBAQAQfccaB3t\/yny5SklxRP1+BKCrKAzvBdStnr4Bi6sBACA51TW2SpLKiqK7\/08IAegqZmc75UxL0YCRmv3sBQQAQDSEeoBuLZoRk\/sRgK5i+F5AzAMCACDyOoJ9+u+Wdkn0AMWV0Jlgp1kJBgBAxH18uk3GDP57m+fKjMk9CUATMHQqPAEIAIBIGxr+yo3ZPQlAE8BSeAAAoifWE6AlAtCE+DgPDACAqIn1BGiJADQh7AUEAEB0NPu71RzoVmqKQ6WF0T0BfjgC0ASE5gA1B7rV189eQAAAREro\/K95+S5Ny0iL2X0JQBMwO9upjNQU9Q8YNQfYCwgAgEipC58AH7v5PxIBaEJSUhwqyB1clscwGAAAkXMsHIByY3pfAtAEsRQeAIDI6h8w+vh0mySpjAAUn0KbIbISDACAyPifLzvU2dOvaRmpmpvnium9CUATxF5AAABEVt2pNknS\/EK3UmNwAvxwBKAJ8s1kKTwAAJFUd2n469Y5uTG\/NwFoggpzB+cAneE8MAAAIiLUA3SrLzfm9yYATVBoCOxsW5f6B4zF1QAAkNi6evp14tzgCfD0AMWx\/JxMpaU41DdgdI69gAAAmJI\/nvWrf8AoP8cprzsr5vcnAE1QaopD3kt7ATEMBgDA1ISGv8osGP6SCEDXxJcb2guIlWAAAEyFlROgJQLQNQkvhf+KHiAAAKbCygnQEgHomhReCkAMgQEAMHlftgd1pq1LDoc03xfbM8BCCEDXgOMwAACYutD5XzfMzpYrM92SGghA14DdoAEAmLpjofk\/MT7\/azgC0DUInQd2tq1bA+wFBADApNRd6gGK9QGowxGAroHXnanUFId6+gf0ZUfQ6nIAAEg4AwMmPARm2x6gqqoq3X777XK5XMrLy9ODDz6oEydOjHiPMUaVlZUqKChQVlaWli1bpuPHj1tSb1pqijw5g3sBMQwGAMC1a7jQqUB3n5xpKbrRE9sT4IezNADV1NRo7dq1OnTokPbu3au+vj6Vl5ers7Mz\/J4XX3xRW7Zs0bZt21RbWyuPx6MVK1aovb3dkpoLZ3AoKgAAkxXq\/Zlf6FZ6qnUxJM2yO0vavXv3iOevvPKK8vLydOTIEd19990yxmjr1q3atGmTVq1aJUnasWOH8vPztXPnTj3++OMxr9k3I0v\/r4EABADAZMTD\/B9pkgHo+eefv+Lr\/\/AP\/zCpYvx+vyRp5syZkqSGhgY1NzervLw8\/B6n06l77rlHBw8eHDMABYNBBYND83MCgcCkahkPS+EBAJi8eJj\/I00yAO3atWvE897eXjU0NCgtLU3XX3\/9pAKQMUYbNmzQnXfeqdLSUklSc3OzJCk\/P3\/Ee\/Pz8\/XFF1+M+T1VVVV67rnnrvn+E+XLZTNEAAAmo7u3X580DXZMJGQAOnr06KhrgUBAa9as0UMPPTSpQtatW6ePP\/5YH3300ajXHA7HiOfGmFHXQjZu3KgNGzaMqKuoqGhSNY2FvYAAAJicT5sC6u03um56RvjfU6tEbPZRTk6Onn\/+ef393\/\/9NX\/2qaee0ttvv60PP\/xQPp8vfN3j8Uga6gkKaWlpGdUrFOJ0OpWTkzPiEUmhIbAzrV0yhr2AAACYqLphw1\/jdWTESkSnX7e1tYXn8UyEMUbr1q3Tm2++qX379qmkpGTE6yUlJfJ4PNq7d2\/4Wk9Pj2pqarR06dKI1X0tPO5MORxSsG9A5zt6LKkBAIBEdCxOJkBLkxwC+6d\/+qcRz40xampq0muvvab77rtvwt+zdu1a7dy5U\/\/5n\/8pl8sV7ulxu93KysqSw+HQ+vXrtXnzZs2dO1dz587V5s2bNW3aND3yyCOTKX3KMtIG9wJq8nfrdOtFzXY5LakDAIBEUxcnE6ClSQagf\/zHfxzxPCUlRbNnz9bq1au1cePGCX\/P9u3bJUnLli0bcf2VV17RmjVrJElPP\/20urq69OSTT6q1tVWLFy\/Wnj175HJZt3mSb0bWpQDUpdvmzLCsDgAAEkVrZ48+vzA4f7bMl2ttMZpkAGpoaIjIzScyh8bhcKiyslKVlZURuWckFOZmqVatrAQDAGCCQgegfm3WdLmnWXMC\/HCcBTYJQ3sBsRIMAICJiJcNEEMIQJPAcRgAAFybeNkAMYQANAmhvQvOEIAAALgqYww9QMlg+HEY7AUEAMCVNX7VpdaLvcpITdHXvdYtYhqOADQJXnemJKmrt19fdbIXEAAAV3K0sVWS9PWCHDnTUi2uZhABaBIy01OVd2n\/H1aCAQBwZccaBzdJvi1Ohr8kAtCk+ZgIDQDAhNRd6gEqK3JbXMkQAtAkFbIUHgCAq+rtH9Afz4ZOgI+fzYMJQJPESjAAAK7uT03t6ukbkDsrXX9x3TSrywkjAE0SQ2AAAFxd3aUdoMvi4AT44QhAk1SYSwACAOBq6k61SYqfDRBDCECTFNoL6EwbewEBADCe0Blgt8bRBGiJADRpoSGwjmCf\/F29FlcDAED8CXT36n++7JAUHyfAD0cAmqTM9FTNys6QxDAYAABjqT\/tlzFS0cwsXZfttLqcEQhAU1A47EgMAAAwUl34ANT4Wf4eQgCagqGVYOwFBADA5Y5emgBd5ouv+T8SAWhKfKwEAwBgTMNPgL9tTq6ltYyFADQF4c0QOQ8MAIARzvq7db4jqLQUh24poAcoqfiYAwQAwJiOXer9ucnrUmZ6fJwAPxwBaAoKmQMEAMCYQsNf8bb8PYQANAWh3aDbu9kLCACA4YZWgOVaWsd4CEBTMN2ZppnTB\/cC4lBUAAAG9fUPqP60XxIBKGkNnQnGMBgAAJJ0sqVDXb39ynam6frZ2VaXMyYC0BSxEgwAgJFCw18LfG6lpMTPCfDDEYCmaGgzRAIQAADS0AqweB3+kghAU8YQGAAAI8X7BGiJADRlob2AGAIDAEDqDPbpv8+1SyIAJTXfTIbAAAAIqT\/j14CRCtyZysvJtLqccRGApig0BNZ2sVcdwT6LqwEAwFqh+T9lcdz7IxGApsyVmS53Vrok9gICACAR5v9IBKCI8HEkBgAAkoYdgUEASn5DK8HoAQIA2Ne5QLea\/N1KcUjzC+PvBPjhCEARwEowAACGen\/m5bs03ZlmbTFXQQCKAIbAAABIjA0QQwhAEVDIbtAAACTM\/B\/J4gB04MABrVy5UgUFBXI4HHrrrbdGvL5mzRo5HI4RjzvuuMOaYq8gfB4YAQgAYFMDA0Yfx\/kJ8MNZGoA6OztVVlambdu2jfue++67T01NTeHHu+++G8MKJyY0B+hCZ48u9rAXEADAfv7nyw51BPuUlZ6quXnxeQL8cJbOUKqoqFBFRcUV3+N0OuXxeGJU0eS4s9LlcqapPdinM61dmpvvsrokAABiKjT8Nd\/nVlpq\/M+wifsK9+\/fr7y8PM2bN0+PPfaYWlparvj+YDCoQCAw4hEL4XlArAQDANhQomyAGBLXAaiiokKvv\/669u3bp5deekm1tbVavny5gsHguJ+pqqqS2+0OP4qKimJSa2gYjInQAAA7Ona6TVLiBKC4XqT\/8MMPh\/+7tLRUixYtUnFxsd555x2tWrVqzM9s3LhRGzZsCD8PBAIxCUEshQcA2FV3b7\/+1BT\/J8APF9cB6HJer1fFxcU6efLkuO9xOp1yOp0xrGoQK8EAAHZ1\/KxffQNGs11Oed3xewL8cHE9BHa5CxcuqLGxUV6v1+pSRvGxFxAAwKaOnmqTNNj743A4rC1mgiztAero6NCf\/\/zn8POGhgbV1dVp5syZmjlzpiorK\/Xd735XXq9Xn3\/+uZ555hnNmjVLDz30kIVVj60wlzlAAAB7OpZA+\/+EWBqADh8+rHvvvTf8PDR3Z\/Xq1dq+fbvq6+v16quvqq2tTV6vV\/fee6\/eeOMNuVzxt8w81AN0viOo7t5+ZaanWlwRAACxUdfYKokANGHLli2TMWbc199\/\/\/0YVjM1udPSNT0jVZ09\/TrT1qXrZ8f\/JlAAAEzVhY6gGr\/qksMxuAdQokioOUDxzOFwcCYYAMB2Qsvfr5+drZzMdGuLuQYEoAgK7QXESjAAgF3UXZoAXebLtbSOa0UAiiD2AgIA2E1daAL0nFxrC7lGBKAIKsxlCAwAYB\/GGB0LHYFBD5B9hYfAOA8MAGADn1+4KH9XrzLSUnSTN\/5WaF8JASiCGAIDANhJaPl7aUGO0hPgBPjhEqvaOBdaBXYuEFSwr9\/iagAAiK5jjaENEGdYXMm1IwBF0HXTM5SZPtikTW3dFlcDAEB0Hb00\/6esKHH2\/wkhAEWQw+EIzwNiIjQAIJkF+\/r16dmAJOk2eoAwtBKMeUAAgOT1aVO7evoHNHN6hopmZlldzjUjAEVYaCI0K8EAAMkstPy9zOdOmBPghyMARRhDYAAAO6gL7f+TgMNfEgEo4gpZCg8AsIFjCTwBWiIARVx4CIweIABAkvJf7NVn5zslSbcW5VpbzCQRgCIsFICaA93q6RuwuBoAACIvdAL8X1w3TbnTMqwtZpIIQBE2a7pTGWkpGjBSs5+9gAAAyWdo\/k+upXVMBQEowlJSHPKFlsK3MQ8IAJB8hub\/5Fpax1QQgKJgaCI084AAAMnFGEMPEMbmIwABAJLU6dYuXejsUXqqQ1\/35lhdzqQRgKIgtBcQK8EAAMkm1PtzszdHmemp1hYzBQSgKPCxFxAAIEnVJcH8H4kAFBVD54HRAwQASC7HkmD+j0QAiorQEFhzoFt9\/ewFBABIDr39A6o\/45dEDxDGkOdyKj3Vof4Bo+YAewEBAJLDieZ2BfsGlJOZppLrpltdzpQQgKIgJcWhAobBAABJZvj8n5SUxDsBfjgCUJRwJhgAINkky\/wfiQAUNb7cwXlA9AABAJJFMmyAGEIAipJClsIDAJJIe3ev\/vxlh6TEnwAtEYCiJjwE1kYPEAAg8dWf9suYwX\/fZmU7rS5nyghAURJaCs8QGAAgGdSdbpOUHL0\/EgEoakJDYGfbutQ\/YCyuBgCAqak71SZJuo0AhCvJdzmVluJQ34BRSzt7AQEAEtsxeoAwEWmpKfLmZkpiGAwAkNia\/F06FwgqNcWh0gK31eVEBAEoiobOBGMlGAAgcYWGv27MdykrI3FPgB+OABRFoYnQbIYIAEhkoQnQt87JtbSOSLI0AB04cEArV65UQUGBHA6H3nrrrRGvG2NUWVmpgoICZWVladmyZTp+\/Lg1xU6CbwbHYQAAEl+oB+hWX66ldUSSpQGos7NTZWVl2rZt25ivv\/jii9qyZYu2bdum2tpaeTwerVixQu3t7TGudHIKOQ8MAJDg+gdM+AT4ZOoBSrPy5hUVFaqoqBjzNWOMtm7dqk2bNmnVqlWSpB07dig\/P187d+7U448\/HstSJyU8BMZmiACABHWypV0Xe\/o1PSNV18\/OtrqciInbOUANDQ1qbm5WeXl5+JrT6dQ999yjgwcPjvu5YDCoQCAw4mGV4QeiDrAXEAAgAYUOQF3gy1Vqgp8AP1zcBqDm5mZJUn5+\/ojr+fn54dfGUlVVJbfbHX4UFRVFtc4r8bgzleKQevoH9GVH0LI6AACYrPABqEk0\/CXFcQAKcThGpk1jzKhrw23cuFF+vz\/8aGxsjHaJ40pPTZHXzTwgAEDiqmscnP9TlkQToKU4DkAej0eSRvX2tLS0jOoVGs7pdConJ2fEw0rsBQQASFQXe\/p0onlwKslt9ADFRklJiTwej\/bu3Ru+1tPTo5qaGi1dutTCyq4NS+EBAInqj2cCGjCSJydT+TmZVpcTUZauAuvo6NCf\/\/zn8POGhgbV1dVp5syZmjNnjtavX6\/Nmzdr7ty5mjt3rjZv3qxp06bpkUcesbDqaxOeCM1KMABAgqlrbJUk3Zok538NZ2kAOnz4sO69997w8w0bNkiSVq9erX\/7t3\/T008\/ra6uLj355JNqbW3V4sWLtWfPHrlcLqtKvmaF9AABABLUsdD8HwJQZC1btkzGjL883OFwqLKyUpWVlbErKsJCewExBwgAkGjCK8CSMADF7RygZDF8L6ArhT0AAOJJS3u3zrR1yeGQ5vuS4wT44QhAUeZ1Z8nhkIJ9Azrf0WN1OQAATEho+GtenkvZTksHjKKCABRlGWkpyncNzpxnGAwAkChCO0CXFSVf749EAIoJVoIBABLN0PyfGdYWEiUEoBhgJRgAIJEMDBh6gDB1Q5shMgQGAIh\/n53vVHuwT5npKboxP3G2nrkWBKAYCC2FP0MPEAAgAYSGv+YXupWWmpxRITn\/qjgzdB4YAQgAEP+OJfH+PyEEoBgYfh4YewEBAOJdsk+AlghAMVFwqQeoq7dfrRd7La4GAIDxdff269OmwRPgk3UCtEQAionM9FTNdjklMREaABDfjp8NqG\/AaFa2MzyFIxkRgGLEx1J4AEACGJr\/45bD4bC2mCgiAMUIK8EAAIkgmQ9AHY4AFCNDK8EYAgMAxK9jp9skSWUEIEQCQ2AAgHj3VWePvrgw+D\/qC3y51hYTZQSgGOE8MABAvAv1\/nxt9nS5s9KtLSbKCEAxwl5AAIB4V3eqTVLyz\/+RCEAxU5g7OAm6I9gnfxd7AQEA4k+oB4gAhIjJykjVrOwMScwDAgDEH2OMLY7ACCEAxRBnggEA4tWpry6q9WKvMtJSdJMnx+pyoi7N6gLsxDdjmo6d9uuJfz9idSkAAIzploIcZaQlf\/9I8v+FceSeG2criTfVBAAkgfsXFFhdQkzQAxRD\/3tRkSpKPerpG7C6FAAARklPS1FOZnIvfw8hAMWYyyY\/LAAA4hlDYAAAwHYIQAAAwHYIQAAAwHYIQAAAwHYIQAAAwHYIQAAAwHYIQAAAwHYIQAAAwHYIQAAAwHYIQAAAwHYIQAAAwHbiOgBVVlbK4XCMeHg8HqvLAgAACS7uD0O95ZZb9MEHH4Sfp6amWlgNAABIBnEfgNLS0uj1AQAAERXXQ2CSdPLkSRUUFKikpETf+9739Nlnn1ldEgAASHBx3QO0ePFivfrqq5o3b57OnTunn\/70p1q6dKmOHz+u6667bszPBINBBYPB8PNAIBCrcgEAQIJwGGOM1UVMVGdnp66\/\/no9\/fTT2rBhw5jvqays1HPPPTfqut\/vV05OTrRLBAAAERAIBOR2u6P273fcD4ENN336dM2fP18nT54c9z0bN26U3+8PPxobG2NYIQAASARxPQR2uWAwqE8\/\/VR33XXXuO9xOp1yOp0xrAoAACSauO4B+vGPf6yamho1NDTo97\/\/vf76r\/9agUBAq1evtro0AACQwOK6B+j06dP6\/ve\/r\/Pnz2v27Nm64447dOjQIRUXF1tdGgAASGBxHYCqq6utLgEAACShuB4CAwAAiAYCEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsJ2ECEA\/\/\/nPVVJSoszMTC1cuFC\/\/e1vrS4JAAAksLgPQG+88YbWr1+vTZs26ejRo7rrrrtUUVGhU6dOWV0aAABIUA5jjLG6iCtZvHixvvGNb2j79u3ha1\/\/+tf14IMPqqqq6qqfDwQCcrvd8vv9ysnJiWapAAAgQqL973daxL8xgnp6enTkyBH95Cc\/GXG9vLxcBw8eHPMzwWBQwWAw\/Nzv90sabEgAAJAYQv9uR6ufJq4D0Pnz59Xf36\/8\/PwR1\/Pz89Xc3DzmZ6qqqvTcc8+Nul5UVBSVGgEAQPRcuHBBbrc74t8b1wEoxOFwjHhujBl1LWTjxo3asGFD+HlbW5uKi4t16tSpqDSgnQQCARUVFamxsZHhxCmgHSOHtowc2jIyaMfI8fv9mjNnjmbOnBmV74\/rADRr1iylpqaO6u1paWkZ1SsU4nQ65XQ6R113u938GCMkJyeHtowA2jFyaMvIoS0jg3aMnJSU6KzXiutVYBkZGVq4cKH27t074vrevXu1dOlSi6oCAACJLq57gCRpw4YNevTRR7Vo0SItWbJEv\/jFL3Tq1Ck98cQTVpcGAAASVNwHoIcfflgXLlzQ888\/r6amJpWWlurdd99VcXHxhD7vdDr17LPPjjkshmtDW0YG7Rg5tGXk0JaRQTtGTrTbMu73AQIAAIi0uJ4DBAAAEA0EIAAAYDsEIAAAYDsEIAAAYDtJHYB+\/vOfq6SkRJmZmVq4cKF++9vfWl1S3KusrJTD4Rjx8Hg84deNMaqsrFRBQYGysrK0bNkyHT9+3MKK48eBAwe0cuVKFRQUyOFw6K233hrx+kTaLhgM6qmnntKsWbM0ffp0fec739Hp06dj+FdY72rtuGbNmlG\/0TvuuGPEe2jHwWOBbr\/9drlcLuXl5enBBx\/UiRMnRryH3+TETKQt+V1OzPbt27VgwYLwRpFLlizRe++9F349lr\/JpA1Ab7zxhtavX69Nmzbp6NGjuuuuu1RRUaFTp05ZXVrcu+WWW9TU1BR+1NfXh1978cUXtWXLFm3btk21tbXyeDxasWKF2tvbLaw4PnR2dqqsrEzbtm0b8\/WJtN369eu1a9cuVVdX66OPPlJHR4fuv\/9+9ff3x+rPsNzV2lGS7rvvvhG\/0XfffXfE67SjVFNTo7Vr1+rQoUPau3ev+vr6VF5ers7OzvB7+E1OzETaUuJ3ORE+n08vvPCCDh8+rMOHD2v58uV64IEHwiEnpr9Jk6S++c1vmieeeGLEtZtuusn85Cc\/saiixPDss8+asrKyMV8bGBgwHo\/HvPDCC+Fr3d3dxu12m3\/5l3+JUYWJQZLZtWtX+PlE2q6trc2kp6eb6urq8HvOnDljUlJSzO7du2NWezy5vB2NMWb16tXmgQceGPcztOPYWlpajCRTU1NjjOE3ORWXt6Ux\/C6nYsaMGeZXv\/pVzH+TSdkD1NPToyNHjqi8vHzE9fLych08eNCiqhLHyZMnVVBQoJKSEn3ve9\/TZ599JklqaGhQc3PziHZ1Op265557aNermEjbHTlyRL29vSPeU1BQoNLSUtr3Mvv371deXp7mzZunxx57TC0tLeHXaMex+f1+SQofLMlvcvIub8sQfpfXpr+\/X9XV1ers7NSSJUti\/ptMygB0\/vx59ff3jzowNT8\/f9TBqhhp8eLFevXVV\/X+++\/rl7\/8pZqbm7V06VJduHAh3Ha067WbSNs1NzcrIyNDM2bMGPc9kCoqKvT6669r3759eumll1RbW6vly5crGAxKoh3HYozRhg0bdOedd6q0tFQSv8nJGqstJX6X16K+vl7Z2dlyOp164okntGvXLt18880x\/03G\/VEYU+FwOEY8N8aMuoaRKioqwv89f\/58LVmyRNdff7127NgRntBHu07eZNqO9h3p4YcfDv93aWmpFi1apOLiYr3zzjtatWrVuJ+zczuuW7dOH3\/8sT766KNRr\/GbvDbjtSW\/y4m78cYbVVdXp7a2Nv3mN7\/R6tWrVVNTE349Vr\/JpOwBmjVrllJTU0elwZaWllHJElc2ffp0zZ8\/XydPngyvBqNdr91E2s7j8ainp0etra3jvgejeb1eFRcX6+TJk5Jox8s99dRTevvtt\/Xhhx\/K5\/OFr\/ObvHbjteVY+F2OLyMjQzfccIMWLVqkqqoqlZWV6eWXX475bzIpA1BGRoYWLlyovXv3jri+d+9eLV261KKqElMwGNSnn34qr9erkpISeTyeEe3a09Ojmpoa2vUqJtJ2CxcuVHp6+oj3NDU16Y9\/\/CPtewUXLlxQY2OjvF6vJNoxxBijdevW6c0339S+fftUUlIy4nV+kxN3tbYcC7\/LiTPGKBgMxv43OclJ23GvurrapKenm1\/\/+tfmk08+MevXrzfTp083n3\/+udWlxbUf\/ehHZv\/+\/eazzz4zhw4dMvfff79xuVzhdnvhhReM2+02b775pqmvrzff\/\/73jdfrNYFAwOLKrdfe3m6OHj1qjh49aiSZLVu2mKNHj5ovvvjCGDOxtnviiSeMz+czH3zwgfnDH\/5gli9fbsrKykxfX59Vf1bMXakd29vbzY9+9CNz8OBB09DQYD788EOzZMkSU1hYSDte5oc\/\/KFxu91m\/\/79pqmpKfy4ePFi+D38Jifmam3J73LiNm7caA4cOGAaGhrMxx9\/bJ555hmTkpJi9uzZY4yJ7W8yaQOQMcb88z\/\/sykuLjYZGRnmG9\/4xoglixjbww8\/bLxer0lPTzcFBQVm1apV5vjx4+HXBwYGzLPPPms8Ho9xOp3m7rvvNvX19RZWHD8+\/PBDI2nUY\/Xq1caYibVdV1eXWbdunZk5c6bJysoy999\/vzl16pQFf411rtSOFy9eNOXl5Wb27NkmPT3dzJkzx6xevXpUG9GOZsw2lGReeeWV8Hv4TU7M1dqS3+XE\/c3f\/E343+XZs2ebb33rW+HwY0xsf5MOY4y5tj4jAACAxJaUc4AAAACuhAAEAABshwAEAABshwAEAABshwAEAABshwAEAABshwAEAABshwAEAABshwAEAABshwAEAABshwAEIKF8+eWX8ng82rx5c\/ja73\/\/e2VkZGjPnj0WVgYgkXAWGICE8+677+rBBx\/UwYMHddNNN+m2227Tt7\/9bW3dutXq0gAkCAIQgIS0du1affDBB7r99tt17Ngx1dbWKjMz0+qyACQIAhCAhNTV1aXS0lI1Njbq8OHDWrBggdUlAUggzAECkJA+++wznT17VgMDA\/riiy+sLgdAgqEHCEDC6enp0Te\/+U3deuutuummm7RlyxbV19crPz\/f6tIAJAgCEICE83d\/93f6j\/\/4Dx07dkzZ2dm699575XK59F\/\/9V9WlwYgQTAEBiCh7N+\/X1u3btVrr72mnJwcpaSk6LXXXtNHH32k7du3W10egARBDxAAALAdeoAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDt\/H+Rca6BQhfqwwAAAABJRU5ErkJggg==", "text\/plain": "<Figure size 640x480 with 1 Axes>"}, "metadata": {}, "output_type": "display_data"}]}}, "afd4d4ef3418418c84e31eca235aa44d": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": {"_dom_classes": ["widget-interact"], "children": ["IPY_MODEL_a1cb4b44b1f54cde815f8e713ca3e68d", "IPY_MODEL_3500924f544141ef8070a2456337d727"], "layout": "IPY_MODEL_146343a7a95746e6bd0c8bac2c97a33d"}}, "b08f9008f0f040808e2c22dbf9b7d636": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": {"description_width": ""}}, "b0c6e5b072744bb8aad4aa1c343ebe1e": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "IntSliderModel", "state": {"behavior": "drag-tap", "layout": "IPY_MODEL_6f20477e70534303aec0ee8da489b89f", "max": 599, "style": "IPY_MODEL_e46635f4f9934df89aca0c64f1f991c0"}}, "b2d5441b46204c32aa0b7776daef31c7": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"children": ["IPY_MODEL_86d909bc42c141caa23af6d60020a0db"], "layout": "IPY_MODEL_e092e093af954b0485ddd6ac2a722e83"}}, "b361054bfbfd4aa193975eb438f70d68": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "PlayModel", "state": {"description": "step", "layout": "IPY_MODEL_a8120820b9c8411dba949b22cd333241", "max": 149, "style": "IPY_MODEL_4252ab6bb32e4e3aadefa67e72c98374", "value": 94}}, "b4929e71adfe4fd7a3084599938b8a62": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "b49c03f7736a47e5987fbc229507c0fe": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "b6777499fb2c4600a2f7e42865bb8a24": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": {"description_width": ""}}, "b7b5d8c7976e490db14a6f301a8d5fca": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "IntSliderModel", "state": {"behavior": "drag-tap", "layout": "IPY_MODEL_6353f692403c49e1ac433f1fbcbf728e", "max": 