diff --git a/content/Week_1_4/WS_1_4_Nonlinear_Rain.ipynb b/content/Week_1_4/WS_1_4_Nonlinear_Rain.ipynb index ab7170dc0b9071417cc9e2459f0a203298a51e3b..a3fd477f00eef1a575eba5d761c192298871a7cc 100644 --- a/content/Week_1_4/WS_1_4_Nonlinear_Rain.ipynb +++ b/content/Week_1_4/WS_1_4_Nonlinear_Rain.ipynb @@ -364,7 +364,7 @@ "\n", "Next we will set the stochastic model, and initialize some other variables needed for the <code>while</code>-loop, where the actual Gauss-Newton iteration takes place. Try to see if you can follow the steps above, and fill in the missing code, where you have to compute \n", "\n", - "- the observed-minus-computed observations <code>Delta_y_i</code> $=\\Delta y_{[i]}$,\n", + "- the observed-minus-computed observations <code>Delta_y_i_i</code> $=\\Delta y_{[i]}$,\n", "- the estimate <code>Delta_x_hat_i</code>$=\\Delta\\hat{\\mathrm{x}}_{[i]}$,\n", "- <code>x_norm</code>$=\\Delta \\hat{\\mathrm{x}}_{[i]}^T \\mathrm{N}_{[i]} \\Delta \\hat{\\mathrm{x}}_{[i]}$\n", "\n", @@ -411,9 +411,9 @@ "\n", " y_comp_i = compute_y(x_hat_i[:, iteration], times, rain_event)\n", " \n", - " Delta_y = YOUR_CODE_HERE\n", + " Delta_y_i = YOUR_CODE_HERE\n", " \n", - " J_i = jacobian((d_init, a_init, r_init), times, rain_event)\n", + " J_i = jacobian(x_hat_i[:, iteration], times, rain_event)\n", " N_i = J_i.T @ inv_Sigma_Y @ J_i\n", " \n", " Delta_x_hat_i = YOUR_CODE_HERE\n",