From b8458b426b114f315eb25e984b8e16c11af87481 Mon Sep 17 00:00:00 2001 From: sangcom <lkdmc0310@gmail.com> Date: Tue, 31 Dec 2024 10:33:44 +0900 Subject: [PATCH] update 1. add more config options 2. add readme 3. footer format is updated. --- README_sync.md | 26 + config_sync.yml | 11 +- content/Week_2_4/PA/PA_2_4_B_solution.ipynb | 39 +- content/Week_2_8/WS_2_8_solution.ipynb | 30 +- conversion_errors.log | 498 +++++++------ footer.html | 22 + notebook_hashes.json | 178 +++++ sync_notebooks.py | 226 ++++-- synced_files/GA_1_1/Task_2_solution.html | 308 ++------ synced_files/GA_1_1/Task_2_solution.md | 84 +-- synced_files/GA_1_2/Analysis.html | 52 +- synced_files/GA_1_2/Analysis.md | 15 +- synced_files/GA_1_2/Analysis_solution.html | 243 +----- synced_files/GA_1_2/Analysis_solution.md | 15 +- synced_files/GA_1_3/Analysis.html | 94 +-- synced_files/GA_1_3/Analysis.md | 31 +- synced_files/GA_1_3/Analysis_Solution.html | 689 +++--------------- synced_files/GA_1_3/Analysis_Solution.md | 35 +- synced_files/GA_1_3/Warmup.html | 60 +- synced_files/GA_1_3/Warmup.md | 10 - synced_files/GA_1_4/Analysis.html | 94 +-- synced_files/GA_1_4/Analysis.md | 22 +- synced_files/GA_1_4/Analysis_solution.html | 580 ++------------- synced_files/GA_1_4/Analysis_solution.md | 22 +- synced_files/GA_1_5/Analysis.html | 112 +-- synced_files/GA_1_5/Analysis.md | 10 - synced_files/GA_1_5/Analysis_solution.html | 252 ++----- synced_files/GA_1_5/Analysis_solution.md | 10 - .../GA_1_5/central_diff_illustration.html | 88 +-- .../GA_1_5/central_diff_illustration.md | 10 - synced_files/GA_1_6/Analysis.html | 62 +- synced_files/GA_1_6/Analysis.md | 13 +- synced_files/GA_1_6/Analysis_solution.html | 140 +--- synced_files/GA_1_6/Analysis_solution.md | 13 +- .../Analysis_discharge_solution.html | 2 +- .../Analysis_discharge_solution.ipynb | 2 +- .../Discharge/Analysis_discharge_solution.md | 22 +- .../Analysis_emissions_solution.html | 18 +- .../Analysis_emissions_solution.ipynb | 18 +- .../Emissions/Analysis_emissions_solution.md | 22 +- .../Force/Analysis_force_solution.html | 18 +- .../Force/Analysis_force_solution.ipynb | 18 +- .../Solution/Force/Analysis_force_solution.md | 22 +- .../Student/Discharge/Analysis_discharge.html | 6 +- .../Discharge/Analysis_discharge.ipynb | 6 +- .../Student/Discharge/Analysis_discharge.md | 22 +- .../Student/Emissions/Analysis_emissions.html | 6 +- .../Emissions/Analysis_emissions.ipynb | 6 +- .../Student/Emissions/Analysis_emissions.md | 22 +- .../GA_1_7/Student/Force/Analysis_force.html | 6 +- .../GA_1_7/Student/Force/Analysis_force.ipynb | 6 +- .../GA_1_7/Student/Force/Analysis_force.md | 22 +- .../Unused/Temp/Distribution_Fitting_T.html | 14 +- .../Unused/Temp/Distribution_Fitting_T.ipynb | 14 +- .../Unused/Temp/Distribution_Fitting_T.md | 22 +- synced_files/GA_1_8/Analysis.md | 19 +- .../GA_1_8/solution/GA_1_8_solution_HT.md | 26 +- .../GA_1_8/solution/GA_1_8_solution_hu.md | 26 +- .../solution/GA_1_8_solution_traffic.md | 26 +- synced_files/GA_2_1/Analysis.md | 13 +- synced_files/GA_2_1/Analysis_solution.md | 13 +- synced_files/GA_2_1/mesh/mesh.md | 10 - synced_files/GA_2_1/mesh_dev.md | 10 - synced_files/GA_2_1/mesh_tips.md | 10 - synced_files/GA_2_2/the_big_M.md | 10 - synced_files/GA_2_3/Analysis.md | 16 +- synced_files/GA_2_3/Analysis_solution.md | 16 +- synced_files/GA_2_4/GA_2_4_Beary_Icy.md | 10 - synced_files/GA_2_4/GA_2_4_solution.md | 10 - synced_files/GA_2_5/Analysis_GA.md | 65 +- synced_files/GA_2_5/Analysis_GA_solution.md | 65 +- synced_files/GA_2_5/Analysis_LP.md | 36 +- synced_files/GA_2_5/Analysis_LP_solution.md | 36 +- synced_files/GA_2_6/Analysis.md | 10 - synced_files/GA_2_6/Analysis_solution.md | 10 - synced_files/GA_2_7/rain_solution.md | 31 +- synced_files/Week_1_2/In_Class_Activity.md | 67 +- .../Week_1_2/In_Class_Activity_Solution.md | 82 +-- .../Week_1_2/PA_1_2_Random_Adventure.md | 10 - synced_files/Week_1_2/PA_1_2_solution.md | 10 - synced_files/Week_1_2/WS_1_2_Pipe_Dreams.md | 22 +- synced_files/Week_1_2/WS_1_2_solution.md | 28 +- .../Week_1_4/WS_1_4_Nonlinear_Rain.md | 37 +- synced_files/Week_1_4/WS_1_4_solution.md | 38 +- .../Week_1_6/PA/PA_1_6_Boxes_and_Bugs.md | 10 - synced_files/Week_1_6/PA/PA_1_6_solution.md | 10 - synced_files/Week_1_6/WS_1_6_solution.md | 10 - synced_files/Week_1_6/WS_1_6_time_to_c_ode.md | 12 - .../PA/PA_1_7_Classy_Distributions.md | 10 - synced_files/Week_1_7/PA/PA_1_7_solution.md | 10 - .../Week_1_7/WS_1_7_lets_be_concrete.md | 22 +- synced_files/Week_1_7/WS_1_7_solution.md | 36 +- synced_files/Week_1_7/scipy_stats.md | 10 - .../PA/PA_1_8_Equations_Done_Symply.md | 10 - synced_files/Week_1_8/PA/PA_1_8_solution.md | 10 - .../Week_1_8/WS/WS_1_8_Thingamajig.md | 24 +- synced_files/Week_1_8/WS/WS_1_8_solution.md | 29 +- synced_files/Week_1_8/WS/linearity_or_not.md | 10 - synced_files/Week_1_8/data.md | 10 - synced_files/Week_1_8/intersection.md | 10 - synced_files/Week_1_8/test_bivariate.md | 10 - .../Week_2_1/PA/PA_2_1_classy_city.md | 10 - synced_files/Week_2_1/PA/PA_2_1_solution.md | 10 - synced_files/Week_2_1/PA/PA_dev.md | 10 - synced_files/Week_2_1/PA/U.md | 10 - synced_files/Week_2_1/WS_2_1_solution.md | 19 +- synced_files/Week_2_1/WS_2_1_wiggle.md | 13 +- .../Week_2_1/WS_2_1_wiggle_test_ci.md | 13 +- .../Week_2_2/PA/PA_2_2_love_is_sparse.md | 10 - synced_files/Week_2_2/PA/PA_2_2_solution.md | 10 - .../Week_2_2/PA_2_2_love_is_sparse.md | 10 - synced_files/Week_2_2/PA_2_2_solution.md | 10 - synced_files/Week_2_2/WS_2_2_more_support.md | 10 - synced_files/Week_2_2/WS_2_2_solution.md | 10 - synced_files/Week_2_2/old/PA_2_1_solution.md | 10 - .../Week_2_2/old/PA_2_1_solution_sympy.html | 18 +- .../Week_2_2/old/PA_2_1_solution_sympy.ipynb | 18 +- .../Week_2_2/old/PA_2_1_solution_sympy.md | 10 - .../Week_2_2/old/WS_2_2_more_support.md | 10 - .../Week_2_2/old/old_PA10_Love_is_Sparse.md | 10 - .../Week_2_2/old/old_PA10_solution_sympy.html | 18 +- .../old/old_PA10_solution_sympy.ipynb | 18 +- .../Week_2_2/old/old_PA10_solution_sympy.md | 10 - .../Week_2_3/PA/PA_2_3_iter_remoto.md | 10 - synced_files/Week_2_3/PA/PA_2_3_solution.md | 10 - .../Week_2_3/WS_2_3_DFT_you_try_meow.md | 13 +- synced_files/Week_2_3/WS_2_3_solution.md | 13 +- .../Week_2_4/PA/PA_2_4_A_gurobilicious.md | 10 - .../Week_2_4/PA/PA_2_4_B_axis_of_awesome.md | 10 - .../Week_2_4/PA/PA_2_4_B_solution.html | 31 +- .../Week_2_4/PA/PA_2_4_B_solution.ipynb | 39 +- synced_files/Week_2_4/PA/PA_2_4_B_solution.md | 49 +- synced_files/Week_2_4/PA/PA_2_4_B_solution.py | 39 +- .../Week_2_4/WS_2_4_Feel_the_Pressure.md | 10 - synced_files/Week_2_4/WS_2_4_solution.md | 10 - .../Week_2_5/PA/PA_2_5_data_framework.md | 10 - synced_files/Week_2_5/PA/PA_2_5_solution.md | 10 - .../Week_2_5/WS_2_5_Profit_vs_Planet.md | 10 - synced_files/Week_2_5/WS_2_5_solution.md | 10 - .../Week_2_6/PA/PA_2_6_3_way_split.md | 10 - synced_files/Week_2_6/PA/PA_2_6_solution.md | 10 - synced_files/Week_2_6/WS_2_6_be_a_NN.md | 10 - synced_files/Week_2_6/WS_2_6_solution.md | 10 - .../Week_2_7/PA/PA_2_7_Times_Tables.md | 10 - synced_files/Week_2_7/PA/PA_2_7_solution.md | 10 - synced_files/Week_2_7/WS_2_7_solution.html | 14 +- synced_files/Week_2_7/WS_2_7_solution.ipynb | 14 +- synced_files/Week_2_7/WS_2_7_solution.md | 20 +- synced_files/Week_2_7/WS_2_7_student.html | 6 +- synced_files/Week_2_7/WS_2_7_student.ipynb | 6 +- synced_files/Week_2_7/WS_2_7_student.md | 16 +- synced_files/Week_2_8/WS_2_8_dirty_water.html | 47 +- .../Week_2_8/WS_2_8_dirty_water.ipynb | 12 +- synced_files/Week_2_8/WS_2_8_dirty_water.md | 22 +- synced_files/Week_2_8/WS_2_8_dirty_water.py | 12 +- synced_files/Week_2_8/WS_2_8_solution.html | 162 ++-- synced_files/Week_2_8/WS_2_8_solution.ipynb | 34 +- synced_files/Week_2_8/WS_2_8_solution.md | 44 +- synced_files/Week_2_8/WS_2_8_solution.py | 34 +- synced_files/tutorials/Week_1_3/Analysis.md | 10 - synced_files/tutorials/Week_1_5/Tutorial.md | 10 - synced_files/tutorials/Week_1_6/Tutorial.md | 10 - .../week_1_1/PA_1_1_Catch_Them_All.md | 10 - ...Data_Cleaning_and_Boosting_Productivity.md | 10 - synced_files/week_1_3/PA_1_3_solution.md | 10 - synced_files/week_1_3/WS_1_3_Moving_Ice.md | 10 - synced_files/week_1_3/WS_1_3_solution.md | 10 - synced_files/week_1_5/PA/PA_1_5_solution.md | 10 - .../week_1_5/PA/PA_1_5_useful_tricks.md | 10 - synced_files/week_1_5/PA_ice/PA_plots.md | 10 - .../week_1_5/WS_1_5_dont_integr_hate.md | 10 - synced_files/week_1_5/WS_1_5_solution.md | 10 - 172 files changed, 1813 insertions(+), 4764 deletions(-) create mode 100644 README_sync.md create mode 100644 footer.html create mode 100644 notebook_hashes.json diff --git a/README_sync.md b/README_sync.md new file mode 100644 index 00000000..932b6570 --- /dev/null +++ b/README_sync.md @@ -0,0 +1,26 @@ +# Notebook Sync Tool Documentation + +## Overview +This tool synchronizes Jupyter notebooks to various formats including Markdown, Python, and HTML. + +## Technical Decisions + +### Markdown2 Package +Selected for: +- Robust HTML conversion capabilities +- Built-in support for code syntax highlighting +- Extended Markdown feature support including tables and footnotes +- quick solution for rendering Markdown + + +### Architecture Decisions +- Uses Jupytext for reliable notebook conversion +- Implements file hash comparison for change detection +- Supports selective file updates with force update option +- Preserves essential metadata while cleaning notebooks + +## Configuration +See `config_sync.yml` for available options including: +- Sync options (replace_all, force_update) +- Format selection +- Specific notebook processing \ No newline at end of file diff --git a/config_sync.yml b/config_sync.yml index 9b3ecdf8..6d0a5f20 100644 --- a/config_sync.yml +++ b/config_sync.yml @@ -1,3 +1,6 @@ +sync_options: + replace_all: false # When false, only update specified files + content_dir: "content" output_dir: "synced_files" formats: @@ -9,7 +12,11 @@ html_options: template: "basic" include_code: true include_outputs: true + # Uncomment and modify if you want to process specific notebooks only # specific_notebooks: -# - "Week_2_8/WS_2_8_dirty_water.ipynb" -# - "Week_2_8/WS_2_8_solution.ipynb" \ No newline at end of file +# options: +# force_update: false # Force update even without changes +# files: +# - "Week_2_8/WS_2_8_dirty_water.ipynb" +# - "Week_2_8/WS_2_8_solution.ipynb" \ No newline at end of file diff --git a/content/Week_2_4/PA/PA_2_4_B_solution.ipynb b/content/Week_2_4/PA/PA_2_4_B_solution.ipynb index 9b597997..dca087c2 100644 --- a/content/Week_2_4/PA/PA_2_4_B_solution.ipynb +++ b/content/Week_2_4/PA/PA_2_4_B_solution.ipynb @@ -359,24 +359,39 @@ "**End of notebook.**\n", "<h2 style=\"height: 60px\">\n", "</h2>\n", - "<h3 style=\"position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; bottom: 60px; right: 50px; margin: 0; border: 0\">\n", + "<h3 style=\"position: relative; display: flex; flex-direction: row-reverse; margin: 20px 50px; border: 0\">\n", " <style>\n", " .markdown {width:100%; position: relative}\n", " article { position: relative }\n", + " .footer-links {\n", + " display: flex;\n", + " flex-direction: row-reverse;\n", + " align-items: center;\n", + " gap: 20px;\n", + " margin-bottom: 20px;\n", + " }\n", + " .footer-links img {\n", + " height: auto;\n", + " max-width: 100px;\n", + " }\n", " </style>\n", - " <a rel=\"license\" href=\"http://creativecommons.org/licenses/by-nc-sa/4.0/\">\n", - " <img alt=\"Creative Commons License\" style=\"border-width:; width:88px; height:auto; padding-top:10px\" src=\"https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png\" />\n", - " </a>\n", - " <a rel=\"TU Delft\" href=\"https://www.tudelft.nl/en/ceg\">\n", - " <img alt=\"TU Delft\" style=\"border-width:0; width:100px; height:auto; padding-bottom:0px\" src=\"https://gitlab.tudelft.nl/mude/public/-/raw/main/tu-logo/TU_P1_full-color.png\"/>\n", - " </a>\n", - " <a rel=\"MUDE\" href=\"http://mude.citg.tudelft.nl/\">\n", - " <img alt=\"MUDE\" style=\"border-width:0; width:100px; height:auto; padding-bottom:0px\" src=\"https://gitlab.tudelft.nl/mude/public/-/raw/main/mude-logo/MUDE_Logo-small.png\"/>\n", - " </a>\n", - " \n", + " <div class=\"footer-links\">\n", + " <a rel=\"license\" href=\"http://creativecommons.org/licenses/by/4.0/\">\n", + " <img alt=\"Creative Commons License\" style=\"width:88px; padding-top:10px\" src=\"https://i.creativecommons.org/l/by/4.0/88x31.png\" />\n", + " </a>\n", + " <a rel=\"TU Delft\" href=\"https://www.tudelft.nl/en/ceg\">\n", + " <img alt=\"TU Delft\" style=\"width:100px;\" src=\"https://gitlab.tudelft.nl/mude/public/-/raw/main/tu-logo/TU_P1_full-color.png\" />\n", + " </a>\n", + " <a rel=\"MUDE\" href=\"http://mude.citg.tudelft.nl/\">\n", + " <img alt=\"MUDE\" style=\"width:100px;\" src=\"https://gitlab.tudelft.nl/mude/public/-/raw/main/mude-logo/MUDE_Logo-small.png\" />\n", + " </a>\n", + " </div>\n", "</h3>\n", "<span style=\"font-size: 75%\">\n", - "© Copyright 2023 <a rel=\"MUDE Team\" href=\"https://studiegids.tudelft.nl/a101_displayCourse.do?course_id=65595\">MUDE Teaching Team</a> TU Delft. This work is licensed under a <a rel=\"license\" href=\"http://creativecommons.org/licenses/by-nc-sa/4.0/\">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>." + "© Copyright 2024 <a rel=\"MUDE\" href=\"http://mude.citg.tudelft.nl/\">MUDE</a> TU Delft. This work is licensed under a <a rel=\"license\" href=\"http://creativecommons.org/licenses/by/4.0/\">CC BY 4.0 License</a>.\n", + "</span>\n", + "\n", + "<userStyle>Normal</userStyle>" ] } ], diff --git a/content/Week_2_8/WS_2_8_solution.ipynb b/content/Week_2_8/WS_2_8_solution.ipynb index 35d0c93a..66325eca 100644 --- a/content/Week_2_8/WS_2_8_solution.ipynb +++ b/content/Week_2_8/WS_2_8_solution.ipynb @@ -282,26 +282,24 @@ "metadata": {}, "source": [ "**End of notebook.**\n", - "<h2 style=\"height: 60px\">\n", - "</h2>\n", - "<h3 style=\"position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; bottom: 60px; right: 50px; margin: 0; border: 0\">\n", - " <style>\n", - " .markdown {width:100%; position: relative}\n", - " article { position: relative }\n", - " </style>\n", - " <a rel=\"license\" href=\"http://creativecommons.org/licenses/by/4.0/\">\n", - " <img alt=\"Creative Commons License\" style=\"border-width:; width:88px; height:auto; padding-top:10px\" src=\"https://i.creativecommons.org/l/by/4.0/88x31.png\" />\n", + "\n", + "<div style=\"margin-top: 50px; padding-top: 20px; border-top: 1px solid #ccc;\">\n", + " <div style=\"display: flex; justify-content: flex-end; gap: 20px; align-items: center;\">\n", + " <a rel=\"MUDE\" href=\"http://mude.citg.tudelft.nl/\">\n", + " <img alt=\"MUDE\" style=\"width:100px; height:auto;\" src=\"https://gitlab.tudelft.nl/mude/public/-/raw/main/mude-logo/MUDE_Logo-small.png\" />\n", " </a>\n", " <a rel=\"TU Delft\" href=\"https://www.tudelft.nl/en/ceg\">\n", - " <img alt=\"TU Delft\" style=\"border-width:0; width:100px; height:auto; padding-bottom:0px\" src=\"https://gitlab.tudelft.nl/mude/public/-/raw/main/tu-logo/TU_P1_full-color.png\" />\n", + " <img alt=\"TU Delft\" style=\"width:100px; height:auto;\" src=\"https://gitlab.tudelft.nl/mude/public/-/raw/main/tu-logo/TU_P1_full-color.png\" />\n", " </a>\n", - " <a rel=\"MUDE\" href=\"http://mude.citg.tudelft.nl/\">\n", - " <img alt=\"MUDE\" style=\"border-width:0; width:100px; height:auto; padding-bottom:0px\" src=\"https://gitlab.tudelft.nl/mude/public/-/raw/main/mude-logo/MUDE_Logo-small.png\" />\n", + " <a rel=\"license\" href=\"http://creativecommons.org/licenses/by/4.0/\">\n", + " <img alt=\"Creative Commons License\" style=\"width:88px; height:auto;\" src=\"https://i.creativecommons.org/l/by/4.0/88x31.png\" />\n", " </a>\n", - " \n", - "</h3>\n", - "<span style=\"font-size: 75%\">\n", - "© Copyright 2024 <a rel=\"MUDE\" href=\"http://mude.citg.tudelft.nl/\">MUDE</a> TU Delft. This work is licensed under a <a rel=\"license\" href=\"http://creativecommons.org/licenses/by/4.0/\">CC BY 4.0 License</a>." + " </div>\n", + " <div style=\"font-size: 75%; margin-top: 10px; text-align: right;\">\n", + " © Copyright 2024 <a rel=\"MUDE\" href=\"http://mude.citg.tudelft.nl/\">MUDE</a> TU Delft. \n", + " This work is licensed under a <a rel=\"license\" href=\"http://creativecommons.org/licenses/by/4.0/\">CC BY 4.0 License</a>.\n", + " </div>\n", + "</div>" ] } ], diff --git a/conversion_errors.log b/conversion_errors.log index e7a224f3..80f77fc7 100644 --- a/conversion_errors.log +++ b/conversion_errors.log @@ -1,244 +1,256 @@ -INFO: === Starting synchronization at 2024-12-30 14:45:41 === -INFO: Searching in: C:\Users\rlanzafame\code\MUDE\2024-files\content +INFO: === Starting synchronization at 2024-12-31 00:44:51 === +INFO: Searching in: C:\Users\ncore\Desktop\2024-files\content INFO: Found 120 notebooks -INFO: [1/120] Processing GA_1_1\Task_2_solution.ipynb -INFO: No changes detected -INFO: [2/120] Processing GA_1_2\Analysis.ipynb -INFO: No changes detected -INFO: [3/120] Processing GA_1_2\Analysis_solution.ipynb -INFO: No changes detected -INFO: [4/120] Processing GA_1_3\Analysis.ipynb -INFO: No changes detected -INFO: [5/120] Processing GA_1_3\Analysis_Solution.ipynb -INFO: No changes detected -INFO: [6/120] Processing GA_1_3\Warmup.ipynb -INFO: No changes detected -INFO: [7/120] Processing GA_1_4\Analysis.ipynb -INFO: No changes detected -INFO: [8/120] Processing GA_1_4\Analysis_solution.ipynb -INFO: No changes detected -INFO: [9/120] Processing GA_1_5\Analysis.ipynb -INFO: No changes detected -INFO: [10/120] Processing GA_1_5\Analysis_solution.ipynb -INFO: No changes detected -INFO: [11/120] Processing GA_1_5\central_diff_illustration.ipynb -INFO: No changes detected -INFO: [12/120] Processing GA_1_6\Analysis.ipynb -INFO: No changes detected -INFO: [13/120] Processing GA_1_6\Analysis_solution.ipynb -INFO: No changes detected -INFO: [14/120] Processing GA_1_7\Solution\Discharge\Analysis_discharge_solution.ipynb -INFO: No changes detected -INFO: [15/120] Processing GA_1_7\Solution\Emissions\Analysis_emissions_solution.ipynb -INFO: No changes detected -INFO: [16/120] Processing GA_1_7\Solution\Force\Analysis_force_solution.ipynb -INFO: No changes detected -INFO: [17/120] Processing GA_1_7\Student\Discharge\Analysis_discharge.ipynb -INFO: No changes detected -INFO: [18/120] Processing GA_1_7\Student\Emissions\Analysis_emissions.ipynb -INFO: No changes detected -INFO: [19/120] Processing GA_1_7\Student\Force\Analysis_force.ipynb -INFO: No changes detected -INFO: [20/120] Processing GA_1_7\Unused\Temp\Distribution_Fitting_T.ipynb -INFO: No changes detected -INFO: [21/120] Processing GA_1_8\Analysis.ipynb -INFO: No changes detected -INFO: [22/120] Processing GA_1_8\solution\GA_1_8_solution_HT.ipynb -INFO: No changes detected -INFO: [23/120] Processing GA_1_8\solution\GA_1_8_solution_hu.ipynb -INFO: No changes detected -INFO: [24/120] Processing GA_1_8\solution\GA_1_8_solution_traffic.ipynb -INFO: No changes detected -INFO: [25/120] Processing GA_2_1\Analysis.ipynb -INFO: No changes detected -INFO: [26/120] Processing GA_2_1\Analysis_solution.ipynb -INFO: No changes detected -INFO: [27/120] Processing GA_2_1\mesh_dev.ipynb -INFO: No changes detected -INFO: [28/120] Processing GA_2_1\mesh_tips.ipynb -INFO: No changes detected -INFO: [29/120] Processing GA_2_1\mesh\mesh.ipynb -INFO: No changes detected -INFO: [30/120] Processing GA_2_2\the_big_M.ipynb -INFO: No changes detected -INFO: [31/120] Processing GA_2_3\Analysis.ipynb -INFO: No changes detected -INFO: [32/120] Processing GA_2_3\Analysis_solution.ipynb -INFO: No changes detected -INFO: [33/120] Processing GA_2_4\GA_2_4_Beary_Icy.ipynb -INFO: No changes detected -INFO: [34/120] Processing GA_2_4\GA_2_4_solution.ipynb -INFO: No changes detected -INFO: [35/120] Processing GA_2_5\Analysis_GA.ipynb -INFO: No changes detected -INFO: [36/120] Processing GA_2_5\Analysis_GA_solution.ipynb -INFO: No changes detected -INFO: [37/120] Processing GA_2_5\Analysis_LP.ipynb -INFO: No changes detected -INFO: [38/120] Processing GA_2_5\Analysis_LP_solution.ipynb -INFO: No changes detected -INFO: [39/120] Processing GA_2_6\Analysis.ipynb -INFO: No changes detected -INFO: [40/120] Processing GA_2_6\Analysis_solution.ipynb -INFO: No changes detected -INFO: [41/120] Processing GA_2_7\rain_solution.ipynb -INFO: No changes detected -INFO: [42/120] Processing tutorials\Week_1_3\Analysis.ipynb -INFO: No changes detected -INFO: [43/120] Processing tutorials\Week_1_5\Tutorial.ipynb -INFO: No changes detected -INFO: [44/120] Processing tutorials\Week_1_6\Tutorial.ipynb -INFO: No changes detected -INFO: [45/120] Processing Week_1_1\PA_1_1_Catch_Them_All.ipynb -INFO: No changes detected -INFO: [46/120] Processing Week_1_2\In_Class_Activity.ipynb -INFO: No changes detected -INFO: [47/120] Processing Week_1_2\In_Class_Activity_Solution.ipynb -INFO: No changes detected -INFO: [48/120] Processing Week_1_2\PA_1_2_Random_Adventure.ipynb -INFO: No changes detected -INFO: [49/120] Processing Week_1_2\PA_1_2_solution.ipynb -INFO: No changes detected -INFO: [50/120] Processing Week_1_2\WS_1_2_Pipe_Dreams.ipynb -INFO: No changes detected -INFO: [51/120] Processing Week_1_2\WS_1_2_solution.ipynb -INFO: No changes detected -INFO: [52/120] Processing week_1_3\PA_1_3_Data_Cleaning_and_Boosting_Productivity.ipynb -INFO: No changes detected -INFO: [53/120] Processing week_1_3\PA_1_3_solution.ipynb -INFO: No changes detected -INFO: [54/120] Processing week_1_3\WS_1_3_Moving_Ice.ipynb -INFO: No changes detected -INFO: [55/120] Processing week_1_3\WS_1_3_solution.ipynb -INFO: No changes detected -INFO: [56/120] Processing Week_1_4\WS_1_4_Nonlinear_Rain.ipynb -INFO: No changes detected -INFO: [57/120] Processing Week_1_4\WS_1_4_solution.ipynb -INFO: No changes detected -INFO: [58/120] Processing week_1_5\WS_1_5_dont_integr_hate.ipynb -INFO: No changes detected -INFO: [59/120] Processing week_1_5\WS_1_5_solution.ipynb -INFO: No changes detected -INFO: [60/120] Processing week_1_5\PA\PA_1_5_solution.ipynb -INFO: No changes detected -INFO: [61/120] Processing week_1_5\PA\PA_1_5_useful_tricks.ipynb -INFO: No changes detected -INFO: [62/120] Processing week_1_5\PA_ice\PA_plots.ipynb -INFO: No changes detected -INFO: [63/120] Processing Week_1_6\WS_1_6_solution.ipynb -INFO: No changes detected -INFO: [64/120] Processing Week_1_6\WS_1_6_time_to_c_ode.ipynb -INFO: No changes detected -INFO: [65/120] Processing Week_1_6\PA\PA_1_6_Boxes_and_Bugs.ipynb -INFO: No changes detected -INFO: [66/120] Processing Week_1_6\PA\PA_1_6_solution.ipynb -INFO: No changes detected -INFO: [67/120] Processing Week_1_7\scipy_stats.ipynb -INFO: No changes detected -INFO: [68/120] Processing Week_1_7\WS_1_7_lets_be_concrete.ipynb -INFO: No changes detected -INFO: [69/120] Processing Week_1_7\WS_1_7_solution.ipynb -INFO: No changes detected -INFO: [70/120] Processing Week_1_7\PA\PA_1_7_Classy_Distributions.ipynb -INFO: No changes detected -INFO: [71/120] Processing Week_1_7\PA\PA_1_7_solution.ipynb -INFO: No changes detected -INFO: [72/120] Processing Week_1_8\data.ipynb -INFO: No changes detected -INFO: [73/120] Processing Week_1_8\intersection.ipynb -INFO: No changes detected -INFO: [74/120] Processing Week_1_8\test_bivariate.ipynb -INFO: No changes detected -INFO: [75/120] Processing Week_1_8\PA\PA_1_8_Equations_Done_Symply.ipynb -INFO: No changes detected -INFO: [76/120] Processing Week_1_8\PA\PA_1_8_solution.ipynb -INFO: No changes detected -INFO: [77/120] Processing Week_1_8\WS\linearity_or_not.ipynb -INFO: No changes detected -INFO: [78/120] Processing Week_1_8\WS\WS_1_8_solution.ipynb -INFO: No changes detected -INFO: [79/120] Processing Week_1_8\WS\WS_1_8_Thingamajig.ipynb -INFO: No changes detected -INFO: [80/120] Processing Week_2_1\WS_2_1_solution.ipynb -INFO: No changes detected -INFO: [81/120] Processing Week_2_1\WS_2_1_wiggle.ipynb -INFO: No changes detected -INFO: [82/120] Processing Week_2_1\WS_2_1_wiggle_test_ci.ipynb -INFO: No changes detected -INFO: [83/120] Processing Week_2_1\PA\PA_2_1_classy_city.ipynb -INFO: No changes detected -INFO: [84/120] Processing Week_2_1\PA\PA_2_1_solution.ipynb -INFO: No changes detected -INFO: [85/120] Processing Week_2_1\PA\PA_dev.ipynb -INFO: No changes detected -INFO: [86/120] Processing Week_2_1\PA\U.ipynb -INFO: No changes detected -INFO: [87/120] Processing Week_2_2\PA_2_2_love_is_sparse.ipynb -INFO: No changes detected -INFO: [88/120] Processing Week_2_2\PA_2_2_solution.ipynb -INFO: No changes detected -INFO: [89/120] Processing Week_2_2\WS_2_2_more_support.ipynb -INFO: No changes detected -INFO: [90/120] Processing Week_2_2\WS_2_2_solution.ipynb -INFO: No changes detected -INFO: [91/120] Processing Week_2_2\old\old_PA10_Love_is_Sparse.ipynb -INFO: No changes detected -INFO: [92/120] Processing Week_2_2\old\old_PA10_solution_sympy.ipynb -INFO: No changes detected -INFO: [93/120] Processing Week_2_2\old\PA_2_1_solution.ipynb -INFO: No changes detected -INFO: [94/120] Processing Week_2_2\old\PA_2_1_solution_sympy.ipynb -INFO: No changes detected -INFO: [95/120] Processing Week_2_2\old\WS_2_2_more_support.ipynb -INFO: No changes detected -INFO: [96/120] Processing Week_2_2\PA\PA_2_2_love_is_sparse.ipynb -INFO: No changes detected -INFO: [97/120] Processing Week_2_2\PA\PA_2_2_solution.ipynb -INFO: No changes detected -INFO: [98/120] Processing Week_2_3\WS_2_3_DFT_you_try_meow.ipynb -INFO: No changes detected -INFO: [99/120] Processing Week_2_3\WS_2_3_solution.ipynb -INFO: No changes detected -INFO: [100/120] Processing Week_2_3\PA\PA_2_3_iter_remoto.ipynb -INFO: No changes detected -INFO: [101/120] Processing Week_2_3\PA\PA_2_3_solution.ipynb -INFO: No changes detected -INFO: [102/120] Processing Week_2_4\WS_2_4_Feel_the_Pressure.ipynb -INFO: No changes detected -INFO: [103/120] Processing Week_2_4\WS_2_4_solution.ipynb -INFO: No changes detected -INFO: [104/120] Processing Week_2_4\PA\PA_2_4_A_gurobilicious.ipynb -INFO: No changes detected -INFO: [105/120] Processing Week_2_4\PA\PA_2_4_B_axis_of_awesome.ipynb -INFO: No changes detected -INFO: [106/120] Processing Week_2_4\PA\PA_2_4_B_solution.ipynb -INFO: No changes detected -INFO: [107/120] Processing Week_2_5\WS_2_5_Profit_vs_Planet.ipynb -INFO: No changes detected -INFO: [108/120] Processing Week_2_5\WS_2_5_solution.ipynb -INFO: No changes detected -INFO: [109/120] Processing Week_2_5\PA\PA_2_5_data_framework.ipynb -INFO: No changes detected -INFO: [110/120] Processing Week_2_5\PA\PA_2_5_solution.ipynb -INFO: No changes detected -INFO: [111/120] Processing Week_2_6\WS_2_6_be_a_NN.ipynb -INFO: No changes detected -INFO: [112/120] Processing Week_2_6\WS_2_6_solution.ipynb -INFO: No changes detected -INFO: [113/120] Processing Week_2_6\PA\PA_2_6_3_way_split.ipynb -INFO: No changes detected -INFO: [114/120] Processing Week_2_6\PA\PA_2_6_solution.ipynb -INFO: No changes detected -INFO: [115/120] Processing Week_2_7\WS_2_7_solution.ipynb -INFO: No changes detected -INFO: [116/120] Processing Week_2_7\WS_2_7_student.ipynb -INFO: No changes detected -INFO: [117/120] Processing Week_2_7\PA\PA_2_7_solution.ipynb -INFO: No changes detected -INFO: [118/120] Processing Week_2_7\PA\PA_2_7_Times_Tables.ipynb -INFO: No changes detected -INFO: [119/120] Processing Week_2_8\WS_2_8_dirty_water.ipynb -INFO: No changes detected -INFO: [120/120] Processing Week_2_8\WS_2_8_solution.ipynb -INFO: No changes detected -INFO: === Completed at 2024-12-30 14:45:42 (Duration: 0:00:01.171471) === +INFO: [1/120] Checking GA_1_1\Task_2_solution.ipynb +INFO: No changes detected for GA_1_1\Task_2_solution.ipynb +INFO: [2/120] Checking GA_1_2\Analysis.ipynb +INFO: No changes detected for GA_1_2\Analysis.ipynb +INFO: [3/120] Checking GA_1_2\Analysis_solution.ipynb +INFO: No changes detected for GA_1_2\Analysis_solution.ipynb +INFO: [4/120] Checking GA_1_3\Analysis.ipynb +INFO: No changes detected for GA_1_3\Analysis.ipynb +INFO: [5/120] Checking GA_1_3\Analysis_Solution.ipynb +INFO: No changes detected for GA_1_3\Analysis_Solution.ipynb +INFO: [6/120] Checking GA_1_3\Warmup.ipynb +INFO: No changes detected for GA_1_3\Warmup.ipynb +INFO: [7/120] Checking GA_1_4\Analysis.ipynb +INFO: No changes detected for GA_1_4\Analysis.ipynb +INFO: [8/120] Checking GA_1_4\Analysis_solution.ipynb +INFO: No changes detected for GA_1_4\Analysis_solution.ipynb +INFO: [9/120] Checking GA_1_5\Analysis.ipynb +INFO: No changes detected for GA_1_5\Analysis.ipynb +INFO: [10/120] Checking GA_1_5\Analysis_solution.ipynb +INFO: No changes detected for GA_1_5\Analysis_solution.ipynb +INFO: [11/120] Checking GA_1_5\central_diff_illustration.ipynb +INFO: No changes detected for GA_1_5\central_diff_illustration.ipynb +INFO: [12/120] Checking GA_1_6\Analysis.ipynb +INFO: No changes detected for GA_1_6\Analysis.ipynb +INFO: [13/120] Checking GA_1_6\Analysis_solution.ipynb +INFO: No changes detected for GA_1_6\Analysis_solution.ipynb +INFO: [14/120] Checking GA_1_7\Solution\Discharge\Analysis_discharge_solution.ipynb +INFO: No changes detected for GA_1_7\Solution\Discharge\Analysis_discharge_solution.ipynb +INFO: [15/120] Checking GA_1_7\Solution\Emissions\Analysis_emissions_solution.ipynb +INFO: No changes detected for GA_1_7\Solution\Emissions\Analysis_emissions_solution.ipynb +INFO: [16/120] Checking GA_1_7\Solution\Force\Analysis_force_solution.ipynb +INFO: No changes detected for GA_1_7\Solution\Force\Analysis_force_solution.ipynb +INFO: [17/120] Checking GA_1_7\Student\Discharge\Analysis_discharge.ipynb +INFO: No changes detected for GA_1_7\Student\Discharge\Analysis_discharge.ipynb +INFO: [18/120] Checking GA_1_7\Student\Emissions\Analysis_emissions.ipynb +INFO: No changes detected for GA_1_7\Student\Emissions\Analysis_emissions.ipynb +INFO: [19/120] Checking GA_1_7\Student\Force\Analysis_force.ipynb +INFO: No changes detected for GA_1_7\Student\Force\Analysis_force.ipynb +INFO: [20/120] Checking GA_1_7\Unused\Temp\Distribution_Fitting_T.ipynb +INFO: No changes detected for GA_1_7\Unused\Temp\Distribution_Fitting_T.ipynb +INFO: [21/120] Checking GA_1_8\Analysis.ipynb +INFO: No changes detected for GA_1_8\Analysis.ipynb +INFO: [22/120] Checking GA_1_8\solution\GA_1_8_solution_HT.ipynb +INFO: No changes detected for GA_1_8\solution\GA_1_8_solution_HT.ipynb +INFO: [23/120] Checking GA_1_8\solution\GA_1_8_solution_hu.ipynb +INFO: No changes detected for GA_1_8\solution\GA_1_8_solution_hu.ipynb +INFO: [24/120] Checking GA_1_8\solution\GA_1_8_solution_traffic.ipynb +INFO: No changes detected for GA_1_8\solution\GA_1_8_solution_traffic.ipynb +INFO: [25/120] Checking GA_2_1\Analysis.ipynb +INFO: No changes detected for GA_2_1\Analysis.ipynb +INFO: [26/120] Checking GA_2_1\Analysis_solution.ipynb +INFO: No changes detected for GA_2_1\Analysis_solution.ipynb +INFO: [27/120] Checking GA_2_1\mesh_dev.ipynb +INFO: No changes detected for GA_2_1\mesh_dev.ipynb +INFO: [28/120] Checking GA_2_1\mesh_tips.ipynb +INFO: No changes detected for GA_2_1\mesh_tips.ipynb +INFO: [29/120] Checking GA_2_1\mesh\mesh.ipynb +INFO: No changes detected for GA_2_1\mesh\mesh.ipynb +INFO: [30/120] Checking GA_2_2\the_big_M.ipynb +INFO: No changes detected for GA_2_2\the_big_M.ipynb +INFO: [31/120] Checking GA_2_3\Analysis.ipynb +INFO: No changes detected for GA_2_3\Analysis.ipynb +INFO: [32/120] Checking GA_2_3\Analysis_solution.ipynb +INFO: No changes detected for GA_2_3\Analysis_solution.ipynb +INFO: [33/120] Checking GA_2_4\GA_2_4_Beary_Icy.ipynb +INFO: No changes detected for GA_2_4\GA_2_4_Beary_Icy.ipynb +INFO: [34/120] Checking GA_2_4\GA_2_4_solution.ipynb +INFO: No changes detected for GA_2_4\GA_2_4_solution.ipynb +INFO: [35/120] Checking GA_2_5\Analysis_GA.ipynb +INFO: No changes detected for GA_2_5\Analysis_GA.ipynb +INFO: [36/120] Checking GA_2_5\Analysis_GA_solution.ipynb +INFO: No changes detected for GA_2_5\Analysis_GA_solution.ipynb +INFO: [37/120] Checking GA_2_5\Analysis_LP.ipynb +INFO: No changes detected for GA_2_5\Analysis_LP.ipynb +INFO: [38/120] Checking GA_2_5\Analysis_LP_solution.ipynb +INFO: No changes detected for GA_2_5\Analysis_LP_solution.ipynb +INFO: [39/120] Checking GA_2_6\Analysis.ipynb +INFO: No changes detected for GA_2_6\Analysis.ipynb +INFO: [40/120] Checking GA_2_6\Analysis_solution.ipynb +INFO: No changes detected for GA_2_6\Analysis_solution.ipynb +INFO: [41/120] Checking GA_2_7\rain_solution.ipynb +INFO: No changes detected for GA_2_7\rain_solution.ipynb +INFO: [42/120] Checking tutorials\Week_1_3\Analysis.ipynb +INFO: No changes detected for tutorials\Week_1_3\Analysis.ipynb +INFO: [43/120] Checking tutorials\Week_1_5\Tutorial.ipynb +INFO: No changes detected for tutorials\Week_1_5\Tutorial.ipynb +INFO: [44/120] Checking tutorials\Week_1_6\Tutorial.ipynb +INFO: No changes detected for tutorials\Week_1_6\Tutorial.ipynb +INFO: [45/120] Checking week_1_1\PA_1_1_Catch_Them_All.ipynb +INFO: No changes detected for week_1_1\PA_1_1_Catch_Them_All.ipynb +INFO: [46/120] Checking Week_1_2\In_Class_Activity.ipynb +INFO: No changes detected for Week_1_2\In_Class_Activity.ipynb +INFO: [47/120] Checking Week_1_2\In_Class_Activity_Solution.ipynb +INFO: No changes detected for Week_1_2\In_Class_Activity_Solution.ipynb +INFO: [48/120] Checking Week_1_2\PA_1_2_Random_Adventure.ipynb +INFO: No changes detected for Week_1_2\PA_1_2_Random_Adventure.ipynb +INFO: [49/120] Checking Week_1_2\PA_1_2_solution.ipynb +INFO: No changes detected for Week_1_2\PA_1_2_solution.ipynb +INFO: [50/120] Checking Week_1_2\WS_1_2_Pipe_Dreams.ipynb +INFO: No changes detected for Week_1_2\WS_1_2_Pipe_Dreams.ipynb +INFO: [51/120] Checking Week_1_2\WS_1_2_solution.ipynb +INFO: No changes detected for Week_1_2\WS_1_2_solution.ipynb +INFO: [52/120] Checking week_1_3\PA_1_3_Data_Cleaning_and_Boosting_Productivity.ipynb +INFO: No changes detected for week_1_3\PA_1_3_Data_Cleaning_and_Boosting_Productivity.ipynb +INFO: [53/120] Checking week_1_3\PA_1_3_solution.ipynb +INFO: No changes detected for week_1_3\PA_1_3_solution.ipynb +INFO: [54/120] Checking week_1_3\WS_1_3_Moving_Ice.ipynb +INFO: No changes detected for week_1_3\WS_1_3_Moving_Ice.ipynb +INFO: [55/120] Checking week_1_3\WS_1_3_solution.ipynb +INFO: No changes detected for week_1_3\WS_1_3_solution.ipynb +INFO: [56/120] Checking Week_1_4\WS_1_4_Nonlinear_Rain.ipynb +INFO: No changes detected for Week_1_4\WS_1_4_Nonlinear_Rain.ipynb +INFO: [57/120] Checking Week_1_4\WS_1_4_solution.ipynb +INFO: No changes detected for Week_1_4\WS_1_4_solution.ipynb +INFO: [58/120] Checking week_1_5\WS_1_5_dont_integr_hate.ipynb +INFO: No changes detected for week_1_5\WS_1_5_dont_integr_hate.ipynb +INFO: [59/120] Checking week_1_5\WS_1_5_solution.ipynb +INFO: No changes detected for week_1_5\WS_1_5_solution.ipynb +INFO: [60/120] Checking week_1_5\PA\PA_1_5_solution.ipynb +INFO: No changes detected for week_1_5\PA\PA_1_5_solution.ipynb +INFO: [61/120] Checking week_1_5\PA\PA_1_5_useful_tricks.ipynb +INFO: No changes detected for week_1_5\PA\PA_1_5_useful_tricks.ipynb +INFO: [62/120] Checking week_1_5\PA_ice\PA_plots.ipynb +INFO: No changes detected for week_1_5\PA_ice\PA_plots.ipynb +INFO: [63/120] Checking Week_1_6\WS_1_6_solution.ipynb +INFO: No changes detected for Week_1_6\WS_1_6_solution.ipynb +INFO: [64/120] Checking Week_1_6\WS_1_6_time_to_c_ode.ipynb +INFO: No changes detected for Week_1_6\WS_1_6_time_to_c_ode.ipynb +INFO: [65/120] Checking Week_1_6\PA\PA_1_6_Boxes_and_Bugs.ipynb +INFO: No changes detected for Week_1_6\PA\PA_1_6_Boxes_and_Bugs.ipynb +INFO: [66/120] Checking Week_1_6\PA\PA_1_6_solution.ipynb +INFO: No changes detected for Week_1_6\PA\PA_1_6_solution.ipynb +INFO: [67/120] Checking Week_1_7\scipy_stats.ipynb +INFO: No changes detected for Week_1_7\scipy_stats.ipynb +INFO: [68/120] Checking Week_1_7\WS_1_7_lets_be_concrete.ipynb +INFO: No changes detected for Week_1_7\WS_1_7_lets_be_concrete.ipynb +INFO: [69/120] Checking Week_1_7\WS_1_7_solution.ipynb +INFO: No changes detected for Week_1_7\WS_1_7_solution.ipynb +INFO: [70/120] Checking Week_1_7\PA\PA_1_7_Classy_Distributions.ipynb +INFO: No changes detected for Week_1_7\PA\PA_1_7_Classy_Distributions.ipynb +INFO: [71/120] Checking Week_1_7\PA\PA_1_7_solution.ipynb +INFO: No changes detected for Week_1_7\PA\PA_1_7_solution.ipynb +INFO: [72/120] Checking Week_1_8\data.ipynb +INFO: No changes detected for Week_1_8\data.ipynb +INFO: [73/120] Checking Week_1_8\intersection.ipynb +INFO: No changes detected for Week_1_8\intersection.ipynb +INFO: [74/120] Checking Week_1_8\test_bivariate.ipynb +INFO: No changes detected for Week_1_8\test_bivariate.ipynb +INFO: [75/120] Checking Week_1_8\PA\PA_1_8_Equations_Done_Symply.ipynb +INFO: No changes detected for Week_1_8\PA\PA_1_8_Equations_Done_Symply.ipynb +INFO: [76/120] Checking Week_1_8\PA\PA_1_8_solution.ipynb +INFO: No changes detected for Week_1_8\PA\PA_1_8_solution.ipynb +INFO: [77/120] Checking Week_1_8\WS\linearity_or_not.ipynb +INFO: No changes detected for Week_1_8\WS\linearity_or_not.ipynb +INFO: [78/120] Checking Week_1_8\WS\WS_1_8_solution.ipynb +INFO: No changes detected for Week_1_8\WS\WS_1_8_solution.ipynb +INFO: [79/120] Checking Week_1_8\WS\WS_1_8_Thingamajig.ipynb +INFO: No changes detected for Week_1_8\WS\WS_1_8_Thingamajig.ipynb +INFO: [80/120] Checking Week_2_1\WS_2_1_solution.ipynb +INFO: No changes detected for Week_2_1\WS_2_1_solution.ipynb +INFO: [81/120] Checking Week_2_1\WS_2_1_wiggle.ipynb +INFO: No changes detected for Week_2_1\WS_2_1_wiggle.ipynb +INFO: [82/120] Checking Week_2_1\WS_2_1_wiggle_test_ci.ipynb +INFO: No changes detected for Week_2_1\WS_2_1_wiggle_test_ci.ipynb +INFO: [83/120] Checking Week_2_1\PA\PA_2_1_classy_city.ipynb +INFO: No changes detected for Week_2_1\PA\PA_2_1_classy_city.ipynb +INFO: [84/120] Checking Week_2_1\PA\PA_2_1_solution.ipynb +INFO: No changes detected for Week_2_1\PA\PA_2_1_solution.ipynb +INFO: [85/120] Checking Week_2_1\PA\PA_dev.ipynb +INFO: No changes detected for Week_2_1\PA\PA_dev.ipynb +INFO: [86/120] Checking Week_2_1\PA\U.ipynb +INFO: No changes detected for Week_2_1\PA\U.ipynb +INFO: [87/120] Checking Week_2_2\PA_2_2_love_is_sparse.ipynb +INFO: No changes detected for Week_2_2\PA_2_2_love_is_sparse.ipynb +INFO: [88/120] Checking Week_2_2\PA_2_2_solution.ipynb +INFO: No changes detected for Week_2_2\PA_2_2_solution.ipynb +INFO: [89/120] Checking Week_2_2\WS_2_2_more_support.ipynb +INFO: No changes detected for Week_2_2\WS_2_2_more_support.ipynb +INFO: [90/120] Checking Week_2_2\WS_2_2_solution.ipynb +INFO: No changes detected for Week_2_2\WS_2_2_solution.ipynb +INFO: [91/120] Checking Week_2_2\old\old_PA10_Love_is_Sparse.ipynb +INFO: No changes detected for Week_2_2\old\old_PA10_Love_is_Sparse.ipynb +INFO: [92/120] Checking Week_2_2\old\old_PA10_solution_sympy.ipynb +INFO: No changes detected for Week_2_2\old\old_PA10_solution_sympy.ipynb +INFO: [93/120] Checking Week_2_2\old\PA_2_1_solution.ipynb +INFO: No changes detected for Week_2_2\old\PA_2_1_solution.ipynb +INFO: [94/120] Checking Week_2_2\old\PA_2_1_solution_sympy.ipynb +INFO: No changes detected for Week_2_2\old\PA_2_1_solution_sympy.ipynb +INFO: [95/120] Checking Week_2_2\old\WS_2_2_more_support.ipynb +INFO: No changes detected for Week_2_2\old\WS_2_2_more_support.ipynb +INFO: [96/120] Checking Week_2_2\PA\PA_2_2_love_is_sparse.ipynb +INFO: No changes detected for Week_2_2\PA\PA_2_2_love_is_sparse.ipynb +INFO: [97/120] Checking Week_2_2\PA\PA_2_2_solution.ipynb +INFO: No changes detected for Week_2_2\PA\PA_2_2_solution.ipynb +INFO: [98/120] Checking Week_2_3\WS_2_3_DFT_you_try_meow.ipynb +INFO: No changes detected for Week_2_3\WS_2_3_DFT_you_try_meow.ipynb +INFO: [99/120] Checking Week_2_3\WS_2_3_solution.ipynb +INFO: No changes detected for Week_2_3\WS_2_3_solution.ipynb +INFO: [100/120] Checking Week_2_3\PA\PA_2_3_iter_remoto.ipynb +INFO: No changes detected for Week_2_3\PA\PA_2_3_iter_remoto.ipynb +INFO: [101/120] Checking Week_2_3\PA\PA_2_3_solution.ipynb +INFO: No changes detected for Week_2_3\PA\PA_2_3_solution.ipynb +INFO: [102/120] Checking Week_2_4\WS_2_4_Feel_the_Pressure.ipynb +INFO: No changes detected for Week_2_4\WS_2_4_Feel_the_Pressure.ipynb +INFO: [103/120] Checking Week_2_4\WS_2_4_solution.ipynb +INFO: No changes detected for Week_2_4\WS_2_4_solution.ipynb +INFO: [104/120] Checking Week_2_4\PA\PA_2_4_A_gurobilicious.ipynb +INFO: No changes detected for Week_2_4\PA\PA_2_4_A_gurobilicious.ipynb +INFO: [105/120] Checking Week_2_4\PA\PA_2_4_B_axis_of_awesome.ipynb +INFO: No changes detected for Week_2_4\PA\PA_2_4_B_axis_of_awesome.ipynb +INFO: [106/120] Checking Week_2_4\PA\PA_2_4_B_solution.ipynb +INFO: No changes detected for Week_2_4\PA\PA_2_4_B_solution.ipynb +INFO: [107/120] Checking Week_2_5\WS_2_5_Profit_vs_Planet.ipynb +INFO: No changes detected for Week_2_5\WS_2_5_Profit_vs_Planet.ipynb +INFO: [108/120] Checking Week_2_5\WS_2_5_solution.ipynb +INFO: No changes detected for Week_2_5\WS_2_5_solution.ipynb +INFO: [109/120] Checking Week_2_5\PA\PA_2_5_data_framework.ipynb +INFO: No changes detected for Week_2_5\PA\PA_2_5_data_framework.ipynb +INFO: [110/120] Checking Week_2_5\PA\PA_2_5_solution.ipynb +INFO: No changes detected for Week_2_5\PA\PA_2_5_solution.ipynb +INFO: [111/120] Checking Week_2_6\WS_2_6_be_a_NN.ipynb +INFO: No changes detected for Week_2_6\WS_2_6_be_a_NN.ipynb +INFO: [112/120] Checking Week_2_6\WS_2_6_solution.ipynb +INFO: No changes detected for Week_2_6\WS_2_6_solution.ipynb +INFO: [113/120] Checking Week_2_6\PA\PA_2_6_3_way_split.ipynb +INFO: No changes detected for Week_2_6\PA\PA_2_6_3_way_split.ipynb +INFO: [114/120] Checking Week_2_6\PA\PA_2_6_solution.ipynb +INFO: No changes detected for Week_2_6\PA\PA_2_6_solution.ipynb +INFO: [115/120] Checking Week_2_7\WS_2_7_solution.ipynb +INFO: No changes detected for Week_2_7\WS_2_7_solution.ipynb +INFO: [116/120] Checking Week_2_7\WS_2_7_student.ipynb +INFO: No changes detected for Week_2_7\WS_2_7_student.ipynb +INFO: [117/120] Checking Week_2_7\PA\PA_2_7_solution.ipynb +INFO: No changes detected for Week_2_7\PA\PA_2_7_solution.ipynb +INFO: [118/120] Checking Week_2_7\PA\PA_2_7_Times_Tables.ipynb +INFO: No changes detected for Week_2_7\PA\PA_2_7_Times_Tables.ipynb +INFO: [119/120] Checking Week_2_8\WS_2_8_dirty_water.ipynb +INFO: No changes detected for Week_2_8\WS_2_8_dirty_water.ipynb +INFO: [120/120] Checking Week_2_8\WS_2_8_solution.ipynb +INFO: Content changed for C:\Users\ncore\Desktop\2024-files\content\Week_2_8\WS_2_8_solution.ipynb (hash mismatch) +INFO: Processing Week_2_8\WS_2_8_solution.ipynb +INFO: Stats: 14 cells (2 code, 12 markdown), 193 lines +INFO: Successfully processed markdown format +INFO: Successfully processed python format +INFO: Successfully processed clean_python format +INFO: Converting C:\Users\ncore\Desktop\2024-files\synced_files\Week_2_8\WS_2_8_solution.ipynb to HTML at C:\Users\ncore\Desktop\2024-files\synced_files\Week_2_8\WS_2_8_solution.html +WARNING: Alternative text is missing on 2 image(s). +INFO: HTML conversion successful +INFO: Successfully processed html format +INFO: Successfully processed formats: ['markdown', 'python', 'clean_python', 'html'] +INFO: Completed in 3.32 seconds +INFO: Skipping cleanup due to replace_all=False +INFO: === Completed at 2024-12-31 00:44:54 (Duration: 0:00:03.520648) === diff --git a/footer.html b/footer.html new file mode 100644 index 00000000..dd041a85 --- /dev/null +++ b/footer.html @@ -0,0 +1,22 @@ +**End of notebook.** + +<div style="margin-top: 50px; padding-top: 20px; border-top: 1px solid #ccc;"> + <div style="display: flex; justify-content: flex-end; gap: 20px; align-items: center;"> + <a rel="MUDE" href="http://mude.citg.tudelft.nl/"> + <img alt="MUDE" style="width:100px; height:auto;" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/mude-logo/MUDE_Logo-small.png" /> + </a> + <a rel="TU Delft" href="https://www.tudelft.nl/en/ceg"> + <img alt="TU Delft" style="width:100px; height:auto;" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/tu-logo/TU_P1_full-color.png" /> + </a> + <a rel="license" href="http://creativecommons.org/licenses/by/4.0/"> + <img alt="Creative Commons License" style="width:88px; height:auto;" src="https://i.creativecommons.org/l/by/4.0/88x31.png" /> + </a> + </div> + <div style="font-size: 75%; margin-top: 10px; text-align: right;"> + © Copyright 2024 <a rel="MUDE" href="http://mude.citg.tudelft.nl/">MUDE</a> TU Delft. + This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by/4.0/">CC BY 4.0 License</a>. + </div> +</div> + + +<!--tested with WS_2_8_solution.ipynb--> \ No newline at end of file diff --git a/notebook_hashes.json b/notebook_hashes.json new file mode 100644 index 00000000..db18c8f1 --- /dev/null +++ b/notebook_hashes.json @@ -0,0 +1,178 @@ +{ + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_1\\Task_2_solution.ipynb": "5ef36adc38d3ef09603c31e52b16725c", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_2\\Analysis.ipynb": "dbae012b7965e1bfe125239dc8534727", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_2\\Analysis_solution.ipynb": "0d44b860d7a7b543115e17d3d1bc7bf8", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_3\\Analysis.ipynb": "b902ca516780be395aa95e4d894cf3bf", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_3\\Analysis_Solution.ipynb": "9282cce4dc409329154d8618676f2f4e", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_3\\Warmup.ipynb": "5dda4ff9f47bd9df0fecbe68d2ce01e5", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_4\\Analysis.ipynb": "ed8ee7827b7ff7ecccda94b166761961", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_4\\Analysis_solution.ipynb": "70c40a8feb7d130ef44a0f5a08916dfc", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_5\\Analysis.ipynb": "dceccae507ed3530857e958b0f38f519", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_5\\Analysis_solution.ipynb": "e941bddc519025d4ebeef4b3303fb8bc", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_5\\central_diff_illustration.ipynb": "b22032a79aaec478e740f9569715a3f3", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_6\\Analysis.ipynb": "f5ec7ff0563eed9a29eea0beb4bcae3e", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_6\\Analysis_solution.ipynb": "b1d9c5f09465e1d93eeb813e980bbb02", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_7\\Solution\\Discharge\\Analysis_discharge_solution.ipynb": "dfad23da3961ba933d0fa0d9a18d0f36", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_7\\Solution\\Emissions\\Analysis_emissions_solution.ipynb": "0372d6740eb1a5d2db0466137a2ad45a", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_7\\Solution\\Force\\Analysis_force_solution.ipynb": "8e1750c5500b9e6c47728cb8b209bbcd", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_7\\Student\\Discharge\\Analysis_discharge.ipynb": "2d8d0c9d9d9a810f6ac03db108d4af64", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_7\\Student\\Emissions\\Analysis_emissions.ipynb": "5edece3840ea694f43d3bb098d407d84", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_7\\Student\\Force\\Analysis_force.ipynb": "74f18d93063c7804b7a1f6c180b4dd28", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_7\\Unused\\Temp\\Distribution_Fitting_T.ipynb": "dfa1aa32df2f1fe807de4f5dfef7348c", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_8\\Analysis.ipynb": "2e71933709fed64329b43b784bf34603", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_8\\solution\\GA_1_8_solution_HT.ipynb": "f4b3a22db149b8fa0a838f2dd9f8a96c", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_8\\solution\\GA_1_8_solution_hu.ipynb": "6b7f7c5aec52a00fb4c0ec9885ec0e9e", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_8\\solution\\GA_1_8_solution_traffic.ipynb": "99c26eedd0e34ba16833828dbfb72583", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_2_1\\Analysis.ipynb": "bb8a1926d4dea713f6f5b22e5d134f0d", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_2_1\\Analysis_solution.ipynb": "a605bba06cbc236d866f8a9dc03feb6e", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_2_1\\mesh_dev.ipynb": "06a957caa48621fe6a98dc7bcb34facf", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_2_1\\mesh_tips.ipynb": "17c056dfc379e374360ca0a586963ef0", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_2_1\\mesh\\mesh.ipynb": "f89635a693f0037ca00bc536e13d0893", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_2_2\\the_big_M.ipynb": "dfdfcde78dd690060660c19dd7d11c22", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_2_3\\Analysis.ipynb": "225b3898d0a48b94ea4359ca02d9dee2", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_2_3\\Analysis_solution.ipynb": "6abb3f61634c8e180fc415babc703137", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_2_4\\GA_2_4_Beary_Icy.ipynb": "f4c26ccc7d4e857dd5058457b4e385d3", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_2_4\\GA_2_4_solution.ipynb": "1c175a61da77d958ebd421a7c1752856", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_2_5\\Analysis_GA.ipynb": "a65154a2117571cf07de1c10cbfc9f99", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_2_5\\Analysis_GA_solution.ipynb": "a65154a2117571cf07de1c10cbfc9f99", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_2_5\\Analysis_LP.ipynb": "e82e1919cd6a6b443f241ce8e6a834e7", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_2_5\\Analysis_LP_solution.ipynb": "e684fd7e3e9aee35ee30feeecde27ea9", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_2_6\\Analysis.ipynb": "e97129be8cb45e5bdc2f28e7da6b65fc", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_2_6\\Analysis_solution.ipynb": "e7994e04cc71218478c3e410560380e9", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_2_7\\rain_solution.ipynb": "f55523e47a858f848938230281581a7e", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\tutorials\\Week_1_3\\Analysis.ipynb": "f48f22301fe08a5d1740b4fa906aa7b0", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\tutorials\\Week_1_5\\Tutorial.ipynb": "59a18aa58f99b41aeac17b24edd650ab", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\tutorials\\Week_1_6\\Tutorial.ipynb": "623cd5c8aece63cedc8903bebcabc31c", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\week_1_1\\PA_1_1_Catch_Them_All.ipynb": "cb27a3c8c82fa953ef9dc13d99c63c3b", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_1_2\\In_Class_Activity.ipynb": "20f07e8db0ba18f6eef7ad9769eff61a", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_1_2\\In_Class_Activity_Solution.ipynb": "8f185dd188a27a2c2cec3ac237dbd4b9", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_1_2\\PA_1_2_Random_Adventure.ipynb": "8530f578baafebd2074dcdc37026d042", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_1_2\\PA_1_2_solution.ipynb": "232c7fc587d9be054563f348cbde24bd", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_1_2\\WS_1_2_Pipe_Dreams.ipynb": "d4068fc540024eff9507a6fe3852f6fa", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_1_2\\WS_1_2_solution.ipynb": "634a29b0ecfa948ff5dd48f1f4511da4", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\week_1_3\\PA_1_3_Data_Cleaning_and_Boosting_Productivity.ipynb": "25a02486afee33929ddb98bff6bde64e", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\week_1_3\\PA_1_3_solution.ipynb": "4000258c4b9efe913a86095f2484647d", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\week_1_3\\WS_1_3_Moving_Ice.ipynb": "9ff9dba4e323ddd28efd405194e8473b", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\week_1_3\\WS_1_3_solution.ipynb": "44639e9e31324c49fbb44502129fe764", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_1_4\\WS_1_4_Nonlinear_Rain.ipynb": "4080fe2ebac27de199e939df4ef2ed3c", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_1_4\\WS_1_4_solution.ipynb": "81ce44fcd0ef59f1ac948f85e8ae5b09", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\week_1_5\\WS_1_5_dont_integr_hate.ipynb": "5d10ccff7a2d00f436a767b80e6ef7de", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\week_1_5\\WS_1_5_solution.ipynb": "c8f81104f0ece2dd7982c4c4a8ec2650", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\week_1_5\\PA\\PA_1_5_solution.ipynb": "f12080634112785dadfed48aa0974628", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\week_1_5\\PA\\PA_1_5_useful_tricks.ipynb": "91b91f2d2ca77741cd2ba22b44a056ba", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\week_1_5\\PA_ice\\PA_plots.ipynb": "9e8f9a5fe7813ea57e4c340d436034d8", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_1_6\\WS_1_6_solution.ipynb": "64a77846fa02125118cc8c4c952642ec", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_1_6\\WS_1_6_time_to_c_ode.ipynb": "85fda5f4bede97c0caa8dbdb0a613f8a", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_1_6\\PA\\PA_1_6_Boxes_and_Bugs.ipynb": "588f5a41a6d8a2be0749bfca2d6a2129", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_1_6\\PA\\PA_1_6_solution.ipynb": "f6db46f68b8d3d4a26de4f408170a757", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_1_7\\scipy_stats.ipynb": "220e4eeb7f6238cae80c51ef48aa5c56", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_1_7\\WS_1_7_lets_be_concrete.ipynb": "08e55a6836dd90f3e8dbadb0a3c8603f", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_1_7\\WS_1_7_solution.ipynb": "5d736083854bf5e62a7f4ba89f9ab4b6", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_1_7\\PA\\PA_1_7_Classy_Distributions.ipynb": "bbf58a58976a48d71dfe668d030c524a", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_1_7\\PA\\PA_1_7_solution.ipynb": "c29cd59818a48275f1847e8f19c8d55b", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_1_8\\data.ipynb": "59ad961de36261a5f17d3403e00cfcb7", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_1_8\\intersection.ipynb": "caf14c89a9aaff23845724e1b6f605b4", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_1_8\\test_bivariate.ipynb": "11d20371466a19c3f4f02be9b4ba47a7", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_1_8\\PA\\PA_1_8_Equations_Done_Symply.ipynb": "4e5d5efad07e28ef54eb264b6ce235cc", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_1_8\\PA\\PA_1_8_solution.ipynb": "51a495387632683f09f64562a96952c3", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_1_8\\WS\\linearity_or_not.ipynb": "8a0c3ce71dde044c0301a8d0806d5c4b", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_1_8\\WS\\WS_1_8_solution.ipynb": "462a5b17c6c6f38e86335bb43253b21d", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_1_8\\WS\\WS_1_8_Thingamajig.ipynb": "1daa6b5a126995e4263120dbaca12be5", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_2_1\\WS_2_1_solution.ipynb": "3da700b99b429e51a74144bbc2fa9783", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_2_1\\WS_2_1_wiggle.ipynb": "84a69f320255d5d66b4f2aa8e1a5f235", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_2_1\\WS_2_1_wiggle_test_ci.ipynb": "84a69f320255d5d66b4f2aa8e1a5f235", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_2_1\\PA\\PA_2_1_classy_city.ipynb": "bca21b5374b348afe895762e372859e7", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_2_1\\PA\\PA_2_1_solution.ipynb": "56c84891870b58e21850ef992757fe17", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_2_1\\PA\\PA_dev.ipynb": "4e1c454492c1757fe612d6488380c3f9", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_2_1\\PA\\U.ipynb": "c9b996dad9dc6d8bf19f727f0112c67a", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_2_2\\PA_2_2_love_is_sparse.ipynb": "cd339a2a40d22bcec7c4c2869a783fe9", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_2_2\\PA_2_2_solution.ipynb": "d2b1f254b52a295ae6623ada29a0d70b", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_2_2\\WS_2_2_more_support.ipynb": "562a649ca5bfe5effec35777884ef83f", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_2_2\\WS_2_2_solution.ipynb": "665b30958fd57c25de0421233f9cb9f6", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_2_2\\old\\old_PA10_Love_is_Sparse.ipynb": "b7db0f1a339af8bb06420adae22988a8", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_2_2\\old\\old_PA10_solution_sympy.ipynb": "3e9ec0151bed05b03f679f20a7a7682b", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_2_2\\old\\PA_2_1_solution.ipynb": "a731fba95f50c3946d303c4016fad588", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_2_2\\old\\PA_2_1_solution_sympy.ipynb": "3e9ec0151bed05b03f679f20a7a7682b", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_2_2\\old\\WS_2_2_more_support.ipynb": "fb7eae2117715591833d8d52216ba91e", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_2_2\\PA\\PA_2_2_love_is_sparse.ipynb": "bcbe1857daec9f229e7a846f4fe07208", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_2_2\\PA\\PA_2_2_solution.ipynb": "4ac8e338d2deb4d4d914c559995a52b4", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_2_3\\WS_2_3_DFT_you_try_meow.ipynb": "c6dfb00fd39e1966e7e30868c90cc006", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_2_3\\WS_2_3_solution.ipynb": "f43494c19f7a4b95405411c6db5ba305", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_2_3\\PA\\PA_2_3_iter_remoto.ipynb": "d3186fc527ce933da61eabcf37017648", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_2_3\\PA\\PA_2_3_solution.ipynb": "8f6da19e82a21ec8891b6176972a076c", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_2_4\\WS_2_4_Feel_the_Pressure.ipynb": "03541daba628b93961fbc6b08aa95524", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_2_4\\WS_2_4_solution.ipynb": "47317a603d22640ef67101671a7dcd93", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_2_4\\PA\\PA_2_4_A_gurobilicious.ipynb": "1b34df3aee1ab82d2fd3492d8d9978fe", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_2_4\\PA\\PA_2_4_B_axis_of_awesome.ipynb": "6b85234a33f5a84a1e9a9987ecdc80cd", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_2_4\\PA\\PA_2_4_B_solution.ipynb": "a6dc08788c41eed19518f50afdc4e6ec", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_2_5\\WS_2_5_Profit_vs_Planet.ipynb": "e0d01e331733b7fb991b90194c48deee", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_2_5\\WS_2_5_solution.ipynb": "71023b88600ee60cc8cbfe149aafef4f", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_2_5\\PA\\PA_2_5_data_framework.ipynb": "2d194497da39a12494546624d14a380e", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_2_5\\PA\\PA_2_5_solution.ipynb": "25176f422715d5bbd8c71fccf7a0e675", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_2_6\\WS_2_6_be_a_NN.ipynb": "4594d16ce940cc875ce0ad0b6cb474b7", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_2_6\\WS_2_6_solution.ipynb": "8ea3e550f4679392f89f59363476ca90", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_2_6\\PA\\PA_2_6_3_way_split.ipynb": "27de0a19179060cee2deb4d4624228b8", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_2_6\\PA\\PA_2_6_solution.ipynb": "833397156266c8c553a8343a08bad8e4", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_2_7\\WS_2_7_solution.ipynb": "32ac0909fbc763bfeaa2fcb4242d52a9", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_2_7\\WS_2_7_student.ipynb": "6c72a8f73a08f721552a4b9310288d66", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_2_7\\PA\\PA_2_7_solution.ipynb": "82df0edd9c61003a9e926de7f17bb325", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_2_7\\PA\\PA_2_7_Times_Tables.ipynb": "8edce2d5c6816f161cf051fa504d75a1", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_2_8\\WS_2_8_dirty_water.ipynb": "ac802cd6b62c130b6777a575c187e04f", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\Week_2_8\\WS_2_8_solution.ipynb": "7b4a07edfb48607a73d321166a139d2f", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_1\\Task_2_solution.ipynb_markdown": "5ef36adc38d3ef09603c31e52b16725c", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_1\\Task_2_solution.ipynb_python": "5ef36adc38d3ef09603c31e52b16725c", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_1\\Task_2_solution.ipynb_clean_python": "5ef36adc38d3ef09603c31e52b16725c", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_1\\Task_2_solution.ipynb_html": "5ef36adc38d3ef09603c31e52b16725c", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_2\\Analysis.ipynb_markdown": "dbae012b7965e1bfe125239dc8534727", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_2\\Analysis.ipynb_python": "dbae012b7965e1bfe125239dc8534727", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_2\\Analysis.ipynb_clean_python": "dbae012b7965e1bfe125239dc8534727", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_2\\Analysis.ipynb_html": "dbae012b7965e1bfe125239dc8534727", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_2\\Analysis_solution.ipynb_markdown": "0d44b860d7a7b543115e17d3d1bc7bf8", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_2\\Analysis_solution.ipynb_python": "0d44b860d7a7b543115e17d3d1bc7bf8", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_2\\Analysis_solution.ipynb_clean_python": "0d44b860d7a7b543115e17d3d1bc7bf8", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_2\\Analysis_solution.ipynb_html": "0d44b860d7a7b543115e17d3d1bc7bf8", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_3\\Analysis.ipynb_markdown": "b902ca516780be395aa95e4d894cf3bf", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_3\\Analysis.ipynb_python": "b902ca516780be395aa95e4d894cf3bf", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_3\\Analysis.ipynb_clean_python": "b902ca516780be395aa95e4d894cf3bf", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_3\\Analysis.ipynb_html": "b902ca516780be395aa95e4d894cf3bf", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_3\\Analysis_Solution.ipynb_markdown": "9282cce4dc409329154d8618676f2f4e", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_3\\Analysis_Solution.ipynb_python": "9282cce4dc409329154d8618676f2f4e", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_3\\Analysis_Solution.ipynb_clean_python": "9282cce4dc409329154d8618676f2f4e", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_3\\Analysis_Solution.ipynb_html": "9282cce4dc409329154d8618676f2f4e", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_3\\Warmup.ipynb_markdown": "5dda4ff9f47bd9df0fecbe68d2ce01e5", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_3\\Warmup.ipynb_python": "5dda4ff9f47bd9df0fecbe68d2ce01e5", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_3\\Warmup.ipynb_clean_python": "5dda4ff9f47bd9df0fecbe68d2ce01e5", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_3\\Warmup.ipynb_html": "5dda4ff9f47bd9df0fecbe68d2ce01e5", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_4\\Analysis.ipynb_markdown": "ed8ee7827b7ff7ecccda94b166761961", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_4\\Analysis.ipynb_python": "ed8ee7827b7ff7ecccda94b166761961", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_4\\Analysis.ipynb_clean_python": "ed8ee7827b7ff7ecccda94b166761961", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_4\\Analysis.ipynb_html": "ed8ee7827b7ff7ecccda94b166761961", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_4\\Analysis_solution.ipynb_markdown": "70c40a8feb7d130ef44a0f5a08916dfc", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_4\\Analysis_solution.ipynb_python": "70c40a8feb7d130ef44a0f5a08916dfc", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_4\\Analysis_solution.ipynb_clean_python": "70c40a8feb7d130ef44a0f5a08916dfc", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_4\\Analysis_solution.ipynb_html": "70c40a8feb7d130ef44a0f5a08916dfc", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_5\\Analysis.ipynb_markdown": "dceccae507ed3530857e958b0f38f519", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_5\\Analysis.ipynb_python": "dceccae507ed3530857e958b0f38f519", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_5\\Analysis.ipynb_clean_python": "dceccae507ed3530857e958b0f38f519", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_5\\Analysis.ipynb_html": "dceccae507ed3530857e958b0f38f519", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_5\\Analysis_solution.ipynb_markdown": "e941bddc519025d4ebeef4b3303fb8bc", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_5\\Analysis_solution.ipynb_python": "e941bddc519025d4ebeef4b3303fb8bc", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_5\\Analysis_solution.ipynb_clean_python": "e941bddc519025d4ebeef4b3303fb8bc", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_5\\Analysis_solution.ipynb_html": "e941bddc519025d4ebeef4b3303fb8bc", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_5\\central_diff_illustration.ipynb_markdown": "b22032a79aaec478e740f9569715a3f3", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_5\\central_diff_illustration.ipynb_python": "b22032a79aaec478e740f9569715a3f3", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_5\\central_diff_illustration.ipynb_clean_python": "b22032a79aaec478e740f9569715a3f3", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_5\\central_diff_illustration.ipynb_html": "b22032a79aaec478e740f9569715a3f3", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_6\\Analysis.ipynb_markdown": "f5ec7ff0563eed9a29eea0beb4bcae3e", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_6\\Analysis.ipynb_python": "f5ec7ff0563eed9a29eea0beb4bcae3e", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_6\\Analysis.ipynb_clean_python": "f5ec7ff0563eed9a29eea0beb4bcae3e", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_6\\Analysis.ipynb_html": "f5ec7ff0563eed9a29eea0beb4bcae3e", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_6\\Analysis_solution.ipynb_markdown": "b1d9c5f09465e1d93eeb813e980bbb02", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_6\\Analysis_solution.ipynb_python": "b1d9c5f09465e1d93eeb813e980bbb02", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_6\\Analysis_solution.ipynb_clean_python": "b1d9c5f09465e1d93eeb813e980bbb02", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_6\\Analysis_solution.ipynb_html": "b1d9c5f09465e1d93eeb813e980bbb02", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_7\\Solution\\Discharge\\Analysis_discharge_solution.ipynb_markdown": "dfad23da3961ba933d0fa0d9a18d0f36", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_7\\Solution\\Discharge\\Analysis_discharge_solution.ipynb_python": "dfad23da3961ba933d0fa0d9a18d0f36", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_7\\Solution\\Discharge\\Analysis_discharge_solution.ipynb_clean_python": "dfad23da3961ba933d0fa0d9a18d0f36", + "C:\\Users\\ncore\\Desktop\\2024-files\\content\\GA_1_7\\Solution\\Discharge\\Analysis_discharge_solution.ipynb_html": "dfad23da3961ba933d0fa0d9a18d0f36" +} \ No newline at end of file diff --git a/sync_notebooks.py b/sync_notebooks.py index d09e18ff..f293692d 100644 --- a/sync_notebooks.py +++ b/sync_notebooks.py @@ -28,7 +28,9 @@ def get_file_hash(filepath: Path) -> str: return hasher.hexdigest() except Exception as e: logging.error(f"Error calculating hash for {filepath}: {e}") - return None + return "" # Return empty string instead of None for better comparison + + class NotebookSyncer: def __init__(self, config_file: Optional[str] = None): @@ -57,6 +59,8 @@ class NotebookSyncer: self.output_dir = Path(self.config['output_dir']).absolute() self.error_log = "conversion_errors.log" self.start_time = None + self.hash_cache_file = Path("notebook_hashes.json") + self.hash_cache = self._load_hash_cache() # Clear existing log file if os.path.exists(self.error_log): @@ -103,21 +107,69 @@ class NotebookSyncer: } return stats + def _load_hash_cache(self) -> Dict[str, str]: + """Load the hash cache from file.""" + if self.hash_cache_file.exists(): + try: + with open(self.hash_cache_file, 'r') as f: + return json.load(f) + except: + return {} + return {} + + def _save_hash_cache(self): + """Save the hash cache to file.""" + with open(self.hash_cache_file, 'w') as f: + json.dump(self.hash_cache, f, indent=2) + + def should_process_file(self, source_path: Path, output_path: Path, force: bool = False, fmt: str = None) -> bool: + """Determine if a file needs processing based on hash comparison.""" + if force: + self.logger.info(f"Force update enabled for {source_path}") + return True + + if not output_path.exists(): + self.logger.info(f"Output file does not exist: {output_path}") + return True + + # For all formats, check against source hash + source_hash = get_file_hash(source_path) + cached_hash = self.hash_cache.get(str(source_path)) + + if not source_hash: + self.logger.warning(f"Could not calculate hash for {source_path}") + return True + + if cached_hash is None: # First time seeing this file + self.logger.info(f"First time processing {source_path}") + self.hash_cache[str(source_path)] = source_hash + return True + + if source_hash != cached_hash: + self.logger.info(f"Content changed for {source_path} (hash mismatch)") + self.hash_cache[str(source_path)] = source_hash + return True + + return False + def find_notebooks(self) -> List[Path]: """Find all Jupyter notebooks in the content directory.""" if not self.content_dir.exists(): self.logger.error(f"Content directory {self.content_dir} does not exist") return [] - + notebooks = [] self.logger.info(f"Searching in: {self.content_dir}") # Use specific notebooks if configured - if self.config['specific_notebooks']: - for nb_path in self.config['specific_notebooks']: + specific_notebooks = self.config.get('specific_notebooks', {}) + if isinstance(specific_notebooks, dict) and 'files' in specific_notebooks: + for nb_path in specific_notebooks['files']: full_path = self.content_dir / nb_path if full_path.exists() and full_path.suffix == '.ipynb': notebooks.append(full_path) + else: + self.logger.warning(f"Specified notebook not found: {nb_path}") return notebooks # Otherwise find all notebooks @@ -126,31 +178,26 @@ class NotebookSyncer: if file.endswith('.ipynb'): notebook_path = Path(root) / file notebooks.append(notebook_path) - + self.logger.info(f"Found {len(notebooks)} notebooks") return notebooks def convert_to_html(self, input_path: Path, output_path: Path): """Convert file to HTML.""" try: + self.logger.info(f"Converting {input_path} to HTML at {output_path}") if input_path.suffix == '.ipynb': nb = self.read_notebook_safely(input_path) html_exporter = nbconvert.HTMLExporter() html, _ = html_exporter.from_notebook_node(nb) - elif input_path.suffix in ['.md', '.markdown']: - with open(input_path, 'r', encoding='utf-8') as f: - content = f.read() - html = markdown2.markdown(content) - elif input_path.suffix == '.py': - with open(input_path, 'r', encoding='utf-8') as f: - content = f.read() - formatter = HtmlFormatter(style='monokai', full=True) - html = pygments.highlight(content, PythonLexer(), formatter) - - output_path.parent.mkdir(parents=True, exist_ok=True) - with open(output_path, 'w', encoding='utf-8') as f: - f.write(html) - return True + output_path.parent.mkdir(parents=True, exist_ok=True) + with open(output_path, 'w', encoding='utf-8') as f: + f.write(html) + self.logger.info("HTML conversion successful") + return True + else: + self.logger.error(f"Unexpected input file type: {input_path.suffix}") + return False except Exception as e: self.logger.error(f"Error converting to HTML: {e}") return False @@ -183,75 +230,72 @@ class NotebookSyncer: return None def convert_notebook(self, notebook_path: Path, file_index: int, total_files: int): - """Convert notebook to specified formats.""" try: + start_time = time.time() + # Calculate relative and output paths first relative_path = notebook_path.relative_to(self.content_dir) output_base = self.output_dir / relative_path.parent / relative_path.stem stripped_path = output_base.with_suffix('.ipynb') - # Log first - self.logger.info(f"[{file_index}/{total_files}] Processing {relative_path}") - start_time = time.time() - - # Force processing each time for HTML - need_processing = False + self.logger.info(f"[{file_index}/{total_files}] Checking {relative_path}") - # Check each output format - for fmt in self.config['formats']: - if fmt == 'html': - output_path = output_base.with_suffix('.html') - if not output_path.exists(): - need_processing = True - elif fmt == 'markdown': - output_path = output_base.with_suffix('.md') - if not output_path.exists(): - need_processing = True - elif fmt == 'python': - output_path = output_base.with_suffix('.py') - if not output_path.exists(): - need_processing = True - elif fmt == 'clean_python': - output_path = Path(str(output_base) + '_clean.py') - if not output_path.exists(): - need_processing = True + # Get force_update option + force_update = False + specific_notebooks = self.config.get('specific_notebooks', {}) + if isinstance(specific_notebooks, dict): + options = specific_notebooks.get('options', {}) + if isinstance(options, dict): + force_update = options.get('force_update', False) - # Always process if any format is missing - if not need_processing: - self.logger.info(f"No changes detected") + # Check if any format needs processing + needs_processing = self.should_process_file(notebook_path, stripped_path, force_update) + + if not needs_processing: + self.logger.info(f"No changes detected for {relative_path}") return True + + self.logger.info(f"Processing {relative_path}") - output_base.parent.mkdir(parents=True, exist_ok=True) - - # Strip metadata and get notebook object + # Strip metadata and get notebook object first nb = self.strip_metadata(notebook_path, stripped_path) if nb is None: # If stripping failed return False - + # Log stats stats = self.get_notebook_stats(nb) self.logger.info(f"Stats: {stats['cells']} cells ({stats['code_cells']} code, " f"{stats['markdown_cells']} markdown), {stats['total_lines']} lines") # Process all formats + processed_formats = [] for fmt in self.config['formats']: try: + processed = False if fmt == 'html': output_path = output_base.with_suffix('.html') - self.convert_to_html(notebook_path, output_path) + processed = self.convert_to_html(stripped_path, output_path) elif fmt == 'markdown': output_path = output_base.with_suffix('.md') - cmd = ['jupytext', '--to', 'markdown', str(stripped_path), '-o', str(output_path)] - if subprocess.run(cmd, check=True, capture_output=True, text=True, encoding='utf-8'): + cmd = ['jupytext', '--to', 'markdown', + '--opt', 'notebook_metadata_filter=-all', + '--opt', 'cell_metadata_filter=-all', + str(stripped_path), '-o', str(output_path)] + processed = subprocess.run(cmd, check=True, capture_output=True, text=True, encoding='utf-8').returncode == 0 + if processed: with open(output_path, 'r+', encoding='utf-8') as f: content = f.read() + if content.startswith('---'): + end_idx = content.find('---', 3) + if end_idx != -1: + content = content[end_idx + 3:].lstrip() f.seek(0) f.write("<userStyle>Normal</userStyle>\n\n" + content) f.truncate() elif fmt == 'python': output_path = output_base.with_suffix('.py') cmd = ['jupytext', '--to', 'py:percent', str(stripped_path), '-o', str(output_path)] - subprocess.run(cmd, check=True, capture_output=True, text=True, encoding='utf-8') + processed = subprocess.run(cmd, check=True, capture_output=True, text=True, encoding='utf-8').returncode == 0 elif fmt == 'clean_python': output_path = Path(str(output_base) + '_clean.py') cmd = [ @@ -261,20 +305,26 @@ class NotebookSyncer: '--opt', 'cell_metadata_filter=-all', str(stripped_path), '-o', str(output_path) ] - subprocess.run(cmd, check=True, capture_output=True, text=True, encoding='utf-8') - - if output_path.exists(): + processed = subprocess.run(cmd, check=True, capture_output=True, text=True, encoding='utf-8').returncode == 0 + if processed and output_path.exists(): with open(output_path, 'r', encoding='utf-8') as f: lines = f.readlines() clean_lines = [line for line in lines if not line.strip().startswith('#') and line.strip()] with open(output_path, 'w', encoding='utf-8') as f: f.writelines(clean_lines) - + + if processed: + processed_formats.append(fmt) + self.logger.info(f"Successfully processed {fmt} format") + else: + self.logger.warning(f"Failed to process {fmt} format") + except subprocess.CalledProcessError as e: self.logger.error(f"Error converting to {fmt}: {e.stderr}") return False - + end_time = time.time() + self.logger.info(f"Successfully processed formats: {processed_formats}") self.logger.info(f"Completed in {end_time - start_time:.2f} seconds") return True except Exception as e: @@ -287,6 +337,12 @@ class NotebookSyncer: if not self.output_dir.exists(): return + # Check replace_all option + replace_all = self.config.get('sync_options', {}).get('replace_all', True) + if not replace_all: + self.logger.info("Skipping cleanup due to replace_all=False") + return + valid_stems = {nb.relative_to(self.content_dir).stem for nb in processed_notebooks} for output_file in self.output_dir.glob('**/*'): @@ -315,29 +371,37 @@ class NotebookSyncer: def sync(self): """Main synchronization process.""" - self.start_time = datetime.now() - self.logger.info(f"=== Starting synchronization at {self.start_time.strftime('%Y-%m-%d %H:%M:%S')} ===") - - self.output_dir.mkdir(parents=True, exist_ok=True) - - notebooks = self.find_notebooks() - if not notebooks: - self.logger.info("No notebooks found") - return True + try: + self.start_time = datetime.now() + self.logger.info(f"=== Starting synchronization at {self.start_time.strftime('%Y-%m-%d %H:%M:%S')} ===") - processed_notebooks = [] - total_notebooks = len(notebooks) - - for idx, notebook in enumerate(notebooks, 1): - if self.convert_notebook(notebook, idx, total_notebooks): - processed_notebooks.append(notebook) + self.output_dir.mkdir(parents=True, exist_ok=True) + + notebooks = self.find_notebooks() + if not notebooks: + self.logger.info("No notebooks found") + return True - self.cleanup_output_dir(processed_notebooks) - - end_time = datetime.now() - duration = end_time - self.start_time - self.logger.info(f"=== Completed at {end_time.strftime('%Y-%m-%d %H:%M:%S')} (Duration: {duration}) ===") - return len(processed_notebooks) > 0 + processed_notebooks = [] + total_notebooks = len(notebooks) + + for idx, notebook in enumerate(notebooks, 1): + if self.convert_notebook(notebook, idx, total_notebooks): + processed_notebooks.append(notebook) + + self.cleanup_output_dir(processed_notebooks) + + # Save hash cache after processing + self._save_hash_cache() + + end_time = datetime.now() + duration = end_time - self.start_time + self.logger.info(f"=== Completed at {end_time.strftime('%Y-%m-%d %H:%M:%S')} (Duration: {duration}) ===") + return len(processed_notebooks) > 0 + except KeyboardInterrupt: + self.logger.info("Process interrupted by user") + self._save_hash_cache() # Save cache even on interrupt + return False if __name__ == "__main__": syncer = NotebookSyncer("config_sync.yml") diff --git a/synced_files/GA_1_1/Task_2_solution.html b/synced_files/GA_1_1/Task_2_solution.html index feefab33..6b7ed7a9 100644 --- a/synced_files/GA_1_1/Task_2_solution.html +++ b/synced_files/GA_1_1/Task_2_solution.html @@ -7558,10 +7558,10 @@ a.anchor-link { <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [1]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> +<div class="highlight hl-python"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> <span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span> <span class="kn">import</span> <span class="nn">scipy.stats</span> <span class="k">as</span> <span class="nn">sci</span> <span class="kn">import</span> <span class="nn">scipy.optimize</span> <span class="k">as</span> <span class="nn">opt</span> @@ -7604,15 +7604,15 @@ a.anchor-link { </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [2]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">data</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">loadtxt</span><span class="p">(</span><span class="s1">'data/days.csv'</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="nb">str</span><span class="p">,</span> <span class="n">delimiter</span><span class="o">=</span><span class="s1">';'</span><span class="p">,</span> <span class="n">skiprows</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> +<div class="highlight hl-python"><pre><span></span><span class="n">data</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">loadtxt</span><span class="p">(</span><span class="s1">'data/days.csv'</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="nb">str</span><span class="p">,</span> <span class="n">delimiter</span><span class="o">=</span><span class="s1">';'</span><span class="p">,</span> <span class="n">skiprows</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> <span class="n">data</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">char</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="s1">','</span><span class="p">,</span> <span class="s1">'.'</span><span class="p">)</span> <span class="n">data</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="nb">float</span><span class="p">)</span> @@ -7622,27 +7622,6 @@ a.anchor-link { </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child jp-OutputArea-executeResult"> -<div class="jp-OutputPrompt jp-OutputArea-prompt">Out[2]:</div> -<div class="jp-RenderedText jp-OutputArea-output jp-OutputArea-executeResult" data-mime-type="text/plain" tabindex="0"> -<pre>array([[1917. , 119.4791667], - [1918. , 130.3979167], - [1919. , 122.60625 ], - [1920. , 131.4486111], - [1921. , 130.2791667], - [1922. , 131.5555556], - [1923. , 128.0833333], - [1924. , 131.6319444], - [1925. , 126.7722222], - [1926. , 115.66875 ]])</pre> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -7665,32 +7644,20 @@ a.anchor-link { </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [3]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">np</span><span class="o">.</span><span class="n">shape</span><span class="p">(</span><span class="n">data</span><span class="p">)</span> +<div class="highlight hl-python"><pre><span></span><span class="n">np</span><span class="o">.</span><span class="n">shape</span><span class="p">(</span><span class="n">data</span><span class="p">)</span> </pre></div> </div> </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child jp-OutputArea-executeResult"> -<div class="jp-OutputPrompt jp-OutputArea-prompt">Out[3]:</div> -<div class="jp-RenderedText jp-OutputArea-output jp-OutputArea-executeResult" data-mime-type="text/plain" tabindex="0"> -<pre>(103, 2)</pre> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -7713,15 +7680,15 @@ a.anchor-link { </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [4]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">mean</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">data</span><span class="p">[:,</span><span class="mi">1</span><span class="p">])</span> +<div class="highlight hl-python"><pre><span></span><span class="n">mean</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">data</span><span class="p">[:,</span><span class="mi">1</span><span class="p">])</span> <span class="n">std</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">std</span><span class="p">(</span><span class="n">data</span><span class="p">[:,</span><span class="mi">1</span><span class="p">])</span> <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s1">'Mean: </span><span class="si">{</span><span class="n">mean</span><span class="si">:</span><span class="s1">.3f</span><span class="si">}</span><span class="se">\n\</span> @@ -7731,20 +7698,6 @@ a.anchor-link { </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>Mean: 123.647 -Standard deviation: 6.516 -</pre> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -7756,15 +7709,15 @@ Standard deviation: 6.516 </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [5]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">data</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">],</span> <span class="n">data</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">],</span> <span class="n">label</span><span class="o">=</span><span class="s1">'Measured data'</span><span class="p">)</span> +<div class="highlight hl-python"><pre><span></span><span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">data</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">],</span> <span class="n">data</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">],</span> <span class="n">label</span><span class="o">=</span><span class="s1">'Measured data'</span><span class="p">)</span> <span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'Year [-]'</span><span class="p">)</span> <span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'Number of days/year [-]'</span><span class="p">)</span> <span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="sa">f</span><span class="s1">'Number of days per year between </span><span class="si">{</span><span class="n">data</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">]</span><span class="si">:</span><span class="s1">.0f</span><span class="si">}</span><span class="s1">-</span><span class="si">{</span><span class="n">data</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span><span class="mi">0</span><span class="p">]</span><span class="si">:</span><span class="s1">.0f</span><span class="si">}</span><span class="s1">'</span><span class="p">)</span> @@ -7774,18 +7727,6 @@ Standard deviation: 6.516 </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -7828,10 +7769,10 @@ Standard deviation: 6.516 <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [6]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">regression</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">):</span> +<div class="highlight hl-python"><pre><span></span><span class="k">def</span> <span class="nf">regression</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">):</span> <span class="w"> </span><span class="sd">'''</span> <span class="sd"> Determine linear regression</span> @@ -7857,35 +7798,20 @@ Standard deviation: 6.516 </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [7]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">r_sq</span><span class="p">,</span> <span class="n">q</span><span class="p">,</span> <span class="n">m</span> <span class="o">=</span> <span class="n">regression</span><span class="p">(</span><span class="n">data</span><span class="p">[:,</span><span class="mi">0</span><span class="p">],</span> <span class="n">data</span><span class="p">[:,</span><span class="mi">1</span><span class="p">])</span> +<div class="highlight hl-python"><pre><span></span><span class="n">r_sq</span><span class="p">,</span> <span class="n">q</span><span class="p">,</span> <span class="n">m</span> <span class="o">=</span> <span class="n">regression</span><span class="p">(</span><span class="n">data</span><span class="p">[:,</span><span class="mi">0</span><span class="p">],</span> <span class="n">data</span><span class="p">[:,</span><span class="mi">1</span><span class="p">])</span> </pre></div> </div> </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>Coefficient of determination R^2 = 0.151 -Intercept q = 291.239 -Slope m = -0.085 -</pre> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -7938,10 +7864,10 @@ Slope m = -0.085 <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [8]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">calculate_line</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">m</span><span class="p">,</span> <span class="n">q</span><span class="p">):</span> +<div class="highlight hl-python"><pre><span></span><span class="k">def</span> <span class="nf">calculate_line</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">m</span><span class="p">,</span> <span class="n">q</span><span class="p">):</span> <span class="w"> </span><span class="sd">'''</span> <span class="sd"> Determine y values from linear regression</span> @@ -7965,24 +7891,24 @@ Slope m = -0.085 <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [9]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">line</span> <span class="o">=</span> <span class="n">calculate_line</span><span class="p">(</span><span class="n">data</span><span class="p">[:,</span><span class="mi">0</span><span class="p">],</span> <span class="n">m</span><span class="p">,</span> <span class="n">q</span><span class="p">)</span> +<div class="highlight hl-python"><pre><span></span><span class="n">line</span> <span class="o">=</span> <span class="n">calculate_line</span><span class="p">(</span><span class="n">data</span><span class="p">[:,</span><span class="mi">0</span><span class="p">],</span> <span class="n">m</span><span class="p">,</span> <span class="n">q</span><span class="p">)</span> </pre></div> </div> </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [10]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">fig</span><span class="p">,</span> <span class="n">axes</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span><span class="n">figsize</span> <span class="o">=</span> <span class="p">(</span><span class="mi">12</span><span class="p">,</span> <span class="mi">4</span><span class="p">))</span> +<div class="highlight hl-python"><pre><span></span><span class="n">fig</span><span class="p">,</span> <span class="n">axes</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span><span class="n">figsize</span> <span class="o">=</span> <span class="p">(</span><span class="mi">12</span><span class="p">,</span> <span class="mi">4</span><span class="p">))</span> <span class="n">axes</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">data</span><span class="p">[:,</span><span class="mi">0</span><span class="p">],</span> <span class="n">data</span><span class="p">[:,</span><span class="mi">1</span><span class="p">],</span> <span class="n">label</span> <span class="o">=</span> <span class="s1">'Observations'</span><span class="p">)</span> <span class="n">axes</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">data</span><span class="p">[:,</span><span class="mi">0</span><span class="p">],</span> <span class="n">line</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="s1">'r'</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">'Fitted line'</span><span class="p">)</span> @@ -8005,24 +7931,6 @@ Slope m = -0.085 </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child jp-OutputArea-executeResult"> -<div class="jp-OutputPrompt jp-OutputArea-prompt">Out[10]:</div> -<div class="jp-RenderedText jp-OutputArea-output jp-OutputArea-executeResult" data-mime-type="text/plain" tabindex="0"> -<pre>Text(0.5, 1.0, '(b) Observed and predicted number of days')</pre> -</div> -</div> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -8075,10 +7983,10 @@ Slope m = -0.085 <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [11]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">RMSE</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">fit_data</span><span class="p">):</span> +<div class="highlight hl-python"><pre><span></span><span class="k">def</span> <span class="nf">RMSE</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">fit_data</span><span class="p">):</span> <span class="w"> </span><span class="sd">'''</span> <span class="sd"> Compute the RMSE</span> @@ -8101,33 +8009,20 @@ Slope m = -0.085 </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [12]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">RMSE_line</span> <span class="o">=</span> <span class="n">RMSE</span><span class="p">(</span><span class="n">data</span><span class="p">[:,</span><span class="mi">1</span><span class="p">],</span> <span class="n">line</span><span class="p">)</span> +<div class="highlight hl-python"><pre><span></span><span class="n">RMSE_line</span> <span class="o">=</span> <span class="n">RMSE</span><span class="p">(</span><span class="n">data</span><span class="p">[:,</span><span class="mi">1</span><span class="p">],</span> <span class="n">line</span><span class="p">)</span> </pre></div> </div> </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>RMSE = 6.003 -</pre> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -8181,10 +8076,10 @@ Slope m = -0.085 <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [13]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">rbias</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">fit_data</span><span class="p">):</span> +<div class="highlight hl-python"><pre><span></span><span class="k">def</span> <span class="nf">rbias</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">fit_data</span><span class="p">):</span> <span class="w"> </span><span class="sd">'''</span> <span class="sd"> Compute the relative bias</span> @@ -8204,33 +8099,20 @@ Slope m = -0.085 </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [14]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">rbias_line</span> <span class="o">=</span> <span class="n">rbias</span><span class="p">(</span><span class="n">data</span><span class="p">[:,</span><span class="mi">1</span><span class="p">],</span> <span class="n">line</span><span class="p">)</span> +<div class="highlight hl-python"><pre><span></span><span class="n">rbias_line</span> <span class="o">=</span> <span class="n">rbias</span><span class="p">(</span><span class="n">data</span><span class="p">[:,</span><span class="mi">1</span><span class="p">],</span> <span class="n">line</span><span class="p">)</span> </pre></div> </div> </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>rbias = 0.002 -</pre> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -8345,10 +8227,10 @@ The confidence intervals as computed here and later in part 5 are based on a sim <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [15]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">conf_int</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">alpha</span><span class="p">):</span> +<div class="highlight hl-python"><pre><span></span><span class="k">def</span> <span class="nf">conf_int</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">alpha</span><span class="p">):</span> <span class="w"> </span><span class="sd">'''</span> <span class="sd"> Compute the confidence intervals</span> @@ -8367,15 +8249,15 @@ The confidence intervals as computed here and later in part 5 are based on a sim </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [16]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">k</span> <span class="o">=</span> <span class="n">conf_int</span><span class="p">(</span><span class="n">data</span><span class="p">[:,</span><span class="mi">1</span><span class="p">],</span> <span class="n">line</span><span class="p">,</span> <span class="mf">0.05</span><span class="p">)</span> +<div class="highlight hl-python"><pre><span></span><span class="n">k</span> <span class="o">=</span> <span class="n">conf_int</span><span class="p">(</span><span class="n">data</span><span class="p">[:,</span><span class="mi">1</span><span class="p">],</span> <span class="n">line</span><span class="p">,</span> <span class="mf">0.05</span><span class="p">)</span> <span class="n">ci_low</span> <span class="o">=</span> <span class="n">line</span> <span class="o">-</span> <span class="n">k</span> <span class="n">ci_up</span> <span class="o">=</span> <span class="n">line</span> <span class="o">+</span> <span class="n">k</span> @@ -8394,24 +8276,6 @@ The confidence intervals as computed here and later in part 5 are based on a sim </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child jp-OutputArea-executeResult"> -<div class="jp-OutputPrompt jp-OutputArea-prompt">Out[16]:</div> -<div class="jp-RenderedText jp-OutputArea-output jp-OutputArea-executeResult" data-mime-type="text/plain" tabindex="0"> -<pre>Text(0.5, 1.0, 'Number of days as function of the year')</pre> -</div> -</div> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -8485,10 +8349,10 @@ If you consider that you need to place a bet with not only the day but also the <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [17]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">parabola</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">,</span> <span class="n">c</span><span class="p">):</span> +<div class="highlight hl-python"><pre><span></span><span class="k">def</span> <span class="nf">parabola</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">,</span> <span class="n">c</span><span class="p">):</span> <span class="w"> </span><span class="sd">'''</span> <span class="sd"> Compute the quadratic model</span> @@ -8507,15 +8371,15 @@ If you consider that you need to place a bet with not only the day but also the </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [18]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">popt_parabola</span><span class="p">,</span> <span class="n">pcov_parabola</span> <span class="o">=</span> <span class="n">opt</span><span class="o">.</span><span class="n">curve_fit</span><span class="p">(</span><span class="n">parabola</span><span class="p">,</span> <span class="n">data</span><span class="p">[:,</span><span class="mi">0</span><span class="p">],</span> <span class="n">data</span><span class="p">[:,</span><span class="mi">1</span><span class="p">])</span> +<div class="highlight hl-python"><pre><span></span><span class="n">popt_parabola</span><span class="p">,</span> <span class="n">pcov_parabola</span> <span class="o">=</span> <span class="n">opt</span><span class="o">.</span><span class="n">curve_fit</span><span class="p">(</span><span class="n">parabola</span><span class="p">,</span> <span class="n">data</span><span class="p">[:,</span><span class="mi">0</span><span class="p">],</span> <span class="n">data</span><span class="p">[:,</span><span class="mi">1</span><span class="p">])</span> <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s1">'Optimal estimation for parameters:</span><span class="se">\n\</span> <span class="s1">a = </span><span class="si">{</span><span class="n">popt_parabola</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="si">:</span><span class="s1">.3e</span><span class="si">}</span><span class="s1">, b = </span><span class="si">{</span><span class="n">popt_parabola</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="si">:</span><span class="s1">.3f</span><span class="si">}</span><span class="s1">, c = </span><span class="si">{</span><span class="n">popt_parabola</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span><span class="si">:</span><span class="s1">.3f</span><span class="si">}</span><span class="se">\n</span><span class="s1">'</span><span class="p">)</span> @@ -8527,25 +8391,6 @@ If you consider that you need to place a bet with not only the day but also the </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>Optimal estimation for parameters: -a = -1.277e-03, b = 4.942, c = -4654.244 - -Covariance matrix for parameters: -Sigma = [[ 5.60366689e-07 -2.20560328e-03 2.16981823e+00] - [-2.20560328e-03 8.68165065e+00 -8.54118418e+03] - [ 2.16981823e+00 -8.54118418e+03 8.40337452e+06]] -</pre> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -8563,10 +8408,10 @@ Sigma = [[ 5.60366689e-07 -2.20560328e-03 2.16981823e+00] <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [19]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">fitted_parabola</span> <span class="o">=</span> <span class="n">parabola</span><span class="p">(</span><span class="n">data</span><span class="p">[:,</span><span class="mi">0</span><span class="p">],</span> <span class="o">*</span><span class="n">popt_parabola</span><span class="p">)</span> +<div class="highlight hl-python"><pre><span></span><span class="n">fitted_parabola</span> <span class="o">=</span> <span class="n">parabola</span><span class="p">(</span><span class="n">data</span><span class="p">[:,</span><span class="mi">0</span><span class="p">],</span> <span class="o">*</span><span class="n">popt_parabola</span><span class="p">)</span> </pre></div> </div> </div> @@ -8583,15 +8428,15 @@ Sigma = [[ 5.60366689e-07 -2.20560328e-03 2.16981823e+00] </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [20]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">k</span> <span class="o">=</span> <span class="n">conf_int</span><span class="p">(</span><span class="n">data</span><span class="p">[:,</span><span class="mi">1</span><span class="p">],</span> <span class="n">fitted_parabola</span><span class="p">,</span> <span class="mf">0.05</span><span class="p">)</span> +<div class="highlight hl-python"><pre><span></span><span class="n">k</span> <span class="o">=</span> <span class="n">conf_int</span><span class="p">(</span><span class="n">data</span><span class="p">[:,</span><span class="mi">1</span><span class="p">],</span> <span class="n">fitted_parabola</span><span class="p">,</span> <span class="mf">0.05</span><span class="p">)</span> <span class="n">ci_low_2</span> <span class="o">=</span> <span class="n">fitted_parabola</span> <span class="o">-</span> <span class="n">k</span> <span class="n">ci_up_2</span> <span class="o">=</span> <span class="n">fitted_parabola</span> <span class="o">+</span> <span class="n">k</span> @@ -8610,24 +8455,6 @@ Sigma = [[ 5.60366689e-07 -2.20560328e-03 2.16981823e+00] </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child jp-OutputArea-executeResult"> -<div class="jp-OutputPrompt jp-OutputArea-prompt">Out[20]:</div> -<div class="jp-RenderedText jp-OutputArea-output jp-OutputArea-executeResult" data-mime-type="text/plain" tabindex="0"> -<pre>Text(0.5, 1.0, 'Number of days as function of the year')</pre> -</div> -</div> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -8639,15 +8466,15 @@ Sigma = [[ 5.60366689e-07 -2.20560328e-03 2.16981823e+00] </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [21]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">RMSE_parabola</span> <span class="o">=</span> <span class="n">RMSE</span><span class="p">(</span><span class="n">data</span><span class="p">[:,</span><span class="mi">1</span><span class="p">],</span> <span class="n">fitted_parabola</span><span class="p">)</span> +<div class="highlight hl-python"><pre><span></span><span class="n">RMSE_parabola</span> <span class="o">=</span> <span class="n">RMSE</span><span class="p">(</span><span class="n">data</span><span class="p">[:,</span><span class="mi">1</span><span class="p">],</span> <span class="n">fitted_parabola</span><span class="p">)</span> <span class="n">R2_parabola</span> <span class="o">=</span> <span class="mi">1</span><span class="o">-</span><span class="p">((</span><span class="n">data</span><span class="p">[:,</span><span class="mi">1</span><span class="p">]</span><span class="o">-</span><span class="n">fitted_parabola</span><span class="p">)</span><span class="o">**</span><span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">mean</span><span class="p">()</span><span class="o">/</span><span class="p">(</span><span class="n">data</span><span class="p">[:,</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">var</span><span class="p">())</span> <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s1">'Coefficient of determination = </span><span class="si">{</span><span class="n">R2_parabola</span><span class="si">:</span><span class="s1">.3f</span><span class="si">}</span><span class="s1">'</span><span class="p">)</span> <span class="n">rbias_parabola</span> <span class="o">=</span> <span class="n">rbias</span><span class="p">(</span><span class="n">data</span><span class="p">[:,</span><span class="mi">1</span><span class="p">],</span> <span class="n">fitted_parabola</span><span class="p">)</span> @@ -8656,21 +8483,6 @@ Sigma = [[ 5.60366689e-07 -2.20560328e-03 2.16981823e+00] </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>RMSE = 5.918 -Coefficient of determination = 0.175 -rbias = 0.002 -</pre> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -8760,14 +8572,14 @@ No right answer, that depends on the risk you want to take ;) article { position: relative } </style> <a href="http://creativecommons.org/licenses/by/4.0/" rel="license"> -<img alt="Creative Commons License" src="https://i.creativecommons.org/l/by/4.0/88x31.png" style="border-width:; width:88px; height:auto; padding-top:10px"> -</img></a> +<img alt="Creative Commons License" src="https://i.creativecommons.org/l/by/4.0/88x31.png" style="border-width:; width:88px; height:auto; padding-top:10px"/> +</a> <a href="https://www.tudelft.nl/en/ceg" rel="TU Delft"> -<img alt="TU Delft" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/tu-logo/TU_P1_full-color.png" style="border-width:0; width:100px; height:auto; padding-bottom:0px"> -</img></a> +<img alt="TU Delft" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/tu-logo/TU_P1_full-color.png" style="border-width:0; width:100px; height:auto; padding-bottom:0px"/> +</a> <a href="http://mude.citg.tudelft.nl/" rel="MUDE"> -<img alt="MUDE" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/mude-logo/MUDE_Logo-small.png" style="border-width:0; width:100px; height:auto; padding-bottom:0px"> -</img></a> +<img alt="MUDE" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/mude-logo/MUDE_Logo-small.png" style="border-width:0; width:100px; height:auto; padding-bottom:0px"/> +</a> </h3> <span style="font-size: 75%"> © Copyright 2024 <a href="http://mude.citg.tudelft.nl/" rel="MUDE">MUDE</a> TU Delft. This work is licensed under a <a href="http://creativecommons.org/licenses/by/4.0/" rel="license">CC BY 4.0 License</a>. diff --git a/synced_files/GA_1_1/Task_2_solution.md b/synced_files/GA_1_1/Task_2_solution.md index 0553e474..4f3f444c 100644 --- a/synced_files/GA_1_1/Task_2_solution.md +++ b/synced_files/GA_1_1/Task_2_solution.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # GA 1.1, Part 2: Data-driven approach: Which model is better? <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> @@ -25,7 +15,7 @@ jupyter: *[CEGM1000 MUDE](http://mude.citg.tudelft.nl/): Week 1.1, Friday, Sep 6, 2024. This assignment does not need to be turned in.* -<!-- #region cell_id="21f9833788f64e78a35bc8cac535e76d" deepnote_cell_type="markdown" --> + ## Overview In this assignment we will fit two models to observations of ice break-up date and reflect on their performance. @@ -43,7 +33,6 @@ We will follow these steps: 5. Interpret confidence intervals; 6. Compare the linear model with a non-linear one; 7. And finally...choose a model to make a bet in the Ice Classic! -<!-- #endregion --> ```python import numpy as np @@ -54,9 +43,8 @@ import scipy.optimize as opt %matplotlib inline ``` -<!-- #region cell_id="b1d3e3d2f92c4de29aba4aa61c525867" deepnote_cell_type="markdown" jp-MarkdownHeadingCollapsed=true --> ## 1. Import data -<!-- #endregion --> + We will import the dataset by using the `numpy` function `loadtxt`. If you open the *data-days.csv* file, you will notice that the comma is used as decimal separator for the number of recorded days. For this reason, we will import the data in the following steps: @@ -78,25 +66,19 @@ data = data.astype(float) data[0:10] ``` -<!-- #region jp-MarkdownHeadingCollapsed=true --> ## 2. Preliminary analysis -<!-- #endregion --> -<!-- #region cell_id="1b15837c64e748b89fafad1f8007a399" deepnote_cell_type="markdown" --> + One of the first steps when getting familiar with new data is to see the dimensions of the data. To this end, we can use the `numpy` function `shape`. -<!-- #endregion --> ```python np.shape(data) ``` -<!-- #region cell_id="e901697b36064391b4a62d78c955dd6b" deepnote_cell_type="markdown" --> The result is a (103, 2) array, i.e., a matrix with 103 rows and 2 columns. The first column contains the year of record, while the second one contains the measured data. -<!-- #endregion --> -<!-- #region cell_id="43139b45e34f4252a6a270336ca401ba" deepnote_cell_type="markdown" --> + We can also compute the mean and the standard deviation of the variable of interest (second column) to get a sense of how the variable behaves. -<!-- #endregion --> ```python mean = np.mean(data[:,1]) @@ -106,9 +88,7 @@ print(f'Mean: {mean:.3f}\n\ Standard deviation: {std:.3f}') ``` -<!-- #region cell_id="2a1ddf21c02141dc8dfebee83c602a73" deepnote_cell_type="markdown" --> We can also quickly plot them to see the scatter of the data and the evolution in time. -<!-- #endregion --> ```python plt.scatter(data[:, 0], data[:, 1], label='Measured data') @@ -118,15 +98,13 @@ plt.title(f'Number of days per year between {data[0,0]:.0f}-{data[-1,0]:.0f}') plt.grid() ``` -<!-- #region cell_id="37edb558a10b47d88b3e4f683da56221" deepnote_cell_type="markdown" --> In the figure above, we have plotted the year of the measurement in the x-axis and the number of days until the ice broke during that year in the y-axis. We can see that there is a significant scatter. Also, there seems to be a trend over time: as we go ahead in time (higher values in the x-axis), the number of days until the ice broke seems to decrease. We have identifid a trend but **can we model it**? -<!-- #endregion --> -<!-- #region cell_id="a05297ff6298401192d49f8e257ff9ec" deepnote_cell_type="markdown" jp-MarkdownHeadingCollapsed=true --> + ## 3. Fit a linear regression model: is it a good model? -<!-- #endregion --> + We are going to create a model which allows us to predict the number of days until the ice broke as function of the year. For that, we are going to assume a linear relationship between the variables (a linear model) and we will fit it using linear regression. This is, we will fit a regression model $days=m\cdot year+q$, where $m$ represents the slope of the line, and $q$ is the intercept. @@ -176,7 +154,7 @@ r_sq, q, m = regression(data[:,0], data[:,1]) </p> </div> -<!-- #region cell_id="9a082db4cf644c9c9854af0a458c0b8a" deepnote_cell_type="markdown" --> + <div style="background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Solution:</b> @@ -184,11 +162,9 @@ r_sq, q, m = regression(data[:,0], data[:,1]) <li> 2. Based on the answer to the previous question, the linear model is not an accurate model. Whether this low level of accuracy is good enough or not, depends on the use we want to give to the model. Would you bet 3\$? And 1,000\$? </li> </p> </div> -<!-- #endregion --> -<!-- #region cell_id="143e5d1bf8324d9f80fca4af9a0d162c" deepnote_cell_type="markdown" --> + We can also plot the data and the fitted model to see how the fit looks. To do so, we can make computations using the previous equation $days=m\cdot year+q$ with the fitted intercept $q$ and slope $m$. We have already defined a function which does it for you. -<!-- #endregion --> ```python def calculate_line(x, m, q): @@ -232,7 +208,6 @@ axes[1].grid() axes[1].set_title('(b) Observed and predicted number of days') ``` -<!-- #region cell_id="b564cab0d51c40f2aa3c7ebb9affaade" deepnote_cell_type="markdown" --> <div style="background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 2:</b> @@ -242,9 +217,8 @@ axes[1].set_title('(b) Observed and predicted number of days') </ol> </p> </div> -<!-- #endregion --> -<!-- #region cell_id="9a082db4cf644c9c9854af0a458c0b8a" deepnote_cell_type="markdown" --> +<!-- #region --> <div style="background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Solution:</b> @@ -257,11 +231,9 @@ In the plot (b), we compare the observations with the predictions of the model. </div> <!-- #endregion --> -<!-- #region cell_id="67e44fda81f24273b8d28edd35a50d87" deepnote_cell_type="markdown" --> We can also assess the scatter using the Root Mean Square Error ($RMSE$). Don't you remember it? Go back to the [book](https://mude.citg.tudelft.nl/book/modelling/gof.html)! Let's see how our model performs for this metric. -<!-- #endregion --> ```python def RMSE(data, fit_data): @@ -288,7 +260,6 @@ def RMSE(data, fit_data): RMSE_line = RMSE(data[:,1], line) ``` -<!-- #region cell_id="b564cab0d51c40f2aa3c7ebb9affaade" deepnote_cell_type="markdown" --> <div style="background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 3:</b> @@ -300,9 +271,8 @@ RMSE_line = RMSE(data[:,1], line) </ol> </p> </div> -<!-- #endregion --> -<!-- #region cell_id="604f11f41ac54d59b11422bac89e6411" deepnote_cell_type="markdown" --> + <div style="background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Solution:</b> @@ -310,7 +280,7 @@ RMSE_line = RMSE(data[:,1], line) <li> 2. Based on the previous interpretation, the linear model is not accurate. Whether this low level of accuracy is good enough or not, depends on the use we want to give to the model. Would you bet $3? And $1,000? </li> </p> </div> -<!-- #endregion --> + Finally, we can compute the bias of our model using $rbias$. @@ -336,7 +306,6 @@ def rbias(data, fit_data): rbias_line = rbias(data[:,1], line) ``` -<!-- #region cell_id="b564cab0d51c40f2aa3c7ebb9affaade" deepnote_cell_type="markdown" --> <div style="background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 4:</b> @@ -346,18 +315,16 @@ rbias_line = rbias(data[:,1], line) </ol> </p> </div> -<!-- #endregion --> -<!-- #region cell_id="604f11f41ac54d59b11422bac89e6411" deepnote_cell_type="markdown" --> + <div style="background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Solution:</b> <li> 1. $rbias$ provides an standardized measure of the systematic tendency of our model to under- or over-prediction. It is very low for our model, so it does not have a clear tendency to under- or overestimate and, thus, does not seem to be biased. </li> </p> </div> -<!-- #endregion --> -<!-- #region cell_id="b564cab0d51c40f2aa3c7ebb9affaade" deepnote_cell_type="markdown" --> + <div style="background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 5:</b> @@ -369,7 +336,7 @@ rbias_line = rbias(data[:,1], line) </ol> </p> </div> -<!-- #endregion --> + <div style="background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> @@ -378,9 +345,9 @@ No right answer, that depends on the risk you want to take ;) </p> </div> -<!-- #region cell_id="19496dbefd3247f09c2226579c7b665f" deepnote_cell_type="markdown" jp-MarkdownHeadingCollapsed=true --> + ## 4. Confidence Intervals -<!-- #endregion --> + One way of assessing the uncertainty around the predictions of a model are confidence intervals. They give us insight into the precision of their predictions by transforming them into probabilities. In short, the 95% confidence interval (significance $\alpha=0.05$) shows the range of values within which my observation would be with a probability of 95%. Here, we want you to focus on their interpretation. In the following weeks (1.3), you will learn more about how to compute them. @@ -426,7 +393,6 @@ plt.legend() plt.title('Number of days as function of the year') ``` -<!-- #region cell_id="b564cab0d51c40f2aa3c7ebb9affaade" deepnote_cell_type="markdown" --> <div style="background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 7:</b> @@ -435,28 +401,25 @@ plt.title('Number of days as function of the year') </ol> </p> </div> -<!-- #endregion --> -<!-- #region cell_id="604f11f41ac54d59b11422bac89e6411" deepnote_cell_type="markdown" --> + <div style="background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Solution:</b> If you consider that you need to place a bet with not only the day but also the hour and minute at which the ice would break, the model is not accurate enough. You can see that the confidence interval spans almost 20 days! </p> </div> -<!-- #endregion --> -<!-- #region cell_id="a19fb5b7e1cd4c32b435b8b967933700" deepnote_cell_type="markdown" jp-MarkdownHeadingCollapsed=true --> + ## 5. Non-linear models -<!-- #endregion --> + As we have seen, the data-driven linear model is not really a good choice for representing the data we have. Let's try with one which is slightly more complicated: a non-linear model. In this section, we will analyze the fitting of a quadratic model as $days = A year^2 + B year + C$. The steps are the same as in the previous section, so we will go fast through the code to focus on the interpretation and comparison between the two models. -<!-- #region cell_id="ca8a6b9d68234ae69a799a3f4f3866a2" deepnote_cell_type="markdown" --> + You do not need to worry about this right now, but in case you are curious: we will make use of the `scipy.optimize` library, which contains the `curve_fit` function. For further info on the function see [here](https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html). -<!-- #endregion --> ```python def parabola(x, a, b, c): @@ -485,19 +448,15 @@ print(f'Covariance matrix for parameters:\n\ Sigma = {pcov_parabola}') ``` -<!-- #region cell_id="10efd81771064ce0ac4d50095be06e23" deepnote_cell_type="markdown" --> Therefore, our parabola now looks like $days = -1.277 \cdot 10^{-3} \cdot year^2 + 4.942 \cdot year - 4654.244$. Now that we have fitted it, we can use it to compute predictions. -<!-- #endregion --> ```python fitted_parabola = parabola(data[:,0], *popt_parabola) ``` -<!-- #region cell_id="6cc6a36c668f4ee2b26d41b27d335691" deepnote_cell_type="markdown" --> We can also determine the confidence intervals for this fit and see how it looks! -<!-- #endregion --> ```python k = conf_int(data[:,1], fitted_parabola, 0.05) @@ -525,7 +484,6 @@ print(f'Coefficient of determination = {R2_parabola:.3f}') rbias_parabola = rbias(data[:,1], fitted_parabola) ``` -<!-- #region cell_id="b564cab0d51c40f2aa3c7ebb9affaade" deepnote_cell_type="markdown" --> <div style="background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 8:</b> @@ -534,7 +492,7 @@ rbias_parabola = rbias(data[:,1], fitted_parabola) </ol> </p> </div> -<!-- #endregion --> + <div style="background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> diff --git a/synced_files/GA_1_2/Analysis.html b/synced_files/GA_1_2/Analysis.html index 4fbf1784..30ac9087 100644 --- a/synced_files/GA_1_2/Analysis.html +++ b/synced_files/GA_1_2/Analysis.html @@ -3,34 +3,7 @@ <html lang="en"> <head><meta charset="utf-8"/> <meta content="width=device-width, initial-scale=1.0" name="viewport"/> -<title>Notebook</title><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script><script> -(function() { - function addWidgetsRenderer() { - var mimeElement = document.querySelector('script[type="application/vnd.jupyter.widget-view+json"]'); - var scriptElement = document.createElement('script'); - - var widgetRendererSrc = 'https://unpkg.com/@jupyter-widgets/html-manager@*/dist/embed-amd.js'; - - var widgetState; - - // Fallback for older version: - try { - widgetState = mimeElement && JSON.parse(mimeElement.innerHTML); - - if (widgetState && (widgetState.version_major < 2 || !widgetState.version_major)) { - - var widgetRendererSrc = 'https://unpkg.com/@jupyter-js-widgets@*/dist/embed.js'; - - } - } catch(e) {} - - scriptElement.src = widgetRendererSrc; - document.body.appendChild(scriptElement); - } - - document.addEventListener('DOMContentLoaded', addWidgetsRenderer); -}()); -</script> +<title>Notebook</title><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script> <style type="text/css"> pre { line-height: 125%; } td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } @@ -7596,10 +7569,10 @@ $$</p> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [1]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> +<div class="highlight hl-python"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> <span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span> <span class="kn">from</span> <span class="nn">scipy.stats</span> <span class="kn">import</span> <span class="n">norm</span> @@ -7627,10 +7600,10 @@ $$</p> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [2]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">stefan</span><span class="p">(</span><span class="n">constant</span><span class="p">,</span> <span class="n">H0</span><span class="p">,</span> <span class="n">Ts</span><span class="p">,</span> <span class="n">Tfr</span><span class="p">,</span> <span class="n">time</span><span class="p">):</span> +<div class="highlight hl-python"><pre><span></span><span class="k">def</span> <span class="nf">stefan</span><span class="p">(</span><span class="n">constant</span><span class="p">,</span> <span class="n">H0</span><span class="p">,</span> <span class="n">Ts</span><span class="p">,</span> <span class="n">Tfr</span><span class="p">,</span> <span class="n">time</span><span class="p">):</span> <span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">constant</span><span class="o">*</span><span class="n">time</span><span class="o">*</span><span class="nb">abs</span><span class="p">(</span><span class="n">Ts</span><span class="o">-</span><span class="n">Tfr</span><span class="p">)</span> <span class="o">+</span> <span class="n">H0</span><span class="o">**</span><span class="mi">2</span><span class="p">)</span> </pre></div> </div> @@ -7645,7 +7618,7 @@ $$</p> <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="nb">print</span><span class="p">(</span><span class="s1">'Ice thickness: '</span> <span class="o">+</span> +<div class="highlight hl-python"><pre><span></span><span class="nb">print</span><span class="p">(</span><span class="s1">'Ice thickness: '</span> <span class="o">+</span> <span class="sa">f</span><span class="s1">'</span><span class="si">{</span><span class="n">stefan</span><span class="p">(</span><span class="mf">1.44</span><span class="o">*</span><span class="mi">10</span><span class="o">**</span><span class="p">(</span><span class="o">-</span><span class="mi">8</span><span class="p">),</span><span class="w"> </span><span class="mf">0.15</span><span class="p">,</span><span class="w"> </span><span class="mi">261</span><span class="p">,</span><span class="w"> </span><span class="mi">273</span><span class="p">,</span><span class="w"> </span><span class="mi">3</span><span class="o">*</span><span class="mi">24</span><span class="o">*</span><span class="mi">3600</span><span class="p">)</span><span class="si">:</span><span class="s1">.3f</span><span class="si">}</span><span class="s1"> m'</span><span class="p">)</span> </pre></div> </div> @@ -7687,10 +7660,10 @@ $$</p> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [4]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">H_taylor</span><span class="p">(</span><span class="n">mu_H0</span><span class="p">,</span> <span class="n">mu_iT</span><span class="p">,</span> <span class="n">sigma_H0</span><span class="p">,</span> <span class="n">sigma_iT</span><span class="p">):</span> +<div class="highlight hl-python"><pre><span></span><span class="k">def</span> <span class="nf">H_taylor</span><span class="p">(</span><span class="n">mu_H0</span><span class="p">,</span> <span class="n">mu_iT</span><span class="p">,</span> <span class="n">sigma_H0</span><span class="p">,</span> <span class="n">sigma_iT</span><span class="p">):</span> <span class="w"> </span><span class="sd">""" Taylor series approximation of mean and std of H"""</span> <span class="c1"># Write your own preliminary variables here</span> @@ -7811,7 +7784,7 @@ $$</p> <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">mu_iT</span> <span class="o">=</span> <span class="mi">10</span> +<div class="highlight hl-python"><pre><span></span><span class="n">mu_iT</span> <span class="o">=</span> <span class="mi">10</span> <span class="n">sigma_iT</span> <span class="o">=</span> <span class="mi">4</span> <span class="n">mu_H0</span> <span class="o">=</span> <span class="mf">0.20</span> <span class="n">sigma_H0</span> <span class="o">=</span> <span class="mf">0.03</span> @@ -7892,7 +7865,7 @@ $$</p> <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="k">for</span> <span class="n">N</span> <span class="ow">in</span> <span class="p">[</span><span class="mi">5</span><span class="p">,</span> <span class="mi">50</span><span class="p">,</span> <span class="mi">500</span><span class="p">,</span> <span class="mi">5000</span><span class="p">,</span> <span class="mi">50000</span><span class="p">]:</span> +<div class="highlight hl-python"><pre><span></span><span class="k">for</span> <span class="n">N</span> <span class="ow">in</span> <span class="p">[</span><span class="mi">5</span><span class="p">,</span> <span class="mi">50</span><span class="p">,</span> <span class="mi">500</span><span class="p">,</span> <span class="mi">5000</span><span class="p">,</span> <span class="mi">50000</span><span class="p">]:</span> <span class="n">mu_H_simulated</span><span class="p">,</span> <span class="n">sigma_H_simulated</span><span class="p">,</span> <span class="n">h_samp</span> <span class="o">=</span> <span class="n">samples_plot</span><span class="p">(</span><span class="n">N</span><span class="p">,</span> <span class="n">mu_H0</span><span class="p">,</span> <span class="n">mu_iT</span><span class="p">,</span> @@ -7930,7 +7903,7 @@ $$</p> <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># YOUR_CODE_HERE</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mf">0.1</span><span class="p">,</span> <span class="mf">0.4</span><span class="p">,</span> <span class="mi">10</span><span class="p">):</span> <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s1">'for an ice thickness of </span><span class="si">{</span><span class="n">i</span><span class="si">:</span><span class="s1">5.2f</span><span class="si">}</span><span class="s1"> m --> '</span> <span class="o">+</span> @@ -7987,7 +7960,4 @@ $$</p> </div> </main> </body> -<script type="application/vnd.jupyter.widget-state+json"> -{"state": {}, "version_major": 2, "version_minor": 0} -</script> </html> diff --git a/synced_files/GA_1_2/Analysis.md b/synced_files/GA_1_2/Analysis.md index e8f3f382..62afae88 100644 --- a/synced_files/GA_1_2/Analysis.md +++ b/synced_files/GA_1_2/Analysis.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # GA 1.2: Analysis Notebook <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> @@ -25,7 +15,7 @@ jupyter: *[CEGM1000 MUDE](http://mude.citg.tudelft.nl/): Week 1.2, Friday, Sep 13, 2024.* -<!-- #region id="1db6fea9-f3ad-44bc-a4c8-7b2b3008e945" --> +<!-- #region --> _This assignment does not need to be turned in._ ## Let's account for the latest news! @@ -98,7 +88,7 @@ print('Ice thickness: ' + 2. Find the distribution of `H_ice` numerically with a simulation, then compare this to the Normal distribution defined by the mean and standard deviation of the linearized function of random variables -<!-- #region id="bfadcf3f-4578-4809-acdb-625ab3a71f27" --> + <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> @@ -107,7 +97,6 @@ $\textbf{Task 1}$ Complete the two functions in the cell below, and support your work by including an image showing the analytic equations. </p> </div> -<!-- #endregion --> ```python def H_taylor(mu_H0, mu_iT, sigma_H0, sigma_iT): diff --git a/synced_files/GA_1_2/Analysis_solution.html b/synced_files/GA_1_2/Analysis_solution.html index bc14398f..fe61988c 100644 --- a/synced_files/GA_1_2/Analysis_solution.html +++ b/synced_files/GA_1_2/Analysis_solution.html @@ -3,34 +3,7 @@ <html lang="en"> <head><meta charset="utf-8"/> <meta content="width=device-width, initial-scale=1.0" name="viewport"/> -<title>Notebook</title><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script><script> -(function() { - function addWidgetsRenderer() { - var mimeElement = document.querySelector('script[type="application/vnd.jupyter.widget-view+json"]'); - var scriptElement = document.createElement('script'); - - var widgetRendererSrc = 'https://unpkg.com/@jupyter-widgets/html-manager@*/dist/embed-amd.js'; - - var widgetState; - - // Fallback for older version: - try { - widgetState = mimeElement && JSON.parse(mimeElement.innerHTML); - - if (widgetState && (widgetState.version_major < 2 || !widgetState.version_major)) { - - var widgetRendererSrc = 'https://unpkg.com/@jupyter-js-widgets@*/dist/embed.js'; - - } - } catch(e) {} - - scriptElement.src = widgetRendererSrc; - document.body.appendChild(scriptElement); - } - - document.addEventListener('DOMContentLoaded', addWidgetsRenderer); -}()); -</script> +<title>Notebook</title><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script> <style type="text/css"> pre { line-height: 125%; } td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } @@ -7596,10 +7569,10 @@ $$</p> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [1]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> +<div class="highlight hl-python"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> <span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span> <span class="kn">from</span> <span class="nn">scipy.stats</span> <span class="kn">import</span> <span class="n">norm</span> @@ -7627,44 +7600,31 @@ $$</p> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [2]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">stefan</span><span class="p">(</span><span class="n">constant</span><span class="p">,</span> <span class="n">H0</span><span class="p">,</span> <span class="n">Ts</span><span class="p">,</span> <span class="n">Tfr</span><span class="p">,</span> <span class="n">time</span><span class="p">):</span> +<div class="highlight hl-python"><pre><span></span><span class="k">def</span> <span class="nf">stefan</span><span class="p">(</span><span class="n">constant</span><span class="p">,</span> <span class="n">H0</span><span class="p">,</span> <span class="n">Ts</span><span class="p">,</span> <span class="n">Tfr</span><span class="p">,</span> <span class="n">time</span><span class="p">):</span> <span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">constant</span><span class="o">*</span><span class="n">time</span><span class="o">*</span><span class="nb">abs</span><span class="p">(</span><span class="n">Ts</span><span class="o">-</span><span class="n">Tfr</span><span class="p">)</span> <span class="o">+</span> <span class="n">H0</span><span class="o">**</span><span class="mi">2</span><span class="p">)</span> </pre></div> </div> </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=3a8c482a"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=3a8c482a"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [3]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="nb">print</span><span class="p">(</span><span class="s1">'Ice thickness: '</span> <span class="o">+</span> +<div class="highlight hl-python"><pre><span></span><span class="nb">print</span><span class="p">(</span><span class="s1">'Ice thickness: '</span> <span class="o">+</span> <span class="sa">f</span><span class="s1">'</span><span class="si">{</span><span class="n">stefan</span><span class="p">(</span><span class="mf">1.44</span><span class="o">*</span><span class="mi">10</span><span class="o">**</span><span class="p">(</span><span class="o">-</span><span class="mi">8</span><span class="p">),</span><span class="w"> </span><span class="mf">0.15</span><span class="p">,</span><span class="w"> </span><span class="mi">261</span><span class="p">,</span><span class="w"> </span><span class="mi">273</span><span class="p">,</span><span class="w"> </span><span class="mi">3</span><span class="o">*</span><span class="mi">24</span><span class="o">*</span><span class="mi">3600</span><span class="p">)</span><span class="si">:</span><span class="s1">.3f</span><span class="si">}</span><span class="s1"> m'</span><span class="p">)</span> </pre></div> </div> </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>Ice thickness: 0.259 m -</pre> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=1ee42f39"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -7700,10 +7660,10 @@ $$</p> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [4]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">H_taylor</span><span class="p">(</span><span class="n">mu_H0</span><span class="p">,</span> <span class="n">mu_iT</span><span class="p">,</span> <span class="n">sigma_H0</span><span class="p">,</span> <span class="n">sigma_iT</span><span class="p">):</span> +<div class="highlight hl-python"><pre><span></span><span class="k">def</span> <span class="nf">H_taylor</span><span class="p">(</span><span class="n">mu_H0</span><span class="p">,</span> <span class="n">mu_iT</span><span class="p">,</span> <span class="n">sigma_H0</span><span class="p">,</span> <span class="n">sigma_iT</span><span class="p">):</span> <span class="w"> </span><span class="sd">""" Taylor series approximation of mean and std of H"""</span> <span class="c1"># # Write your own preliminary variables here</span> @@ -7855,15 +7815,15 @@ $$</p> </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=55ff8dd6-86ef-401a-9a56-02551c348698"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=55ff8dd6-86ef-401a-9a56-02551c348698"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [5]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">mu_iT</span> <span class="o">=</span> <span class="mi">10</span> +<div class="highlight hl-python"><pre><span></span><span class="n">mu_iT</span> <span class="o">=</span> <span class="mi">10</span> <span class="n">sigma_iT</span> <span class="o">=</span> <span class="mi">4</span> <span class="n">mu_H0</span> <span class="o">=</span> <span class="mf">0.20</span> <span class="n">sigma_H0</span> <span class="o">=</span> <span class="mf">0.03</span> @@ -7900,45 +7860,6 @@ $$</p> </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>Comparison of propagated and simulated distributions: - -Number of iT samples adjusted to 0: 80 (0.8% of N) -</pre> -</div> -</div> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre> - -Mean and standard deviation of linearized function: - μ â‚•= 0.278 m - σ â‚•= 0.034 m - - -Mean and standard deviation of simulated distribution: - μ â‚• = 0.278 m - σ â‚•= 0.035 m - - -</pre> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=2424ca5c"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -7978,15 +7899,15 @@ Mean and standard deviation of simulated distribution: </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=8c336566"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=8c336566"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [6]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="k">for</span> <span class="n">N</span> <span class="ow">in</span> <span class="p">[</span><span class="mi">5</span><span class="p">,</span> <span class="mi">50</span><span class="p">,</span> <span class="mi">500</span><span class="p">,</span> <span class="mi">5000</span><span class="p">,</span> <span class="mi">50000</span><span class="p">]:</span> +<div class="highlight hl-python"><pre><span></span><span class="k">for</span> <span class="n">N</span> <span class="ow">in</span> <span class="p">[</span><span class="mi">5</span><span class="p">,</span> <span class="mi">50</span><span class="p">,</span> <span class="mi">500</span><span class="p">,</span> <span class="mi">5000</span><span class="p">,</span> <span class="mi">50000</span><span class="p">]:</span> <span class="n">mu_H_simulated</span><span class="p">,</span> <span class="n">sigma_H_simulated</span><span class="p">,</span> <span class="n">h_samp</span> <span class="o">=</span> <span class="n">samples_plot</span><span class="p">(</span><span class="n">N</span><span class="p">,</span> <span class="n">mu_H0</span><span class="p">,</span> <span class="n">mu_iT</span><span class="p">,</span> @@ -8000,95 +7921,6 @@ Mean and standard deviation of simulated distribution: </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>For N = 5 samples: - mean = 0.254 m - std = 0.033 m - -</pre> -</div> -</div> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>For N = 50 samples: - mean = 0.283 m - std = 0.032 m - -Number of iT samples adjusted to 0: 2 (0.4% of N) -</pre> -</div> -</div> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>For N = 500 samples: - mean = 0.279 m - std = 0.034 m - -Number of iT samples adjusted to 0: 19 (0.4% of N) -</pre> -</div> -</div> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>For N = 5000 samples: - mean = 0.278 m - std = 0.034 m - -Number of iT samples adjusted to 0: 300 (0.6% of N) -</pre> -</div> -</div> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>For N = 50000 samples: - mean = 0.277 m - std = 0.035 m - -</pre> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=7f4ce674"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -8105,15 +7937,15 @@ Number of iT samples adjusted to 0: 300 (0.6% of N) </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=fb0f562b"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=fb0f562b"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [7]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># YOUR_CODE_HERE</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mf">0.1</span><span class="p">,</span> <span class="mf">0.4</span><span class="p">,</span> <span class="mi">10</span><span class="p">):</span> <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s1">'for an ice thickness of </span><span class="si">{</span><span class="n">i</span><span class="si">:</span><span class="s1">5.2f</span><span class="si">}</span><span class="s1"> m --> '</span> <span class="o">+</span> @@ -8124,28 +7956,6 @@ Number of iT samples adjusted to 0: 300 (0.6% of N) </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>for an ice thickness of 0.10 m --> 0.0000% of samples, 0.0000% of distribution -for an ice thickness of 0.13 m --> 0.0160% of samples, 0.0014% of distribution -for an ice thickness of 0.17 m --> 0.2320% of samples, 0.0642% of distribution -for an ice thickness of 0.20 m --> 1.8920% of samples, 1.2165% of distribution -for an ice thickness of 0.23 m --> 10.5720% of samples, 9.9560% of distribution -for an ice thickness of 0.27 m --> 36.1440% of samples, 37.5909% of distribution -for an ice thickness of 0.30 m --> 73.6660% of samples, 74.2661% of distribution -for an ice thickness of 0.33 m --> 95.3340% of samples, 94.7318% of distribution -for an ice thickness of 0.37 m --> 99.7340% of samples, 99.5162% of distribution -for an ice thickness of 0.40 m --> 99.9960% of samples, 99.9811% of distribution -</pre> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=dae9ee19"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -8173,14 +7983,14 @@ for an ice thickness of 0.40 m --> 99.9960% of samples, 99.9811% of distri article { position: relative } </style> <a href="http://creativecommons.org/licenses/by/4.0/" rel="license"> -<img alt="Creative Commons License" src="https://i.creativecommons.org/l/by/4.0/88x31.png" style="border-width:; width:88px; height:auto; padding-top:10px"> -</img></a> +<img alt="Creative Commons License" src="https://i.creativecommons.org/l/by/4.0/88x31.png" style="border-width:; width:88px; height:auto; padding-top:10px"/> +</a> <a href="https://www.tudelft.nl/en/ceg" rel="TU Delft"> -<img alt="TU Delft" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/tu-logo/TU_P1_full-color.png" style="border-width:0; width:100px; height:auto; padding-bottom:0px"> -</img></a> +<img alt="TU Delft" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/tu-logo/TU_P1_full-color.png" style="border-width:0; width:100px; height:auto; padding-bottom:0px"/> +</a> <a href="http://mude.citg.tudelft.nl/" rel="MUDE"> -<img alt="MUDE" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/mude-logo/MUDE_Logo-small.png" style="border-width:0; width:100px; height:auto; padding-bottom:0px"> -</img></a> +<img alt="MUDE" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/mude-logo/MUDE_Logo-small.png" style="border-width:0; width:100px; height:auto; padding-bottom:0px"/> +</a> </h3> <span style="font-size: 75%"> © Copyright 2024 <a href="http://mude.citg.tudelft.nl/" rel="MUDE">MUDE</a> TU Delft. This work is licensed under a <a href="http://creativecommons.org/licenses/by/4.0/" rel="license">CC BY 4.0 License</a>. @@ -8192,7 +8002,4 @@ for an ice thickness of 0.40 m --> 99.9960% of samples, 99.9811% of distri </div> </main> </body> -<script type="application/vnd.jupyter.widget-state+json"> -{"state": {}, "version_major": 2, "version_minor": 0} -</script> </html> diff --git a/synced_files/GA_1_2/Analysis_solution.md b/synced_files/GA_1_2/Analysis_solution.md index 0a242021..d7cf86be 100644 --- a/synced_files/GA_1_2/Analysis_solution.md +++ b/synced_files/GA_1_2/Analysis_solution.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # GA 1.2: Analysis Notebook <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> @@ -25,7 +15,7 @@ jupyter: *[CEGM1000 MUDE](http://mude.citg.tudelft.nl/): Week 1.2, Friday, Sep 13, 2024.* -<!-- #region id="1db6fea9-f3ad-44bc-a4c8-7b2b3008e945" --> +<!-- #region --> _This assignment does not need to be turned in._ ## Let's account for the latest news! @@ -98,7 +88,7 @@ print('Ice thickness: ' + 2. Find the distribution of `H_ice` numerically with a simulation, then compare this to the Normal distribution defined by the mean and standard deviation of the linearized function of random variables -<!-- #region id="bfadcf3f-4578-4809-acdb-625ab3a71f27" --> + <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> @@ -107,7 +97,6 @@ $\textbf{Task 1}$ Complete the two functions in the cell below, and support your work by including an image showing the analytic equations. </p> </div> -<!-- #endregion --> ```python def H_taylor(mu_H0, mu_iT, sigma_H0, sigma_iT): diff --git a/synced_files/GA_1_3/Analysis.html b/synced_files/GA_1_3/Analysis.html index 18283d49..966040be 100644 --- a/synced_files/GA_1_3/Analysis.html +++ b/synced_files/GA_1_3/Analysis.html @@ -3,34 +3,7 @@ <html lang="en"> <head><meta charset="utf-8"/> <meta content="width=device-width, initial-scale=1.0" name="viewport"/> -<title>Notebook</title><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script><script> -(function() { - function addWidgetsRenderer() { - var mimeElement = document.querySelector('script[type="application/vnd.jupyter.widget-view+json"]'); - var scriptElement = document.createElement('script'); - - var widgetRendererSrc = 'https://unpkg.com/@jupyter-widgets/html-manager@*/dist/embed-amd.js'; - - var widgetState; - - // Fallback for older version: - try { - widgetState = mimeElement && JSON.parse(mimeElement.innerHTML); - - if (widgetState && (widgetState.version_major < 2 || !widgetState.version_major)) { - - var widgetRendererSrc = 'https://unpkg.com/@jupyter-js-widgets@*/dist/embed.js'; - - } - } catch(e) {} - - scriptElement.src = widgetRendererSrc; - document.body.appendChild(scriptElement); - } - - document.addEventListener('DOMContentLoaded', addWidgetsRenderer); -}()); -</script> +<title>Notebook</title><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script> <style type="text/css"> pre { line-height: 125%; } td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } @@ -7578,10 +7551,10 @@ a.anchor-link { <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [1]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> +<div class="highlight hl-python"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> <span class="kn">from</span> <span class="nn">scipy</span> <span class="kn">import</span> <span class="n">interpolate</span> <span class="kn">from</span> <span class="nn">scipy.stats</span> <span class="kn">import</span> <span class="n">norm</span> <span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span> @@ -7634,7 +7607,7 @@ a.anchor-link { <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">my_dictionary</span> <span class="o">=</span> <span class="p">{</span><span class="s1">'key1'</span><span class="p">:</span> <span class="s1">'value1'</span><span class="p">,</span> +<div class="highlight hl-python"><pre><span></span><span class="n">my_dictionary</span> <span class="o">=</span> <span class="p">{</span><span class="s1">'key1'</span><span class="p">:</span> <span class="s1">'value1'</span><span class="p">,</span> <span class="s1">'key2'</span><span class="p">:</span> <span class="s1">'value2'</span><span class="p">,</span> <span class="s1">'name'</span><span class="p">:</span> <span class="s1">'Dictionary Example'</span><span class="p">,</span> <span class="s1">'a_list'</span><span class="p">:</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">],</span> @@ -7685,7 +7658,7 @@ a.anchor-link { <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="n">YOUR_CODE_HERE</span> <span class="n">function_that_uses_my_dictionary</span><span class="p">(</span><span class="n">my_dictionary</span><span class="p">)</span> </pre></div> </div> @@ -7719,10 +7692,10 @@ a.anchor-link { <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [4]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">gnss</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="s1">'./data/gnss_observations.csv'</span><span class="p">)</span> +<div class="highlight hl-python"><pre><span></span><span class="n">gnss</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="s1">'./data/gnss_observations.csv'</span><span class="p">)</span> <span class="n">times_gnss</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">to_datetime</span><span class="p">(</span><span class="n">gnss</span><span class="p">[</span><span class="s1">'times'</span><span class="p">])</span> <span class="n">y_gnss</span> <span class="o">=</span> <span class="p">(</span><span class="n">gnss</span><span class="p">[</span><span class="s1">'observations[m]'</span><span class="p">])</span><span class="o">.</span><span class="n">to_numpy</span><span class="p">()</span><span class="o">*</span><span class="mi">1000</span> @@ -7763,7 +7736,7 @@ a.anchor-link { <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="n">YOUR_CODE_HERE</span> </pre></div> </div> </div> @@ -7791,10 +7764,10 @@ a.anchor-link { <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [7]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">to_days_years</span><span class="p">(</span><span class="n">times</span><span class="p">):</span> +<div class="highlight hl-python"><pre><span></span><span class="k">def</span> <span class="nf">to_days_years</span><span class="p">(</span><span class="n">times</span><span class="p">):</span> <span class="w"> </span><span class="sd">'''Convert the observation times to days and years.'''</span> <span class="n">times_datetime</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">to_datetime</span><span class="p">(</span><span class="n">times</span><span class="p">)</span> @@ -7815,10 +7788,10 @@ a.anchor-link { <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [8]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">days_gnss</span><span class="p">,</span> <span class="n">years_gnss</span> <span class="o">=</span> <span class="n">to_days_years</span><span class="p">(</span><span class="n">times_gnss</span><span class="p">)</span> +<div class="highlight hl-python"><pre><span></span><span class="n">days_gnss</span><span class="p">,</span> <span class="n">years_gnss</span> <span class="o">=</span> <span class="n">to_days_years</span><span class="p">(</span><span class="n">times_gnss</span><span class="p">)</span> <span class="n">days_insar</span><span class="p">,</span> <span class="n">years_insar</span> <span class="o">=</span> <span class="n">to_days_years</span><span class="p">(</span><span class="n">times_insar</span><span class="p">)</span> <span class="n">days_gw</span><span class="p">,</span> <span class="n">years_gw</span> <span class="o">=</span> <span class="n">to_days_years</span><span class="p">(</span><span class="n">times_gw</span><span class="p">)</span> @@ -7859,7 +7832,7 @@ a.anchor-link { <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="n">YOUR_CODE_HERE</span> </pre></div> </div> </div> @@ -7900,7 +7873,7 @@ a.anchor-link { <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span><span class="mi">5</span><span class="p">))</span> +<div class="highlight hl-python"><pre><span></span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span><span class="mi">5</span><span class="p">))</span> <span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">YOUR_CODE_HERE</span><span class="p">,</span> <span class="n">YOUR_CODE_HERE</span><span class="p">,</span> <span class="s1">'o'</span><span class="p">,</span> <span class="n">mec</span><span class="o">=</span><span class="s1">'black'</span><span class="p">,</span> <span class="n">label</span> <span class="o">=</span> <span class="s1">'GNSS'</span><span class="p">)</span> <span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">YOUR_CODE_HERE</span><span class="p">,</span> <span class="n">YOUR_CODE_HERE</span><span class="p">,</span> @@ -7963,10 +7936,10 @@ Describe the datasets based on the figure above and your observations from the p <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [11]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">model_insar</span> <span class="o">=</span> <span class="p">{</span><span class="s1">'data_type'</span><span class="p">:</span> <span class="s1">'InSAR'</span><span class="p">,</span> +<div class="highlight hl-python"><pre><span></span><span class="n">model_insar</span> <span class="o">=</span> <span class="p">{</span><span class="s1">'data_type'</span><span class="p">:</span> <span class="s1">'InSAR'</span><span class="p">,</span> <span class="s1">'y'</span><span class="p">:</span><span class="n">y_insar</span><span class="p">,</span> <span class="s1">'times'</span><span class="p">:</span><span class="n">times_insar</span><span class="p">,</span> <span class="s1">'groundwater'</span><span class="p">:</span> <span class="n">GW_at_InSAR_times</span> @@ -8031,7 +8004,7 @@ $$</p> <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="n">YOUR_CODE_HERE</span> </pre></div> </div> </div> @@ -8082,7 +8055,7 @@ $$</p> <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">model_insar</span><span class="p">[</span><span class="s1">'A'</span><span class="p">]</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="n">model_insar</span><span class="p">[</span><span class="s1">'A'</span><span class="p">]</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> <span class="n">model_gnss</span><span class="p">[</span><span class="s1">'A'</span><span class="p">]</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> </pre></div> </div> @@ -8140,7 +8113,7 @@ where $\Sigma_{Y}$ is the covariance matrix of the observables' vector.</p> <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># YOUR_CODE_HERE</span> </pre></div> </div> </div> @@ -8200,10 +8173,10 @@ where $\Sigma_{Y}$ is the covariance matrix of the observables' vector.</p> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [17]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">model_insar</span><span class="p">[</span><span class="s1">'Sigma_Y'</span><span class="p">]</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="n">model_insar</span><span class="p">[</span><span class="s1">'Sigma_Y'</span><span class="p">]</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> <span class="n">model_gnss</span><span class="p">[</span><span class="s1">'Sigma_Y'</span><span class="p">]</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> </pre></div> </div> @@ -8255,10 +8228,10 @@ _1</code>). To make this assignment easier for you to implement we have split th <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [18]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">BLUE</span><span class="p">(</span><span class="n">d</span><span class="p">):</span> +<div class="highlight hl-python"><pre><span></span><span class="k">def</span> <span class="nf">BLUE</span><span class="p">(</span><span class="n">d</span><span class="p">):</span> <span class="w"> </span><span class="sd">"""Calculate the Best Linear Unbiased Estimator</span> <span class="sd"> </span> <span class="sd"> Uses dict as input/output:</span> @@ -8322,7 +8295,7 @@ _1</code>). To make this assignment easier for you to implement we have split th <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">model_insar</span> <span class="o">=</span> <span class="n">BLUE</span><span class="p">(</span><span class="n">model_insar</span><span class="p">)</span> +<div class="highlight hl-python"><pre><span></span><span class="n">model_insar</span> <span class="o">=</span> <span class="n">BLUE</span><span class="p">(</span><span class="n">model_insar</span><span class="p">)</span> <span class="n">x_hat_insar</span> <span class="o">=</span> <span class="n">model_insar</span><span class="p">[</span><span class="s1">'x_hat'</span><span class="p">]</span> <span class="n">YOUR_CODE_HERE</span> @@ -8390,7 +8363,7 @@ Do the values that you just estimated make sense? Explain, using quantitative re <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">Sigma_X_hat_insar</span> <span class="o">=</span> <span class="n">model_insar</span><span class="p">[</span><span class="s1">'Sigma_X_hat'</span><span class="p">]</span> +<div class="highlight hl-python"><pre><span></span><span class="n">Sigma_X_hat_insar</span> <span class="o">=</span> <span class="n">model_insar</span><span class="p">[</span><span class="s1">'Sigma_X_hat'</span><span class="p">]</span> <span class="n">YOUR_CODE_HERE</span> @@ -8438,7 +8411,7 @@ Do the values that you just estimated make sense? Explain, using quantitative re <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">get_CI</span><span class="p">(</span><span class="n">d</span><span class="p">,</span> <span class="n">alpha</span><span class="p">):</span> +<div class="highlight hl-python"><pre><span></span><span class="k">def</span> <span class="nf">get_CI</span><span class="p">(</span><span class="n">d</span><span class="p">,</span> <span class="n">alpha</span><span class="p">):</span> <span class="w"> </span><span class="sd">"""Compute the confidence intervals.</span> <span class="sd"> </span> <span class="sd"> Uses dict as input/output:</span> @@ -8468,10 +8441,10 @@ Do the values that you just estimated make sense? Explain, using quantitative re <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [30]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">model_insar</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="n">model_insar</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> <span class="n">model_gnss</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> </pre></div> </div> @@ -8497,7 +8470,7 @@ Do the values that you just estimated make sense? Explain, using quantitative re <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="nb">print</span><span class="p">(</span><span class="s2">"Keys and Values (type) for model_insar:"</span><span class="p">)</span> +<div class="highlight hl-python"><pre><span></span><span class="nb">print</span><span class="p">(</span><span class="s2">"Keys and Values (type) for model_insar:"</span><span class="p">)</span> <span class="k">for</span> <span class="n">key</span><span class="p">,</span> <span class="n">value</span> <span class="ow">in</span> <span class="n">model_insar</span><span class="o">.</span><span class="n">items</span><span class="p">():</span> <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">"</span><span class="si">{</span><span class="n">key</span><span class="si">:</span><span class="s2">16s</span><span class="si">}</span><span class="s2"> --> </span><span class="si">{</span><span class="nb">type</span><span class="p">(</span><span class="n">value</span><span class="p">)</span><span class="si">}</span><span class="s2">"</span><span class="p">)</span> <span class="nb">print</span><span class="p">(</span><span class="s2">"</span><span class="se">\n</span><span class="s2">Keys and Values (type) for model_gnss:"</span><span class="p">)</span> @@ -8544,7 +8517,7 @@ Do the values that you just estimated make sense? Explain, using quantitative re <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">_</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">plot_model</span><span class="p">(</span><span class="n">YOUR_CODE_HERE</span><span class="p">)</span> +<div class="highlight hl-python"><pre><span></span><span class="n">_</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">plot_model</span><span class="p">(</span><span class="n">YOUR_CODE_HERE</span><span class="p">)</span> </pre></div> </div> </div> @@ -8558,7 +8531,7 @@ Do the values that you just estimated make sense? Explain, using quantitative re <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">_</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">plot_residual</span><span class="p">(</span><span class="n">YOUR_CODE_HERE</span><span class="p">)</span> +<div class="highlight hl-python"><pre><span></span><span class="n">_</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">plot_residual</span><span class="p">(</span><span class="n">YOUR_CODE_HERE</span><span class="p">)</span> </pre></div> </div> </div> @@ -8572,7 +8545,7 @@ Do the values that you just estimated make sense? Explain, using quantitative re <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">_</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">plot_residual_histogram</span><span class="p">(</span><span class="n">YOUR_CODE_HERE</span><span class="p">)</span> +<div class="highlight hl-python"><pre><span></span><span class="n">_</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">plot_residual_histogram</span><span class="p">(</span><span class="n">YOUR_CODE_HERE</span><span class="p">)</span> </pre></div> </div> </div> @@ -8613,7 +8586,4 @@ Do the values that you just estimated make sense? Explain, using quantitative re </div> </main> </body> -<script type="application/vnd.jupyter.widget-state+json"> -{"state": {}, "version_major": 2, "version_minor": 0} -</script> </html> diff --git a/synced_files/GA_1_3/Analysis.md b/synced_files/GA_1_3/Analysis.md index b9848be4..fbf24c15 100644 --- a/synced_files/GA_1_3/Analysis.md +++ b/synced_files/GA_1_3/Analysis.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # GA 1.3: Modelling Road Deformation using Non-Linear Least-Squares <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> @@ -106,11 +96,10 @@ YOUR_CODE_HERE function_that_uses_my_dictionary(my_dictionary) ``` -<!-- #region id="160d6250" --> ## Task 1: Preparing the data Within this assignment you will work with two types of data: InSAR data and GNSS data. The cell below will load the data and visualize the observed displacements time. In this task we use the package `pandas`, which is really useful for handling time series. We will learn how to use it later in the quarter; for now, you only need to recognize that it imports the data as a `dataframe` object, which we then convert into a numpy array using the code below. -<!-- #endregion --> + <div style="background-color:#facb8e; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p>Tip: note that we have converted all observations to millimeters.</p></div> @@ -253,7 +242,7 @@ model_gnss = {'data_type': 'GNSS', } ``` -<!-- #region id="76c9115b" --> +<!-- #region --> ## Task 2: Set-up linear functional model We want to investigate how we could model the observed displacements of the road. Because the road is built in the Green Heart we expect that the observed displacements are related to the groundwater level. Furthermore, we assume that the displacements can be modeled using a constant velocity. The model is defined as @@ -319,7 +308,6 @@ model_insar['A'] = YOUR_CODE_HERE model_gnss['A'] = YOUR_CODE_HERE ``` -<!-- #region id="9325d32b" --> ## 3. Set-up stochastic model We will use the Best Linear Unbiased Estimator (BLUE) to solve for the unknown parameters. Therefore we also need a stochastic model, which is defined as @@ -330,7 +318,7 @@ where $\Sigma_{Y}$ is the covariance matrix of the observables' vector. -<!-- #endregion --> + <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> @@ -389,11 +377,10 @@ model_insar['Sigma_Y'] = YOUR_CODE_HERE model_gnss['Sigma_Y'] = YOUR_CODE_HERE ``` -<!-- #region id="09e965bf" --> ## 4. Apply best linear unbiased estimation -<!-- #endregion --> + <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> @@ -482,11 +469,11 @@ Do the values that you just estimated make sense? Explain, using quantitative re -<!-- #region id="65e42a43" --> + ## 5. Evaluate the precision -<!-- #endregion --> + <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> @@ -510,9 +497,8 @@ Sigma_X_hat_gnss = model_gnss['Sigma_X_hat'] YOUR_CODE_HERE ``` -<!-- #region id="886efe26" --> ## 6. Present and reflect on estimation results -<!-- #endregion --> + <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> @@ -575,9 +561,8 @@ Use the functions provided to visualize the results of our two models. </div> -<!-- #region id="0491cc69" --> + <div style="background-color:#facb8e; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p><strong>Note</strong>: remember that you will have to use the same function to look at <em>both</em> models when writing your interpretation in the Report.</p></div> -<!-- #endregion --> ```python _, _ = plot_model(YOUR_CODE_HERE) diff --git a/synced_files/GA_1_3/Analysis_Solution.html b/synced_files/GA_1_3/Analysis_Solution.html index d7e2e809..30c2bcf3 100644 --- a/synced_files/GA_1_3/Analysis_Solution.html +++ b/synced_files/GA_1_3/Analysis_Solution.html @@ -3,34 +3,7 @@ <html lang="en"> <head><meta charset="utf-8"/> <meta content="width=device-width, initial-scale=1.0" name="viewport"/> -<title>Notebook</title><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script><script> -(function() { - function addWidgetsRenderer() { - var mimeElement = document.querySelector('script[type="application/vnd.jupyter.widget-view+json"]'); - var scriptElement = document.createElement('script'); - - var widgetRendererSrc = 'https://unpkg.com/@jupyter-widgets/html-manager@*/dist/embed-amd.js'; - - var widgetState; - - // Fallback for older version: - try { - widgetState = mimeElement && JSON.parse(mimeElement.innerHTML); - - if (widgetState && (widgetState.version_major < 2 || !widgetState.version_major)) { - - var widgetRendererSrc = 'https://unpkg.com/@jupyter-js-widgets@*/dist/embed.js'; - - } - } catch(e) {} - - scriptElement.src = widgetRendererSrc; - document.body.appendChild(scriptElement); - } - - document.addEventListener('DOMContentLoaded', addWidgetsRenderer); -}()); -</script> +<title>Notebook</title><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script> <style type="text/css"> pre { line-height: 125%; } td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } @@ -7568,15 +7541,15 @@ a.anchor-link { </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=181ccfd5"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=181ccfd5"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [1]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> +<div class="highlight hl-python"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> <span class="kn">from</span> <span class="nn">scipy</span> <span class="kn">import</span> <span class="n">interpolate</span> <span class="kn">from</span> <span class="nn">scipy.stats</span> <span class="kn">import</span> <span class="n">norm</span> <span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span> @@ -7591,18 +7564,6 @@ a.anchor-link { </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child jp-OutputArea-executeResult"> -<div class="jp-OutputPrompt jp-OutputArea-prompt">Out[1]:</div> -<div class="jp-RenderedText jp-OutputArea-output jp-OutputArea-executeResult" data-mime-type="text/plain" tabindex="0"> -<pre><Token var=<ContextVar name='format_options' default={'edgeitems': 3, 'threshold': 1000, 'floatmode': 'maxprec', 'precision': 8, 'suppress': False, 'linewidth': 75, 'nanstr': 'nan', 'infstr': 'inf', 'sign': '-', 'formatter': None, 'legacy': 9223372036854775807, 'override_repr': None} at 0x0000026B5AF069D0> at 0x0000026B0DBBC4C0></pre> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=5ca94e0e"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -7633,15 +7594,15 @@ a.anchor-link { </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=8683b5ed"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=8683b5ed"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [2]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">my_dictionary</span> <span class="o">=</span> <span class="p">{</span><span class="s1">'key1'</span><span class="p">:</span> <span class="s1">'value1'</span><span class="p">,</span> +<div class="highlight hl-python"><pre><span></span><span class="n">my_dictionary</span> <span class="o">=</span> <span class="p">{</span><span class="s1">'key1'</span><span class="p">:</span> <span class="s1">'value1'</span><span class="p">,</span> <span class="s1">'key2'</span><span class="p">:</span> <span class="s1">'value2'</span><span class="p">,</span> <span class="s1">'name'</span><span class="p">:</span> <span class="s1">'Dictionary Example'</span><span class="p">,</span> <span class="s1">'a_list'</span><span class="p">:</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">],</span> @@ -7668,23 +7629,6 @@ a.anchor-link { </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>value1 -Dictionary Example -[1, 2, 3] -[1 2 3] -hello -</pre> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=86bc7f97"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -7701,15 +7645,15 @@ hello </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=41c56f43"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=41c56f43"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [3]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># YOUR_CODE_HERE</span> <span class="c1"># function_that_uses_my_dictionary(my_dictionary)</span> <span class="c1"># SOLUTION:</span> @@ -7720,24 +7664,6 @@ hello </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>value1 -Dictionary Example -[1, 2, 3] -[1 2 3] -hello -new_key exists and has value: new_value -</pre> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=160d6250"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -7765,10 +7691,10 @@ new_key exists and has value: new_value <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [4]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">gnss</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="s1">'./data/gnss_observations.csv'</span><span class="p">)</span> +<div class="highlight hl-python"><pre><span></span><span class="n">gnss</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="s1">'./data/gnss_observations.csv'</span><span class="p">)</span> <span class="n">times_gnss</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">to_datetime</span><span class="p">(</span><span class="n">gnss</span><span class="p">[</span><span class="s1">'times'</span><span class="p">])</span> <span class="n">y_gnss</span> <span class="o">=</span> <span class="p">(</span><span class="n">gnss</span><span class="p">[</span><span class="s1">'observations[m]'</span><span class="p">])</span><span class="o">.</span><span class="n">to_numpy</span><span class="p">()</span><span class="o">*</span><span class="mi">1000</span> @@ -7812,15 +7738,15 @@ new_key exists and has value: new_value </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=9f025cfc-4f89-492d-ac26-f5b6381d0c70"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=9f025cfc-4f89-492d-ac26-f5b6381d0c70"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [5]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># YOUR_CODE_HERE</span> <span class="c1"># SOLUTION:</span> <span class="n">data_list</span> <span class="o">=</span> <span class="p">[</span><span class="s1">'y_gnss'</span><span class="p">,</span> <span class="s1">'y_insar'</span><span class="p">,</span> <span class="s1">'y_gw'</span><span class="p">]</span> @@ -7847,60 +7773,15 @@ new_key exists and has value: new_value </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>Summary for array: y_gnss ------------------------------------------------- -Minimum = -77.85967600765021 -Maximum = 29.432302555465 -Mean = -26.998775875445148 -Std dev = 16.2218064476615 -Shape = (730,) -First value = -13.980633493923001 -Last value = -38.6733705713608 - - -Summary for array: y_insar ------------------------------------------------- -Minimum = -37.339155096180406 -Maximum = -3.7915269917409 -Mean = -25.459757789872686 -Std dev = 6.8998022892131585 -Shape = (61,) -First value = -3.7915269917409 -Last value = -30.2754656176263 - - -Summary for array: y_gw ------------------------------------------------- -Minimum = -166.784 -Maximum = -102.044 -Mean = -127.70472 -Std dev = 16.822297827633417 -Shape = (25,) -First value = -109.698 -Last value = -117.268 - - -</pre> -</div> -</div> -</div> -</div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=71cf2133-37a6-4536-82a6-42a46b8a1c66"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=71cf2133-37a6-4536-82a6-42a46b8a1c66"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [6]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># SOLUTION:</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># SOLUTION:</span> <span class="n">times_dict</span> <span class="o">=</span> <span class="p">{</span><span class="n">data_list</span><span class="p">[</span><span class="mi">0</span><span class="p">]:</span> <span class="n">times_gnss</span><span class="p">,</span> <span class="n">data_list</span><span class="p">[</span><span class="mi">1</span><span class="p">]:</span> <span class="n">times_insar</span><span class="p">,</span> <span class="n">data_list</span><span class="p">[</span><span class="mi">2</span><span class="p">]:</span> <span class="n">times_gw</span><span class="p">}</span> @@ -7922,36 +7803,6 @@ Last value = -117.268 </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre><Figure size 1500x400 with 0 Axes></pre> -</div> -</div> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=a9c02e8f-81f9-41a3-b894-c23dd9617207"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -7990,10 +7841,10 @@ Last value = -117.268 <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [7]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">to_days_years</span><span class="p">(</span><span class="n">times</span><span class="p">):</span> +<div class="highlight hl-python"><pre><span></span><span class="k">def</span> <span class="nf">to_days_years</span><span class="p">(</span><span class="n">times</span><span class="p">):</span> <span class="w"> </span><span class="sd">'''Convert the observation times to days and years.'''</span> <span class="n">times_datetime</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">to_datetime</span><span class="p">(</span><span class="n">times</span><span class="p">)</span> @@ -8014,10 +7865,10 @@ Last value = -117.268 <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [8]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">days_gnss</span><span class="p">,</span> <span class="n">years_gnss</span> <span class="o">=</span> <span class="n">to_days_years</span><span class="p">(</span><span class="n">times_gnss</span><span class="p">)</span> +<div class="highlight hl-python"><pre><span></span><span class="n">days_gnss</span><span class="p">,</span> <span class="n">years_gnss</span> <span class="o">=</span> <span class="n">to_days_years</span><span class="p">(</span><span class="n">times_gnss</span><span class="p">)</span> <span class="n">days_insar</span><span class="p">,</span> <span class="n">years_insar</span> <span class="o">=</span> <span class="n">to_days_years</span><span class="p">(</span><span class="n">times_insar</span><span class="p">)</span> <span class="n">days_gw</span><span class="p">,</span> <span class="n">years_gw</span> <span class="o">=</span> <span class="n">to_days_years</span><span class="p">(</span><span class="n">times_gw</span><span class="p">)</span> @@ -8050,15 +7901,15 @@ Last value = -117.268 </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=6cdfb46b-1324-4c2b-8148-5a6a102ede2e"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=6cdfb46b-1324-4c2b-8148-5a6a102ede2e"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [9]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># YOUR_CODE_HERE</span> <span class="c1"># SOLUTION:</span> <span class="nb">print</span><span class="p">(</span><span class="s1">'array size of GW_at_GNSS_times'</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">GW_at_GNSS_times</span><span class="p">))</span> @@ -8078,37 +7929,6 @@ Last value = -117.268 </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>array size of GW_at_GNSS_times 730 -array size of GW_at_InSAR_times 61 -array size of GW before interpolation 25 - -First values of times_gw: -0 2017-01-01 -1 2017-02-01 -Name: times, dtype: datetime64[ns] - -First values of y_gw: -[-109.698 -102.044] - -First values of times_gnss: -0 2017-01-01 -1 2017-01-02 -Name: times, dtype: datetime64[ns] - -First values of GW_at_GNSS_times: -[-109.698 -109.451] -</pre> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=3b8c68eb-9774-4c3c-91da-f29f035b178c"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -8155,15 +7975,15 @@ First values of GW_at_GNSS_times: </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=e868e488"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=e868e488"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [10]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># plt.figure(figsize=(15,5))</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># plt.figure(figsize=(15,5))</span> <span class="c1"># plt.plot(YOUR_CODE_HERE, YOUR_CODE_HERE,</span> <span class="c1"># 'o', mec='black', label = 'GNSS')</span> <span class="c1"># plt.plot(YOUR_CODE_HERE, YOUR_CODE_HERE,</span> @@ -8186,18 +8006,6 @@ First values of GW_at_GNSS_times: </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=c9b45b8e"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -8263,10 +8071,10 @@ Describe the datasets based on the figure above and your observations from the p <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [11]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">model_insar</span> <span class="o">=</span> <span class="p">{</span><span class="s1">'data_type'</span><span class="p">:</span> <span class="s1">'InSAR'</span><span class="p">,</span> +<div class="highlight hl-python"><pre><span></span><span class="n">model_insar</span> <span class="o">=</span> <span class="p">{</span><span class="s1">'data_type'</span><span class="p">:</span> <span class="s1">'InSAR'</span><span class="p">,</span> <span class="s1">'y'</span><span class="p">:</span><span class="n">y_insar</span><span class="p">,</span> <span class="s1">'times'</span><span class="p">:</span><span class="n">times_insar</span><span class="p">,</span> <span class="s1">'groundwater'</span><span class="p">:</span> <span class="n">GW_at_InSAR_times</span> @@ -8323,15 +8131,15 @@ $$</p> </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=3a3eb1a1"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=3a3eb1a1"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [12]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># YOUR_CODE_HERE</span> <span class="c1"># SOLUTION:</span> <span class="n">A_insar</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">ones</span><span class="p">((</span><span class="nb">len</span><span class="p">(</span><span class="n">times_insar</span><span class="p">),</span> <span class="mi">3</span><span class="p">))</span> @@ -8352,36 +8160,15 @@ $$</p> </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>The first 5 rows of the A matrix (InSAR) are: -[[ 1. 0. -109.698] - [ 1. 12. -106.735] - [ 1. 24. -103.772] - [ 1. 36. -106.536] - [ 1. 48. -117.316]] -The first 5 observations [mm] of y_insar are: -[ -3.792 -5.999 -11.403 -9.92 -11.283] -m = 61 and n = 3 -</pre> -</div> -</div> -</div> -</div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=4bcd395d"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=4bcd395d"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [13]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># YOUR_CODE_HERE</span> <span class="c1"># SOLUTION:</span> <span class="n">A_gnss</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">ones</span><span class="p">((</span><span class="nb">len</span><span class="p">(</span><span class="n">times_gnss</span><span class="p">),</span> <span class="mi">3</span><span class="p">))</span> @@ -8402,28 +8189,6 @@ m = 61 and n = 3 </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>The first 5 rows of the A matrix (GNSS) are: -[[ 1. 0. -109.698] - [ 1. 1. -109.451] - [ 1. 2. -109.204] - [ 1. 3. -108.957] - [ 1. 4. -108.71 ]] - -The first 5 observations [mm] of y_gnss are: -[-13.981 10.392 -17.091 -7.924 -14.729] -m = 730 and n = 3 -</pre> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=d390f466"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -8488,15 +8253,15 @@ m = 730 and n = 3 </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=396ac3a5"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=396ac3a5"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [14]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># model_insar['A'] = YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># model_insar['A'] = YOUR_CODE_HERE</span> <span class="c1"># model_gnss['A'] = YOUR_CODE_HERE</span> <span class="c1"># SOLUTION:</span> @@ -8514,31 +8279,6 @@ m = 730 and n = 3 </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>Keys and Values (type) for model_insar: -data_type --> <class 'str'> -y --> <class 'numpy.ndarray'> -times --> <class 'pandas.core.series.Series'> -groundwater --> <class 'numpy.ndarray'> -A --> <class 'numpy.ndarray'> - -Keys and Values (type) for model_gnss: -data_type --> <class 'str'> -y --> <class 'numpy.ndarray'> -times --> <class 'pandas.core.series.Series'> -groundwater --> <class 'numpy.ndarray'> -A --> <class 'numpy.ndarray'> -</pre> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=9325d32b"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -8582,15 +8322,15 @@ where $\Sigma_{Y}$ is the covariance matrix of the observables' vector.</p> </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=163acdb3"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=163acdb3"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [15]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># YOUR_CODE_HERE</span> <span class="c1"># SOLUTION:</span> <span class="n">std_insar</span> <span class="o">=</span> <span class="mi">2</span> <span class="c1">#mm</span> @@ -8604,35 +8344,15 @@ where $\Sigma_{Y}$ is the covariance matrix of the observables' vector.</p> </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>Sigma_Y (InSAR) is defined as: -[[4. 0. 0. ... 0. 0. 0.] - [0. 4. 0. ... 0. 0. 0.] - [0. 0. 4. ... 0. 0. 0.] - ... - [0. 0. 0. ... 4. 0. 0.] - [0. 0. 0. ... 0. 4. 0.] - [0. 0. 0. ... 0. 0. 4.]] -</pre> -</div> -</div> -</div> -</div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=5d583bd8"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=5d583bd8"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [16]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># YOUR_CODE_HERE</span> <span class="c1"># SOLUTION:</span> <span class="n">std_gnss</span> <span class="o">=</span> <span class="mi">15</span> <span class="c1">#mm (corrected from original value of 5 mm)</span> @@ -8646,27 +8366,6 @@ where $\Sigma_{Y}$ is the covariance matrix of the observables' vector.</p> </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre> -Sigma_Y (GNSS) is defined as: -[[225. 0. 0. ... 0. 0. 0.] - [ 0. 225. 0. ... 0. 0. 0.] - [ 0. 0. 225. ... 0. 0. 0.] - ... - [ 0. 0. 0. ... 225. 0. 0.] - [ 0. 0. 0. ... 0. 225. 0.] - [ 0. 0. 0. ... 0. 0. 225.]] -</pre> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=b2665071"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -8742,10 +8441,10 @@ Sigma_Y (GNSS) is defined as: <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [17]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># model_insar['Sigma_Y] = YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># model_insar['Sigma_Y] = YOUR_CODE_HERE</span> <span class="c1"># model_gnss['Sigma_Y'] = YOUR_CODE_HERE</span> <span class="c1"># SOLUTION:</span> @@ -8801,10 +8500,10 @@ _1</code>). To make this assignment easier for you to implement we have split th <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [18]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">BLUE</span><span class="p">(</span><span class="n">d</span><span class="p">):</span> +<div class="highlight hl-python"><pre><span></span><span class="k">def</span> <span class="nf">BLUE</span><span class="p">(</span><span class="n">d</span><span class="p">):</span> <span class="w"> </span><span class="sd">"""Calculate the Best Linear Unbiased Estimator</span> <span class="sd"> </span> <span class="sd"> Uses dict as input/output:</span> @@ -8874,15 +8573,15 @@ _1</code>). To make this assignment easier for you to implement we have split th </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=4a592ac1"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=4a592ac1"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [19]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">model_insar</span> <span class="o">=</span> <span class="n">BLUE</span><span class="p">(</span><span class="n">model_insar</span><span class="p">)</span> +<div class="highlight hl-python"><pre><span></span><span class="n">model_insar</span> <span class="o">=</span> <span class="n">BLUE</span><span class="p">(</span><span class="n">model_insar</span><span class="p">)</span> <span class="n">x_hat_insar</span> <span class="o">=</span> <span class="n">model_insar</span><span class="p">[</span><span class="s1">'x_hat'</span><span class="p">]</span> <span class="c1"># YOUR_CODE_HERE</span> @@ -8908,27 +8607,6 @@ _1</code>). To make this assignment easier for you to implement we have split th </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>The InSAR-estimated offset is 9.174 mm -The InSAR-estimated velocity is -0.0243 mm/day -The InSAR-estimated velocity is -8.8667 mm/year -The InSAR-estimated GW factor is 0.202 [-] - -The GNSS-estimated offset is 1.181 mm -The GNSS-estimated velocity is -0.0209 mm/day -The GNSS-estimated velocity is -7.615 mm/year -The GNSS-estimated GW factor is 0.16 [-] -</pre> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=bef2f3be"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -8991,15 +8669,15 @@ Do the values that you just estimated make sense? Explain, using quantitative re </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=835eefc8"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=835eefc8"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [20]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">Sigma_X_hat_insar</span> <span class="o">=</span> <span class="n">model_insar</span><span class="p">[</span><span class="s1">'Sigma_X_hat'</span><span class="p">]</span> +<div class="highlight hl-python"><pre><span></span><span class="n">Sigma_X_hat_insar</span> <span class="o">=</span> <span class="n">model_insar</span><span class="p">[</span><span class="s1">'Sigma_X_hat'</span><span class="p">]</span> <span class="c1"># YOUR_CODE_HERE</span> @@ -9031,35 +8709,6 @@ Do the values that you just estimated make sense? Explain, using quantitative re </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>Covariance matrix of estimated parameters (InSAR): -[[ 4.530e+00 -4.173e-04 3.363e-02] - [-4.173e-04 1.472e-06 8.776e-07] - [ 3.363e-02 8.776e-07 2.646e-04]] - -The standard deviation for the InSAR-estimated offset is 2.128 mm -The standard deviation for the InSAR-estimated velocity is 0.0012 mm/day -The standard deviation for the InSAR-estimated GW factor is 0.016 [-] - -Covariance matrix of estimated parameters (GNSS): -[[ 2.160e+01 -2.244e-03 1.595e-01] - [-2.244e-03 6.945e-06 2.238e-06] - [ 1.595e-01 2.238e-06 1.249e-03]] - -The standard deviation for the GNSS-estimated offset is 4.647 mm -The standard deviation for the GNSS-estimated velocity is 0.0026 mm/day -The standard deviation for the GNSS-estimated GW factor is 0.035 [-] -</pre> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=8e62592d"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -9110,10 +8759,10 @@ The standard deviation for the GNSS-estimated GW factor is 0.035 [-] <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [21]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">get_CI</span><span class="p">(</span><span class="n">d</span><span class="p">,</span> <span class="n">alpha</span><span class="p">):</span> +<div class="highlight hl-python"><pre><span></span><span class="k">def</span> <span class="nf">get_CI</span><span class="p">(</span><span class="n">d</span><span class="p">,</span> <span class="n">alpha</span><span class="p">):</span> <span class="w"> </span><span class="sd">"""Compute the confidence intervals.</span> <span class="sd"> </span> <span class="sd"> Uses dict as input/output:</span> @@ -9150,10 +8799,10 @@ The standard deviation for the GNSS-estimated GW factor is 0.035 [-] <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [22]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># model_insar = YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># model_insar = YOUR_CODE_HERE</span> <span class="c1"># model_gnss = YOUR_CODE_HERE</span> <span class="c1"># SOLUTION:</span> @@ -9175,15 +8824,15 @@ The standard deviation for the GNSS-estimated GW factor is 0.035 [-] </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=b3bb808e"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=b3bb808e"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [23]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="nb">print</span><span class="p">(</span><span class="s2">"Keys and Values (type) for model_insar:"</span><span class="p">)</span> +<div class="highlight hl-python"><pre><span></span><span class="nb">print</span><span class="p">(</span><span class="s2">"Keys and Values (type) for model_insar:"</span><span class="p">)</span> <span class="k">for</span> <span class="n">key</span><span class="p">,</span> <span class="n">value</span> <span class="ow">in</span> <span class="n">model_insar</span><span class="o">.</span><span class="n">items</span><span class="p">():</span> <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">"</span><span class="si">{</span><span class="n">key</span><span class="si">:</span><span class="s2">16s</span><span class="si">}</span><span class="s2"> --> </span><span class="si">{</span><span class="nb">type</span><span class="p">(</span><span class="n">value</span><span class="p">)</span><span class="si">}</span><span class="s2">"</span><span class="p">)</span> <span class="nb">print</span><span class="p">(</span><span class="s2">"</span><span class="se">\n</span><span class="s2">Keys and Values (type) for model_gnss:"</span><span class="p">)</span> @@ -9194,57 +8843,6 @@ The standard deviation for the GNSS-estimated GW factor is 0.035 [-] </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>Keys and Values (type) for model_insar: -data_type --> <class 'str'> -y --> <class 'numpy.ndarray'> -times --> <class 'pandas.core.series.Series'> -groundwater --> <class 'numpy.ndarray'> -A --> <class 'numpy.ndarray'> -Sigma_Y --> <class 'numpy.ndarray'> -Sigma_X_hat --> <class 'numpy.ndarray'> -x_hat --> <class 'numpy.ndarray'> -y_hat --> <class 'numpy.ndarray'> -e_hat --> <class 'numpy.ndarray'> -Sigma_Y_hat --> <class 'numpy.ndarray'> -std_y --> <class 'numpy.ndarray'> -Sigma_e_hat --> <class 'numpy.ndarray'> -std_e_hat --> <class 'numpy.ndarray'> -alpha --> <class 'float'> -CI_y --> <class 'numpy.ndarray'> -CI_res --> <class 'numpy.ndarray'> -CI_Y_hat --> <class 'numpy.ndarray'> - -Keys and Values (type) for model_gnss: -data_type --> <class 'str'> -y --> <class 'numpy.ndarray'> -times --> <class 'pandas.core.series.Series'> -groundwater --> <class 'numpy.ndarray'> -A --> <class 'numpy.ndarray'> -Sigma_Y --> <class 'numpy.ndarray'> -Sigma_X_hat --> <class 'numpy.ndarray'> -x_hat --> <class 'numpy.ndarray'> -y_hat --> <class 'numpy.ndarray'> -e_hat --> <class 'numpy.ndarray'> -Sigma_Y_hat --> <class 'numpy.ndarray'> -std_y --> <class 'numpy.ndarray'> -Sigma_e_hat --> <class 'numpy.ndarray'> -std_e_hat --> <class 'numpy.ndarray'> -alpha --> <class 'float'> -CI_y --> <class 'numpy.ndarray'> -CI_res --> <class 'numpy.ndarray'> -CI_Y_hat --> <class 'numpy.ndarray'> -</pre> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=aaf72e41"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -9273,15 +8871,15 @@ CI_Y_hat --> <class 'numpy.ndarray'> </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=ec7c8bef"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=ec7c8bef"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [24]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># _, _ = plot_model(YOUR_CODE_HERE)</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># _, _ = plot_model(YOUR_CODE_HERE)</span> <span class="c1"># SOLUTION:</span> <span class="n">_</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">plot_model</span><span class="p">(</span><span class="n">model_insar</span><span class="p">)</span> @@ -9291,33 +8889,15 @@ CI_Y_hat --> <class 'numpy.ndarray'> </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -</div> -</div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=104d155d"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=104d155d"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [25]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># _, _ = plot_residual(YOUR_CODE_HERE)</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># _, _ = plot_residual(YOUR_CODE_HERE)</span> <span class="c1"># SOLUTION:</span> <span class="n">_</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">plot_residual</span><span class="p">(</span><span class="n">model_insar</span><span class="p">)</span> @@ -9327,33 +8907,15 @@ CI_Y_hat --> <class 'numpy.ndarray'> </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -</div> -</div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=1dc93ce9"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=1dc93ce9"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [26]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># _, _ = plot_residual_histogram(YOUR_CODE_HERE)</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># _, _ = plot_residual_histogram(YOUR_CODE_HERE)</span> <span class="c1"># SOLUTION:</span> <span class="n">_</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">plot_residual_histogram</span><span class="p">(</span><span class="n">model_insar</span><span class="p">)</span> @@ -9363,34 +8925,6 @@ CI_Y_hat --> <class 'numpy.ndarray'> </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>The mean value of the InSAR residuals is 0.0 mm -The standard deviation of the InSAR residuals is 3.115 mm -The mean value of the GNSS residuals is -0.0 mm -The standard deviation of the GNSS residuals is 15.393 mm -</pre> -</div> -</div> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=1ae74dd4"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -9407,15 +8941,15 @@ The standard deviation of the GNSS residuals is 15.393 mm </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=113f3809"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=113f3809"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [27]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">k_true</span> <span class="o">=</span> <span class="mf">0.15</span> +<div class="highlight hl-python"><pre><span></span><span class="n">k_true</span> <span class="o">=</span> <span class="mf">0.15</span> <span class="n">R_true</span> <span class="o">=</span> <span class="o">-</span><span class="mi">22</span> <span class="n">a_true</span> <span class="o">=</span> <span class="mi">180</span> <span class="n">d0_true</span> <span class="o">=</span> <span class="mi">10</span> @@ -9432,33 +8966,15 @@ The standard deviation of the GNSS residuals is 15.393 mm </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -</div> -</div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=aa877dd5"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=aa877dd5"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [28]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">ipywidgets</span> <span class="k">as</span> <span class="nn">widgets</span> +<div class="highlight hl-python"><pre><span></span><span class="kn">import</span> <span class="nn">ipywidgets</span> <span class="k">as</span> <span class="nn">widgets</span> <span class="kn">from</span> <span class="nn">ipywidgets</span> <span class="kn">import</span> <span class="n">interact</span> <span class="c1"># Function to update the plot based on slider values</span> @@ -9494,50 +9010,20 @@ The standard deviation of the GNSS residuals is 15.393 mm </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>interactive(children=(FloatSlider(value=0.0, description='x0', max=10.0, min=-10.0), FloatSlider(value=0.0, de…</pre> -</div> -</div> -<div class="jp-OutputArea-child jp-OutputArea-executeResult"> -<div class="jp-OutputPrompt jp-OutputArea-prompt">Out[28]:</div> -<div class="jp-RenderedText jp-OutputArea-output jp-OutputArea-executeResult" data-mime-type="text/plain" tabindex="0"> -<pre><function __main__.update_plot(x0, x1, x2)></pre> -</div> -</div> -</div> -</div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=d8b31540"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=d8b31540"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [29]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">xhat_slider_plot</span><span class="p">(</span><span class="n">model_gnss</span><span class="p">[</span><span class="s1">'A'</span><span class="p">],</span> <span class="n">model_gnss</span><span class="p">[</span><span class="s1">'y'</span><span class="p">],</span> <span class="n">model_gnss</span><span class="p">[</span><span class="s1">'times'</span><span class="p">],</span> <span class="n">model_gnss</span><span class="p">[</span><span class="s1">'Sigma_Y'</span><span class="p">])</span> +<div class="highlight hl-python"><pre><span></span><span class="n">xhat_slider_plot</span><span class="p">(</span><span class="n">model_gnss</span><span class="p">[</span><span class="s1">'A'</span><span class="p">],</span> <span class="n">model_gnss</span><span class="p">[</span><span class="s1">'y'</span><span class="p">],</span> <span class="n">model_gnss</span><span class="p">[</span><span class="s1">'times'</span><span class="p">],</span> <span class="n">model_gnss</span><span class="p">[</span><span class="s1">'Sigma_Y'</span><span class="p">])</span> </pre></div> </div> </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>interactive(children=(FloatSlider(value=1.1806136803794327, description='xhat_0', max=15.122548861077993, min=…</pre> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=3203d779"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -9554,14 +9040,14 @@ The standard deviation of the GNSS residuals is 15.393 mm article { position: relative } </style> <a href="http://creativecommons.org/licenses/by/4.0/" rel="license"> -<img alt="Creative Commons License" src="https://i.creativecommons.org/l/by/4.0/88x31.png" style="border-width:; width:88px; height:auto; padding-top:10px"> -</img></a> +<img alt="Creative Commons License" src="https://i.creativecommons.org/l/by/4.0/88x31.png" style="border-width:; width:88px; height:auto; padding-top:10px"/> +</a> <a href="https://www.tudelft.nl/en/ceg" rel="TU Delft"> -<img alt="TU Delft" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/tu-logo/TU_P1_full-color.png" style="border-width:0; width:100px; height:auto; padding-bottom:0px"> -</img></a> +<img alt="TU Delft" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/tu-logo/TU_P1_full-color.png" style="border-width:0; width:100px; height:auto; padding-bottom:0px"/> +</a> <a href="http://mude.citg.tudelft.nl/" rel="MUDE"> -<img alt="MUDE" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/mude-logo/MUDE_Logo-small.png" style="border-width:0; width:100px; height:auto; padding-bottom:0px"> -</img></a> +<img alt="MUDE" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/mude-logo/MUDE_Logo-small.png" style="border-width:0; width:100px; height:auto; padding-bottom:0px"/> +</a> </h3> <span style="font-size: 75%"> © Copyright 2024 <a href="http://mude.citg.tudelft.nl/" rel="MUDE">MUDE</a> TU Delft. This work is licensed under a <a href="http://creativecommons.org/licenses/by/4.0/" rel="license">CC BY 4.0 License</a>. @@ -9573,7 +9059,4 @@ The standard deviation of the GNSS residuals is 15.393 mm </div> </main> </body> -<script type="application/vnd.jupyter.widget-state+json"> -{"state": {}, "version_major": 2, "version_minor": 0} -</script> </html> diff --git a/synced_files/GA_1_3/Analysis_Solution.md b/synced_files/GA_1_3/Analysis_Solution.md index ac55c108..e40bc539 100644 --- a/synced_files/GA_1_3/Analysis_Solution.md +++ b/synced_files/GA_1_3/Analysis_Solution.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # GA 1.3: Modelling Road Deformation using Non-Linear Least-Squares <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> @@ -106,11 +96,10 @@ my_dictionary['new_key'] = 'new_value' function_that_uses_my_dictionary(my_dictionary) ``` -<!-- #region id="160d6250" --> ## Task 1: Preparing the data Within this assignment you will work with two types of data: InSAR data and GNSS data. The cell below will load the data and visualize the observed displacements time. In this task we use the package `pandas`, which is really useful for handling time series. We will learn how to use it later in the quarter; for now, you only need to recognize that it imports the data as a `dataframe` object, which we then convert into a numpy array using the code below. -<!-- #endregion --> + <div style="background-color:#facb8e; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p>Tip: note that we have converted all observations to millimeters.</p></div> @@ -139,9 +128,8 @@ Once you have used the cell above to import the data, investigate the data sets </p> </div> -<!-- #region id="0491cc69" --> + <div style="background-color:#facb8e; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p>The code below gives some examples of the quantitative and qualitative ways you could have looked at the data. It is more than you were expected to do; the important thing is that you showed the ability to learn something about the data and describe aspects that are relevant to our problem. We use a dictionary to easily access the different data series using their names, which are entered as the dictionary keys (also not expected of you, but it's hopefully fun to learn useful tricks).</div> -<!-- #endregion --> ```python # YOUR_CODE_HERE @@ -353,7 +341,7 @@ model_gnss = {'data_type': 'GNSS', } ``` -<!-- #region id="76c9115b" --> +<!-- #region --> ## Task 2: Set-up linear functional model We want to investigate how we could model the observed displacements of the road. Because the road is built in the Green Heart we expect that the observed displacements are related to the groundwater level. Furthermore, we assume that the displacements can be modeled using a constant velocity. The model is defined as @@ -486,7 +474,6 @@ for key, value in model_gnss.items(): print(f"{key:16s} --> {type(value)}") ``` -<!-- #region id="9325d32b" --> ## 3. Set-up stochastic model We will use the Best Linear Unbiased Estimator (BLUE) to solve for the unknown parameters. Therefore we also need a stochastic model, which is defined as @@ -497,7 +484,7 @@ where $\Sigma_{Y}$ is the covariance matrix of the observables' vector. -<!-- #endregion --> + <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> @@ -593,11 +580,10 @@ model_insar['Sigma_Y'] = Sigma_Y_insar model_gnss['Sigma_Y'] = Sigma_Y_gnss ``` -<!-- #region id="09e965bf" --> ## 4. Apply best linear unbiased estimation -<!-- #endregion --> + <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> @@ -723,11 +709,11 @@ As long as the velocity is negative and around -0.02 mm/day or -10 mm/yr it make </p> </div> -<!-- #region id="65e42a43" --> + ## 5. Evaluate the precision -<!-- #endregion --> + <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> @@ -783,9 +769,9 @@ The off-diagonal elements show the covariances between the estimated parameters, </p> </div> -<!-- #region id="886efe26" --> + ## 6. Present and reflect on estimation results -<!-- #endregion --> + <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> @@ -859,9 +845,8 @@ Use the functions provided to visualize the results of our two models. </div> -<!-- #region id="0491cc69" --> + <div style="background-color:#facb8e; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p><strong>Note</strong>: remember that you will have to use the same function to look at <em>both</em> models when writing your interpretation in the Report.</p></div> -<!-- #endregion --> ```python # _, _ = plot_model(YOUR_CODE_HERE) diff --git a/synced_files/GA_1_3/Warmup.html b/synced_files/GA_1_3/Warmup.html index d8ed212f..aba30698 100644 --- a/synced_files/GA_1_3/Warmup.html +++ b/synced_files/GA_1_3/Warmup.html @@ -3,34 +3,7 @@ <html lang="en"> <head><meta charset="utf-8"/> <meta content="width=device-width, initial-scale=1.0" name="viewport"/> -<title>Notebook</title><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script><script> -(function() { - function addWidgetsRenderer() { - var mimeElement = document.querySelector('script[type="application/vnd.jupyter.widget-view+json"]'); - var scriptElement = document.createElement('script'); - - var widgetRendererSrc = 'https://unpkg.com/@jupyter-widgets/html-manager@*/dist/embed-amd.js'; - - var widgetState; - - // Fallback for older version: - try { - widgetState = mimeElement && JSON.parse(mimeElement.innerHTML); - - if (widgetState && (widgetState.version_major < 2 || !widgetState.version_major)) { - - var widgetRendererSrc = 'https://unpkg.com/@jupyter-js-widgets@*/dist/embed.js'; - - } - } catch(e) {} - - scriptElement.src = widgetRendererSrc; - document.body.appendChild(scriptElement); - } - - document.addEventListener('DOMContentLoaded', addWidgetsRenderer); -}()); -</script> +<title>Notebook</title><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script> <style type="text/css"> pre { line-height: 125%; } td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } @@ -7574,10 +7547,10 @@ a.anchor-link { <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [1]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> +<div class="highlight hl-python"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> <span class="kn">from</span> <span class="nn">scipy</span> <span class="kn">import</span> <span class="n">interpolate</span> <span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span> <span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span> @@ -7625,7 +7598,7 @@ a.anchor-link { <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">my_dictionary</span> <span class="o">=</span> <span class="p">{</span><span class="s1">'key1'</span><span class="p">:</span> <span class="s1">'value1'</span><span class="p">,</span> +<div class="highlight hl-python"><pre><span></span><span class="n">my_dictionary</span> <span class="o">=</span> <span class="p">{</span><span class="s1">'key1'</span><span class="p">:</span> <span class="s1">'value1'</span><span class="p">,</span> <span class="s1">'key2'</span><span class="p">:</span> <span class="s1">'value2'</span><span class="p">,</span> <span class="s1">'name'</span><span class="p">:</span> <span class="s1">'Dictionary Example'</span><span class="p">,</span> <span class="s1">'a_list'</span><span class="p">:</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">],</span> @@ -7672,7 +7645,7 @@ a.anchor-link { <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="n">YOUR_CODE_HERE</span> <span class="n">function_that_uses_my_dictionary</span><span class="p">(</span><span class="n">my_dictionary</span><span class="p">)</span> </pre></div> </div> @@ -7722,7 +7695,7 @@ new_key exists and has value: new_value <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="nb">print</span><span class="p">(</span><span class="s2">"Keys and Values (type):"</span><span class="p">)</span> +<div class="highlight hl-python"><pre><span></span><span class="nb">print</span><span class="p">(</span><span class="s2">"Keys and Values (type):"</span><span class="p">)</span> <span class="k">for</span> <span class="n">key</span><span class="p">,</span> <span class="n">value</span> <span class="ow">in</span> <span class="n">my_dictionary</span><span class="o">.</span><span class="n">items</span><span class="p">():</span> <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">"</span><span class="si">{</span><span class="n">key</span><span class="si">:</span><span class="s2">16s</span><span class="si">}</span><span class="s2"> --> </span><span class="si">{</span><span class="nb">type</span><span class="p">(</span><span class="n">value</span><span class="p">)</span><span class="si">}</span><span class="s2">"</span><span class="p">)</span> </pre></div> @@ -7762,10 +7735,10 @@ new_key exists and has value: new_value <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [5]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="kn">from</span> <span class="nn">warmup</span> <span class="kn">import</span> <span class="o">*</span> +<div class="highlight hl-python"><pre><span></span><span class="kn">from</span> <span class="nn">warmup</span> <span class="kn">import</span> <span class="o">*</span> </pre></div> </div> </div> @@ -7779,7 +7752,7 @@ new_key exists and has value: new_value <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="n">YOUR_CODE_HERE</span> </pre></div> </div> </div> @@ -7801,10 +7774,10 @@ new_key exists and has value: new_value <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [7]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">dataset1</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="s1">'./data_warmup/dataset1.csv'</span><span class="p">)</span> +<div class="highlight hl-python"><pre><span></span><span class="n">dataset1</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="s1">'./data_warmup/dataset1.csv'</span><span class="p">)</span> <span class="n">times1</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">to_datetime</span><span class="p">(</span><span class="n">dataset1</span><span class="p">[</span><span class="s1">'times'</span><span class="p">])</span> <span class="n">obs1</span> <span class="o">=</span> <span class="p">(</span><span class="n">dataset1</span><span class="p">[</span><span class="s1">'observations[m]'</span><span class="p">])</span><span class="o">.</span><span class="n">to_numpy</span><span class="p">()</span><span class="o">*</span><span class="mi">1000</span> @@ -7824,7 +7797,7 @@ new_key exists and has value: new_value <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="nb">print</span><span class="p">(</span><span class="nb">type</span><span class="p">(</span><span class="n">dataset1</span><span class="p">),</span> <span class="s1">'</span><span class="se">\n</span><span class="s1">'</span><span class="p">,</span> +<div class="highlight hl-python"><pre><span></span><span class="nb">print</span><span class="p">(</span><span class="nb">type</span><span class="p">(</span><span class="n">dataset1</span><span class="p">),</span> <span class="s1">'</span><span class="se">\n</span><span class="s1">'</span><span class="p">,</span> <span class="nb">type</span><span class="p">(</span><span class="n">dataset2</span><span class="p">),</span> <span class="s1">'</span><span class="se">\n</span><span class="s1">'</span><span class="p">,</span> <span class="nb">type</span><span class="p">(</span><span class="n">times1</span><span class="p">),</span> <span class="s1">'</span><span class="se">\n</span><span class="s1">'</span><span class="p">,</span> <span class="nb">type</span><span class="p">(</span><span class="n">times2</span><span class="p">),</span> <span class="s1">'</span><span class="se">\n</span><span class="s1">'</span><span class="p">,</span> @@ -7866,10 +7839,10 @@ new_key exists and has value: new_value <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [9]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">to_days_years</span><span class="p">(</span><span class="n">times</span><span class="p">):</span> +<div class="highlight hl-python"><pre><span></span><span class="k">def</span> <span class="nf">to_days_years</span><span class="p">(</span><span class="n">times</span><span class="p">):</span> <span class="w"> </span><span class="sd">'''Convert the observation times to days and years.'''