149, "style": "IPY_MODEL_f7f5ff74aa334e5d93bf738f8697b5b5"}}, "b8830934433247b6b9746042c69a6d37": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": {"source": ["IPY_MODEL_8330e0092c10467f85f9264bfaf88a6f", "value"], "target": ["IPY_MODEL_4dcc29bcdeb94273acb042225680f938", "value"]}}, "b9abd987449641d5aaa3a6363b08ec5c": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": {"source": ["IPY_MODEL_ffd206a2fd774da69a72e07e90044435", "value"], "target": ["IPY_MODEL_86d909bc42c141caa23af6d60020a0db", "value"]}}, "b9b135e17db64c5c95f90edcb6aeed01": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": {"description_width": ""}}, "bb659ed2914a4508a2242c7023f25aac": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": {"source": ["IPY_MODEL_51e8446de9bf4b1492c6377090f082a9", "value"], "target": ["IPY_MODEL_1cb2605db91a4ce1bac51f5960e5afc9", "value"]}}, "bc360c0bab0f4addb40d8aecfb729f92": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": {"description_width": ""}}, "be405b01c12847da8c4d79ceb2eaed2f": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": {"source": ["IPY_MODEL_57644913df96434395a7d95953ca96ed", "value"], "target": ["IPY_MODEL_88035a6b469f4a4891e35659867ff0c6", "value"]}}, "c1912c587d5a48f6a85f569f08c3365e": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "c249b3bb2eff444bbbec6fd556309218": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "ca88519f972d46d6b6be2b7c6c2fa0d4": {"model_module": "@jupyter-widgets\/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": {"layout": "IPY_MODEL_5a437050674241259e1208543a3a72f0", "outputs": [{"data": {"image\/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG2CAYAAACXuTmvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy\/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAiRklEQVR4nO3dfWyV9f3\/8dfhpocCbSNCe05HaTptdVhgG0Voo1JQGjplQF2CYkzJNiJykzXVEQvZOJrZEhL44tLZTWcYOFhJpjh\/47b+oEXW1W9BkA4Nq6NAda2djN5Q8FTg8\/tj4fw4tMXK2l7n9PN8JFfidXNO3\/14JT5znYO4jDFGAAAAFhnk9AAAAAD9jQACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1gmZACoqKpLL5VJeXl7gmDFGPp9P8fHxioyMVGZmpk6cOOHckAAAYEAIiQCqrq7WK6+8ookTJwYdX7dunTZs2KDi4mJVV1fL4\/Fo1qxZamtrc2hSAAAwEDgeQBcuXNATTzyhV199VbfddlvguDFGGzdu1OrVq5WTk6PU1FRt3rxZFy9e1LZt2xycGAAAhLshTg+wbNkyPfzww3rooYf0i1\/8InC8rq5OjY2NysrKChxzu92aPn26Kisr9dRTT3X5fn6\/X36\/P7B\/9epV\/fvf\/9btt98ul8vVd78IAADoNcYYtbW1KT4+XoMG9f7zGkcDqLS0VO+\/\/76qq6s7nWtsbJQkxcXFBR2Pi4vTmTNnun3PoqIiPf\/88707KAAAcER9fb3Gjh3b6+\/rWADV19frJz\/5ifbt26dhw4Z1e92NT22MMTd9klNQUKD8\/PzAfktLi8aNG6e\/n6pT3O2j\/vvB+8nFjsu698X\/K0n639UPaniE4w\/rJIXmXKE2E\/MwD\/PYM48UmjNJoTtXT1zsuKy0n\/8ffVqySFFRUX3yMxxbjSNHjqipqUmTJ08OHLty5YoOHjyo4uJinTx5UtJ\/ngR5vd7ANU1NTZ2eCl3P7XbL7XZ3Oh4VFa3o6Ohe\/A361pCOyxrkHi5Jio6ODpkbNxTnCrWZmId5mMeeeaTQnEkK3bl64vrZ++rrK459CfrBBx9UTU2Njh07FtjS0tL0xBNP6NixY\/rmN78pj8ejsrKywGs6OjpUUVGhjIwMp8YGAAADgGM5GBUVpdTU1KBjI0aM0O233x44npeXp8LCQiUnJys5OVmFhYUaPny4Fi5c6MTIAABggAjp52ErV67UpUuXtHTpUp0\/f15Tp07Vvn37+uzzQAAAYIeQCqDy8vKgfZfLJZ\/PJ5\/P58g8AABgYHL8f4QIAADQ3wggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdawJoMihg50eAQAAhAhrAsjlcjk9AgAACBHWBBAAAMA1BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6zgaQCUlJZo4caKio6MVHR2t9PR07d69O3B+0aJFcrlcQdu0adMcnBgAAAwEQ5z84WPHjtXatWt15513SpI2b96suXPn6ujRo7rnnnskSbNnz9amTZsCr4mIiHBkVgAAMHA4GkBz5swJ2n\/xxRdVUlKiqqqqQAC53W55PB4nxgMAAANUyHwH6MqVKyotLVV7e7vS09MDx8vLyxUbG6uUlBQtXrxYTU1NN30fv9+v1tbWoA0AAOB6jgdQTU2NRo4cKbfbrSVLlmjHjh0aP368JCk7O1tbt27V\/v37tX79elVXV2vmzJny+\/3dvl9RUZFiYmICW0JCQn\/9KgAAIEw4+hGYJN111106duyYmpub9cYbbyg3N1cVFRUaP368FixYELguNTVVaWlpSkxM1M6dO5WTk9Pl+xUUFCg\/Pz+w39raSgQBAIAgjgdQRERE4EvQaWlpqq6u1ksvvaTf\/OY3na71er1KTExUbW1tt+\/ndrvldrv7bF4AABD+HP8I7EbGmG4\/4jp37pzq6+vl9Xr7eSoAADCQOPoEaNWqVcrOzlZCQoLa2tpUWlqq8vJy7dmzRxcuXJDP59Ojjz4qr9er06dPa9WqVRo9erTmz5\/v5NgAACDMORpAn332mZ588kk1NDQoJiZGEydO1J49ezRr1ixdunRJNTU12rJli5qbm+X1ejVjxgxt375dUVFRTo4NAADCnKMB9Nprr3V7LjIyUnv37u3HaQAAgC1C7jtAAAAAfY0AAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUcDaCSkhJNnDhR0dHRio6OVnp6unbv3h04b4yRz+dTfHy8IiMjlZmZqRMnTjg4MQAAGAgcDaCxY8dq7dq1Onz4sA4fPqyZM2dq7ty5gchZt26dNmzYoOLiYlVXV8vj8WjWrFlqa2tzcmwAABDmHA2gOXPm6Hvf+55SUlKUkpKiF198USNHjlRVVZWMMdq4caNWr16tnJwcpaamavPmzbp48aK2bdvm5NgAACDMhcx3gK5cuaLS0lK1t7crPT1ddXV1amxsVFZWVuAat9ut6dOnq7Ky0sFJAQBAuBvi9AA1NTVKT0\/XF198oZEjR2rHjh0aP358IHLi4uKCro+Li9OZM2e6fT+\/3y+\/3x\/Yb21t7ZvBAQBA2HL8CdBdd92lY8eOqaqqSk8\/\/bRyc3P14YcfBs67XK6g640xnY5dr6ioSDExMYEtISGhz2YHAADhyfEAioiI0J133qm0tDQVFRVp0qRJeumll+TxeCRJjY2NQdc3NTV1eip0vYKCArW0tAS2+vr6Pp0fAACEH8cD6EbGGPn9fiUlJcnj8aisrCxwrqOjQxUVFcrIyOj29W63O\/DH6q9tAAAA13P0O0CrVq1Sdna2EhIS1NbWptLSUpWXl2vPnj1yuVzKy8tTYWGhkpOTlZycrMLCQg0fPlwLFy50cmwAABDmHA2gzz77TE8++aQaGhoUExOjiRMnas+ePZo1a5YkaeXKlbp06ZKWLl2q8+fPa+rUqdq3b5+ioqKcHBsAAIQ5RwPotddeu+l5l8sln88nn8\/XPwMBAAArhNx3gAAAAPoaAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6jgZQUVGRpkyZoqioKMXGxmrevHk6efJk0DWLFi2Sy+UK2qZNm+bQxAAAYCBwNIAqKiq0bNkyVVVVqaysTJcvX1ZWVpba29uDrps9e7YaGhoC265duxyaGAAADARDnPzhe\/bsCdrftGmTYmNjdeTIET3wwAOB4263Wx6Pp7\/HAwAAA1RIfQeopaVFkjRq1Kig4+Xl5YqNjVVKSooWL16spqambt\/D7\/ertbU1aAMAALheyASQMUb5+fm67777lJqaGjienZ2trVu3av\/+\/Vq\/fr2qq6s1c+ZM+f3+Lt+nqKhIMTExgS0hIaG\/fgUAABAmQiaAli9fruPHj+sPf\/hD0PEFCxbo4YcfVmpqqubMmaPdu3fr73\/\/u3bu3Nnl+xQUFKilpSWw1dfX98f4AACgl0QOHaz\/Xf1gn\/4MR78DdM2KFSv09ttv6+DBgxo7duxNr\/V6vUpMTFRtbW2X591ut9xud1+MCQAA+oHL5dLwiL5NFEcDyBijFStWaMeOHSovL1dSUtJXvubcuXOqr6+X1+vthwkBAMBA5OhHYMuWLdPvf\/97bdu2TVFRUWpsbFRjY6MuXbokSbpw4YKeffZZ\/fWvf9Xp06dVXl6uOXPmaPTo0Zo\/f76TowMAgDDm6BOgkpISSVJmZmbQ8U2bNmnRokUaPHiwampqtGXLFjU3N8vr9WrGjBnavn27oqKiHJgYAAAMBI5\/BHYzkZGR2rt3bz9NAwAAbBEyfwoMAACgvxBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsI6jAVRUVKQpU6YoKipKsbGxmjdvnk6ePBl0jTFGPp9P8fHxioyMVGZmpk6cOOHQxAAAYCBwNIAqKiq0bNkyVVVVqaysTJcvX1ZWVpba29sD16xbt04bNmxQcXGxqqur5fF4NGvWLLW1tTk4OQAACGdDnPzhe\/bsCdrftGmTYmNjdeTIET3wwAMyxmjjxo1avXq1cnJyJEmbN29WXFyctm3bpqeeesqJsQEAQJi7pQB64YUXbnr+5z\/\/+S0N09LSIkkaNWqUJKmurk6NjY3KysoKXON2uzV9+nRVVlZ2GUB+v19+vz+w39raekuzAACAgeuWAmjHjh1B+19++aXq6uo0ZMgQ3XHHHbcUQMYY5efn67777lNqaqokqbGxUZIUFxcXdG1cXJzOnDnT5fsUFRXp+eef\/9o\/HwAA2OOWAujo0aOdjrW2tmrRokWaP3\/+LQ2yfPlyHT9+XIcOHep0zuVyBe0bYzodu6agoED5+flBcyUkJNzSTAAAYGDqtS9BR0dH64UXXtDPfvazr\/3aFStW6O2339aBAwc0duzYwHGPxyPp\/z8JuqapqanTU6Fr3G63oqOjgzYAAIDr9eqfAmtubg58j6cnjDFavny53nzzTe3fv19JSUlB55OSkuTxeFRWVhY41tHRoYqKCmVkZPTa3AAAwC639BHYL3\/5y6B9Y4waGhr0+uuva\/bs2T1+n2XLlmnbtm3605\/+pKioqMCTnpiYGEVGRsrlcikvL0+FhYVKTk5WcnKyCgsLNXz4cC1cuPBWRgcAALi1APqf\/\/mfoP1BgwZpzJgxys3NVUFBQY\/fp6SkRJKUmZkZdHzTpk1atGiRJGnlypW6dOmSli5dqvPnz2vq1Knat2+foqKibmV0AACAWwugurq6XvnhxpivvMblcsnn88nn8\/XKzwQAAODvAgMAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdRwPo4MGDmjNnjuLj4+VyufTWW28FnV+0aJFcLlfQNm3aNGeGBQAAA4ajAdTe3q5JkyapuLi422tmz56thoaGwLZr165+nBAAAAxEQ5z84dnZ2crOzr7pNW63Wx6Pp58mAgAANgj57wCVl5crNjZWKSkpWrx4sZqamm56vd\/vV2tra9AGAABwvZAOoOzsbG3dulX79+\/X+vXrVV1drZkzZ8rv93f7mqKiIsXExAS2hISEfpwYAACEA0c\/AvsqCxYsCPxzamqq0tLSlJiYqJ07dyonJ6fL1xQUFCg\/Pz+w39raSgQBAIAgIR1AN\/J6vUpMTFRtbW2317jdbrnd7n6cCgAAhJuQ\/gjsRufOnVN9fb28Xq\/TowAAgDDm6BOgCxcu6OOPPw7s19XV6dixYxo1apRGjRoln8+nRx99VF6vV6dPn9aqVas0evRozZ8\/38GpAQBAuHM0gA4fPqwZM2YE9q99dyc3N1clJSWqqanRli1b1NzcLK\/XqxkzZmj79u2KiopyamQAADAAOBpAmZmZMsZ0e37v3r39OA0AALBFWH0HCAAAoDcQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALCOowF08OBBzZkzR\/Hx8XK5XHrrrbeCzhtj5PP5FB8fr8jISGVmZurEiRPODAsAAAYMRwOovb1dkyZNUnFxcZfn161bpw0bNqi4uFjV1dXyeDyaNWuW2tra+nlSAAAwkAxx8odnZ2crOzu7y3PGGG3cuFGrV69WTk6OJGnz5s2Ki4vTtm3b9NRTT\/XnqAAAYAAJ2e8A1dXVqbGxUVlZWYFjbrdb06dPV2VlZbev8\/v9am1tDdoAAACuF7IB1NjYKEmKi4sLOh4XFxc415WioiLFxMQEtoSEhD6dEwAAhJ+QDaBrXC5X0L4xptOx6xUUFKilpSWw1dfX9\/WIAAAgzDj6HaCb8Xg8kv7zJMjr9QaONzU1dXoqdD232y23293n8wEAgPAVsk+AkpKS5PF4VFZWFjjW0dGhiooKZWRkODgZAAAId44+Abpw4YI+\/vjjwH5dXZ2OHTumUaNGady4ccrLy1NhYaGSk5OVnJyswsJCDR8+XAsXLnRwagAAEO4cDaDDhw9rxowZgf38\/HxJUm5urn73u99p5cqVunTpkpYuXarz589r6tSp2rdvn6KiopwaGQAADACOBlBmZqaMMd2ed7lc8vl88vl8\/TcUAAAY8EL2O0AAAAB9hQACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdUI6gHw+n1wuV9Dm8XicHgsAAIS5IU4P8FXuuecevfPOO4H9wYMHOzgNAAAYCEI+gIYMGcJTHwAA0KtC+iMwSaqtrVV8fLySkpL02GOP6dSpU06PBAAAwlxIPwGaOnWqtmzZopSUFH322Wf6xS9+oYyMDJ04cUK33357l6\/x+\/3y+\/2B\/dbW1v4aFwAAhImQfgKUnZ2tRx99VBMmTNBDDz2knTt3SpI2b97c7WuKiooUExMT2BISEvprXAAAECZCOoBuNGLECE2YMEG1tbXdXlNQUKCWlpbAVl9f348TAgCAcBDSH4HdyO\/366OPPtL999\/f7TVut1tut7sfpwIAAOEmpJ8APfvss6qoqFBdXZ3ee+89\/eAHP1Bra6tyc3OdHg0AAISxkH4C9Mknn+jxxx\/X559\/rjFjxmjatGmqqqpSYmKi06MBAIAwFtIBVFpa6vQIAABgAArpj8AAAAD6AgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOmERQC+\/\/LKSkpI0bNgwTZ48We+++67TIwEAgDAW8gG0fft25eXlafXq1Tp69Kjuv\/9+ZWdn6+zZs06PBgAAwlTIB9CGDRv0ox\/9SD\/+8Y\/1rW99Sxs3blRCQoJKSkqcHg0AAISpIU4PcDMdHR06cuSInnvuuaDjWVlZqqys7PI1fr9ffr8\/sN\/S0iJJam1t7btB+8DFjsu66r8o6T+zX44IjX9VoThXqM3EPMzDPPbMI4XmTFLoztVT1\/67bYzpmx9gQtinn35qJJm\/\/OUvQcdffPFFk5KS0uVr1qxZYySxsbGxsbGxDYDtH\/\/4R580RljkoMvlCto3xnQ6dk1BQYHy8\/MD+83NzUpMTNTZs2cVExPTp3MOdK2trUpISFB9fb2io6OdHidssY69h7XsPaxl72Ade09LS4vGjRunUaNG9cn7h3QAjR49WoMHD1ZjY2PQ8aamJsXFxXX5GrfbLbfb3el4TEwMN2MviY6OZi17AevYe1jL3sNa9g7WsfcMGtQ3X1cO6S9BR0REaPLkySorKws6XlZWpoyMDIemAgAA4S6knwBJUn5+vp588kmlpaUpPT1dr7zyis6ePaslS5Y4PRoAAAhTIR9ACxYs0Llz5\/TCCy+ooaFBqamp2rVrlxITE3v0erfbrTVr1nT5sRi+Htayd7COvYe17D2sZe9gHXtPX6+ly5i++vNlAAAAoSmkvwMEAADQFwggAABgHQIIAABYhwACAADWGdAB9PLLLyspKUnDhg3T5MmT9e677zo9Usjz+XxyuVxBm8fjCZw3xsjn8yk+Pl6RkZHKzMzUiRMnHJw4dBw8eFBz5sxRfHy8XC6X3nrrraDzPVk7v9+vFStWaPTo0RoxYoS+\/\/3v65NPPunH38J5X7WOixYt6nSPTps2Lega1lEqKirSlClTFBUVpdjYWM2bN08nT54MuoZ7smd6spbclz1TUlKiiRMnBv5Hkenp6dq9e3fgfH\/ekwM2gLZv3668vDytXr1aR48e1f3336\/s7GydPXvW6dFC3j333KOGhobAVlNTEzi3bt06bdiwQcXFxaqurpbH49GsWbPU1tbm4MShob29XZMmTVJxcXGX53uydnl5edqxY4dKS0t16NAhXbhwQY888oiuXLnSX7+G475qHSVp9uzZQfforl27gs6zjlJFRYWWLVumqqoqlZWV6fLly8rKylJ7e3vgGu7JnunJWkrclz0xduxYrV27VocPH9bhw4c1c+ZMzZ07NxA5\/XpP9snfMBYC7r33XrNkyZKgY3fffbd57rnnHJooPKxZs8ZMmjSpy3NXr141Ho\/HrF27NnDsiy++MDExMebXv\/51P00YHiSZHTt2BPZ7snbNzc1m6NChprS0NHDNp59+agYNGmT27NnTb7OHkhvX0RhjcnNzzdy5c7t9DevYtaamJiPJVFRUGGO4J\/8bN66lMdyX\/43bbrvN\/Pa3v+33e3JAPgHq6OjQkSNHlJWVFXQ8KytLlZWVDk0VPmpraxUfH6+kpCQ99thjOnXqlCSprq5OjY2NQevqdrs1ffp01vUr9GTtjhw5oi+\/\/DLomvj4eKWmprK+NygvL1dsbKxSUlK0ePFiNTU1Bc6xjl1raWmRpMBfLMk9eetuXMtruC+\/nitXrqi0tFTt7e1KT0\/v93tyQAbQ559\/ritXrnT6C1Pj4uI6\/cWqCDZ16lRt2bJFe\/fu1auvvqrGxkZlZGTo3LlzgbVjXb++nqxdY2OjIiIidNttt3V7DaTs7Gxt3bpV+\/fv1\/r161VdXa2ZM2fK7\/dLYh27YoxRfn6+7rvvPqWmpkrinrxVXa2lxH35ddTU1GjkyJFyu91asmSJduzYofHjx\/f7PRnyfxXGf8PlcgXtG2M6HUOw7OzswD9PmDBB6enpuuOOO7R58+bAF\/pY11t3K2vH+gZbsGBB4J9TU1OVlpamxMRE7dy5Uzk5Od2+zuZ1XL58uY4fP65Dhw51Osc9+fV0t5bclz1311136dixY2pubtYbb7yh3NxcVVRUBM731z05IJ8AjR49WoMHD+5Ug01NTZ3KEjc3YsQITZgwQbW1tYE\/Dca6fn09WTuPx6OOjg6dP3++22vQmdfrVWJiomprayWxjjdasWKF3n77bR04cEBjx44NHOee\/Pq6W8uucF92LyIiQnfeeafS0tJUVFSkSZMm6aWXXur3e3JABlBERIQmT56ssrKyoONlZWXKyMhwaKrw5Pf79dFHH8nr9SopKUkejydoXTs6OlRRUcG6foWerN3kyZM1dOjQoGsaGhr0t7\/9jfW9iXPnzqm+vl5er1cS63iNMUbLly\/Xm2++qf379yspKSnoPPdkz33VWnaF+7LnjDHy+\/39f0\/e4pe2Q15paakZOnSoee2118yHH35o8vLyzIgRI8zp06edHi2kPfPMM6a8vNycOnXKVFVVmUceecRERUUF1m3t2rUmJibGvPnmm6ampsY8\/vjjxuv1mtbWVocnd15bW5s5evSoOXr0qJFkNmzYYI4ePWrOnDljjOnZ2i1ZssSMHTvWvPPOO+b99983M2fONJMmTTKXL1926tfqdzdbx7a2NvPMM8+YyspKU1dXZw4cOGDS09PNN77xDdbxBk8\/\/bSJiYkx5eXlpqGhIbBdvHgxcA33ZM981VpyX\/ZcQUGBOXjwoKmrqzPHjx83q1atMoMGDTL79u0zxvTvPTlgA8gYY371q1+ZxMREExERYb773e8G\/ZFFdG3BggXG6\/WaoUOHmvj4eJOTk2NOnDgROH\/16lWzZs0a4\/F4jNvtNg888ICpqalxcOLQceDAASOp05abm2uM6dnaXbp0ySxfvtyMGjXKREZGmkceecScPXvWgd\/GOTdbx4sXL5qsrCwzZswYM3ToUDNu3DiTm5vbaY1YR9PlGkoymzZtClzDPdkzX7WW3Jc998Mf\/jDw3+UxY8aYBx98MBA\/xvTvPekyxpiv98wIAAAgvA3I7wABAADcDAEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQgr\/\/rXv+TxeFRYWBg49t577ykiIkL79u1zcDIA4YS\/CwxA2Nm1a5fmzZunyspK3X333frOd76jhx9+WBs3bnR6NABhggACEJaWLVumd955R1OmTNEHH3yg6upqDRs2zOmxAIQJAghAWLp06ZJSU1NVX1+vw4cPa+LEiU6PBCCM8B0gAGHp1KlT+uc\/\/6mrV6\/qzJkzTo8DIMzwBAhA2Ono6NC9996rb3\/727r77ru1YcMG1dTUKC4uzunRAIQJAghA2PnpT3+qP\/7xj\/rggw80cuRIzZgxQ1FRUfrzn\/\/s9GgAwgQfgQEIK+Xl5dq4caNef\/11RUdHa9CgQXr99dd16NAhlZSUOD0egDDBEyAAAGAdngABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACs8\/8AtbWCzAbd7joAAAAASUVORK5CYII=", "text\/plain": "<Figure size 640x480 with 1 Axes>"}, "metadata": {}, "output_type": "display_data"}]}}, "cd847b071b4e47ea8ae6cd18c02e2b45": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "cd9c5d4ded2646918e55e9f584926817": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": {"_dom_classes": ["widget-interact"], "children": ["IPY_MODEL_8330e0092c10467f85f9264bfaf88a6f", "IPY_MODEL_84db1e5aacf844f2b99f65c3e1097e2a"], "layout": "IPY_MODEL_3dfd829e56824d288459d82647e0ac61"}}, "cfe6894555d9429bafafa321a999ad79": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": {"description_width": ""}}, "d095a4e7d8d4445e86d3db1fdff6244f": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "PlayModel", "state": {"description": "step", "layout": "IPY_MODEL_9c44cf9efe144da9b5dfcbe527ac3102", "max": 199, "style": "IPY_MODEL_0962612e4e404b54ac1fac8d640cd6c0", "value": 75}}, "d1b23fb8d92a428ebfbc64e7b3117db4": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "d405cdb662334ea1920afee0c3ff1475": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "d46db30322c046b3a3b40e07893e8e0f": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "d6771ef21c534c6eb6d533999eb19a55": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": {"_dom_classes": ["widget-interact"], "children": ["IPY_MODEL_ebe4490fa75a4192ba04152508adf1b4", "IPY_MODEL_1af575622d2045659ef592a3a3d82a91"], "layout": "IPY_MODEL_40b159f172e843e0be00be922ba726d0"}}, "d6f350aa761a4296923db4d01c4bd139": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": {"source": ["IPY_MODEL_99f37541ac7b4dbfac2f489c1a5b0353", "value"], "target": ["IPY_MODEL_93f14a52f3064949b531de7e08a42ee6", "value"]}}, "daa0b5546c1d408a865e572be327f49c": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": {"source": ["IPY_MODEL_1691534cae544c41ac19238706d81934", "value"], "target": ["IPY_MODEL_e1d833787d964958adf9bf27c7c8465d", "value"]}}, "db46a3c449cf4e6d85de539fd7e30166": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": {"description_width": ""}}, "db9041c22a5d4c00b62ba6ef68b628f2": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "de278670da40468392c76821e50a39de": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": {"_dom_classes": ["widget-interact"], "children": ["IPY_MODEL_51e8446de9bf4b1492c6377090f082a9", "IPY_MODEL_ca88519f972d46d6b6be2b7c6c2fa0d4"], "layout": "IPY_MODEL_5d52cc6b2314438da6e9896470a62a61"}}, "e043ddd08fa044f0805e72d08d64fb52": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "e092e093af954b0485ddd6ac2a722e83": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "e0a901d1b6bf4aaf9d6a7959832d535a": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "e0fa11145e0d4e40ad744eba44c54f34": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "IntSliderModel", "state": {"behavior": "drag-tap", "layout": "IPY_MODEL_fb1d23bcc05342c0b382ab4170ce6aaa", "max": 199, "style": "IPY_MODEL_95d2ea1d34c947c9a61397dc75af7d2d", "value": 75}}, "e149cc3bb9774b248e8b07cdf7ae6dfa": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"children": ["IPY_MODEL_abc536027e9f46dca983b3512682b4b6"], "layout": "IPY_MODEL_40ddbc947f924670b1c89507cec96d03"}}, "e17d149775dd4f96bcd56c6c7455e2b0": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "e1d833787d964958adf9bf27c7c8465d": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "IntSliderModel", "state": {"behavior": "drag-tap", "layout": "IPY_MODEL_db9041c22a5d4c00b62ba6ef68b628f2", "max": 149, "style": "IPY_MODEL_72d3e88fdf024cba8257fa4e8a109544"}}, "e201f43e69ea4c10af62d9a3b611e43b": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"children": ["IPY_MODEL_7a2ac2d705c34d2599661107d0b6a5a5"], "layout": "IPY_MODEL_e0a901d1b6bf4aaf9d6a7959832d535a"}}, "e2037de5a9b542a394546c32006e26cf": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": {"_dom_classes": ["widget-interact"], "children": ["IPY_MODEL_754124660050415e84f351699e0454bd", "IPY_MODEL_75be4fb6e3894ef2ac842e505a05bca9"], "layout": "IPY_MODEL_29a880f5e6de435795b50f46a66a942e"}}, "e2a00839a46e4bb39cd41f9aa4edaaea": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": {"description_width": ""}}, "e4081c6091bb48838c726ff8e86ca60b": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "e46635f4f9934df89aca0c64f1f991c0": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": {"description_width": ""}}, "e84b526ca1ae4e019432105a43b87ec1": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": {"description_width": ""}}, "e9f56784337d42cbbf92f7219b1e0c47": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "ea5d62a115f443e4bf326bbe2a8d0260": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "ebba55e865d6472fad5ee32c335e445b": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"children": ["IPY_MODEL_0fcdff9aa34e4e13927e34ae27360da7"], "layout": "IPY_MODEL_12a14e08898b4abf991365cd41d07a93"}}, "ebe4490fa75a4192ba04152508adf1b4": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "PlayModel", "state": {"description": "step", "layout": "IPY_MODEL_372d2a496a5f46259db10a571b9ffb16", "max": 149, "style": "IPY_MODEL_106c527c21f1485f80938702414243e8"}}, "efb79abbdfb2428e84cb236aa84bc460": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "f2f9b1c03492463397087bed2642a8b2": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": {"source": ["IPY_MODEL_a1cb4b44b1f54cde815f8e713ca3e68d", "value"], "target": ["IPY_MODEL_9ab997a6587c4746904cd3476fe428de", "value"]}}, "f32037d5c9d24da1a34f099ded323912": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"children": ["IPY_MODEL_a0998547957e4b50bb0570d6e89b4c2e"], "layout": "IPY_MODEL_148898f7302f4f45809429230ac34e24"}}, "f7f5ff74aa334e5d93bf738f8697b5b5": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": {"description_width": ""}}, "fb1d23bcc05342c0b382ab4170ce6aaa": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "fb3e5d085e2d43b7a3490b9ff0cd3738": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": {"description_width": ""}}, "fc190c980cf64f58821e1fed76b8dc9b": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "fe5db7fffd844d8983fe53f0eaa44849": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "ffbdb787fdf940fab9e0d3b457888162": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "ffd206a2fd774da69a72e07e90044435": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "PlayModel", "state": {"description": "step", "layout": "IPY_MODEL_9e913bb98541408496f49af403c639af", "max": 199, "style": "IPY_MODEL_b6777499fb2c4600a2f7e42865bb8a24"}}}, "version_major": 2, "version_minor": 0} +</script> +</html> diff --git a/src/teachers/GA_1_6/GA_1_6_files_for_review.zip b/src/teachers/GA_1_6/GA_1_6_files_for_review.zip new file mode 100644 index 0000000000000000000000000000000000000000..1a162892156996a09c68380837721ed42eaf6466 Binary files /dev/null and b/src/teachers/GA_1_6/GA_1_6_files_for_review.zip differ diff --git a/src/teachers/GA_1_6/GA_1_6_solution.html b/src/teachers/GA_1_6/GA_1_6_solution.html index f4be710d4d4d8e00317e9da8a76aa6f4554efdfa..5f1f698c6f9451562b8c85d6d10e8446b0c907bf 100644 --- a/src/teachers/GA_1_6/GA_1_6_solution.html +++ b/src/teachers/GA_1_6/GA_1_6_solution.html @@ -7509,7 +7509,7 @@ a.anchor-link { </div> <div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> </div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> -<h1 id="Workshop-6:-An-ODE-to-Probably-Doing-Enough-(PDE)">Workshop 6: An ODE to Probably Doing Enough (PDE)<a class="anchor-link" href="#Workshop-6:-An-ODE-to-Probably-Doing-Enough-(PDE)">¶</a></h1><h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> +<h1 id="GA-1.6:-An-ODE-to-Probably-Doing-Enough-(PDE)">GA 1.6: An ODE to Probably Doing Enough (PDE)<a class="anchor-link" href="#GA-1.6:-An-ODE-to-Probably-Doing-Enough-(PDE)">¶</a></h1><h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> <style> .markdown {width:100%; position: relative} article { position: relative } @@ -7531,7 +7531,32 @@ a.anchor-link { <div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> </div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> <h1 id="Overview">Overview<a class="anchor-link" href="#Overview">¶</a></h1><p>This assignment contains two parts: treating non-linear ODEs and treating the diffusion equation (PDE).</p> -<h2 id="Section-1:-Solving-Non-linear-ODEs">Section 1: Solving Non-linear ODEs<a class="anchor-link" href="#Section-1:-Solving-Non-linear-ODEs">¶</a></h2><p>In task 1 you will solve first a very simple equation unp.np.np.np.sing Newton-Rhapson to understand exactly how to implement it. Task 2 treats the solution of a non-linear ODE in time, first with Explicit Euler and then with Implicit Euler. The latter will require again Newton-Rhapson to find the solution.</p> +</div> +</div> +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=453992c1"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [1]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> +<div class="cm-editor cm-s-jupyter"> +<div class="highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> +<span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span> +</pre></div> +</div> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=0933143e"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<h2 id="Part-1:-Solving-Non-linear-ODEs">Part 1: Solving Non-linear ODEs<a class="anchor-link" href="#Part-1:-Solving-Non-linear-ODEs">¶</a></h2><p>In task 1 you will solve first a very simple equation unp.np.np.np.sing Newton-Rhapson to understand exactly how to implement it. Task 2 treats the solution of a non-linear ODE in time, first with Explicit Euler and then with Implicit Euler. The latter will require again Newton-Rhapson to find the solution.</p> </div> </div> </div> @@ -7542,7 +7567,7 @@ a.anchor-link { </div> <div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> </div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> -<div style="background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 1</b> <p>The equation to solve using Newton-Rhapson is</p> @@ -7560,7 +7585,7 @@ $$</p> </div> <div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> </div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> -<div style="background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 1.1</b> <p>Formally Newton-Rhapson is implemented iterating the solution as follows: @@ -7578,13 +7603,24 @@ $$<p><strong>Transform the equation $x^2=9$ to g(x) and write it below, together </div> </div> </div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=4d30d3b8"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<p>Write your answer here.</p> +</div> +</div> +</div> +</div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=c221dccd"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> </div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> -<div style="background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<div style="background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Solution</b> $$ @@ -7605,7 +7641,7 @@ $$</p> </div> <div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> </div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> -<div style="background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 1.2</b> <p>Implement your equations $g(x)$ and $g'(x)$ in the code below, as well as the Newton-Rhapson expression inside the loop. Test the code with the initial guess of $x=10$.</p> @@ -7619,10 +7655,24 @@ $$</p> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [14]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [2]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> +<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># import numpy as np</span> + +<span class="c1"># def g(x):</span> +<span class="c1"># return YOUR_CODE_HERE</span> + +<span class="c1"># def g_der(x):</span> +<span class="c1"># return YOUR_CODE_HERE</span> + +<span class="c1"># x = .01</span> +<span class="c1"># for j in range(100):</span> +<span class="c1"># x = YOUR_CODE_HERE</span> +<span class="c1"># # Next task will go here</span> + +<span class="c1"># SOLUTION</span> +<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> <span class="k">def</span> <span class="nf">g</span><span class="p">(</span><span class="n">x</span><span class="p">):</span> <span class="k">return</span> <span class="n">x</span><span class="o">**</span><span class="mi">2</span> <span class="o">-</span> <span class="mi">9</span> @@ -7635,7 +7685,6 @@ $$</p> <span class="n">x</span> <span class="o">=</span> <span class="n">x</span> <span class="o">-</span> <span class="n">g</span><span class="p">(</span><span class="n">x</span><span class="p">)</span><span class="o">/</span><span class="n">g_der</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> <span class="k">if</span> <span class="n">np</span><span class="o">.</span><span class="n">abs</span><span class="p">(</span><span class="n">g</span><span class="p">(</span><span class="n">x</span><span class="p">))</span> <span class="o"><</span> <span class="mf">1e-6</span><span class="p">:</span> <span class="k">break</span> - <span class="nb">print</span><span class="p">(</span><span class="s2">"The solution found is "</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="s2">" it took "</span> <span class="p">,</span><span class="n">j</span> <span class="p">,</span> <span class="s2">" iterations to converge."</span><span class="p">)</span> </pre></div> @@ -7663,7 +7712,7 @@ $$</p> </div> <div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> </div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> -<div style="background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 1.3</b> <p>The code is taking 100 iterations without stopping. <strong>Add a condition to the code above to stop the loop once the solution is good enough</strong>, i.e., when the solution is closer than $\epsilon = 1e-6$ to the exact solution. How many iterations does it take now to converge?</p> @@ -7679,7 +7728,7 @@ $$</p> </div> <div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> </div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> -<div style="background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<div style="background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Solution</b> <p>4 iterations</p> @@ -7706,7 +7755,7 @@ $$</p> </div> <div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> </div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> -<div style="background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 1.4</b> <p>Change the intial guess to $x=0.01$, which is closer to the exact solution than the initial guess in the previous task. How many iterations does it take to converge? Explain the difference.</p> @@ -7722,10 +7771,10 @@ $$</p> </div> <div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> </div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> -<div style="background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<div style="background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Solution</b> -<p>It takes 11 iterations, 7 more than in the previous case despite the guess being closer to the solution. This is because at that location the derivative is close to 0 and if first goes far away from the solution.