</span> <span class="n">times_datetime</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">to_datetime</span><span class="p">(</span><span class="n">times</span><span class="p">)</span> @@ -7893,7 +7866,7 @@ new_key exists and has value: new_value <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">days1</span><span class="p">,</span> <span class="n">years1</span> <span class="o">=</span> <span class="n">to_days_years</span><span class="p">(</span><span class="n">times1</span><span class="p">)</span> +<div class="highlight hl-python"><pre><span></span><span class="n">days1</span><span class="p">,</span> <span class="n">years1</span> <span class="o">=</span> <span class="n">to_days_years</span><span class="p">(</span><span class="n">times1</span><span class="p">)</span> <span class="n">days2</span><span class="p">,</span> <span class="n">years2</span> <span class="o">=</span> <span class="n">to_days_years</span><span class="p">(</span><span class="n">times2</span><span class="p">)</span> <span class="n">interp</span> <span class="o">=</span> <span class="n">interpolate</span><span class="o">.</span><span class="n">interp1d</span><span class="p">(</span><span class="n">days2</span><span class="p">,</span> <span class="n">obs2</span><span class="p">)</span> @@ -7943,7 +7916,4 @@ new_key exists and has value: new_value </div> </main> </body> -<script type="application/vnd.jupyter.widget-state+json"> -{"state": {}, "version_major": 2, "version_minor": 0} -</script> </html> diff --git a/synced_files/GA_1_3/Warmup.md b/synced_files/GA_1_3/Warmup.md index 3ece66b2..e68cef59 100644 --- a/synced_files/GA_1_3/Warmup.md +++ b/synced_files/GA_1_3/Warmup.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # GA 1.3: Warmup Notebook <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/GA_1_4/Analysis.html b/synced_files/GA_1_4/Analysis.html index b7642fcc..dad5a13a 100644 --- a/synced_files/GA_1_4/Analysis.html +++ b/synced_files/GA_1_4/Analysis.html @@ -3,34 +3,7 @@ <html lang="en"> <head><meta charset="utf-8"/> <meta content="width=device-width, initial-scale=1.0" name="viewport"/> -<title>Notebook</title><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script><script> -(function() { - function addWidgetsRenderer() { - var mimeElement = document.querySelector('script[type="application/vnd.jupyter.widget-view+json"]'); - var scriptElement = document.createElement('script'); - - var widgetRendererSrc = 'https://unpkg.com/@jupyter-widgets/html-manager@*/dist/embed-amd.js'; - - var widgetState; - - // Fallback for older version: - try { - widgetState = mimeElement && JSON.parse(mimeElement.innerHTML); - - if (widgetState && (widgetState.version_major < 2 || !widgetState.version_major)) { - - var widgetRendererSrc = 'https://unpkg.com/@jupyter-js-widgets@*/dist/embed.js'; - - } - } catch(e) {} - - scriptElement.src = widgetRendererSrc; - document.body.appendChild(scriptElement); - } - - document.addEventListener('DOMContentLoaded', addWidgetsRenderer); -}()); -</script> +<title>Notebook</title><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script> <style type="text/css"> pre { line-height: 125%; } td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } @@ -7584,10 +7557,10 @@ where $d$ is the displacement, $t$ is time and $\textrm{GW}$ is the groundwater <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [1]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> +<div class="highlight hl-python"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> <span class="kn">from</span> <span class="nn">scipy</span> <span class="kn">import</span> <span class="n">interpolate</span> <span class="kn">from</span> <span class="nn">scipy.stats</span> <span class="kn">import</span> <span class="n">norm</span> <span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span> @@ -7638,10 +7611,10 @@ where $d$ is the displacement, $t$ is time and $\textrm{GW}$ is the groundwater <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [2]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">m1_blue</span> <span class="o">=</span> <span class="n">load_pickle_file</span><span class="p">(</span><span class="s1">'m1_blue.pickle'</span><span class="p">)</span> +<div class="highlight hl-python"><pre><span></span><span class="n">m1_blue</span> <span class="o">=</span> <span class="n">load_pickle_file</span><span class="p">(</span><span class="s1">'m1_blue.pickle'</span><span class="p">)</span> <span class="n">m2_blue</span> <span class="o">=</span> <span class="n">load_pickle_file</span><span class="p">(</span><span class="s1">'m2_blue.pickle'</span><span class="p">)</span> </pre></div> </div> @@ -7667,7 +7640,7 @@ where $d$ is the displacement, $t$ is time and $\textrm{GW}$ is the groundwater <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">model_summary</span><span class="p">(</span><span class="n">m1_blue</span><span class="p">)</span> +<div class="highlight hl-python"><pre><span></span><span class="n">model_summary</span><span class="p">(</span><span class="n">m1_blue</span><span class="p">)</span> <span class="n">model_summary</span><span class="p">(</span><span class="n">m2_blue</span><span class="p">)</span> </pre></div> </div> @@ -7693,7 +7666,7 @@ where $d$ is the displacement, $t$ is time and $\textrm{GW}$ is the groundwater <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="k">for</span> <span class="n">key</span> <span class="ow">in</span> <span class="n">m1_blue</span><span class="o">.</span><span class="n">keys</span><span class="p">():</span> +<div class="highlight hl-python"><pre><span></span><span class="k">for</span> <span class="n">key</span> <span class="ow">in</span> <span class="n">m1_blue</span><span class="o">.</span><span class="n">keys</span><span class="p">():</span> <span class="nb">print</span><span class="p">(</span><span class="n">key</span><span class="p">)</span> </pre></div> </div> @@ -7724,7 +7697,7 @@ where $d$ is the displacement, $t$ is time and $\textrm{GW}$ is the groundwater <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">x0_slider</span> <span class="o">=</span> <span class="n">widgets</span><span class="o">.</span><span class="n">FloatSlider</span><span class="p">(</span><span class="n">value</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="nb">min</span><span class="o">=-</span><span class="mi">10</span><span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">step</span><span class="o">=</span><span class="mf">0.1</span><span class="p">,</span> <span class="n">description</span><span class="o">=</span><span class="s1">'x0'</span><span class="p">)</span> +<div class="highlight hl-python"><pre><span></span><span class="n">x0_slider</span> <span class="o">=</span> <span class="n">widgets</span><span class="o">.</span><span class="n">FloatSlider</span><span class="p">(</span><span class="n">value</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="nb">min</span><span class="o">=-</span><span class="mi">10</span><span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">step</span><span class="o">=</span><span class="mf">0.1</span><span class="p">,</span> <span class="n">description</span><span class="o">=</span><span class="s1">'x0'</span><span class="p">)</span> <span class="n">x1_slider</span> <span class="o">=</span> <span class="n">widgets</span><span class="o">.</span><span class="n">FloatSlider</span><span class="p">(</span><span class="n">value</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="nb">min</span><span class="o">=-</span><span class="mf">0.1</span><span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="mf">0.1</span><span class="p">,</span> <span class="n">step</span><span class="o">=</span><span class="mf">0.001</span><span class="p">,</span> <span class="n">description</span><span class="o">=</span><span class="s1">'x1'</span><span class="p">)</span> <span class="n">x2_slider</span> <span class="o">=</span> <span class="n">widgets</span><span class="o">.</span><span class="n">FloatSlider</span><span class="p">(</span><span class="n">value</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="nb">min</span><span class="o">=-</span><span class="mi">1</span><span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">step</span><span class="o">=</span><span class="mf">0.01</span><span class="p">,</span> <span class="n">description</span><span class="o">=</span><span class="s1">'x2'</span><span class="p">)</span> @@ -7768,10 +7741,10 @@ where $d$ is the displacement, $t$ is time and $\textrm{GW}$ is the groundwater <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [6]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">initialize_new_dict</span><span class="p">(</span><span class="n">d_old</span><span class="p">):</span> +<div class="highlight hl-python"><pre><span></span><span class="k">def</span> <span class="nf">initialize_new_dict</span><span class="p">(</span><span class="n">d_old</span><span class="p">):</span> <span class="n">d</span> <span class="o">=</span> <span class="p">{}</span> <span class="n">d</span><span class="p">[</span><span class="s1">'data_type'</span><span class="p">]</span> <span class="o">=</span> <span class="n">d_old</span><span class="p">[</span><span class="s1">'data_type'</span><span class="p">]</span> <span class="n">d</span><span class="p">[</span><span class="s1">'model_type'</span><span class="p">]</span> <span class="o">=</span> <span class="s1">'Non-Linear Least Squares'</span> @@ -7816,7 +7789,7 @@ where $d$ is the displacement, $t$ is time and $\textrm{GW}$ is the groundwater <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="n">YOUR_CODE_HERE</span> </pre></div> </div> </div> @@ -7872,10 +7845,10 @@ where $d$ is the displacement, $t$ is the time and $\textrm{GW}$ is the groundwa <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [8]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">compute_y</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">d</span><span class="p">):</span> +<div class="highlight hl-python"><pre><span></span><span class="k">def</span> <span class="nf">compute_y</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">d</span><span class="p">):</span> <span class="w"> </span><span class="sd">"""Model, q: ground surface displacement.</span> <span class="sd"> Inputs:</span> @@ -7935,7 +7908,7 @@ where $d$ is the displacement, $t$ is the time and $\textrm{GW}$ is the groundwa <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">x0_slider</span> <span class="o">=</span> <span class="n">widgets</span><span class="o">.</span><span class="n">FloatSlider</span><span class="p">(</span><span class="n">value</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="nb">min</span><span class="o">=-</span><span class="mi">40</span><span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="mi">40</span><span class="p">,</span> <span class="n">step</span><span class="o">=</span><span class="mf">0.5</span><span class="p">,</span> <span class="n">description</span><span class="o">=</span><span class="s1">'x0'</span><span class="p">)</span> +<div class="highlight hl-python"><pre><span></span><span class="n">x0_slider</span> <span class="o">=</span> <span class="n">widgets</span><span class="o">.</span><span class="n">FloatSlider</span><span class="p">(</span><span class="n">value</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="nb">min</span><span class="o">=-</span><span class="mi">40</span><span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="mi">40</span><span class="p">,</span> <span class="n">step</span><span class="o">=</span><span class="mf">0.5</span><span class="p">,</span> <span class="n">description</span><span class="o">=</span><span class="s1">'x0'</span><span class="p">)</span> <span class="n">x1_slider</span> <span class="o">=</span> <span class="n">widgets</span><span class="o">.</span><span class="n">FloatSlider</span><span class="p">(</span><span class="n">value</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="nb">min</span><span class="o">=-</span><span class="mi">50</span><span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="mi">50</span><span class="p">,</span> <span class="n">step</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">description</span><span class="o">=</span><span class="s1">'x1'</span><span class="p">)</span> <span class="n">x2_slider</span> <span class="o">=</span> <span class="n">widgets</span><span class="o">.</span><span class="n">FloatSlider</span><span class="p">(</span><span class="n">value</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="nb">min</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="mi">1000</span><span class="p">,</span> <span class="n">step</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">description</span><span class="o">=</span><span class="s1">'x2'</span><span class="p">)</span> <span class="n">x3_slider</span> <span class="o">=</span> <span class="n">widgets</span><span class="o">.</span><span class="n">FloatSlider</span><span class="p">(</span><span class="n">value</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="nb">min</span><span class="o">=-</span><span class="mi">1</span><span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">step</span><span class="o">=</span><span class="mf">0.01</span><span class="p">,</span> <span class="n">description</span><span class="o">=</span><span class="s1">'x3'</span><span class="p">)</span> @@ -7969,10 +7942,10 @@ where $d$ is the displacement, $t$ is the time and $\textrm{GW}$ is the groundwa <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [10]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">d_init</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="n">d_init</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> <span class="n">R_init</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> <span class="n">a_init</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> <span class="n">k_init</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> @@ -8004,10 +7977,10 @@ where $d$ is the displacement, $t$ is the time and $\textrm{GW}$ is the groundwa <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [11]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">jacobian</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">d</span><span class="p">):</span> +<div class="highlight hl-python"><pre><span></span><span class="k">def</span> <span class="nf">jacobian</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">d</span><span class="p">):</span> <span class="w"> </span><span class="sd">"""Compute Jacobian of the model.</span> <span class="sd"> Model, q: ground surface displacement.</span> @@ -8069,7 +8042,7 @@ where $d$ is the displacement, $t$ is the time and $\textrm{GW}$ is the groundwa <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="n">YOUR_CODE_HERE</span> <span class="nb">print</span> <span class="p">(</span><span class="s1">'The first 5 rows of the Jacobian matrix (InSAR):'</span><span class="p">)</span> <span class="nb">print</span> <span class="p">(</span><span class="n">test_J</span><span class="p">[</span><span class="mi">0</span><span class="p">:</span><span class="mi">5</span><span class="p">,:])</span> @@ -8147,10 +8120,10 @@ where $d$ is the displacement, $t$ is the time and $\textrm{GW}$ is the groundwa <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [13]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">gauss_newton_iteration</span><span class="p">(</span><span class="n">x0</span><span class="p">,</span> <span class="n">d</span><span class="p">):</span> +<div class="highlight hl-python"><pre><span></span><span class="k">def</span> <span class="nf">gauss_newton_iteration</span><span class="p">(</span><span class="n">x0</span><span class="p">,</span> <span class="n">d</span><span class="p">):</span> <span class="w"> </span><span class="sd">"""Use Gauss-Newton iteration to find non-linear parameters.</span> <span class="sd"> </span> <span class="sd"> Inputs:</span> @@ -8263,7 +8236,7 @@ print(f'On iteration {iteration} X_hat_i is:', X_hat_i[iteration+1,:]) <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">m1</span> <span class="o">=</span> <span class="n">gauss_newton_iteration</span><span class="p">(</span><span class="n">initial_guess</span><span class="p">,</span> <span class="n">m1</span><span class="p">)</span> +<div class="highlight hl-python"><pre><span></span><span class="n">m1</span> <span class="o">=</span> <span class="n">gauss_newton_iteration</span><span class="p">(</span><span class="n">initial_guess</span><span class="p">,</span> <span class="n">m1</span><span class="p">)</span> <span class="n">m2</span> <span class="o">=</span> <span class="n">gauss_newton_iteration</span><span class="p">(</span><span class="n">initial_guess</span><span class="p">,</span> <span class="n">m2</span><span class="p">)</span> <span class="nb">print</span><span class="p">(</span><span class="s1">'</span><span class="se">\n</span><span class="s1"> InSAR Reults for each iteration (Iterations completed ='</span><span class="p">,</span> @@ -8317,7 +8290,7 @@ print(f'On iteration {iteration} X_hat_i is:', X_hat_i[iteration+1,:]) <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">plot_fit_iteration</span><span class="p">(</span><span class="n">d</span><span class="p">):</span> +<div class="highlight hl-python"><pre><span></span><span class="k">def</span> <span class="nf">plot_fit_iteration</span><span class="p">(</span><span class="n">d</span><span class="p">):</span> <span class="w"> </span><span class="sd">"""Plot value of each parameter, each iteration."""</span> <span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span> <span class="o">=</span> <span class="p">(</span><span class="mi">15</span><span class="p">,</span><span class="mi">4</span><span class="p">))</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots_adjust</span><span class="p">(</span><span class="n">top</span> <span class="o">=</span> <span class="mi">2</span><span class="p">)</span> @@ -8372,10 +8345,10 @@ print(f'On iteration {iteration} X_hat_i is:', X_hat_i[iteration+1,:]) <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [16]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># initial_guess_alternative = initial_guess</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># initial_guess_alternative = initial_guess</span> <span class="c1"># print(initial_guess_alternative)</span> <span class="c1"># plot_convergence_interactive(gauss_newton_iteration(initial_guess_alternative, m1))</span> <span class="c1"># plot_convergence_interactive(gauss_newton_iteration(initial_guess_alternative, m2))</span> @@ -8421,7 +8394,7 @@ print(f'On iteration {iteration} X_hat_i is:', X_hat_i[iteration+1,:]) <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">show_std</span><span class="p">(</span><span class="n">Sigma_X_hat</span><span class="p">,</span> <span class="n">data_type</span><span class="p">):</span> +<div class="highlight hl-python"><pre><span></span><span class="k">def</span> <span class="nf">show_std</span><span class="p">(</span><span class="n">Sigma_X_hat</span><span class="p">,</span> <span class="n">data_type</span><span class="p">):</span> <span class="nb">print</span> <span class="p">(</span><span class="s1">'The standard deviation for'</span><span class="p">,</span> <span class="n">data_type</span> <span class="o">+</span> <span class="s1">'-offset is'</span><span class="p">,</span> <span class="n">YOUR_CODE_HERE</span><span class="p">,</span> <span class="s1">'UNITS'</span><span class="p">)</span> @@ -8493,7 +8466,7 @@ print(f'On iteration {iteration} X_hat_i is:', X_hat_i[iteration+1,:]) <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">help</span><span class="p">(</span><span class="n">get_CI</span><span class="p">)</span> +<div class="highlight hl-python"><pre><span></span><span class="n">help</span><span class="p">(</span><span class="n">get_CI</span><span class="p">)</span> </pre></div> </div> </div> @@ -8507,7 +8480,7 @@ print(f'On iteration {iteration} X_hat_i is:', X_hat_i[iteration+1,:]) <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">m1</span><span class="p">[</span><span class="s1">'Y_hat'</span><span class="p">]</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="n">m1</span><span class="p">[</span><span class="s1">'Y_hat'</span><span class="p">]</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> <span class="n">m1</span> <span class="o">=</span> <span class="n">get_CI</span><span class="p">(</span><span class="n">YOUR_CODE_HERE</span><span class="p">)</span> <span class="n">plot_model</span><span class="p">(</span><span class="n">YOUR_CODE_HERE</span><span class="p">)</span> <span class="n">plot_residual</span><span class="p">(</span><span class="n">YOUR_CODE_HERE</span><span class="p">)</span> @@ -8525,7 +8498,7 @@ print(f'On iteration {iteration} X_hat_i is:', X_hat_i[iteration+1,:]) <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">m1</span><span class="p">[</span><span class="s1">'Y_hat'</span><span class="p">]</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="n">m1</span><span class="p">[</span><span class="s1">'Y_hat'</span><span class="p">]</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> <span class="n">m1</span> <span class="o">=</span> <span class="n">get_CI</span><span class="p">(</span><span class="n">YOUR_CODE_HERE</span><span class="p">)</span> <span class="n">plot_model</span><span class="p">(</span><span class="n">YOUR_CODE_HERE</span><span class="p">)</span> <span class="n">plot_residual</span><span class="p">(</span><span class="n">YOUR_CODE_HERE</span><span class="p">)</span> @@ -8575,7 +8548,7 @@ print(f'On iteration {iteration} X_hat_i is:', X_hat_i[iteration+1,:]) <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">YOUR_CODE_HERE</span> <span class="p">(</span><span class="n">probably</span> <span class="n">will</span> <span class="n">be</span> <span class="n">more</span> <span class="n">than</span> <span class="n">one</span> <span class="n">line</span><span class="p">)</span> +<div class="highlight hl-python"><pre><span></span><span class="n">YOUR_CODE_HERE</span> <span class="p">(</span><span class="n">probably</span> <span class="n">will</span> <span class="n">be</span> <span class="n">more</span> <span class="n">than</span> <span class="n">one</span> <span class="n">line</span><span class="p">)</span> <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s1">'The critical value is </span><span class="si">{</span><span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">k</span><span class="p">,</span><span class="w"> </span><span class="mi">3</span><span class="p">)</span><span class="si">}</span><span class="s1">'</span><span class="p">)</span> </pre></div> </div> @@ -8606,7 +8579,7 @@ print(f'On iteration {iteration} X_hat_i is:', X_hat_i[iteration+1,:]) <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">t1_insar</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="n">t1_insar</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> <span class="n">t2_insar</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> <span class="n">t_insar</span> <span class="o">=</span> <span class="n">t1_insar</span> <span class="o">-</span> <span class="n">t2_insar</span> <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s1">'The test statistic for InSAR data is </span><span class="si">{</span><span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">t_insar</span><span class="p">,</span><span class="w"> </span><span class="mi">3</span><span class="p">)</span><span class="si">}</span><span class="s1">'</span><span class="p">)</span> @@ -8639,7 +8612,7 @@ print(f'On iteration {iteration} X_hat_i is:', X_hat_i[iteration+1,:]) <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">t1_gnss</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="n">t1_gnss</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> <span class="n">t2_gnss</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> <span class="n">t_gnss</span> <span class="o">=</span> <span class="n">t1_gnss</span> <span class="o">-</span> <span class="n">t2_gnss</span> <span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s1">'The test statistic for GNSS data is </span><span class="si">{</span><span class="n">np</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="n">t_gnss</span><span class="p">,</span><span class="w"> </span><span class="mi">3</span><span class="p">)</span><span class="si">}</span><span class="s1">'</span><span class="p">)</span> @@ -8683,7 +8656,4 @@ print(f'On iteration {iteration} X_hat_i is:', X_hat_i[iteration+1,:]) </div> </main> </body> -<script type="application/vnd.jupyter.widget-state+json"> -{"state": {}, "version_major": 2, "version_minor": 0} -</script> </html> diff --git a/synced_files/GA_1_4/Analysis.md b/synced_files/GA_1_4/Analysis.md index 9a2903be..030ed71f 100644 --- a/synced_files/GA_1_4/Analysis.md +++ b/synced_files/GA_1_4/Analysis.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # GA 1.4: Modelling Road Deformation using Non-Linear Least-Squares <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> @@ -158,7 +148,6 @@ Confirm that the stochastic model is transferred properly by printing the approp YOUR_CODE_HERE ``` -<!-- #region id="80a9b60f" --> ## Part 1: Set-up Non-Linear Model In the model we fitted using BLUE, we only considered a linear velocity and a dependency on the groundwater level. However, when a heavy construction is built on 'soft' soil layers, compaction of the upper layers will be observed. This compaction is relatively large in the beginning but decreases when time passes. We can approach the behavior with a simplified model, assuming an exponential decay. @@ -188,7 +177,7 @@ y_comp = compute_y(x, <auxiliary_arguments>) ``` Where `<auxiliary_arguments>` will be different in type and/or number on a case-by-case basis. Your code will generally be more compact and adaptable to other cases if the parameters are specified in a list, array or tuple. -<!-- #endregion --> + <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> @@ -344,14 +333,13 @@ print(f'The redundancy (InSAR) is {m1["y"].shape[0] - n_2}') print(f'The redundancy (GNSS) is {m2["y"].shape[0] - n_2}') ``` -<!-- #region id="b4633d84" --> ## Part 2: Gauss-Newton Iteration This is an essential step of the algorithm for creating a non-linear least square model. We will use a function to easily repeat the analysis for InSAR and GNSS models. The `while`-loop and its contents are very similar to WS 1.4 earlier this week, with two notable exceptions: 1. the loop is "wrapped" in a function, and 2. the model dictionaries are used, which makes it easier to use existing functions (e.g., `BLUE()`) to find a solution -<!-- #endregion --> + <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> @@ -549,9 +537,8 @@ It is set up to visualize the model on each iteration. You can gain insight into # plot_convergence_interactive(gauss_newton_iteration(initial_guess_alternative, m2)) ``` -<!-- #region id="b9c40713" --> ## Part 3: Assessing Results -<!-- #endregion --> + <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> @@ -635,7 +622,6 @@ plot_residual(YOUR_CODE_HERE) plot_residual_histogram(YOUR_CODE_HERE); ``` -<!-- #region id="af211a2b" --> ## Part 4: Hypothesis Test In GA 1.3 and GA 1.4 we used two different models: @@ -643,7 +629,7 @@ In GA 1.3 and GA 1.4 we used two different models: * GA 1.4: A model with linear and power components Now we are going to test which model fits the data better. We will do this with the Generalized Likelihood Ratio (GLR) test for both the GNSS and InSAR observations. -<!-- #endregion --> + <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> diff --git a/synced_files/GA_1_4/Analysis_solution.html b/synced_files/GA_1_4/Analysis_solution.html index 40856dfa..d2efea6f 100644 --- a/synced_files/GA_1_4/Analysis_solution.html +++ b/synced_files/GA_1_4/Analysis_solution.html @@ -3,34 +3,7 @@ <html lang="en"> <head><meta charset="utf-8"/> <meta content="width=device-width, initial-scale=1.0" name="viewport"/> -<title>Notebook</title><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script><script> -(function() { - function addWidgetsRenderer() { - var mimeElement = document.querySelector('script[type="application/vnd.jupyter.widget-view+json"]'); - var scriptElement = document.createElement('script'); - - var widgetRendererSrc = 'https://unpkg.com/@jupyter-widgets/html-manager@*/dist/embed-amd.js'; - - var widgetState; - - // Fallback for older version: - try { - widgetState = mimeElement && JSON.parse(mimeElement.innerHTML); - - if (widgetState && (widgetState.version_major < 2 || !widgetState.version_major)) { - - var widgetRendererSrc = 'https://unpkg.com/@jupyter-js-widgets@*/dist/embed.js'; - - } - } catch(e) {} - - scriptElement.src = widgetRendererSrc; - document.body.appendChild(scriptElement); - } - - document.addEventListener('DOMContentLoaded', addWidgetsRenderer); -}()); -</script> +<title>Notebook</title><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script> <style type="text/css"> pre { line-height: 125%; } td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } @@ -7584,10 +7557,10 @@ where $d$ is the displacement, $t$ is time and $\textrm{GW}$ is the groundwater <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [1]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> +<div class="highlight hl-python"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> <span class="kn">from</span> <span class="nn">scipy</span> <span class="kn">import</span> <span class="n">interpolate</span> <span class="kn">from</span> <span class="nn">scipy.stats</span> <span class="kn">import</span> <span class="n">norm</span> <span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span> @@ -7638,10 +7611,10 @@ where $d$ is the displacement, $t$ is time and $\textrm{GW}$ is the groundwater <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [2]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">m1_blue</span> <span class="o">=</span> <span class="n">load_pickle_file</span><span class="p">(</span><span class="s1">'m1_blue.pickle'</span><span class="p">)</span> +<div class="highlight hl-python"><pre><span></span><span class="n">m1_blue</span> <span class="o">=</span> <span class="n">load_pickle_file</span><span class="p">(</span><span class="s1">'m1_blue.pickle'</span><span class="p">)</span> <span class="n">m2_blue</span> <span class="o">=</span> <span class="n">load_pickle_file</span><span class="p">(</span><span class="s1">'m2_blue.pickle'</span><span class="p">)</span> </pre></div> </div> @@ -7659,55 +7632,21 @@ where $d$ is the displacement, $t$ is time and $\textrm{GW}$ is the groundwater </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=e02d5566"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=e02d5566"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [3]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">model_summary</span><span class="p">(</span><span class="n">m1_blue</span><span class="p">)</span> +<div class="highlight hl-python"><pre><span></span><span class="n">model_summary</span><span class="p">(</span><span class="n">m1_blue</span><span class="p">)</span> <span class="n">model_summary</span><span class="p">(</span><span class="n">m2_blue</span><span class="p">)</span> </pre></div> </div> </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>Summary of Model ----------------- - Data type: InSAR - Model type: BLUE - Number of observations: 61 - Model parameters: - X_hat_0 = 9.174 +/- 2.128 (c.o.v. 0.232) - X_hat_1 = -0.024 +/- 0.001 (c.o.v. -0.050) - X_hat_2 = 0.202 +/- 0.016 (c.o.v. 0.081) ----------------- - -Summary of Model ----------------- - Data type: GNSS - Model type: BLUE - Number of observations: 730 - Model parameters: - X_hat_0 = 1.181 +/- 4.647 (c.o.v. 3.936) - X_hat_1 = -0.021 +/- 0.003 (c.o.v. -0.126) - X_hat_2 = 0.160 +/- 0.035 (c.o.v. 0.220) ----------------- - -</pre> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=78308267"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -7719,55 +7658,21 @@ Summary of Model </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=cabfa723"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=cabfa723"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [4]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="k">for</span> <span class="n">key</span> <span class="ow">in</span> <span class="n">m1_blue</span><span class="o">.</span><span class="n">keys</span><span class="p">():</span> +<div class="highlight hl-python"><pre><span></span><span class="k">for</span> <span class="n">key</span> <span class="ow">in</span> <span class="n">m1_blue</span><span class="o">.</span><span class="n">keys</span><span class="p">():</span> <span class="nb">print</span><span class="p">(</span><span class="n">key</span><span class="p">)</span> </pre></div> </div> </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>data_type -model_type -times -y -days -groundwater -groundwater_data -A -std_Y -Sigma_Y -Sigma_X_hat -X_hat -Y_hat -e_hat -Sigma_Y_hat -Sigma_e_hat -std_e_hat -k -CI_Y -CI_res -CI_Y_hat -alpha -</pre> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=0b4e08a3"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -7784,15 +7689,15 @@ alpha </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=73af3940"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=73af3940"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [5]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">x0_slider</span> <span class="o">=</span> <span class="n">widgets</span><span class="o">.</span><span class="n">FloatSlider</span><span class="p">(</span><span class="n">value</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="nb">min</span><span class="o">=-</span><span class="mi">10</span><span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">step</span><span class="o">=</span><span class="mf">0.1</span><span class="p">,</span> <span class="n">description</span><span class="o">=</span><span class="s1">'x0'</span><span class="p">)</span> +<div class="highlight hl-python"><pre><span></span><span class="n">x0_slider</span> <span class="o">=</span> <span class="n">widgets</span><span class="o">.</span><span class="n">FloatSlider</span><span class="p">(</span><span class="n">value</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="nb">min</span><span class="o">=-</span><span class="mi">10</span><span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">step</span><span class="o">=</span><span class="mf">0.1</span><span class="p">,</span> <span class="n">description</span><span class="o">=</span><span class="s1">'x0'</span><span class="p">)</span> <span class="n">x1_slider</span> <span class="o">=</span> <span class="n">widgets</span><span class="o">.</span><span class="n">FloatSlider</span><span class="p">(</span><span class="n">value</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="nb">min</span><span class="o">=-</span><span class="mf">0.1</span><span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="mf">0.1</span><span class="p">,</span> <span class="n">step</span><span class="o">=</span><span class="mf">0.001</span><span class="p">,</span> <span class="n">description</span><span class="o">=</span><span class="s1">'x1'</span><span class="p">)</span> <span class="n">x2_slider</span> <span class="o">=</span> <span class="n">widgets</span><span class="o">.</span><span class="n">FloatSlider</span><span class="p">(</span><span class="n">value</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="nb">min</span><span class="o">=-</span><span class="mi">1</span><span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">step</span><span class="o">=</span><span class="mf">0.01</span><span class="p">,</span> <span class="n">description</span><span class="o">=</span><span class="s1">'x2'</span><span class="p">)</span> @@ -7804,18 +7709,6 @@ alpha </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>interactive(children=(FloatSlider(value=0.0, description='x0', max=10.0, min=-10.0), FloatSlider(value=0.0, de…</pre> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=36948058"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -7848,10 +7741,10 @@ alpha <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [6]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">initialize_new_dict</span><span class="p">(</span><span class="n">d_old</span><span class="p">):</span> +<div class="highlight hl-python"><pre><span></span><span class="k">def</span> <span class="nf">initialize_new_dict</span><span class="p">(</span><span class="n">d_old</span><span class="p">):</span> <span class="n">d</span> <span class="o">=</span> <span class="p">{}</span> <span class="n">d</span><span class="p">[</span><span class="s1">'data_type'</span><span class="p">]</span> <span class="o">=</span> <span class="n">d_old</span><span class="p">[</span><span class="s1">'data_type'</span><span class="p">]</span> <span class="n">d</span><span class="p">[</span><span class="s1">'model_type'</span><span class="p">]</span> <span class="o">=</span> <span class="s1">'Non-Linear Least Squares'</span> @@ -7888,15 +7781,15 @@ alpha </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=9aeda35f"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=9aeda35f"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [7]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># YOUR_CODE_HERE</span> <span class="c1"># SOLUTION:</span> <span class="c1"># First uncomment and run this to quickly view the keys:</span> @@ -7910,32 +7803,6 @@ alpha </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>[[4. 0. 0. ... 0. 0. 0.] - [0. 4. 0. ... 0. 0. 0.] - [0. 0. 4. ... 0. 0. 0.] - ... - [0. 0. 0. ... 4. 0. 0.] - [0. 0. 0. ... 0. 4. 0.] - [0. 0. 0. ... 0. 0. 4.]] -[[225. 0. 0. ... 0. 0. 0.] - [ 0. 225. 0. ... 0. 0. 0.] - [ 0. 0. 225. ... 0. 0. 0.] - ... - [ 0. 0. 0. ... 225. 0. 0.] - [ 0. 0. 0. ... 0. 225. 0.] - [ 0. 0. 0. ... 0. 0. 225.]] -</pre> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=80a9b60f"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -7986,10 +7853,10 @@ where $d$ is the displacement, $t$ is the time and $\textrm{GW}$ is the groundwa <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [8]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">compute_y</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">d</span><span class="p">):</span> +<div class="highlight hl-python"><pre><span></span><span class="k">def</span> <span class="nf">compute_y</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">d</span><span class="p">):</span> <span class="w"> </span><span class="sd">"""Model, q: ground surface displacement.</span> <span class="sd"> Inputs:</span> @@ -8063,15 +7930,15 @@ where $d$ is the displacement, $t$ is the time and $\textrm{GW}$ is the groundwa </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=b20c1e61"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=b20c1e61"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [9]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">x0_slider</span> <span class="o">=</span> <span class="n">widgets</span><span class="o">.</span><span class="n">FloatSlider</span><span class="p">(</span><span class="n">value</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="nb">min</span><span class="o">=-</span><span class="mi">40</span><span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="mi">40</span><span class="p">,</span> <span class="n">step</span><span class="o">=</span><span class="mf">0.5</span><span class="p">,</span> <span class="n">description</span><span class="o">=</span><span class="s1">'x0'</span><span class="p">)</span> +<div class="highlight hl-python"><pre><span></span><span class="n">x0_slider</span> <span class="o">=</span> <span class="n">widgets</span><span class="o">.</span><span class="n">FloatSlider</span><span class="p">(</span><span class="n">value</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="nb">min</span><span class="o">=-</span><span class="mi">40</span><span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="mi">40</span><span class="p">,</span> <span class="n">step</span><span class="o">=</span><span class="mf">0.5</span><span class="p">,</span> <span class="n">description</span><span class="o">=</span><span class="s1">'x0'</span><span class="p">)</span> <span class="n">x1_slider</span> <span class="o">=</span> <span class="n">widgets</span><span class="o">.</span><span class="n">FloatSlider</span><span class="p">(</span><span class="n">value</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="nb">min</span><span class="o">=-</span><span class="mi">50</span><span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="mi">50</span><span class="p">,</span> <span class="n">step</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">description</span><span class="o">=</span><span class="s1">'x1'</span><span class="p">)</span> <span class="n">x2_slider</span> <span class="o">=</span> <span class="n">widgets</span><span class="o">.</span><span class="n">FloatSlider</span><span class="p">(</span><span class="n">value</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="nb">min</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="mi">1000</span><span class="p">,</span> <span class="n">step</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">description</span><span class="o">=</span><span class="s1">'x2'</span><span class="p">)</span> <span class="n">x3_slider</span> <span class="o">=</span> <span class="n">widgets</span><span class="o">.</span><span class="n">FloatSlider</span><span class="p">(</span><span class="n">value</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="nb">min</span><span class="o">=-</span><span class="mi">1</span><span class="p">,</span> <span class="nb">max</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">step</span><span class="o">=</span><span class="mf">0.01</span><span class="p">,</span> <span class="n">description</span><span class="o">=</span><span class="s1">'x3'</span><span class="p">)</span> @@ -8084,18 +7951,6 @@ where $d$ is the displacement, $t$ is the time and $\textrm{GW}$ is the groundwa </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>interactive(children=(FloatSlider(value=0.0, description='x0', max=40.0, min=-40.0, step=0.5), FloatSlider(val…</pre> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=c9bfc4d7"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -8117,10 +7972,10 @@ where $d$ is the displacement, $t$ is the time and $\textrm{GW}$ is the groundwa <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [10]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># d_init = YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># d_init = YOUR_CODE_HERE</span> <span class="c1"># R_init = YOUR_CODE_HERE</span> <span class="c1"># a_init = YOUR_CODE_HERE</span> <span class="c1"># k_init = YOUR_CODE_HERE</span> @@ -8158,10 +8013,10 @@ where $d$ is the displacement, $t$ is the time and $\textrm{GW}$ is the groundwa <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [11]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">jacobian</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">d</span><span class="p">):</span> +<div class="highlight hl-python"><pre><span></span><span class="k">def</span> <span class="nf">jacobian</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">d</span><span class="p">):</span> <span class="w"> </span><span class="sd">"""Compute Jacobian of the model.</span> <span class="sd"> Model, q: ground surface displacement.</span> @@ -8222,15 +8077,15 @@ where $d$ is the displacement, $t$ is the time and $\textrm{GW}$ is the groundwa </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=c57e5e26"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=c57e5e26"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [12]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># YOUR_CODE_HERE</span> <span class="c1"># SOLUTION:</span> <span class="n">test_J</span> <span class="o">=</span> <span class="n">jacobian</span><span class="p">((</span><span class="n">d_init</span><span class="p">,</span> <span class="n">R_init</span><span class="p">,</span> <span class="n">a_init</span><span class="p">,</span> <span class="n">k_init</span><span class="p">),</span> <span class="n">m1</span><span class="p">)</span> @@ -8247,28 +8102,6 @@ where $d$ is the displacement, $t$ is the time and $\textrm{GW}$ is the groundwa </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>The first 5 rows of the Jacobian matrix (InSAR): -[[ 1.000e+00 0.000e+00 0.000e+00 -1.097e+02] - [ 1.000e+00 3.921e-02 3.203e-03 -1.067e+02] - [ 1.000e+00 7.688e-02 6.154e-03 -1.038e+02] - [ 1.000e+00 1.131e-01 8.869e-03 -1.065e+02] - [ 1.000e+00 1.479e-01 1.136e-02 -1.173e+02]] - -The number of unknowns is 4 -The redundancy (InSAR) is 57 -The redundancy (GNSS) is 726 -</pre> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=b4633d84"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -8333,10 +8166,10 @@ The redundancy (GNSS) is 726 <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [13]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">gauss_newton_iteration</span><span class="p">(</span><span class="n">x0</span><span class="p">,</span> <span class="n">d</span><span class="p">):</span> +<div class="highlight hl-python"><pre><span></span><span class="k">def</span> <span class="nf">gauss_newton_iteration</span><span class="p">(</span><span class="n">x0</span><span class="p">,</span> <span class="n">d</span><span class="p">):</span> <span class="w"> </span><span class="sd">"""Use Gauss-Newton iteration to find non-linear parameters.</span> <span class="sd"> </span> <span class="sd"> Inputs:</span> @@ -8469,15 +8302,15 @@ print(f'On iteration {iteration} X_hat_i is:', X_hat_i[iteration+1,:]) </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=313380a0"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=313380a0"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [14]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">m1</span> <span class="o">=</span> <span class="n">gauss_newton_iteration</span><span class="p">(</span><span class="n">initial_guess</span><span class="p">,</span> <span class="n">m1</span><span class="p">)</span> +<div class="highlight hl-python"><pre><span></span><span class="n">m1</span> <span class="o">=</span> <span class="n">gauss_newton_iteration</span><span class="p">(</span><span class="n">initial_guess</span><span class="p">,</span> <span class="n">m1</span><span class="p">)</span> <span class="n">m2</span> <span class="o">=</span> <span class="n">gauss_newton_iteration</span><span class="p">(</span><span class="n">initial_guess</span><span class="p">,</span> <span class="n">m2</span><span class="p">)</span> <span class="nb">print</span><span class="p">(</span><span class="s1">'</span><span class="se">\n</span><span class="s1"> InSAR Reults for each iteration (Iterations completed ='</span><span class="p">,</span> @@ -8492,41 +8325,6 @@ print(f'On iteration {iteration} X_hat_i is:', X_hat_i[iteration+1,:]) </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre> - InSAR Reults for each iteration (Iterations completed = 7 ) -[[ 9.000e+00 -2.500e+01 3.000e+02 1.500e-01] - [ 1.273e+01 -1.982e+01 1.407e+02 1.726e-01] - [ 1.296e+01 -2.162e+01 1.768e+02 1.719e-01] - [ 1.297e+01 -2.192e+01 1.793e+02 1.713e-01] - [ 1.297e+01 -2.192e+01 1.794e+02 1.713e-01] - [ 1.297e+01 -2.192e+01 1.794e+02 1.713e-01] - [ 1.297e+01 -2.192e+01 1.794e+02 1.713e-01] - [ 1.297e+01 -2.192e+01 1.794e+02 1.713e-01]] - - GNSS Reults for each iteration (Iterations completed = 10 ) -[[ 9.000e+00 -2.500e+01 3.000e+02 1.500e-01] - [ 3.747e+00 -1.777e+01 2.435e+02 1.425e-01] - [ 3.895e+00 -1.812e+01 2.269e+02 1.418e-01] - [ 3.939e+00 -1.815e+01 2.247e+02 1.416e-01] - [ 3.945e+00 -1.815e+01 2.242e+02 1.415e-01] - [ 3.946e+00 -1.815e+01 2.241e+02 1.415e-01] - [ 3.946e+00 -1.815e+01 2.241e+02 1.415e-01] - [ 3.946e+00 -1.815e+01 2.241e+02 1.415e-01] - [ 3.946e+00 -1.815e+01 2.241e+02 1.415e-01] - [ 3.946e+00 -1.815e+01 2.241e+02 1.415e-01] - [ 3.946e+00 -1.815e+01 2.241e+02 1.415e-01]] -</pre> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=03b3bbcd"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -8558,15 +8356,15 @@ print(f'On iteration {iteration} X_hat_i is:', X_hat_i[iteration+1,:]) </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=7d52c8b9"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=7d52c8b9"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [15]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># def plot_fit_iteration(d):</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># def plot_fit_iteration(d):</span> <span class="c1"># """Plot value of each parameter, each iteration."""</span> <span class="c1"># plt.figure(figsize = (15,4))</span> <span class="c1"># plt.subplots_adjust(top = 2)</span> @@ -8635,24 +8433,6 @@ print(f'On iteration {iteration} X_hat_i is:', X_hat_i[iteration+1,:]) </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=b5439535"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -8667,15 +8447,15 @@ print(f'On iteration {iteration} X_hat_i is:', X_hat_i[iteration+1,:]) </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=0701ba54"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=0701ba54"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [16]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">initial_guess_alternative</span> <span class="o">=</span> <span class="n">initial_guess</span> +<div class="highlight hl-python"><pre><span></span><span class="n">initial_guess_alternative</span> <span class="o">=</span> <span class="n">initial_guess</span> <span class="nb">print</span><span class="p">(</span><span class="n">initial_guess_alternative</span><span class="p">)</span> <span class="n">plot_convergence_interactive</span><span class="p">(</span><span class="n">gauss_newton_iteration</span><span class="p">(</span><span class="n">initial_guess_alternative</span><span class="p">,</span> <span class="n">m1</span><span class="p">))</span> <span class="n">plot_convergence_interactive</span><span class="p">(</span><span class="n">gauss_newton_iteration</span><span class="p">(</span><span class="n">initial_guess_alternative</span><span class="p">,</span> <span class="n">m2</span><span class="p">))</span> @@ -8684,43 +8464,6 @@ print(f'On iteration {iteration} X_hat_i is:', X_hat_i[iteration+1,:]) </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>(9, -25, 300, 0.15) -</pre> -</div> -</div> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>interactive(children=(IntSlider(value=0, description='iteration', max=7), Output()), _dom_classes=('widget-int…</pre> -</div> -</div> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>interactive(children=(IntSlider(value=0, description='iteration', max=7), Output()), _dom_classes=('widget-int…</pre> -</div> -</div> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>interactive(children=(IntSlider(value=0, description='iteration', max=10), Output()), _dom_classes=('widget-in…</pre> -</div> -</div> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>interactive(children=(IntSlider(value=0, description='iteration', max=10), Output()), _dom_classes=('widget-in…</pre> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=b9c40713"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -8750,15 +8493,15 @@ print(f'On iteration {iteration} X_hat_i is:', X_hat_i[iteration+1,:]) </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=5af9e513"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=5af9e513"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [17]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># def show_std(Sigma_X_hat, data_type):</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># def show_std(Sigma_X_hat, data_type):</span> <span class="c1"># print ('The standard deviation for',</span> <span class="c1"># data_type + '-offset is',</span> <span class="c1"># YOUR_CODE_HERE, 'UNITS')</span> @@ -8817,64 +8560,6 @@ print(f'On iteration {iteration} X_hat_i is:', X_hat_i[iteration+1,:]) </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>Covariance matrix of estimated parameters (InSAR): -[[ 4.771e+00 -5.522e-01 -7.605e+00 3.183e-02] - [-5.522e-01 1.017e+00 4.726e+00 2.657e-03] - [-7.605e+00 4.726e+00 4.461e+02 6.328e-02] - [ 3.183e-02 2.657e-03 6.328e-02 2.771e-04]] - -The standard deviation for InSAR-offset is 2.18 mm -The standard deviation for InSAR-R is 1.01 mm -The standard deviation for InSAR-a is 21.12 days -The standard deviation for InSAR-the ground water factor 0.017 [-] - -Summary of Model ----------------- - Data type: InSAR - Model type: Non-Linear Least Squares - Number of observations: 61 - Model parameters: - X_hat_0 = 12.971 +/- 2.184 (c.o.v. 0.168) - X_hat_1 = -21.916 +/- 1.009 (c.o.v. -0.046) - X_hat_2 = 179.353 +/- 21.120 (c.o.v. 0.118) - X_hat_3 = 0.171 +/- 0.017 (c.o.v. 0.097) ----------------- - -Covariance matrix of estimated parameters (GNSS): -[[ 2.306e+01 -2.474e+00 -7.557e+01 1.514e-01] - [-2.474e+00 4.674e+00 2.167e+00 6.718e-03] - [-7.557e+01 2.167e+00 6.317e+03 4.459e-01] - [ 1.514e-01 6.718e-03 4.459e-01 1.289e-03]] - -The standard deviation for GNSS-offset is 4.8 mm -The standard deviation for GNSS-R is 2.16 mm -The standard deviation for GNSS-a is 79.48 days -The standard deviation for GNSS-the ground water factor 0.036 [-] - -Summary of Model ----------------- - Data type: GNSS - Model type: Non-Linear Least Squares - Number of observations: 730 - Model parameters: - X_hat_0 = 3.946 +/- 4.802 (c.o.v. 1.217) - X_hat_1 = -18.147 +/- 2.162 (c.o.v. -0.119) - X_hat_2 = 224.095 +/- 79.482 (c.o.v. 0.355) - X_hat_3 = 0.142 +/- 0.036 (c.o.v. 0.254) ----------------- - -</pre> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=21692a1a"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -8908,50 +8593,29 @@ Summary of Model </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=23d60331"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=23d60331"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [18]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">help</span><span class="p">(</span><span class="n">get_CI</span><span class="p">)</span> +<div class="highlight hl-python"><pre><span></span><span class="n">help</span><span class="p">(</span><span class="n">get_CI</span><span class="p">)</span> </pre></div> </div> </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>Help on function get_CI in module functions: - -get_CI(d, alpha) - Compute the confidence intervals. - - Uses dict as input/output: - - inputs defined from existing values in dict - - outputs defined as new values in dict - -</pre> -</div> -</div> -</div> -</div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=pDJfjxgs6veD"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=pDJfjxgs6veD"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [19]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># m1['Y_hat'] = YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># m1['Y_hat'] = YOUR_CODE_HERE</span> <span class="c1"># m1 = get_CI(YOUR_CODE_HERE)</span> <span class="c1"># plot_model(YOUR_CODE_HERE)</span> <span class="c1"># plot_residual(YOUR_CODE_HERE)</span> @@ -8968,47 +8632,15 @@ get_CI(d, alpha) </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>The mean value of the InSAR residuals is 0.0 mm -The standard deviation of the InSAR residuals is 1.852 mm -</pre> -</div> -</div> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -</div> -</div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=ngZMBQM87QMr"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=ngZMBQM87QMr"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [20]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># m1['Y_hat'] = YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># m1['Y_hat'] = YOUR_CODE_HERE</span> <span class="c1"># m1 = get_CI(YOUR_CODE_HERE)</span> <span class="c1"># plot_model(YOUR_CODE_HERE)</span> <span class="c1"># plot_residual(YOUR_CODE_HERE)</span> @@ -9025,38 +8657,6 @@ The standard deviation of the InSAR residuals is 1.852 mm </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>The mean value of the GNSS residuals is -0.0 mm -The standard deviation of the GNSS residuals is 15.315 mm -</pre> -</div> -</div> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=af211a2b"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -9089,15 +8689,15 @@ The standard deviation of the GNSS residuals is 15.315 mm </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=d431d4f5"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=d431d4f5"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [21]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># YOUR_CODE_HERE (probably will be more than one line)</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># YOUR_CODE_HERE (probably will be more than one line)</span> <span class="c1"># print(f'The critical value is {np.round(k, 3)}')</span> <span class="c1"># SOLUTION</span> @@ -9110,19 +8710,6 @@ The standard deviation of the GNSS residuals is 15.315 mm </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>The critical value is 7.879 -</pre> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=89fe3313"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -9139,15 +8726,15 @@ The standard deviation of the GNSS residuals is 15.315 mm </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=92b5b797-093d-46fb-a2c0-2b9ccdae4052"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=92b5b797-093d-46fb-a2c0-2b9ccdae4052"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [22]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># YOUR_CODE_HERE (probably will be more than one line)</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># YOUR_CODE_HERE (probably will be more than one line)</span> <span class="c1"># print(f'The test statistic for InSAR data is {np.round(t_insar, 3)}')</span> <span class="c1"># SOLUTION</span> @@ -9164,19 +8751,6 @@ The standard deviation of the GNSS residuals is 15.315 mm </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>The test statistic for InSAR data is 95.616 -</pre> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=8a76e05b"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -9193,15 +8767,15 @@ The standard deviation of the GNSS residuals is 15.315 mm </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=ae6038da"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=ae6038da"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [23]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># YOUR_CODE_HERE (probably will be more than one line)</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># YOUR_CODE_HERE (probably will be more than one line)</span> <span class="c1"># print(f'The test statistic for GNSS data is {np.round(t_gnss, 3)}')</span> <span class="c1"># SOLUTION</span> @@ -9218,19 +8792,6 @@ The standard deviation of the GNSS residuals is 15.315 mm </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>The test statistic for GNSS data is 7.788 -</pre> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=4ff38f63"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -9247,14 +8808,14 @@ The standard deviation of the GNSS residuals is 15.315 mm article { position: relative } </style> <a href="http://creativecommons.org/licenses/by/4.0/" rel="license"> -<img alt="Creative Commons License" src="https://i.creativecommons.org/l/by/4.0/88x31.png" style="border-width:; width:88px; height:auto; padding-top:10px"> -</img></a> +<img alt="Creative Commons License" src="https://i.creativecommons.org/l/by/4.0/88x31.png" style="border-width:; width:88px; height:auto; padding-top:10px"/> +</a> <a href="https://www.tudelft.nl/en/ceg" rel="TU Delft"> -<img alt="TU Delft" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/tu-logo/TU_P1_full-color.png" style="border-width:0; width:100px; height:auto; padding-bottom:0px"> -</img></a> +<img alt="TU Delft" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/tu-logo/TU_P1_full-color.png" style="border-width:0; width:100px; height:auto; padding-bottom:0px"/> +</a> <a href="http://mude.citg.tudelft.nl/" rel="MUDE"> -<img alt="MUDE" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/mude-logo/MUDE_Logo-small.png" style="border-width:0; width:100px; height:auto; padding-bottom:0px"> -</img></a> +<img alt="MUDE" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/mude-logo/MUDE_Logo-small.png" style="border-width:0; width:100px; height:auto; padding-bottom:0px"/> +</a> </h3> <span style="font-size: 75%"> © Copyright 2024 <a href="http://mude.citg.tudelft.nl/" rel="MUDE">MUDE</a> TU Delft. This work is licensed under a <a href="http://creativecommons.org/licenses/by/4.0/" rel="license">CC BY 4.0 License</a>. @@ -9266,7 +8827,4 @@ The standard deviation of the GNSS residuals is 15.315 mm </div> </main> </body> -<script type="application/vnd.jupyter.widget-state+json"> -{"state": {}, "version_major": 2, "version_minor": 0} -</script> </html> diff --git a/synced_files/GA_1_4/Analysis_solution.md b/synced_files/GA_1_4/Analysis_solution.md index 508404f9..a50ea68d 100644 --- a/synced_files/GA_1_4/Analysis_solution.md +++ b/synced_files/GA_1_4/Analysis_solution.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # GA 1.4: Modelling Road Deformation using Non-Linear Least-Squares <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> @@ -167,7 +157,6 @@ print(m2['Sigma_Y']) ``` -<!-- #region id="80a9b60f" --> ## Part 1: Set-up Non-Linear Model In the model we fitted using BLUE, we only considered a linear velocity and a dependency on the groundwater level. However, when a heavy construction is built on 'soft' soil layers, compaction of the upper layers will be observed. This compaction is relatively large in the beginning but decreases when time passes. We can approach the behavior with a simplified model, assuming an exponential decay. @@ -197,7 +186,7 @@ y_comp = compute_y(x, <auxiliary_arguments>) ``` Where `<auxiliary_arguments>` will be different in type and/or number on a case-by-case basis. Your code will generally be more compact and adaptable to other cases if the parameters are specified in a list, array or tuple. -<!-- #endregion --> + <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> @@ -385,14 +374,13 @@ print(f'The redundancy (InSAR) is {m1["y"].shape[0] - n_2}') print(f'The redundancy (GNSS) is {m2["y"].shape[0] - n_2}') ``` -<!-- #region id="b4633d84" --> ## Part 2: Gauss-Newton Iteration This is an essential step of the algorithm for creating a non-linear least square model. We will use a function to easily repeat the analysis for InSAR and GNSS models. The `while`-loop and its contents are very similar to WS 1.4 earlier this week, with two notable exceptions: 1. the loop is "wrapped" in a function, and 2. the model dictionaries are used, which makes it easier to use existing functions (e.g., `BLUE()`) to find a solution -<!-- #endregion --> + <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> @@ -651,9 +639,8 @@ plot_convergence_interactive(gauss_newton_iteration(initial_guess_alternative, m plot_convergence_interactive(gauss_newton_iteration(initial_guess_alternative, m2)) ``` -<!-- #region id="b9c40713" --> ## Part 3: Assessing Results -<!-- #endregion --> + <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> @@ -779,7 +766,6 @@ plot_residual(m2) plot_residual_histogram(m2); ``` -<!-- #region id="af211a2b" --> ## Part 4: Hypothesis Test In GA 1.3 and GA 1.4 we used two different models: @@ -787,7 +773,7 @@ In GA 1.3 and GA 1.4 we used two different models: * GA 1.4: A model with linear and power components Now we are going to test which model fits the data better. We will do this with the Generalized Likelihood Ratio (GLR) test for both the GNSS and InSAR observations. -<!-- #endregion --> + <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> diff --git a/synced_files/GA_1_5/Analysis.html b/synced_files/GA_1_5/Analysis.html index ed75d4d1..5ce2cce9 100644 --- a/synced_files/GA_1_5/Analysis.html +++ b/synced_files/GA_1_5/Analysis.html @@ -3,34 +3,7 @@ <html lang="en"> <head><meta charset="utf-8"/> <meta content="width=device-width, initial-scale=1.0" name="viewport"/> -<title>Notebook</title><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script><script> -(function() { - function addWidgetsRenderer() { - var mimeElement = document.querySelector('script[type="application/vnd.jupyter.widget-view+json"]'); - var scriptElement = document.createElement('script'); - - var widgetRendererSrc = 'https://unpkg.com/@jupyter-widgets/html-manager@*/dist/embed-amd.js'; - - var widgetState; - - // Fallback for older version: - try { - widgetState = mimeElement && JSON.parse(mimeElement.innerHTML); - - if (widgetState && (widgetState.version_major < 2 || !widgetState.version_major)) { - - var widgetRendererSrc = 'https://unpkg.com/@jupyter-js-widgets@*/dist/embed.js'; - - } - } catch(e) {} - - scriptElement.src = widgetRendererSrc; - document.body.appendChild(scriptElement); - } - - document.addEventListener('DOMContentLoaded', addWidgetsRenderer); -}()); -</script> +<title>Notebook</title><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script> <style type="text/css"> pre { line-height: 125%; } td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } @@ -7596,10 +7569,10 @@ a.anchor-link { <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [1]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> +<div class="highlight hl-python"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> <span class="kn">import</span> <span class="nn">matplotlib.pylab</span> <span class="k">as</span> <span class="nn">plt</span> <span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span> </pre></div> @@ -7634,15 +7607,15 @@ a.anchor-link { </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=87dd870e"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=87dd870e"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [2]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">data</span><span class="o">=</span><span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="n">filepath_or_buffer</span><span class="o">=</span><span class="s1">'justIce.csv'</span><span class="p">,</span><span class="n">index_col</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span> +<div class="highlight hl-python"><pre><span></span><span class="n">data</span><span class="o">=</span><span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="n">filepath_or_buffer</span><span class="o">=</span><span class="s1">'justIce.csv'</span><span class="p">,</span><span class="n">index_col</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span> <span class="n">data</span><span class="o">.</span><span class="n">index</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">to_datetime</span><span class="p">(</span><span class="n">data</span><span class="o">.</span><span class="n">index</span><span class="p">,</span> <span class="nb">format</span><span class="o">=</span><span class="s2">"%Y-%m-</span><span class="si">%d</span><span class="s2">"</span><span class="p">)</span> <span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span><span class="mi">4</span><span class="p">))</span> @@ -7655,18 +7628,6 @@ a.anchor-link { </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=9f2ccde8"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -7697,15 +7658,15 @@ a.anchor-link { </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=b07eb42c"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=b07eb42c"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [3]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">data_2021</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="n">loc</span><span class="p">[</span><span class="s1">'2021'</span><span class="p">]</span> +<div class="highlight hl-python"><pre><span></span><span class="n">data_2021</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="n">loc</span><span class="p">[</span><span class="s1">'2021'</span><span class="p">]</span> <span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span><span class="mi">4</span><span class="p">))</span> <span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">data_2021</span><span class="o">.</span><span class="n">index</span><span class="p">,</span><span class="n">data_2021</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="s1">'green'</span><span class="p">,</span> <span class="n">marker</span><span class="o">=</span><span class="s1">'x'</span><span class="p">)</span> @@ -7717,18 +7678,6 @@ a.anchor-link { </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=f2ebf27a"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -7772,10 +7721,10 @@ a.anchor-link { <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [47]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">h_ice</span> <span class="o">=</span> <span class="p">(</span><span class="n">data_2021</span><span class="o">.</span><span class="n">to_numpy</span><span class="p">())</span><span class="o">.</span><span class="n">ravel</span><span class="p">()</span> +<div class="highlight hl-python"><pre><span></span><span class="n">h_ice</span> <span class="o">=</span> <span class="p">(</span><span class="n">data_2021</span><span class="o">.</span><span class="n">to_numpy</span><span class="p">())</span><span class="o">.</span><span class="n">ravel</span><span class="p">()</span> <span class="n">t_days</span> <span class="o">=</span> <span class="p">((</span><span class="n">data_2021</span><span class="o">.</span><span class="n">index</span> <span class="o">-</span> <span class="n">data_2021</span><span class="o">.</span><span class="n">index</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span><span class="o">.</span><span class="n">days</span><span class="p">)</span><span class="o">.</span><span class="n">to_numpy</span><span class="p">()</span> <span class="n">dh_dt_FD</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> @@ -7819,7 +7768,7 @@ a.anchor-link { <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">fig</span><span class="p">,</span> <span class="n">ax1</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span><span class="mi">4</span><span class="p">))</span> +<div class="highlight hl-python"><pre><span></span><span class="n">fig</span><span class="p">,</span> <span class="n">ax1</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span><span class="mi">4</span><span class="p">))</span> <span class="n">ax1</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">YOUR_CODE_HERE</span><span class="p">,</span> <span class="n">dh_dt_FD</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="s1">'blue'</span><span class="p">,</span> <span class="n">marker</span><span class="o">=</span><span class="s1">'o'</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">'dh_dt_FD Forward Difference'</span><span class="p">)</span>\ @@ -7869,7 +7818,7 @@ a.anchor-link { <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">dh_dt_BD</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="n">dh_dt_BD</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> <span class="n">fig</span><span class="p">,</span> <span class="n">ax1</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span><span class="mi">4</span><span class="p">))</span> @@ -7924,7 +7873,7 @@ a.anchor-link { <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">dh_dt_CD</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="n">dh_dt_CD</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> <span class="n">fig</span><span class="p">,</span> <span class="n">ax1</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span><span class="mi">4</span><span class="p">))</span> @@ -8073,7 +8022,7 @@ $$</p> <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="o">-</span><span class="mi">3</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">pi</span><span class="p">,</span> <span class="mi">5</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">pi</span><span class="p">,</span> <span class="mi">400</span><span class="p">)</span> +<div class="highlight hl-python"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="o">-</span><span class="mi">3</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">pi</span><span class="p">,</span> <span class="mi">5</span><span class="o">*</span><span class="n">np</span><span class="o">.</span><span class="n">pi</span><span class="p">,</span> <span class="mi">400</span><span class="p">)</span> <span class="k">def</span> <span class="nf">f</span><span class="p">(</span><span class="n">x</span><span class="p">):</span> <span class="k">return</span> <span class="n">YOUR_CODE_HERE</span> @@ -8110,10 +8059,10 @@ $$</p> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [36]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">f_1</span><span class="p">(</span><span class="n">x</span><span class="p">):</span> +<div class="highlight hl-python"><pre><span></span><span class="k">def</span> <span class="nf">f_1</span><span class="p">(</span><span class="n">x</span><span class="p">):</span> <span class="k">return</span> <span class="n">YOUR_CODE_HERE</span> <span class="k">def</span> <span class="nf">f_2</span><span class="p">(</span><span class="n">x</span><span class="p">):</span> @@ -8151,10 +8100,10 @@ $$</p> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [39]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">x0</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="n">x0</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> <span class="n">taylor_1</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> <span class="n">taylor_2</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> <span class="n">taylor_3</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> @@ -8188,7 +8137,7 @@ $$</p> <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">6</span><span class="p">))</span> +<div class="highlight hl-python"><pre><span></span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">6</span><span class="p">))</span> <span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">YOUR_CODE_HERE</span><span class="p">,</span> <span class="n">YOUR_CODE_HERE</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">'$f(x) = 2cos(x) + sin(x)$'</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="s1">'b'</span><span class="p">,</span> <span class="n">linewidth</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span> @@ -8256,7 +8205,7 @@ where $T_n$ refers to the TSE computed using $n$ number of terms (or derivatives <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">error_1</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="n">error_1</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> <span class="n">error_2</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> <span class="n">error_3</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> <span class="n">error_4</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> @@ -8366,10 +8315,10 @@ $$</p> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [44]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">f2D</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">):</span> +<div class="highlight hl-python"><pre><span></span><span class="k">def</span> <span class="nf">f2D</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">):</span> <span class="k">return</span> <span class="n">YOUR_CODE_HERE</span> <span class="n">x0</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> @@ -8416,7 +8365,7 @@ $$</p> <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># Create a meshgrid of x and y values</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># Create a meshgrid of x and y values</span> <span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="o">-</span><span class="mi">2</span><span class="o">+</span><span class="n">x0</span><span class="p">,</span> <span class="mi">2</span><span class="o">+</span><span class="n">x0</span><span class="p">,</span> <span class="mi">100</span><span class="p">)</span> <span class="n">y</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="o">-</span><span class="mi">2</span><span class="o">+</span><span class="n">y0</span><span class="p">,</span> <span class="mi">2</span><span class="o">+</span><span class="n">y0</span><span class="p">,</span> <span class="mi">100</span><span class="p">)</span> <span class="n">X</span><span class="p">,</span> <span class="n">Y</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">meshgrid</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span> @@ -8481,7 +8430,7 @@ $$</p> <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">error_2d</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="n">error_2d</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> <span class="n">fig</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">9</span><span class="p">,</span><span class="mi">9</span><span class="p">))</span> <span class="n">ax</span> <span class="o">=</span> <span class="n">fig</span><span class="o">.</span><span class="n">add_subplot</span><span class="p">(</span><span class="mi">111</span><span class="p">,</span> <span class="n">projection</span><span class="o">=</span><span class="s1">'3d'</span><span class="p">)</span> @@ -8512,11 +8461,11 @@ $$</p> article { position: relative } </style> <a href="http://creativecommons.org/licenses/by/4.0/" rel="license"> -<img alt="Creative Commons License" src="https://i.creativecommons.org/l/by/4.0/88x31.png" style="border-width:; width:88px; height:auto; padding-top:10px"> -</img></a> +<img alt="Creative Commons License" src="https://i.creativecommons.org/l/by/4.0/88x31.png" style="border-width:; width:88px; height:auto; padding-top:10px"/> +</a> <a href="https://www.tudelft.nl/en/ceg" rel="TU Delft"> -<img alt="TU Delft" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/tu-logo/TU_P1_full-color.png" style="border-width:0; width:100px; height:auto; padding-bottom:0px"> -</img></a> +<img alt="TU Delft" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/tu-logo/TU_P1_full-color.png" style="border-width:0; width:100px; height:auto; padding-bottom:0px"/> +</a> <a href="http://mude.citg.tudelft.nl/" rel="MUDE"> <img alt="MUDE" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/mude-logo/MUDE_Logo-small.png" style="border-width:0; width:100px; height:auto; padding-bottom:0px"/> </a> @@ -8531,7 +8480,4 @@ $$</p> </div> </main> </body> -<script type="application/vnd.jupyter.widget-state+json"> -{"state": {}, "version_major": 2, "version_minor": 0} -</script> </html> diff --git a/synced_files/GA_1_5/Analysis.md b/synced_files/GA_1_5/Analysis.md index 2ce52d1f..e980d65b 100644 --- a/synced_files/GA_1_5/Analysis.md +++ b/synced_files/GA_1_5/Analysis.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # Project 3: Numerical Derivatives and Taylor Series Approximations <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 90px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/GA_1_5/Analysis_solution.html b/synced_files/GA_1_5/Analysis_solution.html index 2551b04e..a608511e 100644 --- a/synced_files/GA_1_5/Analysis_solution.html +++ b/synced_files/GA_1_5/Analysis_solution.html @@ -3,34 +3,7 @@ <html lang="en"> <head><meta charset="utf-8"/> <meta content="width=device-width, initial-scale=1.0" name="viewport"/> -<title>Notebook</title><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script><script> -(function() { - function addWidgetsRenderer() { - var mimeElement = document.querySelector('script[type="application/vnd.jupyter.widget-view+json"]'); - var scriptElement = document.createElement('script'); - - var widgetRendererSrc = 'https://unpkg.com/@jupyter-widgets/html-manager@*/dist/embed-amd.js'; - - var widgetState; - - // Fallback for older version: - try { - widgetState = mimeElement && JSON.parse(mimeElement.innerHTML); - - if (widgetState && (widgetState.version_major < 2 || !widgetState.version_major)) { - - var widgetRendererSrc = 'https://unpkg.com/@jupyter-js-widgets@*/dist/embed.js'; - - } - } catch(e) {} - - scriptElement.src = widgetRendererSrc; - document.body.appendChild(scriptElement); - } - - document.addEventListener('DOMContentLoaded', addWidgetsRenderer); -}()); -</script> +<title>Notebook</title><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script> <style type="text/css"> pre { line-height: 125%; } td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } @@ -7596,10 +7569,10 @@ a.anchor-link { <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [1]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> +<div class="highlight hl-python"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> <span class="kn">import</span> <span class="nn">matplotlib.pylab</span> <span class="k">as</span> <span class="nn">plt</span> <span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span> </pre></div> @@ -7634,15 +7607,15 @@ a.anchor-link { </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=87dd870e"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=87dd870e"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [2]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">data</span><span class="o">=</span><span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="n">filepath_or_buffer</span><span class="o">=</span><span class="s1">'justIce.csv'</span><span class="p">,</span><span class="n">index_col</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span> +<div class="highlight hl-python"><pre><span></span><span class="n">data</span><span class="o">=</span><span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="n">filepath_or_buffer</span><span class="o">=</span><span class="s1">'justIce.csv'</span><span class="p">,</span><span class="n">index_col</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span> <span class="n">data</span><span class="o">.</span><span class="n">index</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">to_datetime</span><span class="p">(</span><span class="n">data</span><span class="o">.</span><span class="n">index</span><span class="p">,</span> <span class="nb">format</span><span class="o">=</span><span class="s2">"%Y-%m-</span><span class="si">%d</span><span class="s2">"</span><span class="p">)</span> <span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span><span class="mi">4</span><span class="p">))</span> @@ -7655,18 +7628,6 @@ a.anchor-link { </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=9f2ccde8"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -7697,15 +7658,15 @@ a.anchor-link { </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=b07eb42c"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=b07eb42c"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [3]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">data_2021</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="n">loc</span><span class="p">[</span><span class="s1">'2021'</span><span class="p">]</span> +<div class="highlight hl-python"><pre><span></span><span class="n">data_2021</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="n">loc</span><span class="p">[</span><span class="s1">'2021'</span><span class="p">]</span> <span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span><span class="mi">4</span><span class="p">))</span> <span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">data_2021</span><span class="o">.</span><span class="n">index</span><span class="p">,</span><span class="n">data_2021</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="s1">'green'</span><span class="p">,</span> <span class="n">marker</span><span class="o">=</span><span class="s1">'x'</span><span class="p">)</span> @@ -7717,18 +7678,6 @@ a.anchor-link { </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=f2ebf27a"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -7772,10 +7721,10 @@ a.anchor-link { <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [4]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">h_ice</span> <span class="o">=</span> <span class="p">(</span><span class="n">data_2021</span><span class="o">.</span><span class="n">to_numpy</span><span class="p">())</span><span class="o">.</span><span class="n">ravel</span><span class="p">()</span> +<div class="highlight hl-python"><pre><span></span><span class="n">h_ice</span> <span class="o">=</span> <span class="p">(</span><span class="n">data_2021</span><span class="o">.</span><span class="n">to_numpy</span><span class="p">())</span><span class="o">.</span><span class="n">ravel</span><span class="p">()</span> <span class="n">t_days</span> <span class="o">=</span> <span class="p">((</span><span class="n">data_2021</span><span class="o">.</span><span class="n">index</span> <span class="o">-</span> <span class="n">data_2021</span><span class="o">.</span><span class="n">index</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span><span class="o">.</span><span class="n">days</span><span class="p">)</span><span class="o">.</span><span class="n">to_numpy</span><span class="p">()</span> <span class="c1"># dh_dt_FD = YOUR_CODE_HERE</span> @@ -7814,15 +7763,15 @@ a.anchor-link { </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=25592875"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=25592875"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [5]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">fig</span><span class="p">,</span> <span class="n">ax1</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span><span class="mi">4</span><span class="p">))</span> +<div class="highlight hl-python"><pre><span></span><span class="n">fig</span><span class="p">,</span> <span class="n">ax1</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span><span class="mi">4</span><span class="p">))</span> <span class="c1"># ax1.scatter(YOUR_CODE_HERE, dh_dt_FE,</span> <span class="c1"># color='blue', marker='o', label='dh_dt_FE Forward Euler')</span> @@ -7853,18 +7802,6 @@ a.anchor-link { </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=30b1625a"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -7880,15 +7817,15 @@ a.anchor-link { </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=108dea5f"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=108dea5f"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [6]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># dh_dt_BE = YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># dh_dt_BE = YOUR_CODE_HERE</span> <span class="c1"># SOLUTION:</span> <span class="n">dh_dt_BD</span> <span class="o">=</span> <span class="p">(</span><span class="n">h_ice</span><span class="p">[</span><span class="mi">1</span><span class="p">:]</span><span class="o">-</span><span class="n">h_ice</span><span class="p">[:</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span><span class="o">/</span><span class="p">(</span><span class="n">t_days</span><span class="p">[</span><span class="mi">1</span><span class="p">:]</span><span class="o">-</span><span class="n">t_days</span><span class="p">[:</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span> @@ -7928,18 +7865,6 @@ a.anchor-link { </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=680f937d"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -7957,15 +7882,15 @@ a.anchor-link { </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=8c2a379e"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=8c2a379e"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [7]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># dh_dt_CD = YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># dh_dt_CD = YOUR_CODE_HERE</span> <span class="c1"># SOLUTION:</span> <span class="n">dh_dt_CD</span> <span class="o">=</span> <span class="p">(</span><span class="n">h_ice</span><span class="p">[</span><span class="mi">1</span><span class="p">:]</span><span class="o">-</span><span class="n">h_ice</span><span class="p">[:</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span><span class="o">/</span><span class="p">(</span><span class="n">t_days</span><span class="p">[</span><span class="mi">1</span><span class="p">:]</span><span class="o">-</span><span class="n">t_days</span><span class="p">[:</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span> @@ -8006,18 +7931,6 @@ a.anchor-link { </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=2fa56b7e"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -8194,15 +8107,15 @@ $$</p> </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=72be2ce6-601c-4976-94bf-cfad7af4607d"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=72be2ce6-601c-4976-94bf-cfad7af4607d"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [8]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># x = np.linspace(-3*np.pi, 5*np.pi, 400)</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># x = np.linspace(-3*np.pi, 5*np.pi, 400)</span> <span class="c1"># def f(x):</span> <span class="c1"># return YOUR_CODE_HERE</span> @@ -8227,18 +8140,6 @@ $$</p> </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=f8641d16-274a-43cf-ad20-d31ad9b41ab2"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -8262,10 +8163,10 @@ $$</p> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [9]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># def f_1(x):</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># def f_1(x):</span> <span class="c1"># return YOUR_CODE_HERE</span> <span class="c1"># def f_2(x):</span> @@ -8316,10 +8217,10 @@ $$</p> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [10]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># x0 = YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># x0 = YOUR_CODE_HERE</span> <span class="c1"># taylor_1 = YOUR_CODE_HERE</span> <span class="c1"># taylor_2 = YOUR_CODE_HERE</span> <span class="c1"># taylor_3 = YOUR_CODE_HERE</span> @@ -8351,15 +8252,15 @@ $$</p> </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=5b571bb0"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=5b571bb0"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [11]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">6</span><span class="p">))</span> +<div class="highlight hl-python"><pre><span></span><span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">6</span><span class="p">))</span> <span class="c1"># plt.plot(YOUR_CODE_HERE, YOUR_CODE_HERE,</span> <span class="c1"># label='$f(x) = 2cos(x) + sin(x)$', color='b', linewidth=2)</span> @@ -8402,18 +8303,6 @@ $$</p> </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=499164b8"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -8443,15 +8332,15 @@ where $T_n$ refers to the TSE computed using $n$ number of terms (or derivatives </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=68f0967f-0dd2-4971-88e8-e87d52cdf332"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=68f0967f-0dd2-4971-88e8-e87d52cdf332"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [12]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># error_1 = YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># error_1 = YOUR_CODE_HERE</span> <span class="c1"># error_2 = YOUR_CODE_HERE</span> <span class="c1"># error_3 = YOUR_CODE_HERE</span> <span class="c1"># error_4 = YOUR_CODE_HERE</span> @@ -8486,18 +8375,6 @@ where $T_n$ refers to the TSE computed using $n$ number of terms (or derivatives </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=374238b3"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -8621,10 +8498,10 @@ $$</p> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [13]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># def f2D(x, y):</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># def f2D(x, y):</span> <span class="c1"># return YOUR_CODE_HERE</span> <span class="c1"># x0 = YOUR_CODE_HERE</span> @@ -8683,15 +8560,15 @@ $$</p> </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=492ba05d"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=492ba05d"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [14]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># Create a meshgrid of x and y values</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># Create a meshgrid of x and y values</span> <span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="o">-</span><span class="mi">2</span><span class="o">+</span><span class="n">x0</span><span class="p">,</span> <span class="mi">2</span><span class="o">+</span><span class="n">x0</span><span class="p">,</span> <span class="mi">100</span><span class="p">)</span> <span class="n">y</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="o">-</span><span class="mi">2</span><span class="o">+</span><span class="n">y0</span><span class="p">,</span> <span class="mi">2</span><span class="o">+</span><span class="n">y0</span><span class="p">,</span> <span class="mi">100</span><span class="p">)</span> <span class="n">X</span><span class="p">,</span> <span class="n">Y</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">meshgrid</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span> @@ -8722,26 +8599,6 @@ $$</p> </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="application/vnd.jupyter.stderr" tabindex="0"> -<pre>c:\Users\beren\anaconda3\envs\TAMude\Lib\site-packages\IPython\core\pylabtools.py:170: UserWarning: Creating legend with loc="best" can be slow with large amounts of data. - fig.canvas.print_figure(bytes_io, **kw) -</pre> -</div> -</div> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=047fe3a1"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -8768,15 +8625,15 @@ $$</p> </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=9cb06eac"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=9cb06eac"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [15]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># error_2d = YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># error_2d = YOUR_CODE_HERE</span> <span class="c1"># SOLUTION:</span> <span class="n">error_2d</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">abs</span><span class="p">(</span><span class="n">Z_orig</span> <span class="o">-</span> <span class="n">Z_approx</span><span class="p">)</span> @@ -8794,18 +8651,6 @@ $$</p> </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=9d490e14"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -8822,14 +8667,14 @@ $$</p> article { position: relative } </style> <a href="http://creativecommons.org/licenses/by/4.0/" rel="license"> -<img alt="Creative Commons License" src="https://i.creativecommons.org/l/by/4.0/88x31.png" style="border-width:; width:88px; height:auto; padding-top:10px"> -</img></a> +<img alt="Creative Commons License" src="https://i.creativecommons.org/l/by/4.0/88x31.png" style="border-width:; width:88px; height:auto; padding-top:10px"/> +</a> <a href="https://www.tudelft.nl/en/ceg" rel="TU Delft"> -<img alt="TU Delft" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/tu-logo/TU_P1_full-color.png" style="border-width:0; width:100px; height:auto; padding-bottom:0px"> -</img></a> +<img alt="TU Delft" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/tu-logo/TU_P1_full-color.png" style="border-width:0; width:100px; height:auto; padding-bottom:0px"/> +</a> <a href="http://mude.citg.tudelft.nl/" rel="MUDE"> -<img alt="MUDE" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/mude-logo/MUDE_Logo-small.png" style="border-width:0; width:100px; height:auto; padding-bottom:0px"> -</img></a> +<img alt="MUDE" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/mude-logo/MUDE_Logo-small.png" style="border-width:0; width:100px; height:auto; padding-bottom:0px"/> +</a> </h3> <span style="font-size: 75%"> © Copyright 2024 <a href="http://mude.citg.tudelft.nl/" rel="MUDE">MUDE</a> TU Delft. This work is licensed under a <a href="http://creativecommons.org/licenses/by/4.0/" rel="license">CC BY 4.0 License</a>. @@ -8841,7 +8686,4 @@ $$</p> </div> </main> </body> -<script type="application/vnd.jupyter.widget-state+json"> -{"state": {}, "version_major": 2, "version_minor": 0} -</script> </html> diff --git a/synced_files/GA_1_5/Analysis_solution.md b/synced_files/GA_1_5/Analysis_solution.md index 27089f5c..c8adc513 100644 --- a/synced_files/GA_1_5/Analysis_solution.md +++ b/synced_files/GA_1_5/Analysis_solution.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # Project 3: Numerical Derivatives and Taylor Series Approximations <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 90px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/GA_1_5/central_diff_illustration.html b/synced_files/GA_1_5/central_diff_illustration.html index 2387d237..ecce666b 100644 --- a/synced_files/GA_1_5/central_diff_illustration.html +++ b/synced_files/GA_1_5/central_diff_illustration.html @@ -7546,10 +7546,10 @@ a.anchor-link { <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [1]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> +<div class="highlight hl-python"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> <span class="kn">import</span> <span class="nn">matplotlib.pylab</span> <span class="k">as</span> <span class="nn">plt</span> <span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span> @@ -7576,15 +7576,15 @@ a.anchor-link { </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [2]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">t_days</span> +<div class="highlight hl-python"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">t_days</span> <span class="n">y</span> <span class="o">=</span> <span class="n">h_ice</span> <span class="c1"># fitting polynomila</span> @@ -7613,27 +7613,15 @@ a.anchor-link { </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -</div> -</div> </div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [3]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># SOLUTION:</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># SOLUTION:</span> <span class="n">dh_dt_FD</span> <span class="o">=</span> <span class="p">(</span><span class="n">h_ice</span><span class="p">[</span><span class="mi">1</span><span class="p">:]</span><span class="o">-</span><span class="n">h_ice</span><span class="p">[:</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span><span class="o">/</span><span class="p">(</span><span class="n">t_days</span><span class="p">[</span><span class="mi">1</span><span class="p">:]</span><span class="o">-</span><span class="n">t_days</span><span class="p">[:</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span> <span class="n">dh_dt_BD</span> <span class="o">=</span> <span class="p">(</span><span class="n">h_ice</span><span class="p">[</span><span class="mi">1</span><span class="p">:]</span><span class="o">-</span><span class="n">h_ice</span><span class="p">[:</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span><span class="o">/</span><span class="p">(</span><span class="n">t_days</span><span class="p">[</span><span class="mi">1</span><span class="p">:]</span><span class="o">-</span><span class="n">t_days</span><span class="p">[:</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span> <span class="n">dh_dt_CD</span> <span class="o">=</span> <span class="p">(</span><span class="n">h_ice</span><span class="p">[</span><span class="mi">1</span><span class="p">:]</span><span class="o">-</span><span class="n">h_ice</span><span class="p">[:</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span><span class="o">/</span><span class="p">(</span><span class="n">t_days</span><span class="p">[</span><span class="mi">1</span><span class="p">:]</span><span class="o">-</span><span class="n">t_days</span><span class="p">[:</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span> @@ -7642,15 +7630,15 @@ a.anchor-link { </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [9]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">fig</span><span class="p">,</span> <span class="n">ax1</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">4</span><span class="p">))</span> +<div class="highlight hl-python"><pre><span></span><span class="n">fig</span><span class="p">,</span> <span class="n">ax1</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">4</span><span class="p">))</span> <span class="c1">#left axis</span> <span class="n">ax1</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x_fit</span><span class="p">,</span> <span class="n">y_derivative</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">'Derivative'</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="s1">'magenta'</span><span class="p">)</span> <span class="n">ax1</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s1">'growth rate [m/day]'</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="s1">'magenta'</span><span class="p">)</span> @@ -7681,18 +7669,6 @@ a.anchor-link { </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -7715,15 +7691,15 @@ a.anchor-link { </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [10]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">num_samples</span> <span class="o">=</span> <span class="mi">6</span> <span class="c1"># </span> +<div class="highlight hl-python"><pre><span></span><span class="n">num_samples</span> <span class="o">=</span> <span class="mi">6</span> <span class="c1"># </span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">seed</span><span class="p">(</span><span class="mi">13</span><span class="p">)</span> <span class="c1">#setting seed</span> @@ -7748,18 +7724,6 @@ a.anchor-link { </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -7776,10 +7740,10 @@ a.anchor-link { <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [6]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># SOLUTION:</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># SOLUTION:</span> <span class="n">dh_dt_FD_sampled_from_fit</span> <span class="o">=</span> <span class="p">(</span><span class="n">sampled_h_ice</span><span class="p">[</span><span class="mi">1</span><span class="p">:]</span><span class="o">-</span><span class="n">sampled_h_ice</span><span class="p">[:</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span><span class="o">/</span><span class="p">(</span><span class="n">sampled_t_days</span><span class="p">[</span><span class="mi">1</span><span class="p">:]</span><span class="o">-</span><span class="n">sampled_t_days</span><span class="p">[:</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span> <span class="n">dh_dt_BD_sampled_from_fit</span> <span class="o">=</span> <span class="p">(</span><span class="n">sampled_h_ice</span><span class="p">[</span><span class="mi">1</span><span class="p">:]</span><span class="o">-</span><span class="n">sampled_h_ice</span><span class="p">[:</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span><span class="o">/</span><span class="p">(</span><span class="n">sampled_t_days</span><span class="p">[</span><span class="mi">1</span><span class="p">:]</span><span class="o">-</span><span class="n">sampled_t_days</span><span class="p">[:</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span> <span class="n">dh_dt_CD_sampled_from_fit</span> <span class="o">=</span> <span class="p">(</span><span class="n">sampled_h_ice</span><span class="p">[</span><span class="mi">1</span><span class="p">:]</span><span class="o">-</span><span class="n">sampled_h_ice</span><span class="p">[:</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span><span class="o">/</span><span class="p">(</span><span class="n">sampled_t_days</span><span class="p">[</span><span class="mi">1</span><span class="p">:]</span><span class="o">-</span><span class="n">sampled_t_days</span><span class="p">[:</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span> @@ -7788,15 +7752,15 @@ a.anchor-link { </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [11]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">fig</span><span class="p">,</span> <span class="n">ax1</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">4</span><span class="p">))</span> +<div class="highlight hl-python"><pre><span></span><span class="n">fig</span><span class="p">,</span> <span class="n">ax1</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">4</span><span class="p">))</span> <span class="c1">#left axis</span> <span class="n">ax1</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x_fit</span><span class="p">,</span> <span class="n">y_derivative</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">'Derivative'</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="s1">'magenta'</span><span class="p">)</span> <span class="n">ax1</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s1">'growth rate [m/days]'</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="s1">'magenta'</span><span class="p">)</span> @@ -7831,18 +7795,6 @@ a.anchor-link { </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -7870,10 +7822,10 @@ a.anchor-link { <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [8]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># first point</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># first point</span> <span class="n">estimated_h_ice_FD</span> <span class="o">=</span> <span class="p">[</span><span class="n">h_ice</span><span class="p">[</span><span class="mi">0</span><span class="p">]]</span> <span class="n">estimated_h_ice_BD</span> <span class="o">=</span> <span class="p">[</span><span class="n">h_ice</span><span class="p">[</span><span class="mi">0</span><span class="p">]]</span> <span class="n">estimated_h_ice_CD</span> <span class="o">=</span> <span class="p">[</span><span class="n">h_ice</span><span class="p">[</span><span class="mi">1</span><span class="p">]]</span> diff --git a/synced_files/GA_1_5/central_diff_illustration.md b/synced_files/GA_1_5/central_diff_illustration.md index 84590a9d..06d310e4 100644 --- a/synced_files/GA_1_5/central_diff_illustration.md +++ b/synced_files/GA_1_5/central_diff_illustration.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # GA 1.5: Illustration of Central Differences Issue <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 90px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/GA_1_6/Analysis.html b/synced_files/GA_1_6/Analysis.html index 234c975c..7c46cb47 100644 --- a/synced_files/GA_1_6/Analysis.html +++ b/synced_files/GA_1_6/Analysis.html @@ -3,34 +3,7 @@ <html lang="en"> <head><meta charset="utf-8"/> <meta content="width=device-width, initial-scale=1.0" name="viewport"/> -<title>Notebook</title><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script><script> -(function() { - function addWidgetsRenderer() { - var mimeElement = document.querySelector('script[type="application/vnd.jupyter.widget-view+json"]'); - var scriptElement = document.createElement('script'); - - var widgetRendererSrc = 'https://unpkg.com/@jupyter-widgets/html-manager@*/dist/embed-amd.js'; - - var widgetState; - - // Fallback for older version: - try { - widgetState = mimeElement && JSON.parse(mimeElement.innerHTML); - - if (widgetState && (widgetState.version_major < 2 || !widgetState.version_major)) { - - var widgetRendererSrc = 'https://unpkg.com/@jupyter-js-widgets@*/dist/embed.js'; - - } - } catch(e) {} - - scriptElement.src = widgetRendererSrc; - document.body.appendChild(scriptElement); - } - - document.addEventListener('DOMContentLoaded', addWidgetsRenderer); -}()); -</script> +<title>Notebook</title><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script> <style type="text/css"> pre { line-height: 125%; } td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } @@ -7573,10 +7546,10 @@ a.anchor-link { <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [1]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> +<div class="highlight hl-python"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> <span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span> <span class="kn">import</span> <span class="nn">ipywidgets</span> <span class="k">as</span> <span class="nn">widgets</span> <span class="kn">from</span> <span class="nn">ipywidgets</span> <span class="kn">import</span> <span class="n">interact</span> @@ -7675,7 +7648,7 @@ $$</p> <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">g</span><span class="p">(</span><span class="n">x</span><span class="p">):</span> +<div class="highlight hl-python"><pre><span></span><span class="k">def</span> <span class="nf">g</span><span class="p">(</span><span class="n">x</span><span class="p">):</span> <span class="k">return</span> <span class="n">YOUR_CODE_HERE</span> <span class="k">def</span> <span class="nf">g_der</span><span class="p">(</span><span class="n">x</span><span class="p">):</span> @@ -7867,7 +7840,7 @@ where $g(z_j) = 0$ and $z_j$ is a guess and $z_{j+1}$ is the improved guess.</p> <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">g</span><span class="p">(</span><span class="n">y_iplus1</span><span class="p">,</span> <span class="n">y_i</span><span class="p">,</span> <span class="n">t_iplus1</span><span class="p">):</span> +<div class="highlight hl-python"><pre><span></span><span class="k">def</span> <span class="nf">g</span><span class="p">(</span><span class="n">y_iplus1</span><span class="p">,</span> <span class="n">y_i</span><span class="p">,</span> <span class="n">t_iplus1</span><span class="p">):</span> <span class="k">return</span> <span class="n">YOUR_CODE_HERE</span> <span class="k">def</span> <span class="nf">g_der</span><span class="p">(</span><span class="n">y_iplus1</span><span class="p">):</span> @@ -8103,10 +8076,10 @@ $$</p> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [4]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># Initial conditions</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># Initial conditions</span> <span class="n">T_left</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> <span class="c1"># Temperature at left boundary</span> <span class="n">T_right</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> <span class="c1"># Temperature at right boundary</span> @@ -8157,10 +8130,10 @@ $$</p> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [5]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">T</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="n">T</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> <span class="n">T</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="p">:]</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> <span class="n">T</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> <span class="n">T</span><span class="p">[:,</span> <span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> @@ -8203,10 +8176,10 @@ $$</p> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [6]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># Note: you may want to use extra lines, depending on</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># Note: you may want to use extra lines, depending on</span> <span class="c1"># how you define your A, T and b arrays</span> <span class="k">for</span> <span class="n">j</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">m</span><span class="o">-</span><span class="mi">1</span><span class="p">):</span> <span class="n">A</span> <span class="o">=</span> <span class="n">YOUR_CODE_HERE</span> @@ -8239,10 +8212,10 @@ $$</p> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [7]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">plot_T</span><span class="p">(</span><span class="n">T</span><span class="p">):</span> +<div class="highlight hl-python"><pre><span></span><span class="k">def</span> <span class="nf">plot_T</span><span class="p">(</span><span class="n">T</span><span class="p">):</span> <span class="w"> </span><span class="sd">'''</span> <span class="sd"> Function to plot the temperature profile at different time steps.</span> <span class="sd"> '''</span> @@ -8285,7 +8258,7 @@ $$</p> <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">plot_T</span><span class="p">(</span><span class="n">T</span><span class="p">)</span> +<div class="highlight hl-python"><pre><span></span><span class="n">plot_T</span><span class="p">(</span><span class="n">T</span><span class="p">)</span> </pre></div> </div> </div> @@ -8347,7 +8320,7 @@ $$</p> <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="n">YOUR_CODE_HERE</span> </pre></div> </div> </div> @@ -8501,7 +8474,7 @@ $$</p> <div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="n">YOUR_CODE_HERE</span> </pre></div> </div> </div> @@ -8559,7 +8532,4 @@ $$</p> </div> </main> </body> -<script type="application/vnd.jupyter.widget-state+json"> -{"state": {"0163d400cc2c4eb59046d0121727b17c": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"children": ["IPY_MODEL_88035a6b469f4a4891e35659867ff0c6"], "layout": "IPY_MODEL_9c5112e1cfd44ed2a63e5978fc06fccc"}}, "0197503ee5c44b87a3d0c980bc2571da": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": {"description_width": ""}}, "0221bef15fef48a190eccd595775ec95": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "0335767ddbd747b4893969d3e2d93893": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "037d3788952b4be096d7515e475f24e1": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"children": ["IPY_MODEL_b7b5d8c7976e490db14a6f301a8d5fca"], "layout": "IPY_MODEL_ffbdb787fdf940fab9e0d3b457888162"}}, "054b16db968e4b878f5e542f9a1173b3": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": {"_dom_classes": ["widget-interact"], "children": ["IPY_MODEL_d095a4e7d8d4445e86d3db1fdff6244f", "IPY_MODEL_27ce6d6c77074a0e9644172ecbdc2c2a"], "layout": "IPY_MODEL_9e0470afffb74df5adab27914911762d"}}, "0737166ee7324522bb73da03f9a8e778": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "07af3d288027411c8db59e4b27f81a0f": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"children": ["IPY_MODEL_4dcc29bcdeb94273acb042225680f938"], "layout": "IPY_MODEL_3012cdca2fe2499d8a50dee485f62217"}}, "0962612e4e404b54ac1fac8d640cd6c0": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": {"description_width": ""}}, "0f94c44a6e2d4808a7c66c3b1c79bf1f": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": {"description_width": ""}}, "0fcdff9aa34e4e13927e34ae27360da7": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "IntSliderModel", "state": {"behavior": "drag-tap", "layout": "IPY_MODEL_5576cb6864c246b5b1be231eb6fff645", "max": 199, "style": "IPY_MODEL_32b1f33a1556467aaba78f0af3df1e4d", "value": 100}}, "106c527c21f1485f80938702414243e8": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": {"description_width": ""}}, "121945e57f994c77aaeca0c873e63745": {"model_module": "@jupyter-widgets\/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": {"layout": "IPY_MODEL_517f04b914134b6ba5c09a4caa017bdc", "outputs": [{"data": {"image\/png": "iVBORw0KGgoAAAANSUhEUgAAAZ4AAAGRCAYAAABVKtXaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy\/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5gk+V3mi37CpDflvWlvZrrH9EzPtBsJZEZCuwtamZUW6UosD3uAC7tX4uwFVsDsEVdIrMQujAxoFxaY2XNAEkIICbTSzghJ4313V1d1mS7vfVZWehMRv\/tHdWRnZqWtqq6qGcX7PHo0XRUZ8cusyN8bX\/e+khBCYMGCBQsWLOwS5L1egAULFixY+PGCRTwWLFiwYGFXYRGPBQsWLFjYVVjEY8GCBQsWdhUW8ViwYMGChV2FRTwWLFiwYGFXYRGPBQsWLFjYVVjEY8GCBQsWdhUW8ViwYMGChV2FRTwWLFiwYGFXYRGPBQsWLFjYVVjEY8GCBQsWdhUW8ViwYMGChV2FRTwWLFiwYGFXYRGPBQsWLFjYVVjEY8GCBQsWdhUW8ViwYMGChV2FRTwWLFiwYGFXYRGPBQsWLFjYVVjEY8GCBQsWdhUW8ViwYMGChV2FRTwWLFiwYGFXYRGPBQsWLFjYVVjEY8GCBQsWdhUW8ViwYMGChV2FRTwWLFiwYGFXYRGPBQsWLFjYVVjEY8GCBQsWdhUW8ViwYMGChV2FRTwWLFiwYGFXYRGPBQsWLFjYVVjEY8GCBQsWdhUW8ViwYMGChV2FRTwWLFiwYGFXYRGPBQsWLFjYVVjEY2FPIITY6yVYsGBhj6Du9QIs\/HhBCEE6nSaRSKAoCqqqoigKiqIgSdJeL8+CBQu7AElYj54WdgmGYZBOp9F1nWQyCWwQUTweJ5lM0tLSYhGRBQs\/BrAiHgu3HUIIdF1ndHQUu91Oa2srsiwjyzJCCMLhMEtLS9TV1ZFMJpEkCVmWUVXVIiILFt6AsIjHwm2FmVrTdZ1QKITT6WRqaorZ2Vn8fj91dXXoug6AqqoIITL\/SyaTpFIpAIuILFh4A8FKtVm4bdB1nXQ6jWEYyLLMtWvXCIVCaJrGgQMHiMVirK2tEY1GkWWZ9vZ26urqqK2txWazAeQQkWEYAJmIyGazZepEsixbRGTBwusEVsRjYcchhEDTNDRNQwiBLMsEg0GWlpZwOBxcuHAB2CAQSZKYmZlhZmYGIQSjo6PEYjF8Ph+1tbUZIjIjnWwiSiQSmfOYRGQeZxGRBQv7FxbxWNhRGIaBpmmZ9JkkSYyOjjI+Pp4hE7vdnkmhwUaKzWazceLECQCSySRra2sEg0GGh4dJJBKbiMhMtxUjIjMSsojIgoX9B4t4LOwIzFRYOp1GCIEkSSSTSa5du0YikeDcuXPMzMwU3PwlScqZ63E4HLS2ttLa2gpAIpFgbW2NtbU1hoaGSCaTmfpQbW0tNTU1m4jIMAyLiCxY2KewiMfCtpGdWoONjX55eZne3l6am5u57777UFV1E8GYKEcATqeTtrY22traAIjH4xkimp+fJ5VKUVNTU5aIkskkiUQi01FnEZEFC3sDi3gsbAvZsznmxj04OMjMzAynTp2ivb095\/hivSzV9Li4XC5cLhft7e2ZOSCTiGZnZ9E0LUNEdXV1+Hw+FEXJXMds7zbniebm5mhtbcXtdmciI7P+ZMGChZ2HRTwWtgRz89Y0LdO1FovF6OnpAeDixYt4PJ6c10iShGEYmzb0YpFQJZAkCbfbjdvtpqOjAyFEpltubW2N6elpDMPIISKv14uqqpn3MTo6Sl1dXYZsCqXmLCKyYGHnYBGPhaqRPZsDGzM2c3Nz9Pf309XVxfHjx5HlzTKA2QSTvYnv5IYuSRIejwePx0NnZydCCKLRaIaIJicnEUJkGhXq6uoQQqAoCjabLRMRaZpGOp0uSkSF3p8FCxYqg0U8FqqCYRikUqlMlKPrOv39\/SwvL3PvvffS1NRU9LWlIpvbNU4mSRJerxev10tXVxdCCCKRSIaIxsfHARgaGqKxsZG6ujo8Hk9ORFSMiMw5IouILFioDhbxWKgIZmrN7FqTZZlQKERPTw9Op5NLly7hdDpLnqNUc8FuzTFLkoTP58Pn89Hd3Y1hGDz11FN4vV5WV1cZHR1FUZRMo0JdXR1ut7soEUFhVQWLiCxYKA6LeCyURX5qTZIkJicnGR4e5vDhwxw+fLiidNlWu9puJ8xuto6ODtxuN4ZhEAqFWFtbY3l5mZGREVRVzSEil8u1iYjS6XRJeR+LiCxYuAWLeCyURHaUI0kS6XSa3t5ewuEwZ8+epa6uruJzlSKY\/aLcJMsytbW11NbWAmQ05tbW1lhcXOTGjRvY7fZNRGQSS\/Y8kxkRSZKUQ0Rm15wFCz+usIjHQkGY6aSBgQG8Xi\/t7e0EAgGuXbtGbW0tly5dyuipVYr9kGorhmLXN9NuJsHqus76+jpra2vMzc0xNDSEw+HIHFNXV4fD4cg5r0lEqVQqUyMyiSi7a86ChR8XWMRjYRPMjdIwDGKxGDabjZGRESYmJjhx4gRdXV1b2ij3M\/FUCkVRqK+vp76+HgBN0zJEND09TX9\/Py6XK4eI7HZ75vX5RASwurpKS0sLDofDUt628GMBi3gsZJC9KZpda0IIpqamUBSF8+fP4\/P5tn2NfLyeN1lVVWloaKChoQHYIKJgMJhp3b5+\/ToejydHZy6biNLpNP39\/dTW1qJpmuVFZOHHAhbxWAAKz+YsLS2xvLyMz+fj3Llzmen\/rWIv2ql3G6qq0tjYSGNjI7BBLCYRjY+PE41G8Xq9GSLyer2Z15mfr9mybpniWXijwiIeCzmyN7IsYxgGg4ODzM3NZdJF2yUdeGOk2qqFzWajqakpM9+USqUyRGRaQACMjY1RX1+fsYCAW2RsEZGFNxos4vkxRiHZm2g0Sk9PD7Isc\/HiRcbHx3eMFEyC0TSNqakp3G53RqpmL7Gb17fb7TQ3N9Pc3AxANBrlpZdeQtO0HAsIMy1nWkBALhFZ7qwWXs+wiOfHFIVmc2ZnZxkYGKC7u5tjx45lZlxM58\/twmzHfv7551FVFU3TSCQSuN1uNE0jEAhklKV\/XGB2Bp44cQJFUbZkAVHIJtxyZ7Wwn2ERz48h8i2pNU3j+vXrBAIBzpw5k6lPwM6lwYQQBAIB1tfXOXbsGJ2dncCG6dv8\/DwTExMMDAyQTqc3KUv\/OAxfmsRQzgIinU5XRESWO6uF\/QyLeH6MkO+bI8sy6+vr9PT04Ha7uXTpUs4MinmMGRVtFel0mr6+PgKBAD6fj8OHD2eGUp1OJ83NzUxNTXHx4sWcjdZUls4W9PR6vW+oTbMcqZeygJiZmUHX9YIWEJY7q4X9DIt4fkyQ3SZtYmJigpGREY4cOcKhQ4cqcgetFsFgkJ6eHrxeL8eOHWN+fr7gcaYyQr7FQb6gp6ksYG60brd7RzbNvW5uqFRyaCsWEOXcWQ3DQFVVXC6XRUQWdgUW8bzBUciSOpVK0dvbSzQa5YEHHsjIwxTCVms8QogMsR09epSDBw8yPz9fVVdbIUHPcDico6Nms9lyhjXLCZXuN2yH8LZiAeH1epFlOYeITBmgAwcOWO6sFnYFFvG8gVGogWB1dZVr165RX1\/PxYsXy8remEOk1cAktnA4nENs2xUJlWWZmpoaampqOHjwYI6O2uzsLIODgzidzqKqAfsZO7GxF7KACIfDOXNEkiTl6MyZZn1m+i3fnbVQ+7ZFRBa2C4t43qDIn80xn2ynpqa444476Ojo2JaidDGsra3R09OD3+\/fpOe20wOk2Tpqhw8fLqoakE1E5ozMfsHtTPFJkoTf78fv92+KGLMtIMwGk1gsVtACwmy5t9xZLewU9te30MK2UWg2Jx6P09PTg67rXLhwITMtXwkqJR4hBOPj44yOjnLs2DEOHDhQ0OK62DXMc2xnA8tXDcgf1ozH45kZmbq6un3Tur1bm3Z2xAhkLCCGhoaIRqO88sorFVlAlHNntYjIQjlYxPMGghCCUCjEwsIC3d3dyLLM4uIifX19tLe3Z2ZFqkElNZ5UKkXvtR5IBXnwwQczG1ul59op4slH\/rBmMpkkEAiwtrbGwMAAqVSKmpqaTErK7Xbveuv2XjY1mI0abreb2tpa2tvbM6nLhYWFHAsIk4zyLSAsd1YLW4FFPG8QmLM5kUiEiYkJurq66O\/vZ3FxkdOnT9Pa2rql85ar8QQCAW70X+bMwRg21YdchHRg85O9STS79XTscDgyMzLZrcnr6+sMDw9z48aNTa3Ju7G2vY4OzL9DKQsIs4ZWyAKiHBFZpngW8mERz+sc2bM5QggURUHXdV544QVUVeXixYu4XK4tn79Yqk0IwdjYGLHVQS4eS6JIOrphoJeIWsql7Xbz6T+7NXl0dJQzZ84gSVKmI2xiYiJTiN\/p1u1s7HUbt7mGQu9rqxYQ+URkubNayIdFPK9jGIaBpmk5XWvLy8uk02m6u7s5cuTItr\/UhcgimUzSe62HLv8SJw\/GMz9X5DTB6Vn83Z0Vn8v8OeztJpzfEWYYBpFIhEAgsMkC2\/zfdgg9\/9p7CcMwKlrDVi0gCrmzFjLFs4joxwcW8bwOUWg2R9O0jDqALMscO3ZsR66VX5dZXV1lePAK9x2I4bEnNx0fnZ0oSjzm2gtdY6+Rvy5ZljMdYQcPHsQwjMzT\/vz8fFnn0dcTtlpbq9YCora2NqfLMfs+HhkZwel00traatmE\/xjAIp7XGfJlbyRJyqgD+Hw+7rvvPl555ZUdu55Z4xFCMDo6SmJtiEtHk8hSYRkdxVgreq79lGqrFrIs59Q\/CqWdslu38zfZYtjphoqtYKfWUIkFhM\/nyyEis2MuHo9n\/js7IjKHXbObFfb687KwfVjE8zpC9myOmaYYGxtjbGws08KcSCQwDGPHNhNJktB1nVdffZkDNcvccSBe8nhv7eYoKPtc+zXVVi3y007ZT\/tjY2NEo9Gc1u1se4P9httFfoW6Cs0aWr4FhPnf2Z9RodScRURvDFjE8zpAodmcZDJJb28v8Xg8p4V5p1uTw+EwIr3OvQc13LbipGLC1yCIh6PYfZ5Nvys3x\/N6Rv7TfvYmm29vYM4QmdHkXr\/\/3VqDw+GgtbU102GZbQERiUQIhUKsrKxsUt421wgUJCLLi+j1B4t49jkKWVKvrKzQ29tLY2MjZ86cyZnGzy7kbgeGYTAyMkJ6\/QZvOpFAVSo7nyzD+ugoTffevel3r+dUW7XI32SzVaXn5ubQNI2amho8Hs+ORqhbwV5dO9sCIh6P09jYiM1my\/mMssna7\/cXJCLLnfX1B4t49jHML5UZ5QghGBoaYnp6mjvvvJOOjo5NrzGJxzCMLad2EokEvdeucKhulbYyqbVCSAfngOLEY9alTEmXvU617cbGlG9vYKpKLy0toes6zzzzTI6Yp8fj2bUNcz9EXXCLrKu1gADLnfX1Bot49iHM1JrZtSbLMrFYjJ6eHoQQXLx4MSPumA\/zS7VV19Dl5WVGR65xzyk7vpvS+dXCYQsXXZthGPT19bGwsJDZ8MyCfSwWw+FwvOE3hmxVab\/fT09PD\/fcc88mDbX81u3b9bnsB+IxH65MbMUCopgXkeXOuv9gEc8+Q6HU2vz8PP39\/XR0dHDixImScw5bTbUZhsHw8DB6epqLD9iQZR2htCJFC\/vnlEJtq4HQDSQld52JRAJd1wmHw5w7dw5FUTIy\/svLy\/T09GC326mvr3\/dtyhXCnPTN1u3Dxw4kNFQW1tbY3FxMUe6xvxsdvJz2Q\/EYz5gFcNOWUBY7qz7Axbx7CPkW1Lrus7AwABLS0vcfffdme6gUjC73aqJeOLxOL29VzncnaK1WQVukpbTBtHq34fTJ7MyNU3NoQOZny0sLNDb2wvAuXPnMtL7pmjl+Pg4Z8+eJZVKFWxRrq+vz2m\/fSMhf6MzNdRqa2s5dOhQjnSN+bm43e6ciKiS1u1i2A\/EU+kQq4mtWkCUIiJzaLi5udkiotuMN963+HWI\/NkcWZYJh8OZCODSpUtVGZxVQzxLS0uMj\/Vy\/z12nI7cKEmS4qRttdjSwYqvbSI+P0XNoY2n96GhIWZnZzl+\/DiDg4PIsrxpfebTZ36LcqH2W\/Op3+wM2wnsVX2pkutmS9ccOXJk06BmX18fXq83p3W7GoIuF23sBvJTbdWiUguIbCIyRWFNIopGo1y7do2HHnooc07LJvz2wCKePUa+JbUkSUxNTXHjxg0OHTrEkSNHqr7RKzFvMwyDGzdugDHLhQfUogOhwuWDLRAPqRXi8ThXr17N1KUABgYGCh5e6D3abLacOZBEIpFRlza7nmprazNE5PV6X5ebQrVrLjSoWYqgs7vBCmG\/RDw7SX7FLCDMho58CaTa2tpMQ47NZitoE265s+4cLOLZI5g39ezsLMvLy5w6dYp0Ok1fXx+hUIj7778\/I85YLQpFFNmIxWL09V7l6CGN5kaFTGqtAFRbkrim4FILE1MxeGoSPP\/887S2tnLy5EkURSEe3+iQM7\/U+ShHlk6nk\/b29kzXU3aOf3x8PEdd4HYX5HcKOxFp2e12WlpaaGlpATZSp8FgkEAgkNO6nV2Ez97k9wPx3O6oq1D60iQiUwJJVVUMw2B+fj5jAQHkpObMFHEikbCIaBuwiGcPkN1AkE6nMxvotWvX8Pv9XLx4cVuWzaVSbYuLi0yM93L2XgcOe\/l0nCQJorIHF6Gq1lDXpnDMc4Du40dz1lVqzdVswoVEPcPhMIFAIFOQz9ZSq6+v37c22Du9UZmt26b9Q3Y32NTU1KYifLX1lduB3V5DIQuImZkZJiYmqrKAyLcJN1Nz2Tpze\/3Z7kdYxLPLyLekVhSFWCzGa6+9xvHjx+nu7t72jVoo1WYYBoODgyjSPBcfsCEVSa0Vgq\/WjggpSFT+GkmWcEVz26pLzevsxHs2UyvmE61ZB5mamso0Kpjpp\/3SqHC7a0uFusEikUhOpKjrOiMjIzQ1Ne1ZpLjXdSZFUfB4PDidTs6ePbtlCwjLnbUy7P0378cExWRvRkdHSafTnD9\/Hr\/fvyPXyo94YrEYvb1XOH5Yp6mhdGqtEOx2CcPbhhKZqep16fV54EzOuqD4ZruTm7CiKDmNCqZgZSAQyNRBzKl4M+25V9jNjUiSJHw+Hz6fL1OEf+qpp3C73SwuLjI8PIzNZsvZYKtpbNkKzM9\/rzfk7DpTIS0+k4gqtYCw3FmLwyKeXUCh2Zzl5WV6e3vx+\/0YhrFjpGOe39xIFxYWmJzoqzi1VgySQ4JIda9x2HNfUC7iuZ1P\/\/mCldlT8ZqmcfXq1T1pVNhrmSAzOu7q6sLlchV0HXU6nZue9HcS5mew15twqQYHm822JQsIy521MCziuc3In80RQjA4OMjs7Cx33nknTqczM9+yUzBngK5fv47dscKFS14kTQJRvfyNCUlKYLiakeNLFb+mrk1gaDqyqtw8x+1LtVWLbAmbQCDAsWPHMt1h+Y0K9fX1O2b6Vgh7+aRv\/i3MNRRyHS1k9raTKUvzIWmvN10z\/V0JinUWBoPBkhYQljvrBiziuU0oNJsTjUbp6elBkiQuXryI2+0mGAzueJrHMAxGR4c4fZeDxkY7IBCqE5GOs60tzuWGKrjL4ZFZnpyi9sihnJ8Xy+fvpVab2+2mtbU1k34yO54WFhZyGhXMDXennvr3OuLJJ5585Ju9ZXvsjIyMEI\/Hc+wfshWlq13DXm+y29E3zO8sLGUBYXbXZRNLNhHF43FGRkY4ceIEdrsdVVVZW1vL6bR7vcMintuA\/NkcgLm5Ofr7++nq6uL48eOZG65c63O1mJubQ1XjnH3AS3ZqXpLjGHIdUgmjtrKQowibHyldeYdbfOEW8exlqq0csq9dqPXWrA+ZT\/3bGdjMx36KeMohP2WZbW0wMDBAKpXKad32+\/1lCSV7hm0vsZOzRKUsIAYHB0mlUpkaY7YFhJmtWFpa4uTJk6TTadLpNO973\/v4xV\/8Rf7Nv\/k3O7K+vYZFPDuIQpbUZsprdXWVe++9NxOam9gp4tmQ1+nH6Qpw8ZKHQt8fSU0hUioS2pauIQEhYaemitfI2uqt1++jVFs1KNSoYG4iN27cyHjtZA9s7vXTe6WolnjykW1tUEhR2jCMTfpp+dd6IxJPPvI\/p2wiyreAMLsKsx9mzBrSGwUW8ewQ8hsIJEkiFArR09ODy+Xi4sWLBbuDdoJ4IpEIfX1XufNOhfqG4ikgSdIw1BqkLDKoFh6fhFi3Ixmpio731d06Lntjyd9k9jriqQaFBjbX1tYIBAKbNtv6+vqSFgd7Pby5XeLJRiFF6fwhX1M\/zfyf2+3OpF73mnh0Xd8Vl1hJkjbZZGQT9vT0NEIIrly5wtTUFF6vl3g8XlSRvhL8\/u\/\/Pr\/1W7\/Fxz72MR599FFg42\/\/u7\/7u\/zpn\/4pa2trnDt3jj\/+4z\/m1KlTJc\/1jW98g0ceeYTR0VGOHDnCpz\/9ad7znvdUtR6LeHYA+bM5ABMTE4yMjHD48GEOHz5c9EtlNhxs9WlrdnaWublBzp3zYqtkIFSOICQvkqiyRe0mZMmJkTaQ1SiSKG+bUNOqEA4EcdbX7mo79W4ifxOJRqMZaZ\/sRgUzItpPefqdJJ58FBvyNdXITdkan8+X2Xz38rO5nRFPKeQT9traGn19fTQ1NfHXf\/3XfOUrXyGRSPC7v\/u79Pb28pa3vIX77ruvYpJ85ZVX+NM\/\/VPuvjvXI+tzn\/scf\/iHf8hjjz3G8ePH+b3f+z0efvhhhoaG8Pl8Bc\/1wgsv8MEPfpBPfepTvOc97+Gb3\/wmH\/jAB3j22Wc5d+5cxe\/59ZEP2KcwGwhSqVSGdNLpNJcvX2ZycpKzZ8+W1VrLNm6rBpqmce1aD8nkCOcvuCsiHQBJAlSlqkkeTRMkwzJMraL0v4YSmID\/9TTGeBTDKB\/+h8ZHs65fOLLZ66fdnYK52XZ3d3PPPffwpje9ibvuugu32838\/Dwvvvgizz\/\/PIODgywuLpJOp\/d0vbeTePJhDvkePHiQM2fO8KY3vYlTp05lGjXMz2ZgYICFhYVMt9duYa+Ip9A6bDYbnZ2d\/MEf\/AETExP4fD7e9KY38dxzz\/Hwww\/zkY98pKJzRSIRPvzhD\/Nnf\/ZnGZUG2Pi7P\/roo\/z2b\/82733vezl9+jSPP\/44sViMv\/7rvy56vkcffZSHH36YT3ziE5w8eZJPfOITvO1tb8tEUZXCini2iEKzOYFAgGvXrlFbW8ulS5cqkqrfCvGEw2GuX7\/KnadU6uur766S5ASGUo+kB0oeF40a6GsRPME5XFmqBZIeR5w4hdx7BXpBdB1C3HkcyRFHYvP70MOLt157k3hCoRCxWIz6+vrMRPcb0YE0u1EBNrcnRyIRZFlmeHg4Y\/2wG+keE7tJPPkwZWvM7865c+cyM0TZahPZTRzbsX8oB13Xb\/uwbKXryL4HZFkmGAzyS7\/0Sxw9ejTT7FIJfvVXf5V\/\/s\/\/OW9\/+9v5vd\/7vczPx8fHWVhY4B3veEfmZw6Hg5\/4iZ\/g+eef55d+6ZcKnu+FF17g137t13J+9s53vtMint1Aodmc4eFhJicnOXnyJJ2dnRV\/kashHiEEs7OzLCwMce68F5ttGwOhShyh25HIfaoUQiYZAW12Cr+2Xvz1fgkhSUhCIE2PI02PI3w1GGfuQ6qTkUQyc6zDkSudMz09zdTUFDabLdMFlUqliEajNDQ0vGGin0LIb0+enZ1lamoKTdMYGhoimUxmusLq6+s3CXruNMwa015+5qZqQSG1ALPukT0bk01EO0nS+yXiySce00DRbC4wm13K4atf\/SqXL1\/mlVde2fS7hYUFgEyd0kRLSwuTk5NFz7mwsFDwNeb5KoVFPFUgezbHLIgmEgl6enrQNI3z588XzY0WQ6XEo2ka16\/34Xavc+68G0naXkOCJBkYqhdJ24h6hHAgQkmYHcJdQeOApEUQJ07BYN+tn4XXkZ7+IUJR0e68h6ABjUdc1LWDkdbRMTLqv2fPnsXpdGY6xEZHRxkfH2dycnJTPeSNTkR2u5077rgD2GhUMOtD2Y0K5udRqlFhK9jr5gYovuHn22Jkz8bktyTX19dvu5twvxJPNLrhxlhNV9v09DQf+9jHeOKJJ0pGcfl\/+0ruh628Jh8W8VQIwzCIx+Ncu3aNe+65B1mWWVxcpK+vj9bWVu64444tP30pilKSeEKhENevX+Wuu23U1LjYKM1tvzYgK1GMmA95dQ5l9Xr1J2goXAiWdA219zUageXeOtJdnaTWrjMaCiJJEnfffTd+v590Op0pqs7Pz2dkW\/IVps1Nt76+\/ramWvYC+elFl8tFR0dHpivMFPQ0zcyyPWR2olFhPxBPpQKh2bMx2S3JgUCA2dlZdF3Pad32+XxVvbfd6mqrdh1mOraav\/Vrr73G0tIS999\/f855n376ab70pS8xNDQEbEQwbW1tmWOWlpY2RTTZaG1t3RTdlHtNIVjEUwbZszmaprG0tISmaYyMjDA\/P8\/p06czQ2JbRbGWaiEE09PTLK+McOGiB1U1AB1hOBCk2c5+IQwbBMLIkXlYrVwGJ2fd6XX0Q8eRx28UPaZJXoPZNV7tC9Lx3vcwPj5ectjSdJE8ePBgzuDmxMQE169fz6Ra6uvrtzQlvx9RbHMsJOhp1kBMDxlTR80k52qJeT8Qz1YEQgu1JGe3bpvpomwiKhct7teIJxaLVR3pvu1tb9skxfXzP\/\/znDx5kt\/8zd\/k8OHDtLa28uSTT3LmzIaQbyqV4qmnnuKzn\/1s0fNeuHCBJ598MqfO88QTT2SMHiuFRTwlkC97Y26YL7\/8MqqqZmRvtotCxKNpGn19vdTVR3jwQVdOak2SYxiGD0kK55+qLIQAEnakhWEkY+N9BWQ\/DVtUNJDa6mC8\/HHd9nXqjhwpmj8u1FyQP7hpploCgQADAwOk02lqamoy2mLbEfbcz9bXJrL14yC3USHbAjtbR60cMe83VeitIr91WwhR1PraJGqn05nz3vcr8UQikaqJx+fzcfr06ZyfeTweGhoaMj\/\/+Mc\/zmc+8xmOHTvGsWPH+MxnPoPb7eZDH\/pQ5jUf\/ehH6ejo4Pd\/\/\/cB+NjHPsab3\/xmPvvZz\/Lud7+bb33rW3z\/+9\/n2Wefreo9WsRTBNmzOWbxdX5+HoCGhgZOnjy5YzdpPvGsr68zMNDDXXfbqakp\/CeSpAjCcCLJ5WdpTAjdgbS0hBRbyfl5nV9gJOuR46W73AquXVtD7ziAPFu8IAnQ6A4Rml\/eVjt1fqolFotl6iETExM58zLmxvJ6wFY3\/kI6aubnYdZAyjUq7JeIZ6c3fEmSMtHzgQMHMvp7gUBgk\/5etiHefiGe7Mg1Go1ua3i0GH7jN36DeDzOr\/zKr2QGSJ944omcOvXU1FTOZ3Lx4kW++tWv8ju\/8zs88sgjHDlyhK997WtVzfCARTybUMg3Z6Owf521tTUkSeLAgQM77g9vGAZCCKamplgNjHL+ghtVLf40LEkCgUAICUkq\/dQshIyISMhLA0gFJngkBMLjQcTXCv6+HKQD7VCGeGQJFn\/4DFJ7fdHNrloHUtPgzBxONDeW7DSUSUK3uxV3q9jJSMtut+cQc6Fp+OyN1uPx7Avi2Y015Le1ZxsFmkZvkiRlakVbSVvuFPLbuk3i2e5n9KMf\/Sjn35Ik8clPfpJPfvKTFb8G4P3vfz\/vf\/\/7t7UWi3iyUGg2Z319nZ6eHjweDxcvXuSZZ57ZcTVpWZZJpVJcvXqFhsYoDzzgKksmAJKULJtyE5oTaWEaOVla2FPSQhh1B1DWJqpdPpIWQDS2Iq2UbqlUZq8jdbz5toiEFpqXyW7FNVWUzTRUTU3Nvni6hdunGpAvXxOJRAgEAjmNCh6PB13XSSQSexYh7kWkkZ\/GTafTPP\/888iynJO2zK4n7pZjbaGuttsR8ewlLOK5CcMwSKVSOV+C8fFxRkdHOXr0KAcPHsw4CJrEtJPXHh8f5Mx9bvz+6v4kshzGMLzIcq4ETjoNasRADlTerSYRQdg8SOloVWuQEOhHDqKUIZ4ub4DxlLYrygWqqub4pWR3QM3NzWU6oOrr6zOS9HuB3bpudqOCmXpaX19nbm4OwzB44YUXMhGiGRHt1hP\/XtteA5n3evDgQbxeb07rtjlfZbZum0Kwt6uxpViN542EH3viMVNrpqK0GX1cu3aNWCzGAw88kHmKhlsmazt17cnJSdyeJPfd58Fm29omJEkJhFCRpI1mgURYQl2aRK6y5VoSaYyaZpSVCroF8iAba6TcXuyx4hpwDpuBPDyJOHPPtlNt1SJfHdjUU1tdXSWVStHb20tDQ0MmNedwOG7bWvKxF6kusx5m6qedPXs200FoPvHvVgfhfmhwMNdhvsd8W4PstKWpJp1t\/7CTg76FIp43kjI1\/JgTT6HU2urqKteuXaOhoYEzZ85sCq\/LzdxUio3N7hotLXEefNC9rdZoSdIQhgchJAiEcK3PbflcshbA8Lcjh6o7hywJ1NOn4eUXSx5XF5jdcz+e7A6o7u5unnvuObq6ukin08zOzjIwMJCRajHrQ7crzbLXwqhmfSW\/USH7iT\/bZ8eMiHZyo90PRX2zxlpsHfmt27FYLPP5TE1NIYTYsUHfQu3UFvG8QVBI9ubGjRtMTU1xxx130NHRUfDG2YmIZ+PL3MOZMw58VabWikFoOtJqCDm2ddLJQDUQsg3JqDxiEooTSZEQTg9Soniq7pBnjWgB\/5W9fOI101Bmm3K2VIvpHmn67dwOGZu9tkUodP38DsJs6wdzo81uTXa73Vt+H\/uFeKAyF9TsxpbOzs6cQd9AIMDY2FhO63u1ChxWqu0NiEKW1PF4nJ6eHgzD4MKFCyWfLrYT8QghGB8fJxye4NJDbiTJC1Q\/i5N7ThnCAmX9BgIJw16DnCqusVYJJCOOUd+FsjKW+ZmBgmTzILChpw0igTWUVBoPOnIoiJROIAHp+qMoK+NIqcIe2XU+nbmeQZre3rTpd3v99G8iX6qlkIxN9tDmdjbdvUYl9ZVCjQrmjMzKykqOooL5mVTTqLAfajzmd3or6cRCg76mdbqpwGG323OIqNTnk2\/BHY1Gc5Sl3wj4sSKefEtqWZaZn5\/n+vXrtLe3c+LEibI33laN2zZSaz20tSU5fsIFCISofhYnG8KwI62uICWCwEaRP21oyLqEqmxzExc6utGAFFhCX1vGlkrcvMaGYE+xr4EamSK2XofLL5DShd+X1n8N3v6mnJ\/tZyO4fBmbfE8Zm82WI+tjyvxXgr1uZ97K9fNnZHRdz7Syz87OMjg4iMvlytloSzUq5G+0e4FsA8ftopB1uqk4YX4+2Y0ctbW1OfdMoVRbV1fXtte1n\/BjQTzZsjdmWG8YBn19fSwuLnLXXXdVrDW0la62QCDA0NA1ztznxOu9dUOZszi6DtV+74yUE3l5fFM6zC6niNtrUPVgdSe8CaH4YT2Csnod4aiF5TlsRuXvV9JT2Ds9xIaTuJsFkpbcdExTembz614nEUOhTXd9fT2Tgurv769aPWAvsRPEl60IALmt7NmNCtmt7Nmfiek\/s5cw94XbcR8qipJJ08JmxQmzecC8X7INJWEj4tkJhZT9hDc88RRqIIhEIly9ehW73c7FixerEt+rJuIRQjA2NkY0OsnFS26UAlGIJCWJxxW83so2dyEkiEgoweL6aC4lSjDupNZehaqB4oGIhrw0cGttySDG4TuRRnpLvHIz1NQssYBBTPbjrF1DQcv5fXtdgsWxadyduWS\/XyOeUsjfVEy17UAgkFEPyLbBzheufD1GPOWQ38peTOrI\/Ez2Q1fbbkZdhRQnTKIeGRkBoK+vj7W1NZLJ5Ja62r785S\/z5S9\/mYmJCQBOnTrFf\/pP\/4l3vetdQPEHvc997nP8+q\/\/esHfPfbYY\/z8z\/\/8pp\/H4\/GqZ8De0MRTyJJ6enqaoaEhDh48yJEjR6rOLVca8SSTSXp7e+joTHHi5EZqrRi8Xp1oVMHjKX3ejdRaAClRXtrG6zIQeJD00jM5QnYikiry1DCS2EyoUmKBsMOPr8wAas5rDA33hW4i3+ojeaAFX\/M6+Q+0gWeew\/2z7731mn2caqsGdrudlpYWWlpaMkX5QCCQiYiAHFmfvcZuEF8hqaPsjjBd13G73dhstj2rmeVHGbuJ7HsmlUrx7LPP0t7enlGSXl9fZ35+nkAgwFvf+lYeeOCBshFiZ2cn\/\/k\/\/2eOHj0KwOOPP8673\/1urly5wqlTpzLyXya++93v8gu\/8Au8733vK3lev9+fUbY2sZXB4zck8QghSCaTJJNJbDZbxpL6+vXrBINB7rvvvoqMlAqhkq621dVVhod7OXOfE4+nsqcoh0NHCBuSVLiTzEi7kJfGkSrwygFQFYFQnIh4rKAMjpBsCN2NPDOMrBfvXpMQKI1+xFykIDEVvX58BqWzESYXmZ1z0nkGsjuS7YsDjI2NZdILb0QH0uyifGdnZ2ZmJtv2QVEUVFVlaWlpT2RadjvaKNQRdvnyZVRVzdTMVFXNqZntxkzVfuisg1u1pvb2dv7Df\/gP\/Nqv\/RpvetObuHDhAteuXePzn\/88d955J0899VTJ8\/z0T\/90zr8\/\/elP8+Uvf5kXX3yRU6dObVLU\/9a3vsVb3vIWDh8+XPK8kiRtW40f3oDEY6bWJicnWVlZ4f777ycYDNLT04PP5+PSpUtVFX\/zUaqrTQhxU55liouX3Mhy5Rupqm5YFeTbHQghIaIyytpQ8RcXgaSHMNytSLFbTzcCBYEPeXYMOV248ywfbilBtO0QnrnRyq8tDFxnW4nMrFCbTjB91UX3GZGpZXXXhnh5daPrJ51OZ+RbwuHwtlSm9zNkWaampoaamhoOHTqEpmncuHGDUCi0qRZiDm3e7s1wr1N92TNEHR0dmwrxAwMDuN3unJmq20HO+6HBAW41Fph\/E0mSiEajvO997+Md73gHhmGwsrJS5iybz\/n1r3+daDTKhQsXNv1+cXGR73znOzz++ONlzxWJRDK1zXvvvZdPfepTGVuFavCGIp7s2RxVVdF1nbGxMcbGxjh27BgHDhzY9pfMVDbIRyKRoLe3h+5ujZN3lE6tFUO+3cGGZ04QJb665fVK2iqGvR4ptYaQa5EXppDjU1WfxyWHMOpakNcWK36NGptGOdSCPr5IXSrOlEk+MthUqJ9f5Z53v5N4PE5\/fz+JRILLly9nitV7oSKwm1BVFbfbjRCCU6dOkUwmM23b169fR9O0nKHE20HIe008kBt15dfM0ul0phBv2l9nS9fslKLCXqba8teR\/36yazyyLGfa\/Muht7eXCxcukEgk8Hq9fPOb3+TOO+\/cdNzjjz+Oz+fjve99b4Gz3MLJkyd57LHHuOuuuwiFQnz+85\/n0qVL9PT0cOzYsQrf4QbeEMRTaDZHCEEoFCKZTPLggw9SU1OzI9cqFPGsrKwwMtLLffe7cbu36yuy0WKNLiFVkVorej4EQlZh3UAJ9pV\/QRHICIyGGkRwueKUmyQE7nsbCY9vkFVdMs7UNTfddxsoMsiT15Gkn8LtduP1erHZbBw6dCinNddUEchWmb4dT6Z7WV8yN12Hw5Ej62PaPpgyNrIs56SgdkLUc78QT7FN32azbWpUMMm5UKNCta6jlaxhN1GOeKrBiRMnuHr1KsFgkG984xv83M\/9HE899dQm8vmLv\/gLPvzhD5e9n86fP8\/58+cz\/7506RL33XcfX\/ziF\/nCF75Q1dpe98STP5sjSRLLy8sMDQ0hSRIXL17cUbmT7BqPYRiMjIyQSs1y8ZILWd4J1WqBiOnIaxNIbF8TzqAWeXIA4WpEsDGHs1XIiQDGoTuQxioXHlUiM8R8HtzhjSaHuliMG1c9nLhXp8O5hJ7SUOxqZrPInoE4fPhwRkXA7BLbSfO3\/YBihFfK9mFubo6hoSFcLleOqOdW7vP9QDzVDJAWIudsRQUgZ36o0kaF\/Uo8pq7gVpQL7HZ7prng7NmzvPLKK3z+85\/nv\/\/3\/5455plnnmFoaIivfe1rVZ9flmUeeOABhoeHq37t65Z4smdzzC+PEILBwUFmZmbo7u5mYWFhxzW2zIgnkUjQe+0qB7qSNDXXIMub51WqhRASBHWUwCCGoxlJbM0VFCCtg5Kyoyz3AyDFljDqDyIFJra1Rim9gqhtQgouV3Y8AvWoG67c6q5rS0Tpv+zmzvsNxl54jbaf2DCRKrQJZ6sI5HeJmeZvJgm9XtNylWyM+YRszsoEAoFNtg\/19fX4\/f6KNtL9QDxbbXAo1KhgNm9kD\/dmS\/sUuz8KRRp7gULDo0KIHHO2rcJsusrGn\/\/5n3P\/\/fdzzz33bOl8V69e5a677qr6ta9L4smfzZEkiVgsRk9PD7DhkqdpGrOzszt+bVmWSSQSXL3yHPffY8flFAiiNxUItPInKAJNEyhr8Yw4p5xcImJ48TqrJzRDcpOem8Eucud4pNgChrcZObK05XUidERTJ4Zx045b6KCnNgZF03GkAsOmLY1JJu1O\/Klb6+lMxei\/7EaOXoafOFdRV1uhLrG9SMvtJLaa4itk+2CmoHp7ezEMI1MfKqWltl+IZyeijezh3oMHD+Y0KszMzGQaFQpFibcr4hGGgVTFeQspUwNVp9p+67d+i3e96110dXURDof56le\/yo9+9CO+973vZY4JhUJ8\/etf57\/+1\/9a8Bz5tte\/+7u\/y\/nz5zl27BihUIgvfOELXL16lT\/+4z+uam3wOiSe\/NkcSZKYm5vj+vXrdHZ2cuLECWRZJhwO3xbfnMXFRfzeKPecciDLN4kPHZFWwLE14tE0mfTUDDaR22XmJIaBB5nKB0ENqRZ5+gYesXktG7WZNEJ1ImnVyfQYyOBqhvl5pInLGP4DGFc314yEw4lwO4kjIbtcuGr8xMNJkq4ARjKBnLXHdSZjjA\/Mb3nzK5WWMz1UsjffYmm5vd54d+L6TqeT9vb2jHqyKVqZbfpmfg51dXWZJ\/\/9QDy3S6stu1HhyJEjmUaF\/Cixrq6ORCKx45+DnJojMG1Qe6Sz4tcUIh5VVauO5BcXF\/nIRz7C\/Pw8NTU13H333Xzve9\/j4Ycfzhzz1a9+FSEEP\/uzP1vwHPm218FgkF\/8xV9kYWGBmpoazpw5w9NPP82DDz5Y1doAJPE6mdorZEmt6zr9\/f0sLy9z11135XR7xGIxnn76ad75znfuyA0Vj8fp7b3Kwc4k7UXa2A2lFlmtrEXZhNAdiOkxFL0wEQhbLRAta5sgkBFJJ8riSNlrhoUHb2qtonqPUJ1EU3bsC7PYsoQ\/hSSjJ70ws1n+phiGhj102Dd\/Pgvv\/TkSh2oQQnD8+PGKz1dy3XlpubW1taJpuRdffJHjx4\/vyUDn6Ogo6XSakydP3rZrZD\/5BwIBwuFwJjJMJBLYbLbbev1yeO655zh16lSO79VuwDQHXFtbY2lpaZP461YbFQDU5CRy5AZ9L3dy\/F13VPy68fFx4vF4pgGgt7eXd73rXQSDwT1\/QNhJvC4inkKyN+FwmKtXr+J0Orl06dKmjgzzqWEnnuiWlpYYG+29mVorfpykxxGyhFTh\/I5IO5FmbiCXsB+Q0kEMZyuSUbylWsguWA2hhCsjAZ8URa\/tRgkWb6sWdj+GbkeaGMajbV6fJAyUWgVtyYGUqiwd2N6RYGHcQas39\/jkE08h\/fK7d9RSvJq0nK7rOx4dV7vW24lCT\/4mCQUCAXRdJxaL5XSG7Wahfa8K+9nmgGYnrNfrZW1tjYmJCSRJyqkPVWRtIAS25DD2xACzE160eHVdqYUsEd5oXjzwOiCefN8cgMnJSYaHhzl8+DCHDx8ueDOYfzxN07Y8MGoYBjdu3EBoM1x80IYsld6cJJIYWh2SPVb+3EkH8kx\/QVWBTedNLGI4G5CNzXYHhlyLPDNWdepMTixheJqQo7lNAoarARFJIw2PIperucTWUE4fx7hcmZabz60z61SJpHS89lupwPbwFOOrYdTa2yeEWCotl0ql6Ovrqygtt9PYi4RDdsOGqT3o8\/kIBAJMT08DVL\/hbgP7wRZBCIHD4aCrqyvTRWiqkC8tLTE8PJyxNshPV2adBHuiD1tyw05k8J\/WcLVXN8ZRyBLhjebFA\/uYeLJnc8wbM51O09vbm7HqLeVRYf7xtvoUHYvF6O29ytGDaVqaVCodCJVEEKF7kZTCTzpCgIipKAv9Fa9FQkAqglBtSDftrAUSQvOizFV+ntx1GiBpCNUBWgrhakasBpEnBqpquZaDkwRbmvEvVtawcPRghGtXajncEEK9GRnaJIP1b79A\/UfeuoV3sjVkb75ra2uZYvRedMvttUiozWbbZPsQCAQyG67D4cjZcLej\/FEI+0UkNJv8slUmshsVTHLu7+\/Pdamt8eNJ9aLeVF43UOn7h3Hu\/bmOqtahaVqOaHEsFtuWm+l+xb4kHsMw0DQtJ7W2trZGT08PNTU1XLx4sezNL0kSsixnhkqrweLiIuNjvZy914HTUd0TqYRAaAZCEkhy7s1yq116C\/I3RgKDRiTWEZID1pMowerPk3POdBTd24k0NowU6t3yjE9NDRhxP1KovJCoqgiaOhOML9VzrOZW+rBjdpSo8ZNbXMH2IEkSdrudhoaGgmm5wcHBTDfUTnfL7XWJNT8VXagzzFQOmJyc5Pr16xnbB1PWZ7ufxX6YoSnXTl1IUcGsD42O3OB0e4Aa\/62MyPqqCz0lSMcqd\/GFzRHPG9F9FPYZ8RSbzRkZGWFiYoITJ07Q1dVVMftX6xZqGAaDg4MozHPpQRtSmdRaMUhEMYw6JPlWyk0IBVYimXbprUBOrWDY25DnR5FSpVWny0FIMkKuQxm5gl57ACm0dVkeRUsgHelAvxKuKHXY1RonGPRzY8XF8caNZoN2Z4qXn+mHApIeu41KuuXMIdaGhoZtp+X28mm2XLShKAoNDQ0ZUd1UKlVQOWCrKcpqLKdvJ6olv0zE3FiLM7qIklcjvPr9BQDWlgJV6Q8W6mqziOc2Il\/2RpIkEokE165dI5VKcf78+aqHqKoxbYvFYvReu8KxwzrNjQpb0VrLhqSHEbIdSdYRhg1pYQkpXt7OoBQMpRZ5rBfh9m9LgUDYPIhwGnl1EAA5OIXR1IW8PL3lc8rrs4jTdyL6KlM16D4U4sbLbhajGi2ejadC1yvX4Jfev+U13C7kW2FnS9lMTk4iy3KOttxOSNnsFqptvrHb7QUtDrJTlPn1oXLXh9cf8cCGRbwz8jyyEcn5uQBGv7cR\/cfDcS5fvpx5mDHTlcXqZvmacVZzwW1E9myOmSJbXFykr6+PlpYW7r\/\/\/i0pEFRKPAsLC0yNXOXeu914vDvTWSWhYWgeUFSkucltRyiGUos8MYRkaJBKIiQbkqgujAcwnI1IM5PIyVvRmIRA1sIITw1SdHMDQ6WQk\/NoLS1Ii+WFRGsccai3s7zqpcYRxKkKTkhrrE8tUdNdmQjiXqGQ1cHq6uomKRtzkymVwtnrwvp2uj7zlQOybR8WFha4ceNGjsVzIduHbKmrvUS1ygWSHt4gHbG5qSeR8BCa24jkvU4vb3rTmzbZYdjt9oJ26bqu5+x1Zo3njYY9JR4hBKlUimQyiaqqmQ6b\/v5+5ubmOHXqFG1tbVs+fzni0XWdwcFBbKlxLh5LICQvsIMtvXoSZleQjB0kHUBKhjD8HUjJymRrYOMpTDhakEavF0yHSek4wteESESR9OrrYsLXhCGcSPEQSedBFL8DWU4jhVeLktmpY2Guv1rP4IKfezvXsSsw8tg\/cM9\/+oWqr78dbGfTyy5Cm2k5c0jxxo0bOWm57YhY3i7s5ABpIdsH87MwbR9MZWmzPvR6jHhkLYAz+mLRB7+5wVvfLy2W2vS5ZNfNshsV6uvrSaVSOXW\/rQqE7nfsGfGYsznT09PMzc3x4IMPEo1G6enpQZZlLl68uG2f8VLEE41G6b12mZMt6zQ13RxqTCwjXPUVz+GUghAOpJEBDF1Cdysoyta+3PmkY0IOzWLUdiPHF8qvRbEjUg7ksdLq1HJkGaP9EExXJvonbE4MbwtiaRVpYKOFVAJsLUeJPXvrHHJ9LaLOx8rkCi63Tp0vjU0VuO0GrrY49jk3N9ZrOF6zTuP4dXTdQFH2XrBxK8hXU85ORRVKy+235oKdRL7Fs6ksHQgEMrYPfr8fuLXB7hUpV0o8sraMM\/JSSQHf3n+8FfGnE5vJKb9ult2oYLb2r66u8tJLL7G+vk57e3tV76Wc7fW\/+Tf\/ZpP3zrlz53jxxRdLnvcb3\/gGjzzyCKOjoxw5coRPf\/rTvOc976lqbSb2hHjMSMcMK3Vdzwz1dXd3c+zYsR15AipGPHNzc8yM9XDuSBK7cuvGkISGSNrAtT0rAiFsSGOjyKkYMhBLNeNybUFzrQjpZNa7PktcdeMqIVAqHLWwvIocrky3Tl6bQu84ijxbWAFBICFqWhEpGTE+iqQtb6o3KYsjOO4\/SvK1DeM4IxCCQIgGgBDE12HZsBNRVWyqzjoa7pDCqFA5Uptm9BtPcfwDb6lovfsdZlquo6MjJxU1Pz\/P0NAQiqLgcrlYWVmhtrZ2x0Vty2E3JXPylaWj0SiLi4sEg8E992GqJNWmsIQ90VeSdHTDwdgzY5l\/V9LVll1DXFxc5M4776Snp4eJiQlefPHFjF\/V29\/+dt72trdx7733lvyblbO9Bvipn\/op\/vIv\/zLzmnJdwi+88AIf\/OAH+dSnPsV73vMevvnNb\/KBD3yAZ599lnPnzpV9j\/nYE+Ix6zhmfjsajXLjxg3uvffezJPiTiCfeHRdZ2BgAKc2ycXj8cIpp3gA4fSWlagpBiEUmJpFjt9KL7lSKwh3C5IoP1hqwlBqkccHkUTxm1wSOpKWRjhUpALabAm5DsfkOFIJa+tCkMNzJL0NOCK3Ot1SsgPF34aYnUOaubFx\/RLnsMUm0bub0aY2z\/fIkoRf0fALDQSodYK1VR\/JiJ+ga43kkz8k\/Z6Hdt0G+nYjP+WSTqfp6+sjnU4zPDxMIpHY9bTcXmm1SZKUSSHNzMzwpje9qaDzaHYL++0k5XIRjyrNoeiLyFq45HlWZnPvWS1e3XdP13Xcbjdve9vbeNvb3sbP\/uzPcvLkSbq6uvinf\/on\/uqv\/oorV66UPEc522vYeAioxsL60Ucf5eGHH+YTn\/gEAJ\/4xCd46qmnePTRR\/nKV75S1XuEPUy1SZJEKBSiv78fIQSXLl3a8SecbOKJRCL0XbvMHW0hGj3F9dQkI45INYCj+ghFIKPPrGAP59ZeJGEg4imEg4oIrRLSMeEUCQx7br1HSAqhiEJN8EbV7wHYUJiW0ugOD5K7ntRaFHVqClipuJtO0tI4mzQiKw6Ilf4sWzxpFkIpvLqD4QUf93Su8cO\/\/Q71xzozLcu7LeOyG7DZbLhcrkx9KN9bxpRsuZ3dcnstEmo+fGZ3w+XXykxS9vv9mYJ8pbYPlaI48Qhs8hQKy8ih+QK\/z8WNp3Nn2dJVEI9hGAghNrVTHz16lF\/+5V\/mYx\/7WNWp2WK21z\/60Y9obm6mtraWn\/iJn+DTn\/50SWfTF154gV\/7tV\/L+dk73\/lOHn300arWY2LPiGdycpKBgQE6OzuZnZ29LWG1STyzs7PMTVzj3OHc1FpRxENQ5XoEkJwJ4l4vPKcjJ1bRnd1IlO4aq4Z0MufOqvdstEqnqAluzxLC5vIiDBnj+hC2AlYHlUAKreI5c4jocxNljz3dEqFnyUk9Nq4uuGnqm6f1J8+xurrK7OwsQojMJtzQ0LDjm\/Be1Vqyr1suLZfdLbdTEcBeE0+xOaL8Wlk8Hs+Q8szMTEbQ07wnKjV8KwRzfnAz8Qjs8iiqvIQREUhlGo8EMj1\/l6t\/WA3xmA\/J+cST3VxQ6XssZXv9rne9i3\/1r\/4VBw4cYHx8nEceeYS3vvWtvPbaa0X34YWFBVpaWnJ+1tLSwsJC+RpzIewZ8Xg8Hh544AHsdjtTU1O37QuwuLhAuz\/EhWOJioYbAWQthJHuQLJVXuuJzISpCZaeg5FD8wh\/HRKFI4A0PmxVko4JKTSH7u9Enh7OaZXeCnR\/JwwOIetpjENHYXTrCgny0jjirk6k3tJEqMjQXR9mesZDg91F8MYUTY1NmXqA2bJstumam3BDQ8PrwnenFArd94U6xMyNdyfTcvuBeCqJXFwuFy6XK8f2IRAIsLKywujoaMbwzfw8qpH1MVu6c+8hA7t8A1UOoGtu1MRk2fOEQx5SkdyUtxZPI4zNKiaFUIh4ttpOXcr2+oMf\/GDmuNOnT3P27FkOHDjAd77zHd773vcWPWf+fbKde2fPiKepqQlN00gmkwghdvwLEA6HWV2e467OKM3+6uddiCfAVlkovzYToaGE0rMJyUgj0jIUKF2sxxRqVm7c9MypHsJRhzQ6BvLWVZaFJGM4WpGu3+p+kxdGSXYdwTY9uuXzepNzxA+1YIyXnu9ptCcZsst4hRtX1MbAXz\/NXT\/31hwZl\/xNON93p6Gh4XWlbVVppJVv\/JZt+WBaPmdry1UaEe6HOaKqBzclCZ\/Ph8\/n48CBAwV11Lxe7y0dtTIPJpvVEzQcyiCKFEIIBSVU2VP95OXCD5RaUsPmKl+vzPYYg1u211txH63E9tpEW1sbBw4cKGlh3drauim6WVpa2hQFVYo9HyA10wXbUZHOhhCC2dlZFqZ6eeh4HIe6xTRRahWhtSGppWdaAvNxGoPln4ZMyNEF9LpuZHEr5WYotfiXK1OqLgTDWQejo0ipBEZjF7K2VHVzhGH3IKIS0tRm0VH72jTrvgb84a3J6sjCwN2gsbbkwxYtXZw93xHnn4btHHGrLH\/rFcRH37KJRLI34WzfndXVVSYmJnJ0tap9+t0LbIUkXS5XRthzO2m5\/RDxbPf6+TpqqVQq056cL3FUKDrMJZ4UTqUfWdrIGhgJCdWorN579W8LR\/XpWKpi4sknyJ2a4ylke21idXWV6enpkjOTFy5c4Mknn8yp8zzxxBNcvHhxS+vZc+IxnzJ2wg9F0zSuX+\/DL89w\/mjlqbVCkACRMKDE3zy4kqJ+dbzqc8vhFYTXiYR+q6azxbUKuw+m5pBu2krLK9MY7UdRQpXL3+jeFpicQ4oVJgVJGHikKKKuEWltpeLzGooKjV3ocYExMo2tpoGpcYFQBF5XmjpXivwMhCLB6fYIYws1tBHn1cd+wAM\/\/7ai1yjku7O+vs7q6ipTU1P09\/fj8\/lyRC3zn7D3uri+XWwnLbcfiGenIy673U5LSwstLS2ZB5Pspg0gR23b\/AwUOYVDuY4sbWzQhu5CiZbPZAAk026Whwt\/fyqt8xQinlgstqO215FIhE9+8pO8733vo62tjYmJCX7rt36LxsbGnJmcfNvrj33sY7z5zW\/ms5\/9LO9+97v51re+xfe\/\/32effbZqtZmYk+72sz\/VxRlSyrS2QiFQly9ehV3Os3xu6pzAS0GKbGMcDchyZvTX+F1ndqlUeQtEIakxRB6PYZdRR4f2FJNB0CoLsRicBNhSPOjRPxNePXy8je6rwsGrpdN8dkMDeGQMZxupETxGpIhK4TsNTgUN\/LUAmSl6OzrCzj8bpSIDRGzsxixkfY40FMx2n1JHOrGZ9nu1Rl3JkjoLuLffB79oz9ZcQ0nuzsKbolarq6u0tfXl+My2dDQUFZLbDew0xt\/NWk5U6Zqr3C7U33ZDyb5tg+mfI3NZsPvk7BJPRnPLSEkpHCg4i7OhZHiR1baUp1PPIZhbEkktJTt9YaTci\/\/83\/+T4LBIG1tbbzlLW\/ha1\/7Wk5KL9\/2+uLFi3z1q1\/ld37nd3jkkUc4cuQIX\/va17Y0wwN7aH1t6rMB\/PCHP+TMmTNbsr4VQjA9Pc3Q0BCHDh3CGE1zx5lh5CIF\/KrX6W5HcufeONGogXtyFMXY+qCpYauFYAxZ25pwqFDsiHUDaaVwF52m2BEeN3ajMAkbsg2h1CGNVddybTR2IqanN1quzbXICkZDB+FgAtv8Cmqq9EPE2LwPZyp3s9EMQVCXcNUp+AhTYzf43nAdJz0yK2+\/j4c+\/jNVrbMQzKL06uoqgUCA9fV1nE4nmqbR0dFBd3f3rg9w9vX1ZWoVuwEhRMbywfwMHA4HTU1NuzIvk4\/5+Xnm5+e57777du2a2dB1nbXAGG1NS9jUW+QRWQdfunJJqu8+mmDgu4W\/i+\/+sw\/Send59YGlpSWmpqY4e\/YssPEw3dnZyfLyckb94Y2CPU+1QXUq0tnQNI2+vj7W1ta47777aGhooO\/aVcJrTmrqdoZ4pPgKwlmbkdHRdRXn1NC2SEdIKtLkLKQ0RJ295CR04dcrGHEVeWWi6DGqniKRciPs6iblA91ZA4EE0mr1cz7yygzGoaOIsWFEUyeGZkMbm0GamaDS2OFga5ixGT9u49YXXZUlGmUgomPg5kbKoNaVZIYaHE+8RvqX34XNub2B0uyi9MGDBzNaYgMDA8zNzTE5ObmjdgfVrGu3IElSTlruueeeo6Ojg2QymZOWq6ury8xP3c717bUXj00N0tW6kvMe02kFT2qx9IR0FgxhY+B7Y0V\/X6knj6Zpm1qpAUskdCeR\/YdWVbXqVNv6+jo9PT24XC4uXryY6T9PRVLM9SepubRD6xQpgstxalucCKGiTE0h69XZTOdDJF3IaxuSNEbtMSRprfLXImEYPuS58qThTAQxag6jRG8VPXVfO4yOISW38R60NFrDMYyrA0DF388MZAkOtIeZnvFTrPeqyS7TZIfRRBo0g2f\/4Bu85ZF\/vfU1F4CpJeZwODh8+DAejyeTljN11cyUVENDw21pUthrrTYg4z0EuWk50wY7W0V5p1OTe9lVJ8vLOKQRJOnW30AIGTmmI0uV\/10Ci86SLipaAb22Qsg3gYvFYtjt9l2VDtotvO4iHiEEU1NT3Lhxg8OHD3P48OEcEktFkgy8tMwdl6pvQSwGj5REGG6k2SXkaOUkUQiGrRH5+quZf0uzI4Qam\/E7K3v\/htKIPFqZ5w2AvDjGqquBeiWK4e2A\/sLq1JVAIGE0HcboG0QCEl3tOKe3ZmxnUwTNrRFWF7yFusszOOJM8HJMoun5fmKhGG7\/9oRji0EIsalTLBQKsbq6yszMDAMDAznOm7W1tTu2Ye51jSX7+tmfQXZaLn9+yqyjbTcttze21wJFWcTOeIZ0DANEwgaTcygvvYB25ixyhw+Z8g9ofT8onZJLxyrLjuRHPJFIZFuDsfsZ+4J4Ko14TG2rYDDI\/fffn2mfzEYqkmTi+WUMGpDZntinCbucwpgOIYfLS2aUglDcSIMDOT+TELijCQyHvexTluFoRR66VvV1a1PhjeHSgdLq1KWQllQkdxui91aU415fQO\/qRJqe2dI5vQ6dREOc2Kqr5I14X53g1VWN537vazz8uZ\/f0rWqRbYL6ZEjRzItuqurq\/T396Pres7sUDFjr\/2OUl1t+Wk5s1tubW2N0dFR4vF4Rsamvr4ev99f9Wew+6k2garOYRPTSJJACEiEJZTZUezI8Op1JENHfe0lxGsS+l33Ih1sRJYK10qFkBj49mY9wmxU2tWW\/1m8UW2vYZ+k2iqJeILBID09PXi9Xi5dulQ07ZGMbNR2IkEn\/tqdIR7D8CJdvQZHtt5PLwARSCInNnvzqPF1wtEOfN7idSnD1YY00LO1a9sbEaNjGJ4a5Fj1Rm+Gr57YXBj3fO4QqSwM5NgKWlsLzJc3fyuERm+KGykvypqOq8jdqEpw3G8wcXmU0EIQf2vtlq61HeS36Eaj0ZzJedPYq6GhoapIYK\/bmau5fqFuObNN2UzLZasHVJKW291Um4FNnUEVc0iSgZFyIM9O4omuIgTocwmU9K09Q0Kg9F6BXtBPnIZj7ShybkdnLOYhvlb6oXllfjlDIqU+63wTuL22irid2BcRT6l2aiEEk5OTDA8Pc\/ToUQ4ePFjyD5GKbtw4swNp\/BeKHlYdhiaRVucwuu5Ftm9NjkbIDcgzrxX9vTc4R9zZiUvd\/GRluFtgoPpIB0CvPQB9fRtzSc4WDNWOrFVOyEbTAbQbU7iLDJ+RSqDabGj1dRCoLA2p6bC87iSRUPEqOh22CP26m3jUgU3Wafdq2PKiv3q7RETTeeZTX+Wf\/\/EvV7z+2wFTWdnr9dLd3Z0x9goEApsigd0o0G8H2yG+fBkbU9bIbFM23UfN1FwhMt69VJuOzTaFaiwiNDvMz6CGbj0srYdUamaLz+woQ30w1Id++BicPISibuwD073lMzXhtTCvvvoqqqqWtH3QdT1HkT0Wi23bk2y\/Yk+JR5IkhBAZT558mKZIoVCIs2fPZmYzSiF1M+K58U\/L3HFh+xO\/huFFHt4YkhJzAThYvTilsNUgXbta8hgJgbwWRDS7c+Z6DFcjDA4gbaEIHbbX4+q7nin+S4FFRMchjLXpTYObm9YsSRgNN+s55a4dDaPWNaKlPBAp7LYqHE70hi4igQRiegm\/YuB33iLAOxtj9C1LuAwHq1GFlZSOy6bT7TEyykXdboiNzLA8ukDTkcol3cthJybnTWOvY8eOkUgkMk0K2QV6k4iyN5y9bi7YqYirkKxRMTLOTsvtTqpNw26fREqtw2IAdS1XYSApXPiGeys6kzI2DGPDGB3diNMnufat8mnmBn8D5978UEbWx7R98Hg8ObI+uq7nSB1FIpE3pPso7KOIx5zpMbG2tkZPTw9+v5+LFy9W3FGUCm8Qz+izSxjUIbMFnbZsDNxSJpCXpjA67kG2VT6gKiQFY3IBpQKFZ0cyjGG0IUkbsz0bUjhjRY3gSiHprMMxNrupkUCaHUccPA7Lxds\/hd2FrtYj+gaKHrMJaysoLe3oqRSkNj5zw1uLUduKFk6jT83B\/ORGI0GRWdDTTVGuLcp4ZButThVQWYgIgrpOrUej3WZw3Kvx6u\/8Fe\/6yn+ofG27DKfTSXt7O+3t7Rk5m9XVVebm5hgaGsrxmXk9pdqqQb77aLG0XDqdvq1P9ZKUwiaPIc9No6xMbOrAFMiIkTlkozqNRHl2imggzdKN8h1n6Xhq02Bztuuo2cZu7oPBYBC3272l4dHXC\/aFwUl2c4EQgrGxMV599VUOHjzImTNnqmpjNWs8CIisb6\/10zC8yHnKzGIhVOTowkjHHShrldc\/pLkRDLVmQwpnej4jhVMNhNMHcwGUYs6lEzcwGg8Vfq2\/CS2qIsaqlwKSluaQjx4i3XkncWcn8akYyWtj6OPTUGHX4unmMNEsUzuXKtHmUHFpTibDdq4GBY2hFfq\/\/lzV69sLmHI2hw8f5uzZszz00EOZiGBwcDCzEU9NTRGNRnc9Atot4jNTcqdPn+ZNb3oT9957Lz6fj1gsxtzcHC+88AJDQ0MsLy9vW8XEhEQMm34DdeBF1AKkA6CnPDjWKh8UzcaLQ7XYvOWJp5Bygek6euLECS5cuMD58+ex2+2k02n+4R\/+ge7ubr7yla+wsrLC0NBQxffFl7\/8Ze6+++5M9HnhwgW++93vAhtk95u\/+ZvcddddeDwe2tvb+ehHP8rcXOnO1MceewxJkjb9L5HY+kjGvki1mc0FqVSKa9euEY1GefDBB6mpqan6nKnorVrE\/EAa\/\/ltLPD6ZkVmeX6cVPMp7I7ykVRC+HCOVhbCm5CEgQjGMLQ0crQ6kgMQqh09LFBjkdLHzYxjtLYiB28pzhpNB9GHJiC1taYMo76d1MgiUkMTxsLWvsyyBKeaQwyG6nAmc7cKv6riV1UQsPaXPyDy5lN4W2q3dJ29QrbNsRCCy5cv43A4CAQCjI2NYbPZcpoUbqcLq7mZ7fYcTXZaLhaL4XA4qKmpKZqW24oJoCSFsMVHsE1eLSpJpas1yC+\/WvB35WDY3Hzjb0Lcf2f59H8lXW0ulwtVVenq6uK+++7j0KFD\/Mmf\/AmvvfYa99xzD83Nzbz97W\/nS1\/6UskIsZTtdWdnJ5cvX+aRRx7hnnvuYW1tjY9\/\/OP8zM\/8DK++Wvpz8Pv9DA3lPoRvxxNr36TaEokEzz33HLW1tVy8eHHLXzizxgMw9IMVTpzfWqhq6F7k8cICeGIxCt2lo7C0UJFKyIyXvHZCQcRF1eGoQMKQ65EWy19X0jXE2jqG24+UCG\/Uc3qrSK3lQWs5hjY4CZoGoTDOO4+QuD5ZcrCuGBQZjtcE6Zn3UqcUvg\/8CK7+H\/+N83\/zH1C3qWiwVzAt4Ovr62lvb8+R9x8fH+f69esZgdPb4cJqEs9ei4Tmp+XMGtlWu+VkYxVbeBB1Yago6QhJhcGJLc+0jcS7SCZCyI7y9161IqGKovDQQw\/xj\/\/4j3R3d\/Nf\/st\/4dlnn+X5558v+95L2V7\/wi\/8Ak8++WTO77\/4xS\/y4IMPMjU1RXd3d9HzSpJUlVV2Oew58QghWF1dJRQKcccdd9Dd3b3lL4Ke0tBTt260kacXSf3GEezqFm6uvuKbt21hkljDUdye4utMLMbxpasPRQ1fM8bl6yBAP3UMJV65w5\/h74L+yodLpVgY4e1Ed9VCNfWcLAhZRqs7it43kvvzsVGcp46SuD6xJfKxSYI7miL0L\/iotxe+TWu0FK\/82\/\/G+f\/7321789zLIr+59mx5\/6NHj5JMJjNNCvkurDuhIrAfiKdQO3V2jayQqGfxbjmBkp5CDY2iLo+XdAzVow6UwNaicoHEN\/7+ZlZALS9eu1WR0Gg0SktLCy6Xi4cffpiHH364qnUWs73Oxvr6OpIkldXJjEQiGe+je++9l0996lOcOXOmqvVkY0+JJ5VKceXKFSKRCC6Xa9tCiclIXsuvgNVFibaO6jYVQ\/ciTxY3PpMQxGdCuE8UTgVGUm58q5t9bcpBAPpiNNNFZkzMI7W7kfXyzQxG3QHorX5AVEvaENE0kiQjV2lCJ5xeUtQjBkcK\/35sBNsdh0n1TyJVKKyT0iTmIg7iKQW3atDlS\/HqsoqMzEGfgSPvNN7AGs\/+yv\/g1KffR01NzevOibQU4TkcDtra2sq6sJobcLXvfT8QT7l26uy0XLa+Xn5arrGxhgP166iJAOrqZNFIRkgqulSD0vfClte87uxiZDBx83zlP7ut2iJs1YunlO11NhKJBP\/xP\/5HPvShD+H3+4ue7+TJkzz22GPcddddhEIhPv\/5z3Pp0iV6eno4duxY1euDPSaewcFBbDYbp0+f5vr1yp\/UiyEV2VybmB1I0tZReSpGAFJveavn2vUlhN6EpOReMy278YxvLcUWlGrxzkxk\/i1FwxjJJuQCsz3ZMGraMPoHq9ZM01uPYVzeeK\/BhgYaUpUbvRl1baQWE7Beup1UnhjDONKBMlq8wSKcVAlLXiLraRodOg0qkGXg92BTjOtrbtbTduYScTyKwWGXinKzJ7x2cp7X\/n\/fxPYvj2yyPNiv8zPZqGSNpVxYb9y4sSUX1v1CPNWkDwul5SKhORrUMVJL63hSgYwJoiGpCMWL0GSIxZHXViCeIPLSCN4zzSiR0ooDxfDD19zAxiC2XsEzbaWSOfnEcztsrzNrSqf51\/\/6X2MYBn\/yJ39S8nznz5\/n\/PlbxfJLly5x33338cUvfpEvfOELVa8P9ph4Tp8+nXmS2wkjuFR+xAOMPhPk7NubKj6H0LzIU+U7umQERkBHyTq1QEaZDyJp1bdw6zYXzuEC3SVTY6x3d1OjBguv112LMT6LpFfXCWQ0d6NduSU0WrO6in7iOEoF4qN6y1HSQ9OQrux9uudn4e7jJK9ttHDrSKzejGocssCjGvhI4CuSOXKpcLo+xlBMpdu5cdB0QiNuE\/j1BB1OBy03ZpGGDlLzrjpWVlYYGRnB4XBk5mt2W+6\/Umw1xbcTLqz7gXi221Xnsa9S5xnDiArcQidl+NHCEeTgKs7oek6dVMgKkQkXYjlE5FWB7x4vcrJ0E04+NGcN\/+tbQUxp3LRWPkugxct\/N4UQm0RCtzrHU872Op1O84EPfIDx8XF+8IMflIx2CkGWZR544IGSVtnlsKffRLONeieM4KBAqg2YfTmMbrSiyOWJTQDStcGKrydNDpPwH8J5M\/8jDD\/ySvH5mFJIpT2oqcJacM7ZOfSjrSjp3C43YXOiB5JIscJDm8UgfHWkhpc2DYaKoRsYJ44XVb42JBm94Rh6ifpXUYzcQL3vXkKzUdKTS7jQcdkrf9hwKnCHJ8RrAZU6xbvR4SYA2UZfOIrHaaP92y9BdxNn3nVmw2clz4WzWESw11HRdq9fzIXVNH4r5sK6H4hn6wOkArs+iBqdRF\/RUK+8uCFxAxRrcF5YcOAc2ni4E4Ew0SkP3rbNtiGl0LfcjmEEM\/9OpcsTTzpePuIxH7zzI55sc7atItv22iSd4eFhfvjDH9LQ0LCl8129epW77rpry2vaF4+AqqpmGH87XTuFIh4MCAZUGhorIB7Ng5yV6ioHydAwVgW0Sxi2eqSrV6pYbdYS\/a2orxYnPEXXEGsGhu9WHUZIMobuRVqpbt5GqHaS6zJStLD0j3FjGI4dRp7PJdCUYkdTmpEHqicdgYR24CSpl\/uxHTmIpmtUb6YAdhkeaNB4aTVMg3LrC9nu8ICAcBJWP\/99lFovHRcO56RkYrFYplNqfHwcVVUz0dBeNhbcjmtnDyuaAqeFXFjNTe11RzwihZNrEF3HmAhhGy6vYZhyduLsya276qMLrLraaPRXJvUkZIW\/+Xru9yYe14oSnQktoSEMgVRCLsS4OcCaX+Opdri2lO21pmm8\/\/3v5\/Lly\/zjP\/4juq6zsLDRvJQdFefbXv\/u7\/4u58+f59ixY4RCIb7whS9w9epV\/viP\/7iqtWVjXxCP+WHrur4t4gkuFb6BZgdTNDxU+rUCkHqq7+xyLkwj2u9AGhnbUmumkGT06WD5A5fmMOruQE5vyH0Yng4YrL6BIWZrQp2aLrEggTE2hdTdibS8Ub8xaltJzEawx6q3QBBOFylfO1rvRrOGNDqB0dWANBlC3sKGp0pwrl7j5UCIeiU3RSADTi3F4H\/6W\/RH3kP3m28VPvMjArNAPT4+TjQaZWxsjGg0uifaarf7Wna7ndbWVlpbWzMurIFAgOXlja6uF154oaym2u1CtSKhkhbAaRvaGOSenEedLv8gpLsbiX63cBSv9s2zeLaVFnuw7HmWlAMszuXWW2ORdFnigQ1PHpu7+AiGpmmZ9nogI0RbbcRTyvZ6YmKCb3\/72wDce++9Oa\/74Q9\/yE\/+5E8Cm22vg8Egv\/iLv8jCwgI1NTWcOXOGp59+mgcffLCqtQEcPHiQj3\/843s\/QAq3iEfTtC3N75j21yMDhburRp8JcvdDpYdRRdqDXEIksBgkLUl6WsMeCVb9WgDD2wVDlalOixuD6HccAZcbeqsbTAUI+9qxD5UgHROahj6\/itLYjGH3kR6exb6FoVJR30gipmKM5l7Tu7RKyO3FiCZRy4nG5SFhSIyGDWySzng8hFP10GbL7eZShcHI730T\/dd\/mkMP37HpHNkGb0ePHuXll1\/G7\/cTiUSYnp5GkqTbbgBnYrejrWwX1sbGRl5++WWOHTtGIBBgZGQk40C6Wy6s1YiEKskR7I5lpKExWI6hLEyUP7\/NRfjFVShhx25\/dYHE2w\/gjJVWGPnu0zYgl3ii4RTlR0g3OttKEU9+fQe21tX253\/+50V\/d\/DgwYrutx\/96Ec5\/\/6jP\/oj\/uiP\/qiqdZTDvoh4JEnalv319evXCQQCtNa3sMTmLqvJZwMIGpAoooANSFe21lUnVDux7w+iPOhBoXINN9iQttF7K+9Gk4RAXxdIU+NVD5dG3A3YbsyWP9BEPE5SOYyYXUTaAukYHYdITKwi4oXVF\/wiwppswzA2UmhFz2PAXFxmNaFgl2WandDpABxw3ANX12NMpdwEkzE6nHYabBvPn4phMP4H\/4Ch6Rx51+mSazWJqLm5OWMAFwgEMgZw2UOcfr9\/xyf99yrVZUYb+ZpqxVxYCykqbxcVpdoMA3vsFRRXGqmnH7GWQlkt740lkIjNOBCLpQlFAuLPLWC\/VI8cK5w1WcPLM\/+0Tn6KOLyegApq8+lYGkqUU\/I72mDrXW2vB+wL4oGt2V+Hw2GuXr2K0+nk4sWLvHKlsH6XoQmiETdeb+FNUKQ8yAtbMzPT3e2I9UHigQ689dURj5ZyIaWKe\/AUQmo+gVCacBKt2J43YXMhzYaqUrg2GjtIXhtD8nmx19TBeuXOq9rBkyR7x6HM9eqcadaTKklNwaHcOjaSklhM2NF0mTq3hE\/R8RX5\/t1bozJFCnfQiyJUBiIRXF6ZTuFANQwm\/\/B\/oacNjv\/M3SXXki0fYxrAHT58OKc+0tvbi2EYOdHQdmRDsq+7FyjUUVbIhTWbhHfahbVsqk2P4oy+hGwzoG8CliIoocra\/hN0kL5WWTpaiieJ9KfwHXMiFRj8vjbXDoQ3\/dzQBTaPg3S09MNZuSHSfOLRdZ14PG6pU99uVBvxzM7O0t\/fz8GDBzl69CiSJBXsajOxOKzhLTBoK5CQrlSftjKRnNroKEv3jKK9pQW1wM1ZCIa\/A16tLsoyWg+jvTSxcb0zx3BEKmh9lhT0uBM1XvmMjnC6SSynQNMRa+ukGuoQTheORGliFTYb6cZDpK9V3tlX49CIyIKliIO0ZCedMqi1CRrtAEZFqgfdwLQzyHLCS4fDB2kIGGkUjwN7ymDq899FT2nc8f77Kl6Xifz6iDlFbw5xmkrTDQ0NWx5g3cuIp9S1C5Fwtgurpmk5SgpbsWkulWqTY1M4Uv1IsoEYWsYIGsiGgu5p2OhEM7SNMQI9jZQ3\/Jx2d5D4VnU1UGNulVjDAdz+ZM5DmqE6+ObfFu8cNSpQRinX2ZZPPJHIRpv3TnS17SeY3ZT7osYDlROPruv09\/eztLTEmTNnMikCuGUCVwg3ngpw5Mzmp1ORciMvVl80B9CcftL9N+sXmkZ8wY2vtTzxCFklPb5QVbpMKCqJ8VvuoameUeR7O7GFS0dqKU876o3Jyq+DRMrVjpi7Ve8Sq2ukfB5Ut4JSRHxU+GtICv+GyGgVMAxYizrxqgahtIHXvrUIoMvpxKvEuRFJU6v4cco2iBsIICzZ6PnCD0mnde7+2Qe2dH7YPEVvStuvrq4yMDBAOp1+XQ2wVjtDU6kLq\/m\/SpoUiqXabKsvY5MXAQmtPwTPXUVKpYqK4AhZBrsd7A60mhaio9qWNrd07yTJN5\/Aqd36zkxp3YRDxed9PHVeQmUyAuXUC\/Ibq6LRDaJ7o0U8TU1NzM\/P75+Ip5JUWyQS4erVq6iqyqVLlzalOQq2U9\/E0Pfn+amPH8up8wgkpNe2ZicNkND8wK3pZ61vhHRrFzaCpV9na0Jdra6Dzmg6jDGW1TxhGCSH15EP+FCShcluxd6ArwrSAdA6TmY60LJhD0eJKz5sNjuOdC7BG62dJOajiHB19tcpTWIp4qbu5jxPvZxiNuGkXtnaMHGdzcY9NTqvBldpUm8l1FVhoEow\/uWnCM+GuPT\/fduWzp+PfKXp7I240gHW\/ZZqqxSlXFjHxsa4fv16RS6sm1Jt6TjOxSeRvRJGXMa4MoXUU14KSjIMSCTQ7T6GvxsBJLpb3BCr3jE48fQQyjtPYAtvfHf+\/julZ3UUR\/nmk4mRCRyH3UUVxwupFjgcjn059LwdvPWtb+Wxxx7bP8RTLuKZn5+nr6+P7u5ujh07VvApyTSBKwQjLYhF3Xg8t+o8IulCXq5chDMbAgntep7khhDEpxVsXcVfl7J5ka6Xl+TJOa3TTfz65sYAEY6QCHfiskeQ83JSRkMHnr7q6lZ6ywFSfcXTZLZgGJobEbYQ0s0vtH7gBImBqQ0\/62pQW8faVJLarCFSRYJuV4LxsJ0Gu1Fxu7VuCFYkiZlQFKds406Pi1FCTK0m6XT6qFU3HlBkCQL\/cIXvjK7wU1\/6VyjKxj20Uw6c+Rvxfh9g3Ukvnq24sAohctagrI3iCL2MqKtHTC1h9C8jjRbXTMyH4a1j5DUn6fWNGk3oSDf+WOUD4dmI\/mAU31s7iGsqvVfKkJetfO5CpMQmxXHTiVWW5YKptkpkj15v+MQnPsHY2Nj+SbUVi3gMw2BwcJC5ubmML0UxlKrxACwM6xy5d+O\/txvtRNRaKNBZow+Ok+o8jF1aKfy65RS+Kt0ONV8nRAq3ihuTM6TuPoYzfqveI7w1pCfXkKtpJvD4Sc6EyzYEsLSC1t6CgoTe0E2qQHRUDqGaWqSggUct\/Dkc8qWYiaq4FYG9SLt1REhMhNMIZJpsKl5V4YS7NvP7O7Dj8qVYSQgWkuv43U5ahANFBqN\/mm++78\/45499FFft9hSei0FRlIIDrKurqzkDrOl0eseMz6pFtTM01aCQC2sgEMhxYTXdOIVhYB9\/AlVdQ7g9MDyDfmUGablyLTXD7WO0r4bE0q1azPLlJTznD6DMVBf1A5DWiLyyyrPyMSiTwRBS+c+wwV\/PqXP3ZBTHA4FAplmlrq4uQ8Dm\/5vE80aD3+\/na1\/72v5wIIXCEU8sFuPFF18kGAxy8eLFkqQDuSZwhTDydCDz3yLhQlqpLjWUjUSgxO\/GCudzQ0odvqXqhAmFv47k1dLqBKlrw6yKjdSSUG1ocSeUyElvuoakkJLqEeHKXmPMLZJoOE5qovpoUT98FGkxiRQr\/bfq9GgISRC9uSendJiISPSvK0xGVNBUDrpcHHI58BaRpj\/o9HLCm8atpPHpLsJCImiohA0ZWyDMP7z3v7M0uPV7oBqYw6v33HMPb37zm7nzzjux2Wyk02muX7\/Oa6+9xvj4OKFQaNfSb7vlPmq6sB46dGiTC6uTFI7r\/w+yvAyqijG+gv70QFWkIxwuJsaaiM3mNwBIzI\/qG7WfLSCheHl5oPxrKxIKvVnjMRXHT506xUMPPcR9991HTU0NkUiElZUVnn\/+eX75l3+ZH\/zgB9TU1FT19ynlPgobf+9PfvKTtLe343K5+Mmf\/MmKxJm\/8Y1vcOedd+JwOLjzzjv55je\/WfGaimHPiSd7iDT7yW9paYnnn3+e2tpazp8\/X5F0RCF16mwMPjmPQEEgI726NXkb2NBIU4aKe3noY9MkjZbcn8kqzvnKW5JNpKX6smksCbDPxtBddej+Lozp8jMOOddoO44+VXmDhX7kBLHXhkmpPqjQJVbIMumDx4n3zSAZlW2sDQ6dlAETCQdRTaXRodLtlmnI90YoAZ9q50Kdl4gxC8JAMYwNGaW0TFJS+N7\/8Vcsvby4q7UWczbm6NGjOJ1O7rzzTtra2jI1zGeffZbr168zPz9PaotusJVgt4gnH2Zt7I46jZ+sGcPb6EJye1nvXyX67CBSme7JbAibg6n5TsKjheucyeU40cYjW1rnXw74kGzluxS1CpinUFebOcx74MABGhsb6ezs5ODBg0iSxNe\/\/nWuX7\/OuXPneOSRR3jmmWdIlxHlNd1HX331VV599VXe+ta38u53vztDLp\/73Of4wz\/8Q770pS\/xyiuv0NraysMPP0w4XLwh6oUXXuCDH\/wgH\/nIR+jp6eEjH\/kIH\/jAB3jppZfKvudS2HPiMaGqKrquZ1Jr165d49SpU9x5550VpQMM3SgrP66nDOIxDyLuRNqiCRSA5mpDTpdOj8QHwxhZm5lwtiEFg1VdRzS2k7pWoRZbPEFMayc9WJ36gt52hHRf5eky0dJKrH+j3qQvBkilbUiNZYQGPW4SDZ0k+6tb20TYhs8GB5xJVjUDo0q\/oGycranDo64SNjaiOpsMSiKNasDc44O8+t+3ZoG8E3A4HLS3t3PXXXfx0EMPcdddd+FyuZiZmeHZZ5\/llVdeYXR0lGAwmNH02gnsFfGg6ziu\/S3e+adR6nwYDe3EvzcNX+9F3IgTXnSybjSzam8h4Kwn6Sj80CkUldngQYIDwZKXW3hlEaO1vaolLrUe5cmXgugV9PMnU+Xrm5XM8dhsNjo6Ovjyl7\/Mb\/zGb3Du3Dl+9Vd\/lfHxcd7\/\/vczNVX6+\/PTP\/3T\/LN\/9s84fvw4x48f59Of\/jRer5cXX3wRIQSPPvoov\/3bv8173\/teTp8+zeOPP04sFuOv\/\/qvi57z0Ucf5eGHH+YTn\/gEJ0+e5BOf+ARve9vbePTRR8u+51LYV80F0WiUl19+GV3XuXDhQlU5zlKt1NmYH9I4EHplW4ybGi88iJoNMbvAams7TfURDE8DRk9\/1bKYyWAVMyGqyvpAELXpOLXa9Yp04wx\/PYmxyglYt9lJhoAs0tUDIRKaB0drCywUSFs1NxNZN2Cyiny9AWMRB61OI+OtcsxrMBMDBfCqlf\/1YsJgPBoibUCT3cNxr8KLgQnsziZaJC+yELgUCD1xg68OPM6\/+NL78TbuXm49P9LazQHWvSAeeWkE543\/heRR0WvqSdk8pL\/wNMbMrdy1lEihTK9g3v1pIOl0kqx3gceG0w4uLcZiqIPVqyVy3iaExOKCnTZFgQpGNoTdzh98byMVnCghtWMinigvFFpJO3W+QGh9fT0f\/ehH+ehHP1q1mGq+++j4+DgLCwu84x3vyBzjcDj4iZ\/4CZ5\/\/nl+6Zd+qeB5XnjhBX7t134t52fvfOc7X\/\/EYxbUEokES0tLdHR0cMcdd1Q9iFeqlTobff8wwZF7q095mTA8DaSfr0x6xjaVxKiX0QMaklFd15fRcgjt5Srmb7oPk355jvRyCPX+u\/CtXCt9vGojmXJDvHJCiNW2wvjm441QlISm4+zshJlbnXTi4CEioytIycr9iTQd5tNu2lybX9PphqimMxcTtDoL3x+aIZhOxglpOh7FRpvDzWFXbkT25vo2xmNBQoaMqvgwUjoeRcD0Kt94359z9jcf5tQ\/26zxdrtQavO\/nQOs1eikbRuGjuO1v0FNzCP8PgxZRhcekn\/0FMTK3x9yIoVrbuPh0rDZeDXdhRqJU6myY2wmTPzCcVzT5ccYrrmPMDa70RwUiZS3r49XIBRaLfHky+VUSjrF3Eeff\/55AFpacksALS0tTE4W32cWFhYKvsZUtd4q9px4hBAMDw8zOzuL2+3m9OnSulrFUCnxTM3KaOf8qMnyUUshaLofqIx4xPIq8eQ92CerqycJWSYxVYVBld3O+nAw88\/wa5OoD9yBa6n4lyzdcARjoHKFgXBLJ4wWJykRS5CY0nEeOgCTk+hHTxC7NllVlBdLy0Q0G\/Vq8S+pR4UjPoORsKDZqaAgsZrSWEoZSEi0uuy02n20lqkJH3LXkjZ0bqSXUaQ64oZESkjYDJ3Xfu+7DD85xE\/\/l5\/JtFzfLlRTW6p2gLVcXXTXmgtWJ3G++jXwORE2FWF3kI6oxP\/shxtdI1VAeH30r3eyOBKl\/nA9tgq\/iwBzLy9z+K4mpJUS9dmaWv7gG7eiqLVAlHLxbySUorbMMVoZci3UTr2V4dFi7qMm8v\/eldwDW3lNOex5jefq1assLCxw9OjRbQ1LlWulNuHx+5lOVpfvNSEkmURPFUKbwOKAhqZU56lhtBzBWKjChrrzMNpa7qzB2tUlgo7CtRet4zjpKkhHNLcgJstHiSKVJj66ROLkPcSrJJ1gSiWpq0VbrLMhS3DcL5hNwWAkhVtxcNDl4oDLiaOKW9omK5xyuGnxhrGpAqckUATEDYnJ58b5H\/\/8z1ga2XotsFJs9UucKdLfcQcXL17k7Nmz1NVtOLC+9NJLvPDCCwwNDbGyslKwZfu2E48Q2F\/7e1wvPg4OCWQJ0dxEciJG\/C9frJp0jIYmXpttZXFko3stMBZEPXmg8hPoguWwH0q8538ItBJP3LoHV1ciJX104KZQaBmkE9Wn2rbSTm26j549e5bf\/\/3f55577uHzn\/88ra2tAJsilaWlpU0RTTZaW1urfk0l2HPiOXLkCBcuXMDn823L\/rrSiEcT8PQLW+tgMvwdGKtVREo1NQSuLrCQOlH5NWwO4ter6EpzOlkfKDAzlNYIT8ukXLldZ0Z9K8mhyslT2B0kogpShQOiWncXwRfHiHd3ICqknsW4HRkJu1LZ3yWtw+C6zGEnnPSpTCViaFssui+nosxG1kFexu8VGA4FoQs8MijBGH\/74f+HJ\/\/rj25b19tOndccYO3u7ubMmTO8+c1v5tixY0iSxPDwMM888wxXrlxhcnKSSCSyaXhzpyHNjeD6x\/+Mbe4KotaP7m9AtDcReDbI0rcDpDqPo7W2ISq8vtbWxfPXvKwv5H7Pp2+EkT2V17nCo0Gi7YcK\/i7S0sX\/\/b3c75KhC7z1pWe9NoRCS4fY6TIRT74tQiwW2xG5HNN99NChQ7S2tvLkk09mfpdKpXjqqae4ePFi0ddfuHAh5zUATzzxRMnXVII9T7XV1NRk2H5bxFNhc0EyafDyM+v8v97iQ0lUJuiZucZKdZtEur4NxDKrL89R\/5Z23InyLcsxdyuEK\/DMuQm9\/RD6TOHjlXiK1bVaWvxJ5FQCYXeSXAdSVdRcWg+i9VdWa9Ia64gMLSIB+sgS4o5DSNPTRa8nkFjW3XjVyluGoxosxhUOeDY2LFWSOOWzs5hMsZqSaLGXzrYndZ2pRBicNuwpaLb7OOa+KcRopKlR0wRqXcytpHG4bahpjcmvX+HPnhji7Z96F4cf7K54rZXidmz+lQywOp1ODMMgnU5vyQerIJJxbE88hi05i+RyIOoaSBlu7K0eAs+uE\/z2RmdWennju2c4\/PiPN2O368gLs5Dc\/AAZ7zrGiz9MYRTYH5LhJOmj7Sg3Ko\/gF66E6DzgwhHPatuWJP7kZRuwOXpx1zoJr5RWL7B7SytUa2VEQjVN23bEU8p9VJIkPv7xj\/OZz3yGY8eOcezYMT7zmc\/gdrv50Ic+lDlHvvvoxz72Md785jfz2c9+lne\/+91861vf4vvf\/z7PPvtsVWvLx54Tj4mt2CJko5RcTjYS8TRCSMym2ummcukaYXeRfGWiqjWtL978ohgGc1NNHG0uTTwphxvRP1d5isrjIdhbegBSLAYJ1h2hThog5e\/GuDFR6dkxDh8nca0y0jFUlVBEoOi3Io\/YwDSOribsyTAimEfydhuisxPPUOWyPutCJZoStLk2f0ItDpUmu2AoGqXF4cKWFcwvJOPEHTKJSJJ2h49OZ\/3NNWy+hiKgSY9TWy8zHUqRlhTCCYHNiPO\/\/\/03qLm3k\/f\/0buxlzD1qga7NT9UyIF1YmKCaDTKs88+W5GuWjmorz6J2vN95EY3wm5H99SQWgPXGR\/rl2Os\/c3m0QA5qRPpvRnhqw5chztw+hWUwCKEQgQ7TvHa90OUskqfvrLAsZNNpKcrTIumBCG5nSZujRH0OVt5qa\/wg6jNXZ6UVVfpY8o1F+RHPFsxgSvlPgrwG7\/xG8TjcX7lV36FtbU1zp07xxNPPJGjgJ3vPnrx4kW++tWv8ju\/8zs88sgjHDlyhK997WucO3euqrXlY8+JJ3uAdDsRT6U1nsjNIdNnX5H50P2Vn19ztkK6im642lrWr98qUkaHFwl03Ul9srhUe8TwY9cq7zLTmroRk+Wjo8TgDOsXHsTWd7nic4vGZmJDlaf81hsaUQrUgZLTy+i1XtydrRgzG7nilNsBnlrSVZDOQkzBbZepsxdPqcmSxB1eB0Fdoz8cwRA26m1O6lQPNTrgqlwexyYMDvsgnNZZcdhJxg10SWLu8gxfePt\/46F\/9xDnP1S9zUIh7HpL880B1kgkgs1myziQmrpqpgNrQ0MD9fX1ZR1YpYUp7E8+jpQMIdc5MSSVNC6khIHznjbCg0lWHitv4YFmEL+xRByQ3A5Wus4x86MFSpHOzRWwErdRI0tQ4XByaChI3aWjqJMjaHYHX\/qnEteoQItNdpTeSksRjxBiR5oLSrmPwsZ99slPfpJPfvKTRY\/Jdx8FeP\/738\/73\/\/+qtZSDnte4zGhKAqGYWx5QC4RrmzaOby+QVA\/ejKI4ag8lE2OBKtaT7qubZOXzPyVGJpcOB8t6luxjVQh31JTw\/q1CtUG7DamX5pl2l9ZmkjY7SSSNkSFbdCxtmbkEs0HWjBCeCaEfPwQclcbiZRCeq6C+YubmIzY8NkkbEVF8XMxG9O4y1tLjQ00UX0UrQmD8dgqQ\/FVhE2hS9Vo9Ql0XQMhcKZ0XvmvP+K\/vfsvGH9tawaCJvaDOrWpq5Y\/wDo9PV16gDWZQP37\/4Hzm3+IFA0iN3tJ4CWJG6XOhnqyjei0ztKfVKfELg508NxaMy\/+0zKeOzsres3a5DrKiSoaDYDZaxF0p5MfpdtYXit+rwcqGfwu0xhVqqvNrLfdjhrPfsWeRzwmzI62fF+KShCNRpkeLT8VL8kS4eBGDlfXYF7voIPyT2KGtwnt+crrLgDB+c0bnrYWZVG7gw55c3v1+rKOWkUfWLqmDTFa2aYXbqxFjERIDaeJPnAKz1RpfSat7TDa9YmKzq37veiL5bt6RCpNLJiE2lqkRGUde7oBU1Ebra7KNueULhiNaxxxb0Q2h11eDCEYiq3hk9341eL1n7V0nIVkGJ\/Xi1+30+VqurnwjWt7MThRszFHtKTJrCVAmgjwj7\/8ddTuWt7zn\/8FrceaKlpnPvaTOnW5AVYhBHV+H0f7XqFmeQjVpaM5vKgNKqE1FVe7iuwAvamR6IrC7FdWcZ04hJiaQ8TLZCVsKqsdR3jx2QBmlDPWt0xXvYdUoLgRm4mpgTW6\/G6MUGVWCFo4zXhHF3\/698GSx8mKDcrY2osynW9aUsPQDeQC7flmpmcnutpeL9hz4slOtcEt6YhKsbi4SG9vL6pR\/q3YfQ6M1Vs30POXFf5VaUdkANaDUnWqA3V1hHoLP9GvvDxH\/U+04krealEMeRpR+ytvn6a+vuJox1Bl0gu3CpsLry3Qft8JXNOF61vGoaMkeicqOreQZDR3HUYlwqd2G\/EEJK9MYjT5qZUNxFrx5o40MgsxpWLSCWk6K0k45MqNKGVJ4g6Pn6ShMyvF8SZVnIoNTRjMJsJIbhtSXKfNUYNP9WxEqSVmMD0qHFINOh0wl5AIpTSMmSD\/4189Ts2Jev7F\/\/U2Dpzsum2qzzuJStSpcwZYDYP0t7+G46mXkH0Kqksnqnvw1CusB+zUnHCCgLi3BV1zMvh\/9YLYMIyWVBX\/8XacioY+MbdZQaC9mdfm3Sw8u0Z2ai0d19Dq66EC4klHNZJHW7CFKpOZkrxOvtizhq6X\/nbHY+Wj5liifKpfS2jYC3S\/mcRj\/i1Mb6c3mvtoNvbNt0OSpE1CoaVgGAZDQ0P09vZy+vRpnEq52WGw+3I3pe9\/dx3DXnrGxkBG76\/S4Ky2tfgvdYO52VtPxgYSxlJ16aCUqxm0ytJOyfYWjGzxVEMwfzVAon2zcKJoaCA2XIV69omjJCYqO14+0k1yPrjx38sxImGBeqxw6i+uycSEg0ZnZaSzZihENZl2Z\/FahENWOCzZSUtxesPzrKfTdDjraDe8tDkqEzoF0IUgIimsxqHeIXHcCw0iTa3XRmQowF99+G\/5ow\/\/D154+iVmZmaIx8s8Ke+VXlo11xYCfvS\/Uf\/zb+LueQ6lxobDqRNOeVH9CsF5hdqTTiQZYs4WDKeH67\/Zm5NqFprBev8Ci70rBA0vxrEjGK0NCFkifOQ4330NFqYLRypTvYt4j5f4TmVhtmcR28EKjlVkvp6WeHVoHruz9EPr6mp50osnyndmFrO\/Nus72X8LK+LZRVTaYJBIJOjp6SGdTmc03SrpalNduRuTlhYsiQ5aGS76mqitHjVSXR5\/fa50bSQytMBC02FaxRiJ+i7UySrO39RMqLey44VNJT6z+cssNJ35\/ggdJw5gX9zoWhOqjYTmRiQq6wySDnSxfq0y0U\/biQOs5R1rxJKsXZ\/Hc0c3xvAUpvzaekpBQsJOZfWlqSjU2AV1tvK38mwyjtvm4sFaLxEtxVh8kSZbLd4SKTiAkBZnWYuQSqdpd9TjUSU2JNIMkKDVJQEp0rUSsxGd9evrPP3rL2Brc3HwX7bTfrIpU6ivra2tWg7qdqEc8QghML7\/T6gvP4maDqNJNgyPA489TSC5odxsk2T8p3xIMoSVJpSWWnr+369tqm9mQ4umCPTMoXU2MuKsZf3pYMnjQWJuPkatQ8VIlntIk1gMQr0ib+Rqi+BKSwP\/8L97QYLaFjdLk8Xn84KBKA0+P3qJhz2b3YVB6Rm\/YrM8hcoLVo3nNqMSM7hsBAIBenp6aGho4P7778\/UhiqZ45Htm9\/ui9ds\/MsSslxqxE5VvXb19YSule9+m7+apPEBL2IsWM3ZSSi1YFSWw062NWMMFl6LkUwzN6rQcbAN28o8eucRtL6Jyhbh8xBZjFXUQaTU+whNFG8kiA7MkxAO3HKahK7gVARl0uUZjISh3SVX5FQ6EgvTYvfgvJlH86p27vY1bKTgCKIkVeptG1903RCsEmUpGsKnOGlz1HLA7irYfp0NmxAc9EjEHILlZBJlVTD4hSFGmmc4+S+P0HDXUkbWxnTr3A\/NBfkwwhH0r\/8dDA9id0RRSRNPq9gbFFxOnZWYD7tT4PGnSNU1oDog4m7HebSZ3v\/PFcp9YaTORkaiboZeCQIpTjzYwUoZRZDQUoyWB9qI95WvtYZmwzSePYAxUDjltnqknUf\/\/laHp8tffhv0NboJLhSXsUrEtXK3By8\/9xLtoc6MyKsp8Jrf0ZZOp0kmkxbx7BZKRTxCCCYmJhgZGeHEiRN0dXXlfGkqUS4QBVSNn\/jOOu++24mU3lwgFw4PyZcmKn8DQKqmFSifmpMjKeb1u6hbr8LXorWNSF9ltR3JaSc6VXpAVo8mmJv10Hb6NMkrhR1O8yGQ0Opa0G6UVz8QkkTaW4O+WPrzcEoGKwk7sgxOWSvbPasZgvGoTJe7skzx9UiIoy5\/QYJyyAqH8aI7Da6Gponr0OlspF71Uu+p7IsvgJikEE3oOCTw22W6VQCdDh8kohHm\/vwqkx4XHT95hI5\/3cnS0hLDw8MIIZicnKSlpWXXo6F84kkPjZL8yt9hX5khLSl46tKo6ERTdtwtEopqsBLx0dCuodogaNRT1ygT9bXhvKOdy795lZWpNPUnurBLOsnR+dyHkyY\/N5JORl6JA7ceFEd6Fuho8RFdLH2\/jlye5+jBWuJzwbLvbaovwIFGL\/paLllo3c38x3+4mntwBSVlV62zJPHEY+myxHO4+xCKx57jwlpfX4+qqjkRTySycZ03co1n3xFPoYgnnU7T19fH+vo6DzzwALW1tZuOqWSOpxClJRMGy3InzWzeeDVbC+hVFP2B4Exl80QA4\/1xlPaD+AMTFR0f1z1slGrLQzrUjXitPDlokSSj49DW0IiyWtiuOwcnjxG7WtlQqe3OIwQrOFaz2XBoBrIEqykbHlXDrRaOBJI6zCcVutzloxzNEIxrCY67y9dwlkhyxN2AV3WwnIoyHg9S76ihRi5cA4zqSZa0EJqh02Krxae6cBcxqHPKEh1uCd1IsPa9Xl58+ga47TScaME4LqM3NTE4OLgpGnJVMXe0Fei6jnZ9nun\/+TSelTF80jouCUKajfrmJKosCCad1HUINF0lIbtoObCRLgpE\/dSfUkk2d+E61s7448MsX96ohazerIk6av3UHqqDaIJZw82rLy2zoQyQ+znpSYOQMEr1dAAgdAhJ9ooUqbWERqy2CUcW8UgNPn7nhTFSeSm4eKp8V6ZSpg4UDqUod5c5FAddhw5y6NChHIHXhYUF0uk0V69e5dq1axkdtGpqPL\/\/+7\/P3\/3d3zE4OIjL5eLixYt89rOf5cSJW3JdxdKqn\/vc5\/j1X\/\/1gr977LHH+Pmf\/\/lNP4\/H49uy5NhXxGOawWUjHA5z5coV3G43Fy9eLDrMVs72GqBYFu\/5q3LBdFviRgUbcTYaGgj3BCs61NZSx9pYkP50DQ\/U2VC0MjWNzi6iVyuTIpdcDgJDla1dPdFN4MoMk3VuupubUUt0qCXqakj1VVZfsh1o21TXKQhFBr8XObGRH3cqgrShsJyABoeWk3YLpyXiukKro3x6Kq4bzCc1DjrLC7QORAMcctWh3oyIm+wemuweBILx2BIRTafN3khIjxOVU0hpQYezgYOO0lbsAElDEEwZ2GwKfhmaHDLoaQinMV4dg1dh\/CujSD4XarMPcSjEau006VrwHaynqaVp27UhIQSh4QXWXp0gPDhHaiGAPRTAlQ5R40xTU6PhkDcikHXdTlNLAlmGQNJFfZvO6oKK5LPT0rpxj4Y1P\/V3OEi3dmA70s765QUG\/zJ32FiyKegtDbw6YzA5reNVI5QKZYPTMTrvrCU+Giz5XhZHApw820nkevn7cL5viWN3t5MenUNy2vmT+Qjzgc1Ry9r6OmXDHqUCodAyAUp2jccUeG1ubmZ2dpb5+XkaGhr49re\/zVNPPYXT6eQXf\/EX+amf+ine\/va309BQ2mzxqaee4ld\/9Vd54IEH0DSN3\/7t3+Yd73gH\/f39GQKbn8\/9G333u9\/lF37hF3jf+95X8tx+v5+hodwu2O2QDuwD4slm4fxU2+zsLP39\/Rw6dIgjR44UZex0PIWowH42WcTU6cnvhvmZ0zZk\/daNYfia0Seqc8xM+VqoJM0GIBrrYWyB6Nw6E11nOBJ8ueTxsUjlfyrpYDdaJYONqsL6VBCA1FqMSd1FV1sL9qXN70HYbcTjEnIFYqGSy050PVVRDchxRzfxnty8vSyBU4Gg5EIkkzQ4DFaSMqok4beVP+daWiOuQ5ezfKdjX2SVk57Gwu8DicPuBqJ6iun4ChIybrsTu1BRpeIksE4cTbFhSyn4FWh1yhSrnid0QTCtoSQ0mqNxkmOLWeeBgCyjyRKGx4bDa8fhdaIqKqrDhqwqyHYV1W1DEQbpYAwtFEePJTGSadANlGQSh5FCsslIWhKvLUWzK4XLphORFGq8SRzSRgQQdnhp8W88AKym3NhcgsS6QHYqNB\/cOCYSV3EedGC0tKAcaEMLRHnxN28159g7Gwg6vbx2JUBk8lajSuPdLSTKqDgvjkVpbfIQWy7dRTY+GKDd7yIdKjc0LjG\/qNFkV\/nfDhcvDhX+Pi8sBGiSWzFK3K\/pMk1PhiawuR0lXZCLdbUZhoHdbqerq4u\/\/du\/5fnnn+fDH\/4wjY2NfOYzn+FDH\/oQ3\/nOd\/ipn\/qpouf+3ve+l\/Pvv\/zLv6S5uZnXXnuNN7\/5zQAZhWoT3\/rWt3jLW97C4cOHS743SZI2vXa72HPigVtmcGaqTdd1BgcHWVhY4N5776WpqfRgXrJCnbZYkX78RAwCti4a9VtCg+l4dVYGAGtVpNkCy7eOnXh5gcYLR6hZLWJB3X2Q2OUKu83cTgJDlR2rHj9A8uotgkqH4oylFLo6G\/Cs5qYYE63tyDcqjLi6OkhV8ESaavIQv1a8WGxLp0FVmHP6caciOCtQr55LpHDKKk320tGBJgQ3omtFScdEmBShVIITniwZeBfMJVZZTkWxyQ5anY3MxJZJGima7DU02v0bed0iS4hJEqG4hkuRqLfLeM2OvKxGg6RhYDjs2GRwp9PIoTTcHIxMI0ioCrIkoaY1HDc\/l7QAxWVHNXQULYlmgCoL7IqGU07TVn\/rngvrKo21cVRZYAjBOk7a\/CGEgMWUD7dPps4RJpq0Ude1EQmmNRDNdajH2kjb\/aiGwff\/3QCiux28TgaHQ4y\/HAI2RxXj1xa581wH81eL1yjTCQ3DVwtliCcZSZHsrkcuSzwQWYwyd287f\/V3xR\/sNF2noc3H8mzxrrRK2qVtXntJ4tHihfef\/OYCTdPwer187nOf4w\/+4A+Yn5+vut6zvr4OQH19fcHfLy4u8p3vfIfHH3+87LkikQgHDhxA13XuvfdePvWpT3HmzJmq1pOPfTPHAxuptkQiwUsvvUQoFOLixYtlSQcqt0SIhovfFK8N3MqnC1klUWEdI4PGRiITwYoOVRtrCIxndZsJ6B91ki40iyRJRFarMAs72IVWyeehKqzPBDf\/PKEzN6eQ7ui69bNjR0hVSDq2kwcJVUA6sseBlJTLtNGCWuvGqekInwe9q7mkaM6CkKlRbfjU0qQT0dMso3HcUzp9MRNfR9cE7c7N2ft2Zy33+DuoUxWS+hotPicOxWBdC7GcWsPIWqkuDEKqwaoOcV3glwSdboUGh5xjDRNKGczHNSIIXDL4tBTOVApZCHQJEjYV4bbjsEn4hIZbT4EsSNlkJFXglDRsyShOI0qDO8VBf5w2bwKfO02b99Y9saapNNfGUGWBLiCsOmhrjm+4v0Y9NNfGqHOE0XQJ0ejFdjO7HXI04TvTgSbs2FprefbPFvnfgzJ\/84Ml\/ubbU6TLGM\/duDpPTUfpSsjswAqNd5f3y5rrX0W0lL6ebFe43Gbwd8PFxyVM+JtKn2u9As8dWxnh2HJzPCbMGR4zw9PW1lZVh5sQgv\/z\/\/w\/eeihh4oaaz7++OP4fD7e+973ljzXyZMneeyxx\/j2t7\/NV77yFZxOJ5cuXWK4gs+0FPZFxGMimUyyvLycsb+udPq7UuIJBYvfPN\/7Toh3fMyGpKfRfR2IUOXK1QApbzOVptloaYTJ3I08thjmRtudnIrnyekcOEzi1crOK7mdBAYqG+jMj3ayocdSTIwIDhw\/gCMRJlThUKnSVMd6pcZpbY1oQ6XJTABptxNteYOk0+txXO0NOPw20qO5rx2LCDpdAqnMPbOcSqALiSZ76Rz1SHSVdkcNLqV47n8stkSrw4\/n5hxQq\/\/W5hDXk6zIcZbXA0jI2GQbNZ4aVMmDYWy0gAsEa0lByjCocSrUO6CeW2m5hCEIJnUcCjQ7JNyGTjJqENAEGoI6n4rPIeEQaRRDx+Yy8Em30sVpHYRNp9F562drukpn\/UbklDIg4bDR6E+wEvNjKNDVditaWZNraa3ZeEpftrfReLENQ1FRm2t57Zsz\/MV\/yb1\/RvuXaO3ws1YkctCSBjEDZFXGKDETM359heYGN\/HVUmMDEtGkHZ+aQBQ4l+J38nfpGX7wbD\/19XVAaWJRnaVrOKsrERrLbJdlhUJLzPHspFzOv\/t3\/45r166VtC74i7\/4Cz784Q+XrdWcP3+e8+fPZ\/596dIl7rvvPr74xS\/yhS98Yctr3DcRz\/DwMEtLS\/j9fk6dOlWV5EglMzySIhEJFSeoUFAjaN8QJEzNV+4PYyIwVZlIKUCwiCDhwtVVpp1ZT3uyTGi2\/JOWCelAF1olvkSKwvrseslD9ESa8cEo63WdGBWkGVAUUjYXRhnfEQDleDvRMqQDoBxrIZEnPhqfC7I6uAwH21Hb60GRcJzsoMudGz0UwlQiik1WaSxDOtfDSxx01ZcknSkjSLerPkM6+YhpKVwaPFh3kAfqurm3po1DqptmReBV04TVCLJNp8Fj0OAwkI00MWEQlwULiRQxLYld1eiqgVaXjlvVcClpnD6JU3Ua99TpdKtJ6vT4hk+NSOWQTsQAyaNTf5N0DCFYdzrprNvYzJOoaDV2dEVlPeREFzotDbdIZyzio7Vrg3Rm9FoaH+pActjRhczqVIwv\/YfNDy2puEZcF9hcxTfgpYkgTadL1wtSsTTUlX\/CD85HcJ3s2PRzo97Bf515jR\/0bSjBBwJrNDT7S54rqZe+byOhBPYS7wuAMpG2VsSFdKdsrwH+\/b\/\/93z729\/mhz\/8IZ2dhQVWn3nmGYaGhvi3\/\/bfVn1+WZZ54IEHth3x7DnxCCG4fPky8\/PzHDx4EIejfEE4H5W0UksupWxa58oNN8LpI1WhB40J0dBIdKoyZ1KlzsvKSPGOs5FxF9pNGR9x8Aip+dIEYULyuFipNNo50U1yuXxbtutQC4PPz5M8cbz8OU8eIj5ZPtqRGryEK4iKHF0NxEaKt7KHhhdZnQqh3H2E1Fp5ch5LRWmyufH+\/9l77yjJzurc+3cq5xy6qnOe7p6kCQojgWSCRJAQYJJlA7oGAwbbyDgCxldYJvpiZGMb+\/PFkgGDMEEmCiQhzUijCZrpyT3TOedY3VVd1RXP90dP13R1nfNWjySk5sJea9aarvfUqRPf\/e69n\/08AmeSk2UuxuZotQXRSuqvRkdsnGqtE71GeaIZXZlHr4Eyg\/JkN5ieI4wOtyTj1sgETRIhs0SZQUbKZGl1Qo1t9W+3JodTL5GVZZazOYIUTpDTKzksUhKP4crDPZOUMeqTuDSrE106JzOWlggbVp\/R2aSG0ayO6EIWP8tIuRRmezKPIJxNGqmsW\/0jYnQRfnUjkl5HMpYmZ7Hy4KfVn52ZkUU89eIUZufxMfzN4hT6aMcMvh2lU269Z6YwBa9cZ029h\/s6jzIwU\/jsmGziVUlkqfT7a\/OKoya5xGJ5sxFPPB6\/6ohHlmX+4A\/+gO9973s88cQT1NYqq6zCqnzC3r172bVr11X9xtrvnDlzhlAodNXfXW8vueORJInq6moOHDiA1Wp9TmJwm6HL0RhLQ1F\/8qMoKU0ArlKaYSqzeVEwTTgAsvpLkFtK02vYDjodC32bczoAUlUFOUFhM29aLQsjkU3tczmWgZzM4IkJFmrqyanAYXV15UTOlnbWskZDXAYpLb6+klFHMiUrplDWm6bayczxIeZGl8hU+tFXKQMFMhVuKvU29IKJIZnL0heP0CIAG2TkHJdiE2y3q790k8QIGKx4DMoTx4XoCNtMPkWnNa3NUmHOodtwmZfSOfQmifCGtp6JFIQtWezrfOlUSiJgS+G+DDlPZGTiFj3bfKvPRu+ClnhOotkap9x2uSdHp8dtXb3WyYxExm7EZJBJe9w4XtaERr96rFqHlf\/ze12ceHyE2j3qTqH39ARVe4sjkYJjH42is4ojiMHOOUzuErLT6Rzxy5D5RLObP378B8xHi8ENTo84ghifKN1+YLKLF8WlZg01TR4lEbirdTwf+tCH+PrXv843vvEN7HY7k5OTTE5OFnEFLi0t8e1vf1s12nnXu97FRz\/60fzfn\/zkJ\/nZz35Gf38\/Z86c4T3veQ9nzpzhAx\/4wFUd30Z7yR0PgM\/nQ6fTPWcxuE2JwBlKn+rCXJrpns3LQq9ZdmHzpbLFxdLnN9Y+yYBrGzlhjvuKSbbNRzuZKj\/pTZAeWprCRAevrBqnz00z7AiAsdDJSnYL0cloyWgSIFXhgpnSKUlTY3nJ7nRT2E127PL1kSExsMB8f4S41wGV7tXD0UpY2yphJCIkQ4hmkkwl4zRYlBFAAPFsmmlitNrV00SXouOUySYsWgUGYjnHxegI1ziV0x+d8TGqoIguaDaZw6LL4djQ\/jy8nKPWkmb9emoonqPKkcB6GXK+mIakPodXE6cvbqdn2oDTlqPOfeUZ78uYaSq\/8vdAyk55QIawH93epjyN\/0osw48emObc0dVr3nVqnPA29ajl0skxAo3qkU90PoHGI055JmMptP5NNP8OLTLUZucvf\/J9MiqLxuiyOKKJxpaxOsWORWsSL15TGfFLkFFxPEqy11ebavvyl7\/M4uIit9xyC6FQKP\/vW9\/6VsF2Dz30ELIs81u\/9VuK+xkeHi7o94lEIrzvfe+jpaWFW2+9lbGxMZ566imuvfbaqzq+jbYlHM96aYTnFPFsonk0V6IBbM0eG7q6xqi0y83KeOmJHEDrsDAjSLOtt7M9sOLYHGuyVLm5aEeWJJYmNnes8UTxC5wcjTNuDiG7rkA7V5wOsoulnUmuzEFOQMS4ZuamMPNn1SHWAOg0yBotOYW+rOxUnOhAlGWnjXiVm0iPWEU15zCAXk+lSb0GsJCKs5iJU65Rh7R2REfZ4QihU4hkVrJpZrXL7FJwOulcls7YMLsVHFp\/YoagNVcQ0QAMLWdpcWULehoH4llavKm8WOZCRktKm2MmpmMppqeCBHqPnpD9igObWNFSH77y7nRGrLQ1yVATgh31SJe9YDaVZbA\/yzfvv7K4yWZyTAxH8JQrX7dcJsfM9DIWQcQy1RvF1yqGsw+fn8K3XT3C1Lc6+Mrckzw2oq7sCzAwXJrjzeYRZy5Kae6kSkTyoj6e51vjWROT2\/jv7rvvLtjufe97H\/F4HKdTeW45ePAgDz74YP7vL37xiwwNDZFMJpmenuZnP\/sZN9xww1Udm5JtCcezZkrMBZuxzaDacpsgktTptXzzkUky3s0LesVN6qvkjaapCCJv4vQ0TiOLQ3HOroTIllA21NgszG5StmGl3AsCgMWamRtCLPUrO8jo8DzDMSu5UIBkVYD0QGlKIdmsR06UliXWOi1Ex0unF51tlSyPiBVMnRV+kl1LxFNa0pUe0gFrUVBmrQugSYMtp76SHV9ZBI1MWMUxpXNZxqQldjmUU0uL6Thz6UUqKJ5IErk048lpdjuLv9sRHaHJ6ijg\/8qRYxpodRVOcEOpHDt86Xy01B+VWEjL+PUSLc4sDoPMYFyiwXalNpPMgt6tYQ2INZM0Ut+kgeYq2KDkGZnP8jfvLU6lxpeSJDNZzA7lSGFpNo7RY0EjWPQNXJzDGRYX\/od7FzA6CxeElhonB219fOKR\/2BoZpK+frEGTyy2TKhC\/K46\/eLJfnlFXEtcUenTWbOrqfFYSkDTf9ltSzme55pq24zjKREFA2D3W8jlZJ5NBktvfNmiI5tvGo0ub64fx1K9+vuz\/fP0BdqE28qV5eQEeu757SQJeXPBDqVAbCvzy\/TNyMytbI7CxVAVIqVAVVJwfIDW7yJdInqyNQSZOyfuE7LW+vLb5FJZVvoXWRlbIeVwINf5yTmMyOV2YoOzyAJJ4rTXiN9iw6NXngTi2RRjK\/NUq3ClTKeiZElTYylOOS2klllMR2i2FdPuDOTm2OMqK6gDJXNpemLj1OrXsWvIMiOpDG2uFGPLGnpW7PQvGPCaczTZM+ik1ectmoZyX+F5DuVMlLtX37WVjETWacJwTT3UFNZulueT\/O\/fH6FiuzI90OxYFHuZHY0CAS\/AcOcM5bvUI5ZMMkcCjer3ARKLSQxhNwBGt5mR2gR\/eegrPNVxpfVgbnaeyirxe+sJiB1LVhI7jrk5ccSeKIEoFaHa1qN4n0uq7ZfNtoTjWUu1bUYWQck2w1ywCaYXzJdXVf\/3x3NgKk3QmHS5SE5tDkatsZqY2iT3W2Thyvn0PDvBTPU25X3arcx1bC7a0W+rYWVqE6mu+jIW+0qjzmSXlfHOOLGGBmQBjNTUWsXSxdJkpbYd1SyWgFhrrUYSCwlh5KQx6UnFlCmUUnPLxLrm0fi8JBKQLneS81sVd+fcUY5xMYVBVn5FFlJxljJxGlTACEOJOdwmI0Fj8Wp+YiWCRpOmZkNNKStn6YgO02pwFjBpR9MrLGqW2eO+MrEmsil6pXnm09MML2vxaHVUkMTg1OLdIKC3YtfjMl2JknqW9eyovjJJ9qdsOBv9aCoKI305J\/OVL0wz0p+iq32Chv3KUd3QxWl8Depp4YvHRynfoV4bmxpYIFACYj05sEB2r43P9zzMAwd\/rLiNP+gS7gOteBKIJcQ11UxWPF3GBA3qII54dOsyG\/+vq4\/CFnE8a6bVasnlclelUZJOp5mbLJ3uSZfIvwLoLuP0F2MZhlw1JbeP6TavXKmrKkPeTNhl1THZU+igTp1cIu4vfjHlijA5lVVUwXaShqUpccSxZislXi5Ybc6LDa46sdHT40w6ysDnKtpO53ey2Fsa9GAIu5m\/KK7FAFiq\/SRnxedhbwiSEDhYnd1IdHSBzFSClf4oyxMrpO02pIYyqHYjG7RI1XaWLowiqwiJ6QI2XC4bFQqMBgDdsUkqTQ4sCsSTQ4kZ\/CYjQWPhxJLMZeiLT7DPXRhxzCSjrMhRavVWYrkM7fPTPD0zxaXoLC0aN3vsZfgvp2kuxMapMRSGtb1xiRrLlc\/mkxqqKq6cV+eSFY9NJmMtdpAjF5f4+Y+uXO8Lx4epU0GzDV2Yw9ukvkof6JzGJUipXTo+hr+p0PFptBocLQ6GKif4u85\/5wf9h1lcFkgTrIgdx1xEnJ6dmhHPI3PT4haExXnxIlQN1bYx4nkucOpfNttSjmfN62823RaNRjly5IgqB9J6SyY3AZFel4v+6uEkcom6UGxs89FZLLk5cEPGbSqCW2eSGdonbWTWdRlrHFbmOjZLY1PFymTp2ompLsjiJlgKzDUBcqkr92hxaIHeKZnFsnUreI2GrNFUOg2o05CWlYEC683RVsFCh1iLyNESKpmGyzn1yMuFx5SKJFjqnCHat4SxqYJsUo9cGyBT5SLjNhU8B7aGANrlFPqE8jPaER1jm92PUVtcm+uOTVBttmPbgHqLpleIapfZ5SxcXEzl4gwn5hmJJ+mIxMimjTTbytFrcuz3FG47n4rT7C5MCY6uRGkKXZkMczIsm3U4zKsLoLGYDq1eiy26jL2+2In+978VT8Sdp0ap3qGc0hq9uERFm3J9NBnPkJRl9AJ5gcmJKEa7EXuFjWRLhm\/Gfsi9j93Pd48+Qjqb4fz5i5jN6uCf7u5eYeP5wOAwWq36+NTkPEazep9XciWjWs8CkHNi+QQlVJssyy8IuOCXzbaE41mPagM2lW4bHx\/n2LFjlJeXoxMUh9csqYDS2mjpdSvcM11RJixu9Y2DZWRmNscqoDEZmOzanK7Pclw5KlqaWOKipRH5MjBYDofJrZS+TjkkotObg2Wn5NLXUe+yMK3g8DLxNBM9Kyw3NoBOi6m1mvhQ6dSiZVsl8VHxStTgs6uCHa4cl5noiFj5VVNlIzuqXuiyVriJdIwTH40Q654j0RclMZ1mWdaz4nOSrHezmE6S8VnRht1onZYrgAVJxrmznN3OsGLzaUd0lDaHD9OGBtbZVJSJ5BwL0Tgd6RhHZyc5s7BAz9IycirHHmc11zgrqLa40UoaptNL7PEU14wimiU8xiuTcjqXRbJlMK+baI9Fp2koW31mVrIwm9BRp1lkxekrmjBnehfpn7Wj30ADk8vJ9F+aorxZJcXYOUuwTrmIPz28iHljMxJg85vx7LARLYvQXTHEJ4\/9I\/\/82FcZmytMIyeTSZq3qTdGxmLL1DWo9w8lUynCVYLmVgm8YXGKy+oRp+CNDnXHmElmGBoYIhaL5bM6a4vsF5Iy55fBthRXmyRJaDQaoePJ5XJ0dnYyMTGRZ64+GHuk5L6Xo6Un6fiGFcmT0x5+26o8Ka6YPGyWm01XEyLXXnoS1jvMRCeKhbLWbOTcFJ4DbVQtDjKzyWgnEXKSHIqU3M5cG2Squ3S0o6\/wkj2jXrMZOTVO4Jp6LNOb+M2GMuYE7NSwCorQOSzEZ8R1J2PASaJTcE0cBphRz8FLeg0SMrl0cSQjp7NIK1m0iQyppZVC7gCdAb3ThKvWSyKWRNNYAZKEJEE2l2NpaYml+BKaFSOnI7NoJS0GjQ6TVo9Wo4VcjjrLZZi1DDhWFztdy0M0GAvTWlk5S0ZexqwtnNjPREd4Wagw0jgTn+QW35XPLkUj3NS4ChCYX05zYniGW+tXi\/7JYDFw4LEfRpmdShJscDPZM09mXYSbTmUZH10gUONiegMxbiqZZX4+jt1nITpbuODRaCUWZldwt5mIxBYYTYxyabKTkQujcGF1G5vNitFoJJlUrtvKJXS1nS4xGszptTAiAMBZXeJeHqNNDLnWmcXjs1OzDAwNoNfr8Xg8OByr6cc1xyPL8q9EjWdLOR4QQ6pXVlY4c+YM2WyWG264IQ85LMXVpjPqSKvwo623xcXCF+XhQ4u843e8aOeLo5X5vk1CxIDlzObQX+ZqH0yJax3njs9gfUUD8kRpElNZkkhuomEVIKUp\/SjIZi3Tm6jFLC9nGB5Yoe6aOvRdg4pMEFqbidjMcsnGU9fOKubOiJ2Ta2cls4JtZAlsHgexQfWo09sWFv6OPeRkUcmxZXJg1rDQrszcYKvxYo4uEzQE2KiNPCLP0WR0FX2nJzbOXndxLeVibJSbNtT6JlaWuGZDfa1reZ4bK66s7JfSKTxBI3qthmM9cxhWjNzccMXZmOoKv780Mce7vvjXAJhHLLzs+lewOBvHbnFgMTiwGKwYNGYy+hwhv5lsLoPM5d4RcsjEkQ0y+tAKC4k5phYnGZsdYXx6jNxUDueEg2xWSyJRnDGIxZbZv38fp9ovKF1Ozl+4iMFgJpVSfp8jixHFz9csSwnIZgm9J00JuY1SSqXbGpoxuc0sLi4yNzfH8PCqRtDp06cZGRnB5\/NdNZx6M+qjd999d5EEwnXXXcexY8eE+\/7ud7\/LJz7xCfr6+qivr+dTn\/oUb3rTmzZ9bGq2JRyPSAxuzRYWFjhz5gxer5e2trb8CiGbzpJNiqMZg8MEk6Udz9RkYapGluF0NsQ+NkxYZSESJzdXrJcMeqY2mWaLxkunA+UcHD4TZ0\/Aj3FaHAVoGyvgQumozFQdYLqz9Hb2hnJip8U1FHuNl6lLq\/vqfXYcd3WQkCmNPF4Y8enKfcQuims2lmov8xfEiDhTmYv5S2Jn6NlZwfxZ9f04GvzC2pBvVwWR88rjOqsBw0oOxfW5XgMJZRSeudpN41i2yPFG0wnqFaTdZ3Ix9nsK01s5OUdKt4xNfyUlHM9l8LqkAnqgcYtMo9nIYyemudYZ4Ix+CqN2NZWzIhnw1Remj778H4\/l\/59Ixnn00I+45po9PH7yUNFxXXvtfk6cOKV09lx\/\/fUcP36y6PPFpSVuPHAjx44pf296Sv1ZTCQS7N+3nXNnOhXHu7t6sRg9JJPK7\/v0nPidKSWDnZVK6XiUIAqNp9H6bHg8HjweD2VlZZw6dYpQKMTXvvY1HnroIXK5HPfddx9ve9vbuPXWW0tKw2xGfRTgNa95DQ888ED+bzU15zU7evQob3\/727nvvvt405vexMMPP8zb3vY2Dh8+zHXXXSe+DiVsS9R41ttG9gJZlhkcHOTkyZPU19ezY8eOgnzoZnjaDLbSxKNao4bEcrED+\/dHFmDDDUoYrqJptNJPZhO1GJ3NyNgmBNwc9X4WRhc5Pq4jblHPJ8uSRGx+cz1GGb34AQTQ2ozMbMI5xTd0yC4MLXCpN05yW10edm1tqyRSwulojDrSyZyYr00rgV5LTrDwsFZ7WOhQd0xai361d0gFom0J2on2qJ+3s85Hck55EeKo95BVQOFpTXp0iRWU5rBlQwKHVFgHSucyaOTlIsDC+fg4212FdcjezCzV9iuTzfHFGQzpDIM9Ga53BRlPLXND9RUH1mf2FjR4piIx7v9esUMYHx\/FZiuuOzz77Am2b28tPhFgcHAAg0G5WN\/X36cKBBgaHqG8XL0nRysQBEyl09Q3KtMSrR7TCAajOoBgbiGiOgbqKsZrVpIodEM6fw1KHQ6Huf\/+++nu7kaSJGpqavjiF79IWVkZ\/\/zP\/yzc509\/+lPuvvtu2tra2LVrFw888ADDw8O0t7cXbGc0GikrK8v\/UxOJW7P777+fV7\/61Xz0ox9l27ZtfPSjH+WVr3wl999\/v\/B7m7Et53jWp9oymQznzp1jYGCAffv2UVVVVSR\/vRmeNo3gQVszuwrz7OxCijFvoTTsfF9pZuc1m94EUwCApcZPbhOQbyyrTjQ2s0z7spOsiryzoamKlRJ8ZwDGKh\/zl0rXi8x1QVWuqTUzlTuI9hej5+Rsjv4T40xYfWhbK1nYRC3J1hQmUYKZ27W9gtiQejSpMWjJpcVko656PysqTN2SBox2E1kVyLq7NcTiBeVIyNkUJK0CJZeCBjIKzsrRGqJBV5zb74qPUWd1FXw2GJ9nv6\/Q6ZyJTnHDOmTh8HKM5WUZ\/5KVSuNqVDOrX0a\/DnBgbyhs7vzGNw8RChc3fE5NTbN9u3IzcywWLVgMrtnk5BT79ikrVU5OTtLQUK04BlBRqd50eu58hxCdZhIg07K5HOXV6gCDsfFpNAJqnFiJ+aZUYnujQulG1oJ0Ok0ikeC+++7j5MmTTExM8Ja3vKXEXgtNTX304MGDBAIBmpqa+L3f+z2mp8Xv4dGjR7n11lsLPrvttts4cuTIVR2Pkm0Jx6OUalteXubYsWOsrKxw4MAB3G5lhNlmeNokfekai9WjnlP9+vF1E0+onJWpzdV3ZK1EYnpzNZZNnAZIEpPruN6ikwk6TBXkNoT3MhLRhc05vKyxdKOs1mLYVLSjd4iROIuji4xEJGLlYTQe9eKpfVuY+RKwaFudn9mz4m1crWHiAufrbgsxf149BefbVUW0XzkKNbjMrIwpA090VgNElIlTzXVe9KPFfUYahxF5vHgiMFZ5OOAvnIST2TQWcwbjuglrNhln2zpFzuFYltHZFDc5Q\/ntJuQkN6ybdJ9dXMTfeAVGnY2v8Ef3\/4CzZ89x4EAxH9exo0fZubNY0XJgYJDrrttXfLJwOd2j\/G4tLqmjEC9d6kSnkraKxxPU1qlHNdMz4gnVJgAQpNMZPCH1ZzMSKdVkKk7FpTdkP5RE4IB8jScQCBAMbp5JRU199LWvfS3\/9V\/\/xRNPPMEXvvAFTpw4wSte8QpVEAesLg42\/nYwGGRycnPAJpFtCcez3nQ6HZFIhKNHj+L1etm\/f79Qo2dTPG0lyP1gFYCgZs+eXyJeVgVAQucqua8109eEyAgoWdZMa9Yzuok0m6nCQWKD9szopRl6\/Q15mDWAvrk0RBnAWOnbVOOmpsJV8jysFS6mSiDtDH4zM5emGTkzQfd4mkR9OZgK03x6l4VYCb42rcXAyuKKkMHA0VzGnMAxGdxmId+brcpNRCDhbQs5SC8pNwy66\/2kFCIajUVPblZ5sjV69MjLhfdWMuqwsIK0oaE6FTZTby9sxlxxZPGajCytpPlxxxJdIwn2+QprAzPSItrLqaBUNouvugp74Ep08JMfHGf5MpHlsydOUFdXDF2emZ5SLHyfPXsWn0+BGmghwq5dOxTPeXx8gp07ldN0CwsRdu5SHgNwONUXOb29A9js6gvJZEZcx3H41Bdjs9NRoeBgMiXOWmRKRDxrUOqrEcJcb2vqo9\/85jcLPn\/729\/O61\/\/erZv384dd9zBI488Qnd3Nz\/+sTILxJptzDDJslz02XOxLeN4JEnKQwnHxsZoa2vblPz1ZlJtJRYhAORKXInHJuwgScz3bj7NltKXjiZglawymywdGSUk5Ye699QEozWrYm0yErGFzSmoJvWlU5CSUctCv7g\/BlaZt0sh1OwBV36bXDrHyJkZ+uI6liu8+SZNQ7A0X5u1Vj09BqvsBCszMeHxWIMO0kvKE5BGr0Ejq6fovDvLWepUdtju1hCxDmV0nNZnQLNc7MDdOyvQjilc45CR3HTh54a6IOF4YcQ9as3RbDVydHyFgWEL19gq8dkLT74\/scj163pYTixHsfivRA1yKsPvf+67+b\/T6TQyclEBemJikt0KjiQWW6auTjl1dubMadxul+JYLifgykupv9udnV2qc4Msy\/gFiqMTU+IFks6kPhlkMzmsAsbtlRL1XKUaz8bmUavV+pwm982oj65ZKBSiurpaqCRaVlZWFN1MT09fVQSmZlvG8aRSKdrb21lZWSEcDm9a4W4z4IJUqrTnSZUgc\/vGz2ZIVTeyMrNJGLVWw1RP6QkbIJ4pfRtkIDmvvpo6f3SCmfomDE2bi3Y0ATtL3aWjrFzIjrwivjaWcheTF8SRk73cyeSF4hc+u5xh7FKUUZODaI1bGbK8zpytYWF6DMBW5SM5r36fvLvKiQh+x7u9nPhYRHHM5LcR61VOOxqcJjITytdeU2lHN1acYjP67WQGis\/H1hjEMVX4\/OQMWrSJ2VW45dp+gx5qyoJMS01Up4P4jRYmtDHaNkz0CWsyz\/+2mMqwsyWE5LuSUjp28Cw2T+GE0t8\/wL59e4uO7ciRI4qAguPHT9DW1lL0+fJynG3blFVsz547R0ODclPo2XPnKStTRnQtRBbZ1lKnOAbgdKlHRCOj41gEgKN0TrxwE0k9lCIK3eh4NrIW\/KLVR9dsbm6OkZER4Tx7ww038NhjjxV89uijj3LgwIGrOj4l2xKOJ5fLcfz4cTQaDeXl5YqFSjUr1cMDEN8En1k8LnZgmazMsVkBk8EGM9SUkdwEsEBj0DHeVbq51FnnY7mEMNyJZyYZkzZHtbGsLS0FjkFDarr09dW5rCX3ZXBbkQWpsdRiiunhHJNOD8lKj6JIq8FjZWlI7FTdO8TUOuagQ0hG6mzws6ACnUYCk9NEVkVXxVnhIqOUfrPpsShFVxqwug3IG+jANRYj+thCgYMBsDb60EWvONSk3siSwc3cuWUyg1ecYVtbYff+mJTiusorSLbzmTg2o4FA8+oEJ2dz\/N593yIajRUh1545coRdu3YWHfrC\/DwmUzGqMpGIK0YiJ06coKxMeaXsVEmbybJMTa36yt1iVUdjjoyKFydOj7rjiUTFWQ2DVT1TUIoodCNAZ6MIXCwWw2KxXFXEU0p9NBaL8ad\/+qccPXqUwcFBDh48yB133IHP5yvoydmoPvrhD3+YRx99lM997nN0dnbyuc99jscff5x77rln08emZlvC8Wg0Gnbv3s0111yDXq+\/KobqzdR45mZLszIvLJSmlfnRYASNV6wdkj8uw+bSbLb6AKlNyBpIttL7swft\/PzxUWL1NcLtcm4zaQF1TH5\/28pJqaSj1swScjJVItqxhZxMnhdv428LsRJJsDi6xODFJSatbnKNYeTL6CVZhrRJQzqqfjxGv40lAbO2pJHQm\/VkVdIhOouBbFS9duTbVUGsT7lw7d1ZTqxT2eF5Kj1kY8XH7dlZQWqg2Am6Gj3kFgonP\/O2MLqh1SbVrM3JbFkb8\/ZqshfHC47XUOtFM1446dbvvbICns5muaEtzDNns+jNqxNez4k+Lg3NMDk5SThc3Lg6MjpalCobGxtjz55dRdv29fVz3XX7iz5Pp9NUVSk7kZPt7YTDyuzUvb19qpNwZ1eP6tjo6DiBoDpc2O1Xf4\/HJsSZAEmvPm3GIuL3ZSNDtZLs9QutPqrVajl\/\/jx33nknTU1NvPvd76apqYmjR48WMCRsVB89cOAADz30EA888AA7d+7kwQcf5Fvf+tbz7uGBLeJ4ABwOB5IkXbUY3GZqPKlE6VTbTAnmWYCJmXmObqLnBY3EVH+k9HbACqWjOxmYHiydtjOHXOSyMoefmSQqcD7GgK+kKJvGqGOuv3TKTu+1CSMZAKNXHO1ojVrmBgp\/a2kiSs+paUY1NuSWauy7ykmPqt8jWZIwOC1Fxdv15t1ZTnRQPbp0N6rXjqzlblV5B5PPRnJAOf3m3lFOorvYIZnCLtI9xbUge2uYbNdgwWcauxnd4jQZl5e50E6GhgwsnpvAniqOriRt4SJLU1OGbubK7wSu3Uk6E6C6edUZybLMX3zuR\/nx7u6eovTa3NwcFZXFHGhHjhylpaW56PPz58\/h8RRnB5599gTV1VVFn+dyOSqrlFM+U1PT7NipLAsyNzdPU7N6Wqm8Ur3xMplVdxDR6DIWhwCSLaunvDNpGZ0Azp1e2VyN52qslPqo2WzmZz\/7GdPT06RSKYaGhnjwwQeprKws2M9G9VGAt7zlLXR2dpJKpbh06RJvfvObr+rY1GzLOJ41u1oxuM1EPPGoOKKwOE0kS0QdkiQxMTHLv\/28g1wJ3Q9DdZDEfGkCUUmnYby7NKuBo863Si9TwuYnVydNOSfzzOEJlhRy54agi7mLpeGQ1uYQyYi4yG8O2kvWdqwhR8lt\/K0h4vPKEWd8Ps7QpVkuXIwRqy4j4bMoZvVM9W6WetVXqrYar7A25G4NsaAyLmkltFplHjckGZvXQlbB4Rl9NsWIRtJKWEyrBf31pnOa0c4UOzBDY5hZcy1DPRA5M4qcyeLcVkZ2otCJmuv82COFC5S08cp1zYbDEI2SaZ\/EtdMFQLR7gQ\/89d\/yJ3\/yx\/mU2tmz52hsbCjYz7lzF2hp2eAAZJn4cqwIdRqNxmhsrC86D1nO4fW6ij4HOHXqFC6XssyECF9kd6pnAjIZ9blhZFQMxXf61VFxiVJMKXZB\/UgB1farJokAW8jxPFcxuFIRj95iIFUCMWYrwTgL4A7aWEmmyOZkvjUVEW6bNm8uVLbVB1mJla6haDaRZnOUO5lZFxXJMjzz1DiD3g0rT7ejZLQj6bXMD5SOsAwBh6Lg2noz+2zCbTQGLXOD4sjK2xQgPh9nvGOOkcE0U3YPUmsNGs\/qdTaXu0gOqkOwNUYdcjKtqq9jcFlYmYio\/\/6OcuIq0GvfrkqWexUcuSRj9ZjJKdSDPDvLSY0UO0lnpQM5uuooZL2eRG0D0ZbdDB+eYPH8WMF9M2WLHbXFWXh+uoZynCtXzith0TBzYpFUJoerZrU+c+Sby9z0GzfxV3\/1MZ544jE6Os7xhS98nhtuuKEovdY\/0E95eWEqbmhomJ07ixtLjx07rhgNtbeform5sejzlZUVWlobij4HOHPmPB6PS3Gst7dP8XOA3j51NtDpmTlsAokDtYZygJmZiOoYiIlCN9Z4lETg\/l+XRIAt5HjW7IWOeEQ05flt7KXTZw7vlcn\/p+cnydaqKyZOD5auKQGkdKXhzDIwswl2aVNAuent0vk4kxWrk4Xe72ROQB+zZraWMCslal7mgJ3J8+LIyRosvU2gTT3aATDYDExsOOaliShdz47RNZoiVlNONuhFErzsxko7cQELgj3sVIVw22t9LJ5XhkdbQg7FNBqAd2cVib7ic7dUeUl2Dhd97txRTrp3hFR5JXNVrfRG3QydmiU3EykCbjgaA2RHCyMjU40XaaSQqNSw3hE1N8GEEXMkSqwqiCRJJIYX6evVMTw8TDKZxGg0UlVVybve9U7uv\/8LXLp0gf\/5n+\/yoQ\/9Ps3NzaysJDFbzAUTJcDJE+1UVBTXhlKppGINRq\/S0H3hwgVFwEI2m6GpWRnBNjU1Q0OjMox7fn6Bqmr199TlU3cuOY36HBRdEi8WtYKeQCU49fqI51dBiwd+BRyPToB8WbNSjLMAKbkwdfbVgTmUOskMVQGWN5EWk7QS4z2bSLPVeIlOlyYknVWA6q7Z6WfnmKurRfI5S9ZjJL2GhU04OkPQqRpBrJk56CAn2Eaj1zA\/LI6sjCELGRXRNTkng1bHuUPDdE5mWSgLIrVWowtfifJs9V5WetUjKu+uchZVenK0Jh1yIql4zSQtmMw6RZ44c8hJoqc4lSPpNRhJFeuwlwdYlC0M6irovxBl5uw42UQKV6Of5FAxmMGsL04LW72Fz6KuqRLN7GrqUNZoicd0cHE1ArDtWUWXPfutCFa\/jcXFRZ599lkOHz5MZ2cnCwsL6HQ6rFYrr3jFb\/C3f\/s3HDnyFKdOPcvv\/d57+J3fuQuz+cpCTJZz6LTaIofU29vH3r3FlDnnz1+gtbU4GopEIuzerUzLs8birGRuAQuGSA5bY1B\/NmNx9cXQUiSBRqc+daZy6hmbUn088Xj8147npbCrTbWVcjwawepjzTbj5iRd4eRz8PwI8friVV7GvjnUm7UuQGJxE3BrZ2l6dEelm7kRcbf\/2bNzdC3rSiKobdvKScyJHafJZyuJZLMEbEyeE28T2B5meVb9tzQmDbERwbFIEL3s5OWczHTPHJ3Hx+joijJudiG31ZCx2tB6lV9kjdPAUrd6ROZuDrIypXxdfTsrSSgJ3WnAZNYiKzgkz\/Yw6Yl5ZK+LVGMDC9WNDGoCxMxuJk6MktwAbLAoUPTb6rxkBwujLGOlB2losOAzg+3KqnylrI7Mse4r59VoJj0To\/3xLJ5yD7t37+aWW26htbUVjUZDd3c3Bw8e5MyZM4yNjZHJZDCZTDQ2NvK+9\/0eX\/j7v6O75yLffOjrvOe9v0t1dRWDg4Ncd20xbc7Fix2K5KKJhPLEPjDYrwjHHhkZpbW1OEUH0D84qPg5wHJcfdG2nFAfm5pVXxTKsjgVlxQsnJVSbb9qInCwhRzPehXSzUY8qVSK2HyJaKAETTlAMl3a0UkKK5x\/PjWErC1cac4Mb04uYUFFT2SjbSrN5iv9oOp8Wk48PcJFh5OsVqVHQKshMroJieywi5yINRqwljmF0Y6k0zBfQjHUUesWypqHd4RZHFM+3uh0jJUMnD8yxqWhJKN6B8s1FdBag64+hMZmxOq2IqvU\/5xNQSIqInX2ag\/LF5XHvDsrWBlaV78xGaEiiGZnPdNxA8OmEN0DWQbap5i+nIZc7ipO19mrPKz0Fn9utRbfO1ugcHGlb61CM7fq9FNaC\/EzY2guayLFA170DiNn\/2f12lt8q05Zq9Xi9XrZtm0bN910E9dffz1er5eZmRmOHDnCM888Q09PD0tLS+j1epxOJ6997Wv4u7\/7LCfbj3P06NPc9ppX8+pXvxL9OkaM5eW4Yq2nv3+AbduKHcn4+Dh79ihT7FgsyjWZ8bEJausqFce6unpUCUUnBbIikxNzReqr683sVK8PWQQRS3wpTnxdNPWr6ni2hB7PeluDU5fiBIpGo5w6dUq1J2PNcgoyxBsttgmGzrmF4gnuwtAsffUNNMysOht9uY9o9yYodSSIjIsRY7CqbTPYVRrSPD1c2lloJCMQY6RziWjYxB5zBsOG1Ze9Jcz4GbFcgdFrVWQgWG9mn5WJEn07wR1hRk6pI4u0Zm3JaCcmiMz0Zh2zPVcikvhCgvjClWtesTvM6PA81kAQs82AVptDTqcgsYImnSK6uIRkNiBlsrAOzabRa9DmMqQzOXJ6LVqrGclkAIMerc3IYkZDqrGBRCxNbHaZlZk4zEQpbzWx1F2MWPPVe4ieKxaRs7v0rGy4zJYKN9n+wmtmKHcjDa8rokugNyRgGVKSkYGIn\/LEFSep319BdjHB099LARJWv\/IkZ7VasVqtVFdXk8lkmJ+fZ3Z2lo6ODjKZDF6vF6\/Xi8\/nw2g00trWyraWbXzoQ7\/P0tIShw49zWOP\/ZzHH3+SZ589wbZt2+jqKqRnmZubRaORyG1IZc4vKEcbZ86ex263E40WL+78ARcD\/cWLgXg8wc7tzfR0FafqluMJGkNOZiYV3h8J\/OUOxlVaCnQWAWRaAKZJLSc5fvw4JpMJr9dLOp0umOd+DS54iSwv8CaIeiYmJjh27BjhULgkx1m2RE0DICKgV4HLUOpJ5dXRv7WPwuXCdk5BwEvJ9OVOkkulI57NpNmcNR4WxsVgBqvXUgDbjoyvcHJRT8J9Zf+yJDE\/Gin5e+ZytzKseJ3ZysURkaSVWCjxW8GWMEkBHVJoe0gYnYVay1hRaX6VJFieiZJYSDDbN8fI2QkGT00xdH6Bod4EaU+Q3r40PdPQPa+lO2agd8XEoGwj3lDDuaE0nTET3fN6Lo1kuNgT52LHIgtxib5nJxg5Nc5s9wwrl0ET7hqPotPRWw3Ee4sdtDXkZKW72CnbfYYiNgN7qPAzfWsNmoUpMujo6C3Dby58xR21Brp+NoecW53srP7Sk5xOpyMQCNDa2srLXvYy9u\/fj91uZ3x8nMOHD\/Pss88yMDDA8vIyBoMBr9fLnXfewZe+9EUuXGjn5z\/\/Ke98513s27enYJKdnp5h797dRb\/X09NDi0JaLZlM0qqCfBPVgBwCyLWvTD01bhHJYKtlDYBUSv390GQlXvayl9HQ0EAulyOTyXDmzBm+9rWv8dnPfpZ0On1VEc9nPvOZ\/P0IBAK88Y1vpKvrijpxOp3mL\/7iL9ixYwdWq5VwOMy73vUuxsfFC8wHH3wQSZKK\/q2slG4T2YxtmYhnfaoNVqkkNhYrZVmmu7ubkZERdu3ahdPsKEnVUootVpJgVkA4CeAJ2picVu7xmF5cocvjpHlshrnxzfG46d0uoPS2s5uIZJLa0mlJyaWBDavnpdkEx+J6btpdhn5wEn2dh1hXiUK\/x1KSgdrstTJRAskW3BFm5LR6T43eome6Rz0NIgNxQY+Rzqhlrl+9UTS8M8TkOeUXz2A3Mr+Rw05eJTVNy2mmL02QU+Cuc1W6VHWNbA4DEYXP\/dv8xBSiHWfQwspc4YNtKnOQ7d2AWgs5kYb6r3wggV4XJStr6BitRLeQwGBed0+DbvQOA098\/Ur9Zy3VtlmTJAm73Y7dbqeuro5UKsXc3Byzs7OcOXMGIB8Jeb1ejEYj+\/bt4ZprdvGBD7yXmZlZDh58iu9\/\/0ccOXKMwcFBjEYDyWQhUmxFpf4yNa3cqDs0PEpjfTPDQ8X3dWFBPWugMYig\/upjGQU59zVbWcmiFg+lV9LodDr8fj8+n4\/x8XF27tzJ5OQkP\/vZzzhz5gxdXV2cOXOG1772tdx8880FQI6NVkp9NB6Pc+rUKT7xiU+wa9cuFhYWuOeee3jDG97AyZPF6rDrzeFwFDgxQBF1+FxsyzieNdNoNGg0mqKIJ5VKcfbsWVZWVrj++uux2WwslaDPB0gIagQANo+F9Ki4LuP0W0Ag8fGPBzv519fsIHKu9PEATG6ibmOr9jLUXTrNtjhZOmWXiiu\/QMl4miePT3PDTRVYF0rXpswVHhZmShB0VrhZnFZPoUlaiYUS9y3QUsbwSfV9hHaEGBcAF8I7Qoy2q\/GtySQE8O2yJj8TKilAa7WF1KDygsHiMpBS8GX2sIOIAmpOa9CSHCx+qEw+K8nu4pSRM2Qh21V4H20VZhhYF+1sr4GFAToma2E4iveaAKzXptkVZuiZBdaTPqul2jZrBoMhT9EiyzKLi4vMzs4yNDRER0cHDocjP8nabDbC4RCvfe2tlJeX8ZnPfJLx8UmOHj3BD37wE86f78jvt7evn\/q6JgYHC69FX98ATY3N9PUVO+yykFfR8XR192K3BFhJFEfQkUX1xVYirb66T6jw9QEk4mlVx5NNZsllcmh0GnKXnZfdbue3fuu3eMc73sGePXu46667mJ6e5v3vfz+veMUrCuSqN9pPf\/rTgr8feOABAoEA7e3tvPzlL8fpdBYRfX7pS1\/i2muvZXh4mKqqYiaJNZMkibIydTj687Et53igGGCwtLTE6dOnsdvt3HDDDflIaDMEocslGjQtbjOIm5gxWMSXKbaS5qmslmJSkWKzVvsY7YyU3E7nsgJix2OpsLPQJ06z2cusjA+rR3S5rMzQbBqT0UKZKYGsRqhq0TJxQRyemzyWkiwFgR1hRgXRjs6sY7pbPVqRgYQg2tEatcz1qyOSwtvDTKmch96iZ14l0pK0IC0qr3KNHiMRFaE8d9DGwnSk6PPA9jKWzxdPnp4qJysXNkgheKxk+wpTSfqgA836aEcjIadmuDRfh9y\/+kxYLYXPvskPj91XOJlebcQjMkmScLlcuFwuGhoaWFlZYXZ2ltnZWQYGBtDpdNjtdubn56mrq6O6upra2lquv\/5aPvzh32diYpKf\/\/wQP\/\/5QQ4degavz1XkeAB0euU019iE8n3NZLLUN5TTcb6\/aGxgaBij5EOWixdnIhnsRQFnYGwpiQjbml5JY7QZ83PcRnDBrbfeyk033YQsywVAhM2Ymvroxm3W7pXIYrEY1dXVZLNZdu\/ezX333cc11ygryl6tbZkaz\/rc73pI9fj4OMePH6eiooJrrrmmIP22GbqcaAnIcprSziu3iXTWkxP9aJp8JbdDIGC13mZGIiW3sfiUKUbWm6PcVfrH9FrOPzvGmZQB1vXArDdXYwg5Lc5r2qs8ZAX5bUkrsTghdpSBlpBqbQYgtL2MheGI6nh4e4jEgopjkmSSKuJtAKHWoGpdKdAaIKmy32CNDxR8kt5lIHKxeDKUdBJpBfkEg8NEsqfYKbtrnEW9P\/YqK6xL9yRrfQxNB8h0rl5fjVGHduLKpK1rCDE9IhNbF2zqTDqMAnmA52smk4mKioo8XLuyspK5uTl0Oh19fX2cPn2a0dFR0uk0JpOJ6uoq3v3uu3jwwX+ls\/Mkf\/7nf8j7P\/BuGhoLm0eHhoYxKUi+9\/cNEgor87MZTcqLx3hihfA6naL1NjY+rSr6Nj+jniGIRkow3V8G9aw5HjXKHEmSrqreo6Y+ut5WVlb4y7\/8S+666y4cDnX3uG3bNh588EF+8IMf8M1vfhOTycSNN94o1O+5Gtsyjme9abVaMpkMnZ2dXLx4kV27dlFfX1+EcitJECqtNnsJTVeafnx5pXQ6a25+ns+fPISuBFPC1EhpVgON38zShLjuJCMzuQkSz5kS8GiDRcdQx9TlbZc4eG6BZGNh7KZ3mpm+JJYT1tp0TKjUTdYssD1EdFIg4GbSMdMrjnZWBIADrUHLgoB+J9RWRkSlYVVn1LKg8tuSBlJzys+AxWtRVXF1l9sVm2wDbSFSs8XXwdvgRU4WRpx6h5ncwIZox2dHM3xl9Z7TSMzHnKycv\/JseVo8kLqyqNLWunny24XX7oWMdkrZ7Ows\/f39tLW1cfPNN3PgwAH8fj9zc3McPXqUw4cPF8C1bTYbr3zlLfzN3\/wlTz\/9Q44ee4S\/\/dTHeMUrXkY2m1UlDrWrvH+TAvE3t0o7QiqlLoO9tJhAZ1Ru1cikc2Ki0HWOR6vV5ue1NSHM54pqU1Mfzf9uOs073vEOcrkc\/\/Iv\/yLc1\/XXX8\/v\/M7vsGvXLl72spfx3\/\/93zQ1NfGlL33pOR3bRtuSjkeSJLq7u5mdneWGG24gEAgobleSLsduIpcpwSWm0Ny20ebmI8JxSQOjo1OMzMzxlE49zWOp9BAZLw23zgmgmmvmbfDnmydVt6l1MzcqdnSh5gCpdXWwTCrL04eGGS0LgHV1VWmr8RU1vm00W6WHXFoA5NDA0pS4jhRoLVuVtFY71rYy5gUs3eHtZUL6nYwgNRveHlL97dDOMMtTyvfNV+NRRPmZnCaSSscqycQnip241qwnM1jswNyNniJnZK+1w7pU9JS7jnh74W\/ZrOu+o9WwlDExN75B32cTiLYXwiYnJzl\/\/jw7duzIC49ZLBaqqqrYs2cPt9xyC01NTWSzWTo6Ojh48CDnzp1jYmKCXC6HwWCgqamB973vXXzjm\/9Gx8Vn+KM\/eg\/vevdbqagoZLVeSSrPCX19gzhdyueb06g\/204BrY5dMGYQCc1dJgrdKImwsrJCNpstkCrYrJVSH02n07ztbW9jYGCAxx57TBjtKJlGo2H\/\/v0vWMSzZWo8a15\/aWkp7\/WvvfbaImTbeivleFZZYsXRykpKDD7QaCQmJsWrfU\/QysL46sP7rRPtXPuaO9EpqI9q3HagdMQTmy2dQpQspamAjG4LIKblWVFxKJ2nJpgM2rhuWxlTl5TrF\/nfcZlZ6Ckh0NbkY\/qSejSjNWqZLRHBJQWOQ6PXEBGkJ8vagsyosHJrDVoiKpGSpEFVzdTkNLGgQrfjb\/ASOVtcn\/C3lpHsLk6n2WsdZDdAq7UWI\/JQYQFS57WhGbkS7XSY2rBHJViHm9MYtGgnr\/y2YUcVp\/stBdsAWDbRePx8bWxsjK6uLnbt2oXPp5yKXoNrBwIBZFkmFosxOzvLxMQEnZ2dWK1WfD4fPp8Pp9OJy+Xk1bfezCtftRr9dHf388QTz\/Dkz5\/hxLNnCJVVMjVZ\/Ky5vVYWI8WLn9l59XdEZ1Ffm5vsRkB5QaITvJ9ri7iNInBr9ZyriXhkWeYP\/\/APefjhhzl48KCi+uia0+np6eHJJ5\/E61VOLZb6nTNnzrBjh3Jz79XalnE8sFrP6ejowGw2EwqFhE4HNsHTtonJOVpC6MwdtDExJUZyWZ06WJdl+tyxg9zbeID0hglrZqI0csxS7mSuv4Rz0sBEX4k0m1R6G5vXzLAghRaZitFX48Ic9uIYm0VWadZ11niJqqHILh9LZEp8TsG2ECPt6tc52BZk4oK6AyzfEWJMAFrIJdVXteHtISZPKx9\/aHuIWRVi1UCDj9kzxc5Fb9GrymNrFVbkkl5Cmiy+V55tPuTO3oLP7PUO6J8kI2k4J21nuT+OSSpMp7pbPDB35b5mfE4G2osnUOsvONU2PDxMb28vu3fvFha719t6uHZtbS3pdDoP1z579iyyLOP1evH7\/Xm49vbt22hpaeSDH3w3S0tRjh05zeOPHeHQk8eZmblyXR0q9dX+gSFcunIyGzn0EMtg68zq85OIqmst1bYx4onFYkiSJIRPb7QPfehDfOMb3+D73\/9+Xn0UwOl0YjabyWQyvOUtb+HUqVP86Ec\/IpvN5rfxeDwYDKtz5Lve9S7Ky8v5zGc+A8AnP\/lJrr\/+ehobG1laWuIf\/\/EfOXPmDP\/8z\/+86WMT2ZZxPOl0mr6+Pnbv3p0PsUtZqRqPZCh9egslKHecPguIF\/yk5cLjmI4s8qR2jpu4km82h1yM9peGW2vdNkpFRZ4GP33nxVFYoNFPX4f4wP21HmamxOm6uckoEwPzeMrs7Kn3k+svRH0ZnCYmL4p\/x1rnINKrfk4ag6ZktJOKqzsOjU6jSp0DEGwJMKuCOtPqNERH1dN3aQXlUACD1cBij\/I+gy1BFs8WNzR6m\/zEB4qdmL8tTOZiIYW\/rJdIDw4VvKBatwXNcD9xrYHziWZiAxEqrwlCd+Hx222ZK4GuxUT3uC5PmbPerL\/AiGdgYIDBwUH27t2L01kaBKNmer2esrIyysrKiuDaFy5cwOl05qMhu92O1+vhNa+7hdteezOZTIaOCz0cfOIYTz55jDEVOexMNou7zMKMQhpcJIO9kS5rvUkqDNxQXONZs7VMz9XIXn\/5y18G4JZbbin4\/IEHHuDuu+9mdHSUH\/zgBwDs3r27YJsnn3wy\/73h4eECkEMkEuF973sfk5OTOJ1OrrnmGp566imuvfbaTR+byLaM49Hr9bzsZS8DYHp6elN8bSVRbSV42jQ6DXMlmkcNtk2QjCqw0X772LNcd\/ub0F9anQG0fif0l454FkqACgDkTRCfagW68PnfKlEjCtS5Gb5ccJ+fjPL4ZJSd11YQWIySuxwpump96j0zXAYELIqRg+YKK0t96tcm0BIUOrfyneJop4gNep2Fd4SYPKP83bK2IPMqDiu4LcCcQrSjNWhJDCpDsg1amY3uU9KANFvsdP3bw9BVGO3IAQ2LiyYuzFWSvExeapZTBbhMSa9FO3Xlfhh2VvG9B5dpKC9+Ziy\/gBqPLMv09fUxOjrKvn37nlO9Qs2U4Npr0dDg4CBarTbvhLxeLyaTiT17t7Nrdwt\/eM+7mZ1d4MjTZ3n6YDuHD50mGr1SDwyG3YqOZ2x8GgsuxeNJCRg8ZIF63XpU20ZJBKvVelWORwkGvt5qampKbgOr6qPr7Ytf\/CJf\/OIXN30cV2tbxvHA6oMly\/KmGapL9fHEV8SOyeGzkIuKo4vsJrirI4vK+\/jUwUf59I5bSE1HmZ8ujce3VrgZ7osIt5E0EiMlEGYanYbRLvV6CoCvysVIqVSczwKFcx\/nnh3F6jRx7e4yjJMRpkpEO45GN\/Pd6hGFxqAlsyCObjMCxUeNVhI2Egeb\/cx2K18vjVZicUz92DYqhK6ZzqglNqB8fUPby1hUIBd11noUBeN8bSHSXYX9PJJeg2Z6qhChbTWwEsvSNRQkF1tdMGiMGlIbAAnuFg\/MXznfOa2dqfF5qmzFtc4XGlwgyzJdXV1MT0+zf\/\/+XzjZpclkory8nPLycnK5HJFIhNnZWfr6+jh\/\/jxutzvviCwWC+FwkDe95ZXc8cabOXfuHAN9kwz2zfDUwXbSsvJcEo3GcVt9JJeLn4W4QkPqmome6PURz\/pyQjwex2IpTZP1\/4JtScej1WpJpUr316QE0FqA6HIJ6WZXafqHeFK8D71Bq6pIuBBb5gfJUd4YrGR0E4qecV3p9KK+zER6QOzEgs1+us+IGzltARsI0lsarcSISiPn8uIKTx4aYv+r67HOxUCFd02WIKvCmrBmZdvFtR1zuZnZPkFD6M4w4yoRC4Bo7eht8hLpVD7HQHOAhV5lhxXaXsbcmeIoT6OTSI4r32erTY9STKeNxYqWNu7WMnI9hcqaU243051yQa3KWWWFDat0qzWd7zuW\/E6Onc2i0UkkFAASLyS4QJZlLl26xPz8PPv377+qOsULYRqNBo\/Hg8fjoampiXg8nm9e7e3txWg04vP58Hg8jF6WvX7jm29Do9Fwz5\/9DpPjcxx\/qpOjBztoP9JFYp1EdaDCyUhX8TM4PxdDrYosIgpdQ7W9EBHPL6ttKcezZpuVRihV4zEaraihTgD0Aqz9mpWCUntDVmYG1R+yR06dZf+bG2GwdMSTiJSO8vQ2CyDeV04kUg+AzGQJuemK1gDdZ0V9OTKdFyaZm1hi1\/5KArEE2bnC4wpuDzEmoLbR6DXMl6APMhstLKsgEzUaieikesQaaPIxoxLtIMHytKDuJCnfU41OQ1xFzqGsLUS0Q4Hcs9xJrKvYOXpagqT6NkRHGgl9ZD7vjDJaLWdN5ZgHs+Q2LIJ8dkNB6k7WgmbySm0pU1vGo59fxBOwISeLHc8LFfHkcjk6OjpYWlpi3759Lxif1\/OxNbh2VVUV2WyW+fl5ZmZmOH\/+PLlcLi\/54PP5MJvNVNWEKK8M8MbfuonkSoqzJ\/o4eqiDowcvYnIou5e52RghSdnBpgStBWtSH2o1nl8F25KOZ9OpthKOJ7lSgiBUoCIIoNFqGJ8QE17aXKWRcw\/3P8tvbtvPcqd61GMM2pgbLsGSrZOYHRTXgPRmHcMl4M+hZj\/9HeJ0nYh9F6CyJUDvZXjymWdH0Bm0tO7w4ZldRruSQwaW1RgELlvZjrAw2gk0+5nsVCcLtVSbiQquh1ZwDvYaKysqvGu+Rp8qdU54Rxnz54qPWdJAdkH5WBwBC9Hp4hWzMZti4xPsbisj27cKl551+jgzacKpt5BeLLxfGoOG7HDhs+lt9aFbJylwZjhDLgdmm8TGH3qhWAtyuRznzp0jkUiwf\/\/+PEpqK5lWq8Xj8TA8PIzNZqO5uZlIJMLk5CRdXV1FcG29Xs8Nt2znupe38kcfzzE2OMeZg\/2cerKPjuPDpC+zcyRXshh9epLLxcCXWHQFtZgvnbgS8fza8WwBu1oxuFQJHZ1SPG3pEsg5T9DGxGQJB6gtnR4bHZ\/gs5e+xV\/uegvLKg2d5jI3lHA8lko7851iZJy\/yc\/8STH8W19CDtxkMzBQQnPHsAG8kEllOdc+hdlmYP\/eckIGLROCiEmjKx3tiCQtJA1ok+rgEV+9l+lO9WjHkNGhBqQ3qHSkS1pITis7l2BrGcudxedr9lmJdRbfD2eDj+QGJVEkMMSXSGu1dNirGL64DLkUnnoTsQ27CDR4yW1QHbU7c3B5baOtK+PIQQOwgs2mL2rnMgsUNDdr2WyWs2fPkk6n2bdvX4EA3FaybDbLmTNnyOVy7N27F51Oh8vloqamRhWuveaIDAYDNY1lVNUHuP1\/XUtiOcn5I4OcuuyIbA4LyeXid3JpMSFwPFdqPEbjFee\/vLz86xrPS2kvVMSzJOiCB0ioEWJeNofXXCQnsNHiKhK++X04LYyPraZfHhx5kt9x3UhS4bjmN4Fmy5ZMoUFSwJUGoNVrGBZEEQDhbX4uPquub2K06OlTkUdIxFI8dWiA5r3l+LYF0A8vkFOAQpftCDNySt1B+psDTKk5DlbVR0UUPStpAQN1W5A5Fai5p8bDrErEGNoeIqJCMCqpFJo9VU6i54snJquRIsfn3BYkGotzPFlOfOjKIiQ9WRwp2y0UIuS0Erp10h1LnhCDvREAXA4rSxTuI6PP8swzz+Dz+fD7\/bhcLkXJaTXLZDKcPn0aID+Zb0Vb07sBirgeoRiuvbS0xOzsLCMjI3l27TUn5HA4VqOh17Ry3a3byGazjHfP0nV4mEtPDTJ4eoLc5dpONq0ebS9HYmSz2V9HPFvNNh3xCCIaSSsRmxM7nsVFsdNYyZauy0zPiGsl4QofU7OrjufS8ABPun3cqKtBXkflYwm7GBkQRzJag5b5ITEc2+gwlkS8lbcG6GoXc6rFBESaAJWtATpOqDumQKWTiydXaxdmq4Fd15Rjm10mu7B6PTU6DQslSFBlUbQjQVygPuqp9bA4qA5IyCmkRtbM7DAqggCQZLKLytfFv82v2DBqcJpY7laStXaz0lP4eU6jYUzr4uKFBHL2ynPrr3WR3NCFL2khN1Z4n93bvLB4eTuNhvbedaS7CvWqUH2YxsZGZmdn83UPj8eTlzAQpczS6TSnTp1Cr9eza9eugslzK9mac5QkiWuuuabkcUqShNPpxOl0Ul9fTzKZZG5ujpmZmXyfy5oT8ng8GI1GaraHqWwJ8sr37iO+uELnM0N0Pj1E7zFlaXSAyGyEp59+On88iUQCs9lMLBb7lXE8W4qr7WpSbQszC+QUCBjXzOgwbRRrLLL5uRJ9NTrxDqx2I7MzYrSadUMe\/fGzJ+jyFU6K+k10kLsb\/Yq55PWm82rJivjSgIwAbQPgKXeUjIiWS6Q4feVXGgYTyymOHR7gYN8si7VedCEHwR1hYoIeIn+Tn+mNYmzrLLQjJGwYNdvUUz6WSrMqkairwsmMCuFnWWuIqAqowKCiRuhv8JJTgILb19UFZUkiUltHh7uWjqfGkTfcH6+\/OPXiq\/eQXSpcFDncV74nNVXxyI8jV35D4RhsAXteVfTlL385e\/fuxWazMTIywlNPPcWzzz5Lf38\/0Wi0oA8kmUxy8uRJTCYTu3fv3vJOR6PRbMrpKJnRaCQcDrNr1y5uvvlmduzYgV6vp6+vj0OHDnHq1ClGRkZIpVIYDAacPjv7bm\/htz97Gx9\/\/H9x+7\/9Jrt\/dz++lkABvNJusrF\/\/360Wi2xWIwHH3yQ7du3c+7cOebn5zeF6IXS6qOwija89957CYfDmM1mbrnlFjo6OlT2eMW++93v0trauipr3trKww8\/fFXXrpRtyYinVKptZmaGk0+L1fMMNhMi9JfepCNSArGGVuyX\/eUOxkqw2yQUmK0fOv4EH3vdO9F1rI5FSrAHAGTk0hBLrcYMyut1YHU1P1QCVOCpcDCuMsECeMIOhgTgBUkDIwqF+Uw6x6ljQ0gS7LLocTf7yA0sICukBoWnKsGKgHHcU+1iUlCfshksLKig5Kw+C\/EJZYcmJZUnA2+9lyUF2LXOrCfeV3wcljIHK92jyEhEq6u5NJ5l7sgswW3Ki4\/sXPED5nTqyKzPUmokdOsE+gazHlLJK\/cwo6Ads54uR5IkHA4HDocjv9JfgyIPDg7mFTOdTif9\/f04nU7a2tquKjX3Ylo6neb06dPodLoXLCLbCNdOJBL5a9TX14fBYCiIhnQ6HeW7qyjbUc6e372O+PwyY8eHGT06RGo5hclkQq\/XU11dTXNzM1arlQcffJBHHnkEn8\/Hq1\/9at70pjfxO7\/zO6rHVEp9FODzn\/88f\/\/3f8+DDz5IU1MTf\/u3f8urX\/1qurq6VJt7jx49ytvf\/nbuu+8+3vSmN\/Hwww\/ztre9jcOHD3Pdddc972sJIMmbaWt9kSybzZLJZEgkEhw6dIjbbrutANMuyzIDAwP09fVR6ajgsQ\/8QHVfnuYgTx9Tn4A8FQ5O9YhTTobqLCMj6pNs67Vhjhw\/IdyH269jfLx4YpIkiU\/d9h40EZmRQbH30hm1RFKQVuFKg1X6k6nJqDDK8zc7Ge4QRWgy1qCVOUG9qXKXj94z6tekfmeI7rPqtZua1gB9l6MKm9NE2\/YwzkSW9GX5Bl+jTygEF94ZYvK8OkS7fEeZqhhdcFuA+S5lx2twGyCWUuz8CzT7ian09FRsD7DYWfychfeUE1MQegtfE2I2JtM5LTHdf+VeVNbaiG\/oyXFXOLDOFUdn9ZUasvNXtnW3+vAsXV7pmo38+2A9nR1XnOuukJ7MhmfnlX\/zOppf16p4Tustl8uxsLDAxMREnuNrjSvN5\/NtCej0ensp0oBrcO21tFwqlcLj8eQdkdlsJpfLkc1myeVy+X\/t7e00NDTg8\/mQJIl3vvOdHDhwgFtvvZWf\/OQnLC4u8nd\/93ebPo6ZmRkCgQCHDh3i5S9\/ObIsEw6Hueeee\/iLv\/gLYDViDQaDfO5zn+P973+\/4n7e\/va3s7S0xCOPPJL\/7DWveQ1ut1tVcuFqbctGPFDY2ZvNZjl\/\/jyRSITrrruOeIl6h4grCcBcQjdHo9UwMSGGJcuSGADhdFoZH1fO9cqyzGee+gYfu+09UMLxuJsCzJwUO0l3tYvJEgCFZEKchqtoCdCrAhqAyxpAQyUaYUssgo3r0HCxxRWOP7MKHa6o89JQ6QZRkVqCpIDU1V3pYlKF0BNAEnjlQK2PaRUUnkZWTvs6K10sdhVfL41eS3KkMOqTtRpS1WGODstMdBemWm1+c5HTAfCHbcQ3OB5PrYvsdKFjt3vI0\/utVNbQ+eMrTsfhNpFRYPDYLE+bRqPBaDQyPz9PRUUF5eXlzM3NFTBHrzkhp9P5kjY\/ptNp2tvbMRqN7Nq160WLyLRaLX6\/H7\/fT3NzM8vLy8zOzjI1NUVXVxcWiyXvhFwuV77vSafT4XA48mWFvr4+9u3bx549e9izZ89VH8dG9dGBgQEmJye59dZb89sYjUZuvvlmjhw5oup4jh49yh\/\/8R8XfHbbbbdx\/\/33X\/UxqdmWcjzrazxwxfEkEglOnTqFTqfjhhtuwGg0EomJ6f7lEmkyEbMsgLfMxsSEuM4UWRI7DIfHjAI7e96i8ThfvfA\/vLbsZpKT6nWTZAnlT4CFaXG6zlVmY7IEgEEyiicNX42N8QH1c7a7zfQLpK8tdgO955Un99H+OTKZLE+NLlLd6KeyzIlhIUF6HaN3eHuZMI1mdZtYUqGN8zf6mVOpG1n9VmZVHK613MqSCnOCw2MmonC6we1lLF9YjXbSIT8zBhs9F+epShuZUpBEKK\/zMHumOC0sLRXfU7fPSHZ98KUB\/eyVfZ6etMA69jaP3wIzxc\/WZnnaotEo7e3tVFRU5MUY7XZ7Hoq8lm5aK+KvoeS8Xu+LinRLpVKcOnUKk8nEzp07X7I0oCRJ2Gw2bDZb\/hrNz8\/nQRzZbBa9Xk8ul2PPnj3YbDZyuRxf+9rX6O3tLSlHrWZK6qNrEWowGCzYNhgMMjRUHI2v2eTkpOJ31vb3QtiWcjxrptFokCSJTCbD8vIyp0+fpqysjJaWlvwDVQpKnS1RE8mVeC4dPguIWWeYUEihrTdriX4ZjUaic6CPcdMUH9rxThYVJnWdRc+YAFYM4Cp3MFKC3dld6WJCIAqnM2gYvCj+HYfXIXQ8FU0+LhxTf6CrW4NcOD6oOu4vdzE5HGGga5qByymxQLmTulov9rQsZKh2ljuZEDg9vUBp1lPlZuqMsuN2u23MTxZH1waPkcglBVlrLazEVpivr6V\/aJmZ9kXWwpFcXLlOlFFAy9n9VpaHih2eNFcYcbqavBDrBkB22vnxzwrvj91hJKfgbzcT8UQiEU6fPk1tbS01NTVF43q9nlAoRCgUIpfL5ZmjN3Kl+f3+X2h\/SiqVor29HYvFwo4dO7ZU7Umv1xMMBgkGg+RyOc6ePcvi4iImk4lPfepTPProo7S2tvLII4\/wgx\/8gNtuu+05\/c6a+ujhw4eLxjZGobIsl4xMn8t3rsa2pOOB1ahndHSU4eFhtm3bRmVlZcF4KbqctADxBhBbFkOl9WZxqs7lszA4I27UlDQluv+ryuju7WZlJck\/nv1P\/mj33SxukE7wNPiYOSFOs9nK7DAYEW5TSgK7cnuQSyfVWaZNVj0DJWQW5lRUOtdsaUE9KtNoJYYVIpLpsUWmxxapaQky3j9HZb2PoNeKNQfyZJRsdHUyl8w5VMBleOu9zKg4b7PbzKyadHWVi\/lLyqs8Z5mVle5Vh5HVa1jxOlk2mdGYTDzzzDByLlKwvd1rYVZBWtsRsBJRgH6X1ThJXCi8Z84KB5mpwmN1+KQ8nmTKXkUiXvhcW8y6IriJzqjDaBenmufn5zlz5gyNjY1F756SaTQa3G43brebxsbGAq60np4ezGbzc+4ZEtlWdjrrTZZlOjs7WV5e5vrrr8dkMlFdXU02m+WHP\/whWq2Wd77znbz2ta\/lrrvuuioHtKY++tRTTxWoj5aVlQGrEcya8iussv9vjGjWW1lZWVF0U+o7V2tb6i6tedRcLocsy4yMjLBv3z7FB79UxLOyUgKOvSiuEWVL1G98ZaXp3sfHxKFpIHhFHGtuaYF\/OP0AzvpC7ZJEsjQzwnQJpxKo8zAzIt4mKWCABrCFDSQF8tfljT4mBtSjrlCtW9GxrFnjznIWBb05FpuRVDJD38VJjjzdx2PP9PF43zQXDTIz5QbGU1m09V60AVsR3Y\/JpL6+8td7yao03drcxb3nMjKGoIOlnIGZ2krOmT08PgJPn4pw6sgEU2Nzij1I5fUexc\/LalyKDlObKK5leUMbogYN6OeuLEp+frZ4oaNU6ixFDjozM8OZM2cUF3ybtY3S1o2NjWQyGc6fP8+hQ4c4d+4c4+Pjm4YOK9katNtqtf5SOJ35+fkCLrsTJ07w4IMP8o\/\/+I9EIhG++93vEgqFNgV3XtvvH\/zBH\/C9732PJ554okh9tLa2lrKyMh577LH8Z6lUikOHDnHgwAHV\/d5www0F3wF49NFHhd+5WttyEU8ymeT06dPIskxraytut1t5uxKOJxEXT6TZrDiiWU6ImyiNNvH3nW4bk+sIG5UsmSqcXOajEe5v\/w\/u2fe7LPYuYrAaGLsk7qnx1roZ7BbXu8wKE+h6s\/ssJaMZjSROG9pL\/IY7aGNURUoAICdoGDXbDPSppNGmRhexeYJcOn3l+LU6Db6QA5\/fit9rZSydRdccRJOT0WRzkMxAKoNOkpkfWUDjsoBWQtJqV8W9tBoMVj0zSZlkYzmJtEx0Oc3ifIKF6WWaqu30P1UcHRpMWmLjys\/N8ryy488tFzsYi9tEbKD4vmuXFgtAd85GL0RX02zz4XrOPFX821K6+D0QkYNOTU1x4cIF2tra8ivm52sbpa3X2AGGh4e5ePEiDocjD1DYrBBaMpmkvb0du92+paHdsizT3d3N7OxsgdP5yU9+wnve8x4efPBB3vjGNwLwspe9LK9JthkrpT4qSRL33HMPn\/70p2lsbKSxsZFPf\/rTWCwW7rrrrvx+NqqPfvjDH+blL385n\/vc57jzzjv5\/ve\/z+OPP66YxnuutqUcTyKR4MiRI3i93iJZ2I2WLqHFE1PoXVhv8zPiiGdmXozeSmfFvx8u9zI5LXY8w8PFqbqF2CJ\/f\/IrfGT\/ezCarUydEKfzjG4LRURc60zSSoz1iLV5gvUeZlQ4yAB8FQ5GBPo+Wr1E73n149TqNQyqCKoBuP1WVccCUNcWouO4cu1IkiSWpgoXIdlMjqmRCFMjEXZcX8PF48r3Yef1NXQdV0Yd7ryhhm6VsajKs1PTFmTiXHGUa3ToiI0Wf8fqMRPpL753oTo3yYuF21sDVtKjhelCp18Dy4BOx9c7LOQyxb+RVXhP1CKe8fFxOjs72blzJ36\/X3Gb52sb2QFWVlbyKbn+\/v6ifhilOWBlZYX29vZ8P9FWlRGQZZmenh6mpqbYt29fXiri8ccf5+677+bf\/\/3feetb3\/qc919KfRTgz\/\/8z0kkEnzwgx9kYWGB6667jkcffbSgh2ej+uiBAwd46KGH+Ku\/+is+8YlPUF9fz7e+9a0XrIcHtpjjMZvNtLa2EggEOHnypLCJtFTEsxhRHzda9SzPqjserU7D5KQ4AlhYiAjHTRYxYWIg6GFkTHkyXYwt8YXj\/877f+N\/CfeBBBMlxNzKt\/npOStO+c1OlJDarnAyJmgqrW4N0CPQ\/6nfGeJSu7oTrmjws3B0UHU8KmC5rt8eYuC8iqy1XsNwl3rEuKTCniBpJKZV0oahOjczKvU0rUrQ5qu0EleQ\/naFTaz0FNca9Zl0EWu1v8oO6+mQJNDPr6bZ+jyNzA8pP28rkeL9K0U8IyMj9PT0sGvXLrxer\/KJ\/ALMZDJRUVFBRUUF2WyWhYUFZmdn6ezszPfDrO8ZWnM6LpeL1tbWLe10+vr6mJiYYN++fXlwxaFDh7jrrrv453\/+Z37rt37ref9GKZMkiXvvvZd7771XdZuN6qMAb3nLW3jLW97yPI5ObFsqPpUkiWAwiCRJJWlzRCJwWoOWRFQ9IrG4xYVVT5mdjEAuGWBkRAx5S5QgDw1XBITj8VSCfzn0ryTa1Cf8QJOfpdkSrAcl5L\/L6j1MDgqiOwlG+8QRUzYjfgGWY+JjnBpW\/\/1QrYdhNU0dwGBQd\/CNO8LEVFgOKup9TKggAWtbg0RU4OneoHJtz2I3MKFCNWRRSVNqFOpqRqueZYU0mz5ReDyORg8sLSFbrXz+f5awKUgcGM06RUJai7cw4hkcHKS3t5c9e\/a8qE5no61JV2\/bto2bbrqJ6667DpfLxcTEBIcPH+bIkSMcPXoUi8VCS0vLlnU6AP39\/YyNjbFv3748i8Dhw4d529vexhe\/+EXe9a53benj\/0XblnI8sHm+NlHEYyzRHGoQcHnBZVZqgbkDFlZWxKm24SF1hBiATgDvBWhsrGFpKcp\/PfEQ4019oOA\/tCWE7AwWHUMlpKmNTnHtpnp7kIVp9ejQE7IzIGg6dfotjPSopwLr2sqYFvCueYMO1TGb00S\/gMVAFuAyPII6h8WifE0kCeaGI4pjVdsCZNPFz6vDZ2ZOoQ\/I7DKRGCtOb1oCOuQN+zG7zaSHC++jM7D6QByjmtmFFHqFV9kbVE6prUU8a6vywcFB9u7d+5x7SH4RttYPU1tby\/79+7n22mtJpVLo9XoikVWSzY6ODqampjbFZP9i2sDAACMjI+zduzfvdI4fP85b3\/pWPvOZz\/De9773V9rpwBZ0PGtWiq8tJajx6FQmjjXTGMSnrbeIowSTXfzQWO0m5uYiwm2mp8VRhMt9ZcL9ydOPcsZ\/DM26xbZGp2FEkEYCCDUHSCXUr6FGKwlrL7CqEiqyYLVLSNNT0eATOgCNXv1aavUahgTHV9sSyotybTSXz6razKrTaRhXoeUxGLWMqgA6qloCRKaUnbCcUr7O5Q1eZZRbg6eIEBQg4Cx2FraQATbswxCZJOP18w8Pr55HViF6cqpIu1v9tnz9YXR0lH379uFwqDv4l9oSiQRnz54lGAxy4403FhF2Hjx4kPb2doaHh4nHxZmGX7QNDg4yNDSUJ10FaG9v581vfjP33nsvH\/rQh37lnQ5sYcdTMtUmiHgS2RLNpWoNH\/lx8QrK5RV3fXtLwFXNZhMDA2LgQTRauBo+efY0P03+EE1odRYPbvOTWCoBKRfAnwEclWaSMfVzNdsN9AkF4WQmhBLaMuMCeQKTVc+gICJr3BkmKiAEXRSwNVQ1+vPaKButfntItW5UvyPMisqixuZQVuy0u81MqjiyjMpzqlFAm+mMWlYUmkaN6cJjtdQ4IBLh4Ukf6cusFokFBSJQq3JEbPZa6ezszBe9tzIVfzwe5+TJk\/j9frZt24YkSXnCzqamJg4cOMCBAwfw+\/3MzMxw5MgRjhw5Qnd3N\/Pz8+RKiD2+kDY0NMTAwAB79uzJF+\/Pnj3LG97wBv7yL\/+Se+6559dO57JtOcezPtUmjHgEjsdgFafKkgov\/XqLlajPpDLiCd\/rcwnHK6uDwnPT63V0dfUWfT48Mso3+\/4LuTFJtsQDbPOaGS6hzWMucZ0qWgKkBf09NW1lQkLRuu0hIXChfnuYTEp9YkgKhPoq6n2MKSDC1mx2XMDSIIDe5hTSZXAZcKKSMqxo8pHLFJ+Hw6fcNGqyGVjoLY6qws0+shvOWW\/Vo5suTEXq7EkmrG4eenQ2f2yLCulQo0o6d2R2hLm5uYL6w1a0NacTCARobm5WnbTXeob27t3LLbfcQn19Pel0uqBnaGJi4nn1DJWykZER+vv72bNnTz567Ojo4I477uAjH\/kIf\/7nf\/5rp7POtpzjWTOdTvecazwGs3hCjatQl6zZbAko9eyceFxJCmG9ySUiqobGGlZWlOHg0WiM\/zr5X3RlT4FGPXLz13pUV\/wAJruBkS5x\/8\/SQgl2B0FjJoDOKH68RA2jdo9RGA25feoNvNXbAkyp1GJsThODKj1LTp+FERXaoNodQeIqiraJiPJ5lNd7FJtDy5uVHZXVUDwxBRs9sGFbv7TC1zuv9Lc5XAZFHSaNwmpfY9AQzybYv39\/Ht67FW15eZmTJ09SVlZGU1PTpidtnU5HMBikra2Nl7\/85ezZsweLxcLQ0BBPPfUUJ06cYGBggFgstilU2GZsdHSUnp4errnmGpzO1Qbwzs5Obr\/9dj7wgQ\/wV3\/1V792OhtsyzoeUaotm84q5rTz4yV42hYFkthanYbJCfUJWafXMj4mjiRGR8QUN7oSSDOXS8yK0NhYw3\/\/\/CEuBg6iDyhHDAsCoTWA8pYAGYFMtq\/KKWQasNiNwsK+1WEU9uaU13kZVYgG1swVNKvWjrR6LUOCaM7uVJ9Qa1uCquctSs\/pVe6Z3WNibiCiOKaWZtMqPNcanURiqPh6m6XCCMhe72bC4OPYuSuRZnm5MhItHSteAOkcBvbt24fRqJw23Aq25nRCoRCNjY3PedJe6xlqaGjg+uuv56abbiIUChGJRDh+\/DiHDx+ms7OT2dnZTSkeK9nY2Bjd3d1cc801eXBGT08Pt99+O+9+97v5m7\/5m187HQXbco5n7SaJwAWl6HJSJVQ4F+bUV\/LekIOM4CEMhO2kBak6j8\/BTAk57P5+cX2nFAuszb7aE3Dmwlm+N\/IAmrbCVIy3ylmyv2dxXuyYPGGx86tqCZASOP\/qEuPugLiuEJ1TT7OFau0sq8gj6I1aYaS0PK++6IjOKj8XJqueMRVH5wjoFaMap9\/CrAIM3WDRE+lTSLM1+Yoclc6kIzNU+CzYQ0b+7pFCh2K3KTvaxEJx+s0ddgtlrV9qi8VinDx5kvLychoaGl7QSXutZ+iaa67hlltuoaWlBVmWuXTpEgcPHuTMmTOMjo6qZhs22sTEBF1dXezevTvPsDIwMMDtt9\/OW9\/6Vj772c9uWUaFl9q27FURRTzPh6fN5DCoIqEAbG7xStDhE6cnysIe4Xh1TZilJfW6iMGgZ3hEzFYwNXVlYo1Go3z90ANMNp5Fezld71DpNVkzb6WDUYHYmqSBEUE0ArA0L07DLQgadPVGLQMC51C1zafaRwNgNqjXJeraykjElFOp4Rq3KotDWY2bSRVnXdMaVBXhM+SUJ\/FwnXKaraLZp8gNZ7cWpy39jR7kZKED7ljUMTReODHqFSY3jVYiqwAcSWnTipLWW8FisViRBMMvytZ6hlpaWrjpppu49tprcTqdjI+Pc\/jwYY4dO0ZfXx+Li4uK12lycpJLly6xa9euvP7N8PAwr3vd67j99tv54he\/+GunI7AtxVyw3kQRz1CvOvU+QFwAtTY7DSBAECfS4kggV4I81GgSp9F8ARfdxbiBvDU01nD+\/HnVcZfLTm9vf9HnTxx9kvJQF69quFNI1gngDjsYEwi6VW8vo0ugIhqqdSvKW69ZeYOXYRXFTlgFFXS2K9PRAFhVVvAA3jKHMKKJzKuDCvwhJ3NDyuOBkJPIsPKYGuDAE7IxO6B8HdXSbHqpeBKTNJAcLU7v2gw51rsdQ4WHL32v+LpmFRZaHr8VOamg51PuIRqNMjg4iF6vzwuYud3ul3SiXNP9qayspL6+\/kX97TWNIbvdTm1tLalUKk\/js0Yns8as7fF4mJubo6Ojo4DlYXx8nNe\/\/vW8+tWv5p\/+6Z9+7XRK2JZzPKIG0lwux6VLlxjqGRTuIyaAGetVIKZrpi1REJ+dE\/fOlOojyOVKqZaKU1Dh8iBz88qT+tjEOMedj1Pja8C6VE8urnQushANBhSxO280V8DGqGAfDq8FBM5VlIKzOU30nlOvkZXXeIlMqrAKlNmZG1Ye02gkJnqVj1lEkePwWlTTbKEaD8MK6TlnwKqYZtMbtYpptmCDl9QGiXVJJ5Fd\/5lWw2Gtm1g8UvT9hALk3OUxwUTxtQjUBNm1a1eenmZmZoaOjg4ymUyBpPWLmY5bczpVVVXU1dW9aL+rZgaDgXA4TDgcJpfLEYlE8vIOiUQCWZYpLy\/PL4wnJyd5\/etfz4033si\/\/du\/vShy27\/stmXd8kY4dSqV4uTJk0QiERqrG4TfXYqo52ilEg2RGVG3IxBbFiPWRkfFVDpjY+LxSCQiHLeWgEB7PG4eefqHPB57AO224tV4ZWuQBZUmSACz3ShUEdXqJIa61KMZvVHLgIqGDYAv7BAyHdS0lKmmQiUkpoYiqt8tr\/WqAhICNTYWVWo4IoqcykavKuBgWYUsNFzrVkazbfOTUUjZuRTSu4FGbwFzdUfYz\/mp4gWVRqthUeF+ykVsb6u2xlqwPtX0spe9jP3792Oz2RgZGcmjvwYHB19Q9JeSLS0tcfLkSaqrq7eE09lo63uGmpqaAAiHwyQSCW6++Wa2bdvGbbfdRnl5Of\/f\/\/f\/\/drpbNK2rONZg1PLskw0GuXo0aPo9Xquu+46ZAEaWmfWkxR065cAvDEzq56mMpr1zEyrp6i8fiezAmCB2+1gRIB4MxoN9PT0CY+vv39AOD44OAhAZHGRbx99gJHqwxhDV5yptkQqsLLVL6yB1e5Qb74EqNsRUi38A4SqPcKJbEHAkl2\/vUy1L0iSUIVQA3jdLtUxkV5PQgUBGax2MafiBNXSbCYVlobMZPEzZbddeTWXGsr5\/E\/OsrJUDLgIlDkUodQ2FfVbi684ol5LNdXX13Pdddfl0V8LCwscP36cZ555hq6urhe8IXNxcZH29nZqa2uLtGS2ms3NzXH+\/Hl27NhBW1sbe\/fu5Sc\/+QlVVVUAXLhwgXA4zF133UVnZ+dLfLRb37ac41mfaoPVMPbYsWOEw2F2796NTqcTggtK8bQlVfL1ADq9hqkpdccRrHAKJ82ykLJ20JpVVov1TRqbakgm1b1qbV0V09PqqT6Xy8H4eGG0cuLMs3y391\/I7BjC5NQJ6yMAC4LeGoBcCWXXpIDDTpIQpvkqGsRNoQajevqntrVMtWnU4jAy1KEcpekNWoZV+nr8FQ4mVJpG\/eXKFDNqaTatQaOYZvPVuFnZ6Gw1IF+G7MuVfv7sx2cBmBsvdso+BUcC4LAoR8ZWf+mG0Y3or6amJrLZbFFDZjotZsYQ2eLiIqdOnaKurk5RVnsr2fz8PGfPnqWlpSWvwrmwsMC73\/1u3G43HR0dTExM8JOf\/IT6+votDVXfKrblHM+arTmeCxcusGPHjgI8f2pZVMMR3\/RlwXc9ZXayghWd1VmClLNEQ6XBKB632cS69GVlYubgqqoKRceYSqX4wVPfpcv1GJnyCdQ0ogM1LkYF2j3OEro5vrCDfkEarWFnmHmBPLbLqz4pWh1GBgT0PWaVFT5AXUuZKgNDw84QGRWVV2dAPa25pOLkwnUqabZmP+l48UTtVfgNX72H7OIyGpeNT54eZiWVwet1EVOIvuwKrNQAssr5KkU8ItNqtQQCAVpbWwsaMgcHBzl06BAnT55kaGjoqjjSIpEIp06dor6+nurq6qs6nhfbFhYW8mqsa\/LRS0tLvOlNbyIQCPDtb38bg8GAVqvl+uuv57777ntBorcvf\/nL7Ny5E4fDgcPh4IYbbuCRRx7Jj8uyzL333ks4HMZsNnPLLbcUKZcmk0n+8A\/\/EJ\/Ph9Vq5Q1veAOjo2Ly4hfLtqTjyWazXLhwAYCdO3cWKSGKIh5Nicl9QdCNby\/BSo1WvNqPL4vF5RYWxIwHpeo70ah4\/3q92DFm5DTfP\/FVOhz\/g1ReHNk5g+JJqbxezIawShiqPp4T1M8MRh39F9UdS11LSBWUYLLqGbigHsmtCMAmclqQ9lNhzQ43eFgYU3Y8GRW5DotKijM3V7wfp0uPpNfy4FKagYnVYwgHfYrfV6P\/ySgIIWqNOkwlMgIiW9+QecMNN3DjjTcSDAaZm5vLc6T19PSwsLCg+hwsLCxw+vRpGhoa8mmqrWqRSITTp0\/T3NxMOBwGViHfb37zm7Hb7Tz88MN5RdEX2ioqKvjsZz\/LyZMnOXnyJK94xSu48847887l85\/\/PH\/\/93\/PP\/3TP3HixAnKysp49atfXcDxeM899\/Dwww\/z0EMPcfjwYWKxGLfffvtzbpZ9IW3LodpWVlZ49tlnkSQJnU6XF1BabyK6HElJZH5tTCMJU0k6k9gPL8XUV+sg1ujR63X09Q2qjpvNJmF9x2g00NXVJdi\/nkuX1HPLer2e3t7V\/Q8ODzDIADtadlGTvZbctB1JA0MC3RuA6VF1+QJJgtF+9WjJ5jIJ5bXrd4a5dEK9sXZpTiAG1xai84TySi5Y4WRERSfH6bMwrJJ6dJWbiSsU8wEsdh1KT4JLJc2m0UksKsh+u8sdJMaLFwDS9CzP+jz8\/NErsHqHzcY0xYsmNSXehEKDsLUEee3VmtlsprKyksrKSjKZDHNzc8zMzHD27GpqcA2C7PV60el0eafT1NRERUXFC3osL7QtLi5y+vRpGhsbKS8vB1YZFd7ylreg1+v5\/ve\/\/wulHLrjjjsK\/v7Upz7Fl7\/8ZY4dO0Zrayv3338\/H\/\/4x3nzm98MwH\/+538SDAb5xje+wfvf\/34WFxf5yle+wte+9jVe9apXAfD1r3+dyspKHn\/8cW677bZf2LFvxrZcxCPLMi6Xi2uvvVa1l0ckApeT1E\/JYNcJV+zRhNixTEyoT8w+v5M5AYdbbV2FsH7T0FBNKqWeM29urmdlRf28W1ubWF5Wd6ptbS3EYoUR0\/lLZ\/lRz\/9lsbEdX5ue6Lz65F61zc\/USER1vG5HSJxGKzMKr31SwJ9XUecT0uuIRP\/KKtXrbiKKnEDIqfwlCZZUop2QIM2m9Mz6y4sjTHeNkwmXnX96tLCXS6uyRlxUAGM43CZF9NzVptmuxtY40rZv387NN9\/M7t27MRqNedmCY8eO5YEEvwxOZy0VWFlZCaxKM7zjHe8gm83ywx\/+8EVl9M5mszz00EMsLy9zww03MDAwwOTkJLfeemt+G6PRyM0338yRI0eAVSmGdDpdsE04HGb79u35bV5K23KOZ01dUKPRqLIXiLR4MgraJ2vm8os7+pei6hOn3WVifk59xR8Mi4EFTpd4tblGg6NmVps4pC\/FMmyxKH9flmUOnzhEV\/pJMq3nsVQop7OMJfqfNCWE7VICzIK\/3ClkMnAH1O9bsNLFUKfygkCSYEpFphogOqOcdpU0EpFR5bRmZbOfxILy8xebUX4+rAqsBAAsFV+UJY+Jj\/7wTNHnSog2SYLUUvH9cvuUn6UXOuJRM0mScLlcNDY2cuDAAVpbW4nFYpjNZvr6+jh69Ci9vb2qrAAvpUWj0TzoYS0VmEwm+e3f\/m2i0Sg\/\/vGPXzTtovPnz2Oz2TAajXzgAx\/g4YcfprW1NU+ptQZ0WLNgMJgfm5ycxGAw5Kl8lLZ5KW3LpdrWm2rEI0i1iXjaDDZxU1xcEFH4ww5GBCUaY4naUinG6rk5cVPnRrTaRhsZUWcCABTZDtZMr9fT0dHB0tISkvQ41++7ibB8DYu9q+ekN2roO68OA7e5TPReUB+vbPIxIqDoKatyM6NST9HqtQyrpMpg1fHMjipHIHVtZYx2KH83VONmUkX6uqYtyKRK06jTZSKi8LkjYCY2VuysJC0sKWgW2f1W4hu0d7QNXv6zY4i0guz63Hjxvn0BO9klBTkGl5GcwuW2CFRXf1E2NzdHZ2cnra2thMNh0ul0PiV36tSpAlYAr9f7kvbBrDWy1tTU5EEPqVSKd73rXUxPT\/P444+\/qCqtzc3NnDlzhkgkwne\/+13e\/e53c+jQofz4RkohWZZL0gxtZpsXw7ZcxLP+oqhFPKIaT0LQwyPqyNfqJCGU2mQTvxCxEvWfoSF1x2CxmOjtVe\/P8fs9wv6dysoKhofV99\/c3FjA77bRtre1sLS0OnnLsszRE0\/z3ZP\/yFzVIVytK9TvDJNWQX7BahpOxHRtd6lHc5JGEqbRGneGiamIwWkkiXEBGarFrL7Q8Kul0gCLRTm602glZlUYDsrrvIppNnvIRHKx+PjLagp\/P9Hi4SM\/\/yGjQ8XXwuNxKF6DQFD5HCwq6MoXK+JZs9nZ2TwMea04r9frKSsrY8eOHXklUZ1OR3d3NwcPHuT06dNXRdT5QtkaT1xVVVUelZZOp\/nd3\/1dhoaGePTRR\/OcbC+WGQwGGhoa2LdvH5\/5zGfYtWsX\/\/AP\/5AHW22MXKanp\/NRUFlZGalUqgjQtH6bl9K2nOOB0mJwoohnOaZeJ8kKwnpf2ElOMJ6RxT0Lw4LG0FDYz6ygMbWhsUbYE1FZFRb+dlWJcb9fDMM2mZXTcKfPtfOdI\/\/CxcxPcO6OoDMpX5+RAXWnZrLoS0CsQyyoMAAA5ASos7odIRYUBNAAjBY9QyraOpJGYkol2tEbtIyrSIpXtQRYVqmDpVWaZsvKlFOwcmw5fyxD9Sb+8kf\/Q1koSCJe\/GyHgn7FfdjtylBqNXzNL7LGs9FmZmY4d+4cra2teRjyRltjBWhububGG2\/k+uuvx+12MzExUUDUubS09AtNyS0vL+fJSdfYEzKZDO973\/vo7Ozksccew+dTRhW+mCbLMslkktraWsrKynjsscfyY6lUikOHDnHgwAEA9u7di16vL9hmYmKCCxcu5Ld5KW3Lp9qUazzqjicioPtPCIr3No8JBBD3qWl1YIE\/6GJ4VD2VFQr7GBxWH1erv6xZNKpeW1odF8OsJybUJ35JkugWoOW8Xi8Hn3qCbDaL3W7nxmtegXGulujo6uKgotHLUI\/6tanbHubis+qkriIyRU\/AJuzd0RvUo9CG7SF6TygTnda2Bhm\/qOxcarcHGTmn\/JtWqx6lhKgraGWuT2FEkomPRYo+Ntj0qxLXRg2P6uf40WUgQVkgwNJo8bV02uzMUuzwDBrl85dUZDusL1Kqbc3pbN++fdOra0mSsFqtWK1WampqCog6h4aG0Ol0eR45j8fzgqXk4vE47e3thMPhPDlpNpvlQx\/6EKdPn+bgwYMvSYTwsY99jNe+9rVUVlYSjUZ56KGHOHjwID\/96U+RJIl77rmHT3\/60zQ2NtLY2MinP\/1pLBYLd911FwBOp5P3vOc9\/Mmf\/AlerxePx8Of\/umfsmPHjjzK7aW0Le14lFJtck4Wggtii+pjSwIqF51ZHPyJqHKCZW6GRX1ZCozE621uTswmPTWlPrFbrRYhjDocDuVh1ErW1tbCBQEbdvO2Jp55ZhUFE41G+elT3wdgz6791Nr3YDOLo625KfXr5vBYhLWjino\/HdPKEGur08jAeXWnlI6rp1zNZnWghEYlG6vVa5hWIRkN1bqZPF0MVAg1+UgMFqfOKpt95GYW+I+ZS5y8eCWFqiYDnk4oL5hySRWhRBWE4IuRapuenub8+fNX5XSUbCNR5xqhaWdnJ6lUqoDQ9LkyBSQSCdrb2wkGg3ntn1wux4c\/\/GGOHDnCk08+mU8Rvtg2NTXFO9\/5TiYmJnA6nezcuZOf\/vSnvPrVrwbgz\/\/8z0kkEnzwgx9kYWGB6667jkcffRS7\/QoQ54tf\/CI6nY63ve1tJBIJXvnKV\/Lggw9uCT65Le14lMAFqeWUWuM9WrOO3IJ6VDM9FVEdy8gCcbeAjf4pdZmAXIk0nChaslotwsJ\/bV0lvb3dquMtLU2cOHFS\/fu11YyNqXtFZwmEzkYI9pqdOnuC8\/ozVJRXUNfWijQTID1diD4LVDqZGlKP1qqbApw\/Nqg4JiEJuddqW8q4dFy5ruULOVT7cwwmLUMqqT+z3cDYJeVIqKY1wLRK6i6twufmdJlQ2lvKmOXv+o4zMlPoyOSU8uInvqgc4avxyK2oNEn\/osEFU1NTeaaRQCDwgu1Xo9Hg9Xrxer00NzcTi8WYnZ1lbGyMS5cu4XA48k7IZrNtqnieSCQ4efIkfr8\/L62dy+X40z\/9U5544gmefPLJl7TB9Stf+YpwXJIk7r33Xu69917VbUwmE1\/60pf40pe+9AIf3fO3Lel4JElClmW0Wi3JZOFLJ6rvmF0WGFee6DQ6iZjKCwwQi6un6LxlNvoFFGeLS+qTq81mYXBAvfDf0FDFqdNnVMfLyvxCx6PXi2\/hGmhAzfr71aMht8fNhQsdquM7dmzn1KnTDAyurtrr6xpoDj3WrwAAWTBJREFUq76WzIiP5RkIlruZHlG\/NuPD6qCCurYyBlX41QBhz1F5jYdOFekEf5WVuV7lsZrWIIPtygsMkwpq0V1mY06FX255Q5pNZ9IRq9fylz9+mHii+FmMqCjjLs8XL2w0GonFyeJFgdGsI6ngkJ4va0EpW3M6O3fuxO9Xrkm9ELZROyeZTDI7O8vMzAz9\/f0YDIaSGkMrKyu0t7fj8\/lobm7OO52PfvSj\/PjHP+bJJ5\/c8qSlv+y2JR3Pmul0uqKmSBGiTWdRRzFZ3CZkQZ\/OjCDdpTeLV1CzM+rppIqqIHPn1L2WuUR9Z0ng1ABhGs3pdHDx4iXV8W3NjUIm3W3bmjly5Kjq+Eam4r7+Xvr6e5Ekib279zOVS2D2mEkoXNryBg9jvQIUoQCRFq71CDnlZgXOTi+pp9kyClxqsCr1MNWtHAmV1biYXCh2ZMEGD\/GRVYckaSR0LXb+o\/2nGPosik7H53OzMFfsSJxOGwmFKN7jt5JZKk61eYNWWCxebPwi02yTk5NcvHjxF+50lMxoNFJeXk55eTnZbJb5+XlmZ2dVNYaSySTt7e243W62bduWdzr33nsv3\/nOdzh48CANDWLZlV\/b87ctiWpbM6UajwhYIBnU\/ahdQECpN2iZmlSfBFMZ9d8MlrmJRNSjimxOoOHAKuRUzcxmE52d6tFOU1O9kK1627YmVRVXAJ9PjHZLxNWjCr1eT3d3j+KYLMtk5CTffuzf+dngl1ioOITzmjns69LlLo962sdo0dF3Xr1vyVumnh6sbQkwq8IsYHMbme5XdkrugJUxFTRbTWuQ5LKyU1JDs7kv8\/5ZG1w8bu7iEz\/5DwamxlXRURXhcuXPQ8p1EptN+Vl3upQXMhbB8\/98bGJi4iVzOhtNq9Xi9\/vzGkP79u3DZrMxPDzMU089xfHjxzl69ChWq5WWlpZ8ZuUzn\/kMX\/va13j88cdpbm5+Sc\/hV8W2ZMQjglMnFgUsuDr1oplepTcDwBtyMDqiDgCYX4iojvnLXAwKejcltWo1YLdbhf07Tc11nDrVrv7bfp+Qvy2XE5MBinp\/XC4n5y8TtSpZbW0t3d3qTnGNx0qWZc51nOUcq\/xd9XUNtNXuY2Z5tblSVjjEigYvg+eUHbJWp2FExUEA2Ozq\/Fm128roOa5c7wo3eOl\/VnlMp3IP3WU2ZTQbkFpZobsiwkM\/\/07B53JOeV8OqwMojpydDmVEW1nQy+R4cSSt1WYVS6C\/CETb+Pg4nZ2dBRLQW8UkScozO9fX1xONRjl9+jQajYa5uTnuvvtuTCYTVquV73znOzzxxBO0tbW91If9K2Nb0vGs2UY4dTwep+O0es0hJygqyoLmUavbCCpzsEYjMTaqnirTG9SDRo1GQ3+fOpTYH3ATWVRnLLCYxWgdEduBwWCgo0M9zVZbW8OAoL7T0tLCkaPqaTaXS70BU6fTqab4+vp78fk9HD\/+EDabje3bdhG01ZGbdbE0snqPsivq96qyycvIJeXzNhi1jKgwDoA6RQ7Asoo6qcmqZ1JFcXVjmk3SSjgaHYwYJvnYE18hqdCbNTMdUdxXJqm88NHJyq+oXgWZpCGL0nLD8gKn2sbGxujq6mL37t0vemPl1Vo6nebChQu4XC62b9+OLMvMzc3xH\/\/xHzz77LMYDAY+97nP8YY3vIHXvOY1Lyo7wa+q\/dKk2ubn5zl69CgmjfpkLBJ5SwsEzERQan+5U0juGRXUjaprwiwvq092pfR3RgVoNI\/HTVeXesTR1rZNSBpaHlZu6lszEcWP0WgU1o527tzB4qJ6nWXtnsZiMY6dfIbvH\/waP7zwJS4Zv4X9ulGi1h4cNVkkhblVROnesCNMIqZ8r0QUOcFqt2pDaXVLgIwKbDl9mZHAWesg2Zrh24lH+N+Pf5GLkX5Fp+Nw2BkbUXZik6PKzjQZU06VyipMEU4FNneAaHaZ6enpF4QSf3R09JfK6bS3t2M2m9m+fTsajQaNRsPs7Cznzp3jySef5LHHHqOuro7PfOYz\/Pd\/\/\/dLfci\/ErYlHc9aqm0NTj06Okp7ezuNjY147eoP+vy8+mSXSAiIRQVwaJdPXPwfHlaHWXt9YqiyqD7j8ToZHFSXCWhsrBfKEJtV2AjWbGpKvQfG6XSURLOpwaxhNdpSM5vNprrv6ekpIvEpvnfwAf7n7D9yJPGvzFUexLh7EPfOZbz1BqYH1OtpKcE9FlHkqKmJAkhKCxYtWBp1zFuXeEx\/hP\/99P3886NfZXh6tSdJkpVfq9raasUOfJPRwMKs8iJhQQG5BpCIKNeWcivKz7LFZ6Wnp6eAlmYjYnQzNjIyQnd3N9dcc80vhdM5deoURqORnTt3otFokGWZr3zlK9x333386Ec\/4oYbbuC6667jb\/\/2bzl79iy\/93u\/94L89mc+8xn279+P3W4nEAjwxje+sSgtfvfddyNJUsG\/66+\/vmCbrSzm9nxsS6faNBoNqVSKrq4u9uzZg8fjYSSq3vMiYQCUX+BFBb6sNYsKohKtINsVDHkYHO5VHU9n1B2a1WpiYkI9hVdZGWZmRt055HICTjqgp0f9uCoqyoXjLS0tHD12THVc1IBmMBiE0VBbWxvHjx9XHR8bu9JQmkgkOHvhNGc5DcCNNx7gbPwcVRXVBL3lOAw+9GkHqQU9+pSN0UvKdSERRQ7AvIrcg9VpZKJ7Gk15jhXHMnO5GUZmR+kZ6GN3bhfPPnJW8XvjY8pRjd3uAIobZsOhMuaHiiMRp9POogLEWpIklqaUHVJK5Tmv315P5fU1LC8vMzMzk6\/PrPXA+P1+rFarsAdmZGSE3t5e9uzZs+XTUZlMhtOnT6PX69m1a1fe6Xzta1\/j4x\/\/OD\/84Q+56aabir73QhFoHjp0iA996EPs37+fTCbDxz\/+cW699VYuXrxYwCT\/mte8hgceeCD\/98ZF2z333MMPf\/hDHnroIbxeL3\/yJ3\/C7bffTnt7+5ZoBH2utmUdTyaTobOzE1mWue6667BarWSzWZIKyoprlhQQWc7Nqq\/Qp2fVayWilFMg6EQQlDAyoh4NNTbV0t5+WnVcp1MPRrVajZCtYNu2Ji5dUp\/8a6qrGB1RP\/BUWj1yMBqNwmho584dnDypDogQoezq6uro71dfWESXoiwvL3Op6yKXuFgwdtNNL+PC3EXsVgcuhxuj1oRRY8FqcBJ0lbOSXMYU0IAsgSwhyRLkwOGyE01MgS9FigTJ3AqJ9DKxlSh+X4Ann3mGxEjxM6Cq4xPwMz6u7HjUFFTDwRDzQ8Wr2PKQj7kFBR2foJ30YrGj0mglVuaVF1Fr4IL1tDQbe2CMRiN+v59AIIDT6SzogRkeHqavr49rrrlmyzudbDbL6dOn0Wq1BU7nm9\/8Jn\/6p3\/K\/\/zP\/3DLLbf8Qo\/hpz\/9acHfDzzwAIFAgPb2dl7+8pfnPzcajUUKy2u21cXcno9tSceTSCQ4fvx4XsrZaDSSzWbJ5XL4GgNYfFbiCqmJaER5wjSY9UTnlR2P3qBlXECHMyNwSjoBsMDndzM2oT65m0zq6ShJkoQRSU1NFb296uNerzgFMjevfk4Oh53z59XRbDt2bBc6FtEqzOFwcF5Az1NeHlZ1PD6fj46Oi4pjABOTE0QiESKRCCNjhdd9584dnD+v\/N2bbrqJZ55Rju6uv\/4GEgnlhcdAvzIapaamirPzyrW3sRHl1KqkAiBwORzMKXAf+AJ24go1NI\/fSi6pHPErgQs29sCoKYjG43EGBwfZs2cPTqd6ynIr2JrTkSSJ3bt355\/H7373u9xzzz3893\/\/90vCVbZW89yYnjx48CCBQACXy8XNN9\/Mpz71qTzrQykxt19mx7MlazyJRAKPx8M111yT\/1uWZTQaDW2\/uYu3fe\/dNNyznbJXVWIrW6VpkTQSURUKEbuKMBaAN+xQZaU2GLRMjKvXYUSsAOWVYsoQEf9aY1MtCwIId1mZeN\/j4+r8Z4GAn05BtNTa2kIqpR7xiEg9jUaj0Dm0trYK9z0yop67bm5qUq1pOZ1OBgbU0YMiZvD1qb31JkkSfb3K+6ytq1ZVmzUalGtrZaGgqpBgdEHZuelQbgFwqIgCunzKUHKtUYfJKZZp1mq1BAIB2tra8gqiBoOBS5cu0dvbi9VqJRqNPqe60Itl2WyWM2fOIMtygdP5\/ve\/z+\/\/\/u\/zjW98g9e97nUv+nHJssxHPvIRbrrpJrZv357\/\/LWvfS3\/9V\/\/xRNPPMEXvvAFTpw4wSte8Yr8Nd7qYm7Px7ZkxOP1erHb7WQyGdxuN0ePHsXr9RIIBC6nei5Qta+Gprua0Gg0THVMMPBUH1PfvsTMUKRofyaHeqHG5jaBSmASqHQx3asetQwPqafS9Grc9Kzm7vv6BlXHvV6X6hioT5awKoEg0u5paKhjWgAsWFToel8zk8lUMs0m4o1LpdQnrfr6evr61OHdIjBDTU0NZ88pR2mNjY2qXHg+n1cVwNHU2EBvr0rPTyjM8KByfW52JqL4eWVFOYuzg0Wf67RaxodVeoFiygg0g1bZ+dttepTcusUrRk9utDUF0TUtl507d5JIJJ5TXejFslwux9mzZ8lms+zZswedbnVq+\/GPf8x73\/te\/vM\/\/5M3vOENL8mx\/cEf\/AHnzp3j8OHDBZ+\/\/e1vz\/9\/+\/bt7Nu3j+rqan784x\/z5je\/WXV\/W0XM7fnYlnQ8MzMzmEwmNBoNe\/fuJZFIMDU1xcDAAIlEAovFgs1mI51OYzQaCbaFCLaFuP73b2Ksc5rTj3Rz+mfdTPasvtBao7oT0BrVb6DNrZ4OKwt7GBhST3eJGAnqG6o4cUI9kopE1FN\/4XAZAwODquNNTY1MC0hJYwIJBYvFQo8ghbdjx3ahYxG9DC6XU5jCC4dDqo7H43ELIylJEIWVlQVVHU9zczNHjjyrOOb2eFHTyUgllUEjNpuNoUHlxYhWRcKgqqqc+UHl2o8aoi2nwmJtMmgVHY\/1Oejw9Pf3Mzw8zN69e\/OMx1dbF3qxbM3ppNPpAqfz2GOP8b\/+1\/\/i\/\/7f\/8tb3vKWF\/24AP7wD\/+QH\/zgBzz11FNUVFQItw2FQlRXV9PTs8oIsl7MbX3UMz09vSU0dZ6PbclU2x\/\/8R\/T2NjIH\/3RH\/Hzn\/8cSZL4h3\/4B5588kna2tqoqKhgfHycp59+mpMnTzI8PJxXLCzfFuD2P76JT\/z0d\/nEo7\/LHR+5CXtI\/cXLoI48k7TqYIVA0KU6ZjQahBGNQUDtY7NZ6OpSpqKB1RqCyET9MzarlY4O9Yiltk4sSCdyLGazWRgNtba2CPctku7etm2bav+Jw+kQNspOTak7+BWB1PnMjHJ6TqPR0KfSFNzYUKd6nLMzyvcl4FOmmXHYrURUINYrKmS3OhX5jattHu3r6ytyOmu2VhfavXs3t9xyC01Nq7RMZ8+e5amnnuLChQtMTU0JQSQvpOVyOc6fP08ymWTPnj35uvDBgwf57d\/+bf7lX\/6Fd7zjHS\/Ksaw3WZb5gz\/4A773ve\/xxBNPbIp0dG5ujpGRkbxw3lYXc3s+tiUjnq9+9ascPHiQ73znO7zvfe8jk8mg1Wr52Mc+hsfjwWQyUV1dzcrKCjMzM0xNTdHd3Y3D4SAQCBAMBjGbzZTVe3nNh24A4E0feTlHfnKRwz++SM+Z8Xw\/RVTQZLksYKzWCq5csMxNjwqVCiCEUTc21nKyXT2qiMfVod8ul6sElLlFCGU2mdR7f1Ydi3rEsnPndo4fP6E6HhfwvpVKs4k441paWlV\/NxQKqYI0TCYTly4p0w1ZrRbGRpXTkVXVlYwMKd+\/jZP0mmk0GuZmlFOYBq3yNQ+H\/SwoaEtJksSiCpRaVkHNbZYuR5Zl+vr6GBsby\/OciWytLhQIBJBlmcXFRWZmZujt7eXChQt4PJ58Su65auaILJfLceHCBeLxeH6SBjh8+DBvf\/vbuf\/++3nnO9\/5kqSlPvShD\/GNb3yD73\/\/+9jt9nxNxul0YjabicVi3Hvvvfzmb\/4moVCIwcFBPvaxj+Hz+XjTm96U33Yri7k9H9uSjken0\/GqV72K1tZWTp48STqd5vrrr+f\/\/J\/\/w1\/\/9V\/z2te+lje+8Y286lWvorKyksrKSlKpFNPT00xPT9Pb24vNZiMYDBIIBLBarYRqPPzmB2\/iNz94EzNjixx55CLP\/PgSF0fUu\/8nJ9VXy4sCYIHVrj6Bu93iQrjRpM4pZzabhDDp5uZGjgn6b0QRh8lkKoFma+PZZ9UdYi6nznXn8bhLpNnKVB2Py+UURlKiTvy6ulomJ5XTji0tLZw5o4yw27ZtG2dOK19np8PBCMqOJ7qkvCiorq5gclSlEVRFqt3jcLKggGjzBmykl5QdTCamDK7ZjOT1eqezd+\/ekk5no63VhVwuF42Njfl+oYmJCTo7O\/ONlC9UXUiWZTo6OojFYuzbty\/f\/3Ls2DHe+ta38tnPfpb3vOc9L1kt5Mtf\/jJAEWz7gQce4O6770ar1XL+\/Hm++tWvEolECIVC\/MZv\/Abf+ta3fmnE3J6PbUnHA6sP1utf\/3p2797Nv\/7rv2I0Gsnlchw7dozvfve7fOxjH+O9730vt912G2984xu57bbbqKiooKKignQ6nY+E+vr6sFqt+UjIarXiL3dy53tv4M733sDs9CIHf3aaJ358ivZj3WQzqxOZxW5gfFodPKCWy4dVfjc1q6urZHZOPeIREXe2tDTR3n5KdTybVU9v2GziNNu2lm2cPq3eVySSvLdarULn0NKyjWeeUed9GxbIt7a0tHDsqHKUZjabhRGeiK7IokItA2A2qY\/pdMp1P51OR1+fMlAhVFbG5Khy5DU5opzS06nIN\/gDdhIqi57EnHKEbvWLU22yLNPb28v4+Dj79u0raHB8rrZRxnpmZqaoLuT3+3G5XFddF5JlmYsXL7K0tFTgdNrb23nzm9\/MJz\/5ST74wQ++pAV4JYaK9WY2m\/nZz35Wcj9bWczt+diWdTySJPGDH\/yAioqK\/AOk0Wg4cOAABw4c4O\/+7u84deoU3\/nOd7jvvvt4\/\/vfz6te9SruvPNOXve61xEKhQiHw2QyGWZmZpienmZwcBCz2ZxPD9jtdnwBJ2955y285Z23EFmIcehnZ3jiJ6eYmp5m\/LwyOixU7qV\/UL0O0z+gjoTT6dVfsnC4jJERdUSaKF1RGsrcwrOCNJtOwOxdCs22fft2YQovKgA0NDQ0CHuSUgKevLbtbZw8qewsHQ47Fy+qw8ZFdERjY8ppNq1WR2+P8v2prAwzPqIMCpEk5desLOgnOq2cRkwvq9S0bCYSFDseh9tERqVmJQIXyLJMT08Pk5OTL5jT2WgGg0GxX+jcuXPAlX4hr9ebBwaIjvfSpUssLCywb9++\/Dtx9uxZ7rzzTj72sY\/x4Q9\/+Jce9fX\/um1JcMGaVVZWqj5AGo2Gffv28dnPfpbOzk6OHj3Krl27+Pu\/\/3tqamp461vfyle\/+lWWlpYoKytj165d3HLLLdTX1xOPxzl58iTPPPMM3d3dLC4uIssyLreNO99xE\/\/w1T\/i37\/9Mb7wpT\/j1a+5AZOpcMIPBNWb6CqryogsqBf4JybUocyVVcodzGs2MKDulFpbtwnrP7KsDpSwWCxCx9LQ0KDaSAniSKtU42dZmbLeDJRuZtUJCm0tLepghrq6WsbHlfV+KirKVfn3mprqicWUr3FFuTpiaVpF66k8HFb8HGBhSjl6MapMzG5Br5oauECWZbq7u3+hTmejKfULGY1Gent7OXTokJBHTpZlOjs7mZ+fZ9++ffma5IULF7jjjjv4yEc+wp\/92Z\/92un8EtiWdjybNY1Gw65du7jvvvu4cOECp0+f5vrrr+ff\/u3fqKur48477+Q\/\/uM\/mJ+fJxAIsHPnTm6++WaamppIpVKcOnWKw4cP09XVxcLCArIsY7dbuPPNv8GXv\/IJnj3\/Tf7xXz\/K69\/wcqxWsyJr8poFguqsAV6viwFBNJQWNFfW19cKndZG57jejEYjFwWTf9v2VqFjERGO2mw2oXNobm4S1mGGh9WvR01Nrarz0Ol0XOpU1yIC9cknLJjwq6trVMe8AuG8pAo5p9lsYmxUuVZoNSlP9Da7mYVpNSi1SiTkUr\/\/SuACWZbp6upienqaffv2CVOPvyhbqws1NjZy4403cv311+N2u5mYmODpp5\/m+PHjDAwMEIvFyOVydHd3Mzs7y969e\/NO59KlS9xxxx38\/u\/\/Ph\/\/+Md\/7XR+SWzLptqeq0mSRGtrK3\/913\/NJz7xCXp7e\/nOd77DV7\/6Vf74j\/+YAwcO8MY3vpE3vOENlJWVEQgEyOVyzM\/PMzU1xdmzZ5EkKV8TcrlcWCwmXnfHy3jdHS8juZLi4MFjmMwanj12nuXlwgk7p6RsdtlqaiuYViH+1Gg0qoqesMpW0NurPr6G\/VeytrYWTrWr09yIrFT9pqqqiosX1Z2aCN7d2NggpAZKCbrkt2\/fzpmzyuAAnU5Hp8ApLS6qS1mkU+rRWyyqHO1IkkS\/CoVOQ30tvV3KNb1lFfXSilBQEdEGsLKkfE0sJh1Krkpr0BaxFqxFDrOzs+zbty8v2vdSm6gutMa31tLSkk\/H9fT0cPvtt3P33XfzyU9+8tdO55fI\/p+IeNRMkiQaGxv56Ec\/yvHjx+np6eENb3gD3\/nOd2hububWW2\/ln\/7pnxgbG8Pr9dLW1sbLX\/7yPK3F+fPneeqpp7h48SKzs7Pkcjlycha7Q8dH\/uxuzl58hK8\/9EXu+p034LnMNjAhoLIQEX82NdcJkXKiptKWlmZmZtQbVlNJdWLVUv03bW1twmhIFGkFAn5h8T8YVE+zmc1mhobU0X8WQVqora2NpSVl5+J0OlTlxLVaHd09ys2mer2Bnm6Vml9ZgOiScmrM6XSpHufcpPIxup3KMg0iVmq10uHGNNtajWRubm5LOZ2NtlYX2rVrV77x0uv1cuTIEaqqqrjzzju54447eNP\/3955R1dVpn37OgnpvRdSCWkkoaQQWigiIBoIRUARBuYFZySig1KcT5xXbCgwgvoqYAVRMY60UCMgCc2ASWghQAik10Mq6XV\/f2Syh8DZG3RIgmFfa2UtzXPKc0iy7\/3c5febPJl33323SwZXFX4\/D81PS6VS4ebmxuLFizlx4gSZmZnMmDGDffv24e\/vz6hRo\/jggw\/IysrC0tISX19fhg8fTr9+\/dDW1ubSpUvExcXxyy+\/oK+vT0BAAAYG+ox6ZDBr1r7KuYv7+NeOj3n00eHY2WseCszL01xXALCwkPaEMTMzk5w5gdZ2ZSm0tLTIypJOZ\/n5+8nWhuTss83MTGXTbNbW1rKeQXL7CggIkBzwVKm0ZE9Kcq3A3t7eksON3t5eVN7UfGH39u4tuR852+emRs2f39zUhHIJJenGOs37s7IxoqFW85pKIp15ayt1WzdYW43kQQ06t5Kenk5hYSEDBw6kX79+RERE8MEHH1BaWkpVVRVfffUV4eHhfPrpp7KySgoPFg9N4LkVlUqFk5MTL774InFxceTk5PDnP\/+ZI0eO0L9\/f4YNG8bq1atJS0vD3Nwcb29vysvLqa+vx9TUlJqaGo4fP86FCxcoKiqiubkZbW1thg4LZtXq5SRfPMK+\/d\/w1+dm4+TUOoVsbWNJVpZ0q3SpjGK0t7eHbJ0kL0\/GfsHTQ9YlVS49IWfaBq2in3KzQXJ4evaWVSuQa4bo08dX9oQnJykkN\/8gF0DkrABMjKVvGvLzNO\/T2Vm6GaG5VnMrro2t9Ps0V0t1tLWeeNqCTnl5ebvC\/INMeno6OTk5BAUFiY0ParWat956i8DAQNFFdNSoUURFRd21hVnhweGhDDy3olKpsLe3Z8GCBRw6dIiCggIWLlzI6dOnCQ0NZdCgQcyaNYs\/\/\/nPNDU1ERISwtChQ8WC7LVr14iLi+P8+fMUFBTQ1NSElpYWoYMCeWfl3zl34TAHD0fx3HOz6dXLVeMeTEyMZGVy5HB2dpK90FrJnIZaW7Dl0mx9RCkiTdTWSq\/Z29vLegbJXfgMDQ1JkQl4FjKfydPTU7IJQ6XS4upVaYUEKfVogIoK6btpKQVzGxsrbkhYbpiZSHdG1mnw2gHQ0pK++agrk\/DhsTYWhy3Ly8vbFeYfZDIzM0XZnrYTbGFhIY8\/\/jhhYWFs3LgRLS0tvLy8WLp0KbGxsZLKEb+Ve3EPFQSBFStW4OjoiIGBASNHjrzjb6m7uofeDx76wHMrKpUKa2tr5s2bx\/79+8nPz8fJyYn9+\/fj6OjI\/\/7v\/7JixQouXLiAsbExvXv3ZsiQIYSGhmJsbExmZqZoLZyfny+eBgIDA1j00l9IOnOEY8f3snTpQnx8PMX39fR0lzzRqFQqrl6VVldwcZG+c76br49\/gB\/VMpJBcqcsS0sLWQkdDw8P2TvQkhLpE56\/v59sUJObwZGrG\/n4eFFaKhEIzMxIk6jvGBjoS87vyBm\/ubg4S+5F1az55GVkpE+pRB3HUE\/z8KqeQQ\/qJSxBDKyNuHjxojhs+UcIOllZWWRkZBAYGCgGE7VaTXh4OEFBQXz55ZcdOrnf5h566tQpDh06RFNTE2PHjm33t7J69WrWrl3Lxx9\/TEJCAvb29owZM6ZddmHRokXs3LmTqKgoTpw4QVVVFeHh4bJ\/Vw8LSuCRoL6+nr\/+9a9cv35dbNF+\/fXXSU9PZ8yYMfTt25fly5eTmJiIoaEhHh4eDB48mMGDB2Nubk52djZHjx7lzJkz5Obmij40AQG+vLr8JeJPxXD614MsX\/4SLq49Jffh6+sl681TXi691sfXmxs3pGV\/5Ib1TEzkZ2h8fHxkhSDlU4deknM0IK\/N5unZm9xc6dSiXArO2tpadk9SFwRvL08aGjSnFN1cpUVbDQ2kW5TLJARAezpKB059CR92IzPpi3BZfRmVlZUEBQV1iF7a\/SYnJ4f09HQCAwMxNW1NLZaUlDBx4kR8fX3ZsmXLXYdM\/1tiYmKYO3cufn5+9OvXj02bNpGdnU3SvztDBUHggw8+YPny5UyZMgV\/f3++\/vprampq2Lp1K\/Af99D333+fRx99lAEDBvDtt9+SnJzM4cOHO3T\/fwSUwCOBjo4Ofn5+xMfH07t3b0xNTZk5cybbtm2jqKiI1atXU1hYyIQJE\/Dz8+OVV14RGw\/c3d0ZNGgQQ4cOxdLSkvz8fI4dO0ZiYiI5OTli+srLy4MlSxeyadN6zp37hbfeeo3g4MB2dRcLC3PJPVpaWsp2jck9V1dX9671GznTL7mTUs+ejrJpNhsbzc0X0Jr+kxMMtZOwCYbW9J5cS7paLR2UdHRkPJtkUjh6etIniJpqzS3Renq6FORqDsyW5nIpOM0\/D0sr6Q6\/Fj2h3YT\/g0xubi7Xrl1jwIABotNpWVkZERERuLm58f3334tCoJ3J7e6hGRkZFBYWtnMG1dPTY8SIEfzyyy\/A3d1DH3aUwCOBtrY2b7zxhsaCs5GREU8++STff\/89RUVFfPTRR1RUVDB9+nS8vb15+eWXOXbsGDo6Ori5uTFw4ECGDRuGra0thYWFnDhxgoSEBLKyssRW5V693Pjb3yI5cmQvly4lsGrVmwwZEirrrePl1Vu2aywzM1NyLaCvv2wXUFOTdNOAtbW1bNC6mwS8XGDpG+Avm2aTcyn18OgluWZjY0NamvT7ZmVKv27xDelWdinjN5VKRXam5lOdq7MTzU2af266KmkPKClVanNz6ZOVqb0Z5eXlD3x6Jy8vj6tXr9K\/f3+xkaOiooLJkydjZ2fHjz\/+KGqydSaa3EPblKZvT+ve6gzand1D7wfdboC0szEwMCAiIoKIiAgaGho4fPgw27dvZ9asWWhpaREeHs7kyZMZPnw4Li4uuLi4UF9fLyppp6WlYWJiIippGxoa0rOnIwsWzGfBgvmo1Wr27NlPdPRejh\/\/pV16S87R09OzN2lXpVuw5dIVpqbybdLe3l6cPCl916ZWS6f3PDx6cf265loKtM7SSNGzp6NsZ6Cc9ULv3r0pLtZsn+Dm5kpOtuYhT2NjI0n\/HTnjN1dXJ4ryNJ8KrSytUF\/X7CLbVKs5IFnZGNMgoWSt10OF1Cc3sTPj6tWr1NfXiy6+1tbWXXIRlyI\/P5\/U1FT69+8vXqgrKyuZOnUqpqam7Nixo8tObFLuoXBnR+i9OIN2B\/fQ+4Fy4rmP6Orq8vjjj\/Pll19SUFDA1q1b0dXV5dlnn6VXr14899xzxMTEAK06dEFBQQwfPhwnJydKS0v55ZdfiI+PJz09XTyN2NraMm\/eXHbv3sa1axf55JMPGDv2UUxNTWRPHXa20vUMHR0d2RRdnz6+Yk1KEzdlBl1dXJxlmyHkZkd0dXVldd3c3aVPNEZGhrKfSa4eJaezZu9gJ3mq7N1builEToNOR0v6oi+l0SbXSq0lsT9tXW38g\/wZOnQooaGhmJqakp2dLaZ9s7OzZYeDO4PCwkKuXLlCv379xFRWdXU106ZNQ0dHh+jo6C6bN2pzD42NjW3nHmr\/73Tv7ScXtVotnoJudQ+VeszDjBJ4OggdHR0effRRNm7cSF5eHtu3b8fMzIwXX3wRd3d35s2bx549e2hubqZnz54EBgYyYsQI3NzcuHnzJqdPn+aXX37h2rVrVFZWIggCVlaW\/OlPM\/n668\/48stP+H\/\/bynh4Y9r\/MOUm+0JCPCXDR5yQcfW1lY2OLi6am4Zb6O0VLNgZuu+AmTTf8Ul0s9tlVnRfCLQ0dHh8mXpYFhXJ\/15zc2kW7dNTaSDQQ9t6eBSLVGrMTTUo6xI88yVqal0LalFQifO8N+1H5VKhbGxMb169WLQoEFi2vfGjRucPHmSU6dOkZ6eLv6edRZFRUWkpKTQt29fMaVdW1vLjBkzaGlpYe\/evZ0iXHo7d3MPdXd3x97evp0zaENDA0ePHhWdQbuze+j9QEm1dQLa2tqMHDmSkSNH8sEHH4ieQn\/\/+98pLi5m3LhxREREMG7cOBwcHHBwcKCpqYni4mLUajW\/\/vorenp6orPq1atX8fT0ZNy4cahUKqqrq\/npp8NER+\/hp58OYm1lJatkrSvRlgt3T7N5enrK1p0KCqS71by8PGWL\/7oyhWN7e3tSU6WDh4lMEPD29iQlRfNzdXX1uHJFuvYjJYUDUCmh3QZQVqo5gGqptMjP1hxAnRztqLiq+WSmpyP9p9pQofnUYijhPKqvry+mfdu8q27cuEFGRgZ6enqiYZu5uXmHpYXUajUXL16kb9++YrdhXV0dM2fOpLq6moMHD963uZzfyt3cQ1UqFYsWLWLlypV4enri6enJypUrMTQ0ZObMmeJju6t76P1AJSjjvl1GS0sLSUlJbNu2jZ07d5Kbm8uYMWOIiIhg\/PjxYmdPm4dJVlYW5eXl6Ojo4ODggJ2dHWZmZu0uDnV1dRw9epxtP27jwIEYysvbD0X26NEDQyMDKio0n3gGDx5EfLy0i6mfXx\/JE4+bmyuZmdL6asOGDeXEiZMa13R0dDAyNJTc19BhQzl5UvO+tLW1MTExlXyuv78fKSma6139+vbl4kXNwdDczIyqqgaNpwCdHj0w1DfXKKOjr6eHrrYZjY13BhFnJ0cq8zRfzAcFB5Dxq+Zut7BBvck5f2dRWktbRR9zFYIGB9heozx5bE2ExtfTxK1eOTdu3EClUomGbZaWlvdtdqbNiycgIABbW1ug9cQwa9YsCgoKOHTokJh26wqkgm2beyi0noreeOMNPv30U8rKyggNDeWTTz4RGxCg9W9x6dKlbN26VXQPXb9+Pc7O0vNdDwtK4HlAaGlp4cKFC2zbto0dO3aQnp7OI488QkREBOHh4Xz22WekpKSwevVqtLW1xeaEW33vLSws2v3RNDY2Ehd7lOjo3ezZu4+S4hIGDOjPGRmn0QED+nP27DmNa\/b29hQVFUmmY8LChnH8+J1F2DYcHR3Jz9dcVA8MHMDZM5rfFyCgbz\/Jk1jfvn1JTpaud7m6uks6uw4bFkb8L5otvUOCAzlzRnOQ9fXxIv2a5tOdr68Xmdc0t24PDBrA1TOaT4zDQ4NJjdf87xPSx5kbGXd215la6eLcojnVFjB9AGHLRmtcuxstLS1UVFSIv2eNjY3tmhN+b1tzcXEx58+fx9\/fX6x1NDY2MnfuXNLT0\/n5559l560UugdKqu0BQUtLi\/79+9O\/f3\/eeustLl26xLZt21i\/fj0vv\/wyKpWKhQsXoq2tLTo2+vr6UlZWRlFRkejm2GbnYGFhgY6ODmPGPsqYsY\/y4UfrOH78BCdOnCS\/oEBjS6e5udldDOE8ZFtB5QY7fXx8uHJFerZHrmvJwtJCtnHA1FQ6JePi4iRrJ56ZKb2mKzOjY21tLRl4LC0tyURz4NHXlW59lupoAyRVqU3MdKBMosYjYQB3L2hpaWFhYYGFhQVeXl5UVVWhVqvJysoiJSUFCwsLMSV3r2oIJSUlXLhwgT59+ohBp6mpib\/85S9cvXqV2NhYJeg8JCiB5wFEpVLh5+eHl5cXmZmZFBcXM336dH7++Wfef\/99hg4dKnoK2dnZYWVlJQYhtVpNSkoKzc3N4knIysrq33WmEYwcOYJXX\/07p06dZteu3ezevUcU6\/T19ZVNs8nJ3PTq1Yv0dOk2aWsZE7UePXpwWcam2sfbh\/hTv0quy0nouLi4kpOjOVhaW1tRWCBdr5Jba6iX7pITmqXrIg010vM05RIdbRZWxtTXaA4uNrZmNErptEnUeH4rKpUKExMTTExM8PDwoLa2FrVaTVFREampqaKmmY2NjaQyeGlpKefPn8fHxwcHh1bh3ObmZiIjIzl37hxxcXFi2k2h+6MEngeY5cuXc\/bsWRISEnB0dEQQBDIzM9m+fTv\/+te\/WLJkCYMGDRLniHr27ImlpSXe3t5UVFRQVFTElStXaGpqwtraWgxS2traDBkymCFDBrN69bskJSWxc2e0bLfa3dQIHB0dZAOP3Jq\/vx\/nz12QXK+X6bLr3duD69czJdelrKpbn+tJwq\/nNa6ZmpqQKTFUqlKpJOd3AAoLpAN0UX65xu\/r6+tSKuHPY2dvQl265jUDXW2kRn2lmgv+WwwMDHB1dcXV1fUOwzZ9fX0xCLXVH8vLyzl37hze3t6i+2tLSwsvvvgip06dIjY2VgxGCg8HSo3nAaa4uBgdHR2xyeBWBEEgNzeXHTt2sGPHDk6ePElQUJAYhNzc3FCpVAiCwM2bN8U71Pr6emxsbMRc\/e2DpBcuJBMdvZvo6N3tAo1cYwC0ziVJ2Rz4+vrIBq0hQwYT\/4vmk5axsTGNTS2S8j3Dhg3j5Ml4jWtGRoY0NUm3hw\/oH8iFC5pTeHL1HTdXFwryNKsZWFiYU1eleUrBysqC5lLNqTbP3i7clOhoGzioF+rzmk9fYcOdKE3WHARnRM3Bqre0PNH9pq05Qa1Wc+PGDbS0tDAzM6OkpAQvLy+xqN7S0sLixYs5ePAgsbGxuLm5ddoeFR4MumyOZ\/369bi7u6Ovr09QUBDHjx\/vqq08sFhbW2sMOtB61+3s7Mzf\/vY30VNozpw5\/Pzzz\/Tv35+wsDDWrFlDWloapqamoq\/9wIEDMTIyIj09naNHj3Lu3Ll2Stp9+wbwj38sJzHxNGfOJPD666\/Rt2+ArBqBu7ubrLeOnM+NlpYWqRKOoAB9\/PxkNeOKi6VPF76+0oOwKpWKzCxpmRwdXemak4mM0Zybm3THkktPaTFYSwnXUQA9HeluMkFD51wbRtYdc+KRoq3Rxd\/fnxEjRtCrVy+Ki4vR0tIiLS2N2bNn88UXX7B06VL279\/P4cOHlaDzkNIlgeeHH35g0aJFYiopLCyM8ePHk50tnatXkEalUuHg4EBkZCSHDx8mPz+fyMhI4uPjGThwIIMGDWLlypVcvnwZY2NjPDw8RDuHtmn2NiXtvLw88WLt7e3FsmVLiY8\/wY4d\/+Ltt98kJCT4jnbTuw353S3NJjdUKoedna38XJBM8Ojp6MjNCmmDvLxc6SYKfZlJemMj6UYHuTW9HtIFekHCxRSgqVKzrp2Wjjb65l3nMFpVVcW1a9fw9PRk5MiR+Pv7Y2VlxZo1a\/j0009xd3fn8OHDim7ZQ0qXBJ61a9cyb9485s+fj6+vLx988AHOzs5s2LChK7bTrWibvZg\/fz4HDhygsLCQxYsXc+HCBYYNG0ZQUBBvvPEGFy5cwNDQUJxmHzJkCJaWluTm5nLs2DGSkpLIyckRTxvu7u689NLfiIv7mdTUFFavfo+goEC0tLTukAW5FV9fX1kLBBNj6Ytxq4SOdDfb3Tx\/rl+XHqKVU1hwsLcjN1d6z8U3pA3jykqlg1lLg3TTQbNMR1uFWvr9aks0NyQY\/Rcdbf8tlZWVnDlzBjc3N1xdXcXfSWtraxoaGti7dy8TJ07km2++wcnJiWPHjnXZXhW6hk4PPA0NDSQlJbWTCwcYO3asIhd+n1GpVFhaWjJ37lx2795NUVER\/\/jHP7h27RqjR4+mX79+vPbaayQmJqKvr4+bmxuhoaEMHToUa2trCgsLOX78OAkJCWRnZ4t2Do6Ojowd+yhvvvk6Z84ksGzZEkaOHKFReFRuELDV5E76xOIf4C9rv6BpeLMNLy9P2fRgdY30c93cpIOSja01+XmaBUUBigqlg3DpDWk5oHK1dBNEXbnm9gETC32a6jSn2v6bVur\/hqqqKpKSknBxcRGlZgRBYM2aNXz22WccOnSIxx9\/nCVLlnDixAny8vIIDQ29r3s4duwYEyZMwNHREZVKxa5du9qtz507F5VK1e5r0KBB7R6juId2LJ3e1VZcXExzc7OspLhCx2BmZsYzzzzDM888Q1VVFQcOHGD79u2Eh4djYWHBxIkTmTRpEgMHDhS7ltqUtIuKirh69SqmpqYIgkBdXR0hISEYGRnh6dmb+fPnUVJSyt69+9i1K5q4uKM0NDTIWiD4+\/txUWbwU87rxtjYSPY0ZGtrR5qEa6iBgQGpV+SsxqXvx9xdXTlfqrkm5eTkSEmR5gCir69LUZ7mlKKennRHm4mZHo21mluwLa0NoVhzAO3s+g60insmJSXh7OxMr16tgq6CIPDhhx\/y0UcfcejQIfr27dvuOR0hmFldXU2\/fv3485\/\/zNSpUzU+5rHHHmPTpk3i\/9+u1r1o0SL27NlDVFQUVlZWLF68mPDwcJKSkjrU\/fRhocuaC36PpLjC\/cPY2Jhp06YRFRVFYWEhH374IeXl5Tz55JP4+PiInkLa2to4OzsTHBzMwIEDaWhooLq6msbGRpKTk8nIyBBPJVZWlsyZM5udO7eRmXmNr7\/+ipAQabtlM1Np0zMtLW2uyDQd+Pr2kRUzvVv6T0pQFCA7W7pVWi4YOjpKtwQ7OTrQokHWBsDJyU5yzaGn9InR1Fy6htXZJ56amhqSkpJwdHRsF3TWr1\/PmjVrOHDgAEFBQZ2yl\/Hjx\/P2228zZcoUycfo6elhb28vft16MlfcQzueTg881tbWaGtry0qKK3QuhoaGTJo0iW+++YaCggI+++wzUTvL09OTF154gT179vDEE0+wadMmhg0bxogRI3BxcaG8vJxTp04RHx\/P9evXqaqqQhAEzMzMePLJqURFfUdW1nW2bNnE1KmTxQFDFSquXbsmuSc\/fz\/Z4NGjh\/Rdp4WFBVdkTjSGBtIXZWfnnhQWSqfoSorLJdf0dKWDkp2N9O+2sYH088zMpBsEDPWlExb3a3j0XqitrSUpKQl7e3t69+4ttvF\/+eWXvP322+zdu\/e+p9P+W9oGVr28vHj22WfbCd8q7qEdT6cHHl1dXYKCgtrJhQMcOnRIkQt\/ANDX1+eJJ57gq6++oqCggG+\/\/Zampibmzp1LSUkJOjo6xMbG0tLSgqOjIwMGDBDtHKqqqtrZOdy8eRNBEDA2Nmbq1Cls2bKZrKzr\/PDDVhZE\/lWsGWlCTplYW1tb1ubA29tL1pm1oEC6RuPsJO3NY2RkRGaG9Gmooly6HqWNtLaZVov0n6G+jGGfTJd1pwWe2tpaEhMTsbGxwdPTUww6W7Zs4bXXXiM6OpqhQ4d2yl7ulfHjx\/Pdd99x5MgR3n\/\/fRISEnjkkUfERhrFPbTj6RLlgpdffpnZs2cTHBzM4MGD+eyzz8jOzua5557riu0oSKCjo4Ovry8JCQk88cQT\/OUvf2H37t288MILVFVV8fjjjzNp0iRGjx4t2jk0NzeLdg6JiYno6uqK0j1mZmbo6+sTHv4E4eFP8M47b4kipnv37aekbSZHpZJ1Ke3Tpw8XL0qrLMgFHQcHe1l9Npmn4uXZi0sXMzWu6ej0IDtT+qJ0s1TacM1QxxjQXONplvDaAVA1ScvvdEaqra6ujqSkJKytrfH29haDzvfff8\/SpUuJjo5m5MiRHb6P38qMGTPE\/\/b39yc4OBhXV1f27dsnm55TygH3jy4JPDNmzKCkpIQ333yTgoIC\/P392b9\/\/11NxBQ6n3fffZewsDDWr1+PtrY2Y8eO5cMPPyQ+Pp7t27ezbNkySkpKeOyxx0RPITs7O+zs7Ghubqa0tJSioiLOnj0rDhja2dlhbm6Orq4uY8eNYey4MXzU\/AHHj58gOnoPly9d5oSEBQIgOVQLrbWhS5ekLb\/d3d1RF52TXE\/PkA5Kcp4\/7u6u5GhQjwbooa1Nfo70rFK5WvqkdLNY2rCvuVq6M6+jTzxtQcfS0hIfHx\/xgrx9+3YWLVrEjz\/+yOjRv08Zu7NxcHDA1dWVtLTW9Oyt7qG3nnrUarWSlblPdFlzQWRkJJmZmdTX15OUlMTw4cPv+3usWLHijrbJNttaaL2DWbFiBY6OjhgYGDBy5EhSUqS7rB5G1q1bx8aNG9t18mhrazNs2DDWrVsnStm7u7vzxhtv4ObmxsyZM\/nhhx+orq7GxsZGnGTv06cPLS0tnD9\/nmPHjnH58mVKSkpoaWkRRUzXrfsn+w\/s4eDBfTz\/\/HM4Od057Z+VJScK6kx1tXRrcrP0oD\/u7m6UFEsHiMqb0q9rYy0tTePi0pOGes0nF11dHUoKpGd\/mqqk55TqSqX305Ennvr6es6cOYOZmRm+vr5i0ImOjmbBggVs3bqV8ePHd9j7329KSkrIyckR9eIU99COp9tbX\/v5+VFQUCB+JScni2urV69m7dq1fPzxxyQkJGBvb8+YMWOorJS+EDxs6OrqyqYXtLS0GDhwIKtXryY1NZUTJ07g5+fHmjVrcHNzY9q0aXz77bdUVFRgZWVFnz59GD58OAEBAQBcvHiRY8eOkZKSQnFxMS0tLWhpaTFkyCBWrXqHy5fPExd3kJdeeoFevdzp1auXrP2CnDyPtpY2aWnSKTy5rjSdHj3ISJee4xAE6X8jWyvpoGRlaaLRxA3AzMKQuirNnXs9dFXU35RWLTAwl7Zf+G9om8MzMTHBz89P\/N3Yt28f8+fPZ8uWLUycOLFD3vteqaqq4ty5c5w7dw6AjIwMzp07R3Z2NlVVVSxZsoT4+HgyMzOJi4tjwoQJWFtbM3nyZKC9e+jPP\/\/M2bNnmTVrluIeeh\/p1iKhK1asYNeuXeIv4K0IgoCjoyOLFi3ilVdeAVrv5Ozs7Fi1ahV\/\/etfO3m33QtBEEhJSRHdVS9fvszIkSOZNGkS4eHhWFlZiTWB8vJy0XCsqalJFDFtU9K+lZSUy+zYEU109F6NVti9e3tKKhb08fUlNTVTcs8hISGcSUrWuObj40WGhP8OgJeHLznZmpsWRgweyvlTmt83wNcDdYrm+o+XrwMNmZpvghzdzLCQcFw1tjfhT3vv\/+9vW9AxMjLC398fLa3W+9aDBw8ya9YsvvjiC5566qn7\/r6\/lbi4OEaNGnXH9+fMmcOGDRuYNGkSZ8+epby8HAcHB0aNGsVbb73VzhlUcQ\/tWLp94FmzZg1mZmbo6ekRGhrKypUrRe8YDw8Pzpw5w4ABA8TnREREYG5uztdff92FO+9eCILA1atX2b59Ozt27OD8+fMMGzaMSZMmMWHCBOzs7DQqaTc0NIh2Dm1t+Ldy5cpVoqJ+ZMeOaDIyMnFwcJBthQ4bFsYvEm6jWlpaWJhbU16u+WIeNmwIv57SHJRMTIxprteTlO8J8R9IWormU9rw0CBS4zUHtJBBvbghoUrt298OrSzNa\/ouhvRbHio2dciZ7N0rjY2NJCUlYWBgQEBAgBh0YmNjmTFjBuvXr2f27NlK8V3hnujWqbbQ0FC2bNnCTz\/9xOeff05hYSFDhgyhpKREbItUFBQ6HpVKhbe3N6+++ioJCQmkpqby+OOPExUVhZeXF4899hjr168nLy+vnZJ2SEgIhoaGXL9+nbi4OM6fP09BQYGopG1lZcHw4YM5cGAn58+f5pVXXiIoaIDkxU8qqAB4ePSSXZczfnN3d5HVjCvMlZ5HapHuD0BfV2ZOx0i6PdvWzb6d5NGvv\/5KZmYmNTXSNSE5GhsbOXPmDHp6eu2CzvHjx3nqqaf48MMPlaCj8Jvo1iee26mursbDw4Nly5YxaNAghg4dSn5+fjsTqmeffZacnBxiYmK6cKcPB4IgkJOTI3oK\/fLLLwQHB4ueQm0Ck9Caty8qKkKtVlNdXY2xsTFVVVX4+PjgdNvsTW5uHrt3H2D37n2cOpVAS0sLpqYm1NUKNDdrbkEeNnQI8fFnJPdqb9OTsjLp01Diac1+Q\/Z2NtSpdTWuAQT09EWdo1kENGxwb3LOab4JGjrCmfILmmtO\/tP6M\/yV1lpEfX09N27cQK1WU1paipGRkdhZaGRkdNdg0dTUxJkzZ+jRowf9+\/cXg058fDyTJ0\/mvffeY8GCBUrQUfhNdOsTz+0YGRkREBBAWlqa2N2mKCh0HSqVChcXFxYtWsTRo0fJzs5m9uzZHD58mH79+jF8+HD++c9\/kpaWhpGRER4eHgwePBgzMzOqqqrQ19fnypUrJCUlkZubK0roODn1JDJyPjExO0lNPcO6de8xKWKi7MWxVkZw1NXVWTLoANTLnIZ6OjhKruno9KA4X+Z1K6UlgbRkBo4Mb9Fp09PTw8nJicDAwDsGfU+ePElaWhoVFRUaT2zNzc1iG3y\/fv3EoJOYmMjUqVN56623lKCj8Lt4qKyv6+vruXz5MmFhYbi7u2Nvb8+hQ4fEGk9DQwNHjx5l1apVXbzThw+VSoWjoyPPP\/88kZGRFBcXs3PnTnbs2MHbb7+Nj48PERER1NTU8PnnnxMfH4+7uzu1tbWo1Wry8\/O5cuUK5ubmYm1DX18fOztb5s37E8yDN996lf37DrN7TwxH434RA5W2dg+uSQiKQqt3T2FeueR6fq50XcnIwAgo1rjm1NOWmnTphEOlzHxPi8xgqZGN5lZqHR2ddoO+bW6hZ86cEWesbG1tMTc3RxAEzp49i0qlon\/\/\/mJ97dy5c0RERLB8+XJefPFFJego\/C66daptyZIlTJgwARcXF9RqNW+\/\/TZHjx4lOTkZV1dXVq1axbvvvsumTZvw9PRk5cqVxMXFkZqaKivZotB5CIJAWVkZ0dHR4ulnwIABjBo1ikmTJrXrrqqrqxO748rLyzE1NcXOzg5bW1sMbjNvq6ioJCbmZ\/bsjiE3t4CLydK6cUOHDCbx14sa1+ztbakokT7xhPYdSKqENXVIoB\/ZiZrrP2bmhljUSyckQrxNqFFrtlkI\/7+puAx2l3zu7bS0tFBWVib+27VN6Ovo6BAcHCwqN1+8eJHHH3+cl156iVdffVUJOgq\/m2594snNzeXpp5+muLgYGxsbBg0axKlTp0SFhGXLllFbW0tkZCRlZWWEhoZy8OBBJeg8QKhUKiwsLMjJyaGoqIhDhw6JdaE2qZ6IiAgmTZrEgAEDcHFxwcXFRaxtFBUVkZaWhomJiXhHb2RkhJmZCTNmTGLGjElUV9dw6OAx9uw5xOHDx6iual+Ez8+TPtE4OfWkoiRLcr0wV3og1UDHANAceGwdTGnM1BxYtLRV1JXIDY\/+NtUCLS0trKyssLKywsvLi8TEROrq6mhubmbNmjWcPn2aYcOG8fHHHxMZGakEndvYsmULL730Evn5+e06CKdOnYqRkRFbtmzpwt09mHTrE49C9yA7O5sxY8awfft2\/P39xe9XVVWxf\/9+tm\/fzv79+7GyshI9hUJCQsT0UENDg1hgLykpaVdgb1PLbqOurp4jR06yZ\/dBfoqJQ09fj5ul0vWfsGFDSTyt2RfI0NAA3VppW4Oh\/YO4dkaqldqdG+c1BzxreyPs6qUDz58PR\/6uAdI2VYmGhgYCAwPp0aMHycnJrF+\/npiYGEpLSxk3bhxTp05l4sSJWFtb\/+b36I7U1tbi4ODA559\/zrRp04BW37GePXsSExOjcaboYeehai7oDO7mfngvMj2K+2F7XFxcSElJaRd0oNVTaPr06fzwww8UFRWxbt06SktLmTp1Kr6+vixevJjjx4+jpaVFz549ZZW0KysrEQQBfX09Hn\/8ETZsfI8rV4\/x6aerePqZCVhYataHq7wpLf7pLKOEAFBZLP1cfR3pZIS5lbRVgpaONvoyVgpStLS0kJycTH19PYGBgejo6KBSqTA2NubIkSM888wzXLx4keHDh\/Ppp58yYMAA2RbyhwkDAwNmzpzZzljuu+++w8nJ6YEUSX0QUALPfabN\/fDjjz\/WuH4vMj2LFi1i586dREVFceLECaqqqggPD5dsBX4Y0GSrfSuGhoZMnjyZb7\/9loKCAjZu3EhdXR0zZ87E09OTF198kdjYWKBVFLJfv36MGDECDw8PampqSEhIuKPLS1dXl+EjBvHPdcs5n7KfqG3\/x5\/mTsHWtlWWR1tbm+ws6ZkvW2tbybW7dbQh86M2MZFuzza0MvzNabCWlhYuXrxITU2NGHQAsrKyeOKJJ4iIiOD999\/Hx8eHV155hdOnT3Pp0qX7nm77I9+0Pfvssxw8eJC8vNZ63qZNm0SLbYU7UVJtHYhKpWLnzp1MmjQJuDeZnoqKCmxsbPjmm29E+fb8\/HycnZ3Zv38\/48aN66qP84eksbGR2NhYtm3bRnR0NM3NzYSHhxMREcHIkSPFnPytXV43btygR48eYjrOzMys3QWkpaWFxF8vEBf7K3t2nKQgX3NKLCxkKMmJmRrX3FwdqZVupCM0wJWiayUa1wYPd+ZmsuaLqZ2\/A1M3PyP9wrchCAIXL16ksrKyXSNBXl4e48aN49FHH2Xjxo1iA0dHcuDAAU6ePElgYCBTp05t97cDsGrVKt555x02b96Ml5cXb7\/9NseOHWvXDLRgwQL27NnD5s2bRcvq0tLSTrGsDgoK4sknn2TcuHGEhISQmZmpSOxIoASeDuT2wHMvMj1Hjhxh9OjRlJaWtpNk79evH5MmTeKNN97o7I\/RbWhqauL48eNs27aNXbt2UV1dLd7Rjx49Wux8a2lpaReEVCpVOzuH2y\/C58+mEr3jZw7sPcENdbn4\/YBe\/cnJ0ByUggf0ISepXOMagK+dFbU3NdeWwoY7USrRKec+ypPxayJk\/hX+Q5ue3s2bNwkKChKDcGFhIY899hhDhgzhyy+\/7PALtib+iDdtGzZsYN26dYwdO5a0tDR++umnDn2\/PzJKqq0TuReZHsX9sOPo0aMHo0aN4pNPPiE7O5s9e\/ZgY2PD0qVLcXd3Z+7cuezcuZPa2lpsbGzw8\/Nj+PDhYm0pOTmZY8eOcenSJVFJG8DFzZZho3z4cc9q9hz8mIWLnsanjzv5OZpPLACGutJ1GFNzA8mgAyA0SrdvG92jHYIgCFy+fJmKiop2QUetVvPEE08QEhLCF1980SVBRxMZGRkUFha2s6PW09NjxIgRoh11V1tWP\/PMM+Tl5fH555\/zP\/\/zPx3+fn9kunU79YPK7Xnfe3E2VNwP7y\/a2tqEhYURFhbG2rVrSUhIYNu2bbz++uv85S9\/YezYsURERDB+\/Hix1djHx4fy8nKKioq4dOkSzc3NmJmZUVZWhpeXV6t0jxP4+vVi0dLZZKQV8PP+JI7sP8PVlPYGc3Iabbb2pjRlSQ+PNlVKW4bfSyu1IAhcuXKF0tJSgoODxaBTXFzMhAkT8PPzY\/PmzXetq3UmcjdtWVlZ4mO68qbN1NSUqVOnsm\/fvnYpQoU7UU48nci9yPTc6n4o9RiF+4uWlhahoaGsWbOGq1evcvz4cXx9fVm1ahVubm5Mnz6d7777joqKCszNzfHx8SEsLAwHBwdKS0vR1tYmLS2N5ORkioqKxCYQd08H5v8tnK0\/\/S+7TrzDC69Oxa9\/62BnZYl08DA3k2+FrpUxgJNSLWhDEARSU1MpLi4mKCgIfX19AMrKyoiIiKBXr15s3bpVbDB40HjQb9oKCgp45pln7osieHdGCTydyK0yPW20yfS0ORsq7oddi5aWFoGBgaxcuZJLly7x66+\/EhQUxP\/93\/\/h5ubGlClT+Prrr\/nuu+8YPXo09vb2jBgxguDgYPT19bl27ZqopF1YWEhTU2tazMnNljmRj\/H13lfZ++sqJs4fhN9AF7S07rwgGuhKX\/RNLPRpqpWRy5E58QiCQFpaGmq1mqCgILGmVVFRwaRJk3BwcOBf\/\/qX2GDwIPGg37SVlpYSFRXFkSNHeP755zv0vboDD85ZuptQVVXFtWv\/kV9pcz+0tLQUBTFXrlyJp6enKNNjaGjIzJkzgfbuh1ZWVlhaWrJkyRLF\/bALUKlUBAQEEBAQwIoVK0hNTWX79u28\/\/77ZGVlMWLECOLj40XjOlNTU3r37k1VVRVqtZr09HRSUlKwtLTEzs4OGxsbdHR0sHe0JGLeICLmDaJUXUn8gcuc3HeZ5PhMWppboFm638fS2hCKpfN0hjaaA48gCFy7do2CggLRbgKgsrKSqVOnYm5uzvbt2x\/YO\/V70Va89aZt+vTpwH9u2lavXt2h+wsMDKSsrIxVq1bh7e3doe\/VHVACz30mMTGx3aTyyy+\/DLS6H27evPmeZHrWrVtHjx49mD59uuh+uHnz5gem0PswolKp8PHxoX\/\/\/hQUFPD+++9TV1fH999\/z+LFixkyZAgTJ04kIiICR0dHTExM8PDwoLq6GrVaTXZ2NpcuXcLS0lKU7tHV1cXS1oQn5gzkiTkDqSip5tRPV8hPKqQgRU1Tw53DPKbmerRo1hwFpJsL0tPTyc\/PJzg4WAw61dXVTJs2DV1dXXbt2nWHnl1n80e+acvMzOzQ1+9uKO3UCgr3SHl5OZ6enmzYsIEnn3wSaD1JZGdni55C8fHxhISEiNI9Li4uYn2hpqZGFOK8efMmFhYWki6htZX1JP98jXMxV7l0LJPGf1svhIY5U3VR8wyPVg8t\/hr\/0h31jPT0dLKzswkODhYlgmpra5k2bRoNDQ0cOHDggdAnlLOs3rx5M4Ig8MYbb\/Dpp5+KN22ffPJJO0ULxbL6j4ESeLohx44dY82aNSQlJVFQUHDHIN7cuXPvsPYODQ3l1KlT4v\/X19ezZMkSvv\/++3Z\/wLebrj1slJSUYGVlpXFNEATy8\/NFO4fjx4\/Tt29fJk2aREREBB4eHmJQaFPSLioqoqKiAjMzMzEI3X7yqKtuICUunXMxVzFpqKM4KVvj+xvbmfCnfX9t973MzEwyMzMJCgoSg0tdXR1PP\/00FRUV\/PTTT5iZaZYDUlDoKJTA0w252wT43LlzKSoqaqctpauri6XlfwQtu3ICvDsgCAJqtZpdu3axY8cOYmNj8fHxEYOQj4+PGITq6+vFk1BZWRkmJiainUNbWqyNpvomsuMzSP85jczj12mo+k+953bVgqysLNLT0wkKCsLU1BRorYvMmjWLgoICDh8+fEfrsYJCZ6AEnm7O7RPg0Bp4ysvL79DCaqOrJ8C7G4IgUFpaSnR0NDt27ODw4cP06tVLtHPw8\/MT1RDalLSLioooLS3F2Ni4nVX1rTQ3NpP7axbpR9LIOHoNh\/49Gf\/PSUCrovf169cJDAwUTzSNjY3MmTOHjIwMjhw5InlyU1DoaJTA082RCjy7du1CV1cXc3NzRowYwTvvvIOtbauopSLb07GUl5ezZ88eduzYwU8\/\/UTPnj3FINS\/f38xCDU2NrazczAwMBBPQsbGxu3145pbqFZXYuJgRm5urmiYZ25uDrTKBc2fP5+UlBRiY2PFn7WCQlegdLU9hIwfP55p06bh6upKRkYG\/\/jHP3jkkUdISkpCT0+vyyfAuzvm5ubMnj2b2bNnU1lZKXoKjR8\/HmtrayZMmMDkyZMJCQnB0dERR0dHmpqaKC4upqioiMzMTPT19cWakKmpKVraWpg4mJGXl8fVq1cJDAwUg05zczORkZFcuHCBuLg4JegodDlK4HkIaUufAfj7+xMcHIyrqyv79u1jypQpks9TZHvuPyYmJsyYMYMZM2ZQU1NDTEwM27dvZ\/LkyRgbG4vdcYMHD8be3h57e3uam5spLi5GrVaTlJSEjo4Otra2aGtrk5WV1e6k09zczIsvvsjp06eJjY0VBzEVFLoSJfAo4ODggKurK2lpaUD7CfBbTz1qtVpRT+hADA0NmTJlClOmTKGuro5Dhw6xY8cOnnrqKXR1dcWT0NChQ7Gzs8POzo7m5mZKS0vJzMykvLwcHR0dLly4QE1NDY8++ijLli0jLi6OuLi4h74jUeHBQZHMUaCkpIScnBwcHFodMxXZnq5HX1+fCRMmsGnTJgoLC\/n6669RqVTMnTsXDw8PIiMjOXjwIM3Nzezdu5cNGzbQv39\/AgICSE1NZf78+bi5ufH999+L5mkKCg8KSnNBN+TWCfABAwawdu1aRo0ahaWlJZaWlqxYsYKpU6fi4OBAZmYmr776KtnZ2Vy+fLmdodbevXvZvHmzOAFeUlKitFN3MU1NTRw7dkz0FKqrq6OmpoaXXnqJpUuXoq+vT0tLC6+99hoxMTEEBwdz5MgR6uvriYiIYP369aIwqIJClyEodDtiY2MF4I6vOXPmCDU1NcLYsWMFGxsbQUdHR3BxcRHmzJkjZGdnt3uN2tpaYeHChYKlpaVgYGAghIeH3\/EYha4lOjpa0NfXFyZMmCA4OzsLpqamwrRp04TJkycLtra2QkpKiiAIgtDc3CycOHFCeOeddzplX6+\/\/vodv3t2dnbiektLi\/D6668LDg4Ogr6+vjBixAjh4sWLnbI3hQcDJfAoKPwBiY2NFYyMjIQff\/xREITW4BIfHy9ERkYKenp6wsmTJ7tsb6+\/\/rrg5+cnFBQUiF9qtVpcf++99wQTExNh+\/btQnJysjBjxgzBwcFBuHnzZpftWaFzUQKPQoewcuVKITg4WDA2NhZsbGyEiIgI4cqVK+0ecy93vnV1dcLChQsFKysrwdDQUJgwYYKQk5PTmR\/lgaSoqEjYvXu3xrXm5uZO3k17Xn\/9daFfv34a11paWgR7e3vhvffeE79XV1cnmJmZCRs3buykHSp0NUpzgUKHcPToUZ5\/\/nlOnTrFoUOHaGpqYuzYsVRX\/8dZc\/Xq1axdu5aPP\/6YhIQE7O3tGTNmDJWVleJjFi1axM6dO4mKiuLEiRNUVVURHh4umq09rNja2jJhwgSNa20DqF1JWloajo6OuLu789RTT5Geng7cm4W1wkNAV0c+hYcDtVotAMLRo0cFQbi3O9\/y8nJBR0dHiIqKEh+Tl5cnaGlpCTExMZ37ARTumf379wvbtm0TLly4IBw6dEgYMWKEYGdnJxQXFwsnT54UACEvL6\/dc5599llh7NixXbRjhc6m62+NFB4KKioqAEQh0nu5801KSqKxsbHdYxwdHfH391fujh9gxo8fz9SpU0UfnH379gG0U0T\/PRbWCt0HJfAodDiCIPDyyy8zbNgw0TulTXrndkviW2V5FOme7oGRkREBAQGkpaXdk4W1QvdHCTwKHc7ChQu5cOEC33\/\/\/R1rv+fOV7k7\/mNRX1\/P5cuXcXBwaGdh3UabhbUynPzwoAQehQ7lhRdeYPfu3cTGxraTbLmXO99bpXukHqPw4LFkyRKOHj1KRkYGp0+f5sknn+TmzZvMmTMHlUolWljv3LmTixcvMnfu3HYW1grdHyXwKHQIgiCwcOFCduzYwZEjR3B3d2+3fi93vop0zx+T3Nxcnn76aby9vZkyZQq6urqcOnUKV1dXAJYtW8aiRYuIjIwkODiYvLw8Dh48+EDYbyt0DopkjkKHEBkZydatW4mOjsbb21v8vpmZmWjtvGrVKt599102bdqEp6cnK1euJC4ujtTUVEW6R0GhG6MEHoUOQaoGs2nTJubOnQu0noreeOMNPv30U8rKyggNDeWTTz4RGxAA6urqWLp0KVu3bqW2tpbRo0ezfv16nJ2dO+NjKCgodABK4OkG3Lhxg4CAAF588UVeffVVAE6fPk1YWBh79+5t146soKCg0NUoNZ5ugI2NDV999RUrVqwgMTGRqqoqZs2aRWRk5EMfdN59911CQkIwMTHB1taWSZMmkZqa2u4xc+fORaVStfsaNGhQu8fU19fzwgsvYG1tjZGRERMnTiQ3N7czP4qCQrdBOfF0I55\/\/nkOHz5MSEgI58+fJyEh4aGXwH\/sscd46qmnCAkJoampieXLl5OcnMylS5cwMjICWgNPUVERmzZtEp+nq6srDrtCa61pz549bN68GSsrKxYvXkxpaalSa1JQ+B0ogacbUVtbi7+\/Pzk5OSQmJtK3b9+u3tIDx40bN7C1teXo0aMMHz4caA085eXl7Nq1S+NzKioqsLGx4ZtvvhFtw\/Pz83F2dmb\/\/v2MGzeus7avoNAtUFJt3Yj09HTy8\/NpaWkhKyurq7fzQHK7dE8bcXFx2Nra4uXlxbPPPotarRbXFOkeBYX7S4+u3oDC\/aGhoYFnnnmGGTNm4OPjw7x580hOTlYGLW9Bk3QPtGqLTZs2DVdXVzIyMvjHP\/7BI488QlJSEnp6eop0j4LCfUYJPN2E5cuXU1FRwUcffYSxsTEHDhxg3rx57N27t6u39sDQJt1z4sSJdt9vS58B+Pv7ExwcjKurK\/v27WPKlCmSr6dI9ygo\/D6UVFs3IC4ujg8++IBvvvkGU1NTtLS0+Oabbzhx4gQbNmzo6u09EEhJ92jCwcEBV1dX0tLSAEW6R0HhfqMEnm7AyJEjaWxsZNiwYeL3XFxcKC8vZ8GCBV24s67nbtI9migpKSEnJwcHBwfg4ZbuWb9+Pe7u7ujr6xMUFMTx48e7eksK3QAl8Ch0a55\/\/nm+\/fZbtm7diomJCYWFhRQWFlJbWwtAVVUVS5YsIT4+nszMTOLi4pgwYQLW1tZMnjwZaJX5mTdvHosXL+bnn3\/m7NmzzJo1S\/Sb6a788MMPLFq0iOXLl3P27FnCwsIYP3482dnZXb01hT86nWw8p6DQqQAavzZt2iQIgiDU1NQIY8eOFWxsbAQdHR3BxcVFmDNnjpCdnd3udWpra4WFCxcKlpaWgoGBgRAeHn7HY7obAwcOFJ577rl23\/Px8RH+\/ve\/d9GOFLoLyhyPgoLCHTQ0NGBoaMiPP\/4onvwA\/va3v3Hu3DmOHj3ahbtT+KOjpNoUFBTuoLi4mObmZlmHWAWF34sSeBQUOokNGzbQt29fTE1NMTU1ZfDgwRw4cEBcFwSBFStW4OjoiIGBASNHjiQlJaXda3S2ZtzvcYhVULgbSuBRUOgknJyceO+990hMTCQxMZFHHnmEiIgIMbisXr2atWvX8vHHH5OQkIC9vT1jxoyhsrJSfI1Fixaxc+dOoqKiOHHiBFVVVYSHh9Pc3Hxf92ptbY22trasQ6yCwu+ma0tMCgoPNxYWFsIXX3whtLS0CPb29sJ7770nrtXV1QlmZmbCxo0bBUEQhPLyckFHR0eIiooSH5OXlydoaWkJMTEx931vAwcOFBYsWNDue76+vkpzgcJ\/jXLiUVDoApqbm4mKiqK6uprBgweTkZFBYWFhOz04PT09RowYIerBdbZm3Msvv8wXX3zBV199xeXLl3nppZfIzs7mueeeu+\/vpfBwoUjmKCh0IsnJyQwePJi6ujqMjY3ZuXMnffr0EQOHpmJ+m+BrZ2vGzZgxg5KSEt58800KCgrw9\/dn\/\/79uLq63vf3Uni4UAKPgkIn4u3tzblz5ygvL2f79u3MmTOnXWvy7ynm38tjfi+RkZFERkZ2yGsrPLwoqTYFhU5EV1eX3r17ExwczLvvvku\/fv348MMPsbe3B5At5iuacQrdBSXwKCh0IYIgUF9fj7u7O\/b29u304BoaGjh69KioB\/cwa8YpdC+UVJuCQifx6quvMn78eJydnamsrCQqKoq4uDhiYmJQqVQsWrSIlStX4unpiaenJytXrsTQ0JCZM2cC7TXjrKyssLS0ZMmSJd1eM06h+6EEHgWFTqKoqIjZs2dTUFCAmZkZffv2JSYmhjFjxgCwbNkyamtriYyMpKysjNDQUA4ePIiJiYn4GuvWraNHjx5Mnz6d2tpaRo8ezebNm9HW1u6qj6Wg8JtRtNoUFBQUFDoVpcajoKCgoNCpKIFHQUFBQaFTUQKPgoKCgkKnogQeBQUFBYVORQk8CgoKCgqdihJ4FBQUFBQ6FSXwKCgoKCh0KkrgUVBQUFDoVJTAo6CgoKDQqSiBR0FBQUGhU1ECj4KCgoJCp\/L\/AWfGUO994qSoAAAAAElFTkSuQmCC", "text\/plain": "<Figure