</p> +<p>It takes 11 iterations, 7 more than in the previous case despite the guess being closer to the solution. This is becaTe at that location the derivative is close to 0 and if first goes far away from the solution.</p> </p> </div> </div> @@ -7749,7 +7798,7 @@ $$</p> </div> <div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> </div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> -<div style="background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 2</b> <p>Solve the following ODE using Explicit and Implicit Euler.</p> @@ -7762,13 +7811,24 @@ $$<p>with initial value $y(t=0) = 1$</p> </div> </div> </div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=6ef1b02a"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<p>Write your answer here.</p> +</div> +</div> +</div> +</div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=8b10ee75"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> </div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> -<div style="background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 2.1</b> <p>Write in paper the Explicit and Implicit Euler schemes of the equation above.</p> @@ -7784,7 +7844,7 @@ $$<p>with initial value $y(t=0) = 1$</p> </div> <div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> </div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> -<div style="background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<div style="background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Solution</b> <p>The Explicit Euler Scheme: @@ -7818,7 +7878,7 @@ $$</p> </div> <div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> </div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> -<div style="background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 2.2</b> <p>Just as before, Newton-Rhapson must be implemented following: @@ -7839,7 +7899,7 @@ where $g(z_j) = 0$ and $z_j$ is a guess and $z_{j+1}$ is the improved guess.</p> </div> <div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> </div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> -<div style="background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<div style="background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Solution</b> $$ @@ -7870,7 +7930,7 @@ $$</p> </div> <div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> </div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> -<div style="background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 2.3</b> <p>Implement the Explicit Euler and Implicit Euler schemes by filling the lines of code below:</p> @@ -7890,17 +7950,66 @@ $$</p> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [2]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [3]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span> +<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># def g(y_iplus1,y_i, t_iplus1):</span> +<span class="c1"># return YOUR_CODE_HERE</span> + +<span class="c1"># def g_der(y_iplus1):</span> +<span class="c1"># return YOUR_CODE_HERE</span> + + +<span class="c1"># # Define parameters:</span> +<span class="c1"># dt = .3</span> +<span class="c1"># t_end = 10</span> +<span class="c1"># t = np.arange(0,t_end+dt,dt)</span> + +<span class="c1"># y_EE = np.zeros(t.shape)</span> +<span class="c1"># y_IE = np.zeros(t.shape)</span> + +<span class="c1"># # Define Initial Conditions</span> +<span class="c1"># y_EE[0] = YOUR_CODE_HERE</span> +<span class="c1"># y_IE[0] = YOUR_CODE_HERE</span> + +<span class="c1"># # Perform time-integration</span> +<span class="c1"># newtonFailed = 0</span> +<span class="c1"># for i in range(0, len(t)-1): </span> + +<span class="c1"># # Forward Euler:</span> +<span class="c1"># y_EE[i+1] = YOUR_CODE_HERE</span> + +<span class="c1"># # Backward Euler:</span> +<span class="c1"># y_IE[i+1] = YOUR_CODE_HERE # Initial guess</span> +<span class="c1"># for j in range(200):</span> +<span class="c1"># y_IE[i+1] = YOUR_CODE_HERE</span> +<span class="c1"># if np.abs(g(y_IE[i+1],y_IE[i],t[i+1])) < 1e-6:</span> +<span class="c1"># break</span> + +<span class="c1"># if j >= 199:</span> +<span class="c1"># newtonFailed = 1</span> + + +<span class="c1"># # Plotting the solution</span> +<span class="c1"># plt.plot(t, y_EE, 'r', t, y_IE, 'g--')</span> +<span class="c1"># if newtonFailed:</span> +<span class="c1"># plt.title('Nonlinear ODE with dt = ' + str(dt) + ' \nImplicit Euler did not converge')</span> +<span class="c1"># else:</span> +<span class="c1"># plt.title('Nonlinear ODE with dt = ' + str(dt))</span> + +<span class="c1"># plt.xlabel('t')</span> +<span class="c1"># plt.ylabel('y')</span> +<span class="c1"># plt.gca().legend(('Explicit','Implicit'))</span> +<span class="c1"># plt.grid()</span> +<span class="c1"># plt.show()</span> +<span class="c1"># SOLUTION</span> <span class="k">def</span> <span class="nf">g</span><span class="p">(</span><span class="n">y_iplus1</span><span class="p">,</span><span class="n">y_i</span><span class="p">,</span> <span class="n">t_iplus1</span><span class="p">):</span> <span class="k">return</span> <span class="n">y_iplus1</span><span class="o">-</span><span class="n">y_i</span><span class="o">-</span><span class="n">dt</span><span class="o">*</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span><span class="n">y_iplus1</span><span class="o">**</span><span class="mi">3</span><span class="p">)</span><span class="o">+</span><span class="n">np</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span><span class="n">t_iplus1</span><span class="p">))</span> <span class="k">def</span> <span class="nf">g_der</span><span class="p">(</span><span class="n">y_iplus1</span><span class="p">):</span> - <span class="k">return</span> <span class="mi">1</span><span class="o">-</span><span class="mi">3</span><span class="o">*</span><span class="n">dt</span><span class="o">*</span><span class="n">y</span><span class="o">**</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">cos</span><span class="p">(</span><span class="n">y_iplus1</span><span class="o">**</span><span class="mi">3</span><span class="p">)</span> + <span class="k">return</span> <span class="mi">1</span><span class="o">-</span><span class="mi">3</span><span class="o">*</span><span class="n">dt</span><span class="o">*</span><span class="n">y_iplus1</span><span class="o">**</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">cos</span><span class="p">(</span><span class="n">y_iplus1</span><span class="o">**</span><span class="mi">3</span><span class="p">)</span> <span class="c1"># Define parameters:</span> @@ -7969,26 +8078,11 @@ $$</p> </div> <div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> </div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> -<h2 id="Section-2:-Diffusion-Equation-in-1D">Section 2: Diffusion Equation in 1D<a class="anchor-link" href="#Section-2:-Diffusion-Equation-in-1D">¶</a></h2><p>The 1-D diffusion equation reads $$\frac{\partial u}{\partial t}=v\frac{\partial^2 u}{\partial x^2}$$</p> +<h2 id="Part-2:-Diffusion-Equation-in-1D">Part 2: Diffusion Equation in 1D<a class="anchor-link" href="#Part-2:-Diffusion-Equation-in-1D">¶</a></h2><p>The 1-D diffusion equation reads $$\frac{\partial u}{\partial t}=v\frac{\partial^2 u}{\partial x^2}$$</p> <p>where $u$ is a continuous function in space and time, $v$ is a constant and often referred to as the <strong>diffusivity coefficient</strong>, giving rise to the name 'diffusion equation'. This is a Partial Differential Equation which independent variable, $u$, varies on space and time. This equation is virtually present across all fields of civil engineering and science. Here, we use it to represent the temperature on a rod (see the sketch below).</p> <p>Unlike the problem of Wednesday, here there is no exchange of heat with the ambient and the temperature evolves in time. The temperature initially is uniform along the rod, equal to $7°C$. Then it is heated at both ends. .</p> -<p><img alt="Thermal Gradient" src="figures/thermal_gradient.png"/></p> -<p>The problem is schematized as a one-dimensional $30cm$ steel rod of with a diffusivity coefficient of $4 mm^2/s$. Run the simulation for $10,000 s$ to see the progression of the temperature through the model. Start with $200$ steps.</p> -</div> -</div> -</div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=ef5ab0dd"> -<div class="jp-Cell-inputWrapper" tabindex="0"> -<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> -</div> -<div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [3]:</div> -<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> -<div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> -<span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span> -</pre></div> -</div> +<p><img alt="Thermal Gradient" src="./figures/thermal_gradient.png"/></p> +<p>The problem is schematized as a one-dimensional $0.3 m$ steel rod of with a diffusivity coefficient of $4e-6 m^2/s$. Run the simulation for $10,000 s$ to see the progression of the temperature through the model. Start with $200$ time steps and use 15 points to represent the rod.</p> </div> </div> </div> @@ -7999,7 +8093,7 @@ $$</p> </div> <div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> </div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> -<div style="background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 3</b> <p>Solve the diffusion equation using Central Differences in space and Forward Differences in time. You will do this step by step (subtasks).</p> @@ -8018,7 +8112,7 @@ $$</p> </div> <div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> </div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> -<div style="background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 3.1:</b> <p>How many constraints are needed in the 1D diffusion equation to have a well-posed problem?</p> @@ -8034,7 +8128,7 @@ $$</p> </div> <div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> </div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> -<div style="background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<div style="background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Solution</b> <p>One initial condition and two boundary conditions are needed.</p> @@ -8061,7 +8155,7 @@ $$</p> </div> <div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> </div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> -<div style="background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 3.2:</b> <p>Draw a grid of 6 points with subindexes. Although your actual grid will be much larger, 6 points are enough to visualize the procedure. The initial condition states that the temperature of the rod is $7^o$ C. Does that mean that one single point of your grid is initialized or all of them?</p> @@ -8077,7 +8171,7 @@ $$</p> </div> <div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> </div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> -<div style="background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<div style="background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Solution</b> <p>Drawing of the grid.</p> @@ -8104,7 +8198,7 @@ $$</p> </div> <div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> </div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> -<div style="background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 3.3:</b> <p>Now, the differential equation needs to be expressed in algebraic form using central differences in space and forward differences in time. <strong>Start by just transforming the PDE into a first-order ODE by ONLY applying Central Differences to the spatial derivative term.</strong></p> @@ -8120,7 +8214,7 @@ $$</p> </div> <div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> </div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> -<div style="background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<div style="background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Solution</b> $$ @@ -8148,7 +8242,7 @@ $$</p> </div> <div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> </div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> -<div style="background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 3.4:</b> <p>Before applying Forward Differences in time to the equation. It is needed to add a superscript to the notation that indicates the time step: $T^j_i$. So, $i$ indicates the spatial location and $j$ the time location. For example, $T^0_2$ indicates the temperature at the node $i=2$ and at the initial moment $j=0 (t=0)$. Furthermore, to express in a general form a node of over the next time step, you can express $T^{j+1}_i$.</p> @@ -8165,7 +8259,7 @@ $$</p> </div> <div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> </div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> -<div style="background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<div style="background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Solution</b> $$ @@ -8193,47 +8287,26 @@ $$</p> </div> <div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> </div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> -<div style="background-color:#facb8e; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<div style="background-color:#facb8E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>NOTE</b> -<p>If you have doubts of your solution, ask a staff member! It is important to be in the right track!!