size 640x480 with 1 Axes>"}, "metadata": {}, "output_type": "display_data"}]}}, "12a14e08898b4abf991365cd41d07a93": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "13187a1f6c2a44f9a3ccd12f5eff4464": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "146343a7a95746e6bd0c8bac2c97a33d": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "148898f7302f4f45809429230ac34e24": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "14edd910ef6d411ebd1f6a033170c065": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "1691534cae544c41ac19238706d81934": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "PlayModel", "state": {"description": "step", "layout": "IPY_MODEL_85007844bdc54cdf992dc43ba5b83a41", "max": 149, "style": "IPY_MODEL_e2a00839a46e4bb39cd41f9aa4edaaea"}}, "17a0e3715b704af5b5bb4230d0ea690b": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "1a5c301c330f49dd867d1a112b4b011c": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": {"source": ["IPY_MODEL_d095a4e7d8d4445e86d3db1fdff6244f", "value"], "target": ["IPY_MODEL_e0fa11145e0d4e40ad744eba44c54f34", "value"]}}, "1af575622d2045659ef592a3a3d82a91": {"model_module": "@jupyter-widgets\/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": {"layout": "IPY_MODEL_ea5d62a115f443e4bf326bbe2a8d0260", "outputs": [{"data": {"image\/png": "iVBORw0KGgoAAAANSUhEUgAAAZ4AAAGRCAYAAABVKtXaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy\/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eXwkd33njz+r+u5Wd+uWRhodc2jusWfGY89Yg7ltYHcTAjiwgYWQza6TDUuA7DfJkoX8YAkkQDYYCOGb7BIMvyTgZVkHEgixCWDwBfbY0twajUb3LbVafR91fP\/oqZ7uVld1dUsjyaZej4cfIE1VdXWr6\/P6vN\/v1\/v1FlRVVbFgwYIFCxY2CeJW34AFCxYsWPj5gkU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGNhS6Cq6lbfggULFrYI9q2+AQs\/X1BVlWw2SyqVwmazYbfbsdls2Gw2BEHY6tuzYMHCJkBQra2nhU2Coihks1lkWSadTgM5Ikomk6TTadra2iwismDh5wBWxGPhlkNVVWRZZmRkBKfTSXt7O6IoIooiqqoSjUZZWFigoaGBdDqNIAiIoojdbreIyIKFlyAs4rFwS6Gl1mRZJhKJ4Ha7mZiYYHp6mkAgQENDA7IsA2C321FVNf9fOp0mk8kAWERkwcJLCFaqzcItgyzLZLNZFEVBFEXOnTtHJBJBkiR6enpIJBKsrKwQj8cRRZGOjg4aGhqor6\/H4XAAFBGRoigA+YjI4XDk60SiKFpEZMHCiwRWxGNhw6GqKpIkIUkSqqoiiiLhcJiFhQVcLhd33303kCMQQRCYmppiamoKVVUZGRkhkUjg9\/upr6\/PE5EW6RQSUSqVyl9HIyLtOIuILFjYvrCIx8KGQlEUJEnKp88EQWBkZITR0dE8mTidznwKDXIpNofDwf79+wFIp9OsrKwQDocZHh4mlUqtISIt3aZHRFokZBGRBQvbDxbxWNgQaKmwbDaLqqoIgkA6nebcuXOkUilOnTrF1NRU2cVfEISivh6Xy0V7ezvt7e0ApFIpVlZWWFlZYWhoiHQ6na8P1dfXEwwG1xCRoigWEVmwsE1hEY+FdaMwtQa5hX5xcZHz58\/T2trKiRMnsNvtawhGQyUCcLvd7Nixgx07dgCQTCbzRDQ7O0smkyEYDFYkonQ6TSqVyivqLCKyYGFrYBGPhXWhsDdHW7ivXLnC1NQUhw8fpqOjo+h4PS1LNRoXj8eDx+Oho6Mj3wekEdH09DSSJOWJqKGhAb\/fj81my7+OJu\/W+olmZmZob2\/H6\/XmIyOt\/mTBgoWNh0U8FmqCtnhLkpRXrSUSCQYHBwHo7+\/H5\/MVnSMIAoqirFnQ9SIhMxAEAa\/Xi9frpbOzE1VV82q5lZUVJicnURSliIjq6uqw2+359zEyMkJDQ0OebMql5iwismBh42ARj4WqUdibA7kem5mZGS5dukRXVxf79u1DFNfaABYSTOEivpELuiAI+Hw+fD4fO3fuRFVV4vF4nojGx8dRVTUvVGhoaEBVVWw2Gw6HIx8RSZJENpvVJaJy78+CBQvmYBGPhaqgKAqZTCYf5ciyzKVLl1hcXOTYsWO0tLTonmsU2dyqdjJBEKirq6Ouro6uri5UVSUWi+WJaHR0FIChoSGam5tpaGjA5\/MVRUR6RKT1EVlEZMFCdbCIx4IpaKk1TbUmiiKRSITBwUHcbjdnzpzB7XYbXsNIXLBZfcyCIOD3+\/H7\/XR3d6MoCo8\/\/jh1dXUsLy8zMjKCzWbLCxUaGhrwer26RATlXRUsIrJgQR8W8VioiNLUmiAIjI+PMzw8zO7du9m9e7epdFmtqrZbCU3N1tnZidfrRVEUIpEIKysrLC4ucu3aNex2exEReTyeNUSUzWYN7X0sIrJg4SYs4rFgiMIoRxAEstks58+fJxqNcvLkSRoaGkxfy4hgtotzkyiK1NfXU19fD5D3mFtZWWF+fp6rV6\/idDrXEJFGLIX9TFpEJAhCERFpqjkLFn5eYRGPhbLQ0kmXL1+mrq6Ojo4OQqEQ586do76+njNnzuT91MxiO6Ta9KD3+lraTSNYWZZZXV1lZWWFmZkZhoaGcLlc+WMaGhpwuVxF19WIKJPJ5GtEGhEVquYsWPh5gUU8FtZAWygVRSGRSOBwOLh27RpjY2Ps37+frq6umhbK7Uw8ZmGz2WhsbKSxsREASZLyRDQ5OcmlS5fweDxFROR0OvPnlxIRwPLyMm1tbbhcLst528LPBSzisZBH4aKoqdZUVWViYgKbzcbp06fx+\/3rfo1SvJgXWbvdTlNTE01NTUCOiMLhcF66ffHiRXw+X5HPXCERZbNZLl26RH19PZIkWbOILPxcwCIeC0D53pyFhQUWFxfx+\/2cOnUq3\/1fK7ZCTr3ZsNvtNDc309zcDOSIRSOi0dFR4vE4dXV1eSKqq6vLn6d9vppk3RqKZ+GlCot4LBTZ3oiiiKIoXLlyhZmZmXy6aL2kAy+NVFu1cDgctLS05PubMplMnoi0ERAA169fp7GxMT8CAm6SsUVEFl5qsIjn5xjlbG\/i8TiDg4OIokh\/fz+jo6MbRgoawUiSxMTEBF6vN29Vs5XYzNd3Op20trbS2toKQDwe56c\/\/SmSJBWNgNDSctoICCgmIms6q4UXMyzi+TlFud6c6elpLl++THd3N319ffkeF23y53qhybGfeuop7HY7kiSRSqXwer1IkkQoFMo7S\/+8QFMG7t+\/H5vNVtMIiHJjwq3prBa2Myzi+TlE6UhqSZK4ePEioVCI48eP5+sTsHFpMFVVCYVCrK6u0tfXx86dO4Hc0LfZ2VnGxsa4fPky2Wx2jbP0z0PzpUYMlUZAZLNZU0RkTWe1sJ1hEc\/PEUrn5oiiyOrqKoODg3i9Xs6cOVPUg6Ido0VFtSKbzXLhwgVCoRB+v5\/du3fnm1Ldbjetra1MTEzQ399ftNBqztKFhp51dXUvqUWzEqkbjYCYmppCluWyIyCs6awWtjMs4vk5QaFMWsPY2BjXrl1jz5497Nq1y9R00GoRDocZHBykrq6Ovr4+Zmdnyx6nOSOUjjgoNfTUnAW0hdbr9W7IornV4gazlkO1jICoNJ1VURTsdjsej8ciIgubAot4XuIoN5I6k8lw\/vx54vE4d955Z94ephxqrfGoqpontr1799Lb28vs7GxVqrZyhp7RaLTIR83hcBQ1a1YyKt1uWA\/h1TICoq6uDlEUi4hIswHq6emxprNa2BRYxPMSRjkBwfLyMufOnaOxsZH+\/v6KtjdaE2k10IgtGo0WEdt6TUJFUSQYDBIMBunt7S3yUZuenubKlSu43W5d14DtjI1Y2MuNgIhGo0V9RIIgFPnMacP6tPRb6XTWcvJti4gsrBcW8bxEUdqbo+1sJyYmOHjwIJ2dnetylNbDysoKg4ODBAKBNX5uG91AWuijtnv3bl3XgEIi0npktgtuZYpPEAQCgQCBQGBNxFg4AkITmCQSibIjIDTJvTWd1cJGYXs9hRbWjXK9OclkksHBQWRZ5u677853y5uBWeJRVZXR0VFGRkbo6+ujp6en7IhrvdfQrrGeBazUNaC0WTOZTOZ7ZBoaGraNdHuzFu3CiBHIj4AYGhoiHo\/z7LPPmhoBUWk6q0VEFirBIp6XEFRVJRKJMDc3R3d3N6IoMj8\/z4ULF+jo6Mj3ilQDMzWeXGptEEhy11135Rc2s9faKOIpRWmzZjqdJhQKsbKywuXLl8lkMgSDwXxKyuv1brp0eytFDZpQw+v1Ul9fT0dHRz51OTc3VzQCQiOj0hEQ1nRWC7XAIp6XCLTenFgsxtjYGF1dXVy6dIn5+XmOHDlCe3t7TdetVOMJhUJcvXqO48fdOF0dCJQnHVi7s9eIZrN2xy6XK98jUyhNXl1dZXh4mKtXr66RJm\/GvW11dKD9HYxGQGg1tHIjICoRkTUUz0IpLOJ5kaOwN0dVVWw2G7Is8\/TTT2O32+nv78fj8dR8fb1Um6qqXL9+nURinLv7vdhsKoqcxSg4qpS228zdf6E0eWRkhOPHjyMIQl4RNjY2li\/Eb7R0uxBbLePW7qHc+6p1BEQpEVnTWS2UwiKeFzEURUGSpCLV2uLiItlslu7ubvbs2bPuh7ocWaTTac6fH2RnV4b9BzzAjX8X0lVfS\/s9bO0iXKoIUxSFWCxGKBRaMwJb+289hF762lsJRVFM3UOtIyDKTWctNxTPIqKfH1jE8yJEud4cSZLy7gCiKNLX17chr1Val1leXmZ4+DzHT7jx+Wwlx6Yr1mm26zye0vsSRTGvCOvt7UVRlPxuf3Z2tuLk0RcTaq2tVTsCor6+vkjlWPg9vnbtGm63m\/b2dmtM+M8BLOJ5kaHU9kYQhLw7gN\/v58SJEzz77LMb9npajUdVVUZGRkilJuk\/40EUyxGIgiJnsNnLL8DbKdVWLURRLKp\/lEs7FUq3SxdZPWy0oKIWbNQ9mBkB4ff7i4hIU8wlk8n8\/y+MiLRm10KxwlZ\/XhbWD4t4XkQo7M3R0hTXr1\/n+vXreQlzKpVCUZQNW0wEQUCWZZ577md090gcOOgmn1ore3waqI54tkOqrVqUpp0Kd\/vXr18nHo8XSbcLxxtsN9wq8iunKtRqaKUjILT\/X\/gZlUvNWUT00oBFPC8ClOvNydVZzpNMFkuYN1qaHI1GUdUEtx8L4PVWzr0LQsbg34z7eF7MKN3tFy6ypeMNtB4iLZrc6ve\/Wffgcrlob2\/PKywLR0DEYjEikQhLS0trnLe1ewTKEpE1i+jFB4t4tjnKjaReWlri\/PnzNDc3c\/z48aJu\/MJC7nqgKArXrl0jk53iZff4sNtN+rUZCAxezKm2alG6yBa6Ss\/MzCBJEsFgEJ\/Pt6ERai3YqtcuHAGRTCZpbm7G4XAUfUaFZB0IBMoSkTWd9cUHi3i2MbSHSotyVFVlaGiIyclJDh06RGdn55pzNOJRFKXm1E4qleL8+QF6d8ns2FGdcqtSxKMtcuFwOG\/pstWpts1YmErHG2iu0gsLC8iyzE9+8pMiM0+fz7dpC+Z2iLrgJllXOwICrOmsLzZYxLMNoaXWNNWaKIokEgkGBwdRVZX+\/v68uWMptIeq1qmhi4uLjIyc58iROuobqieCnLJN799yCrkLFy4wNzeXX\/C0gn0ikcDlcr3kF4ZCV+lAIMDg4CC33377Gg+1Uun2rfpctgPxaJsrDbWMgNCbRWRNZ91+sIhnm6Fcam12dpZLly7R2dnJ\/v37Dfscak21KYrC8PAwsjJD\/xkvgmADqh8AZ0Q8qVQKWZaJRqOcOnUKm82Wt\/FfXFxkcHAQp9NJY2Pji16ibBbaoq9Jt3t6evIeaisrK8zPzxdZ12ifzUZ+LtuBeLQNlh42agSENZ11e8Ainm2E0pHUsixz+fJlFhYWuO222\/LqICNoardqIp5kMsn58wPs3qPQ3p5TralqFlWFap9BvVTb3Nwc58+fB+DUqVN5633NtHJ0dJSTJ0+SyWTKSpQbGxuL5LcvJZQudJqHWn19Pbt27SqyrtE+F6\/XWxQRmZFu62E7EI\/ZJlYNtY6AMCIirWm4tbXVIqJbjJfeU\/wiRGlvjiiKRKPRfARw5syZqgacVUM8CwsLjI5e4I6TPgpfQhBUVNUBZKt5KwiiRDaZxuHM7cgVRWFoaIjp6Wn27dvHlStXEEVxzf1pu89SiXI5+a2269eUYRuBraovmXndQuuaPXv2rGnUvHDhAnV1dUXS7WoIulK0sRkoTbVVC7MjIAqJSDOF1YgoHo9z7tw5Xvayl+WvaY0JvzWwiGeLUTqSWhAEJiYmuHr1Krt27WLPnj1Vf9HNDG9TFIWrV68Cc9zd70UUyxCVagehOuIBUNVcL08ymWRgYCBflwK4fPly2XPKvUeHw1HUB5JKpfLu0prqqb6+Pk9EdXV1L8pFodp7LteoaUTQhWqwctguEc9Gkp\/eCAhN0FFqgVRfX58X5Dgcjnw0VDgm3JrOunGwiGeLoH2pp6enWVxc5PDhw2SzWS5cuEAkEuGOO+7ImzNWi3IRRSESiQQXLgyyd69Ka5sLvYZQFRu1PFKikGFhYYHz58\/T3t7OgQMHsNlsJJPJ3HVvPNRrXq8CWbrdbjo6OvKqp8Ic\/+joaJG7wK0uyG8UNiLScjqdtLW10dbWBuRSp+FwmFAoVCTdLizCFy7y24F4bnXUVS59qRGRZoFkt9tRFIXZ2dn8CAigKDWnpYhTqZRFROuARTxbgEIBQTabzS+g586dIxAI0N\/fv66RzUaptvn5ecbGLnLyTh8uV6V0XG0P0MLiJBcvLXH48GE6OjqK7kv3lUwOnCs8vtTUMxqNEgqF8gX5Qi+1xsbGbTsGe6MXKk26rY1\/KFSDTUxMrCnCV1tfuRXY7HsoNwJiamqKsbGxqkZAlI4J11JzhT5zW\/3ZbkdYxLPJKB1JbbPZSCQSnD17ln379tHd3b3uL2q5VJuiKFy5cgWbfeGGaq02ubUZSHK87KRTo36djXjPWmpF29FqdZCJiYm8UEFLP20XocKtri2VU4PFYrGiSFGWZa5du0ZLS8uWRYpbXWey2Wz4fD7cbjcnT56seQSENZ3VHLb+yfs5gZ7tzcjICNlsltOnTxMIBDbktUojnkQiwfnzA+zbBy2t+qm1NdepQU4NsHNnM6K4drx2pUbRjVyEbTZbkVBBM6wMhUL5OojWFa+lPbcKm7kQCYKA3+\/H7\/fni\/CPP\/44Xq+X+fl5hoeHcTgcRQtsNcKWWqB9\/lu9IBfWmcp58WlEZHYEhDWdVR8W8WwCyvXmLC4ucv78eQKBAIqibBjpaNfXFtK5uTnGxi9y5511JlJrJRCkml7fZsuW7eWpFPHcyt1\/qWFlYVe8JEkMDAxsiVBhq22CtOi4q6sLj8dTduqo2+1es9PfSGifwVYvwkYCB4fDUdMICGs6a3lYxHOLUdqbo6oqV65cYXp6mkOHDuF2u\/P9LRsFrQfo4sWLOF1L3HVXPU6nvpWNPmrs5REzqGWCpVuZaqsWhRY2oVCIvr6+vDqsVKjQ2Ni4YUPfymErd\/ra30K7h3JTR8sNe9vIlKW2SdrqRVdLf5uBnrIwHA4bjoCwprPmYBHPLUK53px4PM7g4CCCINDf34\/X6yUcDm94mkdRFEZGhjhy1EVzs7PmXbUgqKiKverIRxAyyJKETWdB0svnb6VXm9frpb29PZ9+0hRPc3NzRUIFbcHdqF3\/Vkc8pcRTitJhb4Uzdq5du0YymSwa\/1DoKF3tPWz1Irsef8NSZaHRCAhNXVdILIVElEwmuXbtGvv378fpdGK321lZWSlS2r3YYRHPLUBpbw7AzMwMly5doquri3379uW\/cJWkz9ViZmYGuz3JyTvrChpCa4tcAFTVgUC1xAOZTAKPPVDy+61LtVVC4WuXk95q9SFt17+ehs1SbKeIpxJKU5aFow0uX75MJpMpkm4HAoGKhFLYw7aV2MheIqMREFeuXCGTyeRrjIUjILRsxcLCAgcOHCCbzZLNZnnLW97CAw88wLvf\/e4Nub+thkU8G4hyI6m1lNfy8jLHjh3Lh+YaNop4cvY6l3B7QvSf8VH4\/AgCqKoTqCHdJtS2AxTLWOdsp1RbNSgnVNAWkatXr+Zn7RQ2bG717t0sqiWeUhSONijnKK0oyhr\/tNLXeikSTylKP6dCIiodAaGpCgs3M1oN6aUCi3g2CKUCAkEQiEQiDA4O4vF46O\/vL6sO2gjiicViXLgwwKFDNhqbyqeAVNVuOLJAH7U9iKKoTzyl\/1\/7eavTTmZRrmFzZWWFUCi0ZrFtbGw0HHGw1c2b6yWeQpRzlC5t8tX807T\/vF5vPvW61cQjy\/KmTIkVBGHNmIxCwp6cnERVVV544QUmJiaoq6sjmUzqOtKbwR\/\/8R\/zB3\/wB7zvfe\/jwQcfBHJ\/+49+9KP81V\/9FSsrK5w6dYovfOELHD582PBa3\/zmN\/nwhz\/MyMgIe\/bs4eMf\/zhvetObqrofi3g2AKW9OQBjY2Ncu3aN3bt3s3v3bt2HShMc1Lrbmp6eZmbmCqdO1eFwGhFYrQ9UbaQoGBDPZsipNxOli0g8Hs9b+xQKFbSIaDvl6TeSeEqh1+SruZFrtjV+vz+\/+G7lZ3MrIx4jlBL2ysoKFy5coKWlhb\/7u7\/ja1\/7GqlUio9+9KOcP3+eV73qVZw4ccI0ST777LP81V\/9FbfddlvR7z\/1qU\/xZ3\/2Zzz00EPs27ePP\/qjP+Lee+9laGgIv99f9lpPP\/00b3vb2\/jYxz7Gm970Jh555BHe+ta38sQTT3Dq1CnT7\/nFkQ\/YptAEBJlMJk862WyW559\/nvHxcU6ePFnRa61wcFs1kCSJc+cGSaevcfpubwXSgVpdCJLJeE3nCWL5SaR6kc1W73Y3Ctpi293dze23384999zD0aNH8Xq9zM7O8swzz\/DUU09x5coV5ufnyWar98LbSNxK4imF1uTb29vL8ePHueeeezh8+HBeqKF9NpcvX2Zubi6v9tosbBXxlLsPh8PBzp07+fSnP83Y2Bh+v5977rmHJ598knvvvZd3vvOdpq4Vi8V4xzvewf\/8n\/8z79IAub\/7gw8+yH\/7b\/+NN7\/5zRw5coSvfOUrJBIJ\/u7v\/k73eg8++CD33nsvH\/zgBzlw4AAf\/OAHec1rXpOPoszCinhqRLnenFAoxLlz56ivr+fMmTOmrOprIZ5oNMrFiwMcOmynsdGsuqq2yMVmqy0KEcXyC6pGPJFIhEQiQWNjY76j+6U4gbRQqABr5cmxWAxRFBkeHs6PftiMdI+GzSSeUmi2Ndqzc+rUqXwPUaHbRKGIYz3jHypBluVb3ixr9j4KvwOiKBIOh\/mN3\/gN9u7dmxe7mMF73vMe\/vW\/\/te89rWv5Y\/+6I\/yvx8dHWVubo777rsv\/zuXy8UrXvEKnnrqKX7jN36j7PWefvppPvCBDxT97nWve51FPJuBcr05w8PDjI+Pc+DAAXbu3Gn6Qa6GeFRVZXp6mrm5IU6drsPhME8mglCbC4HLJaCq1XeVi2JGdyDc5OQkExMTOByOvAoqk8kQj8dpamp6yUQ\/5VAqT56enmZiYgJJkhgaGiKdTudVYY2NjWsMPTcaWo1pKz9zzbWgnFuAVvco7I0pJKKNJOntEvGUEo82QFETF2hil0r4+te\/zvPPP8+zzz675t\/m5uYA8nVKDW1tbYyPj+tec25uruw52vXMwiKeKlDYm6MVRFOpFIODg0iSxOnTp3Vzo3owSzySJHHx4gV8daucOl2L11ptKR1BUEmlVNzuKonHlkHKFhfONbKenZ3l5MmTuN3uvEJsZGSE0dFRxsfH19RDXupE5HQ6OXjwIJATKmj1oUKhgvZ5GAkVasFWixtAf8EvHYtR2BtTKklubGxct5pwuxJPPJ5Ld1ejapucnOR973sfjz76qGEUV\/q3N\/N9qOWcUljEYxKKopBMJjl37hy33347oigyPz\/PhQsXaG9v5+DBgzXvvmw2myHxRCIRLl4c4OhtDvx1jQhCrOrXEAQJVRUQhOrTWdmMSrUZCEFQSUSj+G5YAUUiEQYGBhAEgdtuu41AIEA2m80XVWdnZ\/O2LaUO09qi29jYeEtTLVuB0vSix+Ohs7MzrwrTDD21YWaFM2Q2QqiwHYjHrEFoYW9MoSQ5FAoxPT2NLMtF0m2\/31\/Ve9ssVVu196GlY6v5W589e5aFhQXuuOOOouv++Mc\/5s\/\/\/M8ZGhoCchHMjh078scsLCysiWgK0d7evia6qXROOVjEUwGFvTmSJLGwsIAkSVy7do3Z2VmOHDmSbxKrFXqSalVVmZycZHHpGnf3+7DbFdanvHYC5Yv+RpDk2hYmTb49NTXF5cuX2b17N6Ojo4bNltoUyd7e3qLGzbGxMS5evJhPtTQ2NtbUJb8dobc4ljP01Gog2gwZzUdNI+dqiXk7EE8tBqHlJMmF0m0tXVRIRJWixe0a8SQSiaoj3de85jVrrLh+7dd+jQMHDvD7v\/\/77N69m\/b2dh577DGOHz8O5PrTHn\/8cT75yU\/qXvfuu+\/mscceK6rzPProo\/lBj2ZhEY8BSm1vtAXzZz\/7GXa7PW97s16UIx5Jkrhw4TwNjTHuusuTT63VWqsBrZeneuIxaWZd5rQUFy5cYH5+nuPHj9Pc3KybPy4nLiht3NRSLaFQiMuXL5PNZgkGg3lvsfUYe27n0dcaCv3joFioUDgCu9BHrRIxbzdX6FpRKt1WVVV39LVG1G63u+i9b1fiicViVROP3+\/nyJEjRb\/z+Xw0NTXlf\/\/+97+fT3ziE\/T19dHX18cnPvEJvF4vb3\/72\/PnvOtd76Kzs5M\/\/uM\/BuB973sfL3\/5y\/nkJz\/JG9\/4Rr71rW\/x\/e9\/nyeeeKKq92gRjw4Ke3O04uvs7CwATU1NHDhwYMO+pKXEs7q6yuXLgxy9zUkwWPonWo\/8tsb7rXFdmp0dJRrNEbSWJliPnLo01ZJIJPL1kLGxsaJ+GW1heTGg1oW\/nI+a9nloNZBKQoXtEvFs9IIvCEI+eu7p6cn774VCoTX+e4UD8bYL8RRGrvF4fF3No3r4vd\/7PZLJJL\/1W7+VbyB99NFHi+rUExMTRZ9Jf38\/X\/\/61\/nQhz7Ehz\/8Yfbs2cPDDz9cVQ8PWMSzBuXm5uQK+xdZWVlBEAR6eno2fD68oiioqsrExATLoRFO3+3Fbi+3QNdeq6kVdlttC1Ow3sXuvSeLPiuNeMotdtVOINUGnGnNidrCUpiG0kjoVktxa8VGRlpOp7OImMt1wxcutD6fb1sQz2bcQ6msvXBQoDboTRCEfK2olrTlRqFU1q0Rz3o\/ox\/96EdFPwuCwEc+8hE+8pGPmD4H4P777+f+++9f171YxFOAcr05q6urDA4O4vP56O\/v5yc\/+cmGu0mLokgmk2Fg4AWamuPceaenArHUVquptZfHXuPz19TkW0PQRhHPehbhcv0yhVJczUVZS0MFg8FtsbuFW+caUGpfE4vFCIVCRUIFn8+HLMukUqktixC3ItIoTeNms1meeuopRFEsSlsW1hM3a2JtOVXbrYh4thIW8dyAoihkMpmih2B0dJSRkRH27t1Lb29vfoKgRkwb+dqjo1c4fsJLIFD5T1JrrSaVilNLScrppCZ3a9FW3jZnM5wL7HZ70byUQgXUzMxMXgHV2NiYt6TfCmzW6xYKFbTU0+rqKjMzMyiKwtNPP52PELWIaLN2\/Fs99hrIv9fe3l7q6uqKpNtaf5Um3daMYG+VsEWvxvNSws898WipNc1RWos+zp07RyKR4M4778zvouHmkLWNeu3x8XG8vjQnTvhwOMwuQrU9pC5XTadhswnIsojNVl3EJNoyKGU+qo1ItVWLUndgzU9teXmZTCbD+fPnaWpqyqfmXLV+WDVgK1JdWj1M8087efJkXkGo7fg3S0G4HQQO2n1o77F0rEFh2lJzky4c\/7CRjb7lIp6XkjM1\/JwTT7nU2vLyMufOnaOpqYnjx4+vCa8r9dyYRW6xO0dbW5K77vLWNCunWthsoKpiDc2n1EY8okIsHMfrv7lbu1WptmpQqIDq7u7mySefpKuri2w2y\/T0NJcvX85btWj1oVuVZtlqY1RtE1AqVCjc8RfO2dEioo1caLdDUV+rserdR6l0O5FI5D+fiYkJVFXdsEbfcnJqi3heIihne3P16lUmJiY4ePAgnZ2dZb84GxHx5FRHgxw77sbvr\/5PINRYq8nBCaSqPktRalsYZCkJlCceozEJmwktDaXJlAutWrTpkdq8nVthY7PVYxHKvX6pgrBw9IO20BZKk71eb83vY7sQD5ibgloobNm5c2dRo28oFOL69etF0vdqHTisVNtLEOVGUieTSQYHB1EUhbvvvttwd7GeiEdVVUZHR4lGx7i731d1BJHHunp5bLVFVzVuzEvn8hg9fFu9+9dQatVSzsamsGlzPYvuVsNMfaWcUEHrkVlaWipyVNA+k2qECtuhxqM907WkE8s1+mqj0zUHDqfTWURERp9P6QjueDxe5Cz9UsDPFfGUjqQWRZHZ2VkuXrxIR0cH+\/fvr\/jFq3VwWy61NsiOHWn27fcASu1TQWs6R0NtD3itlCDa1xLPVqfaqkWpjU3pTBmHw1Fk66PZ\/JvBVsuZa3n90h4ZWZbzUvbp6WmuXLmCx+MpWmiNhAqlC+1WoHCA43pRbnS65jihfT6FQo76+vqi70y5VFtXV9e672s74eeCeAptb7SwXlGUfFf90aNHTXsN1aJqC4VCDA2d4\/gJN3V1N79QtU4FFQTlxrlS1efWilrqQgA2W3HD64t9Hk+5RXd1dTWfgrp06VLV7gFbiY0gvkJHACiWshcKFQql7IWfiTZ\/ZiuhrQu34ntos9nyaVpY6zihiQe070vhQEnIRTwb4ZCynfCSJ55yAoJYLMbAwABOp7Ooq94Mqol4VFXl+vXrxOPj9J\/xlplts44FSXVADcRTa31IUbLUYmEgmiQe2D6ptmpQuqhobtuhUCjvHlA4BrvUuPLFGPFUQqmUXc\/qSPtMtoOqbTOjrnKOExpRX7t2DYALFy6wsrJCOp2uSdX2xS9+kS9+8YuMjY0BcPjwYf7wD\/+QN7zhDYD+Ru9Tn\/oUv\/u7v1v23x566CF+7dd+bc3vk8lk1T1gL2niKTeSenJykqGhIXp7e9mzZ0\/VuWWzEU86neb8+UE6d2bYf8BD+WRV7Q+biq22s9cxl6cWlPbyvBhTbdXA6XTS1tZGW1tbvigfCoXyERFQZOuz1dgM4itndVSoCJNlGa\/Xi8Ph2LKaWWmUsZko\/M5kMhmeeOIJOjo68k7Sq6urzM7OEgqFePWrX82dd95ZMULcuXMnf\/Inf8LevXsB+MpXvsIb3\/hGXnjhBQ4fPpy3\/9LwT\/\/0T\/z6r\/86b3nLWwyvGwgE8s7WGmppPH5JEo+qqqTTadLpNA6HIz+S+uLFi4TDYU6cOGFqkFI5mFG1LS8vMzx8nuMn3Ph8Rruo2tVpta\/RtdWHclLs6tN7NnsWteRtqqrK0tISS0tL+fTCS3ECaWFRfufOnfmemcKxDzabDbvdzsLCwpbYtGx2tFFOEfb8889jt9vzNTO73V5UM9uMnqrtoKyDm7Wmjo4O\/st\/+S984AMf4J577uHuu+\/m3LlzfPazn+XQoUM8\/vjjhtf5hV\/4haKfP\/7xj\/PFL36RZ555hsOHD69x1P\/Wt77Fq171Knbv3m14XUEQ1u3GDy9B4tFSa+Pj4ywtLXHHHXcQDocZHBzE7\/dz5syZqoq\/pTBStamqesOeZYL+M15E0XghXU+NJhKJ0NBQ\/YOSqw\/ZanO5riG9J4oSyUQap\/vm4jE3N0coFKKpqYkrV66QzWbz9i3RaHRdLtPbGaIoEgwGCQaD7Nq1C0mSuHr1KpFIZE0tRGvavNWL4Van+gp7iDo7O9cU4i9fvozX6y3qqboV5LwdBA5wU1ig\/U0EQSAej\/OWt7yF++67D0VRWFpaqvqa3\/jGN4jH49x9991r\/n1+fp7vfOc7fOUrX6l4rVgslq9tHjt2jI997GP5sQrV4CVFPIW9OXa7HVmWuX79OtevX6evr4+enp51P2Sas0EpUqkU588P0t0tceCgXmqtFLU7TXs8TqBG4lIdNaXcaknvCQLEoxGc7hay2SyxWAxBELjrrrtwuVwIgkAymeTSpUukUimef\/75fLF6K1wENhN2ux2v14uqqhw+fJh0Op2XbV+8eBFJkoqaEm8FIW818UBx1FVaM8tms\/lCvDb+utC6ZqMcFbYy1VZ6H6Xvp7DGI4piXuZfCefPn+fuu+8mlUpRV1fHI488wqFDh9Yc95WvfAW\/38+b3\/xmw+sdOHCAhx56iKNHjxKJRPjsZz\/LmTNnGBwcpK+vz+Q7zOElQTzlenNUVSUSiZBOp7nrrrsIBoMb8lrlIp6lpSWuXTvPiTu8eL3mv7yCINccfbhctT8kKvYaq0u1nWWzZYhEIrzwwgsIgsCuXbvw+\/1kMpl8Oqqurg6Hw8GuXbuKpLmai0Chy\/St2JluZX1JW3RdLleRrY829kGzsRFFsSgFtRGmntuFePQWfYfDsUaooJFzOaFCtVNHzdzDZqIS8VSD\/fv3MzAwQDgc5pvf\/Ca\/+qu\/yuOPP76GfP76r\/+ad7zjHRW\/T6dPn+b06dP5n8+cOcOJEyf4\/Oc\/z+c+97mq7u1FTzylvTmCILC4uMjQ0BCCINDf37+hdieFNR5FUbh27RqZzDT9ZzyIYg01mxqjD8jUZNyZw+YuNPH4MheuXGL37t2srKyUJQ5tsSjsgdi9e3feRUBTiW3k8LftAD3CMxr7MDMzw9DQEB6Pp8jUs5bv+XYgnmoaSMuRc6GjAlDUP2RWqLBdiUfzFazFucDpdObFBSdPnuTZZ5\/ls5\/9LH\/5l3+ZP+YnP\/kJQ0NDPPzww1VfXxRF7rzzToaHh6s+90VLPIW9OdrDo6oqV65cYWpqiu7ububm5jbcY0uLeHKptQF6emVaW\/2IYm1ps1qjD0FgHQ2otaFWKXY0tsSxY8doaWnh+eefr0pOXegiUKoS04a\/aST0Yk3LmVkYSwlZ65UJhUJrxj40NjYSCARMLaTbgXhqFTiUEypo4o3C5t5Cax+970e5SGMrUK55VFXVouFstUITXRXiS1\/6EnfccQe33357TdcbGBjg6NGjVZ\/7oiSe0t4cQRBIJBIMDg4CuSl5kiQxPT294a8tiiKpVIqBgae446QPj0dEUVzUXq9ZR8qs1gbUWtV0NYohurpb8PhyqZL1yKnLqcS2Ii23kag1xVdu7IOWgjp\/\/jyKouTrQ0ZeatuFeDYi2ihs7u3t7S0SKkxNTeWFCuWixFsV8aiqgiCYv245Z2qg6lTbH\/zBH\/CGN7yBrq4uotEoX\/\/61\/nRj37E9773vfwxkUiEb3zjG\/yP\/\/E\/yl6jdOz1Rz\/6UU6fPk1fXx+RSITPfe5zDAwM8IUvfKGqe4MXIfGU9uYIgsDMzAwXL15k586d7N+\/H1EUiUajt2Ruzvz8PIFgittv9xWk1tbz4K6ntlDjoirUSpK1ned03SS6jXQuMErLaTNUChdfvbTcVi+8G\/H6brebjo6OvHuyZlpZOPRN+xwaGhryO\/\/tQDy3yqutUKiwZ8+evFChNEpsaGgglUpt+Odgs4UJLWQJNrWYPqcc8djt9qoj+fn5ed75zncyOztLMBjktttu43vf+x733ntv\/pivf\/3rqKrKr\/zKr5S9RunY63A4zAMPPMDc3BzBYJDjx4\/z4x\/\/mLvuuquqe4MXEfGUG0ktyzKXLl1icXGR22+\/vUjtoTV6btSDlUwmOX9+gN5emY5OL+sjjJsQWA851va+VDUD1OLRVZsU22YvJqxb5VzwYkzL3QpRQ6lpZeHOXxvzrEWGqVRqW9jVbAb5lQoVtOGAmu+eoiik0+mi0Q+13pfNvoTTOc7wCz5OvnZ9xOP1eqsm5i996UsVj3nggQd44IEHdP+9dOz1Zz7zGT7zmc9UdR96eFEQTznbm2g0ysDAAG63mzNnzqxRZGh\/vI0gnoWFBa6PXuCOO3yUc9dZF3msy2+ttpSZKIKqOqhJjl2DGMJmz5JJ3+xP0It4NnKkeDVpOVmWNzw6rvZebyXK7fy1yDAUCiHLMolEokgZtpmF9q0q7BcOB9SUsHV1daysrDA2NoYgCEX1IXOjDVTsjjmczhmkrJ3l2XhV91RuJMJLbRYPvAiIp3RuDsD4+DjDw8Ps3r2b3bt3l\/0yaH88SZJqbhhVFIWrV6+iqrP093v1VWvrIo\/a1Wk1NYFqqNHrrRYxhCBAJBSmoaVpy0xCjdJymUyGCxcumErLbTS2QsZdGBlq3oN+v59QKMTk5CRADQtu7dgOYxFUVcXlctHV1ZVXEWou5AsLCwwPD+dHG5SmKwuugsM5hcOxAEB0BZLx6mqw5UYivNRm8cA2Jp7C3hzti5nNZjl\/\/nx+VK\/RjArtj1frLjqRSHD+\/CB796q0tbsxTq2thzwgHlfw+Wp58GpXtNXs9VZrek\/JDZ\/bLiahhYvvyspKvhi9FWm5rTYJdTgca8Y+hEKh\/ILrcrmKFtz1OH+Uw3YxCS0kv0KXiUKhgkbOWrrypqNCAK9vGrs9lL\/GwlSadLK6uqgkSUWmxYlEYl3TTLcrtiXxKIqCJElFqbWVlRUGBwcJBoP09\/dX\/PILgoAoivmm0mowPz\/P6NgFTp6sw+2uTFzrlTbbbLW5EOQaUGsbZb3ZvTw2e+796T1AW+3V5nQ6aWpqKpuWu3LlSl4NtdFqua02Ri1NRZdThmnOAePj41y8eDE\/9kGz9VnvZ7EdemgqyanLOSpo9aGRkWEOHxEJBIuX07HLUVLx6v6+pRHPS3H6KGwz4tHrzbl27RpjY2Ps37+frq4u0+xf7bRQRVG4cuUKNtsCZ\/p9CFU0hKqqoyZpM9ROPDnUNsq6VtQqxbbfGAj3YnCnNqOW05pYm5qa1p2W28rdbKVow2az0dTUlDfVzWQyZZ0Dak1RVjNy+laiWvK7GTE34nKr2Gxrazkv\/GSKTMZTlf9gOXGBRTy3EKW2N4IgkEqlOHfuHJlMhtOnT1fdRFXN0LZcam2Avn3Q2uqietVa7Q\/OehaeXC9PDa9ZoyBCUTM1ibg1Zdt2IhizKB2FXWhlMz4+jiiKRd5yG2Fls1moVnzjdDrLjjgoTFGW1ocqvT68+IgHQBAyuNzDiGL5jd\/Fp5bZsa+R559\/Pr+Z0dKVenWzUs84S1xwC1HYm6OlyObn57lw4QJtbW3ccccdNTkQmCWeubk5xicucfyED69345RVZiEI61mIayStGgUROSl2da+pqgKz373Is\/\/0dzgOd7P3Nadyt1CS4nmxEFK5UQfLy8trrGy0RcYohbPVhfX1qD5LnQMKxz7Mzc1x9erVohHP5cY+FFpdbSWqdS4QhOQN0ilfw5ElG4tTCXYf6eKee+5ZMw7D6XSWHZcuy3LRWqfVeF5q2FLiUVWVTCZDOp3GbrfnFTaXLl1iZmaGw4cPs2PHjpqvX4l4ZFnmypUrOByL9Pd7QXUByZpeq2Y3ANapTqsZ2ZoEEXa7UFUvjyrbmfyziyS+N8RhgJlR4t8b4v86s4gHO9n\/i6+i7\/SxLa\/x1IrCIrSWltOaFK9evVqUlluPieWtwkY2kJYb+6B9FtrYB81ZWqsPvRgjHlGM43IPGz4DsUjuM03FM2s+l8K6WWlfVSaTKXoOajUI3e7YMuLRenMmJyeZmZnhrrvuIh6PMzg4iCiK9Pf3r3vOuBHxxONxzp8f4MABkeaWXGpNUWtVerEuSbVQs5MA1NrLIwjqOgQRDjCRqpNiDq697wekx1aKfu+zOTkoO5HPh3juJ59nsb6FSa+EeLCTnS3t1Lc113BP2wOlTYqFqahyabmtjvJupXNB6YhnzVk6FArlxz4EAgHg5gK7VaRslnhEcRWX+3pFQc\/idO6ZTpVRtZXWzQqFCpq0f3l5mZ\/+9Kesrq7S0dFR1XupNPb63e9+95rZO6dOneKZZ54xvO43v\/lNPvzhDzMyMsKePXv4+Mc\/zpve9Kaq7k3DlhCPFuloYaUsy\/mmvu7ubvr6+jZkB6RHPDMzM0xNXeauU3U4nQV2LutSeq1HUq2QSim43dW\/50wmTq0lhVq93szUlRLDKtfe9y3UdHlCjmRTTCZXOdmwE4CWpAueDzPz6w\/yFAmyu5rp\/VdnOHLfy7a935oRtLRcZ2dnUSpqdnaWoaEhbDYbHo+HpaUl6uvrN9zUthI20zKn1Fk6Ho8zPz9POBze8jlMZlJtNlsIu2PRlIp0YigG5CKeSiisIc7Pz3Po0CEGBwcZGxvjmWeeyc+reu1rX8trXvMajh07Zvg3qzT2GuD1r389X\/7yl\/PnVFIJP\/3007ztbW\/jYx\/7GG9605t45JFHeOtb38oTTzzBqVOnKr7HUmwJ8Wh1HC2\/HY\/HuXr1at7BeKNQSjyyLHP58mXc7mXu7veu+QKpqDVTTy6CcFCrn1kmUxvxOJ2sYzxCrQu6\/oupqsjSPywy89kndY+ZSISxiyKHA21r\/s0h2ujDz9nBEZxjSZ7\/\/HeZ9il4bt\/NkfvvpfPA3hrveetRmnLJZrNcuHCBbDbL8PAwqVRq09NyW+XVJghCPoU0NTXFPffcU3byaKGE\/VaScqWIx26fx+maQpbNpb2unl0GzBFPIWRZxuv18prXvIbXvOY1\/Mqv\/AoHDhygq6uLf\/mXf+Fv\/\/ZveeGFFwyvUWnsNeQ2AdWMsH7wwQe59957+eAHPwjABz\/4QR5\/\/HEefPBBvva1r1X1HmELU22CIBCJRLh06RKqqnLmzJkN3+EUEk8sFuPChQEOHrTR1Fye3ddba8lJqmsjnhrajYBC+5v1pOs2BopkZ+KPB1n90YjuMedWZ9nra8JrL\/83yCgyFyJz3FGfi4Tq7W7q08DP5kj87P\/Pv0hRljv9dPTfxh33vw6P\/8Wb\/3Y4HHg8nnx9qHS2jGbZcivVclttEqptPgvVcKW1Mo2UA4FAviBvduyDWegTj4rDMYPDOXfjZ3NrxAs\/ngWoqoFUURRUVV0jp967dy+\/+Zu\/yfve976qU7N6Y69\/9KMf0draSn19Pa94xSv4+Mc\/bjjZ9Omnn+YDH\/hA0e9e97rX8eCDD1Z1Pxq2jHjGx8e5fPkyO3fuZHp6+paE1RrxTE9PMzNzZU1qbS3WN9smlcpSa1lKVdfx8Kv2dThOV49yQorsqoNr7\/0+melV3fOmVQe3BfXFIsvpOCvZJCfqO3WPiSYS7J124n\/kHMP\/5ywT9jTqvnb6\/s3L2f\/yu2peRLeq1lL4upXScoVquY2KALaaePT6iEprZclkMk\/KU1NTKIpSJNs2O\/CtHLT+wbXEo+J0TmB3LOV\/I5io5SqKyPjlMFBdxKNtkkuJp1BcYPY9Go29fsMb3sAv\/\/Iv09PTw+joKB\/+8Id59atfzdmzZ3XX4bm5OdraijMUbW1tzM3NlT2+EraMeHw+H3feeSdOp5OJiYlb9gDMz8\/T0aFw+u61qbVSrM8JAFKpdFWjrwuxns1b7cPkaozwSs6LXZIZ+cA\/gqTzuXkcZAJuOuejupecyEbwCTb21ukLC55bmeJ4fQe2G\/NNPDYH+1UHDMVg6Lt8\/xNfI9VVj+dQD8d++fU0d9WuiNxMlPvel1OIaQvvRqbltgPxmIlcPB4PHo+naOxDKBRiaWmJkZGR\/MA37fOoxtZHk3QX13gUnK5R7PZw\/jeqKpjKaCSiN99PKpFFUVRE0VzzaOl91CqnNhp7\/ba3vS1\/3JEjRzh58iQ9PT185zvf4c1vfrPuNUu\/J+v57mwZ8bS0tCBJEul0GlVVN\/wByPVWzHH0qIuW1iq8pVQXCLVJqoPBOiBR07l2+1Y8\/Ouby6OqIgvfmGXuL3+qe6TS6EOVZJwGpPN8eJqjwR04dAZmJeUsV2NLeSFCOUwkwrhEkd4FFRbGWPzhX3BWiZPsrqfrtXdx2795NQ7XxnqMbQTMRlqlg98KRz5oI58LveXMpuW2Qx9R9Y2bN8c+9PT0lPVRq6urK\/BRM7Y4WuueIONyX8Nmi5XcqxNRTFMJS7PFUVEmlcXtrfzdK5wxlnu9nACjlumjZsZea9ixYwc9PT2GI6zb29vXRDcLCwtroiCz2PIGUi1dsB4X6UKoqsr09DRzc0OceZmXajN4tZtnou9ebQIu19YQj6JUH20JgoycdjL+seeIPj2mf\/XOIPaFGGK2fGSVVWTOR+YMU2shJUUkneR2gxTd+cgcu72N+ArqRnZBZLfND9My0kNP8s0vPIKn3o\/jSDeH33wvPccOVn6jm4RaNlwejydv7LmetNx2iHjW+\/qlPmqZTCYvTy61OCoXHRYRj5DF7RpGtK3dfKqqHahMPJNXi+1zUvGMaeIpJciN6uMpN\/Zaw\/LyMpOTk4Y9k3fffTePPfZYUZ3n0Ucfpb+\/v6b72XLi0XYZGzEPRZIkLl68QCAQ4dRpb41Kr\/Xs\/mqvETmdQk0kALWnzAQBMhmqJudMyM74Hz0LsoCjrYHsfHGfDgKkO+txTYV1r7GcibOcMa7nXIku0OEJ0ust70KuqCrPh6c5Ud+JqPPHXs2mmElFuMPfnrPDG1gmM\/B1fpSNEWpx03zmKMruresb2oja0nrSctuBeDY64nI6nbS1tdHW1pYfCFgo2gCK3La1z8Bmy+JyX0UU9Z5jc5\/T8Auhop9T8QyYEOuWI55EIrGhY69jsRgf+chHeMtb3sKOHTsYGxvjD\/7gD2hubi7qySkde\/2+972Pl7\/85Xzyk5\/kjW98I9\/61rf4\/ve\/zxNPPFHVvWnYUlWb9r82m60mF+lCRCIRBgYG8DgF+k6uZ6LiehwIlBs9LrW9F1m2I4q1nFu7sMDh8GI2PaiqEBvIcP13\/yH3ww3Ym4M42xtQshKpuRAZl82QdMZTEbyCjX0G9Zyz4SluD+zALpZPkSTkDJPZWMX0m10UOehfq9bpdNTRGYaBv\/sX9gVaeUb9DsreNna9Idc7tJmL8Ua\/VjVpOc2maqtwq1N9hQMBS8c+aPY1DoeDQEDE4bxUIWthbpMw+JPilFS5JtJyKCUeRVFqMgk1Gnudm6R8nq9+9auEw2F27NjBq171Kh5++OGilF7p2Ov+\/n6+\/vWv86EPfYgPf\/jD7Nmzh4cffrimHh4AQd0iOY\/mzwbwwx\/+kOPHj1NfX1\/1dVRVZXJykqGhIXbt2sXqpMyp+0KVT9S9ngehxhoPgKp4EMTazk+nHLjc1ZOI9hesZf1QFD+iqF9\/0ZDNqix\/bZb5rzynf62mOlRJxl3vxxHwIa1EyUwtFR0zGhPY6VNw6NxsWpG4FJnnuEEkNJeKkFZkenQiIYALq3Ps8hWn3wohqwovhGfKElcom2TWD96Tfdx+\/+to292t+zrrxYULF\/K1is2Aqqr5kQ+hUIjV1VVcLhctLS2b0i9TitnZWWZnZzlx4sSmvWYhZFlmJTzGjh0rOBzGD5CiuCrWeBRF5F81f6fod5945Fc5cLKr4r0sLCwwMTHByZMngdxmeufOnSwuLubdH14q2PJUG1TnIl0ISZK4cOECKysrnDhxgqamJr739HPIsh2brdYIan2y5FoVZgDJZAaXu\/qzc\/OAXJjJP5c5u+IRUsrOld99HOXSsu4xmc56HAtRxKxMdjWZ\/xRtQR\/OzmZUVGxOB7sGRnRfM6ykWUrEDEnnSnSBdrefdndA95ircoSDgda8+q0UMSnDWCKkGy01OjzEQiu4vn+Z8E8mOSfHiHcGaH\/FcY6\/+T5cXmPH5Wqx2dFVYVruySefpLOzk3Q6XZSWa2hooKmp6ZY3sW71LB6HM0JXV7jie8w1aVd+vlLxte\/FrKRakqQ1UmrAMgndSBT+oe12e9WpttXVVQYHB\/F4PPT39+f154lYmmTUTV19rfclrUtSvT6o1DzhU7WbejDWwvh9phdsDP+nf0IJ60RxFeo58mqctKLiaAkSvzzJimonKimkUgvs9jXkU2nDsSVaPH721jXp3svZlWluD7brpt9Scpah2CK3B\/W9rWZSEWRF4UhAv2v7QmSOXQVihV67H+ZV+N\/Pc+VrP2XMnsZ1Yjd77utn72lj+5JK2GqvNiA\/ewiK03LaGOxCF+VKYw6qxVaq6mz2RRyOeVOZArO10ND82g10KmFuM1s6BC6RSOB0OjfVOmiz8KKLeFRVZWJigqtXr7J79252795d9OAnIilCC\/aaiSf3Ik4Qah2uVvtC4nKvZyBcbQ+vnjBBVSHy0yRj\/+0x\/ZO9TjJ1TsN6jrOrBSWRIn0918ndIEg0OABHM1EpzVh0kZVskj2+Rupt5R+wjCJzMTLHHQ36kdBCKkZMzhiSzpXoAp3eevw2fYVRaa\/QWqjIqzH2nF2As3\/PE9m\/ZanRQf2pQxx76+tpaK\/e8mmrayyFr1+olitMy2ljDjS1nNa8ud603NaMvVaxO+ZwOmeQZXMd33a7uVro1MjaY1KJ2iKeWCy2rsbY7YxtQTxmIx7N2yocDnPHHXfk5ZOFiEfSzI7Z6N5X+y5hPemy9dju2GxbEWWt3Y2pio2Z\/3WdpYcHdc9SmusgLeFciOke4znUQ+raNGqm\/N\/WI9rJqDIvb94FwFRylVVBQshK7PY24bbZWU4nCGUThum34dgSjU4vu91rvw8aKokVsqrChdU5Q7HCQipGQslytCBaanf4aI8C37\/G3KOf5TtqCP\/unXS\/9i6O\/qtXYndsi0dMF0aqttK0nKaWy417HiGZTOZtbBobGwkEAlUvkpufalNxOKdwOBZu\/Gz2tc0dN\/jU1JrfpeLmI57SIXAvxTQbbJNUm5mIJxwOMzg4SF1dHWfOnNHt+UlEU4xezHLqPn3foUqIrEapb6iVemqXVNvtSu0O1zWPR5BudGTnIjU55eD67z1J4qK+FYZWzxF0+nMQBbyHekhcGNO9RhyVqXiIOwoIZacnyE4Ady5t9uTyGKIg0OUO6l7nmhKh21uPSyz\/VZYUmXMF3m\/lsJyJk7TB8Xr9aOnaDXLrdesLGs5F5rgj0I59PA1f+gkDf\/kYU14F9229HH7LvXQd3rfmnK2WM1fz+uXUcppMWUvLFboHmEnLbW6qTcHpGsNuL5T\/m8xQmEyJXn1urWXU\/OxCnkSMPuvSIXBbPSriVmJbbMeM5NSqqjI+Ps7w8DB79+6lt7fX8A+RiKa5\/GwcqJ14HE47Zs0AS7Ee2511GX6uy+DUCaRJTYsMv+cfUaI6tSJRIN0RMEytiX4vztagIeksJMHrEdnv109LXYktcrJ+Jy5b7isaVjNcX13EIdjY5WvAbXMwsDrDSQNCWc0mmUvFDHuFRuMhfHYnO236vRKDq7McqGvJ30spJFVhcHVmDbkF7W6CGeC5Beaf\/l+cd6uk6920vOw2Ttz\/erzB6jvSNxrrIb5SGxttEqsmU9amj2qpuXJpuc1Ltcm4XNex2SMlvzeZ2jbxfKmqwJWfLa75\/cpyhOeeew673W449kGW5aIJrYlEYt0zybYrtpR4tKmT2kyeUmhDkSKRCCdPnqShQX+3qSEeSTFyfg5VPVxjAyl4vU5qnUQKrKtGVLvDde1qPFWxE35imYn\/\/gPdY2S3HSXgxjWlbwLq3NmCkkqTGpnVv87OZuonlnDq7DQVVeX51ek1hFIvOPMEspJJcCm6gIjAZDZKp71uTQPpTCaKoGBIbudWZ9lb14zXVr7vS2tQNUq\/xaQM44kVw4hqKrmKgECfHIBl4FsXGPm\/A4zbkoTbvPTcd5rO+zu3ZGe7URGXIAgEAgECgcCa6aNGabnNSbVJuNzD2Gxr6y\/6zaLVH5dO2imXuKn3N\/Hyl788b+ujjX3w+XxFtj6yLBdZHcVisZfk9FHYRhGP1tOjYWVlhcHBQQKBAP39\/abtdBLRNPHVDLJkx+548Umq1yMSyGRUnM7qXlmV7cz8ryESF5ex1fuQw\/E1x8jNdajJDA7Dek43qWuzqBmdz04A75FdJM6PYtN5i5FsiqlUxDCKmUqEEQSRuxpu9kWsZJOMJ1ZAhW5vPTOpSE6VZvCdeW5lytDxIClnGY4tG5LOipommkmWnSuk4Up0gQ53gICj2DvNbbOzHz\/Mw9nPP8LPvvokMz4F\/x37uP2tb6Clp7qpk7XiVqX6SqeP6qXlstnsLd3VC0LmhhvB2iheVewIJhq2zTaFryyUj4pSiUzR2Aconjqqydi1dTAcDuP1emtqHn2xYFsQj91uJ5nMRRiqqjI6OsrIyAh9fX309PRU9WDEI7lIIxERCOgrcw2xfkn1enZwtS8CdrsHMB9pSQkHI7\/zOKnhm02ezp3N2Bv8yLEk6fF5MjuCOOYjCHrO04KA90gvifOjuq8j+Fy4OpoNj5lMhBEFkUNlXAY0jGRWaXN6qLMXpygaHB4agrl6wrMrkzQ5fVyOLtDqD9IheosEBSk5yzSpiiKCuJzhtqC+5PpqbJEd3iDd3nrdY14IT3Mk0I5DR9CQS9HN5qOlxgTwkwmWf\/xFnlfiJHcG6XjNnRz7xdfgdN8aSe1m1ZjKpeW0EQfhcJiVlZWKablqIQhJXO5hRLH8ZkhRHdhMpNoUxWGqL3BmtHyWJF1G1VY4dRRyxDw4OEg2m+Uf\/uEf+N3f\/V0OHDiAKIoMDQ2xb98+U38no7HX2WyWD33oQ3z3u9\/l+vXrBINBXvva1\/Inf\/InhuO1H3roIX7t135tze+TyWTNM6K2RapNExdkMhnOnTtHPB7nrrvuIhjULyrrIXmjPrE8J9VMPMCWSarXd675P2dyTODae\/8BpeShyEwt5dwGRIFUZxCPzYF7fxfRsVnsJY1wYp0HZ3uDIaE4djSCrJAantY95sLqHL2+hjWEUoiz4SmOB\/UjlJQscSW2wJ03IqHdvpzCLSalGY0tklVkAnYXgiCwx6f\/xRiJLVPv9LDLQCE3EJ7hYKBVV9AgqwqXksuGSryYlGY8ES4SV2iw3TA4nRkNk\/7rf+HiQz9hwpXFcbiLA7\/0anafPKp73Wqg9RBtdh9NYVoukUjgcrkIBoO6aTm\/31\/1PYpiDJf7WgWVqdkJvOZee+RcuOzvkyZUbR6PB7vdTldXFydOnGDXrl38xV\/8BWfPnuX222+ntbWV1772tfz5n\/+5YYRoNPZ6586dPP\/883z4wx\/m9ttvZ2Vlhfe\/\/\/384i\/+Is89p+9IAhAIBBgaGir63XoGE26LiMdms5FKpXjyySepr6+nv7+\/qMhWDeI3iGfmeoJdh2tvdltfuqx237n1TUGtfMeqKhB6dIWpT\/1Y\/yCvi6zPgXsyjEqu2mUH7O0NOFvqURJplGwWJZkhdW1G9zLu\/V1kJuZRkvr58Up9MxqhGNVQVpUMS6kox8r08NTZXRwNtDMSWybocJNWJK5kVpBTGfb4GnEX1HcuJ5fZ7QnqigjM1HwScoaRWIijBtHSfCpKWpENU3TDsSVaXD7qHbnv8CHZCedCyOf+D49nHyLU7Kb55bdx2y+9lmBLbTssjXi22iS0NC2XSqXWNLFWo5YTbau4XCN5peb6YXL42tMLZX9vto9H82qz2Wy87GUv4x\/\/8R\/p7u7mT\/\/0T3niiSd46qmnKr53o7HXv\/7rv85jjxX35X3+85\/nrrvuYmJigu5ufWsoQRCqGpVdCVtOPKqqsry8TCQS4eDBg3R3d9f8IGTTEtl0btEfubDCmV9YT5d17Q9jNptYx5iD9U1BNYIq25n8s4usfG9I9xi5uQ4hlcWxuLaeI82tIM2t4DnYjbwYxtHemHOnngshLRWrhbxHd+WUbToy1IwM81nRcBFfTMeJSumyhKJhJLZMo9tnGMUMhGc54G8uIhmckJYlLkXnSUhZUopEf2OPfkSlSFyNLla835iUNiSdaSmGR7TR5tZXtA2uznDArx9Rtdt9zIxN075qZ+pb53mSBNk9LfTedzdHXn+P4eyZQmwH4iknp3a73XR0dKxJy5lRy9lsyzhdYyaFRWY3eWYUbXDuJ+VFNWmTzgWlJqHxeJy2tjY8Hg\/33nsv9957r7nbLbheubHXhVhdXUUQhIo+mbFYLD\/76NixY3zsYx\/j+PHjVd1PIbaUeDKZDC+88AKxWAyPx7Nuo0StvgNw6WeLwOYUaEvhdApFvTHVYD1ybMHgAZFiDq697wekx1Z0j8nurMc+Z1DP4Qah3EityZGbKiFHWwOO1nrkVBrRbjdMvyXtdqIpiS63\/uuMJlcI2Fz5lFk5DKzOcLCu1TBCOR9f4Fh9+TkjLpudXd5Ghm8MmVtIx1gRJNLJJLt8jfhvpP6W0nGyDsFwbPf1+DIBu5tdBvc7uDrLfn8LboP6RSXRQ1qRuFJAgE7RRh9+GE3BX\/6Qs1\/4J0brZBpP7Ofwm15Dx\/7duq+1HYinkpy6MC3X29trqJbr6hJxeyKm1axm1aNmjsuk7aSTOuICk15t5YinFlWb0djrovtKpfiv\/\/W\/8va3v51AQN\/78MCBAzz00EMcPXqUSCTCZz\/7Wc6cOcPg4CB9fX1V3x9sMfFcuXIFh8PBkSNHuHjx4rqvl4jdVK5cfGa+5sUfzM1W1z83N62wNtNOyPXV1FBf0rnnxLDKtfd9CzWt855EgfQO4\/4cxWXD1dmiSyjZ+RVQFHDYySwt4u7rRLYJJGeWsBdsCGzdLdhnQrQapIdfCE9zxGAiqZGztIacKm3JcICcFqFohNLqqst1fznrkRSZ4dgS86kYfruLo079KObc6ix9dc14dGTZUJlQMorMhBo3fE+r2SQL6bjhe4pnUnSEbbQ\/NUX0yYf4vhwjusNP+yuOcexN9+Lx31zItgvxVFO\/KZ+WW8brWyQQlAmHZerrK0d8qiqaGkFi9rjVJf11ptpUm4ZbMfZaQzab5d\/+23+Loij8xV\/8heH1Tp8+zenTp\/M\/nzlzhhMnTvD5z3+ez33uc1XfH2wx8Rw5ciQfSm\/EILhE5OZCn03LZNIiLnet112npLpm007t3FrOzBY5H8iySug7IWY++6T+KT4XWa8D17R+f46jo4lULE72ur6bgXtvB5nZEEo8dx1NTGAHHC1BHG0NCG4H8YvjOKTyf5ObKi\/9onxKlblWIeWlWdsYRSizShKngG6EYhdtJOUsdzR04rE5iCoZRiJLqCp0e4M0OXMLwmBsnqOBdl1CySoyFyLGVjyr2RRzqahhz9F0MpcS6TOYYVQq3RYFgR67HxaB\/zPA8MPPctGbom5XB\/t+4eX03nU7sPWptvW8vtvtorc3i92R+055PHWY6cHL9ctVfj5V1YlgQmQ0O6Z\/jBmTUFVV15iE1trHU2nsdTab5a1vfSujo6P84Ac\/MIx2ykEURe68807DUdmVsKXEo3m0bcQgOChOtQHMTcXo2VtbnefFKKkWBPVGpJVBytgY+v89g\/Qzg2bOFj9CMlO2nqPBc6CL9Ng8tpT+rs17ZBeJS+O5iKcMsqEojrYG4s8Ng8NGuqmOqbE4QYdK843IJ9fDs2pIOrOpCKLTYegsPRxboqmCtc3g6gwHAm24nPo749IIxS8687UmRVUZji0xk4rQ5qpDVhVEYe21YkqW6XjYUN02k4qgqqoh6QzHlmh11RF06IeJA6szHPK34dSRbgNcjMxz0rYTrkThynd4Lvu\/mXFm+OHgBMd++fU07dy44rFZrK+BVMHpuo7dfnPTZNdrEitBNiuYcptWVXP1stGL+hs3M6k2beNdGvEUDmerFYVjrzXSGR4e5oc\/\/CFNTdULU1RVZWBggKNHa1dXbrm4AHIEpDH+eqSd8Wgx8STC65lEyjol1VsDVbUjRVSG\/\/NjSDOl9iA3kdlZj8OonqM1fBoIBHDa8eztIHFBv54jBrw4mgI3LXSyMq7lGHtuPE+rWbgcmwRV4UhAP0IZii7S7vYTFPUX3xfCMxwykDmbUaWlFYmh+JLhMVEphaKqvKI5Vz9JqhJDkTkyskyHJzcraCYZweV2VSSUQuVaOVQSGkCOJI3uNxd1za85ptXho1X1wQ9HGX30z3imTiDbUkfXa+7itn\/zKhwuc03b60Htz7yEyz2CzVayaTK5UYzH4rhcJkhFNbcJvPjMWqscDelkFkVREUX9ayk3Nm2lNZ5qm2uNxl5LksT999\/P888\/zz\/+4z8iyzJzc7ksRmNjY75Jv3Ts9Uc\/+lFOnz5NX18fkUiEz33ucwwMDPCFL3yhqnsrxLYgHu3DlmV5XcSzNF9cOJ8bS3HwZO2WE+tyqV7HCO10OkGtY0+iZyNMfvJx5JW1DgSAqXqO4HXh6jRu+LQ3BRC9LpKXJnSPce5sRkmmSY\/qp+hWM3B7sAOPaCOryAzFFolJ6VzU4s2lwZ5fmeZoUL8R00zNJyVnuRozJpSVTIKlTILb\/Po7\/6nkKqIgFBGKR7AXRWHPrkyiAq3OeryIZWs\/ZgnFqC4kKTKjFepCMSnNZHLV0ABVk3fvS9fDlARfeYpzX\/ohU24J59EeDr\/lXrpvO6B7\/npQk0mokMXtGka0rU2pmbXACdb7MTXy3QSRqSq88Lh+WwHkyMfj0ydySZIQBCH\/WaiqSjwerzriMRp7PTY2xre\/\/W0Ajh07VnTeD3\/4Q175ylcCa8deh8NhHnjgAebm5ggGgxw\/fpwf\/\/jH3HXXXVXdG0Bvby\/vf\/\/7t76BFG4SjyRJNfXv5MdfXyzOOY6cW+FV96\/H62gdue+a\/NZunCpIVb+2qoosfGOWub\/8KYgCjp3NxJAI2JykJxZyfak+N1mP3bies6MRFNWw4dO1ux1pKUJmUj+i8hzsJjViYKEDjEQFdtWp+TSVQ7Sxv+7mgr6ipDkfmqHe4SYpZ8sST6VpopCbbBpKxQ1rPhOJcE4hZlBDmVTiBO2uNfY3hXghPMPtwY58yiutSFyOLpCQs7Q4fXR76ysSil6EUgiNUA4aOD2Eskmi2ZThMWOJEHU2F93e4gUuYHdxSHLBC0u88PiDjNXXsxS00XzmNo7f\/zr8jfW616wG1ZqECkLqhhvBWoLJpcbN1XTNiodkOUkldbqUtRMLGxNeKp4xJJ7S+g7Upmr70pe+pPtvvb29pgYP\/uhHPyr6+TOf+Qyf+cxnqrqPStgWEY8gCOsaf33x4kVCoRBN9W3A9fy\/XfjpAlB51vmtQabmEQcul1DVuUrWwdhHzxJ9euzGL1SyU0tow7BFv4dMWx2qpOBcSuh6I5hp+PQc6SV5ZRJ0BAKFnmx6UG0CYbuXPehEZeQUXDGbkp\/VI6kKw7ElVrMpOoNNtAlu5tNRshWmiV6PL9PsDRjKsi9G5unx1hs6Jzwfnua24A7sjvK7cz1zU5dozy\/8GUXmZyuTOASRkewqbYJ7DYklVInxeMgwQllIxUgq2YqE0uCuo8ehX+u6HFmg21ufn7RaDi+EZzgaaMOu2NixAvzjJca\/fY5xMYm8p41db+jnyL0vq1kgUE2qTRATuN3DuqRhVgiQe7YqR0aqCg5H5YU6Eqp8TKU6T6miDWpXtb0YsC2IB2obfx2NRhkYGMDtdtPf38\/1x39Y9O9Dzy2iKLlxA7VgYyTV1TeEVnNuJmRn+Lf+GclAIJAKunCMLiPICqoo4OppxRb0Ia3EyEzmctOVGj5VUcCxdwdJg3EHZlJ0Yr2PtKjSENInnYlEGIdoo8txcxduF8SiaGQgPIOsKthFkWDWRbBMnWRwdZb9dc24BWOZ87H6DuwG0u2B8Kzh9NOULHEtGaowoiGnXCs0Ny0k0waHB6\/dgc3pNCSU0XgIv91Fj1efUC5F5unxNuATjQnlSKBNN30J8Fx4qux7col29uFHuhbj3B99heRn\/5HpOqg70cdtv3wfbbv1O+BLYTbVJooRXO4RQ7GPWSGAqjp0\/duKj3OVNRctxex4ZbJLJY1fr5R4ZFkmmUxa7tS3GtVGPNPT01y6dIne3l727t2LIAjEI8VfElVVScYFfP7aenlUNVPzaIXc+Q5TO6vy59oNz1VViL6QYfT3\/sGALCCzI1hcz1FU0uM3rT3srfW4ulpQEmlEnwsltvYhsgV9ZFwi0lX9PLajrQEEjFN0Pa1kw3EcIf3c+oXVOXb5Gg134YPROQ4XLJqyqjASXyaiZPGLDnq9DQyEZyrWRy7EFirb38RDhqQTyiQIZRIcqdMnCz3lWiGZjsSWySoKkWySmWSILk89Ta7iwvKV+BJdrkCFCGWao4F23UmroE8oGiRV4dzqrOExKTnLcHw5P6qiIQk8OUn4if\/FOTlGbGeAHa86yfE3vgaXV79gaSbVZrOt4HSNVu7JMykEMDvzSlXtmOnFO\/e0\/ndeQ7URTyyW20huhKptO0EUxdwonK28iWqnkELuD3Tp0iUWFhY4fvx4vpEMbhqEFiK8LOPz1xbyiKKMLFMxx2twhVpPxMjAUFVtzH11goWvntU\/ps5N1iUa13NaG8AmED97ozYmirh627D5vUgrUTJTS7i6W5GiCWwLUd3ruPs6yUwvoST0H1LvoR6Sw9OoWf0ospJvm97ANZsg5i1z0orMQHgGhygyuDpLj7eeRmfxAr6aTTGTinDMQEW3IqdYTSeLxlyXQqsL7TWoC00rCXw2h6Fy7fyNuUB5EYKrAUVVGUussJyJU2dz5ayDDCIzqKxu06axGhFKWpUZji4aDs\/TGlnLfTaiINBr9zM\/FiH7lR9y+W+eZMKRQTy0kwO\/+Cr2nLq96LmvlGqz2ZZwusbNbQDNtj6oZp9Lc0Q2PVSZnMwQT+HnEI\/nMgIvtYinpaWF2dnZ7RPxmEm1xWIxBgYGsNvtnDlzZo07aqmcGmBxKk1nb+2ebaLgpiYXAWBd4gSdc+W0g9EPPUP8ef1dltzqR4incS7r37d7304yU4vFZKEopMfm8z96j+2BrIzodZFIpBDKOB94j+4icXEMFJ3dqCDgPWw8BjurwIIoVJAwp5lMhI1HWKfjpB3F11FUldF4iIzbhpjM4hLt2ATBMJ01ElumxRegt0I6q8tbn7fVKYfB1RkOBtpwOvQ3EWdvpPpKyVYUBHq9DXR76nlhdZqD\/lam1ATLq2E63AF2uG82\/UmqwvlV4ybVhJxhNL5iSCjhTJKYaFwzm0tFkFTVUIQxlljBb3fmm2wPKk64EEa98AhPZP+GpSYnjS87ym2\/9FqDVJuK3TGLzVaNBc76ewGLYY7Inv+Rfq+chpHhMToP+WloaCgroCrnWuByuTZkPMR2wqtf\/Woeeuih7UM8lSKe2dlZLly4QHd3N319fWW\/rKUNpABTw3GOvWxrXKqNvNMqn7v2S5+et3PtPd9FWtHvzM7srMcxG0GQK\/itGfXniALeQz0kBkYKbkgg21xHXWsjaiRJZj6EZ29n5Tk8O5oMSSeahbgEnR79NMpMMoKCyiEDN+fReIg6u4sOsTi6EQUh705wRV3AIYospuPMp2N0e+ppdhUXb\/P2NwZ1oedXprktWCGdVUkKrSoMpUPcUaGn6Ep0MU+2Ppz01ud2wNPJCHPpKA5EHE6HoRhhORNnNZs2dMOeTUVQVNjp1O9in5UTOEUb7U79gvdQdJEOT0CXkNsdPhYmZ2n5ziXm\/vEiMSnCP+15gl2v6+foG16B3WEHVBzOSRyORWTZ3I7frGAAMD0m3szzK2XtrMxXdkqQMjKjo6NcvHgRv99fNIlVFMWyqTafz7elrhK3Ah\/84Ae5fv369km16UU8iqJw5coVZmZm8nMp9JAok2obOR8G9HdnJu5yHaeuYwdWcK6qQuSnScb+22P6x9tE0u1+4\/4ctwN3T7tx8b\/Og7OtYQ1ZCKqKYylGeimGvdGPu7cdRAHPgS5SEwuoJWk2R3sDqBiOTVhIg1uEdoN9wbXUCi12j2HXvhmvtCuZFfb4mnCItqJoYVaKMx1dwW93sZrNDYjTIwtZVbgQX+SEQc0no8g5h4AK0cf1eMgwsljNJpk38GXr9ARwCCJJJUu728\/VxDKRdJJWl4\/ugkhtUUkhK4qhqm8ktkyj00uDU\/8PcTm6QG9dEx6DvPPg6iwH\/C2GvUlnw9McC+7IRXgCHHA2wKQE\/+vHvPD\/PspsEF72iXvZeUR7D+bqs2YFA2C+10cwISyIhk1dimBdI6dOnSSdTudHPpw\/fx5FUWhoaMhbB2n\/qxHPSw2BQICHH354XUWIDUW5iCeRSPDMM88QDofp7+83JB0oTzwXnyk\/I8M81jPTI6MbVJg5F0BVbMz8z3FD0lH9brINngr1nHrsjQGSQ5O6xzg7mxHdTlIj+mTh6m1HvTHYLXlxnOSVSdR0FteudrxHd+HsbM4ZhEYSOeNQvXfXGaTRCQGDtq2z4Wl6nQFD0nluZYojgXZd0pFVhefCUxxwNpRVcO2w+7gtuIOEnOVwoI2L0XmeD08znyquaSXkDJeiC9xepx81xJQsoxWk0EvpOPOpmCHpLMlJYlKGfRXSWYIg0ONtyKnMvE2cbNhJt7eBxXScF8LTPBOaQBQE2g1GMFyMzLPDEzAknYHVGfb4mvCUsQXKHxOd40igzbghNjzFHfWdujW8YJ2Xe\/7g7gLSgei0cWOmhpxgwMxxNlO9PoriMJXiW5wyR2LpG6o2l8vFjh07OHz4MC972cs4ceIEwWCQWCzG0tISTz31FL\/5m7\/JD37wA4LBYFURzxe\/+EVuu+22vJv33XffzT\/90z\/l\/11VVT7ykY\/Q0dGBx+Phla98pSlz5m9+85scOnQIl8vFoUOHeOSRR0zfkx62PNVWOIW0MOJZWFjg3LlzdHR05EfAVkKiTKpt4soq2ayKw1Gr\/1ntDgSCoCJJInZ7DSMOBAUp5mL0D35C4qJ+57\/U6keMpXEsGdRz+jrJzCyjxPWP8RzsInV9DjWtv2sU97aTGVtELe3hkZW8O4H36C4yM8u4d7WjSArpiXnUgr4gFUh3BnFPr+oGk1oR3NAsVJaYkGMVmixvNJcaypyTLCvpPFkUFsznpQST0RAOQcRndxoKDWZSEZwuY4ucscQKXpvDcHTCtdgSza46mj3603cvRxbo8gZ1+45aXD5mUxGOB9uwY8tLtuudHnZ5G\/IL\/0BkjiN1LYYpw0qTX6GyqEG+Yf5q9HdQ\/Da6Pn4nzYeLN5d1DSbT5CYFA6riQLCZma9jTvk2fkVfdFOIcuICQRDw+\/34\/X5SqRSCIOTTa9\/4xjeYnJzk1KlT3Hfffdx3332cPn3asMHeaPro4cOH+dSnPsWf\/dmf8dBDD7Fv3z7+6I\/+iHvvvZehoSFd9dzTTz\/N2972Nj72sY\/xpje9iUceeYS3vvWtPPHEE5w6dcrUey8HQTXTynoLkclkUFWVq1evks1mOXjwIFevXmVqaorDhw+zY4e+8qgQsqzwxo6PlP23v73yWppaa\/Nty8maa0+Zra7KBIPVy+JS0yLjH\/sposeNHI6RnlxcE3yZqee4DnWTvjJpUPyv3PCJTUTpakQcW9I\/xmHD09e51kLHbsPV3YrqshOfX8bucyNMhnQvoynOjIr\/y+kEK9kke+v0DQ7nU1FSimTY76LZ33S49esaWu3IZ3cyGg+RUiR2BZtpFG4u+mY81y5F5+nxNBhKoc+tzrK\/rkV3vhDAsLTKLrGuYn1JTx24mk0xllghnE1wW0MnDbby0aReQ2whJEXmfGTO0AQ1o8hciS4YukZITXb6Pt1PoKe++PerGexBc35xsuzDZtPvDav6OKkOm12\/N07D5\/\/Ldb7zZf3Bihp+4T+e4tf+UH+Q26VLl\/B4POzalWuY\/upXv8rf\/M3f8J\/+03\/i0Ucf5bHHHuOpp55iz549FV+rEI2NjXz605\/m3\/\/7f09HRwfvf\/\/7+f3f\/30A0uk0bW1tfPKTn+Q3fuM3yp7\/tre9jUgkUhQ5vf71r6ehoYGvfe1rVd1LIbY84tFgs9mIx+P87Gc\/Q5Zl7r777qpynOWk1BoW51I1E896Xap9XpOeUDegqhB+PMrEx4qbYW0BL86dzaCqJKcWSQdcxvUcl4N0kxcMvNRMNXz6vThagqSv6yt3bA112P3e8r5tkkz6+iyS34nT7UaMZYh3BAnW1ZEYmcVWQJorWUjKmYoNlD6705B0ppUEXtFuOOXzcnSBnZ6goSptVI7R5vbjvZHGKyzO54r7EZJSbvyCkY3OYHSOwz7jyOK58BQn1hlZKKrKC6vGnnU+mwNZVXhFc24BG0+ssJiOU2d3stvXhFO0kVUVLkXmDUknKWe5Hg8Zkk5USjOTihqSTqbTyZE\/vQdP69pnPbucMk08q9cnaOwz4bRsstfHLM7+oHIPD9xMtemh3BC4xsZG3vWud\/Gud72rajPV0umjo6OjzM3Ncd999+WPcblcvOIVr+Cpp57SJZ6nn36aD3zgA0W\/e93rXseDDz5o+l7KYcuJR0u1pVIpFhYW6Ozs5ODBg6bH92ooV9\/RMDee5MBt62nEqnEwGyAa7F5LkU4pzH5hmNXvrt1ByZEEyUsTqH43ksuGT3TgPLqL7HKE7Mxy0bH2liCi0446vbzmOhryxX+Dhk9nZzNKOmNIOq6eVqTVRM4PTgeZljpcSQl1MYIMuFcgzSqiKDKdgJQsACodXmhw6Ecf51bn2FvXlCeCchhYneFQoA2nwciD58PT3FahyfLsyhTHDVRpnZ4As6kI\/U29ZBWZS5F5UopMq8vHzhtpMjNu2LKqMFAhDWXGuy2tSAxFFw3Tk+Uk1T3ehnxUmJAyXFidI21T6XHp\/x1Ws0kW0wlDldxyOkFUTrPfoE4lH6rj2MfP4AiUJ385bt7v0Ndk0sXZ7AbSRJZDlm3MjVeOiqD6BtJSuxyzpKM3ffSpp54CoK2t+G\/W1tbG+Pi47vXm5ubKnqO5WteKLSceVVUZHh5menoar9fLkSNHarpOOSm1hsmrMcBYmGCE2gezmXepluIOht\/7feRxfYGA1BZAjKZwLKWQiCNN5lJf9kY\/jh1NqJKMqqhkZ5eRFvWv49m3k3RpD0\/pMQe6SY3OGtZ8PIe6SQ3PGDaFZrsacM6sopZJBwqKQqcXRqLQW5eTVs8oSRLJVfb4GvHabu52zycXORJo0yWCahZ5o8U5X18yuE5GkbmaXM6\/lstmL5J6z6WiTCbDJOQsd1ZQt80pKcP7MeMurSngjCKLUCZBOJsyJIuEnKXJ5c0T0Wwqwkwqiku0sfvG32NFTROXMsYRZ3IVmyAa9kGljvk4+fGXY3PrL0HJbBYzYmo5kcXVaK4WpCppo97sPMwo3+IR84tCLc4FtTSP6k0f1VAqVjAziK+Wcyphy4lnYGCASCTC3r17mZ+fr3yCDso1j2q4fl7fRdkcbq2kOjkmcO0\/fwslqX9spqsex\/QqQplajRSKIoWieI\/uInl1CldXC6KnnejELLbV4s+lYg+PdoxRzUcQ8B7pNTYCFUDpbsIxrh91IQpcj8CeG5ZG9U6oxwMODxlF5nJ0gZiUJqPInGnq1b2MmZEHcSnDaCJkuMhHpTSTyXCFrv2c59oRg3SgS7RR7\/BwZ0NXvsZh87lxpRS6vfVALiJYlVKGMmczZqBaQ6eRAm5JSZFVJMPXmkyEcdnsRTWxHQWNqhlF5qfLE\/jrA3gNvjtmpNnpe4Lc9aF7EOzGu3i321x6PLuYwtZT+Vglq2ATVSo9z2aVb4vT5iOyar3a4vF4TXJqvemjWl1nbm6uqG6+sLCwJqIpRHt7+5roptI5ZrDlxLNnzx7cbjcrKyvMzJiTTpZDIqK\/ex96Tl\/We+th5LcmEPrnFaY+\/WP90+0i6VY\/rsmw\/jFOO549HXki0HpnbIDY7Mfd3oScziI67MYNnx4n7q7Wyk2hHcZ1IcVlR2wOYDMgHaHOg6M5wO6x8psNp2ij1eXDIYjsrWtmRc1wfXURl2BjT11TXj4dUTMspWKGu31tFLaRhDmkpIllkhzy6z9QZqaFLqkpsoqc7+x3ijYOaMThhYV0jKuxJRyCaBh9jCVWqLO76DGYpDoaDxFwuGl36qeZrsWXaXX7aTYQUJiZcDoaD3Eo2Ibf5gJvThY+eUOc0eutJ+jwcD2zyg63H6+BgCL7hibu+n\/O6P57IZxBEyNCATlqjgCyC0lcnZUXc1VxIpSZ9VOKXCbFHCpFPKVjERKJBB0d+lGuWWjTR3ft2kV7ezuPPfYYx48fB3LCrscff5xPfvKTuufffffdPPbYY0V1nkcffZT+\/v513deWE08wGMyzfS1jETQY1XhCMylkWcRmq00gsD6XaqXsDkqR7Uz92UVWvqeviFEDbmSHDdeMftrM3hxAdDtJXi4vIlCWomQEEdFhJxWK4t63E0UUSE4tYIvd\/MwcrfVgE0lendJ\/M40+7A6nYV0oG3TjtDtQp\/WVa9mgB7fdQUaHdCBn6++1OfM+aA2CMx+tpBWJS9F5wukkHfXNFZsj650ew1HY12JLtHkD+WikHMwo14aii+z01dPs1l\/AlzMJbg\/uwG935QbfRReJq1ka7e784LtKcmnI9d\/s8jYYLvIXInO5\/huDmtjV9Ao9nnpDJV25xtBmly\/v+iCrCj9ZGqW1oZGZZIRdvsayijrxXd0c7O\/RfZ1CqIqKo8Vk+sxA1VkIaTVtiniWhqdoPVBZqDB0Vv87XopKxCNJ0rojHqPpo4Ig8P73v59PfOIT9PX10dfXxyc+8Qm8Xi9vf\/vb89conT76vve9j5e\/\/OV88pOf5I1vfCPf+ta3+P73v88TTzxR1b2VYsuJR0MtYxEKkTBIteX+XcBfX+vVax\/qBtwYoX1zByVFHQz\/9g\/ITOhHYnJbACGSwm5Qu3Lv2UF2IUxmST+VKHa3oIRi+ZpP6gax2ABHRxOOpgCqAOnROZSowS5vZxMsRcim9KWo2fYAztUU6qp+b4Nn306U0VnkrP5rXU2G2eny64oIXKIdSVE53tCJx+ZgNhVlJhXBLdrZ42vEfeO8c6uz7Ktrzv9cDoOrsxyoM+62NzMtdCB8Q9RgIFg4H5vngK8538jqEG1F0dNyJs751XmCDjeKQTrrmhJlf12zoTgiPz\/IwFTUTI+OnpdcIQZWZzjT1Ju7Tt1NybaiqnR5gjR76vC+t4++XzxAxqDfrBDZpRTOVnPEI+jMSCqFmjFHUN60uQ6TF35c2aNNQyVVW2nEU8sQOKPpowC\/93u\/RzKZ5Ld+67dYWVnh1KlTPProo0U9PKXTR\/v7+\/n617\/Ohz70IT784Q+zZ88eHn744XX18MA2IJ7CKaTriXiMxAUAy\/NZ\/PW1GTWsV1KtYstnleNXVa799t9DVv+9pnfW45wpX8\/R4D3aS+LiBCj69yT1NGGfXNLt4cnOLONoCpC8MI7oceI52A0CpKeWUCI3JeBm6kLZ7kYcUyuohvecMxQVDY4ZiQr01Rl3bJf6oO1w+9lxQzqdliUuRuZZSsfo87cako4pCfMGyJy16xgp1wBG4yu8smU3kPNym1YSzK6GaHR66PU2IgqCudfaxGPOhqfWGLcGHe681Y\/qFAn+18P0vmIXclrC2awfDRZCCqdNE48tYE5yjd1crVYwEDxokCWBsYvmU\/hJg4hHVdUNERcYTR+F3Fr7kY98hI985CO6x5ROHwW4\/\/77uf\/++6u6l0rYcuLRYLPZUBSlar26htiqcU52dixB7\/71WIzXLqkGAVUVWfrWAjOff0r3KNUmkGk19lvDab9hzjmmf4zDhqdvJ8lL+jJJ7RitVqPEUzfTdYKAq7sVW70PwWkn\/tyw7mVUUUDtajQWEdhtePbtNKwLZRWYSgg3hAY6I6FVhQsVXJgFQSCryLyiJdenMpOKMJuK4BYd7PE14bbZb17HgAjynmsV5tZUcoXOS6GrvI5dEOkUvHQ25Oo3S+k4l6ML+B0uwtlk2ZSfpMhcy65WHI1wPmJ8z+aPmTd0C1d9Nnb89xO0HcuRkLSYwrbT3DNoJLQphdNkSs5WZ7KXr8F4WVQVla9+5NuA+d5Ao1Sbqqp59xYNiUTiJTcSoRDbhng0++\/SuRRmEI\/HGb2m3ygJMH45wt2vq\/0PmUkruMxt1tZASclM\/Y8LrP7omu4xasCDZBNwzeqnzexNAUSvy5BQ7I1+RJ\/b8JibDZ86x6gqUjSRi37GF7AFfShNPmRJxrYcQ43nakOyx4G93odqQDq2oBd7vd\/wfmJZiEqwq04\/EgpnksTsiqGsOJxJspCJc6zgmA53IO9MkJKzPB+exuH30u7W\/y5oyjWj14pkU6wIWcNjolKa6QpS6JiUZkFJVTgmw0Imxj03xoDLqsJEJsJCPEK9w80uXyMpWWI8sWLo4K318Rg1fZppDE2rMsOxRcN7lhts7PqTu2nYe7P+JkWzmJMLmEdmMWmaeOwtlR9gKZnF16r\/3VBlhU+\/9yH+4C+\/xhtaf5ds2lyWJpOSkGUFm23t2qZlejZC1fZiwZYTT2GqDXJ\/BCM\/olLMz89z\/vx5kI3F+VdfCAG1q0Ri8QQuEyF4KbJhB9f+83eQVjN4DnSDCOnJJZTozVSW3B5AWE3iiOjngV27dyAtrZKZ1CcmV297boDbjXHW5eDsaUNejRk2fGrD37RJpfJqHFbjiIBqExE6G0nYVeoEJ7KBQMC5sxklmSY9rn+M3OBHmo+yw2Dt0Aau7RT1m4CnEmFsomgsK84kaHP56bQFwJbrN5lLR\/GIDvbUNeES7cykIigVlGuzqQiyqtJj4Kc2n4qSVuSbirYy0OTSuw36XUJSkkgmVaS2swki3c4A3TdGGEzEV5hNR3GJdqJqFn+ZkQ4ROc1iKmaopAtnkixljBtDV7NJwqqxQjDbZufgn96Dr6P476WaXKQBJJMMlQmlTBFPcimBp7lyk6m0mMLeXX79UTIyH\/mPf8kn\/iZnkumpF8nOm39PmWQWT93aN6YRj7bhVlWVeDz+kps+WogtJx4NgiCsMQo1gqIoDA8PMzk5yZEjR3gS407ai0+vz6U6GAxQjfUNQOyCxMjv\/APIuZ188sqNqEwUcPW0onidRJMJ3BMr+l5q3PBSuzwORjN2jvSSuDIJpQaeBfAc7iU1NLnW5LPwmEM9pK5No2Z0\/g6yQhoZ72wcOSNhb\/Lj3NGEmpFIjc\/nG07dB7pIj82jpvRTDO59naTGFqg3SNFfjMzT4603VHgNxZbocPsN7W+uRBfY4S52uu70BOm8QR5JOcsLyQUyyRQ9Buq2a\/FlmhzGfSqjyRUCNpehZc9YYgWfzWnoJTeRCON3ewwbMaeSqzhtdk41dgM3B98tZxIE7G52+xpYyMQREPJTWsth7gaZGjWGLqRipBXJ8POR9no5+icvw9VQJrqwme+H85h0IkgmUqaaTNWVDJggHj1ptpyS+N13fpbP\/d\/v5X8XbPUQmTcvPErGM7rEY7PZiuqaVsSziTArMEilUgwODpLNZvOebkZyaoDVpTSybMdmq005V42Dj6qKLDw8y9z\/\/Gn5AxSV9MwymWYf7tkItoY6nB1NJKNxmF25KTxw2PDu20nigkEzp13Ee6DbcNhafrCb0TEmzEJVQO5pwjm+nPcrlZajSMs5FZvgsOPu68TW6CczNmdIOs6DXaSGpgwJ92x4ituDxuOez4anub2C\/c0L4WmOBNrLjkXQcDW2yCF\/Ky5P7pGYSq4yfyMa2lvXjFO0mVLJXVidY3cFWx8zcukr0QU6PUH8ov4x5fpvtMF3mgP2pcg8aSX3nXfb7TTY1xLmvJrEUWHA20QijNtmp8uAdFKHPdzxJ6\/A7i3\/3kWvueVGzsi4WswRj5FUvBBma0aqtHZzJ8Wz\/Ke3fpovf6\/YPxFX5Xk9hUglyj8P5coLVo3nFsPMMLhChEIhBgcHaWpq4o477sjXhioRT+6Y9Uiqzc3dUDIOxj76HNFn9GsaatCDbBNw3qjnyCsxkiu5ZjTVLuLp60TwuiArk7hoUKsJ+rA3+I0JxevEvaPZ8BgzZqGKXURu8RuKCFQBBLuN+E+vAOBoq8fR2oCSSJManwNJAbtIpi0Al\/XnAskqzAl2w8K1GfsbRVUZllcN6xVQflroTk8w77mWkLOcTy2BIrOaTekSz9nwNLdXkDBfyazQV9dkSJQD4VkOBVoNpdlXksv0eoKGJHgxMs8uX2MRCRaagu7xNTESX6anrhGP08AR20SDafp0gDs\/cg+iwZhvscGc+iw9H8fbpd\/wWoiUUzUV8ZgdqyWU3H82kuFXf+lj\/O\/Hn1lzbEJeBcwXfp\/6yU85EO\/OTx913+j3KlW0ZbNZ0um0RTybBaOIR1VVxsbGuHbtGvv376erq6uItMrN4inFyrxcM\/GYkVRnlu0Mv+efkRb1O5ql9gC2cBJ7qnyILkgKqiSTHZtHXo3j2NGIozmIHE+RHpvLRwiu7lbkaDL3Oz00+0FSDAe7OVrrQRQMm0KlOic2lxPHrH4ja16wUNDImp0Pk50PAyC6nbgPdCJ4nMiX9AkuIUEoAzu9+hsQM\/Y3KVniamzR2BnZxLRQSVW4El3IvdaNNWYyEWYhE8Nrc9JX14yIUNEnDsxLmI1GZkPJFE8dvBCe4WigbQ3BFZqCnl2ZwiHaGMtEaFQdZVODQ4kluj1Bw8gi+7om7vx\/+hFE\/XvOJrK4zfqpRc1nJQIt5uogosfcUmcvyPtmQinu\/9d\/yL8MXip77HJ8Fthl6roAPV278PnczMzMMDQ0hNfrpbGxEbvdXhTxxGK59eOlXOPZNhNIAd0aTzabZWBggPHxce688066u7vX9HnETUQ8s2PV1WjWovyOTVUh8nyay297xJB00jvrsS9EEXRIB0DpbSE9uZgr6APZ2RCJ86Okr88iunO9Nr479yHFkkgr+o2a7gNdEElCWL\/h093XiRxPkZ0zmBTaUocDEWFZ\/325unMFdCPBgq3RT2YuRPzZIWzxDEJrAM+RXhzdrXkb1VAakjLsNMiyLGYSLGXihsXt5UycqeSqIenEVanitNC4lGEourjGu63LW88d9Ts56G8liczToXFEQWAhVf4zyioyL4SNxxXIqsLZG+RlZIT63IrxFE+Aq0qE4\/UdFdy3pzlW38FtwR0cdDXS5vYzlVzlufAUlyMLpBWJF8LT7PE0Gqez3tbJyd87Y0g6ANJSZQsaDWrWXL+cnJRwNpmLOOyNlY9TZSXfO5RaSPCG1\/w+3\/3ZC7ozwaaXxky9dv4eBCe7du3i5MmTvOxlL2PXrl1IksTU1BSJRIKBgQG++tWv8uyzzwJUVeP54z\/+Y+688078fj+tra380i\/9EkNDxa4ogiCU\/e\/Tn\/607nUfeuihsuekUrW2luSwrYjHbreviXii0ShPP\/00sizT399PfX192XPNpNpGL67PLFRV1+6aVEVk7itTjP7uP+s3WDpspHcEcv05ejUNuw1xbzvi2KKuQEBJZhBsIvFnryKHY7h6WlF3t5JtKF6pvUd35eonegIB7ZiRWcOppNmuBpyhBGrMaHJpN5m5FeQVfWJy79uJvBJFWroZMakLEZIXxshOLCC4nCx4\/KwqIi6Db+RIbBkRKhTkV5AU4yL5TCpCVEobKtcW03EWM\/GKKrBQNsmZpl5O1HfS6q5jIhHmuZUpriVDZBWZmJTmWnzZkOBScpZLWlSlg6wicy4ya4q89onGaarnVqa4o2Etee30BDlZv5ODgVYGw7M4RTujaoyZVJnnRgTlrTu4\/YE7DF9Lg1JFFEMFEtOQXTRHZlIya6pxNbOQRLCLJKajvPqVv8Pj53KRTmNj+e\/b9ekrpl5fQ2GNx+Fw0NraysGDB9m9ezeBQICmpia+\/e1v8+\/+3b\/D7XbzwAMP8PDDD7O8bNAjdwOPP\/4473nPe3jmmWd47LHHkCSJ++67j3j85sZzdna26L+\/\/uu\/RhAE3vKWtxheOxAIrDnXbWALZQZbnmorjFxKU23T09NcunSJXbt2sWfPHt1u9lQ8g2LCr+nycwusZzxCKU9HV7LM\/dEgiQH9VJYa9CCLxv05toY67AEv6Wv6aTOxzoOzreFmrUZRSY8vIJBrY7M3+nHubEF0OYgNjuiToIlmTlPO0phwseamW4GRiMC9u43Wq9PgUVAFgaTHw0pCxkmaRlVFFAQGV2fZX6Gwfz2zSqvTa1i0N+O5Np5cwSs6DdVk0zcMMntKzDe7vfV5z7fpVISZ5Cp2QWQpHc97mxUiJ2GOG47VTioSY\/EQx4JG5CVxNbZUceTDxfhixWFyz69Oc1dj181fuosbcffWN9P6+7fR1KwvJy9FuaK9Hmw+c4IBs+ag0kIKuwn3aimcIZPOcs9rfocLYzdrkHqLbDqTpL7bS3jRXCZFr4lUURScTiddXV38n\/\/zf3jqqad4xzveQXNzM5\/4xCd4+9vfzne+8x1e\/\/rX6177e9\/7XtHPX\/7yl2ltbeXs2bO8\/OUvB3JO04X41re+xate9Sp2795teN+CIKw5d73YcuKBm8PgtFSbLMtcuXKFubk5jh07RkuL\/s4UjEciFOLck3Oo6pGaZ+sUVijT8zauP\/BPue5HHUg7gthWErr1HABnb1tutPW4fprK0XlDrmxQq8Em5vp8ZpYRHHZcfR2kFQVlaRXhhquDrd6HPegzbOZUXDbE5qCxs7TLgXtXuzHp2EU8+7tMqeQKhQaCquJJJNBoIeu2MyzHsNtzkzH19llnw1McC3ZiM\/jjDoRnORgw9mW7GJlnT10TboNjzBTbxxIh6t0+7nTfXMC1wn5boIEdgpuFTBxVJW+EWg7L6TiSQzQcjbCaTTGfjnFb0IC8bjSG3m7Uf6PIXIyWd1nQGnFVj0jrHx6j466dLJybw3QVogoptcNEoyeYJzM5ak4YtDC1zBv+\/Ue4NlPcd2bgFIWvyUFYv22uCKmEjlS7RFwgSRJ1dXV86lOf4tOf\/jSzs7NV13tWV3PZhcbG8ga68\/PzfOc73+ErX\/lKxWvFYjF6enqQZZljx47xsY99LO9wXSu2BfFosNvtpFIpfvrTnyIIAv39\/Xg8lQuSRiMRCpGMZpElO3ZHbZJqQZBRVVh9OsH4h79veGy6qx7X1Krx3JvDvSQr9dUc6CJVqR9mTweZ+ZW8EaialUgN50hKABw7GnF2NqEkM7ou1mDOWdreFED0OEle0VeliX4vjuYASQNFnuB2YO9oQrhuII6wifh3dbD\/yiT4PKiiQMilsppOYItl6PbW31C3zRgq4MBs0b6yfLucU3MpLkXm6fE24BOLa4KFhf2LN2TOAgJu0UZTmWhoMhHGKdppE\/WfAa23xqhx1kxjaEqVuR5fMoyqlICN7k\/cRdPB3EYwEDA59ROw+cwtNVI0g91v1nvNXKUglk5TqVqyeH6eX3rPp9aQDkAyqR\/R2HzmG0iN5NTlXAu0DI9ejUkPqqryO7\/zO7zsZS\/THaz5la98Bb\/fz5vf\/GbDax04cICHHnqIo0ePEolE+OxnP8uZM2cYHBykr6+vqvsqxLYinnQ6zeLiYn78tVnrnEoGoYUIL0s01xg1qorE7JdnWPrac\/oHOW2km3zG83PsIt793bkUlB5M9NWAObNQe4OfxLlR1IyE6HPnxACCQHpyMe+gYMZZWmrxY8vIZKaWdI\/JTUKVSI\/qE4qt0Y\/gsiMZkI7stiMEfaQKCE5QVBqT0IgXvF4SXhuTqRheu5OknC1bBM8oMiMZY\/8yM9NLAa7KEY4G2g3J64XwNEcr9BWNZCPs9t0s2iuqylhihZgg45Rgd10j12Mh2t11BAyiqvHECn6nh1a7vuzWTGPoSiZBDNlwFpHUbGffp8\/g776ZXnM0m1OpVXNsdillmnhUv7nmOq\/b2AZh9uw0J+79bVo6y6cpl5b0o\/+ssP6ZPBs1BE7Df\/7P\/5lz584Zji7467\/+a97xjndUrNWcPn2a06dP538+c+YMJ06c4POf\/zyf+9znar7HbUM8w8PDLCwsEAwGOXz4cFXnJmLmG7kmroVpbq+v8u5ATjq4\/ns\/IXFpPi9xXp1bxLEUy2fg1HovsoBxPSfow95QZ0g6gseJq8JANuw2PPt3GpuFAkpvc1FqrcgMVBSQWwPIQTfehIyU1L9vR18H6vU5ZINamruvk8zUIkrSoHG0p5VsKIoa0ic4R3sDtqyMPG8s3w56XXinZairQ7GJLDokliKr1Cs2drgDec+1gwYigtz00uWKkupzq7OGk0nBvJvzsWDxmIHcMLWb9aTnVqawiyIjiRDdniBNZRo78w2mBvWssUQIv91l2BiaIybo8ugLEpReD4c\/eQZ3Qed\/NZFJejWFK2gufSYbpK5L4W0xtzg7Avqf0fgTY9zxr95HOJ5g94EDZY+ZnZ1FFEWUMpu71fQSoB9tFsIo1eZy3bzHWsdeA7z3ve\/l29\/+Nj\/+8Y\/ZubP8d\/EnP\/kJQ0NDPPzww1VfXxRF7rzzToaH9Y2DzWDLiUdVVZ5\/\/nmi0Si9vb0kEtVLns308GiILlX\/llNTIsO\/9Q8oN3Ys2dkQ2dkQDnITOZ07W4hmktiX44bzc1w9rUiRBGkDfzMp6MHjcefn5pRDvlZjlMryuhBaAjCmn4BWAcHjwDm8gMQNgUJHrp6UHJvLqeIKIi+jLL33SC+JS+PGIoIDXbnpqAapRdeeHWRnQygJ\/c1EttGLmpEQpm\/uNkVZoUUWaXHmFvBwwM58JIuazkU95ZoxQ5kEq3LasDYSlzKMJVYMSSeryFyKLVSMql5Yna6YEryczkm8NWLSLHAybhtCMsNuXxMXI\/MV030Tcoxmp89QaDGWWMFvdxoSU3q\/m+OfegWOumKSqSYyUUIZMEk8sUzaVENodjmFw4SUWlVUnG3lo63h7w9zxy9+gEQ6913TmtFLIcsyHR07mJlZO39nfmUSv2niMRfxJBKJqiMeVVV573vfyyOPPMKPfvQjdu3S7y\/60pe+xB133MHtt99e1WtorzMwMMDRo0erPrcQWy6nFgSBnp4e+vv78fl8NQ2Di5us8QCMXTIvqVZVgZUfRhn61b\/Pk86aY+JpIokYzrEQYjyDe\/cOvEd7c42ZBfAc7iUzEzKUHdt3tyMms4Z9Na6eG2kyIzFCawP2gBdlXJ90ZI8DoS2IWCAikEJREhfGSF6dQiAnla67cz+ZWQN1m03Ee\/iGHY8B6XiO9ObSZhW85NJj84ak497XiTOeRTCQeDt72mhUHezHz4G6FmwuB4teuJhYYimdk5dOJsJkFJldHn3l2lI6zkLa2FhTk0vfHjBuVD23OmtIOoqq8lx4ioOuxjXR0C5fI\/ttQfbVtfDcyhQqKpciC4Qy5Tdpg6uztAueipY8TU5v2WhKQ\/pEHXd85tVrSAdAiZt\/TrMxc8V9AL\/HHEFlQyYHyi0mEZ1rNx0X\/uEit\/2r9+ZJB3L9gnpobi5PLuNz5nf+Rqq29aba3vOe9\/A3f\/M3\/N3f\/R1+v5+5uTnm5uZIJosl55FIhG984xv8h\/\/wH8pe513vehcf\/OAH8z9\/9KMf5Z\/\/+Z+5fv06AwMD\/Pqv\/zoDAwP85m\/+ZlX3V4otj3gg90fVPvxahsGZVbUBXPrpAmZcqlXZztTnrxD6h\/JdywCKQyTbVHezniOrpK7f3BU52hqwt9UjupzEnx82Nvm8MWxNNBIjHOohOTyNmtV\/6N17O8jMhoz7cxq8OFUBdTase4wt4EVejefTcra2epJOAb\/dlXObVlTEOg+O1npDWx+cdly72klW8InzHO41PoYceSUrRFWZjiDq9CJCgeLJllVoyUKLN7d4LNTbSCgiYjJNi1pXVgk3JyUQUfOeZ+WguUsbKc4SqsREPFQ0qmHNPSsyl3XUZBo0mfPpG2ag2u8m0hEWEhHqnR52eRsYCM9UnBh6LbvKLl+jYcSUeWUDd37wDIJOAV+pQh6dMVjQSyH5zO2FzXqvSStpnG3FIohzf3+RO3\/5d5BLUmeLi\/q1Sz0imFue4o52R8UJowBpnVRbubHX1abavvjFLwLwyle+suj3X\/7yl3n3u9+d\/\/nrX\/86qqryK7\/yK2WvUzqBNBwO88ADDzA3N0cwGOT48eP8+Mc\/5q677qrq\/kqxLYincDRCLRFP0kTzqIZLP1tAVQUEQX\/xkuIORn7ncVLX9L+Iar0XRVVxzelHUHIyjRhNkjw3iuh14erJ7ZzTk4sosdxOJCdN3mFczxGEXCprA4QGmY4grqW4vvs04NrdjrQYKRqpLc+HcQJpQPS58RzoQlVUEkP6KjlbvQ+hzkN6SD9tKLiduLpajElHFPAc7DZFTFwcM\/Tlch\/sonV4mlYxAD6QnTbGszFisSg7nX6CDg+XIvPs8jfh0Um9QK5+4rO5DJtZF1IxcNoMRyNoM3tuN1CTZRWZq8nQGmISBYFuV4BuV64+80xoArfNzvnIHL2eBurLOGifDU9zPNhhKJBQ3tjGnb9tPNo4LcimpdQel3FxvxD+dpNXNem9ppSMYvjxl5\/hv\/7Vt9eQDsDion6GwEjoVN\/mYX6sMvHopdpKI55aajyqkea7AA888AAPPPCA7r+XTiD9zGc+w2c+85mq7sUMtgXxaCjnXGAG1ajasmkZKWPH4Sr\/RUmOwrX3fstwR5XdEcQeimNP6x\/j7GpBiafy6i4lkS4q6rt627A1+HP1FAOhgVjnxtneWFlosM9YaFDOWbocPDck3kYpMWdHE8lLEyjJNKoAjq4WHPU+pOUo2ZlcWs6xsxk5lkQ2UMDZGv2IbqehT5zgdeHc0WhYz8Im4tm\/syIxZbob1piT2jIyPXhycm0BpgMCouRiKZuk01FXdoHOy6Xt+jUObexBi4EUejEdJyFnDIkpJmWYTIY5bHBMboLpbFE0JKsKM0qSmdVlGhween0NFW17EMD27h5u\/3eVc\/+egPnOddFvriE0u5Q0rX4z671W2LT3T3\/+Q37hfZ\/gzJn+sofGYjGCwWC+B6YQ5X6nwRU016OUjJvr40kkEjQ16asQXwrYVsRTa6rNjF1OIaJhaCxJ26uqQOh7K0z96Y8Nz03vrMc1HTbccXkP9ZA0mmmjqAg2kfS1aeRoEntLEKGxjnh4FcdiDM2H1LGjCWQ5V5DXgammULuI0NGA3ciJwHRUVexEIKggTS4i3Rg+Z2v04967g+TSKlI0oVtEdHa3IK8m8kRVDvbmAILdRnpkbVE3f9s+N862epKXDCbQ2kTcfZ1g0HsEub6qzgtjYK8HIOOyMScliEUidLsC1NldDKzOcMS\/1nyzEJejC3R5jMceTCTCeO3G83iW0wmictowlZeUsywI6TUO3DZBpEPw0NGwE1lVeG5lCpfNzsDqDHvqmvHbSkjTJuD97X30\/Zv9uq9VCFeTeSm106yUOpQ2TTxqvbmlS7zRP\/SNP\/kuv\/Lfcjt3o6xKe3t7WZKJRPQzG6rD3MY3bXIsQi2pthcbtgXxaKk2M2MRyqGaiAdgaSZDY9vNXYoi25n60wusPHpV\/ySXnUyDN+e3pgczc2+4oQC7PJGv+UiLq7C4ihNQHDY8e3dg83tITy4iLei\/Xumk0HKQfE4cPg\/qhIETgYmxCNgE0u0BqEBMzo4m4s9eBRVEhw337nYEl53sXAhpKSehdh\/oIn191jDd5+xpu+HvZjAKvCWIIIqkDfqBBJ8bZ2t9UT9QKVQR5I6GNRGTMy3TjQt8Lag2gUmviivjYUlO0S6Wz\/m\/EJ7hSKDNcPaPGSn01A2rHSPbHq0x1KhHJ61IDEUX84PiIBcNXYstE84m89FQ+E4ft5skHSmawR4wp2jLhtM46s2l2pSUySGQadlwPHUhHE1uvvyh\/8t\/\/OMv5n8XDutHL8FgeRsgo16epdgMUDlCMVK1FSrqXurTR2GbEI8Gm82Goiioqqrry1aKbDbL\/IxJz4obmLoWZ9\/x3BdXijoY\/u0fkJnQV5KpDT4UVcFpUM8R\/V6cLUFj0skPdtM\/RsjKCE4b8eevATlysQV9uZHWBWkrz8FuUiMzhot3ptmHPZ5BXdB\/0Bxt9SCIhukusc6NrTkIBjJwbCLufZ3Fi3dWLrquY0cjzq4WsourqFkDddvBnOza6BhnTxtSKIIS1TeKzBOTQTOr4HXhbGsgY3AMNhHPvk66Lk\/CDbl2ym1jNhMlFYmzy1OP2+bgqrxqaAYKMLg6wwF\/q2Fhf0ZN4Le7DC15zDSGxqQM02Vcum2CmD9PUmTOhqe5o8u4plMIadm8lFpaTpkmHrN1m8xCEndXZeLJRjP8vx\/9Bh\/4XLEtzOysfgTtcJT\/uyQSCRobGwmF1rp6hOJzeMwQj0GqrTDiqUVO\/WLDtiIejfVLdwB6iEajPP\/886SqkHYCXDu3wqt\/uY74VYVrv\/33Nyd+lkG2I4h9OY7NqJ6zswUllS5StJVCm1djqABzOcg0uBEu3DymcNSAvdGPo6MJ0eMkPnjd0H0629WAc2bVUEnn3rODzNyKoQLO0d4AikrWgHTEOg+2Jj8pg+Fu2G3Y6+uI\/yxn1S763Li6WlARck2nN8QWnqO9JC+MG1oNuQ90kR6pREytSKGoMTE1+xHsdkPSURwiapn35k7J7MILdV4Uu8CEU8aZcjKbiLDDXb4Z8+zKFMcr2PZciMzR52\/BZTBQzUxjqJamM3LgTslZrsWXuauhix27zdt5yFU8b3LC\/LGi29xylImkcFfo9lEkhb\/7H99fQzqQS5vp1XIkg9pmW1trWeJZis3SReWm93IRj6qqGyIueLFhWxBPoaoNcjnYSsQzMzPDxYsXc41S8kBVr3fhqTnmv+1l7rNPGh5npp5DbwvZmTBqxoQRqMG8GntzANHlgGn9kF5OZbCns8QvjCE4Hbj27UR02EnPLOX7g1RA6W3CMWbsLO050psTOxgQk2tvB9mZZcO+GseORuRMlqxBuk\/0e3E0+Yt84pR46qbfmyji3N2OozlIZmrRkHRME1OlVN6NGpO0pB\/p2hrqsLudSLP63nW4HHi6W+gengE84PaQ8NiYTa4ixVLs9jZgE0ReWJ3hjgquBs+Hp7mtwgTTodgine6AYf1oOrmKrUKaLqFKTCdX83ONXB3mfdfMzssBDKXvaxA0STwGm0AAJSPzoX\/\/F3zfQE25Y0f5Wk40qp\/V8PvLbyhGp4fo9r3W0EwUIJOSGBsdo7mlOe\/FptW0N9Iy58WAbUE8GgRBQBRFwzqPoihcuXKF2dnZvHN1Nc4FAOFQhv2\/8mv86pn7eH33YTpXVdRQQWOny06mwWNczxEEhD1tqNfmDHnJe6SX5BVjI1D3nh1kF8JF8uVSlKbE1Ey2yN3AtqORuEPF7XFjG9KPvKqqQ1XomXHt7SA9tQgG7tuO9gZUSTF0axC9LgRFzUdD9kY\/jh2NKBkp1zOUkW4q1ypYBHmO9OYUcEbEtK+T9PgCatrgvjuaUJJpQ9KRPXaoc5MeLhZ\/eJMye6iDujokl41JMY076WI5HS9rBgrm7HYGV2c5GGjFKRj4wMWWaXR6aSgjpdawlI4jO0T6CoxFPZ3mF7oYWXPjplk7SloPSlbG02ruHjxO\/TSfnJT4wDs+w19861F6enp0jwsEypPI\/LxBY7ZOGi6TTRNs9RGe1x+6qGFhbomx8TEcDgeNjY35+9CIR1XVn4saz5Y7F5TCSFKdSqX42c9+xsrKCnfffXd+XEI1Xm0AnnobsVSSL\/zLt\/iFL3+CE\/\/3j\/nD1Wc532ljsdWN7HHgnNP3EhPrPLh370A1mJ+DTcwt3hfGDEnHe6SX1Ng8skFKyLW3AzmWIjunvwim4gk8cQmGZrHV+\/Ae7sG5twOloAFQrHPneoYq9Mxo921EOra+HaSvzxqSjmtvB3IkUTQArhSOtnpEj7OImKRQlOTFcdLD0zkHhUPdeE\/sJXNjjLbefXsO9+RqTEYR05HeXP3IgHRcezuQV6KGLhOO1gacPi+2Rf3vieB14e1opidp57C3mUa3j6hH5KoS4Vp8GVlVkFXFlEHp2ZVpjgTaDEnncmSBHW6\/IelMJVeRVbXI8TrrtuNsMN9rEwyaJympzlytNrOQrDjFVINNR54txbI88OY\/4S++9SiQm+el13\/jcJS\/xvLysm60kTVo3PY1mtvD7929n3vuuYeDBw9it9uZmMhlAV544QX+\/u\/\/nieffJJEIoHXaz4CNTN99N3vfveaKaKF5p96+OY3v8mhQ4dwuVwcOnSIRx55xPR9GWFbEI\/RMDgNKysrPP3003i9Xk6fPp3\/w2QzEhmTapg8nGuJ6jsvPMO7\/\/ZB\/uvVR\/nVZ\/83P2hKkdjViOAs\/kI5O5tzvScGs3HEgBdXd6vxAm8vsJoxcjQ40kv6+pxhHSbT5seZVVCXc4ugHI6TuDhO5toMgqri7uvEe2w3jvZG4\/v2mSMmdrciD88aW+Qc7iE9OmeYpnPtbkeOpfLjHMrBFsz1ByWevYq8HMHR0YTnSC\/O3rZ8j4bgceLavcO410e4EQ1VsvY51J27b0Oj0zbkRArZIEKVfE5kt53M6E1CFVTwJxX2iQH2+pqQPA6u21O4HE5Ws\/obj7M6E0MLcU2KsLeuCa9Bb9FIbBmfzUmbuzheSTVXl9ZxNFXRENpmbucur5q31XG0rCXW7Gqat\/\/rj\/CVRx\/P\/06SJN2RAkb2OB0d5c8xSsPZvObWoFQii81mo7Gxkb6+Po4cOYLNZmPHjh386Ec\/4v777yeVSvGxj32Mv\/3bvzVsatVgZvoowOtf\/\/qiKaLf\/e53Da\/79NNP87a3vY13vvOdDA4O8s53vpO3vvWt\/PSnPzX1Xo2wrVJtsNa9QFVVxsfHGR4eZv\/+\/XR1dRURldlZPIVIob9L9Xg8DEwP8rvf\/J8ABL11\/PuXvY57Ow\/S5vGTHZk33C07u1pQEinjsQB5h2qDhVJzn66QEst2N+KcWkHVWUwFWUUFUlenURJpnJ1N2BsDSJEEmYn5fP3K0dYAqIbEJHhdONobyBjIl1UBHPs6jUmA3AKfvDpt3KhaRrmWnVnO9\/6IPjeuvg4Emy036lv3QnbclWx7KCAmA7j37yQ9OmdYP3J0NCIm0igh\/dSL4HMjemz0Lcng86IKAmE3zEVWcGVUdvkakBSZ85H5irWhs+EpjgeNRQuXIvP0ehvKEpPQXkUEE8tgN3B7LkRiIY7XZPpMMVk3yoZSOBqL1X6ZUJI3vf7D\/PPZwTXHt7Q0Mz29VrG5uqpPIvX19WV\/v7CgTwIZoXKaDdb6tWlCqo6ODh588EH++3\/\/7\/T19dHb28tnPvMZ3vWud\/G5z32O97znPbrXNDN9FMDlclU1SfTBBx\/k3nvvzXu3ffCDH+Txxx\/nwQcf5Gtf+5rp65TDtiOewlSbJElcvHiRUCjEyZMnaWhYWyytxqdNQzihX2+IxYrTK6uJGJ959Jt8Bti\/fx9Hgjt4y4E72Sd5EGbCRcfmJM6zxkIDzdHAoOYh+D04G40HqamigNrVhGNc3xkAINUZhJHZvI1OZnqZzA0Bgy3gxbmzBcH1\/7F35eFRldf7nX0myUwms89kB0LYwhKC7IsLUJRVRBQ3WrWtaBXXti4Va6tVq9LW2trWn6itYstiEBAJOyggJCwhkBCy7\/s2ySSz3d8fw1wyyXxnJsgScd7n4Xl07sydO5M73\/udc97zHgm6SmrgIkYViA1qcOBI0oFMAoFBCWceW5oNBLnAB6FcE0VFwF5S60mJCYWQxhvBhUnQUd0ASZOHrISqMIjVETQxBel8EIxXnGzAeXdtG3tD5FRKAQEgqb+wWAk4DmoboJaoAQnQFSZGSVcHpBIxrE47IhiRTGZzeUDH67yuRgyK0Pl16AaAsNjgiaejth0qP6ahftHiCHrSfLBpNmdjlw\/x2KrbsXDeb7Az66Tf57NSVlVV7A2WlFFDamhoQFhYmF8H\/RZbLYL5sP6Ip7uwwOFwwGaz4eWXX4ZKpUJtbW3Qdjj8tTCmj+7ZswcGgwFqtRrTp0\/H73\/\/exgM7Gs+ePAgHn\/8cZ\/HZs+ejdWrV\/fpevyhXxCPv1Rbe3s7jh07BolEgkmTJvnMq+iOvroWAEBVI7vLndrVVFZWIS\/vLNZ\/6wnnR8UPxG1Dx+MG02BEqpSwnSwm31cxLM5TXyB2y05tOCROeIrqDLgUEojUERBQpCMSQp4cAxAd\/a7WDkAoQMfJQo+s0xSJcE0knHUtPukvaaIJjpomcETazGt\/4ygj1HRiISQJxuAW+AACAVlSNOxlteC8NSa3G\/bz35nk\/PXIEo3gnG5y6qpAIeUtgAJeU6DrHhqLzvxKsqYnNKkhaGmHyMbeMAkjFIiIisDgMqcnGhIJ0CBxo7alCUqXEDFh6vPRUHVA0gnGm01gDM7SBgBEtuAXQbcteBcSUVhwS1F3eXZ7eStuuPEpZJ4rglarRUND73uPdQu1trZBqVSira33ZotyTzGbzSgoKOj1eHVzGSKDIZ4eRqH+hsABFwiTIgZ\/YE0fnTNnDpYsWYL4+HgUFRXhhRdewA033IDMzEzm2lpdXQ2j0dfixWg0orqa2HwGiX5BPN0hFovR3NyM3NxcREdHIzk5mTTo66uiDQAKK3L9Pi6VSlFb61\/Volar0dzc7PPYiZICnCgpwJ\/1OqDLifunzMYMwyBoa2wQdnerDdKORjEsDh1ny8lZ8o4oBaScEFwVWwYsVIZBoo9EJ7WY9lC3CQCIqlvQWe0hHLFRDYleDYFE5Llu4pqCsb+BUgG3QgLHOUJxF2zkMfy8FJwwQxWpwtCZVwG31QaBVAxZUjQEUjHsVY18ZCeKioBQISMteSAWQT7IcknIUhCrhbO6GSIiinMppeDEQrjLLmyABC4OWpcAWplnB9sRLkJphxVysRSdLifkIv8\/42CUcqdaqjEjwb93mT\/0SUrdl526JkjyO3\/O1sImTL7xcZwp9UTXUVFqv8TT0cFOgen1Or\/E0zPr0R1RUWq\/jxdXncUojKWuHEDvXh7W9NFgpy\/3BGv66NKlS\/n\/HjFiBNLS0hAfH48tW7aQ4697NvL3pbmfQr8hHoFAALfbjfb2drS3t2PkyJFBzRrvyyweAAhTSdFc5l8dZjabUVLiP71lMhl7EY8XBoMROTk5+MPWz\/AHACKhELePn4FFg9OQ4JAhPDw8gPt0cMPWgnGWlpwf5NZFNLMKw+WQmjVk\/chZ2wyJPhIdxwrglnlGG4hFInSW1YHrJnQIpmdGEq0F12mHs5aYhaSQQmKMoiOPYMcn9HA+4OxOXwcFixZikwawdV3oJfL3dkHY7QR7TUjQw11aDyGRppNYtBBabXA3EbWhCDnUGhXC2i9MXq0VO1DX0gyLLAJRAhlcnBsnWqoCkk62tQZDlXqo+pBqY41J8AehLDgptcvqgCIqOBWXUC5CY249xt\/wGIq6SZ\/1ej3OnesdiVRWslNqrCZNKuvBig7qmqogt0iY7gReBEq1Wa1Wvsenrwhm+qgXZrMZ8fHx5CRRk8nUK7qpra3tFQVdDPoN8djtdpw4cQKdnZ2wWCxBkQ4AdPSxxiMJZ\/\/wtVoNk3hYHk4AoFT63sAutxufHtyFTw\/uwoQJ4yFobMe9Y6djtEQHaUWzj4otmDHXvLN0aQO5iVQMjkFXWS2pyJIY1IBAQBqPCuQSSGP1nkZNAMIuJxz5lXAAgEgIWaIJwnA5IBHBdrwwYErMEWAcNqLC4QbtjtAngUCAyEMYJkPXmRK4bXYIIxSQxuogADyken7AnEirglAiIkUikIggH2AOeE3uRD0ERXXkpkI2wARHVRNZG3KFyyCUiWHv1ogsdLlhcIlgkHssW6wKIYo7WhAulsLhdjE947wuCm6JCEpT8IafwvDgyAQARJFB+rnV2yCKCC7iaahuwZTbnkFFo2\/EL2TUiOrq6pkekKyoora2FnK5HJ2dvdcWf+OvvYg0KNBZRBNPz5k8PV0LLvf0US8aGhpQVlZGrrMTJ05ERkaGT51n+\/btmDQp+AiZhX5BPG63G4cPH0ZYWBiio6P7VEzra41HpZcD\/jNtUCjYP0BWwRGg3W4lEgn2nz2Fg2dPAQCitXrcP2k2pusGQOsQQujiyDHXQTlLo7drtD8EY5Ej0ig9YoN8BjG53Ogqq4M8KRqdp4ohNqghMajh7ujy1KW6kWowKTGvcg1EHxMi5JBEBRAIBDuzZ1gcbHnl\/HW6rbYLdjhCoWdchSYCrjYb+zuAJ\/KQ6iLpaxJ4NgyiIloSKx8Si65zdG1IYoqCoNMOroGdBhLIpdCYNYgodAMRgEsiRJXAjobmJlgk4dBIPFGFR57t2RF3aIPvFwEQ1LhpAOBcHKR+ZM\/+4LIGJ0UuOVyKHz\/3z16kAwAdHez7JzY2BkVFxb0e90csXlgsFhQWFvZ6vKdEuTtk\/ntSfWDrkWrrOQTOarUiLCysTxHPww8\/jE8++QTp6en89FHAs1lWKBSwWq1YtWoVFi9eDLPZjOLiYjz77LPQ6XRYtGgRf557770X0dHRePXVVwEAjz32GKZNm4bXXnsNCxYsQHp6Onbs2NErjXcx6BfEIxQKMXr0aISHh6OgoMCvaoSFvjpTC+TsnTeVV3URvTbU9fb0fqpoqMNvv\/g3AGD61CkYIFBi3oBRSGgXgavzTUU5w6WQRNDO0hdm8QQYZ9DDEdsfpHF6OJqs4Ah1m9f+pvN8wd5Z28w7aAsVMkjjDIAIEEql6DjeO\/XRHcEo16BVwm13wFHGFlII5FJIY3SBJdyBBAJuNyAWwXa6DFynHWKtEhKTBu4uh4dUz18nHw1REZpYCKdRBXEw1kUBIjRpvAHOhjZwVvbi6lZIIFQpfFSHIocbZohhDtODA9CqEKCorQGRUgVcnBsigRAuU\/CeYC6rI2gptaPe1mvyJwstnTYE2uMX7SvC2Fsew4jRo\/0ep6aHajQav8RDkYhGEwU\/vEO6VLuDGI\/QM9Xmb+z1pZ4+KhKJkJ2djY8++gjNzc0wm824\/vrr8dlnn\/k4JPScPjpp0iSsXbsWzz\/\/PF544QUMHDgQn332GcaPD95QloV+QTyAx8LC7Xb3eRhcXyOedmcz81hXF\/tc1E1K7U6oprPm1jZ8cOIAPtj3JQDg+mFjMH\/QGIySaKEQiCDrcoOroZorwyBWK8lZPBwA2dDYgP1AiqGxsJ2rJA1TJWYNOIeLueC6bV3oKqn2pA5zCyGNN0KsUsBR3wpHD+uZoJRrA8wetwZCTSeIDIM4XIEuInUYtGihRzTkbGiD83xTrlegIAyXw9nY5pPu6n0iKZxKGcQVzfT7BaGUkyVFw15K2\/uItEoIAbiJe0UgFkEfa4LqLAeIAYdUiFJ7KxSm4Ae6ORo6g06JdTV1Bk08kUSmAQDytuchbcETsNnZm8aKigpmSk0u9\/8ZGxrYTiCsBtOqqirm+3S4moAAFNoz1dbTENlb4+kLAmWIFAoFvvrqq4Dn6Tl9FABuu+023HbbbX26nmDQb4jHi74Og+trxNNgZRfdqTkdDQ3sHVV9PfsY1XncU4Wz+\/Qx7D59DAAwdex1mBU7DFMS4xBZ3Q6uR41EGqOH29ZJyq4F4TI4IqQQUK7ROG+8GcADLRjDUJFGCaHiwkRRe0kNvFct1qogMUXB3eWAQCYNggTiYTtbTjaYcnolXB1d4Ag1XdBy6QDfAWd3gnO70ZlXBrfN7hEoaJVwtdlgL6nlCVSgDoMDHMS17KgRQgEUQ2L7TIT+ILFo4O6ww93MTsFxEhEEhkh0ne0msLC7kYgI2KODyA+dh8saeLyzF3aqptcDLAscADiZno3xS56G4\/ya4E+FBngW3+hoC0pKev+d3W7\/91BHRwfTpbp7FNLzfcxmM8rKev+m6toqIUIS87MA\/lVt3dP4P4SRCEA\/Ip6LHQbXV+eC8jp2SoqlTxeJRKiu9r\/ASyQSpgpGJpMxj4lEInIuyLG809if+S0AIEwmx72TZ+Lm+BGIaRVArlejs6iaNrk0qAGhAFw1W3YNqUetFtB4M5haTawertYOOBju2s6GVrg67ZAao9BVUAF5coxnCmtFPdwtvqnKoImwoh4CYoETqMMhDpPTcmkvCQR4P\/mwOHR2c1rwcVCIUHjmDHEudFY3QtJM1KtkEsjjDJekb0iaYISzroWs2QkiFBAq5XBX+N\/dK2OCr\/G02ToDpsS8kImC7w3yZ4EDAIc\/OYop9z7rs6Nn\/Q4BQKfT+SWetjZ2tsJgMDDGI7DXIFYtuLyuCPGBiIfhXODFD2H6KNCPiMeLvkY8HdbgIx6BACiqzPN7jLXzATyyQn+2G4AnF8xytLVYzH5zy55jFr+7Jn\/X0tHVib\/v+gJ\/xxcQi8WYlZKGJcMnYDiiIKpo7pWukg80w17TzM+48QdhZBhEyjB0kcXxbsabBOTJMegqpq2ExDoVBCIRL\/Pmi\/ICAaRxeohU4XC0WCGJCAuCCOM9MmgiEnDrlOBsXeAqiRSptzb0HUnAbbXB3mqFs74VEoeLV\/05G9rgqLpAxMIIBcQaJTl0L5j3AwB5UjS6SmpIGbtIo4RQIoaD6PnSxge\/u5YG6TQNBC+ldjR0+hUsfPvpcUy+59e9Hq+rq0N4eLjf1DcrpVZTwyYrlcq\/lxyVqWARQ3HlWSQoZzPtqwD\/DaTd6yo\/hFk8QD8xCe2Ovqfago94FJFidNn9E5XJxNamazTsuSaUfXlPy4ru0GrZx3Q69jRDi8WCrccO4cf\/Xo3r\/v1bLMvbiB2aDrQnaiCQSXi3a4p0JNE6QCiAo5wu2AfbONl5toL2r4s3wt3lgKPGzwLIcbCX1qGruAYikQj26kYohsdDlhQN+Fno+NpQgDlC4vYuiNoJIUlkGCQ6FV0bCpJ4Ea+Hq7oZwi4n4ObQVVQN26liOKoaINaqoBgeD\/nQWIgiw+jakEgIeZDKvM5AvVNmz\/3l9zs\/D5dMDE108FJqhSr454qigpxQ2tj797t59Q7c9cJfma+Jjo72+zgrpVZXV8eMUlgu1VVV1Uwlq1zuX2DhcNoRHkVHeoEaSDs6On4QxNPvIp6+ptr6UuOREka5ajW7T4fS7rMaygBank3lcaljWq2Wt1IHgLzKMvxyw\/sAgGHJybjeMQST1bEYaJdBbO298MoHx6CzuJqcXirSeobSkTtzkRCK5MB1imCUa2KDGgKAFy3YvEPtxEK4o6MQHqmEo7YZUn1kcLWhvADRUFQYnA4n3ATxQiqGPMEUUCnHJRqA4loIGJtcZ0MrBHIp3FYb3LYuyJOiIZBKYK9q8PHGE8glkEbrebUg8\/MFk4KL08PZaCU3H4IwGdwD9BBJgt97ButK7Xa4IdUGKaW2+d6Hn\/7uC9zz4p8hFoshFAr9\/vZYv9XWVnadKyYmGvn553o9bid8Fc1mk9\/UHSXDDosSw9rA3vAEaiBtb2+\/JA2a\/R39hni6TyENNuKx2+1obiCKuD3A+RmH4IVUyv5RUbMxLtY+grLlYBU2ASA8nH0tUoUcf92Vjr+ev675qZMwb8BoDHYoENbcBVe8Frb8cuYiCXiku67mdjga2Go8QZgMUpOGVNMBwU0LlSYY4axv9btICpxuiCqa0NVig9SghqvVBsWIBLha2mEv650KCaY2JE00wVnbDDcRDQki5JBqI8n+KgBwJeogKiIiGPQ2DfVxUIjWQqxRwtXR6VELEs7gQJAquEEW2MvrLnjY+YFQFQaxMgzNruAFAH2RUnfUWhERrGih273xz1\/9Fw+94XGFdzqdiI2N9ZuOZkUplIcYy3GalV4HPJs8f8TT1MSOIuWR9HrQ1tLhM2+HZZlzraPfEI8XXjl1IE+gtrY2ZGVlwd6Hme52AaH84dg7ZKq\/h5rrQe2MqKiOIl7qO3E6L1wLx3FIz\/wa6Zme8d5zpk3HhGozxqnN0Le6IHT1JoNg7G\/E+kiPKICw5Al2WmhQ0RBfGzq\/qFR4ohRRZDik0VpwTjc6y+ugSDBekvdzKWXgBABHqAUhFMAZHQVxEe0MHqgx1FHRAK7LDoFQBFdHF+RD4wCOQ1cPW6JgVXDBNKKKdUpAKIK9oh6C5MAd7vy19kFKLWgLPlUulInAuTisfvxjPP3Xj32O6fU6v8RjZ8iqGxoamMafrLQZRVZyuf+orbKSfe\/bBW2gKhi29i4cPnwYcrkcWq0WDofD5zf9QxEX9MsaD0AvvlVVVTh06BDMZgvsnX2oBznYuv32dnYTaGsre\/ff1sYms8ZG9vtRIT7VM0SRWXg4+4atbGnEi1+txc0b38aPvv0QH4vLUGwQw6nw7D3cAwzozCsjSUeaYIS70w4HoZQThMshizcGVbDvzCsnSUAapwdnd\/qtU7ha2mE7XYquslrIo3Xg7E4ohid4FtaLfb8YHaRCMcRU+lYmgdOghJjh99fr\/Sg3AosWnJODo7b5vINCKTpzy8DZ7JAlmqAYkQBxtA7ygZbA3+fweHSepd9PbNaAc3F8w6\/EHLyirS9Saq6rD8QTIcFbj\/+nF+kAgELhXyxA\/a5YQ9xYG7329naiFus\/Uu\/q6uKnH\/dEs42OgN0OYOrUqRg0aBDcbjecTieOHz+Ojz\/+GH\/4wx\/gcDj6FPEEmj7qcDjwy1\/+EikpKQgPD4fFYsG9995LetgBwJo1a3pNLBUIBOT60xf0m4ine6oN8Nwo3WWGgGcXf\/bsWZSVlWHUqFEIkyn7ZK\/TYGXvbqibmZJwUq+rqmK\/HyWlbvRjCRLMMdZOEAAE3aZXNrS1YPWOz7EaHkPTH9+8EJNa3RisUkDR4j8dqRgah85zFYGjE7GIjoaEAiiGBC6gywfHoKuYHrjmdZfuWYuSmDUQa1VwWW2wl9Z66j5BpajqwXWyv0NXmARuuQSSasLsFEHWYRJNcNY0+e+LcrvRVVQNQbgcEl0knI1tUAxPgLvL7uOg0Kf381P3ieiDOWiwg9oAgDSl6wZnpxMvPPUv7M73n9Jsamr2+3h5Obv2yEqpUZtHk8no93dMOZIYDHq\/yrfq5jKowR621tXhgFgshl6vh06nQ2VlJUaOHInq6mp89dVXOH78OPLy8nD8+HHMmTMH06dPJ2vF3umj48aNg9PpxHPPPYdZs2bh9OnTHnPijg5kZWXhhRdewKhRo9DU1ISVK1di\/vz5OHr0KPO8gKepv+cIbZZysK\/oN8TjhVAohFAo7BXxdDcRnTBhAiIiIlBb1tync9c0+7\/BBQIBM3xWKpXMnK5Op2VaaBgMemYPj1arYXZNy2QyModMERZl58FaDVxuN840VeNfX28AAKQNGII7UiZhlESDqEY7BG4OGGQkZ9oA58dBN7XBSYyDFoTJIDUHURsKYuCaJFoLd0eX31EMjqpGj1OCVAzF0DjA5fakoUpr\/c4UCkaQINQq4bTbIWkk7JyCTYklx3hSmtSQO3UEhAopP2PIeb7mJpBJIBtsgkAiQVdVA2QWbWBSHWiGvaKhF6mq++RKHXwtU6QKvDi5bE6UHnVj1k8egurQYbjdbpw8me37HMbfo6urC2azye\/Grudm1QsqPcZSplK\/J9ZriiryMAbjmK+zdznhcrohEl8QTiiVStx555244447kJqaimXLlqG2thY\/+9nPcMMNN+CDDz5gni\/Q9NHIyEhkZGT4POcvf\/kLrrvuOpSWliIuLo55boFA0KeJpX1BvyMeoLfAoLW1FceOHYNSqcTEiRP5m6svdjkSmQg1df6JR6fTMXX7JpOR2S1tMBiYN6deb2ASj9FoZBKPyWT0W9D0vB+bzDxNruwIi3JXsHUbSna0MBdHCz0uqia1BvfdeAsmtkpgkYkgYqRQgqkNiTRKCGUSupkzyBEDsoFmOCrpKZ\/CCAUk2h5TXMUiyAaYIAyTw3HeYy4YQYLQEgVHoxViomDvFgvh0kWQg\/eA8z1IZ0ppUjWqwTndvWyGAIDrcngaWUVCyAfHwNnU5hFctHagq7S21\/ZCnny+rtUjBccB0McHn2oThfVhWJyKXlacVgfKTophHjsBJo7DhAnj8eijj6Cysgo7d+7Cjh07sWfPXnKTxRL8sKL+lpYWZq8em6wqmWInlgCooaUWihgpbG2Esq3DjnCVnD9vT3HBrFmzMGXKFHAc1yffSoA9fbTncwQCATM69MJqtSI+Ph4ulwujR4\/Gyy+\/jDFjxvTpeljoNzWe7gW27pLqyspKHD58GDExMRgzZoxvl28fRiKoDeHMtBxVzKNk1kolW7kTFsYOj1Uq9uvUanbPEDWN0Gw2MYUOgUiJlS6sbm7EnvI8LPzvW5i84x282ZmDHD3QqbxQqBUmmQPXhmL1gMv\/QnrhSWLIk4LxU4tHV3ENSTpinQqicHlvOyGnC12Fnh4bZ10LwkYPBDhAlmgCGLb6gjgdnHUtEFEqMWUY5GZt4BRcyvkeJIJ0pHF6uDq6+AjH\/5PEkA8wo\/NMKRwVDbCdKvb0BykkkA2JhXxILARhMk\/dJ99\/3adTJYdMEXxDqMQQHEm5u1yQatgRj6PFjqw9bTjd2IZjx46hvLwcDocDcrkcCQnxWL78Xnz00QfIzz+DNWv+Dw8\/\/BCSknq7AWi1\/nvdKP811ggAh8M\/SbjdbmbNiEprR+rpiM\/r1+Ylnu7ipe6WOQKBoE\/1Htb00e7o7OzEr371Kyxbtoxch4YMGYI1a9Zg06ZN+PTTTyGXyzF58mRyfk9f0G8jHqfTidzcXJSXl2PUqFF+F92+TB9VqNk\/MqPRgKIi\/1Y6VE5TKmXvAm02ooGTIQcN9H6snRngidpYuW+LxYyyMnaakdpZendQDpcTnxzahU8O7QIATElOwS2jJ+C6xkZEgp3Wlw+ORlcJbXIpVIVBHBkeUL4clFw6Tg9XczucRE7f06Nj9HHPFobLIY3VewqoZbWeuTyJBrhL6sjhbWKdCgKh0K+82wsOgDNWAwSyAWKkxLrDW\/fx12MlsDnQdX5onSIlAW5rJxTD4uFs6G3Sajf2wZXa5oI4IrilwlFngyzG\/7ntDZ2oLonCqJumoKOjA\/X19aivr0d+fj7kcjlf94iKioJEIsFNN92A66+fjt\/+dhWKioqxY8cO7NixEwcOfAOx2P\/vubycfQ9FRvpfaFm1JMBDcP5+Oy0t7PtLGkBJ7m0i9UqpvZtujuO+k6qNNX3UC4fDgTvuuANutxvvvvsuea4JEyZgwoQJ\/P9PnjwZqamp+Mtf\/oI\/\/\/nPF3V93dEviUcgEODs2bMAPMOIWKzfF9cCoYIYjkYQASVe6DnyoDsoAumLM0N3UI2s1PvpdDom8ZhMJpJ4WMcO5GWjPUyEXx87jjidEfeMux4TlNEwNrsgsns+nzg5Gp35lXRayawB53CSC3fQ8uykaE8dhyI5ZRjEURGedFU3uNs7L0waFQrgSjbDZeuEQqeCq9Z\/r4ckWge31QYnsQhBLIJ8gMnHoNPvtQchhRZFhUOokPN1HxYUI3oTtFingsToMWntKq6BcCDbHaMnHLUdEMUT3dfd4Gy1w1+3T1etDXU1RhiHDQHgSZXFxcUhLi4OTqcTjY2NqK+vR05ODpxOJzQaDXQ6HXQ6HaRSKZKTB2PQoIH46U8fRHt7Ow4ePIQhQ4YgI2Onj+TabrdDr\/df+Ge1RVD1H1ZKj8oguMX0hth2voes50iEzs5OuFwu0g2FhUDTRx0OB26\/\/XYUFRVh165dZLTjD0KhEOPGjbv2Ih4v67e2tvKsf91115G7\/A5r8MTTybEbTamemu71j56wWtnnpCIeVs0o0OsodQvVkEo1wOr1Oia5REWpyd2g1127tL4Gv\/9yLQBALpXhzutmYFxcEkZX1EFGkI4s0eSRElMml8G6SwdhZCrWRwICAW1bIwBcsRqI8qogAuA6\/zqJMcoz9qHYM+yuZ2Oo31OFySA1RQUkHWe81uNdR2xyxAY14Hb7FVNceEOBx9HaT7rSWd\/KCz\/kg2PQaQze\/qZPUmo\/6rfOynY0NMdCnzTI72vEYjEMBgMMBgM4joPVakV9fT2qqqqQm5uL8PBwnoQiIyOhVqsxe\/YszJx5E1wuF\/Ly8pCRsRM7duzEoUOHYTIZ\/RIPKw3X3t4OrVbbyy2eQmtrK1QqJVpbe\/+Wrc5GAOyoxZtq6zkEzlvP6UvEE8z0US\/p5OfnY\/fu3cw0ZaD3OX78OFJSUvr8Wn\/oN8QDeOo5OTk5UCgUMJvNJOkAfUu1Ufp6SmpJ3YzU8ClqbjtlQNjczFa0UddJuR1QTafUTW4ymZjEIxKJ\/O4UO+1d+ODAVzgyohynTuXghuGpuDU5DUM5JSKb7bxrgnRwNOyF1QF2+B65NClIQPByYldzO1ytRLFWIoJTr+w17dVZ1wJnnSfqESqkUKQkwt3eBTDSPcB5E9YIxYXGVwZkw+OAHJpUJTE6uFs76GsXCSEfFB3Q4keeHIOugirIbwlerdQnKXWPWllHqRUtnQOgG5AQ1MsFAgGUSiWUSiUSExPhcDjQ0NCA+vp6nDhxAhzHQavVQq\/XQ6vVQiaTISUlBcOGDcOjjz6ClpZWHDhwANu2fYUdO3b6GPiyvNwAj3DH32+d2niaTCa\/xNPQVgkRBjNf50219Yx4rFYrBAIBucHsiUDTR51OJ2677TZkZWVh8+bNcLlc\/HM0Gg3fWNtz+uhLL72ECRMmICkpCa2trfjzn\/+M48eP469\/ZXvo9QX9hngcDgcKCgowevRoVFVVkWklL\/ri01ZU4d+VGqAJhNWLI5VKUVvrn8zkcjmTXGQyGdPNWiAQkD1DlMsu1XRKRVGUK4NKxRZWUHUjAPx3sysnC7tysgAAAwwW3DtuBgaqjRhSVA0h1VxJyKV5nFd2XYphaoJwGRxhEogrm+lzDbSg\/chZT3QiFEAab4BIGQZnUxs\/EsITnXDMERGeNzwv4w5AFG5TJBz1LQAhbvD4vOnQmRdg7tKw867ebjciY4NXtPVJSh3WTfxT2AqrYCg0cf5NPYOBRCKByWSCyWQCx3FoaWlBfX09SkpKcOrUKURGRvLRkFKphE6nxbx5czF37i1wOp04eTIbGRk7kJGxA3l5Z5nvwwo2qT69yEj\/v4+yukIkUMTT7lvj8cKb6emLDVeg6aPl5eXYtGkTAGB0j+mtu3fv5l\/Xc\/poc3MzfvrTn6K6uhqRkZEYM2YM9u3bh+uuuy7oa6PQb4hHIpFg6tSpADyLVjB1kL7IqSsb\/f\/AKZIwmYxMIjCbzSgp8X9O1rx2zzH2qASz2czsKFYqI8jmUaoTmeoLoqauSiS0mIFFPGFhYX4jvsLaSqza8gmGDx+GkoIi3DX+BlxvHIT4dhGk7RcWVukAE5xVTUGksTSBTTW7LbbMc0VFwOF2QVzHTlcCfiIrN+cZAnceYq0S0gQTuC6H5z1ZEAkhTwocnUgGmuEoqQGcxLVHyCHRqIKLCrtNfNUnBK+WkkQFT1Li8yMO2s62oFM+CmpCidlXeCXAarUagwYNQmdnJx8NFRcXQyQS8SSk1Wohl8sxblwaUlPH4Omnn0RdXR127dqDjIwd2Llzl08GgeVAX1FRDoFA4LfWy7LhKa7Mx4DIOXD7saUCLoxG8DcSITw8vE\/EE6iBPiEhIagm+57TR99++228\/fbbQV9HX9FviAcA\/wcO1qE6WOKRh0vQVOk\/qjGbTUwi0On0TOKh5NKsee2eY\/7nvwMeBQ2LQEwmM9ra\/Bf2WMVUL6jiKUVmDgf7b0DVjSwWC86d6+0E7EV1dTWsnTa8t3cL3jv\/2JyR12FBUipMMiViims8jasM8Ck4yiEBwaXghEY1HG0dEHewxSfBNoaK1BGw5ZSA67RDIJdANsAMgcTji+Zq9kSkArmnZtVJERPOTx\/NLScJk1PKIVTI6JoVeqsBu8IkCI8Mvi9HGB5c14WrwwGJWoaWnGY4NGlQRbF7SS4F5HI5oqOjER0dDbfbjebmZtTX16OgoADZ2dmIioriiSgsLAzR0dFYtuwO3H77bThx4iTOnj2LvLyzyMjYwZRUO50uZsM3a3PsdDmgNoSjscr\/Rqa7qq17OaG7eei1jn5JPCKRiNTJexFsqi3KFA4wAoKoKDYRKJXs+gdVf6IUZlT+ljIqjYpSM48ZjQYm8RiNRjJFV1XFjpRaW9nOvRQiIti7aZVK5fdH\/OXJb\/HlyW+RkjICjsY23D1mGtIURmibHBB22\/GLLRpwNjudgguSKISxWjhrmnkVnl\/IJJDF6gOLG4bGwpZfyU8o5TodF+ThAgGksXqItUpwbg62k+wpuECQhKlVwu10wc1Q3Pmcq4fCzW7og5T6PJkEA0ddJ1qb2wDzRCiJNO3lgFAohEajgUajweDBg33k2ufOnYNMJoNOp4NGo0F5eTkEAuD225dAKBTihReeQ3l5BXbu3IWMjB3Yt2+fj3ejxRLt956lMgnhGhEaGfui7qm27xrxfF\/Rr4jHi2BHI3QE2UBKzeGhIheKXFg9Ad8F1GwfCpT80mg0MIknUKRE1ZuouhEVrZrNJlIkUVNTg9raOjxf4TGNjAyLwD0TbsAM\/QBoIUNEfQuEl4AokKCHq6zer0u3Fx7pdTg9LA6901i9wHFw2zrhqHTAUdsMUVQEpGYtOKcTncU1PrORgulVkkTr4G7rACixgQCQJPkf5OcyBJ9mc9R3QhQXXHTUUm2HbNA0KPqBrX93ubbL5UJjYyPq6uqQnZ0Nt9sNrVaLuro66HQ6KBQKDBiQiPj45Vi+\/F50dnbi4MFDyMjYiYyMHcyNFCUgEsjZv4HuqTZ\/NZ4fAvol8QSbagu2j4eaw0OBSjV1dbEjMmpRptxdRSL2n+Pi5\/ewFwGj0b\/sFPBEJtSOjvKxotIFlE1HeHh4rx9zS4cV7+zahHcApKaOQZwgDHMTRyHZGYawZt+\/q7cRNRBRcAMMQGFve5nu4BtDS4n+IgQXnUgsGrg77HA2NwMAXE1WftidQCqGbJAFkEkAiQi244wc7XlIE4yeeUL+zEX5ixfCbVLDcdb\/9yCODp4YXB3B9ZzVHa6HIvkGyC6RieSlhEgkgkajQWlpKSIiIpCcnIzm5mZUV1cjLy+vl1zb07x6I2644Xr8\/ve\/RUFBIXbu3ImMjJ34+utv+LpoU1MTZDKp37XA6mgA4P+7CCQu+CGgXxFPX4fBBVvj6XA1M49RxXWqT4fqb6GUMJSlR3Mz+5ydnezrpAiSIiUqlUhFJkKhkGw6pfylWAVZwCO88Dcl0ova2jpklZfj8\/MzhkYnDMKdI6dgjEwHpUMAkdsNN9WICsCVoIOokK6JSGJ0cLcFaAwNMp0nTTDCWdfC7FXi7E50ltRAnmhGZ06JZzhcVASstY0Q1rb5kKMsKRr2khrSnshTQ9KQMm6FpQ8RCRc47VPzTT3CRtxIDlO8mnC5XDh+\/DjcbjfGjh0LsVgMtVqNhIQEply7e\/PqkCHJGDw4CT\/72U9htVqxb98B7NixAxkZOyEWi\/2KjKqbyyBFb6sfwLfG0z3L0d7eHqrxXE0ELy4ILtXWaGUvkhSBsOTSAN25fLHjEKqrL24xp2oxFLFSpER51FksZtKanvreKJKMimL71InF4l7f3fHiczhe7CGqm6ZNw0ipDlONCbC0cBB39ngfkRBOcyTExfTwNk9jaAPcNqLGeN5yJ1A6Tz44Gl3FAYhCIfWo887XgxwVDXBUNEAETwQnjdZ5BAYikUcuTTloRyggjooI2Dukiu+D\/1eA32Hl\/npEjpkJsTh4scKVhHfeDYBeXo9Ab7l2a2sr6uvrUVZWhpycHKhUKp6EVCoVoqKiMG\/eLbjlljlwuVw4ffoMduzwpOS+\/fYIv2FudzSCtcVqbbLC5XKFIp7+hksd8VQ0sIu5LALxyKz9L1IaTRRTDeapqfhfeKljLOdcwPPjoBZzigSo0b6UgEMiYUcmlC8cS0rtBUWSVI0rJiYaxcVs+XFpdTV2nN2Ht+CZMXRb2jTMiR+BQXY5ZB0OONVhkJazU4dAcLY1ggg5JNrIXpY7PRGMjFuoCoNYFYauIv\/3oLu1A52tpZ6hcmfLIUswQqiQwVHd2Gv8BD9GIUDEpxiRAG0feni69+X0RPmeBmjGzSJTxFcTTqcTx44dg0AgwJgxY8iNFuDJuERGRiIyMhIDBw5EV1cXGhoaUFdXx\/e5eElIo9FAJpNh9OhRSEkZgZUrH0VzczN27dqNHTt2IvPwCbC2UQ11zdi\/fz9\/PTabDQqFAlar9QdDPP3GnRroW6qtvrYRLqK\/ofs5Cyv8N45FRamZtRO1Ws3UvxuNRub76fXsvgXKqsJsZneSWyxmZkOtSqUiLXio6Ku5mU0ClA8dVTeyWCzMY4Guh4pyA9l8dJehu9xufPbtHiz\/3zuYkv5H\/MaahX0d5WjSycAxXKiDmRgqioqAWBkWnFfa6RLavkenhEguhb2cjsC8NSTO7kRXQZXHWbu+FRJTFBQjEiBNMEJsVEMgFtLu3+fP1Xq2DFGG4FNi3r6cnijb3QTtdbP7PekIhcKgSMcfZDIZLBYLRo0ahenTpyMlJQUSiQQFBQXYu3cvsrKyUFZWBrvdDqlUCr1ej9tuW4y\/\/e2v+ObbPfjdhrtx22OTMXCUGd2FagpZOMaNGweRSASr1Yo1a9ZgxIgROHnyJBobG4NS9AKBp48Cnj6fVatWwWKxQKFQYMaMGcjJyQl47vXr12PYsGGQyWQYNmwYNm7c2KfvLhD65V0TKNVWV1eHb\/Z+G9S5VDoFbOf8d\/UbjWxLGJ1Oy4yGKIM9qm5CNXKxuqABQKPRMmf0ULUY1vx5L6h0YVsbu75B\/TAo2XcgwQKldqNk6IF8tkpbG\/DLg\/sBABaNDveOuwETI2NhbnFB2OUCBhgCCwTMGnBdjqAW98Dn0sLd2QVnffNFn8tR3QRHdRMk0VoIhEKINCqIdZHsYXfDPVNYOy3BqzFdHc5eUmrOzaF0bwsM42eSrhdXEw6HA8eOHYNYLMaoUaMuinR6oqdc22az8XLtgoICSKVSn2hILBZj2LgEJKfGYsljU9BcZ8WJfUU4tqcQHW1dkMvlkEgkiI+PR3JyMsLDw7FmzRp8+eWX0Ol0mDlzJhYtWoS7776beU2Bpo8CwOuvv4633noLa9asweDBg\/G73\/0OM2fORF5eHlMNe\/DgQSxduhQvv\/wyFi1ahI0bN+L222\/HgQMHMH78+O\/8XQL9lHi8EQ\/HcT6ado7jUFRUhIKCAsRYEgAcDngupVYKMOrVajU1F0fNPEYVyGkJNptcqMU8PJy96FK1GLPZzCSeQAagrJQgQIsgqHSZxWImyYV0\/CWiB7PZRBJP9++gsrEef\/jqv55rFUvwk5sXYbIVGKCUQsYY3iWNN8DZ0OYzNroXghUbxBvgrG8ljVEhFECe3Ldz8YQoEvLD7py1LXDUN3vOdd4lwW0KPpXjqLdBFHdhceJcbpzeVos2TSyclZXQ6XSXbBTypYLD4UBWVhYkEsklIx1\/UCgUiI2NRWxsLC\/XbmhoQG5uLux2u4+7tkKhgCFaihtuj8SM20bC7XbD4XDAbreD4zioVCrcfffd+Oqrr7B48WLMmjULW7duxYkTJ0jiCTR9lOM4rF69Gs899xxuvfVWAMCHH34Io9GITz75BD\/72c\/8nnf16tWYOXMmfv3rXwMAfv3rX2Pv3r1YvXo1Pv3000vy\/fVL4vEu3t07e10uF7Kzs9Hc3Izx48ejKj+45kZxOGHJT9QxKFBpQNYwNg+oEQvU69jKIuozsGxAAA8JsognPDycnFhKSclZ44o976lmHmM1lnpBedGpVOw+JrFYzHRu6HI6cKK+DH\/7xkNE04eOwuIh12GEUA1VY6fH0DROB0dVIykQgFQMeXxgsUEwnnFe4UIgKyDZIAvsZXW9z+VyXxAXiEUIG+6xTJENMHnGIZj6IKVuu3But8ONkq9tMF53PcQNDT7O0d45OpGRkVe1+dHhcCAzMxMymQyjRo26YhGZSCSCXq+HXq9HcnIy2tvbUV9fj5qaGuTl5SEsLIwnIbVaDbfbjZycHIjFYqhUKn49KSgoQFpaGlJTU5Gamtrn6+g5fbSoqAjV1dWYNWsW\/xyZTIbp06fjm2++YRLPwYMH8fjjj\/s8Nnv2bKxevbrP18RCvyKe7jUe4ALx2Gw2ZGVlQSwWY+LEiZDJZDjXRktivXCK2AsWtYum+m2onhoqtdXSwj5GkQvlkEst9FT0FRUVxSzWm81mpuWNx8j04lJ01OA8s5mOhqgITChk72qjoy3MNCUAWK0X7o+9Z05g75kTAIB4vQl3T5mJCZ1SmDiOWQwVhMshZQxm646ezgZ+zxUmg9QYFVC44HWYJkUQcgmkFh06si8Ia4RhMigGBO8o4B1x4O5yoeSwE+bxM3j3aK8U2Ztu8hbxdTod7xwdyF3+UsJutyMrKwtyuRwjR468amlAgUCAiIgIRERE8N+Rd9ZQdnY2XC4XJBIJ3G43UlNTERERAbfbjY8\/\/hjnzp0LOI6aBX\/TR72\/0541aaPRyPSZ9L7O32uo331f0a+IxwuhUAiBQACn04n29nYcO3YMJpMJQ4cO5W+oYBVtVjt7F00pvqg0FBUNUPY0tbXsY5RDdlMT+zNQJEjVySiBgFxO99pUVLAbNGkpNXunT6UM5XI5+b1SmwStVkcSD+t6S+qqsbeuEL8\/8DHCZHLcNf4G3GBKQkKHGFLr+YhPpYAozM+I7R4I6GyA8wo3JVvhxp8rGNPTcDkkOlUvLzt3RxciDH2I8kUCuDqcKD8ugOW6qb0OSyQSmM1mmM0e8YvXObqnV5per7+s\/Sl2ux2ZmZkICwtDSkpKv6o9SSQSGI1GGI1GuN1unDhxAi0tLZDL5fj973+P7du3Y9iwYfjyyy+xadMmzJ49+6Leh5o+2jMK7VnC8IeLeU1f0C+JB\/BEPeXl5SgtLcWQIUMQGxvrczzYWTy1rezdI7WYsXpqxGIxYRwaxuzoj4iIYKaSpFIpeS2UySdleUNFEBQpUY2AOp2OSTyBpNQU0VN1s+joaBQUFDCPUw27lChBoVCQ37s3Iu7o6sQ\/923FP88\/PjtlHOYmj0WyWAFNdRPpgBCM2ECkVUEoEsJeEZzCjYIwMgyicIWPa3Z3aPrQwwORAOXZUphS0wI+VSgUIioqClFRUUhKSuo12lqhUPAkpFarLxk59GfS6Q6O45Cbm4v29nZMmDABcrkc8fHxcLlc+OKLLyASiXDPPfdgzpw5WLZsWZ8IiDV91GTyKGWrq6thNpv5x2tra0llrslk6hXdBHpNX9Gv\/kpeRnW73eA4DmVlZUhLS+tFOgDQHmTzaFmt\/wVLIBAwoxqtVuNjEtgd3t2dP+h0OuZ1eG8Cf7BYLKR0m7Wj98z2ubj5PRQpyeVs4qHSJ99FSk1FQxqNmnlMIBCQfUwAOzKIjo4mlYasaPKr7CN4\/9xBzFr7Ou4+m44tEc2o1cvgFvv+nLxKMgoSs8YzWbS2mXyeIiVIApNJmQaqLpEQWktwYgBHqx0NHSaYRgUmHX\/weqWlpqZixowZSEpKgtPpRHZ2Nvbu3YuTJ0+isrIyaOmwP3R1deHo0aMIDw\/\/XpBOY2Mj0tLSeEHGkSNHsGbNGvz5z39Gc3Mz1q9fD7PZHJTc2XveRx55BBs2bMCuXbt6TR9NTEyEyWRCRkYG\/5jdbsfevXsxadIk5nknTpzo8xoA2L59O\/mavqLfRTxdXV04duwYOI7DsGHDmN3sHUH4tIklQpRU+a9VULNvjEYjMzrR6bQ+M967Q6Fg\/6gpU1GNRoPi4mK\/xwwGPZNAoqMtKCz03xyrVCrJYj1lAEqNSqCEFZSUWq2OJNVwLYQ9jUzG\/l41Gk0ARRs7FUmJLwBaZedt9MutLMVvKi8Ymt49\/gbM0A+ERiIHAszbkcYa4GwKoJbD+bHegYxDjWq4HS44CQLr1IZByOhj6g57QydqyjQwna8VfFf0HG3tdQcoLS3F6dOnoVKpeIFCsIPQurq6kJmZCaVSieHDh\/dr0jl79izq6+t9SGfr1q24\/\/77sWbNGixcuBAAMHXqVH4mWTAINH1UIBBg5cqVeOWVV5CUlISkpCS88sorCAsLw7Jly\/jz9Jw++thjj2HatGl47bXXsGDBAqSnp2PHjh1+03gXi35FPDabDd988w20Wm2vsbA9EUyNR20Ih7ueFZ2wZ98olWySoHLVVJMjtaOn0kEREWzFloeU\/ROPyWRiCh1UKhWZnqJIifqbUD9+s9lMNqxSVkKUgEKv9z+y2AtKlECl9\/wZlnaHv0ippcOKv+7ehE81UWhqasbc0RMwb8BoJDvDENHiu7OXDTTDXtEArpOeA+SRQhezn4MgR2MDwIjAk0C7amyorzPBMCQ54HMvBj3dATo7O\/mUXGFhYa9+GH\/3W2dnJzIzMxEZGYnhw4f32zECHMchPz8fNTU1SEtL43\/nO3bswPLly\/HPf\/4TS5YsuejzB5o+CgDPPPMMbDYbVqxYgaamJowfPx7bt2\/36eHpOX100qRJWLt2LZ5\/\/nm88MILGDhwID777LNL1sMD9DPiUSgUGDZsGAwGA44ePUrWIYKZxRMWxf541IJOqa+oxZX6AVALNvW7EYvZ7yeXswkrKopdrDeZjMxUm1QqJWsxFGFRQgeqhylQNEQp5bRa9rAxT82JTTzU\/RUdbcHZs\/4H7wG0vNtstqCxsQlfHDuIL44dBACkxA3AstFTkSrTI1wkBVdcDQExkgESEeSJpoCy6qDcqs+P2W4T0b5rtop2NLXGQzdoAPm8Swm5XI6YmBjExMTA5XKhqakJ9fX1Pv0w3mhILpfzpKNWqzFs2LB+TToFBQWoqqpCWloav2Hdu3cvli1bhr\/+9a+48847v\/N7BIJAIMCqVauwatUq5nN6Th8FgNtuuw233Xbbd7g6Gv2KeAQCAV\/ACmSbE0zEI1SwowyRiL2gU+9LmW5SRp7UPdLRwU612O0X1xdECQQoyWZMTDQzfScQCEihA0XK1DGLxUJGQ1QERi08gSahUgSrVtNpOIrQ\/PUVZZcW4telnpEHI4cMxQ0xyZhmSER0GyC2+RLCBeNQWlbN7OXpDqEAiuQY2HJKIElLYT6to6QNrY4kaBPjyPe8nOg+utrbD1NXV8f3DIWFhaGrqwtqtRpDhw7tt6QDAIWFhaioqEBaWhqvID1w4ABuv\/12vP3227j33nv79fVfbvQr4gF8p5BSBBBMxNNgvbhiNrVzp2TWlMKsoYGSS7NrKtTiSBEW1aNEpZg0Gg2TeEwmE5kSo8QMVKREWRBFRESQ8nWWCAQIXMOhSFQmY39HcrmcFEpQC4pEIsHpc\/k4mXsGq+ExNF00dgpujk\/BYIcC0i4XBBHSgLJqeXIsugpoQ1OIRZAPMMN2xlOTVMb6V7RZC1rRIRqOqBiz3+NXA937YRITE9Ha2so7EjQ3e0w2vSR1pXuGAqGoqIgXRnlJ5\/Dhw1iyZAleffVVPPDAAz9o0gH6IfF4EcivLZiIp8XG3pVSqi5qoaus9L8LFQgEzHqCUCgkd+30qAT264K1iekJitApCxS9Xse81kBSairio5VyZjLlVV\/Pfk+aYNkO4wBtYRQTE0NGUtSQvJiYaJ9R6y63G+uO7MO6I\/sAALfPvgXX2Y0YrdNC3dgFgbv3FxdMLw9kEshidBfGbwOI8uNK3ZrbAnvEaETq9OxzXWXYbDacOHECRqMRQ4YMAcdxaG5u7tUz5E3JXc2ZNsXFxSgpKcHYsWN5AUpmZiZuvfVWrFq1Cg8\/\/PAPnnSAfkw8gVNtgSMeq5O9sLBSJVSfTkREBDMaMhioEdM6Jin508x7oVKpmLWPQMPYqIZUipSoSIkyQA2U1qJmDVFET6UFKTscINAIbjNJPFTNKVAk1dHBrv9otTof4umJM5Ul+G\/2FgCASa3BvdfdiEnqWFha3BB1ueBO1MN2poTKsnocEPRqdBVc+G7cAkAX57sgt5xqgkM7Dsoodp3saqOjowOZmZm8HY1AIIBAIPAx7PT2DNXV1eHs2bO9LGqulOKtpKQERUVFGDt2LF+8P3HiBObPn49f\/epXWLlyZYh0zqPfEU\/3VBvVkR7M2OuSav87ZYVCztyVms1mplxap9MyiUer1TKJR6VSMYlHr9cxiYdynjabTcxGzkD9PVSaqLuFTE8IBOwfMCWlDhRdUKo1qqYWyA6HSlNS6T0ApDsDZYQqEolIJR3VIwX4\/m2qmxvx+vb\/AQAkIjF+\/KP5mNruMTSVt\/qPyITK8zN+ergpdKoVkEgv\/P0ajzdCYJkEZYDv4Wqio6MDR48ehdFoxODBg5mLtrdnKC4uDk6nk58omp2dDbfbDa1Wy9v4UFHwd0FZWRkKCwuRmprK31s5OTmYN28ennjiCTzzzDMh0umG\/il+h2c3+10iHnm4BDUN\/hcPvZ6dVqBUUgYDu3OX42jJLwtUaouykaGaVaOj2Q2pMpmMrLdQdSpqI0AtxlTzLED3y1ApL+o7AOgaDqUy1Ol0ZJ2Pqg9aLBbyOHVPq1QqZvTncDlxuqUG9\/z3L5i86U08VrUHB6JsaNHKL0ynVsohUEj8OiA4jRei1fqjDRDFTUNYPyad9vZ2HD16FCaTiSSdnhCLxTAajRg+fDimTZuG1NRUhIWFoaSkBPv27cORI0dQVFQEq9UalCosGJSXlyM\/Px9jxozh1Zu5ubmYO3cufv7zn+P5558PkU4P9LuIxwsq1eZ0uGDvOdq4B9SGMICxaaV2u5SHGSWzps5JhfrUYk4p0yIi2NdJ9ffodFrmbj6Qdc\/FNpaqVGwCDTRLhxpIR8vJ6bEPVCRlNpvJ9B8VSen1embE7Hktu7YYHW0J2uboQF42DuRlAwDidEbce90NGBlhRkKDFf4olTvvSr3r03KkzbkZsn42zqA7vKRjsVgwaNCgi160u\/cMDRo0iO8Zqqur43uGvHWhqKioixqhUFFRgbNnz2LMmDF8Wjg\/Px9z587Ffffdh9\/+9rch0vGDfkc83j8SJS4IRtEmj2T\/sakFnSKJYMZx+wO1yFGFUGrnTKW9qIZUk4mdorNYzOR4aVbDLUArAcVi9g\/aZKJn6VCyZauVvUibTGaSeKioj6plAXQaLiyM\/d0D9HdI9ToBbMIrra\/BJ7mH8LvCIsilMtx53QzMtCQjsUPCG5pKLeHY+Pdi7N3QhsmL+i\/pWK1WZGZmIjo6GgMHDryki7a\/nqG6ujqcOXMGdrsdWq2Wrw0FM2eoqqoKeXl5GD16NO+wUlRUhLlz52LJkiX4wx\/+0G8dFa42+h3xeEFFPMEo2jgpO0VDpcXIuhIh3W1tpcYhsBdIavdMRR8UmVEpBIqUNBotk3iMRuNF+8JRBErN0gkctbDPS1kUCQQCkjyoxSJQhEbdW4FqXYEkwdQ1a7UeGXynvQsfHPgKH+ArAMCNw1NxS+JIOA80Y3t6LYZMMqGwsBB6vT5oe5orBS\/pxMTEYMCAAZf12rr3DHEcB6vVivr6elRWViI3NxcRERF8NKRSqXpdS3V1Nc6cOYNRo0bx829KS0tx8803Y+7cuXj77bdDpEOg3xIPFfEUnC0O+Hqbu5l5jFq0qXoD1YtDO12zz0nJpak5PFTvD93Iyl4YKVIyGtmqvUBSakohRqU3zGY6aqHOS5Ed5dMHeOS77NfSEVprKzvy8zoasEDdlzqdjkz\/sfzsduZkYWdOFpaNfBEAYIrVoq2tDcXFxZBIJPwAs6ioqKu6ULa1tSEzMxOxsbEYOHDgFX1v74whpVKJxMRE2O123sbHayfjddb2egPm5ORg1KhRvE1WZWUlbrnlFsycORPvvPNOiHQCoN8RT\/dhcD0jHrfbjTNnzqDgrP\/6RXc0tl+cMzNroROJRKTMmpW68djB+I9qKLm0VCol00yUIzO1QFGqNUqj6+1J8IdAUmqqyE9NM6XqZoFGGlCLuF6vJ4mH6sMJtKBQmwwqugPoviyLha47UdJxkUiMxirPZiRuoAmjRo3ySTXl5OTA6XTy6i+dTnfZ1F\/+4CWduLg4DBhw5ex6WJBKpbBYLLBYLHC73XzPUH5+Pmw2GziOQ3R0NP+dV1dX45ZbbsHkyZPx3nvvXbZx29cS+h3xeCESiXx+THa7HcePH4fD4UBi7CAAJ8jXVzYUM4+xFhalUsnscTEY9EwZstFoZNY4jEYjk3gozzSLxcJ0rKZ2vyKRKMD8HsoFgE1K1IJLSakDpaZqatgLtUTCFnNER0eTZEelTCUS9m0vEolQUcEmdSr9o1QqSVVgIINVajPR3dTRH6joLyl2GJxNnk2cxqTkr8WbahoyZAisVitqa2tRVlaG06dPIzIykieh8PDwy5b2am1tRWZmJhISEnrZ+vcHCIVCvmcoKioKJ06cgMVigc1mw\/Tp0yEQCCCTyRAbG4t\/\/OMfIdIJEv02HvTKqTmOQ1tbGw4ePAiJRILx48fD0RVYBllUedbv41FRUcxFyWxmy34pEQA1L4ZqgKSOefPG\/kANZFKr1czamEQiIXfk1E6fiiC+i5SaStFRUmqK7AC6iE+dNzraQkYPVB0mOpqeR0SRYUxM9HeaTUORVoLxgtN0lKE3gXlTTQMHDsT48eMxZcqU82nOJhw+fBhff\/018vLy0NjYSDYY9xUtLS3IzMxEYmJivySd7mhoaEB2djZSUlIwfPhwjB07Flu3bkVcnMfb7tSpU7BYLFi2bBlyc3Ov8tX2f\/Q74umeagM8YeyhQ4dgsVgwevRoiMXigNNHVRoF2tr9Rxl6Pbv3g1IVUb041MJL7dqpdAZVb6F2vxRhRUdbmAuHWCwmnRComhKl9qOuldoEBHpPSnVkNBpJHztqVxoVoIufit6ojQRAp0AD9SRRdTsq4gYAXcSFcQjeiIeCV\/01ZswYzJgxA4MHD4bL5fIZ4lZVVUXW0QKhpaUFWVlZGDBgABISEi76PFcCjY2NOHHiBIYOHcpv+pqamnDfffchKioKOTk5qKqqwtatWzFw4EByPQjBg35HPF54F4dTp04hJSUFSUlJPCkFUrUp9ew\/PLUQUkRA7XQpFRm1Q6SO0aMS2AsnRayUjNxsNpMEcrFSaomEfa0xMfR8GErFRUUlRqOBPC+VDnO5qFqJiLwmapPhGeXOjkoC+YtRbgiBRhLLuAsbKo2Blor3hEgkgsFgwLBhw3waMouLi7F3714cPXoUJSUlJDH2RHNzM7KysjBw4EDEx8f36XquNJqamnD8+HEMGTKEHx\/d2tqKRYsWwWAw4H\/\/+x+kUilEIhEmTJiAl19++ZJEb3\/7298wcuRIqFQqqFQqTJw4EV9++SV\/nOM4rFq1ChaLBQqFAjNmzOg1ubSrqwu\/+MUv+HTp\/PnzUV5e3vOtrgr6JfG4XC6cOnUKADBy5Mhe6ZpAY68lEWwiuFi1CT0Ogb27phZlqqZC\/ZCpRZf6fJTEmNpxGwwG8jPSRX52+ojaBOh0OvL7oQQigTYXVA2MEjRYLGZyl0\/dI7GxMeTfjdqEeNyw2dccqOfE2eYhf6lcjAg13WdEwduQOWjQIEycOBGTJ08+P623Ad988w2++eYb5Ofno6mpibkZa2pqwrFjxzBo0CA+TdVf0dzcjGPHjiE5OZkf6261WnHrrbdCqVRi48aNQfX7XAxiYmLwhz\/8AUePHsXRo0dxww03YMGCBTy5vP7663jrrbfwzjvv4MiRIzCZTJg5c6ZPjXrlypXYuHEj1q5diwMHDsBqtWLu3LkX3Y94KdHviKezsxPffvstbDYbxGKx351goLHXLtGlJwKqF4caMU2lV6hCP9XgSF0L7YRAKZXYZE3tqL+LlJoiSZOJ3sVTtSqAHS7GxESTizxloBrIZ42SSgdKpVFEGhMTQ0bV7e3sexoAmqo9v4eoPkY7gaBQKBAbG4vU1FTMmDEDAwcORFdXF06cOIG9e\/fi1KlTqKmp4QnXSzpJSUmIjY29pNdyqdHS0sJfa3S0JzJvb2\/HbbfdBolEgvT0dDId\/l0xb9483HzzzRg8eDAGDx6M3\/\/+94iIiMChQ4fAcRxWr16N5557DrfeeitGjBiBDz\/8EB0dHfjkk0\/463\/\/\/ffx5ptv4qabbsKYMWPw73\/\/G9nZ2dixY8dlu+5g0e+Ih+M4qNVqXHfddcxenkDOBVYHe9Gm1Dl0g6T\/hU4gEDB3o55ivv9zelyw2eekduV0rxH7s1NRFPW9UPY83p0gC1RqiooQKOmxSqUiPyfVh0PVwABa+q3X0yk8Sg0XaGdMRTSB3LApUrLo4\/iNmsYYuL5zsfB6pI0YMQLTp0\/H6NGjIZPJUFBQgD179uDQoUO8kCAmJuayXcelgLf+NHDgQJ4gbTYb7rjjDrhcLnzxxRdke8Glhsvlwtq1a9He3o6JEyeiqKgI1dXVmDVrFv8cmUyG6dOn45tvvgHgGcXgcDh8nmOxWDBixAj+OVcT\/Y54wsLCMHToUAiFQqZ7QYeVjnjq29iLHWsHLhAImBGISqViRhkmk4mZfrFYzMzdNXXMZDIxFU4qlZIsulMLGN1xzzxEpogodVmgdBkV1QmF7NqQxUIPLKOiTIoAwsLCyO+IglarJQmPSm+o1ZEkkQbqqaFeOyhmOP\/fUZeReLpDIBBArVYjKSkJkyZNwrBhw2C1WqFQKFBQUICDBw\/i3LlzaGlpuWRGnZcKbW1tvOjBmwrs6urCXXfdhba2NmzZsiWgs\/mlQnZ2NiIiIiCTyfDzn\/8cGzduxLBhw\/iNZ89MhNFo5I9VV1dDKpXyVj7+nnM10e+IpztYEU8gVVtZbaHfxynLeo1Gw1xgqbQPVcyndtfejue+npNSThmNRmaqzTO\/h4qU2AsuRR6UgieQ99jFRkORkWrmMU8fE\/u8FAEEioba2tgprUBkSFkqBYoaqbpSeHg4Gamb1BeK9xrjldule9HQ0IDc3FwMGzYMkydPxvTp05GYmAibzYasrCzs27cPOTk5qK2tveq1B28ja0JCAi96sNvtuPfee1FbW4tt27YFVC5eSiQnJ+P48eM4dOgQHnroIdx33304ffo0f7xnloLjuID9VsE850qg3xFP9y+FFfFQs3iEIgFKqvzP4TGbTcybm0rtUOMJKDdrSqlEHaPCeKpwbjCwU0FmMzsyCzRUjuovsdvZfwuFgh1dmM1msh5FRUNUA2igPhyqhvNdxjcEIllKTRTotVTtKJAyMEJ0YYPjr4fncqK+vp6XIXvJVSKRwGQyISUlBdOnT0dKSgrEYjHOnj2LPXv24NixYygvLyfvjcsBr09cXFwcr0pzOBz4yU9+gpKSEmzfvj3gxuRSQyqVYtCgQUhLS8Orr76KUaNG4U9\/+hN\/n\/a8H2tra\/koyJs16Zkd6f6cq4l+RzyAby+P34iHULWpDeFwOP0vsFSUYTSyFx2JhJ3qoHpCqJ0FdexiXQKoWoyOGG1MkRJA1z0ogQS1oBoM9KhlKhpyONjEEqiIT6vDaBk+JcOmUkYqlZI0gw3U7V5RwSYttTpA\/cd24TMF08NzqVBXV4eTJ09i2LBhvAy5J7yuAMnJyZg8eTImTJiAqKgoVFVV4cCBAzh06BAKCgrQ2tp6WVNy7e3tPuakgCe9\/NOf\/hS5ubnIyMgIeF9dCXAch66uLiQmJsJkMiEjI4M\/ZrfbsXfvXkyaNAkAMHbsWEgkEp\/nVFVV4dSpU\/xzrib6rWUOwB4GR\/XxiMLY4ToVnVC9MVRNhYoGqF0bdYw6p9vN\/gFSC1hEBDvC0un0zIVer9eTCy6VhqM+BxXVmc1mkiCam9l\/D4WC\/TkDiRIoQrNYLMjLy2Mep76HmJgYnD59hnk8UBRGRVpU9AcA1voLG4rLKS7oDi\/pjBgxIujdtUAgQHh4OMLDw5GQkOBj1FlSUgKxWMxb+Gg0mktmTeMdrW2xWHhzUpfLhYcffhjHjh3Dnj17rkqE8Oyzz2LOnDmIjY1FW1sb1q5diz179mDbtm0QCARYuXIlXnnlFSQlJSEpKQmvvPIKwsLCsGzZMgCeTd\/999+PJ598ElqtFhqNBk899RRSUlJw0003XfHP0xP9mnhYRqE2K3tBc4nYyi0qkqB2\/NRNThuOshdI6hjL2w2g5eC05Qr7s1OkZDQamMQTSEpNRS1UxOfxxWMTDxWBUe7bFov5ov9egXL7VJ2Fqkl5Xks3h1LEQ9XClOGRaK65QIhXosZTW1uL7OzsPpGOP\/Q06vQamubm5vKzc7xEdLFOATabDZmZmTAajfzAObfbjcceewzffPMNdu\/eHbD+drlQU1ODe+65B1VVVYiMjMTIkSOxbds2zJw5EwDwzDPPwGazYcWKFWhqasL48eOxfft2n1T822+\/DbFYjNtvvx02mw033ngj1qxZ0y\/85Po18fgTF9isdjLslqnYCxpVN6B2nZQ1PyWhpRZP6hi10FDRB0VYXV1UzpxNSlRNKZArNdXDQ418oCLTQOMBqMgjEAFQogRq+qxCoSDHW4hE7O9XJBIFUNLRKSYqghscOwJct9vsckc8NTU1vNMIVW\/sK4RCIbRaLbRaLZKTk\/nZORUVFThz5gxUKhVPQsHOGLLZbDh69Cj0ej0\/WtvtduOpp57Crl27sHv37qva4Pr++++TxwUCAVatWoVVq1YxnyOXy\/GXv\/wFf\/nLXy7x1X139EviEQgE4DgOIpGo144uUA9Paxd7UaLkrqxdp1AoZBIB5WZNLZBU+kqtVjMXbJlMRi5wF9vf09l5sb5mauaxQCm6yko2YQdqLKWIh4oehEL2ghToeqnIIiYmGvn5bAIO9NqSklLmcSoSFwqF5MYnRjcI7eeJ57u6FgSCl3RGjhxJ+hp+V\/ScndPV1eV3nDU1Y6izsxOZmZnQ6XRITk7mSefXv\/41tmzZgt27d\/d709LvO\/qluMALfxFPINeCmmb2vHtWRED1b5hMpouSWVOFfqqwTtnaWCxmZrSn0USRaSQqwqIiwYuddEp9N0KhkHTCpjYIVAQWaEYPFbkGckqgXhtI7UQJMAIVrSnit1gs5N9HLb\/wmS61a0F3VFdXIycn57KTjj\/IZDJER0dj9OjRmDFjBoYMGQKO45CTk4M9e\/bgxIkTqKys5NPQXV1dyMzMRFRUFIYMGcKTzqpVq7Bu3Trs2LEDgwYNuqKf4YeIfk08\/mo8HVY64imtKfD7uFLJbrykZLQ6HVsJR+X9KQWdUskmF6o57WJHJVD9PYFcEqj0HU0QlHjg4lV0gRZiigwpQUegeTeUsoxq8Aw03yeQ7Qo1DDCQhY\/YeWHzc7mk1FVVVTh9+vRVIZ2eEIlE0Ov1GDp0KKZOnYq0tDRERESgtLQU+\/btw+HDh3Hw4EGEh4dj6NChfGbl1Vdfxccff4wdO3YgOTk58BuF8J3Rb1NtgH85dWsTWzwgU4hRWe0\/bWE0GplpMY0mCoX+e07JyIUqalILCtX7QkmQqa57lYr9OmpsdaDiNRUpUaCcB\/R6topOKBRedMpLq41Cgf99BwB6EafSe0ajkYykKBKNjragtJQdhVNNkxEREWTqUK\/X49w59gfubLpAwpdDSl1ZWYnc3FyfEdD9BQKBgHd2HjhwINra2nDs2DEIhUI0NDRg+fLlkMvlCA8Px7p167Br1y4MHz488IlDuCTo1xFPTzl1R0cHTmadYj5fbWSrs6gmUIpAqAWUMpt0OtkLCrXY0N3b7BoFJaulivXULlWn05EquoslCOp6AjWAUuRBjX3wOGyzNy1U9BY4DcdWwwWKAihHg0CD5agaulAoQkPFhb\/dpU61VVRUIDc3F6NHj+53pNMTDocDp06dglqtxpQpUzBjxgzMnTsXpaWl+PDDD+FwOPDaa69h7dq1pCAmhEuHfk083VNtjY2NOHjwIEQCYuga8du6WPtySqJMLWRtbex6C7VDphYxm40alcAmLCo9RaXEqLk2gaTU1OegVEeBG0DZ0RlFWIHIg6rDBDKEpGTjgVJplJKup89WT1Au5QMsg+F0XNgYOdBxyWxpysvLkZeXh9GjR1\/xbv6+wuFwIDMzEwqFAiNGjIBQKDxfY6zHyZMnsXv3bmRkZGDAgAF49dVX8d\/\/\/vdqX\/IPAv2SeLwLk1dcUF5ejszMTCQlJSEynP1jbOu6uM5yStpLFewppRi1KNMu2OwdPfV+1HVS0QeVYqJqUaxudC+oBZUi7LAwdjRkNpvJjQBFdhR5BPJ3o2AwGMiokIqKo6LU5DVTwwcBuhY2MNo3bRRljEB+fr6PLQ11X7BQVlaGs2fPYsyYMd8L0snKyoJMJsPIkSMhFArBcRzef\/99vPzyy9i8eTMmTpyI8ePH43e\/+x1OnDiBBx988JK896uvvopx48ZBqVTCYDBg4cKFvRqQly9fDoFA4PNvwoQJPs\/pz8Pcvgv6JfF4IRQKYbfbkZeXh9TUVMTGxsLawk6JQM6OJKhUCtUJz5IvU\/5mCoWCmYYKDw9jEohcLmeG+oH81Cgyo9IH1OJDTQ+lrPoDjZ6m5NBU38p3sdmhCDYmJpqMlqjPEiiSolJplE0TQP9tNJookrS6j7sGgGEjB\/nY0lRWVmL\/\/v349ttvUVRUBKvVGtCWpqysDOfOnUNqamrAaOxqw+l04tixY5BIJBg1ahRPOh9\/\/DGee+45pKenY8qUKb1ed6kMNPfu3YuHH34Yhw4dQkZGBpxOJ2bNmtWrz+xHP\/oRqqqq+H9bt271Od6fh7l9F\/RLcQHguXFyc3PBcRzGjx+P8PBwuFwuso+nw8VWYFFGi6z0jUqlYi7aJpOJuUs2m80oZKgV1OootLf73\/FbLBbm67RaDTMdFBERQTYhUjtjavGyWi\/OlZoSM3iiC\/b1sL4bgBZ6REZGkn5oVGOpVqsje2nq6thRaKA0HLVZoBpLATrCtVgs5D0tRySAC5GYV1zQ3ZamZw+MTCaDXq+HwWBAZGSkD1mXlpaioKAAY8aMuaIOzRcDl8uFY8eOQSQS+ZDOp59+iqeeegqff\/45ZsyYcVmvYdu2bT7\/\/8EHH8BgMCAzMxPTpk3jH5fJZExVrXeY28cff8zb3Pz73\/9GbGwsduzYgdmzZ1++D3CZ0S8jHpvNxk\/aAzx\/HJfLBbfbjYRhRkQxrD+qGkqY52Qpt3Q6HTMaomoclMya2g1STZdUFEFZd1CRgFarJRddKsVEiQcCqbFYCCQeqK9nvyclrgg0LI2SNIeFseswMpmMJEoqkvJ4w7E3BFTdUSAQkNdMuakDgLPNd0\/pT07dswdm8ODBcDqdOHHiBPbt28dPEC0qKkJBQQFSU1O\/N6QjEAgwevRovr65fv16rFy5Ev\/973+vileZd1PUMz25Z88eGAwGDB48GA8++KCPeKa\/D3P7Lui3xKPRaDBmzBj+\/zmOg1AoxI\/uScO7Xz+Eu343DhMWDIAu+kIdoqjqrN\/z6fV6Zg8HRS6UEo5aXKlxANQPl1qIKCWYRMK2c6FSQR6lF5WCvDjPOGoxpsQDEomEXOSpdCn1\/YhEIjI6oOowXq8wFqh6VWBVGptIo6Pp5lBKbQkAzdUX7nepXAxlFC1yEIlEMBgMGD58OD9BVCqV4syZMzh37hzCw8PR1tZ2UXWhKwWXy4Xjx4+D4zgf0klPT8dDDz2ETz75BDfffPMVvy6O4\/DEE09gypQpGDFiBP\/4nDlz8J\/\/\/Ae7du3Cm2++iSNHjuCGG27gv+P+Psztu6Bfptq0Wi2USiWcTieioqJw8OBBaLVaGAwGyGQyjzXHpAG4bfmPIBQKkX+8Aoe3n0HRvz9HS1vv9ITBwDa6pBoHZTI2EVCLK5Urv9hjgRbzvDz\/pBsRwf58RqOBKU\/WaKLIxZqqKVGLE+UeHRMTjaKiYuZxqjZE9T8F6qWhfsQ6nRZFRUXM45QaLlB0QEWUBoMB5eXsiIciPJM2Bu0tF4hHre+blNo7QdSbhh05ciRsNhvft+P1RtPr9QgPD+8Xg8XcbjdOnDgBl8uF1NRUXpixZcsWPPDAA\/jwww8xf\/78q3JtjzzyCE6ePIkDBw74PL506VL+v0eMGIG0tDTEx8djy5YtuPXWW5nn6y\/D3L4L+iXx1NXVQS6XQygUYuzYsbDZbHzIb7PZEBYWhoiICDgcDshkMiSNjkbS6Gjc\/cwxZGefwuefpyM9fRPOnMkFQEcnlHKI2ulS6ipqZ06lvajo42Kta9rb2ZEJ9b2YTCYm8QSSUlO1CUo8oNVqmcQjFovJaIiSqOt0OpJ4KFkyFYV6IjR2qpKSsYvF4gAybDZBA7RqMiluBNCtVHgx5qCFhYUoLS3F2LFj+c1ZX+tCVwpe0nE4HD6kk5GRgR\/\/+Mf417\/+hdtuu+2KXxcA\/OIXv8CmTZuwb98+xMTEkM81m82Ij49Hfr5nkGX3YW7do57a2tp+MVPnu6Bfptoef\/xxJCUl4dFHH8XOnTshEAjwpz\/9Cbt378bw4cMRExPDq3KOHj2K0tJSPpWWkjICL7zwHI4ePYysrCN48cXnERcXy3wvqv+F2lVShWwqr095lFGvo5RpVNqLWjiphZFyQggkpaYK6pR4gLKACVQbokQS1CIeSJhB\/Z1jY2PIWlcgc1Dq81DjHaRSKUl4psh4n\/9n1URZKCgo6EU6XgRbF6I+26WE2+1GdnY2urq6kJqayqed9+zZg7vuugvvvvsu7rjjjityLd3BcRweeeQRbNiwAbt27QrKdLShoQFlZWX876u\/D3P7LuiXEc9HH32EPXv2YN26dfjpT38Kp9MJkUiEZ599FhqNBnK5HPHx8ejs7ERdXR1qampw9uxZqFQqGAwGGI1GKBQKJCcPxjPPPA0A+M1vnkN6+hf4\/PN0ZGZm8VGC1cqWu1LmmSyZtcf7zP+iIBKJmGmdQHJpegooe\/dLkRL1+ajBeBoN25om0OAySiFGRW5arZZUnlHRA8BexKOjLcw0JUBvPrRaDQoL2Wk4apOh0+lQXMwWw1Ay7JiYGKb6EQAixFo04UKqLdiIh+M4FBQUoKKigvc5o+CtCxkMBnAch5aWFtTV1eHcuXM4deoUNBoNn5K72Jk5FNxuN06dOoWOjg5+kQaAAwcOYOnSpVi9ejXuueeeq5KWevjhh\/HJJ58gPT0dSqWS\/01ERkZCoVDAarVi1apVWLx4McxmM4qLi\/Hss89Cp9Nh0aJF\/HP78zC374J+STxisRg33XQThg0bhqNHj8LhcGDChAn44x\/\/iN\/85jeYM2cOFi5ciJtuugmxsbGIjY2F3W5HbW0tamtrce7cOURERMBoNMJgMCA8PBwDBgzA448\/hscffwzl5eVIT\/8C6embmAuHQCAgZdasnXBUVBRzQTebTcy8vdlsYi6e1IiFQKMSqE5\/KvqgUlfUImIw6JnEI5VKyetpa2OnIcPCqGF1tJdaWxubfAPVYSjyoNpehEIh2egXyEmjqopNpDqdhiQeQacc8CGewBFPd9IZO3ZsQNLp9Z7n60JqtRpJSUlob29HXV0dqqqqkJubyzdSXqq6kNeB2mq1Ii0tjTdqPXToEJYsWYI\/\/OEPuP\/++69aLeRvf\/sbAPSSbX\/wwQdYvnw5RCIRsrOz8dFHH6G5uRlmsxnXX389Pvvss+\/NMLfvgn5JPIDnxrrlllswevRo\/P3vf4dMJoPb7cahQ4ewfv16PPvss3jggQcwe\/ZsLFy4ELNnz0ZMTAxiYmLgcDj4SKigoADh4eF8JBQeHo6YmBg8\/PBDePjhh1BdXYPNmzdj48Z0HDjwNZ8iMJlMzAjEZDIynQJ0Oh2TeHQ6HZN4dDodk3iMRgOTeCwWM7MuEhnJJkiA9j27WCk1ZcETHW0hxQMUeVDO0gYDu28o0HkpZ2mPs0Az8zhV5zMajWQES32HanUkWSejPOkAwFrnu2kIFPFwHIdz586hsrISaWlppEIwWPQcY11XV9erLqTX66FWq\/tcF+I4DqdPn0Zra6sP6WRmZuLWW2\/FSy+9hBUrVlzVAnygZlyFQoGvvvoq4Hn68zC374J+SzwCgQCbNm1CTEwMfwMJhUJMmjQJkyZNwhtvvIGsrCysW7cOL7\/8Mn72s5\/hpptuwoIFC3DzzTfDbDbDYvHUBerq6lBbW4vi4mIoFAo+PaBUKmEyGfHAA\/fjgQfuR0NDIzZv3oL09E38bs0f6HEIbBsR6gdNHaOUd1FRGuZibjabmYVzlUpJpnOo4jWVvhMI2IsIJR5QKBQkEVJpQYrswsLCSBsiijwsFgtJPFR9MNDiTQkaLBYLKWWnotFwRQSaanwjR4p4OI5Dfn4+qqurLxnp9IRUKkV0dDSio6PhcrnQ0NCAuro6nDx5EoBn06XX66HVagPaBHEchzNnzqCpqQlpaWl89H3ixAksWLAAzz77LB577LHvverrWke\/JR4AiI1liwKEQiHS0tKQlpaGV155BdnZ2Vi3bh3eeustrFixAjfeeCPmz5+PuXPnwmQywWw2w+Vyob6+HjU1NTh69CikUikfCalUKmi1Gtx33z2477570Nraiq1bt+Hzz9OxY8dOH6UatUumaiPUj4Ha9VF9OlTzIyUxNpstaG3N83ss0E6fSpdRkQmVXrJYLCggZhpQaUHqu4uOtpDTQanPSQksALr5NtCsHOq1gUZ0U9ecHJ\/iM+4aAKIYxMNxHM6ePYuamhqkpaWR6cxLhe9SF+I4Drm5uWhsbERaWhp\/P506dQrz5s3DE088gaeffjpEOt8D9GviCRZCoRCjRo3CqFGj8Nvf\/hZnzpzBunXr8N577+HRRx\/FtGnTsHDhQsybN48nGu\/Oq7a2FllZWRCLxfwPQq1WQ6VS4Y47bscdd9yO9vZ2fPXVdqSnb8K2bdtJmXVXF3sHTamcqNdRO1wqpKcIi3JQMJlMzMVNLpeT\/TRUZEIptbRaDZN45HIZGQ1R8vVAnmKUOwBlaROoz4ka6BcVRfusBbLSoWpHMdpB6OhBPP4iHo7jkJeXh7q6uitGOj3Rl7pQWFgY8vPzUV9f70M6Z86cwbx58\/DQQw\/hueeeC5HO9wTXBPF0h0AgwLBhw\/Cb3\/wGL7zwAs6dO4d169bho48+wuOPP45JkyZh4cKFmD9\/PkwmEwwGA9xuNxobG1FTU4MTJ05AIBDwBKVWqxEeHo5bb12EW29dhM7OTmRk7IRSGYGvvz7YK+1EuURTkmjqGHVOqveHkrRSKQ26GTOaSRAemxf2Tv5ivd+io2PIaIgiQuq8er2erGVR0ZvZTHulUYKGyEgVSTzU+wYSUkQpTOjAhRSgRCbq5VrgjRy8i3ig0Q1XClRdyOu3NnToUP7ezc\/Px9y5c7F8+XK89NJLIdL5HqFf9vFcKggEAiQlJeHXv\/41Dh8+jPz8fMyfPx\/r1q1DcnIyZs2ahXfeeQcVFRXQarUYPnw4pk2bxttaZGdnY9++fTh9+jTq6+vhdrvBcRy02ig8\/\/yzKC4+h40b12P58nt57zZKYUZJoqlCNHXOhgb2osuauArQURRFSpQnmlarJaM6KmqhSJJ6z0Cmo3Y7+3OazbQ7NBW9BfJKoyTlgVypKTIM5IYtdvrWu3p6tHlrJA0NDf2KdHrCWxcaNWoU33ip1WrxzTffIC4uDgsWLMC8efOwaNEivPrqq1elcTWEi8cP5q8lEAiQkJCAJ598EgcOHEBxcTGWLl2KLVu2YMSIEbj++uuxevVqlJSUQKPRYOjQoZg2bRpGjRoFkUiE06dPY8+ePfjmm28gl8uRkpIChUKBWbNuwl\/\/+hcUFuZj69YvsHTpEr9us5RZp0ajYRbslUolcwH09P6wFzhq8aPUbhcrpaa8yeRyOUmglNCBek+LxUJeb0tLM\/MYJRn2yKGpNBw1XE9Jkgc1LVYkEpHvG0jm3Nnsm3rtPnnUqwbz1kj6K+l0R2FhIaqrq3Hddddh1KhRWLBgAVavXo3GxkZYrVb83\/\/9H+bOnYv33nuPFL2E0L\/wgyGe7hAIBIiJicGjjz6KPXv2oKysDD\/+8Y+xa9cujB49GlOmTMHrr7+O\/Px8qNVqJCcno7m5GV1dXVCpVOjo6MD+\/ftx8uRJ1NTUwOVyQSQSYfr0aXjrrT8iP\/8Mduz4Cg8\/vIIXSBgMbDNSahfLskwHPDt21qIbFsae+wPQERaV2qPqW9SiGBWlJutR1dUXJz3W6wNNLL04Z2mLhR46R9WVApmDBnrtxc5aEQqFaKz0FWF4xyF4Sae5udmnRtKfUVhYiLKyMowdO5ZX29XW1uLll19GamoqP0X0+uuvx9q1awNKmEPoP\/hBEk93CAQCmEwmPPTQQ8jIyEBVVRUeeeQRHD58GOPHj8eECRNw991348c\/\/jGcTifGjRuHyZMn8wXZc+fOYc+ePThx4gSqqqrgdDohFAoxceIEvP76q8jNPYV9+3bhzjuXYuDAAX6vgZr0SYkA9Hr2OATKWVutjiTlvFTqikrfUWMLoqOjmceUSuVFT1el7HA0Gg35Oan6mF7P3igA9HcU2ByUnR6lNigAnf4bGDMEji7flKXGEME3WzY3N2Ps2LHfC9IpLi7mbXu8G5rq6mrcfPPNmDp1Kv7+979DKBRi8ODBePrpp7F7926y7aAvCGZ6KMdxWLVqFSwWCxQKBWbMmIGcnByf51yr00MvBX7wxNMdAoEAOp0O999\/P7Zu3YrKykrExMRg69atsFgs+M1vfoNVq1bh5MmTiIiIwKBBgzBp0iSMHz8eERERKC4u5kcLV1ZW8tHI2LFj8eSTj+PkyWM4ePAAfvWrZzB06BD+faVStvqMkm5TSiSKlEwmttdaoKbTi23ypBa7yEg28QJ0ypBSygWq4VCihPBw9ncrFAovOpUWyFg0EClQ6cpE05Bej0UZI3Dq1Cm+2fL7QDolJSUoKipCamoqTya1tbWYO3cuxo4di\/fff\/+ydu4HMz309ddfx1tvvYV33nkHR44cgclkwsyZM302Ztfq9NBLgWtO1Xap0NXVhZ\/97GcoKCjAqVOnYDAYsHnzZmzYsAEzZ86EwWDAggULsHDhQowdOxYDBw7EwIED0d7ejtraWpSWluL06dPQaDS8TFsqlWLkyBSMHJmCF154Dnl5Z\/H55+k4deoU8zqo1BaVKqJ2f9RCbzZbmFFCYFdqtr0M9TmioqKYdQ3PMDX2Lp9SylGSZo\/bNZsAqOv12AJRYyHYKbpAox+oplSlUkmq4aIUZvT8C3Q4WtDWJsbYsWMvi1\/apUZZWRkKCwuRmprK\/\/0aGhowf\/58DB06FB999FHAJtPvikDTQzmOw+rVq\/Hcc8\/x4ws+\/PBDGI1GfPLJJ\/jZz352TU8PvRQIRTwMSCQSDB8+HAcPHsSgQYOgUqmwbNkyrFu3DjU1NXj99ddRXV2NefPmYfjw4fjlL3\/JCw8SExMxYcIETJ48GRqNBpWVldi3bx+OHj2KsrIyPjJITh6MX\/7yaXz88YfIzj6G3\/3utxg3Ls1HFkotrFSE4XazFzAqiqJJiR0pCYVCciGnUnSUfDvQZFFKKUftigO5XVPjKwLVcCgC1mrZk2sBWgwR6H2d1t6fVxIGnw7\/\/ozy8nKcO3cOY8aM4e+JpqYmLFiwAAkJCfj000\/J3rTLhZ7TQ4uKilBdXe0zGVQmk2H69On8ZNBreXropUCIeBgQiUR46aWX\/C4U4eHhuO222\/Dpp5+ipqYGf\/7zn9HS0oLbb78dycnJeOKJJ7Bv3z5IJBIkJCTguuuuw5QpU2AwGFBdXY0DBw7gyJEjKCkp4QvNXhPTPXt2Ii8vB2+88RomT55EyqWpPhKKsCiJMfXDpkjAbDaRxXgqRUcRAEVKcrn8olN\/1CRUgE5pUXWlQL1MgVJdFHkHqh1FiHrfq\/roKDQ3N\/f79E5FRQXOnj2L0aNH85+zpaUFixYtgtFoxP\/+9z9yw3S54G96qDf1azT6ioK6Twa9lqeHXgqEUm3fEQqFAgsWLMCCBQtgt9uxY8cOrF+\/HnfffTeEQiHmzp2LRYsWYdq0aYiLi0NcXBy6urp4J+38\/HwolUreSTssLAzR0dFYseLnWLHi56ipqcUXX3yBzz\/fhP37D\/gs0tQiRaXEWlvZNRyKBAI1Y7IW3PDwcPJ6qJoSlS4zGg3kqAQqRUeNJw8PDycJjR6VbSaJh0qlabVaMloKlGJqqendQ6UzR+Ls2bPo6urip\/jqdLqrsoizUFlZiby8PIwePZpfqNva2rB48WKoVCps2LDhqkVsrOmhQG8LrGAmg14L00MvBUIRzyWEVCrFzTffjPfffx9VVVX45JNPIJVK8eCDD2LAgAH4+c9\/zuePY2NjMXbsWEybNg0xMTFobGzEN998g4MHD6KwsJDvSTAaDXjggfuxeXM6Cgvz8e67dE7bcgAAM8xJREFU72D27FmIjrYwd\/QymYxcOKndPEUC1IJLmUtaLPTgOLoBlB1FUeIKai4SALjdbOltoOul0oaBVGkU6Qd6X6o516i1wNrsez9IZCKMGZeCyZMnY\/z48VCpVCgtLeXTvqWlpaS0+0qguroaubm5GDVqFJ\/Kam9vx5IlSyCRSJCenn7V+o2800N3797tMz3U2+LQM3Kpra3lo6Du00NZz\/khI0Q8lwkSiQQ33XQT\/v73v6OiogLr169HZGQkHn30USQmJuL+++\/HF198AZfLhejoaKSmpmL69OlISEhAa2srDh8+jG+++Qbnzp1DW1vbeccEj4npRx99gD\/\/eTVeeuk3mDv3ll4\/zOhoC7OnQaWi7VooUqIWXGoXR\/mlaTRRJNlRx6h6iclkIhdq6rN4F0AWqKbdQJ5nVDQUSA5MqfAGRQ\/v9ViU3iNDFggEiIiIwIABAzBhwgQ+7VtXV4evv\/4ahw4dQmFhIX+fXSnU1NQgJycHI0eO5P+WNpsNS5cuhdvtxubNmy+LW3YgBJoempiYCJPJ5DMZ1G63Y+\/evfxk0Gt5euilQCjVdgUgEokwY8YMzJgxA6tXr+ZnCv3qV79CfX09Zs+ejQULFmD27Nkwm80wm81wOp2or69HbW0tvv32W8hkMn6y6tmzZ5GUNAizZ8+CQCDoZWKq0bAnY5rNJmZfTCBSoqIoaudMOQuYTCayVkVFQ1TainLtBmiCpUhUpVKRBEAhUCqNUimKRCKatCR69EySslyp5XI5n\/b1zq6qq6tDUVERZDIZb8ypVqsvW1qotrYWp06dwsiRI\/l6W2dnJ5YtW4b29nZs3779kvXl9BWBpocKBAKsXLkSr7zyCpKSkpCUlIRXXnkFYWFhWLZsGf\/ca3V66KVAiHiuMEQiESZPnozJkyfjj3\/8IzIzM31mCs2cORMLFizAnDlzYDKZYDKZeCftkpISFBcXQyKRwOl0oqWlBZGRkb1MTPft24\/\/\/ncdvvzyy15zXajGUoqUAkmpqUmdFPFQ4oFACzXVWGo0mlBQ4H9Kp1IZQfbhUIatFouFfF\/KHNRsNpGfhxr9EB1tQWlpGfO4UqxFT\/oOZuS1RCKBxWKBxWLxmZXjNcv1jijQaDSXrHemrq4O2dnZSElJ4fvN7HY77r33XtTX1yMjI4O8Ly43Ak0PBYBnnnkGNpsNK1asQFNTE8aPH9+LLK\/V6aGXAiHiuYoQCoUYN24cxo0bh1dffRUnT57EunXr8Mc\/\/hErVqzADTfcgAULFmDu3Ln44IMPkJOTg9dffx0ikQi1tbU4duyYz3yTqKgoyOVyzJo1E7NmzYTD4cDu3XuRnp6OzZu3oL6+ARIJJaVWM4+ZzWamQ3QgKTVVT6HmFwVaqCk7HGqjHhkZSRIEJbCgiBsAamrYaThKKAEAdXVsabheryeJJ0KsQxN8NxnBjLzuju73ktvtRktLC2pra5GbmwuHw+EjTrhYWbPX5mbEiBF8PczhcODHP\/4xysrKsHPnzoCpzsuNYNKNAoEAq1atwqpVq5jPuVanh14KhIinn0AoFGL06NEYPXo0Xn75ZZw+fRrr1q3Du+++iyeeeAICgQCPPPIIRCIRP7Fx6NChaGpqQk1NDT\/N0TvOISoqChKJBLNm3YRZs27Cn\/+8Gvv3H8D+\/Qdw7lyBX0mnTMYmJY0mCqzJBNHRFpSVsa1AqMWYarakUi1qdSSZFqT6cEwmE2nESaXhKFeCiIgIctoplUqTyWRkWjFQgb2jsXfakZVqCwZCoRBRUVGIiorC4MGDYbVaUVtbi5KSEuTk5CAqKopPyQXrhtDQ0ICTJ09i2LBhfIHd6XTipz\/9Kc6ePYvdu3cHlLmHcG0gRDz9EAKBAMOHD8fgwYNRXFyM+vp63H777di5cyfefPNNTJ48mZ8pZDQaodVqeRKqra1FTk4OXC4Xv3vVarXn60zTMWPGdDz33K9x6NBhfP75Jmza9AXKyjw76Yt1pdZqdUziCeQ8QE3TpFISZrOZHA9NpQWphTLQkLbOTrZgITo6upenV3dQdbCYGHrmENWHo5CHo6m6N9EGk2oLBgKBAEqlEkqlEgMHDoTNZkNtbS1qamqQl5fnM7CNZRTb2NiIEydOYMiQIXwjssvlwooVK3D8+HHs2bMnoCIwhGsHIeLpx3juuedw7NgxHDlyBBaLR6lWXFyM9evX47\/\/\/S+eeuopTJgwge8jio6OhkajQXJyMlpaWlBTU4Pc3Fw4nU7odDqepEQiESZNmohJkybi9ddfRWZmJjZuTEdW1jHmtdCu1Gwll9lsJmsiVIqOUqVRNQCZTEY26VEEazDoSeKhiDJQgyflskBNYAVAmp0mx6XAXdM7PXSpiKcnFAoF4uPjER8f32tgm1wu50koMjISAoEAzc3NOH78OJKTk2GxeNwX3G43Hn30URw6dAi7d+8mXTFCuPYQIp5+jGeeeQbPPfccv8gKBAIkJibiqaeewpNPPony8nJs2LABGzZswK9\/\/WuMHTuWJ6GEhASo1WoMHjwYra2tqK2t5RsJ9Xo9n6sXiz0+XmPHjgUAnDyZjfT0TUhP34QzZ3L5a7lYV2qqJhJoAijlxEw1U1osFhQV+Vf1ASCJRafTgghaSHdhyuzVYw7KTqUFauikCDpWPwg2P9nBqD7WeC4G3oFt0dHRPuPkjx07BqFQiMjISDQ0NGDw4MG8Q7nb7caTTz6JPXv2YPfu3fzokBB+OLhqfTzvvvsuEhMTIZfLMXbsWOzfv\/9qXUq\/hU6nY+7sBQIBYmNj8dhjj\/Ezhe677z7s3LkTo0ePxtSpU\/HGG28gPz8fKpUKSUlJmDx5Mq677jqEh4ejsLAQe\/fuxfHjx32ctL0GpkePHkZW1hG8+OLzGDkyhdytU7021IJKzRoCLr6x1DsNlgVKliwQsH8Ser2OtOGhIrTY2BgyXUZFYRqNhlTaaRT+o4XLFfGw4BUnjBgxAtOnT8eAAQNQX18PoVCI\/Px83HPPPfjXv\/6Fp59+Glu3bsWOHTuQkJBwRa8xhP6Bq0I8n332GVauXMmnkqZOnYo5c+agtJRtfxICGwKBAGazGStWrMCOHTtQWVmJFStW4ODBg7juuuswYcIEvPLKKzhz5gwiIiIwcOBAfpyDt5t97969yMrKQkVFBb+oJycPxjPPPI2DBw9g587tfk1MAbq\/h1pQlUr2jtxkMpE1ESrlRdWjDAYDKTzo6KAkzeyZQgAdoQUyB6U+T6DxDmJn7yZLsVQElYZuZr2csFqtOHfuHJKSkjBjxgyMGDECWq0Wb7zxBt577z0kJiZix44dId+yHyiuCvG89dZbuP\/++\/HAAw9g6NChWL16NWJjY3n9fAgXD2\/vxQMPPIAvv\/wS1dXVePLJJ3Hy5ElMmTIFY8eOxUsvvYSTJ08iLCyM72afNGkSNBoNysvLsW\/fPmRmZqKsrIzfxScmJvqYmL7++h8wdmwqxGIx2QBK1SYolVegQnNFBVuVRkUWgWb\/UM2hgcZOU3LnQF5j1OcRCukmzq6W3sc1hsufZmOhra0NWVlZSEhIQHx8PH9P6nQ62O12bN68GfPnz8fHH3+MmJgY7Nu376pdawhXB1eceOx2OzIzM33swgFg1qxZIbvwSwyBQACNRoPly5dj06ZNqKmpwQsvvIBz587hxhtvxKhRo\/D888\/j6NGjkMvlSEhIwPjx4zF58mTodDpUV1dj\/\/79OHLkCEpLS\/k0k8ViwaxZN+G3v30RR48exptvvo4ZM6b7rbtQvTZUaoqKhgwGAxmZUGIGStEmkUjINBzV3xFoVDbVG2Q0GskoTCRi17M84657v\/a7SKm\/C6xWKzIzMxEXF8dbzXAchzfeeAP\/+Mc\/kJGRgZtvvhlPPfUUDhw4gIqKCowfP\/6SXsO+ffswb948WCwWCAQCfP755z7Hly9fDoFA4PNvwoQJPs8JTQ+9vLji4oL6+nq4XC7SUjyEy4PIyEjcdddduOuuu2C1WvHll19i\/fr1mDt3LqKiojB\/\/nwsXLgQ1113Ha9a8jpp19TU4OzZs1CpVOA4Dp2dnRg3bhzCw8ORlDQIDzxwPxoaGrF58xZ8\/nk69uzZi7AwBVmboNwOKMGCyWQka06UlxrVGxQdbUFxcQnzOEUOBoOBrElR6Uij0Ugep2xrEi2DYW\/rTWpXur4DeL6fzMxMxMbGYsAAz5h3juPwpz\/9CX\/+85+RkZGBkSNH+rzmchhmtre3Y9SoUfjxj3+MxYsX+33Oj370I3zwwQf8\/\/esRa5cuRJffPEF1q5dC61WiyeffBJz585FZmZmyHngEuCqqdouxlI8hEuHiIgILFmyBEuWLEFHRwe2b9+O9evX47bbbkNYWBjmzZuHhQsXYtKkSYiNjUVsbCxaW1tx8uRJ2O12uN1uZGdn8+McwsPDeRPT++67By0tLdixYyf+97\/1yMjY0asoH8g92mZjRzRUyisyUkXWWqgoS6fTkcRDkUMgM8u6OnYKj4ruPK9lK\/8SzUMBP4LDqCucauvo6EBmZiYsFosP6bz77rt44403sG3bNl45ebkxZ84czJkzh3yOTCZjiltC00MvP654qk2n00EkEpGW4iFcWYSFhWHhwoX4+OOPUVVVhX\/84x+w2+24++67kZSUhF\/84hf44osvcMstt+CDDz7AlClTMH36dMTFxaG5uRmHDh3CwYMHUVBQAKvVCo7jEBkZicWLb8Xatf9BSUkBPvroAyxevIgnDbPZTJIAFQ1RtSFvnwgL1CJOpeEUCgXpaEBBp9PxYy78gVLKyeVyMpIyKP1LkTWmKxfx2Gw2ZGZmwmQyYdCgQRAIBOA4Du+\/\/z5+97vfYfPmzZc8nfZd4W1YHTx4MB588EGfCDo0PfTy44oTj1QqxdixY33swgEgIyMjZBfeDyCXy3HLLbfg\/\/7v\/1BVVYV\/\/\/vfcDqdWL58ORoaGiCRSLB792643W5YLBaMGTOGH+dgtVp9xjm0traC4zhERERg8eJb8dFHa1BSUoDPPvsEt912K1MqLhKJAkRD7IWaaiwVi8XkIu5ysZtkY2KiyRoPRSyBVGlUj1R0dDTZvKsQ+P+8VyrVZrPZcPToUej1eiQlJfGk89FHH+H5559Heno6Jk+efEWuJVjMmTMH\/\/nPf7Br1y68+eabOHLkCG644QZ+IxSaHnr5cVVSbU888QTuuecepKWlYeLEifjHP\/6B0tJS\/PznP78alxMCAxKJBEOHDsWRI0dwyy234Kc\/\/Sk2bdqEX\/ziF7Barbj55puxcOFC3Hjjjfw4B5fLxY9zOHr0KKRSKW\/dExkZCblcjrlzb8HcubfgpZde5E1Mt2zZykc5gZyYqXHgVGNpTEw0mUqjhrQFMq6kPNpUKpoEWlvZxBPIpdnV7r9p9Uo0j3Z2diIzMxM6nQ7Jyck86Xz66ad4+umnkZ6e3svhuT9g6dKl\/H+PGDECaWlpiI+Px5YtW3DrrbcyXxcqB1w6XBXiWbp0KRoaGvDb3\/4WVVVVGDFiBLZu3Yr4+PircTkhEHj11VcxdepUvPvuuxCJRJg1axb+9Kc\/4eDBg1i\/fj2eeeYZNDQ04Ec\/+hE\/U8hoNMJoNMLlcqGxsRE1NTU+TtpGoxFqtRpSqRSzZ8\/E7Nkz4XK5sH\/\/AaSnb0JBQSGTeIRCIak8o6IhrVZLEg+1m6UaYQONyqYSC4Fea7ez05EA0FLt\/\/jljni8pKPRaDBkyBB+QV6\/fj1WrlyJ\/\/3vf7jxxhsv6zVcKpjNZsTHxyM\/Px+A7\/TQ7lFPbW1tKCtziXDVnAtWrFiB4uJidHV1ITMzE9OmTbvk77Fq1apessnuBUWO47Bq1SpYLBYoFArMmDEDOTk5l\/w6vs94++238fe\/\/91HySMSiTBlyhS8\/fbbKCwsxM6dO5GYmIiXXnoJCQkJWLZsGT777DO0t7dDr9fznezDhg2D2+3GiRMnsG\/fPpw5cwYNDQ1wu928ienbb7+Jzz9fj4yMbXj44RU+I4cBTzRENaVS5EE5PEdG0mam1HtSE18BWihhNpvJ11ITTfVRZrQ1+W+y1RguH\/F0dXUhKysLkZGRGDp0KE866enpeOihh\/DJJ58ELO73JzQ0NKCsrIz3iwtND738uOZHXw8fPhxVVVX8v+zsbP7Y66+\/jrfeegvvvPMOjhw5ApPJhJkzZwbwJfthQSqVkukFoVCI6667Dq+\/\/jry8vJw4MABDB8+HG+88QYSEhKwZMkS\/Pvf\/0ZLSwu0Wi2GDRuGadOmISUlBQBw6tQp7Nu3Dzk5Oaivr4fb7YZQKOQNTHNzT2Hv3l14\/PHHMGBAYkDbfErRRtVKAokSKH83arQ3QJuDSqV00oFyNLBEJfh9XCwVQaW9PK4F3j48pVKJ4cOH8\/fGli1b8MADD+Cjjz7C\/PnzL8t7Bwur1Yrjx4\/j+PHjAICioiIcP34cpaWlsFqteOqpp3Dw4EEUFxdjz549mDdvHnQ6HRYtWgTAd3rozp07cezYMdx9992h6aGXEALuSg5Zv8JYtWoVPv\/8c\/4G7A6O42CxWLBy5Ur88pe\/BODZyRmNRrz22mv42c9+doWv9toCx3HIycnBunXrsHHjRpw5cwYzZszAwoULMXfuXGi1Wr4m0NzcjNraWtTW1sLpdPImpl4n7e7IyTmN9es3ID19E3Jzfd08dTod6TyQkjIC2dmn\/B6bMGECDh06xHxtREQEU0AwdeoU7N9\/wO8xmUwGh8PBJL3U1DGkK3hYmAIdHf6jmkVTfoK2bHWvx3XRKrx\/5HHmOS8WXtIJDw\/HiBEjeHXh9u3bcffdd+Nf\/\/oX7rjjjkv+vn3Fnj17cP311\/d6\/L777sPf\/vY3LFy4EMeOHUNzczPMZjOuv\/56vPzyyz5mpZ2dnXj66afxySef8NND33333ZCh6SXCNU88b7zxBiIjIyGTyTB+\/Hi88sorGDBgAAoLCzFw4EBkZWVhzJgx\/GsWLFgAtVqNDz\/88Cpe+bUFjuNw9uxZrF+\/Hhs2bMCJEycwZcoULFy4EPPmzYPRaORJyOukXVNTA7vdzo9z8MrwuyM3Nw+ffroWGzZsRGFhEUaOTMHJk9mMq6CJaerUydi\/\/2u\/xwwGAxm1XHfdOHz77RG\/x7z3Ggvjxo3DkSP+X2s2m0nnhx\/f9GuUHeld4zENVOKnq6fzoo5Adj3BwOFwIDMzEwqFAikpKTzp7N69G0uXLsW7776Le+65J1R8DyEoXNOptvHjx+Ojjz7CV199hX\/+85+orq7GpEmT0NDQwNcCQg4Klx8CgQDJycl49tlnceTIEeTl5eHmm2\/G2rVrMXjwYPzoRz\/Cu+++i4qKCh8n7XHjxiEsLAwFBQXYs2cPTpw4gaqqKr7eotVqMH36VGzbtgXZ2cfwk5\/8GGlpY\/0ufkqlkoyGqAFvJhPdX0alwwI5ZVOpQaOR9qsTdPmvWcUONPlYHn377bcoLi4mbYYoOBwOZGVlQSaT+ZDO\/v37cccdd+BPf\/pTiHRC6BOu6Xk83QucKSkpmDhxIgYOHIgPP\/yQ92YKOShcWQgEAgwYMABPP\/00nnrqKZSVlfEzhX71q18hLS2NnykUHx8PpVKJQYMGwWq1oqamBsXFxcjJyeFTX0OGDOFdowcMGIAHH7wf5eXlSE\/\/Aunpm3Dw4KHzPUdm5OWxa3dUDYey2QGAigpqRg9bDScQCEhz0EBuCB0N\/s1Q9Ra1j+VRXV0damtrce7cOYSHh\/PKwvDw8ID3utPpxLFjxyCRSDBq1CiedA4ePIglS5bgtddew09+8pPQbyaEPuGajnh6Ijw8HCkpKcjPz+fVbSEHhasHgUCAuLg4rFy5Env37kVpaSnuuece7NixA6NGjcK0adPwxz\/+Efn5+QgPD8fAgQMxceJEREZGwmq1Qi6XIzc3F5mZmSgvL+dNOmNiYvDwww9h+\/YvkZ+fiz\/96S1MnDiR2eMjEAhQXs4mAGpRNZlMzBoMQJuDWixm0rWAyoLLZQo0VvmvOXXv4ZHJZIiJiUFqamqvRt+vv\/4a+fn5aGlp8fteLpeLl8F3J52jR49i8eLFePnll\/HQQw+FSCeEPuOajnh6oqurC2fOnMHUqVORmJgIk8mEjIwMvsZjt9uxd+9evPbaa1f5Sn94EAgEsFgsePjhh7FixQrU19dj48aN2LBhA373u99hyJAhWLBgATo6OvDPf\/4TBw8eRGJiImw2G2pra1FZWYnc3Fyo1Wq+tiGXy2EyGfHAA\/cDAH7721XYvHkL0tM3YffuPTxRWSxmsjeISlEZjQYyNUuZpBoMBvJ9KTeEwXEpcNf6JyZWD49EIvFp9PVOC83KyuJ7rAwGA9RqNTiOw7FjxyAQCDB69Gi+vnb8+HEsWLAAzz33HB599NEQ6YRwUbimxQVPPfUU5s2bh7i4ONTW1uJ3v\/sd9u7di+zsbMTHx+O1117Dq6++ig8++ABJSUl45ZVXsGfPHuTl5QVMr4RwZcBxHJqampCens5HP2PGjMH111+PhQsX+qirOjs7eXVcc3MzVCoVb2Las4enpaUFW7duQ3r6JtTU1OLbb79lXkNMTAzTEn\/KlEk4cIDt3xUeHs50tZ48eTK+\/tq\/oAGgR4PPm3wXbKf8R+YvfnIXUmcMYp63J9xuN5qamvjvzptulkgkSEtL49OFp06dws0334zHH38czz77bIh0QrhoXNMRT3l5Oe68807U19dDr9fzklmvQ8IzzzwDm82GFStWoKmpCePHj8f27dtDpNOPIBAIEBUVhbKyMtTU1CAjI4OvC3mtehYsWICFCxdizJgxiIuLQ1xcHF\/bqKmpQX5+PpRKJb+jDw8PR2RkJO68cynuvHMp2tvbsW3bV0hP34SvvsrwiTSkUinpG8dx7MVXp9OSZqccx+4rUqlUpKFplMIMG\/y\/vq\/No0KhEFqtFlqtFoMHD8bRo0fR2dkJl8uFN954A4cPH8aUKVPwzjvvYMWKFSHS6YGPPvoIjz\/+OCorK30UhIsXL0Z4eDg++uijq3h1\/RPXdMQTwrWB0tJSzJw5E+vXr8eIESP4x61WK7Zu3Yr169dj69at0Gq1\/EyhcePG8ekhu93OF9gbGhp8Cuw9Ryx0dnZix46d2LgxHV9+uQ1arZaUQ48ePQrHj5\/we2zAgEQUFhYxX0v1FQ0ZMgS5ubnM195\/\/SqUZPkfePdx9tMX1UDqdZWw2+1ITfVMl83Ozsa7776Lbdu2obGxEbNnz8bixYsxf\/78gM28PxTYbDaYzWb885\/\/xJIlSwB45o5FR0dj27ZtfnuKfuj4QYkLrgQCTT8MxqYnNP3QF3FxccjJyfEhHcDT1Hn77bfjs88+Q01NDd5++200NjZi8eLFGDp0KJ588kns378fQqEQ0dHRpJN2W1sbOI7jTUzff\/8fKC4+h9Wr38J9990Drda\/SSjlsxbI0YAaWKdW0+agdj\/jrgGPa4FSw7YGYsE7X6mrqwupqamQSCQQCASIiIjArl27cNddd+HUqVOYNm0a3nvvPYwZM4YUP\/yQoFAosGzZMp\/Bcv\/5z38QExPTL01S+wNCxHOJ4Z1++M477\/g9HoxNz8qVK7Fx40asXbsWBw4cgNVqxdy5c+Fy+ZfP\/hBAuU4DHk+zRYsW4d\/\/\/jeqqqrw97\/\/HZ2dnVi2bBmSkpLw6KOPYvfu3QA8jZmjRo3C9OnTMXDgQHR0dODIkSO9VF5SqRQ33ng93n33HRQVncPmzel48MH7edVjoBk9lDecSqUi+4qozysQCNBY6V\/wEKWP6HMazO1249SpU+jo6OBJBwBKSkpwyy23YMGCBXjzzTcxZMgQ\/PKXv8Thw4dx+vTpS55u+z5v2h588EFs376dl8d\/8MEH\/IjtEPyAC+GyAQC3ceNG\/v\/dbjdnMpm4P\/zhD\/xjnZ2dXGRkJPf3v\/+d4ziOa25u5iQSCbd27Vr+ORUVFZxQKOS2bdt2xa79WoHdbue++uor7sEHH+QMBgOn1Wq5++67j9uwYQPX2NjItbe3c+3t7VxraytXVFTEHT58mNu8eTO3bds2Lisri6uoqOCsViv\/vPb2dq6trY3LyNjB\/fKXv+ZiYhI4QOz335gxacxjQ4eOYB4DxFxa2njmscTo4dxNkc\/4\/bfi+j\/5XGugf1arlTt06BCXkZHBNTU18Y+fPXuWS0xM5B588EHO5XJdkb\/V1q1bueeee45bv359r98Ox3HcH\/7wB06pVHLr16\/nsrOzuaVLl3Jms5lrbW3ln\/Pzn\/+ci46O5jIyMrisrCzu+uuv50aNGsU5nc7Lfv2pqancK6+8wmVmZnJCoZArLS297O\/5fUWIeC4jev54CgoKOABcVlaWz\/Pmz5\/P3XvvvRzHcdzOnTs5AFxjY6PPc0aOHMn95je\/uezXfC3D4XBwu3bt4lasWMFZLBYuMjKSW7ZsGffZZ59x9fX1PsRSXFzMffvtt9yWLVu4rVu3ckePHuXKysq4tra2Xov33r37uIceepgzm2N8CCI6Oo5JHhMmTCGJJyFhEPPYTeNuYxLP83f8X59I5\/Dhw1xGRoYPCRcUFHBJSUncfffdd0UWbH\/4Pm7a3n33XS4pKYl7+OGHuVmzZl329\/s+I5Rqu4IIxqYnNP3w8kEsFuP666\/HX\/\/6V5SWluKLL76AXq\/H008\/jcTERCxfvhwbN26EzWaDXq\/H8OHDMW3aNL62lJ2djX379uH06dO8kzYADBw4ADff\/CPs2bMTBw8ewK9+9QxGjkwhazhisYh5TCQSkekhvTKGeSzKENwAOI7jcObMGbS0tGDs2LG8Gqu2tha33HILxo0bh3\/961+9\/PGuFoqKilBdXe0zjlomk2H69On8OOqrPbL6rrvuQkVFBf75z3\/iJz\/5yWV\/v+8zQsRzFXAxNj3BPCeE4CESiTB16lSsXr0aRUVFyMjIQHx8PF588UUkJCTgrrvuwn\/\/+1+0t7dDq9Vi6NChmDZtGt\/Bf\/r0aezduxdZWVnIyspCUlISYmJiMHJkCl544TkcPHgAR44cwm9+8zxGjkzp9f6UY0FsbAzpeBAmYIsWNKbAUmqO45Cbm4vGxkYf0qmvr8e8efMwfPhwrFmzJmBd7Uri+7BpU6lUWLx4MSIiIrBw4cLL\/n7fZ4SI5woiGJue7tMPWc8J4dJCKBRi\/PjxeOONN3D27Fns378fQ4cOxWuvvYaEhATcfvvt+M9\/\/oOWlhao1WoMGTIEU6dOhdlsRmNjI0QiEfLz85GdnY2amhpeBDJkSDJ++cuncfDgAWRnH8PLL7+EtLSxAED29wSSKbs6\/I+7BgJPHuU4Dnl5eaivr8fYsWMhl8sBeLzqFixYgAEDBuCTTz7hBQb9Df1901ZVVYW77rrrkjiCX8sIEc8VRHebHi+8Nj3eyYah6YdXF0KhEKmpqXjllVdw+vRpfPvttxg7diz+8pe\/ICEhAbfeeis+\/PBD\/Oc\/\/8GNN94Ik8mE6dOnIy0tDXK5HOfOneOdtKurq\/nIZcCAAXjiiZXYu3cX8vJy8MgjD2HSpIm860J3eMmABda4a4AmHo7jkJ+fj9raWowdO5ZX3bW0tGDhwoUwm83473\/\/SxqbXi30901bY2Mj1q5di127duHhhx++rO91LaD\/xNLXCKxWK86dO8f\/v3f6oUaj4Q0xX3nlFSQlJfE2PWFhYVi2bBkA3+mHWq0WGo0GTz31VGj64VWAQCBASkoKUlJSsGrVKuTl5WH9+vV48803UVJSgunTp+PgwYP84DqVSsU7adfW1qKwsBA5OTnQaDQwGo3Q6\/WQSCSIiYnBQw\/9HA899HNUV9fgiy++wOefb8L+\/QfgcrngdLJl8zq1AW2NbFNSFvFwHIdz586hqqqKHzcBAG1tbVi8eDHUajXWr1\/fb3fqwXgrdt+03X777QAubNpef\/31y3p9qampaGpqwmuvvYbk5OTL+l7XAkLEc4lx9OhRn07lJ554AoBn+uGaNWuCsul5++23IRaLcfvtt\/PTD9esWdNvCr0\/RAgEAgwZMgSjR49GVVUV3nzzTXR2duLTTz\/Fk08+iUmTJmH+\/PlYsGABLBYLlEolBg4ciPb2dtTW1qK0tBSnT5+GRqPhrXukUilMJiMefPABPPjgA6ivb8CWLVvw9dffICsrizcx7Y6kuBSghH2d3Z2pu6OwsBCVlZVIS0vjSae9vR1LliyBVCrF559\/TvYdXQl8nzdtxcXFl\/X81xpCljkhhBAkmpubkZSUhL\/97W+47bbbAHgiidLSUn6m0MGDBzFu3DjeuicuLo6vL3R0dPBGnK2trYiKimJOCe1uYpqRsYMXIyye\/gBajqv8Xp9YIsS64ud71TMKCwtRWlqKtLQ03iLIZrNhyZIlsNvt+PLLL\/uFPyE1snrNmjXgOA4vvfQS3nvvPX7T9te\/\/tXH0SI0svr7gRDxXIPYt28f3njjDWRmZqKqqgobN270UdksX76812jv8ePH49ChQ\/z\/d3V14amnnsKnn37q8wOOiWFLeX8IaGhogFbrf6oox3GorKzkxzns378fI0eOxMKFC7FgwQIMHDiQJwWvk3ZNTQ1aWloQGRnJk1DPyMNqteKrr7YjPX0TtLYUFH7tf1yCzqLC+0cf93msuLgYxcXFGDt2LE8unZ2duPPOO9HS0oKvvvoKkZG0PU8IIVxqhIjnGsSXX36Jr7\/+GqmpqVi8eLFf4qmpqfHxlpJKpdBoLviRPfTQQ\/jiiy+wZs0aaLVaPPnkk2hsbERmZmYo5RcEOI5DbW0tPv\/8c2zYsAG7d+\/GkCFDeBIaMmQIT0JdXV18JNTU1ASlUsmPc\/CmxbywdzqRtfscDm49gyMZeWhvvSA0GJwajTc2P8D\/f0lJCQoLCzF27FioVJ4oyW634+6770ZVVRV27NgR0E8uhBAuB0LEc41DIBD4JZ7m5uZeXlhetLS0QK\/X4+OPP8bSpUsBAJWVlYiNjcXWrVsxe\/bsK3Dl1w44jkNjYyPS09OxYcMG7NixAwMGDODHOQwfPpxXt3mdtGtqatDY2IiIiAifUdXd4bC7cPJAIb7ZcgbffpWHodfF4dn\/8\/y9SktLUVBQgNTUVD6icTgcuO+++1BUVIRdu3YxI7cQQrjcCBHPNQ4W8Xz++eeQSqVQq9WYPn06fv\/738NgMAAAdu3ahRtvvBGNjY0+O+JRo0Zh4cKFeOmll670x7im0NzcjC+++AIbNmzAV199hejoaJ6ERo8ezZOQw+HwGeegUCj4SCgiwtcM1OVyo6GqFYYYNcrLy\/mBeWq1GoBnBPcDDzyAnJwc7N69m\/9bhxDC1UBI1fYDxJw5c7BkyRLEx8ejqKgIL7zwAm644QZkZmZCJpNd9Q7wax1qtRr33HMP7rnnHrS1tfEzhebMmQOdTod58+Zh0aJFGDduHCwWCywWC5xOJ+rr61FTU4Pi4mLI5XK+JqRSqSASCWGIUaOiogJnz55FamoqTzoulwsrVqzAyZMnsWfPnhDphHDVESKeHyC86TMAGDFiBNLS0hAfH48tW7bg1ltvZb4uZNtz6aFUKrF06VIsXboUHR0d2LZtG9avX49FixYhIiKCV8dNnDgRJpMJJpMJLpcL9fX1qK2tRWZmJiQSCQwGA0QiEUpKSnwiHZfLhUcffRSHDx\/G7t27+UbMEEK4mggRTwgwm82Ij49Hfn4+AN8O8O5RT21tbcg94TIiLCwMt956K2699VZ0dnYiIyMDGzZswB133AGpVMpHQpMnT4bRaITRaITL5UJjYyOKi4vR3NwMiUSCkydPoqOjAzfddBOeeeYZ7NmzB3v27PnBKxJD6D8IWeaEgIaGBpSVlcFsNgMI2fb0B8jlcsybNw8ffPABqqur8eGHH0IgEGD58uUYOHAgVqxYge3bt8PlcmHz5s3429\/+htGjRyMlJQV5eXl44IEHkJCQgE8\/\/ZQfnhZCCP0FIXHBNYjuHeBjxozBW2+9heuvvx4ajQYajQarVq3C4sWLYTabUVxcjGeffRalpaU4c+YM3+vx0EMPYfPmzVizZg3fAd7Q0BCSU19lOJ1O7Nu3D+vWrcPnn3+Ozs5OdHR04PHHH8fTTz8NuVwOt9uN559\/Htu2bUNaWhp27dqFrq4uLFiwAO+++25AL7gQQrjsuEJzf0K4gti9ezcHoNe\/++67j+vo6OBmzZrF6fV6TiKRcHFxcdx9993Xa1qizWbjHnnkEU6j0XAKhYKbO3duaKJiP0N6ejonl8u5efPmcbGxsZxKpeKWLFnCLVq0iDMYDFxOTg7HcRzncrm4AwcOcL\/\/\/e+vyHW9+OKLve49o9HIH3e73dyLL77Imc1mTi6Xc9OnT+dOnTp1Ra4thP6BEPGEEML3ELt37+bCw8O5\/\/3vfxzHecjl4MGD3IoVKziZTMZ9\/fXXV+3aXnzxRW748OFcVVUV\/6+2tpY\/HswI6xCubYSIJ4TLgldeeYVLS0vjIiIiOL1ezy1YsIDLzc31eU4wO9\/Ozk7ukUce4bRaLRcWFsbNmzePKysru5IfpV+ipqaG27Rpk99jLpfrCl+NL1588UVu1KhRfo8FM8I6hGsfIXFBCJcFe\/fuxcMPP4xDhw4hIyMDTqcTs2bNQnt7O\/+c119\/HW+99RbeeecdHDlyBCaTCTNnzkRbWxv\/nJUrV2Ljxo1Yu3YtDhw4AKvVirlz5\/LD1n6oMBgMmDdvnt9j\/mb8XGnk5+fDYrEgMTERd9xxBwoLCwEEN8I6hB8ArjbzhfDDQG1tLQeA27t3L8dxwe18m5ubOYlEwq1du5Z\/TkVFBScUCrlt27Zd2Q8QQtDYunUrt27dOu7kyZNcRkYGN336dM5oNHL19fXc119\/zQHgKioqfF7z4IMPcrNmzbpKVxzClcbV3xqF8INAS0sLAPBGpMHsfDMzM+FwOHyeY7FYMGLEiNDuuB9jzpw5WLx4MT8HZ8uWLQDg44h+MSOsQ7h2ECKeEC47OI7DE088gSlTpvCzU7zWOz1HEne35QlZ91wbCA8PR0pKCvLz84MaYR3CtY8Q8YRw2fHII4\/g5MmT+PTTT3sdu5idb2h3\/P1CV1cXzpw5A7PZ7DPC2gvvCOtQc\/IPByHiCeGy4he\/+AU2bdqE3bt3+1i2BLPz7W7dw3pOCP0PTz31FPbu3YuioiIcPnwYt912G1pbW3HfffdBIBDwI6w3btyIU6dOYfny5T4jrEO49hEinhAuCziOwyOPPIINGzZg165dSExM9DkezM43ZN3z\/UR5eTnuvPNOJCcn49Zbb4VUKsWhQ4cQHx8PAHjmmWewcuVKrFixAmlpaaioqMD27dv7xfjtEK4MQpY5IVwWrFixAp988gnS09ORnJzMPx4ZGcmPdn7ttdfw6quv4oMPPkBSUhJeeeUV7NmzB3l5eSHrnhBCuIYRIp4QLgtYNZgPPvgAy5cvB+CJil566SW89957aGpqwvjx4\/HXv\/6VFyAAQGdnJ55++ml88sknsNlsuPHGG\/Huu+8iNjb2SnyMEEII4TIgRDzXAOrq6pCSkoJHH30Uzz77LADg8OHDmDp1KjZv3uwjRw4hhBBCuNoI1XiuAej1evzf\/\/0fVq1ahaNHj8JqteLuu+\/GihUrfvCk8+qrr2LcuHFQKpUwGAxYuHAh8vLyfJ6zfPlyCAQCn38TJkzweU5XVxd+8YtfQKfTITw8HPPnz0d5efmV\/CghhHDNIBTxXEN4+OGHsWPHDowbNw4nTpzAkSNHfvAW+D\/60Y9wxx13YNy4cXA6nXjuueeQnZ2N06dPIzw8HICHeGpqavDBBx\/wr5NKpXyzK+CpNX3xxRdYs2YNtFotnnzySTQ2NoZqTSGEcBEIEc81BJvNhhEjRqCsrAxHjx7FyJEjr\/Yl9TvU1dXBYDBg7969mDZtGgAP8TQ3N+Pzzz\/3+5qWlhbo9Xp8\/PHH\/NjwyspKxMbGYuvWrZg9e\/aVuvwQQrgmEEq1XUMoLCxEZWUl3G43SkpKrvbl9Ev0tO7xYs+ePTAYDBg8eDAefPBB1NbW8sdC1j0hhHBpIb7aFxDCpYHdbsddd92FpUuXYsiQIbj\/\/vuRnZ0darTshv9v7\/5CmuwCOI5\/08w\/6CQzmFIOIekPYheKMTAUw0AwoqCCKLzwRlfQKolIhOhCxQstCfVCLDBiEeFN5QiCSYMuMhQiuvDCWIQLkhZqM2OdLqLB0Op9fX2f1fx9YDfP83B2dvVj52y\/s1x1D3zvFjty5AgOh4OpqSlaW1uprq7m+fPnpKamqrpHZJUpeBJES0sLHz9+pKenh8zMTEZGRmhoaOD+\/fvxntof40d1j9\/vj7n+Y\/kMoLi4mLKyMhwOBw8ePODw4cM\/HU\/VPSIro6W2BODz+bh69SpDQ0PYbDaSkpIYGhrC7\/fT19cX7+n9EX5W3bOcvLw8HA4Hk5OTgKp7RFabgicBVFVV8eXLFyoqKqLXCgoKCIVCNDU1xXFm8fe76p7lzMzM8ObNG\/Ly8oC1Xd3T29tLYWEhaWlplJaW8uTJk3hPSRKAgkcS2qlTp7h16xa3b98mKyuLYDBIMBgkHA4DMDc3R3NzM0+fPuX169f4fD4OHDhAbm4uhw4dAr7X\/DQ0NHD+\/HkeP37M+Pg4J06ciJ43k6ju3LmD2+2mpaWF8fFx9u7dS21tLYFAIN5Tk7+dxQfPiVgKWPZ148YNY4wxnz59Mvv37zebN282KSkppqCgwNTX15tAIBAzTjgcNqdPnzY5OTkmPT3d1NXVLXkm0ZSXl5vGxsaYazt27DAXL16M04wkUeh\/PCKyxOLiIhkZGdy9ezf6zQ\/gzJkzTExMMDo6GsfZyd9OS20issT79++JRCK\/PCFWZKUUPCIW6evro6SkBJvNhs1mw+l0MjIyEr1vjOHy5cvk5+eTnp5OVVUVL1++jBnD6s64lZwQK\/I7Ch4Ri2zZsoWOjg7GxsYYGxujurqagwcPRsOls7OTrq4url+\/zrNnz7Db7dTU1DA7Oxsdw+12Mzw8jMfjwe\/3Mzc3R11dHZFIZFXnmpubS3Jy8i9PiBVZsfhuMYmsbRs3bjQDAwPm69evxm63m46Ojui9hYUFk52dbfr7+40xxoRCIZOSkmI8Hk\/0mbdv35qkpCTj9XpXfW7l5eWmqakp5trOnTv14wL5z\/SNRyQOIpEIHo+H+fl5nE4nU1NTBIPBmD641NRUKisro31wVnfGnTt3joGBAQYHB3n16hVnz54lEAjQ2Ni46u8la4sqc0Qs9OLFC5xOJwsLC2RmZjI8PMyuXbuiwbHcZv6PwlerO+OOHTvGzMwMV65cYXp6muLiYh4+fIjD4Vj195K1RcEjYqHt27czMTFBKBTi3r171NfXx\/w0eSWb+f\/kmZVyuVy4XK7\/ZWxZu7TUJmKhDRs2sG3bNsrKymhvb2f37t1cu3YNu90O8MvNfHXGSaJQ8IjEkTGGz58\/U1hYiN1uj+mDW1xcZHR0NNoHt5Y74ySxaKlNxCKXLl2itraWrVu3Mjs7i8fjwefz4fV6WbduHW63m7a2NoqKiigqKqKtrY2MjAyOHz8OxHbGbdq0iZycHJqbmxO+M04Sj4JHxCLv3r3j5MmTTE9Pk52dTUlJCV6vl5qaGgAuXLhAOBzG5XLx4cMH9uzZw6NHj8jKyoqO0d3dzfr16zl69CjhcJh9+\/Zx8+ZNkpOT4\/WxRP41dbWJiIiltMcjIiKWUvCIiIilFDwiImIpBY+IiFhKwSMiIpZS8IiIiKUUPCIiYikFj4iIWErBIyIillLwiIiIpRQ8IiJiqW\/9VsG5oCgnEAAAAABJRU5ErkJggg==", "text\/plain": "<Figure size 640x480 with 1 Axes>"}, "metadata": {}, "output_type": "display_data"}]}}, "1ca2a7bb9b014ae1b78b7354b28675e1": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": {"description_width": ""}}, "1cb2605db91a4ce1bac51f5960e5afc9": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "IntSliderModel", "state": {"behavior": "drag-tap", "layout": "IPY_MODEL_a20388231297411295366afa518f917b", "max": 199, "style": "IPY_MODEL_3ca3ead3f99b45b2bf5a79d0f022dcfa", "value": 199}}, "1f57714e5c02432eaabed41e07209103": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": {"_dom_classes": ["widget-interact"], "children": ["IPY_MODEL_57644913df96434395a7d95953ca96ed", "IPY_MODEL_5e9038896edd4da0abab5fadd1a41130"], "layout": "IPY_MODEL_b49c03f7736a47e5987fbc229507c0fe"}}, "203d095fdbec4a809af8ff2adf77a8fb": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "246b67cae6d04400856fb146b0a764d3": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "27ce6d6c77074a0e9644172ecbdc2c2a": {"model_module": "@jupyter-widgets\/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": {"layout": "IPY_MODEL_0737166ee7324522bb73da03f9a8e778", "outputs": [{"data": {"image\/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG2CAYAAACXuTmvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy\/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA3p0lEQVR4nO3deXgU5532+7u1tdZuENqREDIIMGaxjW1AE1YbAt7AJOfYsV8fmCSOHQMnvCRjghmPhZOAlzGvkyFmssxg7DEDJxODdwIOSEAUbMBgZMAsRiABEgIhqbW2tjp\/CDXIYhG0pOpWfT\/X1Ze6nqou\/fSkTN956qkqm2EYhgAAACwkwOwCAAAAuhoBCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWI7PBKClS5fKZrNp3rx5njbDMJSZmamkpCSFhYVp\/Pjx2r9\/v3lFAgCAbsEnAtDOnTv1+9\/\/XsOGDWvV\/vLLL2vZsmVavny5du7cqYSEBE2aNEkVFRUmVQoAALoD0wNQZWWlHnvsMf3hD39Qz549Pe2GYei1117TokWLNGPGDA0ZMkSrVq1SdXW1Vq9ebWLFAADA3wWZXcDs2bN133336Z577tEvf\/lLT3teXp6Kioo0efJkT5vdbte4ceOUk5OjJ5988rL7c7vdcrvdnuWmpiadP39evXr1ks1m67w\/BAAAdBjDMFRRUaGkpCQFBHT8eI2pAWjNmjX6\/PPPtXPnzjbrioqKJEnx8fGt2uPj43XixIkr7nPp0qVavHhxxxYKAABMUVBQoOTk5A7fr2kBqKCgQD\/5yU+0ceNGhYaGXnG7b47aGIZx1ZGchQsXav78+Z7l8vJy9enTRwUFBXI4HN4XDgAAOp3L5VJKSoqioqI6Zf+mBaDdu3eruLhYI0aM8LQ1NjZq69atWr58uQ4dOiSpeSQoMTHRs01xcXGbUaFL2e122e32Nu0Oh4MABACAn+ms6SumTYK+++67lZubq71793ped9xxhx577DHt3btXN910kxISErRp0ybPZ+rq6pSdna2MjAyzygYAAN2AaSNAUVFRGjJkSKu2iIgI9erVy9M+b948LVmyROnp6UpPT9eSJUsUHh6uRx991IySAQBAN2H6VWBX88wzz6impkZPP\/20SktLNXLkSG3cuLHTzgcCAABrsBmGYZhdRGdyuVxyOp0qLy9nDhAAAH6is7+\/Tb8RIgAAQFcjAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMuxTADq5k\/8AAAA18EyAegHb+zSoaIKs8sAAAA+wDIB6LPj53Xvb7Yp8739Kq+uN7scAABgIssEoEmD49TYZOiNnOOa8GqW\/vuzfDU2cVoMAAArshndfHKMy+WS0+lUeXm59p2p0+L39+tIcaUkaUhvhxY\/eItGpEabXCUAALjUpd\/fDoejw\/dvqQDkcDhU39ikt\/5+Qv\/nk8OqqG2QJD10W2\/9fOogxTtCTa4WAABIBCCvXakDz1W69a9\/OaS1uwpkGFJESKDm3p2uf\/yHvrIHBZpYMQAAIAB56Vod+EVBmTLf3689+WWSpLSYCP3L\/YM1YVBcF1cKAABaEIC81J4ObGoytG7PKS39+Cudq3RLkiYOitO\/3D9YfWMiurJcAAAgApDXrqcDK2rrtXzzUf3n3\/JU32goJDBAPxiTpjkT+ivCHtRFFQMAAAKQl26kA78+W6nF7x\/Q1sNnJUnxDruevfdmPTg8STabrTPLBQAAIgB57UY70DAM\/fVgsV744IDyz1dLku5I7anMB2\/RkN7OzioXAACIAOQ1bzuwtr5R\/7E9T8s3H1VNfaNsNul7d\/XRzyYPVHRESCdUDAAACEBe6qgOLCyv0dKPvtJ7X5yWJDlCg\/TTyQP12Mg+Cgq0zA21AQDoEgQgL3V0B356rESZ7x\/QwUKXJGlQQpSef+AWje7Xy+t9AwCAZgQgL3VGBzY2GVr9Wb5e3XhIZRcerHrfsEQ9e+\/N6t0jrEN+BwAAVkYA8lJndmBpVZ2WbTqstz89oSZDCg0O0NPj++tHY29SaDB3kwYA4EYRgLzU2R0oSftPl2vxewf02fHzkqSU6DD9832DNXlwPJfNAwBwAwhAXuqKACQ1Xzb\/\/r5CLfnwoIpctZKkMekxev6BweofF9VpvxcAgO6IAOSlrgpALarrGvT6lq\/1+63HVNfYpKAAm2Zm9NVP7kmXIzS4038\/AADdAQHIS10dgFqcKKnSLz44qE8OnpEkxUSG6Jkpg\/Td25MVEMBpMQAAroYA5CWzAlCLrEPFeuH9Azp2rkqSNDylh55\/YLBu79Ozy2sBAMBfEIC8ZHYAkqS6hia9kZOn3\/z1qCrdDZKkabcmacGUQUrisnkAANogAHnJFwJQi2JXrf514yH9afdJGRcum\/\/RmJv05Lh+PG0eAIBLEIC85EsBqMWXp8r1wgcH9Fle82Xz8Q67nvn2ID10W2\/mBwEAoM7\/\/jb1IVYrVqzQsGHD5HA45HA4NHr0aH388cee9bNmzZLNZmv1GjVqlIkVd4whvZ1a+6NRWvHY7UqJDtMZl1s\/\/dMXmv7637Trwr2EAABA5zF1BOj9999XYGCg+vfvL0latWqVXnnlFe3Zs0e33HKLZs2apTNnzmjlypWez4SEhCg6Orrdv8MXR4AuVVvfqDdyjmv55ovzg+4blqifTxmklOhwk6sDAMAcljsFFh0drVdeeUU\/+MEPNGvWLJWVlWn9+vU3vD9fD0Atzla4tWzTIa3ZWSDDkEKCAvTEmDT9eHx\/RTI\/CABgMd36FNilGhsbtWbNGlVVVWn06NGe9qysLMXFxWnAgAF64oknVFxcfNX9uN1uuVyuVi9\/EBtl19IZw\/Th3DEafVMv1TU06bdbvtaEf83S\/7erQE1NPpVTAQDwa6aPAOXm5mr06NGqra1VZGSkVq9erXvvvVeStHbtWkVGRio1NVV5eXl67rnn1NDQoN27d8tut192f5mZmVq8eHGbdl8fAbqUYRjadOCMfvXRQZ0oqZYk3ZLk0HP3D9aom3qZXB0AAJ2v258Cq6urU35+vsrKyvTnP\/9Zf\/zjH5Wdna3Bgwe32bawsFCpqalas2aNZsyYcdn9ud1uud1uz7LL5VJKSopfBaAW7oZGvZlzQr\/ZfEQVtc3zg6YOSdDCqTerTy\/mBwEAuq9uH4C+6Z577lG\/fv30u9\/97rLr09PT9cMf\/lALFixo1\/78ZQ7Q1ZRUuvV\/Pjms1Z\/mq8mQQgID9I\/f6qs5E\/oriueLAQC6IcvMAWphGEarEZxLlZSUqKCgQImJiV1clbl6Rdr1y+lD9fFPxmpMeozqGpv0u+xjmvCvWfrvz\/LVyPwgAACui6kB6Nlnn9W2bdt0\/Phx5ebmatGiRcrKytJjjz2myspK\/exnP9Pf\/\/53HT9+XFlZWXrggQcUExOjhx56yMyyTTMwIUpvfv8u\/eesO3RTTITOVdZp4Tu5uu8325Rz9JzZ5QEA4DdMvb76zJkzevzxx1VYWCin06lhw4Zpw4YNmjRpkmpqapSbm6s333xTZWVlSkxM1IQJE7R27VpFRUWZWbapbDabJg6K15j0WL319xN67ZPD+qqoQo\/+8VNNGhyvZ++9WWkxEWaXCQCAT\/O5OUAdrTvMAbqa0qo6\/fqvR\/TWjhNqbDIUHGjTrIy+mjMxXc4w5gcBAPyT5SZBd7TuHoBaHC2u0C8\/PKisQ2clSdERIfrfkwboe3emKCjQ56Z6AQBwVQQgL1klALXYcqhYv\/rwoI4WV0qSBsRH6p\/vG6yxA2JNrgwAgPYjAHnJagFIkuobm\/Tfn+Vr2abDKquulyRNHBSnRffdrH6xkSZXBwDAtRGAvGTFANSivLpev\/7rEb359+NqaDIUFGDT46NT9ZO709UjPMTs8gAAuCICkJesHIBafH22Uks\/OqhPDjY\/R61HeLD+9z0D9OjIPgpmfhAAwAcRgLxEALpo25Gz+uUHB3XoTIUkqV9shBbdd7MmDIyTzWYzuToAAC4iAHmJANRaQ2OT1u4q0KsbD+t8VZ0k6a60aP186iDd3qenydUBANCMAOQlAtDlldfU6\/UtR7Uy57jqGpokSZMHx+uZKQPVP866N5oEAPgGApCXCEBXV1heo9c2HdGfdheoyZACbNJ3RyRr3j0DlNQjzOzyAAAWRQDyEgGofY4WV+jlDYe08cAZSVJIUIBmZfTV0+P7ccUYAKDLEYC8RAC6PrtPlOqlDV\/ps7zzkqSo0CD9eHw\/\/WNGmsJCAk2uDgBgFQQgLxGArp9hGMo6dFYvbfhKXxU1XzEW77DrJ3cP0P99RzKP1gAAdDoCkJcIQDeuscnQu3tP6dWNh3WqrEaSdFNMhH727YGaOiSBS+cBAJ2GAOQlApD33A2NentHvpZvOeq5dH54slMLpgxSRv8Yk6sDAHRHBCAvEYA6TkVtvf6wLU9\/3HZM1XWNkqQx6TFaMGWQhvR2mlwdAKA7IQB5iQDU8c5WuLV88xGt\/ixf9Y3Nh8+Dw5P008kDlNorwuTqAADdAQHISwSgzpNfUq1XNx3Su3tPS5KCAmx6dGQfzZ2Yrtgou8nVAQD8GQHISwSgzvflqXK9\/JdD2nr4rCQpPCRQPxxzk54Yk6ao0GCTqwMA+CMCkJcIQF0n5+tzemnDIX1RUCZJio4I0ZwJ\/fXYqD6yB3EPIQBA+xGAvEQA6lqGYWjDl0V65S+HdOxclSQpuWeY5k8aoGm39lZgAJfOAwCujQDkJQKQORoam\/Sn3Sf12ieHdcblliQNSojSM1MGasLAOO4hBAC4KgKQlwhA5qqpa9QbOce1IuuoXLUNkqS7+kZrwdRBGpHa0+TqAAC+igDkJQKQbyirrtOKrK\/1Rs5xuRuaJEmTBsfrmW8PVHp8lMnVAQB8DQHISwQg31JYXqPXNh3Rn3YXqMmQAmzSd0cka949A5TUI8zs8gAAPoIA5CUCkG86WlyhV\/5ySH\/Zf0aSFBIUoFkZffWjsTcpJpJ7CAGA1RGAvEQA8m2f55fqxY+\/0md55yVJocEBemxkqp4ce5PiHKEmVwcAMAsByEsEIN9nGIayDp3Va58c1hcnyyU1jwg9fEeKnhrfT705NQYAlkMA8hIByH8YhqGtR87p3\/56RLtOlEpqfrzGd25P1tMT+vGcMQCwEAKQlwhA\/scwDP39WImWbz6qnK9LJEmBATZNG56kpyf0V\/+4SJMrBAB0NgKQlwhA\/m33ifP6t81HlXWo+TljNpt079BEzZ3YX4MS+N8TALorApCXCEDdw76TZfq3zUe16cAZT9ukwfH6fyema2iy08TKAACdgQDkJQJQ93Kw0KXlW47qo9xCtRy54wfGau7EdO4sDQDdCAHISwSg7ulocYVe3\/K13v3itBqbmg\/hjH69NHdiukbdFM2zxgDAzxGAvEQA6t5OlFTp9S1f68+fn1TDhSB0Z9+emjMxXWPTYwhCAOCnCEBeIgBZw8nSav0u+5jW7ixQXWPzs8aGp\/TQ3An9dffNPH0eAPxNZ39\/B3T4Hq\/DihUrNGzYMDkcDjkcDo0ePVoff\/yxZ71hGMrMzFRSUpLCwsI0fvx47d+\/38SK4auSe4brF9OHaNuCCfrBt9IUGhygLwrK9MM3d+ne32zXR7mFamrq1lkfAHAdTA1AycnJevHFF7Vr1y7t2rVLEydO1LRp0zwh5+WXX9ayZcu0fPly7dy5UwkJCZo0aZIqKirMLBs+LN4RqufuH6ztCybqqXH9FBESqIOFLj399uea\/NpWrd9zSg0XRogAANblc6fAoqOj9corr+j73\/++kpKSNG\/ePC1YsECS5Ha7FR8fr5deeklPPvlku\/bHKTBrK62q08qc41r5tzxV1DZIkvr2CtfTE\/rrodt6KzjQ1P8PAAC4gm59CuxSjY2NWrNmjaqqqjR69Gjl5eWpqKhIkydP9mxjt9s1btw45eTkmFgp\/EnPiBDNnzRAf\/v5RP3TtweqZ3iwjpdU65n\/2afxr2Tpv3ackLuh0ewyAQBdzPQAlJubq8jISNntdj311FNat26dBg8erKKiIklSfHx8q+3j4+M96y7H7XbL5XK1egGO0GDNntBf2xdM1LP3DlJMpF2nymr0z+u\/1NiXt+g\/t+eppo4gBABWYXoAGjhwoPbu3asdO3boxz\/+sWbOnKkDBw541n\/z6h3DMK56Rc\/SpUvldDo9r5SUlE6rHf4nwh6kH43tp+0LJijzgcFKcITqjMutFz44oDEvb9bvsr9WlbvB7DIBAJ3M5+YA3XPPPerXr58WLFigfv366fPPP9dtt93mWT9t2jT16NFDq1atuuzn3W633G63Z9nlciklJYU5QLgsd0Oj\/rz7lF7POqqTpTWSpB7hwfrBP6Tp\/8noK2dYsMkVAoA1WWYOUAvDMOR2u5WWlqaEhARt2rTJs66urk7Z2dnKyMi44uftdrvnsvqWF3Al9qBAPTqyj7b8bLxe+e4wpcVEqKy6Xq9uOqxRS\/6qRetydfgMVx0CQHcTZOYvf\/bZZzV16lSlpKSooqJCa9asUVZWljZs2CCbzaZ58+ZpyZIlSk9PV3p6upYsWaLw8HA9+uijZpaNbig4MED\/1x0pmnF7sj7Yd1orsr7WV0UVevvTfL39ab4y+vXSzIy+uufmeAUGcFNFAPB3pgagM2fO6PHHH1dhYaGcTqeGDRumDRs2aNKkSZKkZ555RjU1NXr66adVWlqqkSNHauPGjYqKijKzbHRjgQE2Tbu1tx4cnqQdx85rVc5xbTxQpJyvS5TzdYl69wjT46NT9cidKeoRHmJ2uQCAG+Rzc4A6GvcBgrdOldXov3ac0JrP8lVaXS9JsgcFaPqtvTUzo68GJ3FcAUBH41lgXiIAoaPU1jfqvb2n9UbOcR0ovHh7hbv6RmvWP\/TV5MHxCuLGigDQIQhAXiIAoaMZhqFdJ0r1Rs5xbfiySI0XnjGW6AzV\/xrVfHqsV6Td5CoBwL8RgLxEAEJnKiqv1dufntDqT\/NVUlUnSQoJCtADw5I0K6OvhiY7Ta4QAPwTAchLBCB0BXdDoz7cV6hVOcf1xclyT\/vtfXpoZkZfTR2SqJAgTo8BQHsRgLxEAEJX25NfqlU5x\/VhbqHqG5v\/84qLsuvRkX306Mg+iosKNblCAPB9BCAvEYBgluKKWq2+cB+hsxXNdycPDrTp3qGJmpXRV7f16WlyhQDguwhAXiIAwWx1DU36+Mvm02Of55d52ocnOzUzo6\/uG5Yoe1CgeQUCgA8iAHmJAARfknuyXG\/kHNf7X5xWXWOTJCkmMkTfu6uPHhuZqgQnp8cAQCIAeY0ABF9UUunWmp0F+q8dJ1RYXitJCgqw6dtDEjQro6\/uSO0pm41HbgCwLgKQlwhA8GUNjU3aeOCM3vjbcX12\/LynfXCiQ7My+urBW5MUGszpMQDWQwDyEgEI\/uLAaZdW5RzX+r2n5G5oPj3WMzxYD9\/ZR\/9rVB8l9ww3uUIA6DoEIC8RgOBvSqvqtHZXgd76+wmdKquRJNls0qi0Xpp+W5KmDEmUMyzY5CoBoHMRgLxEAIK\/amwy9MnBM1qVc1w5X5d42kOCAjRxYJym39ZbEwbFcgUZgG6JAOQlAhC6g5Ol1Xp372m9u\/eUDp+p9LQ7QoN079BETbu1t0amRSsggInTALoHApCXCEDoTgzD0MHCCr2795Te3XtaRa5az7pEZ6geHJ6k6bf11s2JHOsA\/BsByEsEIHRXjU2GPs0r0bt7TuujLwtVUdvgWTcwPkrTbkvStFt7q3ePMBOrBIAbQwDyEgEIVlBb36isQ8Vav+e0Nn9V7LnJoiTd1Tda025L0n1DE9UjPMTEKgGg\/QhAXiIAwWrKq+v18ZeFWr\/3lD7NO6+W\/8KDA20aPzBO02\/trbtvjuP+QgB8GgHISwQgWFlheY3e23ta6\/ee1sFCl6c90h6kKUMSNP3W3hrdr5cCmTwNwMcQgLxEAAKaHSqq0Pq9p\/Te3tOe+wtJUlyU3TN5+pYkB4\/gAOATCEBeIgABrTU1Gdp1olTr957Sh\/sKVV5T71nXLzZC02\/trWm39lafXtx5GoB5CEBeIgABV1bX0KSsQ8V6d+9pfXLwjOcRHJI0IrWnpt+apPuGJSk6gsnTALoWAchLBCCgfSpq67XhyyK9u\/e0cr4+p6YL\/zIEBdg0dkCspt2apMmDExQWwuRpAJ2PAOQlAhBw\/c64avX+F6e1fu8pfXnq4uTp8JBAffuWBE0eHK+M\/jE8kwxApyEAeYkABHjnaHGl3t17Suv3nlLB+YuTpwMDbLq9Tw+NGxCrcQPidEuSg0dxAOgwBCAvEYCAjmEYhj7PL9UH+wqVffisjp2tarW+V0SIxqTHaNzAWI1Jj1VMpN2kSgF0BwQgLxGAgM5RcL5a2YfPauvhs\/rb0XOqqmtstX5ob6fGDYjV2AGxuq1PDwUHBphUKQB\/RADyEgEI6Hx1DU36PL9UWw+fVfbhs9p\/2tVqfZQ9SP\/Qv3l0aOyAWJ5PBuCaCEBeIgABXa+4olbbDp9T9uGz2nbkrEqr61utT4+L1NgBsRo3IFZ3pUXzWA4AbRCAvEQAAszV2GToy1Plyr4wOrQnv9Rzib0khQYHaNRNvTQ2PVbjBsbqppgI7kYNgADkLQIQ4FvKq+v1t6\/PKftQcyAqctW2Wp\/cM+zClWWxyugfo0h7kEmVAjATAchLBCDAdxmGocNnKj1zhz7LO6+6xot3ow4KsGlEak+NG9gciAYn8qwywCoIQF4iAAH+o7quQTuOlSj70FltPXJOeedaX2ofG2XX2PRYjR0QozHpsTyiA+jGCEBeIgAB\/utESZVndCjn6xJVX3Kpvc0mDUvuoYx+vTQ82amhyT2U5AxlhAjoJghAXiIAAd2Du6FRu0+UNk+mPnRWXxVVtNmmV0SIhiY7Nax3cyAaluxUvCPUhGoBeIsA5CUCENA9nXHVauvhs\/o8v1T7TpbrUFGFGpra\/nMWF2XXsGSnhvZuDkRDejsVG8VdqgFf160D0NKlS\/XOO+\/oq6++UlhYmDIyMvTSSy9p4MCBnm1mzZqlVatWtfrcyJEjtWPHjnb9DgIQYA219Y36qqhCuafKlXuyTPtOlutIcaUaLxOKEp2hGtrb2RyMkntoaG8n84kAH9OtA9CUKVP0yCOP6M4771RDQ4MWLVqk3NxcHThwQBEREZKaA9CZM2e0cuVKz+dCQkIUHR3drt9BAAKsq6auUQcKXc2B6FS5ck+W6+jZSl3uX73knmGtR4qSnHKG87R7wCyd\/f1t6g02NmzY0Gp55cqViouL0+7duzV27FhPu91uV0JCQleXB8DPhYUEakRqT41I7elpq3I3aP9pl\/adLLswWlSuY+eqdLK0RidLa\/RRbpFn2769wpvnEvV2amiyU7ckORQVSigCOothGCqvqdcZl1vHTp\/r1N\/lU3cYKy8vl6Q2oztZWVmKi4tTjx49NG7cOP3qV79SXFzcZffhdrvldrs9yy6X67LbAbCmCHuQ7kqL1l1pF\/+dcdXW68sLYahlpCj\/fLWOlzS\/3v\/itKTmK8\/SYiJaTbK+Jcmh8BCf+qcU8DmGYajS3aAzLreKXbU6U1GrMy63zrhqVXzhZ0tbXUPzvcCa3NWdWpPPTII2DEPTpk1TaWmptm3b5mlfu3atIiMjlZqaqry8PD333HNqaGjQ7t27Zbe3nciYmZmpxYsXt2nnFBiA61FWXdc8QtQSjE6W61RZTZvtAmxS\/7hIDe3dQ0N6O9Q3JkIpPcOU3DOcZ5zBEqrrGjxhpiXQFF8acCqaf156G4tr6RkerOjgRm1+9t7uOQfoUrNnz9aHH36o7du3Kzk5+YrbFRYWKjU1VWvWrNGMGTParL\/cCFBKSgoBCIDXSirdFwPRhZ\/ffJTHpWKj7EruGaaUnuHNP6PDPe+TeoQpJCigC6sHrk9tfaPOVrQEm4ujNMXfCDsV7oZ27zMqNEjxjlDFO+yKjwpVXMv7Cz\/jokIVG2VXaHBg954D1GLu3Ll67733tHXr1quGH0lKTExUamqqjhw5ctn1drv9siNDAOCtXpF2jR8Yp\/EDL56CL3bVKvdU8wjRgUKXCs5X62RpjSrdDTpb4dbZCrf25Je12VeATUpwhCq5Z7iSo5tHjFIuhKTknmFKdIYpMICbOqLjGIahqrpGlVS6VVJVp5LKOp2vcutc5cX3JVV1zQGnolZl1fXt3nd4SKASHKGK84SZUMVF2ZsDTlRzW5zD7lOni02txDAMzZ07V+vWrVNWVpbS0tKu+ZmSkhIVFBQoMTGxCyoEgKuLc4Tqbkeo7r453tPWMpHzZGmNCs5Xq6C02vP+ZGmNCkqrVVvfpNPltTpdXqvPjrfdb1CATYk9QpXSM7zVCFLLz9hIuwIISJZXXdegkso6lVRdDDPnq+qaQ86F9pIqt85X1ulcVZ1nfk172YMCLo7OOEIVH3VxxObSsOOPDy02teLZs2dr9erVevfddxUVFaWiouarL5xOp8LCwlRZWanMzEx95zvfUWJioo4fP65nn31WMTExeuihh8wsHQCuyGazqUd4iHqEh2hIb2eb9YZh6FxlnU6WVqugtKb55\/nmnydLa3SqtEZ1jU0qOF+jgvM1kkra7CMkKEDJPcKUHB3umXOUcslIUnRECI8F8UO19Y3NYaayTucuBJeSqktHbJrDTUvQqalv\/7yaFmHBgeoVGaJeESHqFWlXdESIekWGKCai+b0n2ESFyhEW1G2PI1PnAF2pU1euXKlZs2appqZG06dP1549e1RWVqbExERNmDBBv\/jFL5SSktKu38F9gAD4m6YmQ2cqaluPGl0yklRYXnvZGzxeKjwkUDGRdkWFBinSHqSo0GA5QoOal0Obl6NaftqDLr6\/sD4yJIgRpuvQ1GSoqq5BVe5GVbobVHXhVeluUFVdgyrdja3b3Be3ddXWe8JN5XXMp2kREhSgmG+EmZZw08uzfHGdL52GuppufSPErkAAAtDd1Dc2qai8tjkQXRg5KrgkLJ2pqL3szR6vh80mRYZcDEaRoa1DUpvQZL\/43nHJ9sGBvjnR2zAM1dY3ecKIJ5RcIay0aftG2LmeK5yuJTjQ1iqwXDpSExMZougI+8URm8gQRYQEdstRGktMggYAtF9wYEDzFWXR4VK\/tuvdDY06VVqj0up6VdTWq6K24cKrXpXu5vcuT\/vFtpbl+kZDhiFVuBuar\/Apv\/KVbtcSGhygqNBghYdcvCWAYUiGjIvvLwlrLf+f3NDFdkPGJe9b2i\/5\/CWfvfi+9b7U6vOGauobdY1BtBsSGGBTREigIu1Birjwan4feMn7Cz9DmtscYcEXR2wiQxRl776nnXwJAQgAuhl7UKBuio28oc8ahiF3Q5MnDLUEo0p3vVyXhKSK2gZV1jaowl1\/IVBdCFMXtmmZm1Jb36Taevc1fqt5bDYpIuRCQAlpCS2XCTAhrdsvrm\/dZg8KILz4CQIQAMDDZrMpNDhQocGBio268VuK1Dc2ecJQhbteNRdOEV3MBjbZbFLLos1mu+S91LLUsr3n54XPXbrdxXVt93+xvfX+w4KbR1\/CggOZ62RRBCAAQIcLDgxQz4gQ9YwIMbsU4LJ8c3YaAABAJyIAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyzE1AC1dulR33nmnoqKiFBcXp+nTp+vQoUOttjEMQ5mZmUpKSlJYWJjGjx+v\/fv3m1QxAADoDkwNQNnZ2Zo9e7Z27NihTZs2qaGhQZMnT1ZVVZVnm5dfflnLli3T8uXLtXPnTiUkJGjSpEmqqKgwsXIAAODPbIZhGGYX0eLs2bOKi4tTdna2xo4dK8MwlJSUpHnz5mnBggWSJLfbrfj4eL300kt68sknr7lPl8slp9Op8vJyORyOzv4TAABAB+js7++gG\/nQCy+8cNX1\/\/Iv\/3JDxZSXl0uSoqOjJUl5eXkqKirS5MmTPdvY7XaNGzdOOTk5lw1Abrdbbrfbs+xyuW6oFgAA0H3dUABat25dq+X6+nrl5eUpKChI\/fr1u6EAZBiG5s+fr29961saMmSIJKmoqEiSFB8f32rb+Ph4nThx4rL7Wbp0qRYvXnzdvx8AAFjHDQWgPXv2tGlzuVyaNWuWHnrooRsqZM6cOdq3b5+2b9\/eZp3NZmu1bBhGm7YWCxcu1Pz581vVlZKSckM1AQCA7qnDJkE7HA698MILeu655677s3PnztV7772nLVu2KDk52dOekJAg6eJIUIvi4uI2o0It7Ha7HA5HqxcAAMClOvQqsLKyMs88nvYwDENz5szRO++8o82bNystLa3V+rS0NCUkJGjTpk2etrq6OmVnZysjI6PD6gYAANZyQ6fAfvOb37RaNgxDhYWFeuuttzRlypR272f27NlavXq13n33XUVFRXlGepxOp8LCwmSz2TRv3jwtWbJE6enpSk9P15IlSxQeHq5HH330RkoHAAC4scvgvzlSExAQoNjYWE2cOFELFy5UVFRU+375FebxrFy5UrNmzZLUHK4WL16s3\/3udyotLdXIkSP129\/+1jNR+lq4DB4AAP\/T2d\/fPnUfoM5AAAIAwP909vc3zwIDAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWY2oA2rp1qx544AElJSXJZrNp\/fr1rdbPmjVLNput1WvUqFHmFAsAALoNUwNQVVWVhg8fruXLl19xmylTpqiwsNDz+uijj7qwQgAA0B0FmfnLp06dqqlTp151G7vdroSEhC6qCAAAWIHPzwHKyspSXFycBgwYoCeeeELFxcVX3d7tdsvlcrV6AQAAXMqnA9DUqVP19ttva\/PmzXr11Ve1c+dOTZw4UW63+4qfWbp0qZxOp+eVkpLShRUDAAB\/YDMMwzC7CEmy2Wxat26dpk+ffsVtCgsLlZqaqjVr1mjGjBmX3cbtdrcKSC6XSykpKSovL5fD4ejosgEAQCdwuVxyOp2d9v1t6hyg65WYmKjU1FQdOXLkitvY7XbZ7fYurAoAAPgbnz4F9k0lJSUqKChQYmKi2aUAAAA\/ZuoIUGVlpY4ePepZzsvL0969exUdHa3o6GhlZmbqO9\/5jhITE3X8+HE9++yziomJ0UMPPWRi1QAAwN+ZGoB27dqlCRMmeJbnz58vSZo5c6ZWrFih3NxcvfnmmyorK1NiYqImTJigtWvXKioqyqySAQBAN+Azk6A7S2dPogIAAB2vs7+\/\/WoOEAAAQEcgAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMsxNQBt3bpVDzzwgJKSkmSz2bR+\/fpW6w3DUGZmppKSkhQWFqbx48dr\/\/795hQLAAC6DVMDUFVVlYYPH67ly5dfdv3LL7+sZcuWafny5dq5c6cSEhI0adIkVVRUdHGlAACgOwky85dPnTpVU6dOvew6wzD02muvadGiRZoxY4YkadWqVYqPj9fq1av15JNPdmWpAACgG\/HZOUB5eXkqKirS5MmTPW12u13jxo1TTk7OFT\/ndrvlcrlavQAAAC7lswGoqKhIkhQfH9+qPT4+3rPucpYuXSqn0+l5paSkdGqdAADA\/\/hsAGphs9laLRuG0abtUgsXLlR5ebnnVVBQ0NklAgAAP2PqHKCrSUhIkNQ8EpSYmOhpLy4ubjMqdCm73S673d7p9QEAAP\/lsyNAaWlpSkhI0KZNmzxtdXV1ys7OVkZGhomVAQAAf2fqCFBlZaWOHj3qWc7Ly9PevXsVHR2tPn36aN68eVqyZInS09OVnp6uJUuWKDw8XI8++qiJVQMAAH9nagDatWuXJkyY4FmeP3++JGnmzJl644039Mwzz6impkZPP\/20SktLNXLkSG3cuFFRUVFmlQwAALoBm2EYhtlFdCaXyyWn06ny8nI5HA6zywEAAO3Q2d\/fPjsHCAAAoLMQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOX4dADKzMyUzWZr9UpISDC7LAAA4OeCzC7gWm655RZ98sknnuXAwEATqwEAAN2BzwegoKAgRn0AAECH8ulTYJJ05MgRJSUlKS0tTY888oiOHTtmdkkAAMDP+fQI0MiRI\/Xmm29qwIABOnPmjH75y18qIyND+\/fvV69evS77GbfbLbfb7Vl2uVxdVS4AAPATNsMwDLOLaK+qqir169dPzzzzjObPn3\/ZbTIzM7V48eI27eXl5XI4HJ1dIgAA6AAul0tOp7PTvr99\/hTYpSIiIjR06FAdOXLkitssXLhQ5eXlnldBQUEXVggAAPyBT58C+ya3262DBw9qzJgxV9zGbrfLbrd3YVUAAMDf+PQI0M9+9jNlZ2crLy9Pn376qb773e\/K5XJp5syZZpcGAAD8mE+PAJ08eVLf+973dO7cOcXGxmrUqFHasWOHUlNTzS4NAAD4MZ8OQGvWrDG7BAAA0A359CkwAACAzkAAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAluMXAej1119XWlqaQkNDNWLECG3bts3skgAAgB\/z+QC0du1azZs3T4sWLdKePXs0ZswYTZ06Vfn5+WaXBgAA\/JTNMAzD7CKuZuTIkbr99tu1YsUKT9vNN9+s6dOna+nSpdf8vMvlktPpVHl5uRwOR2eWCgAAOkhnf38HdfgeO1BdXZ12796tn\/\/8563aJ0+erJycnMt+xu12y+12e5bLy8slNXckAADwDy3f2501TuPTAejcuXNqbGxUfHx8q\/b4+HgVFRVd9jNLly7V4sWL27SnpKR0So0AAKDzlJSUyOl0dvh+fToAtbDZbK2WDcNo09Zi4cKFmj9\/vme5rKxMqampys\/P75QOtBKXy6WUlBQVFBRwOtEL9GPHoS87Dn3ZMejHjlNeXq4+ffooOjq6U\/bv0wEoJiZGgYGBbUZ7iouL24wKtbDb7bLb7W3anU4nB2MHcTgc9GUHoB87Dn3ZcejLjkE\/dpyAgM65XsunrwILCQnRiBEjtGnTplbtmzZtUkZGhklVAQAAf+fTI0CSNH\/+fD3++OO64447NHr0aP3+979Xfn6+nnrqKbNLAwAAfsrnA9DDDz+skpISvfDCCyosLNSQIUP00UcfKTU1tV2ft9vtev755y97WgzXh77sGPRjx6EvOw592THox47T2X3p8\/cBAgAA6Gg+PQcIAACgMxCAAACA5RCAAACA5RCAAACA5XTrAPT6668rLS1NoaGhGjFihLZt22Z2ST4vMzNTNput1SshIcGz3jAMZWZmKikpSWFhYRo\/frz2799vYsW+Y+vWrXrggQeUlJQkm82m9evXt1rfnr5zu92aO3euYmJiFBERoQcffFAnT57swr\/CfNfqx1mzZrU5RkeNGtVqG\/qx+bFAd955p6KiohQXF6fp06fr0KFDrbbhmGyf9vQlx2X7rFixQsOGDfPcKHL06NH6+OOPPeu78pjstgFo7dq1mjdvnhYtWqQ9e\/ZozJgxmjp1qvLz880uzefdcsstKiws9Lxyc3M9615++WUtW7ZMy5cv186dO5WQkKBJkyapoqLCxIp9Q1VVlYYPH67ly5dfdn17+m7evHlat26d1qxZo+3bt6uyslL333+\/Ghsbu+rPMN21+lGSpkyZ0uoY\/eijj1qtpx+l7OxszZ49Wzt27NCmTZvU0NCgyZMnq6qqyrMNx2T7tKcvJY7L9khOTtaLL76oXbt2adeuXZo4caKmTZvmCTldekwa3dRdd91lPPXUU63aBg0aZPz85z83qSL\/8PzzzxvDhw+\/7LqmpiYjISHBePHFFz1ttbW1htPpNP793\/+9iyr0D5KMdevWeZbb03dlZWVGcHCwsWbNGs82p06dMgICAowNGzZ0We2+5Jv9aBiGMXPmTGPatGlX\/Az9eHnFxcWGJCM7O9swDI5Jb3yzLw2D49IbPXv2NP74xz92+THZLUeA6urqtHv3bk2ePLlV++TJk5WTk2NSVf7jyJEjSkpKUlpamh555BEdO3ZMkpSXl6eioqJW\/Wq32zVu3Dj69Rra03e7d+9WfX19q22SkpI0ZMgQ+vcbsrKyFBcXpwEDBuiJJ55QcXGxZx39eHnl5eWS5HmwJMfkjftmX7bguLw+jY2NWrNmjaqqqjR69OguPya7ZQA6d+6cGhsb2zwwNT4+vs2DVdHayJEj9eabb+ovf\/mL\/vCHP6ioqEgZGRkqKSnx9B39ev3a03dFRUUKCQlRz549r7gNpKlTp+rtt9\/W5s2b9eqrr2rnzp2aOHGi3G63JPrxcgzD0Pz58\/Wtb31LQ4YMkcQxeaMu15cSx+X1yM3NVWRkpOx2u5566imtW7dOgwcP7vJj0ucfheENm83WatkwjDZtaG3q1Kme90OHDtXo0aPVr18\/rVq1yjOhj369cTfSd\/Rvaw8\/\/LDn\/ZAhQ3THHXcoNTVVH374oWbMmHHFz1m5H+fMmaN9+\/Zp+\/btbdZxTF6fK\/Ulx2X7DRw4UHv37lVZWZn+\/Oc\/a+bMmcrOzvas76pjsluOAMXExCgwMLBNGiwuLm6TLHF1ERERGjp0qI4cOeK5Gox+vX7t6buEhATV1dWptLT0itugrcTERKWmpurIkSOS6Mdvmjt3rt577z1t2bJFycnJnnaOyet3pb68HI7LKwsJCVH\/\/v11xx13aOnSpRo+fLh+\/etfd\/kx2S0DUEhIiEaMGKFNmza1at+0aZMyMjJMqso\/ud1uHTx4UImJiUpLS1NCQkKrfq2rq1N2djb9eg3t6bsRI0YoODi41TaFhYX68ssv6d+rKCkpUUFBgRITEyXRjy0Mw9CcOXP0zjvvaPPmzUpLS2u1nmOy\/a7Vl5fDcdl+hmHI7XZ3\/TF5g5O2fd6aNWuM4OBg4z\/+4z+MAwcOGPPmzTMiIiKM48ePm12aT\/vpT39qZGVlGceOHTN27Nhh3H\/\/\/UZUVJSn31588UXD6XQa77zzjpGbm2t873vfMxITEw2Xy2Vy5earqKgw9uzZY+zZs8eQZCxbtszYs2ePceLECcMw2td3Tz31lJGcnGx88sknxueff25MnDjRGD58uNHQ0GDWn9XlrtaPFRUVxk9\/+lMjJyfHyMvLM7Zs2WKMHj3a6N27N\/34DT\/+8Y8Np9NpZGVlGYWFhZ5XdXW1ZxuOyfa5Vl9yXLbfwoULja1btxp5eXnGvn37jGeffdYICAgwNm7caBhG1x6T3TYAGYZh\/Pa3vzVSU1ONkJAQ4\/bbb291ySIu7+GHHzYSExON4OBgIykpyZgxY4axf\/9+z\/qmpibj+eefNxISEgy73W6MHTvWyM3NNbFi37FlyxZDUpvXzJkzDcNoX9\/V1NQYc+bMMaKjo42wsDDj\/vvvN\/Lz8034a8xztX6srq42Jk+ebMTGxhrBwcFGnz59jJkzZ7bpI\/rRuGwfSjJWrlzp2YZjsn2u1Zccl+33\/e9\/3\/O9HBsba9x9992e8GMYXXtM2gzDMK5vzAgAAMC\/dcs5QAAAAFdDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAALgV86ePauEhAQtWbLE0\/bpp58qJCREGzduNLEyAP6EZ4EB8DsfffSRpk+frpycHA0aNEi33Xab7rvvPr322mtmlwbATxCAAPil2bNn65NPPtGdd96pL774Qjt37lRoaKjZZQHwEwQgAH6ppqZGQ4YMUUFBgXbt2qVhw4aZXRIAP8IcIAB+6dixYzp9+rSampp04sQJs8sB4GcYAQLgd+rq6nTXXXfp1ltv1aBBg7Rs2TLl5uYqPj7e7NIA+AkCEAC\/80\/\/9E\/6n\/\/5H33xxReKjIzUhAkTFBUVpQ8++MDs0gD4CU6BAfArWVlZeu211\/TWW2\/J4XAoICBAb731lrZv364VK1aYXR4AP8EIEAAAsBxGgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOX8\/0tIVApx8v+kAAAAAElFTkSuQmCC", "text\/plain": "<Figure size 640x480 with 1 Axes>"}, "metadata": {}, "output_type": "display_data"}]}}, "29a880f5e6de435795b50f46a66a942e": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "29adfb5bcde241fc8e8984961ab42ea5": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "2c2ed815b0f545a9948793c1bc4b5fdf": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": {"_dom_classes": ["widget-interact"], "children": ["IPY_MODEL_68fb9a92340e434d85fbcc8de67c1970", "IPY_MODEL_47b1a57cdbeb4a11abc8e9166acedb90"], "layout": "IPY_MODEL_6373a42bb1db4fb4aa1cf6ffaac1075e"}}, "2df005db5f0d49dda9dd0c4e6e958c48": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": {"description_width": ""}}, "2f094b8f56ff4ac3b16dacdf8948dda6": {"model_module": "@jupyter-widgets\/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": {"layout": "IPY_MODEL_66636bdd455c4d54a22c62b30195f3fb", "outputs": [{"data": {"image\/png": "iVBORw0KGgoAAAANSUhEUgAAAZ4AAAGRCAYAAABVKtXaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy\/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eXwkd33njz+r+u5Wd+uWRhodc2jusWfGY89Yg7ltYHcTAjiwgYWQza6TDUuA7DfJkoX8YAkkQDYYCOGb7BIMvyTgZVkHEgixCWDwBfbY0twajUb3LbVafR91fP\/oqZ7uVld1dUsjyaZej4cfIE1VdXWr6\/P6vN\/v1\/v1FlRVVbFgwYIFCxY2CeJW34AFCxYsWPj5gkU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGNhS6Cq6lbfggULFrYI9q2+AQs\/X1BVlWw2SyqVwmazYbfbsdls2Gw2BEHY6tuzYMHCJkBQra2nhU2Coihks1lkWSadTgM5Ikomk6TTadra2iwismDh5wBWxGPhlkNVVWRZZmRkBKfTSXt7O6IoIooiqqoSjUZZWFigoaGBdDqNIAiIoojdbreIyIKFlyAs4rFwS6Gl1mRZJhKJ4Ha7mZiYYHp6mkAgQENDA7IsA2C321FVNf9fOp0mk8kAWERkwcJLCFaqzcItgyzLZLNZFEVBFEXOnTtHJBJBkiR6enpIJBKsrKwQj8cRRZGOjg4aGhqor6\/H4XAAFBGRoigA+YjI4XDk60SiKFpEZMHCiwRWxGNhw6GqKpIkIUkSqqoiiiLhcJiFhQVcLhd33303kCMQQRCYmppiamoKVVUZGRkhkUjg9\/upr6\/PE5EW6RQSUSqVyl9HIyLtOIuILFjYvrCIx8KGQlEUJEnKp88EQWBkZITR0dE8mTidznwKDXIpNofDwf79+wFIp9OsrKwQDocZHh4mlUqtISIt3aZHRFokZBGRBQvbDxbxWNgQaKmwbDaLqqoIgkA6nebcuXOkUilOnTrF1NRU2cVfEISivh6Xy0V7ezvt7e0ApFIpVlZWWFlZYWhoiHQ6na8P1dfXEwwG1xCRoigWEVmwsE1hEY+FdaMwtQa5hX5xcZHz58\/T2trKiRMnsNvtawhGQyUCcLvd7Nixgx07dgCQTCbzRDQ7O0smkyEYDFYkonQ6TSqVyivqLCKyYGFrYBGPhXWhsDdHW7ivXLnC1NQUhw8fpqOjo+h4PS1LNRoXj8eDx+Oho6Mj3wekEdH09DSSJOWJqKGhAb\/fj81my7+OJu\/W+olmZmZob2\/H6\/XmIyOt\/mTBgoWNh0U8FmqCtnhLkpRXrSUSCQYHBwHo7+\/H5\/MVnSMIAoqirFnQ9SIhMxAEAa\/Xi9frpbOzE1VV82q5lZUVJicnURSliIjq6uqw2+359zEyMkJDQ0OebMql5iwismBh42ARj4WqUdibA7kem5mZGS5dukRXVxf79u1DFNfaABYSTOEivpELuiAI+Hw+fD4fO3fuRFVV4vF4nojGx8dRVTUvVGhoaEBVVWw2Gw6HIx8RSZJENpvVJaJy78+CBQvmYBGPhaqgKAqZTCYf5ciyzKVLl1hcXOTYsWO0tLTonmsU2dyqdjJBEKirq6Ouro6uri5UVSUWi+WJaHR0FIChoSGam5tpaGjA5\/MVRUR6RKT1EVlEZMFCdbCIx4IpaKk1TbUmiiKRSITBwUHcbjdnzpzB7XYbXsNIXLBZfcyCIOD3+\/H7\/XR3d6MoCo8\/\/jh1dXUsLy8zMjKCzWbLCxUaGhrwer26RATlXRUsIrJgQR8W8VioiNLUmiAIjI+PMzw8zO7du9m9e7epdFmtqrZbCU3N1tnZidfrRVEUIpEIKysrLC4ucu3aNex2exEReTyeNUSUzWYN7X0sIrJg4SYs4rFgiMIoRxAEstks58+fJxqNcvLkSRoaGkxfy4hgtotzkyiK1NfXU19fD5D3mFtZWWF+fp6rV6\/idDrXEJFGLIX9TFpEJAhCERFpqjkLFn5eYRGPhbLQ0kmXL1+mrq6Ojo4OQqEQ586do76+njNnzuT91MxiO6Ta9KD3+lraTSNYWZZZXV1lZWWFmZkZhoaGcLlc+WMaGhpwuVxF19WIKJPJ5GtEGhEVquYsWPh5gUU8FtZAWygVRSGRSOBwOLh27RpjY2Ps37+frq6umhbK7Uw8ZmGz2WhsbKSxsREASZLyRDQ5OcmlS5fweDxFROR0OvPnlxIRwPLyMm1tbbhcLst528LPBSzisZBH4aKoqdZUVWViYgKbzcbp06fx+\/3rfo1SvJgXWbvdTlNTE01NTUCOiMLhcF66ffHiRXw+X5HPXCERZbNZLl26RH19PZIkWbOILPxcwCIeC0D53pyFhQUWFxfx+\/2cOnUq3\/1fK7ZCTr3ZsNvtNDc309zcDOSIRSOi0dFR4vE4dXV1eSKqq6vLn6d9vppk3RqKZ+GlCot4LBTZ3oiiiKIoXLlyhZmZmXy6aL2kAy+NVFu1cDgctLS05PubMplMnoi0ERAA169fp7GxMT8CAm6SsUVEFl5qsIjn5xjlbG\/i8TiDg4OIokh\/fz+jo6MbRgoawUiSxMTEBF6vN29Vs5XYzNd3Op20trbS2toKQDwe56c\/\/SmSJBWNgNDSctoICCgmIms6q4UXMyzi+TlFud6c6elpLl++THd3N319ffkeF23y53qhybGfeuop7HY7kiSRSqXwer1IkkQoFMo7S\/+8QFMG7t+\/H5vNVtMIiHJjwq3prBa2Myzi+TlE6UhqSZK4ePEioVCI48eP5+sTsHFpMFVVCYVCrK6u0tfXx86dO4Hc0LfZ2VnGxsa4fPky2Wx2jbP0z0PzpUYMlUZAZLNZU0RkTWe1sJ1hEc\/PEUrn5oiiyOrqKoODg3i9Xs6cOVPUg6Ido0VFtSKbzXLhwgVCoRB+v5\/du3fnm1Ldbjetra1MTEzQ399ftNBqztKFhp51dXUvqUWzEqkbjYCYmppCluWyIyCs6awWtjMs4vk5QaFMWsPY2BjXrl1jz5497Nq1y9R00GoRDocZHBykrq6Ovr4+Zmdnyx6nOSOUjjgoNfTUnAW0hdbr9W7IornV4gazlkO1jICoNJ1VURTsdjsej8ciIgubAot4XuIoN5I6k8lw\/vx54vE4d955Z94ephxqrfGoqpontr1799Lb28vs7GxVqrZyhp7RaLTIR83hcBQ1a1YyKt1uWA\/h1TICoq6uDlEUi4hIswHq6emxprNa2BRYxPMSRjkBwfLyMufOnaOxsZH+\/v6KtjdaE2k10IgtGo0WEdt6TUJFUSQYDBIMBunt7S3yUZuenubKlSu43W5d14DtjI1Y2MuNgIhGo0V9RIIgFPnMacP6tPRb6XTWcvJti4gsrBcW8bxEUdqbo+1sJyYmOHjwIJ2dnetylNbDysoKg4ODBAKBNX5uG91AWuijtnv3bl3XgEIi0npktgtuZYpPEAQCgQCBQGBNxFg4AkITmCQSibIjIDTJvTWd1cJGYXs9hRbWjXK9OclkksHBQWRZ5u677853y5uBWeJRVZXR0VFGRkbo6+ujp6en7IhrvdfQrrGeBazUNaC0WTOZTOZ7ZBoaGraNdHuzFu3CiBHIj4AYGhoiHo\/z7LPPmhoBUWk6q0VEFirBIp6XEFRVJRKJMDc3R3d3N6IoMj8\/z4ULF+jo6Mj3ilQDMzWeXGptEEhy11135Rc2s9faKOIpRWmzZjqdJhQKsbKywuXLl8lkMgSDwXxKyuv1brp0eytFDZpQw+v1Ul9fT0dHRz51OTc3VzQCQiOj0hEQ1nRWC7XAIp6XCLTenFgsxtjYGF1dXVy6dIn5+XmOHDlCe3t7TdetVOMJhUJcvXqO48fdOF0dCJQnHVi7s9eIZrN2xy6XK98jUyhNXl1dZXh4mKtXr66RJm\/GvW11dKD9HYxGQGg1tHIjICoRkTUUz0IpLOJ5kaOwN0dVVWw2G7Is8\/TTT2O32+nv78fj8dR8fb1Um6qqXL9+nURinLv7vdhsKoqcxSg4qpS228zdf6E0eWRkhOPHjyMIQl4RNjY2li\/Eb7R0uxBbLePW7qHc+6p1BEQpEVnTWS2UwiKeFzEURUGSpCLV2uLiItlslu7ubvbs2bPuh7ocWaTTac6fH2RnV4b9BzzAjX8X0lVfS\/s9bO0iXKoIUxSFWCxGKBRaMwJb+289hF762lsJRVFM3UOtIyDKTWctNxTPIqKfH1jE8yJEud4cSZLy7gCiKNLX17chr1Val1leXmZ4+DzHT7jx+Wwlx6Yr1mm26zye0vsSRTGvCOvt7UVRlPxuf3Z2tuLk0RcTaq2tVTsCor6+vkjlWPg9vnbtGm63m\/b2dmtM+M8BLOJ5kaHU9kYQhLw7gN\/v58SJEzz77LMb9npajUdVVUZGRkilJuk\/40EUyxGIgiJnsNnLL8DbKdVWLURRLKp\/lEs7FUq3SxdZPWy0oKIWbNQ9mBkB4ff7i4hIU8wlk8n8\/y+MiLRm10KxwlZ\/XhbWD4t4XkQo7M3R0hTXr1\/n+vXreQlzKpVCUZQNW0wEQUCWZZ577md090gcOOgmn1ore3waqI54tkOqrVqUpp0Kd\/vXr18nHo8XSbcLxxtsN9wq8iunKtRqaKUjILT\/X\/gZlUvNWUT00oBFPC8ClOvNydVZzpNMFkuYN1qaHI1GUdUEtx8L4PVWzr0LQsbg34z7eF7MKN3tFy6ypeMNtB4iLZrc6ve\/Wffgcrlob2\/PKywLR0DEYjEikQhLS0trnLe1ewTKEpE1i+jFB4t4tjnKjaReWlri\/PnzNDc3c\/z48aJu\/MJC7nqgKArXrl0jk53iZff4sNtN+rUZCAxezKm2alG6yBa6Ss\/MzCBJEsFgEJ\/Pt6ERai3YqtcuHAGRTCZpbm7G4XAUfUaFZB0IBMoSkTWd9cUHi3i2MbSHSotyVFVlaGiIyclJDh06RGdn55pzNOJRFKXm1E4qleL8+QF6d8ns2FGdcqtSxKMtcuFwOG\/pstWpts1YmErHG2iu0gsLC8iyzE9+8pMiM0+fz7dpC+Z2iLrgJllXOwICrOmsLzZYxLMNoaXWNNWaKIokEgkGBwdRVZX+\/v68uWMptIeq1qmhi4uLjIyc58iROuobqieCnLJN799yCrkLFy4wNzeXX\/C0gn0ikcDlcr3kF4ZCV+lAIMDg4CC33377Gg+1Uun2rfpctgPxaJsrDbWMgNCbRWRNZ91+sIhnm6Fcam12dpZLly7R2dnJ\/v37Dfscak21KYrC8PAwsjJD\/xkvgmADqh8AZ0Q8qVQKWZaJRqOcOnUKm82Wt\/FfXFxkcHAQp9NJY2Pji16ibBbaoq9Jt3t6evIeaisrK8zPzxdZ12ifzUZ+LtuBeLQNlh42agSENZ11e8Ainm2E0pHUsixz+fJlFhYWuO222\/LqICNoardqIp5kMsn58wPs3qPQ3p5TralqFlWFap9BvVTb3Nwc58+fB+DUqVN5633NtHJ0dJSTJ0+SyWTKSpQbGxuL5LcvJZQudJqHWn19Pbt27SqyrtE+F6\/XWxQRmZFu62E7EI\/ZJlYNtY6AMCIirWm4tbXVIqJbjJfeU\/wiRGlvjiiKRKPRfARw5syZqgacVUM8CwsLjI5e4I6TPgpfQhBUVNUBZKt5KwiiRDaZxuHM7cgVRWFoaIjp6Wn27dvHlStXEEVxzf1pu89SiXI5+a2269eUYRuBraovmXndQuuaPXv2rGnUvHDhAnV1dUXS7WoIulK0sRkoTbVVC7MjIAqJSDOF1YgoHo9z7tw5Xvayl+WvaY0JvzWwiGeLUTqSWhAEJiYmuHr1Krt27WLPnj1Vf9HNDG9TFIWrV68Cc9zd70UUyxCVagehOuIBUNVcL08ymWRgYCBflwK4fPly2XPKvUeHw1HUB5JKpfLu0prqqb6+Pk9EdXV1L8pFodp7LteoaUTQhWqwctguEc9Gkp\/eCAhN0FFqgVRfX58X5Dgcjnw0VDgm3JrOunGwiGeLoH2pp6enWVxc5PDhw2SzWS5cuEAkEuGOO+7ImzNWi3IRRSESiQQXLgyyd69Ka5sLvYZQFRu1PFKikGFhYYHz58\/T3t7OgQMHsNlsJJPJ3HVvPNRrXq8CWbrdbjo6OvKqp8Ic\/+joaJG7wK0uyG8UNiLScjqdtLW10dbWBuRSp+FwmFAoVCTdLizCFy7y24F4bnXUVS59qRGRZoFkt9tRFIXZ2dn8CAigKDWnpYhTqZRFROuARTxbgEIBQTabzS+g586dIxAI0N\/fv66RzUaptvn5ecbGLnLyTh8uV6V0XG0P0MLiJBcvLXH48GE6OjqK7kv3lUwOnCs8vtTUMxqNEgqF8gX5Qi+1xsbGbTsGe6MXKk26rY1\/KFSDTUxMrCnCV1tfuRXY7HsoNwJiamqKsbGxqkZAlI4J11JzhT5zW\/3ZbkdYxLPJKB1JbbPZSCQSnD17ln379tHd3b3uL2q5VJuiKFy5cgWbfeGGaq02ubUZSHK87KRTo36djXjPWmpF29FqdZCJiYm8UEFLP20XocKtri2VU4PFYrGiSFGWZa5du0ZLS8uWRYpbXWey2Wz4fD7cbjcnT56seQSENZ3VHLb+yfs5gZ7tzcjICNlsltOnTxMIBDbktUojnkQiwfnzA+zbBy2t+qm1NdepQU4NsHNnM6K4drx2pUbRjVyEbTZbkVBBM6wMhUL5OojWFa+lPbcKm7kQCYKA3+\/H7\/fni\/CPP\/44Xq+X+fl5hoeHcTgcRQtsNcKWWqB9\/lu9IBfWmcp58WlEZHYEhDWdVR8W8WwCyvXmLC4ucv78eQKBAIqibBjpaNfXFtK5uTnGxi9y5511JlJrJRCkml7fZsuW7eWpFPHcyt1\/qWFlYVe8JEkMDAxsiVBhq22CtOi4q6sLj8dTduqo2+1es9PfSGifwVYvwkYCB4fDUdMICGs6a3lYxHOLUdqbo6oqV65cYXp6mkOHDuF2u\/P9LRsFrQfo4sWLOF1L3HVXPU6nvpWNPmrs5REzqGWCpVuZaqsWhRY2oVCIvr6+vDqsVKjQ2Ni4YUPfymErd\/ra30K7h3JTR8sNe9vIlKW2SdrqRVdLf5uBnrIwHA4bjoCwprPmYBHPLUK53px4PM7g4CCCINDf34\/X6yUcDm94mkdRFEZGhjhy1EVzs7PmXbUgqKiKverIRxAyyJKETWdB0svnb6VXm9frpb29PZ9+0hRPc3NzRUIFbcHdqF3\/Vkc8pcRTitJhb4Uzdq5du0YymSwa\/1DoKF3tPWz1Irsef8NSZaHRCAhNXVdILIVElEwmuXbtGvv378fpdGK321lZWSlS2r3YYRHPLUBpbw7AzMwMly5doquri3379uW\/cJWkz9ViZmYGuz3JyTvrChpCa4tcAFTVgUC1xAOZTAKPPVDy+61LtVVC4WuXk95q9SFt17+ehs1SbKeIpxJKU5aFow0uX75MJpMpkm4HAoGKhFLYw7aV2MheIqMREFeuXCGTyeRrjIUjILRsxcLCAgcOHCCbzZLNZnnLW97CAw88wLvf\/e4Nub+thkU8G4hyI6m1lNfy8jLHjh3Lh+YaNop4cvY6l3B7QvSf8VH4\/AgCqKoTqCHdJtS2AxTLWOdsp1RbNSgnVNAWkatXr+Zn7RQ2bG717t0sqiWeUhSONijnKK0oyhr\/tNLXeikSTylKP6dCIiodAaGpCgs3M1oN6aUCi3g2CKUCAkEQiEQiDA4O4vF46O\/vL6sO2gjiicViXLgwwKFDNhqbyqeAVNVuOLJAH7U9iKKoTzyl\/1\/7eavTTmZRrmFzZWWFUCi0ZrFtbGw0HHGw1c2b6yWeQpRzlC5t8tX807T\/vF5vPvW61cQjy\/KmTIkVBGHNmIxCwp6cnERVVV544QUmJiaoq6sjmUzqOtKbwR\/\/8R\/zB3\/wB7zvfe\/jwQcfBHJ\/+49+9KP81V\/9FSsrK5w6dYovfOELHD582PBa3\/zmN\/nwhz\/MyMgIe\/bs4eMf\/zhvetObqrofi3g2AKW9OQBjY2Ncu3aN3bt3s3v3bt2HShMc1Lrbmp6eZmbmCqdO1eFwGhFYrQ9UbaQoGBDPZsipNxOli0g8Hs9b+xQKFbSIaDvl6TeSeEqh1+SruZFrtjV+vz+\/+G7lZ3MrIx4jlBL2ysoKFy5coKWlhb\/7u7\/ja1\/7GqlUio9+9KOcP3+eV73qVZw4ccI0ST777LP81V\/9FbfddlvR7z\/1qU\/xZ3\/2Zzz00EPs27ePP\/qjP+Lee+9laGgIv99f9lpPP\/00b3vb2\/jYxz7Gm970Jh555BHe+ta38sQTT3Dq1CnT7\/nFkQ\/YptAEBJlMJk862WyW559\/nvHxcU6ePFnRa61wcFs1kCSJc+cGSaevcfpubwXSgVpdCJLJeE3nCWL5SaR6kc1W73Y3Ctpi293dze23384999zD0aNH8Xq9zM7O8swzz\/DUU09x5coV5ufnyWar98LbSNxK4imF1uTb29vL8ePHueeeezh8+HBeqKF9NpcvX2Zubi6v9tosbBXxlLsPh8PBzp07+fSnP83Y2Bh+v5977rmHJ598knvvvZd3vvOdpq4Vi8V4xzvewf\/8n\/8z79IAub\/7gw8+yH\/7b\/+NN7\/5zRw5coSvfOUrJBIJ\/u7v\/k73eg8++CD33nsvH\/zgBzlw4AAf\/OAHec1rXpOPoszCinhqRLnenFAoxLlz56ivr+fMmTOmrOprIZ5oNMrFiwMcOmynsdGsuqq2yMVmqy0KEcXyC6pGPJFIhEQiQWNjY76j+6U4gbRQqABr5cmxWAxRFBkeHs6PftiMdI+GzSSeUmi2Ndqzc+rUqXwPUaHbRKGIYz3jHypBluVb3ixr9j4KvwOiKBIOh\/mN3\/gN9u7dmxe7mMF73vMe\/vW\/\/te89rWv5Y\/+6I\/yvx8dHWVubo777rsv\/zuXy8UrXvEKnnrqKX7jN36j7PWefvppPvCBDxT97nWve51FPJuBcr05w8PDjI+Pc+DAAXbu3Gn6Qa6GeFRVZXp6mrm5IU6drsPhME8mglCbC4HLJaCq1XeVi2JGdyDc5OQkExMTOByOvAoqk8kQj8dpamp6yUQ\/5VAqT56enmZiYgJJkhgaGiKdTudVYY2NjWsMPTcaWo1pKz9zzbWgnFuAVvco7I0pJKKNJOntEvGUEo82QFETF2hil0r4+te\/zvPPP8+zzz675t\/m5uYA8nVKDW1tbYyPj+tec25uruw52vXMwiKeKlDYm6MVRFOpFIODg0iSxOnTp3Vzo3owSzySJHHx4gV8daucOl2L11ptKR1BUEmlVNzuKonHlkHKFhfONbKenZ3l5MmTuN3uvEJsZGSE0dFRxsfH19RDXupE5HQ6OXjwIJATKmj1oUKhgvZ5GAkVasFWixtAf8EvHYtR2BtTKklubGxct5pwuxJPPJ5Ld1ejapucnOR973sfjz76qGEUV\/q3N\/N9qOWcUljEYxKKopBMJjl37hy33347oigyPz\/PhQsXaG9v5+DBgzXvvmw2myHxRCIRLl4c4OhtDvx1jQhCrOrXEAQJVRUQhOrTWdmMSrUZCEFQSUSj+G5YAUUiEQYGBhAEgdtuu41AIEA2m80XVWdnZ\/O2LaUO09qi29jYeEtTLVuB0vSix+Ohs7MzrwrTDD21YWaFM2Q2QqiwHYjHrEFoYW9MoSQ5FAoxPT2NLMtF0m2\/31\/Ve9ssVVu196GlY6v5W589e5aFhQXuuOOOouv++Mc\/5s\/\/\/M8ZGhoCchHMjh078scsLCysiWgK0d7evia6qXROOVjEUwGFvTmSJLGwsIAkSVy7do3Z2VmOHDmSbxKrFXqSalVVmZycZHHpGnf3+7DbFdanvHYC5Yv+RpDk2hYmTb49NTXF5cuX2b17N6Ojo4bNltoUyd7e3qLGzbGxMS5evJhPtTQ2NtbUJb8dobc4ljP01Gog2gwZzUdNI+dqiXk7EE8tBqHlJMmF0m0tXVRIRJWixe0a8SQSiaoj3de85jVrrLh+7dd+jQMHDvD7v\/\/77N69m\/b2dh577DGOHz8O5PrTHn\/8cT75yU\/qXvfuu+\/mscceK6rzPProo\/lBj2ZhEY8BSm1vtAXzZz\/7GXa7PW97s16UIx5Jkrhw4TwNjTHuusuTT63VWqsBrZeneuIxaWZd5rQUFy5cYH5+nuPHj9Pc3KybPy4nLiht3NRSLaFQiMuXL5PNZgkGg3lvsfUYe27n0dcaCv3joFioUDgCu9BHrRIxbzdX6FpRKt1WVVV39LVG1G63u+i9b1fiicViVROP3+\/nyJEjRb\/z+Xw0NTXlf\/\/+97+fT3ziE\/T19dHX18cnPvEJvF4vb3\/72\/PnvOtd76Kzs5M\/\/uM\/BuB973sfL3\/5y\/nkJz\/JG9\/4Rr71rW\/x\/e9\/nyeeeKKq92gRjw4Ke3O04uvs7CwATU1NHDhwYMO+pKXEs7q6yuXLgxy9zUkwWPonWo\/8tsb7rXFdmp0dJRrNEbSWJliPnLo01ZJIJPL1kLGxsaJ+GW1heTGg1oW\/nI+a9nloNZBKQoXtEvFs9IIvCEI+eu7p6cn774VCoTX+e4UD8bYL8RRGrvF4fF3No3r4vd\/7PZLJJL\/1W7+VbyB99NFHi+rUExMTRZ9Jf38\/X\/\/61\/nQhz7Ehz\/8Yfbs2cPDDz9cVQ8PWMSzBuXm5uQK+xdZWVlBEAR6eno2fD68oiioqsrExATLoRFO3+3Fbi+3QNdeq6kVdlttC1Ow3sXuvSeLPiuNeMotdtVOINUGnGnNidrCUpiG0kjoVktxa8VGRlpOp7OImMt1wxcutD6fb1sQz2bcQ6msvXBQoDboTRCEfK2olrTlRqFU1q0Rz3o\/ox\/96EdFPwuCwEc+8hE+8pGPmD4H4P777+f+++9f171YxFOAcr05q6urDA4O4vP56O\/v5yc\/+cmGu0mLokgmk2Fg4AWamuPceaenArHUVquptZfHXuPz19TkW0PQRhHPehbhcv0yhVJczUVZS0MFg8FtsbuFW+caUGpfE4vFCIVCRUIFn8+HLMukUqktixC3ItIoTeNms1meeuopRFEsSlsW1hM3a2JtOVXbrYh4thIW8dyAoihkMpmih2B0dJSRkRH27t1Lb29vfoKgRkwb+dqjo1c4fsJLIFD5T1JrrSaVilNLScrppCZ3a9FW3jZnM5wL7HZ70byUQgXUzMxMXgHV2NiYt6TfCmzW6xYKFbTU0+rqKjMzMyiKwtNPP52PELWIaLN2\/Fs99hrIv9fe3l7q6uqKpNtaf5Um3daMYG+VsEWvxvNSws898WipNc1RWos+zp07RyKR4M4778zvouHmkLWNeu3x8XG8vjQnTvhwOMwuQrU9pC5XTadhswnIsojNVl3EJNoyKGU+qo1ItVWLUndgzU9teXmZTCbD+fPnaWpqyqfmXLV+WDVgK1JdWj1M8087efJkXkGo7fg3S0G4HQQO2n1o77F0rEFh2lJzky4c\/7CRjb7lIp6XkjM1\/JwTT7nU2vLyMufOnaOpqYnjx4+vCa8r9dyYRW6xO0dbW5K77vLWNCunWthsoKpiDc2n1EY8okIsHMfrv7lbu1WptmpQqIDq7u7mySefpKuri2w2y\/T0NJcvX85btWj1oVuVZtlqY1RtE1AqVCjc8RfO2dEioo1caLdDUV+rserdR6l0O5FI5D+fiYkJVFXdsEbfcnJqi3heIihne3P16lUmJiY4ePAgnZ2dZb84GxHx5FRHgxw77sbvr\/5PINRYq8nBCaSqPktRalsYZCkJlCceozEJmwktDaXJlAutWrTpkdq8nVthY7PVYxHKvX6pgrBw9IO20BZKk71eb83vY7sQD5ibgloobNm5c2dRo28oFOL69etF0vdqHTisVNtLEOVGUieTSQYHB1EUhbvvvttwd7GeiEdVVUZHR4lGx7i731d1BJHHunp5bLVFVzVuzEvn8hg9fFu9+9dQatVSzsamsGlzPYvuVsNMfaWcUEHrkVlaWipyVNA+k2qECtuhxqM907WkE8s1+mqj0zUHDqfTWURERp9P6QjueDxe5Cz9UsDPFfGUjqQWRZHZ2VkuXrxIR0cH+\/fvr\/jFq3VwWy61NsiOHWn27fcASu1TQWs6R0NtD3itlCDa1xLPVqfaqkWpjU3pTBmHw1Fk66PZ\/JvBVsuZa3n90h4ZWZbzUvbp6WmuXLmCx+MpWmiNhAqlC+1WoHCA43pRbnS65jihfT6FQo76+vqi70y5VFtXV9e672s74eeCeAptb7SwXlGUfFf90aNHTXsN1aJqC4VCDA2d4\/gJN3V1N79QtU4FFQTlxrlS1efWilrqQgA2W3HD64t9Hk+5RXd1dTWfgrp06VLV7gFbiY0gvkJHACiWshcKFQql7IWfiTZ\/ZiuhrQu34ntos9nyaVpY6zihiQe070vhQEnIRTwb4ZCynfCSJ55yAoJYLMbAwABOp7Ooq94Mqol4VFXl+vXrxOPj9J\/xlplts44FSXVADcRTa31IUbLUYmEgmiQe2D6ptmpQuqhobtuhUCjvHlA4BrvUuPLFGPFUQqmUXc\/qSPtMtoOqbTOjrnKOExpRX7t2DYALFy6wsrJCOp2uSdX2xS9+kS9+8YuMjY0BcPjwYf7wD\/+QN7zhDYD+Ru9Tn\/oUv\/u7v1v23x566CF+7dd+bc3vk8lk1T1gL2niKTeSenJykqGhIXp7e9mzZ0\/VuWWzEU86neb8+UE6d2bYf8BD+WRV7Q+biq22s9cxl6cWlPbyvBhTbdXA6XTS1tZGW1tbvigfCoXyERFQZOuz1dgM4itndVSoCJNlGa\/Xi8Ph2LKaWWmUsZko\/M5kMhmeeOIJOjo68k7Sq6urzM7OEgqFePWrX82dd95ZMULcuXMnf\/Inf8LevXsB+MpXvsIb3\/hGXnjhBQ4fPpy3\/9LwT\/\/0T\/z6r\/86b3nLWwyvGwgE8s7WGmppPH5JEo+qqqTTadLpNA6HIz+S+uLFi4TDYU6cOGFqkFI5mFG1LS8vMzx8nuMn3Ph8Rruo2tVpta\/RtdWHclLs6tN7NnsWteRtqqrK0tISS0tL+fTCS3ECaWFRfufOnfmemcKxDzabDbvdzsLCwpbYtGx2tFFOEfb8889jt9vzNTO73V5UM9uMnqrtoKyDm7Wmjo4O\/st\/+S984AMf4J577uHuu+\/m3LlzfPazn+XQoUM8\/vjjhtf5hV\/4haKfP\/7xj\/PFL36RZ555hsOHD69x1P\/Wt77Fq171Knbv3m14XUEQ1u3GDy9B4tFSa+Pj4ywtLXHHHXcQDocZHBzE7\/dz5syZqoq\/pTBStamqesOeZYL+M15E0XghXU+NJhKJ0NBQ\/YOSqw\/ZanO5riG9J4oSyUQap\/vm4jE3N0coFKKpqYkrV66QzWbz9i3RaHRdLtPbGaIoEgwGCQaD7Nq1C0mSuHr1KpFIZE0tRGvavNWL4Van+gp7iDo7O9cU4i9fvozX6y3qqboV5LwdBA5wU1ig\/U0EQSAej\/OWt7yF++67D0VRWFpaqvqa3\/jGN4jH49x9991r\/n1+fp7vfOc7fOUrX6l4rVgslq9tHjt2jI997GP5sQrV4CVFPIW9OXa7HVmWuX79OtevX6evr4+enp51P2Sas0EpUqkU588P0t0tceCgXmqtFLU7TXs8TqBG4lIdNaXcaknvCQLEoxGc7hay2SyxWAxBELjrrrtwuVwIgkAymeTSpUukUimef\/75fLF6K1wENhN2ux2v14uqqhw+fJh0Op2XbV+8eBFJkoqaEm8FIW818UBx1FVaM8tms\/lCvDb+utC6ZqMcFbYy1VZ6H6Xvp7DGI4piXuZfCefPn+fuu+8mlUpRV1fHI488wqFDh9Yc95WvfAW\/38+b3\/xmw+sdOHCAhx56iKNHjxKJRPjsZz\/LmTNnGBwcpK+vz+Q7zOElQTzlenNUVSUSiZBOp7nrrrsIBoMb8lrlIp6lpSWuXTvPiTu8eL3mv7yCINccfbhctT8kKvYaq0u1nWWzZYhEIrzwwgsIgsCuXbvw+\/1kMpl8Oqqurg6Hw8GuXbuKpLmai0Chy\/St2JluZX1JW3RdLleRrY829kGzsRFFsSgFtRGmntuFePQWfYfDsUaooJFzOaFCtVNHzdzDZqIS8VSD\/fv3MzAwQDgc5pvf\/Ca\/+qu\/yuOPP76GfP76r\/+ad7zjHRW\/T6dPn+b06dP5n8+cOcOJEyf4\/Oc\/z+c+97mq7u1FTzylvTmCILC4uMjQ0BCCINDf37+hdieFNR5FUbh27RqZzDT9ZzyIYg01mxqjD8jUZNyZw+YuNPH4MheuXGL37t2srKyUJQ5tsSjsgdi9e3feRUBTiW3k8LftAD3CMxr7MDMzw9DQEB6Pp8jUs5bv+XYgnmoaSMuRc6GjAlDUP2RWqLBdiUfzFazFucDpdObFBSdPnuTZZ5\/ls5\/9LH\/5l3+ZP+YnP\/kJQ0NDPPzww1VfXxRF7rzzToaHh6s+90VLPIW9OdrDo6oqV65cYWpqiu7ububm5jbcY0uLeHKptQF6emVaW\/2IYm1ps1qjD0FgHQ2otaFWKXY0tsSxY8doaWnh+eefr0pOXegiUKoS04a\/aST0Yk3LmVkYSwlZ65UJhUJrxj40NjYSCARMLaTbgXhqFTiUEypo4o3C5t5Cax+970e5SGMrUK55VFXVouFstUITXRXiS1\/6EnfccQe33357TdcbGBjg6NGjVZ\/7oiSe0t4cQRBIJBIMDg4CuSl5kiQxPT294a8tiiKpVIqBgae446QPj0dEUVzUXq9ZR8qs1gbUWtV0NYohurpb8PhyqZL1yKnLqcS2Ii23kag1xVdu7IOWgjp\/\/jyKouTrQ0ZeatuFeDYi2ihs7u3t7S0SKkxNTeWFCuWixFsV8aiqgiCYv245Z2qg6lTbH\/zBH\/CGN7yBrq4uotEoX\/\/61\/nRj37E9773vfwxkUiEb3zjG\/yP\/\/E\/yl6jdOz1Rz\/6UU6fPk1fXx+RSITPfe5zDAwM8IUvfKGqe4MXIfGU9uYIgsDMzAwXL15k586d7N+\/H1EUiUajt2Ruzvz8PIFgittv9xWk1tbz4K6ntlDjoirUSpK1ned03SS6jXQuMErLaTNUChdfvbTcVi+8G\/H6brebjo6OvHuyZlpZOPRN+xwaGhryO\/\/tQDy3yqutUKiwZ8+evFChNEpsaGgglUpt+Odgs4UJLWQJNrWYPqcc8djt9qoj+fn5ed75zncyOztLMBjktttu43vf+x733ntv\/pivf\/3rqKrKr\/zKr5S9RunY63A4zAMPPMDc3BzBYJDjx4\/z4x\/\/mLvuuquqe4MXEfGUG0ktyzKXLl1icXGR22+\/vUjtoTV6btSDlUwmOX9+gN5emY5OL+sjjJsQWA851va+VDUD1OLRVZsU22YvJqxb5VzwYkzL3QpRQ6lpZeHOXxvzrEWGqVRqW9jVbAb5lQoVtOGAmu+eoiik0+mi0Q+13pfNvoTTOc7wCz5OvnZ9xOP1eqsm5i996UsVj3nggQd44IEHdP+9dOz1Zz7zGT7zmc9UdR96eFEQTznbm2g0ysDAAG63mzNnzqxRZGh\/vI0gnoWFBa6PXuCOO3yUc9dZF3msy2+ttpSZKIKqOqhJjl2DGMJmz5JJ3+xP0It4NnKkeDVpOVmWNzw6rvZebyXK7fy1yDAUCiHLMolEokgZtpmF9q0q7BcOB9SUsHV1daysrDA2NoYgCEX1IXOjDVTsjjmczhmkrJ3l2XhV91RuJMJLbRYPvAiIp3RuDsD4+DjDw8Ps3r2b3bt3l\/0yaH88SZJqbhhVFIWrV6+iqrP093v1VWvrIo\/a1Wk1NYFqqNHrrRYxhCBAJBSmoaVpy0xCjdJymUyGCxcumErLbTS2QsZdGBlq3oN+v59QKMTk5CRADQtu7dgOYxFUVcXlctHV1ZVXEWou5AsLCwwPD+dHG5SmKwuugsM5hcOxAEB0BZLx6mqw5UYivNRm8cA2Jp7C3hzti5nNZjl\/\/nx+VK\/RjArtj1frLjqRSHD+\/CB796q0tbsxTq2thzwgHlfw+Wp58GpXtNXs9VZrek\/JDZ\/bLiahhYvvyspKvhi9FWm5rTYJdTgca8Y+hEKh\/ILrcrmKFtz1OH+Uw3YxCS0kv0KXiUKhgkbOWrrypqNCAK9vGrs9lL\/GwlSadLK6uqgkSUWmxYlEYl3TTLcrtiXxKIqCJElFqbWVlRUGBwcJBoP09\/dX\/PILgoAoivmm0mowPz\/P6NgFTp6sw+2uTFzrlTbbbLW5EOQaUGsbZb3ZvTw2e+796T1AW+3V5nQ6aWpqKpuWu3LlSl4NtdFqua02Ri1NRZdThmnOAePj41y8eDE\/9kGz9VnvZ7EdemgqyanLOSpo9aGRkWEOHxEJBIuX07HLUVLx6v6+pRHPS3H6KGwz4tHrzbl27RpjY2Ps37+frq4u0+xf7bRQRVG4cuUKNtsCZ\/p9CFU0hKqqoyZpM9ROPDnUNsq6VtQqxbbfGAj3YnCnNqOW05pYm5qa1p2W28rdbKVow2az0dTUlDfVzWQyZZ0Dak1RVjNy+laiWvK7GTE34nKr2Gxrazkv\/GSKTMZTlf9gOXGBRTy3EKW2N4IgkEqlOHfuHJlMhtOnT1fdRFXN0LZcam2Avn3Q2uqietVa7Q\/OehaeXC9PDa9ZoyBCUTM1ibg1Zdt2IhizKB2FXWhlMz4+jiiKRd5yG2Fls1moVnzjdDrLjjgoTFGW1ocqvT68+IgHQBAyuNzDiGL5jd\/Fp5bZsa+R559\/Pr+Z0dKVenWzUs84S1xwC1HYm6OlyObn57lw4QJtbW3ccccdNTkQmCWeubk5xicucfyED69345RVZiEI61mIayStGgUROSl2da+pqgKz373Is\/\/0dzgOd7P3Nadyt1CS4nmxEFK5UQfLy8trrGy0RcYohbPVhfX1qD5LnQMKxz7Mzc1x9erVohHP5cY+FFpdbSWqdS4QhOQN0ilfw5ElG4tTCXYf6eKee+5ZMw7D6XSWHZcuy3LRWqfVeF5q2FLiUVWVTCZDOp3GbrfnFTaXLl1iZmaGw4cPs2PHjpqvX4l4ZFnmypUrOByL9Pd7QXUByZpeq2Y3ANapTqsZ2ZoEEXa7UFUvjyrbmfyziyS+N8RhgJlR4t8b4v86s4gHO9n\/i6+i7\/SxLa\/x1IrCIrSWltOaFK9evVqUlluPieWtwkY2kJYb+6B9FtrYB81ZWqsPvRgjHlGM43IPGz4DsUjuM03FM2s+l8K6WWlfVSaTKXoOajUI3e7YMuLRenMmJyeZmZnhrrvuIh6PMzg4iCiK9Pf3r3vOuBHxxONxzp8f4MABkeaWXGpNUWtVerEuSbVQs5MA1NrLIwjqOgQRDjCRqpNiDq697wekx1aKfu+zOTkoO5HPh3juJ59nsb6FSa+EeLCTnS3t1Lc113BP2wOlTYqFqahyabmtjvJupXNB6YhnzVk6FArlxz4EAgHg5gK7VaRslnhEcRWX+3pFQc\/idO6ZTpVRtZXWzQqFCpq0f3l5mZ\/+9Kesrq7S0dFR1XupNPb63e9+95rZO6dOneKZZ54xvO43v\/lNPvzhDzMyMsKePXv4+Mc\/zpve9Kaq7k3DlhCPFuloYaUsy\/mmvu7ubvr6+jZkB6RHPDMzM0xNXeauU3U4nQV2LutSeq1HUq2QSim43dW\/50wmTq0lhVq93szUlRLDKtfe9y3UdHlCjmRTTCZXOdmwE4CWpAueDzPz6w\/yFAmyu5rp\/VdnOHLfy7a935oRtLRcZ2dnUSpqdnaWoaEhbDYbHo+HpaUl6uvrN9zUthI20zKn1Fk6Ho8zPz9POBze8jlMZlJtNlsIu2PRlIp0YigG5CKeSiisIc7Pz3Po0CEGBwcZGxvjmWeeyc+reu1rX8trXvMajh07Zvg3qzT2GuD1r389X\/7yl\/PnVFIJP\/3007ztbW\/jYx\/7GG9605t45JFHeOtb38oTTzzBqVOnKr7HUmwJ8Wh1HC2\/HY\/HuXr1at7BeKNQSjyyLHP58mXc7mXu7veu+QKpqDVTTy6CcFCrn1kmUxvxOJ2sYzxCrQu6\/oupqsjSPywy89kndY+ZSISxiyKHA21r\/s0h2ujDz9nBEZxjSZ7\/\/HeZ9il4bt\/NkfvvpfPA3hrveetRmnLJZrNcuHCBbDbL8PAwqVRq09NyW+XVJghCPoU0NTXFPffcU3byaKGE\/VaScqWIx26fx+maQpbNpb2unl0GzBFPIWRZxuv18prXvIbXvOY1\/Mqv\/AoHDhygq6uLf\/mXf+Fv\/\/ZveeGFFwyvUWnsNeQ2AdWMsH7wwQe59957+eAHPwjABz\/4QR5\/\/HEefPBBvva1r1X1HmELU22CIBCJRLh06RKqqnLmzJkN3+EUEk8sFuPChQEOHrTR1Fye3ddba8lJqmsjnhrajYBC+5v1pOs2BopkZ+KPB1n90YjuMedWZ9nra8JrL\/83yCgyFyJz3FGfi4Tq7W7q08DP5kj87P\/Pv0hRljv9dPTfxh33vw6P\/8Wb\/3Y4HHg8nnx9qHS2jGbZcivVclttEqptPgvVcKW1Mo2UA4FAviBvduyDWegTj4rDMYPDOXfjZ3NrxAs\/ngWoqoFUURRUVV0jp967dy+\/+Zu\/yfve976qU7N6Y69\/9KMf0draSn19Pa94xSv4+Mc\/bjjZ9Omnn+YDH\/hA0e9e97rX8eCDD1Z1Pxq2jHjGx8e5fPkyO3fuZHp6+paE1RrxTE9PMzNzZU1qbS3WN9smlcpSa1lKVdfx8Kv2dThOV49yQorsqoNr7\/0+melV3fOmVQe3BfXFIsvpOCvZJCfqO3WPiSYS7J124n\/kHMP\/5ywT9jTqvnb6\/s3L2f\/yu2peRLeq1lL4upXScoVquY2KALaaePT6iEprZclkMk\/KU1NTKIpSJNs2O\/CtHLT+wbXEo+J0TmB3LOV\/I5io5SqKyPjlMFBdxKNtkkuJp1BcYPY9Go29fsMb3sAv\/\/Iv09PTw+joKB\/+8Id59atfzdmzZ3XX4bm5OdraijMUbW1tzM3NlT2+EraMeHw+H3feeSdOp5OJiYlb9gDMz8\/T0aFw+u61qbVSrM8JAFKpdFWjrwuxns1b7cPkaozwSs6LXZIZ+cA\/gqTzuXkcZAJuOuejupecyEbwCTb21ukLC55bmeJ4fQe2G\/NNPDYH+1UHDMVg6Lt8\/xNfI9VVj+dQD8d++fU0d9WuiNxMlPvel1OIaQvvRqbltgPxmIlcPB4PHo+naOxDKBRiaWmJkZGR\/MA37fOoxtZHk3QX13gUnK5R7PZw\/jeqKpjKaCSiN99PKpFFUVRE0VzzaOl91CqnNhp7\/ba3vS1\/3JEjRzh58iQ9PT185zvf4c1vfrPuNUu\/J+v57mwZ8bS0tCBJEul0GlVVN\/wByPVWzHH0qIuW1iq8pVQXCLVJqoPBOiBR07l2+1Y8\/Ouby6OqIgvfmGXuL3+qe6TS6EOVZJwGpPN8eJqjwR04dAZmJeUsV2NLeSFCOUwkwrhEkd4FFRbGWPzhX3BWiZPsrqfrtXdx2795NQ7XxnqMbQTMRlqlg98KRz5oI58LveXMpuW2Qx9R9Y2bN8c+9PT0lPVRq6urK\/BRM7Y4WuueIONyX8Nmi5XcqxNRTFMJS7PFUVEmlcXtrfzdK5wxlnu9nACjlumjZsZea9ixYwc9PT2GI6zb29vXRDcLCwtroiCz2PIGUi1dsB4X6UKoqsr09DRzc0OceZmXajN4tZtnou9ebQIu19YQj6JUH20JgoycdjL+seeIPj2mf\/XOIPaFGGK2fGSVVWTOR+YMU2shJUUkneR2gxTd+cgcu72N+ArqRnZBZLfND9My0kNP8s0vPIKn3o\/jSDeH33wvPccOVn6jm4RaNlwejydv7LmetNx2iHjW+\/qlPmqZTCYvTy61OCoXHRYRj5DF7RpGtK3dfKqqHahMPJNXi+1zUvGMaeIpJciN6uMpN\/Zaw\/LyMpOTk4Y9k3fffTePPfZYUZ3n0Ucfpb+\/v6b72XLi0XYZGzEPRZIkLl68QCAQ4dRpb41Kr\/Xs\/mqvETmdQk0kALWnzAQBMhmqJudMyM74Hz0LsoCjrYHsfHGfDgKkO+txTYV1r7GcibOcMa7nXIku0OEJ0ust70KuqCrPh6c5Ud+JqPPHXs2mmElFuMPfnrPDG1gmM\/B1fpSNEWpx03zmKMruresb2oja0nrSctuBeDY64nI6nbS1tdHW1pYfCFgo2gCK3La1z8Bmy+JyX0UU9Z5jc5\/T8Auhop9T8QyYEOuWI55EIrGhY69jsRgf+chHeMtb3sKOHTsYGxvjD\/7gD2hubi7qySkde\/2+972Pl7\/85Xzyk5\/kjW98I9\/61rf4\/ve\/zxNPPFHVvWnYUlWb9r82m60mF+lCRCIRBgYG8DgF+k6uZ6LiehwIlBs9LrW9F1m2I4q1nFu7sMDh8GI2PaiqEBvIcP13\/yH3ww3Ym4M42xtQshKpuRAZl82QdMZTEbyCjX0G9Zyz4SluD+zALpZPkSTkDJPZWMX0m10UOehfq9bpdNTRGYaBv\/sX9gVaeUb9DsreNna9Idc7tJmL8Ua\/VjVpOc2maqtwq1N9hQMBS8c+aPY1DoeDQEDE4bxUIWthbpMw+JPilFS5JtJyKCUeRVFqMgk1Gnudm6R8nq9+9auEw2F27NjBq171Kh5++OGilF7p2Ov+\/n6+\/vWv86EPfYgPf\/jD7Nmzh4cffrimHh4AQd0iOY\/mzwbwwx\/+kOPHj1NfX1\/1dVRVZXJykqGhIXbt2sXqpMyp+0KVT9S9ngehxhoPgKp4EMTazk+nHLjc1ZOI9hesZf1QFD+iqF9\/0ZDNqix\/bZb5rzynf62mOlRJxl3vxxHwIa1EyUwtFR0zGhPY6VNw6NxsWpG4FJnnuEEkNJeKkFZkenQiIYALq3Ps8hWn3wohqwovhGfKElcom2TWD96Tfdx+\/+to292t+zrrxYULF\/K1is2Aqqr5kQ+hUIjV1VVcLhctLS2b0i9TitnZWWZnZzlx4sSmvWYhZFlmJTzGjh0rOBzGD5CiuCrWeBRF5F81f6fod5945Fc5cLKr4r0sLCwwMTHByZMngdxmeufOnSwuLubdH14q2PJUG1TnIl0ISZK4cOECKysrnDhxgqamJr739HPIsh2brdYIan2y5FoVZgDJZAaXu\/qzc\/OAXJjJP5c5u+IRUsrOld99HOXSsu4xmc56HAtRxKxMdjWZ\/xRtQR\/OzmZUVGxOB7sGRnRfM6ykWUrEDEnnSnSBdrefdndA95ircoSDgda8+q0UMSnDWCKkGy01OjzEQiu4vn+Z8E8mOSfHiHcGaH\/FcY6\/+T5cXmPH5Wqx2dFVYVruySefpLOzk3Q6XZSWa2hooKmp6ZY3sW71LB6HM0JXV7jie8w1aVd+vlLxte\/FrKRakqQ1UmrAMgndSBT+oe12e9WpttXVVQYHB\/F4PPT39+f154lYmmTUTV19rfclrUtSvT6o1DzhU7WbejDWwvh9phdsDP+nf0IJ60RxFeo58mqctKLiaAkSvzzJimonKimkUgvs9jXkU2nDsSVaPH721jXp3svZlWluD7brpt9Scpah2CK3B\/W9rWZSEWRF4UhAv2v7QmSOXQVihV67H+ZV+N\/Pc+VrP2XMnsZ1Yjd77utn72lj+5JK2GqvNiA\/ewiK03LaGOxCF+VKYw6qxVaq6mz2RRyOeVOZArO10ND82g10KmFuM1s6BC6RSOB0OjfVOmiz8KKLeFRVZWJigqtXr7J79252795d9OAnIilCC\/aaiSf3Ik4Qah2uVvtC4nKvZyBcbQ+vnjBBVSHy0yRj\/+0x\/ZO9TjJ1TsN6jrOrBSWRIn0918ndIEg0OABHM1EpzVh0kZVskj2+Rupt5R+wjCJzMTLHHQ36kdBCKkZMzhiSzpXoAp3eevw2fYVRaa\/QWqjIqzH2nF2As3\/PE9m\/ZanRQf2pQxx76+tpaK\/e8mmrayyFr1+olitMy2ljDjS1nNa8ud603NaMvVaxO+ZwOmeQZXMd33a7uVro1MjaY1KJ2iKeWCy2rsbY7YxtQTxmIx7N2yocDnPHHXfk5ZOFiEfSzI7Z6N5X+y5hPemy9dju2GxbEWWt3Y2pio2Z\/3WdpYcHdc9SmusgLeFciOke4znUQ+raNGqm\/N\/WI9rJqDIvb94FwFRylVVBQshK7PY24bbZWU4nCGUThum34dgSjU4vu91rvw8aKokVsqrChdU5Q7HCQipGQslytCBaanf4aI8C37\/G3KOf5TtqCP\/unXS\/9i6O\/qtXYndsi0dMF0aqttK0nKaWy417HiGZTOZtbBobGwkEAlUvkpufalNxOKdwOBZu\/Gz2tc0dN\/jU1JrfpeLmI57SIXAvxTQbbJNUm5mIJxwOMzg4SF1dHWfOnNHt+UlEU4xezHLqPn3foUqIrEapb6iVemqXVNvtSu0O1zWPR5BudGTnIjU55eD67z1J4qK+FYZWzxF0+nMQBbyHekhcGNO9RhyVqXiIOwoIZacnyE4Ady5t9uTyGKIg0OUO6l7nmhKh21uPSyz\/VZYUmXMF3m\/lsJyJk7TB8Xr9aOnaDXLrdesLGs5F5rgj0I59PA1f+gkDf\/kYU14F9229HH7LvXQd3rfmnK2WM1fz+uXUcppMWUvLFboHmEnLbW6qTcHpGsNuL5T\/m8xQmEyJXn1urWXU\/OxCnkSMPuvSIXBbPSriVmJbbMeM5NSqqjI+Ps7w8DB79+6lt7fX8A+RiKa5\/GwcqJ14HE47Zs0AS7Ee2511GX6uy+DUCaRJTYsMv+cfUaI6tSJRIN0RMEytiX4vztagIeksJMHrEdnv109LXYktcrJ+Jy5b7isaVjNcX13EIdjY5WvAbXMwsDrDSQNCWc0mmUvFDHuFRuMhfHYnO236vRKDq7McqGvJ30spJFVhcHVmDbkF7W6CGeC5Beaf\/l+cd6uk6920vOw2Ttz\/erzB6jvSNxrrIb5SGxttEqsmU9amj2qpuXJpuc1Ltcm4XNex2SMlvzeZ2jbxfKmqwJWfLa75\/cpyhOeeew673W449kGW5aIJrYlEYt0zybYrtpR4tKmT2kyeUmhDkSKRCCdPnqShQX+3qSEeSTFyfg5VPVxjAyl4vU5qnUQKrKtGVLvDde1qPFWxE35imYn\/\/gPdY2S3HSXgxjWlbwLq3NmCkkqTGpnVv87OZuonlnDq7DQVVeX51ek1hFIvOPMEspJJcCm6gIjAZDZKp71uTQPpTCaKoGBIbudWZ9lb14zXVr7vS2tQNUq\/xaQM44kVw4hqKrmKgECfHIBl4FsXGPm\/A4zbkoTbvPTcd5rO+zu3ZGe7URGXIAgEAgECgcCa6aNGabnNSbVJuNzD2Gxr6y\/6zaLVH5dO2imXuKn3N\/Hyl788b+ujjX3w+XxFtj6yLBdZHcVisZfk9FHYRhGP1tOjYWVlhcHBQQKBAP39\/abtdBLRNPHVDLJkx+548Umq1yMSyGRUnM7qXlmV7cz8ryESF5ex1fuQw\/E1x8jNdajJDA7Dek43qWuzqBmdz04A75FdJM6PYtN5i5FsiqlUxDCKmUqEEQSRuxpu9kWsZJOMJ1ZAhW5vPTOpSE6VZvCdeW5lytDxIClnGY4tG5LOipommkmWnSuk4Up0gQ53gICj2DvNbbOzHz\/Mw9nPP8LPvvokMz4F\/x37uP2tb6Clp7qpk7XiVqX6SqeP6qXlstnsLd3VC0LmhhvB2iheVewIJhq2zTaFryyUj4pSiUzR2Aconjqqydi1dTAcDuP1emtqHn2xYFsQj91uJ5nMRRiqqjI6OsrIyAh9fX309PRU9WDEI7lIIxERCOgrcw2xfkn1enZwtS8CdrsHMB9pSQkHI7\/zOKnhm02ezp3N2Bv8yLEk6fF5MjuCOOYjCHrO04KA90gvifOjuq8j+Fy4OpoNj5lMhBEFkUNlXAY0jGRWaXN6qLMXpygaHB4agrl6wrMrkzQ5fVyOLtDqD9IheosEBSk5yzSpiiKCuJzhtqC+5PpqbJEd3iDd3nrdY14IT3Mk0I5DR9CQS9HN5qOlxgTwkwmWf\/xFnlfiJHcG6XjNnRz7xdfgdN8aSe1m1ZjKpeW0EQfhcJiVlZWKablqIQhJXO5hRLH8ZkhRHdhMpNoUxWGqL3BmtHyWJF1G1VY4dRRyxDw4OEg2m+Uf\/uEf+N3f\/V0OHDiAKIoMDQ2xb98+U38no7HX2WyWD33oQ3z3u9\/l+vXrBINBXvva1\/Inf\/InhuO1H3roIX7t135tze+TyWTNM6K2RapNExdkMhnOnTtHPB7nrrvuIhjULyrrIXmjPrE8J9VMPMCWSarXd675P2dyTODae\/8BpeShyEwt5dwGRIFUZxCPzYF7fxfRsVnsJY1wYp0HZ3uDIaE4djSCrJAantY95sLqHL2+hjWEUoiz4SmOB\/UjlJQscSW2wJ03IqHdvpzCLSalGY0tklVkAnYXgiCwx6f\/xRiJLVPv9LDLQCE3EJ7hYKBVV9AgqwqXksuGSryYlGY8ES4SV2iw3TA4nRkNk\/7rf+HiQz9hwpXFcbiLA7\/0anafPKp73Wqg9RBtdh9NYVoukUjgcrkIBoO6aTm\/31\/1PYpiDJf7WgWVqdkJvOZee+RcuOzvkyZUbR6PB7vdTldXFydOnGDXrl38xV\/8BWfPnuX222+ntbWV1772tfz5n\/+5YYRoNPZ6586dPP\/883z4wx\/m9ttvZ2Vlhfe\/\/\/384i\/+Is89p+9IAhAIBBgaGir63XoGE26LiMdms5FKpXjyySepr6+nv7+\/qMhWDeI3iGfmeoJdh2tvdltfuqx237n1TUGtfMeqKhB6dIWpT\/1Y\/yCvi6zPgXsyjEqu2mUH7O0NOFvqURJplGwWJZkhdW1G9zLu\/V1kJuZRkvr58Up9MxqhGNVQVpUMS6kox8r08NTZXRwNtDMSWybocJNWJK5kVpBTGfb4GnEX1HcuJ5fZ7QnqigjM1HwScoaRWIijBtHSfCpKWpENU3TDsSVaXD7qHbnv8CHZCedCyOf+D49nHyLU7Kb55bdx2y+9lmBLbTssjXi22iS0NC2XSqXWNLFWo5YTbau4XCN5peb6YXL42tMLZX9vto9H82qz2Wy87GUv4x\/\/8R\/p7u7mT\/\/0T3niiSd46qmnKr53o7HXv\/7rv85jjxX35X3+85\/nrrvuYmJigu5ufWsoQRCqGpVdCVtOPKqqsry8TCQS4eDBg3R3d9f8IGTTEtl0btEfubDCmV9YT5d17Q9jNptYx5iD9U1BNYIq25n8s4usfG9I9xi5uQ4hlcWxuLaeI82tIM2t4DnYjbwYxtHemHOnngshLRWrhbxHd+WUbToy1IwM81nRcBFfTMeJSumyhKJhJLZMo9tnGMUMhGc54G8uIhmckJYlLkXnSUhZUopEf2OPfkSlSFyNLla835iUNiSdaSmGR7TR5tZXtA2uznDArx9Rtdt9zIxN075qZ+pb53mSBNk9LfTedzdHXn+P4eyZQmwH4iknp3a73XR0dKxJy5lRy9lsyzhdYyaFRWY3eWYUbXDuJ+VFNWmTzgWlJqHxeJy2tjY8Hg\/33nsv9957r7nbLbheubHXhVhdXUUQhIo+mbFYLD\/76NixY3zsYx\/j+PHjVd1PIbaUeDKZDC+88AKxWAyPx7Nuo0StvgNw6WeLwOYUaEvhdApFvTHVYD1ybMHgAZFiDq697wekx1Z0j8nurMc+Z1DP4Qah3EityZGbKiFHWwOO1nrkVBrRbjdMvyXtdqIpiS63\/uuMJlcI2Fz5lFk5DKzOcLCu1TBCOR9f4Fh9+TkjLpudXd5Ghm8MmVtIx1gRJNLJJLt8jfhvpP6W0nGyDsFwbPf1+DIBu5tdBvc7uDrLfn8LboP6RSXRQ1qRuFJAgE7RRh9+GE3BX\/6Qs1\/4J0brZBpP7Ofwm15Dx\/7duq+1HYinkpy6MC3X29trqJbr6hJxeyKm1axm1aNmjsuk7aSTOuICk15t5YinFlWb0djrovtKpfiv\/\/W\/8va3v51AQN\/78MCBAzz00EMcPXqUSCTCZz\/7Wc6cOcPg4CB9fX1V3x9sMfFcuXIFh8PBkSNHuHjx4rqvl4jdVK5cfGa+5sUfzM1W1z83N62wNtNOyPXV1FBf0rnnxLDKtfd9CzWt855EgfQO4\/4cxWXD1dmiSyjZ+RVQFHDYySwt4u7rRLYJJGeWsBdsCGzdLdhnQrQapIdfCE9zxGAiqZGztIacKm3JcICcFqFohNLqqst1fznrkRSZ4dgS86kYfruLo079KObc6ix9dc14dGTZUJlQMorMhBo3fE+r2SQL6bjhe4pnUnSEbbQ\/NUX0yYf4vhwjusNP+yuOcexN9+Lx31zItgvxVFO\/KZ+WW8brWyQQlAmHZerrK0d8qiqaGkFi9rjVJf11ptpUm4ZbMfZaQzab5d\/+23+Loij8xV\/8heH1Tp8+zenTp\/M\/nzlzhhMnTvD5z3+ez33uc1XfH2wx8Rw5ciQfSm\/EILhE5OZCn03LZNIiLnet112npLpm007t3FrOzBY5H8iySug7IWY++6T+KT4XWa8D17R+f46jo4lULE72ur6bgXtvB5nZEEo8dx1NTGAHHC1BHG0NCG4H8YvjOKTyf5ObKi\/9onxKlblWIeWlWdsYRSizShKngG6EYhdtJOUsdzR04rE5iCoZRiJLqCp0e4M0OXMLwmBsnqOBdl1CySoyFyLGVjyr2RRzqahhz9F0MpcS6TOYYVQq3RYFgR67HxaB\/zPA8MPPctGbom5XB\/t+4eX03nU7sPWptvW8vtvtorc3i92R+055PHWY6cHL9ctVfj5V1YlgQmQ0O6Z\/jBmTUFVV15iE1trHU2nsdTab5a1vfSujo6P84Ac\/MIx2ykEURe68807DUdmVsKXEo3m0bcQgOChOtQHMTcXo2VtbnefFKKkWBPVGpJVBytgY+v89g\/Qzg2bOFj9CMlO2nqPBc6CL9Ng8tpT+rs17ZBeJS+O5iKcMsqEojrYG4s8Ng8NGuqmOqbE4QYdK843IJ9fDs2pIOrOpCKLTYegsPRxboqmCtc3g6gwHAm24nPo749IIxS8687UmRVUZji0xk4rQ5qpDVhVEYe21YkqW6XjYUN02k4qgqqoh6QzHlmh11RF06IeJA6szHPK34dSRbgNcjMxz0rYTrkThynd4Lvu\/mXFm+OHgBMd++fU07dy44rFZrK+BVMHpuo7dfnPTZNdrEitBNiuYcptWVXP1stGL+hs3M6k2beNdGvEUDmerFYVjrzXSGR4e5oc\/\/CFNTdULU1RVZWBggKNHa1dXbrm4AHIEpDH+eqSd8Wgx8STC65lEyjol1VsDVbUjRVSG\/\/NjSDOl9iA3kdlZj8OonqM1fBoIBHDa8eztIHFBv54jBrw4mgI3LXSyMq7lGHtuPE+rWbgcmwRV4UhAP0IZii7S7vYTFPUX3xfCMxwykDmbUaWlFYmh+JLhMVEphaKqvKI5Vz9JqhJDkTkyskyHJzcraCYZweV2VSSUQuVaOVQSGkCOJI3uNxd1za85ptXho1X1wQ9HGX30z3imTiDbUkfXa+7itn\/zKhwuc03b60Htz7yEyz2CzVayaTK5UYzH4rhcJkhFNbcJvPjMWqscDelkFkVREUX9ayk3Nm2lNZ5qm2uNxl5LksT999\/P888\/zz\/+4z8iyzJzc7ksRmNjY75Jv3Ts9Uc\/+lFOnz5NX18fkUiEz33ucwwMDPCFL3yhqnsrxLYgHu3DlmV5XcSzNF9cOJ8bS3HwZO2WE+tyqV7HCO10OkGtY0+iZyNMfvJx5JW1DgSAqXqO4HXh6jRu+LQ3BRC9LpKXJnSPce5sRkmmSY\/qp+hWM3B7sAOPaCOryAzFFolJ6VzU4s2lwZ5fmeZoUL8R00zNJyVnuRozJpSVTIKlTILb\/Po7\/6nkKqIgFBGKR7AXRWHPrkyiAq3OeryIZWs\/ZgnFqC4kKTKjFepCMSnNZHLV0ABVk3fvS9fDlARfeYpzX\/ohU24J59EeDr\/lXrpvO6B7\/npQk0mokMXtGka0rU2pmbXACdb7MTXy3QSRqSq88Lh+WwHkyMfj0ydySZIQBCH\/WaiqSjwerzriMRp7PTY2xre\/\/W0Ajh07VnTeD3\/4Q175ylcCa8deh8NhHnjgAebm5ggGgxw\/fpwf\/\/jH3HXXXVXdG0Bvby\/vf\/\/7t76BFG4SjyRJNfXv5MdfXyzOOY6cW+FV96\/H62gdue+a\/NZunCpIVb+2qoosfGOWub\/8KYgCjp3NxJAI2JykJxZyfak+N1mP3bies6MRFNWw4dO1ux1pKUJmUj+i8hzsJjViYKEDjEQFdtWp+TSVQ7Sxv+7mgr6ipDkfmqHe4SYpZ8sST6VpopCbbBpKxQ1rPhOJcE4hZlBDmVTiBO2uNfY3hXghPMPtwY58yiutSFyOLpCQs7Q4fXR76ysSil6EUgiNUA4aOD2Eskmi2ZThMWOJEHU2F93e4gUuYHdxSHLBC0u88PiDjNXXsxS00XzmNo7f\/zr8jfW616wG1ZqECkLqhhvBWoLJpcbN1XTNiodkOUkldbqUtRMLGxNeKp4xJJ7S+g7Upmr70pe+pPtvvb29pgYP\/uhHPyr6+TOf+Qyf+cxnqrqPStgWEY8gCOsaf33x4kVCoRBN9W3A9fy\/XfjpAlB51vmtQabmEQcul1DVuUrWwdhHzxJ9euzGL1SyU0tow7BFv4dMWx2qpOBcSuh6I5hp+PQc6SV5ZRJ0BAKFnmx6UG0CYbuXPehEZeQUXDGbkp\/VI6kKw7ElVrMpOoNNtAlu5tNRshWmiV6PL9PsDRjKsi9G5unx1hs6Jzwfnua24A7sjvK7cz1zU5dozy\/8GUXmZyuTOASRkewqbYJ7DYklVInxeMgwQllIxUgq2YqE0uCuo8ehX+u6HFmg21ufn7RaDi+EZzgaaMOu2NixAvzjJca\/fY5xMYm8p41db+jnyL0vq1kgUE2qTRATuN3DuqRhVgiQe7YqR0aqCg5H5YU6Eqp8TKU6T6miDWpXtb0YsC2IB2obfx2NRhkYGMDtdtPf38\/1x39Y9O9Dzy2iKLlxA7VgYyTV1TeEVnNuJmRn+Lf+GclAIJAKunCMLiPICqoo4OppxRb0Ia3EyEzmctOVGj5VUcCxdwdJg3EHZlJ0Yr2PtKjSENInnYlEGIdoo8txcxduF8SiaGQgPIOsKthFkWDWRbBMnWRwdZb9dc24BWOZ87H6DuwG0u2B8Kzh9NOULHEtGaowoiGnXCs0Ny0k0waHB6\/dgc3pNCSU0XgIv91Fj1efUC5F5unxNuATjQnlSKBNN30J8Fx4qux7col29uFHuhbj3B99heRn\/5HpOqg70cdtv3wfbbv1O+BLYTbVJooRXO4RQ7GPWSGAqjp0\/duKj3OVNRctxex4ZbJLJY1fr5R4ZFkmmUxa7tS3GtVGPNPT01y6dIne3l727t2LIAjEI8VfElVVScYFfP7aenlUNVPzaIXc+Q5TO6vy59oNz1VViL6QYfT3\/sGALCCzI1hcz1FU0uM3rT3srfW4ulpQEmlEnwsltvYhsgV9ZFwi0lX9PLajrQEEjFN0Pa1kw3EcIf3c+oXVOXb5Gg134YPROQ4XLJqyqjASXyaiZPGLDnq9DQyEZyrWRy7EFirb38RDhqQTyiQIZRIcqdMnCz3lWiGZjsSWySoKkWySmWSILk89Ta7iwvKV+BJdrkCFCGWao4F23UmroE8oGiRV4dzqrOExKTnLcHw5P6qiIQk8OUn4if\/FOTlGbGeAHa86yfE3vgaXV79gaSbVZrOt4HSNVu7JMykEMDvzSlXtmOnFO\/e0\/ndeQ7URTyyW20huhKptO0EUxdwonK28iWqnkELuD3Tp0iUWFhY4fvx4vpEMbhqEFiK8LOPz1xbyiKKMLFMxx2twhVpPxMjAUFVtzH11goWvntU\/ps5N1iUa13NaG8AmED97ozYmirh627D5vUgrUTJTS7i6W5GiCWwLUd3ruPs6yUwvoST0H1LvoR6Sw9OoWf0ospJvm97ANZsg5i1z0orMQHgGhygyuDpLj7eeRmfxAr6aTTGTinDMQEW3IqdYTSeLxlyXQqsL7TWoC00rCXw2h6Fy7fyNuUB5EYKrAUVVGUussJyJU2dz5ayDDCIzqKxu06axGhFKWpUZji4aDs\/TGlnLfTaiINBr9zM\/FiH7lR9y+W+eZMKRQTy0kwO\/+Cr2nLq96LmvlGqz2ZZwusbNbQDNtj6oZp9Lc0Q2PVSZnMwQT+HnEI\/nMgIvtYinpaWF2dnZ7RPxmEm1xWIxBgYGsNvtnDlzZo07aqmcGmBxKk1nb+2ebaLgpiYXAWBd4gSdc+W0g9EPPUP8ef1dltzqR4incS7r37d7304yU4vFZKEopMfm8z96j+2BrIzodZFIpBDKOB94j+4icXEMFJ3dqCDgPWw8BjurwIIoVJAwp5lMhI1HWKfjpB3F11FUldF4iIzbhpjM4hLt2ATBMJ01ElumxRegt0I6q8tbn7fVKYfB1RkOBtpwOvQ3EWdvpPpKyVYUBHq9DXR76nlhdZqD\/lam1ATLq2E63AF2uG82\/UmqwvlV4ybVhJxhNL5iSCjhTJKYaFwzm0tFkFTVUIQxlljBb3fmm2wPKk64EEa98AhPZP+GpSYnjS87ym2\/9FqDVJuK3TGLzVaNBc76ewGLYY7Inv+Rfq+chpHhMToP+WloaCgroCrnWuByuTZkPMR2wqtf\/Woeeuih7UM8lSKe2dlZLly4QHd3N319fWW\/rKUNpABTw3GOvWxrXKqNvNMqn7v2S5+et3PtPd9FWtHvzM7srMcxG0GQK\/itGfXniALeQz0kBkYKbkgg21xHXWsjaiRJZj6EZ29n5Tk8O5oMSSeahbgEnR79NMpMMoKCyiEDN+fReIg6u4sOsTi6EQUh705wRV3AIYospuPMp2N0e+ppdhUXb\/P2NwZ1oedXprktWCGdVUkKrSoMpUPcUaGn6Ep0MU+2Ppz01ud2wNPJCHPpKA5EHE6HoRhhORNnNZs2dMOeTUVQVNjp1O9in5UTOEUb7U79gvdQdJEOT0CXkNsdPhYmZ2n5ziXm\/vEiMSnCP+15gl2v6+foG16B3WEHVBzOSRyORWTZ3I7frGAAMD0m3szzK2XtrMxXdkqQMjKjo6NcvHgRv99fNIlVFMWyqTafz7elrhK3Ah\/84Ae5fv369km16UU8iqJw5coVZmZm8nMp9JAok2obOR8G9HdnJu5yHaeuYwdWcK6qQuSnScb+22P6x9tE0u1+4\/4ctwN3T7tx8b\/Og7OtYQ1ZCKqKYylGeimGvdGPu7cdRAHPgS5SEwuoJWk2R3sDqBiOTVhIg1uEdoN9wbXUCi12j2HXvhmvtCuZFfb4mnCItqJoYVaKMx1dwW93sZrNDYjTIwtZVbgQX+SEQc0no8g5h4AK0cf1eMgwsljNJpk38GXr9ARwCCJJJUu728\/VxDKRdJJWl4\/ugkhtUUkhK4qhqm8ktkyj00uDU\/8PcTm6QG9dEx6DvPPg6iwH\/C2GvUlnw9McC+7IRXgCHHA2wKQE\/+vHvPD\/PspsEF72iXvZeUR7D+bqs2YFA2C+10cwISyIhk1dimBdI6dOnSSdTudHPpw\/fx5FUWhoaMhbB2n\/qxHPSw2BQICHH354XUWIDUW5iCeRSPDMM88QDofp7+83JB0oTzwXnyk\/I8M81jPTI6MbVJg5F0BVbMz8z3FD0lH9brINngr1nHrsjQGSQ5O6xzg7mxHdTlIj+mTh6m1HvTHYLXlxnOSVSdR0FteudrxHd+HsbM4ZhEYSOeNQvXfXGaTRCQGDtq2z4Wl6nQFD0nluZYojgXZd0pFVhefCUxxwNpRVcO2w+7gtuIOEnOVwoI2L0XmeD08znyquaSXkDJeiC9xepx81xJQsoxWk0EvpOPOpmCHpLMlJYlKGfRXSWYIg0ONtyKnMvE2cbNhJt7eBxXScF8LTPBOaQBQE2g1GMFyMzLPDEzAknYHVGfb4mvCUsQXKHxOd40igzbghNjzFHfWdujW8YJ2Xe\/7g7gLSgei0cWOmhpxgwMxxNlO9PoriMJXiW5wyR2LpG6o2l8vFjh07OHz4MC972cs4ceIEwWCQWCzG0tISTz31FL\/5m7\/JD37wA4LBYFURzxe\/+EVuu+22vJv33XffzT\/90z\/l\/11VVT7ykY\/Q0dGBx+Phla98pSlz5m9+85scOnQIl8vFoUOHeOSRR0zfkx62PNVWOIW0MOJZWFjg3LlzdHR05EfAVkKiTKpt4soq2ayKw1Gr\/1ntDgSCoCJJInZ7DSMOBAUp5mL0D35C4qJ+57\/U6keMpXEsGdRz+jrJzCyjxPWP8RzsInV9DjWtv2sU97aTGVtELe3hkZW8O4H36C4yM8u4d7WjSArpiXnUgr4gFUh3BnFPr+oGk1oR3NAsVJaYkGMVmixvNJcaypyTLCvpPFkUFsznpQST0RAOQcRndxoKDWZSEZwuY4ucscQKXpvDcHTCtdgSza46mj3603cvRxbo8gZ1+45aXD5mUxGOB9uwY8tLtuudHnZ5G\/IL\/0BkjiN1LYYpw0qTX6GyqEG+Yf5q9HdQ\/Da6Pn4nzYeLN5d1DSbT5CYFA6riQLCZma9jTvk2fkVfdFOIcuICQRDw+\/34\/X5SqRSCIOTTa9\/4xjeYnJzk1KlT3Hfffdx3332cPn3asMHeaPro4cOH+dSnPsWf\/dmf8dBDD7Fv3z7+6I\/+iHvvvZehoSFd9dzTTz\/N2972Nj72sY\/xpje9iUceeYS3vvWtPPHEE5w6dcrUey8HQTXTynoLkclkUFWVq1evks1mOXjwIFevXmVqaorDhw+zY4e+8qgQsqzwxo6PlP23v73yWppaa\/Nty8maa0+Zra7KBIPVy+JS0yLjH\/sposeNHI6RnlxcE3yZqee4DnWTvjJpUPyv3PCJTUTpakQcW9I\/xmHD09e51kLHbsPV3YrqshOfX8bucyNMhnQvoynOjIr\/y+kEK9kke+v0DQ7nU1FSimTY76LZ33S49esaWu3IZ3cyGg+RUiR2BZtpFG4u+mY81y5F5+nxNBhKoc+tzrK\/rkV3vhDAsLTKLrGuYn1JTx24mk0xllghnE1wW0MnDbby0aReQ2whJEXmfGTO0AQ1o8hciS4YukZITXb6Pt1PoKe++PerGexBc35xsuzDZtPvDav6OKkOm12\/N07D5\/\/Ldb7zZf3Bihp+4T+e4tf+UH+Q26VLl\/B4POzalWuY\/upXv8rf\/M3f8J\/+03\/i0Ucf5bHHHuOpp55iz549FV+rEI2NjXz605\/m3\/\/7f09HRwfvf\/\/7+f3f\/30A0uk0bW1tfPKTn+Q3fuM3yp7\/tre9jUgkUhQ5vf71r6ehoYGvfe1rVd1LIbY84tFgs9mIx+P87Gc\/Q5Zl7r777qpynOWk1BoW51I1E896Xap9XpOeUDegqhB+PMrEx4qbYW0BL86dzaCqJKcWSQdcxvUcl4N0kxcMvNRMNXz6vThagqSv6yt3bA112P3e8r5tkkz6+iyS34nT7UaMZYh3BAnW1ZEYmcVWQJorWUjKmYoNlD6705B0ppUEXtFuOOXzcnSBnZ6goSptVI7R5vbjvZHGKyzO54r7EZJSbvyCkY3OYHSOwz7jyOK58BQn1hlZKKrKC6vGnnU+mwNZVXhFc24BG0+ssJiOU2d3stvXhFO0kVUVLkXmDUknKWe5Hg8Zkk5USjOTihqSTqbTyZE\/vQdP69pnPbucMk08q9cnaOwz4bRsstfHLM7+oHIPD9xMtemh3BC4xsZG3vWud\/Gud72rajPV0umjo6OjzM3Ncd999+WPcblcvOIVr+Cpp57SJZ6nn36aD3zgA0W\/e93rXseDDz5o+l7KYcuJR0u1pVIpFhYW6Ozs5ODBg6bH92ooV9\/RMDee5MBt62nEqnEwGyAa7F5LkU4pzH5hmNXvrt1ByZEEyUsTqH43ksuGT3TgPLqL7HKE7Mxy0bH2liCi0446vbzmOhryxX+Dhk9nZzNKOmNIOq6eVqTVRM4PTgeZljpcSQl1MYIMuFcgzSqiKDKdgJQsACodXmhw6Ecf51bn2FvXlCeCchhYneFQoA2nwciD58PT3FahyfLsyhTHDVRpnZ4As6kI\/U29ZBWZS5F5UopMq8vHzhtpMjNu2LKqMFAhDWXGuy2tSAxFFw3Tk+Uk1T3ehnxUmJAyXFidI21T6XHp\/x1Ws0kW0wlDldxyOkFUTrPfoE4lH6rj2MfP4AiUJ385bt7v0Ndk0sXZ7AbSRJZDlm3MjVeOiqD6BtJSuxyzpKM3ffSpp54CoK2t+G\/W1tbG+Pi47vXm5ubKnqO5WteKLSceVVUZHh5menoar9fLkSNHarpOOSm1hsmrMcBYmGCE2gezmXepluIOht\/7feRxfYGA1BZAjKZwLKWQiCNN5lJf9kY\/jh1NqJKMqqhkZ5eRFvWv49m3k3RpD0\/pMQe6SY3OGtZ8PIe6SQ3PGDaFZrsacM6sopZJBwqKQqcXRqLQW5eTVs8oSRLJVfb4GvHabu52zycXORJo0yWCahZ5o8U5X18yuE5GkbmaXM6\/lstmL5J6z6WiTCbDJOQsd1ZQt80pKcP7MeMurSngjCKLUCZBOJsyJIuEnKXJ5c0T0Wwqwkwqiku0sfvG32NFTROXMsYRZ3IVmyAa9kGljvk4+fGXY3PrL0HJbBYzYmo5kcXVaK4WpCppo97sPMwo3+IR84tCLc4FtTSP6k0f1VAqVjAziK+Wcyphy4lnYGCASCTC3r17mZ+fr3yCDso1j2q4fl7fRdkcbq2kOjkmcO0\/fwslqX9spqsex\/QqQplajRSKIoWieI\/uInl1CldXC6KnnejELLbV4s+lYg+PdoxRzUcQ8B7pNTYCFUDpbsIxrh91IQpcj8CeG5ZG9U6oxwMODxlF5nJ0gZiUJqPInGnq1b2MmZEHcSnDaCJkuMhHpTSTyXCFrv2c59oRg3SgS7RR7\/BwZ0NXvsZh87lxpRS6vfVALiJYlVKGMmczZqBaQ6eRAm5JSZFVJMPXmkyEcdnsRTWxHQWNqhlF5qfLE\/jrA3gNvjtmpNnpe4Lc9aF7EOzGu3i321x6PLuYwtZT+Vglq2ATVSo9z2aVb4vT5iOyar3a4vF4TXJqvemjWl1nbm6uqG6+sLCwJqIpRHt7+5roptI5ZrDlxLNnzx7cbjcrKyvMzJiTTpZDIqK\/ex96Tl\/We+th5LcmEPrnFaY+\/WP90+0i6VY\/rsmw\/jFOO549HXki0HpnbIDY7Mfd3oScziI67MYNnx4n7q7Wyk2hHcZ1IcVlR2wOYDMgHaHOg6M5wO6x8psNp2ij1eXDIYjsrWtmRc1wfXURl2BjT11TXj4dUTMspWKGu31tFLaRhDmkpIllkhzy6z9QZqaFLqkpsoqc7+x3ijYOaMThhYV0jKuxJRyCaBh9jCVWqLO76DGYpDoaDxFwuGl36qeZrsWXaXX7aTYQUJiZcDoaD3Eo2Ibf5gJvThY+eUOc0eutJ+jwcD2zyg63H6+BgCL7hibu+n\/O6P57IZxBEyNCATlqjgCyC0lcnZUXc1VxIpSZ9VOKXCbFHCpFPKVjERKJBB0d+lGuWWjTR3ft2kV7ezuPPfYYx48fB3LCrscff5xPfvKTuufffffdPPbYY0V1nkcffZT+\/v513deWE08wGMyzfS1jETQY1XhCMylkWcRmq00gsD6XaqXsDkqR7Uz92UVWvqeviFEDbmSHDdeMftrM3hxAdDtJXi4vIlCWomQEEdFhJxWK4t63E0UUSE4tYIvd\/MwcrfVgE0lendJ\/M40+7A6nYV0oG3TjtDtQp\/WVa9mgB7fdQUaHdCBn6++1OfM+aA2CMx+tpBWJS9F5wukkHfXNFZsj650ew1HY12JLtHkD+WikHMwo14aii+z01dPs1l\/AlzMJbg\/uwG935QbfRReJq1ka7e784LtKcmnI9d\/s8jYYLvIXInO5\/huDmtjV9Ao9nnpDJV25xtBmly\/v+iCrCj9ZGqW1oZGZZIRdvsayijrxXd0c7O\/RfZ1CqIqKo8Vk+sxA1VkIaTVtiniWhqdoPVBZqDB0Vv87XopKxCNJ0rojHqPpo4Ig8P73v59PfOIT9PX10dfXxyc+8Qm8Xi9vf\/vb89conT76vve9j5e\/\/OV88pOf5I1vfCPf+ta3+P73v88TTzxR1b2VYsuJR0MtYxEKkTBIteX+XcBfX+vVax\/qBtwYoX1zByVFHQz\/9g\/ITOhHYnJbACGSwm5Qu3Lv2UF2IUxmST+VKHa3oIRi+ZpP6gax2ABHRxOOpgCqAOnROZSowS5vZxMsRcim9KWo2fYAztUU6qp+b4Nn306U0VnkrP5rXU2G2eny64oIXKIdSVE53tCJx+ZgNhVlJhXBLdrZ42vEfeO8c6uz7Ktrzv9cDoOrsxyoM+62NzMtdCB8Q9RgIFg4H5vngK8538jqEG1F0dNyJs751XmCDjeKQTrrmhJlf12zoTgiPz\/IwFTUTI+OnpdcIQZWZzjT1Ju7Tt1NybaiqnR5gjR76vC+t4++XzxAxqDfrBDZpRTOVnPEI+jMSCqFmjFHUN60uQ6TF35c2aNNQyVVW2nEU8sQOKPpowC\/93u\/RzKZ5Ld+67dYWVnh1KlTPProo0U9PKXTR\/v7+\/n617\/Ohz70IT784Q+zZ88eHn744XX18MA2IJ7CKaTriXiMxAUAy\/NZ\/PW1GTWsV1KtYstnleNXVa799t9DVv+9pnfW45wpX8\/R4D3aS+LiBCj69yT1NGGfXNLt4cnOLONoCpC8MI7oceI52A0CpKeWUCI3JeBm6kLZ7kYcUyuohvecMxQVDY4ZiQr01Rl3bJf6oO1w+9lxQzqdliUuRuZZSsfo87cako4pCfMGyJy16xgp1wBG4yu8smU3kPNym1YSzK6GaHR66PU2IgqCudfaxGPOhqfWGLcGHe681Y\/qFAn+18P0vmIXclrC2awfDRZCCqdNE48tYE5yjd1crVYwEDxokCWBsYvmU\/hJg4hHVdUNERcYTR+F3Fr7kY98hI985CO6x5ROHwW4\/\/77uf\/++6u6l0rYcuLRYLPZUBSlar26htiqcU52dixB7\/71WIzXLqkGAVUVWfrWAjOff0r3KNUmkGk19lvDab9hzjmmf4zDhqdvJ8lL+jJJ7RitVqPEUzfTdYKAq7sVW70PwWkn\/tyw7mVUUUDtajQWEdhtePbtNKwLZRWYSgg3hAY6I6FVhQsVXJgFQSCryLyiJdenMpOKMJuK4BYd7PE14bbZb17HgAjynmsV5tZUcoXOS6GrvI5dEOkUvHQ25Oo3S+k4l6ML+B0uwtlk2ZSfpMhcy65WHI1wPmJ8z+aPmTd0C1d9Nnb89xO0HcuRkLSYwrbT3DNoJLQphdNkSs5WZ7KXr8F4WVQVla9+5NuA+d5Ao1Sbqqp59xYNiUTiJTcSoRDbhng0++\/SuRRmEI\/HGb2m3ygJMH45wt2vq\/0PmUkruMxt1tZASclM\/Y8LrP7omu4xasCDZBNwzeqnzexNAUSvy5BQ7I1+RJ\/b8JibDZ86x6gqUjSRi37GF7AFfShNPmRJxrYcQ43nakOyx4G93odqQDq2oBd7vd\/wfmJZiEqwq04\/EgpnksTsiqGsOJxJspCJc6zgmA53IO9MkJKzPB+exuH30u7W\/y5oyjWj14pkU6wIWcNjolKa6QpS6JiUZkFJVTgmw0Imxj03xoDLqsJEJsJCPEK9w80uXyMpWWI8sWLo4K318Rg1fZppDE2rMsOxRcN7lhts7PqTu2nYe7P+JkWzmJMLmEdmMWmaeOwtlR9gKZnF16r\/3VBlhU+\/9yH+4C+\/xhtaf5ds2lyWJpOSkGUFm23t2qZlejZC1fZiwZYTT2GqDXJ\/BCM\/olLMz89z\/vx5kI3F+VdfCAG1q0Ri8QQuEyF4KbJhB9f+83eQVjN4DnSDCOnJJZTozVSW3B5AWE3iiOjngV27dyAtrZKZ1CcmV297boDbjXHW5eDsaUNejRk2fGrD37RJpfJqHFbjiIBqExE6G0nYVeoEJ7KBQMC5sxklmSY9rn+M3OBHmo+yw2Dt0Aau7RT1m4CnEmFsomgsK84kaHP56bQFwJbrN5lLR\/GIDvbUNeES7cykIigVlGuzqQiyqtJj4Kc2n4qSVuSbirYy0OTSuw36XUJSkkgmVaS2swki3c4A3TdGGEzEV5hNR3GJdqJqFn+ZkQ4ROc1iKmaopAtnkixljBtDV7NJwqqxQjDbZufgn96Dr6P476WaXKQBJJMMlQmlTBFPcimBp7lyk6m0mMLeXX79UTIyH\/mPf8kn\/iZnkumpF8nOm39PmWQWT93aN6YRj7bhVlWVeDz+kps+WogtJx4NgiCsMQo1gqIoDA8PMzk5yZEjR3gS407ai0+vz6U6GAxQjfUNQOyCxMjv\/APIuZ188sqNqEwUcPW0onidRJMJ3BMr+l5q3PBSuzwORjN2jvSSuDIJpQaeBfAc7iU1NLnW5LPwmEM9pK5No2Z0\/g6yQhoZ72wcOSNhb\/Lj3NGEmpFIjc\/nG07dB7pIj82jpvRTDO59naTGFqg3SNFfjMzT4603VHgNxZbocPsN7W+uRBfY4S52uu70BOm8QR5JOcsLyQUyyRQ9Buq2a\/FlmhzGfSqjyRUCNpehZc9YYgWfzWnoJTeRCON3ewwbMaeSqzhtdk41dgM3B98tZxIE7G52+xpYyMQREPJTWsth7gaZGjWGLqRipBXJ8POR9no5+icvw9VQJrqwme+H85h0IkgmUqaaTNWVDJggHj1ptpyS+N13fpbP\/d\/v5X8XbPUQmTcvPErGM7rEY7PZiuqaVsSziTArMEilUgwODpLNZvOebkZyaoDVpTSybMdmq005V42Dj6qKLDw8y9z\/\/Gn5AxSV9MwymWYf7tkItoY6nB1NJKNxmF25KTxw2PDu20nigkEzp13Ee6DbcNhafrCb0TEmzEJVQO5pwjm+nPcrlZajSMs5FZvgsOPu68TW6CczNmdIOs6DXaSGpgwJ92x4ituDxuOez4anub2C\/c0L4WmOBNrLjkXQcDW2yCF\/Ky5P7pGYSq4yfyMa2lvXjFO0mVLJXVidY3cFWx8zcukr0QU6PUH8ov4x5fpvtMF3mgP2pcg8aSX3nXfb7TTY1xLmvJrEUWHA20QijNtmp8uAdFKHPdzxJ6\/A7i3\/3kWvueVGzsi4WswRj5FUvBBma0aqtHZzJ8Wz\/Ke3fpovf6\/YPxFX5Xk9hUglyj8P5coLVo3nFsPMMLhChEIhBgcHaWpq4o477sjXhioRT+6Y9Uiqzc3dUDIOxj76HNFn9GsaatCDbBNw3qjnyCsxkiu5ZjTVLuLp60TwuiArk7hoUKsJ+rA3+I0JxevEvaPZ8BgzZqGKXURu8RuKCFQBBLuN+E+vAOBoq8fR2oCSSJManwNJAbtIpi0Al\/XnAskqzAl2w8K1GfsbRVUZllcN6xVQflroTk8w77mWkLOcTy2BIrOaTekSz9nwNLdXkDBfyazQV9dkSJQD4VkOBVoNpdlXksv0eoKGJHgxMs8uX2MRCRaagu7xNTESX6anrhGP08AR20SDafp0gDs\/cg+iwZhvscGc+iw9H8fbpd\/wWoiUUzUV8ZgdqyWU3H82kuFXf+lj\/O\/Hn1lzbEJeBcwXfp\/6yU85EO\/OTx913+j3KlW0ZbNZ0um0RTybBaOIR1VVxsbGuHbtGvv376erq6uItMrN4inFyrxcM\/GYkVRnlu0Mv+efkRb1O5ql9gC2cBJ7qnyILkgKqiSTHZtHXo3j2NGIozmIHE+RHpvLRwiu7lbkaDL3Oz00+0FSDAe7OVrrQRQMm0KlOic2lxPHrH4ja16wUNDImp0Pk50PAyC6nbgPdCJ4nMiX9AkuIUEoAzu9+hsQM\/Y3KVniamzR2BnZxLRQSVW4El3IvdaNNWYyEWYhE8Nrc9JX14yIUNEnDsxLmI1GZkPJFE8dvBCe4WigbQ3BFZqCnl2ZwiHaGMtEaFQdZVODQ4kluj1Bw8gi+7om7vx\/+hFE\/XvOJrK4zfqpRc1nJQIt5uogosfcUmcvyPtmQinu\/9d\/yL8MXip77HJ8Fthl6roAPV278PnczMzMMDQ0hNfrpbGxEbvdXhTxxGK59eOlXOPZNhNIAd0aTzabZWBggPHxce688066u7vX9HnETUQ8s2PV1WjWovyOTVUh8nyay297xJB00jvrsS9EEXRIB0DpbSE9uZgr6APZ2RCJ86Okr88iunO9Nr479yHFkkgr+o2a7gNdEElCWL\/h093XiRxPkZ0zmBTaUocDEWFZ\/325unMFdCPBgq3RT2YuRPzZIWzxDEJrAM+RXhzdrXkb1VAakjLsNMiyLGYSLGXihsXt5UycqeSqIenEVanitNC4lGEourjGu63LW88d9Ts56G8liczToXFEQWAhVf4zyioyL4SNxxXIqsLZG+RlZIT63IrxFE+Aq0qE4\/UdFdy3pzlW38FtwR0cdDXS5vYzlVzlufAUlyMLpBWJF8LT7PE0Gqez3tbJyd87Y0g6ANJSZQsaDWrWXL+cnJRwNpmLOOyNlY9TZSXfO5RaSPCG1\/w+3\/3ZC7ozwaaXxky9dv4eBCe7du3i5MmTvOxlL2PXrl1IksTU1BSJRIKBgQG++tWv8uyzzwJUVeP54z\/+Y+688078fj+tra380i\/9EkNDxa4ogiCU\/e\/Tn\/607nUfeuihsuekUrW2luSwrYjHbreviXii0ShPP\/00sizT399PfX192XPNpNpGL67PLFRV1+6aVEVk7itTjP7uP+s3WDpspHcEcv05ejUNuw1xbzvi2KKuQEBJZhBsIvFnryKHY7h6WlF3t5JtKF6pvUd35eonegIB7ZiRWcOppNmuBpyhBGrMaHJpN5m5FeQVfWJy79uJvBJFWroZMakLEZIXxshOLCC4nCx4\/KwqIi6Db+RIbBkRKhTkV5AU4yL5TCpCVEobKtcW03EWM\/GKKrBQNsmZpl5O1HfS6q5jIhHmuZUpriVDZBWZmJTmWnzZkOBScpZLWlSlg6wicy4ya4q89onGaarnVqa4o2Etee30BDlZv5ODgVYGw7M4RTujaoyZVJnnRgTlrTu4\/YE7DF9Lg1JFFEMFEtOQXTRHZlIya6pxNbOQRLCLJKajvPqVv8Pj53KRTmNj+e\/b9ekrpl5fQ2GNx+Fw0NraysGDB9m9ezeBQICmpia+\/e1v8+\/+3b\/D7XbzwAMP8PDDD7O8bNAjdwOPP\/4473nPe3jmmWd47LHHkCSJ++67j3j85sZzdna26L+\/\/uu\/RhAE3vKWtxheOxAIrDnXbWALZQZbnmorjFxKU23T09NcunSJXbt2sWfPHt1u9lQ8g2LCr+nycwusZzxCKU9HV7LM\/dEgiQH9VJYa9CCLxv05toY67AEv6Wv6aTOxzoOzreFmrUZRSY8vIJBrY7M3+nHubEF0OYgNjuiToIlmTlPO0phwseamW4GRiMC9u43Wq9PgUVAFgaTHw0pCxkmaRlVFFAQGV2fZX6Gwfz2zSqvTa1i0N+O5Np5cwSs6DdVk0zcMMntKzDe7vfV5z7fpVISZ5Cp2QWQpHc97mxUiJ2GOG47VTioSY\/EQx4JG5CVxNbZUceTDxfhixWFyz69Oc1dj181fuosbcffWN9P6+7fR1KwvJy9FuaK9Hmw+c4IBs+ag0kIKuwn3aimcIZPOcs9rfocLYzdrkHqLbDqTpL7bS3jRXCZFr4lUURScTiddXV38n\/\/zf3jqqad4xzveQXNzM5\/4xCd4+9vfzne+8x1e\/\/rX6177e9\/7XtHPX\/7yl2ltbeXs2bO8\/OUvB3JO04X41re+xate9Sp2795teN+CIKw5d73YcuKBm8PgtFSbLMtcuXKFubk5jh07RkuL\/s4UjEciFOLck3Oo6pGaZ+sUVijT8zauP\/BPue5HHUg7gthWErr1HABnb1tutPW4fprK0XlDrmxQq8Em5vp8ZpYRHHZcfR2kFQVlaRXhhquDrd6HPegzbOZUXDbE5qCxs7TLgXtXuzHp2EU8+7tMqeQKhQaCquJJJNBoIeu2MyzHsNtzkzH19llnw1McC3ZiM\/jjDoRnORgw9mW7GJlnT10TboNjzBTbxxIh6t0+7nTfXMC1wn5boIEdgpuFTBxVJW+EWg7L6TiSQzQcjbCaTTGfjnFb0IC8bjSG3m7Uf6PIXIyWd1nQGnFVj0jrHx6j466dLJybw3QVogoptcNEoyeYJzM5ak4YtDC1zBv+\/Ue4NlPcd2bgFIWvyUFYv22uCKmEjlS7RFwgSRJ1dXV86lOf4tOf\/jSzs7NV13tWV3PZhcbG8ga68\/PzfOc73+ErX\/lKxWvFYjF6enqQZZljx47xsY99LO9wXSu2BfFosNvtpFIpfvrTnyIIAv39\/Xg8lQuSRiMRCpGMZpElO3ZHbZJqQZBRVVh9OsH4h79veGy6qx7X1Krx3JvDvSQr9dUc6CJVqR9mTweZ+ZW8EaialUgN50hKABw7GnF2NqEkM7ou1mDOWdreFED0OEle0VeliX4vjuYASQNFnuB2YO9oQrhuII6wifh3dbD\/yiT4PKiiQMilsppOYItl6PbW31C3zRgq4MBs0b6yfLucU3MpLkXm6fE24BOLa4KFhf2LN2TOAgJu0UZTmWhoMhHGKdppE\/WfAa23xqhx1kxjaEqVuR5fMoyqlICN7k\/cRdPB3EYwEDA59ROw+cwtNVI0g91v1nvNXKUglk5TqVqyeH6eX3rPp9aQDkAyqR\/R2HzmG0iN5NTlXAu0DI9ejUkPqqryO7\/zO7zsZS\/THaz5la98Bb\/fz5vf\/GbDax04cICHHnqIo0ePEolE+OxnP8uZM2cYHBykr6+vqvsqxLYinnQ6zeLiYn78tVnrnEoGoYUIL0s01xg1qorE7JdnWPrac\/oHOW2km3zG83PsIt793bkUlB5M9NWAObNQe4OfxLlR1IyE6HPnxACCQHpyMe+gYMZZWmrxY8vIZKaWdI\/JTUKVSI\/qE4qt0Y\/gsiMZkI7stiMEfaQKCE5QVBqT0IgXvF4SXhuTqRheu5OknC1bBM8oMiMZY\/8yM9NLAa7KEY4G2g3J64XwNEcr9BWNZCPs9t0s2iuqylhihZgg45Rgd10j12Mh2t11BAyiqvHECn6nh1a7vuzWTGPoSiZBDNlwFpHUbGffp8\/g776ZXnM0m1OpVXNsdillmnhUv7nmOq\/b2AZh9uw0J+79bVo6y6cpl5b0o\/+ssP6ZPBs1BE7Df\/7P\/5lz584Zji7467\/+a97xjndUrNWcPn2a06dP538+c+YMJ06c4POf\/zyf+9znar7HbUM8w8PDLCwsEAwGOXz4cFXnJmLmG7kmroVpbq+v8u5ATjq4\/ns\/IXFpPi9xXp1bxLEUy2fg1HovsoBxPSfow95QZ0g6gseJq8JANuw2PPt3GpuFAkpvc1FqrcgMVBSQWwPIQTfehIyU1L9vR18H6vU5ZINamruvk8zUIkrSoHG0p5VsKIoa0ic4R3sDtqyMPG8s3w56XXinZairQ7GJLDokliKr1Cs2drgDec+1gwYigtz00uWKkupzq7OGk0nBvJvzsWDxmIHcMLWb9aTnVqawiyIjiRDdniBNZRo78w2mBvWssUQIv91l2BiaIybo8ugLEpReD4c\/eQZ3Qed\/NZFJejWFK2gufSYbpK5L4W0xtzg7Avqf0fgTY9zxr95HOJ5g94EDZY+ZnZ1FFEWUMpu71fQSoB9tFsIo1eZy3bzHWsdeA7z3ve\/l29\/+Nj\/+8Y\/ZubP8d\/EnP\/kJQ0NDPPzww1VfXxRF7rzzToaH9Y2DzWDLiUdVVZ5\/\/nmi0Si9vb0kEtVLns308GiILlX\/llNTIsO\/9Q8oN3Ys2dkQ2dkQDnITOZ07W4hmktiX44bzc1w9rUiRBGkDfzMp6MHjcefn5pRDvlZjlMryuhBaAjCmn4BWAcHjwDm8gMQNgUJHrp6UHJvLqeIKIi+jLL33SC+JS+PGIoIDXbnpqAapRdeeHWRnQygJ\/c1EttGLmpEQpm\/uNkVZoUUWaXHmFvBwwM58JIuazkU95ZoxQ5kEq3LasDYSlzKMJVYMSSeryFyKLVSMql5Yna6YEryczkm8NWLSLHAybhtCMsNuXxMXI\/MV030Tcoxmp89QaDGWWMFvdxoSU3q\/m+OfegWOumKSqSYyUUIZMEk8sUzaVENodjmFw4SUWlVUnG3lo63h7w9zxy9+gEQ6913TmtFLIcsyHR07mJlZO39nfmUSv2niMRfxJBKJqiMeVVV573vfyyOPPMKPfvQjdu3S7y\/60pe+xB133MHtt99e1WtorzMwMMDRo0erPrcQWy6nFgSBnp4e+vv78fl8NQ2Di5us8QCMXTIvqVZVgZUfRhn61b\/Pk86aY+JpIokYzrEQYjyDe\/cOvEd7c42ZBfAc7iUzEzKUHdt3tyMms4Z9Na6eG2kyIzFCawP2gBdlXJ90ZI8DoS2IWCAikEJREhfGSF6dQiAnla67cz+ZWQN1m03Ee\/iGHY8B6XiO9ObSZhW85NJj84ak497XiTOeRTCQeDt72mhUHezHz4G6FmwuB4teuJhYYimdk5dOJsJkFJldHn3l2lI6zkLa2FhTk0vfHjBuVD23OmtIOoqq8lx4ioOuxjXR0C5fI\/ttQfbVtfDcyhQqKpciC4Qy5Tdpg6uztAueipY8TU5v2WhKQ\/pEHXd85tVrSAdAiZt\/TrMxc8V9AL\/HHEFlQyYHyi0mEZ1rNx0X\/uEit\/2r9+ZJB3L9gnpobi5PLuNz5nf+Rqq29aba3vOe9\/A3f\/M3\/N3f\/R1+v5+5uTnm5uZIJosl55FIhG984xv8h\/\/wH8pe513vehcf\/OAH8z9\/9KMf5Z\/\/+Z+5fv06AwMD\/Pqv\/zoDAwP85m\/+ZlX3V4otj3gg90fVPvxahsGZVbUBXPrpAmZcqlXZztTnrxD6h\/JdywCKQyTbVHezniOrpK7f3BU52hqwt9UjupzEnx82Nvm8MWxNNBIjHOohOTyNmtV\/6N17O8jMhoz7cxq8OFUBdTase4wt4EVejefTcra2epJOAb\/dlXObVlTEOg+O1npDWx+cdly72klW8InzHO41PoYceSUrRFWZjiDq9CJCgeLJllVoyUKLN7d4LNTbSCgiYjJNi1pXVgk3JyUQUfOeZ+WguUsbKc4SqsREPFQ0qmHNPSsyl3XUZBo0mfPpG2ag2u8m0hEWEhHqnR52eRsYCM9UnBh6LbvKLl+jYcSUeWUDd37wDIJOAV+pQh6dMVjQSyH5zO2FzXqvSStpnG3FIohzf3+RO3\/5d5BLUmeLi\/q1Sz0imFue4o52R8UJowBpnVRbubHX1abavvjFLwLwyle+suj3X\/7yl3n3u9+d\/\/nrX\/86qqryK7\/yK2WvUzqBNBwO88ADDzA3N0cwGOT48eP8+Mc\/5q677qrq\/kqxLYincDRCLRFP0kTzqIZLP1tAVQUEQX\/xkuIORn7ncVLX9L+Iar0XRVVxzelHUHIyjRhNkjw3iuh14erJ7ZzTk4sosdxOJCdN3mFczxGEXCprA4QGmY4grqW4vvs04NrdjrQYKRqpLc+HcQJpQPS58RzoQlVUEkP6KjlbvQ+hzkN6SD9tKLiduLpajElHFPAc7DZFTFwcM\/Tlch\/sonV4mlYxAD6QnTbGszFisSg7nX6CDg+XIvPs8jfh0Um9QK5+4rO5DJtZF1IxcNoMRyNoM3tuN1CTZRWZq8nQGmISBYFuV4BuV64+80xoArfNzvnIHL2eBurLOGifDU9zPNhhKJBQ3tjGnb9tPNo4LcimpdQel3FxvxD+dpNXNem9ppSMYvjxl5\/hv\/7Vt9eQDsDion6GwEjoVN\/mYX6sMvHopdpKI55aajyqkea7AA888AAPPPCA7r+XTiD9zGc+w2c+85mq7sUMtgXxaCjnXGAG1ajasmkZKWPH4Sr\/RUmOwrX3fstwR5XdEcQeimNP6x\/j7GpBiafy6i4lkS4q6rt627A1+HP1FAOhgVjnxtneWFlosM9YaFDOWbocPDck3kYpMWdHE8lLEyjJNKoAjq4WHPU+pOUo2ZlcWs6xsxk5lkQ2UMDZGv2IbqehT5zgdeHc0WhYz8Im4tm\/syIxZbob1piT2jIyPXhycm0BpgMCouRiKZuk01FXdoHOy6Xt+jUObexBi4EUejEdJyFnDIkpJmWYTIY5bHBMboLpbFE0JKsKM0qSmdVlGhween0NFW17EMD27h5u\/3eVc\/+egPnOddFvriE0u5Q0rX4z671W2LT3T3\/+Q37hfZ\/gzJn+sofGYjGCwWC+B6YQ5X6nwRU016OUjJvr40kkEjQ16asQXwrYVsRTa6rNjF1OIaJhaCxJ26uqQOh7K0z96Y8Nz03vrMc1HTbccXkP9ZA0mmmjqAg2kfS1aeRoEntLEKGxjnh4FcdiDM2H1LGjCWQ5V5DXgammULuI0NGA3ciJwHRUVexEIKggTS4i3Rg+Z2v04967g+TSKlI0oVtEdHa3IK8m8kRVDvbmAILdRnpkbVE3f9s+N862epKXDCbQ2kTcfZ1g0HsEub6qzgtjYK8HIOOyMScliEUidLsC1NldDKzOcMS\/1nyzEJejC3R5jMceTCTCeO3G83iW0wmictowlZeUsywI6TUO3DZBpEPw0NGwE1lVeG5lCpfNzsDqDHvqmvHbSkjTJuD97X30\/Zv9uq9VCFeTeSm106yUOpQ2TTxqvbmlS7zRP\/SNP\/kuv\/Lfcjt3o6xKe3t7WZKJRPQzG6rD3MY3bXIsQi2pthcbtgXxaKk2M2MRyqGaiAdgaSZDY9vNXYoi25n60wusPHpV\/ySXnUyDN+e3pgczc2+4oQC7PJGv+UiLq7C4ihNQHDY8e3dg83tITy4iLei\/Xumk0HKQfE4cPg\/qhIETgYmxCNgE0u0BqEBMzo4m4s9eBRVEhw337nYEl53sXAhpKSehdh\/oIn191jDd5+xpu+HvZjAKvCWIIIqkDfqBBJ8bZ2t9UT9QKVQR5I6GNRGTMy3TjQt8Lag2gUmviivjYUlO0S6Wz\/m\/EJ7hSKDNcPaPGSn01A2rHSPbHq0x1KhHJ61IDEUX84PiIBcNXYstE84m89FQ+E4ft5skHSmawR4wp2jLhtM46s2l2pSUySGQadlwPHUhHE1uvvyh\/8t\/\/OMv5n8XDutHL8FgeRsgo16epdgMUDlCMVK1FSrqXurTR2GbEI8Gm82Goiioqqrry1aKbDbL\/IxJz4obmLoWZ9\/x3BdXijoY\/u0fkJnQV5KpDT4UVcFpUM8R\/V6cLUFj0skPdtM\/RsjKCE4b8eevATlysQV9uZHWBWkrz8FuUiMzhot3ptmHPZ5BXdB\/0Bxt9SCIhukusc6NrTkIBjJwbCLufZ3Fi3dWLrquY0cjzq4WsourqFkDddvBnOza6BhnTxtSKIIS1TeKzBOTQTOr4HXhbGsgY3AMNhHPvk66Lk\/CDbl2ym1jNhMlFYmzy1OP2+bgqrxqaAYKMLg6wwF\/q2Fhf0ZN4Le7DC15zDSGxqQM02Vcum2CmD9PUmTOhqe5o8u4plMIadm8lFpaTpkmHrN1m8xCEndXZeLJRjP8vx\/9Bh\/4XLEtzOysfgTtcJT\/uyQSCRobGwmF1rp6hOJzeMwQj0GqrTDiqUVO\/WLDtiIejfVLdwB6iEajPP\/886SqkHYCXDu3wqt\/uY74VYVrv\/33Nyd+lkG2I4h9OY7NqJ6zswUllS5StJVCm1djqABzOcg0uBEu3DymcNSAvdGPo6MJ0eMkPnjd0H0629WAc2bVUEnn3rODzNyKoQLO0d4AikrWgHTEOg+2Jj8pg+Fu2G3Y6+uI\/yxn1S763Li6WlARck2nN8QWnqO9JC+MG1oNuQ90kR6pREytSKGoMTE1+xHsdkPSURwiapn35k7J7MILdV4Uu8CEU8aZcjKbiLDDXb4Z8+zKFMcr2PZciMzR52\/BZTBQzUxjqJamM3LgTslZrsWXuauhix27zdt5yFU8b3LC\/LGi29xylImkcFfo9lEkhb\/7H99fQzqQS5vp1XIkg9pmW1trWeJZis3SReWm93IRj6qqGyIueLFhWxBPoaoNcjnYSsQzMzPDxYsXc41S8kBVr3fhqTnmv+1l7rNPGh5npp5DbwvZmTBqxoQRqMG8GntzANHlgGn9kF5OZbCns8QvjCE4Hbj27UR02EnPLOX7g1RA6W3CMWbsLO050psTOxgQk2tvB9mZZcO+GseORuRMlqxBuk\/0e3E0+Yt84pR46qbfmyji3N2OozlIZmrRkHRME1OlVN6NGpO0pB\/p2hrqsLudSLP63nW4HHi6W+gengE84PaQ8NiYTa4ixVLs9jZgE0ReWJ3hjgquBs+Hp7mtwgTTodgine6AYf1oOrmKrUKaLqFKTCdX83ONXB3mfdfMzssBDKXvaxA0STwGm0AAJSPzoX\/\/F3zfQE25Y0f5Wk40qp\/V8PvLbyhGp4fo9r3W0EwUIJOSGBsdo7mlOe\/FptW0N9Iy58WAbUE8GgRBQBRFwzqPoihcuXKF2dnZvHN1Nc4FAOFQhv2\/8mv86pn7eH33YTpXVdRQQWOny06mwWNczxEEhD1tqNfmDHnJe6SX5BVjI1D3nh1kF8JF8uVSlKbE1Ey2yN3AtqORuEPF7XFjG9KPvKqqQ1XomXHt7SA9tQgG7tuO9gZUSTF0axC9LgRFzUdD9kY\/jh2NKBkp1zOUkW4q1ypYBHmO9OYUcEbEtK+T9PgCatrgvjuaUJJpQ9KRPXaoc5MeLhZ\/eJMye6iDujokl41JMY076WI5HS9rBgrm7HYGV2c5GGjFKRj4wMWWaXR6aSgjpdawlI4jO0T6CoxFPZ3mF7oYWXPjplk7SloPSlbG02ruHjxO\/TSfnJT4wDs+w19861F6enp0jwsEypPI\/LxBY7ZOGi6TTRNs9RGe1x+6qGFhbomx8TEcDgeNjY35+9CIR1XVn4saz5Y7F5TCSFKdSqX42c9+xsrKCnfffXd+XEI1Xm0AnnobsVSSL\/zLt\/iFL3+CE\/\/3j\/nD1Wc532ljsdWN7HHgnNP3EhPrPLh370A1mJ+DTcwt3hfGDEnHe6SX1Ng8skFKyLW3AzmWIjunvwim4gk8cQmGZrHV+\/Ae7sG5twOloAFQrHPneoYq9Mxo921EOra+HaSvzxqSjmtvB3IkUTQArhSOtnpEj7OImKRQlOTFcdLD0zkHhUPdeE\/sJXNjjLbefXsO9+RqTEYR05HeXP3IgHRcezuQV6KGLhOO1gacPi+2Rf3vieB14e1opidp57C3mUa3j6hH5KoS4Vp8GVlVkFXFlEHp2ZVpjgTaDEnncmSBHW6\/IelMJVeRVbXI8TrrtuNsMN9rEwyaJympzlytNrOQrDjFVINNR54txbI88OY\/4S++9SiQm+el13\/jcJS\/xvLysm60kTVo3PY1mtvD7929n3vuuYeDBw9it9uZmMhlAV544QX+\/u\/\/nieffJJEIoHXaz4CNTN99N3vfveaKaKF5p96+OY3v8mhQ4dwuVwcOnSIRx55xPR9GWFbEI\/RMDgNKysrPP3003i9Xk6fPp3\/w2QzEhmTapg8nGuJ6jsvPMO7\/\/ZB\/uvVR\/nVZ\/83P2hKkdjViOAs\/kI5O5tzvScGs3HEgBdXd6vxAm8vsJoxcjQ40kv6+pxhHSbT5seZVVCXc4ugHI6TuDhO5toMgqri7uvEe2w3jvZG4\/v2mSMmdrciD88aW+Qc7iE9OmeYpnPtbkeOpfLjHMrBFsz1ByWevYq8HMHR0YTnSC\/O3rZ8j4bgceLavcO410e4EQ1VsvY51J27b0Oj0zbkRArZIEKVfE5kt53M6E1CFVTwJxX2iQH2+pqQPA6u21O4HE5Ws\/obj7M6E0MLcU2KsLeuCa9Bb9FIbBmfzUmbuzheSTVXl9ZxNFXRENpmbucur5q31XG0rCXW7Gqat\/\/rj\/CVRx\/P\/06SJN2RAkb2OB0d5c8xSsPZvObWoFQii81mo7Gxkb6+Po4cOYLNZmPHjh386Ec\/4v777yeVSvGxj32Mv\/3bvzVsatVgZvoowOtf\/\/qiKaLf\/e53Da\/79NNP87a3vY13vvOdDA4O8s53vpO3vvWt\/PSnPzX1Xo2wrVJtsNa9QFVVxsfHGR4eZv\/+\/XR1dRURldlZPIVIob9L9Xg8DEwP8rvf\/J8ABL11\/PuXvY57Ow\/S5vGTHZk33C07u1pQEinjsQB5h2qDhVJzn66QEst2N+KcWkHVWUwFWUUFUlenURJpnJ1N2BsDSJEEmYn5fP3K0dYAqIbEJHhdONobyBjIl1UBHPs6jUmA3AKfvDpt3KhaRrmWnVnO9\/6IPjeuvg4Emy036lv3QnbclWx7KCAmA7j37yQ9OmdYP3J0NCIm0igh\/dSL4HMjemz0Lcng86IKAmE3zEVWcGVUdvkakBSZ85H5irWhs+EpjgeNRQuXIvP0ehvKEpPQXkUEE8tgN3B7LkRiIY7XZPpMMVk3yoZSOBqL1X6ZUJI3vf7D\/PPZwTXHt7Q0Mz29VrG5uqpPIvX19WV\/v7CgTwIZoXKaDdb6tWlCqo6ODh588EH++3\/\/7\/T19dHb28tnPvMZ3vWud\/G5z32O97znPbrXNDN9FMDlclU1SfTBBx\/k3nvvzXu3ffCDH+Txxx\/nwQcf5Gtf+5rp65TDtiOewlSbJElcvHiRUCjEyZMnaWhYWyytxqdNQzihX2+IxYrTK6uJGJ959Jt8Bti\/fx9Hgjt4y4E72Sd5EGbCRcfmJM6zxkIDzdHAoOYh+D04G40HqamigNrVhGNc3xkAINUZhJHZvI1OZnqZzA0Bgy3gxbmzBcH1\/7F35eFRldf7nX0myUwms89kB0LYwhKC7IsLUJRVRBQ3WrWtaBXXti4Va6tVq9LW2trWn6itYstiEBAJOyggJCwhkBCy7\/s2ySSz3d8fw1wyyXxnJsgScd7n4Xl07sydO5M73\/udc97zHgm6SmrgIkYViA1qcOBI0oFMAoFBCWceW5oNBLnAB6FcE0VFwF5S60mJCYWQxhvBhUnQUd0ASZOHrISqMIjVETQxBel8EIxXnGzAeXdtG3tD5FRKAQEgqb+wWAk4DmoboJaoAQnQFSZGSVcHpBIxrE47IhiRTGZzeUDH67yuRgyK0Pl16AaAsNjgiaejth0qP6ahftHiCHrSfLBpNmdjlw\/x2KrbsXDeb7Az66Tf57NSVlVV7A2WlFFDamhoQFhYmF8H\/RZbLYL5sP6Ip7uwwOFwwGaz4eWXX4ZKpUJtbW3Qdjj8tTCmj+7ZswcGgwFqtRrTp0\/H73\/\/exgM7Gs+ePAgHn\/8cZ\/HZs+ejdWrV\/fpevyhXxCPv1Rbe3s7jh07BolEgkmTJvnMq+iOvroWAEBVI7vLndrVVFZWIS\/vLNZ\/6wnnR8UPxG1Dx+MG02BEqpSwnSwm31cxLM5TXyB2y05tOCROeIrqDLgUEojUERBQpCMSQp4cAxAd\/a7WDkAoQMfJQo+s0xSJcE0knHUtPukvaaIJjpomcETazGt\/4ygj1HRiISQJxuAW+AACAVlSNOxlteC8NSa3G\/bz35nk\/PXIEo3gnG5y6qpAIeUtgAJeU6DrHhqLzvxKsqYnNKkhaGmHyMbeMAkjFIiIisDgMqcnGhIJ0CBxo7alCUqXEDFh6vPRUHVA0gnGm01gDM7SBgBEtuAXQbcteBcSUVhwS1F3eXZ7eStuuPEpZJ4rglarRUND73uPdQu1trZBqVSira33ZotyTzGbzSgoKOj1eHVzGSKDIZ4eRqH+hsABFwiTIgZ\/YE0fnTNnDpYsWYL4+HgUFRXhhRdewA033IDMzEzm2lpdXQ2j0dfixWg0orqa2HwGiX5BPN0hFovR3NyM3NxcREdHIzk5mTTo66uiDQAKK3L9Pi6VSlFb61\/Volar0dzc7PPYiZICnCgpwJ\/1OqDLifunzMYMwyBoa2wQdnerDdKORjEsDh1ny8lZ8o4oBaScEFwVWwYsVIZBoo9EJ7WY9lC3CQCIqlvQWe0hHLFRDYleDYFE5Llu4pqCsb+BUgG3QgLHOUJxF2zkMfy8FJwwQxWpwtCZVwG31QaBVAxZUjQEUjHsVY18ZCeKioBQISMteSAWQT7IcknIUhCrhbO6GSIiinMppeDEQrjLLmyABC4OWpcAWplnB9sRLkJphxVysRSdLifkIv8\/42CUcqdaqjEjwb93mT\/0SUrdl526JkjyO3\/O1sImTL7xcZwp9UTXUVFqv8TT0cFOgen1Or\/E0zPr0R1RUWq\/jxdXncUojKWuHEDvXh7W9NFgpy\/3BGv66NKlS\/n\/HjFiBNLS0hAfH48tW7aQ4697NvL3pbmfQr8hHoFAALfbjfb2drS3t2PkyJFBzRrvyyweAAhTSdFc5l8dZjabUVLiP71lMhl7EY8XBoMROTk5+MPWz\/AHACKhELePn4FFg9OQ4JAhPDw8gPt0cMPWgnGWlpwf5NZFNLMKw+WQmjVk\/chZ2wyJPhIdxwrglnlGG4hFInSW1YHrJnQIpmdGEq0F12mHs5aYhaSQQmKMoiOPYMcn9HA+4OxOXwcFixZikwawdV3oJfL3dkHY7QR7TUjQw11aDyGRppNYtBBabXA3EbWhCDnUGhXC2i9MXq0VO1DX0gyLLAJRAhlcnBsnWqoCkk62tQZDlXqo+pBqY41J8AehLDgptcvqgCIqOBWXUC5CY249xt\/wGIq6SZ\/1ej3OnesdiVRWslNqrCZNKuvBig7qmqogt0iY7gReBEq1Wa1Wvsenrwhm+qgXZrMZ8fHx5CRRk8nUK7qpra3tFQVdDPoN8djtdpw4cQKdnZ2wWCxBkQ4AdPSxxiMJZ\/\/wtVoNk3hYHk4AoFT63sAutxufHtyFTw\/uwoQJ4yFobMe9Y6djtEQHaUWzj4otmDHXvLN0aQO5iVQMjkFXWS2pyJIY1IBAQBqPCuQSSGP1nkZNAMIuJxz5lXAAgEgIWaIJwnA5IBHBdrwwYErMEWAcNqLC4QbtjtAngUCAyEMYJkPXmRK4bXYIIxSQxuogADyken7AnEirglAiIkUikIggH2AOeE3uRD0ERXXkpkI2wARHVRNZG3KFyyCUiWHv1ogsdLlhcIlgkHssW6wKIYo7WhAulsLhdjE947wuCm6JCEpT8IafwvDgyAQARJFB+rnV2yCKCC7iaahuwZTbnkFFo2\/EL2TUiOrq6pkekKyoora2FnK5HJ2dvdcWf+OvvYg0KNBZRBNPz5k8PV0LLvf0US8aGhpQVlZGrrMTJ05ERkaGT51n+\/btmDQp+AiZhX5BPG63G4cPH0ZYWBiio6P7VEzra41HpZcD\/jNtUCjYP0BWwRGg3W4lEgn2nz2Fg2dPAQCitXrcP2k2pusGQOsQQujiyDHXQTlLo7drtD8EY5Ej0ig9YoN8BjG53Ogqq4M8KRqdp4ohNqghMajh7ujy1KW6kWowKTGvcg1EHxMi5JBEBRAIBDuzZ1gcbHnl\/HW6rbYLdjhCoWdchSYCrjYb+zuAJ\/KQ6iLpaxJ4NgyiIloSKx8Si65zdG1IYoqCoNMOroGdBhLIpdCYNYgodAMRgEsiRJXAjobmJlgk4dBIPFGFR57t2RF3aIPvFwEQ1LhpAOBcHKR+ZM\/+4LIGJ0UuOVyKHz\/3z16kAwAdHez7JzY2BkVFxb0e90csXlgsFhQWFvZ6vKdEuTtk\/ntSfWDrkWrrOQTOarUiLCysTxHPww8\/jE8++QTp6en89FHAs1lWKBSwWq1YtWoVFi9eDLPZjOLiYjz77LPQ6XRYtGgRf557770X0dHRePXVVwEAjz32GKZNm4bXXnsNCxYsQHp6Onbs2NErjXcx6BfEIxQKMXr0aISHh6OgoMCvaoSFvjpTC+TsnTeVV3URvTbU9fb0fqpoqMNvv\/g3AGD61CkYIFBi3oBRSGgXgavzTUU5w6WQRNDO0hdm8QQYZ9DDEdsfpHF6OJqs4Ah1m9f+pvN8wd5Z28w7aAsVMkjjDIAIEEql6DjeO\/XRHcEo16BVwm13wFHGFlII5FJIY3SBJdyBBAJuNyAWwXa6DFynHWKtEhKTBu4uh4dUz18nHw1REZpYCKdRBXEw1kUBIjRpvAHOhjZwVvbi6lZIIFQpfFSHIocbZohhDtODA9CqEKCorQGRUgVcnBsigRAuU\/CeYC6rI2gptaPe1mvyJwstnTYE2uMX7SvC2Fsew4jRo\/0ep6aHajQav8RDkYhGEwU\/vEO6VLuDGI\/QM9Xmb+z1pZ4+KhKJkJ2djY8++gjNzc0wm824\/vrr8dlnn\/k4JPScPjpp0iSsXbsWzz\/\/PF544QUMHDgQn332GcaPD95QloV+QTyAx8LC7Xb3eRhcXyOedmcz81hXF\/tc1E1K7U6oprPm1jZ8cOIAPtj3JQDg+mFjMH\/QGIySaKEQiCDrcoOroZorwyBWK8lZPBwA2dDYgP1AiqGxsJ2rJA1TJWYNOIeLueC6bV3oKqn2pA5zCyGNN0KsUsBR3wpHD+uZoJRrA8wetwZCTSeIDIM4XIEuInUYtGihRzTkbGiD83xTrlegIAyXw9nY5pPu6n0iKZxKGcQVzfT7BaGUkyVFw15K2\/uItEoIAbiJe0UgFkEfa4LqLAeIAYdUiFJ7KxSm4Ae6ORo6g06JdTV1Bk08kUSmAQDytuchbcETsNnZm8aKigpmSk0u9\/8ZGxrYTiCsBtOqqirm+3S4moAAFNoz1dbTENlb4+kLAmWIFAoFvvrqq4Dn6Tl9FABuu+023HbbbX26nmDQb4jHi74Og+trxNNgZRfdqTkdDQ3sHVV9PfsY1XncU4Wz+\/Qx7D59DAAwdex1mBU7DFMS4xBZ3Q6uR41EGqOH29ZJyq4F4TI4IqQQUK7ROG+8GcADLRjDUJFGCaHiwkRRe0kNvFct1qogMUXB3eWAQCYNggTiYTtbTjaYcnolXB1d4Ag1XdBy6QDfAWd3gnO70ZlXBrfN7hEoaJVwtdlgL6nlCVSgDoMDHMS17KgRQgEUQ2L7TIT+ILFo4O6ww93MTsFxEhEEhkh0ne0msLC7kYgI2KODyA+dh8saeLyzF3aqptcDLAscADiZno3xS56G4\/ya4E+FBngW3+hoC0pKev+d3W7\/91BHRwfTpbp7FNLzfcxmM8rKev+m6toqIUIS87MA\/lVt3dP4P4SRCEA\/Ip6LHQbXV+eC8jp2SoqlTxeJRKiu9r\/ASyQSpgpGJpMxj4lEInIuyLG809if+S0AIEwmx72TZ+Lm+BGIaRVArlejs6iaNrk0qAGhAFw1W3YNqUetFtB4M5haTawertYOOBju2s6GVrg67ZAao9BVUAF5coxnCmtFPdwtvqnKoImwoh4CYoETqMMhDpPTcmkvCQR4P\/mwOHR2c1rwcVCIUHjmDHEudFY3QtJM1KtkEsjjDJekb0iaYISzroWs2QkiFBAq5XBX+N\/dK2OCr\/G02ToDpsS8kImC7w3yZ4EDAIc\/OYop9z7rs6Nn\/Q4BQKfT+SWetjZ2tsJgMDDGI7DXIFYtuLyuCPGBiIfhXODFD2H6KNCPiMeLvkY8HdbgIx6BACiqzPN7jLXzATyyQn+2G4AnF8xytLVYzH5zy55jFr+7Jn\/X0tHVib\/v+gJ\/xxcQi8WYlZKGJcMnYDiiIKpo7pWukg80w17TzM+48QdhZBhEyjB0kcXxbsabBOTJMegqpq2ExDoVBCIRL\/Pmi\/ICAaRxeohU4XC0WCGJCAuCCOM9MmgiEnDrlOBsXeAqiRSptzb0HUnAbbXB3mqFs74VEoeLV\/05G9rgqLpAxMIIBcQaJTl0L5j3AwB5UjS6SmpIGbtIo4RQIoaD6PnSxge\/u5YG6TQNBC+ldjR0+hUsfPvpcUy+59e9Hq+rq0N4eLjf1DcrpVZTwyYrlcq\/lxyVqWARQ3HlWSQoZzPtqwD\/DaTd6yo\/hFk8QD8xCe2Ovqfago94FJFidNn9E5XJxNamazTsuSaUfXlPy4ru0GrZx3Q69jRDi8WCrccO4cf\/Xo3r\/v1bLMvbiB2aDrQnaiCQSXi3a4p0JNE6QCiAo5wu2AfbONl5toL2r4s3wt3lgKPGzwLIcbCX1qGruAYikQj26kYohsdDlhQN+Fno+NpQgDlC4vYuiNoJIUlkGCQ6FV0bCpJ4Ea+Hq7oZwi4n4ObQVVQN26liOKoaINaqoBgeD\/nQWIgiw+jakEgIeZDKvM5AvVNmz\/3l9zs\/D5dMDE108FJqhSr454qigpxQ2tj797t59Q7c9cJfma+Jjo72+zgrpVZXV8eMUlgu1VVV1Uwlq1zuX2DhcNoRHkVHeoEaSDs6On4QxNPvIp6+ptr6UuOREka5ajW7T4fS7rMaygBank3lcaljWq2Wt1IHgLzKMvxyw\/sAgGHJybjeMQST1bEYaJdBbO298MoHx6CzuJqcXirSeobSkTtzkRCK5MB1imCUa2KDGgKAFy3YvEPtxEK4o6MQHqmEo7YZUn1kcLWhvADRUFQYnA4n3ATxQiqGPMEUUCnHJRqA4loIGJtcZ0MrBHIp3FYb3LYuyJOiIZBKYK9q8PHGE8glkEbrebUg8\/MFk4KL08PZaCU3H4IwGdwD9BBJgt97ButK7Xa4IdUGKaW2+d6Hn\/7uC9zz4p8hFoshFAr9\/vZYv9XWVnadKyYmGvn553o9bid8Fc1mk9\/UHSXDDosSw9rA3vAEaiBtb2+\/JA2a\/R39hni6TyENNuKx2+1obiCKuD3A+RmH4IVUyv5RUbMxLtY+grLlYBU2ASA8nH0tUoUcf92Vjr+ev675qZMwb8BoDHYoENbcBVe8Frb8cuYiCXiku67mdjga2Go8QZgMUpOGVNMBwU0LlSYY4axv9btICpxuiCqa0NVig9SghqvVBsWIBLha2mEv650KCaY2JE00wVnbDDcRDQki5JBqI8n+KgBwJeogKiIiGPQ2DfVxUIjWQqxRwtXR6VELEs7gQJAquEEW2MvrLnjY+YFQFQaxMgzNruAFAH2RUnfUWhERrGih273xz1\/9Fw+94XGFdzqdiI2N9ZuOZkUplIcYy3GalV4HPJs8f8TT1MSOIuWR9HrQ1tLhM2+HZZlzraPfEI8XXjl1IE+gtrY2ZGVlwd6Hme52AaH84dg7ZKq\/h5rrQe2MqKiOIl7qO3E6L1wLx3FIz\/wa6Zme8d5zpk3HhGozxqnN0Le6IHT1JoNg7G\/E+kiPKICw5Al2WmhQ0RBfGzq\/qFR4ohRRZDik0VpwTjc6y+ugSDBekvdzKWXgBABHqAUhFMAZHQVxEe0MHqgx1FHRAK7LDoFQBFdHF+RD4wCOQ1cPW6JgVXDBNKKKdUpAKIK9oh6C5MAd7vy19kFKLWgLPlUulInAuTisfvxjPP3Xj32O6fU6v8RjZ8iqGxoamMafrLQZRVZyuf+orbKSfe\/bBW2gKhi29i4cPnwYcrkcWq0WDofD5zf9QxEX9MsaD0AvvlVVVTh06BDMZgvsnX2oBznYuv32dnYTaGsre\/ff1sYms8ZG9vtRIT7VM0SRWXg4+4atbGnEi1+txc0b38aPvv0QH4vLUGwQw6nw7D3cAwzozCsjSUeaYIS70w4HoZQThMshizcGVbDvzCsnSUAapwdnd\/qtU7ha2mE7XYquslrIo3Xg7E4ohid4FtaLfb8YHaRCMcRU+lYmgdOghJjh99fr\/Sg3AosWnJODo7b5vINCKTpzy8DZ7JAlmqAYkQBxtA7ygZbA3+fweHSepd9PbNaAc3F8w6\/EHLyirS9Saq6rD8QTIcFbj\/+nF+kAgELhXyxA\/a5YQ9xYG7329naiFus\/Uu\/q6uKnH\/dEs42OgN0OYOrUqRg0aBDcbjecTieOHz+Ojz\/+GH\/4wx\/gcDj6FPEEmj7qcDjwy1\/+EikpKQgPD4fFYsG9995LetgBwJo1a3pNLBUIBOT60xf0m4ine6oN8Nwo3WWGgGcXf\/bsWZSVlWHUqFEIkyn7ZK\/TYGXvbqibmZJwUq+rqmK\/HyWlbvRjCRLMMdZOEAAE3aZXNrS1YPWOz7EaHkPTH9+8EJNa3RisUkDR4j8dqRgah85zFYGjE7GIjoaEAiiGBC6gywfHoKuYHrjmdZfuWYuSmDUQa1VwWW2wl9Z66j5BpajqwXWyv0NXmARuuQSSasLsFEHWYRJNcNY0+e+LcrvRVVQNQbgcEl0knI1tUAxPgLvL7uOg0Kf381P3ieiDOWiwg9oAgDSl6wZnpxMvPPUv7M73n9Jsamr2+3h5Obv2yEqpUZtHk8no93dMOZIYDHq\/yrfq5jKowR621tXhgFgshl6vh06nQ2VlJUaOHInq6mp89dVXOH78OPLy8nD8+HHMmTMH06dPJ2vF3umj48aNg9PpxHPPPYdZs2bh9OnTHnPijg5kZWXhhRdewKhRo9DU1ISVK1di\/vz5OHr0KPO8gKepv+cIbZZysK\/oN8TjhVAohFAo7BXxdDcRnTBhAiIiIlBb1tync9c0+7\/BBQIBM3xWKpXMnK5Op2VaaBgMemYPj1arYXZNy2QyModMERZl58FaDVxuN840VeNfX28AAKQNGII7UiZhlESDqEY7BG4OGGQkZ9oA58dBN7XBSYyDFoTJIDUHURsKYuCaJFoLd0eX31EMjqpGj1OCVAzF0DjA5fakoUpr\/c4UCkaQINQq4bTbIWkk7JyCTYklx3hSmtSQO3UEhAopP2PIeb7mJpBJIBtsgkAiQVdVA2QWbWBSHWiGvaKhF6mq++RKHXwtU6QKvDi5bE6UHnVj1k8egurQYbjdbpw8me37HMbfo6urC2azye\/Grudm1QsqPcZSplK\/J9ZriiryMAbjmK+zdznhcrohEl8QTiiVStx555244447kJqaimXLlqG2thY\/+9nPcMMNN+CDDz5gni\/Q9NHIyEhkZGT4POcvf\/kLrrvuOpSWliIuLo55boFA0KeJpX1BvyMeoLfAoLW1FceOHYNSqcTEiRP5m6svdjkSmQg1df6JR6fTMXX7JpOR2S1tMBiYN6deb2ASj9FoZBKPyWT0W9D0vB+bzDxNruwIi3JXsHUbSna0MBdHCz0uqia1BvfdeAsmtkpgkYkgYqRQgqkNiTRKCGUSupkzyBEDsoFmOCrpKZ\/CCAUk2h5TXMUiyAaYIAyTw3HeYy4YQYLQEgVHoxViomDvFgvh0kWQg\/eA8z1IZ0ppUjWqwTndvWyGAIDrcngaWUVCyAfHwNnU5hFctHagq7S21\/ZCnny+rtUjBccB0McHn2oThfVhWJyKXlacVgfKTophHjsBJo7DhAnj8eijj6Cysgo7d+7Cjh07sWfPXnKTxRL8sKL+lpYWZq8em6wqmWInlgCooaUWihgpbG2Esq3DjnCVnD9vT3HBrFmzMGXKFHAc1yffSoA9fbTncwQCATM69MJqtSI+Ph4ulwujR4\/Gyy+\/jDFjxvTpeljoNzWe7gW27pLqyspKHD58GDExMRgzZoxvl28fRiKoDeHMtBxVzKNk1kolW7kTFsYOj1Uq9uvUanbPEDWN0Gw2MYUOgUiJlS6sbm7EnvI8LPzvW5i84x282ZmDHD3QqbxQqBUmmQPXhmL1gMv\/QnrhSWLIk4LxU4tHV3ENSTpinQqicHlvOyGnC12Fnh4bZ10LwkYPBDhAlmgCGLb6gjgdnHUtEFEqMWUY5GZt4BRcyvkeJIJ0pHF6uDq6+AjH\/5PEkA8wo\/NMKRwVDbCdKvb0BykkkA2JhXxILARhMk\/dJ99\/3adTJYdMEXxDqMQQHEm5u1yQatgRj6PFjqw9bTjd2IZjx46hvLwcDocDcrkcCQnxWL78Xnz00QfIzz+DNWv+Dw8\/\/BCSknq7AWi1\/nvdKP811ggAh8M\/SbjdbmbNiEprR+rpiM\/r1+Ylnu7ipe6WOQKBoE\/1Htb00e7o7OzEr371Kyxbtoxch4YMGYI1a9Zg06ZN+PTTTyGXyzF58mRyfk9f0G8jHqfTidzcXJSXl2PUqFF+F92+TB9VqNk\/MqPRgKIi\/1Y6VE5TKmXvAm02ooGTIQcN9H6snRngidpYuW+LxYyyMnaakdpZendQDpcTnxzahU8O7QIATElOwS2jJ+C6xkZEgp3Wlw+ORlcJbXIpVIVBHBkeUL4clFw6Tg9XczucRE7f06Nj9HHPFobLIY3VewqoZbWeuTyJBrhL6sjhbWKdCgKh0K+82wsOgDNWAwSyAWKkxLrDW\/fx12MlsDnQdX5onSIlAW5rJxTD4uFs6G3Sajf2wZXa5oI4IrilwlFngyzG\/7ntDZ2oLonCqJumoKOjA\/X19aivr0d+fj7kcjlf94iKioJEIsFNN92A66+fjt\/+dhWKioqxY8cO7NixEwcOfAOx2P\/vubycfQ9FRvpfaFm1JMBDcP5+Oy0t7PtLGkBJ7m0i9UqpvZtujuO+k6qNNX3UC4fDgTvuuANutxvvvvsuea4JEyZgwoQJ\/P9PnjwZqamp+Mtf\/oI\/\/\/nPF3V93dEviUcgEODs2bMAPMOIWKzfF9cCoYIYjkYQASVe6DnyoDsoAumLM0N3UI2s1PvpdDom8ZhMJpJ4WMcO5GWjPUyEXx87jjidEfeMux4TlNEwNrsgsns+nzg5Gp35lXRayawB53CSC3fQ8uykaE8dhyI5ZRjEURGedFU3uNs7L0waFQrgSjbDZeuEQqeCq9Z\/r4ckWge31QYnsQhBLIJ8gMnHoNPvtQchhRZFhUOokPN1HxYUI3oTtFingsToMWntKq6BcCDbHaMnHLUdEMUT3dfd4Gy1w1+3T1etDXU1RhiHDQHgSZXFxcUhLi4OTqcTjY2NqK+vR05ODpxOJzQaDXQ6HXQ6HaRSKZKTB2PQoIH46U8fRHt7Ow4ePIQhQ4YgI2Onj+TabrdDr\/df+Ge1RVD1H1ZKj8oguMX0hth2voes50iEzs5OuFwu0g2FhUDTRx0OB26\/\/XYUFRVh165dZLTjD0KhEOPGjbv2Ih4v67e2tvKsf91115G7\/A5r8MTTybEbTamemu71j56wWtnnpCIeVs0o0OsodQvVkEo1wOr1Oia5REWpyd2g1127tL4Gv\/9yLQBALpXhzutmYFxcEkZX1EFGkI4s0eSRElMml8G6SwdhZCrWRwICAW1bIwBcsRqI8qogAuA6\/zqJMcoz9qHYM+yuZ2Oo31OFySA1RQUkHWe81uNdR2xyxAY14Hb7FVNceEOBx9HaT7rSWd\/KCz\/kg2PQaQze\/qZPUmo\/6rfOynY0NMdCnzTI72vEYjEMBgMMBgM4joPVakV9fT2qqqqQm5uL8PBwnoQiIyOhVqsxe\/YszJx5E1wuF\/Ly8pCRsRM7duzEoUOHYTIZ\/RIPKw3X3t4OrVbbyy2eQmtrK1QqJVpbe\/+Wrc5GAOyoxZtq6zkEzlvP6UvEE8z0US\/p5OfnY\/fu3cw0ZaD3OX78OFJSUvr8Wn\/oN8QDeOo5OTk5UCgUMJvNJOkAfUu1Ufp6SmpJ3YzU8ClqbjtlQNjczFa0UddJuR1QTafUTW4ymZjEIxKJ\/O4UO+1d+ODAVzgyohynTuXghuGpuDU5DUM5JSKb7bxrgnRwNOyF1QF2+B65NClIQPByYldzO1ytRLFWIoJTr+w17dVZ1wJnnSfqESqkUKQkwt3eBTDSPcB5E9YIxYXGVwZkw+OAHJpUJTE6uFs76GsXCSEfFB3Q4keeHIOugirIbwlerdQnKXWPWllHqRUtnQOgG5AQ1MsFAgGUSiWUSiUSExPhcDjQ0NCA+vp6nDhxAhzHQavVQq\/XQ6vVQiaTISUlBcOGDcOjjz6ClpZWHDhwANu2fYUdO3b6GPiyvNwAj3DH32+d2niaTCa\/xNPQVgkRBjNf50219Yx4rFYrBAIBucHsiUDTR51OJ2677TZkZWVh8+bNcLlc\/HM0Gg3fWNtz+uhLL72ECRMmICkpCa2trfjzn\/+M48eP469\/ZXvo9QX9hngcDgcKCgowevRoVFVVkWklL\/ri01ZU4d+VGqAJhNWLI5VKUVvrn8zkcjmTXGQyGdPNWiAQkD1DlMsu1XRKRVGUK4NKxRZWUHUjAPx3sysnC7tysgAAAwwW3DtuBgaqjRhSVA0h1VxJyKV5nFd2XYphaoJwGRxhEogrm+lzDbSg\/chZT3QiFEAab4BIGQZnUxs\/EsITnXDMERGeNzwv4w5AFG5TJBz1LQAhbvD4vOnQmRdg7tKw867ebjciY4NXtPVJSh3WTfxT2AqrYCg0cf5NPYOBRCKByWSCyWQCx3FoaWlBfX09SkpKcOrUKURGRvLRkFKphE6nxbx5czF37i1wOp04eTIbGRk7kJGxA3l5Z5nvwwo2qT69yEj\/v4+yukIkUMTT7lvj8cKb6emLDVeg6aPl5eXYtGkTAGB0j+mtu3fv5l\/Xc\/poc3MzfvrTn6K6uhqRkZEYM2YM9u3bh+uuuy7oa6PQb4hHIpFg6tSpADyLVjB1kL7IqSsb\/f\/AKZIwmYxMIjCbzSgp8X9O1rx2zzH2qASz2czsKFYqI8jmUaoTmeoLoqauSiS0mIFFPGFhYX4jvsLaSqza8gmGDx+GkoIi3DX+BlxvHIT4dhGk7RcWVukAE5xVTUGksTSBTTW7LbbMc0VFwOF2QVzHTlcCfiIrN+cZAnceYq0S0gQTuC6H5z1ZEAkhTwocnUgGmuEoqQGcxLVHyCHRqIKLCrtNfNUnBK+WkkQFT1Li8yMO2s62oFM+CmpCidlXeCXAarUagwYNQmdnJx8NFRcXQyQS8SSk1Wohl8sxblwaUlPH4Omnn0RdXR127dqDjIwd2Llzl08GgeVAX1FRDoFA4LfWy7LhKa7Mx4DIOXD7saUCLoxG8DcSITw8vE\/EE6iBPiEhIagm+57TR99++228\/fbbQV9HX9FviAcA\/wcO1qE6WOKRh0vQVOk\/qjGbTUwi0On0TOKh5NKsee2eY\/7nvwMeBQ2LQEwmM9ra\/Bf2WMVUL6jiKUVmDgf7b0DVjSwWC86d6+0E7EV1dTWsnTa8t3cL3jv\/2JyR12FBUipMMiViims8jasM8Ck4yiEBwaXghEY1HG0dEHewxSfBNoaK1BGw5ZSA67RDIJdANsAMgcTji+Zq9kSkArmnZtVJERPOTx\/NLScJk1PKIVTI6JoVeqsBu8IkCI8Mvi9HGB5c14WrwwGJWoaWnGY4NGlQRbF7SS4F5HI5oqOjER0dDbfbjebmZtTX16OgoADZ2dmIioriiSgsLAzR0dFYtuwO3H77bThx4iTOnj2LvLyzyMjYwZRUO50uZsM3a3PsdDmgNoSjscr\/Rqa7qq17OaG7eei1jn5JPCKRiNTJexFsqi3KFA4wAoKoKDYRKJXs+gdVf6IUZlT+ljIqjYpSM48ZjQYm8RiNRjJFV1XFjpRaW9nOvRQiIti7aZVK5fdH\/OXJb\/HlyW+RkjICjsY23D1mGtIURmibHBB22\/GLLRpwNjudgguSKISxWjhrmnkVnl\/IJJDF6gOLG4bGwpZfyU8o5TodF+ThAgGksXqItUpwbg62k+wpuECQhKlVwu10wc1Q3Pmcq4fCzW7og5T6PJkEA0ddJ1qb2wDzRCiJNO3lgFAohEajgUajweDBg33k2ufOnYNMJoNOp4NGo0F5eTkEAuD225dAKBTihReeQ3l5BXbu3IWMjB3Yt2+fj3ejxRLt956lMgnhGhEaGfui7qm27xrxfF\/Rr4jHi2BHI3QE2UBKzeGhIheKXFg9Ad8F1GwfCpT80mg0MIknUKRE1ZuouhEVrZrNJlIkUVNTg9raOjxf4TGNjAyLwD0TbsAM\/QBoIUNEfQuEl4AokKCHq6zer0u3Fx7pdTg9LA6901i9wHFw2zrhqHTAUdsMUVQEpGYtOKcTncU1PrORgulVkkTr4G7rACixgQCQJPkf5OcyBJ9mc9R3QhQXXHTUUm2HbNA0KPqBrX93ubbL5UJjYyPq6uqQnZ0Nt9sNrVaLuro66HQ6KBQKDBiQiPj45Vi+\/F50dnbi4MFDyMjYiYyMHcyNFCUgEsjZv4HuqTZ\/NZ4fAvol8QSbagu2j4eaw0OBSjV1dbEjMmpRptxdRSL2n+Pi5\/ewFwGj0b\/sFPBEJtSOjvKxotIFlE1HeHh4rx9zS4cV7+zahHcApKaOQZwgDHMTRyHZGYawZt+\/q7cRNRBRcAMMQGFve5nu4BtDS4n+IgQXnUgsGrg77HA2NwMAXE1WftidQCqGbJAFkEkAiQi244wc7XlIE4yeeUL+zEX5ixfCbVLDcdb\/9yCODp4YXB3B9ZzVHa6HIvkGyC6RieSlhEgkgkajQWlpKSIiIpCcnIzm5mZUV1cjLy+vl1zb07x6I2644Xr8\/ve\/RUFBIXbu3ImMjJ34+utv+LpoU1MTZDKp37XA6mgA4P+7CCQu+CGgXxFPX4fBBVvj6XA1M49RxXWqT4fqb6GUMJSlR3Mz+5ydnezrpAiSIiUqlUhFJkKhkGw6pfylWAVZwCO88Dcl0ova2jpklZfj8\/MzhkYnDMKdI6dgjEwHpUMAkdsNN9WICsCVoIOokK6JSGJ0cLcFaAwNMp0nTTDCWdfC7FXi7E50ltRAnmhGZ06JZzhcVASstY0Q1rb5kKMsKRr2khrSnshTQ9KQMm6FpQ8RCRc47VPzTT3CRtxIDlO8mnC5XDh+\/DjcbjfGjh0LsVgMtVqNhIQEply7e\/PqkCHJGDw4CT\/72U9htVqxb98B7NixAxkZOyEWi\/2KjKqbyyBFb6sfwLfG0z3L0d7eHqrxXE0ELy4ILtXWaGUvkhSBsOTSAN25fLHjEKqrL24xp2oxFLFSpER51FksZtKanvreKJKMimL71InF4l7f3fHiczhe7CGqm6ZNw0ipDlONCbC0cBB39ngfkRBOcyTExfTwNk9jaAPcNqLGeN5yJ1A6Tz44Gl3FAYhCIfWo887XgxwVDXBUNEAETwQnjdZ5BAYikUcuTTloRyggjooI2Dukiu+D\/1eA32Hl\/npEjpkJsTh4scKVhHfeDYBeXo9Ab7l2a2sr6uvrUVZWhpycHKhUKp6EVCoVoqKiMG\/eLbjlljlwuVw4ffoMduzwpOS+\/fYIv2FudzSCtcVqbbLC5XKFIp7+hksd8VQ0sIu5LALxyKz9L1IaTRRTDeapqfhfeKljLOdcwPPjoBZzigSo0b6UgEMiYUcmlC8cS0rtBUWSVI0rJiYaxcVs+XFpdTV2nN2Ht+CZMXRb2jTMiR+BQXY5ZB0OONVhkJazU4dAcLY1ggg5JNrIXpY7PRGMjFuoCoNYFYauIv\/3oLu1A52tpZ6hcmfLIUswQqiQwVHd2Gv8BD9GIUDEpxiRAG0feni69+X0RPmeBmjGzSJTxFcTTqcTx44dg0AgwJgxY8iNFuDJuERGRiIyMhIDBw5EV1cXGhoaUFdXx\/e5eElIo9FAJpNh9OhRSEkZgZUrH0VzczN27dqNHTt2IvPwCbC2UQ11zdi\/fz9\/PTabDQqFAlar9QdDPP3GnRroW6qtvrYRLqK\/ofs5Cyv8N45FRamZtRO1Ws3UvxuNRub76fXsvgXKqsJsZneSWyxmZkOtSqUiLXio6Ku5mU0ClA8dVTeyWCzMY4Guh4pyA9l8dJehu9xufPbtHiz\/3zuYkv5H\/MaahX0d5WjSycAxXKiDmRgqioqAWBkWnFfa6RLavkenhEguhb2cjsC8NSTO7kRXQZXHWbu+FRJTFBQjEiBNMEJsVEMgFtLu3+fP1Xq2DFGG4FNi3r6cnijb3QTtdbP7PekIhcKgSMcfZDIZLBYLRo0ahenTpyMlJQUSiQQFBQXYu3cvsrKyUFZWBrvdDqlUCr1ej9tuW4y\/\/e2v+ObbPfjdhrtx22OTMXCUGd2FagpZOMaNGweRSASr1Yo1a9ZgxIgROHnyJBobG4NS9AKBp48Cnj6fVatWwWKxQKFQYMaMGcjJyQl47vXr12PYsGGQyWQYNmwYNm7c2KfvLhD65V0TKNVWV1eHb\/Z+G9S5VDoFbOf8d\/UbjWxLGJ1Oy4yGKIM9qm5CNXKxuqABQKPRMmf0ULUY1vx5L6h0YVsbu75B\/TAo2XcgwQKldqNk6IF8tkpbG\/DLg\/sBABaNDveOuwETI2NhbnFB2OUCBhgCCwTMGnBdjqAW98Dn0sLd2QVnffNFn8tR3QRHdRMk0VoIhEKINCqIdZHsYXfDPVNYOy3BqzFdHc5eUmrOzaF0bwsM42eSrhdXEw6HA8eOHYNYLMaoUaMuinR6oqdc22az8XLtgoICSKVSn2hILBZj2LgEJKfGYsljU9BcZ8WJfUU4tqcQHW1dkMvlkEgkiI+PR3JyMsLDw7FmzRp8+eWX0Ol0mDlzJhYtWoS7776beU2Bpo8CwOuvv4633noLa9asweDBg\/G73\/0OM2fORF5eHlMNe\/DgQSxduhQvv\/wyFi1ahI0bN+L222\/HgQMHMH78+O\/8XQL9lHi8EQ\/HcT6ado7jUFRUhIKCAsRYEgAcDngupVYKMOrVajU1F0fNPEYVyGkJNptcqMU8PJy96FK1GLPZzCSeQAagrJQgQIsgqHSZxWImyYV0\/CWiB7PZRBJP9++gsrEef\/jqv55rFUvwk5sXYbIVGKCUQsYY3iWNN8DZ0OYzNroXghUbxBvgrG8ljVEhFECe3Ldz8YQoEvLD7py1LXDUN3vOdd4lwW0KPpXjqLdBFHdhceJcbpzeVos2TSyclZXQ6XSXbBTypYLD4UBWVhYkEsklIx1\/UCgUiI2NRWxsLC\/XbmhoQG5uLux2u4+7tkKhgCFaihtuj8SM20bC7XbD4XDAbreD4zioVCrcfffd+Oqrr7B48WLMmjULW7duxYkTJ0jiCTR9lOM4rF69Gs899xxuvfVWAMCHH34Io9GITz75BD\/72c\/8nnf16tWYOXMmfv3rXwMAfv3rX2Pv3r1YvXo1Pv3000vy\/fVL4vEu3t07e10uF7Kzs9Hc3Izx48ejKj+45kZxOGHJT9QxKFBpQNYwNg+oEQvU69jKIuozsGxAAA8JsognPDycnFhKSclZ44o976lmHmM1lnpBedGpVOw+JrFYzHRu6HI6cKK+DH\/7xkNE04eOwuIh12GEUA1VY6fH0DROB0dVIykQgFQMeXxgsUEwnnFe4UIgKyDZIAvsZXW9z+VyXxAXiEUIG+6xTJENMHnGIZj6IKVuu3But8ONkq9tMF53PcQNDT7O0d45OpGRkVe1+dHhcCAzMxMymQyjRo26YhGZSCSCXq+HXq9HcnIy2tvbUV9fj5qaGuTl5SEsLIwnIbVaDbfbjZycHIjFYqhUKn49KSgoQFpaGlJTU5Gamtrn6+g5fbSoqAjV1dWYNWsW\/xyZTIbp06fjm2++YRLPwYMH8fjjj\/s8Nnv2bKxevbrP18RCvyKe7jUe4ALx2Gw2ZGVlQSwWY+LEiZDJZDjXRktivXCK2AsWtYum+m2onhoqtdXSwj5GkQvlkEst9FT0FRUVxSzWm81mpuWNx8j04lJ01OA8s5mOhqgITChk72qjoy3MNCUAWK0X7o+9Z05g75kTAIB4vQl3T5mJCZ1SmDiOWQwVhMshZQxm646ezgZ+zxUmg9QYFVC44HWYJkUQcgmkFh06si8Ia4RhMigGBO8o4B1x4O5yoeSwE+bxM3j3aK8U2Ztu8hbxdTod7xwdyF3+UsJutyMrKwtyuRwjR468amlAgUCAiIgIRERE8N+Rd9ZQdnY2XC4XJBIJ3G43UlNTERERAbfbjY8\/\/hjnzp0LOI6aBX\/TR72\/0541aaPRyPSZ9L7O32uo331f0a+IxwuhUAiBQACn04n29nYcO3YMJpMJQ4cO5W+oYBVtVjt7F00pvqg0FBUNUPY0tbXsY5RDdlMT+zNQJEjVySiBgFxO99pUVLAbNGkpNXunT6UM5XI5+b1SmwStVkcSD+t6S+qqsbeuEL8\/8DHCZHLcNf4G3GBKQkKHGFLr+YhPpYAozM+I7R4I6GyA8wo3JVvhxp8rGNPTcDkkOlUvLzt3RxciDH2I8kUCuDqcKD8ugOW6qb0OSyQSmM1mmM0e8YvXObqnV5per7+s\/Sl2ux2ZmZkICwtDSkpKv6o9SSQSGI1GGI1GuN1unDhxAi0tLZDL5fj973+P7du3Y9iwYfjyyy+xadMmzJ49+6Leh5o+2jMK7VnC8IeLeU1f0C+JB\/BEPeXl5SgtLcWQIUMQGxvrczzYWTy1rezdI7WYsXpqxGIxYRwaxuzoj4iIYKaSpFIpeS2UySdleUNFEBQpUY2AOp2OSTyBpNQU0VN1s+joaBQUFDCPUw27lChBoVCQ37s3Iu7o6sQ\/923FP88\/PjtlHOYmj0WyWAFNdRPpgBCM2ECkVUEoEsJeEZzCjYIwMgyicIWPa3Z3aPrQwwORAOXZUphS0wI+VSgUIioqClFRUUhKSuo12lqhUPAkpFarLxk59GfS6Q6O45Cbm4v29nZMmDABcrkc8fHxcLlc+OKLLyASiXDPPfdgzpw5WLZsWZ8IiDV91GTyKGWrq6thNpv5x2tra0llrslk6hXdBHpNX9Gv\/kpeRnW73eA4DmVlZUhLS+tFOgDQHmTzaFmt\/wVLIBAwoxqtVuNjEtgd3t2dP+h0OuZ1eG8Cf7BYLKR0m7Wj98z2ubj5PRQpyeVs4qHSJ99FSk1FQxqNmnlMIBCQfUwAOzKIjo4mlYasaPKr7CN4\/9xBzFr7Ou4+m44tEc2o1cvgFvv+nLxKMgoSs8YzWbS2mXyeIiVIApNJmQaqLpEQWktwYgBHqx0NHSaYRgUmHX\/weqWlpqZixowZSEpKgtPpRHZ2Nvbu3YuTJ0+isrIyaOmwP3R1deHo0aMIDw\/\/XpBOY2Mj0tLSeEHGkSNHsGbNGvz5z39Gc3Mz1q9fD7PZHJTc2XveRx55BBs2bMCuXbt6TR9NTEyEyWRCRkYG\/5jdbsfevXsxadIk5nknTpzo8xoA2L59O\/mavqLfRTxdXV04duwYOI7DsGHDmN3sHUH4tIklQpRU+a9VULNvjEYjMzrR6bQ+M967Q6Fg\/6gpU1GNRoPi4mK\/xwwGPZNAoqMtKCz03xyrVCrJYj1lAEqNSqCEFZSUWq2OJNVwLYQ9jUzG\/l41Gk0ARRs7FUmJLwBaZedt9MutLMVvKi8Ymt49\/gbM0A+ERiIHAszbkcYa4GwKoJbD+bHegYxDjWq4HS44CQLr1IZByOhj6g57QydqyjQwna8VfFf0HG3tdQcoLS3F6dOnoVKpeIFCsIPQurq6kJmZCaVSieHDh\/dr0jl79izq6+t9SGfr1q24\/\/77sWbNGixcuBAAMHXqVH4mWTAINH1UIBBg5cqVeOWVV5CUlISkpCS88sorCAsLw7Jly\/jz9Jw++thjj2HatGl47bXXsGDBAqSnp2PHjh1+03gXi35FPDabDd988w20Wm2vsbA9EUyNR20Ih7ueFZ2wZ98olWySoHLVVJMjtaOn0kEREWzFloeU\/ROPyWRiCh1UKhWZnqJIifqbUD9+s9lMNqxSVkKUgEKv9z+y2AtKlECl9\/wZlnaHv0ippcOKv+7ehE81UWhqasbc0RMwb8BoJDvDENHiu7OXDTTDXtEArpOeA+SRQhezn4MgR2MDwIjAk0C7amyorzPBMCQ54HMvBj3dATo7O\/mUXGFhYa9+GH\/3W2dnJzIzMxEZGYnhw4f32zECHMchPz8fNTU1SEtL43\/nO3bswPLly\/HPf\/4TS5YsuejzB5o+CgDPPPMMbDYbVqxYgaamJowfPx7bt2\/36eHpOX100qRJWLt2LZ5\/\/nm88MILGDhwID777LNL1sMD9DPiUSgUGDZsGAwGA44ePUrWIYKZxRMWxf541IJOqa+oxZX6AVALNvW7EYvZ7yeXswkrKopdrDeZjMxUm1QqJWsxFGFRQgeqhylQNEQp5bRa9rAxT82JTTzU\/RUdbcHZs\/4H7wG0vNtstqCxsQlfHDuIL44dBACkxA3AstFTkSrTI1wkBVdcDQExkgESEeSJpoCy6qDcqs+P2W4T0b5rtop2NLXGQzdoAPm8Swm5XI6YmBjExMTA5XKhqakJ9fX1Pv0w3mhILpfzpKNWqzFs2LB+TToFBQWoqqpCWloav2Hdu3cvli1bhr\/+9a+48847v\/N7BIJAIMCqVauwatUq5nN6Th8FgNtuuw233Xbbd7g6Gv2KeAQCAV\/ACmSbE0zEI1SwowyRiL2gU+9LmW5SRp7UPdLRwU612O0X1xdECQQoyWZMTDQzfScQCEihA0XK1DGLxUJGQ1QERi08gSahUgSrVtNpOIrQ\/PUVZZcW4telnpEHI4cMxQ0xyZhmSER0GyC2+RLCBeNQWlbN7OXpDqEAiuQY2HJKIElLYT6to6QNrY4kaBPjyPe8nOg+utrbD1NXV8f3DIWFhaGrqwtqtRpDhw7tt6QDAIWFhaioqEBaWhqvID1w4ABuv\/12vP3227j33nv79fVfbvQr4gF8p5BSBBBMxNNgvbhiNrVzp2TWlMKsoYGSS7NrKtTiSBEW1aNEpZg0Gg2TeEwmE5kSo8QMVKREWRBFRESQ8nWWCAQIXMOhSFQmY39HcrmcFEpQC4pEIsHpc\/k4mXsGq+ExNF00dgpujk\/BYIcC0i4XBBHSgLJqeXIsugpoQ1OIRZAPMMN2xlOTVMb6V7RZC1rRIRqOqBiz3+NXA937YRITE9Ha2so7EjQ3e0w2vSR1pXuGAqGoqIgXRnlJ5\/Dhw1iyZAleffVVPPDAAz9o0gH6IfF4EcivLZiIp8XG3pVSqi5qoaus9L8LFQgEzHqCUCgkd+30qAT264K1iekJitApCxS9Xse81kBSairio5VyZjLlVV\/Pfk+aYNkO4wBtYRQTE0NGUtSQvJiYaJ9R6y63G+uO7MO6I\/sAALfPvgXX2Y0YrdNC3dgFgbv3FxdMLw9kEshidBfGbwOI8uNK3ZrbAnvEaETq9OxzXWXYbDacOHECRqMRQ4YMAcdxaG5u7tUz5E3JXc2ZNsXFxSgpKcHYsWN5AUpmZiZuvfVWrFq1Cg8\/\/PAPnnSAfkw8gVNtgSMeq5O9sLBSJVSfTkREBDMaMhioEdM6Jin508x7oVKpmLWPQMPYqIZUipSoSIkyQA2U1qJmDVFET6UFKTscINAIbjNJPFTNKVAk1dHBrv9otTof4umJM5Ul+G\/2FgCASa3BvdfdiEnqWFha3BB1ueBO1MN2poTKsnocEPRqdBVc+G7cAkAX57sgt5xqgkM7Dsoodp3saqOjowOZmZm8HY1AIIBAIPAx7PT2DNXV1eHs2bO9LGqulOKtpKQERUVFGDt2LF+8P3HiBObPn49f\/epXWLlyZYh0zqPfEU\/3VBvVkR7M2OuSav87ZYVCztyVms1mplxap9MyiUer1TKJR6VSMYlHr9cxiYdynjabTcxGzkD9PVSaqLuFTE8IBOwfMCWlDhRdUKo1qqYWyA6HSlNS6T0ApDsDZYQqEolIJR3VIwX4\/m2qmxvx+vb\/AQAkIjF+\/KP5mNruMTSVt\/qPyITK8zN+ergpdKoVkEgv\/P0ajzdCYJkEZYDv4Wqio6MDR48ehdFoxODBg5mLtrdnKC4uDk6nk58omp2dDbfbDa1Wy9v4UFHwd0FZWRkKCwuRmprK31s5OTmYN28ennjiCTzzzDMh0umG\/il+h2c3+10iHnm4BDUN\/hcPvZ6dVqBUUgYDu3OX42jJLwtUaouykaGaVaOj2Q2pMpmMrLdQdSpqI0AtxlTzLED3y1ApL+o7AOgaDqUy1Ol0ZJ2Pqg9aLBbyOHVPq1QqZvTncDlxuqUG9\/z3L5i86U08VrUHB6JsaNHKL0ynVsohUEj8OiA4jRei1fqjDRDFTUNYPyad9vZ2HD16FCaTiSSdnhCLxTAajRg+fDimTZuG1NRUhIWFoaSkBPv27cORI0dQVFQEq9UalCosGJSXlyM\/Px9jxozh1Zu5ubmYO3cufv7zn+P5558PkU4P9LuIxwsq1eZ0uGDvOdq4B9SGMICxaaV2u5SHGSWzps5JhfrUYk4p0yIi2NdJ9ffodFrmbj6Qdc\/FNpaqVGwCDTRLhxpIR8vJ6bEPVCRlNpvJ9B8VSen1embE7Hktu7YYHW0J2uboQF42DuRlAwDidEbce90NGBlhRkKDFf4olTvvSr3r03KkzbkZsn42zqA7vKRjsVgwaNCgi160u\/cMDRo0iO8Zqqur43uGvHWhqKioixqhUFFRgbNnz2LMmDF8Wjg\/Px9z587Ffffdh9\/+9rch0vGDfkc83j8SJS4IRtEmj2T\/sakFnSKJYMZx+wO1yFGFUGrnTKW9qIZUk4mdorNYzOR4aVbDLUArAcVi9g\/aZKJn6VCyZauVvUibTGaSeKioj6plAXQaLiyM\/d0D9HdI9ToBbMIrra\/BJ7mH8LvCIsilMtx53QzMtCQjsUPCG5pKLeHY+Pdi7N3QhsmL+i\/pWK1WZGZmIjo6GgMHDryki7a\/nqG6ujqcOXMGdrsdWq2Wrw0FM2eoqqoKeXl5GD16NO+wUlRUhLlz52LJkiX4wx\/+0G8dFa42+h3xeEFFPMEo2jgpO0VDpcXIuhIh3W1tpcYhsBdIavdMRR8UmVEpBIqUNBotk3iMRuNF+8JRBErN0gkctbDPS1kUCQQCkjyoxSJQhEbdW4FqXYEkwdQ1a7UeGXynvQsfHPgKH+ArAMCNw1NxS+JIOA80Y3t6LYZMMqGwsBB6vT5oe5orBS\/pxMTEYMCAAZf12rr3DHEcB6vVivr6elRWViI3NxcRERF8NKRSqXpdS3V1Nc6cOYNRo0bx829KS0tx8803Y+7cuXj77bdDpEOg3xIPFfEUnC0O+Hqbu5l5jFq0qXoD1YtDO12zz0nJpak5PFTvD93Iyl4YKVIyGtmqvUBSakohRqU3zGY6aqHOS5Ed5dMHeOS77NfSEVprKzvy8zoasEDdlzqdjkz\/sfzsduZkYWdOFpaNfBEAYIrVoq2tDcXFxZBIJPwAs6ioqKu6ULa1tSEzMxOxsbEYOHDgFX1v74whpVKJxMRE2O123sbHayfjddb2egPm5ORg1KhRvE1WZWUlbrnlFsycORPvvPNOiHQCoN8RT\/dhcD0jHrfbjTNnzqDgrP\/6RXc0tl+cMzNroROJRKTMmpW68djB+I9qKLm0VCol00yUIzO1QFGqNUqj6+1J8IdAUmqqyE9NM6XqZoFGGlCLuF6vJ4mH6sMJtKBQmwwqugPoviyLha47UdJxkUiMxirPZiRuoAmjRo3ySTXl5OTA6XTy6i+dTnfZ1F\/+4CWduLg4DBhw5ex6WJBKpbBYLLBYLHC73XzPUH5+Pmw2GziOQ3R0NP+dV1dX45ZbbsHkyZPx3nvvXbZx29cS+h3xeCESiXx+THa7HcePH4fD4UBi7CAAJ8jXVzYUM4+xFhalUsnscTEY9EwZstFoZNY4jEYjk3gozzSLxcJ0rKZ2vyKRKMD8HsoFgE1K1IJLSakDpaZqatgLtUTCFnNER0eTZEelTCUS9m0vEolQUcEmdSr9o1QqSVVgIINVajPR3dTRH6joLyl2GJxNnk2cxqTkr8WbahoyZAisVitqa2tRVlaG06dPIzIykieh8PDwy5b2am1tRWZmJhISEnrZ+vcHCIVCvmcoKioKJ06cgMVigc1mw\/Tp0yEQCCCTyRAbG4t\/\/OMfIdIJEv02HvTKqTmOQ1tbGw4ePAiJRILx48fD0RVYBllUedbv41FRUcxFyWxmy34pEQA1L4ZqgKSOefPG\/kANZFKr1czamEQiIXfk1E6fiiC+i5SaStFRUmqK7AC6iE+dNzraQkYPVB0mOpqeR0SRYUxM9HeaTUORVoLxgtN0lKE3gXlTTQMHDsT48eMxZcqU82nOJhw+fBhff\/018vLy0NjYSDYY9xUtLS3IzMxEYmJivySd7mhoaEB2djZSUlIwfPhwjB07Flu3bkVcnMfb7tSpU7BYLFi2bBlyc3Ov8tX2f\/Q74umeagM8YeyhQ4dgsVgwevRoiMXigNNHVRoF2tr9Rxl6Pbv3g1IVUb041MJL7dqpdAZVb6F2vxRhRUdbmAuHWCwmnRComhKl9qOuldoEBHpPSnVkNBpJHztqVxoVoIufit6ojQRAp0AD9SRRdTsq4gYAXcSFcQjeiIeCV\/01ZswYzJgxA4MHD4bL5fIZ4lZVVUXW0QKhpaUFWVlZGDBgABISEi76PFcCjY2NOHHiBIYOHcpv+pqamnDfffchKioKOTk5qKqqwtatWzFw4EByPQjBg35HPF54F4dTp04hJSUFSUlJPCkFUrUp9ew\/PLUQUkRA7XQpFRm1Q6SO0aMS2AsnRayUjNxsNpMEcrFSaomEfa0xMfR8GErFRUUlRqOBPC+VDnO5qFqJiLwmapPhGeXOjkoC+YtRbgiBRhLLuAsbKo2Blor3hEgkgsFgwLBhw3waMouLi7F3714cPXoUJSUlJDH2RHNzM7KysjBw4EDEx8f36XquNJqamnD8+HEMGTKEHx\/d2tqKRYsWwWAw4H\/\/+x+kUilEIhEmTJiAl19++ZJEb3\/7298wcuRIqFQqqFQqTJw4EV9++SV\/nOM4rFq1ChaLBQqFAjNmzOg1ubSrqwu\/+MUv+HTp\/PnzUV5e3vOtrgr6JfG4XC6cOnUKADBy5Mhe6ZpAY68lEWwiuFi1CT0Ogb27phZlqqZC\/ZCpRZf6fJTEmNpxGwwG8jPSRX52+ojaBOh0OvL7oQQigTYXVA2MEjRYLGZyl0\/dI7GxMeTfjdqEeNyw2dccqOfE2eYhf6lcjAg13WdEwduQOWjQIEycOBGTJ08+P623Ad988w2++eYb5Ofno6mpibkZa2pqwrFjxzBo0CA+TdVf0dzcjGPHjiE5OZkf6261WnHrrbdCqVRi48aNQfX7XAxiYmLwhz\/8AUePHsXRo0dxww03YMGCBTy5vP7663jrrbfwzjvv4MiRIzCZTJg5c6ZPjXrlypXYuHEj1q5diwMHDsBqtWLu3LkX3Y94KdHviKezsxPffvstbDYbxGKx351goLHXLtGlJwKqF4caMU2lV6hCP9XgSF0L7YRAKZXYZE3tqL+LlJoiSZOJ3sVTtSqAHS7GxESTizxloBrIZ42SSgdKpVFEGhMTQ0bV7e3sexoAmqo9v4eoPkY7gaBQKBAbG4vU1FTMmDEDAwcORFdXF06cOIG9e\/fi1KlTqKmp4QnXSzpJSUmIjY29pNdyqdHS0sJfa3S0JzJvb2\/HbbfdBolEgvT0dDId\/l0xb9483HzzzRg8eDAGDx6M3\/\/+94iIiMChQ4fAcRxWr16N5557DrfeeitGjBiBDz\/8EB0dHfjkk0\/463\/\/\/ffx5ptv4qabbsKYMWPw73\/\/G9nZ2dixY8dlu+5g0e+Ih+M4qNVqXHfddcxenkDOBVYHe9Gm1Dl0g6T\/hU4gEDB3o55ivv9zelyw2eekduV0rxH7s1NRFPW9UPY83p0gC1RqiooQKOmxSqUiPyfVh0PVwABa+q3X0yk8Sg0XaGdMRTSB3LApUrLo4\/iNmsYYuL5zsfB6pI0YMQLTp0\/H6NGjIZPJUFBQgD179uDQoUO8kCAmJuayXcelgLf+NHDgQJ4gbTYb7rjjDrhcLnzxxRdke8Glhsvlwtq1a9He3o6JEyeiqKgI1dXVmDVrFv8cmUyG6dOn45tvvgHgGcXgcDh8nmOxWDBixAj+OVcT\/Y54wsLCMHToUAiFQqZ7QYeVjnjq29iLHWsHLhAImBGISqViRhkmk4mZfrFYzMzdNXXMZDIxFU4qlZIsulMLGN1xzzxEpogodVmgdBkV1QmF7NqQxUIPLKOiTIoAwsLCyO+IglarJQmPSm+o1ZEkkQbqqaFeOyhmOP\/fUZeReLpDIBBArVYjKSkJkyZNwrBhw2C1WqFQKFBQUICDBw\/i3LlzaGlpuWRGnZcKbW1tvOjBmwrs6urCXXfdhba2NmzZsiWgs\/mlQnZ2NiIiIiCTyfDzn\/8cGzduxLBhw\/iNZ89MhNFo5I9VV1dDKpXyVj7+nnM10e+IpztYEU8gVVtZbaHfxynLeo1Gw1xgqbQPVcyndtfejue+npNSThmNRmaqzTO\/h4qU2AsuRR6UgieQ99jFRkORkWrmMU8fE\/u8FAEEioba2tgprUBkSFkqBYoaqbpSeHg4Gamb1BeK9xrjldule9HQ0IDc3FwMGzYMkydPxvTp05GYmAibzYasrCzs27cPOTk5qK2tveq1B28ja0JCAi96sNvtuPfee1FbW4tt27YFVC5eSiQnJ+P48eM4dOgQHnroIdx33304ffo0f7xnloLjuID9VsE850qg3xFP9y+FFfFQs3iEIgFKqvzP4TGbTcybm0rtUOMJKDdrSqlEHaPCeKpwbjCwU0FmMzsyCzRUjuovsdvZfwuFgh1dmM1msh5FRUNUA2igPhyqhvNdxjcEIllKTRTotVTtKJAyMEJ0YYPjr4fncqK+vp6XIXvJVSKRwGQyISUlBdOnT0dKSgrEYjHOnj2LPXv24NixYygvLyfvjcsBr09cXFwcr0pzOBz4yU9+gpKSEmzfvj3gxuRSQyqVYtCgQUhLS8Orr76KUaNG4U9\/+hN\/n\/a8H2tra\/koyJs16Zkd6f6cq4l+RzyAby+P34iHULWpDeFwOP0vsFSUYTSyFx2JhJ3qoHpCqJ0FdexiXQKoWoyOGG1MkRJA1z0ogQS1oBoM9KhlKhpyONjEEqiIT6vDaBk+JcOmUkYqlZI0gw3U7V5RwSYttTpA\/cd24TMF08NzqVBXV4eTJ09i2LBhvAy5J7yuAMnJyZg8eTImTJiAqKgoVFVV4cCBAzh06BAKCgrQ2tp6WVNy7e3tPuakgCe9\/NOf\/hS5ubnIyMgIeF9dCXAch66uLiQmJsJkMiEjI4M\/ZrfbsXfvXkyaNAkAMHbsWEgkEp\/nVFVV4dSpU\/xzrib6rWUOwB4GR\/XxiMLY4ToVnVC9MVRNhYoGqF0bdYw6p9vN\/gFSC1hEBDvC0un0zIVer9eTCy6VhqM+BxXVmc1mkiCam9l\/D4WC\/TkDiRIoQrNYLMjLy2Mep76HmJgYnD59hnk8UBRGRVpU9AcA1voLG4rLKS7oDi\/pjBgxIujdtUAgQHh4OMLDw5GQkOBj1FlSUgKxWMxb+Gg0mktmTeMdrW2xWHhzUpfLhYcffhjHjh3Dnj17rkqE8Oyzz2LOnDmIjY1FW1sb1q5diz179mDbtm0QCARYuXIlXnnlFSQlJSEpKQmvvPIKwsLCsGzZMgCeTd\/999+PJ598ElqtFhqNBk899RRSUlJw0003XfHP0xP9mnhYRqE2K3tBc4nYyi0qkqB2\/NRNThuOshdI6hjL2w2g5eC05Qr7s1OkZDQamMQTSEpNRS1UxOfxxWMTDxWBUe7bFov5ov9egXL7VJ2Fqkl5Xks3h1LEQ9XClOGRaK65QIhXosZTW1uL7OzsPpGOP\/Q06vQamubm5vKzc7xEdLFOATabDZmZmTAajfzAObfbjcceewzffPMNdu\/eHbD+drlQU1ODe+65B1VVVYiMjMTIkSOxbds2zJw5EwDwzDPPwGazYcWKFWhqasL48eOxfft2n1T822+\/DbFYjNtvvx02mw033ngj1qxZ0y\/85Po18fgTF9isdjLslqnYCxpVN6B2nZQ1PyWhpRZP6hi10FDRB0VYXV1UzpxNSlRNKZArNdXDQ418oCLTQOMBqMgjEAFQogRq+qxCoSDHW4hE7O9XJBIFUNLRKSYqghscOwJct9vsckc8NTU1vNMIVW\/sK4RCIbRaLbRaLZKTk\/nZORUVFThz5gxUKhVPQsHOGLLZbDh69Cj0ej0\/WtvtduOpp57Crl27sHv37qva4Pr++++TxwUCAVatWoVVq1YxnyOXy\/GXv\/wFf\/nLXy7x1X139EviEQgE4DgOIpGo144uUA9Paxd7UaLkrqxdp1AoZBIB5WZNLZBU+kqtVjMXbJlMRi5wF9vf09l5sb5mauaxQCm6yko2YQdqLKWIh4oehEL2ghToeqnIIiYmGvn5bAIO9NqSklLmcSoSFwqF5MYnRjcI7eeJ57u6FgSCl3RGjhxJ+hp+V\/ScndPV1eV3nDU1Y6izsxOZmZnQ6XRITk7mSefXv\/41tmzZgt27d\/d709LvO\/qluMALfxFPINeCmmb2vHtWRED1b5hMpouSWVOFfqqwTtnaWCxmZrSn0USRaSQqwqIiwYuddEp9N0KhkHTCpjYIVAQWaEYPFbkGckqgXhtI7UQJMAIVrSnit1gs5N9HLb\/wmS61a0F3VFdXIycn57KTjj\/IZDJER0dj9OjRmDFjBoYMGQKO45CTk4M9e\/bgxIkTqKys5NPQXV1dyMzMRFRUFIYMGcKTzqpVq7Bu3Trs2LEDgwYNuqKf4YeIfk08\/mo8HVY64imtKfD7uFLJbrykZLQ6HVsJR+X9KQWdUskmF6o57WJHJVD9PYFcEqj0HU0QlHjg4lV0gRZiigwpQUegeTeUsoxq8Aw03yeQ7Qo1DDCQhY\/YeWHzc7mk1FVVVTh9+vRVIZ2eEIlE0Ov1GDp0KKZOnYq0tDRERESgtLQU+\/btw+HDh3Hw4EGEh4dj6NChfGbl1Vdfxccff4wdO3YgOTk58BuF8J3Rb1NtgH85dWsTWzwgU4hRWe0\/bWE0GplpMY0mCoX+e07JyIUqalILCtX7QkmQqa57lYr9OmpsdaDiNRUpUaCcB\/R6topOKBRedMpLq41Cgf99BwB6EafSe0ajkYykKBKNjragtJQdhVNNkxEREWTqUK\/X49w59gfubLpAwpdDSl1ZWYnc3FyfEdD9BQKBgHd2HjhwINra2nDs2DEIhUI0NDRg+fLlkMvlCA8Px7p167Br1y4MHz488IlDuCTo1xFPTzl1R0cHTmadYj5fbWSrs6gmUIpAqAWUMpt0OtkLCrXY0N3b7BoFJaulivXULlWn05EquoslCOp6AjWAUuRBjX3wOGyzNy1U9BY4DcdWwwWKAihHg0CD5agaulAoQkPFhb\/dpU61VVRUIDc3F6NHj+53pNMTDocDp06dglqtxpQpUzBjxgzMnTsXpaWl+PDDD+FwOPDaa69h7dq1pCAmhEuHfk083VNtjY2NOHjwIEQCYuga8du6WPtySqJMLWRtbex6C7VDphYxm40alcAmLCo9RaXEqLk2gaTU1OegVEeBG0DZ0RlFWIHIg6rDBDKEpGTjgVJplJKup89WT1Au5QMsg+F0XNgYOdBxyWxpysvLkZeXh9GjR1\/xbv6+wuFwIDMzEwqFAiNGjIBQKDxfY6zHyZMnsXv3bmRkZGDAgAF49dVX8d\/\/\/vdqX\/IPAv2SeLwLk1dcUF5ejszMTCQlJSEynP1jbOu6uM5yStpLFewppRi1KNMu2OwdPfV+1HVS0QeVYqJqUaxudC+oBZUi7LAwdjRkNpvJjQBFdhR5BPJ3o2AwGMiokIqKo6LU5DVTwwcBuhY2MNo3bRRljEB+fr6PLQ11X7BQVlaGs2fPYsyYMd8L0snKyoJMJsPIkSMhFArBcRzef\/99vPzyy9i8eTMmTpyI8ePH43e\/+x1OnDiBBx988JK896uvvopx48ZBqVTCYDBg4cKFvRqQly9fDoFA4PNvwoQJPs\/pz8Pcvgv6JfF4IRQKYbfbkZeXh9TUVMTGxsLawk6JQM6OJKhUCtUJz5IvU\/5mCoWCmYYKDw9jEohcLmeG+oH81Cgyo9IH1OJDTQ+lrPoDjZ6m5NBU38p3sdmhCDYmJpqMlqjPEiiSolJplE0TQP9tNJookrS6j7sGgGEjB\/nY0lRWVmL\/\/v349ttvUVRUBKvVGtCWpqysDOfOnUNqamrAaOxqw+l04tixY5BIJBg1ahRPOh9\/\/DGee+45pKenY8qUKb1ed6kMNPfu3YuHH34Yhw4dQkZGBpxOJ2bNmtWrz+xHP\/oRqqqq+H9bt271Od6fh7l9F\/RLcQHguXFyc3PBcRzGjx+P8PBwuFwuso+nw8VWYFFGi6z0jUqlYi7aJpOJuUs2m80oZKgV1OootLf73\/FbLBbm67RaDTMdFBERQTYhUjtjavGyWi\/OlZoSM3iiC\/b1sL4bgBZ6REZGkn5oVGOpVqsje2nq6thRaKA0HLVZoBpLATrCtVgs5D0tRySAC5GYV1zQ3ZamZw+MTCaDXq+HwWBAZGSkD1mXlpaioKAAY8aMuaIOzRcDl8uFY8eOQSQS+ZDOp59+iqeeegqff\/45ZsyYcVmvYdu2bT7\/\/8EHH8BgMCAzMxPTpk3jH5fJZExVrXeY28cff8zb3Pz73\/9GbGwsduzYgdmzZ1++D3CZ0S8jHpvNxk\/aAzx\/HJfLBbfbjYRhRkQxrD+qGkqY52Qpt3Q6HTMaomoclMya2g1STZdUFEFZd1CRgFarJRddKsVEiQcCqbFYCCQeqK9nvyclrgg0LI2SNIeFseswMpmMJEoqkvJ4w7E3BFTdUSAQkNdMuakDgLPNd0\/pT07dswdm8ODBcDqdOHHiBPbt28dPEC0qKkJBQQFSU1O\/N6QjEAgwevRovr65fv16rFy5Ev\/973+vileZd1PUMz25Z88eGAwGDB48GA8++KCPeKa\/D3P7Lui3xKPRaDBmzBj+\/zmOg1AoxI\/uScO7Xz+Eu343DhMWDIAu+kIdoqjqrN\/z6fV6Zg8HRS6UEo5aXKlxANQPl1qIKCWYRMK2c6FSQR6lF5WCvDjPOGoxpsQDEomEXOSpdCn1\/YhEIjI6oOowXq8wFqh6VWBVGptIo6Pp5lBKbQkAzdUX7nepXAxlFC1yEIlEMBgMGD58OD9BVCqV4syZMzh37hzCw8PR1tZ2UXWhKwWXy4Xjx4+D4zgf0klPT8dDDz2ETz75BDfffPMVvy6O4\/DEE09gypQpGDFiBP\/4nDlz8J\/\/\/Ae7du3Cm2++iSNHjuCGG27gv+P+Psztu6Bfptq0Wi2USiWcTieioqJw8OBBaLVaGAwGyGQyjzXHpAG4bfmPIBQKkX+8Aoe3n0HRvz9HS1vv9ITBwDa6pBoHZTI2EVCLK5Urv9hjgRbzvDz\/pBsRwf58RqOBKU\/WaKLIxZqqKVGLE+UeHRMTjaKiYuZxqjZE9T8F6qWhfsQ6nRZFRUXM45QaLlB0QEWUBoMB5eXsiIciPJM2Bu0tF4hHre+blNo7QdSbhh05ciRsNhvft+P1RtPr9QgPD+8Xg8XcbjdOnDgBl8uF1NRUXpixZcsWPPDAA\/jwww8xf\/78q3JtjzzyCE6ePIkDBw74PL506VL+v0eMGIG0tDTEx8djy5YtuPXWW5nn6y\/D3L4L+iXx1NXVQS6XQygUYuzYsbDZbHzIb7PZEBYWhoiICDgcDshkMiSNjkbS6Gjc\/cwxZGefwuefpyM9fRPOnMkFQEcnlHKI2ulS6ipqZ06lvajo42Kta9rb2ZEJ9b2YTCYm8QSSUlO1CUo8oNVqmcQjFovJaIiSqOt0OpJ4KFkyFYV6IjR2qpKSsYvF4gAybDZBA7RqMiluBNCtVHgx5qCFhYUoLS3F2LFj+c1ZX+tCVwpe0nE4HD6kk5GRgR\/\/+Mf417\/+hdtuu+2KXxcA\/OIXv8CmTZuwb98+xMTEkM81m82Ij49Hfr5nkGX3YW7do57a2tp+MVPnu6Bfptoef\/xxJCUl4dFHH8XOnTshEAjwpz\/9Cbt378bw4cMRExPDq3KOHj2K0tJSPpWWkjICL7zwHI4ePYysrCN48cXnERcXy3wvqv+F2lVShWwqr095lFGvo5RpVNqLWjiphZFyQggkpaYK6pR4gLKACVQbokQS1CIeSJhB\/Z1jY2PIWlcgc1Dq81DjHaRSKUl4psh4n\/9n1URZKCgo6EU6XgRbF6I+26WE2+1GdnY2urq6kJqayqed9+zZg7vuugvvvvsu7rjjjityLd3BcRweeeQRbNiwAbt27QrKdLShoQFlZWX876u\/D3P7LuiXEc9HH32EPXv2YN26dfjpT38Kp9MJkUiEZ599FhqNBnK5HPHx8ejs7ERdXR1qampw9uxZqFQqGAwGGI1GKBQKJCcPxjPPPA0A+M1vnkN6+hf4\/PN0ZGZm8VGC1cqWu1LmmSyZtcf7zP+iIBKJmGmdQHJpegooe\/dLkRL1+ajBeBoN25om0OAySiFGRW5arZZUnlHRA8BexKOjLcw0JUBvPrRaDQoL2Wk4apOh0+lQXMwWw1Ay7JiYGKb6EQAixFo04UKqLdiIh+M4FBQUoKKigvc5o+CtCxkMBnAch5aWFtTV1eHcuXM4deoUNBoNn5K72Jk5FNxuN06dOoWOjg5+kQaAAwcOYOnSpVi9ejXuueeeq5KWevjhh\/HJJ58gPT0dSqWS\/01ERkZCoVDAarVi1apVWLx4McxmM4qLi\/Hss89Cp9Nh0aJF\/HP78zC374J+STxisRg33XQThg0bhqNHj8LhcGDChAn44x\/\/iN\/85jeYM2cOFi5ciJtuugmxsbGIjY2F3W5HbW0tamtrce7cOURERMBoNMJgMCA8PBwDBgzA448\/hscffwzl5eVIT\/8C6embmAuHQCAgZdasnXBUVBRzQTebTcy8vdlsYi6e1IiFQKMSqE5\/KvqgUlfUImIw6JnEI5VKyetpa2OnIcPCqGF1tJdaWxubfAPVYSjyoNpehEIh2egXyEmjqopNpDqdhiQeQacc8CGewBFPd9IZO3ZsQNLp9Z7n60JqtRpJSUlob29HXV0dqqqqkJubyzdSXqq6kNeB2mq1Ii0tjTdqPXToEJYsWYI\/\/OEPuP\/++69aLeRvf\/sbAPSSbX\/wwQdYvnw5RCIRsrOz8dFHH6G5uRlmsxnXX389Pvvss+\/NMLfvgn5JPIDnxrrlllswevRo\/P3vf4dMJoPb7cahQ4ewfv16PPvss3jggQcwe\/ZsLFy4ELNnz0ZMTAxiYmLgcDj4SKigoADh4eF8JBQeHo6YmBg8\/PBDePjhh1BdXYPNmzdj48Z0HDjwNZ8iMJlMzAjEZDIynQJ0Oh2TeHQ6HZN4dDodk3iMRgOTeCwWM7MuEhnJJkiA9j27WCk1ZcETHW0hxQMUeVDO0gYDu28o0HkpZ2mPs0Az8zhV5zMajWQES32HanUkWSejPOkAwFrnu2kIFPFwHIdz586hsrISaWlppEIwWPQcY11XV9erLqTX66FWq\/tcF+I4DqdPn0Zra6sP6WRmZuLWW2\/FSy+9hBUrVlzVAnygZlyFQoGvvvoq4Hn68zC374J+SzwCgQCbNm1CTEwMfwMJhUJMmjQJkyZNwhtvvIGsrCysW7cOL7\/8Mn72s5\/hpptuwoIFC3DzzTfDbDbDYvHUBerq6lBbW4vi4mIoFAo+PaBUKmEyGfHAA\/fjgQfuR0NDIzZv3oL09E38bs0f6HEIbBsR6gdNHaOUd1FRGuZibjabmYVzlUpJpnOo4jWVvhMI2IsIJR5QKBQkEVJpQYrswsLCSBsiijwsFgtJPFR9MNDiTQkaLBYLKWWnotFwRQSaanwjR4p4OI5Dfn4+qqurLxnp9IRUKkV0dDSio6PhcrnQ0NCAuro6nDx5EoBn06XX66HVagPaBHEchzNnzqCpqQlpaWl89H3ixAksWLAAzz77LB577LHvverrWke\/JR4AiI1liwKEQiHS0tKQlpaGV155BdnZ2Vi3bh3eeustrFixAjfeeCPmz5+PuXPnwmQywWw2w+Vyob6+HjU1NTh69CikUikfCalUKmi1Gtx33z2477570Nraiq1bt+Hzz9OxY8dOH6UatUumaiPUj4Ha9VF9OlTzIyUxNpstaG3N83ss0E6fSpdRkQmVXrJYLCggZhpQaUHqu4uOtpDTQanPSQksALr5NtCsHOq1gUZ0U9ecHJ\/iM+4aAKIYxMNxHM6ePYuamhqkpaWR6cxLhe9SF+I4Drm5uWhsbERaWhp\/P506dQrz5s3DE088gaeffjpEOt8D9GviCRZCoRCjRo3CqFGj8Nvf\/hZnzpzBunXr8N577+HRRx\/FtGnTsHDhQsybN48nGu\/Oq7a2FllZWRCLxfwPQq1WQ6VS4Y47bscdd9yO9vZ2fPXVdqSnb8K2bdtJmXVXF3sHTamcqNdRO1wqpKcIi3JQMJlMzMVNLpeT\/TRUZEIptbRaDZN45HIZGQ1R8vVAnmKUOwBlaROoz4ka6BcVRfusBbLSoWpHMdpB6OhBPP4iHo7jkJeXh7q6uitGOj3Rl7pQWFgY8vPzUV9f70M6Z86cwbx58\/DQQw\/hueeeC5HO9wTXBPF0h0AgwLBhw\/Cb3\/wGL7zwAs6dO4d169bho48+wuOPP45JkyZh4cKFmD9\/PkwmEwwGA9xuNxobG1FTU4MTJ05AIBDwBKVWqxEeHo5bb12EW29dhM7OTmRk7IRSGYGvvz7YK+1EuURTkmjqGHVOqveHkrRSKQ26GTOaSRAemxf2Tv5ivd+io2PIaIgiQuq8er2erGVR0ZvZTHulUYKGyEgVSTzU+wYSUkQpTOjAhRSgRCbq5VrgjRy8i3ig0Q1XClRdyOu3NnToUP7ezc\/Px9y5c7F8+XK89NJLIdL5HqFf9vFcKggEAiQlJeHXv\/41Dh8+jPz8fMyfPx\/r1q1DcnIyZs2ahXfeeQcVFRXQarUYPnw4pk2bxttaZGdnY9++fTh9+jTq6+vhdrvBcRy02ig8\/\/yzKC4+h40b12P58nt57zZKYUZJoqlCNHXOhgb2osuauArQURRFSpQnmlarJaM6KmqhSJJ6z0Cmo3Y7+3OazbQ7NBW9BfJKoyTlgVypKTIM5IYtdvrWu3p6tHlrJA0NDf2KdHrCWxcaNWoU33ip1WrxzTffIC4uDgsWLMC8efOwaNEivPrqq1elcTWEi8cP5q8lEAiQkJCAJ598EgcOHEBxcTGWLl2KLVu2YMSIEbj++uuxevVqlJSUQKPRYOjQoZg2bRpGjRoFkUiE06dPY8+ePfjmm28gl8uRkpIChUKBWbNuwl\/\/+hcUFuZj69YvsHTpEr9us5RZp0ajYRbslUolcwH09P6wFzhq8aPUbhcrpaa8yeRyOUmglNCBek+LxUJeb0tLM\/MYJRn2yKGpNBw1XE9Jkgc1LVYkEpHvG0jm3Nnsm3rtPnnUqwbz1kj6K+l0R2FhIaqrq3Hddddh1KhRWLBgAVavXo3GxkZYrVb83\/\/9H+bOnYv33nuPFL2E0L\/wgyGe7hAIBIiJicGjjz6KPXv2oKysDD\/+8Y+xa9cujB49GlOmTMHrr7+O\/Px8qNVqJCcno7m5GV1dXVCpVOjo6MD+\/ftx8uRJ1NTUwOVyQSQSYfr0aXjrrT8iP\/8Mduz4Cg8\/vIIXSBgMbDNSahfLskwHPDt21qIbFsae+wPQERaV2qPqW9SiGBWlJutR1dUXJz3W6wNNLL04Z2mLhR46R9WVApmDBnrtxc5aEQqFaKz0FWF4xyF4Sae5udmnRtKfUVhYiLKyMowdO5ZX29XW1uLll19GamoqP0X0+uuvx9q1awNKmEPoP\/hBEk93CAQCmEwmPPTQQ8jIyEBVVRUeeeQRHD58GOPHj8eECRNw991348c\/\/jGcTifGjRuHyZMn8wXZc+fOYc+ePThx4gSqqqrgdDohFAoxceIEvP76q8jNPYV9+3bhzjuXYuDAAX6vgZr0SYkA9Hr2OATKWVutjiTlvFTqikrfUWMLoqOjmceUSuVFT1el7HA0Gg35Oan6mF7P3igA9HcU2ByUnR6lNigAnf4bGDMEji7flKXGEME3WzY3N2Ps2LHfC9IpLi7mbXu8G5rq6mrcfPPNmDp1Kv7+979DKBRi8ODBePrpp7F7926y7aAvCGZ6KMdxWLVqFSwWCxQKBWbMmIGcnByf51yr00MvBX7wxNMdAoEAOp0O999\/P7Zu3YrKykrExMRg69atsFgs+M1vfoNVq1bh5MmTiIiIwKBBgzBp0iSMHz8eERERKC4u5kcLV1ZW8tHI2LFj8eSTj+PkyWM4ePAAfvWrZzB06BD+faVStvqMkm5TSiSKlEwmttdaoKbTi23ypBa7yEg28QJ0ypBSygWq4VCihPBw9ncrFAovOpUWyFg0EClQ6cpE05Bej0UZI3Dq1Cm+2fL7QDolJSUoKipCamoqTya1tbWYO3cuxo4di\/fff\/+ydu4HMz309ddfx1tvvYV33nkHR44cgclkwsyZM302Ztfq9NBLgWtO1Xap0NXVhZ\/97GcoKCjAqVOnYDAYsHnzZmzYsAEzZ86EwWDAggULsHDhQowdOxYDBw7EwIED0d7ejtraWpSWluL06dPQaDS8TFsqlWLkyBSMHJmCF154Dnl5Z\/H55+k4deoU8zqo1BaVKqJ2f9RCbzZbmFFCYFdqtr0M9TmioqKYdQ3PMDX2Lp9SylGSZo\/bNZsAqOv12AJRYyHYKbpAox+oplSlUkmq4aIUZvT8C3Q4WtDWJsbYsWMvi1\/apUZZWRkKCwuRmprK\/\/0aGhowf\/58DB06FB999FHAJtPvikDTQzmOw+rVq\/Hcc8\/x4ws+\/PBDGI1GfPLJJ\/jZz352TU8PvRQIRTwMSCQSDB8+HAcPHsSgQYOgUqmwbNkyrFu3DjU1NXj99ddRXV2NefPmYfjw4fjlL3\/JCw8SExMxYcIETJ48GRqNBpWVldi3bx+OHj2KsrIyPjJITh6MX\/7yaXz88YfIzj6G3\/3utxg3Ls1HFkotrFSE4XazFzAqiqJJiR0pCYVCciGnUnSUfDvQZFFKKUftigO5XVPjKwLVcCgC1mrZk2sBWgwR6H2d1t6fVxIGnw7\/\/ozy8nKcO3cOY8aM4e+JpqYmLFiwAAkJCfj000\/J3rTLhZ7TQ4uKilBdXe0zGVQmk2H69On8ZNBreXropUCIeBgQiUR46aWX\/C4U4eHhuO222\/Dpp5+ipqYGf\/7zn9HS0oLbb78dycnJeOKJJ7Bv3z5IJBIkJCTguuuuw5QpU2AwGFBdXY0DBw7gyJEjKCkp4QvNXhPTPXt2Ii8vB2+88RomT55EyqWpPhKKsCiJMfXDpkjAbDaRxXgqRUcRAEVKcrn8olN\/1CRUgE5pUXWlQL1MgVJdFHkHqh1FiHrfq\/roKDQ3N\/f79E5FRQXOnj2L0aNH85+zpaUFixYtgtFoxP\/+9z9yw3S54G96qDf1azT6ioK6Twa9lqeHXgqEUm3fEQqFAgsWLMCCBQtgt9uxY8cOrF+\/HnfffTeEQiHmzp2LRYsWYdq0aYiLi0NcXBy6urp4J+38\/HwolUreSTssLAzR0dFYseLnWLHi56ipqcUXX3yBzz\/fhP37D\/gs0tQiRaXEWlvZNRyKBAI1Y7IW3PDwcPJ6qJoSlS4zGg3kqAQqRUeNJw8PDycJjR6VbSaJh0qlabVaMloKlGJqqendQ6UzR+Ls2bPo6urip\/jqdLqrsoizUFlZiby8PIwePZpfqNva2rB48WKoVCps2LDhqkVsrOmhQG8LrGAmg14L00MvBUIRzyWEVCrFzTffjPfffx9VVVX45JNPIJVK8eCDD2LAgAH4+c9\/zuePY2NjMXbsWEybNg0xMTFobGzEN998g4MHD6KwsJDvSTAaDXjggfuxeXM6Cgvz8e67dE7bcgAAM8xJREFU72D27FmIjrYwd\/QymYxcOKndPEUC1IJLmUtaLPTgOLoBlB1FUeIKai4SALjdbOltoOul0oaBVGkU6Qd6X6o516i1wNrsez9IZCKMGZeCyZMnY\/z48VCpVCgtLeXTvqWlpaS0+0qguroaubm5GDVqFJ\/Kam9vx5IlSyCRSJCenn7V+o2800N3797tMz3U2+LQM3Kpra3lo6Du00NZz\/khI0Q8lwkSiQQ33XQT\/v73v6OiogLr169HZGQkHn30USQmJuL+++\/HF198AZfLhejoaKSmpmL69OlISEhAa2srDh8+jG+++Qbnzp1DW1vbeccEj4npRx99gD\/\/eTVeeuk3mDv3ll4\/zOhoC7OnQaWi7VooUqIWXGoXR\/mlaTRRJNlRx6h6iclkIhdq6rN4F0AWqKbdQJ5nVDQUSA5MqfAGRQ\/v9ViU3iNDFggEiIiIwIABAzBhwgQ+7VtXV4evv\/4ahw4dQmFhIX+fXSnU1NQgJycHI0eO5P+WNpsNS5cuhdvtxubNmy+LW3YgBJoempiYCJPJ5DMZ1G63Y+\/evfxk0Gt5euilQCjVdgUgEokwY8YMzJgxA6tXr+ZnCv3qV79CfX09Zs+ejQULFmD27Nkwm80wm81wOp2or69HbW0tvv32W8hkMn6y6tmzZ5GUNAizZ8+CQCDoZWKq0bAnY5rNJmZfTCBSoqIoaudMOQuYTCayVkVFQ1TainLtBmiCpUhUpVKRBEAhUCqNUimKRCKatCR69EySslyp5XI5n\/b1zq6qq6tDUVERZDIZb8ypVqsvW1qotrYWp06dwsiRI\/l6W2dnJ5YtW4b29nZs3779kvXl9BWBpocKBAKsXLkSr7zyCpKSkpCUlIRXXnkFYWFhWLZsGf\/ca3V66KVAiHiuMEQiESZPnozJkyfjj3\/8IzIzM31mCs2cORMLFizAnDlzYDKZYDKZeCftkpISFBcXQyKRwOl0oqWlBZGRkb1MTPft24\/\/\/ncdvvzyy15zXajGUoqUAkmpqUmdFPFQ4oFACzXVWGo0mlBQ4H9Kp1IZQfbhUIatFouFfF\/KHNRsNpGfhxr9EB1tQWlpGfO4UqxFT\/oOZuS1RCKBxWKBxWLxmZXjNcv1jijQaDSXrHemrq4O2dnZSElJ4fvN7HY77r33XtTX1yMjI4O8Ly43Ak0PBYBnnnkGNpsNK1asQFNTE8aPH9+LLK\/V6aGXAiHiuYoQCoUYN24cxo0bh1dffRUnT57EunXr8Mc\/\/hErVqzADTfcgAULFmDu3Ln44IMPkJOTg9dffx0ikQi1tbU4duyYz3yTqKgoyOVyzJo1E7NmzYTD4cDu3XuRnp6OzZu3oL6+ARIJJaVWM4+ZzWamQ3QgKTVVT6HmFwVaqCk7HGqjHhkZSRIEJbCgiBsAamrYaThKKAEAdXVsabheryeJJ0KsQxN8NxnBjLzuju73ktvtRktLC2pra5GbmwuHw+EjTrhYWbPX5mbEiBF8PczhcODHP\/4xysrKsHPnzoCpzsuNYNKNAoEAq1atwqpVq5jPuVanh14KhIinn0AoFGL06NEYPXo0Xn75ZZw+fRrr1q3Du+++iyeeeAICgQCPPPIIRCIRP7Fx6NChaGpqQk1NDT\/N0TvOISoqChKJBLNm3YRZs27Cn\/+8Gvv3H8D+\/Qdw7lyBX0mnTMYmJY0mCqzJBNHRFpSVsa1AqMWYarakUi1qdSSZFqT6cEwmE2nESaXhKFeCiIgIctoplUqTyWRkWjFQgb2jsXfakZVqCwZCoRBRUVGIiorC4MGDYbVaUVtbi5KSEuTk5CAqKopPyQXrhtDQ0ICTJ09i2LBhfIHd6XTipz\/9Kc6ePYvdu3cHlLmHcG0gRDz9EAKBAMOHD8fgwYNRXFyM+vp63H777di5cyfefPNNTJ48mZ8pZDQaodVqeRKqra1FTk4OXC4Xv3vVarXn60zTMWPGdDz33K9x6NBhfP75Jmza9AXKyjw76Yt1pdZqdUziCeQ8QE3TpFISZrOZHA9NpQWphTLQkLbOTrZgITo6upenV3dQdbCYGHrmENWHo5CHo6m6N9EGk2oLBgKBAEqlEkqlEgMHDoTNZkNtbS1qamqQl5fnM7CNZRTb2NiIEydOYMiQIXwjssvlwooVK3D8+HHs2bMnoCIwhGsHIeLpx3juuedw7NgxHDlyBBaLR6lWXFyM9evX47\/\/\/S+eeuopTJgwge8jio6OhkajQXJyMlpaWlBTU4Pc3Fw4nU7odDqepEQiESZNmohJkybi9ddfRWZmJjZuTEdW1jHmtdCu1Gwll9lsJmsiVIqOUqVRNQCZTEY26VEEazDoSeKhiDJQgyflskBNYAVAmp0mx6XAXdM7PXSpiKcnFAoF4uPjER8f32tgm1wu50koMjISAoEAzc3NOH78OJKTk2GxeNwX3G43Hn30URw6dAi7d+8mXTFCuPYQIp5+jGeeeQbPPfccv8gKBAIkJibiqaeewpNPPony8nJs2LABGzZswK9\/\/WuMHTuWJ6GEhASo1WoMHjwYra2tqK2t5RsJ9Xo9n6sXiz0+XmPHjgUAnDyZjfT0TUhP34QzZ3L5a7lYV2qqJhJoAijlxEw1U1osFhQV+Vf1ASCJRafTgghaSHdhyuzVYw7KTqUFauikCDpWPwg2P9nBqD7WeC4G3oFt0dHRPuPkjx07BqFQiMjISDQ0NGDw4MG8Q7nb7caTTz6JPXv2YPfu3fzokBB+OLhqfTzvvvsuEhMTIZfLMXbsWOzfv\/9qXUq\/hU6nY+7sBQIBYmNj8dhjj\/Ezhe677z7s3LkTo0ePxtSpU\/HGG28gPz8fKpUKSUlJmDx5Mq677jqEh4ejsLAQe\/fuxfHjx32ctL0GpkePHkZW1hG8+OLzGDkyhdytU7021IJKzRoCLr6x1DsNlgVKliwQsH8Ser2OtOGhIrTY2BgyXUZFYRqNhlTaaRT+o4XLFfGw4BUnjBgxAtOnT8eAAQNQX18PoVCI\/Px83HPPPfjXv\/6Fp59+Glu3bsWOHTuQkJBwRa8xhP6Bq0I8n332GVauXMmnkqZOnYo5c+agtJRtfxICGwKBAGazGStWrMCOHTtQWVmJFStW4ODBg7juuuswYcIEvPLKKzhz5gwiIiIwcOBAfpyDt5t97969yMrKQkVFBb+oJycPxjPPPI2DBw9g587tfk1MAbq\/h1pQlUr2jtxkMpE1ESrlRdWjDAYDKTzo6KAkzeyZQgAdoQUyB6U+T6DxDmJn7yZLsVQElYZuZr2csFqtOHfuHJKSkjBjxgyMGDECWq0Wb7zxBt577z0kJiZix44dId+yHyiuCvG89dZbuP\/++\/HAAw9g6NChWL16NWJjY3n9fAgXD2\/vxQMPPIAvv\/wS1dXVePLJJ3Hy5ElMmTIFY8eOxUsvvYSTJ08iLCyM72afNGkSNBoNysvLsW\/fPmRmZqKsrIzfxScmJvqYmL7++h8wdmwqxGIx2QBK1SYolVegQnNFBVuVRkUWgWb\/UM2hgcZOU3LnQF5j1OcRCukmzq6W3sc1hsufZmOhra0NWVlZSEhIQHx8PH9P6nQ62O12bN68GfPnz8fHH3+MmJgY7Nu376pdawhXB1eceOx2OzIzM33swgFg1qxZIbvwSwyBQACNRoPly5dj06ZNqKmpwQsvvIBz587hxhtvxKhRo\/D888\/j6NGjkMvlSEhIwPjx4zF58mTodDpUV1dj\/\/79OHLkCEpLS\/k0k8ViwaxZN+G3v30RR48exptvvo4ZM6b7rbtQvTZUaoqKhgwGAxmZUGIGStEmkUjINBzV3xFoVDbVG2Q0GskoTCRi17M84657v\/a7SKm\/C6xWKzIzMxEXF8dbzXAchzfeeAP\/+Mc\/kJGRgZtvvhlPPfUUDhw4gIqKCowfP\/6SXsO+ffswb948WCwWCAQCfP755z7Hly9fDoFA4PNvwoQJPs8JTQ+9vLji4oL6+nq4XC7SUjyEy4PIyEjcdddduOuuu2C1WvHll19i\/fr1mDt3LqKiojB\/\/nwsXLgQ1113Ha9a8jpp19TU4OzZs1CpVOA4Dp2dnRg3bhzCw8ORlDQIDzxwPxoaGrF58xZ8\/nk69uzZi7AwBVmboNwOKMGCyWQka06UlxrVGxQdbUFxcQnzOEUOBoOBrElR6Uij0Ugep2xrEi2DYW\/rTWpXur4DeL6fzMxMxMbGYsAAz5h3juPwpz\/9CX\/+85+RkZGBkSNH+rzmchhmtre3Y9SoUfjxj3+MxYsX+33Oj370I3zwwQf8\/\/esRa5cuRJffPEF1q5dC61WiyeffBJz585FZmZmyHngEuCqqdouxlI8hEuHiIgILFmyBEuWLEFHRwe2b9+O9evX47bbbkNYWBjmzZuHhQsXYtKkSYiNjUVsbCxaW1tx8uRJ2O12uN1uZGdn8+McwsPDeRPT++67By0tLdixYyf+97\/1yMjY0asoH8g92mZjRzRUyisyUkXWWqgoS6fTkcRDkUMgM8u6OnYKj4ruPK9lK\/8SzUMBP4LDqCucauvo6EBmZiYsFosP6bz77rt44403sG3bNl45ebkxZ84czJkzh3yOTCZjiltC00MvP654qk2n00EkEpGW4iFcWYSFhWHhwoX4+OOPUVVVhX\/84x+w2+24++67kZSUhF\/84hf44osvcMstt+CDDz7AlClTMH36dMTFxaG5uRmHDh3CwYMHUVBQAKvVCo7jEBkZicWLb8Xatf9BSUkBPvroAyxevIgnDbPZTJIAFQ1RtSFvnwgL1CJOpeEUCgXpaEBBp9PxYy78gVLKyeVyMpIyKP1LkTWmKxfx2Gw2ZGZmwmQyYdCgQRAIBOA4Du+\/\/z5+97vfYfPmzZc8nfZd4W1YHTx4MB588EGfCDo0PfTy44oTj1QqxdixY33swgEgIyMjZBfeDyCXy3HLLbfg\/\/7v\/1BVVYV\/\/\/vfcDqdWL58ORoaGiCRSLB792643W5YLBaMGTOGH+dgtVp9xjm0traC4zhERERg8eJb8dFHa1BSUoDPPvsEt912K1MqLhKJAkRD7IWaaiwVi8XkIu5ysZtkY2KiyRoPRSyBVGlUj1R0dDTZvKsQ+P+8VyrVZrPZcPToUej1eiQlJfGk89FHH+H5559Heno6Jk+efEWuJVjMmTMH\/\/nPf7Br1y68+eabOHLkCG644QZ+IxSaHnr5cVVSbU888QTuuecepKWlYeLEifjHP\/6B0tJS\/PznP78alxMCAxKJBEOHDsWRI0dwyy234Kc\/\/Sk2bdqEX\/ziF7Barbj55puxcOFC3Hjjjfw4B5fLxY9zOHr0KKRSKW\/dExkZCblcjrlzb8HcubfgpZde5E1Mt2zZykc5gZyYqXHgVGNpTEw0mUqjhrQFMq6kPNpUKpoEWlvZxBPIpdnV7r9p9Uo0j3Z2diIzMxM6nQ7Jyck86Xz66ad4+umnkZ6e3svhuT9g6dKl\/H+PGDECaWlpiI+Px5YtW3DrrbcyXxcqB1w6XBXiWbp0KRoaGvDb3\/4WVVVVGDFiBLZu3Yr4+PircTkhEHj11VcxdepUvPvuuxCJRJg1axb+9Kc\/4eDBg1i\/fj2eeeYZNDQ04Ec\/+hE\/U8hoNMJoNMLlcqGxsRE1NTU+TtpGoxFqtRpSqRSzZ8\/E7Nkz4XK5sH\/\/AaSnb0JBQSGTeIRCIak8o6IhrVZLEg+1m6UaYQONyqYSC4Fea7ez05EA0FLt\/\/jljni8pKPRaDBkyBB+QV6\/fj1WrlyJ\/\/3vf7jxxhsv6zVcKpjNZsTHxyM\/Px+A7\/TQ7lFPbW1tKCtziXDVnAtWrFiB4uJidHV1ITMzE9OmTbvk77Fq1apessnuBUWO47Bq1SpYLBYoFArMmDEDOTk5l\/w6vs94++238fe\/\/91HySMSiTBlyhS8\/fbbKCwsxM6dO5GYmIiXXnoJCQkJWLZsGT777DO0t7dDr9fznezDhg2D2+3GiRMnsG\/fPpw5cwYNDQ1wu928ienbb7+Jzz9fj4yMbXj44RU+I4cBTzRENaVS5EE5PEdG0mam1HtSE18BWihhNpvJ11ITTfVRZrQ1+W+y1RguH\/F0dXUhKysLkZGRGDp0KE866enpeOihh\/DJJ58ELO73JzQ0NKCsrIz3iwtND738uOZHXw8fPhxVVVX8v+zsbP7Y66+\/jrfeegvvvPMOjhw5ApPJhJkzZwbwJfthQSqVkukFoVCI6667Dq+\/\/jry8vJw4MABDB8+HG+88QYSEhKwZMkS\/Pvf\/0ZLSwu0Wi2GDRuGadOmISUlBQBw6tQp7Nu3Dzk5Oaivr4fb7YZQKOQNTHNzT2Hv3l14\/PHHMGBAYkDbfErRRtVKAokSKH83arQ3QJuDSqV00oFyNLBEJfh9XCwVQaW9PK4F3j48pVKJ4cOH8\/fGli1b8MADD+Cjjz7C\/PnzL8t7Bwur1Yrjx4\/j+PHjAICioiIcP34cpaWlsFqteOqpp3Dw4EEUFxdjz549mDdvHnQ6HRYtWgTAd3rozp07cezYMdx9992h6aGXEALuSg5Zv8JYtWoVPv\/8c\/4G7A6O42CxWLBy5Ur88pe\/BODZyRmNRrz22mv42c9+doWv9toCx3HIycnBunXrsHHjRpw5cwYzZszAwoULMXfuXGi1Wr4m0NzcjNraWtTW1sLpdPImpl4n7e7IyTmN9es3ID19E3Jzfd08dTod6TyQkjIC2dmn\/B6bMGECDh06xHxtREQEU0AwdeoU7N9\/wO8xmUwGh8PBJL3U1DGkK3hYmAIdHf6jmkVTfoK2bHWvx3XRKrx\/5HHmOS8WXtIJDw\/HiBEjeHXh9u3bcffdd+Nf\/\/oX7rjjjkv+vn3Fnj17cP311\/d6\/L777sPf\/vY3LFy4EMeOHUNzczPMZjOuv\/56vPzyyz5mpZ2dnXj66afxySef8NND33333ZCh6SXCNU88b7zxBiIjIyGTyTB+\/Hi88sorGDBgAAoLCzFw4EBkZWVhzJgx\/GsWLFgAtVqNDz\/88Cpe+bUFjuNw9uxZrF+\/Hhs2bMCJEycwZcoULFy4EPPmzYPRaORJyOukXVNTA7vdzo9z8MrwuyM3Nw+ffroWGzZsRGFhEUaOTMHJk9mMq6CJaerUydi\/\/2u\/xwwGAxm1XHfdOHz77RG\/x7z3Ggvjxo3DkSP+X2s2m0nnhx\/f9GuUHeld4zENVOKnq6fzoo5Adj3BwOFwIDMzEwqFAikpKTzp7N69G0uXLsW7776Le+65J1R8DyEoXNOptvHjx+Ojjz7CV199hX\/+85+orq7GpEmT0NDQwNcCQg4Klx8CgQDJycl49tlnceTIEeTl5eHmm2\/G2rVrMXjwYPzoRz\/Cu+++i4qKCh8n7XHjxiEsLAwFBQXYs2cPTpw4gaqqKr7eotVqMH36VGzbtgXZ2cfwk5\/8GGlpY\/0ufkqlkoyGqAFvJhPdX0alwwI5ZVOpQaOR9qsTdPmvWcUONPlYHn377bcoLi4mbYYoOBwOZGVlQSaT+ZDO\/v37cccdd+BPf\/pTiHRC6BOu6Xk83QucKSkpmDhxIgYOHIgPP\/yQ92YKOShcWQgEAgwYMABPP\/00nnrqKZSVlfEzhX71q18hLS2NnykUHx8PpVKJQYMGwWq1oqamBsXFxcjJyeFTX0OGDOFdowcMGIAHH7wf5eXlSE\/\/Aunpm3Dw4KHzPUdm5OWxa3dUDYey2QGAigpqRg9bDScQCEhz0EBuCB0N\/s1Q9Ra1j+VRXV0damtrce7cOYSHh\/PKwvDw8ID3utPpxLFjxyCRSDBq1CiedA4ePIglS5bgtddew09+8pPQbyaEPuGajnh6Ijw8HCkpKcjPz+fVbSEHhasHgUCAuLg4rFy5Env37kVpaSnuuece7NixA6NGjcK0adPwxz\/+Efn5+QgPD8fAgQMxceJEREZGwmq1Qi6XIzc3F5mZmSgvL+dNOmNiYvDwww9h+\/YvkZ+fiz\/96S1MnDiR2eMjEAhQXs4mAGpRNZlMzBoMQJuDWixm0rWAyoLLZQo0VvmvOXXv4ZHJZIiJiUFqamqvRt+vv\/4a+fn5aGlp8fteLpeLl8F3J52jR49i8eLFePnll\/HQQw+FSCeEPuOajnh6oqurC2fOnMHUqVORmJgIk8mEjIwMvsZjt9uxd+9evPbaa1f5Sn94EAgEsFgsePjhh7FixQrU19dj48aN2LBhA373u99hyJAhWLBgATo6OvDPf\/4TBw8eRGJiImw2G2pra1FZWYnc3Fyo1Wq+tiGXy2EyGfHAA\/cDAH7721XYvHkL0tM3YffuPTxRWSxmsjeISlEZjQYyNUuZpBoMBvJ9KTeEwXEpcNf6JyZWD49EIvFp9PVOC83KyuJ7rAwGA9RqNTiOw7FjxyAQCDB69Gi+vnb8+HEsWLAAzz33HB599NEQ6YRwUbimxQVPPfUU5s2bh7i4ONTW1uJ3v\/sd9u7di+zsbMTHx+O1117Dq6++ig8++ABJSUl45ZVXsGfPHuTl5QVMr4RwZcBxHJqampCens5HP2PGjMH111+PhQsX+qirOjs7eXVcc3MzVCoVb2Las4enpaUFW7duQ3r6JtTU1OLbb79lXkNMTAzTEn\/KlEk4cIDt3xUeHs50tZ48eTK+\/tq\/oAGgR4PPm3wXbKf8R+YvfnIXUmcMYp63J9xuN5qamvjvzptulkgkSEtL49OFp06dws0334zHH38czz77bIh0QrhoXNMRT3l5Oe68807U19dDr9fzklmvQ8IzzzwDm82GFStWoKmpCePHj8f27dtDpNOPIBAIEBUVhbKyMtTU1CAjI4OvC3mtehYsWICFCxdizJgxiIuLQ1xcHF\/bqKmpQX5+PpRKJb+jDw8PR2RkJO68cynuvHMp2tvbsW3bV0hP34SvvsrwiTSkUinpG8dx7MVXp9OSZqccx+4rUqlUpKFplMIMG\/y\/vq\/No0KhEFqtFlqtFoMHD8bRo0fR2dkJl8uFN954A4cPH8aUKVPwzjvvYMWKFSHS6YGPPvoIjz\/+OCorK30UhIsXL0Z4eDg++uijq3h1\/RPXdMQTwrWB0tJSzJw5E+vXr8eIESP4x61WK7Zu3Yr169dj69at0Gq1\/EyhcePG8ekhu93OF9gbGhp8Cuw9Ryx0dnZix46d2LgxHV9+uQ1arZaUQ48ePQrHj5\/we2zAgEQUFhYxX0v1FQ0ZMgS5ubnM195\/\/SqUZPkfePdx9tMX1UDqdZWw2+1ITfVMl83Ozsa7776Lbdu2obGxEbNnz8bixYsxf\/78gM28PxTYbDaYzWb885\/\/xJIlSwB45o5FR0dj27ZtfnuKfuj4QYkLrgQCTT8MxqYnNP3QF3FxccjJyfEhHcDT1Hn77bfjs88+Q01NDd5++200NjZi8eLFGDp0KJ588kns378fQqEQ0dHRpJN2W1sbOI7jTUzff\/8fKC4+h9Wr38J9990Drda\/SSjlsxbI0YAaWKdW0+agdj\/jrgGPa4FSw7YGYsE7X6mrqwupqamQSCQQCASIiIjArl27cNddd+HUqVOYNm0a3nvvPYwZM4YUP\/yQoFAosGzZMp\/Bcv\/5z38QExPTL01S+wNCxHOJ4Z1++M477\/g9HoxNz8qVK7Fx40asXbsWBw4cgNVqxdy5c+Fy+ZfP\/hBAuU4DHk+zRYsW4d\/\/\/jeqqqrw97\/\/HZ2dnVi2bBmSkpLw6KOPYvfu3QA8jZmjRo3C9OnTMXDgQHR0dODIkSO9VF5SqRQ33ng93n33HRQVncPmzel48MH7edVjoBk9lDecSqUi+4qozysQCNBY6V\/wEKWP6HMazO1249SpU+jo6OBJBwBKSkpwyy23YMGCBXjzzTcxZMgQ\/PKXv8Thw4dx+vTpS55u+z5v2h588EFs376dl8d\/8MEH\/IjtEPyAC+GyAQC3ceNG\/v\/dbjdnMpm4P\/zhD\/xjnZ2dXGRkJPf3v\/+d4ziOa25u5iQSCbd27Vr+ORUVFZxQKOS2bdt2xa79WoHdbue++uor7sEHH+QMBgOn1Wq5++67j9uwYQPX2NjItbe3c+3t7VxraytXVFTEHT58mNu8eTO3bds2Lisri6uoqOCsViv\/vPb2dq6trY3LyNjB\/fKXv+ZiYhI4QOz335gxacxjQ4eOYB4DxFxa2njmscTo4dxNkc\/4\/bfi+j\/5XGugf1arlTt06BCXkZHBNTU18Y+fPXuWS0xM5B588EHO5XJdkb\/V1q1bueeee45bv359r98Ox3HcH\/7wB06pVHLr16\/nsrOzuaVLl3Jms5lrbW3ln\/Pzn\/+ci46O5jIyMrisrCzu+uuv50aNGsU5nc7Lfv2pqancK6+8wmVmZnJCoZArLS297O\/5fUWIeC4jev54CgoKOABcVlaWz\/Pmz5\/P3XvvvRzHcdzOnTs5AFxjY6PPc0aOHMn95je\/uezXfC3D4XBwu3bt4lasWMFZLBYuMjKSW7ZsGffZZ59x9fX1PsRSXFzMffvtt9yWLVu4rVu3ckePHuXKysq4tra2Xov33r37uIceepgzm2N8CCI6Oo5JHhMmTCGJJyFhEPPYTeNuYxLP83f8X59I5\/Dhw1xGRoYPCRcUFHBJSUncfffdd0UWbH\/4Pm7a3n33XS4pKYl7+OGHuVmzZl329\/s+I5Rqu4IIxqYnNP3w8kEsFuP666\/HX\/\/6V5SWluKLL76AXq\/H008\/jcTERCxfvhwbN26EzWaDXq\/H8OHDMW3aNL62lJ2djX379uH06dO8kzYADBw4ADff\/CPs2bMTBw8ewK9+9QxGjkwhazhisYh5TCQSkekhvTKGeSzKENwAOI7jcObMGbS0tGDs2LG8Gqu2tha33HILxo0bh3\/961+9\/PGuFoqKilBdXe0zjlomk2H69On8OOqrPbL6rrvuQkVFBf75z3\/iJz\/5yWV\/v+8zQsRzFXAxNj3BPCeE4CESiTB16lSsXr0aRUVFyMjIQHx8PF588UUkJCTgrrvuwn\/\/+1+0t7dDq9Vi6NChmDZtGt\/Bf\/r0aezduxdZWVnIyspCUlISYmJiMHJkCl544TkcPHgAR44cwm9+8zxGjkzp9f6UY0FsbAzpeBAmYIsWNKbAUmqO45Cbm4vGxkYf0qmvr8e8efMwfPhwrFmzJmBd7Uri+7BpU6lUWLx4MSIiIrBw4cLL\/n7fZ4SI5woiGJue7tMPWc8J4dJCKBRi\/PjxeOONN3D27Fns378fQ4cOxWuvvYaEhATcfvvt+M9\/\/oOWlhao1WoMGTIEU6dOhdlsRmNjI0QiEfLz85GdnY2amhpeBDJkSDJ++cuncfDgAWRnH8PLL7+EtLSxAED29wSSKbs6\/I+7BgJPHuU4Dnl5eaivr8fYsWMhl8sBeLzqFixYgAEDBuCTTz7hBQb9Df1901ZVVYW77rrrkjiCX8sIEc8VRHebHi+8Nj3eyYah6YdXF0KhEKmpqXjllVdw+vRpfPvttxg7diz+8pe\/ICEhAbfeeis+\/PBD\/Oc\/\/8GNN94Ik8mE6dOnIy0tDXK5HOfOneOdtKurq\/nIZcCAAXjiiZXYu3cX8vJy8MgjD2HSpIm860J3eMmABda4a4AmHo7jkJ+fj9raWowdO5ZX3bW0tGDhwoUwm83473\/\/SxqbXi30901bY2Mj1q5di127duHhhx++rO91LaD\/xNLXCKxWK86dO8f\/v3f6oUaj4Q0xX3nlFSQlJfE2PWFhYVi2bBkA3+mHWq0WGo0GTz31VGj64VWAQCBASkoKUlJSsGrVKuTl5WH9+vV48803UVJSgunTp+PgwYP84DqVSsU7adfW1qKwsBA5OTnQaDQwGo3Q6\/WQSCSIiYnBQw\/9HA899HNUV9fgiy++wOefb8L+\/QfgcrngdLJl8zq1AW2NbFNSFvFwHIdz586hqqqKHzcBAG1tbVi8eDHUajXWr1\/fb3fqwXgrdt+03X777QAubNpef\/31y3p9qampaGpqwmuvvYbk5OTL+l7XAkLEc4lx9OhRn07lJ554AoBn+uGaNWuCsul5++23IRaLcfvtt\/PTD9esWdNvCr0\/RAgEAgwZMgSjR49GVVUV3nzzTXR2duLTTz\/Fk08+iUmTJmH+\/PlYsGABLBYLlEolBg4ciPb2dtTW1qK0tBSnT5+GRqPhrXukUilMJiMefPABPPjgA6ivb8CWLVvw9dffICsrizcx7Y6kuBSghH2d3Z2pu6OwsBCVlZVIS0vjSae9vR1LliyBVCrF559\/TvYdXQl8nzdtxcXFl\/X81xpCljkhhBAkmpubkZSUhL\/97W+47bbbAHgiidLSUn6m0MGDBzFu3DjeuicuLo6vL3R0dPBGnK2trYiKimJOCe1uYpqRsYMXIyye\/gBajqv8Xp9YIsS64ud71TMKCwtRWlqKtLQ03iLIZrNhyZIlsNvt+PLLL\/uFPyE1snrNmjXgOA4vvfQS3nvvPX7T9te\/\/tXH0SI0svr7gRDxXIPYt28f3njjDWRmZqKqqgobN270UdksX76812jv8ePH49ChQ\/z\/d3V14amnnsKnn37q8wOOiWFLeX8IaGhogFbrf6oox3GorKzkxzns378fI0eOxMKFC7FgwQIMHDiQJwWvk3ZNTQ1aWloQGRnJk1DPyMNqteKrr7YjPX0TtLYUFH7tf1yCzqLC+0cf93msuLgYxcXFGDt2LE8unZ2duPPOO9HS0oKvvvoKkZG0PU8IIVxqhIjnGsSXX36Jr7\/+GqmpqVi8eLFf4qmpqfHxlpJKpdBoLviRPfTQQ\/jiiy+wZs0aaLVaPPnkk2hsbERmZmYo5RcEOI5DbW0tPv\/8c2zYsAG7d+\/GkCFDeBIaMmQIT0JdXV18JNTU1ASlUsmPc\/CmxbywdzqRtfscDm49gyMZeWhvvSA0GJwajTc2P8D\/f0lJCQoLCzF27FioVJ4oyW634+6770ZVVRV27NgR0E8uhBAuB0LEc41DIBD4JZ7m5uZeXlhetLS0QK\/X4+OPP8bSpUsBAJWVlYiNjcXWrVsxe\/bsK3Dl1w44jkNjYyPS09OxYcMG7NixAwMGDODHOQwfPpxXt3mdtGtqatDY2IiIiAifUdXd4bC7cPJAIb7ZcgbffpWHodfF4dn\/8\/y9SktLUVBQgNTUVD6icTgcuO+++1BUVIRdu3YxI7cQQrjcCBHPNQ4W8Xz++eeQSqVQq9WYPn06fv\/738NgMAAAdu3ahRtvvBGNjY0+O+JRo0Zh4cKFeOmll670x7im0NzcjC+++AIbNmzAV199hejoaJ6ERo8ezZOQw+HwGeegUCj4SCgiwtcM1OVyo6GqFYYYNcrLy\/mBeWq1GoBnBPcDDzyAnJwc7N69m\/9bhxDC1UBI1fYDxJw5c7BkyRLEx8ejqKgIL7zwAm644QZkZmZCJpNd9Q7wax1qtRr33HMP7rnnHrS1tfEzhebMmQOdTod58+Zh0aJFGDduHCwWCywWC5xOJ+rr61FTU4Pi4mLI5XK+JqRSqSASCWGIUaOiogJnz55FamoqTzoulwsrVqzAyZMnsWfPnhDphHDVESKeHyC86TMAGDFiBNLS0hAfH48tW7bg1ltvZb4uZNtz6aFUKrF06VIsXboUHR0d2LZtG9avX49FixYhIiKCV8dNnDgRJpMJJpMJLpcL9fX1qK2tRWZmJiQSCQwGA0QiEUpKSnwiHZfLhUcffRSHDx\/G7t27+UbMEEK4mggRTwgwm82Ij49Hfn4+AN8O8O5RT21tbcg94TIiLCwMt956K2699VZ0dnYiIyMDGzZswB133AGpVMpHQpMnT4bRaITRaITL5UJjYyOKi4vR3NwMiUSCkydPoqOjAzfddBOeeeYZ7NmzB3v27PnBKxJD6D8IWeaEgIaGBpSVlcFsNgMI2fb0B8jlcsybNw8ffPABqqur8eGHH0IgEGD58uUYOHAgVqxYge3bt8PlcmHz5s3429\/+htGjRyMlJQV5eXl44IEHkJCQgE8\/\/ZQfnhZCCP0FIXHBNYjuHeBjxozBW2+9heuvvx4ajQYajQarVq3C4sWLYTabUVxcjGeffRalpaU4c+YM3+vx0EMPYfPmzVizZg3fAd7Q0BCSU19lOJ1O7Nu3D+vWrcPnn3+Ozs5OdHR04PHHH8fTTz8NuVwOt9uN559\/Htu2bUNaWhp27dqFrq4uLFiwAO+++25AL7gQQrjsuEJzf0K4gti9ezcHoNe\/++67j+vo6OBmzZrF6fV6TiKRcHFxcdx9993Xa1qizWbjHnnkEU6j0XAKhYKbO3duaKJiP0N6ejonl8u5efPmcbGxsZxKpeKWLFnCLVq0iDMYDFxOTg7HcRzncrm4AwcOcL\/\/\/e+vyHW9+OKLve49o9HIH3e73dyLL77Imc1mTi6Xc9OnT+dOnTp1Ra4thP6BEPGEEML3ELt37+bCw8O5\/\/3vfxzHecjl4MGD3IoVKziZTMZ9\/fXXV+3aXnzxRW748OFcVVUV\/6+2tpY\/HswI6xCubYSIJ4TLgldeeYVLS0vjIiIiOL1ezy1YsIDLzc31eU4wO9\/Ozk7ukUce4bRaLRcWFsbNmzePKysru5IfpV+ipqaG27Rpk99jLpfrCl+NL1588UVu1KhRfo8FM8I6hGsfIXFBCJcFe\/fuxcMPP4xDhw4hIyMDTqcTs2bNQnt7O\/+c119\/HW+99RbeeecdHDlyBCaTCTNnzkRbWxv\/nJUrV2Ljxo1Yu3YtDhw4AKvVirlz5\/LD1n6oMBgMmDdvnt9j\/mb8XGnk5+fDYrEgMTERd9xxBwoLCwEEN8I6hB8ArjbzhfDDQG1tLQeA27t3L8dxwe18m5ubOYlEwq1du5Z\/TkVFBScUCrlt27Zd2Q8QQtDYunUrt27dOu7kyZNcRkYGN336dM5oNHL19fXc119\/zQHgKioqfF7z4IMPcrNmzbpKVxzClcbV3xqF8INAS0sLAPBGpMHsfDMzM+FwOHyeY7FYMGLEiNDuuB9jzpw5WLx4MT8HZ8uWLQDg44h+MSOsQ7h2ECKeEC47OI7DE088gSlTpvCzU7zWOz1HEne35QlZ91wbCA8PR0pKCvLz84MaYR3CtY8Q8YRw2fHII4\/g5MmT+PTTT3sdu5idb2h3\/P1CV1cXzpw5A7PZ7DPC2gvvCOtQc\/IPByHiCeGy4he\/+AU2bdqE3bt3+1i2BLPz7W7dw3pOCP0PTz31FPbu3YuioiIcPnwYt912G1pbW3HfffdBIBDwI6w3btyIU6dOYfny5T4jrEO49hEinhAuCziOwyOPPIINGzZg165dSExM9DkezM43ZN3z\/UR5eTnuvPNOJCcn49Zbb4VUKsWhQ4cQHx8PAHjmmWewcuVKrFixAmlpaaioqMD27dv7xfjtEK4MQpY5IVwWrFixAp988gnS09ORnJzMPx4ZGcmPdn7ttdfw6quv4oMPPkBSUhJeeeUV7NmzB3l5eSHrnhBCuIYRIp4QLgtYNZgPPvgAy5cvB+CJil566SW89957aGpqwvjx4\/HXv\/6VFyAAQGdnJ55++ml88sknsNlsuPHGG\/Huu+8iNjb2SnyMEEII4TIgRDzXAOrq6pCSkoJHH30Uzz77LADg8OHDmDp1KjZv3uwjRw4hhBBCuNoI1XiuAej1evzf\/\/0fVq1ahaNHj8JqteLuu+\/GihUrfvCk8+qrr2LcuHFQKpUwGAxYuHAh8vLyfJ6zfPlyCAQCn38TJkzweU5XVxd+8YtfQKfTITw8HPPnz0d5efmV\/CghhHDNIBTxXEN4+OGHsWPHDowbNw4nTpzAkSNHfvAW+D\/60Y9wxx13YNy4cXA6nXjuueeQnZ2N06dPIzw8HICHeGpqavDBBx\/wr5NKpXyzK+CpNX3xxRdYs2YNtFotnnzySTQ2NoZqTSGEcBEIEc81BJvNhhEjRqCsrAxHjx7FyJEjr\/Yl9TvU1dXBYDBg7969mDZtGgAP8TQ3N+Pzzz\/3+5qWlhbo9Xp8\/PHH\/NjwyspKxMbGYuvWrZg9e\/aVuvwQQrgmEEq1XUMoLCxEZWUl3G43SkpKrvbl9Ev0tO7xYs+ePTAYDBg8eDAefPBB1NbW8sdC1j0hhHBpIb7aFxDCpYHdbsddd92FpUuXYsiQIbj\/\/vuRnZ0darTshv9v7\/5CmuwCOI5\/08w\/6CQzmFIOIekPYheKMTAUw0AwoqCCKLzwRlfQKolIhOhCxQstCfVCLDBiEeFN5QiCSYMuMhQiuvDCWIQLkhZqM2OdLqLB0Op9fX2f1fx9YDfP83B2dvVj52y\/s1x1D3zvFjty5AgOh4OpqSlaW1uprq7m+fPnpKamqrpHZJUpeBJES0sLHz9+pKenh8zMTEZGRmhoaOD+\/fvxntof40d1j9\/vj7n+Y\/kMoLi4mLKyMhwOBw8ePODw4cM\/HU\/VPSIro6W2BODz+bh69SpDQ0PYbDaSkpIYGhrC7\/fT19cX7+n9EX5W3bOcvLw8HA4Hk5OTgKp7RFabgicBVFVV8eXLFyoqKqLXCgoKCIVCNDU1xXFm8fe76p7lzMzM8ObNG\/Ly8oC1Xd3T29tLYWEhaWlplJaW8uTJk3hPSRKAgkcS2qlTp7h16xa3b98mKyuLYDBIMBgkHA4DMDc3R3NzM0+fPuX169f4fD4OHDhAbm4uhw4dAr7X\/DQ0NHD+\/HkeP37M+Pg4J06ciJ43k6ju3LmD2+2mpaWF8fFx9u7dS21tLYFAIN5Tk7+dxQfPiVgKWPZ148YNY4wxnz59Mvv37zebN282KSkppqCgwNTX15tAIBAzTjgcNqdPnzY5OTkmPT3d1NXVLXkm0ZSXl5vGxsaYazt27DAXL16M04wkUeh\/PCKyxOLiIhkZGdy9ezf6zQ\/gzJkzTExMMDo6GsfZyd9OS20issT79++JRCK\/PCFWZKUUPCIW6evro6SkBJvNhs1mw+l0MjIyEr1vjOHy5cvk5+eTnp5OVVUVL1++jBnD6s64lZwQK\/I7Ch4Ri2zZsoWOjg7GxsYYGxujurqagwcPRsOls7OTrq4url+\/zrNnz7Db7dTU1DA7Oxsdw+12Mzw8jMfjwe\/3Mzc3R11dHZFIZFXnmpubS3Jy8i9PiBVZsfhuMYmsbRs3bjQDAwPm69evxm63m46Ojui9hYUFk52dbfr7+40xxoRCIZOSkmI8Hk\/0mbdv35qkpCTj9XpXfW7l5eWmqakp5trOnTv14wL5z\/SNRyQOIpEIHo+H+fl5nE4nU1NTBIPBmD641NRUKisro31wVnfGnTt3joGBAQYHB3n16hVnz54lEAjQ2Ni46u8la4sqc0Qs9OLFC5xOJwsLC2RmZjI8PMyuXbuiwbHcZv6PwlerO+OOHTvGzMwMV65cYXp6muLiYh4+fIjD4Vj195K1RcEjYqHt27czMTFBKBTi3r171NfXx\/w0eSWb+f\/kmZVyuVy4XK7\/ZWxZu7TUJmKhDRs2sG3bNsrKymhvb2f37t1cu3YNu90O8MvNfHXGSaJQ8IjEkTGGz58\/U1hYiN1uj+mDW1xcZHR0NNoHt5Y74ySxaKlNxCKXLl2itraWrVu3Mjs7i8fjwefz4fV6WbduHW63m7a2NoqKiigqKqKtrY2MjAyOHz8OxHbGbdq0iZycHJqbmxO+M04Sj4JHxCLv3r3j5MmTTE9Pk52dTUlJCV6vl5qaGgAuXLhAOBzG5XLx4cMH9uzZw6NHj8jKyoqO0d3dzfr16zl69CjhcJh9+\/Zx8+ZNkpOT4\/WxRP41dbWJiIiltMcjIiKWUvCIiIilFDwiImIpBY+IiFhKwSMiIpZS8IiIiKUUPCIiYikFj4iIWErBIyIillLwiIiIpRQ8IiJiqW\/9VsG5oCgnEAAAAABJRU5ErkJggg==", "text\/plain": "<Figure size 640x480 with 1 Axes>"}, "metadata": {}, "output_type": "display_data"}]}}, "3012cdca2fe2499d8a50dee485f62217": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "32b1f33a1556467aaba78f0af3df1e4d": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": {"description_width": ""}}, "3500924f544141ef8070a2456337d727": {"model_module": "@jupyter-widgets\/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": {"layout": "IPY_MODEL_e4081c6091bb48838c726ff8e86ca60b", "outputs": [{"data": {"image\/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG2CAYAAACXuTmvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy\/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA5rElEQVR4nO3dfXSU5Z3H\/8\/kaZKQZCBAnkgI4UkrEUTCQ6JWpAs\/WWVFtluq1IO7radW8Lcc6vor5WyLPS3xeI6s3cOWPa3WtRaKu6u27hYRXAQfAE0QJKJFlIQESAiEZCYJYfIw9++PZEYTAgSYzDUz9\/t1zpzj3DOZ+ebyPicfrvt7X5fDsixLAAAANhJjugAAAIBQIwABAADbIQABAADbIQABAADbIQABAADbIQABAADbIQABAADbIQABAADbIQABAADbIQABAADbCZsAVFpaKofDoRUrVgSOWZalNWvWKCcnR0lJSZo9e7YOHTpkrkgAABAVwiIAlZWV6de\/\/rUmT57c6\/hTTz2ldevWaf369SorK1NWVpbmzp2r5uZmQ5UCAIBoYDwAtbS0aMmSJfrNb36jYcOGBY5blqVnnnlGq1ev1qJFi1RYWKgXXnhB586d06ZNmwxWDAAAIl2c6QKWLVumu+66S3\/1V3+ln\/\/854HjlZWVqqur07x58wLHnE6nbr\/9du3evVvf\/\/73+\/08r9crr9cbeO7z+XT27FkNHz5cDodj8H4RAAAQNJZlqbm5WTk5OYqJCf58jdEAtHnzZn344YcqKyu74LW6ujpJUmZmZq\/jmZmZOnbs2EU\/s7S0VE888URwCwUAAEbU1NQoNzc36J9rLADV1NToH\/\/xH7Vt2zYlJiZe9H19Z20sy7rkTM6qVau0cuXKwHO3263Ro0erpqZGaWlp1144AAAYdB6PR3l5eUpNTR2UzzcWgPbt26f6+npNmzYtcKyrq0tvv\/221q9fr8OHD0vqngnKzs4OvKe+vv6CWaGvcjqdcjqdFxxPS0sjAAEAEGEGq33FWBP0N77xDVVUVOjAgQOBR1FRkZYsWaIDBw5o7NixysrK0vbt2wM\/097erl27dqmkpMRU2QAAIAoYmwFKTU1VYWFhr2NDhgzR8OHDA8dXrFihtWvXasKECZowYYLWrl2r5ORk3X\/\/\/SZKBgAAUcL4XWCX8vjjj6utrU2PPPKIGhsbNXPmTG3btm3QrgcCAAB7cFiWZZkuYjB5PB65XC653W56gAAAiBCD\/ffb+EKIAAAAoUYAAgAAtkMAAgAAtkMAAgAAtkMAAgAAtkMAAgAAtkMAAgAAtkMAAgAAtkMAAgAAtkMAAgAAtkMAAgAAtmObAHS2xWu6BAAAECZsE4DKqhpNlwAAAMKEbQLQ3soG0yUAAIAwYZsA9EHlWdMlAACAMGGbAHSs4ZxONrWZLgMAAIQB2wQgSdr9BZfBAACA7QLQGdMlAACAMGCvAPR5gyzLMl0GAAAwzDYBKD42RnWe86o802q6FAAAYJhtAtBNeS5J9AEBAAAbBaCZBcMl0QcEAADsFIDGDpMk7fmiQT4ffUAAANiZbQJQ4aihSk6IVeO5Dv2lrtl0OQAAwCDbBKD42BjNKEiXxGUwAADszjYBSJJuGTdCEo3QAADYna0CUPG47kbo9482qKPLZ7gaAABgiq0C0A3ZaRqaHK\/W9i4dPO42XQ4AADDEVgEoJsah4rHds0B76AMCAMC2bBWAJKlknH89IPqAAACwK9sFoOKeRujyY40639FluBoAAGCC7QLQuJFDlJnmVHunTx8eazRdDgAAMMB2AcjhcKiE2+EBALA12wUg6cvb4d+jERoAAFuyZQDyN0IfPO5W8\/kOw9UAAIBQMxqANmzYoMmTJystLU1paWkqLi7W66+\/Hnj9wQcflMPh6PWYNWvWNX9v7rBk5Q9PVpfPUlnV2Wv+PAAAEFmMBqDc3Fw9+eSTKi8vV3l5uebMmaN77rlHhw4dCrznzjvvVG1tbeCxZcuWoHy3fxbovc\/pAwIAwG7iTH75ggULej3\/xS9+oQ0bNmjv3r2aNGmSJMnpdCorKyvo310yboT+8EENjdAAANhQ2PQAdXV1afPmzWptbVVxcXHg+M6dO5WRkaGJEyfqoYceUn19\/SU\/x+v1yuPx9Hr0Z1bPitCf1np0trU9eL8IAAAIe8YDUEVFhVJSUuR0OvXwww\/r1Vdf1Q033CBJmj9\/vjZu3KgdO3bo6aefVllZmebMmSOv13vRzystLZXL5Qo88vLy+n3fyFSnrstMlSTtYRYIAABbcViWZZksoL29XdXV1WpqatLLL7+sZ599Vrt27QqEoK+qra1Vfn6+Nm\/erEWLFvX7eV6vt1dA8ng8ysvLk9vtVlpaWq\/3PvE\/h\/T8e1VaMnO0fnHvjcH9xQAAwFXzeDxyuVz9\/v0OBuMzQAkJCRo\/fryKiopUWlqqKVOm6Je\/\/GW\/783OzlZ+fr6OHDly0c9zOp2Bu8r8j4vxL4jIDBAAAPZiPAD1ZVnWRS9xNTQ0qKamRtnZ2UH5rplj0xXjkI6eaVWtuy0onwkAAMKf0QD04x\/\/WO+8846qqqpUUVGh1atXa+fOnVqyZIlaWlr02GOPac+ePaqqqtLOnTu1YMECjRgxQvfee29Qvj8tMV435g6VJO3mdngAAGzD6G3wp06d0gMPPKDa2lq5XC5NnjxZW7du1dy5c9XW1qaKigr97ne\/U1NTk7Kzs3XHHXfopZdeUmpqatBqKBk3XB\/VNGn3Fw3622m5QftcAAAQvowGoOeee+6iryUlJemNN94Y9BpuGTdCG3Z+od1fnJFlWXI4HIP+nQAAwKyw6wEKtWn5w5QQG6Na93lVNZwzXQ4AAAgB2wegpIRYTR09VJK0m93hAQCwBdsHIEm6ZXz37fA0QgMAYA8EIH25Meqeow3y+YyuCwkAAEKAACRpcu5QJSfE6mxruw6fajZdDgAAGGQEIEkJcTGaUZAuSXrvc\/qAAACIdgSgHoHLYGyLAQBA1CMA9fDvC\/Z+5Vl1dvkMVwMAAAYTAajHDdlpciXFq8XbqYMn3KbLAQAAg4gA1CMmxqHisVwGAwDADghAX1EyvjsAsSAiAADRjQD0Ff4+oPKqRp3v6DJcDQAAGCwEoK8YN3KIMlKd8nb69GF1o+lyAADAICEAfYXD4eB2eAAAbIAA1EdJz75gLIgIAED0IgD14Z8B+ui4Wy3eTsPVAACAwUAA6iN3WLJGpyery2eprPKs6XIAAMAgIAD145ae2+G5DAYAQHQiAPWjuOd2+N00QgMAEJUIQP3wrwj9Sa1Hja3thqsBAADBRgDqx8hUp67LTJUk7TnKLBAAANGGAHQRxePYFgMAgGhFALoI\/+3wuz9nBggAgGhDALqImWOHK8YhHT3Tqlp3m+lyAABAEBGALsKVFK8bR7kksS0GAADRhgB0Cf7b4d\/jMhgAAFGFAHQJ\/gUR93xxRpZlGa4GAAAECwHoEory0xUf69BJ93kdazhnuhwAABAkBKBLSEqI1dTRwyRJ73E7PAAAUYMAdBm3sC0GAABRhwB0GSU9fUB7v2iQz0cfEAAA0YAAdBlTcocqKT5WDa3tOnyq2XQ5AAAgCAhAl5EQF6MZBemSuAwGAEC0IAANgH9bjD00QgMAEBUIQANQ0tMI\/f7Rs+rs8hmuBgAAXCujAWjDhg2aPHmy0tLSlJaWpuLiYr3++uuB1y3L0po1a5STk6OkpCTNnj1bhw4dCnmdN+SkyZUUr2ZvpypOuEP+\/QAAILiMBqDc3Fw9+eSTKi8vV3l5uebMmaN77rknEHKeeuoprVu3TuvXr1dZWZmysrI0d+5cNTeHthk5NsahWWPpAwIAIFoYDUALFizQX\/\/1X2vixImaOHGifvGLXyglJUV79+6VZVl65plntHr1ai1atEiFhYV64YUXdO7cOW3atCnktZYE1gOiDwgAgEgXNj1AXV1d2rx5s1pbW1VcXKzKykrV1dVp3rx5gfc4nU7dfvvt2r17d8jr8+8LVl7VqPMdXSH\/fgAAEDzGA1BFRYVSUlLkdDr18MMP69VXX9UNN9yguro6SVJmZmav92dmZgZe64\/X65XH4+n1CIZxI1M0MtUpb6dP+6ubgvKZAADADOMB6LrrrtOBAwe0d+9e\/eAHP9DSpUv1ySefBF53OBy93m9Z1gXHvqq0tFQulyvwyMvLC0qdDocjcDs8l8EAAIhsxgNQQkKCxo8fr6KiIpWWlmrKlCn65S9\/qaysLEm6YLanvr7+glmhr1q1apXcbnfgUVNTE7Ra2RcMAIDoYDwA9WVZlrxerwoKCpSVlaXt27cHXmtvb9euXbtUUlJy0Z93Op2B2+r9j2Ap7pkB+qimSS3ezqB9LgAACK04k1\/+4x\/\/WPPnz1deXp6am5u1efNm7dy5U1u3bpXD4dCKFSu0du1aTZgwQRMmTNDatWuVnJys+++\/30i9eenJyktPUs3ZNpVVntUd12cYqQMAAFwbowHo1KlTeuCBB1RbWyuXy6XJkydr69atmjt3riTp8ccfV1tbmx555BE1NjZq5syZ2rZtm1JTU43VfMu4Edp8tka7vzhDAAIAIEI5LMuyTBcxmDwej1wul9xud1Auh\/3pwAn94+YDmpSTpj\/\/v7cFoUIAANBXsP9+9xV2PUDhzt8H9EmtR42t7YarAQAAV4MAdIUyUhM1MTNFliXtPcrdYAAARCIC0FUo4XZ4AAAiGgHoKvgvg73HgogAAEQkAtBVmDV2uGIc0tHTrapznzddDgAAuEIEoKvgSopX4SiXJGnPUWaBAACINASgqxS4DPY5fUAAAEQaAtBV8u8LtueLBkX5UkoAAEQdAtBVKhozTPGxDp1oalP12XOmywEAAFeAAHSVkhPiNDVvmCQugwEAEGkIQNegZHx3H9BubocHACCiEICuQQl9QAAARCQC0DW4KW+okuJj1dDarsOnmk2XAwAABogAdA0S4mI0vSBdkrSbPiAAACIGAegalYzz9wERgAAAiBQEoGvkD0DvH21QZ5fPcDUAAGAgCEDXaFKOS2mJcWr2durjkx7T5QAAgAEgAF2j2BiHZo3ldngAACIJASgIAn1ANEIDABARCEBBcMv47vWAyqrOytvZZbgaAABwOQSgIBifkaIRKU55O33aX91kuhwAAHAZBKAgcDgcX7kMRh8QAADhjgAUJLeMZz0gAAAiBQEoSPz7gh2oaVKrt9NwNQAA4FIIQEGSl56s3GFJ6vRZ+qDqrOlyAADAJRCAguiWr+wODwAAwhcBKIhKxrMgIgAAkYAAFETFPStCHzrpUdO5dsPVAACAiyEABVFGWqImZKTIsqS9R7kMBgBAuCIABVlgPSD6gAAACFsEoCAr7mmEfo8FEQEACFsEoCArHjtcDof0xelWnfKcN10OAADoBwEoyFzJ8SrMcUnibjAAAMIVAWgQfLkvGH1AAACEIwLQICgZ390HtPuLBlmWZbgaAADQFwFoEEwfM0xxMQ6daGpT9dlzpssBAAB9GA1ApaWlmj59ulJTU5WRkaGFCxfq8OHDvd7z4IMPyuFw9HrMmjXLUMUDk5wQp6mjh0ridngAAMKR0QC0a9cuLVu2THv37tX27dvV2dmpefPmqbW1tdf77rzzTtXW1gYeW7ZsMVTxwPl3hycAAQAQfuJMfvnWrVt7PX\/++eeVkZGhffv26etf\/3rguNPpVFZWVqjLuyYl44brl\/93RHu+OCPLsuRwOEyXBABAxPjT\/hOD+vlh1QPkdrslSenp6b2O79y5UxkZGZo4caIeeugh1dfXX\/QzvF6vPB5Pr4cJN40eqsT4GJ1paddnp1qM1AAAQCRyn+vQz7d8MqjfETYByLIsrVy5UrfeeqsKCwsDx+fPn6+NGzdqx44devrpp1VWVqY5c+bI6\/X2+zmlpaVyuVyBR15eXqh+hV6ccbGaPqY7yLEeEAAAA7fpg2q1tfsG9TvCJgAtX75cBw8e1B\/+8IdexxcvXqy77rpLhYWFWrBggV5\/\/XV99tln+vOf\/9zv56xatUputzvwqKmpCUX5\/SoJbItBHxAAAAPR3unTf+yuHPTvMdoD5Pfoo4\/qtdde09tvv63c3NxLvjc7O1v5+fk6cuRIv687nU45nc7BKPOK+RdEfP9ogzq7fIqLDZu8CQBAWNpSUatTHq9GpCRoMKcwjP5FtixLy5cv1yuvvKIdO3aooKDgsj\/T0NCgmpoaZWdnh6DCa1M4yqXUxDg1ezt16KSZXiQAACKFZVl69t2jkqT7Zowe1O8yGoCWLVum3\/\/+99q0aZNSU1NVV1enuro6tbW1SZJaWlr02GOPac+ePaqqqtLOnTu1YMECjRgxQvfee6\/J0gckNsahWWO7Z4Heow8IAIBLer\/yrD4+4VFifIz+rmhwe3iNBqANGzbI7XZr9uzZys7ODjxeeuklSVJsbKwqKip0zz33aOLEiVq6dKkmTpyoPXv2KDU11WTpA+a\/DLaH9YAAALikZ9\/pnv3525tzlT4kYVC\/y2gP0OX2yUpKStIbb7wRomoGxy09+4KVVZ2Vt7NLzrhYwxUBABB+jp5u0Zufdi9z891bCyTZ5C6waDUhI0UjUhJ0vsOn\/dVNpssBACAs\/fa97ju\/\/uprGRo7MmXQv48ANMgcDoeK2RYDAICLamxt13\/vOy5J+u6tY0PynQSgELgl0AdEIzQAAH1tfP+Yznf4NCknTbPGpl\/+B4KAABQC\/gUR91c3qdXbabgaAADCh7ezSy\/sOSZJeui2sSHbO5MAFAJ56UkaNTRJnT5LZVVnTZcDAEDY+J+PanW62austET99Y2hW+OPABQCDodDt4zndngAAL7KsqzAre9LS8YoIS50sYQAFCKBfcHoAwIAQFL3Xpl\/qWtWckKs7h\/klZ\/7IgCFSHFPI\/Shkx41nWs3XA0AAOb5t734VlGeXMnxIf1uAlCIZKYlanxGiixL2nuUPiAAgL0dOdWsnYdPy+GQ\/v6WMSH\/fgJQCBX37Au29yh9QAAAe\/MvfDjvhkzlDx8S8u8nAIXQjILutQ24EwwAYGdnWrx6+cMTkqTv3RaahQ\/7IgCF0PQx3QHo01qPms93GK4GAAAzfr\/3mNo7fZqSN1RF+cOM1EAACqEsV6Ly0pPks6QP2RcMAGBD5zu69GLPwoffu7UgZAsf9kUACjH\/LFBZJZfBAAD286cDJ9TQ2q5RQ5M0vzDLWB0EoBALBCD6gAAANtO98GF38\/ODJWMUF2suhhCAQswfgA7UNMnb2WW4GgAAQmfXZ6d1pL5FKc44LZ6RZ7QWAlCIjRs5ROlDEuTt9OnjEx7T5QAAEDLPvds9+7N4ep7SEkO78GFfBKAQczgcgY53LoMBAOziL3UevXPkjGIc3Ze\/TCMAGUAjNADAbvy9P\/MLs5WXnmy4GgKQEdN7FkQsP9Yon88yXA0AAIOr3nNefzrQvfDhd28rMFxNNwKQAZNy0pQUHyt3W4eO1LeYLgcAgEH14t5j6uiyNC1\/mG4ebWbhw74IQAbEx8Zo6uihkugDAgBEt7b2Lv1+75cLH4YLApAhrAcEALCDlz88rsZzHcpLT9K8SeYWPuyLAGSIPwCVVzUargQAgMHh81n6bc+t739fUqDYGDPbXvSHAGTI1NFDFRvj0ImmNp1oajNdDgAAQffW4XodPdOq1MQ4fWu62YUP+yIAGTLEGafCnDRJ3A4PAIhO\/lvf758xWinOOMPV9EYAMqiIPiAAQJT6+IRbe442KDbGoaVhsPBhXwQgg2iEBgBEK\/+2F3fdmK2coUmGq7kQAcigojHdayF8dqpFTefaDVcDAEBw1LnP638+OilJ+l6YLHzYFwHIoBEpTo0dOUQSd4MBAKLHC3uq1OmzNKMgXZNzh5oup18EIMOm5\/dcBjvGZTAAQORr9XZqYxgufNgXAcgw\/75g3AkGAIgG\/73vuDznOzVmeLK+8bVM0+VcFAHIsBk9jdAVJ9w639FluBoAAK5el8\/Sb9\/rbn7+7q3htfBhXwQgw\/LSk5SR6lRHl6UDNU2mywEA4Kq9+ekpHWs4J1dSvP52Wq7pci6JAGSYw+HgMhgAICo817Pw4ZKZo5WcEF4LH\/ZlNACVlpZq+vTpSk1NVUZGhhYuXKjDhw\/3eo9lWVqzZo1ycnKUlJSk2bNn69ChQ4YqHhzT87tvhy87xp1gAIDI9FFNkz6oOqv42PBc+LAvowFo165dWrZsmfbu3avt27ers7NT8+bNU2tra+A9Tz31lNatW6f169errKxMWVlZmjt3rpqbmw1WHlz+GaAPjzWqy2cZrgYAgCv3bM\/Chwum5CgzLdFwNZdndH5q69atvZ4\/\/\/zzysjI0L59+\/T1r39dlmXpmWee0erVq7Vo0SJJ0gsvvKDMzExt2rRJ3\/\/+902UHXTXZ6Up1RmnZm+nPq31qHCUy3RJAAAM2ImmNm2pqJXU3fwcCa4qAP3sZz+75Os\/+clPrqoYt9stSUpP754RqaysVF1dnebNmxd4j9Pp1O23367du3f3G4C8Xq+8Xm\/gucfjuapaQik2xqGb84dp12enVVZ1lgAEAIgoL+yuUpfPUsm44ZqUExl\/w64qAL366qu9nnd0dKiyslJxcXEaN27cVQUgy7K0cuVK3XrrrSosLJQk1dXVSZIyM3uvI5CZmaljx471+zmlpaV64oknrvj7TZtRkB4IQH9\/S2SkZwAAms936A\/vV0sK320v+nNVAWj\/\/v0XHPN4PHrwwQd17733XlUhy5cv18GDB\/Xuu+9e8JrD0XsdAcuyLjjmt2rVKq1cubJXXXl5eVdVUygV+Ruhqxov+fsBABBO\/rP8uJq9nRo7cohmT8wwXc6ABa0JOi0tTT\/72c\/0z\/\/8z1f8s48++qhee+01vfXWW8rN\/XLdgKysLElfzgT51dfXXzAr5Od0OpWWltbrEQmm5A1VQmyMTjd7dazhnOlyAAC4rM4un57vWfjwe7eOVUwYL3zYV1DvAmtqagr08QyEZVlavny5XnnlFe3YsUMFBb2nzgoKCpSVlaXt27cHjrW3t2vXrl0qKSkJWt3hIDE+Vjfmdl83LatiPSAAQPjb9skpHW9s07DkeC26eZTpcq7IVV0C+9d\/\/ddezy3LUm1trV588UXdeeedA\/6cZcuWadOmTfrTn\/6k1NTUwEyPy+VSUlKSHA6HVqxYobVr12rChAmaMGGC1q5dq+TkZN1\/\/\/1XU3pYmz4mXfuONaqs6qz+rij8L9sBAOztN+8clSQ9MCtfifGxhqu5MlcVgP7lX\/6l1\/OYmBiNHDlSS5cu1apVqwb8ORs2bJAkzZ49u9fx559\/Xg8++KAk6fHHH1dbW5seeeQRNTY2aubMmdq2bZtSU1OvpvSwNqNgmP59l1RexYKIAIDwtu9Yo\/ZXNykhNkbfKc43Xc4Vu6oAVFlZGZQvt6zLL\/rncDi0Zs0arVmzJijfGc6mjU6XwyEdPdOq081ejUx1mi4JAIB+Pfdu9+zPwqk5ykgN\/4UP+2IvsDDiSo7XdZndM1vl9AEBAMJUzdlz2vpxd9vKd28da7iaq0MACjNFY768HR4AgHD02\/cq5bOk2yaM0HVZkdmSQgAKM9PH9OwMzwwQACAMuds69J9lNZKk790WmbM\/EgEo7PgD0KGTbrV4Ow1XAwBAby+VVau1vUsTM1P09QkjTJdz1QhAYSZnaJJGDU2Sz5L2V3MZDAAQPjq6fPqP96okdS98GMm7FhCAwtCMgp7LYJVcBgMAhI8tFbU66T6vESkJ+pubckyXc00IQGGIRmgAQLixLEvPvdu9DM4Ds8ZE3MKHfRGAwtCMnj6g\/TWNau\/0Ga4GAIDuf5QfPO6WMy5G35k12nQ514wAFIbGjUzR0OR4ne\/w6dDJge+tBgDAYHm2Z9uLRTfnanhK5C\/USwAKQzExDhXlczs8ACA8VJ5p1fZPT0mSvnvrGLPFBAkBKEzNKKAPCAAQHp5\/r1KWJd1x3UiNz4jMhQ\/7IgCFqaKePqDyqrPy+S6\/ZxoAAIOh6Vy7\/qv8uCTpoQhe+LAvAlCYKsxxKTE+Ro3nOvTF6RbT5QAAbGrTB9Vq6+jS17LTVDxuuOlygoYAFKYS4mJ0U95QSVwGAwCY0d7p0wu7qyRJ37u1IKIXPuyLABTGZrAvGADAoP89eFKnPF5lpDq1YEpkL3zYFwEojBURgAAAhliWpWff6V74cGnJGCXERVdkiK7fJsrcnD9MMQ7peGObat1tpssBANjInqMN+qTWo6T4WC2ZGfkLH\/ZFAApjKc44TcpxSaIPCAAQWs\/1zP58c1quhiYnGK4m+AhAYS6wLxgbowIAQuTz+hb931\/q5XBIf3\/LGNPlDAoCUJijERoAEGq\/fa979ucb12dq7MgUw9UMDgJQmPM3Qh8+1Sz3uQ7D1QAAot3Z1na9vM+\/8GGB4WoGDwEozI1MdapgxBBZlrSvmlkgAMDg2rj3mLydPt04yqUZBemmyxk0BKAIMH0M+4IBAAbf+Y4uvbDnmCTpe7dF18KHfRGAIkBgPSAaoQEAg+i1j07qTItX2a5E\/fWN2abLGVQEoAjgb4Q+eNyt8x1dhqsBAEQjy7ICt74\/WDJG8bHRHRGi+7eLEvnDkzUixan2Lp8OHnebLgcAEIXe\/fyMDp9qVnJCrL49I\/oWPuyLABQBHA6HZhT4+4C4DAYACL7f9fT+\/N20XLmS4g1XM\/gIQBGiKJ\/1gAAAg6PW3ab\/+\/SUJOmB4nzD1YQGAShC+G9F3FfVqC6fZbgaAEA02fxBjXyWNLMgXeMzUk2XExIEoAhxfVaqUpxxavZ26nBds+lyAABRoqPLp81l1ZKkJbPsMfsjEYAiRlxsjKaOHiqJy2AAgOD5v0\/rdcrj1fAhCbpzUpbpckKGABRB2BcMABBsG9\/vbn7+1vQ8JcTZJxbY5zeNAkVfCUCWRR8QAODaVJ1p1TtHzsjhkO63wa3vX0UAiiBTRw9VfKxDpzxe1ZxtM10OACDC\/eGD7t6f2yeOVF56suFqQosAFEES42N14yiXJC6DAQCuzfmOLv1neY0kaclM+zQ\/+xkNQG+\/\/bYWLFignJwcORwO\/fGPf+z1+oMPPiiHw9HrMWvWLDPFhonp9AEBAIJg68d1ajzXoWxXou64bqTpckLOaABqbW3VlClTtH79+ou+584771RtbW3gsWXLlhBWGH4IQACAYPA3P983Y7Tionzfr\/7Emfzy+fPna\/78+Zd8j9PpVFaWfW7Lu5xp+d1bYnxxulUNLV4NT3EarggAEGn+UudRWVWjYmMcWjw9z3Q5RoR95Nu5c6cyMjI0ceJEPfTQQ6qvr7\/k+71erzweT69HNBk2JEETM1MkSeXHGg1XAwCIRJve725+nvu1TGWmJRquxoywDkDz58\/Xxo0btWPHDj399NMqKyvTnDlz5PV6L\/ozpaWlcrlcgUdeXvQl28Dt8JVcBgMAXJlWb6de+fCEJOk7Nlr5ua+wDkCLFy\/WXXfdpcLCQi1YsECvv\/66PvvsM\/35z3++6M+sWrVKbrc78KipqQlhxaHBgogAgKv12kcn1eLt1JjhySoZN9x0OcYY7QG6UtnZ2crPz9eRI0cu+h6n0ymnM7r7Yqb3bIz68UmPzrV3Kjkhov43AgAMsSxLv9\/b3fx8\/8zRiolxGK7InLCeAeqroaFBNTU1ys7ONl2KUaOGJinHlagun6X91U2mywEARIiDx906dNKjhLgYfXNa9LWIXAmjAailpUUHDhzQgQMHJEmVlZU6cOCAqqur1dLSoscee0x79uxRVVWVdu7cqQULFmjEiBG69957TZYdFvyzQFwGAwAMlH\/2564bs5U+JMFwNWYZDUDl5eWaOnWqpk6dKklauXKlpk6dqp\/85CeKjY1VRUWF7rnnHk2cOFFLly7VxIkTtWfPHqWmpposOywU0QcEALgC7nMd+p+DJyVJS2baa9+v\/hhtHpk9e\/YlN\/V84403QlhNZPE3Qn94rEkdXT7F23ARKwDAwL2y\/7jOd\/h0fVZqYE05O+OvZoSakJEiV1K82jq69MnJ6FrrCAAQXJZlaWPP2j9LZo6Ww2Hf5mc\/AlCEiolxqKgnwXMZDABwKe9XntXn9S1KTojVwqmjTJcTFghAEYxGaADAQPhnf+65aZRSE+MNVxMeCEARbPqY7hmg8qrGS\/ZSAQDs63SzV1s\/rpVE8\/NXEYAiWOEol5xxMWpobdfRM62mywEAhKH\/2lejji5LU\/KGqnCUy3Q5YYMAFMGccbGakjdUEvuCAQAu5PNZgY1Pv8PsTy8EoAjnvx3+A\/qAAAB97DpyWscb25SWGKe7J+eYLiesEIAinL8Ruryq0XAlAIBws3Fv9+zP307LVVJCrOFqwgsBKMLdPHqoYhxS9dlzOuU5b7ocAECYONnUph1\/OSVJWjIz33A14YcAFOFSE+P1tew0SdwODwD40uYPquWzpFlj0zU+I8V0OWGHABQFpvv3BaMRGgAgqaPLp81lNZKY\/bkYAlAUCAQg+oAAAJL+79NTqm\/2akRKgv6fSVmmywlLBKAo4F8Q8dM6jzznOwxXAwAw7fc9zc\/fKspTQhx\/6vvDqESBjLRE5Q9PlmVJ+44xCwQAdlZ5plXvfn5GDod03wzW\/rkYAlCU8F8GK6cRGgBs7Q8fdM\/+zJ44UnnpyYarCV8EoCjhvwxWVskMEADY1fmOLv1XOc3PA0EAihL+GaADx5vk7ewyXA0AwITXP65V47kO5bgSdcf1GabLCWsEoChRMGKIRqQkqL3Tp4rjbtPlAAAM8K\/8fN+M0YqNcRiuJrwRgKKEw+FQUT63wwOAXf2lzqPyY42KjXFo8fQ80+WEPQJQFPHvC8aK0ABgP\/7Zn3k3ZCojLdFwNeGPABRF\/I3Q5VVn5fNZhqsBAIRKq7dTr+4\/IUn6ziyanweCABRFbshOU3JCrDznO\/VZfbPpcgAAIfKnAyfV4u1UwYghKh473HQ5EYEAFEXiYmN082j\/7fBcBgMAO7AsSxvfPyZJun\/GaMXQ\/DwgBKAow75gAGAvHx1369BJjxLiYvTNabmmy4kYBKAoE1gQseqsLIs+IACIdr\/f2z37c\/eN2Ro2JMFwNZGDABRlpo4eprgYh2rd53Wiqc10OQCAQeQ+16H\/+eikJGnJLPb9uhIEoCiTlBCrwlEuSdwODwDR7uUPj8vb6dP1WamBHlAMDAEoCvkvg33AvmAAELW+2vy8ZFa+HA6an68EASgKsTM8AES\/vUfP6ovTrUpOiNXCm3JMlxNxCEBRqKgnAB2pb1Fja7vhagAAg8E\/+7Nw6iilJsYbribyEICiUPqQBI3PSJEklR\/jMhgARJvTzV69cahOUvfaP7hyBKAo9eV6QFwGA4Bo85\/lNerosnRT3tDAjS+4MgSgKPVlIzQBCACiSZfP0h8+6N74lH2\/rh4BKEr5Z4A+PuFWW3uX4WoAAMHy9mendbyxTWmJcbp7crbpciIWAShK5Q5LUlZaojp9lvbX0AcEANHC3\/z8zWl5SoyPNVxN5DIagN5++20tWLBAOTk5cjgc+uMf\/9jrdcuytGbNGuXk5CgpKUmzZ8\/WoUOHzBQbYRwOh6YX+G+HJwABQDQ40dSmHX+pl8TKz9fKaABqbW3VlClTtH79+n5ff+qpp7Ru3TqtX79eZWVlysrK0ty5c9Xc3BziSiPTV\/cFAwBEvs0fVMtnScVjh2vcyBTT5US0OJNfPn\/+fM2fP7\/f1yzL0jPPPKPVq1dr0aJFkqQXXnhBmZmZ2rRpk77\/\/e+HstSI5O8D+vBYozq7fIqL5YonAESqji6fNpfVSGL2JxjC9i9iZWWl6urqNG\/evMAxp9Op22+\/Xbt3777oz3m9Xnk8nl4Pu7ouM1WpiXFqbe\/Sp7XMmgFAJHvzk1M63ezViBSn5t2QZbqciBe2AaiurnuBp8zMzF7HMzMzA6\/1p7S0VC6XK\/DIy8sb1DrDWUyMQ0X5PbfDcxkMACLa73uanxdPz1VCXNj++Y4YYT+CfTd3syzrkhu+rVq1Sm63O\/CoqakZ7BLD2peN0AQgAIhUR0+36L3PG+RwSN+ezuWvYDDaA3QpWVnd03t1dXXKzv5ynYP6+voLZoW+yul0yul0Dnp9keKrK0JfLjwCAMKTf+HDO67LUF56suFqokPYzgAVFBQoKytL27dvDxxrb2\/Xrl27VFJSYrCyyDI516WEuBidaWlXVcM50+UAAK7Q+Y4u\/de+45KkJTOZ\/QkWozNALS0t+vzzzwPPKysrdeDAAaWnp2v06NFasWKF1q5dqwkTJmjChAlau3atkpOTdf\/99xusOrI442J1U+5QfVB1VmWVZ1UwYojpkgAAV2BLRa2aznVo1NAkzb4uw3Q5UcNoACovL9cdd9wReL5y5UpJ0tKlS\/Uf\/\/Efevzxx9XW1qZHHnlEjY2NmjlzprZt26bU1FRTJUekojHDugNQ1Vl9a7p9m8IBIBJtfL\/78td9M\/IUG0MbQ7AYDUCzZ8+WZVkXfd3hcGjNmjVas2ZN6IqKQtML0qWdX7AgIgBEmE9rPdp3rFFxMQ59q4h\/wAZT2PYAIXhuHj1MDodU1XBO9c3nTZcDABgg\/75f8yZlKiMt0XA10YUAZAOupHhdn5UmiX3BACBStHg79eqHJyRJ35mZb7ia6EMAsgn\/vmAfVHIZDAAiwZ8OnFBre5fGjhii4nHDTZcTdQhANuFfD6j8GAEIAMKdZVn6\/d7u5uf7Z45mDbdBQACyCX8A+uSkR83nOwxXAwC4lAM1Tfq01qOEuBh9c1qu6XKiEgHIJrJcicpLT5LPkvZXN5kuBwBwCf7Zn7snZ2tocoLhaqITAchGvrotBgAgPDWda9f\/HjwpSVpC8\/OgIQDZiD8A0QgNAOHr5Q9PyNvp09ey03Tz6KGmy4laBCAb8QegAzVNau\/0Ga4GANCXZVmBtX+W0Pw8qAhANjJu5BClD0mQt9OnihNu0+UAAPrYc7RBR0+3akhCrBZOHWW6nKhGALIRh8Ohovzu9YDK6QMCgLDj3\/dr4dRRSnEa3a0q6hGAbGZGAY3QABCO6pvP642P6yTR\/BwKBCCbKQosiNgon+\/iG9ECAELrv8qPq9NnaeroobohJ810OVGPAGQzk3LSlBQfq6ZzHfr8dIvpcgAAkrp8ljb1XP5i36\/QIADZTHxsjKb23FbJ7fAAEB52fVavE01tciXF667J2abLsQUCkA0F9gWjDwgAwsLGnpWfvzktV4nxsYarsQcCkA192QjdaLgSAMDxxnPacbheUvfGpwgNApAN3ZQ3VLExDp1oatOJpjbT5QCArW3+oEaWJZWMG65xI1NMl2MbBCAbGuKMU2HPHQZcBgMAczq6fNpcViOJW99DjQBkU0XsCwYAxm3\/5JTOtHg1MtWpeZMyTZdjKywzaVPTx6TruXcrtfH96sDKowAAMxYX5Sk+ljmJUGK0bap43HBlpjlNlwEAtjc0OV5LZtH8HGrMANmUKyle7\/5\/c+Rp6zBdCgDYWkpinJxx3PoeagQgG4uPjdHwFGaBAAD2wyUwAABgOwQgAABgOwQgAABgOwQgAABgOwQgAABgOwQgAABgOwQgAABgOwQgAABgOwQgAABgOwQgAABgOwQgAABgO2EdgNasWSOHw9HrkZWVZbosAAAQ4cJ+M9RJkybpzTffDDyPjWXHXAAAcG3CPgDFxcUx6wMAAIIqrC+BSdKRI0eUk5OjgoICffvb39bRo0dNlwQAACJcWM8AzZw5U7\/73e80ceJEnTp1Sj\/\/+c9VUlKiQ4cOafjw4f3+jNfrldfrDTz3eDyhKhcAAEQIh2VZlukiBqq1tVXjxo3T448\/rpUrV\/b7njVr1uiJJ5644Ljb7VZaWtpglwgAAILA4\/HI5XIN2t\/vsL8E9lVDhgzRjTfeqCNHjlz0PatWrZLb7Q48ampqQlghAACIBGF9Cawvr9erTz\/9VLfddttF3+N0OuV0OkNYFQAAiDRhPQP02GOPadeuXaqsrNT777+vb37zm\/J4PFq6dKnp0gAAQAQL6xmg48eP67777tOZM2c0cuRIzZo1S3v37lV+fr7p0gAAQAQL6wC0efNm0yUAAIAoFNaXwAAAAAYDAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANhORASgX\/3qVyooKFBiYqKmTZumd955x3RJAAAggoV9AHrppZe0YsUKrV69Wvv379dtt92m+fPnq7q62nRpAAAgQjksy7JMF3EpM2fO1M0336wNGzYEjn3ta1\/TwoULVVpaetmf93g8crlccrvdSktLG8xSAQBAkAz23++4oH9iELW3t2vfvn360Y9+1Ov4vHnztHv37n5\/xuv1yuv1Bp673W5J3QMJAAAig\/\/v9mDN04R1ADpz5oy6urqUmZnZ63hmZqbq6ur6\/ZnS0lI98cQTFxzPy8sblBoBAMDgaWhokMvlCvrnhnUA8nM4HL2eW5Z1wTG\/VatWaeXKlYHnTU1Nys\/PV3V19aAMoJ14PB7l5eWppqaGy4nXgHEMHsYyeBjL4GAcg8ftdmv06NFKT08flM8P6wA0YsQIxcbGXjDbU19ff8GskJ\/T6ZTT6bzguMvl4mQMkrS0NMYyCBjH4GEsg4exDA7GMXhiYgbnfq2wvgssISFB06ZN0\/bt23sd3759u0pKSgxVBQAAIl1YzwBJ0sqVK\/XAAw+oqKhIxcXF+vWvf63q6mo9\/PDDpksDAAARKuwD0OLFi9XQ0KCf\/exnqq2tVWFhobZs2aL8\/PwB\/bzT6dRPf\/rTfi+L4cowlsHBOAYPYxk8jGVwMI7BM9hjGfbrAAEAAARbWPcAAQAADAYCEAAAsB0CEAAAsB0CEAAAsJ2oDkC\/+tWvVFBQoMTERE2bNk3vvPOO6ZLC3po1a+RwOHo9srKyAq9blqU1a9YoJydHSUlJmj17tg4dOmSw4vDx9ttva8GCBcrJyZHD4dAf\/\/jHXq8PZOy8Xq8effRRjRgxQkOGDNHf\/M3f6Pjx4yH8Lcy73Dg++OCDF5yjs2bN6vUexrF7W6Dp06crNTVVGRkZWrhwoQ4fPtzrPZyTAzOQseS8HJgNGzZo8uTJgYUii4uL9frrrwdeD+U5GbUB6KWXXtKKFSu0evVq7d+\/X7fddpvmz5+v6upq06WFvUmTJqm2tjbwqKioCLz21FNPad26dVq\/fr3KysqUlZWluXPnqrm52WDF4aG1tVVTpkzR+vXr+319IGO3YsUKvfrqq9q8ebPeffddtbS06O6771ZXV1eofg3jLjeOknTnnXf2Oke3bNnS63XGUdq1a5eWLVumvXv3avv27ers7NS8efPU2toaeA\/n5MAMZCwlzsuByM3N1ZNPPqny8nKVl5drzpw5uueeewIhJ6TnpBWlZsyYYT388MO9jl1\/\/fXWj370I0MVRYaf\/vSn1pQpU\/p9zefzWVlZWdaTTz4ZOHb+\/HnL5XJZ\/\/7v\/x6iCiODJOvVV18NPB\/I2DU1NVnx8fHW5s2bA+85ceKEFRMTY23dujVktYeTvuNoWZa1dOlS65577rnozzCO\/auvr7ckWbt27bIsi3PyWvQdS8vivLwWw4YNs5599tmQn5NROQPU3t6uffv2ad68eb2Oz5s3T7t37zZUVeQ4cuSIcnJyVFBQoG9\/+9s6evSoJKmyslJ1dXW9xtXpdOr2229nXC9jIGO3b98+dXR09HpPTk6OCgsLGd8+du7cqYyMDE2cOFEPPfSQ6uvrA68xjv1zu92SFNhYknPy6vUdSz\/OyyvT1dWlzZs3q7W1VcXFxSE\/J6MyAJ05c0ZdXV0XbJiamZl5wcaq6G3mzJn63e9+pzfeeEO\/+c1vVFdXp5KSEjU0NATGjnG9cgMZu7q6OiUkJGjYsGEXfQ+k+fPna+PGjdqxY4eefvpplZWVac6cOfJ6vZIYx\/5YlqWVK1fq1ltvVWFhoSTOyavV31hKnJdXoqKiQikpKXI6nXr44Yf16quv6oYbbgj5ORn2W2FcC4fD0eu5ZVkXHENv8+fPD\/z3jTfeqOLiYo0bN04vvPBCoKGPcb16VzN2jG9vixcvDvx3YWGhioqKlJ+frz\/\/+c9atGjRRX\/OzuO4fPlyHTx4UO++++4Fr3FOXpmLjSXn5cBdd911OnDggJqamvTyyy9r6dKl2rVrV+D1UJ2TUTkDNGLECMXGxl6QBuvr6y9Ilri0IUOG6MYbb9SRI0cCd4MxrlduIGOXlZWl9vZ2NTY2XvQ9uFB2drby8\/N15MgRSYxjX48++qhee+01vfXWW8rNzQ0c55y8chcby\/5wXl5cQkKCxo8fr6KiIpWWlmrKlCn65S9\/GfJzMioDUEJCgqZNm6bt27f3Or59+3aVlJQYqioyeb1effrpp8rOzlZBQYGysrJ6jWt7e7t27drFuF7GQMZu2rRpio+P7\/We2tpaffzxx4zvJTQ0NKimpkbZ2dmSGEc\/y7K0fPlyvfLKK9qxY4cKCgp6vc45OXCXG8v+cF4OnGVZ8nq9oT8nr7JpO+xt3rzZio+Pt5577jnrk08+sVasWGENGTLEqqqqMl1aWPvhD39o7dy50zp69Ki1d+9e6+6777ZSU1MD4\/bkk09aLpfLeuWVV6yKigrrvvvus7Kzsy2Px2O4cvOam5ut\/fv3W\/v377ckWevWrbP2799vHTt2zLKsgY3dww8\/bOXm5lpvvvmm9eGHH1pz5syxpkyZYnV2dpr6tULuUuPY3Nxs\/fCHP7R2795tVVZWWm+99ZZVXFxsjRo1inHs4wc\/+IHlcrmsnTt3WrW1tYHHuXPnAu\/hnByYy40l5+XArVq1ynr77betyspK6+DBg9aPf\/xjKyYmxtq2bZtlWaE9J6M2AFmWZf3bv\/2blZ+fbyUkJFg333xzr1sW0b\/Fixdb2dnZVnx8vJWTk2MtWrTIOnToUOB1n89n\/fSnP7WysrIsp9Npff3rX7cqKioMVhw+3nrrLUvSBY+lS5daljWwsWtra7OWL19upaenW0lJSdbdd99tVVdXG\/htzLnUOJ47d86aN2+eNXLkSCs+Pt4aPXq0tXTp0gvGiHG0+h1DSdbzzz8feA\/n5MBcbiw5LwfuH\/7hHwJ\/l0eOHGl94xvfCIQfywrtOemwLMu6sjkjAACAyBaVPUAAAACXQgACAAC2QwACAAC2QwACAAC2QwACAAC2QwACAAC2QwACAAC2QwACAAC2QwACAAC2QwACAAC2QwACEFFOnz6trKwsrV27NnDs\/fffV0JCgrZt22awMgCRhL3AAEScLVu2aOHChdq9e7euv\/56TZ06VXfddZeeeeYZ06UBiBAEIAARadmyZXrzzTc1ffp0ffTRRyorK1NiYqLpsgBECAIQgIjU1tamwsJC1dTUqLy8XJMnTzZdEoAIQg8QgIh09OhRnTx5Uj6fT8eOHTNdDoAIwwwQgIjT3t6uGTNm6KabbtL111+vdevWqaKiQpmZmaZLAxAhCEAAIs4\/\/dM\/6b\/\/+7\/10UcfKSUlRXfccYdSU1P1v\/\/7v6ZLAxAhuAQGIKLs3LlTzzzzjF588UWlpaUpJiZGL774ot59911t2LDBdHkAIgQzQAAAwHaYAQIAALZDAAIAALZDAAIAALZDAAIAALZDAAIAALZDAAIAALZDAAIAALZDAAIAALZDAAIAALZDAAIAALZDAAIAALZDAAIAALbz\/wMREW7fVwuaSAAAAABJRU5ErkJggg==", "text\/plain": "<Figure size 640x480 with 1 Axes>"}, "metadata": {}, "output_type": "display_data"}]}}, "372d2a496a5f46259db10a571b9ffb16": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "3b2d03cd328c49529d82b802d05a9a90": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "3ca3ead3f99b45b2bf5a79d0f022dcfa": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": {"description_width": ""}}, "3dfd829e56824d288459d82647e0ac61": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "3f7daa758bd548edbe29ba88cd0b8388": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": {"_dom_classes": ["widget-interact"], "children": ["IPY_MODEL_99f37541ac7b4dbfac2f489c1a5b0353", "IPY_MODEL_53fc46cd75c548ca80cf284ac572e639"], "layout": "IPY_MODEL_d46db30322c046b3a3b40e07893e8e0f"}}, "409e5ad2c8d1498aa37ebe59663d605c": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "40b159f172e843e0be00be922ba726d0": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "40ddbc947f924670b1c89507cec96d03": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "40f923003f624e14ba2a6eeff1edb42c": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "41ceba8688ab4ce8b71fd02a6e2ab2c4": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "PlayModel", "state": {"description": "step", "layout": "IPY_MODEL_87d61c25a76c41e1a826e0e1bcdaf617", "max": 599, "style": "IPY_MODEL_e84b526ca1ae4e019432105a43b87ec1", "value": 19}}, "420a354128d1426c915435db89be0486": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": {"source": ["IPY_MODEL_b361054bfbfd4aa193975eb438f70d68", "value"], "target": ["IPY_MODEL_abc536027e9f46dca983b3512682b4b6", "value"]}}, "4252ab6bb32e4e3aadefa67e72c98374": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": {"description_width": ""}}, "43adcc6e3cae436381914fa8b1f71de2": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": {"_dom_classes": ["widget-interact"], "children": ["IPY_MODEL_ffd206a2fd774da69a72e07e90044435", "IPY_MODEL_af86ac9bb8014c268c8513ac6ee499e7"], "layout": "IPY_MODEL_7aac04d137c84a4d95a975fc42549096"}}, "47b1a57cdbeb4a11abc8e9166acedb90": {"model_module": "@jupyter-widgets\/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": {"layout": "IPY_MODEL_17a0e3715b704af5b5bb4230d0ea690b", "outputs": [{"data": {"image\/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG2CAYAAACXuTmvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy\/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAxiklEQVR4nO3de2zUdb7\/8df0Ni10OgWhnWmn9HQVdLVQXXAR4gXZQ3\/2rKzKnvzcdWMgJzG6gjmE3WMWyTlWs0uN+cnBE85yzl7iQY+kJmfF4++oCAYpa1j2V1iKXXQ57LFKgZYKtjNtaae3z++PMtOWtlDamfnOzPf5SCZxvnP5vvvJJLz8XB3GGCMAAAAbSbG6AAAAgFgjAAEAANshAAEAANshAAEAANshAAEAANshAAEAANshAAEAANshAAEAANshAAEAANshAAEAANuJmwBUVVUlh8Oh9evXh68ZY1RZWamCggJlZWVp2bJlOn78uHVFAgCApBAXAai2tla\/+MUvtGDBghHXX3zxRW3ZskXbtm1TbW2tPB6PVqxYofb2dosqBQAAycDyANTR0aEf\/OAH+uUvf6kZM2aErxtjtHXrVm3atEmrVq1SaWmpduzYoYsXL2rnzp0WVgwAABJdmtUFrF27Vt\/+9rf1l3\/5l\/rpT38avt7Q0KDm5maVl5eHrzmdTt1zzz06ePCgHn\/88TG\/LxgMKhgMhp8PDAzoq6++0nXXXSeHwxG9PwQAAESMMUbt7e0qKChQSkrk+2ssDUDV1dX6wx\/+oNra2lGvNTc3S5Ly8\/NHXM\/Pz9cXX3wx7ndWVVXpueeei2yhAADAEo2NjfL5fBH\/XssCUGNjo\/72b\/9We\/bsUWZm5rjvu7zXxhhzxZ6cjRs3asOGDeHnfr9fc+bMUWNjo3JycqZeOAAAiLpAIKCioiK5XK6ofL9lAejIkSNqaWnRwoULw9f6+\/t14MABbdu2TSdOnJA02BPk9XrD72lpaRnVKzSc0+mU0+kcdT0nJ4cABABAgonW9BXLJkF\/61vfUn19verq6sKPRYsW6Qc\/+IHq6ur0ta99TR6PR3v37g1\/pqenRzU1NVq6dKlVZQMAgCRgWQ+Qy+VSaWnpiGvTp0\/XddddF76+fv16bd68WXPnztXcuXO1efNmTZs2TY888ogVJQMAgCRh+SqwK3n66afV1dWlJ598Uq2trVq8eLH27NkTtfFAAABgDw5jjLG6iGgKBAJyu93y+\/3MAQIAIEFE+99vyzdCBAAAiDUCEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB3bBCB\/V6\/VJQAAgDhhmwB0tu2i1SUAAIA4YZsAdKat2+oSAABAnLBNAGpq67K6BAAAECdsE4DoAQIAACG2CUDMAQIAACH2CUB+eoAAAMAg+wSgVuYAAQCAQbYJQIHuPrV3sxcQAACwUQCSpDOsBAMAALJZADr9FQEIAADYLQC1shIMAADYLAAxBAYAACSbBaDTrAQDAAAiAAEAABuyVQBiCAwAAEg2C0BfdfaoM9hndRkAAMBitglArsxUSfQCAQAAGwWggtxpkqQzzAMCAMD2bBSAMiWxFxAAALBVAMqSJJ1mCAwAANuzTwByh3qACEAAANidfQLQpTlABCAAAGCbAFR4aQ4Qk6ABAIClAWj79u1asGCBcnJylJOToyVLlui9994Lv75mzRo5HI4RjzvuuGNS9wrNATrfEVR3b39E6gcAAIkpzcqb+3w+vfDCC7rhhhskSTt27NADDzygo0eP6pZbbpEk3XfffXrllVfCn8nIyJjUvdxZ6cp2pqkj2KfTrV26IS976n8AAABISJYGoJUrV454\/rOf\/Uzbt2\/XoUOHwgHI6XTK4\/FM+V4Oh0O+GVn6U3O7zrQRgAAAsLO4mQPU39+v6upqdXZ2asmSJeHr+\/fvV15enubNm6fHHntMLS0tV\/yeYDCoQCAw4hFSGFoKz15AAADYmuUBqL6+XtnZ2XI6nXriiSe0a9cu3XzzzZKkiooKvf7669q3b59eeukl1dbWavny5QoGg+N+X1VVldxud\/hRVFQUfs03IxSAmAgNAICdOYwxxsoCenp6dOrUKbW1tek3v\/mNfvWrX6mmpiYcgoZrampScXGxqqurtWrVqjG\/LxgMjghIgUBARUVF8vv9eqPuvH727qf6TlmB\/un7t0XtbwIAAFMTCATkdrvl9\/uVk5MT8e+3dA6QNDipOTQJetGiRaqtrdXLL7+sf\/3Xfx31Xq\/Xq+LiYp08eXLc73M6nXI6nWO+VjiDITAAABAHQ2CXM8aMO8R14cIFNTY2yuv1Tuq7GQIDAACSxT1AzzzzjCoqKlRUVKT29nZVV1dr\/\/792r17tzo6OlRZWanvfve78nq9+vzzz\/XMM89o1qxZeuihhyZ1P9+Mwd2gW9qDCvb1y5mWGsk\/BwAAJAhLA9C5c+f06KOPqqmpSW63WwsWLNDu3bu1YsUKdXV1qb6+Xq+++qra2trk9Xp177336o033pDL5ZrU\/WZMS1dWeqq6evt1tq1bJbOmR\/gvAgAAicDSAPTrX\/963NeysrL0\/vvvR\/R+ob2ATrZ06HTrRQIQAAA2FXdzgKItNA+IM8EAALAv2wWgQiZCAwBge7YLQKGJ0CyFBwDAvmwYgC4NgbXRAwQAgF3ZLgANnQdGAAIAwK5sF4BCQ2DNgW719A1YXA0AALCC7QLQrOwMOdNSZIzU7O+2uhwAAGAB2wUgh8PBmWAAANic7QKQNHwlGPOAAACwI5sGoEs9QKwEAwDAlmwZgIZWgjEEBgCAHdkyAPnYDRoAAFuzaQAanAPEeWAAANiTTQPQYA9Qc6Bbff3sBQQAgN3YMgDNznYqIzVF\/QNGTewFBACA7dgyAKWkDO0FxJlgAADYjy0DkMSZYAAA2JltA5CP3aABALAt2wcgVoIBAGA\/tg1AhewFBACAbdk2AIXPA2tjCAwAALuxcQAa7AFqautW\/4CxuBoAABBLtg1Aea5MpaU41DdgdC7AXkAAANiJbQNQaopDBSyFBwDAlmwbgKRhK8GYBwQAgK3YOgCFN0P8ih4gAADsxNYBKLwSjCEwAABsxeYBiPPAAACwI1sHoEKOwwAAwJZsHYBCPUBn27o1wF5AAADYhq0DkCcnU6kpDvX0D+jLjqDV5QAAgBixdQBKS02RJydTEsNgAADYia0DkDQ0DMZKMAAA7IMAxFJ4AABsx\/YBqJAeIAAAbMfSALR9+3YtWLBAOTk5ysnJ0ZIlS\/Tee++FXzfGqLKyUgUFBcrKytKyZct0\/PjxiNbgYyk8AAC2Y2kA8vl8euGFF3T48GEdPnxYy5cv1wMPPBAOOS+++KK2bNmibdu2qba2Vh6PRytWrFB7e3vkamAzRAAAbMfSALRy5Ur91V\/9lebNm6d58+bpZz\/7mbKzs3Xo0CEZY7R161Zt2rRJq1atUmlpqXbs2KGLFy9q586dEavBlzs4B+hMa5eMYS8gAADsIG7mAPX396u6ulqdnZ1asmSJGhoa1NzcrPLy8vB7nE6n7rnnHh08eDBi9\/W4M5XikIJ97AUEAIBdpFldQH19vZYsWaLu7m5lZ2dr165duvnmm8MhJz8\/f8T78\/Pz9cUXX4z7fcFgUMHgUJAJBAJXvH9G2uBeQGf93TrT2qU8V+YU\/hoAAJAILO8BuvHGG1VXV6dDhw7phz\/8oVavXq1PPvkk\/LrD4RjxfmPMqGvDVVVVye12hx9FRUVXrYGVYAAA2IvlASgjI0M33HCDFi1apKqqKpWVlenll1+Wx+ORJDU3N494f0tLy6heoeE2btwov98ffjQ2Nl61BvYCAgDAXiwPQJczxigYDKqkpEQej0d79+4Nv9bT06OamhotXbp03M87nc7wsvrQ42qGVoKxFB4AADuwdA7QM888o4qKChUVFam9vV3V1dXav3+\/du\/eLYfDofXr12vz5s2aO3eu5s6dq82bN2vatGl65JFHIlpHYS5DYAAA2ImlAejcuXN69NFH1dTUJLfbrQULFmj37t1asWKFJOnpp59WV1eXnnzySbW2tmrx4sXas2ePXC5XROtgCAwAAHtxmCTf\/CYQCMjtdsvv9487HPb5+U4t+z\/7lZWeqk+e\/19XnGQNAACibyL\/fk9F3M0BsoI3d3Dpe1dvv77q7LG4GgAAEG0EIEnOtFTl5zglMQwGAIAdEIAuCc0D4kwwAACSHwHokqGVYCyFBwAg2RGALvGxGzQAALZBALokPARGAAIAIOkRgC7hPDAAAOyDAHTJ0BDYRSX51kgAANgeAeiS0CTozp5++bt6La4GAABEEwHoksz0VM3KZi8gAADsgAA0zPBhMAAAkLwIQMMwERoAAHsgAA3DXkAAANgDAWiY0F5ABCAAAJIbAWgY36WVYJwHBgBAciMADcMkaAAA7IEANExoEnR7dx97AQEAkMQIQMNMy0jTzOkZkjgTDACAZEYAugzDYAAAJD8C0GVYCg8AQPIjAF2mkJVgAAAkPQLQZYb2AmIIDACAZEUAugxDYAAAJD8C0GVCS+EZAgMAIHkRgC4TmgPUdrFX7d3sBQQAQDIiAF3GlZmu3GnpkugFAgAgWRGAxhBeCcY8IAAAkhIBaAxMhAYAILkRgMbAUngAAJIbAWgMbIYIAEByIwCNgSEwAACSGwFoDENDYAQgAACSEQFoDKHNEL\/q7NHFnj6LqwEAAJFGABqDOytdrsw0SSyFBwAgGRGAxsEwGAAAyYsANI7QSrDTrAQDACDpWBqAqqqqdPvtt8vlcikvL08PPvigTpw4MeI9a9askcPhGPG44447ol7b0Eow9gICACDZWBqAampqtHbtWh06dEh79+5VX1+fysvL1dnZOeJ99913n5qamsKPd999N+q1sRQeAIDklWblzXfv3j3i+SuvvKK8vDwdOXJEd999d\/i60+mUx+OJaW2hAMQkaAAAYu\/tujNR\/f64mgPk9\/slSTNnzhxxff\/+\/crLy9O8efP02GOPqaWlZdzvCAaDCgQCIx6TwSRoAACs0dM3oGf\/7ydRvUfcBCBjjDZs2KA777xTpaWl4esVFRV6\/fXXtW\/fPr300kuqra3V8uXLFQwGx\/yeqqoqud3u8KOoqGhS9YR6gM53BNXd2z+p7wAAANfuT80B9fYNRPUelg6BDbdu3Tp9\/PHH+uijj0Zcf\/jhh8P\/XVpaqkWLFqm4uFjvvPOOVq1aNep7Nm7cqA0bNoSfBwKBSYUgd1a6pmekqrOnX2faunT97Oxr\/g4AAHDt6hrbon6PuAhATz31lN5++20dOHBAPp\/viu\/1er0qLi7WyZMnx3zd6XTK6XROuSaHwyHfjGk6ca5dp1sJQAAAxErdqbao38PSITBjjNatW6c333xT+\/btU0lJyVU\/c+HCBTU2Nsrr9Ua9PpbCAwAQe3Wn26J+D0sD0Nq1a\/Xv\/\/7v2rlzp1wul5qbm9Xc3KyursGJxx0dHfrxj3+s3\/3ud\/r888+1f\/9+rVy5UrNmzdJDDz0U9foKWQkGAEBM+S\/26rMvO6\/+ximyNABt375dfr9fy5Ytk9frDT\/eeOMNSVJqaqrq6+v1wAMPaN68eVq9erXmzZun3\/3ud3K5XFGvj72AAACIrY\/PtEmSimZmRfU+ls4BMsZc8fWsrCy9\/\/77MapmtKGl8AyBAQAQC6H5P\/ML3DoYxfvEzTL4eBQ6D+wM54EBABATxy7N\/5nvc0f1PgSgKwgNgZ0LBBXsYy8gAACiyRgTXgJfWkgAsszM6RnKSk+VJJ1t67a4GgAAktuZti6d7+hRWopDX\/fmRPVeBKArcDgcrAQDACBGQr0\/X\/fmKPNSB0S0EICugr2AAACIjWOXAtCtRblRvxcB6CpYCg8AQGyEeoDKCEDWK8wdXArPSjAAAKKnr39A9Wf8kugBigsMgQEAEH0nzrWru3dArsw0fW3W9KjfjwB0FQyBAQAQfccaB3t\/yny5SklxRP1+BKCrKAzvBdStnr4Bi6sBACA51TW2SpLKiqK7\/08IAegqZmc75UxL0YCRmv3sBQQAQDSEeoBuLZoRk\/sRgK5i+F5AzAMCACDyOoJ9+u+Wdkn0AMWV0Jlgp1kJBgBAxH18uk3GDP57m+fKjMk9CUATMHQqPAEIAIBIGxr+yo3ZPQlAE8BSeAAAoifWE6AlAtCE+DgPDACAqIn1BGiJADQh7AUEAEB0NPu71RzoVmqKQ6WF0T0BfjgC0ASE5gA1B7rV189eQAAAREro\/K95+S5Ny0iL2X0JQBMwO9upjNQU9Q8YNQfYCwgAgEipC58AH7v5PxIBaEJSUhwqyB1clscwGAAAkXMsHIByY3pfAtAEsRQeAIDI6h8w+vh0mySpjAAUn0KbIbISDACAyPifLzvU2dOvaRmpmpvnium9CUATxF5AAABEVt2pNknS\/EK3UmNwAvxwBKAJ8s1kKTwAAJFUd2n469Y5uTG\/NwFoggpzB+cAneE8MAAAIiLUA3SrLzfm9yYATVBoCOxsW5f6B4zF1QAAkNi6evp14tzgCfD0AMWx\/JxMpaU41DdgdI69gAAAmJI\/nvWrf8AoP8cprzsr5vcnAE1QaopD3kt7ATEMBgDA1ISGv8osGP6SCEDXxJcb2guIlWAAAEyFlROgJQLQNQkvhf+KHiAAAKbCygnQEgHomhReCkAMgQEAMHlftgd1pq1LDoc03xfbM8BCCEDXgOMwAACYutD5XzfMzpYrM92SGghA14DdoAEAmLpjofk\/MT7\/azgC0DUInQd2tq1bA+wFBADApNRd6gGK9QGowxGAroHXnanUFId6+gf0ZUfQ6nIAAEg4AwMmPARm2x6gqqoq3X777XK5XMrLy9ODDz6oEydOjHiPMUaVlZUqKChQVlaWli1bpuPHj1tSb1pqijw5g3sBMQwGAMC1a7jQqUB3n5xpKbrRE9sT4IezNADV1NRo7dq1OnTokPbu3au+vj6Vl5ers7Mz\/J4XX3xRW7Zs0bZt21RbWyuPx6MVK1aovb3dkpoLZ3AoKgAAkxXq\/Zlf6FZ6qnUxJM2yO0vavXv3iOevvPKK8vLydOTIEd19990yxmjr1q3atGmTVq1aJUnasWOH8vPztXPnTj3++OMxr9k3I0v\/r4EABADAZMTD\/B9pkgHo+eefv+Lr\/\/AP\/zCpYvx+vyRp5syZkqSGhgY1NzervLw8\/B6n06l77rlHBw8eHDMABYNBBYND83MCgcCkahkPS+EBAJi8eJj\/I00yAO3atWvE897eXjU0NCgtLU3XX3\/9pAKQMUYbNmzQnXfeqdLSUklSc3OzJCk\/P3\/Ee\/Pz8\/XFF1+M+T1VVVV67rnnrvn+E+XLZTNEAAAmo7u3X580DXZMJGQAOnr06KhrgUBAa9as0UMPPTSpQtatW6ePP\/5YH3300ajXHA7HiOfGmFHXQjZu3KgNGzaMqKuoqGhSNY2FvYAAAJicT5sC6u03um56RvjfU6tEbPZRTk6Onn\/+ef393\/\/9NX\/2qaee0ttvv60PP\/xQPp8vfN3j8Uga6gkKaWlpGdUrFOJ0OpWTkzPiEUmhIbAzrV0yhr2AAACYqLphw1\/jdWTESkSnX7e1tYXn8UyEMUbr1q3Tm2++qX379qmkpGTE6yUlJfJ4PNq7d2\/4Wk9Pj2pqarR06dKI1X0tPO5MORxSsG9A5zt6LKkBAIBEdCxOJkBLkxwC+6d\/+qcRz40xampq0muvvab77rtvwt+zdu1a7dy5U\/\/5n\/8pl8sV7ulxu93KysqSw+HQ+vXrtXnzZs2dO1dz587V5s2bNW3aND3yyCOTKX3KMtIG9wJq8nfrdOtFzXY5LakDAIBEUxcnE6ClSQagf\/zHfxzxPCUlRbNnz9bq1au1cePGCX\/P9u3bJUnLli0bcf2VV17RmjVrJElPP\/20urq69OSTT6q1tVWLFy\/Wnj175HJZt3mSb0bWpQDUpdvmzLCsDgAAEkVrZ48+vzA4f7bMl2ttMZpkAGpoaIjIzScyh8bhcKiyslKVlZURuWckFOZmqVatrAQDAGCCQgegfm3WdLmnWXMC\/HCcBTYJQ3sBsRIMAICJiJcNEEMIQJPAcRgAAFybeNkAMYQANAmhvQvOEIAAALgqYww9QMlg+HEY7AUEAMCVNX7VpdaLvcpITdHXvdYtYhqOADQJXnemJKmrt19fdbIXEAAAV3K0sVWS9PWCHDnTUi2uZhABaBIy01OVd2n\/H1aCAQBwZccaBzdJvi1Ohr8kAtCk+ZgIDQDAhNRd6gEqK3JbXMkQAtAkFbIUHgCAq+rtH9Afz4ZOgI+fzYMJQJPESjAAAK7uT03t6ukbkDsrXX9x3TSrywkjAE0SQ2AAAFxd3aUdoMvi4AT44QhAk1SYSwACAOBq6k61SYqfDRBDCECTFNoL6EwbewEBADCe0Blgt8bRBGiJADRpoSGwjmCf\/F29FlcDAED8CXT36n++7JAUHyfAD0cAmqTM9FTNys6QxDAYAABjqT\/tlzFS0cwsXZfttLqcEQhAU1A47EgMAAAwUl34ANT4Wf4eQgCagqGVYOwFBADA5Y5emgBd5ouv+T8SAWhKfKwEAwBgTMNPgL9tTq6ltYyFADQF4c0QOQ8MAIARzvq7db4jqLQUh24poAcoqfiYAwQAwJiOXer9ucnrUmZ6fJwAPxwBaAoKmQMEAMCYQsNf8bb8PYQANAWh3aDbu9kLCACA4YZWgOVaWsd4CEBTMN2ZppnTB\/cC4lBUAAAG9fUPqP60XxIBKGkNnQnGMBgAAJJ0sqVDXb39ynam6frZ2VaXMyYC0BSxEgwAgJFCw18LfG6lpMTPCfDDEYCmaGgzRAIQAADS0AqweB3+kghAU8YQGAAAI8X7BGiJADRlob2AGAIDAEDqDPbpv8+1SyIAJTXfTIbAAAAIqT\/j14CRCtyZysvJtLqccRGApig0BNZ2sVcdwT6LqwEAwFqh+T9lcdz7IxGApsyVmS53Vrok9gICACAR5v9IBKCI8HEkBgAAkoYdgUEASn5DK8HoAQIA2Ne5QLea\/N1KcUjzC+PvBPjhCEARwEowAACGen\/m5bs03ZlmbTFXQQCKAIbAAABIjA0QQwhAEVDIbtAAACTM\/B\/J4gB04MABrVy5UgUFBXI4HHrrrbdGvL5mzRo5HI4RjzvuuMOaYq8gfB4YAQgAYFMDA0Yfx\/kJ8MNZGoA6OztVVlambdu2jfue++67T01NTeHHu+++G8MKJyY0B+hCZ48u9rAXEADAfv7nyw51BPuUlZ6quXnxeQL8cJbOUKqoqFBFRcUV3+N0OuXxeGJU0eS4s9LlcqapPdinM61dmpvvsrokAABiKjT8Nd\/nVlpq\/M+wifsK9+\/fr7y8PM2bN0+PPfaYWlparvj+YDCoQCAw4hEL4XlArAQDANhQomyAGBLXAaiiokKvv\/669u3bp5deekm1tbVavny5gsHguJ+pqqqS2+0OP4qKimJSa2gYjInQAAA7Ona6TVLiBKC4XqT\/8MMPh\/+7tLRUixYtUnFxsd555x2tWrVqzM9s3LhRGzZsCD8PBAIxCUEshQcA2FV3b7\/+1BT\/J8APF9cB6HJer1fFxcU6efLkuO9xOp1yOp0xrGoQK8EAAHZ1\/KxffQNGs11Oed3xewL8cHE9BHa5CxcuqLGxUV6v1+pSRvGxFxAAwKaOnmqTNNj743A4rC1mgiztAero6NCf\/\/zn8POGhgbV1dVp5syZmjlzpiorK\/Xd735XXq9Xn3\/+uZ555hnNmjVLDz30kIVVj60wlzlAAAB7OpZA+\/+EWBqADh8+rHvvvTf8PDR3Z\/Xq1dq+fbvq6+v16quvqq2tTV6vV\/fee6\/eeOMNuVzxt8w81AN0viOo7t5+ZaanWlwRAACxUdfYKokANGHLli2TMWbc199\/\/\/0YVjM1udPSNT0jVZ09\/TrT1qXrZ8f\/JlAAAEzVhY6gGr\/qksMxuAdQokioOUDxzOFwcCYYAMB2Qsvfr5+drZzMdGuLuQYEoAgK7QXESjAAgF3UXZoAXebLtbSOa0UAiiD2AgIA2E1daAL0nFxrC7lGBKAIKsxlCAwAYB\/GGB0LHYFBD5B9hYfAOA8MAGADn1+4KH9XrzLSUnSTN\/5WaF8JASiCGAIDANhJaPl7aUGO0hPgBPjhEqvaOBdaBXYuEFSwr9\/iagAAiK5jjaENEGdYXMm1IwBF0HXTM5SZPtikTW3dFlcDAEB0Hb00\/6esKHH2\/wkhAEWQw+EIzwNiIjQAIJkF+\/r16dmAJOk2eoAwtBKMeUAAgOT1aVO7evoHNHN6hopmZlldzjUjAEVYaCI0K8EAAMkstPy9zOdOmBPghyMARRhDYAAAO6gL7f+TgMNfEgEo4gpZCg8AsIFjCTwBWiIARVx4CIweIABAkvJf7NVn5zslSbcW5VpbzCQRgCIsFICaA93q6RuwuBoAACIvdAL8X1w3TbnTMqwtZpIIQBE2a7pTGWkpGjBSs5+9gAAAyWdo\/k+upXVMBQEowlJSHPKFlsK3MQ8IAJB8hub\/5Fpax1QQgKJgaCI084AAAMnFGEMPEMbmIwABAJLU6dYuXejsUXqqQ1\/35lhdzqQRgKIgtBcQK8EAAMkm1PtzszdHmemp1hYzBQSgKPCxFxAAIEnVJcH8H4kAFBVD54HRAwQASC7HkmD+j0QAiorQEFhzoFt9\/ewFBABIDr39A6o\/45dEDxDGkOdyKj3Vof4Bo+YAewEBAJLDieZ2BfsGlJOZppLrpltdzpQQgKIgJcWhAobBAABJZvj8n5SUxDsBfjgCUJRwJhgAINkky\/wfiQAUNb7cwXlA9AABAJJFMmyAGEIAipJClsIDAJJIe3ev\/vxlh6TEnwAtEYCiJjwE1kYPEAAg8dWf9suYwX\/fZmU7rS5nyghAURJaCs8QGAAgGdSdbpOUHL0\/EgEoakJDYGfbutQ\/YCyuBgCAqak71SZJuo0AhCvJdzmVluJQ34BRSzt7AQEAEtsxeoAwEWmpKfLmZkpiGAwAkNia\/F06FwgqNcWh0gK31eVEBAEoiobOBGMlGAAgcYWGv27MdykrI3FPgB+OABRFoYnQbIYIAEhkoQnQt87JtbSOSLI0AB04cEArV65UQUGBHA6H3nrrrRGvG2NUWVmpgoICZWVladmyZTp+\/Lg1xU6CbwbHYQAAEl+oB+hWX66ldUSSpQGos7NTZWVl2rZt25ivv\/jii9qyZYu2bdum2tpaeTwerVixQu3t7TGudHIKOQ8MAJDg+gdM+AT4ZOoBSrPy5hUVFaqoqBjzNWOMtm7dqk2bNmnVqlWSpB07dig\/P187d+7U448\/HstSJyU8BMZmiACABHWypV0Xe\/o1PSNV18\/OtrqciInbOUANDQ1qbm5WeXl5+JrT6dQ999yjgwcPjvu5YDCoQCAw4mGV4QeiDrAXEAAgAYUOQF3gy1Vqgp8AP1zcBqDm5mZJUn5+\/ojr+fn54dfGUlVVJbfbHX4UFRVFtc4r8bgzleKQevoH9GVH0LI6AACYrPABqEk0\/CXFcQAKcThGpk1jzKhrw23cuFF+vz\/8aGxsjHaJ40pPTZHXzTwgAEDiqmscnP9TlkQToKU4DkAej0eSRvX2tLS0jOoVGs7pdConJ2fEw0rsBQQASFQXe\/p0onlwKslt9ADFRklJiTwej\/bu3Ru+1tPTo5qaGi1dutTCyq4NS+EBAInqj2cCGjCSJydT+TmZVpcTUZauAuvo6NCf\/\/zn8POGhgbV1dVp5syZmjNnjtavX6\/Nmzdr7ty5mjt3rjZv3qxp06bpkUcesbDqaxOeCM1KMABAgqlrbJUk3Zok538NZ2kAOnz4sO69997w8w0bNkiSVq9erX\/7t3\/T008\/ra6uLj355JNqbW3V4sWLtWfPHrlcLqtKvmaF9AABABLUsdD8HwJQZC1btkzGjL883OFwqLKyUpWVlbErKsJCewExBwgAkGjCK8CSMADF7RygZDF8L6ArhT0AAOJJS3u3zrR1yeGQ5vuS4wT44QhAUeZ1Z8nhkIJ9Azrf0WN1OQAATEho+GtenkvZTksHjKKCABRlGWkpyncNzpxnGAwAkChCO0CXFSVf749EAIoJVoIBABLN0PyfGdYWEiUEoBhgJRgAIJEMDBh6gDB1Q5shMgQGAIh\/n53vVHuwT5npKboxP3G2nrkWBKAYCC2FP0MPEAAgAYSGv+YXupWWmpxRITn\/qjgzdB4YAQgAEP+OJfH+PyEEoBgYfh4YewEBAOJdsk+AlghAMVFwqQeoq7dfrRd7La4GAIDxdff269OmwRPgk3UCtEQAionM9FTNdjklMREaABDfjp8NqG\/AaFa2MzyFIxkRgGLEx1J4AEACGJr\/45bD4bC2mCgiAMUIK8EAAIkgmQ9AHY4AFCNDK8EYAgMAxK9jp9skSWUEIEQCQ2AAgHj3VWePvrgw+D\/qC3y51hYTZQSgGOE8MABAvAv1\/nxt9nS5s9KtLSbKCEAxwl5AAIB4V3eqTVLyz\/+RCEAxU5g7OAm6I9gnfxd7AQEA4k+oB4gAhIjJykjVrOwMScwDAgDEH2OMLY7ACCEAxRBnggEA4tWpry6q9WKvMtJSdJMnx+pyoi7N6gLsxDdjmo6d9uuJfz9idSkAAIzploIcZaQlf\/9I8v+FceSeG2criTfVBAAkgfsXFFhdQkzQAxRD\/3tRkSpKPerpG7C6FAAARklPS1FOZnIvfw8hAMWYyyY\/LAAA4hlDYAAAwHYIQAAAwHYIQAAAwHYIQAAAwHYIQAAAwHYIQAAAwHYIQAAAwHYIQAAAwHYIQAAAwHYIQAAAwHYIQAAAwHbiOgBVVlbK4XCMeHg8HqvLAgAACS7uD0O95ZZb9MEHH4Sfp6amWlgNAABIBnEfgNLS0uj1AQAAERXXQ2CSdPLkSRUUFKikpETf+9739Nlnn1ldEgAASHBx3QO0ePFivfrqq5o3b57OnTunn\/70p1q6dKmOHz+u6667bszPBINBBYPB8PNAIBCrcgEAQIJwGGOM1UVMVGdnp66\/\/no9\/fTT2rBhw5jvqays1HPPPTfqut\/vV05OTrRLBAAAERAIBOR2u6P273fcD4ENN336dM2fP18nT54c9z0bN26U3+8PPxobG2NYIQAASARxPQR2uWAwqE8\/\/VR33XXXuO9xOp1yOp0xrAoAACSauO4B+vGPf6yamho1NDTo97\/\/vf76r\/9agUBAq1evtro0AACQwOK6B+j06dP6\/ve\/r\/Pnz2v27Nm64447dOjQIRUXF1tdGgAASGBxHYCqq6utLgEAACShuB4CAwAAiAYCEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsJ2ECEA\/\/\/nPVVJSoszMTC1cuFC\/\/e1vrS4JAAAksLgPQG+88YbWr1+vTZs26ejRo7rrrrtUUVGhU6dOWV0aAABIUA5jjLG6iCtZvHixvvGNb2j79u3ha1\/\/+tf14IMPqqqq6qqfDwQCcrvd8vv9ysnJiWapAAAgQqL973daxL8xgnp6enTkyBH95Cc\/GXG9vLxcBw8eHPMzwWBQwWAw\/Nzv90sabEgAAJAYQv9uR6ufJq4D0Pnz59Xf36\/8\/PwR1\/Pz89Xc3DzmZ6qqqvTcc8+Nul5UVBSVGgEAQPRcuHBBbrc74t8b1wEoxOFwjHhujBl1LWTjxo3asGFD+HlbW5uKi4t16tSpqDSgnQQCARUVFamxsZHhxCmgHSOHtowc2jIyaMfI8fv9mjNnjmbOnBmV74\/rADRr1iylpqaO6u1paWkZ1SsU4nQ65XQ6R113u938GCMkJyeHtowA2jFyaMvIoS0jg3aMnJSU6KzXiutVYBkZGVq4cKH27t074vrevXu1dOlSi6oCAACJLq57gCRpw4YNevTRR7Vo0SItWbJEv\/jFL3Tq1Ck98cQTVpcGAAASVNwHoIcfflgXLlzQ888\/r6amJpWWlurdd99VcXHxhD7vdDr17LPPjjkshmtDW0YG7Rg5tGXk0JaRQTtGTrTbMu73AQIAAIi0uJ4DBAAAEA0EIAAAYDsEIAAAYDsEIAAAYDtJHYB+\/vOfq6SkRJmZmVq4cKF++9vfWl1S3KusrJTD4Rjx8Hg84deNMaqsrFRBQYGysrK0bNkyHT9+3MKK48eBAwe0cuVKFRQUyOFw6K233hrx+kTaLhgM6qmnntKsWbM0ffp0fec739Hp06dj+FdY72rtuGbNmlG\/0TvuuGPEe2jHwWOBbr\/9drlcLuXl5enBBx\/UiRMnRryH3+TETKQt+V1OzPbt27VgwYLwRpFLlizRe++9F349lr\/JpA1Ab7zxhtavX69Nmzbp6NGjuuuuu1RRUaFTp05ZXVrcu+WWW9TU1BR+1NfXh1978cUXtWXLFm3btk21tbXyeDxasWKF2tvbLaw4PnR2dqqsrEzbtm0b8\/WJtN369eu1a9cuVVdX66OPPlJHR4fuv\/9+9ff3x+rPsNzV2lGS7rvvvhG\/0XfffXfE67SjVFNTo7Vr1+rQoUPau3ev+vr6VF5ers7OzvB7+E1OzETaUuJ3ORE+n08vvPCCDh8+rMOHD2v58uV64IEHwiEnpr9Jk6S++c1vmieeeGLEtZtuusn85Cc\/saiixPDss8+asrKyMV8bGBgwHo\/HvPDCC+Fr3d3dxu12m3\/5l3+JUYWJQZLZtWtX+PlE2q6trc2kp6eb6urq8HvOnDljUlJSzO7du2NWezy5vB2NMWb16tXmgQceGPcztOPYWlpajCRTU1NjjOE3ORWXt6Ux\/C6nYsaMGeZXv\/pVzH+TSdkD1NPToyNHjqi8vHzE9fLych08eNCiqhLHyZMnVVBQoJKSEn3ve9\/TZ599JklqaGhQc3PziHZ1Op265557aNermEjbHTlyRL29vSPeU1BQoNLSUtr3Mvv371deXp7mzZunxx57TC0tLeHXaMex+f1+SQofLMlvcvIub8sQfpfXpr+\/X9XV1ers7NSSJUti\/ptMygB0\/vx59ff3jzowNT8\/f9TBqhhp8eLFevXVV\/X+++\/rl7\/8pZqbm7V06VJduHAh3Ha067WbSNs1NzcrIyNDM2bMGPc9kCoqKvT6669r3759eumll1RbW6vly5crGAxKoh3HYozRhg0bdOedd6q0tFQSv8nJGqstJX6X16K+vl7Z2dlyOp164okntGvXLt18880x\/03G\/VEYU+FwOEY8N8aMuoaRKioqwv89f\/58LVmyRNdff7127NgRntBHu07eZNqO9h3p4YcfDv93aWmpFi1apOLiYr3zzjtatWrVuJ+zczuuW7dOH3\/8sT766KNRr\/GbvDbjtSW\/y4m78cYbVVdXp7a2Nv3mN7\/R6tWrVVNTE349Vr\/JpOwBmjVrllJTU0elwZaWllHJElc2ffp0zZ8\/XydPngyvBqNdr91E2s7j8ainp0etra3jvgejeb1eFRcX6+TJk5Jox8s99dRTevvtt\/Xhhx\/K5\/OFr\/ObvHbjteVY+F2OLyMjQzfccIMWLVqkqqoqlZWV6eWXX475bzIpA1BGRoYWLlyovXv3jri+d+9eLV261KKqElMwGNSnn34qr9erkpISeTyeEe3a09Ojmpoa2vUqJtJ2CxcuVHp6+oj3NDU16Y9\/\/CPtewUXLlxQY2OjvF6vJNoxxBijdevW6c0339S+fftUUlIy4nV+kxN3tbYcC7\/LiTPGKBgMxv43OclJ23GvurrapKenm1\/\/+tfmk08+MevXrzfTp083n3\/+udWlxbUf\/ehHZv\/+\/eazzz4zhw4dMvfff79xuVzhdnvhhReM2+02b775pqmvrzff\/\/73jdfrNYFAwOLKrdfe3m6OHj1qjh49aiSZLVu2mKNHj5ovvvjCGDOxtnviiSeMz+czH3zwgfnDH\/5gli9fbsrKykxfX59Vf1bMXakd29vbzY9+9CNz8OBB09DQYD788EOzZMkSU1hYSDte5oc\/\/KFxu91m\/\/79pqmpKfy4ePFi+D38Jifmam3J73LiNm7caA4cOGAaGhrMxx9\/bJ555hmTkpJi9uzZY4yJ7W8yaQOQMcb88z\/\/sykuLjYZGRnmG9\/4xoglixjbww8\/bLxer0lPTzcFBQVm1apV5vjx4+HXBwYGzLPPPms8Ho9xOp3m7rvvNvX19RZWHD8+\/PBDI2nUY\/Xq1caYibVdV1eXWbdunZk5c6bJysoy999\/vzl16pQFf411rtSOFy9eNOXl5Wb27NkmPT3dzJkzx6xevXpUG9GOZsw2lGReeeWV8Hv4TU7M1dqS3+XE\/c3f\/E343+XZs2ebb33rW+HwY0xsf5MOY4y5tj4jAACAxJaUc4AAAACuhAAEAABshwAEAABshwAEAABshwAEAABshwAEAABshwAEAABshwAEAABshwAEAABshwAEAABshwAEIKF8+eWX8ng82rx5c\/ja73\/\/e2VkZGjPnj0WVgYgkXAWGICE8+677+rBBx\/UwYMHddNNN+m2227Tt7\/9bW3dutXq0gAkCAIQgIS0du1affDBB7r99tt17Ngx1dbWKjMz0+qyACQIAhCAhNTV1aXS0lI1Njbq8OHDWrBggdUlAUggzAECkJA+++wznT17VgMDA\/riiy+sLgdAgqEHCEDC6enp0Te\/+U3deuutuummm7RlyxbV19crPz\/f6tIAJAgCEICE83d\/93f6j\/\/4Dx07dkzZ2dm699575XK59F\/\/9V9WlwYgQTAEBiCh7N+\/X1u3btVrr72mnJwcpaSk6LXXXtNHH32k7du3W10egARBDxAAALAdeoAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDt\/H+Rca6BQhfqwwAAAABJRU5ErkJggg==", "text\/plain": "<Figure size 640x480 with 1 Axes>"}, "metadata": {}, "output_type": "display_data"}]}}, "4dcc29bcdeb94273acb042225680f938": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "IntSliderModel", "state": {"behavior": "drag-tap", "layout": "IPY_MODEL_14edd910ef6d411ebd1f6a033170c065", "max": 149, "style": "IPY_MODEL_a7c8a0264f214268bfafc38c4c68055d", "value": 149}}, "4ed234d89eda4e43ac8997df827fca2b": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "4f582ece1f6c4bffb37cc399e7ef4d24": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": {"source": ["IPY_MODEL_ebe4490fa75a4192ba04152508adf1b4", "value"], "target": ["IPY_MODEL_b7b5d8c7976e490db14a6f301a8d5fca", "value"]}}, "50615551594a42e7a11ed3bdcdb1d54d": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "51133886767c414982d9467cbffad013": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": {"_dom_classes": ["widget-interact"], "children": ["IPY_MODEL_a6e490f9a95046848e772f941811ea6e", "IPY_MODEL_8d43b8903d1c4542ac1d493441e99717"], "layout": "IPY_MODEL_66863e16ccde42d696e20af577f2f832"}}, "5167c4cc034847b4b27e66350ad543ed": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": {"source": ["IPY_MODEL_68fb9a92340e434d85fbcc8de67c1970", "value"], "target": ["IPY_MODEL_b0c6e5b072744bb8aad4aa1c343ebe1e", "value"]}}, "517f04b914134b6ba5c09a4caa017bdc": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "51e8446de9bf4b1492c6377090f082a9": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "PlayModel", "state": {"description": "step", "layout": "IPY_MODEL_40f923003f624e14ba2a6eeff1edb42c", "max": 199, "style": "IPY_MODEL_961bbf4dea01495c90b3a8be804ceea6", "value": 199}}, "524aceb8e5864ec0b0558674c565b80e": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": {"_dom_classes": ["widget-interact"], "children": ["IPY_MODEL_41ceba8688ab4ce8b71fd02a6e2ab2c4", "IPY_MODEL_894a4ad9cfb04c80bd06a8491a9b3c14"], "layout": "IPY_MODEL_e043ddd08fa044f0805e72d08d64fb52"}}, "53fc46cd75c548ca80cf284ac572e639": {"model_module": "@jupyter-widgets\/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": {"layout": "IPY_MODEL_fe5db7fffd844d8983fe53f0eaa44849", "outputs": [{"data": {"image\/png": "iVBORw0KGgoAAAANSUhEUgAAAkkAAADqCAYAAAC2l9FdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy\/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABpZElEQVR4nO29fbAcV3nn\/z2nu2f0Yuli83KvFL+gDXIcbHC8hnhtSMxLLOJgYkJVIDhFTN7KrGwvQmxsHHYXiyIScmqFt9Zg4iQVe9mwphIwSyWwkVLBcrzaLDYYcEzWYRfFdojvTwSErixLM9N9zu+P06f79Olz+mVm7szcq+dDGc10n+npO3em53O\/z9OnmZRSgiAIgiAIgijAp70DBEEQBEEQswhJEkEQBEEQhAOSJIIgCIIgCAckSQRBEARBEA5IkgiCIAiCIByQJBEEQRAEQTggSSIIgiAIgnBAkkQQBEEQBOGAJIkgCIIgCMIBSRJBEARBEISDqUrSQw89hLe85S3YvHkzGGP4\/Oc\/X1gvpcTtt9+OzZs3Y+3atXjd616HJ554ojCm1+vh5ptvxote9CKsX78eP\/\/zP49\/\/Md\/nOBPQRAEQRDEamSqknTixAlcfPHFuOuuu5zr77jjDuzbtw933XUXHnnkESwsLOCqq67C8ePHszE7duzAAw88gPvvvx8PP\/wwnnvuOVxzzTVIkmRSPwZBEARBEKsQNisXuGWM4YEHHsBb3\/pWACpF2rx5M3bs2IFbb70VgEqN5ufnsXfvXtxwww04duwYXvziF+NTn\/oU3vGOdwAA\/umf\/gnnnHMOvvjFL+JNb3rTtH4cgiAIgiBWOOG0d8DH4cOHsbi4iG3btmXLut0urrzyShw6dAg33HADvvrVr2IwGBTGbN68GRdddBEOHTrklaRer4der5fdF0LgBz\/4AV74wheCMbZ8PxRBEARBEGNDSonjx49j8+bN4Hz8xbGZlaTFxUUAwPz8fGH5\/Pw8nnrqqWxMp9PBmWeeWRqjH+9iz5492LVr15j3mCAIgiCIafDMM8\/g7LPPHvt2Z1aSNHayI6WsTXvqxtx2223YuXNndv\/YsWM499xz8Q+P\/wHm4h7Yc88BR48BS88DSychfngSYqmP5JhA\/xhD70SE55\/v4LleB8\/1IywNIjyXhPhhn2MggUQwDCQwEOl\/kmEgJGIBxAIYSCAWUq1LJAZCYgCBgRCIIZBIAQGJBAkEVDU0YQkSJJAQiFkMAYEEA0hIxGwAIQeQxrJEDvLXA6o\/K5ExAECk\/0op0n8HhfvmWLW83N8lrGXCGJ8\/TpSWuZCOxzal6XMQBEHUwdjwSQRjzb5O7efgjsdxFjgely8L0seY22IsKizT283GIkjvp+PAECACAwdnEUIZZcs4OEIZgoEjQIBABuBgCJD+yzg4GDosQMgYIs4RMoaQAxEHIs4QBeq2Wg9wyHQdEDEg4BJrOLAxSnBGkGCu08f6zgAb1\/awdl0fnXUJOmdKBBsD8I1dsDPXABvXA3NnABvPgNy4AXLuBViSHC897+3YsGFDo9e\/LTMrSQsLCwBUWrRp06Zs+ZEjR7J0aWFhAf1+H0ePHi2kSUeOHMEVV1zh3Xa320W32y0t37hhHTYiAuMSEOkXt5SQAhCSIxExYgB9xtGVAToI0eUhOjxEOIgQsQA9wTBIJSm2ZKkvclkaFGRJoq9lSQpICcRSpEokS9KUIEacrgWAGDEE04IkELNBJkl6TALrfqVEDRDpdZaECONx8Iwxt+XCJV0+XPK1Elip+00Qk8AlBiuBpvvNHJJjEji24xI0ziLvGL3OJ0FqmRofICrez6SI51IEJUUhAgQyzKRIPVcuRgEYQsbBGBAxjogzdAKGiDOEnCFiqRylstThRTkKuUzHSKzhAhsijrkI2BCFOKMrsG5NiHXrBTobOcIzGIKNIdjcGrANa4Ez1gDr1wAvSCVpwzpA8vS1WZ5WmZl9p27ZsgULCws4cOAALrnkEgBAv9\/HwYMHsXfvXgDApZdeiiiKcODAAbz97W8HADz77LP427\/9W9xxxx2j7QDjAGdAGACdACzi4F0OfkogiCQ6nQRxHGMgOLoBxxmSYyDUG2UgmJIlBoQSiBjDgANRmh71BUMoJCIBDFj6xuJalhgEgETwVJCkIU1huizySFMHMYsRSiWAthgBQMwGznUJBoiYW6I0WqY0LhHSEmW\/sdokPi4RGwVKmwiCGCUlcmELzDDPbW\/DKU8IrDHNJAgAQhk5x3GZJ0UASmJkpkWmFAWMqWVcPbJejqRTjrrpupAJrAsSrAkSdKMY3U6MTjdGEEnwCGAdBkQBWBSo7+MgUN\/JE2SqkvTcc8\/h\/\/7f\/5vdP3z4ML7+9a\/jrLPOwrnnnosdO3Zg9+7d2Lp1K7Zu3Yrdu3dj3bp1uO666wAAc3Nz+PVf\/3W8\/\/3vxwtf+EKcddZZ+Lf\/9t\/iFa94BX7mZ35muJ0KQvVLCAP1C4lCsIBDhhysw8A7AI8kglCg04mxJuGIEw4hGQYhQ09wsPR\/AWMIBEPMgECoeJMD4EwiYEqiAi4RCKCPXJZiAchAIhFAImU7aZISCVPyEqdSkyVOLEZHroXwpEtqTFGi7PUaLVUm9jiXaLmw5asNVYkVQRBEU1yC0gZbZvzPY6VDjpl4ApQFzBznk6DssRLgWoBkWBgT6sRpCCkKGEPA1XdZyDGSHEVcImIS68IYa8IEa8IYUZQgCAV4V4J1ABYysDANLKL0u5lz9d+EmKokPfroo3j961+f3dd9Qtdffz3uvfde3HLLLTh58iS2b9+Oo0eP4rLLLsP+\/fsLtcePfexjCMMQb3\/723Hy5Em88Y1vxL333osgGNE2OU9\/IQzgDKwTQJ6MwSIG3pGI1iRIYo5uR6VJAgwDwdNESMnSQDAMGMNAsqwuOxBATzBETGLAgYFgCNM30CCTJSARKkWMBVM9RowhSWdraCpNAJCkAiIgAYlMoIB6iVKPL4qOS5i0WJkkcoCIrfW+vK7tuLCf38YWtVmj6c9JEKsdlwysJFzi4qPuZ7VFCciFp2ob2T40lCAA4GDG44Ns2TBSxAAEXG2vjRwFTAlRlI7pciVJHZ6gEwh0ggRhKBBGCcKuSpF4l4N1ONAJ1JPo72OdJE1IlGZmnqRpsrS0hLm5Ofzg6fsxxxLVuH3ieeDYceDEKeDEKchjJyGXehAnYiTHBOITwOB5jpMnOuj1QjzX6+LEIMRA8Pw\/qUpvcVqK8\/UrJVLJ0kAAsVQJkhIhtU7dlpBQjd8SdsokS8IEAAm0VKXClC63BaqwzEqhNPaXfcwcpTY7SaoRnKrtt8UlagRBEE2wBaUtTQXQJVrc8VgtPr7t+0QoMNKsbJlu5M7GqH\/bipFaBwRczUIdGE3ZUSpEIUeaFgGhliKHHIVMgDOJNUGCtVGMM7p9rFkzwJr1A0RnCITrgWAuAFsfgZ3RAZtbq3qRNqwD1q+D3LgBWL8ecm4OSwOBs868BseOHcPGjRsb\/R7aMLM9SVODc8ggfRuZSVIUAGtCsIEA6wjwARAMJDrdGEIwdOIEiWAImMz+C6Xq+O+lpTYGhi539CtJpI9R\/UqCKQGSaaIkgDRJQmXKpIUpNP5y0OmTlACYLVBhWaCMD2diiZIeqzaYjrFkqShXawrrmoqQS8Dq6Eh\/amViixxBEKsXl4CMA1tiqvAJVOgozwWO7ZpJEFBMg7JlFSIEALqnOUhv+KQIQK0YsfQxnKGyKdtVWou4QMSFSpa4yMpsnU6MqJPkvUhRXsFhUdr6EgSqV1hXiSbUm0SS5MP8hQSGLIUMvMsh+0L1Jg0EwlCgG8UQAIIkQCAkeCLBhQRL37YBy5u66\/qVhAQSqaTIJUwImEqSOCDA0pSJlXqZAGRKkAh1vwNuiFGVQAGmRJkkZiO0UdorjKnpM3I9Jt+mta0hpGm1Yid8BLFcuL7ET1dc8uLDlhrn9hyvbUmGXGe7FUpn9SIE5OUxtSwf0zQtYsZjOEvXM6nahFqmRxFXCVInULfDIEG3EyMMBYJI9SLxjmrYZrqWp3uSdK\/w6dSTNLPoX0L2S0nfCZ0A6AdgHQHWAfgACBMJkSQQgiFO1N8tjElwyFKqFItUjhhLUybkKROTiBlDILUMSSVJqTABqRTJZikTUmkCVHlOixVQFihASZRLoDSFu4ZQmSQFuwnT52hWzU2qzkBrEIU3fR6CIAibJmJThUtomj5P4FgWWtuzz273iRB3jAnShWZSpO43S4tyKVLVDv08thxxhsr0yEyQwlSSOmmzdmSe0RYxsA4HWxNacsTy7+UJQpJkY\/4CuDkNQAjWT1JZ4uBdCdkXkCJNk2KBbidGHHMEgmPAuTNVCsFKJTg7VUrSN3eseq3TniMUpMmXMmlhAvIPA9K0CVyHNJZAIX9OU45sbdFpFKASKTWmKCe2XJlUdr8ZBwGXgI2ThISKIFY9LvkYF7bEVOGbvidwrHBKFGfWmPLjq0TI3Eb+2FyK9OPdYqRum\/IUpusYQ6G0xtA8PdKiFIYJwigts5kpUmi0uaRVnMJ38wRFiSTJJAyRqUFo1D31\/AycqTTpVKx+kR2ACyBIy26RSMCYhK4OuVKlgeBgnGVvSDtVCpmSIYlUkqQSmFyYyimTFiYASLjMxgFGuS2ToPTHaiBQQC5RAApplIlLjOo0xxQum47x99BKToiqhJEgTldccrASaJM22WJT3pbjMdbrEjgGMWMf6kRIbbO4rTopAurFKGT6sXlpLeRolR6FoUAQqFaVIFStK1mKFDIg0me0GS0vTJ\/hpn+YyZTcSJJchAEwSH8h\/fSXxGNgTQQMErA1IeRAgHc5IFQdNRJJlpRwLhEkHHHMgThEwEUhVRoIfapmOVUaSAauRSaVIAnZWJgiWNKk+47S95MtT0CVQKEkRdLxvoxF+YAga+QmaXGgXOmyQa3iBOEWg5VEG7lzCY4JcwhXyO0xru26+ouKz1mQJFukdJnOSov0dpqIEU+X66lrdILUJD0KuCgJUhCpBClLkTo8b9hOqzhZaKGbtoPJqQtJko1pp3p2T\/3fIAaLAsh+oprKhASLGXgkIWOVJjEGJLFupFNvsDjJt2mnSuAcDKKQKsW6EVsCESQSyVoJU2A4RdbPlC6z5QloJlD59sovmf3hNrflwyVbPlwSthKpE0eCWG24ZGCl4jrO+aj7qV1Jkztdsh9XHu8TIQAFAVL\/ymy5liK9jaZipJ7Lnx4Fxm2dHgVmeS0UKkjQzdpWL1KWIukJJM1yW3r2ef6CBGoenWWEJMlFEKppALJYjxlToqsGbiaUqbC+BO9IyERNCcB4\/gsTxpd7wAX6AAZpLTvg\/l4lVXJTqVCc3gfSOZQaChOgZCfKGrHTZfrUfUueAEf6BHVqp4lLflxv0bqkyCVbPtocnGab+i+MqjIkQcwadWWl1USbw5AtN6X1jo05JakiXTJTIfs5TRky19lSBDQTI5Z+j6gz4WS2vio9Yqks6fIaYzKbMJIxIIhUihSshZpdO+1FymbYXhMVL0VildfkhNIkkqQ6dDe9LrmFAViQQHIGMKZ+sTEDjyWCtRKsBwACPBBZosS5RJJwAHHW1B0n+mKE5VRJ9SMxJURMCxEDE0DEdMpULUyA6mnS6Ju5QBXlCagWqGyM48PvKofVJUV1SVPhOZsPXfnUHF3bvG4EMQp1JaPTjVaSVFtuczzG1chtJ0kNRAjwp0xALkUAasUo73uS1noJBjjTo4DLQnN2EOTlNR7kJTbGkTVrZ7NrR\/paqcbs2qHRj0RTAMwQ5hQAfV4ouekpAdiaUKVJsQRLJFSIlKYwAgAc5TerqTtO386c5amSBEMEmU4W6RImIAKMslxZmIBckkyHsQXK1JsqgdK4gg4tVcVlvhc23U7LP0BXel\/S2BjTsYFezdXN6ZPvTIa2zeZ1AZvrbyEtLlXbqRIhoJgOmds0dz8vmfnFSCdHLjEK0z4kPS1AxAU6gQCHLDRnMwZ3eS2Q4JEECwEepT8It67Tphu2dRVnipAkWcggBOPWJS7CABgYJbc1EZiQkLFQaVI6wSSEsgzGJUQf6W1\/+Q1xmN5WSZJOlRLJICQD48wrTEIiXe8WJkA1fgO5xKixKnHSv3hpjIkCd\/qkSQRKR1+zpJeNk\/Be5ahNNcmUr2jKh\/025UGCIMZLXflqUrhExscwomT\/DeQ+wy3HJ0MhK48vJ0\/txShfL53pEQdqy2ssSNOjCEqU7BQp0GexMRRm1w4Cmidp6pjvSH2GWxAAGOS\/pI4EkiSbDkD3Jsk4Abjq0M8vTK8ixdrym+DFVCmVA5EJUS5MecnNLUxmSQ5Aofk7+9FMeWLV8qTREmUSW2P0XVuQCiWimgOHOdSWr2EYl9yMdmUngiBmgXHL1qglONfuhI6Ftpy1kSFzmd14PYwY6X8DLrP0KDAatV3lNcaRzYXEeC5Iqllbza6dpUgdq9TmKrHRPElTJgyQXZtV\/3J0TTRJsgZuJqTqTYoCsI4qt8k4nWsifbgUxfIbAIikWH4LuEDfSJUSwdLLjTDwVJIiIC25MUePUrkkp86lYmnKpMYBaCVParzCFBYtR+abx1UN09u25crGlq021D2U5IYgiKaM4lAuuXHhSqNc1TzX9oqN2+VkyH4sM46QZn+RHu8SIz3GFiP9GC1HdnrkKq\/xwOo\/itRXKesALFCCZF7RIkuRzLPaWJ4eFc5so3mSpo+60G2aIvUHxqSSsZq7IRZ5mpROCZDBlSjJtE8pT5dE9oHQ5TcpGYqpEoeU6qpvEdBYmEKme5FYJkpC5tI9rDxle67lyFiVjTOWucTKxJaiqjfhSm9Fcr2OBHG60qZcNYu0aU2qkyZ383aTviS\/DJlnApsyZG9rFDEC1B\/4rvSIc1kor9n9R7YgsTBNkXR6ZKZI5hQ8gDFX0mS1hSTJRxAiK7MJof6VAujH6TKZp0mdAIgFmJQAhMpg+1Club56cwioOZKAvE9JTxqpZYml1y7V73MRAIkYTph0wqSJJTPkp1qeANXjpJGOj7MWHVOEfEJg9yHVHTwK2xmTY0zr0DyOkiFBEKOxHH+qjKM\/ybUNd4JUHFclQ+4ymzTG623IkhipxxfLaYCqcGgxUhNOqhKbTo84l87ymu4\/YoFqRQG3BElfoy3keYoUGKIEqMQoMG6b\/04AkiQb88W3b5slN\/1LjIW6xkwngIyFakDTnTWpKDF9nTQOmH1K+hJlZvktCASShKtT+YW6YK5A+rSGMOnrEpnCpHuZtDBpzObvOnkC4BQoE1Omsu0YqZQ5rgl2stRWLCitIQhiFMaRcDUtt9nCA7jngnONc6VC5nItQ4XmbiMpMse3FSO1LJejIMibs13lNZcg8S5XotTh+eVHdFmtY9zWPyAzpGgKggSQJLmx5Uh31Jslt1Aqm4gTlSaFUl2u5FSsRImrVIkJBtET4B1A9NPGbqtPySy\/CcHAmISUDCwBwkC0EqbESpgA1QAO\/bjsTLe0X6hCnvR6wBaRXKY0RakqjsvvuY8irr4h8\/pxddhyNgpNxY4giOnjEolJ0G72bf8+Nimvucb5kiH7+UwJci3TYgQgK6dpMVLLimIE5HLEuawsr5UatENWEiSWXp8tuwRJYP1rltuAiZ\/ZBpAk+UnFSAqh+pKAvOQmzDPc0pcwSROlNaFKlJAA4JB9dY03GStDl3G5T8ksv4mEF2QJQCZM+o1rChNLTdsUpkRowSmLUlN5Ypak2BJlEhti5JYqTXELVdMBVH0Wljc5ovIYQRDDp0tNpvVxl9kcDd2Ox2oZUutdfUfNlpl9Rvq7xi6nASikRgAyOeJcOstrzv6jMG\/SLggSZ6kg8TxF0lUaxvNSWxgUm7azH2z5UyWSpCboviSepL84K00KJVgkVEIUC7BQBZZalOyGbt2n5Cu\/8SCXJQCFdAlAJkyJ4IjSf7UwSckQcWSiFBgfM72MG5KhRcle5k6GFHbaotOowrKsIbw5cUP5aVqOozIcQRA2424ed8mNjzrpKY6tK7f5ZchcHhjbt0tp6nZzMcpuBypZss9eU2U2d\/+REqI0OXKd7m+mSN4mrjAVphAI6bIks4Eut+mSmxDlNEnPwC0C9Ra0REnGyqjNhm4m\/OU3QL1Js8ZuI11S65QwhVD9S1qYsoZv5AkTgEyueFZiUw3gmkQUy3NAMXkC3MIhjGVVUmVSVc5yyc8oF7cdZxluWKa\/BwQxO6z0P1t8QuOjrhzoLrdVy5E9pk6Gsn0ppEi5GOn7Woz0WJcYqXVKjhiHt7zWVJBUs7YjRXLNkTThXiQNSZJNGKoSWygAEQJxUh7jSZMQC7AoUHMn9ZNclJiAHAj15gEKfUoyBsRAWXg+TYAqwelkSQuTbvB2CZPdv6QTJiCfoFH3Mmmq5CmxkyFUnb3GCuNQMbbqsS6alKApMSIIYlTGkTC5BKfpczWRI8AtQ+ZyW4byscVlvj4jAIVymtom8tupHOnm7EJ5LRWkrEE7PYNNnQaXClKaHrGA+1Mkq9Q2TUiSGiCDIJWmtOSGVJzMM930hFixUNdf66AoSkAmSjKWWZ+SnnhSirz8Bqj3iBSASBiCVJj0G9rsXeJcOvuXgOIHRMuR6eIuedLiFHH9uLIACcffgy6pAtoLTJ00uWgzYSQJFUGcPiz3vExNpUhTJz2FbbvKbRXJUP648jLzti1GQLHPCEBWTstup2IEoCBHurxm9x81FqQ1UXHiSFezNtJJJHWqNGFmWpLiOMbtt9+OP\/7jP8bi4iI2bdqEd7\/73fh3\/+7fgXP9pS6xa9cu3HPPPTh69Cguu+wyfPzjH8eFF17Y\/gntX0B2Vpso3tcltzgpp0lAUZSEKjBpUYKUAJeQfaHeTEDWpwTo8hvAQpUs6aqZFHmDtxYmuxwHoCRMGpZ5nciv12akSi55AoplO410iIbZB1VYDrdUVeHazrioEioSKIJYeUxrgkqf3PhwSU\/VdphTqMoyZC83+4qyZYEpSdV9RkAuRuq2zG5rOQLg7j+yG7S1IHXy5uyCIJlyZKZIQLHUZkJTAOTs3bsXn\/zkJ3HffffhwgsvxKOPPopf\/dVfxdzcHN773vcCAO644w7s27cP9957L84\/\/3x85CMfwVVXXYUnn3wSGzZsGP7JOUeWGGW\/qFSKdAM3EkealBqwFiWks3Kn11ZT\/UpA1tBt9Snps99kosxcilSWgjxdQuAvx+lkCSheULdKnAB36pTuZQnf2fkuodK4xMqHT7iWG+9FeVd8JwVBrHx8kjEN2gqSS3jybZWPqL4jaV06BBT7irLt8fLtJuU0oCxGapm\/vOY6g80rSFlCxIoJkl1q47w40zZNJqn4X\/\/rf+Haa6\/Fm9\/8ZgDAS1\/6Uvy3\/\/bf8OijjwJQKdKdd96JD37wg3jb294GALjvvvswPz+PT3\/607jhhhtG34nA6EvSqZIvTQKKZ7KZohSmnT8hz6YIkDEKfUq6\/MaQyxILVBnOTJeAZuU4\/WHQZTl9W2N+iJrIk4kpUpq6t22LqY9K\/VMrnTaSSBCrjSpJWGn4jok+qo5ivm35ltelQ4BfiLJlQTFp8pXTAGQlNUB9F2XrzebsqvKaLUgdQ4p0cmTe1hM2G+W2wqn\/NE9Skde+9rX45Cc\/ib\/\/+7\/H+eefj2984xt4+OGHceeddwIADh8+jMXFRWzbti17TLfbxZVXXolDhw55JanX66HX62X3l5aWigM4VyGSUWqTQQAmRLouQT4DN\/Iz3cJASVNkvKyWKBXOfGMivTiZgIxlVn6TiVT13TRZ0kKUp0v+cpyZLmU\/jnF80s3fQFGYmsiTCXP0s5ulPBdtpcdsPicIgpg2bQWpbrzvWnCmABXHV8tQ6XbgTpvalNP0bSCXIzW2orzWVJBc12gzZ9bWt11y5Jo3aRmYaUm69dZbcezYMVxwwQUIggBJkuB3fud38M53vhMAsLi4CACYn58vPG5+fh5PPfWUd7t79uzBrl27mu+IliWz5BanUjQQ+S8dlihxBiCuFCXoS5lwmZXfslQpQLoc5XSpqhyHvH8JyJcBo8mTie8vw6rERE9Z0IYw\/ZCv9AvdEgSxcmlzYVsTn+zk2\/U0bfuauYeQoWw5N5cXxQgop0YFMQKy5Egty9OjWkHSk0W6BMn810yR7FKb8a+kC9zmfOYzn8F\/\/a\/\/FZ\/+9Kdx4YUX4utf\/zp27NiBzZs34\/rrr8\/GMesdLKUsLTO57bbbsHPnzuz+0tISzjnnnOI2ghBM9PNUSSdIZsktRjFNAlAQJQRAB+n0AAlYH35RClEov+kptVmohMmXLrnKcTJhWc1c9zABeWkuWw69nCMIcxnhQXGdC588+ZZrhondqVRFEMS0GebY5ZOduvXe5ZZ01QmRLqGZy4CiGOl1pXIaUBYjvSy73aBBu0qQdBrkFaLpnv4PzLgk\/dZv\/RY+8IEP4Jd+6ZcAAK94xSvw1FNPYc+ePbj++uuxsLAAANmZb5ojR46U0iWTbreLbrfrXhkEQBxby1RfUqHkBpTTpCwStERJ3wfAYgYIqeZSEhIsfROZfUpA\/iaVsVQTclWkS+VyXCpIcf7GH0ac1I9e\/FDqRIdb71093vXhNsWp7qDheswsT8lYJ4UEQTSj6bFhFhhmX6seY8uPxve3vtlknS+rFqLsvqcJO1tnlNPUMpYv88mRr0G7TpB8KRJQbM7W6RFNAVDk+eefz0711wRBACHUG2TLli1YWFjAgQMHcMkllwAA+v0+Dh48iL17946+A+YZbmbJLYQ7TerHjUSpWZ8SywQpS6k86VJVOQ7IUyagKE5A8cNUKMtZtXTp\/gwDKCZRhcd4hKpqO5rlPmCOS25W0oGdIE4XJvm59AmOjzrxKY13eEETIWLWt3txXL6sTWpUWDcuQTJn1gaQTbVj3y5c6HZy6jLTkvSWt7wFv\/M7v4Nzzz0XF154IR577DHs27cPv\/ZrvwZAldl27NiB3bt3Y+vWrdi6dSt2796NdevW4brrrhvPTtjzJCXGtABAnibFUL9wLTR2j1ILUcrWRwyQslG65CrHAbk0AUVxytY55MlMnfQ4OERHJOrDYjcnVglVeRv5J9clWsPQpH+pqbgRBLE6GbbPyEcbWaqYLaUgQFWP8QmRS4ac6xxN2GoH9HorNQLyFy3k6ZgxCJI5L5JRXiuU2qZ0SRJgxiXpP\/\/n\/4x\/\/+\/\/PbZv344jR45g8+bNuOGGG\/Af\/sN\/yMbccsstOHnyJLZv355NJrl\/\/\/7R5kgKQ6Dfz+\/rviSkZ7kBKCRMMdQrqacE0GLURpQ6QV5+E9IpS03SpawcB2QJE1AWJ8AtT7Y4meNMbJHKlnuEykTLFdD+bJHScxEEQYyRKoFpik90mj6XXSIrrGsgRCWhMr\/pXeW0dHllagTkyZEeY8tROqaRIGnsmbTt+3aj9oSFiUlJ5w0tLS1hbm4OP\/je57HxjLUqLYpjsEFfzYcUJ+rfJAb6A7AkKS7vGeO0KAmZz6+UGPf1dAH6fpx+0wsJmYh0eb4MAKS+r\/+VMp1TyRyTi1HhPlTKlGGIhbRar0zpkI5T\/O0xheWxe3m+veH+bCMRIghiFhhFnppKT9Pn9AlRaVsFiTKmeRk2NUrHZMtd6ZEe4xMkvV6nSGEAdKJ0PM8kSUZRmi6F2XIZddLbYTZ+6fkezjrzGhw7dgwbN270v5hDMtNJ0rTJznAz4fm12JxpUvZvw0RJL3OkSgCyMhyAxulSfl8Nz1ImIEt5sn4mIB8HIz3y9SpZKZGWKbOMZz9G7UO9i7tEy5VijZNh5Y0giNmjSkaW7TmH+BZtIj91j2ktRNa41qlRuqzwGF95TY\/xJUimIDlSpNJZbVO6bhtAklSP2ahto+VIYzZzm6KUYYlSgHxaASATJSCdKgDI35SxUKdXCpmdDZctz3qV1L\/mh0fLEeukb86W4gSgcFEOW2SaylQ2xpNQqX30r3M9xzhoIm8EQZx+jKPs1uSPvKrn8QpYSyFyr2uZGhn3WWCV3OzyGtBckLLrtlkvhJkiTRGSpKZwjuzlilFOk\/QY4RAlIT1nvQGuPiUAlbIEoFG6BJhyZJTfWoqTSUFk7LTIuO0rv1UdEJoI0HInS5oqmSMIYrpM6jhQx7Ai1UR+So8JWHmZKT41QuR8nK8R21hWEiNze77+Iz2mSpAK+2eU2VzC5CMMAfRqh40CSdKo2GlSjOaiBLgbuoFchniaHgVQPUt2Kc6XLmXCpBlenEzMXie7QdsUKm8qVCFCbQpfdT1QozKOvyIJglh5DFM+89LgOOKSn3xffPMFVIzzCVG2YITUyFzv6z8yl1UJkpkiDcOEEiaSpHFhzsitRQlANoeSS5T0fVOUOqG1HMOnSxq9vqU4AZYUmeOAcpJkfBjtx2XUfB7s5MpHk9LcRKDGcoIYHyvsj5MqwfE+xic+msryW8OECEBpjoOQW2MdqZGxzcZypG+bQtRGkFwpktWwrdbp++HErtsGkCS50b+AOIZECIY4b8p2ldy0BAVBUZT0clOUgKIo6fuZKFnLTSxZqk2XNGbKZG+rQpwAW4qqBcb7OJMaqag9gFQ851SYkdifIIjRaHvsqaWh8NVLk3t9ayFybbMuNTLHmHIEuPuP9PLlTJAmDEmSje4ravuYTKJQL0pmLJkY9wt9SoBXloD6dMkYA6BenMyxJXHK1qjn8oiJL42qYxTR8cqYD0p+COL0YYLJVGvJ8shPo+1VSJFXiBxjG6dG5rrAkiXXddjM7ziXIGXb9KRIMwRJkkmTqc5dDdyJ1bwNlEUpHe8UJfWAXJSyN7UlS7oUZ+KTJaD01wSsNKnwYapIm2xYlO6fd4ot1kp8SqLTUrIIgiAmTo3k+KiVqbqpwJumRI6x9vpGJTWgmPqYcqTvu+ZAAvyCVNecbZbapgxJUlO4kQRZZLNwZwLkECW7mRvwTxEAYz2AYk2nYSkufZhMDNGx0yTjcYA7bQJQlicbx\/pMpIBm1wkpPrq0ZOplNYIgTlvGUoprKT\/lfagWHuc27J4l3xlq2eNbypEeM6wgNTmjTfcjTQmSpAbIIARLrNOpgjxNKpTnzLKZ3aNkipIU+Vi7oRsoLouNZYE1To9xNHoDljTBSpqAWnECHPJk40qhqmgzVu9D1OIgRZPIEwRRx7gv3mZTIz3ZbtSN8yVWbYTINcaXGgHlklrVOLv\/CGguSKWfKShfhiTbd5pMcjZx9Sg5lmVpkilCQjQXJaCcKmlsWQJQKsWVHm9gShMvC09JnKo+tL4SXCd97ialMsf2W0nWJJnV\/SKI05GG4jFpakXHRZNynW+7jseWpKguZRpVjvQ6u0G78BhLkErb9KRIvlJbk5aYMUOSVEUYArGVIBUarFGUH6A8oWQbUSr1KSFv7NbPBbj7llzjfNhJkS1OdpnOpKkMtZSLTLKabHuSzOhBmSCIKTNkTxKA+uNKXVN3nRC5nqM0gWODkppvnC1OTQWJWwmTvX9TvpitC5KkNpgJkm7gNspwMghUE7c9rk6UgGJDd6H8ZuJInKr6ljRNpMmOamtOCymlTzajygUlOARBzCqjHt\/aSlDd413745MizShyZD\/GFCS7nFYhSN4UyaDUjzThqQNIknxoqUkp9CVVpEkFUTIbuStFyTFFAFDuS7L7kWr7llBMmMz9raNKUoSs\/RDXSlQdlOAQBDGrjJIiYQgJsqlLiXzbcImR+XhXSc233uw\/0vfbCpK5LVOGSoI3ve8DkqQmuJIhTWCkSem6TJQAo5TmESUApbmUNLFHhmxZ0s9jPibfQccP1DJpsmmQ8tQlUbVUlfwIgiCmRK3gNKGtBJXWN5AiV+Li+4N5GDkCyg3a5vrAWm7clq51nrHThiRpFExhstMlc32lKBmpE5CLk+5VAsqplV6m32i+fqTYkSLZSZPaQHnMqPNTjKFcNrJoEQRBjJMRE6SMYSSobj+aSJG9bV8ztmu9LUfmsjpBMlKmkiBVpEiFUpvZtD1BgSJJqsNo3vaW3KrSpDaiZJffgLIsVTVn26W10lxKQ0pT6TWZYE2YepMIgpgVxtEG0PT4WSVkwwiRa1xdv5G93LzydxtB8jHJ75IhIUlyUXdpEl\/5zRKekUQJaCZLvtSnaS+SnX45palmuzZjSaJ0uZLSJIIgZoxRj29NE6mqY\/EwUuTa7rByBDQXpKoym06LfKW2KZfdSJKa4hInV5o0LlHS2wfay1Khbwl5A7r5AdCn2deV5+zxdQJlP09T7NP+V8BfGARBECOV4JqeqVX1HHVnsfmeaxxyZC5vK0jOeZA8pTbfzzABSJKqsM5wAzyzb9sCNQ5RAkaXJb3OfmO50iBX+mOmTFUf0iYCZWO9rmOr9Y+LWZqriSCIIrN2vDAZ5ou86c\/j++OxaY9SlVC1lSNz3bCCVJcizQAkScPiSpaC4rxJ5rhWogSMR5bMx+j1wPDSZBO3SI5s6VjuvwhsCWvLLB+ECYIYjUkmEm2PJU1S9GGlyPX4JnIEVKdH5vphEqSq5QCmMdN29tRTe+aVhGvm7WydLTtW2c2gsSjp7QJ+WdLbrpMlTVVS1ESa7G2Z++ijaRI1DHVJzxRiWYIgVgnL+UfSOBq3Af8xrmlf0ihyZD6\/a33dqf6AO0Uq7ff0U6WZl6Tvfve7uPXWW\/GlL30JJ0+exPnnn48\/\/MM\/xKWXXgoAkFJi165duOeee3D06FFcdtll+PjHP44LL7xw\/DuTpUKOkpsLV5+RtS2nKAH1smRPD+CSJXN9XT+SOdb14UtaCE9TiaqjNOeTASU9BEFMg3H1S46jeRtoLkWusYz71\/vkyNynJoLk2r7db1R67OyoyezsiYOjR4\/iNa95DV7\/+tfjS1\/6El7ykpfg\/\/2\/\/4cXvOAF2Zg77rgD+\/btw7333ovzzz8fH\/nIR3DVVVfhySefxIYNG5Z3B72iY5TdfP1JVY8H3LIUG48D\/LIkrf4oja88VlWa0zRp2M5el4Yf\/ro0aCU2b1eJHUEQRVbiZ7yOYf+Aa5p+t+lL8o1vKkf2Old5zRzjSn6qymyjJEUTKsExKeXMdqh+4AMfwP\/8n\/8Tf\/3Xf+1cL6XE5s2bsWPHDtx6660AgF6vh\/n5eezduxc33HBDo+dZWlrC3NwcfnD0z7BxXVct1LKiBUCX29LlWZKkx2WzYxuCoseYX5zZ48vLXOMK+6DxjbPXAUVhqhqXba\/uwrUtJGDUvqA6qLmaIIhxs9wpdZtWgDqJHEWM7HFN5cge6xAkZ5mtqlnblyRxnstQqbdJLV9aOoGzzrwGx44dw8aNG0s\/4qjMdJL0hS98AW9605vwi7\/4izh48CB+5Ed+BNu3b8dv\/uZvAgAOHz6MxcVFbNu2LXtMt9vFlVdeiUOHDjWWpEboviS75FaZBjXoTyo8h5UWVaVKQH2\/ElD8YNQlTIC7LGfvowuXPLXtC2orVVRyIwhi2oza\/9g2TWs6PxLgFiPX+CaltaqxbQXJtS8uQZoBZlqSvvOd7+Duu+\/Gzp078du\/\/dv4yle+gn\/zb\/4Nut0ufuVXfgWLi4sAgPn5+cLj5ufn8dRTT3m32+v10Ov1svtLS0vlQa5m6qZUzalkrCs1cpvj9HaAoiyZ+1JXggP8wgTk0uTrTWrSvG3ui4+m6dNyNVsvd6JFEMTsM82TOcYhQk232VSMgOHTI3OsS5DaPu8MM9OSJITAq171KuzevRsAcMkll+CJJ57A3XffjV\/5lV\/JxjFWfENJKUvLTPbs2YNdu3a5V1adyVaHIzGqmhYAaCBK1vjKVMkea67XtE2Z7Mdk+1Qz6aTJsH0H4+rvoTPdCIIYF+Pso2qThlc9bxsxAqrlCGiWHlnLpatfqSBd9SnSLDLTkrRp0ya8\/OUvLyz78R\/\/cXz2s58FACwsLAAAFhcXsWnTpmzMkSNHSumSyW233YadO3dm95eWlnDOOee03r9Syc2kbobuJqIEVKdKQHVjtzne3AdNE2GyH2PSRp5MmvYSzWJTJzVmE8TkmMVjQFOGbQdo+jO3FSNgNDmq2LZTkArbbXZx2lkrtQEzLkmvec1r8OSTTxaW\/f3f\/z3OO+88AMCWLVuwsLCAAwcO4JJLLgEA9Pt9HDx4EHv37vVut9vtotvtDr9jVdd2q0uTfH1Hvm1XpUqAf24lc7zGJ0z2\/prTCVTRJHFyMU6RmjQr+aBNEMR4GGc\/ZJtjik+MqrbjE45RBanqTDbf\/tStL+3j9BVl+ntQwfve9z5cccUV2L17N97+9rfjK1\/5Cu655x7cc889AFSZbceOHdi9eze2bt2KrVu3Yvfu3Vi3bh2uu+668e9Q21Kcq4nbg3NqgOx5W4iSa7z5OKC9LBV2tEKchpUmF6MehGZVsgiCmD7TOumj7R9ZVVJUt82qNGaMglTbh1Q359EMpUYuZlqSXv3qV+OBBx7Abbfdhg9\/+MPYsmUL7rzzTvzyL\/9yNuaWW27ByZMnsX379mwyyf379y\/\/HEk2VemSTV3ZzbW9YUQJGI8smfiav100OSAsV\/mKznwjCGKSjJoyNxGiJs\/VNDkChiuv1fUhNdkvx3YrJ5CcYl\/pTM+TNCkK8yRtXF+aEwmAd74kwDFnElAx51FcHlPYliUNdfMgucb4zubyzo1UI3dtRaauTDcs1A9EEMSkWa4SexspqtuPNqmRZsTymleQfClSTfO3sx\/JniPJXE\/zJM04bZKjFtsqzZ\/kO1utTapU9Vj9eI3rZ2pbRvN9+EeVp2n1A5GcEcT0Wan9gG1lSNPk5x1GjoDx9B+1ocHZcbMKSdI4qZrvyNWb1KTsZj9e06T8BrSTJd9z+R6vaSoRVQeL5UqfxsFKPTgTBDEZhhUhkzbHmXHJkWtbDQSpdYo0LqYgVSRJM0ojUWpC1WSYbRu8fTTpZaqjbZM4QRDENBiHEJm0nmhyGQWpAc5G7RFx9iPNwJltAElSexxnuGXzJS03bZu5NcOIkt4eMFlZMqk7GJFEEQQxbsYtQT7GKUd12xv24rnDNmM3nBdpJUCSVMWofUcjlNwAz\/Xdht3nYUVJbxNoL0vA8vbztDmYkVARxOnJpKSnCcOU7ptIxjCC1HCiSJORU6QV1o8EkCSNn3E2dDfZfp3gmIwiSvq5gXY\/3zjnThqFWTpQzgIkjasber9Pn1F6GZsKxLDpUZPtV53NtlzMoDiRJM0aw6RJTctuwPAN3fY+atoKoetDTWePTR76EiWI8TKOEzzaSMI4BWmYs9km2bA9RVofKd\/97nfjoYceWo59WXmMy3rHXZtuOmZWoLPHCIJYqYTB5AWJmBitfyvHjx\/Htm3bskuAfPe7312O\/SIIgiAIgpgqrSXps5\/9LL773e\/ipptuwp\/8yZ\/gpS99Ka6++mr86Z\/+KQaDwXLsI0EQBEEQxMQZKt974QtfiPe+97147LHH8JWvfAUve9nL8K53vQubN2\/G+973Pnz7298e934SBEEQBEFMlJGKoM8++yz279+P\/fv3IwgC\/NzP\/RyeeOIJvPzlL8fHPvaxce0jQRAEQRDExGktSYPBAJ\/97GdxzTXX4LzzzsOf\/Mmf4H3vex+effZZ3Hfffdi\/fz8+9alP4cMf\/vBy7C9BEARBEMREaH2u3qZNmyCEwDvf+U585StfwU\/8xE+UxrzpTW\/CC17wgjHs3owzrvmQ2p4Cv5zzMBEEQRDNiZPxnN0mBJ3hNoO0lqSPfexj+MVf\/EWsWbPGO+bMM8\/E4cOHR9qx0xZLgBrNuO2SrCqRqtpmU2EbRdRoXiSCIFYTrmPaMOKkj6tNZKlKzpLEP1eSS8bsbTURNnOM+fgkXlVzJbX+Sd71rnctx36sHpY75Wmyfd+YUeVomJ9tFoWIZpsmiNXPtCdMHUWcmsrSOEWpZgxLkuWfdXsG07TVo3vLwajCY35IzG2ZF8P1jcGQKdJyCNIsyxEJD0EQLtoeGyYhVfq42FaWAL88VG1TH\/ddcmMLybjKhlWYzzGDQuSCJKktcVxaxJLysmXBlpXlFqS2cjRuMSIBIghiUjQ53oxLpMxj5bjSpWFTpapt1KVJTUpuK0SGfKzcPV\/llFKkYVOtYQRJiHbPFyfjESQpiv8RBEHMEvYxahzHqbbHz6pjc9V2XN8FQ3yvNKpwtN6mI2hwBBLTgJKkcWK+4UYotY2lzLbc6dGwUnQ6yM8s9mERxCyxmq7XWHVMa5M8tUmXqlKltuW3urJbXRLkS5OWgymkUiRJw7JMDdqNEqRhBWlYOWr7pb\/cIkQSQhArm1n\/DI\/ri35YgWra9D2KLI0gSo2auH0ltxXWl0SS1ISKVKa2H2mIhm3v8nHL0bjEaFQpmvUDJkEQpxdtj0nDSJV93KxLnaqSpqoGb58sjVOUxjkdwIyJ0+zsSQP27NkDxhh27NiRLZNS4vbbb8fmzZuxdu1avO51r8MTTzwx+Z3zldpcNCmzjSpIus7tm0PJl1DV1cfb1uTNbfr+W26EpP\/oP\/rvdP9vOWlynKs71g1zXHVRd3w3SZLid4f9WNf3TtPvLNd++baLmsBhGfqgmrJiJOmRRx7BPffcg1e+8pWF5XfccQf27duHu+66C4888ggWFhZw1VVX4fjx4+PfibaNZL4UycHYBcm3P00\/PJq2TYrjFKCVcHAkCGJlMAvHk1GkyXX8HeWPYZOqNg\/X+LoeWnN8m2rLDLIiym3PPfccfvmXfxm\/\/\/u\/j4985CPZcikl7rzzTnzwgx\/E2972NgDAfffdh\/n5eXz605\/GDTfcsDw7NEqZqq7MNm5BGmZfm5bPRpGg001eqKRInK6spiZtoNmxi7Nm22o74aR5bLbLc76ymq9vyS6njVh+Ky1zNXG3bfKOYyCcrqasCEm68cYb8eY3vxk\/8zM\/U5Ckw4cPY3FxEdu2bcuWdbtdXHnllTh06NDySVJKFg\/WyY7LpF0mXiVI45KjYcSo7Rf8OAWI5IIgVjar5TPcRvZGEamm4uQTJl\/vkqtvyRYr++y3hhNOevuTNG3nTZqhvqSZl6T7778fX\/va1\/DII4+U1i0uLgIA5ufnC8vn5+fx1FNPebfZ6\/XQ6\/Wy+0tLS\/nKUeZmcL25Xc3abaJKa7zaZtJ8rG+\/AL8YNTmoDSNCs3awnGKdmyCIZWK5Lp0x7PHLJ1e+Y6hLnurEaVhh8qU6ZqrkGqu3Z8iM84y3uiZuvT7dDktiyBm77tts7Y3FM888g\/e+973Yv39\/5QV1GSu+qaSUpWUme\/bswa5du6qffJQ6aUNRcfYhDZse1ZXpNG3FqI0MjUOCSFwIghiFSR5Dms5iXUWpJFVxzDUFyidAbYTJFKBhUyWXKLUpu804TEo5s80hn\/\/85\/ELv\/ALCIw3YpIkYIyBc44nn3wSL3vZy\/C1r30Nl1xySTbm2muvxQte8ALcd999zu26kqRzzjkHPzj6Z9i4rqsW6jePfqPExdJaqdTmSImyFMkhMyMJUlV65PpAthGjJlLUVIYmebA63XqcCIIYH017iEalTcrVpLzn2m\/f41xTDJhjbWkx19n7bY7V44xlWaKklxW2Fbq3kd6X9nrdk1Taplq+tHQCZ515DY4dO4aNGzeWfsRRmekk6Y1vfCMef\/zxwrJf\/dVfxQUXXIBbb70V\/+Jf\/AssLCzgwIEDmST1+30cPHgQe\/fu9W632+2i2+0u675X9SFVCtK45Mh3JoQLn2BMQoZIbgiCmDbjOg7VyZbvWOmSJ9\/xt1A2M\/ZbP3ebhMkunQGe+Y4qUiVHopTvn8hTKrvsZo+3S27ZY9PmbV0CnHAKNdOStGHDBlx00UWFZevXr8cLX\/jCbPmOHTuwe\/dubN26FVu3bsXu3buxbt06XHfddZPbUZ\/g1K2rTKEaltbq5GicYtRGhqh5myCI1USTZKfpcc+Wqapjq6vPx7VPdcJkjtffE8whRHUluAai5GzkHnfZbUJnvs20JDXhlltuwcmTJ7F9+3YcPXoUl112Gfbv348NGzYs23NWntUGlMtsVWey1QlS074jWSFOQDspaiJDTQ8GkxIcSqQIghiWJuW2cRzLMhGpOV6Z+1OVPvkkyN6+L2UyZckWIp8smalSU1HS6DF2E3dVGjVlZronaVIsLS1hbm7O35PUpB8pG9+gD8knSOOUo1GlaLkkaJoyQ03hBHH6sVxnuzWhba9T02kGXNt1\/Zy+7ZmPN8cwR68R4O9XsvuEzHVZj1FNf5K93NWbVNGXdFr3JM00rmbrJn1IdYLUtO+oqRy1SYpcAtNUgoaVn9UsLpRuEUSZSTVJa6Z5tlvb8lvTM+FcpTXz59T7UZc0cVZMiXzJkq9fydUn5EuUfGW3qnKcZoqTSpIkVeH4cDmvL+NLekYRpFHkaJS0qOpD2uQDP+oBicSCIFY3q+kz3qa3yEXgkJ6q53BJj6u0Zu+HS5rMxw4jS77vClN46kTJNXfSjJXcSJKaUjf3kacPqbUgjUuORpGiuoPYOHuW6qCmbYIgZoU2cxpV4Up\/bOoEyhQbc\/+aSlNBfkaUJVeq1CZRcixzTixpXzplApAkuWhzNWOX1IwqSOOSo1GkqE6ExjmfUhviESb5JAiCaEPouT7a0Ntr0bhdJ1AuGWorTeOQpRai5KQuTZpyskSSVIdxmRLmusQIUH2V42EFqY0cVYlREykapnG7ycFinEKzmiJ6giBWBv1kvD1UsSiLl41LbEo4kqGhpGlEWWoiSgaN0qQZgyRpFJqkSI51TkEalxyVGr8bpkRN5KqwvoEAjUlsZELpEUEQUyI9FLJgTF\/g4\/jjsdTg7Dpe10xQWRAmx+ObyFKMelGyxjgvXWKmSb6Sm9m8PUGhIklqgq+8BhRTJFeZbRhBcslRXUmt6gw3W4qalOHqPsgNBGgsckMJEkEQM4AU40mVGGq+3IeRKFuafH1IvjaN7PR7x+PqZGlUUYrhTpNmJFkiSfJhvVG8pTbrfqkPybxtCpKrvJaJU02\/kWu9uWwcUlQjJ40EaByCQz1IBEHMCnWlsgZIVB\/TaiUKqD8uOk+lt9MiQ4zsiSR9PVGh9RhTlABlFG1FCcif35EmAZiqMJEkDYsQpRTJ2ag9rCCNIkdNSmc1UlQrQY0at0cUHEqRCIKYJcbRo1QjWrUSFXDHMb6BNJWOp\/p7wZARW5bMcXbfUmE8jD4lvS00EyXAeQ237Oe1z3Kb8BluJElVxFZDtlkay8Yk7tSoiSDZ5TUhm\/cb6WVN+pIapEQlKaoSlDGU4nxISo4IglghsGGSpSaiVbFdV9mvlD7Zx1FXw3gmQoYE2d8hrr4lW5ayVAnlhm5blPS2XWe82WkSMBMlN5KkOqouTGvAkmR4QTLfmOOQo7YpUZu\/SurKcG0lZ5JSRFfgIYjTD7Z8M3yXjnctpckrWf30WF4lU8ZjS+KUOBrNfcdaW5YAZOmSq2\/JlqU2ogSUpgZgQDlN0s9tlw2nMPM2SVIDnLNsJ3E5RQLcZbI2gtS2pGY+n\/4QGONbC5FHgmrlp4nsjFlSZEzSQxBEHc2PEywcUagGjtaGCknLjqs1cuWUqRpBK5XtbHEqPd5RYqvqW4JDoFzltjpRKvxMepthWZqmlCqRJDXFVWpLyVIk84y1UQSpjRzViVFLKSrJUJ38VIjPyBJDPUkEQUwQ2W9wzGndk5Rv0ythWq48QuWTqYI8ucp4FeKUlej0ts2SXEmEqvqWrNKc3dBdK0rwp0l6X12zb08IkiSTOAbQrR6jG7ZdKVK2vkKQfP1H5v02JbV0eSZGhSRqRCEaRYCGEJyZTYaoTYogps\/0zwZPKR6n2qRPmYR5RUtWb3OQFERKOnqNmopTVqIzEyZvuuTpW8p6lqxUqU6UgOpkKIkBhOl40IzbM0XdJUksCilSW0FKrPu2HFX1GvnkyDEGaC9EXmGp7UlqITrLKB8zK1wEQUydkctqBqX0qdH3ebUMVcuULD6uRpxKpTrz2K+FKT0Yl9KlbJwWm9jYJ\/tst6TYp2Se+WaLEmCd8WakSaZIzQAkSS6SRKVKQqh+pIIEVVyCZFyC1DQ1MpaVxphv8jZC5DrzrUo4KkRnVFGRCYkOQRDjZ5RjCwuGFyxbigqC5ZQrd6lO9qUlUH5xcpXqMnGy1pVkSSdR3lKcdcaanSiZDd0+UZpxSJKGIZWgUopkrMtu+wTJFCEh28lRnRiZUtRCiIrr\/D9+lfy0OvgsQ5IkKxyWIAjChA3xDShrL05b8Vjr+FglXPVCVUyjWotTKj0s5MWyXMgLZ8tVp0tGz5J5ppsOAZqIEvRyK01SGzDWxZAIVYBB8yStMHSZbVRBipPqRuwqOdLLDCkaVohcElQpPx7ZGUVY5DIIFEEQhInsD\/c4NmSLjC1lBeGytmkec10yVZSj7FHldYAhT4Y4pdKkn6VxuuSVJUOUABQaul2iBKhlwwiPazbwZYIkqQ1Gw3bpjDbALUiuM9hMcbIFadjUSOrlcmghKohQZZJUsa6h3Mgxv8dJqgiCGJa20lN3\/GKe731byqqe1xQql0zp47UpUG5xAkw5MhMnFiKXJV+6ZMlS1uhdSJ8comQ2dDtFCaohO2tTQTFNcl2g18ae8HkZIEmqwy6nmZjN2lmJrIEgaTkCSoI0TGqUiY6w7gMF2fEKUWlc+UetkhDfAWNYcVmpJTOZLN+kdQSxWmHB9HsPh9mDqlKd79hnS5F57LTFyhQql0zp55dCFsTJTp18iRMLmSFMqUS50iWrFKcebaRLWfJkiFI\/bfA2S3I+UdLHe9dkkuqBaCRMywRJUgXOSSTNFEmjZamNIJmJkilIQg6VGuWihOJ9NBci+4M9jPw0EZxxyAQlRwSxOpBitv64aJoq1adJjrYFe0whLfLvh0umZL+8ryw0UqcaccqlKRWm2NinFumSW5SAYvmtRpTgONPNvmTJlFyJJMmHnRzpUps9xqyNthUkQ4YKgjRMaiTy25kUlUprxV3Nbifu5fZjbHyy00ZgxDKkLyRQBEHU4ZWhEVoBuCFGdfLHuFu0tFy50i0lQe7HsyBPn8yfrU6clCBJDJUuhdwjSkC5T8kjSuZUAvaFbmMUruXGkhiSdxyvzPIx05K0Z88efO5zn8P\/+T\/\/B2vXrsUVV1yBvXv34sd+7MeyMVJK7Nq1C\/fccw+OHj2Kyy67DB\/\/+Mdx4YUXjm9HbGEye5HMFKmtIDnkaNjUyBQjW2yaCFFBoBzi4hOPKslpKysimdyEYXQZN4JYvTS6XNuY+iJ5kB\/okgapWCYw1vNrwXLJFcvkxlhmCJlPnmrFiefC1DZdYiHPpgbIRKmf5NMFOBu6LVECirKkxahj7GwSA6YYtZzLcFRmWpIOHjyIG2+8Ea9+9asRxzE++MEPYtu2bfjWt76F9evXAwDuuOMO7Nu3D\/feey\/OP\/98fOQjH8FVV12FJ598Ehs2bBjuic1mMKsxm2W9REaKpMts4xCkWFSnRlY5TSbmstGEyBzjkx+\/LLkFZ1gZmaQwjYKYsVIBQaxUOF85f7kUxChufqxiDE4544FwClaVUGmZKkqRNBKfanHS22YhICFbp0uZLAm1TobqX2+fkkuUfGmSvvCtTpaEwLT6kpiUK+dv6u9973t4yUtegoMHD+Knf\/qnIaXE5s2bsWPHDtx6660AgF6vh\/n5eezduxc33HBDo+0uLS1hbm4OP\/je57HxjLVAr6d+SYN+nhRlywbGsn6eIg0G5dP8hxSkYVIj\/WGQyWhCVFzeTnzqxGZYoSARIQhi2gwrcVWPM2XLxpeGmY8x0yGz1FdIjazEyRyj+5sYN9ZpeUrTpcKykBlnxjG1kzpV0r1KnKmz3\/R9nRoFQd7Mre\/r21GkbneidBwHOhFkoJeFxrL0drcLcI6l53s468xrcOzYMWzcuNH7eg7LTCdJNseOHQMAnHXWWQCAw4cPY3FxEdu2bcvGdLtdXHnllTh06FBjSSrgmn8hbeCuTZHaClI\/qZajhqmR\/gtBmtI0ghDZEuSTH5+8NJGacYiPlCRPBEGMF8bcUtPmmGWKke9xnEsIUU5HfFKl5UgnV2YqZSZRjJvLqxMnFubLmbDSJdEsXdKn7DvLb00SpU4aecXIe5LSNCm7zInuSxJi4oHSipEkKSV27tyJ1772tbjooosAAIuLiwCA+fn5wtj5+Xk89dRT3m31ej30er3s\/tLSUmlMdmabrn+acyDpf4XIm7XrBKmfNEqPtBy5mrDN1MgUIyCVplSA9DJh3VfL3DJkLrc\/1G1lqKm8JGMoqa2cHJQgiFmmUR9TA4JAIGlwQopwzNytxKn8WJdQaZnigRhKnDI5CmRWmtPpUuHMudDfu8RCQA4EmJTl8lunYooAU5REej\/ieVkt\/ZcliSq52X1JE2TFSNJNN92Eb37zm3j44YdL65j17pZSlpaZ7NmzB7t27Wr+5Nnkj+kv20yRgLwXySVIpwaNy2uyL0vlNKCcGvnEyJaiNkJkfjDtD6lPenyS00RcEjGaII36eIIgCB8BH745OE54o8f7vqICRwkuScoJVyZJxvHaTKHM47D5XDL9HmPcEKbEky4ZwuRKl5COl3FarotFnir1E8hQgkVBtSjpf800SSdIHZc4TfYMtxUhSTfffDO+8IUv4KGHHsLZZ5+dLV9YWACgEqVNmzZly48cOVJKl0xuu+027Ny5M7u\/tLSEc845Jx9gp0awSm36XzNFGsStBUkO9P08PZIDXW5TT2OnRmY5zUyMTDHSHw5fOuS6bYqQLT8+6fGJSp3AjHJuAskRQRDLzSA9zgwrS02OU75t+463tlRpmTITKVOS6uSJMUuYBLzpkl2O0+kS+lAHdC4B8LIopbd1WU491hIl3adkpklJ4i+5afSYZWamJUlKiZtvvhkPPPAAHnzwQWzZsqWwfsuWLVhYWMCBAwdwySWXAAD6\/T4OHjyIvXv3erfb7XbR7Xab7UTiONNNixGQS1FTQToVO8troieyklrT1MgnRnXpkEuIzA+m\/QH3feBdH\/EmB4e2vURNTqslCIIYN7HxB2PQsnHb19uk8emX7xhqS5UpO9kYI4VyyZNZtuNcloRJSxAXADP6l7zluFBtQJXgBCCYv09pkKhSHFAUJV2B0WmSlqcgQKHkBuTp0gSZaUm68cYb8elPfxr\/\/b\/\/d2zYsCHrQZqbm8PatWvBGMOOHTuwe\/dubN26FVu3bsXu3buxbt06XHfddaM9uTkXgxDFUpudIgmZC1I\/dp7BJvX8Eb7ymgBEvzo1EgVJyuXGFiOXECWe0pv+QJofTPvD6\/vQumSnTmgESJBGIaFmdWJCBDVf8qcbA9FelHjFBU9UWa683ts4bt1PHGmXq8Rm9kjZ4sQFywRKyvwxWpjqynF63u1ig3exT4mtCYsN3fpyK1qU4vyMOXCmNt7hafjA85Kb2Zc0wbmSZlqS7r77bgDA6173usLyP\/qjP8K73\/1uAMAtt9yCkydPYvv27dlkkvv37x9ujqSqSSPN+64UySdI9hlsfVEqr+n0SCdHOjWqKqdpSTKlSAgGKZlTiEzRcQmRucyWH5eo+GSnSmrafsGLFSAEJC3EamUw4edbCVI2EABvuZ9VP5fwSJRLruzjspYp81vLPI5reaoSJyFkobeJc5k1gjcpx4mBUYbrSGf5TZ6KVUM34BYlIdV3ZweqiVvqUCLIA4rAaFqf8BluK2qepOUimyfp\/\/scNq5fA\/T7ao6k\/gDo9dTcSP2BmgupP8jnRerHqhdJ\/2uW2PpJZf+RXV4Tg6Ic1ZXTbDECVFokZX06pJcXym56eygvs3GJgU9o2kjEckgRSQxBEJrlELE20uR7ftc2XGPN5MkUKXO5liczYTJrAXp5wAUYy0t0jClhMktzPFunzpbLynGBTEtvEryjSnC6uZtF6fxKXJXhWIcX51PqBPlcSp1ATQEQpP9GYfpvpOZH6nbUv5xDRpGaG6kTQUYdoNMBoojmSZo4caxO\/7ev02ai50UyU6S07FYnSLKfl9dknMpRdptlclTVZ1QnRnY65JIhIBcic5mWCpewjFuOZMvSmyamEhxBEEPQJh0Lm5bWrGGsosSmn98lQLYoucYORHGsXmeWArU8meU8s4Rnfj8EXBT6koJAZCU5XY7Tt53lOKFeAF2CM8tvvMvTqWyEEiXd0A0AnaCYKHWQl93MNMksuU0JkqQqkjiP+8xSm92LpPuObEEaJM7+I9nPy2uqD0mJUTJg3nKaeRZaYghUIngmRqYUDSNDPkHyCY9LcnwC0\/bvt3jKCRAlUAQxu0yiNDeomOsorHx+VnEv3bbejiliWlZQL0takgbG8sQoCgVZKa6cPGl5YkxCQJ3Jx4FMmMySnC7HCcGc\/UtZOS4BeFdm5TfeUdWSfKoAUWzoBnJRiplqAM++S5O8N0lPBzBFSJKaYjZsO1IkOUjqBcnoPzLLa8kglaSYe8tp5llophgB6r4WI1uIzC97LT91y7T8tBEel9S0K7U1HloJyQ1BrH4GQ6bQNsPKlv38vMXuFJKhVMSK0sWM\/zef05AqmcuUKUq2PNk9VKY8cciSMJnN4FqEzKkG7P4l5WV5GU6X30S\/3KfEOmlDN4qiVBCjrInbUhMdVCQxEHMwHkPGXJXllhmSJB9pcsSSpFh6c6VI\/fy+KUjqlMhig7Yur4le3nuUDFQyFA+CynKafgPrN7OZGAmo24lktemQXuaSIf1xaio9LrlZjlKbnouMIAhiXDSVrbCu2tOq5KaesyBL6TKXbPmlKp97SDrkSTiSJ2GlTgGTmTDp7xxTmAIusskxXcKkBUKlT6JQfuMRlCCFRr+UFiUpM1GSnJXTJCHLJTeXEE3gLDeSJBe+s9zMuZB0inRqoMpssSjMgaQFSTdo69P7XeW1JFbpURzzQjnN7jPSYqSWsYIYAUqETEmyZQjIhcj8CMfWeFt8XNLjLrW5X842QhT7jy0jQQkTQZy+jFqeGzhaVMPKQ0p5ZbmMlgqPKWCOkptLqhJjcqSASQwSZqRRSp5cyZOdOgkmc2ESEgG3hCkVpSphKpThjPIbIMt9SuD5mW9IlCj1k3xOJZ0m2SW3KFLzJcUcWP7wqABJko1vfiRdagOMBCnOE6R+UjjF32zQtgXJLq\/FmSQF2eRlw4hRIlkpHXIlQy4ZKqdL5ZfGKUZDJEltSmsrUW6Wv1uCIFY+k\/xkL0d5rq4JvJwKFRdkTdeGgOXilY\/Ny2r5Mi1WSnyYEiUrjaqTJyZzaTKFSZfpTGFiTGJgCZOUqtIRhkmhV8kuvwHFPiXe5SpESEUJIc\/6erM0KUnyBm6g\/F08QUiSfOiZtnVipG+bF7M1m7VjURIk3aCt+4\/02Wt2eS1JRSkRHIO0rDasGEn4kyF331HxPlAUn1FKbE1kYZTkiCavIAhi3FRd6HZQ80dbIV3yHJ\/0EFN6AqOXSMMdwmSKlXoulokSkMqTbC5PqtylhEkYCVPQUJgiPZ2AkSoB5fKb7lMqNnQrUcKpGIwzSJ7kaZII09m1w3JwYf47AUiSKmC2HJmXHTH6kWR6mr\/doG33H7nKa3EcQEqgH4cYWA3YZvO1LUaAEhtTjNT69jJUlSypx5RxyY33Gm8t0qBxltvIoQiCMBl3emWX3GL3MAD+kh9jRfnKtmkMt8VKyY8WH2NZS3niDAikzIQpbClMgKp2dNLLQ5jTByi0zKg+JcBq6IZIL2mSGJcwMRu5E\/UAsy8piTHJmhtJkgt7lm0gvwyJFiXdiySkatTWKZJDkFzltSRR\/8VJnh7p20BZjPSyOjFS69vLkLTGuoTHJTtOWap4aZMWfwDMQq92QqZFEDNBMG7DGRKzhahKigAgMAbbKZTrxwlZeZu2XJlSpYVKldFYJk8AwJlbntT\/S4QcqRDlPU4+YeIsL81pYRKQSARDGAggDpEIoW4DhfJbEHr6lNKGbhkKMMZUNcZMk\/Rs3Pq7V\/claUGaUJpEkmSSCHUVYiAVIiPaMy89YqZIp+L8MiMD6ew\/Mstrujk7jjn6cQgBIE6CVJSY+rehGBXXp4Ikh5chPcYUH5cjuETHXtRULoY59X8l9ikRBDEaK+EyKXYfkqvh2yV72qVMQdKCZcqV+VAtVHo\/S\/IkffKktqSEiOXChBphgiVMQmblNilZJhNSAmFYLL+5+pSyhu6+VLNS6jSpn17sVldwdMnNlKI4mViYRJJkwRLL443ZtJ0pUtqsLXoCol\/sPzLLa3Zztu4\/ihMOAYZ+miKZfUZtxai4XmHLkCkY2Tr9o2ontF4Tl\/A06Utqk8KMOk9SQg1KBEEMSeBoRGrT7N10nqSAlWXPPft2WbBMueLIhSrgOh1S2PIEQCU1KMqTEiL1yGGFCVDH\/U76rZEInopTnDV1A4BIeJoo5X1K+ueQsQRLKzLo83RKgERdokR\/\/0ZRPlfhBAUJIElyY8+wLY3bdorUT3uRUkEy+4+qymtxEmTJkU6P9O0mpTRTjGwpkrKcCpkfQ1uGtMz4epKaS1JxYRttaVOGczELpTmCIFYmrgvKtsEsq1XhcimXoLnnSzJv5\/ur23\/0eluezOfV5bmASTDGELJcmFSPk1+YXD1MiWRZmpSI\/LaIw+w2YPYo5dME6G8IFuo0SZ3hxvSZbkmiGrj1ZJOdCZ\/7n0KSVIdZakt\/WYUUKb3UiBakuvKabs4eCF5Ij2LJMRAMPcEN8cmbrn1ipKUIUMtiqd56PhECyme7uSXJeFM7XpZGJbcW5jJK7w8JEkEQozLK1cGChgchl0y5BM01zvQmLVa8IE763zSlseQJKAoUg5KmgjDJvDznFCYpjfXqu0FCtYdkggSGyGjqNstvQjCEkRolEoYgkar8xgU4B1io0iRExkzccQJ0jKAiskpvywxJkoskVme2ZT1JRqktVoJUSpH6yATJPnvN1Zxtp0cDyTAQSpbMM9GqxEhLkRqrpERACYfrtH9bhrQI2eU2oCgeLtlxpkv2mIY1tFELZTQbN0EQo1I7q3YFTQtzgaOf0vW0LukyxUmLlblMb9kWKFueACVQgS7LlYRJ9TaplMktTJIzMCkBcMRSImKq8pFIhkjmyZJu6rbLb4AxTcBANXPLQEJ20hRpkICdGlglt+KLwpJ4ImcwkyTZmIZqXpIkLbVl12iT6XxIA4mkp3qQ4n6xvGbOfaSbs\/uJSo4GghfSo4FQktRUjEyxMcVIvVHLIgT4e4\/0\/ULaZLwkLtlxvTltWZEN38KjltqoH4kgiFHxXauyCU3LbRDSuJiIwiVnzrKcIVj6IaZM6X2wBcqWJ0AJVJBKkU+YdF9TXpYrC5OERMgEwAEpeJYqmcmSlAwCKJTfhGBZuhT0JBiXYB3V38vCBIgDIJLAIE4bt\/Vf+CI9wy0lsRq3lgGSJB+6zCYF0OurX9KpQSFFypq10zKbr7yWJUlmcuRIj\/T9KjHSUgS4xShJr4njSoVsGcqXl0XKFB6X7LjTpeK4pu7TNHFyISbytwRBEKsdPsosSkmxB6j6eYrHLJecOcttxgE1tAWIs6zR2xYopzylzdsBYxXClE9MXCrLpcIUSyBiHImUiLgspUqlpm4hCuU3AIh7Ql0YNzLSpH4CdALVwG1P4gykcyV1q1\/oMUGSZBLH6TujnCBlPUlmipQ2a+smbbu81iY96qW3BxViVJUWFcYJvwiZH8+8rCfTMfn2NC7RsaXGJSpN0p02AVAsR4ybCIIghiBkDWOi9BBVNWO3xm7WLgmaU7pkJkC9JN9GwFFIqEoCZSdQSSpFXIlTwN3CBJEnTu6yXCpCXEL\/L2QCCWOFXiUhGRJuNXWncyoJkYAHAsFAQgxk2sQtwCI1JQCiIE+TsrkKjal5JgBJko09kaRuHhMSMhFqdu00Rconi+To90IMBkEpParqPVKypEUJGAigl96uEiOfFKnbsjINskXIlihTeEpnqzmkxiUviSfdaZP6JMssRZRAEcTqZaRUyMZxqAiqxMka79uXwLG8IGQe6cp6jvRM25kEKYlqKlCBZOBQiZNKm9TjfdLkKstJLlMZQpYqRVxCyHKvkkqVVFO3TpUAIB4IBKEA70uwAGCRhOykZ7mZ\/8VJHh7Fy19m05AkubCnANCltn6Szq6tjMRMkfr9EKfisJAeuc5cG2SJkZYllsmRKrnlUgSglRips+BkYxEq9CulN7X02KJjS4VLYpyJEpq9mUeVloTVzX1LEARRJpBDfA02FKHScyEoLSs8VjoETJa3rwUrZBwQuUgV+o7AjETKJVBKnkKuZsMOeFGaqlImLUwS6o\/3kKOQKjGombnVfXeqpC9rEgQCnEswHoOFqpFb9gXkqbhYchMy\/16eTKVNvcaTe6oVRpL2IyXG6f8iPeU\/lkhOAslJ1azd7wfoDUL0BmGr9GggVT16IFWKNBBAX7BKKQL8YpRIma2zRchMgWwRyseKwn01piw5JWFyCErcQI5ki5P3Y5IggiCWgwZ+E7YQKdZgMoHQkqWCqKWHV5d4mZLFwXKpMkSqIFBQp\/VnjzdSKJUkScSCKRkSSOdFKqdMWpjUz6e2E3H1\/TJgQCQZYob0u4whMkpwKmXy9yoF\/RBBIBAMOIKehIgkWCSBdVJ9wcVGRUeX22gKgCmSds8DKEweKQfG5JHp5Ud0s\/ZgoNKjU2mKNEi7\/NukR2qMejM1TYtsKTKFqKkIaQnK7hsyYouOS2pseREV4pO0uLBAG4FqS8wmfYEDgiAmTSjHN\/lg3\/KVJiKkCRzTQ\/cAcHMb6fZdMmY\/lxYsLVbc6DnSEtVEoJhMEyJLmABPymT1MsWZEKnvooQBoWTOElxVqhQGCfr9EGEokAxUkqTTJEQJ0EnUd7IOLjQTKrmRJJkIAQTIIz1tr6cG6uJ7AzUvUnJSnfI\/SPuQTsUh+kmAXhJ4S2uJrE6PBkIqYRpCjLQUJdDLmomQKUFaSrT02LJjC45bmMrykchmQjKqFLURMGpHIojVT6\/FWJfItKGpNAWs\/DymzGkZs7dn7l8mWCyXKj3eFqiiIJUFioMhAEMoOBhzS1NVyhRxiSRtDxFcHcV9JThfqhQNQnAAYT9t4k7TJN6XYB19wlQMrJXZGW7ZNABxjNGmAa1n1UjSJz7xCfzu7\/4unn32WVx44YW488478VM\/9VPDb9AUJSEh+3qeJCNFijl6fdWHdCoOVJLUsrSm5EiqZRKIU1lqK0UCEgkSrwj5JEjLRb4+lw1bcFwiU5ATWS07zYVp+f5CSCSV7QjidCFgzb7i2mbLzNFb5N+HXHAG8qSxDfXlbsqcS9ZKwpRuL5RRSar043laaquSKC4ZAgSpKPEskSpJU8KMJIkVUqaBZIgEEHOJAQciztDhEhF3l+C6nCGWEgMmEEmGtWA4lagz3QaDAGEoEKZpkugJsDUcrJ8AXSu4AOjstjZ85jOfwY4dO\/CJT3wCr3nNa\/B7v\/d7uPrqq\/Gtb30L5557bruNJXFxToYkvQxJrFIkdRFblSL1+6oHSQvS8wkfSY4GQqKftEuKtBglLEacjohZ7JUgIBchLS3SHGuJjktsbIlxiYeoESLZ4uy1um0R7Wnz+hMrD9b0tPVVzjiPHNyRAvmoe\/1d2wpYWNhfl4gFLMpEyxaj7L4lUaZkmRIVyhAMHCECJU0oS1MAVijNAcikKRJKlJI0MepA\/XE\/EM1lKZEMIRPoJAJRHCIcCIT9BEFPQnbTBu7YONONepKGY9++ffj1X\/91\/MZv\/AYA4M4778Rf\/MVf4O6778aePXuG37CO+foJ5CCdPHKQp0hxwtEbhKkgBTiZBCPJ0aBFWuSSogSD9H6FBCH\/gszX59KjhccUE9cXqktc7HFtUhspR0uPBCVEBEEMCW+UOJ30rmGsWbKUJ1tGopQKlXlEtSXKli69XouVFqpWEoUIDBwBomppkqxYmkulacAYIsnV9xxHLkcB0tIaS0tx\/n6lWHB0eYAoFoi4QCfmiAcBwoGaO4n3pTqjfJCADWJMYoZtmxUvSf1+H1\/96lfxgQ98oLB827ZtOHToUPsNalPVE1fpa7X1hZo8spenSKfiEM+n\/51MAjwXc6ccJTJvyh6IdCaBVJRiITGQEgMhEAuJnkyGkqJEqtsJBiUJAnIRsiVIj7XvuwTHJTK2nPhkpU1yIZdJeCg9IYjTj+VK1VjDUp75\/PaflraccadEWWfCsTBbr7etpcm+75MoBo44lSS9fBhp6ooAA+6TpWJzdyRVj1PIgW46m\/eASURxgIirZu0wSLI0KUxPkpJ9ARZb5bY4SWfdXn5WvCT98z\/\/M5Ikwfz8fGH5\/Pw8FhcXnY\/p9Xro9fJK8LFjxwAAx48dBxMx2LETwNIJ4LlTkEsnIY+dQnJ8gPiERO85jlMnGZ47GWKpl+C5QYylGDg2kDgRD9A3zliLLTkaFORILxeIpURfJhjIBAPEqRQlSJxSJBFjAGFIkSqRyVSUEiQyzmRFi4GskCAtPyL711xXFAuXwLiTpjrjb\/4XwXJJ00pk1MSNIJrSNB05XWgqRYrq1447XluXzNnPaY7RQqW3pX9fOq0yx7KSRIUIWKi0h0VgkiFIJYmzCKGMsgkobWkKECAQqiwXIUQkAnRYgJAxRJwjZEqEorRHKQrU7TCdNiBkEhFTjd3dQF3KZCATzCUx+lLglBA4Awm6iNHlAiHn4IFUl1VhDAgDgHFIHkIiwlL688pluobnipckDbOmJZVSlpZp9uzZg127dpWWn3fxDcuybwRBECsNum50kXG+HpRpj5\/vf\/\/7mJubG\/t2V7wkvehFL0IQBKXU6MiRI6V0SXPbbbdh586d2f0f\/vCHOO+88\/D0008vy4t8OrG0tIRzzjkHzzzzDDZu3Djt3Vmx0Os4Pui1HB\/0Wo4Heh3Hx7Fjx3DuuefirLPOWpbtr3hJ6nQ6uPTSS3HgwAH8wi\/8Qrb8wIEDuPbaa52P6Xa76HbL85rPzc3RG3ZMbNy4kV7LMUCv4\/ig13J80Gs5Huh1HB+cL0\/v2YqXJADYuXMn3vWud+FVr3oVLr\/8ctxzzz14+umn8Z73vGfau0YQBEEQxAplVUjSO97xDnz\/+9\/Hhz\/8YTz77LO46KKL8MUvfhHnnXfetHeNIAiCIIgVyqqQJADYvn07tm\/fPtRju90uPvShDzlLcEQ76LUcD\/Q6jg96LccHvZbjgV7H8bHcryWTy3XeHEEQBEEQxAqG5q4nCIIgCIJwQJJEEARBEAThgCSJIAiCIAjCAUkSQRAEQRCEg9Nekj7xiU9gy5YtWLNmDS699FL89V\/\/9bR3aea5\/fbbwRgr\/LewsJCtl1Li9ttvx+bNm7F27Vq87nWvwxNPPDHFPZ4NHnroIbzlLW\/B5s2bwRjD5z\/\/+cL6Jq9br9fDzTffjBe96EVYv349fv7nfx7\/+I\/\/OMGfYjaoey3f\/e53l96j\/+pf\/avCGHot1SWaXv3qV2PDhg14yUtegre+9a148sknC2PofdmMJq8lvS+bcffdd+OVr3xlNtnm5Zdfji996UvZ+km+J09rSfrMZz6DHTt24IMf\/CAee+wx\/NRP\/RSuvvpqPP3009PetZnnwgsvxLPPPpv99\/jjj2fr7rjjDuzbtw933XUXHnnkESwsLOCqq67C8ePHp7jH0+fEiRO4+OKLcddddznXN3ndduzYgQceeAD3338\/Hn74YTz33HO45pprkCSn14Vv615LAPjZn\/3Zwnv0i1\/8YmE9vZbAwYMHceONN+Jv\/uZvcODAAcRxjG3btuHEiRPZGHpfNqPJawnQ+7IJZ599Nj760Y\/i0UcfxaOPPoo3vOENuPbaazMRmuh7Up7G\/ORP\/qR8z3veU1h2wQUXyA984ANT2qOVwYc+9CF58cUXO9cJIeTCwoL86Ec\/mi07deqUnJubk5\/85CcntIezDwD5wAMPZPebvG4\/\/OEPZRRF8v7778\/GfPe735Wcc\/k\/\/sf\/mNi+zxr2aymllNdff7289tprvY+h19LNkSNHJAB58OBBKSW9L0fBfi2lpPflKJx55pnyD\/7gDyb+njxtk6R+v4+vfvWr2LZtW2H5tm3bcOjQoSnt1crh29\/+NjZv3owtW7bgl37pl\/Cd73wHAHD48GEsLi4WXtdut4srr7ySXtcKmrxuX\/3qVzEYDApjNm\/ejIsuuoheWwcPPvggXvKSl+D888\/Hb\/7mb+LIkSPZOnot3Rw7dgwAsouF0vtyeOzXUkPvy3YkSYL7778fJ06cwOWXXz7x9+RpK0n\/\/M\/\/jCRJMD8\/X1g+Pz+PxcXFKe3VyuCyyy7Df\/kv\/wV\/8Rd\/gd\/\/\/d\/H4uIirrjiCnz\/+9\/PXjt6XdvR5HVbXFxEp9PBmWee6R1DKK6++mr88R\/\/Mf7qr\/4K\/\/E\/\/kc88sgjeMMb3oBerweAXksXUkrs3LkTr33ta3HRRRcBoPflsLheS4Del214\/PHHccYZZ6Db7eI973kPHnjgAbz85S+f+Hty1VyWZFgYY4X7UsrSMqLI1Vdfnd1+xStegcsvvxw\/+qM\/ivvuuy9rQqTXdTiGed3otS3zjne8I7t90UUX4VWvehXOO+88\/Pmf\/zne9ra3eR93Or+WN910E775zW\/i4YcfLq2j92U7fK8lvS+b82M\/9mP4+te\/jh\/+8If47Gc\/i+uvvx4HDx7M1k\/qPXnaJkkvetGLEARBySqPHDlSMlSimvXr1+MVr3gFvv3tb2dnudHr2o4mr9vCwgL6\/T6OHj3qHUO42bRpE8477zx8+9vfBkCvpc3NN9+ML3zhC\/jyl7+Ms88+O1tO78v2+F5LF\/S+9NPpdPCyl70Mr3rVq7Bnzx5cfPHF+E\/\/6T9N\/D152kpSp9PBpZdeigMHDhSWHzhwAFdcccWU9mpl0uv18Hd\/93fYtGkTtmzZgoWFhcLr2u\/3cfDgQXpdK2jyul166aWIoqgw5tlnn8Xf\/u3f0mtbw\/e\/\/30888wz2LRpEwB6LTVSStx000343Oc+h7\/6q7\/Cli1bCuvpfdmcutfSBb0vmyOlRK\/Xm\/x7cshG81XB\/fffL6Mokn\/4h38ov\/Wtb8kdO3bI9evXy3\/4h3+Y9q7NNO9\/\/\/vlgw8+KL\/zne\/Iv\/mbv5HXXHON3LBhQ\/a6ffSjH5Vzc3Pyc5\/7nHz88cflO9\/5Trlp0ya5tLQ05T2fLsePH5ePPfaYfOyxxyQAuW\/fPvnYY4\/Jp556SkrZ7HV7z3veI88++2z5l3\/5l\/JrX\/uafMMb3iAvvvhiGcfxtH6sqVD1Wh4\/fly+\/\/3vl4cOHZKHDx+WX\/7yl+Xll18uf+RHfoReS4t\/\/a\/\/tZybm5MPPvigfPbZZ7P\/nn\/++WwMvS+bUfda0vuyObfddpt86KGH5OHDh+U3v\/lN+du\/\/duScy73798vpZzse\/K0liQppfz4xz8uzzvvPNnpdOS\/\/Jf\/snC6JuHmHe94h9y0aZOMokhu3rxZvu1tb5NPPPFEtl4IIT\/0oQ\/JhYUF2e125U\/\/9E\/Lxx9\/fIp7PBt8+ctflgBK\/11\/\/fVSymav28mTJ+VNN90kzzrrLLl27Vp5zTXXyKeffnoKP810qXotn3\/+eblt2zb54he\/WEZRJM8991x5\/fXXl14nei2l8zUEIP\/oj\/4oG0Pvy2bUvZb0vmzOr\/3ar2Xfyy9+8YvlG9\/4xkyQpJzse5JJKWW77IkgCIIgCGL1c9r2JBEEQRAEQVRBkkQQBEEQBOGAJIkgCIIgCMIBSRJBEARBEIQDkiSCIAiCIAgHJEkEQRAEQRAOSJIIgiAIgiAckCQRBEEQBEE4IEkiCIIgCIJwQJJEEARBEAThgCSJIIhVx\/e+9z0sLCxg9+7d2bL\/\/b\/\/NzqdDvbv3z\/FPSMIYiVB124jCGJV8sUvfhFvfetbcejQIVxwwQW45JJL8OY3vxl33nnntHeNIIgVAkkSQRCrlhtvvBF\/+Zd\/iVe\/+tX4xje+gUceeQRr1qyZ9m4RBLFCIEkiCGLVcvLkSVx00UV45pln8Oijj+KVr3zltHeJIIgVBPUkEQSxavnOd76Df\/qnf4IQAk899dS0d4cgiBUGJUkEQaxK+v0+fvInfxI\/8RM\/gQsuuAD79u3D448\/jvn5+WnvGkEQKwSSJIIgViW\/9Vu\/hT\/90z\/FN77xDZxxxhl4\/etfjw0bNuDP\/uzPpr1rBEGsEKjcRhDEquPBBx\/EnXfeiU996lPYuHEjOOf41Kc+hYcffhh33333tHePIIgVAiVJBEEQBEEQDihJIgiCIAiCcECSRBAEQRAE4YAkiSAIgiAIwgFJEkEQBEEQhAOSJIIgCIIgCAckSQRBEARBEA5IkgiCIAiCIByQJBEEQRAEQTggSSIIgiAIgnBAkkQQBEEQBOGAJIkgCIIgCMIBSRJBEARBEISD\/x\/yg5u9iiDQvgAAAABJRU5ErkJggg==", "text\/plain": "<Figure size 640x480 with 1 Axes>"}, "metadata": {}, "output_type": "display_data"}]}}, "55226787171c4752aa32a82a887b8b98": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "5576cb6864c246b5b1be231eb6fff645": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "57644913df96434395a7d95953ca96ed": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "PlayModel", "state": {"description": "step", "layout": "IPY_MODEL_a37fd745c2154e37a420c30c21efe3c9", "max": 1999, "style": "IPY_MODEL_ab8b9c40294846d9820000b7038b3311", "value": 792}}, "5a437050674241259e1208543a3a72f0": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "5b00930d74a04c2d8edce165ad2f10fb": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "5d52cc6b2314438da6e9896470a62a61": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "5e9038896edd4da0abab5fadd1a41130": {"model_module": "@jupyter-widgets\/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": {"layout": "IPY_MODEL_c249b3bb2eff444bbbec6fd556309218", "outputs": [{"data": {"image\/png": "iVBORw0KGgoAAAANSUhEUgAAAkkAAADqCAYAAAC2l9FdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy\/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACdm0lEQVR4nO2dfbAlR3nen545916tZGkt8bGrDULIsQgG8SFLWOHDlgzWOgRhiKpsDISIOJUSkSAsIsYoJEFQ8QopZaEkCiKQFMg4iigby6ESbEsug4hKIZZkAUKkMC4UIWNtbYzFroDVvffMdP7o6Zm3e97+mplz77lLP1u39pyZnu6eOXNmfud53+4RUkqJrKysrKysrKwsQ8V2dyArKysrKysraxmVISkrKysrKysri1GGpKysrKysrKwsRhmSsrKysrKysrIYZUjKysrKysrKymKUISkrKysrKysri1GGpKysrKysrKwsRhmSsrKysrKysrIYZUjKysrKysrKymKUISkrKysrKysri9G2QtIXvvAFvOY1r8G+ffsghMDv\/d7vGeullLjmmmuwb98+7Nq1CxdddBEeeugho8z6+jre\/va346lPfSpOOukk\/MIv\/AL+4i\/+Ygv3IisrKysrK+t41LZC0ve\/\/3288IUvxE033cSuv\/7663HDDTfgpptuwr333ou9e\/fi4osvxhNPPNGWOXDgAG6\/\/XbcdtttuPvuu\/G9730Pl1xyCaqq2qrdyMrKysrKyjoOJZblAbdCCNx+++143eteB0C5SPv27cOBAwfwa7\/2awCUa7Rnzx5cd911uPzyy3HkyBE87WlPwyc\/+Um8\/vWvBwD85V\/+Jc444wx89rOfxc\/\/\/M9v1+5kZWVlZWVl7XDNtrsDLj388MM4dOgQ9u\/f3y5bW1vDhRdeiHvuuQeXX3457r\/\/fmxubhpl9u3bh3POOQf33HOPE5LW19exvr7evq\/rGn\/913+NpzzlKRBCLG6nsrKysrKysiaTlBJPPPEE9u3bh6KYPji2tJB06NAhAMCePXuM5Xv27MEjjzzSllldXcWpp57aK6O353Tttdfi\/e9\/\/8Q9zsrKysrKytoOPfroo3jGM54xeb1LC0latrMjpQy6PaEyV199Na666qr2\/ZEjR\/DMZz4T\/\/cbn8QpMwGxvg6sb0A8eQx4cgN48klgfQPY2AR+sAGsbwLrc8hjm5Drc8hjc9TrNepjEnITqCug3gRQC1SbAnUtUM8LVPMCVSUwr0rUlcC8LlFJgXlVYLMuUNUC87pAJQUqWaCWwGZdQAKoIJrl6m9eAxIC81qgBlBJ9TeXQC0FZPNaAk093esaAnWzrpIStQTmNVA369HUVTfHspLNdk1gVgKoakBCQsqujhqyWy8lakjUzf+AWq+ju3O1tl2uy1SigoRE3ayrxLx9rf\/X21WYq+VCr69Qy02jjETVlK2ac6PLVautMgBQyblRTqKLRsumbvW6Zl\/rOgGgrkl5mFFtug0A1E27rvX2e7Vs3lum2uqXVeVdkfVw\/p6rLbMQ325wMyxFxH+0BAa40CLul68QMZfq0rEt3y\/hSEm12xJMH+1lhWcb+7gUxUr3mvTB2MZ4vdKrRwi1ryVpVzT7r+vUZQCgbNYJlO1+F029hd5OFk3ZWVO2aOvTdZZy1tUPgVLqNgWKpn8CBWZtH4Sxrmjel0LtTbccaplo6i2g1gv1p\/ZV16deQwAzAaNsW68ACkiUQi9X\/wuobYQACiHV9u2fbP8vBDATdbOtRAkJAWClUMtWihoCErOiRllIrBQ1ZmWNUkjMigpFKTErK5SlRDmrUcxqFIVEuSIhSoliFShmgJgBxa4CYq2AWCshdq1ArM2AXSvA2gpwwgpwwhqwtgqsrgInngC5ugbsav4\/YQ1H1ys868xfwsknn4xFaGkhae\/evQCUW3T66ae3yw8fPty6S3v37sXGxgYef\/xxw006fPgwXvrSlzrrXltbw9raWm\/5KSefiFNWS4hjJbBaQqwWwKwAVgpgdQYcexIoCmClBGabkEUBWZbAygz19yrURQ05B+QGUK8qUJIzBUpVUaAuC8znBepaYD4vMa8KVHWBzaIDpM26UJAD0bzuQGkuGVAqBTYNUBKYN\/\/boKRhRwJqGwpKRQc\/dfN\/1dy7OFiShURV6\/V9WNLvIdDCEgBUQgHRLAhLas0KFHhUogEiAkwzUGBSQFIXNWoNRgSYSjQw1FxwKszVsgaGdL2lWOvAioCBlBUgVgwAqRloKsj7slwx6gYIODX90PUVzVcxDZ5mjuW0PNnearOTeXPl6urfpNMGRvgga1CAeyCQRSsSXqKri4IcKh54zDrdfYwFIF9d3DIfDHHtpgKRBhe7PgN4hIYYE4pouRJ9eNJ1lWKFAaMVQJhgRP9v4UgosCnlrOmvgh693QxFC6VFg2S0XNmsE009FI6KBo5UX0ULSDYcCaEhqA9IFHK65R0grRQKnoQGLAJGM9EHpBUhUQgekFYMQKpQComVskJRFg0gFShnNcpZDSEaQJpJFCtAUQJiFSjWBMQJBYoTCohdK8AJM4iVEjhpTd1z11aBE1aBXSc0r9cgd50ArJ0AubYGnHACsD5vjuliUmWWFpLOOuss7N27F3feeSfOPfdcAMDGxgbuuusuXHfddQCA8847DysrK7jzzjvxS7\/0SwCAxx57DF\/96ldx\/fXXD2+cxjWLonsviuasa+BpVkDMCsh5DbEqIOZCEcQMEBIoVtSNX30d1UV9BmA+LzCb2TeZoi2j4WilqLFZF+3\/M2H94i4E5rXESqFgSH0NZPu\/hDpxpAQ2yWaqbtmAk4CAwBzqfam7Uah9kI2zVAuBsvllUjVulSiaVmqBWkiUEN16qC+z3r4QQgGQBEqIFpZWUELKAnPUKFCjgC43Qwk0cFSgkKuoG9ipxBwFigY+igaY1tTNX26qdaJGIUoDmASKFhBmKBtomjXApD4lBU1NnaLsXCYxQyXn7QVXygqlUKAtUbd3eg1OQhQtbJToXhfFWnM2WDBUd9u1dQIoxWrTXlOeXAcoQNEbDYUcYW9vVtGsMwHGvvHxzlT\/BuoCNVWn66Y\/cBTq0qYOhuHGlg922jIRA5FTAMi3PARCXH8oDAEmuNh1uKCI1umDIlq\/6RaZ5Wh9JeMalVgxynFgpN9rx0fBUgdBU8BRu03hhiO1D31AKi33yAaklcJyjyYEpEJIlEIBUAHlTAkBlEWt2iokhJBOQBIzqPuMtsOKppOz5p47K9Vf2XzGsxKwQWgLcoi3FZK+973v4c\/\/\/M\/b9w8\/\/DC+9KUv4bTTTsMzn\/lMHDhwAAcPHsTZZ5+Ns88+GwcPHsSJJ56IN77xjQCA3bt34x\/9o3+Ed73rXXjKU56C0047Df\/sn\/0zPP\/5z8fP\/dzPjeuc\/sC0yuYDq0oVmyoKiLKA1Gd0IdSHDQBQJ0292VRRNHxVqnBTUSinRRQSpaxRS4GyqCFlCdGciLUUBiCFQGkmTEACBOYACilRC4EVQL0XXfhN2biq7AwCUij3RxRqF9FYuhqWKijHqjTCIxqWtAslmwuEBKT6tmpYKiFQabeIvhcwYKmExhSJQq6ghmzAqGyW8cBUAy0slVK5SxwwASY0tcAEGNBEgQkAC03qCJStI6WcKBNoarnZwQ8BJ\/o+FZ5UW6vtawNQ2nbDEKXWrRrve+sBaz3vCrluuq7wn1K6Y+ODsSkVAy9J9SXua8h9CvUvxgnyleX6mwJD9vsYIAL8ITRa3oYiWm8pqIPVd41iwEj9HwdHbTkIFBSWGDhS\/TPdIwpHan28e0QByRteg2yhqYgEpJVCQkCygERDbWUTbpvNKhSFxGxWoyiVi1SuqHuKEOo+KGbN\/6WAWC3UfVPfQwvRmRLk3ooZ8+NjAUnanLYVku677z787M\/+bPte5wlddtll+MQnPoF3v\/vdOHbsGK644go8\/vjjuOCCC3DHHXcYsccPfehDmM1m+KVf+iUcO3YMr3zlK\/GJT3wCZZn+i45VC0Zz80PTf6slRC2BqoacNQTSnAj6I6w3JPka6wt8AR30WUGl2ijVjXazLpoTuo4GJRXOMkFJNOAzlxIVhHKxZPcLo5LdF0aH38oGtmYEfFTITP1GLqFgSYGP7EJyUqAsFCBVdQdGlexgSQMUhaUCqu8mLEnMm7bacFQDSx0Y8cDEuUs2MKlDNtxlUp+icpoAtGVVXabbBLjBCcBgeALMnKchENXWE3KSAlDFlTHKO9dE5jrZ9U0ML1MqPawWvz+hci4Acm3rgjYbhIA0GFJ94cNmqmzfJVJl+k5Rr3yiW9Rt13eNYsBIv\/flG6n6h8OROl7+0Jqqd3x4bUpAKlrXSKr\/G+eoKCREIVGUDRwV6PKQVhpIWlGmgijUQRJNZMa4tzKSsxlQznhoWpCWZp6k7dTRo0exe\/du\/PWhT6ucpPV1YP1JiCfXgc1NlbT9pErmVgncc\/W3vgn55FwlcT85h1yvIOcScqOG3JRdflKTyC3nTX7SvEBdOfKT6gKycZGkRHqOErqcJB0WU2UVtNQQRhI3zVOqyXY6v0ifHDpXqdauEknsBmDmK0G2rpI+u3R9ALNcJ3ZrWGreK1gyk7VpEjjQ5S6pZV2yN33fT\/ju4IImfav+0GRrJrEbVp6SrofACZcIbpen9bd1yE3Yikng5gAKMCHK1WaovV6dCVAzleOzVc5RSFPAWWodPvAJ1ZcCQUAfhLj6QzBktxvjEtltc1BEy8e4RWrbYeE0tUwY\/08FR205R2hNrU9zj2xAKgUfXtOAtCIAMSLEpgHJzEPqErWLQpouEhNmEyudiyTWSogTZsDarPl\/xcxHWlvt8pHW1oA1lbAtV1aBtTUcfXITp516CY4cOYJTTjkFU2tpc5K2XeUMclZBVFVztjVxUnqRKAqIQrQhN9E6SULZICQ\/yRd2s\/OTOPdIuTzKJYkNvRUQ2IRELQVmAm34baVokrrJprrb2onSLpSGmzZXqXGVZtopYkJwtRSGE9U6SMLjLDVJ3i5nCehCccaNnuQuhcJxtsMEICksB4ANzQEg4Tm07QD9EJ2qswvTAabjBHv\/hAlPNNdJy3af2tPB40IBPEQZYTlmO6c7xYn5MZgCWVyfdpJCgMNpivykFAhytcmH6tzukNomDojsvoSgiLZlu0WAGUazy6eE0\/R7CkYAFgZHgN890kcoBpBWdEoP\/PlHyrjhAalMACRfHhIHSL0wWyGaZZ1z1Iba7HykLQqruZQhyZb+gObz\/nI7LwlVEy\/tErjVe7RhN+hY7Ew5I2X7Pe7CblWFXn5SxYBSt12BWSExr4UXlOaQWIFKqq6axG6apzTrNmHzlGj4rZawwKcLwenEbgVOdBScGYIbCktokr5nzcWQhuJ0orcrHIfm4ofGXbKBCegurjFhOXUU06FJfXIMOOntaP5QCJ4IfNgApbZLgyjaN5dCQKUVcqpKJlTH9W0naQzExeYpucCnXe+pJyVxO+QMqe3cMNRtk+YS2dv4wmhAH4xoeRuMABhD92NcI6CfjK3aGw5Hqu60xGwKR2r7DpBS8484QKL\/zwKApPsmhFoWFWYTjTFghdkwayvjQ212uE3D0zYAU4akkOwPhvsgRfeedZNWgWJDFa03JYpSjWDWJ1ZdN4nbdYlCQ08DSqWoUYEHJRTAvG6+ZBSWLFAqGhiheUqbdQdKXJ5Sl9sEr6sEgS6xm4yC69TA1khY0se5GxHXd5foyDhVvu8uAXA6TEA\/8RuA12VSe2hCkzp6JE8pEpza7dpD14cnO2Tncp+AfvjOBVGqb8RBYtanAJUtDrBspYBGCMSmUmqidUgh0OmVD7Q\/LHGb7wO3r9yIRBuIfA6RXUfIJeraGBZGo681ANFlriRsWhd1jfR6OlKtXTYCjlS58e4RB0il4POPNCCtNNt3oCVZQCqFAqRCu0samggg0TCbPZqtKCVQSAVGAq1hgEJ1VMwExErRjhKHHtWmR7kB3T3Wzj\/aYlDKkOQT\/TBsd0llrSkXqZbdKLdaf7DkB\/9mWthtXjXtFg0M1QqUSsM16kBJJQcpWlHuj+pfLdWJvwkYoFRL0UwboKfxEy0oGbsvdB6R6SoBMEa06RCcdpUg+ondU8GSTvq2gUl\/MnQaAae7BLQg1QcmXYsZloM0gUkdHxOagDS3SbVvg08AnqyQXXd0TfcJ6ABKbc8nbnN5UL6RcKrP5kUq5AJRwGrb3SLQ2S6FAIdTVKgtmLwdD0GqPj4BdgwMtXVEQBEHRAAPRXRbHxiZ64S1rg9HHBipdqeDI1VPH47augTvHumvqg+QVjRkBRK0dRK2C5BmhWwBSYfeVpowmuEcEXDSYTY6ms12kXxhNu0iGaE2oLlBWvdfMtpcbmEIPkMSFR3yb39AVdUt1x9QawHWXcitlu1UABJwht2om1TOFPDQsBuaBG4KSiiKNkqnTus+KK0UEpu1\/gKqfqxANqPc9DIzT6mEmqGcm09Jh98UyDS5Sk0PqKuk+dA3t1JzkAfDkp5ryXCXAG\/uUgww2TlMAHouE5fHpMupPvDgFHSbgJ7jBPDwRMGCdZ5oXREQBXhAqtuwFQdUAH\/jDoGTDVop2y6LRoXZErZ1gU9bl+dYxkJQV1e\/fAiIfGEzu39DoYj2ww6jmesEs26ca6T6PQ0cqXJ8aE1t53ePdH2++Y80INEEbRcgFU2bs0Iv6wOSngupLLp1s9IdZqOzanMukg6zGdYafa3zkYDmfkvvy9Yv+S1QhqSQ9Aekk7eBLi+pJvYL\/dBroe5VEUnc5axGNS+MsFtHPQBqBWFSlgBqQtBduVoWKl\/IA0q1DCd00\/mUjEMAtGDkc5VoYjd1lXRiN4WlWjYXn0I2dBWGpbYLTadc7hLNXQIUXlDZwKRLqXVdWM6Xx2S4TEDrNLXlA9CkdqEw6jAcJyDCder6bTszvbwnWqdrniMHSLXtc6E9lyLgyrmpByC2EqCmThgPwU6v\/YAb5Z6gUymUK0TFj2zzu0NcfTGhMyAOimi\/hoIRfR3KNQJ4OKIQpMr0ockHR6pcvHuk6vG7Rz5AWika+IkAJPUYkQ6QVDnZhu1KoeZCKotacQ7JQ+ImjbTDbEEXSQMTDbW1BErOLS7ENtsafMmQxEiK5uvAUWtZAvOKfJBmyE27SagaQAokcVebohd20\/lJZTOpZCEFZmWFeVViVtSYN7lJdeOuqMRrlai3GQFKNKF7s+6Dkp3QDZiuEtqLDu8qQag\/6ipRWKJ1dyPh4mBp1jheNBQH3S2tQO4S1XBgUu\/GQhOQDk6A6ToB6QAFMC6U3UYApgA3UBl9E2a4bVRO0db\/kBysITlNIfAB3C5Q1248CLnaDMGQWuYGItVeGIrsergwGjANGAHwwhHnGtGyHBwBGnL8cKTqNeGo29btHql9iAMkbgQbBSRjFBsU8MyauZBK0eUilUIqMBLdXEgK5tSkkUVJwm6eZG09o7bXRaKhNn3wjP+7c0BqKMo5SUuo9gMs0I5oA5oP2gy5tTQRcJOKFXcSN6BOPNQCK2WFzapEIYUqA9F+OfrTBMjmyypbUKJhLsAEpcIo0x\/5Zucp6XwnV66SPQLOcJWA3ig4fQg5WKqb\/Kt29m5AwRJgrIsJxQFo3aUpgIkPy6l3qdCkjkEaOKn6GafIA1AABzQ8RLVthGCKtKn6HDe8PxWydpJiIMdWCHoAN\/hQpUAQ0AchV1sc7PmACJgOiujymFAarX9G6ksNqenlNKym19lwpOoiv5sFD0dtOZhwpOu3AYnCkd7WBiTfCLZuIshuUkgKSHq5TtZWsCRREFdpVlZtndo5aieQbB5e60vW9rpI7QesoUnbcTYwbS0U2cqQ5FLzwcjZTM2VZEyV3nz6s2YqACvkFuMmGf8XMNykum6cI5RAraCnBnpTAxTN6ANuDiUNSnrUm4DEXN8UpXvkm0ry7oOShhk9vJ+6SrWEcniEewRcLRVclOhGwblgychXEsQ9auovmjaHhOKA4cDE5TEBw6CJ5jW12wXACejDE5i+swAF9MJ3bV8CYTaQm40v4Xpm3Yy9cEX65FIsdG21YqDGpxjg0QqPcAuE3JhLvKv9ITAEmECk2pwGitTracBI9csNR5xrpNepuuLhSNXDh9a67Xn3SNdJAYnCka6vS8Z2A9KsUOU4QFKX5c5lcg3113WuNCPYRBtaQxtm8yVre10kGmrTO67zkWhqC9C9L7ceWTIkxYh+YHqEm07mVn5kF3KLdJMwhzuJu5mJuyyaUW1NIrfqizk1ADfiTc+hZIKSwAw1pBDNI0h4UFqBOUXAilAhM85V0vFrPVO37SqVRQMQAVgypwwAWofKgiWgu9AZ7pJICMUBg4FJbdvduMdAExAHTgCS4QnwA5RazkNUWx8DU2rfQkBFFQdXLtnQZSsKwgYoBWJilTrabQj8GNsngBDQhyHA7w6pPoTnVJoCiujyoWAEIDqkptfb60LD+VXZPhy1yxPcI11vKP8oNAeSC5DsuZC4of72SDZRWMP9SZjNNeTf6yLRUJs+uDQfyQYlqi10lzIk2ZrNOhAqZyr\/CCBQVJh5SdQSLOp2CoCgm+SYEqCu1AkIoM1PUhuZI950IrdvxBsHSjp3ST3GhAclY4oA7frABCWdhM25SvqZQtRVorCkb5eh5G4OlmwgGhOKU02MACbAgCYKBXHQpJb4wEntmwlAtusEuOEJ6AMUwIfwqJxuVFsBH9pzqSQ33OlCbNtrw4c0KPQ2EH7MMsNBqF2e4A51dbkBKQaK+uWmASNjXWS+kbGNBUdd+a79EByp7U33qKuHT87W28QCkj0HUgiQ6FxINFHbHsnGJWrbydquIf+si6R33HhfmOu6D7d7vU1htwxJKTI+MOvDK8gNx3KTVI4RDDdJOUd9N6kom\/dAm5\/EJXLr\/CQ64k0nctMRby5Q0nMp+UCJS+ieN2Evw79ikrptVwnoQnBFA0o10D7eROcrAeg5S8ZIOKBNNOJCcRwsQXcNbfeigUkjAAWmdtJKmNBk5jKpkq3Ixd8uNwScbNeprUf0wccHUAAPUYDbjaLyOlMuJQLWTlMIdDiNgZ+2Xc\/ouZgwWVtPokPEvaewY68PuUX26xgwUv3WwMOsi8w3otvFwpGqg2wvum9+yD3S5W1A0nCk+7UIQNKRAFeidgtIostDagHJStZmJ44E+o8f0TusXaQZgaNZCfuxX+QD715v4cNtgQxJYdn0SoFI5yVpCtAht8Y9ovMmyQ2pzvCAm4Ra0TkKsIncOj+py0vqJ3IXQnTPd5sYlGLDbz5XSW2AFlh0cndMvhLAwxIAY0SczluyYakNxaFrnwMmnfDdjZAzp0awpxVo5YAhYyJLq5xdVpX3gxMQD09tfQxAAWGIAtwgpRUDVLZm1F1aUOhsqzQ0RBc7As4HQIDbEQJ4GOJAyNWfMUCk3qdBkd0P18g0oA9GdH1MSI1bb+ccmdv4Q2s2HOltQ0P7dd2u8BowPSBxido0D0kDUi8PiRvyL0wXqT1A1EUCzGH\/7Y4TUAJMV0m\/30ZlSOJkfyjq7OiXoZNMlto9qrs7bJvxrP4XMHOTODephuiF3bj8JJrIrfOTaCL3IkCphDv8psWF34DOVdJlgiE49POVNCzRMFxTsPmvn7dkJ3nT9Rww6ebahG\/wwIQmJKf7zLlMqj7yFXPkM7FlrfJqmz4oxcIT4Aaotm4HRAEKpAAEYUorBFW27JvzVj16ZIimeFxJCHq0fPDTlnE4QsA4GOKW2UDElYkJodmvOSgCOiCh5WPASG1rrvPBEXWNaFkKMLo\/KaE13Z4JTMPCa2r76QCJ5iFpQOLykIz5kAorxKb3N5SLpHdeu0ftB1dY68j5ThO47fJbqAxJLrkecss9nkQnn6EyE7g3qmQ3CVVD8yTsBnT5STrsxuUn0UTuqUFpRSh+cIXfOoAxQUnP1N2F33Sd6lUoBEfzlfoSZNoB6YUl9V93JbKBSRfR+Ut0GZUGJoDmMLldJldoTrVtu0cmOBnzNLW73A9RxcIT4AYoQEEU4Aapti0PTLXlEqEqRqngNZVigSakGOAxynvgB3ADkJYL5mJgqG0jwSXiy6dBEeAHI6CDoxgwUuVhlFMA0mybCEd6WUpoTZebIrym9m0aQOJm1DbCbIXsh9k0IKW4SM1OCxJaM0JtNviUfTiSs1n\/FznQTCi52OtChiSfXNSqk7dr62ah7\/TEPTJyk5r3IsJNMsJuQC\/sFspPAqYDpVLIJkk7Pfym1M9Vig3BdZv7YMmcZ8lO8m6do6ZNVacJVF0iOLz5S9RhojlMLpdJvfNARTDsFgFOQAI86R758ozcIAX4HSmuD1oxcOWty0qEnhLA2jYWMbItADuchgJQ22YCIHHuEFc2BYi4ZSluEeAHI8AdLlPl\/WVi4IiG1fQyXVdKaE1t23+0iCu8pttwhdcAjAYkmqhN85D0hJE0D4m6SBqQjCH\/HhfJPGD2ASQuks5HskGIc5O2WBmSQiqEmivJTvLVonlJOuSmbzA6gbupRzQukgTaE4pzk9S4oy7sJiGMx5ZUKNj5k2h+kpYGJcVnMghKtTCnBygB5VgJgMtTAtzhN7LroOThC8G192ZhheB0FRGwBFihOME4R9rdIf2JyV8im\/bbJmVcLpM9Yq4XngOCYTcwNzoXPPWTyWM1DqQ4pcBVjIY8RHarFYIdTkMBKLQ+Foa65WlQFJNX1K5LACNaJiacRsstAo70utjQmn4t2mUwlqXkH3GPGXEBEn1grQ1IrjwkvZ+uPCQAxpB\/\/Z51kQD3sH\/9vmTOPQ1QNFl7G5UhKUWzxj2yR7NRNSdAL4F7o+q+ZTMAG1INkWTcJAERDLvNmbCbnZ+kRSebDIGSerRJB0oAvHlKAHrhN3rBMacJUNvbrpJeTmfstl0lwIQl10i4bp8ZWAIXitN9Qs9dMsrRZhKByXSZ+s\/G8zpNQNBtojXFbO+vI15DfKEh0LBTNSR3KQb8QmXGwhBXR8glAvr7m+oWATwYAWmuEVduLBzpslO5R7psSv5RKiDRx43YgOTKQ6JhNgDOMBvrIsFykQoBkyyFCT4ahmg+UoprtEUOU4akMdI5SrLuPvCquXXoEJt+rUNtbU6SUHk02lFCZ1\/Kgg+7odYTnPFhNzs\/qWhdGj2ENQ6U9IVKh5h8Cd0An6dku6ZDXCVjIkqYsERHwqllw2BJbduBGuB3l0gxvQvsciMsBzhdJiAMTVFuE6aBp7j6dK1+t8m11ZCJJXeihjhdQwEotD0HOb76UlwirancoracBUa0TIxrBAzPOTLqa+uNd48oCNG2KDT55j9qy2M4IBVte31AcuYhCT7MhqYfdMg\/0LlI7QFiXKT2wNCZtYcATjkDikKllOTJJHewSMhNFKKXwG1MLkncJGMW7s3G0oREVftHu9Gwm52fxI14iwGlkrg9AJyzc6t17vmUAB6WYl0lfThpCA6YBpbavCWMcJd0Pe1UBfbINrYrBjABfWgCzJwmtSQSLBLgiR1hF1FfTN0+DYOrnaUhgBQCoJh6x8KQa7nPJQJMIOK2jwEjzgmyy7hyjWg5GsGZCo50vSYMNX1o35uhta4cjOUajlTd4QTtoYBUtg\/V7gNSYbURGu5vzKyNvotEn9HW7ayGpS7XqBdqs\/ORdNK2dpV02G0b85IyJIVUztQdXH9Q+gOsa7TJ2zQvSSduN3DU2o2OySUlGekGmG6SgGjnTnKF3ei0AJUURn4SUGMu+yPeQqCkH2QbBiUgdj4lfQh0P4A0V0m9aYsab+1pA9QyPywBw90lCMAcpUau1ANcJthwhbDbxM0G7pXrBhwAnBiQciaTezRFuG9ZFQM7tuLCbDzQxLQdC0NAukvE1ZMaRlN18vUNdY3otmPhSNU73D3Sy2MTtNW6cYCkXSQOkOwwG4DoMFs7cSTnIkEvJwfTTthul28f+KQoQ5JDUhQQRdEfwRaSDrm1jymRbAK3MR1A1ViY2kVqXCUJRe41BGSTo2SH3QC0FikNu4USuX2gpJO89cWjc3ssUGpXhRO6m10HMCxXCfDDkjFtAMKwpNppyqS6S0A3nQBccAU3MNnruL5Z5ftuUx+cVPtp8NR7zAqnKJgZcMEbABM7QcPCbMMBKKaOWBgC+kAEjIMiu\/xYMKJlY1wjVYe5HwXS4EivH+oeAWkJ2t26cYDUAhADSKlhNrVDXd\/b\/xsXqe00+QB6CduACUd2PpIdelgCLTXKzedz\/It\/8S9w1llnYdeuXfixH\/sxfOADH0BNwEVKiWuuuQb79u3Drl27cNFFF+Ghhx4a13As4WoanpUmMZNvruBOGELUohDdCaaT4TShF53FaRB9S\/loE+1UlbIdqaClYs+W5cp8mWYFudG3CYfSeN+WFd0XWV9s2i+r4K1kwB2fpxccmuwooC5KhVW2LBqntmmf\/lApRRfLVxccASFEt5z5E80\/GHWLFjL1n5q6QBh9KkRX1lse1p8w\/\/Sz5vSfXV7vB\/2boej9qePca41Z0j3s07VO\/5VyFvwL1cH\/Ha\/\/0o\/FFMfY91lySwGw5xB3rvX6a5+v1vncK0++C\/Q7Yn4nuu8UV57un\/6eCvLP\/l7r64xOytbukb5mtX1ov8fNurbu7tqk+2Rfr\/RtwCxHry3q+pc6gs0HSPq6GwNI+prf9pMAkj2arb01ETjS4bXWRQJMF8lwkJhh\/7phLTvUxkmH2JZg+D+w5E7Sddddh4985CO45ZZb8LznPQ\/33Xcf\/uE\/\/IfYvXs33vGOdwAArr\/+etxwww34xCc+gWc\/+9n41\/\/6X+Piiy\/G17\/+dZx88snpjYY+FDrCjXOZCsGH3Iz1kp0OQABtbpJEF3ZD3YXdAKHmq4DKTdInPR3txoXduBFv1FGqZPeFtRO5ATP8Rh0lANEj3wA+qbvrj37ndpX0MsBylkT3EoA5bQDSnCVVtxmKUy\/VMmn0iTQCRDlM+rEphuxjEnKaIHu\/7gHecQJ41wkAQrlO+sHAoTKpIaZKzIP17mQNC7mFj0eoTIo7BPQdIlc7KU4RYH8\/0hwjX3lXIjZ9XZJlqSPWVN12faJd3i1LS85WfeB+NPYBSa1zA5KGs1hA0i4SFTeajX02m5Ws3f6I1\/3ULlIBd8K2PuAsNDnmRyJyTiS5RVpqSPpf\/+t\/4bWvfS1e\/epXAwCe9axn4b\/+1\/+K++67D4BykW688Ua8973vxaWXXgoAuOWWW7Bnzx7ceuutuPzyy6ftkA+MdF7Sxhz9UW79kBuXwN3mJ8EKvxXqC0aTuOncSb7RbiFQ0l9n5Sa5Rryp9SwoyeYLx4GSTuVqQAlAMKm7Wy5RtaE\/tZyDJQkEk7vJJm0\/pBFO7MsOxVV1d7Gm8DMWmIBpoKlrp79MSsneJOdqNi5vfVNAFLfNEIjYSRoKgEMhSGssDGmNhSLVJl9+KBgBcXBkjqqz15nbUEDywZFePiS8ptqZDpC0i0T3PwRItouk9rkmoTMSRuPmRGqOnc5B4lyk7gBoWPKE2rjQGjPTtqFtcpWW+kr18pe\/HB\/5yEfwZ3\/2Z3j2s5+NL3\/5y7j77rtx4403AgAefvhhHDp0CPv372+3WVtbw4UXXoh77rnHCUnr6+tYX19v3x89etTfkaKZUHLTmgiPm3lb39XtUW7cnEk0gVtPB1DDyEni3CQ7ibuqutFusjJHu7lAqZL0YhMzNYAblAD3XEpqHXp5SoB7qgDR9otkSsOEpUpKE6A8+UqAG5bUOpNAqKvVm0JAbUxejgMm1b4fmmp00zJwVbfbOYCFAyfA7TppTQFRP8waAkpDIcioIwGI7HOvLTsSiuxtYsDI3mZovpGqx15nbse5Rz44Usvjk7N1m1yCtqqTnwNJt2cDUgtnzbYCnYvUHaM4QPI9m81O1gY6F0m\/pi4SPZi9hG39fxtfJKE2Lc4h8oXZ6LPdtkhLDUm\/9mu\/hiNHjuA5z3kOyrJEVVX49V\/\/dbzhDW8AABw6dAgAsGfPHmO7PXv24JFHHnHWe+211+L9739\/f8WMORxFgd7TD3Qe0ga5Qej5kgC0ITegH3LT3wD7eW50cslmU+0mKcpQXzhfErf9bDcOlKoWNDo3JnZqAFW+D0oSOsTWByUAbPhNNrs9b9wgDpbM8JtqU0NUVAiu66YTloARoTi1MXmZDkz2dqoffiBioYkpF5ILnrSmgChbEvVxHWazNWRCyRAIuSBIK9Ydassz9bFA5QmhcdtMBUa0rpiQGl0fA0dmvYKFI\/2erot1j9rl7bbTARJ1kUDqDwGSHsWmw2wA2GRtr4sEdMP+uRAbZ\/e5Qm4cFC1BPhKw5JD0qU99Cr\/1W7+FW2+9Fc973vPwpS99CQcOHMC+fftw2WWXteXsi4aUfL6G1tVXX42rrrqqfX\/06FGcccYZcZ3SD7K1l9XNMh1yAzpYoiE3bs6k5nlubbiNuEkomntf0Z+Ju5oLY+4kKWGE3XR+EpVrRu4YUOrCX2mgpH9djQm\/qdwkM1dJ7Y8bllSIrPsIgD4sVV2EMwqWVBvDgUk7YIZGQlMr5pSvpWRvji7Xqd3OkfPUdsERwvNpCFSFlPpolJCm7h8Q5\/4YfQhAEBB2qbjPnAVrT11joCi0fQoY0dcx+Ua0rRQ44peb7pFeFxq9pvtgh9d0P6cGJOoiUbkASbtIdDSbLt9L1na5SEa4zTzwwVAb0HeFCtEHI+6c3WJ4WmpI+tVf\/VW85z3vwS\/\/8i8DAJ7\/\/OfjkUcewbXXXovLLrsMe\/fuBaAcpdNPP73d7vDhwz13iWptbQ1ra2vhDthuUe8qUQBF3TGTIABFpwKwQm50ziQxg5nA3UwHQE\/10JQABfpJ3F2XZXR+kp3IPSvkJKCk1vvDb3MSZuvmabLDb119oRCcQN9VSoUlLm\/JDMWZF\/UYYGJDa2SR4mSyLfk1qvrEhzrYvCYgCZzaukYClC39SJZUWOBkT7K5CKihmqLPWinHDBgGQsb2kQ4REBc+47ZfJBjR90PhyCiXGFqj781tzOW+8Fq37dYAEjdhpC0aZgNgJGsDnYukVkqviwR0ByAp1NYeQCY3ibvPbqOWGpJ+8IMfoLAOUFmW7RQAZ511Fvbu3Ys777wT5557LgBgY2MDd911F6677rrFdq73QQrzdZuXVPEhN\/0\/l8ANGe0m2UncnJsUyk8CTHcEUF88CeEEJV0mBpTULipXSaILv0mpLiqxo9\/Mw2wmdgvEh+CmgCWuf\/piLyHbNo2E7wDwDHGZuHqM+qybmjNU1+7HOICy2wLS4YCKPvMOmBZahmjMvmilhBuHgFCoHe5cAaaBIrueXi5Tgmuk6qf1jocjWiaUmM1vEw9I3bbuWbR13TYg0X3gcpBSE7XtMBuaZXaytnfIP+EaNmGb+9+3zvigLVfJdpnK7UOVpYak17zmNfj1X\/91PPOZz8Tznvc8PPDAA7jhhhvwK7\/yKwDUl+bAgQM4ePAgzj77bJx99tk4ePAgTjzxRLzxjW+ctjMU1myHiSZv0xOgtv+3Qm6uBO5IN8k3JYB+ZAkHSvOqn\/zmenSJRHchiU3m5h0lYGieEjXg1NHS69yuUtdet82UsKT7xCkmHKfe+sNqIZdJ9VuyNzcOnJxuEzqgGQNQbTu6rgQYoH2gmgJKFqkx+VUxxxLwfyahPqQAkauuFLeIq2MMGKn6Fw9HarnfPdLr9HYp+Ue6X7GA5Jos0t7Xdp8jAcnlIgEwhvyrBea1hbpI9ED7Qm1dWUeojcKQ7Rj5HCQuf3hBWmpI+vf\/\/t\/jX\/7Lf4krrrgChw8fxr59+3D55ZfjX\/2rf9WWefe7341jx47hiiuuwOOPP44LLrgAd9xxx7A5kqjoMP5yBtSb7nI0H2mz7k8F4A258QncMW4SAOeUAHbYjYp7vpuWLz8pFZTatqRADX2hGZenpPtorutgyYAiIWC7SlPAklrfHTMKTK5wHHWXANNhUu3GhNVMiOCgiaur6zN\/Z\/TBk64PCN+s2zm1EsCBPp7leEjoTtl3rdBxBeKOzRRApPrjrzfGcUoNp6l2aBtkG3Z9f3sXHNFyocRsut1UgNQxRDfMX9cXC0h0m1AeEpULkFxD\/oE4Fykq1AbiNPlkGxAx5bZQQtp+9g+hjh49it27d+Ovv\/MZnLJrFdjYAOoaopoDG5vKJdrchNjYUHevebNcSvX\/vAKqSv1vvK6bbSv1\/0alkrM3K5WHtKH+R1VDziXkXALN\/7JSkCRrQDbNyhqQc0BWArIG6ub\/al5ASgFZC9S1QFUJSClQ1QVkE4Kr6kKFuxpgqWq1jcofLyClckAqKZqwWLdOzUckMK\/1DV+VrYGmPFoo0u\/psrkEpH5QLNCOsNPhNw1EUkI5ZM3rdjl0eTRtdO\/764TxXq\/XD6G1lwMdC9Nsl5r0qS0n++VUGdkrQ+uwX0sLdmgf2vJWGftbWjm+tjW\/2PnokdC339VOTN3ebY7zy04M+PS2GQFCWmOByNVGilsEmGBkt5MCRv0yTH1WH1xwRNdxgOSDI73tkPwjVSZ9HiQKSCl5SDEuknaQdC5SOauNEW1i1uUiiQIoVtSBbiFpRY1qE6tqR8RMQM+iLVabJ1CslAqSVpvRayv64bWFgqGyVP\/PSmBlptatrpDlM8iVlWbbFeUezUrIcgasrrbLj37vGE479RIcOXIEp5xyCqbWUjtJyyZjrqSiUDAEqBPCniaAU0TITblF6iIjmzseDbWpetxuEqAvJOGwm52fxN3r1EytpqOkdsV2lJR7ZI5AM0NvUjZptsLMU4qZT0mH2HRSNzXk9KFtPqXmf85V6tanOktSkos1hR90F3dXOM6X7K2qm8Jl4nOa2uPDhOkA901VM4zvpqwBKjVHCRgGEWydE8PWVP0y6kx0l0IgBLg\/N1+brh\/1sQ7UGDCy3y8THPHru\/d63aIAqdtfE5DafZ8YkKhr5HOR1HrrPHC5SK5QWygfyfhAmfDcEihDUkihh9zS9dwJQPOSjO2EM+Qm5minA9A3eQDGvEkScOYmAWjDbkm7Sr4sOuxmDsPvQEmXVNBjghI9BLGgJMEndNM8JVov4M5Vck0XoGGJwkQMLNWyu1BQWDJCcQjDEicbmlKBSfcJcOQgMW27wnS6fiAMT1x7nKgTNTSc5nOqFgE1zrYmCAfGHDOtmKK+Po2FIq7+RYCRasdVrl+PDUeqH1x78YDkc4+AxQBSuz\/CBCQteyRbrEKAJASicpHsEW108shewjZ9bYfaQkP\/7aTt3g6R66PYenjKkDRE3FxJOnk7Ni8JME+qnjUyzk1qu5XoJrnykypZ9EBJAw7QQYmeGoDO6D0lKFEYssXNq2SPgFN9Va\/sKQOADpb0HEto+qnrT4ElwJ+7pPtK+58CTKq9NGiy26RtA8PhyW5bKxYKfGG9nZCrlAI\/VLGbhY6BD8Rjh\/e72hkDRqp92m73xgVGdv\/ayyTTpxg40utT3CO6fugQf72tnaTd7mMLQOZDyQV4QIp1kWI1ykUCjLI9g6BN0moK2ScRwOcfGZniy\/G9z5DEaTZTeUlUnBsU9Lz13bpJ7mYeeMuG3JoEblVHAwZN2\/SZbkCcmxQLSpV1n7JHvFXNDMzcc95UYrYJSjrkNQUoAYgOvwnQi1EXfgNM14kLwbUg1RxEdkJKaX70xlc9MRTXlrWWxQATEAdNqn13iA7o94f2g2vHblMr9ro2FKZ2iobsTtQDbgNFpkrenhKMVPthOOLAqFc+IbRmrgsDkg+OVD\/iR7B1ZfqAZM+FVJB6bECi+zFFmC3oIjX7KygZUBcJ6GbYRmSojao9yJa7FJu8vQ3KkJQq1pNuIEj\/TyeVbMsIM36jgQndsjbkBnUi6ukAVBl14mo4EgKQkW5SrOzZuOl8SOaIN1XenkNJM6SGoklBCerxK77wm5Yr\/KZdJV0G8MMSF4JrDojZVvM+NRSny9n7kQpMbV0Opwnon7ahnKNYeALibu52yGwKJlpU7vfUvDbECRsKQ1pjnKK2jpFgpPqxdXBE19twpJdxcETfbzUggdRDAandbysPKVUuQHK6SGQknQ1LgsYR9Y7Zr+1QG7POeXIv4cg2IEOSV1IUEK6MbD1Xkj1nkpadlwTAORWALqcfgkvGP9HpAIDmS+twk2TT1TFuEh92E2SXwnMouSabVHXpi4jAXF9EIudSAuANv9GZulVb5kcBAn8uWArlK9EwnMtdig3FcZNU2i5TCJhU\/xqr37qOpEBT1yf1\/1B4MtpKBCm2Dk8+0naYT1OE\/mKOndZQGALiXaK2Lqb8GMdI9cFXlq+XgyPVP7OsD47U+uHhNQpHtK9TARLd15ih\/nSfUlwkn3wukh12Mz6UmYgLtQG8U+Taju2kB4626AKQISlG3ENue2WEKsNajEV\/jDeXkSj0LR9mAjfQjnzj3CQ9SSGdhRsFDFAa+qubPgiXOlR2fpJa1oGSdpB0HWaOUruLnSMEwpLCAqUGQLjwmwuUwkndGJyvBIyDJb2NDUyq\/a68Pl66XvqeLouBJld4TvXFHy6LSdbmcopCMOCarsCoYwfkI1GlAJBWbKgxeNObAIqAMBgB2wtHqk5hrKPrbfeIqyM0ek31Z3pA6vofHslGNWWYzXaRALhdJAOGLIeIHBx2AkkuH4mbRNLYUQ9UbZMyJKWIfoC+EW928jbQz0sC+lMBAEbITbWlLmaytm5khTnqTYekpAPmYmbi5tykzkUK5yfRrx3NT6JTAwwOvdmg1ITfaJ6S6mcYlAB3CE6X41ylqWCp+VjbbdTnYwKTHZLj4IjLa1KHkNTlcZm0xoITkD7SDRgGFFQxkJWqsX3iNCTfaigQtW2OcItcy1PAiC\/P1x2CI1p+qHukl6WE1+j7qQDJzkPSislDmlp0XqR2meUiqY7ASNjWnetNIGmtj1qmR7alQFF+wO0Okp4rSUMTfTxJW0ZYw664Zf3QGw25qWXNDZw+b9ce8Qa\/m5SaxE1Hc4zNT1okKNnhN1+eEjDOVWq619YzFJZUvX13SX2Goinvd5d0\/VpDXaa2PyPByWiHuaZPMdKNahFAE6uxieYpmw8FIiDeLXItC4ERsDVwpOoVzvU2HNFyQ\/KP6PtYQOL7bIfQ6PtwHhLVlC4SBSNVOTPgw0rY1jvKhtrIa28+kiqAJOnntm1TQneGpEWJJm\/TvKR2tWcqAC0r5KbKMHDUJHAXkKhq+0wfplJ0bpE5f5IwysDKT2rLk\/ykKUCpORzRoGSH37r+D3OVlGS7ruliuzQVltTx6\/oVE44LJXzTvsW4TKrv5OI8AJxUX\/tQMwSi2n4cByPdFjW6zQdEQBoUuZaHErCBNDCy2xkKR7RMintE+xcDSBSOzDYJ4JA27HmQdDu6X748JCqah9QtM8NsU6qdXdvKP3IlbLtCbW3ne8s8eUh0vf6\/\/RDUe7mFz2fzaTl6sROl50qiHywd4Qb0TwgyXxIA44SiUwGIGfiQG0ngBtCbDqBdVk\/jJumwG72h0bBb7ESTU4GSQHdBMh6OGwlK3DxFsa6SKwTXdLMrkwBLQB+YhoTjjO0ioIkyN3dTTQEn1Vf\/1XsIRPm0VU80mfKmlDzrdsSPbRcQAWlQBAwDI267KeFI1S+cZWLcI9pHDpB87pFZX+fq6q5zE0XqdjhASpkw0hVmm8pF6uUkWWAEoJ+w3S4zQ23efCSggyDjYbY754dQhqSQ9Oi15iG3xqNJXKInAM1Lapf185La7eyQG50zCegeXUKkE7jpdABTKWZaAO04qd2R7ESTdLuxoGSH31JHvo3NVVJ18LCkP5sYWAL6wJQSjlPbmCE5vZ1WTC4TXaf2Ix2c2ra5gZ4RgJDy\/LdlNJqGJpjHwBDgByLAf8+JdYuA8eE0rr0xcETLDXWP7HIx4TWz3ekAie6THWbT29vD\/WmYbUpxw\/4B9BO2AWNuJKOzodehSSR12SWbG4kqQ9KUKgKQopO3dVk7L6mtwzppC2vOJDAhN90FMrnkFG6SmfMSH3YTunxvoskOlOxdp8uFkO1DcTsXyA1KMTN0d6Pt+qAEpLtKar07uRtAO3s31Mdg5Gp1x7LZ\/2ZZrLuktvEDk7E906aWy4Fq2wmAk1YqQLXtD4SMIQ\/X9WkRo+liQUhrDBD5yqSAETAtHAHDQ2u0jG\/kmlmuX\/eiAInbD3skW1fGP9yfiguzTeUi2WlBOmHb\/kx7cyO1K3goYvOR7Nc+aVhaol9CGZJcCo1go+LmStIj3AAGiNRLNi8J4ENuQG\/OJFUHjOe5LULaTQqF3QB1caDTAgAdHNigpB9fYkKGVHMoyeYC0ELWNKCk2+HCbzxQmY82UftIICgCljhXCegDUyos0TrUdn1gotsbdQSgKOQ2Ae6bOQdPQBgWfBDl0nZPEZAKQFQhGNIK3V9868eCEVfHVsIRLTc0vKbLjQGkth4CPLEj2VRb5o9MvX0vzScQZptcXMI2+FCbKk9CbUAXagMscCqMbcyKG4We2WZvu03KkDRE7beKgSM6ws2VvB3KS9IqmFFu4ENuqnw45FYUcrCbxI1207vmG+1WN6Ezc8Rbc7gS5lAaC0oAn6dE2+aBig+\/6frUfghjosVQCE7vlz5y3XGMhyVaB61HbRsPTLRtqlS3qW3bc\/N3ARQwDjiWVbEgRDUGioDFgJHa3t+PIXCk2uIByRdeo2VD4TVgPCDZI9liAKntC9kngfTRbFRTuUh2wrY+Fr5QW39qANK5UD5S76A4yriUZ9zeIaKg01sX4TzRSSVj8pK0uFFu6EJusKDJF3KrB4x+0xBEc49Ck0zao93qNsdoeCL3WFAC+m6RL08JRjkT5vS+U1hKCcEB42FJ97s9zt3LZGCy66L9aOuMcJtcZdu+RECDD6SWSUMASCvlB\/JQKAKmByOuPz44AoaH1lSZtPAaV24KQNKKHeqvlxXtMvdoNnNZN5qtq7tL1l6E2LmREAi1DQmlhbSEE0kCGZL6So2F6rmS7GXcCLfetgSI2JCcfVdSF2Y75AbAmaOUIpebJIlrpN0kmpPEJXHbk0yGErntQ8DlJ6WCku6vBiVgujylfn\/drhIwLSwB0wOTXZddH+0PlQuGhgCU1hj4WCYNuXeMASKtsWCk6gj3a2o46pdzA1JMeA2YDpCGJGp3fe9ehyaNpOKStaca0aYTtseE2trOu95zM23bZVKBaBsAKkNSjFLyk9ptyInAzbwd2gZQs2\/Pwd5VQiE3PYdQSgK3a2i1ELKbEoB1kwRZZobdAMuZQT\/sFpuflAJKqi1zegAA0XlKNvzYIUKA66+S7SoB\/Tp1OSAdloC+uwSMAyZVVxo00b7Z8oFQCAQWMZP2IjTmB3TKtiEwckERwN\/rXHXGuEZcnT44susY6h7R8tsBSF3drr5R50e22xctQJnJ2qqcO1mbakoXyZ5h21jHhNoA8KE2tm6L\/LjXzo25E205HKUMSUPFgVMRAKBQ8jaYvCQ0QGRNBdCVx8KStgugdZOMNoXbTXIlcQt0QNMPu6nyofykECjZfeQmnDTqAxdW84MSEO4vrdeVq6TLAdPAEpAGTBzy+1wmu067XlsprlPMti5NCVSLyhFNrXcMFLVtJtTrqm5MWI3bfjsByVYqIKWE2ej2tA312p2sbSwTcS7SWLlGtQFQkQvXyVuIuKRtWztwrqQMSVPI+U0kI9xsOZK31TrBXv25qQC6dehNLOlS0fyiCSVwSws8\/LlJgizjk7hVHcPCbi5QMo4BPPlJA0FJ7Rtfzt4HHygB\/NxKdlkgHpZ69TTL+89Va+pzuEu07q4u87OPgSa7DVtDXKeQluk6O6QvMeEzIAxGvt\/cKXA0hXNk1xMDR6rc4gDJdpHMvsYBkh1m69rtu0i0XmBxLtLghG1HqE0fgN6z2miDdsdnnrPPOFADE7S32VHKkJSq0AdWCPfoMuIg9USTt42yDCyVHVJIqz4huoklXSE3mZi8XSbmJtluEp07yRd2A3josEHJ6JuIy08aCkpmP+JACYgbAafL6WNDy6rjbj8WpNmGlBniLrFhM\/J6iMtkt0HlAydg+5yjGE0JYbFABAx3i0JtxbpGXP3c6EN7syndI7rNlIBku0hG\/3V9DCDZffQN97f7pesY6yItVIWHY7h8pGa5IdfINlt0+P8STyQJZEgaJ\/1oEp+EVcY1wg1gHSRfXpLaRlmmMQ5Sigoh2wTu\/k15sW5Sf7Sb2behidxTgRLATxMAxCV1q3JxsGS7SkA8LKlj1dQXEYqz69cKuUyq\/jRwcrUd0jI5Ry6lwJDWWCgKtRvrGrnaGRNas8unhNf65d1lhwASNxeSlg1IKWE2OprNNeSfKtZFCiVsp4p7VpshXz5SbNI2Vzag4HPbttBdWo7MKI++\/e1v4+\/\/\/b+PpzzlKTjxxBPxohe9CPfff3+7XkqJa665Bvv27cOuXbtw0UUX4aGHHpqm8ZQPgtKwPUmW7wTxnWhEKpwmnDFi9YXxd7GzXWVnyTZfxLKoG3sWbKxbfxHtNmMnSOte693shseqC0S\/LGdpdxdC81dbd\/GURjuh5E2jDOlz92uxv8xVVu9LqLwqZy4pRL88LVEWzHUH\/S+wrqf3GYjuz+yH+cepAN+WWb\/o\/YVkt839LZum6HPKsQode1+7rs+cOz9oW0b91nlnn5d2XaUQPfdopwASl6hta0yYbStcpJRQmxOMACTlI8FTFug7Ra776pI6SksNSY8\/\/jhe9rKXYWVlBb\/\/+7+Pr33ta\/iN3\/gN\/OiP\/mhb5vrrr8cNN9yAm266Cffeey\/27t2Liy++GE888cS0nZlyqGLpP8HsE7Bft3uVmDUXhcL8YgwdHSEIzLTNM19ktbzfBt01Oy4PmLsSuoCGQClW2wlKBvhYNxS7vN0GwIc8XDdR183Qxy9TAFPXTho0hfqzaJBaRFtD4HEMGKk23c5RLBwB07tHiwYko2+eHCRVT3weUr8vfhfJ3g\/bRbJlz65t19vWs6B5ksyG4c5HAuIuKCmu0ZKMYPNpqcNt1113Hc444wx8\/OMfb5c961nPal9LKXHjjTfive99Ly699FIAwC233II9e\/bg1ltvxeWXX76QfkU95NaW\/aBbX36SXg84YxLcI0qmFj9qTDIJ3WaoSS0D7HmTuNwkrZgk7pBS5k\/iQm\/tPrL964fe7LIxCd1c\/TRXKao8E4JT+6RknxJ8yLJ77YqU+XKYaHtaoVMxNUwXq2VynIbAYOxtIjzqzVG\/B3jZdhITs4H48JoqOwyQuPopINluMZUvD8ld1gSkqVykQpjb6+3sz087\/HY5LtQ2Wr58JKi0j6h4ng09kZGSGMmYxO8FaKkx7jOf+QzOP\/98\/OIv\/iKe\/vSn49xzz8XHPvaxdv3DDz+MQ4cOYf\/+\/e2ytbU1XHjhhbjnnnu2ppPGkMYRcVjXCSgcCXN6dezPeodSQ25M9\/rLeheA7rV54fD\/ghriJtlht6j+NsuMCy7bH76f7ot7OCG1K2uDp9+FAvgQHMA7Ay4XAXCHZbq+xTkphfUXI85pGeM8bYXG9jnlOMW6RlM5RzHukS+8Zm8zJSB114C+OECaMswW6n+Mi2SLu0axDn2wV2pfuVBbzHa+sJu6v3jO61DUwyeXi0TPp3L7fZylhqRvfvObuPnmm3H22WfjD\/\/wD\/HWt74V\/\/Sf\/lP85m\/+JgDg0KFDAIA9e\/YY2+3Zs6ddx2l9fR1Hjx41\/rZEPaq2Dn9gKKWf9P2gr0Nudl5SjGJDblzyIS3D5SYB\/EnI5SZxeUshxf7i5EDJbh+YHpTooiHhN8APS71lHlgC\/LCk+hjv3AyBJrMvbhhZFEgtos3U4xADpaHPaSwcAcPCa1sJSL65kGI\/ptgw2xgXqSs7PmE7Vb58JO\/9pBD8xdDuKJV9\/+qt9+QcLXHYbfsxzaO6rnH++efj4MGDAIBzzz0XDz30EG6++Wb8g3\/wD9py3JwuvovZtddei\/e\/\/\/2L6bQ9oaQ9V5IdZosY4WbI8Rw3LT1fEubWVADVsBtKSsjNLkd3hb6OGemmxS3Tip1kUqA\/G3fbRz1NAlcvXKG0caE3YHz4DWBCgkwYzheC0+JOpVA4LmViSbsvbbvhTYJaRsdpyOU+LuE70K4Pmrg2XT\/kI+r2uUd8+fGARBWbh5Qyms2lLjcxzUXiyqoy\/S8L99nGuvmTK3ACi1kRDqPZ0GMT2Yiw21ZrefENwOmnn47nPve5xrKf+ImfwLe+9S0AwN69ewGg5xodPny45y5RXX311Thy5Ej79+ijj47r6NQUHHMCLfCTc4XcCvSXlaJm8vb6Q17buiPcJPZXsMNNssNuIaVONOf6JMY4SvY6rp2Qo+TtW0Jyt657jLsEDEtwth2WkZHjLdeY\/qccrxjXyJd3FAtIthPkqnu7AEm\/TM1D6uoanqzd9SHsIvFl+QfZUsWG2ux8JB1qG61Q0jawo+BmKi31NellL3sZvv71rxvL\/uzP\/gxnnnkmAOCss87C3r17ceedd7brNzY2cNddd+GlL32ps961tTWccsopxl+yxvyCjchdYmndLlOKST5BOy+JbStyBAY3UoOTKzeJbp8SVmvrausx6+aOZGx+UtfP5O5sCShx3XK5BL7TZQpYattPBCajH46\/7dJU\/Uk9JmPgCHDDUUxoTdff237BgORS6vc3tG2sOBcpJF\/Cdr9+\/zUBiP8BmJqP1G3oD701nXB+UL3h\/66Lj6\/uJdZSQ9I73\/lOfPGLX8TBgwfx53\/+57j11lvx0Y9+FFdeeSUAZbUfOHAABw8exO23346vfvWreMtb3oITTzwRb3zjG6fvUGwSWe\/uNya5LXwCpVafmpfE\/kpiockPUimQwcHFmNwkKp9Vz2noL15OiwAlV5spuUp2G1PBEjAclnr9cvxNpUXUPwQWp4CjseE1TlMBkr8Nd31A\/Hc3lE6jleIicf1KTdiOuWbFXltj6jHykbgyEbc038ChKPVOjJ2Vm7TUOUkvfvGLcfvtt+Pqq6\/GBz7wAZx11lm48cYb8aY3vakt8+53vxvHjh3DFVdcgccffxwXXHAB7rjjDpx88snb2PMIlWbukv2gW0NCIPgI2wLembeLsntEiZ1PlKrS8dDb\/lD6bih\/KcLTAeicolSl5iYF+90s43KYbKXmJ3Hico5ScpRc27XbF\/HTBfj61WuvOY1iR\/GHZvoequW7rA6DwqgR1qFoiGP5mPwjYBwg+doc+qMj1UVyhdpS5Aq1hcSF2ox6ueO9iHwkK2k76odO6ITr51oM7l5y21skIaeYqGSH6+jRo9i9ezf++jufwSknrgFVBcznQF0Dda3mRGpeo3kt5nNVrq6BedVsU5FyenuplstazZNUy+avBjb19qqcrLrXqCUkeQ0pIefqD3OpErdrKLCqm2e41YCcd+wl580NrBaQNVBX6n8phXotBWQtUDd\/Uqp1VV1ANu8BoKoL1FKV119T\/Sw3fROtZAEp1aNJdJJyLQUkzDL6tYRok7f1CVjT+kndGqjoMnudhhkNgF09Xd20LXObbplO4tbLKCTRbSk80Bt+7Sjf30Y417m2r5ivasx27faea2zo8hs7V9WQq8mUwLSdWhQYAcPhCIgPr7naSQUktU16mG1sLpJryL+qL5yP5BrRVrYh+249fU4bDenrUBt98gAd1UZn2dYj24ToQEqPbKOzbHOPIgEw+KG2FJLEDF24TeckFYBYLdrh\/+0cSY2F2aaCFAJYKVW4rRBqENKsVCdc0ZRZnTU71awrBLCy0mzflFuZqf9nJTBTw7TlbNbUNWvLyZWVbpvVVdWn2QxHv3cMp516CY4cOTIsdSagZfwRtjNlX+18lmJsHVyRiE9sqjm32LlX7PeBC6Rdhr7mhsmGNDaBO\/VXKTd3Em0fWEzYjdvevln5tuPa9qUKhEJLoRBP27YYHo5b9keSaI3tb8oxGhpaa\/u6RIDk0yJcpK6+uITtGKWMavNp7CzbY57XFpL3ESNUvSH\/ETeeoeG0bXxkSYak7dRQO3FsjNgjOqkkt26ydgaOcouVK4GbKjU3Kbrt6F\/OYVBKbS+kUE5lTL5SrFJhydayQNNU\/Ug9HmPcI2B6QIrR2DCbS1PnIqUqbW42GpbjR\/YC\/DVpSD4SdZFGK5YIpgqFLenz2qgyJG2lYk6IyBlMo2k\/UnqEm3P9wC906LlFMRqaoD2VXBfe1Av9EMW4SbHbtnVsISgB40CJaiuBaeq2Uo\/BIgBpaFtaMS7SWMU6sVRTjmhzhdqoUvKRQorNR4qvL3FkG902eu6OicstuTIkjdF2Z+JP0HzKzNtbKd\/Fyb6QpSrWwo\/dNkVb7SYNvlkMbM+lqcMCi37A7VQa4qYtCpAWfcvynctTtT31eWSPaktVaJbtqZQKTsmuf+S9JPjw9eNQP3x7vGziQCvhDhRN\/9y2kV+kMc9xCyn0LLcY2XlJLqXWP2oqrAlvELFu0pRhtxgNAaVF5FC4coRS\/6bWkH0dC0hTtTckF2lIm1Med35uM38+0qLkysOMfV7bFNJJ2zHlRisGnoIn93LiyHL26njRmA99gVblGEs2RfSCMHS+pCFyPfSW09i8pCku+FO5SS4tKuwGDOvrks8dN4m2C5CmcJGmyEUacl64flgsKncwVVsZPeI+xqHfGy8EpdyijpPwWaoyJG21FhLIjy86xa8GdqK6Bf0aWpbvpWuU2xBNsU+pbtKiQWlZXKXt1tDw2iTnRCIgDc1FStUiP+apZ9hm22CAbCtGtk2qQM5pePuJY8Y7SMm3zLe85S34whe+sIi+LI+WxPZLif\/GwM8Q92g7bmRbcfR32ld4p\/U3a1otxxVJabvuf1t9LRqSoD3lIJNFhwRjZtvOGvDde+KJJ7B\/\/36cffbZOHjwIL797W8vol9ZWVlZWVlZWduqZEj69Kc\/jW9\/+9t429veht\/+7d\/Gs571LLzqVa\/C7\/zO72Bz0\/FMjKysrKysrKysHaZBLu5TnvIUvOMd78ADDzyAP\/mTP8GP\/\/iP481vfjP27duHd77znfjGN74xdT+zsrKysrKysrZUo0Ldjz32GO644w7ccccdKMsSf\/fv\/l089NBDeO5zn4sPfehDU\/UxKysrKysrK2vLlQxJm5ub+PSnP41LLrkEZ555Jn77t38b73znO\/HYY4\/hlltuwR133IFPfvKT+MAHPrCI\/mZlZWVlZWVlbYmS89tPP\/101HWNN7zhDfiTP\/kTvOhFL+qV+fmf\/3n86I\/+6ATd2ybVixnOnio5j++HXFCXhzzVfayW4+gvl5ZvTvSsrVSN5RnhVsvtGeEm5daOcKukmPQRJKmSUix8hFtWWMmQ9KEPfQi\/+Iu\/iBNOOMFZ5tRTT8XDDz88qmPHreoFnPSRVFFXYhKY4qqo5GIu4Ys4XEA6dMzJBmO7tKh98tXtarIKnA8xp8uQ\/dkO+N4KDbmR6+M3Fjyqmp8rSYKfQiIWdlzbx2rs9t66meM9dXsSwju0n7YXKgvw8LVw8KwFpDVXkpwDYjV2+8QObhdJL0DJd7Y3v\/nNXkDKmkgLvJNKuTUnb03aobuzSEgAuv3TN\/jK096cWVcnXGLpvvja8amyPo+Y41MlUMZQQIpRBqS+pBy2j6FjuVUOa8q51W2Tfg7botvQzbnv6HbIuIZtQ\/tDvzfeH8YpO7LoC\/eSalkc3ONTMWE7rkzCySgH3pnrSkTDUlX3TxNu2ZAv8bymIDUM3mQDNaGL6dD6h8h1wR8ie3vXTSzlGhYDSKEiywJIlZzmb2ptByi5PldXtbGfoV1szP1yih8W3A8Z3\/dft6MPz6J\/KLp+FHLXIM6FnwLCZK2u8zHlRismNSR4ci9nokWGpDHa7g91guZlLVDXy2eL2r9M6TL9XRt6oeY2425o7LJhTbay+8zt5xT1ag3t79SANNRdcWkRcLMIWBqy31sNSmwdE3xYU\/5QaOtJPpb+75cGKzlBgG6+wOso96PUp2QIjLyXpOTJHi\/KkLSVmlcRZeJOQjmx9RkCJe5iE\/NFpBefoXlLU1zAxsj1C3WKX8S+OoF4FylFY\/OQhgDSFFqk67PodpYFlIa0pRVyk6YA\/iFgNeWPGfsHmO\/Hmio3bp+5vqcCkVmfiHKP2G1jT\/gfsrBbhqSdqAUF6dWvXuH8ksZAUexFg4IP3Zupf6e0NjvTr7H5SC65LvShm8rQa0+Ki7SVgDTWPVp0OGyr+5B6PBaRo5QSdpsiN8nVduoPjEV9V2OV8kPN9cMwpg7uGhu6ptZNNEBO4WTFnlQxF4KYMjHGwTYrQ9JUsi8oVcSH37MNwifVoob699sRURd0\/uLqvvmn3GR9ZfU6Ox\/JTtq2NVWozXWRj92\/mF\/dMS4S155ktgX8gFTDf32sZdy+aRBIvb9uRY7QFJoinynlGIWOu+9zq2r+Mx8DSiE3KaZOTq7vUOr3lYWp5rvmyktK+c3pSt4ecrra8MN+lx3XiaouIGXcNTpV0VEKO+oxNAc3qq3tg6kMSQGJqahkpEUp53F3KSkVSMl5c+GYOE4eO\/w\/xlFyJW1TgNAQZOcjjVXsL9MuZ4GUGxCeMKGK+7Xo3lZtEw9InFyANAUcDQGjnQBEKRoLTCHFuEo+WOq1C\/5cmQKUfD+ShnyPtMZ8Z2OkrzUxITejD2S9eU0D+zqmToD\/PNX1fQsctLmcKKF7+Z2ikHYUJF177bUQQuDAgQPtMiklrrnmGuzbtw+7du3CRRddhIceemj7Ohkr68rlpfeoq6gCI3bzZpSDrNMT+saMbIuxnae4P7pcJDvUNsZFcinmF3Dqr+0QILnAJQWQQnDE9avX3gjHaErVE\/xNqSHAFAOaMcCaAkrA1oGSa9sYR3aK763tJg2ReT2Lv47aPyJjRrjFXneT1EQH5DwhIhFzEUgpn6IlyX3aMZB077334qMf\/She8IIXGMuvv\/563HDDDbjppptw7733Yu\/evbj44ovxxBNPTN+JykEhtnp3vRGX4Rj3KLF6Pfw\/dmRbbNI2Vy4pvObYzjWqbWhC91Qu0hRhtiGAxCkVkHwK3YzHuEZjtSjAWRQ8jQEml4aG4LYTlMaG3bSmcpNcITfbTWK3pX0ky6Xxmr82ccvjnMT0a526xsM5ibAGpmA9U+fA+lJRtnvEOKMdAUnf+9738KY3vQkf+9jHcOqpp7bLpZS48cYb8d73vheXXnopzjnnHNxyyy34wQ9+gFtvvXWxnRoTDLZPBNc3Mio5bng3uu6IQUnbMflIrvIpobYhWoSLNHWYbaqRbFwpVz7KmNBaChyNBaOtcHy2uh+pxyR0rGNgqdeHkaAU2i4WlFKcVq4dYLwLHKPYkBtVbMhNLRs2atgllUuaOMIt5oSW7pOtFwWxT7JUN2rJtCMg6corr8SrX\/1q\/NzP\/Zyx\/OGHH8ahQ4ewf\/\/+dtna2houvPBC3HPPPVvXwanpt5bh+ShqDJ5IMiSdtG0DU43+skoWjOMqemXaugeOanO5SLEJ21pdedq26C0L\/RJNDbNN4SBx27gAyZbv5j4FHA3JMdqq8NciNLbfscdqbBjOBUqxeUp96JGTOUru7wq\/XL8c6ibFJnD7fpy5Qm4hp4cLudnXhEoWvWNXg4cmWQsjebseOd+djD2BlyQEtpVKfnbbVuu2227Dn\/7pn+Lee+\/trTt06BAAYM+ePcbyPXv24JFHHnHWub6+jvX19fb90aNHJ+ot+sBkJ67ZJ1lvhEDgJJxLb\/6SnbQ9NvluaKhNQjh\/RYVm2Q4lObv6E8pFWnSYLQaQYnKJQiE2J7h5krN7yyb4cZfK6IuCHznRL1ExwdNTuX0M\/RK1j2Pp6IbeTVc39WdqPzJL98nuhz5f7Oe96e7oarh6KylRko5ImM9Lq6VdvnteGV1Ht6PLK9kdB7suQH1HZwLGs9tqCBSQxrK2XNNOLQUKIY36XdLt6v9d+1CjO7Z0f1zPceOWc8+gq+oCZVGzyxb1oF9Zqd75Tlo5ryFmhfmh9OiuBoqSbFQDKM3yO8KiWfJuPvroo3jHO96B3\/qt3\/I+L86+uEkpvRe8a6+9Frt3727\/zjjjjMn67BV3IlH53KPaP9qgBSNuU5K0nZqPBIwLtaUkbLtCbSEXKVX6OFFA8g8hpn3klw8BJO6X+xBA8oXWUgEp5FqkuEVTuENSyuDfVFpUW6nHIXSMQ+6Sy1ny5SrFTBXAuUpp5cc7SrQs5wq3dUZ+VLG5SWZ\/w25Syig3bioA+5ormXKxMvKSIpO3ZS1jnvNkvk\/9wW+UXV7\/eKkh6f7778fhw4dx3nnnYTabYTab4a677sK\/+3f\/DrPZrHWQtKOkdfjw4Z67RHX11VfjyJEj7d+jjz46vJPUKYrNNUqRlN7EuWib1CE7H2mKUJttV7tcJFo3V5aDrlCYLeQipc6JtEhAorLDGK7wmrHNADhinazATTcWjIZA0VYB0FSaor8pxyl03H2f3RSwFANK9Ly1wX9KUHL1CYj74dN9p\/1hN59c\/Y9J4B4yys2u2yUacqN5SaF9CiVvq\/uL5wRMeUxJL6riSpCjJ0DkYKkFaqkh6ZWvfCUefPBBfOlLX2r\/zj\/\/fLzpTW\/Cl770JfzYj\/0Y9u7dizvvvLPdZmNjA3fddRde+tKXOutdW1vDKaecYvylSMwHfHChsJvrKufTguF7ylFtXJw\/JmGb+yUXUgwgpeYhLRqQzP73y9NFU8ORS6Eb9BRQdLxpUdAUA6pTwpJRL\/rneYqrNBUoTZGfFKOtcJP6PyT5iSFdUwFIaeYljVYdcJbmgYtFW88CjIJGk81ZmKilzkk6+eSTcc455xjLTjrpJDzlKU9plx84cAAHDx7E2WefjbPPPhsHDx7EiSeeiDe+8Y3TdibVDvSVD8yRJOe1\/+QKJG3TfCTX8M9YSSl6F9Ja9n\/xcLYxl4gIWBdDq15an7081kUKKTUPabsBySjvgCNOrlMoBEY+pZ5KU4DQskw2Gcph4WTvf0zekyuHSIseD65PrtwlX85STL6SRCjvyJ2nNFWO0pj8JFq\/nZukj4GUAkJIksvUzx8ak5tUyQKlsPKMSH1aKmVH9aXte3MtLsQCvxA1ICEh7INsdMxaJ60zo5ZG+lF\/e\/reylVaQi01JMXo3e9+N44dO4YrrrgCjz\/+OC644ALccccdOPnkk7e2I76ZRb3AI\/3vjTbcSdvql4XbOuXykVyhNk7cLxY1KtSfsK2XAeqXlV6V4iIZdQQAKeQixdjxtO2pAGm74WjRYDQEhpYFfmIV218fTLmOEwdP9nHnoMkHTCmwRNui7VR1H5QAd1K3Pq81LNHy\/bLjQImWiwGlUBK3DUr2MaNJ3KqfFH7ovogWZOa1wKzo76PeXi2jIARUMEGqqgugqKPDPnUtVNkCqKsmf7qW7fEQEJCFBOaAWHVV0sASN9KvVqOvxWoHN7L2gNW8AlYJatQ1UDJgNK+A1eULbgl5PHreiTp69Ch2796Nv\/7OZ3DKiWtAVQHzOTCfK4tv3ryv5kAtITY21Nk8n6t1dQ1sztX\/xmsJbG6q\/+dV93\/VrNtQ9UmVqQdsVO0JqD1tuVk3ZdBBknaSGijSSdvcyDZf0rYvH0nZvx2IaEiiLpKGJOoi6S8+dZEkRGs9S3QgU6ODCmpB02U+F2koIIVCbD5AcsER7be9Thpl0uAI6ANSSjK2L8\/IpxAYpV42pgSiCR18p1zX+6FKdaFCjlPoVuJqz1Utt792G\/YoOK4qux7qLAlHOeqi0OXu8uYyWm6ml5GFRfOt0stm1naFkF2duu2mT11Z2bap2y2FNJbr\/SjQgY8AWkgSkGTbGoXQy2RbXyEkhEALSYVQfSkJJImmnB7lJgr9Wm1bFBJFISEKqcqW6n9RQL0uABSqrJgBolDHRqyiWQeIUqj\/CwHMBETzpxpQf2JWAPpPCFV2tQSKZuTbyqw7YLNSgdGsbNatNOsKYHWlqbd5Xaj65OpqU3ZVLZuVkOWseT1r6pvh6PeO4bRTL8GRI0eSU2ditOOdpC1XKOyW4hpRcQlwvhuRL4bsAKQh4hK2dddSXCT12qy3fc04MSFA6vVzGwEpNrxmJ2bbCrlHY+EolF\/kUywUDZ48csl+qqX2JwRVruPiHu5vbmBDU8hlcjlMQ9wlXbcdgrNdJV2PKwTndohMR0n3w3ahpnaUqFLCbiE3qQaAxk2S6NwkdX2UxvFZlJs0SHVzLLlGagk5B8SK48Rh66vNaQCoqgooGvyYVwqollTL523tRLluIN4QHLnM9YeIuU8+Rz6S4SI5u5nuItFtuS7F5CKlzq49JMxGtQyAJMk23Mg1KloW6Cdm2wm2+vTo1SO7PypXwm8oWTiUgGxPIBk1LYDk\/3a6hu5X7DEMfRa+z5Kr13WucP2267XPT\/v8tetwjX6j5SprckXOiTXrNJfR9n0DNai6erWDrcvq7a1rD\/kRqNxy0Vsek8StyvXzNWOnA+DETSxpj3LjpgJg5ct5lcwJQn\/g+6YBiEmO5UyIbZ4eYHnxbdmV+mHSk4W8ZpO2OTnykUJgNEaci8QN+wfcLhINs9F629cRwDHmAbbbBUhdGT8cUQ11jlJcI9\/lJsYtik6OH3lOLjs4xYbjXPvh2z6cmN0VCOUyGflFkq+Tc5dczpKdrwS4nSVaB5erFOMq2XlKIUdJt885Snpfh+QnUfcppr++JO6hblJbr0410JNN1gKiGPaFkXMAM0Bwhk8gL8msiOylz0Gy69gBNk2GpBgNIVnjLk8cJde0yPY2ZBn7cELXz8bEXKQYcS6SnYukxf1Cor\/YOsARBEK6X5FcmE33AWSXh8yHZKw39sWuk+s73cdx4bUQHAH9j5a9JjFKhaMQGAVzlwZcm5cdgGIU2ocQRMXCU2g27tiwHAdLdn20KkGAgPaLrS8iuZsmdseAkuqbTAYlWs4GpSkSuVPCbiB1AmYStypXAKh7o\/7U8TavHQUEOwP3VJISKpF7hj64zCXkTPTCcN7k7Vp2g9bse+Eqgx3s3BWRsLVgZUiylWrLjLEHHe5S47Gyk0jqhO3e8oGOkivURpO127KNixSbizRVmG3sSDbXKDaffe8uN9w9CsFRCIyAeNdoCBTFhstiNAUISdYb3H6xv6wt+fbfB1D2dlNBU8hdsuuy3aUQLNFzmXOWXK6Sq4zqm2hBSS+XbH2LByXQuogbpPqh+kmXV1IAQqIgdQpoUMJgN6nNTWLcpAoaomT7NIWYUW726SjrBl5tPuHykuhBt1XVKskaMOGIOkg1KROj1PITKENSikJJaqFtaBlXHJdrg4xqo6Kj2owmJ0jYNuqT3Yg2Le0i2TPK1tJygNDBjG80G431Tw1IlDVjAIl+AnyuQb8+VYaHo165RDhaFBhN4RINgaFlhZ9YxfbfBVMpAJUKTYANO12BIcDkgiXdF64uLgwX4yoBHAD1XSWuPgpKettJQWnisFt3LE03if6Y5Nwke2qCKeQKuTmf4yabe1HBnBRT\/DpyTRGwTcqQNETeSWdIaE064MeRtN3LRxoYaut3Ny1hm3ORdFe5p1dzEEXnRILV3ZQ8JLrtGEDiwae\/zAdIY0NrY+Fo0WAUur6lXP\/GgJAvIr1MsofE2\/IdgxSA8j1H1F4P+NyhdGCyYUlta\/Yl5C6VRZyrBPhDcDYo0fo0KOk+20A1PSip8JoNdKUAWe4b7dZNK9Dtq7CWqT5SN0lftydzk2iYVIINuclaQswBrHoIfl4DK2X3Ws93RENmRgiOgJCeUNI3seQ2TjqZIWmMdK4RN4rNeKYbT9rSReBbFGqLkQag\/igY0QuzaRfIDrOl5iFNNRfSlPlHY0JrU8PRVGA0FoqGgNBOAaAYxeyLC6RSACrkJvnWjwWmFHfJB0suV0lvFxOCC4XfQlMEjAUlte\/T5CfpcrWUAIUgck2l80dx+UuTqI4Puall9BOEmZfkSt42Dg6BHToNgLN\/crvYqFWGJJfGJmtzMsZ1OwCJqWNMqG2Mi2R3JTVZe2geEtCF2dS2Xfu6biANkFLzj\/jHotA6zB2OAaRFwNFUYBTjEsVC0RgQqndYKK4I5Cf5jkUsQI2BpkUA0xBYcrlKeruYEBwFJbodBSXdPhd+GwtKOvIkpcAcclR+UlISN6Q1Qm8aN8kAoISQm5xL5TaBfPBNx6OSt33Ss24v6lf\/AGVICkk7Qs3TiKMebmvYkJzLFJePpGfZ7i2zgUkCrlDbWIWStWmYTbtItMdj85BSACmUoD0mvOYCpFQ4GpJvZH+sHBhNDUUhIEoFoUXAz6KuoxGPV2sVu18cTMUCFPdZCMcPjbY9wa+jbkvbViQwpcKSbi8GlmJCcBSU1Pr08Buw\/aCkxSVx67Cb+r87kDqJe0o3qa5GhtyM5Cvm4gqYydtaXBL3Ek8ouZy92gnSTlN7l67N\/wHrxGHWc\/lIOtRmAxMTauOe1Tali2SH2bhkbb2brjDbogApdQTb1O7R1HC0aDDyQdEUQDQEgpbox6Khsf3iICt0fGyI4o75GHDi7mUcMAEUfkxgst0lG7RCeUtjYMn+rsaE37py\/fCbvk7oG2At4kAJADviTffNl8itQUnnJ+lPKxR2U\/shm3obUMJ4N6k9qjX\/LLeokFtMXlK73jHCbcmVIWlRciVtt6sZ8rbLcaPaavRzkMjcSIsQF2bTEEUhB+jCbIsApKFD\/F2j12Jzj6aCoynCaWzydgIsjQWiFBgaCxt2SHNZVAasplC3UyCKwlMqOLmgaYjLpM\/DkLukt\/GF4sbC0lBXKZSnVDedLZr25uiDEiAHJ3IbYUgm7Ka2jQ+7jZWs1TW0JGE\/2RAgbSYUcgvmJbmSt7X0sH5qOGzxMH+fMiSNke0OVUxoLQRDjmW90FmN3jIuYXtqF8kezcY9wBboRrOx0+qPACTdxBBAmtI92ko4CoFRagiNA6Mp3KEhDLMI8IlNdwgpNoyRsg8cUKVAFPcZxIKTC5piXCa9vA8\/3QLOXQLMMNfUsDTUVYoFJTv8po36mZgGlHQoTkuiP9qty08yw250tNsUblI5U\/Uqd8hM4JZNyE0CbThOh9yMiSX1wXTlJcEqpxvUo9k8Q\/3FfK4eclvNgWK1CcltPTxlSEoRFzLjxOUh6asAk49Eh\/73RrXV6D1Hx5ewnaLYMFtb1rKAgS7MRhdrF4lzalRd3XJuqL9uzy7jA6Q+\/Jjv7fW0Tz73aFFwlApGdt3c+66f\/AoXGMW4QzFcMASApgKcKTS2LxxkxRwTG6S4TcaAUwo0cdMN2A5TyF1S\/ZkelnyuUleSd5W4z3bIyLepQImG3YDwJJN6v6aUlKLn7LAJ3LU6d0Tv5LA+TNePf1\/ydswIN1tb\/Cy3DEkxivlQuBNFwxK3vWTK06sj96w2KweJS9hOcZHCu9SF2VyTRrrykDo4SR\/qHxtiGxpeS3WPthOOYsBoSiiaGoamgqDtHvUWGsUGxO1rCkhReBoDTjHQ5HOZbIgKuUuqP7oP08BSyFWyQ3AxrhLdp60EJSAuPwmuSSYncpP0la1N4IYASrWsTeAmOUotLOlr8Fy2s2+3ITcuL4mbedt+PEnMXEnbpAxJHgmfNeObIwlw0HXjHAXImzarE7aNZRYs0WH\/XVPThNmG5iGp5dMB0pD8I+5XpO0e+eCIrk+Fo0WC0RRQNAUMDQGgZR7l5sv3GNpvG65SQCoET679bgHE6rMPmlyJ4DYgpQITB0uAeRsUpF4fLKk+0T7Ipt14V8kXfgP4hG5A5SlNBUrGaDYA4fwkc94ltcYNSoh0nOpK9KYD6MFR3R239kOjz3JTF2cz5BbKS2o7IJtdlP0kbh2K8z2\/bYtyFjMkpYr7YOwwHAdXNhgxQ\/9pqC0lYbt9S1yksUrNQ7LBIQRIMTlIMflHqe5RamhtKjhaBBjxD8blLxy+68kUMHQ8jG5bBGwNmSLAdbzHwJNyRuKhCeg7TWOAqSYHxecupcISN2UAB0v6G83lX0XnKU0MSjQ\/yZw\/KZyf5FMtxXA3qc0\/atYTYOolcHtCbt68JCvE12pJpwFYvh4tg7i5kNg4R+CEbe\/QVj4S2U5ay3pzIzlcpBYgFuQiqe4LA5DaPpA8JHvCSBcgpSZpU0AaM3otddSaD46GhNTojWIsGE0BRT4gCsFQ7A1\/DGws64g2l4YkZmvFwpSGmSHw5AInDpp0WyGnaQwwudylFFii+Up2CI7uswlS\/ceamDBl9h9YHCgBNKwmjPmTJMLzJ7X9HBF2K7RjZbtJ3HQA2k2yErixKvwhN19eki95W08oSbWNI94yJA0Rl2NUWeE3Ox+J28Z2l4zwG4yE7bEu0pAwm++xI0ZXYAISLb8VgBTrHsXAEdDBCOccDQmpcZNYut6HwCgFilzAMRaGUjlmKvDZrrwkXz7SmJFusaPcQtMD+ODJ7p8Pmuy2OKdpDDDFwBJgmgxtGQJL+kVsvpLPVfKF3yQc8yk1+6CnCEgFJdNBavrlSeSGb\/4kAkql+zTtqa5FtJvUVmslcMsaXciNOko05MblJfEd6q9fkh9MGZJCCiVtc5NHctDTqJePZIfarIRte4ZtG5ZiXaQUDU3Utof6TwlIHBzR9z5AMgAoIrQ2FI5iXaOxYJTqErluomNhaNBotm0CnTEa02dj1Fnk8Rqac2S3aX\/uHDTp9mKcJttlSgEmFywBiArF2bA0NF+Jc5UA\/jvim0+JThHQTSYp2nYhFCgBaGbm5kDJPeKtwzk+kZtT6uNKbDfJnlyy7YM9AzdN4NYhN+ZgtiE3Oy\/JTt6mI9zYdBbZkrOQNcx5yxevDEkJMh5J4ppZm5MNRvbQfxpqa0Rn2O49p82aPNJ2kcYma9Nuc4Ak0Qckre0CpFj3yAdHun\/G9iPgaNFglAJFY0a0xdzch4BEvSS\/FKdWQW76Q3KSpk7Y1vVz0MS1FwNNqcDkUkoojobh9OFKgSUYyzsMiRn9BoRBSV8X3Y8wcYMSgN6IN53I3QelcWG3WamiHLabpCeX1G6Sng5Au0m9Gbjn0gy50U65Qm52XlItCXzVXeVLNKFkhqRUUTiiI9vspO1QPpLLUaoJHCW4SHTIv62hYbaYkWwdjAgvIOndiB3BNjY5OwWOYp2jVDDqt0u2icgv6uc99e86KUA0Knk78mY\/FHyqHegwUZVGmDl+XzRQxTy2xPcZcWCj5XKFXO5JCJrGANMQd0lXxYXhUmDJPWO3bPsD8N8pGn5bBCjZz3iLGfHmAyWfZLPP+l5RFjLJTdIJ3BISqIURcjNm39ayQ252XpLeOQaW2gklt1HLgWoOXXvttXjxi1+Mk08+GU9\/+tPxute9Dl\/\/+teNMlJKXHPNNdi3bx927dqFiy66CA899ND4xikMVZ6H2nLQ5MhHigm1Aeg9py3GRTLKWi6SSymAZI9k44b6bxUgSbJO9dVuX29jApLerqrVH2XQdlvZwUQlmz6TclLK9mKu19Pt6WvVl+6fbreDM2n8SdK+lKr\/9M+uu23Pqqc7D8w\/fUy4P64eu85ayuBfe25BJv3Z8vVlGf5sDd3f2OMZ6ovvc+XOA\/dn3D+\/QvXZ9dDzvKrN74Bdf\/cdNr9P9Humv3\/m+qZt\/Ue+o1275g8pvQ+x1w967aHr5rJzvmuI1vlul6O5TkphXD+kbEb2knCobr+X\/9nUIaGvvYLsR\/\/Ha+98rIu2zVrfD6T6Ma1\/JOtzQd0nujwjOjGxnOsf42jXG78Wm+eMts8bpSdO7I8Fl\/HgK7eFWmpIuuuuu3DllVfii1\/8Iu68807M53Ps378f3\/\/+99sy119\/PW644QbcdNNNuPfee7F3715cfPHFeOKJJ6btjO+DpI8jcYBQ+38o1Ga5SHo+JN+INttFig2zsbvJfAldgKTLpACSvkDpi4y+0OjX+iIj2770L1L0cNoXN4nuYthbPhCO9AVbSmlczF0XfHpTAGlXfbxumAHpuwuKuJtbChDZfUgBIa0kCJgIQuhnsB1\/ve\/JyP2KPYZjAMp1DrjOF7Ye6\/wLQRh3jtPzn34vXD8s6HdsSliy94G7luj3\/W2677zeLi5FQBhOdAwotf0AD0rGeUh\/4Epy7W7AyAdKAIz7Rpe2oSs3f2TLeXdwjXSQ7hdkU65uD2pnDJiGATvPoA1BPijiRqAvSEsdbvuDP\/gD4\/3HP\/5xPP3pT8f999+Pn\/mZn4GUEjfeeCPe+9734tJLLwUA3HLLLdizZw9uvfVWXH755YvrnH3h5KgjJdTWJGzHuEhtk8RFosnaQyeN5L6EKYDUbiM7QBqTf+SbGDIm96hdNjCslppr5Aqn0ZujfdrYoQ3uNLKhgfuB5sxPYoBDtcMvb+tzbBeq1yUONMZoDs8FdKRmzG\/Hsf0XkWE1rQLC+xmUbZ6KY3sh2La4sJ0rVMeF1ej5aYfmuHpqOq8PSQWgD1U1ZpN2heOafhjPi9PrmARvVxjODLVJb66S7gOMbWAsn0v\/yLdu\/2RbfWGF3rr2+3Mo1QDM0Jten56fZE8yKUm\/ZK3igvqZbnSkmy83SdaOBO5axuclAeg9nsSeBkA\/v20btNSQZOvIkSMAgNNOOw0A8PDDD+PQoUPYv39\/W2ZtbQ0XXngh7rnnnvGQZDtGvSuAdaG285FIGV+obQoXSXWv+4Vga0geUiog0YkiQ4AUE16zAcj4leWBI2O5BUhD4WgMGPXb84PRUChKBaKxIDQEHBYJN1Npyj5q4Eo5VsIBOFpDAcoFTtyiUB6S2s7+UeWGL7p9P4eJByZOY2FJ5yt13znZ9lUvd82rxIGSxMA8JQJKOh\/JBUog28eCEheJ4yaZnJWVkZsENPeWFmgCuUmF8CdwN\/vhzEtqDzqsbWjHazhn3d4C7RhIklLiqquuwstf\/nKcc845AIBDhw4BAPbs2WOU3bNnDx555BFnXevr61hfX2\/fHz16NL4jPUtQgg3FcaPfuFBbz5bsNnO5SFIK1kVS9fAuEtVWAdKY\/KNY92goHHEj1XxwFANGqq5unQuMQlBkb2tv79pG1Z0GRGNBaAhQyB0ASmPVjBtKOj4xQDUUoMaCU2nddUMuk12JkdguzO3M57Q1EORI9u7qI98nneQdAUsgbQEmLOnEbp+rxDm9mhMAdUOljzLRQaGZGA5KerLJECjR493O1O0Z7SbQuUl1LVAMcZNqtcyeM0nOazKfkmMqADQV0ZR8+9lt3Hdhi0e+7RhIetvb3oavfOUruPvuu3vrtJWtJaXsLaO69tpr8f73v7+\/Yj4HYFl67CSQdd9lmlf9O6q2HFWneuu4hG3qIrlm11bVidZF0mE2HXMOhdmMYzUSkLgcJJp\/1K1r9mFAeG1MaC0FjriQGgdHY8FoCiiaCoamgKAh0JMarttpKgYck5gsi5n03xySn0jE3vQZcApAU22FcvrQFAammHCcLToqzoYl1VZTh17AwJIOwXGukrmROQM2lS\/8RmfoDoFSpz4oqS70Qals+0TClp6wmwYlIep27iQhZDslgCgl6ybpWbhtN0mB04CQG33IbV33HaUlmQZgR0DS29\/+dnzmM5\/BF77wBTzjGc9ol+\/duxeAcpROP\/30dvnhw4d77hLV1Vdfjauuuqp9f\/ToUZxxxhnuDnA\/HwD1IVYVX5bcSdlQm05yo6E2DUAEjKQE6yKp5vvJ2qr6YQ+vXSQgpYbXqHsUE1qLhSN667LhiAuppeYZxYLRFFDkGhXGyQVDU0HQEOg5XkGpgN\/tcW0TOs4ChffzmqFwfs4cPDnDdlwV\/shaEJrM0NyCgEnn93imD6CwlBKCazfyuErO8JuVp9Ttg2RzlGh7vhwlLfv5bm1\/PKAEIdt7C4qmr80Ek+oe05g+lapHQAClNGbhbt2jWu20nCkaNEJu7b2OCbnp9RSWAPVeCBiOEl23kieTbCWlxNvf\/nbcfvvt+PznP4+zzjrLWH\/WWWdh7969uPPOO3HuuecCADY2NnDXXXfhuuuuc9a7traGtbW1pL6I+Zx3lYDmRCDuEs3k50JthtNEEraBDpRoTlLduUh04khXsvaQ+ZBUF\/uARMNpNiB1IbQ+IPnCa\/p7HOse+eAIMAEpBEex+UacazQGjMZC0Vgg8t1cQzfnmBv+EOCpxNaNUNkqlXK2MPgLuVOuo+mCp1jXiQ3VjYGmgcBEw3ExsMTmLekq6T54QnCADUumqyRgfueBcPjNfpTJEFAq0H90SQwoadH8pKq2ZuIGehNMlkUDVbab1ETHjARuGnJrnuUmhTBDbuaBVqoqdfBc7tE2OUtLDUlXXnklbr31Vvy3\/\/bfcPLJJ7c5SLt378auXbsghMCBAwdw8OBBnH322Tj77LNx8OBBnHjiiXjjG984rNHQXAzzSmO3Y3sKQEyoTecgORK2ORepXRdI1tZhNq2hE0ZODUi+8FqMezQk7ygFjnwhtanAaBFQlOoOuWAodFOPvekPgZ7jzk0acAxiwCrGnXJBlBOeHKG7EDylQpMrgVuVSwAmxl3S17uUvCWdszQ0X4lOQjkk\/MaOfLNASa3TlTKgNDCR2w67lVD3Ey6Jm04wqXKQeDcJXAK3kN2HYh+kWnawNK9IObAS8zlkUbDG0lZoqSHp5ptvBgBcdNFFxvKPf\/zjeMtb3gIAePe7341jx47hiiuuwOOPP44LLrgAd9xxB04++eThDcdOWqU\/bJqPBDhDbcGEbY+LBIBN1qZzItlhtrYPEYBEXSS9a8AwQLLzj4aE11oQkhIpcNTW3e67bJfBKu8LqXGwMyUYTQFFU8JQ6AYcA0BDgac+ThK5CxSDwmxRcCn9l2ofRKXAE+c6jYYmaZZtiyQCE+8umbDk7qPsnCWplzVV2X0O5CvFht\/0cttVoqDUXXNtUAKkcVyZHKUIUNKj41yJ3BUZ7SYL1Q87iVsICf24EmVhqZ2Rjauk7129Gbh9ITe93PUwOikbgCqAcvtGtgFLDkkxw2aFELjmmmtwzTXXTNq2kHU8LGlpaALQC7UZsKSXq7u5Tthun9Gm3aRaGEP+uTAbgBaWADgTtVNHsrkeVss9h80GpKHhNZd7lAJHen1KvhEXUuNgJxWMUqAoxiWyoSgVhlzLQzfp2Bv\/ENg5nkJuFZQrlCL1ozwihBA4TkPa5uBps7kdUtmOkw1NNWT\/URj0lHEAk3J1HCE2Bph87lJU3lKT5NwbDdfuh9VfAku2q6TaoYXjXSUKSgDNUzJBSa0bB0o6bYHLTyqKug27zcou7BaTxC3U4YSom8NI3aSiOS6NMcCG3CrRTQWg85I0adoj3LZZSw1JS6GqyUXSIbbWOapVDJXmI7lCbT2ibtwih4ukljFD\/snM2vTRI3Q0mysPKQWQ7JwgG5A0HAE8INnhNZ975Mo9MoBpAjga6hpNBUapUBQDRCkw5IORcLgtDD\/DQm3Hh4NkaMBxiAGcKJhytT0SnnrgJPsTbvrcpkrKzg2CNB4A7HKZeGCSvbK6XF2jBbWQu9RL8I6AJTME10DbQFepzVOSCl7MhO4OlAAwI9\/iQakQtXEMbFCqgTbspn+UVyggRBd2EwWfxC2bHbHdJD0dgJHArR0j+164zfMfxSpD0tSqOgdKEljiEraBzkUCTBeJS9YGwM6JRMNsrjwk3WwMINHnCLkAyZ4DiQKSHV4b6x7FwJFaLoNw5HONuHDaVGA0Foo4kEmBITdQTQNAQ4DneISkGnWcM2RrgpCbC6Rqsck+9DTFfbLBye5tyG0yRE\/FiLBcC0ISZD+ks1zXuCRwQ8o19+wUWFIQpmCpkrrbw1wlX54SBSXANUVAHCip\/XQncqeE3QA+iVsWyk1ipwOgCdx0ziQ75EZdJJ28rUe4LcE0ABmSxko7SDTUBhiuUbse6Cds63gufZCglawdmhOJ5iFxgKRdpFhAspO2Y4f4u8JrY92jKeEo1TViAcp2hSLAiELREJfIfj8VDIVDbWGQGQI7x\/OEkhUTsgopBq5qsREGMCf0OLNie4ti4GkyaBoITDHuEm2Yc5eGwJIdgtOTQKa4SqE8pbq5\/hZCeuZSCoNSaGqAQnagJAJhN53EjbqfxC3naBO50bhIbAK3njMJgBFyi1Fdq6hOUUDIrR3ukSEpRXRkmw1FWjTU1rzvJWyTYf+2i6TDbNo9sudE4sJsQAdLvpFsKYA0ZAQbDa\/Z7lEXckt3j6aEo1TXiD4UtisfhiLdPy0KRiGXKMYhSoEhN1CNB6AhsFNhM3mbnagSK0nlh8BVT8kht0h4CjpOleFW2SE6Ck0xwGSE5RhgGuou+UJxUbAUHYLzu0q+PKXQyLdYUBKFhG\/Emz52bX4SwmE3OhN3O8JN9t0kbwK3HXKrNURVwCwy\/KZTX7ZAGZJCqqV\/jiSaj8SF2sgJwbpIsFwkwDsnkms0mw6zuQCpkkU0IFUyLkFbreMBaQr3aJFwlOoaTekWpbpE\/fJprpCr\/FgAGgI7tTh+HSRbNdZRBGbI5uSDqxBIuRwplwvldo1sJ8gM2aW6TfTMpMBUQRoP\/zXCguTHiw1MPndJuzu0nA+WtKOk5YMln6ukC5dCkJAc7ypVUk1FYOcpxSR0x4JSNzqOByU64k3nJ3FhNwDtA3B1ErcKu8HITUJhTi7JJnCDCblRUQMiYuDWVihDkk\/OuZDqLmnbWO4hZvLecJHqvovkC7O5Jo3s8o14QKpkOiBpOAL6gOTLP0p1j1yhtSEJ2RSOUsDIKOcBoyFukeFCJQKRWmaehxwMpYLQWABKhZ0aVbhQoiq5GEeqFGkOkE+1UPtdJIzWiYGrISCVAlA8BFnbWuehvY0JPZ3TNMplal2Wrm4NQgq4dHkrHCcblycClrxhuAZuUlwlNaeRWq4fkEt3MzWhe1OqSadDoLRZ03J9UCpkPz9Jh93oJJP6NsiF3fSUAG1uUo12cknUop\/ATR9TQkNuOi\/Jlp4GYBuVIckl+9lsANhnttn5SPOaTdi2h\/1zLpIdZmNHs0m0YTYNSDTMNjUgxeQf0V9HFJDGhtZS4SjkGsWAkSrf1MmA0aKhKAREHPSkgpAPgGLgJwV4pgKZrcxhmsv13rKxYTB9zGMBrBaVF6xqqD76YIoDqZSQng1PfQhiEsUjw3TUZTKgSXYj56jL1PaBjJTzAZMzHNfAUgtUETlL3NQBJRrYEUhK7FYOkuzlKrV5SrIBI0dCdwUFaZu1GA1KtRS9\/CQddqPPdvONdisL9HKTUDWzb2s3Sd00ugRu3cd53UwDoGmrOVBVH5jaCSW3QRmSYmW7SjYw6VAbvdO3iUDNzbn2u0h2mK1mwmzccP\/N2j3UfwpAGhpeGxpaiw2rxYbUnOs9YGRup\/6PDaHR1xRyxgIRB0OpIOSDoBD8pADPWKiRC3Cexsjujxg4j4sGsBhQiQErH0z5HCkboGLhKRWcaJiOlrVDa6HQXCwwtV8xSR4n4kj2LtHBkp5CwDt9AIWlpspQCI4mdtshOF9SN5enVEnRwhcmACU6h5KGSR12o\/lJvtFuQ90kY84klN06qvYZbkT2fXi++HnWMiRxsj8Iaj3QSSIBc34kLmGb3t0DLlJMmC2Uh7QoQHLNf+QLr0mE4UgfXldozYhYMiE1+vFwcBSTZ+QDI6CDoymhaIhDZINHKgj5ICgEQLHQMwRuKueDM5ZZ\/T6XCZdTfZxiYGsu170AU2HTCVIuiHIB1CB4CoTdjDAdLZsYmvMBE8h3vpfwLa1QGwNLgIKpbr4l2YBOH5bK5tMTGpZkF4Kr0ZgggRAcBSV9ndPmCRd+k1LBnB1+GwNK3f9dftK8KjErKyM\/iXu2mw67aTdJFhFuEp0OgKaj0AfecmG3ut7WWbczJIVEgcmApYZsdBmSb9QmbOtlcxnlIgEwwmwakELD\/TUg6SH+iwIk1\/D+Dpj64bWhobWhcBRyjXx5RlODkQuKpgCiVBByQVAIfmKgZyjkSLlcbtFYzTX4iJQLujp2IcCSqLxA5XOoXBDFAVQMPNngxOY6kfPddJA6p6k3f1MgNMcBk85hMiDLBUzSCrV5YKmrXJIQmnnzLiF7ITi9j6EQ3FThtxRQmtfozcqt98mXn6Q\/NZqfpMNuQjRTAhTNj36fm6SnAwA6N0mH3AATkGgKC2Dee+cVUG4dumRIskXtu4q81qE1nbQNmBYhDbXV\/LD\/9qdGzbtI1bywwmz94f4akKq6n4fUQROCgDSv1etUQIoJr3HukQ+O1GEyQ2shOEoNqcXkGfnAaEooGgtEU4FQCIBC8DMEco7HCSR7kt0+xk4sOSefhRuywkDlgimXG8UBVCw8JYFTIjS5QnMamNraZJfD5AMmOxxnhNpkE2rSoTHPiLjeaDgSglP1xIyC40fApYbfbFASAlghO8yBkrQcJTUrN7BZF1gp6vj8pHmBclY3+bMeN4k+qkTfC\/UBpG6SngoAMA+CHcXZBmVIilGblE1uCnMCSlVtJmzX3cnAuUj0GW1tLhITZtOANK\/6eUgakDZ1jhI6J2mzLpyAtFmb8yBxgLRZm3AEuMNr9tB+6h4NyTty5RzF5BstCoymhKKxQMSBUCoEjYWfFNCZMreoktsTlivF8MtkReEnNo+pgSwXYIUdKx6mXCE+DqC4fCgbnlLAaSw0oQdMTEjOA0w6f6l1lwgsqfL6wtPBUs95Is6SD5Z8IThAw5I9CWV8+M0FSoUU2IS+qSs4CoXeNBzRRG4Nje06wJmfVFcCQkhUmwLlShM1oW5S3fzYJW5SG3LTbpIe5TYruws7Td6eV8DM+g5uITBlSHKp+RCEdpbaB9fKPjTR5JoYF0n2XSQdZpvPC2ce0iZ5LpudqL1Zd7Npc4A0bwDKB0ibul6He6R3lQIShSO6XrtHvryjoXA0xDWKDaX5wGgsFI0FIg6GUkDIBz8x4BMLPGNgZhlDcHNPn4aE1rRC8FU5oKZVBEzx\/ZsPBijbeUoBp1hoApMI7gcmJiTHABPZ2RaW2pFxNhB5krxtWDL3NT5fibpKLaQId\/htUyrOmYkugdv9cNxmjqQiDEoKyLpE7nldYFbw8yfN5yVmswoalETRPDKr7qYECI90syhwXpuANLcAqSy7e2417wPTgpUhKUUUlKR2jGq0obZYF0mfRJaLRPOQ5vOyl4ekAWneuEfKMTJn01ZOUQdI+s8HSF1ekhuQYpKzNRwBpnsUm5TtgqOYkJrLNRrrGHFgNASKKBBx4bIQENmA4nKDXJDhniYgNKItDDxDwOZ4eSyJlP39iB1ib8NX0BlyQJXXrXKAlNuN4gGK1jsWnELQ1Ju3yXKZhgKTTvhuy2oISQzFUVgqC2nkK+l7vw+WQEBJXQfdrhLlCXvyyQoCUsoGdvqgNBMC81rlTXUhtn6OknaMfIncKjcJvfmTilqgakJvbdjNcpMkZDsLd89NotCkR4y7Hny3TcqQxEi0Cdn67kwuhJXlHjV3dtmCUYSLRB5iS10kbj6kqlZf+XlVoss5MkeyaViaE0DarHUIzg1Im3V8\/lH3nh\/arwHJFVqLScqOgaPYkBqFo6nBaAwUDXGHbCBKASGn0xSAnxD4DIGcegGTP3KQMkZCTD8XSxE5N5LeFxdkUahKBSqnKyX7Sdc8QJnwFANOqh9q3yk4jYKmgcDUzmJNEr5doTjtLnGhOOos0dFwPliyk7vb20HdJXbbrlJMUrcOv23WsslH4kFJhdUECiEwQw0KSmhASUNRm5xeo0mo7idy6\/wkoMZ8XmA2q9uwG+cmCV0f5ybRkBuIm0R3mER15Iy4SlukDEkh6bu2lGDDbNpBMog44CJJQM55F6mqC9RVP1FbA5JK2DYTtTUgVZGAtCkBX4J2ZcGR3lWXewT0AYnLO\/LBkT7EdlgtJqQWco1SwIgLo00FRUPcIRtWxoLQWPhJAZ2pAGZqEBra1lCAqsjklKl1uAArBqicobaBANUP3\/nBCTDPf+o4DYWm4cCkcphsd4kLxTUHoxeKq0WXrwNIc7kDllSdVnK35F0lda3uHCtfUjeXp6TykdygpD6xop1JHEKigBrkow5p5yQB3Yg3+iBcAJhXBWYwE7l12I1zk6Q6EdxuEtCE3Opmckl90a+AmjwQ154GYD7fkqkBMiS5RGmVJmxTULJCbe3s2pt6mWRdJB1mqytlVVbzonWR6Ei2qnGVuJFsesi\/HuqvAUk7TDYgbdb+EWyb9WLcoyngKMU1AtSN3gVGXOK1D4ymgqJUd6g\/Ao4L0cWH3HzwEwKfWEgZAjM7arRbxP6FRrOx4TkPOGnAioErG6hcIKUdKS7UBpguVGWDjxW+67tOZtK4z3FKhSZ95Dhg0snfHDB16xT0GO6S5ENxbKJ3IiyFkrvbUXAi3lXS12QdfgO4577pdiVWwD\/vjWpmPRDXHvHWjnxjHoQrC9GG3Ww3qd5Q9Rcr6O6DnJtEXwNNHlLzsFv7GW7bEILLkEQlrQ\/ABqU2u7iBICvURj9wudG4SZyLxITZ6lrlIemRbBqQuJFsNiBJoAUkmoMUmgOpkmnhtZjcIwpHADksE8HRENfIB0ZcGE3XNRUUUSAa4gzZMORygzgQcgFQCGhC64fATV0v5llrU+U3jX30CAC2J0URCLdZx5oDLfvz4KAp5FgNh6g4eLJdp64ONzilQpPtMhkJ4M132gYmug4EllzuUm+yyubalA5LYEfC6XylGqJ1lfTjTYa4ShIqerZS9Ee+bULBnpT9571RzYTsQVHd3C8K9NdtViVWygpVbbpJ1Vy5USUAzPpTArBuEg256UeUSP1an1DmCDchuadcLkYZkkKqrQ+LAhETauuF2eaA3Oi7SFyYjY5ksx85YgOSaloDjzAAyTcHUmgEm4akFPeIG7U2FRzF5BqFXCMXGHFhNA6MNBT58olioCjkDoVgaAoI8sFPCHxSIGf0Y0m2MMTWthnZ59SQWVWnPQuO9sIJWIG5mFoAIn0dAlG0nyF4YsN2BJ7McN18EDRxLhMHTNplcjlMtrukgYnmLrncpbGwVAsrX0nG5yrpEXArhTRAqRBq6hbfyDc9lxKdIkA0\/wM8KOn\/uakBNit19OfqSXYAmLmTmCkBtJskN5twm76R6JCbkY8kuxFu7bKtvTZkSLLFPcRWL68qtU6H2oAWlCSFJSbMVm8AshKoNrswG03W1mE2OtTfBiRuLqQYQAolaOvoYIx71FreDvfIDq1NAUcxrtEUYMS5RRqMYkNnLigyICrCGbJv2DYMpUKQC4BC4BMDDoPCbNs059EkCvyELSLmVeKOK+sOWYDFwZUXqhyj21IhigIUB092rhJgwlMLThNAk89l8uUxOUNyxkzfYXdpClgiB7PJTxLOXCVuBNxmLdrwW\/cZ9Ue+uRK6tSs1R9EmcxdQITo1IKgPTK6pAYSovWG3npukz7FVAFUNuVEpWOostO6PyjYstkgZklyq5mqOJB0T5T6cujZCbcFkbSvMNm9ykXSYraqLqLmQbEAywUa0oTTfDNqbrWPEA9KcwIzLPdJHhHOPpoajFNfIBUZcfpHtFqk+ucFoiEtEoSjkDoVgaAoICj6KJBRqSwScqV2hrXKZhidqbwyry3AG+Esz\/ex8UGXDlN4qBaI4gHLBExe6M+FpngxNgArRcdBkTDvQDsgKh+XaPKYWjIa5S+qYpMOSPccSDcFRV6lqioZylYDuuqocJndCdy2VA+UCpU0IrADsHEo2KOmpAYTsIiFcErcKvqk+Fu3XQppht7K5f9ayC7m1eUlN8vY2zbYNZEhKU60pR0LPsm0knUUka\/vCbMqR4edCsgGpJoCkJ4rUOUguQGpzlMADknacXKE1wO0etesJIE0NR0PCaalhNF2eC5+NdYmMqQginCF7GfvMtwQI8obaglMCxF2kxgCMXDJ3yU5RdEnEOEfJCdsb4XIeqHLBVBJEMQDFwZMvdEddJx80qT6VvTY7cOo7TRwwcWE5O\/FblRvuLo2DJRhzLGlXSSdat64SzMRu3Xk6W7cayWbmKW3Wqg0JYAUdKOk8JTUVQJfQrT0tFyi14TZmssl2xBsTdgM54qGwW\/frWpohN52XZCdvb7GOG0j68Ic\/jH\/zb\/4NHnvsMTzvec\/DjTfeiJ\/+6Z8eX3EbXpP831zZhXKz7pK1N1UuUr0JNsxWzQtUlVBzH1UkQbsuogBpngBI9iNGKCBx+Ueh3CMKRwDvHo2Bo9AItdhwmkQ9OIw2FIpigCjGGepNVlm7c6GCdTlHwI1zk1SZREcpInQ3RFM5S0OdI8k4R22dntwj13Xfhq64pO0Nd5mmHQpSIYgCur73AMoCGV\/oji4rxIrhOHE5Tj63iQvP2cCktjXDcq6QnC8cVwvJuksF6ihYqqVybDhY0hNSUpeIThmgXaVakukCmjwmHYKrJTBv6nLlKW3CPUP3JhQo0ceYhECJThEwJw++LRpgGhR2mwkI2SVwGyE3W3XdzZU0nwFx04+N1nEBSZ\/61Kdw4MABfPjDH8bLXvYy\/Mf\/+B\/xqle9Cl\/72tfwzGc+c1ilmgyoaD6SDrWRWbZjw2x2HpIOs1W1mASQXDNo2\/Mf2YC0WcvJQmsuOHKNVHPBEXWNYsBI1d3B0VC3iIOiVCBS5Wr2dYwr1JtXaSQE+WAiBnhiIWcctGzfY0mGPRLFP0+L75i5oMyGLhu0OLhygZUJLg53yuFI6b7rsrYLFYIn3Y92e8t1crlNqk0yKk7MOmhiw3MdMKn+9V2mVGCCJ9lbh+IkzLwlG5ag51pqYKlqjqgOjekJKXvPhBPEVfKE4GaF+pS4PCUVWvPnKWlQigm9UVCqpVRTAsgC7Wg0otmsUpNMtkvqxhVTJ5oRdtuoIWeiH3IDLDOiAtZgaotCcELKbfSxJtIFF1yAn\/zJn8TNN9\/cLvuJn\/gJvO51r8O1114b3P7o0aPYvXs3\/vrQp3HKaglx7Biwvg6xvg784BiwvqH+ntwAjq0D65vAk5uQxzYhn5wDmxXqJ2vU36\/a0Wx1pZwkOVcuUjUvUFcFm4dUA5hXZQtKIUDihvlzgDQ2vOYLrXEzZU8BRyHXKAaM1PoOjlLdIs4pSnWJXEAUEx7rhdl6Iby0cBoHQNMkZA94HMmShdQWrZhQXF9+8Ao5Xi73ytUXV339\/KOZd73drp3\/ROGJbsuBk12fdpDoNATaadL10uRxHZrTZXRdOiynE7\/tkJwuVzT\/gO7hu2qJaJd1s3qLdjsKS3rW7oK+F2qEmX6vk7GF0PMrKVeJPtxWheiaEFwTrisEdaHU+5kwn\/0myPaFAFb0tmhAicBYKZTLpLedibrZRqrwXKGeCqpCb2hfl4X6f1ZWKIXESlmhKKV6X0qUsxrlrEZRSpQrKv+oWG3mTiqAYk1AnFCg2FVCnDADTphBrJTASWvA6gxYWwVO2gWsrqjXJ6xB7joBWDsBcm0N2LULR5\/cxGmnXoIjR47glFNOwdTa8U7SxsYG7r\/\/frznPe8xlu\/fvx\/33HNPeoXGcP+6+5\/mI1l\/ci4hNzRdIDkPaWpAcs1\/FAqvtaPcGDgC\/KG1dlQbXRaAI1e+USgJOwaMADS1uhOufW4RB0UxQGTXS6FoLAzx7pDDSUoIyXUKzMadAjhjcpOotbHEMmZVdsgZivOCjnmc+y6R\/TmZUOUKpdG+UAChP5NpW7YbpZ2ots5mOw1PMc4TdZ1ouI66TXa\/dZhOh+js8Bx1mQBYoTk+LBdymNSlnA\/HUXepC8XJLslbdrN512icJIjmyiWMMJx+1ElMCM6eW0lHv4aE30qohO525Jv1v89RUnXXKkepBlonqazC+UkA6o3GUVoB5KaEmDUTMM9IyK3SN6MaxszbgBmK2wKPZ8dD0l\/91V+hqirs2bPHWL5nzx4cOnSI3WZ9fR3r613s\/ciRIwCAo0\/8QMVI19eBY09CbKw3zlHz\/8Ym8AP1vzw2B56cQ67PUR+rINdr1Mck6jnMPKRaoO7lIdWY1yUqWTeTR84xrwvM6wKVLHqAVIEf5q\/BSAPQvAEvX3ithj+8Bq97pMpK2ynS7hH6cKQBKJyMXUFCopaWayRN10jDjgFGsgMYO5RWofK6RVwIjd6kpa430SUy6xgHQzacuAHIdcFwTD4Zgp5Q3tIgmNm+cNrUCu+9xxHyPf7Egq\/ebOs9wDLdSRN0XP2hz4GjQ9K7c8J2hmxY0yBT63mePc5TW7bSc0KLtgdFsdIBF+M21dhsXwuxAjTfSVXHes9lqqCTwNHADSnTOkulCv9p54g4TPpHVudGde5SRdylAgU2sQ4BgVJqV0s0Sd6AkEXPWSpkl+DdOkvou0qieV4KdYp6rlINNayfhN\/aOgCs18o10q6SDr8JqCTuQihHadbUqx0l\/b\/tKKkx1mjdpJWiRilqzAr1V1bKcSqqZtmsQlFIzKoaxbxGMVNlxExCbEA5Sqsqf6moC4hqDlGtAPNKhdw2m9SWeQ1szBWpbcwhT6iBjQryhArYqHB0vbluLwiYdjwkaRlfdKCJvfK\/9K699lq8\/\/3v7y1\/1tlvXkjfsrKyfhg1LLQYvNQHCuz8BIqsrHR95zvfwe7duyevd8dD0lOf+lSUZdlzjQ4fPtxzl7SuvvpqXHXVVe377373uzjzzDPxrW99ayEH+YdJR48exRlnnIFHH310IfHhHxbl4zid8rGcTvlYTqN8HKfTkSNH8MxnPhOnnXbaQurf8ZC0urqK8847D3feeSf+3t\/7e+3yO++8E6997WvZbdbW1rC2ZqfKA7t3784n7EQ65ZRT8rGcQPk4Tqd8LKdTPpbTKB\/H6VQUw6bwCGnHQxIAXHXVVXjzm9+M888\/Hy95yUvw0Y9+FN\/61rfw1re+dbu7lpWVlZWVlbVDdVxA0utf\/3p85zvfwQc+8AE89thjOOecc\/DZz34WZ5555nZ3LSsrKysrK2uH6riAJAC44oorcMUVVwzadm1tDe973\/vYEFxWmvKxnEb5OE6nfCynUz6W0ygfx+m06GN5XEwmmZWVlZWVlZU1tRaT6ZSVlZWVlZWVtcOVISkrKysrKysri1GGpKysrKysrKwsRhmSsrKysrKysrIY\/dBD0oc\/\/GGcddZZOOGEE3Deeefhf\/7P\/7ndXVp6XXPNNRBCGH979+5t10spcc0112Dfvn3YtWsXLrroIjz00EPb2OPl0Be+8AW85jWvwb59+yCEwO\/93u8Z62OO2\/r6Ot7+9rfjqU99Kk466ST8wi\/8Av7iL\/5iC\/diORQ6lm95y1t65+jf\/tt\/2yiTj6V6RNOLX\/xinHzyyXj605+O173udfj6179ulMnnZZxijmU+L+N088034wUveEE72eZLXvIS\/P7v\/367fivPyR9qSPrUpz6FAwcO4L3vfS8eeOAB\/PRP\/zRe9apX4Vvf+tZ2d23p9bznPQ+PPfZY+\/fggw+2666\/\/nrccMMNuOmmm3Dvvfdi7969uPjii\/HEE09sY4+3X9\/\/\/vfxwhe+EDfddBO7Pua4HThwALfffjtuu+023H333fje976HSy65BFV1\/Dw4NkahYwkAf+fv\/B3jHP3sZz9rrM\/HErjrrrtw5ZVX4otf\/CLuvPNOzOdz7N+\/H9\/\/\/vfbMvm8jFPMsQTyeRmjZzzjGfjgBz+I++67D\/fddx9e8YpX4LWvfW0LQlt6TsofYv3UT\/2UfOtb32ose85zniPf8573bFOPdobe9773yRe+8IXsurqu5d69e+UHP\/jBdtmTTz4pd+\/eLT\/ykY9sUQ+XXwDk7bff3r6POW7f\/e535crKirztttvaMt\/+9rdlURTyD\/7gD7as78sm+1hKKeVll10mX\/va1zq3yceS1+HDhyUAedddd0kp83k5RvaxlDKfl2N06qmnyv\/0n\/7Tlp+TP7RO0sbGBu6\/\/37s37\/fWL5\/\/37cc88929SrnaNvfOMb2LdvH8466yz88i\/\/Mr75zW8CAB5++GEcOnTIOK5ra2u48MIL83H1KOa43X\/\/\/djc3DTK7Nu3D+ecc04+tow+\/\/nP4+lPfzqe\/exn4x\/\/43+Mw4cPt+vyseR15MgRAGgfFprPy+Gyj6VWPi\/TVFUVbrvtNnz\/+9\/HS17yki0\/J39oIemv\/uqvUFUV9uzZYyzfs2cPDh06tE292hm64IIL8Ju\/+Zv4wz\/8Q3zsYx\/DoUOH8NKXvhTf+c532mOXj2uaYo7boUOHsLq6ilNPPdVZJkvpVa96Ff7Lf\/kv+OM\/\/mP8xm\/8Bu6991684hWvwPr6OoB8LDlJKXHVVVfh5S9\/Oc455xwA+bwcKu5YAvm8TNGDDz6IH\/mRH8Ha2hre+ta34vbbb8dzn\/vcLT8nj5vHkgyVEMJ4L6XsLcsy9apXvap9\/fznPx8veclL8Df\/5t\/ELbfc0iYh5uM6TEOOWz62fb3+9a9vX59zzjk4\/\/zzceaZZ+J\/\/I\/\/gUsvvdS53Q\/zsXzb296Gr3zlK7j77rt76\/J5mSbXscznZbz+1t\/6W\/jSl76E7373u\/j0pz+Nyy67DHfddVe7fqvOyR9aJ+mpT30qyrLsUeXhw4d7hJrl10knnYTnP\/\/5+MY3vtGOcsvHNU0xx23v3r3Y2NjA448\/7iyTxev000\/HmWeeiW984xsA8rG09fa3vx2f+cxn8LnPfQ7PeMYz2uX5vEyX61hyyuelW6urq\/jxH\/9xnH\/++bj22mvxwhe+EP\/23\/7bLT8nf2ghaXV1Feeddx7uvPNOY\/mdd96Jl770pdvUq52p9fV1\/J\/\/839w+umn46yzzsLevXuN47qxsYG77rorH1ePYo7beeedh5WVFaPMY489hq9+9av52Ab0ne98B48++ihOP\/10APlYakkp8ba3vQ2\/+7u\/iz\/+4z\/GWWedZazP52W8QseSUz4v4yWlxPr6+tafkwMTzY8L3XbbbXJlZUX+5\/\/8n+XXvvY1eeDAAXnSSSfJ\/\/t\/\/+92d22p9a53vUt+\/vOfl9\/85jflF7\/4RXnJJZfIk08+uT1uH\/zgB+Xu3bvl7\/7u78oHH3xQvuENb5Cnn366PHr06Db3fHv1xBNPyAceeEA+8MADEoC84YYb5AMPPCAfeeQRKWXccXvrW98qn\/GMZ8g\/+qM\/kn\/6p38qX\/GKV8gXvvCFcj6fb9dubYt8x\/KJJ56Q73rXu+Q999wjH374Yfm5z31OvuQlL5F\/42\/8jXwsLf2Tf\/JP5O7du+XnP\/95+dhjj7V\/P\/jBD9oy+byMU+hY5vMyXldffbX8whe+IB9++GH5la98Rf7zf\/7PZVEU8o477pBSbu05+UMNSVJK+R\/+w3+QZ555plxdXZU\/+ZM\/aQzXzOL1+te\/Xp5++ulyZWVF7tu3T1566aXyoYceatfXdS3f9773yb1798q1tTX5Mz\/zM\/LBBx\/cxh4vhz73uc9JAL2\/yy67TEoZd9yOHTsm3\/a2t8nTTjtN7tq1S15yySXyW9\/61jbszfbKdyx\/8IMfyP3798unPe1pcmVlRT7zmc+Ul112We845WMp2WMIQH784x9vy+TzMk6hY5nPy3j9yq\/8SntfftrTniZf+cpXtoAk5daek0JKKdO8p6ysrKysrKys418\/tDlJWVlZWVlZWVk+ZUjKysrKysrKymKUISkrKysrKysri1GGpKysrKysrKwsRhmSsrKysrKysrIYZUjKysrKysrKymKUISkrKysrKysri1GGpKysrKysrKwsRhmSsrKysrKysrIYZUjKysrKysrKymKUISkrK+u40\/\/7f\/8Pe\/fuxcGDB9tl\/\/t\/\/2+srq7ijjvu2MaeZWVl7STlZ7dlZWUdl\/rsZz+L173udbjnnnvwnOc8B+eeey5e\/epX48Ybb9zurmVlZe0QZUjKyso6bnXllVfij\/7oj\/DiF78YX\/7yl3HvvffihBNO2O5uZWVl7RBlSMrKyjpudezYMZxzzjl49NFHcd999+EFL3jBdncpKytrBynnJGVlZR23+uY3v4m\/\/Mu\/RF3XeOSRR7a7O1lZWTtM2UnKyso6LrWxsYGf+qmfwote9CI85znPwQ033IAHH3wQe\/bs2e6uZWVl7RBlSMrKyjou9au\/+qv4nd\/5HXz5y1\/Gj\/zIj+Bnf\/ZncfLJJ+O\/\/\/f\/vt1dy8rK2iHK4basrKzjTp\/\/\/Odx44034pOf\/CROOeUUFEWBT37yk7j77rtx8803b3f3srKydoiyk5SVlZWVlZWVxSg7SVlZWVlZWVlZjDIkZWVlZWVlZWUxypCUlZWVlZWVlcUoQ1JWVlZWVlZWFqMMSVlZWVlZWVlZjDIkZWVlZWVlZWUxypCUlZWVlZWVlcUoQ1JWVlZWVlZWFqMMSVlZWVlZWVlZjDIkZWVlZWVlZWUxypCUlZWVlZWVlcUoQ1JWVlZWVlZWFqP\/D3GRTqw9agneAAAAAElFTkSuQmCC", "text\/plain": "<Figure size 640x480 with 1 Axes>"}, "metadata": {}, "output_type": "display_data"}]}}, "5ff479af5a804d60b2dabf6348fe9989": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": {"source": ["IPY_MODEL_41ceba8688ab4ce8b71fd02a6e2ab2c4", "value"], "target": ["IPY_MODEL_a0998547957e4b50bb0570d6e89b4c2e", "value"]}}, "6353f692403c49e1ac433f1fbcbf728e": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "6373a42bb1db4fb4aa1cf6ffaac1075e": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "66636bdd455c4d54a22c62b30195f3fb": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "66863e16ccde42d696e20af577f2f832": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "68c14ca25ed0479898eac1351d769142": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": {"description_width": ""}}, "68fb9a92340e434d85fbcc8de67c1970": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "PlayModel", "state": {"description": "step", "layout": "IPY_MODEL_814fc2ce5f98478d93e7d2977c35599d", "max": 599, "style": "IPY_MODEL_db46a3c449cf4e6d85de539fd7e30166"}}, "69d0279f5aa04a24b8ef28051f31a77d": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": {"_dom_classes": ["widget-interact"], "children": ["IPY_MODEL_b361054bfbfd4aa193975eb438f70d68", "IPY_MODEL_121945e57f994c77aaeca0c873e63745"], "layout": "IPY_MODEL_0335767ddbd747b4893969d3e2d93893"}}, "6f20477e70534303aec0ee8da489b89f": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "72d3e88fdf024cba8257fa4e8a109544": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": {"description_width": ""}}, "754124660050415e84f351699e0454bd": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "PlayModel", "state": {"description": "step", "layout": "IPY_MODEL_e9f56784337d42cbbf92f7219b1e0c47", "max": 199, "style": "IPY_MODEL_b9b135e17db64c5c95f90edcb6aeed01", "value": 100}}, "75be4fb6e3894ef2ac842e505a05bca9": {"model_module": "@jupyter-widgets\/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": {"layout": "IPY_MODEL_5b00930d74a04c2d8edce165ad2f10fb", "outputs": [{"data": {"image\/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG2CAYAAACXuTmvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy\/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA2sUlEQVR4nO3de3xU9Z3\/8ffkNrnNDISQTEJCiBBEQBBBIfGGF6isN8Raq9ZC7fanW\/S3PGhXi\/66ha6Cl60Pdx+0bm+LeGFBV7HYKhKrBBGhXAIiIkIJSYBcSEhmcp3czu+PJAMhASKT5GRyXs\/HYx6Z+Z4zk0++Hpz343u+53xthmEYAgAAsJAQswsAAADoawQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOf0mAC1btkw2m00LFizwtxmGocWLFys5OVlRUVGaPn269u3bZ16RAABgQOgXAWj79u363e9+pwkTJnRof+655\/TCCy9o+fLl2r59u9xut2bMmKGqqiqTKgUAAAOB6QGourpa999\/v37\/+99r8ODB\/nbDMPTiiy\/qySef1Jw5czR+\/HitXLlStbW1WrVqlYkVAwCAYBdmdgHz58\/XLbfcoptuuklPPfWUvz0vL0\/FxcWaOXOmv81ut+u6667Tli1b9NBDD3X5eT6fTz6fz\/+6paVFJ0+e1JAhQ2Sz2XrvDwEAAD3GMAxVVVUpOTlZISE9P15jagBavXq1du3ape3bt3faVlxcLElKTEzs0J6YmKj8\/PyzfuayZcu0ZMmSni0UAACYorCwUCkpKT3+uaYFoMLCQv3zP\/+zNmzYoMjIyLPud+aojWEY5xzJWbRokRYuXOh\/7fF4NHz4cBUWFsrpdAZeOAAA6HVer1epqalyOBy98vmmBaCdO3eqtLRUkydP9rc1Nzdr06ZNWr58uQ4cOCCpdSQoKSnJv09paWmnUaHT2e122e32Tu1Op5MABABAkOmt6SumTYK+8cYbtXfvXu3evdv\/mDJliu6\/\/37t3r1bF110kdxut7Kzs\/3vaWhoUE5OjrKysswqGwAADACmjQA5HA6NHz++Q1tMTIyGDBnib1+wYIGWLl2qjIwMZWRkaOnSpYqOjtZ9991nRskAAGCAMP0qsHN57LHHVFdXpx\/\/+MeqqKjQ1KlTtWHDhl47HwgAAKzBZhiGYXYRvcnr9crlcsnj8TAHCACAINHb39+m3wgRAACgrxGAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5VgmADU1t5hdAgAA6CcsE4Bm\/ccn+v2mw\/LWN5pdCgAAMJllAlCRp15Pv7dfmUv\/qsXr9im\/vMbskgAAgEksE4CW3D5WoxNjVdPQrJe3HNH0f9+oH72yQ1sPl8swDLPLAwAAfchmDPBvf6\/XK5fLJY\/HI4fDoc2HyvTfm\/P08YET\/n3GJTv14FXpum1isiLCLJMJAQDot07\/\/nY6nT3++ZYKQKd34KHSaq34NE9v7Tqq+sbWCdJDHXZ9f1qa7ps6XENi7WaVDACA5RGAAnS+DqysbdCqvxXolS35KvbWS5LsYSG6c9IwPXh1ukYnOvq6ZAAALI8AFKDudmBjc4ve21ukP27O0+dHPf72azLi9eDV6bouY6hCQmx9UTIAAJZHAArQN+1AwzC0M79Cf9ycpw\/2FaulrXdGDo3RD65K112XpygqIrSXqwYAwNoIQAEKpAMLT9Zq5ZYjWrO9UFW+JknSoOhw3XflcH0\/c4TcrsjeKBkAAMsjAAWoJzqwqr5Rb+44qhVb8lR4sk6SFBZi0y0TkvTDq9M1IWVQD1YMAAAIQAHqyQ5sbjH04f4S\/XFznv6Wd9LffsWIwXrwqnTNHOdWKPOEAAAIGAEoQL3VgV8c8+i\/N+fp3c+Pq7G5tQtTBkdpXtYI3XNFqhyR4T32uwAAsBoCUIB6uwNLvPV69bN8vb4tXxW1reuMxdrDdPeUFP0gK13Dh0T3+O8EAGCgIwAFqLc7sF1dQ7Pe2X1M\/705TwdLqyVJITZpxthEPXhVuq5Mj5PNxukxAAC6gwAUoL4KQO0Mw9Cmg2X64+Y8bfr61HIb44c59cOr03XLpSy3AQDA+RCAAtTXAeh0B0uq9N+fHtHbu47K19S63EaCw64HpqXp3qnDFc9yGwAAdIkAFCAzA1C7kzUNWrUtX698lq\/SKp8kKSI0RLdNTNYPrhqh8cNcptQFAEB\/RQAKUH8IQO0amlqX21jxaZ72nLbcxhUjBmteVrq+NS5RYaGcHgMAgAAUoP4UgE6XW1Chl7cc0V8+L1JT23obSa5IfW9amu69crjiYiJMrhAAAPMQgALUXwNQuxJvvV7fmq\/XtxWovKZBUutq9LMvG6a5WSM0Nrn\/1QwAQG8jAAWovwegdr6mZv15T5FWbMnTF8e8\/vap6XH6wVUjdNMlnB4DAFgHAShAwRKA2hmGoV0FFVrx6RG9\/0WxmttOjw0bFKXvZ6bpnitSNSia02MAgIGNABSgYAtApyvy1Om1rflata3Af5fpyPAQ3TkpRfOyRuhit8PkCgEA6B0EoAAFcwBqV9\/YrHV7jmvFp0e0v+jU6bGskUP0g6vSdcOYBBZhBQAMKL39\/W3qpJKXXnpJEyZMkNPplNPpVGZmpt5\/\/33\/9nnz5slms3V4TJs2zcSKzREZHqrvTEnVe\/\/3aq35P9M0a7xbITZpy9\/L9aNXdmj6v3+sP3xyWJ66RrNLBQAgKJg6AvTuu+8qNDRUo0aNkiStXLlSzz\/\/vHJzczVu3DjNmzdPJSUlWrFihf89ERERiouL6\/bvGAgjQF05VlmnVz\/L1+rtBapsOz0WHRGquy5P0dysNI1K4PQYACB4We4UWFxcnJ5\/\/nn98Ic\/1Lx581RZWal33nnngj9voAagdnUNzfrT7mNa8ekRHSip8rdfkxGvH1w1QtNHJyiE02MAgCDT29\/fYT3+iReoublZb775pmpqapSZmelv37hxoxISEjRo0CBdd911evrpp5WQkHDWz\/H5fPL5fP7XXq\/3rPsOBFERofrulcN1zxWp+uxwuV7+9Iiy95fok4Nl+uRgmUYMidb3M0fo7ikpckSGm10uAAD9gukjQHv37lVmZqbq6+sVGxurVatW6R\/+4R8kSWvWrFFsbKzS0tKUl5enn\/\/852pqatLOnTtlt3e9kOjixYu1ZMmSTu0DdQSoK4Una\/Xq1nyt\/luBvPVNkqSYiFDdPSVV389M00VDY02uEACAcxvwp8AaGhpUUFCgyspKvfXWW\/rDH\/6gnJwcjR07ttO+RUVFSktL0+rVqzVnzpwuP6+rEaDU1FRLBaB2tQ1NenvXMb285YgOlVb726dfPFTzskbo2oyhnB4DAPRLAz4Anemmm27SyJEj9dvf\/rbL7RkZGfrHf\/xHPf744936vIE+B6g7DMPQp4fK9fKWPP31q1K1\/xe\/aGiMvj8tTXMmp8jJ6TEAQD9imTlA7QzD6DCCc7ry8nIVFhYqKSmpj6sKbjabTVdnxOvqjHjll9folc\/y9cb2Qh0+UaPF736pZ9cf0OxJybp\/aprGD3OZXS4AAL3O1BGgJ554QrNmzVJqaqqqqqq0evVqPfPMM1q\/fr0yMzO1ePFi3XXXXUpKStKRI0f0xBNPqKCgQPv375fD0b3LvBkB6lq1r0lv7zqq17bm6+uSU6fHLksdpO9NS9OtE5IUGR5qYoUAACsb0CNAJSUleuCBB1RUVCSXy6UJEyZo\/fr1mjFjhurq6rR371698sorqqysVFJSkq6\/\/nqtWbOm2+EHZxdrD9P3M0fogWlp+lveSb22rUDrvyjS7sJK7S6s1FN\/+VJ3T07R\/VPTNCI+xuxyAQDoUf1uDlBPYwSo+05U+fTGjkKt2lagY5V1\/vZrMuJ1\/9Q03XRJAivSAwD6hOUmQfc0AtA319xiaOOBUr22NV8bvz7hnzTtdkbq3iuH67tXpirRGWlukQCAAY0AFCACUGAKT9bq9W0FemNHoU7WNEiSQkNsmjk2Ud+blqaskUNks3EpPQCgZxGAAkQA6hm+pmat\/6JYr23N1\/YjFf72i4bG6P6pafr25SlyRXMpPQCgZxCAAkQA6nlfFXv1+tYCvb3rqGoamiVJkeEhum1Csr43LU0TUweZWyAAIOgRgAJEAOo91b4mvZN7TK9tzddXxacWYp2Q4tL3pqbptonJiorgUnoAwDdHAAoQAaj3GYahXQUVem1rgf7yeZEamlskSc7IMN3Vdin9qATWHwMAdB8BKEAEoL5VXu3TmzuP6vVt+So8eepS+syLhuiBzDTNGJuocC6lBwCcBwEoQAQgc7S0GMo5eEKvb83XR1+VqqXtKEtw2PXdK1J179ThSnJFmVskAKDfIgAFiABkvmOVdfqfbQVavb1QZdWt67yF2KQbL0nUA9PSdPWoeFalBwB0QAAKEAGo\/2hoatEH+1ovpd+Wd9LfnjYkWvdPHa67J6dqcEyEiRUCAPoLAlCACED908GSKr2+rUBv7TyqKl+TJCkiLETfGufWd6ak6KqRjAoBgJURgAJEAOrfahua9Kfdx\/Xa1nztO+71tw8bFKW7Jqfo7skpSo2LNrFCAIAZCEABIgAFB8Mw9MUxr97YUag\/7T4mb32Tf9tVo4boO1NS9a1xbkWGc18hALACAlCACEDBp76xWR\/sK9abO45q86Eyf7sjMkx3XJas70xJ1aXDXKxBBgADGAEoQASg4FZ4slZv7TqqN3cc1bHKU\/cVGuN26O4pqbpz0jDFMXEaAAYcAlCACEADQ0uLoc8Ol+uNHYV6\/4tiNTS13m06PNSmGWMTdfeUVF2bMVShTJwGgAGBABQgAtDA46lt1Lo9x\/TGjqPae8zjb3c7I3XX5GG6e3KqRsTHmFghACBQBKAAEYAGti+Pe\/XmzkK9k3tMFbWN\/vYr0+P0nSmp+odL3YqOCDOxQgDAhSAABYgAZA2+pmb9dX+p3thRqE1fn\/AvvRFrD9OtE5J095RUXT58EBOnASBIEIACRACyniJPnd7aeVRv7DiqgpO1\/vZRCbH6zpQU3TkpRUMddhMrBACcDwEoQAQg62ppMfS3Iyf1xo5Cvbe3SPWNrROnQ0NsumFMgr4zJVXTLx7K6vQA0A8RgAJEAIIkVdU36s+fF+mNHYXKLaj0t8fH2nXX5cN095RUjUqINa9AAEAHBKAAEYBwpoMlVXpz51G9veuoyqob\/O2XDx+ke65I1S0TkhVrZ+I0AJiJABQgAhDOprG5RR99Vao3dxTq4wMn1Nw2czoqPFS3TEjSnMuHaWr6EO4tBAAmIAAFiACE7ij11uvt3GN6Y0ehDp+o8bcnOOy6dUKybr8sWRNTWH4DAPoKAShABCB8E4ZhaFdBhd7ccVTv7S3qsChr2pBo3TYhWXdclqyMRIeJVQLAwEcAChABCBfK19SsTV+Xad2e4\/rwyxLVNTb7t41xO3T7Zcm6bUKyUuOiTawSAAYmAlCACEDoCbUNTcr+skTv7jmunK9PqLH51D+by4cP0u0Tk3XLhGTuLwQAPYQAFCACEHpaZW2D3v+iWOt2H9fWvHK1\/wsKsUlZI+N1+2XJ+tY4t1xR4eYWCgBBjAAUIAIQelOJt15\/\/rxI6\/Yc157CSn97RGiIpl88VLdflqwbxyQqKiLUvCIBIAgRgAJEAEJfyS+v0bt7jutPu4\/rYGm1vz0mIlQzxibqjsuG6eqMeO48DQDdQAAKEAEIfc0wDH1VXKV1e47r3T3HdbSizr9tcHS4Zl2apNsnJuvKEXEK4R5DANAlAlCACEAwU+tl9ZV6d89x\/fnzIpVV+\/zb3M5I3TohSbdflqxLh3GPIQA4HQEoQAQg9BdNzS367HC51u0+rvX7ilV12j2G0uNjdNvEZN0+MZk1yQBABKCAEYDQH\/mamrXxwAmt23Ncf91f4l+pXpLGJjlb7zE0MVnDBkWZWCUAmKe3v79NnY350ksvacKECXI6nXI6ncrMzNT777\/v324YhhYvXqzk5GRFRUVp+vTp2rdvn4kVAz3DHhaqb41z69f3Xa4d\/2+GXrznMt0wJkFhITZ9WeTVM+9\/paue+UjffmmLXvnsSIdTZwCAwJk6AvTuu+8qNDRUo0aNkiStXLlSzz\/\/vHJzczVu3Dg9++yzevrpp\/Xyyy9r9OjReuqpp7Rp0yYdOHBADkf3liJgBAjBpKKmQe99UaR1u4\/rb0dOdrjH0OS0wZoxNlEzxrqVHh9jbqEA0MssdwosLi5Ozz\/\/vB588EElJydrwYIFevzxxyVJPp9PiYmJevbZZ\/XQQw916\/MIQAhWxZ56\/fnz41q357g+P+rpsG1UQmxbGErUZSmDuJoMwIBjmQDU3NysN998U3PnzlVubq4iIyM1cuRI7dq1S5MmTfLvd8cdd2jQoEFauXJltz6XAISB4GhFrf66v1TZX5Zo6+FyNbWc+mcbH2vXTZckaMbYRF01Kl6R4dx0EUDw6+3v77Ae\/8RvaO\/evcrMzFR9fb1iY2O1du1ajR07Vlu2bJEkJSYmdtg\/MTFR+fn5Z\/08n88nn+\/UfAmv19s7hQN9KGVwtOZmjdDcrBHy1DVq44HWMJRz4ITKqn1avb1Qq7cXKio8VNeOjtdNlyTqxksSFRcTYXbpANAvmR6ALr74Yu3evVuVlZV66623NHfuXOXk5Pi3n3lvFMMwznm\/lGXLlmnJkiW9Vi9gNldUuO64bJjuuGyYGppatC2vXNlflij7yxIVeer1wb4SfbCvRCE2aUpanP9U2QjmDQGAX785Bdbupptu0siRI\/X4449f0CmwrkaAUlNTOQWGAc8wDO077tWGtjC0v6jj6GdG27yhm5g3BCAIDPhTYGcyDEM+n0\/p6elyu93Kzs72B6CGhgbl5OTo2WefPev77Xa77HZ7X5UL9Bs2m03jh7k0fphLC2eM1tGKWn34ZYmy95do2+GTOlharYOl1frNxr9rqOPUvKGskcwbAmA9pgagJ554QrNmzVJqaqqqqqq0evVqbdy4UevXr5fNZtOCBQu0dOlSZWRkKCMjQ0uXLlV0dLTuu+8+M8sGgkLK4GjNuypd865Kl6e2URu\/LtWGtnlDJ6p8+p+\/Fep\/\/lao6IhQXZsxVDeNTdSNYxI0mHlDACzA1ABUUlKiBx54QEVFRXK5XJowYYLWr1+vGTNmSJIee+wx1dXV6cc\/\/rEqKio0depUbdiwodv3AALQyhXdcd7Q1sOt84Y+3N86b2j9vmKt31fcOm9oRJxmts0bShvCvCEAA1O\/mwPU07gMHjg7wzD0xTGvsr8sVvb+0rPOG5oxNlETmTcEoA9Z5j5AvYUABHRf4clafbi\/dRL1tryTaj7tfkMJDrtuvCRRM8cmatpFQxQVwbwhAL2HABQgAhBwYTy1jfr4QKmy97fOG6r2nVq9PiI0RJPTBuuqUUN01ah4XTrMpbBQU5cWBDDAEIACRAACAudratbWwyeV\/WWx\/rq\/VEWe+g7bHZFhyryoNQxdNSpeI4fGnPN+XQBwPgSgABGAgJ5lGIbyymr06aEybT5Ups\/+Xi5vfVOHfdzOSGWNGqKr2wJRojPSpGoBBCsCUIAIQEDvam4x9MUxjzYfKtOWv5dp+5EKNTS1dNhnVEKsPwxNvShOzshwk6oFECwIQAEiAAF9q76xWTuOVOjTv5fp00Nl2nvMo9P\/LxMaYtOEFJc\/EE0aPkj2MCZUA+iIABQgAhBgrsraBm09XK7Nh8r06aFy5ZXVdNgeGR6iK9OH6OpRQ5Q1Ml5jk5xcbg+AABQoAhDQvxyrrNOnh8r8j7Lqhg7b42IilDmydf7Q1aPilRoXbVKlAMxEAAoQAQjovwzD0Ncl1W2jQ2XadrhcNQ3NHfZJjYvyny7LGhmvOJbqACyBABQgAhAQPBqbW7SnsNIfiHILKtXU0vF\/UWOTnLo6I15ZI4foyvQ4RUf0uzWdAfQAAlCACEBA8KrxNelveSf9geir4qoO28NDbZqYMkiXpw3W5cMHadLwwVxyDwwQBKAAEYCAgeNElU9b\/l6mLYdaJ1Ufq6zrtE+yK1KT0gZrUmprIBqX7FRkOFeZAcGGABQgAhAwMBmGofzyWu3Ir1BuQYV2FVTqQLFXZ5wxU0RoiMYmOzWpbYRoUuogpQyO4k7VQD9HAAoQAQiwjhpfkz4\/6lFuYYV25Vdqd2FFp6vMJGmow+4fIZo0fJAmpLiYSwT0MwSgABGAAOsyDENHK+q0q6BCuQWVyi2o0L7j3k4Tq0NDbBrjdrSOEqUO1uVpgzViSDSjRICJCEABIgABOF19Y7O+OOZpDURtI0XF3vpO+w2KDtek1EG6fPhgTRo+WBNTXXKwhAfQZwhAASIAATifIk+df4RoV0Gl9h7zdFrPzGaTMhJi2wJR6+mzUUNjuWs10EsIQAEiAAH4phqaWrS\/yOsPRLmFFSo82fmKM4c9TJcNH+SfT3RZ6iAN5kaNQI8gAAWIAASgJ5yo8im3oEK5ha0jRXsKPaprbO60X5IrUhe7HbrY7dAYt0Nj3E6NHBqriLAQE6oGghcBKEAEIAC9oam5RQdKqtpOnbWOEh0+UdPlvmEhNl00NEYXu50a43bo4sTWgMTl+MDZEYACRAAC0Fe89Y36urhKXxVX6atirw60Pa+qb+pyf4c9TKNPGy26OLF1xMgVzWRrgAAUIAIQADMZhqEiT70\/DB0o9uqr4ir9\/US1Gpu7\/t+v29l6Gm1MUnswcmpkQozsYdzRGtZBAAoQAQhAf9TY3KLDJ2r8I0XtAamr5T2k1nsVXRQfc2q0qO10GqfRMFARgAJEAAIQTE4\/jXYqGHnlPctptFh7mEYnxp6aX9QWkAZFczUaghsBKEAEIADBzjAMFXvrW+cWFXXvNFqi065RCbEaHhejtCHRGh7X+kgbEs0NHREUCEABIgABGKgam1uUV1Zzam5R0blPo7WLi4nwh6G0uGilxkUrbUhrUEpw2Dmlhn6BABQgAhAAq6mqb9TXJVXKK6tVQXmN8k\/WKr+8VoUna1Ve03lx2NNFhoe0jRbF+EPS8LaglDI4mvsZoc8QgAJEAAKAU6rqG1VwslYF5bX+YFRwskYFJ2t1rKJOLef4RgixSUmuqDOCUYz\/uZNTa+hBBKAAEYAAoHsam1t0rKJO+SfbRo7Ka1vDUltQ6urO16cbFB2utLhoDR8S0\/azdeQobUiMEhx21k3DN9Lb399hPf6JAICgFB4aohHxMRoRHyNpaIdthmHoRLWvdeSobfSo8GSt8stbR4\/KqhtUWduoylqP9hz1dPrsiNAQJTjtSnRGKtFpV4Ij8ozndiU4I+WMDGMOEvoEAQgAcF42m00JjkglOCI1ZURcp+3VviYVnHY6rX30KL+8Vscq69TQ3KKjFXU6WnHuCdqR4SGtwcgR2SEwJTpbf3d7W6ydry8EhiMIABCwWHuYxiY7NTa586mKxuYWFXvqVVrlU6m3XiXeepVU+VTirVept\/Vnibde3vom1Te2tI4wldee8\/fFRIS2hiJ\/SIpUguPU8\/aRpagI7p6NrhGAAAC9Kjw0RKltl9ufS31jc2sgqmoLSd7TAlNbe6nXp2pfk2oamnW4rEaHy7pegLadIzLs1CiSI1IJbc\/jYiI0KDpCg6PDNTg6QoOiwxVr5\/SblRCAAAD9QmR4qIa3XVF2LjW+JpVWnRo58o8i+UeVWgNTXWOzquqbVFVfrUOl1ef9\/WEhNg2KDvcHo9N\/DmoLSoOjw+WKitDgmFPBiTXaghMBCAAQVGLsYUq3hyk9Puas+xiGoWpf06lRpKq2UaS2wHSypkEVtW0Tt+saVN\/YoqYWQ2XVDSqrPve9ks4UHRGqQVFtgSmmLTBFnQpIg9vaXVGnRpycUeEK5ao4UxGAAAADjs1mkyMyXI7IcI1KiD3v\/vWNzaqobVBFTaMqaxtUWdfoD0gVNQ2qqG2Up671pz841TaoxZBqG5pV29Cs4576b1Cf5IwMbx1Rio6Qwx6mWHuYYiPbfp723NH2M8be8XVsZBijTwEwNQAtW7ZMb7\/9tr766itFRUUpKytLzz77rC6++GL\/PvPmzdPKlSs7vG\/q1KnaunVrX5cLABigIsNDleSKUpIrqtvvaWkxVFXfpMoOwagtRNW1BqSK2vaf7aGpUdW+JhmG5KlrlKeuUTrPhO9ziQgNUYw9tC0shbcGqdMCk+OMQNW+PcYe1nHfiDDL3afJ1ACUk5Oj+fPn64orrlBTU5OefPJJzZw5U19++aViYk4Nbd58881asWKF\/3VEBKscAwDMFRJikys6XK7ocKUN6f77GppaVFl3anTJU9eomoYmVdc3qcrXpBrfqefV9U2tk759HV\/XNrTelLKhuUUNtS2qqG2UdO5bDJxPa2gKVUxEmKIiQhUdEaroiDBFR4QqKqK1\/fTnZ+5z5vOottf99VSfqQFo\/fr1HV6vWLFCCQkJ2rlzp6699lp\/u91ul9vt7uvyAADocRFhIf57Kl2o5hbDH4yqfU2qagtGrQGpUdW+5tOen9pec\/q+bfs3ta1\/0t4m+XroL21lDws5a1A6M0zF2MMUFd76XI2BBbrz6VdzgDye1ruHxsV1vMnWxo0blZCQoEGDBum6667T008\/rYSEhC4\/w+fzyec79R\/P6\/X2XsEAAJggNMQmV1S4XFGBrb9mGIZ8TS2nhafWkFTb2Ky6hmbV+JpU19g6x6m2beSpq22d9mtsVvtCW76mFvma2kepuq\/Fd+GnBruj36wFZhiG7rjjDlVUVOiTTz7xt69Zs0axsbFKS0tTXl6efv7zn6upqUk7d+6U3W7v9DmLFy\/WkiVLOrWzFhgAAH2jPVjVtIWmrkJU7Wnb\/Ps1NKumoUl1Dc3yeLx6a8FNA38x1Pnz5+svf\/mLNm\/erJSUlLPuV1RUpLS0NK1evVpz5szptL2rEaDU1FQCEAAAQcQSi6E++uijWrdunTZt2nTO8CNJSUlJSktL08GDB7vcbrfbuxwZAgAAaGdqADIMQ48++qjWrl2rjRs3Kj09\/bzvKS8vV2FhoZKSkvqgQgAAMBCFmPnL58+fr9dee02rVq2Sw+FQcXGxiouLVVfXOvO7urpaP\/3pT\/XZZ5\/pyJEj2rhxo2677TbFx8frzjvvNLN0AAAQxEydA3S2RedWrFihefPmqa6uTrNnz1Zubq4qKyuVlJSk66+\/Xv\/2b\/+m1NTUbv2O3j6HCAAAet6AngN0vuwVFRWlDz74oI+qAQAAVmHqKTAAAAAzEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlmBqAli1bpiuuuEIOh0MJCQmaPXu2Dhw40GEfwzC0ePFiJScnKyoqStOnT9e+fftMqhgAAAwEpgagnJwczZ8\/X1u3blV2draampo0c+ZM1dTU+Pd57rnn9MILL2j58uXavn273G63ZsyYoaqqKhMrBwAAwcxmGIZhdhHtTpw4oYSEBOXk5Ojaa6+VYRhKTk7WggUL9Pjjj0uSfD6fEhMT9eyzz+qhhx4672d6vV65XC55PB45nc7e\/hMAAEAP6O3v77ALedMvf\/nLc27\/13\/91wsqxuPxSJLi4uIkSXl5eSouLtbMmTP9+9jtdl133XXasmVLlwHI5\/PJ5\/P5X3u93guqBQAADFwXFIDWrl3b4XVjY6Py8vIUFhamkSNHXlAAMgxDCxcu1NVXX63x48dLkoqLiyVJiYmJHfZNTExUfn5+l5+zbNkyLVmy5Bv\/fgAAYB0XFIByc3M7tXm9Xs2bN0933nnnBRXyyCOP6PPPP9fmzZs7bbPZbB1eG4bRqa3dokWLtHDhwg51paamXlBNAABgYOqxSdBOp1O\/\/OUv9fOf\/\/wbv\/fRRx\/VunXr9PHHHyslJcXf7na7JZ0aCWpXWlraaVSond1ul9Pp7PAAAAA4XY9eBVZZWemfx9MdhmHokUce0dtvv62PPvpI6enpHbanp6fL7XYrOzvb39bQ0KCcnBxlZWX1WN0AAMBaLugU2H\/+5392eG0YhoqKivTqq6\/q5ptv7vbnzJ8\/X6tWrdKf\/vQnORwO\/0iPy+VSVFSUbDabFixYoKVLlyojI0MZGRlaunSpoqOjdd99911I6QAAABd2GfyZIzUhISEaOnSobrjhBi1atEgOh6N7v\/ws83hWrFihefPmSWoNV0uWLNFvf\/tbVVRUaOrUqfr1r3\/tnyh9PlwGDwBA8Ont7+9+dR+g3kAAAgAg+PT29zdrgQEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMsxNQBt2rRJt912m5KTk2Wz2fTOO+902D5v3jzZbLYOj2nTpplTLAAAGDBMDUA1NTWaOHGili9fftZ9br75ZhUVFfkf7733Xh9WCAAABqIwM3\/5rFmzNGvWrHPuY7fb5Xa7+6giAABgBf1+DtDGjRuVkJCg0aNH60c\/+pFKS0vPub\/P55PX6+3wAAAAOF2\/DkCzZs3S66+\/ro8++ki\/+tWvtH37dt1www3y+Xxnfc+yZcvkcrn8j9TU1D6sGAAABAObYRiG2UVIks1m09q1azV79uyz7lNUVKS0tDStXr1ac+bM6XIfn8\/XISB5vV6lpqbK4\/HI6XT2dNkAAKAXeL1euVyuXvv+NnUO0DeVlJSktLQ0HTx48Kz72O122e32PqwKAAAEm359CuxM5eXlKiwsVFJSktmlAACAIGbqCFB1dbUOHTrkf52Xl6fdu3crLi5OcXFxWrx4se666y4lJSXpyJEjeuKJJxQfH68777zTxKoBAECwMzUA7dixQ9dff73\/9cKFCyVJc+fO1UsvvaS9e\/fqlVdeUWVlpZKSknT99ddrzZo1cjgcZpUMAAAGgH4zCbq39PYkKgAA0PN6+\/s7qOYAAQAA9AQCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBxTA9CmTZt02223KTk5WTabTe+8806H7YZhaPHixUpOTlZUVJSmT5+uffv2mVMsAAAYMEwNQDU1NZo4caKWL1\/e5fbnnntOL7zwgpYvX67t27fL7XZrxowZqqqq6uNKAQDAQBJm5i+fNWuWZs2a1eU2wzD04osv6sknn9ScOXMkSStXrlRiYqJWrVqlhx56qC9LBQAAA0i\/nQOUl5en4uJizZw5099mt9t13XXXacuWLWd9n8\/nk9fr7fAAAAA4Xb8NQMXFxZKkxMTEDu2JiYn+bV1ZtmyZXC6X\/5GamtqrdQIAgODTbwNQO5vN1uG1YRid2k63aNEieTwe\/6OwsLC3SwQAAEHG1DlA5+J2uyW1jgQlJSX520tLSzuNCp3ObrfLbrf3en0AACB49dsRoPT0dLndbmVnZ\/vbGhoalJOTo6ysLBMrAwAAwc7UEaDq6modOnTI\/zovL0+7d+9WXFychg8frgULFmjp0qXKyMhQRkaGli5dqujoaN13330mVg0AAIKdqQFox44duv766\/2vFy5cKEmaO3euXn75ZT322GOqq6vTj3\/8Y1VUVGjq1KnasGGDHA6HWSUDAIABwGYYhmF2Eb3J6\/XK5XLJ4\/HI6XSaXQ4AAOiG3v7+7rdzgAAAAHoLAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFhOvw5Aixcvls1m6\/Bwu91mlwUAAIJcmNkFnM+4ceP04Ycf+l+HhoaaWA0AABgI+n0ACgsLY9QHAAD0qH59CkySDh48qOTkZKWnp+u73\/2uDh8+bHZJAAAgyPXrEaCpU6fqlVde0ejRo1VSUqKnnnpKWVlZ2rdvn4YMGdLle3w+n3w+n\/+11+vtq3IBAECQsBmGYZhdRHfV1NRo5MiReuyxx7Rw4cIu91m8eLGWLFnSqd3j8cjpdPZ2iQAAoAd4vV65XK5e+\/7u96fAThcTE6NLL71UBw8ePOs+ixYtksfj8T8KCwv7sEIAABAM+vUpsDP5fD7t379f11xzzVn3sdvtstvtfVgVAAAINv16BOinP\/2pcnJylJeXp23btunb3\/62vF6v5s6da3ZpAAAgiPXrEaCjR4\/q3nvvVVlZmYYOHapp06Zp69atSktLM7s0AAAQxPp1AFq9erXZJQAAgAGoX58CAwAA6A0EIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDlBEYB+85vfKD09XZGRkZo8ebI++eQTs0sCAABBrN8HoDVr1mjBggV68sknlZubq2uuuUazZs1SQUGB2aUBAIAgZTMMwzC7iHOZOnWqLr\/8cr300kv+tksuuUSzZ8\/WsmXLzvt+r9crl8slj8cjp9PZm6UCAIAe0tvf32E9\/ok9qKGhQTt37tTPfvazDu0zZ87Uli1bunyPz+eTz+fzv\/Z4PJJaOxIAAASH9u\/t3hqn6dcBqKysTM3NzUpMTOzQnpiYqOLi4i7fs2zZMi1ZsqRTe2pqaq\/UCAAAek95eblcLlePf26\/DkDtbDZbh9eGYXRqa7do0SItXLjQ\/7qyslJpaWkqKCjolQ60Eq\/Xq9TUVBUWFnI6MQD0Y8+hL3sOfdkz6Mee4\/F4NHz4cMXFxfXK5\/frABQfH6\/Q0NBOoz2lpaWdRoXa2e122e32Tu0ul4uDsYc4nU76sgfQjz2Hvuw59GXPoB97TkhI71yv1a+vAouIiNDkyZOVnZ3doT07O1tZWVkmVQUAAIJdvx4BkqSFCxfqgQce0JQpU5SZmanf\/e53Kigo0MMPP2x2aQAAIEj1+wB0zz33qLy8XL\/85S9VVFSk8ePH67333lNaWlq33m+32\/WLX\/yiy9Ni+Gboy55BP\/Yc+rLn0Jc9g37sOb3dl\/3+PkAAAAA9rV\/PAQIAAOgNBCAAAGA5BCAAAGA5BCAAAGA5AzoA\/eY3v1F6eroiIyM1efJkffLJJ2aX1O8tXrxYNputw8Ptdvu3G4ahxYsXKzk5WVFRUZo+fbr27dtnYsX9x6ZNm3TbbbcpOTlZNptN77zzToft3ek7n8+nRx99VPHx8YqJidHtt9+uo0eP9uFfYb7z9eO8efM6HaPTpk3rsA\/92Los0BVXXCGHw6GEhATNnj1bBw4c6LAPx2T3dKcvOS6756WXXtKECRP8N4rMzMzU+++\/79\/el8fkgA1Aa9as0YIFC\/Tkk08qNzdX11xzjWbNmqWCggKzS+v3xo0bp6KiIv9j7969\/m3PPfecXnjhBS1fvlzbt2+X2+3WjBkzVFVVZWLF\/UNNTY0mTpyo5cuXd7m9O323YMECrV27VqtXr9bmzZtVXV2tW2+9Vc3NzX31Z5jufP0oSTfffHOHY\/S9997rsJ1+lHJycjR\/\/nxt3bpV2dnZampq0syZM1VTU+Pfh2Oye7rTlxLHZXekpKTomWee0Y4dO7Rjxw7dcMMNuuOOO\/whp0+PSWOAuvLKK42HH364Q9uYMWOMn\/3sZyZVFBx+8YtfGBMnTuxyW0tLi+F2u41nnnnG31ZfX2+4XC7jv\/7rv\/qowuAgyVi7dq3\/dXf6rrKy0ggPDzdWr17t3+fYsWNGSEiIsX79+j6rvT85sx8NwzDmzp1r3HHHHWd9D\/3YtdLSUkOSkZOTYxgGx2QgzuxLw+C4DMTgwYONP\/zhD31+TA7IEaCGhgbt3LlTM2fO7NA+c+ZMbdmyxaSqgsfBgweVnJys9PR0ffe739Xhw4clSXl5eSouLu7Qr3a7Xddddx39eh7d6budO3eqsbGxwz7JyckaP348\/XuGjRs3KiEhQaNHj9aPfvQjlZaW+rfRj13zeDyS5F9YkmPywp3Zl+04Lr+Z5uZmrV69WjU1NcrMzOzzY3JABqCysjI1Nzd3WjA1MTGx08Kq6Gjq1Kl65ZVX9MEHH+j3v\/+9iouLlZWVpfLycn\/f0a\/fXHf6rri4WBERERo8ePBZ94E0a9Ysvf766\/roo4\/0q1\/9Stu3b9cNN9wgn88niX7simEYWrhwoa6++mqNHz9eEsfkheqqLyWOy29i7969io2Nld1u18MPP6y1a9dq7NixfX5M9vulMAJhs9k6vDYMo1MbOpo1a5b\/+aWXXqrMzEyNHDlSK1eu9E\/oo18v3IX0Hf3b0T333ON\/Pn78eE2ZMkVpaWn6y1\/+ojlz5pz1fVbux0ceeUSff\/65Nm\/e3Gkbx+Q3c7a+5Ljsvosvvli7d+9WZWWl3nrrLc2dO1c5OTn+7X11TA7IEaD4+HiFhoZ2SoOlpaWdkiXOLSYmRpdeeqkOHjzovxqMfv3mutN3brdbDQ0NqqioOOs+6CwpKUlpaWk6ePCgJPrxTI8++qjWrVunjz\/+WCkpKf52jslv7mx92RWOy7OLiIjQqFGjNGXKFC1btkwTJ07Uf\/zHf\/T5MTkgA1BERIQmT56s7OzsDu3Z2dnKysoyqarg5PP5tH\/\/fiUlJSk9PV1ut7tDvzY0NCgnJ4d+PY\/u9N3kyZMVHh7eYZ+ioiJ98cUX9O85lJeXq7CwUElJSZLox3aGYeiRRx7R22+\/rY8++kjp6ekdtnNMdt\/5+rIrHJfdZxiGfD5f3x+TFzhpu99bvXq1ER4ebvzxj380vvzyS2PBggVGTEyMceTIEbNL69d+8pOfGBs3bjQOHz5sbN261bj11lsNh8Ph77dnnnnGcLlcxttvv23s3bvXuPfee42kpCTD6\/WaXLn5qqqqjNzcXCM3N9eQZLzwwgtGbm6ukZ+fbxhG9\/ru4YcfNlJSUowPP\/zQ2LVrl3HDDTcYEydONJqamsz6s\/rcufqxqqrK+MlPfmJs2bLFyMvLMz7++GMjMzPTGDZsGP14hn\/6p38yXC6XsXHjRqOoqMj\/qK2t9e\/DMdk95+tLjsvuW7RokbFp0yYjLy\/P+Pzzz40nnnjCCAkJMTZs2GAYRt8ekwM2ABmGYfz617820tLSjIiICOPyyy\/vcMkiunbPPfcYSUlJRnh4uJGcnGzMmTPH2Ldvn397S0uL8Ytf\/MJwu92G3W43rr32WmPv3r0mVtx\/fPzxx4akTo+5c+cahtG9vqurqzMeeeQRIy4uzoiKijJuvfVWo6CgwIS\/xjzn6sfa2lpj5syZxtChQ43w8HBj+PDhxty5czv1Ef1odNmHkowVK1b49+GY7J7z9SXHZfc9+OCD\/u\/loUOHGjfeeKM\/\/BhG3x6TNsMwjG82ZgQAABDcBuQcIAAAgHMhAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEIKidOnJDb7dbSpUv9bdu2bVNERIQ2bNhgYmUAgglrgQEIOu+9955mz56tLVu2aMyYMZo0aZJuueUWvfjii2aXBiBIEIAABKX58+frww8\/1BVXXKE9e\/Zo+\/btioyMNLssAEGCAAQgKNXV1Wn8+PEqLCzUjh07NGHCBLNLAhBEmAMEICgdPnxYx48fV0tLi\/Lz880uB0CQYQQIQNBpaGjQlVdeqcsuu0xjxozRCy+8oL179yoxMdHs0gAECQIQgKDzL\/\/yL\/rf\/\/1f7dmzR7Gxsbr++uvlcDj05z\/\/2ezSAAQJToEBCCobN27Uiy++qFdffVVOp1MhISF69dVXtXnzZr300ktmlwcgSDACBAAALIcRIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDn\/Hz999b6yX+7TAAAAAElFTkSuQmCC", "text\/plain": "<Figure