</p> +<p>If you have doubts of your solution, <b>stop</b> and ask a staff member! It is important to be in the right track!!</p> </p> </div> </div> </div> </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=852123ea"> -<div class="jp-Cell-inputWrapper" tabindex="0"> -<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> -</div> -<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> -</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> -<div style="background-color:#ffa6a6; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%"><p><b>NOTE TO TEACHERS</b> -EVERYTHING BELOW THIS POINT IS VERY MUCH IN DRAFT. THE GENERAL SCOPE WILL BE AS FOLLOWS: -<ul> -<li>implement the solution using forward difference in time and central in space</li> -<li>this is an implicit scheme</li> -<li>first with constand dirichlet, then with varying (in time) dirichlet condition on one end of the bar</li> -<li>implement the solution using backward in time and central in space</li> -<li>in both cases we will try to have the students formulate the matrix analytically before implementing it in code so that it is very similar to what we did on wednesday</li> -<li>note that the time dependency of the boundary requires that there be a loop in the solution</li> -</ul> -</p></div> -</div> -</div> -</div> -</div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=2ad1f7c0-14d4-4363-8ed9-681e1e271741"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> </div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> -<div style="background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 3.5:</b> -<p>Finally, the coding part! Let's start with defining the parameters and creating the grid. <strong>Fill in the missing parts of the code.</strong></p> +<p>Finally, some coding! Let's start with defining the parameters and creating the grid. <strong>Fill in the missing parts of the code.</strong></p> </p> </div> </div> @@ -8244,7 +8317,7 @@ EVERYTHING BELOW THIS POINT IS VERY MUCH IN DRAFT. THE GENERAL SCOPE WILL BE AS <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [15]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [4]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> <div class="highlight hl-ipython3"><pre><span></span><span class="c1"># T_left = </span> @@ -8257,17 +8330,17 @@ EVERYTHING BELOW THIS POINT IS VERY MUCH IN DRAFT. THE GENERAL SCOPE WILL BE AS <span class="c1"># nt = </span> <span class="c1"># Solution</span> -<span class="n">T_left</span> <span class="o">=</span> <span class="mi">38</span> <span class="c1"># Temperature at the left</span> -<span class="n">T_right</span> <span class="o">=</span> <span class="mi">25</span> <span class="c1"># Temperature at the right</span> -<span class="n">T_initial</span> <span class="o">=</span> <span class="mi">7</span> <span class="c1"># Initial temperature of the bar</span> -<span class="n">length</span> <span class="o">=</span> <span class="mi">300</span> <span class="c1"># Length of the bar in mm</span> -<span class="n">n_point</span> <span class="o">=</span> <span class="mi">15</span> <span class="c1"># Number of points</span> -<span class="n">nu</span> <span class="o">=</span> <span class="mi">4</span> <span class="c1"># Constant value nu mm^2/s (representative value for steel)</span> -<span class="n">dt</span> <span class="o">=</span> <span class="mi">50</span> <span class="c1"># Time increment in seconds</span> -<span class="n">nt</span> <span class="o">=</span> <span class="mi">200</span> <span class="c1"># Number of time increments</span> - -<span class="n">dx</span> <span class="o">=</span> <span class="n">length</span><span class="o">/</span><span class="p">(</span><span class="n">n_point</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span> -<span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="n">length</span><span class="p">,</span><span class="n">n_point</span><span class="p">)</span> +<span class="n">T_left</span> <span class="o">=</span> <span class="mi">38</span> +<span class="n">T_right</span> <span class="o">=</span> <span class="mi">25</span> +<span class="n">T_initial</span> <span class="o">=</span> <span class="mi">7</span> +<span class="n">L</span> <span class="o">=</span> <span class="mf">0.3</span> +<span class="n">nu</span> <span class="o">=</span> <span class="mi">4</span><span class="o">/</span><span class="mi">1000</span><span class="o">/</span><span class="mi">1000</span> + +<span class="n">dx</span> <span class="o">=</span> <span class="mf">0.02</span> +<span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="n">L</span><span class="p">,</span><span class="n">dx</span><span class="p">)</span> +<span class="n">n</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> +<span class="n">dt</span> <span class="o">=</span> <span class="mi">50</span> +<span class="n">m</span> <span class="o">=</span> <span class="mi">200</span> </pre></div> </div> </div> @@ -8291,10 +8364,11 @@ EVERYTHING BELOW THIS POINT IS VERY MUCH IN DRAFT. THE GENERAL SCOPE WILL BE AS </div> <div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> </div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> -<div style="background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 3.6:</b> <p>Define the initial conditions and the boundary conditions. <strong>Fill in the missing parts of the code.</strong></p> +<p>We define a 2-dimensional Numpy array <code>T</code> where the first index, <code>j</code>, represents time and the second index, <code>i</code>, represents space, for example: <code>T[j, i]</code>. Initialize <code>T</code> with a matrix of zeros.</p> </p> </div> </div> @@ -8308,40 +8382,67 @@ EVERYTHING BELOW THIS POINT IS VERY MUCH IN DRAFT. THE GENERAL SCOPE WILL BE AS <div class="jp-InputPrompt jp-InputArea-prompt">In [5]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># Initialise empty solution array "us"</span> -<span class="n">us</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="n">nt</span><span class="o">+</span><span class="mi">1</span><span class="p">,</span><span class="n">n_point</span><span class="p">))</span> - -<span class="c1"># Initialise initial conditions into the solution array t=0</span> -<span class="c1"># us[0] = </span> -<span class="c1"># Solution:</span> -<span class="n">us</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="n">T_initial</span> - -<span class="c1"># Initialise boundary conditions into the solution array at t=0</span> -<span class="c1"># Remember that the first term is the left boundary and the last term is the right boundary.</span> -<span class="c1"># us[0][0] = </span> -<span class="c1"># us[0][-1] = </span> -<span class="c1"># Solution:</span> -<span class="n">us</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="n">T_left</span> -<span class="n">us</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="n">T_right</span> +<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># T = YOUR_CODE_HERE</span> +<span class="c1"># T[0, :] = YOUR_CODE_HERE</span> +<span class="c1"># T[:, 0] = YOUR_CODE_HERE</span> +<span class="c1"># T[:, -1] = YOUR_CODE_HERE</span> +<span class="c1"># b = YOUR_CODE_HERE</span> + +<span class="c1"># SOLUTION</span> +<span class="n">T</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="n">m</span><span class="p">,</span><span class="n">n</span><span class="p">))</span> +<span class="n">T</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="p">:]</span> <span class="o">=</span> <span class="n">T_initial</span> +<span class="n">T</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="n">T_left</span> +<span class="n">T</span><span class="p">[:,</span> <span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="n">T_right</span> +<span class="n">b</span> <span class="o">=</span> <span class="n">T</span><span class="p">[</span><span class="n">j</span><span class="p">,</span> <span class="mi">1</span><span class="p">:</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">+</span> <span class="n">nu</span><span class="o">*</span><span class="n">dt</span><span class="o">/</span><span class="p">(</span><span class="n">dx</span><span class="o">**</span><span class="mi">2</span><span class="p">)</span><span class="o">*</span><span class="p">(</span><span class="n">T</span><span class="p">[</span><span class="n">j</span><span class="p">,</span> <span class="mi">2</span><span class="p">:]</span><span class="o">-</span><span class="mi">2</span><span class="o">*</span><span class="n">T</span><span class="p">[</span><span class="n">j</span><span class="p">,</span> <span class="mi">1</span><span class="p">:</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span><span class="o">+</span><span class="n">T</span><span class="p">[</span><span class="n">j</span><span class="p">,</span> <span class="p">:</span><span class="o">-</span><span class="mi">2</span><span class="p">])</span> </pre></div> </div> </div> </div> </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=726ef6e5-db85-4d29-936a-681782073a4e"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=e7c5bf2e"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> </div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> -<p>The finite difference operation will involve using an array that contains $u$ at every point in the array <code>x</code> (code), <code>dt</code>, <code>dx</code> and <code>nu</code> to return an array that contains $u$ at every point in the array <code>x</code> at the <strong>next time step</strong>.</p> -<p>But what about the boundary points? These will remain the same as the boundaries are held at a constant temperature. Hence, for each array pertaining to $u$, the first and the last values should correspond to the boundary temperatures, before the array is used an a input for the finite difference operation. The rest of the terms can be consded as per the equation in Step 3. In short, while advancing in time, from <code>0</code> to <code>nt*dt</code>, the first and lasts elements of the array $u$ will not be advanced in time but in fact, be assigned the boundary values of temperature.</p> -<p>So if the $u$ array corresponding to the first time-step has the correct boundary values, the finite difference operation need only copy these values to their locations in every successive array in time. This can be done as an if and else statement.</p> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<p> +<b>Task 3.7:</b> +<p>Write in paper the equations that come out from your algebraic representation of the diffusion equation, solving for the unknowns. Use it then to write the matrix A, the unknown vector T and vector b. As in the workshop and textbook, the <code>A</code> matrix consists only of the unknowns in the problem.</p> +</p> +</div> +</div> </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=ffd2090f-c5b0-43ee-8516-ae98eb6cff1d"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=7e0147f1"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<p>Your answer here.</p> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=641bb333"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<div style="background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<p> +<b>Solution</b> +<p>Answer</p> +</p> +</div> +</div> +</div> +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=787c37f6"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -8349,97 +8450,167 @@ EVERYTHING BELOW THIS POINT IS VERY MUCH IN DRAFT. THE GENERAL SCOPE WILL BE AS <div class="jp-InputPrompt jp-InputArea-prompt">In [6]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">fdm_step</span><span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">dx</span><span class="p">,</span> <span class="n">dt</span><span class="p">,</span> <span class="n">nu</span><span class="p">):</span> - - <span class="n">u_new</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">u</span><span class="p">))</span> - - <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">u</span><span class="p">)):</span> - - <span class="k">if</span> <span class="n">i</span> <span class="o">==</span> <span class="mi">0</span> <span class="ow">or</span> <span class="n">i</span> <span class="o">==</span> <span class="nb">len</span><span class="p">(</span><span class="n">u</span><span class="p">)</span><span class="o">-</span><span class="mi">1</span><span class="p">:</span> <span class="c1"># Exclue fixed boundary point at ends</span> - - <span class="n">u_new</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="n">u</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> - <span class="k">else</span><span class="p">:</span> - <span class="n">u_new</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="n">u</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">+</span> <span class="n">nu</span><span class="o">*</span><span class="n">dt</span><span class="o">*</span><span class="p">(</span><span class="n">u</span><span class="p">[</span><span class="n">i</span><span class="o">+</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="mi">2</span><span class="o">*</span><span class="n">u</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">+</span> <span class="n">u</span><span class="p">[</span><span class="n">i</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span><span class="o">/</span><span class="p">(</span><span class="n">dx</span><span class="o">**</span><span class="mi">2</span><span class="p">)</span> - - <span class="k">return</span> <span class="n">u_new</span> +<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># for j in range(m-1):</span> +<span class="c1"># A = YOUR_CODE_HERE</span> +<span class="c1"># b = YOUR_CODE_HERE</span> +<span class="c1"># T[j+1,1:-1] = YOUR_CODE_HERE</span> + +<span class="c1"># SOLUTION</span> +<span class="k">for</span> <span class="n">j</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">m</span><span class="o">-</span><span class="mi">1</span><span class="p">):</span> + <span class="n">A</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="nb">len</span><span class="p">(</span><span class="n">x</span><span class="p">)</span><span class="o">-</span><span class="mi">2</span><span class="p">,</span><span class="nb">len</span><span class="p">(</span><span class="n">x</span><span class="p">)</span><span class="o">-</span><span class="mi">2</span><span class="p">))</span> + <span class="n">np</span><span class="o">.