size 640x480 with 1 Axes>"}, "metadata": {}, "output_type": "display_data"}]}}, "7a2ac2d705c34d2599661107d0b6a5a5": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "IntSliderModel", "state": {"behavior": "drag-tap", "layout": "IPY_MODEL_3b2d03cd328c49529d82b802d05a9a90", "max": 199, "style": "IPY_MODEL_0f94c44a6e2d4808a7c66c3b1c79bf1f", "value": 199}}, "7aac04d137c84a4d95a975fc42549096": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "7b2a2ede6a7b4fd5bd79db693da37fd2": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"children": ["IPY_MODEL_e1d833787d964958adf9bf27c7c8465d"], "layout": "IPY_MODEL_8dd363de61704f07a67c5ec15fad0230"}}, "7cc9130632e24968ac7630fa1302ec66": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "7ff77fdec3124342917adff7a7e22968": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": {"source": ["IPY_MODEL_a6e490f9a95046848e772f941811ea6e", "value"], "target": ["IPY_MODEL_7a2ac2d705c34d2599661107d0b6a5a5", "value"]}}, "814fc2ce5f98478d93e7d2977c35599d": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "8330e0092c10467f85f9264bfaf88a6f": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "PlayModel", "state": {"description": "step", "layout": "IPY_MODEL_d1b23fb8d92a428ebfbc64e7b3117db4", "max": 149, "style": "IPY_MODEL_a813b3e4592a4ba6a5ac586705a144b1", "value": 149}}, "84db1e5aacf844f2b99f65c3e1097e2a": {"model_module": "@jupyter-widgets\/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": {"layout": "IPY_MODEL_409e5ad2c8d1498aa37ebe59663d605c", "outputs": [{"data": {"image\/png": "iVBORw0KGgoAAAANSUhEUgAAAZ4AAAGRCAYAAABVKtXaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy\/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eXQk533ei3\/equq9G411gAFmAMy+k8N9FpK2FmrJvYksiZFi6dhx4vuTc20nkpIbO7Kte6XIkiM5cSjJtm6cxCZ9Eku8tixTliKZshauQ3JIzgCYwQADYLDvQANo9N5V9f7+AKunu9ErBgOAVD3nzJEIVFdVN6rf5\/1uzyOklBIbNmzYsGFji6Bs9w3YsGHDho2fLtjEY8OGDRs2thQ28diwYcOGjS2FTTw2bNiwYWNLYROPDRs2bNjYUtjEY8OGDRs2thQ28diwYcOGjS2FTTw2bNiwYWNLYROPDRs2bNjYUtjEY8OGDRs2thQ28diwYcOGjS2FTTw2bNiwYWNLYROPDRs2bNjYUtjEY8OGDRs2thQ28diwYcOGjS2FTTw2bNiwYWNLYROPDRs2bNjYUtjEY8OGDRs2thQ28diwYcOGjS2FTTw2bNiwYWNLYROPDRs2bNjYUtjEY8OGDRs2thQ28diwYcOGjS2FTTw2bNiwYWNLYROPDRs2bNjYUtjEY8OGDRs2thQ28diwYcOGjS2FTTw2bNiwYWNLYROPDRs2bNjYUtjEY8OGDRs2thQ28diwYcOGjS2FTTw2bNiwYWNLYROPDRs2bNjYUtjEY8OGDRs2thQ28diwYcOGjS2FTTw2tgVSyu2+BRs2bGwTtO2+ARs\/XZBSkk6nSSQSqKqKpmmoqoqqqgghtvv2bNiwsQUQ0t562tgimKZJOp3GMAySySSwRkTxeJxkMklzc7NNRDZs\/BTAjnhs3HZIKTEMg6GhIZxOJy0tLSiKgqIoSClZXV1lbm6Ouro6kskkQggURUHTNJuIbNh4C8ImHhu3FVZqzTAMwuEwbrebsbExJicnqampoa6uDsMwANA0DSll5l8ymSSVSgHYRGTDxlsIdqrNxm2DYRik02lM00RRFLq7uwmHw+i6TkdHB7FYjKWlJaLRKIqi0NraSl1dHbW1tTgcDoAcIjJNEyATETkcjkydSFEUm4hs2HiTwI54bGw6pJTouo6u60gpURSF5eVl5ubmcLlcnD17FlgjECEEExMTTExMIKVkaGiIWCxGIBCgtrY2Q0RWpJNNRIlEInMei4is42wismFj58ImHhubCtM00XU9kz4TQjA0NMTw8HCGTJxOZyaFBmspNofDwZEjRwBIJpMsLS2xvLzMwMAAiURiHRFZ6bZiRGRFQjYR2bCx82ATj41NgZUKS6fTSCkRQpBMJunu7iaRSPDAAw8wMTFRcPEXQuTM9bhcLlpaWmhpaQEgkUiwtLTE0tIS\/f39JJPJTH2otraWYDC4johM07SJyIaNHQqbeGzcMrJTa7C20M\/Pz9PT08OuXbu4++670TRtHcFYKEcAbreb3bt3s3v3bgDi8XiGiKanp0mlUgSDwbJElEwmSSQSmY46m4hs2Nge2MRj45aQPZtjLdx9fX1MTExw4sQJWltbc44v1stSTY+Lx+PB4\/HQ2tqamQOyiGhychJd1zNEVFdXRyAQQFXVzHWs9m5rnmhqaoqWlha8Xm8mMrLqTzZs2Nh82MRjY0OwFm9d1zNda7FYjK6uLgDOnTuHz+fLeY0QAtM01y3oxSKhSiCEwOv14vV6aWtrQ0qZ6ZZbWlpifHwc0zRziMjv96NpWuZ9DA0NUVdXlyGbQqk5m4hs2Ng82MRjo2pkz+bA2ozN1NQUvb297N27l8OHD6Mo62UAswkmexHfzAVdCIHP58Pn87Fnzx6klESj0QwRjY6OIqXMNCrU1dUhpURVVRwORyYi0nWddDpdlIgKvT8bNmxUBpt4bFQF0zRJpVKZKMcwDHp7e5mfn+f06dM0NTUVfW2pyOZ2jZMJIfD7\/fj9fvbu3YuUkkgkkiGi4eFhAPr7+2lsbKSurg6fz5cTERUjImuOyCYiGzaqg008NiqClVqzutYURSEcDtPV1YXb7eb8+fO43e6S5yjVXLBVc8xCCAKBAIFAgPb2dkzT5JlnnsHv97O4uMjQ0BCqqmYaFerq6vB6vUWJCAqrKthEZMNGcdjEY6Ms8lNrQghGR0cZGBhg\/\/797N+\/v6J02Ua72m4nrG62trY2vF4vpmkSDodZWlpifn6ewcFBNE3LISKPx7OOiNLpdEl5H5uIbNi4CZt4bJREdpQjhCCdTtPT08Pq6ir33nsvdXV1FZ+rFMHsFOUmRVGora2ltrYWIKMxt7S0xOzsLNevX8fpdK4jIotYsueZrIhICJFDRFbXnA0bP62wicdGQVjppGvXruH3+2ltbSUUCtHd3U1tbS3nz5\/P6KlVip2QaiuGYte30m4WwRqGwcrKCktLS0xNTdHf34\/L5cocU1dXh8vlyjmvRUSpVCpTI7KIKLtrzoaNnxbYxGNjHayF0jRNYrEYDoeDwcFBRkZGOHLkCHv37t3QQrmTiadSqKpKfX099fX1AOi6niGi8fFxent78Xg8OUTkdDozr88nIoDFxUWam5txuVy28raNnwrYxGMjg+xF0epak1IyNjaGqqqcOXOGQCBwy9fIx5t5kdU0jYaGBhoaGoA1IlpeXs60bl+9ehWfz5ejM5dNROl0mt7eXmpra9F13fYisvFTAZt4bACFZ3Pm5uaYn58nEAjwwAMPZKb\/N4rtaKfeamiaRmNjI42NjcAasVhENDw8TDQaxe\/3Z4jI7\/dnXmd9vlbLum2KZ+OtCpt4bOTI3iiKgmma9PX1MTU1lUkX3SrpwFsj1VYtHA4HTU1NmfmmVCqVISLLAgLgxo0b1NfXZywg4CYZ20Rk460Gm3h+ilFI9iYajdLV1YWiKJw7d47h4eFNIwWLYHRdZ2xsDK\/Xm5Gq2U5s5fWdTie7du1i165dAESjUV5++WV0Xc+xgLDScpYFBOQSke3OauPNDJt4fkpRaDZncnKSa9eu0d7ezqFDhzIzLpbz563Casd+8cUX0TQNXddJJBJ4vV50XScUCmWUpX9aYHUGHjlyBFVVN2QBUcgm3HZntbGTYRPPTyHyLal1Xefq1auEQiHuuuuuTH0CNi8NJqUkFAqxsrLCoUOH2LNnD7Bm+jY9Pc3IyAjXrl0jnU6vU5b+aRi+tIihnAVEOp2uiIhsd1YbOxk28fwUId83R1EUVlZW6Orqwuv1cv78+ZwZFOsYKyraKNLpNFeuXCEUChEIBNi\/f39mKNXtdrNr1y7GxsY4d+5czkJrKUtnC3r6\/f631KJZjtRLWUBMTExgGEZBCwjbndXGToZNPD8lyG6TtjAyMsLg4CAHDhxg3759FbmDVovl5WW6urrw+\/0cOnSI6enpgsdZygj5Fgf5gp6WsoC10Hq93k1ZNLe7uaFSyaGNWECUc2c1TRNN0\/B4PDYR2dgS2MTzFkchS+pUKkVPTw\/RaJT77rsvIw9TCBut8UgpM8R28OBBOjs7mZ6erqqrrZCg5+rqao6OmsPhyBnWLCdUutNwK4S3EQsIv9+Poig5RGTJAHV0dNjurDa2BDbxvIVRqIFgcXGR7u5u6uvrOXfuXFnZG2uItBpYxLa6uppDbLcqEqooCsFgkGAwSGdnZ46O2uTkJH19fbjd7qKqATsZm7GwF7KAWF1dzZkjEkLk6MxZZn1W+i3fnbVQ+7ZNRDZuFTbxvEWRP5tj7WzHxsY4duwYbW1tt6QoXQxLS0t0dXVRU1OzTs9tswdIs3XU9u\/fX1Q1IJuIrBmZnYLbmeITQlBTU0NNTc26iDHbAsJqMInFYgUtIKyWe9ud1cZmYWd9C23cMgrN5sTjcbq6ujAMg7Nnz2am5StBpcQjpWR4eJihoSEOHTpER0dHQYvrYtewznErC1i+akD+sGY8Hs\/MyNTV1e2Y1u2tWrSzI0YgYwHR399PNBrl4sWLFVlAlHNntYnIRjnYxPMWgpSScDjMzMwM7e3tKIrC7OwsV65cobW1NTMrUg0qqfGkUil6ursgtcz999+fWdgqPddmEU8+8oc1k8kkoVCIpaUlrl27RiqVIhgMZlJSXq93y1u3t7OpwWrU8Hq91NbW0tramkldzszM5FhAWGSUbwFhu7Pa2Ahs4nmLwJrNiUQijIyMsHfvXnp7e5mdneXkyZO0tLRs6LzlajyhUIjrva9zV2cMhxZAKUI6sH5nbxHNVu2OXS5XZkYmuzV5ZWWFgYEBrl+\/vq41eSvubbujA+vvUMoCwqqhFbKAKEdEtimejXzYxPMmR\/ZsjpQSVVUxDIMLFy6gaRrnzp3D4\/Fs+PzFUm1SSm7cuEFssY9zh5KowsAwTYwSUUu5tN1W7v6zW5OHhoa46667EEJkOsJGRkYyhfjNbt3Oxna3cVv3UOh9bdQCIp+IbHdWG\/mwiedNDNM00XU9p2ttfn6edDpNe3s7Bw4cuOUvdSGySCaT9HR3sbdmjqOd8czPVSXN8vgkNe17Kj6X9XPY3kU4vyPMNE0ikQihUGidBbb171YIPf\/a2wnTNCu6h41aQBRyZy1kimcT0U8PbOJ5E6LQbI6u6xl1AEVROHTo0KZcK78us7i4yEDfJe7uiOFzJtcdH5scLUo81r0XusZ2I\/++FEXJdIR1dnZimmZmtz89PV3WefTNhI3W1qq1gKitrc3pcsx+jgcHB3G73bS0tNg24T8FsInnTYZ82RshREYdIBAIcPfdd3Px4sVNu55V45FSMjQ0RGKpn\/MHkyiisIyOYoaKnmsnpdqqhaIoOfWPQmmn7Nbt\/EW2GDa7oWIj2Kx7qMQCIhAI5BCR1TEXj8cz\/z87IrKGXbObFbb787Jx67CJ502E7NkcK01x48YNbty4kWlhTiQSmKa5aYuJEALDMHj11VfoCM5zrCNe8nh\/7fooKPtcOzXVVi3y007Zu\/0bN24QjUZzWrez7Q12Gm4X+RXqKrRqaPkWENb\/z\/6MCqXmbCJ6a8AmnjcBCs3mJJNJenp6iMfjOS3Mm92avLq6ikyvcLpTx+soTioWAg2SeCSK0+9b97tyczxvZuTv9rMX2Xx7A2uGyIomt\/v9b9U9uFwuWlpaMh2W2RYQkUiEcDjMwsLCOuVt6x6BgkRkexG9+WATzw5HIUvqhYUFenp6aGxs5K677sqZxs8u5N4KTNNkcHCQ9Mp1HjqSQFMrO5+iwMrQEE133rHud2\/mVFu1yF9ks1Wlp6am0HWdYDCIz+fb1Ah1I9iua2dbQMTjcRobG3E4HDmfUTZZ19TUFCQi2531zQebeHYwrC+VFeVIKenv72d8fJzjx4\/T1ta27jUW8ZimueHUTiKRoKf7EvvqFtldJrVWCOnlaaA48Vh1KUvSZbtTbVuxMOXbG1iq0nNzcxiGwXPPPZcj5unz+bZswdwJURfcJOtqLSDAdmd9s8Emnh0IK7Vmda0pikIsFqOrqwspJefOncuIO+bD+lJt1DV0fn6eocFu7jzhIvCGdH61cKrhovdmmiZXrlxhZmYms+BZBftYLIbL5XrLLwzZqtI1NTV0dXVx5513rtNQy2\/dvl2fy04gHmtzZWEjFhDFvIhsd9adB5t4dhgKpdamp6fp7e2lra2NI0eOlJxz2GiqzTRNBgYGMNLjnLvPgaLoSLUFES3sn1MKtS0G0jARau59JhIJDMNgdXWVBx54AFVVMzL+8\/PzdHV14XQ6qa+vf9O3KFcKa9G3Wrc7OjoyGmpLS0vMzs7mSNdYn81mfi47gXisDVYxbJYFhO3OujNgE88OQr4ltWEYXLt2jbm5Oe64445Md1ApWN1u1UQ88Xicnp7L7G9P0bJLA94gLbcTotW\/D0+NyuL4BDWd7ZmfzczM0NPTA8ADDzyQkd63RCuHh4e59957SaVSBVuU6+vrc9pv30rIX+gsDbXa2lr27duXI11jfS5erzcnIqqkdbsYdgLxVDrEamGjFhCliMgaGt61a5dNRLcZb71v8ZsQ+bM5iqKwurqaiQDOnz9flcFZNcQzNzfH8I0e7rnTiduVGyUJESOtBXHoK5W\/mTcQnRqlpnNNir+\/v5\/JyUkOHz5MX18fiqKsuz9r95nfolyo\/dba9VudYZuB7aovVXLdbOmaAwcOrBvUvHLlCn6\/P6d1uxqCLhdtbAXyU23VolILiGwiskRhLSKKRqN0d3fz4IMPZs5p24TfHtjEs83It6QWQjA2Nsb169fZt28fBw4cqPpBr8S8zTRNrl+\/DuYkZ+\/Tig6ESm8NhKsnHpFaJB6Pc\/ny5UxdCuDatWuFjy\/wHh0OR84cSCKRyKhLW11PtbW1GSLy+\/1vykWh2nsuNKhZiqCzu8EKYadEPJtJfsUsIKyGjnwJpNra2kxDjsPhKGgTbruzbh5s4tkmWA\/15OQk8\/PznDhxgnQ6zZUrVwiHw9xzzz0ZccZqUSiiyEYsFuNKz2UO7tPZ1aiSSa0VgOZIkjAU3Gp1zQq+mjgvvvgiLS0tHD16FFVVicfXOuSsL3U+ypGl2+2mtbU10\/WUneMfHh7OURe43QX5zcJmRFpOp5Pm5maam5uBtdTp8vIyoVAop3U7uwifvcjvBOK53VFXofSlRUSWBJKmaZimyfT0dMYCAshJzVkp4kQiYRPRLcAmnm1AdgNBOp3OLKDd3d3U1NRw7ty5W7JsLpVqm52dZWS4h3tPu3A5y5OJEJIIftwU7lQrhtrdKocCnbQfOpBzX6XuuZpFuJCo5+rqKqFQKFOQz9ZSq6+v37E22Ju9UFmt25b9Q3Y32NjY2LoifLX1lduBrb6HQhYQExMTjIyMVGUBkW8TbqXmsnXmtvuz3YmwiWeLkW9JraoqsViM1157jcOHD9Pe3n7LD2qhVJtpmvT19aGKac7d50AUSa0Vgr\/OiQwrCCqPehRV4Imu5vys1LzOZrxnK7Vi7WitOsjY2FimUcFKP+2URoXbXVsq1A0WiURyIkXDMBgcHKSpqWnbIsXtrjOpqorP58PtdnPvvfdu2ALCdmetDNv\/zfspQTHZm6GhIdLpNGfOnKGmpmZTrpUf8cRiMXp6LnF4v0FTQ+nUWiG4nALTtxs1OlnV6\/TlaeB0zn1B8cV2MxdhVVVzGhUswcpQKJSpg1hT8Vbac7uwlQuREIJAIEAgEMgU4Z955hm8Xi+zs7MMDAzgcDhyFthqGls2Auvz3+4FObvOVEiLzyKiSi0gbHfW4rCJZwtQaDZnfn6enp4eampqME1z00jHOr+1kM7MzDA6cqXi1FoxCLdSdWu101FdxHM7d\/\/5gpXZU\/G6rnP58uVtaVTYbpkgKzreu3cvHo+noOuo2+1et9PfTFifwXYvwqUaHBwOx4YsIGx31sKwiec2I382R0pJX18fk5OTHD9+HLfbnZlv2SxYM0BXr17F6Vrg7Hk\/Qhcgq5e\/sSBEAtPdiJJYqPg1tbtlziDp7Uy1VYtsCZtQKMShQ4cy3WH5jQr19fWbZvpWCNu507f+FtY9FHIdLWT2tpkpS2uTtN2LrpX+rgTFOguXl5dLWkDY7qxrsInnNqHQbE40GqWrqwshBOfOncPr9bK8vLzpaR7TNBka6ufkKReNjU5AIjUPpDdOPAB4\/VAF8bj9Cgtj4wT3deT8vFg+fzu12rxeLy0tLZn0k9XxNDMzk9OoYC24m7Xr3+6IJ5948pFv9pbtsTM4OEg8Hs+xf8hWlK72HrZ7kb0VfcP8zsJSFhBWd102sWQTUTweZ3BwkCNHjuB0OtE0jaWlpZxOuzc7bOK5DcifzQGYmpqit7eXvXv3cvjw4cwDV671uVpMTU2haXHuvc9PdmpeKDFMpQ7FXNr4yZUoUvMh9MpzbrGp0QzxbGeqrRyyr12o9daqD1m7\/lsZ2MzHTop4yiE\/ZZltbXDt2jVSqVRO63ZNTU1ZQsmeYdtObOYsUSkLiL6+PlKpVKbGmG0BYWUr5ubmOHr0KOl0mnQ6zQc\/+EE+9rGP8Uu\/9Eubcn\/bDZt4NhGFLKmtlNfi4iKnT5\/OhOYWNot41uR1enF7Qpw776PQ90doKWRKQ6Bv6BoCCEs3wSqKPSK9ePP\/76BUWzUo1KhgLSLXr1\/PeO1kD2xu9+69UlRLPPnItjYopChtmuY6\/bT8a70ViScf+Z9TNhHlW0BYXYXZmxmrhvRWgU08m4T8BgIhBOFwmK6uLjweD+fOnSvYHbQZxBOJRLhy5TLHj6vUNxRPAQmhY2pBhL5Y9Jhy8AYU5LKKoLJ27GxH0uyFJX+R2e6IpxoUGthcWloiFAqtW2zr6+tLWhxs9\/DmrRJPNgopSucP+Vr6adY\/r9ebSb1uN\/EYhrElLrFCiHU2GdmEPT4+jpSSS5cuMTY2ht\/vJx6PF1WkrwS\/93u\/x2\/91m\/x8Y9\/nMceewxY+9t\/9rOf5U\/+5E9YWlrigQce4I\/+6I84ceJEyXN985vf5NOf\/jRDQ0McOHCAz3\/+87z\/\/e+v6n5s4tkE5M\/mAIyMjDA4OMj+\/fvZv39\/0S+V1XCw0d3W5OQkU1N9PPCAH0clA6FKBCl8CLkB9U9AVZ2YogFFhiqKnGpbFCIrq7iDgS1tp95K5C8i0Wg0I+2T3ahgRUQ7KU+\/mcSTj2JDvpYauSVbEwgEMovvdn42tzPiKYV8wl5aWuLKlSs0NTXxF3\/xF3z9618nkUjw2c9+lp6eHt72trdx9913V0ySFy9e5E\/+5E+4445cj6wvfelL\/MEf\/AGPP\/44hw8f5nd\/93d55JFH6O\/vJxAIFDzXhQsX+PCHP8znPvc53v\/+9\/Otb32LD33oQzz\/\/PM88MADFb\/nN0c+YIfCaiBIpVIZ0kmn07z++uuMjo5y7733ltVayzZuqwa6rtPd3UUyOciZs96KSAdACEBzVDXJI6UkFddgLo64ehl1fhh+cBFzDiSlFwqhCFaHBrKuXziy2e7d7mbBWmzb29u58847eeihhzh16hRer5fp6WleeuklXnzxRfr6+pidnSWdTm\/r\/d5O4smHNeTb2dnJXXfdxUMPPcSJEycyjRrWZ3Pt2jVmZmYy3V5bhe0inkL34XA42LNnD7\/\/+7\/PyMgIgUCAhx56iBdeeIFHHnmEX\/iFX6joXJFIhI9+9KP81\/\/6XzMqDbD2d3\/sscf47d\/+bT7wgQ9w8uRJnnjiCWKxGH\/xF39R9HyPPfYYjzzyCJ\/61Kc4evQon\/rUp3jHO96RiaIqhR3xbBCFZnNCoRDd3d3U1tZy\/vz5iqTqN0I8q6urXL16meMnNOrrq++uEkocU6lDlGk0SCYlyaUkrtAkHjPLFE6PIjv2o7z0PBKBefwU7G9FKBEKLV96eObmtd8gnnA4TCwWo76+PjPR\/VZ0IM1uVID17cmRSARFURgYGMhYP2xFusfCVhJPPizZGuu788ADD2RmiLLVJrKbOG7F\/qEcDMO47cOyld5H9jOgKArLy8v8yq\/8CgcPHsw0u1SCX\/u1X+N\/+9\/+N975znfyu7\/7u5mfDw8PMzMzw7ve9a7Mz1wuFz\/zMz\/Diy++yK\/8yq8UPN+FCxf45Cc\/mfOzd7\/73TbxbAUKzeYMDAwwOjrK0aNH2bNnT8Vf5GqIR0rJ5OQkMzP9PHDGj8NxCwOhWhKZciDI3XFLIBVXiU9OU5tYwFMsNmpY+4IKJKK3G3q7kS17ME8dR3iSOTUglzOS89Lx8XHGxsZwOByZLqhUKkU0GqWhoeEtE\/0UQn578uTkJGNjY+i6Tn9\/P8lkMtMVVl9fv07Qc7Nh1Zi28zO3VAsKqQVYdY\/s2ZhsItpMkt4pEU8+8VgGilZzgdXsUg7f+MY3eP3117l48eK6383MrG0GrTqlhebmZkZHR4uec2ZmpuBrrPNVCpt4qkD2bI5VEE0kEnR1daHrOmfOnCmaGy2GSolH13WuXr2C17vCA2e8CHFrDQlCGJhaTabRQEoNGRPoE4N40pEyCTRQ0isY+w+j3Lh+85wzE4iZCaTXT\/rkaRIiTaDZQe1uiakbGNLMqP\/ee++9uN3uTIfY0NAQw8PDjI6OrquHvNWJyOl0cuzYMWCtUcGqD2U3KlifR6lGhY1gu5sboPiCn2+LkT0bk9+SXF9ff8vdhDuVeKLRtXpsNV1t4+PjfPzjH+fpp58uGcXl\/+0reR428pp82MRTIUzTJB6P093dzZ133omiKMzOznLlyhVaWlo4duzYhndfqqqWJJ5wOMzVq5c5dYeDYNDDWmnu1msDQolgGgHEUggxew1VmlU9EGJ3Pdwo8PNYBMcrz6OaMK22oB7cTSLSz8DSAkII7rjjDmpqakin05mi6vT0dEa2JV9h2lp06+vrb2uqZTuQn170eDy0tbVlusIsQU\/LzCzbQ2YzGhV2AvFUKhCaPRuT3ZIcCoWYnJzEMIyc1u1AIFDVe9uqrrZq78NKx1bzt37ttdeYm5vjnnvuyTnvs88+yx\/+4R\/S398PrEUwu3fvzhwzNze3LqLJRktLy7roptxrCsEmnjLIns3RdZ25uTl0XWdwcJDp6WlOnjyZGRLbKIq1VEspGR8fZ35hkLPnfGiaCRhI04Ukza2sF1JqsJxCWRlHLE4hqhQOBVDSIYzWdpSpscK\/V2C3nIGBGV5eDtH2\/vcxPDxcctjScpHs7OzMGdwcGRnh6tWrmVRLfX39hqbkdyKKLY6FBD2tGojlIWPpqFnkXC0x7wTi2YhAaKGW5OzWbStdlE1E5aLFnRrxxGKxqiPdd7zjHeukuP7ZP\/tnHD16lN\/8zd9k\/\/79tLS08IMf\/IC77roLWJtPe+aZZ\/jiF79Y9Lxnz57lBz\/4QU6d5+mnn84YPVYKm3hKIF\/2xlowX3nlFTRNy8je3CoKEY+u61y50kNdfYT77\/fkpNaEEsM0Awixmn+qimAm3SgzQwh9rWEgpARpMJc3dC7R2QZFiCcbnY4V6g8cKJo\/LtRckD+4aaVaQqEQ165dI51OEwwGM9pityLsuZOtry1k68dBbqNCtgV2to5aOWLeaarQG0V+67aUsqj1tUXUbrc7573vVOKJRCJVE08gEODkyZM5P\/P5fDQ0NGR+\/olPfIIvfOELHDp0iEOHDvGFL3wBr9fLRz7ykcxrfvEXf5G2tjZ+7\/d+D4CPf\/zjPPzww3zxi1\/kfe97H0899RR\/\/\/d\/z\/PPP1\/Ve7SJpwiyZ3Os4uv09DQADQ0NHD16dNMe0nziWVlZ4dq1Lk7d4SQYLPwnEiKClG6ESBT8fSFI0wmLK6jhoZyf19UoyHgNIlmd2RuA0EPIhl2IxbmSxzV6VogsLN1SO3V+qiUWi2XqISMjIznzMtbC8mbARhf+Qjpq1udh1UDKNSrslIhnsxd8IUQmeu7o6Mjo74VCoXX6e9mGeDuFeLIj12g0ekvDo8XwG7\/xG8TjcX71V381M0D69NNP59Spx8bGcj6Tc+fO8Y1vfIPf+Z3f4dOf\/jQHDhzgySefrGqGB2ziWYdCvjlrhf2rLC2tLZwdHR2b7g9vmiZSSsbGxlgMDXHmrBdNK74bFkK+ISwoEKL0rllKAXENMTuAMNcPfQoMzEA96kaIB4k8dADKEI+qSGZ+9BxiV03Rxa5aB1LL4MwaTrQWluw0lEVCt7sVd6PYzEjL6XTmEHOhafjshdbn8+0I4tmKe8hva882CrSM3oQQmVrRRtKWm4X8tm6LeG71M\/rJT36S899CCD7zmc\/wmc98puLXADz66KM8+uijt3QvNvFkodBszsrKCl1dXfh8Ps6dO8dzzz236WrSiqKQSqW4fPkSDY1R7rvPU5ZMAIRIlk25ScOFmJtFxErL5Cj6EkZwD+rKRNX3L+QyMhBErK6UvsbYFUTz+dsiElpoXia7FddSUbbSUMFgcEfsbuH2qQbky9dEIhFCoVBOo4LP58MwDBKJxLZFiNsRaeSncdPpNC+++CKKouSkLbPriVvlWFuoq+12RDzbCZt43oBpmqRSqZwvwfDwMENDQxw8eJDOzs6Mg6BFTJt57eHhPu6620tNTXV\/EkVZxTR9KEquBI6hg4gJlPlrFTcOCDWFVJwIs7qJcSENjMNHUF97peRxezwLjOrGligXaJqW45eS3QE1NTWV6YCqr6\/PSNJvB7bqutmNClbqaWVlhampKUzT5MKFC5kI0YqItmrHv92210DmvXZ2duL3+3Nat635Kqt12xKCvV2NLcVqPG8l\/NQTj5VasxSlreiju7ubWCzGfffdl9lFw02Ttc269ujoKF5fkrvv9uFwbGwREiKJlBpCrKXREhEFZW4Ml0yWeWXeecwkZv0e1IUCPdJlIEUYQ3Oi6sVJy+MyYHAceecdt5xqqxb56sCWntri4iKpVIqenh4aGhoyqTmXy3Xb7iUf25Hqsuphln7avffem+kgtHb8W9VBuBMaHKz7sN5jvq1BdtrSUpPOtn\/YzEHfQhHPW0mZGn7KiadQam1xcZHu7m4aGhq466671oXX5WZuKsXaYtdNc3Oc++\/33lJrtBA60vQhEbAUw7NUvsus6Ln0RUxfE0p0vqrXORQT4+QdcPnVksfVzk9sux9PdgdUe3s7L7zwAnv37iWdTjM5Ocm1a9cyUi1Wfeh2pVm2WxjVqq\/kNypk7\/izfXasiGgzF9qdUNS3aqzF7iO\/dTsWi2U+n7GxMaSUmzboW6id2iaetwgKyd5cv36dsbExjh07RltbW8EHZzMinrUvcxd33eUiUGVqrRikYSIWwiixqVs6jwCk24WMKgiqI1jFoyMVFWEW\/3w6PCGSBfxXtnPHa6WhrDblbKkWyz3S8tu5HTI2222LUOj6+R2E2dYP1kKb3Zrs9Xo3\/D52CvFAZS6o2Y0te\/bsyRn0DYVC3LhxI6f1vVoFDjvV9hZEIUvqeDxOV1cXpmly9uzZkruLW4l4pJQMDw+zujrC+Qe9COEHNjaLc\/OcAhlVUJf6kShIRw0iXX13WjaEsYpZ34EaGs69FgJUNwZOIqtxhCHxOZwoyTgiEobwOMbuo6hT1xCy8GfUFNTpvXZjnSHe2nvZGbYI+VIthWRssoc2b2XR3W5UUl8p1KhgzcgsLCzkKCpYn0k1jQo7ocZjfac3kk4sNOhrWadbChxOpzOHiEp9PvkW3NFoNEdZ+q2AnyriybekVhSF6elprl69SmtrK0eOHCn74G3UuG0ttdbF7t1JDh\/xABIpI0jTjVAqn8XJhjQdsLiMmljrWBOYpKSJaoJ6i99jIVKYahPEE8QWF3ClEmixMMI00IDaIq\/TEjMkRDsuRhFFiCTVfRkezu3738lGcPkyNvmeMg6HI0fWx5L5rwTb3c68kevnz8gYhpFpZZ+cnKSvrw+Px5Oz0JZqVMhfaLcD2QaOt4pC1umW4oT1+WQ3ctTW1uY8M4VSbXv37r3l+9pJ+KkgnmzZGyusN02TK1euMDs7y6lTpyrWGtpIV1soFKK\/v5u77nbj9998oISQSCSGAdV+72Tag5gbXteB5lSSxLQ6vGUsD4qeV3EhU06UsetIdwPKwDWqyS6LxCrCXUsy3o6LsYIddfXx9TWoN0vEUGjRXVlZyaSgent7q1YP2E5sBvFlKwJAbit7dqNCdit79mdi+c9sJ6x14XY8h6qqZtK0sF5xwmoesJ6XbENJWIt4NkMhZSfhLU88hRoIIpEIly9fxul0cu7cuarE96qJeKSU3Lhxg2h0lHPnvahqoaJ6knhcxe+vjMykFMiYihrqL3qMV4uwEnERdFbe1SaFA2l4USYGUIw1AVIRn8fsOIoy2lfxeQBcrhDLzy\/CfftwGaPrPHr21MVYmpzD2VSbew87NOIphfxFxVLbDoVCGfWAbBvsfOHKN2PEUw75rezFpI6sz2QndLVtZdRVSHHCIurBwUEArly5wtLSEslkckNdbV\/72tf42te+xsjICAAnTpzg\/\/6\/\/2\/e+973AsU3el\/60pf4t\/\/23xb83eOPP84\/+2f\/bN3P4\/F41TNgb2niKWRJPT4+Tn9\/P52dnRw4cKDq3HKlEU8ymaSnp4u2PSmOHF1LrRWD328QjSr4fKUJTUoHhMKosfIdZ16PROJGGKXTeBIVSQBl8gZKOl7ggBXiqhtPmfNkQ6SieB8+TOzpKyTuaKfWn6tqoCgw\/8zztD36v998zQ5OtVUDp9NJc3Mzzc3NmaJ8KBTKRERAjqzPdmMriK+Q1FF2R5hhGHi9XhwOx7bVzPKjjK1E9jOTSqV4\/vnnaW1tzShJr6ysMD09TSgU4u1vfzv33Xdf2Qhxz549\/If\/8B84ePAgAE888QTve9\/7uHTpEidOnMjIf1n43ve+xy\/\/8i\/zwQ9+sOR5a2pqMsrWFjYyePyWJB4pJclkkmQyicPhyFhSX716leXlZe6+++6KjJQKoZKutsXFRQYGerjrbjc+X2W7KJfLzJnFyYfUPYi5EYRRWRTjUCWmFoBYoqArqEQgRS3KzBhKonj7tWKmSTc345kqbg5VCE5tnpjPDd1j3Aj42H8q9zNTJq5w48bxTHrhrehAml2U37NnT2ZmJtv2QVVVNE1jbm5uW2RatjraKNQR9vrrr6NpWqZmpmlaTs1sK2aqdkJnHdysNbW2tvJv\/s2\/4ZOf\/CQPPfQQZ8+epbu7my9\/+cscP36cZ555puR5\/uE\/\/Ic5\/\/35z3+er33ta7z00kucOHFinaL+U089xdve9jb2799f8rxCiFtW44e3IPFYqbXR0VEWFha45557WF5epquri0AgwPnz56sq\/uajVFeblPINeZYxzp33oiiVL6Saxht2B3rOTI+UAhnXUBb7CxJIKSj6MqanBRG\/6Z8hAanUocxPo0Qqk8epUaLEmvbinR+v+NoiHcf70EFi379C\/WqU4Ss+9p28ST7tNcu8vhxmdnaWdDqdkW9ZXV29JZXpnQxFUQgGgwSDQfbt24eu61y\/fp1wOLyuFmINbd7uxXC7U33ZM0RtbW3rCvHXrl3D6\/XmzFTdDnLeCQ0OcLOxwPqbCCGIRqN88IMf5F3vehemabKwsFD1Of\/yL\/+SaDTK2bNn1\/1+dnaW7373uzzxxBNlzxWJRDK1zdOnT\/O5z30uY6tQDd5SxJM9m6NpGoZhcOPGDW7cuMGhQ4fo6Oi45S+ZpWyQj0QiQU9PF+3tOkePlU6tFYNQojnaa2uptQhqbHbD9yuMEKYziJJawVRrEYuLqCtXqj6P060j3T5EIlr+YOs1yhzxgBe5GqMuHGX4qp99J9YiOrdTUj+\/wh3v+Vni8Ti9vb0kEglef\/31TLF6O1QEthKapuH1epFScuLECZLJZKZt++rVq+i6njOUeDsIebuJB3KjrvyaWTqdzhTiLfvrbOmazVJU2M5UW\/595L+f7BqPoiiZNv9y6Onp4ezZsyQSCfx+P9\/61rc4fvz4uuOeeOIJAoEAH\/jAB0qe7+jRozz++OOcOnWKcDjMl7\/8Zc6fP09XVxeHDh2q8B2u4S1BPIVmc6SUhMNhkskk999\/P8FgcFOuVSjiWVhYYHCwh7vv8eL13qqvyJrdAQaI+bGMZ86Gz4dEqi5kzIE6f3XD59FkGrN9H+J65aQl0gm8Dx0g+r\/WDKnqViIM9wfYd2SteUEOdiPE2\/B6vfj9fhwOB\/v27ctpzbVUBLJVpm\/HznQ760vWoutyuXJkfSzbB0vGRlGUnBTUZoh67hTiKbboOxyOdY0KFjkXalSo1nW0knvYSpQjnmpw5MgRLl++zPLyMt\/85jf5p\/\/0n\/LMM8+sI58\/\/dM\/5aMf\/WjZ5+nMmTOcOXMm89\/nz5\/n7rvv5qtf\/Spf+cpXqrq3Nz3x5M\/mCCGYn5+nv78fIQTnzp3bVLmT7BqPaZoMDg6SSk1y7rwHRbl1KR0hJGZUooSGqlYOKART1L7RGt14y+dSYjOYbQdQJofKH\/wGHHKGlEPDmV7bFNQtrnKtN8Cx42la1JnMwmctFtkzEPv378+oCFhdYptp\/rYTUIzwStk+TE1N0d\/fj8fjyRH13MhzvhOIp5oB0kLknK2oAOTMD1XaqLBTicfSFdyIcoHT6cw0F9x7771cvHiRL3\/5y\/yX\/\/JfMsc899xz9Pf38+STT1Z9fkVRuO+++xgYGKj6tW9a4smezbG+PFJK+vr6mJiYoL29nZmZmU3X2LIinkQiQU\/3ZTr2JmnaFURRqhPkLAQpgTCoC72YrmaEDG34XIYJwvCjTvcCIKLTmLV7UZYrr9MUgnCmkU43IlVZJCb0JKl9tTiv38xL715e5epVPydO6Ay\/2sOu++4ACi\/C2SoC+V1ilvmbRUJv1rRcJQtjPiFbszKhUGid7UN9fT01NTUVLaQ7gXg22uBQqFHBat7IHu7NlvYp9nwUijS2A4WGR6WUOeZsG4XVdJWN\/\/7f\/zv33HMPd95554bOd\/nyZU6dOlX1a9+UxJM\/myOEIBaL0dXVBay55Om6zuTk5KZfW1EUEokEly+9wD13OvG4JZLoGwoEhTvSKoFhgLKURHnDD0dJzhKRPvyu6iwKAEzhJjo9S9DI1W0TyUVMTy1KfHnD9ynSMcyOwzA+Auk44o2Zn1JobTeYG9Bwy5ufT9tKhN5ePzJ+Ee67o6KutkJdYtuRlttMbDTFV8j2wUpB9fT0YJpmpj5USkttpxDPZkQb2cO9nZ2dOY0KExMTmUaFQlHi7Yp4pGkiqjhvIWVqoOpU22\/91m\/x3ve+l71797K6uso3vvENfvKTn\/D9738\/c0w4HOYv\/\/Iv+U\/\/6T8VPEe+7fVnP\/tZzpw5w6FDhwiHw3zlK1\/h8uXL\/NEf\/VFV9wZvQuLJn80RQjA1NcXVq1fZs2cPR44cQVEUVldXb4tvzuzsLDX+KHeecKEobxAfBjKtgmtjxGMYCsmxKXxmbuHeJeOYeFConHxMJYgyOULQWD+TI0wdXD5kUivoRFoO0lmDaTgRg73oehAGx5BOF\/h9CK8XPG6Ey4EuIBKP4nQ58HldpMJRInUm7lCuUVzrcoShwTVy3MjiVyotZ3moZC++xdJy273wbsb13W43ra2tGfVkS7Qy2\/TN+hzq6uoyO\/+dQDy3S6stu1HhwIEDmUaF\/Cixrq6ORCKx6Z+DkppiaUIS3N9W8WsKEY+maVVH8rOzs\/zCL\/wC09PTBINB7rjjDr7\/\/e\/zyCOPZI75xje+gZSSn\/\/5ny94jnzb6+XlZT72sY8xMzNDMBjkrrvu4tlnn+X++++v6t4AhHyTTO0VsqQ2DIPe3l7m5+c5depUTrdHLBbj2Wef5d3vfvemPFDxeJyenst07knSWqSN3VRrUbQCQ5glIE0n5sQYWrpwt5jprEfIcNn3IBFII4Ay2V\/W+G3F9BNMV57GiysBjJU43tB0Rn9Nunzoo6uIaKSicxgGTNxw05AXwZkSlv+PXydcu9YQcvjw4YrvqxTy03JLS0tF03IvvfQShw8f3paBzqGhIdLpNEePHr1t18je+YdCIVZXVzORYSKRwOFw3Nbrl8MLL7zAiRMncnyvtgKWOeDS0hJzc3PrxF832qgAoCVHUSLXufrKHg6991jFrxseHiYej2caAHp6enjve9\/L8vLytm8QNhNvioinkOzN6uoqly9fxu12c\/78+XUdGdauYTN2dHNzc9wY6nkjtVb8OGHEkYpAVDi\/I3U3YnIIrUTnmpIKrc3iGMWtq6VwwqqOGqpM2iaoRMraXEuhIN27YH4B98L6ZgKRjKIe7cB8rbJOOVUFLQixsIrXeTMSVQQsP\/X3qL\/07k21FK8mLWcYxqZHx9Xe6+1EoZ2\/RUKhUAjDMIjFYjmdYVtZaN+uwn62OaDVCev3+1laWmJkZAQhRE59qCJrAylxJAdwJq4xOeInHa8uVV7IEuGt5sUDbwLiyffNARgdHWVgYID9+\/ezf\/\/+gg+D9cfTdX3DA6OmaXL9+nWkPsG5+x0oovTiJEhi6nUIZ6z8uVNulPFrFXWuifgcprsWxVxvoSCVGsT0JCJZnb2CklpCuoOIRG76S6oupFYHEyOIaHfpcyyPY544BlevVXTNtl0JuuaCdGqrOerZu+cHmYq9HeG6fYtPqbRcKpXiypUrFaXlNhvbkXDIbtiwtAcDgQChUIjx8bXmk6oX3FvATrBFkFLicrnYu3dvpovQUiGfm5tjYGAgY22Qn67MOgnOxBUcyTUH3\/4fLeHeXd0YRyFLhLeaFw\/sYOLJns2xHsx0Ok1PT0\/GqreUR4X1x9voLjoWi9HTc5mDnWmamzQqHQgVchlp+hBK8aK7jDtRpq5WrEQgMCGdRKoqgpvkZ8ogymh\/Ue+bkuc000i3H5mMIKRxs34zNohIV975pqTniXl9uGOVDZZ2dMS4cT3AoaabROkROqHvvET9B9ZPVd8uZC++S0tLmWL0dnTLbbdIqMPhWGf7EAqFMguuy+XKWXBvRfmjEHaKSGg2+WWrTGQ3Kljk3Nvbm+tSG6zBl+pBS69lEUw0rnx7mNP\/tPL6DqxtlLNFi2Ox2C25me5U7EjiMU0TXddzUmtLS0t0dXURDAY5d+5c2YdfCIGiKJmh0mowOzvL8I0e7j3twu2qbkcqkMg0UGCdkhLkqoI6X1mEkHNeI4qp7ULIJaTQILax8+ScM7GEUdsJC3OIgSGUDey+FSOF80Az8spwUf+dbNQG0rgCMJGoYY\/7pmFdw\/U+THmmxCtvH4QQOJ1OGhoaCqbl+vr6Mt1Qm90tt90l1vxUdKHOMEs5YHR0lKtXr2ZsHyxZn1v9LHbCDE25dupCigpWfWho8DonW0MEa25uClcWPRgpSTpWvuszG\/kRz1vRfRR2GPEUm80ZHBxkZGSEI0eOsHfv3orZv1q3UNM06evrQ2Wa8\/c7EGVSa8UgiGDqdSjazZSblAosJVGXigtyloOSnMNwtaDOTyBiG\/PbyYbpbkYZ6EL6mysijWJwxhYw7jiB7KpM1eDAvlWudjcyZzjY5Vv7Yu53x3itewyOVV6IvV2opFvOGmJtaGi45bTcdu5my0UbqqrS0NCQEdVNpVIFlQM2mqKsxnL6dqJa8stEzI21uKOzqHk1wq4frukjLs2FqtIfLNTVZhPPbUS+7I0QgkQiQXd3N6lUijNnzlQ9RFWNaVssFqOn+xKH9hvsalTZiNZaNoQRQSoaQllTnWZuGSWycc01AKkGUMcG1hRFb+U8QkPKAMrAmpQN0TlkTSMiXJ34YDaU2CT67t2IPLn1QnA5TBr36Uxe81PjWsatrX3W4plX4cPv3vA93C7kW2FnS9mMjo6iKEqOttxmSNlsFaptvnE6nQUtDrJTlPn1oXLXhzcf8QAIM4478iKKmdvZKYEbf7cWzcdX47z++uuZzYyVrixWN8vXjLObC24jsmdzrBTZ7OwsV65cobm5mXvuuWdDCgSVEs\/MzAxjg5c5fYcXn39zOqsEaUzdB5qBmJ5GJJZv6XxSDSDGRxHpONLTgETZkKSOdASQSxGUpZueGsJIg9ePdDgR6eoHVoE1S+xdbvQ5DWGUT2\/uqQsx7ainb6aG03vWGhyOJGdJrkRxBXf2Dq+Q1cHi4uI6KRtrkSmVwtnuwvqtdH3mKwdk2z7MzMxw\/fr1HIvnQrYP2VJX24lqlQuEsbpGOnJ9R2oy6WNlYm2swu\/289BDD62zw3A6nQXt0g3DyFnrrBrPWw3bSjxSSlKpFMlkEk3TMh02vb29TE1NceLECXbv3r3h85cjHsMw6Ovrw5Ea5tyhBFL4YRP00SwIIw7TIYS+fEvnySYdABFfxAy2IxIzZV6ZC9PdhBgdQikgdyNiS8hde6EKHbb1EHDiDoz5FZTIImJ1ueiRioCWzijLgzVcnfNxYlcUn0PS\/\/j\/4uTH\/\/Et3EP1uJVFL7sIbaXlrCHF69ev56TlbkXE8nZhMwdIC9k+WJ+FZftgKUtb9aE3Y8Sj6CHc0ZcQsnD9ZqrvZrYkHUut+1yy62bZjQr19fWkUqmcut9GBUJ3OraNeKzZnPHxcaamprj\/\/vuJRqN0dXWhKArnzp27ZZ\/xUsQTjUbp6X6do80rNDW9MfSZWEB66iqewykFKR2I4SGMtAQvKMrGvtz5pGNBWRnDrN2DEp8r8sqscyCQjibEwNWSw6XK0jhG2yGUycpF\/6TTi+lrQs6HEH3DKEDKuY9UzypKXS3angZUn4qMrSCW5tCy7L87diWZmU7jiLiYTpjsdsfxdL0GbC3xbCby1ZSzU1GF0nI7rblgM5Fv8WwpS4dCoYztQ01NDXBzgd0uUq6UeBR9Hnfk5Zzu0nxc+e7N76SeWE9O+XWz7EYFq7V\/cXGRl19+mZWVFVpbW6t6L+Vsr3\/pl35pnffOAw88wEsvvVTyvN\/85jf59Kc\/zdDQEAcOHODzn\/8873\/\/+6u6NwvbQjxWpGOFlYZhZIb62tvbOXTo0KbsgIoRz9TUFBM3unjgQBKnevPBEDKNTGrgqa4TJR9SqoixKZT4CgoQSzXjcVdvb1CMdDL3uzpPQnXgFiVatzU3MiZQxisr\/CvL45gNbSiLxXXupFCQwVZkXEeODCOM2ZzWcJeYRd9Vizm3TGrpZtu0YQqiOElrCg63xB\/QOXRgleHuOpbnPXiakrS7o0w818Oeh6oXHtyJsNJybW1tOamo6elp+vv7UVUVj8fDwsICtbW1my5qWw5bKZmTrywdjUaZnZ1leXl5232YKkm1qczjTFwpSTqGdDH0zI3Mf1fS1ZZdQ5ydneX48eN0dXUxMjLCSy+9lPGreuc738k73vEOTp8+XfJvVs72GuA973kPf\/Znf5Z5Tbku4QsXLvDhD3+Yz33uc7z\/\/e\/nW9\/6Fh\/60Id4\/vnneeCBB8q+x3xsC\/FYdRwrvx2NRrl+\/TqnT5\/O7BQ3A\/nEYxgG165dw62Pcu5wvODuX8SX1gzPNvhllCgwtYiyenPX40kuIt31CCpXsJZqADExVpR0AISRxJQOpCYQYv17Sak1OObmUaIrBV5d5JzSRDHj6A4PWt61pa8eU\/Ujx8YQ42ut3IU+JZGM4T0QJLKorMlkvwFVEdSgr2UzY2v\/orpCXE0RMFzcWAhwR+sKc09+h+YzR7fcBvp2Iz\/lkk6nuXLlCul0moGBARKJxJan5bZLq00IkUkhTUxM8NBDDxV0Hs1uYb+dpFwu4tHEFKoxi6KHix4DsDiV+8ym49VtYg3DwOv18o53vIN3vOMd\/PzP\/zxHjx5l7969\/PCHP+R\/\/s\/\/yaVLl0qeo5ztNaxtAqqxsH7sscd45JFH+NSnPgXApz71KZ555hkee+wxvv71r1f1HmEbU21CCMLhML29vUgpOX\/+\/KbvcLKJJxKJcKX7dY7tDtPoK7GYm3HMVAPCVb3NgQT0qTCupdxoQUgdmRJQ4dxdhnRS5RUQvGYE09ueY28NsJzyEpy7sbHh0mSEuMuPX0+C5iTpqic1M49vYnTt9xWcQwlN4z13iNhzpWtGAc3kZFOUrkkHtarG61M+TrZM85Pv\/5C63Y2ZluWtlnHZCjgcDjweT6Y+lO8tY0m23M5uue0WCbU2n9ndcPm1MouUa2pqMgX5Sm0fKkVx4pE4lDFUMY+yVL5jc+DZXAURvQriMU0TKeW6duqDBw\/yL\/7Fv+DjH\/941anZYrbXP\/nJT9i1axe1tbX8zM\/8DJ\/\/\/OdLOpteuHCBT37ykzk\/e\/e7381jjz1W1f1Y2DbiGR0d5dq1a+zZs4fJycnbElZbxDM5OcnUSDcP7M9NrRWDiK+Cq\/rp7MRMHF9otODvlNgspqsdIUtHH9WQjgWxPIYZbENJzCMVDWn6qZ29XtW95yMgUuhNh6H7Mg59no3EHtrcAM479pHqLvyZWFAVaK2PElqpoQE3w8tpmvoWab73ThYXF5mcnERKmVmEGxoaNn0R3q5aS\/Z1y6XlsrvlNisC2G7iKTZHlF8ri8fjGVKemJjICHpaz0Slhm+FYM0PriceiVMZQlPmMCKU7SKVKHR9cyTnZ9VEPNYmOZ94spsLKn2PpWyv3\/ve9\/KP\/\/E\/pqOjg+HhYT796U\/z9re\/nddee63oOjwzM0Nzc3POz5qbm5mZqa7BycK2EY\/P5+O+++7D6XQyNjZ2274As7MztNaEOXsoUVa12YKir2Cm2xCOyluLwzNxahdulDxGrM4jfV6EKNxurONFq5J04I0IJLqI6WuA+RDK8q2RjumtQy5GUccuYe7ZByPVOwxacDFDot6HEiotqdPiSzOfNiCmoMT8GN3X2L37o5l6gNWybLXpWotwQ0PDm8J3pxQKPfeFOsSshXcz03I7gXgqiVw8Hg8ejyfH9iEUCrGwsMDQ0FDG8M36PKqR9bFaunOfIROnch1NCWHoXrRE6c0TQHTVR3I197utx9NIUyIqaC4qRDwbbacuZXv94Q9\/OHPcyZMnuffee+no6OC73\/0uH\/jAB4qeM\/85uZVnZ9uIp6mpCV3XSSaTSCk3\/QuwurrK4vwUp\/ZE2VWzgWaBeBIcld3P0myChjKkAyD0ONKsB3W9lUA0qeJdHEekq29CAEBxImfCObWljcAMtiEHb2QcRkVonHRDC9rixnY2IhlH2xvEXMmt9xTCsZplfrxQywGvQngBhn94mX3vOJ0j45K\/COf77jQ0NLyptK0qjbTyjd+yLR8sy+dsbblKI8KdMEdU9eCmEAQCAQKBAB0dHQV11Px+\/00dtTIbk\/XqCToutQ9VhJFSRQlXNvg9ernwRlVP6jg85XMG2R5jcNP2eiPuo5XYXlvYvXs3HR0dJS2sW1pa1kU3c3Nz66KgSrHtA6RWuuBWVKSzIaVkcnKSmbEeHjwcx6VtUPYmtYA0diPU0sOQS\/NJ6uYrn30Rq5OYdW0o8ib5SNWPc+4Girmxbjrp8CJnQijhEGbLAdRw9fbWUghMXxuiN1e8VBg6miNO0unGVaHddT78iRX0Cuo9mgJHW6JMzPlpdmsMP\/4c+95xev1xWYtwtu\/O4uIiIyMjObpa1e5+twMbIUmPx5MR9ryVtNxOiHhu9fr5OmqpVCrTnpwvcVQoOswlnhRutRdFrGUdzISKZlb23Hf99VTBn6djqYqJJ58gN2uOp5DttYXFxUXGx8dLzkyePXuWH\/zgBzl1nqeffppz585t6H62nXisXcZm+KHous7Vq1eoUSY4c7Dy1FohCEAmJJSIcsMrOnVza7Mr1ZxXRCNIz1onmlT9iIlxnBslHdWJDCUR4TVjN2VmCKNlP2q4uNfOunM4PJi6G9Ff2FtHSUQxfAGkqSM2ILoqa+oRCqQPHGC5a4J6bzLHFiEbe\/1phkMpkoaLltAiQ8\/3cuDB40XPXch3Z2VlhcXFRcbGxujt7SUQCOSIWubvsLe7uH6ruJW03E4gns2OuJxOJ83NzTQ3N2c2JtlNG0CO2rb1GahKCpd6FUUk37g3N2q0sk1cSvcy21s461Fpg0Eh4onFYptqex2JRPjMZz7DBz\/4QXbv3s3IyAi\/9Vu\/RWNjY85MTr7t9cc\/\/nEefvhhvvjFL\/K+972Pp556ir\/\/+7\/n+eefr+reLGxrV5v1v6qqbkhFOhvhcJjLly\/jTac5fKo6F9BiEIkFpKcBoaxPEUWjJjXTIyiyesJUUisYnnZQDcTEeNU1HQtSqJhxB8piLsmIhQkSHi9uowJfIH8TcnoRES6dSvOnVjHb98GNyuo9ur8O4WvEmFtG9s0CC\/g0B3MpLwtJjQTgdBo0+NM488RYz7RFeXrQyfGAYOir3ylJPPnI7o6Cm6KWi4uLXLlyJcdlsqGhoayW2FZgsxf+atJylkzVduF2p\/qyNyb5tg+WfI3D4aAmIHCIroznlpRAZLVi65LZG8WPrLTBIJ94TNPckEhoKdvrNSflHv78z\/+c5eVldu\/ezdve9jaefPLJnJRevu31uXPn+MY3vsHv\/M7v8OlPf5oDBw7w5JNPbmiGB3ZAxANkhkg3Aikl4+Pj9Pf3s2\/fPsyhNCZRlCpmZopBSB2ZUMGbSzyJhMQzMYqib\/waSmwJGUlvnHQAadagTPWv+53QU5B0YThU1BLEaAb3Ivv7KtJWA1BmhzEPHIGh9dcEiLtriEs33piOuL4A5LqmCj3NrpYoi9Ne\/EJAWmVlSWUpDWgmzf4UQZeBU4WTLatcn6nhgIzR9\/3XOfqeuyu6x3zki1pGIhEWFxczXjNutxtd1wmHw9s2wHm7kZ2Wk1JmLB+mp6eJx+P09fXR1NS0JfMy+dhqL55Ctg9LoRvsbppDU29+V6JhCKSXKz7vtR8Ut5KvlHgKmcABVdd4\/vt\/\/+9Ff+fxePi7v\/u7suf4yU9+su5njz76KI8++mhV91IMO4J4qlGRzoau61y5coWlpSXuvvtuGhoauNp9mdUlF8G6WyceAJEIId0BxBvkb5oqytgwWnpjhAFvSNjMRSCeRHo3luowtV0og8XVCFypVWKuZnzGevsEKVRMdzOi90rFOzoLYvYG5p59iInhtXPVNZNWfMTHZnBPLZfKTALgd+nEG5IkFl2oQqAADQ4ABT3qZjimspJM0uTXcblTRIWH0H\/53oaJJ+fes4rSnZ2dGS2xa9euMTU1xejo6KbaHVRzX1sFIUROWu6FF16gra2NZDKZk5arq6vLzE\/dzvvbbi8eh7bM3paFnPeo6yre1FxlA2uAiYPe7xZvLtIr9OTRdb0g8dgioZuI7D+0pmlVp9pWVlbo6urC4\/Fw7ty5TP95KpJiqjdF8Pwm3aeZYGXRSbDJhZQKytQC7lR1NtP5kKIeZeo1AMzAUYRZnR2B6WpB6S9tSw3gXZ3F2H0QdeWmB5Dp8iOjAjGxMRM5ISVKcgW97Tj68BRcXRuqq2aqpimQZDylQmR9wbVGGtQ4NUhptLlMBpMO9ss4l598ntMffnBD91wMlpaYy+Vi\/\/79+Hy+TFrO0lWzUlINDQ23pUlhu7XagIz3EOSm5Swb7GwV5c1OTW5nV52qzOMUgzmqH1KCSEhUUfng9fK8m1IZ93QBvbZCyI94YrEYTqdzS6WDtgpvuohHSsnY2BjXr19n\/\/797N+\/P4fEUpEk\/S\/Pc+x89S2IxeCWKaR0I2ZXUZYLd65UCtMRRHRfvvmDiSHijXV4nJU96KanBXGtPOlYEDM3WHHXEBQxzEALcmwSEVvfzl0pZKABfVlHJsbR4+kNP0B7G2LcSAVwp4ovOnVOwT65ypUVaPofP0J+6Pxt231LKdd1ioXDYRYXF5mYmODatWs5zpu1tbWbtmBud40l+\/rF0nL581NWHe1W03LbY3stUdVZnIzkkI6RcsP4LOqrr2Dccw9KrYKgPGlc\/fFiyd+nY5XNA+ZHPJFI5JYGY3cydgTxVBrxWNpWy8vL3HPPPZn2yWwkI0mGX5zHpAGFjXnL5MOtJDBnXCiLI7d0Hik0xOg0wrxJsoqZRk0oUAHxmJ5d0FeZ2KcFIU38Zhq9tgPRf2VDEjqZ6ze2YwxMQDKBAEx\/DVJ3IpIb+5w7W1YZnqjBYxb\/YjW6TFprNKLRFBf\/2w+4\/\/\/3rg3efXXIdiE9cOBApkV3cXGR3t5eDMPImR0qZuy101Gqqy0\/LWd1yy0tLTE0NEQ8Hs\/I2NTX11NTU1P1Z7D1qTaJpk7hYBzxRlSTjKmYE2N49AR0DSHiUdRnn0G6XBh334dochZdS6SE3m+XnvOptKst\/7N4q9peww5JtVUS8SwvL9PV1YXf7+f8+fNF0x6pyFptJ7LspqZ2c4hH4oNLV6H91lItMuVFWRpc93NneIZV514C7uLdeKa7AQavb4g4pLcROT4LiKprOrBWk1pQawleHcqxyPbGwsiODozBcajCYtyCImBPS4Sp2VpcJf7+h9w6L0UUlr51AeOfv2NbVAryW3Sj0WjO5Lxl7NXQ0FBVJLDd7czVXL9Qt5zVpmyl5bLVAypJy21tqs3EoU2gySmEMDF1F2J2Ds\/SWleovqigxm8qbIhkEvXC80hNQ7\/zHpS2AAq5Mz3xhJ\/YfGlimZ+ez5BIqc863wRuu60ibid2RMRTqp1aSsno6CgDAwMcPHiQzs7Okn+IVHSNbKaupak5W\/SwqiBvzKLMjGC23omibaxV23Q0oFx9rejvvaEZUi2NOJX1D7F01cDI2IbcQc3gbuTVawjTQLYfgsXhql4vnW50rYHaG4VfJ6ZHUY8exOhdT6iVIBLXMH0qY1MKu71pHEXWoLvrDV5eSHPhK9\/lwU\/+ow1da7NgKSv7\/X7a29szxl6hUGhdJLAVBfpbwa0QX76MjSVrZLUpW+6jVmquEBlvXarNwOkYQzXnkKYDOb+EunBzWDoccxEY6in4SqHraK+9jHxNYJw6jehsRBFr68Bkb\/kSwerSKq+++iqappW0fTAMI0eRPRaL3bIn2U7FthKPEAIpZdF2assUKRwOc++992ZmM0rBiniu\/3iBo2dvPUyV+FCurA1JydkItFW\/25aqG9FfuAXZgmqmSYZ1nLV5r3V4kVMhRKK01lkhJDUf6o3JTGpPjA1g7juMMlde3gdA1jSih1KwUJqsxPgg6vHDGL3lNeIMRWN23kEyqeFTdLwOk2bCGH4HM2E\/CSkJuE12OVNky1s5FcGxoE7Pd18n\/X++F4d78ywTNmNy3jL2OnToEIlEItOkkF2gt4goe8HZ7uaCzYq4CskaFSPj7LTc1qTadJzOEZR0GBmKoc4O5kT+aZx4+ss\/uwKJ2nMJesA4cgIO7qHn28V9qyw01jRw\/8MPZmR9LNsHn8+XI+tjGEaO1FEkEnlLuo\/CDop40uncnf7S0hJdXV3U1NRw7ty5ijuKkqtrxDP07Czmbx1BqaA4WApycDrzkIrJG8iWUwi1OukYM6SjxssX9L2RecyGoyjGWpdbRpVgtfiMQDEYqhN9MY4WzyUsOTKIuacdJVRa2cBs6sC4PgZFZDbyIcavoxw5iNm\/PvIxA\/WYNbvQozrp0ek1Tx5XbvTW6k+TMmI4E14UQ2MiqhJO6TS4dXZ71xbnRpdgbyrJD\/\/jU7zndzZnnuB2wO1209raSmtra0bOZnFxkampKfr7+3N8Zt5MqbZqkO8+Wiwtl06nb+uuXogUDu0GYn4OZfo6SgE1k\/REGE+6uvELtf8qibF5prrL93Om46l1g83ZrqNWG7u1Di4vL+P1ejc0PPpmwY4wOMluLpBScuPGDV599VU6Ozu56667qmpjtSIeJETDt9b6KfGh9N7sIBNIzPnqSCcla1EnKk9DialRpHCvzdrEVMRieQ+QfEihkEp5cK+ut2AQ0kTOzWH61zdmrL1WYDQewLgyWDHpWFBmbiD2dSCFirGrnVTrcWJaG7GRKInuYfSh8ZKSO53BJNKx9vl6FEGz24GGh8FlN4O6m\/mkycEAmM92E1mqPgLcDlhyNvv37+fee+\/lwQcfzEQEfX19mYV4bGyMaDS65RHQVhGflZI7efIkDz30EKdPnyYQCBCLxZiamuLChQv09\/czPz9\/yyomFoSI42AQre9VHNP9BUlHpw7P1FiBV5fHxeEGHP5KiGf95tdyHT1y5Ahnz57lzJkzOJ1O0uk0f\/u3f0t7eztf\/\/rXWVhYoL+\/v+Ln4mtf+xp33HFHJvo8e\/Ys3\/ve99buI53mN3\/zNzl16hQ+n4\/W1lZ+8Rd\/kamp0p26jz\/+OEKIdf8SiQ0KGrNDUm1Wc0EqlaK7u5toNMr9999PMBis+pyp6M3FcrovTeD+jd+fHJhaV4wX44PoDUfQHOVzuyk8qFW0PgOIdBwzqSEdbpTpjdkbmP49OK8V1l2DNYdQmfRiOlwoWTs96fRgqPXIKxub8cE0MR1ekrWd6NcmgMpUfbNxuD5O74LAZd78QgedCqTAlF56Ymk0JcWPPvln\/KPHf31j97mNyLY5llLy+uuv43K5CIVC3LhxA4fDkdOkcDtdWK3FbKvnaLLTcrFYDJfLRTAYLJqW24gJoCJW0VI30Ea6UIzCGyhT9aK8dnlD78HUXHzz\/wtz6kD59H8lXW0ejwdN09i7dy933303+\/bt44\/\/+I957bXXuPPOO9m1axfvfOc7+cM\/\/MOSEWIp2+s9e\/bw+uuv8+lPf5o777yTpaUlPvGJT\/CP\/tE\/4tVXXy15fzU1NfTnlQtuxRNrx6TaEokEL7zwArW1tZw7d27DX7hMxANc\/\/Eih+\/fWBgvpQ\/l2noBPCFN9Pk0WmvpL4IpBanRafwb6UJLmMgy\/jXFYNR1QE\/5lmuxvIBs7cRcmUABZLAJfT4OoeqaDyxIzUHa34nZ3Y\/m9SJbmzCm5jd0ruONMfoiThyx3M9YEQotLhfgIja3xHN\/+H0e+vX3bOgaOwGWBXx9fT2tra058v7Dw8NcvXo1I3B6O1xYLeLZbpHQ\/LScVSPbaLecIkNokes4pvoRZvGGHHMijJramMLJmN7OajiC4iy\/hFar1aaqKg8++CDf+c53aG9v5z\/+x\/\/I888\/z4svvlj2vZeyvf7lX\/5lfvCDH+T8\/qtf\/Sr3338\/Y2NjtLe3Fz2vEKIqq+xy2HbikVKyuLhIOBzm2LFjtLe3b\/iLYKR0jNTNSGTwmVnS\/2Y\/Dq369IW8PlG09dg5NUKyYT+lBorDKwq10eXqr+v0YvQOgW4g9jWgpCtXSVjrYOutuGVaTI0gOw9jYmL0j0BqY+3n0ldLKulFDrxhexCL4fAryF11mHPrJXsqwRHfMq+GfdRrhT9kL7Dyty8z\/57TNB289S\/Edhb5rec9W97\/4MGDJJPJTJNCvgvrZqgI7ATiKdROnV0jKyTqWbxbTqIakzhWBlAXxkqSji7rUMdf3vB9\/8131jaUwlG+2Wij6tTRaJTm5mY8Hg+PPPIIjzzySFX3WMz2OhsrKysIITLKFcUQiUQy3kenT5\/mc5\/7HHfddVdV95ONbSWeVCrFpUuXiEQieDweOjo6bul8yUju7kUakoU5we7W6hYVKf0o\/cXlvoWpE5mI4jpQuPAXM70EJzeWrjKoRUTXcq7migLeygpx0luHeWMSUeU8jUzo6FGBskHSMRv2kppYgUieunUkgjOokqyvQYbCVZ9XCDi5K8ZrUyq73YUf06CqcPVf\/TdavvRBdrU2EwwG33ROpKUIz+VysXv37rIurNYCXO173wnEU66dOl\/Us1i3XENjkI6mCI7oDOrSDKKEzYip+lAuvr7he171tNFzeU2rUVYQgW5UnXqjXjylbK+zkUgk+Hf\/7t\/xkY98hJqamqLnO3r0KI8\/\/jinTp0iHA7z5S9\/mfPnz9PV1cWhQ4eqvj\/YZuLp6+vD4XBw8uRJrl4tXpOoFKnI+sVzqi\/J7tbq0nayb7Rs1FATmkXuP7zOxtoUDjzjUxvyAoqoAZw9125ee3oc89hxlFTpDjTpcGMsxhHx6tJzsm4X6SujSN0g3FhHbby66ERvPozee6P48OjKCtLrxfR7UCKVzT\/NxzQWY06EqVDvNjlSk+bigoouVTqC4M\/zva9HMv3Z\/8XCxx9A1\/V1lgc7dX4mG5XcYykX1uvXr2\/IhXWnEE816cNCabnV1Wnq1WHk3BLElhBKlvaaUDFVPxgqMp5EhJeJ9c3iDToR+sY6Xl+4WgMsA2BU8DWvVDInn3huh+115p7Saf7JP\/knmKbJH\/\/xH5c835kzZzhz5kzmv8+fP8\/dd9\/NV7\/6Vb7yla9UfX+wzcRz8uTJzE5uM4zgUpH1+dobzy1zz9ubKj6HafpRBsqbG2lSx1xRUWvzOnCiGiKyXPH1LEgE5nRkHWHJ69eJdTThFYVJRQoF0\/AjNjAYmppNQyqNAHzLUeTuFkSovMW1VFX04P61zrcycMdi0NhEEoGMrFf0TugKoZgLU3NBIkXAIdntksAbz4MK9zUm6F7yEE86uZFMogqDg14Vl7q2YDZEYyS\/NcZd\/\/59LC4usrCwwODgIC6XKzNfsx2WB5Vgoym+zXBh3QnEc6tddV7nMnW+YWQ0hZKOY6gBIgkdIxxBCy\/jTYTJjgNj8Rb0128QO9yKb1ciR76qEhhOH3\/zVze7RdNm+b+fHi\/fpSelXCcSutE5nnK21+l0mg996EMMDw\/zox\/9qGS0UwiKonDfffeVtMouh239Jlpt1JthBAeFiWfylVUMsxm1gJlbQVyrYgEfHkQ\/tQdNW\/vimFojynDp7pBiSHpa8CytT88JQ8ecjWLuVguazpn+NrjWW9W1JIK01gQLozevk0phhGKo\/tqSxCm9QVJpP7K\/crtvFuZxNbeQNE3MeIpVX4ClcR1Vgl8z8QnASEKRwNSpwh31cXqWBa1vFNbmkiYhM0VASbHf68Z5bYgbf\/I8pz757oyaQL4LZ7GIYLujolu9fjEXVsv4rZgL604gnlsZIHXI6zgig5irKsq1aygrCygUfYyYSwRwPL\/WKapfnyJedxCvWrlTL8D11b2kUzeJJ5Uqv66k4+UjHmvjnR\/xVOvFUwjZttcW6QwMDPDjH\/+YhoaGDZ3v8uXLnDp1asP3tCO2gJqmZRj\/Vrp28ms8AFKH5SUHDQ3lu1dM048yVLmVq5KOE19S0ZpMpOZD9FYn4Jm5R5cfca24moA7GsZUjqIYuf32lXaw5SPV0Ak9BYhjNYzhakJ1ehCp9amxdLAFYzYOqxuYLVpYQDl4kpXeWeR0lNoqnzynAqdqY1yJevEaDjyqQpvqBtxci8RJmCmO\/fB1buxtYP+j96Kqak5KJhaLZTqlhoeH0TQtEw1tZ2PB7bh29rCiJXBayIXVWtTedMQjdVyyG2V1HnNeR+2+UFbD0PA2ov1kNOdnqZcHSZzdS72orPtSCsFf\/XXu7EoirlNuylBP6EhTIpTin7P5Rro6v8ZT7XBtKdtrXdd59NFHef311\/nOd76DYRjMzKxlOLKj4nzb689+9rOcOXOGQ4cOEQ6H+cpXvsLly5f5oz\/6o6ruLRs7gnisD9swjFsinpUiHVTT\/SkazlVwgqtV7OLfgHtmCtnYhpyLoKQ3NlBl6H6UZJk6zvV+jBMHURNrszFmbWtVHWwWEnWt0DNU\/HUL85h79qLoUzlpiEV3M97hRcQGUqKmP0hKqUV\/\/Rre5kZWExpKBemHfDgVuCMQ4+KCSp12MwXR5PAAHsIxyfKfPYfaVEPHzxzOeW1+RGAVqIeHh4lGo9y4cYNoNLot2mq3+1qFXFhDoRDz82sL7oULF8pqqt0uVC0Sqq\/i0a4gQ1HkxBLq4JWy9VTpcBN5KYRIr392xYVxls7vok6Wb4BZcrYzMpS7gY3FUmWJB0BPpHF4ix+p63qmvR7ICNFWG\/GUsr0eGRnh29\/+NgCnT5\/Oed2Pf\/xjfvZnfxZYb3u9vLzMxz72MWZmZggGg9x11108++yz3H9\/9UOSnZ2dfOITn9j+AVK4STy6rm9ofseyvx68VrjmMPTcCifPlc5jmoYfZbjyaMeCiIcxQvvRZqonLQCzZjfyYvkOOIHEHJ1DtLoQbi\/m0HjVHWwpdwB9YKZoKsKCnBjHPHAAZW4IFAW97iC+vo2JgJq72kjMJTFX3qgdzS7gqPGRTCpoG1C01oB763VeXYpQp+bmvxUhUBIprv\/uU8DP0fEzhTtusg3eDh48yCuvvEJNTQ2RSITx8XGEELfdAM7CVkdb2S6sjY2NvPLKKxw6dIhQKMTg4GDGgXSrXFirEQlVk2M4nRNwYxJWUmg3yqeYJYLolBdzdq7g7wVgvhYifa4BR2K90kc2fnjRA3n2CJFwmtoK7j0dL008+fUd2FhXWynb687Ozoqet3zb6\/\/8n\/8z\/\/k\/\/+eq7qMcdkTEI4S4Jfvrq1evEgqFaK5vZo71kcPIc4vI36xHUGKXfWVjhTIpBLEXxvAfUFGo7v6loqKPhSqfu4msYOhHEAtLiHh11tuGohEPSdypyiINOTSEcfQYxmIEuUHSMdoPE++bhHTuNd3hKMLnJrIM7iq7n9MmjMYkmkgzHA8TUL005g3xqabJ9d\/9GyQ\/R2cR8smGRUS7du3KGMCFQqGMAVz2EGdNTc2mT\/pvV6rLijbyNdWKubAWUlS+VVSUapMSR+wSqieOuNyNNHxoo6VFdy0klT2kL5fumFUSOtHeJMEjbkSRrEVEePi7by+T74cdXo5DBUFJOpaGEuWU\/I422HhX25sBO4J4YGP216urq1y+fBm32825c+e4eOmFgseZaUks6sXnKxxOm4YfZXSjEUsbxguDJFqP4fWUV6rNea2vrSo3UQA9AtKsxUV1qgARtQH3cuW1GYkgMZVC9QWqFvSTQkHfc4RkT\/G6lUtPYLhU4kmtJPmYEmbiglBSRUGhyQW7HGv\/Dnklr60kGDN9RGIR9nm8eN748qqmycDnnwLeVxH5ZMvHWAZw+\/fvz6mP9PT0YJpmTjR0K7Ih2dfdDhTqKCvkwppNwpvtwlo21WYmcUVfRnHoiEu9mGkv2mRlpJP27ib+VIVjGjPLxBr34g2mCtaLri3uQbJe6NfUJZrXiR4r3Zpdbog0n3gMwyAej9vq1Lcb1UY8k5OT9Pb20tnZycGDBxFCFOxqszA7aLD\/zvU\/l4DoqexBLoTUG663yctjuM+6K1bDlu4ajO6+qmo0MlBL4vVhEArqqWa0aGVaaNHavbh7R8sfmIV06zGMniEMwHniCMpIZZ+RdHtI+lrRr5S3XvA6DISQRBJOvOrNBXg5qbCY1DClQq0b\/KqJv0CNVRGC+2pVrpspAnoNq7pkMBahqcZNk6GiYjDw+acQvK9o2q0c8usj1hS9NcRpKU03NDRseIB1OyOeUtcuRMLZLqzZc1P19fUbsmkulWpTknO44pcRIg1XhpEJB9psZRtE01VD9MfViX+mr4yTfOgwbiP3dVLR+OZfF19bZAXVgXKdbfnEE4mskdxmdLXtJFjdlDuixgOVE49hGPT29jI3N8ddd92VSRHATRO4Qhh8LsT+O9enCaTuRxnbmD6ZqblJXhxZ+49IlMRqO95AZVFPKu6sWi0grTaCPgwYxMdNfE2uogKImdfUtqD1jVd1HaN5H6ks4kj1DpPc20JwsfSMj1m\/i0RExbxReYuqRzNRPCkmVzzoUgNTEnBImlwAldWADismV9QFVL2edncQUjCejmE4JXvw0v+7f0Opmk+lyJ+it6TtFxcXuXbtGul0+k01wFrtDE2lLqzWv0qaFIql2rTlKzjNYZAG5ngMozeMmJ7FcLvA5QSHExwOcGhr\/1QVoSqgKkhFJT4UR4arN21MPHcd5V1HcEZubtRmlQ7mZ4qntr1BP6srpYevy6kX5DdWRaNrc3tvtYinqamJ6enpnRPxVJJqi0QiXL58GU3TOH\/+\/Lo0R6mIp\/\/paR759QOIrDqMBETXBpWYgYTWCOnlzH8nLw\/jeqgGldLdbSlvM8ql6qIs2bCb5Os3CVLOL5Jo2IeX4jvAhOZCTISrsqU2\/UES4ytrZvKZi0mc4yFW97YQKEI+xp79JIYWkInqRBd1A+YibupcBosJFZ9jY6mnk34vN+JLrCSDuBUndQ4vSIinJbqi8tK\/\/y7y\/\/nf6Xz44IbOXwj5StPZC3GlA6w7LdVWKUq5sN64cYOrV69W5MK6LtVmGrhmfojqiiENDbMvhOy6jrL6hmZhVIdocYUOqahMxQ6Sjgoaix5VGrEfDqC8sx1tde1Z\/18\/KR3Fap7yIc\/o4Aiu\/d6iiuOFVAtcLteOHHq+Fbz97W\/n8ccf3znEUy7imZ6e5sqVK7S3t3Po0KGCuyTLBK4Q9KRJPObD671Z55FpP8pkdSmobKSG82pGiQTx5U78tcX9LUyhkhyYpNrKQHLVSX7XqN43TPLew7hW19snSFUlFnHgC1eukyaFSpJ65Or6+xdSok6E0Pe3o03npiL0jmMkeoZzyaoCxNMKS3E3tc61v3uTJ8mc6cO\/QSmT\/R4PM8oqEzEvPnVNQFMgcJgmmCYXf+cpov\/6nZz4udyc62Y5cOYvxDt9gHUzvXg24sIqpcy5BxFbwD3\/I0TQhxnSkdcnkN0DJT2cct4Pgjl5mIXX14wUg+cP4xjdgLWIYRK9MEfgvhpSuHnhJ2HymwpyoJVPr8qUXKc4bjmxKopSMNVWiezRmw2f+tSnuHHjxs5JtRWLeEzTpK+vj6mpqYwvRTGUingA5oYMOt8Ytl2LdjauDxfTAjC8vkUzfXkI422NqLLwriyU8hGMLFZ1LbO5k\/TLhdNlycsjqHesr\/cYtZ34xqvr1EvvPoxRoiFAMSX66AJqZztiagzpcJJu6CTVXZmVds616uuJjMcJZPkaKQJa1CgjMQf1jrUaTqXQTclYIslS2kRTY4waSVy6RovrZqpCQ9L3Bz9geXSZ8x\/\/marvuRoUG2BdXFzMGWBNp9ObZnxWLaqeoakChVxYQ6FQjgur5cYppcQx8yqOxHVksA76bmAuCET3tapqoCH3MWZ+dLPpZvLSCp2dNVDF5suCDMeIDPq4JBqwdNmKHlvBZ1hfU8+JB+7MKI6HQqFMs0pdXV2GgK3\/tYjnrYaamhqefPLJneFACoUjnlgsxksvvcTy8jLnzp0rSTqQawJXCIPPL2f+v0z7EFPV1T5y7i1apK00nSY+X3hmKKF6qRmvbupfCoXEeIlcta4THoyTztpDmC0HMXqqIx2jZT+pKxXUutJpkmMhzPYDJJzNpPqrjxiX6+uJzSZwF5Ex6gykCRuypA6WKWEyrtMd1rm6arKU1mhyBDjsDXLA4+eMz43LZ3IjFqE3usiqvvZsKMDsNy\/yvz7511ua5rKGV++8804efvhhjh8\/jsPhIJ1Oc\/XqVV577TWGh4cJh8Nbdl9b5T5qubDu27dvnQsrmND9dZT4daTTBVcH0EcTiO7qNoUrNceZ+FFup6cR01lSd2\/4vtPLOs+8Uj6NVklLlNXVZimOnzhxggcffJC7776bYDBIJBJhYWGBF198kX\/xL\/4FP\/rRjwgGg1X9fUq5j8La3\/szn\/kMra2teDwefvZnf7YiceZvfvObHD9+HJfLxfHjx\/nWt75V8T0Vw7YTT\/YQafbOb25ujhdffJHa2lrOnDlTkXREIXXqbFz7uykkKhKBuLQxeRtYyyOL6wtFf5\/uHkRnPfmoKQ8iXV0ayWw5gDFV\/FoAWjhC0ty7dm\/1LaRLRC0FrxGoIzEcqjhVJqVkZU7FEFWqfiNY2rUbZTKKopf+uu7x6ejCJFvgYCEJ\/WGF\/rBGSHdSo3nY5\/HQ7nbhztt1qkJwyuGi0RVjl6MGQ7qYECmiqoaUkHztBn\/184+jJ29arm8VrNmYgwcP4na7OX78OLt3787UMJ9\/\/nmuXr3K9PQ0qQ3aVVSCrSKefFi1scOtQd7pH6ChyYHq8aD3TxC5PI0Yqu75jdYfYeT7hQdEQz0L6O0HNnSffxtqwazE6K0CiepCXW3WMG9HRweNjY3s2bOHzs5OhBD85V\/+JVevXuWBBx7g05\/+NM899xzpMmuH5T766quv8uqrr\/L2t7+d973vfRly+dKXvsQf\/MEf8Id\/+IdcvHiRlpYWHnnkEVat+lkBXLhwgQ9\/+MP8wi\/8Al1dXfzCL\/wCH\/rQh3j55Y17GcEOIB4LmqZhGEYmtdbd3c2JEyc4fvx4RekA0zDLyo\/rcYNE3IdMeREz1c3c5Fwr0Ia6WqKBwDCITedWcczgHhisblZIOl0krhX+Qq27p4FREjXHSE3F1g1slryGopLUa5CxyjuA0rv3kxqZITYehva9lV3H4SBU14Q2WvnAbJPbICVNBsMaU3EHLsVBq0el1SNwVWg7cdwfpNUTJWauEky7MZMmEamyaGqkZ8P85c\/9CcnwxlwoNwsul4vW1lZOnTrFgw8+yKlTp\/B4PExMTPD8889z8eJFhoaGWF5ezmh6bQa2i3gAHMMvEBz6G9z1HmRtPen+VaI\/XIB4kFhtJ9GaZtJFTACzkWg8yOB3FilVg5m6GoMqNc+izXv5n99fQFbw8VQmFFq+q83hcNDW1sbXvvY1fuM3foMHHniAX\/u1X2N4eJhHH32UsbHS7eH\/8B\/+Q\/7BP\/gHHD58mMOHD\/P5z38ev9\/PSy+9hJSSxx57jN\/+7d\/mAx\/4ACdPnuSJJ54gFovxF3\/xF0XP+dhjj\/HII4\/wqU99iqNHj\/KpT32Kd7zjHTz22GNl33Mp7Kjmgmg0yiuvvIJhGJw9e7aqHGepVupszA4ZtK1cviXGTc2VX9j1q0Os1jURcCeQqhP9+mTVump6XSfm9cpVA2ILAocI4iyTk85GuvkIxpXKCdHsPEi8Zy29JpMpYsMhfPs7kKPFU25GIMBKWsM5VVqSJB+TUQcuRdDh15kx3VBAnbsS7HJ6CGoGr4VnqVObEabEiURPgqHD5f\/nIv5\/H9xUa99KkR9pbeUA67YQTzKK+9KTqI4oZk0tKU8N5t+NkvzxNUBgzN18RhJIEvW1yCY\/psNAMWL4khHUNzQEE3Xt9H93hZKFfyC9kiJ8oJ2aWF9l9ygEf\/yKE0iSrKD+lkhUIBRa5QBpNBqlvr6eX\/zFX+QXf\/EXqxZTzXcfHR4eZmZmhne9612ZY1wuFz\/zMz\/Diy++yK\/8yq8UPM+FCxf45Cc\/mfOzd7\/73W9+4rEKaolEgrm5Odra2jh27FjVg3jlGgssXHlqmM5TlQ1eFoJ0+Ui+PFL2OCElcs4H7QkMVzNiuae66\/hqSHRVMQBXX8dK1ySK103j3nq0SKjsS\/TWg6QKqVQXQTpQQ3wwN+0nUzqRwXl8R\/bDjfUpkmRjI\/GFBI4qJX5urLhocEnesNxhr5JgKCKocyg4NlAQn08l8CoGSc8ys6EUra5GNEVBNQz8wKu\/9TTR\/2OVs\/\/8TNlzbTZKLf63c4C1Gp20zYA28hrO4R8h6vyY7lpMXKz86Ws4x5cpTB4CQquI0GrGUyeqCGRTA+FggNAPY5UVWID51+fwnelAnShfkxzfdZhXvrM2lxOtYF2JRcsLhVYS8ZQygauUdIq5j7744osANDc35xzf3NzMaIlN48zMTMHXWKrWG8W2E4+UkoGBASYnJ\/F6vZw8eXJD56mUeEbGBcY9ftTUevmLSqA7msGorCvN6B8muf8koutq1dFO2tUCicpJIeXfBfoEZjjG0kojDa4oil78MzFrGkgMVi67YwqFqOFDxJfX\/1I3iF6bxnf8IAzdjNBWW3Yjx5ZRjcrTQ4YJs2aAXe71937AL5lLGMTTUOMo\/UVcSKWYSaVQVI064aBOC1L3xtPeFFS5sjJHUqp01LagJQw0RXL9v73I6AsjfPCPH8Xh2pqvRjW1pWoHWMvVRbcs4tHTuF98AoUwBP2YQsWQbla\/9grOCr+3FoQpSTkbeP37afad7kD2jVT6SqYHDfYEXZAsoULg9vD7377Zkbq8FC9LKtFwqqxQaLqMpE6hduqNDI8Wcx+1kP\/3ruQZ2MhrymHbazyXL19mZmaGgwcP3tKwVKXE4w0EmdLbNnydRImmgkJYHtGqdjmUtU0kL1deYBVNjax236xZpScWWHEdolhTmNQcJJM+iFdu47C6aw9idrn4AaZJtHcCDh5CCoWlpt0wHEJUQTopQzAfd1NTQo1hlxvqXQaz8dzPNKwbXI+mGDJgPG7gUbzsc9fS4fBTk1crqFXdPFjfQKMzTSKaICYEK4YgKQWpa1M88d7\/l6neW9vRVYONfomtIv2xY8c4d+4c9957L3V1dSwsLPDyyy9z4cIF+vv7WVhYKNiyvRXEo0z34X36P6IYy+BQwe8lnfAR+fLziCpJB2B171Ge+2ESU5eMXllCra9cUia5ECdSv7\/kMa9o+5heuJm2X1woXnjP3NNK+e+Rnqg+1baRdmrLffTee+\/l937v97jzzjv58pe\/nEkj50cqc3Nz6yKabLS0tFT9mkqw7cRz4MABzp49SyAQuCX760ImcIVgmPDCqxv7spmBZoyRyor9AGgaUy\/OEnIfL39sFpIpP0VZowASzvp1x8d7x5l2dRQ8PtVwEGOq8nSjbN+HHKogOjIlkZ5xppr2oI2VT\/VlI5JSCSed+LXyROVR4WCNyXBUpz8pGY1JhHTS5vLSIjXqHZUpKN8ZaKLFHSMhl3AC0oQVXZBMSZ7651\/n+T+5UNV72Ag2q5vOGmBtb2\/nrrvu4uGHH+bQoUMIIRgYGOC5557j0qVLjI6OEolE1g1vbjoMHeez\/wPPK38BLgEeF+xpJjqhEn16GjaQLl3YfYKXfxjFSsvpCZ1ITXUOmrMXZ0nvKlzL0+sb+fI3czeW6aSBr7Z0HU1PSxze0h2e5SKefFuEWCy2KXI5lvvovn37aGlp4Qc\/+EHmd6lUimeeeYZz54qblZ09ezbnNQBPP\/10yddUgm1PtQWDwQzb3wrxVNpckNRNLj69wofO+FBSxaU3Cl4j7qnqeLOtHWNkhenLcWqOu9DM8uSYrG0hfbny2o5oaSZypUiH3sAyq6f3E1i6GT3prYeqareWgRoiY2FEhevjcks96vUlxB2HMK8PlXWGBAglHAgpcKuVL8I3VgV7vSpxRSUUTVc1bJqNRqeXeoekNz2HSDfgRIW0jgQu\/pcL3Lgwyof+8P24fZtrB5CN27H4VzLA6na7MU2TdDq9IR+sYlD6X8PV9bcoLhNZX4fh8qHuCbL0wjKhJ0cAEO4Azo5aTDNKTSRcMv2FqjIRPEbfM+ubU6avzHHkdBvpwUq7VAXjI5JOv4KS1yH4lxONpPX1GyZvnYfocumoxuFzlSSXciKhuq7fcsRTyn1UCMEnPvEJvvCFL3Do0CEOHTrEF77wBbxeLx\/5yEcy58h3H\/34xz\/Oww8\/zBe\/+EXe97738dRTT\/H3f\/\/3PP989d5l2dh24rGwEVuEbKRKyOVkIxHXMXSYMdtopXI5DaloJC9XNywZTbiBFfRQhDnzOK1cKn0NIDlnVFUPihMAWbheJYDV3hXcx1pxLE9h1jYR75+u+PwSQcLdiDlV2dBrrDaAOrFG5qvdo3iPdKy1rSeKf+mWlBo0ElVtgPvCCns8CkIInJj4vQrXozFanG40UdmJ0tJkLL5MxNDxq272u+pYlVHGDB2n2oiaMPBqgnjvNH\/63v\/KfR9\/mPs+eEflN1khtmp+qJAD68jICNFolOeff74iXbWyiK7i+u7\/i2osIfwuTG8thuFCa60h3BPLkA6ATKRJ9q9F0YuaE++BNpx+BXV+BiJZz7PLxYA4yOhLxToiBROTKVqcGrJSr6mQTvTgQQJTN7\/\/k4FG\/vq7haN0l7+8EaBWwuQNyne15Uc8GzGBK+U+CvAbv\/EbxONxfvVXf5WlpSUeeOABnn766RwF7Hz30XPnzvGNb3yD3\/md3+HTn\/40Bw4c4Mknn+SBBx6o6t7yse3Ekz1AeksRT4Wptujq2iL40mWND1TRx2AE2pDhKoQ9HQ4Wr918kBdemab+oV24k8VTdauBFkRP5QV\/0dZGtKcMKaR0QhNeGprriC4J1FTlA6zG\/qOkukYqO9ahgXRDVn0m1j+Ja28jTtcqciU3Vy4VBXFwP46esXLdsBnoUjC0qrDXu35Y9JjfyWwyxXJa0OhcH50YUjKdjLCsp3AqDlqcAdrcuTKSQYeXUw6YTS8RddewHJE4vSpaLMVrX\/ohXU9e4sN\/\/CiBxs2VMtnqlmZrgDUSieBwODIOpJaumuXA2tDQQH19fUUOrNqLf4vjyrNQ5wO3A93hwxQaamc9kWGd+f9WYpOnm8T6Z1nre5S497XjbnAj4qtcnQgyO1Ra8iY6H0Pe2w59lUfyc68u4j\/djJibRSqC\/3bRBxSeZRPO8psZ1V16KS3V1Sal3JTmglLuo7D2nH3mM5\/hM5\/5TNFj8t1HAR599FEeffTRqu6lHLadeCyoqoppmlX3q1tIrFY2ABleWVsYf\/C9Zd5\/lweRrux1qanqJsjN1r0Ywzd3aVI3mJrdzf7awsQjVQ1jNFLVHySWrGyGw1gMM1zbRtPKSMXnlm17ifZU0c7d0YF+db0EUXJ8AaM+gLelCXNmjVR1p4Zs2k2yivNHdUFEuNnjLb6rbXZpGE7J9WiM3U43S+k083oKgWCX00ujM0hjBS7WzQ4fYLDcqDKzpGMIhUjSxDG2xH97759w9KN38O5\/9bZN0TnbCerU+bpqlvnb+Pg4vb29JR1YxfQozqefQIkvQcADGqS9daguE7G7gURIMPuVq+sEbotDkBheJCb3cnGkAV+Fyg3Dl+Y4tK8Ofaa0PUEGJswt+tglBFe9e7kyVHwdCC0vlz9fGaHQUmk4q952O2o8OxU7hnisjrZ8X4pKEI1GGR+qYBETb1jVAqmkZE7soZnymmbSEyB5YaSqFFjkjTRbNlZ7p1l5x2GC8fW7v7C3GS1cRSfV3nZiXZUdr3tdxPpWWDxwhF3LfYgy0+\/S6yU6m6zYTkEc2kf0SnHdOz20SiTuJLBvLzISJRpOo96ovLkhlFTQpYpfK59KUYVgl1Nh2WEQTujscwcrvk4+ag0DTxAmwhLcGkKXSOD1P7tE13eucfaTpzlwZ2fGe2ej2Enq1OUGWKWU1NXV0eR1s\/vC3+EOD65N9zfVomsuDM2Jy2+Sqm8Fh4\/p\/3SxCtIBHBqLbQd46fkQIPDd2QLh8v5O0pAsK378VEg8QGR0BXl6H1\/9m9KbT83holg0lLl+mTXLSOqYhomirj\/OyvRsRlfbmwXbTjzZqTa4KR1RKWZnZ+np6UEzy78Vp9+FGbpZJHy5x8E\/OlL+GisJL6KananTSehq4VmfqSsm\/oMaqry5iKY1J1yvTrE6Gq6cnNNNTbAQItI3g+POk9RPl7bbTgbbMK5XZuYm6oOs3ijfYm7GU0RCKZTdu1EnKhcwnYppeDWBr8K5yPF4Go+q0WKqtPg8DMaXceKizlEZMejSZDweImqk8asedrtrafeBgc6y18X4QhKPx4FjOc1r\/89Feo4NcOjDbQQba3K8d26X6vNmohJ16nUDrEshtKe+TmD6Os46BUNREY0BYnENz14XTjdElCaE00v3v+pCcXqoPbQXp57AGC1uFwIgmht4fbGGqeeXsPKvo13THD7VTGSg\/EZl7nqI2nva0fsrjKQVwV\/dgNBK6RR\/PFG+BBAr1RzxBvSEjtO3PuS2iMf6W1jeTm8199Fs7JhvhxBinVBoKZimSX9\/Pz09PZw8eRK3Wr7ryBXITU09\/d0wsgI9qHR\/lTYGre0YicLvIzW7woKaW1yKOnehJKsQD+3cR2K4slqQ6XMTHboZeS11TbCyt3iR3DhwlGSFpCMVhaSrBjNW\/ksnFYWU00Po1RHCu+rAXX5zMRJxEHAIysyKZnA9mqJWc+LP2jke9PjZ7VIZS4ZImIX\/JjPJMFcjswxEF0kYJnvcTRzxtdLmrkN5YwFUgQYjyR114DfT6A6VlaRJ+OoyPf++l6G\/niGVSHPt2jWeffZZurq6mJiYIB4vs1PeRr20qq4tJeIH36b+j3+XmsVRnHUKuuJG1voJz4Cv04vDI1gVjait9fR8shtMiZnQCfXMMHNtmRVPExw5gNJUt+708YMH+X63g6mR\/E5TwcxcAsVZ2c5jbDCK4q2sA\/Hanmb+6sIQilL6M1gOle9+jZdooLGgF+lss+o72X8LO+LZQlTaYJBIJOjq6iKdTmc03SrpasvvPInHDBbVPTTqxRUCos46HAvVWRlEoqUX1blX5qi5N4DHXEX31aD2VzEbJASRhcqbMFKNTcj5XOJceG0C7b4T+EZzJdFl824iVyq3rRZHDpK4PFLRsY7j+1i6tLYTFZMRErtq8NaCObOe1A0TlhUvTe7KyfhaJMU+T+Gal0NROOGrYVVPM68lcSRU5lIxTAmNDh8NjiANjspScgrQ5gUpkyzVO5he0UmlVIZ\/PMqN58Y490v3cf9H7iEUCjE3N8fAwAAejydTqK+tra1aDup2oVLika9cQP3hU6jJMKbbjcufJi5qMFWBWNXxH6pHdQoiogHn\/mYuf+wiUl+fIUgtRplfjAISX8ceHD4TlsOMq7u59pPiOn7h2Si77m0lViKdayGxkiB9dxvq9dKNBuEDrXzxby4DUNvsJTRdnFxC8xF8Hh+yxGydw+nFpHQTRCqWppCWRKHygl3juc2oxAwuG6FQiK6uLhoaGrjnnnsytaFK5nhEARmUV6+5eE+JYWY1XUOaKojH5WKxt\/TwpJlIMzDZyB27VzHVJtBHKj9\/536Sr1VW2zH9HlYHC+e8Z16bofWuI3jG1zr1pMtNLMyaF3UFEO1trHRX1l6udbSw1JW7aKTnwiw7FJSWIP6Zm4tOyhCspB14tcpIJ2VIJmKCfd7yjRYBzcGSSIFMoyBpd9ehiupIYC4ZJiyTNHmb8abTHKkRrKR1FpKQwsmFP77AS\/\/zdX72V89x7sN3ZZxIFxcX6evry8jaWGm5ndBcUOx35g+fgRf\/HpcRAgFJXy3+QIzQqgfpkNTvShMPNOOqlcRcTbiO7aHn\/3wZM1HuPQlikyuE23ZxddaJY6W8fNXQpRn2d9YSn1wue+zopRmOHG0iPV44KyDbGvjN7920RfHWOUsSj2lKAg1ewvPFj6lEKPSVF16mNbwnI\/JqCbzmd7Sl02mSyaRNPFuFUhGPlJKRkREGBwc5cuQIe\/fuzfnSVKRcUKDz5PvfCfPuTzoQxvqFTqoOEq9VN7tj7N6LOVS+wCmHI4RP3Il4vQpfIEVhdapymZt4XR3MLRf+pSmZ7g7Rdnwfrulh0rs60HsrzI173URDiYrUFYTHSXQlXfBYkTaR4zEWHF7qzBgJUyFpaHi1yhbjiC5ZSiq0esvv2g1T0h+PcMgTBBe0uHyE0nHGEzHaXA04ihBQzEgxmVxCdTrwGQ4anDXUr51wzTIVCDoEQQcYMkXY52BiMcrf\/Ycf89zXLnD8fz\/GP\/jEwzQ1NWVy94uLi5loSErJ6Ogozc3NWx4NFSIeU9cxvvW38NIFVI\/EpUUxEUQVD\/WBGPPLXrx1An+tzmIsSOMBSby2BdfRvYz8+QTphAMovQkMNwfpHhWsXFgjnEP37mb5Sun6jzQkqzgrW7CkYC7moE4R6547EfTy7y9PEU\/e3OCq7vK5XE+tuyTxVCIUur99H6rPmePCWl9fj6ZpORFP5I05JrvGs0UoVuNJp9NcvnyZ0dFR7rvvPtrb29d9YSqZ4yk0mrkaNlhy7Cl8vL8NYpUv9ACRSOWNEWMTAQy1ionxfQdITS9XdKhSFyA2VDx9ASDTBlPX4yQO30m8UtIBjJZW9MXyGlawFhml5kunIFzpNNMJF5G0A1eF6gULCUlMV2hylyedhGkwlIitkU4W6h0eTvkb0ESSWbFMwkhhSJPJxDIDiXlGEyFUobHP00y7Wk+Ds\/RCoApB0EhzoMFBk6rjicXo\/+vLfPbMV\/gfv\/kdoitx\/H4\/HR0d3H333Tz00EPATXv35557ruLa0GYgW53aiEZJ\/dn\/xPi\/fhPxkx9iONZIR5cqCZeH2sY088teGvZK\/LUmS6se6o86SbfswXWig8lvj3L18VFm59PIfXtwHW6DvA4utaOZa\/42nrtkshK6ucEceHUKV2v5esbcUIjAycLf1Xwsja6gHunM\/aGm8j8iBjdmcr8XKaN8tsRZRhLHmg8sBZfqKujCOjExQSwW4\/Lly\/z5n\/85Fy9eBKiqxvN7v\/d73HfffQQCAXbt2sXP\/dzP0d+fO3cohCj47\/d\/\/\/eLnvfxxx8v+JpEorp1MR87KuKxzOCysbq6yqVLl\/B6vZw7d67oMFs522sAvYhT4Cu9joLptmQpy+lCcLsI9VbWiCA0lZFLcxh3nGb\/4sXyL9A0VkYqW+wBzOYWmCwvIyINyUBfiraWFtQKpM7FkQNEuyuzDHcc7STUU0ErrKaiaS6MRIrFpEKdQy+pZDBnaLgUA5dannSimCym0uxzFyeNGs1FDS66YjOYUuBTfexzNpU9t4XldIRV0tT5mnDEdTyYtHmtyMXE0GDxR7187Yd9BI+08LMff4jD93egaRpCCA4cOIDb7V4XDd3u2pCUEnVgnOWv\/x3e2QFUqaObkHQ5aHBHSaRVzBonQhUsJevZtW9tsYnGHQQO+THb2lD3txG9vsjlxyast8ti31rN0hn0U3+kDpFIMRx30XVhgWL2ByurEo9DQaZLt\/AP9y7SWusltVzeZmPk6hKddT6MlbVI5ZXGen7wg\/VWzyuR8qk+tNLP2upyAspkxrJneSyB1127djE5Ocn09DQNDQ18+9vf5plnnsHtdvOxj32M97znPbzzne+koaG0Jt0zzzzDr\/3ar3Hfffeh6zq\/\/du\/zbve9S56e3szBDY9nVsy+N73vscv\/\/Iv88EPfrDkuWtqataR2K34QMEOIJ7syCU\/1TY5OUlvby\/79u3jwIEDRfPR6XgKWYH9bDJVOI33ve+u8u5\/pSKyjMakt5b0hSoGKAGjpR1zsDJxTMe+3aQvLXHj5Vka7++kJjRS8njZcQD9YmWFf6WuhrmeyupAysG9xC5NMBJw07GnBW26+OtSQR\/J\/grP2xBkpYI2awDnoT3EeiZRAKcC8UANWiyGS66PfidiCvUuE6UC0plNpnE7nex2lrYHMKSkL7bICf9N8ciJRIgoJnUigCevYzJtGkwlQsSMFM3+Ouq0AEGApJFJv2VDBXa5VQKGSfj6JC\/8X9\/kOVXBu7sWdZ9G9GAEz14Pfr8\/ExHpul6yNrTRuaH4XJi5v3sNcamX4PwkqlPic62iiLX6mvQpNASSRFMaosZBPCzweA1qO9ZIRzdUlLZ61I5G5N5WjHCc5z5ZwGBNEdBcz2uTkpGJNH5Fp5RExep8nN33t7LUXXqzlIqlMQ\/uggqIJx1LEz\/YhHMlyvyBVv74jWaCfEzPhgiyvtMuG3qZmTY9LdE8zpLSOMW62kzTxOl0snfvXv7qr\/6KF198kY9+9KM0NjbyhS98gY985CN897vf5T3veU\/Rc3\/\/+9\/P+e8\/+7M\/Y9euXbz22ms8\/PDDAOuMDp966ine9ra3sX9\/acVuIcSmmyRuO\/HATTM4K9VmGAZ9fX3MzMxw+vRpmppK7z6TFeq0xWKFGxciKxD27CUYG8n8LE09yOqk8VdXK\/844+KNxcyU9I75uS\/oQC1QZwLA6SRcIaEBmLuakRVEOzg0lkbW6lHp1QTDY052NdQQDK9PjUlVJWY4UZLlW0ulUNC9AYyZ8rMXRmst0Z7cezWXY+guDc\/BZvTrkyhiraQyHVdpdFeWihuJpWh0OnGV8S5OmQbDiTBHvLnyOXveGDzVMRmMTKGbgrgp8Thc7NKCtHt2lb0HU0oSmspqLI1bgaBTwaupgLn2hiYWYAKefe4JpFNDrQ8Q2FNHYE8Q764aajrqaTu4m8OHDxOLxSqKhqSUJBaihIcXiEyESMytoE+EiA1N40qsEBQR6twpVAVWTJVd7rUFPIGGs1HBqyUIJ52kVAcBI0V90CRZU4PmMJESVhx1NBxvIeUMoAl47XeH0CM3F2VHnY9EcwOvX1lh8ZmbG4+Gk80kytgHXH9lkkMnG1keLL1hGeueZd+xepLD5b8TE91zND+wn9\/+y1eKHhOPJWhv9LGyUPzZjpexNQBwBlwliScdL7z+5DcX6LqO3+\/nS1\/6Er\/\/+7\/P9PR01fWelZW1dGJ9fX3B38\/OzvLd736XJ554ouy5IpEIHR0dGIbB6dOn+dznPsddd91V1f3kY0cQjwVN00gkErz88ssIITh37lxFO7tqddoKoWvIx8O71\/6\/RJC4Ul0LNR4Pod7KdvhCU5m+fvNLE5laYaT9NAdChVNu5t591UU7Fd67eqid1KWb5zWiKWalE1\/HbrS8sDzdsQflWmXndRzfx1IFCtvC7yaxWPhvZyZ1Vnpn8R\/YjaYnUF1uGgcrUzu4Hk3S7najlmkVDutJQukkBzzFd7saCgHVhdflwqlojMeXibpipGIqNY71uZWVdJT59DIul5NGEcBnuvAVKV4bElalSSJlEtBNguklYrNLxF67eYxEkjIVhFPF5VTQnCqmbhIxTOZME0MVKEjcQqKZEpnWMU2JKiROYaBpJm5Vpzlg0OBbW\/illKxKlba6NdJZ1TV89QZeLcVCzI0j6KTZvZZ+WjCDNNetEcu8Xs+un91LKq3g2F1Hzx9dZ+DFME3HWhFOB5NLOq+\/Po9ZwMto5Mosxx\/Yw\/SlUhsiwfxCAo9bQy8yB2cdNzUVp8GhQJnUHIca+K8jE6TK+ELVNZcmntXV8jUNzVO6vaCYQnUxLx4rw7N79+6y186GlJJ\/\/a\/\/NQ8++GBRY80nnniCQCDABz7wgZLnOnr0KI8\/\/jinTp0iHA7z5S9\/mfPnz9PV1cWhQ4equq9s7CjiSSaTzM\/PZ+yvK53+rpR4wiV2XP\/rO6s89DEFIU3MYCvmTOXunwBG817kQGX1HUdnC6nLyzk\/G35llrp79lC\/kkcwbjfhvsrN5yqOdjSN5bHldT82Y2lGxhU697aiTa91Gin720n0VUg67c0sVVDXAYj53TBROr8eGZrHdbQVp1NDlFEgNkwYiifZV8FmZT699izscdeUPG4otsgeb92aXQJwxL8W6ZgeyVRygVAqjpQK7hovImrQ4qqntkRqL6qbpDUVDJOgAo2qAp7c5zwpJUspHb\/HSY0CftNcky9KgBGXpAxwezRc0kBJmaRNiSFBKgZuzcQTgICq4yVN2gShmtQ50m98RpKU18lu19rnvpx2UN+URgiTiQUvrXuTOLS1BXI+VUPL\/rUFO6QHaXpXJ1LV0BqCLFyco++Sm4XmZp59dhHdlHQcaiipstT\/2iSd++sIjRTv+lyeidJ0XyvLPaWf4eRKGvfdrSR6iz9rkSO1fOb736GjvXxDgqOMNEZoIUqwjGiWUsa1Vi+i17ZZJnAWfv3Xf53u7u6S1gV\/+qd\/ykc\/+tGytZozZ85w5sxNO\/jz589z991389WvfpWvfOUrG77HHUM8AwMDzM3NEQwGOXHiRFWvrciLR4HVUHHimZ9NE\/HsIRAbI7VcfRE3vFL59HlC8wDLuT80JdfGA9wfVHFk1ZqMtk6Mi5UV85X6YOXRzuG9JIvsPvVIkpEx6OxoxREJszoVrkhvS7gdRFZ1ZAWuo8m2WszR8kVd2VnHyhs7aK3WTU1HgPTA+vcoHSoxh5t9FTRqjiYi1GluvGrpx\/9aZI5DvibUAudUhGCPu45IOs4hfyMKgiVPnKn4BCnTxClcNHkaUE2FycQ8STNFa6CRWocXkDnFaiklcU1lJZrEqwrqnQp+jwaYSMMklDZx+Fy4DQM\/Eq8GpkNiJE2QOjU+BZcqcSg6QeXmJixhgttjElDWFry0AbpT0PQG6SyknTQ3J1mOB1CTcRpb0jjeaGUPJ53U7137\/1FHgLq3H0I4NFIJSK\/o\/MY\/GSLfWHd+Noqv3kM0VLgpx9AlS5E0Do9WNO0EMHBxksMnm1gqY80+fHmGAwfqiY3npdwEXK6L8+ffewGAkbEJmj0dJEp44hii9PzgylKMhmANepE6MYBwlBEKLZKuMwwDl+tmHXGjttcA\/\/Jf\/ku+\/e1v8+yzz7JnT2HCfe655+jv7+fJJ5+s+vyKonDfffcxMFC57FXB89zSqzcBUkpef\/11pqen6ezszPkDVIpKIh7Fo5VdPK+MBpAOF8lLI1VdX3o8LF6tMCpRFGYHlwv+Kj4ToUfJKvT5vCxX2CQAYDbtKtsVBICmsjRa+B4s6NEkIyNpoq2dGCvlC7kAsr2N1Fzp1mkAvcaFMVM+deFqCaJP3kx\/6MsJQtfmiTYEkE03v5havQ9HUy3uSPkuxOuxMM1Ob0nSMaWkNzrHUX8zagl\/n6HUPMcCu9EUFUUoNKg+jvlbubNmD8cCTUTSiwgtSr1TIehQWI7Ns6CFGI6PE9ZSrAiTBWmynNYxk0kaAw40RbKS1plPplh1KSymUgh0ZCyKqpks6klqtBhtYpW97jit3jQekcblSOeSjlD5\/7P331GSndW5P\/45lXPOnadz92SNspBkDBICSQSTjC8CG4yxhY2wcQCMfwKZ5IAIDte+Xy4yYBAgEAgLoTwjjTQzmumJ3TOdc05VHSvX+f3RU9VdXSf0CIXmwl5r1pqu99TJ9e537\/3s57Ea0gWnk8gJCHbw29a2mU4b0RpEFud0uMVFsnY9VvPapJrJCWiCdgwGSNsdmF\/TtOZ0VtJoPHY+847OEqcDsDS3it5pQquTv2fz40u46nyy42smMDWTQKciNSDmIJbWFAE6NCY9R3xJvnXi5Pp2oojTpzyvLK6o1y7tPmWQihpRqBxD9eaIZ3V19ZIjHlEU+chHPsKPf\/xjnnrqKWpqamS3\/cY3vsFll13Gnj17LukY+eOcPn36ktN\/m+1VdzyCIFBVVcU111yD1Wp9UWJwWwEXCFtoEvv5z1fImMsUhcukbN7oQNgakTOG6hDxmAIFe2eCRW81AHF3GLZQ1IS1aGd2i9FOrjpMagv8U\/qQi\/MvTJOprVY\/fl05Sx3qKb6cICBYHYhJlees0ZDVG8hKbJebirM8mSBZ4SEdtJBIZImPqjft9mdW2WF2KIrFpXJZJjUJmq3ymvKZXJbO5QnqDPITaPfyOJUmNz6tlUqzlyZbmF2Ocmpw0mILsroyTo0+S4MxS60NKi0QFNKEzCI2g0iLA3aQoNmhocGuocYK6UScnfYc1g3R0nw6h0aTwi6u\/wbG4yIW7SoW\/dpLGcto0FgzuPRr2\/QmzWiMIn5jEqc5TfeqkZB3fSEwrvfhtKXA70Z7RROaiyt5wWbhf3+8B4NLumANMNo1R3inMgKqu22C8G7liWthahlbvfwzyNvsYAxbSxkAereZH+bG+OGxEyXbeYPKlEhT0+ppcpND2XmpAWvlgAdSInCX6njuvPNOvvOd7\/Dd734Xu93O5OQkk5OTJf1gi4uL\/PCHP+SDH\/yg5H7uuOMOPvGJTxT+\/sxnPsOjjz5Kf38\/p0+f5gMf+ACnT5\/mwx\/+8CWd32Z71R0PgM\/nQ6fTvWgxuC3VeLbANDk+kmSu59IdXza19ZckaVCpP4jQMWQjabOzfH7r0gHZLUY7okbD\/PDWqONTgp5sMkPvmTlWauVXUDitxLYInTY2V5IYUT++bWcFy0MKk4EI4lyadMKIEPGATWFS0GmwNkeo1CqvWJcySaZSq4RF+e1WsylGEvM02+Qn1+74BE22MAZN6Yp9JZNgOhujxV5WMpYQRJJZkcimS8kiMpvJ0bgJ2DSdyOI2ZnDp1p\/7yGqOGmcK68V+x5mcFoc9iceQYSCq5+S0nibnCiFD4uI+tNRXrr\/znTELNeEERPyIexvQXIxe4otpjvw8ysGHFui\/ME2wVt75dL4wSuW+iOw4QG\/HNEa38kTec3wMd716P9VA+yzGBj9fHT\/Hc53SKaB0VnmOmJmJYTQrR1hqEVhahclDTgxOSvb6UlNt\/\/7v\/87CwgI33ngj4XC48G9zOu3+++9HFEV+93d\/V3I\/w8PDRf0+sViMD33oQzQ3N3PTTTcxNjbGM888wxVXXHFJ57fZtkWNZ6M0wouJeLbSPCoqhP8b7ciUjd+6hGNnTSaWVBQSCyYITG0Qh5OzlfEFTrkrqM9sja5H43UyraZEetFWQy4YUK+tmKr8THWupfnEnMjwqRnsdUHKpqcRNuQsRQQWtXo0yS10f1cFVKlRAMzVfubOqgMUjBE30fMTJGaW0ei1eFoqyUzNk53bcH1mHVqvjYXzysedy8QRRWWwwZKYZDkdZ4dFOtLJiTm6VibZZZeedOdSS2RJUWUqRdHNpBYx6wV8huJFTCKbYyWboWYTLdBYIkuNI4dhw8eD8RytnnQh8zS8CtXeOONxI7NLGiDN\/vL130o6B\/qAAZNh7bOpFR01dVqoDkNjVaGUnktnmZ3X8LVPrEW0qUSGmZllXCEbsUnpd6nr5DhVdR6m+6Qhz6l4hqRHj6AVFHrwBKam4lgUUG4avZblGi3fjnXROyG\/UBsZHwcU2AcEsPuNJIfl5x9RpXcslVLp9VHo4\/ll1Ue3yvn3oQ99iA996EOy45sVSO+9917uvffeSzqXrdi2iHjyJsVcsBXbSsST2wILr6AR+L8PTSA6ti4elvCE1GPsi2aoCrI6twU2BAEmRjTMV2wNrpj1BhAz6tFOThDILW8NBJHWl0JDl3pXWKipL+K8Wy3zoJlST9tpzAZWF9OKDL+wlqOPL6tv59xZTvT8urPNpbPMnh1jYTaBsbkCY8SNIWBHsBhJjsSUTy5gwe9y49XLRzoTiQVymSwRGWG5ZC7NwOq0rNOZyixi0EKZhNMZWp3BodPi0xU7naVsEo1JpHKT0xmOZ6i1ZzEI6\/doYDXLrg1Op3dFJC2IzCzqKddl8RnSuL05Nq6\/elNGQhdrPqkMZF0WLHsqobGq6HixuQyf+l\/FbM9L83FSgohZJv2UTeeYnVnF6paP8KNjcTzNyhHNwvSKbMrN3Oji+6nj\/MOj32NiVpnhfXJyBodLOeJ1B5QRjnGVxVVCEQJ+aTUei0X5XH\/VbVs5nhebatsKQehW4ii710IinuW8DHeblC3Nbx3NljJvLSVnrfKxNL1C27k4SZcyVYbW62Rui7UdQ1MVyRl12h1TpY\/5C9Kghokz40x5K8kYdKS8dkQVOHTedNXhrR27LkxCBaBgCjiI9shIiGdFZs+Ns7iUIetxofc5SzjDiqzCDtEUWYV3aDgVxaU345IRk1vJJZlNLdIok37rX53CrdXj0Zc+\/6HUDFUWB85N+55MRBHEFdxi8YJiLJOjxbXuQLKiyIxWw27v2hs+Fxc4OSdQbtfQaBcJmtec02hGLJKZ6F\/Rsbtm\/e8xo4+K394B1cWOM76Y4v5vpFldLl3YzIwsYvab0clo5SzOrqJ3mQvpOinrPTlFoEnZ+WxOuZmDVs6FZvnk4\/+XzpHBtW16+rBalaHB4Ur59CCAqFNevM3PK2cr4gry1qCMatvYOvJiUm2\/arYtHE8+1bYVWQQp24oWT0ZCH2SzWVxrL+7\/fXwJdOpZyIzJxEr\/FtNswPTQFrnW7GurndRyilMrPrIK55LZYrQjajTEJrbmJDIq2P75nhmG9V5Em3tLxzY1VRBV6csAsDZHmFdLsWkEBKuJrEKHOIAx6GD23DhT7VMkzRYsu6owhlzFu6p2Io4uI6blFzvO1gjVZg8WGTLXmdQSyUyKKrP0AqFzeYwdFg9WCaHCC8sj1JncmDbte5plfEYdwQ38clkxS8fyEI3W9d9HKicync4Q1sTpXjHRvWBmKaljjy+LTbN+TYNx2BlaX62vihoC4XUw2IWoiap9LigrdQAPfGOGRx8YoXq3tFMd6ZrDWib\/vox2zRLZpQw2GBtZwuxSeucEJqfiGF1mVpv13HPmB\/zkhWeKtshms9TUldbNNppeBWC0mlTORuSyynDp5QXleUipj0e34Tf+\/7r6KGwTx5M3rVZLLpe7JI2SdDrNnISYWMl2W\/BnBttaeml4IsFsQKGYftFWHH7YIppNXxFgeVo9JQUwNbLuzOYGovQFpPuatD4Xc+fUayYA+oZKElPqTtJY5mHuvHoEZfR56OxLIFYrF5F1HhsLg+rUJjqXhUW1lBjg3FXBYp9yf4d7VznRDRFbKhZn6tQos6NLUO4nXe5AV+8jO6jcn2RtDrDYMSbblxTTJbHp9ASM0pNE58o4rfYQek3phHV+eZh9zrISuHb38jhhQYNTvz4RJ7JpxolypXcdCbaQSjCgWWCFJImUkTKNSEifxerIYdxwuNWcQLk\/U0QhNyHq8NrWrmlqVUdljY4FbWkKcbJ3ie9\/M0Y2m6O3Y4LKVmmaoPGeRYIt8uwPncdGqdwrj2JbjsbRB+QnWovPwlIgwSFnP\/\/86PeJp6QneJ1eOfuwHFde+M3MKYNeZqeVF24LUeUWATlwweaI58XAqX\/VbFs5nrzX32q6bWlpieeff56MQjNa3pIJdQ8hbEgJPHBW\/dasRLd++zJ25fxxwbxGFjcVbHtemGC2sql0n27flshRRUHDwhbqMAA5m1W130nQaoiOLpBcTNDVESPZVCv5FRHIOZ1ktpAK1QZcpBeVf7iWSg9zKpGTKWhnvlu+yLw0OI\/WaCHatYi2KoR1VxXGSPGkKWgFzHVeVi\/I78fZGCags2LXlq7Us2KOC8tj7LKH0GyqLWZyWcaIst9Zms49vzTMLqe3KAJaSieYyczSbHKwnM1wfG6aw9NTTCSWacZFg8FWABh0paYIG4ontxkxi8u4\/ns6v6KnpXzt95LOCSzpzYxcSOKuK30\/H\/g\/69efSWcZ7J6mXCYt1n92lpoD8hFH16kJ\/DvkU11D7dOENyDhNFoNjmYHA2WjfOnc\/+Yrj32D80Pdst8HGBtXfjcGh5QbscfHZxV7kOKrKYxWeVqcXFZEa5KPiqQcjyiKLwm44FfNtoXj2YhqA7aUbhsfH+fo0aOUlZWhy6kzDSS24HgyGyKtJ49FiVoVnIXDQXxwa6krgJmRrW2bski\/2G2nlkh411ecWp9ry7UdfWMF8Ul1NJ0x4ma2Qz2CsjdHWJ1Zux4xJ9J\/fJwRt5essThlZN5ZzVKPOiTctquShU7lRllBryWdEpVTexrQWIxkFXqfTCE7q31RxGyOWO8MkydHmR1aJONyYm6txNoYwdkYJqFAVGmq87DSM0lOosdI0GvIenXsdpSu8NdE5WaolYguLqyMcLk7XNRjFM3GGUhOM5dIc3Z+iWzaRLOtHK0mR4ujGFk3GJ\/jMk\/xZNWRitEaWL8XczkDzdXrTuj0tAlXPIG3zIV2E1R4aWKVXzxSvGBIJTOMDs4SqZdOK3YcG6ZSJiWXTeeYGI9hdMgjyzrbxvHv9JFthR\/GH+GeJ7\/GQ8efIHexztXfP0hZuXzabnh4FJ\/fJTseW1gkEJYfz+ZyeCPKKS6bV7kdwuiQH88mMwwNDLG8vFzI6uQX2S8lZc6vgm0LOHXeBEFAo9EoOp68aNbExESBufrQ8iOq+44vqTdiJjY1jr6wGuJmGR31jDcConLKJ2\/6Mh+LXVur7yzPS197Jp6mbd7JVYYY2lSKtNuPOLyFhk1gcWZrukKi0w6iSjpOEIhNll7LyvAq4yEPle4M4uQchjIv8x1bSNmFXMyrOB0AR3OE2dPK9R\/3rgpmTiusarUCWr2eXLp0ERCfWSY+s4xvd4Sps2NYgi7MPht6oxZxNUlyKkZ2OYGzJcyKTCpS7zBj9prRDZU6raVsgtXMcoHrLW9ZMUvvyhhNVi998UWiyTjprIhJo8dj1LDbVlm0\/VgiyuXeYpRXMpfBbQfDhpTedHqVFt\/6JJ\/MZlmxxIhcJDbtnjfSbItj1YuMh0pTaD+5b5y6A2X0tY2xMfOdWE0zOR4jWONmaqA4NSWK0Ns+SVW9lwkJ3sLEYgbXDguplUwhUrcEDQjeHFPpCV7oOc6JSRftZ+XpWCJlfsZG5d+XiqoAszMx2XFfyMG0gpii3WNmelh+kWa0KxOBqhGFzk7NMjA0gF6vx+Px4HCsLW43sov\/psbzKpgSpDqRSPDCCy8QjUa5+uqrC3IJalxtWoOWZFw94llYLJ6gv\/fUEqLMyiM2s8XiDpB1uba0naXMTWJO3kHGRhbodjeh9buZ30I\/DMBq0MnqeEx1O2PIxewW9imWWVmRcDwAy5OLdI+kyDZWkchoFIv2AGg1ZPV6ychho9nrg8yeUXY61koPs+3Kjti3q4JlheZZT2uokMpbnVpirmOCyZOjTHXOEIumse2rJb4qYmiqwLSzCmNrObraAGLITtZvImcTiM8vo3GY0TotaB1mNHYTxoib8pZKympqmLVr6c4u80JsgvPpJU5ER3DoXGRFCwGdl0ZrOTsdFaRJUGUpTgFmchn02hSGTXWhzvgoleZ1+G1OzLGoXcSuX19XnozPUe+1kczkOHhuEUN6Dqt+bfI317qK9peKrvLIsxq6z45Tsy9con20upRkbm4Jf0Vp5JZOZZkYX8SzKXKwuk34au3kbDlcV5qY3zHOT1e\/z7+c\/Spff\/rr\/ODwAwxODXHm9FkCAXlGiM1iZiXHzyindQW98u9Wo6JvplMhAlUjCm2ua+Q1r3kNzc3N6HQ6hofXWNxPnTrFT37yE5577rlLhlNvRX30\/e9\/f4mK6EbyTzn70Y9+REtLC0ajkZaWFh588MEtn5eSbYuIR0kMLm\/RaJTTp0\/j9XppbW0trBCy6awkrcpGMzpMMKWe6pqejBX9vbKapc9aRd3K+eINnU4Wtqg0CjAzurX6itbngD7lyKi\/bRLHa3dgGLqguj9REEgsbc1Bim4H4ojysUVBQEwopzUziQxzGSOCSYfVuoqo0Nxra61gVilCAXQ2IyuzK4p1J0GvJZPJKabhHDv8zCog5gxOMytjMYXv+5g9OSRZU9PoNNgjDlYkaHsEvQaHSWT5wloUZEQgjIuw1UUmqKdJV7qynWGJ\/a7SVF3nyhjX+Io\/71md5tpgcd3l5MoEN1atT95nlua5viFI\/\/QKc0NZdFaRKtfagiopGPDWFqeH7vvOE\/yg\/ScAnD5dxpX7rmF5bhmL0YZRb8GoM6PXZMga0oQjJlLpJKKQJZvLkhUzZHOLzGqzLFuWGZ4ZpH+8j5W5db4\/vd6A1+NlbqkUdCKKIh6Pjelp6VRnX\/8AO6rrGBuVTuH29fUD8u9obDEmOwaQUHFcWZUCqCpR6Goai8+Gx+PB4\/EQCoU4efIk4XCYb3\/729x\/\/\/3kcjnuuece3vnOd3LTTTep6pFtRX0U4A1veAPf\/OY3C3\/LqTnn7ciRI7zrXe\/innvu4a1vfSsPPvgg73znOzl8+DBXXnml4nfVbFs4no22mb1AFEWGhobo6emhsbGRioqKIke1FSi13mYElB2PRiewslgaOX3z4Cqf26lhI9972hMBUblhLW\/aoIuFLTIbzE5uoRFTp+G5I7Nc3lCObUQ5CtDWlUO7eo3FEHBuqbbjbI4wdlYlfaYTmOmbJRlLYPFaqKr1kusr3be5ZmvsBOZKn2p052qJKKbYtCY96WVllVpbmZOojN6Q1qhDVFC59e2KED0jfXxzpZ3kQKlD0jtNWFZKwRQpMYNJTKMTipfeY6kol3uKU2KJXJqQXVOEjJsUE1xVth4pzScT1FW7eLZ9ljrBQ7VVQ9K\/7gTGrT7qN0Q02ZUEH\/vq\/xT+np4f42dP\/pD9l13GMy88VnK+Bw7sp63tjOS1X3vtdZzrP1fyeTqdoraumpkZ6cXb5NQUWq2GrAyacC3dJv1ez0djNNXtZGhQ+ln2Dwxh1vjIyTQoRxeUf6upjHIUr0oUuglgkIdSRyIRvvKVr\/DZz36W+vp6qquruffee7njjjv42te+xp133im7z62ojwIYjcZLUhL9yle+wutf\/\/oCd9snPvEJDh06xFe+8hW+973vbXk\/UratU22ZTIazZ88yMDDAgQMHqKysLJG\/3krzqNakQJVx0WxeM1Io7u6BVRZCxdDqhamt9xrNb1FTyBx2MqfCGA3grg+wGk1w+PQSi0558IOIwHJ0azpFgs+lio4TQVEoK2\/mGjfJ2NqEujq3yoUzs6zWVYJpfXWlMeuJL6XU2Qlay1Sdjr0+wIzMpJ83V0OIVQUouW93RNbpAHibw8Qnpb\/v2OEjJqM\/5Kz3k5PRntHYQZDodA\/trSSyCZ6dymUwazIlsOzexDjllvUVbTKbIaddwrSBWaIns8Sp0zH2GYLY9XrOpqYpc6ynccTKYmf285+9QCBYOjkN9Pfj9Zai0k6cOMlll0mrUZ49ewanzDt68uQprFbpdNLs7By7djdLjgEMDA7KjgF4FRgI4okkkUr5puyxceW67YoKPZcaHje9Wry43cxakE6nicfj3HPPPZw4cYKJiQne\/va3q+y12OTURw8ePEggEKChoYE\/\/MM\/ZHpaefF85MgRbrrppqLPbr75Zp5\/\/vlLOh8p2xaORyrVtrKywtGjR0kkElxzzTW43dJ9AlvhaRP06oGdzSMPX\/xZ94aQ1OVioWfrMtTpuLrTA9AFXFvaLnER4ZNN5jg9ayHjlC5C6hsqWFVIHRW28zuY2UK0Y6kPsDyuvBrU6DUkZkqjxpHTk\/RnDGQuwpZNO0IkppXTegavjdiAcjpTZzUQn19VTMO5mkKK9SGT38aCQl+QuyHA\/Flpx6Y1aCEh7UC1Jj0sSp+bttKKToLjzFLjJX2hVLnVuMNFtbW4ntK5MsG1wWKncS4xSYN7fdJ9enwK77Kdy11r2yXFLM3l6+9L\/8oKoeb131UumeIPP\/8D9AY9JlNxw2s0GqWyQprRY3h4CJuttBa6tLRES4s07VM8nqCyUr63J5OW\/12PjU0QCMhDs5dXlN9Tl08eMRaPJ3EH5OeCWFQZqJNWWcBt5pyTEoEDCjWeQCBAMKjO0p03OfXRW265hf\/+7\/\/mqaee4p\/\/+Z85fvw4r33ta0km5e\/z5ORkybGDwSCTk1uXapGzbeF4NppOpyMWi3HkyBG8Xi+XX365okbPlnjaNOq0NnoFZtqfHpoj413Ls6bd4S2JosFazWZxi5Qy89PqmjeCVmCsa30yXppZ4WTcTW7TJCEisBTborSD16HKPiAC0S3Q3bhbIqzOSUdF6ViKvp4Vpqq8zHQpv7gioHNZVft\/rDV+ErPy91dvN7EqA4QAQBAxuc1kVqXvlc5qWJOPkHne3pawLEzd2xiQpAgSbDrMUpOXXgMLUTaH3ZZqH\/apWNFnGZ1A46aGy8HcCq8pX1vJLyXT\/Ox8jN3mIBWW9Um0IzNH2L5ez4m6PDiC6wujZx8\/xUxshb6+fkmtllOnTnH11aW5\/enpGXbtkm5yPnbsBcrLpZuM+wcGZaOeM2fPEQ5LN6wCVNXINy53XuhGp5OvtWRRRrg6A\/KF\/VmV30FKQSgO1COePJR6q+rLmy2vPro5Ffaud72LN73pTezcuZPbbruNRx55hO7ubh5++GHF\/W3OMImiWPLZi7Ft43gEQShACcfGxmhtbd2S\/PVWHE9G3MKNUmGePZFc8\/yxiUug9AkqFwXzZgo4mJGoA2w2fdhCehM6b2YwynlreVFuWV9fzspmVUYJ07gszJ5XX70IZTbSsypoIa1AdES5V0gUIRnTMZoxkazyyfpv9+4KFmS42PLmao2oNpPaKj0ko\/IO3b+nXPE47lo\/SRlH6qoPED0nHQm5G4Msyo1FHIgSLMW+1jDaTfVKUSfA6gKb9aS9rQFcG9JuSUHE78ih1Wg4PLhA76AJvUbEtpGGJZuhObK+0j+zuEhZde36sTJZPvS5HxT+PnrsGFdJOJlTJ09SWVlR8vmRI0dpbm4s+TybzRAMSqe2Vlfj7JZJqYmiSGWVvHOZnJJ\/b5OpFKGIPJPCzLyyhIdBQQY7k8piVaD3SSRUHI9EjWdz86jVan1Rk3teffTpp5+WVR\/NWzgcpqqqSlFJNBQKlUQ309PTlxSBydm2cTypVIq2tjYSiQSRSGTLCndbEYFLb0GnJq3ClvCNR+YRA0EWe7eeZpuf2VqNxaDQ1LbRTC5pZuShc9MMlNUV\/l5e2ppzXLHqt8SsLaCuCutpLWNlRjm687WEiA5HSSwkGWyPMecLoKnYBJ31mFRh3Qa3hYUh5efg2VXGvEKDrbXMKUuECmvRjBy\/nM6sJyuTRtNZDWTnpFM97p1hkv2ljs7RECB5vlQCw90SRrdQ7Pg0NW7oHyz6zLWnAq87wKhYww6hEqfRxD5\/8bvSkZ4hcJFEMyeKWMI2tP71tFxnWx8jm2p4bW0nqa2tLfoskUhgNBqKuMXgonx3PF7yOcCJEydobm4o+RzgQmcXRqM0uqqzs1M2cuntHSASkY+IAiH5VNzAwDB6g3yGI61CKWz1yDeJqhGFbhaD28xa8HKrj+Ztbm6OkZERxXn26quv5vHHHy\/67LHHHuOaa665pPOTsm3heHK5HMeOHUOj0VBWVlb0INRMrYcHYFWFUHIr28QWM5zLVSlus9F0Xgdz\/VsTXIvObUG6W6dhrEt+sr1wbILJHQ3o6lQE1C5azqonM67eWGprCLE4pHIdGoGYSv0HIL5U\/KzmBua5cD5GvLYCjdsGOg1ag1E19Wf020kvydPrGH1WFvrkV7WCRkCr15JLSU8wBqeZuELvk7shQEIm5eLZ4ZNUdzX6rGSGSpFYWrMB7eJiaYqtNkCuu9gZCXYTlpXid0DcEWB51chMvx7N8NqY\/7IqXBugsgkxy97KdUd0bHGRpjIPnvq1CU7Mifzh3f9NS0tx9JFKpUgkE9jtxTWPnu5urrzyQMm1DAwMcMUVpZ8D5HLSv9O5uXn27dslOyYXEQGUVcg7ntk5+bpdNpfD7Zd3HgvLKvVHBdqc5UXl3\/LmiGezCNzy8jIWi+WSIh419dHl5WU+\/vGPc+TIEQYHBzl48CC33XYbPp+Pt771rYX9bFYf\/ehHP8pjjz3Gl770JTo7O\/nSl77EE088wV133bXlc5OzbeF4NBoNe\/fuZd++fej1+ktiqN5Kqm1uVp0uZmFBvcbyyEgSYQsIOQBCW0uzGb02phQmyby56wMkVKK7tucmGNNurePZXBUip5KPBvXUAYCnNcLylPKP1dscYl6GLHT49AQ90xm0++tIxZT52swNPqJd8hBxETC5bWQUFiS+PWUsKThnR7mL1IK0U3Y3B2VRbJ6WEIsdEmOCiN1rJieRYvM0+MjMFd87jUmPMbFU4oycNQ608fX7s+iPEB3NsXJyDDGvFWPUYZgpjtQcl9fhtaxFrclcjh11Xo525TBeTCmNnhvmSMcwp06dprW1pei7o6Oj1DeURivPPfc8ra2lTuH48eOUl5dytnV2dnHgwN6Sz2GtN0dusZlIyv8up6bk34Oenn5sdvlajS8kr7k1qUI6LBjkp82lmIrjWVWOeF4O9VGtVsu5c+d485vfTENDA+973\/toaGjgyJEjRQwJm9VHr7nmGu6\/\/36++c1vsnv3bu677z6+\/\/3v\/9I9PLCN+ngcDge5XO6SxeC24niSynMZAPMqaSKAnvF5RloClPepU9VEo1sr7hvLPDCmjipTkkbIm9Vv48knRrju6kosfaXoqLxpnWbmOtX7kGz1QSYuqNACaQQWt9CcG5cp4Bd2Y9DRfngUQdBRszOMbnSa3FLx5K\/3W1nuV06x+fZUKFLr2KuViUb9u8qIyjAg6O1GUjJaQQa7ifSmBuT1cyon3l6aSnM2hkhIpNhcTUEyF4qF12y7yxEH1vLxiUgN0QUDNqMe3Xxv0XZiuRmiG1KIFiOGpfXrMezbhX8lRlK\/nor6u3\/+eeH\/589foKWlmfPn1xuU29rauPzyA5w43rbhQCLzc7PYbFaWl9cjvFQqhcvlZHS09B6Ojg5jMOhJpYon38nJSa6+6kpeeOFUyXfOnm2nsnIH42OladGe3n6qK3cwIQGBzuVy1NRGOHe6t2QMICPKZzjm5xepsjhJrkovgLMK7PmZdA6d2VCSUiuMJ6T7ePKWr\/Fciqmx+ZvNZh599FHV\/WxWHwV4+9vffslw7q3Ytoh4NtqlisFtpY9nVYWnzWjRs6TCjAwwOTXLl5+8gGBT5tXQum3MSHBVSdnCgrqD0ug0jHSqR0W2che5rMizz0+xWlspu52+IqDK9gCQVM9Q4mmJsDShnGbzNAWZV3EYnlo\/6dU0qZUUXcfG6J4TyTRVob3YYY9GAIMOUaFeZ\/BbFes2gl6LmM7IyhyYfFaWBuQdravaS0oGrOCqcpOOlY6Zgw6SPaULC63NiBAtTWFaG0IlTkfns6OdGCEZrmbC1sTY6QUS49HSBYtBiy9TnOaLl1kRLurM5CxWdJkoqxeyOFvXVvyrAzHe\/bG\/5S\/+4mPs2bMbURQZGRktKU6fONFGZVXxOzUxMUlrS2nUc+7cOa688vKSzycmJmSjnvGJcdn0UkWFfNNjeYV8oVurl5+QxxWiJQRwBeWjpaRMijZvBpt8TVQK1fbrJokA28jxvFgxOLWIR2fWk1JJF9kUcP15szpNLCwsM7+U4LBK+lUTCcAWkHQGt4XJni2k2erU02wA8xelD8ScyOEj0s5Hazcxq0D3nzdbbYD5XpVoRxBYmlFvKk2qSAIb7EYmzhefUzqRoeeFMS5MZkg1VKJr8hMflU+ZihqBrIAi75tvZ5iVcZl9CGD1yqfovDvDxDqkIyFva4TF8xJjGrA6dOQkPLh7h4dstDhS1FiM6Bc3OSMBdNVBJvXVjJ5ZZPUiOMHbEkBcKnZ0jp0RWNqQtrNZ8Avrfy9FvIydz5GejeLZsVbjeOGBJa77rev427\/9JE899TgdHWf53Oc+y+te91rcblfhu3nEqWsT7+CxY8fYu3d3yfVduHBBsvdOrql0aGiE\/fulaz3nz59HL9OLp9QEOaLA7DE6Oo7JLJ82dyjMCTMKJKQAOhmGeZBnLsjbr4P6KGwjx5O3S4141ByP0aHC+geyuvEbzRNcfxm+fXwMjV8+Rxxb2Nr5myp8iOqAO7JbaIC1RxxMD6xHFfnIZ8JTXPPRVwUVZQPylhLVXw1PS5hFuYk8v01jkLk+5ejPUx8gJafOmMoy0jXD2bYYsXAQXWMZSPBh+XdXkJmSrwfYatzMKjAcBPZUsCCj42NwmYmPSkdsRpeZ5Kj04sG\/p5z4QOnE6GwJk5RoFHXVe8lF1xyFaDAQr61npXk3o8+OsdK3vh9Br0EzvelcdRr00WIUn6k1jJBai+RFvx9jyoJtaJrlsiCCViA1ucT5M2tElclkEqPRSGVlBXfc8V6+\/OV\/4sKFdn7ykx9x551\/TGNjI7Ozs5RXlJdEJj3dXSUOaWFhgfr6UnTVWlOpNMJtPip9j6PRGLt2l+pRAXT39BEKS9dTR0fHCQTl0W2eoLxzETXyP8xllQyKElHo5hTc5ojn10GLB34NHI\/equ5UtEZ1FF1Gs36cRDrLcxrp1ZLWYWF6C1EMwOIWpBq2mmazhEpXkWJO5OyFJIsXUxUaq5G5LvXajnWHn7lu5e1E1pQj1Uytoc5gMzJxXvlYppCZXCrHZNcc7cenGMqYyTZVoQuvrajt1V5mz8rXbQSTlvj8smwjqCXkYKFLHnrtKHPKitQ5Ig4yEgg7S8RJvKt0xa1zmBCmSp+nvTlMpnOQTChEtLqZ3mUnQ23TZKdK03GelmDBQRXOY1cEFtYXAYLDgm5+sPB3yhskeaQPAPPetfTUqR9HsfptLCws8MILL3D48GE6OzuJRqPodDqsViuvfe1v8fd\/\/1mef\/4ZTp58gfe+9z28947\/hdm8jgpbWVmlLFKaDjt27DgtLaUO49ixY4TDpSmy3t5+9uyRbkRdjctH1hWV8qm4yGa4\/gbTKaxJlxVADYvROIJCU3oqJx91q\/XxrK6u\/sbxvBp2qak2tRqPxqQeLWxhcY\/GWPyi\/eeTFxDKSl9qTXkQcQt+U+8wM96lruez1TTb7Lg0qkzMwZETUVZqyjDuCMl26W+0jEb9nnlawiyoSFV7GgPMKgiqwcVoRwGBprfpWBoungTiCwl6XhijvWuJaChIwu1C45ZfvXobguQkCGCBtVSWSUtWJh3o213GggyPm3dXhKXO0jFBA2azBlGiFuCucq31AG3c3mEhbrAy6qyhtzPO1OlxsqspvM1BUpujKQ3oYpsiA62AfrHYeRtbQgjptWtOBcIsPT+I9uKCztNoIRNb5fmH0njKPOzdu5cbb7yRlpYWNBoN3d3dHDx4kNOnTzM2NkYmk8FkMlFfX8+HPvSH3HvvP9Hdc57v3f8dPvDBP6CqqpKOjg6uuaaUZn9qagq9vniRls1m8Plckvc0IYMEaj\/XQXmFdM\/J1Ix86jiTka\/dxhWcy8ysfAtBLidi98nXgFIKC2c1x\/PrIAIH2wjVtlGFdKsRTyqVYmVeBVGlQJ2Rt6SabgygM5Q2zP1sIcWtm7ZbXN4an07GY4Rp9YhnK2k2R6WbIYXGVjEn8tzxWepbbMgnHtbMWu1jslO5BiQCqyr9CgDpjPK9MFgNTKo432BjiKET8rl6vdXIuUNryDBPpRd\/yIo+Hic9PAs5EU9LWBHFZq33sCrDvWfyWlmRARuYvFZW+6SBDL495ayeGyz53NUaJtG5lmLLBX0knW4WFzJYnUYWj5ai20xiis132d0SItdfDD6w7yyDkXX9FcFlRze7fvy50Qz25bVJdtXpxOU2cu47oyAKWHxrq2utVovX68XrXWMZWFlZYXZ2lpmZGbq7uzGbzfh8Pnw+H263G6fTyS23vIGbb76JbDZLb08vTz71NBaLhUOHniWdXnu3Z2dnufrqqzh69HjROZ89e5aamjoGB4vTn+fPX2DXzl2cP1+sJwNQVhZgdKTU0fd091FVsYPJidJn1dvbj9w0NzUzgwbplPnExCwRfRkZmbnB7DSxOC0dhZltNpaQTkHHF1eL9HZ+43i2ieXh1GqcQEtLS5w8eVJ2pZq3nKAezqyuqk+iscXSiOKBI71c91s7cF3kC9PYTEx2by3NFt8CqcFW02wmnxVUGBX89T7ajk\/RuMtO5Zx8z01WRaMDwNMcZrxdmWrHXedjQsWpeBqDDB1XIPB0mhjvUHCCGljaAOWeH44xPxwDwOy0UNbiY0UPuoiHzGSshHrGVuEmNSgHNhDRO\/QkhqQXNoIFxGjpu2etcBO\/UFpL0rgsJAU9K7UNREcWifcsAxPorQaYLp3cXLU+kgOlaDhjYqmYAVkjYFgtvs+mJj\/CRWh3f7acwOT6frSXV5JbSXLw+0lAwOKXnuSsVitWq5WqqioymQzz8\/PMzs7S0dFBJpMpOCmfz7cmEtbaQlNzE3\/8x3\/E4uIihw49y+OPP8kTTzzNsWPHqa2toa9voOgYctGIVif9u29vPy8JxwaoqAxKOp5obIHmhl0M9pfey8WlFWr8ZUQl+P5yooi3zM7UYEzyXPQWeWCCElFoaiXJsWPHMJlMeL1e0ul00Tz3G3DBq2QFgTeFqGdiYoKjR48SCUfIJpWjlYwK9T5ATAIGu9nGJ6UdwH8Px+Die6OtCCGqrPJhTRYgNqKOBttqmm1sCw2oSytr9Ziuc8tMVpYhSuSojREnM1vgbosvq6frsiqvlt6qZ7JT2TH56nwlqYmNVr47woIMY0J8IUEqC2cPj9LeuUhv3EA0GFyrDTWVows70Wo15GRWtI7GAAkZxgZDjR1xTIIAVCdg0omIDitibQXJplpi1TWM2IIsByL0HJ9i\/NQ48Q0TXbApQFYi\/WmzlD4fV3OQ7KaeFdvOCMytLzo0HjvambUJvnulErtQnBJy1Jnof2qOTGpt\/1a\/+iSn0+kIBAK0tLTwmte8pqB2OT4+zuHDh3nhhRcYGBhgZWUFg8GA1+vlzW++ja9\/\/V7a29t4\/PGH+f3ffy8HDuwvmmRHRkbZv78UEXf69Fl27ChlCVlYWJAFGUzPyNcJvT75pupgmUt2zOaRLwIJMs4RIKUA+ReyAq95zWuoq6sjl8uRyWQ4ffo03\/72t\/niF79IOp2+pIhHTX00nU7z13\/91+zatQur1UokEuGOO+5gfFy5d\/C+++4rUSwVBIFEYgtNkVuwbRPxbEy1wRqVhBQfVHd3NyMjI+zZswen2aHKFJ1MqcPGZqeV03V2t5nJBek8\/\/G+eRZu3YlzaJqlxNZoLmx1IXLHVQTV2FqazRSyEB1WdmJak4a5DSv3c0fHie8JUrM0BxsQbitboN12NYWYUIpCAHednwkVEIO3MaQc7TiMjJ9XiXYUmn4NVj3TGyKuTDLDVM8c+T1WXVbGhVNjWNwOrC4TZpsBg1GLXiNi0EIml0VbG0bMieQyaTLpDJlMGkED2ZSIviaI1mhCFDSkMyKZdA6r20TH2XFSy2kYWl8MmJwmFiRqQVqDlsRg6X2yV7hI9JSmB01ivDjaEcCYLHaOxgYfwmSMgVQZ8XNxIs3rDlK0mzD6jDxx3yz51VI+1bZVEwQBu92O3W5nx44dpFIp5ubmmJ2d5fTp0wCFSMjr9WI0GjlwYD\/79u3hwx\/+Q2ZmZjl48Bl++tP\/4fnnjzIxMYZery+k5vKm0Ui\/i8vL0guN7u4+qsprmJRYIC4uySMvtQrYI41B\/vecycnPK4l4Brm8QSaRRqfT4ff78fl8jI+Ps3v3biYnJ3n00Uc5ffo0XV1dnD59mltuuYUbbrihCMix2dTUR1dXVzl58iSf\/vSn2bNnD9FolLvuuovbb7+dEydOyF88a039myW0TSZ1lPBWbNs4nrxpNBo0Gk1JxJNKpThz5gyJRIKrrroKm82mCuUFSKg0SlpcJpITyhO3O2hDJmULwH+cGeNvKpxMdm0tzbaaUHeGW02zYVOn8HHXuFg4U7yv3jNTrNZ6aHXEYXEVc7mb6SH1+5mMqwM\/sio8U3qLnimVNJyv3q9Y2ynfHWH0tPyqLdQUZLhN+vsarUBsdAFEWJ1fZXW+OOKtvizCxGnpyM\/f5GapJwoUr\/w0Og1Ot1ESZRmo9xKVUEgNtoZYaS+FVTu9RhKb\/JGjzkd2uHhbW2sExtfZhQWfE81UP2OZIIunMjh2uGFhvXNfvGwH48djxJfXn49VJtW2VTMYDAWKFlEUWVhYYHZ2lqGhITo6OnA4HIVJ1mazEYmEueWWmygrC\/GFL3yG8fFJjhw5wUMPPcK5c+sS813dvVRXVTMyUvyMOzouUFNdV\/I5QEVVSNLxdHX3YNS7SadL310lp5RIKwATFFoS4itpWceTTWbJZXJodBpyF52X3W7nd3\/3d3n3u9\/N\/v37ec973sP09DR\/9Ed\/xGtf+9oiuerNpqY+6nQ6S4g+v\/71r3PFFVcwPDxMZaV8o7kgCJekWHoptu0cD5QCDBYXFzl16hR2u52rr766EAltiSBUBbJsc5tBJfgwO5TrHudHogxc3UJuQp36RmcxMLYVNFt9gKlTakV+kZUZdYBCLiMNsBjvmycesnEg7AKbBURlx6ONWJnvV+7JcdX6mFSh4\/E1hRhUiHaMEg2lRSbAsoIaqt6sY7pH\/h6X74kwdkoacOAI2pg6J\/1CWHxmVvql75G10ixZD9Jb9Cz1lF6LoBXITJam8iwBOwkJGLbFlCtRtzRmi88lEzIwu+Rh7owWsmmcIT0Mro+bwlp++k\/F9+1SIx4lEwQBl8uFy+Wirq6ORCLB7Owss7OzDAwMoNPpsNvtzM\/Ps2PHDqqqqqipqeGqq67gox\/9MBMTkzz55DM8+eQhDh16jmDIL+lgLDIknTOz0s88mUzRsruMTgl6ooHhUXQyAIP5mPzvYUmBpHZlKSmzxzXLJNIYbMbCHLcZXHDTTTdx3XXXIYoiq6vqZYCNJqc+unmb\/LNSsuXlZaqqqshms+zdu5d77rmHffuk1WYv1bZNjWdj7ncjpHp8fJxjx45RXl7Ovn37itJvW+FpW1xQzklmtFuAbuvUU1APTQxj2EK+3FITILuF9F9Wq74m8Nb5WVRhDrB6zIxckHcE0cllzixomI6rn5NWqw48EFWYxXVmnSoAw9\/ol20oBSjbHV6LWGQs3BoiIYO602gFFhUofrwVTnIylDqBKo\/kmKAFQ1w6yvPscEqyIQR3hknOltaJPOU22FSXtFZ6yPYXOyNrSxim1p9r2mVBXE4y1W5GvMiUYIitO1BNyE1sOktsw6ugM+kwKtC7\/LJmMpkoLy8vwLUrKiqYm5tDp9PR19fHqVOnGB0dJZ1OYzKZqKqq5H3v+13uu+\/f6Ox8gb\/8y4\/wRx9+H3X1O4r2OzIygsFQGul3dfUSCEhr\/1ht0u\/u8vIK4XLpSXp0XP53M6+w8FlUIwq9WLfMOx45yhxBEC6p3iOnPrrREokEf\/M3f8N73vMeHA55ifCmpibuu+8+HnroIb73ve9hMpm49tprFfV7LsW2bcSTyWTo7OxkdHSUPXv2EAiUUqCrOh4BFmMqTY4qAnAAcYWQO2+T83M8Zk5zo2BWrDttIVOFoBUY2ULaTlCgZ8+bp9rD1KSyc7J4LTx1eJgrXlOJrX8cJOZdZ0OASRXCUEuZnSkVOh5fU4ihE\/Lw5rVoRyFiEmB1Xv6Z6kw6ZhQaeMt2hxmXSdHZvBamOmSiHa9FFngR2RlhXoJYVKPXkBiRACgIIiyURkdGl5mkRG3H7taS3XRJJqH4maZDLmbP6Mgtre3XUeuG2HqaTdsc5pkfF\/9eXspoR81mZ2fp7++ntbWVcDjM6upqIRrq6enBZDIVUnJutxu9Xs9v\/\/YN3Hjjddx9918xODjMk08+y1NPPsvzz7\/A3j17OXHiXMlxnG4L09OlUfmUAvjAE7QxIcFMkUym8YTszEuo2C5EV\/G6HGQkwE2ZdA6dSV8ic523jY5Hq9UWFt15WqIXi2rLq48ePnxY+rjpNO9+97vJ5XL827\/9m+K+rrrqKq66ar0v69prr2X\/\/v18\/etf52tf+9qLOr+Ntm0ino0mCALd3d0XewCulnQ6oN48arAZyaaVoxWLXf0hRxfUtWbGx6d56PhJYlXyjWVak56xLTgUfdiijmbTwESfuihdbFY9VJ8aiSGKcOyZYQacHgRnaTFTIj1eYhkVJ64z6ZjsVnZe\/ga\/Ygq1bHeYqELjamRniLhMlCtoYEUBSOLf4SYrw7QQqPFIjwki6ai0Y4\/sCpNbKY3cTOVW4mOlDslX6ylpOjVHnGQ3MY1bmkKwgb4+4XQw32kmM7d+bc5w8ZpyBTMT\/ZsiqS1E6C+FTU5Ocu7cOXbt2lUQHrNYLFRWVrJ\/\/35uvPFGGhoayGazdHR0cPDgQc6ePcvExAS5XA6DwUBDQx0f+tAdfPd7\/0HH+ef4s7s+wB3vezvl5cVNpemM9LvT2zuAXUYmQdTKI2OdCro9dq\/8b91gly\/C55u4N0siJBIJstlskVTBVk1NfTSdTvPOd76TgYEBHn\/8ccVoR8o0Gg2XX375\/3sRT97rLy4uFrz+FVdcIalomLe0muOxm9hcBN5sakyzABMyUOq82ZwGRufXnNOXn3+GL+y9kbTEBGfdESBzUp2gM70FEShPnZ++dhV56IiD0V7lmkyw3kv\/hlRcf8c0s14LVzT4EYfWnISzzq\/a6Oms9jCl4git1U6mO+S3MdoMqvWhVQWaHp1Jy6wCL1z57gjjZ6SjHYvbzHSHdERjcpiYlWG9Du8MEzsvwV6gFUhOSMOxnQZ9yVupNelISchtOIMmsrFih2HWr397xWBj0VhPary4R8awsP6e6RoidIyYgeLzsWyBHPeXtbGxMbq6utizZw8+nzR9TR6uHQgEEEWR5eVlZmdnmZiYoLOzE6vVWmhedTqduFxOXv\/6G\/jt334N2WyW7u5+nn7qeZ5+6jmOv3CGULCc6ani90AURTx+K0tLpQuxuXn5d0ZnkU8dmxxGkGEM2QpR6GYRuHw951IiHlEU+dM\/\/VMefPBBDh48KKk+mnc6PT09PP3004Um4UsxURQ5ffo0u3ZJE7leqm0bxwNr9ZyOjg7MZjPhcFjR6YB6xKP08PO2vKK8D4fXwmRUGX3g8BkhdnF\/iSQPJ8e5SeMsydUntsDNo9FpmB9V50DbiiCdLWQHmQa4vBklCFIX51Z58licq6+rxNQ7SgZ1RyiYle+1oBeYl2vWvGj+xoAiki2yO8T4Wfk+o0hrWBbJJgiwOiefcgzWeRg\/Kf3dUIOPyVPSY6IMBVF4Z4glCTZrT72PxGDp4sNaaS04+rwZfFayvcUFcUt9EMbWmAsWLF7ax\/yULxR\/z77DDdENaLZyL91PlD5D68ucahseHqa3t5e9e\/cqFrs32ka4dk1NDel0ugDXPnPmDKIo4vV68fv9Bbj2zp1NNDfX88d\/cgeLi0scPXKKJx8\/wqGnX2BmZn2h43LbGaJ0AdU\/MIxDFyIroXyrpNujU2C3ViIKzTuezRHP8vIygiAowqc325133sl3v\/tdfvrTnxbURwGcTidms5lMJsPb3\/52Tp48yf\/8z\/+QzWYL23g8HgwXG8bvuOMOysrK+MIXvgDAZz7zGa666irq6+tZXFzka1\/7GqdPn+Zf\/\/Vft3xuSrZtHE86naavr4+9e\/cWQmw1U6vxKD38vEUlZIo3mjtg3bxQLDVdcdT0i1PnuO7W27Cc39DYp9cyvoU0m3OHl6mzytsJWoGxLTAkzIyooNT0GoZlmjjFnMjzzwyx9\/oq0hJElRvNUelmUoXJwFxpJ9otz5igt+pVo6rEgvzz1hq1zA7IR1Nlu8NMnJVeQJicRqZlalNGm0GWMDXQFGBBArGGIJKLydCpGAQ2x8IagxZzbKUEtSY4sjBZ\/DvQ69cWJbOOcjq6zDgCBrJTxefnjGxAs+m09M8a0Eg0Ur+cEc\/AwACDg4NcdtllOJ1KGC9l0+v1hEIhQqFQCVy7vb0dp9NZiIbsdjter4c33HIjN7\/hBjKZDOc7enj6qWMcfOoYI2PSi4d0JoM7YmF2ojRLEVuSf2eV1pGCBIN63jKbajx5y2d6LkX2+t\/\/\/d8BuPHGG4s+\/+Y3v8n73\/9+RkdHeeihhwDYu3dv0TZPP\/104XvDw8NFIIdYLMaHPvQhJicncTqd7Nu3j2eeeYYrrrhiy+emZNvG8ej1el7zmtcAaxobW+FrUwUXqPC0CRqBuWllyWaTCpQaQBRKneQXnniMfzjw2yQv9hrZ6oKMnlJnht6K0qin3k\/vWeWUnX+HhwGVPqBIc4DOk8pqqourac6OrXDl3jCC1CTLmqiZkgl6geSsckrTGDKy0Ctff4nsCjF+TiHa2RlipE3mWgRIKIBM\/DtcTMtEUuGmgGy0o5NCYQCh1jArnaUpPWe1m+Xu0uMEWoNkzg8WfaZ3mXHMFS8cciEruskJxhw1dJ0VyaUSeJqdZDc9FuPi+gf6XVU89NNVyt2l79XLUeMRRZG+vj5GR0c5cODAi6pXyJkUXDsfDQ0ODqLVagtOyOv1YjKZ2Ld\/J7v3NPOnH72DmZl5jhw+x7MHT\/LcodNFabdQmUfS8YxNzGBBuh6SVpijRI28V9oILtgsiWC1Wi\/J8aipj1ZXV6tuA6Xqo\/feey\/33nvvls\/jUm3bOB5Ye7FEUdwyQ7VaH89qQnnc5rGQHVFmLRC16pHXigTWfiWR5McLg9yq9SBmRZKCOlnpWtOoeo\/PQlwdMGBwqncYZ1ReSL1Ry8D5SeLLKZ5+ZpDGPWEqMilyGxou7RUuJlSineDOMkUkm96iJzGl\/KySCmALjV7D\/KB8VFa+K8yETG+OwaJjViai0Zt0RGXoiHx1PqIyvUIamffO7jSytOk2CFoBYbo0UnPXuhEvFNcejJY0ndodjLalC8hJcWpTmq3aCfPrJKKLFheDvVGCTaULKMtL7HhEUaSrq4vp6Wkuv\/zyl53s0mQyUVZWRllZGblcjlgsxuzsLH19fZw7dw63211wRBaLhbKyEG99u5\/b3nI9Z8+eY6BvgsG+WZ49eIq0KP3MFhdWcFvcJFdLncyqAuRfadm80fFsLCdsJA\/9f922pePRarWkUurNoUqTEcDiivIEbfWYQV4bDIBESq1XSGRaJhX15LnzXP+mW3H0LDDRrS6FrQ+bSfUon7Ogg9ioyjYaGFeR3jY7jAyqUN9UtAY4f2L9BnWdmWDYauCKAxE03ZMICOgdZhBjsvvQGLTMDiin6oLNQcXajr3aypyKYxlWiNySCs1+1jIjq\/3Si4\/IzhBTMtGOyaRFKpnmb\/Kz1Ft6X21hB0sSUZC\/NUS6q7iOo7MYYBNrc9ZvZk4sZ\/TM+nO1hszk5oodoz2sX3+nrSbaOkUEjUBcor5lfQlTbaIocuHCBebn57n88ssvqU7xUphGo8Hj8eDxeGhoaCiCa\/f29mI0GvH5fHg8HkZHRwGRt7ztZjQaDXf95e8xNT7HsWe6OHKwg7bnu4nna3cC+CtcjHaV\/p7m55aQq\/JkFIhC86i2lyLi+VW1bQmn3qo0gqr6qFH5h2VQYJjN2\/yCcp3EHbCSUIisvvj4o5h2l5PYArGmaFBv5rPXeEjHle9NsNHPkkKvC0CwwUtGRaQtIUELEl9JcejQICNeJ7amIOMykUTeAi1hVubkHaXerGNKRThPm5WPFjU6DfOK8OqgbDSkMQhkZqSfi9agZXFQumbkrnIzJ4NyM8r8otyh0sZQBBGdRA3B0+RD3EBfntZomLLsYPh48eQXqpRIAc2tOyyxsZyHH1rA47eQkyicv1QRTy6Xo729nWg0yoEDB15xpyNlm+HajY2N5HI5zp07x9zcHHq9npmZGbLZLCaTiYrqMG\/9vdfwxf\/4EP9z\/At8+b4\/5p2\/fwMVNQHMdul5Yl6C1TpvSQWi0PTFZj65Gs+vg22riCdvW061qTiepApztaBX97vjElTrG83lN4NC4BBPpfl5rI+dVidphdSgoNUwP6KeQtPo1WtOgkH9sS5ElWHmzoCVAQXamt72KbRXV2CrD2AeiZKTYJHW6DXMDsUUjxNsVSYLDe8MMtEufx7OHXai3fKLg81SwxutfGeQqTPSjrNsV4jp09JRlM1lJCFxyp4dXkn5bLPXwlJXabTjaw6T2tSjozHqYGx92xm7i75EAPPZ0nSgLrbAxquzVTkxr647p3NTOVJJEbNVgE2v3kvFWpDL5Th79izxeJzLL7+8gJLaTqbVavF4PAwPD2Oz2WhsbCQWizE5OUlXV1cJXFuv13P1jTu58voW\/vRTOcYH5zh9cICTT\/dx\/tgw6YsLtmQii9GnJynRq7WylEDO\/abj6xHPbxzPNrBLFYNLqUChV5eVecyyonL9xuW3MjmnvKLXGdXD4vaRXtLOMnYlvIgyIbinPsD0aeXUl9aoYUSlz0Vr0DJ8XtlZuiMORlUQZP4aN1OT8hO63qil99wEq0tJHB4LTTV2LGPLCOL6\/QjsjCjWdnQmHdMq6Ly0Qh5d0Aok5uSdebglwLQMXZDOqGVRxilqtAIrY9LX7og4mZNhMLDadHlUfZF5q90snS2NbIzZRInQm7clgNjVSw6BC64KhjtTVO4ykZoo\/j04wnbS48Xn4So3wsWsnRB0ceKsGVjFZjfApiZXs0Lz41Ytm81y5swZ0uk0Bw4cKFEa3S6WzWY5ffo0uVyOyy67DJ1Oh8vlorq6WhaunXdEBoOBqvoQFbUB3vT7lxNfSXLu+SFOHezj5NP92BwWkiul78riQlzW8WxEtRmN685\/ZWXlNzWeV9O2GvGo9fEsxpRX9asKDLMATr8FVEozqYzyOQiCwODAKOdXe6i86R04OqUdanYLSqnmCgez55XrJaEmP10nlMlKnWV2RoeV9zM9GlMcr9oVouP42mp9cX6VF+ZXKavx0BK2k+mbQ6PTMKcS7YRaldVFw61BRQmG8j0RRhRqO3GJZsHCd3eFmJCp35TtjjBzVnq\/rqCVmalYyefOcicxCYlsg93Iak\/p5656H8nB4uck6AQ0U1MsmC2cTgZYbF87fxO5zQELvnIrXCj+zLiyvphIlFfQ8b21VJDbZWVp0\/NO67M899xz+Hw+\/H4\/LperqN6gZplMhlOnTgEUJvPtaHm9G6CE6xFK4dqLi4vMzs4yMjJSYNfOOyGHw7EWDb2hmStvaiSbzTLePUvX4WEuPDPI4KkJchcXltm0\/IJ0JbZMNpv9TcSz3WyrEU9aoW4iaAWW5pWdwvKismNKqbAeAMxHY4rj5RU+uvvXVvVffeyH3P2G95E9X7z61eg0jG4BfKDRqadGUqpCdCKTMgJneYs0eOlXkb+OSzROjg3MMzYwT\/PeMlrKHUwclXcqOqOW6V7laEeO6wrWnm9MJioB8Dd4mJeRtNbqNSwMS48JWkjMSEPsrX4rcxIsBbC2SIlKsE0HGnwsnS2VPrAZSjk1XM1BeufidI8KZC8iF3VGraT8tn5lqSjNZq10wuw6mu3MqBEudgzpJcgDI7UR6uvrmZ2d5dy5c+RyOTweT4EvTSlllk6nOXnyJHq9nj179hRNntvJ8s5REAT27dunep6CIOB0OnE6ndTW1pJMJpmbm2NmZqbQ55J3Qh6PB6PRSPXOCBXNQX77gwdYXUjQ+dwQnc8O0XtUHrUUm43x7LPPFs4nHo9jNptZXl7+tXE82wpccCmptuhMVJZFGMBoNyGqqI\/OzylDqTV6Fe4xvZaJceXJ0+svLgB\/\/on\/RldeDHV21fmJy7Ap581gNTCqQtKpNWkYUoE2hxr8zMnQfOTNJMFmsNG8EQcDCkqlF06PcbhjgmiVHUOldPNgaGeYuEJEGmoJMqNAf1O2O1wke73ZtArwdWeNlVUZwEPZzghLMuzV3gqXZJHeFrBJ0uZojTriA6WpPkelm0RvcbSTsZg5Pi5yoT1LdgOTbKTRR3ZTZG7xWUiPFL8L7or1ZybURHj44Vjh7838bwDWgL2gKnr99ddz2WWXYbPZGBkZ4ZlnnuGFF16gv7+fpaWloj6QZDLJiRMnMJlM7N27d9s7HY1GsyWnI2VGo5FIJMKePXu44YYb2LVrF3q9nr6+Pg4dOsTJkycZGRkhlUphMBhw+uwcuLWZ3\/vizXzqid\/nTf\/xO+z9g8vxNQfYSP5hM9m4\/PLL0Wq1LC8vc99997Fz507Onj3L\/Pz8lhC9oK4+Cmtow7vvvptIJILZbObGG2+ko6NDdd8\/+tGPaGlpWZM1b2nhwQcfvKR7p2bbMuJRS7XNzMzQ9qyyet4aT5t8qkWn1xKdU56ANTplvxwodzDbr4LH1hRPVKlMhv\/oepyP1LyB+PRa3j23hTSFq9bHlEK9BNbEzxZeUN5GL0MPXxg3ahlUYZi2B02MKxymotHHYNcU4wNztAONuyJUWIwk+9YiAq1Rq+hUAFmyTliLdhYlGIPzFmz0MSNDRqrRCuRiMilWAdIL0u+M2W1mXiKVBuApdxCdL3VWwdYgK+dKox2H20Di4i3O6fWMhysYnlhGN1oKebboYfOeA9UO2NTvZVxdXwBNGIMsL8YKf2ckUtIb6XIEQcDhcOBwOAor\/TwUeXBwsKCY6XQ66e\/vx+l00traekmpuVfS0uk0p06dQqfTvWQR2Wa4djweL9yjvr4+DAZDUTSk0+ko21tJaFcZ+\/7gSlbnVxg7NszokSHSKylMJhN6vZ6qqioaGxuxWq3cd999PPLII\/h8Pl7\/+tfz1re+lf\/1v\/6X7DmpqY8C\/MM\/\/ANf\/vKXue+++2hoaODv\/\/7vef3rX09XV5dsc++RI0d417vexT333MNb3\/pWHnzwQd75zndy+PBhrrzyyl\/6XgII4lbaWl8hy2azZDIZ4vE4hw4d4uabby7CtIuiyMDAAH19fVQ6ynn8ww\/J7svdEODZY\/ITqCts52y\/cnRgqdPQ3y8\/wzYdCHP0eJviPirrXHR19pV8fnlDC7dqdpFLZVnUGFQjHlt9gBE1yelaLyMKUZFGL5DWCiQUQBc79oeLendKTACdU8tKVH5V1nRFOR0vlIpuVTcEqPXb8VtNDMuxDACh5gCTChpC5XuV1UfDTf4i2euNVrk\/wtQZGbRalYWMTI9U5YFyZk6V3hezy4QhlSK3KaoQdAI+n4nUpqjaErJjWZhHFGG+egdnLyyxOh+nZq+X5U1MExqdQLlLU+I4Gnc5SA+sO0FruYMQF0lCtRq+v7STF46uO+a9EUMJuu+3P\/tGGt7YInmtGy2XyxGNRpmYmChwfOW50nw+30smhfxS2auRBsxms8zPzxfScqlUCo\/HU3BEZrOZXC5HNpsll8sV\/rW1tVFXV4fP50MQBN773vdyzTXXcNNNN\/Hzn\/+chYUF\/vEf\/3HL5zEzM0MgEODQoUNcf\/31iKJIJBLhrrvu4q\/\/+q+BtYg1GAzypS99iT\/6oz+S3M+73vUuFhcXeeSRRwqfveENb8DtdvO9733vl7tZF23bRjxQ3NmbzWY5d+4csViMK6+8klUJtceNpgYptriUfzCCIDA+rpza0qiAeLRaDQMDpStegOPd56m+OsQ19gamTisfx+gyqaqW2nxWRlVYD\/y1LvrblVODiaQy4MJbZWV8QF4mwmTR0yejaTPYPc1QzzTVO0NEWn3oxpdJS8C6pdJZBdPAkoK0QaDeK+t0BC2sTslHSlatgQWJKNlg1RPtkpHCrvMRPV36jEM7w6x2lDoqT8TGtMNGx0iW+efWnasYLV14hBt8ZPqL76XRYSQ9VLwAcVWZC2i2TE0VL\/zn+jXaXUYy8dJFwlZ52jQaDUajkfn5ecrLyykrK2Nubq6IOTrvhJxO56va\/JhOp2lra8NoNLJnz55XLCLTarX4\/X78fj+NjY2srKwwOzvL1NQUXV1dWCyWghNyuVzkcjk6OjrQ6XQ4HI5CWaGvr48DBw6wf\/9+9u\/ff8nnsVl9dGBggMnJSW666abCNkajkRtuuIHnn39e1vEcOXKEj33sY0Wf3XzzzXzlK1+55HOSs23leDbWeGDd8cTjcU6ePIlOp+Pqq6\/GaDQSW1YpxmuVXzq9ArMsrEGpJ2aV0WErq8oEo16\/jaFReWfwwyNPYbzOgA3lScBZ7WVyWr5QD+CudDGpUrsRdMrXbPeZGVCJqmwuO6XJn3WraQ3Sfrw02snbjt1hus6M0QNotBpadpcRNptI9s5DViTYFGBKATJevivCqIy0AUA2J+84K3aHmTor\/d1QS5BYl\/S1m0IG0oOlzs5gNbAkwb2GBnLzxc9CFAQy1WGODMP4pi744A43K+OlYAe7VVdyp4N1Lugu3ta0Ic3WseBmI6utx2+B2VLHs1WetqWlJdra2igvL6e2trbAHp2HIufTTfkifh4l5\/V6X1GkWyqV4uTJk5hMJnbv3v2qpQEFQcBms2Gz2Qr3aH5+vgDiyGaz6PV6crkc+\/fvx2azkcvl+Pa3v01vb6+qHLWcSamP5iPUYDBYtG0wGGRoSP43Ojk5Kfmd\/P5eCttWjidvGo0GQRDIZDKsrKxw6tQpQqEQzc3NhRdKrXk0q0LlL6qIljkDVlAhgJ6eVt7A5bEwpOwveLT3Wd7cehO6DvkfyrJKGg4gOq0ige02qVLkGL1axGn5zKvFYWRARrMmb0uLyowJwoYFQS6bo\/3UCO2Ay2ulpTlMxqRE+QvLCtIG9jIrsX5ppyhoIKHwXY0MmEVn0iHMS9cb3TucrErUw4ItIRJda+m8nMtO1Ouju2eBcMbEVJeEVELAwuwmxyNoIDFc+n6Zc6kiNJulzA4zgxcHTfz8yWKH53CaECVe061EPLFYjFOnTlFTU0N1dXXJuF6vJxwOEw6HyeVyBebozVxpfr\/\/Ze1PSaVStLW1YbFY2LVr17aqPen1eoLBIMFgkFwux5kzZ1hYWMBkMvG5z32Oxx57jJaWFh555BEeeughbr755hd1HCX10c1RqCiKqpHpi\/nOpdi2dDywFvWMjo4yPDxMU1MTFRUVReNqjietojy6LEHsudGMNuVbY7YamJxQbi41W5TTeTabhbGxKf519FvcedMd6NpLfzBmr4VxlSZLd4WTERURNn+tl+mj0mm\/vKWWle9ZeXOAc0cHZceDVW6GuuSjFafXQo9Mf0xsboXBsXkOD8wSiDiprfFjT0NqcAEu9kaU7Q4zJsM0AKA1yP8wynaFmGmX\/m6gwc98r3RkGmkNMnO6dPWg0WtIDEtH3UIySaKmnJFlgf72acTc2jUH\/dKTb2JKAphQ7yM1VOzk9RY9maHia3BXWeDiY435q5md3SRvbS7llNMZdRgVFDIB5ufnOX36NPX19SW\/PSnTaDS43W7cbjf19fUl0tZms\/lF9wwp2XZ2OhtNFEU6OztZWVnhqquuwmQyUVVVRTab5Wc\/+xlarZb3vve93HLLLbznPe+5JAeUVx995plnitRHQ6EQsBbB5JVfYY39f3NEs9FCoVBJdKP2nUu1bfWU8h41l8shiiIjIyMcOHBA8sVXax5NqCiLxiQ07zdaTqMM5w6UO1TpxufmlJ1BzY6ywj7+9bFvkdlZWtuwV7pVYeFbSZvEFFb7sNa7M62i3zM+olxD8oaVz6O83i8ptpU3T3ANZTM9vsCR53p57IVejscXWdhhQ9\/kIa5Af2MNW1iSSIcBa\/LUCj1bBhnYvFavYVmm0bZsV5jcyvo7ltVrmPdYmCh38+iFBAefn6bv7FTh2Tl8FmYk2Kz91S6WJeDbTgk5jmC9BzFd\/F4aE+vO79ne0u8YJCJ7tWhnZmaG06dPSy74tmqbudLq6+vJZDKcO3eOQ4cOcfbsWcbHx7cMHZayPLTbarX+Sjid+fl5Dhw4UABkHD9+nPvuu4+vfe1rxGIxfvSjHxEOh7cEd87v9yMf+Qg\/\/vGPeeqpp0rUR2tqagiFQjz++OOFz1KpFIcOHeKaa66R3e\/VV19d9B2Axx57TPE7l2rbLuJJJpOcOnUKURRpaWnB7XZLbqcW8ShRlgPkssqXHk8oN49ancq9Ljq9lkGVPJtpU53pXx\/7Fh+56X1o29cni0UVsk+AKRWGAE+5gxEVtmq13p1gjZvhfvnIS6vXMChTI8nb5Kh846reqKVfohdmZSnJqeOD1O2M0N8+SbDMSVm5G5fRgBBLkB5fBhFcPjuTk3K9OSFmZfqOfLUeZmVqSuGdYebOSkQ7OoH4ZIxcuY9lo5nJuSSjPXNk03EaDjhZjUk4kqCBZYk0pC9kZVai8TQ1UbposeoyxWm2iA1hei1XHw+Wc\/hHEtefLl1AKZGDTk1N0d7eTmtra2HF\/MvaZmnrPDvA8PAw58+fx+FwFAAKWxVCSyaTtLW1YbfbtzW0WxRFuru7mZ2dLXI6P\/\/5z\/nABz7Afffdx1ve8hYAXvOa1xQ0ybZiauqjgiBw11138fnPf576+nrq6+v5\/Oc\/j8Vi4T3veU9hP5vVRz\/60Y9y\/fXX86UvfYk3v\/nN\/PSnP+WJJ56QTOO9WNtWjicej\/P888\/j9XpLZGE3m5oWz\/Ki8nhUJQKYU2EkEAVlx1Ze6eeCQtoJILpQeox\/eey\/Cs7HErAxpuIw\/HVeBlS42RxhOyjICmyld8cZsIKC4wnXORm6ID9e0xqip0MeFFC\/O6IISjAa15z01NgCUxsYCwwmLbsvq2Y4ncbU6kefziEupUjPrSJe7AXKSaC68ma2GkoUQeEig8HUAiIiGo8N0WEhrdezmgWDxcDJF8ZILBd\/U6vXEBuSrjFJ9dIAJCWECAM73CQ3ISq1Bi2ZTak3d7V1Lc0mCPxo1EsmVXpsqWuXk0MYHx+ns7OT3bt34\/f7Jbf5ZW0zO0AikSik5Pr7+0v6YaTmgEQiQVtbW6GfaLvKCIiiSE9PD1NTU0Ws3U888QTvf\/\/7+T\/\/5\/\/wjne840XvX019FOCv\/uqviMfj\/Mmf\/AnRaJQrr7ySxx57rKiHZ7P66DXXXMP999\/P3\/7t3\/LpT3+a2tpavv\/9779kPTywzRyP2WympaWFQCDAiRMnFJtI1SKeJYWueL1Zx9K8fFpJEAQmJpXrKovLyqk6l1u5mKrTaenrHZQcyzsfu94Jo8pINYNKrh5ExhUkoaFUd6fkXA0a+hWYqgGyCiwSsHbPlWxVYSFhd1noOSfttFKJLOlsjtNHi52WIAi4\/VYaWsN0L6XQ13jR6QS0goBOI6AFzEYdU+ks2YYQWRGyokgmK5LJ5nC6LZzojTIbFUiNLwDr70vzvoikzEWVDCmpxWUgMVn6PjpDZpbGS99Dt8\/M0qbLDTZ6EAcGiz4zJtee61y4lu5j0iv+ZLQ0CpKKeEZGRujp6WHPnj14vV7Jfb0cZjKZKC8vp7y8nGw2SzQaZXZ2ls7OzkI\/zMaeobzTcblctLS0bGun09fXx8TEBAcOHCiAKw4dOsR73vMe\/vVf\/5Xf\/d3f\/aWPoWaCIHD33Xdz9913y26zWX0U4O1vfztvf\/vbf4mzU7Zt5XgEQSgUsNRoc5QVKZUbHK0eMyg4HnfQxsS0MpR6ZEQZ3ZUTlWtM1TvK6Dgvn8v9l8f+i999w5vRa5yQk\/5xCVqBMRXgQbjJT6+CrADAqkJEAFC1M8T5NnnH5AnZGO+Vj6jMdoMsqAAgWOGSTLPlbUdziHNHBiXHdHoNwxKRpSiKzE8vs1iRoqtNOuW556pqOo9JX1fz3nLG+0sdts1lkqUuMpmkf06VjX6mTklIYftNxGOljiEzXfpu2o1iUZrNFLIhTA2BTsdXnsziCBlLQAQGo1ZS8tvqLY54BgcHGRgYYP\/+\/S8azvtS2Ebp6nw\/zMzMTKFnyGKxkEwmcblcNDc3b1unA9Df38\/Y2BgHDhwosAgcPnyYd77zndx7773ccccd2\/r8X27bdonRrfK1KUU8RodyFGC0KfezOGXQR3mzuYwsqoATxieUHZPLrVyIt9ksfPcXP6AjfAJB5nSCjX6Wo8o1IJ1Kv5LDb2FIJZpJqgA1wtUecgoACH+VvaBhIjleJs3nlrcZBTLQht1lLMncA6vDyIAMd51Or5WVhnB6LQyfl06TVjcFJBtc9UYtkzL7y8oskvTx0v2YfHrim+QoBK1AdqT4GXl2rE1mfZ56OvtXMEikpLxB6ZRaPuLJr8oHBwe57LLLXlWns9ny\/TA1NTVcfvnlXHHFFaRSKfR6PbHYGslmR0cHU1NTW2KyfyVtYGCAkZERLrvssoLTOXbsGO94xzv4whe+wAc\/+MFfa6cD29Dx5E2Nr02pxqOzKvORaQzKl22wKgeCVpcyDYdOp2V8TLm+k0gqgxdq6yrJZrMcO3mCg8Iv0PglJnYVOhCdUcugzASaN4NHQClidwVtir07ggCjAypsCMvyTker0zAgwwoAa9HOpIKEQzYln+Lb0RwhlZR+h+p2hVmWScdWNgRk0XcJmZ6qmp1BUhKAFnfIxmxvaZ3OU+5gUUJ6oqyqNM3lqrSRWyk+V1Mqimi18k8\/Wavr5CQcu8sjvQCz+m2F+sPo6CgHDhzA4ZBQM90mFo\/HOXPmDMFgkGuvvbaEsPPgwYO0tbUxPDzMqkqbxMttg4ODDA0NFUhXAdra2njb297G3XffzZ133vlr73RgGzueXybiSWSV6z8ymav1cRUotSeg\/CP1BW2q7NqDMlQ6eTOZ1iOVvv4BHpz4AZrq9UlUb9LKrsrzFmkJkFABYcQXVGS0a9yK0cyOXWHmFWhoKhsDjMtISAOEauyyEQuAxSqPtvOFnfQrsHEvKjWMKpSklmakJy9fmYMJmdSmXD9yuNol+XmgXJqgUViUqMlYik\/W4DMjTE5wTKhmNrrm7BILEkSgFukFmNlrpbOzs1D03s5U\/Kurq5w4cQK\/309TUxOCIBQIOxsaGrjmmmu45ppr8Pv9zMzM8Pzzz\/P888\/T3d3N\/Pw8uZxy7fGltKGhoULKMl+8P3PmDLfffjt\/8zd\/w1133fUbp3PRtp3j2Zhqe7HgAoNVWfM9mVYOzVcTyumrrEr9JhRWLs6GIj7m5lSE2KaL0zZzc\/N8+\/R\/kW1eS\/EFGgOkFPpaAJIyq\/28BWtdzI0rpQxFxoeUgQkalSqhRQV2bjTKPyuL3UC3Qm2orNojW2Atr\/UxKhFpALh8VtkUXKTGw6REbQcgUiUN7TfbDIzLkJqmJGosABmJor8zZGN1ZNOxNWCJFTtQfRCWzFa++qO1d0QQYEGCrdso0580MjvC3NxcUf1hO1re6QQCARobG2Un7XzP0GWXXcaNN95IbW0t6XS6qGdoYmLil+oZUrORkRH6+\/vZv39\/IXrs6Ojgtttu48\/\/\/M\/5q7\/6q984nQ227RxP3nQ6nTK4QMnxmJUdz6rKhD2rADwAdfE3NcdktarUmJx2ensHSj5PJlP818Fvs9AyQVKhZgJgdZtVKXKsKsi7ypYgs+PyvGx2t4leGbQZrE3Icmg0AH\/EKUsoCuANW8jIpNI0Gg0TMg4CwO2TjigAqur9BaXIzeYLyUezMZl7Ea5zkk2Xnqc7bGdO4hxdYRsLEg7dX1F6bN8OD9mFYscTNOd4NFZOfl1mdxpJJ0vfB62EtLvGoGE1G+fyyy8vwHu3o62srHDixAlCoRANDQ1bnrR1Oh3BYJDW1lauv\/569u\/fj8ViYWhoiGeeeYbjx48zMDDA8vLyllBhW7HR0VF6enrYt28fTudavbKzs5Nbb72VD3\/4w\/zt3\/7tb5zOJtu2jkcp1ZZNZ8kqrOaVyI0BlhbkIxqNRmBiUrkvZmxMeUKfUeFwcziVU3U7aisUfxSPHHuUw8uPoFOoyftrPbKTK4DOoN67o1OBQFc0+slITLh5q2kNkVRw8qEqt+J1plblx+p2hmRTfHqjliEFWYXohHSUp9EITPZKO7OKBh9zo9KOJyEjsR2ukhHBkxHHE5ZL9+P2FC9STH4rq+j4\/hPrEXOk3CO5v9Ry6Xuucxg4cOAARqO6mu2rZXmnEw6Hqa+vf9GTdr5nqK6ujquuuorrrruOcDhMLBbj2LFjHD58mM7OTmZnZ7ekeCxlY2NjdHd3s2\/fvgI4o6enh1tvvZX3ve99fPazn\/2N05Gwbed48g9JCVygytOmMOECROflC5CekJ2UAorLH7YTX5U\/vsmkZ3hYGYo9OaU84adSyqm+hoZann3hMI8u34+hQfpcojPKDbIVOwOsKkDSzXYDfTLcZnmbkehBKToHpRqLVmCoR\/4+hKvdzCj0MK2uyO+7flcZKzIUOdWNfqZkpL9rd4VZlFEmdXulU1JGu5alceljpWRqVxkJBgOr18LKYOmCRZguThe6am1841Sx03A4pCOXxHzpPXJH3Iqy1q+2LS8vc+LECcrKyqirq3tJJ+18z9C+ffu48cYbaW5uRhRFLly4wMGDBzl9+jSjo6MkVFhL8jYxMUFXVxd79+4tMKwMDAxw66238o53vIMvfvGL25ZR4dW2bXtXlCIeNceTSMg7DqNNTyohv7qxeZWh2G4ZiGreyqsCiqsnu8PK0KAylY4ax5vJvDZxTE\/P8K2j\/4fVXSOwAeDmrXQxrqLwqVb\/qWgOklK4j5WNfkW0WVmtlxEZ4k1YYyqIzco7D3\/QJTvm8lqZGZL\/blrh+Tpd8s\/PqJeO8LQ6DZMy9aLqpiCixELHW2ZnTqJx1xG0sjBQuq9QjQs27cZd7SQzW+zcR7NGnj1Z\/JkUlFrQCGSXS59fUpuWlLTeDra8vFwiwfByWb5nqLm5meuuu44rrrgCp9PJ+Pg4hw8f5ujRo\/T19bGwsCB5nyYnJ7lw4QJ79uwp6N8MDw\/zxje+kVtvvZV77733N05HwbZVA+lGU4p4hnrlqVUAVlbk0ztmlxEUMmmJjHKkIOiV83h2p7Ljqq6OMDsvj8Ty+tyMjirLVw8Orl+\/KIr89OBP2Nncyn7ht0hPCdiCVuiXdzwOv1VV3iAmsVreaBYJEsuiY\/is0Cd\/o5WYDkwWPb0K0VZ1fYD2o9LvgM1tpF\/m2gxGLcMyvGxmu4GhDumxmtYgEzJj2bj0OxqqcDE+U5rSC1e7mD9T+rk2UbqY8gbM5DYEQYLLwjcfK3X2okS9z+O3IKYkUndlHpaWlhgcHESv1xcEzNxu96s6UeZ1fyoqKqitrX1Fj53XGLLb7dTU1JBKpQo0Pnk6mTyztsfjYW5ujo6OjiKWh\/Hxcd70pjfx+te\/nn\/5l3\/5jdNRsW3neJQaSHO5HBcuXGCoZ1BxH8sS0NK8GVQK+zqZ7vO8zc4r12\/SaeVozKjS0FlTU8bUlLzjCQS9jI2VTsrtFzoYsg\/x5v3vUI12AjvcTE\/Jp8mCNW6GJZiU82a2GRRBAQaTThk0ELTT267A27ZTWjo7b9Oj8ue+ozFCh4z8Q93OCH0npY9b2xKm97j0fTfJqNl6QjameqTfBzntn9xyaRrH7DCx0l\/q2LTRKBvdc5szQt9wKegkLvG+Oz0mkCBNDVYH2bNnT4GeZmZmho6ODjKZTJGk9SuZjss7ncrKSnbs2PGKHVfODAYDkUiESCRCLpcjFosV5B3i8TiiKFJWVlZYGE9OTvKmN72Ja6+9lv\/4j\/94ReS2f9Vt2zmevG2GU6dSKU6fPk06naa+qo4humS\/u6jA06YxKL8U2c35jk2WSChDMqemlYEJsVhMcVwQlI+\/Y0cVEzI6QEtLy7RNH8ZiMlNmvxyWpAvI02PK5+BQIQStbg3SfmxQ\/hx3hRUJPyM7PMwoOL5lGQgyrDkIOaYFjSAwMSCf\/luYkz9mYkn6uZosesbk2Kt3eBg6UTq5+8qdzEvUkew+CzGJ+xquc5M4XxwFOcrspDewX6zWlXFmvNTBCAIsTJVGUIIgfT151oKN9DRNTU0sLy8zPT3NyMgI58+fx+l0FpyQ1Wp92dJei4uLtLW1UV1dXULrvx0s3zPk8Xhwu92cOXOGSCRCPB7nhhtuQBAEjEYjFRUV\/Od\/\/udvnM4WbdvGg3k4tSiKLC0tceTIEfR6\/RpDqsLcrzPrScqkP0C9eXR2PqZwThqmJuWjCbPVyKgCh5ter6O3b1Dx+CMqaTa1wqcg5Dhx9jhPzP8X+j2zbBZijTR4mR6OyX5fqxMUxdwAFqPKabiVJflzFAQYVXBq5Tt8DHXLH98s0xQJa+AAOaSbJ2hjbkSmMTRiZ7RTesFQ0xokJfM+rcjUqILl0qjFyA53SR0HQJ8t3b8\/sqEWFfHy1492kF4pTan5AnbSErU4m8x9svpKm0Xzqaba2lquvPLKAvorGo1y7NgxnnvuObq6ul7yhsyFhQXa2tqoqanZlk5no83NzXHu3Dl27dpFa2srl112GT\/\/+c+prKwEoL29nUgkwnve8x46Oztf5bPd\/rbtHM\/GVBushbFHjx4lEomwd+9edDqdYg+PmrJiSqF5VKMVmJiQnxSDFS4yGfnCdUWlX\/GHWV0TISmRy89bKORjdEQ+BaXX6+ns7JYdB4hG11baKysrPHDo23S4foY+su4I1HR3qnaFFZkEwjs8DHfLR3WhKjcDnfJotbrdEeYUmA68Afn+G5vDRP85+RSeXi+fxqys9csK6pmd8qvUbEK6XhiocjErIzURn5WGa4sSaEijRS+ZZtMtr0G3NTYz\/9A5zdJqiuhkqaPzydwvh0wTtcWv3jC6Gf3V0NBANpstachMp5X74ZRsYWGBkydPsmPHDklZ7e1k8\/PznDlzhubm5gKJcTQa5X3vex9ut5uOjg4mJib4+c9\/Tm1t7baGqm8X23aOJ295x9Pe3s6uXbuK8PzpFfnJW6\/C06YkEOcJ2hUdi82j\/EJZ7crjLrf8pApQXqEsvNXYWMvKijwUPBDwMj5ePDH3DvTyYNd\/Mld5Go05R79C7QUgo9LP4AooT1yesHKPkijR1Jg3g1GnKL+wozkky71md5rpU3BKMzJRniBAdlE6DLa6jYx3SS9EAmXS1xmodBKVOJbNY5ZMs4UavOQ2ibVZfFbSIzOg0fCgqOP80Bw2u5nodKlDs9tkFloyLQFSEY+SabVaAoEALS0tRQ2Zg4ODHDp0iBMnTjA0NHRJHGmxWIyTJ09SW1tLVVXVJZ3PK23RaLSgxpqXj15cXOStb30rgUCAH\/7whxgMBrRaLVdddRX33HPPSxK9\/fu\/\/zu7d+\/G4XDgcDi4+uqreeSRRwrjoihy9913E4lEMJvN3HjjjSXKpclkkj\/90z8tpEtvv\/12RkeVEbWvlG1Lx5PNZmlvbwdg9+7dJUqIShGPxqRcvFdCazl8yp3cWr1y\/SWVUk6DxZNqaqIqiDmH8qRfVyf9wmezWQ6ffZqJiiOkQ\/IRldNvVezd0Rk0DF6QTyXqDFoGOuXHnR4zvQqOr363fP8NwIJCb1J1c4iMDJvDjpYgs2PSzZ9VzUHmJ6QjMFfQgJyfXJBhMfBHpBcXkTqPZMRlkiCNC1av7aOrIsiDR\/sAKA8HJPdr0ElHaxmJHi2tUafK3K5kGxsyr776aq699lqCwSBzc3MFjrSenh6i0agsVDsajXLq1Cnq6uoKaartarFYjFOnTtHY2EgkEgHWIN9ve9vbsNvtPPjggwVF0ZfaysvL+eIXv8iJEyc4ceIEr33ta3nzm99ccC7\/8A\/\/wJe\/\/GX+5V\/+hePHjxMKhXj961\/P0tL6u3zXXXfx4IMPcv\/993P48GGWl5e59dZbX3Sz7Etp287xJBIJXnjhBeLxODqdriCgtNEU+3j08mkTQSMwL9MgCKC3KBcGV1aVaxsTk8q1ETVi0MFBec0bgMlJ5cbTlRVl0ThRyPLwyf9mJPIElppSJ+ittCuyHdTuCrO8IO8YaneFWVIABtgDBsX9S4mr5a2y3s+YAkQ8JlFgz5vNJr+gsNvlx7Qp6ffBX20nKuN4ViUg1ACCBChFZ9Sy2l+atjQkVlipK+ML\/3Om8Jlbhu0iJdPMHJdYYFlklEdfrJnNZioqKti\/f3+BIy2ZTHLmzBkOHTpEe3t7kWxB3unU19dTUVHxkp7LS20LCwuFcy0rKwPW0tdvf\/vb0ev1\/PSnP31ZKYduu+023vjGN9LQ0EBDQwOf+9znsNlsHD16FFEU+cpXvsKnPvUp3va2t7Fz507+67\/+i9XVVb773e8Wzv8b3\/gG\/\/zP\/8zrXvc69u3bx3e+8x3OnTvHE0888bKd91Zt2zkeURRxuVxcccUVsr08KYWO+5wgf0kGm1Zx4luKK0\/ck1Py9R+b3czYqPxqP1IWUCQGLSsPKToWv99Lb2+\/\/PFtVs6fly9q6nQ6zp+\/AEDHhXZ+fPo\/WGpow1q2vuIeG1JrOlUjJZUfFxFZicrX18JVHgYUKHxcbvlJs7IhIKuyajTrGDov19ejY0SGWsdfbmduWPp9sDqko+pAtYvYSClyzuIyEZXoaYo0+EpqSCaXiXQmw1\/\/or34XAXpFPLSbOk52l1GMhJURZeaZrsUy3Ok7dy5kxtuuIG9e\/diNBoLsgVHjx4tAAnKy8tftvN4KSxff6qtrS04yHg8zrvf\/W6y2Sw\/+9nPXlFG72w2y\/3338\/KygpXX301AwMDTE5OctNNNxW2MRqN3HDDDTz\/\/PPAmhRDOp0u2iYSibBz587CNq+mbTvHY7FYaG5uRqPRyLIXKGnxZBQo\/J0qcgZKctZmm0ER0VZe4VPcdyiizFhdViadSslbzQ7ltERTU50i++7OnS0sLhZPUs8df5afdv8buV09VOxzszgjH814I3bZxkxYE3PrUxjf0RJUBBUEwi7ZMaNZr9jw6lQgO63fVUZCpqG4dldYNsoKV0rznwkageSc9P6sdumfU1m9R5LdwGIorS05alx8qWOK5U2OI70qkR4RILUo0TwakL4fL3XEI2eCIOByuaivr+eaa66hpaWF5eVlzGYzfX19HDlyhN7eXllWgFfTlpaWCqCHfCowmUzye7\/3eywtLfHwww+\/YtpF586dw2azYTQa+fCHP8yDDz5IS0sLk5Nrv4U80CFvwWCwMDY5OYnBYChQ+Uht82ratu3jAXn2AqUaT0qBtNJoUwYexBVW7IEyBxMKKEmzyr5FUTmvmsko9wdlJSC3G00rJwhz0SwW6Vx0JpPhscMPc\/1rYlj3ehFGKonPle7L6BARx+UniUCli4kx+YjOaJa\/Pzq9hsEu+WinYWeEC8el05AGo05R7E5pkSJmpK9HEGBuWLrnp7LJz1yvdOSbikq\/lxqJQr9GJ7A6VBwFaa0Gvj8xx4Xh0gVOdKo0debxWiUh1g6HCVECeGj1v\/K6O3Nzc3R2dtLS0kIkEiGdTjM3N8fMzAwnT54sYgXwer2vah9MvpG1urq6AHpIpVLccccdTE9P88QTT7yiKq2NjY2cPn2aWCzGj370I973vvdx6NChwvjm3ipRFFX7rbayzSth287xbLwpshGPkghcXH6CF3TyAZ5GKzAxKZ9KszqVHUtCBTgwqVL\/6VPo7xEEge7uXsXxnp4ele\/Lj2s0Gjo62pmbm8doNHL9Fa\/HOFnLyvTasxA0sDwnf1\/XCD\/lr8\/hMSvq6jTsrqCzTb6+tSqj+glrnG+dMowDgTInQzJOyeWzMiwjG1HZFGC2Rzq6tTuNSI2EatysSjTm6s0a5iXuTbjBT6Z\/Hehh8Nn4VqyHuenS98xqMxGVqGEFQg5W+0prTRazFqlq5CsV8eRtdnaWs2fP0tzcXECE6fV6QqEQoVCowAowMzNDd3c3yWQSj8dTaFx9uQr3UpbniausrCyg0tLpNH\/wB3\/A0NAQTz31VIGT7ZUyg8FAXV0dAAcOHOD48eN89atf5a\/\/+q+Btagmf18BpqenC1FQKBQilUoRjUaLop7p6WmuueaaV\/AqpG3bpdpAXQxOyfGsKECtswphvTdsV1TazKEccYyPy4evDqeNoSF5GGN1dbkiMWhtXTWxmHzXfVNTveL3m5sbmZmRd6qtrc2F7yeTSR5\/9n\/4xcC\/Iuy8gK0sx45dYaIyRXOAQLVNkfCzqiFIJi3vuDIKhKWRKo9iQ2tyVaFuJJMugzWwgly9zyHDt6fVa5iWIQv1BqWjicrmAEi8V2bD+meGSjf\/OHiCnpk55qZLHUl5OFjyGcizUhtkot+Xs8az2WZmZjh79iwtLS1Fk+NGy7MCNDY2cu2113LVVVfhdruZmJgoIupcXFx8WVNyKysrBXLSPGVPJpPhQx\/6EJ2dnTz++OP4fMqp9FfCRFEkmUxSU1NDKBTi8ccfL4ylUikOHTpUcCqXXXYZer2+aJuJiQna29u3hePZdhHPRpMTg0spOJeoAmpNKZVm91pAQc1gakZhRe+yMjkhj1irqg4zMycPIw6GPPT2yR9br1deH3g8yjlnt9ulOO6wl05ImUyGp557FI3mcW6\/5XdwN\/iIdku\/LkaTCZB3jFMKKbg1MTiF2lHYyfRQTHIsUO5kQCZq0QgC0zINniCPgtPptUzKRDtVLQGmZcAIyxPSKDe9FB5bEFkdWcuFJSos\/P+OPcFSPMGeXc0MSSww3E4HC5QuHKRYqQEEmV60VyrVlnc6O3fuLKlDyJkgCFitVqxWK9XV1UVEnUNDQ+h0ukIk5PF4XrKU3OrqKm1tbUQikQI5aTab5c477+TUqVMcPHhwy9fwUtonP\/lJbrnlFioqKlhaWuL+++\/n4MGD\/OIXv0AQBO666y4+\/\/nPU19fT319PZ\/\/\/OexWCy85z3vAcDpdPKBD3yAv\/iLv8Dr9eLxePj4xz\/Orl27eN3rXveKX89m29aORyrVJuZExbz98oL82JKEDkre9GblyX12NiY7VlbuZWpW3vEYVXqL1GhwUillNNnEhLL+z9CQPG+aIAh0dcmzIVgsFn7x1M+Ix+PU1zWws+waFjsdZC6esidoZ0BBdC1U42BcgT8tUuVlblwadKDTaxhWiHZCFR7mRqUdSO3OEMPt0t8tq\/UyPRCTHNuxM8jYOWlnZpIhkA3XelgcKb1Go81AVKIeFGrww9Aki3V27nniUbIXIyIN0pOpnOihKFPPzMoszF6JVNv09DTnzp27JKcjZZuJOvOEpp2dnaRSqSJC0xfLFBCPx2lrayMYDBa0f3K5HB\/96Ed5\/vnnefrppwv9O6+0TU1N8d73vpeJiQmcTie7d+\/mF7\/4Ba9\/\/esB+Ku\/+ivi8Th\/8id\/QjQa5corr+Sxxx7Dbl\/vI7v33nvR6XS8853vJB6P89u\/\/dvcd99924JPbls7HilwQWolJcl3BaA168hF5SdpJUbmjEIqzem1MDSrMLlrlIEDSsSggiCowqT7+koZifMWiQQVx2tra+jtla8P7Wxt4dy5s7Ljra0tHD12DICe3m56ertxOp1cvfe1aKcqCFd5FO+r2SY\/KWi0GkYUWLAbdpXTfVI6RanRaBiTSXsBmEzyNTm9ST5to9dKL0D0Ri2TXdLn6vFbGJdwPOWNXhY7St8bh9NAR62Jrz72i6LPtUgvUBJL0u90QoaFPSnTS\/VyRzxTU1MFppFAQBmleSmm0Wjwer14vV4aGxtZXl5mdnaWsbExLly4gMPhKDghm822peJ5PB7nxIkT+P3+grR2Lpfj4x\/\/OE899RRPP\/30q9rg+o1vfENxXBAE7r77bu6++27ZbUwmE1\/\/+tf5+te\/\/hKf3S9v29LxCIKAKIpotVqSyeIfl1J9x+yywnhMep9agWWFIvWyAuWHL2xjSEENYVmhcVONGHRHbSVdXRdkx5ua6jj2wnHZ8erqCsbG5KOtcDio6HjsDuXJKC1RY1tYWOAXhx5Eo9FwleNaDFUBcpMhssniH7zVaWK4S945\/qZbgAAAWXJJREFUVDZ4Gb4gP56VYSIAqNsdpu+0dIrOYjcw2C49ptEILIxJR5gWu4FRGTBCzc4g4+ek97kk00wqlWYzukz8ZLKLnx89WTK2uiC9+InLLKYWJODpBpOWhITj+WVZC9Qs73R2796N3+9\/2Y6zWTsnmUwyOzvLzMwM\/f39GAwGVY2hRCJBW1sbPp+PxsbGgtP5xCc+wcMPP8zTTz+97UlLf9VtWzqevOl0OlY2SRwrQal1FvmUltVtQlTo05mZV4ACW5VD01hUeuIBqKwKcb5T3rH4\/S665BUe0KjApFdW5K8JlNkOBEGgVwEN53DYOXfunOx4TU0Nz7\/wLABWq5Ur9l6HPb2Dua61+1XTHOTsUfloLKcgBucLOxX7hrQa+WdS2xKm+wXpSKm8wcN0t3SEVt0SZKhNOrKVewyROi9Lw6XADoNFT2yDAqtGpyHXaOY7XYcZOi+FRDMxOVa6H4vFyHK0NH3s9lpJSQArfEEbLErs\/2VMs01OTnL+\/PmX3elImdFopKysjLKyMrLZLPPz88zOzspqDCWTSdra2nC73TQ1NRWczt13380DDzzAwYMHC0iy39jLZ9va8UjVeJQIQgUZwS4Au88KI9Jhi06vYWJSHhWWzsnXjTxeO2NTg\/LnpFVG42x2rJttYEB+31arhQsX5JuLysrC9PTIRzstLU10tLfLjre2tvD8kaOy42bz+gp6ZWWFp597FIBIpIy9DVezmJKf7DxBO+O9MdnxQMROTIZDzeGxKLJUryroMdltVqZlgBBZGYSc2WZgQkY2we2zEJdwPOVNPpbOrzkxS6OL+\/ue5cwjPRw4sA+GSx1DVWU5E92lUXd5WZDFrtKIx+bQgkRTqdNtBIl1kNX78jieiYkJLly4wO7du1915JdWqy1EO01NTSwtLTEzM8Pw8DDnz5\/HbrcTj8dxuVw0NzcXMitf+MIX+Pa3v81TTz1FY2Pjq3oNvy62LR2PEpx6dUGBBVeGMBFAr6D86Qk7FOWmo1H5GkYo4lZ0PEajfK1Bq9XS0yMPZ6uurqCvX368ubme48dfUPh+lSIbrcvllB0DiCuAHgRBkI2mxsfHsFpP09PzAJUVVbTs2I9uJch8r4Y8KrZih59zMvdNoxEY61MQomsIyqqMhirdjHZLf9fqNDLULn3OnqBNVvCtqiXA6GnpSGhxNCb5uVEQyUbsHGeIHz\/+48LnZpM0q4DH5WaC0nfb43SwKNE5FAr5mJK4\/1qtdBRpeRnqO+Pj43R2dhZJQG8XEwShwOxcW1vL0tISp06dQqPRMDc3x\/vf\/35MJhNWq5UHHniAp556itbW1lf7tH9tbFs6nrxthlOvrq5y\/lSH7PY5paKiQsrK7jGBzPwsCDA2Kp+uMpqVb+HQkHxjZDjsZXBoUH48ElR0PDqdchpOTe20VyEacnvcnDsnHw3t2rWTs2fl03DBYJCenl6GR4YYHllD1fl9fnY1HcCWrWRyRL62U78rQt8Z+YhmVqamAhAqcxEdkR6vaQrJyluX7fDSPyf9EogyEgNlDV6WByXSbE49vbkp\/rPtpyQ3adbIISsFUQaqrpUGZ8ixUmvJIlUZs77EqbaxsTG6urrYu3fvK95YeamWTqdpb2\/H5XKxc+dORFFkbm6O\/\/t\/\/y8vvPACBoOBL33pS9x+++284Q1veEXZCX5dbVs2kOZtY6ptfn6eI0eOYNLIo6SSCk2KaQWBNp0ClNofcRKPKzSsKjBWl5UrE4N6vMoRx0aK882mxmbg9XoKpKBS1trSxNSUvENtamqSbN7NmxpJYl9fqcOcmZ3hqcOPMLD8PL\/ou5dEzTE8++fw1Ips5HbVKhC9BqscTMlo62g0AuMKSLe4DAoMYEmmQdbmNjMhg2ZzedYbODU6Dc4WJ+PVMzxlPs7XH32gxOlotVqGB6XrVjPj0u+JFCXO2oD0++yUYHMHWMquMD09\/ZJQ4o+Ojv5KOZ22tjbMZjM7d+5Eo9Gg0WgKrApPP\/00jz\/+ODt27OALX\/gCP\/jBD17tU\/61sG3pePKptjycenR0lLa2Nurr6\/HY5V\/0uXn5lFg8Ll+nSYvyE6zLr0x9PjYqvzIPhZXTD0oRicGgp7NTHnXQ1FTH3Jz8JNvQUK+ohqrWVKoEWtDr9SWiUxtt586dTEzIAwPsdtsasuj0cX729Pf42cl\/5Wz2W+QazhC6Is7cyigamcyoPyj\/\/GtaAizIMCgEyp2MyaTgIjs8zAzGJMcqG32SDAeCAIsjMZxVDlKtWX6w+nM++8RX+eHzD2OxSEcX1dUVxCVkDLQaDfMyWkMLM9Kp5YQMQjMn0yRt8Vnp6enh4MGDnDp1itHR0RLE6FZsZGSE7u5u9u3b9yvhdE6ePInRaGT37t1oNBpEUeQb3\/gG99xzD\/\/zP\/\/D1VdfzZVXXsnf\/\/3fc+bMGf7wD\/\/wJTn2F77wBS6\/\/HLsdjuBQIC3vOUtdG1CEb3\/\/e9HEISif1dddVXRNttZzO2XsW2datNoNKRSKbq6uti\/fz8ej4eRJfmeFwEDSLJUweKCfPPoskLUojPJp7O8Pgejk\/KoLVFB2E2r1SrS7NTWVtHecV523ONRjpYSCWXuOKmIJG9en5f2dnnHsmfPbk6caJMddzjklVbXnFbpdS0uLnLk+LNce22O5048h8FgoL62gTJ\/DVYhQHbOQnLewKAMUwFAWmEiDVV6WByXfs6+kJ0FGVLQzfB9jUUkF0mDO8sTA2c5duZUyXdWlqXvfSAQYHyoNIoNhwIsT5RGIhaLkflJ6ah3YVJ6YZCWec937Kyl4qpqVlZWmJmZKdRn8j0wfr8fq9Wq2AMzMjJCb28v+\/fv3\/bpqEwmw6lTp9Dr9ezZs6fgdL797W\/zqU99ip\/97Gdcd911Jd97qQg0Dx06xJ133snll19OJpPhU5\/6FDfddBPnz5\/Hal1fmLzhDW\/gm9\/8ZuFvg6G4JnzXXXfxs5\/9jPvvvx+v18tf\/MVfcOutt9LW1rYtGkFfrG1bx5PJZOjs7EQURa688kqsVivZbJbkknzBO5mUn+jn5+Sdy4xCOkyJ\/DNU5lZ0PBMTCozLjdWKUGWXS5kGZ2xMHgxht9sUHUdLcyPnz8s7tcbGRp577jnZcaUXXqfTKSLt1JxWNLpWM0mlUnRcaKfjwnqd6bprr2N+Noq\/MoTD5MOQc5JbNhGf1mLQmJgdlH7GggAzMvQ5gkZgVmbMFbAyszpNqmWJ6dQUfRP9DAwOkRvI8ZrrruVYZ6nT0et09PdJ1\/U0Mj+38rIInRIRYnkkyGJ3aQTj9VtJLZd+rtEKrMpQRuWbRzfS0mzugTEajfj9fgKBAE6ns6gHZnh4mL6+Pvbt27ftnU42m+XUqVNotdoip\/O9732Pj3\/84\/zkJz\/hxhtvfFnP4Re\/KG4O\/uY3v0kgEKCtrY3rr7++8LnRaCxRWM5bXszt29\/+doHm5jvf+Q4VFRU88cQT3HzzzS\/fBbzMti0dTzwe59ixY+j1a\/kWo9FINpsll8vhqw9g8VlZlUipLMWk02kGs45FmTSc3qBlTAFKPavglAxG+QlYjRjU6VSukYwooOx8PrcizLq5uYljF9kGpMzjccuOASwsxGTHzGazIuhg9+5dnDxZOiHnTaqhL29lZRHFulQiEedC13kuUOo0L7vsANNTs\/g8fmwWBxaDDZ1oRExrMGltTC1PoavWoTfo0en0hfNwOGwsJEZJBFdZzaywlFgkthRlPhalwVfHc89JN+8uLUlP8HV1O+jvlU6\/zs1Igx4MWunGTrdLGtHmCziIL5fuy+2zIKakz0uqj2dzD0xeruDMmTXl07xcwerqKoODg+zfvx+nUznSfrUt73QEQWDv3r2FRdKPfvQj7rrrLn7wgx+8KlxlCwtr88\/m9OTBgwcJBAK4XC5uuOEGPve5zxVYH9TE3H7jeF5ii8fjeDwe6urqeOqpp4jH45jNZjQaDa2\/s4eaW+p57sfPsNy+wHJ7jOXJJQSNwFJUOhqyeS0g43g8YTsjI9K9NnqDlvExeaqcZYU6iBoxaFShvhMOBxTRcA0NtczMyKfp1LR\/+vvlo7RgKCiZCsvb7t27OHZMHsKt18vDx61WK+0KfUM1NTWMydxvp8Oh6PAWlxYZGRthZKz0vl133bU8d066H+mqq67h2DHpCCwvebzZTCYTPT3S99Dn80k6HqvVwsiwdAQcl4heAEwyiDanw0xcolnH7TPDeKnj0Rp1mJzKtUqtVksgECAQCCCKIgsLC0xPT3PhwgXS6TROp5OlpSVMJtOL5kZ7uS2bzXL69GlEUWTfvn0Fp\/PTn\/6UP\/7jP+Z73\/seb3zjG1\/x8xJFkT\/\/8z\/nuuuuY+fOnYXPb7nlFt7xjndQVVXFwMAAn\/70p3nta19LW1sbRqNx24u5\/TK2LR2P1+vFbreTyWRwu90cOXIEr9dLIBDAaDTS3t5OxYFqGt7TgEajYbpjgv5n+pj84QVmJJiMzTI09wA2jwlk5vhAuZMZmbQJwMiwfFSiRAxqNpvoUUCkVVaVMzomHy0pFf51Op3iBN3UWE9np3wqLBwOKb7USqgos9ms6Fh27typGIkpoexaWls5KtPM6nA46O8flP2uEped3JjBYKCrS7oO1tRYT3u79FhKprhfU1NNX6f09U2OSEfc6VXp1LEclNpuNyB1dItXXqFVyvIKotHoWrS\/e\/du4vH4i6oLvVKWy+U4c+YM2WyW\/fv3o9OtTW0PP\/wwH\/zgB\/mv\/\/ovbr\/99lfl3D7ykY9w9uxZDh8+XPT5u971rsL\/d+7cyYEDB6iqquLhhx\/mbW97m+z+touY2y9j29LxzMzMYDKZ0Gg0XHbZZcTjcaamphgYGCAej2OxWLDZbKTTaYxGI4HWMIHWMFf98XWMdU5z6pFuTj3aXaC31yqkxHQm+dSP3WMEmRp8IOhiaEy+QK+EWKurq+TU6dOy4+mUfJFcja1g165WTp4s5QHLm8\/vAwUl1fxkI2VOp0Oxd0ctGkqn5ZGFNTXViiwLSYVm1tbWVo4clT5uU1ODrAOprq5maEg6Kq2vr6XzgvT37DLSx4IgMDggHbFZZWDO4VCApSnpOuLCtHTNSsxIOySTUSvpeF6MDk9\/fz\/Dw8NcdtllBcbjS60LvVKWdzrpdLrI6Tz++OP8\/u\/\/Pv\/f\/\/f\/8fa3v\/0VPy+AP\/3TP+Whhx7imWeeoby8XHHbcDhMVVVVQdRxu4u5\/TK2LeHUH\/vYx6ivr+fP\/uzPePLJJxEEga9+9as8\/fTTtLa2Ul5ezvj4OM8++ywnTpxgeHi4IC1Q1hTg1o9dx6d\/8Qd8+rE\/4LY\/vw5HWB5lpQSlFmS6wAECYZfsmF6vo6dHHn1nscqnPbRaLZ1d8vxpzc11ijBYJVZmgC4FiLbP72NwUF5CobW1hVRK3nkoRUNut0sxElP6Uap9N56Qvx9+vzxLcnl5heyYEhfc\/Jx0raa6upJYTHpsISbtRMrC0oVls1ke0SbHSq2ToW2\/VJ62vr6+EqeTt3xdaO\/evdx44400NDSQyWQ4c+YMzzzzDO3t7UxNTSn2gL2UlsvlOHfuHMlkkv379xfqwgcPHuT3fu\/3+Ld\/+zfe\/e53vyLnstFEUeQjH\/kIP\/7xj3nqqae2RDo6NzfHyMhIQThvu4u5\/TK2LSOeb33rWxw8eJAHHniAD33oQ2QyGbRaLZ\/85CfxeDyYTCaqqqpIJBLMzMwwNTVFd3c3DoeDQCBAMBjEbDYTqvXyhjuvBuAtf\/4ajvz8As89fJ6e02MF6pZFhbTVSlyenkdvUGhyDLvp65ePHObm5OlgGhtrOaeQrtIpyXdrNIraOvX1tfR0y483NjQwMyMvU7CyIn8\/1KKh5uZmnn\/+iOz40JA8w3ZzczNHnpdOs7lcLkUEn1zNCJB1EgArqzL1QpuF3t5BybFIOMS4TNpsaUGGEdtkBQmRt\/LyAEtd0pP3ooyIHTIMC1uVQxBFkb6+PsbGxjhw4IBqk7BUXWhmZobe3l7a29sLMtZ+v\/9lqQvlcjna29tZXV0tTNIAhw8f5l3vehdf+cpXeO973\/uqpKXuvPNOvvvd7\/LTn\/4Uu91eSF87nU7MZjPLy8vcfffd\/M7v\/A7hcJjBwUE++clP4vP5eOtb31rYdjuLuf0yti0dj06n43Wvex0tLS2cOHGCdDrNVVddxT\/90z\/xd3\/3d9xyyy285S1v4XWvex0VFRVUVFSQSqWYnp5menqa3t5ebDYbwWCQQCCA1WolXO3hbX9yLW\/7k2uZGVvgyCMXeP7h83SMyKd3JiflJ+FFCQbgvDkc8jl1m82iGA05VWDUaqSfShDtYDCg6HjGxpWQdD7FqKO1tVXRsSixMDQ01NPdLR\/lra7KQ9qbm5s4clQaeVZVVcnAgHQE53S66OyUPmYoFGBwQNoRlpdX0NsjXfcTRekJzu\/3ykZJ6YR0VO11OlmSQLR5fFaSK9J1pMySnACcuuPZ6HQuu+wyVaez2fJ1IZfLRX19faFfaGJigs7OzkIj5UtVFxJFkY6ODpaXlzlw4ECh\/+Xo0aO84x3v4Itf\/CIf+MAHXrVayL\/\/+78DlMC2v\/nNb\/L+978frVbLuXPn+Na3vkUsFiMcDvNbv\/VbfP\/73\/+VEXP7ZWxbOh5Ye7He9KY3sXfvXv73\/\/7fGI1GcrkcR48e5Uc\/+hGf\/OQn+eAHP8jNN9\/MW97yFm6++WbKy8spLy8nnU4XIqG+vj6sVmshErJarfjLnNz+wau4\/YNXMTu9wKFHT\/Pkwyc5ebSb7MX8ucVuYHxKfrU8rAAs0MiIiQHU1lXS1iYf8UxPyytuNjXVceGC\/Ore6VR2WkMKabSysogiRLupqZHDh+V7e5YVJCdCoZBiVBIIBGQdj9frpV3B4SUV1FkrKipkn1NzcyPHjp2WHNtRU8PMtDQk3OfzyTqekWFpUEZVVSUdUWlHNiMjmS3H0eYPOoj3S38nPi+dzrP4lVNtoijS29vL+Pg4Bw4cKGpwfLG2WcZ6ZmampC7k9\/txuVyXXBcSRZHz58+zuLhY5HTa2tp429vexmc+8xn+5E\/+5FUtwIuiMiu92Wzm0UcfVd3PdhZz+2Vs2zoeQRB46KGHKC8vL7xAGo2Ga665hmuuuYZ\/\/Md\/5OTJkzzwwAPcc889\/NEf\/RGve93rePOb38wb3\/hGwuEwkUiETCbDzMwM09PTDA4OYjabC+kBu92OL+Dkd957A7\/z3huIRZd55tEzPPXzk0xNzzB+blDy3MIRD\/3D8iv0wUF5JJxJAe3m8boU2aq9XpfsGKwVhOWsvr6Onm75+k7NjhpGFZpSZ2bknWUgEFB0LHV1tYpIOSUWhabGRtlIyuGw094uD\/2en4\/Jjomi\/GSXVdAJmpqSpinyeT1My4zJMVK7nHZmZdRb5RBtDodJEkptdxnJyNBCKYELRFGkp6eHycnJl8zpbDaDwSDZL3T27Jrybb5fyOv1FoABSud74cIFotEoBw4cKKTwzpw5w5vf\/GY++clP8tGPfvRXHvX1\/7ptS3BB3ioqKmRfII1Gw4EDB\/jiF79IZ2cnR44cYc+ePXz5y1+murqad7zjHXzrW99icXGRUCjEnj17uPHGG6mtrWV1dZUTJ07w3HPP0d3dzcLCAqIo4nLbuP3d1\/KVb\/0p\/\/nDv+Gfvv4XvP4NV5UU7H0h+SY6NWLQ6Wn59F1tbbXiSmlqSn7yrq+vZXxcvm8oGFDWShkfl4\/u\/H5\/Cc\/URlPjhVOK4nbubFXkdVPio2tukQc7BAJ+Wa47rVYnm2bTanV0dUs7Qq\/Xw0C\/dORSV7dD9jyjc9JpxsoKeUCFHEebQWZi9gTk07ty4AJRFOnu7n5Znc5my9eFWltbueGGG9i7dy9Go5He3l4OHTqkyCMniiKdnZ3Mz89z4MABTKa1Non29nZuu+02\/vzP\/5y\/\/Mu\/\/I3T+RWwbRvxXIppNBr27NnDnj17+OxnP8uFCxd44IEH+I\/\/+A\/+7M\/+jOuvv563vOUt3HbbbYWUW37lNT09zcmTJ9HpdIVIyOVyYbdbePPbbuTNb7uR1dUEh548waM\/f56DT55AKb0aCnvpH5SeuJxOO7298j0lyKCSYE3CWikaCgb9dCvUb4aH5aOwmh019PXJR0uNjcqgA6Wx6upqxfqNUie8x+NRrGllMgrS2HV1zMxIQ6xbW1s4d07aKTU1NdB5QfqYdXW1tJ2Qjux0Omk0oUarYXRY2vE67U6QEKUzmQzMy6TgkIFSOx0mcjKPQQpcIIoiXV1dzMzMcODAASwycO+X0y6lLmSxWOjp6WF2drbI6Vy4cIHbbruNP\/7jP+ZTn\/rUb5zOr4j9P+F4NpogCLS0tPB3f\/d3fPrTn6a3t5cHHniAb33rW3zsYx\/jmmuu4S1veQu33347oVCIQCBALpdjfn6eqakpzpw5gyAIBQflcrmwWEzcctt13HLbdSQTKQ4dPIbRLHD8WDsrK8WFbyVi0B21Fcwdl2+SVHIsNTUVjI\/LI7+Uop3a2hr6euUn8EgkrJimU5LPDgYDiki6iopyBgcHJcc0Go0iA3dZWYSojCS5zWajo0OeXicel+\/7cTgUnJ1bnk5Ip5VPk46OSEdtNdWVksSgAIll6WitvCzIco80Qk0OSm02ayXpcbUGbQlrQT5yyE\/iZrMyq8ErZUp1oTzfWnNzcyEd19PTw6233sr73\/9+PvOZz\/zG6fwK2bZOtf2yJggC9fX1fOITn+DYsWP09PRw++2388ADD9DY2MhNN93Ev\/zLvzA2NobX66W1tZXrr7++QGtx7tw5nnnmGc6fP8\/s7Cy5XI6cmMXm0PLnf\/k+Tnc8zLe\/9+X\/f3tnHlZVufb\/z2aeQWaQGREQEGUQB5wyNRUENbVj+up5rU7ScCyHzs\/qTU9lqSet3lIbNSu1k6g4pybghAY4oDiByKBMMsqMwPr9wWG9bt1r6ekIGK7PdXldxdp786Cb\/V3Pc9\/398ufno3E8l\/1FzljUF1d6a2Sl5c7paXSnnG1Mg7azs7dZXcsJvc5QsnLk3ZJ8PBwJ1NGtLy8vGRfW65NOiAgQPYoTWiR3gH28vMTZ7fuxszMVFaU8vKkjxVLZP4Nrl\/XLC4mpiYUFmiugbX5bmmiXCLCwaqbtDDeKtbcxKEnEXR49zFbW42ktLT0kRKdu2mrCwUGBoozXlZWVhw\/fhwXFxeioqKIjIxkwoQJfPDBB50yuKrw+3ls\/rVUKhVubm7MmzePo0ePkp2dzdSpU9m9ezf+\/v4MHz6cjz\/+mJycHCwtLfH19WXIkCEEBgaira3NhQsXSEhI4Pjx4xgYGBAQEIChoQHDn+jPipX\/j9PndvJT7P8y4slw7OxsNK5BbldibSOdbWJkZChrnuniIj0ICXDzpnSNxcurBzk5ct1umv3K2pCLDHdy6k5urrTwGBlJf+jZ29vJ\/sxytbBevXpx+7bmbjcXFxdyczULbbdu3ciU8GBzdHTgxg3NwuPkaC+5HilHagN9PcolMnhaGjTvdrpZSbdSqySOHe9spW7rBmurkTyqonMnWVlZFBYW0q9fPwIDA4mKiuLjjz+mrKyM6upqvv32WyIiIvjiiy9kOysVHi0eG+G5E5VKhZOTE6+++ioJCQnk5eXx5z\/\/mUOHDtGnTx\/Cw8NZvnw5GRkZWFhY4O3tTUVFBQ0NDZiZmVFbW8uRI0dIS0ujqKiI5uZmtLW1GRQezIfLFpF2\/iC79mzgLy9Ox8mpdQrZyrob2dnSH8IVFdIhdr6+XrJuBWVl0nfpTk7d5ZsO7OwkrwGyouTl5SV5jAatH\/JSSOXytNHDs4fkh7mRkZFsF12LzE7J2Vl6TT179pBsknBzdZV8nrW15hsNkHakdnN1keyea2mQmAeyk3bgaK7R\/P5oi7xuE52Kigq1GsmjTFZWFnl5eQQHB4uND8XFxbz77rsEBQWJKaLDhw9n8+bN921hVnh0eCyF505UKhX29vbMmTOHAwcOUFBQwMsvv8zJkycJCwujf\/\/+TJ8+nT\/\/+c80NTURGhrKoEGDxIJsZmYmCQkJnD17loKCApqamtDS0iIsrC\/vvf8Gp8\/uZ\/+BTbw4ZwYeHpo\/vExMjbksY5Mjd0RnY2Mt693m5ib9QQtwLVu62cHb21u2KcHOTvoYSaVSybZJe3i4yw7hynnG+fn7SdZw9PX1uXBB+u+jqkr6yFJLJf33LKNl3JKwwzEyknaktrSQriU13NIsSNoyFk715VJxCCbisGVFRQXBwcF\/CNHJzs4WbXvahlkLCwsZO3YsgwcPZu3atWhpadGzZ08WLFhAfHz8PfY+v5cHSQ8VBIHFixfj6OiIoaEhw4YNuyeVt6umhz4MHnvhuROVSoW1tTWzZ89mz5495Ofn4+TkxJ49e3B0dOR\/\/ud\/WLx4MWlpaZiYmNCjRw8GDhxIWFgYJiYmZGdni9HC+fn54nFP3yB\/5s59ntRThzh8ZBcLFryMj8\/\/1UZ6enlIHg0B96mxeMre6d2QeaN7+3jLHpXZ2Mi3YGdmSgtLQIA\/RUXSR3xyXVSOjvK5PCqV9NvW39+PmhrNQmBubsbFi5obIVQqlazDdU625r8nQ0NDsrI0i7OHh5vkDkpHpblRQV9fV9KjzchA81CpnoE2DVKWPNatURRtw5Z\/BNHJycnh2rVrBAUFiWJSXFxMREQEwcHBfPPNN+06ud+WHnrixAkOHDhAU1MTo0aNUntfLV++nJUrV\/LZZ5+RnJyMvb09I0eOVHPomDt3Ltu2bWPz5s0cPXqU6upqIiIiZD0NHxe6XFfbw6KhoYG\/\/OUvXL16lfPnz2Nra8uuXbvYunUrI0eOxNbWlqioKKKjowkODsbT0xNPT09qamooLi4mNzeXCxcuYGlpKbZp6+npERDgS0CAL4vefI0rV66yI24vFy5eIlkildPbuweXLkkfK0l9yEKr4\/O1LGlxsLa2krymUqlkW5kDAvxlLXTkLFeMjIxk54Ls7ewokDgeNDAwkG0ckPME8\/Hx5bffzmi85uXlydVMzUeh7u6u5OVq7lX26uHB5Yuan2dhbg5o3vFUVWgWCufudlRnav5gMpBo2TYx1wGJeabyhnKMqloIDg5+ZHN07iQvL4+srCyCgoIw+5cLeGlpKePHj8fX15cNGzbcd8j0P+V+6aGCIPDxxx\/z5ptvivEF3333HXZ2dmzcuJG\/\/OUvXTo99GGg7Hgk0NXVbbXbT0qiR48emJmZMW3aNLZs2UJRURHLly+nsLCQyMhI\/Pz8eOONN8TGA3d3d\/r378+gQYOwtLQkPz+fw4cPk5KSQl5entiN1bOnJ\/MXvMy3337GmTNHePfdNwkJ6avWFmptbSG5xtbuLek6SXdHB9mfUW7H4u\/vL5uPI3escb\/6jb+\/v6z\/mlykhH+Av6TYamlpc0Um50ju7W5nK13rcnR0lLwmFwN9u1HzTlRbS4v8XM3dfFbdpF+v4ZbmOo6ljPt0s76gNuH\/KHP9+nUyMzPp27evON9VXl5OVFQUbm5ubNq0STQC7UjuTg+9du0ahYWFasmg+vr6DB06lOPHjwP3Tw993FGERwJtbW2WLFmCldW9uwJjY2OefvppNm3aRFFREZ9++imVlZVMmTIFb29vXn\/9dQ4fPoyuri5ubm7069eP8PBwbG1tKSws5OjRoyQnJ5OTk0NdXesHsIeHG3\/964scOrSDCxdOsmzZEgYO7Cc7nOnr6y17RFdQIN027OfXS9bGxsxMeseio6MjW1fq3TtA\/GXVRH29tOg4OzvJesbJ2dn06uUr2ZLeKkrSQlt5S9rEtL5eOgqiplr6Z8m\/rvnfztnZkYZ6zf9u+hK7GoBKCVdqC3PpY0sze3MqKioe+eOdGzducOXKFfr06SOKeWVlJRMmTMDOzo6ff\/5Z9GTrSDSlh7b93tzdmHNnMmhXTg99GChHbf8hhoaGREVFERUVRWNjIwcPHiQ2Npbp06ejpaVFREQEEyZMYMiQIbi4uODi4kJDQ4PopJ2RkYGpqanopG1kZET37g7MmfPfzJnz3xQXF7Nz5x7i4nZx5MhxtZwTucwTN1cX2dkeC5k7ax0dHdkCfe\/evWXD5uSOQkxNTWXrN25ublzP01xP0dXV5dIl6WFVCwvp+ZdevXxJT9fcwGFqasIVibA4LS0tMjOyNV7T0dEhK0tzDc3OzoaSmxWar9naUiFhKNpcr3mXJNdKra+rQmpc1szOnCtXrtDQ0CCm+FpbW3fKh7gU+fn5XL58mT59+ogf1FVVVUyaNAkzMzO2bt3aaTs2qfRQ4J6B1QdJBu0K6aEPA2XH8xDR09Nj7NixfPPNNxQUFLBx40b09PR4\/vnn8fDw4MUXXxTPj52dnQkODmbIkCE4OTlRVlbG8ePHSUpKIisrS5xJsLW1ZfbsWezYsYXMzPN8\/vnHjBr1JKamprItxU7O0vM3KpVK1l6nd+8A2a4yXV1pYTEyMpKNZnB2dpIVTDmXhN69A8QdoiakIhAALGS6yHy8e0ruHB0d7e9xp2jD09ONWolrzjLBdvo60gX+W8Wau9PkWqm1BYkuOD1t\/IL9GTRoEGFhYZiZmZGbmyse++bm5sr+fXYEhYWFXLp0icDAQPEoq6amhsmTJ6Orq0tcXFynzRu1pYfGx8erBRXa29uLa7+T4uJicRd0Z3qo1GMeZxThaSd0dXV58sknWbt2LTdu3CA2NhZzc3NeffVV3N3dmT17Njt37qS5uZnu3bsTFBTE0KFDcXNz49atW5w8eZLjx4+TmZlJVVUVgiBgZWXJf\/3XNL777ku+\/fZz\/va3+UREjNX4i1koY7zpH+Ana1YqdzdsaGgo21QQECBfv9HWlhYtV1cXMmUaGnT1pO96nZ2dZOeVpIY\/AfRk7qbb0iA1YWsjPb9jaCh9\/FVfrVl49fV1KS3QfORnZi794dtSp1k0jaxaaz8qlQoTExM8PDzo37+\/eOx78+ZNjh07xokTJ8jKyhLfZx1FUVER6enp9O7dWzzSrqurY+rUqbS0tLBr164OMS69m\/ulh7q7u2Nvb6+WDNrY2EhiYqKYDNqV00MfBspRWwegra3NsGHDGDZsGB9\/\/LGYKfS3v\/2NkpISRo8eTVRUFKNHj8bBwQEHBweampooKSmhuLiY3377DX19fTFZ9cqVK3h5eTF69GhUKhU1NTX88stB4uJ28ssv+7GyspRtwZZrDDAwMJDdSfXuHcDJk5rNN0H++M\/a2ooLF6SbDlxcXMjN0dyarKure595JTeuX9csPI6OjrLDu7k50i3lcqWRxkbpi9W3pL3iCiRSSp2621Ej0dGmL3N82VipWeiNJJJHDQwMxGPftuyqmzdvcu3aNfT19UVjTgsLi3Y7FiouLub8+fP07t0ba+vWtv36+nqmTZtGTU0N+\/fvf2hzOf8u90sPValUzJ07l6VLl+Ll5YWXlxdLly7FyMiIadOmiY\/tqumhDwOVoIz7dhotLS2kpqayZcsWtm3bxvXr1xk5ciRRUVGMGTNG7Oxpc9LOycmhoqICXV1dHBwcsLOzw9zcXO3Dob6+nsOHj\/DzP7ewd+++exwRtLW1MTM3k3Q76NcvlN9+05zoCRAcHERqqub6TrduFlRX10geW4WHD+ToUemOHk8PD7KyNA+09u3bl9Nn0iSf6+XlRWam5pqWn58\/Fy5oru+4urpIGnzq6uphoG8iOaxqb+tEedm9TRTa2tqYG9tRV3tvF5qdnTUNxZp3lP2C\/chN1vzvEj6gB7ln7hVWLW0VfhYqjb527sO9eGpFlMbX08SdWTk3b95EpVKJgW2WlpYPbXamLYsnICBA9LJrbGxk+vTpFBQUcODAAfHYrTOQEtu29FBo3RUtWbKEL774gvLycsLCwvj888\/FBgRo\/V1csGABGzduFNNDV69ejbOzvMXV44AiPI8ILS0tpKWlsWXLFrZu3UpWVhZPPPEEUVFRRERE8OWXX5Kens7y5cvR1tYWmxPuzL3v1q2b2i\/N7du3SYhPJC5uBzt37aa0pJQ+fQI5feaM5DpCQ0NITk7ReM3CwpyamlpJYRk0aADHjknHX\/v59ZJss\/bwcOeazADngAEDSDqheafVvXt38vOlj9ICA4NIS9O8iwsfNICkJM0zVP5+vbh0SfOaXF2cKcyv0HjN09NN0pE6uE9vrp7VbCg6JCyIK0mad20hfs4UZ90rSmaWergImv89\/Kf0ZfDCERqv3Y+WlhYqKyvF99nt27fVmhN+b1tzSUkJZ8+exd\/fX6x13L59m1mzZpGVlcWvv\/4q7oAUui5KjecRQUtLiz59+vDee++Rnp5OamoqYWFhrF69mp49e\/LRRx\/Ro0cPtLW1sba2FoO0\/Pz8RNFKTEzkwoULlJaW0tLSgq6uLiNHPclnn39KVtYVdu2O46kxo8Xi6N2YmprK1m\/kzDcBbsm0JDs4OMh2s8mZkWpra3NRppvt7jP4OzE1NZF0KwAoKpKudXWTuevu7iQ92yPnSG1sKF2zaJHoaANpV2pTC2kBkAqAexC0tLTo1q0b3t7ehIeHExoaiomJCTk5OSQmJpKamqo2k\/YglJaWkpaWRq9evUTRaWpq4oUXXuDKlSscOHBAEZ3HBKXG8wiiUqnw8\/OjZ8+eZGdnU1JSwpQpU\/j111\/56KOPGDRokJgpZGdnh5WVFb6+vpSXl1NcXEx6ejrNzc3iTsjKyupfdaahDBs2lEWL\/saJEyfZvn0HO3bsJC+vta7i7+9HUtIJyXXJuf\/a29vL1oY8PT0oKJAu\/ku1UEPr0OjZs9KCKGew6uPjS0qK5iM6fX098vOlu+gqK6SFVCUTnS3lSA1wu156DqnypuZajYWlkWR2j42NOU0SPm2aAuB+DyqVClNTU0xNTfH09KSuro7i4mKKioq4fPmyWmCblGNFWVkZZ8+excfHR2zYaG5uJiYmhjNnzpCQkCAr2ApdC0V4HmHefPNNTp8+TXJyMo6OjgiCQHZ2NrGxsfzzn\/9k\/vz59O\/fX5wj6t69O5aWlnh7e1NZWUlRURGXLl2iqakJa2trUaS0tbUZOHAAAwcOYPnyD0hNTWXbtjhZtwE7OztZYenRw0N2ME4u\/rpHjx5clXFRMDaW\/gC1srKSbTrQ0ZHeEfj6+nAuTfNz9fT1uXJFeg4q\/4b0z1NaIm1+WiLhw6avp0upROqojZ0ZDdman2dooI2UPD4s4bnnexoa4urqiqur6z2BbQYGBqIItdUfKyoqOHPmDN7e3qILREtLC6+++ionTpwgPj5etntQoeuh1HgeYUpKStDV1dUYDy0IAtevX2fr1q1s3bqVY8eOERwcLIqQm5sbKpUKQRC4deuWeIfa0NCAjY2NeFZ\/97BnWto54uJ2EBe3Q+0DPTx8EEePHpNcq6enh+TAqpubK9nZ0jM2gweHc\/SI5tfW0tKmm6WlpCPBwIEDSErSXPtRqbSwtLSlTCLFNCQ4iNOnNe+kAgMDSD+vWQztbG2oKJMw5TQyQtVkrNEc1MLMFKo0d2p5uHen9qrm3VDIAHeKz2gWusFDnShP07xbnLJ5JlY9pFu+HzZ3xsnfvHkTLS0tzM3NKS0tpWfPnmJRvaWlhXnz5rF\/\/37i4+Nxc3PrsDUqPBp0Wo1n9erVuLu7Y2BgQHBwMEeOHOmspTyyWFtbaxQdaD3+cHZ25q9\/\/auYKTRz5kx+\/fVX+vTpw+DBg1mxYgUZGRmYmZnh5eXFoEGD6NevH8bGxmRlZZGYmMiZM2fUnLR79w7g7bffJCXlJKdOJfPOO2\/Ru3cAJSWaC+IATk5Osi4J9+viyZVJKfXz95NNZm1okLaz8fX1kRQdkE+LlYvHtrKWrv3IOVI7ywz1Wss4Sci1UiMRGgdgbN0+Ox4p2hpd\/P39GTp0KB4eHpSUlKClpUVGRgYzZszg66+\/ZsGCBezZs4eDBw8qovOY0inC89NPPzF37lzxKGnw4MGMGTNGNq1SQRqVSoWDgwMxMTEcPHiQ\/Px8YmJiSEpKol+\/fvTv35+lS5dy8eJFTExM8PT0FOMc2qbZExMTOXXqFDdu3KDxX07H3t49WbhwAUlJR9my5Sfee+\/vhIaG3NNuKmdVA\/LR2j17eslm\/sjNcpiYGMs6VVtaSrtvW1paUlgo3VhQclNa7EyMpddkIXGjAGBhKn3NUE8mruC29LxQU7Vm41AtXW0MLDovYbS6uprMzEy8vLwYNmwY\/v7+WFlZsWLFCr744gvc3d05ePCg4lv2mNIpwrNy5Upmz57Nc889h6+vLx9\/\/DHOzs6sWbOmM5bTpWibvXjuuefYu3cvhYWFzJs3j7S0NMLDwwkODmbJkiWkpaVhZGQkTrMPHDgQS0tLrl+\/zuHDh8WupbbkU3d3d1577a8kJPzK5cvpLF\/+IcHBQWhpackW9728esimlMq5QqtUWrLRDL169ZJNZi0slK7DePfsIXnN3NyMq1elb4JuVWou5t\/vmtAs\/evWVCfddFAhkWIKUFem2anb+D\/oaPtPqaqq4tSpU7i5ueHq6iq+J62trWlsbGTXrl2MHz+e77\/\/HicnJw4fPtxpa1XoHDpceBobG0lNTVWzCwcYNWqUYhf+kFGpVFhaWjJr1ix27NhBUVERb7\/9NpmZmYwYMYLAwEDeeustUlJSMDAwwM3NjbCwMAYNGoS1tTWFhYUcOXKE5ORkcnNzxdZZR0dHRo16kr\/\/\/R1On05hwYLXGTZsqEZz0Pv5Ul27Jp2A2svPl5s3pY\/4tLSk377du3fn6tVsyety8dheXtIR2GZmppKhcAA3iyokr1WUSGcnVZVI2wzVV2huYTftZkCTlF1OJwlPdXU1qampuLi4iG3ugiCwYsUKvvzySw4cOMDYsWOZP38+R48e5caNG4SFhT3UNRw+fJjIyEgcHR1RqVRs375d7fqsWbNQqVRqf\/r376\/2GCU9tH3p8K62kpISmpubZS3FFdoHc3Nznn32WZ599lmqq6vZu3cvsbGxRERE0K1bN8aPH090dDT9+vUTu5banLSLioq4cuUKZmZmCIJAfX09oaGhGBsb06OHJ889N5vS0jJ27drN9u1xJCQk0tjYKOlEAODr48OlS9KBcHLGnrq6urIO2m5u7uTnaxYtbW0dLstEJBgYSB9R9ejhQXqa5nqWra01FWWaW871dHUkrXL09HQoyde8qzE20+N2reY6jqW1IZRo3vEZdXB9B1rNPVNTU3F2dsbDwwNoFZ1PPvmETz\/9lAMHDtC7d2+157SHYWZNTQ2BgYH8+c9\/ZtKkSRof89RTT7Fu3Trx\/+\/2J5w7dy47d+5k8+bNWFlZMW\/ePCIiIkhNTW3X9NPHhU5rp\/49luIKDw8TExMmT57M5MmTqa2tZf\/+\/cTGxvL0009jZGREZGQk0dHRDBw4EGdnZ5ydnbl16xZpaWk0NjbS0tLCuXPnxDgHY2NjrKwsmTlzBjNnzqCyspIDBw6yZctWysrKNA4atg4LSgiPSnWfoDo\/zpyRdsGWMyr19fHi4kXp1y7Ilz6iM5Fp7XZxcSa9TPMRXXdHB8pzNddqnLrbSXa0OXS3pFGildrc3IAWiQ1hRx+11dbWkpqaiqOjo5rorF69mhUrVrBv3z6Cg4M7ZC1jxoxhzJgxso\/R19eXHKRW0kPbnw4\/arO2tkZbW1vWUlyhYzEyMiI6Oprvv\/+egoICvvzyS9E7y8vLi1deeYWdO3cybtw41q1bR3h4OEOHDsXFxYWKigpOnDhBUlISV69epbq6GkEQMDc35+mnJ7F584\/k5Fxlw4Z1TJo0QRwwVCEvLL18fSkqkhYAIyNp92djYyNZt4Ju3aS70mxtbciRMQ2tKJceojU0kF6Tg8SHHICJkfQOy0LGldrQUCaeop1meDRRV1dHamoq9vb29OjRQ2zj\/+abb3jvvffYtWvXQz9O+09pG1jt2bMnzz\/\/vNqcmZIe2v50uPDo6ekRHBysZhcOcODAAcUu\/BHAwMCAcePG8e2331JQUMAPP\/xAU1MTs2bNorS0FF1dXeLj42lpacHR0ZG+ffuKcQ7V1dVqcQ63bt1CEARMTEyYNGkiGzasJyfnKj\/9tJGYmBepq5MuxMvZ1ahUKjIypEXL17eXbJt1SYl0x5q7h7T9jr6+PteypDvw5BypdZAeZNWR+TXUl8k+0pM58Wmv4dG7qaurIyUlBRsbG7y8vETR2bBhA2+99RZxcXEMGjSoQ9byoIwZM4Yff\/yRQ4cO8dFHH5GcnMwTTzwhNqoo6aHtT6cctb3++uvMmDGDkJAQBgwYwJdffklubi4vvvhiZyxHQQJdXV18fX1JTk5m3LhxvPDCC+zYsYNXXnmF6upqxo4dS3R0NCNGjBDjHJqbm8U4h5SUFPT09ETrHnNzcwwMDIiIGEdExDjee\/\/voonprt17KC0pFb93loxhqK+vj+yORltb+kPe0rIbGRnSM0faWtK\/El5eHmRc0lxg1tbWJidb2hKoulK6+85Ixxgk\/AeaG6S98VS3pWd4OqK5oL6+ntTUVKytrfH29hZFZ9OmTSxYsIC4uDiGDRvW7uv4d5k6dar43\/7+\/oSEhODq6sru3buZOHGi5POUcsDDo1OEZ+rUqZSWlvL3v\/+dgoIC\/P392bNnD66urp2xHAUZPvjgAwYPHszq1avR1tZm1KhRfPLJJyQlJREbG8vChQspLS3lqaeeEjOF7OzssLOzo7m5mbKyMoqKijh9+rQ4YGhnZ4eFhQV6enqMGj2SUaNH8mnzxxw5cpS4uJ1cSL\/AseMnJdckN5+jUqm4dElzBAJAT68eJCeflbyem5Mvea31Dliz8Li5OUs6UmuptMjPLdV4DaCyRKY9W6aVurlWelfX3jueNtGxtLTEx8dH\/ECOjY1l7ty5\/Pzzz4wY8fucsTsaBwcHXF1dychofd\/cmR56566nuLhYOZV5SHSac0FMTAzZ2dk0NDSQmprKkCFDHvr3WLx48T1tk3cWFAVBYPHixTg6OmJoaMiwYcNIT5f2I3scWbVqFWvXrlXr5NHW1iY8PJxVq1aJVvbu7u4sWbIENzc3pk2bxk8\/\/URNTQ02NjbiJHuvXr1oaWnh7NmzHD58mIsXL4pO2m0mpqtW\/YO9+3axf\/9uXnrpRZyc7p32lxtIdXZ2knXJVqmk3\/LOTt1lZ3\/qaqR3LbY20gaXzs4O1NdpFgldHW1Kbkivt0m6A5t6CXNQaN8dT0NDA6dOncLc3BxfX19RdOLi4pgzZw4bN268b3H\/UaK0tJS8vDzRL05JD21\/unwsgp+fHwUFBeKfc+f+rxNq+fLlrFy5ks8++4zk5GTs7e0ZOXIkVVXSHwSPG3p6erLHC1paWvTr14\/ly5dz+fJljh49ip+fHytWrMDNzY3Jkyfzww8\/UFlZiZWVFb169WLIkCEEBAQAcP78eQ4fPkx6ejolJSW0tLSgpaXFwIH9WbbsfS5ePEtCwn5ee+0VPDzc8fBwl3U6sJUdSFWRmZkted3ZRdraR1tbm6yr0oKnpZI+PLCXcV22sjLTGOIGYGZhSH2VZrHT0VPRUKm5pqSlq42hhXSjw39C2xyeqakpfn5+4ntj9+7dPPfcc2zYsIHx48e3y\/d+UKqrqzlz5gxn\/pU7de3aNc6cOUNubi7V1dXMnz+fpKQksrOzSUhIIDIyEmtrayZMmACop4f++uuvnD59munTpyvpoQ+RLm0SunjxYrZv3y6+Ae9EEAQcHR2ZO3cub7zxBtB6J2dnZ8eyZcv4y1\/+0sGr7VoIgkB6erqYrnrx4kWGDRtGdHQ0ERERWFlZiTWBiooKMXCsqalJNDFtc9K+k\/T0i2zdGkdc3C4uX763zuPl5SuZROrd04vMTGmz0v79+5OSrDlCwcvLk9xr0rshHy9\/cq5prvEMGTCQtBPZGq\/5+7pTkq5ZQLx87SVdqR1dzbG8pfkYzsTelBm7Hv77t010jI2N8ff3Fwd49+\/fz\/Tp0\/n666955plnHvr3\/XdJSEhg+PDh93x95syZrFmzhujoaE6fPk1FRQUODg4MHz6cd999V81TUEkPbV+6vPCsWLECc3Nz9PX1CQsLY+nSpXh4eJCVlYWnpyenTp2ib9++4nOioqKwsLDgu+++68SVdy0EQeDKlSvExsaydetWzp49S3h4ONHR0URGRmJnZ6fRSbuxsVGMc2hrw7+TS5eusHnzz2zdGse1a9nY29tTVCRtCjp48ECOH9OcrqpSqbC1caS0VPPzwwcNIPmkZidrOUdqgH69+3HlnObdklzqaHB\/d26e1Sx2vn3s0M7RfM3AxYjeb4aJTR36+voaH\/fvcPv2bVJTUzE0NCQgIEAUnfj4eKZOncrq1auZMWOGUnxXeCC69FFbWFgYGzZs4JdffuGrr76isLCQgQMHUlpaKrZFKg4K7Y9KpcLb25tFixaRnJzM5cuXGTt2LJs3b6Znz5489dRTrF69mhs3bqg5aYeGhmJkZMTVq1dJSEjg7NmzFBQUiE7aVlbdGDJkAHv3buPs2ZO88cY8goP7SH74yQW7eXi4SYoOQFOTtJeanCM1QNF16ddtkS4bYSDTSm1iLN25Z+tmr2Z59Ntvv5GdnU1trXRNSI7bt29z6tQp9PX11UTnyJEjPPPMM3zyySeK6Cj8W3TpHc\/d1NTU4OnpycKFC+nfvz+DBg0iPz9fLYTq+eefJy8vj3379nXiSh8PBEEgLy9PzBQ6fvw4ISEhYqZQm8EktJ7bFxUVUVxcTE1NDSYmJlRXV+Pj44OTk5Pa616\/ns+OHXvZsWMPJ06k0NLSgqmpCY0NLTQ1aW5BDh80kBMnzkiu1dHOmdLSConnDiD1pOb2blsbKxpLpHccgU6+FOVKvO7AHuSe1rwbGjTUmco0zbso\/8l9GPxGay2ioaGBmzdvUlxcTFlZGcbGxmJnobGx8X3FoqmpiVOnTqGjo0OfPn1E0UlKSmLChAl8+OGHzJkzRxEdhX+LLr3juRtjY2MCAgLIyMgQu9sUB4XOQ6VS4eLiwty5c0lMTCQ3N5cZM2Zw8OBBAgMDGTJkCP\/4xz\/IyMjA2NgYT09PBgwYgLm5OdXV1RgYGHDp0iVSU1O5fv26GOfg5ORITMxs9u2L5fLlZFatWkp0dITsWhpk5mVcXJwkRQfgdqP0bsepu3Sypq6utEcbQINEYwGAtiD9Pe\/0adPX18fJyYmgoKB7Bn2PHTtGRkYGlZWVaLr\/bG5uFtvgAwMDRdFJSUlh0qRJvPvuu4roKPwuHqsdT0NDA56enrzwwgu8\/fbbODo68tprr7Fw4UKgtXhqa2urNBd0MoIgUFJSwrZt29i6dSuHDh3Cx8eHqKgoamtr+eqrr0hKSsLd3Z26ujqxJnTr1i0sLCzE2oaBgXrGTVlZOXt2H2THzn0kJhwXhUpbWxtTU0uqqzT3Lg\/o349TKdK5Py6OPbhZrPk4bciAAaSd0NzQ4ObqQL20hyredpbU3dIsPuGhtlRkas4TGv4\/o\/EZHyD9wtybFto2Y2Vra4uFhQWCIHD69GkA+vbtK9bXzpw5w7hx41i0aBHz589XREfhd9GlhWf+\/PlERkbi4uJCcXEx7733HomJiZw7dw5XV1eWLVvGBx98wLp16\/Dy8mLp0qUkJCRw+fJl2QAyhY5DEATKy8uJi4sTdz99+\/Zl+PDhREdHq3VX1dfXi91xFRUVmJmZiSamhobqnmeVlVXs2\/crO3fs4\/r1QsmYa4BBAweQ8pvmxgJbW2uqyqR\/hcICQ7ksEU0dGtSLvBTNgmVmYYhFg\/SBRD9vU2qLNfvGjfvfSbgMkLb+uZuWlhbKy8vFv7u2CX1dXV1CQkJE5+bz588zduxYXnvtNRYtWqSIjsLvptPcqTuC69ev86c\/\/YmSkhJsbGzo378\/J06cEB0SFi5cSF1dHTExMZSXlxMWFsb+\/fsV0XmEUKlUdOvWjby8PIqKijhw4IBYF2qz6omKiiI6Opq+ffvi4uKCi4uLWNsoKioiIyMDU1NT8Y7e2NgYc3NTpk6NZurUaGpqajlw4DC7dh7k4IEj1NSoF+ELJOIVQN6RGqDwurQvnKGudOqonYMZDdmahUVLW0VdqXSjwL8bea2lpYWVlRVWVlb07NmTlJQU6uvraW5uZsWKFZw8eZLw8HA+++wzYmJiFNG5iw0bNvDaa6+Rn5+v1kE4adIkjI2N2bBhQyeu7tGkS+94FLoGubm5jBw5ktjYWPz9\/cWvV1dXs2fPHmJjY9mzZw9WVlZiplBoaKh4PNTY2CgW2EtLS9UK7G1u2W3U1zcQf+gYO3cc4JdfEtHT16OqXNqaZnD4IFJOaM4FMjI0QK9e2ux0cJ8gMk5JtFKHuXEzTfNRmrW9MfYN0sIz62DM7xogbXOVaGxsJCgoCB0dHc6dO8fq1avZt28fZWVljB49mkmTJjF+\/Ph\/xVoo1NXV4eDgwFdffcXkyZOB1tyx7t27s2\/fPo0zRY87j1VzQUdwv\/TDB7HpUdIP1XFxcSE9PV1NdKA1U2jKlCn89NNPFBUVsWrVKsrKypg0aRK+vr7MmzePI0eOoKWlRffu3WWdtKuqqhAEAQMDfcaMfYLVaz\/g4uVEvvjiQ56ZFkk3S3ONa5NzpJZrLAC4VSqdGWSgJ90u3c1KOipBS1cbA5koBSna8pUaGhoICgpCV1cXlUqFiYkJhw4d4tlnn+X8+fMMGTKEL774gr59+2psSHgcMTQ0ZNq0aWrBcj\/++CNOTk6PpEnqo4AiPA+ZtvTDzz77TOP1B7HpmTt3Ltu2bWPz5s0cPXqU6upqIiIiaG7WHCT2OKApVvtOjIyMmDBhAj\/88AMFBQWsXbuW+vp6pk2bhpeXF6+++irx8fFAqylkYGAgQ4cOxdPTk9raWpKTk+\/p8tLT02XI0P78Y9X\/48z5XWz++VP+a9YEbG1bTUrv50htay1tlaOjo02pTEebqln6Q93EVE\/ympGV0b99DNbS0sL58+epra0VRQcgJyeHcePGERUVxUcffYSPjw9vvPEGJ0+e5MKFCw\/9uO2PfNP2\/PPPs3\/\/fm7caK3nrVu3TozYVrgX5aitHVGpVGzbto3o6GjgwWx6KisrsbGx4fvvvxft2\/Pz83F2dmbPnj1K+uG\/ye3bt4mPj2fLli3ExcXR3NxMREQEUVFRDBs2TDyTv7vLS0dHRzyOMzc3V\/sAaWlpISX5HAnxv7Er9rhkDWhw6EDOpWRrvObq6kCDTEdbaIALRZmaHa0HDHGmSsIJwdbfgUnrn5V+4bsQBIHz589TVVWl1khw48YNRo8ezZNPPsnatWvFBo72ZO\/evRw7doygoCAmTZqk9rsDsGzZMt5\/\/33Wr19Pz549ee+99zh8+LBaM9CcOXPYuXMn69evFyOry8rKOiSyOjg4mKeffprRo0cTGhpKdna2YrEjgSI87cjdwvMgNj2HDh1ixIgRlJWVqVmyBwYGEh0dzZIlSzr6x+gyNDU1ceTIEbZs2cL27dupqakR7+hHjBghdr61tLSoiZBKpVKLc7j7Q\/js6SvEbT3Evl1HuVlcKX49wCOQvGua6zRyHW0APvaW1Epk+Awe6kS5RKec+3AvnloRJfv30Eabn96tW7cIDg4WRbiwsJCnnnqKgQMH8s0337T7B7Ym\/og3bWvWrGHVqlWMGjWKjIwMfvnll3b9fn9klKO2DuRBbHqU9MP2Q0dHh+HDh\/P555+Tm5vLzp07sbGxYcGCBbi7uzNr1iy2bdtGXV0dNjY2+Pn5MWTIELG2dO7cOQ4fPsyFCxdEJ20AFzcbwof35J87P2TH\/k95ae5UfHq5k58nncEj19Fmam4gKToANP7nAXCCIHDx4kUqKyvVRKe4uJhx48YRGhrK119\/3Smio4lr165RWFioFketr6\/P0KFDxTjqzo6sfvbZZ7lx4wZfffUV\/\/3f\/93u3++PTJdup35Uufvc90GSDZX0w4eLtrY2gwcPZvDgwaxcuZLk5GS2bNnCO++8wwsvvMCoUaOIiopizJgxYquxj48PFRUVFBUVceHCBZqbmzE3N6e8vJyePXu2Wvc4ga+fO3MXTOdaRgGH9pzi0J7TXElXj3IQpBvlsHMwpzFHcys1QFOVdEPDg7RSC4LApUuXKCsrIyQkRBSdkpISIiMj8fPzY\/369fetq3UkcjdtOTk54mM686bNzMyMSZMmsXv3brUjQoV7UXY8HciD2PTcmX4o9RiFh4uWlhZhYWGsWLGCK1eucOTIEXx9fVm2bBlubm5MmTKFH3\/8kcrKSiwsLPDx8WHw4ME4ODhQVlaGtrY2GRkZnDt3jqKiIrEJxN3Lgdl\/HcePv7zFtqPv8cqiifj1cQOgqkRaPMzv05VWVyYzw2Mjv+MRBIHLly9TUlJCcHCw6O5QXl5OVFQUHh4ebNy4UWwweNR41G\/aCgoKePbZZx+KI3hXRhGeDsTd3R17e3u1ZMPGxkYSExPFZEMl\/bBz0dLSIigoiKVLl3LhwgV+++03goOD+d\/\/\/V\/c3NyYOHEi3333HT\/++CMjRozA3t6eoUOHEhISgoGBAZmZmaKTdmFhoWhK6uRmw3\/FjGb9rv\/Hzt8+IPK5MHr1c0FL694PRLlWatNuBjTVSfvKGcnseARBICMjg+LiYoKDg8WaVmVlJdHR0Tg4OPDPf\/5TbDB4lHjUb9rKysrYvHkzhw4d4qWXXmrX79UVeHT20l2E6upqMjMzxf9vSz+0tLQUDTGXLl2Kl5eXaNNjZGTEtGnTAPX0QysrKywtLZk\/f76SftgJqFQqAgICCAgIYPHixVy+fJnY2Fg++ugjcnJyGDp0KElJSWJwnZmZGT169KC6upri4mKysrJIT0\/H0tISOzs7bGxs0NXVxd7RkvGz+zN+dn\/Ki6tI2nuJ47svcC4pm5ZmQbaV2tLaCEqk6z\/GNpqFRxAEMjMzKSgoEOMmAKqqqpg0aRIWFhbExsY+snfqd960tTXmtN20LVu2DFC\/aZsyZQrwfzdty5cvb9f1BQUFUV5ezrJly\/D29m7X79UVUITnIZOSkqI2qfz6668DremH69evfyCbnlWrVqGjo8OUKVPE9MP169c\/MoXexxGVSoWPjw99+vShoKCAjz76iPr6ejZt2sS8efMYOHAg48ePJyoqCkdHR0xNTfH09KSmpobi4mJyc3O5cOEClpaWonWPnp4e3WxNGTszlLEzQ6ksreHkL5fJTy0gP72YpsZ757bMzfVokXbwkWwuyMrKIj8\/n5CQEFF0ampqmDx5Mnp6emzfvv0eP7uO5o9805adnd2ur9\/VUNqpFRQekIqKCry8vFizZg1PP\/000LqTyM3NFTOFkpKSCA0NFa17XFxcxPpCbW2taMR569YtunXrJpkSWlfVwLlfMzmz7woXDmdzu6H1yC5ssDM15zXP8GjpaPFC0mv31DOysrLIzc0lJCREtAiqq6tj8uTJNDY2snfv3kfCn1Ausnr9+vUIgsCSJUv44osvxJu2zz\/\/XM3RQoms\/mOgCE8X5PDhw6xYsYLU1FQKCgruGcSbNWvWPdHeYWFhnDhxQvz\/hoYG5s+fz6ZNm9R+ge8OXXvcKC0txcrKSuM1QRDIz88X4xyOHDlC7969iY6OJioqCk9PT1EU2py0i4qKqKysxNzcXBShu3ce9TWNpCdkcWbfFcwa6ylJ1WxKamJnyozd6nEe2dnZZGdnExwcLIpLfX09f\/rTn6isrOSXX37B3FyzHZCCQnuhCE8X5H4T4LNmzaKoqEjNW0pPTw9Ly\/8ztOzMCfCugCAIFBcXs337drZu3Up8fDw+Pj6iCPn4+Igi1NDQIO6EysvLMTU1FeMc2o7F2mhqaCIv6RpZv2aQfeQqjdX\/V++527UgJyeHrKwsgoODMTMzA1rrItOnT6egoICDBw\/e03qsoNARKMLTxbl7AhxahaeiouIeL6w2OnsCvKshCAJlZWXExcWxdetWDh48iIeHhxjn4OfnJ7ohtDlpFxUVUVZWhomJiVpU9Z00327m+m85ZB3KIDsxE4c+3XnqH9FAq6P31atXCQoKEnc0t2\/fZubMmVy7do1Dhw5J7twUFNobRXi6OFLCs337dvT09LCwsGDo0KG8\/\/772Nq2mloqtj3tS0VFBTt37mTr1q388ssvdO\/eXRShPn36iCJ0+\/ZttTgHQ0NDcSdkYmKi7h\/X3EJNcRWmDuZcv35dDMyzsLAAWu2CnnvuOdLT04mPjxf\/rRUUOgOlq+0xZMyYMUyePBlXV1euXbvG22+\/zRNPPEFqair6+vqdPgHe1bGwsGDGjBnMmDGDqqoqMVNozJgxWFtbExkZyYQJEwgNDcXR0RFHR0eampooKSmhqKiI7OxsDAwMxJqQmZkZWtpamDqYc+PGDa5cuUJQUJAoOs3NzcTExJCWlkZCQoIiOgqdjiI8jyFtx2cA\/v7+hISE4Orqyu7du5k4caLk8xTbnoePqakpU6dOZerUqdTW1rJv3z5iY2OZMGECJiYmYnfcgAEDsLe3x97enubmZkpKSiguLiY1NRVdXV1sbW1bYxpyctR2Os3Nzbz66qucPHmS+Ph4cRBTQaEzUYRHAQcHB1xdXcnIyADUJ8Dv3PUUFxcr7gntiJGRERMnTmTixInU19dz4MABtm7dyjPPPIOenp64Exo0aBB2dnbY2dnR3NxMWVkZ2dnZVFRUoKurS1paGrW1tTz55JMsXLiQhIQEEhISHvuORIVHB8UyR4HS0lLy8vJwcGhNzFRsezofAwMDIiMjWbduHYWFhXz33XeoVCpmzZqFp6cnMTEx7N+\/n+bmZnbt2sWaNWvo06cPAQEBXL58meeeew43Nzc2bdokhqcpKDwqKM0FXZA7J8D79u3LypUrGT58OJaWllhaWrJ48WImTZqEg4MD2dnZLFq0iNzcXC5evKgWqLVr1y7Wr18vToCXlpYq7dSdTFNTE4cPHxYzherr66mtreW1115jwYIFGBgY0NLSwltvvcW+ffsICQnh0KFDNDQ0EBUVxerVq0VjUAWFTkNQ6HLEx8cLwD1\/Zs6cKdTW1gqjRo0SbGxsBF1dXcHFxUWYOXOmkJubq\/YadXV1wssvvyxYWloKhoaGQkRExD2PUehc4uLiBAMDAyEyMlJwdnYWzMzMhMmTJwsTJkwQbG1thfT0dEEQBKG5uVk4evSo8P7773fIut5555173nt2dnbi9ZaWFuGdd94RHBwcBAMDA2Ho0KHC+fPnO2RtCo8GivAoKPwBiY+PF4yNjYWff\/5ZEIRWcUlKShJiYmIEfX194dixY522tnfeeUfw8\/MTCgoKxD\/FxcXi9Q8\/\/FAwNTUVYmNjhXPnzglTp04VHBwchFu3bnXamhU6FkV4FNqFpUuXCiEhIYKJiYlgY2MjREVFCZcuXVJ7zIPc+dbX1wsvv\/yyYGVlJRgZGQmRkZFCXl5eR\/4ojyRFRUXCjh07NF5rbm7u4NWo88477wiBgYEar7W0tAj29vbChx9+KH6tvr5eMDc3F9auXdtBK1TobJTmAoV2ITExkZdeeokTJ05w4MABmpqaGDVqFDU1NeJjli9fzsqVK\/nss89ITk7G3t6ekSNHUlVVJT5m7ty5bNu2jc2bN3P06FGqq6uJiIgQw9YeV2xtbYmMjNR4rW0AtTPJyMjA0dERd3d3nnnmGbKysoAHi7BWeAzobOVTeDwoLi4WACExMVEQhAe7862oqBB0dXWFzZs3i4+5ceOGoKWlJezbt69jfwCFB2bPnj3Cli1bhLS0NOHAgQPC0KFDBTs7O6GkpEQ4duyYAAg3btxQe87zzz8vjBo1qpNWrNDRdP6tkcJjQWVlJYBoRPogd76pqancvn1b7TGOjo74+\/srd8ePMGPGjGHSpEliDs7u3bsB1BzRf0+EtULXQREehXZHEARef\/11wsPDxeyUNuuduyOJ77TlUax7ugbGxsYEBASQkZHxQBHWCl0fRXgU2p2XX36ZtLQ0Nm3adM+133Pnq9wd\/7FoaGjg4sWLODg4qEVYt9EWYa0MJz8+KMKj0K688sor7Nixg\/j4eDXLlge5873TukfqMQqPHvPnzycxMZFr165x8uRJnn76aW7dusXMmTNRqVRihPW2bds4f\/48s2bNUouwVuj6KMKj0C4IgsDLL7\/M1q1bOXToEO7u7mrXH+TOV7Hu+WNy\/fp1\/vSnP+Ht7c3EiRPR09PjxIkTuLq6ArBw4ULmzp1LTEwMISEh3Lhxg\/379z8S8dsKHYNimaPQLsTExLBx40bi4uLw9vYWv25ubi5GOy9btowPPviAdevW4eXlxdKlS0lISODy5cuKdY+CQhdGER6FdkGqBrNu3TpmzZoFtO6KlixZwhdffEF5eTlhYWF8\/vnnYgMCQH19PQsWLGDjxo3U1dUxYsQIVq9ejbOzc0f8GAoKCu2AIjxdgJs3bxIQEMCrr77KokWLADh58iSDBw9m165dau3ICgoKCp2NUuPpAtjY2PDtt9+yePFiUlJSqK6uZvr06cTExDz2ovPBBx8QGhqKqakptra2REdHc\/nyZbXHzJo1C5VKpfanf\/\/+ao9paGjglVdewdraGmNjY8aPH8\/169c78kdRUOgyKDueLsRLL73EwYMHCQ0N5ezZsyQnJz\/2FvhPPfUUzzzzDKGhoTQ1NfHmm29y7tw5Lly4gLGxMdAqPEVFRaxbt058np6enjjsCq21pp07d7J+\/XqsrKyYN28eZWVlSq1JQeF3oAhPF6Kurg5\/f3\/y8vJISUmhd+\/enb2kR46bN29ia2tLYmIiQ4YMAVqFp6Kigu3bt2t8TmVlJTY2Nnz\/\/fdibHh+fj7Ozs7s2bOH0aNHd9TyFRS6BMpRWxciKyuL\/Px8WlpayMnJ6ezlPJLcbd3TRkJCAra2tvTs2ZPnn3+e4uJi8Zpi3aOg8HDR6ewFKDwcGhsbefbZZ5k6dSo+Pj7Mnj2bc+fOKYOWd6DJugdavcUmT56Mq6sr165d4+233+aJJ54gNTUVfX19xbpHQeEhowhPF+HNN9+ksrKSTz\/9FBMTE\/bu3cvs2bPZtWtXZy\/tkaHNuufo0aNqX287PgPw9\/cnJCQEV1dXdu\/ezcSJEyVfT7HuUVD4fShHbV2AhIQEPv74Y77\/\/nvMzMzQ0tLi+++\/5+jRo6xZs6azl\/dIIGXdowkHBwdcXV3JyMgAFOseBYWHjSI8XYBhw4Zx+\/ZtwsPDxa+5uLhQUVHBnDlzOnFlnc\/9rHs0UVpaSl5eHg4ODsDjbd2zevVq3N3dMTAwIDg4mCNHjnT2khS6AIrwKHRpXnrpJX744Qc2btyIqakphYWFFBYWUldXB0B1dTXz588nKSmJ7OxsEhISiIyMxNramgkTJgCtNj+zZ89m3rx5\/Prrr5w+fZrp06eLeTNdlZ9++om5c+fy5ptvcvr0aQYPHsyYMWPIzc3t7KUp\/NHp4OA5BYUOBdD4Z926dYIgCEJtba0watQowcbGRtDV1RVcXFyEmTNnCrm5uWqvU1dXJ7z88suCpaWlYGhoKERERNzzmK5Gv379hBdffFHtaz4+PsLf\/va3TlqRQldBmeNRUFC4h8bGRoyMjPj555\/FnR\/AX\/\/6V86cOUNiYmInrk7hj45y1KagoHAPJSUlNDc3yybEKij8XhThUVDoINasWUPv3r0xMzPDzMyMAQMGsHfvXvG6IAgsXrwYR0dHDA0NGTZsGOnp6Wqv0dGecb8nIVZB4X4owqOg0EE4OTnx4YcfkpKSQkpKCk888QRRUVGiuCxfvpyVK1fy2WefkZycjL29PSNHjqSqqkp8jblz57Jt2zY2b97M0aNHqa6uJiIigubm5oe6Vmtra7S1tWUTYhUUfjedW2JSUHi86datm\/D1118LLS0tgr29vfDhhx+K1+rr6wVzc3Nh7dq1giAIQkVFhaCrqyts3rxZfMyNGzcELS0tYd++fQ99bf369RPmzJmj9jVfX1+luUDhP0bZ8SgodALNzc1s3ryZmpoaBgwYwLVr1ygsLFTzg9PX12fo0KGiH1xHe8a9\/vrrfP3113z77bdcvHiR1157jdzcXF588cWH\/r0UHi8UyxwFhQ7k3LlzDBgwgPr6ekxMTNi2bRu9evUShUNTMb\/N8LWjPeOmTp1KaWkpf\/\/73ykoKMDf3589e\/bg6ur60L+XwuOFIjwKCh2It7c3Z86coaKigtjYWGbOnKnWmvx7ivkP8pjfS0xMDDExMe3y2gqPL8pRm4JCB6Knp0ePHj0ICQnhgw8+IDAwkE8++QR7e3sA2WK+4hmn0FVQhEdBoRMRBIGGhgbc3d2xt7dX84NrbGwkMTFR9IN7nD3jFLoWylGbgkIHsWjRIsaMGYOzszNVVVVs3ryZhIQE9u3bh0qlYu7cuSxduhQvLy+8vLxYunQpRkZGTJs2DVD3jLOyssLS0pL58+d3ec84ha6HIjwKCh1EUVERM2bMoKCgAHNzc3r37s2+ffsYOXIkAAsXLqSuro6YmBjKy8sJCwtj\/\/79mJqaiq+xatUqdHR0mDJlCnV1dYwYMYL169ejra3dWT+WgsK\/jeLVpqCgoKDQoSg1HgUFBQWFDkURHgUFBQWFDkURHgUFBQWFDkURHgUFBQWFDkURHgUFBQWFDkURHgUFBQWFDkURHgUFBQWFDkURHgUFBQWFDkURHgUFBQWFDkURHgUFBQWFDkURHgUFBQWFDuX\/A4gVzc4ux\/doAAAAAElFTkSuQmCC", "text\/plain": "<Figure size 640x480 with 1 Axes>"}, "metadata": {}, "output_type": "display_data"}]}}, "85007844bdc54cdf992dc43ba5b83a41": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "851af3a043f1495ea899768d977eda65": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "86d909bc42c141caa23af6d60020a0db": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "IntSliderModel", "state": {"behavior": "drag-tap", "layout": "IPY_MODEL_246b67cae6d04400856fb146b0a764d3", "max": 199, "style": "IPY_MODEL_2df005db5f0d49dda9dd0c4e6e958c48"}}, "87d61c25a76c41e1a826e0e1bcdaf617": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "88035a6b469f4a4891e35659867ff0c6": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "IntSliderModel", "state": {"behavior": "drag-tap", "layout": "IPY_MODEL_a687e87123924c42ad280c3d1993286b", "max": 1999, "style": "IPY_MODEL_b08f9008f0f040808e2c22dbf9b7d636", "value": 792}}, "8851479464964c8a8ed0ae1f204a6c9a": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"children": ["IPY_MODEL_93f14a52f3064949b531de7e08a42ee6"], "layout": "IPY_MODEL_0221bef15fef48a190eccd595775ec95"}}, "894a4ad9cfb04c80bd06a8491a9b3c14": {"model_module": "@jupyter-widgets\/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": {"layout": "IPY_MODEL_c1912c587d5a48f6a85f569f08c3365e", "outputs": [{"data": {"image\/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG2CAYAAACXuTmvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy\/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABKE0lEQVR4nO3deVxU5eIG8GdmgGEfBVkFERXcwV0hzaUkrcylxbK82uJPS715rTS1brZcMSvbNLst18oyKtfKJekquCsoKKIiCggqiKLMsM4wM+f3Bzo33BWGd2bO8\/185lOcOTM8vs2neTznPe9RSJIkgYiIiEhGlKIDEBERETU2FiAiIiKSHRYgIiIikh0WICIiIpIdFiAiIiKSHRYgIiIikh0WICIiIpIdFiAiIiKSHRYgIiIikh0WICIiIpIdmylA8fHxUCgUmDZtmmWbJEmYO3cugoOD4ebmhgEDBiAzM1NcSCIiInIINlGAUlJS8MUXXyAqKqrO9gULFmDhwoVYtGgRUlJSEBgYiMGDB6OsrExQUiIiInIEwgtQeXk5nnzySXz55Zdo2rSpZbskSfjoo48wZ84cjBo1Cp06dcK3336LyspKLF++XGBiIiIisndOogNMnjwZDzzwAO6991688847lu25ubkoKipCXFycZZtarUb\/\/v2xc+dOTJw48Zrvp9frodfrLT+bzWZcuHABvr6+UCgU1vuDEBERUYORJAllZWUIDg6GUtnwx2uEFqCEhATs378fKSkpVz1XVFQEAAgICKizPSAgACdPnrzue8bHx+PNN99s2KBEREQkREFBAUJCQhr8fYUVoIKCArz44ovYtGkTXF1dr7vflUdtJEm64ZGcWbNmYfr06ZaftVotWrRogYKCAnh7e9c\/OBEREVmdTqdDaGgovLy8rPL+wgrQvn37UFxcjO7du1u2mUwmbN26FYsWLUJWVhaA2iNBQUFBln2Ki4uvOir0V2q1Gmq1+qrt3t7eLEBERER2xlrTV4RNgr7nnnuQkZGB9PR0y6NHjx548sknkZ6ejlatWiEwMBCJiYmW1xgMBiQnJyM2NlZUbCIiInIAwo4AeXl5oVOnTnW2eXh4wNfX17J92rRpmDdvHiIiIhAREYF58+bB3d0dY8aMERGZiIiIHITwq8BuZMaMGaiqqsILL7yAixcvonfv3ti0aZPVzgcSERGRPCgkSZJEh7AmnU4HjUYDrVbLOUBERER2wtrf38IXQiQiIiJqbCxAREREJDssQERERCQ7LEBEREQkOyxAREREJDssQERERCQ7LEBEREQkOyxAREREJDssQERERCQ7LEBEREQkOyxAREREJDuyKUDpBRdFRyAiIiIbIZsC9MbaTOiNJtExiIiIyAbIpgCdOFeBxVtOiI5BRERENkA2BQgAPttyHEcKdaJjEBERkWCyKUAD2\/nBaJYwc+VBGE1m0XGIiIhIINkUoNcf6AAvVyccPKXFf3bkio5DREREAsmmAPl7u+K1B9oDAD7YdAx55ysEJyIiIiJRZFOAAOCxHqG4q40v9EYzZq48CLNZEh2JiIiIBJBVAVIoFIgfGQU3ZxX25F5AQkqB6EhEREQkgKwKEAC08HXHy\/e1BQDMW38EhdoqwYmIiIioscmuAAHA+NiW6BLaBOV6I+asPgRJ4qkwIiIiOZFlAVIpFVjwSBScVQpsPlqMXw+cER2JiIiIGpEsCxAARAZ4YeqgCADAm78dRkm5XnAiIiIiaiyyLUAAMKl\/a7QL9MKFCgPe+v2w6DhERETUSGRdgFyclHj34SgoFcDa9DP475GzoiMRERFRI5B1AQKA6NAmeK5fKwDAnNWHoKuuEZyIiIiIrE32BQgA\/nFvJFr6uqNIV435G46KjkNERERWxgIEwM1FhfhRUQCA5XvysetEieBEREREZE0sQJfEtPbFmN4tAACvrjqIKoNJcCIiIiKyFhagv3h1aDsEerviZEklPvzzmOg4REREZCUsQH\/h7eqMeaM6AQC+2paDAwWlYgMRERGRVbAAXWFQuwAM7xIMswTMXHkQBqNZdCQiIiJqYCxA1\/DPBzvAx8MFR4vKsCTphOg4RERE1MBYgK7B11ONuQ91BAAs2pKNY2fLBCciIiKihiS0AC1ZsgRRUVHw9vaGt7c3YmJisGHDBsvz48ePh0KhqPPo06dPo2QbFhWEe9v7o8YkYcaKgzCZecd4IiIiRyG0AIWEhGD+\/PlITU1FamoqBg0ahOHDhyMzM9Oyz5AhQ1BYWGh5rF+\/vlGyKRQKvD2iE7zUTkgvKMU3O\/Ma5fcSERGR9QktQMOGDcP999+PyMhIREZG4l\/\/+hc8PT2xe\/duyz5qtRqBgYGWh4+PT6PlC9K4Ydb97QEA7\/+RhfySykb73URERGQ9NjMHyGQyISEhARUVFYiJibFsT0pKgr+\/PyIjIzFhwgQUFxff8H30ej10Ol2dR3080SsUMa18UVVjwqurDkKSeCqMiIjI3gkvQBkZGfD09IRarcakSZOwevVqdOjQAQAwdOhQ\/PDDD9i8eTM++OADpKSkYNCgQdDr9dd9v\/j4eGg0GssjNDS0XvkUCgXiR3WGq7MSO0+U4OfUgnq9HxEREYmnkAQf0jAYDMjPz0dpaSlWrlyJr776CsnJyZYS9FeFhYUICwtDQkICRo0adc330+v1dQqSTqdDaGgotFotvL297zjnl1tz8K\/1R+Dl6oQ\/p\/dHgLfrHb8XERER3ZhOp4NGo6n39\/f1CD8C5OLigjZt2qBHjx6Ij49HdHQ0Pv7442vuGxQUhLCwMGRnZ1\/3\/dRqteWqssuPhvD0XS0RHaJBWbURr605xFNhREREdkx4AbqSJEnXPcVVUlKCgoICBAUFNXIqwEmlxIJHouGsUiDx8Fmsyyhs9AxERETUMIQWoNmzZ2Pbtm3Iy8tDRkYG5syZg6SkJDz55JMoLy\/Hyy+\/jF27diEvLw9JSUkYNmwYmjVrhpEjRwrJ2zbQCy8MaAMAeGNtJi5WGITkICIiovoRWoDOnj2LsWPHom3btrjnnnuwZ88ebNy4EYMHD4ZKpUJGRgaGDx+OyMhIjBs3DpGRkdi1axe8vLyEZX5hYGtEBniipMKAt38\/LCwHERER3Tnhk6CtzRqTqNLyL+LhJTthloClT\/fEwLb+DfK+REREVMvhJ0Hbo64tmuKZu8IBAHNWZaCsukZwIiIiIrodLEB3aHpcJFr4uOOMthoLNmaJjkNERES3gQXoDrm7OGH+qM4AgGW7T2Jv7gXBiYiIiOhWsQDVQ2ybZniiV+1K0zNXHkR1jUlwIiIiIroVLED19OrQ9gjwViP3fAU++vP6CzQSERGR7WABqieNmzPeGVF7KuzLbTnIOKUVnIiIiIhuhgWoAQzuEIAHo4JgMkuYsfIgakxm0ZGIiIjoBliAGsjchzqiqbszjhTq8MXWHNFxiIiI6AZYgBpIM0813hjWEQDw8Z\/ZOF5cJjgRERERXQ8LUAMa3iUYA9v6wWAyY8aKgzCZHXqRbSIiIqvJKtJZ9f1ZgBqQQqHAv0Z2hqfaCfvzS7FsV57oSERERHanQm\/E1B\/TrPo7WIAaWHATN7w6tB0AYMEfWSi4UCk4ERERkX2J33AEZ0qrrfo7WICsYEyvFugV7oNKgwmzV2fAwe83S0RE1GB2HD+P73fnW\/33sABZgVKpwPxRnaF2UmJb9nms2HdKdCQiIiKbV643YsaKgwCA0T1DrPq7WICspJWfJ\/4xOBIA8Pbvh1FcZt1DeURERPZu3vojOF1ahZCmbpg+uK1VfxcLkBU91zccnZtroKs24o21maLjEBER2axt2eewfE\/tqa\/3HomGh9rJqr+PBciKnFRKvPtwFJyUCmw4VIQNGYWiIxEREdmcsuoazLx06mtcTBhiWvta\/XeyAFlZh2BvPD+gNQDg9bWZKK00CE5ERERkW\/617gjOaKvRwscdMy9dSW1tLECNYMqgNmjj74nz5Xq8s+6I6DhEREQ2I\/nYOSSkFAAA3nskCu4u1j31dRkLUCNQO6nw7sNRUCiAFftOISmrWHQkIiIi4bRV\/zv1NT62JXq3sv6pr8tYgBpJ97CmGB\/bEgAwc+VBaCtrxAYiIiIS7J3fD6NIV42Wvu6YMcS6V31diQWoEc24rx1a+XngrE6P19ceEh2HiIhImC1Hi\/HLvlNQKID3Ho1utFNfl7EANSI3FxUWPtYFKqUCvx44g98OnBEdiYiIqNFpK2vw6qraU1\/P3BWOni19Gj0DC1Aj6xLaBJMHtgEAvLbmEM7quEAiERHJy1u\/H8ZZnR6tmnng5bjGPfV1GQuQAFMHtUHn5hpoq2owY8VB3iuMiIhk48\/DZ7Fy\/+VTX1Fwc1EJycECJICzSokPR0fDxUmJ5GPn8MMe69\/0jYiISLTSSgNmr84AAEzo1wrdwxr\/1NdlLECCtPH3wswhtYs9\/WvdEeSdrxCciIiIyLre\/O0wisv0aOXngemX7pcpCguQQE\/HtkRMK19U1Zgw\/ed0mMw8FUZERI5pU2YRVqedhlIBvP9oNFydxZz6uowFSCClUoH3H4uGl9oJ+\/NL8XnyCdGRiIiIGtzFCgNmr65d\/mXC3a3QrUVTwYlYgIRr3sQNcx\/qCAD46M9jyDyjFZyIiIioYc39LRPny\/Vo4++Jf9wr9tTXZSxANmBUt+a4r2MAakwSpv90ANU1JtGRiIiIGsTGQ0VYm37GZk59XcYCZAMUCgXmjeyMZp4uyDpbhg8Tj4mOREREVG8XKgx4bU3tVV+T+rdGl9AmYgP9BQuQjfD1VGP+qCgAwBfbcrAnp0RwIiIiovr559pDOF9uQGSAJ168N0J0nDpYgGzIvR0CMLpHKCQJeOmXAyjXG0VHIiIiuiPrMwrx+8FCqJQKvP9oNNROtnHq6zIWIBvz2oPtEdLUDacuVuHt3w6LjkNERHTbSsr1eH1N7VVfz\/dvjaiQJmIDXYPQArRkyRJERUXB29sb3t7eiImJwYYNGyzPS5KEuXPnIjg4GG5ubhgwYAAyMzMFJrY+L1dnfPBoNBQK4KfUAvx5+KzoSERERLfln2szUVJhQLtAL0y9p43oONcktACFhIRg\/vz5SE1NRWpqKgYNGoThw4dbSs6CBQuwcOFCLFq0CCkpKQgMDMTgwYNRVlYmMrbV9W7liwn9WgEAXl11ECXlesGJiIiIbs3vB89gXUYhnGz01NdlCsnG7sTp4+OD9957D8888wyCg4Mxbdo0zJw5EwCg1+sREBCAd999FxMnTryl99PpdNBoNNBqtfD29rZm9AZVXWPC8EU7kHW2DPd1DMDnT3WHQqEQHYuIiOi6zpXpEfdhMi5W1uDv90TU63YX1v7+tpk5QCaTCQkJCaioqEBMTAxyc3NRVFSEuLg4yz5qtRr9+\/fHzp07BSZtHK7OKiwcHQ1nlQJ\/ZJ7Fqv2nRUciIiK6LkmS8NqaDFysrEH7IG9MGWibp74uE16AMjIy4OnpCbVajUmTJmH16tXo0KEDioqKAAABAQF19g8ICLA8dy16vR46na7Ow151DNZg2qUVM+f+monTpVWCExEREV3brwfO4I\/Ms5dOfUXBxUl4xbgh4enatm2L9PR07N69G88\/\/zzGjRuHw4f\/d\/XTlad9JEm64amg+Ph4aDQayyM0NNRq2RvDxLtboVuLJijTG\/Hyzwdg5g1TiYjIxhSXVeONX2vn704dFIGOwRrBiW5OeAFycXFBmzZt0KNHD8THxyM6Ohoff\/wxAgMDAeCqoz3FxcVXHRX6q1mzZkGr1VoeBQUFVs1vbU4qJRY+1gVuzirsyinBNzvzREciIiKykCQJc1YfQmllDToGe+OFga1FR7olwgvQlSRJgl6vR3h4OAIDA5GYmGh5zmAwIDk5GbGxsdd9vVqttlxWf\/lh71o288CcB9oDAN7deBTHix37KjgiIrIfa9PPIPHwWTiraq\/6clbZXLW4JqEpZ8+ejW3btiEvLw8ZGRmYM2cOkpKS8OSTT0KhUGDatGmYN28eVq9ejUOHDmH8+PFwd3fHmDFjRMYW4sneLdA\/0g96oxn\/+OkAakxm0ZGIiEjminX\/O\/X190ERaB9kPwcdnET+8rNnz2Ls2LEoLCyERqNBVFQUNm7ciMGDBwMAZsyYgaqqKrzwwgu4ePEievfujU2bNsHLy0tkbCEUCgUWPBKFuA+3IuO0Fp9uPl6vywuJiIjqQ5IkzF6dAW1VDTo312DSAPs49XWZza0D1NDsdR2g6\/ntwBlM\/TENKqUCK5+Ptak76xIRkXys3HcKL\/1yAC4qJX6b2hdtAxv24IRs1gGiWzMsOhgPRQfDZJYw\/ad0VBlMoiMREZHMFGmr8eZvtae+Xrw3osHLT2NgAbJDbw3viABvNXLOV+DdjUdFxyEiIhmRJAmzVh2ErtqI6BANJt7dSnSkO8ICZIeauLtgwSPRAIBvduZhW\/Y5wYmIiEguVuw7hS1Z5+CiUuL9R6PhZCdXfV3JPlMT+kf6YWyfMADAK78chLayRnAiIiJydIXaKrz1W+1ixdPjIhERYH+nvi5jAbJjs+5vh\/BmHijSVeONXw+JjkNERA5MkiS8ujIDZXojuoQ2wYR+9nnq6zIWIDvm7uKEDx6LhlIBrEk\/g3UHC0VHIiIiB\/VzagGSj52Di1PtqS+V8vq3pbIHLEB2rluLpnhhQO0dd+esyUCxrlpwIiIicjSnS6vwzu9HAAAvx0Wijb+n4ET1xwLkAP5+TwQ6BnujtLIGM1cehIMv7URERI2o9tTXQZTpjejWogme7Wvfp74uYwFyAC5OSnw4ugtcnJTYknUOP+617xvAEhGR7fhxbwG2ZZ+H2kFOfV3GAuQgIgO8MOO+tgCAd9YdxsmSCsGJiIjI3p26WIl\/rau96uuV+9qilZ\/9n\/q6jAXIgTxzVzh6h\/ug0mDCSz8fgMnMU2FERHRnJEnCzJUHUWEwoUdYUzx9V7joSA2KBciBKJUKvP9oNDzVTkg9eRFfbM0RHYmIiOzUD3vyseN4CVydlXjPgU59XcYC5GBCfdzxz2EdAAALE7NwpFAnOBEREdmbgguVmLe+9qqvGffVrjnnaFiAHNCj3UMwuEMAakwS\/vFTOvRG3jCViIhujdksYcaKg6g0mNCrpQ\/Gx7YUHckqWIAckEKhQPyozvD1cMHRojJ8mJgtOhIREdmJ7\/ecxK6cErg5q\/Deo1FQOtipr8tYgBxUM0815o3qDAD499YTSMm7IDgRERHZuvySSsSvPwoAeHVoO4T5Ot6pr8tYgBzYfR0D8Uj3EEgSMP3ndJTrjaIjERGRjTKbJby84gCqakzo08rHcsNtR8UC5OD+OawDmjdxQ8GFKstaDkRERFf6ensu9uZegLuLCu89Eu2wp74uYwFycN6uznj\/0WgAtat5bj56VnAiIiKyNekFpXh3Y+2przkPtEeoj7vgRNbHAiQDMa198Wzf2gWsZqzIwIUKg+BERERkK7RVNZj6434YzRLu7xyIMb1aiI7UKFiAZOKV+9oiwt8T58v1mLM6gzdMJSIiSJKEWasOouBCFUJ93BA\/KgoKhWOf+rqMBUgmXJ1V+HB0FzgpFdhwqAhr0k+LjkRERIJ9vycf6zOK4KxSYNET3aBxcxYdqdGwAMlIp+YavHhPBADgn2szcaa0SnAiIiIS5fAZHd7+vfbimJlD2iE6tInYQI2MBUhmnh\/QGl1Cm6Cs2ohXVhyAmTdMJSKSnQq9EVOW74fBaMY97fwt80TlhAVIZpxUSix8LBquzkrsOF6Cb3fliY5ERESN7PU1h5BzvgJBGle8\/2i0bOb9\/BULkAy18vPE7PvbAwDiNxxFximt4ERERNRYVuw7hVVpp6FSKvDJE13R1MNFdCQhWIBkamyfMNzb3h8GoxmTvt+Hi7w0nojI4R0vLsPraw4BAP5xbwR6tvQRnEgcFiCZUigU+OCxLgjzdcfp0iq8+FM6TJwPRETksKprTJj8Qxqqakzo26YZnh\/QRnQkoViAZEzj5ozPn+oOV2clth47h4\/\/y7vGExE5qjd\/O4yss2Vo5qnGwtHRUDn4rS5uhgVI5toHeSP+0l3jP\/lvNm+VQUTkgH47cAY\/7s2HQgF8NLoL\/L1cRUcSjgWIMLJriOWuv9MS0pFfUik4ERERNZSTJRWYtSoDADB5QBv0jWgmOJFtYAEiAMBrD7ZHl9Am0FUbMen7faiuMYmORERE9aQ3mjBleRrK9Ub0bNkU0+6NEB3JZrAAEQBA7aTCkqe6wdfDBYcLdXhtzSHeL4yIyM69uyELGae1aOrujE+e6AonFb\/2L+NIkEWQxg2fPtEVSkXtOhE\/7i0QHYmIiO5Q4uGz+M+OXADA+49GI0jjJjiRbWEBojpi2zTDK\/e1AwDM\/TUTBwpKxQYiIqLbdrq0Ci\/\/cgAA8FzfcNzTPkBwItvDAkRXmdS\/FeI6BMBgMuP57\/fhAhdJJCKyGzUmM\/7+Yxq0VTWIDtFgxpB2oiPZJKEFKD4+Hj179oSXlxf8\/f0xYsQIZGVl1dln\/PjxUCgUdR59+vQRlFgeFAoF3n8sGuHNPHBGW40XE9K4SCIRkZ34MPEY9p28CC9XJywa0w0uTjzWcS1CRyU5ORmTJ0\/G7t27kZiYCKPRiLi4OFRUVNTZb8iQISgsLLQ81q9fLyixfHi71i6S6Oaswrbs8\/gw8ZjoSEREdBPJx87hs6QTAIB3H45CqI+74ES2y0nkL9+4cWOdn5cuXQp\/f3\/s27cPd999t2W7Wq1GYGBgY8eTvbaBXpj\/cGe8mJCORVuOo0toE9zbgeeRiYhsUbGuGtN\/SgcAPNWnBe7vHCQ2kI2zqeNiWm3tXcl9fOrenC0pKQn+\/v6IjIzEhAkTUFxcfN330Ov10Ol0dR5054Z3aY7xsS0BAP\/4OR155ytu\/AIiImp0JrOEaT+lo6TCgHaBXnjtgQ6iI9k8mylAkiRh+vTp6Nu3Lzp16mTZPnToUPzwww\/YvHkzPvjgA6SkpGDQoEHQ6\/XXfJ\/4+HhoNBrLIzQ0tLH+CA5r9v3t0T2sKcouLZJYZeAiiUREtmTxluPYeaIE7i4qLH6yG1ydVaIj2TyFZCOr3U2ePBnr1q3D9u3bERISct39CgsLERYWhoSEBIwaNeqq5\/V6fZ1ypNPpEBoaCq1WC29vb6tkl4MibTUe\/HQbzpcbMKprc3zwWDQUCnnfSI+IyBbszinBmC93wywBCx+Lxqhu1\/8OtSc6nQ4ajcZq3982cQRo6tSp+PXXX7Fly5Yblh8ACAoKQlhYGLKzr33ncrVaDW9v7zoPqr9AjSs+faIbVEoFVqWdxvd78kVHIiKSvZJyPV5MSINZAh7pHuIw5acxCC1AkiRhypQpWLVqFTZv3ozw8PCbvqakpAQFBQUICuLkrsYW09oXM4e0BQC89Vsm9udfFJyIiEi+zGYJL\/1yAGd1erT288BbwzuKjmRXhBagyZMn4\/vvv8fy5cvh5eWFoqIiFBUVoaqqCgBQXl6Ol19+Gbt27UJeXh6SkpIwbNgwNGvWDCNHjhQZXbYm9GuFoZ0CUWOSMPmH\/Sgpv\/ZcLCIisq6vtucgKesc1E5KLH6yG9xdhF7YbXeEFqAlS5ZAq9ViwIABCAoKsjx++uknAIBKpUJGRgaGDx+OyMhIjBs3DpGRkdi1axe8vLxERpcthUKBBY9EoZWfBwq11Zj6YxqMJrPoWEREsrI\/\/yIWbKxdOPiNYR3RLpDTPW6XzUyCthZrT6KSq+yzZRi+eAcqDSY8P6A1ZnKpdSKiRqGtrMH9n2zD6dIqPBgVhE+f6OqQF6XIYhI02Z+IAC+8+3AUAGBJ0gn8kVkkOBERkeOTJAkzVx7E6dIqtPBxR\/yozg5ZfhoDCxDdsWHRwXjmrtqJ6y\/\/fAC5XCSRiMiqlu0+iY2ZRXBWKbBoTFd4uTqLjmS3WICoXmbd3w49WzZFmd6IScv2odJgFB2JiMghZZ7R4p3fjwAAZg1tj6iQJmID2TkWIKoXZ5USi8d0g5+XGllnyzBrVQYcfFoZEVGjK9cbMWV5GgwmM+5tH4Cn72opOpLdYwGievP3dsXiMbWLJK5NP4Pvdp0UHYmIyGFIkoQ5qzOQe74CwRpXvP9oFOf9NAAWIGoQvcJ9MGto7ZVgb\/9+GPtOXhCciIjIMfySegpr089ApVTgkye6oom7i+hIDoEFiBrMs33D8UBUEIxmCS\/8sB\/nyrhIIhFRfWSfLcM\/fz0EAHgpLhI9WvoITuQ4WICowSgUCrz7cBTa+HvirE6PqT\/u5yKJRER3qMpgwuTl+1FdY0a\/iGaYdHdr0ZEcCgsQNShPtRM+f6o7PFxU2J1zAe\/9kSU6EhGRXXrzt0wcO1sOPy81Fj7WBUol5\/00JBYganBt\/D3x3qPRAIB\/b83BhoxCwYmIiOzL2vTTSEgpgEIBfDy6C\/y81KIjORwWILKK+zsHYUK\/2kUSX1lxECfOlQtORERkH3LPV2D2qgwAwNRBEYht00xwIsfEAkRWM3NIO\/QO90H5pUUSK\/RcJJGI6Eb0RhOm\/rgfFQYTeoX74O+D2oiO5LBYgMhqnFRKfDqmK\/y91MguLsfMlQe5SCIR0Q3Erz+KQ6d1aOrujE8e7wonFb+mrYUjS1bl7+WKz57sBielAr8fLMTSHXmiIxER2aQ\/Movwzc48AMDCx7ogUOMqNpCDYwEiq+vR0gdzHmgPAJi3\/ghS8rhIIhHRX526WIlXfjkAAJh4dysMbOcvOJHjYwGiRjE+tiUeig6G0Sxh8g\/7UVxWLToSEZFNqDGZMfXHNOiqjegS2gQv39dWdCRZYAGiRqFQKBA\/qjMiAzxRXKbHlOVpqOEiiURE+GDTMaTll8LL1QmfPtEVzpz30yg4ytRoPC4tkuipdsLe3At4d8NR0ZGIiIRKyirG58knAADvPRKFUB93wYnkgwWIGlUrP0+8f2mRxK+252LdQS6SSETylFVUhr\/\/mAYA+FtMGIZ0ChKcSF5YgKjRDekUiIn9WwEAZqw4gOPFZYITERE1rlMXK\/G3\/+yBrtqI7mFNMfv+9qIjyQ4LEAnxSlxbxLTyRYXBhInL9qGciyQSkUyUlOvxt6\/34qxOj8gAT\/xnXE+4OqtEx5IdFiAS4vIiiYHerjhxrgIzV3CRRCJyfOV6I57+JgU55yvQvIkbvnumNzTuzqJjyRILEAnTzFONxU92g7NKgXUZhfh6e67oSEREVqM3mjBp2T4cPKWFj4cLvnu2Fxc7FIgFiITqHtYUrz\/YAQAQv+Eoko+dE5yIiKjhmcwSXvr5ALYfPw93FxWWju+J1n6eomPJGgsQCTe2TxhGdWsOk1nCxGWpXCmaiByKJEl487dM\/H6wEM4qBf49tjuiQ5uIjiV7LEAknEKhwPxRURjQ1g\/VNWY8szQFh05rRcciImoQn24+ju92nYRCUXuPr34RfqIjEViAyEa4OCnx+VPd0TvcB2V6I\/72n728PJ6I7N73u09iYeIxAMDcYR0xLDpYcCK6jAWIbIarswpfjeuB6BANLlQY8ORXe1BwoVJ0LCKiO7I+oxCvrz0EAPj7oDYYF9tSbCCqgwWIbIqXqzO+eboXIgM8cVanx5Nf7cFZHW+cSkT2Zefx85iWkA5JAsb0boF\/DI4UHYmuwAJENqephwu+f7Y3wnzdkX+hEk99tQcXKgyiYxER3ZJDp7X4v2X7YDCZMbRTIN4e3gkKhUJ0LLoCCxDZJH9vV3z\/bG8Eersiu7gc4\/6zF7rqGtGxiIhuKO98BcYv3YtyvRExrXzx4eguUClZfmwRCxDZrFAfd3z\/XG\/4ergg47QWz32TiiqDSXQsIqJrKtZVY+x\/9uB8uQEdg73xxd+68xYXNowFiGxaG39PfPtML3i5OmFv3gVM+n4fDEaz6FhERHVoq2rwt\/\/sRcGFKoT5uuObp3vBy5W3uLBlLEBk8zo11+Cbp3vCzVmF5GPn8GJCGowmliAisg3VNSZM+C4VR4vK4OelxrJnesPPSy06Ft0ECxDZhe5hPvjib93holJiw6EivLoqA2Yzb55KRGIZTWZM\/TENe3MvwEvthG+f7oUWvu6iY9EtEFqA4uPj0bNnT3h5ecHf3x8jRoxAVlZWnX0kScLcuXMRHBwMNzc3DBgwAJmZmYISk0j9Ivzw6ZiuUCkVWLHvFN76\/TDvIE9EwkiShNmrM5B4+CxcnJT4alwPdAj2Fh2LbpHQApScnIzJkydj9+7dSExMhNFoRFxcHCoqKiz7LFiwAAsXLsSiRYuQkpKCwMBADB48GGVlXCVYju7rGIj3H40CAHyzM8+ywioRUWN7748s\/Jx6CkoF8OkTXdG7la\/oSHQbFJIN\/RX63Llz8Pf3R3JyMu6++25IkoTg4GBMmzYNM2fOBADo9XoEBATg3XffxcSJE2\/6njqdDhqNBlqtFt7ebOaOYtmuPLy+tvZI4Kyh7TCxf2vBiYhITr7enou3fz8MAJg\/qjMe79VCcCLHY+3vb6c7edFbb711w+f\/+c9\/3lEYrbb2Bpg+Pj4AgNzcXBQVFSEuLs6yj1qtRv\/+\/bFz585rFiC9Xg+9Xm\/5WafT3VEWsm1jY1qiXG\/CuxuPIn7DUXi6OuHJ3mGiYxGRDKxJO20pP6\/c15blx07dUQFavXp1nZ9ramqQm5sLJycntG7d+o4KkCRJmD59Ovr27YtOnToBAIqKigAAAQEBdfYNCAjAyZMnr\/k+8fHxePPNN2\/795P9eX5Aa5RV1+CzpBN4bc0heKqdMLxLc9GxiMiBbckqxsu\/HAAAPH1XS7wwgEef7dUdFaC0tLSrtul0OowfPx4jR468oyBTpkzBwYMHsX379queu3IJcUmSrrus+KxZszB9+vQ6uUJDQ+8oE9m+V+5ri3K9Ed\/tOonpPx+Au4sTBncIuPkLiYhu0\/78i3jh+\/0wmiUM7xKM1x\/owFtc2LEGmwTt7e2Nt956C6+\/\/vptv3bq1Kn49ddfsWXLFoSEhFi2BwYGAvjfkaDLiouLrzoqdJlarYa3t3edBzkuhUKBucM6YlS35jCZJUxevh87jp8XHYuIHMzx4jI8800KqmpMuDvSD+89Eg0lb3Fh1xr0KrDS0lLLPJ5bIUkSpkyZglWrVmHz5s0IDw+v83x4eDgCAwORmJho2WYwGJCcnIzY2NgGy032TalUYMHDUbivYwAMRjMmfJeKfScvio5FRA7iTGkVxn69F6WVNegS2gSfP9UNLk5cRs\/e3dEpsE8++aTOz5IkobCwEMuWLcOQIUNu+X0mT56M5cuXY+3atfDy8rIc6dFoNHBzc4NCocC0adMwb948REREICIiAvPmzYO7uzvGjBlzJ9HJQTmplPjkia547ttUbMs+j6eX7kXC\/8VwTQ4iqpeLFQaM\/XoPCrXVaO3ngaXje8Ld5Y6+OsnG3NFl8FceqVEqlfDz88OgQYMwa9YseHl53dovv86506VLl2L8+PEAasvVm2++iX\/\/+9+4ePEievfujcWLF1smSt8ML4OXl0qDEX\/7ei9ST15EM08X\/DwxBq38PEXHIiI7VGkwYsyXe5BeUIogjStWPB+L5k3cRMeSDWt\/f9vUOkDWwAIkP9qqGoz5cjcyz+gQrHHFz5NiENKUS9MT0a0zGM147rtUbD12Dk3cnfHLxBhEBNzaX+6pYVj7+5snMcnhaNyc8d0zvdDazwNntNV46qs9KC6rFh2LiOyE2SzhlRUHsPXYObg5q\/Cf8T1ZfhwQCxA5JF9PNb5\/rjdCmrohr6QSf\/t6L0orDaJjEZGNkyQJb687jLXpZ+CkVOCzp7qhW4umomORFbAAkcMK0rjhh+d6w99LjaNFZRi3NAXleqPoWERkwz5LOoGlO\/IAAO8\/Go2Bbf3FBiKrYQEihxbm64Hvn+uNJu7OOFBQignfpqK6xiQ6FhHZoIS9+XjvjywAwOsPdsCIrlxZ3pGxAJHDiwzwwnfP9IKn2gm7ckow+Yf9qDGZRcciIhvyR2YRZq\/OAFB7m51n+4bf5BVk71iASBaiQprg63E9oHZS4r9HizH95wMwmR36AkgiukV7ckow9cc0mCXgsR4hmHFfW9GRqBGwAJFs9G7li8\/HdoezSoHfDpzBnNUZcPBVIIjoJg6f0eG5b1NhMJoxuEMA5o3szPt7yQQLEMnKwLb++Gh0VygVQEJKAeatP8ISRCRT+SWVGLd0L8r0RvRq6YNPn+gKJxW\/FuWC\/6VJdh6ICsL8h6MAAF9uy8Wnm48LTkREje1cmR5j\/7MH58r0aBfohS\/H9YCrs0p0LGpELEAkS4\/1CMU\/H+wAAFiYeAz\/2Z4rOBERNZay6hqMX7oXJ0sqEdLUDd890wsaN2fRsaiRsQCRbD3TNxzTB0cCAN76\/TB+TikQnIiIrK3KYML\/fbcPmWd08PVwwbJne8Pf21V0LBKABYhkbeqgNvi\/u1sBAF5ddRDrDhYKTkRE1lKorcKj\/96JXTkl8FQ74dtneiG8mYfoWCSIk+gARCIpFArMGtoOZdVG\/Lg3H9N+SoO7iwoD23H1VyJHkpZ\/Ef+3bB\/Olenh4+GCL8Z2R6fmGtGxSCAeASLZUygUeGdEJzwUHYwak4RJ3+\/D7pwS0bGIqIGsTT+N0V\/sxrkyPdoGeGHt5LvQo6WP6FgkGAsQEQCVUoEPHovGve39oTea8dy3qUgvKBUdi4jqwWyW8N4fR\/FiQjoMRjPubR+AlS\/EItTHXXQ0sgEsQESXOKuUWDSmG2Jb+6Jcb8TjX+zCrwfOiI5FRHegQm\/EpO\/3YfGWEwBqb2\/xxdju8FRz5gfVYgEi+gtXZxW+\/FsP3B3ph+oaM\/7+YxrmrT8CI+8dRmQ3Tl2sxMNLdmLT4bNwcVLiw9HRmDmkHZRKrvBM\/8MCRHQFD7UTlo7viecHtAYAfLE1B+OXpuBihUFwMiK6mdS8Cxi+aAeOFpWhmacaCf\/XByO7hoiORTaIBYjoGlRKBWYOaYfFY7rBzVmF7cfP46HF23H4jE50NCK6jl9SC\/DEl7tRUmFAhyBv\/DrlLnRr0VR0LLJRLEBEN\/BAVBBWvRCLFj7uKLhQhVFLdnBeEJGNMZklzFt\/BK+sOIgak4ShnQKx4vkYBDdxEx2NbBgLENFNtL\/0N8l+Ec0s84LiOS+IyCaUVddgwnep+GJrDgDg74PaYPGYbnB34WRnujEWIKJb0MTdBd883QuT+tfOC\/r31hw8\/U0KSis5L4hIlPySSoz6bCc2Hy2G2kmJT5\/oiulxbTnZmW4JCxDRLVIpFXh1aDt8+kRXuDmrsC37PIYt2o4jhZwXRNTYdp0owfDF25FdXI4AbzV+mRSDYdHBomORHWEBIrpNw6KDseqFWIT6uNXOC\/psJ37jvCCiRvPj3nyM\/XoPLlbWIDpEg1+n9EVUSBPRscjOsAAR3YH2Qd74bUpf9ItohqoaE6b+mIb4DUdgMkuioxE5LKPJjLm\/ZmLWqgwYzRKGRQfjp4kxCODd3OkOsAAR3aEm7i5YOr4nJl66m\/y\/k3MwfulezgsisgJtVQ2e\/iYF3+zMAwC8NDgSnzzeBa7OKrHByG6xABHVg5NKiVn3t68zL+ihRTs4L4ioAeWcK8fIz3ZgW\/Z5uDmr8PlT3TD1nggoFJzsTHeOBYioAQyLDsbK52MR0tQN+Rdqr0z5\/SDnBRHV1\/bs8xixeAdyzlUgWOOKFc\/HYEinINGxyAGwABE1kA7BtfOC+rapnRc0ZXka5m84ynlBRHfou115GLd0L3TVRnRt0QRrptyFjsEa0bHIQbAAETWgph4u+Obp\/80L+jz5BNcLIrpNNSYzXluTgX+uzYTJLGFUt+b4cUIf+HtxsjM1HBYgogZ2eV7QJ090hauzEluPncNDi3bgaBHnBRHdzMUKA\/729V58vzsfCgXw6tB2+ODRaE52pgbHAkRkJQ9dMS9o5GLOCyK6kePFZRjx2Q7syimBh4sKX47tgUn9W3OyM1kFCxCRFXUM1uC3KX1xVxtfzgsiuoEtWcUYuXgnTpZUIqSpG1a+EIt7OwSIjkUOjAWIyMqaerjg26d74f84L4joKpIk4attOXj2mxSU6Y3o1dIHayffhXaB3qKjkYNjASJqBE4qJWbf3x4fP96F84KILjEYzXh1ZQbeWXcEZgkY3SMU3z\/XG76eatHRSAaEFqCtW7di2LBhCA4OhkKhwJo1a+o8P378eCgUijqPPn36iAlL1ACGd2mOlc\/HonmT\/60XtD6jUHQsokZXUq7HU1\/twU+pBVAqgNcf7ID5D3eGixP\/Xk6NQ+gnraKiAtHR0Vi0aNF19xkyZAgKCwstj\/Xr1zdiQqKG1zFYg9+m1s4LqjSY8MIP+7FgI+cFkXwcLdJh+OId2Jt3AV5qJ3w9viee7RvOyc7UqJxE\/vKhQ4di6NChN9xHrVYjMDCwkRIRNQ6fS\/OC3t14FF9uy8VnSSeQeUaHTx7vCo27s+h4RFbz5+GzeDEhDRUGE8J83fH1uB5o4+8lOhbJkM0fa0xKSoK\/vz8iIyMxYcIEFBcX33B\/vV4PnU5X50Fki5xUSsx5oINlXlDysXN4aPF2ZBWViY5G1OAkScLnyScwYVkqKgwmxLb2xZoX7mL5IWFsugANHToUP\/zwAzZv3owPPvgAKSkpGDRoEPR6\/XVfEx8fD41GY3mEhoY2YmKi2ze8S3OsmFQ7L+hkSSVGfraD84LIoVTXmPDSzwcwf8NRSBLwZO8W+PaZXmjq4SI6GsmYQpIkm5h4oFAosHr1aowYMeK6+xQWFiIsLAwJCQkYNWrUNffR6\/V1CpJOp0NoaCi0Wi28vXlZJdmuCxUGTFm+HztPlAAAXhjQGi\/FtYVKyXkRZJ8kScKfR4oRv+EIcs5VQKVUYO6wDhgb01J0NLIDOp0OGo3Gat\/fQucA3a6goCCEhYUhOzv7uvuo1Wqo1byEkuyPj4cLvnumF+I3HMXX22vnBR0u1OHj0ZwXRPbn0Gkt3ll3GLtzLgAAmnm64KPRXdE3opngZES17KoAlZSUoKCgAEFBQaKjEFmFk0qJ1x\/sgM7NNZi58iCSsmrnBX0xtgfaBnKuBNm+M6VVeP+PLKxKOw0AUDsp8WzfcDw\/oDW8XFnkyXYILUDl5eU4fvy45efc3Fykp6fDx8cHPj4+mDt3Lh5++GEEBQUhLy8Ps2fPRrNmzTBy5EiBqYmsb0TX5mjj74mJy\/bhZEklhi\/ejqfvCseku1vzaBDZpHK9EZ8nncCX23KgN5oBACO7NsfL97VF8yZugtMRXU3oHKCkpCQMHDjwqu3jxo3DkiVLMGLECKSlpaG0tBRBQUEYOHAg3n777dua2Gztc4hE1lRSrseLCenYfvw8AMDb1QmTBrTG07HhcHPh3bFJPKPJjJ9TT2Fh4jGcL6+df9kr3AevPdAeUSFNxIYju2bt72+bmQRtLSxAZO8kSULi4bN4f1MWjp0tBwD4eanx90FtMLpnC66cS8IkZRVj3vojls9lS193zLq\/PeI6BHBRQ6o3FqB6YgEiR2EyS1ibfhoLE4\/h1MUqAEALH3dMHxyJh6KDoeTVYtRIjhbp8K91R7Atu\/bIZBN3Z7x4TwSe7B3GQk4NhgWonliAyNEYjGYkpOTjk\/8et5xyaBfohZfj2uKe9v78mzdZTXFZNRZuOoafUwtglgBnlQLjY1tiysAIzk2jBscCVE8sQOSoKg1GLN2Rh8+TT6Cs2ggA6B7WFK\/c1xZ9WvkKTkeOpMpgwpfbcvB58glUGkwAgAc6B2HmkHZo4esuOB05KhagemIBIkdXWmnA58k5+GZnLqpraq++6R\/ph1fua4tOzTWC05E9M5slrEo7jff\/yEKRrhoA0LVFE7z2QHt0D\/MRnI4cHQtQPbEAkVyc1VXj083ZSNhbAOOlO8s\/EBWElwZHopWfp+B0ZG92njiPf607gswztfdTDGnqhplD2uHBqCCeZqVGwQJUTyxAJDcnSyqwMPEYfj1wBpIEqJQKPNYjBH+\/JwJBGq7HQjd2vLgc8zccwZ9Ham887eXqhCkD22BcbEu4OnPpBWo8LED1xAJEcnWkUIf3\/8jCf4\/WfpG5OCkxLiYMLwxow5tQ0lVKyvX46M9sLN+bD5NZgkqpwFO9W+DFeyPhw88LCcACVE8sQCR3qXkXsGBjFvbm1d6TyVPthAn9WuHZfuHwVNvV3XDICqprTFi6Iw+fbTmOMn3tZPp72wdg1v3t0JqnTkkgFqB6YgEiql1MMenYOby3MQuHC2vndPh6uGDywDZ4sk8LqJ14akNuJEnCrwfOYMHGLJwurV1XqlNzb8y+vz1iW\/OGpSQeC1A9sQAR\/Y\/ZLGFdRiEWJh5D7vkKAEDzJm6Ydm8ERnULgYqLKcpCat4FvL3uCA4UlAIAAr1d8cp9bTGya3MuqEk2gwWonliAiK5WYzLjl9RT+Pi\/x3BWV7uYYht\/T7wcF4n7OgbyKh8HdbKkAvM3HMWGQ0UAAHcXFZ7v3xrP9WvFe8uRzWEBqicWIKLrq64x4btdefgs6QRKK2sAANEhGswY0g53teFpEEehrazBJ5uz8d2uPNSYJCgVwOieofjH4Ej4e7mKjkd0TSxA9cQCRHRzuuoafLU1B19tz7Ws9HtXG1+8cl87dAltIjYc3TGD0Yxlu0\/ik\/9mQ1tVW3DvjvTDnPvbo22gl+B0RDfGAlRPLEBEt+5cmR6LtxzH8j35MJhqV5W+r2MAXo5ri4gAfmHai3K9Ef89chYfJh5DXkklAKBtgBdmP9Ae\/SP9BKcjujUsQPXEAkR0+05drMRHf2Zj1f5TMEuAUgGM6haCafdGIKQp7\/1kayRJwolzFUjKKsaWrGLszb2AGlPt\/9qbearxUlwkHusRyknuZFdYgOqJBYjozmWfLcP7m7LwR+ZZAICLSokxvVvgsR6haBfoxSuGBKquMWHXiRJsuVR6Ci5U1Xm+pa87hndpjgl3t+J6T2SXWIDqiQWIqP7SC0rx3h9HseN4iWVbE3dn9A73QUwrX\/Rp7YtIfxYiayu4UFlbeI4WY+eJEuiNZstzLiolerfywcC2\/hjYzh\/hzTwEJiWqPxagemIBImo4O46fx1fbcrAn94JlsvRlPh4utYWotS\/6tPJFhL8nL6evJ4PRjJS8C9hytPYoz4lzFXWeD9a4YmA7fwxs64\/YNr5wd+GRHnIcLED1xAJE1PBqTGZknNZid04Jdp0oQWreRVTV1C1Evh4u6HPp6FBMKx+09mMhuhWF2iokZZ3DlqPF2HH8PCr+UjSdlAr0aNnUcpSHJZMcGQtQPbEAEVmfwWhGxulS7DpRgt05F5B68gKqa8x19mnmqUafVv87QtSqmQe\/vAEYTWbszy+1nNo6WlRW53k\/LzUGRPphYDt\/9I1oBm9XZ0FJiRoXC1A9sQARNT690YSDp7SXClEJ9p28WGe+CgD4e6nRp5WvpRC19HWXTSE6X65HctY5bMkqxtZj56CrNlqeUyiArqFNLEd5OgR5c24VyRILUD2xABGJV11jwoGCUuzKqS1E+\/NLYbiiEAV6u9Y5QtTCx3EKkdks4eBpLbYcLUZSVjEOnNLWeb6puzP6XzrK0y\/CDz4eLoKSEtkOFqB6YgEisj3VNSak5f+vEKXnl1oWXrwsWOP6lzlEvgj1sa\/1h0orDdiafR5JR4uRfOwcSioMdZ7v1NwbA9v6Y0Bbf3QJbcI1eoiuwAJUTyxARLavymDC\/vyLlknVB06VWhbyu6x5EzfL0aGY1r5o3sRNSFZJkmAySzCaJdSYzDCaJNSYa\/9ZUm7A1uxzSMoqxr6TF2H+yx\/BS+2EfpHNMKCtPwZE+sHfm\/fgIroRFqB6YgEisj+VBiP2nfxfITp4Sgujue7\/qkJ93NAn3Bet\/T1hNJlRY6otJpfLiNFkRo259p+1JUWy7Ge8tE+NyXzpNX\/d73qvv7TdfOv\/y2wb4IUB7fwwsK0\/uoc1hbNK2dBDReSwWIDqiQWIyP5V6I1I\/Ushyjithek2ikhjcFYp4OasQq9wHwy4NIFZ1FEqIkdg7e9vrppFRDbPQ+2E\/pF+lht5luuNSMm7gN05JThXpoezUgknlQLOKiWclAo4qZRwVingdGn7tbZd\/ve625RQKRVXbXNSXvrnX19z+XcpFVApFQ4zYZtILliAiMjueKqdai8Tb+svOgoR2SmekCYiIiLZYQEiIiIi2WEBIiIiItlhASIiIiLZYQEiIiIi2WEBIiIiItlhASIiIiLZEVqAtm7dimHDhiE4OBgKhQJr1qyp87wkSZg7dy6Cg4Ph5uaGAQMGIDMzU0xYIiIichhCC1BFRQWio6OxaNGiaz6\/YMECLFy4EIsWLUJKSgoCAwMxePBglJWVNXJSIiIiciRCV4IeOnQohg4des3nJEnCRx99hDlz5mDUqFEAgG+\/\/RYBAQFYvnw5Jk6c2JhRiYiIyIHY7Byg3NxcFBUVIS4uzrJNrVajf\/\/+2Llz53Vfp9frodPp6jyIiIiI\/spmC1BRUREAICAgoM72gIAAy3PXEh8fD41GY3mEhoZaNScRERHZH5stQJddeYdlSZJueNflWbNmQavVWh4FBQXWjkhERER2xmbvBh8YGAig9khQUFCQZXtxcfFVR4X+Sq1WQ61WWz0fERER2S+bPQIUHh6OwMBAJCYmWrYZDAYkJycjNjZWYDIiIiKyd0KPAJWXl+P48eOWn3Nzc5Geng4fHx+0aNEC06ZNw7x58xAREYGIiAjMmzcP7u7uGDNmjMDUREREZO+EFqDU1FQMHDjQ8vP06dMBAOPGjcM333yDGTNmoKqqCi+88AIuXryI3r17Y9OmTfDy8hIVmYiIiByAQpIkSXQIa9LpdNBoNNBqtfD29hYdh4iIiG6Btb+\/bXYOEBEREZG1sAARERGR7LAAERERkeywABEREZHssAARERGR7LAAERERkeywABEREZHssAARERGR7LAAERERkeywABEREZHssAARERGR7LAAERERkeywABEREZHssAARERGR7LAAERERkeywABEREZHssAARERGR7LAAERERkeywABEREZHssAARERGR7LAAERERkeywABEREZHssAARERGR7LAAERERkeywABEREZHssAARERGR7LAAERERkeywABEREZHssAARERGR7LAAERERkeywABEREZHssAARERGR7LAAERERkeywABEREZHssAARERGR7Nh0AZo7dy4UCkWdR2BgoOhYREREZOecRAe4mY4dO+LPP\/+0\/KxSqQSmISIiIkdg8wXIycmJR32IiIioQdn0KTAAyM7ORnBwMMLDw\/H4448jJydHdCQiIiKyczZ9BKh379747rvvEBkZibNnz+Kdd95BbGwsMjMz4evre83X6PV66PV6y886na6x4hIREZGdUEiSJIkOcasqKirQunVrzJgxA9OnT7\/mPnPnzsWbb7551XatVgtvb29rRyQiIqIGoNPpoNForPb9bfOnwP7Kw8MDnTt3RnZ29nX3mTVrFrRareVRUFDQiAmJiIjIHtj0KbAr6fV6HDlyBP369bvuPmq1Gmq1uhFTERERkb2x6SNAL7\/8MpKTk5Gbm4s9e\/bgkUcegU6nw7hx40RHIyIiIjtm00eATp06hSeeeALnz5+Hn58f+vTpg927dyMsLEx0NCIiIrJjNl2AEhISREcgIiIiB2TTp8CIiIiIrIEFiIiIiGSHBYiIiIhkhwWIiIiIZIcFiIiIiGSHBYiIiIhkhwWIiIiIZIcFiIiIiGSHBYiIiIhkhwWIiIiIZIcFiIiIiGSHBYiIiIhkhwWIiIiIZIcFiIiIiGSHBYiIiIhkhwWIiIiIZIcFiIiIiGSHBYiIiIhkhwWIiIiIZIcFiIiIiGSHBYiIiIhkhwWIiIiIZIcFiIiIiGSHBYiIiIhkhwWIiIiIZIcFiIiIiGSHBYiIiIhkhwWIiIiIZIcFiIiIiGSHBYiIiIhkhwWIiIiIZIcFiIiIiGSHBYiIiIhkhwWIiIiIZIcFiIiIiGSHBYiIiIhkxy4K0GeffYbw8HC4urqie\/fu2LZtm+hIREREZMdsvgD99NNPmDZtGubMmYO0tDT069cPQ4cORX5+vuhoREREZKcUkiRJokPcSO\/evdGtWzcsWbLEsq19+\/YYMWIE4uPjb\/p6nU4HjUYDrVYLb29va0YlIiKiBmLt72+nBn\/HBmQwGLBv3z68+uqrdbbHxcVh586d13yNXq+HXq+3\/KzVagHUDiQRERHZh8vf29Y6TmPTBej8+fMwmUwICAiosz0gIABFRUXXfE18fDzefPPNq7aHhoZaJSMRERFZT0lJCTQaTYO\/r00XoMsUCkWdnyVJumrbZbNmzcL06dMtP5eWliIsLAz5+flWGUA50el0CA0NRUFBAU8n1gPHseFwLBsOx7JhcBwbjlarRYsWLeDj42OV97fpAtSsWTOoVKqrjvYUFxdfdVToMrVaDbVafdV2jUbDD2MD8fb25lg2AI5jw+FYNhyOZcPgODYcpdI612vZ9FVgLi4u6N69OxITE+tsT0xMRGxsrKBUREREZO9s+ggQAEyfPh1jx45Fjx49EBMTgy+++AL5+fmYNGmS6GhERERkp2y+AI0ePRolJSV46623UFhYiE6dOmH9+vUICwu7pder1Wq88cYb1zwtRreHY9kwOI4Nh2PZcDiWDYPj2HCsPZY2vw4QERERUUOz6TlARERERNbAAkRERESywwJEREREssMCRERERLLj0AXos88+Q3h4OFxdXdG9e3ds27ZNdCSbN3fuXCgUijqPwMBAy\/OSJGHu3LkIDg6Gm5sbBgwYgMzMTIGJbcfWrVsxbNgwBAcHQ6FQYM2aNXWev5Wx0+v1mDp1Kpo1awYPDw889NBDOHXqVCP+KcS72TiOHz\/+qs9onz596uzDcay9LVDPnj3h5eUFf39\/jBgxAllZWXX24Wfy1tzKWPJzeWuWLFmCqKgoy0KRMTEx2LBhg+X5xvxMOmwB+umnnzBt2jTMmTMHaWlp6NevH4YOHYr8\/HzR0Wxex44dUVhYaHlkZGRYnluwYAEWLlyIRYsWISUlBYGBgRg8eDDKysoEJrYNFRUViI6OxqJFi675\/K2M3bRp07B69WokJCRg+\/btKC8vx4MPPgiTydRYfwzhbjaOADBkyJA6n9H169fXeZ7jCCQnJ2Py5MnYvXs3EhMTYTQaERcXh4qKCss+\/EzemlsZS4Cfy1sREhKC+fPnIzU1FampqRg0aBCGDx9uKTmN+pmUHFSvXr2kSZMm1dnWrl076dVXXxWUyD688cYbUnR09DWfM5vNUmBgoDR\/\/nzLturqakmj0Uiff\/55IyW0DwCk1atXW36+lbErLS2VnJ2dpYSEBMs+p0+flpRKpbRx48ZGy25LrhxHSZKkcePGScOHD7\/uaziO11ZcXCwBkJKTkyVJ4meyPq4cS0ni57I+mjZtKn311VeN\/pl0yCNABoMB+\/btQ1xcXJ3tcXFx2Llzp6BU9iM7OxvBwcEIDw\/H448\/jpycHABAbm4uioqK6oyrWq1G\/\/79Oa43cStjt2\/fPtTU1NTZJzg4GJ06deL4XiEpKQn+\/v6IjIzEhAkTUFxcbHmO43htWq0WACw3luRn8s5dOZaX8XN5e0wmExISElBRUYGYmJhG\/0w6ZAE6f\/48TCbTVTdMDQgIuOrGqlRX79698d133+GPP\/7Al19+iaKiIsTGxqKkpMQydhzX23crY1dUVAQXFxc0bdr0uvsQMHToUPzwww\/YvHkzPvjgA6SkpGDQoEHQ6\/UAOI7XIkkSpk+fjr59+6JTp04A+Jm8U9caS4Cfy9uRkZEBT09PqNVqTJo0CatXr0aHDh0a\/TNp87fCqA+FQlHnZ0mSrtpGdQ0dOtTy7507d0ZMTAxat26Nb7\/91jKhj+N65+5k7Di+dY0ePdry7506dUKPHj0QFhaGdevWYdSoUdd9nZzHccqUKTh48CC2b99+1XP8TN6e640lP5e3rm3btkhPT0dpaSlWrlyJcePGITk52fJ8Y30mHfIIULNmzaBSqa5qg8XFxVc1S7oxDw8PdO7cGdnZ2ZarwTiut+9Wxi4wMBAGgwEXL1687j50taCgIISFhSE7OxsAx\/FKU6dOxa+\/\/ootW7YgJCTEsp2fydt3vbG8Fn4ur8\/FxQVt2rRBjx49EB8fj+joaHz88ceN\/pl0yALk4uKC7t27IzExsc72xMRExMbGCkpln\/R6PY4cOYKgoCCEh4cjMDCwzrgaDAYkJydzXG\/iVsaue\/fucHZ2rrNPYWEhDh06xPG9gZKSEhQUFCAoKAgAx\/EySZIwZcoUrFq1Cps3b0Z4eHid5\/mZvHU3G8tr4efy1kmSBL1e3\/ifyTuctG3zEhISJGdnZ+nrr7+WDh8+LE2bNk3y8PCQ8vLyREezaS+99JKUlJQk5eTkSLt375YefPBBycvLyzJu8+fPlzQajbRq1SopIyNDeuKJJ6SgoCBJp9MJTi5eWVmZlJaWJqWlpUkApIULF0ppaWnSyZMnJUm6tbGbNGmSFBISIv3555\/S\/v37pUGDBknR0dGS0WgU9cdqdDcax7KyMumll16Sdu7cKeXm5kpbtmyRYmJipObNm3Mcr\/D8889LGo1GSkpKkgoLCy2PyspKyz78TN6am40lP5e3btasWdLWrVul3Nxc6eDBg9Ls2bMlpVIpbdq0SZKkxv1MOmwBkiRJWrx4sRQWFia5uLhI3bp1q3PJIl3b6NGjpaCgIMnZ2VkKDg6WRo0aJWVmZlqeN5vN0htvvCEFBgZKarVauvvuu6WMjAyBiW3Hli1bJABXPcaNGydJ0q2NXVVVlTRlyhTJx8dHcnNzkx588EEpPz9fwJ9GnBuNY2VlpRQXFyf5+flJzs7OUosWLaRx48ZdNUYcR+maYwhAWrp0qWUffiZvzc3Gkp\/LW\/fMM89Yvpf9\/Pyke+65x1J+JKlxP5MKSZKk2ztmRERERGTfHHIOEBEREdGNsAARERGR7LAAERERkeywABEREZHssAARERGR7LAAERERkeywABEREZHssAARERGR7LAAERERkeywABEREZHssAARkV05d+4cAgMDMW\/ePMu2PXv2wMXFBZs2bRKYjIjsCe8FRkR2Z\/369RgxYgR27tyJdu3aoWvXrnjggQfw0UcfiY5GRHaCBYiI7NLkyZPx559\/omfPnjhw4ABSUlLg6uoqOhYR2QkWICKyS1VVVejUqRMKCgqQmpqKqKgo0ZGIyI5wDhAR2aWcnBycOXMGZrMZJ0+eFB2HiOwMjwARkd0xGAzo1asXunTpgnbt2mHhwoXIyMhAQECA6GhEZCdYgIjI7rzyyitYsWIFDhw4AE9PTwwcOBBeXl74\/fffRUcjIjvBU2BEZFeSkpLw0UcfYdmyZfD29oZSqcSyZcuwfft2LFmyRHQ8IrITPAJEREREssMjQERERCQ7LEBEREQkOyxAREREJDssQERERCQ7LEBEREQkOyxAREREJDssQERERCQ7LEBEREQkOyxAREREJDssQERERCQ7LEBEREQkOyxAREREJDv\/D4EKy8Dw4IC\/AAAAAElFTkSuQmCC", "text\/plain": "<Figure size 640x480 with 1 Axes>"}, "metadata": {}, "output_type": "display_data"}]}}, "8d43b8903d1c4542ac1d493441e99717": {"model_module": "@jupyter-widgets\/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": {"layout": "IPY_MODEL_7cc9130632e24968ac7630fa1302ec66", "outputs": [{"data": {"image\/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG2CAYAAACXuTmvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy\/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAiRklEQVR4nO3dfWyV9f3\/8dfhpocCbSNCe05HaTptdVhgG0Voo1JQGjplQF2CYkzJNiJykzXVEQvZOJrZEhL44tLZTWcYOFhJpjh\/47b+oEXW1W9BkA4Nq6NAda2djN5Q8FTg8\/tj4fw4tMXK2l7n9PN8JFfidXNO3\/14JT5znYO4jDFGAAAAFhnk9AAAAAD9jQACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1gmZACoqKpLL5VJeXl7gmDFGPp9P8fHxioyMVGZmpk6cOOHckAAAYEAIiQCqrq7WK6+8ookTJwYdX7dunTZs2KDi4mJVV1fL4\/Fo1qxZamtrc2hSAAAwEDgeQBcuXNATTzyhV199VbfddlvguDFGGzdu1OrVq5WTk6PU1FRt3rxZFy9e1LZt2xycGAAAhLshTg+wbNkyPfzww3rooYf0i1\/8InC8rq5OjY2NysrKChxzu92aPn26Kisr9dRTT3X5fn6\/X36\/P7B\/9epV\/fvf\/9btt98ul8vVd78IAADoNcYYtbW1KT4+XoMG9f7zGkcDqLS0VO+\/\/76qq6s7nWtsbJQkxcXFBR2Pi4vTmTNnun3PoqIiPf\/88707KAAAcER9fb3Gjh3b6+\/rWADV19frJz\/5ifbt26dhw4Z1e92NT22MMTd9klNQUKD8\/PzAfktLi8aNG6e\/n6pT3O2j\/vvB+8nFjsu698X\/K0n639UPaniE4w\/rJIXmXKE2E\/MwD\/PYM48UmjNJoTtXT1zsuKy0n\/8ffVqySFFRUX3yMxxbjSNHjqipqUmTJ08OHLty5YoOHjyo4uJinTx5UtJ\/ngR5vd7ANU1NTZ2eCl3P7XbL7XZ3Oh4VFa3o6Ohe\/A361pCOyxrkHi5Jio6ODpkbNxTnCrWZmId5mMeeeaTQnEkK3bl64vrZ++rrK459CfrBBx9UTU2Njh07FtjS0tL0xBNP6NixY\/rmN78pj8ejsrKywGs6OjpUUVGhjIwMp8YGAAADgGM5GBUVpdTU1KBjI0aM0O233x44npeXp8LCQiUnJys5OVmFhYUaPny4Fi5c6MTIAABggAjp52ErV67UpUuXtHTpUp0\/f15Tp07Vvn37+uzzQAAAYIeQCqDy8vKgfZfLJZ\/PJ5\/P58g8AABgYHL8f4QIAADQ3wggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdawJoMihg50eAQAAhAhrAsjlcjk9AgAACBHWBBAAAMA1BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6zgaQCUlJZo4caKio6MVHR2t9PR07d69O3B+0aJFcrlcQdu0adMcnBgAAAwEQ5z84WPHjtXatWt15513SpI2b96suXPn6ujRo7rnnnskSbNnz9amTZsCr4mIiHBkVgAAMHA4GkBz5swJ2n\/xxRdVUlKiqqqqQAC53W55PB4nxgMAAANUyHwH6MqVKyotLVV7e7vS09MDx8vLyxUbG6uUlBQtXrxYTU1NN30fv9+v1tbWoA0AAOB6jgdQTU2NRo4cKbfbrSVLlmjHjh0aP368JCk7O1tbt27V\/v37tX79elVXV2vmzJny+\/3dvl9RUZFiYmICW0JCQn\/9KgAAIEw4+hGYJN111106duyYmpub9cYbbyg3N1cVFRUaP368FixYELguNTVVaWlpSkxM1M6dO5WTk9Pl+xUUFCg\/Pz+w39raSgQBAIAgjgdQRERE4EvQaWlpqq6u1ksvvaTf\/OY3na71er1KTExUbW1tt+\/ndrvldrv7bF4AABD+HP8I7EbGmG4\/4jp37pzq6+vl9Xr7eSoAADCQOPoEaNWqVcrOzlZCQoLa2tpUWlqq8vJy7dmzRxcuXJDP59Ojjz4qr9er06dPa9WqVRo9erTmz5\/v5NgAACDMORpAn332mZ588kk1NDQoJiZGEydO1J49ezRr1ixdunRJNTU12rJli5qbm+X1ejVjxgxt375dUVFRTo4NAADCnKMB9Nprr3V7LjIyUnv37u3HaQAAgC1C7jtAAAAAfY0AAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUcDaCSkhJNnDhR0dHRio6OVnp6unbv3h04b4yRz+dTfHy8IiMjlZmZqRMnTjg4MQAAGAgcDaCxY8dq7dq1Onz4sA4fPqyZM2dq7ty5gchZt26dNmzYoOLiYlVXV8vj8WjWrFlqa2tzcmwAABDmHA2gOXPm6Hvf+55SUlKUkpKiF198USNHjlRVVZWMMdq4caNWr16tnJwcpaamavPmzbp48aK2bdvm5NgAACDMhcx3gK5cuaLS0lK1t7crPT1ddXV1amxsVFZWVuAat9ut6dOnq7Ky0sFJAQBAuBvi9AA1NTVKT0\/XF198oZEjR2rHjh0aP358IHLi4uKCro+Li9OZM2e6fT+\/3y+\/3x\/Yb21t7ZvBAQBA2HL8CdBdd92lY8eOqaqqSk8\/\/bRyc3P14YcfBs67XK6g640xnY5dr6ioSDExMYEtISGhz2YHAADhyfEAioiI0J133qm0tDQVFRVp0qRJeumll+TxeCRJjY2NQdc3NTV1eip0vYKCArW0tAS2+vr6Pp0fAACEH8cD6EbGGPn9fiUlJcnj8aisrCxwrqOjQxUVFcrIyOj29W63O\/DH6q9tAAAA13P0O0CrVq1Sdna2EhIS1NbWptLSUpWXl2vPnj1yuVzKy8tTYWGhkpOTlZycrMLCQg0fPlwLFy50cmwAABDmHA2gzz77TE8++aQaGhoUExOjiRMnas+ePZo1a5YkaeXKlbp06ZKWLl2q8+fPa+rUqdq3b5+ioqKcHBsAAIQ5RwPotddeu+l5l8sln88nn8\/XPwMBAAArhNx3gAAAAPoaAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6jgZQUVGRpkyZoqioKMXGxmrevHk6efJk0DWLFi2Sy+UK2qZNm+bQxAAAYCBwNIAqKiq0bNkyVVVVqaysTJcvX1ZWVpba29uDrps9e7YaGhoC265duxyaGAAADARDnPzhe\/bsCdrftGmTYmNjdeTIET3wwAOB4263Wx6Pp7\/HAwAAA1RIfQeopaVFkjRq1Kig4+Xl5YqNjVVKSooWL16spqambt\/D7\/ertbU1aAMAALheyASQMUb5+fm67777lJqaGjienZ2trVu3av\/+\/Vq\/fr2qq6s1c+ZM+f3+Lt+nqKhIMTExgS0hIaG\/fgUAABAmQiaAli9fruPHj+sPf\/hD0PEFCxbo4YcfVmpqqubMmaPdu3fr73\/\/u3bu3Nnl+xQUFKilpSWw1dfX98f4AACgl0QOHaz\/Xf1gn\/4MR78DdM2KFSv09ttv6+DBgxo7duxNr\/V6vUpMTFRtbW2X591ut9xud1+MCQAA+oHL5dLwiL5NFEcDyBijFStWaMeOHSovL1dSUtJXvubcuXOqr6+X1+vthwkBAMBA5OhHYMuWLdPvf\/97bdu2TVFRUWpsbFRjY6MuXbokSbpw4YKeffZZ\/fWvf9Xp06dVXl6uOXPmaPTo0Zo\/f76TowMAgDDm6BOgkpISSVJmZmbQ8U2bNmnRokUaPHiwampqtGXLFjU3N8vr9WrGjBnavn27oqKiHJgYAAAMBI5\/BHYzkZGR2rt3bz9NAwAAbBEyfwoMAACgvxBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsI6jAVRUVKQpU6YoKipKsbGxmjdvnk6ePBl0jTFGPp9P8fHxioyMVGZmpk6cOOHQxAAAYCBwNIAqKiq0bNkyVVVVqaysTJcvX1ZWVpba29sD16xbt04bNmxQcXGxqqur5fF4NGvWLLW1tTk4OQAACGdDnPzhe\/bsCdrftGmTYmNjdeTIET3wwAMyxmjjxo1avXq1cnJyJEmbN29WXFyctm3bpqeeesqJsQEAQJi7pQB64YUXbnr+5z\/\/+S0N09LSIkkaNWqUJKmurk6NjY3KysoKXON2uzV9+nRVVlZ2GUB+v19+vz+w39raekuzAACAgeuWAmjHjh1B+19++aXq6uo0ZMgQ3XHHHbcUQMYY5efn67777lNqaqokqbGxUZIUFxcXdG1cXJzOnDnT5fsUFRXp+eef\/9o\/HwAA2OOWAujo0aOdjrW2tmrRokWaP3\/+LQ2yfPlyHT9+XIcOHep0zuVyBe0bYzodu6agoED5+flBcyUkJNzSTAAAYGDqtS9BR0dH64UXXtDPfvazr\/3aFStW6O2339aBAwc0duzYwHGPxyPp\/z8JuqapqanTU6Fr3G63oqOjgzYAAIDr9eqfAmtubg58j6cnjDFavny53nzzTe3fv19JSUlB55OSkuTxeFRWVhY41tHRoYqKCmVkZPTa3AAAwC639BHYL3\/5y6B9Y4waGhr0+uuva\/bs2T1+n2XLlmnbtm3605\/+pKioqMCTnpiYGEVGRsrlcikvL0+FhYVKTk5WcnKyCgsLNXz4cC1cuPBWRgcAALi1APqf\/\/mfoP1BgwZpzJgxys3NVUFBQY\/fp6SkRJKUmZkZdHzTpk1atGiRJGnlypW6dOmSli5dqvPnz2vq1Knat2+foqKibmV0AACAWwugurq6XvnhxpivvMblcsnn88nn8\/XKzwQAAODvAgMAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdRwPo4MGDmjNnjuLj4+VyufTWW28FnV+0aJFcLlfQNm3aNGeGBQAAA4ajAdTe3q5JkyapuLi422tmz56thoaGwLZr165+nBAAAAxEQ5z84dnZ2crOzr7pNW63Wx6Pp58mAgAANgj57wCVl5crNjZWKSkpWrx4sZqamm56vd\/vV2tra9AGAABwvZAOoOzsbG3dulX79+\/X+vXrVV1drZkzZ8rv93f7mqKiIsXExAS2hISEfpwYAACEA0c\/AvsqCxYsCPxzamqq0tLSlJiYqJ07dyonJ6fL1xQUFCg\/Pz+w39raSgQBAIAgIR1AN\/J6vUpMTFRtbW2317jdbrnd7n6cCgAAhJuQ\/gjsRufOnVN9fb28Xq\/TowAAgDDm6BOgCxcu6OOPPw7s19XV6dixYxo1apRGjRoln8+nRx99VF6vV6dPn9aqVas0evRozZ8\/38GpAQBAuHM0gA4fPqwZM2YE9q99dyc3N1clJSWqqanRli1b1NzcLK\/XqxkzZmj79u2KiopyamQAADAAOBpAmZmZMsZ0e37v3r39OA0AALBFWH0HCAAAoDcQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALCOowF08OBBzZkzR\/Hx8XK5XHrrrbeCzhtj5PP5FB8fr8jISGVmZurEiRPODAsAAAYMRwOovb1dkyZNUnFxcZfn161bpw0bNqi4uFjV1dXyeDyaNWuW2tra+nlSAAAwkAxx8odnZ2crOzu7y3PGGG3cuFGrV69WTk6OJGnz5s2Ki4vTtm3b9NRTT\/XnqAAAYAAJ2e8A1dXVqbGxUVlZWYFjbrdb06dPV2VlZbev8\/v9am1tDdoAAACuF7IB1NjYKEmKi4sLOh4XFxc415WioiLFxMQEtoSEhD6dEwAAhJ+QDaBrXC5X0L4xptOx6xUUFKilpSWw1dfX9\/WIAAAgzDj6HaCb8Xg8kv7zJMjr9QaONzU1dXoqdD232y23293n8wEAgPAVsk+AkpKS5PF4VFZWFjjW0dGhiooKZWRkODgZAAAId44+Abpw4YI+\/vjjwH5dXZ2OHTumUaNGady4ccrLy1NhYaGSk5OVnJyswsJCDR8+XAsXLnRwagAAEO4cDaDDhw9rxowZgf38\/HxJUm5urn73u99p5cqVunTpkpYuXarz589r6tSp2rdvn6KiopwaGQAADACOBlBmZqaMMd2ed7lc8vl88vl8\/TcUAAAY8EL2O0AAAAB9hQACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdUI6gHw+n1wuV9Dm8XicHgsAAIS5IU4P8FXuuecevfPOO4H9wYMHOzgNAAAYCEI+gIYMGcJTHwAA0KtC+iMwSaqtrVV8fLySkpL02GOP6dSpU06PBAAAwlxIPwGaOnWqtmzZopSUFH322Wf6xS9+oYyMDJ04cUK33357l6\/x+\/3y+\/2B\/dbW1v4aFwAAhImQfgKUnZ2tRx99VBMmTNBDDz2knTt3SpI2b97c7WuKiooUExMT2BISEvprXAAAECZCOoBuNGLECE2YMEG1tbXdXlNQUKCWlpbAVl9f348TAgCAcBDSH4HdyO\/366OPPtL999\/f7TVut1tut7sfpwIAAOEmpJ8APfvss6qoqFBdXZ3ee+89\/eAHP1Bra6tyc3OdHg0AAISxkH4C9Mknn+jxxx\/X559\/rjFjxmjatGmqqqpSYmKi06MBAIAwFtIBVFpa6vQIAABgAArpj8AAAAD6AgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOmERQC+\/\/LKSkpI0bNgwTZ48We+++67TIwEAgDAW8gG0fft25eXlafXq1Tp69Kjuv\/9+ZWdn6+zZs06PBgAAwlTIB9CGDRv0ox\/9SD\/+8Y\/1rW99Sxs3blRCQoJKSkqcHg0AAISpIU4PcDMdHR06cuSInnvuuaDjWVlZqqys7PI1fr9ffr8\/sN\/S0iJJam1t7btB+8DFjsu66r8o6T+zX44IjX9VoThXqM3EPMzDPPbMI4XmTFLoztVT1\/67bYzpmx9gQtinn35qJJm\/\/OUvQcdffPFFk5KS0uVr1qxZYySxsbGxsbGxDYDtH\/\/4R580RljkoMvlCto3xnQ6dk1BQYHy8\/MD+83NzUpMTNTZs2cVExPTp3MOdK2trUpISFB9fb2io6OdHidssY69h7XsPaxl72Ade09LS4vGjRunUaNG9cn7h3QAjR49WoMHD1ZjY2PQ8aamJsXFxXX5GrfbLbfb3el4TEwMN2MviY6OZi17AevYe1jL3sNa9g7WsfcMGtQ3X1cO6S9BR0REaPLkySorKws6XlZWpoyMDIemAgAA4S6knwBJUn5+vp588kmlpaUpPT1dr7zyis6ePaslS5Y4PRoAAAhTIR9ACxYs0Llz5\/TCCy+ooaFBqamp2rVrlxITE3v0erfbrTVr1nT5sRi+Htayd7COvYe17D2sZe9gHXtPX6+ly5i++vNlAAAAoSmkvwMEAADQFwggAABgHQIIAABYhwACAADWGdAB9PLLLyspKUnDhg3T5MmT9e677zo9Usjz+XxyuVxBm8fjCZw3xsjn8yk+Pl6RkZHKzMzUiRMnHJw4dBw8eFBz5sxRfHy8XC6X3nrrraDzPVk7v9+vFStWaPTo0RoxYoS+\/\/3v65NPPunH38J5X7WOixYt6nSPTps2Lega1lEqKirSlClTFBUVpdjYWM2bN08nT54MuoZ7smd6spbclz1TUlKiiRMnBv5Hkenp6dq9e3fgfH\/ekwM2gLZv3668vDytXr1aR48e1f3336\/s7GydPXvW6dFC3j333KOGhobAVlNTEzi3bt06bdiwQcXFxaqurpbH49GsWbPU1tbm4MShob29XZMmTVJxcXGX53uydnl5edqxY4dKS0t16NAhXbhwQY888oiuXLnSX7+G475qHSVp9uzZQfforl27gs6zjlJFRYWWLVumqqoqlZWV6fLly8rKylJ7e3vgGu7JnunJWkrclz0xduxYrV27VocPH9bhw4c1c+ZMzZ07NxA5\/XpP9snfMBYC7r33XrNkyZKgY3fffbd57rnnHJooPKxZs8ZMmjSpy3NXr141Ho\/HrF27NnDsiy++MDExMebXv\/51P00YHiSZHTt2BPZ7snbNzc1m6NChprS0NHDNp59+agYNGmT27NnTb7OHkhvX0RhjcnNzzdy5c7t9DevYtaamJiPJVFRUGGO4J\/8bN66lMdyX\/43bbrvN\/Pa3v+33e3JAPgHq6OjQkSNHlJWVFXQ8KytLlZWVDk0VPmpraxUfH6+kpCQ99thjOnXqlCSprq5OjY2NQevqdrs1ffp01vUr9GTtjhw5oi+\/\/DLomvj4eKWmprK+NygvL1dsbKxSUlK0ePFiNTU1Bc6xjl1raWmRpMBfLMk9eetuXMtruC+\/nitXrqi0tFTt7e1KT0\/v93tyQAbQ559\/ritXrnT6C1Pj4uI6\/cWqCDZ16lRt2bJFe\/fu1auvvqrGxkZlZGTo3LlzgbVjXb++nqxdY2OjIiIidNttt3V7DaTs7Gxt3bpV+\/fv1\/r161VdXa2ZM2fK7\/dLYh27YoxRfn6+7rvvPqWmpkrinrxVXa2lxH35ddTU1GjkyJFyu91asmSJduzYofHjx\/f7PRnyfxXGf8PlcgXtG2M6HUOw7OzswD9PmDBB6enpuuOOO7R58+bAF\/pY11t3K2vH+gZbsGBB4J9TU1OVlpamxMRE7dy5Uzk5Od2+zuZ1XL58uY4fP65Dhw51Osc9+fV0t5bclz1311136dixY2pubtYbb7yh3NxcVVRUBM731z05IJ8AjR49WoMHD+5Ug01NTZ3KEjc3YsQITZgwQbW1tYE\/Dca6fn09WTuPx6OOjg6dP3++22vQmdfrVWJiomprayWxjjdasWKF3n77bR04cEBjx44NHOee\/Pq6W8uucF92LyIiQnfeeafS0tJUVFSkSZMm6aWXXur3e3JABlBERIQmT56ssrKyoONlZWXKyMhwaKrw5Pf79dFHH8nr9SopKUkejydoXTs6OlRRUcG6foWerN3kyZM1dOjQoGsaGhr0t7\/9jfW9iXPnzqm+vl5er1cS63iNMUbLly\/Xm2++qf379yspKSnoPPdkz33VWnaF+7LnjDHy+\/39f0\/e4pe2Q15paakZOnSoee2118yHH35o8vLyzIgRI8zp06edHi2kPfPMM6a8vNycOnXKVFVVmUceecRERUUF1m3t2rUmJibGvPnmm6ampsY8\/vjjxuv1mtbWVocnd15bW5s5evSoOXr0qJFkNmzYYI4ePWrOnDljjOnZ2i1ZssSMHTvWvPPOO+b99983M2fONJMmTTKXL1926tfqdzdbx7a2NvPMM8+YyspKU1dXZw4cOGDS09PNN77xDdbxBk8\/\/bSJiYkx5eXlpqGhIbBdvHgxcA33ZM981VpyX\/ZcQUGBOXjwoKmrqzPHjx83q1atMoMGDTL79u0zxvTvPTlgA8gYY371q1+ZxMREExERYb773e8G\/ZFFdG3BggXG6\/WaoUOHmvj4eJOTk2NOnDgROH\/16lWzZs0a4\/F4jNvtNg888ICpqalxcOLQceDAASOp05abm2uM6dnaXbp0ySxfvtyMGjXKREZGmkceecScPXvWgd\/GOTdbx4sXL5qsrCwzZswYM3ToUDNu3DiTm5vbaY1YR9PlGkoymzZtClzDPdkzX7WW3Jc998Mf\/jDw3+UxY8aYBx98MBA\/xvTvPekyxpiv98wIAAAgvA3I7wABAADcDAEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQgr\/\/rXv+TxeFRYWBg49t577ykiIkL79u1zcDIA4YS\/CwxA2Nm1a5fmzZunyspK3X333frOd76jhx9+WBs3bnR6NABhggACEJaWLVumd955R1OmTNEHH3yg6upqDRs2zOmxAIQJAghAWLp06ZJSU1NVX1+vw4cPa+LEiU6PBCCM8B0gAGHp1KlT+uc\/\/6mrV6\/qzJkzTo8DIMzwBAhA2Ono6NC9996rb3\/727r77ru1YcMG1dTUKC4uzunRAIQJAghA2PnpT3+qP\/7xj\/rggw80cuRIzZgxQ1FRUfrzn\/\/s9GgAwgQfgQEIK+Xl5dq4caNef\/11RUdHa9CgQXr99dd16NAhlZSUOD0egDDBEyAAAGAdngABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACs8\/8AtbWCzAbd7joAAAAASUVORK5CYII=", "text\/plain": "<Figure size 640x480 with 1 Axes>"}, "metadata": {}, "output_type": "display_data"}]}}, "8dd363de61704f07a67c5ec15fad0230": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "93f14a52f3064949b531de7e08a42ee6": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "IntSliderModel", "state": {"behavior": "drag-tap", "layout": "IPY_MODEL_50615551594a42e7a11ed3bdcdb1d54d", "max": 1999, "style": "IPY_MODEL_1ca2a7bb9b014ae1b78b7354b28675e1", "value": 132}}, "95d2ea1d34c947c9a61397dc75af7d2d": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": {"description_width": ""}}, "95f53f8f40c649b39f598db4f0e8da4f": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"children": ["IPY_MODEL_1cb2605db91a4ce1bac51f5960e5afc9"], "layout": "IPY_MODEL_203d095fdbec4a809af8ff2adf77a8fb"}}, "960f46250b0944599227534c8b8fe510": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"children": ["IPY_MODEL_b0c6e5b072744bb8aad4aa1c343ebe1e"], "layout": "IPY_MODEL_b4929e71adfe4fd7a3084599938b8a62"}}, "961bbf4dea01495c90b3a8be804ceea6": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": {"description_width": ""}}, "99f37541ac7b4dbfac2f489c1a5b0353": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "PlayModel", "state": {"description": "step", "layout": "IPY_MODEL_29adfb5bcde241fc8e8984961ab42ea5", "max": 1999, "playing": true, "style": "IPY_MODEL_68c14ca25ed0479898eac1351d769142", "value": 132}}, "9a7563fbc02148c9bdac79a88a31221b": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": {"description_width": ""}}, "9ab997a6587c4746904cd3476fe428de": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "IntSliderModel", "state": {"behavior": "drag-tap", "layout": "IPY_MODEL_efb79abbdfb2428e84cb236aa84bc460", "max": 199, "style": "IPY_MODEL_bc360c0bab0f4addb40d8aecfb729f92", "value": 1}}, "9c44cf9efe144da9b5dfcbe527ac3102": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "9c5112e1cfd44ed2a63e5978fc06fccc": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "9e0470afffb74df5adab27914911762d": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "9e913bb98541408496f49af403c639af": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "9f27a61d3d764ea5ac7b2042ff4e679c": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": {"source": ["IPY_MODEL_754124660050415e84f351699e0454bd", "value"], "target": ["IPY_MODEL_0fcdff9aa34e4e13927e34ae27360da7", "value"]}}, "a0998547957e4b50bb0570d6e89b4c2e": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "IntSliderModel", "state": {"behavior": "drag-tap", "layout": "IPY_MODEL_cd847b071b4e47ea8ae6cd18c02e2b45", "max": 599, "style": "IPY_MODEL_fb3e5d085e2d43b7a3490b9ff0cd3738", "value": 19}}, "a1cb4b44b1f54cde815f8e713ca3e68d": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "PlayModel", "state": {"description": "step", "layout": "IPY_MODEL_13187a1f6c2a44f9a3ccd12f5eff4464", "max": 199, "style": "IPY_MODEL_9a7563fbc02148c9bdac79a88a31221b", "value": 1}}, "a20388231297411295366afa518f917b": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "a37fd745c2154e37a420c30c21efe3c9": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "a687e87123924c42ad280c3d1993286b": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "a6e490f9a95046848e772f941811ea6e": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "PlayModel", "state": {"description": "step", "layout": "IPY_MODEL_55226787171c4752aa32a82a887b8b98", "max": 199, "style": "IPY_MODEL_0197503ee5c44b87a3d0c980bc2571da", "value": 199}}, "a7c8a0264f214268bfafc38c4c68055d": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": {"description_width": ""}}, "a8120820b9c8411dba949b22cd333241": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "a813b3e4592a4ba6a5ac586705a144b1": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": {"description_width": ""}}, "a926a010639c46938c18e60b9cb1cfc8": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"children": ["IPY_MODEL_e0fa11145e0d4e40ad744eba44c54f34"], "layout": "IPY_MODEL_e17d149775dd4f96bcd56c6c7455e2b0"}}, "aa3568c9e4d040d4a33c7bcc314f221a": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": {"_dom_classes": ["widget-interact"], "children": ["IPY_MODEL_1691534cae544c41ac19238706d81934", "IPY_MODEL_2f094b8f56ff4ac3b16dacdf8948dda6"], "layout": "IPY_MODEL_fc190c980cf64f58821e1fed76b8dc9b"}}, "ab8b9c40294846d9820000b7038b3311": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": {"description_width": ""}}, "abc536027e9f46dca983b3512682b4b6": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "IntSliderModel", "state": {"behavior": "drag-tap", "layout": "IPY_MODEL_851af3a043f1495ea899768d977eda65", "max": 149, "style": "IPY_MODEL_cfe6894555d9429bafafa321a999ad79", "value": 94}}, "af438b7498634a0896c9e60d78805898": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"children": ["IPY_MODEL_9ab997a6587c4746904cd3476fe428de"], "layout": "IPY_MODEL_d405cdb662334ea1920afee0c3ff1475"}}, "af86ac9bb8014c268c8513ac6ee499e7": {"model_module": "@jupyter-widgets\/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": {"layout": "IPY_MODEL_4ed234d89eda4e43ac8997df827fca2b", "outputs": [{"data": {"image\/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG2CAYAAACXuTmvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy\/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAxiklEQVR4nO3de2zUdb7\/8df0Ni10OgWhnWmn9HQVdLVQXXAR4gXZQ3\/2rKzKnvzcdWMgJzG6gjmE3WMWyTlWs0uN+cnBE85yzl7iQY+kJmfF4++oCAYpa1j2V1iKXXQ57LFKgZYKtjNtaae3z++PMtOWtlDamfnOzPf5SCZxvnP5vvvJJLz8XB3GGCMAAAAbSbG6AAAAgFgjAAEAANshAAEAANshAAEAANshAAEAANshAAEAANshAAEAANshAAEAANshAAEAANshAAEAANuJmwBUVVUlh8Oh9evXh68ZY1RZWamCggJlZWVp2bJlOn78uHVFAgCApBAXAai2tla\/+MUvtGDBghHXX3zxRW3ZskXbtm1TbW2tPB6PVqxYofb2dosqBQAAycDyANTR0aEf\/OAH+uUvf6kZM2aErxtjtHXrVm3atEmrVq1SaWmpduzYoYsXL2rnzp0WVgwAABJdmtUFrF27Vt\/+9rf1l3\/5l\/rpT38avt7Q0KDm5maVl5eHrzmdTt1zzz06ePCgHn\/88TG\/LxgMKhgMhp8PDAzoq6++0nXXXSeHwxG9PwQAAESMMUbt7e0qKChQSkrk+2ssDUDV1dX6wx\/+oNra2lGvNTc3S5Ly8\/NHXM\/Pz9cXX3wx7ndWVVXpueeei2yhAADAEo2NjfL5fBH\/XssCUGNjo\/72b\/9We\/bsUWZm5rjvu7zXxhhzxZ6cjRs3asOGDeHnfr9fc+bMUWNjo3JycqZeOAAAiLpAIKCioiK5XK6ofL9lAejIkSNqaWnRwoULw9f6+\/t14MABbdu2TSdOnJA02BPk9XrD72lpaRnVKzSc0+mU0+kcdT0nJ4cABABAgonW9BXLJkF\/61vfUn19verq6sKPRYsW6Qc\/+IHq6ur0ta99TR6PR3v37g1\/pqenRzU1NVq6dKlVZQMAgCRgWQ+Qy+VSaWnpiGvTp0\/XddddF76+fv16bd68WXPnztXcuXO1efNmTZs2TY888ogVJQMAgCRh+SqwK3n66afV1dWlJ598Uq2trVq8eLH27NkTtfFAAABgDw5jjLG6iGgKBAJyu93y+\/3MAQIAIEFE+99vyzdCBAAAiDUCEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB3bBCB\/V6\/VJQAAgDhhmwB0tu2i1SUAAIA4YZsAdKat2+oSAABAnLBNAGpq67K6BAAAECdsE4DoAQIAACG2CUDMAQIAACH2CUB+eoAAAMAg+wSgVuYAAQCAQbYJQIHuPrV3sxcQAACwUQCSpDOsBAMAALJZADr9FQEIAADYLQC1shIMAADYLAAxBAYAACSbBaDTrAQDAAAiAAEAABuyVQBiCAwAAEg2C0BfdfaoM9hndRkAAMBitglArsxUSfQCAQAAGwWggtxpkqQzzAMCAMD2bBSAMiWxFxAAALBVAMqSJJ1mCAwAANuzTwByh3qACEAAANidfQLQpTlABCAAAGCbAFR4aQ4Qk6ABAIClAWj79u1asGCBcnJylJOToyVLlui9994Lv75mzRo5HI4RjzvuuGNS9wrNATrfEVR3b39E6gcAAIkpzcqb+3w+vfDCC7rhhhskSTt27NADDzygo0eP6pZbbpEk3XfffXrllVfCn8nIyJjUvdxZ6cp2pqkj2KfTrV26IS976n8AAABISJYGoJUrV454\/rOf\/Uzbt2\/XoUOHwgHI6XTK4\/FM+V4Oh0O+GVn6U3O7zrQRgAAAsLO4mQPU39+v6upqdXZ2asmSJeHr+\/fvV15enubNm6fHHntMLS0tV\/yeYDCoQCAw4hFSGFoKz15AAADYmuUBqL6+XtnZ2XI6nXriiSe0a9cu3XzzzZKkiooKvf7669q3b59eeukl1dbWavny5QoGg+N+X1VVldxud\/hRVFQUfs03IxSAmAgNAICdOYwxxsoCenp6dOrUKbW1tek3v\/mNfvWrX6mmpiYcgoZrampScXGxqqurtWrVqjG\/LxgMjghIgUBARUVF8vv9eqPuvH727qf6TlmB\/un7t0XtbwIAAFMTCATkdrvl9\/uVk5MT8e+3dA6QNDipOTQJetGiRaqtrdXLL7+sf\/3Xfx31Xq\/Xq+LiYp08eXLc73M6nXI6nWO+VjiDITAAABAHQ2CXM8aMO8R14cIFNTY2yuv1Tuq7GQIDAACSxT1AzzzzjCoqKlRUVKT29nZVV1dr\/\/792r17tzo6OlRZWanvfve78nq9+vzzz\/XMM89o1qxZeuihhyZ1P9+Mwd2gW9qDCvb1y5mWGsk\/BwAAJAhLA9C5c+f06KOPqqmpSW63WwsWLNDu3bu1YsUKdXV1qb6+Xq+++qra2trk9Xp177336o033pDL5ZrU\/WZMS1dWeqq6evt1tq1bJbOmR\/gvAgAAicDSAPTrX\/963NeysrL0\/vvvR\/R+ob2ATrZ06HTrRQIQAAA2FXdzgKItNA+IM8EAALAv2wWgQiZCAwBge7YLQKGJ0CyFBwDAvmwYgC4NgbXRAwQAgF3ZLgANnQdGAAIAwK5sF4BCQ2DNgW719A1YXA0AALCC7QLQrOwMOdNSZIzU7O+2uhwAAGAB2wUgh8PBmWAAANic7QKQNHwlGPOAAACwI5sGoEs9QKwEAwDAlmwZgIZWgjEEBgCAHdkyAPnYDRoAAFuzaQAanAPEeWAAANiTTQPQYA9Qc6Bbff3sBQQAgN3YMgDNznYqIzVF\/QNGTewFBACA7dgyAKWkDO0FxJlgAADYjy0DkMSZYAAA2JltA5CP3aABALAt2wcgVoIBAGA\/tg1AhewFBACAbdk2AIXPA2tjCAwAALuxcQAa7AFqautW\/4CxuBoAABBLtg1Aea5MpaU41DdgdC7AXkAAANiJbQNQaopDBSyFBwDAlmwbgKRhK8GYBwQAgK3YOgCFN0P8ih4gAADsxNYBKLwSjCEwAABsxeYBiPPAAACwI1sHoEKOwwAAwJZsHYBCPUBn27o1wF5AAADYhq0DkCcnU6kpDvX0D+jLjqDV5QAAgBixdQBKS02RJydTEsNgAADYia0DkDQ0DMZKMAAA7IMAxFJ4AABsx\/YBqJAeIAAAbMfSALR9+3YtWLBAOTk5ysnJ0ZIlS\/Tee++FXzfGqLKyUgUFBcrKytKyZct0\/PjxiNbgYyk8AAC2Y2kA8vl8euGFF3T48GEdPnxYy5cv1wMPPBAOOS+++KK2bNmibdu2qba2Vh6PRytWrFB7e3vkamAzRAAAbMfSALRy5Ur91V\/9lebNm6d58+bpZz\/7mbKzs3Xo0CEZY7R161Zt2rRJq1atUmlpqXbs2KGLFy9q586dEavBlzs4B+hMa5eMYS8gAADsIG7mAPX396u6ulqdnZ1asmSJGhoa1NzcrPLy8vB7nE6n7rnnHh08eDBi9\/W4M5XikIJ97AUEAIBdpFldQH19vZYsWaLu7m5lZ2dr165duvnmm8MhJz8\/f8T78\/Pz9cUXX4z7fcFgUMHgUJAJBAJXvH9G2uBeQGf93TrT2qU8V+YU\/hoAAJAILO8BuvHGG1VXV6dDhw7phz\/8oVavXq1PPvkk\/LrD4RjxfmPMqGvDVVVVye12hx9FRUVXrYGVYAAA2IvlASgjI0M33HCDFi1apKqqKpWVlenll1+Wx+ORJDU3N494f0tLy6heoeE2btwov98ffjQ2Nl61BvYCAgDAXiwPQJczxigYDKqkpEQej0d79+4Nv9bT06OamhotXbp03M87nc7wsvrQ42qGVoKxFB4AADuwdA7QM888o4qKChUVFam9vV3V1dXav3+\/du\/eLYfDofXr12vz5s2aO3eu5s6dq82bN2vatGl65JFHIlpHYS5DYAAA2ImlAejcuXN69NFH1dTUJLfbrQULFmj37t1asWKFJOnpp59WV1eXnnzySbW2tmrx4sXas2ePXC5XROtgCAwAAHtxmCTf\/CYQCMjtdsvv9487HPb5+U4t+z\/7lZWeqk+e\/19XnGQNAACibyL\/fk9F3M0BsoI3d3Dpe1dvv77q7LG4GgAAEG0EIEnOtFTl5zglMQwGAIAdEIAuCc0D4kwwAACSHwHokqGVYCyFBwAg2RGALvGxGzQAALZBALokPARGAAIAIOkRgC7hPDAAAOyDAHTJ0BDYRSX51kgAANgeAeiS0CTozp5++bt6La4GAABEEwHoksz0VM3KZi8gAADsgAA0zPBhMAAAkLwIQMMwERoAAHsgAA3DXkAAANgDAWiY0F5ABCAAAJIbAWgY36WVYJwHBgBAciMADcMkaAAA7IEANExoEnR7dx97AQEAkMQIQMNMy0jTzOkZkjgTDACAZEYAugzDYAAAJD8C0GVYCg8AQPIjAF2mkJVgAAAkPQLQZYb2AmIIDACAZEUAugxDYAAAJD8C0GVCS+EZAgMAIHkRgC4TmgPUdrFX7d3sBQQAQDIiAF3GlZmu3GnpkugFAgAgWRGAxhBeCcY8IAAAkhIBaAxMhAYAILkRgMbAUngAAJIbAWgMbIYIAEByIwCNgSEwAACSGwFoDENDYAQgAACSEQFoDKHNEL\/q7NHFnj6LqwEAAJFGABqDOytdrsw0SSyFBwAgGRGAxsEwGAAAyYsANI7QSrDTrAQDACDpWBqAqqqqdPvtt8vlcikvL08PPvigTpw4MeI9a9askcPhGPG44447ol7b0Eow9gICACDZWBqAampqtHbtWh06dEh79+5VX1+fysvL1dnZOeJ99913n5qamsKPd999N+q1sRQeAIDklWblzXfv3j3i+SuvvKK8vDwdOXJEd999d\/i60+mUx+OJaW2hAMQkaAAAYu\/tujNR\/f64mgPk9\/slSTNnzhxxff\/+\/crLy9O8efP02GOPqaWlZdzvCAaDCgQCIx6TwSRoAACs0dM3oGf\/7ydRvUfcBCBjjDZs2KA777xTpaWl4esVFRV6\/fXXtW\/fPr300kuqra3V8uXLFQwGx\/yeqqoqud3u8KOoqGhS9YR6gM53BNXd2z+p7wAAANfuT80B9fYNRPUelg6BDbdu3Tp9\/PHH+uijj0Zcf\/jhh8P\/XVpaqkWLFqm4uFjvvPOOVq1aNep7Nm7cqA0bNoSfBwKBSYUgd1a6pmekqrOnX2faunT97Oxr\/g4AAHDt6hrbon6PuAhATz31lN5++20dOHBAPp\/viu\/1er0qLi7WyZMnx3zd6XTK6XROuSaHwyHfjGk6ca5dp1sJQAAAxErdqbao38PSITBjjNatW6c333xT+\/btU0lJyVU\/c+HCBTU2Nsrr9Ua9PpbCAwAQe3Wn26J+D0sD0Nq1a\/Xv\/\/7v2rlzp1wul5qbm9Xc3KyursGJxx0dHfrxj3+s3\/3ud\/r888+1f\/9+rVy5UrNmzdJDDz0U9foKWQkGAEBM+S\/26rMvO6\/+ximyNABt375dfr9fy5Ytk9frDT\/eeOMNSVJqaqrq6+v1wAMPaN68eVq9erXmzZun3\/3ud3K5XFGvj72AAACIrY\/PtEmSimZmRfU+ls4BMsZc8fWsrCy9\/\/77MapmtKGl8AyBAQAQC6H5P\/ML3DoYxfvEzTL4eBQ6D+wM54EBABATxy7N\/5nvc0f1PgSgKwgNgZ0LBBXsYy8gAACiyRgTXgJfWkgAsszM6RnKSk+VJJ1t67a4GgAAktuZti6d7+hRWopDX\/fmRPVeBKArcDgcrAQDACBGQr0\/X\/fmKPNSB0S0EICugr2AAACIjWOXAtCtRblRvxcB6CpYCg8AQGyEeoDKCEDWK8wdXArPSjAAAKKnr39A9Wf8kugBigsMgQEAEH0nzrWru3dArsw0fW3W9KjfjwB0FQyBAQAQfccaB3t\/yny5SklxRP1+BKCrKAzvBdStnr4Bi6sBACA51TW2SpLKiqK7\/08IAegqZmc75UxL0YCRmv3sBQQAQDSEeoBuLZoRk\/sRgK5i+F5AzAMCACDyOoJ9+u+Wdkn0AMWV0Jlgp1kJBgBAxH18uk3GDP57m+fKjMk9CUATMHQqPAEIAIBIGxr+yo3ZPQlAE8BSeAAAoifWE6AlAtCE+DgPDACAqIn1BGiJADQh7AUEAEB0NPu71RzoVmqKQ6WF0T0BfjgC0ASE5gA1B7rV189eQAAAREro\/K95+S5Ny0iL2X0JQBMwO9upjNQU9Q8YNQfYCwgAgEipC58AH7v5PxIBaEJSUhwqyB1clscwGAAAkXMsHIByY3pfAtAEsRQeAIDI6h8w+vh0mySpjAAUn0KbIbISDACAyPifLzvU2dOvaRmpmpvnium9CUATxF5AAABEVt2pNknS\/EK3UmNwAvxwBKAJ8s1kKTwAAJFUd2n469Y5uTG\/NwFoggpzB+cAneE8MAAAIiLUA3SrLzfm9yYATVBoCOxsW5f6B4zF1QAAkNi6evp14tzgCfD0AMWx\/JxMpaU41DdgdI69gAAAmJI\/nvWrf8AoP8cprzsr5vcnAE1QaopD3kt7ATEMBgDA1ISGv8osGP6SCEDXxJcb2guIlWAAAEyFlROgJQLQNQkvhf+KHiAAAKbCygnQEgHomhReCkAMgQEAMHlftgd1pq1LDoc03xfbM8BCCEDXgOMwAACYutD5XzfMzpYrM92SGghA14DdoAEAmLpjofk\/MT7\/azgC0DUInQd2tq1bA+wFBADApNRd6gGK9QGowxGAroHXnanUFId6+gf0ZUfQ6nIAAEg4AwMmPARm2x6gqqoq3X777XK5XMrLy9ODDz6oEydOjHiPMUaVlZUqKChQVlaWli1bpuPHj1tSb1pqijw5g3sBMQwGAMC1a7jQqUB3n5xpKbrRE9sT4IezNADV1NRo7dq1OnTokPbu3au+vj6Vl5ers7Mz\/J4XX3xRW7Zs0bZt21RbWyuPx6MVK1aovb3dkpoLZ3AoKgAAkxXq\/Zlf6FZ6qnUxJM2yO0vavXv3iOevvPKK8vLydOTIEd19990yxmjr1q3atGmTVq1aJUnasWOH8vPztXPnTj3++OMxr9k3I0v\/r4EABADAZMTD\/B9pkgHo+eefv+Lr\/\/AP\/zCpYvx+vyRp5syZkqSGhgY1NzervLw8\/B6n06l77rlHBw8eHDMABYNBBYND83MCgcCkahkPS+EBAJi8eJj\/I00yAO3atWvE897eXjU0NCgtLU3XX3\/9pAKQMUYbNmzQnXfeqdLSUklSc3OzJCk\/P3\/Ee\/Pz8\/XFF1+M+T1VVVV67rnnrvn+E+XLZTNEAAAmo7u3X580DXZMJGQAOnr06KhrgUBAa9as0UMPPTSpQtatW6ePP\/5YH3300ajXHA7HiOfGmFHXQjZu3KgNGzaMqKuoqGhSNY2FvYAAAJicT5sC6u03um56RvjfU6tEbPZRTk6Onn\/+ef393\/\/9NX\/2qaee0ttvv60PP\/xQPp8vfN3j8Uga6gkKaWlpGdUrFOJ0OpWTkzPiEUmhIbAzrV0yhr2AAACYqLphw1\/jdWTESkSnX7e1tYXn8UyEMUbr1q3Tm2++qX379qmkpGTE6yUlJfJ4PNq7d2\/4Wk9Pj2pqarR06dKI1X0tPO5MORxSsG9A5zt6LKkBAIBEdCxOJkBLkxwC+6d\/+qcRz40xampq0muvvab77rtvwt+zdu1a7dy5U\/\/5n\/8pl8sV7ulxu93KysqSw+HQ+vXrtXnzZs2dO1dz587V5s2bNW3aND3yyCOTKX3KMtIG9wJq8nfrdOtFzXY5LakDAIBEUxcnE6ClSQagf\/zHfxzxPCUlRbNnz9bq1au1cePGCX\/P9u3bJUnLli0bcf2VV17RmjVrJElPP\/20urq69OSTT6q1tVWLFy\/Wnj175HJZt3mSb0bWpQDUpdvmzLCsDgAAEkVrZ48+vzA4f7bMl2ttMZpkAGpoaIjIzScyh8bhcKiyslKVlZURuWckFOZmqVatrAQDAGCCQgegfm3WdLmnWXMC\/HCcBTYJQ3sBsRIMAICJiJcNEEMIQJPAcRgAAFybeNkAMYQANAmhvQvOEIAAALgqYww9QMlg+HEY7AUEAMCVNX7VpdaLvcpITdHXvdYtYhqOADQJXnemJKmrt19fdbIXEAAAV3K0sVWS9PWCHDnTUi2uZhABaBIy01OVd2n\/H1aCAQBwZccaBzdJvi1Ohr8kAtCk+ZgIDQDAhNRd6gEqK3JbXMkQAtAkFbIUHgCAq+rtH9Afz4ZOgI+fzYMJQJPESjAAAK7uT03t6ukbkDsrXX9x3TSrywkjAE0SQ2AAAFxd3aUdoMvi4AT44QhAk1SYSwACAOBq6k61SYqfDRBDCECTFNoL6EwbewEBADCe0Blgt8bRBGiJADRpoSGwjmCf\/F29FlcDAED8CXT36n++7JAUHyfAD0cAmqTM9FTNys6QxDAYAABjqT\/tlzFS0cwsXZfttLqcEQhAU1A47EgMAAAwUl34ANT4Wf4eQgCagqGVYOwFBADA5Y5emgBd5ouv+T8SAWhKfKwEAwBgTMNPgL9tTq6ltYyFADQF4c0QOQ8MAIARzvq7db4jqLQUh24poAcoqfiYAwQAwJiOXer9ucnrUmZ6fJwAPxwBaAoKmQMEAMCYQsNf8bb8PYQANAWh3aDbu9kLCACA4YZWgOVaWsd4CEBTMN2ZppnTB\/cC4lBUAAAG9fUPqP60XxIBKGkNnQnGMBgAAJJ0sqVDXb39ynam6frZ2VaXMyYC0BSxEgwAgJFCw18LfG6lpMTPCfDDEYCmaGgzRAIQAADS0AqweB3+kghAU8YQGAAAI8X7BGiJADRlob2AGAIDAEDqDPbpv8+1SyIAJTXfTIbAAAAIqT\/j14CRCtyZysvJtLqccRGApig0BNZ2sVcdwT6LqwEAwFqh+T9lcdz7IxGApsyVmS53Vrok9gICACAR5v9IBKCI8HEkBgAAkoYdgUEASn5DK8HoAQIA2Ne5QLea\/N1KcUjzC+PvBPjhCEARwEowAACGen\/m5bs03ZlmbTFXQQCKAIbAAABIjA0QQwhAEVDIbtAAACTM\/B\/J4gB04MABrVy5UgUFBXI4HHrrrbdGvL5mzRo5HI4RjzvuuMOaYq8gfB4YAQgAYFMDA0Yfx\/kJ8MNZGoA6OztVVlambdu2jfue++67T01NTeHHu+++G8MKJyY0B+hCZ48u9rAXEADAfv7nyw51BPuUlZ6quXnxeQL8cJbOUKqoqFBFRcUV3+N0OuXxeGJU0eS4s9LlcqapPdinM61dmpvvsrokAABiKjT8Nd\/nVlpq\/M+wifsK9+\/fr7y8PM2bN0+PPfaYWlparvj+YDCoQCAw4hEL4XlArAQDANhQomyAGBLXAaiiokKvv\/669u3bp5deekm1tbVavny5gsHguJ+pqqqS2+0OP4qKimJSa2gYjInQAAA7Ona6TVLiBKC4XqT\/8MMPh\/+7tLRUixYtUnFxsd555x2tWrVqzM9s3LhRGzZsCD8PBAIxCUEshQcA2FV3b7\/+1BT\/J8APF9cB6HJer1fFxcU6efLkuO9xOp1yOp0xrGoQK8EAAHZ1\/KxffQNGs11Oed3xewL8cHE9BHa5CxcuqLGxUV6v1+pSRvGxFxAAwKaOnmqTNNj743A4rC1mgiztAero6NCf\/\/zn8POGhgbV1dVp5syZmjlzpiorK\/Xd735XXq9Xn3\/+uZ555hnNmjVLDz30kIVVj60wlzlAAAB7OpZA+\/+EWBqADh8+rHvvvTf8PDR3Z\/Xq1dq+fbvq6+v16quvqq2tTV6vV\/fee6\/eeOMNuVzxt8w81AN0viOo7t5+ZaanWlwRAACxUdfYKokANGHLli2TMWbc199\/\/\/0YVjM1udPSNT0jVZ09\/TrT1qXrZ8f\/JlAAAEzVhY6gGr\/qksMxuAdQokioOUDxzOFwcCYYAMB2Qsvfr5+drZzMdGuLuQYEoAgK7QXESjAAgF3UXZoAXebLtbSOa0UAiiD2AgIA2E1daAL0nFxrC7lGBKAIKsxlCAwAYB\/GGB0LHYFBD5B9hYfAOA8MAGADn1+4KH9XrzLSUnSTN\/5WaF8JASiCGAIDANhJaPl7aUGO0hPgBPjhEqvaOBdaBXYuEFSwr9\/iagAAiK5jjaENEGdYXMm1IwBF0HXTM5SZPtikTW3dFlcDAEB0Hb00\/6esKHH2\/wkhAEWQw+EIzwNiIjQAIJkF+\/r16dmAJOk2eoAwtBKMeUAAgOT1aVO7evoHNHN6hopmZlldzjUjAEVYaCI0K8EAAMkstPy9zOdOmBPghyMARRhDYAAAO6gL7f+TgMNfEgEo4gpZCg8AsIFjCTwBWiIARVx4CIweIABAkvJf7NVn5zslSbcW5VpbzCQRgCIsFICaA93q6RuwuBoAACIvdAL8X1w3TbnTMqwtZpIIQBE2a7pTGWkpGjBSs5+9gAAAyWdo\/k+upXVMBQEowlJSHPKFlsK3MQ8IAJB8hub\/5Fpax1QQgKJgaCI084AAAMnFGEMPEMbmIwABAJLU6dYuXejsUXqqQ1\/35lhdzqQRgKIgtBcQK8EAAMkm1PtzszdHmemp1hYzBQSgKPCxFxAAIEnVJcH8H4kAFBVD54HRAwQASC7HkmD+j0QAiorQEFhzoFt9\/ewFBABIDr39A6o\/45dEDxDGkOdyKj3Vof4Bo+YAewEBAJLDieZ2BfsGlJOZppLrpltdzpQQgKIgJcWhAobBAABJZvj8n5SUxDsBfjgCUJRwJhgAINkky\/wfiQAUNb7cwXlA9AABAJJFMmyAGEIAipJClsIDAJJIe3ev\/vxlh6TEnwAtEYCiJjwE1kYPEAAg8dWf9suYwX\/fZmU7rS5nyghAURJaCs8QGAAgGdSdbpOUHL0\/EgEoakJDYGfbutQ\/YCyuBgCAqak71SZJuo0AhCvJdzmVluJQ34BRSzt7AQEAEtsxeoAwEWmpKfLmZkpiGAwAkNia\/F06FwgqNcWh0gK31eVEBAEoiobOBGMlGAAgcYWGv27MdykrI3FPgB+OABRFoYnQbIYIAEhkoQnQt87JtbSOSLI0AB04cEArV65UQUGBHA6H3nrrrRGvG2NUWVmpgoICZWVladmyZTp+\/Lg1xU6CbwbHYQAAEl+oB+hWX66ldUSSpQGos7NTZWVl2rZt25ivv\/jii9qyZYu2bdum2tpaeTwerVixQu3t7TGudHIKOQ8MAJDg+gdM+AT4ZOoBSrPy5hUVFaqoqBjzNWOMtm7dqk2bNmnVqlWSpB07dig\/P187d+7U448\/HstSJyU8BMZmiACABHWypV0Xe\/o1PSNV18\/OtrqciInbOUANDQ1qbm5WeXl5+JrT6dQ999yjgwcPjvu5YDCoQCAw4mGV4QeiDrAXEAAgAYUOQF3gy1Vqgp8AP1zcBqDm5mZJUn5+\/ojr+fn54dfGUlVVJbfbHX4UFRVFtc4r8bgzleKQevoH9GVH0LI6AACYrPABqEk0\/CXFcQAKcThGpk1jzKhrw23cuFF+vz\/8aGxsjHaJ40pPTZHXzTwgAEDiqmscnP9TlkQToKU4DkAej0eSRvX2tLS0jOoVGs7pdConJ2fEw0rsBQQASFQXe\/p0onlwKslt9ADFRklJiTwej\/bu3Ru+1tPTo5qaGi1dutTCyq4NS+EBAInqj2cCGjCSJydT+TmZVpcTUZauAuvo6NCf\/\/zn8POGhgbV1dVp5syZmjNnjtavX6\/Nmzdr7ty5mjt3rjZv3qxp06bpkUcesbDqaxOeCM1KMABAgqlrbJUk3Zok538NZ2kAOnz4sO69997w8w0bNkiSVq9erX\/7t3\/T008\/ra6uLj355JNqbW3V4sWLtWfPHrlcLqtKvmaF9AABABLUsdD8HwJQZC1btkzGjL883OFwqLKyUpWVlbErKsJCewExBwgAkGjCK8CSMADF7RygZDF8L6ArhT0AAOJJS3u3zrR1yeGQ5vuS4wT44QhAUeZ1Z8nhkIJ9Azrf0WN1OQAATEho+GtenkvZTksHjKKCABRlGWkpyncNzpxnGAwAkChCO0CXFSVf749EAIoJVoIBABLN0PyfGdYWEiUEoBhgJRgAIJEMDBh6gDB1Q5shMgQGAIh\/n53vVHuwT5npKboxP3G2nrkWBKAYCC2FP0MPEAAgAYSGv+YXupWWmpxRITn\/qjgzdB4YAQgAEP+OJfH+PyEEoBgYfh4YewEBAOJdsk+AlghAMVFwqQeoq7dfrRd7La4GAIDxdff269OmwRPgk3UCtEQAionM9FTNdjklMREaABDfjp8NqG\/AaFa2MzyFIxkRgGLEx1J4AEACGJr\/45bD4bC2mCgiAMUIK8EAAIkgmQ9AHY4AFCNDK8EYAgMAxK9jp9skSWUEIEQCQ2AAgHj3VWePvrgw+D\/qC3y51hYTZQSgGOE8MABAvAv1\/nxt9nS5s9KtLSbKCEAxwl5AAIB4V3eqTVLyz\/+RCEAxU5g7OAm6I9gnfxd7AQEA4k+oB4gAhIjJykjVrOwMScwDAgDEH2OMLY7ACCEAxRBnggEA4tWpry6q9WKvMtJSdJMnx+pyoi7N6gLsxDdjmo6d9uuJfz9idSkAAIzploIcZaQlf\/9I8v+FceSeG2criTfVBAAkgfsXFFhdQkzQAxRD\/3tRkSpKPerpG7C6FAAARklPS1FOZnIvfw8hAMWYyyY\/LAAA4hlDYAAAwHYIQAAAwHYIQAAAwHYIQAAAwHYIQAAAwHYIQAAAwHYIQAAAwHYIQAAAwHYIQAAAwHYIQAAAwHYIQAAAwHbiOgBVVlbK4XCMeHg8HqvLAgAACS7uD0O95ZZb9MEHH4Sfp6amWlgNAABIBnEfgNLS0uj1AQAAERXXQ2CSdPLkSRUUFKikpETf+9739Nlnn1ldEgAASHBx3QO0ePFivfrqq5o3b57OnTunn\/70p1q6dKmOHz+u6667bszPBINBBYPB8PNAIBCrcgEAQIJwGGOM1UVMVGdnp66\/\/no9\/fTT2rBhw5jvqays1HPPPTfqut\/vV05OTrRLBAAAERAIBOR2u6P273fcD4ENN336dM2fP18nT54c9z0bN26U3+8PPxobG2NYIQAASARxPQR2uWAwqE8\/\/VR33XXXuO9xOp1yOp0xrAoAACSauO4B+vGPf6yamho1NDTo97\/\/vf76r\/9agUBAq1evtro0AACQwOK6B+j06dP6\/ve\/r\/Pnz2v27Nm64447dOjQIRUXF1tdGgAASGBxHYCqq6utLgEAACShuB4CAwAAiAYCEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsJ2ECEA\/\/\/nPVVJSoszMTC1cuFC\/\/e1vrS4JAAAksLgPQG+88YbWr1+vTZs26ejRo7rrrrtUUVGhU6dOWV0aAABIUA5jjLG6iCtZvHixvvGNb2j79u3ha1\/\/+tf14IMPqqqq6qqfDwQCcrvd8vv9ysnJiWapAAAgQqL973daxL8xgnp6enTkyBH95Cc\/GXG9vLxcBw8eHPMzwWBQwWAw\/Nzv90sabEgAAJAYQv9uR6ufJq4D0Pnz59Xf36\/8\/PwR1\/Pz89Xc3DzmZ6qqqvTcc8+Nul5UVBSVGgEAQPRcuHBBbrc74t8b1wEoxOFwjHhujBl1LWTjxo3asGFD+HlbW5uKi4t16tSpqDSgnQQCARUVFamxsZHhxCmgHSOHtowc2jIyaMfI8fv9mjNnjmbOnBmV74\/rADRr1iylpqaO6u1paWkZ1SsU4nQ65XQ6R113u938GCMkJyeHtowA2jFyaMvIoS0jg3aMnJSU6KzXiutVYBkZGVq4cKH27t074vrevXu1dOlSi6oCAACJLq57gCRpw4YNevTRR7Vo0SItWbJEv\/jFL3Tq1Ck98cQTVpcGAAASVNwHoIcfflgXLlzQ888\/r6amJpWWlurdd99VcXHxhD7vdDr17LPPjjkshmtDW0YG7Rg5tGXk0JaRQTtGTrTbMu73AQIAAIi0uJ4DBAAAEA0EIAAAYDsEIAAAYDsEIAAAYDtJHYB+\/vOfq6SkRJmZmVq4cKF++9vfWl1S3KusrJTD4Rjx8Hg84deNMaqsrFRBQYGysrK0bNkyHT9+3MKK48eBAwe0cuVKFRQUyOFw6K233hrx+kTaLhgM6qmnntKsWbM0ffp0fec739Hp06dj+FdY72rtuGbNmlG\/0TvuuGPEe2jHwWOBbr\/9drlcLuXl5enBBx\/UiRMnRryH3+TETKQt+V1OzPbt27VgwYLwRpFLlizRe++9F349lr\/JpA1Ab7zxhtavX69Nmzbp6NGjuuuuu1RRUaFTp05ZXVrcu+WWW9TU1BR+1NfXh1978cUXtWXLFm3btk21tbXyeDxasWKF2tvbLaw4PnR2dqqsrEzbtm0b8\/WJtN369eu1a9cuVVdX66OPPlJHR4fuv\/9+9ff3x+rPsNzV2lGS7rvvvhG\/0XfffXfE67SjVFNTo7Vr1+rQoUPau3ev+vr6VF5ers7OzvB7+E1OzETaUuJ3ORE+n08vvPCCDh8+rMOHD2v58uV64IEHwiEnpr9Jk6S++c1vmieeeGLEtZtuusn85Cc\/saiixPDss8+asrKyMV8bGBgwHo\/HvPDCC+Fr3d3dxu12m3\/5l3+JUYWJQZLZtWtX+PlE2q6trc2kp6eb6urq8HvOnDljUlJSzO7du2NWezy5vB2NMWb16tXmgQceGPcztOPYWlpajCRTU1NjjOE3ORWXt6Ux\/C6nYsaMGeZXv\/pVzH+TSdkD1NPToyNHjqi8vHzE9fLych08eNCiqhLHyZMnVVBQoJKSEn3ve9\/TZ599JklqaGhQc3PziHZ1Op265557aNermEjbHTlyRL29vSPeU1BQoNLSUtr3Mvv371deXp7mzZunxx57TC0tLeHXaMex+f1+SQofLMlvcvIub8sQfpfXpr+\/X9XV1ers7NSSJUti\/ptMygB0\/vx59ff3jzowNT8\/f9TBqhhp8eLFevXVV\/X+++\/rl7\/8pZqbm7V06VJduHAh3Ha067WbSNs1NzcrIyNDM2bMGPc9kCoqKvT6669r3759eumll1RbW6vly5crGAxKoh3HYozRhg0bdOedd6q0tFQSv8nJGqstJX6X16K+vl7Z2dlyOp164okntGvXLt18880x\/03G\/VEYU+FwOEY8N8aMuoaRKioqwv89f\/58LVmyRNdff7127NgRntBHu07eZNqO9h3p4YcfDv93aWmpFi1apOLiYr3zzjtatWrVuJ+zczuuW7dOH3\/8sT766KNRr\/GbvDbjtSW\/y4m78cYbVVdXp7a2Nv3mN7\/R6tWrVVNTE349Vr\/JpOwBmjVrllJTU0elwZaWllHJElc2ffp0zZ8\/XydPngyvBqNdr91E2s7j8ainp0etra3jvgejeb1eFRcX6+TJk5Jox8s99dRTevvtt\/Xhhx\/K5\/OFr\/ObvHbjteVY+F2OLyMjQzfccIMWLVqkqqoqlZWV6eWXX475bzIpA1BGRoYWLlyovXv3jri+d+9eLV261KKqElMwGNSnn34qr9erkpISeTyeEe3a09Ojmpoa2vUqJtJ2CxcuVHp6+oj3NDU16Y9\/\/CPtewUXLlxQY2OjvF6vJNoxxBijdevW6c0339S+fftUUlIy4nV+kxN3tbYcC7\/LiTPGKBgMxv43OclJ23GvurrapKenm1\/\/+tfmk08+MevXrzfTp083n3\/+udWlxbUf\/ehHZv\/+\/eazzz4zhw4dMvfff79xuVzhdnvhhReM2+02b775pqmvrzff\/\/73jdfrNYFAwOLKrdfe3m6OHj1qjh49aiSZLVu2mKNHj5ovvvjCGDOxtnviiSeMz+czH3zwgfnDH\/5gli9fbsrKykxfX59Vf1bMXakd29vbzY9+9CNz8OBB09DQYD788EOzZMkSU1hYSDte5oc\/\/KFxu91m\/\/79pqmpKfy4ePFi+D38Jifmam3J73LiNm7caA4cOGAaGhrMxx9\/bJ555hmTkpJi9uzZY4yJ7W8yaQOQMcb88z\/\/sykuLjYZGRnmG9\/4xoglixjbww8\/bLxer0lPTzcFBQVm1apV5vjx4+HXBwYGzLPPPms8Ho9xOp3m7rvvNvX19RZWHD8+\/PBDI2nUY\/Xq1caYibVdV1eXWbdunZk5c6bJysoy999\/vzl16pQFf411rtSOFy9eNOXl5Wb27NkmPT3dzJkzx6xevXpUG9GOZsw2lGReeeWV8Hv4TU7M1dqS3+XE\/c3f\/E343+XZs2ebb33rW+HwY0xsf5MOY4y5tj4jAACAxJaUc4AAAACuhAAEAABshwAEAABshwAEAABshwAEAABshwAEAABshwAEAABshwAEAABshwAEAABshwAEAABshwAEIKF8+eWX8ng82rx5c\/ja73\/\/e2VkZGjPnj0WVgYgkXAWGICE8+677+rBBx\/UwYMHddNNN+m2227Tt7\/9bW3dutXq0gAkCAIQgIS0du1affDBB7r99tt17Ngx1dbWKjMz0+qyACQIAhCAhNTV1aXS0lI1Njbq8OHDWrBggdUlAUggzAECkJA+++wznT17VgMDA\/riiy+sLgdAgqEHCEDC6enp0Te\/+U3deuutuummm7RlyxbV19crPz\/f6tIAJAgCEICE83d\/93f6j\/\/4Dx07dkzZ2dm699575XK59F\/\/9V9WlwYgQTAEBiCh7N+\/X1u3btVrr72mnJwcpaSk6LXXXtNHH32k7du3W10egARBDxAAALAdeoAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDt\/H+Rca6BQhfqwwAAAABJRU5ErkJggg==", "text\/plain": "<Figure size 640x480 with 1 Axes>"}, "metadata": {}, "output_type": "display_data"}]}}, "afd4d4ef3418418c84e31eca235aa44d": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": {"_dom_classes": ["widget-interact"], "children": ["IPY_MODEL_a1cb4b44b1f54cde815f8e713ca3e68d", "IPY_MODEL_3500924f544141ef8070a2456337d727"], "layout": "IPY_MODEL_146343a7a95746e6bd0c8bac2c97a33d"}}, "b08f9008f0f040808e2c22dbf9b7d636": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": {"description_width": ""}}, "b0c6e5b072744bb8aad4aa1c343ebe1e": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "IntSliderModel", "state": {"behavior": "drag-tap", "layout": "IPY_MODEL_6f20477e70534303aec0ee8da489b89f", "max": 599, "style": "IPY_MODEL_e46635f4f9934df89aca0c64f1f991c0"}}, "b2d5441b46204c32aa0b7776daef31c7": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"children": ["IPY_MODEL_86d909bc42c141caa23af6d60020a0db"], "layout": "IPY_MODEL_e092e093af954b0485ddd6ac2a722e83"}}, "b361054bfbfd4aa193975eb438f70d68": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "PlayModel", "state": {"description": "step", "layout": "IPY_MODEL_a8120820b9c8411dba949b22cd333241", "max": 149, "style": "IPY_MODEL_4252ab6bb32e4e3aadefa67e72c98374", "value": 94}}, "b4929e71adfe4fd7a3084599938b8a62": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "b49c03f7736a47e5987fbc229507c0fe": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "b6777499fb2c4600a2f7e42865bb8a24": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": {"description_width": ""}}, "b7b5d8c7976e490db14a6f301a8d5fca": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "IntSliderModel", "state": {"behavior": "drag-tap", "layout": "IPY_MODEL_6353f692403c49e1ac433f1fbcbf728e", "max": 149, "style": "IPY_MODEL_f7f5ff74aa334e5d93bf738f8697b5b5"}}, "b8830934433247b6b9746042c69a6d37": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": {"source": ["IPY_MODEL_8330e0092c10467f85f9264bfaf88a6f", "value"], "target": ["IPY_MODEL_4dcc29bcdeb94273acb042225680f938", "value"]}}, "b9abd987449641d5aaa3a6363b08ec5c": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": {"source": ["IPY_MODEL_ffd206a2fd774da69a72e07e90044435", "value"], "target": ["IPY_MODEL_86d909bc42c141caa23af6d60020a0db", "value"]}}, "b9b135e17db64c5c95f90edcb6aeed01": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": {"description_width": ""}}, "bb659ed2914a4508a2242c7023f25aac": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": {"source": ["IPY_MODEL_51e8446de9bf4b1492c6377090f082a9", "value"], "target": ["IPY_MODEL_1cb2605db91a4ce1bac51f5960e5afc9", "value"]}}, "bc360c0bab0f4addb40d8aecfb729f92": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": {"description_width": ""}}, "be405b01c12847da8c4d79ceb2eaed2f": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": {"source": ["IPY_MODEL_57644913df96434395a7d95953ca96ed", "value"], "target": ["IPY_MODEL_88035a6b469f4a4891e35659867ff0c6", "value"]}}, "c1912c587d5a48f6a85f569f08c3365e": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "c249b3bb2eff444bbbec6fd556309218": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "ca88519f972d46d6b6be2b7c6c2fa0d4": {"model_module": "@jupyter-widgets\/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": {"layout": "IPY_MODEL_5a437050674241259e1208543a3a72f0", "outputs": [{"data": {"image\/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG2CAYAAACXuTmvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy\/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAiRklEQVR4nO3dfWyV9f3\/8dfhpocCbSNCe05HaTptdVhgG0Voo1JQGjplQF2CYkzJNiJykzXVEQvZOJrZEhL44tLZTWcYOFhJpjh\/47b+oEXW1W9BkA4Nq6NAda2djN5Q8FTg8\/tj4fw4tMXK2l7n9PN8JFfidXNO3\/14JT5znYO4jDFGAAAAFhnk9AAAAAD9jQACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1gmZACoqKpLL5VJeXl7gmDFGPp9P8fHxioyMVGZmpk6cOOHckAAAYEAIiQCqrq7WK6+8ookTJwYdX7dunTZs2KDi4mJVV1fL4\/Fo1qxZamtrc2hSAAAwEDgeQBcuXNATTzyhV199VbfddlvguDFGGzdu1OrVq5WTk6PU1FRt3rxZFy9e1LZt2xycGAAAhLshTg+wbNkyPfzww3rooYf0i1\/8InC8rq5OjY2NysrKChxzu92aPn26Kisr9dRTT3X5fn6\/X36\/P7B\/9epV\/fvf\/9btt98ul8vVd78IAADoNcYYtbW1KT4+XoMG9f7zGkcDqLS0VO+\/\/76qq6s7nWtsbJQkxcXFBR2Pi4vTmTNnun3PoqIiPf\/88707KAAAcER9fb3Gjh3b6+\/rWADV19frJz\/5ifbt26dhw4Z1e92NT22MMTd9klNQUKD8\/PzAfktLi8aNG6e\/n6pT3O2j\/vvB+8nFjsu698X\/K0n639UPaniE4w\/rJIXmXKE2E\/MwD\/PYM48UmjNJoTtXT1zsuKy0n\/8ffVqySFFRUX3yMxxbjSNHjqipqUmTJ08OHLty5YoOHjyo4uJinTx5UtJ\/ngR5vd7ANU1NTZ2eCl3P7XbL7XZ3Oh4VFa3o6Ohe\/A361pCOyxrkHi5Jio6ODpkbNxTnCrWZmId5mMeeeaTQnEkK3bl64vrZ++rrK459CfrBBx9UTU2Njh07FtjS0tL0xBNP6NixY\/rmN78pj8ejsrKywGs6OjpUUVGhjIwMp8YGAAADgGM5GBUVpdTU1KBjI0aM0O233x44npeXp8LCQiUnJys5OVmFhYUaPny4Fi5c6MTIAABggAjp52ErV67UpUuXtHTpUp0\/f15Tp07Vvn37+uzzQAAAYIeQCqDy8vKgfZfLJZ\/PJ5\/P58g8AABgYHL8f4QIAADQ3wggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdawJoMihg50eAQAAhAhrAsjlcjk9AgAACBHWBBAAAMA1BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6zgaQCUlJZo4caKio6MVHR2t9PR07d69O3B+0aJFcrlcQdu0adMcnBgAAAwEQ5z84WPHjtXatWt15513SpI2b96suXPn6ujRo7rnnnskSbNnz9amTZsCr4mIiHBkVgAAMHA4GkBz5swJ2n\/xxRdVUlKiqqqqQAC53W55PB4nxgMAAANUyHwH6MqVKyotLVV7e7vS09MDx8vLyxUbG6uUlBQtXrxYTU1NN30fv9+v1tbWoA0AAOB6jgdQTU2NRo4cKbfbrSVLlmjHjh0aP368JCk7O1tbt27V\/v37tX79elVXV2vmzJny+\/3dvl9RUZFiYmICW0JCQn\/9KgAAIEw4+hGYJN111106duyYmpub9cYbbyg3N1cVFRUaP368FixYELguNTVVaWlpSkxM1M6dO5WTk9Pl+xUUFCg\/Pz+w39raSgQBAIAgjgdQRERE4EvQaWlpqq6u1ksvvaTf\/OY3na71er1KTExUbW1tt+\/ndrvldrv7bF4AABD+HP8I7EbGmG4\/4jp37pzq6+vl9Xr7eSoAADCQOPoEaNWqVcrOzlZCQoLa2tpUWlqq8vJy7dmzRxcuXJDP59Ojjz4qr9er06dPa9WqVRo9erTmz5\/v5NgAACDMORpAn332mZ588kk1NDQoJiZGEydO1J49ezRr1ixdunRJNTU12rJli5qbm+X1ejVjxgxt375dUVFRTo4NAADCnKMB9Nprr3V7LjIyUnv37u3HaQAAgC1C7jtAAAAAfY0AAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUcDaCSkhJNnDhR0dHRio6OVnp6unbv3h04b4yRz+dTfHy8IiMjlZmZqRMnTjg4MQAAGAgcDaCxY8dq7dq1Onz4sA4fPqyZM2dq7ty5gchZt26dNmzYoOLiYlVXV8vj8WjWrFlqa2tzcmwAABDmHA2gOXPm6Hvf+55SUlKUkpKiF198USNHjlRVVZWMMdq4caNWr16tnJwcpaamavPmzbp48aK2bdvm5NgAACDMhcx3gK5cuaLS0lK1t7crPT1ddXV1amxsVFZWVuAat9ut6dOnq7Ky0sFJAQBAuBvi9AA1NTVKT0\/XF198oZEjR2rHjh0aP358IHLi4uKCro+Li9OZM2e6fT+\/3y+\/3x\/Yb21t7ZvBAQBA2HL8CdBdd92lY8eOqaqqSk8\/\/bRyc3P14YcfBs67XK6g640xnY5dr6ioSDExMYEtISGhz2YHAADhyfEAioiI0J133qm0tDQVFRVp0qRJeumll+TxeCRJjY2NQdc3NTV1eip0vYKCArW0tAS2+vr6Pp0fAACEH8cD6EbGGPn9fiUlJcnj8aisrCxwrqOjQxUVFcrIyOj29W63O\/DH6q9tAAAA13P0O0CrVq1Sdna2EhIS1NbWptLSUpWXl2vPnj1yuVzKy8tTYWGhkpOTlZycrMLCQg0fPlwLFy50cmwAABDmHA2gzz77TE8++aQaGhoUExOjiRMnas+ePZo1a5YkaeXKlbp06ZKWLl2q8+fPa+rUqdq3b5+ioqKcHBsAAIQ5RwPotddeu+l5l8sln88nn8\/XPwMBAAArhNx3gAAAAPoaAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6jgZQUVGRpkyZoqioKMXGxmrevHk6efJk0DWLFi2Sy+UK2qZNm+bQxAAAYCBwNIAqKiq0bNkyVVVVqaysTJcvX1ZWVpba29uDrps9e7YaGhoC265duxyaGAAADARDnPzhe\/bsCdrftGmTYmNjdeTIET3wwAOB4263Wx6Pp7\/HAwAAA1RIfQeopaVFkjRq1Kig4+Xl5YqNjVVKSooWL16spqambt\/D7\/ertbU1aAMAALheyASQMUb5+fm67777lJqaGjienZ2trVu3av\/+\/Vq\/fr2qq6s1c+ZM+f3+Lt+nqKhIMTExgS0hIaG\/fgUAABAmQiaAli9fruPHj+sPf\/hD0PEFCxbo4YcfVmpqqubMmaPdu3fr73\/\/u3bu3Nnl+xQUFKilpSWw1dfX98f4AACgl0QOHaz\/Xf1gn\/4MR78DdM2KFSv09ttv6+DBgxo7duxNr\/V6vUpMTFRtbW2X591ut9xud1+MCQAA+oHL5dLwiL5NFEcDyBijFStWaMeOHSovL1dSUtJXvubcuXOqr6+X1+vthwkBAMBA5OhHYMuWLdPvf\/97bdu2TVFRUWpsbFRjY6MuXbokSbpw4YKeffZZ\/fWvf9Xp06dVXl6uOXPmaPTo0Zo\/f76TowMAgDDm6BOgkpISSVJmZmbQ8U2bNmnRokUaPHiwampqtGXLFjU3N8vr9WrGjBnavn27oqKiHJgYAAAMBI5\/BHYzkZGR2rt3bz9NAwAAbBEyfwoMAACgvxBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsI6jAVRUVKQpU6YoKipKsbGxmjdvnk6ePBl0jTFGPp9P8fHxioyMVGZmpk6cOOHQxAAAYCBwNIAqKiq0bNkyVVVVqaysTJcvX1ZWVpba29sD16xbt04bNmxQcXGxqqur5fF4NGvWLLW1tTk4OQAACGdDnPzhe\/bsCdrftGmTYmNjdeTIET3wwAMyxmjjxo1avXq1cnJyJEmbN29WXFyctm3bpqeeesqJsQEAQJi7pQB64YUXbnr+5z\/\/+S0N09LSIkkaNWqUJKmurk6NjY3KysoKXON2uzV9+nRVVlZ2GUB+v19+vz+w39raekuzAACAgeuWAmjHjh1B+19++aXq6uo0ZMgQ3XHHHbcUQMYY5efn67777lNqaqokqbGxUZIUFxcXdG1cXJzOnDnT5fsUFRXp+eef\/9o\/HwAA2OOWAujo0aOdjrW2tmrRokWaP3\/+LQ2yfPlyHT9+XIcOHep0zuVyBe0bYzodu6agoED5+flBcyUkJNzSTAAAYGDqtS9BR0dH64UXXtDPfvazr\/3aFStW6O2339aBAwc0duzYwHGPxyPp\/z8JuqapqanTU6Fr3G63oqOjgzYAAIDr9eqfAmtubg58j6cnjDFavny53nzzTe3fv19JSUlB55OSkuTxeFRWVhY41tHRoYqKCmVkZPTa3AAAwC639BHYL3\/5y6B9Y4waGhr0+uuva\/bs2T1+n2XLlmnbtm3605\/+pKioqMCTnpiYGEVGRsrlcikvL0+FhYVKTk5WcnKyCgsLNXz4cC1cuPBWRgcAALi1APqf\/\/mfoP1BgwZpzJgxys3NVUFBQY\/fp6SkRJKUmZkZdHzTpk1atGiRJGnlypW6dOmSli5dqvPnz2vq1Knat2+foqKibmV0AACAWwugurq6XvnhxpivvMblcsnn88nn8\/XKzwQAAODvAgMAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdRwPo4MGDmjNnjuLj4+VyufTWW28FnV+0aJFcLlfQNm3aNGeGBQAAA4ajAdTe3q5JkyapuLi422tmz56thoaGwLZr165+nBAAAAxEQ5z84dnZ2crOzr7pNW63Wx6Pp58mAgAANgj57wCVl5crNjZWKSkpWrx4sZqamm56vd\/vV2tra9AGAABwvZAOoOzsbG3dulX79+\/X+vXrVV1drZkzZ8rv93f7mqKiIsXExAS2hISEfpwYAACEA0c\/AvsqCxYsCPxzamqq0tLSlJiYqJ07dyonJ6fL1xQUFCg\/Pz+w39raSgQBAIAgIR1AN\/J6vUpMTFRtbW2317jdbrnd7n6cCgAAhJuQ\/gjsRufOnVN9fb28Xq\/TowAAgDDm6BOgCxcu6OOPPw7s19XV6dixYxo1apRGjRoln8+nRx99VF6vV6dPn9aqVas0evRozZ8\/38GpAQBAuHM0gA4fPqwZM2YE9q99dyc3N1clJSWqqanRli1b1NzcLK\/XqxkzZmj79u2KiopyamQAADAAOBpAmZmZMsZ0e37v3r39OA0AALBFWH0HCAAAoDcQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALCOowF08OBBzZkzR\/Hx8XK5XHrrrbeCzhtj5PP5FB8fr8jISGVmZurEiRPODAsAAAYMRwOovb1dkyZNUnFxcZfn161bpw0bNqi4uFjV1dXyeDyaNWuW2tra+nlSAAAwkAxx8odnZ2crOzu7y3PGGG3cuFGrV69WTk6OJGnz5s2Ki4vTtm3b9NRTT\/XnqAAAYAAJ2e8A1dXVqbGxUVlZWYFjbrdb06dPV2VlZbev8\/v9am1tDdoAAACuF7IB1NjYKEmKi4sLOh4XFxc415WioiLFxMQEtoSEhD6dEwAAhJ+QDaBrXC5X0L4xptOx6xUUFKilpSWw1dfX9\/WIAAAgzDj6HaCb8Xg8kv7zJMjr9QaONzU1dXoqdD232y23293n8wEAgPAVsk+AkpKS5PF4VFZWFjjW0dGhiooKZWRkODgZAAAId44+Abpw4YI+\/vjjwH5dXZ2OHTumUaNGady4ccrLy1NhYaGSk5OVnJyswsJCDR8+XAsXLnRwagAAEO4cDaDDhw9rxowZgf38\/HxJUm5urn73u99p5cqVunTpkpYuXarz589r6tSp2rdvn6KiopwaGQAADACOBlBmZqaMMd2ed7lc8vl88vl8\/TcUAAAY8EL2O0AAAAB9hQACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdUI6gHw+n1wuV9Dm8XicHgsAAIS5IU4P8FXuuecevfPOO4H9wYMHOzgNAAAYCEI+gIYMGcJTHwAA0KtC+iMwSaqtrVV8fLySkpL02GOP6dSpU06PBAAAwlxIPwGaOnWqtmzZopSUFH322Wf6xS9+oYyMDJ04cUK33357l6\/x+\/3y+\/2B\/dbW1v4aFwAAhImQfgKUnZ2tRx99VBMmTNBDDz2knTt3SpI2b97c7WuKiooUExMT2BISEvprXAAAECZCOoBuNGLECE2YMEG1tbXdXlNQUKCWlpbAVl9f348TAgCAcBDSH4HdyO\/366OPPtL999\/f7TVut1tut7sfpwIAAOEmpJ8APfvss6qoqFBdXZ3ee+89\/eAHP1Bra6tyc3OdHg0AAISxkH4C9Mknn+jxxx\/X559\/rjFjxmjatGmqqqpSYmKi06MBAIAwFtIBVFpa6vQIAABgAArpj8AAAAD6AgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOmERQC+\/\/LKSkpI0bNgwTZ48We+++67TIwEAgDAW8gG0fft25eXlafXq1Tp69Kjuv\/9+ZWdn6+zZs06PBgAAwlTIB9CGDRv0ox\/9SD\/+8Y\/1rW99Sxs3blRCQoJKSkqcHg0AAISpIU4PcDMdHR06cuSInnvuuaDjWVlZqqys7PI1fr9ffr8\/sN\/S0iJJam1t7btB+8DFjsu66r8o6T+zX44IjX9VoThXqM3EPMzDPPbMI4XmTFLoztVT1\/67bYzpmx9gQtinn35qJJm\/\/OUvQcdffPFFk5KS0uVr1qxZYySxsbGxsbGxDYDtH\/\/4R580RljkoMvlCto3xnQ6dk1BQYHy8\/MD+83NzUpMTNTZs2cVExPTp3MOdK2trUpISFB9fb2io6OdHidssY69h7XsPaxl72Ade09LS4vGjRunUaNG9cn7h3QAjR49WoMHD1ZjY2PQ8aamJsXFxXX5GrfbLbfb3el4TEwMN2MviY6OZi17AevYe1jL3sNa9g7WsfcMGtQ3X1cO6S9BR0REaPLkySorKws6XlZWpoyMDIemAgAA4S6knwBJUn5+vp588kmlpaUpPT1dr7zyis6ePaslS5Y4PRoAAAhTIR9ACxYs0Llz5\/TCCy+ooaFBqamp2rVrlxITE3v0erfbrTVr1nT5sRi+Htayd7COvYe17D2sZe9gHXtPX6+ly5i++vNlAAAAoSmkvwMEAADQFwggAABgHQIIAABYhwACAADWGdAB9PLLLyspKUnDhg3T5MmT9e677zo9Usjz+XxyuVxBm8fjCZw3xsjn8yk+Pl6RkZHKzMzUiRMnHJw4dBw8eFBz5sxRfHy8XC6X3nrrraDzPVk7v9+vFStWaPTo0RoxYoS+\/\/3v65NPPunH38J5X7WOixYt6nSPTps2Lega1lEqKirSlClTFBUVpdjYWM2bN08nT54MuoZ7smd6spbclz1TUlKiiRMnBv5Hkenp6dq9e3fgfH\/ekwM2gLZv3668vDytXr1aR48e1f3336\/s7GydPXvW6dFC3j333KOGhobAVlNTEzi3bt06bdiwQcXFxaqurpbH49GsWbPU1tbm4MShob29XZMmTVJxcXGX53uydnl5edqxY4dKS0t16NAhXbhwQY888oiuXLnSX7+G475qHSVp9uzZQfforl27gs6zjlJFRYWWLVumqqoqlZWV6fLly8rKylJ7e3vgGu7JnunJWkrclz0xduxYrV27VocPH9bhw4c1c+ZMzZ07NxA5\/XpP9snfMBYC7r33XrNkyZKgY3fffbd57rnnHJooPKxZs8ZMmjSpy3NXr141Ho\/HrF27NnDsiy++MDExMebXv\/51P00YHiSZHTt2BPZ7snbNzc1m6NChprS0NHDNp59+agYNGmT27NnTb7OHkhvX0RhjcnNzzdy5c7t9DevYtaamJiPJVFRUGGO4J\/8bN66lMdyX\/43bbrvN\/Pa3v+33e3JAPgHq6OjQkSNHlJWVFXQ8KytLlZWVDk0VPmpraxUfH6+kpCQ99thjOnXqlCSprq5OjY2NQevqdrs1ffp01vUr9GTtjhw5oi+\/\/DLomvj4eKWmprK+NygvL1dsbKxSUlK0ePFiNTU1Bc6xjl1raWmRpMBfLMk9eetuXMtruC+\/nitXrqi0tFTt7e1KT0\/v93tyQAbQ559\/ritXrnT6C1Pj4uI6\/cWqCDZ16lRt2bJFe\/fu1auvvqrGxkZlZGTo3LlzgbVjXb++nqxdY2OjIiIidNttt3V7DaTs7Gxt3bpV+\/fv1\/r161VdXa2ZM2fK7\/dLYh27YoxRfn6+7rvvPqWmpkrinrxVXa2lxH35ddTU1GjkyJFyu91asmSJduzYofHjx\/f7PRnyfxXGf8PlcgXtG2M6HUOw7OzswD9PmDBB6enpuuOOO7R58+bAF\/pY11t3K2vH+gZbsGBB4J9TU1OVlpamxMRE7dy5Uzk5Od2+zuZ1XL58uY4fP65Dhw51Osc9+fV0t5bclz1311136dixY2pubtYbb7yh3NxcVVRUBM731z05IJ8AjR49WoMHD+5Ug01NTZ3KEjc3YsQITZgwQbW1tYE\/Dca6fn09WTuPx6OOjg6dP3++22vQmdfrVWJiomprayWxjjdasWKF3n77bR04cEBjx44NHOee\/Pq6W8uucF92LyIiQnfeeafS0tJUVFSkSZMm6aWXXur3e3JABlBERIQmT56ssrKyoONlZWXKyMhwaKrw5Pf79dFHH8nr9SopKUkejydoXTs6OlRRUcG6foWerN3kyZM1dOjQoGsaGhr0t7\/9jfW9iXPnzqm+vl5er1cS63iNMUbLly\/Xm2++qf379yspKSnoPPdkz33VWnaF+7LnjDHy+\/39f0\/e4pe2Q15paakZOnSoee2118yHH35o8vLyzIgRI8zp06edHi2kPfPMM6a8vNycOnXKVFVVmUceecRERUUF1m3t2rUmJibGvPnmm6ampsY8\/vjjxuv1mtbWVocnd15bW5s5evSoOXr0qJFkNmzYYI4ePWrOnDljjOnZ2i1ZssSMHTvWvPPOO+b99983M2fONJMmTTKXL1926tfqdzdbx7a2NvPMM8+YyspKU1dXZw4cOGDS09PNN77xDdbxBk8\/\/bSJiYkx5eXlpqGhIbBdvHgxcA33ZM981VpyX\/ZcQUGBOXjwoKmrqzPHjx83q1atMoMGDTL79u0zxvTvPTlgA8gYY371q1+ZxMREExERYb773e8G\/ZFFdG3BggXG6\/WaoUOHmvj4eJOTk2NOnDgROH\/16lWzZs0a4\/F4jNvtNg888ICpqalxcOLQceDAASOp05abm2uM6dnaXbp0ySxfvtyMGjXKREZGmkceecScPXvWgd\/GOTdbx4sXL5qsrCwzZswYM3ToUDNu3DiTm5vbaY1YR9PlGkoymzZtClzDPdkzX7WW3Jc998Mf\/jDw3+UxY8aYBx98MBA\/xvTvPekyxpiv98wIAAAgvA3I7wABAADcDAEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQgr\/\/rXv+TxeFRYWBg49t577ykiIkL79u1zcDIA4YS\/CwxA2Nm1a5fmzZunyspK3X333frOd76jhx9+WBs3bnR6NABhggACEJaWLVumd955R1OmTNEHH3yg6upqDRs2zOmxAIQJAghAWLp06ZJSU1NVX1+vw4cPa+LEiU6PBCCM8B0gAGHp1KlT+uc\/\/6mrV6\/qzJkzTo8DIMzwBAhA2Ono6NC9996rb3\/727r77ru1YcMG1dTUKC4uzunRAIQJAghA2PnpT3+qP\/7xj\/rggw80cuRIzZgxQ1FRUfrzn\/\/s9GgAwgQfgQEIK+Xl5dq4caNef\/11RUdHa9CgQXr99dd16NAhlZSUOD0egDDBEyAAAGAdngABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACs8\/8AtbWCzAbd7joAAAAASUVORK5CYII=", "text\/plain": "<Figure size 640x480 with 1 Axes>"}, "metadata": {}, "output_type": "display_data"}]}}, "cd847b071b4e47ea8ae6cd18c02e2b45": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "cd9c5d4ded2646918e55e9f584926817": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": {"_dom_classes": ["widget-interact"], "children": ["IPY_MODEL_8330e0092c10467f85f9264bfaf88a6f", "IPY_MODEL_84db1e5aacf844f2b99f65c3e1097e2a"], "layout": "IPY_MODEL_3dfd829e56824d288459d82647e0ac61"}}, "cfe6894555d9429bafafa321a999ad79": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": {"description_width": ""}}, "d095a4e7d8d4445e86d3db1fdff6244f": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "PlayModel", "state": {"description": "step", "layout": "IPY_MODEL_9c44cf9efe144da9b5dfcbe527ac3102", "max": 199, "style": "IPY_MODEL_0962612e4e404b54ac1fac8d640cd6c0", "value": 75}}, "d1b23fb8d92a428ebfbc64e7b3117db4": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "d405cdb662334ea1920afee0c3ff1475": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "d46db30322c046b3a3b40e07893e8e0f": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "d6771ef21c534c6eb6d533999eb19a55": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": {"_dom_classes": ["widget-interact"], "children": ["IPY_MODEL_ebe4490fa75a4192ba04152508adf1b4", "IPY_MODEL_1af575622d2045659ef592a3a3d82a91"], "layout": "IPY_MODEL_40b159f172e843e0be00be922ba726d0"}}, "d6f350aa761a4296923db4d01c4bd139": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": {"source": ["IPY_MODEL_99f37541ac7b4dbfac2f489c1a5b0353", "value"], "target": ["IPY_MODEL_93f14a52f3064949b531de7e08a42ee6", "value"]}}, "daa0b5546c1d408a865e572be327f49c": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": {"source": ["IPY_MODEL_1691534cae544c41ac19238706d81934", "value"], "target": ["IPY_MODEL_e1d833787d964958adf9bf27c7c8465d", "value"]}}, "db46a3c449cf4e6d85de539fd7e30166": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": {"description_width": ""}}, "db9041c22a5d4c00b62ba6ef68b628f2": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "de278670da40468392c76821e50a39de": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": {"_dom_classes": ["widget-interact"], "children": ["IPY_MODEL_51e8446de9bf4b1492c6377090f082a9", "IPY_MODEL_ca88519f972d46d6b6be2b7c6c2fa0d4"], "layout": "IPY_MODEL_5d52cc6b2314438da6e9896470a62a61"}}, "e043ddd08fa044f0805e72d08d64fb52": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "e092e093af954b0485ddd6ac2a722e83": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "e0a901d1b6bf4aaf9d6a7959832d535a": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "e0fa11145e0d4e40ad744eba44c54f34": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "IntSliderModel", "state": {"behavior": "drag-tap", "layout": "IPY_MODEL_fb1d23bcc05342c0b382ab4170ce6aaa", "max": 199, "style": "IPY_MODEL_95d2ea1d34c947c9a61397dc75af7d2d", "value": 75}}, "e149cc3bb9774b248e8b07cdf7ae6dfa": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"children": ["IPY_MODEL_abc536027e9f46dca983b3512682b4b6"], "layout": "IPY_MODEL_40ddbc947f924670b1c89507cec96d03"}}, "e17d149775dd4f96bcd56c6c7455e2b0": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "e1d833787d964958adf9bf27c7c8465d": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "IntSliderModel", "state": {"behavior": "drag-tap", "layout": "IPY_MODEL_db9041c22a5d4c00b62ba6ef68b628f2", "max": 149, "style": "IPY_MODEL_72d3e88fdf024cba8257fa4e8a109544"}}, "e201f43e69ea4c10af62d9a3b611e43b": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"children": ["IPY_MODEL_7a2ac2d705c34d2599661107d0b6a5a5"], "layout": "IPY_MODEL_e0a901d1b6bf4aaf9d6a7959832d535a"}}, "e2037de5a9b542a394546c32006e26cf": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": {"_dom_classes": ["widget-interact"], "children": ["IPY_MODEL_754124660050415e84f351699e0454bd", "IPY_MODEL_75be4fb6e3894ef2ac842e505a05bca9"], "layout": "IPY_MODEL_29a880f5e6de435795b50f46a66a942e"}}, "e2a00839a46e4bb39cd41f9aa4edaaea": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": {"description_width": ""}}, "e4081c6091bb48838c726ff8e86ca60b": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "e46635f4f9934df89aca0c64f1f991c0": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": {"description_width": ""}}, "e84b526ca1ae4e019432105a43b87ec1": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": {"description_width": ""}}, "e9f56784337d42cbbf92f7219b1e0c47": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "ea5d62a115f443e4bf326bbe2a8d0260": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "ebba55e865d6472fad5ee32c335e445b": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"children": ["IPY_MODEL_0fcdff9aa34e4e13927e34ae27360da7"], "layout": "IPY_MODEL_12a14e08898b4abf991365cd41d07a93"}}, "ebe4490fa75a4192ba04152508adf1b4": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "PlayModel", "state": {"description": "step", "layout": "IPY_MODEL_372d2a496a5f46259db10a571b9ffb16", "max": 149, "style": "IPY_MODEL_106c527c21f1485f80938702414243e8"}}, "efb79abbdfb2428e84cb236aa84bc460": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "f2f9b1c03492463397087bed2642a8b2": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": {"source": ["IPY_MODEL_a1cb4b44b1f54cde815f8e713ca3e68d", "value"], "target": ["IPY_MODEL_9ab997a6587c4746904cd3476fe428de", "value"]}}, "f32037d5c9d24da1a34f099ded323912": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"children": ["IPY_MODEL_a0998547957e4b50bb0570d6e89b4c2e"], "layout": "IPY_MODEL_148898f7302f4f45809429230ac34e24"}}, "f7f5ff74aa334e5d93bf738f8697b5b5": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": {"description_width": ""}}, "fb1d23bcc05342c0b382ab4170ce6aaa": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "fb3e5d085e2d43b7a3490b9ff0cd3738": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": {"description_width": ""}}, "fc190c980cf64f58821e1fed76b8dc9b": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "fe5db7fffd844d8983fe53f0eaa44849": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "ffbdb787fdf940fab9e0d3b457888162": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "ffd206a2fd774da69a72e07e90044435": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "PlayModel", "state": {"description": "step", "layout": "IPY_MODEL_9e913bb98541408496f49af403c639af", "max": 199, "style": "IPY_MODEL_b6777499fb2c4600a2f7e42865bb8a24"}}}, "version_major": 2, "version_minor": 0} -</script> </html> diff --git a/synced_files/GA_1_6/Analysis.md b/synced_files/GA_1_6/Analysis.md index d35f4290..a319aedc 100644 --- a/synced_files/GA_1_6/Analysis.md +++ b/synced_files/GA_1_6/Analysis.md @@ -1,16 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - -<!-- #region id="9adbf457-797f-45b7-8f8b-0e46e0e2f5ff" --> # GA 1.6: An ODE to Probably Doing Enough (PDE) <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> @@ -25,7 +14,7 @@ jupyter: </h2> *[CEGM1000 MUDE](http://mude.citg.tudelft.nl/): Week 1.6. For: 11 October, 2024.* -<!-- #endregion --> + # Overview diff --git a/synced_files/GA_1_6/Analysis_solution.html b/synced_files/GA_1_6/Analysis_solution.html index e943ce73..a0a9cb2b 100644 --- a/synced_files/GA_1_6/Analysis_solution.html +++ b/synced_files/GA_1_6/Analysis_solution.html @@ -3,34 +3,7 @@ <html lang="en"> <head><meta charset="utf-8"/> <meta content="width=device-width, initial-scale=1.0" name="viewport"/> -<title>Notebook</title><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script><script> -(function() { - function addWidgetsRenderer() { - var mimeElement = document.querySelector('script[type="application/vnd.jupyter.widget-view+json"]'); - var scriptElement = document.createElement('script'); - - var widgetRendererSrc = 'https://unpkg.com/@jupyter-widgets/html-manager@*/dist/embed-amd.js'; - - var widgetState; - - // Fallback for older version: - try { - widgetState = mimeElement && JSON.parse(mimeElement.innerHTML); - - if (widgetState && (widgetState.version_major < 2 || !widgetState.version_major)) { - - var widgetRendererSrc = 'https://unpkg.com/@jupyter-js-widgets@*/dist/embed.js'; - - } - } catch(e) {} - - scriptElement.src = widgetRendererSrc; - document.body.appendChild(scriptElement); - } - - document.addEventListener('DOMContentLoaded', addWidgetsRenderer); -}()); -</script> +<title>Notebook</title><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script> <style type="text/css"> pre { line-height: 125%; } td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } @@ -7573,10 +7546,10 @@ a.anchor-link { <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [1]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> +<div class="highlight hl-python"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> <span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span> <span class="kn">import</span> <span class="nn">ipywidgets</span> <span class="k">as</span> <span class="nn">widgets</span> <span class="kn">from</span> <span class="nn">ipywidgets</span> <span class="kn">import</span> <span class="n">interact</span> @@ -7678,15 +7651,15 @@ $$</p> </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=25bcec4e"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=25bcec4e"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [2]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># def g(x):</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># def g(x):</span> <span class="c1"># return YOUR_CODE_HERE</span> <span class="c1"># def g_der(x):</span> @@ -7725,20 +7698,6 @@ $$</p> </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>The solution found is 3.0000000149658455 it took 4 iterations to converge. -The solution found is 3.000000000008298 it took 11 iterations to converge. -</pre> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=c210989a"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -7927,15 +7886,15 @@ $$</p> </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=57c0662a"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=57c0662a"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [3]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># def g(y_iplus1, y_i, t_iplus1):</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># def g(y_iplus1, y_i, t_iplus1):</span> <span class="c1"># return YOUR_CODE_HERE</span> <span class="c1"># def g_der(y_iplus1):</span> @@ -8040,18 +7999,6 @@ $$</p> </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=6b6d9964"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -8244,10 +8191,10 @@ $$</p> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [4]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># # Initial conditions</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># # Initial conditions</span> <span class="c1"># T_left = YOUR_CODE_HERE # Temperature at left boundary</span> <span class="c1"># T_right = YOUR_CODE_HERE # Temperature at right boundary</span> @@ -8311,10 +8258,10 @@ $$</p> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [5]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># T = YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># T = YOUR_CODE_HERE</span> <span class="c1"># T[0, :] = YOUR_CODE_HERE</span> <span class="c1"># T[:, 0] = YOUR_CODE_HERE</span> <span class="c1"># T[:, -1] = YOUR_CODE_HERE</span> @@ -8394,10 +8341,10 @@ $$</p> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [6]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># # Note: you may want to use extra lines, depending on</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># # Note: you may want to use extra lines, depending on</span> <span class="c1"># # how you define your A, T and b arrays</span> <span class="c1"># for j in range(m-1):</span> <span class="c1"># A = YOUR_CODE_HERE</span> @@ -8432,15 +8379,15 @@ $$</p> </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=56f6fdea"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=56f6fdea"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [7]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="k">def</span> <span class="nf">plot_T</span><span class="p">(</span><span class="n">T</span><span class="p">):</span> +<div class="highlight hl-python"><pre><span></span><span class="k">def</span> <span class="nf">plot_T</span><span class="p">(</span><span class="n">T</span><span class="p">):</span> <span class="w"> </span><span class="sd">'''</span> <span class="sd"> Function to plot the temperature profile at different time steps.</span> <span class="sd"> '''</span> @@ -8461,18 +8408,6 @@ $$</p> </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>interactive(children=(Play(value=0, description='time_step', max=199, step=3), Output()), _dom_classes=('widge…</pre> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=32b41cb3"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -8543,15 +8478,15 @@ $$</p> </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=05534522"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=05534522"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [8]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># YOUR_CODE_HERE</span> <span class="c1"># SOLUTION</span> <span class="n">T_left</span> <span class="o">=</span> <span class="mi">38</span> @@ -8589,18 +8524,6 @@ $$</p> </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>interactive(children=(Play(value=0, description='time_step', max=199, step=3), Output()), _dom_classes=('widge…</pre> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=d95ea1e6"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -8808,15 +8731,15 @@ $$</p> </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=4edddcaf"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=4edddcaf"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [9]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># YOUR_CODE_HERE</span> +<div class="highlight hl-python"><pre><span></span><span class="c1"># YOUR_CODE_HERE</span> <span class="c1"># SOLUTION</span> <span class="n">T_left</span> <span class="o">=</span> <span class="mi">38</span> @@ -8857,18 +8780,6 @@ $$</p> </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>interactive(children=(Play(value=0, description='time_step', max=199, step=3), Output()), _dom_classes=('widge…</pre> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=9d9f62a2"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -8937,7 +8848,4 @@ $$</p> </div> </main> </body> -<script type="application/vnd.jupyter.widget-state+json"> -{"state": {"0163d400cc2c4eb59046d0121727b17c": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"children": ["IPY_MODEL_88035a6b469f4a4891e35659867ff0c6"], "layout": "IPY_MODEL_9c5112e1cfd44ed2a63e5978fc06fccc"}}, "0197503ee5c44b87a3d0c980bc2571da": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": {"description_width": ""}}, "0221bef15fef48a190eccd595775ec95": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "0335767ddbd747b4893969d3e2d93893": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "037d3788952b4be096d7515e475f24e1": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"children": ["IPY_MODEL_b7b5d8c7976e490db14a6f301a8d5fca"], "layout": "IPY_MODEL_ffbdb787fdf940fab9e0d3b457888162"}}, "054b16db968e4b878f5e542f9a1173b3": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": {"_dom_classes": ["widget-interact"], "children": ["IPY_MODEL_d095a4e7d8d4445e86d3db1fdff6244f", "IPY_MODEL_27ce6d6c77074a0e9644172ecbdc2c2a"], "layout": "IPY_MODEL_9e0470afffb74df5adab27914911762d"}}, "0737166ee7324522bb73da03f9a8e778": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "07af3d288027411c8db59e4b27f81a0f": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"children": ["IPY_MODEL_4dcc29bcdeb94273acb042225680f938"], "layout": "IPY_MODEL_3012cdca2fe2499d8a50dee485f62217"}}, "0962612e4e404b54ac1fac8d640cd6c0": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": {"description_width": ""}}, "0f94c44a6e2d4808a7c66c3b1c79bf1f": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": {"description_width": ""}}, "0fcdff9aa34e4e13927e34ae27360da7": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "IntSliderModel", "state": {"behavior": "drag-tap", "layout": "IPY_MODEL_5576cb6864c246b5b1be231eb6fff645", "max": 199, "style": "IPY_MODEL_32b1f33a1556467aaba78f0af3df1e4d", "value": 100}}, "106c527c21f1485f80938702414243e8": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": {"description_width": ""}}, "121945e57f994c77aaeca0c873e63745": {"model_module": "@jupyter-widgets\/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": {"layout": "IPY_MODEL_517f04b914134b6ba5c09a4caa017bdc", "outputs": [{"data": {"image\/png": "iVBORw0KGgoAAAANSUhEUgAAAZ4AAAGRCAYAAABVKtXaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy\/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5gk+V3mi37CpDflvWlvZrrH9EzPtBsJZEZCuwtamZUW6UosD3uAC7tX4uwFVsDsEVdIrMQujAxoFxaY2XNAEkIICbTSzghJ4313V1d1mS7vfVZWehMRv\/tHdWRnZqWtqq6qGcX7PHo0XRUZ8cusyN8bX\/e+khBCYMGCBQsWLOwS5L1egAULFixY+PGCRTwWLFiwYGFXYRGPBQsWLFjYVVjEY8GCBQsWdhUW8ViwYMGChV2FRTwWLFiwYGFXYRGPBQsWLFjYVVjEY8GCBQsWdhUW8ViwYMGChV2FRTwWLFiwYGFXYRGPBQsWLFjYVVjEY8GCBQsWdhUW8ViwYMGChV2FRTwWLFiwYGFXYRGPBQsWLFjYVVjEY8GCBQsWdhUW8ViwYMGChV2FRTwWLFiwYGFXYRGPBQsWLFjYVVjEY8GCBQsWdhUW8ViwYMGChV2FRTwWLFiwYGFXYRGPBQsWLFjYVVjEY8GCBQsWdhUW8ViwYMGChV2FRTwWLFiwYGFXYRGPBQsWLFjYVVjEY8GCBQsWdhUW8ViwYMGChV2FRTwWLFiwYGFXYRGPBQsWLFjYVVjEY8GCBQsWdhUW8ViwYMGChV2FRTwWLFiwYGFXYRGPBQsWLFjYVVjEY2FPIITY6yVYsGBhj6Du9QIs\/HhBCEE6nSaRSKAoCqqqoigKiqIgSdJeL8+CBQu7AElYj54WdgmGYZBOp9F1nWQyCWwQUTweJ5lM0tLSYhGRBQs\/BrAiHgu3HUIIdF1ndHQUu91Oa2srsiwjyzJCCMLhMEtLS9TV1ZFMJpEkCVmWUVXVIiILFt6AsIjHwm2FmVrTdZ1QKITT6WRqaorZ2Vn8fj91dXXoug6AqqoIITL\/SyaTpFIpAIuILFh4A8FKtVm4bdB1nXQ6jWEYyLLMtWvXCIVCaJrGgQMHiMVirK2tEY1GkWWZ9vZ26urqqK2txWazAeQQkWEYAJmIyGazZepEsixbRGTBwusEVsRjYcchhEDTNDRNQwiBLMsEg0GWlpZwOBxcuHAB2CAQSZKYmZlhZmYGIQSjo6PEYjF8Ph+1tbUZIjIjnWwiSiQSmfOYRGQeZxGRBQv7FxbxWNhRGIaBpmmZ9JkkSYyOjjI+Pp4hE7vdnkmhwUaKzWazceLECQCSySRra2sEg0GGh4dJJBKbiMhMtxUjIjMSsojIgoX9B4t4LOwIzFRYOp1GCIEkSSSTSa5du0YikeDcuXPMzMwU3PwlScqZ63E4HLS2ttLa2gpAIpFgbW2NtbU1hoaGSCaTmfpQbW0tNTU1m4jIMAyLiCxY2KewiMfCtpGdWoONjX55eZne3l6am5u57777UFV1E8GYKEcATqeTtrY22traAIjH4xkimp+fJ5VKUVNTU5aIkskkiUQi01FnEZEFC3sDi3gsbAvZsznmxj04OMjMzAynTp2ivb095\/hivSzV9Li4XC5cLhft7e2ZOSCTiGZnZ9E0LUNEdXV1+Hw+FEXJXMds7zbniebm5mhtbcXtdmciI7P+ZMGChZ2HRTwWtgRz89Y0LdO1FovF6OnpAeDixYt4PJ6c10iShGEYmzb0YpFQJZAkCbfbjdvtpqOjAyFEpltubW2N6elpDMPIISKv14uqqpn3MTo6Sl1dXYZsCqXmLCKyYGHnYBGPhaqRPZsDGzM2c3Nz9Pf309XVxfHjx5HlzTKA2QSTvYnv5IYuSRIejwePx0NnZydCCKLRaIaIJicnEUJkGhXq6uoQQqAoCjabLRMRaZpGOp0uSkSF3p8FCxYqg0U8FqqCYRikUqlMlKPrOv39\/SwvL3PvvffS1NRU9LWlIpvbNU4mSRJerxev10tXVxdCCCKRSIaIxsfHARgaGqKxsZG6ujo8Hk9ORFSMiMw5IouILFioDhbxWKgIZmrN7FqTZZlQKERPTw9Op5NLly7hdDpLnqNUc8FuzTFLkoTP58Pn89Hd3Y1hGDz11FN4vV5WV1cZHR1FUZRMo0JdXR1ut7soEUFhVQWLiCxYKA6LeCyURX5qTZIkJicnGR4e5vDhwxw+fLiidNlWu9puJ8xuto6ODtxuN4ZhEAqFWFtbY3l5mZGREVRVzSEil8u1iYjS6XRJeR+LiCxYuAWLeCyURHaUI0kS6XSa3t5ewuEwZ8+epa6uruJzlSKY\/aLcJMsytbW11NbWAmQ05tbW1lhcXOTGjRvY7fZNRGQSS\/Y8kxkRSZKUQ0Rm15wFCz+usIjHQkGY6aSBgQG8Xi\/t7e0EAgGuXbtGbW0tly5dyuipVYr9kGorhmLXN9NuJsHqus76+jpra2vMzc0xNDSEw+HIHFNXV4fD4cg5r0lEqVQqUyMyiSi7a86ChR8XWMRjYRPMjdIwDGKxGDabjZGRESYmJjhx4gRdXV1b2ij3M\/FUCkVRqK+vp76+HgBN0zJEND09TX9\/Py6XK4eI7HZ75vX5RASwurpKS0sLDofDUt628GMBi3gsZJC9KZpda0IIpqamUBSF8+fP4\/P5tn2NfLyeN1lVVWloaKChoQHYIKJgMJhp3b5+\/ToejydHZy6biNLpNP39\/dTW1qJpmuVFZOHHAhbxWAAKz+YsLS2xvLyMz+fj3Llzmen\/rWIv2ql3G6qq0tjYSGNjI7BBLCYRjY+PE41G8Xq9GSLyer2Z15mfr9mybpniWXijwiIeCzmyN7IsYxgGg4ODzM3NZdJF2yUdeGOk2qqFzWajqakpM9+USqUyRGRaQACMjY1RX1+fsYCAW2RsEZGFNxos4vkxRiHZm2g0Sk9PD7Isc\/HiRcbHx3eMFEyC0TSNqakp3G53RqpmL7Gb17fb7TQ3N9Pc3AxANBrlpZdeQtO0HAsIMy1nWkBALhFZ7qwWXs+wiOfHFIVmc2ZnZxkYGKC7u5tjx45lZlxM58\/twmzHfv7551FVFU3TSCQSuN1uNE0jEAhklKV\/XGB2Bp44cQJFUbZkAVHIJtxyZ7Wwn2ERz48h8i2pNU3j+vXrBAIBzpw5k6lPwM6lwYQQBAIB1tfXOXbsGJ2dncCG6dv8\/DwTExMMDAyQTqc3KUv\/OAxfmsRQzgIinU5XRESWO6uF\/QyLeH6MkO+bI8sy6+vr9PT04Ha7uXTpUs4MinmMGRVtFel0mr6+PgKBAD6fj8OHD2eGUp1OJ83NzUxNTXHx4sWcjdZUls4W9PR6vW+oTbMcqZeygJiZmUHX9YIWEJY7q4X9DIt4fkyQ3SZtYmJigpGREY4cOcKhQ4cqcgetFsFgkJ6eHrxeL8eOHWN+fr7gcaYyQr7FQb6gp6ksYG60brd7RzbNvW5uqFRyaCsWEOXcWQ3DQFVVXC6XRUQWdgUW8bzBUciSOpVK0dvbSzQa5YEHHsjIwxTCVms8QogMsR09epSDBw8yPz9fVVdbIUHPcDico6Nms9lyhjXLCZXuN2yH8LZiAeH1epFlOYeITBmgAwcOWO6sFnYFFvG8gVGogWB1dZVr165RX1\/PxYsXy8remEOk1cAktnA4nENs2xUJlWWZmpoaampqOHjwYI6O2uzsLIODgzidzqKqAfsZO7GxF7KACIfDOXNEkiTl6MyZZn1m+i3fnbVQ+7ZFRBa2C4t43qDIn80xn2ynpqa444476Ojo2JaidDGsra3R09OD3+\/fpOe20wOk2Tpqhw8fLqoakE1E5ozMfsHtTPFJkoTf78fv92+KGLMtIMwGk1gsVtACwmy5t9xZLewU9te30MK2UWg2Jx6P09PTg67rXLhwITMtXwkqJR4hBOPj44yOjnLs2DEOHDhQ0OK62DXMc2xnA8tXDcgf1ozH45kZmbq6un3Tur1bm3Z2xAhkLCCGhoaIRqO88sorFVlAlHNntYjIQjlYxPMGghCCUCjEwsIC3d3dyLLM4uIifX19tLe3Z2ZFqkElNZ5UKkXvtR5IBXnwwQczG1ul59op4slH\/rBmMpkkEAiwtrbGwMAAqVSKmpqaTErK7Xbveuv2XjY1mI0abreb2tpa2tvbM6nLhYWFHAsIk4zyLSAsd1YLW4FFPG8QmLM5kUiEiYkJurq66O\/vZ3FxkdOnT9Pa2rql85ar8QQCAW70X+bMwRg21YdchHRg85O9STS79XTscDgyMzLZrcnr6+sMDw9z48aNTa3Ju7G2vY4OzL9DKQsIs4ZWyAKiHBFZpngW8mERz+sc2bM5QggURUHXdV544QVUVeXixYu4XK4tn79Yqk0IwdjYGLHVQS4eS6JIOrphoJeIWsql7Xbz6T+7NXl0dJQzZ84gSVKmI2xiYiJTiN\/p1u1s7HUbt7mGQu9rqxYQ+URkubNayIdFPK9jGIaBpmk5XWvLy8uk02m6u7s5cuTItr\/UhcgimUzSe62HLv8SJw\/GMz9X5DTB6Vn83Z0Vn8v8OeztJpzfEWYYBpFIhEAgsMkC2\/zfdgg9\/9p7CcMwKlrDVi0gCrmzFjLFs4joxwcW8bwOUWg2R9O0jDqALMscO3ZsR66VX5dZXV1lePAK9x2I4bEnNx0fnZ0oSjzm2gtdY6+Rvy5ZljMdYQcPHsQwjMzT\/vz8fFnn0dcTtlpbq9YCora2NqfLMfs+HhkZwel00traatmE\/xjAIp7XGfJlbyRJyqgD+Hw+7rvvPl555ZUdu55Z4xFCMDo6SmJtiEtHk8hSYRkdxVgreq79lGqrFrIs59Q\/CqWdslu38zfZYtjphoqtYKfWUIkFhM\/nyyEis2MuHo9n\/js7IjKHXbObFfb687KwfVjE8zpC9myOmaYYGxtjbGws08KcSCQwDGPHNhNJktB1nVdffZkDNcvccSBe8nhv7eYoKPtc+zXVVi3y007ZT\/tjY2NEo9Gc1u1se4P9httFfoW6Cs0aWr4FhPnf2Z9RodScRURvDFjE8zpAodmcZDJJb28v8Xg8p4V5p1uTw+EwIr3OvQc13LbipGLC1yCIh6PYfZ5Nvys3x\/N6Rv7TfvYmm29vYM4QmdHkXr\/\/3VqDw+GgtbU102GZbQERiUQIhUKsrKxsUt421wgUJCLLi+j1B4t49jkKWVKvrKzQ29tLY2MjZ86cyZnGzy7kbgeGYTAyMkJ6\/QZvOpFAVSo7nyzD+ugoTffevel3r+dUW7XI32SzVaXn5ubQNI2amho8Hs+ORqhbwV5dO9sCIh6P09jYiM1my\/mMssna7\/cXJCLLnfX1B4t49jHML5UZ5QghGBoaYnp6mjvvvJOOjo5NrzGJxzCMLad2EokEvdeucKhulbYyqbVCSAfngOLEY9alTEmXvU617cbGlG9vYKpKLy0toes6zzzzTI6Yp8fj2bUNcz9EXXCLrKu1gADLnfX1Bot49iHM1JrZtSbLMrFYjJ6eHoQQXLx4MSPumA\/zS7VV19Dl5WVGR65xzyk7vpvS+dXCYQsXXZthGPT19bGwsJDZ8MyCfSwWw+FwvOE3hmxVab\/fT09PD\/fcc88mDbX81u3b9bnsB+IxH65MbMUCopgXkeXOuv9gEc8+Q6HU2vz8PP39\/XR0dHDixImScw5bTbUZhsHw8DB6epqLD9iQZR2htCJFC\/vnlEJtq4HQDSQld52JRAJd1wmHw5w7dw5FUTIy\/svLy\/T09GC326mvr3\/dtyhXCnPTN1u3Dxw4kNFQW1tbY3FxMUe6xvxsdvJz2Q\/EYz5gFcNOWUBY7qz7Axbx7CPkW1Lrus7AwABLS0vcfffdme6gUjC73aqJeOLxOL29VzncnaK1WQVukpbTBtHq34fTJ7MyNU3NoQOZny0sLNDb2wvAuXPnMtL7pmjl+Pg4Z8+eJZVKFWxRrq+vz2m\/fSMhf6MzNdRqa2s5dOhQjnSN+bm43e6ciKiS1u1i2A\/EU+kQq4mtWkCUIiJzaLi5udkiotuMN963+HWI\/NkcWZYJh8OZCODSpUtVGZxVQzxLS0uMj\/Vy\/z12nI7cKEmS4qRttdjSwYqvbSI+P0XNoY2n96GhIWZnZzl+\/DiDg4PIsrxpfebTZ36LcqH2W\/Op3+wM2wnsVX2pkutmS9ccOXJk06BmX18fXq83p3W7GoIuF23sBvJTbdWiUguIbCIyRWFNIopGo1y7do2HHnooc07LJvz2wCKePUa+JbUkSUxNTXHjxg0OHTrEkSNHqr7RKzFvMwyDGzdugDHLhQfUogOhwuWDLRAPqRXi8ThXr17N1KUABgYGCh5e6D3abLacOZBEIpFRlza7nmprazNE5PV6X5ebQrVrLjSoWYqgs7vBCmG\/RDw7SX7FLCDMho58CaTa2tpMQ47NZitoE265s+4cLOLZI5g39ezsLMvLy5w6dYp0Ok1fXx+hUIj7778\/I85YLQpFFNmIxWL09V7l6CGN5kaFTGqtAFRbkrim4FILE1MxeGoSPP\/887S2tnLy5EkURSEe3+iQM7\/U+ShHlk6nk\/b29kzXU3aOf3x8PEdd4HYX5HcKOxFp2e12WlpaaGlpATZSp8FgkEAgkNO6nV2Ez97k9wPx3O6oq1D60iQiUwJJVVUMw2B+fj5jAQHkpObMFHEikbCIaBuwiGcPkN1AkE6nMxvotWvX8Pv9XLx4cVuWzaVSbYuLi0yM93L2XgcOe\/l0nCQJorIHF6Gq1lDXpnDMc4Du40dz1lVqzdVswoVEPcPhMIFAIFOQz9ZSq6+v37c22Du9UZmt26b9Q3Y32NTU1KYifLX1lduB3V5DIQuImZkZJiYmqrKAyLcJN1Nz2Tpze\/3Z7kdYxLPLyLekVhSFWCzGa6+9xvHjx+nu7t72jVoo1WYYBoODgyjSPBcfsCEVSa0Vgq\/WjggpSFT+GkmWcEVz26pLzevsxHs2UyvmE61ZB5mamso0Kpjpp\/3SqHC7a0uFusEikUhOpKjrOiMjIzQ1Ne1ZpLjXdSZFUfB4PDidTs6ePbtlCwjLnbUy7P0378cExWRvRkdHSafTnD9\/Hr\/fvyPXyo94YrEYvb1XOH5Yp6mhdGqtEOx2CcPbhhKZqep16fV54EzOuqD4ZruTm7CiKDmNCqZgZSAQyNRBzKl4M+25V9jNjUiSJHw+Hz6fL1OEf+qpp3C73SwuLjI8PIzNZsvZYKtpbNkKzM9\/rzfk7DpTIS0+k4gqtYCw3FmLwyKeXUCh2Zzl5WV6e3vx+\/0YhrFjpGOe39xIFxYWmJzoqzi1VgySQ4JIda9x2HNfUC7iuZ1P\/\/mCldlT8ZqmcfXq1T1pVNhrmSAzOu7q6sLlchV0HXU6nZue9HcS5mew15twqQYHm822JQsIy521MCziuc3In80RQjA4OMjs7Cx33nknTqczM9+yUzBngK5fv47dscKFS14kTQJRvfyNCUlKYLiakeNLFb+mrk1gaDqyqtw8x+1LtVWLbAmbQCDAsWPHMt1h+Y0K9fX1O2b6Vgh7+aRv\/i3MNRRyHS1k9raTKUvzIWmvN10z\/V0JinUWBoPBkhYQljvrBiziuU0oNJsTjUbp6elBkiQuXryI2+0mGAzueJrHMAxGR4c4fZeDxkY7IBCqE5GOs60tzuWGKrjL4ZFZnpyi9sihnJ8Xy+fvpVab2+2mtbU1k34yO54WFhZyGhXMDXennvr3OuLJJ5585Ju9ZXvsjIyMEI\/Hc+wfshWlq13DXm+y29E3zO8sLGUBYXbXZRNLNhHF43FGRkY4ceIEdrsdVVVZW1vL6bR7vcMintuA\/NkcgLm5Ofr7++nq6uL48eOZG65c63O1mJubQ1XjnH3AS3ZqXpLjGHIdUgmjtrKQowibHyldeYdbfOEW8exlqq0csq9dqPXWrA+ZT\/3bGdjMx36KeMohP2WZbW0wMDBAKpXKad32+\/1lCSV7hm0vsZOzRKUsIAYHB0mlUpkaY7YFhJmtWFpa4uTJk6TTadLpNO973\/v4xV\/8Rf7Nv\/k3O7K+vYZFPDuIQpbUZsprdXWVe++9NxOam9gp4tmQ1+nH6Qpw8ZKHQt8fSU0hUioS2pauIQEhYaemitfI2uqt1++jVFs1KNSoYG4iN27cyHjtZA9s7vXTe6WolnjykW1tUEhR2jCMTfpp+dd6IxJPPvI\/p2wiyreAMLsKsx9mzBrSGwUW8ewQ8hsIJEkiFArR09ODy+Xi4sWLBbuDdoJ4IpEIfX1XufNOhfqG4ikgSdIw1BqkLDKoFh6fhFi3Ixmpio731d06Lntjyd9k9jriqQaFBjbX1tYIBAKbNtv6+vqSFgd7Pby5XeLJRiFF6fwhX1M\/zfyf2+3OpF73mnh0Xd8Vl1hJkjbZZGQT9vT0NEIIrly5wtTUFF6vl3g8XlSRvhL8\/u\/\/Pr\/1W7\/Fxz72MR599FFg42\/\/u7\/7u\/zpn\/4pa2trnDt3jj\/+4z\/m1KlTJc\/1jW98g0ceeYTR0VGOHDnCpz\/9ad7znvdUtR6LeHYA+bM5ABMTE4yMjHD48GEOHz5c9EtlNhxs9WlrdnaWublBzp3zYqtkIFSOICQvkqiyRe0mZMmJkTaQ1SiSKG+bUNOqEA4EcdbX7mo79W4ifxOJRqMZaZ\/sRgUzItpPefqdJJ58FBvyNdXITdkan8+X2Xz38rO5nRFPKeQT9traGn19fTQ1NfHXf\/3XfOUrXyGRSPC7v\/u79Pb28pa3vIX77ruvYpJ85ZVX+NM\/\/VPuvjvXI+tzn\/scf\/iHf8hjjz3G8ePH+b3f+z0efvhhhoaG8Pl8Bc\/1wgsv8MEPfpBPfepTvOc97+Gb3\/wmH\/jAB3j22Wc5d+5cxe\/59ZEP2KcwGwhSqVSGdNLpNJcvX2ZycpKzZ8+W1VrLNm6rBpqmce1aD8nkCOcvuCsiHQBJAlSlqkkeTRMkwzJMraL0v4YSmID\/9TTGeBTDKB\/+h8ZHs65fOLLZ66fdnYK52XZ3d3PPPffwpje9ibvuugu32838\/Dwvvvgizz\/\/PIODgywuLpJOp\/d0vbeTePJhDvkePHiQM2fO8KY3vYlTp05lGjXMz2ZgYICFhYVMt9duYa+Ip9A6bDYbnZ2d\/MEf\/AETExP4fD7e9KY38dxzz\/Hwww\/zkY98pKJzRSIRPvzhD\/Nnf\/ZnGZUG2Pi7P\/roo\/z2b\/82733vezl9+jSPP\/44sViMv\/7rvy56vkcffZSHH36YT3ziE5w8eZJPfOITvO1tb8tEUZXCini2iEKzOYFAgGvXrlFbW8ulS5cqkqrfCvGEw2GuX7\/KnadU6uur766S5ASGUo+kB0oeF40a6GsRPME5XFmqBZIeR5w4hdx7BXpBdB1C3HkcyRFHYvP70MOLt157k3hCoRCxWIz6+vrMRPcb0YE0u1EBNrcnRyIRZFlmeHg4Y\/2wG+keE7tJPPkwZWvM7865c+cyM0TZahPZTRzbsX8oB13Xb\/uwbKXryL4HZFkmGAzyS7\/0Sxw9ejTT7FIJfvVXf5V\/\/s\/\/OW9\/+9v5vd\/7vczPx8fHWVhY4B3veEfmZw6Hg5\/4iZ\/g+eef55d+6ZcKnu+FF17g137t13J+9s53vtMint1Aodmc4eFhJicnOXnyJJ2dnRV\/kashHiEEs7OzLCwMce68F5ttGwOhShyh25HIfaoUQiYZAW12Cr+2Xvz1fgkhSUhCIE2PI02PI3w1GGfuQ6qTkUQyc6zDkSudMz09zdTUFDabLdMFlUqliEajNDQ0vGGin0LIb0+enZ1lamoKTdMYGhoimUxmusLq6+s3CXruNMwa015+5qZqQSG1ALPukT0bk01EO0nS+yXiySce00DRbC4wm13K4atf\/SqXL1\/mlVde2fS7hYUFgEyd0kRLSwuTk5NFz7mwsFDwNeb5KoVFPFUgezbHLIgmEgl6enrQNI3z588XzY0WQ6XEo2ka16\/34Xavc+68G0naXkOCJBkYqhdJ24h6hHAgQkmYHcJdQeOApEUQJ07BYN+tn4XXkZ7+IUJR0e68h6ABjUdc1LWDkdbRMTLqv2fPnsXpdGY6xEZHRxkfH2dycnJTPeSNTkR2u5077rgD2GhUMOtD2Y0K5udRqlFhK9jr5gYovuHn22Jkz8bktyTX19dvu5twvxJPNLrhxlhNV9v09DQf+9jHeOKJJ0pGcfl\/+0ruh628Jh8W8VQIwzCIx+Ncu3aNe+65B1mWWVxcpK+vj9bWVu64444tP30pilKSeEKhENevX+Wuu23U1LjYKM1tvzYgK1GMmA95dQ5l9Xr1J2goXAiWdA219zUageXeOtJdnaTWrjMaCiJJEnfffTd+v590Op0pqs7Pz2dkW\/IVps1Nt76+\/ramWvYC+elFl8tFR0dHpivMFPQ0zcyyPWR2olFhPxBPpQKh2bMx2S3JgUCA2dlZdF3Pad32+XxVvbfd6mqrdh1mOraav\/Vrr73G0tIS999\/f855n376ab70pS8xNDQEbEQwbW1tmWOWlpY2RTTZaG1t3RTdlHtNIVjEUwbZszmaprG0tISmaYyMjDA\/P8\/p06czQ2JbRbGWaiEE09PTLK+McOGiB1U1AB1hOBCk2c5+IQwbBMLIkXlYrVwGJ2fd6XX0Q8eRx28UPaZJXoPZNV7tC9Lx3vcwPj5ectjSdJE8ePBgzuDmxMQE169fz6Ra6uvrtzQlvx9RbHMsJOhp1kBMDxlTR80k52qJeT8Qz1YEQgu1JGe3bpvpomwiKhct7teIJxaLVR3pvu1tb9skxfXzP\/\/znDx5kt\/8zd\/k8OHDtLa28uSTT3LmzIaQbyqV4qmnnuKzn\/1s0fNeuHCBJ598MqfO88QTT2SMHiuFRTwlkC97Y26YL7\/8MqqqZmRvtotCxKNpGn19vdTVR3jwQVdOak2SYxiGD0kK55+qLIQAEnakhWEkY+N9BWQ\/DVtUNJDa6mC8\/HHd9nXqjhwpmj8u1FyQP7hpploCgQADAwOk02lqamoy2mLbEfbcz9bXJrL14yC3USHbAjtbR60cMe83VeitIr91WwhR1PraJGqn05nz3vcr8UQikaqJx+fzcfr06ZyfeTweGhoaMj\/\/+Mc\/zmc+8xmOHTvGsWPH+MxnPoPb7eZDH\/pQ5jUf\/ehH6ejo4Pd\/\/\/cB+NjHPsab3\/xmPvvZz\/Lud7+bb33rW3z\/+9\/n2Wefreo9WsRTBNmzOWbxdX5+HoCGhgZOnjy5YzdpPvGsr68zMNDDXXfbqakp\/CeSpAjCcCLJ5WdpTAjdgbS0hBRbyfl5nV9gJOuR46W73AquXVtD7ziAPFu8IAnQ6A4Rml\/eVjt1fqolFotl6iETExM58zLmxvJ6wFY3\/kI6aubnYdZAyjUq7JeIZ6c3fEmSMtHzgQMHMvp7gUBgk\/5etiHefiGe7Mg1Go1ua3i0GH7jN36DeDzOr\/zKr2QGSJ944omcOvXU1FTOZ3Lx4kW++tWv8ju\/8zs88sgjHDlyhK997WtVzfCARTybUMg3Z6Owf521tTUkSeLAgQM77g9vGAZCCKamplgNjHL+ghtVLf40LEkCgUAICUkq\/dQshIyISMhLA0gFJngkBMLjQcTXCv6+HKQD7VCGeGQJFn\/4DFJ7fdHNrloHUtPgzBxONDeW7DSUSUK3uxV3q9jJSMtut+cQc6Fp+OyN1uPx7Avi2Y015Le1ZxsFmkZvkiRlakVbSVvuFPLbuk3i2e5n9KMf\/Sjn35Ik8clPfpJPfvKTFb8G4P3vfz\/vf\/\/7t7UWi3iyUGg2Z319nZ6eHjweDxcvXuSZZ57ZcTVpWZZJpVJcvXqFhsYoDzzgKksmAJKULJtyE5oTaWEaOVla2FPSQhh1B1DWJqpdPpIWQDS2Iq2UbqlUZq8jdbz5toiEFpqXyW7FNVWUzTRUTU3Nvni6hdunGpAvXxOJRAgEAjmNCh6PB13XSSQSexYh7kWkkZ\/GTafTPP\/888iynJO2zK4n7pZjbaGuttsR8ewlLOK5CcMwSKVSOV+C8fFxRkdHOXr0KAcPHsw4CJrEtJPXHh8f5Mx9bvz+6v4kshzGMLzIcq4ETjoNasRADlTerSYRQdg8SOloVWuQEOhHDqKUIZ4ub4DxlLYrygWqqub4pWR3QM3NzWU6oOrr6zOS9HuB3bpudqOCmXpaX19nbm4OwzB44YUXMhGiGRHt1hP\/XtteA5n3evDgQbxeb07rtjlfZbZum0Kwt6uxpViN542EH3viMVNrpqK0GX1cu3aNWCzGAw88kHmKhlsmazt17cnJSdyeJPfd58Fm29omJEkJhFCRpI1mgURYQl2aRK6y5VoSaYyaZpSVCroF8iAba6TcXuyx4hpwDpuBPDyJOHPPtlNt1SJfHdjUU1tdXSWVStHb20tDQ0MmNedwOG7bWvKxF6kusx5m6qedPXs200FoPvHvVgfhfmhwMNdhvsd8W4PstKWpJp1t\/7CTg76FIp43kjI1\/JgTT6HU2urqKteuXaOhoYEzZ85sCq\/LzdxUio3N7hotLXEefNC9rdZoSdIQhgchJAiEcK3PbflcshbA8Lcjh6o7hywJ1NOn4eUXSx5XF5jdcz+e7A6o7u5unnvuObq6ukin08zOzjIwMJCRajHrQ7crzbLXwqhmfSW\/USH7iT\/bZ8eMiHZyo90PRX2zxlpsHfmt27FYLPP5TE1NIYTYsUHfQu3UFvG8QVBI9ubGjRtMTU1xxx130NHRUfDG2YmIZ+PL3MOZMw58VabWikFoOtJqCDm2ddLJQDUQsg3JqDxiEooTSZEQTg9Soniq7pBnjWgB\/5W9fOI101Bmm3K2VIvpHmn67dwOGZu9tkUodP38DsJs6wdzo81uTXa73Vt+H\/uFeKAyF9TsxpbOzs6cQd9AIMDY2FhO63u1ChxWqu0NiEKW1PF4nJ6eHgzD4MKFCyWfLrYT8QghGB8fJxye4NJDbiTJC1Q\/i5N7ThnCAmX9BgIJw16DnCqusVYJJCOOUd+FsjKW+ZmBgmTzILChpw0igTWUVBoPOnIoiJROIAHp+qMoK+NIqcIe2XU+nbmeQZre3rTpd3v99G8iX6qlkIxN9tDmdjbdvUYl9ZVCjQrmjMzKykqOooL5mVTTqLAfajzmd3or6cRCg76mdbqpwGG323OIqNTnk2\/BHY1Gc5Sl3wj4sSKefEtqWZaZn5\/n+vXrtLe3c+LEibI33laN2zZSaz20tSU5fsIFCISofhYnG8KwI62uICWCwEaRP21oyLqEqmxzExc6utGAFFhCX1vGlkrcvMaGYE+xr4EamSK2XofLL5DShd+X1n8N3v6mnJ\/tZyO4fBmbfE8Zm82WI+tjyvxXgr1uZ97K9fNnZHRdz7Syz87OMjg4iMvlytloSzUq5G+0e4FsA8ftopB1uqk4YX4+2Y0ctbW1OfdMoVRbV1fXtte1n\/BjQTzZsjdmWG8YBn19fSwuLnLXXXdVrDW0la62QCDA0NA1ztznxOu9dUOZszi6DtV+74yUE3l5fFM6zC6niNtrUPVgdSe8CaH4YT2Csnod4aiF5TlsRuXvV9JT2Ds9xIaTuJsFkpbcdExTembz614nEUOhTXd9fT2Tgurv769aPWAvsRPEl60IALmt7NmNCtmt7Nmfiek\/s5cw94XbcR8qipJJ08JmxQmzecC8X7INJWEj4tkJhZT9hDc88RRqIIhEIly9ehW73c7FixerEt+rJuIRQjA2NkY0OsnFS26UAlGIJCWJxxW83so2dyEkiEgoweL6aC4lSjDupNZehaqB4oGIhrw0cGttySDG4TuRRnpLvHIz1NQssYBBTPbjrF1DQcv5fXtdgsWxadyduWS\/XyOeUsjfVEy17UAgkFEPyLbBzheufD1GPOWQ38peTOrI\/Ez2Q1fbbkZdhRQnTKIeGRkBoK+vj7W1NZLJ5Ja62r785S\/z5S9\/mYmJCQBOnTrFf\/pP\/4l3vetdQPEHvc997nP8+q\/\/esHfPfbYY\/z8z\/\/8pp\/H4\/GqZ8De0MRTyJJ6enqaoaEhDh48yJEjR6rOLVca8SSTSXp7e+joTHHi5EZqrRi8Xp1oVMHjKX3ejdRaAClRXtrG6zIQeJD00jM5QnYikiry1DCS2EyoUmKBsMOPr8wAas5rDA33hW4i3+ojeaAFX\/M6+Q+0gWeew\/2z7731mn2caqsGdrudlpYWWlpaMkX5QCCQiYiAHFmfvcZuEF8hqaPsjjBd13G73dhstj2rmeVHGbuJ7HsmlUrx7LPP0t7enlGSXl9fZ35+nkAgwFvf+lYeeOCBshFiZ2cn\/\/k\/\/2eOHj0KwOOPP8673\/1urly5wqlTpzLyXya++93v8gu\/8Au8733vK3lev9+fUbY2sZXB4zck8QghSCaTJJNJbDZbxpL6+vXrBINB7rvvvoqMlAqhkq621dVVhod7OXOfE4+nsqcoh0NHCBuSVLiTzEi7kJfGkSrwygFQFYFQnIh4rKAMjpBsCN2NPDOMrBfvXpMQKI1+xFykIDEVvX58BqWzESYXmZ1z0nkGsjuS7YsDjI2NZdILb0QH0uyifGdnZ2ZmJtv2QVEUVFVlaWlpT2RadjvaKNQRdvnyZVRVzdTMVFXNqZntxkzVfuisg1u1pvb2dv7Df\/gP\/Nqv\/RpvetObuHDhAteuXePzn\/88d955J0899VTJ8\/z0T\/90zr8\/\/elP8+Uvf5kXX3yRU6dObVLU\/9a3vsVb3vIWDh8+XPK8kiRtW40f3oDEY6bWJicnWVlZ4f777ycYDNLT04PP5+PSpUtVFX\/zUaqrTQhxU55liouX3Mhy5Rupqm5YFeTbHQghIaIyytpQ8RcXgaSHMNytSLFbTzcCBYEPeXYMOV248ywfbilBtO0QnrnRyq8tDFxnW4nMrFCbTjB91UX3GZGpZXXXhnh5daPrJ51OZ+RbwuHwtlSm9zNkWaampoaamhoOHTqEpmncuHGDUCi0qRZiDm3e7s1wr1N92TNEHR0dmwrxAwMDuN3unJmq20HO+6HBAW41Fph\/E0mSiEajvO997+Md73gHhmGwsrJS5iybz\/n1r3+daDTKhQsXNv1+cXGR73znOzz++ONlzxWJRDK1zXvvvZdPfepTGVuFavCGIp7s2RxVVdF1nbGxMcbGxjh27BgHDhzY9pfMVDbIRyKRoLe3h+5ujZN3lE6tFUO+3cGGZ04QJb665fVK2iqGvR4ptYaQa5EXppDjU1WfxyWHMOpakNcWK36NGptGOdSCPr5IXSrOlEk+MthUqJ9f5Z53v5N4PE5\/fz+JRILLly9nitV7oSKwm1BVFbfbjRCCU6dOkUwmM23b169fR9O0nKHE20HIe008kBt15dfM0ul0phBv2l9nS9fslKLCXqba8teR\/36yazyyLGfa\/Muht7eXCxcukEgk8Hq9fPOb3+TOO+\/cdNzjjz+Oz+fjve99b4Gz3MLJkyd57LHHuOuuuwiFQnz+85\/n0qVL9PT0cOzYsQrf4QbeEMRTaDZHCEEoFCKZTPLggw9SU1OzI9cqFPGsrKwwMtLLffe7cbu36yuy0WKNLiFVkVorej4EQlZh3UAJ9pV\/QRHICIyGGkRwueKUmyQE7nsbCY9vkFVdMs7UNTfddxsoMsiT15Gkn8LtduP1erHZbBw6dCinNddUEchWmb4dT6Z7WV8yN12Hw5Ej62PaPpgyNrIs56SgdkLUc78QT7FN32azbWpUMMm5UKNCta6jlaxhN1GOeKrBiRMnuHr1KsFgkG984xv83M\/9HE899dQm8vmLv\/gLPvzhD5e9n86fP8\/58+cz\/7506RL33XcfX\/ziF\/nCF75Q1dpe98STP5sjSRLLy8sMDQ0hSRIXL17cUbmT7BqPYRiMjIyQSs1y8ZILWd4J1WqBiOnIaxNIbF8TzqAWeXIA4WpEsDGHs1XIiQDGoTuQxioXHlUiM8R8HtzhjSaHuliMG1c9nLhXp8O5hJ7SUOxqZrPInoE4fPhwRkXA7BLbSfO3\/YBihFfK9mFubo6hoSFcLleOqOdW7vP9QDzVDJAWIudsRQUgZ36o0kaF\/Uo8pq7gVpQL7HZ7prng7NmzvPLKK3z+85\/nv\/\/3\/5455plnnmFoaIivfe1rVZ9flmUeeOABhoeHq37t65Z4smdzzC+PEILBwUFmZmbo7u5mYWFhxzW2zIgnkUjQe+0qB7qSNDXXIMub51WqhRASBHWUwCCGoxlJbM0VFCCtg5Kyoyz3AyDFljDqDyIFJra1Rim9gqhtQgouV3Y8AvWoG67c6q5rS0Tpv+zmzvsNxl54jbaf2DCRKrQJZ6sI5HeJmeZvJgm9XtNylWyM+YRszsoEAoFNtg\/19fX4\/f6KNtL9QDxbbXAo1KhgNm9kD\/dmS\/sUuz8KRRp7gULDo0KIHHO2rcJsusrGn\/\/5n3P\/\/fdzzz33bOl8V69e5a677qr6ta9L4smfzZEkiVgsRk9PD7DhkqdpGrOzszt+bVmWSSQSXL3yHPffY8flFAiiNxUItPInKAJNEyhr8Yw4p5xcImJ48TqrJzRDcpOem8Eucud4pNgChrcZObK05XUidERTJ4Zx045b6KCnNgZF03GkAsOmLY1JJu1O\/Klb6+lMxei\/7EaOXoafOFdRV1uhLrG9SMvtJLaa4itk+2CmoHp7ezEMI1MfKqWltl+IZyeijezh3oMHD+Y0KszMzGQaFQpFibcr4hGGgVTFeQspUwNVp9p+67d+i3e96110dXURDof56le\/yo9+9CO+973vZY4JhUJ8\/etf57\/+1\/9a8Bz5tte\/+7u\/y\/nz5zl27BihUIgvfOELXL16lT\/+4z+uam3wOiSe\/NkcSZKYm5vj+vXrdHZ2cuLECWRZJhwO3xbfnMXFRfzeKPecciDLN4kPHZFWwLE14tE0mfTUDDaR22XmJIaBB5nKB0ENqRZ5+gYesXktG7WZNEJ1ImnVyfQYyOBqhvl5pInLGP4DGFc314yEw4lwO4kjIbtcuGr8xMNJkq4ARjKBnLXHdSZjjA\/Mb3nzK5WWMz1UsjffYmm5vd54d+L6TqeT9vb2jHqyKVqZbfpmfg51dXWZJ\/\/9QDy3S6stu1HhyJEjmUaF\/Cixrq6ORCKx45+DnJojMG1Qe6Sz4tcUIh5VVauO5BcXF\/nIRz7C\/Pw8NTU13H333Xzve9\/j4Ycfzhzz1a9+FSEEP\/uzP1vwHPm218FgkF\/8xV9kYWGBmpoazpw5w9NPP82DDz5Y1doAJPE6mdorZEmt6zr9\/f0sLy9z11135XR7xGIxnn76ad75znfuyA0Vj8fp7b3Kwc4k7UXa2A2lFlmtrEXZhNAdiOkxFL0wEQhbLRAta5sgkBFJJ8riSNlrhoUHb2qtonqPUJ1EU3bsC7PYsoQ\/hSSjJ70ws1n+phiGhj102Dd\/Pgvv\/TkSh2oQQnD8+PGKz1dy3XlpubW1taJpuRdffJHjx4\/vyUDn6Ogo6XSakydP3rZrZD\/5BwIBwuFwJjJMJBLYbLbbev1yeO655zh16lSO79VuwDQHXFtbY2lpaZP461YbFQDU5CRy5AZ9L3dy\/F13VPy68fFx4vF4pgGgt7eXd73rXQSDwT1\/QNhJvC4inkKyN+FwmKtXr+J0Orl06dKmjgzzqWEnnuiWlpYYG+29mVorfpykxxGyhFTh\/I5IO5FmbiCXsB+Q0kEMZyuSUbylWsguWA2hhCsjAZ8URa\/tRgkWb6sWdj+GbkeaGMajbV6fJAyUWgVtyYGUqiwd2N6RYGHcQas39\/jkE08h\/fK7d9RSvJq0nK7rOx4dV7vW24lCT\/4mCQUCAXRdJxaL5XSG7Wahfa8K+9nmgGYnrNfrZW1tjYmJCSRJyqkPVWRtIAS25DD2xACzE160eHVdqYUsEd5oXjzwOiCefN8cgMnJSYaHhzl8+DCHDx8ueDOYfzxN07Y8MGoYBjdu3EBoM1x80IYsld6cJJIYWh2SPVb+3EkH8kx\/QVWBTedNLGI4G5CNzXYHhlyLPDNWdepMTixheJqQo7lNAoarARFJIw2PIperucTWUE4fx7hcmZabz60z61SJpHS89lupwPbwFOOrYdTa2yeEWCotl0ql6Ovrqygtt9PYi4RDdsOGqT3o8\/kIBAJMT08DVL\/hbgP7wRZBCIHD4aCrqyvTRWiqkC8tLTE8PJyxNshPV2adBHuiD1tyw05k8J\/WcLVXN8ZRyBLhjebFA\/uYeLJnc8wbM51O09vbm7HqLeVRYf7xtvoUHYvF6O29ytGDaVqaVCodCJVEEKF7kZTCTzpCgIipKAv9Fa9FQkAqglBtSDftrAUSQvOizFV+ntx1GiBpCNUBWgrhakasBpEnBqpquZaDkwRbmvEvVtawcPRghGtXajncEEK9GRnaJIP1b79A\/UfeuoV3sjVkb75ra2uZYvRedMvttUiozWbbZPsQCAQyG67D4cjZcLej\/FEI+0UkNJv8slUmshsVTHLu7+\/Pdamt8eNJ9aLeVF43UOn7h3Hu\/bmOqtahaVqOaHEsFtuWm+l+xb4kHsMw0DQtJ7W2trZGT08PNTU1XLx4sezNL0kSsixnhkqrweLiIuNjvZy914HTUd0TqYRAaAZCEkhy7s1yq116C\/I3RgKDRiTWEZID1pMowerPk3POdBTd24k0NowU6t3yjE9NDRhxP1KovJCoqgiaOhOML9VzrOZW+rBjdpSo8ZNbXMH2IEkSdrudhoaGgmm5wcHBTDfUTnfL7XWJNT8VXagzzFQOmJyc5Pr16xnbB1PWZ7ufxX6YoSnXTl1IUcGsD42O3OB0e4Aa\/62MyPqqCz0lSMcqd\/GFzRHPG9F9FPYZ8RSbzRkZGWFiYoITJ07Q1dVVMftX6xZqGAaDg4MozHPpQRtSmdRaMUhEMYw6JPlWyk0IBVYimXbprUBOrWDY25DnR5FSpVWny0FIMkKuQxm5gl57ACm0dVkeRUsgHelAvxKuKHXY1RonGPRzY8XF8caNZoN2Z4qXn+mHApIeu41KuuXMIdaGhoZtp+X28mm2XLShKAoNDQ0ZUd1UKlVQOWCrKcpqLKdvJ6olv0zE3FiLM7qIklcjvPr9BQDWlgJV6Q8W6mqziOc2Il\/2RpIkEokE165dI5VKcf78+aqHqKoxbYvFYvReu8KxwzrNjQpb0VrLhqSHEbIdSdYRhg1pYQkpXt7OoBQMpRZ5rBfh9m9LgUDYPIhwGnl1EAA5OIXR1IW8PL3lc8rrs4jTdyL6KlM16D4U4sbLbhajGi2ejadC1yvX4Jfev+U13C7kW2FnS9lMTk4iy3KOttxOSNnsFqptvrHb7QUtDrJTlPn1oXLXh9cf8cCGRbwz8jyyEcn5uQBGv7cR\/cfDcS5fvpx5mDHTlcXqZvmacVZzwW1E9myOmSJbXFykr6+PlpYW7r\/\/\/i0pEFRKPAsLC0yNXOXeu914vDvTWSWhYWgeUFSkucltRyiGUos8MYRkaJBKIiQbkqgujAcwnI1IM5PIyVvRmIRA1sIITw1SdHMDQ6WQk\/NoLS1Ii+WFRGsccai3s7zqpcYRxKkKTkhrrE8tUdNdmQjiXqGQ1cHq6uomKRtzkymVwtnrwvp2uj7zlQOybR8WFha4ceNGjsVzIduHbKmrvUS1ygWSHt4gHbG5qSeR8BCa24jkvU4vb3rTmzbZYdjt9oJ26bqu5+x1Zo3njYY9JR4hBKlUimQyiaqqmQ6b\/v5+5ubmOHXqFG1tbVs+fzni0XWdwcFBbKlxLh5LICQvsIMtvXoSZleQjB0kHUBKhjD8HUjJymRrYOMpTDhakEavF0yHSek4wteESESR9OrrYsLXhCGcSPEQSedBFL8DWU4jhVeLktmpY2Guv1rP4IKfezvXsSsw8tg\/cM9\/+oWqr78dbGfTyy5Cm2k5c0jxxo0bOWm57YhY3i7s5ABpIdsH87MwbR9MZWmzPvR6jHhkLYAz+mLRB7+5wVvfLy2W2vS5ZNfNshsV6uvrSaVSOXW\/rQqE7nfsGfGYsznT09PMzc3x4IMPEo1G6enpQZZlLl68uG2f8VLEE41G6b12mZMt6zQ13RxqTCwjXPUVz+GUghAOpJEBDF1Cdysoyta+3PmkY0IOzWLUdiPHF8qvRbEjUg7ksdLq1HJkGaP9EExXJvonbE4MbwtiaRVpYKOFVAJsLUeJPXvrHHJ9LaLOx8rkCi63Tp0vjU0VuO0GrrY49jk3N9ZrOF6zTuP4dXTdQFH2XrBxK8hXU85ORRVKy+235oKdRL7Fs6ksHQgEMrYPfr8fuLXB7hUpV0o8sraMM\/JSSQHf3n+8FfGnE5vJKb9ult2oYLb2r66u8tJLL7G+vk57e3tV76Wc7fW\/+Tf\/ZpP3zrlz53jxxRdLnvcb3\/gGjzzyCKOjoxw5coRPf\/rTvOc976lqbSb2hHjMSMcMK3Vdzwz1dXd3c+zYsR15AipGPHNzc8yM9XDuSBK7cuvGkISGSNrAtT0rAiFsSGOjyKkYMhBLNeNybUFzrQjpZNa7PktcdeMqIVAqHLWwvIocrky3Tl6bQu84ijxbWAFBICFqWhEpGTE+iqQtb6o3KYsjOO4\/SvK1DeM4IxCCQIgGgBDE12HZsBNRVWyqzjoa7pDCqFA5Uptm9BtPcfwDb6lovfsdZlquo6MjJxU1Pz\/P0NAQiqLgcrlYWVmhtrZ2x0Vty2E3JXPylaWj0SiLi4sEg8E992GqJNWmsIQ90VeSdHTDwdgzY5l\/V9LVll1DXFxc5M4776Snp4eJiQlefPHFjF\/V29\/+dt72trdx7733lvyblbO9Bvipn\/op\/vIv\/zLzmnJdwi+88AIf\/OAH+dSnPsV73vMevvnNb\/KBD3yAZ599lnPnzpV9j\/nYE+Ix6zhmfjsajXLjxg3uvffezJPiTiCfeHRdZ2BgAKc2ycXj8cIpp3gA4fSWlagpBiEUmJpFjt9KL7lSKwh3C5IoP1hqwlBqkccHkUTxm1wSOpKWRjhUpALabAm5DsfkOFIJa+tCkMNzJL0NOCK3Ot1SsgPF34aYnUOaubFx\/RLnsMUm0bub0aY2z\/fIkoRf0fALDQSodYK1VR\/JiJ+ga43kkz8k\/Z6Hdt0G+nYjP+WSTqfp6+sjnU4zPDxMIpHY9bTcXmm1SZKUSSHNzMzwpje9qaDzaHYL++0k5XIRjyrNoeiLyFq45HlWZnPvWS1e3XdP13Xcbjdve9vbeNvb3sbP\/uzPcvLkSbq6uvinf\/on\/uqv\/oorV66UPEc522vYeAioxsL60Ucf5eGHH+YTn\/gEAJ\/4xCd46qmnePTRR\/nKV75S1XuEPUy1SZJEKBSiv78fIQSXLl3a8SecbOKJRCL0XbvMHW0hGj3F9dQkI45INYCj+ghFIKPPrGAP59ZeJGEg4imEg4oIrRLSMeEUCQx7br1HSAqhiEJN8EbV7wHYUJiW0ugOD5K7ntRaFHVqClipuJtO0tI4mzQiKw6Ilf4sWzxpFkIpvLqD4QUf93Su8cO\/\/Q71xzozLcu7LeOyG7DZbLhcrkx9KN9bxpRsuZ3dcnstEmo+fGZ3w+XXykxS9vv9mYJ8pbYPlaI48Qhs8hQKy8ih+QK\/z8WNp3Nn2dJVEI9hGAghNrVTHz16lF\/+5V\/mYx\/7WNWp2WK21z\/60Y9obm6mtraWn\/iJn+DTn\/50SWfTF154gV\/7tV\/L+dk73\/lOHn300arWY2LPiGdycpKBgQE6OzuZnZ29LWG1STyzs7PMTVzj3OHc1FpRxENQ5XoEkJwJ4l4vPKcjJ1bRnd1IlO4aq4Z0MufOqvdstEqnqAluzxLC5vIiDBnj+hC2AlYHlUAKreI5c4jocxNljz3dEqFnyUk9Nq4uuGnqm6f1J8+xurrK7OwsQojMJtzQ0LDjm\/Be1Vqyr1suLZfdLbdTEcBeE0+xOaL8Wlk8Hs+Q8szMTEbQ07wnKjV8KwRzfnAz8Qjs8iiqvIQREUhlGo8EMj1\/l6t\/WA3xmA\/J+cST3VxQ6XssZXv9rne9i3\/1r\/4VBw4cYHx8nEceeYS3vvWtvPbaa0X34YWFBVpaWnJ+1tLSwsJC+RpzIewZ8Xg8Hh544AHsdjtTU1O37QuwuLhAuz\/EhWOJioYbAWQthJHuQLJVXuuJzISpCZaeg5FD8wh\/HRKFI4A0PmxVko4JKTSH7u9Enh7OaZXeCnR\/JwwOIetpjENHYXTrCgny0jjirk6k3tJEqMjQXR9mesZDg91F8MYUTY1NmXqA2bJstumam3BDQ8PrwnenFArd94U6xMyNdyfTcvuBeCqJXFwuFy6XK8f2IRAIsLKywujoaMbwzfw8qpH1MVu6c+8hA7t8A1UOoGtu1MRk2fOEQx5SkdyUtxZPI4zNKiaFUIh4ttpOXcr2+oMf\/GDmuNOnT3P27FkOHDjAd77zHd773vcWPWf+fbKde2fPiKepqQlN00gmkwghdvwLEA6HWV2e467OKM3+6uddiCfAVlkovzYToaGE0rMJyUgj0jIUKF2sxxRqVm7c9MypHsJRhzQ6BvLWVZaFJGM4WpGu3+p+kxdGSXYdwTY9uuXzepNzxA+1YIyXnu9ptCcZsst4hRtX1MbAXz\/NXT\/31hwZl\/xNON93p6Gh4XWlbVVppJVv\/JZt+WBaPmdry1UaEe6HOaKqBzclCZ\/Ph8\/n48CBAwV11Lxe7y0dtTIPJpvVEzQcyiCKFEIIBSVU2VP95OXCD5RaUsPmKl+vzPYYg1u211txH63E9tpEW1sbBw4cKGlh3drauim6WVpa2hQFVYo9HyA10wXbUZHOhhCC2dlZFqZ6eeh4HIe6xTRRahWhtSGppWdaAvNxGoPln4ZMyNEF9LpuZHEr5WYotfiXK1OqLgTDWQejo0ipBEZjF7K2VHVzhGH3IKIS0tRm0VH72jTrvgb84a3J6sjCwN2gsbbkwxYtXZw93xHnn4btHHGrLH\/rFcRH37KJRLI34WzfndXVVSYmJnJ0tap9+t0LbIUkXS5XRthzO2m5\/RDxbPf6+TpqqVQq056cL3FUKDrMJZ4UTqUfWdrIGhgJCdWorN579W8LR\/XpWKpi4sknyJ2a4ylke21idXWV6enpkjOTFy5c4Mknn8yp8zzxxBNcvHhxS+vZc+IxnzJ2wg9F0zSuX+\/DL89w\/mjlqbVCkACRMKDE3zy4kqJ+dbzqc8vhFYTXiYR+q6azxbUKuw+m5pBu2krLK9MY7UdRQpXL3+jeFpicQ4oVJgVJGHikKKKuEWltpeLzGooKjV3ocYExMo2tpoGpcYFQBF5XmjpXivwMhCLB6fYIYws1tBHn1cd+wAM\/\/7ai1yjku7O+vs7q6ipTU1P09\/fj8\/lyRC3zn7D3uri+XWwnLbcfiGenIy673U5LSwstLS2ZB5Pspg0gR23b\/AwUOYVDuY4sbWzQhu5CiZbPZAAk026Whwt\/fyqt8xQinlgstqO215FIhE9+8pO8733vo62tjYmJCX7rt36LxsbGnJmcfNvrj33sY7z5zW\/ms5\/9LO9+97v51re+xfe\/\/32effbZqtZmYk+72sz\/VxRlSyrS2QiFQly9ehV3Os3xu6pzAS0GKbGMcDchyZvTX+F1ndqlUeQtEIakxRB6PYZdRR4f2FJNB0CoLsRicBNhSPOjRPxNePXy8je6rwsGrpdN8dkMDeGQMZxupETxGpIhK4TsNTgUN\/LUAmSl6OzrCzj8bpSIDRGzsxixkfY40FMx2n1JHOrGZ9nu1Rl3JkjoLuLffB79oz9ZcQ0nuzsKbolarq6u0tfXl+My2dDQUFZLbDew0xt\/NWk5U6Zqr3C7U33ZDyb5tg+mfI3NZsPvk7BJPRnPLSEkpHCg4i7OhZHiR1baUp1PPIZhbEkktJTt9YaTci\/\/83\/+T4LBIG1tbbzlLW\/ha1\/7Wk5KL9\/2+uLFi3z1q1\/ld37nd3jkkUc4cuQIX\/va17Y0wwN7aH1t6rMB\/PCHP+TMmTNbsr4VQjA9Pc3Q0BCHDh3CGE1zx5lh5CIF\/KrX6W5HcufeONGogXtyFMXY+qCpYauFYAxZ25pwqFDsiHUDaaVwF52m2BEeN3ajMAkbsg2h1CGNVddybTR2IqanN1quzbXICkZDB+FgAtv8Cmqq9EPE2LwPZyp3s9EMQVCXcNUp+AhTYzf43nAdJz0yK2+\/j4c+\/jNVrbMQzKL06uoqgUCA9fV1nE4nmqbR0dFBd3f3rg9w9vX1ZWoVuwEhRMbywfwMHA4HTU1NuzIvk4\/5+Xnm5+e57777du2a2dB1nbXAGG1NS9jUW+QRWQdfunJJqu8+mmDgu4W\/i+\/+sw\/Send59YGlpSWmpqY4e\/YssPEw3dnZyfLyckb94Y2CPU+1QXUq0tnQNI2+vj7W1ta47777aGhooO\/aVcJrTmrqdoZ4pPgKwlmbkdHRdRXn1NC2SEdIKtLkLKQ0RJ295CR04dcrGHEVeWWi6DGqniKRciPs6iblA91ZA4EE0mr1cz7yygzGoaOIsWFEUyeGZkMbm0GamaDS2OFga5ixGT9u49YXXZUlGmUgomPg5kbKoNaVZIYaHE+8RvqX34XNub2B0uyi9MGDBzNaYgMDA8zNzTE5ObmjdgfVrGu3IElSTlruueeeo6Ojg2QymZOWq6ury8xP3c717bUXj00N0tW6kvMe02kFT2qx9IR0FgxhY+B7Y0V\/X6knj6Zpm1qpAUskdCeR\/YdWVbXqVNv6+jo9PT24XC4uXryY6T9PRVLM9SepubRD6xQpgstxalucCKGiTE0h69XZTOdDJF3IaxuSNEbtMSRprfLXImEYPuS58qThTAQxag6jRG8VPXVfO4yOISW38R60NFrDMYyrA0DF388MZAkOtIeZnvFTrPeqyS7TZIfRRBo0g2f\/4Bu85ZF\/vfU1F4CpJeZwODh8+DAejyeTljN11cyUVENDw21pUthrrTYg4z0EuWk50wY7W0V5p1OTe9lVJ8vLOKQRJOnW30AIGTmmI0uV\/10Ci86SLipaAb22Qsg3gYvFYtjt9l2VDtotvO4iHiEEU1NT3Lhxg8OHD3P48OEcEktFkgy8tMwdl6pvQSwGj5REGG6k2SXkaOUkUQiGrRH5+quZf0uzI4Qam\/E7K3v\/htKIPFqZ5w2AvDjGqquBeiWK4e2A\/sLq1JVAIGE0HcboG0QCEl3tOKe3ZmxnUwTNrRFWF7yFusszOOJM8HJMoun5fmKhGG7\/9oRji0EIsalTLBQKsbq6yszMDAMDAznOm7W1tTu2Ye51jSX7+tmfQXZaLn9+yqyjbTcttze21wJFWcTOeIZ0DANEwgaTcygvvYB25ixyhw+Z8g9ofT8onZJLxyrLjuRHPJFIZFuDsfsZ+4J4Ko14TG2rYDDI\/fffn2mfzEYqkmTi+WUMGpDZntinCbucwpgOIYfLS2aUglDcSIMDOT+TELijCQyHvexTluFoRR66VvV1a1PhjeHSgdLq1KWQllQkdxui91aU415fQO\/qRJqe2dI5vQ6dREOc2Kqr5I14X53g1VWN537vazz8uZ\/f0rWqRbYL6ZEjRzItuqurq\/T396Pres7sUDFjr\/2OUl1t+Wk5s1tubW2N0dFR4vF4Rsamvr4ev99f9Wew+6k2garOYRPTSJJACEiEJZTZUezI8Op1JENHfe0lxGsS+l33Ih1sRJYK10qFkBj49mY9wmxU2tWW\/1m8UW2vYZ+k2iqJeILBID09PXi9Xi5dulQ07ZGMbNR2IkEn\/tqdIR7D8CJdvQZHtt5PLwARSCInNnvzqPF1wtEOfN7idSnD1YY00LO1a9sbEaNjGJ4a5Fj1Rm+Gr57YXBj3fO4QqSwM5NgKWlsLzJc3fyuERm+KGykvypqOq8jdqEpw3G8wcXmU0EIQf2vtlq61HeS36Eaj0ZzJedPYq6GhoapIYK\/bmau5fqFuObNN2UzLZasHVJKW291Um4FNnUEVc0iSgZFyIM9O4omuIgTocwmU9K09Q0Kg9F6BXtBPnIZj7ShybkdnLOYhvlb6oXllfjlDIqU+63wTuL22irid2BcRT6l2aiEEk5OTDA8Pc\/ToUQ4ePFjyD5GKbtw4swNp\/BeKHlYdhiaRVucwuu5Ftm9NjkbIDcgzrxX9vTc4R9zZiUvd\/GRluFtgoPpIB0CvPQB9fRtzSc4WDNWOrFVOyEbTAbQbU7iLDJ+RSqDabGj1dRCoLA2p6bC87iSRUPEqOh22CP26m3jUgU3Wafdq2PKiv3q7RETTeeZTX+Wf\/\/EvV7z+2wFTWdnr9dLd3Z0x9goEApsigd0o0G8H2yG+fBkbU9bIbFM23UfN1FwhMt69VJuOzTaFaiwiNDvMz6CGbj0srYdUamaLz+woQ30w1Id++BicPISibuwD073lMzXhtTCvvvoqqqqWtH3QdT1HkT0Wi23bk2y\/Yk+JR5IkhBAZT558mKZIoVCIs2fPZmYzSiF1M+K58U\/L3HFh+xO\/huFFHt4YkhJzAThYvTilsNUgXbta8hgJgbwWRDS7c+Z6DFcjDA4gbaEIHbbX4+q7nin+S4FFRMchjLXpTYObm9YsSRgNN+s55a4dDaPWNaKlPBAp7LYqHE70hi4igQRiegm\/YuB33iLAOxtj9C1LuAwHq1GFlZSOy6bT7TEyykXdboiNzLA8ukDTkcol3cthJybnTWOvY8eOkUgkMk0K2QV6k4iyN5y9bi7YqYirkKxRMTLOTsvtTqpNw26fREqtw2IAdS1XYSApXPiGeys6kzI2DGPDGB3diNMnufat8mnmBn8D5978UEbWx7R98Hg8ObI+uq7nSB1FIpE3pPso7KOIx5zpMbG2tkZPTw9+v5+LFy9W3FGUCm8Qz+izSxjUIbMFnbZsDNxSJpCXpjA67kG2VT6gKiQFY3IBpQKFZ0cyjGG0IUkbsz0bUjhjRY3gSiHprMMxNrupkUCaHUccPA7Lxds\/hd2FrtYj+gaKHrMJaysoLe3oqRSkNj5zw1uLUduKFk6jT83B\/ORGI0GRWdDTTVGuLcp4ZButThVQWYgIgrpOrUej3WZw3Kvx6u\/8Fe\/6yn+ofG27DKfTSXt7O+3t7Rk5m9XVVebm5hgaGsrxmXk9pdqqQb77aLG0XDqdvq1P9ZKUwiaPIc9No6xMbOrAFMiIkTlkozqNRHl2imggzdKN8h1n6Xhq02Bztuuo2cZu7oPBYBC3272l4dHXC\/aFwUl2c4EQgrGxMV599VUOHjzImTNnqmpjNWs8CIisb6\/10zC8yHnKzGIhVOTowkjHHShrldc\/pLkRDLVmQwpnej4jhVMNhNMHcwGUYs6lEzcwGg8Vfq2\/CS2qIsaqlwKSluaQjx4i3XkncWcn8akYyWtj6OPTUGHX4unmMNEsUzuXKtHmUHFpTibDdq4GBY2hFfq\/\/lzV69sLmHI2hw8f5uzZszz00EOZiGBwcDCzEU9NTRGNRnc9Atot4jNTcqdPn+ZNb3oT9957Lz6fj1gsxtzcHC+88AJDQ0MsLy9vW8XEhEQMm34DdeBF1AKkA6CnPDjWKh8UzcaLQ7XYvOWJp5Bygek6euLECS5cuMD58+ex2+2k02n+4R\/+ge7ubr7yla+wsrLC0NBQxffFl7\/8Ze6+++5M9HnhwgW++93vAhtk95u\/+ZvcddddeDwe2tvb+ehHP8rcXOnO1MceewxJkjb9L5HY+kjGvki1mc0FqVSKa9euEY1GefDBB6mpqan6nKnorVrE\/EAa\/\/ltLPD6ZkVmeX6cVPMp7I7ykVRC+HCOVhbCm5CEgQjGMLQ0crQ6kgMQqh09LFBjkdLHzYxjtLYiB28pzhpNB9GHJiC1taYMo76d1MgiUkMTxsLWvsyyBKeaQwyG6nAmc7cKv6riV1UQsPaXPyDy5lN4W2q3dJ29QrbNsRCCy5cv43A4CAQCjI2NYbPZcpoUbqcLq7mZ7fYcTXZaLhaL4XA4qKmpKZqW24oJoCSFsMVHsE1eLSpJpas1yC+\/WvB35WDY3Hzjb0Lcf2f59H8lXW0ulwtVVenq6uK+++7j0KFD\/Mmf\/AmvvfYa99xzD83Nzbz97W\/nS1\/6UskIsZTtdWdnJ5cvX+aRRx7hnnvuYW1tjY9\/\/OP8zM\/8DK++Wvpz8Pv9DA3lPoRvxxNr36TaEokEzz33HLW1tVy8eHHLXzizxgMw9IMVTpzfWqhq6F7k8cICeGIxCt2lo7C0UJFKyIyXvHZCQcRF1eGoQMKQ65EWy19X0jXE2jqG24+UCG\/Uc3qrSK3lQWs5hjY4CZoGoTDOO4+QuD5ZcrCuGBQZjtcE6Zn3UqcUvg\/8CK7+H\/+N83\/zH1C3qWiwVzAt4Ovr62lvb8+R9x8fH+f69esZgdPb4cJqEs9ei4Tmp+XMGtlWu+VkYxVbeBB1Yago6QhJhcGJLc+0jcS7SCZCyI7y9161IqGKovDQQw\/xj\/\/4j3R3d\/Nf\/st\/4dlnn+X5558v+95L2V7\/wi\/8Ak8++WTO77\/4xS\/y4IMPMjU1RXd3d9HzSpJUlVV2Oew58QghWF1dJRQKcccdd9Dd3b3lL4Ke0tBTt260kacXSf3GEezqFm6uvuKbt21hkljDUdye4utMLMbxpasPRQ1fM8bl6yBAP3UMJV65w5\/h74L+yodLpVgY4e1Ed9VCNfWcLAhZRqs7it43kvvzsVGcp46SuD6xJfKxSYI7miL0L\/iotxe+TWu0FK\/82\/\/G+f\/7321789zLIr+59mx5\/6NHj5JMJjNNCvkurDuhIrAfiKdQO3V2jayQqGfxbjmBkp5CDY2iLo+XdAzVow6UwNaicoHEN\/7+ZlZALS9eu1WR0Gg0SktLCy6Xi4cffpiHH364qnUWs73Oxvr6OpIkldXJjEQiGe+je++9l0996lOcOXOmqvVkY0+JJ5VKceXKFSKRCC6Xa9tCiclIXsuvgNVFibaO6jYVQ\/ciTxY3PpMQxGdCuE8UTgVGUm58q5t9bcpBAPpiNNNFZkzMI7W7kfXyzQxG3QHorX5AVEvaENE0kiQjV2lCJ5xeUtQjBkcK\/35sBNsdh0n1TyJVKKyT0iTmIg7iKQW3atDlS\/HqsoqMzEGfgSPvNN7AGs\/+yv\/g1KffR01NzevOibQU4TkcDtra2sq6sJobcLXvfT8QT7l26uy0XLa+Xn5arrGxhgP166iJAOrqZNFIRkgqulSD0vfClte87uxiZDBx83zlP7ut2iJs1YunlO11NhKJBP\/xP\/5HPvShD+H3+4ue7+TJkzz22GPcddddhEIhPv\/5z3Pp0iV6eno4duxY1euDPSaewcFBbDYbp0+f5vr1yp\/UiyEV2VybmB1I0tZReSpGAFJveavn2vUlhN6EpOReMy278YxvLcUWlGrxzkxk\/i1FwxjJJuQCsz3ZMGraMPoHq9ZM01uPYVzeeK\/BhgYaUpUbvRl1baQWE7Beup1UnhjDONKBMlq8wSKcVAlLXiLraRodOg0qkGXg92BTjOtrbtbTduYScTyKwWGXinKzJ7x2cp7X\/n\/fxPYvj2yyPNiv8zPZqGSNpVxYb9y4sSUX1v1CPNWkDwul5SKhORrUMVJL63hSgYwJoiGpCMWL0GSIxZHXViCeIPLSCN4zzSiR0ooDxfDD19zAxiC2XsEzbaWSOfnEcztsrzNrSqf51\/\/6X2MYBn\/yJ39S8nznz5\/n\/PlbxfJLly5x33338cUvfpEvfOELVa8P9ph4Tp8+nXmS2wkjuFR+xAOMPhPk7NubKj6H0LzIU+U7umQERkBHyTq1QEaZDyJp1bdw6zYXzuEC3SVTY6x3d1OjBguv112LMT6LpFfXCWQ0d6NduSU0WrO6in7iOEoF4qN6y1HSQ9OQrux9uudn4e7jJK9ttHDrSKzejGocssCjGvhI4CuSOXKpcLo+xlBMpdu5cdB0QiNuE\/j1BB1OBy03ZpGGDlLzrjpWVlYYGRnB4XBk5mt2W+6\/Umw1xbcTLqz7gXi221Xnsa9S5xnDiArcQidl+NHCEeTgKs7oek6dVMgKkQkXYjlE5FWB7x4vcrJ0E04+NGcN\/+tbQUxp3LRWPkugxct\/N4UQm0RCtzrHU872Op1O84EPfIDx8XF+8IMflIx2CkGWZR544IGSVtnlsKffRLONeieM4KBAqg2YfTmMbrSiyOWJTQDStcGKrydNDpPwH8J5M\/8jDD\/ySvH5mFJIpT2oqcJacM7ZOfSjrSjp3C43YXOiB5JIscJDm8UgfHWkhpc2DYaKoRsYJ44XVb42JBm94Rh6ifpXUYzcQL3vXkKzUdKTS7jQcdkrf9hwKnCHJ8RrAZU6xbvR4SYA2UZfOIrHaaP92y9BdxNn3nVmw2clz4WzWESw11HRdq9fzIXVNH4r5sK6H4hn6wOkArs+iBqdRF\/RUK+8uCFxAxRrcF5YcOAc2ni4E4Ew0SkP3rbNtiGl0LfcjmEEM\/9OpcsTTzpePuIxH7zzI55sc7atItv22iSd4eFhfvjDH9LQ0LCl8129epW77rpry2vaF4+AqqpmGH87XTuFIh4MCAZUGhorIB7Ng5yV6ioHydAwVgW0Sxi2eqSrV6pYbdYS\/a2orxYnPEXXEGsGhu9WHUZIMobuRVqpbt5GqHaS6zJStLD0j3FjGI4dRp7PJdCUYkdTmpEHqicdgYR24CSpl\/uxHTmIpmtUb6YAdhkeaNB4aTVMg3LrC9nu8ICAcBJWP\/99lFovHRcO56RkYrFYplNqfHwcVVUz0dBeNhbcjmtnDyuaAqeFXFjNTe11RzwihZNrEF3HmAhhGy6vYZhyduLsya276qMLrLraaPRXJvUkZIW\/+Xru9yYe14oSnQktoSEMgVRCLsS4OcCaX+Opdri2lO21pmm8\/\/3v5\/Lly\/zjP\/4juq6zsLDRvJQdFefbXv\/u7\/4u58+f59ixY4RCIb7whS9w9epV\/viP\/7iqtWVjXxCP+WHrur4t4gkuFb6BZgdTNDxU+rUCkHqq7+xyLkwj2u9AGhnbUmumkGT06WD5A5fmMOruQE5vyH0Yng4YrL6BIWZrQp2aLrEggTE2hdTdibS8Ub8xaltJzEawx6q3QBBOFylfO1rvRrOGNDqB0dWANBlC3sKGp0pwrl7j5UCIeiU3RSADTi3F4H\/6W\/RH3kP3m28VPvMjArNAPT4+TjQaZWxsjGg0uifaarf7Wna7ndbWVlpbWzMurIFAgOXlja6uF154oaym2u1CtSKhkhbAaRvaGOSenEedLv8gpLsbiX63cBSv9s2zeLaVFnuw7HmWlAMszuXWW2ORdFnigQ1PHpu7+AiGpmmZ9nogI0RbbcRTyvZ6YmKCb3\/72wDce++9Oa\/74Q9\/yE\/+5E8Cm22vg8Egv\/iLv8jCwgI1NTWcOXOGp59+mgcffLCqtQEcPHiQj3\/843s\/QAq3iEfTtC3N75j21yMDhburRp8JcvdDpYdRRdqDXEIksBgkLUl6WsMeCVb9WgDD2wVDlalOixuD6HccAZcbeqsbTAUI+9qxD5UgHROahj6\/itLYjGH3kR6exb6FoVJR30gipmKM5l7Tu7RKyO3FiCZRy4nG5SFhSIyGDWySzng8hFP10GbL7eZShcHI730T\/dd\/mkMP37HpHNkGb0ePHuXll1\/G7\/cTiUSYnp5GkqTbbgBnYrejrWwX1sbGRl5++WWOHTtGIBBgZGQk40C6Wy6s1YiEKskR7I5lpKExWI6hLEyUP7\/NRfjFVShhx25\/dYHE2w\/gjJVWGPnu0zYgl3ii4RTlR0g3OttKEU9+fQe21tX253\/+50V\/d\/DgwYrutx\/96Ec5\/\/6jP\/oj\/uiP\/qiqdZTDvoh4JEnalv319evXCQQCtNa3sMTmLqvJZwMIGpAoooANSFe21lUnVDux7w+iPOhBoXINN9iQttF7K+9Gk4RAXxdIU+NVD5dG3A3YbsyWP9BEPE5SOYyYXUTaAukYHYdITKwi4oXVF\/wiwppswzA2UmhFz2PAXFxmNaFgl2WandDpABxw3ANX12NMpdwEkzE6nHYabBvPn4phMP4H\/4Ch6Rx51+mSazWJqLm5OWMAFwgEMgZw2UOcfr9\/xyf99yrVZUYb+ZpqxVxYCykqbxcVpdoMA3vsFRRXGqmnH7GWQlkt740lkIjNOBCLpQlFAuLPLWC\/VI8cK5w1WcPLM\/+0Tn6KOLyegApq8+lYGkqUU\/I72mDrXW2vB+wL4oGt2V+Hw2GuXr2K0+nk4sWLvHKlsH6XoQmiETdeb+FNUKQ8yAtbMzPT3e2I9UHigQ689dURj5ZyIaWKe\/AUQmo+gVCacBKt2J43YXMhzYaqUrg2GjtIXhtD8nmx19TBeuXOq9rBkyR7x6HM9eqcadaTKklNwaHcOjaSklhM2NF0mTq3hE\/R8RX5\/t1bozJFCnfQiyJUBiIRXF6ZTuFANQwm\/\/B\/oacNjv\/M3SXXki0fYxrAHT58OKc+0tvbi2EYOdHQdmRDsq+7FyjUUVbIhTWbhHfahbVsqk2P4oy+hGwzoG8CliIoocra\/hN0kL5WWTpaiieJ9KfwHXMiFRj8vjbXDoQ3\/dzQBTaPg3S09MNZuSHSfOLRdZ14PG6pU99uVBvxzM7O0t\/fz8GDBzl69CiSJBXsajOxOKzhLTBoK5CQrlSftjKRnNroKEv3jKK9pQW1wM1ZCIa\/A16tLsoyWg+jvTSxcb0zx3BEKmh9lhT0uBM1XvmMjnC6SSynQNMRa+ukGuoQTheORGliFTYb6cZDpK9V3tlX49CIyIKliIO0ZCedMqi1CRrtAEZFqgfdwLQzyHLCS4fDB2kIGGkUjwN7ymDq899FT2nc8f77Kl6Xifz6iDlFbw5xmkrTDQ0NWx5g3cuIp9S1C5Fwtgurpmk5SgpbsWkulWqTY1M4Uv1IsoEYWsYIGsiGgu5p2OhEM7SNMQI9jZQ3\/Jx2d5D4VnU1UGNulVjDAdz+ZM5DmqE6+ObfFu8cNSpQRinX2ZZPPJHIRpv3TnS17SeY3ZT7osYDlROPruv09\/eztLTEmTNnMikCuGUCVwg3ngpw5Mzmp1ORciMvVl80B9CcftL9N+sXmkZ8wY2vtTzxCFklPb5QVbpMKCqJ8VvuoameUeR7O7GFS0dqKU876o3Jyq+DRMrVjpi7Ve8Sq2ukfB5Ut4JSRHxU+GtICv+GyGgVMAxYizrxqgahtIHXvrUIoMvpxKvEuRFJU6v4cco2iBsIICzZ6PnCD0mnde7+2Qe2dH7YPEVvStuvrq4yMDBAOp1+XQ2wVjtDU6kLq\/m\/SpoUiqXabKsvY5MXAQmtPwTPXUVKpYqK4AhZBrsd7A60mhaio9qWNrd07yTJN5\/Aqd36zkxp3YRDxed9PHVeQmUyAuXUC\/Ibq6LRDaJ7o0U8TU1NzM\/P75+Ip5JUWyQS4erVq6iqyqVLlzalOQq2U9\/E0Pfn+amPH8up8wgkpNe2ZicNkND8wK3pZ61vhHRrFzaCpV9na0Jdra6Dzmg6jDGW1TxhGCSH15EP+FCShcluxd6ArwrSAdA6TmY60LJhD0eJKz5sNjuOdC7BG62dJOajiHB19tcpTWIp4qbu5jxPvZxiNuGkXtnaMHGdzcY9NTqvBldpUm8l1FVhoEow\/uWnCM+GuPT\/fduWzp+PfKXp7I240gHW\/ZZqqxSlXFjHxsa4fv16RS6sm1Jt6TjOxSeRvRJGXMa4MoXUU14KSjIMSCTQ7T6GvxsBJLpb3BCr3jE48fQQyjtPYAtvfHf+\/julZ3UUR\/nmk4mRCRyH3UUVxwupFjgcjn059LwdvPWtb+Wxxx7bP8RTLuKZn5+nr6+P7u5ujh07VvApyTSBKwQjLYhF3Xg8t+o8IulCXq5chDMbAgntep7khhDEpxVsXcVfl7J5ka6Xl+TJOa3TTfz65sYAEY6QCHfiskeQ83JSRkMHnr7q6lZ6ywFSfcXTZLZgGJobEbYQ0s0vtH7gBImBqQ0\/62pQW8faVJLarCFSRYJuV4LxsJ0Gu1Fxu7VuCFYkiZlQFKds406Pi1FCTK0m6XT6qFU3HlBkCQL\/cIXvjK7wU1\/6VyjKxj20Uw6c+Rvxfh9g3Ukvnq24sAohctagrI3iCL2MqKtHTC1h9C8jjRbXTMyH4a1j5DUn6fWNGk3oSDf+WOUD4dmI\/mAU31s7iGsqvVfKkJetfO5CpMQmxXHTiVWW5YKptkpkj15v+MQnPsHY2Nj+SbUVi3gMw2BwcJC5ubmML0UxlKrxACwM6xy5d+O\/txvtRNRaKNBZow+Ok+o8jF1aKfy65RS+Kt0ONV8nRAq3ihuTM6TuPoYzfqveI7w1pCfXkKtpJvD4Sc6EyzYEsLSC1t6CgoTe0E2qQHRUDqGaWqSggUct\/Dkc8qWYiaq4FYG9SLt1REhMhNMIZJpsKl5V4YS7NvP7O7Dj8qVYSQgWkuv43U5ahANFBqN\/mm++78\/45499FFft9hSei0FRlIIDrKurqzkDrOl0eseMz6pFtTM01aCQC2sgEMhxYTXdOIVhYB9\/AlVdQ7g9MDyDfmUGablyLTXD7WO0r4bE0q1azPLlJTznD6DMVBf1A5DWiLyyyrPyMSiTwRBS+c+wwV\/PqXP3ZBTHA4FAplmlrq4uQ8Dm\/5vE80aD3+\/na1\/72v5wIIXCEU8sFuPFF18kGAxy8eLFkqQDuSZwhTDydCDz3yLhQlqpLjWUjUSgxO\/GCudzQ0odvqXqhAmFv47k1dLqBKlrw6yKjdSSUG1ocSeUyElvuoakkJLqEeHKXmPMLZJoOE5qovpoUT98FGkxiRQr\/bfq9GgISRC9uSendJiISPSvK0xGVNBUDrpcHHI58BaRpj\/o9HLCm8atpPHpLsJCImiohA0ZWyDMP7z3v7M0uPV7oBqYw6v33HMPb37zm7nzzjux2Wyk02muX7\/Oa6+9xvj4OKFQaNfSb7vlPmq6sB46dGiTC6uTFI7r\/w+yvAyqijG+gv70QFWkIxwuJsaaiM3mNwBIzI\/qG7WfLSCheHl5oPxrKxIKvVnjMRXHT506xUMPPcR9991HTU0NkUiElZUVnn\/+eX75l3+ZH\/zgB9TU1FT19ynlPgobf+9PfvKTtLe343K5+Mmf\/MmKxJm\/8Y1vcOedd+JwOLjzzjv55je\/WfGaimHPiSd7iDT7yW9paYnnn3+e2tpazp8\/X5F0RCF16mwMPjmPQEEgI726NXkb2NBIU4aKe3noY9MkjZbcn8kqzvnKW5JNpKX6smksCbDPxtBddej+Lozp8jMOOddoO44+VXmDhX7kBLHXhkmpPqjQJVbIMumDx4n3zSAZlW2sDQ6dlAETCQdRTaXRodLtlmnI90YoAZ9q50Kdl4gxC8JAMYwNGaW0TFJS+N7\/8Vcsvby4q7UWczbm6NGjOJ1O7rzzTtra2jI1zGeffZbr168zPz9PaotusJVgt4gnH2Zt7I46jZ+sGcPb6EJye1nvXyX67CBSme7JbAibg6n5TsKjheucyeU40cYjW1rnXw74kGzluxS1CpinUFebOcx74MABGhsb6ezs5ODBg0iSxNe\/\/nWuX7\/OuXPneOSRR3jmmWdIlxHlNd1HX331VV599VXe+ta38u53vztDLp\/73Of4wz\/8Q770pS\/xyiuv0NraysMPP0w4XLwh6oUXXuCDH\/wgH\/nIR+jp6eEjH\/kIH\/jAB3jppZfKvudS2HPiMaGqKrquZ1Jr165d49SpU9x5550VpQMM3SgrP66nDOIxDyLuRNqiCRSA5mpDTpdOj8QHwxhZm5lwtiEFg1VdRzS2k7pWoRZbPEFMayc9WJ36gt52hHRf5eky0dJKrH+j3qQvBkilbUiNZYQGPW4SDZ0k+6tb20TYhs8GB5xJVjUDo0q\/oGycranDo64SNjaiOpsMSiKNasDc44O8+t+3ZoG8E3A4HLS3t3PXXXfx0EMPcdddd+FyuZiZmeHZZ5\/llVdeYXR0lGAwmNH02gnsFfGg6ziu\/S3e+adR6nwYDe3EvzcNX+9F3IgTXnSybjSzam8h4Kwn6Sj80CkUldngQYIDwZKXW3hlEaO1vaolLrUe5cmXgugV9PMnU+Xrm5XM8dhsNjo6Ovjyl7\/Mb\/zGb3Du3Dl+9Vd\/lfHxcd7\/\/vczNVX6+\/PTP\/3T\/LN\/9s84fvw4x48f59Of\/jRer5cXX3wRIQSPPvoov\/3bv8173\/teTp8+zeOPP04sFuOv\/\/qvi57z0Ucf5eGHH+YTn\/gEJ0+e5BOf+ARve9vbePTRR8u+51LYV80F0WiUl19+GV3XuXDhQlU5zlKt1NmYH9I4EHplW4ybGi88iJoNMbvAams7TfURDE8DRk9\/1bKYyWAVMyGqyvpAELXpOLXa9Yp04wx\/PYmxyglYt9lJhoAs0tUDIRKaB0drCywUSFs1NxNZN2Cyiny9AWMRB61OI+OtcsxrMBMDBfCqlf\/1YsJgPBoibUCT3cNxr8KLgQnsziZaJC+yELgUCD1xg68OPM6\/+NL78TbuXm49P9LazQHWvSAeeWkE543\/heRR0WvqSdk8pL\/wNMbMrdy1lEihTK9g3v1pIOl0kqx3gceG0w4uLcZiqIPVqyVy3iaExOKCnTZFgQpGNoTdzh98byMVnCghtWMinigvFFpJO3W+QGh9fT0f\/ehH+ehHP1q1mGq+++j4+DgLCwu84x3vyBzjcDj4iZ\/4CZ5\/\/nl+6Zd+qeB5XnjhBX7t134t52fvfOc7X\/\/EYxbUEokES0tLdHR0cMcdd1Q9iFeqlTobff8wwZF7q095mTA8DaSfr0x6xjaVxKiX0QMaklFd15fRcgjt5Srmb7oPk355jvRyCPX+u\/CtXCt9vGojmXJDvHJCiNW2wvjm441QlISm4+zshJlbnXTi4CEioytIycr9iTQd5tNu2lybX9PphqimMxcTtDoL3x+aIZhOxglpOh7FRpvDzWFXbkT25vo2xmNBQoaMqvgwUjoeRcD0Kt94359z9jcf5tQ\/26zxdrtQavO\/nQOs1eikbRuGjuO1v0FNzCP8PgxZRhcekn\/0FMTK3x9yIoVrbuPh0rDZeDXdhRqJU6myY2wmTPzCcVzT5ccYrrmPMDa70RwUiZS3r49XIBRaLfHky+VUSjrF3Eeff\/55AFpacksALS0tTE4W32cWFhYKvsZUtd4q9px4hBAMDw8zOzuL2+3m9OnSulrFUCnxTM3KaOf8qMnyUUshaLofqIx4xPIq8eQ92CerqycJWSYxVYVBld3O+nAw88\/wa5OoD9yBa6n4lyzdcARjoHKFgXBLJ4wWJykRS5CY0nEeOgCTk+hHTxC7NllVlBdLy0Q0G\/Vq8S+pR4UjPoORsKDZqaAgsZrSWEoZSEi0uuy02n20lqkJH3LXkjZ0bqSXUaQ64oZESkjYDJ3Xfu+7DD85xE\/\/l5\/JtFzfLlRTW6p2gLVcXXTXmgtWJ3G++jXwORE2FWF3kI6oxP\/shxtdI1VAeH30r3eyOBKl\/nA9tgq\/iwBzLy9z+K4mpJUS9dmaWv7gG7eiqLVAlHLxbySUorbMMVoZci3UTr2V4dFi7qMm8v\/eldwDW3lNOex5jefq1assLCxw9OjRbQ1LlWulNuHx+5lOVpfvNSEkmURPFUKbwOKAhqZU56lhtBzBWKjChrrzMNpa7qzB2tUlgo7CtRet4zjpKkhHNLcgJstHiSKVJj66ROLkPcSrJJ1gSiWpq0VbrLMhS3DcL5hNwWAkhVtxcNDl4oDLiaOKW9omK5xyuGnxhrGpAqckUATEDYnJ58b5H\/\/8z1ga2XotsFJs9UucKdLfcQcXL17k7Nmz1NVtOLC+9NJLvPDCCwwNDbGyslKwZfu2E48Q2F\/7e1wvPg4OCWQJ0dxEciJG\/C9frJp0jIYmXpttZXFko3stMBZEPXmg8hPoguWwH0q8538ItBJP3LoHV1ciJX104KZQaBmkE9Wn2rbSTm26j549e5bf\/\/3f55577uHzn\/88ra2tAJsilaWlpU0RTTZaW1urfk0l2HPiOXLkCBcuXMDn823L\/rrSiEcT8PQLW+tgMvwdGKtVREo1NQSuLrCQOlH5NWwO4ter6EpzOlkfKDAzlNYIT8ukXLldZ0Z9K8mhyslT2B0kogpShQOiWncXwRfHiHd3ICqknsW4HRkJu1LZ3yWtw+C6zGEnnPSpTCViaFssui+nosxG1kFexu8VGA4FoQs8MijBGH\/74f+HJ\/\/rj25b19tOndccYO3u7ubMmTO8+c1v5tixY0iSxPDwMM888wxXrlxhcnKSSCSyaXhzpyHNjeD6x\/+Mbe4KotaP7m9AtDcReDbI0rcDpDqPo7W2ISq8vtbWxfPXvKwv5H7Pp2+EkT2V17nCo0Gi7YcK\/i7S0sX\/\/b3c75KhC7z1pWe9NoRCS4fY6TIRT74tQiwW2xG5HNN99NChQ7S2tvLkk09mfpdKpXjqqae4ePFi0ddfuHAh5zUATzzxRMnXVII9T7XV1NRk2H5bxFNhc0EyafDyM+v8v97iQ0lUJuiZucZKdZtEur4NxDKrL89R\/5Z23InyLcsxdyuEK\/DMuQm9\/RD6TOHjlXiK1bVaWvxJ5FQCYXeSXAdSVdRcWg+i9VdWa9Ia64gMLSIB+sgS4o5DSNPTRa8nkFjW3XjVyluGoxosxhUOeDY2LFWSOOWzs5hMsZqSaLGXzrYndZ2pRBicNuwpaLb7OOa+KcRopKlR0wRqXcytpHG4bahpjcmvX+HPnhji7Z96F4cf7K54rZXidmz+lQywOp1ODMMgnU5vyQerIJJxbE88hi05i+RyIOoaSBlu7K0eAs+uE\/z2RmdWennju2c4\/PiPN2O368gLs5Dc\/AAZ7zrGiz9MYRTYH5LhJOmj7Sg3Ko\/gF66E6DzgwhHPatuWJP7kZRuwOXpx1zoJr5RWL7B7SytUa2VEQjVN23bEU8p9VJIkPv7xj\/OZz3yGY8eOcezYMT7zmc\/gdrv50Ic+lDlHvvvoxz72Md785jfz2c9+lne\/+91861vf4vvf\/z7PPvtsVWvLx54Tj4mt2CJko5RcTjYS8TRCSMym2ummcukaYXeRfGWiqjWtL978ohgGc1NNHG0uTTwphxvRP1d5isrjIdhbegBSLAYJ1h2hThog5e\/GuDFR6dkxDh8nca0y0jFUlVBEoOi3Io\/YwDSOribsyTAimEfydhuisxPPUOWyPutCJZoStLk2f0ItDpUmu2AoGqXF4cKWFcwvJOPEHTKJSJJ2h49OZ\/3NNWy+hiKgSY9TWy8zHUqRlhTCCYHNiPO\/\/\/03qLm3k\/f\/0buxlzD1qga7NT9UyIF1YmKCaDTKs88+W5GuWjmorz6J2vN95EY3wm5H99SQWgPXGR\/rl2Os\/c3m0QA5qRPpvRnhqw5chztw+hWUwCKEQgQ7TvHa90OUskqfvrLAsZNNpKcrTIumBCG5nSZujRH0OVt5qa\/wg6jNXZ6UVVfpY8o1F+RHPFsxgSvlPgrwG7\/xG8TjcX7lV36FtbU1zp07xxNPPJGjgJ3vPnrx4kW++tWv8ju\/8zs88sgjHDlyhK997WucO3euqrXlY8+JJ3uAdDsRT6U1nsjNIdNnX5H50P2Vn19ztkK6im642lrWr98qUkaHFwl03Ul9srhUe8TwY9cq7zLTmroRk+Wjo8TgDOsXHsTWd7nic4vGZmJDlaf81hsaUQrUgZLTy+i1XtydrRgzG7nilNsBnlrSVZDOQkzBbZepsxdPqcmSxB1eB0Fdoz8cwRA26m1O6lQPNTrgqlwexyYMDvsgnNZZcdhJxg10SWLu8gxfePt\/46F\/9xDnP1S9zUIh7HpL880B1kgkgs1myziQmrpqpgNrQ0MD9fX1ZR1YpYUp7E8+jpQMIdc5MSSVNC6khIHznjbCg0lWHitv4YFmEL+xRByQ3A5Wus4x86MFSpHOzRWwErdRI0tQ4XByaChI3aWjqJMjaHYHX\/qnEteoQItNdpTeSksRjxBiR5oLSrmPwsZ99slPfpJPfvKTRY\/Jdx8FeP\/738\/73\/\/+qtZSDnte4zGhKAqGYWx5QC4RrmzaOby+QVA\/ejKI4ag8lE2OBKtaT7qubZOXzPyVGJpcOB8t6luxjVQh31JTw\/q1CtUG7DamX5pl2l9ZmkjY7SSSNkSFbdCxtmbkEs0HWjBCeCaEfPwQclcbiZRCeq6C+YubmIzY8NkkbEVF8XMxG9O4y1tLjQ00UX0UrQmD8dgqQ\/FVhE2hS9Vo9Ql0XQMhcKZ0XvmvP+K\/vfsvGH9tawaCJvaDOrWpq5Y\/wDo9PV16gDWZQP37\/4Hzm3+IFA0iN3tJ4CWJG6XOhnqyjei0ztKfVKfELg508NxaMy\/+0zKeOzsres3a5DrKiSoaDYDZaxF0p5MfpdtYXit+rwcqGfwu0xhVqqvNrLfdjhrPfsWeRzwmzI62fF+KShCNRpkeLT8VL8kS4eBGDlfXYF7voIPyT2KGtwnt+crrLgDB+c0bnrYWZVG7gw55c3v1+rKOWkUfWLqmDTFa2aYXbqxFjERIDaeJPnAKz1RpfSat7TDa9YmKzq37veiL5bt6RCpNLJiE2lqkRGUde7oBU1Ebra7KNueULhiNaxxxb0Q2h11eDCEYiq3hk9341eL1n7V0nIVkGJ\/Xi1+30+VqurnwjWt7MThRszFHtKTJrCVAmgjwj7\/8ddTuWt7zn\/8FrceaKlpnPvaTOnW5AVYhBHV+H0f7XqFmeQjVpaM5vKgNKqE1FVe7iuwAvamR6IrC7FdWcZ04hJiaQ8TLZCVsKqsdR3jx2QBmlDPWt0xXvYdUoLgRm4mpgTW6\/G6MUGVWCFo4zXhHF3\/698GSx8mKDcrY2osynW9aUsPQDeQC7flmpmcnutpeL9hz4slOtcEt6YhKsbi4SG9vL6pR\/q3YfQ6M1Vs30POXFf5VaUdkANaDUnWqA3V1hHoLP9GvvDxH\/U+04krealEMeRpR+ytvn6a+vuJox1Bl0gu3CpsLry3Qft8JXNOF61vGoaMkeicqOreQZDR3HUYlwqd2G\/EEJK9MYjT5qZUNxFrx5o40MgsxpWLSCWk6K0k45MqNKGVJ4g6Pn6ShMyvF8SZVnIoNTRjMJsJIbhtSXKfNUYNP9WxEqSVmMD0qHFINOh0wl5AIpTSMmSD\/4189Ts2Jev7F\/\/U2Dpzsum2qzzuJStSpcwZYDYP0t7+G46mXkH0Kqksnqnvw1CusB+zUnHCCgLi3BV1zMvh\/9YLYMIyWVBX\/8XacioY+MbdZQaC9mdfm3Sw8u0Z2ai0d19Dq66EC4klHNZJHW7CFKpOZkrxOvtizhq6X\/nbHY+Wj5liifKpfS2jYC3S\/mcRj\/i1Mb6c3mvtoNvbNt0OSpE1CoaVgGAZDQ0P09vZy+vRpnEq52WGw+3I3pe9\/dx3DXnrGxkBG76\/S4Ky2tfgvdYO52VtPxgYSxlJ16aCUqxm0ytJOyfYWjGzxVEMwfzVAon2zcKJoaCA2XIV69omjJCYqO14+0k1yPrjx38sxImGBeqxw6i+uycSEg0ZnZaSzZihENZl2Z\/FahENWOCzZSUtxesPzrKfTdDjraDe8tDkqEzoF0IUgIimsxqHeIXHcCw0iTa3XRmQowF99+G\/5ow\/\/D154+iVmZmaIx8s8Ke+VXlo11xYCfvS\/Uf\/zb+LueQ6lxobDqRNOeVH9CsF5hdqTTiQZYs4WDKeH67\/Zm5NqFprBev8Ci70rBA0vxrEjGK0NCFkifOQ4330NFqYLRypTvYt4j5f4TmVhtmcR28EKjlVkvp6WeHVoHruz9EPr6mp50osnyndmFrO\/Nus72X8LK+LZRVTaYJBIJOjp6SGdTmc03SrpalNduRuTlhYsiQ5aGS76mqitHjVSXR5\/fa50bSQytMBC02FaxRiJ+i7UySrO39RMqLey44VNJT6z+cssNJ35\/ggdJw5gX9zoWhOqjYTmRiQq6wySDnSxfq0y0U\/biQOs5R1rxJKsXZ\/Hc0c3xvAUpvzaekpBQsJOZfWlqSjU2AV1tvK38mwyjtvm4sFaLxEtxVh8kSZbLd4SKTiAkBZnWYuQSqdpd9TjUSU2JNIMkKDVJQEp0rUSsxGd9evrPP3rL2Brc3HwX7bTfrIpU6ivra2tWg7qdqEc8QghML7\/T6gvP4maDqNJNgyPA489TSC5odxsk2T8p3xIMoSVJpSWWnr+369tqm9mQ4umCPTMoXU2MuKsZf3pYMnjQWJuPkatQ8VIlntIk1gMQr0ib+Rqi+BKSwP\/8L97QYLaFjdLk8Xn84KBKA0+P3qJhz2b3YVB6Rm\/YrM8hcoLVo3nNqMSM7hsBAIBenp6aGho4P7778\/UhiqZ45Htm9\/ui9ds\/MsSslxqxE5VvXb19YSule9+m7+apPEBL2IsWM3ZSSi1YFSWw062NWMMFl6LkUwzN6rQcbAN28o8eucRtL6Jyhbh8xBZjFXUQaTU+whNFG8kiA7MkxAO3HKahK7gVARl0uUZjISh3SVX5FQ6EgvTYvfgvJlH86p27vY1bKTgCKIkVeptG1903RCsEmUpGsKnOGlz1HLA7irYfp0NmxAc9EjEHILlZBJlVTD4hSFGmmc4+S+P0HDXUkbWxnTr3A\/NBfkwwhH0r\/8dDA9id0RRSRNPq9gbFFxOnZWYD7tT4PGnSNU1oDog4m7HebSZ3v\/PFcp9YaTORkaiboZeCQIpTjzYwUoZRZDQUoyWB9qI95WvtYZmwzSePYAxUDjltnqknUf\/\/laHp8tffhv0NboJLhSXsUrEtXK3By8\/9xLtoc6MyKsp8Jrf0ZZOp0kmkxbx7BZKRTxCCCYmJhgZGeHEiRN0dXXlfGkqUS4QBVSNn\/jOOu++24mU3lwgFw4PyZcmKn8DQKqmFSifmpMjKeb1u6hbr8LXorWNSF9ltR3JaSc6VXpAVo8mmJv10Hb6NMkrhR1O8yGQ0Opa0G6UVz8QkkTaW4O+WPrzcEoGKwk7sgxOWSvbPasZgvGoTJe7skzx9UiIoy5\/QYJyyAqH8aI7Da6Gponr0OlspF71Uu+p7IsvgJikEE3oOCTw22W6VQCdDh8kohHm\/vwqkx4XHT95hI5\/3cnS0hLDw8MIIZicnKSlpWXXo6F84kkPjZL8yt9hX5khLSl46tKo6ERTdtwtEopqsBLx0dCuodogaNRT1ygT9bXhvKOdy795lZWpNPUnurBLOsnR+dyHkyY\/N5JORl6JA7ceFEd6Fuho8RFdLH2\/jlye5+jBWuJzwbLvbaovwIFGL\/paLllo3c38x3+4mntwBSVlV62zJPHEY+myxHO4+xCKx57jwlpfX4+qqjkRTySycZ03co1n3xFPoYgnnU7T19fH+vo6DzzwALW1tZuOqWSOpxClJRMGy3InzWzeeDVbC+hVFP2B4Exl80QA4\/1xlPaD+AMTFR0f1z1slGrLQzrUjXitPDlokSSj49DW0IiyWtiuOwcnjxG7WtlQqe3OIwQrOFaz2XBoBrIEqykbHlXDrRaOBJI6zCcVutzloxzNEIxrCY67y9dwlkhyxN2AV3WwnIoyHg9S76ihRi5cA4zqSZa0EJqh02Krxae6cBcxqHPKEh1uCd1IsPa9Xl58+ga47TScaME4LqM3NTE4OLgpGnJVMXe0Fei6jnZ9nun\/+TSelTF80jouCUKajfrmJKosCCad1HUINF0lIbtoObCRLgpE\/dSfUkk2d+E61s7448MsX96ohazerIk6av3UHqqDaIJZw82rLy2zoQyQ+znpSYOQMEr1dAAgdAhJ9ooUqbWERqy2CUcW8UgNPn7nhTFSeSm4eKp8V6ZSpg4UDqUod5c5FAddhw5y6NChHIHXhYUF0uk0V69e5dq1axkdtGpqPL\/\/+7\/P3\/3d3zE4OIjL5eLixYt89rOf5cSJW3JdxdKqn\/vc5\/j1X\/\/1gr977LHH+Pmf\/\/lNP4\/H49uy5NhXxGOawWUjHA5z5coV3G43Fy9eLDrMVs72GqBYFu\/5q3LBdFviRgUbcTYaGgj3BCs61NZSx9pYkP50DQ\/U2VC0MjWNzi6iVyuTIpdcDgJDla1dPdFN4MoMk3VuupubUUt0qCXqakj1VVZfsh1o21TXKQhFBr8XObGRH3cqgrShsJyABoeWk3YLpyXiukKro3x6Kq4bzCc1DjrLC7QORAMcctWh3oyIm+wemuweBILx2BIRTafN3khIjxOVU0hpQYezgYOO0lbsAElDEEwZ2GwKfhmaHDLoaQinMV4dg1dh\/CujSD4XarMPcSjEau006VrwHaynqaVp27UhIQSh4QXWXp0gPDhHaiGAPRTAlQ5R40xTU6PhkDcikHXdTlNLAlmGQNJFfZvO6oKK5LPT0rpxj4Y1P\/V3OEi3dmA70s765QUG\/zJ32FiyKegtDbw6YzA5reNVI5QKZYPTMTrvrCU+Giz5XhZHApw820nkevn7cL5viWN3t5MenUNy2vmT+Qjzgc1Ry9r6OmXDHqUCodAyAUp2jccUeG1ubmZ2dpb5+XkaGhr49re\/zVNPPYXT6eQXf\/EX+amf+ine\/va309BQ2mzxqaee4ld\/9Vd54IEH0DSN3\/7t3+Yd73gH\/f39GQKbn8\/9G333u9\/lF37hF3jf+95X8tx+v5+hodwu2O2QDuwD4slm4fxU2+zsLP39\/Rw6dIgjR44UZex0PIWowH42WcTU6cnvhvmZ0zZk\/daNYfia0Seqc8xM+VqoJM0GIBrrYWyB6Nw6E11nOBJ8ueTxsUjlfyrpYDdaJYONqsL6VBCA1FqMSd1FV1sL9qXN70HYbcTjEnIFYqGSy050PVVRDchxRzfxnty8vSyBU4Gg5EIkkzQ4DFaSMqok4beVP+daWiOuQ5ezfKdjX2SVk57Gwu8DicPuBqJ6iun4ChIybrsTu1BRpeIksE4cTbFhSyn4FWh1yhSrnid0QTCtoSQ0mqNxkmOLWeeBgCyjyRKGx4bDa8fhdaIqKqrDhqwqyHYV1W1DEQbpYAwtFEePJTGSadANlGQSh5FCsslIWhKvLUWzK4XLphORFGq8SRzSRgQQdnhp8W88AKym3NhcgsS6QHYqNB\/cOCYSV3EedGC0tKAcaEMLRHnxN28159g7Gwg6vbx2JUBk8lajSuPdLSTKqDgvjkVpbfIQWy7dRTY+GKDd7yIdKjc0LjG\/qNFkV\/nfDhcvDhX+Pi8sBGiSWzFK3K\/pMk1PhiawuR0lXZCLdbUZhoHdbqerq4u\/\/du\/5fnnn+fDH\/4wjY2NfOYzn+FDH\/oQ3\/nOd\/ipn\/qpouf+3ve+l\/Pvv\/zLv6S5uZnXXnuNN7\/5zQAZhWoT3\/rWt3jLW97C4cOHS743SZI2vXa72HPigVtmcGaqTdd1BgcHWVhY4N5776WpqfRgXrJCnbZYkX78RAwCti4a9VtCg+l4dVYGAGtVpNkCy7eOnXh5gcYLR6hZLWJB3X2Q2OUKu83cTgJDlR2rHj9A8uotgkqH4oylFLo6G\/Cs5qYYE63tyDcqjLi6OkhV8ESaavIQv1a8WGxLp0FVmHP6caciOCtQr55LpHDKKk320tGBJgQ3omtFScdEmBShVIITniwZeBfMJVZZTkWxyQ5anY3MxJZJGima7DU02v0bed0iS4hJEqG4hkuRqLfLeM2OvKxGg6RhYDjs2GRwp9PIoTTcHIxMI0ioCrIkoaY1HDc\/l7QAxWVHNXQULYlmgCoL7IqGU07TVn\/rngvrKo21cVRZYAjBOk7a\/CGEgMWUD7dPps4RJpq0Ude1EQmmNRDNdajH2kjb\/aiGwff\/3QCiux28TgaHQ4y\/HAI2RxXj1xa581wH81eL1yjTCQ3DVwtliCcZSZHsrkcuSzwQWYwyd287f\/V3xR\/sNF2noc3H8mzxrrRK2qVtXntJ4tHihfef\/OYCTdPwer187nOf4w\/+4A+Yn5+vut6zvr4OQH19fcHfLy4u8p3vfIfHH3+87LkikQgHDhxA13XuvfdePvWpT3HmzJmq1pOPfTPHAxuptkQiwUsvvUQoFOLixYtlSQcqt0SIhovfFK8N3MqnC1klUWEdI4PGRiITwYoOVRtrCIxndZsJ6B91ki40iyRJRFarMAs72IVWyeehKqzPBDf\/PKEzN6eQ7ui69bNjR0hVSDq2kwcJVUA6sseBlJTLtNGCWuvGqekInwe9q7mkaM6CkKlRbfjU0qQT0dMso3HcUzp9MRNfR9cE7c7N2ft2Zy33+DuoUxWS+hotPicOxWBdC7GcWsPIWqkuDEKqwaoOcV3glwSdboUGh5xjDRNKGczHNSIIXDL4tBTOVApZCHQJEjYV4bbjsEn4hIZbT4EsSNlkJFXglDRsyShOI0qDO8VBf5w2bwKfO02b99Y9saapNNfGUGWBLiCsOmhrjm+4v0Y9NNfGqHOE0XQJ0ejFdjO7HXI04TvTgSbs2FprefbPFvnfgzJ\/84Ml\/ubbU6TLGM\/duDpPTUfpSsjswAqNd5f3y5rrX0W0lL6ebFe43Gbwd8PFxyVM+JtKn2u9As8dWxnh2HJzPCbMGR4zw9PW1lZVh5sQgv\/z\/\/w\/eeihh4oaaz7++OP4fD7e+973ljzXyZMneeyxx\/j2t7\/NV77yFZxOJ5cuXWK4gs+0FPZFxGMimUyyvLycsb+udPq7UuIJBYvfPN\/7Toh3fMyGpKfRfR2IUOXK1QApbzOVptloaYTJ3I08thjmRtudnIrnyekcOEzi1crOK7mdBAYqG+jMj3ayocdSTIwIDhw\/gCMRJlThUKnSVMd6pcZpbY1oQ6XJTABptxNteYOk0+txXO0NOPw20qO5rx2LCDpdAqnMPbOcSqALiSZ76Rz1SHSVdkcNLqV47n8stkSrw4\/n5hxQq\/\/W5hDXk6zIcZbXA0jI2GQbNZ4aVMmDYWy0gAsEa0lByjCocSrUO6CeW2m5hCEIJnUcCjQ7JNyGTjJqENAEGoI6n4rPIeEQaRRDx+Yy8Em30sVpHYRNp9F562drukpn\/UbklDIg4bDR6E+wEvNjKNDVditaWZNraa3ZeEpftrfReLENQ1FRm2t57Zsz\/MV\/yb1\/RvuXaO3ws1YkctCSBjEDZFXGKDETM359heYGN\/HVUmMDEtGkHZ+aQBQ4l+J38nfpGX7wbD\/19XVAaWJRnaVrOKsrERrLbJdlhUJLzPHspFzOv\/t3\/45r166VtC74i7\/4Cz784Q+XrdWcP3+e8+fPZ\/596dIl7rvvPr74xS\/yhS98Yctr3DcRz\/DwMEtLS\/j9fk6dOlWV5EglMzySIhEJFSeoUFAjaN8QJEzNV+4PYyIwVZlIKUCwiCDhwtVVpp1ZT3uyTGi2\/JOWCelAF1olvkSKwvrseslD9ESa8cEo63WdGBWkGVAUUjYXRhnfEQDleDvRMqQDoBxrIZEnPhqfC7I6uAwH21Hb60GRcJzsoMudGz0UwlQiik1WaSxDOtfDSxx01ZcknSkjSLerPkM6+YhpKVwaPFh3kAfqurm3po1DqptmReBV04TVCLJNp8Fj0OAwkI00MWEQlwULiRQxLYld1eiqgVaXjlvVcClpnD6JU3Ua99TpdKtJ6vT4hk+NSOWQTsQAyaNTf5N0DCFYdzrprNvYzJOoaDV2dEVlPeREFzotDbdIZyzio7Vrg3Rm9FoaH+pActjRhczqVIwv\/YfNDy2puEZcF9hcxTfgpYkgTadL1wtSsTTUlX\/CD85HcJ3s2PRzo97Bf515jR\/0bSjBBwJrNDT7S54rqZe+byOhBPYS7wuAMpG2VsSFdKdsrwH+\/b\/\/93z729\/mhz\/8IZ2dhQVWn3nmGYaGhvi3\/\/bfVn1+WZZ54IEHth3x7DnxCCG4fPky8\/PzHDx4EIejfEE4H5W0UksupWxa58oNN8LpI1WhB40J0dBIdKoyZ1KlzsvKSPGOs5FxF9pNGR9x8Aip+dIEYULyuFipNNo50U1yuXxbtutQC4PPz5M8cbz8OU8eIj5ZPtqRGryEK4iKHF0NxEaKt7KHhhdZnQqh3H2E1Fp5ch5LRWmyufH+\/9l77yjJzurc+3cq5xy6qnOe7p6kCQojgWSCRJAQYJJlA7oGAwbbyDgCxldYJvpiZGMb+\/PFkgGDMEEmCiQhzUijCZrpyT3TOedY3VVd1RXP90dP13R1nfNWjySk5sJea9aarvfUqRPf\/e69n\/08AmeSk2UuxuZotQXRSuqvRkdsnGqtE71GeaIZXZlHr4Eyg\/JkN5ieI4wOtyTj1sgETRIhs0SZQUbKZGl1Qo1t9W+3JodTL5GVZZazOYIUTpDTKzksUhKP4crDPZOUMeqTuDSrE106JzOWlggbVp\/R2aSG0ayO6EIWP8tIuRRmezKPIJxNGqmsW\/0jYnQRfnUjkl5HMpYmZ7Hy4KfVn52ZkUU89eIUZufxMfzN4hT6aMcMvh2lU269Z6YwBa9cZ029h\/s6jzIwU\/jsmGziVUlkqfT7a\/OKoya5xGJ5sxFPPB6\/6ohHlmX+4A\/+gO9973s88cQT1NYqq6zCqnzC3r172bVr11X9xtrvnDlzhlAodNXfXW8vueORJInq6moOHDiA1Wp9TmJwm6HL0RhLQ1F\/8qMoKU0ArlKaYSqzeVEwTTgAsvpLkFtK02vYDjodC32bczoAUlUFOUFhM29aLQsjkU3tczmWgZzM4IkJFmrqyanAYXV15UTOlnbWskZDXAYpLb6+klFHMiUrplDWm6bayczxIeZGl8hU+tFXKQMFMhVuKvU29IKJIZnL0heP0CIAG2TkHJdiE2y3q790k8QIGKx4DMoTx4XoCNtMPkWnNa3NUmHOodtwmZfSOfQmifCGtp6JFIQtWezrfOlUSiJgS+G+DDlPZGTiFj3bfKvPRu+ClnhOotkap9x2uSdHp8dtXb3WyYxExm7EZJBJe9w4XtaERr96rFqHlf\/ze12ceHyE2j3qTqH39ARVe4sjkYJjH42is4ojiMHOOUzuErLT6Rzxy5D5RLObP378B8xHi8ENTo84ghifKN1+YLKLF8WlZg01TR4lEbirdTwf+tCH+PrXv843vvEN7HY7k5OTTE5OFnEFLi0t8e1vf1s12nnXu97FRz\/60fzfn\/zkJ\/nZz35Gf38\/Z86c4T3veQ9nzpzhAx\/4wFUd30Z7yR0PgM\/nQ6fTPWcxuE2JwBlKn+rCXJrpns3LQq9ZdmHzpbLFxdLnN9Y+yYBrGzlhjvuKSbbNRzuZKj\/pTZAeWprCRAevrBqnz00z7AiAsdDJSnYL0cloyWgSIFXhgpnSKUlTY3nJ7nRT2E127PL1kSExsMB8f4S41wGV7tXD0UpY2yphJCIkQ4hmkkwl4zRYlBFAAPFsmmlitNrV00SXouOUySYsWgUGYjnHxegI1ziV0x+d8TGqoIguaDaZw6LL4djQ\/jy8nKPWkmb9emoonqPKkcB6GXK+mIakPodXE6cvbqdn2oDTlqPOfeUZ78uYaSq\/8vdAyk55QIawH93epjyN\/0osw48emObc0dVr3nVqnPA29ajl0skxAo3qkU90PoHGI055JmMptP5NNP8OLTLUZucvf\/J9MiqLxuiyOKKJxpaxOsWORWsSL15TGfFLkFFxPEqy11ebavvyl7\/M4uIit9xyC6FQKP\/vW9\/6VsF2Dz30ELIs81u\/9VuK+xkeHi7o94lEIrzvfe+jpaWFW2+9lbGxMZ566imuvfbaqzq+jbYlHM96aYTnFPFsonk0V6IBbM0eG7q6xqi0y83KeOmJHEDrsDAjSLOtt7M9sOLYHGuyVLm5aEeWJJYmNnes8UTxC5wcjTNuDiG7rkA7V5wOsoulnUmuzEFOQMS4ZuamMPNn1SHWAOg0yBotOYW+rOxUnOhAlGWnjXiVm0iPWEU15zCAXk+lSb0GsJCKs5iJU65Rh7R2REfZ4QihU4hkVrJpZrXL7FJwOulcls7YMLsVHFp\/YoagNVcQ0QAMLWdpcWULehoH4llavKm8WOZCRktKm2MmpmMppqeCBHqPnpD9igObWNFSH77y7nRGrLQ1yVATgh31SJe9YDaVZbA\/yzfvv7K4yWZyTAxH8JQrX7dcJsfM9DIWQcQy1RvF1yqGsw+fn8K3XT3C1Lc6+Mrckzw2oq7sCzAwXJrjzeYRZy5Kae6kSkTyoj6e51vjWROT2\/jv7rvvLtjufe97H\/F4HKdTeW45ePAgDz74YP7vL37xiwwNDZFMJpmenuZnP\/sZN9xww1Udm5JtCcezZkrMBZuxzaDacpsgktTptXzzkUky3s0LesVN6qvkjaapCCJv4vQ0TiOLQ3HOroTIllA21NgszG5StmGl3AsCgMWamRtCLPUrO8jo8DzDMSu5UIBkVYD0QGlKIdmsR06UliXWOi1Ex0unF51tlSyPiBVMnRV+kl1LxFNa0pUe0gFrUVBmrQugSYMtp76SHV9ZBI1MWMUxpXNZxqQldjmUU0uL6Thz6UUqKJ5IErk048lpdjuLv9sRHaHJ6ijg\/8qRYxpodRVOcEOpHDt86Xy01B+VWEjL+PUSLc4sDoPMYFyiwXalNpPMgt6tYQ2INZM0Ut+kgeYq2KDkGZnP8jfvLU6lxpeSJDNZzA7lSGFpNo7RY0EjWPQNXJzDGRYX\/od7FzA6CxeElhonB219fOKR\/2BoZpK+frEGTyy2TKhC\/K46\/eLJfnlFXEtcUenTWbOrqfFYSkDTf9ltSzme55pq24zjKREFA2D3W8jlZJ5NBktvfNmiI5tvGo0ub64fx1K9+vuz\/fP0BdqE28qV5eQEeu757SQJeXPBDqVAbCvzy\/TNyMytbI7CxVAVIqVAVVJwfIDW7yJdInqyNQSZOyfuE7LW+vLb5FJZVvoXWRlbIeVwINf5yTmMyOV2YoOzyAJJ4rTXiN9iw6NXngTi2RRjK\/NUq3ClTKeiZElTYylOOS2klllMR2i2FdPuDOTm2OMqK6gDJXNpemLj1OrXsWvIMiOpDG2uFGPLGnpW7PQvGPCaczTZM+ik1ectmoZyX+F5DuVMlLtX37WVjETWacJwTT3UFNZulueT\/O\/fH6FiuzI90OxYFHuZHY0CAS\/AcOcM5bvUI5ZMMkcCjer3ARKLSQxhNwBGt5mR2gR\/eegrPNVxpfVgbnaeyirxe+sJiB1LVhI7jrk5ccSeKIEoFaHa1qN4n0uq7ZfNtoTjWUu1bUYWQck2w1ywCaYXzJdXVf\/3x3NgKk3QmHS5SE5tDkatsZqY2iT3W2Thyvn0PDvBTPU25X3arcx1bC7a0W+rYWVqE6mu+jIW+0qjzmSXlfHOOLGGBmQBjNTUWsXSxdJkpbYd1SyWgFhrrUYSCwlh5KQx6UnFlCmUUnPLxLrm0fi8JBKQLneS81sVd+fcUY5xMYVBVn5FFlJxljJxGlTACEOJOdwmI0Fj8Wp+YiWCRpOmZkNNKStn6YgO02pwFjBpR9MrLGqW2eO+MrEmsil6pXnm09MML2vxaHVUkMTg1OLdIKC3YtfjMl2JknqW9eyovjJJ9qdsOBv9aCoKI305J\/OVL0wz0p+iq32Chv3KUd3QxWl8Depp4YvHRynfoV4bmxpYIFACYj05sEB2r43P9zzMAwd\/rLiNP+gS7gOteBKIJcQ11UxWPF3GBA3qII54dOsyG\/+vq4\/CFnE8a6bVasnlclelUZJOp5mbLJ3uSZfIvwLoLuP0F2MZhlw1JbeP6TavXKmrKkPeTNhl1THZU+igTp1cIu4vfjHlijA5lVVUwXaShqUpccSxZislXi5Ybc6LDa46sdHT40w6ysDnKtpO53ey2Fsa9GAIu5m\/KK7FAFiq\/SRnxedhbwiSEDhYnd1IdHSBzFSClf4oyxMrpO02pIYyqHYjG7RI1XaWLowiqwiJ6QI2XC4bFQqMBgDdsUkqTQ4sCsSTQ4kZ\/CYjQWPhxJLMZeiLT7DPXRhxzCSjrMhRavVWYrkM7fPTPD0zxaXoLC0aN3vsZfgvp2kuxMapMRSGtb1xiRrLlc\/mkxqqKq6cV+eSFY9NJmMtdpAjF5f4+Y+uXO8Lx4epU0GzDV2Yw9ukvkof6JzGJUipXTo+hr+p0PFptBocLQ6GKif4u85\/5wf9h1lcFkgTrIgdx1xEnJ6dmhHPI3PT4haExXnxIlQN1bYx4nkucOpfNttSjmfN62823RaNRjly5IgqB9J6SyY3AZFel4v+6uEkcom6UGxs89FZLLk5cEPGbSqCW2eSGdonbWTWdRlrHFbmOjZLY1PFymTp2ompLsjiJlgKzDUBcqkr92hxaIHeKZnFsnUreI2GrNFUOg2o05CWlYEC683RVsFCh1iLyNESKpmGyzn1yMuFx5SKJFjqnCHat4SxqYJsUo9cGyBT5SLjNhU8B7aGANrlFPqE8jPaER1jm92PUVtcm+uOTVBttmPbgHqLpleIapfZ5SxcXEzl4gwn5hmJJ+mIxMimjTTbytFrcuz3FG47n4rT7C5MCY6uRGkKXZkMczIsm3U4zKsLoLGYDq1eiy26jL2+2In+978VT8Sdp0ap3qGc0hq9uERFm3J9NBnPkJRl9AJ5gcmJKEa7EXuFjWRLhm\/Gfsi9j93Pd48+Qjqb4fz5i5jN6uCf7u5eYeP5wOAwWq36+NTkPEazep9XciWjWs8CkHNi+QQlVJssyy8IuOCXzbaE41mPagM2lW4bHx\/n2LFjlJeXoxMUh9csqYDS2mjpdSvcM11RJixu9Y2DZWRmNscqoDEZmOzanK7Pclw5KlqaWOKipRH5MjBYDofJrZS+TjkkotObg2Wn5NLXUe+yMK3g8DLxNBM9Kyw3NoBOi6m1mvhQ6dSiZVsl8VHxStTgs6uCHa4cl5noiFj5VVNlIzuqXuiyVriJdIwTH40Q654j0RclMZ1mWdaz4nOSrHezmE6S8VnRht1onZYrgAVJxrmznN3OsGLzaUd0lDaHD9OGBtbZVJSJ5BwL0Tgd6RhHZyc5s7BAz9IycirHHmc11zgrqLa40UoaptNL7PEU14wimiU8xiuTcjqXRbJlMK+baI9Fp2koW31mVrIwm9BRp1lkxekrmjBnehfpn7Wj30ADk8vJ9F+aorxZJcXYOUuwTrmIPz28iHljMxJg85vx7LARLYvQXTHEJ4\/9I\/\/82FcZmytMIyeTSZq3qTdGxmLL1DWo9w8lUynCVYLmVgm8YXGKy+oRp+CNDnXHmElmGBoYIhaL5bM6a4vsF5Iy55fBthRXmyRJaDQaoePJ5XJ0dnYyMTGRZ64+GHuk5L6Xo6Un6fiGFcmT0x5+26o8Ka6YPGyWm01XEyLXXnoS1jvMRCeKhbLWbOTcFJ4DbVQtDjKzyWgnEXKSHIqU3M5cG2Squ3S0o6\/wkj2jXrMZOTVO4Jp6LNOb+M2GMuYE7NSwCorQOSzEZ8R1J2PASaJTcE0cBphRz8FLeg0SMrl0cSQjp7NIK1m0iQyppZVC7gCdAb3ThKvWSyKWRNNYAZKEJEE2l2NpaYml+BKaFSOnI7NoJS0GjQ6TVo9Wo4VcjjrLZZi1DDhWFztdy0M0GAvTWlk5S0ZexqwtnNjPREd4Wagw0jgTn+QW35XPLkUj3NS4ChCYX05zYniGW+tXi\/7JYDFw4LEfRpmdShJscDPZM09mXYSbTmUZH10gUONiegMxbiqZZX4+jt1nITpbuODRaCUWZldwt5mIxBYYTYxyabKTkQujcGF1G5vNitFoJJlUrtvKJXS1nS4xGszptTAiAMBZXeJeHqNNDLnWmcXjs1OzDAwNoNfr8Xg8OByr6cc1xyPL8q9EjWdLOR4QQ6pXVlY4c+YM2WyWG264IQ85LMXVpjPqSKvwo623xcXCF+XhQ4u843e8aOeLo5X5vk1CxIDlzObQX+ZqH0yJax3njs9gfUUD8kRpElNZkkhuomEVIKUp\/SjIZi3Tm6jFLC9nGB5Yoe6aOvRdg4pMEFqbidjMcsnGU9fOKubOiJ2Ta2cls4JtZAlsHgexQfWo09sWFv6OPeRkUcmxZXJg1rDQrszcYKvxYo4uEzQE2KiNPCLP0WR0FX2nJzbOXndxLeVibJSbNtT6JlaWuGZDfa1reZ4bK66s7JfSKTxBI3qthmM9cxhWjNzccMXZmOoKv780Mce7vvjXAJhHLLzs+lewOBvHbnFgMTiwGKwYNGYy+hwhv5lsLoPM5d4RcsjEkQ0y+tAKC4k5phYnGZsdYXx6jNxUDueEg2xWSyJRnDGIxZbZv38fp9ovKF1Ozl+4iMFgJpVSfp8jixHFz9csSwnIZgm9J00JuY1SSqXbGpoxuc0sLi4yNzfH8PCqRtDp06cZGRnB5\/NdNZx6M+qjd999d5EEwnXXXcexY8eE+\/7ud7\/LJz7xCfr6+qivr+dTn\/oUb3rTmzZ9bGq2JRyPSAxuzRYWFjhz5gxer5e2trb8CiGbzpJNiqMZg8MEk6Udz9RkYapGluF0NsQ+NkxYZSESJzdXrJcMeqY2mWaLxkunA+UcHD4TZ0\/Aj3FaHAVoGyvgQumozFQdYLqz9Hb2hnJip8U1FHuNl6lLq\/vqfXYcd3WQkCmNPF4Y8enKfcQuims2lmov8xfEiDhTmYv5S2Jn6NlZwfxZ9f04GvzC2pBvVwWR88rjOqsBw0oOxfW5XgMJZRSeudpN41i2yPFG0wnqFaTdZ3Ix9nsK01s5OUdKt4xNfyUlHM9l8LqkAnqgcYtMo9nIYyemudYZ4Ix+CqN2NZWzIhnw1Remj778H4\/l\/59Ixnn00I+45po9PH7yUNFxXXvtfk6cOKV09lx\/\/fUcP36y6PPFpSVuPHAjx44pf296Sv1ZTCQS7N+3nXNnOhXHu7t6sRg9JJPK7\/v0nPidKSWDnZVK6XiUIAqNp9H6bHg8HjweD2VlZZw6dYpQKMTXvvY1HnroIXK5HPfddx9ve9vbuPXWW0tKw2xGfRTgNa95DQ888ED+bzU15zU7evQob3\/727nvvvt405vexMMPP8zb3vY2Dh8+zHXXXSe+DiVsS9R41ttG9gJZlhkcHOTkyZPU19ezY8eOgnzoZnjaDLbSxKNao4bEcrED+\/dHFmDDDUoYrqJptNJPZhO1GJ3NyNgmBNwc9X4WRhc5Pq4jblHPJ8uSRGx+cz1GGb34AQTQ2ozMbMI5xTd0yC4MLXCpN05yW10edm1tqyRSwulojDrSyZyYr00rgV5LTrDwsFZ7WOhQd0xai361d0gFom0J2on2qJ+3s85Hck55EeKo95BVQOFpTXp0iRWU5rBlQwKHVFgHSucyaOTlIsDC+fg4212FdcjezCzV9iuTzfHFGQzpDIM9Ga53BRlPLXND9RUH1mf2FjR4piIx7v9esUMYHx\/FZiuuOzz77Am2b28tPhFgcHAAg0G5WN\/X36cKBBgaHqG8XL0nRysQBEyl09Q3KtMSrR7TCAajOoBgbiGiOgbqKsZrVpIodEM6fw1KHQ6Huf\/+++nu7kaSJGpqavjiF79IWVkZ\/\/zP\/yzc509\/+lPuvvtu2tra2LVrFw888ADDw8O0t7cXbGc0GikrK8v\/UxOJW7P777+fV7\/61Xz0ox9l27ZtfPSjH+WVr3wl999\/v\/B7m7Et53jWp9oymQznzp1jYGCAffv2UVVVVSR\/vRmeNo3gQVszuwrz7OxCijFvoTTsfF9pZuc1m94EUwCApcZPbhOQbyyrTjQ2s0z7spOsiryzoamKlRJ8ZwDGKh\/zl0rXi8x1QVWuqTUzlTuI9hej5+Rsjv4T40xYfWhbK1nYRC3J1hQmUYKZ27W9gtiQejSpMWjJpcVko656PysqTN2SBox2E1kVyLq7NcTiBeVIyNkUJK0CJZeCBjIKzsrRGqJBV5zb74qPUWd1FXw2GJ9nv6\/Q6ZyJTnHDOmTh8HKM5WUZ\/5KVSuNqVDOrX0a\/DnBgbyhs7vzGNw8RChc3fE5NTbN9u3IzcywWLVgMrtnk5BT79ikrVU5OTtLQUK04BlBRqd50eu58hxCdZhIg07K5HOXV6gCDsfFpNAJqnFiJ+aZUYnujQulG1oJ0Ok0ikeC+++7j5MmTTExM8Ja3vKXEXgtNTX304MGDBAIBmpqa+L3f+z2mp8Xv4dGjR7n11lsLPrvttts4cuTIVR2Pkm0Jx6OUalteXubYsWOsrKxw4MAB3G5lhNlmeNokfekai9WjnlP9+vF1E0+onJWpzdV3ZK1EYnpzNZZNnAZIEpPruN6ikwk6TBXkNoT3MhLRhc05vKyxdKOs1mLYVLSjd4iROIuji4xEJGLlYTQe9eKpfVuY+RKwaFudn9mz4m1crWHiAufrbgsxf149BefbVUW0XzkKNbjMrIwpA090VgNElIlTzXVe9KPFfUYahxF5vHgiMFZ5OOAvnIST2TQWcwbjuglrNhln2zpFzuFYltHZFDc5Q\/ntJuQkN6ybdJ9dXMTfeAVGnY2v8Ef3\/4CzZ89x4EAxH9exo0fZubNY0XJgYJDrrttXfLJwOd2j\/G4tLqmjEC9d6kSnkraKxxPU1qlHNdMz4gnVJgAQpNMZPCH1ZzMSKdVkKk7FpTdkP5RE4IB8jScQCBAMbp5JRU199LWvfS3\/9V\/\/xRNPPMEXvvAFTpw4wSte8QpVEAesLg42\/nYwGGRycnPAJpFtCcez3nQ6HZFIhKNHj+L1etm\/f79Qo2dTPG0lyP1gFYCgZs+eXyJeVgVAQucqua8109eEyAgoWdZMa9Yzuok0m6nCQWKD9szopRl6\/Q15mDWAvrk0RBnAWOnbVOOmpsJV8jysFS6mSiDtDH4zM5emGTkzQfd4mkR9OZgK03x6l4VYCb42rcXAyuKKkMHA0VzGnMAxGdxmId+brcpNRCDhbQs5SC8pNwy66\/2kFCIajUVPblZ5sjV69MjLhfdWMuqwsIK0oaE6FTZTby9sxlxxZPGajCytpPlxxxJdIwn2+QprAzPSItrLqaBUNouvugp74Ep08JMfHGf5MpHlsydOUFdXDF2emZ5SLHyfPXsWn0+BGmghwq5dOxTPeXx8gp07ldN0CwsRdu5SHgNwONUXOb29A9js6gvJZEZcx3H41Bdjs9NRoeBgMiXOWmRKRDxrUOqrEcJcb2vqo9\/85jcLPn\/729\/O61\/\/erZv384dd9zBI488Qnd3Nz\/+sTILxJptzDDJslz02XOxLeN4JEnKQwnHxsZoa2vblPz1ZlJtJRYhAORKXInHJuwgScz3bj7NltKXjiZglawymywdGSUk5Ye699QEozWrYm0yErGFzSmoJvWlU5CSUctCv7g\/BlaZt0sh1OwBV36bXDrHyJkZ+uI6liu8+SZNQ7A0X5u1Vj09BqvsBCszMeHxWIMO0kvKE5BGr0Ejq6fovDvLWepUdtju1hCxDmV0nNZnQLNc7MDdOyvQjilc45CR3HTh54a6IOF4YcQ9as3RbDVydHyFgWEL19gq8dkLT74\/scj163pYTixHsfivRA1yKsPvf+67+b\/T6TQyclEBemJikt0KjiQWW6auTjl1dubMadxul+JYLifgykupv9udnV2qc4Msy\/gFiqMTU+IFks6kPhlkMzmsAsbtlRL1XKUaz8bmUavV+pwm982oj65ZKBSiurpaqCRaVlZWFN1MT09fVQSmZlvG8aRSKdrb21lZWSEcDm9a4W4z4IJUqrTnSZUgc\/vGz2ZIVTeyMrNJGLVWw1RP6QkbIJ4pfRtkIDmvvpo6f3SCmfomDE2bi3Y0ATtL3aWjrFzIjrwivjaWcheTF8SRk73cyeSF4hc+u5xh7FKUUZODaI1bGbK8zpytYWF6DMBW5SM5r36fvLvKiQh+x7u9nPhYRHHM5LcR61VOOxqcJjITytdeU2lHN1acYjP67WQGis\/H1hjEMVX4\/OQMWrSJ2VW45dp+gx5qyoJMS01Up4P4jRYmtDHaNkz0CWsyz\/+2mMqwsyWE5LuSUjp28Cw2T+GE0t8\/wL59e4uO7ciRI4qAguPHT9DW1lL0+fJynG3blFVsz547R0ODclPo2XPnKStTRnQtRBbZ1lKnOAbgdKlHRCOj41gEgKN0TrxwE0k9lCIK3eh4NrIW\/KLVR9dsbm6OkZER4Tx7ww038NhjjxV89uijj3LgwIGrOj4l2xKOJ5fLcfz4cTQaDeXl5YqFSjUr1cMDEN8En1k8LnZgmazMsVkBk8EGM9SUkdwEsEBj0DHeVbq51FnnY7mEMNyJZyYZkzZHtbGsLS0FjkFDarr09dW5rCX3ZXBbkQWpsdRiiunhHJNOD8lKj6JIq8FjZWlI7FTdO8TUOuagQ0hG6mzws6ACnUYCk9NEVkVXxVnhIqOUfrPpsShFVxqwug3IG+jANRYj+thCgYMBsDb60EWvONSk3siSwc3cuWUyg1ecYVtbYff+mJTiusorSLbzmTg2o4FA8+oEJ2dz\/N593yIajRUh1545coRdu3YWHfrC\/DwmUzGqMpGIK0YiJ06coKxMeaXsVEmbybJMTa36yt1iVUdjjoyKFydOj7rjiUTFWQ2DVT1TUIoodCNAZ6MIXCwWw2KxXFXEU0p9NBaL8ad\/+qccPXqUwcFBDh48yB133IHP5yvoydmoPvrhD3+YRx99lM997nN0dnbyuc99jscff5x77rln08emZlvC8Wg0Gnbv3s0111yDXq+\/KobqzdR45mZLszIvLJSmlfnRYASNV6wdkj8uw+bSbLb6AKlNyBpIttL7swft\/PzxUWL1NcLtcm4zaQF1TH5\/28pJqaSj1swScjJVItqxhZxMnhdv428LsRJJsDi6xODFJSatbnKNYeTL6CVZhrRJQzqqfjxGv40lAbO2pJHQm\/VkVdIhOouBbFS9duTbVUGsT7lw7d1ZTqxT2eF5Kj1kY8XH7dlZQWqg2Am6Gj3kFgonP\/O2MLqh1SbVrM3JbFkb8\/ZqshfHC47XUOtFM1446dbvvbICns5muaEtzDNns+jNqxNez4k+Lg3NMDk5SThc3Lg6MjpalCobGxtjz55dRdv29fVz3XX7iz5Pp9NUVSk7kZPt7YTDyuzUvb19qpNwZ1eP6tjo6DiBoDpc2O1Xf4\/HJsSZAEmvPm3GIuL3ZSNDtZLs9QutPqrVajl\/\/jx33nknTU1NvPvd76apqYmjR48WMCRsVB89cOAADz30EA888AA7d+7kwQcf5Fvf+tbz7uGBLeJ4ABwOB5IkXbUY3GZqPKlE6VTbTAnmWYCJmXmObqLnBY3EVH+k9HbACqWjOxmYHiydtjOHXOSyMoefmSQqcD7GgK+kKJvGqGOuv3TKTu+1CSMZAKNXHO1ojVrmBgp\/a2kiSs+paUY1NuSWauy7ykmPqt8jWZIwOC1Fxdv15t1ZTnRQPbp0N6rXjqzlblV5B5PPRnJAOf3m3lFOorvYIZnCLtI9xbUge2uYbNdgwWcauxnd4jQZl5e50E6GhgwsnpvAniqOriRt4SJLU1OGbubK7wSu3Uk6E6C6edUZybLMX3zuR\/nx7u6eovTa3NwcFZXFHGhHjhylpaW56PPz58\/h8RRnB5599gTV1VVFn+dyOSqrlFM+U1PT7NipLAsyNzdPU7N6Wqm8Ur3xMplVdxDR6DIWhwCSLaunvDNpGZ0Azp1e2VyN52qslPqo2WzmZz\/7GdPT06RSKYaGhnjwwQeprKws2M9G9VGAt7zlLXR2dpJKpbh06RJvfvObr+rY1GzLOJ41u1oxuM1EPPGoOKKwOE0kS0QdkiQxMTHLv\/28g1wJ3Q9DdZDEfGkCUUmnYby7NKuBo863Si9TwuYnVydNOSfzzOEJlhRy54agi7mLpeGQ1uYQyYi4yG8O2kvWdqwhR8lt\/K0h4vPKEWd8Ps7QpVkuXIwRqy4j4bMoZvVM9W6WetVXqrYar7A25G4NsaAyLmkltFplHjckGZvXQlbB4Rl9NsWIRtJKWEyrBf31pnOa0c4UOzBDY5hZcy1DPRA5M4qcyeLcVkZ2otCJmuv82COFC5S08cp1zYbDEI2SaZ\/EtdMFQLR7gQ\/89d\/yJ3\/yx\/mU2tmz52hsbCjYz7lzF2hp2eAAZJn4cqwIdRqNxmhsrC86D1nO4fW6ij4HOHXqFC6XssyECF9kd6pnAjIZ9blhZFQMxXf61VFxiVJMKXZB\/UgB1farJokAW8jxPFcxuFIRj95iIFUCMWYrwTgL4A7aWEmmyOZkvjUVEW6bNm8uVLbVB1mJla6haDaRZnOUO5lZFxXJMjzz1DiD3g0rT7ejZLQj6bXMD5SOsAwBh6Lg2noz+2zCbTQGLXOD4sjK2xQgPh9nvGOOkcE0U3YPUmsNGs\/qdTaXu0gOqkOwNUYdcjKtqq9jcFlYmYio\/\/6OcuIq0GvfrkqWexUcuSRj9ZjJKdSDPDvLSY0UO0lnpQM5uuooZL2eRG0D0ZbdDB+eYPH8WMF9M2WLHbXFWXh+uoZynCtXzith0TBzYpFUJoerZrU+c+Sby9z0GzfxV3\/1MZ544jE6Os7xhS98nhtuuKEovdY\/0E95eWEqbmhomJ07ixtLjx07rhgNtbeform5sejzlZUVWlobij4HOHPmPB6PS3Gst7dP8XOA3j51NtDpmTlsAokDtYZygJmZiOoYiIlCN9Z4lETg\/l+XRIAt5HjW7IWOeEQ05flt7KXTZw7vlcn\/p+cnydaqKyZOD5auKQGkdKXhzDIwswl2aVNAuent0vk4kxWrk4Xe72ROQB+zZraWMCslal7mgJ3J8+LIyRosvU2gTT3aATDYDExsOOaliShdz47RNZoiVlNONuhFErzsxko7cQELgj3sVIVw22t9LJ5XhkdbQg7FNBqAd2cVib7ic7dUeUl2Dhd97txRTrp3hFR5JXNVrfRG3QydmiU3EykCbjgaA2RHCyMjU40XaaSQqNSw3hE1N8GEEXMkSqwqiCRJJIYX6evVMTw8TDKZxGg0UlVVybve9U7uv\/8LXLp0gf\/5n+\/yoQ\/9Ps3NzaysJDFbzAUTJcDJE+1UVBTXhlKppGINRq\/S0H3hwgVFwEI2m6GpWRnBNjU1Q0OjMox7fn6Bqmr199TlU3cuOY36HBRdEi8WtYKeQCU49fqI51dBiwd+BRyPToB8WbNSjLMAKbkwdfbVgTmUOskMVQGWN5EWk7QS4z2bSLPVeIlOlyYknVWA6q7Z6WfnmKurRfI5S9ZjJL2GhU04OkPQqRpBrJk56CAn2Eaj1zA\/LI6sjCELGRXRNTkng1bHuUPDdE5mWSgLIrVWowtfifJs9V5WetUjKu+uchZVenK0Jh1yIql4zSQtmMw6RZ44c8hJoqc4lSPpNRhJFeuwlwdYlC0M6irovxBl5uw42UQKV6Of5FAxmMGsL04LW72Fz6KuqRLN7GrqUNZoicd0cHE1ArDtWUWXPfutCFa\/jcXFRZ599lkOHz5MZ2cnCwsL6HQ6rFYrr3jFb\/C3f\/s3HDnyFKdOPcvv\/d57+J3fuQuz+cpCTJZz6LTaIofU29vH3r3FlDnnz1+gtbU4GopEIuzerUzLs8birGRuAQuGSA5bY1B\/NmNx9cXQUiSBRqc+daZy6hmbUn088Xj8147npbCrTbWVcjwawepjzTbj5iRd4eRz8PwI8friVV7GvjnUm7UuQGJxE3BrZ2l6dEelm7kRcbf\/2bNzdC3rSiKobdvKScyJHafJZyuJZLMEbEyeE28T2B5meVb9tzQmDbERwbFIEL3s5OWczHTPHJ3Hx+joijJudiG31ZCx2tB6lV9kjdPAUrd6ROZuDrIypXxdfTsrSSgJ3WnAZNYiKzgkz\/Yw6Yl5ZK+LVGMDC9WNDGoCxMxuJk6MktwAbLAoUPTb6rxkBwujLGOlB2losOAzg+3KqnylrI7Mse4r59VoJj0To\/3xLJ5yD7t37+aWW26htbUVjUZDd3c3Bw8e5MyZM4yNjZHJZDCZTDQ2NvK+9\/0eX\/j7v6O75yLffOjrvOe9v0t1dRWDg4Ncd20xbc7Fix2K5KKJhPLEPjDYrwjHHhkZpbW1OEUH0D84qPg5wHJcfdG2nFAfm5pVXxTKsjgVlxQsnJVSbb9qInCwhRzPehXSzUY8qVSK2HyJaKAETTlAMl3a0UkKK5x\/PjWErC1cac4Mb04uYUFFT2SjbSrN5iv9oOp8Wk48PcJFh5OsVqVHQKshMroJieywi5yINRqwljmF0Y6k0zBfQjHUUesWypqHd4RZHFM+3uh0jJUMnD8yxqWhJKN6B8s1FdBag64+hMZmxOq2IqvU\/5xNQSIqInX2ag\/LF5XHvDsrWBlaV78xGaEiiGZnPdNxA8OmEN0DWQbap5i+nIZc7ipO19mrPKz0Fn9utRbfO1ugcHGlb61CM7fq9FNaC\/EzY2guayLFA170DiNn\/2f12lt8q05Zq9Xi9XrZtm0bN910E9dffz1er5eZmRmOHDnCM888Q09PD0tLS+j1epxOJ6997Wv4u7\/7LCfbj3P06NPc9ppX8+pXvxL9OkaM5eW4Yq2nv3+AbduKHcn4+Dh79ihT7FgsyjWZ8bEJausqFce6unpUCUUnBbIikxNzReqr683sVK8PWQQRS3wpTnxdNPWr6ni2hB7PeluDU5fiBIpGo5w6dUq1J2PNcgoyxBsttgmGzrmF4gnuwtAsffUNNMysOht9uY9o9yYodSSIjIsRY7CqbTPYVRrSPD1c2lloJCMQY6RziWjYxB5zBsOG1Ze9Jcz4GbFcgdFrVWQgWG9mn5WJEn07wR1hRk6pI4u0Zm3JaCcmiMz0Zh2zPVcikvhCgvjClWtesTvM6PA81kAQs82AVptDTqcgsYImnSK6uIRkNiBlsrAOzabRa9DmMqQzOXJ6LVqrGclkAIMerc3IYkZDqrGBRCxNbHaZlZk4zEQpbzWx1F2MWPPVe4ieKxaRs7v0rGy4zJYKN9n+wmtmKHcjDa8rokugNyRgGVKSkYGIn\/LEFSep319BdjHB099LARJWv\/IkZ7VasVqtVFdXk8lkmJ+fZ3Z2lo6ODjKZDF6vF6\/Xi8\/nw2g00trWyraWbXzoQ7\/P0tIShw49zWOP\/ZzHH3+SZ589wbZt2+jqKqRnmZubRaORyG1IZc4vKEcbZ86ex263E40WL+78ARcD\/cWLgXg8wc7tzfR0FafqluMJGkNOZiYV3h8J\/OUOxlVaCnQWAWRaAKZJLSc5fvw4JpMJr9dLOp0umOd+DS54iSwv8CaIeiYmJjh27BjhULgkx1m2RE0DICKgV4HLUOpJ5dXRv7WPwuXCdk5BwEvJ9OVOkkulI57NpNmcNR4WxsVgBqvXUgDbjoyvcHJRT8J9Zf+yJDE\/Gin5e+ZytzKseJ3ZysURkaSVWCjxW8GWMEkBHVJoe0gYnYVay1hRaX6VJFieiZJYSDDbN8fI2QkGT00xdH6Bod4EaU+Q3r40PdPQPa+lO2agd8XEoGwj3lDDuaE0nTET3fN6Lo1kuNgT52LHIgtxib5nJxg5Nc5s9wwrl0ET7hqPotPRWw3Ee4sdtDXkZKW72CnbfYYiNgN7qPAzfWsNmoUpMujo6C3Dby58xR21Brp+NoecW53srP7Sk5xOpyMQCNDa2srLXvYy9u\/fj91uZ3x8nMOHD\/Pss88yMDDA8vIyBoMBr9fLnXfewZe+9EUuXGjn5z\/\/Ke98513s27enYJKdnp5h797dRb\/X09NDi0JaLZlM0qqCfBPVgBwCyLWvTD01bhHJYKtlDYBUSv390GQlXvayl9HQ0EAulyOTyXDmzBm+9rWv8dnPfpZ0On1VEc9nPvOZ\/P0IBAK88Y1vpKvrijpxOp3mL\/7iL9ixYwdWq5VwOMy73vUuxsfFC8wHH3wQSZKK\/q2slG4T2YxtmYhnfaoNVqkkNhYrZVmmu7ubkZERdu3ahdPsKEnVUootVpJgVkA4CeAJ2picVu7xmF5cocvjpHlshrnxzfG46d0uoPS2s5uIZJLa0mlJyaWBDavnpdkEx+J6btpdhn5wEn2dh1hXiUK\/x1KSgdrstTJRAskW3BFm5LR6T43eome6Rz0NIgNxQY+Rzqhlrl+9UTS8M8TkOeUXz2A3Mr+Rw05eJTVNy2mmL02QU+Cuc1W6VHWNbA4DEYXP\/dv8xBSiHWfQwspc4YNtKnOQ7d2AWgs5kYb6r3wggV4XJStr6BitRLeQwGBed0+DbvQOA098\/Ur9Zy3VtlmTJAm73Y7dbqeuro5UKsXc3Byzs7OcOXMGIB8Jeb1ejEYj+\/bt4ZprdvGBD7yXmZlZDh58iu9\/\/0ccOXKMwcFBjEYDyWQhUmxFpf4yNa3cqDs0PEpjfTPDQ8X3dWFBPWugMYig\/upjGQU59zVbWcmiFg+lV9LodDr8fj8+n4\/x8XF27tzJ5OQkP\/vZzzhz5gxdXV2cOXOG1772tdx8880FQI6NVkp9NB6Pc+rUKT7xiU+wa9cuFhYWuOeee3jDG97AyZPF6rDrzeFwFDgxQBF1+FxsyzieNdNoNGg0mqKIJ5VKcfbsWVZWVrj++uux2WwslaDPB0gIagQANo+F9Ki4LuP0W0Ag8fGPBzv519fsIHKu9PEATG6ibmOr9jLUXTrNtjhZOmWXiiu\/QMl4miePT3PDTRVYF0rXpswVHhZmShB0VrhZnFZPoUlaiYUS9y3QUsbwSfV9hHaEGBcAF8I7Qoy2q\/GtySQE8O2yJj8TKilAa7WF1KDygsHiMpBS8GX2sIOIAmpOa9CSHCx+qEw+K8nu4pSRM2Qh21V4H20VZhhYF+1sr4GFAToma2E4iveaAKzXptkVZuiZBdaTPqul2jZrBoMhT9EiyzKLi4vMzs4yNDRER0cHDocjP8nabDbC4RCvfe2tlJeX8ZnPfJLx8UmOHj3BD37wE86f78jvt7evn\/q6JgYHC69FX98ATY3N9PUVO+yykFfR8XR192K3BFhJFEfQkUX1xVYirb66T6jw9QEk4mlVx5NNZsllcmh0GnKXnZfdbue3fuu3eMc73sGePXu46667mJ6e5v3vfz+veMUrCuSqN9pPf\/rTgr8feOABAoEA7e3tvPzlL8fpdBYRfX7pS1\/i2muvZXh4mKqqYiaJNZMkibIydTj687Et53igGGCwtLTE6dOnsdvt3HDDDflIaDMEocslGjQtbjOIm5gxWMSXKbaS5qmslmJSkWKzVvsY7YyU3E7nsgJix2OpsLPQJ06z2cusjA+rR3S5rMzQbBqT0UKZKYGsRqhq0TJxQRyemzyWkiwFgR1hRgXRjs6sY7pbPVqRgYQg2tEatcz1qyOSwtvDTKmch96iZ14l0pK0IC0qr3KNHiMRFaE8d9DGwnSk6PPA9jKWzxdPnp4qJysXNkgheKxk+wpTSfqgA836aEcjIadmuDRfh9y\/+kxYLYXPvskPj91XOJlebcQjMkmScLlcuFwuGhoaWFlZYXZ2ltnZWQYGBtDpdNjtdubn56mrq6O6upra2lquv\/5aPvzh32diYpKf\/\/wQP\/\/5QQ4degavz1XkeAB0euU019iE8n3NZLLUN5TTcb6\/aGxgaBij5EOWixdnIhnsRQFnYGwpiQjbml5JY7QZ83PcRnDBrbfeyk033YQsywVAhM2Ymvroxm3W7pXIYrEY1dXVZLNZdu\/ezX333cc11ygryl6tbZkaz\/rc73pI9fj4OMePH6eiooJrrrmmIP22GbqcaAnIcprSziu3iXTWkxP9aJp8JbdDIGC13mZGIiW3sfiUKUbWm6PcVfrH9FrOPzvGmZQB1vXArDdXYwg5Lc5r2qs8ZAX5bUkrsTghdpSBlpBqbQYgtL2MheGI6nh4e4jEgopjkmSSKuJtAKHWoGpdKdAaIKmy32CNDxR8kt5lIHKxeDKUdBJpBfkEg8NEsqfYKbtrnEW9P\/YqK6xL9yRrfQxNB8h0rl5fjVGHduLKpK1rCDE9IhNbF2zqTDqMAnmA52smk4mKioo8XLuyspK5uTl0Oh19fX2cPn2a0dFR0uk0JpOJ6uoq3v3uu3jwwX+ls\/Mkf\/7nf8j7P\/BuGhoLm0eHhoYxKUi+9\/cNEgor87MZTcqLx3hihfA6naL1NjY+rSr6Nj+jniGIRkow3V8G9aw5HjXKHEmSrqreo6Y+ut5WVlb4y7\/8S+666y4cDnX3uG3bNh588EF+8IMf8M1vfhOTycSNN94o1O+5Gtsyjme9abVaMpkMnZ2dXLx4kV27dlFfX1+EcitJECqtNnsJTVeafnx5pXQ6a25+ns+fPISuBFPC1EhpVgON38zShLjuJCMzuQkSz5kS8GiDRcdQx9TlbZc4eG6BZGNh7KZ3mpm+JJYT1tp0TKjUTdYssD1EdFIg4GbSMdMrjnZWBIADrUHLgoB+J9RWRkSlYVVn1LKg8tuSBlJzys+AxWtRVXF1l9sVm2wDbSFSs8XXwdvgRU4WRpx6h5ncwIZox2dHM3xl9Z7TSMzHnKycv\/JseVo8kLqyqNLWunny24XX7oWMdkrZ7Ows\/f39tLW1cfPNN3PgwAH8fj9zc3McPXqUw4cPF8C1bTYbr3zlLfzN3\/wlTz\/9Q44ee4S\/\/dTHeMUrXkY2m1UlDrWrvH+TAvE3t0o7QiqlLoO9tJhAZ1Ru1cikc2Ki0HWOR6vV5ue1NSHM54pqU1Mfzf9uOs073vEOcrkc\/\/Iv\/yLc1\/XXX8\/v\/M7vsGvXLl72spfx3\/\/93zQ1NfGlL33pOR3bRtuSjkeSJLq7u5mdneWGG24gEAgobleSLsduIpcpwSWm0Ny20ebmI8JxSQOjo1OMzMzxlE49zWOp9BAZLw23zgmgmmvmbfDnmydVt6l1MzcqdnSh5gCpdXWwTCrL04eGGS0LgHV1VWmr8RU1vm00W6WHXFoA5NDA0pS4jhRoLVuVtFY71rYy5gUs3eHtZUL6nYwgNRveHlL97dDOMMtTyvfNV+NRRPmZnCaSSscqycQnip241qwnM1jswNyNniJnZK+1w7pU9JS7jnh74W\/ZrOu+o9WwlDExN75B32cTiLYXwiYnJzl\/\/jw7duzIC49ZLBaqqqrYs2cPt9xyC01NTWSzWTo6Ojh48CDnzp1jYmKCXC6HwWCgqamB973vXXzjm\/9Gx8Vn+KM\/eg\/vevdbqagoZLVeSSrPCX19gzhdyueb06g\/204BrY5dMGYQCc1dJgrdKImwsrJCNpstkCrYrJVSH02n07ztbW9jYGCAxx57TBjtKJlGo2H\/\/v0vWMSzZWo8a15\/aWkp7\/WvvfbaImTbeivleFZZYsXRykpKDD7QaCQmJsWrfU\/QysL46sP7rRPtXPuaO9EpqI9q3HagdMQTmy2dQpQspamAjG4LIKblWVFxKJ2nJpgM2rhuWxlTl5TrF\/nfcZlZ6Ckh0NbkY\/qSejSjNWqZLRHBJQWOQ6PXEBGkJ8vagsyosHJrDVoiKpGSpEFVzdTkNLGgQrfjb\/ASOVtcn\/C3lpHsLk6n2WsdZDdAq7UWI\/JQYQFS57WhGbkS7XSY2rBHJViHm9MYtGgnr\/y2YUcVp\/stBdsAWDbRePx8bWxsjK6uLnbt2oXPp5yKXoNrBwIBZFkmFosxOzvLxMQEnZ2dWK1WfD4fPp8Pp9OJy+Xk1bfezCtftRr9dHf388QTz\/Dkz5\/hxLNnCJVVMjVZ\/Ky5vVYWI8WLn9l59XdEZ1Ffm5vsRkB5QaITvJ9ri7iNInBr9ZyriXhkWeYP\/\/APefjhhzl48KCi+uia0+np6eHJJ5\/E61VOLZb6nTNnzrBjh3Jz79XalnE8sFrP6ejowGw2EwqFhE4HNsHTtonJOVpC6MwdtDExJUZyWZ06WJdl+tyxg9zbeID0hglrZqI0csxS7mSuv4Rz0sBEX4k0m1R6G5vXzLAghRaZitFX48Ic9uIYm0VWadZ11niJqqHILh9LZEp8TsG2ECPt6tc52BZk4oK6AyzfEWJMAFrIJdVXteHtISZPKx9\/aHuIWRVi1UCDj9kzxc5Fb9GrymNrFVbkkl5Cmiy+V55tPuTO3oLP7PUO6J8kI2k4J21nuT+OSSpMp7pbPDB35b5mfE4G2osnUOsvONU2PDxMb28vu3fvFha719t6uHZtbS3pdDoP1z579iyyLOP1evH7\/Xm49vbt22hpaeSDH3w3S0tRjh05zeOPHeHQk8eZmblyXR0q9dX+gSFcunIyGzn0EMtg68zq85OIqmst1bYx4onFYkiSJIRPb7QPfehDfOMb3+D73\/9+Xn0UwOl0YjabyWQyvOUtb+HUqVP86Ec\/IpvN5rfxeDwYDKtz5Lve9S7Ky8v5zGc+A8AnP\/lJrr\/+ehobG1laWuIf\/\/EfOXPmDP\/8z\/+86WMT2ZZxPOl0mr6+Pnbv3p0PsUtZqRqPZCh9egslKHecPguIF\/yk5cLjmI4s8qR2jpu4km82h1yM9peGW2vdNkpFRZ4GP33nxVFYoNFPX4f4wP21HmamxOm6uckoEwPzeMrs7Kn3k+svRH0ZnCYmL4p\/x1rnINKrfk4ag6ZktJOKqzsOjU6jSp0DEGwJMKuCOtPqNERH1dN3aQXlUACD1cBij\/I+gy1BFs8WNzR6m\/zEB4qdmL8tTOZiIYW\/rJdIDw4VvKBatwXNcD9xrYHziWZiAxEqrwlCd+Hx222ZK4GuxUT3uC5PmbPerL\/AiGdgYIDBwUH27t2L01kaBKNmer2esrIyysrKiuDaFy5cwOl05qMhu92O1+vhNa+7hdteezOZTIaOCz0cfOIYTz55jDEVOexMNou7zMKMQhpcJIO9kS5rvUkqDNxQXONZs7VMz9XIXn\/5y18G4JZbbin4\/IEHHuDuu+9mdHSUH\/zgBwDs3r27YJsnn3wy\/73h4eECkEMkEuF973sfk5OTOJ1OrrnmGp566imuvfbaTR+byLaM49Hr9bzsZS8DYHp6elN8bSVRbSV42jQ6DXMlmkcNtk2QjCqw0X772LNcd\/ub0F9anQG0fif0l454FkqACgDkTRCfagW68PnfKlEjCtS5Gb5ccJ+fjPL4ZJSd11YQWIySuxwpump96j0zXAYELIqRg+YKK0t96tcm0BIUOrfyneJop4gNep2Fd4SYPKP83bK2IPMqDiu4LcCcQrSjNWhJDCpDsg1amY3uU9KANFvsdP3bw9BVGO3IAQ2LiyYuzFWSvExeapZTBbhMSa9FO3Xlfhh2VvG9B5dpKC9+Ziy\/gBqPLMv09fUxOjrKvn37nlO9Qs2U4Npr0dDg4CBarTbvhLxeLyaTiT17t7Nrdwt\/eM+7mZ1d4MjTZ3n6YDuHD50mGr1SDwyG3YqOZ2x8GgsuxeNJCRg8ZIF63XpU20ZJBKvVelWORwkGvt5qampKbgOr6qPr7Ytf\/CJf\/OIXN30cV2tbxvHA6oMly\/KmGapL9fHEV8SOyeGzkIuKo4vsJrirI4vK+\/jUwUf59I5bSE1HmZ8ujce3VrgZ7osIt5E0EiMlEGYanYbRLvV6CoCvysVIqVSczwKFcx\/nnh3F6jRx7e4yjJMRpkpEO45GN\/Pd6hGFxqAlsyCObjMCxUeNVhI2Egeb\/cx2K18vjVZicUz92DYqhK6ZzqglNqB8fUPby1hUIBd11noUBeN8bSHSXYX9PJJeg2Z6qhChbTWwEsvSNRQkF1tdMGiMGlIbAAnuFg\/MXznfOa2dqfF5qmzFtc4XGlwgyzJdXV1MT0+zf\/\/+XzjZpclkory8nPLycnK5HJFIhNnZWfr6+jh\/\/jxutzvviCwWC+FwkDe95ZXc8cabOXfuHAN9kwz2zfDUwXbSsvJcEo3GcVt9JJeLn4W4QkPqmome6PURz\/pyQjwex2IpTZP1\/4JtScej1WpJpUr316QE0FqA6HIJ6WZXafqHeFK8D71Bq6pIuBBb5gfJUd4YrGR0E4qecV3p9KK+zER6QOzEgs1+us+IGzltARsI0lsarcSISiPn8uIKTx4aYv+r67HOxUCFd02WIKvCmrBmZdvFtR1zuZnZPkFD6M4w4yoRC4Bo7eht8hLpVD7HQHOAhV5lhxXaXsbcmeIoT6OTSI4r32erTY9STKeNxYqWNu7WMnI9hcqaU243051yQa3KWWWFDat0qzWd7zuW\/E6Onc2i0UkkFAASLyS4QJZlLl26xPz8PPv377+qOsULYRqNBo\/Hg8fjoampiXg8nm9e7e3txWg04vP58Hg8jF6WvX7jm29Do9Fwz5\/9DpPjcxx\/qpOjBztoP9JFYp1EdaDCyUhX8TM4PxdDrYosIgpdQ7W9EBHPL6ttKcezZpuVRihV4zEaraihTgD0Aqz9mpWCUntDVmYG1R+yR06dZf+bG2GwdMSTiJSO8vQ2CyDeV04kUg+AzGQJuemK1gDdZ0V9OTKdFyaZm1hi1\/5KArEE2bnC4wpuDzEmoLbR6DXMl6APMhstLKsgEzUaieikesQaaPIxoxLtIMHytKDuJCnfU41OQ1xFzqGsLUS0Q4Hcs9xJrKvYOXpagqT6NkRHGgl9ZD7vjDJaLWdN5ZgHs+Q2LIJ8dkNB6k7WgmbySm0pU1vGo59fxBOwISeLHc8LFfHkcjk6OjpYWlpi3759Lxif1\/OxNbh2VVUV2WyW+fl5ZmZmOH\/+PLlcLi\/54PP5MJvNVNWEKK8M8MbfuonkSoqzJ\/o4eqiDowcvYnIou5e52RghSdnBpgStBWtSH2o1nl8F25KOZ9OpthKOJ7lSgiBUoCIIoNFqGJ8QE17aXKWRcw\/3P8tvbtvPcqd61GMM2pgbLsGSrZOYHRTXgPRmHcMl4M+hZj\/9HeJ0nYh9F6CyJUDvZXjymWdH0Bm0tO7w4ZldRruSQwaW1RgELlvZjrAw2gk0+5nsVCcLtVSbiQquh1ZwDvYaKysqvGu+Rp8qdU54Rxnz54qPWdJAdkH5WBwBC9Hp4hWzMZti4xPsbisj27cKl551+jgzacKpt5BeLLxfGoOG7HDhs+lt9aFbJylwZjhDLgdmm8TGH3qhWAtyuRznzp0jkUiwf\/\/+PEpqK5lWq8Xj8TA8PIzNZqO5uZlIJMLk5CRdXV1FcG29Xs8Nt2znupe38kcfzzE2OMeZg\/2cerKPjuPDpC+zcyRXshh9epLLxcCXWHQFtZgvnbgS8fza8WwBu1oxuFQJHZ1SPG3pEsg5T9DGxGQJB6gtnR4bHZ\/gs5e+xV\/uegvLKg2d5jI3lHA8lko7851iZJy\/yc\/8STH8W19CDtxkMzBQQnPHsAG8kEllOdc+hdlmYP\/eckIGLROCiEmjKx3tiCQtJA1ok+rgEV+9l+lO9WjHkNGhBqQ3qHSkS1pITis7l2BrGcudxedr9lmJdRbfD2eDj+QGJVEkMMSXSGu1dNirGL64DLkUnnoTsQ27CDR4yW1QHbU7c3B5baOtK+PIQQOwgs2mL2rnMgsUNDdr2WyWs2fPkk6n2bdvX4EA3FaybDbLmTNnyOVy7N27F51Oh8vloqamRhWuveaIDAYDNY1lVNUHuP1\/XUtiOcn5I4OcuuyIbA4LyeXid3JpMSFwPFdqPEbjFee\/vLz86xrPS2kvVMSzJOiCB0ioEWJeNofXXCQnsNHiKhK++X04LYyPraZfHhx5kt9x3UhS4bjmN4Fmy5ZMoUFSwJUGoNVrGBZEEQDhbX4uPquub2K06OlTkUdIxFI8dWiA5r3l+LYF0A8vkFOAQpftCDNySt1B+psDTKk5DlbVR0UUPStpAQN1W5A5Fai5p8bDrErEGNoeIqJCMCqpFJo9VU6i54snJquRIsfn3BYkGotzPFlOfOjKIiQ9WRwp2y0UIuS0Erp10h1LnhCDvREAXA4rSxTuI6PP8swzz+Dz+fD7\/bhcLkXJaTXLZDKcPn0aID+Zb0Vb07sBirgeoRiuvbS0xOzsLCMjI3l27TUn5HA4VqOh17Ry3a3byGazjHfP0nV4mEtPDTJ4eoLc5dpONq0ebS9HYmSz2V9HPFvNNh3xCCIaSSsRmxM7nsVFsdNYyZauy0zPiGsl4QofU7OrjufS8ABPun3cqKtBXkflYwm7GBkQRzJag5b5ITEc2+gwlkS8lbcG6GoXc6rFBESaAJWtATpOqDumQKWTiydXaxdmq4Fd15Rjm10mu7B6PTU6DQslSFBlUbQjQVygPuqp9bA4qA5IyCmkRtbM7DAqggCQZLKLytfFv82v2DBqcJpY7laStXaz0lP4eU6jYUzr4uKFBHL2ynPrr3WR3NCFL2khN1Z4n93bvLB4eTuNhvbedaS7CvWqUH2YxsZGZmdn83UPj8eTlzAQpczS6TSnTp1Cr9eza9eugslzK9mac5QkiWuuuabkcUqShNPpxOl0Ul9fTzKZZG5ujpmZmXyfy5oT8ng8GI1GaraHqWwJ8sr37iO+uELnM0N0Pj1E7zFlaXSAyGyEp59+On88iUQCs9lMLBb7lXE8W4qr7WpSbQszC+QUCBjXzOgwbRRrLLL5uRJ9NTrxDqx2I7MzYrSadUMe\/fGzJ+jyFU6K+k10kLsb\/Yq55PWm82rJivjSgIwAbQPgKXeUjIiWS6Q4feVXGgYTyymOHR7gYN8si7VedCEHwR1hYoIeIn+Tn+mNYmzrLLQjJGwYNdvUUz6WSrMqkairwsmMCuFnWWuIqAqowKCiRuhv8JJTgILb19UFZUkiUltHh7uWjqfGkTfcH6+\/OPXiq\/eQXSpcFDncV74nNVXxyI8jV35D4RhsAXteVfTlL385e\/fuxWazMTIywlNPPcWzzz5Lf38\/0Wi0oA8kmUxy8uRJTCYTu3fv3vJOR6PRbMrpKJnRaCQcDrNr1y5uvvlmduzYgV6vp6+vj0OHDnHq1ClGRkZIpVIYDAacPjv7bm\/htz97Gx9\/\/H9x+7\/9Jrt\/dz++lkABvNJusrF\/\/360Wi2xWIwHH3yQ7du3c+7cOebn5zeF6IXS6qOwija89957CYfDmM1mbrnlFjo6OlT2eMW++93v0trauipr3trKww8\/fFXXrpRtyYinVKptZmaGk0+L1fMMNhMi9JfepCNSArGGVuyX\/eUOxkqw2yQUmK0fOv4EH3vdO9F1rI5FSrAHAGTk0hBLrcYMyut1YHU1P1QCVOCpcDCuMsECeMIOhgTgBUkDIwqF+Uw6x6ljQ0gS7LLocTf7yA0sICukBoWnKsGKgHHcU+1iUlCfshksLKig5Kw+C\/EJZYcmJZUnA2+9lyUF2LXOrCfeV3wcljIHK92jyEhEq6u5NJ5l7sgswW3Ki4\/sXPED5nTqyKzPUmokdOsE+gazHlLJK\/cwo6Ads54uR5IkHA4HDocjv9JfgyIPDg7mFTOdTif9\/f04nU7a2tquKjX3Ylo6neb06dPodLoXLCLbCNdOJBL5a9TX14fBYCiIhnQ6HeW7qyjbUc6e372O+PwyY8eHGT06RGo5hclkQq\/XU11dTXNzM1arlQcffJBHHnkEn8\/Hq1\/9at70pjfxO7\/zO6rHVEp9FODzn\/88f\/\/3f8+DDz5IU1MTf\/u3f8urX\/1qurq6VJt7jx49ytvf\/nbuu+8+3vSmN\/Hwww\/ztre9jcOHD3Pdddc972sJIMmbaWt9kSybzZLJZEgkEhw6dIjbbrutANMuyzIDAwP09fVR6ajgsQ\/8QHVfnuYgTx9Tn4A8FQ5O9YhTTobqLCMj6pNs67Vhjhw\/IdyH269jfLx4YpIkiU\/d9h40EZmRQbH30hm1RFKQVuFKg1X6k6nJqDDK8zc7Ge4QRWgy1qCVOUG9qXKXj94z6tekfmeI7rPqtZua1gB9l6MKm9NE2\/YwzkSW9GX5Bl+jTygEF94ZYvK8OkS7fEeZqhhdcFuA+S5lx2twGyCWUuz8CzT7ian09FRsD7DYWfychfeUE1MQegtfE2I2JtM5LTHdf+VeVNbaiG\/oyXFXOLDOFUdn9ZUasvNXtnW3+vAsXV7pmo38+2A9nR1XnOuukJ7MhmfnlX\/zOppf16p4Tustl8uxsLDAxMREnuNrjSvN5\/NtCej0ensp0oBrcO21tFwqlcLj8eQdkdlsJpfLkc1myeVy+X\/t7e00NDTg8\/mQJIl3vvOdHDhwgFtvvZWf\/OQnLC4u8nd\/93ebPo6ZmRkCgQCHDh3i5S9\/ObIsEw6Hueeee\/iLv\/gLYDViDQaDfO5zn+P973+\/4n7e\/va3s7S0xCOPPJL\/7DWveQ1ut1tVcuFqbctGPFDY2ZvNZjl\/\/jyRSITrrruOeIl6h4grCcBcQjdHo9UwMSGGJcuSGADhdFoZH1fO9cqyzGee+gYfu+09UMLxuJsCzJwUO0l3tYvJEgCFZEKchqtoCdCrAhqAyxpAQyUaYUssgo3r0HCxxRWOP7MKHa6o89JQ6QZRkVqCpIDU1V3pYlKF0BNAEnjlQK2PaRUUnkZWTvs6K10sdhVfL41eS3KkMOqTtRpS1WGODstMdBemWm1+c5HTAfCHbcQ3OB5PrYvsdKFjt3vI0\/utVNbQ+eMrTsfhNpFRYPDYLE+bRqPBaDQyPz9PRUUF5eXlzM3NFTBHrzkhp9P5kjY\/ptNp2tvbMRqN7Nq160WLyLRaLX6\/H7\/fT3NzM8vLy8zOzjI1NUVXVxcWiyXvhFwuV77vSafT4XA48mWFvr4+9u3bx549e9izZ89VH8dG9dGBgQEmJye59dZb89sYjUZuvvlmjhw5oup4jh49yh\/\/8R8XfHbbbbdx\/\/33X\/UxqdmWcjzrazxwxfEkEglOnTqFTqfjhhtuwGg0EomJ6f7lEmkyEbMsgLfMxsSEuM4UWRI7DIfHjAI7e96i8ThfvfA\/vLbsZpKT6nWTZAnlT4CFaXG6zlVmY7IEgEEyiicNX42N8QH1c7a7zfQLpK8tdgO955Un99H+OTKZLE+NLlLd6KeyzIlhIUF6HaN3eHuZMI1mdZtYUqGN8zf6mVOpG1n9VmZVHK613MqSCnOCw2MmonC6we1lLF9YjXbSIT8zBhs9F+epShuZUpBEKK\/zMHumOC0sLRXfU7fPSHZ98KUB\/eyVfZ6etMA69jaP3wIzxc\/WZnnaotEo7e3tVFRU5MUY7XZ7Hoq8lm5aK+KvoeS8Xu+LinRLpVKcOnUKk8nEzp07X7I0oCRJ2Gw2bDZb\/hrNz8\/nQRzZbBa9Xk8ul2PPnj3YbDZyuRxf+9rX6O3tLSlHrWZK6qNrEWowGCzYNhgMMjRUHI2v2eTkpOJ31vb3QtiWcjxrptFokCSJTCbD8vIyp0+fpqysjJaWlvwDVQpKnS1RE8mVeC4dPguIWWeYUEihrTdriX4ZjUaic6CPcdMUH9rxThYVJnWdRc+YAFYM4Cp3MFKC3dld6WJCIAqnM2gYvCj+HYfXIXQ8FU0+LhxTf6CrW4NcOD6oOu4vdzE5HGGga5qByymxQLmTulov9rQsZKh2ljuZEDg9vUBp1lPlZuqMsuN2u23MTxZH1waPkcglBVlrLazEVpivr6V\/aJmZ9kXWwpFcXLlOlFFAy9n9VpaHih2eNFcYcbqavBDrBkB22vnxzwrvj91hJKfgbzcT8UQiEU6fPk1tbS01NTVF43q9nlAoRCgUIpfL5ZmjN3Kl+f3+X2h\/SiqVor29HYvFwo4dO7ZU7Umv1xMMBgkGg+RyOc6ePcvi4iImk4lPfepTPProo7S2tvLII4\/wgx\/8gNtuu+05\/c6a+ujhw4eLxjZGobIsl4xMn8t3rsa2pOOB1ahndHSU4eFhtm3bRmVlZcF4KbqctADxBhBbFkOl9WZxqs7lszA4I27UlDQluv+ryuju7WZlJck\/nv1P\/mj33SxukE7wNPiYOSFOs9nK7DAYEW5TSgK7cnuQSyfVWaZNVj0DJWQW5lRUOtdsaUE9KtNoJYYVIpLpsUWmxxapaQky3j9HZb2PoNeKNQfyZJRsdHUyl8w5VMBleOu9zKg4b7PbzKyadHWVi\/lLyqs8Z5mVle5Vh5HVa1jxOlk2mdGYTDzzzDByLlKwvd1rYVZBWtsRsBJRgH6X1ThJXCi8Z84KB5mpwmN1+KQ8nmTKXkUiXvhcW8y6IriJzqjDaBenmufn5zlz5gyNjY1F756SaTQa3G43brebxsbGAq60np4ezGbzc+4ZEtlWdjrrTZZlOjs7WV5e5vrrr8dkMlFdXU02m+WHP\/whWq2Wd77znbz2ta\/lrrvuuioHtKY++tRTTxWoj5aVlQGrEcya8iussv9vjGjWW1lZWVF0U+o7V2tb6i6tedRcLocsy4yMjLBv3z7FB79UxLOyUgKOvSiuEWVL1G98ZaXp3sfHxKFpIHhFHGtuaYF\/OP0AzvpC7ZJEsjQzwnQJpxKo8zAzIt4mKWCABrCFDSQF8tfljT4mBtSjrlCtW9GxrFnjznIWBb05FpuRVDJD38VJjjzdx2PP9PF43zQXDTIz5QbGU1m09V60AVsR3Y\/JpL6+8td7yao03drcxb3nMjKGoIOlnIGZ2krOmT08PgJPn4pw6sgEU2Nzij1I5fUexc\/LalyKDlObKK5leUMbogYN6OeuLEp+frZ4oaNU6ixFDjozM8OZM2cUF3ybtY3S1o2NjWQyGc6fP8+hQ4c4d+4c4+Pjm4YOK9katNtqtf5SOJ35+fkCLrsTJ07w4IMP8o\/\/+I9EIhG++93vEgqFNgV3XtvvH\/zBH\/C9732PJ554okh9tLa2lrKyMh577LH8Z6lUikOHDnHgwAHV\/d5www0F3wF49NFHhd+5WttyEU8ymeT06dPIskxraytut1t5uxKOJxEXT6TZrDiiWU6ImyiNNvH3nW4bk+sIG5UsmSqcXOajEe5v\/w\/u2fe7LPYuYrAaGLsk7qnx1roZ7BbXu8wKE+h6s\/ssJaMZjSROG9pL\/IY7aGNURUoAICdoGDXbDPSppNGmRhexeYJcOn3l+LU6Db6QA5\/fit9rZSydRdccRJOT0WRzkMxAKoNOkpkfWUDjsoBWQtJqV8W9tBoMVj0zSZlkYzmJtEx0Oc3ifIKF6WWaqu30P1UcHRpMWmLjys\/N8ryy488tFzsYi9tEbKD4vmuXFgtAd85GL0RX02zz4XrOPFX821K6+D0QkYNOTU1x4cIF2tra8ivm52sbpa3X2AGGh4e5ePEiDocjD1DYrBBaMpmkvb0du92+paHdsizT3d3N7OxsgdP5yU9+wnve8x4efPBB3vjGNwLwspe9LK9JthkrpT4qSRL33HMPn\/70p2lsbKSxsZFPf\/rTWCwW7rrrrvx+NqqPfvjDH+blL385n\/vc57jzzjv5\/ve\/z+OPP66YxnuutqUcTyKR4MiRI3i93iJZ2I2WLqHFE1PoXVhv8zPiiGdmXozeSmfFvx8u9zI5LXY8w8PFqbqF2CJ\/f\/IrfGT\/ezCarUydEKfzjG4LRURc60zSSoz1iLV5gvUeZlQ4yAB8FQ5GBPo+Wr1E73n149TqNQyqCKoBuP1WVccCUNcWouO4cu1IkiSWpgoXIdlMjqmRCFMjEXZcX8PF48r3Yef1NXQdV0Yd7ryhhm6VsajKs1PTFmTiXHGUa3ToiI0Wf8fqMRPpL753oTo3yYuF21sDVtKjhelCp18Dy4BOx9c7LOQyxb+RVXhP1CKe8fFxOjs72blzJ36\/X3Gb52sb2QFWVlbyKbn+\/v6ifhilOWBlZYX29vZ8P9FWlRGQZZmenh6mpqbYt29fXiri8ccf5+677+bf\/\/3feetb3\/qc919KfRTgz\/\/8z0kkEnzwgx9kYWGB6667jkcffbSgh2ej+uiBAwd46KGH+Ku\/+is+8YlPUF9fz7e+9a0XrIcHtpjjMZvNtLa2EggEOHnypLCJtFTEsxhRHzda9SzPqjserU7D5KQ4AlhYiAjHTRYxYWIg6GFkTHkyXYwt8YXj\/877f+N\/CfeBBBMlxNzKt\/npOStO+c1OlJDarnAyJmgqrW4N0CPQ\/6nfGeJSu7oTrmjws3B0UHU8KmC5rt8eYuC8iqy1XsNwl3rEuKTCniBpJKZV0oahOjczKvU0rUrQ5qu0EleQ\/naFTaz0FNca9Zl0EWu1v8oO6+mQJNDPr6bZ+jyNzA8pP28rkeL9K0U8IyMj9PT0sGvXLrxer\/KJ\/ALMZDJRUVFBRUUF2WyWhYUFZmdn6ezszPfDrO8ZWnM6LpeL1tbWLe10+vr6mJiYYN++fXlwxaFDh7jrrrv453\/+Z37rt37ref9GKZMkiXvvvZd7771XdZuN6qMAb3nLW3jLW97yPI5ObFsqPpUkiWAwiCRJJWlzRCJwWoOWRFQ9IrG4xYVVT5mdjEAuGWBkRAx5S5QgDw1XBITj8VSCfzn0ryTa1Cf8QJOfpdkSrAcl5L\/L6j1MDgqiOwlG+8QRUzYjfgGWY+JjnBpW\/\/1QrYdhNU0dwGBQd\/CNO8LEVFgOKup9TKggAWtbg0RU4OneoHJtz2I3MKFCNWRRSVNqFOpqRqueZYU0mz5ReDyORg8sLSFbrXz+f5awKUgcGM06RUJai7cw4hkcHKS3t5c9e\/a8qE5no61JV2\/bto2bbrqJ6667DpfLxcTEBIcPH+bIkSMcPXoUi8VCS0vLlnU6AP39\/YyNjbFv3748i8Dhw4d529vexhe\/+EXe9a53benj\/0XblnI8sHm+NlHEYyzRHGoQcHnBZVZqgbkDFlZWxKm24SF1hBiATgDvBWhsrGFpKcp\/PfEQ4019oOA\/tCWE7AwWHUMlpKmNTnHtpnp7kIVp9ejQE7IzIGg6dfotjPSopwLr2sqYFvCueYMO1TGb00S\/gMVAFuAyPII6h8WifE0kCeaGI4pjVdsCZNPFz6vDZ2ZOoQ\/I7DKRGCtOb1oCOuQN+zG7zaSHC++jM7D6QByjmtmFFHqFV9kbVE6prUU8a6vywcFB9u7d+5x7SH4RttYPU1tby\/79+7n22mtJpVLo9XoikVWSzY6ODqampjbFZP9i2sDAACMjI+zduzfvdI4fP85b3\/pWPvOZz\/De9773V9rpwBZ0PGtWiq8tJajx6FQmjjXTGMSnrbeIowSTXfzQWO0m5uYiwm2mp8VRhMt9ZcL9ydOPcsZ\/DM26xbZGp2FEkEYCCDUHSCXUr6FGKwlrL7CqEiqyYLVLSNNT0eATOgCNXv1aavUahgTHV9sSyotybTSXz6razKrTaRhXoeUxGLWMqgA6qloCRKaUnbCcUr7O5Q1eZZRbg6eIEBQg4Cx2FraQATbswxCZJOP18w8Pr55HViF6cqpIu1v9tnz9YXR0lH379uFwqDv4l9oSiQRnz54lGAxy4403FhF2Hjx4kPb2doaHh4nHxZmGX7QNDg4yNDSUJ10FaG9v581vfjP33nsvH\/rQh37lnQ5sYcdTMtUmiHgS2RLNpWoNH\/lx8QrK5RV3fXtLwFXNZhMDA2LgQTRauBo+efY0P03+EE1odRYPbvOTWCoBKRfAnwEclWaSMfVzNdsN9AkF4WQmhBLaMuMCeQKTVc+gICJr3BkmKiAEXRSwNVQ1+vPaKButfntItW5UvyPMisqixuZQVuy0u81MqjiyjMpzqlFAm+mMWlYUmkaN6cJjtdQ4IBLh4Ukf6cusFokFBSJQq3JEbPZa6ezszBe9tzIVfzwe5+TJk\/j9frZt24YkSXnCzqamJg4cOMCBAwfw+\/3MzMxw5MgRjhw5Qnd3N\/Pz8+RKiD2+kDY0NMTAwAB79uzJF+\/Pnj3LG97wBv7yL\/+Se+6559dO57JtOcezPtUmjHgEjsdgFafKkgov\/XqLlajPpDLiCd\/rcwnHK6uDwnPT63V0dfUWfT48Mso3+\/4LuTFJtsQDbPOaGS6hzWMucZ0qWgKkBf09NW1lQkLRuu0hIXChfnuYTEp9YkgKhPoq6n2MKSDC1mx2XMDSIIDe5hTSZXAZcKKSMqxo8pHLFJ+Hw6fcNGqyGVjoLY6qws0+shvOWW\/Vo5suTEXq7EkmrG4eenQ2f2yLCulQo0o6d2R2hLm5uYL6w1a0NacTCARobm5WnbTXeob27t3LLbfcQn19Pel0uqBnaGJi4nn1DJWykZER+vv72bNnTz567Ojo4I477uAjH\/kIf\/7nf\/5rp7POtpzjWTOdTvecazwGs3hCjatQl6zZbAko9eyceFxJCmG9ySUiqobGGlZWlOHg0WiM\/zr5X3RlT4FGPXLz13pUV\/wAJruBkS5x\/8\/SQgl2B0FjJoDOKH68RA2jdo9RGA25feoNvNXbAkyp1GJsThODKj1LTp+FERXaoNodQeIqiraJiPJ5lNd7FJtDy5uVHZXVUDwxBRs9sGFbv7TC1zuv9Lc5XAZFHSaNwmpfY9AQzybYv39\/Ht67FW15eZmTJ09SVlZGU1PTpidtnU5HMBikra2Nl7\/85ezZsweLxcLQ0BBPPfUUJ06cYGBggFgstilU2GZsdHSUnp4errnmGpzO1Qbwzs5Obr\/9dj7wgQ\/wV3\/1V792OhtsyzoeUaotm84q5rTz4yV42hYFkthanYbJCfUJWafXMj4mjiRGR8QUN7oSSDOXS8yK0NhYw3\/\/\/CEuBg6iDyhHDAsCoTWA8pYAGYFMtq\/KKWQasNiNwsK+1WEU9uaU13kZVYgG1swVNKvWjrR6LUOCaM7uVJ9Qa1uCquctSs\/pVe6Z3WNibiCiOKaWZtMqPNcanURiqPh6m6XCCMhe72bC4OPYuSuRZnm5MhItHSteAOkcBvbt24fRqJw23Aq25nRCoRCNjY3PedJe6xlqaGjg+uuv56abbiIUChGJRDh+\/DiHDx+ms7OT2dnZTSkeK9nY2Bjd3d1cc801eXBGT08Pt99+O+9+97v5m7\/5m187HQXbco5n7SaJwAWl6HJSJVQ4F+bUV\/LekIOM4CEMhO2kBak6j8\/BTAk57P5+cX2nFAuszb7aE3Dmwlm+N\/IAmrbCVIy3ylmyv2dxXuyYPGGx86tqCZASOP\/qEuPugLiuEJ1TT7OFau0sq8gj6I1aYaS0PK++6IjOKj8XJqueMRVH5wjoFaMap9\/CrAIM3WDRE+lTSLM1+Yoclc6kIzNU+CzYQ0b+7pFCh2K3KTvaxEJx+s0ddgtlrV9qi8VinDx5kvLychoaGl7QSXutZ+iaa67hlltuoaWlBVmWuXTpEgcPHuTMmTOMjo6qZhs22sTEBF1dXezevTvPsDIwMMDtt9\/OW9\/6Vj772c9uWUaFl9q27FURRTzPh6fN5DCoIqEAbG7xStDhE6cnysIe4Xh1TZilJfW6iMGgZ3hEzFYwNXVlYo1Go3z90ANMNp5Fezld71DpNVkzb6WDUYHYmqSBEUE0ArA0L07DLQgadPVGLQMC51C1zafaRwNgNqjXJeraykjElFOp4Rq3KotDWY2bSRVnXdMaVBXhM+SUJ\/FwnXKaraLZp8gNZ7cWpy39jR7kZKED7ljUMTReODHqFSY3jVYiqwAcSWnTipLWW8FisViRBMMvytZ6hlpaWrjpppu49tprcTqdjI+Pc\/jwYY4dO0ZfXx+Li4uK12lycpJLly6xa9euvP7N8PAwr3vd67j99tv54he\/+GunI7AtxVyw3kQRz1CvOvU+QFwAtTY7DSBAECfS4kggV4I81GgSp9F8ARfdxbiBvDU01nD+\/HnVcZfLTm9vf9HnTxx9kvJQF69quFNI1gngDjsYEwi6VW8vo0ugIhqqdSvKW69ZeYOXYRXFTlgFFXS2K9PRAFhVVvAA3jKHMKKJzKuDCvwhJ3NDyuOBkJPIsPKYGuDAE7IxO6B8HdXSbHqpeBKTNJAcLU7v2gw51rsdQ4WHL32v+LpmFRZaHr8VOamg51PuIRqNMjg4iF6vzwuYud3ul3SiXNP9qayspL6+\/kX97TWNIbvdTm1tLalUKk\/js0Yns8as7fF4mJubo6Ojo4DlYXx8nNe\/\/vW8+tWv5p\/+6Z9+7XRK2JZzPKIG0lwux6VLlxjqGRTuIyaAGetVIKZrpi1REJ+dE\/fOlOojyOVKqZaKU1Dh8iBz88qT+tjEOMedj1Pja8C6VE8urnQushANBhSxO280V8DGqGAfDq8FBM5VlIKzOU30nlOvkZXXeIlMqrAKlNmZG1Ye02gkJnqVj1lEkePwWlTTbKEaD8MK6TlnwKqYZtMbtYpptmCDl9QGiXVJJ5Fd\/5lWw2Gtm1g8UvT9hALk3OUxwUTxtQjUBNm1a1eenmZmZoaOjg4ymUyBpPWLmY5bczpVVVXU1dW9aL+rZgaDgXA4TDgcJpfLEYlE8vIOiUQCWZYpLy\/PL4wnJyd5\/etfz4033si\/\/du\/vShy27\/stmXd8kY4dSqV4uTJk0QiERqrG4TfXYqo52ilEg2RGVG3IxBbFiPWRkfFVDpjY+LxSCQiHLeWgEB7PG4eefqHPB57AO224tV4ZWuQBZUmSACz3ShUEdXqJIa61KMZvVHLgIqGDYAv7BAyHdS0lKmmQiUkpoYiqt8tr\/WqAhICNTYWVWo4IoqcykavKuBgWYUsNFzrVkazbfOTUUjZuRTSu4FGbwFzdUfYz\/mp4gWVRqthUeF+ykVsb6u2xlqwPtX0spe9jP3792Oz2RgZGcmjvwYHB19Q9JeSLS0tcfLkSaqrq7eE09lo63uGmpqaAAiHwyQSCW6++Wa2bdvGbbfdRnl5Of\/f\/\/f\/\/drpbNK2rONZg1PLskw0GuXo0aPo9Xquu+46ZAEaWmfWkxR065cAvDEzq56mMpr1zEyrp6i8fiezAmCB2+1gRIB4MxoN9PT0CY+vv39AOD44OAhAZHGRbx99gJHqwxhDV5yptkQqsLLVL6yB1e5Qb74EqNsRUi38A4SqPcKJbEHAkl2\/vUy1L0iSUIVQA3jdLtUxkV5PQgUBGax2MafiBNXSbCYVlobMZPEzZbddeTWXGsr5\/E\/OsrJUDLgIlDkUodQ2FfVbi684ol5LNdXX13Pdddfl0V8LCwscP36cZ555hq6urhe8IXNxcZH29nZqa2uLtGS2ms3NzXH+\/Hl27NhBW1sbe\/fu5Sc\/+QlVVVUAXLhwgXA4zF133UVnZ+dLfLRb37ac41mfaoPVMPbYsWOEw2F2796NTqcTggtK8bQlVfL1ADq9hqkpdccRrHAKJ82ykLJ20JpVVov1TRqbakgm1b1qbV0V09PqqT6Xy8H4eGG0cuLMs3y391\/I7BjC5NQJ6yMAC4LeGoBcCWXXpIDDTpIQpvkqGsRNoQajevqntrVMtWnU4jAy1KEcpekNWoZV+nr8FQ4mVJpG\/eXKFDNqaTatQaOYZvPVuFnZ6Gw1IF+G7MuVfv7sx2cBmBsvdso+BUcC4LAoR8ZWf+mG0Y3or6amJrLZbFFDZjotZsYQ2eLiIqdOnaKurk5RVnsr2fz8PGfPnqWlpSWvwrmwsMC73\/1u3G43HR0dTExM8JOf\/IT6+votDVXfKrblHM+arTmeCxcusGPHjgI8f2pZVMMR3\/RlwXc9ZXayghWd1VmClLNEQ6XBKB632cS69GVlYubgqqoKRceYSqX4wVPfpcv1GJnyCdQ0ogM1LkYF2j3OEro5vrCDfkEarWFnmHmBPLbLqz4pWh1GBgT0PWaVFT5AXUuZKgNDw84QGRWVV2dAPa25pOLkwnUqabZmP+l48UTtVfgNX72H7OIyGpeNT54eZiWVwet1EVOIvuwKrNQAssr5KkU8ItNqtQQCAVpbWwsaMgcHBzl06BAnT55kaGjoqjjSIpEIp06dor6+nurq6qs6nhfbFhYW8mqsa\/LRS0tLvOlNbyIQCPDtb38bg8GAVqvl+uuv57777ntBorcvf\/nL7Ny5E4fDgcPh4IYbbuCRRx7Jj8uyzL333ks4HMZsNnPLLbcUKZcmk0n+8A\/\/EJ\/Ph9Vq5Q1veAOjo2Ly4hfLtqTjyWazXLhwAYCdO3cWKSGKIh5Nicl9QdCNby\/BSo1WvNqPL4vF5RYWxIwHpeo70ah4\/3q92DFm5DTfP\/FVOhz\/g1ReHNk5g+JJqbxezIawShiqPp4T1M8MRh39F9UdS11LSBWUYLLqGbigHsmtCMAmclqQ9lNhzQ43eFgYU3Y8GRW5DotKijM3V7wfp0uPpNfy4FKagYnVYwgHfYrfV6P\/ySgIIWqNOkwlMgIiW9+QecMNN3DjjTcSDAaZm5vLc6T19PSwsLCg+hwsLCxw+vRpGhoa8mmqrWqRSITTp0\/T3NxMOBwGViHfb37zm7Hb7Tz88MN5RdEX2ioqKvjsZz\/LyZMnOXnyJK94xSu48847887l85\/\/PH\/\/93\/PP\/3TP3HixAnKysp49atfXcDxeM899\/Dwww\/z0EMPcfjwYWKxGLfffvtzbpZ9IW3LodpWVlZ49tlnkSQJnU6XF1BabyK6HElJZH5tTCMJU0k6k9gPL8XUV+sg1ujR63X09Q2qjpvNJmF9x2g00NXVJdi\/nkuX1HPLer2e3t7V\/Q8ODzDIADtadlGTvZbctB1JA0MC3RuA6VF1+QJJgtF+9WjJ5jIJ5bXrd4a5dEK9sXZpTiAG1xai84TySi5Y4WRERSfH6bMwrJJ6dJWbiSsU8wEsdh1KT4JLJc2m0UksKsh+u8sdJMaLFwDS9CzP+jz8\/NErsHqHzcY0xYsmNSXehEKDsLUEee3VmtlsprKyksrKSjKZDHNzc8zMzHD27GpqcA2C7PV60el0eafT1NRERUXFC3osL7QtLi5y+vRpGhsbKS8vB1YZFd7ylreg1+v5\/ve\/\/wulHLrjjjsK\/v7Upz7Fl7\/8ZY4dO0Zrayv3338\/H\/\/4x3nzm98MwH\/+538SDAb5xje+wfvf\/34WFxf5yle+wte+9jVe9apXAfD1r3+dyspKHn\/8cW677bZf2LFvxrZcxCPLMi6Xi2uvvVa1l0ckApeT1E\/JYNcJV+zRhNixTEyoT8w+v5M5AYdbbV2FsH7T0FBNKqWeM29urmdlRf28W1ubWF5Wd6ptbS3EYoUR0\/lLZ\/lRz\/9lsbEdX5ue6Lz65F61zc\/USER1vG5HSJxGKzMKr31SwJ9XUecT0uuIRP\/KKtXrbiKKnEDIqfwlCZZUop2QIM2m9Mz6y4sjTHeNkwmXnX96tLCXS6uyRlxUAGM43CZF9NzVptmuxtY40rZv387NN9\/M7t27MRqNedmCY8eO5YEEvwxOZy0VWFlZCaxKM7zjHe8gm83ywx\/+8EVl9M5mszz00EMsLy9zww03MDAwwOTkJLfeemt+G6PRyM0338yRI0eAVSmGdDpdsE04HGb79u35bV5K23KOZ01dUKPRqLIXiLR4MgraJ2vm8os7+pei6hOn3WVifk59xR8Mi4EFTpd4tblGg6NmVps4pC\/FMmyxKH9flmUOnzhEV\/pJMq3nsVQop7OMJfqfNCWE7VICzIK\/3ClkMnAH1O9bsNLFUKfygkCSYEpFphogOqOcdpU0EpFR5bRmZbOfxILy8xebUX4+rAqsBAAsFV+UJY+Jj\/7wTNHnSog2SYLUUvH9cvuUn6UXOuJRM0mScLlcNDY2cuDAAVpbW4nFYpjNZvr6+jh69Ci9vb2qrAAvpUWj0TzoYS0VmEwm+e3f\/m2i0Sg\/\/vGPXzTtovPnz2Oz2TAajXzgAx\/g4YcfprW1NU+ptQZ0WLNgMJgfm5ycxGAw5Kl8lLZ5KW3LpdrWm2rEI0i1iXjaDDZxU1xcEFH4ww5GBCUaY4naUinG6rk5cVPnRrTaRhsZUWcCABTZDtZMr9fT0dHB0tISkvQ41++7ibB8DYu9q+ekN2roO68OA7e5TPReUB+vbPIxIqDoKatyM6NST9HqtQyrpMpg1fHMjipHIHVtZYx2KH83VONmUkX6uqYtyKRK06jTZSKi8LkjYCY2VuysJC0sKWgW2f1W4hu0d7QNXv6zY4i0guz63Hjxvn0BO9klBTkGl5GcwuW2CFRXf1E2NzdHZ2cnra2thMNh0ul0PiV36tSpAlYAr9f7kvbBrDWy1tTU5EEPqVSKd73rXUxPT\/P444+\/qCqtzc3NnDlzhkgkwne\/+13e\/e53c+jQofz4RkohWZZL0gxtZpsXw7ZcxLP+oqhFPKIaT0LQwyPqyNfqJCGU2mQTvxCxEvWfoSF1x2CxmOjtVe\/P8fs9wv6dysoKhofV99\/c3FjA77bRtre1sLS0OnnLsszRE0\/z3ZP\/yFzVIVytK9TvDJNWQX7BahpOxHRtd6lHc5JGEqbRGneGiamIwWkkiXEBGarFrL7Q8Kul0gCLRTm602glZlUYDsrrvIppNnvIRHKx+PjLagp\/P9Hi4SM\/\/yGjQ8XXwuNxKF6DQFD5HCwq6MoXK+JZs9nZ2TwMea04r9frKSsrY8eOHXklUZ1OR3d3NwcPHuT06dNXRdT5QtkaT1xVVVUelZZOp\/nd3\/1dhoaGePTRR\/OcbC+WGQwGGhoa2LdvH5\/5zGfYtWsX\/\/AP\/5AHW22MXKanp\/NRUFlZGalUqgjQtH6bl9K2nOOB0mJwoohnOaZeJ8kKwnpf2ElOMJ6RxT0Lw4LG0FDYz6ygMbWhsUbYE1FZFRb+dlWJcb9fDMM2mZXTcKfPtfOdI\/\/CxcxPcO6OoDMpX5+RAXWnZrLoS0CsQyyoMAAA5ASos7odIRYUBNAAjBY9QyraOpJGYkol2tEbtIyrSIpXtQRYVqmDpVWaZsvKlFOwcmw5fyxD9Sb+8kf\/Q1koSCJe\/GyHgn7FfdjtylBqNXzNL7LGs9FmZmY4d+4cra2teRjyRltjBWhububGG2\/k+uuvx+12MzExUUDUubS09AtNyS0vL+fJSdfYEzKZDO973\/vo7Ozksccew+dTRhW+mCbLMslkktraWsrKynjsscfyY6lUikOHDnHgwAEA9u7di16vL9hmYmKCCxcu5Ld5KW3Lp9qUazzqjicioPtPCIr3No8JBBD3qWl1YIE\/6GJ4VD2VFQr7GBxWH1erv6xZNKpeW1odF8OsJybUJ35JkugWoOW8Xi8Hn3qCbDaL3W7nxmtegXGulujo6uKgotHLUI\/6tanbHubis+qkriIyRU\/AJuzd0RvUo9CG7SF6TygTnda2Bhm\/qOxcarcHGTmn\/JtWqx6lhKgraGWuT2FEkomPRYo+Ntj0qxLXRg2P6uf40WUgQVkgwNJo8bV02uzMUuzwDBrl85dUZDusL1Kqbc3pbN++fdOra0mSsFqtWK1WampqCog6h4aG0Ol0eR45j8fzgqXk4vE47e3thMPhPDlpNpvlQx\/6EKdPn+bgwYMvSYTwsY99jNe+9rVUVlYSjUZ56KGHOHjwID\/96U+RJIl77rmHT3\/60zQ2NtLY2MinP\/1pLBYLd911FwBOp5P3vOc9\/Mmf\/AlerxePx8Of\/umfsmPHjjzK7aW0Le14lFJtck4Wggtii+pjSwIqF51ZHPyJqHKCZW6GRX1ZCozE621uTswmPTWlPrFbrRYhjDocDuVh1ErW1tbCBQEbdvO2Jp55ZhUFE41G+elT3wdgz6791Nr3YDOLo625KfXr5vBYhLWjino\/HdPKEGur08jAeXWnlI6rp1zNZnWghEYlG6vVa5hWIRkN1bqZPF0MVAg1+UgMFqfOKpt95GYW+I+ZS5y8eCWFqiYDnk4oL5hySRWhRBWE4IuRapuenub8+fNX5XSUbCNR5xqhaWdnJ6lUqoDQ9LkyBSQSCdrb2wkGg3ntn1wux4c\/\/GGOHDnCk08+mU8Rvtg2NTXFO9\/5TiYmJnA6nezcuZOf\/vSnvPrVrwbgz\/\/8z0kkEnzwgx9kYWGB6667jkcffRS7\/QoQ54tf\/CI6nY63ve1tJBIJXvnKV\/Lggw9uCT65Le14lMAFqeWUWuM9WrOO3IJ6VDM9FVEdy8gCcbeAjf4pdZmAXIk0nChaslotwsJ\/bV0lvb3dquMtLU2cOHFS\/fu11YyNqXtFZwmEzkYI9pqdOnuC8\/ozVJRXUNfWijQTID1diD4LVDqZGlKP1qqbApw\/Nqg4JiEJuddqW8q4dFy5ruULOVT7cwwmLUMqqT+z3cDYJeVIqKY1wLRK6i6twufmdJlQ2lvKmOXv+o4zMlPoyOSU8uInvqgc4avxyK2oNEn\/osEFU1NTeaaRQCDwgu1Xo9Hg9Xrxer00NzcTi8WYnZ1lbGyMS5cu4XA48k7IZrNtqnieSCQ4efIkfr8\/L62dy+X40z\/9U5544gmefPLJl7TB9Stf+YpwXJIk7r33Xu69917VbUwmE1\/60pf40pe+9AIf3fO3Lel4JElClmW0Wi3JZOFLJ6rvmF0WGFee6DQ6iZjKCwwQi6un6LxlNvoFFGeLS+qTq81mYXBAvfDf0FDFqdNnVMfLyvxCx6PXi2\/hGmhAzfr71aMht8fNhQsdquM7dmzn1KnTDAyurtrr6xpoDj3WrwAAWTBJREFUq76WzIiP5RkIlruZHlG\/NuPD6qCCurYyBlX41QBhz1F5jYdOFekEf5WVuV7lsZrWIIPtygsMkwpq0V1mY06FX255Q5pNZ9IRq9fylz9+mHii+FmMqCjjLs8XL2w0GonFyeJFgdGsI6ngkJ4va0EpW3M6O3fuxO9Xrkm9ELZROyeZTDI7O8vMzAz9\/f0YDIaSGkMrKyu0t7fj8\/lobm7OO52PfvSj\/PjHP+bJJ5\/c8qSlv+y2JR3Pmul0uqKmSBGiTWdRRzFZ3CZkQZ\/OjCDdpTeLV1CzM+rppIqqIHPn1L2WuUR9Z0ng1ABhGs3pdHDx4iXV8W3NjUIm3W3bmjly5Kjq+Eam4r7+Xvr6e5Ekib279zOVS2D2mEkoXNryBg9jvQIUoQCRFq71CDnlZgXOTi+pp9kyClxqsCr1MNWtHAmV1biYXCh2ZMEGD\/GRVYckaSR0LXb+o\/2nGPosik7H53OzMFfsSJxOGwmFKN7jt5JZKk61eYNWWCxebPwi02yTk5NcvHjxF+50lMxoNFJeXk55eTnZbJb5+XlmZ2dVNYaSySTt7e243W62bduWdzr33nsv3\/nOdzh48CANDWLZlV\/b87ctiWpbM6UajwhYIBnU\/ahdQECpN2iZmlSfBFMZ9d8MlrmJRNSjimxOoOHAKuRUzcxmE52d6tFOU1O9kK1627YmVRVXAJ9PjHZLxNWjCr1eT3d3j+KYLMtk5CTffuzf+dngl1ioOITzmjns69LlLo962sdo0dF3Xr1vyVumnh6sbQkwq8IsYHMbme5XdkrugJUxFTRbTWuQ5LKyU1JDs7kv8\/5ZG1w8bu7iEz\/5DwamxlXRURXhcuXPQ8p1EptN+Vl3upQXMhbB8\/98bGJi4iVzOhtNq9Xi9\/vzGkP79u3DZrMxPDzMU089xfHjxzl69ChWq5WWlpZ8ZuUzn\/kMX\/va13j88cdpbm5+Sc\/hV8W2ZMQjglMnFgUsuDr1oplepTcDwBtyMDqiDgCYX4iojvnLXAwKejcltWo1YLdbhf07Tc11nDrVrv7bfp+Qvy2XE5MBinp\/XC4n5y8TtSpZbW0t3d3qTnGNx0qWZc51nOUcq\/xd9XUNtNXuY2Z5tblSVjjEigYvg+eUHbJWp2FExUEA2Ozq\/Fm128roOa5c7wo3eOl\/VnlMp3IP3WU2ZTQbkFpZobsiwkM\/\/07B53JOeV8OqwMojpydDmVEW1nQy+R4cSSt1WYVS6C\/CETb+Pg4nZ2dBRLQW8UkScozO9fX1xONRjl9+jQajYa5uTnuvvtuTCYTVquV73znOzzxxBO0tbW91If9K2Nb0vGs2UY4dTwep+O0es0hJygqyoLmUavbCCpzsEYjMTaqnirTG9SDRo1GQ3+fOpTYH3ATWVRnLLCYxWgdEduBwWCgo0M9zVZbW8OAoL7T0tLCkaPqaTaXS70BU6fTqab4+vp78fk9HD\/+EDabje3bdhG01ZGbdbE0snqPsivq96qyycvIJeXzNhi1jKgwDoA6RQ7Asoo6qcmqZ1JFcXVjmk3SSjgaHYwYJvnYE18hqdCbNTMdUdxXJqm88NHJyq+oXgWZpCGL0nLD8gKn2sbGxujq6mL37t0vemPl1Vo6nebChQu4XC62b9+OLMvMzc3xH\/\/xHzz77LMYDAY+97nP8YY3vIHXvOY1Lyo7wa+q\/dKk2ubn5zl69CgmjfpkLBJ5SwsEzERQan+5U0juGRXUjaprwiwvq092pfR3RgVoNI\/HTVeXesTR1rZNSBpaHlZu6lszEcWP0WgU1o527tzB4qJ6nWXtnsZiMY6dfIbvH\/waP7zwJS4Zv4X9ulGi1h4cNVkkhblVROnesCNMIqZ8r0QUOcFqt2pDaXVLgIwKbDl9mZHAWesg2Zrh24lH+N+Pf5GLkX5Fp+Nw2BkbUXZik6PKzjQZU06VyipMEU4FNneAaHaZ6enpF4QSf3R09JfK6bS3t2M2m9m+fTsajQaNRsPs7Cznzp3jySef5LHHHqOuro7PfOYz\/Pd\/\/\/dLfci\/ErYlHc9aqm0NTj06Okp7ezuNjY147eoP+vy8+mSXSAiIRQVwaJdPXPwfHlaHWXt9YqiyqD7j8ToZHFSXCWhsrBfKEJtV2AjWbGpKvQfG6XSURLOpwaxhNdpSM5vNprrv6ekpIvEpvnfwAf7n7D9yJPGvzFUexLh7EPfOZbz1BqYH1OtpKcE9FlHkqKmJAkhKCxYtWBp1zFuXeEx\/hP\/99P3886NfZXh6tSdJkpVfq9raasUOfJPRwMKs8iJhQQG5BpCIKNeWcivKz7LFZ6Wnp6eAlmYjYnQzNjIyQnd3N9dcc80vhdM5deoURqORnTt3otFokGWZr3zlK9x333386Ec\/4oYbbuC6667jb\/\/2bzl79iy\/93u\/94L89mc+8xn279+P3W4nEAjwxje+sSgtfvfddyNJUsG\/66+\/vmCbrSzm9nxsS6faNBoNqVSKrq4u9uzZg8fjYSSq3vMiYQCUX+BFBb6sNYsKohKtINsVDHkYHO5VHU9n1B2a1WpiYkI9hVdZGWZmRt055HICTjqgp0f9uCoqyoXjLS0tHD12THVc1IBmMBiE0VBbWxvHjx9XHR8bu9JQmkgkOHvhNGc5DcCNNx7gbPwcVRXVBL3lOAw+9GkHqQU9+pSN0UvKdSERRQ7AvIrcg9VpZKJ7Gk15jhXHMnO5GUZmR+kZ6GN3bhfPPnJW8XvjY8pRjd3uAIobZsOhMuaHiiMRp9POogLEWpIklqaUHVJK5Tmv315P5fU1LC8vMzMzk6\/PrPXA+P1+rFarsAdmZGSE3t5e9uzZs+XTUZlMhtOnT6PX69m1a1fe6Xzta1\/j4x\/\/OD\/84Q+56aabir73QhFoHjp0iA996EPs37+fTCbDxz\/+cW699VYuXrxYwCT\/mte8hgceeCD\/98ZF2z333MMPf\/hDHnroIbxeL3\/yJ3\/C7bffTnt7+5ZoBH2utmUdTyaTobOzE1mWue6667BarWSzWZIKyoprlhQQWc7Nqq\/Qp2fVayWilFMg6EQQlDAyoh4NNTbV0t5+WnVcp1MPRrVajZCtYNu2Ji5dUp\/8a6qrGB1RP\/BUWj1yMBqNwmho584dnDypDogQoezq6uro71dfWESXoiwvL3Op6yKXuFgwdtNNL+PC3EXsVgcuhxuj1oRRY8FqcBJ0lbOSXMYU0IAsgSwhyRLkwOGyE01MgS9FigTJ3AqJ9DKxlSh+X4Ann3mGxEjxM6Cq4xPwMz6u7HjUFFTDwRDzQ8Wr2PKQj7kFBR2foJ30YrGj0mglVuaVF1Fr4IL1tDQbe2CMRiN+v59AIIDT6SzogRkeHqavr49rrrlmyzudbDbL6dOn0Wq1BU7nm9\/8Jn\/6p3\/K\/\/zP\/3DLLbf8Qo\/hpz\/9acHfDzzwAIFAgPb2dl7+8pfnPzcajUUKy2u21cXcno9tSceTSCQ4fvx4XsrZaDSSzWbJ5XL4GgNYfFbiCqmJaER5wjSY9UTnlR2P3qBlXECHMyNwSjoBsMDndzM2oT65m0zq6ShJkoQRSU1NFb296uNerzgFMjevfk4Oh53z59XRbDt2bBc6FtEqzOFwcF5Az1NeHlZ1PD6fj46Oi4pjABOTE0QiESKRCCNjhdd9584dnD+v\/N2bbrqJZ55Rju6uv\/4GEgnlhcdAvzIapaamirPzyrW3sRHl1KqkAiBwORzMKXAf+AJ24go1NI\/fSi6pHPErgQs29sCoKYjG43EGBwfZs2cPTqd6ynIr2JrTkSSJ3bt355\/H7373u9xzzz3893\/\/90vCVbZW89yYnjx48CCBQACXy8XNN9\/Mpz71qTzrQykxt19mx7MlazyJRAKPx8M111yT\/1uWZTQaDW2\/uYu3fe\/dNNyznbJXVWIrW6VpkTQSURUKEbuKMBaAN+xQZaU2GLRMjKvXYUSsAOWVYsoQEf9aY1MtCwIId1mZeN\/j4+r8Z4GAn05BtNTa2kIqpR7xiEg9jUaj0Dm0trYK9z0yop67bm5qUq1pOZ1OBgbU0YMiZvD1qb31JkkSfb3K+6ytq1ZVmzUalGtrZaGgqpBgdEHZuelQbgFwqIgCunzKUHKtUYfJKZZp1mq1BAIB2tra8gqiBoOBS5cu0dvbi9VqJRqNPqe60Itl2WyWM2fOIMtygdP5\/ve\/z+\/\/\/u\/zjW98g9e97nUv+nHJssxHPvIRbrrpJrZv357\/\/LWvfS3\/9V\/\/xRNPPMEXvvAFTpw4wSte8Yr8Nd7qYm7Px7ZkxOP1erHb7WQyGdxuN0ePHsXr9RIIBC6nei5Qta+Gprua0Gg0THVMMPBUH1PfvsTMUKRofyaHeqHG5jaBSmASqHQx3asetQwPqafS9Grc9Kzm7vv6BlXHvV6X6hioT5awKoEg0u5paKhjWgAsWFToel8zk8lUMs0m4o1LpdQnrfr6evr61OHdIjBDTU0NZ88pR2mNjY2qXHg+n1cVwNHU2EBvr0rPTyjM8KByfW52JqL4eWVFOYuzg0Wf67RaxodVeoFiygg0g1bZ+dttepTcusUrRk9utDUF0TUtl507d5JIJJ5TXejFslwux9mzZ8lms+zZswedbnVq+\/GPf8x73\/te\/vM\/\/5M3vOENL8mx\/cEf\/AHnzp3j8OHDBZ+\/\/e1vz\/9\/+\/bt7Nu3j+rqan784x\/z5je\/WXV\/W0XM7fnYlnQ8MzMzmEwmNBoNe\/fuJZFIMDU1xcDAAIlEAovFgs1mI51OYzQaCbaFCLaFuP73b2Ksc5rTj3Rz+mfdTPasvtBao7oT0BrVb6DNrZ4OKwt7GBhST3eJGAnqG6o4cUI9kopE1FN\/4XAZAwODquNNTY1MC0hJYwIJBYvFQo8ghbdjx3ahYxG9DC6XU5jCC4dDqo7H43ELIylJEIWVlQVVHU9zczNHjjyrOOb2eFHTyUgllUEjNpuNoUHlxYhWRcKgqqqc+UHl2o8aoi2nwmJtMmgVHY\/1Oejw9Pf3Mzw8zN69e\/OMx1dbF3qxbM3ppNPpAqfz2GOP8b\/+1\/\/i\/\/7f\/8tb3vKWF\/24AP7wD\/+QH\/zgBzz11FNUVFQItw2FQlRXV9PTs8oIsl7MbX3UMz09vSU0dZ6PbclU2x\/\/8R\/T2NjIH\/3RH\/Hzn\/8cSZL4h3\/4B5588kna2tqoqKhgfHycp59+mpMnTzI8PJxXLCzfFuD2P76JT\/z0d\/nEo7\/LHR+5CXtI\/cXLoI48k7TqYIVA0KU6ZjQahBGNQUDtY7NZ6OpSpqKB1RqCyET9MzarlY4O9Yiltk4sSCdyLGazWRgNtba2CPctku7etm2bav+Jw+kQNspOTak7+BWB1PnMjHJ6TqPR0KfSFNzYUKd6nLMzyvcl4FOmmXHYrURUINYrKmS3OhX5jattHu3r6ytyOmu2VhfavXs3t9xyC01Nq7RMZ8+e5amnnuLChQtMTU0JQSQvpOVyOc6fP08ymWTPnj35uvDBgwf57d\/+bf7lX\/6Fd7zjHS\/Ksaw3WZb5gz\/4A773ve\/xxBNPbIp0dG5ujpGRkbxw3lYXc3s+tiUjnq9+9ascPHiQ73znO7zvfe8jk8mg1Wr52Mc+hsfjwWQyUV1dzcrKCjMzM0xNTdHd3Y3D4SAQCBAMBjGbzZTVe3nNh24A4E0feTlHfnKRwz++SM+Z8Xw\/RVTQZLksYKzWCq5csMxNjwqVCiCEUTc21nKyXT2qiMfVod8ul6sElLlFCGU2mdR7f1Ydi3rEsnPndo4fP6E6HhfwvpVKs4k441paWlV\/NxQKqYI0TCYTly4p0w1ZrRbGRpXTkVXVlYwMKd+\/jZP0mmk0GuZmlFOYBq3yNQ+H\/SwoaEtJksSiCpRaVkHNbZYuR5Zl+vr6GBsby\/OciWytLhQIBJBlmcXFRWZmZujt7eXChQt4PJ58Su65auaILJfLceHCBeLxeH6SBjh8+DBvf\/vbuf\/++3nnO9\/5kqSlPvShD\/GNb3yD73\/\/+9jt9nxNxul0YjabicVi3Hvvvfzmb\/4moVCIwcFBPvaxj+Hz+XjTm96U33Yri7k9H9uSjken0\/GqV72K1tZWTp48STqd5vrrr+f\/\/J\/\/w1\/\/9V\/z2te+lje+8Y286lWvorKyksrKSlKpFNPT00xPT9Pb24vNZiMYDBIIBLBarYRqPPzmB2\/iNz94EzNjixx55CLP\/PgSF0fUu\/8nJ9VXy4sCYIHVrj6Bu93iQrjRpM4pZzabhDDp5uZGjgn6b0QRh8lkKoFma+PZZ9UdYi6nznXn8bhLpNnKVB2Py+UURlKiTvy6ulomJ5XTji0tLZw5o4yw27ZtG2dOK19np8PBCMqOJ7qkvCiorq5gclSlEVRFqt3jcLKggGjzBmykl5QdTCamDK7ZjOT1eqezd+\/ekk5no63VhVwuF42Njfl+oYmJCTo7O\/ONlC9UXUiWZTo6OojFYuzbty\/f\/3Ls2DHe+ta38tnPfpb3vOc9L1kt5Mtf\/jJAEWz7gQce4O6770ar1XL+\/Hm++tWvEolECIVC\/MZv\/Abf+ta3fmnE3J6PbUnHA6sP1utf\/3p2797Nv\/7rv2I0Gsnlchw7dozvfve7fOxjH+O9730vt912G2984xu57bbbqKiooKKignQ6nY+E+vr6sFqt+UjIarXiL3dy53tv4M733sDs9CIHf3aaJ358ivZj3WQzqxOZxW5gfFodPKCWy4dVfjc1q6urZHZOPeIREXe2tDTR3n5KdTybVU9v2GziNNu2lm2cPq3eVySSvLdarULn0NKyjWeeUed9GxbIt7a0tHDsqHKUZjabhRGeiK7IokItA2A2qY\/pdMp1P51OR1+fMlAhVFbG5Khy5DU5opzS06nIN\/gDdhIqi57EnHKEbvWLU22yLNPb28v4+Dj79u0raHB8rrZRxnpmZqaoLuT3+3G5XFddF5JlmYsXL7K0tFTgdNrb23nzm9\/MJz\/5ST74wQ++pAV4JYaK9WY2m\/nZz35Wcj9bWczt+diWdTySJPGDH\/yAioqK\/AOk0Wg4cOAABw4c4O\/+7u84deoU3\/nOd7jvvvt4\/\/vfz6te9SruvPNOXve61xEKhQiHw2QyGWZmZpienmZwcBCz2ZxPD9jtdnwBJ2955y285Z23EFmIcehnZ3jiJ6eYmp5m\/LwyOixU7qV\/UL0O0z+gjoTT6dVfsnC4jJERdUSaKF1RGsrcwrOCNJtOwOxdCs22fft2YQovKgA0NDQ0CHuSUgKevLbtbZw8qewsHQ47Fy+qw8ZFdERjY8ppNq1WR2+P8v2prAwzPqIMCpEk5desLOgnOq2cRkwvq9S0bCYSFDseh9tERqVmJQIXyLJMT08Pk5OTL5jT2WgGg0GxX+jcuXPAlX4hr9ebBwaIjvfSpUssLCywb9++\/Dtx9uxZ7rzzTj72sY\/x4Q9\/+Jce9fX\/um1JcMGaVVZWqj5AGo2Gffv28dnPfpbOzk6OHj3Krl27+Pu\/\/3tqamp461vfyle\/+lWWlpYoKytj165d3HLLLdTX1xOPxzl58iTPPPMM3d3dLC4uIssyLreNO99xE\/\/w1T\/i37\/9Mb7wpT\/j1a+5AZOpcMIPBNWb6CqryogsqBf4JybUocyVVcodzGs2MKDulFpbtwnrP7KsDpSwWCxCx9LQ0KDaSAniSKtU42dZmbLeDJRuZtUJCm0tLepghrq6WsbHlfV+KirKVfn3mprqicWUr3FFuTpiaVpF66k8HFb8HGBhSjl6MapMzG5Br5oauECWZbq7u3+hTmejKfULGY1Gent7OXTokJBHTpZlOjs7mZ+fZ9++ffma5IULF7jjjjv4yEc+wp\/92Z\/92un8EtiWdjybNY1Gw65du7jvvvu4cOECp0+f5vrrr+ff\/u3fqKur48477+Q\/\/uM\/mJ+fJxAIsHPnTm6++WaamppIpVKcOnWKw4cP09XVxcLCArIsY7dbuPPNv8GXv\/IJnj3\/Tf7xXz\/K69\/wcqxWsyJr8poFguqsAV6viwFBNJQWNFfW19cKndZG57jejEYjFwWTf9v2VqFjERGO2mw2oXNobm4S1mGGh9WvR01Nrarz0Ol0XOpU1yIC9cknLJjwq6trVMe8AuG8pAo5p9lsYmxUuVZoNSlP9Da7mYVpNSi1SiTkUr\/\/SuACWZbp6upienqaffv2CVOPvyhbqws1NjZy4403cv311+N2u5mYmODpp5\/m+PHjDAwMEIvFyOVydHd3Mzs7y969e\/NO59KlS9xxxx38\/u\/\/Ph\/\/+Md\/7XR+SWzLptqeq0mSRGtrK3\/913\/NJz7xCXp7e\/nOd77DV7\/6Vf74j\/+YAwcO8MY3vpE3vOENlJWVEQgEyOVyzM\/PMzU1xdmzZ5EkKV8TcrlcWCwmXnfHy3jdHS8juZLi4MFjmMwanj12nuXlwgk7p6RsdtlqaiuYViH+1Gg0qoqesMpW0NurPr6G\/VeytrYWTrWr09yIrFT9pqqqiosX1Z2aCN7d2NggpAZKCbrkt2\/fzpmzyuAAnU5Hp8ApLS6qS1mkU+rRWyyqHO1IkkS\/CoVOQ30tvV3KNb1lFfXSilBQEdEGsLKkfE0sJh1Krkpr0BaxFqxFDrOzs+zbty8v2vdSm6gutMa31tLSkk\/H9fT0cPvtt3P33XfzyU9+8tdO55fI\/p+IeNRMkiQaGxv56Ec\/yvHjx+np6eENb3gD3\/nOd2hububWW2\/ln\/7pnxgbG8Pr9dLW1sbLX\/7yPK3F+fPneeqpp7h48SKzs7Pkcjlycha7Q8dH\/uxuzl58hK8\/9EXu+p034LnMNjAhoLIQEX82NdcJkXKiptKWlmZmZtQbVlNJdWLVUv03bW1twmhIFGkFAn5h8T8YVE+zmc1mhobU0X8WQVqora2NpSVl5+J0OlTlxLVaHd09ys2mer2Bnm6Vml9ZgOiScmrM6XSpHufcpPIxup3KMg0iVmq10uHGNNtajWRubm5LOZ2NtlYX2rVrV77x0uv1cuTIEaqqqrjzzju54447eNP\/3955R1dVpn37OgnpvRdSCWkkoaQQWigiIBoIRUARBuYFZySig1KcT5xXbCgwgvoqYAVRMY60UCMgCc2ASWghQAik10Mq6XV\/f2Syh8DZG3RIgmFfa2UtzXPKc0iy7\/3c5febPJl33323SwZXFX4\/D81PS6VS4ebmxuLFizlx4gSZmZnMmDGDffv24e\/vz6hRo\/jggw\/IysrC0tISX19fhg8fTr9+\/dDW1ubSpUvExcXxyy+\/oK+vT0BAAAYG+ox6ZDBr1r7KuYv7+NeOj3n00eHY2WseCszL01xXALCwkPaEMTMzk5w5gdZ2ZSm0tLTIypJOZ\/n5+8nWhuTss83MTGXTbNbW1rKeQXL7CggIkBzwVKm0ZE9Kcq3A3t7eksON3t5eVN7UfGH39u4tuR852+emRs2f39zUhHIJJenGOs37s7IxoqFW85pKIp15ayt1WzdYW43kQQ06t5Kenk5hYSEDBw6kX79+RERE8MEHH1BaWkpVVRVfffUV4eHhfPrpp7KySgoPFg9N4LkVlUqFk5MTL774InFxceTk5PDnP\/+ZI0eO0L9\/f4YNG8bq1atJS0vD3Nwcb29vysvLqa+vx9TUlJqaGo4fP86FCxcoKiqiubkZbW1thg4LZtXq5SRfPMK+\/d\/w1+dm4+TUOoVsbWNJVpZ0q3SpjGK0t7eHbJ0kL0\/GfsHTQ9YlVS49IWfaBq2in3KzQXJ4evaWVSuQa4bo08dX9oQnJykkN\/8gF0DkrABMjKVvGvLzNO\/T2Vm6GaG5VnMrro2t9Ps0V0t1tLWeeNqCTnl5ebvC\/INMeno6OTk5BAUFiY0ParWat956i8DAQNFFdNSoUURFRd21hVnhweGhDDy3olKpsLe3Z8GCBRw6dIiCggIWLlzI6dOnCQ0NZdCgQcyaNYs\/\/\/nPNDU1ERISwtChQ8WC7LVr14iLi+P8+fMUFBTQ1NSElpYWoYMCeWfl3zl34TAHD0fx3HOz6dXLVeMeTEyMZGVy5HB2dpK90FrJnIZaW7Dl0mx9RCkiTdTWSq\/Z29vLegbJXfgMDQ1JkQl4FjKfydPTU7IJQ6XS4upVaYUEKfVogIoK6btpKQVzGxsrbkhYbpiZSHdG1mnw2gHQ0pK++agrk\/DhsTYWhy3Ly8vbFeYfZDIzM0XZnrYTbGFhIY8\/\/jhhYWFs3LgRLS0tvLy8WLp0KbGxsZLKEb+Ve3EPFQSBFStW4OjoiIGBASNHjrzjb6m7uofeDx76wHMrKpUKa2tr5s2bx\/79+8nPz8fJyYn9+\/fj6OjI\/\/7v\/7JixQouXLiAsbExvXv3ZsiQIYSGhmJsbExmZqZoLZyfny+eBgIDA1j00l9IOnOEY8f3snTpQnx8PMX39fR0lzzRqFQqrl6VVldwcZG+c76br49\/gB\/VMpJBcqcsS0sLWQkdDw8P2TvQkhLpE56\/v59sUJObwZGrG\/n4eFFaKhEIzMxIk6jvGBjoS87vyBm\/ubg4S+5F1az55GVkpE+pRB3HUE\/z8KqeQQ\/qJSxBDKyNuHjxojhs+UcIOllZWWRkZBAYGCgGE7VaTXh4OEFBQXz55ZcdOrnf5h566tQpDh06RFNTE2PHjm33t7J69WrWrl3Lxx9\/TEJCAvb29owZM6ZddmHRokXs3LmTqKgoTpw4QVVVFeHh4bJ\/Vw8LSuCRoL6+nr\/+9a9cv35dbNF+\/fXXSU9PZ8yYMfTt25fly5eTmJiIoaEhHh4eDB48mMGDB2Nubk52djZHjx7lzJkz5Obmij40AQG+vLr8JeJPxXD614MsX\/4SLq49Jffh6+sl681TXi691sfXmxs3pGV\/5Ib1TEzkZ2h8fHxkhSDlU4deknM0IK\/N5unZm9xc6dSiXArO2tpadk9SFwRvL08aGjSnFN1cpUVbDQ2kW5TLJARAezpKB059CR92IzPpi3BZfRmVlZUEBQV1iF7a\/SYnJ4f09HQCAwMxNW1NLZaUlDBx4kR8fX3ZsmXLXYdM\/1tiYmKYO3cufn5+9OvXj02bNpGdnU3SvztDBUHggw8+YPny5UyZMgV\/f3++\/vprampq2Lp1K\/Af99D333+fRx99lAEDBvDtt9+SnJzM4cOHO3T\/fwSUwCOBjo4Ofn5+xMfH07t3b0xNTZk5cybbtm2jqKiI1atXU1hYyIQJE\/Dz8+OVV14RGw\/c3d0ZNGgQQ4cOxdLSkvz8fI4dO0ZiYiI5OTli+srLy4MlSxeyadN6zp37hbfeeo3g4MB2dRcLC3PJPVpaWsp2jck9V1dX9671GznTL7mTUs+ejrJpNhsbzc0X0Jr+kxMMtZOwCYbW9J5cS7paLR2UdHRkPJtkUjh6etIniJpqzS3Renq6FORqDsyW5nIpOM0\/D0sr6Q6\/Fj2h3YT\/g0xubi7Xrl1jwIABotNpWVkZERERuLm58f3334tCoJ3J7e6hGRkZFBYWtnMG1dPTY8SIEfzyyy\/A3d1DH3aUwCOBtrY2b7zxhsaCs5GREU8++STff\/89RUVFfPTRR1RUVDB9+nS8vb15+eWXOXbsGDo6Ori5uTFw4ECGDRuGra0thYWFnDhxgoSEBLKyssRW5V693Pjb3yI5cmQvly4lsGrVmwwZEirrrePl1Vu2aywzM1NyLaCvv2wXUFOTdNOAtbW1bNC6mwS8XGDpG+Avm2aTcyn18OgluWZjY0NamvT7ZmVKv27xDelWdinjN5VKRXam5lOdq7MTzU2af266KmkPKClVanNz6ZOVqb0Z5eXlD3x6Jy8vj6tXr9K\/f3+xkaOiooLJkydjZ2fHjz\/+KGqydSaa3EPblKZvT+ve6gzand1D7wfdboC0szEwMCAiIoKIiAgaGho4fPgw27dvZ9asWWhpaREeHs7kyZMZPnw4Li4uuLi4UF9fLyppp6WlYWJiIippGxoa0rOnIwsWzGfBgvmo1Wr27NlPdPRejh\/\/pV16S87R09OzN2lXpVuw5dIVpqbybdLe3l6cPCl916ZWS6f3PDx6cf265loKtM7SSNGzp6NsZ6Cc9ULv3r0pLtZsn+Dm5kpOtuYhT2NjI0n\/HTnjN1dXJ4ryNJ8KrSytUF\/X7CLbVKs5IFnZGNMgoWSt10OF1Cc3sTPj6tWr1NfXiy6+1tbWXXIRlyI\/P5\/U1FT69+8vXqgrKyuZOnUqpqam7Nixo8tObFLuoXBnR+i9OIN2B\/fQ+4Fy4rmP6Orq8vjjj\/Pll19SUFDA1q1b0dXV5dlnn6VXr14899xzxMTEAK06dEFBQQwfPhwnJydKS0v55ZdfiI+PJz09XTyN2NraMm\/eXHbv3sa1axf55JMPGDv2UUxNTWRPHXa20vUMHR0d2RRdnz6+Yk1KEzdlBl1dXJxlmyHkZkd0dXVldd3c3aVPNEZGhrKfSa4eJaezZu9gJ3mq7N1builEToNOR0v6oi+l0SbXSq0lsT9tXW38g\/wZOnQooaGhmJqakp2dLaZ9s7OzZYeDO4PCwkKuXLlCv379xFRWdXU106ZNQ0dHh+jo6C6bN2pzD42NjW3nHmr\/73Tv7ScXtVotnoJudQ+VeszDjBJ4OggdHR0effRRNm7cSF5eHtu3b8fMzIwXX3wRd3d35s2bx549e2hubqZnz54EBgYyYsQI3NzcuHnzJqdPn+aXX37h2rVrVFZWIggCVlaW\/OlPM\/n668\/48stP+H\/\/bynh4Y9r\/MOUm+0JCPCXDR5yQcfW1lY2OLi6am4Zb6O0VLNgZuu+AmTTf8Ul0s9tlVnRfCLQ0dHh8mXpYFhXJ\/15zc2kW7dNTaSDQQ9t6eBSLVGrMTTUo6xI88yVqal0LalFQifO8N+1H5VKhbGxMb169WLQoEFi2vfGjRucPHmSU6dOkZ6eLv6edRZFRUWkpKTQt29fMaVdW1vLjBkzaGlpYe\/evZ0iXHo7d3MPdXd3x97evp0zaENDA0ePHhWdQbuze+j9QEm1dQLa2tqMHDmSkSNH8sEHH4ieQn\/\/+98pLi5m3LhxREREMG7cOBwcHHBwcKCpqYni4mLUajW\/\/vorenp6orPq1atX8fT0ZNy4cahUKqqrq\/npp8NER+\/hp58OYm1lJatkrSvRlgt3T7N5enrK1p0KCqS71by8PGWL\/7oyhWN7e3tSU6WDh4lMEPD29iQlRfNzdXX1uHJFuvYjJYUDUCmh3QZQVqo5gGqptMjP1hxAnRztqLiq+WSmpyP9p9pQofnUYijhPKqvry+mfdu8q27cuEFGRgZ6enqiYZu5uXmHpYXUajUXL16kb9++YrdhXV0dM2fOpLq6moMHD963uZzfyt3cQ1UqFYsWLWLlypV4enri6enJypUrMTQ0ZObMmeJju6t76P1AJSjjvl1GS0sLSUlJbNu2jZ07d5Kbm8uYMWOIiIhg\/PjxYmdPm4dJVlYW5eXl6Ojo4ODggJ2dHWZmZu0uDnV1dRw9epxtP27jwIEYysvbD0X26NEDQyMDKio0n3gGDx5EfLy0i6mfXx\/JE4+bmyuZmdL6asOGDeXEiZMa13R0dDAyNJTc19BhQzl5UvO+tLW1MTExlXyuv78fKSma6139+vbl4kXNwdDczIyqqgaNpwCdHj0w1DfXKKOjr6eHrrYZjY13BhFnJ0cq8zRfzAcFB5Dxq+Zut7BBvck5f2dRWktbRR9zFYIGB9heozx5bE2ExtfTxK1eOTdu3EClUomGbZaWlvdtdqbNiycgIABbW1ug9cQwa9YsCgoKOHTokJh26wqkgm2beyi0noreeOMNPv30U8rKyggNDeWTTz4RGxCg9W9x6dKlbN26VXQPXb9+Pc7O0vNdDwtK4HlAaGlp4cKFC2zbto0dO3aQnp7OI488QkREBOHh4Xz22WekpKSwevVqtLW1xeaEW33vLSws2v3RNDY2Ehd7lOjo3ezZu4+S4hIGDOjPGRmn0QED+nP27DmNa\/b29hQVFUmmY8LChnH8+J1F2DYcHR3Jz9dcVA8MHMDZM5rfFyCgbz\/Jk1jfvn1JTpaud7m6uks6uw4bFkb8L5otvUOCAzlzRnOQ9fXxIv2a5tOdr68Xmdc0t24PDBrA1TOaT4zDQ4NJjdf87xPSx5kbGXd215la6eLcojnVFjB9AGHLRmtcuxstLS1UVFSIv2eNjY3tmhN+b1tzcXEx58+fx9\/fX6x1NDY2MnfuXNLT0\/n5559l560UugdKqu0BQUtLi\/79+9O\/f3\/eeustLl26xLZt21i\/fj0vv\/wyKpWKhQsXoq2tLTo2+vr6UlZWRlFRkejm2GbnYGFhgY6ODmPGPsqYsY\/y4UfrOH78BCdOnCS\/oEBjS6e5udldDOE8ZFtB5QY7fXx8uHJFerZHrmvJwtJCtnHA1FQ6JePi4iRrJ56ZKb2mKzOjY21tLRl4LC0tyURz4NHXlW59lupoAyRVqU3MdKBMosYjYQB3L2hpaWFhYYGFhQVeXl5UVVWhVqvJysoiJSUFCwsLMSV3r2oIJSUlXLhwgT59+ohBp6mpib\/85S9cvXqV2NhYJeg8JCiB5wFEpVLh5+eHl5cXmZmZFBcXM336dH7++Wfef\/99hg4dKnoK2dnZYWVlJQYhtVpNSkoKzc3N4knIysrq33WmEYwcOYJXX\/07p06dZteu3ezevUcU6\/T19ZVNs8nJ3PTq1Yv0dOk2aWsZE7UePXpwWcam2sfbh\/hTv0quy0nouLi4kpOjOVhaW1tRWCBdr5Jba6iX7pITmqXrIg010vM05RIdbRZWxtTXaA4uNrZmNErptEnUeH4rKpUKExMTTExM8PDwoLa2FrVaTVFREampqaKmmY2NjaQyeGlpKefPn8fHxwcHh1bh3ObmZiIjIzl37hxxcXFi2k2h+6MEngeY5cuXc\/bsWRISEnB0dEQQBDIzM9m+fTv\/+te\/WLJkCYMGDRLniHr27ImlpSXe3t5UVFRQVFTElStXaGpqwtraWgxS2traDBkymCFDBrN69bskJSWxc2e0bLfa3dQIHB0dZAOP3Jq\/vx\/nz12QXK+X6bLr3duD69czJdelrKpbn+tJwq\/nNa6ZmpqQKTFUqlKpJOd3AAoLpAN0UX65xu\/r6+tSKuHPY2dvQl265jUDXW2kRn2lmgv+WwwMDHB1dcXV1fUOwzZ9fX0xCLXVH8vLyzl37hze3t6i+2tLSwsvvvgip06dIjY2VgxGCg8HSo3nAaa4uBgdHR2xyeBWBEEgNzeXHTt2sGPHDk6ePElQUJAYhNzc3FCpVAiCwM2bN8U71Pr6emxsbMRc\/e2DpBcuJBMdvZvo6N3tAo1cYwC0ziVJ2Rz4+vrIBq0hQwYT\/4vmk5axsTGNTS2S8j3Dhg3j5Ml4jWtGRoY0NUm3hw\/oH8iFC5pTeHL1HTdXFwryNKsZWFiYU1eleUrBysqC5lLNqTbP3i7clOhoGzioF+rzmk9fYcOdKE3WHARnRM3Bqre0PNH9pq05Qa1Wc+PGDbS0tDAzM6OkpAQvLy+xqN7S0sLixYs5ePAgsbGxuLm5ddoeFR4MumyOZ\/369bi7u6Ovr09QUBDHjx\/vqq08sFhbW2sMOtB61+3s7Mzf\/vY30VNozpw5\/Pzzz\/Tv35+wsDDWrFlDWloapqamoq\/9wIEDMTIyIj09naNHj3Lu3Ll2Stp9+wbwj38sJzHxNGfOJPD666\/Rt2+ArBqBu7ubrLeOnM+NlpYWqRKOoAB9\/PxkNeOKi6VPF76+0oOwKpWKzCxpmRwdXemak4mM0Zybm3THkktPaTFYSwnXUQA9HeluMkFD51wbRtYdc+KRoq3Rxd\/fnxEjRtCrVy+Ki4vR0tIiLS2N2bNn88UXX7B06VL279\/P4cOHlaDzkNIlgeeHH35g0aJFYiopLCyM8ePHk50tnatXkEalUuHg4EBkZCSHDx8mPz+fyMhI4uPjGThwIIMGDWLlypVcvnwZY2NjPDw8RDuHtmn2NiXtvLw88WLt7e3FsmVLiY8\/wY4d\/+Ltt98kJCT4jnbTuw353S3NJjdUKoedna38XJBM8Ojp6MjNCmmDvLxc6SYKfZlJemMj6UYHuTW9HtIFekHCxRSgqVKzrp2Wjjb65l3nMFpVVcW1a9fw9PRk5MiR+Pv7Y2VlxZo1a\/j0009xd3fn8OHDim7ZQ0qXBJ61a9cyb9485s+fj6+vLx988AHOzs5s2LChK7bTrWibvZg\/fz4HDhygsLCQxYsXc+HCBYYNG0ZQUBBvvPEGFy5cwNDQUJxmHzJkCJaWluTm5nLs2DGSkpLIyckRTxvu7u689NLfiIv7mdTUFFavfo+goEC0tLTukAW5FV9fX1kLBBNj6Ytxq4SOdDfb3Tx\/rl+XHqKVU1hwsLcjN1d6z8U3pA3jykqlg1lLg3TTQbNMR1uFWvr9aks0NyQY\/Rcdbf8tlZWVnDlzBjc3N1xdXcXfSWtraxoaGti7dy8TJ07km2++wcnJiWPHjnXZXhW6hk4PPA0NDSQlJbWTCwcYO3asIhd+n1GpVFhaWjJ37lx2795NUVER\/\/jHP7h27RqjR4+mX79+vPbaayQmJqKvr4+bmxuhoaEMHToUa2trCgsLOX78OAkJCWRnZ4t2Do6Ojowd+yhvvvk6Z84ksGzZEkaOHKFReFRuELDV5E76xOIf4C9rv6BpeLMNLy9P2fRgdY30c93cpIOSja01+XmaBUUBigqlg3DpDWk5oHK1dBNEXbnm9gETC32a6jSn2v6bVur\/hqqqKpKSknBxcRGlZgRBYM2aNXz22WccOnSIxx9\/nCVLlnDixAny8vIIDQ29r3s4duwYEyZMwNHREZVKxa5du9qtz507F5VK1e5r0KBB7R6juId2LJ3e1VZcXExzc7OspLhCx2BmZsYzzzzDM888Q1VVFQcOHGD79u2Eh4djYWHBxIkTmTRpEgMHDhS7ltqUtIuKirh69SqmpqYIgkBdXR0hISEYGRnh6dmb+fPnUVJSyt69+9i1K5q4uKM0NDTIWiD4+\/txUWbwU87rxtjYSPY0ZGtrR5qEa6iBgQGpV+SsxqXvx9xdXTlfqrkm5eTkSEmR5gCir69LUZ7mlKKennRHm4mZHo21mluwLa0NoVhzAO3s+g60insmJSXh7OxMr16tgq6CIPDhhx\/y0UcfcejQIfr27dvuOR0hmFldXU2\/fv3485\/\/zNSpUzU+5rHHHmPTpk3i\/9+u1r1o0SL27NlDVFQUVlZWLF68mPDwcJKSkjrU\/fRhocuaC36PpLjC\/cPY2Jhp06YRFRVFYWEhH374IeXl5Tz55JP4+PiInkLa2to4OzsTHBzMwIEDaWhooLq6msbGRpKTk8nIyBBPJVZWlsyZM5udO7eRmXmNr7\/+ipAQabtlM1Np0zMtLW2uyDQd+Pr2kRUzvVv6T0pQFCA7W7pVWi4YOjpKtwQ7OTrQokHWBsDJyU5yzaGn9InR1Fy6htXZJ56amhqSkpJwdHRsF3TWr1\/PmjVrOHDgAEFBQZ2yl\/Hjx\/P2228zZcoUycfo6elhb28vft16MlfcQzueTg881tbWaGtry0qKK3QuhoaGTJo0iW+++YaCggI+++wzUTvL09OTF154gT179vDEE0+wadMmhg0bxogRI3BxcaG8vJxTp04RHx\/P9evXqaqqQhAEzMzMePLJqURFfUdW1nW2bNnE1KmTxQFDFSquXbsmuSc\/fz\/Z4NGjh\/Rdp4WFBVdkTjSGBtIXZWfnnhQWSqfoSorLJdf0dKWDkp2N9O+2sYH088zMpBsEDPWlExb3a3j0XqitrSUpKQl7e3t69+4ttvF\/+eWXvP322+zdu\/e+p9P+W9oGVr28vHj22WfbCd8q7qEdT6cHHl1dXYKCgtrJhQMcOnRIkQt\/ANDX1+eJJ57gq6++oqCggG+\/\/Zampibmzp1LSUkJOjo6xMbG0tLSgqOjIwMGDBDtHKqqqtrZOdy8eRNBEDA2Nmbq1Cls2bKZrKzr\/PDDVhZE\/lWsGWlCTplYW1tb1ubA29tL1pm1oEC6RuPsJO3NY2RkRGaG9Gmooly6HqWNtLaZVov0n6G+jGGfTJd1pwWe2tpaEhMTsbGxwdPTUww6W7Zs4bXXXiM6OpqhQ4d2yl7ulfHjx\/Pdd99x5MgR3n\/\/fRISEnjkkUfERhrFPbTj6RLlgpdffpnZs2cTHBzM4MGD+eyzz8jOzua5557riu0oSKCjo4Ovry8JCQk88cQT\/OUvf2H37t288MILVFVV8fjjjzNp0iRGjx4t2jk0NzeLdg6JiYno6uqK0j1mZmbo6+sTHv4E4eFP8M47b4kipnv37aekbSZHpZJ1Ke3Tpw8XL0qrLMgFHQcHe1l9Npmn4uXZi0sXMzWu6ej0IDtT+qJ0s1TacM1QxxjQXONplvDaAVA1ScvvdEaqra6ujqSkJKytrfH29haDzvfff8\/SpUuJjo5m5MiRHb6P38qMGTPE\/\/b39yc4OBhXV1f27dsnm55TygH3jy4JPDNmzKCkpIQ333yTgoIC\/P392b9\/\/11NxBQ6n3fffZewsDDWr1+PtrY2Y8eO5cMPPyQ+Pp7t27ezbNkySkpKeOyxx0RPITs7O+zs7Ghubqa0tJSioiLOnj0rDhja2dlhbm6Orq4uY8eNYey4MXzU\/AHHj58gOnoPly9d5oSEBQIgOVQLrbWhS5ekLb\/d3d1RF52TXE\/PkA5Kcp4\/7u6u5GhQjwbooa1Nfo70rFK5WvqkdLNY2rCvuVq6M6+jTzxtQcfS0hIfHx\/xgrx9+3YWLVrEjz\/+yOjRv08Zu7NxcHDA1dWVtLTW9Oyt7qG3nnrUarWSlblPdFlzQWRkJJmZmdTX15OUlMTw4cPv+3usWLHijrbJNttaaL2DWbFiBY6OjhgYGDBy5EhSUqS7rB5G1q1bx8aNG9t18mhrazNs2DDWrVsnStm7u7vzxhtv4ObmxsyZM\/nhhx+orq7GxsZGnGTv06cPLS0tnD9\/nmPHjnH58mVKSkpoaWkRRUzXrfsn+w\/s4eDBfTz\/\/HM4Od057Z+VJScK6kx1tXRrcrP0oD\/u7m6UFEsHiMqb0q9rYy0tTePi0pOGes0nF11dHUoKpGd\/mqqk55TqSqX305Ennvr6es6cOYOZmRm+vr5i0ImOjmbBggVs3bqV8ePHd9j7329KSkrIyckR9eIU99COp9tbX\/v5+VFQUCB+JScni2urV69m7dq1fPzxxyQkJGBvb8+YMWOorJS+EDxs6OrqyqYXtLS0GDhwIKtXryY1NZUTJ07g5+fHmjVrcHNzY9q0aXz77bdUVFRgZWVFnz59GD58OAEBAQBcvHiRY8eOkZKSQnFxMS0tLWhpaTFkyCBWrXqHy5fPExd3kJdeeoFevdzp1auXrP2CnDyPtpY2aWnSKTy5rjSdHj3ISJee4xAE6X8jWyvpoGRlaaLRxA3AzMKQuirNnXs9dFXU35RWLTAwl7Zf+G9om8MzMTHBz89P\/N3Yt28f8+fPZ8uWLUycOLFD3vteqaqq4ty5c5w7dw6AjIwMzp07R3Z2NlVVVSxZsoT4+HgyMzOJi4tjwoQJWFtbM3nyZKC9e+jPP\/\/M2bNnmTVrluIeeh\/p1iKhK1asYNeuXeIv4K0IgoCjoyOLFi3ilVdeAVrv5Ozs7Fi1ahV\/\/etfO3m33QtBEEhJSRHdVS9fvszIkSOZNGkS4eHhWFlZiTWB8vJy0XCsqalJFDFtU9K+lZSUy+zYEU109F6NVti9e3tKKhb08fUlNTVTcs8hISGcSUrWuObj40WGhP8OgJeHLznZmpsWRgweyvlTmt83wNcDdYrm+o+XrwMNmZpvghzdzLCQcFw1tjfhT3vv\/+9vW9AxMjLC398fLa3W+9aDBw8ya9YsvvjiC5566qn7\/r6\/lbi4OEaNGnXH9+fMmcOGDRuYNGkSZ8+epby8HAcHB0aNGsVbb73VzhlUcQ\/tWLp94FmzZg1mZmbo6ekRGhrKypUrRe8YDw8Pzpw5w4ABA8TnREREYG5uztdff92FO+9eCILA1atX2b59Ozt27OD8+fMMGzaMSZMmMWHCBOzs7DQqaTc0NIh2Dm1t+Ldy5cpVoqJ+ZMeOaDIyMnFwcJBthQ4bFsYvEm6jWlpaWJhbU16u+WIeNmwIv57SHJRMTIxprteTlO8J8R9IWormU9rw0CBS4zUHtJBBvbghoUrt298OrSzNa\/ouhvRbHio2dciZ7N0rjY2NJCUlYWBgQEBAgBh0YmNjmTFjBuvXr2f27NlK8V3hnujWqbbQ0FC2bNnCTz\/9xOeff05hYSFDhgyhpKREbItUFBQ6HpVKhbe3N6+++ioJCQmkpqby+OOPExUVhZeXF4899hjr168nLy+vnZJ2SEgIhoaGXL9+nbi4OM6fP09BQYGopG1lZcHw4YM5cGAn58+f5pVXXiIoaIDkxU8qqAB4ePSSXZczfnN3d5HVjCvMlZ5HapHuD0BfV2ZOx0i6PdvWzb6d5NGvv\/5KZmYmNTXSNSE5GhsbOXPmDHp6eu2CzvHjx3nqqaf48MMPlaCj8Jvo1iee26mursbDw4Nly5YxaNAghg4dSn5+fjsTqmeffZacnBxiYmK6cKcPB4IgkJOTI3oK\/fLLLwQHB4ueQm0Ck9Caty8qKkKtVlNdXY2xsTFVVVX4+PjgdNvsTW5uHrt3H2D37n2cOpVAS0sLpqYm1NUKNDdrbkEeNnQI8fFnJPdqb9OTsjLp01Diac1+Q\/Z2NtSpdTWuAQT09EWdo1kENGxwb3LOab4JGjrCmfILmmtO\/tP6M\/yV1lpEfX09N27cQK1WU1paipGRkdhZaGRkdNdg0dTUxJkzZ+jRowf9+\/cXg058fDyTJ0\/mvffeY8GCBUrQUfhNdOsTz+0YGRkREBBAWlqa2N2mKCh0HSqVChcXFxYtWsTRo0fJzs5m9uzZHD58mH79+jF8+HD++c9\/kpaWhpGRER4eHgwePBgzMzOqqqrQ19fnypUrJCUlkZubK0roODn1JDJyPjExO0lNPcO6de8xKWKi7MWxVkZw1NXVWTLoANTLnIZ6OjhKruno9KA4X+Z1K6UlgbRkBo4Mb9Fp09PTw8nJicDAwDsGfU+ePElaWhoVFRUaT2zNzc1iG3y\/fv3EoJOYmMjUqVN56623lKCj8Lt4qKyv6+vruXz5MmFhYbi7u2Nvb8+hQ4fEGk9DQwNHjx5l1apVXbzThw+VSoWjoyPPP\/88kZGRFBcXs3PnTnbs2MHbb7+Nj48PERER1NTU8PnnnxMfH4+7uzu1tbWo1Wry8\/O5cuUK5ubmYm1DX18fOztb5s37E8yDN996lf37DrN7TwxH434RA5W2dg+uSQiKQqt3T2FeueR6fq50XcnIwAgo1rjm1NOWmnTphEOlzHxPi8xgqZGN5lZqHR2ddoO+bW6hZ86cEWesbG1tMTc3RxAEzp49i0qlon\/\/\/mJ97dy5c0RERLB8+XJefPFFJego\/C66daptyZIlTJgwARcXF9RqNW+\/\/TZHjx4lOTkZV1dXVq1axbvvvsumTZvw9PRk5cqVxMXFkZqaKivZotB5CIJAWVkZ0dHR4ulnwIABjBo1ikmTJrXrrqqrqxO748rLyzE1NcXOzg5bW1sMbjNvq6ioJCbmZ\/bsjiE3t4CLydK6cUOHDCbx14sa1+ztbakokT7xhPYdSKqENXVIoB\/ZiZrrP2bmhljUSyckQrxNqFFrtlkI\/7+puAx2l3zu7bS0tFBWVib+27VN6Ovo6BAcHCwqN1+8eJHHH3+cl156iVdffVUJOgq\/m2594snNzeXpp5+muLgYGxsbBg0axKlTp0SFhGXLllFbW0tkZCRlZWWEhoZy8OBBJeg8QKhUKiwsLMjJyaGoqIhDhw6JdaE2qZ6IiAgmTZrEgAEDcHFxwcXFRaxtFBUVkZaWhomJiXhHb2RkhJmZCTNmTGLGjElUV9dw6OAx9uw5xOHDx6iual+Ez8+TPtE4OfWkoiRLcr0wV3og1UDHANAceGwdTGnM1BxYtLRV1JXIDY\/+NtUCLS0trKyssLKywsvLi8TEROrq6mhubmbNmjWcPn2aYcOG8fHHHxMZGakEndvYsmULL730Evn5+e06CKdOnYqRkRFbtmzpwt09mHTrE49C9yA7O5sxY8awfft2\/P39xe9XVVWxf\/9+tm\/fzv79+7GyshI9hUJCQsT0UENDg1hgLykpaVdgb1PLbqOurp4jR06yZ\/dBfoqJQ09fj5ul0vWfsGFDSTyt2RfI0NAA3VppW4Oh\/YO4dkaqldqdG+c1BzxreyPs6qUDz58PR\/6uAdI2VYmGhgYCAwPp0aMHycnJrF+\/npiYGEpLSxk3bhxTp05l4sSJWFtb\/+b36I7U1tbi4ODA559\/zrRp04BW37GePXsSExOjcaboYeehai7oDO7mfngvMj2K+2F7XFxcSElJaRd0oNVTaPr06fzwww8UFRWxbt06SktLmTp1Kr6+vixevJjjx4+jpaVFz549ZZW0KysrEQQBfX09Hn\/8ETZsfI8rV4\/x6aerePqZCVhYataHq7wpLf7pLKOEAFBZLP1cfR3pZIS5lbRVgpaONvoyVgpStLS0kJycTH19PYGBgejo6KBSqTA2NubIkSM888wzXLx4keHDh\/Ppp58yYMAA2RbyhwkDAwNmzpzZzljuu+++w8nJ6YEUSX0QUALPfabN\/fDjjz\/WuH4vMj2LFi1i586dREVFceLECaqqqggPD5dsBX4Y0GSrfSuGhoZMnjyZb7\/9loKCAjZu3EhdXR0zZ87E09OTF198kdjYWKBVFLJfv36MGDECDw8PampqSEhIuKPLS1dXl+EjBvHPdcs5n7KfqG3\/x5\/mTsHWtlWWR1tbm+ws6ZkvW2tbybW7dbQh86M2MZFuzza0MvzNabCWlhYuXrxITU2NGHQAsrKyeOKJJ4iIiOD999\/Hx8eHV155hdOnT3Pp0qX7nm77I9+0Pfvssxw8eJC8vNZ63qZNm0SLbYU7UVJtHYhKpWLnzp1MmjQJuDeZnoqKCmxsbPjmm29E+fb8\/HycnZ3Zv38\/48aN66qP84eksbGR2NhYtm3bRnR0NM3NzYSHhxMREcHIkSPFnPytXV43btygR48eYjrOzMys3QWkpaWFxF8vEBf7K3t2nKQgX3NKLCxkKMmJmRrX3FwdqZVupCM0wJWiayUa1wYPd+ZmsuaLqZ2\/A1M3PyP9wrchCAIXL16ksrKyXSNBXl4e48aN49FHH2Xjxo1iA0dHcuDAAU6ePElgYCBTp05t97cDsGrVKt555x02b96Ml5cXb7\/9NseOHWvXDLRgwQL27NnD5s2bRcvq0tLSTrGsDgoK4sknn2TcuHGEhISQmZmpSOxIoASeDuT2wHMvMj1Hjhxh9OjRlJaWtpNk79evH5MmTeKNN97o7I\/RbWhqauL48eNs27aNXbt2UV1dLd7Rjx49Wux8a2lpaReEVCpVOzuH2y\/C58+mEr3jZw7sPcENdbn4\/YBe\/cnJ0ByUggf0ISepXOMagK+dFbU3NdeWwoY7USrRKec+ypPxayJk\/hX+Q5ue3s2bNwkKChKDcGFhIY899hhDhgzhyy+\/7PALtib+iDdtGzZsYN26dYwdO5a0tDR++umnDn2\/PzJKqq0TuReZHsX9sOPo0aMHo0aN4pNPPiE7O5s9e\/ZgY2PD0qVLcXd3Z+7cuezcuZPa2lpsbGzw8\/Nj+PDhYm0pOTmZY8eOcenSJVFJG8DFzZZho3z4cc9q9hz8mIWLnsanjzv5OZpPLACGutJ1GFNzA8mgAyA0SrdvG92jHYIgCFy+fJmKiop2QUetVvPEE08QEhLCF1980SVBRxMZGRkUFha2s6PW09NjxIgRoh11V1tWP\/PMM+Tl5fH555\/zP\/\/zPx3+fn9kunU79YPK7Xnfe3E2VNwP7y\/a2tqEhYURFhbG2rVrSUhIYNu2bbz++uv85S9\/YezYsURERDB+\/Hix1djHx4fy8nKKioq4dOkSzc3NmJmZUVZWhpeXV6t0jxP4+vVi0dLZZKQV8PP+JI7sP8PVlPYGc3Iabbb2pjRlSQ+PNlVKW4bfSyu1IAhcuXKF0tJSgoODxaBTXFzMhAkT8PPzY\/PmzXetq3UmcjdtWVlZ4mO68qbN1NSUqVOnsm\/fvnYpQoU7UU48nci9yPTc6n4o9RiF+4uWlhahoaGsWbOGq1evcvz4cXx9fVm1ahVubm5Mnz6d7777joqKCszNzfHx8SEsLAwHBwdKS0vR1tYmLS2N5ORkioqKxCYQd08H5v8tnK0\/\/S+7TrzDC69Oxa9\/62BnZYl08DA3k2+FrpUxgJNSLWhDEARSU1MpLi4mKCgIfX19AMrKyoiIiKBXr15s3bpVbDB40HjQb9oKCgp45pln7osieHdGCTydyK0yPW20yfS0ORsq7oddi5aWFoGBgaxcuZJLly7x66+\/EhQUxP\/93\/\/h5ubGlClT+Prrr\/nuu+8YPXo09vb2jBgxguDgYPT19bl27ZqopF1YWEhTU2tazMnNljmRj\/H13lfZ++sqJs4fhN9AF7S07rwgGuhKX\/RNLPRpqpWRy5E58QiCQFpaGmq1mqCgILGmVVFRwaRJk3BwcOBf\/\/qX2GDwIPGg37SVlpYSFRXFkSNHeP755zv0vboDD85ZuptQVVXFtWv\/kV9pcz+0tLQUBTFXrlyJp6enKNNjaGjIzJkzgfbuh1ZWVlhaWrJkyRLF\/bALUKlUBAQEEBAQwIoVK0hNTWX79u28\/\/77ZGVlMWLECOLj40XjOlNTU3r37k1VVRVqtZr09HRSUlKwtLTEzs4OGxsbdHR0sHe0JGLeICLmDaJUXUn8gcuc3HeZ5PhMWppboFm638fS2hCKpfN0hjaaA48gCFy7do2CggLRbgKgsrKSqVOnYm5uzvbt2x\/YO\/V70Va89aZt+vTpwH9u2lavXt2h+wsMDKSsrIxVq1bh7e3doe\/VHVACz30mMTGx3aTyyy+\/DLS6H27evPmeZHrWrVtHjx49mD59uuh+uHnz5gem0PswolKp8PHxoX\/\/\/hQUFPD+++9TV1fH999\/z+LFixkyZAgTJ04kIiICR0dHTExM8PDwoLq6GrVaTXZ2NpcuXcLS0lKU7tHV1cXS1oQn5gzkiTkDqSip5tRPV8hPKqQgRU1Tw53DPKbmerRo1hwFpJsL0tPTyc\/PJzg4WAw61dXVTJs2DV1dXXbt2nWHnl1n80e+acvMzOzQ1+9uKO3UCgr3SHl5OZ6enmzYsIEnn3wSaD1JZGdni55C8fHxhISEiNI9Li4uYn2hpqZGFOK8efMmFhYWki6htZX1JP98jXMxV7l0LJPGf1svhIY5U3VR8wyPVg8t\/hr\/0h31jPT0dLKzswkODhYlgmpra5k2bRoNDQ0cOHDggdAnlLOs3rx5M4Ig8MYbb\/Dpp5+KN22ffPJJO0ULxbL6j4ESeLohx44dY82aNSQlJVFQUHDHIN7cuXPvsPYODQ3l1KlT4v\/X19ezZMkSvv\/++3Z\/wLebrj1slJSUYGVlpXFNEATy8\/NFO4fjx4\/Tt29fJk2aREREBB4eHmJQaFPSLioqoqKiAjMzMzEI3X7yqKtuICUunXMxVzFpqKM4KVvj+xvbmfCnfX9t973MzEwyMzMJCgoSg0tdXR1PP\/00FRUV\/PTTT5iZaZYDUlDoKJTA0w252wT43LlzKSoqaqctpauri6XlfwQtu3ICvDsgCAJqtZpdu3axY8cOYmNj8fHxEYOQj4+PGITq6+vFk1BZWRkmJiainUNbWqyNpvomsuMzSP85jczj12mo+k+953bVgqysLNLT0wkKCsLU1BRorYvMmjWLgoICDh8+fEfrsYJCZ6AEnm7O7RPg0Bp4ysvL79DCaqOrJ8C7G4IgUFpaSnR0NDt27ODw4cP06tVLtHPw8\/MT1RDalLSLioooLS3F2Ni4nVX1rTQ3NpP7axbpR9LIOHoNh\/49Gf\/PSUCrovf169cJDAwUTzSNjY3MmTOHjIwMjhw5InlyU1DoaJTA082RCjy7du1CV1cXc3NzRowYwTvvvIOtbauopSLb07GUl5ezZ88eduzYwU8\/\/UTPnj3FINS\/f38xCDU2NrazczAwMBBPQsbGxu3145pbqFZXYuJgRm5urmiYZ25uDrTKBc2fP5+UlBRiY2PFn7WCQlegdLU9hIwfP55p06bh6upKRkYG\/\/jHP3jkkUdISkpCT0+vyyfAuzvm5ubMnj2b2bNnU1lZKXoKjR8\/HmtrayZMmMDkyZMJCQnB0dERR0dHmpqaKC4upqioiMzMTPT19cWakKmpKVraWpg4mJGXl8fVq1cJDAwUg05zczORkZFcuHCBuLg4JegodDlK4HkIaUufAfj7+xMcHIyrqyv79u1jypQpks9TZHvuPyYmJsyYMYMZM2ZQU1NDTEwM27dvZ\/LkyRgbG4vdcYMHD8be3h57e3uam5spLi5GrVaTlJSEjo4Otra2aGtrk5WV1e6k09zczIsvvsjp06eJjY0VBzEVFLoSJfAo4ODggKurK2lpaUD7CfBbTz1qtVpRT+hADA0NmTJlClOmTKGuro5Dhw6xY8cOnnrqKXR1dcWT0NChQ7Gzs8POzo7m5mZKS0vJzMykvLwcHR0dLly4QE1NDY8++ijLli0jLi6OuLi4h74jUeHBQZHMUaCkpIScnBwcHFodMxXZnq5HX1+fCRMmsGnTJgoLC\/n6669RqVTMnTsXDw8PIiMjOXjwIM3Nzezdu5cNGzbQv39\/AgICSE1NZf78+bi5ufH999+L5mkKCg8KSnNBN+TWCfABAwawdu1aRo0ahaWlJZaWlqxYsYKpU6fi4OBAZmYmr776KtnZ2Vy+fLmdodbevXvZvHmzOAFeUlKitFN3MU1NTRw7dkz0FKqrq6OmpoaXXnqJpUuXoq+vT0tLC6+99hoxMTEEBwdz5MgR6uvriYiIYP369aIwqIJClyEodDtiY2MF4I6vOXPmCDU1NcLYsWMFGxsbQUdHR3BxcRHmzJkjZGdnt3uN2tpaYeHChYKlpaVgYGAghIeH3\/EYha4lOjpa0NfXFyZMmCA4OzsLpqamwrRp04TJkycLtra2QkpKiiAIgtDc3CycOHFCeOeddzplX6+\/\/vodv3t2dnbiektLi\/D6668LDg4Ogr6+vjBixAjh4sWLnbI3hQcDJfAoKPwBiY2NFYyMjIQff\/xREITW4BIfHy9ERkYKenp6wsmTJ7tsb6+\/\/rrg5+cnFBQUiF9qtVpcf++99wQTExNh+\/btQnJysjBjxgzBwcFBuHnzZpftWaFzUQKPQoewcuVKITg4WDA2NhZsbGyEiIgI4cqVK+0ecy93vnV1dcLChQsFKysrwdDQUJgwYYKQk5PTmR\/lgaSoqEjYvXu3xrXm5uZO3k17Xn\/9daFfv34a11paWgR7e3vhvffeE79XV1cnmJmZCRs3buykHSp0NUpzgUKHcPToUZ5\/\/nlOnTrFoUOHaGpqYuzYsVRX\/8dZc\/Xq1axdu5aPP\/6YhIQE7O3tGTNmDJWVleJjFi1axM6dO4mKiuLEiRNUVVURHh4umq09rNja2jJhwgSNa20DqF1JWloajo6OuLu789RTT5Geng7cm4W1wkNAV0c+hYcDtVotAMLRo0cFQbi3O9\/y8nJBR0dHiIqKEh+Tl5cnaGlpCTExMZ37ARTumf379wvbtm0TLly4IBw6dEgYMWKEYGdnJxQXFwsnT54UACEvL6\/dc5599llh7NixXbRjhc6m62+NFB4KKioqAEQh0nu5801KSqKxsbHdYxwdHfH391fujh9gxo8fz9SpU0UfnH379gG0U0T\/PRbWCt0HJfAodDiCIPDyyy8zbNgw0TulTXrndkviW2V5FOme7oGRkREBAQGkpaXdk4W1QvdHCTwKHc7ChQu5cOEC33\/\/\/R1rv+fOV7k7\/mNRX1\/P5cuXcXBwaGdh3UabhbUynPzwoAQehQ7lhRdeYPfu3cTGxraTbLmXO99bpXukHqPw4LFkyRKOHj1KRkYGp0+f5sknn+TmzZvMmTMHlUolWljv3LmTixcvMnfu3HYW1grdHyXwKHQIgiCwcOFCduzYwZEjR3B3d2+3fi93vop0zx+T3Nxcnn76aby9vZkyZQq6urqcOnUKV1dXAJYtW8aiRYuIjIwkODiYvLw8Dh48+EDYbyt0DopkjkKHEBkZydatW4mOjsbb21v8vpmZmWjtvGrVKt599102bdqEp6cnK1euJC4ujtTUVEW6R0GhG6MEHoUOQaoGs2nTJubOnQu0noreeOMNPv30U8rKyggNDeWTTz4RGxAA6urqWLp0KVu3bqW2tpbRo0ezfv16nJ2dO+NjKCgodABK4OkG3Lhxg4CAAF588UVeffVVAE6fPk1YWBh79+5t146soKCg0NUoNZ5ugI2NDV999RUrVqwgMTGRqqoqZs2aRWRk5EMfdN59911CQkIwMTHB1taWSZMmkZqa2u4xc+fORaVStfsaNGhQu8fU19fzwgsvYG1tjZGRERMnTiQ3N7czP4qCQrdBOfF0I55\/\/nkOHz5MSEgI58+fJyEh4aGXwH\/sscd46qmnCAkJoampieXLl5OcnMylS5cwMjICWgNPUVERmzZtEp+nq6srDrtCa61pz549bN68GSsrKxYvXkxpaalSa1JQ+B0ogacbUVtbi7+\/Pzk5OSQmJtK3b9+u3tIDx40bN7C1teXo0aMMHz4caA085eXl7Nq1S+NzKioqsLGx4ZtvvhFtw\/Pz83F2dmb\/\/v2MGzeus7avoNAtUFJt3Yj09HTy8\/NpaWkhKyurq7fzQHK7dE8bcXFx2Nra4uXlxbPPPotarRbXFOkeBYX7S4+u3oDC\/aGhoYFnnnmGGTNm4OPjw7x580hOTlYGLW9Bk3QPtGqLTZs2DVdXVzIyMvjHP\/7BI488QlJSEnp6eop0j4LCfUYJPN2E5cuXU1FRwUcffYSxsTEHDhxg3rx57N27t6u39sDQJt1z4sSJdt9vS58B+Pv7ExwcjKurK\/v27WPKlCmSr6dI9ygo\/D6UVFs3IC4ujg8++IBvvvkGU1NTtLS0+Oabbzhx4gQbNmzo6u09EEhJ92jCwcEBV1dX0tLSAEW6R0HhfqMEnm7AyJEjaWxsZNiwYeL3XFxcKC8vZ8GCBV24s67nbtI9migpKSEnJwcHBwfg4ZbuWb9+Pe7u7ujr6xMUFMTx48e7eksK3QAl8Ch0a55\/\/nm+\/fZbtm7diomJCYWFhRQWFlJbWwtAVVUVS5YsIT4+nszMTOLi4pgwYQLW1tZMnjwZaJX5mTdvHosXL+bnn3\/m7NmzzJo1S\/Sb6a788MMPLFq0iOXLl3P27FnCwsIYP3482dnZXb01hT86nWw8p6DQqQAavzZt2iQIgiDU1NQIY8eOFWxsbAQdHR3BxcVFmDNnjpCdnd3udWpra4WFCxcKlpaWgoGBgRAeHn7HY7obAwcOFJ577rl23\/Px8RH+\/ve\/d9GOFLoLyhyPgoLCHTQ0NGBoaMiPP\/4onvwA\/va3v3Hu3DmOHj3ahbtT+KOjpNoUFBTuoLi4mObmZlmHWAWF34sSeBQUOokNGzbQt29fTE1NMTU1ZfDgwRw4cEBcFwSBFStW4OjoiIGBASNHjiQlJaXda3S2ZtzvcYhVULgbSuBRUOgknJyceO+990hMTCQxMZFHHnmEiIgIMbisXr2atWvX8vHHH5OQkIC9vT1jxoyhsrJSfI1Fixaxc+dOoqKiOHHiBFVVVYSHh9Pc3Hxf92ptbY22trasQ6yCwu+ma0tMCgoPNxYWFsIXX3whtLS0CPb29sJ7770nrtXV1QlmZmbCxo0bBUEQhPLyckFHR0eIiooSH5OXlydoaWkJMTEx931vAwcOFBYsWNDue76+vkpzgcJ\/jXLiUVDoApqbm4mKiqK6uprBgweTkZFBYWFhOz04PT09RowYIerBdbZm3Msvv8wXX3zBV199xeXLl3nppZfIzs7mueeeu+\/vpfBwoUjmKCh0IsnJyQwePJi6ujqMjY3ZuXMnffr0EQOHpmJ+m+BrZ2vGzZgxg5KSEt58800KCgrw9\/dn\/\/79uLq63vf3Uni4UAKPgkIn4u3tzblz5ygvL2f79u3MmTOnXWvy7ynm38tjfi+RkZFERkZ2yGsrPLwoqTYFhU5EV1eX3r17ExwczLvvvku\/fv348MMPsbe3B5At5iuacQrdBSXwKCh0IYIgUF9fj7u7O\/b29u304BoaGjh69KioB\/cwa8YpdC+UVJuCQifx6quvMn78eJydnamsrCQqKoq4uDhiYmJQqVQsWrSIlStX4unpiaenJytXrsTQ0JCZM2cC7TXjrKyssLS0ZMmSJd1eM06h+6EEHgWFTqKoqIjZs2dTUFCAmZkZffv2JSYmhjFjxgCwbNkyamtriYyMpKysjNDQUA4ePIiJiYn4GuvWraNHjx5Mnz6d2tpaRo8ezebNm9HW1u6qj6Wg8JtRtNoUFBQUFDoVpcajoKCgoNCpKIFHQUFBQaFTUQKPgoKCgkKnogQeBQUFBYVORQk8CgoKCgqdihJ4FBQUFBQ6FSXwKCgoKCh0KkrgUVBQUFDoVJTAo6CgoKDQqSiBR0FBQUGhU1ECj4KCgoJCp\/L\/AWfGUO994qSoAAAAAElFTkSuQmCC", "text\/plain": "<Figure size 640x480 with 1 Axes>"}, "metadata": {}, "output_type": "display_data"}]}}, "12a14e08898b4abf991365cd41d07a93": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "13187a1f6c2a44f9a3ccd12f5eff4464": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "146343a7a95746e6bd0c8bac2c97a33d": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "148898f7302f4f45809429230ac34e24": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "14edd910ef6d411ebd1f6a033170c065": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "1691534cae544c41ac19238706d81934": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "PlayModel", "state": {"description": "step", "layout": "IPY_MODEL_85007844bdc54cdf992dc43ba5b83a41", "max": 149, "style": "IPY_MODEL_e2a00839a46e4bb39cd41f9aa4edaaea"}}, "17a0e3715b704af5b5bb4230d0ea690b": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "1a5c301c330f49dd867d1a112b4b011c": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": {"source": ["IPY_MODEL_d095a4e7d8d4445e86d3db1fdff6244f", "value"], "target": ["IPY_MODEL_e0fa11145e0d4e40ad744eba44c54f34", "value"]}}, "1af575622d2045659ef592a3a3d82a91": {"model_module": "@jupyter-widgets\/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": {"layout": "IPY_MODEL_ea5d62a115f443e4bf326bbe2a8d0260", "outputs": [{"data": {"image\/png": "iVBORw0KGgoAAAANSUhEUgAAAZ4AAAGRCAYAAABVKtXaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy\/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eXwkd33njz+r+u5Wd+uWRhodc2jusWfGY89Yg7ltYHcTAjiwgYWQza6TDUuA7DfJkoX8YAkkQDYYCOGb7BIMvyTgZVkHEgixCWDwBfbY0twajUb3LbVafR91fP\/oqZ7uVld1dUsjyaZej4cfIE1VdXWr6\/P6vN\/v1\/v1FlRVVbFgwYIFCxY2CeJW34AFCxYsWPj5gkU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGNhS6Cq6lbfggULFrYI9q2+AQs\/X1BVlWw2SyqVwmazYbfbsdls2Gw2BEHY6tuzYMHCJkBQra2nhU2Coihks1lkWSadTgM5Ikomk6TTadra2iwismDh5wBWxGPhlkNVVWRZZmRkBKfTSXt7O6IoIooiqqoSjUZZWFigoaGBdDqNIAiIoojdbreIyIKFlyAs4rFwS6Gl1mRZJhKJ4Ha7mZiYYHp6mkAgQENDA7IsA2C321FVNf9fOp0mk8kAWERkwcJLCFaqzcItgyzLZLNZFEVBFEXOnTtHJBJBkiR6enpIJBKsrKwQj8cRRZGOjg4aGhqor6\/H4XAAFBGRoigA+YjI4XDk60SiKFpEZMHCiwRWxGNhw6GqKpIkIUkSqqoiiiLhcJiFhQVcLhd33303kCMQQRCYmppiamoKVVUZGRkhkUjg9\/upr6\/PE5EW6RQSUSqVyl9HIyLtOIuILFjYvrCIx8KGQlEUJEnKp88EQWBkZITR0dE8mTidznwKDXIpNofDwf79+wFIp9OsrKwQDocZHh4mlUqtISIt3aZHRFokZBGRBQvbDxbxWNgQaKmwbDaLqqoIgkA6nebcuXOkUilOnTrF1NRU2cVfEISivh6Xy0V7ezvt7e0ApFIpVlZWWFlZYWhoiHQ6na8P1dfXEwwG1xCRoigWEVmwsE1hEY+FdaMwtQa5hX5xcZHz58\/T2trKiRMnsNvtawhGQyUCcLvd7Nixgx07dgCQTCbzRDQ7O0smkyEYDFYkonQ6TSqVyivqLCKyYGFrYBGPhXWhsDdHW7ivXLnC1NQUhw8fpqOjo+h4PS1LNRoXj8eDx+Oho6Mj3wekEdH09DSSJOWJqKGhAb\/fj81my7+OJu\/W+olmZmZob2\/H6\/XmIyOt\/mTBgoWNh0U8FmqCtnhLkpRXrSUSCQYHBwHo7+\/H5\/MVnSMIAoqirFnQ9SIhMxAEAa\/Xi9frpbOzE1VV82q5lZUVJicnURSliIjq6uqw2+359zEyMkJDQ0OebMql5iwismBh42ARj4WqUdibA7kem5mZGS5dukRXVxf79u1DFNfaABYSTOEivpELuiAI+Hw+fD4fO3fuRFVV4vF4nojGx8dRVTUvVGhoaEBVVWw2Gw6HIx8RSZJENpvVJaJy78+CBQvmYBGPhaqgKAqZTCYf5ciyzKVLl1hcXOTYsWO0tLTonmsU2dyqdjJBEKirq6Ouro6uri5UVSUWi+WJaHR0FIChoSGam5tpaGjA5\/MVRUR6RKT1EVlEZMFCdbCIx4IpaKk1TbUmiiKRSITBwUHcbjdnzpzB7XYbXsNIXLBZfcyCIOD3+\/H7\/XR3d6MoCo8\/\/jh1dXUsLy8zMjKCzWbLCxUaGhrwer26RATlXRUsIrJgQR8W8VioiNLUmiAIjI+PMzw8zO7du9m9e7epdFmtqrZbCU3N1tnZidfrRVEUIpEIKysrLC4ucu3aNex2exEReTyeNUSUzWYN7X0sIrJg4SYs4rFgiMIoRxAEstks58+fJxqNcvLkSRoaGkxfy4hgtotzkyiK1NfXU19fD5D3mFtZWWF+fp6rV6\/idDrXEJFGLIX9TFpEJAhCERFpqjkLFn5eYRGPhbLQ0kmXL1+mrq6Ojo4OQqEQ586do76+njNnzuT91MxiO6Ta9KD3+lraTSNYWZZZXV1lZWWFmZkZhoaGcLlc+WMaGhpwuVxF19WIKJPJ5GtEGhEVquYsWPh5gUU8FtZAWygVRSGRSOBwOLh27RpjY2Ps37+frq6umhbK7Uw8ZmGz2WhsbKSxsREASZLyRDQ5OcmlS5fweDxFROR0OvPnlxIRwPLyMm1tbbhcLst528LPBSzisZBH4aKoqdZUVWViYgKbzcbp06fx+\/3rfo1SvJgXWbvdTlNTE01NTUCOiMLhcF66ffHiRXw+X5HPXCERZbNZLl26RH19PZIkWbOILPxcwCIeC0D53pyFhQUWFxfx+\/2cOnUq3\/1fK7ZCTr3ZsNvtNDc309zcDOSIRSOi0dFR4vE4dXV1eSKqq6vLn6d9vppk3RqKZ+GlCot4LBTZ3oiiiKIoXLlyhZmZmXy6aL2kAy+NVFu1cDgctLS05PubMplMnoi0ERAA169fp7GxMT8CAm6SsUVEFl5qsIjn5xjlbG\/i8TiDg4OIokh\/fz+jo6MbRgoawUiSxMTEBF6vN29Vs5XYzNd3Op20trbS2toKQDwe56c\/\/SmSJBWNgNDSctoICCgmIms6q4UXMyzi+TlFud6c6elpLl++THd3N319ffkeF23y53qhybGfeuop7HY7kiSRSqXwer1IkkQoFMo7S\/+8QFMG7t+\/H5vNVtMIiHJjwq3prBa2Myzi+TlE6UhqSZK4ePEioVCI48eP5+sTsHFpMFVVCYVCrK6u0tfXx86dO4Hc0LfZ2VnGxsa4fPky2Wx2jbP0z0PzpUYMlUZAZLNZU0RkTWe1sJ1hEc\/PEUrn5oiiyOrqKoODg3i9Xs6cOVPUg6Ido0VFtSKbzXLhwgVCoRB+v5\/du3fnm1Ldbjetra1MTEzQ399ftNBqztKFhp51dXUvqUWzEqkbjYCYmppCluWyIyCs6awWtjMs4vk5QaFMWsPY2BjXrl1jz5497Nq1y9R00GoRDocZHBykrq6Ovr4+Zmdnyx6nOSOUjjgoNfTUnAW0hdbr9W7IornV4gazlkO1jICoNJ1VURTsdjsej8ciIgubAot4XuIoN5I6k8lw\/vx54vE4d955Z94ephxqrfGoqpontr1799Lb28vs7GxVqrZyhp7RaLTIR83hcBQ1a1YyKt1uWA\/h1TICoq6uDlEUi4hIswHq6emxprNa2BRYxPMSRjkBwfLyMufOnaOxsZH+\/v6KtjdaE2k10IgtGo0WEdt6TUJFUSQYDBIMBunt7S3yUZuenubKlSu43W5d14DtjI1Y2MuNgIhGo0V9RIIgFPnMacP6tPRb6XTWcvJti4gsrBcW8bxEUdqbo+1sJyYmOHjwIJ2dnetylNbDysoKg4ODBAKBNX5uG91AWuijtnv3bl3XgEIi0npktgtuZYpPEAQCgQCBQGBNxFg4AkITmCQSibIjIDTJvTWd1cJGYXs9hRbWjXK9OclkksHBQWRZ5u677853y5uBWeJRVZXR0VFGRkbo6+ujp6en7IhrvdfQrrGeBazUNaC0WTOZTOZ7ZBoaGraNdHuzFu3CiBHIj4AYGhoiHo\/z7LPPmhoBUWk6q0VEFirBIp6XEFRVJRKJMDc3R3d3N6IoMj8\/z4ULF+jo6Mj3ilQDMzWeXGptEEhy11135Rc2s9faKOIpRWmzZjqdJhQKsbKywuXLl8lkMgSDwXxKyuv1brp0eytFDZpQw+v1Ul9fT0dHRz51OTc3VzQCQiOj0hEQ1nRWC7XAIp6XCLTenFgsxtjYGF1dXVy6dIn5+XmOHDlCe3t7TdetVOMJhUJcvXqO48fdOF0dCJQnHVi7s9eIZrN2xy6XK98jUyhNXl1dZXh4mKtXr66RJm\/GvW11dKD9HYxGQGg1tHIjICoRkTUUz0IpLOJ5kaOwN0dVVWw2G7Is8\/TTT2O32+nv78fj8dR8fb1Um6qqXL9+nURinLv7vdhsKoqcxSg4qpS228zdf6E0eWRkhOPHjyMIQl4RNjY2li\/Eb7R0uxBbLePW7qHc+6p1BEQpEVnTWS2UwiKeFzEURUGSpCLV2uLiItlslu7ubvbs2bPuh7ocWaTTac6fH2RnV4b9BzzAjX8X0lVfS\/s9bO0iXKoIUxSFWCxGKBRaMwJb+289hF762lsJRVFM3UOtIyDKTWctNxTPIqKfH1jE8yJEud4cSZLy7gCiKNLX17chr1Val1leXmZ4+DzHT7jx+Wwlx6Yr1mm26zye0vsSRTGvCOvt7UVRlPxuf3Z2tuLk0RcTaq2tVTsCor6+vkjlWPg9vnbtGm63m\/b2dmtM+M8BLOJ5kaHU9kYQhLw7gN\/v58SJEzz77LMb9npajUdVVUZGRkilJuk\/40EUyxGIgiJnsNnLL8DbKdVWLURRLKp\/lEs7FUq3SxdZPWy0oKIWbNQ9mBkB4ff7i4hIU8wlk8n8\/y+MiLRm10KxwlZ\/XhbWD4t4XkQo7M3R0hTXr1\/n+vXreQlzKpVCUZQNW0wEQUCWZZ577md090gcOOgmn1ore3waqI54tkOqrVqUpp0Kd\/vXr18nHo8XSbcLxxtsN9wq8iunKtRqaKUjILT\/X\/gZlUvNWUT00oBFPC8ClOvNydVZzpNMFkuYN1qaHI1GUdUEtx8L4PVWzr0LQsbg34z7eF7MKN3tFy6ypeMNtB4iLZrc6ve\/Wffgcrlob2\/PKywLR0DEYjEikQhLS0trnLe1ewTKEpE1i+jFB4t4tjnKjaReWlri\/PnzNDc3c\/z48aJu\/MJC7nqgKArXrl0jk53iZff4sNtN+rUZCAxezKm2alG6yBa6Ss\/MzCBJEsFgEJ\/Pt6ERai3YqtcuHAGRTCZpbm7G4XAUfUaFZB0IBMoSkTWd9cUHi3i2MbSHSotyVFVlaGiIyclJDh06RGdn55pzNOJRFKXm1E4qleL8+QF6d8ns2FGdcqtSxKMtcuFwOG\/pstWpts1YmErHG2iu0gsLC8iyzE9+8pMiM0+fz7dpC+Z2iLrgJllXOwICrOmsLzZYxLMNoaXWNNWaKIokEgkGBwdRVZX+\/v68uWMptIeq1qmhi4uLjIyc58iROuobqieCnLJN799yCrkLFy4wNzeXX\/C0gn0ikcDlcr3kF4ZCV+lAIMDg4CC33377Gg+1Uun2rfpctgPxaJsrDbWMgNCbRWRNZ91+sIhnm6Fcam12dpZLly7R2dnJ\/v37Dfscak21KYrC8PAwsjJD\/xkvgmADqh8AZ0Q8qVQKWZaJRqOcOnUKm82Wt\/FfXFxkcHAQp9NJY2Pji16ibBbaoq9Jt3t6evIeaisrK8zPzxdZ12ifzUZ+LtuBeLQNlh42agSENZ11e8Ainm2E0pHUsixz+fJlFhYWuO222\/LqICNoardqIp5kMsn58wPs3qPQ3p5TralqFlWFap9BvVTb3Nwc58+fB+DUqVN5633NtHJ0dJSTJ0+SyWTKSpQbGxuL5LcvJZQudJqHWn19Pbt27SqyrtE+F6\/XWxQRmZFu62E7EI\/ZJlYNtY6AMCIirWm4tbXVIqJbjJfeU\/wiRGlvjiiKRKPRfARw5syZqgacVUM8CwsLjI5e4I6TPgpfQhBUVNUBZKt5KwiiRDaZxuHM7cgVRWFoaIjp6Wn27dvHlStXEEVxzf1pu89SiXI5+a2269eUYRuBraovmXndQuuaPXv2rGnUvHDhAnV1dUXS7WoIulK0sRkoTbVVC7MjIAqJSDOF1YgoHo9z7tw5Xvayl+WvaY0JvzWwiGeLUTqSWhAEJiYmuHr1Krt27WLPnj1Vf9HNDG9TFIWrV68Cc9zd70UUyxCVagehOuIBUNVcL08ymWRgYCBflwK4fPly2XPKvUeHw1HUB5JKpfLu0prqqb6+Pk9EdXV1L8pFodp7LteoaUTQhWqwctguEc9Gkp\/eCAhN0FFqgVRfX58X5Dgcjnw0VDgm3JrOunGwiGeLoH2pp6enWVxc5PDhw2SzWS5cuEAkEuGOO+7ImzNWi3IRRSESiQQXLgyyd69Ka5sLvYZQFRu1PFKikGFhYYHz58\/T3t7OgQMHsNlsJJPJ3HVvPNRrXq8CWbrdbjo6OvKqp8Ic\/+joaJG7wK0uyG8UNiLScjqdtLW10dbWBuRSp+FwmFAoVCTdLizCFy7y24F4bnXUVS59qRGRZoFkt9tRFIXZ2dn8CAigKDWnpYhTqZRFROuARTxbgEIBQTabzS+g586dIxAI0N\/fv66RzUaptvn5ecbGLnLyTh8uV6V0XG0P0MLiJBcvLXH48GE6OjqK7kv3lUwOnCs8vtTUMxqNEgqF8gX5Qi+1xsbGbTsGe6MXKk26rY1\/KFSDTUxMrCnCV1tfuRXY7HsoNwJiamqKsbGxqkZAlI4J11JzhT5zW\/3ZbkdYxLPJKB1JbbPZSCQSnD17ln379tHd3b3uL2q5VJuiKFy5cgWbfeGGaq02ubUZSHK87KRTo36djXjPWmpF29FqdZCJiYm8UEFLP20XocKtri2VU4PFYrGiSFGWZa5du0ZLS8uWRYpbXWey2Wz4fD7cbjcnT56seQSENZ3VHLb+yfs5gZ7tzcjICNlsltOnTxMIBDbktUojnkQiwfnzA+zbBy2t+qm1NdepQU4NsHNnM6K4drx2pUbRjVyEbTZbkVBBM6wMhUL5OojWFa+lPbcKm7kQCYKA3+\/H7\/fni\/CPP\/44Xq+X+fl5hoeHcTgcRQtsNcKWWqB9\/lu9IBfWmcp58WlEZHYEhDWdVR8W8WwCyvXmLC4ucv78eQKBAIqibBjpaNfXFtK5uTnGxi9y5511JlJrJRCkml7fZsuW7eWpFPHcyt1\/qWFlYVe8JEkMDAxsiVBhq22CtOi4q6sLj8dTduqo2+1es9PfSGifwVYvwkYCB4fDUdMICGs6a3lYxHOLUdqbo6oqV65cYXp6mkOHDuF2u\/P9LRsFrQfo4sWLOF1L3HVXPU6nvpWNPmrs5REzqGWCpVuZaqsWhRY2oVCIvr6+vDqsVKjQ2Ni4YUPfymErd\/ra30K7h3JTR8sNe9vIlKW2SdrqRVdLf5uBnrIwHA4bjoCwprPmYBHPLUK53px4PM7g4CCCINDf34\/X6yUcDm94mkdRFEZGhjhy1EVzs7PmXbUgqKiKverIRxAyyJKETWdB0svnb6VXm9frpb29PZ9+0hRPc3NzRUIFbcHdqF3\/Vkc8pcRTitJhb4Uzdq5du0YymSwa\/1DoKF3tPWz1Irsef8NSZaHRCAhNXVdILIVElEwmuXbtGvv378fpdGK321lZWSlS2r3YYRHPLUBpbw7AzMwMly5doquri3379uW\/cJWkz9ViZmYGuz3JyTvrChpCa4tcAFTVgUC1xAOZTAKPPVDy+61LtVVC4WuXk95q9SFt17+ehs1SbKeIpxJKU5aFow0uX75MJpMpkm4HAoGKhFLYw7aV2MheIqMREFeuXCGTyeRrjIUjILRsxcLCAgcOHCCbzZLNZnnLW97CAw88wLvf\/e4Nub+thkU8G4hyI6m1lNfy8jLHjh3Lh+YaNop4cvY6l3B7QvSf8VH4\/AgCqKoTqCHdJtS2AxTLWOdsp1RbNSgnVNAWkatXr+Zn7RQ2bG717t0sqiWeUhSONijnKK0oyhr\/tNLXeikSTylKP6dCIiodAaGpCgs3M1oN6aUCi3g2CKUCAkEQiEQiDA4O4vF46O\/vL6sO2gjiicViXLgwwKFDNhqbyqeAVNVuOLJAH7U9iKKoTzyl\/1\/7eavTTmZRrmFzZWWFUCi0ZrFtbGw0HHGw1c2b6yWeQpRzlC5t8tX807T\/vF5vPvW61cQjy\/KmTIkVBGHNmIxCwp6cnERVVV544QUmJiaoq6sjmUzqOtKbwR\/\/8R\/zB3\/wB7zvfe\/jwQcfBHJ\/+49+9KP81V\/9FSsrK5w6dYovfOELHD582PBa3\/zmN\/nwhz\/MyMgIe\/bs4eMf\/zhvetObqrofi3g2AKW9OQBjY2Ncu3aN3bt3s3v3bt2HShMc1Lrbmp6eZmbmCqdO1eFwGhFYrQ9UbaQoGBDPZsipNxOli0g8Hs9b+xQKFbSIaDvl6TeSeEqh1+SruZFrtjV+vz+\/+G7lZ3MrIx4jlBL2ysoKFy5coKWlhb\/7u7\/ja1\/7GqlUio9+9KOcP3+eV73qVZw4ccI0ST777LP81V\/9FbfddlvR7z\/1qU\/xZ3\/2Zzz00EPs27ePP\/qjP+Lee+9laGgIv99f9lpPP\/00b3vb2\/jYxz7Gm970Jh555BHe+ta38sQTT3Dq1CnT7\/nFkQ\/YptAEBJlMJk862WyW559\/nvHxcU6ePFnRa61wcFs1kCSJc+cGSaevcfpubwXSgVpdCJLJeE3nCWL5SaR6kc1W73Y3Ctpi293dze23384999zD0aNH8Xq9zM7O8swzz\/DUU09x5coV5ufnyWar98LbSNxK4imF1uTb29vL8ePHueeeezh8+HBeqKF9NpcvX2Zubi6v9tosbBXxlLsPh8PBzp07+fSnP83Y2Bh+v5977rmHJ598knvvvZd3vvOdpq4Vi8V4xzvewf\/8n\/8z79IAub\/7gw8+yH\/7b\/+NN7\/5zRw5coSvfOUrJBIJ\/u7v\/k73eg8++CD33nsvH\/zgBzlw4AAf\/OAHec1rXpOPoszCinhqRLnenFAoxLlz56ivr+fMmTOmrOprIZ5oNMrFiwMcOmynsdGsuqq2yMVmqy0KEcXyC6pGPJFIhEQiQWNjY76j+6U4gbRQqABr5cmxWAxRFBkeHs6PftiMdI+GzSSeUmi2Ndqzc+rUqXwPUaHbRKGIYz3jHypBluVb3ixr9j4KvwOiKBIOh\/mN3\/gN9u7dmxe7mMF73vMe\/vW\/\/te89rWv5Y\/+6I\/yvx8dHWVubo777rsv\/zuXy8UrXvEKnnrqKX7jN36j7PWefvppPvCBDxT97nWve51FPJuBcr05w8PDjI+Pc+DAAXbu3Gn6Qa6GeFRVZXp6mrm5IU6drsPhME8mglCbC4HLJaCq1XeVi2JGdyDc5OQkExMTOByOvAoqk8kQj8dpamp6yUQ\/5VAqT56enmZiYgJJkhgaGiKdTudVYY2NjWsMPTcaWo1pKz9zzbWgnFuAVvco7I0pJKKNJOntEvGUEo82QFETF2hil0r4+te\/zvPPP8+zzz675t\/m5uYA8nVKDW1tbYyPj+tec25uruw52vXMwiKeKlDYm6MVRFOpFIODg0iSxOnTp3Vzo3owSzySJHHx4gV8daucOl2L11ptKR1BUEmlVNzuKonHlkHKFhfONbKenZ3l5MmTuN3uvEJsZGSE0dFRxsfH19RDXupE5HQ6OXjwIJATKmj1oUKhgvZ5GAkVasFWixtAf8EvHYtR2BtTKklubGxct5pwuxJPPJ5Ld1ejapucnOR973sfjz76qGEUV\/q3N\/N9qOWcUljEYxKKopBMJjl37hy33347oigyPz\/PhQsXaG9v5+DBgzXvvmw2myHxRCIRLl4c4OhtDvx1jQhCrOrXEAQJVRUQhOrTWdmMSrUZCEFQSUSj+G5YAUUiEQYGBhAEgdtuu41AIEA2m80XVWdnZ\/O2LaUO09qi29jYeEtTLVuB0vSix+Ohs7MzrwrTDD21YWaFM2Q2QqiwHYjHrEFoYW9MoSQ5FAoxPT2NLMtF0m2\/31\/Ve9ssVVu196GlY6v5W589e5aFhQXuuOOOouv++Mc\/5s\/\/\/M8ZGhoCchHMjh078scsLCysiWgK0d7evia6qXROOVjEUwGFvTmSJLGwsIAkSVy7do3Z2VmOHDmSbxKrFXqSalVVmZycZHHpGnf3+7DbFdanvHYC5Yv+RpDk2hYmTb49NTXF5cuX2b17N6Ojo4bNltoUyd7e3qLGzbGxMS5evJhPtTQ2NtbUJb8dobc4ljP01Gog2gwZzUdNI+dqiXk7EE8tBqHlJMmF0m0tXVRIRJWixe0a8SQSiaoj3de85jVrrLh+7dd+jQMHDvD7v\/\/77N69m\/b2dh577DGOHz8O5PrTHn\/8cT75yU\/qXvfuu+\/mscceK6rzPProo\/lBj2ZhEY8BSm1vtAXzZz\/7GXa7PW97s16UIx5Jkrhw4TwNjTHuusuTT63VWqsBrZeneuIxaWZd5rQUFy5cYH5+nuPHj9Pc3KybPy4nLiht3NRSLaFQiMuXL5PNZgkGg3lvsfUYe27n0dcaCv3joFioUDgCu9BHrRIxbzdX6FpRKt1WVVV39LVG1G63u+i9b1fiicViVROP3+\/nyJEjRb\/z+Xw0NTXlf\/\/+97+fT3ziE\/T19dHX18cnPvEJvF4vb3\/72\/PnvOtd76Kzs5M\/\/uM\/BuB973sfL3\/5y\/nkJz\/JG9\/4Rr71rW\/x\/e9\/nyeeeKKq92gRjw4Ke3O04uvs7CwATU1NHDhwYMO+pKXEs7q6yuXLgxy9zUkwWPonWo\/8tsb7rXFdmp0dJRrNEbSWJliPnLo01ZJIJPL1kLGxsaJ+GW1heTGg1oW\/nI+a9nloNZBKQoXtEvFs9IIvCEI+eu7p6cn774VCoTX+e4UD8bYL8RRGrvF4fF3No3r4vd\/7PZLJJL\/1W7+VbyB99NFHi+rUExMTRZ9Jf38\/X\/\/61\/nQhz7Ehz\/8Yfbs2cPDDz9cVQ8PWMSzBuXm5uQK+xdZWVlBEAR6eno2fD68oiioqsrExATLoRFO3+3Fbi+3QNdeq6kVdlttC1Ow3sXuvSeLPiuNeMotdtVOINUGnGnNidrCUpiG0kjoVktxa8VGRlpOp7OImMt1wxcutD6fb1sQz2bcQ6msvXBQoDboTRCEfK2olrTlRqFU1q0Rz3o\/ox\/96EdFPwuCwEc+8hE+8pGPmD4H4P777+f+++9f171YxFOAcr05q6urDA4O4vP56O\/v5yc\/+cmGu0mLokgmk2Fg4AWamuPceaenArHUVquptZfHXuPz19TkW0PQRhHPehbhcv0yhVJczUVZS0MFg8FtsbuFW+caUGpfE4vFCIVCRUIFn8+HLMukUqktixC3ItIoTeNms1meeuopRFEsSlsW1hM3a2JtOVXbrYh4thIW8dyAoihkMpmih2B0dJSRkRH27t1Lb29vfoKgRkwb+dqjo1c4fsJLIFD5T1JrrSaVilNLScrppCZ3a9FW3jZnM5wL7HZ70byUQgXUzMxMXgHV2NiYt6TfCmzW6xYKFbTU0+rqKjMzMyiKwtNPP52PELWIaLN2\/Fs99hrIv9fe3l7q6uqKpNtaf5Um3daMYG+VsEWvxvNSws898WipNc1RWos+zp07RyKR4M4778zvouHmkLWNeu3x8XG8vjQnTvhwOMwuQrU9pC5XTadhswnIsojNVl3EJNoyKGU+qo1ItVWLUndgzU9teXmZTCbD+fPnaWpqyqfmXLV+WDVgK1JdWj1M8087efJkXkGo7fg3S0G4HQQO2n1o77F0rEFh2lJzky4c\/7CRjb7lIp6XkjM1\/JwTT7nU2vLyMufOnaOpqYnjx4+vCa8r9dyYRW6xO0dbW5K77vLWNCunWthsoKpiDc2n1EY8okIsHMfrv7lbu1WptmpQqIDq7u7mySefpKuri2w2y\/T0NJcvX85btWj1oVuVZtlqY1RtE1AqVCjc8RfO2dEioo1caLdDUV+rserdR6l0O5FI5D+fiYkJVFXdsEbfcnJqi3heIihne3P16lUmJiY4ePAgnZ2dZb84GxHx5FRHgxw77sbvr\/5PINRYq8nBCaSqPktRalsYZCkJlCceozEJmwktDaXJlAutWrTpkdq8nVthY7PVYxHKvX6pgrBw9IO20BZKk71eb83vY7sQD5ibgloobNm5c2dRo28oFOL69etF0vdqHTisVNtLEOVGUieTSQYHB1EUhbvvvttwd7GeiEdVVUZHR4lGx7i731d1BJHHunp5bLVFVzVuzEvn8hg9fFu9+9dQatVSzsamsGlzPYvuVsNMfaWcUEHrkVlaWipyVNA+k2qECtuhxqM907WkE8s1+mqj0zUHDqfTWURERp9P6QjueDxe5Cz9UsDPFfGUjqQWRZHZ2VkuXrxIR0cH+\/fvr\/jFq3VwWy61NsiOHWn27fcASu1TQWs6R0NtD3itlCDa1xLPVqfaqkWpjU3pTBmHw1Fk66PZ\/JvBVsuZa3n90h4ZWZbzUvbp6WmuXLmCx+MpWmiNhAqlC+1WoHCA43pRbnS65jihfT6FQo76+vqi70y5VFtXV9e672s74eeCeAptb7SwXlGUfFf90aNHTXsN1aJqC4VCDA2d4\/gJN3V1N79QtU4FFQTlxrlS1efWilrqQgA2W3HD64t9Hk+5RXd1dTWfgrp06VLV7gFbiY0gvkJHACiWshcKFQql7IWfiTZ\/ZiuhrQu34ntos9nyaVpY6zihiQe070vhQEnIRTwb4ZCynfCSJ55yAoJYLMbAwABOp7Ooq94Mqol4VFXl+vXrxOPj9J\/xlplts44FSXVADcRTa31IUbLUYmEgmiQe2D6ptmpQuqhobtuhUCjvHlA4BrvUuPLFGPFUQqmUXc\/qSPtMtoOqbTOjrnKOExpRX7t2DYALFy6wsrJCOp2uSdX2xS9+kS9+8YuMjY0BcPjwYf7wD\/+QN7zhDYD+Ru9Tn\/oUv\/u7v1v23x566CF+7dd+bc3vk8lk1T1gL2niKTeSenJykqGhIXp7e9mzZ0\/VuWWzEU86neb8+UE6d2bYf8BD+WRV7Q+biq22s9cxl6cWlPbyvBhTbdXA6XTS1tZGW1tbvigfCoXyERFQZOuz1dgM4itndVSoCJNlGa\/Xi8Ph2LKaWWmUsZko\/M5kMhmeeOIJOjo68k7Sq6urzM7OEgqFePWrX82dd95ZMULcuXMnf\/Inf8LevXsB+MpXvsIb3\/hGXnjhBQ4fPpy3\/9LwT\/\/0T\/z6r\/86b3nLWwyvGwgE8s7WGmppPH5JEo+qqqTTadLpNA6HIz+S+uLFi4TDYU6cOGFqkFI5mFG1LS8vMzx8nuMn3Ph8Rruo2tVpta\/RtdWHclLs6tN7NnsWteRtqqrK0tISS0tL+fTCS3ECaWFRfufOnfmemcKxDzabDbvdzsLCwpbYtGx2tFFOEfb8889jt9vzNTO73V5UM9uMnqrtoKyDm7Wmjo4O\/st\/+S984AMf4J577uHuu+\/m3LlzfPazn+XQoUM8\/vjjhtf5hV\/4haKfP\/7xj\/PFL36RZ555hsOHD69x1P\/Wt77Fq171Knbv3m14XUEQ1u3GDy9B4tFSa+Pj4ywtLXHHHXcQDocZHBzE7\/dz5syZqoq\/pTBStamqesOeZYL+M15E0XghXU+NJhKJ0NBQ\/YOSqw\/ZanO5riG9J4oSyUQap\/vm4jE3N0coFKKpqYkrV66QzWbz9i3RaHRdLtPbGaIoEgwGCQaD7Nq1C0mSuHr1KpFIZE0tRGvavNWL4Van+gp7iDo7O9cU4i9fvozX6y3qqboV5LwdBA5wU1ig\/U0EQSAej\/OWt7yF++67D0VRWFpaqvqa3\/jGN4jH49x9991r\/n1+fp7vfOc7fOUrX6l4rVgslq9tHjt2jI997GP5sQrV4CVFPIW9OXa7HVmWuX79OtevX6evr4+enp51P2Sas0EpUqkU588P0t0tceCgXmqtFLU7TXs8TqBG4lIdNaXcaknvCQLEoxGc7hay2SyxWAxBELjrrrtwuVwIgkAymeTSpUukUimef\/75fLF6K1wENhN2ux2v14uqqhw+fJh0Op2XbV+8eBFJkoqaEm8FIW818UBx1FVaM8tms\/lCvDb+utC6ZqMcFbYy1VZ6H6Xvp7DGI4piXuZfCefPn+fuu+8mlUpRV1fHI488wqFDh9Yc95WvfAW\/38+b3\/xmw+sdOHCAhx56iKNHjxKJRPjsZz\/LmTNnGBwcpK+vz+Q7zOElQTzlenNUVSUSiZBOp7nrrrsIBoMb8lrlIp6lpSWuXTvPiTu8eL3mv7yCINccfbhctT8kKvYaq0u1nWWzZYhEIrzwwgsIgsCuXbvw+\/1kMpl8Oqqurg6Hw8GuXbuKpLmai0Chy\/St2JluZX1JW3RdLleRrY829kGzsRFFsSgFtRGmntuFePQWfYfDsUaooJFzOaFCtVNHzdzDZqIS8VSD\/fv3MzAwQDgc5pvf\/Ca\/+qu\/yuOPP76GfP76r\/+ad7zjHRW\/T6dPn+b06dP5n8+cOcOJEyf4\/Oc\/z+c+97mq7u1FTzylvTmCILC4uMjQ0BCCINDf37+hdieFNR5FUbh27RqZzDT9ZzyIYg01mxqjD8jUZNyZw+YuNPH4MheuXGL37t2srKyUJQ5tsSjsgdi9e3feRUBTiW3k8LftAD3CMxr7MDMzw9DQEB6Pp8jUs5bv+XYgnmoaSMuRc6GjAlDUP2RWqLBdiUfzFazFucDpdObFBSdPnuTZZ5\/ls5\/9LH\/5l3+ZP+YnP\/kJQ0NDPPzww1VfXxRF7rzzToaHh6s+90VLPIW9OdrDo6oqV65cYWpqiu7ububm5jbcY0uLeHKptQF6emVaW\/2IYm1ps1qjD0FgHQ2otaFWKXY0tsSxY8doaWnh+eefr0pOXegiUKoS04a\/aST0Yk3LmVkYSwlZ65UJhUJrxj40NjYSCARMLaTbgXhqFTiUEypo4o3C5t5Cax+970e5SGMrUK55VFXVouFstUITXRXiS1\/6EnfccQe33357TdcbGBjg6NGjVZ\/7oiSe0t4cQRBIJBIMDg4CuSl5kiQxPT294a8tiiKpVIqBgae446QPj0dEUVzUXq9ZR8qs1gbUWtV0NYohurpb8PhyqZL1yKnLqcS2Ii23kag1xVdu7IOWgjp\/\/jyKouTrQ0ZeatuFeDYi2ihs7u3t7S0SKkxNTeWFCuWixFsV8aiqgiCYv245Z2qg6lTbH\/zBH\/CGN7yBrq4uotEoX\/\/61\/nRj37E9773vfwxkUiEb3zjG\/yP\/\/E\/yl6jdOz1Rz\/6UU6fPk1fXx+RSITPfe5zDAwM8IUvfKGqe4MXIfGU9uYIgsDMzAwXL15k586d7N+\/H1EUiUajt2Ruzvz8PIFgittv9xWk1tbz4K6ntlDjoirUSpK1ned03SS6jXQuMErLaTNUChdfvbTcVi+8G\/H6brebjo6OvHuyZlpZOPRN+xwaGhryO\/\/tQDy3yqutUKiwZ8+evFChNEpsaGgglUpt+Odgs4UJLWQJNrWYPqcc8djt9qoj+fn5ed75zncyOztLMBjktttu43vf+x733ntv\/pivf\/3rqKrKr\/zKr5S9RunY63A4zAMPPMDc3BzBYJDjx4\/z4x\/\/mLvuuquqe4MXEfGUG0ktyzKXLl1icXGR22+\/vUjtoTV6btSDlUwmOX9+gN5emY5OL+sjjJsQWA851va+VDUD1OLRVZsU22YvJqxb5VzwYkzL3QpRQ6lpZeHOXxvzrEWGqVRqW9jVbAb5lQoVtOGAmu+eoiik0+mi0Q+13pfNvoTTOc7wCz5OvnZ9xOP1eqsm5i996UsVj3nggQd44IEHdP+9dOz1Zz7zGT7zmc9UdR96eFEQTznbm2g0ysDAAG63mzNnzqxRZGh\/vI0gnoWFBa6PXuCOO3yUc9dZF3msy2+ttpSZKIKqOqhJjl2DGMJmz5JJ3+xP0It4NnKkeDVpOVmWNzw6rvZebyXK7fy1yDAUCiHLMolEokgZtpmF9q0q7BcOB9SUsHV1daysrDA2NoYgCEX1IXOjDVTsjjmczhmkrJ3l2XhV91RuJMJLbRYPvAiIp3RuDsD4+DjDw8Ps3r2b3bt3l\/0yaH88SZJqbhhVFIWrV6+iqrP093v1VWvrIo\/a1Wk1NYFqqNHrrRYxhCBAJBSmoaVpy0xCjdJymUyGCxcumErLbTS2QsZdGBlq3oN+v59QKMTk5CRADQtu7dgOYxFUVcXlctHV1ZVXEWou5AsLCwwPD+dHG5SmKwuugsM5hcOxAEB0BZLx6mqw5UYivNRm8cA2Jp7C3hzti5nNZjl\/\/nx+VK\/RjArtj1frLjqRSHD+\/CB796q0tbsxTq2thzwgHlfw+Wp58GpXtNXs9VZrek\/JDZ\/bLiahhYvvyspKvhi9FWm5rTYJdTgca8Y+hEKh\/ILrcrmKFtz1OH+Uw3YxCS0kv0KXiUKhgkbOWrrypqNCAK9vGrs9lL\/GwlSadLK6uqgkSUWmxYlEYl3TTLcrtiXxKIqCJElFqbWVlRUGBwcJBoP09\/dX\/PILgoAoivmm0mowPz\/P6NgFTp6sw+2uTFzrlTbbbLW5EOQaUGsbZb3ZvTw2e+796T1AW+3V5nQ6aWpqKpuWu3LlSl4NtdFqua02Ri1NRZdThmnOAePj41y8eDE\/9kGz9VnvZ7EdemgqyanLOSpo9aGRkWEOHxEJBIuX07HLUVLx6v6+pRHPS3H6KGwz4tHrzbl27RpjY2Ps37+frq4u0+xf7bRQRVG4cuUKNtsCZ\/p9CFU0hKqqoyZpM9ROPDnUNsq6VtQqxbbfGAj3YnCnNqOW05pYm5qa1p2W28rdbKVow2az0dTUlDfVzWQyZZ0Dak1RVjNy+laiWvK7GTE34nKr2Gxrazkv\/GSKTMZTlf9gOXGBRTy3EKW2N4IgkEqlOHfuHJlMhtOnT1fdRFXN0LZcam2Avn3Q2uqietVa7Q\/OehaeXC9PDa9ZoyBCUTM1ibg1Zdt2IhizKB2FXWhlMz4+jiiKRd5yG2Fls1moVnzjdDrLjjgoTFGW1ocqvT68+IgHQBAyuNzDiGL5jd\/Fp5bZsa+R559\/Pr+Z0dKVenWzUs84S1xwC1HYm6OlyObn57lw4QJtbW3ccccdNTkQmCWeubk5xicucfyED69345RVZiEI61mIayStGgUROSl2da+pqgKz373Is\/\/0dzgOd7P3Nadyt1CS4nmxEFK5UQfLy8trrGy0RcYohbPVhfX1qD5LnQMKxz7Mzc1x9erVohHP5cY+FFpdbSWqdS4QhOQN0ilfw5ElG4tTCXYf6eKee+5ZMw7D6XSWHZcuy3LRWqfVeF5q2FLiUVWVTCZDOp3GbrfnFTaXLl1iZmaGw4cPs2PHjpqvX4l4ZFnmypUrOByL9Pd7QXUByZpeq2Y3ANapTqsZ2ZoEEXa7UFUvjyrbmfyziyS+N8RhgJlR4t8b4v86s4gHO9n\/i6+i7\/SxLa\/x1IrCIrSWltOaFK9evVqUlluPieWtwkY2kJYb+6B9FtrYB81ZWqsPvRgjHlGM43IPGz4DsUjuM03FM2s+l8K6WWlfVSaTKXoOajUI3e7YMuLRenMmJyeZmZnhrrvuIh6PMzg4iCiK9Pf3r3vOuBHxxONxzp8f4MABkeaWXGpNUWtVerEuSbVQs5MA1NrLIwjqOgQRDjCRqpNiDq697wekx1aKfu+zOTkoO5HPh3juJ59nsb6FSa+EeLCTnS3t1Lc113BP2wOlTYqFqahyabmtjvJupXNB6YhnzVk6FArlxz4EAgHg5gK7VaRslnhEcRWX+3pFQc\/idO6ZTpVRtZXWzQqFCpq0f3l5mZ\/+9Kesrq7S0dFR1XupNPb63e9+95rZO6dOneKZZ54xvO43v\/lNPvzhDzMyMsKePXv4+Mc\/zpve9Kaq7k3DlhCPFuloYaUsy\/mmvu7ubvr6+jZkB6RHPDMzM0xNXeauU3U4nQV2LutSeq1HUq2QSim43dW\/50wmTq0lhVq93szUlRLDKtfe9y3UdHlCjmRTTCZXOdmwE4CWpAueDzPz6w\/yFAmyu5rp\/VdnOHLfy7a935oRtLRcZ2dnUSpqdnaWoaEhbDYbHo+HpaUl6uvrN9zUthI20zKn1Fk6Ho8zPz9POBze8jlMZlJtNlsIu2PRlIp0YigG5CKeSiisIc7Pz3Po0CEGBwcZGxvjmWeeyc+reu1rX8trXvMajh07Zvg3qzT2GuD1r389X\/7yl\/PnVFIJP\/3007ztbW\/jYx\/7GG9605t45JFHeOtb38oTTzzBqVOnKr7HUmwJ8Wh1HC2\/HY\/HuXr1at7BeKNQSjyyLHP58mXc7mXu7veu+QKpqDVTTy6CcFCrn1kmUxvxOJ2sYzxCrQu6\/oupqsjSPywy89kndY+ZSISxiyKHA21r\/s0h2ujDz9nBEZxjSZ7\/\/HeZ9il4bt\/NkfvvpfPA3hrveetRmnLJZrNcuHCBbDbL8PAwqVRq09NyW+XVJghCPoU0NTXFPffcU3byaKGE\/VaScqWIx26fx+maQpbNpb2unl0GzBFPIWRZxuv18prXvIbXvOY1\/Mqv\/AoHDhygq6uLf\/mXf+Fv\/\/ZveeGFFwyvUWnsNeQ2AdWMsH7wwQe59957+eAHPwjABz\/4QR5\/\/HEefPBBvva1r1X1HmELU22CIBCJRLh06RKqqnLmzJkN3+EUEk8sFuPChQEOHrTR1Fye3ddba8lJqmsjnhrajYBC+5v1pOs2BopkZ+KPB1n90YjuMedWZ9nra8JrL\/83yCgyFyJz3FGfi4Tq7W7q08DP5kj87P\/Pv0hRljv9dPTfxh33vw6P\/8Wb\/3Y4HHg8nnx9qHS2jGbZcivVclttEqptPgvVcKW1Mo2UA4FAviBvduyDWegTj4rDMYPDOXfjZ3NrxAs\/ngWoqoFUURRUVV0jp967dy+\/+Zu\/yfve976qU7N6Y69\/9KMf0draSn19Pa94xSv4+Mc\/bjjZ9Omnn+YDH\/hA0e9e97rX8eCDD1Z1Pxq2jHjGx8e5fPkyO3fuZHp6+paE1RrxTE9PMzNzZU1qbS3WN9smlcpSa1lKVdfx8Kv2dThOV49yQorsqoNr7\/0+melV3fOmVQe3BfXFIsvpOCvZJCfqO3WPiSYS7J124n\/kHMP\/5ywT9jTqvnb6\/s3L2f\/yu2peRLeq1lL4upXScoVquY2KALaaePT6iEprZclkMk\/KU1NTKIpSJNs2O\/CtHLT+wbXEo+J0TmB3LOV\/I5io5SqKyPjlMFBdxKNtkkuJp1BcYPY9Go29fsMb3sAv\/\/Iv09PTw+joKB\/+8Id59atfzdmzZ3XX4bm5OdraijMUbW1tzM3NlT2+EraMeHw+H3feeSdOp5OJiYlb9gDMz8\/T0aFw+u61qbVSrM8JAFKpdFWjrwuxns1b7cPkaozwSs6LXZIZ+cA\/gqTzuXkcZAJuOuejupecyEbwCTb21ukLC55bmeJ4fQe2G\/NNPDYH+1UHDMVg6Lt8\/xNfI9VVj+dQD8d++fU0d9WuiNxMlPvel1OIaQvvRqbltgPxmIlcPB4PHo+naOxDKBRiaWmJkZGR\/MA37fOoxtZHk3QX13gUnK5R7PZw\/jeqKpjKaCSiN99PKpFFUVRE0VzzaOl91CqnNhp7\/ba3vS1\/3JEjRzh58iQ9PT185zvf4c1vfrPuNUu\/J+v57mwZ8bS0tCBJEul0GlVVN\/wByPVWzHH0qIuW1iq8pVQXCLVJqoPBOiBR07l2+1Y8\/Ouby6OqIgvfmGXuL3+qe6TS6EOVZJwGpPN8eJqjwR04dAZmJeUsV2NLeSFCOUwkwrhEkd4FFRbGWPzhX3BWiZPsrqfrtXdx2795NQ7XxnqMbQTMRlqlg98KRz5oI58LveXMpuW2Qx9R9Y2bN8c+9PT0lPVRq6urK\/BRM7Y4WuueIONyX8Nmi5XcqxNRTFMJS7PFUVEmlcXtrfzdK5wxlnu9nACjlumjZsZea9ixYwc9PT2GI6zb29vXRDcLCwtroiCz2PIGUi1dsB4X6UKoqsr09DRzc0OceZmXajN4tZtnou9ebQIu19YQj6JUH20JgoycdjL+seeIPj2mf\/XOIPaFGGK2fGSVVWTOR+YMU2shJUUkneR2gxTd+cgcu72N+ArqRnZBZLfND9My0kNP8s0vPIKn3o\/jSDeH33wvPccOVn6jm4RaNlwejydv7LmetNx2iHjW+\/qlPmqZTCYvTy61OCoXHRYRj5DF7RpGtK3dfKqqHahMPJNXi+1zUvGMaeIpJciN6uMpN\/Zaw\/LyMpOTk4Y9k3fffTePPfZYUZ3n0Ucfpb+\/v6b72XLi0XYZGzEPRZIkLl68QCAQ4dRpb41Kr\/Xs\/mqvETmdQk0kALWnzAQBMhmqJudMyM74Hz0LsoCjrYHsfHGfDgKkO+txTYV1r7GcibOcMa7nXIku0OEJ0ust70KuqCrPh6c5Ud+JqPPHXs2mmElFuMPfnrPDG1gmM\/B1fpSNEWpx03zmKMruresb2oja0nrSctuBeDY64nI6nbS1tdHW1pYfCFgo2gCK3La1z8Bmy+JyX0UU9Z5jc5\/T8Auhop9T8QyYEOuWI55EIrGhY69jsRgf+chHeMtb3sKOHTsYGxvjD\/7gD2hubi7qySkde\/2+972Pl7\/85Xzyk5\/kjW98I9\/61rf4\/ve\/zxNPPFHVvWnYUlWb9r82m60mF+lCRCIRBgYG8DgF+k6uZ6LiehwIlBs9LrW9F1m2I4q1nFu7sMDh8GI2PaiqEBvIcP13\/yH3ww3Ym4M42xtQshKpuRAZl82QdMZTEbyCjX0G9Zyz4SluD+zALpZPkSTkDJPZWMX0m10UOehfq9bpdNTRGYaBv\/sX9gVaeUb9DsreNna9Idc7tJmL8Ua\/VjVpOc2maqtwq1N9hQMBS8c+aPY1DoeDQEDE4bxUIWthbpMw+JPilFS5JtJyKCUeRVFqMgk1Gnudm6R8nq9+9auEw2F27NjBq171Kh5++OGilF7p2Ov+\/n6+\/vWv86EPfYgPf\/jD7Nmzh4cffrimHh4AQd0iOY\/mzwbwwx\/+kOPHj1NfX1\/1dVRVZXJykqGhIXbt2sXqpMyp+0KVT9S9ngehxhoPgKp4EMTazk+nHLjc1ZOI9hesZf1QFD+iqF9\/0ZDNqix\/bZb5rzynf62mOlRJxl3vxxHwIa1EyUwtFR0zGhPY6VNw6NxsWpG4FJnnuEEkNJeKkFZkenQiIYALq3Ps8hWn3wohqwovhGfKElcom2TWD96Tfdx+\/+to292t+zrrxYULF\/K1is2Aqqr5kQ+hUIjV1VVcLhctLS2b0i9TitnZWWZnZzlx4sSmvWYhZFlmJTzGjh0rOBzGD5CiuCrWeBRF5F81f6fod5945Fc5cLKr4r0sLCwwMTHByZMngdxmeufOnSwuLubdH14q2PJUG1TnIl0ISZK4cOECKysrnDhxgqamJr739HPIsh2brdYIan2y5FoVZgDJZAaXu\/qzc\/OAXJjJP5c5u+IRUsrOld99HOXSsu4xmc56HAtRxKxMdjWZ\/xRtQR\/OzmZUVGxOB7sGRnRfM6ykWUrEDEnnSnSBdrefdndA95ircoSDgda8+q0UMSnDWCKkGy01OjzEQiu4vn+Z8E8mOSfHiHcGaH\/FcY6\/+T5cXmPH5Wqx2dFVYVruySefpLOzk3Q6XZSWa2hooKmp6ZY3sW71LB6HM0JXV7jie8w1aVd+vlLxte\/FrKRakqQ1UmrAMgndSBT+oe12e9WpttXVVQYHB\/F4PPT39+f154lYmmTUTV19rfclrUtSvT6o1DzhU7WbejDWwvh9phdsDP+nf0IJ60RxFeo58mqctKLiaAkSvzzJimonKimkUgvs9jXkU2nDsSVaPH721jXp3svZlWluD7brpt9Scpah2CK3B\/W9rWZSEWRF4UhAv2v7QmSOXQVihV67H+ZV+N\/Pc+VrP2XMnsZ1Yjd77utn72lj+5JK2GqvNiA\/ewiK03LaGOxCF+VKYw6qxVaq6mz2RRyOeVOZArO10ND82g10KmFuM1s6BC6RSOB0OjfVOmiz8KKLeFRVZWJigqtXr7J79252795d9OAnIilCC\/aaiSf3Ik4Qah2uVvtC4nKvZyBcbQ+vnjBBVSHy0yRj\/+0x\/ZO9TjJ1TsN6jrOrBSWRIn0918ndIEg0OABHM1EpzVh0kZVskj2+Rupt5R+wjCJzMTLHHQ36kdBCKkZMzhiSzpXoAp3eevw2fYVRaa\/QWqjIqzH2nF2As3\/PE9m\/ZanRQf2pQxx76+tpaK\/e8mmrayyFr1+olitMy2ljDjS1nNa8ud603NaMvVaxO+ZwOmeQZXMd33a7uVro1MjaY1KJ2iKeWCy2rsbY7YxtQTxmIx7N2yocDnPHHXfk5ZOFiEfSzI7Z6N5X+y5hPemy9dju2GxbEWWt3Y2pio2Z\/3WdpYcHdc9SmusgLeFciOke4znUQ+raNGqm\/N\/WI9rJqDIvb94FwFRylVVBQshK7PY24bbZWU4nCGUThum34dgSjU4vu91rvw8aKokVsqrChdU5Q7HCQipGQslytCBaanf4aI8C37\/G3KOf5TtqCP\/unXS\/9i6O\/qtXYndsi0dMF0aqttK0nKaWy417HiGZTOZtbBobGwkEAlUvkpufalNxOKdwOBZu\/Gz2tc0dN\/jU1JrfpeLmI57SIXAvxTQbbJNUm5mIJxwOMzg4SF1dHWfOnNHt+UlEU4xezHLqPn3foUqIrEapb6iVemqXVNvtSu0O1zWPR5BudGTnIjU55eD67z1J4qK+FYZWzxF0+nMQBbyHekhcGNO9RhyVqXiIOwoIZacnyE4Ady5t9uTyGKIg0OUO6l7nmhKh21uPSyz\/VZYUmXMF3m\/lsJyJk7TB8Xr9aOnaDXLrdesLGs5F5rgj0I59PA1f+gkDf\/kYU14F9229HH7LvXQd3rfmnK2WM1fz+uXUcppMWUvLFboHmEnLbW6qTcHpGsNuL5T\/m8xQmEyJXn1urWXU\/OxCnkSMPuvSIXBbPSriVmJbbMeM5NSqqjI+Ps7w8DB79+6lt7fX8A+RiKa5\/GwcqJ14HE47Zs0AS7Ee2511GX6uy+DUCaRJTYsMv+cfUaI6tSJRIN0RMEytiX4vztagIeksJMHrEdnv109LXYktcrJ+Jy5b7isaVjNcX13EIdjY5WvAbXMwsDrDSQNCWc0mmUvFDHuFRuMhfHYnO236vRKDq7McqGvJ30spJFVhcHVmDbkF7W6CGeC5Beaf\/l+cd6uk6920vOw2Ttz\/erzB6jvSNxrrIb5SGxttEqsmU9amj2qpuXJpuc1Ltcm4XNex2SMlvzeZ2jbxfKmqwJWfLa75\/cpyhOeeew673W449kGW5aIJrYlEYt0zybYrtpR4tKmT2kyeUmhDkSKRCCdPnqShQX+3qSEeSTFyfg5VPVxjAyl4vU5qnUQKrKtGVLvDde1qPFWxE35imYn\/\/gPdY2S3HSXgxjWlbwLq3NmCkkqTGpnVv87OZuonlnDq7DQVVeX51ek1hFIvOPMEspJJcCm6gIjAZDZKp71uTQPpTCaKoGBIbudWZ9lb14zXVr7vS2tQNUq\/xaQM44kVw4hqKrmKgECfHIBl4FsXGPm\/A4zbkoTbvPTcd5rO+zu3ZGe7URGXIAgEAgECgcCa6aNGabnNSbVJuNzD2Gxr6y\/6zaLVH5dO2imXuKn3N\/Hyl788b+ujjX3w+XxFtj6yLBdZHcVisZfk9FHYRhGP1tOjYWVlhcHBQQKBAP39\/abtdBLRNPHVDLJkx+548Umq1yMSyGRUnM7qXlmV7cz8ryESF5ex1fuQw\/E1x8jNdajJDA7Dek43qWuzqBmdz04A75FdJM6PYtN5i5FsiqlUxDCKmUqEEQSRuxpu9kWsZJOMJ1ZAhW5vPTOpSE6VZvCdeW5lytDxIClnGY4tG5LOipommkmWnSuk4Up0gQ53gICj2DvNbbOzHz\/Mw9nPP8LPvvokMz4F\/x37uP2tb6Clp7qpk7XiVqX6SqeP6qXlstnsLd3VC0LmhhvB2iheVewIJhq2zTaFryyUj4pSiUzR2Aconjqqydi1dTAcDuP1emtqHn2xYFsQj91uJ5nMRRiqqjI6OsrIyAh9fX309PRU9WDEI7lIIxERCOgrcw2xfkn1enZwtS8CdrsHMB9pSQkHI7\/zOKnhm02ezp3N2Bv8yLEk6fF5MjuCOOYjCHrO04KA90gvifOjuq8j+Fy4OpoNj5lMhBEFkUNlXAY0jGRWaXN6qLMXpygaHB4agrl6wrMrkzQ5fVyOLtDqD9IheosEBSk5yzSpiiKCuJzhtqC+5PpqbJEd3iDd3nrdY14IT3Mk0I5DR9CQS9HN5qOlxgTwkwmWf\/xFnlfiJHcG6XjNnRz7xdfgdN8aSe1m1ZjKpeW0EQfhcJiVlZWKablqIQhJXO5hRLH8ZkhRHdhMpNoUxWGqL3BmtHyWJF1G1VY4dRRyxDw4OEg2m+Uf\/uEf+N3f\/V0OHDiAKIoMDQ2xb98+U38no7HX2WyWD33oQ3z3u9\/l+vXrBINBXvva1\/Inf\/InhuO1H3roIX7t135tze+TyWTNM6K2RapNExdkMhnOnTtHPB7nrrvuIhjULyrrIXmjPrE8J9VMPMCWSarXd675P2dyTODae\/8BpeShyEwt5dwGRIFUZxCPzYF7fxfRsVnsJY1wYp0HZ3uDIaE4djSCrJAantY95sLqHL2+hjWEUoiz4SmOB\/UjlJQscSW2wJ03IqHdvpzCLSalGY0tklVkAnYXgiCwx6f\/xRiJLVPv9LDLQCE3EJ7hYKBVV9AgqwqXksuGSryYlGY8ES4SV2iw3TA4nRkNk\/7rf+HiQz9hwpXFcbiLA7\/0anafPKp73Wqg9RBtdh9NYVoukUjgcrkIBoO6aTm\/31\/1PYpiDJf7WgWVqdkJvOZee+RcuOzvkyZUbR6PB7vdTldXFydOnGDXrl38xV\/8BWfPnuX222+ntbWV1772tfz5n\/+5YYRoNPZ6586dPP\/883z4wx\/m9ttvZ2Vlhfe\/\/\/384i\/+Is89p+9IAhAIBBgaGir63XoGE26LiMdms5FKpXjyySepr6+nv7+\/qMhWDeI3iGfmeoJdh2tvdltfuqx237n1TUGtfMeqKhB6dIWpT\/1Y\/yCvi6zPgXsyjEqu2mUH7O0NOFvqURJplGwWJZkhdW1G9zLu\/V1kJuZRkvr58Up9MxqhGNVQVpUMS6kox8r08NTZXRwNtDMSWybocJNWJK5kVpBTGfb4GnEX1HcuJ5fZ7QnqigjM1HwScoaRWIijBtHSfCpKWpENU3TDsSVaXD7qHbnv8CHZCedCyOf+D49nHyLU7Kb55bdx2y+9lmBLbTssjXi22iS0NC2XSqXWNLFWo5YTbau4XCN5peb6YXL42tMLZX9vto9H82qz2Wy87GUv4x\/\/8R\/p7u7mT\/\/0T3niiSd46qmnKr53o7HXv\/7rv85jjxX35X3+85\/nrrvuYmJigu5ufWsoQRCqGpVdCVtOPKqqsry8TCQS4eDBg3R3d9f8IGTTEtl0btEfubDCmV9YT5d17Q9jNptYx5iD9U1BNYIq25n8s4usfG9I9xi5uQ4hlcWxuLaeI82tIM2t4DnYjbwYxtHemHOnngshLRWrhbxHd+WUbToy1IwM81nRcBFfTMeJSumyhKJhJLZMo9tnGMUMhGc54G8uIhmckJYlLkXnSUhZUopEf2OPfkSlSFyNLla835iUNiSdaSmGR7TR5tZXtA2uznDArx9Rtdt9zIxN075qZ+pb53mSBNk9LfTedzdHXn+P4eyZQmwH4iknp3a73XR0dKxJy5lRy9lsyzhdYyaFRWY3eWYUbXDuJ+VFNWmTzgWlJqHxeJy2tjY8Hg\/33nsv9957r7nbLbheubHXhVhdXUUQhIo+mbFYLD\/76NixY3zsYx\/j+PHjVd1PIbaUeDKZDC+88AKxWAyPx7Nuo0StvgNw6WeLwOYUaEvhdApFvTHVYD1ybMHgAZFiDq697wekx1Z0j8nurMc+Z1DP4Qah3EityZGbKiFHWwOO1nrkVBrRbjdMvyXtdqIpiS63\/uuMJlcI2Fz5lFk5DKzOcLCu1TBCOR9f4Fh9+TkjLpudXd5Ghm8MmVtIx1gRJNLJJLt8jfhvpP6W0nGyDsFwbPf1+DIBu5tdBvc7uDrLfn8LboP6RSXRQ1qRuFJAgE7RRh9+GE3BX\/6Qs1\/4J0brZBpP7Ofwm15Dx\/7duq+1HYinkpy6MC3X29trqJbr6hJxeyKm1axm1aNmjsuk7aSTOuICk15t5YinFlWb0djrovtKpfiv\/\/W\/8va3v51AQN\/78MCBAzz00EMcPXqUSCTCZz\/7Wc6cOcPg4CB9fX1V3x9sMfFcuXIFh8PBkSNHuHjx4rqvl4jdVK5cfGa+5sUfzM1W1z83N62wNtNOyPXV1FBf0rnnxLDKtfd9CzWt855EgfQO4\/4cxWXD1dmiSyjZ+RVQFHDYySwt4u7rRLYJJGeWsBdsCGzdLdhnQrQapIdfCE9zxGAiqZGztIacKm3JcICcFqFohNLqqst1fznrkRSZ4dgS86kYfruLo079KObc6ix9dc14dGTZUJlQMorMhBo3fE+r2SQL6bjhe4pnUnSEbbQ\/NUX0yYf4vhwjusNP+yuOcexN9+Lx31zItgvxVFO\/KZ+WW8brWyQQlAmHZerrK0d8qiqaGkFi9rjVJf11ptpUm4ZbMfZaQzab5d\/+23+Loij8xV\/8heH1Tp8+zenTp\/M\/nzlzhhMnTvD5z3+ez33uc1XfH2wx8Rw5ciQfSm\/EILhE5OZCn03LZNIiLnet112npLpm007t3FrOzBY5H8iySug7IWY++6T+KT4XWa8D17R+f46jo4lULE72ur6bgXtvB5nZEEo8dx1NTGAHHC1BHG0NCG4H8YvjOKTyf5ObKi\/9onxKlblWIeWlWdsYRSizShKngG6EYhdtJOUsdzR04rE5iCoZRiJLqCp0e4M0OXMLwmBsnqOBdl1CySoyFyLGVjyr2RRzqahhz9F0MpcS6TOYYVQq3RYFgR67HxaB\/zPA8MPPctGbom5XB\/t+4eX03nU7sPWptvW8vtvtorc3i92R+055PHWY6cHL9ctVfj5V1YlgQmQ0O6Z\/jBmTUFVV15iE1trHU2nsdTab5a1vfSujo6P84Ac\/MIx2ykEURe68807DUdmVsKXEo3m0bcQgOChOtQHMTcXo2VtbnefFKKkWBPVGpJVBytgY+v89g\/Qzg2bOFj9CMlO2nqPBc6CL9Ng8tpT+rs17ZBeJS+O5iKcMsqEojrYG4s8Ng8NGuqmOqbE4QYdK843IJ9fDs2pIOrOpCKLTYegsPRxboqmCtc3g6gwHAm24nPo749IIxS8687UmRVUZji0xk4rQ5qpDVhVEYe21YkqW6XjYUN02k4qgqqoh6QzHlmh11RF06IeJA6szHPK34dSRbgNcjMxz0rYTrkThynd4Lvu\/mXFm+OHgBMd++fU07dy44rFZrK+BVMHpuo7dfnPTZNdrEitBNiuYcptWVXP1stGL+hs3M6k2beNdGvEUDmerFYVjrzXSGR4e5oc\/\/CFNTdULU1RVZWBggKNHa1dXbrm4AHIEpDH+eqSd8Wgx8STC65lEyjol1VsDVbUjRVSG\/\/NjSDOl9iA3kdlZj8OonqM1fBoIBHDa8eztIHFBv54jBrw4mgI3LXSyMq7lGHtuPE+rWbgcmwRV4UhAP0IZii7S7vYTFPUX3xfCMxwykDmbUaWlFYmh+JLhMVEphaKqvKI5Vz9JqhJDkTkyskyHJzcraCYZweV2VSSUQuVaOVQSGkCOJI3uNxd1za85ptXho1X1wQ9HGX30z3imTiDbUkfXa+7itn\/zKhwuc03b60Htz7yEyz2CzVayaTK5UYzH4rhcJkhFNbcJvPjMWqscDelkFkVREUX9ayk3Nm2lNZ5qm2uNxl5LksT999\/P888\/zz\/+4z8iyzJzc7ksRmNjY75Jv3Ts9Uc\/+lFOnz5NX18fkUiEz33ucwwMDPCFL3yhqnsrxLYgHu3DlmV5XcSzNF9cOJ8bS3HwZO2WE+tyqV7HCO10OkGtY0+iZyNMfvJx5JW1DgSAqXqO4HXh6jRu+LQ3BRC9LpKXJnSPce5sRkmmSY\/qp+hWM3B7sAOPaCOryAzFFolJ6VzU4s2lwZ5fmeZoUL8R00zNJyVnuRozJpSVTIKlTILb\/Po7\/6nkKqIgFBGKR7AXRWHPrkyiAq3OeryIZWs\/ZgnFqC4kKTKjFepCMSnNZHLV0ABVk3fvS9fDlARfeYpzX\/ohU24J59EeDr\/lXrpvO6B7\/npQk0mokMXtGka0rU2pmbXACdb7MTXy3QSRqSq88Lh+WwHkyMfj0ydySZIQBCH\/WaiqSjwerzriMRp7PTY2xre\/\/W0Ajh07VnTeD3\/4Q175ylcCa8deh8NhHnjgAebm5ggGgxw\/fpwf\/\/jH3HXXXVXdG0Bvby\/vf\/\/7t76BFG4SjyRJNfXv5MdfXyzOOY6cW+FV96\/H62gdue+a\/NZunCpIVb+2qoosfGOWub\/8KYgCjp3NxJAI2JykJxZyfak+N1mP3bies6MRFNWw4dO1ux1pKUJmUj+i8hzsJjViYKEDjEQFdtWp+TSVQ7Sxv+7mgr6ipDkfmqHe4SYpZ8sST6VpopCbbBpKxQ1rPhOJcE4hZlBDmVTiBO2uNfY3hXghPMPtwY58yiutSFyOLpCQs7Q4fXR76ysSil6EUgiNUA4aOD2Eskmi2ZThMWOJEHU2F93e4gUuYHdxSHLBC0u88PiDjNXXsxS00XzmNo7f\/zr8jfW616wG1ZqECkLqhhvBWoLJpcbN1XTNiodkOUkldbqUtRMLGxNeKp4xJJ7S+g7Upmr70pe+pPtvvb29pgYP\/uhHPyr6+TOf+Qyf+cxnqrqPStgWEY8gCOsaf33x4kVCoRBN9W3A9fy\/XfjpAlB51vmtQabmEQcul1DVuUrWwdhHzxJ9euzGL1SyU0tow7BFv4dMWx2qpOBcSuh6I5hp+PQc6SV5ZRJ0BAKFnmx6UG0CYbuXPehEZeQUXDGbkp\/VI6kKw7ElVrMpOoNNtAlu5tNRshWmiV6PL9PsDRjKsi9G5unx1hs6Jzwfnua24A7sjvK7cz1zU5dozy\/8GUXmZyuTOASRkewqbYJ7DYklVInxeMgwQllIxUgq2YqE0uCuo8ehX+u6HFmg21ufn7RaDi+EZzgaaMOu2NixAvzjJca\/fY5xMYm8p41db+jnyL0vq1kgUE2qTRATuN3DuqRhVgiQe7YqR0aqCg5H5YU6Eqp8TKU6T6miDWpXtb0YsC2IB2obfx2NRhkYGMDtdtPf38\/1x39Y9O9Dzy2iKLlxA7VgYyTV1TeEVnNuJmRn+Lf+GclAIJAKunCMLiPICqoo4OppxRb0Ia3EyEzmctOVGj5VUcCxdwdJg3EHZlJ0Yr2PtKjSENInnYlEGIdoo8txcxduF8SiaGQgPIOsKthFkWDWRbBMnWRwdZb9dc24BWOZ87H6DuwG0u2B8Kzh9NOULHEtGaowoiGnXCs0Ny0k0waHB6\/dgc3pNCSU0XgIv91Fj1efUC5F5unxNuATjQnlSKBNN30J8Fx4qux7col29uFHuhbj3B99heRn\/5HpOqg70cdtv3wfbbv1O+BLYTbVJooRXO4RQ7GPWSGAqjp0\/duKj3OVNRctxex4ZbJLJY1fr5R4ZFkmmUxa7tS3GtVGPNPT01y6dIne3l727t2LIAjEI8VfElVVScYFfP7aenlUNVPzaIXc+Q5TO6vy59oNz1VViL6QYfT3\/sGALCCzI1hcz1FU0uM3rT3srfW4ulpQEmlEnwsltvYhsgV9ZFwi0lX9PLajrQEEjFN0Pa1kw3EcIf3c+oXVOXb5Gg134YPROQ4XLJqyqjASXyaiZPGLDnq9DQyEZyrWRy7EFirb38RDhqQTyiQIZRIcqdMnCz3lWiGZjsSWySoKkWySmWSILk89Ta7iwvKV+BJdrkCFCGWao4F23UmroE8oGiRV4dzqrOExKTnLcHw5P6qiIQk8OUn4if\/FOTlGbGeAHa86yfE3vgaXV79gaSbVZrOt4HSNVu7JMykEMDvzSlXtmOnFO\/e0\/ndeQ7URTyyW20huhKptO0EUxdwonK28iWqnkELuD3Tp0iUWFhY4fvx4vpEMbhqEFiK8LOPz1xbyiKKMLFMxx2twhVpPxMjAUFVtzH11goWvntU\/ps5N1iUa13NaG8AmED97ozYmirh627D5vUgrUTJTS7i6W5GiCWwLUd3ruPs6yUwvoST0H1LvoR6Sw9OoWf0ospJvm97ANZsg5i1z0orMQHgGhygyuDpLj7eeRmfxAr6aTTGTinDMQEW3IqdYTSeLxlyXQqsL7TWoC00rCXw2h6Fy7fyNuUB5EYKrAUVVGUussJyJU2dz5ayDDCIzqKxu06axGhFKWpUZji4aDs\/TGlnLfTaiINBr9zM\/FiH7lR9y+W+eZMKRQTy0kwO\/+Cr2nLq96LmvlGqz2ZZwusbNbQDNtj6oZp9Lc0Q2PVSZnMwQT+HnEI\/nMgIvtYinpaWF2dnZ7RPxmEm1xWIxBgYGsNvtnDlzZo07aqmcGmBxKk1nb+2ebaLgpiYXAWBd4gSdc+W0g9EPPUP8ef1dltzqR4incS7r37d7304yU4vFZKEopMfm8z96j+2BrIzodZFIpBDKOB94j+4icXEMFJ3dqCDgPWw8BjurwIIoVJAwp5lMhI1HWKfjpB3F11FUldF4iIzbhpjM4hLt2ATBMJ01ElumxRegt0I6q8tbn7fVKYfB1RkOBtpwOvQ3EWdvpPpKyVYUBHq9DXR76nlhdZqD\/lam1ATLq2E63AF2uG82\/UmqwvlV4ybVhJxhNL5iSCjhTJKYaFwzm0tFkFTVUIQxlljBb3fmm2wPKk64EEa98AhPZP+GpSYnjS87ym2\/9FqDVJuK3TGLzVaNBc76ewGLYY7Inv+Rfq+chpHhMToP+WloaCgroCrnWuByuTZkPMR2wqtf\/Woeeuih7UM8lSKe2dlZLly4QHd3N319fWW\/rKUNpABTw3GOvWxrXKqNvNMqn7v2S5+et3PtPd9FWtHvzM7srMcxG0GQK\/itGfXniALeQz0kBkYKbkgg21xHXWsjaiRJZj6EZ29n5Tk8O5oMSSeahbgEnR79NMpMMoKCyiEDN+fReIg6u4sOsTi6EQUh705wRV3AIYospuPMp2N0e+ppdhUXb\/P2NwZ1oedXprktWCGdVUkKrSoMpUPcUaGn6Ep0MU+2Ppz01ud2wNPJCHPpKA5EHE6HoRhhORNnNZs2dMOeTUVQVNjp1O9in5UTOEUb7U79gvdQdJEOT0CXkNsdPhYmZ2n5ziXm\/vEiMSnCP+15gl2v6+foG16B3WEHVBzOSRyORWTZ3I7frGAAMD0m3szzK2XtrMxXdkqQMjKjo6NcvHgRv99fNIlVFMWyqTafz7elrhK3Ah\/84Ae5fv369km16UU8iqJw5coVZmZm8nMp9JAok2obOR8G9HdnJu5yHaeuYwdWcK6qQuSnScb+22P6x9tE0u1+4\/4ctwN3T7tx8b\/Og7OtYQ1ZCKqKYylGeimGvdGPu7cdRAHPgS5SEwuoJWk2R3sDqBiOTVhIg1uEdoN9wbXUCi12j2HXvhmvtCuZFfb4mnCItqJoYVaKMx1dwW93sZrNDYjTIwtZVbgQX+SEQc0no8g5h4AK0cf1eMgwsljNJpk38GXr9ARwCCJJJUu728\/VxDKRdJJWl4\/ugkhtUUkhK4qhqm8ktkyj00uDU\/8PcTm6QG9dEx6DvPPg6iwH\/C2GvUlnw9McC+7IRXgCHHA2wKQE\/+vHvPD\/PspsEF72iXvZeUR7D+bqs2YFA2C+10cwISyIhk1dimBdI6dOnSSdTudHPpw\/fx5FUWhoaMhbB2n\/qxHPSw2BQICHH354XUWIDUW5iCeRSPDMM88QDofp7+83JB0oTzwXnyk\/I8M81jPTI6MbVJg5F0BVbMz8z3FD0lH9brINngr1nHrsjQGSQ5O6xzg7mxHdTlIj+mTh6m1HvTHYLXlxnOSVSdR0FteudrxHd+HsbM4ZhEYSOeNQvXfXGaTRCQGDtq2z4Wl6nQFD0nluZYojgXZd0pFVhefCUxxwNpRVcO2w+7gtuIOEnOVwoI2L0XmeD08znyquaSXkDJeiC9xepx81xJQsoxWk0EvpOPOpmCHpLMlJYlKGfRXSWYIg0ONtyKnMvE2cbNhJt7eBxXScF8LTPBOaQBQE2g1GMFyMzLPDEzAknYHVGfb4mvCUsQXKHxOd40igzbghNjzFHfWdujW8YJ2Xe\/7g7gLSgei0cWOmhpxgwMxxNlO9PoriMJXiW5wyR2LpG6o2l8vFjh07OHz4MC972cs4ceIEwWCQWCzG0tISTz31FL\/5m7\/JD37wA4LBYFURzxe\/+EVuu+22vJv33XffzT\/90z\/l\/11VVT7ykY\/Q0dGBx+Phla98pSlz5m9+85scOnQIl8vFoUOHeOSRR0zfkx62PNVWOIW0MOJZWFjg3LlzdHR05EfAVkKiTKpt4soq2ayKw1Gr\/1ntDgSCoCJJInZ7DSMOBAUp5mL0D35C4qJ+57\/U6keMpXEsGdRz+jrJzCyjxPWP8RzsInV9DjWtv2sU97aTGVtELe3hkZW8O4H36C4yM8u4d7WjSArpiXnUgr4gFUh3BnFPr+oGk1oR3NAsVJaYkGMVmixvNJcaypyTLCvpPFkUFsznpQST0RAOQcRndxoKDWZSEZwuY4ucscQKXpvDcHTCtdgSza46mj3603cvRxbo8gZ1+45aXD5mUxGOB9uwY8tLtuudHnZ5G\/IL\/0BkjiN1LYYpw0qTX6GyqEG+Yf5q9HdQ\/Da6Pn4nzYeLN5d1DSbT5CYFA6riQLCZma9jTvk2fkVfdFOIcuICQRDw+\/34\/X5SqRSCIOTTa9\/4xjeYnJzk1KlT3Hfffdx3332cPn3asMHeaPro4cOH+dSnPsWf\/dmf8dBDD7Fv3z7+6I\/+iHvvvZehoSFd9dzTTz\/N2972Nj72sY\/xpje9iUceeYS3vvWtPPHEE5w6dcrUey8HQTXTynoLkclkUFWVq1evks1mOXjwIFevXmVqaorDhw+zY4e+8qgQsqzwxo6PlP23v73yWppaa\/Nty8maa0+Zra7KBIPVy+JS0yLjH\/sposeNHI6RnlxcE3yZqee4DnWTvjJpUPyv3PCJTUTpakQcW9I\/xmHD09e51kLHbsPV3YrqshOfX8bucyNMhnQvoynOjIr\/y+kEK9kke+v0DQ7nU1FSimTY76LZ33S49esaWu3IZ3cyGg+RUiR2BZtpFG4u+mY81y5F5+nxNBhKoc+tzrK\/rkV3vhDAsLTKLrGuYn1JTx24mk0xllghnE1wW0MnDbby0aReQ2whJEXmfGTO0AQ1o8hciS4YukZITXb6Pt1PoKe++PerGexBc35xsuzDZtPvDav6OKkOm12\/N07D5\/\/Ldb7zZf3Bihp+4T+e4tf+UH+Q26VLl\/B4POzalWuY\/upXv8rf\/M3f8J\/+03\/i0Ucf5bHHHuOpp55iz549FV+rEI2NjXz605\/m3\/\/7f09HRwfvf\/\/7+f3f\/30A0uk0bW1tfPKTn+Q3fuM3yp7\/tre9jUgkUhQ5vf71r6ehoYGvfe1rVd1LIbY84tFgs9mIx+P87Gc\/Q5Zl7r777qpynOWk1BoW51I1E896Xap9XpOeUDegqhB+PMrEx4qbYW0BL86dzaCqJKcWSQdcxvUcl4N0kxcMvNRMNXz6vThagqSv6yt3bA112P3e8r5tkkz6+iyS34nT7UaMZYh3BAnW1ZEYmcVWQJorWUjKmYoNlD6705B0ppUEXtFuOOXzcnSBnZ6goSptVI7R5vbjvZHGKyzO54r7EZJSbvyCkY3OYHSOwz7jyOK58BQn1hlZKKrKC6vGnnU+mwNZVXhFc24BG0+ssJiOU2d3stvXhFO0kVUVLkXmDUknKWe5Hg8Zkk5USjOTihqSTqbTyZE\/vQdP69pnPbucMk08q9cnaOwz4bRsstfHLM7+oHIPD9xMtemh3BC4xsZG3vWud\/Gud72rajPV0umjo6OjzM3Ncd999+WPcblcvOIVr+Cpp57SJZ6nn36aD3zgA0W\/e93rXseDDz5o+l7KYcuJR0u1pVIpFhYW6Ozs5ODBg6bH92ooV9\/RMDee5MBt62nEqnEwGyAa7F5LkU4pzH5hmNXvrt1ByZEEyUsTqH43ksuGT3TgPLqL7HKE7Mxy0bH2liCi0446vbzmOhryxX+Dhk9nZzNKOmNIOq6eVqTVRM4PTgeZljpcSQl1MYIMuFcgzSqiKDKdgJQsACodXmhw6Ecf51bn2FvXlCeCchhYneFQoA2nwciD58PT3FahyfLsyhTHDVRpnZ4As6kI\/U29ZBWZS5F5UopMq8vHzhtpMjNu2LKqMFAhDWXGuy2tSAxFFw3Tk+Uk1T3ehnxUmJAyXFidI21T6XHp\/x1Ws0kW0wlDldxyOkFUTrPfoE4lH6rj2MfP4AiUJ385bt7v0Ndk0sXZ7AbSRJZDlm3MjVeOiqD6BtJSuxyzpKM3ffSpp54CoK2t+G\/W1tbG+Pi47vXm5ubKnqO5WteKLSceVVUZHh5menoar9fLkSNHarpOOSm1hsmrMcBYmGCE2gezmXepluIOht\/7feRxfYGA1BZAjKZwLKWQiCNN5lJf9kY\/jh1NqJKMqqhkZ5eRFvWv49m3k3RpD0\/pMQe6SY3OGtZ8PIe6SQ3PGDaFZrsacM6sopZJBwqKQqcXRqLQW5eTVs8oSRLJVfb4GvHabu52zycXORJo0yWCahZ5o8U5X18yuE5GkbmaXM6\/lstmL5J6z6WiTCbDJOQsd1ZQt80pKcP7MeMurSngjCKLUCZBOJsyJIuEnKXJ5c0T0Wwqwkwqiku0sfvG32NFTROXMsYRZ3IVmyAa9kGljvk4+fGXY3PrL0HJbBYzYmo5kcXVaK4WpCppo97sPMwo3+IR84tCLc4FtTSP6k0f1VAqVjAziK+Wcyphy4lnYGCASCTC3r17mZ+fr3yCDso1j2q4fl7fRdkcbq2kOjkmcO0\/fwslqX9spqsex\/QqQplajRSKIoWieI\/uInl1CldXC6KnnejELLbV4s+lYg+PdoxRzUcQ8B7pNTYCFUDpbsIxrh91IQpcj8CeG5ZG9U6oxwMODxlF5nJ0gZiUJqPInGnq1b2MmZEHcSnDaCJkuMhHpTSTyXCFrv2c59oRg3SgS7RR7\/BwZ0NXvsZh87lxpRS6vfVALiJYlVKGMmczZqBaQ6eRAm5JSZFVJMPXmkyEcdnsRTWxHQWNqhlF5qfLE\/jrA3gNvjtmpNnpe4Lc9aF7EOzGu3i321x6PLuYwtZT+Vglq2ATVSo9z2aVb4vT5iOyar3a4vF4TXJqvemjWl1nbm6uqG6+sLCwJqIpRHt7+5roptI5ZrDlxLNnzx7cbjcrKyvMzJiTTpZDIqK\/ex96Tl\/We+th5LcmEPrnFaY+\/WP90+0i6VY\/rsmw\/jFOO549HXki0HpnbIDY7Mfd3oScziI67MYNnx4n7q7Wyk2hHcZ1IcVlR2wOYDMgHaHOg6M5wO6x8psNp2ij1eXDIYjsrWtmRc1wfXURl2BjT11TXj4dUTMspWKGu31tFLaRhDmkpIllkhzy6z9QZqaFLqkpsoqc7+x3ijYOaMThhYV0jKuxJRyCaBh9jCVWqLO76DGYpDoaDxFwuGl36qeZrsWXaXX7aTYQUJiZcDoaD3Eo2Ibf5gJvThY+eUOc0eutJ+jwcD2zyg63H6+BgCL7hibu+n\/O6P57IZxBEyNCATlqjgCyC0lcnZUXc1VxIpSZ9VOKXCbFHCpFPKVjERKJBB0d+lGuWWjTR3ft2kV7ezuPPfYYx48fB3LCrscff5xPfvKTuufffffdPPbYY0V1nkcffZT+\/v513deWE08wGMyzfS1jETQY1XhCMylkWcRmq00gsD6XaqXsDkqR7Uz92UVWvqeviFEDbmSHDdeMftrM3hxAdDtJXi4vIlCWomQEEdFhJxWK4t63E0UUSE4tYIvd\/MwcrfVgE0lendJ\/M40+7A6nYV0oG3TjtDtQp\/WVa9mgB7fdQUaHdCBn6++1OfM+aA2CMx+tpBWJS9F5wukkHfXNFZsj650ew1HY12JLtHkD+WikHMwo14aii+z01dPs1l\/AlzMJbg\/uwG935QbfRReJq1ka7e784LtKcmnI9d\/s8jYYLvIXInO5\/huDmtjV9Ao9nnpDJV25xtBmly\/v+iCrCj9ZGqW1oZGZZIRdvsayijrxXd0c7O\/RfZ1CqIqKo8Vk+sxA1VkIaTVtiniWhqdoPVBZqDB0Vv87XopKxCNJ0rojHqPpo4Ig8P73v59PfOIT9PX10dfXxyc+8Qm8Xi9vf\/vb89conT76vve9j5e\/\/OV88pOf5I1vfCPf+ta3+P73v88TTzxR1b2VYsuJR0MtYxEKkTBIteX+XcBfX+vVax\/qBtwYoX1zByVFHQz\/9g\/ITOhHYnJbACGSwm5Qu3Lv2UF2IUxmST+VKHa3oIRi+ZpP6gax2ABHRxOOpgCqAOnROZSowS5vZxMsRcim9KWo2fYAztUU6qp+b4Nn306U0VnkrP5rXU2G2eny64oIXKIdSVE53tCJx+ZgNhVlJhXBLdrZ42vEfeO8c6uz7Ktrzv9cDoOrsxyoM+62NzMtdCB8Q9RgIFg4H5vngK8538jqEG1F0dNyJs751XmCDjeKQTrrmhJlf12zoTgiPz\/IwFTUTI+OnpdcIQZWZzjT1Ju7Tt1NybaiqnR5gjR76vC+t4++XzxAxqDfrBDZpRTOVnPEI+jMSCqFmjFHUN60uQ6TF35c2aNNQyVVW2nEU8sQOKPpowC\/93u\/RzKZ5Ld+67dYWVnh1KlTPProo0U9PKXTR\/v7+\/n617\/Ohz70IT784Q+zZ88eHn744XX18MA2IJ7CKaTriXiMxAUAy\/NZ\/PW1GTWsV1KtYstnleNXVa799t9DVv+9pnfW45wpX8\/R4D3aS+LiBCj69yT1NGGfXNLt4cnOLONoCpC8MI7oceI52A0CpKeWUCI3JeBm6kLZ7kYcUyuohvecMxQVDY4ZiQr01Rl3bJf6oO1w+9lxQzqdliUuRuZZSsfo87cako4pCfMGyJy16xgp1wBG4yu8smU3kPNym1YSzK6GaHR66PU2IgqCudfaxGPOhqfWGLcGHe681Y\/qFAn+18P0vmIXclrC2awfDRZCCqdNE48tYE5yjd1crVYwEDxokCWBsYvmU\/hJg4hHVdUNERcYTR+F3Fr7kY98hI985CO6x5ROHwW4\/\/77uf\/++6u6l0rYcuLRYLPZUBSlar26htiqcU52dixB7\/71WIzXLqkGAVUVWfrWAjOff0r3KNUmkGk19lvDab9hzjmmf4zDhqdvJ8lL+jJJ7RitVqPEUzfTdYKAq7sVW70PwWkn\/tyw7mVUUUDtajQWEdhtePbtNKwLZRWYSgg3hAY6I6FVhQsVXJgFQSCryLyiJdenMpOKMJuK4BYd7PE14bbZb17HgAjynmsV5tZUcoXOS6GrvI5dEOkUvHQ25Oo3S+k4l6ML+B0uwtlk2ZSfpMhcy65WHI1wPmJ8z+aPmTd0C1d9Nnb89xO0HcuRkLSYwrbT3DNoJLQphdNkSs5WZ7KXr8F4WVQVla9+5NuA+d5Ao1Sbqqp59xYNiUTiJTcSoRDbhng0++\/SuRRmEI\/HGb2m3ygJMH45wt2vq\/0PmUkruMxt1tZASclM\/Y8LrP7omu4xasCDZBNwzeqnzexNAUSvy5BQ7I1+RJ\/b8JibDZ86x6gqUjSRi37GF7AFfShNPmRJxrYcQ43nakOyx4G93odqQDq2oBd7vd\/wfmJZiEqwq04\/EgpnksTsiqGsOJxJspCJc6zgmA53IO9MkJKzPB+exuH30u7W\/y5oyjWj14pkU6wIWcNjolKa6QpS6JiUZkFJVTgmw0Imxj03xoDLqsJEJsJCPEK9w80uXyMpWWI8sWLo4K318Rg1fZppDE2rMsOxRcN7lhts7PqTu2nYe7P+JkWzmJMLmEdmMWmaeOwtlR9gKZnF16r\/3VBlhU+\/9yH+4C+\/xhtaf5ds2lyWJpOSkGUFm23t2qZlejZC1fZiwZYTT2GqDXJ\/BCM\/olLMz89z\/vx5kI3F+VdfCAG1q0Ri8QQuEyF4KbJhB9f+83eQVjN4DnSDCOnJJZTozVSW3B5AWE3iiOjngV27dyAtrZKZ1CcmV297boDbjXHW5eDsaUNejRk2fGrD37RJpfJqHFbjiIBqExE6G0nYVeoEJ7KBQMC5sxklmSY9rn+M3OBHmo+yw2Dt0Aau7RT1m4CnEmFsomgsK84kaHP56bQFwJbrN5lLR\/GIDvbUNeES7cykIigVlGuzqQiyqtJj4Kc2n4qSVuSbirYy0OTSuw36XUJSkkgmVaS2swki3c4A3TdGGEzEV5hNR3GJdqJqFn+ZkQ4ROc1iKmaopAtnkixljBtDV7NJwqqxQjDbZufgn96Dr6P476WaXKQBJJMMlQmlTBFPcimBp7lyk6m0mMLeXX79UTIyH\/mPf8kn\/iZnkumpF8nOm39PmWQWT93aN6YRj7bhVlWVeDz+kps+WogtJx4NgiCsMQo1gqIoDA8PMzk5yZEjR3gS407ai0+vz6U6GAxQjfUNQOyCxMjv\/APIuZ188sqNqEwUcPW0onidRJMJ3BMr+l5q3PBSuzwORjN2jvSSuDIJpQaeBfAc7iU1NLnW5LPwmEM9pK5No2Z0\/g6yQhoZ72wcOSNhb\/Lj3NGEmpFIjc\/nG07dB7pIj82jpvRTDO59naTGFqg3SNFfjMzT4603VHgNxZbocPsN7W+uRBfY4S52uu70BOm8QR5JOcsLyQUyyRQ9Buq2a\/FlmhzGfSqjyRUCNpehZc9YYgWfzWnoJTeRCON3ewwbMaeSqzhtdk41dgM3B98tZxIE7G52+xpYyMQREPJTWsth7gaZGjWGLqRipBXJ8POR9no5+icvw9VQJrqwme+H85h0IkgmUqaaTNWVDJggHj1ptpyS+N13fpbP\/d\/v5X8XbPUQmTcvPErGM7rEY7PZiuqaVsSziTArMEilUgwODpLNZvOebkZyaoDVpTSybMdmq005V42Dj6qKLDw8y9z\/\/Gn5AxSV9MwymWYf7tkItoY6nB1NJKNxmF25KTxw2PDu20nigkEzp13Ee6DbcNhafrCb0TEmzEJVQO5pwjm+nPcrlZajSMs5FZvgsOPu68TW6CczNmdIOs6DXaSGpgwJ92x4ituDxuOez4anub2C\/c0L4WmOBNrLjkXQcDW2yCF\/Ky5P7pGYSq4yfyMa2lvXjFO0mVLJXVidY3cFWx8zcukr0QU6PUH8ov4x5fpvtMF3mgP2pcg8aSX3nXfb7TTY1xLmvJrEUWHA20QijNtmp8uAdFKHPdzxJ6\/A7i3\/3kWvueVGzsi4WswRj5FUvBBma0aqtHZzJ8Wz\/Ke3fpovf6\/YPxFX5Xk9hUglyj8P5coLVo3nFsPMMLhChEIhBgcHaWpq4o477sjXhioRT+6Y9Uiqzc3dUDIOxj76HNFn9GsaatCDbBNw3qjnyCsxkiu5ZjTVLuLp60TwuiArk7hoUKsJ+rA3+I0JxevEvaPZ8BgzZqGKXURu8RuKCFQBBLuN+E+vAOBoq8fR2oCSSJManwNJAbtIpi0Al\/XnAskqzAl2w8K1GfsbRVUZllcN6xVQflroTk8w77mWkLOcTy2BIrOaTekSz9nwNLdXkDBfyazQV9dkSJQD4VkOBVoNpdlXksv0eoKGJHgxMs8uX2MRCRaagu7xNTESX6anrhGP08AR20SDafp0gDs\/cg+iwZhvscGc+iw9H8fbpd\/wWoiUUzUV8ZgdqyWU3H82kuFXf+lj\/O\/Hn1lzbEJeBcwXfp\/6yU85EO\/OTx913+j3KlW0ZbNZ0um0RTybBaOIR1VVxsbGuHbtGvv376erq6uItMrN4inFyrxcM\/GYkVRnlu0Mv+efkRb1O5ql9gC2cBJ7qnyILkgKqiSTHZtHXo3j2NGIozmIHE+RHpvLRwiu7lbkaDL3Oz00+0FSDAe7OVrrQRQMm0KlOic2lxPHrH4ja16wUNDImp0Pk50PAyC6nbgPdCJ4nMiX9AkuIUEoAzu9+hsQM\/Y3KVniamzR2BnZxLRQSVW4El3IvdaNNWYyEWYhE8Nrc9JX14yIUNEnDsxLmI1GZkPJFE8dvBCe4WigbQ3BFZqCnl2ZwiHaGMtEaFQdZVODQ4kluj1Bw8gi+7om7vx\/+hFE\/XvOJrK4zfqpRc1nJQIt5uogosfcUmcvyPtmQinu\/9d\/yL8MXip77HJ8Fthl6roAPV278PnczMzMMDQ0hNfrpbGxEbvdXhTxxGK59eOlXOPZNhNIAd0aTzabZWBggPHxce688066u7vX9HnETUQ8s2PV1WjWovyOTVUh8nyay297xJB00jvrsS9EEXRIB0DpbSE9uZgr6APZ2RCJ86Okr88iunO9Nr479yHFkkgr+o2a7gNdEElCWL\/h093XiRxPkZ0zmBTaUocDEWFZ\/325unMFdCPBgq3RT2YuRPzZIWzxDEJrAM+RXhzdrXkb1VAakjLsNMiyLGYSLGXihsXt5UycqeSqIenEVanitNC4lGEourjGu63LW88d9Ts56G8liczToXFEQWAhVf4zyioyL4SNxxXIqsLZG+RlZIT63IrxFE+Aq0qE4\/UdFdy3pzlW38FtwR0cdDXS5vYzlVzlufAUlyMLpBWJF8LT7PE0Gqez3tbJyd87Y0g6ANJSZQsaDWrWXL+cnJRwNpmLOOyNlY9TZSXfO5RaSPCG1\/w+3\/3ZC7ozwaaXxky9dv4eBCe7du3i5MmTvOxlL2PXrl1IksTU1BSJRIKBgQG++tWv8uyzzwJUVeP54z\/+Y+688078fj+tra380i\/9EkNDxa4ogiCU\/e\/Tn\/607nUfeuihsuekUrW2luSwrYjHbreviXii0ShPP\/00sizT399PfX192XPNpNpGL67PLFRV1+6aVEVk7itTjP7uP+s3WDpspHcEcv05ejUNuw1xbzvi2KKuQEBJZhBsIvFnryKHY7h6WlF3t5JtKF6pvUd35eonegIB7ZiRWcOppNmuBpyhBGrMaHJpN5m5FeQVfWJy79uJvBJFWroZMakLEZIXxshOLCC4nCx4\/KwqIi6Db+RIbBkRKhTkV5AU4yL5TCpCVEobKtcW03EWM\/GKKrBQNsmZpl5O1HfS6q5jIhHmuZUpriVDZBWZmJTmWnzZkOBScpZLWlSlg6wicy4ya4q89onGaarnVqa4o2Etee30BDlZv5ODgVYGw7M4RTujaoyZVJnnRgTlrTu4\/YE7DF9Lg1JFFEMFEtOQXTRHZlIya6pxNbOQRLCLJKajvPqVv8Pj53KRTmNj+e\/b9ekrpl5fQ2GNx+Fw0NraysGDB9m9ezeBQICmpia+\/e1v8+\/+3b\/D7XbzwAMP8PDDD7O8bNAjdwOPP\/4473nPe3jmmWd47LHHkCSJ++67j3j85sZzdna26L+\/\/uu\/RhAE3vKWtxheOxAIrDnXbWALZQZbnmorjFxKU23T09NcunSJXbt2sWfPHt1u9lQ8g2LCr+nycwusZzxCKU9HV7LM\/dEgiQH9VJYa9CCLxv05toY67AEv6Wv6aTOxzoOzreFmrUZRSY8vIJBrY7M3+nHubEF0OYgNjuiToIlmTlPO0phwseamW4GRiMC9u43Wq9PgUVAFgaTHw0pCxkmaRlVFFAQGV2fZX6Gwfz2zSqvTa1i0N+O5Np5cwSs6DdVk0zcMMntKzDe7vfV5z7fpVISZ5Cp2QWQpHc97mxUiJ2GOG47VTioSY\/EQx4JG5CVxNbZUceTDxfhixWFyz69Oc1dj181fuosbcffWN9P6+7fR1KwvJy9FuaK9Hmw+c4IBs+ag0kIKuwn3aimcIZPOcs9rfocLYzdrkHqLbDqTpL7bS3jRXCZFr4lUURScTiddXV38n\/\/zf3jqqad4xzveQXNzM5\/4xCd4+9vfzne+8x1e\/\/rX6177e9\/7XtHPX\/7yl2ltbeXs2bO8\/OUvB3JO04X41re+xate9Sp2795teN+CIKw5d73YcuKBm8PgtFSbLMtcuXKFubk5jh07RkuL\/s4UjEciFOLck3Oo6pGaZ+sUVijT8zauP\/BPue5HHUg7gthWErr1HABnb1tutPW4fprK0XlDrmxQq8Em5vp8ZpYRHHZcfR2kFQVlaRXhhquDrd6HPegzbOZUXDbE5qCxs7TLgXtXuzHp2EU8+7tMqeQKhQaCquJJJNBoIeu2MyzHsNtzkzH19llnw1McC3ZiM\/jjDoRnORgw9mW7GJlnT10TboNjzBTbxxIh6t0+7nTfXMC1wn5boIEdgpuFTBxVJW+EWg7L6TiSQzQcjbCaTTGfjnFb0IC8bjSG3m7Uf6PIXIyWd1nQGnFVj0jrHx6j466dLJybw3QVogoptcNEoyeYJzM5ak4YtDC1zBv+\/Ue4NlPcd2bgFIWvyUFYv22uCKmEjlS7RFwgSRJ1dXV86lOf4tOf\/jSzs7NV13tWV3PZhcbG8ga68\/PzfOc73+ErX\/lKxWvFYjF6enqQZZljx47xsY99LO9wXSu2BfFosNvtpFIpfvrTnyIIAv39\/Xg8lQuSRiMRCpGMZpElO3ZHbZJqQZBRVVh9OsH4h79veGy6qx7X1Krx3JvDvSQr9dUc6CJVqR9mTweZ+ZW8EaialUgN50hKABw7GnF2NqEkM7ou1mDOWdreFED0OEle0VeliX4vjuYASQNFnuB2YO9oQrhuII6wifh3dbD\/yiT4PKiiQMilsppOYItl6PbW31C3zRgq4MBs0b6yfLucU3MpLkXm6fE24BOLa4KFhf2LN2TOAgJu0UZTmWhoMhHGKdppE\/WfAa23xqhx1kxjaEqVuR5fMoyqlICN7k\/cRdPB3EYwEDA59ROw+cwtNVI0g91v1nvNXKUglk5TqVqyeH6eX3rPp9aQDkAyqR\/R2HzmG0iN5NTlXAu0DI9ejUkPqqryO7\/zO7zsZS\/THaz5la98Bb\/fz5vf\/GbDax04cICHHnqIo0ePEolE+OxnP8uZM2cYHBykr6+vqvsqxLYinnQ6zeLiYn78tVnrnEoGoYUIL0s01xg1qorE7JdnWPrac\/oHOW2km3zG83PsIt793bkUlB5M9NWAObNQe4OfxLlR1IyE6HPnxACCQHpyMe+gYMZZWmrxY8vIZKaWdI\/JTUKVSI\/qE4qt0Y\/gsiMZkI7stiMEfaQKCE5QVBqT0IgXvF4SXhuTqRheu5OknC1bBM8oMiMZY\/8yM9NLAa7KEY4G2g3J64XwNEcr9BWNZCPs9t0s2iuqylhihZgg45Rgd10j12Mh2t11BAyiqvHECn6nh1a7vuzWTGPoSiZBDNlwFpHUbGffp8\/g776ZXnM0m1OpVXNsdillmnhUv7nmOq\/b2AZh9uw0J+79bVo6y6cpl5b0o\/+ssP6ZPBs1BE7Df\/7P\/5lz584Zji7467\/+a97xjndUrNWcPn2a06dP538+c+YMJ06c4POf\/zyf+9znar7HbUM8w8PDLCwsEAwGOXz4cFXnJmLmG7kmroVpbq+v8u5ATjq4\/ns\/IXFpPi9xXp1bxLEUy2fg1HovsoBxPSfow95QZ0g6gseJq8JANuw2PPt3GpuFAkpvc1FqrcgMVBSQWwPIQTfehIyU1L9vR18H6vU5ZINamruvk8zUIkrSoHG0p5VsKIoa0ic4R3sDtqyMPG8s3w56XXinZairQ7GJLDokliKr1Cs2drgDec+1gwYigtz00uWKkupzq7OGk0nBvJvzsWDxmIHcMLWb9aTnVqawiyIjiRDdniBNZRo78w2mBvWssUQIv91l2BiaIybo8ugLEpReD4c\/eQZ3Qed\/NZFJejWFK2gufSYbpK5L4W0xtzg7Avqf0fgTY9zxr95HOJ5g94EDZY+ZnZ1FFEWUMpu71fQSoB9tFsIo1eZy3bzHWsdeA7z3ve\/l29\/+Nj\/+8Y\/ZubP8d\/EnP\/kJQ0NDPPzww1VfXxRF7rzzToaH9Y2DzWDLiUdVVZ5\/\/nmi0Si9vb0kEtVLns308GiILlX\/llNTIsO\/9Q8oN3Ys2dkQ2dkQDnITOZ07W4hmktiX44bzc1w9rUiRBGkDfzMp6MHjcefn5pRDvlZjlMryuhBaAjCmn4BWAcHjwDm8gMQNgUJHrp6UHJvLqeIKIi+jLL33SC+JS+PGIoIDXbnpqAapRdeeHWRnQygJ\/c1EttGLmpEQpm\/uNkVZoUUWaXHmFvBwwM58JIuazkU95ZoxQ5kEq3LasDYSlzKMJVYMSSeryFyKLVSMql5Yna6YEryczkm8NWLSLHAybhtCMsNuXxMXI\/MV030Tcoxmp89QaDGWWMFvdxoSU3q\/m+OfegWOumKSqSYyUUIZMEk8sUzaVENodjmFw4SUWlVUnG3lo63h7w9zxy9+gEQ6913TmtFLIcsyHR07mJlZO39nfmUSv2niMRfxJBKJqiMeVVV573vfyyOPPMKPfvQjdu3S7y\/60pe+xB133MHtt99e1WtorzMwMMDRo0erPrcQWy6nFgSBnp4e+vv78fl8NQ2Di5us8QCMXTIvqVZVgZUfRhn61b\/Pk86aY+JpIokYzrEQYjyDe\/cOvEd7c42ZBfAc7iUzEzKUHdt3tyMms4Z9Na6eG2kyIzFCawP2gBdlXJ90ZI8DoS2IWCAikEJREhfGSF6dQiAnla67cz+ZWQN1m03Ee\/iGHY8B6XiO9ObSZhW85NJj84ak497XiTOeRTCQeDt72mhUHezHz4G6FmwuB4teuJhYYimdk5dOJsJkFJldHn3l2lI6zkLa2FhTk0vfHjBuVD23OmtIOoqq8lx4ioOuxjXR0C5fI\/ttQfbVtfDcyhQqKpciC4Qy5Tdpg6uztAueipY8TU5v2WhKQ\/pEHXd85tVrSAdAiZt\/TrMxc8V9AL\/HHEFlQyYHyi0mEZ1rNx0X\/uEit\/2r9+ZJB3L9gnpobi5PLuNz5nf+Rqq29aba3vOe9\/A3f\/M3\/N3f\/R1+v5+5uTnm5uZIJosl55FIhG984xv8h\/\/wH8pe513vehcf\/OAH8z9\/9KMf5Z\/\/+Z+5fv06AwMD\/Pqv\/zoDAwP85m\/+ZlX3V4otj3gg90fVPvxahsGZVbUBXPrpAmZcqlXZztTnrxD6h\/JdywCKQyTbVHezniOrpK7f3BU52hqwt9UjupzEnx82Nvm8MWxNNBIjHOohOTyNmtV\/6N17O8jMhoz7cxq8OFUBdTase4wt4EVejefTcra2epJOAb\/dlXObVlTEOg+O1npDWx+cdly72klW8InzHO41PoYceSUrRFWZjiDq9CJCgeLJllVoyUKLN7d4LNTbSCgiYjJNi1pXVgk3JyUQUfOeZ+WguUsbKc4SqsREPFQ0qmHNPSsyl3XUZBo0mfPpG2ag2u8m0hEWEhHqnR52eRsYCM9UnBh6LbvKLl+jYcSUeWUDd37wDIJOAV+pQh6dMVjQSyH5zO2FzXqvSStpnG3FIohzf3+RO3\/5d5BLUmeLi\/q1Sz0imFue4o52R8UJowBpnVRbubHX1abavvjFLwLwyle+suj3X\/7yl3n3u9+d\/\/nrX\/86qqryK7\/yK2WvUzqBNBwO88ADDzA3N0cwGOT48eP8+Mc\/5q677qrq\/kqxLYincDRCLRFP0kTzqIZLP1tAVQUEQX\/xkuIORn7ncVLX9L+Iar0XRVVxzelHUHIyjRhNkjw3iuh14erJ7ZzTk4sosdxOJCdN3mFczxGEXCprA4QGmY4grqW4vvs04NrdjrQYKRqpLc+HcQJpQPS58RzoQlVUEkP6KjlbvQ+hzkN6SD9tKLiduLpajElHFPAc7DZFTFwcM\/Tlch\/sonV4mlYxAD6QnTbGszFisSg7nX6CDg+XIvPs8jfh0Um9QK5+4rO5DJtZF1IxcNoMRyNoM3tuN1CTZRWZq8nQGmISBYFuV4BuV64+80xoArfNzvnIHL2eBurLOGifDU9zPNhhKJBQ3tjGnb9tPNo4LcimpdQel3FxvxD+dpNXNem9ppSMYvjxl5\/hv\/7Vt9eQDsDion6GwEjoVN\/mYX6sMvHopdpKI55aajyqkea7AA888AAPPPCA7r+XTiD9zGc+w2c+85mq7sUMtgXxaCjnXGAG1ajasmkZKWPH4Sr\/RUmOwrX3fstwR5XdEcQeimNP6x\/j7GpBiafy6i4lkS4q6rt627A1+HP1FAOhgVjnxtneWFlosM9YaFDOWbocPDck3kYpMWdHE8lLEyjJNKoAjq4WHPU+pOUo2ZlcWs6xsxk5lkQ2UMDZGv2IbqehT5zgdeHc0WhYz8Im4tm\/syIxZbob1piT2jIyPXhycm0BpgMCouRiKZuk01FXdoHOy6Xt+jUObexBi4EUejEdJyFnDIkpJmWYTIY5bHBMboLpbFE0JKsKM0qSmdVlGhween0NFW17EMD27h5u\/3eVc\/+egPnOddFvriE0u5Q0rX4z671W2LT3T3\/+Q37hfZ\/gzJn+sofGYjGCwWC+B6YQ5X6nwRU016OUjJvr40kkEjQ16asQXwrYVsRTa6rNjF1OIaJhaCxJ26uqQOh7K0z96Y8Nz03vrMc1HTbccXkP9ZA0mmmjqAg2kfS1aeRoEntLEKGxjnh4FcdiDM2H1LGjCWQ5V5DXgammULuI0NGA3ciJwHRUVexEIKggTS4i3Rg+Z2v04967g+TSKlI0oVtEdHa3IK8m8kRVDvbmAILdRnpkbVE3f9s+N862epKXDCbQ2kTcfZ1g0HsEub6qzgtjYK8HIOOyMScliEUidLsC1NldDKzOcMS\/1nyzEJejC3R5jMceTCTCeO3G83iW0wmictowlZeUsywI6TUO3DZBpEPw0NGwE1lVeG5lCpfNzsDqDHvqmvHbSkjTJuD97X30\/Zv9uq9VCFeTeSm106yUOpQ2TTxqvbmlS7zRP\/SNP\/kuv\/Lfcjt3o6xKe3t7WZKJRPQzG6rD3MY3bXIsQi2pthcbtgXxaKk2M2MRyqGaiAdgaSZDY9vNXYoi25n60wusPHpV\/ySXnUyDN+e3pgczc2+4oQC7PJGv+UiLq7C4ihNQHDY8e3dg83tITy4iLei\/Xumk0HKQfE4cPg\/qhIETgYmxCNgE0u0BqEBMzo4m4s9eBRVEhw337nYEl53sXAhpKSehdh\/oIn191jDd5+xpu+HvZjAKvCWIIIqkDfqBBJ8bZ2t9UT9QKVQR5I6GNRGTMy3TjQt8Lag2gUmviivjYUlO0S6Wz\/m\/EJ7hSKDNcPaPGSn01A2rHSPbHq0x1KhHJ61IDEUX84PiIBcNXYstE84m89FQ+E4ft5skHSmawR4wp2jLhtM46s2l2pSUySGQadlwPHUhHE1uvvyh\/8t\/\/OMv5n8XDutHL8FgeRsgo16epdgMUDlCMVK1FSrqXurTR2GbEI8Gm82Goiioqqrry1aKbDbL\/IxJz4obmLoWZ9\/x3BdXijoY\/u0fkJnQV5KpDT4UVcFpUM8R\/V6cLUFj0skPdtM\/RsjKCE4b8eevATlysQV9uZHWBWkrz8FuUiMzhot3ptmHPZ5BXdB\/0Bxt9SCIhukusc6NrTkIBjJwbCLufZ3Fi3dWLrquY0cjzq4WsourqFkDddvBnOza6BhnTxtSKIIS1TeKzBOTQTOr4HXhbGsgY3AMNhHPvk66Lk\/CDbl2ym1jNhMlFYmzy1OP2+bgqrxqaAYKMLg6wwF\/q2Fhf0ZN4Le7DC15zDSGxqQM02Vcum2CmD9PUmTOhqe5o8u4plMIadm8lFpaTpkmHrN1m8xCEndXZeLJRjP8vx\/9Bh\/4XLEtzOysfgTtcJT\/uyQSCRobGwmF1rp6hOJzeMwQj0GqrTDiqUVO\/WLDtiIejfVLdwB6iEajPP\/886SqkHYCXDu3wqt\/uY74VYVrv\/33Nyd+lkG2I4h9OY7NqJ6zswUllS5StJVCm1djqABzOcg0uBEu3DymcNSAvdGPo6MJ0eMkPnjd0H0629WAc2bVUEnn3rODzNyKoQLO0d4AikrWgHTEOg+2Jj8pg+Fu2G3Y6+uI\/yxn1S763Li6WlARck2nN8QWnqO9JC+MG1oNuQ90kR6pREytSKGoMTE1+xHsdkPSURwiapn35k7J7MILdV4Uu8CEU8aZcjKbiLDDXb4Z8+zKFMcr2PZciMzR52\/BZTBQzUxjqJamM3LgTslZrsWXuauhix27zdt5yFU8b3LC\/LGi29xylImkcFfo9lEkhb\/7H99fQzqQS5vp1XIkg9pmW1trWeJZis3SReWm93IRj6qqGyIueLFhWxBPoaoNcjnYSsQzMzPDxYsXc41S8kBVr3fhqTnmv+1l7rNPGh5npp5DbwvZmTBqxoQRqMG8GntzANHlgGn9kF5OZbCns8QvjCE4Hbj27UR02EnPLOX7g1RA6W3CMWbsLO050psTOxgQk2tvB9mZZcO+GseORuRMlqxBuk\/0e3E0+Yt84pR46qbfmyji3N2OozlIZmrRkHRME1OlVN6NGpO0pB\/p2hrqsLudSLP63nW4HHi6W+gengE84PaQ8NiYTa4ixVLs9jZgE0ReWJ3hjgquBs+Hp7mtwgTTodgine6AYf1oOrmKrUKaLqFKTCdX83ONXB3mfdfMzssBDKXvaxA0STwGm0AAJSPzoX\/\/F3zfQE25Y0f5Wk40qp\/V8PvLbyhGp4fo9r3W0EwUIJOSGBsdo7mlOe\/FptW0N9Iy58WAbUE8GgRBQBRFwzqPoihcuXKF2dnZvHN1Nc4FAOFQhv2\/8mv86pn7eH33YTpXVdRQQWOny06mwWNczxEEhD1tqNfmDHnJe6SX5BVjI1D3nh1kF8JF8uVSlKbE1Ey2yN3AtqORuEPF7XFjG9KPvKqqQ1XomXHt7SA9tQgG7tuO9gZUSTF0axC9LgRFzUdD9kY\/jh2NKBkp1zOUkW4q1ypYBHmO9OYUcEbEtK+T9PgCatrgvjuaUJJpQ9KRPXaoc5MeLhZ\/eJMye6iDujokl41JMY076WI5HS9rBgrm7HYGV2c5GGjFKRj4wMWWaXR6aSgjpdawlI4jO0T6CoxFPZ3mF7oYWXPjplk7SloPSlbG02ruHjxO\/TSfnJT4wDs+w19861F6enp0jwsEypPI\/LxBY7ZOGi6TTRNs9RGe1x+6qGFhbomx8TEcDgeNjY35+9CIR1XVn4saz5Y7F5TCSFKdSqX42c9+xsrKCnfffXd+XEI1Xm0AnnobsVSSL\/zLt\/iFL3+CE\/\/3j\/nD1Wc532ljsdWN7HHgnNP3EhPrPLh370A1mJ+DTcwt3hfGDEnHe6SX1Ng8skFKyLW3AzmWIjunvwim4gk8cQmGZrHV+\/Ae7sG5twOloAFQrHPneoYq9Mxo921EOra+HaSvzxqSjmtvB3IkUTQArhSOtnpEj7OImKRQlOTFcdLD0zkHhUPdeE\/sJXNjjLbefXsO9+RqTEYR05HeXP3IgHRcezuQV6KGLhOO1gacPi+2Rf3vieB14e1opidp57C3mUa3j6hH5KoS4Vp8GVlVkFXFlEHp2ZVpjgTaDEnncmSBHW6\/IelMJVeRVbXI8TrrtuNsMN9rEwyaJympzlytNrOQrDjFVINNR54txbI88OY\/4S++9SiQm+el13\/jcJS\/xvLysm60kTVo3PY1mtvD7929n3vuuYeDBw9it9uZmMhlAV544QX+\/u\/\/nieffJJEIoHXaz4CNTN99N3vfveaKaKF5p96+OY3v8mhQ4dwuVwcOnSIRx55xPR9GWFbEI\/RMDgNKysrPP3003i9Xk6fPp3\/w2QzEhmTapg8nGuJ6jsvPMO7\/\/ZB\/uvVR\/nVZ\/83P2hKkdjViOAs\/kI5O5tzvScGs3HEgBdXd6vxAm8vsJoxcjQ40kv6+pxhHSbT5seZVVCXc4ugHI6TuDhO5toMgqri7uvEe2w3jvZG4\/v2mSMmdrciD88aW+Qc7iE9OmeYpnPtbkeOpfLjHMrBFsz1ByWevYq8HMHR0YTnSC\/O3rZ8j4bgceLavcO410e4EQ1VsvY51J27b0Oj0zbkRArZIEKVfE5kt53M6E1CFVTwJxX2iQH2+pqQPA6u21O4HE5Ws\/obj7M6E0MLcU2KsLeuCa9Bb9FIbBmfzUmbuzheSTVXl9ZxNFXRENpmbucur5q31XG0rCXW7Gqat\/\/rj\/CVRx\/P\/06SJN2RAkb2OB0d5c8xSsPZvObWoFQii81mo7Gxkb6+Po4cOYLNZmPHjh386Ec\/4v777yeVSvGxj32Mv\/3bvzVsatVgZvoowOtf\/\/qiKaLf\/e53Da\/79NNP87a3vY13vvOdDA4O8s53vpO3vvWt\/PSnPzX1Xo2wrVJtsNa9QFVVxsfHGR4eZv\/+\/XR1dRURldlZPIVIob9L9Xg8DEwP8rvf\/J8ABL11\/PuXvY57Ow\/S5vGTHZk33C07u1pQEinjsQB5h2qDhVJzn66QEst2N+KcWkHVWUwFWUUFUlenURJpnJ1N2BsDSJEEmYn5fP3K0dYAqIbEJHhdONobyBjIl1UBHPs6jUmA3AKfvDpt3KhaRrmWnVnO9\/6IPjeuvg4Emy036lv3QnbclWx7KCAmA7j37yQ9OmdYP3J0NCIm0igh\/dSL4HMjemz0Lcng86IKAmE3zEVWcGVUdvkakBSZ85H5irWhs+EpjgeNRQuXIvP0ehvKEpPQXkUEE8tgN3B7LkRiIY7XZPpMMVk3yoZSOBqL1X6ZUJI3vf7D\/PPZwTXHt7Q0Mz29VrG5uqpPIvX19WV\/v7CgTwIZoXKaDdb6tWlCqo6ODh588EH++3\/\/7\/T19dHb28tnPvMZ3vWud\/G5z32O97znPbrXNDN9FMDlclU1SfTBBx\/k3nvvzXu3ffCDH+Txxx\/nwQcf5Gtf+5rp65TDtiOewlSbJElcvHiRUCjEyZMnaWhYWyytxqdNQzihX2+IxYrTK6uJGJ959Jt8Bti\/fx9Hgjt4y4E72Sd5EGbCRcfmJM6zxkIDzdHAoOYh+D04G40HqamigNrVhGNc3xkAINUZhJHZvI1OZnqZzA0Bgy3gxbmzBcH1\/7F35eFRldf7nX0myUwms89kB0LYwhKC7IsLUJRVRBQ3WrWtaBXXti4Va6tVq9LW2trWn6itYstiEBAJOyggJCwhkBCy7\/s2ySSz3d8fw1wyyXxnJsgScd7n4Xl07sydO5M73\/udc97zHgm6SmrgIkYViA1qcOBI0oFMAoFBCWceW5oNBLnAB6FcE0VFwF5S60mJCYWQxhvBhUnQUd0ASZOHrISqMIjVETQxBel8EIxXnGzAeXdtG3tD5FRKAQEgqb+wWAk4DmoboJaoAQnQFSZGSVcHpBIxrE47IhiRTGZzeUDH67yuRgyK0Pl16AaAsNjgiaejth0qP6ahftHiCHrSfLBpNmdjlw\/x2KrbsXDeb7Az66Tf57NSVlVV7A2WlFFDamhoQFhYmF8H\/RZbLYL5sP6Ip7uwwOFwwGaz4eWXX4ZKpUJtbW3Qdjj8tTCmj+7ZswcGgwFqtRrTp0\/H73\/\/exgM7Gs+ePAgHn\/8cZ\/HZs+ejdWrV\/fpevyhXxCPv1Rbe3s7jh07BolEgkmTJvnMq+iOvroWAEBVI7vLndrVVFZWIS\/vLNZ\/6wnnR8UPxG1Dx+MG02BEqpSwnSwm31cxLM5TXyB2y05tOCROeIrqDLgUEojUERBQpCMSQp4cAxAd\/a7WDkAoQMfJQo+s0xSJcE0knHUtPukvaaIJjpomcETazGt\/4ygj1HRiISQJxuAW+AACAVlSNOxlteC8NSa3G\/bz35nk\/PXIEo3gnG5y6qpAIeUtgAJeU6DrHhqLzvxKsqYnNKkhaGmHyMbeMAkjFIiIisDgMqcnGhIJ0CBxo7alCUqXEDFh6vPRUHVA0gnGm01gDM7SBgBEtuAXQbcteBcSUVhwS1F3eXZ7eStuuPEpZJ4rglarRUND73uPdQu1trZBqVSira33ZotyTzGbzSgoKOj1eHVzGSKDIZ4eRqH+hsABFwiTIgZ\/YE0fnTNnDpYsWYL4+HgUFRXhhRdewA033IDMzEzm2lpdXQ2j0dfixWg0orqa2HwGiX5BPN0hFovR3NyM3NxcREdHIzk5mTTo66uiDQAKK3L9Pi6VSlFb61\/Volar0dzc7PPYiZICnCgpwJ\/1OqDLifunzMYMwyBoa2wQdnerDdKORjEsDh1ny8lZ8o4oBaScEFwVWwYsVIZBoo9EJ7WY9lC3CQCIqlvQWe0hHLFRDYleDYFE5Llu4pqCsb+BUgG3QgLHOUJxF2zkMfy8FJwwQxWpwtCZVwG31QaBVAxZUjQEUjHsVY18ZCeKioBQISMteSAWQT7IcknIUhCrhbO6GSIiinMppeDEQrjLLmyABC4OWpcAWplnB9sRLkJphxVysRSdLifkIv8\/42CUcqdaqjEjwb93mT\/0SUrdl526JkjyO3\/O1sImTL7xcZwp9UTXUVFqv8TT0cFOgen1Or\/E0zPr0R1RUWq\/jxdXncUojKWuHEDvXh7W9NFgpy\/3BGv66NKlS\/n\/HjFiBNLS0hAfH48tW7aQ4697NvL3pbmfQr8hHoFAALfbjfb2drS3t2PkyJFBzRrvyyweAAhTSdFc5l8dZjabUVLiP71lMhl7EY8XBoMROTk5+MPWz\/AHACKhELePn4FFg9OQ4JAhPDw8gPt0cMPWgnGWlpwf5NZFNLMKw+WQmjVk\/chZ2wyJPhIdxwrglnlGG4hFInSW1YHrJnQIpmdGEq0F12mHs5aYhaSQQmKMoiOPYMcn9HA+4OxOXwcFixZikwawdV3oJfL3dkHY7QR7TUjQw11aDyGRppNYtBBabXA3EbWhCDnUGhXC2i9MXq0VO1DX0gyLLAJRAhlcnBsnWqoCkk62tQZDlXqo+pBqY41J8AehLDgptcvqgCIqOBWXUC5CY249xt\/wGIq6SZ\/1ej3OnesdiVRWslNqrCZNKuvBig7qmqogt0iY7gReBEq1Wa1Wvsenrwhm+qgXZrMZ8fHx5CRRk8nUK7qpra3tFQVdDPoN8djtdpw4cQKdnZ2wWCxBkQ4AdPSxxiMJZ\/\/wtVoNk3hYHk4AoFT63sAutxufHtyFTw\/uwoQJ4yFobMe9Y6djtEQHaUWzj4otmDHXvLN0aQO5iVQMjkFXWS2pyJIY1IBAQBqPCuQSSGP1nkZNAMIuJxz5lXAAgEgIWaIJwnA5IBHBdrwwYErMEWAcNqLC4QbtjtAngUCAyEMYJkPXmRK4bXYIIxSQxuogADyken7AnEirglAiIkUikIggH2AOeE3uRD0ERXXkpkI2wARHVRNZG3KFyyCUiWHv1ogsdLlhcIlgkHssW6wKIYo7WhAulsLhdjE947wuCm6JCEpT8IafwvDgyAQARJFB+rnV2yCKCC7iaahuwZTbnkFFo2\/EL2TUiOrq6pkekKyoora2FnK5HJ2dvdcWf+OvvYg0KNBZRBNPz5k8PV0LLvf0US8aGhpQVlZGrrMTJ05ERkaGT51n+\/btmDQp+AiZhX5BPG63G4cPH0ZYWBiio6P7VEzra41HpZcD\/jNtUCjYP0BWwRGg3W4lEgn2nz2Fg2dPAQCitXrcP2k2pusGQOsQQujiyDHXQTlLo7drtD8EY5Ej0ig9YoN8BjG53Ogqq4M8KRqdp4ohNqghMajh7ujy1KW6kWowKTGvcg1EHxMi5JBEBRAIBDuzZ1gcbHnl\/HW6rbYLdjhCoWdchSYCrjYb+zuAJ\/KQ6iLpaxJ4NgyiIloSKx8Si65zdG1IYoqCoNMOroGdBhLIpdCYNYgodAMRgEsiRJXAjobmJlgk4dBIPFGFR57t2RF3aIPvFwEQ1LhpAOBcHKR+ZM\/+4LIGJ0UuOVyKHz\/3z16kAwAdHez7JzY2BkVFxb0e90csXlgsFhQWFvZ6vKdEuTtk\/ntSfWDrkWrrOQTOarUiLCysTxHPww8\/jE8++QTp6en89FHAs1lWKBSwWq1YtWoVFi9eDLPZjOLiYjz77LPQ6XRYtGgRf557770X0dHRePXVVwEAjz32GKZNm4bXXnsNCxYsQHp6Onbs2NErjXcx6BfEIxQKMXr0aISHh6OgoMCvaoSFvjpTC+TsnTeVV3URvTbU9fb0fqpoqMNvv\/g3AGD61CkYIFBi3oBRSGgXgavzTUU5w6WQRNDO0hdm8QQYZ9DDEdsfpHF6OJqs4Ah1m9f+pvN8wd5Z28w7aAsVMkjjDIAIEEql6DjeO\/XRHcEo16BVwm13wFHGFlII5FJIY3SBJdyBBAJuNyAWwXa6DFynHWKtEhKTBu4uh4dUz18nHw1REZpYCKdRBXEw1kUBIjRpvAHOhjZwVvbi6lZIIFQpfFSHIocbZohhDtODA9CqEKCorQGRUgVcnBsigRAuU\/CeYC6rI2gptaPe1mvyJwstnTYE2uMX7SvC2Fsew4jRo\/0ep6aHajQav8RDkYhGEwU\/vEO6VLuDGI\/QM9Xmb+z1pZ4+KhKJkJ2djY8++gjNzc0wm824\/vrr8dlnn\/k4JPScPjpp0iSsXbsWzz\/\/PF544QUMHDgQn332GcaPD95QloV+QTyAx8LC7Xb3eRhcXyOedmcz81hXF\/tc1E1K7U6oprPm1jZ8cOIAPtj3JQDg+mFjMH\/QGIySaKEQiCDrcoOroZorwyBWK8lZPBwA2dDYgP1AiqGxsJ2rJA1TJWYNOIeLueC6bV3oKqn2pA5zCyGNN0KsUsBR3wpHD+uZoJRrA8wetwZCTSeIDIM4XIEuInUYtGihRzTkbGiD83xTrlegIAyXw9nY5pPu6n0iKZxKGcQVzfT7BaGUkyVFw15K2\/uItEoIAbiJe0UgFkEfa4LqLAeIAYdUiFJ7KxSm4Ae6ORo6g06JdTV1Bk08kUSmAQDytuchbcETsNnZm8aKigpmSk0u9\/8ZGxrYTiCsBtOqqirm+3S4moAAFNoz1dbTENlb4+kLAmWIFAoFvvrqq4Dn6Tl9FABuu+023HbbbX26nmDQb4jHi74Og+trxNNgZRfdqTkdDQ3sHVV9PfsY1XncU4Wz+\/Qx7D59DAAwdex1mBU7DFMS4xBZ3Q6uR41EGqOH29ZJyq4F4TI4IqQQUK7ROG+8GcADLRjDUJFGCaHiwkRRe0kNvFct1qogMUXB3eWAQCYNggTiYTtbTjaYcnolXB1d4Ag1XdBy6QDfAWd3gnO70ZlXBrfN7hEoaJVwtdlgL6nlCVSgDoMDHMS17KgRQgEUQ2L7TIT+ILFo4O6ww93MTsFxEhEEhkh0ne0msLC7kYgI2KODyA+dh8saeLyzF3aqptcDLAscADiZno3xS56G4\/ya4E+FBngW3+hoC0pKev+d3W7\/91BHRwfTpbp7FNLzfcxmM8rKev+m6toqIUIS87MA\/lVt3dP4P4SRCEA\/Ip6LHQbXV+eC8jp2SoqlTxeJRKiu9r\/ASyQSpgpGJpMxj4lEInIuyLG809if+S0AIEwmx72TZ+Lm+BGIaRVArlejs6iaNrk0qAGhAFw1W3YNqUetFtB4M5haTawertYOOBju2s6GVrg67ZAao9BVUAF5coxnCmtFPdwtvqnKoImwoh4CYoETqMMhDpPTcmkvCQR4P\/mwOHR2c1rwcVCIUHjmDHEudFY3QtJM1KtkEsjjDJekb0iaYISzroWs2QkiFBAq5XBX+N\/dK2OCr\/G02ToDpsS8kImC7w3yZ4EDAIc\/OYop9z7rs6Nn\/Q4BQKfT+SWetjZ2tsJgMDDGI7DXIFYtuLyuCPGBiIfhXODFD2H6KNCPiMeLvkY8HdbgIx6BACiqzPN7jLXzATyyQn+2G4AnF8xytLVYzH5zy55jFr+7Jn\/X0tHVib\/v+gJ\/xxcQi8WYlZKGJcMnYDiiIKpo7pWukg80w17TzM+48QdhZBhEyjB0kcXxbsabBOTJMegqpq2ExDoVBCIRL\/Pmi\/ICAaRxeohU4XC0WCGJCAuCCOM9MmgiEnDrlOBsXeAqiRSptzb0HUnAbbXB3mqFs74VEoeLV\/05G9rgqLpAxMIIBcQaJTl0L5j3AwB5UjS6SmpIGbtIo4RQIoaD6PnSxge\/u5YG6TQNBC+ldjR0+hUsfPvpcUy+59e9Hq+rq0N4eLjf1DcrpVZTwyYrlcq\/lxyVqWARQ3HlWSQoZzPtqwD\/DaTd6yo\/hFk8QD8xCe2Ovqfago94FJFidNn9E5XJxNamazTsuSaUfXlPy4ru0GrZx3Q69jRDi8WCrccO4cf\/Xo3r\/v1bLMvbiB2aDrQnaiCQSXi3a4p0JNE6QCiAo5wu2AfbONl5toL2r4s3wt3lgKPGzwLIcbCX1qGruAYikQj26kYohsdDlhQN+Fno+NpQgDlC4vYuiNoJIUlkGCQ6FV0bCpJ4Ea+Hq7oZwi4n4ObQVVQN26liOKoaINaqoBgeD\/nQWIgiw+jakEgIeZDKvM5AvVNmz\/3l9zs\/D5dMDE108FJqhSr454qigpxQ2tj797t59Q7c9cJfma+Jjo72+zgrpVZXV8eMUlgu1VVV1Uwlq1zuX2DhcNoRHkVHeoEaSDs6On4QxNPvIp6+ptr6UuOREka5ajW7T4fS7rMaygBank3lcaljWq2Wt1IHgLzKMvxyw\/sAgGHJybjeMQST1bEYaJdBbO298MoHx6CzuJqcXirSeobSkTtzkRCK5MB1imCUa2KDGgKAFy3YvEPtxEK4o6MQHqmEo7YZUn1kcLWhvADRUFQYnA4n3ATxQiqGPMEUUCnHJRqA4loIGJtcZ0MrBHIp3FYb3LYuyJOiIZBKYK9q8PHGE8glkEbrebUg8\/MFk4KL08PZaCU3H4IwGdwD9BBJgt97ButK7Xa4IdUGKaW2+d6Hn\/7uC9zz4p8hFoshFAr9\/vZYv9XWVnadKyYmGvn553o9bid8Fc1mk9\/UHSXDDosSw9rA3vAEaiBtb2+\/JA2a\/R39hni6TyENNuKx2+1obiCKuD3A+RmH4IVUyv5RUbMxLtY+grLlYBU2ASA8nH0tUoUcf92Vjr+ev675qZMwb8BoDHYoENbcBVe8Frb8cuYiCXiku67mdjga2Go8QZgMUpOGVNMBwU0LlSYY4axv9btICpxuiCqa0NVig9SghqvVBsWIBLha2mEv650KCaY2JE00wVnbDDcRDQki5JBqI8n+KgBwJeogKiIiGPQ2DfVxUIjWQqxRwtXR6VELEs7gQJAquEEW2MvrLnjY+YFQFQaxMgzNruAFAH2RUnfUWhERrGih273xz1\/9Fw+94XGFdzqdiI2N9ZuOZkUplIcYy3GalV4HPJs8f8TT1MSOIuWR9HrQ1tLhM2+HZZlzraPfEI8XXjl1IE+gtrY2ZGVlwd6Hme52AaH84dg7ZKq\/h5rrQe2MqKiOIl7qO3E6L1wLx3FIz\/wa6Zme8d5zpk3HhGozxqnN0Le6IHT1JoNg7G\/E+kiPKICw5Al2WmhQ0RBfGzq\/qFR4ohRRZDik0VpwTjc6y+ugSDBekvdzKWXgBABHqAUhFMAZHQVxEe0MHqgx1FHRAK7LDoFQBFdHF+RD4wCOQ1cPW6JgVXDBNKKKdUpAKIK9oh6C5MAd7vy19kFKLWgLPlUulInAuTisfvxjPP3Xj32O6fU6v8RjZ8iqGxoamMafrLQZRVZyuf+orbKSfe\/bBW2gKhi29i4cPnwYcrkcWq0WDofD5zf9QxEX9MsaD0AvvlVVVTh06BDMZgvsnX2oBznYuv32dnYTaGsre\/ff1sYms8ZG9vtRIT7VM0SRWXg4+4atbGnEi1+txc0b38aPvv0QH4vLUGwQw6nw7D3cAwzozCsjSUeaYIS70w4HoZQThMshizcGVbDvzCsnSUAapwdnd\/qtU7ha2mE7XYquslrIo3Xg7E4ohid4FtaLfb8YHaRCMcRU+lYmgdOghJjh99fr\/Sg3AosWnJODo7b5vINCKTpzy8DZ7JAlmqAYkQBxtA7ygZbA3+fweHSepd9PbNaAc3F8w6\/EHLyirS9Saq6rD8QTIcFbj\/+nF+kAgELhXyxA\/a5YQ9xYG7329naiFus\/Uu\/q6uKnH\/dEs42OgN0OYOrUqRg0aBDcbjecTieOHz+Ojz\/+GH\/4wx\/gcDj6FPEEmj7qcDjwy1\/+EikpKQgPD4fFYsG9995LetgBwJo1a3pNLBUIBOT60xf0m4ine6oN8Nwo3WWGgGcXf\/bsWZSVlWHUqFEIkyn7ZK\/TYGXvbqibmZJwUq+rqmK\/HyWlbvRjCRLMMdZOEAAE3aZXNrS1YPWOz7EaHkPTH9+8EJNa3RisUkDR4j8dqRgah85zFYGjE7GIjoaEAiiGBC6gywfHoKuYHrjmdZfuWYuSmDUQa1VwWW2wl9Z66j5BpajqwXWyv0NXmARuuQSSasLsFEHWYRJNcNY0+e+LcrvRVVQNQbgcEl0knI1tUAxPgLvL7uOg0Kf381P3ieiDOWiwg9oAgDSl6wZnpxMvPPUv7M73n9Jsamr2+3h5Obv2yEqpUZtHk8no93dMOZIYDHq\/yrfq5jKowR621tXhgFgshl6vh06nQ2VlJUaOHInq6mp89dVXOH78OPLy8nD8+HHMmTMH06dPJ2vF3umj48aNg9PpxHPPPYdZs2bh9OnTHnPijg5kZWXhhRdewKhRo9DU1ISVK1di\/vz5OHr0KPO8gKepv+cIbZZysK\/oN8TjhVAohFAo7BXxdDcRnTBhAiIiIlBb1tync9c0+7\/BBQIBM3xWKpXMnK5Op2VaaBgMemYPj1arYXZNy2QyModMERZl58FaDVxuN840VeNfX28AAKQNGII7UiZhlESDqEY7BG4OGGQkZ9oA58dBN7XBSYyDFoTJIDUHURsKYuCaJFoLd0eX31EMjqpGj1OCVAzF0DjA5fakoUpr\/c4UCkaQINQq4bTbIWkk7JyCTYklx3hSmtSQO3UEhAopP2PIeb7mJpBJIBtsgkAiQVdVA2QWbWBSHWiGvaKhF6mq++RKHXwtU6QKvDi5bE6UHnVj1k8egurQYbjdbpw8me37HMbfo6urC2azye\/Grudm1QsqPcZSplK\/J9ZriiryMAbjmK+zdznhcrohEl8QTiiVStx555244447kJqaimXLlqG2thY\/+9nPcMMNN+CDDz5gni\/Q9NHIyEhkZGT4POcvf\/kLrrvuOpSWliIuLo55boFA0KeJpX1BvyMeoLfAoLW1FceOHYNSqcTEiRP5m6svdjkSmQg1df6JR6fTMXX7JpOR2S1tMBiYN6deb2ASj9FoZBKPyWT0W9D0vB+bzDxNruwIi3JXsHUbSna0MBdHCz0uqia1BvfdeAsmtkpgkYkgYqRQgqkNiTRKCGUSupkzyBEDsoFmOCrpKZ\/CCAUk2h5TXMUiyAaYIAyTw3HeYy4YQYLQEgVHoxViomDvFgvh0kWQg\/eA8z1IZ0ppUjWqwTndvWyGAIDrcngaWUVCyAfHwNnU5hFctHagq7S21\/ZCnny+rtUjBccB0McHn2oThfVhWJyKXlacVgfKTophHjsBJo7DhAnj8eijj6Cysgo7d+7Cjh07sWfPXnKTxRL8sKL+lpYWZq8em6wqmWInlgCooaUWihgpbG2Esq3DjnCVnD9vT3HBrFmzMGXKFHAc1yffSoA9fbTncwQCATM69MJqtSI+Ph4ulwujR4\/Gyy+\/jDFjxvTpeljoNzWe7gW27pLqyspKHD58GDExMRgzZoxvl28fRiKoDeHMtBxVzKNk1kolW7kTFsYOj1Uq9uvUanbPEDWN0Gw2MYUOgUiJlS6sbm7EnvI8LPzvW5i84x282ZmDHD3QqbxQqBUmmQPXhmL1gMv\/QnrhSWLIk4LxU4tHV3ENSTpinQqicHlvOyGnC12Fnh4bZ10LwkYPBDhAlmgCGLb6gjgdnHUtEFEqMWUY5GZt4BRcyvkeJIJ0pHF6uDq6+AjH\/5PEkA8wo\/NMKRwVDbCdKvb0BykkkA2JhXxILARhMk\/dJ99\/3adTJYdMEXxDqMQQHEm5u1yQatgRj6PFjqw9bTjd2IZjx46hvLwcDocDcrkcCQnxWL78Xnz00QfIzz+DNWv+Dw8\/\/BCSknq7AWi1\/nvdKP811ggAh8M\/SbjdbmbNiEprR+rpiM\/r1+Ylnu7ipe6WOQKBoE\/1Htb00e7o7OzEr371Kyxbtoxch4YMGYI1a9Zg06ZN+PTTTyGXyzF58mRyfk9f0G8jHqfTidzcXJSXl2PUqFF+F92+TB9VqNk\/MqPRgKIi\/1Y6VE5TKmXvAm02ooGTIQcN9H6snRngidpYuW+LxYyyMnaakdpZendQDpcTnxzahU8O7QIATElOwS2jJ+C6xkZEgp3Wlw+ORlcJbXIpVIVBHBkeUL4clFw6Tg9XczucRE7f06Nj9HHPFobLIY3VewqoZbWeuTyJBrhL6sjhbWKdCgKh0K+82wsOgDNWAwSyAWKkxLrDW\/fx12MlsDnQdX5onSIlAW5rJxTD4uFs6G3Sajf2wZXa5oI4IrilwlFngyzG\/7ntDZ2oLonCqJumoKOjA\/X19aivr0d+fj7kcjlf94iKioJEIsFNN92A66+fjt\/+dhWKioqxY8cO7NixEwcOfAOx2P\/vubycfQ9FRvpfaFm1JMBDcP5+Oy0t7PtLGkBJ7m0i9UqpvZtujuO+k6qNNX3UC4fDgTvuuANutxvvvvsuea4JEyZgwoQJ\/P9PnjwZqamp+Mtf\/oI\/\/\/nPF3V93dEviUcgEODs2bMAPMOIWKzfF9cCoYIYjkYQASVe6DnyoDsoAumLM0N3UI2s1PvpdDom8ZhMJpJ4WMcO5GWjPUyEXx87jjidEfeMux4TlNEwNrsgsns+nzg5Gp35lXRayawB53CSC3fQ8uykaE8dhyI5ZRjEURGedFU3uNs7L0waFQrgSjbDZeuEQqeCq9Z\/r4ckWge31QYnsQhBLIJ8gMnHoNPvtQchhRZFhUOokPN1HxYUI3oTtFingsToMWntKq6BcCDbHaMnHLUdEMUT3dfd4Gy1w1+3T1etDXU1RhiHDQHgSZXFxcUhLi4OTqcTjY2NqK+vR05ODpxOJzQaDXQ6HXQ6HaRSKZKTB2PQoIH46U8fRHt7Ow4ePIQhQ4YgI2Onj+TabrdDr\/df+Ge1RVD1H1ZKj8oguMX0hth2voes50iEzs5OuFwu0g2FhUDTRx0OB26\/\/XYUFRVh165dZLTjD0KhEOPGjbv2Ih4v67e2tvKsf91115G7\/A5r8MTTybEbTamemu71j56wWtnnpCIeVs0o0OsodQvVkEo1wOr1Oia5REWpyd2g1127tL4Gv\/9yLQBALpXhzutmYFxcEkZX1EFGkI4s0eSRElMml8G6SwdhZCrWRwICAW1bIwBcsRqI8qogAuA6\/zqJMcoz9qHYM+yuZ2Oo31OFySA1RQUkHWe81uNdR2xyxAY14Hb7FVNceEOBx9HaT7rSWd\/KCz\/kg2PQaQze\/qZPUmo\/6rfOynY0NMdCnzTI72vEYjEMBgMMBgM4joPVakV9fT2qqqqQm5uL8PBwnoQiIyOhVqsxe\/YszJx5E1wuF\/Ly8pCRsRM7duzEoUOHYTIZ\/RIPKw3X3t4OrVbbyy2eQmtrK1QqJVpbe\/+Wrc5GAOyoxZtq6zkEzlvP6UvEE8z0US\/p5OfnY\/fu3cw0ZaD3OX78OFJSUvr8Wn\/oN8QDeOo5OTk5UCgUMJvNJOkAfUu1Ufp6SmpJ3YzU8ClqbjtlQNjczFa0UddJuR1QTafUTW4ymZjEIxKJ\/O4UO+1d+ODAVzgyohynTuXghuGpuDU5DUM5JSKb7bxrgnRwNOyF1QF2+B65NClIQPByYldzO1ytRLFWIoJTr+w17dVZ1wJnnSfqESqkUKQkwt3eBTDSPcB5E9YIxYXGVwZkw+OAHJpUJTE6uFs76GsXCSEfFB3Q4keeHIOugirIbwlerdQnKXWPWllHqRUtnQOgG5AQ1MsFAgGUSiWUSiUSExPhcDjQ0NCA+vp6nDhxAhzHQavVQq\/XQ6vVQiaTISUlBcOGDcOjjz6ClpZWHDhwANu2fYUdO3b6GPiyvNwAj3DH32+d2niaTCa\/xNPQVgkRBjNf50219Yx4rFYrBAIBucHsiUDTR51OJ2677TZkZWVh8+bNcLlc\/HM0Gg3fWNtz+uhLL72ECRMmICkpCa2trfjzn\/+M48eP469\/ZXvo9QX9hngcDgcKCgowevRoVFVVkWklL\/ri01ZU4d+VGqAJhNWLI5VKUVvrn8zkcjmTXGQyGdPNWiAQkD1DlMsu1XRKRVGUK4NKxRZWUHUjAPx3sysnC7tysgAAAwwW3DtuBgaqjRhSVA0h1VxJyKV5nFd2XYphaoJwGRxhEogrm+lzDbSg\/chZT3QiFEAab4BIGQZnUxs\/EsITnXDMERGeNzwv4w5AFG5TJBz1LQAhbvD4vOnQmRdg7tKw867ebjciY4NXtPVJSh3WTfxT2AqrYCg0cf5NPYOBRCKByWSCyWQCx3FoaWlBfX09SkpKcOrUKURGRvLRkFKphE6nxbx5czF37i1wOp04eTIbGRk7kJGxA3l5Z5nvwwo2qT69yEj\/v4+yukIkUMTT7lvj8cKb6emLDVeg6aPl5eXYtGkTAGB0j+mtu3fv5l\/Xc\/poc3MzfvrTn6K6uhqRkZEYM2YM9u3bh+uuuy7oa6PQb4hHIpFg6tSpADyLVjB1kL7IqSsb\/f\/AKZIwmYxMIjCbzSgp8X9O1rx2zzH2qASz2czsKFYqI8jmUaoTmeoLoqauSiS0mIFFPGFhYX4jvsLaSqza8gmGDx+GkoIi3DX+BlxvHIT4dhGk7RcWVukAE5xVTUGksTSBTTW7LbbMc0VFwOF2QVzHTlcCfiIrN+cZAnceYq0S0gQTuC6H5z1ZEAkhTwocnUgGmuEoqQGcxLVHyCHRqIKLCrtNfNUnBK+WkkQFT1Li8yMO2s62oFM+CmpCidlXeCXAarUagwYNQmdnJx8NFRcXQyQS8SSk1Wohl8sxblwaUlPH4Omnn0RdXR127dqDjIwd2Llzl08GgeVAX1FRDoFA4LfWy7LhKa7Mx4DIOXD7saUCLoxG8DcSITw8vE\/EE6iBPiEhIagm+57TR99++228\/fbbQV9HX9FviAcA\/wcO1qE6WOKRh0vQVOk\/qjGbTUwi0On0TOKh5NKsee2eY\/7nvwMeBQ2LQEwmM9ra\/Bf2WMVUL6jiKUVmDgf7b0DVjSwWC86d6+0E7EV1dTWsnTa8t3cL3jv\/2JyR12FBUipMMiViims8jasM8Ck4yiEBwaXghEY1HG0dEHewxSfBNoaK1BGw5ZSA67RDIJdANsAMgcTji+Zq9kSkArmnZtVJERPOTx\/NLScJk1PKIVTI6JoVeqsBu8IkCI8Mvi9HGB5c14WrwwGJWoaWnGY4NGlQRbF7SS4F5HI5oqOjER0dDbfbjebmZtTX16OgoADZ2dmIioriiSgsLAzR0dFYtuwO3H77bThx4iTOnj2LvLyzyMjYwZRUO50uZsM3a3PsdDmgNoSjscr\/Rqa7qq17OaG7eei1jn5JPCKRiNTJexFsqi3KFA4wAoKoKDYRKJXs+gdVf6IUZlT+ljIqjYpSM48ZjQYm8RiNRjJFV1XFjpRaW9nOvRQiIti7aZVK5fdH\/OXJb\/HlyW+RkjICjsY23D1mGtIURmibHBB22\/GLLRpwNjudgguSKISxWjhrmnkVnl\/IJJDF6gOLG4bGwpZfyU8o5TodF+ThAgGksXqItUpwbg62k+wpuECQhKlVwu10wc1Q3Pmcq4fCzW7og5T6PJkEA0ddJ1qb2wDzRCiJNO3lgFAohEajgUajweDBg33k2ufOnYNMJoNOp4NGo0F5eTkEAuD225dAKBTihReeQ3l5BXbu3IWMjB3Yt2+fj3ejxRLt956lMgnhGhEaGfui7qm27xrxfF\/Rr4jHi2BHI3QE2UBKzeGhIheKXFg9Ad8F1GwfCpT80mg0MIknUKRE1ZuouhEVrZrNJlIkUVNTg9raOjxf4TGNjAyLwD0TbsAM\/QBoIUNEfQuEl4AokKCHq6zer0u3Fx7pdTg9LA6901i9wHFw2zrhqHTAUdsMUVQEpGYtOKcTncU1PrORgulVkkTr4G7rACixgQCQJPkf5OcyBJ9mc9R3QhQXXHTUUm2HbNA0KPqBrX93ubbL5UJjYyPq6uqQnZ0Nt9sNrVaLuro66HQ6KBQKDBiQiPj45Vi+\/F50dnbi4MFDyMjYiYyMHcyNFCUgEsjZv4HuqTZ\/NZ4fAvol8QSbagu2j4eaw0OBSjV1dbEjMmpRptxdRSL2n+Pi5\/ewFwGj0b\/sFPBEJtSOjvKxotIFlE1HeHh4rx9zS4cV7+zahHcApKaOQZwgDHMTRyHZGYawZt+\/q7cRNRBRcAMMQGFve5nu4BtDS4n+IgQXnUgsGrg77HA2NwMAXE1WftidQCqGbJAFkEkAiQi244wc7XlIE4yeeUL+zEX5ixfCbVLDcdb\/9yCODp4YXB3B9ZzVHa6HIvkGyC6RieSlhEgkgkajQWlpKSIiIpCcnIzm5mZUV1cjLy+vl1zb07x6I2644Xr8\/ve\/RUFBIXbu3ImMjJ34+utv+LpoU1MTZDKp37XA6mgA4P+7CCQu+CGgXxFPX4fBBVvj6XA1M49RxXWqT4fqb6GUMJSlR3Mz+5ydnezrpAiSIiUqlUhFJkKhkGw6pfylWAVZwCO88Dcl0ova2jpklZfj8\/MzhkYnDMKdI6dgjEwHpUMAkdsNN9WICsCVoIOokK6JSGJ0cLcFaAwNMp0nTTDCWdfC7FXi7E50ltRAnmhGZ06JZzhcVASstY0Q1rb5kKMsKRr2khrSnshTQ9KQMm6FpQ8RCRc47VPzTT3CRtxIDlO8mnC5XDh+\/DjcbjfGjh0LsVgMtVqNhIQEply7e\/PqkCHJGDw4CT\/72U9htVqxb98B7NixAxkZOyEWi\/2KjKqbyyBFb6sfwLfG0z3L0d7eHqrxXE0ELy4ILtXWaGUvkhSBsOTSAN25fLHjEKqrL24xp2oxFLFSpER51FksZtKanvreKJKMimL71InF4l7f3fHiczhe7CGqm6ZNw0ipDlONCbC0cBB39ngfkRBOcyTExfTwNk9jaAPcNqLGeN5yJ1A6Tz44Gl3FAYhCIfWo887XgxwVDXBUNEAETwQnjdZ5BAYikUcuTTloRyggjooI2Dukiu+D\/1eA32Hl\/npEjpkJsTh4scKVhHfeDYBeXo9Ab7l2a2sr6uvrUVZWhpycHKhUKp6EVCoVoqKiMG\/eLbjlljlwuVw4ffoMduzwpOS+\/fYIv2FudzSCtcVqbbLC5XKFIp7+hksd8VQ0sIu5LALxyKz9L1IaTRRTDeapqfhfeKljLOdcwPPjoBZzigSo0b6UgEMiYUcmlC8cS0rtBUWSVI0rJiYaxcVs+XFpdTV2nN2Ht+CZMXRb2jTMiR+BQXY5ZB0OONVhkJazU4dAcLY1ggg5JNrIXpY7PRGMjFuoCoNYFYauIv\/3oLu1A52tpZ6hcmfLIUswQqiQwVHd2Gv8BD9GIUDEpxiRAG0feni69+X0RPmeBmjGzSJTxFcTTqcTx44dg0AgwJgxY8iNFuDJuERGRiIyMhIDBw5EV1cXGhoaUFdXx\/e5eElIo9FAJpNh9OhRSEkZgZUrH0VzczN27dqNHTt2IvPwCbC2UQ11zdi\/fz9\/PTabDQqFAlar9QdDPP3GnRroW6qtvrYRLqK\/ofs5Cyv8N45FRamZtRO1Ws3UvxuNRub76fXsvgXKqsJsZneSWyxmZkOtSqUiLXio6Ku5mU0ClA8dVTeyWCzMY4Guh4pyA9l8dJehu9xufPbtHiz\/3zuYkv5H\/MaahX0d5WjSycAxXKiDmRgqioqAWBkWnFfa6RLavkenhEguhb2cjsC8NSTO7kRXQZXHWbu+FRJTFBQjEiBNMEJsVEMgFtLu3+fP1Xq2DFGG4FNi3r6cnijb3QTtdbP7PekIhcKgSMcfZDIZLBYLRo0ahenTpyMlJQUSiQQFBQXYu3cvsrKyUFZWBrvdDqlUCr1ej9tuW4y\/\/e2v+ObbPfjdhrtx22OTMXCUGd2FagpZOMaNGweRSASr1Yo1a9ZgxIgROHnyJBobG4NS9AKBp48Cnj6fVatWwWKxQKFQYMaMGcjJyQl47vXr12PYsGGQyWQYNmwYNm7c2KfvLhD65V0TKNVWV1eHb\/Z+G9S5VDoFbOf8d\/UbjWxLGJ1Oy4yGKIM9qm5CNXKxuqABQKPRMmf0ULUY1vx5L6h0YVsbu75B\/TAo2XcgwQKldqNk6IF8tkpbG\/DLg\/sBABaNDveOuwETI2NhbnFB2OUCBhgCCwTMGnBdjqAW98Dn0sLd2QVnffNFn8tR3QRHdRMk0VoIhEKINCqIdZHsYXfDPVNYOy3BqzFdHc5eUmrOzaF0bwsM42eSrhdXEw6HA8eOHYNYLMaoUaMuinR6oqdc22az8XLtgoICSKVSn2hILBZj2LgEJKfGYsljU9BcZ8WJfUU4tqcQHW1dkMvlkEgkiI+PR3JyMsLDw7FmzRp8+eWX0Ol0mDlzJhYtWoS7776beU2Bpo8CwOuvv4633noLa9asweDBg\/G73\/0OM2fORF5eHlMNe\/DgQSxduhQvv\/wyFi1ahI0bN+L222\/HgQMHMH78+O\/8XQL9lHi8EQ\/HcT6ado7jUFRUhIKCAsRYEgAcDngupVYKMOrVajU1F0fNPEYVyGkJNptcqMU8PJy96FK1GLPZzCSeQAagrJQgQIsgqHSZxWImyYV0\/CWiB7PZRBJP9++gsrEef\/jqv55rFUvwk5sXYbIVGKCUQsYY3iWNN8DZ0OYzNroXghUbxBvgrG8ljVEhFECe3Ldz8YQoEvLD7py1LXDUN3vOdd4lwW0KPpXjqLdBFHdhceJcbpzeVos2TSyclZXQ6XSXbBTypYLD4UBWVhYkEsklIx1\/UCgUiI2NRWxsLC\/XbmhoQG5uLux2u4+7tkKhgCFaihtuj8SM20bC7XbD4XDAbreD4zioVCrcfffd+Oqrr7B48WLMmjULW7duxYkTJ0jiCTR9lOM4rF69Gs899xxuvfVWAMCHH34Io9GITz75BD\/72c\/8nnf16tWYOXMmfv3rXwMAfv3rX2Pv3r1YvXo1Pv3000vy\/fVL4vEu3t07e10uF7Kzs9Hc3Izx48ejKj+45kZxOGHJT9QxKFBpQNYwNg+oEQvU69jKIuozsGxAAA8JsognPDycnFhKSclZ44o976lmHmM1lnpBedGpVOw+JrFYzHRu6HI6cKK+DH\/7xkNE04eOwuIh12GEUA1VY6fH0DROB0dVIykQgFQMeXxgsUEwnnFe4UIgKyDZIAvsZXW9z+VyXxAXiEUIG+6xTJENMHnGIZj6IKVuu3But8ONkq9tMF53PcQNDT7O0d45OpGRkVe1+dHhcCAzMxMymQyjRo26YhGZSCSCXq+HXq9HcnIy2tvbUV9fj5qaGuTl5SEsLIwnIbVaDbfbjZycHIjFYqhUKn49KSgoQFpaGlJTU5Gamtrn6+g5fbSoqAjV1dWYNWsW\/xyZTIbp06fjm2++YRLPwYMH8fjjj\/s8Nnv2bKxevbrP18RCvyKe7jUe4ALx2Gw2ZGVlQSwWY+LEiZDJZDjXRktivXCK2AsWtYum+m2onhoqtdXSwj5GkQvlkEst9FT0FRUVxSzWm81mpuWNx8j04lJ01OA8s5mOhqgITChk72qjoy3MNCUAWK0X7o+9Z05g75kTAIB4vQl3T5mJCZ1SmDiOWQwVhMshZQxm646ezgZ+zxUmg9QYFVC44HWYJkUQcgmkFh06si8Ia4RhMigGBO8o4B1x4O5yoeSwE+bxM3j3aK8U2Ztu8hbxdTod7xwdyF3+UsJutyMrKwtyuRwjR468amlAgUCAiIgIRERE8N+Rd9ZQdnY2XC4XJBIJ3G43UlNTERERAbfbjY8\/\/hjnzp0LOI6aBX\/TR72\/0541aaPRyPSZ9L7O32uo331f0a+IxwuhUAiBQACn04n29nYcO3YMJpMJQ4cO5W+oYBVtVjt7F00pvqg0FBUNUPY0tbXsY5RDdlMT+zNQJEjVySiBgFxO99pUVLAbNGkpNXunT6UM5XI5+b1SmwStVkcSD+t6S+qqsbeuEL8\/8DHCZHLcNf4G3GBKQkKHGFLr+YhPpYAozM+I7R4I6GyA8wo3JVvhxp8rGNPTcDkkOlUvLzt3RxciDH2I8kUCuDqcKD8ugOW6qb0OSyQSmM1mmM0e8YvXObqnV5per7+s\/Sl2ux2ZmZkICwtDSkpKv6o9SSQSGI1GGI1GuN1unDhxAi0tLZDL5fj973+P7du3Y9iwYfjyyy+xadMmzJ49+6Leh5o+2jMK7VnC8IeLeU1f0C+JB\/BEPeXl5SgtLcWQIUMQGxvrczzYWTy1rezdI7WYsXpqxGIxYRwaxuzoj4iIYKaSpFIpeS2UySdleUNFEBQpUY2AOp2OSTyBpNQU0VN1s+joaBQUFDCPUw27lChBoVCQ37s3Iu7o6sQ\/923FP88\/PjtlHOYmj0WyWAFNdRPpgBCM2ECkVUEoEsJeEZzCjYIwMgyicIWPa3Z3aPrQwwORAOXZUphS0wI+VSgUIioqClFRUUhKSuo12lqhUPAkpFarLxk59GfS6Q6O45Cbm4v29nZMmDABcrkc8fHxcLlc+OKLLyASiXDPPfdgzpw5WLZsWZ8IiDV91GTyKGWrq6thNpv5x2tra0llrslk6hXdBHpNX9Gv\/kpeRnW73eA4DmVlZUhLS+tFOgDQHmTzaFmt\/wVLIBAwoxqtVuNjEtgd3t2dP+h0OuZ1eG8Cf7BYLKR0m7Wj98z2ubj5PRQpyeVs4qHSJ99FSk1FQxqNmnlMIBCQfUwAOzKIjo4mlYasaPKr7CN4\/9xBzFr7Ou4+m44tEc2o1cvgFvv+nLxKMgoSs8YzWbS2mXyeIiVIApNJmQaqLpEQWktwYgBHqx0NHSaYRgUmHX\/weqWlpqZixowZSEpKgtPpRHZ2Nvbu3YuTJ0+isrIyaOmwP3R1deHo0aMIDw\/\/XpBOY2Mj0tLSeEHGkSNHsGbNGvz5z39Gc3Mz1q9fD7PZHJTc2XveRx55BBs2bMCuXbt6TR9NTEyEyWRCRkYG\/5jdbsfevXsxadIk5nknTpzo8xoA2L59O\/mavqLfRTxdXV04duwYOI7DsGHDmN3sHUH4tIklQpRU+a9VULNvjEYjMzrR6bQ+M967Q6Fg\/6gpU1GNRoPi4mK\/xwwGPZNAoqMtKCz03xyrVCrJYj1lAEqNSqCEFZSUWq2OJNVwLYQ9jUzG\/l41Gk0ARRs7FUmJLwBaZedt9MutLMVvKi8Ymt49\/gbM0A+ERiIHAszbkcYa4GwKoJbD+bHegYxDjWq4HS44CQLr1IZByOhj6g57QydqyjQwna8VfFf0HG3tdQcoLS3F6dOnoVKpeIFCsIPQurq6kJmZCaVSieHDh\/dr0jl79izq6+t9SGfr1q24\/\/77sWbNGixcuBAAMHXqVH4mWTAINH1UIBBg5cqVeOWVV5CUlISkpCS88sorCAsLw7Jly\/jz9Jw++thjj2HatGl47bXXsGDBAqSnp2PHjh1+03gXi35FPDabDd988w20Wm2vsbA9EUyNR20Ih7ueFZ2wZ98olWySoHLVVJMjtaOn0kEREWzFloeU\/ROPyWRiCh1UKhWZnqJIifqbUD9+s9lMNqxSVkKUgEKv9z+y2AtKlECl9\/wZlnaHv0ippcOKv+7ehE81UWhqasbc0RMwb8BoJDvDENHiu7OXDTTDXtEArpOeA+SRQhezn4MgR2MDwIjAk0C7amyorzPBMCQ54HMvBj3dATo7O\/mUXGFhYa9+GH\/3W2dnJzIzMxEZGYnhw4f32zECHMchPz8fNTU1SEtL43\/nO3bswPLly\/HPf\/4TS5YsuejzB5o+CgDPPPMMbDYbVqxYgaamJowfPx7bt2\/36eHpOX100qRJWLt2LZ5\/\/nm88MILGDhwID777LNL1sMD9DPiUSgUGDZsGAwGA44ePUrWIYKZxRMWxf541IJOqa+oxZX6AVALNvW7EYvZ7yeXswkrKopdrDeZjMxUm1QqJWsxFGFRQgeqhylQNEQp5bRa9rAxT82JTTzU\/RUdbcHZs\/4H7wG0vNtstqCxsQlfHDuIL44dBACkxA3AstFTkSrTI1wkBVdcDQExkgESEeSJpoCy6qDcqs+P2W4T0b5rtop2NLXGQzdoAPm8Swm5XI6YmBjExMTA5XKhqakJ9fX1Pv0w3mhILpfzpKNWqzFs2LB+TToFBQWoqqpCWloav2Hdu3cvli1bhr\/+9a+48847v\/N7BIJAIMCqVauwatUq5nN6Th8FgNtuuw233Xbbd7g6Gv2KeAQCAV\/ACmSbE0zEI1SwowyRiL2gU+9LmW5SRp7UPdLRwU612O0X1xdECQQoyWZMTDQzfScQCEihA0XK1DGLxUJGQ1QERi08gSahUgSrVtNpOIrQ\/PUVZZcW4telnpEHI4cMxQ0xyZhmSER0GyC2+RLCBeNQWlbN7OXpDqEAiuQY2HJKIElLYT6to6QNrY4kaBPjyPe8nOg+utrbD1NXV8f3DIWFhaGrqwtqtRpDhw7tt6QDAIWFhaioqEBaWhqvID1w4ABuv\/12vP3227j33nv79fVfbvQr4gF8p5BSBBBMxNNgvbhiNrVzp2TWlMKsoYGSS7NrKtTiSBEW1aNEpZg0Gg2TeEwmE5kSo8QMVKREWRBFRESQ8nWWCAQIXMOhSFQmY39HcrmcFEpQC4pEIsHpc\/k4mXsGq+ExNF00dgpujk\/BYIcC0i4XBBHSgLJqeXIsugpoQ1OIRZAPMMN2xlOTVMb6V7RZC1rRIRqOqBiz3+NXA937YRITE9Ha2so7EjQ3e0w2vSR1pXuGAqGoqIgXRnlJ5\/Dhw1iyZAleffVVPPDAAz9o0gH6IfF4EcivLZiIp8XG3pVSqi5qoaus9L8LFQgEzHqCUCgkd+30qAT264K1iekJitApCxS9Xse81kBSairio5VyZjLlVV\/Pfk+aYNkO4wBtYRQTE0NGUtSQvJiYaJ9R6y63G+uO7MO6I\/sAALfPvgXX2Y0YrdNC3dgFgbv3FxdMLw9kEshidBfGbwOI8uNK3ZrbAnvEaETq9OxzXWXYbDacOHECRqMRQ4YMAcdxaG5u7tUz5E3JXc2ZNsXFxSgpKcHYsWN5AUpmZiZuvfVWrFq1Cg8\/\/PAPnnSAfkw8gVNtgSMeq5O9sLBSJVSfTkREBDMaMhioEdM6Jin508x7oVKpmLWPQMPYqIZUipSoSIkyQA2U1qJmDVFET6UFKTscINAIbjNJPFTNKVAk1dHBrv9otTof4umJM5Ul+G\/2FgCASa3BvdfdiEnqWFha3BB1ueBO1MN2poTKsnocEPRqdBVc+G7cAkAX57sgt5xqgkM7Dsoodp3saqOjowOZmZm8HY1AIIBAIPAx7PT2DNXV1eHs2bO9LGqulOKtpKQERUVFGDt2LF+8P3HiBObPn49f\/epXWLlyZYh0zqPfEU\/3VBvVkR7M2OuSav87ZYVCztyVms1mplxap9MyiUer1TKJR6VSMYlHr9cxiYdynjabTcxGzkD9PVSaqLuFTE8IBOwfMCWlDhRdUKo1qqYWyA6HSlNS6T0ApDsDZYQqEolIJR3VIwX4\/m2qmxvx+vb\/AQAkIjF+\/KP5mNruMTSVt\/qPyITK8zN+ergpdKoVkEgv\/P0ajzdCYJkEZYDv4Wqio6MDR48ehdFoxODBg5mLtrdnKC4uDk6nk58omp2dDbfbDa1Wy9v4UFHwd0FZWRkKCwuRmprK31s5OTmYN28ennjiCTzzzDMh0umG\/il+h2c3+10iHnm4BDUN\/hcPvZ6dVqBUUgYDu3OX42jJLwtUaouykaGaVaOj2Q2pMpmMrLdQdSpqI0AtxlTzLED3y1ApL+o7AOgaDqUy1Ol0ZJ2Pqg9aLBbyOHVPq1QqZvTncDlxuqUG9\/z3L5i86U08VrUHB6JsaNHKL0ynVsohUEj8OiA4jRei1fqjDRDFTUNYPyad9vZ2HD16FCaTiSSdnhCLxTAajRg+fDimTZuG1NRUhIWFoaSkBPv27cORI0dQVFQEq9UalCosGJSXlyM\/Px9jxozh1Zu5ubmYO3cufv7zn+P5558PkU4P9LuIxwsq1eZ0uGDvOdq4B9SGMICxaaV2u5SHGSWzps5JhfrUYk4p0yIi2NdJ9ffodFrmbj6Qdc\/FNpaqVGwCDTRLhxpIR8vJ6bEPVCRlNpvJ9B8VSen1embE7Hktu7YYHW0J2uboQF42DuRlAwDidEbce90NGBlhRkKDFf4olTvvSr3r03KkzbkZsn42zqA7vKRjsVgwaNCgi160u\/cMDRo0iO8Zqqur43uGvHWhqKioixqhUFFRgbNnz2LMmDF8Wjg\/Px9z587Ffffdh9\/+9rch0vGDfkc83j8SJS4IRtEmj2T\/sakFnSKJYMZx+wO1yFGFUGrnTKW9qIZUk4mdorNYzOR4aVbDLUArAcVi9g\/aZKJn6VCyZauVvUibTGaSeKioj6plAXQaLiyM\/d0D9HdI9ToBbMIrra\/BJ7mH8LvCIsilMtx53QzMtCQjsUPCG5pKLeHY+Pdi7N3QhsmL+i\/pWK1WZGZmIjo6GgMHDryki7a\/nqG6ujqcOXMGdrsdWq2Wrw0FM2eoqqoKeXl5GD16NO+wUlRUhLlz52LJkiX4wx\/+0G8dFa42+h3xeEFFPMEo2jgpO0VDpcXIuhIh3W1tpcYhsBdIavdMRR8UmVEpBIqUNBotk3iMRuNF+8JRBErN0gkctbDPS1kUCQQCkjyoxSJQhEbdW4FqXYEkwdQ1a7UeGXynvQsfHPgKH+ArAMCNw1NxS+JIOA80Y3t6LYZMMqGwsBB6vT5oe5orBS\/pxMTEYMCAAZf12rr3DHEcB6vVivr6elRWViI3NxcRERF8NKRSqXpdS3V1Nc6cOYNRo0bx829KS0tx8803Y+7cuXj77bdDpEOg3xIPFfEUnC0O+Hqbu5l5jFq0qXoD1YtDO12zz0nJpak5PFTvD93Iyl4YKVIyGtmqvUBSakohRqU3zGY6aqHOS5Ed5dMHeOS77NfSEVprKzvy8zoasEDdlzqdjkz\/sfzsduZkYWdOFpaNfBEAYIrVoq2tDcXFxZBIJPwAs6ioqKu6ULa1tSEzMxOxsbEYOHDgFX1v74whpVKJxMRE2O123sbHayfjddb2egPm5ORg1KhRvE1WZWUlbrnlFsycORPvvPNOiHQCoN8RT\/dhcD0jHrfbjTNnzqDgrP\/6RXc0tl+cMzNroROJRKTMmpW68djB+I9qKLm0VCol00yUIzO1QFGqNUqj6+1J8IdAUmqqyE9NM6XqZoFGGlCLuF6vJ4mH6sMJtKBQmwwqugPoviyLha47UdJxkUiMxirPZiRuoAmjRo3ySTXl5OTA6XTy6i+dTnfZ1F\/+4CWduLg4DBhw5ex6WJBKpbBYLLBYLHC73XzPUH5+Pmw2GziOQ3R0NP+dV1dX45ZbbsHkyZPx3nvvXbZx29cS+h3xeCESiXx+THa7HcePH4fD4UBi7CAAJ8jXVzYUM4+xFhalUsnscTEY9EwZstFoZNY4jEYjk3gozzSLxcJ0rKZ2vyKRKMD8HsoFgE1K1IJLSakDpaZqatgLtUTCFnNER0eTZEelTCUS9m0vEolQUcEmdSr9o1QqSVVgIINVajPR3dTRH6joLyl2GJxNnk2cxqTkr8WbahoyZAisVitqa2tRVlaG06dPIzIykieh8PDwy5b2am1tRWZmJhISEnrZ+vcHCIVCvmcoKioKJ06cgMVigc1mw\/Tp0yEQCCCTyRAbG4t\/\/OMfIdIJEv02HvTKqTmOQ1tbGw4ePAiJRILx48fD0RVYBllUedbv41FRUcxFyWxmy34pEQA1L4ZqgKSOefPG\/kANZFKr1czamEQiIXfk1E6fiiC+i5SaStFRUmqK7AC6iE+dNzraQkYPVB0mOpqeR0SRYUxM9HeaTUORVoLxgtN0lKE3gXlTTQMHDsT48eMxZcqU82nOJhw+fBhff\/018vLy0NjYSDYY9xUtLS3IzMxEYmJivySd7mhoaEB2djZSUlIwfPhwjB07Flu3bkVcnMfb7tSpU7BYLFi2bBlyc3Ov8tX2f\/Q74umeagM8YeyhQ4dgsVgwevRoiMXigNNHVRoF2tr9Rxl6Pbv3g1IVUb041MJL7dqpdAZVb6F2vxRhRUdbmAuHWCwmnRComhKl9qOuldoEBHpPSnVkNBpJHztqVxoVoIufit6ojQRAp0AD9SRRdTsq4gYAXcSFcQjeiIeCV\/01ZswYzJgxA4MHD4bL5fIZ4lZVVUXW0QKhpaUFWVlZGDBgABISEi76PFcCjY2NOHHiBIYOHcpv+pqamnDfffchKioKOTk5qKqqwtatWzFw4EByPQjBg35HPF54F4dTp04hJSUFSUlJPCkFUrUp9ew\/PLUQUkRA7XQpFRm1Q6SO0aMS2AsnRayUjNxsNpMEcrFSaomEfa0xMfR8GErFRUUlRqOBPC+VDnO5qFqJiLwmapPhGeXOjkoC+YtRbgiBRhLLuAsbKo2Blor3hEgkgsFgwLBhw3waMouLi7F3714cPXoUJSUlJDH2RHNzM7KysjBw4EDEx8f36XquNJqamnD8+HEMGTKEHx\/d2tqKRYsWwWAw4H\/\/+x+kUilEIhEmTJiAl19++ZJEb3\/7298wcuRIqFQqqFQqTJw4EV9++SV\/nOM4rFq1ChaLBQqFAjNmzOg1ubSrqwu\/+MUv+HTp\/PnzUV5e3vOtrgr6JfG4XC6cOnUKADBy5Mhe6ZpAY68lEWwiuFi1CT0Ogb27phZlqqZC\/ZCpRZf6fJTEmNpxGwwG8jPSRX52+ojaBOh0OvL7oQQigTYXVA2MEjRYLGZyl0\/dI7GxMeTfjdqEeNyw2dccqOfE2eYhf6lcjAg13WdEwduQOWjQIEycOBGTJ08+P623Ad988w2++eYb5Ofno6mpibkZa2pqwrFjxzBo0CA+TdVf0dzcjGPHjiE5OZkf6261WnHrrbdCqVRi48aNQfX7XAxiYmLwhz\/8AUePHsXRo0dxww03YMGCBTy5vP7663jrrbfwzjvv4MiRIzCZTJg5c6ZPjXrlypXYuHEj1q5diwMHDsBqtWLu3LkX3Y94KdHviKezsxPffvstbDYbxGKx351goLHXLtGlJwKqF4caMU2lV6hCP9XgSF0L7YRAKZXYZE3tqL+LlJoiSZOJ3sVTtSqAHS7GxESTizxloBrIZ42SSgdKpVFEGhMTQ0bV7e3sexoAmqo9v4eoPkY7gaBQKBAbG4vU1FTMmDEDAwcORFdXF06cOIG9e\/fi1KlTqKmp4QnXSzpJSUmIjY29pNdyqdHS0sJfa3S0JzJvb2\/HbbfdBolEgvT0dDId\/l0xb9483HzzzRg8eDAGDx6M3\/\/+94iIiMChQ4fAcRxWr16N5557DrfeeitGjBiBDz\/8EB0dHfjkk0\/463\/\/\/ffx5ptv4qabbsKYMWPw73\/\/G9nZ2dixY8dlu+5g0e+Ih+M4qNVqXHfddcxenkDOBVYHe9Gm1Dl0g6T\/hU4gEDB3o55ivv9zelyw2eekduV0rxH7s1NRFPW9UPY83p0gC1RqiooQKOmxSqUiPyfVh0PVwABa+q3X0yk8Sg0XaGdMRTSB3LApUrLo4\/iNmsYYuL5zsfB6pI0YMQLTp0\/H6NGjIZPJUFBQgD179uDQoUO8kCAmJuayXcelgLf+NHDgQJ4gbTYb7rjjDrhcLnzxxRdke8Glhsvlwtq1a9He3o6JEyeiqKgI1dXVmDVrFv8cmUyG6dOn45tvvgHgGcXgcDh8nmOxWDBixAj+OVcT\/Y54wsLCMHToUAiFQqZ7QYeVjnjq29iLHWsHLhAImBGISqViRhkmk4mZfrFYzMzdNXXMZDIxFU4qlZIsulMLGN1xzzxEpogodVmgdBkV1QmF7NqQxUIPLKOiTIoAwsLCyO+IglarJQmPSm+o1ZEkkQbqqaFeOyhmOP\/fUZeReLpDIBBArVYjKSkJkyZNwrBhw2C1WqFQKFBQUICDBw\/i3LlzaGlpuWRGnZcKbW1tvOjBmwrs6urCXXfdhba2NmzZsiWgs\/mlQnZ2NiIiIiCTyfDzn\/8cGzduxLBhw\/iNZ89MhNFo5I9VV1dDKpXyVj7+nnM10e+IpztYEU8gVVtZbaHfxynLeo1Gw1xgqbQPVcyndtfejue+npNSThmNRmaqzTO\/h4qU2AsuRR6UgieQ99jFRkORkWrmMU8fE\/u8FAEEioba2tgprUBkSFkqBYoaqbpSeHg4Gamb1BeK9xrjldule9HQ0IDc3FwMGzYMkydPxvTp05GYmAibzYasrCzs27cPOTk5qK2tveq1B28ja0JCAi96sNvtuPfee1FbW4tt27YFVC5eSiQnJ+P48eM4dOgQHnroIdx33304ffo0f7xnloLjuID9VsE850qg3xFP9y+FFfFQs3iEIgFKqvzP4TGbTcybm0rtUOMJKDdrSqlEHaPCeKpwbjCwU0FmMzsyCzRUjuovsdvZfwuFgh1dmM1msh5FRUNUA2igPhyqhvNdxjcEIllKTRTotVTtKJAyMEJ0YYPjr4fncqK+vp6XIXvJVSKRwGQyISUlBdOnT0dKSgrEYjHOnj2LPXv24NixYygvLyfvjcsBr09cXFwcr0pzOBz4yU9+gpKSEmzfvj3gxuRSQyqVYtCgQUhLS8Orr76KUaNG4U9\/+hN\/n\/a8H2tra\/koyJs16Zkd6f6cq4l+RzyAby+P34iHULWpDeFwOP0vsFSUYTSyFx2JhJ3qoHpCqJ0FdexiXQKoWoyOGG1MkRJA1z0ogQS1oBoM9KhlKhpyONjEEqiIT6vDaBk+JcOmUkYqlZI0gw3U7V5RwSYttTpA\/cd24TMF08NzqVBXV4eTJ09i2LBhvAy5J7yuAMnJyZg8eTImTJiAqKgoVFVV4cCBAzh06BAKCgrQ2tp6WVNy7e3tPuakgCe9\/NOf\/hS5ubnIyMgIeF9dCXAch66uLiQmJsJkMiEjI4M\/ZrfbsXfvXkyaNAkAMHbsWEgkEp\/nVFVV4dSpU\/xzrib6rWUOwB4GR\/XxiMLY4ToVnVC9MVRNhYoGqF0bdYw6p9vN\/gFSC1hEBDvC0un0zIVer9eTCy6VhqM+BxXVmc1mkiCam9l\/D4WC\/TkDiRIoQrNYLMjLy2Mep76HmJgYnD59hnk8UBRGRVpU9AcA1voLG4rLKS7oDi\/pjBgxIujdtUAgQHh4OMLDw5GQkOBj1FlSUgKxWMxb+Gg0mktmTeMdrW2xWHhzUpfLhYcffhjHjh3Dnj17rkqE8Oyzz2LOnDmIjY1FW1sb1q5diz179mDbtm0QCARYuXIlXnnlFSQlJSEpKQmvvPIKwsLCsGzZMgCeTd\/999+PJ598ElqtFhqNBk899RRSUlJw0003XfHP0xP9mnhYRqE2K3tBc4nYyi0qkqB2\/NRNThuOshdI6hjL2w2g5eC05Qr7s1OkZDQamMQTSEpNRS1UxOfxxWMTDxWBUe7bFov5ov9egXL7VJ2Fqkl5Xks3h1LEQ9XClOGRaK65QIhXosZTW1uL7OzsPpGOP\/Q06vQamubm5vKzc7xEdLFOATabDZmZmTAajfzAObfbjcceewzffPMNdu\/eHbD+drlQU1ODe+65B1VVVYiMjMTIkSOxbds2zJw5EwDwzDPPwGazYcWKFWhqasL48eOxfft2n1T822+\/DbFYjNtvvx02mw033ngj1qxZ0y\/85Po18fgTF9isdjLslqnYCxpVN6B2nZQ1PyWhpRZP6hi10FDRB0VYXV1UzpxNSlRNKZArNdXDQ418oCLTQOMBqMgjEAFQogRq+qxCoSDHW4hE7O9XJBIFUNLRKSYqghscOwJct9vsckc8NTU1vNMIVW\/sK4RCIbRaLbRaLZKTk\/nZORUVFThz5gxUKhVPQsHOGLLZbDh69Cj0ej0\/WtvtduOpp57Crl27sHv37qva4Pr++++TxwUCAVatWoVVq1YxnyOXy\/GXv\/wFf\/nLXy7x1X139EviEQgE4DgOIpGo144uUA9Paxd7UaLkrqxdp1AoZBIB5WZNLZBU+kqtVjMXbJlMRi5wF9vf09l5sb5mauaxQCm6yko2YQdqLKWIh4oehEL2ghToeqnIIiYmGvn5bAIO9NqSklLmcSoSFwqF5MYnRjcI7eeJ57u6FgSCl3RGjhxJ+hp+V\/ScndPV1eV3nDU1Y6izsxOZmZnQ6XRITk7mSefXv\/41tmzZgt27d\/d709LvO\/qluMALfxFPINeCmmb2vHtWRED1b5hMpouSWVOFfqqwTtnaWCxmZrSn0USRaSQqwqIiwYuddEp9N0KhkHTCpjYIVAQWaEYPFbkGckqgXhtI7UQJMAIVrSnit1gs5N9HLb\/wmS61a0F3VFdXIycn57KTjj\/IZDJER0dj9OjRmDFjBoYMGQKO45CTk4M9e\/bgxIkTqKys5NPQXV1dyMzMRFRUFIYMGcKTzqpVq7Bu3Trs2LEDgwYNuqKf4YeIfk08\/mo8HVY64imtKfD7uFLJbrykZLQ6HVsJR+X9KQWdUskmF6o57WJHJVD9PYFcEqj0HU0QlHjg4lV0gRZiigwpQUegeTeUsoxq8Aw03yeQ7Qo1DDCQhY\/YeWHzc7mk1FVVVTh9+vRVIZ2eEIlE0Ov1GDp0KKZOnYq0tDRERESgtLQU+\/btw+HDh3Hw4EGEh4dj6NChfGbl1Vdfxccff4wdO3YgOTk58BuF8J3Rb1NtgH85dWsTWzwgU4hRWe0\/bWE0GplpMY0mCoX+e07JyIUqalILCtX7QkmQqa57lYr9OmpsdaDiNRUpUaCcB\/R6topOKBRedMpLq41Cgf99BwB6EafSe0ajkYykKBKNjragtJQdhVNNkxEREWTqUK\/X49w59gfubLpAwpdDSl1ZWYnc3FyfEdD9BQKBgHd2HjhwINra2nDs2DEIhUI0NDRg+fLlkMvlCA8Px7p167Br1y4MHz488IlDuCTo1xFPTzl1R0cHTmadYj5fbWSrs6gmUIpAqAWUMpt0OtkLCrXY0N3b7BoFJaulivXULlWn05EquoslCOp6AjWAUuRBjX3wOGyzNy1U9BY4DcdWwwWKAihHg0CD5agaulAoQkPFhb\/dpU61VVRUIDc3F6NHj+53pNMTDocDp06dglqtxpQpUzBjxgzMnTsXpaWl+PDDD+FwOPDaa69h7dq1pCAmhEuHfk083VNtjY2NOHjwIEQCYuga8du6WPtySqJMLWRtbex6C7VDphYxm40alcAmLCo9RaXEqLk2gaTU1OegVEeBG0DZ0RlFWIHIg6rDBDKEpGTjgVJplJKup89WT1Au5QMsg+F0XNgYOdBxyWxpysvLkZeXh9GjR1\/xbv6+wuFwIDMzEwqFAiNGjIBQKDxfY6zHyZMnsXv3bmRkZGDAgAF49dVX8d\/\/\/vdqX\/IPAv2SeLwLk1dcUF5ejszMTCQlJSEynP1jbOu6uM5yStpLFewppRi1KNMu2OwdPfV+1HVS0QeVYqJqUaxudC+oBZUi7LAwdjRkNpvJjQBFdhR5BPJ3o2AwGMiokIqKo6LU5DVTwwcBuhY2MNo3bRRljEB+fr6PLQ11X7BQVlaGs2fPYsyYMd8L0snKyoJMJsPIkSMhFArBcRzef\/99vPzyy9i8eTMmTpyI8ePH43e\/+x1OnDiBBx988JK896uvvopx48ZBqVTCYDBg4cKFvRqQly9fDoFA4PNvwoQJPs\/pz8Pcvgv6JfF4IRQKYbfbkZeXh9TUVMTGxsLawk6JQM6OJKhUCtUJz5IvU\/5mCoWCmYYKDw9jEohcLmeG+oH81Cgyo9IH1OJDTQ+lrPoDjZ6m5NBU38p3sdmhCDYmJpqMlqjPEiiSolJplE0TQP9tNJookrS6j7sGgGEjB\/nY0lRWVmL\/\/v349ttvUVRUBKvVGtCWpqysDOfOnUNqamrAaOxqw+l04tixY5BIJBg1ahRPOh9\/\/DGee+45pKenY8qUKb1ed6kMNPfu3YuHH34Yhw4dQkZGBpxOJ2bNmtWrz+xHP\/oRqqqq+H9bt271Od6fh7l9F\/RLcQHguXFyc3PBcRzGjx+P8PBwuFwuso+nw8VWYFFGi6z0jUqlYi7aJpOJuUs2m80oZKgV1OootLf73\/FbLBbm67RaDTMdFBERQTYhUjtjavGyWi\/OlZoSM3iiC\/b1sL4bgBZ6REZGkn5oVGOpVqsje2nq6thRaKA0HLVZoBpLATrCtVgs5D0tRySAC5GYV1zQ3ZamZw+MTCaDXq+HwWBAZGSkD1mXlpaioKAAY8aMuaIOzRcDl8uFY8eOQSQS+ZDOp59+iqeeegqff\/45ZsyYcVmvYdu2bT7\/\/8EHH8BgMCAzMxPTpk3jH5fJZExVrXeY28cff8zb3Pz73\/9GbGwsduzYgdmzZ1++D3CZ0S8jHpvNxk\/aAzx\/HJfLBbfbjYRhRkQxrD+qGkqY52Qpt3Q6HTMaomoclMya2g1STZdUFEFZd1CRgFarJRddKsVEiQcCqbFYCCQeqK9nvyclrgg0LI2SNIeFseswMpmMJEoqkvJ4w7E3BFTdUSAQkNdMuakDgLPNd0\/pT07dswdm8ODBcDqdOHHiBPbt28dPEC0qKkJBQQFSU1O\/N6QjEAgwevRovr65fv16rFy5Ev\/973+vileZd1PUMz25Z88eGAwGDB48GA8++KCPeKa\/D3P7Lui3xKPRaDBmzBj+\/zmOg1AoxI\/uScO7Xz+Eu343DhMWDIAu+kIdoqjqrN\/z6fV6Zg8HRS6UEo5aXKlxANQPl1qIKCWYRMK2c6FSQR6lF5WCvDjPOGoxpsQDEomEXOSpdCn1\/YhEIjI6oOowXq8wFqh6VWBVGptIo6Pp5lBKbQkAzdUX7nepXAxlFC1yEIlEMBgMGD58OD9BVCqV4syZMzh37hzCw8PR1tZ2UXWhKwWXy4Xjx4+D4zgf0klPT8dDDz2ETz75BDfffPMVvy6O4\/DEE09gypQpGDFiBP\/4nDlz8J\/\/\/Ae7du3Cm2++iSNHjuCGG27gv+P+Psztu6Bfptq0Wi2USiWcTieioqJw8OBBaLVaGAwGyGQyjzXHpAG4bfmPIBQKkX+8Aoe3n0HRvz9HS1vv9ITBwDa6pBoHZTI2EVCLK5Urv9hjgRbzvDz\/pBsRwf58RqOBKU\/WaKLIxZqqKVGLE+UeHRMTjaKiYuZxqjZE9T8F6qWhfsQ6nRZFRUXM45QaLlB0QEWUBoMB5eXsiIciPJM2Bu0tF4hHre+blNo7QdSbhh05ciRsNhvft+P1RtPr9QgPD+8Xg8XcbjdOnDgBl8uF1NRUXpixZcsWPPDAA\/jwww8xf\/78q3JtjzzyCE6ePIkDBw74PL506VL+v0eMGIG0tDTEx8djy5YtuPXWW5nn6y\/D3L4L+iXx1NXVQS6XQygUYuzYsbDZbHzIb7PZEBYWhoiICDgcDshkMiSNjkbS6Gjc\/cwxZGefwuefpyM9fRPOnMkFQEcnlHKI2ulS6ipqZ06lvajo42Kta9rb2ZEJ9b2YTCYm8QSSUlO1CUo8oNVqmcQjFovJaIiSqOt0OpJ4KFkyFYV6IjR2qpKSsYvF4gAybDZBA7RqMiluBNCtVHgx5qCFhYUoLS3F2LFj+c1ZX+tCVwpe0nE4HD6kk5GRgR\/\/+Mf417\/+hdtuu+2KXxcA\/OIXv8CmTZuwb98+xMTEkM81m82Ij49Hfr5nkGX3YW7do57a2tp+MVPnu6Bfptoef\/xxJCUl4dFHH8XOnTshEAjwpz\/9Cbt378bw4cMRExPDq3KOHj2K0tJSPpWWkjICL7zwHI4ePYysrCN48cXnERcXy3wvqv+F2lVShWwqr095lFGvo5RpVNqLWjiphZFyQggkpaYK6pR4gLKACVQbokQS1CIeSJhB\/Z1jY2PIWlcgc1Dq81DjHaRSKUl4psh4n\/9n1URZKCgo6EU6XgRbF6I+26WE2+1GdnY2urq6kJqayqed9+zZg7vuugvvvvsu7rjjjityLd3BcRweeeQRbNiwAbt27QrKdLShoQFlZWX876u\/D3P7LuiXEc9HH32EPXv2YN26dfjpT38Kp9MJkUiEZ599FhqNBnK5HPHx8ejs7ERdXR1qampw9uxZqFQqGAwGGI1GKBQKJCcPxjPPPA0A+M1vnkN6+hf4\/PN0ZGZm8VGC1cqWu1LmmSyZtcf7zP+iIBKJmGmdQHJpegooe\/dLkRL1+ajBeBoN25om0OAySiFGRW5arZZUnlHRA8BexKOjLcw0JUBvPrRaDQoL2Wk4apOh0+lQXMwWw1Ay7JiYGKb6EQAixFo04UKqLdiIh+M4FBQUoKKigvc5o+CtCxkMBnAch5aWFtTV1eHcuXM4deoUNBoNn5K72Jk5FNxuN06dOoWOjg5+kQaAAwcOYOnSpVi9ejXuueeeq5KWevjhh\/HJJ58gPT0dSqWS\/01ERkZCoVDAarVi1apVWLx4McxmM4qLi\/Hss89Cp9Nh0aJF\/HP78zC374J+STxisRg33XQThg0bhqNHj8LhcGDChAn44x\/\/iN\/85jeYM2cOFi5ciJtuugmxsbGIjY2F3W5HbW0tamtrce7cOURERMBoNMJgMCA8PBwDBgzA448\/hscffwzl5eVIT\/8C6embmAuHQCAgZdasnXBUVBRzQTebTcy8vdlsYi6e1IiFQKMSqE5\/KvqgUlfUImIw6JnEI5VKyetpa2OnIcPCqGF1tJdaWxubfAPVYSjyoNpehEIh2egXyEmjqopNpDqdhiQeQacc8CGewBFPd9IZO3ZsQNLp9Z7n60JqtRpJSUlob29HXV0dqqqqkJubyzdSXqq6kNeB2mq1Ii0tjTdqPXToEJYsWYI\/\/OEPuP\/++69aLeRvf\/sbAPSSbX\/wwQdYvnw5RCIRsrOz8dFHH6G5uRlmsxnXX389Pvvss+\/NMLfvgn5JPIDnxrrlllswevRo\/P3vf4dMJoPb7cahQ4ewfv16PPvss3jggQcwe\/ZsLFy4ELNnz0ZMTAxiYmLgcDj4SKigoADh4eF8JBQeHo6YmBg8\/PBDePjhh1BdXYPNmzdj48Z0HDjwNZ8iMJlMzAjEZDIynQJ0Oh2TeHQ6HZN4dDodk3iMRgOTeCwWM7MuEhnJJkiA9j27WCk1ZcETHW0hxQMUeVDO0gYDu28o0HkpZ2mPs0Az8zhV5zMajWQES32HanUkWSejPOkAwFrnu2kIFPFwHIdz586hsrISaWlppEIwWPQcY11XV9erLqTX66FWq\/tcF+I4DqdPn0Zra6sP6WRmZuLWW2\/FSy+9hBUrVlzVAnygZlyFQoGvvvoq4Hn68zC374J+SzwCgQCbNm1CTEwMfwMJhUJMmjQJkyZNwhtvvIGsrCysW7cOL7\/8Mn72s5\/hpptuwoIFC3DzzTfDbDbDYvHUBerq6lBbW4vi4mIoFAo+PaBUKmEyGfHAA\/fjgQfuR0NDIzZv3oL09E38bs0f6HEIbBsR6gdNHaOUd1FRGuZibjabmYVzlUpJpnOo4jWVvhMI2IsIJR5QKBQkEVJpQYrswsLCSBsiijwsFgtJPFR9MNDiTQkaLBYLKWWnotFwRQSaanwjR4p4OI5Dfn4+qqurLxnp9IRUKkV0dDSio6PhcrnQ0NCAuro6nDx5EoBn06XX66HVagPaBHEchzNnzqCpqQlpaWl89H3ixAksWLAAzz77LB577LHvverrWke\/JR4AiI1liwKEQiHS0tKQlpaGV155BdnZ2Vi3bh3eeustrFixAjfeeCPmz5+PuXPnwmQywWw2w+Vyob6+HjU1NTh69CikUikfCalUKmi1Gtx33z2477570Nraiq1bt+Hzz9OxY8dOH6UatUumaiPUj4Ha9VF9OlTzIyUxNpstaG3N83ss0E6fSpdRkQmVXrJYLCggZhpQaUHqu4uOtpDTQanPSQksALr5NtCsHOq1gUZ0U9ecHJ\/iM+4aAKIYxMNxHM6ePYuamhqkpaWR6cxLhe9SF+I4Drm5uWhsbERaWhp\/P506dQrz5s3DE088gaeffjpEOt8D9GviCRZCoRCjRo3CqFGj8Nvf\/hZnzpzBunXr8N577+HRRx\/FtGnTsHDhQsybN48nGu\/Oq7a2FllZWRCLxfwPQq1WQ6VS4Y47bscdd9yO9vZ2fPXVdqSnb8K2bdtJmXVXF3sHTamcqNdRO1wqpKcIi3JQMJlMzMVNLpeT\/TRUZEIptbRaDZN45HIZGQ1R8vVAnmKUOwBlaROoz4ka6BcVRfusBbLSoWpHMdpB6OhBPP4iHo7jkJeXh7q6uitGOj3Rl7pQWFgY8vPzUV9f70M6Z86cwbx58\/DQQw\/hueeeC5HO9wTXBPF0h0AgwLBhw\/Cb3\/wGL7zwAs6dO4d169bho48+wuOPP45JkyZh4cKFmD9\/PkwmEwwGA9xuNxobG1FTU4MTJ05AIBDwBKVWqxEeHo5bb12EW29dhM7OTmRk7IRSGYGvvz7YK+1EuURTkmjqGHVOqveHkrRSKQ26GTOaSRAemxf2Tv5ivd+io2PIaIgiQuq8er2erGVR0ZvZTHulUYKGyEgVSTzU+wYSUkQpTOjAhRSgRCbq5VrgjRy8i3ig0Q1XClRdyOu3NnToUP7ezc\/Px9y5c7F8+XK89NJLIdL5HqFf9vFcKggEAiQlJeHXv\/41Dh8+jPz8fMyfPx\/r1q1DcnIyZs2ahXfeeQcVFRXQarUYPnw4pk2bxttaZGdnY9++fTh9+jTq6+vhdrvBcRy02ig8\/\/yzKC4+h40b12P58nt57zZKYUZJoqlCNHXOhgb2osuauArQURRFSpQnmlarJaM6KmqhSJJ6z0Cmo3Y7+3OazbQ7NBW9BfJKoyTlgVypKTIM5IYtdvrWu3p6tHlrJA0NDf2KdHrCWxcaNWoU33ip1WrxzTffIC4uDgsWLMC8efOwaNEivPrqq1elcTWEi8cP5q8lEAiQkJCAJ598EgcOHEBxcTGWLl2KLVu2YMSIEbj++uuxevVqlJSUQKPRYOjQoZg2bRpGjRoFkUiE06dPY8+ePfjmm28gl8uRkpIChUKBWbNuwl\/\/+hcUFuZj69YvsHTpEr9us5RZp0ajYRbslUolcwH09P6wFzhq8aPUbhcrpaa8yeRyOUmglNCBek+LxUJeb0tLM\/MYJRn2yKGpNBw1XE9Jkgc1LVYkEpHvG0jm3Nnsm3rtPnnUqwbz1kj6K+l0R2FhIaqrq3Hddddh1KhRWLBgAVavXo3GxkZYrVb83\/\/9H+bOnYv33nuPFL2E0L\/wgyGe7hAIBIiJicGjjz6KPXv2oKysDD\/+8Y+xa9cujB49GlOmTMHrr7+O\/Px8qNVqJCcno7m5GV1dXVCpVOjo6MD+\/ftx8uRJ1NTUwOVyQSQSYfr0aXjrrT8iP\/8Mduz4Cg8\/vIIXSBgMbDNSahfLskwHPDt21qIbFsae+wPQERaV2qPqW9SiGBWlJutR1dUXJz3W6wNNLL04Z2mLhR46R9WVApmDBnrtxc5aEQqFaKz0FWF4xyF4Sae5udmnRtKfUVhYiLKyMowdO5ZX29XW1uLll19GamoqP0X0+uuvx9q1awNKmEPoP\/hBEk93CAQCmEwmPPTQQ8jIyEBVVRUeeeQRHD58GOPHj8eECRNw991348c\/\/jGcTifGjRuHyZMn8wXZc+fOYc+ePThx4gSqqqrgdDohFAoxceIEvP76q8jNPYV9+3bhzjuXYuDAAX6vgZr0SYkA9Hr2OATKWVutjiTlvFTqikrfUWMLoqOjmceUSuVFT1el7HA0Gg35Oan6mF7P3igA9HcU2ByUnR6lNigAnf4bGDMEji7flKXGEME3WzY3N2Ps2LHfC9IpLi7mbXu8G5rq6mrcfPPNmDp1Kv7+979DKBRi8ODBePrpp7F7926y7aAvCGZ6KMdxWLVqFSwWCxQKBWbMmIGcnByf51yr00MvBX7wxNMdAoEAOp0O999\/P7Zu3YrKykrExMRg69atsFgs+M1vfoNVq1bh5MmTiIiIwKBBgzBp0iSMHz8eERERKC4u5kcLV1ZW8tHI2LFj8eSTj+PkyWM4ePAAfvWrZzB06BD+faVStvqMkm5TSiSKlEwmttdaoKbTi23ypBa7yEg28QJ0ypBSygWq4VCihPBw9ncrFAovOpUWyFg0EClQ6cpE05Bej0UZI3Dq1Cm+2fL7QDolJSUoKipCamoqTya1tbWYO3cuxo4di\/fff\/+ydu4HMz309ddfx1tvvYV33nkHR44cgclkwsyZM302Ztfq9NBLgWtO1Xap0NXVhZ\/97GcoKCjAqVOnYDAYsHnzZmzYsAEzZ86EwWDAggULsHDhQowdOxYDBw7EwIED0d7ejtraWpSWluL06dPQaDS8TFsqlWLkyBSMHJmCF154Dnl5Z\/H55+k4deoU8zqo1BaVKqJ2f9RCbzZbmFFCYFdqtr0M9TmioqKYdQ3PMDX2Lp9SylGSZo\/bNZsAqOv12AJRYyHYKbpAox+oplSlUkmq4aIUZvT8C3Q4WtDWJsbYsWMvi1\/apUZZWRkKCwuRmprK\/\/0aGhowf\/58DB06FB999FHAJtPvikDTQzmOw+rVq\/Hcc8\/x4ws+\/PBDGI1GfPLJJ\/jZz352TU8PvRQIRTwMSCQSDB8+HAcPHsSgQYOgUqmwbNkyrFu3DjU1NXj99ddRXV2NefPmYfjw4fjlL3\/JCw8SExMxYcIETJ48GRqNBpWVldi3bx+OHj2KsrIyPjJITh6MX\/7yaXz88YfIzj6G3\/3utxg3Ls1HFkotrFSE4XazFzAqiqJJiR0pCYVCciGnUnSUfDvQZFFKKUftigO5XVPjKwLVcCgC1mrZk2sBWgwR6H2d1t6fVxIGnw7\/\/ozy8nKcO3cOY8aM4e+JpqYmLFiwAAkJCfj000\/J3rTLhZ7TQ4uKilBdXe0zGVQmk2H69On8ZNBreXropUCIeBgQiUR46aWX\/C4U4eHhuO222\/Dpp5+ipqYGf\/7zn9HS0oLbb78dycnJeOKJJ7Bv3z5IJBIkJCTguuuuw5QpU2AwGFBdXY0DBw7gyJEjKCkp4QvNXhPTPXt2Ii8vB2+88RomT55EyqWpPhKKsCiJMfXDpkjAbDaRxXgqRUcRAEVKcrn8olN\/1CRUgE5pUXWlQL1MgVJdFHkHqh1FiHrfq\/roKDQ3N\/f79E5FRQXOnj2L0aNH85+zpaUFixYtgtFoxP\/+9z9yw3S54G96qDf1azT6ioK6Twa9lqeHXgqEUm3fEQqFAgsWLMCCBQtgt9uxY8cOrF+\/HnfffTeEQiHmzp2LRYsWYdq0aYiLi0NcXBy6urp4J+38\/HwolUreSTssLAzR0dFYseLnWLHi56ipqcUXX3yBzz\/fhP37D\/gs0tQiRaXEWlvZNRyKBAI1Y7IW3PDwcPJ6qJoSlS4zGg3kqAQqRUeNJw8PDycJjR6VbSaJh0qlabVaMloKlGJqqendQ6UzR+Ls2bPo6urip\/jqdLqrsoizUFlZiby8PIwePZpfqNva2rB48WKoVCps2LDhqkVsrOmhQG8LrGAmg14L00MvBUIRzyWEVCrFzTffjPfffx9VVVX45JNPIJVK8eCDD2LAgAH4+c9\/zuePY2NjMXbsWEybNg0xMTFobGzEN998g4MHD6KwsJDvSTAaDXjggfuxeXM6Cgvz8e67dE7bcgAAM8xJREFU72D27FmIjrYwd\/QymYxcOKndPEUC1IJLmUtaLPTgOLoBlB1FUeIKai4SALjdbOltoOul0oaBVGkU6Qd6X6o516i1wNrsez9IZCKMGZeCyZMnY\/z48VCpVCgtLeXTvqWlpaS0+0qguroaubm5GDVqFJ\/Kam9vx5IlSyCRSJCenn7V+o2800N3797tMz3U2+LQM3Kpra3lo6Du00NZz\/khI0Q8lwkSiQQ33XQT\/v73v6OiogLr169HZGQkHn30USQmJuL+++\/HF198AZfLhejoaKSmpmL69OlISEhAa2srDh8+jG+++Qbnzp1DW1vbeccEj4npRx99gD\/\/eTVeeuk3mDv3ll4\/zOhoC7OnQaWi7VooUqIWXGoXR\/mlaTRRJNlRx6h6iclkIhdq6rN4F0AWqKbdQJ5nVDQUSA5MqfAGRQ\/v9ViU3iNDFggEiIiIwIABAzBhwgQ+7VtXV4evv\/4ahw4dQmFhIX+fXSnU1NQgJycHI0eO5P+WNpsNS5cuhdvtxubNmy+LW3YgBJoempiYCJPJ5DMZ1G63Y+\/evfxk0Gt5euilQCjVdgUgEokwY8YMzJgxA6tXr+ZnCv3qV79CfX09Zs+ejQULFmD27Nkwm80wm81wOp2or69HbW0tvv32W8hkMn6y6tmzZ5GUNAizZ8+CQCDoZWKq0bAnY5rNJmZfTCBSoqIoaudMOQuYTCayVkVFQ1TainLtBmiCpUhUpVKRBEAhUCqNUimKRCKatCR69EySslyp5XI5n\/b1zq6qq6tDUVERZDIZb8ypVqsvW1qotrYWp06dwsiRI\/l6W2dnJ5YtW4b29nZs3779kvXl9BWBpocKBAKsXLkSr7zyCpKSkpCUlIRXXnkFYWFhWLZsGf\/ca3V66KVAiHiuMEQiESZPnozJkyfjj3\/8IzIzM31mCs2cORMLFizAnDlzYDKZYDKZeCftkpISFBcXQyKRwOl0oqWlBZGRkb1MTPft24\/\/\/ncdvvzyy15zXajGUoqUAkmpqUmdFPFQ4oFACzXVWGo0mlBQ4H9Kp1IZQfbhUIatFouFfF\/KHNRsNpGfhxr9EB1tQWlpGfO4UqxFT\/oOZuS1RCKBxWKBxWLxmZXjNcv1jijQaDSXrHemrq4O2dnZSElJ4fvN7HY77r33XtTX1yMjI4O8Ly43Ak0PBYBnnnkGNpsNK1asQFNTE8aPH9+LLK\/V6aGXAiHiuYoQCoUYN24cxo0bh1dffRUnT57EunXr8Mc\/\/hErVqzADTfcgAULFmDu3Ln44IMPkJOTg9dffx0ikQi1tbU4duyYz3yTqKgoyOVyzJo1E7NmzYTD4cDu3XuRnp6OzZu3oL6+ARIJJaVWM4+ZzWamQ3QgKTVVT6HmFwVaqCk7HGqjHhkZSRIEJbCgiBsAamrYaThKKAEAdXVsabheryeJJ0KsQxN8NxnBjLzuju73ktvtRktLC2pra5GbmwuHw+EjTrhYWbPX5mbEiBF8PczhcODHP\/4xysrKsHPnzoCpzsuNYNKNAoEAq1atwqpVq5jPuVanh14KhIinn0AoFGL06NEYPXo0Xn75ZZw+fRrr1q3Du+++iyeeeAICgQCPPPIIRCIRP7Fx6NChaGpqQk1NDT\/N0TvOISoqChKJBLNm3YRZs27Cn\/+8Gvv3H8D+\/Qdw7lyBX0mnTMYmJY0mCqzJBNHRFpSVsa1AqMWYarakUi1qdSSZFqT6cEwmE2nESaXhKFeCiIgIctoplUqTyWRkWjFQgb2jsXfakZVqCwZCoRBRUVGIiorC4MGDYbVaUVtbi5KSEuTk5CAqKopPyQXrhtDQ0ICTJ09i2LBhfIHd6XTipz\/9Kc6ePYvdu3cHlLmHcG0gRDz9EAKBAMOHD8fgwYNRXFyM+vp63H777di5cyfefPNNTJ48mZ8pZDQaodVqeRKqra1FTk4OXC4Xv3vVarXn60zTMWPGdDz33K9x6NBhfP75Jmza9AXKyjw76Yt1pdZqdUziCeQ8QE3TpFISZrOZHA9NpQWphTLQkLbOTrZgITo6upenV3dQdbCYGHrmENWHo5CHo6m6N9EGk2oLBgKBAEqlEkqlEgMHDoTNZkNtbS1qamqQl5fnM7CNZRTb2NiIEydOYMiQIXwjssvlwooVK3D8+HHs2bMnoCIwhGsHIeLpx3juuedw7NgxHDlyBBaLR6lWXFyM9evX47\/\/\/S+eeuopTJgwge8jio6OhkajQXJyMlpaWlBTU4Pc3Fw4nU7odDqepEQiESZNmohJkybi9ddfRWZmJjZuTEdW1jHmtdCu1Gwll9lsJmsiVIqOUqVRNQCZTEY26VEEazDoSeKhiDJQgyflskBNYAVAmp0mx6XAXdM7PXSpiKcnFAoF4uPjER8f32tgm1wu50koMjISAoEAzc3NOH78OJKTk2GxeNwX3G43Hn30URw6dAi7d+8mXTFCuPYQIp5+jGeeeQbPPfccv8gKBAIkJibiqaeewpNPPony8nJs2LABGzZswK9\/\/WuMHTuWJ6GEhASo1WoMHjwYra2tqK2t5RsJ9Xo9n6sXiz0+XmPHjgUAnDyZjfT0TUhP34QzZ3L5a7lYV2qqJhJoAijlxEw1U1osFhQV+Vf1ASCJRafTgghaSHdhyuzVYw7KTqUFauikCDpWPwg2P9nBqD7WeC4G3oFt0dHRPuPkjx07BqFQiMjISDQ0NGDw4MG8Q7nb7caTTz6JPXv2YPfu3fzokBB+OLhqfTzvvvsuEhMTIZfLMXbsWOzfv\/9qXUq\/hU6nY+7sBQIBYmNj8dhjj\/Ezhe677z7s3LkTo0ePxtSpU\/HGG28gPz8fKpUKSUlJmDx5Mq677jqEh4ejsLAQe\/fuxfHjx32ctL0GpkePHkZW1hG8+OLzGDkyhdytU7021IJKzRoCLr6x1DsNlgVKliwQsH8Ser2OtOGhIrTY2BgyXUZFYRqNhlTaaRT+o4XLFfGw4BUnjBgxAtOnT8eAAQNQX18PoVCI\/Px83HPPPfjXv\/6Fp59+Glu3bsWOHTuQkJBwRa8xhP6Bq0I8n332GVauXMmnkqZOnYo5c+agtJRtfxICGwKBAGazGStWrMCOHTtQWVmJFStW4ODBg7juuuswYcIEvPLKKzhz5gwiIiIwcOBAfpyDt5t97969yMrKQkVFBb+oJycPxjPPPI2DBw9g587tfk1MAbq\/h1pQlUr2jtxkMpE1ESrlRdWjDAYDKTzo6KAkzeyZQgAdoQUyB6U+T6DxDmJn7yZLsVQElYZuZr2csFqtOHfuHJKSkjBjxgyMGDECWq0Wb7zxBt577z0kJiZix44dId+yHyiuCvG89dZbuP\/++\/HAAw9g6NChWL16NWJjY3n9fAgXD2\/vxQMPPIAvv\/wS1dXVePLJJ3Hy5ElMmTIFY8eOxUsvvYSTJ08iLCyM72afNGkSNBoNysvLsW\/fPmRmZqKsrIzfxScmJvqYmL7++h8wdmwqxGIx2QBK1SYolVegQnNFBVuVRkUWgWb\/UM2hgcZOU3LnQF5j1OcRCukmzq6W3sc1hsufZmOhra0NWVlZSEhIQHx8PH9P6nQ62O12bN68GfPnz8fHH3+MmJgY7Nu376pdawhXB1eceOx2OzIzM33swgFg1qxZIbvwSwyBQACNRoPly5dj06ZNqKmpwQsvvIBz587hxhtvxKhRo\/D888\/j6NGjkMvlSEhIwPjx4zF58mTodDpUV1dj\/\/79OHLkCEpLS\/k0k8ViwaxZN+G3v30RR48exptvvo4ZM6b7rbtQvTZUaoqKhgwGAxmZUGIGStEmkUjINBzV3xFoVDbVG2Q0GskoTCRi17M84657v\/a7SKm\/C6xWKzIzMxEXF8dbzXAchzfeeAP\/+Mc\/kJGRgZtvvhlPPfUUDhw4gIqKCowfP\/6SXsO+ffswb948WCwWCAQCfP755z7Hly9fDoFA4PNvwoQJPs8JTQ+9vLji4oL6+nq4XC7SUjyEy4PIyEjcdddduOuuu2C1WvHll19i\/fr1mDt3LqKiojB\/\/nwsXLgQ1113Ha9a8jpp19TU4OzZs1CpVOA4Dp2dnRg3bhzCw8ORlDQIDzxwPxoaGrF58xZ8\/nk69uzZi7AwBVmboNwOKMGCyWQka06UlxrVGxQdbUFxcQnzOEUOBoOBrElR6Uij0Ugep2xrEi2DYW\/rTWpXur4DeL6fzMxMxMbGYsAAz5h3juPwpz\/9CX\/+85+RkZGBkSNH+rzmchhmtre3Y9SoUfjxj3+MxYsX+33Oj370I3zwwQf8\/\/esRa5cuRJffPEF1q5dC61WiyeffBJz585FZmZmyHngEuCqqdouxlI8hEuHiIgILFmyBEuWLEFHRwe2b9+O9evX47bbbkNYWBjmzZuHhQsXYtKkSYiNjUVsbCxaW1tx8uRJ2O12uN1uZGdn8+McwsPDeRPT++67By0tLdixYyf+97\/1yMjY0asoH8g92mZjRzRUyisyUkXWWqgoS6fTkcRDkUMgM8u6OnYKj4ruPK9lK\/8SzUMBP4LDqCucauvo6EBmZiYsFosP6bz77rt44403sG3bNl45ebkxZ84czJkzh3yOTCZjiltC00MvP654qk2n00EkEpGW4iFcWYSFhWHhwoX4+OOPUVVVhX\/84x+w2+24++67kZSUhF\/84hf44osvcMstt+CDDz7AlClTMH36dMTFxaG5uRmHDh3CwYMHUVBQAKvVCo7jEBkZicWLb8Xatf9BSUkBPvroAyxevIgnDbPZTJIAFQ1RtSFvnwgL1CJOpeEUCgXpaEBBp9PxYy78gVLKyeVyMpIyKP1LkTWmKxfx2Gw2ZGZmwmQyYdCgQRAIBOA4Du+\/\/z5+97vfYfPmzZc8nfZd4W1YHTx4MB588EGfCDo0PfTy44oTj1QqxdixY33swgEgIyMjZBfeDyCXy3HLLbfg\/\/7v\/1BVVYV\/\/\/vfcDqdWL58ORoaGiCRSLB792643W5YLBaMGTOGH+dgtVp9xjm0traC4zhERERg8eJb8dFHa1BSUoDPPvsEt912K1MqLhKJAkRD7IWaaiwVi8XkIu5ysZtkY2KiyRoPRSyBVGlUj1R0dDTZvKsQ+P+8VyrVZrPZcPToUej1eiQlJfGk89FHH+H5559Heno6Jk+efEWuJVjMmTMH\/\/nPf7Br1y68+eabOHLkCG644QZ+IxSaHnr5cVVSbU888QTuuecepKWlYeLEifjHP\/6B0tJS\/PznP78alxMCAxKJBEOHDsWRI0dwyy234Kc\/\/Sk2bdqEX\/ziF7Barbj55puxcOFC3Hjjjfw4B5fLxY9zOHr0KKRSKW\/dExkZCblcjrlzb8HcubfgpZde5E1Mt2zZykc5gZyYqXHgVGNpTEw0mUqjhrQFMq6kPNpUKpoEWlvZxBPIpdnV7r9p9Uo0j3Z2diIzMxM6nQ7Jyck86Xz66ad4+umnkZ6e3svhuT9g6dKl\/H+PGDECaWlpiI+Px5YtW3DrrbcyXxcqB1w6XBXiWbp0KRoaGvDb3\/4WVVVVGDFiBLZu3Yr4+PircTkhEHj11VcxdepUvPvuuxCJRJg1axb+9Kc\/4eDBg1i\/fj2eeeYZNDQ04Ec\/+hE\/U8hoNMJoNMLlcqGxsRE1NTU+TtpGoxFqtRpSqRSzZ8\/E7Nkz4XK5sH\/\/AaSnb0JBQSGTeIRCIak8o6IhrVZLEg+1m6UaYQONyqYSC4Fea7ez05EA0FLt\/\/jljni8pKPRaDBkyBB+QV6\/fj1WrlyJ\/\/3vf7jxxhsv6zVcKpjNZsTHxyM\/Px+A7\/TQ7lFPbW1tKCtziXDVnAtWrFiB4uJidHV1ITMzE9OmTbvk77Fq1apessnuBUWO47Bq1SpYLBYoFArMmDEDOTk5l\/w6vs94++238fe\/\/91HySMSiTBlyhS8\/fbbKCwsxM6dO5GYmIiXXnoJCQkJWLZsGT777DO0t7dDr9fznezDhg2D2+3GiRMnsG\/fPpw5cwYNDQ1wu928ienbb7+Jzz9fj4yMbXj44RU+I4cBTzRENaVS5EE5PEdG0mam1HtSE18BWihhNpvJ11ITTfVRZrQ1+W+y1RguH\/F0dXUhKysLkZGRGDp0KE866enpeOihh\/DJJ58ELO73JzQ0NKCsrIz3iwtND738uOZHXw8fPhxVVVX8v+zsbP7Y66+\/jrfeegvvvPMOjhw5ApPJhJkzZwbwJfthQSqVkukFoVCI6667Dq+\/\/jry8vJw4MABDB8+HG+88QYSEhKwZMkS\/Pvf\/0ZLSwu0Wi2GDRuGadOmISUlBQBw6tQp7Nu3Dzk5Oaivr4fb7YZQKOQNTHNzT2Hv3l14\/PHHMGBAYkDbfErRRtVKAokSKH83arQ3QJuDSqV00oFyNLBEJfh9XCwVQaW9PK4F3j48pVKJ4cOH8\/fGli1b8MADD+Cjjz7C\/PnzL8t7Bwur1Yrjx4\/j+PHjAICioiIcP34cpaWlsFqteOqpp3Dw4EEUFxdjz549mDdvHnQ6HRYtWgTAd3rozp07cezYMdx9992h6aGXEALuSg5Zv8JYtWoVPv\/8c\/4G7A6O42CxWLBy5Ur88pe\/BODZyRmNRrz22mv42c9+doWv9toCx3HIycnBunXrsHHjRpw5cwYzZszAwoULMXfuXGi1Wr4m0NzcjNraWtTW1sLpdPImpl4n7e7IyTmN9es3ID19E3Jzfd08dTod6TyQkjIC2dmn\/B6bMGECDh06xHxtREQEU0AwdeoU7N9\/wO8xmUwGh8PBJL3U1DGkK3hYmAIdHf6jmkVTfoK2bHWvx3XRKrx\/5HHmOS8WXtIJDw\/HiBEjeHXh9u3bcffdd+Nf\/\/oX7rjjjkv+vn3Fnj17cP311\/d6\/L777sPf\/vY3LFy4EMeOHUNzczPMZjOuv\/56vPzyyz5mpZ2dnXj66afxySef8NND33333ZCh6SXCNU88b7zxBiIjIyGTyTB+\/Hi88sorGDBgAAoLCzFw4EBkZWVhzJgx\/GsWLFgAtVqNDz\/88Cpe+bUFjuNw9uxZrF+\/Hhs2bMCJEycwZcoULFy4EPPmzYPRaORJyOukXVNTA7vdzo9z8MrwuyM3Nw+ffroWGzZsRGFhEUaOTMHJk9mMq6CJaerUydi\/\/2u\/xwwGAxm1XHfdOHz77RG\/x7z3Ggvjxo3DkSP+X2s2m0nnhx\/f9GuUHeld4zENVOKnq6fzoo5Adj3BwOFwIDMzEwqFAikpKTzp7N69G0uXLsW7776Le+65J1R8DyEoXNOptvHjx+Ojjz7CV199hX\/+85+orq7GpEmT0NDQwNcCQg4Klx8CgQDJycl49tlnceTIEeTl5eHmm2\/G2rVrMXjwYPzoRz\/Cu+++i4qKCh8n7XHjxiEsLAwFBQXYs2cPTpw4gaqqKr7eotVqMH36VGzbtgXZ2cfwk5\/8GGlpY\/0ufkqlkoyGqAFvJhPdX0alwwI5ZVOpQaOR9qsTdPmvWcUONPlYHn377bcoLi4mbYYoOBwOZGVlQSaT+ZDO\/v37cccdd+BPf\/pTiHRC6BOu6Xk83QucKSkpmDhxIgYOHIgPP\/yQ92YKOShcWQgEAgwYMABPP\/00nnrqKZSVlfEzhX71q18hLS2NnykUHx8PpVKJQYMGwWq1oqamBsXFxcjJyeFTX0OGDOFdowcMGIAHH7wf5eXlSE\/\/Aunpm3Dw4KHzPUdm5OWxa3dUDYey2QGAigpqRg9bDScQCEhz0EBuCB0N\/s1Q9Ra1j+VRXV0damtrce7cOYSHh\/PKwvDw8ID3utPpxLFjxyCRSDBq1CiedA4ePIglS5bgtddew09+8pPQbyaEPuGajnh6Ijw8HCkpKcjPz+fVbSEHhasHgUCAuLg4rFy5Env37kVpaSnuuece7NixA6NGjcK0adPwxz\/+Efn5+QgPD8fAgQMxceJEREZGwmq1Qi6XIzc3F5mZmSgvL+dNOmNiYvDwww9h+\/YvkZ+fiz\/96S1MnDiR2eMjEAhQXs4mAGpRNZlMzBoMQJuDWixm0rWAyoLLZQo0VvmvOXXv4ZHJZIiJiUFqamqvRt+vv\/4a+fn5aGlp8fteLpeLl8F3J52jR49i8eLFePnll\/HQQw+FSCeEPuOajnh6oqurC2fOnMHUqVORmJgIk8mEjIwMvsZjt9uxd+9evPbaa1f5Sn94EAgEsFgsePjhh7FixQrU19dj48aN2LBhA373u99hyJAhWLBgATo6OvDPf\/4TBw8eRGJiImw2G2pra1FZWYnc3Fyo1Wq+tiGXy2EyGfHAA\/cDAH7721XYvHkL0tM3YffuPTxRWSxmsjeISlEZjQYyNUuZpBoMBvJ9KTeEwXEpcNf6JyZWD49EIvFp9PVOC83KyuJ7rAwGA9RqNTiOw7FjxyAQCDB69Gi+vnb8+HEsWLAAzz33HB599NEQ6YRwUbimxQVPPfUU5s2bh7i4ONTW1uJ3v\/sd9u7di+zsbMTHx+O1117Dq6++ig8++ABJSUl45ZVXsGfPHuTl5QVMr4RwZcBxHJqampCens5HP2PGjMH111+PhQsX+qirOjs7eXVcc3MzVCoVb2Las4enpaUFW7duQ3r6JtTU1OLbb79lXkNMTAzTEn\/KlEk4cIDt3xUeHs50tZ48eTK+\/tq\/oAGgR4PPm3wXbKf8R+YvfnIXUmcMYp63J9xuN5qamvjvzptulkgkSEtL49OFp06dws0334zHH38czz77bIh0QrhoXNMRT3l5Oe68807U19dDr9fzklmvQ8IzzzwDm82GFStWoKmpCePHj8f27dtDpNOPIBAIEBUVhbKyMtTU1CAjI4OvC3mtehYsWICFCxdizJgxiIuLQ1xcHF\/bqKmpQX5+PpRKJb+jDw8PR2RkJO68cynuvHMp2tvbsW3bV0hP34SvvsrwiTSkUinpG8dx7MVXp9OSZqccx+4rUqlUpKFplMIMG\/y\/vq\/No0KhEFqtFlqtFoMHD8bRo0fR2dkJl8uFN954A4cPH8aUKVPwzjvvYMWKFSHS6YGPPvoIjz\/+OCorK30UhIsXL0Z4eDg++uijq3h1\/RPXdMQTwrWB0tJSzJw5E+vXr8eIESP4x61WK7Zu3Yr169dj69at0Gq1\/EyhcePG8ekhu93OF9gbGhp8Cuw9Ryx0dnZix46d2LgxHV9+uQ1arZaUQ48ePQrHj5\/we2zAgEQUFhYxX0v1FQ0ZMgS5ubnM195\/\/SqUZPkfePdx9tMX1UDqdZWw2+1ITfVMl83Ozsa7776Lbdu2obGxEbNnz8bixYsxf\/78gM28PxTYbDaYzWb885\/\/xJIlSwB45o5FR0dj27ZtfnuKfuj4QYkLrgQCTT8MxqYnNP3QF3FxccjJyfEhHcDT1Hn77bfjs88+Q01NDd5++200NjZi8eLFGDp0KJ588kns378fQqEQ0dHRpJN2W1sbOI7jTUzff\/8fKC4+h9Wr38J9990Drda\/SSjlsxbI0YAaWKdW0+agdj\/jrgGPa4FSw7YGYsE7X6mrqwupqamQSCQQCASIiIjArl27cNddd+HUqVOYNm0a3nvvPYwZM4YUP\/yQoFAosGzZMp\/Bcv\/5z38QExPTL01S+wNCxHOJ4Z1++M477\/g9HoxNz8qVK7Fx40asXbsWBw4cgNVqxdy5c+Fy+ZfP\/hBAuU4DHk+zRYsW4d\/\/\/jeqqqrw97\/\/HZ2dnVi2bBmSkpLw6KOPYvfu3QA8jZmjRo3C9OnTMXDgQHR0dODIkSO9VF5SqRQ33ng93n33HRQVncPmzel48MH7edVjoBk9lDecSqUi+4qozysQCNBY6V\/wEKWP6HMazO1249SpU+jo6OBJBwBKSkpwyy23YMGCBXjzzTcxZMgQ\/PKXv8Thw4dx+vTpS55u+z5v2h588EFs376dl8d\/8MEH\/IjtEPyAC+GyAQC3ceNG\/v\/dbjdnMpm4P\/zhD\/xjnZ2dXGRkJPf3v\/+d4ziOa25u5iQSCbd27Vr+ORUVFZxQKOS2bdt2xa79WoHdbue++uor7sEHH+QMBgOn1Wq5++67j9uwYQPX2NjItbe3c+3t7VxraytXVFTEHT58mNu8eTO3bds2Lisri6uoqOCsViv\/vPb2dq6trY3LyNjB\/fKXv+ZiYhI4QOz335gxacxjQ4eOYB4DxFxa2njmscTo4dxNkc\/4\/bfi+j\/5XGugf1arlTt06BCXkZHBNTU18Y+fPXuWS0xM5B588EHO5XJdkb\/V1q1bueeee45bv359r98Ox3HcH\/7wB06pVHLr16\/nsrOzuaVLl3Jms5lrbW3ln\/Pzn\/+ci46O5jIyMrisrCzu+uuv50aNGsU5nc7Lfv2pqancK6+8wmVmZnJCoZArLS297O\/5fUWIeC4jev54CgoKOABcVlaWz\/Pmz5\/P3XvvvRzHcdzOnTs5AFxjY6PPc0aOHMn95je\/uezXfC3D4XBwu3bt4lasWMFZLBYuMjKSW7ZsGffZZ59x9fX1PsRSXFzMffvtt9yWLVu4rVu3ckePHuXKysq4tra2Xov33r37uIceepgzm2N8CCI6Oo5JHhMmTCGJJyFhEPPYTeNuYxLP83f8X59I5\/Dhw1xGRoYPCRcUFHBJSUncfffdd0UWbH\/4Pm7a3n33XS4pKYl7+OGHuVmzZl329\/s+I5Rqu4IIxqYnNP3w8kEsFuP666\/HX\/\/6V5SWluKLL76AXq\/H008\/jcTERCxfvhwbN26EzWaDXq\/H8OHDMW3aNL62lJ2djX379uH06dO8kzYADBw4ADff\/CPs2bMTBw8ewK9+9QxGjkwhazhisYh5TCQSkekhvTKGeSzKENwAOI7jcObMGbS0tGDs2LG8Gqu2tha33HILxo0bh3\/961+9\/PGuFoqKilBdXe0zjlomk2H69On8OOqrPbL6rrvuQkVFBf75z3\/iJz\/5yWV\/v+8zQsRzFXAxNj3BPCeE4CESiTB16lSsXr0aRUVFyMjIQHx8PF588UUkJCTgrrvuwn\/\/+1+0t7dDq9Vi6NChmDZtGt\/Bf\/r0aezduxdZWVnIyspCUlISYmJiMHJkCl544TkcPHgAR44cwm9+8zxGjkzp9f6UY0FsbAzpeBAmYIsWNKbAUmqO45Cbm4vGxkYf0qmvr8e8efMwfPhwrFmzJmBd7Uri+7BpU6lUWLx4MSIiIrBw4cLL\/n7fZ4SI5woiGJue7tMPWc8J4dJCKBRi\/PjxeOONN3D27Fns378fQ4cOxWuvvYaEhATcfvvt+M9\/\/oOWlhao1WoMGTIEU6dOhdlsRmNjI0QiEfLz85GdnY2amhpeBDJkSDJ++cuncfDgAWRnH8PLL7+EtLSxAED29wSSKbs6\/I+7BgJPHuU4Dnl5eaivr8fYsWMhl8sBeLzqFixYgAEDBuCTTz7hBQb9Df1901ZVVYW77rrrkjiCX8sIEc8VRHebHi+8Nj3eyYah6YdXF0KhEKmpqXjllVdw+vRpfPvttxg7diz+8pe\/ICEhAbfeeis+\/PBD\/Oc\/\/8GNN94Ik8mE6dOnIy0tDXK5HOfOneOdtKurq\/nIZcCAAXjiiZXYu3cX8vJy8MgjD2HSpIm860J3eMmABda4a4AmHo7jkJ+fj9raWowdO5ZX3bW0tGDhwoUwm83473\/\/SxqbXi30901bY2Mj1q5di127duHhhx++rO91LaD\/xNLXCKxWK86dO8f\/v3f6oUaj4Q0xX3nlFSQlJfE2PWFhYVi2bBkA3+mHWq0WGo0GTz31VGj64VWAQCBASkoKUlJSsGrVKuTl5WH9+vV48803UVJSgunTp+PgwYP84DqVSsU7adfW1qKwsBA5OTnQaDQwGo3Q6\/WQSCSIiYnBQw\/9HA899HNUV9fgiy++wOefb8L+\/QfgcrngdLJl8zq1AW2NbFNSFvFwHIdz586hqqqKHzcBAG1tbVi8eDHUajXWr1\/fb3fqwXgrdt+03X777QAubNpef\/31y3p9qampaGpqwmuvvYbk5OTL+l7XAkLEc4lx9OhRn07lJ554AoBn+uGaNWuCsul5++23IRaLcfvtt\/PTD9esWdNvCr0\/RAgEAgwZMgSjR49GVVUV3nzzTXR2duLTTz\/Fk08+iUmTJmH+\/PlYsGABLBYLlEolBg4ciPb2dtTW1qK0tBSnT5+GRqPhrXukUilMJiMefPABPPjgA6ivb8CWLVvw9dffICsrizcx7Y6kuBSghH2d3Z2pu6OwsBCVlZVIS0vjSae9vR1LliyBVCrF559\/TvYdXQl8nzdtxcXFl\/X81xpCljkhhBAkmpubkZSUhL\/97W+47bbbAHgiidLSUn6m0MGDBzFu3DjeuicuLo6vL3R0dPBGnK2trYiKimJOCe1uYpqRsYMXIyye\/gBajqv8Xp9YIsS64ud71TMKCwtRWlqKtLQ03iLIZrNhyZIlsNvt+PLLL\/uFPyE1snrNmjXgOA4vvfQS3nvvPX7T9te\/\/tXH0SI0svr7gRDxXIPYt28f3njjDWRmZqKqqgobN270UdksX76812jv8ePH49ChQ\/z\/d3V14amnnsKnn37q8wOOiWFLeX8IaGhogFbrf6oox3GorKzkxzns378fI0eOxMKFC7FgwQIMHDiQJwWvk3ZNTQ1aWloQGRnJk1DPyMNqteKrr7YjPX0TtLYUFH7tf1yCzqLC+0cf93msuLgYxcXFGDt2LE8unZ2duPPOO9HS0oKvvvoKkZG0PU8IIVxqhIjnGsSXX36Jr7\/+GqmpqVi8eLFf4qmpqfHxlpJKpdBoLviRPfTQQ\/jiiy+wZs0aaLVaPPnkk2hsbERmZmYo5RcEOI5DbW0tPv\/8c2zYsAG7d+\/GkCFDeBIaMmQIT0JdXV18JNTU1ASlUsmPc\/CmxbywdzqRtfscDm49gyMZeWhvvSA0GJwajTc2P8D\/f0lJCQoLCzF27FioVJ4oyW634+6770ZVVRV27NgR0E8uhBAuB0LEc41DIBD4JZ7m5uZeXlhetLS0QK\/X4+OPP8bSpUsBAJWVlYiNjcXWrVsxe\/bsK3Dl1w44jkNjYyPS09OxYcMG7NixAwMGDODHOQwfPpxXt3mdtGtqatDY2IiIiAifUdXd4bC7cPJAIb7ZcgbffpWHodfF4dn\/8\/y9SktLUVBQgNTUVD6icTgcuO+++1BUVIRdu3YxI7cQQrjcCBHPNQ4W8Xz++eeQSqVQq9WYPn06fv\/738NgMAAAdu3ahRtvvBGNjY0+O+JRo0Zh4cKFeOmll670x7im0NzcjC+++AIbNmzAV199hejoaJ6ERo8ezZOQw+HwGeegUCj4SCgiwtcM1OVyo6GqFYYYNcrLy\/mBeWq1GoBnBPcDDzyAnJwc7N69m\/9bhxDC1UBI1fYDxJw5c7BkyRLEx8ejqKgIL7zwAm644QZkZmZCJpNd9Q7wax1qtRr33HMP7rnnHrS1tfEzhebMmQOdTod58+Zh0aJFGDduHCwWCywWC5xOJ+rr61FTU4Pi4mLI5XK+JqRSqSASCWGIUaOiogJnz55FamoqTzoulwsrVqzAyZMnsWfPnhDphHDVESKeHyC86TMAGDFiBNLS0hAfH48tW7bg1ltvZb4uZNtz6aFUKrF06VIsXboUHR0d2LZtG9avX49FixYhIiKCV8dNnDgRJpMJJpMJLpcL9fX1qK2tRWZmJiQSCQwGA0QiEUpKSnwiHZfLhUcffRSHDx\/G7t27+UbMEEK4mggRTwgwm82Ij49Hfn4+AN8O8O5RT21tbcg94TIiLCwMt956K2699VZ0dnYiIyMDGzZswB133AGpVMpHQpMnT4bRaITRaITL5UJjYyOKi4vR3NwMiUSCkydPoqOjAzfddBOeeeYZ7NmzB3v27PnBKxJD6D8IWeaEgIaGBpSVlcFsNgMI2fb0B8jlcsybNw8ffPABqqur8eGHH0IgEGD58uUYOHAgVqxYge3bt8PlcmHz5s3429\/+htGjRyMlJQV5eXl44IEHkJCQgE8\/\/ZQfnhZCCP0FIXHBNYjuHeBjxozBW2+9heuvvx4ajQYajQarVq3C4sWLYTabUVxcjGeffRalpaU4c+YM3+vx0EMPYfPmzVizZg3fAd7Q0BCSU19lOJ1O7Nu3D+vWrcPnn3+Ozs5OdHR04PHHH8fTTz8NuVwOt9uN559\/Htu2bUNaWhp27dqFrq4uLFiwAO+++25AL7gQQrjsuEJzf0K4gti9ezcHoNe\/++67j+vo6OBmzZrF6fV6TiKRcHFxcdx9993Xa1qizWbjHnnkEU6j0XAKhYKbO3duaKJiP0N6ejonl8u5efPmcbGxsZxKpeKWLFnCLVq0iDMYDFxOTg7HcRzncrm4AwcOcL\/\/\/e+vyHW9+OKLve49o9HIH3e73dyLL77Imc1mTi6Xc9OnT+dOnTp1Ra4thP6BEPGEEML3ELt37+bCw8O5\/\/3vfxzHecjl4MGD3IoVKziZTMZ9\/fXXV+3aXnzxRW748OFcVVUV\/6+2tpY\/HswI6xCubYSIJ4TLgldeeYVLS0vjIiIiOL1ezy1YsIDLzc31eU4wO9\/Ozk7ukUce4bRaLRcWFsbNmzePKysru5IfpV+ipqaG27Rpk99jLpfrCl+NL1588UVu1KhRfo8FM8I6hGsfIXFBCJcFe\/fuxcMPP4xDhw4hIyMDTqcTs2bNQnt7O\/+c119\/HW+99RbeeecdHDlyBCaTCTNnzkRbWxv\/nJUrV2Ljxo1Yu3YtDhw4AKvVirlz5\/LD1n6oMBgMmDdvnt9j\/mb8XGnk5+fDYrEgMTERd9xxBwoLCwEEN8I6hB8ArjbzhfDDQG1tLQeA27t3L8dxwe18m5ubOYlEwq1du5Z\/TkVFBScUCrlt27Zd2Q8QQtDYunUrt27dOu7kyZNcRkYGN336dM5oNHL19fXc119\/zQHgKioqfF7z4IMPcrNmzbpKVxzClcbV3xqF8INAS0sLAPBGpMHsfDMzM+FwOHyeY7FYMGLEiNDuuB9jzpw5WLx4MT8HZ8uWLQDg44h+MSOsQ7h2ECKeEC47OI7DE088gSlTpvCzU7zWOz1HEne35QlZ91wbCA8PR0pKCvLz84MaYR3CtY8Q8YRw2fHII4\/g5MmT+PTTT3sdu5idb2h3\/P1CV1cXzpw5A7PZ7DPC2gvvCOtQc\/IPByHiCeGy4he\/+AU2bdqE3bt3+1i2BLPz7W7dw3pOCP0PTz31FPbu3YuioiIcPnwYt912G1pbW3HfffdBIBDwI6w3btyIU6dOYfny5T4jrEO49hEinhAuCziOwyOPPIINGzZg165dSExM9DkezM43ZN3z\/UR5eTnuvPNOJCcn49Zbb4VUKsWhQ4cQHx8PAHjmmWewcuVKrFixAmlpaaioqMD27dv7xfjtEK4MQpY5IVwWrFixAp988gnS09ORnJzMPx4ZGcmPdn7ttdfw6quv4oMPPkBSUhJeeeUV7NmzB3l5eSHrnhBCuIYRIp4QLgtYNZgPPvgAy5cvB+CJil566SW89957aGpqwvjx4\/HXv\/6VFyAAQGdnJ55++ml88sknsNlsuPHGG\/Huu+8iNjb2SnyMEEII4TIgRDzXAOrq6pCSkoJHH30Uzz77LADg8OHDmDp1KjZv3uwjRw4hhBBCuNoI1XiuAej1evzf\/\/0fVq1ahaNHj8JqteLuu+\/GihUrfvCk8+qrr2LcuHFQKpUwGAxYuHAh8vLyfJ6zfPlyCAQCn38TJkzweU5XVxd+8YtfQKfTITw8HPPnz0d5efmV\/CghhHDNIBTxXEN4+OGHsWPHDowbNw4nTpzAkSNHfvAW+D\/60Y9wxx13YNy4cXA6nXjuueeQnZ2N06dPIzw8HICHeGpqavDBBx\/wr5NKpXyzK+CpNX3xxRdYs2YNtFotnnzySTQ2NoZqTSGEcBEIEc81BJvNhhEjRqCsrAxHjx7FyJEjr\/Yl9TvU1dXBYDBg7969mDZtGgAP8TQ3N+Pzzz\/3+5qWlhbo9Xp8\/PHH\/NjwyspKxMbGYuvWrZg9e\/aVuvwQQrgmEEq1XUMoLCxEZWUl3G43SkpKrvbl9Ev0tO7xYs+ePTAYDBg8eDAefPBB1NbW8sdC1j0hhHBpIb7aFxDCpYHdbsddd92FpUuXYsiQIbj\/\/vuRnZ0darTshv9v7\/5CmuwCOI5\/08w\/6CQzmFIOIekPYheKMTAUw0AwoqCCKLzwRlfQKolIhOhCxQstCfVCLDBiEeFN5QiCSYMuMhQiuvDCWIQLkhZqM2OdLqLB0Op9fX2f1fx9YDfP83B2dvVj52y\/s1x1D3zvFjty5AgOh4OpqSlaW1uprq7m+fPnpKamqrpHZJUpeBJES0sLHz9+pKenh8zMTEZGRmhoaOD+\/fvxntof40d1j9\/vj7n+Y\/kMoLi4mLKyMhwOBw8ePODw4cM\/HU\/VPSIro6W2BODz+bh69SpDQ0PYbDaSkpIYGhrC7\/fT19cX7+n9EX5W3bOcvLw8HA4Hk5OTgKp7RFabgicBVFVV8eXLFyoqKqLXCgoKCIVCNDU1xXFm8fe76p7lzMzM8ObNG\/Ly8oC1Xd3T29tLYWEhaWlplJaW8uTJk3hPSRKAgkcS2qlTp7h16xa3b98mKyuLYDBIMBgkHA4DMDc3R3NzM0+fPuX169f4fD4OHDhAbm4uhw4dAr7X\/DQ0NHD+\/HkeP37M+Pg4J06ciJ43k6ju3LmD2+2mpaWF8fFx9u7dS21tLYFAIN5Tk7+dxQfPiVgKWPZ148YNY4wxnz59Mvv37zebN282KSkppqCgwNTX15tAIBAzTjgcNqdPnzY5OTkmPT3d1NXVLXkm0ZSXl5vGxsaYazt27DAXL16M04wkUeh\/PCKyxOLiIhkZGdy9ezf6zQ\/gzJkzTExMMDo6GsfZyd9OS20issT79++JRCK\/PCFWZKUUPCIW6evro6SkBJvNhs1mw+l0MjIyEr1vjOHy5cvk5+eTnp5OVVUVL1++jBnD6s64lZwQK\/I7Ch4Ri2zZsoWOjg7GxsYYGxujurqagwcPRsOls7OTrq4url+\/zrNnz7Db7dTU1DA7Oxsdw+12Mzw8jMfjwe\/3Mzc3R11dHZFIZFXnmpubS3Jy8i9PiBVZsfhuMYmsbRs3bjQDAwPm69evxm63m46Ojui9hYUFk52dbfr7+40xxoRCIZOSkmI8Hk\/0mbdv35qkpCTj9XpXfW7l5eWmqakp5trOnTv14wL5z\/SNRyQOIpEIHo+H+fl5nE4nU1NTBIPBmD641NRUKisro31wVnfGnTt3joGBAQYHB3n16hVnz54lEAjQ2Ni46u8la4sqc0Qs9OLFC5xOJwsLC2RmZjI8PMyuXbuiwbHcZv6PwlerO+OOHTvGzMwMV65cYXp6muLiYh4+fIjD4Vj195K1RcEjYqHt27czMTFBKBTi3r171NfXx\/w0eSWb+f\/kmZVyuVy4XK7\/ZWxZu7TUJmKhDRs2sG3bNsrKymhvb2f37t1cu3YNu90O8MvNfHXGSaJQ8IjEkTGGz58\/U1hYiN1uj+mDW1xcZHR0NNoHt5Y74ySxaKlNxCKXLl2itraWrVu3Mjs7i8fjwefz4fV6WbduHW63m7a2NoqKiigqKqKtrY2MjAyOHz8OxHbGbdq0iZycHJqbmxO+M04Sj4JHxCLv3r3j5MmTTE9Pk52dTUlJCV6vl5qaGgAuXLhAOBzG5XLx4cMH9uzZw6NHj8jKyoqO0d3dzfr16zl69CjhcJh9+\/Zx8+ZNkpOT4\/WxRP41dbWJiIiltMcjIiKWUvCIiIilFDwiImIpBY+IiFhKwSMiIpZS8IiIiKUUPCIiYikFj4iIWErBIyIillLwiIiIpRQ8IiJiqW\/9VsG5oCgnEAAAAABJRU5ErkJggg==", "text\/plain": "<Figure