</span><span class="n">fill_diagonal</span><span class="p">(</span><span class="n">A</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> + <span class="n">b</span> <span class="o">=</span> <span class="n">T</span><span class="p">[</span><span class="n">j</span><span class="p">,</span><span class="mi">1</span><span class="p">:</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">+</span> <span class="n">nu</span><span class="o">*</span><span class="n">dt</span><span class="o">/</span><span class="p">(</span><span class="n">dx</span><span class="o">**</span><span class="mi">2</span><span class="p">)</span><span class="o">*</span><span class="p">(</span><span class="n">T</span><span class="p">[</span><span class="n">j</span><span class="p">,</span><span class="mi">2</span><span class="p">:]</span><span class="o">-</span><span class="mi">2</span><span class="o">*</span><span class="n">T</span><span class="p">[</span><span class="n">j</span><span class="p">,</span><span class="mi">1</span><span class="p">:</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span><span class="o">+</span><span class="n">T</span><span class="p">[</span><span class="n">j</span><span class="p">,:</span><span class="o">-</span><span class="mi">2</span><span class="p">])</span> + <span class="n">T_1_to_n_minus1</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linalg</span><span class="o">.</span><span class="n">inv</span><span class="p">(</span><span class="n">A</span><span class="p">)</span> <span class="o">@</span> <span class="n">b</span> + <span class="n">T</span><span class="p">[</span><span class="n">j</span><span class="o">+</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">:</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="n">T_1_to_n_minus1</span> </pre></div> </div> </div> </div> </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=a0033860-a8fb-41d0-9c39-4d9b1676fdcc"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=794f6329"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> </div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> -<div style="background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> -<b>Task 1.4:</b> -<p>You now have the finite difference operation and initial arrays. Now write a single line of code to loop over all time steps to obtain the solution at <code>dt*nt</code>.</p> +<b>Task 3.8:</b> +<p>Use this code cell if you would like to verify your numerical implementation. For example, visualize the temperature profile at different time steps.</p> </p> </div> </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=193daff2"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=56f6fdea"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [16]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [7]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">nt</span><span class="p">):</span> - <span class="n">us</span><span class="p">[</span><span class="n">i</span><span class="o">+</span><span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="n">fdm_step</span><span class="p">(</span><span class="n">us</span><span class="p">[</span><span class="n">i</span><span class="p">],</span><span class="n">dx</span><span class="p">,</span> <span class="n">dt</span><span class="p">,</span> <span class="n">nu</span><span class="p">)</span> +<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># plt.plot(x, T[YOUR_CODE_HERE,:])</span> +<span class="c1"># plt.plot(x, T[YOUR_CODE_HERE,:])</span> +<span class="c1"># plt.plot(x, T[YOUR_CODE_HERE,:])</span> +<span class="c1"># plt.xlabel('x')</span> +<span class="c1"># plt.ylabel('T')</span> +<span class="c1"># plt.show()</span> </pre></div> </div> </div> </div> </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=794f6329"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=17e7be50-79a7-4699-b0d8-908a58ce36d7"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> </div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> -<div style="background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> -<b>Task XXX:</b> -<p>Visualization of the temporal evolution.</p> +<b>Task 3.9:</b> +<p>Describe the time evolution of the temperature along the rod. Does the temperature reach a steady-state? What does that mean for heat flow?</p> +<p>Write your answer in the following markdown cell.</p> </p> </div> </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=fbdbd830-46f7-48eb-926e-ab6cd093f90a"> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=8db518cd"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<p>Your answer here.</p> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=fb6cc514-2b49-43df-bd26-35ade685e4db"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<div style="background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<p> +<b>Solution</b> +<p>Your plots should show at the beginning temperatures of $38^oC$ and $25^oC$ at the edges and $7^oC$ elsewhere. As time progresses, you can notice how the temperature increases through the rod and eventually becomes a constant gradient across the length of the rod, indicating a steady-state.</p> +</p> +</div> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=9fcbb39f"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<p> +<b>Task 4</b> +<p>Alter the right boundary condition, with the following equation:</p> +$$ +u^t_{x=L} = 25 + 10 \sin \left(\frac{2\pi t}{period}\right) +$$<p>where L refers to the last point of the rod. Put your whole code together in a single cell. Copy the code cells from task 3.5 until task 3.8. Modify the right boundary condition as stated above, the period is 6000 seconds.</p> +</p> +</div> +</div> +</div> +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=05534522"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [7]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [8]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">FDM_plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">u</span><span class="p">,</span> <span class="n">step</span><span class="p">):</span> - <span class="n">fig</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">()</span> - <span class="n">ax</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">axes</span><span class="p">(</span><span class="n">xlim</span><span class="o">=</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">300</span><span class="p">),</span> <span class="n">ylim</span><span class="o">=</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">40</span><span class="p">))</span> - <span class="n">ax</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">u</span><span class="p">[</span><span class="n">step</span><span class="p">])</span> - <span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'x'</span><span class="p">)</span> - <span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'u'</span><span class="p">)</span> - <span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> - -<span class="n">play</span> <span class="o">=</span> <span class="n">widgets</span><span class="o">.</span><span class="n">Play</span><span class="p">(</span><span class="nb">min</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="n">nt</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">step</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">value</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">interval</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span> <span class="n">disabled</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span> -<span class="n">slider</span> <span class="o">=</span> <span class="n">widgets</span><span class="o">.</span><span class="n">IntSlider</span><span class="p">(</span><span class="nb">min</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="n">nt</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">step</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">value</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span> -<span class="n">widgets</span><span class="o">.</span><span class="n">jslink</span><span class="p">((</span><span class="n">play</span><span class="p">,</span> <span class="s1">'value'</span><span class="p">),</span> <span class="p">(</span><span class="n">slider</span><span class="p">,</span> <span class="s1">'value'</span><span class="p">))</span> - -<span class="n">interact</span><span class="p">(</span><span class="n">FDM_plot</span><span class="p">,</span> - <span class="n">x</span><span class="o">=</span><span class="n">fixed</span><span class="p">(</span><span class="n">x</span><span class="p">),</span> - <span class="n">u</span><span class="o">=</span><span class="n">fixed</span><span class="p">(</span><span class="n">us</span><span class="p">),</span> - <span class="n">step</span> <span class="o">=</span> <span class="p">(</span><span class="n">play</span><span class="p">))</span> - -<span class="n">widgets</span><span class="o">.</span><span class="n">HBox</span><span class="p">([</span><span class="n">slider</span><span class="p">])</span> +<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># YOUR_CODE_HERE</span> + +<span class="c1"># SOLUTION</span> +<span class="n">T_left</span> <span class="o">=</span> <span class="mi">38</span> +<span class="n">T_right</span> <span class="o">=</span> <span class="mi">25</span> +<span class="n">T_initial</span> <span class="o">=</span> <span class="mi">7</span> +<span class="n">L</span> <span class="o">=</span> <span class="mf">0.3</span> +<span class="n">nu</span> <span class="o">=</span> <span class="mi">4</span><span class="o">/</span><span class="mi">1000</span><span class="o">/</span><span class="mi">1000</span> + +<span class="n">dx</span> <span class="o">=</span> <span class="mf">0.02</span> +<span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="n">L</span><span class="p">,</span><span class="n">dx</span><span class="p">)</span> +<span class="n">n</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> +<span class="n">dt</span> <span class="o">=</span> <span class="mi">50</span> +<span class="n">m</span> <span class="o">=</span> <span class="mi">200</span> + +<span class="n">period</span> <span class="o">=</span> <span class="mi">6000</span> +<span class="n">T</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="n">m</span><span class="p">,</span><span class="n">n</span><span class="p">))</span> +<span class="n">T</span><span class="p">[</span><span class="mi">0</span><span class="p">,:]</span> <span class="o">=</span> <span class="n">T_initial</span> +<span class="n">T</span><span class="p">[:,</span><span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="n">T_left</span> +<span class="n">t</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="n">m</span><span class="o">*</span><span class="n">dt</span><span class="p">,</span><span class="n">dt</span><span class="p">)</span> +<span class="n">T</span><span class="p">[:,</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="mi">25</span> <span class="o">+</span> <span class="mi">10</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">pi</span><span class="o">*</span><span class="n">t</span><span class="o">/</span><span class="n">period</span><span class="p">)</span> + + +<span class="k">for</span> <span class="n">j</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">m</span><span class="o">-</span><span class="mi">1</span><span class="p">):</span> + <span class="c1"># Building matrix A</span> + <span class="n">A</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="nb">len</span><span class="p">(</span><span class="n">x</span><span class="p">)</span><span class="o">-</span><span class="mi">2</span><span class="p">,</span><span class="nb">len</span><span class="p">(</span><span class="n">x</span><span class="p">)</span><span class="o">-</span><span class="mi">2</span><span class="p">))</span> + <span class="n">np</span><span class="o">.