size 640x480 with 1 Axes>"}, "metadata": {}, "output_type": "display_data"}]}}, "1ca2a7bb9b014ae1b78b7354b28675e1": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": {"description_width": ""}}, "1cb2605db91a4ce1bac51f5960e5afc9": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "IntSliderModel", "state": {"behavior": "drag-tap", "layout": "IPY_MODEL_a20388231297411295366afa518f917b", "max": 199, "style": "IPY_MODEL_3ca3ead3f99b45b2bf5a79d0f022dcfa", "value": 199}}, "1f57714e5c02432eaabed41e07209103": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": {"_dom_classes": ["widget-interact"], "children": ["IPY_MODEL_57644913df96434395a7d95953ca96ed", "IPY_MODEL_5e9038896edd4da0abab5fadd1a41130"], "layout": "IPY_MODEL_b49c03f7736a47e5987fbc229507c0fe"}}, "203d095fdbec4a809af8ff2adf77a8fb": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "246b67cae6d04400856fb146b0a764d3": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "27ce6d6c77074a0e9644172ecbdc2c2a": {"model_module": "@jupyter-widgets\/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": {"layout": "IPY_MODEL_0737166ee7324522bb73da03f9a8e778", "outputs": [{"data": {"image\/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG2CAYAAACXuTmvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy\/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA3p0lEQVR4nO3deXgU5532+7u1tdZuENqREDIIMGaxjW1AE1YbAt7AJOfYsV8fmCSOHQMnvCRjghmPhZOAlzGvkyFmssxg7DEDJxODdwIOSEAUbMBgZMAsRiABEgIhqbW2tjp\/CDXIYhG0pOpWfT\/X1Ze6nqou\/fSkTN956qkqm2EYhgAAACwkwOwCAAAAuhoBCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWA4BCAAAWI7PBKClS5fKZrNp3rx5njbDMJSZmamkpCSFhYVp\/Pjx2r9\/v3lFAgCAbsEnAtDOnTv1+9\/\/XsOGDWvV\/vLLL2vZsmVavny5du7cqYSEBE2aNEkVFRUmVQoAALoD0wNQZWWlHnvsMf3hD39Qz549Pe2GYei1117TokWLNGPGDA0ZMkSrVq1SdXW1Vq9ebWLFAADA3wWZXcDs2bN133336Z577tEvf\/lLT3teXp6Kioo0efJkT5vdbte4ceOUk5OjJ5988rL7c7vdcrvdnuWmpiadP39evXr1ks1m67w\/BAAAdBjDMFRRUaGkpCQFBHT8eI2pAWjNmjX6\/PPPtXPnzjbrioqKJEnx8fGt2uPj43XixIkr7nPp0qVavHhxxxYKAABMUVBQoOTk5A7fr2kBqKCgQD\/5yU+0ceNGhYaGXnG7b47aGIZx1ZGchQsXav78+Z7l8vJy9enTRwUFBXI4HN4XDgAAOp3L5VJKSoqioqI6Zf+mBaDdu3eruLhYI0aM8LQ1NjZq69atWr58uQ4dOiSpeSQoMTHRs01xcXGbUaFL2e122e32Nu0Oh4MABACAn+ms6SumTYK+++67lZubq71793ped9xxhx577DHt3btXN910kxISErRp0ybPZ+rq6pSdna2MjAyzygYAAN2AaSNAUVFRGjJkSKu2iIgI9erVy9M+b948LVmyROnp6UpPT9eSJUsUHh6uRx991IySAQBAN2H6VWBX88wzz6impkZPP\/20SktLNXLkSG3cuLHTzgcCAABrsBmGYZhdRGdyuVxyOp0qLy9nDhAAAH6is7+\/Tb8RIgAAQFcjAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMuxTADq5k\/8AAAA18EyAegHb+zSoaIKs8sAAAA+wDIB6LPj53Xvb7Yp8739Kq+uN7scAABgIssEoEmD49TYZOiNnOOa8GqW\/vuzfDU2cVoMAAArshndfHKMy+WS0+lUeXm59p2p0+L39+tIcaUkaUhvhxY\/eItGpEabXCUAALjUpd\/fDoejw\/dvqQDkcDhU39ikt\/5+Qv\/nk8OqqG2QJD10W2\/9fOogxTtCTa4WAABIBCCvXakDz1W69a9\/OaS1uwpkGFJESKDm3p2uf\/yHvrIHBZpYMQAAIAB56Vod+EVBmTLf3689+WWSpLSYCP3L\/YM1YVBcF1cKAABaEIC81J4ObGoytG7PKS39+Cudq3RLkiYOitO\/3D9YfWMiurJcAAAgApDXrqcDK2rrtXzzUf3n3\/JU32goJDBAPxiTpjkT+ivCHtRFFQMAAAKQl26kA78+W6nF7x\/Q1sNnJUnxDruevfdmPTg8STabrTPLBQAAIgB57UY70DAM\/fVgsV744IDyz1dLku5I7anMB2\/RkN7OzioXAACIAOQ1bzuwtr5R\/7E9T8s3H1VNfaNsNul7d\/XRzyYPVHRESCdUDAAACEBe6qgOLCyv0dKPvtJ7X5yWJDlCg\/TTyQP12Mg+Cgq0zA21AQDoEgQgL3V0B356rESZ7x\/QwUKXJGlQQpSef+AWje7Xy+t9AwCAZgQgL3VGBzY2GVr9Wb5e3XhIZRcerHrfsEQ9e+\/N6t0jrEN+BwAAVkYA8lJndmBpVZ2WbTqstz89oSZDCg0O0NPj++tHY29SaDB3kwYA4EYRgLzU2R0oSftPl2vxewf02fHzkqSU6DD9832DNXlwPJfNAwBwAwhAXuqKACQ1Xzb\/\/r5CLfnwoIpctZKkMekxev6BweofF9VpvxcAgO6IAOSlrgpALarrGvT6lq\/1+63HVNfYpKAAm2Zm9NVP7kmXIzS4038\/AADdAQHIS10dgFqcKKnSLz44qE8OnpEkxUSG6Jkpg\/Td25MVEMBpMQAAroYA5CWzAlCLrEPFeuH9Azp2rkqSNDylh55\/YLBu79Ozy2sBAMBfEIC8ZHYAkqS6hia9kZOn3\/z1qCrdDZKkabcmacGUQUrisnkAANogAHnJFwJQi2JXrf514yH9afdJGRcum\/\/RmJv05Lh+PG0eAIBLEIC85EsBqMWXp8r1wgcH9Fle82Xz8Q67nvn2ID10W2\/mBwEAoM7\/\/jb1IVYrVqzQsGHD5HA45HA4NHr0aH388cee9bNmzZLNZmv1GjVqlIkVd4whvZ1a+6NRWvHY7UqJDtMZl1s\/\/dMXmv7637Trwr2EAABA5zF1BOj9999XYGCg+vfvL0latWqVXnnlFe3Zs0e33HKLZs2apTNnzmjlypWez4SEhCg6Orrdv8MXR4AuVVvfqDdyjmv55ovzg+4blqifTxmklOhwk6sDAMAcljsFFh0drVdeeUU\/+MEPNGvWLJWVlWn9+vU3vD9fD0Atzla4tWzTIa3ZWSDDkEKCAvTEmDT9eHx\/RTI\/CABgMd36FNilGhsbtWbNGlVVVWn06NGe9qysLMXFxWnAgAF64oknVFxcfNX9uN1uuVyuVi9\/EBtl19IZw\/Th3DEafVMv1TU06bdbvtaEf83S\/7erQE1NPpVTAQDwa6aPAOXm5mr06NGqra1VZGSkVq9erXvvvVeStHbtWkVGRio1NVV5eXl67rnn1NDQoN27d8tut192f5mZmVq8eHGbdl8fAbqUYRjadOCMfvXRQZ0oqZYk3ZLk0HP3D9aom3qZXB0AAJ2v258Cq6urU35+vsrKyvTnP\/9Zf\/zjH5Wdna3Bgwe32bawsFCpqalas2aNZsyYcdn9ud1uud1uz7LL5VJKSopfBaAW7oZGvZlzQr\/ZfEQVtc3zg6YOSdDCqTerTy\/mBwEAuq9uH4C+6Z577lG\/fv30u9\/97rLr09PT9cMf\/lALFixo1\/78ZQ7Q1ZRUuvV\/Pjms1Z\/mq8mQQgID9I\/f6qs5E\/oriueLAQC6IcvMAWphGEarEZxLlZSUqKCgQImJiV1clbl6Rdr1y+lD9fFPxmpMeozqGpv0u+xjmvCvWfrvz\/LVyPwgAACui6kB6Nlnn9W2bdt0\/Phx5ebmatGiRcrKytJjjz2myspK\/exnP9Pf\/\/53HT9+XFlZWXrggQcUExOjhx56yMyyTTMwIUpvfv8u\/eesO3RTTITOVdZp4Tu5uu8325Rz9JzZ5QEA4DdMvb76zJkzevzxx1VYWCin06lhw4Zpw4YNmjRpkmpqapSbm6s333xTZWVlSkxM1IQJE7R27VpFRUWZWbapbDabJg6K15j0WL319xN67ZPD+qqoQo\/+8VNNGhyvZ++9WWkxEWaXCQCAT\/O5OUAdrTvMAbqa0qo6\/fqvR\/TWjhNqbDIUHGjTrIy+mjMxXc4w5gcBAPyT5SZBd7TuHoBaHC2u0C8\/PKisQ2clSdERIfrfkwboe3emKCjQ56Z6AQBwVQQgL1klALXYcqhYv\/rwoI4WV0qSBsRH6p\/vG6yxA2JNrgwAgPYjAHnJagFIkuobm\/Tfn+Vr2abDKquulyRNHBSnRffdrH6xkSZXBwDAtRGAvGTFANSivLpev\/7rEb359+NqaDIUFGDT46NT9ZO709UjPMTs8gAAuCICkJesHIBafH22Uks\/OqhPDjY\/R61HeLD+9z0D9OjIPgpmfhAAwAcRgLxEALpo25Gz+uUHB3XoTIUkqV9shBbdd7MmDIyTzWYzuToAAC4iAHmJANRaQ2OT1u4q0KsbD+t8VZ0k6a60aP186iDd3qenydUBANCMAOQlAtDlldfU6\/UtR7Uy57jqGpokSZMHx+uZKQPVP866N5oEAPgGApCXCEBXV1heo9c2HdGfdheoyZACbNJ3RyRr3j0DlNQjzOzyAAAWRQDyEgGofY4WV+jlDYe08cAZSVJIUIBmZfTV0+P7ccUYAKDLEYC8RAC6PrtPlOqlDV\/ps7zzkqSo0CD9eHw\/\/WNGmsJCAk2uDgBgFQQgLxGArp9hGMo6dFYvbfhKXxU1XzEW77DrJ3cP0P99RzKP1gAAdDoCkJcIQDeuscnQu3tP6dWNh3WqrEaSdFNMhH727YGaOiSBS+cBAJ2GAOQlApD33A2NentHvpZvOeq5dH54slMLpgxSRv8Yk6sDAHRHBCAvEYA6TkVtvf6wLU9\/3HZM1XWNkqQx6TFaMGWQhvR2mlwdAKA7IQB5iQDU8c5WuLV88xGt\/ixf9Y3Nh8+Dw5P008kDlNorwuTqAADdAQHISwSgzpNfUq1XNx3Su3tPS5KCAmx6dGQfzZ2Yrtgou8nVAQD8GQHISwSgzvflqXK9\/JdD2nr4rCQpPCRQPxxzk54Yk6ao0GCTqwMA+CMCkJcIQF0n5+tzemnDIX1RUCZJio4I0ZwJ\/fXYqD6yB3EPIQBA+xGAvEQA6lqGYWjDl0V65S+HdOxclSQpuWeY5k8aoGm39lZgAJfOAwCujQDkJQKQORoam\/Sn3Sf12ieHdcblliQNSojSM1MGasLAOO4hBAC4KgKQlwhA5qqpa9QbOce1IuuoXLUNkqS7+kZrwdRBGpHa0+TqAAC+igDkJQKQbyirrtOKrK\/1Rs5xuRuaJEmTBsfrmW8PVHp8lMnVAQB8DQHISwQg31JYXqPXNh3Rn3YXqMmQAmzSd0cka949A5TUI8zs8gAAPoIA5CUCkG86WlyhV\/5ySH\/Zf0aSFBIUoFkZffWjsTcpJpJ7CAGA1RGAvEQA8m2f55fqxY+\/0md55yVJocEBemxkqp4ce5PiHKEmVwcAMAsByEsEIN9nGIayDp3Va58c1hcnyyU1jwg9fEeKnhrfT705NQYAlkMA8hIByH8YhqGtR87p3\/56RLtOlEpqfrzGd25P1tMT+vGcMQCwEAKQlwhA\/scwDP39WImWbz6qnK9LJEmBATZNG56kpyf0V\/+4SJMrBAB0NgKQlwhA\/m33ifP6t81HlXWo+TljNpt079BEzZ3YX4MS+N8TALorApCXCEDdw76TZfq3zUe16cAZT9ukwfH6fyema2iy08TKAACdgQDkJQJQ93Kw0KXlW47qo9xCtRy54wfGau7EdO4sDQDdCAHISwSg7ulocYVe3\/K13v3itBqbmg\/hjH69NHdiukbdFM2zxgDAzxGAvEQA6t5OlFTp9S1f68+fn1TDhSB0Z9+emjMxXWPTYwhCAOCnCEBeIgBZw8nSav0u+5jW7ixQXWPzs8aGp\/TQ3An9dffNPH0eAPxNZ39\/B3T4Hq\/DihUrNGzYMDkcDjkcDo0ePVoff\/yxZ71hGMrMzFRSUpLCwsI0fvx47d+\/38SK4auSe4brF9OHaNuCCfrBt9IUGhygLwrK9MM3d+ne32zXR7mFamrq1lkfAHAdTA1AycnJevHFF7Vr1y7t2rVLEydO1LRp0zwh5+WXX9ayZcu0fPly7dy5UwkJCZo0aZIqKirMLBs+LN4RqufuH6ztCybqqXH9FBESqIOFLj399uea\/NpWrd9zSg0XRogAANblc6fAoqOj9corr+j73\/++kpKSNG\/ePC1YsECS5Ha7FR8fr5deeklPPvlku\/bHKTBrK62q08qc41r5tzxV1DZIkvr2CtfTE\/rrodt6KzjQ1P8PAAC4gm59CuxSjY2NWrNmjaqqqjR69Gjl5eWpqKhIkydP9mxjt9s1btw45eTkmFgp\/EnPiBDNnzRAf\/v5RP3TtweqZ3iwjpdU65n\/2afxr2Tpv3ackLuh0ewyAQBdzPQAlJubq8jISNntdj311FNat26dBg8erKKiIklSfHx8q+3j4+M96y7H7XbL5XK1egGO0GDNntBf2xdM1LP3DlJMpF2nymr0z+u\/1NiXt+g\/t+eppo4gBABWYXoAGjhwoPbu3asdO3boxz\/+sWbOnKkDBw541n\/z6h3DMK56Rc\/SpUvldDo9r5SUlE6rHf4nwh6kH43tp+0LJijzgcFKcITqjMutFz44oDEvb9bvsr9WlbvB7DIBAJ3M5+YA3XPPPerXr58WLFigfv366fPPP9dtt93mWT9t2jT16NFDq1atuuzn3W633G63Z9nlciklJYU5QLgsd0Oj\/rz7lF7POqqTpTWSpB7hwfrBP6Tp\/8noK2dYsMkVAoA1WWYOUAvDMOR2u5WWlqaEhARt2rTJs66urk7Z2dnKyMi44uftdrvnsvqWF3Al9qBAPTqyj7b8bLxe+e4wpcVEqKy6Xq9uOqxRS\/6qRetydfgMVx0CQHcTZOYvf\/bZZzV16lSlpKSooqJCa9asUVZWljZs2CCbzaZ58+ZpyZIlSk9PV3p6upYsWaLw8HA9+uijZpaNbig4MED\/1x0pmnF7sj7Yd1orsr7WV0UVevvTfL39ab4y+vXSzIy+uufmeAUGcFNFAPB3pgagM2fO6PHHH1dhYaGcTqeGDRumDRs2aNKkSZKkZ555RjU1NXr66adVWlqqkSNHauPGjYqKijKzbHRjgQE2Tbu1tx4cnqQdx85rVc5xbTxQpJyvS5TzdYl69wjT46NT9cidKeoRHmJ2uQCAG+Rzc4A6GvcBgrdOldXov3ac0JrP8lVaXS9JsgcFaPqtvTUzo68GJ3FcAUBH41lgXiIAoaPU1jfqvb2n9UbOcR0ovHh7hbv6RmvWP\/TV5MHxCuLGigDQIQhAXiIAoaMZhqFdJ0r1Rs5xbfiySI0XnjGW6AzV\/xrVfHqsV6Td5CoBwL8RgLxEAEJnKiqv1dufntDqT\/NVUlUnSQoJCtADw5I0K6OvhiY7Ta4QAPwTAchLBCB0BXdDoz7cV6hVOcf1xclyT\/vtfXpoZkZfTR2SqJAgTo8BQHsRgLxEAEJX25NfqlU5x\/VhbqHqG5v\/84qLsuvRkX306Mg+iosKNblCAPB9BCAvEYBgluKKWq2+cB+hsxXNdycPDrTp3qGJmpXRV7f16WlyhQDguwhAXiIAwWx1DU36+Mvm02Of55d52ocnOzUzo6\/uG5Yoe1CgeQUCgA8iAHmJAARfknuyXG\/kHNf7X5xWXWOTJCkmMkTfu6uPHhuZqgQnp8cAQCIAeY0ABF9UUunWmp0F+q8dJ1RYXitJCgqw6dtDEjQro6\/uSO0pm41HbgCwLgKQlwhA8GUNjU3aeOCM3vjbcX12\/LynfXCiQ7My+urBW5MUGszpMQDWQwDyEgEI\/uLAaZdW5RzX+r2n5G5oPj3WMzxYD9\/ZR\/9rVB8l9ww3uUIA6DoEIC8RgOBvSqvqtHZXgd76+wmdKquRJNls0qi0Xpp+W5KmDEmUMyzY5CoBoHMRgLxEAIK\/amwy9MnBM1qVc1w5X5d42kOCAjRxYJym39ZbEwbFcgUZgG6JAOQlAhC6g5Ol1Xp372m9u\/eUDp+p9LQ7QoN079BETbu1t0amRSsggInTALoHApCXCEDoTgzD0MHCCr2795Te3XtaRa5az7pEZ6geHJ6k6bf11s2JHOsA\/BsByEsEIHRXjU2GPs0r0bt7TuujLwtVUdvgWTcwPkrTbkvStFt7q3ePMBOrBIAbQwDyEgEIVlBb36isQ8Vav+e0Nn9V7LnJoiTd1Tda025L0n1DE9UjPMTEKgGg\/QhAXiIAwWrKq+v18ZeFWr\/3lD7NO6+W\/8KDA20aPzBO02\/trbtvjuP+QgB8GgHISwQgWFlheY3e23ta6\/ee1sFCl6c90h6kKUMSNP3W3hrdr5cCmTwNwMcQgLxEAAKaHSqq0Pq9p\/Te3tOe+wtJUlyU3TN5+pYkB4\/gAOATCEBeIgABrTU1Gdp1olTr957Sh\/sKVV5T71nXLzZC02\/trWm39lafXtx5GoB5CEBeIgABV1bX0KSsQ8V6d+9pfXLwjOcRHJI0IrWnpt+apPuGJSk6gsnTALoWAchLBCCgfSpq67XhyyK9u\/e0cr4+p6YL\/zIEBdg0dkCspt2apMmDExQWwuRpAJ2PAOQlAhBw\/c64avX+F6e1fu8pfXnq4uTp8JBAffuWBE0eHK+M\/jE8kwxApyEAeYkABHjnaHGl3t17Suv3nlLB+YuTpwMDbLq9Tw+NGxCrcQPidEuSg0dxAOgwBCAvEYCAjmEYhj7PL9UH+wqVffisjp2tarW+V0SIxqTHaNzAWI1Jj1VMpN2kSgF0BwQgLxGAgM5RcL5a2YfPauvhs\/rb0XOqqmtstX5ob6fGDYjV2AGxuq1PDwUHBphUKQB\/RADyEgEI6Hx1DU36PL9UWw+fVfbhs9p\/2tVqfZQ9SP\/Qv3l0aOyAWJ5PBuCaCEBeIgABXa+4olbbDp9T9uGz2nbkrEqr61utT4+L1NgBsRo3IFZ3pUXzWA4AbRCAvEQAAszV2GToy1Plyr4wOrQnv9Rzib0khQYHaNRNvTQ2PVbjBsbqppgI7kYNgADkLQIQ4FvKq+v1t6\/PKftQcyAqctW2Wp\/cM+zClWWxyugfo0h7kEmVAjATAchLBCDAdxmGocNnKj1zhz7LO6+6xot3ow4KsGlEak+NG9gciAYn8qwywCoIQF4iAAH+o7quQTuOlSj70FltPXJOeedaX2ofG2XX2PRYjR0QozHpsTyiA+jGCEBeIgAB\/utESZVndCjn6xJVX3Kpvc0mDUvuoYx+vTQ82amhyT2U5AxlhAjoJghAXiIAAd2Du6FRu0+UNk+mPnRWXxVVtNmmV0SIhiY7Nax3cyAaluxUvCPUhGoBeIsA5CUCENA9nXHVauvhs\/o8v1T7TpbrUFGFGpra\/nMWF2XXsGSnhvZuDkRDejsVG8VdqgFf160D0NKlS\/XOO+\/oq6++UlhYmDIyMvTSSy9p4MCBnm1mzZqlVatWtfrcyJEjtWPHjnb9DgIQYA219Y36qqhCuafKlXuyTPtOlutIcaUaLxOKEp2hGtrb2RyMkntoaG8n84kAH9OtA9CUKVP0yCOP6M4771RDQ4MWLVqk3NxcHThwQBEREZKaA9CZM2e0cuVKz+dCQkIUHR3drt9BAAKsq6auUQcKXc2B6FS5ck+W6+jZSl3uX73knmGtR4qSnHKG87R7wCyd\/f1t6g02NmzY0Gp55cqViouL0+7duzV27FhPu91uV0JCQleXB8DPhYUEakRqT41I7elpq3I3aP9pl\/adLLswWlSuY+eqdLK0RidLa\/RRbpFn2769wpvnEvV2amiyU7ckORQVSigCOothGCqvqdcZl1vHTp\/r1N\/lU3cYKy8vl6Q2oztZWVmKi4tTjx49NG7cOP3qV79SXFzcZffhdrvldrs9yy6X67LbAbCmCHuQ7kqL1l1pF\/+dcdXW68sLYahlpCj\/fLWOlzS\/3v\/itKTmK8\/SYiJaTbK+Jcmh8BCf+qcU8DmGYajS3aAzLreKXbU6U1GrMy63zrhqVXzhZ0tbXUPzvcCa3NWdWpPPTII2DEPTpk1TaWmptm3b5mlfu3atIiMjlZqaqry8PD333HNqaGjQ7t27Zbe3nciYmZmpxYsXt2nnFBiA61FWXdc8QtQSjE6W61RZTZvtAmxS\/7hIDe3dQ0N6O9Q3JkIpPcOU3DOcZ5zBEqrrGjxhpiXQFF8acCqaf156G4tr6RkerOjgRm1+9t7uOQfoUrNnz9aHH36o7du3Kzk5+YrbFRYWKjU1VWvWrNGMGTParL\/cCFBKSgoBCIDXSirdFwPRhZ\/ffJTHpWKj7EruGaaUnuHNP6PDPe+TeoQpJCigC6sHrk9tfaPOVrQEm4ujNMXfCDsV7oZ27zMqNEjxjlDFO+yKjwpVXMv7Cz\/jokIVG2VXaHBg954D1GLu3Ll67733tHXr1quGH0lKTExUamqqjhw5ctn1drv9siNDAOCtXpF2jR8Yp\/EDL56CL3bVKvdU8wjRgUKXCs5X62RpjSrdDTpb4dbZCrf25Je12VeATUpwhCq5Z7iSo5tHjFIuhKTknmFKdIYpMICbOqLjGIahqrpGlVS6VVJVp5LKOp2vcutc5cX3JVV1zQGnolZl1fXt3nd4SKASHKGK84SZUMVF2ZsDTlRzW5zD7lOni02txDAMzZ07V+vWrVNWVpbS0tKu+ZmSkhIVFBQoMTGxCyoEgKuLc4Tqbkeo7r453tPWMpHzZGmNCs5Xq6C02vP+ZGmNCkqrVVvfpNPltTpdXqvPjrfdb1CATYk9QpXSM7zVCFLLz9hIuwIISJZXXdegkso6lVRdDDPnq+qaQ86F9pIqt85X1ulcVZ1nfk172YMCLo7OOEIVH3VxxObSsOOPDy02teLZs2dr9erVevfddxUVFaWiouarL5xOp8LCwlRZWanMzEx95zvfUWJioo4fP65nn31WMTExeuihh8wsHQCuyGazqUd4iHqEh2hIb2eb9YZh6FxlnU6WVqugtKb55\/nmnydLa3SqtEZ1jU0qOF+jgvM1kkra7CMkKEDJPcKUHB3umXOUcslIUnRECI8F8UO19Y3NYaayTucuBJeSqktHbJrDTUvQqalv\/7yaFmHBgeoVGaJeESHqFWlXdESIekWGKCai+b0n2ESFyhEW1G2PI1PnAF2pU1euXKlZs2appqZG06dP1549e1RWVqbExERNmDBBv\/jFL5SSktKu38F9gAD4m6YmQ2cqaluPGl0yklRYXnvZGzxeKjwkUDGRdkWFBinSHqSo0GA5QoOal0Obl6NaftqDLr6\/sD4yJIgRpuvQ1GSoqq5BVe5GVbobVHXhVeluUFVdgyrdja3b3Be3ddXWe8JN5XXMp2kREhSgmG+EmZZw08uzfHGdL52GuppufSPErkAAAtDd1Dc2qai8tjkQXRg5KrgkLJ2pqL3szR6vh80mRYZcDEaRoa1DUpvQZL\/43nHJ9sGBvjnR2zAM1dY3ecKIJ5RcIay0aftG2LmeK5yuJTjQ1iqwXDpSExMZougI+8URm8gQRYQEdstRGktMggYAtF9wYEDzFWXR4VK\/tuvdDY06VVqj0up6VdTWq6K24cKrXpXu5vcuT\/vFtpbl+kZDhiFVuBuar\/Apv\/KVbtcSGhygqNBghYdcvCWAYUiGjIvvLwlrLf+f3NDFdkPGJe9b2i\/5\/CWfvfi+9b7U6vOGauobdY1BtBsSGGBTREigIu1Birjwan4feMn7Cz9DmtscYcEXR2wiQxRl776nnXwJAQgAuhl7UKBuio28oc8ahiF3Q5MnDLUEo0p3vVyXhKSK2gZV1jaowl1\/IVBdCFMXtmmZm1Jb36Taevc1fqt5bDYpIuRCQAlpCS2XCTAhrdsvrm\/dZg8KILz4CQIQAMDDZrMpNDhQocGBio268VuK1Dc2ecJQhbteNRdOEV3MBjbZbFLLos1mu+S91LLUsr3n54XPXbrdxXVt93+xvfX+w4KbR1\/CggOZ62RRBCAAQIcLDgxQz4gQ9YwIMbsU4LJ8c3YaAABAJyIAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyyEAAQAAyzE1AC1dulR33nmnoqKiFBcXp+nTp+vQoUOttjEMQ5mZmUpKSlJYWJjGjx+v\/fv3m1QxAADoDkwNQNnZ2Zo9e7Z27NihTZs2qaGhQZMnT1ZVVZVnm5dfflnLli3T8uXLtXPnTiUkJGjSpEmqqKgwsXIAAODPbIZhGGYX0eLs2bOKi4tTdna2xo4dK8MwlJSUpHnz5mnBggWSJLfbrfj4eL300kt68sknr7lPl8slp9Op8vJyORyOzv4TAABAB+js7++gG\/nQCy+8cNX1\/\/Iv\/3JDxZSXl0uSoqOjJUl5eXkqKirS5MmTPdvY7XaNGzdOOTk5lw1Abrdbbrfbs+xyuW6oFgAA0H3dUABat25dq+X6+nrl5eUpKChI\/fr1u6EAZBiG5s+fr29961saMmSIJKmoqEiSFB8f32rb+Ph4nThx4rL7Wbp0qRYvXnzdvx8AAFjHDQWgPXv2tGlzuVyaNWuWHnrooRsqZM6cOdq3b5+2b9\/eZp3NZmu1bBhGm7YWCxcu1Pz581vVlZKSckM1AQCA7qnDJkE7HA698MILeu655677s3PnztV7772nLVu2KDk52dOekJAg6eJIUIvi4uI2o0It7Ha7HA5HqxcAAMClOvQqsLKyMs88nvYwDENz5szRO++8o82bNystLa3V+rS0NCUkJGjTpk2etrq6OmVnZysjI6PD6gYAANZyQ6fAfvOb37RaNgxDhYWFeuuttzRlypR272f27NlavXq13n33XUVFRXlGepxOp8LCwmSz2TRv3jwtWbJE6enpSk9P15IlSxQeHq5HH330RkoHAAC4scvgvzlSExAQoNjYWE2cOFELFy5UVFRU+375FebxrFy5UrNmzZLUHK4WL16s3\/3udyotLdXIkSP129\/+1jNR+lq4DB4AAP\/T2d\/fPnUfoM5AAAIAwP909vc3zwIDAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWQwACAACWY2oA2rp1qx544AElJSXJZrNp\/fr1rdbPmjVLNput1WvUqFHmFAsAALoNUwNQVVWVhg8fruXLl19xmylTpqiwsNDz+uijj7qwQgAA0B0FmfnLp06dqqlTp151G7vdroSEhC6qCAAAWIHPzwHKyspSXFycBgwYoCeeeELFxcVX3d7tdsvlcrV6AQAAXMqnA9DUqVP19ttva\/PmzXr11Ve1c+dOTZw4UW63+4qfWbp0qZxOp+eVkpLShRUDAAB\/YDMMwzC7CEmy2Wxat26dpk+ffsVtCgsLlZqaqjVr1mjGjBmX3cbtdrcKSC6XSykpKSovL5fD4ejosgEAQCdwuVxyOp2d9v1t6hyg65WYmKjU1FQdOXLkitvY7XbZ7fYurAoAAPgbnz4F9k0lJSUqKChQYmKi2aUAAAA\/ZuoIUGVlpY4ePepZzsvL0969exUdHa3o6GhlZmbqO9\/5jhITE3X8+HE9++yziomJ0UMPPWRi1QAAwN+ZGoB27dqlCRMmeJbnz58vSZo5c6ZWrFih3NxcvfnmmyorK1NiYqImTJigtWvXKioqyqySAQBAN+Azk6A7S2dPogIAAB2vs7+\/\/WoOEAAAQEcgAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMsxNQBt3bpVDzzwgJKSkmSz2bR+\/fpW6w3DUGZmppKSkhQWFqbx48dr\/\/795hQLAAC6DVMDUFVVlYYPH67ly5dfdv3LL7+sZcuWafny5dq5c6cSEhI0adIkVVRUdHGlAACgOwky85dPnTpVU6dOvew6wzD02muvadGiRZoxY4YkadWqVYqPj9fq1av15JNPdmWpAACgG\/HZOUB5eXkqKirS5MmTPW12u13jxo1TTk7OFT\/ndrvlcrlavQAAAC7lswGoqKhIkhQfH9+qPT4+3rPucpYuXSqn0+l5paSkdGqdAADA\/\/hsAGphs9laLRuG0abtUgsXLlR5ebnnVVBQ0NklAgAAP2PqHKCrSUhIkNQ8EpSYmOhpLy4ubjMqdCm73S673d7p9QEAAP\/lsyNAaWlpSkhI0KZNmzxtdXV1ys7OVkZGhomVAQAAf2fqCFBlZaWOHj3qWc7Ly9PevXsVHR2tPn36aN68eVqyZInS09OVnp6uJUuWKDw8XI8++qiJVQMAAH9nagDatWuXJkyY4FmeP3++JGnmzJl644039Mwzz6impkZPP\/20SktLNXLkSG3cuFFRUVFmlQwAALoBm2EYhtlFdCaXyyWn06ny8nI5HA6zywEAAO3Q2d\/fPjsHCAAAoLMQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOX4dADKzMyUzWZr9UpISDC7LAAA4OeCzC7gWm655RZ98sknnuXAwEATqwEAAN2BzwegoKAgRn0AAECH8ulTYJJ05MgRJSUlKS0tTY888oiOHTtmdkkAAMDP+fQI0MiRI\/Xmm29qwIABOnPmjH75y18qIyND+\/fvV69evS77GbfbLbfb7Vl2uVxdVS4AAPATNsMwDLOLaK+qqir169dPzzzzjObPn3\/ZbTIzM7V48eI27eXl5XI4HJ1dIgAA6AAul0tOp7PTvr99\/hTYpSIiIjR06FAdOXLkitssXLhQ5eXlnldBQUEXVggAAPyBT58C+ya3262DBw9qzJgxV9zGbrfLbrd3YVUAAMDf+PQI0M9+9jNlZ2crLy9Pn376qb773e\/K5XJp5syZZpcGAAD8mE+PAJ08eVLf+973dO7cOcXGxmrUqFHasWOHUlNTzS4NAAD4MZ8OQGvWrDG7BAAA0A359CkwAACAzkAAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAlkMAAgAAluMXAej1119XWlqaQkNDNWLECG3bts3skgAAgB\/z+QC0du1azZs3T4sWLdKePXs0ZswYTZ06Vfn5+WaXBgAA\/JTNMAzD7CKuZuTIkbr99tu1YsUKT9vNN9+s6dOna+nSpdf8vMvlktPpVHl5uRwOR2eWCgAAOkhnf38HdfgeO1BdXZ12796tn\/\/8563aJ0+erJycnMt+xu12y+12e5bLy8slNXckAADwDy3f2501TuPTAejcuXNqbGxUfHx8q\/b4+HgVFRVd9jNLly7V4sWL27SnpKR0So0AAKDzlJSUyOl0dvh+fToAtbDZbK2WDcNo09Zi4cKFmj9\/vme5rKxMqampys\/P75QOtBKXy6WUlBQVFBRwOtEL9GPHoS87Dn3ZMejHjlNeXq4+ffooOjq6U\/bv0wEoJiZGgYGBbUZ7iouL24wKtbDb7bLb7W3anU4nB2MHcTgc9GUHoB87Dn3ZcejLjkE\/dpyAgM65XsunrwILCQnRiBEjtGnTplbtmzZtUkZGhklVAQAAf+fTI0CSNH\/+fD3++OO64447NHr0aP3+979Xfn6+nnrqKbNLAwAAfsrnA9DDDz+skpISvfDCCyosLNSQIUP00UcfKTU1tV2ft9vtev755y97WgzXh77sGPRjx6EvOw592THox47T2X3p8\/cBAgAA6Gg+PQcIAACgMxCAAACA5RCAAACA5RCAAACA5XTrAPT6668rLS1NoaGhGjFihLZt22Z2ST4vMzNTNput1SshIcGz3jAMZWZmKikpSWFhYRo\/frz2799vYsW+Y+vWrXrggQeUlJQkm82m9evXt1rfnr5zu92aO3euYmJiFBERoQcffFAnT57swr\/CfNfqx1mzZrU5RkeNGtVqG\/qx+bFAd955p6KiohQXF6fp06fr0KFDrbbhmGyf9vQlx2X7rFixQsOGDfPcKHL06NH6+OOPPeu78pjstgFo7dq1mjdvnhYtWqQ9e\/ZozJgxmjp1qvLz880uzefdcsstKiws9Lxyc3M9615++WUtW7ZMy5cv186dO5WQkKBJkyapoqLCxIp9Q1VVlYYPH67ly5dfdn17+m7evHlat26d1qxZo+3bt6uyslL333+\/Ghsbu+rPMN21+lGSpkyZ0uoY\/eijj1qtpx+l7OxszZ49Wzt27NCmTZvU0NCgyZMnq6qqyrMNx2T7tKcvJY7L9khOTtaLL76oXbt2adeuXZo4caKmTZvmCTldekwa3dRdd91lPPXUU63aBg0aZPz85z83qSL\/8PzzzxvDhw+\/7LqmpiYjISHBePHFFz1ttbW1htPpNP793\/+9iyr0D5KMdevWeZbb03dlZWVGcHCwsWbNGs82p06dMgICAowNGzZ0We2+5Jv9aBiGMXPmTGPatGlX\/Az9eHnFxcWGJCM7O9swDI5Jb3yzLw2D49IbPXv2NP74xz92+THZLUeA6urqtHv3bk2ePLlV++TJk5WTk2NSVf7jyJEjSkpKUlpamh555BEdO3ZMkpSXl6eioqJW\/Wq32zVu3Dj69Rra03e7d+9WfX19q22SkpI0ZMgQ+vcbsrKyFBcXpwEDBuiJJ55QcXGxZx39eHnl5eWS5HmwJMfkjftmX7bguLw+jY2NWrNmjaqqqjR69OguPya7ZQA6d+6cGhsb2zwwNT4+vs2DVdHayJEj9eabb+ovf\/mL\/vCHP6ioqEgZGRkqKSnx9B39ev3a03dFRUUKCQlRz549r7gNpKlTp+rtt9\/W5s2b9eqrr2rnzp2aOHGi3G63JPrxcgzD0Pz58\/Wtb31LQ4YMkcQxeaMu15cSx+X1yM3NVWRkpOx2u5566imtW7dOgwcP7vJj0ucfheENm83WatkwjDZtaG3q1Kme90OHDtXo0aPVr18\/rVq1yjOhj369cTfSd\/Rvaw8\/\/LDn\/ZAhQ3THHXcoNTVVH374oWbMmHHFz1m5H+fMmaN9+\/Zp+\/btbdZxTF6fK\/Ulx2X7DRw4UHv37lVZWZn+\/Oc\/a+bMmcrOzvas76pjsluOAMXExCgwMLBNGiwuLm6TLHF1ERERGjp0qI4cOeK5Gox+vX7t6buEhATV1dWptLT0itugrcTERKWmpurIkSOS6Mdvmjt3rt577z1t2bJFycnJnnaOyet3pb68HI7LKwsJCVH\/\/v11xx13aOnSpRo+fLh+\/etfd\/kx2S0DUEhIiEaMGKFNmza1at+0aZMyMjJMqso\/ud1uHTx4UImJiUpLS1NCQkKrfq2rq1N2djb9eg3t6bsRI0YoODi41TaFhYX68ssv6d+rKCkpUUFBgRITEyXRjy0Mw9CcOXP0zjvvaPPmzUpLS2u1nmOy\/a7Vl5fDcdl+hmHI7XZ3\/TF5g5O2fd6aNWuM4OBg4z\/+4z+MAwcOGPPmzTMiIiKM48ePm12aT\/vpT39qZGVlGceOHTN27Nhh3H\/\/\/UZUVJSn31588UXD6XQa77zzjpGbm2t873vfMxITEw2Xy2Vy5earqKgw9uzZY+zZs8eQZCxbtszYs2ePceLECcMw2td3Tz31lJGcnGx88sknxueff25MnDjRGD58uNHQ0GDWn9XlrtaPFRUVxk9\/+lMjJyfHyMvLM7Zs2WKMHj3a6N27N\/34DT\/+8Y8Np9NpZGVlGYWFhZ5XdXW1ZxuOyfa5Vl9yXLbfwoULja1btxp5eXnGvn37jGeffdYICAgwNm7caBhG1x6T3TYAGYZh\/Pa3vzVSU1ONkJAQ4\/bbb291ySIu7+GHHzYSExON4OBgIykpyZgxY4axf\/9+z\/qmpibj+eefNxISEgy73W6MHTvWyM3NNbFi37FlyxZDUpvXzJkzDcNoX9\/V1NQYc+bMMaKjo42wsDDj\/vvvN\/Lz8034a8xztX6srq42Jk+ebMTGxhrBwcFGnz59jJkzZ7bpI\/rRuGwfSjJWrlzp2YZjsn2u1Zccl+33\/e9\/3\/O9HBsba9x9992e8GMYXXtM2gzDMK5vzAgAAMC\/dcs5QAAAAFdDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAAIAAJZDAALgV86ePauEhAQtWbLE0\/bpp58qJCREGzduNLEyAP6EZ4EB8DsfffSRpk+frpycHA0aNEi33Xab7rvvPr322mtmlwbATxCAAPil2bNn65NPPtGdd96pL774Qjt37lRoaKjZZQHwEwQgAH6ppqZGQ4YMUUFBgXbt2qVhw4aZXRIAP8IcIAB+6dixYzp9+rSampp04sQJs8sB4GcYAQLgd+rq6nTXXXfp1ltv1aBBg7Rs2TLl5uYqPj7e7NIA+AkCEAC\/80\/\/9E\/6n\/\/5H33xxReKjIzUhAkTFBUVpQ8++MDs0gD4CU6BAfArWVlZeu211\/TWW2\/J4XAoICBAb731lrZv364VK1aYXR4AP8EIEAAAsBxGgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOUQgAAAgOX8\/0tIVApx8v+kAAAAAElFTkSuQmCC", "text\/plain": "<Figure size 640x480 with 1 Axes>"}, "metadata": {}, "output_type": "display_data"}]}}, "29a880f5e6de435795b50f46a66a942e": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "29adfb5bcde241fc8e8984961ab42ea5": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "2c2ed815b0f545a9948793c1bc4b5fdf": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": {"_dom_classes": ["widget-interact"], "children": ["IPY_MODEL_68fb9a92340e434d85fbcc8de67c1970", "IPY_MODEL_47b1a57cdbeb4a11abc8e9166acedb90"], "layout": "IPY_MODEL_6373a42bb1db4fb4aa1cf6ffaac1075e"}}, "2df005db5f0d49dda9dd0c4e6e958c48": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": {"description_width": ""}}, "2f094b8f56ff4ac3b16dacdf8948dda6": {"model_module": "@jupyter-widgets\/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": {"layout": "IPY_MODEL_66636bdd455c4d54a22c62b30195f3fb", "outputs": [{"data": {"image\/png": "iVBORw0KGgoAAAANSUhEUgAAAZ4AAAGRCAYAAABVKtXaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy\/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eXwkd33njz+r+u5Wd+uWRhodc2jusWfGY89Yg7ltYHcTAjiwgYWQza6TDUuA7DfJkoX8YAkkQDYYCOGb7BIMvyTgZVkHEgixCWDwBfbY0twajUb3LbVafR91fP\/oqZ7uVld1dUsjyaZej4cfIE1VdXWr6\/P6vN\/v1\/v1FlRVVbFgwYIFCxY2CeJW34AFCxYsWPj5gkU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGPBggULFjYVFvFYsGDBgoVNhUU8FixYsGBhU2ERjwULFixY2FRYxGNhS6Cq6lbfggULFrYI9q2+AQs\/X1BVlWw2SyqVwmazYbfbsdls2Gw2BEHY6tuzYMHCJkBQra2nhU2Coihks1lkWSadTgM5Ikomk6TTadra2iwismDh5wBWxGPhlkNVVWRZZmRkBKfTSXt7O6IoIooiqqoSjUZZWFigoaGBdDqNIAiIoojdbreIyIKFlyAs4rFwS6Gl1mRZJhKJ4Ha7mZiYYHp6mkAgQENDA7IsA2C321FVNf9fOp0mk8kAWERkwcJLCFaqzcItgyzLZLNZFEVBFEXOnTtHJBJBkiR6enpIJBKsrKwQj8cRRZGOjg4aGhqor6\/H4XAAFBGRoigA+YjI4XDk60SiKFpEZMHCiwRWxGNhw6GqKpIkIUkSqqoiiiLhcJiFhQVcLhd33303kCMQQRCYmppiamoKVVUZGRkhkUjg9\/upr6\/PE5EW6RQSUSqVyl9HIyLtOIuILFjYvrCIx8KGQlEUJEnKp88EQWBkZITR0dE8mTidznwKDXIpNofDwf79+wFIp9OsrKwQDocZHh4mlUqtISIt3aZHRFokZBGRBQvbDxbxWNgQaKmwbDaLqqoIgkA6nebcuXOkUilOnTrF1NRU2cVfEISivh6Xy0V7ezvt7e0ApFIpVlZWWFlZYWhoiHQ6na8P1dfXEwwG1xCRoigWEVmwsE1hEY+FdaMwtQa5hX5xcZHz58\/T2trKiRMnsNvtawhGQyUCcLvd7Nixgx07dgCQTCbzRDQ7O0smkyEYDFYkonQ6TSqVyivqLCKyYGFrYBGPhXWhsDdHW7ivXLnC1NQUhw8fpqOjo+h4PS1LNRoXj8eDx+Oho6Mj3wekEdH09DSSJOWJqKGhAb\/fj81my7+OJu\/W+olmZmZob2\/H6\/XmIyOt\/mTBgoWNh0U8FmqCtnhLkpRXrSUSCQYHBwHo7+\/H5\/MVnSMIAoqirFnQ9SIhMxAEAa\/Xi9frpbOzE1VV82q5lZUVJicnURSliIjq6uqw2+359zEyMkJDQ0OebMql5iwismBh42ARj4WqUdibA7kem5mZGS5dukRXVxf79u1DFNfaABYSTOEivpELuiAI+Hw+fD4fO3fuRFVV4vF4nojGx8dRVTUvVGhoaEBVVWw2Gw6HIx8RSZJENpvVJaJy78+CBQvmYBGPhaqgKAqZTCYf5ciyzKVLl1hcXOTYsWO0tLTonmsU2dyqdjJBEKirq6Ouro6uri5UVSUWi+WJaHR0FIChoSGam5tpaGjA5\/MVRUR6RKT1EVlEZMFCdbCIx4IpaKk1TbUmiiKRSITBwUHcbjdnzpzB7XYbXsNIXLBZfcyCIOD3+\/H7\/XR3d6MoCo8\/\/jh1dXUsLy8zMjKCzWbLCxUaGhrwer26RATlXRUsIrJgQR8W8VioiNLUmiAIjI+PMzw8zO7du9m9e7epdFmtqrZbCU3N1tnZidfrRVEUIpEIKysrLC4ucu3aNex2exEReTyeNUSUzWYN7X0sIrJg4SYs4rFgiMIoRxAEstks58+fJxqNcvLkSRoaGkxfy4hgtotzkyiK1NfXU19fD5D3mFtZWWF+fp6rV6\/idDrXEJFGLIX9TFpEJAhCERFpqjkLFn5eYRGPhbLQ0kmXL1+mrq6Ojo4OQqEQ586do76+njNnzuT91MxiO6Ta9KD3+lraTSNYWZZZXV1lZWWFmZkZhoaGcLlc+WMaGhpwuVxF19WIKJPJ5GtEGhEVquYsWPh5gUU8FtZAWygVRSGRSOBwOLh27RpjY2Ps37+frq6umhbK7Uw8ZmGz2WhsbKSxsREASZLyRDQ5OcmlS5fweDxFROR0OvPnlxIRwPLyMm1tbbhcLst528LPBSzisZBH4aKoqdZUVWViYgKbzcbp06fx+\/3rfo1SvJgXWbvdTlNTE01NTUCOiMLhcF66ffHiRXw+X5HPXCERZbNZLl26RH19PZIkWbOILPxcwCIeC0D53pyFhQUWFxfx+\/2cOnUq3\/1fK7ZCTr3ZsNvtNDc309zcDOSIRSOi0dFR4vE4dXV1eSKqq6vLn6d9vppk3RqKZ+GlCot4LBTZ3oiiiKIoXLlyhZmZmXy6aL2kAy+NVFu1cDgctLS05PubMplMnoi0ERAA169fp7GxMT8CAm6SsUVEFl5qsIjn5xjlbG\/i8TiDg4OIokh\/fz+jo6MbRgoawUiSxMTEBF6vN29Vs5XYzNd3Op20trbS2toKQDwe56c\/\/SmSJBWNgNDSctoICCgmIms6q4UXMyzi+TlFud6c6elpLl++THd3N319ffkeF23y53qhybGfeuop7HY7kiSRSqXwer1IkkQoFMo7S\/+8QFMG7t+\/H5vNVtMIiHJjwq3prBa2Myzi+TlE6UhqSZK4ePEioVCI48eP5+sTsHFpMFVVCYVCrK6u0tfXx86dO4Hc0LfZ2VnGxsa4fPky2Wx2jbP0z0PzpUYMlUZAZLNZU0RkTWe1sJ1hEc\/PEUrn5oiiyOrqKoODg3i9Xs6cOVPUg6Ido0VFtSKbzXLhwgVCoRB+v5\/du3fnm1Ldbjetra1MTEzQ399ftNBqztKFhp51dXUvqUWzEqkbjYCYmppCluWyIyCs6awWtjMs4vk5QaFMWsPY2BjXrl1jz5497Nq1y9R00GoRDocZHBykrq6Ovr4+Zmdnyx6nOSOUjjgoNfTUnAW0hdbr9W7IornV4gazlkO1jICoNJ1VURTsdjsej8ciIgubAot4XuIoN5I6k8lw\/vx54vE4d955Z94ephxqrfGoqpontr1799Lb28vs7GxVqrZyhp7RaLTIR83hcBQ1a1YyKt1uWA\/h1TICoq6uDlEUi4hIswHq6emxprNa2BRYxPMSRjkBwfLyMufOnaOxsZH+\/v6KtjdaE2k10IgtGo0WEdt6TUJFUSQYDBIMBunt7S3yUZuenubKlSu43W5d14DtjI1Y2MuNgIhGo0V9RIIgFPnMacP6tPRb6XTWcvJti4gsrBcW8bxEUdqbo+1sJyYmOHjwIJ2dnetylNbDysoKg4ODBAKBNX5uG91AWuijtnv3bl3XgEIi0npktgtuZYpPEAQCgQCBQGBNxFg4AkITmCQSibIjIDTJvTWd1cJGYXs9hRbWjXK9OclkksHBQWRZ5u677853y5uBWeJRVZXR0VFGRkbo6+ujp6en7IhrvdfQrrGeBazUNaC0WTOZTOZ7ZBoaGraNdHuzFu3CiBHIj4AYGhoiHo\/z7LPPmhoBUWk6q0VEFirBIp6XEFRVJRKJMDc3R3d3N6IoMj8\/z4ULF+jo6Mj3ilQDMzWeXGptEEhy11135Rc2s9faKOIpRWmzZjqdJhQKsbKywuXLl8lkMgSDwXxKyuv1brp0eytFDZpQw+v1Ul9fT0dHRz51OTc3VzQCQiOj0hEQ1nRWC7XAIp6XCLTenFgsxtjYGF1dXVy6dIn5+XmOHDlCe3t7TdetVOMJhUJcvXqO48fdOF0dCJQnHVi7s9eIZrN2xy6XK98jUyhNXl1dZXh4mKtXr66RJm\/GvW11dKD9HYxGQGg1tHIjICoRkTUUz0IpLOJ5kaOwN0dVVWw2G7Is8\/TTT2O32+nv78fj8dR8fb1Um6qqXL9+nURinLv7vdhsKoqcxSg4qpS228zdf6E0eWRkhOPHjyMIQl4RNjY2li\/Eb7R0uxBbLePW7qHc+6p1BEQpEVnTWS2UwiKeFzEURUGSpCLV2uLiItlslu7ubvbs2bPuh7ocWaTTac6fH2RnV4b9BzzAjX8X0lVfS\/s9bO0iXKoIUxSFWCxGKBRaMwJb+289hF762lsJRVFM3UOtIyDKTWctNxTPIqKfH1jE8yJEud4cSZLy7gCiKNLX17chr1Val1leXmZ4+DzHT7jx+Wwlx6Yr1mm26zye0vsSRTGvCOvt7UVRlPxuf3Z2tuLk0RcTaq2tVTsCor6+vkjlWPg9vnbtGm63m\/b2dmtM+M8BLOJ5kaHU9kYQhLw7gN\/v58SJEzz77LMb9npajUdVVUZGRkilJuk\/40EUyxGIgiJnsNnLL8DbKdVWLURRLKp\/lEs7FUq3SxdZPWy0oKIWbNQ9mBkB4ff7i4hIU8wlk8n8\/y+MiLRm10KxwlZ\/XhbWD4t4XkQo7M3R0hTXr1\/n+vXreQlzKpVCUZQNW0wEQUCWZZ577md090gcOOgmn1ore3waqI54tkOqrVqUpp0Kd\/vXr18nHo8XSbcLxxtsN9wq8iunKtRqaKUjILT\/X\/gZlUvNWUT00oBFPC8ClOvNydVZzpNMFkuYN1qaHI1GUdUEtx8L4PVWzr0LQsbg34z7eF7MKN3tFy6ypeMNtB4iLZrc6ve\/Wffgcrlob2\/PKywLR0DEYjEikQhLS0trnLe1ewTKEpE1i+jFB4t4tjnKjaReWlri\/PnzNDc3c\/z48aJu\/MJC7nqgKArXrl0jk53iZff4sNtN+rUZCAxezKm2alG6yBa6Ss\/MzCBJEsFgEJ\/Pt6ERai3YqtcuHAGRTCZpbm7G4XAUfUaFZB0IBMoSkTWd9cUHi3i2MbSHSotyVFVlaGiIyclJDh06RGdn55pzNOJRFKXm1E4qleL8+QF6d8ns2FGdcqtSxKMtcuFwOG\/pstWpts1YmErHG2iu0gsLC8iyzE9+8pMiM0+fz7dpC+Z2iLrgJllXOwICrOmsLzZYxLMNoaXWNNWaKIokEgkGBwdRVZX+\/v68uWMptIeq1qmhi4uLjIyc58iROuobqieCnLJN799yCrkLFy4wNzeXX\/C0gn0ikcDlcr3kF4ZCV+lAIMDg4CC33377Gg+1Uun2rfpctgPxaJsrDbWMgNCbRWRNZ91+sIhnm6Fcam12dpZLly7R2dnJ\/v37Dfscak21KYrC8PAwsjJD\/xkvgmADqh8AZ0Q8qVQKWZaJRqOcOnUKm82Wt\/FfXFxkcHAQp9NJY2Pji16ibBbaoq9Jt3t6evIeaisrK8zPzxdZ12ifzUZ+LtuBeLQNlh42agSENZ11e8Ainm2E0pHUsixz+fJlFhYWuO222\/LqICNoardqIp5kMsn58wPs3qPQ3p5TralqFlWFap9BvVTb3Nwc58+fB+DUqVN5633NtHJ0dJSTJ0+SyWTKSpQbGxuL5LcvJZQudJqHWn19Pbt27SqyrtE+F6\/XWxQRmZFu62E7EI\/ZJlYNtY6AMCIirWm4tbXVIqJbjJfeU\/wiRGlvjiiKRKPRfARw5syZqgacVUM8CwsLjI5e4I6TPgpfQhBUVNUBZKt5KwiiRDaZxuHM7cgVRWFoaIjp6Wn27dvHlStXEEVxzf1pu89SiXI5+a2269eUYRuBraovmXndQuuaPXv2rGnUvHDhAnV1dUXS7WoIulK0sRkoTbVVC7MjIAqJSDOF1YgoHo9z7tw5Xvayl+WvaY0JvzWwiGeLUTqSWhAEJiYmuHr1Krt27WLPnj1Vf9HNDG9TFIWrV68Cc9zd70UUyxCVagehOuIBUNVcL08ymWRgYCBflwK4fPly2XPKvUeHw1HUB5JKpfLu0prqqb6+Pk9EdXV1L8pFodp7LteoaUTQhWqwctguEc9Gkp\/eCAhN0FFqgVRfX58X5Dgcjnw0VDgm3JrOunGwiGeLoH2pp6enWVxc5PDhw2SzWS5cuEAkEuGOO+7ImzNWi3IRRSESiQQXLgyyd69Ka5sLvYZQFRu1PFKikGFhYYHz58\/T3t7OgQMHsNlsJJPJ3HVvPNRrXq8CWbrdbjo6OvKqp8Ic\/+joaJG7wK0uyG8UNiLScjqdtLW10dbWBuRSp+FwmFAoVCTdLizCFy7y24F4bnXUVS59qRGRZoFkt9tRFIXZ2dn8CAigKDWnpYhTqZRFROuARTxbgEIBQTabzS+g586dIxAI0N\/fv66RzUaptvn5ecbGLnLyTh8uV6V0XG0P0MLiJBcvLXH48GE6OjqK7kv3lUwOnCs8vtTUMxqNEgqF8gX5Qi+1xsbGbTsGe6MXKk26rY1\/KFSDTUxMrCnCV1tfuRXY7HsoNwJiamqKsbGxqkZAlI4J11JzhT5zW\/3ZbkdYxLPJKB1JbbPZSCQSnD17ln379tHd3b3uL2q5VJuiKFy5cgWbfeGGaq02ubUZSHK87KRTo36djXjPWmpF29FqdZCJiYm8UEFLP20XocKtri2VU4PFYrGiSFGWZa5du0ZLS8uWRYpbXWey2Wz4fD7cbjcnT56seQSENZ3VHLb+yfs5gZ7tzcjICNlsltOnTxMIBDbktUojnkQiwfnzA+zbBy2t+qm1NdepQU4NsHNnM6K4drx2pUbRjVyEbTZbkVBBM6wMhUL5OojWFa+lPbcKm7kQCYKA3+\/H7\/fni\/CPP\/44Xq+X+fl5hoeHcTgcRQtsNcKWWqB9\/lu9IBfWmcp58WlEZHYEhDWdVR8W8WwCyvXmLC4ucv78eQKBAIqibBjpaNfXFtK5uTnGxi9y5511JlJrJRCkml7fZsuW7eWpFPHcyt1\/qWFlYVe8JEkMDAxsiVBhq22CtOi4q6sLj8dTduqo2+1es9PfSGifwVYvwkYCB4fDUdMICGs6a3lYxHOLUdqbo6oqV65cYXp6mkOHDuF2u\/P9LRsFrQfo4sWLOF1L3HVXPU6nvpWNPmrs5REzqGWCpVuZaqsWhRY2oVCIvr6+vDqsVKjQ2Ni4YUPfymErd\/ra30K7h3JTR8sNe9vIlKW2SdrqRVdLf5uBnrIwHA4bjoCwprPmYBHPLUK53px4PM7g4CCCINDf34\/X6yUcDm94mkdRFEZGhjhy1EVzs7PmXbUgqKiKverIRxAyyJKETWdB0svnb6VXm9frpb29PZ9+0hRPc3NzRUIFbcHdqF3\/Vkc8pcRTitJhb4Uzdq5du0YymSwa\/1DoKF3tPWz1Irsef8NSZaHRCAhNXVdILIVElEwmuXbtGvv378fpdGK321lZWSlS2r3YYRHPLUBpbw7AzMwMly5doquri3379uW\/cJWkz9ViZmYGuz3JyTvrChpCa4tcAFTVgUC1xAOZTAKPPVDy+61LtVVC4WuXk95q9SFt17+ehs1SbKeIpxJKU5aFow0uX75MJpMpkm4HAoGKhFLYw7aV2MheIqMREFeuXCGTyeRrjIUjILRsxcLCAgcOHCCbzZLNZnnLW97CAw88wLvf\/e4Nub+thkU8G4hyI6m1lNfy8jLHjh3Lh+YaNop4cvY6l3B7QvSf8VH4\/AgCqKoTqCHdJtS2AxTLWOdsp1RbNSgnVNAWkatXr+Zn7RQ2bG717t0sqiWeUhSONijnKK0oyhr\/tNLXeikSTylKP6dCIiodAaGpCgs3M1oN6aUCi3g2CKUCAkEQiEQiDA4O4vF46O\/vL6sO2gjiicViXLgwwKFDNhqbyqeAVNVuOLJAH7U9iKKoTzyl\/1\/7eavTTmZRrmFzZWWFUCi0ZrFtbGw0HHGw1c2b6yWeQpRzlC5t8tX807T\/vF5vPvW61cQjy\/KmTIkVBGHNmIxCwp6cnERVVV544QUmJiaoq6sjmUzqOtKbwR\/\/8R\/zB3\/wB7zvfe\/jwQcfBHJ\/+49+9KP81V\/9FSsrK5w6dYovfOELHD582PBa3\/zmN\/nwhz\/MyMgIe\/bs4eMf\/zhvetObqrofi3g2AKW9OQBjY2Ncu3aN3bt3s3v3bt2HShMc1Lrbmp6eZmbmCqdO1eFwGhFYrQ9UbaQoGBDPZsipNxOli0g8Hs9b+xQKFbSIaDvl6TeSeEqh1+SruZFrtjV+vz+\/+G7lZ3MrIx4jlBL2ysoKFy5coKWlhb\/7u7\/ja1\/7GqlUio9+9KOcP3+eV73qVZw4ccI0ST777LP81V\/9FbfddlvR7z\/1qU\/xZ3\/2Zzz00EPs27ePP\/qjP+Lee+9laGgIv99f9lpPP\/00b3vb2\/jYxz7Gm970Jh555BHe+ta38sQTT3Dq1CnT7\/nFkQ\/YptAEBJlMJk862WyW559\/nvHxcU6ePFnRa61wcFs1kCSJc+cGSaevcfpubwXSgVpdCJLJeE3nCWL5SaR6kc1W73Y3Ctpi293dze23384999zD0aNH8Xq9zM7O8swzz\/DUU09x5coV5ufnyWar98LbSNxK4imF1uTb29vL8ePHueeeezh8+HBeqKF9NpcvX2Zubi6v9tosbBXxlLsPh8PBzp07+fSnP83Y2Bh+v5977rmHJ598knvvvZd3vvOdpq4Vi8V4xzvewf\/8n\/8z79IAub\/7gw8+yH\/7b\/+NN7\/5zRw5coSvfOUrJBIJ\/u7v\/k73eg8++CD33nsvH\/zgBzlw4AAf\/OAHec1rXpOPoszCinhqRLnenFAoxLlz56ivr+fMmTOmrOprIZ5oNMrFiwMcOmynsdGsuqq2yMVmqy0KEcXyC6pGPJFIhEQiQWNjY76j+6U4gbRQqABr5cmxWAxRFBkeHs6PftiMdI+GzSSeUmi2Ndqzc+rUqXwPUaHbRKGIYz3jHypBluVb3ixr9j4KvwOiKBIOh\/mN3\/gN9u7dmxe7mMF73vMe\/vW\/\/te89rWv5Y\/+6I\/yvx8dHWVubo777rsv\/zuXy8UrXvEKnnrqKX7jN36j7PWefvppPvCBDxT97nWve51FPJuBcr05w8PDjI+Pc+DAAXbu3Gn6Qa6GeFRVZXp6mrm5IU6drsPhME8mglCbC4HLJaCq1XeVi2JGdyDc5OQkExMTOByOvAoqk8kQj8dpamp6yUQ\/5VAqT56enmZiYgJJkhgaGiKdTudVYY2NjWsMPTcaWo1pKz9zzbWgnFuAVvco7I0pJKKNJOntEvGUEo82QFETF2hil0r4+te\/zvPPP8+zzz675t\/m5uYA8nVKDW1tbYyPj+tec25uruw52vXMwiKeKlDYm6MVRFOpFIODg0iSxOnTp3Vzo3owSzySJHHx4gV8daucOl2L11ptKR1BUEmlVNzuKonHlkHKFhfONbKenZ3l5MmTuN3uvEJsZGSE0dFRxsfH19RDXupE5HQ6OXjwIJATKmj1oUKhgvZ5GAkVasFWixtAf8EvHYtR2BtTKklubGxct5pwuxJPPJ5Ld1ejapucnOR973sfjz76qGEUV\/q3N\/N9qOWcUljEYxKKopBMJjl37hy33347oigyPz\/PhQsXaG9v5+DBgzXvvmw2myHxRCIRLl4c4OhtDvx1jQhCrOrXEAQJVRUQhOrTWdmMSrUZCEFQSUSj+G5YAUUiEQYGBhAEgdtuu41AIEA2m80XVWdnZ\/O2LaUO09qi29jYeEtTLVuB0vSix+Ohs7MzrwrTDD21YWaFM2Q2QqiwHYjHrEFoYW9MoSQ5FAoxPT2NLMtF0m2\/31\/Ve9ssVVu196GlY6v5W589e5aFhQXuuOOOouv++Mc\/5s\/\/\/M8ZGhoCchHMjh078scsLCysiWgK0d7evia6qXROOVjEUwGFvTmSJLGwsIAkSVy7do3Z2VmOHDmSbxKrFXqSalVVmZycZHHpGnf3+7DbFdanvHYC5Yv+RpDk2hYmTb49NTXF5cuX2b17N6Ojo4bNltoUyd7e3qLGzbGxMS5evJhPtTQ2NtbUJb8dobc4ljP01Gog2gwZzUdNI+dqiXk7EE8tBqHlJMmF0m0tXVRIRJWixe0a8SQSiaoj3de85jVrrLh+7dd+jQMHDvD7v\/\/77N69m\/b2dh577DGOHz8O5PrTHn\/8cT75yU\/qXvfuu+\/mscceK6rzPProo\/lBj2ZhEY8BSm1vtAXzZz\/7GXa7PW97s16UIx5Jkrhw4TwNjTHuusuTT63VWqsBrZeneuIxaWZd5rQUFy5cYH5+nuPHj9Pc3KybPy4nLiht3NRSLaFQiMuXL5PNZgkGg3lvsfUYe27n0dcaCv3joFioUDgCu9BHrRIxbzdX6FpRKt1WVVV39LVG1G63u+i9b1fiicViVROP3+\/nyJEjRb\/z+Xw0NTXlf\/\/+97+fT3ziE\/T19dHX18cnPvEJvF4vb3\/72\/PnvOtd76Kzs5M\/\/uM\/BuB973sfL3\/5y\/nkJz\/JG9\/4Rr71rW\/x\/e9\/nyeeeKKq92gRjw4Ke3O04uvs7CwATU1NHDhwYMO+pKXEs7q6yuXLgxy9zUkwWPonWo\/8tsb7rXFdmp0dJRrNEbSWJliPnLo01ZJIJPL1kLGxsaJ+GW1heTGg1oW\/nI+a9nloNZBKQoXtEvFs9IIvCEI+eu7p6cn774VCoTX+e4UD8bYL8RRGrvF4fF3No3r4vd\/7PZLJJL\/1W7+VbyB99NFHi+rUExMTRZ9Jf38\/X\/\/61\/nQhz7Ehz\/8Yfbs2cPDDz9cVQ8PWMSzBuXm5uQK+xdZWVlBEAR6eno2fD68oiioqsrExATLoRFO3+3Fbi+3QNdeq6kVdlttC1Ow3sXuvSeLPiuNeMotdtVOINUGnGnNidrCUpiG0kjoVktxa8VGRlpOp7OImMt1wxcutD6fb1sQz2bcQ6msvXBQoDboTRCEfK2olrTlRqFU1q0Rz3o\/ox\/96EdFPwuCwEc+8hE+8pGPmD4H4P777+f+++9f171YxFOAcr05q6urDA4O4vP56O\/v5yc\/+cmGu0mLokgmk2Fg4AWamuPceaenArHUVquptZfHXuPz19TkW0PQRhHPehbhcv0yhVJczUVZS0MFg8FtsbuFW+caUGpfE4vFCIVCRUIFn8+HLMukUqktixC3ItIoTeNms1meeuopRFEsSlsW1hM3a2JtOVXbrYh4thIW8dyAoihkMpmih2B0dJSRkRH27t1Lb29vfoKgRkwb+dqjo1c4fsJLIFD5T1JrrSaVilNLScrppCZ3a9FW3jZnM5wL7HZ70byUQgXUzMxMXgHV2NiYt6TfCmzW6xYKFbTU0+rqKjMzMyiKwtNPP52PELWIaLN2\/Fs99hrIv9fe3l7q6uqKpNtaf5Um3daMYG+VsEWvxvNSws898WipNc1RWos+zp07RyKR4M4778zvouHmkLWNeu3x8XG8vjQnTvhwOMwuQrU9pC5XTadhswnIsojNVl3EJNoyKGU+qo1ItVWLUndgzU9teXmZTCbD+fPnaWpqyqfmXLV+WDVgK1JdWj1M8087efJkXkGo7fg3S0G4HQQO2n1o77F0rEFh2lJzky4c\/7CRjb7lIp6XkjM1\/JwTT7nU2vLyMufOnaOpqYnjx4+vCa8r9dyYRW6xO0dbW5K77vLWNCunWthsoKpiDc2n1EY8okIsHMfrv7lbu1WptmpQqIDq7u7mySefpKuri2w2y\/T0NJcvX85btWj1oVuVZtlqY1RtE1AqVCjc8RfO2dEioo1caLdDUV+rserdR6l0O5FI5D+fiYkJVFXdsEbfcnJqi3heIihne3P16lUmJiY4ePAgnZ2dZb84GxHx5FRHgxw77sbvr\/5PINRYq8nBCaSqPktRalsYZCkJlCceozEJmwktDaXJlAutWrTpkdq8nVthY7PVYxHKvX6pgrBw9IO20BZKk71eb83vY7sQD5ibgloobNm5c2dRo28oFOL69etF0vdqHTisVNtLEOVGUieTSQYHB1EUhbvvvttwd7GeiEdVVUZHR4lGx7i731d1BJHHunp5bLVFVzVuzEvn8hg9fFu9+9dQatVSzsamsGlzPYvuVsNMfaWcUEHrkVlaWipyVNA+k2qECtuhxqM907WkE8s1+mqj0zUHDqfTWURERp9P6QjueDxe5Cz9UsDPFfGUjqQWRZHZ2VkuXrxIR0cH+\/fvr\/jFq3VwWy61NsiOHWn27fcASu1TQWs6R0NtD3itlCDa1xLPVqfaqkWpjU3pTBmHw1Fk66PZ\/JvBVsuZa3n90h4ZWZbzUvbp6WmuXLmCx+MpWmiNhAqlC+1WoHCA43pRbnS65jihfT6FQo76+vqi70y5VFtXV9e672s74eeCeAptb7SwXlGUfFf90aNHTXsN1aJqC4VCDA2d4\/gJN3V1N79QtU4FFQTlxrlS1efWilrqQgA2W3HD64t9Hk+5RXd1dTWfgrp06VLV7gFbiY0gvkJHACiWshcKFQql7IWfiTZ\/ZiuhrQu34ntos9nyaVpY6zihiQe070vhQEnIRTwb4ZCynfCSJ55yAoJYLMbAwABOp7Ooq94Mqol4VFXl+vXrxOPj9J\/xlplts44FSXVADcRTa31IUbLUYmEgmiQe2D6ptmpQuqhobtuhUCjvHlA4BrvUuPLFGPFUQqmUXc\/qSPtMtoOqbTOjrnKOExpRX7t2DYALFy6wsrJCOp2uSdX2xS9+kS9+8YuMjY0BcPjwYf7wD\/+QN7zhDYD+Ru9Tn\/oUv\/u7v1v23x566CF+7dd+bc3vk8lk1T1gL2niKTeSenJykqGhIXp7e9mzZ0\/VuWWzEU86neb8+UE6d2bYf8BD+WRV7Q+biq22s9cxl6cWlPbyvBhTbdXA6XTS1tZGW1tbvigfCoXyERFQZOuz1dgM4itndVSoCJNlGa\/Xi8Ph2LKaWWmUsZko\/M5kMhmeeOIJOjo68k7Sq6urzM7OEgqFePWrX82dd95ZMULcuXMnf\/Inf8LevXsB+MpXvsIb3\/hGXnjhBQ4fPpy3\/9LwT\/\/0T\/z6r\/86b3nLWwyvGwgE8s7WGmppPH5JEo+qqqTTadLpNA6HIz+S+uLFi4TDYU6cOGFqkFI5mFG1LS8vMzx8nuMn3Ph8Rruo2tVpta\/RtdWHclLs6tN7NnsWteRtqqrK0tISS0tL+fTCS3ECaWFRfufOnfmemcKxDzabDbvdzsLCwpbYtGx2tFFOEfb8889jt9vzNTO73V5UM9uMnqrtoKyDm7Wmjo4O\/st\/+S984AMf4J577uHuu+\/m3LlzfPazn+XQoUM8\/vjjhtf5hV\/4haKfP\/7xj\/PFL36RZ555hsOHD69x1P\/Wt77Fq171Knbv3m14XUEQ1u3GDy9B4tFSa+Pj4ywtLXHHHXcQDocZHBzE7\/dz5syZqoq\/pTBStamqesOeZYL+M15E0XghXU+NJhKJ0NBQ\/YOSqw\/ZanO5riG9J4oSyUQap\/vm4jE3N0coFKKpqYkrV66QzWbz9i3RaHRdLtPbGaIoEgwGCQaD7Nq1C0mSuHr1KpFIZE0tRGvavNWL4Van+gp7iDo7O9cU4i9fvozX6y3qqboV5LwdBA5wU1ig\/U0EQSAej\/OWt7yF++67D0VRWFpaqvqa3\/jGN4jH49x9991r\/n1+fp7vfOc7fOUrX6l4rVgslq9tHjt2jI997GP5sQrV4CVFPIW9OXa7HVmWuX79OtevX6evr4+enp51P2Sas0EpUqkU588P0t0tceCgXmqtFLU7TXs8TqBG4lIdNaXcaknvCQLEoxGc7hay2SyxWAxBELjrrrtwuVwIgkAymeTSpUukUimef\/75fLF6K1wENhN2ux2v14uqqhw+fJh0Op2XbV+8eBFJkoqaEm8FIW818UBx1FVaM8tms\/lCvDb+utC6ZqMcFbYy1VZ6H6Xvp7DGI4piXuZfCefPn+fuu+8mlUpRV1fHI488wqFDh9Yc95WvfAW\/38+b3\/xmw+sdOHCAhx56iKNHjxKJRPjsZz\/LmTNnGBwcpK+vz+Q7zOElQTzlenNUVSUSiZBOp7nrrrsIBoMb8lrlIp6lpSWuXTvPiTu8eL3mv7yCINccfbhctT8kKvYaq0u1nWWzZYhEIrzwwgsIgsCuXbvw+\/1kMpl8Oqqurg6Hw8GuXbuKpLmai0Chy\/St2JluZX1JW3RdLleRrY829kGzsRFFsSgFtRGmntuFePQWfYfDsUaooJFzOaFCtVNHzdzDZqIS8VSD\/fv3MzAwQDgc5pvf\/Ca\/+qu\/yuOPP76GfP76r\/+ad7zjHRW\/T6dPn+b06dP5n8+cOcOJEyf4\/Oc\/z+c+97mq7u1FTzylvTmCILC4uMjQ0BCCINDf37+hdieFNR5FUbh27RqZzDT9ZzyIYg01mxqjD8jUZNyZw+YuNPH4MheuXGL37t2srKyUJQ5tsSjsgdi9e3feRUBTiW3k8LftAD3CMxr7MDMzw9DQEB6Pp8jUs5bv+XYgnmoaSMuRc6GjAlDUP2RWqLBdiUfzFazFucDpdObFBSdPnuTZZ5\/ls5\/9LH\/5l3+ZP+YnP\/kJQ0NDPPzww1VfXxRF7rzzToaHh6s+90VLPIW9OdrDo6oqV65cYWpqiu7ububm5jbcY0uLeHKptQF6emVaW\/2IYm1ps1qjD0FgHQ2otaFWKXY0tsSxY8doaWnh+eefr0pOXegiUKoS04a\/aST0Yk3LmVkYSwlZ65UJhUJrxj40NjYSCARMLaTbgXhqFTiUEypo4o3C5t5Cax+970e5SGMrUK55VFXVouFstUITXRXiS1\/6EnfccQe33357TdcbGBjg6NGjVZ\/7oiSe0t4cQRBIJBIMDg4CuSl5kiQxPT294a8tiiKpVIqBgae446QPj0dEUVzUXq9ZR8qs1gbUWtV0NYohurpb8PhyqZL1yKnLqcS2Ii23kag1xVdu7IOWgjp\/\/jyKouTrQ0ZeatuFeDYi2ihs7u3t7S0SKkxNTeWFCuWixFsV8aiqgiCYv245Z2qg6lTbH\/zBH\/CGN7yBrq4uotEoX\/\/61\/nRj37E9773vfwxkUiEb3zjG\/yP\/\/E\/yl6jdOz1Rz\/6UU6fPk1fXx+RSITPfe5zDAwM8IUvfKGqe4MXIfGU9uYIgsDMzAwXL15k586d7N+\/H1EUiUajt2Ruzvz8PIFgittv9xWk1tbz4K6ntlDjoirUSpK1ned03SS6jXQuMErLaTNUChdfvbTcVi+8G\/H6brebjo6OvHuyZlpZOPRN+xwaGhryO\/\/tQDy3yqutUKiwZ8+evFChNEpsaGgglUpt+Odgs4UJLWQJNrWYPqcc8djt9qoj+fn5ed75zncyOztLMBjktttu43vf+x733ntv\/pivf\/3rqKrKr\/zKr5S9RunY63A4zAMPPMDc3BzBYJDjx4\/z4x\/\/mLvuuquqe4MXEfGUG0ktyzKXLl1icXGR22+\/vUjtoTV6btSDlUwmOX9+gN5emY5OL+sjjJsQWA851va+VDUD1OLRVZsU22YvJqxb5VzwYkzL3QpRQ6lpZeHOXxvzrEWGqVRqW9jVbAb5lQoVtOGAmu+eoiik0+mi0Q+13pfNvoTTOc7wCz5OvnZ9xOP1eqsm5i996UsVj3nggQd44IEHdP+9dOz1Zz7zGT7zmc9UdR96eFEQTznbm2g0ysDAAG63mzNnzqxRZGh\/vI0gnoWFBa6PXuCOO3yUc9dZF3msy2+ttpSZKIKqOqhJjl2DGMJmz5JJ3+xP0It4NnKkeDVpOVmWNzw6rvZebyXK7fy1yDAUCiHLMolEokgZtpmF9q0q7BcOB9SUsHV1daysrDA2NoYgCEX1IXOjDVTsjjmczhmkrJ3l2XhV91RuJMJLbRYPvAiIp3RuDsD4+DjDw8Ps3r2b3bt3l\/0yaH88SZJqbhhVFIWrV6+iqrP093v1VWvrIo\/a1Wk1NYFqqNHrrRYxhCBAJBSmoaVpy0xCjdJymUyGCxcumErLbTS2QsZdGBlq3oN+v59QKMTk5CRADQtu7dgOYxFUVcXlctHV1ZVXEWou5AsLCwwPD+dHG5SmKwuugsM5hcOxAEB0BZLx6mqw5UYivNRm8cA2Jp7C3hzti5nNZjl\/\/nx+VK\/RjArtj1frLjqRSHD+\/CB796q0tbsxTq2thzwgHlfw+Wp58GpXtNXs9VZrek\/JDZ\/bLiahhYvvyspKvhi9FWm5rTYJdTgca8Y+hEKh\/ILrcrmKFtz1OH+Uw3YxCS0kv0KXiUKhgkbOWrrypqNCAK9vGrs9lL\/GwlSadLK6uqgkSUWmxYlEYl3TTLcrtiXxKIqCJElFqbWVlRUGBwcJBoP09\/dX\/PILgoAoivmm0mowPz\/P6NgFTp6sw+2uTFzrlTbbbLW5EOQaUGsbZb3ZvTw2e+796T1AW+3V5nQ6aWpqKpuWu3LlSl4NtdFqua02Ri1NRZdThmnOAePj41y8eDE\/9kGz9VnvZ7EdemgqyanLOSpo9aGRkWEOHxEJBIuX07HLUVLx6v6+pRHPS3H6KGwz4tHrzbl27RpjY2Ps37+frq4u0+xf7bRQRVG4cuUKNtsCZ\/p9CFU0hKqqoyZpM9ROPDnUNsq6VtQqxbbfGAj3YnCnNqOW05pYm5qa1p2W28rdbKVow2az0dTUlDfVzWQyZZ0Dak1RVjNy+laiWvK7GTE34nKr2Gxrazkv\/GSKTMZTlf9gOXGBRTy3EKW2N4IgkEqlOHfuHJlMhtOnT1fdRFXN0LZcam2Avn3Q2uqietVa7Q\/OehaeXC9PDa9ZoyBCUTM1ibg1Zdt2IhizKB2FXWhlMz4+jiiKRd5yG2Fls1moVnzjdDrLjjgoTFGW1ocqvT68+IgHQBAyuNzDiGL5jd\/Fp5bZsa+R559\/Pr+Z0dKVenWzUs84S1xwC1HYm6OlyObn57lw4QJtbW3ccccdNTkQmCWeubk5xicucfyED69345RVZiEI61mIayStGgUROSl2da+pqgKz373Is\/\/0dzgOd7P3Nadyt1CS4nmxEFK5UQfLy8trrGy0RcYohbPVhfX1qD5LnQMKxz7Mzc1x9erVohHP5cY+FFpdbSWqdS4QhOQN0ilfw5ElG4tTCXYf6eKee+5ZMw7D6XSWHZcuy3LRWqfVeF5q2FLiUVWVTCZDOp3GbrfnFTaXLl1iZmaGw4cPs2PHjpqvX4l4ZFnmypUrOByL9Pd7QXUByZpeq2Y3ANapTqsZ2ZoEEXa7UFUvjyrbmfyziyS+N8RhgJlR4t8b4v86s4gHO9n\/i6+i7\/SxLa\/x1IrCIrSWltOaFK9evVqUlluPieWtwkY2kJYb+6B9FtrYB81ZWqsPvRgjHlGM43IPGz4DsUjuM03FM2s+l8K6WWlfVSaTKXoOajUI3e7YMuLRenMmJyeZmZnhrrvuIh6PMzg4iCiK9Pf3r3vOuBHxxONxzp8f4MABkeaWXGpNUWtVerEuSbVQs5MA1NrLIwjqOgQRDjCRqpNiDq697wekx1aKfu+zOTkoO5HPh3juJ59nsb6FSa+EeLCTnS3t1Lc113BP2wOlTYqFqahyabmtjvJupXNB6YhnzVk6FArlxz4EAgHg5gK7VaRslnhEcRWX+3pFQc\/idO6ZTpVRtZXWzQqFCpq0f3l5mZ\/+9Kesrq7S0dFR1XupNPb63e9+95rZO6dOneKZZ54xvO43v\/lNPvzhDzMyMsKePXv4+Mc\/zpve9Kaq7k3DlhCPFuloYaUsy\/mmvu7ubvr6+jZkB6RHPDMzM0xNXeauU3U4nQV2LutSeq1HUq2QSim43dW\/50wmTq0lhVq93szUlRLDKtfe9y3UdHlCjmRTTCZXOdmwE4CWpAueDzPz6w\/yFAmyu5rp\/VdnOHLfy7a935oRtLRcZ2dnUSpqdnaWoaEhbDYbHo+HpaUl6uvrN9zUthI20zKn1Fk6Ho8zPz9POBze8jlMZlJtNlsIu2PRlIp0YigG5CKeSiisIc7Pz3Po0CEGBwcZGxvjmWeeyc+reu1rX8trXvMajh07Zvg3qzT2GuD1r389X\/7yl\/PnVFIJP\/3007ztbW\/jYx\/7GG9605t45JFHeOtb38oTTzzBqVOnKr7HUmwJ8Wh1HC2\/HY\/HuXr1at7BeKNQSjyyLHP58mXc7mXu7veu+QKpqDVTTy6CcFCrn1kmUxvxOJ2sYzxCrQu6\/oupqsjSPywy89kndY+ZSISxiyKHA21r\/s0h2ujDz9nBEZxjSZ7\/\/HeZ9il4bt\/NkfvvpfPA3hrveetRmnLJZrNcuHCBbDbL8PAwqVRq09NyW+XVJghCPoU0NTXFPffcU3byaKGE\/VaScqWIx26fx+maQpbNpb2unl0GzBFPIWRZxuv18prXvIbXvOY1\/Mqv\/AoHDhygq6uLf\/mXf+Fv\/\/ZveeGFFwyvUWnsNeQ2AdWMsH7wwQe59957+eAHPwjABz\/4QR5\/\/HEefPBBvva1r1X1HmELU22CIBCJRLh06RKqqnLmzJkN3+EUEk8sFuPChQEOHrTR1Fye3ddba8lJqmsjnhrajYBC+5v1pOs2BopkZ+KPB1n90YjuMedWZ9nra8JrL\/83yCgyFyJz3FGfi4Tq7W7q08DP5kj87P\/Pv0hRljv9dPTfxh33vw6P\/8Wb\/3Y4HHg8nnx9qHS2jGbZcivVclttEqptPgvVcKW1Mo2UA4FAviBvduyDWegTj4rDMYPDOXfjZ3NrxAs\/ngWoqoFUURRUVV0jp967dy+\/+Zu\/yfve976qU7N6Y69\/9KMf0draSn19Pa94xSv4+Mc\/bjjZ9Omnn+YDH\/hA0e9e97rX8eCDD1Z1Pxq2jHjGx8e5fPkyO3fuZHp6+paE1RrxTE9PMzNzZU1qbS3WN9smlcpSa1lKVdfx8Kv2dThOV49yQorsqoNr7\/0+melV3fOmVQe3BfXFIsvpOCvZJCfqO3WPiSYS7J124n\/kHMP\/5ywT9jTqvnb6\/s3L2f\/yu2peRLeq1lL4upXScoVquY2KALaaePT6iEprZclkMk\/KU1NTKIpSJNs2O\/CtHLT+wbXEo+J0TmB3LOV\/I5io5SqKyPjlMFBdxKNtkkuJp1BcYPY9Go29fsMb3sAv\/\/Iv09PTw+joKB\/+8Id59atfzdmzZ3XX4bm5OdraijMUbW1tzM3NlT2+EraMeHw+H3feeSdOp5OJiYlb9gDMz8\/T0aFw+u61qbVSrM8JAFKpdFWjrwuxns1b7cPkaozwSs6LXZIZ+cA\/gqTzuXkcZAJuOuejupecyEbwCTb21ukLC55bmeJ4fQe2G\/NNPDYH+1UHDMVg6Lt8\/xNfI9VVj+dQD8d++fU0d9WuiNxMlPvel1OIaQvvRqbltgPxmIlcPB4PHo+naOxDKBRiaWmJkZGR\/MA37fOoxtZHk3QX13gUnK5R7PZw\/jeqKpjKaCSiN99PKpFFUVRE0VzzaOl91CqnNhp7\/ba3vS1\/3JEjRzh58iQ9PT185zvf4c1vfrPuNUu\/J+v57mwZ8bS0tCBJEul0GlVVN\/wByPVWzHH0qIuW1iq8pVQXCLVJqoPBOiBR07l2+1Y8\/Ouby6OqIgvfmGXuL3+qe6TS6EOVZJwGpPN8eJqjwR04dAZmJeUsV2NLeSFCOUwkwrhEkd4FFRbGWPzhX3BWiZPsrqfrtXdx2795NQ7XxnqMbQTMRlqlg98KRz5oI58LveXMpuW2Qx9R9Y2bN8c+9PT0lPVRq6urK\/BRM7Y4WuueIONyX8Nmi5XcqxNRTFMJS7PFUVEmlcXtrfzdK5wxlnu9nACjlumjZsZea9ixYwc9PT2GI6zb29vXRDcLCwtroiCz2PIGUi1dsB4X6UKoqsr09DRzc0OceZmXajN4tZtnou9ebQIu19YQj6JUH20JgoycdjL+seeIPj2mf\/XOIPaFGGK2fGSVVWTOR+YMU2shJUUkneR2gxTd+cgcu72N+ArqRnZBZLfND9My0kNP8s0vPIKn3o\/jSDeH33wvPccOVn6jm4RaNlwejydv7LmetNx2iHjW+\/qlPmqZTCYvTy61OCoXHRYRj5DF7RpGtK3dfKqqHahMPJNXi+1zUvGMaeIpJciN6uMpN\/Zaw\/LyMpOTk4Y9k3fffTePPfZYUZ3n0Ucfpb+\/v6b72XLi0XYZGzEPRZIkLl68QCAQ4dRpb41Kr\/Xs\/mqvETmdQk0kALWnzAQBMhmqJudMyM74Hz0LsoCjrYHsfHGfDgKkO+txTYV1r7GcibOcMa7nXIku0OEJ0ust70KuqCrPh6c5Ud+JqPPHXs2mmElFuMPfnrPDG1gmM\/B1fpSNEWpx03zmKMruresb2oja0nrSctuBeDY64nI6nbS1tdHW1pYfCFgo2gCK3La1z8Bmy+JyX0UU9Z5jc5\/T8Auhop9T8QyYEOuWI55EIrGhY69jsRgf+chHeMtb3sKOHTsYGxvjD\/7gD2hubi7qySkde\/2+972Pl7\/85Xzyk5\/kjW98I9\/61rf4\/ve\/zxNPPFHVvWnYUlWb9r82m60mF+lCRCIRBgYG8DgF+k6uZ6LiehwIlBs9LrW9F1m2I4q1nFu7sMDh8GI2PaiqEBvIcP13\/yH3ww3Ym4M42xtQshKpuRAZl82QdMZTEbyCjX0G9Zyz4SluD+zALpZPkSTkDJPZWMX0m10UOehfq9bpdNTRGYaBv\/sX9gVaeUb9DsreNna9Idc7tJmL8Ua\/VjVpOc2maqtwq1N9hQMBS8c+aPY1DoeDQEDE4bxUIWthbpMw+JPilFS5JtJyKCUeRVFqMgk1Gnudm6R8nq9+9auEw2F27NjBq171Kh5++OGilF7p2Ov+\/n6+\/vWv86EPfYgPf\/jD7Nmzh4cffrimHh4AQd0iOY\/mzwbwwx\/+kOPHj1NfX1\/1dVRVZXJykqGhIXbt2sXqpMyp+0KVT9S9ngehxhoPgKp4EMTazk+nHLjc1ZOI9hesZf1QFD+iqF9\/0ZDNqix\/bZb5rzynf62mOlRJxl3vxxHwIa1EyUwtFR0zGhPY6VNw6NxsWpG4FJnnuEEkNJeKkFZkenQiIYALq3Ps8hWn3wohqwovhGfKElcom2TWD96Tfdx+\/+to292t+zrrxYULF\/K1is2Aqqr5kQ+hUIjV1VVcLhctLS2b0i9TitnZWWZnZzlx4sSmvWYhZFlmJTzGjh0rOBzGD5CiuCrWeBRF5F81f6fod5945Fc5cLKr4r0sLCwwMTHByZMngdxmeufOnSwuLubdH14q2PJUG1TnIl0ISZK4cOECKysrnDhxgqamJr739HPIsh2brdYIan2y5FoVZgDJZAaXu\/qzc\/OAXJjJP5c5u+IRUsrOld99HOXSsu4xmc56HAtRxKxMdjWZ\/xRtQR\/OzmZUVGxOB7sGRnRfM6ykWUrEDEnnSnSBdrefdndA95ircoSDgda8+q0UMSnDWCKkGy01OjzEQiu4vn+Z8E8mOSfHiHcGaH\/FcY6\/+T5cXmPH5Wqx2dFVYVruySefpLOzk3Q6XZSWa2hooKmp6ZY3sW71LB6HM0JXV7jie8w1aVd+vlLxte\/FrKRakqQ1UmrAMgndSBT+oe12e9WpttXVVQYHB\/F4PPT39+f154lYmmTUTV19rfclrUtSvT6o1DzhU7WbejDWwvh9phdsDP+nf0IJ60RxFeo58mqctKLiaAkSvzzJimonKimkUgvs9jXkU2nDsSVaPH721jXp3svZlWluD7brpt9Scpah2CK3B\/W9rWZSEWRF4UhAv2v7QmSOXQVihV67H+ZV+N\/Pc+VrP2XMnsZ1Yjd77utn72lj+5JK2GqvNiA\/ewiK03LaGOxCF+VKYw6qxVaq6mz2RRyOeVOZArO10ND82g10KmFuM1s6BC6RSOB0OjfVOmiz8KKLeFRVZWJigqtXr7J79252795d9OAnIilCC\/aaiSf3Ik4Qah2uVvtC4nKvZyBcbQ+vnjBBVSHy0yRj\/+0x\/ZO9TjJ1TsN6jrOrBSWRIn0918ndIEg0OABHM1EpzVh0kZVskj2+Rupt5R+wjCJzMTLHHQ36kdBCKkZMzhiSzpXoAp3eevw2fYVRaa\/QWqjIqzH2nF2As3\/PE9m\/ZanRQf2pQxx76+tpaK\/e8mmrayyFr1+olitMy2ljDjS1nNa8ud603NaMvVaxO+ZwOmeQZXMd33a7uVro1MjaY1KJ2iKeWCy2rsbY7YxtQTxmIx7N2yocDnPHHXfk5ZOFiEfSzI7Z6N5X+y5hPemy9dju2GxbEWWt3Y2pio2Z\/3WdpYcHdc9SmusgLeFciOke4znUQ+raNGqm\/N\/WI9rJqDIvb94FwFRylVVBQshK7PY24bbZWU4nCGUThum34dgSjU4vu91rvw8aKokVsqrChdU5Q7HCQipGQslytCBaanf4aI8C37\/G3KOf5TtqCP\/unXS\/9i6O\/qtXYndsi0dMF0aqttK0nKaWy417HiGZTOZtbBobGwkEAlUvkpufalNxOKdwOBZu\/Gz2tc0dN\/jU1JrfpeLmI57SIXAvxTQbbJNUm5mIJxwOMzg4SF1dHWfOnNHt+UlEU4xezHLqPn3foUqIrEapb6iVemqXVNvtSu0O1zWPR5BudGTnIjU55eD67z1J4qK+FYZWzxF0+nMQBbyHekhcGNO9RhyVqXiIOwoIZacnyE4Ady5t9uTyGKIg0OUO6l7nmhKh21uPSyz\/VZYUmXMF3m\/lsJyJk7TB8Xr9aOnaDXLrdesLGs5F5rgj0I59PA1f+gkDf\/kYU14F9229HH7LvXQd3rfmnK2WM1fz+uXUcppMWUvLFboHmEnLbW6qTcHpGsNuL5T\/m8xQmEyJXn1urWXU\/OxCnkSMPuvSIXBbPSriVmJbbMeM5NSqqjI+Ps7w8DB79+6lt7fX8A+RiKa5\/GwcqJ14HE47Zs0AS7Ee2511GX6uy+DUCaRJTYsMv+cfUaI6tSJRIN0RMEytiX4vztagIeksJMHrEdnv109LXYktcrJ+Jy5b7isaVjNcX13EIdjY5WvAbXMwsDrDSQNCWc0mmUvFDHuFRuMhfHYnO236vRKDq7McqGvJ30spJFVhcHVmDbkF7W6CGeC5Beaf\/l+cd6uk6920vOw2Ttz\/erzB6jvSNxrrIb5SGxttEqsmU9amj2qpuXJpuc1Ltcm4XNex2SMlvzeZ2jbxfKmqwJWfLa75\/cpyhOeeew673W449kGW5aIJrYlEYt0zybYrtpR4tKmT2kyeUmhDkSKRCCdPnqShQX+3qSEeSTFyfg5VPVxjAyl4vU5qnUQKrKtGVLvDde1qPFWxE35imYn\/\/gPdY2S3HSXgxjWlbwLq3NmCkkqTGpnVv87OZuonlnDq7DQVVeX51ek1hFIvOPMEspJJcCm6gIjAZDZKp71uTQPpTCaKoGBIbudWZ9lb14zXVr7vS2tQNUq\/xaQM44kVw4hqKrmKgECfHIBl4FsXGPm\/A4zbkoTbvPTcd5rO+zu3ZGe7URGXIAgEAgECgcCa6aNGabnNSbVJuNzD2Gxr6y\/6zaLVH5dO2imXuKn3N\/Hyl788b+ujjX3w+XxFtj6yLBdZHcVisZfk9FHYRhGP1tOjYWVlhcHBQQKBAP39\/abtdBLRNPHVDLJkx+548Umq1yMSyGRUnM7qXlmV7cz8ryESF5ex1fuQw\/E1x8jNdajJDA7Dek43qWuzqBmdz04A75FdJM6PYtN5i5FsiqlUxDCKmUqEEQSRuxpu9kWsZJOMJ1ZAhW5vPTOpSE6VZvCdeW5lytDxIClnGY4tG5LOipommkmWnSuk4Up0gQ53gICj2DvNbbOzHz\/Mw9nPP8LPvvokMz4F\/x37uP2tb6Clp7qpk7XiVqX6SqeP6qXlstnsLd3VC0LmhhvB2iheVewIJhq2zTaFryyUj4pSiUzR2Aconjqqydi1dTAcDuP1emtqHn2xYFsQj91uJ5nMRRiqqjI6OsrIyAh9fX309PRU9WDEI7lIIxERCOgrcw2xfkn1enZwtS8CdrsHMB9pSQkHI7\/zOKnhm02ezp3N2Bv8yLEk6fF5MjuCOOYjCHrO04KA90gvifOjuq8j+Fy4OpoNj5lMhBEFkUNlXAY0jGRWaXN6qLMXpygaHB4agrl6wrMrkzQ5fVyOLtDqD9IheosEBSk5yzSpiiKCuJzhtqC+5PpqbJEd3iDd3nrdY14IT3Mk0I5DR9CQS9HN5qOlxgTwkwmWf\/xFnlfiJHcG6XjNnRz7xdfgdN8aSe1m1ZjKpeW0EQfhcJiVlZWKablqIQhJXO5hRLH8ZkhRHdhMpNoUxWGqL3BmtHyWJF1G1VY4dRRyxDw4OEg2m+Uf\/uEf+N3f\/V0OHDiAKIoMDQ2xb98+U38no7HX2WyWD33oQ3z3u9\/l+vXrBINBXvva1\/Inf\/InhuO1H3roIX7t135tze+TyWTNM6K2RapNExdkMhnOnTtHPB7nrrvuIhjULyrrIXmjPrE8J9VMPMCWSarXd675P2dyTODae\/8BpeShyEwt5dwGRIFUZxCPzYF7fxfRsVnsJY1wYp0HZ3uDIaE4djSCrJAantY95sLqHL2+hjWEUoiz4SmOB\/UjlJQscSW2wJ03IqHdvpzCLSalGY0tklVkAnYXgiCwx6f\/xRiJLVPv9LDLQCE3EJ7hYKBVV9AgqwqXksuGSryYlGY8ES4SV2iw3TA4nRkNk\/7rf+HiQz9hwpXFcbiLA7\/0anafPKp73Wqg9RBtdh9NYVoukUjgcrkIBoO6aTm\/31\/1PYpiDJf7WgWVqdkJvOZee+RcuOzvkyZUbR6PB7vdTldXFydOnGDXrl38xV\/8BWfPnuX222+ntbWV1772tfz5n\/+5YYRoNPZ6586dPP\/883z4wx\/m9ttvZ2Vlhfe\/\/\/384i\/+Is89p+9IAhAIBBgaGir63XoGE26LiMdms5FKpXjyySepr6+nv7+\/qMhWDeI3iGfmeoJdh2tvdltfuqx237n1TUGtfMeqKhB6dIWpT\/1Y\/yCvi6zPgXsyjEqu2mUH7O0NOFvqURJplGwWJZkhdW1G9zLu\/V1kJuZRkvr58Up9MxqhGNVQVpUMS6kox8r08NTZXRwNtDMSWybocJNWJK5kVpBTGfb4GnEX1HcuJ5fZ7QnqigjM1HwScoaRWIijBtHSfCpKWpENU3TDsSVaXD7qHbnv8CHZCedCyOf+D49nHyLU7Kb55bdx2y+9lmBLbTssjXi22iS0NC2XSqXWNLFWo5YTbau4XCN5peb6YXL42tMLZX9vto9H82qz2Wy87GUv4x\/\/8R\/p7u7mT\/\/0T3niiSd46qmnKr53o7HXv\/7rv85jjxX35X3+85\/nrrvuYmJigu5ufWsoQRCqGpVdCVtOPKqqsry8TCQS4eDBg3R3d9f8IGTTEtl0btEfubDCmV9YT5d17Q9jNptYx5iD9U1BNYIq25n8s4usfG9I9xi5uQ4hlcWxuLaeI82tIM2t4DnYjbwYxtHemHOnngshLRWrhbxHd+WUbToy1IwM81nRcBFfTMeJSumyhKJhJLZMo9tnGMUMhGc54G8uIhmckJYlLkXnSUhZUopEf2OPfkSlSFyNLla835iUNiSdaSmGR7TR5tZXtA2uznDArx9Rtdt9zIxN075qZ+pb53mSBNk9LfTedzdHXn+P4eyZQmwH4iknp3a73XR0dKxJy5lRy9lsyzhdYyaFRWY3eWYUbXDuJ+VFNWmTzgWlJqHxeJy2tjY8Hg\/33nsv9957r7nbLbheubHXhVhdXUUQhIo+mbFYLD\/76NixY3zsYx\/j+PHjVd1PIbaUeDKZDC+88AKxWAyPx7Nuo0StvgNw6WeLwOYUaEvhdApFvTHVYD1ybMHgAZFiDq697wekx1Z0j8nurMc+Z1DP4Qah3EityZGbKiFHWwOO1nrkVBrRbjdMvyXtdqIpiS63\/uuMJlcI2Fz5lFk5DKzOcLCu1TBCOR9f4Fh9+TkjLpudXd5Ghm8MmVtIx1gRJNLJJLt8jfhvpP6W0nGyDsFwbPf1+DIBu5tdBvc7uDrLfn8LboP6RSXRQ1qRuFJAgE7RRh9+GE3BX\/6Qs1\/4J0brZBpP7Ofwm15Dx\/7duq+1HYinkpy6MC3X29trqJbr6hJxeyKm1axm1aNmjsuk7aSTOuICk15t5YinFlWb0djrovtKpfiv\/\/W\/8va3v51AQN\/78MCBAzz00EMcPXqUSCTCZz\/7Wc6cOcPg4CB9fX1V3x9sMfFcuXIFh8PBkSNHuHjx4rqvl4jdVK5cfGa+5sUfzM1W1z83N62wNtNOyPXV1FBf0rnnxLDKtfd9CzWt855EgfQO4\/4cxWXD1dmiSyjZ+RVQFHDYySwt4u7rRLYJJGeWsBdsCGzdLdhnQrQapIdfCE9zxGAiqZGztIacKm3JcICcFqFohNLqqst1fznrkRSZ4dgS86kYfruLo079KObc6ix9dc14dGTZUJlQMorMhBo3fE+r2SQL6bjhe4pnUnSEbbQ\/NUX0yYf4vhwjusNP+yuOcexN9+Lx31zItgvxVFO\/KZ+WW8brWyQQlAmHZerrK0d8qiqaGkFi9rjVJf11ptpUm4ZbMfZaQzab5d\/+23+Loij8xV\/8heH1Tp8+zenTp\/M\/nzlzhhMnTvD5z3+ez33uc1XfH2wx8Rw5ciQfSm\/EILhE5OZCn03LZNIiLnet112npLpm007t3FrOzBY5H8iySug7IWY++6T+KT4XWa8D17R+f46jo4lULE72ur6bgXtvB5nZEEo8dx1NTGAHHC1BHG0NCG4H8YvjOKTyf5ObKi\/9onxKlblWIeWlWdsYRSizShKngG6EYhdtJOUsdzR04rE5iCoZRiJLqCp0e4M0OXMLwmBsnqOBdl1CySoyFyLGVjyr2RRzqahhz9F0MpcS6TOYYVQq3RYFgR67HxaB\/zPA8MPPctGbom5XB\/t+4eX03nU7sPWptvW8vtvtorc3i92R+055PHWY6cHL9ctVfj5V1YlgQmQ0O6Z\/jBmTUFVV15iE1trHU2nsdTab5a1vfSujo6P84Ac\/MIx2ykEURe68807DUdmVsKXEo3m0bcQgOChOtQHMTcXo2VtbnefFKKkWBPVGpJVBytgY+v89g\/Qzg2bOFj9CMlO2nqPBc6CL9Ng8tpT+rs17ZBeJS+O5iKcMsqEojrYG4s8Ng8NGuqmOqbE4QYdK843IJ9fDs2pIOrOpCKLTYegsPRxboqmCtc3g6gwHAm24nPo749IIxS8687UmRVUZji0xk4rQ5qpDVhVEYe21YkqW6XjYUN02k4qgqqoh6QzHlmh11RF06IeJA6szHPK34dSRbgNcjMxz0rYTrkThynd4Lvu\/mXFm+OHgBMd++fU07dy44rFZrK+BVMHpuo7dfnPTZNdrEitBNiuYcptWVXP1stGL+hs3M6k2beNdGvEUDmerFYVjrzXSGR4e5oc\/\/CFNTdULU1RVZWBggKNHa1dXbrm4AHIEpDH+eqSd8Wgx8STC65lEyjol1VsDVbUjRVSG\/\/NjSDOl9iA3kdlZj8OonqM1fBoIBHDa8eztIHFBv54jBrw4mgI3LXSyMq7lGHtuPE+rWbgcmwRV4UhAP0IZii7S7vYTFPUX3xfCMxwykDmbUaWlFYmh+JLhMVEphaKqvKI5Vz9JqhJDkTkyskyHJzcraCYZweV2VSSUQuVaOVQSGkCOJI3uNxd1za85ptXho1X1wQ9HGX30z3imTiDbUkfXa+7itn\/zKhwuc03b60Htz7yEyz2CzVayaTK5UYzH4rhcJkhFNbcJvPjMWqscDelkFkVREUX9ayk3Nm2lNZ5qm2uNxl5LksT999\/P888\/zz\/+4z8iyzJzc7ksRmNjY75Jv3Ts9Uc\/+lFOnz5NX18fkUiEz33ucwwMDPCFL3yhqnsrxLYgHu3DlmV5XcSzNF9cOJ8bS3HwZO2WE+tyqV7HCO10OkGtY0+iZyNMfvJx5JW1DgSAqXqO4HXh6jRu+LQ3BRC9LpKXJnSPce5sRkmmSY\/qp+hWM3B7sAOPaCOryAzFFolJ6VzU4s2lwZ5fmeZoUL8R00zNJyVnuRozJpSVTIKlTILb\/Po7\/6nkKqIgFBGKR7AXRWHPrkyiAq3OeryIZWs\/ZgnFqC4kKTKjFepCMSnNZHLV0ABVk3fvS9fDlARfeYpzX\/ohU24J59EeDr\/lXrpvO6B7\/npQk0mokMXtGka0rU2pmbXACdb7MTXy3QSRqSq88Lh+WwHkyMfj0ydySZIQBCH\/WaiqSjwerzriMRp7PTY2xre\/\/W0Ajh07VnTeD3\/4Q175ylcCa8deh8NhHnjgAebm5ggGgxw\/fpwf\/\/jH3HXXXVXdG0Bvby\/vf\/\/7t76BFG4SjyRJNfXv5MdfXyzOOY6cW+FV96\/H62gdue+a\/NZunCpIVb+2qoosfGOWub\/8KYgCjp3NxJAI2JykJxZyfak+N1mP3bies6MRFNWw4dO1ux1pKUJmUj+i8hzsJjViYKEDjEQFdtWp+TSVQ7Sxv+7mgr6ipDkfmqHe4SYpZ8sST6VpopCbbBpKxQ1rPhOJcE4hZlBDmVTiBO2uNfY3hXghPMPtwY58yiutSFyOLpCQs7Q4fXR76ysSil6EUgiNUA4aOD2Eskmi2ZThMWOJEHU2F93e4gUuYHdxSHLBC0u88PiDjNXXsxS00XzmNo7f\/zr8jfW616wG1ZqECkLqhhvBWoLJpcbN1XTNiodkOUkldbqUtRMLGxNeKp4xJJ7S+g7Upmr70pe+pPtvvb29pgYP\/uhHPyr6+TOf+Qyf+cxnqrqPStgWEY8gCOsaf33x4kVCoRBN9W3A9fy\/XfjpAlB51vmtQabmEQcul1DVuUrWwdhHzxJ9euzGL1SyU0tow7BFv4dMWx2qpOBcSuh6I5hp+PQc6SV5ZRJ0BAKFnmx6UG0CYbuXPehEZeQUXDGbkp\/VI6kKw7ElVrMpOoNNtAlu5tNRshWmiV6PL9PsDRjKsi9G5unx1hs6Jzwfnua24A7sjvK7cz1zU5dozy\/8GUXmZyuTOASRkewqbYJ7DYklVInxeMgwQllIxUgq2YqE0uCuo8ehX+u6HFmg21ufn7RaDi+EZzgaaMOu2NixAvzjJca\/fY5xMYm8p41db+jnyL0vq1kgUE2qTRATuN3DuqRhVgiQe7YqR0aqCg5H5YU6Eqp8TKU6T6miDWpXtb0YsC2IB2obfx2NRhkYGMDtdtPf38\/1x39Y9O9Dzy2iKLlxA7VgYyTV1TeEVnNuJmRn+Lf+GclAIJAKunCMLiPICqoo4OppxRb0Ia3EyEzmctOVGj5VUcCxdwdJg3EHZlJ0Yr2PtKjSENInnYlEGIdoo8txcxduF8SiaGQgPIOsKthFkWDWRbBMnWRwdZb9dc24BWOZ87H6DuwG0u2B8Kzh9NOULHEtGaowoiGnXCs0Ny0k0waHB6\/dgc3pNCSU0XgIv91Fj1efUC5F5unxNuATjQnlSKBNN30J8Fx4qux7col29uFHuhbj3B99heRn\/5HpOqg70cdtv3wfbbv1O+BLYTbVJooRXO4RQ7GPWSGAqjp0\/duKj3OVNRctxex4ZbJLJY1fr5R4ZFkmmUxa7tS3GtVGPNPT01y6dIne3l727t2LIAjEI8VfElVVScYFfP7aenlUNVPzaIXc+Q5TO6vy59oNz1VViL6QYfT3\/sGALCCzI1hcz1FU0uM3rT3srfW4ulpQEmlEnwsltvYhsgV9ZFwi0lX9PLajrQEEjFN0Pa1kw3EcIf3c+oXVOXb5Gg134YPROQ4XLJqyqjASXyaiZPGLDnq9DQyEZyrWRy7EFirb38RDhqQTyiQIZRIcqdMnCz3lWiGZjsSWySoKkWySmWSILk89Ta7iwvKV+BJdrkCFCGWao4F23UmroE8oGiRV4dzqrOExKTnLcHw5P6qiIQk8OUn4if\/FOTlGbGeAHa86yfE3vgaXV79gaSbVZrOt4HSNVu7JMykEMDvzSlXtmOnFO\/e0\/ndeQ7URTyyW20huhKptO0EUxdwonK28iWqnkELuD3Tp0iUWFhY4fvx4vpEMbhqEFiK8LOPz1xbyiKKMLFMxx2twhVpPxMjAUFVtzH11goWvntU\/ps5N1iUa13NaG8AmED97ozYmirh627D5vUgrUTJTS7i6W5GiCWwLUd3ruPs6yUwvoST0H1LvoR6Sw9OoWf0ospJvm97ANZsg5i1z0orMQHgGhygyuDpLj7eeRmfxAr6aTTGTinDMQEW3IqdYTSeLxlyXQqsL7TWoC00rCXw2h6Fy7fyNuUB5EYKrAUVVGUussJyJU2dz5ayDDCIzqKxu06axGhFKWpUZji4aDs\/TGlnLfTaiINBr9zM\/FiH7lR9y+W+eZMKRQTy0kwO\/+Cr2nLq96LmvlGqz2ZZwusbNbQDNtj6oZp9Lc0Q2PVSZnMwQT+HnEI\/nMgIvtYinpaWF2dnZ7RPxmEm1xWIxBgYGsNvtnDlzZo07aqmcGmBxKk1nb+2ebaLgpiYXAWBd4gSdc+W0g9EPPUP8ef1dltzqR4incS7r37d7304yU4vFZKEopMfm8z96j+2BrIzodZFIpBDKOB94j+4icXEMFJ3dqCDgPWw8BjurwIIoVJAwp5lMhI1HWKfjpB3F11FUldF4iIzbhpjM4hLt2ATBMJ01ElumxRegt0I6q8tbn7fVKYfB1RkOBtpwOvQ3EWdvpPpKyVYUBHq9DXR76nlhdZqD\/lam1ATLq2E63AF2uG82\/UmqwvlV4ybVhJxhNL5iSCjhTJKYaFwzm0tFkFTVUIQxlljBb3fmm2wPKk64EEa98AhPZP+GpSYnjS87ym2\/9FqDVJuK3TGLzVaNBc76ewGLYY7Inv+Rfq+chpHhMToP+WloaCgroCrnWuByuTZkPMR2wqtf\/Woeeuih7UM8lSKe2dlZLly4QHd3N319fWW\/rKUNpABTw3GOvWxrXKqNvNMqn7v2S5+et3PtPd9FWtHvzM7srMcxG0GQK\/itGfXniALeQz0kBkYKbkgg21xHXWsjaiRJZj6EZ29n5Tk8O5oMSSeahbgEnR79NMpMMoKCyiEDN+fReIg6u4sOsTi6EQUh705wRV3AIYospuPMp2N0e+ppdhUXb\/P2NwZ1oedXprktWCGdVUkKrSoMpUPcUaGn6Ep0MU+2Ppz01ud2wNPJCHPpKA5EHE6HoRhhORNnNZs2dMOeTUVQVNjp1O9in5UTOEUb7U79gvdQdJEOT0CXkNsdPhYmZ2n5ziXm\/vEiMSnCP+15gl2v6+foG16B3WEHVBzOSRyORWTZ3I7frGAAMD0m3szzK2XtrMxXdkqQMjKjo6NcvHgRv99fNIlVFMWyqTafz7elrhK3Ah\/84Ae5fv369km16UU8iqJw5coVZmZm8nMp9JAok2obOR8G9HdnJu5yHaeuYwdWcK6qQuSnScb+22P6x9tE0u1+4\/4ctwN3T7tx8b\/Og7OtYQ1ZCKqKYylGeimGvdGPu7cdRAHPgS5SEwuoJWk2R3sDqBiOTVhIg1uEdoN9wbXUCi12j2HXvhmvtCuZFfb4mnCItqJoYVaKMx1dwW93sZrNDYjTIwtZVbgQX+SEQc0no8g5h4AK0cf1eMgwsljNJpk38GXr9ARwCCJJJUu728\/VxDKRdJJWl4\/ugkhtUUkhK4qhqm8ktkyj00uDU\/8PcTm6QG9dEx6DvPPg6iwH\/C2GvUlnw9McC+7IRXgCHHA2wKQE\/+vHvPD\/PspsEF72iXvZeUR7D+bqs2YFA2C+10cwISyIhk1dimBdI6dOnSSdTudHPpw\/fx5FUWhoaMhbB2n\/qxHPSw2BQICHH354XUWIDUW5iCeRSPDMM88QDofp7+83JB0oTzwXnyk\/I8M81jPTI6MbVJg5F0BVbMz8z3FD0lH9brINngr1nHrsjQGSQ5O6xzg7mxHdTlIj+mTh6m1HvTHYLXlxnOSVSdR0FteudrxHd+HsbM4ZhEYSOeNQvXfXGaTRCQGDtq2z4Wl6nQFD0nluZYojgXZd0pFVhefCUxxwNpRVcO2w+7gtuIOEnOVwoI2L0XmeD08znyquaSXkDJeiC9xepx81xJQsoxWk0EvpOPOpmCHpLMlJYlKGfRXSWYIg0ONtyKnMvE2cbNhJt7eBxXScF8LTPBOaQBQE2g1GMFyMzLPDEzAknYHVGfb4mvCUsQXKHxOd40igzbghNjzFHfWdujW8YJ2Xe\/7g7gLSgei0cWOmhpxgwMxxNlO9PoriMJXiW5wyR2LpG6o2l8vFjh07OHz4MC972cs4ceIEwWCQWCzG0tISTz31FL\/5m7\/JD37wA4LBYFURzxe\/+EVuu+22vJv33XffzT\/90z\/l\/11VVT7ykY\/Q0dGBx+Phla98pSlz5m9+85scOnQIl8vFoUOHeOSRR0zfkx62PNVWOIW0MOJZWFjg3LlzdHR05EfAVkKiTKpt4soq2ayKw1Gr\/1ntDgSCoCJJInZ7DSMOBAUp5mL0D35C4qJ+57\/U6keMpXEsGdRz+jrJzCyjxPWP8RzsInV9DjWtv2sU97aTGVtELe3hkZW8O4H36C4yM8u4d7WjSArpiXnUgr4gFUh3BnFPr+oGk1oR3NAsVJaYkGMVmixvNJcaypyTLCvpPFkUFsznpQST0RAOQcRndxoKDWZSEZwuY4ucscQKXpvDcHTCtdgSza46mj3603cvRxbo8gZ1+45aXD5mUxGOB9uwY8tLtuudHnZ5G\/IL\/0BkjiN1LYYpw0qTX6GyqEG+Yf5q9HdQ\/Da6Pn4nzYeLN5d1DSbT5CYFA6riQLCZma9jTvk2fkVfdFOIcuICQRDw+\/34\/X5SqRSCIOTTa9\/4xjeYnJzk1KlT3Hfffdx3332cPn3asMHeaPro4cOH+dSnPsWf\/dmf8dBDD7Fv3z7+6I\/+iHvvvZehoSFd9dzTTz\/N2972Nj72sY\/xpje9iUceeYS3vvWtPPHEE5w6dcrUey8HQTXTynoLkclkUFWVq1evks1mOXjwIFevXmVqaorDhw+zY4e+8qgQsqzwxo6PlP23v73yWppaa\/Nty8maa0+Zra7KBIPVy+JS0yLjH\/sposeNHI6RnlxcE3yZqee4DnWTvjJpUPyv3PCJTUTpakQcW9I\/xmHD09e51kLHbsPV3YrqshOfX8bucyNMhnQvoynOjIr\/y+kEK9kke+v0DQ7nU1FSimTY76LZ33S49esaWu3IZ3cyGg+RUiR2BZtpFG4u+mY81y5F5+nxNBhKoc+tzrK\/rkV3vhDAsLTKLrGuYn1JTx24mk0xllghnE1wW0MnDbby0aReQ2whJEXmfGTO0AQ1o8hciS4YukZITXb6Pt1PoKe++PerGexBc35xsuzDZtPvDav6OKkOm12\/N07D5\/\/Ldb7zZf3Bihp+4T+e4tf+UH+Q26VLl\/B4POzalWuY\/upXv8rf\/M3f8J\/+03\/i0Ucf5bHHHuOpp55iz549FV+rEI2NjXz605\/m3\/\/7f09HRwfvf\/\/7+f3f\/30A0uk0bW1tfPKTn+Q3fuM3yp7\/tre9jUgkUhQ5vf71r6ehoYGvfe1rVd1LIbY84tFgs9mIx+P87Gc\/Q5Zl7r777qpynOWk1BoW51I1E896Xap9XpOeUDegqhB+PMrEx4qbYW0BL86dzaCqJKcWSQdcxvUcl4N0kxcMvNRMNXz6vThagqSv6yt3bA112P3e8r5tkkz6+iyS34nT7UaMZYh3BAnW1ZEYmcVWQJorWUjKmYoNlD6705B0ppUEXtFuOOXzcnSBnZ6goSptVI7R5vbjvZHGKyzO54r7EZJSbvyCkY3OYHSOwz7jyOK58BQn1hlZKKrKC6vGnnU+mwNZVXhFc24BG0+ssJiOU2d3stvXhFO0kVUVLkXmDUknKWe5Hg8Zkk5USjOTihqSTqbTyZE\/vQdP69pnPbucMk08q9cnaOwz4bRsstfHLM7+oHIPD9xMtemh3BC4xsZG3vWud\/Gud72rajPV0umjo6OjzM3Ncd999+WPcblcvOIVr+Cpp57SJZ6nn36aD3zgA0W\/e93rXseDDz5o+l7KYcuJR0u1pVIpFhYW6Ozs5ODBg6bH92ooV9\/RMDee5MBt62nEqnEwGyAa7F5LkU4pzH5hmNXvrt1ByZEEyUsTqH43ksuGT3TgPLqL7HKE7Mxy0bH2liCi0446vbzmOhryxX+Dhk9nZzNKOmNIOq6eVqTVRM4PTgeZljpcSQl1MYIMuFcgzSqiKDKdgJQsACodXmhw6Ecf51bn2FvXlCeCchhYneFQoA2nwciD58PT3FahyfLsyhTHDVRpnZ4As6kI\/U29ZBWZS5F5UopMq8vHzhtpMjNu2LKqMFAhDWXGuy2tSAxFFw3Tk+Uk1T3ehnxUmJAyXFidI21T6XHp\/x1Ws0kW0wlDldxyOkFUTrPfoE4lH6rj2MfP4AiUJ385bt7v0Ndk0sXZ7AbSRJZDlm3MjVeOiqD6BtJSuxyzpKM3ffSpp54CoK2t+G\/W1tbG+Pi47vXm5ubKnqO5WteKLSceVVUZHh5menoar9fLkSNHarpOOSm1hsmrMcBYmGCE2gezmXepluIOht\/7feRxfYGA1BZAjKZwLKWQiCNN5lJf9kY\/jh1NqJKMqqhkZ5eRFvWv49m3k3RpD0\/pMQe6SY3OGtZ8PIe6SQ3PGDaFZrsacM6sopZJBwqKQqcXRqLQW5eTVs8oSRLJVfb4GvHabu52zycXORJo0yWCahZ5o8U5X18yuE5GkbmaXM6\/lstmL5J6z6WiTCbDJOQsd1ZQt80pKcP7MeMurSngjCKLUCZBOJsyJIuEnKXJ5c0T0Wwqwkwqiku0sfvG32NFTROXMsYRZ3IVmyAa9kGljvk4+fGXY3PrL0HJbBYzYmo5kcXVaK4WpCppo97sPMwo3+IR84tCLc4FtTSP6k0f1VAqVjAziK+Wcyphy4lnYGCASCTC3r17mZ+fr3yCDso1j2q4fl7fRdkcbq2kOjkmcO0\/fwslqX9spqsex\/QqQplajRSKIoWieI\/uInl1CldXC6KnnejELLbV4s+lYg+PdoxRzUcQ8B7pNTYCFUDpbsIxrh91IQpcj8CeG5ZG9U6oxwMODxlF5nJ0gZiUJqPInGnq1b2MmZEHcSnDaCJkuMhHpTSTyXCFrv2c59oRg3SgS7RR7\/BwZ0NXvsZh87lxpRS6vfVALiJYlVKGMmczZqBaQ6eRAm5JSZFVJMPXmkyEcdnsRTWxHQWNqhlF5qfLE\/jrA3gNvjtmpNnpe4Lc9aF7EOzGu3i321x6PLuYwtZT+Vglq2ATVSo9z2aVb4vT5iOyar3a4vF4TXJqvemjWl1nbm6uqG6+sLCwJqIpRHt7+5roptI5ZrDlxLNnzx7cbjcrKyvMzJiTTpZDIqK\/ex96Tl\/We+th5LcmEPrnFaY+\/WP90+0i6VY\/rsmw\/jFOO549HXki0HpnbIDY7Mfd3oScziI67MYNnx4n7q7Wyk2hHcZ1IcVlR2wOYDMgHaHOg6M5wO6x8psNp2ij1eXDIYjsrWtmRc1wfXURl2BjT11TXj4dUTMspWKGu31tFLaRhDmkpIllkhzy6z9QZqaFLqkpsoqc7+x3ijYOaMThhYV0jKuxJRyCaBh9jCVWqLO76DGYpDoaDxFwuGl36qeZrsWXaXX7aTYQUJiZcDoaD3Eo2Ibf5gJvThY+eUOc0eutJ+jwcD2zyg63H6+BgCL7hibu+n\/O6P57IZxBEyNCATlqjgCyC0lcnZUXc1VxIpSZ9VOKXCbFHCpFPKVjERKJBB0d+lGuWWjTR3ft2kV7ezuPPfYYx48fB3LCrscff5xPfvKTuufffffdPPbYY0V1nkcffZT+\/v513deWE08wGMyzfS1jETQY1XhCMylkWcRmq00gsD6XaqXsDkqR7Uz92UVWvqeviFEDbmSHDdeMftrM3hxAdDtJXi4vIlCWomQEEdFhJxWK4t63E0UUSE4tYIvd\/MwcrfVgE0lendJ\/M40+7A6nYV0oG3TjtDtQp\/WVa9mgB7fdQUaHdCBn6++1OfM+aA2CMx+tpBWJS9F5wukkHfXNFZsj650ew1HY12JLtHkD+WikHMwo14aii+z01dPs1l\/AlzMJbg\/uwG935QbfRReJq1ka7e784LtKcmnI9d\/s8jYYLvIXInO5\/huDmtjV9Ao9nnpDJV25xtBmly\/v+iCrCj9ZGqW1oZGZZIRdvsayijrxXd0c7O\/RfZ1CqIqKo8Vk+sxA1VkIaTVtiniWhqdoPVBZqDB0Vv87XopKxCNJ0rojHqPpo4Ig8P73v59PfOIT9PX10dfXxyc+8Qm8Xi9vf\/vb89conT76vve9j5e\/\/OV88pOf5I1vfCPf+ta3+P73v88TTzxR1b2VYsuJR0MtYxEKkTBIteX+XcBfX+vVax\/qBtwYoX1zByVFHQz\/9g\/ITOhHYnJbACGSwm5Qu3Lv2UF2IUxmST+VKHa3oIRi+ZpP6gax2ABHRxOOpgCqAOnROZSowS5vZxMsRcim9KWo2fYAztUU6qp+b4Nn306U0VnkrP5rXU2G2eny64oIXKIdSVE53tCJx+ZgNhVlJhXBLdrZ42vEfeO8c6uz7Ktrzv9cDoOrsxyoM+62NzMtdCB8Q9RgIFg4H5vngK8538jqEG1F0dNyJs751XmCDjeKQTrrmhJlf12zoTgiPz\/IwFTUTI+OnpdcIQZWZzjT1Ju7Tt1NybaiqnR5gjR76vC+t4++XzxAxqDfrBDZpRTOVnPEI+jMSCqFmjFHUN60uQ6TF35c2aNNQyVVW2nEU8sQOKPpowC\/93u\/RzKZ5Ld+67dYWVnh1KlTPProo0U9PKXTR\/v7+\/n617\/Ohz70IT784Q+zZ88eHn744XX18MA2IJ7CKaTriXiMxAUAy\/NZ\/PW1GTWsV1KtYstnleNXVa799t9DVv+9pnfW45wpX8\/R4D3aS+LiBCj69yT1NGGfXNLt4cnOLONoCpC8MI7oceI52A0CpKeWUCI3JeBm6kLZ7kYcUyuohvecMxQVDY4ZiQr01Rl3bJf6oO1w+9lxQzqdliUuRuZZSsfo87cako4pCfMGyJy16xgp1wBG4yu8smU3kPNym1YSzK6GaHR66PU2IgqCudfaxGPOhqfWGLcGHe681Y\/qFAn+18P0vmIXclrC2awfDRZCCqdNE48tYE5yjd1crVYwEDxokCWBsYvmU\/hJg4hHVdUNERcYTR+F3Fr7kY98hI985CO6x5ROHwW4\/\/77uf\/++6u6l0rYcuLRYLPZUBSlar26htiqcU52dixB7\/71WIzXLqkGAVUVWfrWAjOff0r3KNUmkGk19lvDab9hzjmmf4zDhqdvJ8lL+jJJ7RitVqPEUzfTdYKAq7sVW70PwWkn\/tyw7mVUUUDtajQWEdhtePbtNKwLZRWYSgg3hAY6I6FVhQsVXJgFQSCryLyiJdenMpOKMJuK4BYd7PE14bbZb17HgAjynmsV5tZUcoXOS6GrvI5dEOkUvHQ25Oo3S+k4l6ML+B0uwtlk2ZSfpMhcy65WHI1wPmJ8z+aPmTd0C1d9Nnb89xO0HcuRkLSYwrbT3DNoJLQphdNkSs5WZ7KXr8F4WVQVla9+5NuA+d5Ao1Sbqqp59xYNiUTiJTcSoRDbhng0++\/SuRRmEI\/HGb2m3ygJMH45wt2vq\/0PmUkruMxt1tZASclM\/Y8LrP7omu4xasCDZBNwzeqnzexNAUSvy5BQ7I1+RJ\/b8JibDZ86x6gqUjSRi37GF7AFfShNPmRJxrYcQ43nakOyx4G93odqQDq2oBd7vd\/wfmJZiEqwq04\/EgpnksTsiqGsOJxJspCJc6zgmA53IO9MkJKzPB+exuH30u7W\/y5oyjWj14pkU6wIWcNjolKa6QpS6JiUZkFJVTgmw0Imxj03xoDLqsJEJsJCPEK9w80uXyMpWWI8sWLo4K318Rg1fZppDE2rMsOxRcN7lhts7PqTu2nYe7P+JkWzmJMLmEdmMWmaeOwtlR9gKZnF16r\/3VBlhU+\/9yH+4C+\/xhtaf5ds2lyWJpOSkGUFm23t2qZlejZC1fZiwZYTT2GqDXJ\/BCM\/olLMz89z\/vx5kI3F+VdfCAG1q0Ri8QQuEyF4KbJhB9f+83eQVjN4DnSDCOnJJZTozVSW3B5AWE3iiOjngV27dyAtrZKZ1CcmV297boDbjXHW5eDsaUNejRk2fGrD37RJpfJqHFbjiIBqExE6G0nYVeoEJ7KBQMC5sxklmSY9rn+M3OBHmo+yw2Dt0Aau7RT1m4CnEmFsomgsK84kaHP56bQFwJbrN5lLR\/GIDvbUNeES7cykIigVlGuzqQiyqtJj4Kc2n4qSVuSbirYy0OTSuw36XUJSkkgmVaS2swki3c4A3TdGGEzEV5hNR3GJdqJqFn+ZkQ4ROc1iKmaopAtnkixljBtDV7NJwqqxQjDbZufgn96Dr6P476WaXKQBJJMMlQmlTBFPcimBp7lyk6m0mMLeXX79UTIyH\/mPf8kn\/iZnkumpF8nOm39PmWQWT93aN6YRj7bhVlWVeDz+kps+WogtJx4NgiCsMQo1gqIoDA8PMzk5yZEjR3gS407ai0+vz6U6GAxQjfUNQOyCxMjv\/APIuZ188sqNqEwUcPW0onidRJMJ3BMr+l5q3PBSuzwORjN2jvSSuDIJpQaeBfAc7iU1NLnW5LPwmEM9pK5No2Z0\/g6yQhoZ72wcOSNhb\/Lj3NGEmpFIjc\/nG07dB7pIj82jpvRTDO59naTGFqg3SNFfjMzT4603VHgNxZbocPsN7W+uRBfY4S52uu70BOm8QR5JOcsLyQUyyRQ9Buq2a\/FlmhzGfSqjyRUCNpehZc9YYgWfzWnoJTeRCON3ewwbMaeSqzhtdk41dgM3B98tZxIE7G52+xpYyMQREPJTWsth7gaZGjWGLqRipBXJ8POR9no5+icvw9VQJrqwme+H85h0IkgmUqaaTNWVDJggHj1ptpyS+N13fpbP\/d\/v5X8XbPUQmTcvPErGM7rEY7PZiuqaVsSziTArMEilUgwODpLNZvOebkZyaoDVpTSybMdmq005V42Dj6qKLDw8y9z\/\/Gn5AxSV9MwymWYf7tkItoY6nB1NJKNxmF25KTxw2PDu20nigkEzp13Ee6DbcNhafrCb0TEmzEJVQO5pwjm+nPcrlZajSMs5FZvgsOPu68TW6CczNmdIOs6DXaSGpgwJ92x4ituDxuOez4anub2C\/c0L4WmOBNrLjkXQcDW2yCF\/Ky5P7pGYSq4yfyMa2lvXjFO0mVLJXVidY3cFWx8zcukr0QU6PUH8ov4x5fpvtMF3mgP2pcg8aSX3nXfb7TTY1xLmvJrEUWHA20QijNtmp8uAdFKHPdzxJ6\/A7i3\/3kWvueVGzsi4WswRj5FUvBBma0aqtHZzJ8Wz\/Ke3fpovf6\/YPxFX5Xk9hUglyj8P5coLVo3nFsPMMLhChEIhBgcHaWpq4o477sjXhioRT+6Y9Uiqzc3dUDIOxj76HNFn9GsaatCDbBNw3qjnyCsxkiu5ZjTVLuLp60TwuiArk7hoUKsJ+rA3+I0JxevEvaPZ8BgzZqGKXURu8RuKCFQBBLuN+E+vAOBoq8fR2oCSSJManwNJAbtIpi0Al\/XnAskqzAl2w8K1GfsbRVUZllcN6xVQflroTk8w77mWkLOcTy2BIrOaTekSz9nwNLdXkDBfyazQV9dkSJQD4VkOBVoNpdlXksv0eoKGJHgxMs8uX2MRCRaagu7xNTESX6anrhGP08AR20SDafp0gDs\/cg+iwZhvscGc+iw9H8fbpd\/wWoiUUzUV8ZgdqyWU3H82kuFXf+lj\/O\/Hn1lzbEJeBcwXfp\/6yU85EO\/OTx913+j3KlW0ZbNZ0um0RTybBaOIR1VVxsbGuHbtGvv376erq6uItMrN4inFyrxcM\/GYkVRnlu0Mv+efkRb1O5ql9gC2cBJ7qnyILkgKqiSTHZtHXo3j2NGIozmIHE+RHpvLRwiu7lbkaDL3Oz00+0FSDAe7OVrrQRQMm0KlOic2lxPHrH4ja16wUNDImp0Pk50PAyC6nbgPdCJ4nMiX9AkuIUEoAzu9+hsQM\/Y3KVniamzR2BnZxLRQSVW4El3IvdaNNWYyEWYhE8Nrc9JX14yIUNEnDsxLmI1GZkPJFE8dvBCe4WigbQ3BFZqCnl2ZwiHaGMtEaFQdZVODQ4kluj1Bw8gi+7om7vx\/+hFE\/XvOJrK4zfqpRc1nJQIt5uogosfcUmcvyPtmQinu\/9d\/yL8MXip77HJ8Fthl6roAPV278PnczMzMMDQ0hNfrpbGxEbvdXhTxxGK59eOlXOPZNhNIAd0aTzabZWBggPHxce688066u7vX9HnETUQ8s2PV1WjWovyOTVUh8nyay297xJB00jvrsS9EEXRIB0DpbSE9uZgr6APZ2RCJ86Okr88iunO9Nr479yHFkkgr+o2a7gNdEElCWL\/h093XiRxPkZ0zmBTaUocDEWFZ\/325unMFdCPBgq3RT2YuRPzZIWzxDEJrAM+RXhzdrXkb1VAakjLsNMiyLGYSLGXihsXt5UycqeSqIenEVanitNC4lGEourjGu63LW88d9Ts56G8liczToXFEQWAhVf4zyioyL4SNxxXIqsLZG+RlZIT63IrxFE+Aq0qE4\/UdFdy3pzlW38FtwR0cdDXS5vYzlVzlufAUlyMLpBWJF8LT7PE0Gqez3tbJyd87Y0g6ANJSZQsaDWrWXL+cnJRwNpmLOOyNlY9TZSXfO5RaSPCG1\/w+3\/3ZC7ozwaaXxky9dv4eBCe7du3i5MmTvOxlL2PXrl1IksTU1BSJRIKBgQG++tWv8uyzzwJUVeP54z\/+Y+688078fj+tra380i\/9EkNDxa4ogiCU\/e\/Tn\/607nUfeuihsuekUrW2luSwrYjHbreviXii0ShPP\/00sizT399PfX192XPNpNpGL67PLFRV1+6aVEVk7itTjP7uP+s3WDpspHcEcv05ejUNuw1xbzvi2KKuQEBJZhBsIvFnryKHY7h6WlF3t5JtKF6pvUd35eonegIB7ZiRWcOppNmuBpyhBGrMaHJpN5m5FeQVfWJy79uJvBJFWroZMakLEZIXxshOLCC4nCx4\/KwqIi6Db+RIbBkRKhTkV5AU4yL5TCpCVEobKtcW03EWM\/GKKrBQNsmZpl5O1HfS6q5jIhHmuZUpriVDZBWZmJTmWnzZkOBScpZLWlSlg6wicy4ya4q89onGaarnVqa4o2Etee30BDlZv5ODgVYGw7M4RTujaoyZVJnnRgTlrTu4\/YE7DF9Lg1JFFEMFEtOQXTRHZlIya6pxNbOQRLCLJKajvPqVv8Pj53KRTmNj+e\/b9ekrpl5fQ2GNx+Fw0NraysGDB9m9ezeBQICmpia+\/e1v8+\/+3b\/D7XbzwAMP8PDDD7O8bNAjdwOPP\/4473nPe3jmmWd47LHHkCSJ++67j3j85sZzdna26L+\/\/uu\/RhAE3vKWtxheOxAIrDnXbWALZQZbnmorjFxKU23T09NcunSJXbt2sWfPHt1u9lQ8g2LCr+nycwusZzxCKU9HV7LM\/dEgiQH9VJYa9CCLxv05toY67AEv6Wv6aTOxzoOzreFmrUZRSY8vIJBrY7M3+nHubEF0OYgNjuiToIlmTlPO0phwseamW4GRiMC9u43Wq9PgUVAFgaTHw0pCxkmaRlVFFAQGV2fZX6Gwfz2zSqvTa1i0N+O5Np5cwSs6DdVk0zcMMntKzDe7vfV5z7fpVISZ5Cp2QWQpHc97mxUiJ2GOG47VTioSY\/EQx4JG5CVxNbZUceTDxfhixWFyz69Oc1dj181fuosbcffWN9P6+7fR1KwvJy9FuaK9Hmw+c4IBs+ag0kIKuwn3aimcIZPOcs9rfocLYzdrkHqLbDqTpL7bS3jRXCZFr4lUURScTiddXV38n\/\/zf3jqqad4xzveQXNzM5\/4xCd4+9vfzne+8x1e\/\/rX6177e9\/7XtHPX\/7yl2ltbeXs2bO8\/OUvB3JO04X41re+xate9Sp2795teN+CIKw5d73YcuKBm8PgtFSbLMtcuXKFubk5jh07RkuL\/s4UjEciFOLck3Oo6pGaZ+sUVijT8zauP\/BPue5HHUg7gthWErr1HABnb1tutPW4fprK0XlDrmxQq8Em5vp8ZpYRHHZcfR2kFQVlaRXhhquDrd6HPegzbOZUXDbE5qCxs7TLgXtXuzHp2EU8+7tMqeQKhQaCquJJJNBoIeu2MyzHsNtzkzH19llnw1McC3ZiM\/jjDoRnORgw9mW7GJlnT10TboNjzBTbxxIh6t0+7nTfXMC1wn5boIEdgpuFTBxVJW+EWg7L6TiSQzQcjbCaTTGfjnFb0IC8bjSG3m7Uf6PIXIyWd1nQGnFVj0jrHx6j466dLJybw3QVogoptcNEoyeYJzM5ak4YtDC1zBv+\/Ue4NlPcd2bgFIWvyUFYv22uCKmEjlS7RFwgSRJ1dXV86lOf4tOf\/jSzs7NV13tWV3PZhcbG8ga68\/PzfOc73+ErX\/lKxWvFYjF6enqQZZljx47xsY99LO9wXSu2BfFosNvtpFIpfvrTnyIIAv39\/Xg8lQuSRiMRCpGMZpElO3ZHbZJqQZBRVVh9OsH4h79veGy6qx7X1Krx3JvDvSQr9dUc6CJVqR9mTweZ+ZW8EaialUgN50hKABw7GnF2NqEkM7ou1mDOWdreFED0OEle0VeliX4vjuYASQNFnuB2YO9oQrhuII6wifh3dbD\/yiT4PKiiQMilsppOYItl6PbW31C3zRgq4MBs0b6yfLucU3MpLkXm6fE24BOLa4KFhf2LN2TOAgJu0UZTmWhoMhHGKdppE\/WfAa23xqhx1kxjaEqVuR5fMoyqlICN7k\/cRdPB3EYwEDA59ROw+cwtNVI0g91v1nvNXKUglk5TqVqyeH6eX3rPp9aQDkAyqR\/R2HzmG0iN5NTlXAu0DI9ejUkPqqryO7\/zO7zsZS\/THaz5la98Bb\/fz5vf\/GbDax04cICHHnqIo0ePEolE+OxnP8uZM2cYHBykr6+vqvsqxLYinnQ6zeLiYn78tVnrnEoGoYUIL0s01xg1qorE7JdnWPrac\/oHOW2km3zG83PsIt793bkUlB5M9NWAObNQe4OfxLlR1IyE6HPnxACCQHpyMe+gYMZZWmrxY8vIZKaWdI\/JTUKVSI\/qE4qt0Y\/gsiMZkI7stiMEfaQKCE5QVBqT0IgXvF4SXhuTqRheu5OknC1bBM8oMiMZY\/8yM9NLAa7KEY4G2g3J64XwNEcr9BWNZCPs9t0s2iuqylhihZgg45Rgd10j12Mh2t11BAyiqvHECn6nh1a7vuzWTGPoSiZBDNlwFpHUbGffp8\/g776ZXnM0m1OpVXNsdillmnhUv7nmOq\/b2AZh9uw0J+79bVo6y6cpl5b0o\/+ssP6ZPBs1BE7Df\/7P\/5lz584Zji7467\/+a97xjndUrNWcPn2a06dP538+c+YMJ06c4POf\/zyf+9znar7HbUM8w8PDLCwsEAwGOXz4cFXnJmLmG7kmroVpbq+v8u5ATjq4\/ns\/IXFpPi9xXp1bxLEUy2fg1HovsoBxPSfow95QZ0g6gseJq8JANuw2PPt3GpuFAkpvc1FqrcgMVBSQWwPIQTfehIyU1L9vR18H6vU5ZINamruvk8zUIkrSoHG0p5VsKIoa0ic4R3sDtqyMPG8s3w56XXinZairQ7GJLDokliKr1Cs2drgDec+1gwYigtz00uWKkupzq7OGk0nBvJvzsWDxmIHcMLWb9aTnVqawiyIjiRDdniBNZRo78w2mBvWssUQIv91l2BiaIybo8ugLEpReD4c\/eQZ3Qed\/NZFJejWFK2gufSYbpK5L4W0xtzg7Avqf0fgTY9zxr95HOJ5g94EDZY+ZnZ1FFEWUMpu71fQSoB9tFsIo1eZy3bzHWsdeA7z3ve\/l29\/+Nj\/+8Y\/ZubP8d\/EnP\/kJQ0NDPPzww1VfXxRF7rzzToaH9Y2DzWDLiUdVVZ5\/\/nmi0Si9vb0kEtVLns308GiILlX\/llNTIsO\/9Q8oN3Ys2dkQ2dkQDnITOZ07W4hmktiX44bzc1w9rUiRBGkDfzMp6MHjcefn5pRDvlZjlMryuhBaAjCmn4BWAcHjwDm8gMQNgUJHrp6UHJvLqeIKIi+jLL33SC+JS+PGIoIDXbnpqAapRdeeHWRnQygJ\/c1EttGLmpEQpm\/uNkVZoUUWaXHmFvBwwM58JIuazkU95ZoxQ5kEq3LasDYSlzKMJVYMSSeryFyKLVSMql5Yna6YEryczkm8NWLSLHAybhtCMsNuXxMXI\/MV030Tcoxmp89QaDGWWMFvdxoSU3q\/m+OfegWOumKSqSYyUUIZMEk8sUzaVENodjmFw4SUWlVUnG3lo63h7w9zxy9+gEQ6913TmtFLIcsyHR07mJlZO39nfmUSv2niMRfxJBKJqiMeVVV573vfyyOPPMKPfvQjdu3S7y\/60pe+xB133MHtt99e1WtorzMwMMDRo0erPrcQWy6nFgSBnp4e+vv78fl8NQ2Di5us8QCMXTIvqVZVgZUfRhn61b\/Pk86aY+JpIokYzrEQYjyDe\/cOvEd7c42ZBfAc7iUzEzKUHdt3tyMms4Z9Na6eG2kyIzFCawP2gBdlXJ90ZI8DoS2IWCAikEJREhfGSF6dQiAnla67cz+ZWQN1m03Ee\/iGHY8B6XiO9ObSZhW85NJj84ak497XiTOeRTCQeDt72mhUHezHz4G6FmwuB4teuJhYYimdk5dOJsJkFJldHn3l2lI6zkLa2FhTk0vfHjBuVD23OmtIOoqq8lx4ioOuxjXR0C5fI\/ttQfbVtfDcyhQqKpciC4Qy5Tdpg6uztAueipY8TU5v2WhKQ\/pEHXd85tVrSAdAiZt\/TrMxc8V9AL\/HHEFlQyYHyi0mEZ1rNx0X\/uEit\/2r9+ZJB3L9gnpobi5PLuNz5nf+Rqq29aba3vOe9\/A3f\/M3\/N3f\/R1+v5+5uTnm5uZIJosl55FIhG984xv8h\/\/wH8pe513vehcf\/OAH8z9\/9KMf5Z\/\/+Z+5fv06AwMD\/Pqv\/zoDAwP85m\/+ZlX3V4otj3gg90fVPvxahsGZVbUBXPrpAmZcqlXZztTnrxD6h\/JdywCKQyTbVHezniOrpK7f3BU52hqwt9UjupzEnx82Nvm8MWxNNBIjHOohOTyNmtV\/6N17O8jMhoz7cxq8OFUBdTase4wt4EVejefTcra2epJOAb\/dlXObVlTEOg+O1npDWx+cdly72klW8InzHO41PoYceSUrRFWZjiDq9CJCgeLJllVoyUKLN7d4LNTbSCgiYjJNi1pXVgk3JyUQUfOeZ+WguUsbKc4SqsREPFQ0qmHNPSsyl3XUZBo0mfPpG2ag2u8m0hEWEhHqnR52eRsYCM9UnBh6LbvKLl+jYcSUeWUDd37wDIJOAV+pQh6dMVjQSyH5zO2FzXqvSStpnG3FIohzf3+RO3\/5d5BLUmeLi\/q1Sz0imFue4o52R8UJowBpnVRbubHX1abavvjFLwLwyle+suj3X\/7yl3n3u9+d\/\/nrX\/86qqryK7\/yK2WvUzqBNBwO88ADDzA3N0cwGOT48eP8+Mc\/5q677qrq\/kqxLYincDRCLRFP0kTzqIZLP1tAVQUEQX\/xkuIORn7ncVLX9L+Iar0XRVVxzelHUHIyjRhNkjw3iuh14erJ7ZzTk4sosdxOJCdN3mFczxGEXCprA4QGmY4grqW4vvs04NrdjrQYKRqpLc+HcQJpQPS58RzoQlVUEkP6KjlbvQ+hzkN6SD9tKLiduLpajElHFPAc7DZFTFwcM\/Tlch\/sonV4mlYxAD6QnTbGszFisSg7nX6CDg+XIvPs8jfh0Um9QK5+4rO5DJtZF1IxcNoMRyNoM3tuN1CTZRWZq8nQGmISBYFuV4BuV64+80xoArfNzvnIHL2eBurLOGifDU9zPNhhKJBQ3tjGnb9tPNo4LcimpdQel3FxvxD+dpNXNem9ppSMYvjxl5\/hv\/7Vt9eQDsDion6GwEjoVN\/mYX6sMvHopdpKI55aajyqkea7AA888AAPPPCA7r+XTiD9zGc+w2c+85mq7sUMtgXxaCjnXGAG1ajasmkZKWPH4Sr\/RUmOwrX3fstwR5XdEcQeimNP6x\/j7GpBiafy6i4lkS4q6rt627A1+HP1FAOhgVjnxtneWFlosM9YaFDOWbocPDck3kYpMWdHE8lLEyjJNKoAjq4WHPU+pOUo2ZlcWs6xsxk5lkQ2UMDZGv2IbqehT5zgdeHc0WhYz8Im4tm\/syIxZbob1piT2jIyPXhycm0BpgMCouRiKZuk01FXdoHOy6Xt+jUObexBi4EUejEdJyFnDIkpJmWYTIY5bHBMboLpbFE0JKsKM0qSmdVlGhween0NFW17EMD27h5u\/3eVc\/+egPnOddFvriE0u5Q0rX4z671W2LT3T3\/+Q37hfZ\/gzJn+sofGYjGCwWC+B6YQ5X6nwRU016OUjJvr40kkEjQ16asQXwrYVsRTa6rNjF1OIaJhaCxJ26uqQOh7K0z96Y8Nz03vrMc1HTbccXkP9ZA0mmmjqAg2kfS1aeRoEntLEKGxjnh4FcdiDM2H1LGjCWQ5V5DXgammULuI0NGA3ciJwHRUVexEIKggTS4i3Rg+Z2v04967g+TSKlI0oVtEdHa3IK8m8kRVDvbmAILdRnpkbVE3f9s+N862epKXDCbQ2kTcfZ1g0HsEub6qzgtjYK8HIOOyMScliEUidLsC1NldDKzOcMS\/1nyzEJejC3R5jMceTCTCeO3G83iW0wmictowlZeUsywI6TUO3DZBpEPw0NGwE1lVeG5lCpfNzsDqDHvqmvHbSkjTJuD97X30\/Zv9uq9VCFeTeSm106yUOpQ2TTxqvbmlS7zRP\/SNP\/kuv\/Lfcjt3o6xKe3t7WZKJRPQzG6rD3MY3bXIsQi2pthcbtgXxaKk2M2MRyqGaiAdgaSZDY9vNXYoi25n60wusPHpV\/ySXnUyDN+e3pgczc2+4oQC7PJGv+UiLq7C4ihNQHDY8e3dg83tITy4iLei\/Xumk0HKQfE4cPg\/qhIETgYmxCNgE0u0BqEBMzo4m4s9eBRVEhw337nYEl53sXAhpKSehdh\/oIn191jDd5+xpu+HvZjAKvCWIIIqkDfqBBJ8bZ2t9UT9QKVQR5I6GNRGTMy3TjQt8Lag2gUmviivjYUlO0S6Wz\/m\/EJ7hSKDNcPaPGSn01A2rHSPbHq0x1KhHJ61IDEUX84PiIBcNXYstE84m89FQ+E4ft5skHSmawR4wp2jLhtM46s2l2pSUySGQadlwPHUhHE1uvvyh\/8t\/\/OMv5n8XDutHL8FgeRsgo16epdgMUDlCMVK1FSrqXurTR2GbEI8Gm82Goiioqqrry1aKbDbL\/IxJz4obmLoWZ9\/x3BdXijoY\/u0fkJnQV5KpDT4UVcFpUM8R\/V6cLUFj0skPdtM\/RsjKCE4b8eevATlysQV9uZHWBWkrz8FuUiMzhot3ptmHPZ5BXdB\/0Bxt9SCIhukusc6NrTkIBjJwbCLufZ3Fi3dWLrquY0cjzq4WsourqFkDddvBnOza6BhnTxtSKIIS1TeKzBOTQTOr4HXhbGsgY3AMNhHPvk66Lk\/CDbl2ym1jNhMlFYmzy1OP2+bgqrxqaAYKMLg6wwF\/q2Fhf0ZN4Le7DC15zDSGxqQM02Vcum2CmD9PUmTOhqe5o8u4plMIadm8lFpaTpkmHrN1m8xCEndXZeLJRjP8vx\/9Bh\/4XLEtzOysfgTtcJT\/uyQSCRobGwmF1rp6hOJzeMwQj0GqrTDiqUVO\/WLDtiIejfVLdwB6iEajPP\/886SqkHYCXDu3wqt\/uY74VYVrv\/33Nyd+lkG2I4h9OY7NqJ6zswUllS5StJVCm1djqABzOcg0uBEu3DymcNSAvdGPo6MJ0eMkPnjd0H0629WAc2bVUEnn3rODzNyKoQLO0d4AikrWgHTEOg+2Jj8pg+Fu2G3Y6+uI\/yxn1S763Li6WlARck2nN8QWnqO9JC+MG1oNuQ90kR6pREytSKGoMTE1+xHsdkPSURwiapn35k7J7MILdV4Uu8CEU8aZcjKbiLDDXb4Z8+zKFMcr2PZciMzR52\/BZTBQzUxjqJamM3LgTslZrsWXuauhix27zdt5yFU8b3LC\/LGi29xylImkcFfo9lEkhb\/7H99fQzqQS5vp1XIkg9pmW1trWeJZis3SReWm93IRj6qqGyIueLFhWxBPoaoNcjnYSsQzMzPDxYsXc41S8kBVr3fhqTnmv+1l7rNPGh5npp5DbwvZmTBqxoQRqMG8GntzANHlgGn9kF5OZbCns8QvjCE4Hbj27UR02EnPLOX7g1RA6W3CMWbsLO050psTOxgQk2tvB9mZZcO+GseORuRMlqxBuk\/0e3E0+Yt84pR46qbfmyji3N2OozlIZmrRkHRME1OlVN6NGpO0pB\/p2hrqsLudSLP63nW4HHi6W+gengE84PaQ8NiYTa4ixVLs9jZgE0ReWJ3hjgquBs+Hp7mtwgTTodgine6AYf1oOrmKrUKaLqFKTCdX83ONXB3mfdfMzssBDKXvaxA0STwGm0AAJSPzoX\/\/F3zfQE25Y0f5Wk40qp\/V8PvLbyhGp4fo9r3W0EwUIJOSGBsdo7mlOe\/FptW0N9Iy58WAbUE8GgRBQBRFwzqPoihcuXKF2dnZvHN1Nc4FAOFQhv2\/8mv86pn7eH33YTpXVdRQQWOny06mwWNczxEEhD1tqNfmDHnJe6SX5BVjI1D3nh1kF8JF8uVSlKbE1Ey2yN3AtqORuEPF7XFjG9KPvKqqQ1XomXHt7SA9tQgG7tuO9gZUSTF0axC9LgRFzUdD9kY\/jh2NKBkp1zOUkW4q1ypYBHmO9OYUcEbEtK+T9PgCatrgvjuaUJJpQ9KRPXaoc5MeLhZ\/eJMye6iDujokl41JMY076WI5HS9rBgrm7HYGV2c5GGjFKRj4wMWWaXR6aSgjpdawlI4jO0T6CoxFPZ3mF7oYWXPjplk7SloPSlbG02ruHjxO\/TSfnJT4wDs+w19861F6enp0jwsEypPI\/LxBY7ZOGi6TTRNs9RGe1x+6qGFhbomx8TEcDgeNjY35+9CIR1XVn4saz5Y7F5TCSFKdSqX42c9+xsrKCnfffXd+XEI1Xm0AnnobsVSSL\/zLt\/iFL3+CE\/\/3j\/nD1Wc532ljsdWN7HHgnNP3EhPrPLh370A1mJ+DTcwt3hfGDEnHe6SX1Ng8skFKyLW3AzmWIjunvwim4gk8cQmGZrHV+\/Ae7sG5twOloAFQrHPneoYq9Mxo921EOra+HaSvzxqSjmtvB3IkUTQArhSOtnpEj7OImKRQlOTFcdLD0zkHhUPdeE\/sJXNjjLbefXsO9+RqTEYR05HeXP3IgHRcezuQV6KGLhOO1gacPi+2Rf3vieB14e1opidp57C3mUa3j6hH5KoS4Vp8GVlVkFXFlEHp2ZVpjgTaDEnncmSBHW6\/IelMJVeRVbXI8TrrtuNsMN9rEwyaJympzlytNrOQrDjFVINNR54txbI88OY\/4S++9SiQm+el13\/jcJS\/xvLysm60kTVo3PY1mtvD7929n3vuuYeDBw9it9uZmMhlAV544QX+\/u\/\/nieffJJEIoHXaz4CNTN99N3vfveaKaKF5p96+OY3v8mhQ4dwuVwcOnSIRx55xPR9GWFbEI\/RMDgNKysrPP3003i9Xk6fPp3\/w2QzEhmTapg8nGuJ6jsvPMO7\/\/ZB\/uvVR\/nVZ\/83P2hKkdjViOAs\/kI5O5tzvScGs3HEgBdXd6vxAm8vsJoxcjQ40kv6+pxhHSbT5seZVVCXc4ugHI6TuDhO5toMgqri7uvEe2w3jvZG4\/v2mSMmdrciD88aW+Qc7iE9OmeYpnPtbkeOpfLjHMrBFsz1ByWevYq8HMHR0YTnSC\/O3rZ8j4bgceLavcO410e4EQ1VsvY51J27b0Oj0zbkRArZIEKVfE5kt53M6E1CFVTwJxX2iQH2+pqQPA6u21O4HE5Ws\/obj7M6E0MLcU2KsLeuCa9Bb9FIbBmfzUmbuzheSTVXl9ZxNFXRENpmbucur5q31XG0rCXW7Gqat\/\/rj\/CVRx\/P\/06SJN2RAkb2OB0d5c8xSsPZvObWoFQii81mo7Gxkb6+Po4cOYLNZmPHjh386Ec\/4v777yeVSvGxj32Mv\/3bvzVsatVgZvoowOtf\/\/qiKaLf\/e53Da\/79NNP87a3vY13vvOdDA4O8s53vpO3vvWt\/PSnPzX1Xo2wrVJtsNa9QFVVxsfHGR4eZv\/+\/XR1dRURldlZPIVIob9L9Xg8DEwP8rvf\/J8ABL11\/PuXvY57Ow\/S5vGTHZk33C07u1pQEinjsQB5h2qDhVJzn66QEst2N+KcWkHVWUwFWUUFUlenURJpnJ1N2BsDSJEEmYn5fP3K0dYAqIbEJHhdONobyBjIl1UBHPs6jUmA3AKfvDpt3KhaRrmWnVnO9\/6IPjeuvg4Emy036lv3QnbclWx7KCAmA7j37yQ9OmdYP3J0NCIm0igh\/dSL4HMjemz0Lcng86IKAmE3zEVWcGVUdvkakBSZ85H5irWhs+EpjgeNRQuXIvP0ehvKEpPQXkUEE8tgN3B7LkRiIY7XZPpMMVk3yoZSOBqL1X6ZUJI3vf7D\/PPZwTXHt7Q0Mz29VrG5uqpPIvX19WV\/v7CgTwIZoXKaDdb6tWlCqo6ODh588EH++3\/\/7\/T19dHb28tnPvMZ3vWud\/G5z32O97znPbrXNDN9FMDlclU1SfTBBx\/k3nvvzXu3ffCDH+Txxx\/nwQcf5Gtf+5rp65TDtiOewlSbJElcvHiRUCjEyZMnaWhYWyytxqdNQzihX2+IxYrTK6uJGJ959Jt8Bti\/fx9Hgjt4y4E72Sd5EGbCRcfmJM6zxkIDzdHAoOYh+D04G40HqamigNrVhGNc3xkAINUZhJHZvI1OZnqZzA0Bgy3gxbmzBcH1\/7F35eFRldf7nX0myUwms89kB0LYwhKC7IsLUJRVRBQ3WrWtaBXXti4Va6tVq9LW2trWn6itYstiEBAJOyggJCwhkBCy7\/s2ySSz3d8fw1wyyXxnJsgScd7n4Xl07sydO5M73\/udc97zHgm6SmrgIkYViA1qcOBI0oFMAoFBCWceW5oNBLnAB6FcE0VFwF5S60mJCYWQxhvBhUnQUd0ASZOHrISqMIjVETQxBel8EIxXnGzAeXdtG3tD5FRKAQEgqb+wWAk4DmoboJaoAQnQFSZGSVcHpBIxrE47IhiRTGZzeUDH67yuRgyK0Pl16AaAsNjgiaejth0qP6ahftHiCHrSfLBpNmdjlw\/x2KrbsXDeb7Az66Tf57NSVlVV7A2WlFFDamhoQFhYmF8H\/RZbLYL5sP6Ip7uwwOFwwGaz4eWXX4ZKpUJtbW3Qdjj8tTCmj+7ZswcGgwFqtRrTp0\/H73\/\/exgM7Gs+ePAgHn\/8cZ\/HZs+ejdWrV\/fpevyhXxCPv1Rbe3s7jh07BolEgkmTJvnMq+iOvroWAEBVI7vLndrVVFZWIS\/vLNZ\/6wnnR8UPxG1Dx+MG02BEqpSwnSwm31cxLM5TXyB2y05tOCROeIrqDLgUEojUERBQpCMSQp4cAxAd\/a7WDkAoQMfJQo+s0xSJcE0knHUtPukvaaIJjpomcETazGt\/4ygj1HRiISQJxuAW+AACAVlSNOxlteC8NSa3G\/bz35nk\/PXIEo3gnG5y6qpAIeUtgAJeU6DrHhqLzvxKsqYnNKkhaGmHyMbeMAkjFIiIisDgMqcnGhIJ0CBxo7alCUqXEDFh6vPRUHVA0gnGm01gDM7SBgBEtuAXQbcteBcSUVhwS1F3eXZ7eStuuPEpZJ4rglarRUND73uPdQu1trZBqVSira33ZotyTzGbzSgoKOj1eHVzGSKDIZ4eRqH+hsABFwiTIgZ\/YE0fnTNnDpYsWYL4+HgUFRXhhRdewA033IDMzEzm2lpdXQ2j0dfixWg0orqa2HwGiX5BPN0hFovR3NyM3NxcREdHIzk5mTTo66uiDQAKK3L9Pi6VSlFb61\/Volar0dzc7PPYiZICnCgpwJ\/1OqDLifunzMYMwyBoa2wQdnerDdKORjEsDh1ny8lZ8o4oBaScEFwVWwYsVIZBoo9EJ7WY9lC3CQCIqlvQWe0hHLFRDYleDYFE5Llu4pqCsb+BUgG3QgLHOUJxF2zkMfy8FJwwQxWpwtCZVwG31QaBVAxZUjQEUjHsVY18ZCeKioBQISMteSAWQT7IcknIUhCrhbO6GSIiinMppeDEQrjLLmyABC4OWpcAWplnB9sRLkJphxVysRSdLifkIv8\/42CUcqdaqjEjwb93mT\/0SUrdl526JkjyO3\/O1sImTL7xcZwp9UTXUVFqv8TT0cFOgen1Or\/E0zPr0R1RUWq\/jxdXncUojKWuHEDvXh7W9NFgpy\/3BGv66NKlS\/n\/HjFiBNLS0hAfH48tW7aQ4697NvL3pbmfQr8hHoFAALfbjfb2drS3t2PkyJFBzRrvyyweAAhTSdFc5l8dZjabUVLiP71lMhl7EY8XBoMROTk5+MPWz\/AHACKhELePn4FFg9OQ4JAhPDw8gPt0cMPWgnGWlpwf5NZFNLMKw+WQmjVk\/chZ2wyJPhIdxwrglnlGG4hFInSW1YHrJnQIpmdGEq0F12mHs5aYhaSQQmKMoiOPYMcn9HA+4OxOXwcFixZikwawdV3oJfL3dkHY7QR7TUjQw11aDyGRppNYtBBabXA3EbWhCDnUGhXC2i9MXq0VO1DX0gyLLAJRAhlcnBsnWqoCkk62tQZDlXqo+pBqY41J8AehLDgptcvqgCIqOBWXUC5CY249xt\/wGIq6SZ\/1ej3OnesdiVRWslNqrCZNKuvBig7qmqogt0iY7gReBEq1Wa1Wvsenrwhm+qgXZrMZ8fHx5CRRk8nUK7qpra3tFQVdDPoN8djtdpw4cQKdnZ2wWCxBkQ4AdPSxxiMJZ\/\/wtVoNk3hYHk4AoFT63sAutxufHtyFTw\/uwoQJ4yFobMe9Y6djtEQHaUWzj4otmDHXvLN0aQO5iVQMjkFXWS2pyJIY1IBAQBqPCuQSSGP1nkZNAMIuJxz5lXAAgEgIWaIJwnA5IBHBdrwwYErMEWAcNqLC4QbtjtAngUCAyEMYJkPXmRK4bXYIIxSQxuogADyken7AnEirglAiIkUikIggH2AOeE3uRD0ERXXkpkI2wARHVRNZG3KFyyCUiWHv1ogsdLlhcIlgkHssW6wKIYo7WhAulsLhdjE947wuCm6JCEpT8IafwvDgyAQARJFB+rnV2yCKCC7iaahuwZTbnkFFo2\/EL2TUiOrq6pkekKyoora2FnK5HJ2dvdcWf+OvvYg0KNBZRBNPz5k8PV0LLvf0US8aGhpQVlZGrrMTJ05ERkaGT51n+\/btmDQp+AiZhX5BPG63G4cPH0ZYWBiio6P7VEzra41HpZcD\/jNtUCjYP0BWwRGg3W4lEgn2nz2Fg2dPAQCitXrcP2k2pusGQOsQQujiyDHXQTlLo7drtD8EY5Ej0ig9YoN8BjG53Ogqq4M8KRqdp4ohNqghMajh7ujy1KW6kWowKTGvcg1EHxMi5JBEBRAIBDuzZ1gcbHnl\/HW6rbYLdjhCoWdchSYCrjYb+zuAJ\/KQ6iLpaxJ4NgyiIloSKx8Si65zdG1IYoqCoNMOroGdBhLIpdCYNYgodAMRgEsiRJXAjobmJlgk4dBIPFGFR57t2RF3aIPvFwEQ1LhpAOBcHKR+ZM\/+4LIGJ0UuOVyKHz\/3z16kAwAdHez7JzY2BkVFxb0e90csXlgsFhQWFvZ6vKdEuTtk\/ntSfWDrkWrrOQTOarUiLCysTxHPww8\/jE8++QTp6en89FHAs1lWKBSwWq1YtWoVFi9eDLPZjOLiYjz77LPQ6XRYtGgRf557770X0dHRePXVVwEAjz32GKZNm4bXXnsNCxYsQHp6Onbs2NErjXcx6BfEIxQKMXr0aISHh6OgoMCvaoSFvjpTC+TsnTeVV3URvTbU9fb0fqpoqMNvv\/g3AGD61CkYIFBi3oBRSGgXgavzTUU5w6WQRNDO0hdm8QQYZ9DDEdsfpHF6OJqs4Ah1m9f+pvN8wd5Z28w7aAsVMkjjDIAIEEql6DjeO\/XRHcEo16BVwm13wFHGFlII5FJIY3SBJdyBBAJuNyAWwXa6DFynHWKtEhKTBu4uh4dUz18nHw1REZpYCKdRBXEw1kUBIjRpvAHOhjZwVvbi6lZIIFQpfFSHIocbZohhDtODA9CqEKCorQGRUgVcnBsigRAuU\/CeYC6rI2gptaPe1mvyJwstnTYE2uMX7SvC2Fsew4jRo\/0ep6aHajQav8RDkYhGEwU\/vEO6VLuDGI\/QM9Xmb+z1pZ4+KhKJkJ2djY8++gjNzc0wm824\/vrr8dlnn\/k4JPScPjpp0iSsXbsWzz\/\/PF544QUMHDgQn332GcaPD95QloV+QTyAx8LC7Xb3eRhcXyOedmcz81hXF\/tc1E1K7U6oprPm1jZ8cOIAPtj3JQDg+mFjMH\/QGIySaKEQiCDrcoOroZorwyBWK8lZPBwA2dDYgP1AiqGxsJ2rJA1TJWYNOIeLueC6bV3oKqn2pA5zCyGNN0KsUsBR3wpHD+uZoJRrA8wetwZCTSeIDIM4XIEuInUYtGihRzTkbGiD83xTrlegIAyXw9nY5pPu6n0iKZxKGcQVzfT7BaGUkyVFw15K2\/uItEoIAbiJe0UgFkEfa4LqLAeIAYdUiFJ7KxSm4Ae6ORo6g06JdTV1Bk08kUSmAQDytuchbcETsNnZm8aKigpmSk0u9\/8ZGxrYTiCsBtOqqirm+3S4moAAFNoz1dbTENlb4+kLAmWIFAoFvvrqq4Dn6Tl9FABuu+023HbbbX26nmDQb4jHi74Og+trxNNgZRfdqTkdDQ3sHVV9PfsY1XncU4Wz+\/Qx7D59DAAwdex1mBU7DFMS4xBZ3Q6uR41EGqOH29ZJyq4F4TI4IqQQUK7ROG+8GcADLRjDUJFGCaHiwkRRe0kNvFct1qogMUXB3eWAQCYNggTiYTtbTjaYcnolXB1d4Ag1XdBy6QDfAWd3gnO70ZlXBrfN7hEoaJVwtdlgL6nlCVSgDoMDHMS17KgRQgEUQ2L7TIT+ILFo4O6ww93MTsFxEhEEhkh0ne0msLC7kYgI2KODyA+dh8saeLyzF3aqptcDLAscADiZno3xS56G4\/ya4E+FBngW3+hoC0pKev+d3W7\/91BHRwfTpbp7FNLzfcxmM8rKev+m6toqIUIS87MA\/lVt3dP4P4SRCEA\/Ip6LHQbXV+eC8jp2SoqlTxeJRKiu9r\/ASyQSpgpGJpMxj4lEInIuyLG809if+S0AIEwmx72TZ+Lm+BGIaRVArlejs6iaNrk0qAGhAFw1W3YNqUetFtB4M5haTawertYOOBju2s6GVrg67ZAao9BVUAF5coxnCmtFPdwtvqnKoImwoh4CYoETqMMhDpPTcmkvCQR4P\/mwOHR2c1rwcVCIUHjmDHEudFY3QtJM1KtkEsjjDJekb0iaYISzroWs2QkiFBAq5XBX+N\/dK2OCr\/G02ToDpsS8kImC7w3yZ4EDAIc\/OYop9z7rs6Nn\/Q4BQKfT+SWetjZ2tsJgMDDGI7DXIFYtuLyuCPGBiIfhXODFD2H6KNCPiMeLvkY8HdbgIx6BACiqzPN7jLXzATyyQn+2G4AnF8xytLVYzH5zy55jFr+7Jn\/X0tHVib\/v+gJ\/xxcQi8WYlZKGJcMnYDiiIKpo7pWukg80w17TzM+48QdhZBhEyjB0kcXxbsabBOTJMegqpq2ExDoVBCIRL\/Pmi\/ICAaRxeohU4XC0WCGJCAuCCOM9MmgiEnDrlOBsXeAqiRSptzb0HUnAbbXB3mqFs74VEoeLV\/05G9rgqLpAxMIIBcQaJTl0L5j3AwB5UjS6SmpIGbtIo4RQIoaD6PnSxge\/u5YG6TQNBC+ldjR0+hUsfPvpcUy+59e9Hq+rq0N4eLjf1DcrpVZTwyYrlcq\/lxyVqWARQ3HlWSQoZzPtqwD\/DaTd6yo\/hFk8QD8xCe2Ovqfago94FJFidNn9E5XJxNamazTsuSaUfXlPy4ru0GrZx3Q69jRDi8WCrccO4cf\/Xo3r\/v1bLMvbiB2aDrQnaiCQSXi3a4p0JNE6QCiAo5wu2AfbONl5toL2r4s3wt3lgKPGzwLIcbCX1qGruAYikQj26kYohsdDlhQN+Fno+NpQgDlC4vYuiNoJIUlkGCQ6FV0bCpJ4Ea+Hq7oZwi4n4ObQVVQN26liOKoaINaqoBgeD\/nQWIgiw+jakEgIeZDKvM5AvVNmz\/3l9zs\/D5dMDE108FJqhSr454qigpxQ2tj797t59Q7c9cJfma+Jjo72+zgrpVZXV8eMUlgu1VVV1Uwlq1zuX2DhcNoRHkVHeoEaSDs6On4QxNPvIp6+ptr6UuOREka5ajW7T4fS7rMaygBank3lcaljWq2Wt1IHgLzKMvxyw\/sAgGHJybjeMQST1bEYaJdBbO298MoHx6CzuJqcXirSeobSkTtzkRCK5MB1imCUa2KDGgKAFy3YvEPtxEK4o6MQHqmEo7YZUn1kcLWhvADRUFQYnA4n3ATxQiqGPMEUUCnHJRqA4loIGJtcZ0MrBHIp3FYb3LYuyJOiIZBKYK9q8PHGE8glkEbrebUg8\/MFk4KL08PZaCU3H4IwGdwD9BBJgt97ButK7Xa4IdUGKaW2+d6Hn\/7uC9zz4p8hFoshFAr9\/vZYv9XWVnadKyYmGvn553o9bid8Fc1mk9\/UHSXDDosSw9rA3vAEaiBtb2+\/JA2a\/R39hni6TyENNuKx2+1obiCKuD3A+RmH4IVUyv5RUbMxLtY+grLlYBU2ASA8nH0tUoUcf92Vjr+ev675qZMwb8BoDHYoENbcBVe8Frb8cuYiCXiku67mdjga2Go8QZgMUpOGVNMBwU0LlSYY4axv9btICpxuiCqa0NVig9SghqvVBsWIBLha2mEv650KCaY2JE00wVnbDDcRDQki5JBqI8n+KgBwJeogKiIiGPQ2DfVxUIjWQqxRwtXR6VELEs7gQJAquEEW2MvrLnjY+YFQFQaxMgzNruAFAH2RUnfUWhERrGih273xz1\/9Fw+94XGFdzqdiI2N9ZuOZkUplIcYy3GalV4HPJs8f8TT1MSOIuWR9HrQ1tLhM2+HZZlzraPfEI8XXjl1IE+gtrY2ZGVlwd6Hme52AaH84dg7ZKq\/h5rrQe2MqKiOIl7qO3E6L1wLx3FIz\/wa6Zme8d5zpk3HhGozxqnN0Le6IHT1JoNg7G\/E+kiPKICw5Al2WmhQ0RBfGzq\/qFR4ohRRZDik0VpwTjc6y+ugSDBekvdzKWXgBABHqAUhFMAZHQVxEe0MHqgx1FHRAK7LDoFQBFdHF+RD4wCOQ1cPW6JgVXDBNKKKdUpAKIK9oh6C5MAd7vy19kFKLWgLPlUulInAuTisfvxjPP3Xj32O6fU6v8RjZ8iqGxoamMafrLQZRVZyuf+orbKSfe\/bBW2gKhi29i4cPnwYcrkcWq0WDofD5zf9QxEX9MsaD0AvvlVVVTh06BDMZgvsnX2oBznYuv32dnYTaGsre\/ff1sYms8ZG9vtRIT7VM0SRWXg4+4atbGnEi1+txc0b38aPvv0QH4vLUGwQw6nw7D3cAwzozCsjSUeaYIS70w4HoZQThMshizcGVbDvzCsnSUAapwdnd\/qtU7ha2mE7XYquslrIo3Xg7E4ohid4FtaLfb8YHaRCMcRU+lYmgdOghJjh99fr\/Sg3AosWnJODo7b5vINCKTpzy8DZ7JAlmqAYkQBxtA7ygZbA3+fweHSepd9PbNaAc3F8w6\/EHLyirS9Saq6rD8QTIcFbj\/+nF+kAgELhXyxA\/a5YQ9xYG7329naiFus\/Uu\/q6uKnH\/dEs42OgN0OYOrUqRg0aBDcbjecTieOHz+Ojz\/+GH\/4wx\/gcDj6FPEEmj7qcDjwy1\/+EikpKQgPD4fFYsG9995LetgBwJo1a3pNLBUIBOT60xf0m4ine6oN8Nwo3WWGgGcXf\/bsWZSVlWHUqFEIkyn7ZK\/TYGXvbqibmZJwUq+rqmK\/HyWlbvRjCRLMMdZOEAAE3aZXNrS1YPWOz7EaHkPTH9+8EJNa3RisUkDR4j8dqRgah85zFYGjE7GIjoaEAiiGBC6gywfHoKuYHrjmdZfuWYuSmDUQa1VwWW2wl9Z66j5BpajqwXWyv0NXmARuuQSSasLsFEHWYRJNcNY0+e+LcrvRVVQNQbgcEl0knI1tUAxPgLvL7uOg0Kf381P3ieiDOWiwg9oAgDSl6wZnpxMvPPUv7M73n9Jsamr2+3h5Obv2yEqpUZtHk8no93dMOZIYDHq\/yrfq5jKowR621tXhgFgshl6vh06nQ2VlJUaOHInq6mp89dVXOH78OPLy8nD8+HHMmTMH06dPJ2vF3umj48aNg9PpxHPPPYdZs2bh9OnTHnPijg5kZWXhhRdewKhRo9DU1ISVK1di\/vz5OHr0KPO8gKepv+cIbZZysK\/oN8TjhVAohFAo7BXxdDcRnTBhAiIiIlBb1tync9c0+7\/BBQIBM3xWKpXMnK5Op2VaaBgMemYPj1arYXZNy2QyModMERZl58FaDVxuN840VeNfX28AAKQNGII7UiZhlESDqEY7BG4OGGQkZ9oA58dBN7XBSYyDFoTJIDUHURsKYuCaJFoLd0eX31EMjqpGj1OCVAzF0DjA5fakoUpr\/c4UCkaQINQq4bTbIWkk7JyCTYklx3hSmtSQO3UEhAopP2PIeb7mJpBJIBtsgkAiQVdVA2QWbWBSHWiGvaKhF6mq++RKHXwtU6QKvDi5bE6UHnVj1k8egurQYbjdbpw8me37HMbfo6urC2azye\/Grudm1QsqPcZSplK\/J9ZriiryMAbjmK+zdznhcrohEl8QTiiVStx555244447kJqaimXLlqG2thY\/+9nPcMMNN+CDDz5gni\/Q9NHIyEhkZGT4POcvf\/kLrrvuOpSWliIuLo55boFA0KeJpX1BvyMeoLfAoLW1FceOHYNSqcTEiRP5m6svdjkSmQg1df6JR6fTMXX7JpOR2S1tMBiYN6deb2ASj9FoZBKPyWT0W9D0vB+bzDxNruwIi3JXsHUbSna0MBdHCz0uqia1BvfdeAsmtkpgkYkgYqRQgqkNiTRKCGUSupkzyBEDsoFmOCrpKZ\/CCAUk2h5TXMUiyAaYIAyTw3HeYy4YQYLQEgVHoxViomDvFgvh0kWQg\/eA8z1IZ0ppUjWqwTndvWyGAIDrcngaWUVCyAfHwNnU5hFctHagq7S21\/ZCnny+rtUjBccB0McHn2oThfVhWJyKXlacVgfKTophHjsBJo7DhAnj8eijj6Cysgo7d+7Cjh07sWfPXnKTxRL8sKL+lpYWZq8em6wqmWInlgCooaUWihgpbG2Esq3DjnCVnD9vT3HBrFmzMGXKFHAc1yffSoA9fbTncwQCATM69MJqtSI+Ph4ulwujR4\/Gyy+\/jDFjxvTpeljoNzWe7gW27pLqyspKHD58GDExMRgzZoxvl28fRiKoDeHMtBxVzKNk1kolW7kTFsYOj1Uq9uvUanbPEDWN0Gw2MYUOgUiJlS6sbm7EnvI8LPzvW5i84x282ZmDHD3QqbxQqBUmmQPXhmL1gMv\/QnrhSWLIk4LxU4tHV3ENSTpinQqicHlvOyGnC12Fnh4bZ10LwkYPBDhAlmgCGLb6gjgdnHUtEFEqMWUY5GZt4BRcyvkeJIJ0pHF6uDq6+AjH\/5PEkA8wo\/NMKRwVDbCdKvb0BykkkA2JhXxILARhMk\/dJ99\/3adTJYdMEXxDqMQQHEm5u1yQatgRj6PFjqw9bTjd2IZjx46hvLwcDocDcrkcCQnxWL78Xnz00QfIzz+DNWv+Dw8\/\/BCSknq7AWi1\/nvdKP811ggAh8M\/SbjdbmbNiEprR+rpiM\/r1+Ylnu7ipe6WOQKBoE\/1Htb00e7o7OzEr371Kyxbtoxch4YMGYI1a9Zg06ZN+PTTTyGXyzF58mRyfk9f0G8jHqfTidzcXJSXl2PUqFF+F92+TB9VqNk\/MqPRgKIi\/1Y6VE5TKmXvAm02ooGTIQcN9H6snRngidpYuW+LxYyyMnaakdpZendQDpcTnxzahU8O7QIATElOwS2jJ+C6xkZEgp3Wlw+ORlcJbXIpVIVBHBkeUL4clFw6Tg9XczucRE7f06Nj9HHPFobLIY3VewqoZbWeuTyJBrhL6sjhbWKdCgKh0K+82wsOgDNWAwSyAWKkxLrDW\/fx12MlsDnQdX5onSIlAW5rJxTD4uFs6G3Sajf2wZXa5oI4IrilwlFngyzG\/7ntDZ2oLonCqJumoKOjA\/X19aivr0d+fj7kcjlf94iKioJEIsFNN92A66+fjt\/+dhWKioqxY8cO7NixEwcOfAOx2P\/vubycfQ9FRvpfaFm1JMBDcP5+Oy0t7PtLGkBJ7m0i9UqpvZtujuO+k6qNNX3UC4fDgTvuuANutxvvvvsuea4JEyZgwoQJ\/P9PnjwZqamp+Mtf\/oI\/\/\/nPF3V93dEviUcgEODs2bMAPMOIWKzfF9cCoYIYjkYQASVe6DnyoDsoAumLM0N3UI2s1PvpdDom8ZhMJpJ4WMcO5GWjPUyEXx87jjidEfeMux4TlNEwNrsgsns+nzg5Gp35lXRayawB53CSC3fQ8uykaE8dhyI5ZRjEURGedFU3uNs7L0waFQrgSjbDZeuEQqeCq9Z\/r4ckWge31QYnsQhBLIJ8gMnHoNPvtQchhRZFhUOokPN1HxYUI3oTtFingsToMWntKq6BcCDbHaMnHLUdEMUT3dfd4Gy1w1+3T1etDXU1RhiHDQHgSZXFxcUhLi4OTqcTjY2NqK+vR05ODpxOJzQaDXQ6HXQ6HaRSKZKTB2PQoIH46U8fRHt7Ow4ePIQhQ4YgI2Onj+TabrdDr\/df+Ge1RVD1H1ZKj8oguMX0hth2voes50iEzs5OuFwu0g2FhUDTRx0OB26\/\/XYUFRVh165dZLTjD0KhEOPGjbv2Ih4v67e2tvKsf91115G7\/A5r8MTTybEbTamemu71j56wWtnnpCIeVs0o0OsodQvVkEo1wOr1Oia5REWpyd2g1127tL4Gv\/9yLQBALpXhzutmYFxcEkZX1EFGkI4s0eSRElMml8G6SwdhZCrWRwICAW1bIwBcsRqI8qogAuA6\/zqJMcoz9qHYM+yuZ2Oo31OFySA1RQUkHWe81uNdR2xyxAY14Hb7FVNceEOBx9HaT7rSWd\/KCz\/kg2PQaQze\/qZPUmo\/6rfOynY0NMdCnzTI72vEYjEMBgMMBgM4joPVakV9fT2qqqqQm5uL8PBwnoQiIyOhVqsxe\/YszJx5E1wuF\/Ly8pCRsRM7duzEoUOHYTIZ\/RIPKw3X3t4OrVbbyy2eQmtrK1QqJVpbe\/+Wrc5GAOyoxZtq6zkEzlvP6UvEE8z0US\/p5OfnY\/fu3cw0ZaD3OX78OFJSUvr8Wn\/oN8QDeOo5OTk5UCgUMJvNJOkAfUu1Ufp6SmpJ3YzU8ClqbjtlQNjczFa0UddJuR1QTafUTW4ymZjEIxKJ\/O4UO+1d+ODAVzgyohynTuXghuGpuDU5DUM5JSKb7bxrgnRwNOyF1QF2+B65NClIQPByYldzO1ytRLFWIoJTr+w17dVZ1wJnnSfqESqkUKQkwt3eBTDSPcB5E9YIxYXGVwZkw+OAHJpUJTE6uFs76GsXCSEfFB3Q4keeHIOugirIbwlerdQnKXWPWllHqRUtnQOgG5AQ1MsFAgGUSiWUSiUSExPhcDjQ0NCA+vp6nDhxAhzHQavVQq\/XQ6vVQiaTISUlBcOGDcOjjz6ClpZWHDhwANu2fYUdO3b6GPiyvNwAj3DH32+d2niaTCa\/xNPQVgkRBjNf50219Yx4rFYrBAIBucHsiUDTR51OJ2677TZkZWVh8+bNcLlc\/HM0Gg3fWNtz+uhLL72ECRMmICkpCa2trfjzn\/+M48eP469\/ZXvo9QX9hngcDgcKCgowevRoVFVVkWklL\/ri01ZU4d+VGqAJhNWLI5VKUVvrn8zkcjmTXGQyGdPNWiAQkD1DlMsu1XRKRVGUK4NKxRZWUHUjAPx3sysnC7tysgAAAwwW3DtuBgaqjRhSVA0h1VxJyKV5nFd2XYphaoJwGRxhEogrm+lzDbSg\/chZT3QiFEAab4BIGQZnUxs\/EsITnXDMERGeNzwv4w5AFG5TJBz1LQAhbvD4vOnQmRdg7tKw867ebjciY4NXtPVJSh3WTfxT2AqrYCg0cf5NPYOBRCKByWSCyWQCx3FoaWlBfX09SkpKcOrUKURGRvLRkFKphE6nxbx5czF37i1wOp04eTIbGRk7kJGxA3l5Z5nvwwo2qT69yEj\/v4+yukIkUMTT7lvj8cKb6emLDVeg6aPl5eXYtGkTAGB0j+mtu3fv5l\/Xc\/poc3MzfvrTn6K6uhqRkZEYM2YM9u3bh+uuuy7oa6PQb4hHIpFg6tSpADyLVjB1kL7IqSsb\/f\/AKZIwmYxMIjCbzSgp8X9O1rx2zzH2qASz2czsKFYqI8jmUaoTmeoLoqauSiS0mIFFPGFhYX4jvsLaSqza8gmGDx+GkoIi3DX+BlxvHIT4dhGk7RcWVukAE5xVTUGksTSBTTW7LbbMc0VFwOF2QVzHTlcCfiIrN+cZAnceYq0S0gQTuC6H5z1ZEAkhTwocnUgGmuEoqQGcxLVHyCHRqIKLCrtNfNUnBK+WkkQFT1Li8yMO2s62oFM+CmpCidlXeCXAarUagwYNQmdnJx8NFRcXQyQS8SSk1Wohl8sxblwaUlPH4Omnn0RdXR127dqDjIwd2Llzl08GgeVAX1FRDoFA4LfWy7LhKa7Mx4DIOXD7saUCLoxG8DcSITw8vE\/EE6iBPiEhIagm+57TR99++228\/fbbQV9HX9FviAcA\/wcO1qE6WOKRh0vQVOk\/qjGbTUwi0On0TOKh5NKsee2eY\/7nvwMeBQ2LQEwmM9ra\/Bf2WMVUL6jiKUVmDgf7b0DVjSwWC86d6+0E7EV1dTWsnTa8t3cL3jv\/2JyR12FBUipMMiViims8jasM8Ck4yiEBwaXghEY1HG0dEHewxSfBNoaK1BGw5ZSA67RDIJdANsAMgcTji+Zq9kSkArmnZtVJERPOTx\/NLScJk1PKIVTI6JoVeqsBu8IkCI8Mvi9HGB5c14WrwwGJWoaWnGY4NGlQRbF7SS4F5HI5oqOjER0dDbfbjebmZtTX16OgoADZ2dmIioriiSgsLAzR0dFYtuwO3H77bThx4iTOnj2LvLyzyMjYwZRUO50uZsM3a3PsdDmgNoSjscr\/Rqa7qq17OaG7eei1jn5JPCKRiNTJexFsqi3KFA4wAoKoKDYRKJXs+gdVf6IUZlT+ljIqjYpSM48ZjQYm8RiNRjJFV1XFjpRaW9nOvRQiIti7aZVK5fdH\/OXJb\/HlyW+RkjICjsY23D1mGtIURmibHBB22\/GLLRpwNjudgguSKISxWjhrmnkVnl\/IJJDF6gOLG4bGwpZfyU8o5TodF+ThAgGksXqItUpwbg62k+wpuECQhKlVwu10wc1Q3Pmcq4fCzW7og5T6PJkEA0ddJ1qb2wDzRCiJNO3lgFAohEajgUajweDBg33k2ufOnYNMJoNOp4NGo0F5eTkEAuD225dAKBTihReeQ3l5BXbu3IWMjB3Yt2+fj3ejxRLt956lMgnhGhEaGfui7qm27xrxfF\/Rr4jHi2BHI3QE2UBKzeGhIheKXFg9Ad8F1GwfCpT80mg0MIknUKRE1ZuouhEVrZrNJlIkUVNTg9raOjxf4TGNjAyLwD0TbsAM\/QBoIUNEfQuEl4AokKCHq6zer0u3Fx7pdTg9LA6901i9wHFw2zrhqHTAUdsMUVQEpGYtOKcTncU1PrORgulVkkTr4G7rACixgQCQJPkf5OcyBJ9mc9R3QhQXXHTUUm2HbNA0KPqBrX93ubbL5UJjYyPq6uqQnZ0Nt9sNrVaLuro66HQ6KBQKDBiQiPj45Vi+\/F50dnbi4MFDyMjYiYyMHcyNFCUgEsjZv4HuqTZ\/NZ4fAvol8QSbagu2j4eaw0OBSjV1dbEjMmpRptxdRSL2n+Pi5\/ewFwGj0b\/sFPBEJtSOjvKxotIFlE1HeHh4rx9zS4cV7+zahHcApKaOQZwgDHMTRyHZGYawZt+\/q7cRNRBRcAMMQGFve5nu4BtDS4n+IgQXnUgsGrg77HA2NwMAXE1WftidQCqGbJAFkEkAiQi244wc7XlIE4yeeUL+zEX5ixfCbVLDcdb\/9yCODp4YXB3B9ZzVHa6HIvkGyC6RieSlhEgkgkajQWlpKSIiIpCcnIzm5mZUV1cjLy+vl1zb07x6I2644Xr8\/ve\/RUFBIXbu3ImMjJ34+utv+LpoU1MTZDKp37XA6mgA4P+7CCQu+CGgXxFPX4fBBVvj6XA1M49RxXWqT4fqb6GUMJSlR3Mz+5ydnezrpAiSIiUqlUhFJkKhkGw6pfylWAVZwCO88Dcl0ova2jpklZfj8\/MzhkYnDMKdI6dgjEwHpUMAkdsNN9WICsCVoIOokK6JSGJ0cLcFaAwNMp0nTTDCWdfC7FXi7E50ltRAnmhGZ06JZzhcVASstY0Q1rb5kKMsKRr2khrSnshTQ9KQMm6FpQ8RCRc47VPzTT3CRtxIDlO8mnC5XDh+\/DjcbjfGjh0LsVgMtVqNhIQEply7e\/PqkCHJGDw4CT\/72U9htVqxb98B7NixAxkZOyEWi\/2KjKqbyyBFb6sfwLfG0z3L0d7eHqrxXE0ELy4ILtXWaGUvkhSBsOTSAN25fLHjEKqrL24xp2oxFLFSpER51FksZtKanvreKJKMimL71InF4l7f3fHiczhe7CGqm6ZNw0ipDlONCbC0cBB39ngfkRBOcyTExfTwNk9jaAPcNqLGeN5yJ1A6Tz44Gl3FAYhCIfWo887XgxwVDXBUNEAETwQnjdZ5BAYikUcuTTloRyggjooI2Dukiu+D\/1eA32Hl\/npEjpkJsTh4scKVhHfeDYBeXo9Ab7l2a2sr6uvrUVZWhpycHKhUKp6EVCoVoqKiMG\/eLbjlljlwuVw4ffoMduzwpOS+\/fYIv2FudzSCtcVqbbLC5XKFIp7+hksd8VQ0sIu5LALxyKz9L1IaTRRTDeapqfhfeKljLOdcwPPjoBZzigSo0b6UgEMiYUcmlC8cS0rtBUWSVI0rJiYaxcVs+XFpdTV2nN2Ht+CZMXRb2jTMiR+BQXY5ZB0OONVhkJazU4dAcLY1ggg5JNrIXpY7PRGMjFuoCoNYFYauIv\/3oLu1A52tpZ6hcmfLIUswQqiQwVHd2Gv8BD9GIUDEpxiRAG0feni69+X0RPmeBmjGzSJTxFcTTqcTx44dg0AgwJgxY8iNFuDJuERGRiIyMhIDBw5EV1cXGhoaUFdXx\/e5eElIo9FAJpNh9OhRSEkZgZUrH0VzczN27dqNHTt2IvPwCbC2UQ11zdi\/fz9\/PTabDQqFAlar9QdDPP3GnRroW6qtvrYRLqK\/ofs5Cyv8N45FRamZtRO1Ws3UvxuNRub76fXsvgXKqsJsZneSWyxmZkOtSqUiLXio6Ku5mU0ClA8dVTeyWCzMY4Guh4pyA9l8dJehu9xufPbtHiz\/3zuYkv5H\/MaahX0d5WjSycAxXKiDmRgqioqAWBkWnFfa6RLavkenhEguhb2cjsC8NSTO7kRXQZXHWbu+FRJTFBQjEiBNMEJsVEMgFtLu3+fP1Xq2DFGG4FNi3r6cnijb3QTtdbP7PekIhcKgSMcfZDIZLBYLRo0ahenTpyMlJQUSiQQFBQXYu3cvsrKyUFZWBrvdDqlUCr1ej9tuW4y\/\/e2v+ObbPfjdhrtx22OTMXCUGd2FagpZOMaNGweRSASr1Yo1a9ZgxIgROHnyJBobG4NS9AKBp48Cnj6fVatWwWKxQKFQYMaMGcjJyQl47vXr12PYsGGQyWQYNmwYNm7c2KfvLhD65V0TKNVWV1eHb\/Z+G9S5VDoFbOf8d\/UbjWxLGJ1Oy4yGKIM9qm5CNXKxuqABQKPRMmf0ULUY1vx5L6h0YVsbu75B\/TAo2XcgwQKldqNk6IF8tkpbG\/DLg\/sBABaNDveOuwETI2NhbnFB2OUCBhgCCwTMGnBdjqAW98Dn0sLd2QVnffNFn8tR3QRHdRMk0VoIhEKINCqIdZHsYXfDPVNYOy3BqzFdHc5eUmrOzaF0bwsM42eSrhdXEw6HA8eOHYNYLMaoUaMuinR6oqdc22az8XLtgoICSKVSn2hILBZj2LgEJKfGYsljU9BcZ8WJfUU4tqcQHW1dkMvlkEgkiI+PR3JyMsLDw7FmzRp8+eWX0Ol0mDlzJhYtWoS7776beU2Bpo8CwOuvv4633noLa9asweDBg\/G73\/0OM2fORF5eHlMNe\/DgQSxduhQvv\/wyFi1ahI0bN+L222\/HgQMHMH78+O\/8XQL9lHi8EQ\/HcT6ado7jUFRUhIKCAsRYEgAcDngupVYKMOrVajU1F0fNPEYVyGkJNptcqMU8PJy96FK1GLPZzCSeQAagrJQgQIsgqHSZxWImyYV0\/CWiB7PZRBJP9++gsrEef\/jqv55rFUvwk5sXYbIVGKCUQsYY3iWNN8DZ0OYzNroXghUbxBvgrG8ljVEhFECe3Ldz8YQoEvLD7py1LXDUN3vOdd4lwW0KPpXjqLdBFHdhceJcbpzeVos2TSyclZXQ6XSXbBTypYLD4UBWVhYkEsklIx1\/UCgUiI2NRWxsLC\/XbmhoQG5uLux2u4+7tkKhgCFaihtuj8SM20bC7XbD4XDAbreD4zioVCrcfffd+Oqrr7B48WLMmjULW7duxYkTJ0jiCTR9lOM4rF69Gs899xxuvfVWAMCHH34Io9GITz75BD\/72c\/8nnf16tWYOXMmfv3rXwMAfv3rX2Pv3r1YvXo1Pv3000vy\/fVL4vEu3t07e10uF7Kzs9Hc3Izx48ejKj+45kZxOGHJT9QxKFBpQNYwNg+oEQvU69jKIuozsGxAAA8JsognPDycnFhKSclZ44o976lmHmM1lnpBedGpVOw+JrFYzHRu6HI6cKK+DH\/7xkNE04eOwuIh12GEUA1VY6fH0DROB0dVIykQgFQMeXxgsUEwnnFe4UIgKyDZIAvsZXW9z+VyXxAXiEUIG+6xTJENMHnGIZj6IKVuu3But8ONkq9tMF53PcQNDT7O0d45OpGRkVe1+dHhcCAzMxMymQyjRo26YhGZSCSCXq+HXq9HcnIy2tvbUV9fj5qaGuTl5SEsLIwnIbVaDbfbjZycHIjFYqhUKn49KSgoQFpaGlJTU5Gamtrn6+g5fbSoqAjV1dWYNWsW\/xyZTIbp06fjm2++YRLPwYMH8fjjj\/s8Nnv2bKxevbrP18RCvyKe7jUe4ALx2Gw2ZGVlQSwWY+LEiZDJZDjXRktivXCK2AsWtYum+m2onhoqtdXSwj5GkQvlkEst9FT0FRUVxSzWm81mpuWNx8j04lJ01OA8s5mOhqgITChk72qjoy3MNCUAWK0X7o+9Z05g75kTAIB4vQl3T5mJCZ1SmDiOWQwVhMshZQxm646ezgZ+zxUmg9QYFVC44HWYJkUQcgmkFh06si8Ia4RhMigGBO8o4B1x4O5yoeSwE+bxM3j3aK8U2Ztu8hbxdTod7xwdyF3+UsJutyMrKwtyuRwjR468amlAgUCAiIgIRERE8N+Rd9ZQdnY2XC4XJBIJ3G43UlNTERERAbfbjY8\/\/hjnzp0LOI6aBX\/TR72\/0541aaPRyPSZ9L7O32uo331f0a+IxwuhUAiBQACn04n29nYcO3YMJpMJQ4cO5W+oYBVtVjt7F00pvqg0FBUNUPY0tbXsY5RDdlMT+zNQJEjVySiBgFxO99pUVLAbNGkpNXunT6UM5XI5+b1SmwStVkcSD+t6S+qqsbeuEL8\/8DHCZHLcNf4G3GBKQkKHGFLr+YhPpYAozM+I7R4I6GyA8wo3JVvhxp8rGNPTcDkkOlUvLzt3RxciDH2I8kUCuDqcKD8ugOW6qb0OSyQSmM1mmM0e8YvXObqnV5per7+s\/Sl2ux2ZmZkICwtDSkpKv6o9SSQSGI1GGI1GuN1unDhxAi0tLZDL5fj973+P7du3Y9iwYfjyyy+xadMmzJ49+6Leh5o+2jMK7VnC8IeLeU1f0C+JB\/BEPeXl5SgtLcWQIUMQGxvrczzYWTy1rezdI7WYsXpqxGIxYRwaxuzoj4iIYKaSpFIpeS2UySdleUNFEBQpUY2AOp2OSTyBpNQU0VN1s+joaBQUFDCPUw27lChBoVCQ37s3Iu7o6sQ\/923FP88\/PjtlHOYmj0WyWAFNdRPpgBCM2ECkVUEoEsJeEZzCjYIwMgyicIWPa3Z3aPrQwwORAOXZUphS0wI+VSgUIioqClFRUUhKSuo12lqhUPAkpFarLxk59GfS6Q6O45Cbm4v29nZMmDABcrkc8fHxcLlc+OKLLyASiXDPPfdgzpw5WLZsWZ8IiDV91GTyKGWrq6thNpv5x2tra0llrslk6hXdBHpNX9Gv\/kpeRnW73eA4DmVlZUhLS+tFOgDQHmTzaFmt\/wVLIBAwoxqtVuNjEtgd3t2dP+h0OuZ1eG8Cf7BYLKR0m7Wj98z2ubj5PRQpyeVs4qHSJ99FSk1FQxqNmnlMIBCQfUwAOzKIjo4mlYasaPKr7CN4\/9xBzFr7Ou4+m44tEc2o1cvgFvv+nLxKMgoSs8YzWbS2mXyeIiVIApNJmQaqLpEQWktwYgBHqx0NHSaYRgUmHX\/weqWlpqZixowZSEpKgtPpRHZ2Nvbu3YuTJ0+isrIyaOmwP3R1deHo0aMIDw\/\/XpBOY2Mj0tLSeEHGkSNHsGbNGvz5z39Gc3Mz1q9fD7PZHJTc2XveRx55BBs2bMCuXbt6TR9NTEyEyWRCRkYG\/5jdbsfevXsxadIk5nknTpzo8xoA2L59O\/mavqLfRTxdXV04duwYOI7DsGHDmN3sHUH4tIklQpRU+a9VULNvjEYjMzrR6bQ+M967Q6Fg\/6gpU1GNRoPi4mK\/xwwGPZNAoqMtKCz03xyrVCrJYj1lAEqNSqCEFZSUWq2OJNVwLYQ9jUzG\/l41Gk0ARRs7FUmJLwBaZedt9MutLMVvKi8Ymt49\/gbM0A+ERiIHAszbkcYa4GwKoJbD+bHegYxDjWq4HS44CQLr1IZByOhj6g57QydqyjQwna8VfFf0HG3tdQcoLS3F6dOnoVKpeIFCsIPQurq6kJmZCaVSieHDh\/dr0jl79izq6+t9SGfr1q24\/\/77sWbNGixcuBAAMHXqVH4mWTAINH1UIBBg5cqVeOWVV5CUlISkpCS88sorCAsLw7Jly\/jz9Jw++thjj2HatGl47bXXsGDBAqSnp2PHjh1+03gXi35FPDabDd988w20Wm2vsbA9EUyNR20Ih7ueFZ2wZ98olWySoHLVVJMjtaOn0kEREWzFloeU\/ROPyWRiCh1UKhWZnqJIifqbUD9+s9lMNqxSVkKUgEKv9z+y2AtKlECl9\/wZlnaHv0ippcOKv+7ehE81UWhqasbc0RMwb8BoJDvDENHiu7OXDTTDXtEArpOeA+SRQhezn4MgR2MDwIjAk0C7amyorzPBMCQ54HMvBj3dATo7O\/mUXGFhYa9+GH\/3W2dnJzIzMxEZGYnhw4f32zECHMchPz8fNTU1SEtL43\/nO3bswPLly\/HPf\/4TS5YsuejzB5o+CgDPPPMMbDYbVqxYgaamJowfPx7bt2\/36eHpOX100qRJWLt2LZ5\/\/nm88MILGDhwID777LNL1sMD9DPiUSgUGDZsGAwGA44ePUrWIYKZxRMWxf541IJOqa+oxZX6AVALNvW7EYvZ7yeXswkrKopdrDeZjMxUm1QqJWsxFGFRQgeqhylQNEQp5bRa9rAxT82JTTzU\/RUdbcHZs\/4H7wG0vNtstqCxsQlfHDuIL44dBACkxA3AstFTkSrTI1wkBVdcDQExkgESEeSJpoCy6qDcqs+P2W4T0b5rtop2NLXGQzdoAPm8Swm5XI6YmBjExMTA5XKhqakJ9fX1Pv0w3mhILpfzpKNWqzFs2LB+TToFBQWoqqpCWloav2Hdu3cvli1bhr\/+9a+48847v\/N7BIJAIMCqVauwatUq5nN6Th8FgNtuuw233Xbbd7g6Gv2KeAQCAV\/ACmSbE0zEI1SwowyRiL2gU+9LmW5SRp7UPdLRwU612O0X1xdECQQoyWZMTDQzfScQCEihA0XK1DGLxUJGQ1QERi08gSahUgSrVtNpOIrQ\/PUVZZcW4telnpEHI4cMxQ0xyZhmSER0GyC2+RLCBeNQWlbN7OXpDqEAiuQY2HJKIElLYT6to6QNrY4kaBPjyPe8nOg+utrbD1NXV8f3DIWFhaGrqwtqtRpDhw7tt6QDAIWFhaioqEBaWhqvID1w4ABuv\/12vP3227j33nv79fVfbvQr4gF8p5BSBBBMxNNgvbhiNrVzp2TWlMKsoYGSS7NrKtTiSBEW1aNEpZg0Gg2TeEwmE5kSo8QMVKREWRBFRESQ8nWWCAQIXMOhSFQmY39HcrmcFEpQC4pEIsHpc\/k4mXsGq+ExNF00dgpujk\/BYIcC0i4XBBHSgLJqeXIsugpoQ1OIRZAPMMN2xlOTVMb6V7RZC1rRIRqOqBiz3+NXA937YRITE9Ha2so7EjQ3e0w2vSR1pXuGAqGoqIgXRnlJ5\/Dhw1iyZAleffVVPPDAAz9o0gH6IfF4EcivLZiIp8XG3pVSqi5qoaus9L8LFQgEzHqCUCgkd+30qAT264K1iekJitApCxS9Xse81kBSairio5VyZjLlVV\/Pfk+aYNkO4wBtYRQTE0NGUtSQvJiYaJ9R6y63G+uO7MO6I\/sAALfPvgXX2Y0YrdNC3dgFgbv3FxdMLw9kEshidBfGbwOI8uNK3ZrbAnvEaETq9OxzXWXYbDacOHECRqMRQ4YMAcdxaG5u7tUz5E3JXc2ZNsXFxSgpKcHYsWN5AUpmZiZuvfVWrFq1Cg8\/\/PAPnnSAfkw8gVNtgSMeq5O9sLBSJVSfTkREBDMaMhioEdM6Jin508x7oVKpmLWPQMPYqIZUipSoSIkyQA2U1qJmDVFET6UFKTscINAIbjNJPFTNKVAk1dHBrv9otTof4umJM5Ul+G\/2FgCASa3BvdfdiEnqWFha3BB1ueBO1MN2poTKsnocEPRqdBVc+G7cAkAX57sgt5xqgkM7Dsoodp3saqOjowOZmZm8HY1AIIBAIPAx7PT2DNXV1eHs2bO9LGqulOKtpKQERUVFGDt2LF+8P3HiBObPn49f\/epXWLlyZYh0zqPfEU\/3VBvVkR7M2OuSav87ZYVCztyVms1mplxap9MyiUer1TKJR6VSMYlHr9cxiYdynjabTcxGzkD9PVSaqLuFTE8IBOwfMCWlDhRdUKo1qqYWyA6HSlNS6T0ApDsDZYQqEolIJR3VIwX4\/m2qmxvx+vb\/AQAkIjF+\/KP5mNruMTSVt\/qPyITK8zN+ergpdKoVkEgv\/P0ajzdCYJkEZYDv4Wqio6MDR48ehdFoxODBg5mLtrdnKC4uDk6nk58omp2dDbfbDa1Wy9v4UFHwd0FZWRkKCwuRmprK31s5OTmYN28ennjiCTzzzDMh0umG\/il+h2c3+10iHnm4BDUN\/hcPvZ6dVqBUUgYDu3OX42jJLwtUaouykaGaVaOj2Q2pMpmMrLdQdSpqI0AtxlTzLED3y1ApL+o7AOgaDqUy1Ol0ZJ2Pqg9aLBbyOHVPq1QqZvTncDlxuqUG9\/z3L5i86U08VrUHB6JsaNHKL0ynVsohUEj8OiA4jRei1fqjDRDFTUNYPyad9vZ2HD16FCaTiSSdnhCLxTAajRg+fDimTZuG1NRUhIWFoaSkBPv27cORI0dQVFQEq9UalCosGJSXlyM\/Px9jxozh1Zu5ubmYO3cufv7zn+P5558PkU4P9LuIxwsq1eZ0uGDvOdq4B9SGMICxaaV2u5SHGSWzps5JhfrUYk4p0yIi2NdJ9ffodFrmbj6Qdc\/FNpaqVGwCDTRLhxpIR8vJ6bEPVCRlNpvJ9B8VSen1embE7Hktu7YYHW0J2uboQF42DuRlAwDidEbce90NGBlhRkKDFf4olTvvSr3r03KkzbkZsn42zqA7vKRjsVgwaNCgi160u\/cMDRo0iO8Zqqur43uGvHWhqKioixqhUFFRgbNnz2LMmDF8Wjg\/Px9z587Ffffdh9\/+9rch0vGDfkc83j8SJS4IRtEmj2T\/sakFnSKJYMZx+wO1yFGFUGrnTKW9qIZUk4mdorNYzOR4aVbDLUArAcVi9g\/aZKJn6VCyZauVvUibTGaSeKioj6plAXQaLiyM\/d0D9HdI9ToBbMIrra\/BJ7mH8LvCIsilMtx53QzMtCQjsUPCG5pKLeHY+Pdi7N3QhsmL+i\/pWK1WZGZmIjo6GgMHDryki7a\/nqG6ujqcOXMGdrsdWq2Wrw0FM2eoqqoKeXl5GD16NO+wUlRUhLlz52LJkiX4wx\/+0G8dFa42+h3xeEFFPMEo2jgpO0VDpcXIuhIh3W1tpcYhsBdIavdMRR8UmVEpBIqUNBotk3iMRuNF+8JRBErN0gkctbDPS1kUCQQCkjyoxSJQhEbdW4FqXYEkwdQ1a7UeGXynvQsfHPgKH+ArAMCNw1NxS+JIOA80Y3t6LYZMMqGwsBB6vT5oe5orBS\/pxMTEYMCAAZf12rr3DHEcB6vVivr6elRWViI3NxcRERF8NKRSqXpdS3V1Nc6cOYNRo0bx829KS0tx8803Y+7cuXj77bdDpEOg3xIPFfEUnC0O+Hqbu5l5jFq0qXoD1YtDO12zz0nJpak5PFTvD93Iyl4YKVIyGtmqvUBSakohRqU3zGY6aqHOS5Ed5dMHeOS77NfSEVprKzvy8zoasEDdlzqdjkz\/sfzsduZkYWdOFpaNfBEAYIrVoq2tDcXFxZBIJPwAs6ioqKu6ULa1tSEzMxOxsbEYOHDgFX1v74whpVKJxMRE2O123sbHayfjddb2egPm5ORg1KhRvE1WZWUlbrnlFsycORPvvPNOiHQCoN8RT\/dhcD0jHrfbjTNnzqDgrP\/6RXc0tl+cMzNroROJRKTMmpW68djB+I9qKLm0VCol00yUIzO1QFGqNUqj6+1J8IdAUmqqyE9NM6XqZoFGGlCLuF6vJ4mH6sMJtKBQmwwqugPoviyLha47UdJxkUiMxirPZiRuoAmjRo3ySTXl5OTA6XTy6i+dTnfZ1F\/+4CWduLg4DBhw5ex6WJBKpbBYLLBYLHC73XzPUH5+Pmw2GziOQ3R0NP+dV1dX45ZbbsHkyZPx3nvvXbZx29cS+h3xeCESiXx+THa7HcePH4fD4UBi7CAAJ8jXVzYUM4+xFhalUsnscTEY9EwZstFoZNY4jEYjk3gozzSLxcJ0rKZ2vyKRKMD8HsoFgE1K1IJLSakDpaZqatgLtUTCFnNER0eTZEelTCUS9m0vEolQUcEmdSr9o1QqSVVgIINVajPR3dTRH6joLyl2GJxNnk2cxqTkr8WbahoyZAisVitqa2tRVlaG06dPIzIykieh8PDwy5b2am1tRWZmJhISEnrZ+vcHCIVCvmcoKioKJ06cgMVigc1mw\/Tp0yEQCCCTyRAbG4t\/\/OMfIdIJEv02HvTKqTmOQ1tbGw4ePAiJRILx48fD0RVYBllUedbv41FRUcxFyWxmy34pEQA1L4ZqgKSOefPG\/kANZFKr1czamEQiIXfk1E6fiiC+i5SaStFRUmqK7AC6iE+dNzraQkYPVB0mOpqeR0SRYUxM9HeaTUORVoLxgtN0lKE3gXlTTQMHDsT48eMxZcqU82nOJhw+fBhff\/018vLy0NjYSDYY9xUtLS3IzMxEYmJivySd7mhoaEB2djZSUlIwfPhwjB07Flu3bkVcnMfb7tSpU7BYLFi2bBlyc3Ov8tX2f\/Q74umeagM8YeyhQ4dgsVgwevRoiMXigNNHVRoF2tr9Rxl6Pbv3g1IVUb041MJL7dqpdAZVb6F2vxRhRUdbmAuHWCwmnRComhKl9qOuldoEBHpPSnVkNBpJHztqVxoVoIufit6ojQRAp0AD9SRRdTsq4gYAXcSFcQjeiIeCV\/01ZswYzJgxA4MHD4bL5fIZ4lZVVUXW0QKhpaUFWVlZGDBgABISEi76PFcCjY2NOHHiBIYOHcpv+pqamnDfffchKioKOTk5qKqqwtatWzFw4EByPQjBg35HPF54F4dTp04hJSUFSUlJPCkFUrUp9ew\/PLUQUkRA7XQpFRm1Q6SO0aMS2AsnRayUjNxsNpMEcrFSaomEfa0xMfR8GErFRUUlRqOBPC+VDnO5qFqJiLwmapPhGeXOjkoC+YtRbgiBRhLLuAsbKo2Blor3hEgkgsFgwLBhw3waMouLi7F3714cPXoUJSUlJDH2RHNzM7KysjBw4EDEx8f36XquNJqamnD8+HEMGTKEHx\/d2tqKRYsWwWAw4H\/\/+x+kUilEIhEmTJiAl19++ZJEb3\/7298wcuRIqFQqqFQqTJw4EV9++SV\/nOM4rFq1ChaLBQqFAjNmzOg1ubSrqwu\/+MUv+HTp\/PnzUV5e3vOtrgr6JfG4XC6cOnUKADBy5Mhe6ZpAY68lEWwiuFi1CT0Ogb27phZlqqZC\/ZCpRZf6fJTEmNpxGwwG8jPSRX52+ojaBOh0OvL7oQQigTYXVA2MEjRYLGZyl0\/dI7GxMeTfjdqEeNyw2dccqOfE2eYhf6lcjAg13WdEwduQOWjQIEycOBGTJ08+P623Ad988w2++eYb5Ofno6mpibkZa2pqwrFjxzBo0CA+TdVf0dzcjGPHjiE5OZkf6261WnHrrbdCqVRi48aNQfX7XAxiYmLwhz\/8AUePHsXRo0dxww03YMGCBTy5vP7663jrrbfwzjvv4MiRIzCZTJg5c6ZPjXrlypXYuHEj1q5diwMHDsBqtWLu3LkX3Y94KdHviKezsxPffvstbDYbxGKx351goLHXLtGlJwKqF4caMU2lV6hCP9XgSF0L7YRAKZXYZE3tqL+LlJoiSZOJ3sVTtSqAHS7GxESTizxloBrIZ42SSgdKpVFEGhMTQ0bV7e3sexoAmqo9v4eoPkY7gaBQKBAbG4vU1FTMmDEDAwcORFdXF06cOIG9e\/fi1KlTqKmp4QnXSzpJSUmIjY29pNdyqdHS0sJfa3S0JzJvb2\/HbbfdBolEgvT0dDId\/l0xb9483HzzzRg8eDAGDx6M3\/\/+94iIiMChQ4fAcRxWr16N5557DrfeeitGjBiBDz\/8EB0dHfjkk0\/463\/\/\/ffx5ptv4qabbsKYMWPw73\/\/G9nZ2dixY8dlu+5g0e+Ih+M4qNVqXHfddcxenkDOBVYHe9Gm1Dl0g6T\/hU4gEDB3o55ivv9zelyw2eekduV0rxH7s1NRFPW9UPY83p0gC1RqiooQKOmxSqUiPyfVh0PVwABa+q3X0yk8Sg0XaGdMRTSB3LApUrLo4\/iNmsYYuL5zsfB6pI0YMQLTp0\/H6NGjIZPJUFBQgD179uDQoUO8kCAmJuayXcelgLf+NHDgQJ4gbTYb7rjjDrhcLnzxxRdke8Glhsvlwtq1a9He3o6JEyeiqKgI1dXVmDVrFv8cmUyG6dOn45tvvgHgGcXgcDh8nmOxWDBixAj+OVcT\/Y54wsLCMHToUAiFQqZ7QYeVjnjq29iLHWsHLhAImBGISqViRhkmk4mZfrFYzMzdNXXMZDIxFU4qlZIsulMLGN1xzzxEpogodVmgdBkV1QmF7NqQxUIPLKOiTIoAwsLCyO+IglarJQmPSm+o1ZEkkQbqqaFeOyhmOP\/fUZeReLpDIBBArVYjKSkJkyZNwrBhw2C1WqFQKFBQUICDBw\/i3LlzaGlpuWRGnZcKbW1tvOjBmwrs6urCXXfdhba2NmzZsiWgs\/mlQnZ2NiIiIiCTyfDzn\/8cGzduxLBhw\/iNZ89MhNFo5I9VV1dDKpXyVj7+nnM10e+IpztYEU8gVVtZbaHfxynLeo1Gw1xgqbQPVcyndtfejue+npNSThmNRmaqzTO\/h4qU2AsuRR6UgieQ99jFRkORkWrmMU8fE\/u8FAEEioba2tgprUBkSFkqBYoaqbpSeHg4Gamb1BeK9xrjldule9HQ0IDc3FwMGzYMkydPxvTp05GYmAibzYasrCzs27cPOTk5qK2tveq1B28ja0JCAi96sNvtuPfee1FbW4tt27YFVC5eSiQnJ+P48eM4dOgQHnroIdx33304ffo0f7xnloLjuID9VsE850qg3xFP9y+FFfFQs3iEIgFKqvzP4TGbTcybm0rtUOMJKDdrSqlEHaPCeKpwbjCwU0FmMzsyCzRUjuovsdvZfwuFgh1dmM1msh5FRUNUA2igPhyqhvNdxjcEIllKTRTotVTtKJAyMEJ0YYPjr4fncqK+vp6XIXvJVSKRwGQyISUlBdOnT0dKSgrEYjHOnj2LPXv24NixYygvLyfvjcsBr09cXFwcr0pzOBz4yU9+gpKSEmzfvj3gxuRSQyqVYtCgQUhLS8Orr76KUaNG4U9\/+hN\/n\/a8H2tra\/koyJs16Zkd6f6cq4l+RzyAby+P34iHULWpDeFwOP0vsFSUYTSyFx2JhJ3qoHpCqJ0FdexiXQKoWoyOGG1MkRJA1z0ogQS1oBoM9KhlKhpyONjEEqiIT6vDaBk+JcOmUkYqlZI0gw3U7V5RwSYttTpA\/cd24TMF08NzqVBXV4eTJ09i2LBhvAy5J7yuAMnJyZg8eTImTJiAqKgoVFVV4cCBAzh06BAKCgrQ2tp6WVNy7e3tPuakgCe9\/NOf\/hS5ubnIyMgIeF9dCXAch66uLiQmJsJkMiEjI4M\/ZrfbsXfvXkyaNAkAMHbsWEgkEp\/nVFVV4dSpU\/xzrib6rWUOwB4GR\/XxiMLY4ToVnVC9MVRNhYoGqF0bdYw6p9vN\/gFSC1hEBDvC0un0zIVer9eTCy6VhqM+BxXVmc1mkiCam9l\/D4WC\/TkDiRIoQrNYLMjLy2Mep76HmJgYnD59hnk8UBRGRVpU9AcA1voLG4rLKS7oDi\/pjBgxIujdtUAgQHh4OMLDw5GQkOBj1FlSUgKxWMxb+Gg0mktmTeMdrW2xWHhzUpfLhYcffhjHjh3Dnj17rkqE8Oyzz2LOnDmIjY1FW1sb1q5diz179mDbtm0QCARYuXIlXnnlFSQlJSEpKQmvvPIKwsLCsGzZMgCeTd\/999+PJ598ElqtFhqNBk899RRSUlJw0003XfHP0xP9mnhYRqE2K3tBc4nYyi0qkqB2\/NRNThuOshdI6hjL2w2g5eC05Qr7s1OkZDQamMQTSEpNRS1UxOfxxWMTDxWBUe7bFov5ov9egXL7VJ2Fqkl5Xks3h1LEQ9XClOGRaK65QIhXosZTW1uL7OzsPpGOP\/Q06vQamubm5vKzc7xEdLFOATabDZmZmTAajfzAObfbjcceewzffPMNdu\/eHbD+drlQU1ODe+65B1VVVYiMjMTIkSOxbds2zJw5EwDwzDPPwGazYcWKFWhqasL48eOxfft2n1T822+\/DbFYjNtvvx02mw033ngj1qxZ0y\/85Po18fgTF9isdjLslqnYCxpVN6B2nZQ1PyWhpRZP6hi10FDRB0VYXV1UzpxNSlRNKZArNdXDQ418oCLTQOMBqMgjEAFQogRq+qxCoSDHW4hE7O9XJBIFUNLRKSYqghscOwJct9vsckc8NTU1vNMIVW\/sK4RCIbRaLbRaLZKTk\/nZORUVFThz5gxUKhVPQsHOGLLZbDh69Cj0ej0\/WtvtduOpp57Crl27sHv37qva4Pr++++TxwUCAVatWoVVq1YxnyOXy\/GXv\/wFf\/nLXy7x1X139EviEQgE4DgOIpGo144uUA9Paxd7UaLkrqxdp1AoZBIB5WZNLZBU+kqtVjMXbJlMRi5wF9vf09l5sb5mauaxQCm6yko2YQdqLKWIh4oehEL2ghToeqnIIiYmGvn5bAIO9NqSklLmcSoSFwqF5MYnRjcI7eeJ57u6FgSCl3RGjhxJ+hp+V\/ScndPV1eV3nDU1Y6izsxOZmZnQ6XRITk7mSefXv\/41tmzZgt27d\/d709LvO\/qluMALfxFPINeCmmb2vHtWRED1b5hMpouSWVOFfqqwTtnaWCxmZrSn0USRaSQqwqIiwYuddEp9N0KhkHTCpjYIVAQWaEYPFbkGckqgXhtI7UQJMAIVrSnit1gs5N9HLb\/wmS61a0F3VFdXIycn57KTjj\/IZDJER0dj9OjRmDFjBoYMGQKO45CTk4M9e\/bgxIkTqKys5NPQXV1dyMzMRFRUFIYMGcKTzqpVq7Bu3Trs2LEDgwYNuqKf4YeIfk08\/mo8HVY64imtKfD7uFLJbrykZLQ6HVsJR+X9KQWdUskmF6o57WJHJVD9PYFcEqj0HU0QlHjg4lV0gRZiigwpQUegeTeUsoxq8Aw03yeQ7Qo1DDCQhY\/YeWHzc7mk1FVVVTh9+vRVIZ2eEIlE0Ov1GDp0KKZOnYq0tDRERESgtLQU+\/btw+HDh3Hw4EGEh4dj6NChfGbl1Vdfxccff4wdO3YgOTk58BuF8J3Rb1NtgH85dWsTWzwgU4hRWe0\/bWE0GplpMY0mCoX+e07JyIUqalILCtX7QkmQqa57lYr9OmpsdaDiNRUpUaCcB\/R6topOKBRedMpLq41Cgf99BwB6EafSe0ajkYykKBKNjragtJQdhVNNkxEREWTqUK\/X49w59gfubLpAwpdDSl1ZWYnc3FyfEdD9BQKBgHd2HjhwINra2nDs2DEIhUI0NDRg+fLlkMvlCA8Px7p167Br1y4MHz488IlDuCTo1xFPTzl1R0cHTmadYj5fbWSrs6gmUIpAqAWUMpt0OtkLCrXY0N3b7BoFJaulivXULlWn05EquoslCOp6AjWAUuRBjX3wOGyzNy1U9BY4DcdWwwWKAihHg0CD5agaulAoQkPFhb\/dpU61VVRUIDc3F6NHj+53pNMTDocDp06dglqtxpQpUzBjxgzMnTsXpaWl+PDDD+FwOPDaa69h7dq1pCAmhEuHfk083VNtjY2NOHjwIEQCYuga8du6WPtySqJMLWRtbex6C7VDphYxm40alcAmLCo9RaXEqLk2gaTU1OegVEeBG0DZ0RlFWIHIg6rDBDKEpGTjgVJplJKup89WT1Au5QMsg+F0XNgYOdBxyWxpysvLkZeXh9GjR1\/xbv6+wuFwIDMzEwqFAiNGjIBQKDxfY6zHyZMnsXv3bmRkZGDAgAF49dVX8d\/\/\/vdqX\/IPAv2SeLwLk1dcUF5ejszMTCQlJSEynP1jbOu6uM5yStpLFewppRi1KNMu2OwdPfV+1HVS0QeVYqJqUaxudC+oBZUi7LAwdjRkNpvJjQBFdhR5BPJ3o2AwGMiokIqKo6LU5DVTwwcBuhY2MNo3bRRljEB+fr6PLQ11X7BQVlaGs2fPYsyYMd8L0snKyoJMJsPIkSMhFArBcRzef\/99vPzyy9i8eTMmTpyI8ePH43e\/+x1OnDiBBx988JK896uvvopx48ZBqVTCYDBg4cKFvRqQly9fDoFA4PNvwoQJPs\/pz8Pcvgv6JfF4IRQKYbfbkZeXh9TUVMTGxsLawk6JQM6OJKhUCtUJz5IvU\/5mCoWCmYYKDw9jEohcLmeG+oH81Cgyo9IH1OJDTQ+lrPoDjZ6m5NBU38p3sdmhCDYmJpqMlqjPEiiSolJplE0TQP9tNJookrS6j7sGgGEjB\/nY0lRWVmL\/\/v349ttvUVRUBKvVGtCWpqysDOfOnUNqamrAaOxqw+l04tixY5BIJBg1ahRPOh9\/\/DGee+45pKenY8qUKb1ed6kMNPfu3YuHH34Yhw4dQkZGBpxOJ2bNmtWrz+xHP\/oRqqqq+H9bt271Od6fh7l9F\/RLcQHguXFyc3PBcRzGjx+P8PBwuFwuso+nw8VWYFFGi6z0jUqlYi7aJpOJuUs2m80oZKgV1OootLf73\/FbLBbm67RaDTMdFBERQTYhUjtjavGyWi\/OlZoSM3iiC\/b1sL4bgBZ6REZGkn5oVGOpVqsje2nq6thRaKA0HLVZoBpLATrCtVgs5D0tRySAC5GYV1zQ3ZamZw+MTCaDXq+HwWBAZGSkD1mXlpaioKAAY8aMuaIOzRcDl8uFY8eOQSQS+ZDOp59+iqeeegqff\/45ZsyYcVmvYdu2bT7\/\/8EHH8BgMCAzMxPTpk3jH5fJZExVrXeY28cff8zb3Pz73\/9GbGwsduzYgdmzZ1++D3CZ0S8jHpvNxk\/aAzx\/HJfLBbfbjYRhRkQxrD+qGkqY52Qpt3Q6HTMaomoclMya2g1STZdUFEFZd1CRgFarJRddKsVEiQcCqbFYCCQeqK9nvyclrgg0LI2SNIeFseswMpmMJEoqkvJ4w7E3BFTdUSAQkNdMuakDgLPNd0\/pT07dswdm8ODBcDqdOHHiBPbt28dPEC0qKkJBQQFSU1O\/N6QjEAgwevRovr65fv16rFy5Ev\/973+vileZd1PUMz25Z88eGAwGDB48GA8++KCPeKa\/D3P7Lui3xKPRaDBmzBj+\/zmOg1AoxI\/uScO7Xz+Eu343DhMWDIAu+kIdoqjqrN\/z6fV6Zg8HRS6UEo5aXKlxANQPl1qIKCWYRMK2c6FSQR6lF5WCvDjPOGoxpsQDEomEXOSpdCn1\/YhEIjI6oOowXq8wFqh6VWBVGptIo6Pp5lBKbQkAzdUX7nepXAxlFC1yEIlEMBgMGD58OD9BVCqV4syZMzh37hzCw8PR1tZ2UXWhKwWXy4Xjx4+D4zgf0klPT8dDDz2ETz75BDfffPMVvy6O4\/DEE09gypQpGDFiBP\/4nDlz8J\/\/\/Ae7du3Cm2++iSNHjuCGG27gv+P+Psztu6Bfptq0Wi2USiWcTieioqJw8OBBaLVaGAwGyGQyjzXHpAG4bfmPIBQKkX+8Aoe3n0HRvz9HS1vv9ITBwDa6pBoHZTI2EVCLK5Urv9hjgRbzvDz\/pBsRwf58RqOBKU\/WaKLIxZqqKVGLE+UeHRMTjaKiYuZxqjZE9T8F6qWhfsQ6nRZFRUXM45QaLlB0QEWUBoMB5eXsiIciPJM2Bu0tF4hHre+blNo7QdSbhh05ciRsNhvft+P1RtPr9QgPD+8Xg8XcbjdOnDgBl8uF1NRUXpixZcsWPPDAA\/jwww8xf\/78q3JtjzzyCE6ePIkDBw74PL506VL+v0eMGIG0tDTEx8djy5YtuPXWW5nn6y\/D3L4L+iXx1NXVQS6XQygUYuzYsbDZbHzIb7PZEBYWhoiICDgcDshkMiSNjkbS6Gjc\/cwxZGefwuefpyM9fRPOnMkFQEcnlHKI2ulS6ipqZ06lvajo42Kta9rb2ZEJ9b2YTCYm8QSSUlO1CUo8oNVqmcQjFovJaIiSqOt0OpJ4KFkyFYV6IjR2qpKSsYvF4gAybDZBA7RqMiluBNCtVHgx5qCFhYUoLS3F2LFj+c1ZX+tCVwpe0nE4HD6kk5GRgR\/\/+Mf417\/+hdtuu+2KXxcA\/OIXv8CmTZuwb98+xMTEkM81m82Ij49Hfr5nkGX3YW7do57a2tp+MVPnu6Bfptoef\/xxJCUl4dFHH8XOnTshEAjwpz\/9Cbt378bw4cMRExPDq3KOHj2K0tJSPpWWkjICL7zwHI4ePYysrCN48cXnERcXy3wvqv+F2lVShWwqr095lFGvo5RpVNqLWjiphZFyQggkpaYK6pR4gLKACVQbokQS1CIeSJhB\/Z1jY2PIWlcgc1Dq81DjHaRSKUl4psh4n\/9n1URZKCgo6EU6XgRbF6I+26WE2+1GdnY2urq6kJqayqed9+zZg7vuugvvvvsu7rjjjityLd3BcRweeeQRbNiwAbt27QrKdLShoQFlZWX876u\/D3P7LuiXEc9HH32EPXv2YN26dfjpT38Kp9MJkUiEZ599FhqNBnK5HPHx8ejs7ERdXR1qampw9uxZqFQqGAwGGI1GKBQKJCcPxjPPPA0A+M1vnkN6+hf4\/PN0ZGZm8VGC1cqWu1LmmSyZtcf7zP+iIBKJmGmdQHJpegooe\/dLkRL1+ajBeBoN25om0OAySiFGRW5arZZUnlHRA8BexKOjLcw0JUBvPrRaDQoL2Wk4apOh0+lQXMwWw1Ay7JiYGKb6EQAixFo04UKqLdiIh+M4FBQUoKKigvc5o+CtCxkMBnAch5aWFtTV1eHcuXM4deoUNBoNn5K72Jk5FNxuN06dOoWOjg5+kQaAAwcOYOnSpVi9ejXuueeeq5KWevjhh\/HJJ58gPT0dSqWS\/01ERkZCoVDAarVi1apVWLx4McxmM4qLi\/Hss89Cp9Nh0aJF\/HP78zC374J+STxisRg33XQThg0bhqNHj8LhcGDChAn44x\/\/iN\/85jeYM2cOFi5ciJtuugmxsbGIjY2F3W5HbW0tamtrce7cOURERMBoNMJgMCA8PBwDBgzA448\/hscffwzl5eVIT\/8C6embmAuHQCAgZdasnXBUVBRzQTebTcy8vdlsYi6e1IiFQKMSqE5\/KvqgUlfUImIw6JnEI5VKyetpa2OnIcPCqGF1tJdaWxubfAPVYSjyoNpehEIh2egXyEmjqopNpDqdhiQeQacc8CGewBFPd9IZO3ZsQNLp9Z7n60JqtRpJSUlob29HXV0dqqqqkJubyzdSXqq6kNeB2mq1Ii0tjTdqPXToEJYsWYI\/\/OEPuP\/++69aLeRvf\/sbAPSSbX\/wwQdYvnw5RCIRsrOz8dFHH6G5uRlmsxnXX389Pvvss+\/NMLfvgn5JPIDnxrrlllswevRo\/P3vf4dMJoPb7cahQ4ewfv16PPvss3jggQcwe\/ZsLFy4ELNnz0ZMTAxiYmLgcDj4SKigoADh4eF8JBQeHo6YmBg8\/PBDePjhh1BdXYPNmzdj48Z0HDjwNZ8iMJlMzAjEZDIynQJ0Oh2TeHQ6HZN4dDodk3iMRgOTeCwWM7MuEhnJJkiA9j27WCk1ZcETHW0hxQMUeVDO0gYDu28o0HkpZ2mPs0Az8zhV5zMajWQES32HanUkWSejPOkAwFrnu2kIFPFwHIdz586hsrISaWlppEIwWPQcY11XV9erLqTX66FWq\/tcF+I4DqdPn0Zra6sP6WRmZuLWW2\/FSy+9hBUrVlzVAnygZlyFQoGvvvoq4Hn68zC374J+SzwCgQCbNm1CTEwMfwMJhUJMmjQJkyZNwhtvvIGsrCysW7cOL7\/8Mn72s5\/hpptuwoIFC3DzzTfDbDbDYvHUBerq6lBbW4vi4mIoFAo+PaBUKmEyGfHAA\/fjgQfuR0NDIzZv3oL09E38bs0f6HEIbBsR6gdNHaOUd1FRGuZibjabmYVzlUpJpnOo4jWVvhMI2IsIJR5QKBQkEVJpQYrswsLCSBsiijwsFgtJPFR9MNDiTQkaLBYLKWWnotFwRQSaanwjR4p4OI5Dfn4+qqurLxnp9IRUKkV0dDSio6PhcrnQ0NCAuro6nDx5EoBn06XX66HVagPaBHEchzNnzqCpqQlpaWl89H3ixAksWLAAzz77LB577LHvverrWke\/JR4AiI1liwKEQiHS0tKQlpaGV155BdnZ2Vi3bh3eeustrFixAjfeeCPmz5+PuXPnwmQywWw2w+Vyob6+HjU1NTh69CikUikfCalUKmi1Gtx33z2477570Nraiq1bt+Hzz9OxY8dOH6UatUumaiPUj4Ha9VF9OlTzIyUxNpstaG3N83ss0E6fSpdRkQmVXrJYLCggZhpQaUHqu4uOtpDTQanPSQksALr5NtCsHOq1gUZ0U9ecHJ\/iM+4aAKIYxMNxHM6ePYuamhqkpaWR6cxLhe9SF+I4Drm5uWhsbERaWhp\/P506dQrz5s3DE088gaeffjpEOt8D9GviCRZCoRCjRo3CqFGj8Nvf\/hZnzpzBunXr8N577+HRRx\/FtGnTsHDhQsybN48nGu\/Oq7a2FllZWRCLxfwPQq1WQ6VS4Y47bscdd9yO9vZ2fPXVdqSnb8K2bdtJmXVXF3sHTamcqNdRO1wqpKcIi3JQMJlMzMVNLpeT\/TRUZEIptbRaDZN45HIZGQ1R8vVAnmKUOwBlaROoz4ka6BcVRfusBbLSoWpHMdpB6OhBPP4iHo7jkJeXh7q6uitGOj3Rl7pQWFgY8vPzUV9f70M6Z86cwbx58\/DQQw\/hueeeC5HO9wTXBPF0h0AgwLBhw\/Cb3\/wGL7zwAs6dO4d169bho48+wuOPP45JkyZh4cKFmD9\/PkwmEwwGA9xuNxobG1FTU4MTJ05AIBDwBKVWqxEeHo5bb12EW29dhM7OTmRk7IRSGYGvvz7YK+1EuURTkmjqGHVOqveHkrRSKQ26GTOaSRAemxf2Tv5ivd+io2PIaIgiQuq8er2erGVR0ZvZTHulUYKGyEgVSTzU+wYSUkQpTOjAhRSgRCbq5VrgjRy8i3ig0Q1XClRdyOu3NnToUP7ezc\/Px9y5c7F8+XK89NJLIdL5HqFf9vFcKggEAiQlJeHXv\/41Dh8+jPz8fMyfPx\/r1q1DcnIyZs2ahXfeeQcVFRXQarUYPnw4pk2bxttaZGdnY9++fTh9+jTq6+vhdrvBcRy02ig8\/\/yzKC4+h40b12P58nt57zZKYUZJoqlCNHXOhgb2osuauArQURRFSpQnmlarJaM6KmqhSJJ6z0Cmo3Y7+3OazbQ7NBW9BfJKoyTlgVypKTIM5IYtdvrWu3p6tHlrJA0NDf2KdHrCWxcaNWoU33ip1WrxzTffIC4uDgsWLMC8efOwaNEivPrqq1elcTWEi8cP5q8lEAiQkJCAJ598EgcOHEBxcTGWLl2KLVu2YMSIEbj++uuxevVqlJSUQKPRYOjQoZg2bRpGjRoFkUiE06dPY8+ePfjmm28gl8uRkpIChUKBWbNuwl\/\/+hcUFuZj69YvsHTpEr9us5RZp0ajYRbslUolcwH09P6wFzhq8aPUbhcrpaa8yeRyOUmglNCBek+LxUJeb0tLM\/MYJRn2yKGpNBw1XE9Jkgc1LVYkEpHvG0jm3Nnsm3rtPnnUqwbz1kj6K+l0R2FhIaqrq3Hddddh1KhRWLBgAVavXo3GxkZYrVb83\/\/9H+bOnYv33nuPFL2E0L\/wgyGe7hAIBIiJicGjjz6KPXv2oKysDD\/+8Y+xa9cujB49GlOmTMHrr7+O\/Px8qNVqJCcno7m5GV1dXVCpVOjo6MD+\/ftx8uRJ1NTUwOVyQSQSYfr0aXjrrT8iP\/8Mduz4Cg8\/vIIXSBgMbDNSahfLskwHPDt21qIbFsae+wPQERaV2qPqW9SiGBWlJutR1dUXJz3W6wNNLL04Z2mLhR46R9WVApmDBnrtxc5aEQqFaKz0FWF4xyF4Sae5udmnRtKfUVhYiLKyMowdO5ZX29XW1uLll19GamoqP0X0+uuvx9q1awNKmEPoP\/hBEk93CAQCmEwmPPTQQ8jIyEBVVRUeeeQRHD58GOPHj8eECRNw991348c\/\/jGcTifGjRuHyZMn8wXZc+fOYc+ePThx4gSqqqrgdDohFAoxceIEvP76q8jNPYV9+3bhzjuXYuDAAX6vgZr0SYkA9Hr2OATKWVutjiTlvFTqikrfUWMLoqOjmceUSuVFT1el7HA0Gg35Oan6mF7P3igA9HcU2ByUnR6lNigAnf4bGDMEji7flKXGEME3WzY3N2Ps2LHfC9IpLi7mbXu8G5rq6mrcfPPNmDp1Kv7+979DKBRi8ODBePrpp7F7926y7aAvCGZ6KMdxWLVqFSwWCxQKBWbMmIGcnByf51yr00MvBX7wxNMdAoEAOp0O999\/P7Zu3YrKykrExMRg69atsFgs+M1vfoNVq1bh5MmTiIiIwKBBgzBp0iSMHz8eERERKC4u5kcLV1ZW8tHI2LFj8eSTj+PkyWM4ePAAfvWrZzB06BD+faVStvqMkm5TSiSKlEwmttdaoKbTi23ypBa7yEg28QJ0ypBSygWq4VCihPBw9ncrFAovOpUWyFg0EClQ6cpE05Bej0UZI3Dq1Cm+2fL7QDolJSUoKipCamoqTya1tbWYO3cuxo4di\/fff\/+ydu4HMz309ddfx1tvvYV33nkHR44cgclkwsyZM302Ztfq9NBLgWtO1Xap0NXVhZ\/97GcoKCjAqVOnYDAYsHnzZmzYsAEzZ86EwWDAggULsHDhQowdOxYDBw7EwIED0d7ejtraWpSWluL06dPQaDS8TFsqlWLkyBSMHJmCF154Dnl5Z\/H55+k4deoU8zqo1BaVKqJ2f9RCbzZbmFFCYFdqtr0M9TmioqKYdQ3PMDX2Lp9SylGSZo\/bNZsAqOv12AJRYyHYKbpAox+oplSlUkmq4aIUZvT8C3Q4WtDWJsbYsWMvi1\/apUZZWRkKCwuRmprK\/\/0aGhowf\/58DB06FB999FHAJtPvikDTQzmOw+rVq\/Hcc8\/x4ws+\/PBDGI1GfPLJJ\/jZz352TU8PvRQIRTwMSCQSDB8+HAcPHsSgQYOgUqmwbNkyrFu3DjU1NXj99ddRXV2NefPmYfjw4fjlL3\/JCw8SExMxYcIETJ48GRqNBpWVldi3bx+OHj2KsrIyPjJITh6MX\/7yaXz88YfIzj6G3\/3utxg3Ls1HFkotrFSE4XazFzAqiqJJiR0pCYVCciGnUnSUfDvQZFFKKUftigO5XVPjKwLVcCgC1mrZk2sBWgwR6H2d1t6fVxIGnw7\/\/ozy8nKcO3cOY8aM4e+JpqYmLFiwAAkJCfj000\/J3rTLhZ7TQ4uKilBdXe0zGVQmk2H69On8ZNBreXropUCIeBgQiUR46aWX\/C4U4eHhuO222\/Dpp5+ipqYGf\/7zn9HS0oLbb78dycnJeOKJJ7Bv3z5IJBIkJCTguuuuw5QpU2AwGFBdXY0DBw7gyJEjKCkp4QvNXhPTPXt2Ii8vB2+88RomT55EyqWpPhKKsCiJMfXDpkjAbDaRxXgqRUcRAEVKcrn8olN\/1CRUgE5pUXWlQL1MgVJdFHkHqh1FiHrfq\/roKDQ3N\/f79E5FRQXOnj2L0aNH85+zpaUFixYtgtFoxP\/+9z9yw3S54G96qDf1azT6ioK6Twa9lqeHXgqEUm3fEQqFAgsWLMCCBQtgt9uxY8cOrF+\/HnfffTeEQiHmzp2LRYsWYdq0aYiLi0NcXBy6urp4J+38\/HwolUreSTssLAzR0dFYseLnWLHi56ipqcUXX3yBzz\/fhP37D\/gs0tQiRaXEWlvZNRyKBAI1Y7IW3PDwcPJ6qJoSlS4zGg3kqAQqRUeNJw8PDycJjR6VbSaJh0qlabVaMloKlGJqqendQ6UzR+Ls2bPo6urip\/jqdLqrsoizUFlZiby8PIwePZpfqNva2rB48WKoVCps2LDhqkVsrOmhQG8LrGAmg14L00MvBUIRzyWEVCrFzTffjPfffx9VVVX45JNPIJVK8eCDD2LAgAH4+c9\/zuePY2NjMXbsWEybNg0xMTFobGzEN998g4MHD6KwsJDvSTAaDXjggfuxeXM6Cgvz8e67dE7bcgAAM8xJREFU72D27FmIjrYwd\/QymYxcOKndPEUC1IJLmUtaLPTgOLoBlB1FUeIKai4SALjdbOltoOul0oaBVGkU6Qd6X6o516i1wNrsez9IZCKMGZeCyZMnY\/z48VCpVCgtLeXTvqWlpaS0+0qguroaubm5GDVqFJ\/Kam9vx5IlSyCRSJCenn7V+o2800N3797tMz3U2+LQM3Kpra3lo6Du00NZz\/khI0Q8lwkSiQQ33XQT\/v73v6OiogLr169HZGQkHn30USQmJuL+++\/HF198AZfLhejoaKSmpmL69OlISEhAa2srDh8+jG+++Qbnzp1DW1vbeccEj4npRx99gD\/\/eTVeeuk3mDv3ll4\/zOhoC7OnQaWi7VooUqIWXGoXR\/mlaTRRJNlRx6h6iclkIhdq6rN4F0AWqKbdQJ5nVDQUSA5MqfAGRQ\/v9ViU3iNDFggEiIiIwIABAzBhwgQ+7VtXV4evv\/4ahw4dQmFhIX+fXSnU1NQgJycHI0eO5P+WNpsNS5cuhdvtxubNmy+LW3YgBJoempiYCJPJ5DMZ1G63Y+\/evfxk0Gt5euilQCjVdgUgEokwY8YMzJgxA6tXr+ZnCv3qV79CfX09Zs+ejQULFmD27Nkwm80wm81wOp2or69HbW0tvv32W8hkMn6y6tmzZ5GUNAizZ8+CQCDoZWKq0bAnY5rNJmZfTCBSoqIoaudMOQuYTCayVkVFQ1TainLtBmiCpUhUpVKRBEAhUCqNUimKRCKatCR69EySslyp5XI5n\/b1zq6qq6tDUVERZDIZb8ypVqsvW1qotrYWp06dwsiRI\/l6W2dnJ5YtW4b29nZs3779kvXl9BWBpocKBAKsXLkSr7zyCpKSkpCUlIRXXnkFYWFhWLZsGf\/ca3V66KVAiHiuMEQiESZPnozJkyfjj3\/8IzIzM31mCs2cORMLFizAnDlzYDKZYDKZeCftkpISFBcXQyKRwOl0oqWlBZGRkb1MTPft24\/\/\/ncdvvzyy15zXajGUoqUAkmpqUmdFPFQ4oFACzXVWGo0mlBQ4H9Kp1IZQfbhUIatFouFfF\/KHNRsNpGfhxr9EB1tQWlpGfO4UqxFT\/oOZuS1RCKBxWKBxWLxmZXjNcv1jijQaDSXrHemrq4O2dnZSElJ4fvN7HY77r33XtTX1yMjI4O8Ly43Ak0PBYBnnnkGNpsNK1asQFNTE8aPH9+LLK\/V6aGXAiHiuYoQCoUYN24cxo0bh1dffRUnT57EunXr8Mc\/\/hErVqzADTfcgAULFmDu3Ln44IMPkJOTg9dffx0ikQi1tbU4duyYz3yTqKgoyOVyzJo1E7NmzYTD4cDu3XuRnp6OzZu3oL6+ARIJJaVWM4+ZzWamQ3QgKTVVT6HmFwVaqCk7HGqjHhkZSRIEJbCgiBsAamrYaThKKAEAdXVsabheryeJJ0KsQxN8NxnBjLzuju73ktvtRktLC2pra5GbmwuHw+EjTrhYWbPX5mbEiBF8PczhcODHP\/4xysrKsHPnzoCpzsuNYNKNAoEAq1atwqpVq5jPuVanh14KhIinn0AoFGL06NEYPXo0Xn75ZZw+fRrr1q3Du+++iyeeeAICgQCPPPIIRCIRP7Fx6NChaGpqQk1NDT\/N0TvOISoqChKJBLNm3YRZs27Cn\/+8Gvv3H8D+\/Qdw7lyBX0mnTMYmJY0mCqzJBNHRFpSVsa1AqMWYarakUi1qdSSZFqT6cEwmE2nESaXhKFeCiIgIctoplUqTyWRkWjFQgb2jsXfakZVqCwZCoRBRUVGIiorC4MGDYbVaUVtbi5KSEuTk5CAqKopPyQXrhtDQ0ICTJ09i2LBhfIHd6XTipz\/9Kc6ePYvdu3cHlLmHcG0gRDz9EAKBAMOHD8fgwYNRXFyM+vp63H777di5cyfefPNNTJ48mZ8pZDQaodVqeRKqra1FTk4OXC4Xv3vVarXn60zTMWPGdDz33K9x6NBhfP75Jmza9AXKyjw76Yt1pdZqdUziCeQ8QE3TpFISZrOZHA9NpQWphTLQkLbOTrZgITo6upenV3dQdbCYGHrmENWHo5CHo6m6N9EGk2oLBgKBAEqlEkqlEgMHDoTNZkNtbS1qamqQl5fnM7CNZRTb2NiIEydOYMiQIXwjssvlwooVK3D8+HHs2bMnoCIwhGsHIeLpx3juuedw7NgxHDlyBBaLR6lWXFyM9evX47\/\/\/S+eeuopTJgwge8jio6OhkajQXJyMlpaWlBTU4Pc3Fw4nU7odDqepEQiESZNmohJkybi9ddfRWZmJjZuTEdW1jHmtdCu1Gwll9lsJmsiVIqOUqVRNQCZTEY26VEEazDoSeKhiDJQgyflskBNYAVAmp0mx6XAXdM7PXSpiKcnFAoF4uPjER8f32tgm1wu50koMjISAoEAzc3NOH78OJKTk2GxeNwX3G43Hn30URw6dAi7d+8mXTFCuPYQIp5+jGeeeQbPPfccv8gKBAIkJibiqaeewpNPPony8nJs2LABGzZswK9\/\/WuMHTuWJ6GEhASo1WoMHjwYra2tqK2t5RsJ9Xo9n6sXiz0+XmPHjgUAnDyZjfT0TUhP34QzZ3L5a7lYV2qqJhJoAijlxEw1U1osFhQV+Vf1ASCJRafTgghaSHdhyuzVYw7KTqUFauikCDpWPwg2P9nBqD7WeC4G3oFt0dHRPuPkjx07BqFQiMjISDQ0NGDw4MG8Q7nb7caTTz6JPXv2YPfu3fzokBB+OLhqfTzvvvsuEhMTIZfLMXbsWOzfv\/9qXUq\/hU6nY+7sBQIBYmNj8dhjj\/Ezhe677z7s3LkTo0ePxtSpU\/HGG28gPz8fKpUKSUlJmDx5Mq677jqEh4ejsLAQe\/fuxfHjx32ctL0GpkePHkZW1hG8+OLzGDkyhdytU7021IJKzRoCLr6x1DsNlgVKliwQsH8Ser2OtOGhIrTY2BgyXUZFYRqNhlTaaRT+o4XLFfGw4BUnjBgxAtOnT8eAAQNQX18PoVCI\/Px83HPPPfjXv\/6Fp59+Glu3bsWOHTuQkJBwRa8xhP6Bq0I8n332GVauXMmnkqZOnYo5c+agtJRtfxICGwKBAGazGStWrMCOHTtQWVmJFStW4ODBg7juuuswYcIEvPLKKzhz5gwiIiIwcOBAfpyDt5t97969yMrKQkVFBb+oJycPxjPPPI2DBw9g587tfk1MAbq\/h1pQlUr2jtxkMpE1ESrlRdWjDAYDKTzo6KAkzeyZQgAdoQUyB6U+T6DxDmJn7yZLsVQElYZuZr2csFqtOHfuHJKSkjBjxgyMGDECWq0Wb7zxBt577z0kJiZix44dId+yHyiuCvG89dZbuP\/++\/HAAw9g6NChWL16NWJjY3n9fAgXD2\/vxQMPPIAvv\/wS1dXVePLJJ3Hy5ElMmTIFY8eOxUsvvYSTJ08iLCyM72afNGkSNBoNysvLsW\/fPmRmZqKsrIzfxScmJvqYmL7++h8wdmwqxGIx2QBK1SYolVegQnNFBVuVRkUWgWb\/UM2hgcZOU3LnQF5j1OcRCukmzq6W3sc1hsufZmOhra0NWVlZSEhIQHx8PH9P6nQ62O12bN68GfPnz8fHH3+MmJgY7Nu376pdawhXB1eceOx2OzIzM33swgFg1qxZIbvwSwyBQACNRoPly5dj06ZNqKmpwQsvvIBz587hxhtvxKhRo\/D888\/j6NGjkMvlSEhIwPjx4zF58mTodDpUV1dj\/\/79OHLkCEpLS\/k0k8ViwaxZN+G3v30RR48exptvvo4ZM6b7rbtQvTZUaoqKhgwGAxmZUGIGStEmkUjINBzV3xFoVDbVG2Q0GskoTCRi17M84657v\/a7SKm\/C6xWKzIzMxEXF8dbzXAchzfeeAP\/+Mc\/kJGRgZtvvhlPPfUUDhw4gIqKCowfP\/6SXsO+ffswb948WCwWCAQCfP755z7Hly9fDoFA4PNvwoQJPs8JTQ+9vLji4oL6+nq4XC7SUjyEy4PIyEjcdddduOuuu2C1WvHll19i\/fr1mDt3LqKiojB\/\/nwsXLgQ1113Ha9a8jpp19TU4OzZs1CpVOA4Dp2dnRg3bhzCw8ORlDQIDzxwPxoaGrF58xZ8\/nk69uzZi7AwBVmboNwOKMGCyWQka06UlxrVGxQdbUFxcQnzOEUOBoOBrElR6Uij0Ugep2xrEi2DYW\/rTWpXur4DeL6fzMxMxMbGYsAAz5h3juPwpz\/9CX\/+85+RkZGBkSNH+rzmchhmtre3Y9SoUfjxj3+MxYsX+33Oj370I3zwwQf8\/\/esRa5cuRJffPEF1q5dC61WiyeffBJz585FZmZmyHngEuCqqdouxlI8hEuHiIgILFmyBEuWLEFHRwe2b9+O9evX47bbbkNYWBjmzZuHhQsXYtKkSYiNjUVsbCxaW1tx8uRJ2O12uN1uZGdn8+McwsPDeRPT++67By0tLdixYyf+97\/1yMjY0asoH8g92mZjRzRUyisyUkXWWqgoS6fTkcRDkUMgM8u6OnYKj4ruPK9lK\/8SzUMBP4LDqCucauvo6EBmZiYsFosP6bz77rt44403sG3bNl45ebkxZ84czJkzh3yOTCZjiltC00MvP654qk2n00EkEpGW4iFcWYSFhWHhwoX4+OOPUVVVhX\/84x+w2+24++67kZSUhF\/84hf44osvcMstt+CDDz7AlClTMH36dMTFxaG5uRmHDh3CwYMHUVBQAKvVCo7jEBkZicWLb8Xatf9BSUkBPvroAyxevIgnDbPZTJIAFQ1RtSFvnwgL1CJOpeEUCgXpaEBBp9PxYy78gVLKyeVyMpIyKP1LkTWmKxfx2Gw2ZGZmwmQyYdCgQRAIBOA4Du+\/\/z5+97vfYfPmzZc8nfZd4W1YHTx4MB588EGfCDo0PfTy44oTj1QqxdixY33swgEgIyMjZBfeDyCXy3HLLbfg\/\/7v\/1BVVYV\/\/\/vfcDqdWL58ORoaGiCRSLB792643W5YLBaMGTOGH+dgtVp9xjm0traC4zhERERg8eJb8dFHa1BSUoDPPvsEt912K1MqLhKJAkRD7IWaaiwVi8XkIu5ysZtkY2KiyRoPRSyBVGlUj1R0dDTZvKsQ+P+8VyrVZrPZcPToUej1eiQlJfGk89FHH+H5559Heno6Jk+efEWuJVjMmTMH\/\/nPf7Br1y68+eabOHLkCG644QZ+IxSaHnr5cVVSbU888QTuuecepKWlYeLEifjHP\/6B0tJS\/PznP78alxMCAxKJBEOHDsWRI0dwyy234Kc\/\/Sk2bdqEX\/ziF7Barbj55puxcOFC3Hjjjfw4B5fLxY9zOHr0KKRSKW\/dExkZCblcjrlzb8HcubfgpZde5E1Mt2zZykc5gZyYqXHgVGNpTEw0mUqjhrQFMq6kPNpUKpoEWlvZxBPIpdnV7r9p9Uo0j3Z2diIzMxM6nQ7Jyck86Xz66ad4+umnkZ6e3svhuT9g6dKl\/H+PGDECaWlpiI+Px5YtW3DrrbcyXxcqB1w6XBXiWbp0KRoaGvDb3\/4WVVVVGDFiBLZu3Yr4+PircTkhEHj11VcxdepUvPvuuxCJRJg1axb+9Kc\/4eDBg1i\/fj2eeeYZNDQ04Ec\/+hE\/U8hoNMJoNMLlcqGxsRE1NTU+TtpGoxFqtRpSqRSzZ8\/E7Nkz4XK5sH\/\/AaSnb0JBQSGTeIRCIak8o6IhrVZLEg+1m6UaYQONyqYSC4Fea7ez05EA0FLt\/\/jljni8pKPRaDBkyBB+QV6\/fj1WrlyJ\/\/3vf7jxxhsv6zVcKpjNZsTHxyM\/Px+A7\/TQ7lFPbW1tKCtziXDVnAtWrFiB4uJidHV1ITMzE9OmTbvk77Fq1apessnuBUWO47Bq1SpYLBYoFArMmDEDOTk5l\/w6vs94++238fe\/\/91HySMSiTBlyhS8\/fbbKCwsxM6dO5GYmIiXXnoJCQkJWLZsGT777DO0t7dDr9fznezDhg2D2+3GiRMnsG\/fPpw5cwYNDQ1wu928ienbb7+Jzz9fj4yMbXj44RU+I4cBTzRENaVS5EE5PEdG0mam1HtSE18BWihhNpvJ11ITTfVRZrQ1+W+y1RguH\/F0dXUhKysLkZGRGDp0KE866enpeOihh\/DJJ58ELO73JzQ0NKCsrIz3iwtND738uOZHXw8fPhxVVVX8v+zsbP7Y66+\/jrfeegvvvPMOjhw5ApPJhJkzZwbwJfthQSqVkukFoVCI6667Dq+\/\/jry8vJw4MABDB8+HG+88QYSEhKwZMkS\/Pvf\/0ZLSwu0Wi2GDRuGadOmISUlBQBw6tQp7Nu3Dzk5Oaivr4fb7YZQKOQNTHNzT2Hv3l14\/PHHMGBAYkDbfErRRtVKAokSKH83arQ3QJuDSqV00oFyNLBEJfh9XCwVQaW9PK4F3j48pVKJ4cOH8\/fGli1b8MADD+Cjjz7C\/PnzL8t7Bwur1Yrjx4\/j+PHjAICioiIcP34cpaWlsFqteOqpp3Dw4EEUFxdjz549mDdvHnQ6HRYtWgTAd3rozp07cezYMdx9992h6aGXEALuSg5Zv8JYtWoVPv\/8c\/4G7A6O42CxWLBy5Ur88pe\/BODZyRmNRrz22mv42c9+doWv9toCx3HIycnBunXrsHHjRpw5cwYzZszAwoULMXfuXGi1Wr4m0NzcjNraWtTW1sLpdPImpl4n7e7IyTmN9es3ID19E3Jzfd08dTod6TyQkjIC2dmn\/B6bMGECDh06xHxtREQEU0AwdeoU7N9\/wO8xmUwGh8PBJL3U1DGkK3hYmAIdHf6jmkVTfoK2bHWvx3XRKrx\/5HHmOS8WXtIJDw\/HiBEjeHXh9u3bcffdd+Nf\/\/oX7rjjjkv+vn3Fnj17cP311\/d6\/L777sPf\/vY3LFy4EMeOHUNzczPMZjOuv\/56vPzyyz5mpZ2dnXj66afxySef8NND33333ZCh6SXCNU88b7zxBiIjIyGTyTB+\/Hi88sorGDBgAAoLCzFw4EBkZWVhzJgx\/GsWLFgAtVqNDz\/88Cpe+bUFjuNw9uxZrF+\/Hhs2bMCJEycwZcoULFy4EPPmzYPRaORJyOukXVNTA7vdzo9z8MrwuyM3Nw+ffroWGzZsRGFhEUaOTMHJk9mMq6CJaerUydi\/\/2u\/xwwGAxm1XHfdOHz77RG\/x7z3Ggvjxo3DkSP+X2s2m0nnhx\/f9GuUHeld4zENVOKnq6fzoo5Adj3BwOFwIDMzEwqFAikpKTzp7N69G0uXLsW7776Le+65J1R8DyEoXNOptvHjx+Ojjz7CV199hX\/+85+orq7GpEmT0NDQwNcCQg4Klx8CgQDJycl49tlnceTIEeTl5eHmm2\/G2rVrMXjwYPzoRz\/Cu+++i4qKCh8n7XHjxiEsLAwFBQXYs2cPTpw4gaqqKr7eotVqMH36VGzbtgXZ2cfwk5\/8GGlpY\/0ufkqlkoyGqAFvJhPdX0alwwI5ZVOpQaOR9qsTdPmvWcUONPlYHn377bcoLi4mbYYoOBwOZGVlQSaT+ZDO\/v37cccdd+BPf\/pTiHRC6BOu6Xk83QucKSkpmDhxIgYOHIgPP\/yQ92YKOShcWQgEAgwYMABPP\/00nnrqKZSVlfEzhX71q18hLS2NnykUHx8PpVKJQYMGwWq1oqamBsXFxcjJyeFTX0OGDOFdowcMGIAHH7wf5eXlSE\/\/Aunpm3Dw4KHzPUdm5OWxa3dUDYey2QGAigpqRg9bDScQCEhz0EBuCB0N\/s1Q9Ra1j+VRXV0damtrce7cOYSHh\/PKwvDw8ID3utPpxLFjxyCRSDBq1CiedA4ePIglS5bgtddew09+8pPQbyaEPuGajnh6Ijw8HCkpKcjPz+fVbSEHhasHgUCAuLg4rFy5Env37kVpaSnuuece7NixA6NGjcK0adPwxz\/+Efn5+QgPD8fAgQMxceJEREZGwmq1Qi6XIzc3F5mZmSgvL+dNOmNiYvDwww9h+\/YvkZ+fiz\/96S1MnDiR2eMjEAhQXs4mAGpRNZlMzBoMQJuDWixm0rWAyoLLZQo0VvmvOXXv4ZHJZIiJiUFqamqvRt+vv\/4a+fn5aGlp8fteLpeLl8F3J52jR49i8eLFePnll\/HQQw+FSCeEPuOajnh6oqurC2fOnMHUqVORmJgIk8mEjIwMvsZjt9uxd+9evPbaa1f5Sn94EAgEsFgsePjhh7FixQrU19dj48aN2LBhA373u99hyJAhWLBgATo6OvDPf\/4TBw8eRGJiImw2G2pra1FZWYnc3Fyo1Wq+tiGXy2EyGfHAA\/cDAH7721XYvHkL0tM3YffuPTxRWSxmsjeISlEZjQYyNUuZpBoMBvJ9KTeEwXEpcNf6JyZWD49EIvFp9PVOC83KyuJ7rAwGA9RqNTiOw7FjxyAQCDB69Gi+vnb8+HEsWLAAzz33HB599NEQ6YRwUbimxQVPPfUU5s2bh7i4ONTW1uJ3v\/sd9u7di+zsbMTHx+O1117Dq6++ig8++ABJSUl45ZVXsGfPHuTl5QVMr4RwZcBxHJqampCens5HP2PGjMH111+PhQsX+qirOjs7eXVcc3MzVCoVb2Las4enpaUFW7duQ3r6JtTU1OLbb79lXkNMTAzTEn\/KlEk4cIDt3xUeHs50tZ48eTK+\/tq\/oAGgR4PPm3wXbKf8R+YvfnIXUmcMYp63J9xuN5qamvjvzptulkgkSEtL49OFp06dws0334zHH38czz77bIh0QrhoXNMRT3l5Oe68807U19dDr9fzklmvQ8IzzzwDm82GFStWoKmpCePHj8f27dtDpNOPIBAIEBUVhbKyMtTU1CAjI4OvC3mtehYsWICFCxdizJgxiIuLQ1xcHF\/bqKmpQX5+PpRKJb+jDw8PR2RkJO68cynuvHMp2tvbsW3bV0hP34SvvsrwiTSkUinpG8dx7MVXp9OSZqccx+4rUqlUpKFplMIMG\/y\/vq\/No0KhEFqtFlqtFoMHD8bRo0fR2dkJl8uFN954A4cPH8aUKVPwzjvvYMWKFSHS6YGPPvoIjz\/+OCorK30UhIsXL0Z4eDg++uijq3h1\/RPXdMQTwrWB0tJSzJw5E+vXr8eIESP4x61WK7Zu3Yr169dj69at0Gq1\/EyhcePG8ekhu93OF9gbGhp8Cuw9Ryx0dnZix46d2LgxHV9+uQ1arZaUQ48ePQrHj5\/we2zAgEQUFhYxX0v1FQ0ZMgS5ubnM195\/\/SqUZPkfePdx9tMX1UDqdZWw2+1ITfVMl83Ozsa7776Lbdu2obGxEbNnz8bixYsxf\/78gM28PxTYbDaYzWb885\/\/xJIlSwB45o5FR0dj27ZtfnuKfuj4QYkLrgQCTT8MxqYnNP3QF3FxccjJyfEhHcDT1Hn77bfjs88+Q01NDd5++200NjZi8eLFGDp0KJ588kns378fQqEQ0dHRpJN2W1sbOI7jTUzff\/8fKC4+h9Wr38J9990Drda\/SSjlsxbI0YAaWKdW0+agdj\/jrgGPa4FSw7YGYsE7X6mrqwupqamQSCQQCASIiIjArl27cNddd+HUqVOYNm0a3nvvPYwZM4YUP\/yQoFAosGzZMp\/Bcv\/5z38QExPTL01S+wNCxHOJ4Z1++M477\/g9HoxNz8qVK7Fx40asXbsWBw4cgNVqxdy5c+Fy+ZfP\/hBAuU4DHk+zRYsW4d\/\/\/jeqqqrw97\/\/HZ2dnVi2bBmSkpLw6KOPYvfu3QA8jZmjRo3C9OnTMXDgQHR0dODIkSO9VF5SqRQ33ng93n33HRQVncPmzel48MH7edVjoBk9lDecSqUi+4qozysQCNBY6V\/wEKWP6HMazO1249SpU+jo6OBJBwBKSkpwyy23YMGCBXjzzTcxZMgQ\/PKXv8Thw4dx+vTpS55u+z5v2h588EFs376dl8d\/8MEH\/IjtEPyAC+GyAQC3ceNG\/v\/dbjdnMpm4P\/zhD\/xjnZ2dXGRkJPf3v\/+d4ziOa25u5iQSCbd27Vr+ORUVFZxQKOS2bdt2xa79WoHdbue++uor7sEHH+QMBgOn1Wq5++67j9uwYQPX2NjItbe3c+3t7VxraytXVFTEHT58mNu8eTO3bds2Lisri6uoqOCsViv\/vPb2dq6trY3LyNjB\/fKXv+ZiYhI4QOz335gxacxjQ4eOYB4DxFxa2njmscTo4dxNkc\/4\/bfi+j\/5XGugf1arlTt06BCXkZHBNTU18Y+fPXuWS0xM5B588EHO5XJdkb\/V1q1bueeee45bv359r98Ox3HcH\/7wB06pVHLr16\/nsrOzuaVLl3Jms5lrbW3ln\/Pzn\/+ci46O5jIyMrisrCzu+uuv50aNGsU5nc7Lfv2pqancK6+8wmVmZnJCoZArLS297O\/5fUWIeC4jev54CgoKOABcVlaWz\/Pmz5\/P3XvvvRzHcdzOnTs5AFxjY6PPc0aOHMn95je\/uezXfC3D4XBwu3bt4lasWMFZLBYuMjKSW7ZsGffZZ59x9fX1PsRSXFzMffvtt9yWLVu4rVu3ckePHuXKysq4tra2Xov33r37uIceepgzm2N8CCI6Oo5JHhMmTCGJJyFhEPPYTeNuYxLP83f8X59I5\/Dhw1xGRoYPCRcUFHBJSUncfffdd0UWbH\/4Pm7a3n33XS4pKYl7+OGHuVmzZl329\/s+I5Rqu4IIxqYnNP3w8kEsFuP666\/HX\/\/6V5SWluKLL76AXq\/H008\/jcTERCxfvhwbN26EzWaDXq\/H8OHDMW3aNL62lJ2djX379uH06dO8kzYADBw4ADff\/CPs2bMTBw8ewK9+9QxGjkwhazhisYh5TCQSkekhvTKGeSzKENwAOI7jcObMGbS0tGDs2LG8Gqu2tha33HILxo0bh3\/961+9\/PGuFoqKilBdXe0zjlomk2H69On8OOqrPbL6rrvuQkVFBf75z3\/iJz\/5yWV\/v+8zQsRzFXAxNj3BPCeE4CESiTB16lSsXr0aRUVFyMjIQHx8PF588UUkJCTgrrvuwn\/\/+1+0t7dDq9Vi6NChmDZtGt\/Bf\/r0aezduxdZWVnIyspCUlISYmJiMHJkCl544TkcPHgAR44cwm9+8zxGjkzp9f6UY0FsbAzpeBAmYIsWNKbAUmqO45Cbm4vGxkYf0qmvr8e8efMwfPhwrFmzJmBd7Uri+7BpU6lUWLx4MSIiIrBw4cLL\/n7fZ4SI5woiGJue7tMPWc8J4dJCKBRi\/PjxeOONN3D27Fns378fQ4cOxWuvvYaEhATcfvvt+M9\/\/oOWlhao1WoMGTIEU6dOhdlsRmNjI0QiEfLz85GdnY2amhpeBDJkSDJ++cuncfDgAWRnH8PLL7+EtLSxAED29wSSKbs6\/I+7BgJPHuU4Dnl5eaivr8fYsWMhl8sBeLzqFixYgAEDBuCTTz7hBQb9Df1901ZVVYW77rrrkjiCX8sIEc8VRHebHi+8Nj3eyYah6YdXF0KhEKmpqXjllVdw+vRpfPvttxg7diz+8pe\/ICEhAbfeeis+\/PBD\/Oc\/\/8GNN94Ik8mE6dOnIy0tDXK5HOfOneOdtKurq\/nIZcCAAXjiiZXYu3cX8vJy8MgjD2HSpIm860J3eMmABda4a4AmHo7jkJ+fj9raWowdO5ZX3bW0tGDhwoUwm83473\/\/SxqbXi30901bY2Mj1q5di127duHhhx++rO91LaD\/xNLXCKxWK86dO8f\/v3f6oUaj4Q0xX3nlFSQlJfE2PWFhYVi2bBkA3+mHWq0WGo0GTz31VGj64VWAQCBASkoKUlJSsGrVKuTl5WH9+vV48803UVJSgunTp+PgwYP84DqVSsU7adfW1qKwsBA5OTnQaDQwGo3Q6\/WQSCSIiYnBQw\/9HA899HNUV9fgiy++wOefb8L+\/QfgcrngdLJl8zq1AW2NbFNSFvFwHIdz586hqqqKHzcBAG1tbVi8eDHUajXWr1\/fb3fqwXgrdt+03X777QAubNpef\/31y3p9qampaGpqwmuvvYbk5OTL+l7XAkLEc4lx9OhRn07lJ554AoBn+uGaNWuCsul5++23IRaLcfvtt\/PTD9esWdNvCr0\/RAgEAgwZMgSjR49GVVUV3nzzTXR2duLTTz\/Fk08+iUmTJmH+\/PlYsGABLBYLlEolBg4ciPb2dtTW1qK0tBSnT5+GRqPhrXukUilMJiMefPABPPjgA6ivb8CWLVvw9dffICsrizcx7Y6kuBSghH2d3Z2pu6OwsBCVlZVIS0vjSae9vR1LliyBVCrF559\/TvYdXQl8nzdtxcXFl\/X81xpCljkhhBAkmpubkZSUhL\/97W+47bbbAHgiidLSUn6m0MGDBzFu3DjeuicuLo6vL3R0dPBGnK2trYiKimJOCe1uYpqRsYMXIyye\/gBajqv8Xp9YIsS64ud71TMKCwtRWlqKtLQ03iLIZrNhyZIlsNvt+PLLL\/uFPyE1snrNmjXgOA4vvfQS3nvvPX7T9te\/\/tXH0SI0svr7gRDxXIPYt28f3njjDWRmZqKqqgobN270UdksX76812jv8ePH49ChQ\/z\/d3V14amnnsKnn37q8wOOiWFLeX8IaGhogFbrf6oox3GorKzkxzns378fI0eOxMKFC7FgwQIMHDiQJwWvk3ZNTQ1aWloQGRnJk1DPyMNqteKrr7YjPX0TtLYUFH7tf1yCzqLC+0cf93msuLgYxcXFGDt2LE8unZ2duPPOO9HS0oKvvvoKkZG0PU8IIVxqhIjnGsSXX36Jr7\/+GqmpqVi8eLFf4qmpqfHxlpJKpdBoLviRPfTQQ\/jiiy+wZs0aaLVaPPnkk2hsbERmZmYo5RcEOI5DbW0tPv\/8c2zYsAG7d+\/GkCFDeBIaMmQIT0JdXV18JNTU1ASlUsmPc\/CmxbywdzqRtfscDm49gyMZeWhvvSA0GJwajTc2P8D\/f0lJCQoLCzF27FioVJ4oyW634+6770ZVVRV27NgR0E8uhBAuB0LEc41DIBD4JZ7m5uZeXlhetLS0QK\/X4+OPP8bSpUsBAJWVlYiNjcXWrVsxe\/bsK3Dl1w44jkNjYyPS09OxYcMG7NixAwMGDODHOQwfPpxXt3mdtGtqatDY2IiIiAifUdXd4bC7cPJAIb7ZcgbffpWHodfF4dn\/8\/y9SktLUVBQgNTUVD6icTgcuO+++1BUVIRdu3YxI7cQQrjcCBHPNQ4W8Xz++eeQSqVQq9WYPn06fv\/738NgMAAAdu3ahRtvvBGNjY0+O+JRo0Zh4cKFeOmll670x7im0NzcjC+++AIbNmzAV199hejoaJ6ERo8ezZOQw+HwGeegUCj4SCgiwtcM1OVyo6GqFYYYNcrLy\/mBeWq1GoBnBPcDDzyAnJwc7N69m\/9bhxDC1UBI1fYDxJw5c7BkyRLEx8ejqKgIL7zwAm644QZkZmZCJpNd9Q7wax1qtRr33HMP7rnnHrS1tfEzhebMmQOdTod58+Zh0aJFGDduHCwWCywWC5xOJ+rr61FTU4Pi4mLI5XK+JqRSqSASCWGIUaOiogJnz55FamoqTzoulwsrVqzAyZMnsWfPnhDphHDVESKeHyC86TMAGDFiBNLS0hAfH48tW7bg1ltvZb4uZNtz6aFUKrF06VIsXboUHR0d2LZtG9avX49FixYhIiKCV8dNnDgRJpMJJpMJLpcL9fX1qK2tRWZmJiQSCQwGA0QiEUpKSnwiHZfLhUcffRSHDx\/G7t27+UbMEEK4mggRTwgwm82Ij49Hfn4+AN8O8O5RT21tbcg94TIiLCwMt956K2699VZ0dnYiIyMDGzZswB133AGpVMpHQpMnT4bRaITRaITL5UJjYyOKi4vR3NwMiUSCkydPoqOjAzfddBOeeeYZ7NmzB3v27PnBKxJD6D8IWeaEgIaGBpSVlcFsNgMI2fb0B8jlcsybNw8ffPABqqur8eGHH0IgEGD58uUYOHAgVqxYge3bt8PlcmHz5s3429\/+htGjRyMlJQV5eXl44IEHkJCQgE8\/\/ZQfnhZCCP0FIXHBNYjuHeBjxozBW2+9heuvvx4ajQYajQarVq3C4sWLYTabUVxcjGeffRalpaU4c+YM3+vx0EMPYfPmzVizZg3fAd7Q0BCSU19lOJ1O7Nu3D+vWrcPnn3+Ozs5OdHR04PHHH8fTTz8NuVwOt9uN559\/Htu2bUNaWhp27dqFrq4uLFiwAO+++25AL7gQQrjsuEJzf0K4gti9ezcHoNe\/++67j+vo6OBmzZrF6fV6TiKRcHFxcdx9993Xa1qizWbjHnnkEU6j0XAKhYKbO3duaKJiP0N6ejonl8u5efPmcbGxsZxKpeKWLFnCLVq0iDMYDFxOTg7HcRzncrm4AwcOcL\/\/\/e+vyHW9+OKLve49o9HIH3e73dyLL77Imc1mTi6Xc9OnT+dOnTp1Ra4thP6BEPGEEML3ELt37+bCw8O5\/\/3vfxzHecjl4MGD3IoVKziZTMZ9\/fXXV+3aXnzxRW748OFcVVUV\/6+2tpY\/HswI6xCubYSIJ4TLgldeeYVLS0vjIiIiOL1ezy1YsIDLzc31eU4wO9\/Ozk7ukUce4bRaLRcWFsbNmzePKysru5IfpV+ipqaG27Rpk99jLpfrCl+NL1588UVu1KhRfo8FM8I6hGsfIXFBCJcFe\/fuxcMPP4xDhw4hIyMDTqcTs2bNQnt7O\/+c119\/HW+99RbeeecdHDlyBCaTCTNnzkRbWxv\/nJUrV2Ljxo1Yu3YtDhw4AKvVirlz5\/LD1n6oMBgMmDdvnt9j\/mb8XGnk5+fDYrEgMTERd9xxBwoLCwEEN8I6hB8ArjbzhfDDQG1tLQeA27t3L8dxwe18m5ubOYlEwq1du5Z\/TkVFBScUCrlt27Zd2Q8QQtDYunUrt27dOu7kyZNcRkYGN336dM5oNHL19fXc119\/zQHgKioqfF7z4IMPcrNmzbpKVxzClcbV3xqF8INAS0sLAPBGpMHsfDMzM+FwOHyeY7FYMGLEiNDuuB9jzpw5WLx4MT8HZ8uWLQDg44h+MSOsQ7h2ECKeEC47OI7DE088gSlTpvCzU7zWOz1HEne35QlZ91wbCA8PR0pKCvLz84MaYR3CtY8Q8YRw2fHII4\/g5MmT+PTTT3sdu5idb2h3\/P1CV1cXzpw5A7PZ7DPC2gvvCOtQc\/IPByHiCeGy4he\/+AU2bdqE3bt3+1i2BLPz7W7dw3pOCP0PTz31FPbu3YuioiIcPnwYt912G1pbW3HfffdBIBDwI6w3btyIU6dOYfny5T4jrEO49hEinhAuCziOwyOPPIINGzZg165dSExM9DkezM43ZN3z\/UR5eTnuvPNOJCcn49Zbb4VUKsWhQ4cQHx8PAHjmmWewcuVKrFixAmlpaaioqMD27dv7xfjtEK4MQpY5IVwWrFixAp988gnS09ORnJzMPx4ZGcmPdn7ttdfw6quv4oMPPkBSUhJeeeUV7NmzB3l5eSHrnhBCuIYRIp4QLgtYNZgPPvgAy5cvB+CJil566SW89957aGpqwvjx4\/HXv\/6VFyAAQGdnJ55++ml88sknsNlsuPHGG\/Huu+8iNjb2SnyMEEII4TIgRDzXAOrq6pCSkoJHH30Uzz77LADg8OHDmDp1KjZv3uwjRw4hhBBCuNoI1XiuAej1evzf\/\/0fVq1ahaNHj8JqteLuu+\/GihUrfvCk8+qrr2LcuHFQKpUwGAxYuHAh8vLyfJ6zfPlyCAQCn38TJkzweU5XVxd+8YtfQKfTITw8HPPnz0d5efmV\/CghhHDNIBTxXEN4+OGHsWPHDowbNw4nTpzAkSNHfvAW+D\/60Y9wxx13YNy4cXA6nXjuueeQnZ2N06dPIzw8HICHeGpqavDBBx\/wr5NKpXyzK+CpNX3xxRdYs2YNtFotnnzySTQ2NoZqTSGEcBEIEc81BJvNhhEjRqCsrAxHjx7FyJEjr\/Yl9TvU1dXBYDBg7969mDZtGgAP8TQ3N+Pzzz\/3+5qWlhbo9Xp8\/PHH\/NjwyspKxMbGYuvWrZg9e\/aVuvwQQrgmEEq1XUMoLCxEZWUl3G43SkpKrvbl9Ev0tO7xYs+ePTAYDBg8eDAefPBB1NbW8sdC1j0hhHBpIb7aFxDCpYHdbsddd92FpUuXYsiQIbj\/\/vuRnZ0darTshv9v7\/5CmuwCOI5\/08w\/6CQzmFIOIekPYheKMTAUw0AwoqCCKLzwRlfQKolIhOhCxQstCfVCLDBiEeFN5QiCSYMuMhQiuvDCWIQLkhZqM2OdLqLB0Op9fX2f1fx9YDfP83B2dvVj52y\/s1x1D3zvFjty5AgOh4OpqSlaW1uprq7m+fPnpKamqrpHZJUpeBJES0sLHz9+pKenh8zMTEZGRmhoaOD+\/fvxntof40d1j9\/vj7n+Y\/kMoLi4mLKyMhwOBw8ePODw4cM\/HU\/VPSIro6W2BODz+bh69SpDQ0PYbDaSkpIYGhrC7\/fT19cX7+n9EX5W3bOcvLw8HA4Hk5OTgKp7RFabgicBVFVV8eXLFyoqKqLXCgoKCIVCNDU1xXFm8fe76p7lzMzM8ObNG\/Ly8oC1Xd3T29tLYWEhaWlplJaW8uTJk3hPSRKAgkcS2qlTp7h16xa3b98mKyuLYDBIMBgkHA4DMDc3R3NzM0+fPuX169f4fD4OHDhAbm4uhw4dAr7X\/DQ0NHD+\/HkeP37M+Pg4J06ciJ43k6ju3LmD2+2mpaWF8fFx9u7dS21tLYFAIN5Tk7+dxQfPiVgKWPZ148YNY4wxnz59Mvv37zebN282KSkppqCgwNTX15tAIBAzTjgcNqdPnzY5OTkmPT3d1NXVLXkm0ZSXl5vGxsaYazt27DAXL16M04wkUeh\/PCKyxOLiIhkZGdy9ezf6zQ\/gzJkzTExMMDo6GsfZyd9OS20issT79++JRCK\/PCFWZKUUPCIW6evro6SkBJvNhs1mw+l0MjIyEr1vjOHy5cvk5+eTnp5OVVUVL1++jBnD6s64lZwQK\/I7Ch4Ri2zZsoWOjg7GxsYYGxujurqagwcPRsOls7OTrq4url+\/zrNnz7Db7dTU1DA7Oxsdw+12Mzw8jMfjwe\/3Mzc3R11dHZFIZFXnmpubS3Jy8i9PiBVZsfhuMYmsbRs3bjQDAwPm69evxm63m46Ojui9hYUFk52dbfr7+40xxoRCIZOSkmI8Hk\/0mbdv35qkpCTj9XpXfW7l5eWmqakp5trOnTv14wL5z\/SNRyQOIpEIHo+H+fl5nE4nU1NTBIPBmD641NRUKisro31wVnfGnTt3joGBAQYHB3n16hVnz54lEAjQ2Ni46u8la4sqc0Qs9OLFC5xOJwsLC2RmZjI8PMyuXbuiwbHcZv6PwlerO+OOHTvGzMwMV65cYXp6muLiYh4+fIjD4Vj195K1RcEjYqHt27czMTFBKBTi3r171NfXx\/w0eSWb+f\/kmZVyuVy4XK7\/ZWxZu7TUJmKhDRs2sG3bNsrKymhvb2f37t1cu3YNu90O8MvNfHXGSaJQ8IjEkTGGz58\/U1hYiN1uj+mDW1xcZHR0NNoHt5Y74ySxaKlNxCKXLl2itraWrVu3Mjs7i8fjwefz4fV6WbduHW63m7a2NoqKiigqKqKtrY2MjAyOHz8OxHbGbdq0iZycHJqbmxO+M04Sj4JHxCLv3r3j5MmTTE9Pk52dTUlJCV6vl5qaGgAuXLhAOBzG5XLx4cMH9uzZw6NHj8jKyoqO0d3dzfr16zl69CjhcJh9+\/Zx8+ZNkpOT4\/WxRP41dbWJiIiltMcjIiKWUvCIiIilFDwiImIpBY+IiFhKwSMiIpZS8IiIiKUUPCIiYikFj4iIWErBIyIillLwiIiIpRQ8IiJiqW\/9VsG5oCgnEAAAAABJRU5ErkJggg==", "text\/plain": "<Figure size 640x480 with 1 Axes>"}, "metadata": {}, "output_type": "display_data"}]}}, "3012cdca2fe2499d8a50dee485f62217": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "32b1f33a1556467aaba78f0af3df1e4d": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": {"description_width": ""}}, "3500924f544141ef8070a2456337d727": {"model_module": "@jupyter-widgets\/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": {"layout": "IPY_MODEL_e4081c6091bb48838c726ff8e86ca60b", "outputs": [{"data": {"image\/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG2CAYAAACXuTmvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy\/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA5rElEQVR4nO3dfXSU5Z3H\/8\/kaZKQZCBAnkgI4UkrEUTCQ6JWpAs\/WWVFtluq1IO7radW8Lcc6vor5WyLPS3xeI6s3cOWPa3WtRaKu6u27hYRXAQfAE0QJKJFlIQESAiEZCYJYfIw9++PZEYTAgSYzDUz9\/t1zpzj3DOZ+ebyPicfrvt7X5fDsixLAAAANhJjugAAAIBQIwABAADbIQABAADbIQABAADbIQABAADbIQABAADbIQABAADbIQABAADbIQABAADbIQABAADbCZsAVFpaKofDoRUrVgSOWZalNWvWKCcnR0lJSZo9e7YOHTpkrkgAABAVwiIAlZWV6de\/\/rUmT57c6\/hTTz2ldevWaf369SorK1NWVpbmzp2r5uZmQ5UCAIBoYDwAtbS0aMmSJfrNb36jYcOGBY5blqVnnnlGq1ev1qJFi1RYWKgXXnhB586d06ZNmwxWDAAAIl2c6QKWLVumu+66S3\/1V3+ln\/\/854HjlZWVqqur07x58wLHnE6nbr\/9du3evVvf\/\/73+\/08r9crr9cbeO7z+XT27FkNHz5cDodj8H4RAAAQNJZlqbm5WTk5OYqJCf58jdEAtHnzZn344YcqKyu74LW6ujpJUmZmZq\/jmZmZOnbs2EU\/s7S0VE888URwCwUAAEbU1NQoNzc36J9rLADV1NToH\/\/xH7Vt2zYlJiZe9H19Z20sy7rkTM6qVau0cuXKwHO3263Ro0erpqZGaWlp1144AAAYdB6PR3l5eUpNTR2UzzcWgPbt26f6+npNmzYtcKyrq0tvv\/221q9fr8OHD0vqngnKzs4OvKe+vv6CWaGvcjqdcjqdFxxPS0sjAAEAEGEGq33FWBP0N77xDVVUVOjAgQOBR1FRkZYsWaIDBw5o7NixysrK0vbt2wM\/097erl27dqmkpMRU2QAAIAoYmwFKTU1VYWFhr2NDhgzR8OHDA8dXrFihtWvXasKECZowYYLWrl2r5ORk3X\/\/\/SZKBgAAUcL4XWCX8vjjj6utrU2PPPKIGhsbNXPmTG3btm3QrgcCAAB7cFiWZZkuYjB5PB65XC653W56gAAAiBCD\/ffb+EKIAAAAoUYAAgAAtkMAAgAAtkMAAgAAtkMAAgAAtkMAAgAAtkMAAgAAtkMAAgAAtkMAAgAAtkMAAgAAtkMAAgAAtmObAHS2xWu6BAAAECZsE4DKqhpNlwAAAMKEbQLQ3soG0yUAAIAwYZsA9EHlWdMlAACAMGGbAHSs4ZxONrWZLgMAAIQB2wQgSdr9BZfBAACA7QLQGdMlAACAMGCvAPR5gyzLMl0GAAAwzDYBKD42RnWe86o802q6FAAAYJhtAtBNeS5J9AEBAAAbBaCZBcMl0QcEAADsFIDGDpMk7fmiQT4ffUAAANiZbQJQ4aihSk6IVeO5Dv2lrtl0OQAAwCDbBKD42BjNKEiXxGUwAADszjYBSJJuGTdCEo3QAADYna0CUPG47kbo9482qKPLZ7gaAABgiq0C0A3ZaRqaHK\/W9i4dPO42XQ4AADDEVgEoJsah4rHds0B76AMCAMC2bBWAJKlknH89IPqAAACwK9sFoOKeRujyY40639FluBoAAGCC7QLQuJFDlJnmVHunTx8eazRdDgAAMMB2AcjhcKiE2+EBALA12wUg6cvb4d+jERoAAFuyZQDyN0IfPO5W8\/kOw9UAAIBQMxqANmzYoMmTJystLU1paWkqLi7W66+\/Hnj9wQcflMPh6PWYNWvWNX9v7rBk5Q9PVpfPUlnV2Wv+PAAAEFmMBqDc3Fw9+eSTKi8vV3l5uebMmaN77rlHhw4dCrznzjvvVG1tbeCxZcuWoHy3fxbovc\/pAwIAwG7iTH75ggULej3\/xS9+oQ0bNmjv3r2aNGmSJMnpdCorKyvo310yboT+8EENjdAAANhQ2PQAdXV1afPmzWptbVVxcXHg+M6dO5WRkaGJEyfqoYceUn19\/SU\/x+v1yuPx9Hr0Z1bPitCf1np0trU9eL8IAAAIe8YDUEVFhVJSUuR0OvXwww\/r1Vdf1Q033CBJmj9\/vjZu3KgdO3bo6aefVllZmebMmSOv13vRzystLZXL5Qo88vLy+n3fyFSnrstMlSTtYRYIAABbcViWZZksoL29XdXV1WpqatLLL7+sZ599Vrt27QqEoK+qra1Vfn6+Nm\/erEWLFvX7eV6vt1dA8ng8ysvLk9vtVlpaWq\/3PvE\/h\/T8e1VaMnO0fnHvjcH9xQAAwFXzeDxyuVz9\/v0OBuMzQAkJCRo\/fryKiopUWlqqKVOm6Je\/\/GW\/783OzlZ+fr6OHDly0c9zOp2Bu8r8j4vxL4jIDBAAAPZiPAD1ZVnWRS9xNTQ0qKamRtnZ2UH5rplj0xXjkI6eaVWtuy0onwkAAMKf0QD04x\/\/WO+8846qqqpUUVGh1atXa+fOnVqyZIlaWlr02GOPac+ePaqqqtLOnTu1YMECjRgxQvfee29Qvj8tMV435g6VJO3mdngAAGzD6G3wp06d0gMPPKDa2lq5XC5NnjxZW7du1dy5c9XW1qaKigr97ne\/U1NTk7Kzs3XHHXfopZdeUmpqatBqKBk3XB\/VNGn3Fw3622m5QftcAAAQvowGoOeee+6iryUlJemNN94Y9BpuGTdCG3Z+od1fnJFlWXI4HIP+nQAAwKyw6wEKtWn5w5QQG6Na93lVNZwzXQ4AAAgB2wegpIRYTR09VJK0m93hAQCwBdsHIEm6ZXz37fA0QgMAYA8EIH25Meqeow3y+YyuCwkAAEKAACRpcu5QJSfE6mxruw6fajZdDgAAGGQEIEkJcTGaUZAuSXrvc\/qAAACIdgSgHoHLYGyLAQBA1CMA9fDvC\/Z+5Vl1dvkMVwMAAAYTAajHDdlpciXFq8XbqYMn3KbLAQAAg4gA1CMmxqHisVwGAwDADghAX1EyvjsAsSAiAADRjQD0Ff4+oPKqRp3v6DJcDQAAGCwEoK8YN3KIMlKd8nb69GF1o+lyAADAICEAfYXD4eB2eAAAbIAA1EdJz75gLIgIAED0IgD14Z8B+ui4Wy3eTsPVAACAwUAA6iN3WLJGpyery2eprPKs6XIAAMAgIAD145ae2+G5DAYAQHQiAPWjuOd2+N00QgMAEJUIQP3wrwj9Sa1Hja3thqsBAADBRgDqx8hUp67LTJUk7TnKLBAAANGGAHQRxePYFgMAgGhFALoI\/+3wuz9nBggAgGhDALqImWOHK8YhHT3Tqlp3m+lyAABAEBGALsKVFK8bR7kksS0GAADRhgB0Cf7b4d\/jMhgAAFGFAHQJ\/gUR93xxRpZlGa4GAAAECwHoEory0xUf69BJ93kdazhnuhwAABAkBKBLSEqI1dTRwyRJ73E7PAAAUYMAdBm3sC0GAABRhwB0GSU9fUB7v2iQz0cfEAAA0YAAdBlTcocqKT5WDa3tOnyq2XQ5AAAgCAhAl5EQF6MZBemSuAwGAEC0IAANgH9bjD00QgMAEBUIQANQ0tMI\/f7Rs+rs8hmuBgAAXCujAWjDhg2aPHmy0tLSlJaWpuLiYr3++uuB1y3L0po1a5STk6OkpCTNnj1bhw4dCnmdN+SkyZUUr2ZvpypOuEP+\/QAAILiMBqDc3Fw9+eSTKi8vV3l5uebMmaN77rknEHKeeuoprVu3TuvXr1dZWZmysrI0d+5cNTeHthk5NsahWWPpAwIAIFoYDUALFizQX\/\/1X2vixImaOHGifvGLXyglJUV79+6VZVl65plntHr1ai1atEiFhYV64YUXdO7cOW3atCnktZYE1gOiDwgAgEgXNj1AXV1d2rx5s1pbW1VcXKzKykrV1dVp3rx5gfc4nU7dfvvt2r17d8jr8+8LVl7VqPMdXSH\/fgAAEDzGA1BFRYVSUlLkdDr18MMP69VXX9UNN9yguro6SVJmZmav92dmZgZe64\/X65XH4+n1CIZxI1M0MtUpb6dP+6ubgvKZAADADOMB6LrrrtOBAwe0d+9e\/eAHP9DSpUv1ySefBF53OBy93m9Z1gXHvqq0tFQulyvwyMvLC0qdDocjcDs8l8EAAIhsxgNQQkKCxo8fr6KiIpWWlmrKlCn65S9\/qaysLEm6YLanvr7+glmhr1q1apXcbnfgUVNTE7Ra2RcMAIDoYDwA9WVZlrxerwoKCpSVlaXt27cHXmtvb9euXbtUUlJy0Z93Op2B2+r9j2Ap7pkB+qimSS3ezqB9LgAACK04k1\/+4x\/\/WPPnz1deXp6am5u1efNm7dy5U1u3bpXD4dCKFSu0du1aTZgwQRMmTNDatWuVnJys+++\/30i9eenJyktPUs3ZNpVVntUd12cYqQMAAFwbowHo1KlTeuCBB1RbWyuXy6XJkydr69atmjt3riTp8ccfV1tbmx555BE1NjZq5syZ2rZtm1JTU43VfMu4Edp8tka7vzhDAAIAIEI5LMuyTBcxmDwej1wul9xud1Auh\/3pwAn94+YDmpSTpj\/\/v7cFoUIAANBXsP9+9xV2PUDhzt8H9EmtR42t7YarAQAAV4MAdIUyUhM1MTNFliXtPcrdYAAARCIC0FUo4XZ4AAAiGgHoKvgvg73HgogAAEQkAtBVmDV2uGIc0tHTrapznzddDgAAuEIEoKvgSopX4SiXJGnPUWaBAACINASgqxS4DPY5fUAAAEQaAtBV8u8LtueLBkX5UkoAAEQdAtBVKhozTPGxDp1oalP12XOmywEAAFeAAHSVkhPiNDVvmCQugwEAEGkIQNegZHx3H9BubocHACCiEICuQQl9QAAARCQC0DW4KW+okuJj1dDarsOnmk2XAwAABogAdA0S4mI0vSBdkrSbPiAAACIGAegalYzz9wERgAAAiBQEoGvkD0DvH21QZ5fPcDUAAGAgCEDXaFKOS2mJcWr2durjkx7T5QAAgAEgAF2j2BiHZo3ldngAACIJASgIAn1ANEIDABARCEBBcMv47vWAyqrOytvZZbgaAABwOQSgIBifkaIRKU55O33aX91kuhwAAHAZBKAgcDgcX7kMRh8QAADhjgAUJLeMZz0gAAAiBQEoSPz7gh2oaVKrt9NwNQAA4FIIQEGSl56s3GFJ6vRZ+qDqrOlyAADAJRCAguiWr+wODwAAwhcBKIhKxrMgIgAAkYAAFETFPStCHzrpUdO5dsPVAACAiyEABVFGWqImZKTIsqS9R7kMBgBAuCIABVlgPSD6gAAACFsEoCAr7mmEfo8FEQEACFsEoCArHjtcDof0xelWnfKcN10OAADoBwEoyFzJ8SrMcUnibjAAAMIVAWgQfLkvGH1AAACEIwLQICgZ390HtPuLBlmWZbgaAADQFwFoEEwfM0xxMQ6daGpT9dlzpssBAAB9GA1ApaWlmj59ulJTU5WRkaGFCxfq8OHDvd7z4IMPyuFw9HrMmjXLUMUDk5wQp6mjh0ridngAAMKR0QC0a9cuLVu2THv37tX27dvV2dmpefPmqbW1tdf77rzzTtXW1gYeW7ZsMVTxwPl3hycAAQAQfuJMfvnWrVt7PX\/++eeVkZGhffv26etf\/3rguNPpVFZWVqjLuyYl44brl\/93RHu+OCPLsuRwOEyXBABAxPjT\/hOD+vlh1QPkdrslSenp6b2O79y5UxkZGZo4caIeeugh1dfXX\/QzvF6vPB5Pr4cJN40eqsT4GJ1paddnp1qM1AAAQCRyn+vQz7d8MqjfETYByLIsrVy5UrfeeqsKCwsDx+fPn6+NGzdqx44devrpp1VWVqY5c+bI6\/X2+zmlpaVyuVyBR15eXqh+hV6ccbGaPqY7yLEeEAAAA7fpg2q1tfsG9TvCJgAtX75cBw8e1B\/+8IdexxcvXqy77rpLhYWFWrBggV5\/\/XV99tln+vOf\/9zv56xatUputzvwqKmpCUX5\/SoJbItBHxAAAAPR3unTf+yuHPTvMdoD5Pfoo4\/qtdde09tvv63c3NxLvjc7O1v5+fk6cuRIv687nU45nc7BKPOK+RdEfP9ogzq7fIqLDZu8CQBAWNpSUatTHq9GpCRoMKcwjP5FtixLy5cv1yuvvKIdO3aooKDgsj\/T0NCgmpoaZWdnh6DCa1M4yqXUxDg1ezt16KSZXiQAACKFZVl69t2jkqT7Zowe1O8yGoCWLVum3\/\/+99q0aZNSU1NVV1enuro6tbW1SZJaWlr02GOPac+ePaqqqtLOnTu1YMECjRgxQvfee6\/J0gckNsahWWO7Z4Heow8IAIBLer\/yrD4+4VFifIz+rmhwe3iNBqANGzbI7XZr9uzZys7ODjxeeuklSVJsbKwqKip0zz33aOLEiVq6dKkmTpyoPXv2KDU11WTpA+a\/DLaH9YAAALikZ9\/pnv3525tzlT4kYVC\/y2gP0OX2yUpKStIbb7wRomoGxy09+4KVVZ2Vt7NLzrhYwxUBABB+jp5u0Zufdi9z891bCyTZ5C6waDUhI0UjUhJ0vsOn\/dVNpssBACAs\/fa97ju\/\/uprGRo7MmXQv48ANMgcDoeK2RYDAICLamxt13\/vOy5J+u6tY0PynQSgELgl0AdEIzQAAH1tfP+Yznf4NCknTbPGpl\/+B4KAABQC\/gUR91c3qdXbabgaAADCh7ezSy\/sOSZJeui2sSHbO5MAFAJ56UkaNTRJnT5LZVVnTZcDAEDY+J+PanW62austET99Y2hW+OPABQCDodDt4zndngAAL7KsqzAre9LS8YoIS50sYQAFCKBfcHoAwIAQFL3Xpl\/qWtWckKs7h\/klZ\/7IgCFSHFPI\/Shkx41nWs3XA0AAOb5t734VlGeXMnxIf1uAlCIZKYlanxGiixL2nuUPiAAgL0dOdWsnYdPy+GQ\/v6WMSH\/fgJQCBX37Au29yh9QAAAe\/MvfDjvhkzlDx8S8u8nAIXQjILutQ24EwwAYGdnWrx6+cMTkqTv3RaahQ\/7IgCF0PQx3QHo01qPms93GK4GAAAzfr\/3mNo7fZqSN1RF+cOM1EAACqEsV6Ly0pPks6QP2RcMAGBD5zu69GLPwoffu7UgZAsf9kUACjH\/LFBZJZfBAAD286cDJ9TQ2q5RQ5M0vzDLWB0EoBALBCD6gAAANtO98GF38\/ODJWMUF2suhhCAQswfgA7UNMnb2WW4GgAAQmfXZ6d1pL5FKc44LZ6RZ7QWAlCIjRs5ROlDEuTt9OnjEx7T5QAAEDLPvds9+7N4ep7SEkO78GFfBKAQczgcgY53LoMBAOziL3UevXPkjGIc3Ze\/TCMAGUAjNADAbvy9P\/MLs5WXnmy4GgKQEdN7FkQsP9Yon88yXA0AAIOr3nNefzrQvfDhd28rMFxNNwKQAZNy0pQUHyt3W4eO1LeYLgcAgEH14t5j6uiyNC1\/mG4ebWbhw74IQAbEx8Zo6uihkugDAgBEt7b2Lv1+75cLH4YLApAhrAcEALCDlz88rsZzHcpLT9K8SeYWPuyLAGSIPwCVVzUargQAgMHh81n6bc+t739fUqDYGDPbXvSHAGTI1NFDFRvj0ImmNp1oajNdDgAAQffW4XodPdOq1MQ4fWu62YUP+yIAGTLEGafCnDRJ3A4PAIhO\/lvf758xWinOOMPV9EYAMqiIPiAAQJT6+IRbe442KDbGoaVhsPBhXwQgg2iEBgBEK\/+2F3fdmK2coUmGq7kQAcigojHdayF8dqpFTefaDVcDAEBw1LnP638+OilJ+l6YLHzYFwHIoBEpTo0dOUQSd4MBAKLHC3uq1OmzNKMgXZNzh5oup18EIMOm5\/dcBjvGZTAAQORr9XZqYxgufNgXAcgw\/75g3AkGAIgG\/73vuDznOzVmeLK+8bVM0+VcFAHIsBk9jdAVJ9w639FluBoAAK5el8\/Sb9\/rbn7+7q3htfBhXwQgw\/LSk5SR6lRHl6UDNU2mywEA4Kq9+ekpHWs4J1dSvP52Wq7pci6JAGSYw+HgMhgAICo817Pw4ZKZo5WcEF4LH\/ZlNACVlpZq+vTpSk1NVUZGhhYuXKjDhw\/3eo9lWVqzZo1ycnKUlJSk2bNn69ChQ4YqHhzT87tvhy87xp1gAIDI9FFNkz6oOqv42PBc+LAvowFo165dWrZsmfbu3avt27ers7NT8+bNU2tra+A9Tz31lNatW6f169errKxMWVlZmjt3rpqbmw1WHlz+GaAPjzWqy2cZrgYAgCv3bM\/Chwum5CgzLdFwNZdndH5q69atvZ4\/\/\/zzysjI0L59+\/T1r39dlmXpmWee0erVq7Vo0SJJ0gsvvKDMzExt2rRJ3\/\/+902UHXTXZ6Up1RmnZm+nPq31qHCUy3RJAAAM2ImmNm2pqJXU3fwcCa4qAP3sZz+75Os\/+clPrqoYt9stSUpP754RqaysVF1dnebNmxd4j9Pp1O23367du3f3G4C8Xq+8Xm\/gucfjuapaQik2xqGb84dp12enVVZ1lgAEAIgoL+yuUpfPUsm44ZqUExl\/w64qAL366qu9nnd0dKiyslJxcXEaN27cVQUgy7K0cuVK3XrrrSosLJQk1dXVSZIyM3uvI5CZmaljx471+zmlpaV64oknrvj7TZtRkB4IQH9\/S2SkZwAAms936A\/vV0sK320v+nNVAWj\/\/v0XHPN4PHrwwQd17733XlUhy5cv18GDB\/Xuu+9e8JrD0XsdAcuyLjjmt2rVKq1cubJXXXl5eVdVUygV+Ruhqxov+fsBABBO\/rP8uJq9nRo7cohmT8wwXc6ABa0JOi0tTT\/72c\/0z\/\/8z1f8s48++qhee+01vfXWW8rN\/XLdgKysLElfzgT51dfXXzAr5Od0OpWWltbrEQmm5A1VQmyMTjd7dazhnOlyAAC4rM4un57vWfjwe7eOVUwYL3zYV1DvAmtqagr08QyEZVlavny5XnnlFe3YsUMFBb2nzgoKCpSVlaXt27cHjrW3t2vXrl0qKSkJWt3hIDE+Vjfmdl83LatiPSAAQPjb9skpHW9s07DkeC26eZTpcq7IVV0C+9d\/\/ddezy3LUm1trV588UXdeeedA\/6cZcuWadOmTfrTn\/6k1NTUwEyPy+VSUlKSHA6HVqxYobVr12rChAmaMGGC1q5dq+TkZN1\/\/\/1XU3pYmz4mXfuONaqs6qz+rij8L9sBAOztN+8clSQ9MCtfifGxhqu5MlcVgP7lX\/6l1\/OYmBiNHDlSS5cu1apVqwb8ORs2bJAkzZ49u9fx559\/Xg8++KAk6fHHH1dbW5seeeQRNTY2aubMmdq2bZtSU1OvpvSwNqNgmP59l1RexYKIAIDwtu9Yo\/ZXNykhNkbfKc43Xc4Vu6oAVFlZGZQvt6zLL\/rncDi0Zs0arVmzJijfGc6mjU6XwyEdPdOq081ejUx1mi4JAIB+Pfdu9+zPwqk5ykgN\/4UP+2IvsDDiSo7XdZndM1vl9AEBAMJUzdlz2vpxd9vKd28da7iaq0MACjNFY768HR4AgHD02\/cq5bOk2yaM0HVZkdmSQgAKM9PH9OwMzwwQACAMuds69J9lNZKk790WmbM\/EgEo7PgD0KGTbrV4Ow1XAwBAby+VVau1vUsTM1P09QkjTJdz1QhAYSZnaJJGDU2Sz5L2V3MZDAAQPjq6fPqP96okdS98GMm7FhCAwtCMgp7LYJVcBgMAhI8tFbU66T6vESkJ+pubckyXc00IQGGIRmgAQLixLEvPvdu9DM4Ds8ZE3MKHfRGAwtCMnj6g\/TWNau\/0Ga4GAIDuf5QfPO6WMy5G35k12nQ514wAFIbGjUzR0OR4ne\/w6dDJge+tBgDAYHm2Z9uLRTfnanhK5C\/USwAKQzExDhXlczs8ACA8VJ5p1fZPT0mSvnvrGLPFBAkBKEzNKKAPCAAQHp5\/r1KWJd1x3UiNz4jMhQ\/7IgCFqaKePqDyqrPy+S6\/ZxoAAIOh6Vy7\/qv8uCTpoQhe+LAvAlCYKsxxKTE+Ro3nOvTF6RbT5QAAbGrTB9Vq6+jS17LTVDxuuOlygoYAFKYS4mJ0U95QSVwGAwCY0d7p0wu7qyRJ37u1IKIXPuyLABTGZrAvGADAoP89eFKnPF5lpDq1YEpkL3zYFwEojBURgAAAhliWpWff6V74cGnJGCXERVdkiK7fJsrcnD9MMQ7peGObat1tpssBANjInqMN+qTWo6T4WC2ZGfkLH\/ZFAApjKc44TcpxSaIPCAAQWs\/1zP58c1quhiYnGK4m+AhAYS6wLxgbowIAQuTz+hb931\/q5XBIf3\/LGNPlDAoCUJijERoAEGq\/fa979ucb12dq7MgUw9UMDgJQmPM3Qh8+1Sz3uQ7D1QAAot3Z1na9vM+\/8GGB4WoGDwEozI1MdapgxBBZlrSvmlkgAMDg2rj3mLydPt04yqUZBemmyxk0BKAIMH0M+4IBAAbf+Y4uvbDnmCTpe7dF18KHfRGAIkBgPSAaoQEAg+i1j07qTItX2a5E\/fWN2abLGVQEoAjgb4Q+eNyt8x1dhqsBAEQjy7ICt74\/WDJG8bHRHRGi+7eLEvnDkzUixan2Lp8OHnebLgcAEIXe\/fyMDp9qVnJCrL49I\/oWPuyLABQBHA6HZhT4+4C4DAYACL7f9fT+\/N20XLmS4g1XM\/gIQBGiKJ\/1gAAAg6PW3ab\/+\/SUJOmB4nzD1YQGAShC+G9F3FfVqC6fZbgaAEA02fxBjXyWNLMgXeMzUk2XExIEoAhxfVaqUpxxavZ26nBds+lyAABRoqPLp81l1ZKkJbPsMfsjEYAiRlxsjKaOHiqJy2AAgOD5v0\/rdcrj1fAhCbpzUpbpckKGABRB2BcMABBsG9\/vbn7+1vQ8JcTZJxbY5zeNAkVfCUCWRR8QAODaVJ1p1TtHzsjhkO63wa3vX0UAiiBTRw9VfKxDpzxe1ZxtM10OACDC\/eGD7t6f2yeOVF56suFqQosAFEES42N14yiXJC6DAQCuzfmOLv1neY0kaclM+zQ\/+xkNQG+\/\/bYWLFignJwcORwO\/fGPf+z1+oMPPiiHw9HrMWvWLDPFhonp9AEBAIJg68d1ajzXoWxXou64bqTpckLOaABqbW3VlClTtH79+ou+584771RtbW3gsWXLlhBWGH4IQACAYPA3P983Y7Tionzfr\/7Emfzy+fPna\/78+Zd8j9PpVFaWfW7Lu5xp+d1bYnxxulUNLV4NT3EarggAEGn+UudRWVWjYmMcWjw9z3Q5RoR95Nu5c6cyMjI0ceJEPfTQQ6qvr7\/k+71erzweT69HNBk2JEETM1MkSeXHGg1XAwCIRJve725+nvu1TGWmJRquxoywDkDz58\/Xxo0btWPHDj399NMqKyvTnDlz5PV6L\/ozpaWlcrlcgUdeXvQl28Dt8JVcBgMAXJlWb6de+fCEJOk7Nlr5ua+wDkCLFy\/WXXfdpcLCQi1YsECvv\/66PvvsM\/35z3++6M+sWrVKbrc78KipqQlhxaHBgogAgKv12kcn1eLt1JjhySoZN9x0OcYY7QG6UtnZ2crPz9eRI0cu+h6n0ymnM7r7Yqb3bIz68UmPzrV3Kjkhov43AgAMsSxLv9\/b3fx8\/8zRiolxGK7InLCeAeqroaFBNTU1ys7ONl2KUaOGJinHlagun6X91U2mywEARIiDx906dNKjhLgYfXNa9LWIXAmjAailpUUHDhzQgQMHJEmVlZU6cOCAqqur1dLSoscee0x79uxRVVWVdu7cqQULFmjEiBG69957TZYdFvyzQFwGAwAMlH\/2564bs5U+JMFwNWYZDUDl5eWaOnWqpk6dKklauXKlpk6dqp\/85CeKjY1VRUWF7rnnHk2cOFFLly7VxIkTtWfPHqWmpposOywU0QcEALgC7nMd+p+DJyVJS2baa9+v\/hhtHpk9e\/YlN\/V84403QlhNZPE3Qn94rEkdXT7F23ARKwDAwL2y\/7jOd\/h0fVZqYE05O+OvZoSakJEiV1K82jq69MnJ6FrrCAAQXJZlaWPP2j9LZo6Ww2Hf5mc\/AlCEiolxqKgnwXMZDABwKe9XntXn9S1KTojVwqmjTJcTFghAEYxGaADAQPhnf+65aZRSE+MNVxMeCEARbPqY7hmg8qrGS\/ZSAQDs63SzV1s\/rpVE8\/NXEYAiWOEol5xxMWpobdfRM62mywEAhKH\/2lejji5LU\/KGqnCUy3Q5YYMAFMGccbGakjdUEvuCAQAu5PNZgY1Pv8PsTy8EoAjnvx3+A\/qAAAB97DpyWscb25SWGKe7J+eYLiesEIAinL8Ruryq0XAlAIBws3Fv9+zP307LVVJCrOFqwgsBKMLdPHqoYhxS9dlzOuU5b7ocAECYONnUph1\/OSVJWjIz33A14YcAFOFSE+P1tew0SdwODwD40uYPquWzpFlj0zU+I8V0OWGHABQFpvv3BaMRGgAgqaPLp81lNZKY\/bkYAlAUCAQg+oAAAJL+79NTqm\/2akRKgv6fSVmmywlLBKAo4F8Q8dM6jzznOwxXAwAw7fc9zc\/fKspTQhx\/6vvDqESBjLRE5Q9PlmVJ+44xCwQAdlZ5plXvfn5GDod03wzW\/rkYAlCU8F8GK6cRGgBs7Q8fdM\/+zJ44UnnpyYarCV8EoCjhvwxWVskMEADY1fmOLv1XOc3PA0EAihL+GaADx5vk7ewyXA0AwITXP65V47kO5bgSdcf1GabLCWsEoChRMGKIRqQkqL3Tp4rjbtPlAAAM8K\/8fN+M0YqNcRiuJrwRgKKEw+FQUT63wwOAXf2lzqPyY42KjXFo8fQ80+WEPQJQFPHvC8aK0ABgP\/7Zn3k3ZCojLdFwNeGPABRF\/I3Q5VVn5fNZhqsBAIRKq7dTr+4\/IUn6ziyanweCABRFbshOU3JCrDznO\/VZfbPpcgAAIfKnAyfV4u1UwYghKh473HQ5EYEAFEXiYmN082j\/7fBcBgMAO7AsSxvfPyZJun\/GaMXQ\/DwgBKAow75gAGAvHx1369BJjxLiYvTNabmmy4kYBKAoE1gQseqsLIs+IACIdr\/f2z37c\/eN2Ro2JMFwNZGDABRlpo4eprgYh2rd53Wiqc10OQCAQeQ+16H\/+eikJGnJLPb9uhIEoCiTlBCrwlEuSdwODwDR7uUPj8vb6dP1WamBHlAMDAEoCvkvg33AvmAAELW+2vy8ZFa+HA6an68EASgKsTM8AES\/vUfP6ovTrUpOiNXCm3JMlxNxCEBRqKgnAB2pb1Fja7vhagAAg8E\/+7Nw6iilJsYbribyEICiUPqQBI3PSJEklR\/jMhgARJvTzV69cahOUvfaP7hyBKAo9eV6QFwGA4Bo85\/lNerosnRT3tDAjS+4MgSgKPVlIzQBCACiSZfP0h8+6N74lH2\/rh4BKEr5Z4A+PuFWW3uX4WoAAMHy9mendbyxTWmJcbp7crbpciIWAShK5Q5LUlZaojp9lvbX0AcEANHC3\/z8zWl5SoyPNVxN5DIagN5++20tWLBAOTk5cjgc+uMf\/9jrdcuytGbNGuXk5CgpKUmzZ8\/WoUOHzBQbYRwOh6YX+G+HJwABQDQ40dSmHX+pl8TKz9fKaABqbW3VlClTtH79+n5ff+qpp7Ru3TqtX79eZWVlysrK0ty5c9Xc3BziSiPTV\/cFAwBEvs0fVMtnScVjh2vcyBTT5US0OJNfPn\/+fM2fP7\/f1yzL0jPPPKPVq1dr0aJFkqQXXnhBmZmZ2rRpk77\/\/e+HstSI5O8D+vBYozq7fIqL5YonAESqji6fNpfVSGL2JxjC9i9iZWWl6urqNG\/evMAxp9Op22+\/Xbt3777oz3m9Xnk8nl4Pu7ouM1WpiXFqbe\/Sp7XMmgFAJHvzk1M63ezViBSn5t2QZbqciBe2AaiurnuBp8zMzF7HMzMzA6\/1p7S0VC6XK\/DIy8sb1DrDWUyMQ0X5PbfDcxkMACLa73uanxdPz1VCXNj++Y4YYT+CfTd3syzrkhu+rVq1Sm63O\/CoqakZ7BLD2peN0AQgAIhUR0+36L3PG+RwSN+ezuWvYDDaA3QpWVnd03t1dXXKzv5ynYP6+voLZoW+yul0yul0Dnp9keKrK0JfLjwCAMKTf+HDO67LUF56suFqokPYzgAVFBQoKytL27dvDxxrb2\/Xrl27VFJSYrCyyDI516WEuBidaWlXVcM50+UAAK7Q+Y4u\/de+45KkJTOZ\/QkWozNALS0t+vzzzwPPKysrdeDAAaWnp2v06NFasWKF1q5dqwkTJmjChAlau3atkpOTdf\/99xusOrI442J1U+5QfVB1VmWVZ1UwYojpkgAAV2BLRa2aznVo1NAkzb4uw3Q5UcNoACovL9cdd9wReL5y5UpJ0tKlS\/Uf\/\/Efevzxx9XW1qZHHnlEjY2NmjlzprZt26bU1FRTJUekojHDugNQ1Vl9a7p9m8IBIBJtfL\/78td9M\/IUG0MbQ7AYDUCzZ8+WZVkXfd3hcGjNmjVas2ZN6IqKQtML0qWdX7AgIgBEmE9rPdp3rFFxMQ59q4h\/wAZT2PYAIXhuHj1MDodU1XBO9c3nTZcDABgg\/75f8yZlKiMt0XA10YUAZAOupHhdn5UmiX3BACBStHg79eqHJyRJ35mZb7ia6EMAsgn\/vmAfVHIZDAAiwZ8OnFBre5fGjhii4nHDTZcTdQhANuFfD6j8GAEIAMKdZVn6\/d7u5uf7Z45mDbdBQACyCX8A+uSkR83nOwxXAwC4lAM1Tfq01qOEuBh9c1qu6XKiEgHIJrJcicpLT5LPkvZXN5kuBwBwCf7Zn7snZ2tocoLhaqITAchGvrotBgAgPDWda9f\/HjwpSVpC8\/OgIQDZiD8A0QgNAOHr5Q9PyNvp09ey03Tz6KGmy4laBCAb8QegAzVNau\/0Ga4GANCXZVmBtX+W0Pw8qAhANjJu5BClD0mQt9OnihNu0+UAAPrYc7RBR0+3akhCrBZOHWW6nKhGALIRh8Ohovzu9YDK6QMCgLDj3\/dr4dRRSnEa3a0q6hGAbGZGAY3QABCO6pvP642P6yTR\/BwKBCCbKQosiNgon+\/iG9ECAELrv8qPq9NnaeroobohJ810OVGPAGQzk3LSlBQfq6ZzHfr8dIvpcgAAkrp8ljb1XP5i36\/QIADZTHxsjKb23FbJ7fAAEB52fVavE01tciXF667J2abLsQUCkA0F9gWjDwgAwsLGnpWfvzktV4nxsYarsQcCkA192QjdaLgSAMDxxnPacbheUvfGpwgNApAN3ZQ3VLExDp1oatOJpjbT5QCArW3+oEaWJZWMG65xI1NMl2MbBCAbGuKMU2HPHQZcBgMAczq6fNpcViOJW99DjQBkU0XsCwYAxm3\/5JTOtHg1MtWpeZMyTZdjKywzaVPTx6TruXcrtfH96sDKowAAMxYX5Sk+ljmJUGK0bap43HBlpjlNlwEAtjc0OV5LZtH8HGrMANmUKyle7\/5\/c+Rp6zBdCgDYWkpinJxx3PoeagQgG4uPjdHwFGaBAAD2wyUwAABgOwQgAABgOwQgAABgOwQgAABgOwQgAABgOwQgAABgOwQgAABgOwQgAABgOwQgAABgOwQgAABgOwQgAABgO2EdgNasWSOHw9HrkZWVZbosAAAQ4cJ+M9RJkybpzTffDDyPjWXHXAAAcG3CPgDFxcUx6wMAAIIqrC+BSdKRI0eUk5OjgoICffvb39bRo0dNlwQAACJcWM8AzZw5U7\/73e80ceJEnTp1Sj\/\/+c9VUlKiQ4cOafjw4f3+jNfrldfrDTz3eDyhKhcAAEQIh2VZlukiBqq1tVXjxo3T448\/rpUrV\/b7njVr1uiJJ5644Ljb7VZaWtpglwgAAILA4\/HI5XIN2t\/vsL8E9lVDhgzRjTfeqCNHjlz0PatWrZLb7Q48ampqQlghAACIBGF9Cawvr9erTz\/9VLfddttF3+N0OuV0OkNYFQAAiDRhPQP02GOPadeuXaqsrNT777+vb37zm\/J4PFq6dKnp0gAAQAQL6xmg48eP67777tOZM2c0cuRIzZo1S3v37lV+fr7p0gAAQAQL6wC0efNm0yUAAIAoFNaXwAAAAAYDAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANgOAQgAANhORASgX\/3qVyooKFBiYqKmTZumd955x3RJAAAggoV9AHrppZe0YsUKrV69Wvv379dtt92m+fPnq7q62nRpAAAgQjksy7JMF3EpM2fO1M0336wNGzYEjn3ta1\/TwoULVVpaetmf93g8crlccrvdSktLG8xSAQBAkAz23++4oH9iELW3t2vfvn360Y9+1Ov4vHnztHv37n5\/xuv1yuv1Bp673W5J3QMJAAAig\/\/v9mDN04R1ADpz5oy6urqUmZnZ63hmZqbq6ur6\/ZnS0lI98cQTFxzPy8sblBoBAMDgaWhokMvlCvrnhnUA8nM4HL2eW5Z1wTG\/VatWaeXKlYHnTU1Nys\/PV3V19aAMoJ14PB7l5eWppqaGy4nXgHEMHsYyeBjL4GAcg8ftdmv06NFKT08flM8P6wA0YsQIxcbGXjDbU19ff8GskJ\/T6ZTT6bzguMvl4mQMkrS0NMYyCBjH4GEsg4exDA7GMXhiYgbnfq2wvgssISFB06ZN0\/bt23sd3759u0pKSgxVBQAAIl1YzwBJ0sqVK\/XAAw+oqKhIxcXF+vWvf63q6mo9\/PDDpksDAAARKuwD0OLFi9XQ0KCf\/exnqq2tVWFhobZs2aL8\/PwB\/bzT6dRPf\/rTfi+L4cowlsHBOAYPYxk8jGVwMI7BM9hjGfbrAAEAAARbWPcAAQAADAYCEAAAsB0CEAAAsB0CEAAAsJ2oDkC\/+tWvVFBQoMTERE2bNk3vvPOO6ZLC3po1a+RwOHo9srKyAq9blqU1a9YoJydHSUlJmj17tg4dOmSw4vDx9ttva8GCBcrJyZHD4dAf\/\/jHXq8PZOy8Xq8effRRjRgxQkOGDNHf\/M3f6Pjx4yH8Lcy73Dg++OCDF5yjs2bN6vUexrF7W6Dp06crNTVVGRkZWrhwoQ4fPtzrPZyTAzOQseS8HJgNGzZo8uTJgYUii4uL9frrrwdeD+U5GbUB6KWXXtKKFSu0evVq7d+\/X7fddpvmz5+v6upq06WFvUmTJqm2tjbwqKioCLz21FNPad26dVq\/fr3KysqUlZWluXPnqrm52WDF4aG1tVVTpkzR+vXr+319IGO3YsUKvfrqq9q8ebPeffddtbS06O6771ZXV1eofg3jLjeOknTnnXf2Oke3bNnS63XGUdq1a5eWLVumvXv3avv27ers7NS8efPU2toaeA\/n5MAMZCwlzsuByM3N1ZNPPqny8nKVl5drzpw5uueeewIhJ6TnpBWlZsyYYT388MO9jl1\/\/fXWj370I0MVRYaf\/vSn1pQpU\/p9zefzWVlZWdaTTz4ZOHb+\/HnL5XJZ\/\/7v\/x6iCiODJOvVV18NPB\/I2DU1NVnx8fHW5s2bA+85ceKEFRMTY23dujVktYeTvuNoWZa1dOlS65577rnozzCO\/auvr7ckWbt27bIsi3PyWvQdS8vivLwWw4YNs5599tmQn5NROQPU3t6uffv2ad68eb2Oz5s3T7t37zZUVeQ4cuSIcnJyVFBQoG9\/+9s6evSoJKmyslJ1dXW9xtXpdOr2229nXC9jIGO3b98+dXR09HpPTk6OCgsLGd8+du7cqYyMDE2cOFEPPfSQ6uvrA68xjv1zu92SFNhYknPy6vUdSz\/OyyvT1dWlzZs3q7W1VcXFxSE\/J6MyAJ05c0ZdXV0XbJiamZl5wcaq6G3mzJn63e9+pzfeeEO\/+c1vVFdXp5KSEjU0NATGjnG9cgMZu7q6OiUkJGjYsGEXfQ+k+fPna+PGjdqxY4eefvpplZWVac6cOfJ6vZIYx\/5YlqWVK1fq1ltvVWFhoSTOyavV31hKnJdXoqKiQikpKXI6nXr44Yf16quv6oYbbgj5ORn2W2FcC4fD0eu5ZVkXHENv8+fPD\/z3jTfeqOLiYo0bN04vvPBCoKGPcb16VzN2jG9vixcvDvx3YWGhioqKlJ+frz\/\/+c9atGjRRX\/OzuO4fPlyHTx4UO++++4Fr3FOXpmLjSXn5cBdd911OnDggJqamvTyyy9r6dKl2rVrV+D1UJ2TUTkDNGLECMXGxl6QBuvr6y9Ilri0IUOG6MYbb9SRI0cCd4MxrlduIGOXlZWl9vZ2NTY2XvQ9uFB2drby8\/N15MgRSYxjX48++qhee+01vfXWW8rNzQ0c55y8chcby\/5wXl5cQkKCxo8fr6KiIpWWlmrKlCn65S9\/GfJzMioDUEJCgqZNm6bt27f3Or59+3aVlJQYqioyeb1effrpp8rOzlZBQYGysrJ6jWt7e7t27drFuF7GQMZu2rRpio+P7\/We2tpaffzxx4zvJTQ0NKimpkbZ2dmSGEc\/y7K0fPlyvfLKK9qxY4cKCgp6vc45OXCXG8v+cF4OnGVZ8nq9oT8nr7JpO+xt3rzZio+Pt5577jnrk08+sVasWGENGTLEqqqqMl1aWPvhD39o7dy50zp69Ki1d+9e6+6777ZSU1MD4\/bkk09aLpfLeuWVV6yKigrrvvvus7Kzsy2Px2O4cvOam5ut\/fv3W\/v377ckWevWrbP2799vHTt2zLKsgY3dww8\/bOXm5lpvvvmm9eGHH1pz5syxpkyZYnV2dpr6tULuUuPY3Nxs\/fCHP7R2795tVVZWWm+99ZZVXFxsjRo1inHs4wc\/+IHlcrmsnTt3WrW1tYHHuXPnAu\/hnByYy40l5+XArVq1ynr77betyspK6+DBg9aPf\/xjKyYmxtq2bZtlWaE9J6M2AFmWZf3bv\/2blZ+fbyUkJFg333xzr1sW0b\/Fixdb2dnZVnx8vJWTk2MtWrTIOnToUOB1n89n\/fSnP7WysrIsp9Npff3rX7cqKioMVhw+3nrrLUvSBY+lS5daljWwsWtra7OWL19upaenW0lJSdbdd99tVVdXG\/htzLnUOJ47d86aN2+eNXLkSCs+Pt4aPXq0tXTp0gvGiHG0+h1DSdbzzz8feA\/n5MBcbiw5LwfuH\/7hHwJ\/l0eOHGl94xvfCIQfywrtOemwLMu6sjkjAACAyBaVPUAAAACXQgACAAC2QwACAAC2QwACAAC2QwACAAC2QwACAAC2QwACAAC2QwACAAC2QwACAAC2QwACAAC2QwACEFFOnz6trKwsrV27NnDs\/fffV0JCgrZt22awMgCRhL3AAEScLVu2aOHChdq9e7euv\/56TZ06VXfddZeeeeYZ06UBiBAEIAARadmyZXrzzTc1ffp0ffTRRyorK1NiYqLpsgBECAIQgIjU1tamwsJC1dTUqLy8XJMnTzZdEoAIQg8QgIh09OhRnTx5Uj6fT8eOHTNdDoAIwwwQgIjT3t6uGTNm6KabbtL111+vdevWqaKiQpmZmaZLAxAhCEAAIs4\/\/dM\/6b\/\/+7\/10UcfKSUlRXfccYdSU1P1v\/\/7v6ZLAxAhuAQGIKLs3LlTzzzzjF588UWlpaUpJiZGL774ot59911t2LDBdHkAIgQzQAAAwHaYAQIAALZDAAIAALZDAAIAALZDAAIAALZDAAIAALZDAAIAALZDAAIAALZDAAIAALZDAAIAALZDAAIAALZDAAIAALZDAAIAALbz\/wMREW7fVwuaSAAAAABJRU5ErkJggg==", "text\/plain": "<Figure size 640x480 with 1 Axes>"}, "metadata": {}, "output_type": "display_data"}]}}, "372d2a496a5f46259db10a571b9ffb16": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "3b2d03cd328c49529d82b802d05a9a90": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "3ca3ead3f99b45b2bf5a79d0f022dcfa": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": {"description_width": ""}}, "3dfd829e56824d288459d82647e0ac61": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "3f7daa758bd548edbe29ba88cd0b8388": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": {"_dom_classes": ["widget-interact"], "children": ["IPY_MODEL_99f37541ac7b4dbfac2f489c1a5b0353", "IPY_MODEL_53fc46cd75c548ca80cf284ac572e639"], "layout": "IPY_MODEL_d46db30322c046b3a3b40e07893e8e0f"}}, "409e5ad2c8d1498aa37ebe59663d605c": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "40b159f172e843e0be00be922ba726d0": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "40ddbc947f924670b1c89507cec96d03": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "40f923003f624e14ba2a6eeff1edb42c": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "41ceba8688ab4ce8b71fd02a6e2ab2c4": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "PlayModel", "state": {"description": "step", "layout": "IPY_MODEL_87d61c25a76c41e1a826e0e1bcdaf617", "max": 599, "style": "IPY_MODEL_e84b526ca1ae4e019432105a43b87ec1", "value": 19}}, "420a354128d1426c915435db89be0486": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": {"source": ["IPY_MODEL_b361054bfbfd4aa193975eb438f70d68", "value"], "target": ["IPY_MODEL_abc536027e9f46dca983b3512682b4b6", "value"]}}, "4252ab6bb32e4e3aadefa67e72c98374": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": {"description_width": ""}}, "43adcc6e3cae436381914fa8b1f71de2": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": {"_dom_classes": ["widget-interact"], "children": ["IPY_MODEL_ffd206a2fd774da69a72e07e90044435", "IPY_MODEL_af86ac9bb8014c268c8513ac6ee499e7"], "layout": "IPY_MODEL_7aac04d137c84a4d95a975fc42549096"}}, "47b1a57cdbeb4a11abc8e9166acedb90": {"model_module": "@jupyter-widgets\/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": {"layout": "IPY_MODEL_17a0e3715b704af5b5bb4230d0ea690b", "outputs": [{"data": {"image\/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG2CAYAAACXuTmvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy\/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAxiklEQVR4nO3de2zUdb7\/8df0Ni10OgWhnWmn9HQVdLVQXXAR4gXZQ3\/2rKzKnvzcdWMgJzG6gjmE3WMWyTlWs0uN+cnBE85yzl7iQY+kJmfF4++oCAYpa1j2V1iKXXQ57LFKgZYKtjNtaae3z++PMtOWtlDamfnOzPf5SCZxvnP5vvvJJLz8XB3GGCMAAAAbSbG6AAAAgFgjAAEAANshAAEAANshAAEAANshAAEAANshAAEAANshAAEAANshAAEAANshAAEAANshAAEAANuJmwBUVVUlh8Oh9evXh68ZY1RZWamCggJlZWVp2bJlOn78uHVFAgCApBAXAai2tla\/+MUvtGDBghHXX3zxRW3ZskXbtm1TbW2tPB6PVqxYofb2dosqBQAAycDyANTR0aEf\/OAH+uUvf6kZM2aErxtjtHXrVm3atEmrVq1SaWmpduzYoYsXL2rnzp0WVgwAABJdmtUFrF27Vt\/+9rf1l3\/5l\/rpT38avt7Q0KDm5maVl5eHrzmdTt1zzz06ePCgHn\/88TG\/LxgMKhgMhp8PDAzoq6++0nXXXSeHwxG9PwQAAESMMUbt7e0qKChQSkrk+2ssDUDV1dX6wx\/+oNra2lGvNTc3S5Ly8\/NHXM\/Pz9cXX3wx7ndWVVXpueeei2yhAADAEo2NjfL5fBH\/XssCUGNjo\/72b\/9We\/bsUWZm5rjvu7zXxhhzxZ6cjRs3asOGDeHnfr9fc+bMUWNjo3JycqZeOAAAiLpAIKCioiK5XK6ofL9lAejIkSNqaWnRwoULw9f6+\/t14MABbdu2TSdOnJA02BPk9XrD72lpaRnVKzSc0+mU0+kcdT0nJ4cABABAgonW9BXLJkF\/61vfUn19verq6sKPRYsW6Qc\/+IHq6ur0ta99TR6PR3v37g1\/pqenRzU1NVq6dKlVZQMAgCRgWQ+Qy+VSaWnpiGvTp0\/XddddF76+fv16bd68WXPnztXcuXO1efNmTZs2TY888ogVJQMAgCRh+SqwK3n66afV1dWlJ598Uq2trVq8eLH27NkTtfFAAABgDw5jjLG6iGgKBAJyu93y+\/3MAQIAIEFE+99vyzdCBAAAiDUCEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB3bBCB\/V6\/VJQAAgDhhmwB0tu2i1SUAAIA4YZsAdKat2+oSAABAnLBNAGpq67K6BAAAECdsE4DoAQIAACG2CUDMAQIAACH2CUB+eoAAAMAg+wSgVuYAAQCAQbYJQIHuPrV3sxcQAACwUQCSpDOsBAMAALJZADr9FQEIAADYLQC1shIMAADYLAAxBAYAACSbBaDTrAQDAAAiAAEAABuyVQBiCAwAAEg2C0BfdfaoM9hndRkAAMBitglArsxUSfQCAQAAGwWggtxpkqQzzAMCAMD2bBSAMiWxFxAAALBVAMqSJJ1mCAwAANuzTwByh3qACEAAANidfQLQpTlABCAAAGCbAFR4aQ4Qk6ABAIClAWj79u1asGCBcnJylJOToyVLlui9994Lv75mzRo5HI4RjzvuuGNS9wrNATrfEVR3b39E6gcAAIkpzcqb+3w+vfDCC7rhhhskSTt27NADDzygo0eP6pZbbpEk3XfffXrllVfCn8nIyJjUvdxZ6cp2pqkj2KfTrV26IS976n8AAABISJYGoJUrV454\/rOf\/Uzbt2\/XoUOHwgHI6XTK4\/FM+V4Oh0O+GVn6U3O7zrQRgAAAsLO4mQPU39+v6upqdXZ2asmSJeHr+\/fvV15enubNm6fHHntMLS0tV\/yeYDCoQCAw4hFSGFoKz15AAADYmuUBqL6+XtnZ2XI6nXriiSe0a9cu3XzzzZKkiooKvf7669q3b59eeukl1dbWavny5QoGg+N+X1VVldxud\/hRVFQUfs03IxSAmAgNAICdOYwxxsoCenp6dOrUKbW1tek3v\/mNfvWrX6mmpiYcgoZrampScXGxqqurtWrVqjG\/LxgMjghIgUBARUVF8vv9eqPuvH727qf6TlmB\/un7t0XtbwIAAFMTCATkdrvl9\/uVk5MT8e+3dA6QNDipOTQJetGiRaqtrdXLL7+sf\/3Xfx31Xq\/Xq+LiYp08eXLc73M6nXI6nWO+VjiDITAAABAHQ2CXM8aMO8R14cIFNTY2yuv1Tuq7GQIDAACSxT1AzzzzjCoqKlRUVKT29nZVV1dr\/\/792r17tzo6OlRZWanvfve78nq9+vzzz\/XMM89o1qxZeuihhyZ1P9+Mwd2gW9qDCvb1y5mWGsk\/BwAAJAhLA9C5c+f06KOPqqmpSW63WwsWLNDu3bu1YsUKdXV1qb6+Xq+++qra2trk9Xp177336o033pDL5ZrU\/WZMS1dWeqq6evt1tq1bJbOmR\/gvAgAAicDSAPTrX\/963NeysrL0\/vvvR\/R+ob2ATrZ06HTrRQIQAAA2FXdzgKItNA+IM8EAALAv2wWgQiZCAwBge7YLQKGJ0CyFBwDAvmwYgC4NgbXRAwQAgF3ZLgANnQdGAAIAwK5sF4BCQ2DNgW719A1YXA0AALCC7QLQrOwMOdNSZIzU7O+2uhwAAGAB2wUgh8PBmWAAANic7QKQNHwlGPOAAACwI5sGoEs9QKwEAwDAlmwZgIZWgjEEBgCAHdkyAPnYDRoAAFuzaQAanAPEeWAAANiTTQPQYA9Qc6Bbff3sBQQAgN3YMgDNznYqIzVF\/QNGTewFBACA7dgyAKWkDO0FxJlgAADYjy0DkMSZYAAA2JltA5CP3aABALAt2wcgVoIBAGA\/tg1AhewFBACAbdk2AIXPA2tjCAwAALuxcQAa7AFqautW\/4CxuBoAABBLtg1Aea5MpaU41DdgdC7AXkAAANiJbQNQaopDBSyFBwDAlmwbgKRhK8GYBwQAgK3YOgCFN0P8ih4gAADsxNYBKLwSjCEwAABsxeYBiPPAAACwI1sHoEKOwwAAwJZsHYBCPUBn27o1wF5AAADYhq0DkCcnU6kpDvX0D+jLjqDV5QAAgBixdQBKS02RJydTEsNgAADYia0DkDQ0DMZKMAAA7IMAxFJ4AABsx\/YBqJAeIAAAbMfSALR9+3YtWLBAOTk5ysnJ0ZIlS\/Tee++FXzfGqLKyUgUFBcrKytKyZct0\/PjxiNbgYyk8AAC2Y2kA8vl8euGFF3T48GEdPnxYy5cv1wMPPBAOOS+++KK2bNmibdu2qba2Vh6PRytWrFB7e3vkamAzRAAAbMfSALRy5Ur91V\/9lebNm6d58+bpZz\/7mbKzs3Xo0CEZY7R161Zt2rRJq1atUmlpqXbs2KGLFy9q586dEavBlzs4B+hMa5eMYS8gAADsIG7mAPX396u6ulqdnZ1asmSJGhoa1NzcrPLy8vB7nE6n7rnnHh08eDBi9\/W4M5XikIJ97AUEAIBdpFldQH19vZYsWaLu7m5lZ2dr165duvnmm8MhJz8\/f8T78\/Pz9cUXX4z7fcFgUMHgUJAJBAJXvH9G2uBeQGf93TrT2qU8V+YU\/hoAAJAILO8BuvHGG1VXV6dDhw7phz\/8oVavXq1PPvkk\/LrD4RjxfmPMqGvDVVVVye12hx9FRUVXrYGVYAAA2IvlASgjI0M33HCDFi1apKqqKpWVlenll1+Wx+ORJDU3N494f0tLy6heoeE2btwov98ffjQ2Nl61BvYCAgDAXiwPQJczxigYDKqkpEQej0d79+4Nv9bT06OamhotXbp03M87nc7wsvrQ42qGVoKxFB4AADuwdA7QM888o4qKChUVFam9vV3V1dXav3+\/du\/eLYfDofXr12vz5s2aO3eu5s6dq82bN2vatGl65JFHIlpHYS5DYAAA2ImlAejcuXN69NFH1dTUJLfbrQULFmj37t1asWKFJOnpp59WV1eXnnzySbW2tmrx4sXas2ePXC5XROtgCAwAAHtxmCTf\/CYQCMjtdsvv9487HPb5+U4t+z\/7lZWeqk+e\/19XnGQNAACibyL\/fk9F3M0BsoI3d3Dpe1dvv77q7LG4GgAAEG0EIEnOtFTl5zglMQwGAIAdEIAuCc0D4kwwAACSHwHokqGVYCyFBwAg2RGALvGxGzQAALZBALokPARGAAIAIOkRgC7hPDAAAOyDAHTJ0BDYRSX51kgAANgeAeiS0CTozp5++bt6La4GAABEEwHoksz0VM3KZi8gAADsgAA0zPBhMAAAkLwIQMMwERoAAHsgAA3DXkAAANgDAWiY0F5ABCAAAJIbAWgY36WVYJwHBgBAciMADcMkaAAA7IEANExoEnR7dx97AQEAkMQIQMNMy0jTzOkZkjgTDACAZEYAugzDYAAAJD8C0GVYCg8AQPIjAF2mkJVgAAAkPQLQZYb2AmIIDACAZEUAugxDYAAAJD8C0GVCS+EZAgMAIHkRgC4TmgPUdrFX7d3sBQQAQDIiAF3GlZmu3GnpkugFAgAgWRGAxhBeCcY8IAAAkhIBaAxMhAYAILkRgMbAUngAAJIbAWgMbIYIAEByIwCNgSEwAACSGwFoDENDYAQgAACSEQFoDKHNEL\/q7NHFnj6LqwEAAJFGABqDOytdrsw0SSyFBwAgGRGAxsEwGAAAyYsANI7QSrDTrAQDACDpWBqAqqqqdPvtt8vlcikvL08PPvigTpw4MeI9a9askcPhGPG44447ol7b0Eow9gICACDZWBqAampqtHbtWh06dEh79+5VX1+fysvL1dnZOeJ99913n5qamsKPd999N+q1sRQeAIDklWblzXfv3j3i+SuvvKK8vDwdOXJEd999d\/i60+mUx+OJaW2hAMQkaAAAYu\/tujNR\/f64mgPk9\/slSTNnzhxxff\/+\/crLy9O8efP02GOPqaWlZdzvCAaDCgQCIx6TwSRoAACs0dM3oGf\/7ydRvUfcBCBjjDZs2KA777xTpaWl4esVFRV6\/fXXtW\/fPr300kuqra3V8uXLFQwGx\/yeqqoqud3u8KOoqGhS9YR6gM53BNXd2z+p7wAAANfuT80B9fYNRPUelg6BDbdu3Tp9\/PHH+uijj0Zcf\/jhh8P\/XVpaqkWLFqm4uFjvvPOOVq1aNep7Nm7cqA0bNoSfBwKBSYUgd1a6pmekqrOnX2faunT97Oxr\/g4AAHDt6hrbon6PuAhATz31lN5++20dOHBAPp\/viu\/1er0qLi7WyZMnx3zd6XTK6XROuSaHwyHfjGk6ca5dp1sJQAAAxErdqbao38PSITBjjNatW6c333xT+\/btU0lJyVU\/c+HCBTU2Nsrr9Ua9PpbCAwAQe3Wn26J+D0sD0Nq1a\/Xv\/\/7v2rlzp1wul5qbm9Xc3KyursGJxx0dHfrxj3+s3\/3ud\/r888+1f\/9+rVy5UrNmzdJDDz0U9foKWQkGAEBM+S\/26rMvO6\/+ximyNABt375dfr9fy5Ytk9frDT\/eeOMNSVJqaqrq6+v1wAMPaN68eVq9erXmzZun3\/3ud3K5XFGvj72AAACIrY\/PtEmSimZmRfU+ls4BMsZc8fWsrCy9\/\/77MapmtKGl8AyBAQAQC6H5P\/ML3DoYxfvEzTL4eBQ6D+wM54EBABATxy7N\/5nvc0f1PgSgKwgNgZ0LBBXsYy8gAACiyRgTXgJfWkgAsszM6RnKSk+VJJ1t67a4GgAAktuZti6d7+hRWopDX\/fmRPVeBKArcDgcrAQDACBGQr0\/X\/fmKPNSB0S0EICugr2AAACIjWOXAtCtRblRvxcB6CpYCg8AQGyEeoDKCEDWK8wdXArPSjAAAKKnr39A9Wf8kugBigsMgQEAEH0nzrWru3dArsw0fW3W9KjfjwB0FQyBAQAQfccaB3t\/yny5SklxRP1+BKCrKAzvBdStnr4Bi6sBACA51TW2SpLKiqK7\/08IAegqZmc75UxL0YCRmv3sBQQAQDSEeoBuLZoRk\/sRgK5i+F5AzAMCACDyOoJ9+u+Wdkn0AMWV0Jlgp1kJBgBAxH18uk3GDP57m+fKjMk9CUATMHQqPAEIAIBIGxr+yo3ZPQlAE8BSeAAAoifWE6AlAtCE+DgPDACAqIn1BGiJADQh7AUEAEB0NPu71RzoVmqKQ6WF0T0BfjgC0ASE5gA1B7rV189eQAAAREro\/K95+S5Ny0iL2X0JQBMwO9upjNQU9Q8YNQfYCwgAgEipC58AH7v5PxIBaEJSUhwqyB1clscwGAAAkXMsHIByY3pfAtAEsRQeAIDI6h8w+vh0mySpjAAUn0KbIbISDACAyPifLzvU2dOvaRmpmpvnium9CUATxF5AAABEVt2pNknS\/EK3UmNwAvxwBKAJ8s1kKTwAAJFUd2n469Y5uTG\/NwFoggpzB+cAneE8MAAAIiLUA3SrLzfm9yYATVBoCOxsW5f6B4zF1QAAkNi6evp14tzgCfD0AMWx\/JxMpaU41DdgdI69gAAAmJI\/nvWrf8AoP8cprzsr5vcnAE1QaopD3kt7ATEMBgDA1ISGv8osGP6SCEDXxJcb2guIlWAAAEyFlROgJQLQNQkvhf+KHiAAAKbCygnQEgHomhReCkAMgQEAMHlftgd1pq1LDoc03xfbM8BCCEDXgOMwAACYutD5XzfMzpYrM92SGghA14DdoAEAmLpjofk\/MT7\/azgC0DUInQd2tq1bA+wFBADApNRd6gGK9QGowxGAroHXnanUFId6+gf0ZUfQ6nIAAEg4AwMmPARm2x6gqqoq3X777XK5XMrLy9ODDz6oEydOjHiPMUaVlZUqKChQVlaWli1bpuPHj1tSb1pqijw5g3sBMQwGAMC1a7jQqUB3n5xpKbrRE9sT4IezNADV1NRo7dq1OnTokPbu3au+vj6Vl5ers7Mz\/J4XX3xRW7Zs0bZt21RbWyuPx6MVK1aovb3dkpoLZ3AoKgAAkxXq\/Zlf6FZ6qnUxJM2yO0vavXv3iOevvPKK8vLydOTIEd19990yxmjr1q3atGmTVq1aJUnasWOH8vPztXPnTj3++OMxr9k3I0v\/r4EABADAZMTD\/B9pkgHo+eefv+Lr\/\/AP\/zCpYvx+vyRp5syZkqSGhgY1NzervLw8\/B6n06l77rlHBw8eHDMABYNBBYND83MCgcCkahkPS+EBAJi8eJj\/I00yAO3atWvE897eXjU0NCgtLU3XX3\/9pAKQMUYbNmzQnXfeqdLSUklSc3OzJCk\/P3\/Ee\/Pz8\/XFF1+M+T1VVVV67rnnrvn+E+XLZTNEAAAmo7u3X580DXZMJGQAOnr06KhrgUBAa9as0UMPPTSpQtatW6ePP\/5YH3300ajXHA7HiOfGmFHXQjZu3KgNGzaMqKuoqGhSNY2FvYAAAJicT5sC6u03um56RvjfU6tEbPZRTk6Onn\/+ef393\/\/9NX\/2qaee0ttvv60PP\/xQPp8vfN3j8Uga6gkKaWlpGdUrFOJ0OpWTkzPiEUmhIbAzrV0yhr2AAACYqLphw1\/jdWTESkSnX7e1tYXn8UyEMUbr1q3Tm2++qX379qmkpGTE6yUlJfJ4PNq7d2\/4Wk9Pj2pqarR06dKI1X0tPO5MORxSsG9A5zt6LKkBAIBEdCxOJkBLkxwC+6d\/+qcRz40xampq0muvvab77rtvwt+zdu1a7dy5U\/\/5n\/8pl8sV7ulxu93KysqSw+HQ+vXrtXnzZs2dO1dz587V5s2bNW3aND3yyCOTKX3KMtIG9wJq8nfrdOtFzXY5LakDAIBEUxcnE6ClSQagf\/zHfxzxPCUlRbNnz9bq1au1cePGCX\/P9u3bJUnLli0bcf2VV17RmjVrJElPP\/20urq69OSTT6q1tVWLFy\/Wnj175HJZt3mSb0bWpQDUpdvmzLCsDgAAEkVrZ48+vzA4f7bMl2ttMZpkAGpoaIjIzScyh8bhcKiyslKVlZURuWckFOZmqVatrAQDAGCCQgegfm3WdLmnWXMC\/HCcBTYJQ3sBsRIMAICJiJcNEEMIQJPAcRgAAFybeNkAMYQANAmhvQvOEIAAALgqYww9QMlg+HEY7AUEAMCVNX7VpdaLvcpITdHXvdYtYhqOADQJXnemJKmrt19fdbIXEAAAV3K0sVWS9PWCHDnTUi2uZhABaBIy01OVd2n\/H1aCAQBwZccaBzdJvi1Ohr8kAtCk+ZgIDQDAhNRd6gEqK3JbXMkQAtAkFbIUHgCAq+rtH9Afz4ZOgI+fzYMJQJPESjAAAK7uT03t6ukbkDsrXX9x3TSrywkjAE0SQ2AAAFxd3aUdoMvi4AT44QhAk1SYSwACAOBq6k61SYqfDRBDCECTFNoL6EwbewEBADCe0Blgt8bRBGiJADRpoSGwjmCf\/F29FlcDAED8CXT36n++7JAUHyfAD0cAmqTM9FTNys6QxDAYAABjqT\/tlzFS0cwsXZfttLqcEQhAU1A47EgMAAAwUl34ANT4Wf4eQgCagqGVYOwFBADA5Y5emgBd5ouv+T8SAWhKfKwEAwBgTMNPgL9tTq6ltYyFADQF4c0QOQ8MAIARzvq7db4jqLQUh24poAcoqfiYAwQAwJiOXer9ucnrUmZ6fJwAPxwBaAoKmQMEAMCYQsNf8bb8PYQANAWh3aDbu9kLCACA4YZWgOVaWsd4CEBTMN2ZppnTB\/cC4lBUAAAG9fUPqP60XxIBKGkNnQnGMBgAAJJ0sqVDXb39ynam6frZ2VaXMyYC0BSxEgwAgJFCw18LfG6lpMTPCfDDEYCmaGgzRAIQAADS0AqweB3+kghAU8YQGAAAI8X7BGiJADRlob2AGAIDAEDqDPbpv8+1SyIAJTXfTIbAAAAIqT\/j14CRCtyZysvJtLqccRGApig0BNZ2sVcdwT6LqwEAwFqh+T9lcdz7IxGApsyVmS53Vrok9gICACAR5v9IBKCI8HEkBgAAkoYdgUEASn5DK8HoAQIA2Ne5QLea\/N1KcUjzC+PvBPjhCEARwEowAACGen\/m5bs03ZlmbTFXQQCKAIbAAABIjA0QQwhAEVDIbtAAACTM\/B\/J4gB04MABrVy5UgUFBXI4HHrrrbdGvL5mzRo5HI4RjzvuuMOaYq8gfB4YAQgAYFMDA0Yfx\/kJ8MNZGoA6OztVVlambdu2jfue++67T01NTeHHu+++G8MKJyY0B+hCZ48u9rAXEADAfv7nyw51BPuUlZ6quXnxeQL8cJbOUKqoqFBFRcUV3+N0OuXxeGJU0eS4s9LlcqapPdinM61dmpvvsrokAABiKjT8Nd\/nVlpq\/M+wifsK9+\/fr7y8PM2bN0+PPfaYWlparvj+YDCoQCAw4hEL4XlArAQDANhQomyAGBLXAaiiokKvv\/669u3bp5deekm1tbVavny5gsHguJ+pqqqS2+0OP4qKimJSa2gYjInQAAA7Ona6TVLiBKC4XqT\/8MMPh\/+7tLRUixYtUnFxsd555x2tWrVqzM9s3LhRGzZsCD8PBAIxCUEshQcA2FV3b7\/+1BT\/J8APF9cB6HJer1fFxcU6efLkuO9xOp1yOp0xrGoQK8EAAHZ1\/KxffQNGs11Oed3xewL8cHE9BHa5CxcuqLGxUV6v1+pSRvGxFxAAwKaOnmqTNNj743A4rC1mgiztAero6NCf\/\/zn8POGhgbV1dVp5syZmjlzpiorK\/Xd735XXq9Xn3\/+uZ555hnNmjVLDz30kIVVj60wlzlAAAB7OpZA+\/+EWBqADh8+rHvvvTf8PDR3Z\/Xq1dq+fbvq6+v16quvqq2tTV6vV\/fee6\/eeOMNuVzxt8w81AN0viOo7t5+ZaanWlwRAACxUdfYKokANGHLli2TMWbc199\/\/\/0YVjM1udPSNT0jVZ09\/TrT1qXrZ8f\/JlAAAEzVhY6gGr\/qksMxuAdQokioOUDxzOFwcCYYAMB2Qsvfr5+drZzMdGuLuQYEoAgK7QXESjAAgF3UXZoAXebLtbSOa0UAiiD2AgIA2E1daAL0nFxrC7lGBKAIKsxlCAwAYB\/GGB0LHYFBD5B9hYfAOA8MAGADn1+4KH9XrzLSUnSTN\/5WaF8JASiCGAIDANhJaPl7aUGO0hPgBPjhEqvaOBdaBXYuEFSwr9\/iagAAiK5jjaENEGdYXMm1IwBF0HXTM5SZPtikTW3dFlcDAEB0Hb00\/6esKHH2\/wkhAEWQw+EIzwNiIjQAIJkF+\/r16dmAJOk2eoAwtBKMeUAAgOT1aVO7evoHNHN6hopmZlldzjUjAEVYaCI0K8EAAMkstPy9zOdOmBPghyMARRhDYAAAO6gL7f+TgMNfEgEo4gpZCg8AsIFjCTwBWiIARVx4CIweIABAkvJf7NVn5zslSbcW5VpbzCQRgCIsFICaA93q6RuwuBoAACIvdAL8X1w3TbnTMqwtZpIIQBE2a7pTGWkpGjBSs5+9gAAAyWdo\/k+upXVMBQEowlJSHPKFlsK3MQ8IAJB8hub\/5Fpax1QQgKJgaCI084AAAMnFGEMPEMbmIwABAJLU6dYuXejsUXqqQ1\/35lhdzqQRgKIgtBcQK8EAAMkm1PtzszdHmemp1hYzBQSgKPCxFxAAIEnVJcH8H4kAFBVD54HRAwQASC7HkmD+j0QAiorQEFhzoFt9\/ewFBABIDr39A6o\/45dEDxDGkOdyKj3Vof4Bo+YAewEBAJLDieZ2BfsGlJOZppLrpltdzpQQgKIgJcWhAobBAABJZvj8n5SUxDsBfjgCUJRwJhgAINkky\/wfiQAUNb7cwXlA9AABAJJFMmyAGEIAipJClsIDAJJIe3ev\/vxlh6TEnwAtEYCiJjwE1kYPEAAg8dWf9suYwX\/fZmU7rS5nyghAURJaCs8QGAAgGdSdbpOUHL0\/EgEoakJDYGfbutQ\/YCyuBgCAqak71SZJuo0AhCvJdzmVluJQ34BRSzt7AQEAEtsxeoAwEWmpKfLmZkpiGAwAkNia\/F06FwgqNcWh0gK31eVEBAEoiobOBGMlGAAgcYWGv27MdykrI3FPgB+OABRFoYnQbIYIAEhkoQnQt87JtbSOSLI0AB04cEArV65UQUGBHA6H3nrrrRGvG2NUWVmpgoICZWVladmyZTp+\/Lg1xU6CbwbHYQAAEl+oB+hWX66ldUSSpQGos7NTZWVl2rZt25ivv\/jii9qyZYu2bdum2tpaeTwerVixQu3t7TGudHIKOQ8MAJDg+gdM+AT4ZOoBSrPy5hUVFaqoqBjzNWOMtm7dqk2bNmnVqlWSpB07dig\/P187d+7U448\/HstSJyU8BMZmiACABHWypV0Xe\/o1PSNV18\/OtrqciInbOUANDQ1qbm5WeXl5+JrT6dQ999yjgwcPjvu5YDCoQCAw4mGV4QeiDrAXEAAgAYUOQF3gy1Vqgp8AP1zcBqDm5mZJUn5+\/ojr+fn54dfGUlVVJbfbHX4UFRVFtc4r8bgzleKQevoH9GVH0LI6AACYrPABqEk0\/CXFcQAKcThGpk1jzKhrw23cuFF+vz\/8aGxsjHaJ40pPTZHXzTwgAEDiqmscnP9TlkQToKU4DkAej0eSRvX2tLS0jOoVGs7pdConJ2fEw0rsBQQASFQXe\/p0onlwKslt9ADFRklJiTwej\/bu3Ru+1tPTo5qaGi1dutTCyq4NS+EBAInqj2cCGjCSJydT+TmZVpcTUZauAuvo6NCf\/\/zn8POGhgbV1dVp5syZmjNnjtavX6\/Nmzdr7ty5mjt3rjZv3qxp06bpkUcesbDqaxOeCM1KMABAgqlrbJUk3Zok538NZ2kAOnz4sO69997w8w0bNkiSVq9erX\/7t3\/T008\/ra6uLj355JNqbW3V4sWLtWfPHrlcLqtKvmaF9AABABLUsdD8HwJQZC1btkzGjL883OFwqLKyUpWVlbErKsJCewExBwgAkGjCK8CSMADF7RygZDF8L6ArhT0AAOJJS3u3zrR1yeGQ5vuS4wT44QhAUeZ1Z8nhkIJ9Azrf0WN1OQAATEho+GtenkvZTksHjKKCABRlGWkpyncNzpxnGAwAkChCO0CXFSVf749EAIoJVoIBABLN0PyfGdYWEiUEoBhgJRgAIJEMDBh6gDB1Q5shMgQGAIh\/n53vVHuwT5npKboxP3G2nrkWBKAYCC2FP0MPEAAgAYSGv+YXupWWmpxRITn\/qjgzdB4YAQgAEP+OJfH+PyEEoBgYfh4YewEBAOJdsk+AlghAMVFwqQeoq7dfrRd7La4GAIDxdff269OmwRPgk3UCtEQAionM9FTNdjklMREaABDfjp8NqG\/AaFa2MzyFIxkRgGLEx1J4AEACGJr\/45bD4bC2mCgiAMUIK8EAAIkgmQ9AHY4AFCNDK8EYAgMAxK9jp9skSWUEIEQCQ2AAgHj3VWePvrgw+D\/qC3y51hYTZQSgGOE8MABAvAv1\/nxt9nS5s9KtLSbKCEAxwl5AAIB4V3eqTVLyz\/+RCEAxU5g7OAm6I9gnfxd7AQEA4k+oB4gAhIjJykjVrOwMScwDAgDEH2OMLY7ACCEAxRBnggEA4tWpry6q9WKvMtJSdJMnx+pyoi7N6gLsxDdjmo6d9uuJfz9idSkAAIzploIcZaQlf\/9I8v+FceSeG2criTfVBAAkgfsXFFhdQkzQAxRD\/3tRkSpKPerpG7C6FAAARklPS1FOZnIvfw8hAMWYyyY\/LAAA4hlDYAAAwHYIQAAAwHYIQAAAwHYIQAAAwHYIQAAAwHYIQAAAwHYIQAAAwHYIQAAAwHYIQAAAwHYIQAAAwHYIQAAAwHbiOgBVVlbK4XCMeHg8HqvLAgAACS7uD0O95ZZb9MEHH4Sfp6amWlgNAABIBnEfgNLS0uj1AQAAERXXQ2CSdPLkSRUUFKikpETf+9739Nlnn1ldEgAASHBx3QO0ePFivfrqq5o3b57OnTunn\/70p1q6dKmOHz+u6667bszPBINBBYPB8PNAIBCrcgEAQIJwGGOM1UVMVGdnp66\/\/no9\/fTT2rBhw5jvqays1HPPPTfqut\/vV05OTrRLBAAAERAIBOR2u6P273fcD4ENN336dM2fP18nT54c9z0bN26U3+8PPxobG2NYIQAASARxPQR2uWAwqE8\/\/VR33XXXuO9xOp1yOp0xrAoAACSauO4B+vGPf6yamho1NDTo97\/\/vf76r\/9agUBAq1evtro0AACQwOK6B+j06dP6\/ve\/r\/Pnz2v27Nm64447dOjQIRUXF1tdGgAASGBxHYCqq6utLgEAACShuB4CAwAAiAYCEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsJ2ECEA\/\/\/nPVVJSoszMTC1cuFC\/\/e1vrS4JAAAksLgPQG+88YbWr1+vTZs26ejRo7rrrrtUUVGhU6dOWV0aAABIUA5jjLG6iCtZvHixvvGNb2j79u3ha1\/\/+tf14IMPqqqq6qqfDwQCcrvd8vv9ysnJiWapAAAgQqL973daxL8xgnp6enTkyBH95Cc\/GXG9vLxcBw8eHPMzwWBQwWAw\/Nzv90sabEgAAJAYQv9uR6ufJq4D0Pnz59Xf36\/8\/PwR1\/Pz89Xc3DzmZ6qqqvTcc8+Nul5UVBSVGgEAQPRcuHBBbrc74t8b1wEoxOFwjHhujBl1LWTjxo3asGFD+HlbW5uKi4t16tSpqDSgnQQCARUVFamxsZHhxCmgHSOHtowc2jIyaMfI8fv9mjNnjmbOnBmV74\/rADRr1iylpqaO6u1paWkZ1SsU4nQ65XQ6R113u938GCMkJyeHtowA2jFyaMvIoS0jg3aMnJSU6KzXiutVYBkZGVq4cKH27t074vrevXu1dOlSi6oCAACJLq57gCRpw4YNevTRR7Vo0SItWbJEv\/jFL3Tq1Ck98cQTVpcGAAASVNwHoIcfflgXLlzQ888\/r6amJpWWlurdd99VcXHxhD7vdDr17LPPjjkshmtDW0YG7Rg5tGXk0JaRQTtGTrTbMu73AQIAAIi0uJ4DBAAAEA0EIAAAYDsEIAAAYDsEIAAAYDtJHYB+\/vOfq6SkRJmZmVq4cKF++9vfWl1S3KusrJTD4Rjx8Hg84deNMaqsrFRBQYGysrK0bNkyHT9+3MKK48eBAwe0cuVKFRQUyOFw6K233hrx+kTaLhgM6qmnntKsWbM0ffp0fec739Hp06dj+FdY72rtuGbNmlG\/0TvuuGPEe2jHwWOBbr\/9drlcLuXl5enBBx\/UiRMnRryH3+TETKQt+V1OzPbt27VgwYLwRpFLlizRe++9F349lr\/JpA1Ab7zxhtavX69Nmzbp6NGjuuuuu1RRUaFTp05ZXVrcu+WWW9TU1BR+1NfXh1978cUXtWXLFm3btk21tbXyeDxasWKF2tvbLaw4PnR2dqqsrEzbtm0b8\/WJtN369eu1a9cuVVdX66OPPlJHR4fuv\/9+9ff3x+rPsNzV2lGS7rvvvhG\/0XfffXfE67SjVFNTo7Vr1+rQoUPau3ev+vr6VF5ers7OzvB7+E1OzETaUuJ3ORE+n08vvPCCDh8+rMOHD2v58uV64IEHwiEnpr9Jk6S++c1vmieeeGLEtZtuusn85Cc\/saiixPDss8+asrKyMV8bGBgwHo\/HvPDCC+Fr3d3dxu12m3\/5l3+JUYWJQZLZtWtX+PlE2q6trc2kp6eb6urq8HvOnDljUlJSzO7du2NWezy5vB2NMWb16tXmgQceGPcztOPYWlpajCRTU1NjjOE3ORWXt6Ux\/C6nYsaMGeZXv\/pVzH+TSdkD1NPToyNHjqi8vHzE9fLych08eNCiqhLHyZMnVVBQoJKSEn3ve9\/TZ599JklqaGhQc3PziHZ1Op265557aNermEjbHTlyRL29vSPeU1BQoNLSUtr3Mvv371deXp7mzZunxx57TC0tLeHXaMex+f1+SQofLMlvcvIub8sQfpfXpr+\/X9XV1ers7NSSJUti\/ptMygB0\/vx59ff3jzowNT8\/f9TBqhhp8eLFevXVV\/X+++\/rl7\/8pZqbm7V06VJduHAh3Ha067WbSNs1NzcrIyNDM2bMGPc9kCoqKvT6669r3759eumll1RbW6vly5crGAxKoh3HYozRhg0bdOedd6q0tFQSv8nJGqstJX6X16K+vl7Z2dlyOp164okntGvXLt18880x\/03G\/VEYU+FwOEY8N8aMuoaRKioqwv89f\/58LVmyRNdff7127NgRntBHu07eZNqO9h3p4YcfDv93aWmpFi1apOLiYr3zzjtatWrVuJ+zczuuW7dOH3\/8sT766KNRr\/GbvDbjtSW\/y4m78cYbVVdXp7a2Nv3mN7\/R6tWrVVNTE349Vr\/JpOwBmjVrllJTU0elwZaWllHJElc2ffp0zZ8\/XydPngyvBqNdr91E2s7j8ainp0etra3jvgejeb1eFRcX6+TJk5Jox8s99dRTevvtt\/Xhhx\/K5\/OFr\/ObvHbjteVY+F2OLyMjQzfccIMWLVqkqqoqlZWV6eWXX475bzIpA1BGRoYWLlyovXv3jri+d+9eLV261KKqElMwGNSnn34qr9erkpISeTyeEe3a09Ojmpoa2vUqJtJ2CxcuVHp6+oj3NDU16Y9\/\/CPtewUXLlxQY2OjvF6vJNoxxBijdevW6c0339S+fftUUlIy4nV+kxN3tbYcC7\/LiTPGKBgMxv43OclJ23GvurrapKenm1\/\/+tfmk08+MevXrzfTp083n3\/+udWlxbUf\/ehHZv\/+\/eazzz4zhw4dMvfff79xuVzhdnvhhReM2+02b775pqmvrzff\/\/73jdfrNYFAwOLKrdfe3m6OHj1qjh49aiSZLVu2mKNHj5ovvvjCGDOxtnviiSeMz+czH3zwgfnDH\/5gli9fbsrKykxfX59Vf1bMXakd29vbzY9+9CNz8OBB09DQYD788EOzZMkSU1hYSDte5oc\/\/KFxu91m\/\/79pqmpKfy4ePFi+D38Jifmam3J73LiNm7caA4cOGAaGhrMxx9\/bJ555hmTkpJi9uzZY4yJ7W8yaQOQMcb88z\/\/sykuLjYZGRnmG9\/4xoglixjbww8\/bLxer0lPTzcFBQVm1apV5vjx4+HXBwYGzLPPPms8Ho9xOp3m7rvvNvX19RZWHD8+\/PBDI2nUY\/Xq1caYibVdV1eXWbdunZk5c6bJysoy999\/vzl16pQFf411rtSOFy9eNOXl5Wb27NkmPT3dzJkzx6xevXpUG9GOZsw2lGReeeWV8Hv4TU7M1dqS3+XE\/c3f\/E343+XZs2ebb33rW+HwY0xsf5MOY4y5tj4jAACAxJaUc4AAAACuhAAEAABshwAEAABshwAEAABshwAEAABshwAEAABshwAEAABshwAEAABshwAEAABshwAEAABshwAEIKF8+eWX8ng82rx5c\/ja73\/\/e2VkZGjPnj0WVgYgkXAWGICE8+677+rBBx\/UwYMHddNNN+m2227Tt7\/9bW3dutXq0gAkCAIQgIS0du1affDBB7r99tt17Ngx1dbWKjMz0+qyACQIAhCAhNTV1aXS0lI1Njbq8OHDWrBggdUlAUggzAECkJA+++wznT17VgMDA\/riiy+sLgdAgqEHCEDC6enp0Te\/+U3deuutuummm7RlyxbV19crPz\/f6tIAJAgCEICE83d\/93f6j\/\/4Dx07dkzZ2dm699575XK59F\/\/9V9WlwYgQTAEBiCh7N+\/X1u3btVrr72mnJwcpaSk6LXXXtNHH32k7du3W10egARBDxAAALAdeoAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDt\/H+Rca6BQhfqwwAAAABJRU5ErkJggg==", "text\/plain": "<Figure size 640x480 with 1 Axes>"}, "metadata": {}, "output_type": "display_data"}]}}, "4dcc29bcdeb94273acb042225680f938": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "IntSliderModel", "state": {"behavior": "drag-tap", "layout": "IPY_MODEL_14edd910ef6d411ebd1f6a033170c065", "max": 149, "style": "IPY_MODEL_a7c8a0264f214268bfafc38c4c68055d", "value": 149}}, "4ed234d89eda4e43ac8997df827fca2b": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "4f582ece1f6c4bffb37cc399e7ef4d24": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": {"source": ["IPY_MODEL_ebe4490fa75a4192ba04152508adf1b4", "value"], "target": ["IPY_MODEL_b7b5d8c7976e490db14a6f301a8d5fca", "value"]}}, "50615551594a42e7a11ed3bdcdb1d54d": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "51133886767c414982d9467cbffad013": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": {"_dom_classes": ["widget-interact"], "children": ["IPY_MODEL_a6e490f9a95046848e772f941811ea6e", "IPY_MODEL_8d43b8903d1c4542ac1d493441e99717"], "layout": "IPY_MODEL_66863e16ccde42d696e20af577f2f832"}}, "5167c4cc034847b4b27e66350ad543ed": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": {"source": ["IPY_MODEL_68fb9a92340e434d85fbcc8de67c1970", "value"], "target": ["IPY_MODEL_b0c6e5b072744bb8aad4aa1c343ebe1e", "value"]}}, "517f04b914134b6ba5c09a4caa017bdc": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "51e8446de9bf4b1492c6377090f082a9": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "PlayModel", "state": {"description": "step", "layout": "IPY_MODEL_40f923003f624e14ba2a6eeff1edb42c", "max": 199, "style": "IPY_MODEL_961bbf4dea01495c90b3a8be804ceea6", "value": 