</span><span class="n">fill_diagonal</span><span class="p">(</span><span class="n">A</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> + <span class="c1"># Building vector b</span> + <span class="n">b</span> <span class="o">=</span> <span class="n">T</span><span class="p">[</span><span class="n">j</span><span class="p">,</span><span class="mi">1</span><span class="p">:</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">+</span> <span class="n">nu</span><span class="o">*</span><span class="n">dt</span><span class="o">/</span><span class="p">(</span><span class="n">dx</span><span class="o">**</span><span class="mi">2</span><span class="p">)</span><span class="o">*</span><span class="p">(</span><span class="n">T</span><span class="p">[</span><span class="n">j</span><span class="p">,</span><span class="mi">2</span><span class="p">:]</span><span class="o">-</span><span class="mi">2</span><span class="o">*</span><span class="n">T</span><span class="p">[</span><span class="n">j</span><span class="p">,</span><span class="mi">1</span><span class="p">:</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span><span class="o">+</span><span class="n">T</span><span class="p">[</span><span class="n">j</span><span class="p">,:</span><span class="o">-</span><span class="mi">2</span><span class="p">])</span> + <span class="n">T_1_to_n_minus1</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linalg</span><span class="o">.</span><span class="n">inv</span><span class="p">(</span><span class="n">A</span><span class="p">)</span> <span class="o">@</span> <span class="n">b</span> + <span class="n">T</span><span class="p">[</span><span class="n">j</span><span class="o">+</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">:</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="n">T_1_to_n_minus1</span> + +<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">T</span><span class="p">[</span><span class="mi">0</span><span class="p">,:])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">T</span><span class="p">[</span><span class="mi">30</span><span class="p">,:])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">T</span><span class="p">[</span><span class="mi">150</span><span class="p">,:])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'x'</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'T'</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> </pre></div> </div> </div> @@ -8451,198 +8622,285 @@ EVERYTHING BELOW THIS POINT IS VERY MUCH IN DRAFT. THE GENERAL SCOPE WILL BE AS <div class="jp-OutputArea jp-Cell-outputArea"> <div class="jp-OutputArea-child"> <div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr" tabindex="0"> -<pre> -<span class="ansi-red-intense-fg ansi-bold">---------------------------------------------------------------------------</span> -<span class="ansi-red-intense-fg ansi-bold">NameError</span> Traceback (most recent call last) -Cell <span class="ansi-green-intense-fg ansi-bold">In[7], line 13</span> -<span class="ansi-green-fg"> 10</span> plt<span style="color: rgb(98,98,98)">.</span>ylabel(<span style="color: rgb(175,0,0)">'</span><span style="color: rgb(175,0,0)">u</span><span style="color: rgb(175,0,0)">'</span>) -<span class="ansi-green-fg"> 11</span> plt<span style="color: rgb(98,98,98)">.</span>show() -<span class="ansi-green-intense-fg ansi-bold">---> 13</span> play <span style="color: rgb(98,98,98)">=</span> widgets<span style="color: rgb(98,98,98)">.</span>Play(<span style="color: rgb(0,135,0)">min</span><span style="color: rgb(98,98,98)">=</span><span style="color: rgb(98,98,98)">0</span>, <span style="color: rgb(0,135,0)">max</span><span style="color: rgb(98,98,98)">=</span>nt<span style="color: rgb(98,98,98)">-</span><span style="color: rgb(98,98,98)">1</span>, step<span style="color: rgb(98,98,98)">=</span><span style="color: rgb(98,98,98)">1</span>, value<span style="color: rgb(98,98,98)">=</span><span style="color: rgb(98,98,98)">0</span>, interval<span style="color: rgb(98,98,98)">=</span><span style="color: rgb(98,98,98)">100</span>, disabled<span style="color: rgb(98,98,98)">=</span><span class="ansi-bold" style="color: rgb(0,135,0)">False</span>) -<span class="ansi-green-fg"> 14</span> slider <span style="color: rgb(98,98,98)">=</span> widgets<span style="color: rgb(98,98,98)">.</span>IntSlider(<span style="color: rgb(0,135,0)">min</span><span style="color: rgb(98,98,98)">=</span><span style="color: rgb(98,98,98)">0</span>, <span style="color: rgb(0,135,0)">max</span><span style="color: rgb(98,98,98)">=</span>nt<span style="color: rgb(98,98,98)">-</span><span style="color: rgb(98,98,98)">1</span>, step<span style="color: rgb(98,98,98)">=</span><span style="color: rgb(98,98,98)">1</span>, value<span style="color: rgb(98,98,98)">=</span><span style="color: rgb(98,98,98)">0</span>) -<span class="ansi-green-fg"> 15</span> widgets<span style="color: rgb(98,98,98)">.</span>jslink((play, <span style="color: rgb(175,0,0)">'</span><span style="color: rgb(175,0,0)">value</span><span style="color: rgb(175,0,0)">'</span>), (slider, <span style="color: rgb(175,0,0)">'</span><span style="color: rgb(175,0,0)">value</span><span style="color: rgb(175,0,0)">'</span>)) - -<span class="ansi-red-intense-fg ansi-bold">NameError</span>: name 'widgets' is not defined</pre> +<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> +<img alt="No description has been provided for this image" class="" src=""/> </div> </div> </div> </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=dd052188-5e1d-4335-9462-5af07e4ea03b"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=852b05c5"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> </div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> -<div style="background-color:#facb8e; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p><b>Note:</b> Depending on your choice of time step, you may have noticed that your notebook did not converge. This would have looked like a log of oscillations (jagged up-and-down lines) that appear during the animation, which then increase out of control. This happens because the numerical approach used here is conditionally stable; large time steps do not work well. This has to do with the high value of the diffusivity parameter.</p></div> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<p> +<b>Task 5</b> +<p>Solve the diffusion equation using Central Differences in space but <strong>now with Backward Differences in time</strong>. You will do this step by step (subtasks). Just as before.</p> +</p> </div> </div> </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=17e7be50-79a7-4699-b0d8-908a58ce36d7"> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=81fe7677"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> </div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> -<div style="background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> -<b>Task 1.5:</b> -<p>Explain what the animation above shows? Does the temperature reach a steady-state? What does that mean for heat flow?</p> -<p>Record your answer in the following markdown cell.</p> +<b>Task 5.1:</b> +<p>Draw the stencils (two in total) of this equation when solving it with Central Differences in space and <strong>Forward Differences in time</strong> and when solving it with Central Differences in space and <strong>Backward Differences in time</strong>.</p> </p> </div> </div> </div> </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=fb6cc514-2b49-43df-bd26-35ade685e4db"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=6df8a151"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<p>Your answer here.</p> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=1c67a2bf"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> </div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> -<div style="background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<div style="background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Solution</b> -<p>Animated plot above shows how the ends of the rod at temperatures of $38^oC$ and $25^oC$ but $7^oC$ elsewhere. As the animation begins, you can notice how the temperature increases through the rod and eventually becomes a constant gradient across the length of the rod, indicating a steady-state.</p> +<p>Drawing of the stencils</p> +</p> +</div> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=ca16ee10"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<p> +<b>Task 5.2:</b> +<p>Now, the differential equation needs to be expressed in algebraic form using central differences in space and forward differences in time. <strong>Start by just transforming the PDE into a first-order ODE by ONLY applying Central Differences to the spatial derivative term.</strong></p> </p> </div> </div> </div> </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=e376cd92-6d55-4d8f-8504-5d0972ed41ca"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=4a25a0d0"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> </div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> -<h2 id="Task-2:-Altering-the-right-boundary">Task 2: Altering the right boundary<a class="anchor-link" href="#Task-2:-Altering-the-right-boundary">¶</a></h2><p>Say the right-end of the bar is heated with the cyclic function: -$$ u(L,t)=25+10\sin\left(\frac{2\pi t}{T}\right)$$</p> -<p>where $T$ is the time period of the cyclic heating. Here are the additional values for this problem.</p> +<p>Your answer here.</p> </div> </div> </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=032cef25-50fd-4b82-8ec7-8f5a2e8eaac1"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=53ca7cc9"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> </div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> -<div style="background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<div style="background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> -<b>Task 2.1:</b> -<p>Based on the initialization of the problem as described in Task 1.4, can you set up the initial and boundary conditions for this situation? (you only need to change one condition).</p> -</p> +<b>Solution</b> +$$ +\frac{\partial T}{\partial t}\bigg|_i = \nu \frac{T_{i+1}-2T_i+T_{i-1}}{\Delta x^2} +$$</p> </div> </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=7a2db483-7d49-45ad-beeb-b5ad78024cfe"> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=139d33af"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> -<div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [29]:</div> -<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> -<div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">t</span> <span class="o">=</span> <span class="mi">0</span> -<span class="n">T</span> <span class="o">=</span> <span class="mi">6000</span> - -<span class="n">nt</span> <span class="o">=</span> <span class="mi">600</span> -<span class="n">us</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="n">nt</span><span class="o">+</span><span class="mi">1</span><span class="p">,</span><span class="n">n_point</span><span class="p">))</span> - -<span class="c1"># us[0] = </span> -<span class="c1"># Solution:</span> -<span class="n">us</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="n">T_initial</span> - -<span class="c1"># us[0][-1] = </span> -<span class="c1"># Solution:</span> -<span class="n">us</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="n">T_left</span> -<span class="n">us</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="mi">25</span> <span class="o">+</span> <span class="mi">10</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">pi</span><span class="o">*</span><span class="n">t</span><span class="o">/</span><span class="n">T</span><span class="p">)</span> -</pre></div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<p> +<b>Task 5.3:</b> +<p><strong>Apply Backward Differences to the equation to obtain an algebraic expression.</strong></p> +</p> </div> </div> </div> </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=8711923d-0c98-453c-a1a0-8b687f53e9df"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=73b82177"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> </div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> -<p>To pass on the value of the time-dependent boundary condition <code>T_Right</code> to the iteration loop, you must copy the value of <code>us</code> (the solution) to another array, modify the boundary condition on the right (which element of the array will that be?) and pass the modified array to the solution function <code>fdm_step</code>.</p> -<p>You can use the following code for dynamic plotting:</p> +<p>Your answer here.</p> +</div> </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=91182c14-d4d7-4098-9abb-1cee859c8dfe"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=7d201180"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> -<div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> -<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> -<div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">play</span> <span class="o">=</span> <span class="n">widgets</span><span class="o">.</span><span class="n">Play</span><span class="p">(</span><span class="nb">min</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="n">nt</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">step</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">value</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">interval</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span> <span class="n">disabled</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span> -<span class="n">slider</span> <span class="o">=</span> <span class="n">widgets</span><span class="o">.</span><span class="n">IntSlider</span><span class="p">(</span><span class="nb">min</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="n">nt</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">step</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">value</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span> -<span class="n">widgets</span><span class="o">.</span><span class="n">jslink</span><span class="p">((</span><span class="n">play</span><span class="p">,</span> <span class="s1">'value'</span><span class="p">),</span> <span class="p">(</span><span class="n">slider</span><span class="p">,</span> <span class="s1">'value'</span><span class="p">))</span> - -<span class="n">interact</span><span class="p">(</span><span class="n">FDM_plot</span><span class="p">,</span> - <span class="n">x</span><span class="o">=</span><span class="n">fixed</span><span class="p">(</span><span class="n">x</span><span class="p">),</span> - <span class="n">u</span><span class="o">=</span><span class="n">fixed</span><span class="p">(</span><span class="n">us</span><span class="p">),</span> - <span class="n">step</span><span class="o">=</span><span class="n">play</span><span class="p">)</span> - -<span class="n">widgets</span><span class="o">.</span><span class="n">HBox</span><span class="p">([</span><span class="n">slider</span><span class="p">])</span> - -<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">nt</span><span class="p">):</span> - <span class="n">umod</span> <span class="o">=</span> <span class="n">us</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span> - <span class="n">umod</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="mi">25</span> <span class="o">+</span> <span class="mi">10</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">pi</span><span class="o">*</span><span class="n">t</span><span class="o">/</span><span class="n">T</span><span class="p">)</span> - <span class="n">us</span><span class="p">[</span><span class="n">i</span><span class="o">+</span><span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="n">fdm_step</span><span class="p">(</span><span class="n">umod</span><span class="p">,</span> <span class="n">dx</span><span class="p">,</span> <span class="n">dt</span><span class="p">,</span> <span class="n">nu</span><span class="p">)</span> - <span class="c1"># Update time</span> - <span class="n">t</span> <span class="o">+=</span> <span class="n">dt</span> -</pre></div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<div style="background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<p> +<b>Solution</b> +$$ +T^{j+1}_{i} = T^j_i + \frac{\nu \Delta t}{\Delta x^2} \left(T^{j+1}_{i+1}-2T^{j+1}_i+T^{j+1}_{i-1}\right) +$$</p> </div> </div> </div> </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=649e7062-eccf-4aab-bd8b-859a00ded411"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=25b64dff"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> </div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> -<div style="background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> -<b>Task 2.2:</b> -<p>Why is the right boundary dealt with differently in the code than previously? What is different in this version compared to the first?</p> -<p>Record your answer in the following markdown cell.</p> +<b>Task 5.4:</b> +<p>Write in paper the equations that come out from your algebraic representation of the diffusion equation, solving for the unknowns. Use it then to write the matrix A, the unknown vector T and vector b.</p> </p> </div> </div> </div> </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=4ff6ab87"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=8c1db830"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<p>Your answer here.</p> +</div> +</div> +</div> +</div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=ec130a96"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> </div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> -<div style="background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<div style="background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Solution</b> -<p>Replacing the right-hand boundary with a sinusoidal function means that the temperature at the right end of the rod now fluctuates and this then affects the temperature as it diffuses through the rod.</p> +<p>Answer</p> </p> </div> </div> </div> </div> </div> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=36284ee9"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> +</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> +<div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> +<p> +<b>Task 5.5</b> +<p>Copy the code of task 4 and make sure to use the Dirichlet conditions of task 3: constant Dirichlet conditions. Implement the Implicit scheme by modifying the code of how the matrix A and vector b are built.</p> +</p> +</div> +</div> +</div> +</div> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=4edddcaf"> +<div class="jp-Cell-inputWrapper" tabindex="0"> +<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> +</div> +<div class="jp-InputArea jp-Cell-inputArea"> +<div class="jp-InputPrompt jp-InputArea-prompt">In [9]:</div> +<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> +<div class="cm-editor cm-s-jupyter"> +<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># YOUR_CODE_HERE</span> + +<span class="c1"># SOLUTION</span> +<span class="n">T_left</span> <span class="o">=</span> <span class="mi">38</span> +<span class="n">T_right</span> <span class="o">=</span> <span class="mi">25</span> +<span class="n">T_initial</span> <span class="o">=</span> <span class="mi">7</span> +<span class="n">L</span> <span class="o">=</span> <span class="mf">0.3</span> +<span class="n">nu</span> <span class="o">=</span> <span class="mi">4</span><span class="o">/</span><span class="mi">1000</span><span class="o">/</span><span class="mi">1000</span> + +<span class="n">dx</span> <span class="o">=</span> <span class="mf">0.02</span> +<span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="n">L</span><span class="p">,</span><span class="n">dx</span><span class="p">)</span> +<span class="n">n</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> +<span class="n">dt</span> <span class="o">=</span> <span class="mi">50</span> +<span class="n">m</span> <span class="o">=</span> <span class="mi">200</span> + +<span class="n">T</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="n">m</span><span class="p">,</span><span class="n">n</span><span class="p">))</span> +<span class="n">T</span><span class="p">[</span><span class="mi">0</span><span class="p">,:]</span> <span class="o">=</span> <span class="n">T_initial</span> +<span class="n">T</span><span class="p">[:,</span><span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="n">T_left</span> +<span class="n">t</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="n">m</span><span class="o">*</span><span class="n">dt</span><span class="p">,</span><span class="n">dt</span><span class="p">)</span> +<span class="n">T</span><span class="p">[:,</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="n">T_right</span> + +<span class="n">C</span> <span class="o">=</span> <span class="n">nu</span><span class="o">*</span><span class="n">dt</span><span class="o">/</span><span class="n">dx</span><span class="o">**</span><span class="mi">2</span> +<span class="k">for</span> <span class="n">j</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">m</span><span class="o">-</span><span class="mi">1</span><span class="p">):</span> + <span class="c1"># Building matrix A</span> + <span class="n">A</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="nb">len</span><span class="p">(</span><span class="n">x</span><span class="p">)</span><span class="o">-</span><span class="mi">2</span><span class="p">,</span><span class="nb">len</span><span class="p">(</span><span class="n">x</span><span class="p">)</span><span class="o">-</span><span class="mi">2</span><span class="p">))</span> + <span class="n">np</span><span class="o">.</span><span class="n">fill_diagonal</span><span class="p">(</span><span class="n">A</span><span class="p">,</span> <span class="mi">1</span><span class="o">+</span><span class="mi">2</span><span class="o">*</span><span class="n">C</span><span class="p">)</span> + <span class="n">A</span><span class="p">[</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="n">n</span><span class="o">-</span><span class="mi">3</span><span class="p">),</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">n</span><span class="o">-</span><span class="mi">2</span><span class="p">)]</span> <span class="o">=</span> <span class="o">-</span><span class="n">C</span> <span class="c1"># Upper diagonal</span> + <span class="n">A</span><span class="p">[</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">n</span><span class="o">-</span><span class="mi">2</span><span class="p">),</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="n">n</span><span class="o">-</span><span class="mi">3</span><span class="p">)]</span> <span class="o">=</span> <span class="o">-</span><span class="n">C</span> <span class="c1"># Lower diagonal</span> + <span class="c1"># Building vector b</span> + <span class="n">b</span> <span class="o">=</span> <span class="n">T</span><span class="p">[</span><span class="n">j</span><span class="p">,</span><span class="mi">1</span><span class="p">:</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> + <span class="n">b</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="n">b</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">+</span> <span class="n">T_left</span> <span class="o">*</span> <span class="n">C</span> + <span class="n">b</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="n">b</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">+</span> <span class="n">T_right</span> <span class="o">*</span> <span class="n">C</span> + <span class="n">T_1_to_n_minus1</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linalg</span><span class="o">.</span><span class="n">inv</span><span class="p">(</span><span class="n">A</span><span class="p">)</span> <span class="o">@</span> <span class="n">b</span> + <span class="n">T</span><span class="p">[</span><span class="n">j</span><span class="o">+</span><span class="mi">1</span><span class="p">,</span><span class="mi">1</span><span class="p">:</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="n">T_1_to_n_minus1</span> + +<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">T</span><span class="p">[</span><span class="mi">0</span><span class="p">,:])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">T</span><span class="p">[</span><span class="mi">30</span><span class="p">,:])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">T</span><span class="p">[</span><span class="mi">199</span><span class="p">,:])</span> +<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'x'</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'T'</span><span class="p">)</span> +<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> +</pre></div> +</div> +</div> +</div> +</div> +<div class="jp-Cell-outputWrapper"> +<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> +</div> +<div class="jp-OutputArea jp-Cell-outputArea"> +<div class="jp-OutputArea-child"> +<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> +<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> +<img alt="No description has been provided for this image" class="" src=""/> +</div> +</div> +</div> +</div> +</div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=3d1dfe3d"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> @@ -8658,11 +8916,11 @@ $$ u(L,t)=25+10\sin\left(\frac{2\pi t}{T}\right)$$</p> article { position: relative } </style> <a href="http://creativecommons.org/licenses/by-nc-sa/4.0/" rel="license"> -<img alt="Creative Commons License" src="https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png" style="border-width:; width:88px; height:auto; padding-top:10px"/> -</a> +<img alt="Creative Commons License" src="https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png" style="border-width:; width:88px; height:auto; padding-top:10px"> +</img></a> <a href="https://www.tudelft.nl/en/ceg" rel="TU Delft"> -<img alt="TU Delft" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/tu-logo/TU_P1_full-color.png" style="border-width:0; width:100px; height:auto; padding-bottom:0px"/> -</a> +<img alt="TU Delft" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/tu-logo/TU_P1_full-color.png" style="border-width:0; width:100px; height:auto; padding-bottom:0px"> +</img></a> <a href="http://mude.citg.tudelft.nl/" rel="MUDE"> <img alt="MUDE" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/mude-logo/MUDE_Logo-small.png" style="border-width:0; width:100px; height:auto; padding-bottom:0px"/> </a>