199}}, "524aceb8e5864ec0b0558674c565b80e": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": {"_dom_classes": ["widget-interact"], "children": ["IPY_MODEL_41ceba8688ab4ce8b71fd02a6e2ab2c4", "IPY_MODEL_894a4ad9cfb04c80bd06a8491a9b3c14"], "layout": "IPY_MODEL_e043ddd08fa044f0805e72d08d64fb52"}}, "53fc46cd75c548ca80cf284ac572e639": {"model_module": "@jupyter-widgets\/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": {"layout": "IPY_MODEL_fe5db7fffd844d8983fe53f0eaa44849", "outputs": [{"data": {"image\/png": "iVBORw0KGgoAAAANSUhEUgAAAkkAAADqCAYAAAC2l9FdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy\/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABpZElEQVR4nO29fbAcV3nn\/z2nu2f0Yuli83KvFL+gDXIcbHC8hnhtSMxLLOJgYkJVIDhFTN7KrGwvQmxsHHYXiyIScmqFt9Zg4iQVe9mwphIwSyWwkVLBcrzaLDYYcEzWYRfFdojvTwSErixLM9N9zu+P06f79Olz+mVm7szcq+dDGc10n+npO3em53O\/z9OnmZRSgiAIgiAIgijAp70DBEEQBEEQswhJEkEQBEEQhAOSJIIgCIIgCAckSQRBEARBEA5IkgiCIAiCIByQJBEEQRAEQTggSSIIgiAIgnBAkkQQBEEQBOGAJIkgCIIgCMIBSRJBEARBEISDqUrSQw89hLe85S3YvHkzGGP4\/Oc\/X1gvpcTtt9+OzZs3Y+3atXjd616HJ554ojCm1+vh5ptvxote9CKsX78eP\/\/zP49\/\/Md\/nOBPQRAEQRDEamSqknTixAlcfPHFuOuuu5zr77jjDuzbtw933XUXHnnkESwsLOCqq67C8ePHszE7duzAAw88gPvvvx8PP\/wwnnvuOVxzzTVIkmRSPwZBEARBEKsQNisXuGWM4YEHHsBb3\/pWACpF2rx5M3bs2IFbb70VgEqN5ufnsXfvXtxwww04duwYXvziF+NTn\/oU3vGOdwAA\/umf\/gnnnHMOvvjFL+JNb3rTtH4cgiAIgiBWOOG0d8DH4cOHsbi4iG3btmXLut0urrzyShw6dAg33HADvvrVr2IwGBTGbN68GRdddBEOHTrklaRer4der5fdF0LgBz\/4AV74wheCMbZ8PxRBEARBEGNDSonjx49j8+bN4Hz8xbGZlaTFxUUAwPz8fGH5\/Pw8nnrqqWxMp9PBmWeeWRqjH+9iz5492LVr15j3mCAIgiCIafDMM8\/g7LPPHvt2Z1aSNHayI6WsTXvqxtx2223YuXNndv\/YsWM499xz8Q+P\/wHm4h7Yc88BR48BS88DSychfngSYqmP5JhA\/xhD70SE55\/v4LleB8\/1IywNIjyXhPhhn2MggUQwDCQwEOl\/kmEgJGIBxAIYSCAWUq1LJAZCYgCBgRCIIZBIAQGJBAkEVDU0YQkSJJAQiFkMAYEEA0hIxGwAIQeQxrJEDvLXA6o\/K5ExAECk\/0op0n8HhfvmWLW83N8lrGXCGJ8\/TpSWuZCOxzal6XMQBEHUwdjwSQRjzb5O7efgjsdxFjgely8L0seY22IsKizT283GIkjvp+PAECACAwdnEUIZZcs4OEIZgoEjQIBABuBgCJD+yzg4GDosQMgYIs4RMoaQAxEHIs4QBeq2Wg9wyHQdEDEg4BJrOLAxSnBGkGCu08f6zgAb1\/awdl0fnXUJOmdKBBsD8I1dsDPXABvXA3NnABvPgNy4AXLuBViSHC897+3YsGFDo9e\/LTMrSQsLCwBUWrRp06Zs+ZEjR7J0aWFhAf1+H0ePHi2kSUeOHMEVV1zh3Xa320W32y0t37hhHTYiAuMSEOkXt5SQAhCSIxExYgB9xtGVAToI0eUhOjxEOIgQsQA9wTBIJSm2ZKkvclkaFGRJoq9lSQpICcRSpEokS9KUIEacrgWAGDEE04IkELNBJkl6TALrfqVEDRDpdZaECONx8Iwxt+XCJV0+XPK1Elip+00Qk8AlBiuBpvvNHJJjEji24xI0ziLvGL3OJ0FqmRofICrez6SI51IEJUUhAgQyzKRIPVcuRgEYQsbBGBAxjogzdAKGiDOEnCFiqRylstThRTkKuUzHSKzhAhsijrkI2BCFOKMrsG5NiHXrBTobOcIzGIKNIdjcGrANa4Ez1gDr1wAvSCVpwzpA8vS1WZ5WmZl9p27ZsgULCws4cOAALrnkEgBAv9\/HwYMHsXfvXgDApZdeiiiKcODAAbz97W8HADz77LP427\/9W9xxxx2j7QDjAGdAGACdACzi4F0OfkogiCQ6nQRxHGMgOLoBxxmSYyDUG2UgmJIlBoQSiBjDgANRmh71BUMoJCIBDFj6xuJalhgEgETwVJCkIU1huizySFMHMYsRSiWAthgBQMwGznUJBoiYW6I0WqY0LhHSEmW\/sdokPi4RGwVKmwiCGCUlcmELzDDPbW\/DKU8IrDHNJAgAQhk5x3GZJ0UASmJkpkWmFAWMqWVcPbJejqRTjrrpupAJrAsSrAkSdKMY3U6MTjdGEEnwCGAdBkQBWBSo7+MgUN\/JE2SqkvTcc8\/h\/\/7f\/5vdP3z4ML7+9a\/jrLPOwrnnnosdO3Zg9+7d2Lp1K7Zu3Yrdu3dj3bp1uO666wAAc3Nz+PVf\/3W8\/\/3vxwtf+EKcddZZ+Lf\/9t\/iFa94BX7mZ35muJ0KQvVLCAP1C4lCsIBDhhysw8A7AI8kglCg04mxJuGIEw4hGQYhQ09wsPR\/AWMIBEPMgECoeJMD4EwiYEqiAi4RCKCPXJZiAchAIhFAImU7aZISCVPyEqdSkyVOLEZHroXwpEtqTFGi7PUaLVUm9jiXaLmw5asNVYkVQRBEU1yC0gZbZvzPY6VDjpl4ApQFzBznk6DssRLgWoBkWBgT6sRpCCkKGEPA1XdZyDGSHEVcImIS68IYa8IEa8IYUZQgCAV4V4J1ABYysDANLKL0u5lz9d+EmKokPfroo3j961+f3dd9Qtdffz3uvfde3HLLLTh58iS2b9+Oo0eP4rLLLsP+\/fsLtcePfexjCMMQb3\/723Hy5Em88Y1vxL333osgGNE2OU9\/IQzgDKwTQJ6MwSIG3pGI1iRIYo5uR6VJAgwDwdNESMnSQDAMGMNAsqwuOxBATzBETGLAgYFgCNM30CCTJSARKkWMBVM9RowhSWdraCpNAJCkAiIgAYlMoIB6iVKPL4qOS5i0WJkkcoCIrfW+vK7tuLCf38YWtVmj6c9JEKsdlwysJFzi4qPuZ7VFCciFp2ob2T40lCAA4GDG44Ns2TBSxAAEXG2vjRwFTAlRlI7pciVJHZ6gEwh0ggRhKBBGCcKuSpF4l4N1ONAJ1JPo72OdJE1IlGZmnqRpsrS0hLm5Ofzg6fsxxxLVuH3ieeDYceDEKeDEKchjJyGXehAnYiTHBOITwOB5jpMnOuj1QjzX6+LEIMRA8Pw\/qUpvcVqK8\/UrJVLJ0kAAsVQJkhIhtU7dlpBQjd8SdsokS8IEAAm0VKXClC63BaqwzEqhNPaXfcwcpTY7SaoRnKrtt8UlagRBEE2wBaUtTQXQJVrc8VgtPr7t+0QoMNKsbJlu5M7GqH\/bipFaBwRczUIdGE3ZUSpEIUeaFgGhliKHHIVMgDOJNUGCtVGMM7p9rFkzwJr1A0RnCITrgWAuAFsfgZ3RAZtbq3qRNqwD1q+D3LgBWL8ecm4OSwOBs868BseOHcPGjRsb\/R7aMLM9SVODc8ggfRuZSVIUAGtCsIEA6wjwARAMJDrdGEIwdOIEiWAImMz+C6Xq+O+lpTYGhi539CtJpI9R\/UqCKQGSaaIkgDRJQmXKpIUpNP5y0OmTlACYLVBhWaCMD2diiZIeqzaYjrFkqShXawrrmoqQS8Dq6Eh\/amViixxBEKsXl4CMA1tiqvAJVOgozwWO7ZpJEFBMg7JlFSIEALqnOUhv+KQIQK0YsfQxnKGyKdtVWou4QMSFSpa4yMpsnU6MqJPkvUhRXsFhUdr6EgSqV1hXiSbUm0SS5MP8hQSGLIUMvMsh+0L1Jg0EwlCgG8UQAIIkQCAkeCLBhQRL37YBy5u66\/qVhAQSqaTIJUwImEqSOCDA0pSJlXqZAGRKkAh1vwNuiFGVQAGmRJkkZiO0UdorjKnpM3I9Jt+mta0hpGm1Yid8BLFcuL7ET1dc8uLDlhrn9hyvbUmGXGe7FUpn9SIE5OUxtSwf0zQtYsZjOEvXM6nahFqmRxFXCVInULfDIEG3EyMMBYJI9SLxjmrYZrqWp3uSdK\/w6dSTNLPoX0L2S0nfCZ0A6AdgHQHWAfgACBMJkSQQgiFO1N8tjElwyFKqFItUjhhLUybkKROTiBlDILUMSSVJqTABqRTJZikTUmkCVHlOixVQFihASZRLoDSFu4ZQmSQFuwnT52hWzU2qzkBrEIU3fR6CIAibJmJThUtomj5P4FgWWtuzz273iRB3jAnShWZSpO43S4tyKVLVDv08thxxhsr0yEyQwlSSOmmzdmSe0RYxsA4HWxNacsTy7+UJQpJkY\/4CuDkNQAjWT1JZ4uBdCdkXkCJNk2KBbidGHHMEgmPAuTNVCsFKJTg7VUrSN3eseq3TniMUpMmXMmlhAvIPA9K0CVyHNJZAIX9OU45sbdFpFKASKTWmKCe2XJlUdr8ZBwGXgI2ThISKIFY9LvkYF7bEVOGbvidwrHBKFGfWmPLjq0TI3Eb+2FyK9OPdYqRum\/IUpusYQ6G0xtA8PdKiFIYJwigts5kpUmi0uaRVnMJ38wRFiSTJJAyRqUFo1D31\/AycqTTpVKx+kR2ACyBIy26RSMCYhK4OuVKlgeBgnGVvSDtVCpmSIYlUkqQSmFyYyimTFiYASLjMxgFGuS2ToPTHaiBQQC5RAApplIlLjOo0xxQum47x99BKToiqhJEgTldccrASaJM22WJT3pbjMdbrEjgGMWMf6kRIbbO4rTopAurFKGT6sXlpLeRolR6FoUAQqFaVIFStK1mKFDIg0me0GS0vTJ\/hpn+YyZTcSJJchAEwSH8h\/fSXxGNgTQQMErA1IeRAgHc5IFQdNRJJlpRwLhEkHHHMgThEwEUhVRoIfapmOVUaSAauRSaVIAnZWJgiWNKk+47S95MtT0CVQKEkRdLxvoxF+YAga+QmaXGgXOmyQa3iBOEWg5VEG7lzCY4JcwhXyO0xru26+ouKz1mQJFukdJnOSov0dpqIEU+X66lrdILUJD0KuCgJUhCpBClLkTo8b9hOqzhZaKGbtoPJqQtJko1pp3p2T\/3fIAaLAsh+oprKhASLGXgkIWOVJjEGJLFupFNvsDjJt2mnSuAcDKKQKsW6EVsCESQSyVoJU2A4RdbPlC6z5QloJlD59sovmf3hNrflwyVbPlwSthKpE0eCWG24ZGCl4jrO+aj7qV1Jkztdsh9XHu8TIQAFAVL\/ymy5liK9jaZipJ7Lnx4Fxm2dHgVmeS0UKkjQzdpWL1KWIukJJM1yW3r2ef6CBGoenWWEJMlFEKppALJYjxlToqsGbiaUqbC+BO9IyERNCcB4\/gsTxpd7wAX6AAZpLTvg\/l4lVXJTqVCc3gfSOZQaChOgZCfKGrHTZfrUfUueAEf6BHVqp4lLflxv0bqkyCVbPtocnGab+i+MqjIkQcwadWWl1USbw5AtN6X1jo05JakiXTJTIfs5TRky19lSBDQTI5Z+j6gz4WS2vio9Yqks6fIaYzKbMJIxIIhUihSshZpdO+1FymbYXhMVL0VildfkhNIkkqQ6dDe9LrmFAViQQHIGMKZ+sTEDjyWCtRKsBwACPBBZosS5RJJwAHHW1B0n+mKE5VRJ9SMxJURMCxEDE0DEdMpULUyA6mnS6Ju5QBXlCagWqGyM48PvKofVJUV1SVPhOZsPXfnUHF3bvG4EMQp1JaPTjVaSVFtuczzG1chtJ0kNRAjwp0xALkUAasUo73uS1noJBjjTo4DLQnN2EOTlNR7kJTbGkTVrZ7NrR\/paqcbs2qHRj0RTAMwQ5hQAfV4ouekpAdiaUKVJsQRLJFSIlKYwAgAc5TerqTtO386c5amSBEMEmU4W6RImIAKMslxZmIBckkyHsQXK1JsqgdK4gg4tVcVlvhc23U7LP0BXel\/S2BjTsYFezdXN6ZPvTIa2zeZ1AZvrbyEtLlXbqRIhoJgOmds0dz8vmfnFSCdHLjEK0z4kPS1AxAU6gQCHLDRnMwZ3eS2Q4JEECwEepT8It67Tphu2dRVnipAkWcggBOPWJS7CABgYJbc1EZiQkLFQaVI6wSSEsgzGJUQf6W1\/+Q1xmN5WSZJOlRLJICQD48wrTEIiXe8WJkA1fgO5xKixKnHSv3hpjIkCd\/qkSQRKR1+zpJeNk\/Be5ahNNcmUr2jKh\/025UGCIMZLXflqUrhExscwomT\/DeQ+wy3HJ0MhK48vJ0\/txShfL53pEQdqy2ssSNOjCEqU7BQp0GexMRRm1w4Cmidp6pjvSH2GWxAAGOS\/pI4EkiSbDkD3Jsk4Abjq0M8vTK8ixdrym+DFVCmVA5EJUS5MecnNLUxmSQ5Aofk7+9FMeWLV8qTREmUSW2P0XVuQCiWimgOHOdSWr2EYl9yMdmUngiBmgXHL1qglONfuhI6Ftpy1kSFzmd14PYwY6X8DLrP0KDAatV3lNcaRzYXEeC5Iqllbza6dpUgdq9TmKrHRPElTJgyQXZtV\/3J0TTRJsgZuJqTqTYoCsI4qt8k4nWsifbgUxfIbAIikWH4LuEDfSJUSwdLLjTDwVJIiIC25MUePUrkkp86lYmnKpMYBaCVParzCFBYtR+abx1UN09u25crGlq021D2U5IYgiKaM4lAuuXHhSqNc1TzX9oqN2+VkyH4sM46QZn+RHu8SIz3GFiP9GC1HdnrkKq\/xwOo\/itRXKesALFCCZF7RIkuRzLPaWJ4eFc5so3mSpo+60G2aIvUHxqSSsZq7IRZ5mpROCZDBlSjJtE8pT5dE9oHQ5TcpGYqpEoeU6qpvEdBYmEKme5FYJkpC5tI9rDxle67lyFiVjTOWucTKxJaiqjfhSm9Fcr2OBHG60qZcNYu0aU2qkyZ383aTviS\/DJlnApsyZG9rFDEC1B\/4rvSIc1kor9n9R7YgsTBNkXR6ZKZI5hQ8gDFX0mS1hSTJRxAiK7MJof6VAujH6TKZp0mdAIgFmJQAhMpg+1Club56cwioOZKAvE9JTxqpZYml1y7V73MRAIkYTph0wqSJJTPkp1qeANXjpJGOj7MWHVOEfEJg9yHVHTwK2xmTY0zr0DyOkiFBEKOxHH+qjKM\/ybUNd4JUHFclQ+4ymzTG623IkhipxxfLaYCqcGgxUhNOqhKbTo84l87ymu4\/YoFqRQG3BElfoy3keYoUGKIEqMQoMG6b\/04AkiQb88W3b5slN\/1LjIW6xkwngIyFakDTnTWpKDF9nTQOmH1K+hJlZvktCASShKtT+YW6YK5A+rSGMOnrEpnCpHuZtDBpzObvOnkC4BQoE1Omsu0YqZQ5rgl2stRWLCitIQhiFMaRcDUtt9nCA7jngnONc6VC5nItQ4XmbiMpMse3FSO1LJejIMibs13lNZcg8S5XotTh+eVHdFmtY9zWPyAzpGgKggSQJLmx5Uh31Jslt1Aqm4gTlSaFUl2u5FSsRImrVIkJBtET4B1A9NPGbqtPySy\/CcHAmISUDCwBwkC0EqbESpgA1QAO\/bjsTLe0X6hCnvR6wBaRXKY0RakqjsvvuY8irr4h8\/pxddhyNgpNxY4giOnjEolJ0G72bf8+Nimvucb5kiH7+UwJci3TYgQgK6dpMVLLimIE5HLEuawsr5UatENWEiSWXp8tuwRJYP1rltuAiZ\/ZBpAk+UnFSAqh+pKAvOQmzDPc0pcwSROlNaFKlJAA4JB9dY03GStDl3G5T8ksv4mEF2QJQCZM+o1rChNLTdsUpkRowSmLUlN5Ypak2BJlEhti5JYqTXELVdMBVH0Wljc5ovIYQRDDp0tNpvVxl9kcDd2Ox2oZUutdfUfNlpl9Rvq7xi6nASikRgAyOeJcOstrzv6jMG\/SLggSZ6kg8TxF0lUaxvNSWxgUm7azH2z5UyWSpCboviSepL84K00KJVgkVEIUC7BQBZZalOyGbt2n5Cu\/8SCXJQCFdAlAJkyJ4IjSf7UwSckQcWSiFBgfM72MG5KhRcle5k6GFHbaotOowrKsIbw5cUP5aVqOozIcQRA2424ed8mNjzrpKY6tK7f5ZchcHhjbt0tp6nZzMcpuBypZss9eU2U2d\/+REqI0OXKd7m+mSN4mrjAVphAI6bIks4Eut+mSmxDlNEnPwC0C9Ra0REnGyqjNhm4m\/OU3QL1Js8ZuI11S65QwhVD9S1qYsoZv5AkTgEyueFZiUw3gmkQUy3NAMXkC3MIhjGVVUmVSVc5yyc8oF7cdZxluWKa\/BwQxO6z0P1t8QuOjrhzoLrdVy5E9pk6Gsn0ppEi5GOn7Woz0WJcYqXVKjhiHt7zWVJBUs7YjRXLNkTThXiQNSZJNGKoSWygAEQJxUh7jSZMQC7AoUHMn9ZNclJiAHAj15gEKfUoyBsRAWXg+TYAqwelkSQuTbvB2CZPdv6QTJiCfoFH3Mmmq5CmxkyFUnb3GCuNQMbbqsS6alKApMSIIYlTGkTC5BKfpczWRI8AtQ+ZyW4byscVlvj4jAIVymtom8tupHOnm7EJ5LRWkrEE7PYNNnQaXClKaHrGA+1Mkq9Q2TUiSGiCDIJWmtOSGVJzMM930hFixUNdf66AoSkAmSjKWWZ+SnnhSirz8Bqj3iBSASBiCVJj0G9rsXeJcOvuXgOIHRMuR6eIuedLiFHH9uLIACcffgy6pAtoLTJ00uWgzYSQJFUGcPiz3vExNpUhTJz2FbbvKbRXJUP648jLzti1GQLHPCEBWTstup2IEoCBHurxm9x81FqQ1UXHiSFezNtJJJHWqNGFmWpLiOMbtt9+OP\/7jP8bi4iI2bdqEd7\/73fh3\/+7fgXP9pS6xa9cu3HPPPTh69Cguu+wyfPzjH8eFF17Y\/gntX0B2Vpso3tcltzgpp0lAUZSEKjBpUYKUAJeQfaHeTEDWpwTo8hvAQpUs6aqZFHmDtxYmuxwHoCRMGpZ5nciv12akSi55AoplO410iIbZB1VYDrdUVeHazrioEioSKIJYeUxrgkqf3PhwSU\/VdphTqMoyZC83+4qyZYEpSdV9RkAuRuq2zG5rOQLg7j+yG7S1IHXy5uyCIJlyZKZIQLHUZkJTAOTs3bsXn\/zkJ3HffffhwgsvxKOPPopf\/dVfxdzcHN773vcCAO644w7s27cP9957L84\/\/3x85CMfwVVXXYUnn3wSGzZsGP7JOUeWGGW\/qFSKdAM3EkealBqwFiWks3Kn11ZT\/UpA1tBt9Snps99kosxcilSWgjxdQuAvx+lkCSheULdKnAB36pTuZQnf2fkuodK4xMqHT7iWG+9FeVd8JwVBrHx8kjEN2gqSS3jybZWPqL4jaV06BBT7irLt8fLtJuU0oCxGapm\/vOY6g80rSFlCxIoJkl1q47w40zZNJqn4X\/\/rf+Haa6\/Fm9\/8ZgDAS1\/6Uvy3\/\/bf8OijjwJQKdKdd96JD37wg3jb294GALjvvvswPz+PT3\/607jhhhtG34nA6EvSqZIvTQKKZ7KZohSmnT8hz6YIkDEKfUq6\/MaQyxILVBnOTJeAZuU4\/WHQZTl9W2N+iJrIk4kpUpq6t22LqY9K\/VMrnTaSSBCrjSpJWGn4jok+qo5ivm35ltelQ4BfiLJlQTFp8pXTAGQlNUB9F2XrzebsqvKaLUgdQ4p0cmTe1hM2G+W2wqn\/NE9Skde+9rX45Cc\/ib\/\/+7\/H+eefj2984xt4+OGHceeddwIADh8+jMXFRWzbti17TLfbxZVXXolDhw55JanX66HX62X3l5aWigM4VyGSUWqTQQAmRLouQT4DN\/Iz3cJASVNkvKyWKBXOfGMivTiZgIxlVn6TiVT13TRZ0kKUp0v+cpyZLmU\/jnF80s3fQFGYmsiTCXP0s5ulPBdtpcdsPicIgpg2bQWpbrzvWnCmABXHV8tQ6XbgTpvalNP0bSCXIzW2orzWVJBc12gzZ9bWt11y5Jo3aRmYaUm69dZbcezYMVxwwQUIggBJkuB3fud38M53vhMAsLi4CACYn58vPG5+fh5PPfWUd7t79uzBrl27mu+IliWz5BanUjQQ+S8dlihxBiCuFCXoS5lwmZXfslQpQLoc5XSpqhyHvH8JyJcBo8mTie8vw6rERE9Z0IYw\/ZCv9AvdEgSxcmlzYVsTn+zk2\/U0bfuauYeQoWw5N5cXxQgop0YFMQKy5Egty9OjWkHSk0W6BMn810yR7FKb8a+kC9zmfOYzn8F\/\/a\/\/FZ\/+9Kdx4YUX4utf\/zp27NiBzZs34\/rrr8\/GMesdLKUsLTO57bbbsHPnzuz+0tISzjnnnOI2ghBM9PNUSSdIZsktRjFNAlAQJQRAB+n0AAlYH35RClEov+kptVmohMmXLrnKcTJhWc1c9zABeWkuWw69nCMIcxnhQXGdC588+ZZrhondqVRFEMS0GebY5ZOduvXe5ZZ01QmRLqGZy4CiGOl1pXIaUBYjvSy73aBBu0qQdBrkFaLpnv4PzLgk\/dZv\/RY+8IEP4Jd+6ZcAAK94xSvw1FNPYc+ePbj++uuxsLAAANmZb5ojR46U0iWTbreLbrfrXhkEQBxby1RfUqHkBpTTpCwStERJ3wfAYgYIqeZSEhIsfROZfUpA\/iaVsVQTclWkS+VyXCpIcf7GH0ac1I9e\/FDqRIdb71093vXhNsWp7qDheswsT8lYJ4UEQTSj6bFhFhhmX6seY8uPxve3vtlknS+rFqLsvqcJO1tnlNPUMpYv88mRr0G7TpB8KRJQbM7W6RFNAVDk+eefz0711wRBACHUG2TLli1YWFjAgQMHcMkllwAA+v0+Dh48iL17946+A+YZbmbJLYQ7TerHjUSpWZ8SywQpS6k86VJVOQ7IUyagKE5A8cNUKMtZtXTp\/gwDKCZRhcd4hKpqO5rlPmCOS25W0oGdIE4XJvm59AmOjzrxKY13eEETIWLWt3txXL6sTWpUWDcuQTJn1gaQTbVj3y5c6HZy6jLTkvSWt7wFv\/M7v4Nzzz0XF154IR577DHs27cPv\/ZrvwZAldl27NiB3bt3Y+vWrdi6dSt2796NdevW4brrrhvPTtjzJCXGtABAnibFUL9wLTR2j1ILUcrWRwyQslG65CrHAbk0AUVxytY55MlMnfQ4OERHJOrDYjcnVglVeRv5J9clWsPQpH+pqbgRBLE6GbbPyEcbWaqYLaUgQFWP8QmRS4ac6xxN2GoH9HorNQLyFy3k6ZgxCJI5L5JRXiuU2qZ0SRJgxiXpP\/\/n\/4x\/\/+\/\/PbZv344jR45g8+bNuOGGG\/Af\/sN\/yMbccsstOHnyJLZv355NJrl\/\/\/7R5kgKQ6Dfz+\/rviSkZ7kBKCRMMdQrqacE0GLURpQ6QV5+E9IpS03SpawcB2QJE1AWJ8AtT7Y4meNMbJHKlnuEykTLFdD+bJHScxEEQYyRKoFpik90mj6XXSIrrGsgRCWhMr\/pXeW0dHllagTkyZEeY8tROqaRIGnsmbTt+3aj9oSFiUlJ5w0tLS1hbm4OP\/je57HxjLUqLYpjsEFfzYcUJ+rfJAb6A7AkKS7vGeO0KAmZz6+UGPf1dAH6fpx+0wsJmYh0eb4MAKS+r\/+VMp1TyRyTi1HhPlTKlGGIhbRar0zpkI5T\/O0xheWxe3m+veH+bCMRIghiFhhFnppKT9Pn9AlRaVsFiTKmeRk2NUrHZMtd6ZEe4xMkvV6nSGEAdKJ0PM8kSUZRmi6F2XIZddLbYTZ+6fkezjrzGhw7dgwbN270v5hDMtNJ0rTJznAz4fm12JxpUvZvw0RJL3OkSgCyMhyAxulSfl8Nz1ImIEt5sn4mIB8HIz3y9SpZKZGWKbOMZz9G7UO9i7tEy5VijZNh5Y0giNmjSkaW7TmH+BZtIj91j2ktRNa41qlRuqzwGF95TY\/xJUimIDlSpNJZbVO6bhtAklSP2ahto+VIYzZzm6KUYYlSgHxaASATJSCdKgDI35SxUKdXCpmdDZctz3qV1L\/mh0fLEeukb86W4gSgcFEOW2SaylQ2xpNQqX30r3M9xzhoIm8EQZx+jKPs1uSPvKrn8QpYSyFyr2uZGhn3WWCV3OzyGtBckLLrtlkvhJkiTRGSpKZwjuzlilFOk\/QY4RAlIT1nvQGuPiUAlbIEoFG6BJhyZJTfWoqTSUFk7LTIuO0rv1UdEJoI0HInS5oqmSMIYrpM6jhQx7Ai1UR+So8JWHmZKT41QuR8nK8R21hWEiNze77+Iz2mSpAK+2eU2VzC5CMMAfRqh40CSdKo2GlSjOaiBLgbuoFchniaHgVQPUt2Kc6XLmXCpBlenEzMXie7QdsUKm8qVCFCbQpfdT1QozKOvyIJglh5DFM+89LgOOKSn3xffPMFVIzzCVG2YITUyFzv6z8yl1UJkpkiDcOEEiaSpHFhzsitRQlANoeSS5T0fVOUOqG1HMOnSxq9vqU4AZYUmeOAcpJkfBjtx2XUfB7s5MpHk9LcRKDGcoIYHyvsj5MqwfE+xic+msryW8OECEBpjoOQW2MdqZGxzcZypG+bQtRGkFwpktWwrdbp++HErtsGkCS50b+AOIZECIY4b8p2ldy0BAVBUZT0clOUgKIo6fuZKFnLTSxZqk2XNGbKZG+rQpwAW4qqBcb7OJMaqag9gFQ851SYkdifIIjRaHvsqaWh8NVLk3t9ayFybbMuNTLHmHIEuPuP9PLlTJAmDEmSje4ravuYTKJQL0pmLJkY9wt9SoBXloD6dMkYA6BenMyxJXHK1qjn8oiJL42qYxTR8cqYD0p+COL0YYLJVGvJ8shPo+1VSJFXiBxjG6dG5rrAkiXXddjM7ziXIGXb9KRIMwRJkkmTqc5dDdyJ1bwNlEUpHe8UJfWAXJSyN7UlS7oUZ+KTJaD01wSsNKnwYapIm2xYlO6fd4ot1kp8SqLTUrIIgiAmTo3k+KiVqbqpwJumRI6x9vpGJTWgmPqYcqTvu+ZAAvyCVNecbZbapgxJUlO4kQRZZLNwZwLkECW7mRvwTxEAYz2AYk2nYSkufZhMDNGx0yTjcYA7bQJQlicbx\/pMpIBm1wkpPrq0ZOplNYIgTlvGUoprKT\/lfagWHuc27J4l3xlq2eNbypEeM6wgNTmjTfcjTQmSpAbIIARLrNOpgjxNKpTnzLKZ3aNkipIU+Vi7oRsoLouNZYE1To9xNHoDljTBSpqAWnECHPJk40qhqmgzVu9D1OIgRZPIEwRRx7gv3mZTIz3ZbtSN8yVWbYTINcaXGgHlklrVOLv\/CGguSKWfKShfhiTbd5pMcjZx9Sg5lmVpkilCQjQXJaCcKmlsWQJQKsWVHm9gShMvC09JnKo+tL4SXCd97ialMsf2W0nWJJnV\/SKI05GG4jFpakXHRZNynW+7jseWpKguZRpVjvQ6u0G78BhLkErb9KRIvlJbk5aYMUOSVEUYArGVIBUarFGUH6A8oWQbUSr1KSFv7NbPBbj7llzjfNhJkS1OdpnOpKkMtZSLTLKabHuSzOhBmSCIKTNkTxKA+uNKXVN3nRC5nqM0gWODkppvnC1OTQWJWwmTvX9TvpitC5KkNpgJkm7gNspwMghUE7c9rk6UgGJDd6H8ZuJInKr6ljRNpMmOamtOCymlTzajygUlOARBzCqjHt\/aSlDd413745MizShyZD\/GFCS7nFYhSN4UyaDUjzThqQNIknxoqUkp9CVVpEkFUTIbuStFyTFFAFDuS7L7kWr7llBMmMz9raNKUoSs\/RDXSlQdlOAQBDGrjJIiYQgJsqlLiXzbcImR+XhXSc233uw\/0vfbCpK5LVOGSoI3ve8DkqQmuJIhTWCkSem6TJQAo5TmESUApbmUNLFHhmxZ0s9jPibfQccP1DJpsmmQ8tQlUbVUlfwIgiCmRK3gNKGtBJXWN5AiV+Li+4N5GDkCyg3a5vrAWm7clq51nrHThiRpFExhstMlc32lKBmpE5CLk+5VAsqplV6m32i+fqTYkSLZSZPaQHnMqPNTjKFcNrJoEQRBjJMRE6SMYSSobj+aSJG9bV8ztmu9LUfmsjpBMlKmkiBVpEiFUpvZtD1BgSJJqsNo3vaW3KrSpDaiZJffgLIsVTVn26W10lxKQ0pT6TWZYE2YepMIgpgVxtEG0PT4WSVkwwiRa1xdv5G93LzydxtB8jHJ75IhIUlyUXdpEl\/5zRKekUQJaCZLvtSnaS+SnX45palmuzZjSaJ0uZLSJIIgZoxRj29NE6mqY\/EwUuTa7rByBDQXpKoym06LfKW2KZfdSJKa4hInV5o0LlHS2wfay1Khbwl5A7r5AdCn2deV5+zxdQJlP09T7NP+V8BfGARBECOV4JqeqVX1HHVnsfmeaxxyZC5vK0jOeZA8pTbfzzABSJKqsM5wAzyzb9sCNQ5RAkaXJb3OfmO50iBX+mOmTFUf0iYCZWO9rmOr9Y+LWZqriSCIIrN2vDAZ5ou86c\/j++OxaY9SlVC1lSNz3bCCVJcizQAkScPiSpaC4rxJ5rhWogSMR5bMx+j1wPDSZBO3SI5s6VjuvwhsCWvLLB+ECYIYjUkmEm2PJU1S9GGlyPX4JnIEVKdH5vphEqSq5QCmMdN29tRTe+aVhGvm7WydLTtW2c2gsSjp7QJ+WdLbrpMlTVVS1ESa7G2Z++ijaRI1DHVJzxRiWYIgVgnL+UfSOBq3Af8xrmlf0ihyZD6\/a33dqf6AO0Uq7ff0U6WZl6Tvfve7uPXWW\/GlL30JJ0+exPnnn48\/\/MM\/xKWXXgoAkFJi165duOeee3D06FFcdtll+PjHP44LL7xw\/DuTpUKOkpsLV5+RtS2nKAH1smRPD+CSJXN9XT+SOdb14UtaCE9TiaqjNOeTASU9BEFMg3H1S46jeRtoLkWusYz71\/vkyNynJoLk2r7db1R67OyoyezsiYOjR4\/iNa95DV7\/+tfjS1\/6El7ykpfg\/\/2\/\/4cXvOAF2Zg77rgD+\/btw7333ovzzz8fH\/nIR3DVVVfhySefxIYNG5Z3B72iY5TdfP1JVY8H3LIUG48D\/LIkrf4oja88VlWa0zRp2M5el4Yf\/ro0aCU2b1eJHUEQRVbiZ7yOYf+Aa5p+t+lL8o1vKkf2Old5zRzjSn6qymyjJEUTKsExKeXMdqh+4AMfwP\/8n\/8Tf\/3Xf+1cL6XE5s2bsWPHDtx6660AgF6vh\/n5eezduxc33HBDo+dZWlrC3NwcfnD0z7BxXVct1LKiBUCX29LlWZKkx2WzYxuCoseYX5zZ48vLXOMK+6DxjbPXAUVhqhqXba\/uwrUtJGDUvqA6qLmaIIhxs9wpdZtWgDqJHEWM7HFN5cge6xAkZ5mtqlnblyRxnstQqbdJLV9aOoGzzrwGx44dw8aNG0s\/4qjMdJL0hS98AW9605vwi7\/4izh48CB+5Ed+BNu3b8dv\/uZvAgAOHz6MxcVFbNu2LXtMt9vFlVdeiUOHDjWWpEboviS75FaZBjXoTyo8h5UWVaVKQH2\/ElD8YNQlTIC7LGfvowuXPLXtC2orVVRyIwhi2oza\/9g2TWs6PxLgFiPX+CaltaqxbQXJtS8uQZoBZlqSvvOd7+Duu+\/Gzp078du\/\/dv4yle+gn\/zb\/4Nut0ufuVXfgWLi4sAgPn5+cLj5ufn8dRTT3m32+v10Ov1svtLS0vlQa5m6qZUzalkrCs1cpvj9HaAoiyZ+1JXggP8wgTk0uTrTWrSvG3ui4+m6dNyNVsvd6JFEMTsM82TOcYhQk232VSMgOHTI3OsS5DaPu8MM9OSJITAq171KuzevRsAcMkll+CJJ57A3XffjV\/5lV\/JxjFWfENJKUvLTPbs2YNdu3a5V1adyVaHIzGqmhYAaCBK1vjKVMkea67XtE2Z7Mdk+1Qz6aTJsH0H4+rvoTPdCIIYF+Pso2qThlc9bxsxAqrlCGiWHlnLpatfqSBd9SnSLDLTkrRp0ya8\/OUvLyz78R\/\/cXz2s58FACwsLAAAFhcXsWnTpmzMkSNHSumSyW233YadO3dm95eWlnDOOee03r9Syc2kbobuJqIEVKdKQHVjtzne3AdNE2GyH2PSRp5MmvYSzWJTJzVmE8TkmMVjQFOGbQdo+jO3FSNgNDmq2LZTkArbbXZx2lkrtQEzLkmvec1r8OSTTxaW\/f3f\/z3OO+88AMCWLVuwsLCAAwcO4JJLLgEA9Pt9HDx4EHv37vVut9vtotvtDr9jVdd2q0uTfH1Hvm1XpUqAf24lc7zGJ0z2\/prTCVTRJHFyMU6RmjQr+aBNEMR4GGc\/ZJtjik+MqrbjE45RBanqTDbf\/tStL+3j9BVl+ntQwfve9z5cccUV2L17N97+9rfjK1\/5Cu655x7cc889AFSZbceOHdi9eze2bt2KrVu3Yvfu3Vi3bh2uu+668e9Q21Kcq4nbg3NqgOx5W4iSa7z5OKC9LBV2tEKchpUmF6MehGZVsgiCmD7TOumj7R9ZVVJUt82qNGaMglTbh1Q359EMpUYuZlqSXv3qV+OBBx7Abbfdhg9\/+MPYsmUL7rzzTvzyL\/9yNuaWW27ByZMnsX379mwyyf379y\/\/HEk2VemSTV3ZzbW9YUQJGI8smfiav100OSAsV\/mKznwjCGKSjJoyNxGiJs\/VNDkChiuv1fUhNdkvx3YrJ5CcYl\/pTM+TNCkK8yRtXF+aEwmAd74kwDFnElAx51FcHlPYliUNdfMgucb4zubyzo1UI3dtRaauTDcs1A9EEMSkWa4SexspqtuPNqmRZsTymleQfClSTfO3sx\/JniPJXE\/zJM04bZKjFtsqzZ\/kO1utTapU9Vj9eI3rZ2pbRvN9+EeVp2n1A5GcEcT0Wan9gG1lSNPk5x1GjoDx9B+1ocHZcbMKSdI4qZrvyNWb1KTsZj9e06T8BrSTJd9z+R6vaSoRVQeL5UqfxsFKPTgTBDEZhhUhkzbHmXHJkWtbDQSpdYo0LqYgVSRJM0ojUWpC1WSYbRu8fTTpZaqjbZM4QRDENBiHEJm0nmhyGQWpAc5G7RFx9iPNwJltAElSexxnuGXzJS03bZu5NcOIkt4eMFlZMqk7GJFEEQQxbsYtQT7GKUd12xv24rnDNmM3nBdpJUCSVMWofUcjlNwAz\/Xdht3nYUVJbxNoL0vA8vbztDmYkVARxOnJpKSnCcOU7ptIxjCC1HCiSJORU6QV1o8EkCSNn3E2dDfZfp3gmIwiSvq5gXY\/3zjnThqFWTpQzgIkjasber9Pn1F6GZsKxLDpUZPtV53NtlzMoDiRJM0aw6RJTctuwPAN3fY+atoKoetDTWePTR76EiWI8TKOEzzaSMI4BWmYs9km2bA9RVofKd\/97nfjoYceWo59WXmMy3rHXZtuOmZWoLPHCIJYqYTB5AWJmBitfyvHjx\/Htm3bskuAfPe7312O\/SIIgiAIgpgqrSXps5\/9LL773e\/ipptuwp\/8yZ\/gpS99Ka6++mr86Z\/+KQaDwXLsI0EQBEEQxMQZKt974QtfiPe+97147LHH8JWvfAUve9nL8K53vQubN2\/G+973Pnz7298e934SBEEQBEFMlJGKoM8++yz279+P\/fv3IwgC\/NzP\/RyeeOIJvPzlL8fHPvaxce0jQRAEQRDExGktSYPBAJ\/97GdxzTXX4LzzzsOf\/Mmf4H3vex+effZZ3Hfffdi\/fz8+9alP4cMf\/vBy7C9BEARBEMREaH2u3qZNmyCEwDvf+U585StfwU\/8xE+UxrzpTW\/CC17wgjHs3owzrvmQ2p4Cv5zzMBEEQRDNiZPxnN0mBJ3hNoO0lqSPfexj+MVf\/EWsWbPGO+bMM8\/E4cOHR9qx0xZLgBrNuO2SrCqRqtpmU2EbRdRoXiSCIFYTrmPaMOKkj6tNZKlKzpLEP1eSS8bsbTURNnOM+fgkXlVzJbX+Sd71rnctx36sHpY75Wmyfd+YUeVomJ9tFoWIZpsmiNXPtCdMHUWcmsrSOEWpZgxLkuWfdXsG07TVo3vLwajCY35IzG2ZF8P1jcGQKdJyCNIsyxEJD0EQLtoeGyYhVfq42FaWAL88VG1TH\/ddcmMLybjKhlWYzzGDQuSCJKktcVxaxJLysmXBlpXlFqS2cjRuMSIBIghiUjQ53oxLpMxj5bjSpWFTpapt1KVJTUpuK0SGfKzcPV\/llFKkYVOtYQRJiHbPFyfjESQpiv8RBEHMEvYxahzHqbbHz6pjc9V2XN8FQ3yvNKpwtN6mI2hwBBLTgJKkcWK+4UYotY2lzLbc6dGwUnQ6yM8s9mERxCyxmq7XWHVMa5M8tUmXqlKltuW3urJbXRLkS5OWgymkUiRJw7JMDdqNEqRhBWlYOWr7pb\/cIkQSQhArm1n\/DI\/ri35YgWra9D2KLI0gSo2auH0ltxXWl0SS1ISKVKa2H2mIhm3v8nHL0bjEaFQpmvUDJkEQpxdtj0nDSJV93KxLnaqSpqoGb58sjVOUxjkdwIyJ0+zsSQP27NkDxhh27NiRLZNS4vbbb8fmzZuxdu1avO51r8MTTzwx+Z3zldpcNCmzjSpIus7tm0PJl1DV1cfb1uTNbfr+W26EpP\/oP\/rvdP9vOWlynKs71g1zXHVRd3w3SZLid4f9WNf3TtPvLNd++baLmsBhGfqgmrJiJOmRRx7BPffcg1e+8pWF5XfccQf27duHu+66C4888ggWFhZw1VVX4fjx4+PfibaNZL4UycHYBcm3P00\/PJq2TYrjFKCVcHAkCGJlMAvHk1GkyXX8HeWPYZOqNg\/X+LoeWnN8m2rLDLIiym3PPfccfvmXfxm\/\/\/u\/j4985CPZcikl7rzzTnzwgx\/E2972NgDAfffdh\/n5eXz605\/GDTfcsDw7NEqZqq7MNm5BGmZfm5bPRpGg001eqKRInK6spiZtoNmxi7Nm22o74aR5bLbLc76ymq9vyS6njVh+Ky1zNXG3bfKOYyCcrqasCEm68cYb8eY3vxk\/8zM\/U5Ckw4cPY3FxEdu2bcuWdbtdXHnllTh06NDySVJKFg\/WyY7LpF0mXiVI45KjYcSo7Rf8OAWI5IIgVjar5TPcRvZGEamm4uQTJl\/vkqtvyRYr++y3hhNOevuTNG3nTZqhvqSZl6T7778fX\/va1\/DII4+U1i0uLgIA5ufnC8vn5+fx1FNPebfZ6\/XQ6\/Wy+0tLS\/nKUeZmcL25Xc3abaJKa7zaZtJ8rG+\/AL8YNTmoDSNCs3awnGKdmyCIZWK5Lp0x7PHLJ1e+Y6hLnurEaVhh8qU6ZqrkGqu3Z8iM84y3uiZuvT7dDktiyBm77tts7Y3FM888g\/e+973Yv39\/5QV1GSu+qaSUpWUme\/bswa5du6qffJQ6aUNRcfYhDZse1ZXpNG3FqI0MjUOCSFwIghiFSR5Dms5iXUWpJFVxzDUFyidAbYTJFKBhUyWXKLUpu804TEo5s80hn\/\/85\/ELv\/ALCIw3YpIkYIyBc44nn3wSL3vZy\/C1r30Nl1xySTbm2muvxQte8ALcd999zu26kqRzzjkHPzj6Z9i4rqsW6jePfqPExdJaqdTmSImyFMkhMyMJUlV65PpAthGjJlLUVIYmebA63XqcCIIYH017iEalTcrVpLzn2m\/f41xTDJhjbWkx19n7bY7V44xlWaKklxW2Fbq3kd6X9nrdk1Taplq+tHQCZ515DY4dO4aNGzeWfsRRmekk6Y1vfCMef\/zxwrJf\/dVfxQUXXIBbb70V\/+Jf\/AssLCzgwIEDmST1+30cPHgQe\/fu9W632+2i2+0u675X9SFVCtK45Mh3JoQLn2BMQoZIbgiCmDbjOg7VyZbvWOmSJ9\/xt1A2M\/ZbP3ebhMkunQGe+Y4qUiVHopTvn8hTKrvsZo+3S27ZY9PmbV0CnHAKNdOStGHDBlx00UWFZevXr8cLX\/jCbPmOHTuwe\/dubN26FVu3bsXu3buxbt06XHfddZPbUZ\/g1K2rTKEaltbq5GicYtRGhqh5myCI1USTZKfpcc+Wqapjq6vPx7VPdcJkjtffE8whRHUluAai5GzkHnfZbUJnvs20JDXhlltuwcmTJ7F9+3YcPXoUl112Gfbv348NGzYs23NWntUGlMtsVWey1QlS074jWSFOQDspaiJDTQ8GkxIcSqQIghiWJuW2cRzLMhGpOV6Z+1OVPvkkyN6+L2UyZckWIp8smalSU1HS6DF2E3dVGjVlZronaVIsLS1hbm7O35PUpB8pG9+gD8knSOOUo1GlaLkkaJoyQ03hBHH6sVxnuzWhba9T02kGXNt1\/Zy+7ZmPN8cwR68R4O9XsvuEzHVZj1FNf5K93NWbVNGXdFr3JM00rmbrJn1IdYLUtO+oqRy1SYpcAtNUgoaVn9UsLpRuEUSZSTVJa6Z5tlvb8lvTM+FcpTXz59T7UZc0cVZMiXzJkq9fydUn5EuUfGW3qnKcZoqTSpIkVeH4cDmvL+NLekYRpFHkaJS0qOpD2uQDP+oBicSCIFY3q+kz3qa3yEXgkJ6q53BJj6u0Zu+HS5rMxw4jS77vClN46kTJNXfSjJXcSJKaUjf3kacPqbUgjUuORpGiuoPYOHuW6qCmbYIgZoU2cxpV4Up\/bOoEyhQbc\/+aSlNBfkaUJVeq1CZRcixzTixpXzplApAkuWhzNWOX1IwqSOOSo1GkqE6ExjmfUhviESb5JAiCaEPouT7a0Ntr0bhdJ1AuGWorTeOQpRai5KQuTZpyskSSVIdxmRLmusQIUH2V42EFqY0cVYlREykapnG7ycFinEKzmiJ6giBWBv1kvD1UsSiLl41LbEo4kqGhpGlEWWoiSgaN0qQZgyRpFJqkSI51TkEalxyVGr8bpkRN5KqwvoEAjUlsZELpEUEQUyI9FLJgTF\/g4\/jjsdTg7Dpe10xQWRAmx+ObyFKMelGyxjgvXWKmSb6Sm9m8PUGhIklqgq+8BhRTJFeZbRhBcslRXUmt6gw3W4qalOHqPsgNBGgsckMJEkEQM4AU40mVGGq+3IeRKFuafH1IvjaN7PR7x+PqZGlUUYrhTpNmJFkiSfJhvVG8pTbrfqkPybxtCpKrvJaJU02\/kWu9uWwcUlQjJ40EaByCQz1IBEHMCnWlsgZIVB\/TaiUKqD8uOk+lt9MiQ4zsiSR9PVGh9RhTlABlFG1FCcif35EmAZiqMJEkDYsQpRTJ2ag9rCCNIkdNSmc1UlQrQY0at0cUHEqRCIKYJcbRo1QjWrUSFXDHMb6BNJWOp\/p7wZARW5bMcXbfUmE8jD4lvS00EyXAeQ237Oe1z3Kb8BluJElVxFZDtlkay8Yk7tSoiSDZ5TUhm\/cb6WVN+pIapEQlKaoSlDGU4nxISo4IglghsGGSpSaiVbFdV9mvlD7Zx1FXw3gmQoYE2d8hrr4lW5ayVAnlhm5blPS2XWe82WkSMBMlN5KkOqouTGvAkmR4QTLfmOOQo7YpUZu\/SurKcG0lZ5JSRFfgIYjTD7Z8M3yXjnctpckrWf30WF4lU8ZjS+KUOBrNfcdaW5YAZOmSq2\/JlqU2ogSUpgZgQDlN0s9tlw2nMPM2SVIDnLNsJ3E5RQLcZbI2gtS2pGY+n\/4QGONbC5FHgmrlp4nsjFlSZEzSQxBEHc2PEywcUagGjtaGCknLjqs1cuWUqRpBK5XtbHEqPd5RYqvqW4JDoFzltjpRKvxMepthWZqmlCqRJDXFVWpLyVIk84y1UQSpjRzViVFLKSrJUJ38VIjPyBJDPUkEQUwQ2W9wzGndk5Rv0ythWq48QuWTqYI8ucp4FeKUlej0ts2SXEmEqvqWrNKc3dBdK0rwp0l6X12zb08IkiSTOAbQrR6jG7ZdKVK2vkKQfP1H5v02JbV0eSZGhSRqRCEaRYCGEJyZTYaoTYogps\/0zwZPKR6n2qRPmYR5RUtWb3OQFERKOnqNmopTVqIzEyZvuuTpW8p6lqxUqU6UgOpkKIkBhOl40IzbM0XdJUksCilSW0FKrPu2HFX1GvnkyDEGaC9EXmGp7UlqITrLKB8zK1wEQUydkctqBqX0qdH3ebUMVcuULD6uRpxKpTrz2K+FKT0Yl9KlbJwWm9jYJ\/tst6TYp2Se+WaLEmCd8WakSaZIzQAkSS6SRKVKQqh+pIIEVVyCZFyC1DQ1MpaVxphv8jZC5DrzrUo4KkRnVFGRCYkOQRDjZ5RjCwuGFyxbigqC5ZQrd6lO9qUlUH5xcpXqMnGy1pVkSSdR3lKcdcaanSiZDd0+UZpxSJKGIZWgUopkrMtu+wTJFCEh28lRnRiZUtRCiIrr\/D9+lfy0OvgsQ5IkKxyWIAjChA3xDShrL05b8Vjr+FglXPVCVUyjWotTKj0s5MWyXMgLZ8tVp0tGz5J5ppsOAZqIEvRyK01SGzDWxZAIVYBB8yStMHSZbVRBipPqRuwqOdLLDCkaVohcElQpPx7ZGUVY5DIIFEEQhInsD\/c4NmSLjC1lBeGytmkec10yVZSj7FHldYAhT4Y4pdKkn6VxuuSVJUOUABQaul2iBKhlwwiPazbwZYIkqQ1Gw3bpjDbALUiuM9hMcbIFadjUSOrlcmghKohQZZJUsa6h3Mgxv8dJqgiCGJa20lN3\/GKe731byqqe1xQql0zp47UpUG5xAkw5MhMnFiKXJV+6ZMlS1uhdSJ8comQ2dDtFCaohO2tTQTFNcl2g18ae8HkZIEmqwy6nmZjN2lmJrIEgaTkCSoI0TGqUiY6w7gMF2fEKUWlc+UetkhDfAWNYcVmpJTOZLN+kdQSxWmHB9HsPh9mDqlKd79hnS5F57LTFyhQql0zp55dCFsTJTp18iRMLmSFMqUS50iWrFKcebaRLWfJkiFI\/bfA2S3I+UdLHe9dkkuqBaCRMywRJUgXOSSTNFEmjZamNIJmJkilIQg6VGuWihOJ9NBci+4M9jPw0EZxxyAQlRwSxOpBitv64aJoq1adJjrYFe0whLfLvh0umZL+8ryw0UqcaccqlKRWm2NinFumSW5SAYvmtRpTgONPNvmTJlFyJJMmHnRzpUps9xqyNthUkQ4YKgjRMaiTy25kUlUprxV3Nbifu5fZjbHyy00ZgxDKkLyRQBEHU4ZWhEVoBuCFGdfLHuFu0tFy50i0lQe7HsyBPn8yfrU6clCBJDJUuhdwjSkC5T8kjSuZUAvaFbmMUruXGkhiSdxyvzPIx05K0Z88efO5zn8P\/+T\/\/B2vXrsUVV1yBvXv34sd+7MeyMVJK7Nq1C\/fccw+OHj2Kyy67DB\/\/+Mdx4YUXjm9HbGEye5HMFKmtIDnkaNjUyBQjW2yaCFFBoBzi4hOPKslpKysimdyEYXQZN4JYvTS6XNuY+iJ5kB\/okgapWCYw1vNrwXLJFcvkxlhmCJlPnmrFiefC1DZdYiHPpgbIRKmf5NMFOBu6LVECirKkxahj7GwSA6YYtZzLcFRmWpIOHjyIG2+8Ea9+9asRxzE++MEPYtu2bfjWt76F9evXAwDuuOMO7Nu3D\/feey\/OP\/98fOQjH8FVV12FJ598Ehs2bBjuic1mMKsxm2W9REaKpMts4xCkWFSnRlY5TSbmstGEyBzjkx+\/LLkFZ1gZmaQwjYKYsVIBQaxUOF85f7kUxChufqxiDE4544FwClaVUGmZKkqRNBKfanHS22YhICFbp0uZLAm1TobqX2+fkkuUfGmSvvCtTpaEwLT6kpiUK+dv6u9973t4yUtegoMHD+Knf\/qnIaXE5s2bsWPHDtx6660AgF6vh\/n5eezduxc33HBDo+0uLS1hbm4OP\/je57HxjLVAr6d+SYN+nhRlywbGsn6eIg0G5dP8hxSkYVIj\/WGQyWhCVFzeTnzqxGZYoSARIQhi2gwrcVWPM2XLxpeGmY8x0yGz1FdIjazEyRyj+5sYN9ZpeUrTpcKykBlnxjG1kzpV0r1KnKmz3\/R9nRoFQd7Mre\/r21GkbneidBwHOhFkoJeFxrL0drcLcI6l53s468xrcOzYMWzcuNH7eg7LTCdJNseOHQMAnHXWWQCAw4cPY3FxEdu2bcvGdLtdXHnllTh06FBjSSrgmn8hbeCuTZHaClI\/qZajhqmR\/gtBmtI0ghDZEuSTH5+8NJGacYiPlCRPBEGMF8bcUtPmmGWKke9xnEsIUU5HfFKl5UgnV2YqZSZRjJvLqxMnFubLmbDSJdEsXdKn7DvLb00SpU4aecXIe5LSNCm7zInuSxJi4oHSipEkKSV27tyJ1772tbjooosAAIuLiwCA+fn5wtj5+Xk89dRT3m31ej30er3s\/tLSUmlMdmabrn+acyDpf4XIm7XrBKmfNEqPtBy5mrDN1MgUIyCVplSA9DJh3VfL3DJkLrc\/1G1lqKm8JGMoqa2cHJQgiFmmUR9TA4JAIGlwQopwzNytxKn8WJdQaZnigRhKnDI5CmRWmtPpUuHMudDfu8RCQA4EmJTl8lunYooAU5REej\/ieVkt\/ZcliSq52X1JE2TFSNJNN92Eb37zm3j44YdL65j17pZSlpaZ7NmzB7t27Wr+5Nnkj+kv20yRgLwXySVIpwaNy2uyL0vlNKCcGvnEyJaiNkJkfjDtD6lPenyS00RcEjGaII36eIIgCB8BH745OE54o8f7vqICRwkuScoJVyZJxvHaTKHM47D5XDL9HmPcEKbEky4ZwuRKl5COl3FarotFnir1E8hQgkVBtSjpf800SSdIHZc4TfYMtxUhSTfffDO+8IUv4KGHHsLZZ5+dLV9YWACgEqVNmzZly48cOVJKl0xuu+027Ny5M7u\/tLSEc845Jx9gp0awSm36XzNFGsStBUkO9P08PZIDXW5TT2OnRmY5zUyMTDHSHw5fOuS6bYqQLT8+6fGJSp3AjHJuAskRQRDLzSA9zgwrS02OU75t+463tlRpmTITKVOS6uSJMUuYBLzpkl2O0+kS+lAHdC4B8LIopbd1WU491hIl3adkpklJ4i+5afSYZWamJUlKiZtvvhkPPPAAHnzwQWzZsqWwfsuWLVhYWMCBAwdwySWXAAD6\/T4OHjyIvXv3erfb7XbR7Xab7UTiONNNixGQS1FTQToVO8troieyklrT1MgnRnXpkEuIzA+m\/QH3feBdH\/EmB4e2vURNTqslCIIYN7HxB2PQsnHb19uk8emX7xhqS5UpO9kYI4VyyZNZtuNcloRJSxAXADP6l7zluFBtQJXgBCCYv09pkKhSHFAUJV2B0WmSlqcgQKHkBuTp0gSZaUm68cYb8elPfxr\/\/b\/\/d2zYsCHrQZqbm8PatWvBGMOOHTuwe\/dubN26FVu3bsXu3buxbt06XHfddaM9uTkXgxDFUpudIgmZC1I\/dp7BJvX8Eb7ymgBEvzo1EgVJyuXGFiOXECWe0pv+QJofTPvD6\/vQumSnTmgESJBGIaFmdWJCBDVf8qcbA9FelHjFBU9UWa683ts4bt1PHGmXq8Rm9kjZ4sQFywRKyvwxWpjqynF63u1ig3exT4mtCYsN3fpyK1qU4vyMOXCmNt7hafjA85Kb2Zc0wbmSZlqS7r77bgDA6173usLyP\/qjP8K73\/1uAMAtt9yCkydPYvv27dlkkvv37x9ujqSqSSPN+64UySdI9hlsfVEqr+n0SCdHOjWqKqdpSTKlSAgGKZlTiEzRcQmRucyWH5eo+GSnSmrafsGLFSAEJC3EamUw4edbCVI2EABvuZ9VP5fwSJRLruzjspYp81vLPI5reaoSJyFkobeJc5k1gjcpx4mBUYbrSGf5TZ6KVUM34BYlIdV3ZweqiVvqUCLIA4rAaFqf8BluK2qepOUimyfp\/\/scNq5fA\/T7ao6k\/gDo9dTcSP2BmgupP8jnRerHqhdJ\/2uW2PpJZf+RXV4Tg6Ic1ZXTbDECVFokZX06pJcXym56eygvs3GJgU9o2kjEckgRSQxBEJrlELE20uR7ftc2XGPN5MkUKXO5liczYTJrAXp5wAUYy0t0jClhMktzPFunzpbLynGBTEtvEryjSnC6uZtF6fxKXJXhWIcX51PqBPlcSp1ATQEQpP9GYfpvpOZH6nbUv5xDRpGaG6kTQUYdoNMBoojmSZo4caxO\/7ev02ai50UyU6S07FYnSLKfl9dknMpRdptlclTVZ1QnRnY65JIhIBcic5mWCpewjFuOZMvSmyamEhxBEEPQJh0Lm5bWrGGsosSmn98lQLYoucYORHGsXmeWArU8meU8s4Rnfj8EXBT6koJAZCU5XY7Tt53lOKFeAF2CM8tvvMvTqWyEEiXd0A0AnaCYKHWQl93MNMksuU0JkqQqkjiP+8xSm92LpPuObEEaJM7+I9nPy2uqD0mJUTJg3nKaeRZaYghUIngmRqYUDSNDPkHyCY9LcnwC0\/bvt3jKCRAlUAQxu0yiNDeomOsorHx+VnEv3bbejiliWlZQL0takgbG8sQoCgVZKa6cPGl5YkxCQJ3Jx4FMmMySnC7HCcGc\/UtZOS4BeFdm5TfeUdWSfKoAUWzoBnJRiplqAM++S5O8N0lPBzBFSJKaYjZsO1IkOUjqBcnoPzLLa8kglaSYe8tp5llophgB6r4WI1uIzC97LT91y7T8tBEel9S0K7U1HloJyQ1BrH4GQ6bQNsPKlv38vMXuFJKhVMSK0sWM\/zef05AqmcuUKUq2PNk9VKY8cciSMJnN4FqEzKkG7P4l5WV5GU6X30S\/3KfEOmlDN4qiVBCjrInbUhMdVCQxEHMwHkPGXJXllhmSJB9pcsSSpFh6c6VI\/fy+KUjqlMhig7Yur4le3nuUDFQyFA+CynKafgPrN7OZGAmo24lktemQXuaSIf1xaio9LrlZjlKbnouMIAhiXDSVrbCu2tOq5KaesyBL6TKXbPmlKp97SDrkSTiSJ2GlTgGTmTDp7xxTmAIusskxXcKkBUKlT6JQfuMRlCCFRr+UFiUpM1GSnJXTJCHLJTeXEE3gLDeSJBe+s9zMuZB0inRqoMpssSjMgaQFSTdo69P7XeW1JFbpURzzQjnN7jPSYqSWsYIYAUqETEmyZQjIhcj8CMfWeFt8XNLjLrW5X842QhT7jy0jQQkTQZy+jFqeGzhaVMPKQ0p5ZbmMlgqPKWCOkptLqhJjcqSASQwSZqRRSp5cyZOdOgkmc2ESEgG3hCkVpSphKpThjPIbIMt9SuD5mW9IlCj1k3xOJZ0m2SW3KFLzJcUcWP7wqABJko1vfiRdagOMBCnOE6R+UjjF32zQtgXJLq\/FmSQF2eRlw4hRIlkpHXIlQy4ZKqdL5ZfGKUZDJEltSmsrUW6Wv1uCIFY+k\/xkL0d5rq4JvJwKFRdkTdeGgOXilY\/Ny2r5Mi1WSnyYEiUrjaqTJyZzaTKFSZfpTGFiTGJgCZOUqtIRhkmhV8kuvwHFPiXe5SpESEUJIc\/6erM0KUnyBm6g\/F08QUiSfOiZtnVipG+bF7M1m7VjURIk3aCt+4\/02Wt2eS1JRSkRHIO0rDasGEn4kyF331HxPlAUn1FKbE1kYZTkiCavIAhi3FRd6HZQ80dbIV3yHJ\/0EFN6AqOXSMMdwmSKlXoulokSkMqTbC5PqtylhEkYCVPQUJgiPZ2AkSoB5fKb7lMqNnQrUcKpGIwzSJ7kaZII09m1w3JwYf47AUiSKmC2HJmXHTH6kWR6mr\/doG33H7nKa3EcQEqgH4cYWA3YZvO1LUaAEhtTjNT69jJUlSypx5RxyY33Gm8t0qBxltvIoQiCMBl3emWX3GL3MAD+kh9jRfnKtmkMt8VKyY8WH2NZS3niDAikzIQpbClMgKp2dNLLQ5jTByi0zKg+JcBq6IZIL2mSGJcwMRu5E\/UAsy8piTHJmhtJkgt7lm0gvwyJFiXdiySkatTWKZJDkFzltSRR\/8VJnh7p20BZjPSyOjFS69vLkLTGuoTHJTtOWap4aZMWfwDMQq92QqZFEDNBMG7DGRKzhahKigAgMAbbKZTrxwlZeZu2XJlSpYVKldFYJk8AwJlbntT\/S4QcqRDlPU4+YeIsL81pYRKQSARDGAggDpEIoW4DhfJbEHr6lNKGbhkKMMZUNcZMk\/Rs3Pq7V\/claUGaUJpEkmSSCHUVYiAVIiPaMy89YqZIp+L8MiMD6ew\/Mstrujk7jjn6cQgBIE6CVJSY+rehGBXXp4Ikh5chPcYUH5cjuETHXtRULoY59X8l9ikRBDEaK+EyKXYfkqvh2yV72qVMQdKCZcqV+VAtVHo\/S\/IkffKktqSEiOXChBphgiVMQmblNilZJhNSAmFYLL+5+pSyhu6+VLNS6jSpn17sVldwdMnNlKI4mViYRJJkwRLL443ZtJ0pUtqsLXoCol\/sPzLLa3Zztu4\/ihMOAYZ+miKZfUZtxai4XmHLkCkY2Tr9o2ontF4Tl\/A06Utqk8KMOk9SQg1KBEEMSeBoRGrT7N10nqSAlWXPPft2WbBMueLIhSrgOh1S2PIEQCU1KMqTEiL1yGGFCVDH\/U76rZEInopTnDV1A4BIeJoo5X1K+ueQsQRLKzLo83RKgERdokR\/\/0ZRPlfhBAUJIElyY8+wLY3bdorUT3uRUkEy+4+qymtxEmTJkU6P9O0mpTRTjGwpkrKcCpkfQ1uGtMz4epKaS1JxYRttaVOGczELpTmCIFYmrgvKtsEsq1XhcimXoLnnSzJv5\/ur23\/0eluezOfV5bmASTDGELJcmFSPk1+YXD1MiWRZmpSI\/LaIw+w2YPYo5dME6G8IFuo0SZ3hxvSZbkmiGrj1ZJOdCZ\/7n0KSVIdZakt\/WYUUKb3UiBakuvKabs4eCF5Ij2LJMRAMPcEN8cmbrn1ipKUIUMtiqd56PhECyme7uSXJeFM7XpZGJbcW5jJK7w8JEkEQozLK1cGChgchl0y5BM01zvQmLVa8IE763zSlseQJKAoUg5KmgjDJvDznFCYpjfXqu0FCtYdkggSGyGjqNstvQjCEkRolEoYgkar8xgU4B1io0iRExkzccQJ0jKAiskpvywxJkoskVme2ZT1JRqktVoJUSpH6yATJPnvN1Zxtp0cDyTAQSpbMM9GqxEhLkRqrpERACYfrtH9bhrQI2eU2oCgeLtlxpkv2mIY1tFELZTQbN0EQo1I7q3YFTQtzgaOf0vW0LukyxUmLlblMb9kWKFueACVQgS7LlYRJ9TaplMktTJIzMCkBcMRSImKq8pFIhkjmyZJu6rbLb4AxTcBANXPLQEJ20hRpkICdGlglt+KLwpJ4ImcwkyTZmIZqXpIkLbVl12iT6XxIA4mkp3qQ4n6xvGbOfaSbs\/uJSo4GghfSo4FQktRUjEyxMcVIvVHLIgT4e4\/0\/ULaZLwkLtlxvTltWZEN38KjltqoH4kgiFHxXauyCU3LbRDSuJiIwiVnzrKcIVj6IaZM6X2wBcqWJ0AJVJBKkU+YdF9TXpYrC5OERMgEwAEpeJYqmcmSlAwCKJTfhGBZuhT0JBiXYB3V38vCBIgDIJLAIE4bt\/Vf+CI9wy0lsRq3lgGSJB+6zCYF0OurX9KpQSFFypq10zKbr7yWJUlmcuRIj\/T9KjHSUgS4xShJr4njSoVsGcqXl0XKFB6X7LjTpeK4pu7TNHFyISbytwRBEKsdPsosSkmxB6j6eYrHLJecOcttxgE1tAWIs6zR2xYopzylzdsBYxXClE9MXCrLpcIUSyBiHImUiLgspUqlpm4hCuU3AIh7Ql0YNzLSpH4CdALVwG1P4gykcyV1q1\/oMUGSZBLH6TujnCBlPUlmipQ2a+smbbu81iY96qW3BxViVJUWFcYJvwiZH8+8rCfTMfn2NC7RsaXGJSpN0p02AVAsR4ybCIIghiBkDWOi9BBVNWO3xm7WLgmaU7pkJkC9JN9GwFFIqEoCZSdQSSpFXIlTwN3CBJEnTu6yXCpCXEL\/L2QCCWOFXiUhGRJuNXWncyoJkYAHAsFAQgxk2sQtwCI1JQCiIE+TsrkKjal5JgBJko09kaRuHhMSMhFqdu00Rconi+To90IMBkEpParqPVKypEUJGAigl96uEiOfFKnbsjINskXIlihTeEpnqzmkxiUviSfdaZP6JMssRZRAEcTqZaRUyMZxqAiqxMka79uXwLG8IGQe6cp6jvRM25kEKYlqKlCBZOBQiZNKm9TjfdLkKstJLlMZQpYqRVxCyHKvkkqVVFO3TpUAIB4IBKEA70uwAGCRhOykZ7mZ\/8VJHh7Fy19m05AkubCnANCltn6Szq6tjMRMkfr9EKfisJAeuc5cG2SJkZYllsmRKrnlUgSglRips+BkYxEq9CulN7X02KJjS4VLYpyJEpq9mUeVloTVzX1LEARRJpBDfA02FKHScyEoLSs8VjoETJa3rwUrZBwQuUgV+o7AjETKJVBKnkKuZsMOeFGaqlImLUwS6o\/3kKOQKjGombnVfXeqpC9rEgQCnEswHoOFqpFb9gXkqbhYchMy\/16eTKVNvcaTe6oVRpL2IyXG6f8iPeU\/lkhOAslJ1azd7wfoDUL0BmGr9GggVT16IFWKNBBAX7BKKQL8YpRIma2zRchMgWwRyseKwn01piw5JWFyCErcQI5ki5P3Y5IggiCWgwZ+E7YQKdZgMoHQkqWCqKWHV5d4mZLFwXKpMkSqIFBQp\/VnjzdSKJUkScSCKRkSSOdFKqdMWpjUz6e2E3H1\/TJgQCQZYob0u4whMkpwKmXy9yoF\/RBBIBAMOIKehIgkWCSBdVJ9wcVGRUeX22gKgCmSds8DKEweKQfG5JHp5Ud0s\/ZgoNKjU2mKNEi7\/NukR2qMejM1TYtsKTKFqKkIaQnK7hsyYouOS2pseREV4pO0uLBAG4FqS8wmfYEDgiAmTSjHN\/lg3\/KVJiKkCRzTQ\/cAcHMb6fZdMmY\/lxYsLVbc6DnSEtVEoJhMEyJLmABPymT1MsWZEKnvooQBoWTOElxVqhQGCfr9EGEokAxUkqTTJEQJ0EnUd7IOLjQTKrmRJJkIAQTIIz1tr6cG6uJ7AzUvUnJSnfI\/SPuQTsUh+kmAXhJ4S2uJrE6PBkIqYRpCjLQUJdDLmomQKUFaSrT02LJjC45bmMrykchmQjKqFLURMGpHIojVT6\/FWJfItKGpNAWs\/DymzGkZs7dn7l8mWCyXKj3eFqiiIJUFioMhAEMoOBhzS1NVyhRxiSRtDxFcHcV9JThfqhQNQnAAYT9t4k7TJN6XYB19wlQMrJXZGW7ZNABxjNGmAa1n1UjSJz7xCfzu7\/4unn32WVx44YW488478VM\/9VPDb9AUJSEh+3qeJCNFijl6fdWHdCoOVJLUsrSm5EiqZRKIU1lqK0UCEgkSrwj5JEjLRb4+lw1bcFwiU5ATWS07zYVp+f5CSCSV7QjidCFgzb7i2mbLzNFb5N+HXHAG8qSxDfXlbsqcS9ZKwpRuL5RRSar043laaquSKC4ZAgSpKPEskSpJU8KMJIkVUqaBZIgEEHOJAQciztDhEhF3l+C6nCGWEgMmEEmGtWA4lagz3QaDAGEoEKZpkugJsDUcrJ8AXSu4AOjstjZ85jOfwY4dO\/CJT3wCr3nNa\/B7v\/d7uPrqq\/Gtb30L5557bruNJXFxToYkvQxJrFIkdRFblSL1+6oHSQvS8wkfSY4GQqKftEuKtBglLEacjohZ7JUgIBchLS3SHGuJjktsbIlxiYeoESLZ4uy1um0R7Wnz+hMrD9b0tPVVzjiPHNyRAvmoe\/1d2wpYWNhfl4gFLMpEyxaj7L4lUaZkmRIVyhAMHCECJU0oS1MAVijNAcikKRJKlJI0MepA\/XE\/EM1lKZEMIRPoJAJRHCIcCIT9BEFPQnbTBu7YONONepKGY9++ffj1X\/91\/MZv\/AYA4M4778Rf\/MVf4O6778aePXuG37CO+foJ5CCdPHKQp0hxwtEbhKkgBTiZBCPJ0aBFWuSSogSD9H6FBCH\/gszX59KjhccUE9cXqktc7HFtUhspR0uPBCVEBEEMCW+UOJ30rmGsWbKUJ1tGopQKlXlEtSXKli69XouVFqpWEoUIDBwBomppkqxYmkulacAYIsnV9xxHLkcB0tIaS0tx\/n6lWHB0eYAoFoi4QCfmiAcBwoGaO4n3pTqjfJCADWJMYoZtmxUvSf1+H1\/96lfxgQ98oLB827ZtOHToUPsNalPVE1fpa7X1hZo8spenSKfiEM+n\/51MAjwXc6ccJTJvyh6IdCaBVJRiITGQEgMhEAuJnkyGkqJEqtsJBiUJAnIRsiVIj7XvuwTHJTK2nPhkpU1yIZdJeCg9IYjTj+VK1VjDUp75\/PaflraccadEWWfCsTBbr7etpcm+75MoBo44lSS9fBhp6ooAA+6TpWJzdyRVj1PIgW46m\/eASURxgIirZu0wSLI0KUxPkpJ9ARZb5bY4SWfdXn5WvCT98z\/\/M5Ikwfz8fGH5\/Pw8FhcXnY\/p9Xro9fJK8LFjxwAAx48dBxMx2LETwNIJ4LlTkEsnIY+dQnJ8gPiERO85jlMnGZ47GWKpl+C5QYylGDg2kDgRD9A3zliLLTkaFORILxeIpURfJhjIBAPEqRQlSJxSJBFjAGFIkSqRyVSUEiQyzmRFi4GskCAtPyL711xXFAuXwLiTpjrjb\/4XwXJJ00pk1MSNIJrSNB05XWgqRYrq1447XluXzNnPaY7RQqW3pX9fOq0yx7KSRIUIWKi0h0VgkiFIJYmzCKGMsgkobWkKECAQqiwXIUQkAnRYgJAxRJwjZEqEorRHKQrU7TCdNiBkEhFTjd3dQF3KZCATzCUx+lLglBA4Awm6iNHlAiHn4IFUl1VhDAgDgHFIHkIiwlL688pluobnipckDbOmJZVSlpZp9uzZg127dpWWn3fxDcuybwRBECsNum50kXG+HpRpj5\/vf\/\/7mJubG\/t2V7wkvehFL0IQBKXU6MiRI6V0SXPbbbdh586d2f0f\/vCHOO+88\/D0008vy4t8OrG0tIRzzjkHzzzzDDZu3Djt3Vmx0Os4Pui1HB\/0Wo4Heh3Hx7Fjx3DuuefirLPOWpbtr3hJ6nQ6uPTSS3HgwAH8wi\/8Qrb8wIEDuPbaa52P6Xa76HbL85rPzc3RG3ZMbNy4kV7LMUCv4\/ig13J80Gs5Huh1HB+cL0\/v2YqXJADYuXMn3vWud+FVr3oVLr\/8ctxzzz14+umn8Z73vGfau0YQBEEQxAplVUjSO97xDnz\/+9\/Hhz\/8YTz77LO46KKL8MUvfhHnnXfetHeNIAiCIIgVyqqQJADYvn07tm\/fPtRju90uPvShDzlLcEQ76LUcD\/Q6jg96LccHvZbjgV7H8bHcryWTy3XeHEEQBEEQxAqG5q4nCIIgCIJwQJJEEARBEAThgCSJIAiCIAjCAUkSQRAEQRCEg9Nekj7xiU9gy5YtWLNmDS699FL89V\/\/9bR3aea5\/fbbwRgr\/LewsJCtl1Li9ttvx+bNm7F27Vq87nWvwxNPPDHFPZ4NHnroIbzlLW\/B5s2bwRjD5z\/\/+cL6Jq9br9fDzTffjBe96EVYv349fv7nfx7\/+I\/\/OMGfYjaoey3f\/e53l96j\/+pf\/avCGHot1SWaXv3qV2PDhg14yUtegre+9a148sknC2PofdmMJq8lvS+bcffdd+OVr3xlNtnm5Zdfji996UvZ+km+J09rSfrMZz6DHTt24IMf\/CAee+wx\/NRP\/RSuvvpqPP3009PetZnnwgsvxLPPPpv99\/jjj2fr7rjjDuzbtw933XUXHnnkESwsLOCqq67C8ePHp7jH0+fEiRO4+OKLcddddznXN3ndduzYgQceeAD3338\/Hn74YTz33HO45pprkCSn14Vv615LAPjZn\/3Zwnv0i1\/8YmE9vZbAwYMHceONN+Jv\/uZvcODAAcRxjG3btuHEiRPZGHpfNqPJawnQ+7IJZ599Nj760Y\/i0UcfxaOPPoo3vOENuPbaazMRmuh7Up7G\/ORP\/qR8z3veU1h2wQUXyA984ANT2qOVwYc+9CF58cUXO9cJIeTCwoL86Ec\/mi07deqUnJubk5\/85CcntIezDwD5wAMPZPebvG4\/\/OEPZRRF8v7778\/GfPe735Wcc\/k\/\/sf\/mNi+zxr2aymllNdff7289tprvY+h19LNkSNHJAB58OBBKSW9L0fBfi2lpPflKJx55pnyD\/7gDyb+njxtk6R+v4+vfvWr2LZtW2H5tm3bcOjQoSnt1crh29\/+NjZv3owtW7bgl37pl\/Cd73wHAHD48GEsLi4WXtdut4srr7ySXtcKmrxuX\/3qVzEYDApjNm\/ejIsuuoheWwcPPvggXvKSl+D888\/Hb\/7mb+LIkSPZOnot3Rw7dgwAsouF0vtyeOzXUkPvy3YkSYL7778fJ06cwOWXXz7x9+RpK0n\/\/M\/\/jCRJMD8\/X1g+Pz+PxcXFKe3VyuCyyy7Df\/kv\/wV\/8Rd\/gd\/\/\/d\/H4uIirrjiCnz\/+9\/PXjt6XdvR5HVbXFxEp9PBmWee6R1DKK6++mr88R\/\/Mf7qr\/4K\/\/E\/\/kc88sgjeMMb3oBerweAXksXUkrs3LkTr33ta3HRRRcBoPflsLheS4Del214\/PHHccYZZ6Db7eI973kPHnjgAbz85S+f+Hty1VyWZFgYY4X7UsrSMqLI1Vdfnd1+xStegcsvvxw\/+qM\/ivvuuy9rQqTXdTiGed3otS3zjne8I7t90UUX4VWvehXOO+88\/Pmf\/zne9ra3eR93Or+WN910E775zW\/i4YcfLq2j92U7fK8lvS+b82M\/9mP4+te\/jh\/+8If47Gc\/i+uvvx4HDx7M1k\/qPXnaJkkvetGLEARBySqPHDlSMlSimvXr1+MVr3gFvv3tb2dnudHr2o4mr9vCwgL6\/T6OHj3qHUO42bRpE8477zx8+9vfBkCvpc3NN9+ML3zhC\/jyl7+Ms88+O1tO78v2+F5LF\/S+9NPpdPCyl70Mr3rVq7Bnzx5cfPHF+E\/\/6T9N\/D152kpSp9PBpZdeigMHDhSWHzhwAFdcccWU9mpl0uv18Hd\/93fYtGkTtmzZgoWFhcLr2u\/3cfDgQXpdK2jyul166aWIoqgw5tlnn8Xf\/u3f0mtbw\/e\/\/30888wz2LRpEwB6LTVSStx000343Oc+h7\/6q7\/Cli1bCuvpfdmcutfSBb0vmyOlRK\/Xm\/x7cshG81XB\/fffL6Mokn\/4h38ov\/Wtb8kdO3bI9evXy3\/4h3+Y9q7NNO9\/\/\/vlgw8+KL\/zne\/Iv\/mbv5HXXHON3LBhQ\/a6ffSjH5Vzc3Pyc5\/7nHz88cflO9\/5Trlp0ya5tLQ05T2fLsePH5ePPfaYfOyxxyQAuW\/fPvnYY4\/Jp556SkrZ7HV7z3veI88++2z5l3\/5l\/JrX\/uafMMb3iAvvvhiGcfxtH6sqVD1Wh4\/fly+\/\/3vl4cOHZKHDx+WX\/7yl+Xll18uf+RHfoReS4t\/\/a\/\/tZybm5MPPvigfPbZZ7P\/nn\/++WwMvS+bUfda0vuyObfddpt86KGH5OHDh+U3v\/lN+du\/\/duScy73798vpZzse\/K0liQppfz4xz8uzzvvPNnpdOS\/\/Jf\/snC6JuHmHe94h9y0aZOMokhu3rxZvu1tb5NPPPFEtl4IIT\/0oQ\/JhYUF2e125U\/\/9E\/Lxx9\/fIp7PBt8+ctflgBK\/11\/\/fVSymav28mTJ+VNN90kzzrrLLl27Vp5zTXXyKeffnoKP810qXotn3\/+eblt2zb54he\/WEZRJM8991x5\/fXXl14nei2l8zUEIP\/oj\/4oG0Pvy2bUvZb0vmzOr\/3ar2Xfyy9+8YvlG9\/4xkyQpJzse5JJKWW77IkgCIIgCGL1c9r2JBEEQRAEQVRBkkQQBEEQBOGAJIkgCIIgCMIBSRJBEARBEIQDkiSCIAiCIAgHJEkEQRAEQRAOSJIIgiAIgiAckCQRBEEQBEE4IEkiCIIgCIJwQJJEEARBEAThgCSJIIhVx\/e+9z0sLCxg9+7d2bL\/\/b\/\/NzqdDvbv3z\/FPSMIYiVB124jCGJV8sUvfhFvfetbcejQIVxwwQW45JJL8OY3vxl33nnntHeNIIgVAkkSQRCrlhtvvBF\/+Zd\/iVe\/+tX4xje+gUceeQRr1qyZ9m4RBLFCIEkiCGLVcvLkSVx00UV45pln8Oijj+KVr3zltHeJIIgVBPUkEQSxavnOd76Df\/qnf4IQAk899dS0d4cgiBUGJUkEQaxK+v0+fvInfxI\/8RM\/gQsuuAD79u3D448\/jvn5+WnvGkEQKwSSJIIgViW\/9Vu\/hT\/90z\/FN77xDZxxxhl4\/etfjw0bNuDP\/uzPpr1rBEGsEKjcRhDEquPBBx\/EnXfeiU996lPYuHEjOOf41Kc+hYcffhh33333tHePIIgVAiVJBEEQBEEQDihJIgiCIAiCcECSRBAEQRAE4YAkiSAIgiAIwgFJEkEQBEEQhAOSJIIgCIIgCAckSQRBEARBEA5IkgiCIAiCIByQJBEEQRAEQTggSSIIgiAIgnBAkkQQBEEQBOGAJIkgCIIgCMIBSRJBEARBEISD\/x\/yg5u9iiDQvgAAAABJRU5ErkJggg==", "text\/plain": "<Figure size 640x480 with 1 Axes>"}, "metadata": {}, "output_type": "display_data"}]}}, "55226787171c4752aa32a82a887b8b98": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "5576cb6864c246b5b1be231eb6fff645": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "57644913df96434395a7d95953ca96ed": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "PlayModel", "state": {"description": "step", "layout": "IPY_MODEL_a37fd745c2154e37a420c30c21efe3c9", "max": 1999, "style": "IPY_MODEL_ab8b9c40294846d9820000b7038b3311", "value": 792}}, "5a437050674241259e1208543a3a72f0": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "5b00930d74a04c2d8edce165ad2f10fb": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "5d52cc6b2314438da6e9896470a62a61": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "5e9038896edd4da0abab5fadd1a41130": {"model_module": "@jupyter-widgets\/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": {"layout": "IPY_MODEL_c249b3bb2eff444bbbec6fd556309218", "outputs": [{"data": {"image\/png": "iVBORw0KGgoAAAANSUhEUgAAAkkAAADqCAYAAAC2l9FdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy\/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACdm0lEQVR4nO2dfbAlR3nen545916tZGkt8bGrDULIsQgG8SFLWOHDlgzWOgRhiKpsDISIOJUSkSAsIsYoJEFQ8QopZaEkCiKQFMg4iigby6ESbEsug4hKIZZkAUKkMC4UIWNtbYzFroDVvffMdP7o6Zm3e97+mplz77lLP1u39pyZnu6eOXNmfud53+4RUkqJrKysrKysrKwsQ8V2dyArKysrKysraxmVISkrKysrKysri1GGpKysrKysrKwsRhmSsrKysrKysrIYZUjKysrKysrKymKUISkrKysrKysri1GGpKysrKysrKwsRhmSsrKysrKysrIYZUjKysrKysrKymKUISkrKysrKysri9G2QtIXvvAFvOY1r8G+ffsghMDv\/d7vGeullLjmmmuwb98+7Nq1CxdddBEeeugho8z6+jre\/va346lPfSpOOukk\/MIv\/AL+4i\/+Ygv3IisrKysrK+t41LZC0ve\/\/3288IUvxE033cSuv\/7663HDDTfgpptuwr333ou9e\/fi4osvxhNPPNGWOXDgAG6\/\/XbcdtttuPvuu\/G9730Pl1xyCaqq2qrdyMrKysrKyjoOJZblAbdCCNx+++143eteB0C5SPv27cOBAwfwa7\/2awCUa7Rnzx5cd911uPzyy3HkyBE87WlPwyc\/+Um8\/vWvBwD85V\/+Jc444wx89rOfxc\/\/\/M9v1+5kZWVlZWVl7XDNtrsDLj388MM4dOgQ9u\/f3y5bW1vDhRdeiHvuuQeXX3457r\/\/fmxubhpl9u3bh3POOQf33HOPE5LW19exvr7evq\/rGn\/913+NpzzlKRBCLG6nsrKysrKysiaTlBJPPPEE9u3bh6KYPji2tJB06NAhAMCePXuM5Xv27MEjjzzSllldXcWpp57aK6O353Tttdfi\/e9\/\/8Q9zsrKysrKytoOPfroo3jGM54xeb1LC0latrMjpQy6PaEyV199Na666qr2\/ZEjR\/DMZz4T\/\/cbn8QpMwGxvg6sb0A8eQx4cgN48klgfQPY2AR+sAGsbwLrc8hjm5Drc8hjc9TrNepjEnITqCug3gRQC1SbAnUtUM8LVPMCVSUwr0rUlcC8LlFJgXlVYLMuUNUC87pAJQUqWaCWwGZdQAKoIJrl6m9eAxIC81qgBlBJ9TeXQC0FZPNaAk093esaAnWzrpIStQTmNVA369HUVTfHspLNdk1gVgKoakBCQsqujhqyWy8lakjUzf+AWq+ju3O1tl2uy1SigoRE3ayrxLx9rf\/X21WYq+VCr69Qy02jjETVlK2ac6PLVautMgBQyblRTqKLRsumbvW6Zl\/rOgGgrkl5mFFtug0A1E27rvX2e7Vs3lum2uqXVeVdkfVw\/p6rLbMQ325wMyxFxH+0BAa40CLul68QMZfq0rEt3y\/hSEm12xJMH+1lhWcb+7gUxUr3mvTB2MZ4vdKrRwi1ryVpVzT7r+vUZQCgbNYJlO1+F029hd5OFk3ZWVO2aOvTdZZy1tUPgVLqNgWKpn8CBWZtH4Sxrmjel0LtTbccaplo6i2g1gv1p\/ZV16deQwAzAaNsW68ACkiUQi9X\/wuobYQACiHV9u2fbP8vBDATdbOtRAkJAWClUMtWihoCErOiRllIrBQ1ZmWNUkjMigpFKTErK5SlRDmrUcxqFIVEuSIhSoliFShmgJgBxa4CYq2AWCshdq1ArM2AXSvA2gpwwgpwwhqwtgqsrgInngC5ugbsav4\/YQ1H1ys868xfwsknn4xFaGkhae\/evQCUW3T66ae3yw8fPty6S3v37sXGxgYef\/xxw006fPgwXvrSlzrrXltbw9raWm\/5KSefiFNWS4hjJbBaQqwWwKwAVgpgdQYcexIoCmClBGabkEUBWZbAygz19yrURQ05B+QGUK8qUJIzBUpVUaAuC8znBepaYD4vMa8KVHWBzaIDpM26UJAD0bzuQGkuGVAqBTYNUBKYN\/\/boKRhRwJqGwpKRQc\/dfN\/1dy7OFiShURV6\/V9WNLvIdDCEgBUQgHRLAhLas0KFHhUogEiAkwzUGBSQFIXNWoNRgSYSjQw1FxwKszVsgaGdL2lWOvAioCBlBUgVgwAqRloKsj7slwx6gYIODX90PUVzVcxDZ5mjuW0PNnearOTeXPl6urfpNMGRvgga1CAeyCQRSsSXqKri4IcKh54zDrdfYwFIF9d3DIfDHHtpgKRBhe7PgN4hIYYE4pouRJ9eNJ1lWKFAaMVQJhgRP9v4UgosCnlrOmvgh693QxFC6VFg2S0XNmsE009FI6KBo5UX0ULSDYcCaEhqA9IFHK65R0grRQKnoQGLAJGM9EHpBUhUQgekFYMQKpQComVskJRFg0gFShnNcpZDSEaQJpJFCtAUQJiFSjWBMQJBYoTCohdK8AJM4iVEjhpTd1z11aBE1aBXSc0r9cgd50ArJ0AubYGnHACsD5vjuliUmWWFpLOOuss7N27F3feeSfOPfdcAMDGxgbuuusuXHfddQCA8847DysrK7jzzjvxS7\/0SwCAxx57DF\/96ldx\/fXXD2+cxjWLonsviuasa+BpVkDMCsh5DbEqIOZCEcQMEBIoVtSNX30d1UV9BmA+LzCb2TeZoi2j4WilqLFZF+3\/M2H94i4E5rXESqFgSH0NZPu\/hDpxpAQ2yWaqbtmAk4CAwBzqfam7Uah9kI2zVAuBsvllUjVulSiaVmqBWkiUEN16qC+z3r4QQgGQBEqIFpZWUELKAnPUKFCjgC43Qwk0cFSgkKuoG9ipxBwFigY+igaY1tTNX26qdaJGIUoDmASKFhBmKBtomjXApD4lBU1NnaLsXCYxQyXn7QVXygqlUKAtUbd3eg1OQhQtbJToXhfFWnM2WDBUd9u1dQIoxWrTXlOeXAcoQNEbDYUcYW9vVtGsMwHGvvHxzlT\/BuoCNVWn66Y\/cBTq0qYOhuHGlg922jIRA5FTAMi3PARCXH8oDAEmuNh1uKCI1umDIlq\/6RaZ5Wh9JeMalVgxynFgpN9rx0fBUgdBU8BRu03hhiO1D31AKi33yAaklcJyjyYEpEJIlEIBUAHlTAkBlEWt2iokhJBOQBIzqPuMtsOKppOz5p47K9Vf2XzGsxKwQWgLcoi3FZK+973v4c\/\/\/M\/b9w8\/\/DC+9KUv4bTTTsMzn\/lMHDhwAAcPHsTZZ5+Ns88+GwcPHsSJJ56IN77xjQCA3bt34x\/9o3+Ed73rXXjKU56C0047Df\/sn\/0zPP\/5z8fP\/dzPjeuc\/sC0yuYDq0oVmyoKiLKA1Gd0IdSHDQBQJ0292VRRNHxVqnBTUSinRRQSpaxRS4GyqCFlCdGciLUUBiCFQGkmTEACBOYACilRC4EVQL0XXfhN2biq7AwCUij3RxRqF9FYuhqWKijHqjTCIxqWtAslmwuEBKT6tmpYKiFQabeIvhcwYKmExhSJQq6ghmzAqGyW8cBUAy0slVK5SxwwASY0tcAEGNBEgQkAC03qCJStI6WcKBNoarnZwQ8BJ\/o+FZ5UW6vtawNQ2nbDEKXWrRrve+sBaz3vCrluuq7wn1K6Y+ODsSkVAy9J9SXua8h9CvUvxgnyleX6mwJD9vsYIAL8ITRa3oYiWm8pqIPVd41iwEj9HwdHbTkIFBSWGDhS\/TPdIwpHan28e0QByRteg2yhqYgEpJVCQkCygERDbWUTbpvNKhSFxGxWoyiVi1SuqHuKEOo+KGbN\/6WAWC3UfVPfQwvRmRLk3ooZ8+NjAUnanLYVku677z787M\/+bPte5wlddtll+MQnPoF3v\/vdOHbsGK644go8\/vjjuOCCC3DHHXcYsccPfehDmM1m+KVf+iUcO3YMr3zlK\/GJT3wCZZn+i45VC0Zz80PTf6slRC2BqoacNQTSnAj6I6w3JPka6wt8AR30WUGl2ijVjXazLpoTuo4GJRXOMkFJNOAzlxIVhHKxZPcLo5LdF0aH38oGtmYEfFTITP1GLqFgSYGP7EJyUqAsFCBVdQdGlexgSQMUhaUCqu8mLEnMm7bacFQDSx0Y8cDEuUs2MKlDNtxlUp+icpoAtGVVXabbBLjBCcBgeALMnKchENXWE3KSAlDFlTHKO9dE5jrZ9U0ML1MqPawWvz+hci4Acm3rgjYbhIA0GFJ94cNmqmzfJVJl+k5Rr3yiW9Rt13eNYsBIv\/flG6n6h8OROl7+0Jqqd3x4bUpAKlrXSKr\/G+eoKCREIVGUDRwV6PKQVhpIWlGmgijUQRJNZMa4tzKSsxlQznhoWpCWZp6k7dTRo0exe\/du\/PWhT6ucpPV1YP1JiCfXgc1NlbT9pErmVgncc\/W3vgn55FwlcT85h1yvIOcScqOG3JRdflKTyC3nTX7SvEBdOfKT6gKycZGkRHqOErqcJB0WU2UVtNQQRhI3zVOqyXY6v0ifHDpXqdauEknsBmDmK0G2rpI+u3R9ALNcJ3ZrWGreK1gyk7VpEjjQ5S6pZV2yN33fT\/ju4IImfav+0GRrJrEbVp6SrofACZcIbpen9bd1yE3Yikng5gAKMCHK1WaovV6dCVAzleOzVc5RSFPAWWodPvAJ1ZcCQUAfhLj6QzBktxvjEtltc1BEy8e4RWrbYeE0tUwY\/08FR205R2hNrU9zj2xAKgUfXtOAtCIAMSLEpgHJzEPqErWLQpouEhNmEyudiyTWSogTZsDarPl\/xcxHWlvt8pHW1oA1lbAtV1aBtTUcfXITp516CY4cOYJTTjkFU2tpc5K2XeUMclZBVFVztjVxUnqRKAqIQrQhN9E6SULZICQ\/yRd2s\/OTOPdIuTzKJYkNvRUQ2IRELQVmAm34baVokrrJprrb2onSLpSGmzZXqXGVZtopYkJwtRSGE9U6SMLjLDVJ3i5nCehCccaNnuQuhcJxtsMEICksB4ANzQEg4Tm07QD9EJ2qswvTAabjBHv\/hAlPNNdJy3af2tPB40IBPEQZYTlmO6c7xYn5MZgCWVyfdpJCgMNpivykFAhytcmH6tzukNomDojsvoSgiLZlu0WAGUazy6eE0\/R7CkYAFgZHgN890kcoBpBWdEoP\/PlHyrjhAalMACRfHhIHSL0wWyGaZZ1z1Iba7HykLQqruZQhyZb+gObz\/nI7LwlVEy\/tErjVe7RhN+hY7Ew5I2X7Pe7CblWFXn5SxYBSt12BWSExr4UXlOaQWIFKqq6axG6apzTrNmHzlGj4rZawwKcLwenEbgVOdBScGYIbCktokr5nzcWQhuJ0orcrHIfm4ofGXbKBCegurjFhOXUU06FJfXIMOOntaP5QCJ4IfNgApbZLgyjaN5dCQKUVcqpKJlTH9W0naQzExeYpucCnXe+pJyVxO+QMqe3cMNRtk+YS2dv4wmhAH4xoeRuMABhD92NcI6CfjK3aGw5Hqu60xGwKR2r7DpBS8484QKL\/zwKApPsmhFoWFWYTjTFghdkwayvjQ212uE3D0zYAU4akkOwPhvsgRfeedZNWgWJDFa03JYpSjWDWJ1ZdN4nbdYlCQ08DSqWoUYEHJRTAvG6+ZBSWLFAqGhiheUqbdQdKXJ5Sl9sEr6sEgS6xm4yC69TA1khY0se5GxHXd5foyDhVvu8uAXA6TEA\/8RuA12VSe2hCkzp6JE8pEpza7dpD14cnO2Tncp+AfvjOBVGqb8RBYtanAJUtDrBspYBGCMSmUmqidUgh0OmVD7Q\/LHGb7wO3r9yIRBuIfA6RXUfIJeraGBZGo681ANFlriRsWhd1jfR6OlKtXTYCjlS58e4RB0il4POPNCCtNNt3oCVZQCqFAqRCu0samggg0TCbPZqtKCVQSAVGAq1hgEJ1VMwExErRjhKHHtWmR7kB3T3Wzj\/aYlDKkOQT\/TBsd0llrSkXqZbdKLdaf7DkB\/9mWthtXjXtFg0M1QqUSsM16kBJJQcpWlHuj+pfLdWJvwkYoFRL0UwboKfxEy0oGbsvdB6R6SoBMEa06RCcdpUg+ondU8GSTvq2gUl\/MnQaAae7BLQg1QcmXYsZloM0gUkdHxOagDS3SbVvg08AnqyQXXd0TfcJ6ABKbc8nbnN5UL6RcKrP5kUq5AJRwGrb3SLQ2S6FAIdTVKgtmLwdD0GqPj4BdgwMtXVEQBEHRAAPRXRbHxiZ64S1rg9HHBipdqeDI1VPH47augTvHumvqg+QVjRkBRK0dRK2C5BmhWwBSYfeVpowmuEcEXDSYTY6ms12kXxhNu0iGaE2oLlBWvdfMtpcbmEIPkMSFR3yb39AVdUt1x9QawHWXcitlu1UABJwht2om1TOFPDQsBuaBG4KSiiKNkqnTus+KK0UEpu1\/gKqfqxANqPc9DIzT6mEmqGcm09Jh98UyDS5Sk0PqKuk+dA3t1JzkAfDkp5ryXCXAG\/uUgww2TlMAHouE5fHpMupPvDgFHSbgJ7jBPDwRMGCdZ5oXREQBXhAqtuwFQdUAH\/jDoGTDVop2y6LRoXZErZ1gU9bl+dYxkJQV1e\/fAiIfGEzu39DoYj2ww6jmesEs26ca6T6PQ0cqXJ8aE1t53ePdH2++Y80INEEbRcgFU2bs0Iv6wOSngupLLp1s9IdZqOzanMukg6zGdYafa3zkYDmfkvvy9Yv+S1QhqSQ9Aekk7eBLi+pJvYL\/dBroe5VEUnc5axGNS+MsFtHPQBqBWFSlgBqQtBduVoWKl\/IA0q1DCd00\/mUjEMAtGDkc5VoYjd1lXRiN4WlWjYXn0I2dBWGpbYLTadc7hLNXQIUXlDZwKRLqXVdWM6Xx2S4TEDrNLXlA9CkdqEw6jAcJyDCder6bTszvbwnWqdrniMHSLXtc6E9lyLgyrmpByC2EqCmThgPwU6v\/YAb5Z6gUymUK0TFj2zzu0NcfTGhMyAOimi\/hoIRfR3KNQJ4OKIQpMr0ockHR6pcvHuk6vG7Rz5AWika+IkAJPUYkQ6QVDnZhu1KoeZCKotacQ7JQ+ImjbTDbEEXSQMTDbW1BErOLS7ENtsafMmQxEiK5uvAUWtZAvOKfJBmyE27SagaQAokcVebohd20\/lJZTOpZCEFZmWFeVViVtSYN7lJdeOuqMRrlai3GQFKNKF7s+6Dkp3QDZiuEtqLDu8qQag\/6ipRWKJ1dyPh4mBp1jheNBQH3S2tQO4S1XBgUu\/GQhOQDk6A6ToB6QAFMC6U3UYApgA3UBl9E2a4bVRO0db\/kBysITlNIfAB3C5Q1248CLnaDMGQWuYGItVeGIrsergwGjANGAHwwhHnGtGyHBwBGnL8cKTqNeGo29btHql9iAMkbgQbBSRjFBsU8MyauZBK0eUilUIqMBLdXEgK5tSkkUVJwm6eZG09o7bXRaKhNn3wjP+7c0BqKMo5SUuo9gMs0I5oA5oP2gy5tTQRcJOKFXcSN6BOPNQCK2WFzapEIYUqA9F+OfrTBMjmyypbUKJhLsAEpcIo0x\/5Zucp6XwnV66SPQLOcJWA3ig4fQg5WKqb\/Kt29m5AwRJgrIsJxQFo3aUpgIkPy6l3qdCkjkEaOKn6GafIA1AABzQ8RLVthGCKtKn6HDe8PxWydpJiIMdWCHoAN\/hQpUAQ0AchV1sc7PmACJgOiujymFAarX9G6ksNqenlNKym19lwpOoiv5sFD0dtOZhwpOu3AYnCkd7WBiTfCLZuIshuUkgKSHq5TtZWsCRREFdpVlZtndo5aieQbB5e60vW9rpI7QesoUnbcTYwbS0U2cqQ5FLzwcjZTM2VZEyV3nz6s2YqACvkFuMmGf8XMNykum6cI5RAraCnBnpTAxTN6ANuDiUNSnrUm4DEXN8UpXvkm0ry7oOShhk9vJ+6SrWEcniEewRcLRVclOhGwblgychXEsQ9auovmjaHhOKA4cDE5TEBw6CJ5jW12wXACejDE5i+swAF9MJ3bV8CYTaQm40v4Xpm3Yy9cEX65FIsdG21YqDGpxjg0QqPcAuE3JhLvKv9ITAEmECk2pwGitTracBI9csNR5xrpNepuuLhSNXDh9a67Xn3SNdJAYnCka6vS8Z2A9KsUOU4QFKX5c5lcg3113WuNCPYRBtaQxtm8yVre10kGmrTO67zkWhqC9C9L7ceWTIkxYh+YHqEm07mVn5kF3KLdJMwhzuJu5mJuyyaUW1NIrfqizk1ADfiTc+hZIKSwAw1pBDNI0h4UFqBOUXAilAhM85V0vFrPVO37SqVRQMQAVgypwwAWofKgiWgu9AZ7pJICMUBg4FJbdvduMdAExAHTgCS4QnwA5RazkNUWx8DU2rfQkBFFQdXLtnQZSsKwgYoBWJilTrabQj8GNsngBDQhyHA7w6pPoTnVJoCiujyoWAEIDqkptfb60LD+VXZPhy1yxPcI11vKP8oNAeSC5DsuZC4of72SDZRWMP9SZjNNeTf6yLRUJs+uDQfyQYlqi10lzIk2ZrNOhAqZyr\/CCBQVJh5SdQSLOp2CoCgm+SYEqCu1AkIoM1PUhuZI950IrdvxBsHSjp3ST3GhAclY4oA7frABCWdhM25SvqZQtRVorCkb5eh5G4OlmwgGhOKU02MACbAgCYKBXHQpJb4wEntmwlAtusEuOEJ6AMUwIfwqJxuVFsBH9pzqSQ33OlCbNtrw4c0KPQ2EH7MMsNBqF2e4A51dbkBKQaK+uWmASNjXWS+kbGNBUdd+a79EByp7U33qKuHT87W28QCkj0HUgiQ6FxINFHbHsnGJWrbydquIf+si6R33HhfmOu6D7d7vU1htwxJKTI+MOvDK8gNx3KTVI4RDDdJOUd9N6kom\/dAm5\/EJXLr\/CQ64k0nctMRby5Q0nMp+UCJS+ieN2Evw79ikrptVwnoQnBFA0o10D7eROcrAeg5S8ZIOKBNNOJCcRwsQXcNbfeigUkjAAWmdtJKmNBk5jKpkq3Ixd8uNwScbNeprUf0wccHUAAPUYDbjaLyOlMuJQLWTlMIdDiNgZ+2Xc\/ouZgwWVtPokPEvaewY68PuUX26xgwUv3WwMOsi8w3otvFwpGqg2wvum9+yD3S5W1A0nCk+7UIQNKRAFeidgtIostDagHJStZmJ44E+o8f0TusXaQZgaNZCfuxX+QD715v4cNtgQxJYdn0SoFI5yVpCtAht8Y9ovMmyQ2pzvCAm4Ra0TkKsIncOj+py0vqJ3IXQnTPd5sYlGLDbz5XSW2AFlh0cndMvhLAwxIAY0SczluyYakNxaFrnwMmnfDdjZAzp0awpxVo5YAhYyJLq5xdVpX3gxMQD09tfQxAAWGIAtwgpRUDVLZm1F1aUOhsqzQ0RBc7As4HQIDbEQJ4GOJAyNWfMUCk3qdBkd0P18g0oA9GdH1MSI1bb+ccmdv4Q2s2HOltQ0P7dd2u8BowPSBxido0D0kDUi8PiRvyL0wXqT1A1EUCzGH\/7Y4TUAJMV0m\/30ZlSOJkfyjq7OiXoZNMlto9qrs7bJvxrP4XMHOTODephuiF3bj8JJrIrfOTaCL3IkCphDv8psWF34DOVdJlgiE49POVNCzRMFxTsPmvn7dkJ3nT9Rww6ebahG\/wwIQmJKf7zLlMqj7yFXPkM7FlrfJqmz4oxcIT4Aaotm4HRAEKpAAEYUorBFW27JvzVj16ZIimeFxJCHq0fPDTlnE4QsA4GOKW2UDElYkJodmvOSgCOiCh5WPASG1rrvPBEXWNaFkKMLo\/KaE13Z4JTMPCa2r76QCJ5iFpQOLykIz5kAorxKb3N5SLpHdeu0ftB1dY68j5ThO47fJbqAxJLrkecss9nkQnn6EyE7g3qmQ3CVVD8yTsBnT5STrsxuUn0UTuqUFpRSh+cIXfOoAxQUnP1N2F33Sd6lUoBEfzlfoSZNoB6YUl9V93JbKBSRfR+Ut0GZUGJoDmMLldJldoTrVtu0cmOBnzNLW73A9RxcIT4AYoQEEU4Aapti0PTLXlEqEqRqngNZVigSakGOAxynvgB3ADkJYL5mJgqG0jwSXiy6dBEeAHI6CDoxgwUuVhlFMA0mybCEd6WUpoTZebIrym9m0aQOJm1DbCbIXsh9k0IKW4SM1OCxJaM0JtNviUfTiSs1n\/FznQTCi52OtChiSfXNSqk7dr62ah7\/TEPTJyk5r3IsJNMsJuQC\/sFspPAqYDpVLIJkk7Pfym1M9Vig3BdZv7YMmcZ8lO8m6do6ZNVacJVF0iOLz5S9RhojlMLpdJvfNARTDsFgFOQAI86R758ozcIAX4HSmuD1oxcOWty0qEnhLA2jYWMbItADuchgJQ22YCIHHuEFc2BYi4ZSluEeAHI8AdLlPl\/WVi4IiG1fQyXVdKaE1t23+0iCu8pttwhdcAjAYkmqhN85D0hJE0D4m6SBqQjCH\/HhfJPGD2ASQuks5HskGIc5O2WBmSQiqEmivJTvLVonlJOuSmbzA6gbupRzQukgTaE4pzk9S4oy7sJiGMx5ZUKNj5k2h+kpYGJcVnMghKtTCnBygB5VgJgMtTAtzhN7LroOThC8G192ZhheB0FRGwBFihOME4R9rdIf2JyV8im\/bbJmVcLpM9Yq4XngOCYTcwNzoXPPWTyWM1DqQ4pcBVjIY8RHarFYIdTkMBKLQ+Foa65WlQFJNX1K5LACNaJiacRsstAo70utjQmn4t2mUwlqXkH3GPGXEBEn1grQ1IrjwkvZ+uPCQAxpB\/\/Z51kQD3sH\/9vmTOPQ1QNFl7G5UhKUWzxj2yR7NRNSdAL4F7o+q+ZTMAG1INkWTcJAERDLvNmbCbnZ+kRSebDIGSerRJB0oAvHlKAHrhN3rBMacJUNvbrpJeTmfstl0lwIQl10i4bp8ZWAIXitN9Qs9dMsrRZhKByXSZ+s\/G8zpNQNBtojXFbO+vI15DfKEh0LBTNSR3KQb8QmXGwhBXR8glAvr7m+oWATwYAWmuEVduLBzpslO5R7psSv5RKiDRx43YgOTKQ6JhNgDOMBvrIsFykQoBkyyFCT4ahmg+UoprtEUOU4akMdI5SrLuPvCquXXoEJt+rUNtbU6SUHk02lFCZ1\/Kgg+7odYTnPFhNzs\/qWhdGj2ENQ6U9IVKh5h8Cd0An6dku6ZDXCVjIkqYsERHwqllw2BJbduBGuB3l0gxvQvsciMsBzhdJiAMTVFuE6aBp7j6dK1+t8m11ZCJJXeihjhdQwEotD0HOb76UlwirancoracBUa0TIxrBAzPOTLqa+uNd48oCNG2KDT55j9qy2M4IBVte31AcuYhCT7MhqYfdMg\/0LlI7QFiXKT2wNCZtYcATjkDikKllOTJJHewSMhNFKKXwG1MLkncJGMW7s3G0oREVftHu9Gwm52fxI14iwGlkrg9AJyzc6t17vmUAB6WYl0lfThpCA6YBpbavCWMcJd0Pe1UBfbINrYrBjABfWgCzJwmtSQSLBLgiR1hF1FfTN0+DYOrnaUhgBQCoJh6x8KQa7nPJQJMIOK2jwEjzgmyy7hyjWg5GsGZCo50vSYMNX1o35uhta4cjOUajlTd4QTtoYBUtg\/V7gNSYbURGu5vzKyNvotEn9HW7ayGpS7XqBdqs\/ORdNK2dpV02G0b85IyJIVUztQdXH9Q+gOsa7TJ2zQvSSduN3DU2o2OySUlGekGmG6SgGjnTnKF3ei0AJUURn4SUGMu+yPeQqCkH2QbBiUgdj4lfQh0P4A0V0m9aYsab+1pA9QyPywBw90lCMAcpUau1ANcJthwhbDbxM0G7pXrBhwAnBiQciaTezRFuG9ZFQM7tuLCbDzQxLQdC0NAukvE1ZMaRlN18vUNdY3otmPhSNU73D3Sy2MTtNW6cYCkXSQOkOwwG4DoMFs7cSTnIkEvJwfTTthul28f+KQoQ5JDUhQQRdEfwRaSDrm1jymRbAK3MR1A1ViY2kVqXCUJRe41BGSTo2SH3QC0FikNu4USuX2gpJO89cWjc3ssUGpXhRO6m10HMCxXCfDDkjFtAMKwpNppyqS6S0A3nQBccAU3MNnruL5Z5ftuUx+cVPtp8NR7zAqnKJgZcMEbABM7QcPCbMMBKKaOWBgC+kAEjIMiu\/xYMKJlY1wjVYe5HwXS4EivH+oeAWkJ2t26cYDUAhADSKlhNrVDXd\/b\/xsXqe00+QB6CduACUd2PpIdelgCLTXKzedz\/It\/8S9w1llnYdeuXfixH\/sxfOADH0BNwEVKiWuuuQb79u3Drl27cNFFF+Ghhx4a13As4WoanpUmMZNvruBOGELUohDdCaaT4TShF53FaRB9S\/loE+1UlbIdqaClYs+W5cp8mWYFudG3CYfSeN+WFd0XWV9s2i+r4K1kwB2fpxccmuwooC5KhVW2LBqntmmf\/lApRRfLVxccASFEt5z5E80\/GHWLFjL1n5q6QBh9KkRX1lse1p8w\/\/Sz5vSfXV7vB\/2boej9qePca41Z0j3s07VO\/5VyFvwL1cH\/Ha\/\/0o\/FFMfY91lySwGw5xB3rvX6a5+v1vncK0++C\/Q7Yn4nuu8UV57un\/6eCvLP\/l7r64xOytbukb5mtX1ov8fNurbu7tqk+2Rfr\/RtwCxHry3q+pc6gs0HSPq6GwNI+prf9pMAkj2arb01ETjS4bXWRQJMF8lwkJhh\/7phLTvUxkmH2JZg+D+w5E7Sddddh4985CO45ZZb8LznPQ\/33Xcf\/uE\/\/IfYvXs33vGOdwAArr\/+etxwww34xCc+gWc\/+9n41\/\/6X+Piiy\/G17\/+dZx88snpjYY+FDrCjXOZCsGH3Iz1kp0OQABtbpJEF3ZD3YXdAKHmq4DKTdInPR3txoXduBFv1FGqZPeFtRO5ATP8Rh0lANEj3wA+qbvrj37ndpX0MsBylkT3EoA5bQDSnCVVtxmKUy\/VMmn0iTQCRDlM+rEphuxjEnKaIHu\/7gHecQJ41wkAQrlO+sHAoTKpIaZKzIP17mQNC7mFj0eoTIo7BPQdIlc7KU4RYH8\/0hwjX3lXIjZ9XZJlqSPWVN12faJd3i1LS85WfeB+NPYBSa1zA5KGs1hA0i4SFTeajX02m5Ws3f6I1\/3ULlIBd8K2PuAsNDnmRyJyTiS5RVpqSPpf\/+t\/4bWvfS1e\/epXAwCe9axn4b\/+1\/+K++67D4BykW688Ua8973vxaWXXgoAuOWWW7Bnzx7ceuutuPzyy6ftkA+MdF7Sxhz9UW79kBuXwN3mJ8EKvxXqC0aTuOncSb7RbiFQ0l9n5Sa5Rryp9SwoyeYLx4GSTuVqQAlAMKm7Wy5RtaE\/tZyDJQkEk7vJJm0\/pBFO7MsOxVV1d7Gm8DMWmIBpoKlrp79MSsneJOdqNi5vfVNAFLfNEIjYSRoKgEMhSGssDGmNhSLVJl9+KBgBcXBkjqqz15nbUEDywZFePiS8ptqZDpC0i0T3PwRItouk9rkmoTMSRuPmRGqOnc5B4lyk7gBoWPKE2rjQGjPTtqFtcpWW+kr18pe\/HB\/5yEfwZ3\/2Z3j2s5+NL3\/5y7j77rtx4403AgAefvhhHDp0CPv372+3WVtbw4UXXoh77rnHCUnr6+tYX19v3x89etTfkaKZUHLTmgiPm3lb39XtUW7cnEk0gVtPB1DDyEni3CQ7ibuqutFusjJHu7lAqZL0YhMzNYAblAD3XEpqHXp5SoB7qgDR9otkSsOEpUpKE6A8+UqAG5bUOpNAqKvVm0JAbUxejgMm1b4fmmp00zJwVbfbOYCFAyfA7TppTQFRP8waAkpDIcioIwGI7HOvLTsSiuxtYsDI3mZovpGqx15nbse5Rz44Usvjk7N1m1yCtqqTnwNJt2cDUgtnzbYCnYvUHaM4QPI9m81O1gY6F0m\/pi4SPZi9hG39fxtfJKE2Lc4h8oXZ6LPdtkhLDUm\/9mu\/hiNHjuA5z3kOyrJEVVX49V\/\/dbzhDW8AABw6dAgAsGfPHmO7PXv24JFHHnHWe+211+L9739\/f8WMORxFgd7TD3Qe0ga5Qej5kgC0ITegH3LT3wD7eW50cslmU+0mKcpQXzhfErf9bDcOlKoWNDo3JnZqAFW+D0oSOsTWByUAbPhNNrs9b9wgDpbM8JtqU0NUVAiu66YTloARoTi1MXmZDkz2dqoffiBioYkpF5ILnrSmgChbEvVxHWazNWRCyRAIuSBIK9Ydassz9bFA5QmhcdtMBUa0rpiQGl0fA0dmvYKFI\/2erot1j9rl7bbTARJ1kUDqDwGSHsWmw2wA2GRtr4sEdMP+uRAbZ\/e5Qm4cFC1BPhKw5JD0qU99Cr\/1W7+FW2+9Fc973vPwpS99CQcOHMC+fftw2WWXteXsi4aUfL6G1tVXX42rrrqqfX\/06FGcccYZcZ3SD7K1l9XNMh1yAzpYoiE3bs6k5nlubbiNuEkomntf0Z+Ju5oLY+4kKWGE3XR+EpVrRu4YUOrCX2mgpH9djQm\/qdwkM1dJ7Y8bllSIrPsIgD4sVV2EMwqWVBvDgUk7YIZGQlMr5pSvpWRvji7Xqd3OkfPUdsERwvNpCFSFlPpolJCm7h8Q5\/4YfQhAEBB2qbjPnAVrT11joCi0fQoY0dcx+Ua0rRQ44peb7pFeFxq9pvtgh9d0P6cGJOoiUbkASbtIdDSbLt9L1na5SEa4zTzwwVAb0HeFCtEHI+6c3WJ4WmpI+tVf\/VW85z3vwS\/\/8i8DAJ7\/\/OfjkUcewbXXXovLLrsMe\/fuBaAcpdNPP73d7vDhwz13iWptbQ1ra2vhDthuUe8qUQBF3TGTIABFpwKwQm50ziQxg5nA3UwHQE\/10JQABfpJ3F2XZXR+kp3IPSvkJKCk1vvDb3MSZuvmabLDb119oRCcQN9VSoUlLm\/JDMWZF\/UYYGJDa2SR4mSyLfk1qvrEhzrYvCYgCZzaukYClC39SJZUWOBkT7K5CKihmqLPWinHDBgGQsb2kQ4REBc+47ZfJBjR90PhyCiXGFqj781tzOW+8Fq37dYAEjdhpC0aZgNgJGsDnYukVkqviwR0ByAp1NYeQCY3ibvPbqOWGpJ+8IMfoLAOUFmW7RQAZ511Fvbu3Ys777wT5557LgBgY2MDd911F6677rrFdq73QQrzdZuXVPEhN\/0\/l8ANGe0m2UncnJsUyk8CTHcEUF88CeEEJV0mBpTULipXSaILv0mpLiqxo9\/Mw2wmdgvEh+CmgCWuf\/piLyHbNo2E7wDwDHGZuHqM+qybmjNU1+7HOICy2wLS4YCKPvMOmBZahmjMvmilhBuHgFCoHe5cAaaBIrueXi5Tgmuk6qf1jocjWiaUmM1vEw9I3bbuWbR13TYg0X3gcpBSE7XtMBuaZXaytnfIP+EaNmGb+9+3zvigLVfJdpnK7UOVpYak17zmNfj1X\/91PPOZz8Tznvc8PPDAA7jhhhvwK7\/yKwDUl+bAgQM4ePAgzj77bJx99tk4ePAgTjzxRLzxjW+ctjMU1myHiSZv0xOgtv+3Qm6uBO5IN8k3JYB+ZAkHSvOqn\/zmenSJRHchiU3m5h0lYGieEjXg1NHS69yuUtdet82UsKT7xCkmHKfe+sNqIZdJ9VuyNzcOnJxuEzqgGQNQbTu6rgQYoH2gmgJKFqkx+VUxxxLwfyahPqQAkauuFLeIq2MMGKn6Fw9HarnfPdLr9HYp+Ue6X7GA5Jos0t7Xdp8jAcnlIgEwhvyrBea1hbpI9ED7Qm1dWUeojcKQ7Rj5HCQuf3hBWmpI+vf\/\/t\/jX\/7Lf4krrrgChw8fxr59+3D55ZfjX\/2rf9WWefe7341jx47hiiuuwOOPP44LLrgAd9xxx7A5kqjoMP5yBtSb7nI0H2mz7k8F4A258QncMW4SAOeUAHbYjYp7vpuWLz8pFZTatqRADX2hGZenpPtorutgyYAiIWC7SlPAklrfHTMKTK5wHHWXANNhUu3GhNVMiOCgiaur6zN\/Z\/TBk64PCN+s2zm1EsCBPp7leEjoTtl3rdBxBeKOzRRApPrjrzfGcUoNp6l2aBtkG3Z9f3sXHNFyocRsut1UgNQxRDfMX9cXC0h0m1AeEpULkFxD\/oE4Fykq1AbiNPlkGxAx5bZQQtp+9g+hjh49it27d+Ovv\/MZnLJrFdjYAOoaopoDG5vKJdrchNjYUHevebNcSvX\/vAKqSv1vvK6bbSv1\/0alkrM3K5WHtKH+R1VDziXkXALN\/7JSkCRrQDbNyhqQc0BWArIG6ub\/al5ASgFZC9S1QFUJSClQ1QVkE4Kr6kKFuxpgqWq1jcofLyClckAqKZqwWLdOzUckMK\/1DV+VrYGmPFoo0u\/psrkEpH5QLNCOsNPhNw1EUkI5ZM3rdjl0eTRtdO\/764TxXq\/XD6G1lwMdC9Nsl5r0qS0n++VUGdkrQ+uwX0sLdmgf2vJWGftbWjm+tjW\/2PnokdC339VOTN3ebY7zy04M+PS2GQFCWmOByNVGilsEmGBkt5MCRv0yTH1WH1xwRNdxgOSDI73tkPwjVSZ9HiQKSCl5SDEuknaQdC5SOauNEW1i1uUiiQIoVtSBbiFpRY1qE6tqR8RMQM+iLVabJ1CslAqSVpvRayv64bWFgqGyVP\/PSmBlptatrpDlM8iVlWbbFeUezUrIcgasrrbLj37vGE479RIcOXIEp5xyCqbWUjtJyyZjrqSiUDAEqBPCniaAU0TITblF6iIjmzseDbWpetxuEqAvJOGwm52fxN3r1EytpqOkdsV2lJR7ZI5AM0NvUjZptsLMU4qZT0mH2HRSNzXk9KFtPqXmf85V6tanOktSkos1hR90F3dXOM6X7K2qm8Jl4nOa2uPDhOkA901VM4zvpqwBKjVHCRgGEWydE8PWVP0y6kx0l0IgBLg\/N1+brh\/1sQ7UGDCy3y8THPHru\/d63aIAqdtfE5DafZ8YkKhr5HOR1HrrPHC5SK5QWygfyfhAmfDcEihDUkihh9zS9dwJQPOSjO2EM+Qm5minA9A3eQDGvEkScOYmAWjDbkm7Sr4sOuxmDsPvQEmXVNBjghI9BLGgJMEndNM8JVov4M5Vck0XoGGJwkQMLNWyu1BQWDJCcQjDEicbmlKBSfcJcOQgMW27wnS6fiAMT1x7nKgTNTSc5nOqFgE1zrYmCAfGHDOtmKK+Po2FIq7+RYCRasdVrl+PDUeqH1x78YDkc4+AxQBSuz\/CBCQteyRbrEKAJASicpHsEW108shewjZ9bYfaQkP\/7aTt3g6R66PYenjKkDRE3FxJOnk7Ni8JME+qnjUyzk1qu5XoJrnykypZ9EBJAw7QQYmeGoDO6D0lKFEYssXNq2SPgFN9Va\/sKQOADpb0HEto+qnrT4ElwJ+7pPtK+58CTKq9NGiy26RtA8PhyW5bKxYKfGG9nZCrlAI\/VLGbhY6BD8Rjh\/e72hkDRqp92m73xgVGdv\/ayyTTpxg40utT3CO6fugQf72tnaTd7mMLQOZDyQV4QIp1kWI1ykUCjLI9g6BN0moK2ScRwOcfGZniy\/G9z5DEaTZTeUlUnBsU9Lz13bpJ7mYeeMuG3JoEblVHAwZN2\/SZbkCcmxQLSpV1n7JHvFXNDMzcc95UYrYJSjrkNQUoAYgOvwnQi1EXfgNM14kLwbUg1RxEdkJKaX70xlc9MRTXlrWWxQATEAdNqn13iA7o94f2g2vHblMr9ro2FKZ2iobsTtQDbgNFpkrenhKMVPthOOLAqFc+IbRmrgsDkg+OVD\/iR7B1ZfqAZM+FVJB6bECi+zFFmC3oIjX7KygZUBcJ6GbYRmSojao9yJa7FJu8vQ3KkJQq1pNuIEj\/TyeVbMsIM36jgQndsjbkBnUi6ukAVBl14mo4EgKQkW5SrOzZuOl8SOaIN1XenkNJM6SGoklBCerxK77wm5Yr\/KZdJV0G8MMSF4JrDojZVvM+NRSny9n7kQpMbV0Opwnon7ahnKNYeALibu52yGwKJlpU7vfUvDbECRsKQ1pjnKK2jpFgpPqxdXBE19twpJdxcETfbzUggdRDAandbysPKVUuQHK6SGQknQ1LgsYR9Y7Zr+1QG7POeXIv4cg2IEOSV1IUEK6MbD1Xkj1nkpadlwTAORWALqcfgkvGP9HpAIDmS+twk2TT1TFuEh92E2SXwnMouSabVHXpi4jAXF9EIudSAuANv9GZulVb5kcBAn8uWArlK9EwnMtdig3FcZNU2i5TCJhU\/xqr37qOpEBT1yf1\/1B4MtpKBCm2Dk8+0naYT1OE\/mKOndZQGALiXaK2Lqb8GMdI9cFXlq+XgyPVP7OsD47U+uHhNQpHtK9TARLd15ih\/nSfUlwkn3wukh12Mz6UmYgLtQG8U+Taju2kB4626AKQISlG3ENue2WEKsNajEV\/jDeXkSj0LR9mAjfQjnzj3CQ9SSGdhRsFDFAa+qubPgiXOlR2fpJa1oGSdpB0HWaOUruLnSMEwpLCAqUGQLjwmwuUwkndGJyvBIyDJb2NDUyq\/a68Pl66XvqeLouBJld4TvXFHy6LSdbmcopCMOCarsCoYwfkI1GlAJBWbKgxeNObAIqAMBgB2wtHqk5hrKPrbfeIqyM0ek31Z3pA6vofHslGNWWYzXaRALhdJAOGLIeIHBx2AkkuH4mbRNLYUQ9UbZMyJKWIfoC+EW928jbQz0sC+lMBAEbITbWlLmaytm5khTnqTYekpAPmYmbi5tykzkUK5yfRrx3NT6JTAwwOvdmg1ITfaJ6S6mcYlAB3CE6X41ylqWCp+VjbbdTnYwKTHZLj4IjLa1KHkNTlcZm0xoITkD7SDRgGFFQxkJWqsX3iNCTfaigQtW2OcItcy1PAiC\/P1x2CI1p+qHukl6WE1+j7qQDJzkPSislDmlp0XqR2meUiqY7ASNjWnetNIGmtj1qmR7alQFF+wO0Okp4rSUMTfTxJW0ZYw664Zf3QGw25qWXNDZw+b9ce8Qa\/m5SaxE1Hc4zNT1okKNnhN1+eEjDOVWq619YzFJZUvX13SX2Goinvd5d0\/VpDXaa2PyPByWiHuaZPMdKNahFAE6uxieYpmw8FIiDeLXItC4ERsDVwpOoVzvU2HNFyQ\/KP6PtYQOL7bIfQ6PtwHhLVlC4SBSNVOTPgw0rY1jvKhtrIa28+kiqAJOnntm1TQneGpEWJJm\/TvKR2tWcqAC0r5KbKMHDUJHAXkKhq+0wfplJ0bpE5f5IwysDKT2rLk\/ykKUCpORzRoGSH37r+D3OVlGS7ruliuzQVltTx6\/oVE44LJXzTvsW4TKrv5OI8AJxUX\/tQMwSi2n4cByPdFjW6zQdEQBoUuZaHErCBNDCy2xkKR7RMintE+xcDSBSOzDYJ4JA27HmQdDu6X748JCqah9QtM8NsU6qdXdvKP3IlbLtCbW3ne8s8eUh0vf6\/\/RDUe7mFz2fzaTl6sROl50qiHywd4Qb0TwgyXxIA44SiUwGIGfiQG0ngBtCbDqBdVk\/jJumwG72h0bBb7ESTU4GSQHdBMh6OGwlK3DxFsa6SKwTXdLMrkwBLQB+YhoTjjO0ioIkyN3dTTQEn1Vf\/1XsIRPm0VU80mfKmlDzrdsSPbRcQAWlQBAwDI267KeFI1S+cZWLcI9pHDpB87pFZX+fq6q5zE0XqdjhASpkw0hVmm8pF6uUkWWAEoJ+w3S4zQ23efCSggyDjYbY754dQhqSQ9Oi15iG3xqNJXKInAM1Lapf185La7eyQG50zCegeXUKkE7jpdABTKWZaAO04qd2R7ESTdLuxoGSH31JHvo3NVVJ18LCkP5sYWAL6wJQSjlPbmCE5vZ1WTC4TXaf2Ix2c2ra5gZ4RgJDy\/LdlNJqGJpjHwBDgByLAf8+JdYuA8eE0rr0xcETLDXWP7HIx4TWz3ekAie6THWbT29vD\/WmYbUpxw\/4B9BO2AWNuJKOzodehSSR12SWbG4kqQ9KUKgKQopO3dVk7L6mtwzppC2vOJDAhN90FMrnkFG6SmfMSH3YTunxvoskOlOxdp8uFkO1DcTsXyA1KMTN0d6Pt+qAEpLtKar07uRtAO3s31Mdg5Gp1x7LZ\/2ZZrLuktvEDk7E906aWy4Fq2wmAk1YqQLXtD4SMIQ\/X9WkRo+liQUhrDBD5yqSAETAtHAHDQ2u0jG\/kmlmuX\/eiAInbD3skW1fGP9yfiguzTeUi2WlBOmHb\/kx7cyO1K3goYvOR7Nc+aVhaol9CGZJcCo1go+LmStIj3AAGiNRLNi8J4ENuQG\/OJFUHjOe5LULaTQqF3QB1caDTAgAdHNigpB9fYkKGVHMoyeYC0ELWNKCk2+HCbzxQmY82UftIICgCljhXCegDUyos0TrUdn1gotsbdQSgKOQ2Ae6bOQdPQBgWfBDl0nZPEZAKQFQhGNIK3V9868eCEVfHVsIRLTc0vKbLjQGkth4CPLEj2VRb5o9MvX0vzScQZptcXMI2+FCbKk9CbUAXagMscCqMbcyKG4We2WZvu03KkDRE7beKgSM6ws2VvB3KS9IqmFFu4ENuqnw45FYUcrCbxI1207vmG+1WN6Ezc8Rbc7gS5lAaC0oAn6dE2+aBig+\/6frUfghjosVQCE7vlz5y3XGMhyVaB61HbRsPTLRtqlS3qW3bc\/N3ARQwDjiWVbEgRDUGioDFgJHa3t+PIXCk2uIByRdeo2VD4TVgPCDZI9liAKntC9kngfTRbFRTuUh2wrY+Fr5QW39qANK5UD5S76A4yriUZ9zeIaKg01sX4TzRSSVj8pK0uFFu6EJusKDJF3KrB4x+0xBEc49Ck0zao93qNsdoeCL3WFAC+m6RL08JRjkT5vS+U1hKCcEB42FJ97s9zt3LZGCy66L9aOuMcJtcZdu+RECDD6SWSUMASCvlB\/JQKAKmByOuPz44AoaH1lSZtPAaV24KQNKKHeqvlxXtMvdoNnNZN5qtq7tL1l6E2LmREAi1DQmlhbSEE0kCGZL6So2F6rmS7GXcCLfetgSI2JCcfVdSF2Y75AbAmaOUIpebJIlrpN0kmpPEJXHbk0yGErntQ8DlJ6WCku6vBiVgujylfn\/drhIwLSwB0wOTXZddH+0PlQuGhgCU1hj4WCYNuXeMASKtsWCk6gj3a2o46pdzA1JMeA2YDpCGJGp3fe9ehyaNpOKStaca0aYTtseE2trOu95zM23bZVKBaBsAKkNSjFLyk9ptyInAzbwd2gZQs2\/Pwd5VQiE3PYdQSgK3a2i1ELKbEoB1kwRZZobdAMuZQT\/sFpuflAJKqi1zegAA0XlKNvzYIUKA66+S7SoB\/Tp1OSAdloC+uwSMAyZVVxo00b7Z8oFQCAQWMZP2IjTmB3TKtiEwckERwN\/rXHXGuEZcnT44susY6h7R8tsBSF3drr5R50e22xctQJnJ2qqcO1mbakoXyZ5h21jHhNoA8KE2tm6L\/LjXzo25E205HKUMSUPFgVMRAKBQ8jaYvCQ0QGRNBdCVx8KStgugdZOMNoXbTXIlcQt0QNMPu6nyofykECjZfeQmnDTqAxdW84MSEO4vrdeVq6TLAdPAEpAGTBzy+1wmu067XlsprlPMti5NCVSLyhFNrXcMFLVtJtTrqm5MWI3bfjsByVYqIKWE2ej2tA312p2sbSwTcS7SWLlGtQFQkQvXyVuIuKRtWztwrqQMSVPI+U0kI9xsOZK31TrBXv25qQC6dehNLOlS0fyiCSVwSws8\/LlJgizjk7hVHcPCbi5QMo4BPPlJA0FJ7Rtfzt4HHygB\/NxKdlkgHpZ69TTL+89Va+pzuEu07q4u87OPgSa7DVtDXKeQluk6O6QvMeEzIAxGvt\/cKXA0hXNk1xMDR6rc4gDJdpHMvsYBkh1m69rtu0i0XmBxLtLghG1HqE0fgN6z2miDdsdnnrPPOFADE7S32VHKkJSq0AdWCPfoMuIg9USTt42yDCyVHVJIqz4huoklXSE3mZi8XSbmJtluEp07yRd2A3josEHJ6JuIy08aCkpmP+JACYgbAafL6WNDy6rjbj8WpNmGlBniLrFhM\/J6iMtkt0HlAydg+5yjGE0JYbFABAx3i0JtxbpGXP3c6EN7syndI7rNlIBku0hG\/3V9DCDZffQN97f7pesY6yItVIWHY7h8pGa5IdfINlt0+P8STyQJZEgaJ\/1oEp+EVcY1wg1gHSRfXpLaRlmmMQ5Sigoh2wTu\/k15sW5Sf7Sb2behidxTgRLATxMAxCV1q3JxsGS7SkA8LKlj1dQXEYqz69cKuUyq\/jRwcrUd0jI5Ry6lwJDWWCgKtRvrGrnaGRNas8unhNf65d1lhwASNxeSlg1IKWE2OprNNeSfKtZFCiVsp4p7VpshXz5SbNI2Vzag4HPbttBdWo7MKI++\/e1v4+\/\/\/b+PpzzlKTjxxBPxohe9CPfff3+7XkqJa665Bvv27cOuXbtw0UUX4aGHHpqm8ZQPgtKwPUmW7wTxnWhEKpwmnDFi9YXxd7GzXWVnyTZfxLKoG3sWbKxbfxHtNmMnSOte693shseqC0S\/LGdpdxdC81dbd\/GURjuh5E2jDOlz92uxv8xVVu9LqLwqZy4pRL88LVEWzHUH\/S+wrqf3GYjuz+yH+cepAN+WWb\/o\/YVkt839LZum6HPKsQode1+7rs+cOz9oW0b91nlnn5d2XaUQPfdopwASl6hta0yYbStcpJRQmxOMACTlI8FTFug7Ra776pI6SksNSY8\/\/jhe9rKXYWVlBb\/\/+7+Pr33ta\/iN3\/gN\/OiP\/mhb5vrrr8cNN9yAm266Cffeey\/27t2Liy++GE888cS0nZlyqGLpP8HsE7Bft3uVmDUXhcL8YgwdHSEIzLTNM19ktbzfBt01Oy4PmLsSuoCGQClW2wlKBvhYNxS7vN0GwIc8XDdR183Qxy9TAFPXTho0hfqzaJBaRFtD4HEMGKk23c5RLBwB07tHiwYko2+eHCRVT3weUr8vfhfJ3g\/bRbJlz65t19vWs6B5ksyG4c5HAuIuKCmu0ZKMYPNpqcNt1113Hc444wx8\/OMfb5c961nPal9LKXHjjTfive99Ly699FIAwC233II9e\/bg1ltvxeWXX76QfkU95NaW\/aBbX36SXg84YxLcI0qmFj9qTDIJ3WaoSS0D7HmTuNwkrZgk7pBS5k\/iQm\/tPrL964fe7LIxCd1c\/TRXKao8E4JT+6RknxJ8yLJ77YqU+XKYaHtaoVMxNUwXq2VynIbAYOxtIjzqzVG\/B3jZdhITs4H48JoqOwyQuPopINluMZUvD8ld1gSkqVykQpjb6+3sz087\/HY5LtQ2Wr58JKi0j6h4ng09kZGSGMmYxO8FaKkx7jOf+QzOP\/98\/OIv\/iKe\/vSn49xzz8XHPvaxdv3DDz+MQ4cOYf\/+\/e2ytbU1XHjhhbjnnnu2ppPGkMYRcVjXCSgcCXN6dezPeodSQ25M9\/rLeheA7rV54fD\/ghriJtlht6j+NsuMCy7bH76f7ot7OCG1K2uDp9+FAvgQHMA7Ay4XAXCHZbq+xTkphfUXI85pGeM8bYXG9jnlOMW6RlM5RzHukS+8Zm8zJSB114C+OECaMswW6n+Mi2SLu0axDn2wV2pfuVBbzHa+sJu6v3jO61DUwyeXi0TPp3L7fZylhqRvfvObuPnmm3H22WfjD\/\/wD\/HWt74V\/\/Sf\/lP85m\/+JgDg0KFDAIA9e\/YY2+3Zs6ddx2l9fR1Hjx41\/rZEPaq2Dn9gKKWf9P2gr0Nudl5SjGJDblzyIS3D5SYB\/EnI5SZxeUshxf7i5EDJbh+YHpTooiHhN8APS71lHlgC\/LCk+hjv3AyBJrMvbhhZFEgtos3U4xADpaHPaSwcAcPCa1sJSL65kGI\/ptgw2xgXqSs7PmE7Vb58JO\/9pBD8xdDuKJV9\/+qt9+QcLXHYbfsxzaO6rnH++efj4MGDAIBzzz0XDz30EG6++Wb8g3\/wD9py3JwuvovZtddei\/e\/\/\/2L6bQ9oaQ9V5IdZosY4WbI8Rw3LT1fEubWVADVsBtKSsjNLkd3hb6OGemmxS3Tip1kUqA\/G3fbRz1NAlcvXKG0caE3YHz4DWBCgkwYzheC0+JOpVA4LmViSbsvbbvhTYJaRsdpyOU+LuE70K4Pmrg2XT\/kI+r2uUd8+fGARBWbh5Qyms2lLjcxzUXiyqoy\/S8L99nGuvmTK3ACi1kRDqPZ0GMT2Yiw21ZrefENwOmnn47nPve5xrKf+ImfwLe+9S0AwN69ewGg5xodPny45y5RXX311Thy5Ej79+ijj47r6NQUHHMCLfCTc4XcCvSXlaJm8vb6Q17buiPcJPZXsMNNssNuIaVONOf6JMY4SvY6rp2Qo+TtW0Jyt657jLsEDEtwth2WkZHjLdeY\/qccrxjXyJd3FAtIthPkqnu7AEm\/TM1D6uoanqzd9SHsIvFl+QfZUsWG2ux8JB1qG61Q0jawo+BmKi31NellL3sZvv71rxvL\/uzP\/gxnnnkmAOCss87C3r17ceedd7brNzY2cNddd+GlL32ps961tTWccsopxl+yxvyCjchdYmndLlOKST5BOy+JbStyBAY3UoOTKzeJbp8SVmvrausx6+aOZGx+UtfP5O5sCShx3XK5BL7TZQpYattPBCajH46\/7dJU\/Uk9JmPgCHDDUUxoTdff237BgORS6vc3tG2sOBcpJF\/Cdr9+\/zUBiP8BmJqP1G3oD701nXB+UL3h\/66Lj6\/uJdZSQ9I73\/lOfPGLX8TBgwfx53\/+57j11lvx0Y9+FFdeeSUAZbUfOHAABw8exO23346vfvWreMtb3oITTzwRb3zjG6fvUGwSWe\/uNya5LXwCpVafmpfE\/kpiockPUimQwcHFmNwkKp9Vz2noL15OiwAlV5spuUp2G1PBEjAclnr9cvxNpUXUPwQWp4CjseE1TlMBkr8Nd31A\/Hc3lE6jleIicf1KTdiOuWbFXltj6jHykbgyEbc038ChKPVOjJ2Vm7TUOUkvfvGLcfvtt+Pqq6\/GBz7wAZx11lm48cYb8aY3vakt8+53vxvHjh3DFVdcgccffxwXXHAB7rjjDpx88snb2PMIlWbukv2gW0NCIPgI2wLembeLsntEiZ1PlKrS8dDb\/lD6bih\/KcLTAeicolSl5iYF+90s43KYbKXmJ3Hico5ScpRc27XbF\/HTBfj61WuvOY1iR\/GHZvoequW7rA6DwqgR1qFoiGP5mPwjYBwg+doc+qMj1UVyhdpS5Aq1hcSF2ox6ueO9iHwkK2k76odO6ITr51oM7l5y21skIaeYqGSH6+jRo9i9ezf++jufwSknrgFVBcznQF0Dda3mRGpeo3kt5nNVrq6BedVsU5FyenuplstazZNUy+avBjb19qqcrLrXqCUkeQ0pIefqD3OpErdrKLCqm2e41YCcd+wl580NrBaQNVBX6n8phXotBWQtUDd\/Uqp1VV1ANu8BoKoL1FKV119T\/Sw3fROtZAEp1aNJdJJyLQUkzDL6tYRok7f1CVjT+kndGqjoMnudhhkNgF09Xd20LXObbplO4tbLKCTRbSk80Bt+7Sjf30Y417m2r5ivasx27faea2zo8hs7V9WQq8mUwLSdWhQYAcPhCIgPr7naSQUktU16mG1sLpJryL+qL5yP5BrRVrYh+249fU4bDenrUBt98gAd1UZn2dYj24ToQEqPbKOzbHOPIgEw+KG2FJLEDF24TeckFYBYLdrh\/+0cSY2F2aaCFAJYKVW4rRBqENKsVCdc0ZRZnTU71awrBLCy0mzflFuZqf9nJTBTw7TlbNbUNWvLyZWVbpvVVdWn2QxHv3cMp516CY4cOTIsdSagZfwRtjNlX+18lmJsHVyRiE9sqjm32LlX7PeBC6Rdhr7mhsmGNDaBO\/VXKTd3Em0fWEzYjdvevln5tuPa9qUKhEJLoRBP27YYHo5b9keSaI3tb8oxGhpaa\/u6RIDk0yJcpK6+uITtGKWMavNp7CzbY57XFpL3ESNUvSH\/ETeeoeG0bXxkSYak7dRQO3FsjNgjOqkkt26ydgaOcouVK4GbKjU3Kbrt6F\/OYVBKbS+kUE5lTL5SrFJhydayQNNU\/Ug9HmPcI2B6QIrR2DCbS1PnIqUqbW42GpbjR\/YC\/DVpSD4SdZFGK5YIpgqFLenz2qgyJG2lYk6IyBlMo2k\/UnqEm3P9wC906LlFMRqaoD2VXBfe1Av9EMW4SbHbtnVsISgB40CJaiuBaeq2Uo\/BIgBpaFtaMS7SWMU6sVRTjmhzhdqoUvKRQorNR4qvL3FkG902eu6OicstuTIkjdF2Z+JP0HzKzNtbKd\/Fyb6QpSrWwo\/dNkVb7SYNvlkMbM+lqcMCi37A7VQa4qYtCpAWfcvynctTtT31eWSPaktVaJbtqZQKTsmuf+S9JPjw9eNQP3x7vGziQCvhDhRN\/9y2kV+kMc9xCyn0LLcY2XlJLqXWP2oqrAlvELFu0pRhtxgNAaVF5FC4coRS\/6bWkH0dC0hTtTckF2lIm1Med35uM38+0qLkysOMfV7bFNJJ2zHlRisGnoIn93LiyHL26njRmA99gVblGEs2RfSCMHS+pCFyPfSW09i8pCku+FO5SS4tKuwGDOvrks8dN4m2C5CmcJGmyEUacl64flgsKncwVVsZPeI+xqHfGy8EpdyijpPwWaoyJG21FhLIjy86xa8GdqK6Bf0aWpbvpWuU2xBNsU+pbtKiQWlZXKXt1tDw2iTnRCIgDc1FStUiP+apZ9hm22CAbCtGtk2qQM5pePuJY8Y7SMm3zLe85S34whe+sIi+LI+WxPZLif\/GwM8Q92g7bmRbcfR32ld4p\/U3a1otxxVJabvuf1t9LRqSoD3lIJNFhwRjZtvOGvDde+KJJ7B\/\/36cffbZOHjwIL797W8vol9ZWVlZWVlZWduqZEj69Kc\/jW9\/+9t429veht\/+7d\/Gs571LLzqVa\/C7\/zO72Bz0\/FMjKysrKysrKysHaZBLu5TnvIUvOMd78ADDzyAP\/mTP8GP\/\/iP481vfjP27duHd77znfjGN74xdT+zsrKysrKysrZUo0Ldjz32GO644w7ccccdKMsSf\/fv\/l089NBDeO5zn4sPfehDU\/UxKysrKysrK2vLlQxJm5ub+PSnP41LLrkEZ555Jn77t38b73znO\/HYY4\/hlltuwR133IFPfvKT+MAHPrCI\/mZlZWVlZWVlbYmS89tPP\/101HWNN7zhDfiTP\/kTvOhFL+qV+fmf\/3n86I\/+6ATd2ybVixnOnio5j++HXFCXhzzVfayW4+gvl5ZvTvSsrVSN5RnhVsvtGeEm5daOcKukmPQRJKmSUix8hFtWWMmQ9KEPfQi\/+Iu\/iBNOOMFZ5tRTT8XDDz88qmPHreoFnPSRVFFXYhKY4qqo5GIu4Ys4XEA6dMzJBmO7tKh98tXtarIKnA8xp8uQ\/dkO+N4KDbmR6+M3Fjyqmp8rSYKfQiIWdlzbx2rs9t66meM9dXsSwju0n7YXKgvw8LVw8KwFpDVXkpwDYjV2+8QObhdJL0DJd7Y3v\/nNXkDKmkgLvJNKuTUnb03aobuzSEgAuv3TN\/jK096cWVcnXGLpvvja8amyPo+Y41MlUMZQQIpRBqS+pBy2j6FjuVUOa8q51W2Tfg7botvQzbnv6HbIuIZtQ\/tDvzfeH8YpO7LoC\/eSalkc3ONTMWE7rkzCySgH3pnrSkTDUlX3TxNu2ZAv8bymIDUM3mQDNaGL6dD6h8h1wR8ie3vXTSzlGhYDSKEiywJIlZzmb2ptByi5PldXtbGfoV1szP1yih8W3A8Z3\/dft6MPz6J\/KLp+FHLXIM6FnwLCZK2u8zHlRismNSR4ci9nokWGpDHa7g91guZlLVDXy2eL2r9M6TL9XRt6oeY2425o7LJhTbay+8zt5xT1ag3t79SANNRdcWkRcLMIWBqy31sNSmwdE3xYU\/5QaOtJPpb+75cGKzlBgG6+wOso96PUp2QIjLyXpOTJHi\/KkLSVmlcRZeJOQjmx9RkCJe5iE\/NFpBefoXlLU1zAxsj1C3WKX8S+OoF4FylFY\/OQhgDSFFqk67PodpYFlIa0pRVyk6YA\/iFgNeWPGfsHmO\/Hmio3bp+5vqcCkVmfiHKP2G1jT\/gfsrBbhqSdqAUF6dWvXuH8ksZAUexFg4IP3Zupf6e0NjvTr7H5SC65LvShm8rQa0+Ki7SVgDTWPVp0OGyr+5B6PBaRo5QSdpsiN8nVduoPjEV9V2OV8kPN9cMwpg7uGhu6ptZNNEBO4WTFnlQxF4KYMjHGwTYrQ9JUsi8oVcSH37MNwifVoob699sRURd0\/uLqvvmn3GR9ZfU6Ox\/JTtq2NVWozXWRj92\/mF\/dMS4S155ktgX8gFTDf32sZdy+aRBIvb9uRY7QFJoinynlGIWOu+9zq2r+Mx8DSiE3KaZOTq7vUOr3lYWp5rvmyktK+c3pSt4ecrra8MN+lx3XiaouIGXcNTpV0VEKO+oxNAc3qq3tg6kMSQGJqahkpEUp53F3KSkVSMl5c+GYOE4eO\/w\/xlFyJW1TgNAQZOcjjVXsL9MuZ4GUGxCeMKGK+7Xo3lZtEw9InFyANAUcDQGjnQBEKRoLTCHFuEo+WOq1C\/5cmQKUfD+ShnyPtMZ8Z2OkrzUxITejD2S9eU0D+zqmToD\/PNX1fQsctLmcKKF7+Z2ikHYUJF177bUQQuDAgQPtMiklrrnmGuzbtw+7du3CRRddhIceemj7Ohkr68rlpfeoq6gCI3bzZpSDrNMT+saMbIuxnae4P7pcJDvUNsZFcinmF3Dqr+0QILnAJQWQQnDE9avX3gjHaErVE\/xNqSHAFAOaMcCaAkrA1oGSa9sYR3aK763tJg2ReT2Lv47aPyJjRrjFXneT1EQH5DwhIhFzEUgpn6IlyX3aMZB077334qMf\/She8IIXGMuvv\/563HDDDbjppptw7733Yu\/evbj44ovxxBNPTN+JykEhtnp3vRGX4Rj3KLF6Pfw\/dmRbbNI2Vy4pvObYzjWqbWhC91Qu0hRhtiGAxCkVkHwK3YzHuEZjtSjAWRQ8jQEml4aG4LYTlMaG3bSmcpNcITfbTWK3pX0ky6Xxmr82ccvjnMT0a526xsM5ibAGpmA9U+fA+lJRtnvEOKMdAUnf+9738KY3vQkf+9jHcOqpp7bLpZS48cYb8d73vheXXnopzjnnHNxyyy34wQ9+gFtvvXWxnRoTDLZPBNc3Mio5bng3uu6IQUnbMflIrvIpobYhWoSLNHWYbaqRbFwpVz7KmNBaChyNBaOtcHy2uh+pxyR0rGNgqdeHkaAU2i4WlFKcVq4dYLwLHKPYkBtVbMhNLRs2atgllUuaOMIt5oSW7pOtFwWxT7JUN2rJtCMg6corr8SrX\/1q\/NzP\/Zyx\/OGHH8ahQ4ewf\/\/+dtna2houvPBC3HPPPVvXwanpt5bh+ShqDJ5IMiSdtG0DU43+skoWjOMqemXaugeOanO5SLEJ21pdedq26C0L\/RJNDbNN4SBx27gAyZbv5j4FHA3JMdqq8NciNLbfscdqbBjOBUqxeUp96JGTOUru7wq\/XL8c6ibFJnD7fpy5Qm4hp4cLudnXhEoWvWNXg4cmWQsjebseOd+djD2BlyQEtpVKfnbbVuu2227Dn\/7pn+Lee+\/trTt06BAAYM+ePcbyPXv24JFHHnHWub6+jvX19fb90aNHJ+ot+sBkJ67ZJ1lvhEDgJJxLb\/6SnbQ9NvluaKhNQjh\/RYVm2Q4lObv6E8pFWnSYLQaQYnKJQiE2J7h5krN7yyb4cZfK6IuCHznRL1ExwdNTuX0M\/RK1j2Pp6IbeTVc39WdqPzJL98nuhz5f7Oe96e7oarh6KylRko5ImM9Lq6VdvnteGV1Ht6PLK9kdB7suQH1HZwLGs9tqCBSQxrK2XNNOLQUKIY36XdLt6v9d+1CjO7Z0f1zPceOWc8+gq+oCZVGzyxb1oF9Zqd75Tlo5ryFmhfmh9OiuBoqSbFQDKM3yO8KiWfJuPvroo3jHO96B3\/qt3\/I+L86+uEkpvRe8a6+9Frt3727\/zjjjjMn67BV3IlH53KPaP9qgBSNuU5K0nZqPBIwLtaUkbLtCbSEXKVX6OFFA8g8hpn3klw8BJO6X+xBA8oXWUgEp5FqkuEVTuENSyuDfVFpUW6nHIXSMQ+6Sy1ny5SrFTBXAuUpp5cc7SrQs5wq3dUZ+VLG5SWZ\/w25Syig3bioA+5ormXKxMvKSIpO3ZS1jnvNkvk\/9wW+UXV7\/eKkh6f7778fhw4dx3nnnYTabYTab4a677sK\/+3f\/DrPZrHWQtKOkdfjw4Z67RHX11VfjyJEj7d+jjz46vJPUKYrNNUqRlN7EuWib1CE7H2mKUJttV7tcJFo3V5aDrlCYLeQipc6JtEhAorLDGK7wmrHNADhinazATTcWjIZA0VYB0FSaor8pxyl03H2f3RSwFANK9Ly1wX9KUHL1CYj74dN9p\/1hN59c\/Y9J4B4yys2u2yUacqN5SaF9CiVvq\/uL5wRMeUxJL6riSpCjJ0DkYKkFaqkh6ZWvfCUefPBBfOlLX2r\/zj\/\/fLzpTW\/Cl770JfzYj\/0Y9u7dizvvvLPdZmNjA3fddRde+tKXOutdW1vDKaecYvylSMwHfHChsJvrKufTguF7ylFtXJw\/JmGb+yUXUgwgpeYhLRqQzP73y9NFU8ORS6Eb9BRQdLxpUdAUA6pTwpJRL\/rneYqrNBUoTZGfFKOtcJP6PyT5iSFdUwFIaeYljVYdcJbmgYtFW88CjIJGk81ZmKilzkk6+eSTcc455xjLTjrpJDzlKU9plx84cAAHDx7E2WefjbPPPhsHDx7EiSeeiDe+8Y3TdibVDvSVD8yRJOe1\/+QKJG3TfCTX8M9YSSl6F9Ja9n\/xcLYxl4gIWBdDq15an7081kUKKTUPabsBySjvgCNOrlMoBEY+pZ5KU4DQskw2Gcph4WTvf0zekyuHSIseD65PrtwlX85STL6SRCjvyJ2nNFWO0pj8JFq\/nZukj4GUAkJIksvUzx8ak5tUyQKlsPKMSH1aKmVH9aXte3MtLsQCvxA1ICEh7INsdMxaJ60zo5ZG+lF\/e\/reylVaQi01JMXo3e9+N44dO4YrrrgCjz\/+OC644ALccccdOPnkk7e2I76ZRb3AI\/3vjTbcSdvql4XbOuXykVyhNk7cLxY1KtSfsK2XAeqXlV6V4iIZdQQAKeQixdjxtO2pAGm74WjRYDQEhpYFfmIV218fTLmOEwdP9nHnoMkHTCmwRNui7VR1H5QAd1K3Pq81LNHy\/bLjQImWiwGlUBK3DUr2MaNJ3KqfFH7ovogWZOa1wKzo76PeXi2jIARUMEGqqgugqKPDPnUtVNkCqKsmf7qW7fEQEJCFBOaAWHVV0sASN9KvVqOvxWoHN7L2gNW8AlYJatQ1UDJgNK+A1eULbgl5PHreiTp69Ch2796Nv\/7OZ3DKiWtAVQHzOTCfK4tv3ryv5kAtITY21Nk8n6t1dQ1sztX\/xmsJbG6q\/+dV93\/VrNtQ9UmVqQdsVO0JqD1tuVk3ZdBBknaSGijSSdvcyDZf0rYvH0nZvx2IaEiiLpKGJOoi6S8+dZEkRGs9S3QgU6ODCmpB02U+F2koIIVCbD5AcsER7be9Thpl0uAI6ANSSjK2L8\/IpxAYpV42pgSiCR18p1zX+6FKdaFCjlPoVuJqz1Utt792G\/YoOK4qux7qLAlHOeqi0OXu8uYyWm6ml5GFRfOt0stm1naFkF2duu2mT11Z2bap2y2FNJbr\/SjQgY8AWkgSkGTbGoXQy2RbXyEkhEALSYVQfSkJJImmnB7lJgr9Wm1bFBJFISEKqcqW6n9RQL0uABSqrJgBolDHRqyiWQeIUqj\/CwHMBETzpxpQf2JWAPpPCFV2tQSKZuTbyqw7YLNSgdGsbNatNOsKYHWlqbd5Xaj65OpqU3ZVLZuVkOWseT1r6pvh6PeO4bRTL8GRI0eSU2ditOOdpC1XKOyW4hpRcQlwvhuRL4bsAKQh4hK2dddSXCT12qy3fc04MSFA6vVzGwEpNrxmJ2bbCrlHY+EolF\/kUywUDZ48csl+qqX2JwRVruPiHu5vbmBDU8hlcjlMQ9wlXbcdgrNdJV2PKwTndohMR0n3w3ahpnaUqFLCbiE3qQaAxk2S6NwkdX2UxvFZlJs0SHVzLLlGagk5B8SK48Rh66vNaQCoqgooGvyYVwqollTL523tRLluIN4QHLnM9YeIuU8+Rz6S4SI5u5nuItFtuS7F5CKlzq49JMxGtQyAJMk23Mg1KloW6Cdm2wm2+vTo1SO7PypXwm8oWTiUgGxPIBk1LYDk\/3a6hu5X7DEMfRa+z5Kr13WucP2267XPT\/v8tetwjX6j5SprckXOiTXrNJfR9n0DNai6erWDrcvq7a1rD\/kRqNxy0Vsek8StyvXzNWOnA+DETSxpj3LjpgJg5ct5lcwJQn\/g+6YBiEmO5UyIbZ4eYHnxbdmV+mHSk4W8ZpO2OTnykUJgNEaci8QN+wfcLhINs9F629cRwDHmAbbbBUhdGT8cUQ11jlJcI9\/lJsYtik6OH3lOLjs4xYbjXPvh2z6cmN0VCOUyGflFkq+Tc5dczpKdrwS4nSVaB5erFOMq2XlKIUdJt885Snpfh+QnUfcppr++JO6hblJbr0410JNN1gKiGPaFkXMAM0Bwhk8gL8msiOylz0Gy69gBNk2GpBgNIVnjLk8cJde0yPY2ZBn7cELXz8bEXKQYcS6SnYukxf1Cor\/YOsARBEK6X5FcmE33AWSXh8yHZKw39sWuk+s73cdx4bUQHAH9j5a9JjFKhaMQGAVzlwZcm5cdgGIU2ocQRMXCU2g27tiwHAdLdn20KkGAgPaLrS8iuZsmdseAkuqbTAYlWs4GpSkSuVPCbiB1AmYStypXAKh7o\/7U8TavHQUEOwP3VJISKpF7hj64zCXkTPTCcN7k7Vp2g9bse+Eqgx3s3BWRsLVgZUiylWrLjLEHHe5S47Gyk0jqhO3e8oGOkivURpO127KNixSbizRVmG3sSDbXKDaffe8uN9w9CsFRCIyAeNdoCBTFhstiNAUISdYb3H6xv6wt+fbfB1D2dlNBU8hdsuuy3aUQLNFzmXOWXK6Sq4zqm2hBSS+XbH2LByXQuogbpPqh+kmXV1IAQqIgdQpoUMJgN6nNTWLcpAoaomT7NIWYUW726SjrBl5tPuHykuhBt1XVKskaMOGIOkg1KROj1PITKENSikJJaqFtaBlXHJdrg4xqo6Kj2owmJ0jYNuqT3Yg2Le0i2TPK1tJygNDBjG80G431Tw1IlDVjAIl+AnyuQb8+VYaHo165RDhaFBhN4RINgaFlhZ9YxfbfBVMpAJUKTYANO12BIcDkgiXdF64uLgwX4yoBHAD1XSWuPgpKettJQWnisFt3LE03if6Y5Nwke2qCKeQKuTmf4yabe1HBnBRT\/DpyTRGwTcqQNETeSWdIaE064MeRtN3LRxoYaut3Ny1hm3ORdFe5p1dzEEXnRILV3ZQ8JLrtGEDiwae\/zAdIY0NrY+Fo0WAUur6lXP\/GgJAvIr1MsofE2\/IdgxSA8j1H1F4P+NyhdGCyYUlta\/Yl5C6VRZyrBPhDcDYo0fo0KOk+20A1PSip8JoNdKUAWe4b7dZNK9Dtq7CWqT5SN0lftydzk2iYVIINuclaQswBrHoIfl4DK2X3Ws93RENmRgiOgJCeUNI3seQ2TjqZIWmMdK4RN4rNeKYbT9rSReBbFGqLkQag\/igY0QuzaRfIDrOl5iFNNRfSlPlHY0JrU8PRVGA0FoqGgNBOAaAYxeyLC6RSACrkJvnWjwWmFHfJB0suV0lvFxOCC4XfQlMEjAUlte\/T5CfpcrWUAIUgck2l80dx+UuTqI4Puall9BOEmZfkSt42Dg6BHToNgLN\/crvYqFWGJJfGJmtzMsZ1OwCJqWNMqG2Mi2R3JTVZe2geEtCF2dS2Xfu6biANkFLzj\/jHotA6zB2OAaRFwNFUYBTjEsVC0RgQqndYKK4I5Cf5jkUsQI2BpkUA0xBYcrlKeruYEBwFJbodBSXdPhd+GwtKOvIkpcAcclR+UlISN6Q1Qm8aN8kAoISQm5xL5TaBfPBNx6OSt33Ss24v6lf\/AGVICkk7Qs3TiKMebmvYkJzLFJePpGfZ7i2zgUkCrlDbWIWStWmYTbtItMdj85BSACmUoD0mvOYCpFQ4GpJvZH+sHBhNDUUhIEoFoUXAz6KuoxGPV2sVu18cTMUCFPdZCMcPjbY9wa+jbkvbViQwpcKSbi8GlmJCcBSU1Pr08Buw\/aCkxSVx67Cb+r87kDqJe0o3qa5GhtyM5Cvm4gqYydtaXBL3Ek8ouZy92gnSTlN7l67N\/wHrxGHWc\/lIOtRmAxMTauOe1Tali2SH2bhkbb2brjDbogApdQTb1O7R1HC0aDDyQdEUQDQEgpbox6Khsf3iICt0fGyI4o75GHDi7mUcMAEUfkxgst0lG7RCeUtjYMn+rsaE37py\/fCbvk7oG2At4kAJADviTffNl8itQUnnJ+lPKxR2U\/shm3obUMJ4N6k9qjX\/LLeokFtMXlK73jHCbcmVIWlRciVtt6sZ8rbLcaPaavRzkMjcSIsQF2bTEEUhB+jCbIsApKFD\/F2j12Jzj6aCoynCaWzydgIsjQWiFBgaCxt2SHNZVAasplC3UyCKwlMqOLmgaYjLpM\/DkLukt\/GF4sbC0lBXKZSnVDedLZr25uiDEiAHJ3IbYUgm7Ka2jQ+7jZWs1TW0JGE\/2RAgbSYUcgvmJbmSt7X0sH5qOGzxMH+fMiSNke0OVUxoLQRDjmW90FmN3jIuYXtqF8kezcY9wBboRrOx0+qPACTdxBBAmtI92ko4CoFRagiNA6Mp3KEhDLMI8IlNdwgpNoyRsg8cUKVAFPcZxIKTC5piXCa9vA8\/3QLOXQLMMNfUsDTUVYoFJTv8po36mZgGlHQoTkuiP9qty08yw250tNsUblI5U\/Uqd8hM4JZNyE0CbThOh9yMiSX1wXTlJcEqpxvUo9k8Q\/3FfK4eclvNgWK1CcltPTxlSEoRFzLjxOUh6asAk49Eh\/73RrXV6D1Hx5ewnaLYMFtb1rKAgS7MRhdrF4lzalRd3XJuqL9uzy7jA6Q+\/Jjv7fW0Tz73aFFwlApGdt3c+66f\/AoXGMW4QzFcMASApgKcKTS2LxxkxRwTG6S4TcaAUwo0cdMN2A5TyF1S\/ZkelnyuUleSd5W4z3bIyLepQImG3YDwJJN6v6aUlKLn7LAJ3LU6d0Tv5LA+TNePf1\/ydswIN1tb\/Cy3DEkxivlQuBNFwxK3vWTK06sj96w2KweJS9hOcZHCu9SF2VyTRrrykDo4SR\/qHxtiGxpeS3WPthOOYsBoSiiaGoamgqDtHvUWGsUGxO1rCkhReBoDTjHQ5HOZbIgKuUuqP7oP08BSyFWyQ3AxrhLdp60EJSAuPwmuSSYncpP0la1N4IYASrWsTeAmOUotLOlr8Fy2s2+3ITcuL4mbedt+PEnMXEnbpAxJHgmfNeObIwlw0HXjHAXImzarE7aNZRYs0WH\/XVPThNmG5iGp5dMB0pD8I+5XpO0e+eCIrk+Fo0WC0RRQNAUMDQGgZR7l5sv3GNpvG65SQCoET679bgHE6rMPmlyJ4DYgpQITB0uAeRsUpF4fLKk+0T7Ipt14V8kXfgP4hG5A5SlNBUrGaDYA4fwkc94ltcYNSoh0nOpK9KYD6MFR3R239kOjz3JTF2cz5BbKS2o7IJtdlP0kbh2K8z2\/bYtyFjMkpYr7YOwwHAdXNhgxQ\/9pqC0lYbt9S1yksUrNQ7LBIQRIMTlIMflHqe5RamhtKjhaBBjxD8blLxy+68kUMHQ8jG5bBGwNmSLAdbzHwJNyRuKhCeg7TWOAqSYHxecupcISN2UAB0v6G83lX0XnKU0MSjQ\/yZw\/KZyf5FMtxXA3qc0\/atYTYOolcHtCbt68JCvE12pJpwFYvh4tg7i5kNg4R+CEbe\/QVj4S2U5ay3pzIzlcpBYgFuQiqe4LA5DaPpA8JHvCSBcgpSZpU0AaM3otddSaD46GhNTojWIsGE0BRT4gCsFQ7A1\/DGws64g2l4YkZmvFwpSGmSHw5AInDpp0WyGnaQwwudylFFii+Up2CI7uswlS\/ceamDBl9h9YHCgBNKwmjPmTJMLzJ7X9HBF2K7RjZbtJ3HQA2k2yErixKvwhN19eki95W08oSbWNI94yJA0Rl2NUWeE3Ox+J28Z2l4zwG4yE7bEu0pAwm++xI0ZXYAISLb8VgBTrHsXAEdDBCOccDQmpcZNYut6HwCgFilzAMRaGUjlmKvDZrrwkXz7SmJFusaPcQtMD+ODJ7p8Pmuy2OKdpDDDFwBJgmgxtGQJL+kVsvpLPVfKF3yQc8yk1+6CnCEgFJdNBavrlSeSGb\/4kAkql+zTtqa5FtJvUVmslcMsaXciNOko05MblJfEd6q9fkh9MGZJCCiVtc5NHctDTqJePZIfarIRte4ZtG5ZiXaQUDU3Utof6TwlIHBzR9z5AMgAoIrQ2FI5iXaOxYJTqErluomNhaNBotm0CnTEa02dj1Fnk8Rqac2S3aX\/uHDTp9mKcJttlSgEmFywBiArF2bA0NF+Jc5UA\/jvim0+JThHQTSYp2nYhFCgBaGbm5kDJPeKtwzk+kZtT6uNKbDfJnlyy7YM9AzdN4NYhN+ZgtiE3Oy\/JTt6mI9zYdBbZkrOQNcx5yxevDEkJMh5J4ppZm5MNRvbQfxpqa0Rn2O49p82aPNJ2kcYma9Nuc4Ak0Qckre0CpFj3yAdHun\/G9iPgaNFglAJFY0a0xdzch4BEvSS\/FKdWQW76Q3KSpk7Y1vVz0MS1FwNNqcDkUkoojobh9OFKgSUYyzsMiRn9BoRBSV8X3Y8wcYMSgN6IN53I3QelcWG3WamiHLabpCeX1G6Sng5Au0m9Gbjn0gy50U65Qm52XlItCXzVXeVLNKFkhqRUUTiiI9vspO1QPpLLUaoJHCW4SHTIv62hYbaYkWwdjAgvIOndiB3BNjY5OwWOYp2jVDDqt0u2icgv6uc99e86KUA0Knk78mY\/FHyqHegwUZVGmDl+XzRQxTy2xPcZcWCj5XKFXO5JCJrGANMQd0lXxYXhUmDJPWO3bPsD8N8pGn5bBCjZz3iLGfHmAyWfZLPP+l5RFjLJTdIJ3BISqIURcjNm39ayQ252XpLeOQaW2gklt1HLgWoOXXvttXjxi1+Mk08+GU9\/+tPxute9Dl\/\/+teNMlJKXHPNNdi3bx927dqFiy66CA899ND4xikMVZ6H2nLQ5MhHigm1Aeg9py3GRTLKWi6SSymAZI9k44b6bxUgSbJO9dVuX29jApLerqrVH2XQdlvZwUQlmz6TclLK9mKu19Pt6WvVl+6fbreDM2n8SdK+lKr\/9M+uu23Pqqc7D8w\/fUy4P64eu85ayuBfe25BJv3Z8vVlGf5sDd3f2OMZ6ovvc+XOA\/dn3D+\/QvXZ9dDzvKrN74Bdf\/cdNr9P9Humv3\/m+qZt\/Ue+o1275g8pvQ+x1w967aHr5rJzvmuI1vlul6O5TkphXD+kbEb2knCobr+X\/9nUIaGvvYLsR\/\/Ha+98rIu2zVrfD6T6Ma1\/JOtzQd0nujwjOjGxnOsf42jXG78Wm+eMts8bpSdO7I8Fl\/HgK7eFWmpIuuuuu3DllVfii1\/8Iu68807M53Ps378f3\/\/+99sy119\/PW644QbcdNNNuPfee7F3715cfPHFeOKJJ6btjO+DpI8jcYBQ+38o1Ga5SHo+JN+INttFig2zsbvJfAldgKTLpACSvkDpi4y+0OjX+iIj2770L1L0cNoXN4nuYthbPhCO9AVbSmlczF0XfHpTAGlXfbxumAHpuwuKuJtbChDZfUgBIa0kCJgIQuhnsB1\/ve\/JyP2KPYZjAMp1DrjOF7Ye6\/wLQRh3jtPzn34vXD8s6HdsSliy94G7luj3\/W2677zeLi5FQBhOdAwotf0AD0rGeUh\/4Epy7W7AyAdKAIz7Rpe2oSs3f2TLeXdwjXSQ7hdkU65uD2pnDJiGATvPoA1BPijiRqAvSEsdbvuDP\/gD4\/3HP\/5xPP3pT8f999+Pn\/mZn4GUEjfeeCPe+9734tJLLwUA3HLLLdizZw9uvfVWXH755YvrnH3h5KgjJdTWJGzHuEhtk8RFosnaQyeN5L6EKYDUbiM7QBqTf+SbGDIm96hdNjCslppr5Aqn0ZujfdrYoQ3uNLKhgfuB5sxPYoBDtcMvb+tzbBeq1yUONMZoDs8FdKRmzG\/Hsf0XkWE1rQLC+xmUbZ6KY3sh2La4sJ0rVMeF1ej5aYfmuHpqOq8PSQWgD1U1ZpN2heOafhjPi9PrmARvVxjODLVJb66S7gOMbWAsn0v\/yLdu\/2RbfWGF3rr2+3Mo1QDM0Jten56fZE8yKUm\/ZK3igvqZbnSkmy83SdaOBO5axuclAeg9nsSeBkA\/v20btNSQZOvIkSMAgNNOOw0A8PDDD+PQoUPYv39\/W2ZtbQ0XXngh7rnnnvGQZDtGvSuAdaG285FIGV+obQoXSXWv+4Vga0geUiog0YkiQ4AUE16zAcj4leWBI2O5BUhD4WgMGPXb84PRUChKBaKxIDQEHBYJN1Npyj5q4Eo5VsIBOFpDAcoFTtyiUB6S2s7+UeWGL7p9P4eJByZOY2FJ5yt13znZ9lUvd82rxIGSxMA8JQJKOh\/JBUog28eCEheJ4yaZnJWVkZsENPeWFmgCuUmF8CdwN\/vhzEtqDzqsbWjHazhn3d4C7RhIklLiqquuwstf\/nKcc845AIBDhw4BAPbs2WOU3bNnDx555BFnXevr61hfX2\/fHz16NL4jPUtQgg3FcaPfuFBbz5bsNnO5SFIK1kVS9fAuEtVWAdKY\/KNY92goHHEj1XxwFANGqq5unQuMQlBkb2tv79pG1Z0GRGNBaAhQyB0ASmPVjBtKOj4xQDUUoMaCU2nddUMuk12JkdguzO3M57Q1EORI9u7qI98nneQdAUsgbQEmLOnEbp+rxDm9mhMAdUOljzLRQaGZGA5KerLJECjR493O1O0Z7SbQuUl1LVAMcZNqtcyeM0nOazKfkmMqADQV0ZR8+9lt3Hdhi0e+7RhIetvb3oavfOUruPvuu3vrtJWtJaXsLaO69tpr8f73v7+\/Yj4HYFl67CSQdd9lmlf9O6q2HFWneuu4hG3qIrlm11bVidZF0mE2HXMOhdmMYzUSkLgcJJp\/1K1r9mFAeG1MaC0FjriQGgdHY8FoCiiaCoamgKAh0JMarttpKgYck5gsi5n03xySn0jE3vQZcApAU22FcvrQFAammHCcLToqzoYl1VZTh17AwJIOwXGukrmROQM2lS\/8RmfoDoFSpz4oqS70Qals+0TClp6wmwYlIep27iQhZDslgCgl6ybpWbhtN0mB04CQG33IbV33HaUlmQZgR0DS29\/+dnzmM5\/BF77wBTzjGc9ol+\/duxeAcpROP\/30dvnhw4d77hLV1Vdfjauuuqp9f\/ToUZxxxhnuDnA\/HwD1IVYVX5bcSdlQm05yo6E2DUAEjKQE6yKp5vvJ2qr6YQ+vXSQgpYbXqHsUE1qLhSN667LhiAuppeYZxYLRFFDkGhXGyQVDU0HQEOg5XkGpgN\/tcW0TOs4ChffzmqFwfs4cPDnDdlwV\/shaEJrM0NyCgEnn93imD6CwlBKCazfyuErO8JuVp9Ttg2RzlGh7vhwlLfv5bm1\/PKAEIdt7C4qmr80Ek+oe05g+lapHQAClNGbhbt2jWu20nCkaNEJu7b2OCbnp9RSWAPVeCBiOEl23kieTbCWlxNvf\/nbcfvvt+PznP4+zzjrLWH\/WWWdh7969uPPOO3HuuecCADY2NnDXXXfhuuuuc9a7traGtbW1pL6I+Zx3lYDmRCDuEs3k50JthtNEEraBDpRoTlLduUh04khXsvaQ+ZBUF\/uARMNpNiB1IbQ+IPnCa\/p7HOse+eAIMAEpBEex+UacazQGjMZC0Vgg8t1cQzfnmBv+EOCpxNaNUNkqlXK2MPgLuVOuo+mCp1jXiQ3VjYGmgcBEw3ExsMTmLekq6T54QnCADUumqyRgfueBcPjNfpTJEFAq0H90SQwoadH8pKq2ZuIGehNMlkUDVbab1ETHjARuGnJrnuUmhTBDbuaBVqoqdfBc7tE2OUtLDUlXXnklbr31Vvy3\/\/bfcPLJJ7c5SLt378auXbsghMCBAwdw8OBBnH322Tj77LNx8OBBnHjiiXjjG984rNHQXAzzSmO3Y3sKQEyoTecgORK2ORepXRdI1tZhNq2hE0ZODUi+8FqMezQk7ygFjnwhtanAaBFQlOoOuWAodFOPvekPgZ7jzk0acAxiwCrGnXJBlBOeHKG7EDylQpMrgVuVSwAmxl3S17uUvCWdszQ0X4lOQjkk\/MaOfLNASa3TlTKgNDCR2w67lVD3Ey6Jm04wqXKQeDcJXAK3kN2HYh+kWnawNK9IObAS8zlkUbDG0lZoqSHp5ptvBgBcdNFFxvKPf\/zjeMtb3gIAePe7341jx47hiiuuwOOPP44LLrgAd9xxB04++eThDcdOWqU\/bJqPBDhDbcGEbY+LBIBN1qZzItlhtrYPEYBEXSS9a8AwQLLzj4aE11oQkhIpcNTW3e67bJfBKu8LqXGwMyUYTQFFU8JQ6AYcA0BDgac+ThK5CxSDwmxRcCn9l2ofRKXAE+c6jYYmaZZtiyQCE+8umbDk7qPsnCWplzVV2X0O5CvFht\/0cttVoqDUXXNtUAKkcVyZHKUIUNKj41yJ3BUZ7SYL1Q87iVsICf24EmVhqZ2Rjauk7129Gbh9ITe93PUwOikbgCqAcvtGtgFLDkkxw2aFELjmmmtwzTXXTNq2kHU8LGlpaALQC7UZsKSXq7u5Tthun9Gm3aRaGEP+uTAbgBaWADgTtVNHsrkeVss9h80GpKHhNZd7lAJHen1KvhEXUuNgJxWMUqAoxiWyoSgVhlzLQzfp2Bv\/ENg5nkJuFZQrlCL1ozwihBA4TkPa5uBps7kdUtmOkw1NNWT\/URj0lHEAk3J1HCE2Bph87lJU3lKT5NwbDdfuh9VfAku2q6TaoYXjXSUKSgDNUzJBSa0bB0o6bYHLTyqKug27zcou7BaTxC3U4YSom8NI3aSiOS6NMcCG3CrRTQWg85I0adoj3LZZSw1JS6GqyUXSIbbWOapVDJXmI7lCbT2ibtwih4ukljFD\/snM2vTRI3Q0mysPKQWQ7JwgG5A0HAE8INnhNZ975Mo9MoBpAjga6hpNBUapUBQDRCkw5IORcLgtDD\/DQm3Hh4NkaMBxiAGcKJhytT0SnnrgJPsTbvrcpkrKzg2CNB4A7HKZeGCSvbK6XF2jBbWQu9RL8I6AJTME10DbQFepzVOSCl7MhO4OlAAwI9\/iQakQtXEMbFCqgTbspn+UVyggRBd2EwWfxC2bHbHdJD0dgJHArR0j+164zfMfxSpD0tSqOgdKEljiEraBzkUCTBeJS9YGwM6JRMNsrjwk3WwMINHnCLkAyZ4DiQKSHV4b6x7FwJFaLoNw5HONuHDaVGA0Foo4kEmBITdQTQNAQ4DneISkGnWcM2RrgpCbC6Rqsck+9DTFfbLBye5tyG0yRE\/FiLBcC0ISZD+ks1zXuCRwQ8o19+wUWFIQpmCpkrrbw1wlX54SBSXANUVAHCip\/XQncqeE3QA+iVsWyk1ipwOgCdx0ziQ75EZdJJ28rUe4LcE0ABmSxko7SDTUBhiuUbse6Cds63gufZCglawdmhOJ5iFxgKRdpFhAspO2Y4f4u8JrY92jKeEo1TViAcp2hSLAiELREJfIfj8VDIVDbWGQGQI7x\/OEkhUTsgopBq5qsREGMCf0OLNie4ti4GkyaBoITDHuEm2Yc5eGwJIdgtOTQKa4SqE8pbq5\/hZCeuZSCoNSaGqAQnagJAJhN53EjbqfxC3naBO50bhIbAK3njMJgBFyi1Fdq6hOUUDIrR3ukSEpRXRkmw1FWjTU1rzvJWyTYf+2i6TDbNo9sudE4sJsQAdLvpFsKYA0ZAQbDa\/Z7lEXckt3j6aEo1TXiD4UtisfhiLdPy0KRiGXKMYhSoEhN1CNB6AhsFNhM3mbnagSK0nlh8BVT8kht0h4CjpOleFW2SE6Ck0xwGSE5RhgGuou+UJxUbAUHYLzu0q+PKXQyLdYUBKFhG\/Emz52bX4SwmE3OhN3O8JN9t0kbwK3HXKrNURVwCwy\/KZTX7ZAGZJCqqV\/jiSaj8SF2sgJwbpIsFwkwDsnkms0mw6zuQCpkkU0IFUyLkFbreMBaQr3aJFwlOoaTekWpbpE\/fJprpCr\/FgAGgI7tTh+HSRbNdZRBGbI5uSDqxBIuRwplwvldo1sJ8gM2aW6TfTMpMBUQRoP\/zXCguTHiw1MPndJuzu0nA+WtKOk5YMln6ukC5dCkJAc7ypVUk1FYOcpxSR0x4JSNzqOByU64k3nJ3FhNwDtA3B1ErcKu8HITUJhTi7JJnCDCblRUQMiYuDWVihDkk\/OuZDqLmnbWO4hZvLecJHqvovkC7O5Jo3s8o14QKpkOiBpOAL6gOTLP0p1j1yhtSEJ2RSOUsDIKOcBoyFukeFCJQKRWmaehxwMpYLQWABKhZ0aVbhQoiq5GEeqFGkOkE+1UPtdJIzWiYGrISCVAlA8BFnbWuehvY0JPZ3TNMplal2Wrm4NQgq4dHkrHCcblycClrxhuAZuUlwlNaeRWq4fkEt3MzWhe1OqSadDoLRZ03J9UCpkPz9Jh93oJJP6NsiF3fSUAG1uUo12cknUop\/ATR9TQkNuOi\/Jlp4GYBuVIckl+9lsANhnttn5SPOaTdi2h\/1zLpIdZmNHs0m0YTYNSDTMNjUgxeQf0V9HFJDGhtZS4SjkGsWAkSrf1MmA0aKhKAREHPSkgpAPgGLgJwV4pgKZrcxhmsv13rKxYTB9zGMBrBaVF6xqqD76YIoDqZSQng1PfQhiEsUjw3TUZTKgSXYj56jL1PaBjJTzAZMzHNfAUgtUETlL3NQBJRrYEUhK7FYOkuzlKrV5SrIBI0dCdwUFaZu1GA1KtRS9\/CQddqPPdvONdisL9HKTUDWzb2s3Sd00ugRu3cd53UwDoGmrOVBVH5jaCSW3QRmSYmW7SjYw6VAbvdO3iUDNzbn2u0h2mK1mwmzccP\/N2j3UfwpAGhpeGxpaiw2rxYbUnOs9YGRup\/6PDaHR1xRyxgIRB0OpIOSDoBD8pADPWKiRC3Cexsjujxg4j4sGsBhQiQErH0z5HCkboGLhKRWcaJiOlrVDa6HQXCwwtV8xSR4n4kj2LtHBkp5CwDt9AIWlpspQCI4mdtshOF9SN5enVEnRwhcmACU6h5KGSR12o\/lJvtFuQ90kY84klN06qvYZbkT2fXi++HnWMiRxsj8Iaj3QSSIBc34kLmGb3t0DLlJMmC2Uh7QoQHLNf+QLr0mE4UgfXldozYhYMiE1+vFwcBSTZ+QDI6CDoymhaIhDZINHKgj5ICgEQLHQMwRuKueDM5ZZ\/T6XCZdTfZxiYGsu170AU2HTCVIuiHIB1CB4CoTdjDAdLZsYmvMBE8h3vpfwLa1QGwNLgIKpbr4l2YBOH5bK5tMTGpZkF4Kr0ZgggRAcBSV9ndPmCRd+k1LBnB1+GwNK3f9dftK8KjErKyM\/iXu2mw67aTdJFhFuEp0OgKaj0AfecmG3ut7WWbczJIVEgcmApYZsdBmSb9QmbOtlcxnlIgEwwmwakELD\/TUg6SH+iwIk1\/D+Dpj64bWhobWhcBRyjXx5RlODkQuKpgCiVBByQVAIfmKgZyjkSLlcbtFYzTX4iJQLujp2IcCSqLxA5XOoXBDFAVQMPNngxOY6kfPddJA6p6k3f1MgNMcBk85hMiDLBUzSCrV5YKmrXJIQmnnzLiF7ITi9j6EQ3FThtxRQmtfozcqt98mXn6Q\/NZqfpMNuQjRTAhTNj36fm6SnAwA6N0mH3AATkGgKC2Dee+cVUG4dumRIskXtu4q81qE1nbQNmBYhDbXV\/LD\/9qdGzbtI1bywwmz94f4akKq6n4fUQROCgDSv1etUQIoJr3HukQ+O1GEyQ2shOEoNqcXkGfnAaEooGgtEU4FQCIBC8DMEco7HCSR7kt0+xk4sOSefhRuywkDlgimXG8UBVCw8JYFTIjS5QnMamNraZJfD5AMmOxxnhNpkE2rSoTHPiLjeaDgSglP1xIyC40fApYbfbFASAlghO8yBkrQcJTUrN7BZF1gp6vj8pHmBclY3+bMeN4k+qkTfC\/UBpG6SngoAMA+CHcXZBmVIilGblE1uCnMCSlVtJmzX3cnAuUj0GW1tLhITZtOANK\/6eUgakDZ1jhI6J2mzLpyAtFmb8yBxgLRZm3AEuMNr9tB+6h4NyTty5RzF5BstCoymhKKxQMSBUCoEjYWfFNCZMreoktsTlivF8MtkReEnNo+pgSwXYIUdKx6mXCE+DqC4fCgbnlLAaSw0oQdMTEjOA0w6f6l1lwgsqfL6wtPBUs95Is6SD5Z8IThAw5I9CWV8+M0FSoUU2IS+qSs4CoXeNBzRRG4Nje06wJmfVFcCQkhUmwLlShM1oW5S3fzYJW5SG3LTbpIe5TYruws7Td6eV8DM+g5uITBlSHKp+RCEdpbaB9fKPjTR5JoYF0n2XSQdZpvPC2ce0iZ5LpudqL1Zd7Npc4A0bwDKB0ibul6He6R3lQIShSO6XrtHvryjoXA0xDWKDaX5wGgsFI0FIg6GUkDIBz8x4BMLPGNgZhlDcHNPn4aE1rRC8FU5oKZVBEzx\/ZsPBijbeUoBp1hoApMI7gcmJiTHABPZ2RaW2pFxNhB5krxtWDL3NT5fibpKLaQId\/htUyrOmYkugdv9cNxmjqQiDEoKyLpE7nldYFbw8yfN5yVmswoalETRPDKr7qYECI90syhwXpuANLcAqSy7e2417wPTgpUhKUUUlKR2jGq0obZYF0mfRJaLRPOQ5vOyl4ekAWneuEfKMTJn01ZOUQdI+s8HSF1ekhuQYpKzNRwBpnsUm5TtgqOYkJrLNRrrGHFgNASKKBBx4bIQENmA4nKDXJDhniYgNKItDDxDwOZ4eSyJlP39iB1ib8NX0BlyQJXXrXKAlNuN4gGK1jsWnELQ1Ju3yXKZhgKTTvhuy2oISQzFUVgqC2nkK+l7vw+WQEBJXQfdrhLlCXvyyQoCUsoGdvqgNBMC81rlTXUhtn6OknaMfIncKjcJvfmTilqgakJvbdjNcpMkZDsLd89NotCkR4y7Hny3TcqQxEi0Cdn67kwuhJXlHjV3dtmCUYSLRB5iS10kbj6kqlZf+XlVoss5MkeyaViaE0DarHUIzg1Im3V8\/lH3nh\/arwHJFVqLScqOgaPYkBqFo6nBaAwUDXGHbCBKASGn0xSAnxD4DIGcegGTP3KQMkZCTD8XSxE5N5LeFxdkUahKBSqnKyX7Sdc8QJnwFANOqh9q3yk4jYKmgcDUzmJNEr5doTjtLnGhOOos0dFwPliyk7vb20HdJXbbrlJMUrcOv23WsslH4kFJhdUECiEwQw0KSmhASUNRm5xeo0mo7idy6\/wkoMZ8XmA2q9uwG+cmCV0f5ybRkBuIm0R3mER15Iy4SlukDEkh6bu2lGDDbNpBMog44CJJQM55F6mqC9RVP1FbA5JK2DYTtTUgVZGAtCkBX4J2ZcGR3lWXewT0AYnLO\/LBkT7EdlgtJqQWco1SwIgLo00FRUPcIRtWxoLQWPhJAZ2pAGZqEBra1lCAqsjklKl1uAArBqicobaBANUP3\/nBCTDPf+o4DYWm4cCkcphsd4kLxTUHoxeKq0WXrwNIc7kDllSdVnK35F0lda3uHCtfUjeXp6TykdygpD6xop1JHEKigBrkow5p5yQB3Yg3+iBcAJhXBWYwE7l12I1zk6Q6EdxuEtCE3Opmckl90a+AmjwQ154GYD7fkqkBMiS5RGmVJmxTULJCbe3s2pt6mWRdJB1mqytlVVbzonWR6Ei2qnGVuJFsesi\/HuqvAUk7TDYgbdb+EWyb9WLcoyngKMU1AtSN3gVGXOK1D4ymgqJUd6g\/Ao4L0cWH3HzwEwKfWEgZAjM7arRbxP6FRrOx4TkPOGnAioErG6hcIKUdKS7UBpguVGWDjxW+67tOZtK4z3FKhSZ95Dhg0snfHDB16xT0GO6S5ENxbKJ3IiyFkrvbUXAi3lXS12QdfgO4577pdiVWwD\/vjWpmPRDXHvHWjnxjHoQrC9GG3Ww3qd5Q9Rcr6O6DnJtEXwNNHlLzsFv7GW7bEILLkEQlrQ\/ABqU2u7iBICvURj9wudG4SZyLxITZ6lrlIemRbBqQuJFsNiBJoAUkmoMUmgOpkmnhtZjcIwpHADksE8HRENfIB0ZcGE3XNRUUUSAa4gzZMORygzgQcgFQCGhC64fATV0v5llrU+U3jX30CAC2J0URCLdZx5oDLfvz4KAp5FgNh6g4eLJdp64ONzilQpPtMhkJ4M132gYmug4EllzuUm+yyubalA5LYEfC6XylGqJ1lfTjTYa4ShIqerZS9Ee+bULBnpT9571RzYTsQVHd3C8K9NdtViVWygpVbbpJ1Vy5USUAzPpTArBuEg256UeUSP1an1DmCDchuadcLkYZkkKqrQ+LAhETauuF2eaA3Oi7SFyYjY5ksx85YgOSaloDjzAAyTcHUmgEm4akFPeIG7U2FRzF5BqFXCMXGHFhNA6MNBT58olioCjkDoVgaAoI8sFPCHxSIGf0Y0m2MMTWthnZ59SQWVWnPQuO9sIJWIG5mFoAIn0dAlG0nyF4YsN2BJ7McN18EDRxLhMHTNplcjlMtrukgYnmLrncpbGwVAsrX0nG5yrpEXArhTRAqRBq6hbfyDc9lxKdIkA0\/wM8KOn\/uakBNit19OfqSXYAmLmTmCkBtJskN5twm76R6JCbkY8kuxFu7bKtvTZkSLLFPcRWL68qtU6H2oAWlCSFJSbMVm8AshKoNrswG03W1mE2OtTfBiRuLqQYQAolaOvoYIx71FreDvfIDq1NAUcxrtEUYMS5RRqMYkNnLigyICrCGbJv2DYMpUKQC4BC4BMDDoPCbNs059EkCvyELSLmVeKOK+sOWYDFwZUXqhyj21IhigIUB092rhJgwlMLThNAk89l8uUxOUNyxkzfYXdpClgiB7PJTxLOXCVuBNxmLdrwW\/cZ9Ue+uRK6tSs1R9EmcxdQITo1IKgPTK6pAYSovWG3npukz7FVAFUNuVEpWOostO6PyjYstkgZklyq5mqOJB0T5T6cujZCbcFkbSvMNm9ykXSYraqLqLmQbEAywUa0oTTfDNqbrWPEA9KcwIzLPdJHhHOPpoajFNfIBUZcfpHtFqk+ucFoiEtEoSjkDoVgaAoICj6KJBRqSwScqV2hrXKZhidqbwyry3AG+Esz\/ex8UGXDlN4qBaI4gHLBExe6M+FpngxNgArRcdBkTDvQDsgKh+XaPKYWjIa5S+qYpMOSPccSDcFRV6lqioZylYDuuqocJndCdy2VA+UCpU0IrADsHEo2KOmpAYTsIiFcErcKvqk+Fu3XQppht7K5f9ayC7m1eUlN8vY2zbYNZEhKU60pR0LPsm0knUUka\/vCbMqR4edCsgGpJoCkJ4rUOUguQGpzlMADknacXKE1wO0etesJIE0NR0PCaalhNF2eC5+NdYmMqQginCF7GfvMtwQI8obaglMCxF2kxgCMXDJ3yU5RdEnEOEfJCdsb4XIeqHLBVBJEMQDFwZMvdEddJx80qT6VvTY7cOo7TRwwcWE5O\/FblRvuLo2DJRhzLGlXSSdat64SzMRu3Xk6W7cayWbmKW3Wqg0JYAUdKOk8JTUVQJfQrT0tFyi14TZmssl2xBsTdgM54qGwW\/frWpohN52XZCdvb7GOG0j68Ic\/jH\/zb\/4NHnvsMTzvec\/DjTfeiJ\/+6Z8eX3EbXpP831zZhXKz7pK1N1UuUr0JNsxWzQtUlVBzH1UkQbsuogBpngBI9iNGKCBx+Ueh3CMKRwDvHo2Bo9AItdhwmkQ9OIw2FIpigCjGGepNVlm7c6GCdTlHwI1zk1SZREcpInQ3RFM5S0OdI8k4R22dntwj13Xfhq64pO0Nd5mmHQpSIYgCur73AMoCGV\/oji4rxIrhOHE5Tj63iQvP2cCktjXDcq6QnC8cVwvJuksF6ihYqqVybDhY0hNSUpeIThmgXaVakukCmjwmHYKrJTBv6nLlKW3CPUP3JhQo0ceYhECJThEwJw++LRpgGhR2mwkI2SVwGyE3W3XdzZU0nwFx04+N1nEBSZ\/61Kdw4MABfPjDH8bLXvYy\/Mf\/+B\/xqle9Cl\/72tfwzGc+c1ilmgyoaD6SDrWRWbZjw2x2HpIOs1W1mASQXDNo2\/Mf2YC0WcvJQmsuOHKNVHPBEXWNYsBI1d3B0VC3iIOiVCBS5Wr2dYwr1JtXaSQE+WAiBnhiIWcctGzfY0mGPRLFP0+L75i5oMyGLhu0OLhygZUJLg53yuFI6b7rsrYLFYIn3Y92e8t1crlNqk0yKk7MOmhiw3MdMKn+9V2mVGCCJ9lbh+IkzLwlG5ag51pqYKlqjqgOjekJKXvPhBPEVfKE4GaF+pS4PCUVWvPnKWlQigm9UVCqpVRTAsgC7Wg0otmsUpNMtkvqxhVTJ5oRdtuoIWeiH3IDLDOiAtZgaotCcELKbfSxJtIFF1yAn\/zJn8TNN9\/cLvuJn\/gJvO51r8O1114b3P7o0aPYvXs3\/vrQp3HKaglx7Biwvg6xvg784BiwvqH+ntwAjq0D65vAk5uQxzYhn5wDmxXqJ2vU36\/a0Wx1pZwkOVcuUjUvUFcFm4dUA5hXZQtKIUDihvlzgDQ2vOYLrXEzZU8BRyHXKAaM1PoOjlLdIs4pSnWJXEAUEx7rhdl6Iby0cBoHQNMkZA94HMmShdQWrZhQXF9+8Ao5Xi73ytUXV339\/KOZd73drp3\/ROGJbsuBk12fdpDoNATaadL10uRxHZrTZXRdOiynE7\/tkJwuVzT\/gO7hu2qJaJd1s3qLdjsKS3rW7oK+F2qEmX6vk7GF0PMrKVeJPtxWheiaEFwTrisEdaHU+5kwn\/0myPaFAFb0tmhAicBYKZTLpLedibrZRqrwXKGeCqpCb2hfl4X6f1ZWKIXESlmhKKV6X0qUsxrlrEZRSpQrKv+oWG3mTiqAYk1AnFCg2FVCnDADTphBrJTASWvA6gxYWwVO2gWsrqjXJ6xB7joBWDsBcm0N2LULR5\/cxGmnXoIjR47glFNOwdTa8U7SxsYG7r\/\/frznPe8xlu\/fvx\/33HNPeoXGcP+6+5\/mI1l\/ci4hNzRdIDkPaWpAcs1\/FAqvtaPcGDgC\/KG1dlQbXRaAI1e+USgJOwaMADS1uhOufW4RB0UxQGTXS6FoLAzx7pDDSUoIyXUKzMadAjhjcpOotbHEMmZVdsgZivOCjnmc+y6R\/TmZUOUKpdG+UAChP5NpW7YbpZ2ots5mOw1PMc4TdZ1ouI66TXa\/dZhOh+js8Bx1mQBYoTk+LBdymNSlnA\/HUXepC8XJLslbdrN512icJIjmyiWMMJx+1ElMCM6eW0lHv4aE30qohO525Jv1v89RUnXXKkepBlonqazC+UkA6o3GUVoB5KaEmDUTMM9IyK3SN6MaxszbgBmK2wKPZ8dD0l\/91V+hqirs2bPHWL5nzx4cOnSI3WZ9fR3r613s\/ciRIwCAo0\/8QMVI19eBY09CbKw3zlHz\/8Ym8AP1vzw2B56cQ67PUR+rINdr1Mck6jnMPKRaoO7lIdWY1yUqWTeTR84xrwvM6wKVLHqAVIEf5q\/BSAPQvAEvX3ithj+8Bq97pMpK2ynS7hH6cKQBKJyMXUFCopaWayRN10jDjgFGsgMYO5RWofK6RVwIjd6kpa430SUy6xgHQzacuAHIdcFwTD4Zgp5Q3tIgmNm+cNrUCu+9xxHyPf7Egq\/ebOs9wDLdSRN0XP2hz4GjQ9K7c8J2hmxY0yBT63mePc5TW7bSc0KLtgdFsdIBF+M21dhsXwuxAjTfSVXHes9lqqCTwNHADSnTOkulCv9p54g4TPpHVudGde5SRdylAgU2sQ4BgVJqV0s0Sd6AkEXPWSpkl+DdOkvou0qieV4KdYp6rlINNayfhN\/aOgCs18o10q6SDr8JqCTuQihHadbUqx0l\/b\/tKKkx1mjdpJWiRilqzAr1V1bKcSqqZtmsQlFIzKoaxbxGMVNlxExCbEA5Sqsqf6moC4hqDlGtAPNKhdw2m9SWeQ1szBWpbcwhT6iBjQryhArYqHB0vbluLwiYdjwkaRlfdKCJvfK\/9K699lq8\/\/3v7y1\/1tlvXkjfsrKyfhg1LLQYvNQHCuz8BIqsrHR95zvfwe7duyevd8dD0lOf+lSUZdlzjQ4fPtxzl7SuvvpqXHXVVe377373uzjzzDPxrW99ayEH+YdJR48exRlnnIFHH310IfHhHxbl4zid8rGcTvlYTqN8HKfTkSNH8MxnPhOnnXbaQurf8ZC0urqK8847D3feeSf+3t\/7e+3yO++8E6997WvZbdbW1rC2ZqfKA7t3784n7EQ65ZRT8rGcQPk4Tqd8LKdTPpbTKB\/H6VQUw6bwCGnHQxIAXHXVVXjzm9+M888\/Hy95yUvw0Y9+FN\/61rfw1re+dbu7lpWVlZWVlbVDdVxA0utf\/3p85zvfwQc+8AE89thjOOecc\/DZz34WZ5555nZ3LSsrKysrK2uH6riAJAC44oorcMUVVwzadm1tDe973\/vYEFxWmvKxnEb5OE6nfCynUz6W0ygfx+m06GN5XEwmmZWVlZWVlZU1tRaT6ZSVlZWVlZWVtcOVISkrKysrKysri1GGpKysrKysrKwsRhmSsrKysrKysrIY\/dBD0oc\/\/GGcddZZOOGEE3Deeefhf\/7P\/7ndXVp6XXPNNRBCGH979+5t10spcc0112Dfvn3YtWsXLrroIjz00EPb2OPl0Be+8AW85jWvwb59+yCEwO\/93u8Z62OO2\/r6Ot7+9rfjqU99Kk466ST8wi\/8Av7iL\/5iC\/diORQ6lm95y1t65+jf\/tt\/2yiTj6V6RNOLX\/xinHzyyXj605+O173udfj6179ulMnnZZxijmU+L+N088034wUveEE72eZLXvIS\/P7v\/367fivPyR9qSPrUpz6FAwcO4L3vfS8eeOAB\/PRP\/zRe9apX4Vvf+tZ2d23p9bznPQ+PPfZY+\/fggw+2666\/\/nrccMMNuOmmm3Dvvfdi7969uPjii\/HEE09sY4+3X9\/\/\/vfxwhe+EDfddBO7Pua4HThwALfffjtuu+023H333fje976HSy65BFV1\/Dw4NkahYwkAf+fv\/B3jHP3sZz9rrM\/HErjrrrtw5ZVX4otf\/CLuvPNOzOdz7N+\/H9\/\/\/vfbMvm8jFPMsQTyeRmjZzzjGfjgBz+I++67D\/fddx9e8YpX4LWvfW0LQlt6TsofYv3UT\/2UfOtb32ose85zniPf8573bFOPdobe9773yRe+8IXsurqu5d69e+UHP\/jBdtmTTz4pd+\/eLT\/ykY9sUQ+XXwDk7bff3r6POW7f\/e535crKirztttvaMt\/+9rdlURTyD\/7gD7as78sm+1hKKeVll10mX\/va1zq3yceS1+HDhyUAedddd0kp83k5RvaxlDKfl2N06qmnyv\/0n\/7Tlp+TP7RO0sbGBu6\/\/37s37\/fWL5\/\/37cc88929SrnaNvfOMb2LdvH8466yz88i\/\/Mr75zW8CAB5++GEcOnTIOK5ra2u48MIL83H1KOa43X\/\/\/djc3DTK7Nu3D+ecc04+tow+\/\/nP4+lPfzqe\/exn4x\/\/43+Mw4cPt+vyseR15MgRAGgfFprPy+Gyj6VWPi\/TVFUVbrvtNnz\/+9\/HS17yki0\/J39oIemv\/uqvUFUV9uzZYyzfs2cPDh06tE292hm64IIL8Ju\/+Zv4wz\/8Q3zsYx\/DoUOH8NKXvhTf+c532mOXj2uaYo7boUOHsLq6ilNPPdVZJkvpVa96Ff7Lf\/kv+OM\/\/mP8xm\/8Bu6991684hWvwPr6OoB8LDlJKXHVVVfh5S9\/Oc455xwA+bwcKu5YAvm8TNGDDz6IH\/mRH8Ha2hre+ta34vbbb8dzn\/vcLT8nj5vHkgyVEMJ4L6XsLcsy9apXvap9\/fznPx8veclL8Df\/5t\/ELbfc0iYh5uM6TEOOWz62fb3+9a9vX59zzjk4\/\/zzceaZZ+J\/\/I\/\/gUsvvdS53Q\/zsXzb296Gr3zlK7j77rt76\/J5mSbXscznZbz+1t\/6W\/jSl76E7373u\/j0pz+Nyy67DHfddVe7fqvOyR9aJ+mpT30qyrLsUeXhw4d7hJrl10knnYTnP\/\/5+MY3vtGOcsvHNU0xx23v3r3Y2NjA448\/7iyTxev000\/HmWeeiW984xsA8rG09fa3vx2f+cxn8LnPfQ7PeMYz2uX5vEyX61hyyuelW6urq\/jxH\/9xnH\/++bj22mvxwhe+EP\/23\/7bLT8nf2ghaXV1Feeddx7uvPNOY\/mdd96Jl770pdvUq52p9fV1\/J\/\/839w+umn46yzzsLevXuN47qxsYG77rorH1ePYo7beeedh5WVFaPMY489hq9+9av52Ab0ne98B48++ihOP\/10APlYakkp8ba3vQ2\/+7u\/iz\/+4z\/GWWedZazP52W8QseSUz4v4yWlxPr6+tafkwMTzY8L3XbbbXJlZUX+5\/\/8n+XXvvY1eeDAAXnSSSfJ\/\/t\/\/+92d22p9a53vUt+\/vOfl9\/85jflF7\/4RXnJJZfIk08+uT1uH\/zgB+Xu3bvl7\/7u78oHH3xQvuENb5Cnn366PHr06Db3fHv1xBNPyAceeEA+8MADEoC84YYb5AMPPCAfeeQRKWXccXvrW98qn\/GMZ8g\/+qM\/kn\/6p38qX\/GKV8gXvvCFcj6fb9dubYt8x\/KJJ56Q73rXu+Q999wjH374Yfm5z31OvuQlL5F\/42\/8jXwsLf2Tf\/JP5O7du+XnP\/95+dhjj7V\/P\/jBD9oy+byMU+hY5vMyXldffbX8whe+IB9++GH5la98Rf7zf\/7PZVEU8o477pBSbu05+UMNSVJK+R\/+w3+QZ555plxdXZU\/+ZM\/aQzXzOL1+te\/Xp5++ulyZWVF7tu3T1566aXyoYceatfXdS3f9773yb1798q1tTX5Mz\/zM\/LBBx\/cxh4vhz73uc9JAL2\/yy67TEoZd9yOHTsm3\/a2t8nTTjtN7tq1S15yySXyW9\/61jbszfbKdyx\/8IMfyP3798unPe1pcmVlRT7zmc+Ul112We845WMp2WMIQH784x9vy+TzMk6hY5nPy3j9yq\/8SntfftrTniZf+cpXtoAk5daek0JKKdO8p6ysrKysrKys418\/tDlJWVlZWVlZWVk+ZUjKysrKysrKymKUISkrKysrKysri1GGpKysrKysrKwsRhmSsrKysrKysrIYZUjKysrKysrKymKUISkrKysrKysri1GGpKysrKysrKwsRhmSsrKysrKysrIYZUjKysrKysrKymKUISkrK+u40\/\/7f\/8Pe\/fuxcGDB9tl\/\/t\/\/2+srq7ijjvu2MaeZWVl7STlZ7dlZWUdl\/rsZz+L173udbjnnnvwnOc8B+eeey5e\/epX48Ybb9zurmVlZe0QZUjKyso6bnXllVfij\/7oj\/DiF78YX\/7yl3HvvffihBNO2O5uZWVl7RBlSMrKyjpudezYMZxzzjl49NFHcd999+EFL3jBdncpKytrBynnJGVlZR23+uY3v4m\/\/Mu\/RF3XeOSRR7a7O1lZWTtM2UnKyso6LrWxsYGf+qmfwote9CI85znPwQ033IAHH3wQe\/bs2e6uZWVl7RBlSMrKyjou9au\/+qv4nd\/5HXz5y1\/Gj\/zIj+Bnf\/ZncfLJJ+O\/\/\/f\/vt1dy8rK2iHK4basrKzjTp\/\/\/Odx44034pOf\/CROOeUUFEWBT37yk7j77rtx8803b3f3srKydoiyk5SVlZWVlZWVxSg7SVlZWVlZWVlZjDIkZWVlZWVlZWUxypCUlZWVlZWVlcUoQ1JWVlZWVlZWFqMMSVlZWVlZWVlZjDIkZWVlZWVlZWUxypCUlZWVlZWVlcUoQ1JWVlZWVlZWFqMMSVlZWVlZWVlZjDIkZWVlZWVlZWUxypCUlZWVlZWVlcUoQ1JWVlZWVlZWFqP\/D3GRTqw9agneAAAAAElFTkSuQmCC", "text\/plain": "<Figure size 640x480 with 1 Axes>"}, "metadata": {}, "output_type": "display_data"}]}}, "5ff479af5a804d60b2dabf6348fe9989": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": {"source": ["IPY_MODEL_41ceba8688ab4ce8b71fd02a6e2ab2c4", "value"], "target": ["IPY_MODEL_a0998547957e4b50bb0570d6e89b4c2e", "value"]}}, "6353f692403c49e1ac433f1fbcbf728e": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "6373a42bb1db4fb4aa1cf6ffaac1075e": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "66636bdd455c4d54a22c62b30195f3fb": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "66863e16ccde42d696e20af577f2f832": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "68c14ca25ed0479898eac1351d769142": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": {"description_width": ""}}, "68fb9a92340e434d85fbcc8de67c1970": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "PlayModel", "state": {"description": "step", "layout": "IPY_MODEL_814fc2ce5f98478d93e7d2977c35599d", "max": 599, "style": "IPY_MODEL_db46a3c449cf4e6d85de539fd7e30166"}}, "69d0279f5aa04a24b8ef28051f31a77d": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": {"_dom_classes": ["widget-interact"], "children": ["IPY_MODEL_b361054bfbfd4aa193975eb438f70d68", "IPY_MODEL_121945e57f994c77aaeca0c873e63745"], "layout": "IPY_MODEL_0335767ddbd747b4893969d3e2d93893"}}, "6f20477e70534303aec0ee8da489b89f": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "72d3e88fdf024cba8257fa4e8a109544": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": {"description_width": ""}}, "754124660050415e84f351699e0454bd": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "PlayModel", "state": {"description": "step", "layout": "IPY_MODEL_e9f56784337d42cbbf92f7219b1e0c47", "max": 199, "style": "IPY_MODEL_b9b135e17db64c5c95f90edcb6aeed01", "value": 100}}, "75be4fb6e3894ef2ac842e505a05bca9": {"model_module": "@jupyter-widgets\/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": {"layout": "IPY_MODEL_5b00930d74a04c2d8edce165ad2f10fb", "outputs": [{"data": {"image\/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG2CAYAAACXuTmvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy\/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA2sUlEQVR4nO3de3xU9Z3\/8ffkNrnNDISQTEJCiBBEQBBBIfGGF6isN8Raq9ZC7fanW\/S3PGhXi\/66ha6Cl60Pdx+0bm+LeGFBV7HYKhKrBBGhXAIiIkIJSYBcSEhmcp3czu+PJAMhASKT5GRyXs\/HYx6Z+Z4zk0++Hpz343u+53xthmEYAgAAsJAQswsAAADoawQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOQQgAABgOf0mAC1btkw2m00LFizwtxmGocWLFys5OVlRUVGaPn269u3bZ16RAABgQOgXAWj79u363e9+pwkTJnRof+655\/TCCy9o+fLl2r59u9xut2bMmKGqqiqTKgUAAAOB6QGourpa999\/v37\/+99r8ODB\/nbDMPTiiy\/qySef1Jw5czR+\/HitXLlStbW1WrVqlYkVAwCAYBdmdgHz58\/XLbfcoptuuklPPfWUvz0vL0\/FxcWaOXOmv81ut+u6667Tli1b9NBDD3X5eT6fTz6fz\/+6paVFJ0+e1JAhQ2Sz2XrvDwEAAD3GMAxVVVUpOTlZISE9P15jagBavXq1du3ape3bt3faVlxcLElKTEzs0J6YmKj8\/PyzfuayZcu0ZMmSni0UAACYorCwUCkpKT3+uaYFoMLCQv3zP\/+zNmzYoMjIyLPud+aojWEY5xzJWbRokRYuXOh\/7fF4NHz4cBUWFsrpdAZeOAAA6HVer1epqalyOBy98vmmBaCdO3eqtLRUkydP9rc1Nzdr06ZNWr58uQ4cOCCpdSQoKSnJv09paWmnUaHT2e122e32Tu1Op5MABABAkOmt6SumTYK+8cYbtXfvXu3evdv\/mDJliu6\/\/37t3r1bF110kdxut7Kzs\/3vaWhoUE5OjrKysswqGwAADACmjQA5HA6NHz++Q1tMTIyGDBnib1+wYIGWLl2qjIwMZWRkaOnSpYqOjtZ9991nRskAAGCAMP0qsHN57LHHVFdXpx\/\/+MeqqKjQ1KlTtWHDhl47HwgAAKzBZhiGYXYRvcnr9crlcsnj8TAHCACAINHb39+m3wgRAACgrxGAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5RCAAACA5VgmADU1t5hdAgAA6CcsE4Bm\/ccn+v2mw\/LWN5pdCgAAMJllAlCRp15Pv7dfmUv\/qsXr9im\/vMbskgAAgEksE4CW3D5WoxNjVdPQrJe3HNH0f9+oH72yQ1sPl8swDLPLAwAAfchmDPBvf6\/XK5fLJY\/HI4fDoc2HyvTfm\/P08YET\/n3GJTv14FXpum1isiLCLJMJAQDot07\/\/nY6nT3++ZYKQKd34KHSaq34NE9v7Tqq+sbWCdJDHXZ9f1qa7ps6XENi7WaVDACA5RGAAnS+DqysbdCqvxXolS35KvbWS5LsYSG6c9IwPXh1ukYnOvq6ZAAALI8AFKDudmBjc4ve21ukP27O0+dHPf72azLi9eDV6bouY6hCQmx9UTIAAJZHAArQN+1AwzC0M79Cf9ycpw\/2FaulrXdGDo3RD65K112XpygqIrSXqwYAwNoIQAEKpAMLT9Zq5ZYjWrO9UFW+JknSoOhw3XflcH0\/c4TcrsjeKBkAAMsjAAWoJzqwqr5Rb+44qhVb8lR4sk6SFBZi0y0TkvTDq9M1IWVQD1YMAAAIQAHqyQ5sbjH04f4S\/XFznv6Wd9LffsWIwXrwqnTNHOdWKPOEAAAIGAEoQL3VgV8c8+i\/N+fp3c+Pq7G5tQtTBkdpXtYI3XNFqhyR4T32uwAAsBoCUIB6uwNLvPV69bN8vb4tXxW1reuMxdrDdPeUFP0gK13Dh0T3+O8EAGCgIwAFqLc7sF1dQ7Pe2X1M\/705TwdLqyVJITZpxthEPXhVuq5Mj5PNxukxAAC6gwAUoL4KQO0Mw9Cmg2X64+Y8bfr61HIb44c59cOr03XLpSy3AQDA+RCAAtTXAeh0B0uq9N+fHtHbu47K19S63EaCw64HpqXp3qnDFc9yGwAAdIkAFCAzA1C7kzUNWrUtX698lq\/SKp8kKSI0RLdNTNYPrhqh8cNcptQFAEB\/RQAKUH8IQO0amlqX21jxaZ72nLbcxhUjBmteVrq+NS5RYaGcHgMAgAAUoP4UgE6XW1Chl7cc0V8+L1JT23obSa5IfW9amu69crjiYiJMrhAAAPMQgALUXwNQuxJvvV7fmq\/XtxWovKZBUutq9LMvG6a5WSM0Nrn\/1QwAQG8jAAWovwegdr6mZv15T5FWbMnTF8e8\/vap6XH6wVUjdNMlnB4DAFgHAShAwRKA2hmGoV0FFVrx6RG9\/0WxmttOjw0bFKXvZ6bpnitSNSia02MAgIGNABSgYAtApyvy1Om1rflata3Af5fpyPAQ3TkpRfOyRuhit8PkCgEA6B0EoAAFcwBqV9\/YrHV7jmvFp0e0v+jU6bGskUP0g6vSdcOYBBZhBQAMKL39\/W3qpJKXXnpJEyZMkNPplNPpVGZmpt5\/\/33\/9nnz5slms3V4TJs2zcSKzREZHqrvTEnVe\/\/3aq35P9M0a7xbITZpy9\/L9aNXdmj6v3+sP3xyWJ66RrNLBQAgKJg6AvTuu+8qNDRUo0aNkiStXLlSzz\/\/vHJzczVu3DjNmzdPJSUlWrFihf89ERERiouL6\/bvGAgjQF05VlmnVz\/L1+rtBapsOz0WHRGquy5P0dysNI1K4PQYACB4We4UWFxcnJ5\/\/nn98Ic\/1Lx581RZWal33nnngj9voAagdnUNzfrT7mNa8ekRHSip8rdfkxGvH1w1QtNHJyiE02MAgCDT29\/fYT3+iReoublZb775pmpqapSZmelv37hxoxISEjRo0CBdd911evrpp5WQkHDWz\/H5fPL5fP7XXq\/3rPsOBFERofrulcN1zxWp+uxwuV7+9Iiy95fok4Nl+uRgmUYMidb3M0fo7ikpckSGm10uAAD9gukjQHv37lVmZqbq6+sVGxurVatW6R\/+4R8kSWvWrFFsbKzS0tKUl5enn\/\/852pqatLOnTtlt3e9kOjixYu1ZMmSTu0DdQSoK4Una\/Xq1nyt\/luBvPVNkqSYiFDdPSVV389M00VDY02uEACAcxvwp8AaGhpUUFCgyspKvfXWW\/rDH\/6gnJwcjR07ttO+RUVFSktL0+rVqzVnzpwuP6+rEaDU1FRLBaB2tQ1NenvXMb285YgOlVb726dfPFTzskbo2oyhnB4DAPRLAz4Anemmm27SyJEj9dvf\/rbL7RkZGfrHf\/xHPf744936vIE+B6g7DMPQp4fK9fKWPP31q1K1\/xe\/aGiMvj8tTXMmp8jJ6TEAQD9imTlA7QzD6DCCc7ry8nIVFhYqKSmpj6sKbjabTVdnxOvqjHjll9folc\/y9cb2Qh0+UaPF736pZ9cf0OxJybp\/aprGD3OZXS4AAL3O1BGgJ554QrNmzVJqaqqqqqq0evVqPfPMM1q\/fr0yMzO1ePFi3XXXXUpKStKRI0f0xBNPqKCgQPv375fD0b3LvBkB6lq1r0lv7zqq17bm6+uSU6fHLksdpO9NS9OtE5IUGR5qYoUAACsb0CNAJSUleuCBB1RUVCSXy6UJEyZo\/fr1mjFjhurq6rR371698sorqqysVFJSkq6\/\/nqtWbOm2+EHZxdrD9P3M0fogWlp+lveSb22rUDrvyjS7sJK7S6s1FN\/+VJ3T07R\/VPTNCI+xuxyAQDoUf1uDlBPYwSo+05U+fTGjkKt2lagY5V1\/vZrMuJ1\/9Q03XRJAivSAwD6hOUmQfc0AtA319xiaOOBUr22NV8bvz7hnzTtdkbq3iuH67tXpirRGWlukQCAAY0AFCACUGAKT9bq9W0FemNHoU7WNEiSQkNsmjk2Ud+blqaskUNks3EpPQCgZxGAAkQA6hm+pmat\/6JYr23N1\/YjFf72i4bG6P6pafr25SlyRXMpPQCgZxCAAkQA6nlfFXv1+tYCvb3rqGoamiVJkeEhum1Csr43LU0TUweZWyAAIOgRgAJEAOo91b4mvZN7TK9tzddXxacWYp2Q4tL3pqbptonJiorgUnoAwDdHAAoQAaj3GYahXQUVem1rgf7yeZEamlskSc7IMN3Vdin9qATWHwMAdB8BKEAEoL5VXu3TmzuP6vVt+So8eepS+syLhuiBzDTNGJuocC6lBwCcBwEoQAQgc7S0GMo5eEKvb83XR1+VqqXtKEtw2PXdK1J179ThSnJFmVskAKDfIgAFiABkvmOVdfqfbQVavb1QZdWt67yF2KQbL0nUA9PSdPWoeFalBwB0QAAKEAGo\/2hoatEH+1ovpd+Wd9LfnjYkWvdPHa67J6dqcEyEiRUCAPoLAlCACED908GSKr2+rUBv7TyqKl+TJCkiLETfGufWd6ak6KqRjAoBgJURgAJEAOrfahua9Kfdx\/Xa1nztO+71tw8bFKW7Jqfo7skpSo2LNrFCAIAZCEABIgAFB8Mw9MUxr97YUag\/7T4mb32Tf9tVo4boO1NS9a1xbkWGc18hALACAlCACEDBp76xWR\/sK9abO45q86Eyf7sjMkx3XJas70xJ1aXDXKxBBgADGAEoQASg4FZ4slZv7TqqN3cc1bHKU\/cVGuN26O4pqbpz0jDFMXEaAAYcAlCACEADQ0uLoc8Ol+uNHYV6\/4tiNTS13m06PNSmGWMTdfeUVF2bMVShTJwGgAGBABQgAtDA46lt1Lo9x\/TGjqPae8zjb3c7I3XX5GG6e3KqRsTHmFghACBQBKAAEYAGti+Pe\/XmzkK9k3tMFbWN\/vYr0+P0nSmp+odL3YqOCDOxQgDAhSAABYgAZA2+pmb9dX+p3thRqE1fn\/AvvRFrD9OtE5J095RUXT58EBOnASBIEIACRACyniJPnd7aeVRv7DiqgpO1\/vZRCbH6zpQU3TkpRUMddhMrBACcDwEoQAQg62ppMfS3Iyf1xo5Cvbe3SPWNrROnQ0NsumFMgr4zJVXTLx7K6vQA0A8RgAJEAIIkVdU36s+fF+mNHYXKLaj0t8fH2nXX5cN095RUjUqINa9AAEAHBKAAEYBwpoMlVXpz51G9veuoyqob\/O2XDx+ke65I1S0TkhVrZ+I0AJiJABQgAhDOprG5RR99Vao3dxTq4wMn1Nw2czoqPFS3TEjSnMuHaWr6EO4tBAAmIAAFiACE7ij11uvt3GN6Y0ehDp+o8bcnOOy6dUKybr8sWRNTWH4DAPoKAShABCB8E4ZhaFdBhd7ccVTv7S3qsChr2pBo3TYhWXdclqyMRIeJVQLAwEcAChABCBfK19SsTV+Xad2e4\/rwyxLVNTb7t41xO3T7Zcm6bUKyUuOiTawSAAYmAlCACEDoCbUNTcr+skTv7jmunK9PqLH51D+by4cP0u0Tk3XLhGTuLwQAPYQAFCACEHpaZW2D3v+iWOt2H9fWvHK1\/wsKsUlZI+N1+2XJ+tY4t1xR4eYWCgBBjAAUIAIQelOJt15\/\/rxI6\/Yc157CSn97RGiIpl88VLdflqwbxyQqKiLUvCIBIAgRgAJEAEJfyS+v0bt7jutPu4\/rYGm1vz0mIlQzxibqjsuG6eqMeO48DQDdQAAKEAEIfc0wDH1VXKV1e47r3T3HdbSizr9tcHS4Zl2apNsnJuvKEXEK4R5DANAlAlCACEAwU+tl9ZV6d89x\/fnzIpVV+\/zb3M5I3TohSbdflqxLh3GPIQA4HQEoQAQg9BdNzS367HC51u0+rvX7ilV12j2G0uNjdNvEZN0+MZk1yQBABKCAEYDQH\/mamrXxwAmt23Ncf91f4l+pXpLGJjlb7zE0MVnDBkWZWCUAmKe3v79NnY350ksvacKECXI6nXI6ncrMzNT777\/v324YhhYvXqzk5GRFRUVp+vTp2rdvn4kVAz3DHhaqb41z69f3Xa4d\/2+GXrznMt0wJkFhITZ9WeTVM+9\/paue+UjffmmLXvnsSIdTZwCAwJk6AvTuu+8qNDRUo0aNkiStXLlSzz\/\/vHJzczVu3Dg9++yzevrpp\/Xyyy9r9OjReuqpp7Rp0yYdOHBADkf3liJgBAjBpKKmQe99UaR1u4\/rb0dOdrjH0OS0wZoxNlEzxrqVHh9jbqEA0MssdwosLi5Ozz\/\/vB588EElJydrwYIFevzxxyVJPp9PiYmJevbZZ\/XQQw916\/MIQAhWxZ56\/fnz41q357g+P+rpsG1UQmxbGErUZSmDuJoMwIBjmQDU3NysN998U3PnzlVubq4iIyM1cuRI7dq1S5MmTfLvd8cdd2jQoEFauXJltz6XAISB4GhFrf66v1TZX5Zo6+FyNbWc+mcbH2vXTZckaMbYRF01Kl6R4dx0EUDw6+3v77Ae\/8RvaO\/evcrMzFR9fb1iY2O1du1ajR07Vlu2bJEkJSYmdtg\/MTFR+fn5Z\/08n88nn+\/UfAmv19s7hQN9KGVwtOZmjdDcrBHy1DVq44HWMJRz4ITKqn1avb1Qq7cXKio8VNeOjtdNlyTqxksSFRcTYXbpANAvmR6ALr74Yu3evVuVlZV66623NHfuXOXk5Pi3n3lvFMMwznm\/lGXLlmnJkiW9Vi9gNldUuO64bJjuuGyYGppatC2vXNlflij7yxIVeer1wb4SfbCvRCE2aUpanP9U2QjmDQGAX785Bdbupptu0siRI\/X4449f0CmwrkaAUlNTOQWGAc8wDO077tWGtjC0v6jj6GdG27yhm5g3BCAIDPhTYGcyDEM+n0\/p6elyu93Kzs72B6CGhgbl5OTo2WefPev77Xa77HZ7X5UL9Bs2m03jh7k0fphLC2eM1tGKWn34ZYmy95do2+GTOlharYOl1frNxr9rqOPUvKGskcwbAmA9pgagJ554QrNmzVJqaqqqqqq0evVqbdy4UevXr5fNZtOCBQu0dOlSZWRkKCMjQ0uXLlV0dLTuu+8+M8sGgkLK4GjNuypd865Kl6e2URu\/LtWGtnlDJ6p8+p+\/Fep\/\/lao6IhQXZsxVDeNTdSNYxI0mHlDACzA1ABUUlKiBx54QEVFRXK5XJowYYLWr1+vGTNmSJIee+wx1dXV6cc\/\/rEqKio0depUbdiwodv3AALQyhXdcd7Q1sOt84Y+3N86b2j9vmKt31fcOm9oRJxmts0bShvCvCEAA1O\/mwPU07gMHjg7wzD0xTGvsr8sVvb+0rPOG5oxNlETmTcEoA9Z5j5AvYUABHRf4clafbi\/dRL1tryTaj7tfkMJDrtuvCRRM8cmatpFQxQVwbwhAL2HABQgAhBwYTy1jfr4QKmy97fOG6r2nVq9PiI0RJPTBuuqUUN01ah4XTrMpbBQU5cWBDDAEIACRAACAudratbWwyeV\/WWx\/rq\/VEWe+g7bHZFhyryoNQxdNSpeI4fGnPN+XQBwPgSgABGAgJ5lGIbyymr06aEybT5Ups\/+Xi5vfVOHfdzOSGWNGqKr2wJRojPSpGoBBCsCUIAIQEDvam4x9MUxjzYfKtOWv5dp+5EKNTS1dNhnVEKsPwxNvShOzshwk6oFECwIQAEiAAF9q76xWTuOVOjTv5fp00Nl2nvMo9P\/LxMaYtOEFJc\/EE0aPkj2MCZUA+iIABQgAhBgrsraBm09XK7Nh8r06aFy5ZXVdNgeGR6iK9OH6OpRQ5Q1Ml5jk5xcbg+AABQoAhDQvxyrrNOnh8r8j7Lqhg7b42IilDmydf7Q1aPilRoXbVKlAMxEAAoQAQjovwzD0Ncl1W2jQ2XadrhcNQ3NHfZJjYvyny7LGhmvOJbqACyBABQgAhAQPBqbW7SnsNIfiHILKtXU0vF\/UWOTnLo6I15ZI4foyvQ4RUf0uzWdAfQAAlCACEBA8KrxNelveSf9geir4qoO28NDbZqYMkiXpw3W5cMHadLwwVxyDwwQBKAAEYCAgeNElU9b\/l6mLYdaJ1Ufq6zrtE+yK1KT0gZrUmprIBqX7FRkOFeZAcGGABQgAhAwMBmGofzyWu3Ir1BuQYV2FVTqQLFXZ5wxU0RoiMYmOzWpbYRoUuogpQyO4k7VQD9HAAoQAQiwjhpfkz4\/6lFuYYV25Vdqd2FFp6vMJGmow+4fIZo0fJAmpLiYSwT0MwSgABGAAOsyDENHK+q0q6BCuQWVyi2o0L7j3k4Tq0NDbBrjdrSOEqUO1uVpgzViSDSjRICJCEABIgABOF19Y7O+OOZpDURtI0XF3vpO+w2KDtek1EG6fPhgTRo+WBNTXXKwhAfQZwhAASIAATifIk+df4RoV0Gl9h7zdFrPzGaTMhJi2wJR6+mzUUNjuWs10EsIQAEiAAH4phqaWrS\/yOsPRLmFFSo82fmKM4c9TJcNH+SfT3RZ6iAN5kaNQI8gAAWIAASgJ5yo8im3oEK5ha0jRXsKPaprbO60X5IrUhe7HbrY7dAYt0Nj3E6NHBqriLAQE6oGghcBKEAEIAC9oam5RQdKqtpOnbWOEh0+UdPlvmEhNl00NEYXu50a43bo4sTWgMTl+MDZEYACRAAC0Fe89Y36urhKXxVX6atirw60Pa+qb+pyf4c9TKNPGy26OLF1xMgVzWRrgAAUIAIQADMZhqEiT70\/DB0o9uqr4ir9\/US1Gpu7\/t+v29l6Gm1MUnswcmpkQozsYdzRGtZBAAoQAQhAf9TY3KLDJ2r8I0XtAamr5T2k1nsVXRQfc2q0qO10GqfRMFARgAJEAAIQTE4\/jXYqGHnlPctptFh7mEYnxp6aX9QWkAZFczUaghsBKEAEIADBzjAMFXvrW+cWFXXvNFqi065RCbEaHhejtCHRGh7X+kgbEs0NHREUCEABIgABGKgam1uUV1Zzam5R0blPo7WLi4nwh6G0uGilxkUrbUhrUEpw2Dmlhn6BABQgAhAAq6mqb9TXJVXKK6tVQXmN8k\/WKr+8VoUna1Ve03lx2NNFhoe0jRbF+EPS8LaglDI4mvsZoc8QgAJEAAKAU6rqG1VwslYF5bX+YFRwskYFJ2t1rKJOLef4RgixSUmuqDOCUYz\/uZNTa+hBBKAAEYAAoHsam1t0rKJO+SfbRo7Ka1vDUltQ6urO16cbFB2utLhoDR8S0\/azdeQobUiMEhx21k3DN9Lb399hPf6JAICgFB4aohHxMRoRHyNpaIdthmHoRLWvdeSobfSo8GSt8stbR4\/KqhtUWduoylqP9hz1dPrsiNAQJTjtSnRGKtFpV4Ij8ozndiU4I+WMDGMOEvoEAQgAcF42m00JjkglOCI1ZURcp+3VviYVnHY6rX30KL+8Vscq69TQ3KKjFXU6WnHuCdqR4SGtwcgR2SEwJTpbf3d7W6ydry8EhiMIABCwWHuYxiY7NTa586mKxuYWFXvqVVrlU6m3XiXeepVU+VTirVept\/Vnibde3vom1Te2tI4wldee8\/fFRIS2hiJ\/SIpUguPU8\/aRpagI7p6NrhGAAAC9Kjw0RKltl9ufS31jc2sgqmoLSd7TAlNbe6nXp2pfk2oamnW4rEaHy7pegLadIzLs1CiSI1IJbc\/jYiI0KDpCg6PDNTg6QoOiwxVr5\/SblRCAAAD9QmR4qIa3XVF2LjW+JpVWnRo58o8i+UeVWgNTXWOzquqbVFVfrUOl1ef9\/WEhNg2KDvcHo9N\/DmoLSoOjw+WKitDgmFPBiTXaghMBCAAQVGLsYUq3hyk9Puas+xiGoWpf06lRpKq2UaS2wHSypkEVtW0Tt+saVN\/YoqYWQ2XVDSqrPve9ks4UHRGqQVFtgSmmLTBFnQpIg9vaXVGnRpycUeEK5ao4UxGAAAADjs1mkyMyXI7IcI1KiD3v\/vWNzaqobVBFTaMqaxtUWdfoD0gVNQ2qqG2Up671pz841TaoxZBqG5pV29Cs4576b1Cf5IwMbx1Rio6Qwx6mWHuYYiPbfp723NH2M8be8XVsZBijTwEwNQAtW7ZMb7\/9tr766itFRUUpKytLzz77rC6++GL\/PvPmzdPKlSs7vG\/q1KnaunVrX5cLABigIsNDleSKUpIrqtvvaWkxVFXfpMoOwagtRNW1BqSK2vaf7aGpUdW+JhmG5KlrlKeuUTrPhO9ziQgNUYw9tC0shbcGqdMCk+OMQNW+PcYe1nHfiDDL3afJ1ACUk5Oj+fPn64orrlBTU5OefPJJzZw5U19++aViYk4Nbd58881asWKF\/3VEBKscAwDMFRJikys6XK7ocKUN6f77GppaVFl3anTJU9eomoYmVdc3qcrXpBrfqefV9U2tk759HV\/XNrTelLKhuUUNtS2qqG2UdO5bDJxPa2gKVUxEmKIiQhUdEaroiDBFR4QqKqK1\/fTnZ+5z5vOottf99VSfqQFo\/fr1HV6vWLFCCQkJ2rlzp6699lp\/u91ul9vt7uvyAADocRFhIf57Kl2o5hbDH4yqfU2qagtGrQGpUdW+5tOen9pec\/q+bfs3ta1\/0t4m+XroL21lDws5a1A6M0zF2MMUFd76XI2BBbrz6VdzgDye1ruHxsV1vMnWxo0blZCQoEGDBum6667T008\/rYSEhC4\/w+fzyec79R\/P6\/X2XsEAAJggNMQmV1S4XFGBrb9mGIZ8TS2nhafWkFTb2Ky6hmbV+JpU19g6x6m2beSpq22d9mtsVvtCW76mFvma2kepuq\/Fd+GnBruj36wFZhiG7rjjDlVUVOiTTz7xt69Zs0axsbFKS0tTXl6efv7zn6upqUk7d+6U3W7v9DmLFy\/WkiVLOrWzFhgAAH2jPVjVtIWmrkJU7Wnb\/Ps1NKumoUl1Dc3yeLx6a8FNA38x1Pnz5+svf\/mLNm\/erJSUlLPuV1RUpLS0NK1evVpz5szptL2rEaDU1FQCEAAAQcQSi6E++uijWrdunTZt2nTO8CNJSUlJSktL08GDB7vcbrfbuxwZAgAAaGdqADIMQ48++qjWrl2rjRs3Kj09\/bzvKS8vV2FhoZKSkvqgQgAAMBCFmPnL58+fr9dee02rVq2Sw+FQcXGxiouLVVfXOvO7urpaP\/3pT\/XZZ5\/pyJEj2rhxo2677TbFx8frzjvvNLN0AAAQxEydA3S2RedWrFihefPmqa6uTrNnz1Zubq4qKyuVlJSk66+\/Xv\/2b\/+m1NTUbv2O3j6HCAAAet6AngN0vuwVFRWlDz74oI+qAQAAVmHqKTAAAAAzEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlEIAAAIDlmBqAli1bpiuuuEIOh0MJCQmaPXu2Dhw40GEfwzC0ePFiJScnKyoqStOnT9e+fftMqhgAAAwEpgagnJwczZ8\/X1u3blV2draampo0c+ZM1dTU+Pd57rnn9MILL2j58uXavn273G63ZsyYoaqqKhMrBwAAwcxmGIZhdhHtTpw4oYSEBOXk5Ojaa6+VYRhKTk7WggUL9Pjjj0uSfD6fEhMT9eyzz+qhhx4672d6vV65XC55PB45nc7e\/hMAAEAP6O3v77ALedMvf\/nLc27\/13\/91wsqxuPxSJLi4uIkSXl5eSouLtbMmTP9+9jtdl133XXasmVLlwHI5\/PJ5\/P5X3u93guqBQAADFwXFIDWrl3b4XVjY6Py8vIUFhamkSNHXlAAMgxDCxcu1NVXX63x48dLkoqLiyVJiYmJHfZNTExUfn5+l5+zbNkyLVmy5Bv\/fgAAYB0XFIByc3M7tXm9Xs2bN0933nnnBRXyyCOP6PPPP9fmzZs7bbPZbB1eG4bRqa3dokWLtHDhwg51paamXlBNAABgYOqxSdBOp1O\/\/OUv9fOf\/\/wbv\/fRRx\/VunXr9PHHHyslJcXf7na7JZ0aCWpXWlraaVSond1ul9Pp7PAAAAA4XY9eBVZZWemfx9MdhmHokUce0dtvv62PPvpI6enpHbanp6fL7XYrOzvb39bQ0KCcnBxlZWX1WN0AAMBaLugU2H\/+5392eG0YhoqKivTqq6\/q5ptv7vbnzJ8\/X6tWrdKf\/vQnORwO\/0iPy+VSVFSUbDabFixYoKVLlyojI0MZGRlaunSpoqOjdd99911I6QAAABd2GfyZIzUhISEaOnSobrjhBi1atEgOh6N7v\/ws83hWrFihefPmSWoNV0uWLNFvf\/tbVVRUaOrUqfr1r3\/tnyh9PlwGDwBA8Ont7+9+dR+g3kAAAgAg+PT29zdrgQEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMsxNQBt2rRJt912m5KTk2Wz2fTOO+902D5v3jzZbLYOj2nTpplTLAAAGDBMDUA1NTWaOHGili9fftZ9br75ZhUVFfkf7733Xh9WCAAABqIwM3\/5rFmzNGvWrHPuY7fb5Xa7+6giAABgBf1+DtDGjRuVkJCg0aNH60c\/+pFKS0vPub\/P55PX6+3wAAAAOF2\/DkCzZs3S66+\/ro8++ki\/+tWvtH37dt1www3y+Xxnfc+yZcvkcrn8j9TU1D6sGAAABAObYRiG2UVIks1m09q1azV79uyz7lNUVKS0tDStXr1ac+bM6XIfn8\/XISB5vV6lpqbK4\/HI6XT2dNkAAKAXeL1euVyuXvv+NnUO0DeVlJSktLQ0HTx48Kz72O122e32PqwKAAAEm359CuxM5eXlKiwsVFJSktmlAACAIGbqCFB1dbUOHTrkf52Xl6fdu3crLi5OcXFxWrx4se666y4lJSXpyJEjeuKJJxQfH68777zTxKoBAECwMzUA7dixQ9dff73\/9cKFCyVJc+fO1UsvvaS9e\/fqlVdeUWVlpZKSknT99ddrzZo1cjgcZpUMAAAGgH4zCbq39PYkKgAA0PN6+\/s7qOYAAQAA9AQCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBwCEAAAsBxTA9CmTZt02223KTk5WTabTe+8806H7YZhaPHixUpOTlZUVJSmT5+uffv2mVMsAAAYMEwNQDU1NZo4caKWL1\/e5fbnnntOL7zwgpYvX67t27fL7XZrxowZqqqq6uNKAQDAQBJm5i+fNWuWZs2a1eU2wzD04osv6sknn9ScOXMkSStXrlRiYqJWrVqlhx56qC9LBQAAA0i\/nQOUl5en4uJizZw5099mt9t13XXXacuWLWd9n8\/nk9fr7fAAAAA4Xb8NQMXFxZKkxMTEDu2JiYn+bV1ZtmyZXC6X\/5GamtqrdQIAgODTbwNQO5vN1uG1YRid2k63aNEieTwe\/6OwsLC3SwQAAEHG1DlA5+J2uyW1jgQlJSX520tLSzuNCp3ObrfLbrf3en0AACB49dsRoPT0dLndbmVnZ\/vbGhoalJOTo6ysLBMrAwAAwc7UEaDq6modOnTI\/zovL0+7d+9WXFychg8frgULFmjp0qXKyMhQRkaGli5dqujoaN13330mVg0AAIKdqQFox44duv766\/2vFy5cKEmaO3euXn75ZT322GOqq6vTj3\/8Y1VUVGjq1KnasGGDHA6HWSUDAIABwGYYhmF2Eb3J6\/XK5XLJ4\/HI6XSaXQ4AAOiG3v7+7rdzgAAAAHoLAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFgOAQgAAFhOvw5Aixcvls1m6\/Bwu91mlwUAAIJcmNkFnM+4ceP04Ycf+l+HhoaaWA0AABgI+n0ACgsLY9QHAAD0qH59CkySDh48qOTkZKWnp+u73\/2uDh8+bHZJAAAgyPXrEaCpU6fqlVde0ejRo1VSUqKnnnpKWVlZ2rdvn4YMGdLle3w+n3w+n\/+11+vtq3IBAECQsBmGYZhdRHfV1NRo5MiReuyxx7Rw4cIu91m8eLGWLFnSqd3j8cjpdPZ2iQAAoAd4vV65XK5e+\/7u96fAThcTE6NLL71UBw8ePOs+ixYtksfj8T8KCwv7sEIAABAM+vUpsDP5fD7t379f11xzzVn3sdvtstvtfVgVAAAINv16BOinP\/2pcnJylJeXp23btunb3\/62vF6v5s6da3ZpAAAgiPXrEaCjR4\/q3nvvVVlZmYYOHapp06Zp69atSktLM7s0AAAQxPp1AFq9erXZJQAAgAGoX58CAwAA6A0EIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDlBEYB+85vfKD09XZGRkZo8ebI++eQTs0sCAABBrN8HoDVr1mjBggV68sknlZubq2uuuUazZs1SQUGB2aUBAIAgZTMMwzC7iHOZOnWqLr\/8cr300kv+tksuuUSzZ8\/WsmXLzvt+r9crl8slj8cjp9PZm6UCAIAe0tvf32E9\/ok9qKGhQTt37tTPfvazDu0zZ87Uli1bunyPz+eTz+fzv\/Z4PJJaOxIAAASH9u\/t3hqn6dcBqKysTM3NzUpMTOzQnpiYqOLi4i7fs2zZMi1ZsqRTe2pqaq\/UCAAAek95eblcLlePf26\/DkDtbDZbh9eGYXRqa7do0SItXLjQ\/7qyslJpaWkqKCjolQ60Eq\/Xq9TUVBUWFnI6MQD0Y8+hL3sOfdkz6Mee4\/F4NHz4cMXFxfXK5\/frABQfH6\/Q0NBOoz2lpaWdRoXa2e122e32Tu0ul4uDsYc4nU76sgfQjz2Hvuw59GXPoB97TkhI71yv1a+vAouIiNDkyZOVnZ3doT07O1tZWVkmVQUAAIJdvx4BkqSFCxfqgQce0JQpU5SZmanf\/e53Kigo0MMPP2x2aQAAIEj1+wB0zz33qLy8XL\/85S9VVFSk8ePH67333lNaWlq33m+32\/WLX\/yiy9Ni+Gboy55BP\/Yc+rLn0Jc9g37sOb3dl\/3+PkAAAAA9rV\/PAQIAAOgNBCAAAGA5BCAAAGA5BCAAAGA5AzoA\/eY3v1F6eroiIyM1efJkffLJJ2aX1O8tXrxYNputw8Ptdvu3G4ahxYsXKzk5WVFRUZo+fbr27dtnYsX9x6ZNm3TbbbcpOTlZNptN77zzToft3ek7n8+nRx99VPHx8YqJidHtt9+uo0eP9uFfYb7z9eO8efM6HaPTpk3rsA\/92Los0BVXXCGHw6GEhATNnj1bBw4c6LAPx2T3dKcvOS6756WXXtKECRP8N4rMzMzU+++\/79\/el8fkgA1Aa9as0YIFC\/Tkk08qNzdX11xzjWbNmqWCggKzS+v3xo0bp6KiIv9j7969\/m3PPfecXnjhBS1fvlzbt2+X2+3WjBkzVFVVZWLF\/UNNTY0mTpyo5cuXd7m9O323YMECrV27VqtXr9bmzZtVXV2tW2+9Vc3NzX31Z5jufP0oSTfffHOHY\/S9997rsJ1+lHJycjR\/\/nxt3bpV2dnZampq0syZM1VTU+Pfh2Oye7rTlxLHZXekpKTomWee0Y4dO7Rjxw7dcMMNuuOOO\/whp0+PSWOAuvLKK42HH364Q9uYMWOMn\/3sZyZVFBx+8YtfGBMnTuxyW0tLi+F2u41nnnnG31ZfX2+4XC7jv\/7rv\/qowuAgyVi7dq3\/dXf6rrKy0ggPDzdWr17t3+fYsWNGSEiIsX79+j6rvT85sx8NwzDmzp1r3HHHHWd9D\/3YtdLSUkOSkZOTYxgGx2QgzuxLw+C4DMTgwYONP\/zhD31+TA7IEaCGhgbt3LlTM2fO7NA+c+ZMbdmyxaSqgsfBgweVnJys9PR0ffe739Xhw4clSXl5eSouLu7Qr3a7Xddddx39eh7d6budO3eqsbGxwz7JyckaP348\/XuGjRs3KiEhQaNHj9aPfvQjlZaW+rfRj13zeDyS5F9YkmPywp3Zl+04Lr+Z5uZmrV69WjU1NcrMzOzzY3JABqCysjI1Nzd3WjA1MTGx08Kq6Gjq1Kl65ZVX9MEHH+j3v\/+9iouLlZWVpfLycn\/f0a\/fXHf6rri4WBERERo8ePBZ94E0a9Ysvf766\/roo4\/0q1\/9Stu3b9cNN9wgn88niX7simEYWrhwoa6++mqNHz9eEsfkheqqLyWOy29i7969io2Nld1u18MPP6y1a9dq7NixfX5M9vulMAJhs9k6vDYMo1MbOpo1a5b\/+aWXXqrMzEyNHDlSK1eu9E\/oo18v3IX0Hf3b0T333ON\/Pn78eE2ZMkVpaWn6y1\/+ojlz5pz1fVbux0ceeUSff\/65Nm\/e3Gkbx+Q3c7a+5Ljsvosvvli7d+9WZWWl3nrrLc2dO1c5OTn+7X11TA7IEaD4+HiFhoZ2SoOlpaWdkiXOLSYmRpdeeqkOHjzovxqMfv3mutN3brdbDQ0NqqioOOs+6CwpKUlpaWk6ePCgJPrxTI8++qjWrVunjz\/+WCkpKf52jslv7mx92RWOy7OLiIjQqFGjNGXKFC1btkwTJ07Uf\/zHf\/T5MTkgA1BERIQmT56s7OzsDu3Z2dnKysoyqarg5PP5tH\/\/fiUlJSk9PV1ut7tDvzY0NCgnJ4d+PY\/u9N3kyZMVHh7eYZ+ioiJ98cUX9O85lJeXq7CwUElJSZLox3aGYeiRRx7R22+\/rY8++kjp6ekdtnNMdt\/5+rIrHJfdZxiGfD5f3x+TFzhpu99bvXq1ER4ebvzxj380vvzyS2PBggVGTEyMceTIEbNL69d+8pOfGBs3bjQOHz5sbN261bj11lsNh8Ph77dnnnnGcLlcxttvv23s3bvXuPfee42kpCTD6\/WaXLn5qqqqjNzcXCM3N9eQZLzwwgtGbm6ukZ+fbxhG9\/ru4YcfNlJSUowPP\/zQ2LVrl3HDDTcYEydONJqamsz6s\/rcufqxqqrK+MlPfmJs2bLFyMvLMz7++GMjMzPTGDZsGP14hn\/6p38yXC6XsXHjRqOoqMj\/qK2t9e\/DMdk95+tLjsvuW7RokbFp0yYjLy\/P+Pzzz40nnnjCCAkJMTZs2GAYRt8ekwM2ABmGYfz617820tLSjIiICOPyyy\/vcMkiunbPPfcYSUlJRnh4uJGcnGzMmTPH2Ldvn397S0uL8Ytf\/MJwu92G3W43rr32WmPv3r0mVtx\/fPzxx4akTo+5c+cahtG9vqurqzMeeeQRIy4uzoiKijJuvfVWo6CgwIS\/xjzn6sfa2lpj5syZxtChQ43w8HBj+PDhxty5czv1Ef1odNmHkowVK1b49+GY7J7z9SXHZfc9+OCD\/u\/loUOHGjfeeKM\/\/BhG3x6TNsMwjG82ZgQAABDcBuQcIAAAgHMhAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEAAMshAAEIKidOnJDb7dbSpUv9bdu2bVNERIQ2bNhgYmUAgglrgQEIOu+9955mz56tLVu2aMyYMZo0aZJuueUWvfjii2aXBiBIEIAABKX58+frww8\/1BVXXKE9e\/Zo+\/btioyMNLssAEGCAAQgKNXV1Wn8+PEqLCzUjh07NGHCBLNLAhBEmAMEICgdPnxYx48fV0tLi\/Lz880uB0CQYQQIQNBpaGjQlVdeqcsuu0xjxozRCy+8oL179yoxMdHs0gAECQIQgKDzL\/\/yL\/rf\/\/1f7dmzR7Gxsbr++uvlcDj05z\/\/2ezSAAQJToEBCCobN27Uiy++qFdffVVOp1MhISF69dVXtXnzZr300ktmlwcgSDACBAAALIcRIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDkEIAAAYDn\/Hz999b6yX+7TAAAAAElFTkSuQmCC", "text\/plain": "<Figure size 640x480 with 1 Axes>"}, "metadata": {}, "output_type": "display_data"}]}}, "7a2ac2d705c34d2599661107d0b6a5a5": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "IntSliderModel", "state": {"behavior": "drag-tap", "layout": "IPY_MODEL_3b2d03cd328c49529d82b802d05a9a90", "max": 199, "style": "IPY_MODEL_0f94c44a6e2d4808a7c66c3b1c79bf1f", "value": 199}}, "7aac04d137c84a4d95a975fc42549096": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "7b2a2ede6a7b4fd5bd79db693da37fd2": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"children": ["IPY_MODEL_e1d833787d964958adf9bf27c7c8465d"], "layout": "IPY_MODEL_8dd363de61704f07a67c5ec15fad0230"}}, "7cc9130632e24968ac7630fa1302ec66": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "7ff77fdec3124342917adff7a7e22968": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": {"source": ["IPY_MODEL_a6e490f9a95046848e772f941811ea6e", "value"], "target": ["IPY_MODEL_7a2ac2d705c34d2599661107d0b6a5a5", "value"]}}, "814fc2ce5f98478d93e7d2977c35599d": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "8330e0092c10467f85f9264bfaf88a6f": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "PlayModel", "state": {"description": "step", "layout": "IPY_MODEL_d1b23fb8d92a428ebfbc64e7b3117db4", "max": 149, "style": "IPY_MODEL_a813b3e4592a4ba6a5ac586705a144b1", "value": 149}}, "84db1e5aacf844f2b99f65c3e1097e2a": {"model_module": "@jupyter-widgets\/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": {"layout": "IPY_MODEL_409e5ad2c8d1498aa37ebe59663d605c", "outputs": [{"data": {"image\/png": "iVBORw0KGgoAAAANSUhEUgAAAZ4AAAGRCAYAAABVKtXaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy\/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eXQk533ei3\/equq9G411gAFmAMy+k8N9FpK2FmrJvYksiZFi6dhx4vuTc20nkpIbO7Kte6XIkiM5cSjJtm6cxCZ9Eku8tixTliKZshauQ3JIzgCYwQADYLDvQANo9N5V9f7+AKunu9ErBgOAVD3nzJEIVFdVN6rf5\/1uzyOklBIbNmzYsGFji6Bs9w3YsGHDho2fLtjEY8OGDRs2thQ28diwYcOGjS2FTTw2bNiwYWNLYROPDRs2bNjYUtjEY8OGDRs2thQ28diwYcOGjS2FTTw2bNiwYWNLYROPDRs2bNjYUtjEY8OGDRs2thQ28diwYcOGjS2FTTw2bNiwYWNLYROPDRs2bNjYUtjEY8OGDRs2thQ28diwYcOGjS2FTTw2bNiwYWNLYROPDRs2bNjYUtjEY8OGDRs2thQ28diwYcOGjS2FTTw2bNiwYWNLYROPDRs2bNjYUtjEY8OGDRs2thQ28diwYcOGjS2FTTw2bNiwYWNLYROPDRs2bNjYUtjEY8OGDRs2thQ28diwYcOGjS2FTTw2bNiwYWNLYROPDRs2bNjYUtjEY8OGDRs2thQ28diwYcOGjS2FTTw2bNiwYWNLYROPDRs2bNjYUtjEY8OGDRs2thQ28diwYcOGjS2FTTw2tgVSyu2+BRs2bGwTtO2+ARs\/XZBSkk6nSSQSqKqKpmmoqoqqqgghtvv2bNiwsQUQ0t562tgimKZJOp3GMAySySSwRkTxeJxkMklzc7NNRDZs\/BTAjnhs3HZIKTEMg6GhIZxOJy0tLSiKgqIoSClZXV1lbm6Ouro6kskkQggURUHTNJuIbNh4C8ImHhu3FVZqzTAMwuEwbrebsbExJicnqampoa6uDsMwANA0DSll5l8ymSSVSgHYRGTDxlsIdqrNxm2DYRik02lM00RRFLq7uwmHw+i6TkdHB7FYjKWlJaLRKIqi0NraSl1dHbW1tTgcDoAcIjJNEyATETkcjkydSFEUm4hs2HiTwI54bGw6pJTouo6u60gpURSF5eVl5ubmcLlcnD17FlgjECEEExMTTExMIKVkaGiIWCxGIBCgtrY2Q0RWpJNNRIlEInMei4is42wismFj58ImHhubCtM00XU9kz4TQjA0NMTw8HCGTJxOZyaFBmspNofDwZEjRwBIJpMsLS2xvLzMwMAAiURiHRFZ6bZiRGRFQjYR2bCx82ATj41NgZUKS6fTSCkRQpBMJunu7iaRSPDAAw8wMTFRcPEXQuTM9bhcLlpaWmhpaQEgkUiwtLTE0tIS\/f39JJPJTH2otraWYDC4johM07SJyIaNHQqbeGzcMrJTa7C20M\/Pz9PT08OuXbu4++670TRtHcFYKEcAbreb3bt3s3v3bgDi8XiGiKanp0mlUgSDwbJElEwmSSQSmY46m4hs2Nge2MRj45aQPZtjLdx9fX1MTExw4sQJWltbc44v1stSTY+Lx+PB4\/HQ2tqamQOyiGhychJd1zNEVFdXRyAQQFXVzHWs9m5rnmhqaoqWlha8Xm8mMrLqTzZs2Nh82MRjY0OwFm9d1zNda7FYjK6uLgDOnTuHz+fLeY0QAtM01y3oxSKhSiCEwOv14vV6aWtrQ0qZ6ZZbWlpifHwc0zRziMjv96NpWuZ9DA0NUVdXlyGbQqk5m4hs2Ng82MRjo2pkz+bA2ozN1NQUvb297N27l8OHD6Mo62UAswkmexHfzAVdCIHP58Pn87Fnzx6klESj0QwRjY6OIqXMNCrU1dUhpURVVRwORyYi0nWddDpdlIgKvT8bNmxUBpt4bFQF0zRJpVKZKMcwDHp7e5mfn+f06dM0NTUVfW2pyOZ2jZMJIfD7\/fj9fvbu3YuUkkgkkiGi4eFhAPr7+2lsbKSurg6fz5cTERUjImuOyCYiGzaqg008NiqClVqzutYURSEcDtPV1YXb7eb8+fO43e6S5yjVXLBVc8xCCAKBAIFAgPb2dkzT5JlnnsHv97O4uMjQ0BCqqmYaFerq6vB6vUWJCAqrKthEZMNGcdjEY6Ms8lNrQghGR0cZGBhg\/\/797N+\/v6J02Ua72m4nrG62trY2vF4vpmkSDodZWlpifn6ewcFBNE3LISKPx7OOiNLpdEl5H5uIbNi4CZt4bJREdpQjhCCdTtPT08Pq6ir33nsvdXV1FZ+rFMHsFOUmRVGora2ltrYWIKMxt7S0xOzsLNevX8fpdK4jIotYsueZrIhICJFDRFbXnA0bP62wicdGQVjppGvXruH3+2ltbSUUCtHd3U1tbS3nz5\/P6KlVip2QaiuGYte30m4WwRqGwcrKCktLS0xNTdHf34\/L5cocU1dXh8vlyjmvRUSpVCpTI7KIKLtrzoaNnxbYxGNjHayF0jRNYrEYDoeDwcFBRkZGOHLkCHv37t3QQrmTiadSqKpKfX099fX1AOi6niGi8fFxent78Xg8OUTkdDozr88nIoDFxUWam5txuVy28raNnwrYxGMjg+xF0epak1IyNjaGqqqcOXOGQCBwy9fIx5t5kdU0jYaGBhoaGoA1IlpeXs60bl+9ehWfz5ejM5dNROl0mt7eXmpra9F13fYisvFTAZt4bACFZ3Pm5uaYn58nEAjwwAMPZKb\/N4rtaKfeamiaRmNjI42NjcAasVhENDw8TDQaxe\/3Z4jI7\/dnXmd9vlbLum2KZ+OtCpt4bOTI3iiKgmma9PX1MTU1lUkX3SrpwFsj1VYtHA4HTU1NmfmmVCqVISLLAgLgxo0b1NfXZywg4CYZ20Rk460Gm3h+ilFI9iYajdLV1YWiKJw7d47h4eFNIwWLYHRdZ2xsDK\/Xm5Gq2U5s5fWdTie7du1i165dAESjUV5++WV0Xc+xgLDScpYFBOQSke3OauPNDJt4fkpRaDZncnKSa9eu0d7ezqFDhzIzLpbz563Casd+8cUX0TQNXddJJBJ4vV50XScUCmWUpX9aYHUGHjlyBFVVN2QBUcgm3HZntbGTYRPPTyHyLal1Xefq1auEQiHuuuuuTH0CNi8NJqUkFAqxsrLCoUOH2LNnD7Bm+jY9Pc3IyAjXrl0jnU6vU5b+aRi+tIihnAVEOp2uiIhsd1YbOxk28fwUId83R1EUVlZW6Orqwuv1cv78+ZwZFOsYKyraKNLpNFeuXCEUChEIBNi\/f39mKNXtdrNr1y7GxsY4d+5czkJrKUtnC3r6\/f631KJZjtRLWUBMTExgGEZBCwjbndXGToZNPD8lyG6TtjAyMsLg4CAHDhxg3759FbmDVovl5WW6urrw+\/0cOnSI6enpgsdZygj5Fgf5gp6WsoC10Hq93k1ZNLe7uaFSyaGNWECUc2c1TRNN0\/B4PDYR2dgS2MTzFkchS+pUKkVPTw\/RaJT77rsvIw9TCBut8UgpM8R28OBBOjs7mZ6erqqrrZCg5+rqao6OmsPhyBnWLCdUutNwK4S3EQsIv9+Poig5RGTJAHV0dNjurDa2BDbxvIVRqIFgcXGR7u5u6uvrOXfuXFnZG2uItBpYxLa6uppDbLcqEqooCsFgkGAwSGdnZ46O2uTkJH19fbjd7qKqATsZm7GwF7KAWF1dzZkjEkLk6MxZZn1W+i3fnbVQ+7ZNRDZuFTbxvEWRP5tj7WzHxsY4duwYbW1tt6QoXQxLS0t0dXVRU1OzTs9tswdIs3XU9u\/fX1Q1IJuIrBmZnYLbmeITQlBTU0NNTc26iDHbAsJqMInFYgUtIKyWe9ud1cZmYWd9C23cMgrN5sTjcbq6ujAMg7Nnz2am5StBpcQjpWR4eJihoSEOHTpER0dHQYvrYtewznErC1i+akD+sGY8Hs\/MyNTV1e2Y1u2tWrSzI0YgYwHR399PNBrl4sWLFVlAlHNntYnIRjnYxPMWgpSScDjMzMwM7e3tKIrC7OwsV65cobW1NTMrUg0qqfGkUil6ursgtcz999+fWdgqPddmEU8+8oc1k8kkoVCIpaUlrl27RiqVIhgMZlJSXq93y1u3t7OpwWrU8Hq91NbW0tramkldzszM5FhAWGSUbwFhu7Pa2Ahs4nmLwJrNiUQijIyMsHfvXnp7e5mdneXkyZO0tLRs6LzlajyhUIjrva9zV2cMhxZAKUI6sH5nbxHNVu2OXS5XZkYmuzV5ZWWFgYEBrl+\/vq41eSvubbujA+vvUMoCwqqhFbKAKEdEtimejXzYxPMmR\/ZsjpQSVVUxDIMLFy6gaRrnzp3D4\/Fs+PzFUm1SSm7cuEFssY9zh5KowsAwTYwSUUu5tN1W7v6zW5OHhoa46667EEJkOsJGRkYyhfjNbt3Oxna3cVv3UOh9bdQCIp+IbHdWG\/mwiedNDNM00XU9p2ttfn6edDpNe3s7Bw4cuOUvdSGySCaT9HR3sbdmjqOd8czPVSXN8vgkNe17Kj6X9XPY3kU4vyPMNE0ikQihUGidBbb171YIPf\/a2wnTNCu6h41aQBRyZy1kimcT0U8PbOJ5E6LQbI6u6xl1AEVROHTo0KZcK78us7i4yEDfJe7uiOFzJtcdH5scLUo81r0XusZ2I\/++FEXJdIR1dnZimmZmtz89PV3WefTNhI3W1qq1gKitrc3pcsx+jgcHB3G73bS0tNg24T8FsInnTYZ82RshREYdIBAIcPfdd3Px4sVNu55V45FSMjQ0RGKpn\/MHkyiisIyOYoaKnmsnpdqqhaIoOfWPQmmn7Nbt\/EW2GDa7oWIj2Kx7qMQCIhAI5BCR1TEXj8cz\/z87IrKGXbObFbb787Jx67CJ502E7NkcK01x48YNbty4kWlhTiQSmKa5aYuJEALDMHj11VfoCM5zrCNe8nh\/7fooKPtcOzXVVi3y007Zu\/0bN24QjUZzWrez7Q12Gm4X+RXqKrRqaPkWENb\/z\/6MCqXmbCJ6a8AmnjcBCs3mJJNJenp6iMfjOS3Mm92avLq6ikyvcLpTx+soTioWAg2SeCSK0+9b97tyczxvZuTv9rMX2Xx7A2uGyIomt\/v9b9U9uFwuWlpaMh2W2RYQkUiEcDjMwsLCOuVt6x6BgkRkexG9+WATzw5HIUvqhYUFenp6aGxs5K677sqZxs8u5N4KTNNkcHCQ9Mp1HjqSQFMrO5+iwMrQEE133rHud2\/mVFu1yF9ks1Wlp6am0HWdYDCIz+fb1Ah1I9iua2dbQMTjcRobG3E4HDmfUTZZ19TUFCQi2531zQebeHYwrC+VFeVIKenv72d8fJzjx4\/T1ta27jUW8ZimueHUTiKRoKf7EvvqFtldJrVWCOnlaaA48Vh1KUvSZbtTbVuxMOXbG1iq0nNzcxiGwXPPPZcj5unz+bZswdwJURfcJOtqLSDAdmd9s8Emnh0IK7Vmda0pikIsFqOrqwspJefOncuIO+bD+lJt1DV0fn6eocFu7jzhIvCGdH61cKrhovdmmiZXrlxhZmYms+BZBftYLIbL5XrLLwzZqtI1NTV0dXVx5513rtNQy2\/dvl2fy04gHmtzZWEjFhDFvIhsd9adB5t4dhgKpdamp6fp7e2lra2NI0eOlJxz2GiqzTRNBgYGMNLjnLvPgaLoSLUFES3sn1MKtS0G0jARau59JhIJDMNgdXWVBx54AFVVMzL+8\/PzdHV14XQ6qa+vf9O3KFcKa9G3Wrc7OjoyGmpLS0vMzs7mSNdYn81mfi47gXisDVYxbJYFhO3OujNgE88OQr4ltWEYXLt2jbm5Oe64445Md1ApWN1u1UQ88Xicnp7L7G9P0bJLA94gLbcTotW\/D0+NyuL4BDWd7ZmfzczM0NPTA8ADDzyQkd63RCuHh4e59957SaVSBVuU6+vrc9pv30rIX+gsDbXa2lr27duXI11jfS5erzcnIqqkdbsYdgLxVDrEamGjFhCliMgaGt61a5dNRLcZb71v8ZsQ+bM5iqKwurqaiQDOnz9flcFZNcQzNzfH8I0e7rnTiduVGyUJESOtBXHoK5W\/mTcQnRqlpnNNir+\/v5\/JyUkOHz5MX18fiqKsuz9r95nfolyo\/dba9VudYZuB7aovVXLdbOmaAwcOrBvUvHLlCn6\/P6d1uxqCLhdtbAXyU23VolILiGwiskRhLSKKRqN0d3fz4IMPZs5p24TfHtjEs83It6QWQjA2Nsb169fZt28fBw4cqPpBr8S8zTRNrl+\/DuYkZ+\/Tig6ESm8NhKsnHpFaJB6Pc\/ny5UxdCuDatWuFjy\/wHh0OR84cSCKRyKhLW11PtbW1GSLy+\/1vykWh2nsuNKhZiqCzu8EKYadEPJtJfsUsIKyGjnwJpNra2kxDjsPhKGgTbruzbh5s4tkmWA\/15OQk8\/PznDhxgnQ6zZUrVwiHw9xzzz0ZccZqUSiiyEYsFuNKz2UO7tPZ1aiSSa0VgOZIkjAU3Gp1zQq+mjgvvvgiLS0tHD16FFVVicfXOuSsL3U+ypGl2+2mtbU10\/WUneMfHh7OURe43QX5zcJmRFpOp5Pm5maam5uBtdTp8vIyoVAop3U7uwifvcjvBOK53VFXofSlRUSWBJKmaZimyfT0dMYCAshJzVkp4kQiYRPRLcAmnm1AdgNBOp3OLKDd3d3U1NRw7ty5W7JsLpVqm52dZWS4h3tPu3A5y5OJEJIIftwU7lQrhtrdKocCnbQfOpBzX6XuuZpFuJCo5+rqKqFQKFOQz9ZSq6+v37E22Ju9UFmt25b9Q3Y32NjY2LoifLX1lduBrb6HQhYQExMTjIyMVGUBkW8TbqXmsnXmtvuz3YmwiWeLkW9JraoqsViM1157jcOHD9Pe3n7LD2qhVJtpmvT19aGKac7d50AUSa0Vgr\/OiQwrCCqPehRV4Imu5vys1LzOZrxnK7Vi7WitOsjY2FimUcFKP+2URoXbXVsq1A0WiURyIkXDMBgcHKSpqWnbIsXtrjOpqorP58PtdnPvvfdu2ALCdmetDNv\/zfspQTHZm6GhIdLpNGfOnKGmpmZTrpUf8cRiMXp6LnF4v0FTQ+nUWiG4nALTtxs1OlnV6\/TlaeB0zn1B8cV2MxdhVVVzGhUswcpQKJSpg1hT8Vbac7uwlQuREIJAIEAgEMgU4Z955hm8Xi+zs7MMDAzgcDhyFthqGls2Auvz3+4FObvOVEiLzyKiSi0gbHfW4rCJZwtQaDZnfn6enp4eampqME1z00jHOr+1kM7MzDA6cqXi1FoxCLdSdWu101FdxHM7d\/\/5gpXZU\/G6rnP58uVtaVTYbpkgKzreu3cvHo+noOuo2+1et9PfTFifwXYvwqUaHBwOx4YsIGx31sKwiec2I382R0pJX18fk5OTHD9+HLfbnZlv2SxYM0BXr17F6Vrg7Hk\/Qhcgq5e\/sSBEAtPdiJJYqPg1tbtlziDp7Uy1VYtsCZtQKMShQ4cy3WH5jQr19fWbZvpWCNu507f+FtY9FHIdLWT2tpkpS2uTtN2LrpX+rgTFOguXl5dLWkDY7qxrsInnNqHQbE40GqWrqwshBOfOncPr9bK8vLzpaR7TNBka6ufkKReNjU5AIjUPpDdOPAB4\/VAF8bj9Cgtj4wT3deT8vFg+fzu12rxeLy0tLZn0k9XxNDMzk9OoYC24m7Xr3+6IJ5948pFv9pbtsTM4OEg8Hs+xf8hWlK72HrZ7kb0VfcP8zsJSFhBWd102sWQTUTweZ3BwkCNHjuB0OtE0jaWlpZxOuzc7bOK5DcifzQGYmpqit7eXvXv3cvjw4cwDV671uVpMTU2haXHuvc9PdmpeKDFMpQ7FXNr4yZUoUvMh9MpzbrGp0QzxbGeqrRyyr12o9daqD1m7\/lsZ2MzHTop4yiE\/ZZltbXDt2jVSqVRO63ZNTU1ZQsmeYdtObOYsUSkLiL6+PlKpVKbGmG0BYWUr5ubmOHr0KOl0mnQ6zQc\/+EE+9rGP8Uu\/9Eubcn\/bDZt4NhGFLKmtlNfi4iKnT5\/OhOYWNot41uR1enF7Qpw776PQ90doKWRKQ6Bv6BoCCEs3wSqKPSK9ePP\/76BUWzUo1KhgLSLXr1\/PeO1kD2xu9+69UlRLPPnItjYopChtmuY6\/bT8a70ViScf+Z9TNhHlW0BYXYXZmxmrhvRWgU08m4T8BgIhBOFwmK6uLjweD+fOnSvYHbQZxBOJRLhy5TLHj6vUNxRPAQmhY2pBhL5Y9Jhy8AYU5LKKoLJ27GxH0uyFJX+R2e6IpxoUGthcWloiFAqtW2zr6+tLWhxs9\/DmrRJPNgopSucP+Vr6adY\/r9ebSb1uN\/EYhrElLrFCiHU2GdmEPT4+jpSSS5cuMTY2ht\/vJx6PF1WkrwS\/93u\/x2\/91m\/x8Y9\/nMceewxY+9t\/9rOf5U\/+5E9YWlrigQce4I\/+6I84ceJEyXN985vf5NOf\/jRDQ0McOHCAz3\/+87z\/\/e+v6n5s4tkE5M\/mAIyMjDA4OMj+\/fvZv39\/0S+V1XCw0d3W5OQkU1N9PPCAH0clA6FKBCl8CLkB9U9AVZ2YogFFhiqKnGpbFCIrq7iDgS1tp95K5C8i0Wg0I+2T3ahgRUQ7KU+\/mcSTj2JDvpYauSVbEwgEMovvdn42tzPiKYV8wl5aWuLKlSs0NTXxF3\/xF3z9618nkUjw2c9+lp6eHt72trdx9913V0ySFy9e5E\/+5E+4445cj6wvfelL\/MEf\/AGPP\/44hw8f5nd\/93d55JFH6O\/vJxAIFDzXhQsX+PCHP8znPvc53v\/+9\/Otb32LD33oQzz\/\/PM88MADFb\/nN0c+YIfCaiBIpVIZ0kmn07z++uuMjo5y7733ltVayzZuqwa6rtPd3UUyOciZs96KSAdACEBzVDXJI6UkFddgLo64ehl1fhh+cBFzDiSlFwqhCFaHBrKuXziy2e7d7mbBWmzb29u58847eeihhzh16hRer5fp6WleeuklXnzxRfr6+pidnSWdTm\/r\/d5O4smHNeTb2dnJXXfdxUMPPcSJEycyjRrWZ3Pt2jVmZmYy3V5bhe0inkL34XA42LNnD7\/\/+7\/PyMgIgUCAhx56iBdeeIFHHnmEX\/iFX6joXJFIhI9+9KP81\/\/6XzMqDbD2d3\/sscf47d\/+bT7wgQ9w8uRJnnjiCWKxGH\/xF39R9HyPPfYYjzzyCJ\/61Kc4evQon\/rUp3jHO96RiaIqhR3xbBCFZnNCoRDd3d3U1tZy\/vz5iqTqN0I8q6urXL16meMnNOrrq++uEkocU6lDlGk0SCYlyaUkrtAkHjPLFE6PIjv2o7z0PBKBefwU7G9FKBEKLV96eObmtd8gnnA4TCwWo76+PjPR\/VZ0IM1uVID17cmRSARFURgYGMhYP2xFusfCVhJPPizZGuu788ADD2RmiLLVJrKbOG7F\/qEcDMO47cOyld5H9jOgKArLy8v8yq\/8CgcPHsw0u1SCX\/u1X+N\/+9\/+N975znfyu7\/7u5mfDw8PMzMzw7ve9a7Mz1wuFz\/zMz\/Diy++yK\/8yq8UPN+FCxf45Cc\/mfOzd7\/73TbxbAUKzeYMDAwwOjrK0aNH2bNnT8Vf5GqIR0rJ5OQkMzP9PHDGj8NxCwOhWhKZciDI3XFLIBVXiU9OU5tYwFMsNmpY+4IKJKK3G3q7kS17ME8dR3iSOTUglzOS89Lx8XHGxsZwOByZLqhUKkU0GqWhoeEtE\/0UQn578uTkJGNjY+i6Tn9\/P8lkMtMVVl9fv07Qc7Nh1Zi28zO3VAsKqQVYdY\/s2ZhsItpMkt4pEU8+8VgGilZzgdXsUg7f+MY3eP3117l48eK6383MrG0GrTqlhebmZkZHR4uec2ZmpuBrrPNVCpt4qkD2bI5VEE0kEnR1daHrOmfOnCmaGy2GSolH13WuXr2C17vCA2e8CHFrDQlCGJhaTabRQEoNGRPoE4N40pEyCTRQ0isY+w+j3Lh+85wzE4iZCaTXT\/rkaRIiTaDZQe1uiakbGNLMqP\/ee++9uN3uTIfY0NAQw8PDjI6OrquHvNWJyOl0cuzYMWCtUcGqD2U3KlifR6lGhY1gu5sboPiCn2+LkT0bk9+SXF9ff8vdhDuVeKLRtXpsNV1t4+PjfPzjH+fpp58uGcXl\/+0reR428pp82MRTIUzTJB6P093dzZ133omiKMzOznLlyhVaWlo4duzYhndfqqqWJJ5wOMzVq5c5dYeDYNDDWmnu1msDQolgGgHEUggxew1VmlU9EGJ3Pdwo8PNYBMcrz6OaMK22oB7cTSLSz8DSAkII7rjjDmpqakin05mi6vT0dEa2JV9h2lp06+vrb2uqZTuQn170eDy0tbVlusIsQU\/LzCzbQ2YzGhV2AvFUKhCaPRuT3ZIcCoWYnJzEMIyc1u1AIFDVe9uqrrZq78NKx1bzt37ttdeYm5vjnnvuyTnvs88+yx\/+4R\/S398PrEUwu3fvzhwzNze3LqLJRktLy7roptxrCsEmnjLIns3RdZ25uTl0XWdwcJDp6WlOnjyZGRLbKIq1VEspGR8fZ35hkLPnfGiaCRhI04Ukza2sF1JqsJxCWRlHLE4hqhQOBVDSIYzWdpSpscK\/V2C3nIGBGV5eDtH2\/vcxPDxcctjScpHs7OzMGdwcGRnh6tWrmVRLfX39hqbkdyKKLY6FBD2tGojlIWPpqFnkXC0x7wTi2YhAaKGW5OzWbStdlE1E5aLFnRrxxGKxqiPdd7zjHeukuP7ZP\/tnHD16lN\/8zd9k\/\/79tLS08IMf\/IC77roLWJtPe+aZZ\/jiF79Y9Lxnz57lBz\/4QU6d5+mnn84YPVYKm3hKIF\/2xlowX3nlFTRNy8je3CoKEY+u61y50kNdfYT77\/fkpNaEEsM0Awixmn+qimAm3SgzQwh9rWEgpARpMJc3dC7R2QZFiCcbnY4V6g8cKJo\/LtRckD+4aaVaQqEQ165dI51OEwwGM9pityLsuZOtry1k68dBbqNCtgV2to5aOWLeaarQG0V+67aUsqj1tUXUbrc7573vVOKJRCJVE08gEODkyZM5P\/P5fDQ0NGR+\/olPfIIvfOELHDp0iEOHDvGFL3wBr9fLRz7ykcxrfvEXf5G2tjZ+7\/d+D4CPf\/zjPPzww3zxi1\/kfe97H0899RR\/\/\/d\/z\/PPP1\/Ve7SJpwiyZ3Os4uv09DQADQ0NHD16dNMe0nziWVlZ4dq1Lk7d4SQYLPwnEiKClG6ESBT8fSFI0wmLK6jhoZyf19UoyHgNIlmd2RuA0EPIhl2IxbmSxzV6VogsLN1SO3V+qiUWi2XqISMjIznzMtbC8mbARhf+Qjpq1udh1UDKNSrslIhnsxd8IUQmeu7o6Mjo74VCoXX6e9mGeDuFeLIj12g0ekvDo8XwG7\/xG8TjcX71V381M0D69NNP59Spx8bGcj6Tc+fO8Y1vfIPf+Z3f4dOf\/jQHDhzgySefrGqGB2ziWYdCvjlrhf2rLC2tLZwdHR2b7g9vmiZSSsbGxlgMDXHmrBdNK74bFkK+ISwoEKL0rllKAXENMTuAMNcPfQoMzEA96kaIB4k8dADKEI+qSGZ+9BxiV03Rxa5aB1LL4MwaTrQWluw0lEVCt7sVd6PYzEjL6XTmEHOhafjshdbn8+0I4tmKe8hva882CrSM3oQQmVrRRtKWm4X8tm6LeG71M\/rJT36S899CCD7zmc\/wmc98puLXADz66KM8+uijt3QvNvFkodBszsrKCl1dXfh8Ps6dO8dzzz236WrSiqKQSqW4fPkSDY1R7rvPU5ZMAIRIlk25ScOFmJtFxErL5Cj6EkZwD+rKRNX3L+QyMhBErK6UvsbYFUTz+dsiElpoXia7FddSUbbSUMFgcEfsbuH2qQbky9dEIhFCoVBOo4LP58MwDBKJxLZFiNsRaeSncdPpNC+++CKKouSkLbPriVvlWFuoq+12RDzbCZt43oBpmqRSqZwvwfDwMENDQxw8eJDOzs6Mg6BFTJt57eHhPu6620tNTXV\/EkVZxTR9KEquBI6hg4gJlPlrFTcOCDWFVJwIs7qJcSENjMNHUF97peRxezwLjOrGligXaJqW45eS3QE1NTWV6YCqr6\/PSNJvB7bqutmNClbqaWVlhampKUzT5MKFC5kI0YqItmrHv92210DmvXZ2duL3+3Nat635Kqt12xKCvV2NLcVqPG8l\/NQTj5VasxSlreiju7ubWCzGfffdl9lFw02Ttc269ujoKF5fkrvv9uFwbGwREiKJlBpCrKXREhEFZW4Ml0yWeWXeecwkZv0e1IUCPdJlIEUYQ3Oi6sVJy+MyYHAceecdt5xqqxb56sCWntri4iKpVIqenh4aGhoyqTmXy3Xb7iUf25Hqsuphln7avffem+kgtHb8W9VBuBMaHKz7sN5jvq1BdtrSUpPOtn\/YzEHfQhHPW0mZGn7KiadQam1xcZHu7m4aGhq466671oXX5WZuKsXaYtdNc3Oc++\/33lJrtBA60vQhEbAUw7NUvsus6Ln0RUxfE0p0vqrXORQT4+QdcPnVksfVzk9sux9PdgdUe3s7L7zwAnv37iWdTjM5Ocm1a9cyUi1Wfeh2pVm2WxjVqq\/kNypk7\/izfXasiGgzF9qdUNS3aqzF7iO\/dTsWi2U+n7GxMaSUmzboW6id2iaetwgKyd5cv36dsbExjh07RltbW8EHZzMinrUvcxd33eUiUGVqrRikYSIWwiixqVs6jwCk24WMKgiqI1jFoyMVFWEW\/3w6PCGSBfxXtnPHa6WhrDblbKkWyz3S8tu5HTI2222LUOj6+R2E2dYP1kKb3Zrs9Xo3\/D52CvFAZS6o2Y0te\/bsyRn0DYVC3LhxI6f1vVoFDjvV9hZEIUvqeDxOV1cXpmly9uzZkruLW4l4pJQMDw+zujrC+Qe9COEHNjaLc\/OcAhlVUJf6kShIRw0iXX13WjaEsYpZ34EaGs69FgJUNwZOIqtxhCHxOZwoyTgiEobwOMbuo6hT1xCy8GfUFNTpvXZjnSHe2nvZGbYI+VIthWRssoc2b2XR3W5UUl8p1KhgzcgsLCzkKCpYn0k1jQo7ocZjfac3kk4sNOhrWadbChxOpzOHiEp9PvkW3NFoNEdZ+q2AnyriybekVhSF6elprl69SmtrK0eOHCn74G3UuG0ttdbF7t1JDh\/xABIpI0jTjVAqn8XJhjQdsLiMmljrWBOYpKSJaoJ6i99jIVKYahPEE8QWF3ClEmixMMI00IDaIq\/TEjMkRDsuRhFFiCTVfRkezu3738lGcPkyNvmeMg6HI0fWx5L5rwTb3c68kevnz8gYhpFpZZ+cnKSvrw+Px5Oz0JZqVMhfaLcD2QaOt4pC1umW4oT1+WQ3ctTW1uY8M4VSbXv37r3l+9pJ+KkgnmzZGyusN02TK1euMDs7y6lTpyrWGtpIV1soFKK\/v5u77nbj9998oISQSCSGAdV+72Tag5gbXteB5lSSxLQ6vGUsD4qeV3EhU06UsetIdwPKwDWqyS6LxCrCXUsy3o6LsYIddfXx9TWoN0vEUGjRXVlZyaSgent7q1YP2E5sBvFlKwJAbit7dqNCdit79mdi+c9sJ6x14XY8h6qqZtK0sF5xwmoesJ6XbENJWIt4NkMhZSfhLU88hRoIIpEIly9fxul0cu7cuarE96qJeKSU3Lhxg2h0lHPnvahqoaJ6knhcxe+vjMykFMiYihrqL3qMV4uwEnERdFbe1SaFA2l4USYGUIw1AVIRn8fsOIoy2lfxeQBcrhDLzy\/CfftwGaPrPHr21MVYmpzD2VSbew87NOIphfxFxVLbDoVCGfWAbBvsfOHKN2PEUw75rezFpI6sz2QndLVtZdRVSHHCIurBwUEArly5wtLSEslkckNdbV\/72tf42te+xsjICAAnTpzg\/\/6\/\/2\/e+973AsU3el\/60pf4t\/\/23xb83eOPP84\/+2f\/bN3P4\/F41TNgb2niKWRJPT4+Tn9\/P52dnRw4cKDq3HKlEU8ymaSnp4u2PSmOHF1LrRWD328QjSr4fKUJTUoHhMKosfIdZ16PROJGGKXTeBIVSQBl8gZKOl7ggBXiqhtPmfNkQ6SieB8+TOzpKyTuaKfWn6tqoCgw\/8zztD36v998zQ5OtVUDp9NJc3Mzzc3NmaJ8KBTKRERAjqzPdmMriK+Q1FF2R5hhGHi9XhwOx7bVzPKjjK1E9jOTSqV4\/vnnaW1tzShJr6ysMD09TSgU4u1vfzv33Xdf2Qhxz549\/If\/8B84ePAgAE888QTve9\/7uHTpEidOnMjIf1n43ve+xy\/\/8i\/zwQ9+sOR5a2pqMsrWFjYyePyWJB4pJclkkmQyicPhyFhSX716leXlZe6+++6KjJQKoZKutsXFRQYGerjrbjc+X2W7KJfLzJnFyYfUPYi5EYRRWRTjUCWmFoBYoqArqEQgRS3KzBhKonj7tWKmSTc345kqbg5VCE5tnpjPDd1j3Aj42H8q9zNTJq5w48bxTHrhrehAml2U37NnT2ZmJtv2QVVVNE1jbm5uW2RatjraKNQR9vrrr6NpWqZmpmlaTs1sK2aqdkJnHdysNbW2tvJv\/s2\/4ZOf\/CQPPfQQZ8+epbu7my9\/+cscP36cZ555puR5\/uE\/\/Ic5\/\/35z3+er33ta7z00kucOHFinaL+U089xdve9jb2799f8rxCiFtW44e3IPFYqbXR0VEWFha45557WF5epquri0AgwPnz56sq\/uajVFeblPINeZYxzp33oiiVL6Saxht2B3rOTI+UAhnXUBb7CxJIKSj6MqanBRG\/6Z8hAanUocxPo0Qqk8epUaLEmvbinR+v+NoiHcf70EFi379C\/WqU4Ss+9p28ST7tNcu8vhxmdnaWdDqdkW9ZXV29JZXpnQxFUQgGgwSDQfbt24eu61y\/fp1wOLyuFmINbd7uxXC7U33ZM0RtbW3rCvHXrl3D6\/XmzFTdDnLeCQ0OcLOxwPqbCCGIRqN88IMf5F3vehemabKwsFD1Of\/yL\/+SaDTK2bNn1\/1+dnaW7373uzzxxBNlzxWJRDK1zdOnT\/O5z30uY6tQDd5SxJM9m6NpGoZhcOPGDW7cuMGhQ4fo6Oi45S+ZpWyQj0QiQU9PF+3tOkePlU6tFYNQojnaa2uptQhqbHbD9yuMEKYziJJawVRrEYuLqCtXqj6P060j3T5EIlr+YOs1yhzxgBe5GqMuHGX4qp99J9YiOrdTUj+\/wh3v+Vni8Ti9vb0kEglef\/31TLF6O1QEthKapuH1epFScuLECZLJZKZt++rVq+i6njOUeDsIebuJB3KjrvyaWTqdzhTiLfvrbOmazVJU2M5UW\/595L+f7BqPoiiZNv9y6Onp4ezZsyQSCfx+P9\/61rc4fvz4uuOeeOIJAoEAH\/jAB0qe7+jRozz++OOcOnWKcDjMl7\/8Zc6fP09XVxeHDh2q8B2u4S1BPIVmc6SUhMNhkskk999\/P8FgcFOuVSjiWVhYYHCwh7vv8eL13qqvyJrdAQaI+bGMZ86Gz4dEqi5kzIE6f3XD59FkGrN9H+J65aQl0gm8Dx0g+r\/WDKnqViIM9wfYd2SteUEOdiPE2\/B6vfj9fhwOB\/v27ctpzbVUBLJVpm\/HznQ760vWoutyuXJkfSzbB0vGRlGUnBTUZoh67hTiKbboOxyOdY0KFjkXalSo1nW0knvYSpQjnmpw5MgRLl++zPLyMt\/85jf5p\/\/0n\/LMM8+sI58\/\/dM\/5aMf\/WjZ5+nMmTOcOXMm89\/nz5\/n7rvv5qtf\/Spf+cpXqrq3Nz3x5M\/mCCGYn5+nv78fIQTnzp3bVLmT7BqPaZoMDg6SSk1y7rwHRbl1KR0hJGZUooSGqlYOKART1L7RGt14y+dSYjOYbQdQJofKH\/wGHHKGlEPDmV7bFNQtrnKtN8Cx42la1JnMwmctFtkzEPv378+oCFhdYptp\/rYTUIzwStk+TE1N0d\/fj8fjyRH13MhzvhOIp5oB0kLknK2oAOTMD1XaqLBTicfSFdyIcoHT6cw0F9x7771cvHiRL3\/5y\/yX\/\/JfMsc899xz9Pf38+STT1Z9fkVRuO+++xgYGKj6tW9a4smezbG+PFJK+vr6mJiYoL29nZmZmU3X2LIinkQiQU\/3ZTr2JmnaFURRqhPkLAQpgTCoC72YrmaEDG34XIYJwvCjTvcCIKLTmLV7UZYrr9MUgnCmkU43IlVZJCb0JKl9tTiv38xL715e5epVPydO6Ay\/2sOu++4ACi\/C2SoC+V1ilvmbRUJv1rRcJQtjPiFbszKhUGid7UN9fT01NTUVLaQ7gXg22uBQqFHBat7IHu7NlvYp9nwUijS2A4WGR6WUOeZsG4XVdJWN\/\/7f\/zv33HMPd95554bOd\/nyZU6dOlX1a9+UxJM\/myOEIBaL0dXVBay55Om6zuTk5KZfW1EUEokEly+9wD13OvG4JZLoGwoEhTvSKoFhgLKURHnDD0dJzhKRPvyu6iwKAEzhJjo9S9DI1W0TyUVMTy1KfHnD9ynSMcyOwzA+Auk44o2Zn1JobTeYG9Bwy5ufT9tKhN5ePzJ+Ee67o6KutkJdYtuRlttMbDTFV8j2wUpB9fT0YJpmpj5USkttpxDPZkQb2cO9nZ2dOY0KExMTmUaFQlHi7Yp4pGkiqjhvIWVqoOpU22\/91m\/x3ve+l71797K6uso3vvENfvKTn\/D9738\/c0w4HOYv\/\/Iv+U\/\/6T8VPEe+7fVnP\/tZzpw5w6FDhwiHw3zlK1\/h8uXL\/NEf\/VFV9wZvQuLJn80RQjA1NcXVq1fZs2cPR44cQVEUVldXb4tvzuzsLDX+KHeecKEobxAfBjKtgmtjxGMYCsmxKXxmbuHeJeOYeFConHxMJYgyOULQWD+TI0wdXD5kUivoRFoO0lmDaTgRg73oehAGx5BOF\/h9CK8XPG6Ey4EuIBKP4nQ58HldpMJRInUm7lCuUVzrcoShwTVy3MjiVyotZ3moZC++xdJy273wbsb13W43ra2tGfVkS7Qy2\/TN+hzq6uoyO\/+dQDy3S6stu1HhwIEDmUaF\/Cixrq6ORCKx6Z+DkppiaUIS3N9W8WsKEY+maVVH8rOzs\/zCL\/wC09PTBINB7rjjDr7\/\/e\/zyCOPZI75xje+gZSSn\/\/5ny94jnzb6+XlZT72sY8xMzNDMBjkrrvu4tlnn+X++++v6t4AhHyTTO0VsqQ2DIPe3l7m5+c5depUTrdHLBbj2Wef5d3vfvemPFDxeJyenst07knSWqSN3VRrUbQCQ5glIE0n5sQYWrpwt5jprEfIcNn3IBFII4Ay2V\/W+G3F9BNMV57GiysBjJU43tB0Rn9Nunzoo6uIaKSicxgGTNxw05AXwZkSlv+PXydcu9YQcvjw4YrvqxTy03JLS0tF03IvvfQShw8f3paBzqGhIdLpNEePHr1t18je+YdCIVZXVzORYSKRwOFw3Nbrl8MLL7zAiRMncnyvtgKWOeDS0hJzc3PrxF832qgAoCVHUSLXufrKHg6991jFrxseHiYej2caAHp6enjve9\/L8vLytm8QNhNvioinkOzN6uoqly9fxu12c\/78+XUdGdauYTN2dHNzc9wY6nkjtVb8OGHEkYpAVDi\/I3U3YnIIrUTnmpIKrc3iGMWtq6VwwqqOGqpM2iaoRMraXEuhIN27YH4B98L6ZgKRjKIe7cB8rbJOOVUFLQixsIrXeTMSVQQsP\/X3qL\/07k21FK8mLWcYxqZHx9Xe6+1EoZ2\/RUKhUAjDMIjFYjmdYVtZaN+uwn62OaDVCev3+1laWmJkZAQhRE59qCJrAylxJAdwJq4xOeInHa8uVV7IEuGt5sUDbwLiyffNARgdHWVgYID9+\/ezf\/\/+gg+D9cfTdX3DA6OmaXL9+nWkPsG5+x0oovTiJEhi6nUIZ6z8uVNulPFrFXWuifgcprsWxVxvoSCVGsT0JCJZnb2CklpCuoOIRG76S6oupFYHEyOIaHfpcyyPY544BlevVXTNtl0JuuaCdGqrOerZu+cHmYq9HeG6fYtPqbRcKpXiypUrFaXlNhvbkXDIbtiwtAcDgQChUIjx8bXmk6oX3FvATrBFkFLicrnYu3dvpovQUiGfm5tjYGAgY22Qn67MOgnOxBUcyTUH3\/4fLeHeXd0YRyFLhLeaFw\/sYOLJns2xHsx0Ok1PT0\/GqreUR4X1x9voLjoWi9HTc5mDnWmamzQqHQgVchlp+hBK8aK7jDtRpq5WrEQgMCGdRKoqgpvkZ8ogymh\/Ue+bkuc000i3H5mMIKRxs34zNohIV975pqTniXl9uGOVDZZ2dMS4cT3AoaabROkROqHvvET9B9ZPVd8uZC++S0tLmWL0dnTLbbdIqMPhWGf7EAqFMguuy+XKWXBvRfmjEHaKSGg2+WWrTGQ3Kljk3Nvbm+tSG6zBl+pBS69lEUw0rnx7mNP\/tPL6DqxtlLNFi2Ox2C25me5U7EjiMU0TXddzUmtLS0t0dXURDAY5d+5c2YdfCIGiKJmh0mowOzvL8I0e7j3twu2qbkcqkMg0UGCdkhLkqoI6X1mEkHNeI4qp7ULIJaTQILax8+ScM7GEUdsJC3OIgSGUDey+FSOF80Az8spwUf+dbNQG0rgCMJGoYY\/7pmFdw\/U+THmmxCtvH4QQOJ1OGhoaCqbl+vr6Mt1Qm90tt90l1vxUdKHOMEs5YHR0lKtXr2ZsHyxZn1v9LHbCDE25dupCigpWfWho8DonW0MEa25uClcWPRgpSTpWvuszG\/kRz1vRfRR2GPEUm80ZHBxkZGSEI0eOsHfv3orZv1q3UNM06evrQ2Wa8\/c7EGVSa8UgiGDqdSjazZSblAosJVGXigtyloOSnMNwtaDOTyBiG\/PbyYbpbkYZ6EL6mysijWJwxhYw7jiB7KpM1eDAvlWudjcyZzjY5Vv7Yu53x3itewyOVV6IvV2opFvOGmJtaGi45bTcdu5my0UbqqrS0NCQEdVNpVIFlQM2mqKsxnL6dqJa8stEzI21uKOzqHk1wq4frukjLs2FqtIfLNTVZhPPbUS+7I0QgkQiQXd3N6lUijNnzlQ9RFWNaVssFqOn+xKH9hvsalTZiNZaNoQRQSoaQllTnWZuGSWycc01AKkGUMcG1hRFb+U8QkPKAMrAmpQN0TlkTSMiXJ34YDaU2CT67t2IPLn1QnA5TBr36Uxe81PjWsatrX3W4plX4cPv3vA93C7kW2FnS9mMjo6iKEqOttxmSNlsFaptvnE6nQUtDrJTlPn1oXLXhzcf8QAIM4478iKKmdvZKYEbf7cWzcdX47z++uuZzYyVrixWN8vXjLObC24jsmdzrBTZ7OwsV65cobm5mXvuuWdDCgSVEs\/MzAxjg5c5fYcXn39zOqsEaUzdB5qBmJ5GJJZv6XxSDSDGRxHpONLTgETZkKSOdASQSxGUpZueGsJIg9ePdDgR6eoHVoE1S+xdbvQ5DWGUT2\/uqQsx7ainb6aG03vWGhyOJGdJrkRxBXf2Dq+Q1cHi4uI6KRtrkSmVwtnuwvqtdH3mKwdk2z7MzMxw\/fr1HIvnQrYP2VJX24lqlQuEsbpGOnJ9R2oy6WNlYm2swu\/289BDD62zw3A6nQXt0g3DyFnrrBrPWw3bSjxSSlKpFMlkEk3TMh02vb29TE1NceLECXbv3r3h85cjHsMw6Ovrw5Ea5tyhBFL4YRP00SwIIw7TIYS+fEvnySYdABFfxAy2IxIzZV6ZC9PdhBgdQikgdyNiS8hde6EKHbb1EHDiDoz5FZTIImJ1ueiRioCWzijLgzVcnfNxYlcUn0PS\/\/j\/4uTH\/\/Et3EP1uJVFL7sIbaXlrCHF69ev56TlbkXE8nZhMwdIC9k+WJ+FZftgKUtb9aE3Y8Sj6CHc0ZcQsnD9ZqrvZrYkHUut+1yy62bZjQr19fWkUqmcut9GBUJ3OraNeKzZnPHxcaamprj\/\/vuJRqN0dXWhKArnzp27ZZ\/xUsQTjUbp6X6do80rNDW9MfSZWEB66iqewykFKR2I4SGMtAQvKMrGvtz5pGNBWRnDrN2DEp8r8sqscyCQjibEwNWSw6XK0jhG2yGUycpF\/6TTi+lrQs6HEH3DKEDKuY9UzypKXS3angZUn4qMrSCW5tCy7L87diWZmU7jiLiYTpjsdsfxdL0GbC3xbCby1ZSzU1GF0nI7rblgM5Fv8WwpS4dCoYztQ01NDXBzgd0uUq6UeBR9Hnfk5Zzu0nxc+e7N76SeWE9O+XWz7EYFq7V\/cXGRl19+mZWVFVpbW6t6L+Vsr3\/pl35pnffOAw88wEsvvVTyvN\/85jf59Kc\/zdDQEAcOHODzn\/8873\/\/+6u6NwvbQjxWpGOFlYZhZIb62tvbOXTo0KbsgIoRz9TUFBM3unjgQBKnevPBEDKNTGrgqa4TJR9SqoixKZT4CgoQSzXjcVdvb1CMdDL3uzpPQnXgFiVatzU3MiZQxisr\/CvL45gNbSiLxXXupFCQwVZkXEeODCOM2ZzWcJeYRd9Vizm3TGrpZtu0YQqiOElrCg63xB\/QOXRgleHuOpbnPXiakrS7o0w818Oeh6oXHtyJsNJybW1tOamo6elp+vv7UVUVj8fDwsICtbW1my5qWw5bKZmTrywdjUaZnZ1leXl5232YKkm1qczjTFwpSTqGdDH0zI3Mf1fS1ZZdQ5ydneX48eN0dXUxMjLCSy+9lPGreuc738k73vEOTp8+XfJvVs72GuA973kPf\/Znf5Z5Tbku4QsXLvDhD3+Yz33uc7z\/\/e\/nW9\/6Fh\/60Id4\/vnneeCBB8q+x3xsC\/FYdRwrvx2NRrl+\/TqnT5\/O7BQ3A\/nEYxgG165dw62Pcu5wvODuX8SX1gzPNvhllCgwtYiyenPX40kuIt31CCpXsJZqADExVpR0AISRxJQOpCYQYv17Sak1OObmUaIrBV5d5JzSRDHj6A4PWt61pa8eU\/Ujx8YQ42ut3IU+JZGM4T0QJLKorMlkvwFVEdSgr2UzY2v\/orpCXE0RMFzcWAhwR+sKc09+h+YzR7fcBvp2Iz\/lkk6nuXLlCul0moGBARKJxJan5bZLq00IkUkhTUxM8NBDDxV0Hs1uYb+dpFwu4tHEFKoxi6KHix4DsDiV+8ym49VtYg3DwOv18o53vIN3vOMd\/PzP\/zxHjx5l7969\/PCHP+R\/\/s\/\/yaVLl0qeo5ztNaxtAqqxsH7sscd45JFH+NSnPgXApz71KZ555hkee+wxvv71r1f1HmEbU21CCMLhML29vUgpOX\/+\/KbvcLKJJxKJcKX7dY7tDtPoK7GYm3HMVAPCVb3NgQT0qTCupdxoQUgdmRJQ4dxdhnRS5RUQvGYE09ueY28NsJzyEpy7sbHh0mSEuMuPX0+C5iTpqic1M49vYnTt9xWcQwlN4z13iNhzpWtGAc3kZFOUrkkHtarG61M+TrZM85Pv\/5C63Y2ZluWtlnHZCjgcDjweT6Y+lO8tY0m23M5uue0WCbU2n9ndcPm1MouUa2pqMgX5Sm0fKkVx4pE4lDFUMY+yVL5jc+DZXAURvQriMU0TKeW6duqDBw\/yL\/7Fv+DjH\/941anZYrbXP\/nJT9i1axe1tbX8zM\/8DJ\/\/\/OdLOpteuHCBT37ykzk\/e\/e7381jjz1W1f1Y2DbiGR0d5dq1a+zZs4fJycnbElZbxDM5OcnUSDcP7M9NrRWDiK+Cq\/rp7MRMHF9otODvlNgspqsdIUtHH9WQjgWxPIYZbENJzCMVDWn6qZ29XtW95yMgUuhNh6H7Mg59no3EHtrcAM479pHqLvyZWFAVaK2PElqpoQE3w8tpmvoWab73ThYXF5mcnERKmVmEGxoaNn0R3q5aS\/Z1y6XlsrvlNisC2G7iKTZHlF8ri8fjGVKemJjICHpaz0Slhm+FYM0PriceiVMZQlPmMCKU7SKVKHR9cyTnZ9VEPNYmOZ94spsLKn2PpWyv3\/ve9\/KP\/\/E\/pqOjg+HhYT796U\/z9re\/nddee63oOjwzM0Nzc3POz5qbm5mZqa7BycK2EY\/P5+O+++7D6XQyNjZ2274As7MztNaEOXsoUVa12YKir2Cm2xCOyluLwzNxahdulDxGrM4jfV6EKNxurONFq5J04I0IJLqI6WuA+RDK8q2RjumtQy5GUccuYe7ZByPVOwxacDFDot6HEiotqdPiSzOfNiCmoMT8GN3X2L37o5l6gNWybLXpWotwQ0PDm8J3pxQKPfeFOsSshXcz03I7gXgqiVw8Hg8ejyfH9iEUCrGwsMDQ0FDG8M36PKqR9bFaunOfIROnch1NCWHoXrRE6c0TQHTVR3I197utx9NIUyIqaC4qRDwbbacuZXv94Q9\/OHPcyZMnuffee+no6OC73\/0uH\/jAB4qeM\/85uZVnZ9uIp6mpCV3XSSaTSCk3\/QuwurrK4vwUp\/ZE2VWzgWaBeBIcld3P0myChjKkAyD0ONKsB3W9lUA0qeJdHEekq29CAEBxImfCObWljcAMtiEHb2QcRkVonHRDC9rixnY2IhlH2xvEXMmt9xTCsZplfrxQywGvQngBhn94mX3vOJ0j45K\/COf77jQ0NLyptK0qjbTyjd+yLR8sy+dsbblKI8KdMEdU9eCmEAQCAQKBAB0dHQV11Px+\/00dtTIbk\/XqCToutQ9VhJFSRQlXNvg9ernwRlVP6jg85XMG2R5jcNP2eiPuo5XYXlvYvXs3HR0dJS2sW1pa1kU3c3Nz66KgSrHtA6RWuuBWVKSzIaVkcnKSmbEeHjwcx6VtUPYmtYA0diPU0sOQS\/NJ6uYrn30Rq5OYdW0o8ib5SNWPc+4Girmxbjrp8CJnQijhEGbLAdRw9fbWUghMXxuiN1e8VBg6miNO0unGVaHddT78iRX0Cuo9mgJHW6JMzPlpdmsMP\/4c+95xev1xWYtwtu\/O4uIiIyMjObpa1e5+twMbIUmPx5MR9ryVtNxOiHhu9fr5OmqpVCrTnpwvcVQoOswlnhRutRdFrGUdzISKZlb23Hf99VTBn6djqYqJJ58gN2uOp5DttYXFxUXGx8dLzkyePXuWH\/zgBzl1nqeffppz585t6H62nXisXcZm+KHous7Vq1eoUSY4c7Dy1FohCEAmJJSIcsMrOnVza7Mr1ZxXRCNIz1onmlT9iIlxnBslHdWJDCUR4TVjN2VmCKNlP2q4uNfOunM4PJi6G9Ff2FtHSUQxfAGkqSM2ILoqa+oRCqQPHGC5a4J6bzLHFiEbe\/1phkMpkoaLltAiQ8\/3cuDB40XPXch3Z2VlhcXFRcbGxujt7SUQCOSIWubvsLe7uH6ruJW03E4gns2OuJxOJ83NzTQ3N2c2JtlNG0CO2rb1GahKCpd6FUUk37g3N2q0sk1cSvcy21s461Fpg0Eh4onFYptqex2JRPjMZz7DBz\/4QXbv3s3IyAi\/9Vu\/RWNjY85MTr7t9cc\/\/nEefvhhvvjFL\/K+972Pp556ir\/\/+7\/n+eefr+reLGxrV5v1v6qqbkhFOhvhcJjLly\/jTac5fKo6F9BiEIkFpKcBoaxPEUWjJjXTIyiyesJUUisYnnZQDcTEeNU1HQtSqJhxB8piLsmIhQkSHi9uowJfIH8TcnoRES6dSvOnVjHb98GNyuo9ur8O4WvEmFtG9s0CC\/g0B3MpLwtJjQTgdBo0+NM488RYz7RFeXrQyfGAYOir3ylJPPnI7o6Cm6KWi4uLXLlyJcdlsqGhoayW2FZgsxf+atJylkzVduF2p\/qyNyb5tg+WfI3D4aAmIHCIroznlpRAZLVi65LZG8WPrLTBIJ94TNPckEhoKdvrNSflHv78z\/+c5eVldu\/ezdve9jaefPLJnJRevu31uXPn+MY3vsHv\/M7v8OlPf5oDBw7w5JNPbmiGB3ZAxANkhkg3Aikl4+Pj9Pf3s2\/fPsyhNCZRlCpmZopBSB2ZUMGbSzyJhMQzMYqib\/waSmwJGUlvnHQAadagTPWv+53QU5B0YThU1BLEaAb3Ivv7KtJWA1BmhzEPHIGh9dcEiLtriEs33piOuL4A5LqmCj3NrpYoi9Ne\/EJAWmVlSWUpDWgmzf4UQZeBU4WTLatcn6nhgIzR9\/3XOfqeuyu6x3zki1pGIhEWFxczXjNutxtd1wmHw9s2wHm7kZ2Wk1JmLB+mp6eJx+P09fXR1NS0JfMy+dhqL55Ctg9LoRvsbppDU29+V6JhCKSXKz7vtR8Ut5KvlHgKmcABVdd4\/vt\/\/+9Ff+fxePi7v\/u7suf4yU9+su5njz76KI8++mhV91IMO4J4qlGRzoau61y5coWlpSXuvvtuGhoauNp9mdUlF8G6WyceAJEIId0BxBvkb5oqytgwWnpjhAFvSNjMRSCeRHo3luowtV0og8XVCFypVWKuZnzGevsEKVRMdzOi90rFOzoLYvYG5p59iInhtXPVNZNWfMTHZnBPLZfKTALgd+nEG5IkFl2oQqAADQ4ABT3qZjimspJM0uTXcblTRIWH0H\/53oaJJ+fes4rSnZ2dGS2xa9euMTU1xejo6KbaHVRzX1sFIUROWu6FF16gra2NZDKZk5arq6vLzE\/dzvvbbi8eh7bM3paFnPeo6yre1FxlA2uAiYPe7xZvLtIr9OTRdb0g8dgioZuI7D+0pmlVp9pWVlbo6urC4\/Fw7ty5TP95KpJiqjdF8Pwm3aeZYGXRSbDJhZQKytQC7lR1NtP5kKIeZeo1AMzAUYRZnR2B6WpB6S9tSw3gXZ3F2H0QdeWmB5Dp8iOjAjGxMRM5ISVKcgW97Tj68BRcXRuqq2aqpimQZDylQmR9wbVGGtQ4NUhptLlMBpMO9ss4l598ntMffnBD91wMlpaYy+Vi\/\/79+Hy+TFrO0lWzUlINDQ23pUlhu7XagIz3EOSm5Swb7GwV5c1OTW5nV52qzOMUgzmqH1KCSEhUUfng9fK8m1IZ93QBvbZCyI94YrEYTqdzS6WDtgpvuohHSsnY2BjXr19n\/\/797N+\/P4fEUpEk\/S\/Pc+x89S2IxeCWKaR0I2ZXUZYLd65UCtMRRHRfvvmDiSHijXV4nJU96KanBXGtPOlYEDM3WHHXEBQxzEALcmwSEVvfzl0pZKABfVlHJsbR4+kNP0B7G2LcSAVwp4ovOnVOwT65ypUVaPofP0J+6Pxt231LKdd1ioXDYRYXF5mYmODatWs5zpu1tbWbtmBud40l+\/rF0nL581NWHe1W03LbY3stUdVZnIzkkI6RcsP4LOqrr2Dccw9KrYKgPGlc\/fFiyd+nY5XNA+ZHPJFI5JYGY3cydgTxVBrxWNpWy8vL3HPPPZn2yWwkI0mGX5zHpAGFjXnL5MOtJDBnXCiLI7d0Hik0xOg0wrxJsoqZRk0oUAHxmJ5d0FeZ2KcFIU38Zhq9tgPRf2VDEjqZ6ze2YwxMQDKBAEx\/DVJ3IpIb+5w7W1YZnqjBYxb\/YjW6TFprNKLRFBf\/2w+4\/\/\/3rg3efXXIdiE9cOBApkV3cXGR3t5eDMPImR0qZuy101Gqqy0\/LWd1yy0tLTE0NEQ8Hs\/I2NTX11NTU1P1Z7D1qTaJpk7hYBzxRlSTjKmYE2N49AR0DSHiUdRnn0G6XBh334dochZdS6SE3m+XnvOptKst\/7N4q9peww5JtVUS8SwvL9PV1YXf7+f8+fNF0x6pyFptJ7LspqZ2c4hH4oNLV6H91lItMuVFWRpc93NneIZV514C7uLdeKa7AQavb4g4pLcROT4LiKprOrBWk1pQawleHcqxyPbGwsiODozBcajCYtyCImBPS4Sp2VpcJf7+h9w6L0UUlr51AeOfv2NbVAryW3Sj0WjO5Lxl7NXQ0FBVJLDd7czVXL9Qt5zVpmyl5bLVAypJy21tqs3EoU2gySmEMDF1F2J2Ds\/SWleovqigxm8qbIhkEvXC80hNQ7\/zHpS2AAq5Mz3xhJ\/YfGlimZ+ez5BIqc863wRuu60ibid2RMRTqp1aSsno6CgDAwMcPHiQzs7Okn+IVHSNbKaupak5W\/SwqiBvzKLMjGC23omibaxV23Q0oFx9rejvvaEZUi2NOJX1D7F01cDI2IbcQc3gbuTVawjTQLYfgsXhql4vnW50rYHaG4VfJ6ZHUY8exOhdT6iVIBLXMH0qY1MKu71pHEXWoLvrDV5eSHPhK9\/lwU\/+ow1da7NgKSv7\/X7a29szxl6hUGhdJLAVBfpbwa0QX76MjSVrZLUpW+6jVmquEBlvXarNwOkYQzXnkKYDOb+EunBzWDoccxEY6in4SqHraK+9jHxNYJw6jehsRBFr68Bkb\/kSwerSKq+++iqappW0fTAMI0eRPRaL3bIn2U7FthKPEAIpZdF2assUKRwOc++992ZmM0rBiniu\/3iBo2dvPUyV+FCurA1JydkItFW\/25aqG9FfuAXZgmqmSYZ1nLV5r3V4kVMhRKK01lkhJDUf6o3JTGpPjA1g7juMMlde3gdA1jSih1KwUJqsxPgg6vHDGL3lNeIMRWN23kEyqeFTdLwOk2bCGH4HM2E\/CSkJuE12OVNky1s5FcGxoE7Pd18n\/X++F4d78ywTNmNy3jL2OnToEIlEItOkkF2gt4goe8HZ7uaCzYq4CskaFSPj7LTc1qTadJzOEZR0GBmKoc4O5kT+aZx4+ss\/uwKJ2nMJesA4cgIO7qHn28V9qyw01jRw\/8MPZmR9LNsHn8+XI+tjGEaO1FEkEnlLuo\/CDop40uncnf7S0hJdXV3U1NRw7ty5ijuKkqtrxDP07Czmbx1BqaA4WApycDrzkIrJG8iWUwi1OukYM6SjxssX9L2RecyGoyjGWpdbRpVgtfiMQDEYqhN9MY4WzyUsOTKIuacdJVRa2cBs6sC4PgZFZDbyIcavoxw5iNm\/PvIxA\/WYNbvQozrp0ek1Tx5XbvTW6k+TMmI4E14UQ2MiqhJO6TS4dXZ71xbnRpdgbyrJD\/\/jU7zndzZnnuB2wO1209raSmtra0bOZnFxkampKfr7+3N8Zt5MqbZqkO8+Wiwtl06nb+uuXogUDu0GYn4OZfo6SgE1k\/REGE+6uvELtf8qibF5prrL93Om46l1g83ZrqNWG7u1Di4vL+P1ejc0PPpmwY4wOMluLpBScuPGDV599VU6Ozu56667qmpjtSIeJETDt9b6KfGh9N7sIBNIzPnqSCcla1EnKk9DialRpHCvzdrEVMRieQ+QfEihkEp5cK+ut2AQ0kTOzWH61zdmrL1WYDQewLgyWDHpWFBmbiD2dSCFirGrnVTrcWJaG7GRKInuYfSh8ZKSO53BJNKx9vl6FEGz24GGh8FlN4O6m\/mkycEAmM92E1mqPgLcDlhyNvv37+fee+\/lwQcfzEQEfX19mYV4bGyMaDS65RHQVhGflZI7efIkDz30EKdPnyYQCBCLxZiamuLChQv09\/czPz9\/yyomFoSI42AQre9VHNP9BUlHpw7P1FiBV5fHxeEGHP5KiGf95tdyHT1y5Ahnz57lzJkzOJ1O0uk0f\/u3f0t7eztf\/\/rXWVhYoL+\/v+Ln4mtf+xp33HFHJvo8e\/Ys3\/ve99buI53mN3\/zNzl16hQ+n4\/W1lZ+8Rd\/kamp0p26jz\/+OEKIdf8SiQ0KGrNDUm1Wc0EqlaK7u5toNMr9999PMBis+pyp6M3FcrovTeD+jd+fHJhaV4wX44PoDUfQHOVzuyk8qFW0PgOIdBwzqSEdbpTpjdkbmP49OK8V1l2DNYdQmfRiOlwoWTs96fRgqPXIKxub8cE0MR1ekrWd6NcmgMpUfbNxuD5O74LAZd78QgedCqTAlF56Ymk0JcWPPvln\/KPHf31j97mNyLY5llLy+uuv43K5CIVC3LhxA4fDkdOkcDtdWK3FbKvnaLLTcrFYDJfLRTAYLJqW24gJoCJW0VI30Ea6UIzCGyhT9aK8dnlD78HUXHzz\/wtz6kD59H8lXW0ejwdN09i7dy933303+\/bt44\/\/+I957bXXuPPOO9m1axfvfOc7+cM\/\/MOSEWIp2+s9e\/bw+uuv8+lPf5o777yTpaUlPvGJT\/CP\/tE\/4tVXXy15fzU1NfTnlQtuxRNrx6TaEokEL7zwArW1tZw7d27DX7hMxANc\/\/Eih+\/fWBgvpQ\/l2noBPCFN9Pk0WmvpL4IpBanRafwb6UJLmMgy\/jXFYNR1QE\/5lmuxvIBs7cRcmUABZLAJfT4OoeqaDyxIzUHa34nZ3Y\/m9SJbmzCm5jd0ruONMfoiThyx3M9YEQotLhfgIja3xHN\/+H0e+vX3bOgaOwGWBXx9fT2tra058v7Dw8NcvXo1I3B6O1xYLeLZbpHQ\/LScVSPbaLecIkNokes4pvoRZvGGHHMijJramMLJmN7OajiC4iy\/hFar1aaqKg8++CDf+c53aG9v5z\/+x\/\/I888\/z4svvlj2vZeyvf7lX\/5lfvCDH+T8\/qtf\/Sr3338\/Y2NjtLe3Fz2vEKIqq+xy2HbikVKyuLhIOBzm2LFjtLe3b\/iLYKR0jNTNSGTwmVnS\/2Y\/Dq369IW8PlG09dg5NUKyYT+lBorDKwq10eXqr+v0YvQOgW4g9jWgpCtXSVjrYOutuGVaTI0gOw9jYmL0j0BqY+3n0ldLKulFDrxhexCL4fAryF11mHPrJXsqwRHfMq+GfdRrhT9kL7Dyty8z\/57TNB289S\/Edhb5rec9W97\/4MGDJJPJTJNCvgvrZqgI7ATiKdROnV0jKyTqWbxbTqIakzhWBlAXxkqSji7rUMdf3vB9\/8131jaUwlG+2Wij6tTRaJTm5mY8Hg+PPPIIjzzySFX3WMz2OhsrKysIITLKFcUQiUQy3kenT5\/mc5\/7HHfddVdV95ONbSWeVCrFpUuXiEQieDweOjo6bul8yUju7kUakoU5we7W6hYVKf0o\/cXlvoWpE5mI4jpQuPAXM70EJzeWrjKoRUTXcq7migLeygpx0luHeWMSUeU8jUzo6FGBskHSMRv2kppYgUieunUkgjOokqyvQYbCVZ9XCDi5K8ZrUyq73YUf06CqcPVf\/TdavvRBdrU2EwwG33ROpKUIz+VysXv37rIurNYCXO173wnEU66dOl\/Us1i3XENjkI6mCI7oDOrSDKKEzYip+lAuvr7he171tNFzeU2rUVYQgW5UnXqjXjylbK+zkUgk+Hf\/7t\/xkY98hJqamqLnO3r0KI8\/\/jinTp0iHA7z5S9\/mfPnz9PV1cWhQ4eqvj\/YZuLp6+vD4XBw8uRJrl4tXpOoFKnI+sVzqi\/J7tbq0nayb7Rs1FATmkXuP7zOxtoUDjzjUxvyAoqoAZw9125ee3oc89hxlFTpDjTpcGMsxhHx6tJzsm4X6SujSN0g3FhHbby66ERvPozee6P48OjKCtLrxfR7UCKVzT\/NxzQWY06EqVDvNjlSk+bigoouVTqC4M\/zva9HMv3Z\/8XCxx9A1\/V1lgc7dX4mG5XcYykX1uvXr2\/IhXWnEE816cNCabnV1Wnq1WHk3BLElhBKlvaaUDFVPxgqMp5EhJeJ9c3iDToR+sY6Xl+4WgMsA2BU8DWvVDInn3huh+115p7Saf7JP\/knmKbJH\/\/xH5c835kzZzhz5kzmv8+fP8\/dd9\/NV7\/6Vb7yla9UfX+wzcRz8uTJzE5uM4zgUpH1+dobzy1zz9ubKj6HafpRBsqbG2lSx1xRUWvzOnCiGiKyXPH1LEgE5nRkHWHJ69eJdTThFYVJRQoF0\/AjNjAYmppNQyqNAHzLUeTuFkSovMW1VFX04P61zrcycMdi0NhEEoGMrFf0TugKoZgLU3NBIkXAIdntksAbz4MK9zUm6F7yEE86uZFMogqDg14Vl7q2YDZEYyS\/NcZd\/\/59LC4usrCwwODgIC6XKzNfsx2WB5Vgoym+zXBh3QnEc6tddV7nMnW+YWQ0hZKOY6gBIgkdIxxBCy\/jTYTJjgNj8Rb0128QO9yKb1ciR76qEhhOH3\/zVze7RdNm+b+fHi\/fpSelXCcSutE5nnK21+l0mg996EMMDw\/zox\/9qGS0UwiKonDfffeVtMouh239Jlpt1JthBAeFiWfylVUMsxm1gJlbQVyrYgEfHkQ\/tQdNW\/vimFojynDp7pBiSHpa8CytT88JQ8ecjWLuVguazpn+NrjWW9W1JIK01gQLozevk0phhGKo\/tqSxCm9QVJpP7K\/crtvFuZxNbeQNE3MeIpVX4ClcR1Vgl8z8QnASEKRwNSpwh31cXqWBa1vFNbmkiYhM0VASbHf68Z5bYgbf\/I8pz757oyaQL4LZ7GIYLujolu9fjEXVsv4rZgL604gnlsZIHXI6zgig5irKsq1aygrCygUfYyYSwRwPL\/WKapfnyJedxCvWrlTL8D11b2kUzeJJ5Uqv66k4+UjHmvjnR\/xVOvFUwjZttcW6QwMDPDjH\/+YhoaGDZ3v8uXLnDp1asP3tCO2gJqmZRj\/Vrp28ms8AFKH5SUHDQ3lu1dM048yVLmVq5KOE19S0ZpMpOZD9FYn4Jm5R5cfca24moA7GsZUjqIYuf32lXaw5SPV0Ak9BYhjNYzhakJ1ehCp9amxdLAFYzYOqxuYLVpYQDl4kpXeWeR0lNoqnzynAqdqY1yJevEaDjyqQpvqBtxci8RJmCmO\/fB1buxtYP+j96Kqak5KJhaLZTqlhoeH0TQtEw1tZ2PB7bh29rCiJXBayIXVWtTedMQjdVyyG2V1HnNeR+2+UFbD0PA2ov1kNOdnqZcHSZzdS72orPtSCsFf\/XXu7EoirlNuylBP6EhTIpTin7P5Rro6v8ZT7XBtKdtrXdd59NFHef311\/nOd76DYRjMzKxlOLKj4nzb689+9rOcOXOGQ4cOEQ6H+cpXvsLly5f5oz\/6o6ruLRs7gnisD9swjFsinpUiHVTT\/SkazlVwgqtV7OLfgHtmCtnYhpyLoKQ3NlBl6H6UZJk6zvV+jBMHURNrszFmbWtVHWwWEnWt0DNU\/HUL85h79qLoUzlpiEV3M97hRcQGUqKmP0hKqUV\/\/Rre5kZWExpKBemHfDgVuCMQ4+KCSp12MwXR5PAAHsIxyfKfPYfaVEPHzxzOeW1+RGAVqIeHh4lGo9y4cYNoNLot2mq3+1qFXFhDoRDz82sL7oULF8pqqt0uVC0Sqq\/i0a4gQ1HkxBLq4JWy9VTpcBN5KYRIr392xYVxls7vok6Wb4BZcrYzMpS7gY3FUmWJB0BPpHF4ix+p63qmvR7ICNFWG\/GUsr0eGRnh29\/+NgCnT5\/Oed2Pf\/xjfvZnfxZYb3u9vLzMxz72MWZmZggGg9x11108++yz3H9\/9UOSnZ2dfOITn9j+AVK4STy6rm9ofseyvx68VrjmMPTcCifPlc5jmoYfZbjyaMeCiIcxQvvRZqonLQCzZjfyYvkOOIHEHJ1DtLoQbi\/m0HjVHWwpdwB9YKZoKsKCnBjHPHAAZW4IFAW97iC+vo2JgJq72kjMJTFX3qgdzS7gqPGRTCpoG1C01oB763VeXYpQp+bmvxUhUBIprv\/uU8DP0fEzhTtusg3eDh48yCuvvEJNTQ2RSITx8XGEELfdAM7CVkdb2S6sjY2NvPLKKxw6dIhQKMTg4GDGgXSrXFirEQlVk2M4nRNwYxJWUmg3yqeYJYLolBdzdq7g7wVgvhYifa4BR2K90kc2fnjRA3n2CJFwmtoK7j0dL008+fUd2FhXWynb687Ozoqet3zb6\/\/8n\/8z\/\/k\/\/+eq7qMcdkTEI4S4Jfvrq1evEgqFaK5vZo71kcPIc4vI36xHUGKXfWVjhTIpBLEXxvAfUFGo7v6loqKPhSqfu4msYOhHEAtLiHh11tuGohEPSdypyiINOTSEcfQYxmIEuUHSMdoPE++bhHTuNd3hKMLnJrIM7iq7n9MmjMYkmkgzHA8TUL005g3xqabJ9d\/9GyQ\/R2cR8smGRUS7du3KGMCFQqGMAVz2EGdNTc2mT\/pvV6rLijbyNdWKubAWUlS+VVSUapMSR+wSqieOuNyNNHxoo6VFdy0klT2kL5fumFUSOtHeJMEjbkSRrEVEePi7by+T74cdXo5DBUFJOpaGEuWU\/I422HhX25sBO4J4YGP216urq1y+fBm32825c+e4eOmFgseZaUks6sXnKxxOm4YfZXSjEUsbxguDJFqP4fWUV6rNea2vrSo3UQA9AtKsxUV1qgARtQH3cuW1GYkgMZVC9QWqFvSTQkHfc4RkT\/G6lUtPYLhU4kmtJPmYEmbiglBSRUGhyQW7HGv\/Dnklr60kGDN9RGIR9nm8eN748qqmycDnnwLeVxH5ZMvHWAZw+\/fvz6mP9PT0YJpmTjR0K7Ih2dfdDhTqKCvkwppNwpvtwlo21WYmcUVfRnHoiEu9mGkv2mRlpJP27ib+VIVjGjPLxBr34g2mCtaLri3uQbJe6NfUJZrXiR4r3Zpdbog0n3gMwyAej9vq1Lcb1UY8k5OT9Pb20tnZycGDBxFCFOxqszA7aLD\/zvU\/l4DoqexBLoTUG663yctjuM+6K1bDlu4ajO6+qmo0MlBL4vVhEArqqWa0aGVaaNHavbh7R8sfmIV06zGMniEMwHniCMpIZZ+RdHtI+lrRr5S3XvA6DISQRBJOvOrNBXg5qbCY1DClQq0b\/KqJv0CNVRGC+2pVrpspAnoNq7pkMBahqcZNk6GiYjDw+acQvK9o2q0c8usj1hS9NcRpKU03NDRseIB1OyOeUtcuRMLZLqzZc1P19fUbsmkulWpTknO44pcRIg1XhpEJB9psZRtE01VD9MfViX+mr4yTfOgwbiP3dVLR+OZfF19bZAXVgXKdbfnEE4mskdxmdLXtJFjdlDuixgOVE49hGPT29jI3N8ddd92VSRHATRO4Qhh8LsT+O9enCaTuRxnbmD6ZqblJXhxZ+49IlMRqO95AZVFPKu6sWi0grTaCPgwYxMdNfE2uogKImdfUtqD1jVd1HaN5H6ks4kj1DpPc20JwsfSMj1m\/i0RExbxReYuqRzNRPCkmVzzoUgNTEnBImlwAldWADismV9QFVL2edncQUjCejmE4JXvw0v+7f0Opmk+lyJ+it6TtFxcXuXbtGul0+k01wFrtDE2lLqzWv0qaFIql2rTlKzjNYZAG5ngMozeMmJ7FcLvA5QSHExwOcGhr\/1QVoSqgKkhFJT4UR4arN21MPHcd5V1HcEZubtRmlQ7mZ4qntr1BP6srpYevy6kX5DdWRaNrc3tvtYinqamJ6enpnRPxVJJqi0QiXL58GU3TOH\/+\/Lo0R6mIp\/\/paR759QOIrDqMBETXBpWYgYTWCOnlzH8nLw\/jeqgGldLdbSlvM8ql6qIs2bCb5Os3CVLOL5Jo2IeX4jvAhOZCTISrsqU2\/UES4ytrZvKZi0mc4yFW97YQKEI+xp79JIYWkInqRBd1A+YibupcBosJFZ9jY6mnk34vN+JLrCSDuBUndQ4vSIinJbqi8tK\/\/y7y\/\/nf6Xz44IbOXwj5StPZC3GlA6w7LdVWKUq5sN64cYOrV69W5MK6LtVmGrhmfojqiiENDbMvhOy6jrL6hmZhVIdocYUOqahMxQ6Sjgoaix5VGrEfDqC8sx1tde1Z\/18\/KR3Fap7yIc\/o4Aiu\/d6iiuOFVAtcLteOHHq+Fbz97W\/n8ccf3znEUy7imZ6e5sqVK7S3t3Po0KGCuyTLBK4Q9KRJPObD671Z55FpP8pkdSmobKSG82pGiQTx5U78tcX9LUyhkhyYpNrKQHLVSX7XqN43TPLew7hW19snSFUlFnHgC1eukyaFSpJ65Or6+xdSok6E0Pe3o03npiL0jmMkeoZzyaoCxNMKS3E3tc61v3uTJ8mc6cO\/QSmT\/R4PM8oqEzEvPnVNQFMgcJgmmCYXf+cpov\/6nZz4udyc62Y5cOYvxDt9gHUzvXg24sIqpcy5BxFbwD3\/I0TQhxnSkdcnkN0DJT2cct4Pgjl5mIXX14wUg+cP4xjdgLWIYRK9MEfgvhpSuHnhJ2HymwpyoJVPr8qUXKc4bjmxKopSMNVWiezRmw2f+tSnuHHjxs5JtRWLeEzTpK+vj6mpqYwvRTGUingA5oYMOt8Ytl2LdjauDxfTAjC8vkUzfXkI422NqLLwriyU8hGMLFZ1LbO5k\/TLhdNlycsjqHesr\/cYtZ34xqvr1EvvPoxRoiFAMSX66AJqZztiagzpcJJu6CTVXZmVds616uuJjMcJZPkaKQJa1CgjMQf1jrUaTqXQTclYIslS2kRTY4waSVy6RovrZqpCQ9L3Bz9geXSZ8x\/\/marvuRoUG2BdXFzMGWBNp9ObZnxWLaqeoakChVxYQ6FQjgur5cYppcQx8yqOxHVksA76bmAuCET3tapqoCH3MWZ+dLPpZvLSCp2dNVDF5suCDMeIDPq4JBqwdNmKHlvBZ1hfU8+JB+7MKI6HQqFMs0pdXV2GgK3\/tYjnrYaamhqefPLJneFACoUjnlgsxksvvcTy8jLnzp0rSTqQawJXCIPPL2f+v0z7EFPV1T5y7i1apK00nSY+X3hmKKF6qRmvbupfCoXEeIlcta4THoyTztpDmC0HMXqqIx2jZT+pKxXUutJpkmMhzPYDJJzNpPqrjxiX6+uJzSZwF5Ex6gykCRuypA6WKWEyrtMd1rm6arKU1mhyBDjsDXLA4+eMz43LZ3IjFqE3usiqvvZsKMDsNy\/yvz7511ua5rKGV++8804efvhhjh8\/jsPhIJ1Oc\/XqVV577TWGh4cJh8Nbdl9b5T5qubDu27dvnQsrmND9dZT4daTTBVcH0EcTiO7qNoUrNceZ+FFup6cR01lSd2\/4vtPLOs+8Uj6NVklLlNXVZimOnzhxggcffJC7776bYDBIJBJhYWGBF198kX\/xL\/4FP\/rRjwgGg1X9fUq5j8La3\/szn\/kMra2teDwefvZnf7YiceZvfvObHD9+HJfLxfHjx\/nWt75V8T0Vw7YTT\/YQafbOb25ujhdffJHa2lrOnDlTkXREIXXqbFz7uykkKhKBuLQxeRtYyyOL6wtFf5\/uHkRnPfmoKQ8iXV0ayWw5gDFV\/FoAWjhC0ty7dm\/1LaRLRC0FrxGoIzEcqjhVJqVkZU7FEFWqfiNY2rUbZTKKopf+uu7x6ejCJFvgYCEJ\/WGF\/rBGSHdSo3nY5\/HQ7nbhztt1qkJwyuGi0RVjl6MGQ7qYECmiqoaUkHztBn\/184+jJ29arm8VrNmYgwcP4na7OX78OLt3787UMJ9\/\/nmuXr3K9PQ0qQ3aVVSCrSKefFi1scOtQd7pH6ChyYHq8aD3TxC5PI0Yqu75jdYfYeT7hQdEQz0L6O0HNnSffxtqwazE6K0CiepCXW3WMG9HRweNjY3s2bOHzs5OhBD85V\/+JVevXuWBBx7g05\/+NM899xzpMmuH5T766quv8uqrr\/L2t7+d973vfRly+dKXvsQf\/MEf8Id\/+IdcvHiRlpYWHnnkEVat+lkBXLhwgQ9\/+MP8wi\/8Al1dXfzCL\/wCH\/rQh3j55Y17GcEOIB4LmqZhGEYmtdbd3c2JEyc4fvx4RekA0zDLyo\/rcYNE3IdMeREz1c3c5Fwr0Ia6WqKBwDCITedWcczgHhisblZIOl0krhX+Qq27p4FREjXHSE3F1g1slryGopLUa5CxyjuA0rv3kxqZITYehva9lV3H4SBU14Q2WvnAbJPbICVNBsMaU3EHLsVBq0el1SNwVWg7cdwfpNUTJWauEky7MZMmEamyaGqkZ8P85c\/9CcnwxlwoNwsul4vW1lZOnTrFgw8+yKlTp\/B4PExMTPD8889z8eJFhoaGWF5ezmh6bQa2i3gAHMMvEBz6G9z1HmRtPen+VaI\/XIB4kFhtJ9GaZtJFTACzkWg8yOB3FilVg5m6GoMqNc+izXv5n99fQFbw8VQmFFq+q83hcNDW1sbXvvY1fuM3foMHHniAX\/u1X2N4eJhHH32UsbHS7eH\/8B\/+Q\/7BP\/gHHD58mMOHD\/P5z38ev9\/PSy+9hJSSxx57jN\/+7d\/mAx\/4ACdPnuSJJ54gFovxF3\/xF0XP+dhjj\/HII4\/wqU99iqNHj\/KpT32Kd7zjHTz22GNl33Mp7Kjmgmg0yiuvvIJhGJw9e7aqHGepVupszA4ZtK1cviXGTc2VX9j1q0Os1jURcCeQqhP9+mTVump6XSfm9cpVA2ILAocI4iyTk85GuvkIxpXKCdHsPEi8Zy29JpMpYsMhfPs7kKPFU25GIMBKWsM5VVqSJB+TUQcuRdDh15kx3VBAnbsS7HJ6CGoGr4VnqVObEabEiURPgqHD5f\/nIv5\/H9xUa99KkR9pbeUA67YQTzKK+9KTqI4oZk0tKU8N5t+NkvzxNUBgzN18RhJIEvW1yCY\/psNAMWL4khHUNzQEE3Xt9H93hZKFfyC9kiJ8oJ2aWF9l9ygEf\/yKE0iSrKD+lkhUIBRa5QBpNBqlvr6eX\/zFX+QXf\/EXqxZTzXcfHR4eZmZmhne9612ZY1wuFz\/zMz\/Diy++yK\/8yq8UPM+FCxf45Cc\/mfOzd7\/73W9+4rEKaolEgrm5Odra2jh27FjVg3jlGgssXHlqmM5TlQ1eFoJ0+Ui+PFL2OCElcs4H7QkMVzNiuae66\/hqSHRVMQBXX8dK1ySK103j3nq0SKjsS\/TWg6QKqVQXQTpQQ3wwN+0nUzqRwXl8R\/bDjfUpkmRjI\/GFBI4qJX5urLhocEnesNxhr5JgKCKocyg4NlAQn08l8CoGSc8ys6EUra5GNEVBNQz8wKu\/9TTR\/2OVs\/\/8TNlzbTZKLf63c4C1Gp20zYA28hrO4R8h6vyY7lpMXKz86Ws4x5cpTB4CQquI0GrGUyeqCGRTA+FggNAPY5UVWID51+fwnelAnShfkxzfdZhXvrM2lxOtYF2JRcsLhVYS8ZQygauUdIq5j7744osANDc35xzf3NzMaIlN48zMTMHXWKrWG8W2E4+UkoGBASYnJ\/F6vZw8eXJD56mUeEbGBcY9ftTUevmLSqA7msGorCvN6B8muf8koutq1dFO2tUCicpJIeXfBfoEZjjG0kojDa4oil78MzFrGkgMVi67YwqFqOFDxJfX\/1I3iF6bxnf8IAzdjNBWW3Yjx5ZRjcrTQ4YJs2aAXe71937AL5lLGMTTUOMo\/UVcSKWYSaVQVI064aBOC1L3xtPeFFS5sjJHUqp01LagJQw0RXL9v73I6AsjfPCPH8Xh2pqvRjW1pWoHWMvVRbcs4tHTuF98AoUwBP2YQsWQbla\/9grOCr+3FoQpSTkbeP37afad7kD2jVT6SqYHDfYEXZAsoULg9vD7377Zkbq8FC9LKtFwqqxQaLqMpE6hduqNDI8Wcx+1kP\/3ruQZ2MhrymHbazyXL19mZmaGgwcP3tKwVKXE4w0EmdLbNnydRImmgkJYHtGqdjmUtU0kL1deYBVNjax236xZpScWWHEdolhTmNQcJJM+iFdu47C6aw9idrn4AaZJtHcCDh5CCoWlpt0wHEJUQTopQzAfd1NTQo1hlxvqXQaz8dzPNKwbXI+mGDJgPG7gUbzsc9fS4fBTk1crqFXdPFjfQKMzTSKaICYEK4YgKQWpa1M88d7\/l6neW9vRVYONfomtIv2xY8c4d+4c9957L3V1dSwsLPDyyy9z4cIF+vv7WVhYKNiyvRXEo0z34X36P6IYy+BQwe8lnfAR+fLziCpJB2B171Ge+2ESU5eMXllCra9cUia5ECdSv7\/kMa9o+5heuJm2X1woXnjP3NNK+e+Rnqg+1baRdmrLffTee+\/l937v97jzzjv58pe\/nEkj50cqc3Nz6yKabLS0tFT9mkqw7cRz4MABzp49SyAQuCX760ImcIVgmPDCqxv7spmBZoyRyor9AGgaUy\/OEnIfL39sFpIpP0VZowASzvp1x8d7x5l2dRQ8PtVwEGOq8nSjbN+HHKogOjIlkZ5xppr2oI2VT\/VlI5JSCSed+LXyROVR4WCNyXBUpz8pGY1JhHTS5vLSIjXqHZUpKN8ZaKLFHSMhl3AC0oQVXZBMSZ7651\/n+T+5UNV72Ag2q5vOGmBtb2\/nrrvu4uGHH+bQoUMIIRgYGOC5557j0qVLjI6OEolE1g1vbjoMHeez\/wPPK38BLgEeF+xpJjqhEn16GjaQLl3YfYKXfxjFSsvpCZ1ITXUOmrMXZ0nvKlzL0+sb+fI3czeW6aSBr7Z0HU1PSxze0h2e5SKefFuEWCy2KXI5lvvovn37aGlp4Qc\/+EHmd6lUimeeeYZz54qblZ09ezbnNQBPP\/10yddUgm1PtQWDwQzb3wrxVNpckNRNLj69wofO+FBSxaU3Cl4j7qnqeLOtHWNkhenLcWqOu9DM8uSYrG0hfbny2o5oaSZypUiH3sAyq6f3E1i6GT3prYeqareWgRoiY2FEhevjcks96vUlxB2HMK8PlXWGBAglHAgpcKuVL8I3VgV7vSpxRSUUTVc1bJqNRqeXeoekNz2HSDfgRIW0jgQu\/pcL3Lgwyof+8P24fZtrB5CN27H4VzLA6na7MU2TdDq9IR+sYlD6X8PV9bcoLhNZX4fh8qHuCbL0wjKhJ0cAEO4Azo5aTDNKTSRcMv2FqjIRPEbfM+ubU6avzHHkdBvpwUq7VAXjI5JOv4KS1yH4lxONpPX1GyZvnYfocumoxuFzlSSXciKhuq7fcsRTyn1UCMEnPvEJvvCFL3Do0CEOHTrEF77wBbxeLx\/5yEcy58h3H\/34xz\/Oww8\/zBe\/+EXe97738dRTT\/H3f\/\/3PP989d5l2dh24rGwEVuEbKRKyOVkIxHXMXSYMdtopXI5DaloJC9XNywZTbiBFfRQhDnzOK1cKn0NIDlnVFUPihMAWbheJYDV3hXcx1pxLE9h1jYR75+u+PwSQcLdiDlV2dBrrDaAOrFG5qvdo3iPdKy1rSeKf+mWlBo0ElVtgPvCCns8CkIInJj4vQrXozFanG40UdmJ0tJkLL5MxNDxq272u+pYlVHGDB2n2oiaMPBqgnjvNH\/63v\/KfR9\/mPs+eEflN1khtmp+qJAD68jICNFolOeff74iXbWyiK7i+u7\/i2osIfwuTG8thuFCa60h3BPLkA6ATKRJ9q9F0YuaE++BNpx+BXV+BiJZz7PLxYA4yOhLxToiBROTKVqcGrJSr6mQTvTgQQJTN7\/\/k4FG\/vq7haN0l7+8EaBWwuQNyne15Uc8GzGBK+U+CvAbv\/EbxONxfvVXf5WlpSUeeOABnn766RwF7Hz30XPnzvGNb3yD3\/md3+HTn\/40Bw4c4Mknn+SBBx6o6t7yse3Ekz1AeksRT4Wptujq2iL40mWND1TRx2AE2pDhKoQ9HQ4Wr918kBdemab+oV24k8VTdauBFkRP5QV\/0dZGtKcMKaR0QhNeGprriC4J1FTlA6zG\/qOkukYqO9ahgXRDVn0m1j+Ja28jTtcqciU3Vy4VBXFwP46esXLdsBnoUjC0qrDXu35Y9JjfyWwyxXJa0OhcH50YUjKdjLCsp3AqDlqcAdrcuTKSQYeXUw6YTS8RddewHJE4vSpaLMVrX\/ohXU9e4sN\/\/CiBxs2VMtnqlmZrgDUSieBwODIOpJaumuXA2tDQQH19fUUOrNqLf4vjyrNQ5wO3A93hwxQaamc9kWGd+f9WYpOnm8T6Z1nre5S497XjbnAj4qtcnQgyO1Ra8iY6H0Pe2w59lUfyc68u4j\/djJibRSqC\/3bRBxSeZRPO8psZ1V16KS3V1Sal3JTmglLuo7D2nH3mM5\/hM5\/5TNFj8t1HAR599FEeffTRqu6lHLadeCyoqoppmlX3q1tIrFY2ABleWVsYf\/C9Zd5\/lweRrux1qanqJsjN1r0Ywzd3aVI3mJrdzf7awsQjVQ1jNFLVHySWrGyGw1gMM1zbRtPKSMXnlm17ifZU0c7d0YF+db0EUXJ8AaM+gLelCXNmjVR1p4Zs2k2yivNHdUFEuNnjLb6rbXZpGE7J9WiM3U43S+k083oKgWCX00ujM0hjBS7WzQ4fYLDcqDKzpGMIhUjSxDG2xH97759w9KN38O5\/9bZN0TnbCerU+bpqlvnb+Pg4vb29JR1YxfQozqefQIkvQcADGqS9daguE7G7gURIMPuVq+sEbotDkBheJCb3cnGkAV+Fyg3Dl+Y4tK8Ofaa0PUEGJswt+tglBFe9e7kyVHwdCC0vlz9fGaHQUmk4q952O2o8OxU7hnisjrZ8X4pKEI1GGR+qYBETb1jVAqmkZE7soZnymmbSEyB5YaSqFFjkjTRbNlZ7p1l5x2GC8fW7v7C3GS1cRSfV3nZiXZUdr3tdxPpWWDxwhF3LfYgy0+\/S6yU6m6zYTkEc2kf0SnHdOz20SiTuJLBvLzISJRpOo96ovLkhlFTQpYpfK59KUYVgl1Nh2WEQTujscwcrvk4+ag0DTxAmwhLcGkKXSOD1P7tE13eucfaTpzlwZ2fGe2ej2Enq1OUGWKWU1NXV0eR1s\/vC3+EOD65N9zfVomsuDM2Jy2+Sqm8Fh4\/p\/3SxCtIBHBqLbQd46fkQIPDd2QLh8v5O0pAsK378VEg8QGR0BXl6H1\/9m9KbT83holg0lLl+mTXLSOqYhomirj\/OyvRsRlfbmwXbTjzZqTa4KR1RKWZnZ+np6UEzy78Vp9+FGbpZJHy5x8E\/OlL+GisJL6KananTSehq4VmfqSsm\/oMaqry5iKY1J1yvTrE6Gq6cnNNNTbAQItI3g+POk9RPl7bbTgbbMK5XZuYm6oOs3ijfYm7GU0RCKZTdu1EnKhcwnYppeDWBr8K5yPF4Go+q0WKqtPg8DMaXceKizlEZMejSZDweImqk8asedrtrafeBgc6y18X4QhKPx4FjOc1r\/89Feo4NcOjDbQQba3K8d26X6vNmohJ16nUDrEshtKe+TmD6Os46BUNREY0BYnENz14XTjdElCaE00v3v+pCcXqoPbQXp57AGC1uFwIgmht4fbGGqeeXsPKvo13THD7VTGSg\/EZl7nqI2nva0fsrjKQVwV\/dgNBK6RR\/PFG+BBAr1RzxBvSEjtO3PuS2iMf6W1jeTm8199Fs7JhvhxBinVBoKZimSX9\/Pz09PZw8eRK3Wr7ryBXITU09\/d0wsgI9qHR\/lTYGre0YicLvIzW7woKaW1yKOnehJKsQD+3cR2K4slqQ6XMTHboZeS11TbCyt3iR3DhwlGSFpCMVhaSrBjNW\/ksnFYWU00Po1RHCu+rAXX5zMRJxEHAIysyKZnA9mqJWc+LP2jke9PjZ7VIZS4ZImIX\/JjPJMFcjswxEF0kYJnvcTRzxtdLmrkN5YwFUgQYjyR114DfT6A6VlaRJ+OoyPf++l6G\/niGVSHPt2jWeffZZurq6mJiYIB4vs1PeRr20qq4tJeIH36b+j3+XmsVRnHUKuuJG1voJz4Cv04vDI1gVjait9fR8shtMiZnQCfXMMHNtmRVPExw5gNJUt+708YMH+X63g6mR\/E5TwcxcAsVZ2c5jbDCK4q2sA\/Hanmb+6sIQilL6M1gOle9+jZdooLGgF+lss+o72X8LO+LZQlTaYJBIJOjq6iKdTmc03SrpasvvPInHDBbVPTTqxRUCos46HAvVWRlEoqUX1blX5qi5N4DHXEX31aD2VzEbJASRhcqbMFKNTcj5XOJceG0C7b4T+EZzJdFl824iVyq3rRZHDpK4PFLRsY7j+1i6tLYTFZMRErtq8NaCObOe1A0TlhUvTe7KyfhaJMU+T+Gal0NROOGrYVVPM68lcSRU5lIxTAmNDh8NjiANjspScgrQ5gUpkyzVO5he0UmlVIZ\/PMqN58Y490v3cf9H7iEUCjE3N8fAwAAejydTqK+tra1aDup2oVLika9cQP3hU6jJMKbbjcufJi5qMFWBWNXxH6pHdQoiogHn\/mYuf+wiUl+fIUgtRplfjAISX8ceHD4TlsOMq7u59pPiOn7h2Si77m0lViKdayGxkiB9dxvq9dKNBuEDrXzxby4DUNvsJTRdnFxC8xF8Hh+yxGydw+nFpHQTRCqWppCWRKHygl3juc2oxAwuG6FQiK6uLhoaGrjnnnsytaFK5nhEARmUV6+5eE+JYWY1XUOaKojH5WKxt\/TwpJlIMzDZyB27VzHVJtBHKj9\/536Sr1VW2zH9HlYHC+e8Z16bofWuI3jG1zr1pMtNLMyaF3UFEO1trHRX1l6udbSw1JW7aKTnwiw7FJSWIP6Zm4tOyhCspB14tcpIJ2VIJmKCfd7yjRYBzcGSSIFMoyBpd9ehiupIYC4ZJiyTNHmb8abTHKkRrKR1FpKQwsmFP77AS\/\/zdX72V89x7sN3ZZxIFxcX6evry8jaWGm5ndBcUOx35g+fgRf\/HpcRAgFJXy3+QIzQqgfpkNTvShMPNOOqlcRcTbiO7aHn\/3wZM1HuPQlikyuE23ZxddaJY6W8fNXQpRn2d9YSn1wue+zopRmOHG0iPV44KyDbGvjN7920RfHWOUsSj2lKAg1ewvPFj6lEKPSVF16mNbwnI\/JqCbzmd7Sl02mSyaRNPFuFUhGPlJKRkREGBwc5cuQIe\/fuzfnSVKRcUKDz5PvfCfPuTzoQxvqFTqoOEq9VN7tj7N6LOVS+wCmHI4RP3Il4vQpfIEVhdapymZt4XR3MLRf+pSmZ7g7Rdnwfrulh0rs60HsrzI173URDiYrUFYTHSXQlXfBYkTaR4zEWHF7qzBgJUyFpaHi1yhbjiC5ZSiq0esvv2g1T0h+PcMgTBBe0uHyE0nHGEzHaXA04ihBQzEgxmVxCdTrwGQ4anDXUr51wzTIVCDoEQQcYMkXY52BiMcrf\/Ycf89zXLnD8fz\/GP\/jEwzQ1NWVy94uLi5loSErJ6Ogozc3NWx4NFSIeU9cxvvW38NIFVI\/EpUUxEUQVD\/WBGPPLXrx1An+tzmIsSOMBSby2BdfRvYz8+QTphAMovQkMNwfpHhWsXFgjnEP37mb5Sun6jzQkqzgrW7CkYC7moE4R6547EfTy7y9PEU\/e3OCq7vK5XE+tuyTxVCIUur99H6rPmePCWl9fj6ZpORFP5I05JrvGs0UoVuNJp9NcvnyZ0dFR7rvvPtrb29d9YSqZ4yk0mrkaNlhy7Cl8vL8NYpUv9ACRSOWNEWMTAQy1ionxfQdITS9XdKhSFyA2VDx9ASDTBlPX4yQO30m8UtIBjJZW9MXyGlawFhml5kunIFzpNNMJF5G0A1eF6gULCUlMV2hylyedhGkwlIitkU4W6h0eTvkb0ESSWbFMwkhhSJPJxDIDiXlGEyFUobHP00y7Wk+Ds\/RCoApB0EhzoMFBk6rjicXo\/+vLfPbMV\/gfv\/kdoitx\/H4\/HR0d3H333Tz00EPATXv35557ruLa0GYgW53aiEZJ\/dn\/xPi\/fhPxkx9iONZIR5cqCZeH2sY088teGvZK\/LUmS6se6o86SbfswXWig8lvj3L18VFm59PIfXtwHW6DvA4utaOZa\/42nrtkshK6ucEceHUKV2v5esbcUIjAycLf1Xwsja6gHunM\/aGm8j8iBjdmcr8XKaN8tsRZRhLHmg8sBZfqKujCOjExQSwW4\/Lly\/z5n\/85Fy9eBKiqxvN7v\/d73HfffQQCAXbt2sXP\/dzP0d+fO3cohCj47\/d\/\/\/eLnvfxxx8v+JpEorp1MR87KuKxzOCysbq6yqVLl\/B6vZw7d67oMFs522sAvYhT4Cu9joLptmQpy+lCcLsI9VbWiCA0lZFLcxh3nGb\/4sXyL9A0VkYqW+wBzOYWmCwvIyINyUBfiraWFtQKpM7FkQNEuyuzDHcc7STUU0ErrKaiaS6MRIrFpEKdQy+pZDBnaLgUA5dannSimCym0uxzFyeNGs1FDS66YjOYUuBTfexzNpU9t4XldIRV0tT5mnDEdTyYtHmtyMXE0GDxR7187Yd9BI+08LMff4jD93egaRpCCA4cOIDb7V4XDd3u2pCUEnVgnOWv\/x3e2QFUqaObkHQ5aHBHSaRVzBonQhUsJevZtW9tsYnGHQQO+THb2lD3txG9vsjlxyast8ti31rN0hn0U3+kDpFIMRx30XVhgWL2ByurEo9DQaZLt\/AP9y7SWusltVzeZmPk6hKddT6MlbVI5ZXGen7wg\/VWzyuR8qk+tNLP2upyAspkxrJneSyB1127djE5Ocn09DQNDQ18+9vf5plnnsHtdvOxj32M97znPbzzne+koaG0Jt0zzzzDr\/3ar3Hfffeh6zq\/\/du\/zbve9S56e3szBDY9nVsy+N73vscv\/\/Iv88EPfrDkuWtqataR2K34QMEOIJ7syCU\/1TY5OUlvby\/79u3jwIEDRfPR6XgKWYH9bDJVOI33ve+u8u5\/pSKyjMakt5b0hSoGKAGjpR1zsDJxTMe+3aQvLXHj5Vka7++kJjRS8njZcQD9YmWFf6WuhrmeyupAysG9xC5NMBJw07GnBW26+OtSQR\/J\/grP2xBkpYI2awDnoT3EeiZRAKcC8UANWiyGS66PfidiCvUuE6UC0plNpnE7nex2lrYHMKSkL7bICf9N8ciJRIgoJnUigCevYzJtGkwlQsSMFM3+Ouq0AEGApJFJv2VDBXa5VQKGSfj6JC\/8X9\/kOVXBu7sWdZ9G9GAEz14Pfr8\/ExHpul6yNrTRuaH4XJi5v3sNcamX4PwkqlPic62iiLX6mvQpNASSRFMaosZBPCzweA1qO9ZIRzdUlLZ61I5G5N5WjHCc5z5ZwGBNEdBcz2uTkpGJNH5Fp5RExep8nN33t7LUXXqzlIqlMQ\/uggqIJx1LEz\/YhHMlyvyBVv74jWaCfEzPhgiyvtMuG3qZmTY9LdE8zpLSOMW62kzTxOl0snfvXv7qr\/6KF198kY9+9KM0NjbyhS98gY985CN897vf5T3veU\/Rc3\/\/+9\/P+e8\/+7M\/Y9euXbz22ms8\/PDDAOuMDp966ine9ra3sX9\/acVuIcSmmyRuO\/HATTM4K9VmGAZ9fX3MzMxw+vRpmppK7z6TFeq0xWKFGxciKxD27CUYG8n8LE09yOqk8VdXK\/844+KNxcyU9I75uS\/oQC1QZwLA6SRcIaEBmLuakRVEOzg0lkbW6lHp1QTDY052NdQQDK9PjUlVJWY4UZLlW0ulUNC9AYyZ8rMXRmst0Z7cezWXY+guDc\/BZvTrkyhiraQyHVdpdFeWihuJpWh0OnGV8S5OmQbDiTBHvLnyOXveGDzVMRmMTKGbgrgp8Thc7NKCtHt2lb0HU0oSmspqLI1bgaBTwaupgLn2hiYWYAKefe4JpFNDrQ8Q2FNHYE8Q764aajrqaTu4m8OHDxOLxSqKhqSUJBaihIcXiEyESMytoE+EiA1N40qsEBQR6twpVAVWTJVd7rUFPIGGs1HBqyUIJ52kVAcBI0V90CRZU4PmMJESVhx1NBxvIeUMoAl47XeH0CM3F2VHnY9EcwOvX1lh8ZmbG4+Gk80kytgHXH9lkkMnG1keLL1hGeueZd+xepLD5b8TE91zND+wn9\/+y1eKHhOPJWhv9LGyUPzZjpexNQBwBlwliScdL7z+5DcX6LqO3+\/nS1\/6Er\/\/+7\/P9PR01fWelZW1dGJ9fX3B38\/OzvLd736XJ554ouy5IpEIHR0dGIbB6dOn+dznPsddd91V1f3kY0cQjwVN00gkErz88ssIITh37lxFO7tqddoKoWvIx8O71\/6\/RJC4Ul0LNR4Pod7KdvhCU5m+fvNLE5laYaT9NAdChVNu5t591UU7Fd67eqid1KWb5zWiKWalE1\/HbrS8sDzdsQflWmXndRzfx1IFCtvC7yaxWPhvZyZ1Vnpn8R\/YjaYnUF1uGgcrUzu4Hk3S7najlmkVDutJQukkBzzFd7saCgHVhdflwqlojMeXibpipGIqNY71uZWVdJT59DIul5NGEcBnuvAVKV4bElalSSJlEtBNguklYrNLxF67eYxEkjIVhFPF5VTQnCqmbhIxTOZME0MVKEjcQqKZEpnWMU2JKiROYaBpJm5Vpzlg0OBbW\/illKxKlba6NdJZ1TV89QZeLcVCzI0j6KTZvZZ+WjCDNNetEcu8Xs+un91LKq3g2F1Hzx9dZ+DFME3HWhFOB5NLOq+\/Po9ZwMto5Mosxx\/Yw\/SlUhsiwfxCAo9bQy8yB2cdNzUVp8GhQJnUHIca+K8jE6TK+ELVNZcmntXV8jUNzVO6vaCYQnUxLx4rw7N79+6y186GlJJ\/\/a\/\/NQ8++GBRY80nnniCQCDABz7wgZLnOnr0KI8\/\/jinTp0iHA7z5S9\/mfPnz9PV1cWhQ4equq9s7CjiSSaTzM\/PZ+yvK53+rpR4wiV2XP\/rO6s89DEFIU3MYCvmTOXunwBG817kQGX1HUdnC6nLyzk\/G35llrp79lC\/kkcwbjfhvsrN5yqOdjSN5bHldT82Y2lGxhU697aiTa91Gin720n0VUg67c0sVVDXAYj53TBROr8eGZrHdbQVp1NDlFEgNkwYiifZV8FmZT699izscdeUPG4otsgeb92aXQJwxL8W6ZgeyVRygVAqjpQK7hovImrQ4qqntkRqL6qbpDUVDJOgAo2qAp7c5zwpJUspHb\/HSY0CftNcky9KgBGXpAxwezRc0kBJmaRNiSFBKgZuzcQTgICq4yVN2gShmtQ50m98RpKU18lu19rnvpx2UN+URgiTiQUvrXuTOLS1BXI+VUPL\/rUFO6QHaXpXJ1LV0BqCLFyco++Sm4XmZp59dhHdlHQcaiipstT\/2iSd++sIjRTv+lyeidJ0XyvLPaWf4eRKGvfdrSR6iz9rkSO1fOb736GjvXxDgqOMNEZoIUqwjGiWUsa1Vi+i17ZZJnAWfv3Xf53u7u6S1gV\/+qd\/ykc\/+tGytZozZ85w5sxNO\/jz589z991389WvfpWvfOUrG77HHUM8AwMDzM3NEQwGOXHiRFWvrciLR4HVUHHimZ9NE\/HsIRAbI7VcfRE3vFL59HlC8wDLuT80JdfGA9wfVHFk1ZqMtk6Mi5UV85X6YOXRzuG9JIvsPvVIkpEx6OxoxREJszoVrkhvS7gdRFZ1ZAWuo8m2WszR8kVd2VnHyhs7aK3WTU1HgPTA+vcoHSoxh5t9FTRqjiYi1GluvGrpx\/9aZI5DvibUAudUhGCPu45IOs4hfyMKgiVPnKn4BCnTxClcNHkaUE2FycQ8STNFa6CRWocXkDnFaiklcU1lJZrEqwrqnQp+jwaYSMMklDZx+Fy4DQM\/Eq8GpkNiJE2QOjU+BZcqcSg6QeXmJixhgttjElDWFry0AbpT0PQG6SyknTQ3J1mOB1CTcRpb0jjeaGUPJ53U7137\/1FHgLq3H0I4NFIJSK\/o\/MY\/GSLfWHd+Noqv3kM0VLgpx9AlS5E0Do9WNO0EMHBxksMnm1gqY80+fHmGAwfqiY3npdwEXK6L8+ffewGAkbEJmj0dJEp44hii9PzgylKMhmANepE6MYBwlBEKLZKuMwwDl+tmHXGjttcA\/\/Jf\/ku+\/e1v8+yzz7JnT2HCfe655+jv7+fJJ5+s+vyKonDfffcxMFC57FXB89zSqzcBUkpef\/11pqen6ezszPkDVIpKIh7Fo5VdPK+MBpAOF8lLI1VdX3o8LF6tMCpRFGYHlwv+Kj4ToUfJKvT5vCxX2CQAYDbtKtsVBICmsjRa+B4s6NEkIyNpoq2dGCvlC7kAsr2N1Fzp1mkAvcaFMVM+deFqCaJP3kx\/6MsJQtfmiTYEkE03v5havQ9HUy3uSPkuxOuxMM1Ob0nSMaWkNzrHUX8zagl\/n6HUPMcCu9EUFUUoNKg+jvlbubNmD8cCTUTSiwgtSr1TIehQWI7Ns6CFGI6PE9ZSrAiTBWmynNYxk0kaAw40RbKS1plPplh1KSymUgh0ZCyKqpks6klqtBhtYpW97jit3jQekcblSOeSjlD5\/7P331GSndW5P\/45lXPOnadz92SNspBkDBICSQSTjC8CG4yxhY2wcQCMfwKZ5IAIDte+Xy4yYBAgEAgLoTwjjTQzmumJ3TOdc05VHSvX+f3RU9VdXSf0CIXmwl5r1pqu99TJ9e537\/3s57Ea0gWnk8gJCHbw29a2mU4b0RpEFud0uMVFsnY9VvPapJrJCWiCdgwGSNsdmF\/TtOZ0VtJoPHY+847OEqcDsDS3it5pQquTv2fz40u46nyy42smMDWTQKciNSDmIJbWFAE6NCY9R3xJvnXi5Pp2oojTpzyvLK6o1y7tPmWQihpRqBxD9eaIZ3V19ZIjHlEU+chHPsKPf\/xjnnrqKWpqamS3\/cY3vsFll13Gnj17LukY+eOcPn36ktN\/m+1VdzyCIFBVVcU111yD1Wp9UWJwWwEXCFtoEvv5z1fImMsUhcukbN7oQNgakTOG6hDxmAIFe2eCRW81AHF3GLZQ1IS1aGd2i9FOrjpMagv8U\/qQi\/MvTJOprVY\/fl05Sx3qKb6cICBYHYhJlees0ZDVG8hKbJebirM8mSBZ4SEdtJBIZImPqjft9mdW2WF2KIrFpXJZJjUJmq3ymvKZXJbO5QnqDPITaPfyOJUmNz6tlUqzlyZbmF2Ocmpw0mILsroyTo0+S4MxS60NKi0QFNKEzCI2g0iLA3aQoNmhocGuocYK6UScnfYc1g3R0nw6h0aTwi6u\/wbG4yIW7SoW\/dpLGcto0FgzuPRr2\/QmzWiMIn5jEqc5TfeqkZB3fSEwrvfhtKXA70Z7RROaiyt5wWbhf3+8B4NLumANMNo1R3inMgKqu22C8G7liWthahlbvfwzyNvsYAxbSxkAereZH+bG+OGxEyXbeYPKlEhT0+ppcpND2XmpAWvlgAdSInCX6njuvPNOvvOd7\/Dd734Xu93O5OQkk5OTJf1gi4uL\/PCHP+SDH\/yg5H7uuOMOPvGJTxT+\/sxnPsOjjz5Kf38\/p0+f5gMf+ACnT5\/mwx\/+8CWd32Z71R0PgM\/nQ6fTvWgxuC3VeLbANDk+kmSu59IdXza19ZckaVCpP4jQMWQjabOzfH7r0gHZLUY7okbD\/PDWqONTgp5sMkPvmTlWauVXUDitxLYInTY2V5IYUT++bWcFy0MKk4EI4lyadMKIEPGATWFS0GmwNkeo1CqvWJcySaZSq4RF+e1WsylGEvM02+Qn1+74BE22MAZN6Yp9JZNgOhujxV5WMpYQRJJZkcimS8kiMpvJ0bgJ2DSdyOI2ZnDp1p\/7yGqOGmcK68V+x5mcFoc9iceQYSCq5+S0nibnCiFD4uI+tNRXrr\/znTELNeEERPyIexvQXIxe4otpjvw8ysGHFui\/ME2wVt75dL4wSuW+iOw4QG\/HNEa38kTec3wMd716P9VA+yzGBj9fHT\/Hc53SKaB0VnmOmJmJYTQrR1hqEVhahclDTgxOSvb6UlNt\/\/7v\/87CwgI33ngj4XC48G9zOu3+++9HFEV+93d\/V3I\/w8PDRf0+sViMD33oQzQ3N3PTTTcxNjbGM888wxVXXHFJ57fZtkWNZ6M0wouJeLbSPCoqhP8b7ciUjd+6hGNnTSaWVBQSCyYITG0Qh5OzlfEFTrkrqM9sja5H43UyraZEetFWQy4YUK+tmKr8THWupfnEnMjwqRnsdUHKpqcRNuQsRQQWtXo0yS10f1cFVKlRAMzVfubOqgMUjBE30fMTJGaW0ei1eFoqyUzNk53bcH1mHVqvjYXzysedy8QRRWWwwZKYZDkdZ4dFOtLJiTm6VibZZZeedOdSS2RJUWUqRdHNpBYx6wV8huJFTCKbYyWboWYTLdBYIkuNI4dhw8eD8RytnnQh8zS8CtXeOONxI7NLGiDN\/vL130o6B\/qAAZNh7bOpFR01dVqoDkNjVaGUnktnmZ3X8LVPrEW0qUSGmZllXCEbsUnpd6nr5DhVdR6m+6Qhz6l4hqRHj6AVFHrwBKam4lgUUG4avZblGi3fjnXROyG\/UBsZHwcU2AcEsPuNJIfl5x9RpXcslVLp9VHo4\/ll1Ue3yvn3oQ99iA996EOy45sVSO+9917uvffeSzqXrdi2iHjyJsVcsBXbSsST2wILr6AR+L8PTSA6ti4elvCE1GPsi2aoCrI6twU2BAEmRjTMV2wNrpj1BhAz6tFOThDILW8NBJHWl0JDl3pXWKipL+K8Wy3zoJlST9tpzAZWF9OKDL+wlqOPL6tv59xZTvT8urPNpbPMnh1jYTaBsbkCY8SNIWBHsBhJjsSUTy5gwe9y49XLRzoTiQVymSwRGWG5ZC7NwOq0rNOZyixi0EKZhNMZWp3BodPi0xU7naVsEo1JpHKT0xmOZ6i1ZzEI6\/doYDXLrg1Op3dFJC2IzCzqKddl8RnSuL05Nq6\/elNGQhdrPqkMZF0WLHsqobGq6HixuQyf+l\/FbM9L83FSgohZJv2UTeeYnVnF6paP8KNjcTzNyhHNwvSKbMrN3Oji+6nj\/MOj32NiVpnhfXJyBodLOeJ1B5QRjnGVxVVCEQJ+aTUei0X5XH\/VbVs5nhebatsKQehW4ii710IinuW8DHeblC3Nbx3NljJvLSVnrfKxNL1C27k4SZcyVYbW62Rui7UdQ1MVyRl12h1TpY\/5C9Kghokz40x5K8kYdKS8dkQVOHTedNXhrR27LkxCBaBgCjiI9shIiGdFZs+Ns7iUIetxofc5SzjDiqzCDtEUWYV3aDgVxaU345IRk1vJJZlNLdIok37rX53CrdXj0Zc+\/6HUDFUWB85N+55MRBHEFdxi8YJiLJOjxbXuQLKiyIxWw27v2hs+Fxc4OSdQbtfQaBcJmtec02hGLJKZ6F\/Rsbtm\/e8xo4+K394B1cWOM76Y4v5vpFldLl3YzIwsYvab0clo5SzOrqJ3mQvpOinrPTlFoEnZ+WxOuZmDVs6FZvnk4\/+XzpHBtW16+rBalaHB4Ur59CCAqFNevM3PK2cr4gry1qCMatvYOvJiUm2\/arYtHE8+1bYVWQQp24oWT0ZCH2SzWVxrL+7\/fXwJdOpZyIzJxEr\/FtNswPTQFrnW7GurndRyilMrPrIK55LZYrQjajTEJrbmJDIq2P75nhmG9V5Em3tLxzY1VRBV6csAsDZHmFdLsWkEBKuJrEKHOIAx6GD23DhT7VMkzRYsu6owhlzFu6p2Io4uI6blFzvO1gjVZg8WGTLXmdQSyUyKKrP0AqFzeYwdFg9WCaHCC8sj1JncmDbte5plfEYdwQ38clkxS8fyEI3W9d9HKicync4Q1sTpXjHRvWBmKaljjy+LTbN+TYNx2BlaX62vihoC4XUw2IWoiap9LigrdQAPfGOGRx8YoXq3tFMd6ZrDWib\/vox2zRLZpQw2GBtZwuxSeucEJqfiGF1mVpv13HPmB\/zkhWeKtshms9TUldbNNppeBWC0mlTORuSyynDp5QXleUipj0e34Tf+\/7r6KGwTx5M3rVZLLpe7JI2SdDrNnISYWMl2W\/BnBttaeml4IsFsQKGYftFWHH7YIppNXxFgeVo9JQUwNbLuzOYGovQFpPuatD4Xc+fUayYA+oZKElPqTtJY5mHuvHoEZfR56OxLIFYrF5F1HhsLg+rUJjqXhUW1lBjg3FXBYp9yf4d7VznRDRFbKhZn6tQos6NLUO4nXe5AV+8jO6jcn2RtDrDYMSbblxTTJbHp9ASM0pNE58o4rfYQek3phHV+eZh9zrISuHb38jhhQYNTvz4RJ7JpxolypXcdCbaQSjCgWWCFJImUkTKNSEifxerIYdxwuNWcQLk\/U0QhNyHq8NrWrmlqVUdljY4FbWkKcbJ3ie9\/M0Y2m6O3Y4LKVmmaoPGeRYIt8uwPncdGqdwrj2JbjsbRB+QnWovPwlIgwSFnP\/\/86PeJp6QneJ1eOfuwHFde+M3MKYNeZqeVF24LUeUWATlwweaI58XAqX\/VbFs5nrzX32q6bWlpieeff56MQjNa3pIJdQ8hbEgJPHBW\/dasRLd++zJ25fxxwbxGFjcVbHtemGC2sql0n27flshRRUHDwhbqMAA5m1W130nQaoiOLpBcTNDVESPZVCv5FRHIOZ1ktpAK1QZcpBeVf7iWSg9zKpGTKWhnvlu+yLw0OI\/WaCHatYi2KoR1VxXGSPGkKWgFzHVeVi\/I78fZGCags2LXlq7Us2KOC8tj7LKH0GyqLWZyWcaIst9Zms49vzTMLqe3KAJaSieYyczSbHKwnM1wfG6aw9NTTCSWacZFg8FWABh0paYIG4ontxkxi8u4\/ns6v6KnpXzt95LOCSzpzYxcSOKuK30\/H\/g\/69efSWcZ7J6mXCYt1n92lpoD8hFH16kJ\/DvkU11D7dOENyDhNFoNjmYHA2WjfOnc\/+Yrj32D80Pdst8HGBtXfjcGh5QbscfHZxV7kOKrKYxWeVqcXFZEa5KPiqQcjyiKLwm44FfNtoXj2YhqA7aUbhsfH+fo0aOUlZWhy6kzDSS24HgyGyKtJ49FiVoVnIXDQXxwa6krgJmRrW2bski\/2G2nlkh411ecWp9ry7UdfWMF8Ul1NJ0x4ma2Qz2CsjdHWJ1Zux4xJ9J\/fJwRt5essThlZN5ZzVKPOiTctquShU7lRllBryWdEpVTexrQWIxkFXqfTCE7q31RxGyOWO8MkydHmR1aJONyYm6txNoYwdkYJqFAVGmq87DSM0lOosdI0GvIenXsdpSu8NdE5WaolYguLqyMcLk7XNRjFM3GGUhOM5dIc3Z+iWzaRLOtHK0mR4ujGFk3GJ\/jMk\/xZNWRitEaWL8XczkDzdXrTuj0tAlXPIG3zIV2E1R4aWKVXzxSvGBIJTOMDs4SqZdOK3YcG6ZSJiWXTeeYGI9hdMgjyzrbxvHv9JFthR\/GH+GeJ7\/GQ8efIHexztXfP0hZuXzabnh4FJ\/fJTseW1gkEJYfz+ZyeCPKKS6bV7kdwuiQH88mMwwNDLG8vFzI6uQX2S8lZc6vgm0LOHXeBEFAo9EoOp68aNbExESBufrQ8iOq+44vqTdiJjY1jr6wGuJmGR31jDcConLKJ2\/6Mh+LXVur7yzPS197Jp6mbd7JVYYY2lSKtNuPOLyFhk1gcWZrukKi0w6iSjpOEIhNll7LyvAq4yEPle4M4uQchjIv8x1bSNmFXMyrOB0AR3OE2dPK9R\/3rgpmTiusarUCWr2eXLp0ERCfWSY+s4xvd4Sps2NYgi7MPht6oxZxNUlyKkZ2OYGzJcyKTCpS7zBj9prRDZU6raVsgtXMcoHrLW9ZMUvvyhhNVi998UWiyTjprIhJo8dj1LDbVlm0\/VgiyuXeYpRXMpfBbQfDhpTedHqVFt\/6JJ\/MZlmxxIhcJDbtnjfSbItj1YuMh0pTaD+5b5y6A2X0tY2xMfOdWE0zOR4jWONmaqA4NSWK0Ns+SVW9lwkJ3sLEYgbXDguplUwhUrcEDQjeHFPpCV7oOc6JSRftZ+XpWCJlfsZG5d+XiqoAszMx2XFfyMG0gpii3WNmelh+kWa0KxOBqhGFzk7NMjA0gF6vx+Px4HCsLW43sov\/psbzKpgSpDqRSPDCCy8QjUa5+uqrC3IJalxtWoOWZFw94llYLJ6gv\/fUEqLMyiM2s8XiDpB1uba0naXMTWJO3kHGRhbodjeh9buZ30I\/DMBq0MnqeEx1O2PIxewW9imWWVmRcDwAy5OLdI+kyDZWkchoFIv2AGg1ZPV6ychho9nrg8yeUXY61koPs+3Kjti3q4JlheZZT2uokMpbnVpirmOCyZOjTHXOEIumse2rJb4qYmiqwLSzCmNrObraAGLITtZvImcTiM8vo3GY0TotaB1mNHYTxoib8pZKympqmLVr6c4u80JsgvPpJU5ER3DoXGRFCwGdl0ZrOTsdFaRJUGUpTgFmchn02hSGTXWhzvgoleZ1+G1OzLGoXcSuX19XnozPUe+1kczkOHhuEUN6Dqt+bfI317qK9peKrvLIsxq6z45Tsy9con20upRkbm4Jf0Vp5JZOZZkYX8SzKXKwuk34au3kbDlcV5qY3zHOT1e\/z7+c\/Spff\/rr\/ODwAwxODXHm9FkCAXlGiM1iZiXHzyindQW98u9Wo6JvplMhAlUjCm2ua+Q1r3kNzc3N6HQ6hofXWNxPnTrFT37yE5577rlLhlNvRX30\/e9\/f4mK6EbyTzn70Y9+REtLC0ajkZaWFh588MEtn5eSbYuIR0kMLm\/RaJTTp0\/j9XppbW0trBCy6awkrcpGMzpMMKWe6pqejBX9vbKapc9aRd3K+eINnU4Wtqg0CjAzurX6itbngD7lyKi\/bRLHa3dgGLqguj9REEgsbc1Bim4H4ojysUVBQEwopzUziQxzGSOCSYfVuoqo0Nxra61gVilCAXQ2IyuzK4p1J0GvJZPJKabhHDv8zCog5gxOMytjMYXv+5g9OSRZU9PoNNgjDlYkaHsEvQaHSWT5wloUZEQgjIuw1UUmqKdJV7qynWGJ\/a7SVF3nyhjX+Io\/71md5tpgcd3l5MoEN1atT95nlua5viFI\/\/QKc0NZdFaRKtfagiopGPDWFqeH7vvOE\/yg\/ScAnD5dxpX7rmF5bhmL0YZRb8GoM6PXZMga0oQjJlLpJKKQJZvLkhUzZHOLzGqzLFuWGZ4ZpH+8j5W5db4\/vd6A1+NlbqkUdCKKIh6Pjelp6VRnX\/8AO6rrGBuVTuH29fUD8u9obDEmOwaQUHFcWZUCqCpR6Goai8+Gx+PB4\/EQCoU4efIk4XCYb3\/729x\/\/\/3kcjnuuece3vnOd3LTTTep6pFtRX0U4A1veAPf\/OY3C3\/LqTnn7ciRI7zrXe\/innvu4a1vfSsPPvgg73znOzl8+DBXXnml4nfVbFs4no22mb1AFEWGhobo6emhsbGRioqKIke1FSi13mYElB2PRiewslgaOX3z4Cqf26lhI9972hMBUblhLW\/aoIuFLTIbzE5uoRFTp+G5I7Nc3lCObUQ5CtDWlUO7eo3FEHBuqbbjbI4wdlYlfaYTmOmbJRlLYPFaqKr1kusr3be5ZmvsBOZKn2p052qJKKbYtCY96WVllVpbmZOojN6Q1qhDVFC59e2KED0jfXxzpZ3kQKlD0jtNWFZKwRQpMYNJTKMTipfeY6kol3uKU2KJXJqQXVOEjJsUE1xVth4pzScT1FW7eLZ9ljrBQ7VVQ9K\/7gTGrT7qN0Q02ZUEH\/vq\/xT+np4f42dP\/pD9l13GMy88VnK+Bw7sp63tjOS1X3vtdZzrP1fyeTqdoraumpkZ6cXb5NQUWq2GrAyacC3dJv1ez0djNNXtZGhQ+ln2Dwxh1vjIyTQoRxeUf6upjHIUr0oUuglgkIdSRyIRvvKVr\/DZz36W+vp6qquruffee7njjjv42te+xp133im7z62ojwIYjcZLUhL9yle+wutf\/\/oCd9snPvEJDh06xFe+8hW+973vbXk\/UratU22ZTIazZ88yMDDAgQMHqKysLJG\/3krzqNakQJVx0WxeM1Io7u6BVRZCxdDqhamt9xrNb1FTyBx2MqfCGA3grg+wGk1w+PQSi0558IOIwHJ0azpFgs+lio4TQVEoK2\/mGjfJ2NqEujq3yoUzs6zWVYJpfXWlMeuJL6XU2Qlay1Sdjr0+wIzMpJ83V0OIVQUouW93RNbpAHibw8Qnpb\/v2OEjJqM\/5Kz3k5PRntHYQZDodA\/trSSyCZ6dymUwazIlsOzexDjllvUVbTKbIaddwrSBWaIns8Sp0zH2GYLY9XrOpqYpc6ynccTKYmf285+9QCBYOjkN9Pfj9Zai0k6cOMlll0mrUZ49ewanzDt68uQprFbpdNLs7By7djdLjgEMDA7KjgF4FRgI4okkkUr5puyxceW67YoKPZcaHje9Wry43cxakE6nicfj3HPPPZw4cYKJiQne\/va3q+y12OTURw8ePEggEKChoYE\/\/MM\/ZHpaefF85MgRbrrppqLPbr75Zp5\/\/vlLOh8p2xaORyrVtrKywtGjR0kkElxzzTW43dJ9AlvhaRP06oGdzSMPX\/xZ94aQ1OVioWfrMtTpuLrTA9AFXFvaLnER4ZNN5jg9ayHjlC5C6hsqWFVIHRW28zuY2UK0Y6kPsDyuvBrU6DUkZkqjxpHTk\/RnDGQuwpZNO0IkppXTegavjdiAcjpTZzUQn19VTMO5mkKK9SGT38aCQl+QuyHA\/Flpx6Y1aCEh7UC1Jj0sSp+bttKKToLjzFLjJX2hVLnVuMNFtbW4ntK5MsG1wWKncS4xSYN7fdJ9enwK77Kdy11r2yXFLM3l6+9L\/8oKoeb131UumeIPP\/8D9AY9JlNxw2s0GqWyQprRY3h4CJuttBa6tLRES4s07VM8nqCyUr63J5OW\/12PjU0QCMhDs5dXlN9Tl08eMRaPJ3EH5OeCWFQZqJNWWcBt5pyTEoEDCjWeQCBAMKjO0p03OfXRW265hf\/+7\/\/mqaee4p\/\/+Z85fvw4r33ta0km5e\/z5ORkybGDwSCTk1uXapGzbeF4NppOpyMWi3HkyBG8Xi+XX365okbPlnjaNOq0NnoFZtqfHpoj413Ls6bd4S2JosFazWZxi5Qy89PqmjeCVmCsa30yXppZ4WTcTW7TJCEisBTborSD16HKPiAC0S3Q3bhbIqzOSUdF6ViKvp4Vpqq8zHQpv7gioHNZVft\/rDV+ErPy91dvN7EqA4QAQBAxuc1kVqXvlc5qWJOPkHne3pawLEzd2xiQpAgSbDrMUpOXXgMLUTaH3ZZqH\/apWNFnGZ1A46aGy8HcCq8pX1vJLyXT\/Ox8jN3mIBWW9Um0IzNH2L5ez4m6PDiC6wujZx8\/xUxshb6+fkmtllOnTnH11aW5\/enpGXbtkm5yPnbsBcrLpZuM+wcGZaOeM2fPEQ5LN6wCVNXINy53XuhGp5OvtWRRRrg6A\/KF\/VmV30FKQSgO1COePJR6q+rLmy2vPro5Ffaud72LN73pTezcuZPbbruNRx55hO7ubh5++GHF\/W3OMImiWPLZi7Ft43gEQShACcfGxmhtbd2S\/PVWHE9G3MKNUmGePZFc8\/yxiUug9AkqFwXzZgo4mJGoA2w2fdhCehM6b2YwynlreVFuWV9fzspmVUYJ07gszJ5XX70IZTbSsypoIa1AdES5V0gUIRnTMZoxkazyyfpv9+4KFmS42PLmao2oNpPaKj0ko\/IO3b+nXPE47lo\/SRlH6qoPED0nHQm5G4Msyo1FHIgSLMW+1jDaTfVKUSfA6gKb9aS9rQFcG9JuSUHE78ih1Wg4PLhA76AJvUbEtpGGJZuhObK+0j+zuEhZde36sTJZPvS5HxT+PnrsGFdJOJlTJ09SWVlR8vmRI0dpbm4s+TybzRAMSqe2Vlfj7JZJqYmiSGWVvHOZnJJ\/b5OpFKGIPJPCzLyyhIdBQQY7k8piVaD3SSRUHI9EjWdz86jVan1Rk3teffTpp5+WVR\/NWzgcpqqqSlFJNBQKlUQ309PTlxSBydm2cTypVIq2tjYSiQSRSGTLCndbEYFLb0GnJq3ClvCNR+YRA0EWe7eeZpuf2VqNxaDQ1LbRTC5pZuShc9MMlNUV\/l5e2ppzXLHqt8SsLaCuCutpLWNlRjm687WEiA5HSSwkGWyPMecLoKnYBJ31mFRh3Qa3hYUh5efg2VXGvEKDrbXMKUuECmvRjBy\/nM6sJyuTRtNZDWTnpFM97p1hkv2ljs7RECB5vlQCw90SRrdQ7Pg0NW7oHyz6zLWnAq87wKhYww6hEqfRxD5\/8bvSkZ4hcJFEMyeKWMI2tP71tFxnWx8jm2p4bW0nqa2tLfoskUhgNBqKuMXgonx3PF7yOcCJEydobm4o+RzgQmcXRqM0uqqzs1M2cuntHSASkY+IAiH5VNzAwDB6g3yGI61CKWz1yDeJqhGFbhaD28xa8HKrj+Ztbm6OkZERxXn26quv5vHHHy\/67LHHHuOaa665pPOTsm3heHK5HMeOHUOj0VBWVlb0INRMrYcHYFWFUHIr28QWM5zLVSlus9F0Xgdz\/VsTXIvObUG6W6dhrEt+sr1wbILJHQ3o6lQE1C5azqonM67eWGprCLE4pHIdGoGYSv0HIL5U\/KzmBua5cD5GvLYCjdsGOg1ag1E19Wf020kvydPrGH1WFvrkV7WCRkCr15JLSU8wBqeZuELvk7shQEIm5eLZ4ZNUdzX6rGSGSpFYWrMB7eJiaYqtNkCuu9gZCXYTlpXid0DcEWB51chMvx7N8NqY\/7IqXBugsgkxy97KdUd0bHGRpjIPnvq1CU7Mifzh3f9NS0tx9JFKpUgkE9jtxTWPnu5urrzyQMm1DAwMcMUVpZ8D5HLSv9O5uXn27dslOyYXEQGUVcg7ntk5+bpdNpfD7Zd3HgvLKvVHBdqc5UXl3\/LmiGezCNzy8jIWi+WSIh419dHl5WU+\/vGPc+TIEQYHBzl48CC33XYbPp+Pt771rYX9bFYf\/ehHP8pjjz3Gl770JTo7O\/nSl77EE088wV133bXlc5OzbeF4NBoNe\/fuZd++fej1+ktiqN5Kqm1uVp0uZmFBvcbyyEgSYQsIOQBCW0uzGb02phQmyby56wMkVKK7tucmGNNurePZXBUip5KPBvXUAYCnNcLylPKP1dscYl6GLHT49AQ90xm0++tIxZT52swNPqJd8hBxETC5bWQUFiS+PWUsKThnR7mL1IK0U3Y3B2VRbJ6WEIsdEmOCiN1rJieRYvM0+MjMFd87jUmPMbFU4oycNQ608fX7s+iPEB3NsXJyDDGvFWPUYZgpjtQcl9fhtaxFrclcjh11Xo525TBeTCmNnhvmSMcwp06dprW1pei7o6Oj1DeURivPPfc8ra2lTuH48eOUl5dytnV2dnHgwN6Sz2GtN0dusZlIyv8up6bk34Oenn5sdvlajS8kr7k1qUI6LBjkp82lmIrjWVWOeF4O9VGtVsu5c+d485vfTENDA+973\/toaGjgyJEjRQwJm9VHr7nmGu6\/\/36++c1vsnv3bu677z6+\/\/3v\/9I9PLCN+ngcDge5XO6SxeC24niSynMZAPMqaSKAnvF5RloClPepU9VEo1sr7hvLPDCmjipTkkbIm9Vv48knRrju6kosfaXoqLxpnWbmOtX7kGz1QSYuqNACaQQWt9CcG5cp4Bd2Y9DRfngUQdBRszOMbnSa3FLx5K\/3W1nuV06x+fZUKFLr2KuViUb9u8qIyjAg6O1GUjJaQQa7ifSmBuT1cyon3l6aSnM2hkhIpNhcTUEyF4qF12y7yxEH1vLxiUgN0QUDNqMe3Xxv0XZiuRmiG1KIFiOGpfXrMezbhX8lRlK\/nor6u3\/+eeH\/589foKWlmfPn1xuU29rauPzyA5w43rbhQCLzc7PYbFaWl9cjvFQqhcvlZHS09B6Ojg5jMOhJpYon38nJSa6+6kpeeOFUyXfOnm2nsnIH42OladGe3n6qK3cwIQGBzuVy1NRGOHe6t2QMICPKZzjm5xepsjhJrkovgLMK7PmZdA6d2VCSUiuMJ6T7ePKWr\/Fciqmx+ZvNZh599FHV\/WxWHwV4+9vffslw7q3Ytoh4NtqlisFtpY9nVYWnzWjRs6TCjAwwOTXLl5+8gGBT5tXQum3MSHBVSdnCgrqD0ug0jHSqR0W2che5rMizz0+xWlspu52+IqDK9gCQVM9Q4mmJsDShnGbzNAWZV3EYnlo\/6dU0qZUUXcfG6J4TyTRVob3YYY9GAIMOUaFeZ\/BbFes2gl6LmM7IyhyYfFaWBuQdravaS0oGrOCqcpOOlY6Zgw6SPaULC63NiBAtTWFaG0IlTkfns6OdGCEZrmbC1sTY6QUS49HSBYtBiy9TnOaLl1kRLurM5CxWdJkoqxeyOFvXVvyrAzHe\/bG\/5S\/+4mPs2bMbURQZGRktKU6fONFGZVXxOzUxMUlrS2nUc+7cOa688vKSzycmJmSjnvGJcdn0UkWFfNNjeYV8oVurl5+QxxWiJQRwBeWjpaRMijZvBpt8TVQK1fbrJokA28jxvFgxOLWIR2fWk1JJF9kUcP15szpNLCwsM7+U4LBK+lUTCcAWkHQGt4XJni2k2erU02wA8xelD8ScyOEj0s5Hazcxq0D3nzdbbYD5XpVoRxBYmlFvKk2qSAIb7EYmzhefUzqRoeeFMS5MZkg1VKJr8hMflU+ZihqBrIAi75tvZ5iVcZl9CGD1yqfovDvDxDqkIyFva4TF8xJjGrA6dOQkPLh7h4dstDhS1FiM6Bc3OSMBdNVBJvXVjJ5ZZPUiOMHbEkBcKnZ0jp0RWNqQtrNZ8Avrfy9FvIydz5GejeLZsVbjeOGBJa77rev427\/9JE899TgdHWf53Oc+y+te91rcblfhu3nEqWsT7+CxY8fYu3d3yfVduHBBsvdOrql0aGiE\/fulaz3nz59HL9OLp9QEOaLA7DE6Oo7JLJ82dyjMCTMKJKQAOhmGeZBnLsjbr4P6KGwjx5O3S4141ByP0aHC+geyuvEbzRNcfxm+fXwMjV8+Rxxb2Nr5myp8iOqAO7JbaIC1RxxMD6xHFfnIZ8JTXPPRVwUVZQPylhLVXw1PS5hFuYk8v01jkLk+5ejPUx8gJafOmMoy0jXD2bYYsXAQXWMZSPBh+XdXkJmSrwfYatzMKjAcBPZUsCCj42NwmYmPSkdsRpeZ5Kj04sG\/p5z4QOnE6GwJk5RoFHXVe8lF1xyFaDAQr61npXk3o8+OsdK3vh9Br0EzvelcdRr00WIUn6k1jJBai+RFvx9jyoJtaJrlsiCCViA1ucT5M2tElclkEqPRSGVlBXfc8V6+\/OV\/4sKFdn7ykx9x551\/TGNjI7Ozs5RXlJdEJj3dXSUOaWFhgfr6UnTVWlOpNMJtPip9j6PRGLt2l+pRAXT39BEKS9dTR0fHCQTl0W2eoLxzETXyP8xllQyKElHo5hTc5ojn10GLB34NHI\/equ5UtEZ1FF1Gs36cRDrLcxrp1ZLWYWF6C1EMwOIWpBq2mmazhEpXkWJO5OyFJIsXUxUaq5G5LvXajnWHn7lu5e1E1pQj1Uytoc5gMzJxXvlYppCZXCrHZNcc7cenGMqYyTZVoQuvrajt1V5mz8rXbQSTlvj8smwjqCXkYKFLHnrtKHPKitQ5Ig4yEgg7S8RJvKt0xa1zmBCmSp+nvTlMpnOQTChEtLqZ3mUnQ23TZKdK03GelmDBQRXOY1cEFtYXAYLDgm5+sPB3yhskeaQPAPPetfTUqR9HsfptLCws8MILL3D48GE6OzuJRqPodDqsViuvfe1v8fd\/\/1mef\/4ZTp58gfe+9z28947\/hdm8jgpbWVmlLFKaDjt27DgtLaUO49ixY4TDpSmy3t5+9uyRbkRdjctH1hWV8qm4yGa4\/gbTKaxJlxVADYvROIJCU3oqJx91q\/XxrK6u\/sbxvBp2qak2tRqPxqQeLWxhcY\/GWPyi\/eeTFxDKSl9qTXkQcQt+U+8wM96lruez1TTb7Lg0qkzMwZETUVZqyjDuCMl26W+0jEb9nnlawiyoSFV7GgPMKgiqwcVoRwGBprfpWBoungTiCwl6XhijvWuJaChIwu1C45ZfvXobguQkCGCBtVSWSUtWJh3o213GggyPm3dXhKXO0jFBA2azBlGiFuCucq31AG3c3mEhbrAy6qyhtzPO1OlxsqspvM1BUpujKQ3oYpsiA62AfrHYeRtbQgjptWtOBcIsPT+I9uKCztNoIRNb5fmH0njKPOzdu5cbb7yRlpYWNBoN3d3dHDx4kNOnTzM2NkYmk8FkMlFfX8+HPvSH3HvvP9Hdc57v3f8dPvDBP6CqqpKOjg6uuaaUZn9qagq9vniRls1m8Plckvc0IYMEaj\/XQXmFdM\/J1Ix86jiTka\/dxhWcy8ysfAtBLidi98nXgFIKC2c1x\/PrIAIH2wjVtlGFdKsRTyqVYmVeBVGlQJ2Rt6SabgygM5Q2zP1sIcWtm7ZbXN4an07GY4Rp9YhnK2k2R6WbIYXGVjEn8tzxWepbbMgnHtbMWu1jslO5BiQCqyr9CgDpjPK9MFgNTKo432BjiKET8rl6vdXIuUNryDBPpRd\/yIo+Hic9PAs5EU9LWBHFZq33sCrDvWfyWlmRARuYvFZW+6SBDL495ayeGyz53NUaJtG5lmLLBX0knW4WFzJYnUYWj5ai20xiis132d0SItdfDD6w7yyDkXX9FcFlRze7fvy50Qz25bVJdtXpxOU2cu47oyAKWHxrq2utVovX68XrXWMZWFlZYXZ2lpmZGbq7uzGbzfh8Pnw+H263G6fTyS23vIGbb76JbDZLb08vTz71NBaLhUOHniWdXnu3Z2dnufrqqzh69HjROZ89e5aamjoGB4vTn+fPX2DXzl2cP1+sJwNQVhZgdKTU0fd091FVsYPJidJn1dvbj9w0NzUzgwbplPnExCwRfRkZmbnB7DSxOC0dhZltNpaQTkHHF1eL9HZ+43i2ieXh1GqcQEtLS5w8eVJ2pZq3nKAezqyuqk+iscXSiOKBI71c91s7cF3kC9PYTEx2by3NFt8CqcFW02wmnxVUGBX89T7ajk\/RuMtO5Zx8z01WRaMDwNMcZrxdmWrHXedjQsWpeBqDDB1XIPB0mhjvUHCCGljaAOWeH44xPxwDwOy0UNbiY0UPuoiHzGSshHrGVuEmNSgHNhDRO\/QkhqQXNoIFxGjpu2etcBO\/UFpL0rgsJAU9K7UNREcWifcsAxPorQaYLp3cXLU+kgOlaDhjYqmYAVkjYFgtvs+mJj\/CRWh3f7acwOT6frSXV5JbSXLw+0lAwOKXnuSsVitWq5WqqioymQzz8\/PMzs7S0dFBJpMpOCmfz7cmEtbaQlNzE3\/8x3\/E4uIihw49y+OPP8kTTzzNsWPHqa2toa9voOgYctGIVif9u29vPy8JxwaoqAxKOp5obIHmhl0M9pfey8WlFWr8ZUQl+P5yooi3zM7UYEzyXPQWeWCCElFoaiXJsWPHMJlMeL1e0ul00Tz3G3DBq2QFgTeFqGdiYoKjR48SCUfIJpWjlYwK9T5ATAIGu9nGJ6UdwH8Px+Die6OtCCGqrPJhTRYgNqKOBttqmm1sCw2oSytr9Ziuc8tMVpYhSuSojREnM1vgbosvq6frsiqvlt6qZ7JT2TH56nwlqYmNVr47woIMY0J8IUEqC2cPj9LeuUhv3EA0GFyrDTWVows70Wo15GRWtI7GAAkZxgZDjR1xTIIAVCdg0omIDitibQXJplpi1TWM2IIsByL0HJ9i\/NQ48Q0TXbApQFYi\/WmzlD4fV3OQ7KaeFdvOCMytLzo0HjvambUJvnulErtQnBJy1Jnof2qOTGpt\/1a\/+iSn0+kIBAK0tLTwmte8pqB2OT4+zuHDh3nhhRcYGBhgZWUFg8GA1+vlzW++ja9\/\/V7a29t4\/PGH+f3ffy8HDuwvmmRHRkbZv78UEXf69Fl27ChlCVlYWJAFGUzPyNcJvT75pupgmUt2zOaRLwIJMs4RIKUA+ReyAq95zWuoq6sjl8uRyWQ4ffo03\/72t\/niF79IOp2+pIhHTX00nU7z13\/91+zatQur1UokEuGOO+5gfFy5d\/C+++4rUSwVBIFEYgtNkVuwbRPxbEy1wRqVhBQfVHd3NyMjI+zZswen2aHKFJ1MqcPGZqeV03V2t5nJBek8\/\/G+eRZu3YlzaJqlxNZoLmx1IXLHVQTV2FqazRSyEB1WdmJak4a5DSv3c0fHie8JUrM0BxsQbitboN12NYWYUIpCAHednwkVEIO3MaQc7TiMjJ9XiXYUmn4NVj3TGyKuTDLDVM8c+T1WXVbGhVNjWNwOrC4TZpsBg1GLXiNi0EIml0VbG0bMieQyaTLpDJlMGkED2ZSIviaI1mhCFDSkMyKZdA6r20TH2XFSy2kYWl8MmJwmFiRqQVqDlsRg6X2yV7hI9JSmB01ivDjaEcCYLHaOxgYfwmSMgVQZ8XNxIs3rDlK0mzD6jDxx3yz51VI+1bZVEwQBu92O3W5nx44dpFIp5ubmmJ2d5fTp0wCFSMjr9WI0GjlwYD\/79u3hwx\/+Q2ZmZjl48Bl++tP\/4fnnjzIxMYZery+k5vKm0Ui\/i8vL0guN7u4+qsprmJRYIC4uySMvtQrYI41B\/vecycnPK4l4Brm8QSaRRqfT4ff78fl8jI+Ps3v3biYnJ3n00Uc5ffo0XV1dnD59mltuuYUbbrihCMix2dTUR1dXVzl58iSf\/vSn2bNnD9FolLvuuovbb7+dEydOyF88a039myW0TSZ1lPBWbNs4nrxpNBo0Gk1JxJNKpThz5gyJRIKrrroKm82mCuUFSKg0SlpcJpITyhO3O2hDJmULwH+cGeNvKpxMdm0tzbaaUHeGW02zYVOn8HHXuFg4U7yv3jNTrNZ6aHXEYXEVc7mb6SH1+5mMqwM\/sio8U3qLnimVNJyv3q9Y2ynfHWH0tPyqLdQUZLhN+vsarUBsdAFEWJ1fZXW+OOKtvizCxGnpyM\/f5GapJwoUr\/w0Og1Ot1ESZRmo9xKVUEgNtoZYaS+FVTu9RhKb\/JGjzkd2uHhbW2sExtfZhQWfE81UP2OZIIunMjh2uGFhvXNfvGwH48djxJfXn49VJtW2VTMYDAWKFlEUWVhYYHZ2lqGhITo6OnA4HIVJ1mazEYmEueWWmygrC\/GFL3yG8fFJjhw5wUMPPcK5c+sS813dvVRXVTMyUvyMOzouUFNdV\/I5QEVVSNLxdHX3YNS7SadL310lp5RIKwATFFoS4itpWceTTWbJZXJodBpyF52X3W7nd3\/3d3n3u9\/N\/v37ec973sP09DR\/9Ed\/xGtf+9oiuerNpqY+6nQ6S4g+v\/71r3PFFVcwPDxMZaV8o7kgCJekWHoptu0cD5QCDBYXFzl16hR2u52rr766EAltiSBUBbJsc5tBJfgwO5TrHudHogxc3UJuQp36RmcxMLYVNFt9gKlTakV+kZUZdYBCLiMNsBjvmycesnEg7AKbBURlx6ONWJnvV+7JcdX6mFSh4\/E1hRhUiHaMEg2lRSbAsoIaqt6sY7pH\/h6X74kwdkoacOAI2pg6J\/1CWHxmVvql75G10ixZD9Jb9Cz1lF6LoBXITJam8iwBOwkJGLbFlCtRtzRmi88lEzIwu+Rh7owWsmmcIT0Mro+bwlp++k\/F9+1SIx4lEwQBl8uFy+Wirq6ORCLB7Owss7OzDAwMoNPpsNvtzM\/Ps2PHDqqqqqipqeGqq67gox\/9MBMTkzz55DM8+eQhDh16jmDIL+lgLDIknTOz0s88mUzRsruMTgl6ooHhUXQyAIP5mPzvYUmBpHZlKSmzxzXLJNIYbMbCHLcZXHDTTTdx3XXXIYoiq6vqZYCNJqc+unmb\/LNSsuXlZaqqqshms+zdu5d77rmHffuk1WYv1bZNjWdj7ncjpHp8fJxjx45RXl7Ovn37itJvW+FpW1xQzklmtFuAbuvUU1APTQxj2EK+3FITILuF9F9Wq74m8Nb5WVRhDrB6zIxckHcE0cllzixomI6rn5NWqw48EFWYxXVmnSoAw9\/ol20oBSjbHV6LWGQs3BoiIYO602gFFhUofrwVTnIylDqBKo\/kmKAFQ1w6yvPscEqyIQR3hknOltaJPOU22FSXtFZ6yPYXOyNrSxim1p9r2mVBXE4y1W5GvMiUYIitO1BNyE1sOktsw6ugM+kwKtC7\/LJmMpkoLy8vwLUrKiqYm5tDp9PR19fHqVOnGB0dJZ1OYzKZqKqq5H3v+13uu+\/f6Ox8gb\/8y4\/wRx9+H3X1O4r2OzIygsFQGul3dfUSCEhr\/1ht0u\/u8vIK4XLpSXp0XP53M6+w8FlUIwq9WLfMOx45yhxBEC6p3iOnPrrREokEf\/M3f8N73vMeHA55ifCmpibuu+8+HnroIb73ve9hMpm49tprFfV7LsW2bcSTyWTo7OxkdHSUPXv2EAiUUqCrOh4BFmMqTY4qAnAAcYWQO2+T83M8Zk5zo2BWrDttIVOFoBUY2ULaTlCgZ8+bp9rD1KSyc7J4LTx1eJgrXlOJrX8cJOZdZ0OASRXCUEuZnSkVOh5fU4ihE\/Lw5rVoRyFiEmB1Xv6Z6kw6ZhQaeMt2hxmXSdHZvBamOmSiHa9FFngR2RlhXoJYVKPXkBiRACgIIiyURkdGl5mkRG3H7taS3XRJJqH4maZDLmbP6Mgtre3XUeuG2HqaTdsc5pkfF\/9eXspoR81mZ2fp7++ntbWVcDjM6upqIRrq6enBZDIVUnJutxu9Xs9v\/\/YN3Hjjddx9918xODjMk08+y1NPPsvzz7\/A3j17OXHiXMlxnG4L09OlUfmUAvjAE7QxIcFMkUym8YTszEuo2C5EV\/G6HGQkwE2ZdA6dSV8ic523jY5Hq9UWFt15WqIXi2rLq48ePnxY+rjpNO9+97vJ5XL827\/9m+K+rrrqKq66ar0v69prr2X\/\/v18\/etf52tf+9qLOr+Ntm0ino0mCALd3d0XewCulnQ6oN48arAZyaaVoxWLXf0hRxfUtWbGx6d56PhJYlXyjWVak56xLTgUfdiijmbTwESfuihdbFY9VJ8aiSGKcOyZYQacHgRnaTFTIj1eYhkVJ64z6ZjsVnZe\/ga\/Ygq1bHeYqELjamRniLhMlCtoYEUBSOLf4SYrw7QQqPFIjwki6ai0Y4\/sCpNbKY3cTOVW4mOlDslX6ylpOjVHnGQ3MY1bmkKwgb4+4XQw32kmM7d+bc5w8ZpyBTMT\/ZsiqS1E6C+FTU5Ocu7cOXbt2lUQHrNYLFRWVrJ\/\/35uvPFGGhoayGazdHR0cPDgQc6ePcvExAS5XA6DwUBDQx0f+tAdfPd7\/0HH+ef4s7s+wB3vezvl5cVNpemM9LvT2zuAXUYmQdTKI2OdCro9dq\/8b91gly\/C55u4N0siJBIJstlskVTBVk1NfTSdTvPOd76TgYEBHn\/8ccVoR8o0Gg2XX375\/3sRT97rLy4uFrz+FVdcIalomLe0muOxm9hcBN5sakyzABMyUOq82ZwGRufXnNOXn3+GL+y9kbTEBGfdESBzUp2gM70FEShPnZ++dhV56IiD0V7lmkyw3kv\/hlRcf8c0s14LVzT4EYfWnISzzq\/a6Oms9jCl4git1U6mO+S3MdoMqvWhVQWaHp1Jy6wCL1z57gjjZ6SjHYvbzHSHdERjcpiYlWG9Du8MEzsvwV6gFUhOSMOxnQZ9yVupNelISchtOIMmsrFih2HWr397xWBj0VhPary4R8awsP6e6RoidIyYgeLzsWyBHPeXtbGxMbq6utizZw8+nzR9TR6uHQgEEEWR5eVlZmdnmZiYoLOzE6vVWmhedTqduFxOXv\/6G\/jt334N2WyW7u5+nn7qeZ5+6jmOv3CGULCc6ani90AURTx+K0tLpQuxuXn5d0ZnkU8dmxxGkGEM2QpR6GYRuHw951IiHlEU+dM\/\/VMefPBBDh48KKk+mnc6PT09PP3004Um4UsxURQ5ffo0u3ZJE7leqm0bxwNr9ZyOjg7MZjPhcFjR6YB6xKP08PO2vKK8D4fXwmRUGX3g8BkhdnF\/iSQPJ8e5SeMsydUntsDNo9FpmB9V50DbiiCdLWQHmQa4vBklCFIX51Z58licq6+rxNQ7SgZ1RyiYle+1oBeYl2vWvGj+xoAiki2yO8T4Wfk+o0hrWBbJJgiwOiefcgzWeRg\/Kf3dUIOPyVPSY6IMBVF4Z4glCTZrT72PxGDp4sNaaS04+rwZfFayvcUFcUt9EMbWmAsWLF7ax\/yULxR\/z77DDdENaLZyL91PlD5D68ucahseHqa3t5e9e\/cqFrs32ka4dk1NDel0ugDXPnPmDKIo4vV68fv9Bbj2zp1NNDfX88d\/cgeLi0scPXKKJx8\/wqGnX2BmZn2h43LbGaJ0AdU\/MIxDFyIroXyrpNujU2C3ViIKzTuezRHP8vIygiAowqc325133sl3v\/tdfvrTnxbURwGcTidms5lMJsPb3\/52Tp48yf\/8z\/+QzWYL23g8HgwXG8bvuOMOysrK+MIXvgDAZz7zGa666irq6+tZXFzka1\/7GqdPn+Zf\/\/Vft3xuSrZtHE86naavr4+9e\/cWQmw1U6vxKD38vEUlZIo3mjtg3bxQLDVdcdT0i1PnuO7W27Cc39DYp9cyvoU0m3OHl6mzytsJWoGxLTAkzIyooNT0GoZlmjjFnMjzzwyx9\/oq0hJElRvNUelmUoXJwFxpJ9otz5igt+pVo6rEgvzz1hq1zA7IR1Nlu8NMnJVeQJicRqZlalNGm0GWMDXQFGBBArGGIJKLydCpGAQ2x8IagxZzbKUEtSY4sjBZ\/DvQ69cWJbOOcjq6zDgCBrJTxefnjGxAs+m09M8a0Eg0Ur+cEc\/AwACDg4NcdtllOJ1KGC9l0+v1hEIhQqFQCVy7vb0dp9NZiIbsdjter4c33HIjN7\/hBjKZDOc7enj6qWMcfOoYI2PSi4d0JoM7YmF2ojRLEVuSf2eV1pGCBIN63jKbajx5y2d6LkX2+t\/\/\/d8BuPHGG4s+\/+Y3v8n73\/9+RkdHeeihhwDYu3dv0TZPP\/104XvDw8NFIIdYLMaHPvQhJicncTqd7Nu3j2eeeYYrrrhiy+emZNvG8ej1el7zmtcAaxobW+FrUwUXqPC0CRqBuWllyWaTCpQaQBRKneQXnniMfzjw2yQv9hrZ6oKMnlJnht6K0qin3k\/vWeWUnX+HhwGVPqBIc4DOk8pqqourac6OrXDl3jCC1CTLmqiZkgl6geSsckrTGDKy0Ctff4nsCjF+TiHa2RlipE3mWgRIKIBM\/DtcTMtEUuGmgGy0o5NCYQCh1jArnaUpPWe1m+Xu0uMEWoNkzg8WfaZ3mXHMFS8cciEruskJxhw1dJ0VyaUSeJqdZDc9FuPi+gf6XVU89NNVyt2l79XLUeMRRZG+vj5GR0c5cODAi6pXyJkUXDsfDQ0ODqLVagtOyOv1YjKZ2Ld\/J7v3NPOnH72DmZl5jhw+x7MHT\/LcodNFabdQmUfS8YxNzGBBuh6SVpijRI28V9oILtgsiWC1Wi\/J8aipj1ZXV6tuA6Xqo\/feey\/33nvvls\/jUm3bOB5Ye7FEUdwyQ7VaH89qQnnc5rGQHVFmLRC16pHXigTWfiWR5McLg9yq9SBmRZKCOlnpWtOoeo\/PQlwdMGBwqncYZ1ReSL1Ry8D5SeLLKZ5+ZpDGPWEqMilyGxou7RUuJlSineDOMkUkm96iJzGl\/KySCmALjV7D\/KB8VFa+K8yETG+OwaJjViai0Zt0RGXoiHx1PqIyvUIamffO7jSytOk2CFoBYbo0UnPXuhEvFNcejJY0ndodjLalC8hJcWpTmq3aCfPrJKKLFheDvVGCTaULKMtL7HhEUaSrq4vp6Wkuv\/zyl53s0mQyUVZWRllZGblcjlgsxuzsLH19fZw7dw63211wRBaLhbKyEG99u5\/b3nI9Z8+eY6BvgsG+WZ49eIq0KP3MFhdWcFvcJFdLncyqAuRfadm80fFsLCdsJA\/9f922pePRarWkUurNoUqTEcDiivIEbfWYQV4bDIBESq1XSGRaJhX15LnzXP+mW3H0LDDRrS6FrQ+bSfUon7Ogg9ioyjYaGFeR3jY7jAyqUN9UtAY4f2L9BnWdmWDYauCKAxE03ZMICOgdZhBjsvvQGLTMDiin6oLNQcXajr3aypyKYxlWiNySCs1+1jIjq\/3Si4\/IzhBTMtGOyaRFKpnmb\/Kz1Ft6X21hB0sSUZC\/NUS6q7iOo7MYYBNrc9ZvZk4sZ\/TM+nO1hszk5oodoz2sX3+nrSbaOkUEjUBcor5lfQlTbaIocuHCBebn57n88ssvqU7xUphGo8Hj8eDxeGhoaCiCa\/f29mI0GvH5fHg8HkZHRwGRt7ztZjQaDXf95e8xNT7HsWe6OHKwg7bnu4nna3cC+CtcjHaV\/p7m55aQq\/JkFIhC86i2lyLi+VW1bQmn3qo0gqr6qFH5h2VQYJjN2\/yCcp3EHbCSUIisvvj4o5h2l5PYArGmaFBv5rPXeEjHle9NsNHPkkKvC0CwwUtGRaQtIUELEl9JcejQICNeJ7amIOMykUTeAi1hVubkHaXerGNKRThPm5WPFjU6DfOK8OqgbDSkMQhkZqSfi9agZXFQumbkrnIzJ4NyM8r8otyh0sZQBBGdRA3B0+RD3EBfntZomLLsYPh48eQXqpRIAc2tOyyxsZyHH1rA47eQkyicv1QRTy6Xo729nWg0yoEDB15xpyNlm+HajY2N5HI5zp07x9zcHHq9npmZGbLZLCaTiYrqMG\/9vdfwxf\/4EP9z\/At8+b4\/5p2\/fwMVNQHMdul5Yl6C1TpvSQWi0PTFZj65Gs+vg22riCdvW061qTiepApztaBX97vjElTrG83lN4NC4BBPpfl5rI+dVidphdSgoNUwP6KeQtPo1WtOgkH9sS5ElWHmzoCVAQXamt72KbRXV2CrD2AeiZKTYJHW6DXMDsUUjxNsVSYLDe8MMtEufx7OHXai3fKLg81SwxutfGeQqTPSjrNsV4jp09JRlM1lJCFxyp4dXkn5bLPXwlJXabTjaw6T2tSjozHqYGx92xm7i75EAPPZ0nSgLrbAxquzVTkxr647p3NTOVJJEbNVgE2v3kvFWpDL5Th79izxeJzLL7+8gJLaTqbVavF4PAwPD2Oz2WhsbCQWizE5OUlXV1cJXFuv13P1jTu58voW\/vRTOcYH5zh9cICTT\/dx\/tgw6YsLtmQii9GnJynRq7WylEDO\/abj6xHPbxzPNrBLFYNLqUChV5eVecyyonL9xuW3MjmnvKLXGdXD4vaRXtLOMnYlvIgyIbinPsD0aeXUl9aoYUSlz0Vr0DJ8XtlZuiMORlUQZP4aN1OT8hO63qil99wEq0tJHB4LTTV2LGPLCOL6\/QjsjCjWdnQmHdMq6Ly0Qh5d0Aok5uSdebglwLQMXZDOqGVRxilqtAIrY9LX7og4mZNhMLDadHlUfZF5q90snS2NbIzZRInQm7clgNjVSw6BC64KhjtTVO4ykZoo\/j04wnbS48Xn4So3wsWsnRB0ceKsGVjFZjfApiZXs0Lz41Ytm81y5swZ0uk0Bw4cKFEa3S6WzWY5ffo0uVyOyy67DJ1Oh8vlorq6WhaunXdEBoOBqvoQFbUB3vT7lxNfSXLu+SFOHezj5NP92BwWkiul78riQlzW8WxEtRmN685\/ZWXlNzWeV9O2GvGo9fEsxpRX9asKDLMATr8FVEozqYzyOQiCwODAKOdXe6i86R04OqUdanYLSqnmCgez55XrJaEmP10nlMlKnWV2RoeV9zM9GlMcr9oVouP42mp9cX6VF+ZXKavx0BK2k+mbQ6PTMKcS7YRaldVFw61BRQmG8j0RRhRqO3GJZsHCd3eFmJCp35TtjjBzVnq\/rqCVmalYyefOcicxCYlsg93Iak\/p5656H8nB4uck6AQ0U1MsmC2cTgZYbF87fxO5zQELvnIrXCj+zLiyvphIlFfQ8b21VJDbZWVp0\/NO67M899xz+Hw+\/H4\/LperqN6gZplMhlOnTgEUJvPtaHm9G6CE6xFK4dqLi4vMzs4yMjJSYNfOOyGHw7EWDb2hmStvaiSbzTLePUvX4WEuPDPI4KkJchcXltm0\/IJ0JbZMNpv9TcSz3WyrEU9aoW4iaAWW5pWdwvKismNKqbAeAMxHY4rj5RU+uvvXVvVffeyH3P2G95E9X7z61eg0jG4BfKDRqadGUqpCdCKTMgJneYs0eOlXkb+OSzROjg3MMzYwT\/PeMlrKHUwclXcqOqOW6V7laEeO6wrWnm9MJioB8Dd4mJeRtNbqNSwMS48JWkjMSEPsrX4rcxIsBbC2SIlKsE0HGnwsnS2VPrAZSjk1XM1BeufidI8KZC8iF3VGraT8tn5lqSjNZq10wuw6mu3MqBEudgzpJcgDI7UR6uvrmZ2d5dy5c+RyOTweT4EvTSlllk6nOXnyJHq9nj179hRNntvJ8s5REAT27dunep6CIOB0OnE6ndTW1pJMJpmbm2NmZqbQ55J3Qh6PB6PRSPXOCBXNQX77gwdYXUjQ+dwQnc8O0XtUHrUUm43x7LPPFs4nHo9jNptZXl7+tXE82wpccCmptuhMVJZFGMBoNyGqqI\/OzylDqTV6Fe4xvZaJceXJ0+svLgB\/\/on\/RldeDHV21fmJy7Ap581gNTCqQtKpNWkYUoE2hxr8zMnQfOTNJMFmsNG8EQcDCkqlF06PcbhjgmiVHUOldPNgaGeYuEJEGmoJMqNAf1O2O1wke73ZtArwdWeNlVUZwEPZzghLMuzV3gqXZJHeFrBJ0uZojTriA6WpPkelm0RvcbSTsZg5Pi5yoT1LdgOTbKTRR3ZTZG7xWUiPFL8L7or1ZybURHj44Vjh7838bwDWgL2gKnr99ddz2WWXYbPZGBkZ4ZlnnuGFF16gv7+fpaWloj6QZDLJiRMnMJlM7N27d9s7HY1GsyWnI2VGo5FIJMKePXu44YYb2LVrF3q9nr6+Pg4dOsTJkycZGRkhlUphMBhw+uwcuLWZ3\/vizXzqid\/nTf\/xO+z9g8vxNQfYSP5hM9m4\/PLL0Wq1LC8vc99997Fz507Onj3L\/Pz8lhC9oK4+Cmtow7vvvptIJILZbObGG2+ko6NDdd8\/+tGPaGlpWZM1b2nhwQcfvKR7p2bbMuJRS7XNzMzQ9qyyet4aT5t8qkWn1xKdU56ANTplvxwodzDbr4LH1hRPVKlMhv\/oepyP1LyB+PRa3j23hTSFq9bHlEK9BNbEzxZeUN5GL0MPXxg3ahlUYZi2B02MKxymotHHYNcU4wNztAONuyJUWIwk+9YiAq1Rq+hUAFmyTliLdhYlGIPzFmz0MSNDRqrRCuRiMilWAdIL0u+M2W1mXiKVBuApdxCdL3VWwdYgK+dKox2H20Di4i3O6fWMhysYnlhGN1oKebboYfOeA9UO2NTvZVxdXwBNGIMsL8YKf2ckUtIb6XIEQcDhcOBwOAor\/TwUeXBwsKCY6XQ66e\/vx+l00traekmpuVfS0uk0p06dQqfTvWQR2Wa4djweL9yjvr4+DAZDUTSk0+ko21tJaFcZ+\/7gSlbnVxg7NszokSHSKylMJhN6vZ6qqioaGxuxWq3cd999PPLII\/h8Pl7\/+tfz1re+lf\/1v\/6X7DmpqY8C\/MM\/\/ANf\/vKXue+++2hoaODv\/\/7vef3rX09XV5dsc++RI0d417vexT333MNb3\/pWHnzwQd75zndy+PBhrrzyyl\/6XgII4lbaWl8hy2azZDIZ4vE4hw4d4uabby7CtIuiyMDAAH19fVQ6ynn8ww\/J7svdEODZY\/ITqCts52y\/cnRgqdPQ3y8\/wzYdCHP0eJviPirrXHR19pV8fnlDC7dqdpFLZVnUGFQjHlt9gBE1yelaLyMKUZFGL5DWCiQUQBc79oeLendKTACdU8tKVH5V1nRFOR0vlIpuVTcEqPXb8VtNDMuxDACh5gCTChpC5XuV1UfDTf4i2euNVrk\/wtQZGbRalYWMTI9U5YFyZk6V3hezy4QhlSK3KaoQdAI+n4nUpqjaErJjWZhHFGG+egdnLyyxOh+nZq+X5U1MExqdQLlLU+I4Gnc5SA+sO0FruYMQF0lCtRq+v7STF46uO+a9EUMJuu+3P\/tGGt7YInmtGy2XyxGNRpmYmChwfOW50nw+30smhfxS2auRBsxms8zPzxfScqlUCo\/HU3BEZrOZXC5HNpsll8sV\/rW1tVFXV4fP50MQBN773vdyzTXXcNNNN\/Hzn\/+chYUF\/vEf\/3HL5zEzM0MgEODQoUNcf\/31iKJIJBLhrrvu4q\/\/+q+BtYg1GAzypS99iT\/6oz+S3M+73vUuFhcXeeSRRwqfveENb8DtdvO9733vl7tZF23bRjxQ3NmbzWY5d+4csViMK6+8klUJtceNpgYptriUfzCCIDA+rpza0qiAeLRaDQMDpStegOPd56m+OsQ19gamTisfx+gyqaqW2nxWRlVYD\/y1LvrblVODiaQy4MJbZWV8QF4mwmTR0yejaTPYPc1QzzTVO0NEWn3oxpdJS8C6pdJZBdPAkoK0QaDeK+t0BC2sTslHSlatgQWJKNlg1RPtkpHCrvMRPV36jEM7w6x2lDoqT8TGtMNGx0iW+efWnasYLV14hBt8ZPqL76XRYSQ9VLwAcVWZC2i2TE0VL\/zn+jXaXUYy8dJFwlZ52jQaDUajkfn5ecrLyykrK2Nubq6IOTrvhJxO56va\/JhOp2lra8NoNLJnz55XLCLTarX4\/X78fj+NjY2srKwwOzvL1NQUXV1dWCyWghNyuVzkcjk6OjrQ6XQ4HI5CWaGvr48DBw6wf\/9+9u\/ff8nnsVl9dGBggMnJSW666abCNkajkRtuuIHnn39e1vEcOXKEj33sY0Wf3XzzzXzlK1+55HOSs23leDbWeGDd8cTjcU6ePIlOp+Pqq6\/GaDQSW1YpxmuVXzq9ArMsrEGpJ2aV0WErq8oEo16\/jaFReWfwwyNPYbzOgA3lScBZ7WVyWr5QD+CudDGpUrsRdMrXbPeZGVCJqmwuO6XJn3WraQ3Sfrw02snbjt1hus6M0QNotBpadpcRNptI9s5DViTYFGBKATJevivCqIy0AUA2J+84K3aHmTor\/d1QS5BYl\/S1m0IG0oOlzs5gNbAkwb2GBnLzxc9CFAQy1WGODMP4pi744A43K+OlYAe7VVdyp4N1Lugu3ta0Ic3WseBmI6utx2+B2VLHs1WetqWlJdra2igvL6e2trbAHp2HIufTTfkifh4l5\/V6X1GkWyqV4uTJk5hMJnbv3v2qpQEFQcBms2Gz2Qr3aH5+vgDiyGaz6PV6crkc+\/fvx2azkcvl+Pa3v01vb6+qHLWcSamP5iPUYDBYtG0wGGRoSP43Ojk5Kfmd\/P5eCttWjidvGo0GQRDIZDKsrKxw6tQpQqEQzc3NhRdKrXk0q0LlL6qIljkDVlAhgJ6eVt7A5bEwpOwveLT3Wd7cehO6DvkfyrJKGg4gOq0ige02qVLkGL1axGn5zKvFYWRARrMmb0uLyowJwoYFQS6bo\/3UCO2Ay2ulpTlMxqRE+QvLCtIG9jIrsX5ppyhoIKHwXY0MmEVn0iHMS9cb3TucrErUw4ItIRJda+m8nMtO1Ouju2eBcMbEVJeEVELAwuwmxyNoIDFc+n6Zc6kiNJulzA4zgxcHTfz8yWKH53CaECVe061EPLFYjFOnTlFTU0N1dXXJuF6vJxwOEw6HyeVyBebozVxpfr\/\/Ze1PSaVStLW1YbFY2LVr17aqPen1eoLBIMFgkFwux5kzZ1hYWMBkMvG5z32Oxx57jJaWFh555BEeeughbr755hd1HCX10c1RqCiKqpHpi\/nOpdi2dDywFvWMjo4yPDxMU1MTFRUVReNqjietojy6LEHsudGMNuVbY7YamJxQbi41W5TTeTabhbGxKf519FvcedMd6NpLfzBmr4VxlSZLd4WTERURNn+tl+mj0mm\/vKWWle9ZeXOAc0cHZceDVW6GuuSjFafXQo9Mf0xsboXBsXkOD8wSiDiprfFjT0NqcAEu9kaU7Q4zJsM0AKA1yP8wynaFmGmX\/m6gwc98r3RkGmkNMnO6dPWg0WtIDEtH3UIySaKmnJFlgf72acTc2jUH\/dKTb2JKAphQ7yM1VOzk9RY9maHia3BXWeDiY435q5md3SRvbS7llNMZdRgVFDIB5ufnOX36NPX19SW\/PSnTaDS43W7cbjf19fUl0tZms\/lF9wwp2XZ2OhtNFEU6OztZWVnhqquuwmQyUVVVRTab5Wc\/+xlarZb3vve93HLLLbznPe+5JAeUVx995plnitRHQ6EQsBbB5JVfYY39f3NEs9FCoVBJdKP2nUu1bfWU8h41l8shiiIjIyMcOHBA8sVXax5NqCiLxiQ07zdaTqMM5w6UO1TpxufmlJ1BzY6ywj7+9bFvkdlZWtuwV7pVYeFbSZvEFFb7sNa7M62i3zM+olxD8oaVz6O83i8ptpU3T3ANZTM9vsCR53p57IVejscXWdhhQ9\/kIa5Af2MNW1iSSIcBa\/LUCj1bBhnYvFavYVmm0bZsV5jcyvo7ltVrmPdYmCh38+iFBAefn6bv7FTh2Tl8FmYk2Kz91S6WJeDbTgk5jmC9BzFd\/F4aE+vO79ne0u8YJCJ7tWhnZmaG06dPSy74tmqbudLq6+vJZDKcO3eOQ4cOcfbsWcbHx7cMHZayPLTbarX+Sjid+fl5Dhw4UABkHD9+nPvuu4+vfe1rxGIxfvSjHxEOh7cEd87v9yMf+Qg\/\/vGPeeqpp0rUR2tqagiFQjz++OOFz1KpFIcOHeKaa66R3e\/VV19d9B2Axx57TPE7l2rbLuJJJpOcOnUKURRpaWnB7XZLbqcW8ShRlgPkssqXHk8oN49ancq9Ljq9lkGVPJtpU53pXx\/7Fh+56X1o29cni0UVsk+AKRWGAE+5gxEVtmq13p1gjZvhfvnIS6vXMChTI8nb5Kh846reqKVfohdmZSnJqeOD1O2M0N8+SbDMSVm5G5fRgBBLkB5fBhFcPjuTk3K9OSFmZfqOfLUeZmVqSuGdYebOSkQ7OoH4ZIxcuY9lo5nJuSSjPXNk03EaDjhZjUk4kqCBZYk0pC9kZVai8TQ1UbposeoyxWm2iA1hei1XHw+Wc\/hHEtefLl1AKZGDTk1N0d7eTmtra2HF\/MvaZmnrPDvA8PAw58+fx+FwFAAKWxVCSyaTtLW1YbfbtzW0WxRFuru7mZ2dLXI6P\/\/5z\/nABz7Afffdx1ve8hYAXvOa1xQ0ybZiauqjgiBw11138fnPf576+nrq6+v5\/Oc\/j8Vi4T3veU9hP5vVRz\/60Y9y\/fXX86UvfYk3v\/nN\/PSnP+WJJ56QTOO9WNtWjicej\/P888\/j9XpLZGE3m5oWz\/Ki8nhUJQKYU2EkEAVlx1Ze6eeCQtoJILpQeox\/eey\/Cs7HErAxpuIw\/HVeBlS42RxhOyjICmyld8cZsIKC4wnXORm6ID9e0xqip0MeFFC\/O6IISjAa15z01NgCUxsYCwwmLbsvq2Y4ncbU6kefziEupUjPrSJe7AXKSaC68ma2GkoUQeEig8HUAiIiGo8N0WEhrdezmgWDxcDJF8ZILBd\/U6vXEBuSrjFJ9dIAJCWECAM73CQ3ISq1Bi2ZTak3d7V1Lc0mCPxo1EsmVXpsqWuXk0MYHx+ns7OT3bt34\/f7Jbf5ZW0zO0AikSik5Pr7+0v6YaTmgEQiQVtbW6GfaLvKCIiiSE9PD1NTU0Ws3U888QTvf\/\/7+T\/\/5\/\/wjne840XvX019FOCv\/uqviMfj\/Mmf\/AnRaJQrr7ySxx57rKiHZ7P66DXXXMP999\/P3\/7t3\/LpT3+a2tpavv\/9779kPTywzRyP2WympaWFQCDAiRMnFJtI1SKeJYWueL1Zx9K8fFpJEAQmJpXrKovLyqk6l1u5mKrTaenrHZQcyzsfu94Jo8pINYNKrh5ExhUkoaFUd6fkXA0a+hWYqgGyCiwSsHbPlWxVYSFhd1noOSfttFKJLOlsjtNHi52WIAi4\/VYaWsN0L6XQ13jR6QS0goBOI6AFzEYdU+ks2YYQWRGyokgmK5LJ5nC6LZzojTIbFUiNLwDr70vzvoikzEWVDCmpxWUgMVn6PjpDZpbGS99Dt8\/M0qbLDTZ6EAcGiz4zJtee61y4lu5j0iv+ZLQ0CpKKeEZGRujp6WHPnj14vV7Jfb0cZjKZKC8vp7y8nGw2SzQaZXZ2ls7OzkI\/zMaeobzTcblctLS0bGun09fXx8TEBAcOHCiAKw4dOsR73vMe\/vVf\/5Xf\/d3f\/aWPoWaCIHD33Xdz9913y26zWX0U4O1vfztvf\/vbf4mzU7Zt5XgEQSgUsNRoc5QVKZUbHK0eMyg4HnfQxsS0MpR6ZEQZ3ZUTlWtM1TvK6Dgvn8v9l8f+i999w5vRa5yQk\/5xCVqBMRXgQbjJT6+CrADAqkJEAFC1M8T5NnnH5AnZGO+Vj6jMdoMsqAAgWOGSTLPlbUdziHNHBiXHdHoNwxKRpSiKzE8vs1iRoqtNOuW556pqOo9JX1fz3nLG+0sdts1lkqUuMpmkf06VjX6mTklIYftNxGOljiEzXfpu2o1iUZrNFLIhTA2BTsdXnsziCBlLQAQGo1ZS8tvqLY54BgcHGRgYYP\/+\/S8azvtS2Ebp6nw\/zMzMTKFnyGKxkEwmcblcNDc3b1unA9Df38\/Y2BgHDhwosAgcPnyYd77zndx7773ccccd2\/r8X27bdonRrfK1KUU8RodyFGC0KfezOGXQR3mzuYwsqoATxieUHZPLrVyIt9ksfPcXP6AjfAJB5nSCjX6Wo8o1IJ1Kv5LDb2FIJZpJqgA1wtUecgoACH+VvaBhIjleJs3nlrcZBTLQht1lLMncA6vDyIAMd51Or5WVhnB6LQyfl06TVjcFJBtc9UYtkzL7y8oskvTx0v2YfHrim+QoBK1AdqT4GXl2rE1mfZ56OvtXMEikpLxB6ZRaPuLJr8oHBwe57LLLXlWns9ny\/TA1NTVcfvnlXHHFFaRSKfR6PbHYGslmR0cHU1NTW2KyfyVtYGCAkZERLrvssoLTOXbsGO94xzv4whe+wAc\/+MFfa6cD29Dx5E2Nr02pxqOzKvORaQzKl22wKgeCVpcyDYdOp2V8TLm+k0gqgxdq6yrJZrMcO3mCg8Iv0PglJnYVOhCdUcugzASaN4NHQClidwVtir07ggCjAypsCMvyTker0zAgwwoAa9HOpIKEQzYln+Lb0RwhlZR+h+p2hVmWScdWNgRk0XcJmZ6qmp1BUhKAFnfIxmxvaZ3OU+5gUUJ6oqyqNM3lqrSRWyk+V1Mqimi18k8\/Wavr5CQcu8sjvQCz+m2F+sPo6CgHDhzA4ZBQM90mFo\/HOXPmDMFgkGuvvbaEsPPgwYO0tbUxPDzMqkqbxMttg4ODDA0NFUhXAdra2njb297G3XffzZ133vlr73RgGzueXybiSWSV6z8ymav1cRUotSeg\/CP1BW2q7NqDMlQ6eTOZ1iOVvv4BHpz4AZrq9UlUb9LKrsrzFmkJkFABYcQXVGS0a9yK0cyOXWHmFWhoKhsDjMtISAOEauyyEQuAxSqPtvOFnfQrsHEvKjWMKpSklmakJy9fmYMJmdSmXD9yuNol+XmgXJqgUViUqMlYik\/W4DMjTE5wTKhmNrrm7BILEkSgFukFmNlrpbOzs1D03s5U\/Kurq5w4cQK\/309TUxOCIBQIOxsaGrjmmmu45ppr8Pv9zMzM8Pzzz\/P888\/T3d3N\/Pw8uZxy7fGltKGhoULKMl+8P3PmDLfffjt\/8zd\/w1133fUbp3PRtp3j2Zhqe7HgAoNVWfM9mVYOzVcTyumrrEr9JhRWLs6GIj7m5lSE2KaL0zZzc\/N8+\/R\/kW1eS\/EFGgOkFPpaAJIyq\/28BWtdzI0rpQxFxoeUgQkalSqhRQV2bjTKPyuL3UC3Qm2orNojW2Atr\/UxKhFpALh8VtkUXKTGw6REbQcgUiUN7TfbDIzLkJqmJGosABmJor8zZGN1ZNOxNWCJFTtQfRCWzFa++qO1d0QQYEGCrdso0580MjvC3NxcUf1hO1re6QQCARobG2Un7XzP0GWXXcaNN95IbW0t6XS6qGdoYmLil+oZUrORkRH6+\/vZv39\/IXrs6Ojgtttu48\/\/\/M\/5q7\/6q984nQ227RxP3nQ6nTK4QMnxmJUdz6rKhD2rADwAdfE3NcdktarUmJx2ensHSj5PJlP818Fvs9AyQVKhZgJgdZtVKXKsKsi7ypYgs+PyvGx2t4leGbQZrE3Icmg0AH\/EKUsoCuANW8jIpNI0Gg0TMg4CwO2TjigAqur9BaXIzeYLyUezMZl7Ea5zkk2Xnqc7bGdO4hxdYRsLEg7dX1F6bN8OD9mFYscTNOd4NFZOfl1mdxpJJ0vfB62EtLvGoGE1G+fyyy8vwHu3o62srHDixAlCoRANDQ1bnrR1Oh3BYJDW1lauv\/569u\/fj8ViYWhoiGeeeYbjx48zMDDA8vLyllBhW7HR0VF6enrYt28fTudavbKzs5Nbb72VD3\/4w\/zt3\/7tb5zOJtu2jkcp1ZZNZ8kqrOaVyI0BlhbkIxqNRmBiUrkvZmxMeUKfUeFwcziVU3U7aisUfxSPHHuUw8uPoFOoyftrPbKTK4DOoN67o1OBQFc0+slITLh5q2kNkVRw8qEqt+J1plblx+p2hmRTfHqjliEFWYXohHSUp9EITPZKO7OKBh9zo9KOJyEjsR2ukhHBkxHHE5ZL9+P2FC9STH4rq+j4\/hPrEXOk3CO5v9Ry6Xuucxg4cOAARqO6mu2rZXmnEw6Hqa+vf9GTdr5nqK6ujquuuorrrruOcDhMLBbj2LFjHD58mM7OTmZnZ7ekeCxlY2NjdHd3s2\/fvgI4o6enh1tvvZX3ve99fPazn\/2N05Gwbed48g9JCVygytOmMOECROflC5CekJ2UAorLH7YTX5U\/vsmkZ3hYGYo9OaU84adSyqm+hoZann3hMI8u34+hQfpcojPKDbIVOwOsKkDSzXYDfTLcZnmbkehBKToHpRqLVmCoR\/4+hKvdzCj0MK2uyO+7flcZKzIUOdWNfqZkpL9rd4VZlFEmdXulU1JGu5alceljpWRqVxkJBgOr18LKYOmCRZguThe6am1841Sx03A4pCOXxHzpPXJH3Iqy1q+2LS8vc+LECcrKyqirq3tJJ+18z9C+ffu48cYbaW5uRhRFLly4wMGDBzl9+jSjo6MkVFhL8jYxMUFXVxd79+4tMKwMDAxw66238o53vIMvfvGL25ZR4dW2bXtXlCIeNceTSMg7DqNNTyohv7qxeZWh2G4ZiGreyqsCiqsnu8PK0KAylY4ax5vJvDZxTE\/P8K2j\/4fVXSOwAeDmrXQxrqLwqVb\/qWgOklK4j5WNfkW0WVmtlxEZ4k1YYyqIzco7D3\/QJTvm8lqZGZL\/blrh+Tpd8s\/PqJeO8LQ6DZMy9aLqpiCixELHW2ZnTqJx1xG0sjBQuq9QjQs27cZd7SQzW+zcR7NGnj1Z\/JkUlFrQCGSXS59fUpuWlLTeDra8vFwiwfByWb5nqLm5meuuu44rrrgCp9PJ+Pg4hw8f5ujRo\/T19bGwsCB5nyYnJ7lw4QJ79uwp6N8MDw\/zxje+kVtvvZV77733N05HwbZVA+lGU4p4hnrlqVUAVlbk0ztmlxEUMmmJjHKkIOiV83h2p7Ljqq6OMDsvj8Ty+tyMjirLVw8Orl+\/KIr89OBP2Nncyn7ht0hPCdiCVuiXdzwOv1VV3iAmsVreaBYJEsuiY\/is0Cd\/o5WYDkwWPb0K0VZ1fYD2o9LvgM1tpF\/m2gxGLcMyvGxmu4GhDumxmtYgEzJj2bj0OxqqcDE+U5rSC1e7mD9T+rk2UbqY8gbM5DYEQYLLwjcfK3X2okS9z+O3IKYkUndlHpaWlhgcHESv1xcEzNxu96s6UeZ1fyoqKqitrX1Fj53XGLLb7dTU1JBKpQo0Pnk6mTyztsfjYW5ujo6OjiKWh\/Hxcd70pjfx+te\/nn\/5l3\/5jdNRsW3neJQaSHO5HBcuXGCoZ1BxH8sS0NK8GVQK+zqZ7vO8zc4r12\/SaeVozKjS0FlTU8bUlLzjCQS9jI2VTsrtFzoYsg\/x5v3vUI12AjvcTE\/Jp8mCNW6GJZiU82a2GRRBAQaTThk0ELTT267A27ZTWjo7b9Oj8ue+ozFCh4z8Q93OCH0npY9b2xKm97j0fTfJqNl6QjameqTfBzntn9xyaRrH7DCx0l\/q2LTRKBvdc5szQt9wKegkLvG+Oz0mkCBNDVYH2bNnT4GeZmZmho6ODjKZTJGk9SuZjss7ncrKSnbs2PGKHVfODAYDkUiESCRCLpcjFosV5B3i8TiiKFJWVlZYGE9OTvKmN72Ja6+9lv\/4j\/94ReS2f9Vt2zmevG2GU6dSKU6fPk06naa+qo4humS\/u6jA06YxKL8U2c35jk2WSChDMqemlYEJsVhMcVwQlI+\/Y0cVEzI6QEtLy7RNH8ZiMlNmvxyWpAvI02PK5+BQIQStbg3SfmxQ\/hx3hRUJPyM7PMwoOL5lGQgyrDkIOaYFjSAwMSCf\/luYkz9mYkn6uZosesbk2Kt3eBg6UTq5+8qdzEvUkew+CzGJ+xquc5M4XxwFOcrspDewX6zWlXFmvNTBCAIsTJVGUIIgfT151oKN9DRNTU0sLy8zPT3NyMgI58+fx+l0FpyQ1Wp92dJei4uLtLW1UV1dXULrvx0s3zPk8Xhwu92cOXOGSCRCPB7nhhtuQBAEjEYjFRUV\/Od\/\/udvnM4WbdvGg3k4tSiKLC0tceTIEfR6\/RpDqsLcrzPrScqkP0C9eXR2PqZwThqmJuWjCbPVyKgCh5ter6O3b1Dx+CMqaTa1wqcg5Dhx9jhPzP8X+j2zbBZijTR4mR6OyX5fqxMUxdwAFqPKabiVJflzFAQYVXBq5Tt8DHXLH98s0xQJa+AAOaSbJ2hjbkSmMTRiZ7RTesFQ0xokJfM+rcjUqILl0qjFyA53SR0HQJ8t3b8\/sqEWFfHy1492kF4pTan5AnbSErU4m8x9svpKm0Xzqaba2lquvPLKAvorGo1y7NgxnnvuObq6ul7yhsyFhQXa2tqoqanZlk5no83NzXHu3Dl27dpFa2srl112GT\/\/+c+prKwEoL29nUgkwnve8x46Oztf5bPd\/rbtHM\/GVBushbFHjx4lEomwd+9edDqdYg+PmrJiSqF5VKMVmJiQnxSDFS4yGfnCdUWlX\/GHWV0TISmRy89bKORjdEQ+BaXX6+ns7JYdB4hG11baKysrPHDo23S4foY+su4I1HR3qnaFFZkEwjs8DHfLR3WhKjcDnfJotbrdEeYUmA68Afn+G5vDRP85+RSeXi+fxqys9csK6pmd8qvUbEK6XhiocjErIzURn5WGa4sSaEijRS+ZZtMtr0G3NTYz\/9A5zdJqiuhkqaPzydwvh0wTtcWv3jC6Gf3V0NBANpstachMp5X74ZRsYWGBkydPsmPHDklZ7e1k8\/PznDlzhubm5gKJcTQa5X3vex9ut5uOjg4mJib4+c9\/Tm1t7baGqm8X23aOJ295x9Pe3s6uXbuK8PzpFfnJW6\/C06YkEOcJ2hUdi82j\/EJZ7crjLrf8pApQXqEsvNXYWMvKijwUPBDwMj5ePDH3DvTyYNd\/Mld5Go05R79C7QUgo9LP4AooT1yesHKPkijR1Jg3g1GnKL+wozkky71md5rpU3BKMzJRniBAdlE6DLa6jYx3SS9EAmXS1xmodBKVOJbNY5ZMs4UavOQ2ibVZfFbSIzOg0fCgqOP80Bw2u5nodKlDs9tkFloyLQFSEY+SabVaAoEALS0tRQ2Zg4ODHDp0iBMnTjA0NHRJHGmxWIyTJ09SW1tLVVXVJZ3PK23RaLSgxpqXj15cXOStb30rgUCAH\/7whxgMBrRaLVdddRX33HPPSxK9\/fu\/\/zu7d+\/G4XDgcDi4+uqreeSRRwrjoihy9913E4lEMJvN3HjjjSXKpclkkj\/90z8tpEtvv\/12RkeVEbWvlG1Lx5PNZmlvbwdg9+7dJUqIShGPxqRcvFdCazl8yp3cWr1y\/SWVUk6DxZNqaqIqiDmH8qRfVyf9wmezWQ6ffZqJiiOkQ\/IRldNvVezd0Rk0DF6QTyXqDFoGOuXHnR4zvQqOr363fP8NwIJCb1J1c4iMDJvDjpYgs2PSzZ9VzUHmJ6QjMFfQgJyfXJBhMfBHpBcXkTqPZMRlkiCNC1av7aOrIsiDR\/sAKA8HJPdr0ElHaxmJHi2tUafK3K5kGxsyr776aq699lqCwSBzc3MFjrSenh6i0agsVDsajXLq1Cnq6uoKaartarFYjFOnTtHY2EgkEgHWIN9ve9vbsNvtPPjggwVF0ZfaysvL+eIXv8iJEyc4ceIEr33ta3nzm99ccC7\/8A\/\/wJe\/\/GX+5V\/+hePHjxMKhXj961\/P0tL6u3zXXXfx4IMPcv\/993P48GGWl5e59dZbX3Sz7Etp287xJBIJXnjhBeLxODqdriCgtNEU+3j08mkTQSMwL9MgCKC3KBcGV1aVaxsTk8q1ETVi0MFBec0bgMlJ5cbTlRVl0ThRyPLwyf9mJPIElppSJ+ittCuyHdTuCrO8IO8YaneFWVIABtgDBsX9S4mr5a2y3s+YAkQ8JlFgz5vNJr+gsNvlx7Qp6ffBX20nKuN4ViUg1ACCBChFZ9Sy2l+atjQkVlipK+ML\/3Om8Jlbhu0iJdPMHJdYYFlklEdfrJnNZioqKti\/f3+BIy2ZTHLmzBkOHTpEe3t7kWxB3unU19dTUVHxkp7LS20LCwuFcy0rKwPW0tdvf\/vb0ev1\/PSnP31ZKYduu+023vjGN9LQ0EBDQwOf+9znsNlsHD16FFEU+cpXvsKnPvUp3va2t7Fz507+67\/+i9XVVb773e8Wzv8b3\/gG\/\/zP\/8zrXvc69u3bx3e+8x3OnTvHE0888bKd91Zt2zkeURRxuVxcccUVsr08KYWO+5wgf0kGm1Zx4luKK0\/ck1Py9R+b3czYqPxqP1IWUCQGLSsPKToWv99Lb2+\/\/PFtVs6fly9q6nQ6zp+\/AEDHhXZ+fPo\/WGpow1q2vuIeG1JrOlUjJZUfFxFZicrX18JVHgYUKHxcbvlJs7IhIKuyajTrGDov19ejY0SGWsdfbmduWPp9sDqko+pAtYvYSClyzuIyEZXoaYo0+EpqSCaXiXQmw1\/\/or34XAXpFPLSbOk52l1GMhJURZeaZrsUy3Ok7dy5kxtuuIG9e\/diNBoLsgVHjx4tAAnKy8tftvN4KSxff6qtrS04yHg8zrvf\/W6y2Sw\/+9nPXlFG72w2y\/3338\/KygpXX301AwMDTE5OctNNNxW2MRqN3HDDDTz\/\/PPAmhRDOp0u2iYSibBz587CNq+mbTvHY7FYaG5uRqPRyLIXKGnxZBQo\/J0qcgZKctZmm0ER0VZe4VPcdyiizFhdViadSslbzQ7ltERTU50i++7OnS0sLhZPUs8df5afdv8buV09VOxzszgjH814I3bZxkxYE3PrUxjf0RJUBBUEwi7ZMaNZr9jw6lQgO63fVUZCpqG4dldYNsoKV0rznwkageSc9P6sdumfU1m9R5LdwGIorS05alx8qWOK5U2OI70qkR4RILUo0TwakL4fL3XEI2eCIOByuaivr+eaa66hpaWF5eVlzGYzfX19HDlyhN7eXllWgFfTlpaWCqCHfCowmUzye7\/3eywtLfHwww+\/YtpF586dw2azYTQa+fCHP8yDDz5IS0sLk5Nrv4U80CFvwWCwMDY5OYnBYChQ+Uht82ratu3jAXn2AqUaT0qBtNJoUwYexBVW7IEyBxMKKEmzyr5FUTmvmsko9wdlJSC3G00rJwhz0SwW6Vx0JpPhscMPc\/1rYlj3ehFGKonPle7L6BARx+UniUCli4kx+YjOaJa\/Pzq9hsEu+WinYWeEC8el05AGo05R7E5pkSJmpK9HEGBuWLrnp7LJz1yvdOSbikq\/lxqJQr9GJ7A6VBwFaa0Gvj8xx4Xh0gVOdKo0debxWiUh1g6HCVECeGj1v\/K6O3Nzc3R2dtLS0kIkEiGdTjM3N8fMzAwnT54sYgXwer2vah9MvpG1urq6AHpIpVLccccdTE9P88QTT7yiKq2NjY2cPn2aWCzGj370I973vvdx6NChwvjm3ipRFFX7rbayzSth287xbLwpshGPkghcXH6CF3TyAZ5GKzAxKZ9KszqVHUtCBTgwqVL\/6VPo7xEEge7uXsXxnp4ele\/Lj2s0Gjo62pmbm8doNHL9Fa\/HOFnLyvTasxA0sDwnf1\/XCD\/lr8\/hMSvq6jTsrqCzTb6+tSqj+glrnG+dMowDgTInQzJOyeWzMiwjG1HZFGC2Rzq6tTuNSI2EatysSjTm6s0a5iXuTbjBT6Z\/Hehh8Nn4VqyHuenS98xqMxGVqGEFQg5W+0prTRazFqlq5CsV8eRtdnaWs2fP0tzcXECE6fV6QqEQoVCowAowMzNDd3c3yWQSj8dTaFx9uQr3UpbniausrCyg0tLpNH\/wB3\/A0NAQTz31VIGT7ZUyg8FAXV0dAAcOHOD48eN89atf5a\/\/+q+Btagmf18BpqenC1FQKBQilUoRjUaLop7p6WmuueaaV\/AqpG3bpdpAXQxOyfGsKECtswphvTdsV1TazKEccYyPy4evDqeNoSF5GGN1dbkiMWhtXTWxmHzXfVNTveL3m5sbmZmRd6qtrc2F7yeTSR5\/9n\/4xcC\/Iuy8gK0sx45dYaIyRXOAQLVNkfCzqiFIJi3vuDIKhKWRKo9iQ2tyVaFuJJMugzWwgly9zyHDt6fVa5iWIQv1BqWjicrmAEi8V2bD+meGSjf\/OHiCnpk55qZLHUl5OFjyGcizUhtkot+Xs8az2WZmZjh79iwtLS1Fk+NGy7MCNDY2cu2113LVVVfhdruZmJgoIupcXFx8WVNyKysrBXLSPGVPJpPhQx\/6EJ2dnTz++OP4fMqp9FfCRFEkmUxSU1NDKBTi8ccfL4ylUikOHTpUcCqXXXYZer2+aJuJiQna29u3hePZdhHPRpMTg0spOJeoAmpNKZVm91pAQc1gakZhRe+yMjkhj1irqg4zMycPIw6GPPT2yR9br1deH3g8yjlnt9ulOO6wl05ImUyGp557FI3mcW6\/5XdwN\/iIdku\/LkaTCZB3jFMKKbg1MTiF2lHYyfRQTHIsUO5kQCZq0QgC0zINniCPgtPptUzKRDtVLQGmZcAIyxPSKDe9FB5bEFkdWcuFJSos\/P+OPcFSPMGeXc0MSSww3E4HC5QuHKRYqQEEmV60VyrVlnc6O3fuLKlDyJkgCFitVqxWK9XV1UVEnUNDQ+h0ukIk5PF4XrKU3OrqKm1tbUQikQI5aTab5c477+TUqVMcPHhwy9fwUtonP\/lJbrnlFioqKlhaWuL+++\/n4MGD\/OIXv0AQBO666y4+\/\/nPU19fT319PZ\/\/\/OexWCy85z3vAcDpdPKBD3yAv\/iLv8Dr9eLxePj4xz\/Orl27eN3rXveKX89m29aORyrVJuZExbz98oL82JKEDkre9GblyX12NiY7VlbuZWpW3vEYVXqL1GhwUillNNnEhLL+z9CQPG+aIAh0dcmzIVgsFn7x1M+Ix+PU1zWws+waFjsdZC6esidoZ0BBdC1U42BcgT8tUuVlblwadKDTaxhWiHZCFR7mRqUdSO3OEMPt0t8tq\/UyPRCTHNuxM8jYOWlnZpIhkA3XelgcKb1Go81AVKIeFGrww9Aki3V27nniUbIXIyIN0pOpnOihKFPPzMoszF6JVNv09DTnzp27JKcjZZuJOvOEpp2dnaRSqSJC0xfLFBCPx2lrayMYDBa0f3K5HB\/96Ed5\/vnnefrppwv9O6+0TU1N8d73vpeJiQmcTie7d+\/mF7\/4Ba9\/\/esB+Ku\/+ivi8Th\/8id\/QjQa5corr+Sxxx7Dbl\/vI7v33nvR6XS8853vJB6P89u\/\/dvcd99924JPbls7HilwQWolJcl3BaA168hF5SdpJUbmjEIqzem1MDSrMLlrlIEDSsSggiCowqT7+koZifMWiQQVx2tra+jtla8P7Wxt4dy5s7Ljra0tHD12DICe3m56ertxOp1cvfe1aKcqCFd5FO+r2SY\/KWi0GkYUWLAbdpXTfVI6RanRaBiTSXsBmEzyNTm9ST5to9dKL0D0Ri2TXdLn6vFbGJdwPOWNXhY7St8bh9NAR62Jrz72i6LPtUgvUBJL0u90QoaFPSnTS\/VyRzxTU1MFppFAQBmleSmm0Wjwer14vV4aGxtZXl5mdnaWsbExLly4gMPhKDghm822peJ5PB7nxIkT+P3+grR2Lpfj4x\/\/OE899RRPP\/30q9rg+o1vfENxXBAE7r77bu6++27ZbUwmE1\/\/+tf5+te\/\/hKf3S9v29LxCIKAKIpotVqSyeIfl1J9x+yywnhMep9agWWFIvWyAuWHL2xjSEENYVmhcVONGHRHbSVdXRdkx5ua6jj2wnHZ8erqCsbG5KOtcDio6HjsDuXJKC1RY1tYWOAXhx5Eo9FwleNaDFUBcpMhssniH7zVaWK4S945\/qZbgAAAWXJJREFUVDZ4Gb4gP56VYSIAqNsdpu+0dIrOYjcw2C49ptEILIxJR5gWu4FRGTBCzc4g4+ek97kk00wqlWYzukz8ZLKLnx89WTK2uiC9+InLLKYWJODpBpOWhITj+WVZC9Qs73R2796N3+9\/2Y6zWTsnmUwyOzvLzMwM\/f39GAwGVY2hRCJBW1sbPp+PxsbGgtP5xCc+wcMPP8zTTz+97UlLf9VtWzqevOl0OlY2SRwrQal1FvmUltVtQlTo05mZV4ACW5VD01hUeuIBqKwKcb5T3rH4\/S665BUe0KjApFdW5K8JlNkOBEGgVwEN53DYOXfunOx4TU0Nz7\/wLABWq5Ur9l6HPb2Dua61+1XTHOTsUfloLKcgBucLOxX7hrQa+WdS2xKm+wXpSKm8wcN0t3SEVt0SZKhNOrKVewyROi9Lw6XADoNFT2yDAqtGpyHXaOY7XYcZOi+FRDMxOVa6H4vFyHK0NH3s9lpJSQArfEEbLErs\/2VMs01OTnL+\/PmX3elImdFopKysjLKyMrLZLPPz88zOzspqDCWTSdra2nC73TQ1NRWczt13380DDzzAwYMHC0iy39jLZ9va8UjVeJQIQgUZwS4Au88KI9Jhi06vYWJSHhWWzsnXjTxeO2NTg\/LnpFVG42x2rJttYEB+31arhQsX5JuLysrC9PTIRzstLU10tLfLjre2tvD8kaOy42bz+gp6ZWWFp597FIBIpIy9DVezmJKf7DxBO+O9MdnxQMROTIZDzeGxKLJUryroMdltVqZlgBBZGYSc2WZgQkY2we2zEJdwPOVNPpbOrzkxS6OL+\/ue5cwjPRw4sA+GSx1DVWU5E92lUXd5WZDFrtKIx+bQgkRTqdNtBIl1kNX78jieiYkJLly4wO7du1915JdWqy1EO01NTSwtLTEzM8Pw8DDnz5\/HbrcTj8dxuVw0NzcXMitf+MIX+Pa3v81TTz1FY2Pjq3oNvy62LR2PEpx6dUGBBVeGMBFAr6D86Qk7FOWmo1H5GkYo4lZ0PEajfK1Bq9XS0yMPZ6uurqCvX368ubme48dfUPh+lSIbrcvllB0DiCuAHgRBkI2mxsfHsFpP09PzAJUVVbTs2I9uJch8r4Y8KrZih59zMvdNoxEY61MQomsIyqqMhirdjHZLf9fqNDLULn3OnqBNVvCtqiXA6GnpSGhxNCb5uVEQyUbsHGeIHz\/+48LnZpM0q4DH5WaC0nfb43SwKNE5FAr5mJK4\/1qtdBRpeRnqO+Pj43R2dhZJQG8XEwShwOxcW1vL0tISp06dQqPRMDc3x\/vf\/35MJhNWq5UHHniAp556itbW1lf7tH9tbFs6nrxthlOvrq5y\/lSH7PY5paKiQsrK7jGBzPwsCDA2Kp+uMpqVb+HQkHxjZDjsZXBoUH48ElR0PDqdchpOTe20VyEacnvcnDsnHw3t2rWTs2fl03DBYJCenl6GR4YYHllD1fl9fnY1HcCWrWRyRL62U78rQt8Z+YhmVqamAhAqcxEdkR6vaQrJyluX7fDSPyf9EogyEgNlDV6WByXSbE49vbkp\/rPtpyQ3adbIISsFUQaqrpUGZ8ixUmvJIlUZs77EqbaxsTG6urrYu3fvK95YeamWTqdpb2\/H5XKxc+dORFFkbm6O\/\/t\/\/y8vvPACBoOBL33pS9x+++284Q1veEXZCX5dbVs2kOZtY6ptfn6eI0eOYNLIo6SSCk2KaQWBNp0ClNofcRKPKzSsKjBWl5UrE4N6vMoRx0aK882mxmbg9XoKpKBS1trSxNSUvENtamqSbN7NmxpJYl9fqcOcmZ3hqcOPMLD8PL\/ou5dEzTE8++fw1Ips5HbVKhC9BqscTMlo62g0AuMKSLe4DAoMYEmmQdbmNjMhg2ZzedYbODU6Dc4WJ+PVMzxlPs7XH32gxOlotVqGB6XrVjPj0u+JFCXO2oD0++yUYHMHWMquMD09\/ZJQ4o+Ojv5KOZ22tjbMZjM7d+5Eo9Gg0WgKrApPP\/00jz\/+ODt27OALX\/gCP\/jBD17tU\/61sG3pePKptjycenR0lLa2Nurr6\/HY5V\/0uXn5lFg8Ll+nSYvyE6zLr0x9PjYqvzIPhZXTD0oRicGgp7NTHnXQ1FTH3Jz8JNvQUK+ohqrWVKoEWtDr9SWiUxtt586dTEzIAwPsdtsasuj0cX729Pf42cl\/5Wz2W+QazhC6Is7cyigamcyoPyj\/\/GtaAizIMCgEyp2MyaTgIjs8zAzGJMcqG32SDAeCAIsjMZxVDlKtWX6w+nM++8RX+eHzD2OxSEcX1dUVxCVkDLQaDfMyWkMLM9Kp5YQMQjMn0yRt8Vnp6enh4MGDnDp1itHR0RLE6FZsZGSE7u5u9u3b9yvhdE6ePInRaGT37t1oNBpEUeQb3\/gG99xzD\/\/zP\/\/D1VdfzZVXXsnf\/\/3fc+bMGf7wD\/\/wJTn2F77wBS6\/\/HLsdjuBQIC3vOUtdG1CEb3\/\/e9HEISif1dddVXRNttZzO2XsW2datNoNKRSKbq6uti\/fz8ej4eRJfmeFwEDSLJUweKCfPPoskLUojPJp7O8Pgejk\/KoLVFB2E2r1SrS7NTWVtHecV523ONRjpYSCWXuOKmIJG9en5f2dnnHsmfPbk6caJMddzjklVbXnFbpdS0uLnLk+LNce22O5048h8FgoL62gTJ\/DVYhQHbOQnLewKAMUwFAWmEiDVV6WByXfs6+kJ0FGVLQzfB9jUUkF0mDO8sTA2c5duZUyXdWlqXvfSAQYHyoNIoNhwIsT5RGIhaLkflJ6ah3YVJ6YZCWec937Kyl4qpqVlZWmJmZKdRn8j0wfr8fq9Wq2AMzMjJCb28v+\/fv3\/bpqEwmw6lTp9Dr9ezZs6fgdL797W\/zqU99ip\/97Gdcd911Jd97qQg0Dx06xJ133snll19OJpPhU5\/6FDfddBPnz5\/Hal1fmLzhDW\/gm9\/8ZuFvg6G4JnzXXXfxs5\/9jPvvvx+v18tf\/MVfcOutt9LW1rYtGkFfrG1bx5PJZOjs7EQURa688kqsVivZbJbkknzBO5mUn+jn5+Sdy4xCOkyJ\/DNU5lZ0PBMTCozLjdWKUGWXS5kGZ2xMHgxht9sUHUdLcyPnz8s7tcbGRp577jnZcaUXXqfTKSLt1JxWNLpWM0mlUnRcaKfjwnqd6bprr2N+Noq\/MoTD5MOQc5JbNhGf1mLQmJgdlH7GggAzMvQ5gkZgVmbMFbAyszpNqmWJ6dQUfRP9DAwOkRvI8ZrrruVYZ6nT0et09PdJ1\/U0Mj+38rIInRIRYnkkyGJ3aQTj9VtJLZd+rtEKrMpQRuWbRzfS0mzugTEajfj9fgKBAE6ns6gHZnh4mL6+Pvbt27ftnU42m+XUqVNotdoip\/O9732Pj3\/84\/zkJz\/hxhtvfFnP4Re\/KG4O\/uY3v0kgEKCtrY3rr7++8LnRaCxRWM5bXszt29\/+doHm5jvf+Q4VFRU88cQT3HzzzS\/fBbzMti0dTzwe59ixY+j1a\/kWo9FINpsll8vhqw9g8VlZlUipLMWk02kGs45FmTSc3qBlTAFKPavglAxG+QlYjRjU6VSukYwooOx8PrcizLq5uYljF9kGpMzjccuOASwsxGTHzGazIuhg9+5dnDxZOiHnTaqhL29lZRHFulQiEedC13kuUOo0L7vsANNTs\/g8fmwWBxaDDZ1oRExrMGltTC1PoavWoTfo0en0hfNwOGwsJEZJBFdZzaywlFgkthRlPhalwVfHc89JN+8uLUlP8HV1O+jvlU6\/zs1Igx4MWunGTrdLGtHmCziIL5fuy+2zIKakz0uqj2dzD0xeruDMmTXl07xcwerqKoODg+zfvx+nUznSfrUt73QEQWDv3r2FRdKPfvQj7rrrLn7wgx+8KlxlCwtr88\/m9OTBgwcJBAK4XC5uuOEGPve5zxVYH9TE3H7jeF5ii8fjeDwe6urqeOqpp4jH45jNZjQaDa2\/s4eaW+p57sfPsNy+wHJ7jOXJJQSNwFJUOhqyeS0g43g8YTsjI9K9NnqDlvExeaqcZYU6iBoxaFShvhMOBxTRcA0NtczMyKfp1LR\/+vvlo7RgKCiZCsvb7t27OHZMHsKt18vDx61WK+0KfUM1NTWMydxvp8Oh6PAWlxYZGRthZKz0vl133bU8d066H+mqq67h2DHpCCwvebzZTCYTPT3S99Dn80k6HqvVwsiwdAQcl4heAEwyiDanw0xcolnH7TPDeKnj0Rp1mJzKtUqtVksgECAQCCCKIgsLC0xPT3PhwgXS6TROp5OlpSVMJtOL5kZ7uS2bzXL69GlEUWTfvn0Fp\/PTn\/6UP\/7jP+Z73\/seb3zjG1\/x8xJFkT\/\/8z\/nuuuuY+fOnYXPb7nlFt7xjndQVVXFwMAAn\/70p3nta19LW1sbRqNx24u5\/TK2LR2P1+vFbreTyWRwu90cOXIEr9dLIBDAaDTS3t5OxYFqGt7TgEajYbpjgv5n+pj84QVmJJiMzTI09wA2jwlk5vhAuZMZmbQJwMiwfFSiRAxqNpvoUUCkVVaVMzomHy0pFf51Op3iBN3UWE9np3wqLBwOKb7USqgos9ms6Fh27typGIkpoexaWls5KtPM6nA46O8flP2uEped3JjBYKCrS7oO1tRYT3u79FhKprhfU1NNX6f09U2OSEfc6VXp1LEclNpuNyB1dItXXqFVyvIKotHoWrS\/e\/du4vH4i6oLvVKWy+U4c+YM2WyW\/fv3o9OtTW0PP\/wwH\/zgB\/mv\/\/ovbr\/99lfl3D7ykY9w9uxZDh8+XPT5u971rsL\/d+7cyYEDB6iqquLhhx\/mbW97m+z+touY2y9j29LxzMzMYDKZ0Gg0XHbZZcTjcaamphgYGCAej2OxWLDZbKTTaYxGI4HWMIHWMFf98XWMdU5z6pFuTj3aXaC31yqkxHQm+dSP3WMEmRp8IOhiaEy+QK+EWKurq+TU6dOy4+mUfJFcja1g165WTp4s5QHLm8\/vAwUl1fxkI2VOp0Oxd0ctGkqn5ZGFNTXViiwLSYVm1tbWVo4clT5uU1ODrAOprq5maEg6Kq2vr6XzgvT37DLSx4IgMDggHbFZZWDO4VCApSnpOuLCtHTNSsxIOySTUSvpeF6MDk9\/fz\/Dw8NcdtllBcbjS60LvVKWdzrpdLrI6Tz++OP8\/u\/\/Pv\/f\/\/f\/8fa3v\/0VPy+AP\/3TP+Whhx7imWeeoby8XHHbcDhMVVVVQdRxu4u5\/TK2LeHUH\/vYx6ivr+fP\/uzPePLJJxEEga9+9as8\/fTTtLa2Ul5ezvj4OM8++ywnTpxgeHi4IC1Q1hTg1o9dx6d\/8Qd8+rE\/4LY\/vw5HWB5lpQSlFmS6wAECYZfsmF6vo6dHHn1nscqnPbRaLZ1d8vxpzc11ijBYJVZmgC4FiLbP72NwUF5CobW1hVRK3nkoRUNut0sxElP6Uap9N56Qvx9+vzxLcnl5heyYEhfc\/Jx0raa6upJYTHpsISbtRMrC0oVls1ke0SbHSq2ToW2\/VJ62vr6+EqeTt3xdaO\/evdx44400NDSQyWQ4c+YMzzzzDO3t7UxNTSn2gL2UlsvlOHfuHMlkkv379xfqwgcPHuT3fu\/3+Ld\/+zfe\/e53vyLnstFEUeQjH\/kIP\/7xj3nqqae2RDo6NzfHyMhIQThvu4u5\/TK2LSOeb33rWxw8eJAHHniAD33oQ2QyGbRaLZ\/85CfxeDyYTCaqqqpIJBLMzMwwNTVFd3c3DoeDQCBAMBjEbDYTqvXyhjuvBuAtf\/4ajvz8As89fJ6e02MF6pZFhbTVSlyenkdvUGhyDLvp65ePHObm5OlgGhtrOaeQrtIpyXdrNIraOvX1tfR0y483NjQwMyMvU7CyIn8\/1KKh5uZmnn\/+iOz40JA8w3ZzczNHnpdOs7lcLkUEn1zNCJB1EgArqzL1QpuF3t5BybFIOMS4TNpsaUGGEdtkBQmRt\/LyAEtd0pP3ooyIHTIMC1uVQxBFkb6+PsbGxjhw4IBqk7BUXWhmZobe3l7a29sLMtZ+v\/9lqQvlcjna29tZXV0tTNIAhw8f5l3vehdf+cpXeO973\/uqpKXuvPNOvvvd7\/LTn\/4Uu91eSF87nU7MZjPLy8vcfffd\/M7v\/A7hcJjBwUE++clP4vP5eOtb31rYdjuLuf0yti0dj06n43Wvex0tLS2cOHGCdDrNVVddxT\/90z\/xd3\/3d9xyyy285S1v4XWvex0VFRVUVFSQSqWYnp5menqa3t5ebDYbwWCQQCCA1WolXO3hbX9yLW\/7k2uZGVvgyCMXeP7h83SMyKd3JiflJ+FFCQbgvDkc8jl1m82iGA05VWDUaqSfShDtYDCg6HjGxpWQdD7FqKO1tVXRsSixMDQ01NPdLR\/lra7KQ9qbm5s4clQaeVZVVcnAgHQE53S66OyUPmYoFGBwQNoRlpdX0NsjXfcTRekJzu\/3ykZJ6YR0VO11OlmSQLR5fFaSK9J1pMySnACcuuPZ6HQuu+wyVaez2fJ1IZfLRX19faFfaGJigs7OzkIj5UtVFxJFkY6ODpaXlzlw4ECh\/+Xo0aO84x3v4Itf\/CIf+MAHXrVayL\/\/+78DlMC2v\/nNb\/L+978frVbLuXPn+Na3vkUsFiMcDvNbv\/VbfP\/73\/+VEXP7ZWxbOh5Ye7He9KY3sXfvXv73\/\/7fGI1GcrkcR48e5Uc\/+hGf\/OQn+eAHP8jNN9\/MW97yFm6++WbKy8spLy8nnU4XIqG+vj6sVmshErJarfjLnNz+wau4\/YNXMTu9wKFHT\/Pkwyc5ebSb7MX8ucVuYHxKfrU8rAAs0MiIiQHU1lXS1iYf8UxPyytuNjXVceGC\/Ore6VR2WkMKabSysogiRLupqZHDh+V7e5YVJCdCoZBiVBIIBGQdj9frpV3B4SUV1FkrKipkn1NzcyPHjp2WHNtRU8PMtDQk3OfzyTqekWFpUEZVVSUdUWlHNiMjmS3H0eYPOoj3S38nPi+dzrP4lVNtoijS29vL+Pg4Bw4cKGpwfLG2WcZ6ZmampC7k9\/txuVyXXBcSRZHz58+zuLhY5HTa2tp429vexmc+8xn+5E\/+5FUtwIuiMiu92Wzm0UcfVd3PdhZz+2Vs2zoeQRB46KGHKC8vL7xAGo2Ga665hmuuuYZ\/\/Md\/5OTJkzzwwAPcc889\/NEf\/RGve93rePOb38wb3\/hGwuEwkUiETCbDzMwM09PTDA4OYjabC+kBu92OL+Dkd957A7\/z3huIRZd55tEzPPXzk0xNzzB+blDy3MIRD\/3D8iv0wUF5JJxJAe3m8boU2aq9XpfsGKwVhOWsvr6Onm75+k7NjhpGFZpSZ2bknWUgEFB0LHV1tYpIOSUWhabGRtlIyuGw094uD\/2en4\/Jjomi\/GSXVdAJmpqSpinyeT1My4zJMVK7nHZmZdRb5RBtDodJEkptdxnJyNBCKYELRFGkp6eHycnJl8zpbDaDwSDZL3T27Jrybb5fyOv1FoABSud74cIFotEoBw4cKKTwzpw5w5vf\/GY++clP8tGPfvRXHvX1\/7ptS3BB3ioqKmRfII1Gw4EDB\/jiF79IZ2cnR44cYc+ePXz5y1+murqad7zjHXzrW99icXGRUCjEnj17uPHGG6mtrWV1dZUTJ07w3HPP0d3dzcLCAqIo4nLbuP3d1\/KVb\/0p\/\/nDv+Gfvv4XvP4NV5UU7H0h+SY6NWLQ6Wn59F1tbbXiSmlqSn7yrq+vZXxcvm8oGFDWShkfl4\/u\/H5\/Cc\/URlPjhVOK4nbubFXkdVPio2tukQc7BAJ+Wa47rVYnm2bTanV0dUs7Qq\/Xw0C\/dORSV7dD9jyjc9JpxsoKeUCFHEebQWZi9gTk07ty4AJRFOnu7n5Znc5my9eFWltbueGGG9i7dy9Go5He3l4OHTqkyCMniiKdnZ3Mz89z4MABTKa1Non29nZuu+02\/vzP\/5y\/\/Mu\/\/I3T+RWwbRvxXIppNBr27NnDnj17+OxnP8uFCxd44IEH+I\/\/+A\/+7M\/+jOuvv563vOUt3HbbbYWUW37lNT09zcmTJ9HpdIVIyOVyYbdbePPbbuTNb7uR1dUEh548waM\/f56DT55AKb0aCnvpH5SeuJxOO7298j0lyKCSYE3CWikaCgb9dCvUb4aH5aOwmh019PXJR0uNjcqgA6Wx6upqxfqNUie8x+NRrGllMgrS2HV1zMxIQ6xbW1s4d07aKTU1NdB5QfqYdXW1tJ2Qjux0Omk0oUarYXRY2vE67U6QEKUzmQzMy6TgkIFSOx0mcjKPQQpcIIoiXV1dzMzMcODAASwycO+X0y6lLmSxWOjp6WF2drbI6Vy4cIHbbruNP\/7jP+ZTn\/rUb5zOr4j9P+F4NpogCLS0tPB3f\/d3fPrTn6a3t5cHHniAb33rW3zsYx\/jmmuu4S1veQu33347oVCIQCBALpdjfn6eqakpzpw5gyAIBQflcrmwWEzcctt13HLbdSQTKQ4dPIbRLHD8WDsrK8WFbyVi0B21Fcwdl2+SVHIsNTUVjI\/LI7+Uop3a2hr6euUn8EgkrJimU5LPDgYDiki6iopyBgcHJcc0Go0iA3dZWYSojCS5zWajo0OeXicel+\/7cTgUnJ1bnk5Ip5VPk46OSEdtNdWVksSgAIll6WitvCzIco80Qk0OSm02ayXpcbUGbQlrQT5yyE\/iZrMyq8ErZUp1oTzfWnNzcyEd19PTw6233sr73\/9+PvOZz\/zG6fwK2bZOtf2yJggC9fX1fOITn+DYsWP09PRw++2388ADD9DY2MhNN93Ev\/zLvzA2NobX66W1tZXrr7++QGtx7tw5nnnmGc6fP8\/s7Cy5XI6cmMXm0PLnf\/k+Tnc8zLe\/9+X\/f3tnHlZVufb\/z2aeQWaQGREQEGUQB5wyNRUENbVj+up5rU7ScCyHzs\/qTU9lqSet3lIbNSu1k6g4pybghAY4oDiByKBMMsqMwPr9wWG9bt1r6ekIGK7PdXldxdp786Cb\/V3Pc9\/398ufno3E8l\/1FzljUF1d6a2Sl5c7paXSnnG1Mg7azs7dZXcsJvc5QsnLk3ZJ8PBwJ1NGtLy8vGRfW65NOiAgQPYoTWiR3gH28vMTZ7fuxszMVFaU8vKkjxVLZP4Nrl\/XLC4mpiYUFmiugbX5bmmiXCLCwaqbtDDeKtbcxKEnEXR49zFbW42ktLT0kRKdu2mrCwUGBoozXlZWVhw\/fhwXFxeioqKIjIxkwoQJfPDBB50yuKrw+3ls\/rVUKhVubm7MmzePo0ePkp2dzdSpU9m9ezf+\/v4MHz6cjz\/+mJycHCwtLfH19WXIkCEEBgaira3NhQsXSEhI4Pjx4xgYGBAQEIChoQHDn+jPipX\/j9PndvJT7P8y4slw7OxsNK5BbldibSOdbWJkZChrnuniIj0ICXDzpnSNxcurBzk5ct1umv3K2pCLDHdy6k5urrTwGBlJf+jZ29vJ\/sxytbBevXpx+7bmbjcXFxdyczULbbdu3ciU8GBzdHTgxg3NwuPkaC+5HilHagN9PcolMnhaGjTvdrpZSbdSqySOHe9spW7rBmurkTyqonMnWVlZFBYW0q9fPwIDA4mKiuLjjz+mrKyM6upqvv32WyIiIvjiiy9kOysVHi0eG+G5E5VKhZOTE6+++ioJCQnk5eXx5z\/\/mUOHDtGnTx\/Cw8NZvnw5GRkZWFhY4O3tTUVFBQ0NDZiZmVFbW8uRI0dIS0ujqKiI5uZmtLW1GRQezIfLFpF2\/iC79mzgLy9Ox8mpdQrZyrob2dnSH8IVFdIhdr6+XrJuBWVl0nfpTk7d5ZsO7OwkrwGyouTl5SV5jAatH\/JSSOXytNHDs4fkh7mRkZFsF12LzE7J2Vl6TT179pBsknBzdZV8nrW15hsNkHakdnN1keyea2mQmAeyk3bgaK7R\/P5oi7xuE52Kigq1GsmjTFZWFnl5eQQHB4uND8XFxbz77rsEBQWJKaLDhw9n8+bN921hVnh0eCyF505UKhX29vbMmTOHAwcOUFBQwMsvv8zJkycJCwujf\/\/+TJ8+nT\/\/+c80NTURGhrKoEGDxIJsZmYmCQkJnD17loKCApqamtDS0iIsrC\/vvf8Gp8\/uZ\/+BTbw4ZwYeHpo\/vExMjbksY5Mjd0RnY2Mt693m5ib9QQtwLVu62cHb21u2KcHOTvoYSaVSybZJe3i4yw7hynnG+fn7SdZw9PX1uXBB+u+jqkr6yFJLJf33LKNl3JKwwzEyknaktrSQriU13NIsSNoyFk715VJxCCbisGVFRQXBwcF\/CNHJzs4WbXvahlkLCwsZO3YsgwcPZu3atWhpadGzZ08WLFhAfHz8PfY+v5cHSQ8VBIHFixfj6OiIoaEhw4YNuyeVt6umhz4MHnvhuROVSoW1tTWzZ89mz5495Ofn4+TkxJ49e3B0dOR\/\/ud\/WLx4MWlpaZiYmNCjRw8GDhxIWFgYJiYmZGdni9HC+fn54nFP3yB\/5s59ntRThzh8ZBcLFryMj8\/\/1UZ6enlIHg0B96mxeMre6d2QeaN7+3jLHpXZ2Mi3YGdmSgtLQIA\/RUXSR3xyXVSOjvK5PCqV9NvW39+PmhrNQmBubsbFi5obIVQqlazDdU625r8nQ0NDsrI0i7OHh5vkDkpHpblRQV9fV9KjzchA81CpnoE2DVKWPNatURRtw5Z\/BNHJycnh2rVrBAUFiWJSXFxMREQEwcHBfPPNN+06ud+WHnrixAkOHDhAU1MTo0aNUntfLV++nJUrV\/LZZ5+RnJyMvb09I0eOVHPomDt3Ltu2bWPz5s0cPXqU6upqIiIiZD0NHxe6XFfbw6KhoYG\/\/OUvXL16lfPnz2Nra8uuXbvYunUrI0eOxNbWlqioKKKjowkODsbT0xNPT09qamooLi4mNzeXCxcuYGlpKbZp6+npERDgS0CAL4vefI0rV66yI24vFy5eIlkildPbuweXLkkfK0l9yEKr4\/O1LGlxsLa2krymUqlkW5kDAvxlLXTkLFeMjIxk54Ls7ewokDgeNDAwkG0ckPME8\/Hx5bffzmi85uXlydVMzUeh7u6u5OVq7lX26uHB5Yuan2dhbg5o3vFUVWgWCufudlRnav5gMpBo2TYx1wGJeabyhnKMqloIDg5+ZHN07iQvL4+srCyCgoIw+5cLeGlpKePHj8fX15cNGzbcd8j0P+V+6aGCIPDxxx\/z5ptvivEF3333HXZ2dmzcuJG\/\/OUvXTo99GGg7Hgk0NXVbbXbT0qiR48emJmZMW3aNLZs2UJRURHLly+nsLCQyMhI\/Pz8eOONN8TGA3d3d\/r378+gQYOwtLQkPz+fw4cPk5KSQl5entiN1bOnJ\/MXvMy3337GmTNHePfdNwkJ6avWFmptbSG5xtbuLek6SXdHB9mfUW7H4u\/vL5uPI3escb\/6jb+\/v6z\/mlykhH+Av6TYamlpc0Um50ju7W5nK13rcnR0lLwmFwN9u1HzTlRbS4v8XM3dfFbdpF+v4ZbmOo6ljPt0s76gNuH\/KHP9+nUyMzPp27evON9VXl5OVFQUbm5ubNq0STQC7UjuTg+9du0ahYWFasmg+vr6DB06lOPHjwP3Tw993FGERwJtbW2WLFmCldW9uwJjY2OefvppNm3aRFFREZ9++imVlZVMmTIFb29vXn\/9dQ4fPoyuri5ubm7069eP8PBwbG1tKSws5OjRoyQnJ5OTk0NdXesHsIeHG3\/964scOrSDCxdOsmzZEgYO7Cc7nOnr6y17RFdQIN027OfXS9bGxsxMeseio6MjW1fq3TtA\/GXVRH29tOg4OzvJesbJ2dn06uUr2ZLeKkrSQlt5S9rEtL5eOgqiplr6Z8m\/rvnfztnZkYZ6zf9u+hK7GoBKCVdqC3PpY0sze3MqKioe+eOdGzducOXKFfr06SOKeWVlJRMmTMDOzo6ff\/5Z9GTrSDSlh7b93tzdmHNnMmhXTg99GChHbf8hhoaGREVFERUVRWNjIwcPHiQ2Npbp06ejpaVFREQEEyZMYMiQIbi4uODi4kJDQ4PopJ2RkYGpqanopG1kZET37g7MmfPfzJnz3xQXF7Nz5x7i4nZx5MhxtZwTucwTN1cX2dkeC5k7ax0dHdkCfe\/evWXD5uSOQkxNTWXrN25ublzP01xP0dXV5dIl6WFVCwvp+ZdevXxJT9fcwGFqasIVibA4LS0tMjOyNV7T0dEhK0tzDc3OzoaSmxWar9naUiFhKNpcr3mXJNdKra+rQmpc1szOnCtXrtDQ0CCm+FpbW3fKh7gU+fn5XL58mT59+ogf1FVVVUyaNAkzMzO2bt3aaTs2qfRQ4J6B1QdJBu0K6aEPA2XH8xDR09Nj7NixfPPNNxQUFLBx40b09PR4\/vnn8fDw4MUXXxTPj52dnQkODmbIkCE4OTlRVlbG8ePHSUpKIisrS5xJsLW1ZfbsWezYsYXMzPN8\/vnHjBr1JKamprItxU7O0vM3KpVK1l6nd+8A2a4yXV1pYTEyMpKNZnB2dpIVTDmXhN69A8QdoiakIhAALGS6yHy8e0ruHB0d7e9xp2jD09ONWolrzjLBdvo60gX+W8Wau9PkWqm1BYkuOD1t\/IL9GTRoEGFhYZiZmZGbmyse++bm5sr+fXYEhYWFXLp0icDAQPEoq6amhsmTJ6Orq0tcXFynzRu1pYfGx8erBRXa29uLa7+T4uJicRd0Z3qo1GMeZxThaSd0dXV58sknWbt2LTdu3CA2NhZzc3NeffVV3N3dmT17Njt37qS5uZnu3bsTFBTE0KFDcXNz49atW5w8eZLjx4+TmZlJVVUVgiBgZWXJf\/3XNL777ku+\/fZz\/va3+UREjNX4i1koY7zpH+Ana1YqdzdsaGgo21QQECBfv9HWlhYtV1cXMmUaGnT1pO96nZ2dZOeVpIY\/AfRk7qbb0iA1YWsjPb9jaCh9\/FVfrVl49fV1KS3QfORnZi794dtSp1k0jaxaaz8qlQoTExM8PDzo37+\/eOx78+ZNjh07xokTJ8jKyhLfZx1FUVER6enp9O7dWzzSrqurY+rUqbS0tLBr164OMS69m\/ulh7q7u2Nvb6+WDNrY2EhiYqKYDNqV00MfBspRWwegra3NsGHDGDZsGB9\/\/LGYKfS3v\/2NkpISRo8eTVRUFKNHj8bBwQEHBweampooKSmhuLiY3377DX19fTFZ9cqVK3h5eTF69GhUKhU1NTX88stB4uJ28ssv+7GyspRtwZZrDDAwMJDdSfXuHcDJk5rNN0H++M\/a2ooLF6SbDlxcXMjN0dyarKure595JTeuX9csPI6OjrLDu7k50i3lcqWRxkbpi9W3pL3iCiRSSp2621Ej0dGmL3N82VipWeiNJJJHDQwMxGPftuyqmzdvcu3aNfT19UVjTgsLi3Y7FiouLub8+fP07t0ba+vWtv36+nqmTZtGTU0N+\/fvf2hzOf8u90sPValUzJ07l6VLl+Ll5YWXlxdLly7FyMiIadOmiY\/tqumhDwOVoIz7dhotLS2kpqayZcsWtm3bxvXr1xk5ciRRUVGMGTNG7Oxpc9LOycmhoqICXV1dHBwcsLOzw9zcXO3Dob6+nsOHj\/DzP7ewd+++exwRtLW1MTM3k3Q76NcvlN9+05zoCRAcHERqqub6TrduFlRX10geW4WHD+ToUemOHk8PD7KyNA+09u3bl9Nn0iSf6+XlRWam5pqWn58\/Fy5oru+4urpIGnzq6uphoG8iOaxqb+tEedm9TRTa2tqYG9tRV3tvF5qdnTUNxZp3lP2C\/chN1vzvEj6gB7ln7hVWLW0VfhYqjb527sO9eGpFlMbX08SdWTk3b95EpVKJgW2WlpYPbXamLYsnICBA9LJrbGxk+vTpFBQUcODAAfHYrTOQEtu29FBo3RUtWbKEL774gvLycsLCwvj888\/FBgRo\/V1csGABGzduFNNDV69ejbOzvMXV44AiPI8ILS0tpKWlsWXLFrZu3UpWVhZPPPEEUVFRRERE8OWXX5Kens7y5cvR1tYWmxPuzL3v1q2b2i\/N7du3SYhPJC5uBzt37aa0pJQ+fQI5feaM5DpCQ0NITk7ReM3CwpyamlpJYRk0aADHjknHX\/v59ZJss\/bwcOeazADngAEDSDqheafVvXt38vOlj9ICA4NIS9O8iwsfNICkJM0zVP5+vbh0SfOaXF2cKcyv0HjN09NN0pE6uE9vrp7VbCg6JCyIK0mad20hfs4UZ90rSmaWergImv89\/Kf0ZfDCERqv3Y+WlhYqKyvF99nt27fVmhN+b1tzSUkJZ8+exd\/fX6x13L59m1mzZpGVlcWvv\/4q7oAUui5KjecRQUtLiz59+vDee++Rnp5OamoqYWFhrF69mp49e\/LRRx\/Ro0cPtLW1sba2FoO0\/Pz8RNFKTEzkwoULlJaW0tLSgq6uLiNHPclnn39KVtYVdu2O46kxo8Xi6N2YmprK1m\/kzDcBbsm0JDs4OMh2s8mZkWpra3NRppvt7jP4OzE1NZF0KwAoKpKudXWTuevu7iQ92yPnSG1sKF2zaJHoaANpV2pTC2kBkAqAexC0tLTo1q0b3t7ehIeHExoaiomJCTk5OSQmJpKamqo2k\/YglJaWkpaWRq9evUTRaWpq4oUXXuDKlSscOHBAEZ3HBKXG8wiiUqnw8\/OjZ8+eZGdnU1JSwpQpU\/j111\/56KOPGDRokJgpZGdnh5WVFb6+vpSXl1NcXEx6ejrNzc3iTsjKyupfdaahDBs2lEWL\/saJEyfZvn0HO3bsJC+vta7i7+9HUtIJyXXJuf\/a29vL1oY8PT0oKJAu\/ku1UEPr0OjZs9KCKGew6uPjS0qK5iM6fX098vOlu+gqK6SFVCUTnS3lSA1wu156DqnypuZajYWlkWR2j42NOU0SPm2aAuB+DyqVClNTU0xNTfH09KSuro7i4mKKioq4fPmyWmCblGNFWVkZZ8+excfHR2zYaG5uJiYmhjNnzpCQkCAr2ApdC0V4HmHefPNNTp8+TXJyMo6OjgiCQHZ2NrGxsfzzn\/9k\/vz59O\/fX5wj6t69O5aWlnh7e1NZWUlRURGXLl2iqakJa2trUaS0tbUZOHAAAwcOYPnyD0hNTWXbtjhZtwE7OztZYenRw0N2ME4u\/rpHjx5clXFRMDaW\/gC1srKSbTrQ0ZHeEfj6+nAuTfNz9fT1uXJFeg4q\/4b0z1NaIm1+WiLhw6avp0upROqojZ0ZDdman2dooI2UPD4s4bnnexoa4urqiqur6z2BbQYGBqIItdUfKyoqOHPmDN7e3qILREtLC6+++ionTpwgPj5etntQoeuh1HgeYUpKStDV1dUYDy0IAtevX2fr1q1s3bqVY8eOERwcLIqQm5sbKpUKQRC4deuWeIfa0NCAjY2NeFZ\/97BnWto54uJ2EBe3Q+0DPTx8EEePHpNcq6enh+TAqpubK9nZ0jM2gweHc\/SI5tfW0tKmm6WlpCPBwIEDSErSXPtRqbSwtLSlTCLFNCQ4iNOnNe+kAgMDSD+vWQztbG2oKJMw5TQyQtVkrNEc1MLMFKo0d2p5uHen9qrm3VDIAHeKz2gWusFDnShP07xbnLJ5JlY9pFu+HzZ3xsnfvHkTLS0tzM3NKS0tpWfPnmJRvaWlhXnz5rF\/\/37i4+Nxc3PrsDUqPBp0Wo1n9erVuLu7Y2BgQHBwMEeOHOmspTyyWFtbaxQdaD3+cHZ25q9\/\/auYKTRz5kx+\/fVX+vTpw+DBg1mxYgUZGRmYmZnh5eXFoEGD6NevH8bGxmRlZZGYmMiZM2fUnLR79w7g7bffJCXlJKdOJfPOO2\/Ru3cAJSWaC+IATk5Osi4J9+viyZVJKfXz95NNZm1okLaz8fX1kRQdkE+LlYvHtrKWrv3IOVI7ywz1Wss4Sci1UiMRGgdgbN0+Ox4p2hpd\/P39GTp0KB4eHpSUlKClpUVGRgYzZszg66+\/ZsGCBezZs4eDBw8qovOY0inC89NPPzF37lzxKGnw4MGMGTNGNq1SQRqVSoWDgwMxMTEcPHiQ\/Px8YmJiSEpKol+\/fvTv35+lS5dy8eJFTExM8PT0FOMc2qbZExMTOXXqFDdu3KDxX07H3t49WbhwAUlJR9my5Sfee+\/vhIaG3NNuKmdVA\/LR2j17eslm\/sjNcpiYGMs6VVtaSrtvW1paUlgo3VhQclNa7EyMpddkIXGjAGBhKn3NUE8mruC29LxQU7Vm41AtXW0MLDovYbS6uprMzEy8vLwYNmwY\/v7+WFlZsWLFCr744gvc3d05ePCg4lv2mNIpwrNy5Upmz57Nc889h6+vLx9\/\/DHOzs6sWbOmM5bTpWibvXjuuefYu3cvhYWFzJs3j7S0NMLDwwkODmbJkiWkpaVhZGQkTrMPHDgQS0tLrl+\/zuHDh8WupbbkU3d3d1577a8kJPzK5cvpLF\/+IcHBQWhpackW9728esimlMq5QqtUWrLRDL169ZJNZi0slK7DePfsIXnN3NyMq1elb4JuVWou5t\/vmtAs\/evWVCfddFAhkWIKUFem2anb+D\/oaPtPqaqq4tSpU7i5ueHq6iq+J62trWlsbGTXrl2MHz+e77\/\/HicnJw4fPtxpa1XoHDpceBobG0lNTVWzCwcYNWqUYhf+kFGpVFhaWjJr1ix27NhBUVERb7\/9NpmZmYwYMYLAwEDeeustUlJSMDAwwM3NjbCwMAYNGoS1tTWFhYUcOXKE5ORkcnNzxdZZR0dHRo16kr\/\/\/R1On05hwYLXGTZsqEZz0Pv5Ul27Jp2A2svPl5s3pY\/4tLSk377du3fn6tVsyety8dheXtIR2GZmppKhcAA3iyokr1WUSGcnVZVI2wzVV2huYTftZkCTlF1OJwlPdXU1qampuLi4iG3ugiCwYsUKvvzySw4cOMDYsWOZP38+R48e5caNG4SFhT3UNRw+fJjIyEgcHR1RqVRs375d7fqsWbNQqVRqf\/r376\/2GCU9tH3p8K62kpISmpubZS3FFdoHc3Nznn32WZ599lmqq6vZu3cvsbGxRERE0K1bN8aPH090dDT9+vUTu5banLSLioq4cuUKZmZmCIJAfX09oaGhGBsb06OHJ889N5vS0jJ27drN9u1xJCQk0tjYKOlEAODr48OlS9KBcHLGnrq6urIO2m5u7uTnaxYtbW0dLstEJBgYSB9R9ejhQXqa5nqWra01FWWaW871dHUkrXL09HQoyde8qzE20+N2reY6jqW1IZRo3vEZdXB9B1rNPVNTU3F2dsbDwwNoFZ1PPvmETz\/9lAMHDtC7d2+157SHYWZNTQ2BgYH8+c9\/ZtKkSRof89RTT7Fu3Trx\/+\/2J5w7dy47d+5k8+bNWFlZMW\/ePCIiIkhNTW3X9NPHhU5rp\/49luIKDw8TExMmT57M5MmTqa2tZf\/+\/cTGxvL0009jZGREZGQk0dHRDBw4EGdnZ5ydnbl16xZpaWk0NjbS0tLCuXPnxDgHY2NjrKwsmTlzBjNnzqCyspIDBw6yZctWysrKNA4atg4LSgiPSnWfoDo\/zpyRdsGWMyr19fHi4kXp1y7Ilz6iM5Fp7XZxcSa9TPMRXXdHB8pzNddqnLrbSXa0OXS3pFGildrc3IAWiQ1hRx+11dbWkpqaiqOjo5rorF69mhUrVrBv3z6Cg4M7ZC1jxoxhzJgxso\/R19eXHKRW0kPbnw4\/arO2tkZbW1vWUlyhYzEyMiI6Oprvv\/+egoICvvzyS9E7y8vLi1deeYWdO3cybtw41q1bR3h4OEOHDsXFxYWKigpOnDhBUlISV69epbq6GkEQMDc35+mnJ7F584\/k5Fxlw4Z1TJo0QRwwVCEvLL18fSkqkhYAIyNp92djYyNZt4Ju3aS70mxtbciRMQ2tKJceojU0kF6Tg8SHHICJkfQOy0LGldrQUCaeop1meDRRV1dHamoq9vb29OjRQ2zj\/+abb3jvvffYtWvXQz9O+09pG1jt2bMnzz\/\/vNqcmZIe2v50uPDo6ekRHBysZhcOcODAAcUu\/BHAwMCAcePG8e2331JQUMAPP\/xAU1MTs2bNorS0FF1dXeLj42lpacHR0ZG+ffuKcQ7V1dVqcQ63bt1CEARMTEyYNGkiGzasJyfnKj\/9tJGYmBepq5MuxMvZ1ahUKjIypEXL17eXbJt1SYl0x5q7h7T9jr6+PteypDvw5BypdZAeZNWR+TXUl8k+0pM58Wmv4dG7qaurIyUlBRsbG7y8vETR2bBhA2+99RZxcXEMGjSoQ9byoIwZM4Yff\/yRQ4cO8dFHH5GcnMwTTzwhNqoo6aHtT6cctb3++uvMmDGDkJAQBgwYwJdffklubi4vvvhiZyxHQQJdXV18fX1JTk5m3LhxvPDCC+zYsYNXXnmF6upqxo4dS3R0NCNGjBDjHJqbm8U4h5SUFPT09ETrHnNzcwwMDIiIGEdExDjee\/\/voonprt17KC0pFb93loxhqK+vj+yORltb+kPe0rIbGRnSM0faWtK\/El5eHmRc0lxg1tbWJidb2hKoulK6+85Ixxgk\/AeaG6S98VS3pWd4OqK5oL6+ntTUVKytrfH29hZFZ9OmTSxYsIC4uDiGDRvW7uv4d5k6dar43\/7+\/oSEhODq6sru3buZOHGi5POUcsDDo1OEZ+rUqZSWlvL3v\/+dgoIC\/P392bNnD66urp2xHAUZPvjgAwYPHszq1avR1tZm1KhRfPLJJyQlJREbG8vChQspLS3lqaeeEjOF7OzssLOzo7m5mbKyMoqKijh9+rQ4YGhnZ4eFhQV6enqMGj2SUaNH8mnzxxw5cpS4uJ1cSL\/AseMnJdckN5+jUqm4dElzBAJAT68eJCeflbyem5Mvea31Dliz8Li5OUs6UmuptMjPLdV4DaCyRKY9W6aVurlWelfX3jueNtGxtLTEx8dH\/ECOjY1l7ty5\/Pzzz4wY8fucsTsaBwcHXF1dychofd\/cmR56566nuLhYOZV5SHSac0FMTAzZ2dk0NDSQmprKkCFDHvr3WLx48T1tk3cWFAVBYPHixTg6OmJoaMiwYcNIT5f2I3scWbVqFWvXrlXr5NHW1iY8PJxVq1aJVvbu7u4sWbIENzc3pk2bxk8\/\/URNTQ02NjbiJHuvXr1oaWnh7NmzHD58mIsXL4pO2m0mpqtW\/YO9+3axf\/9uXnrpRZyc7p32lxtIdXZ2knXJVqmk3\/LOTt1lZ3\/qaqR3LbY20gaXzs4O1NdpFgldHW1Kbkivt0m6A5t6CXNQaN8dT0NDA6dOncLc3BxfX19RdOLi4pgzZw4bN268b3H\/UaK0tJS8vDzRL05JD21\/unwsgp+fHwUFBeKfc+f+rxNq+fLlrFy5ks8++4zk5GTs7e0ZOXIkVVXSHwSPG3p6erLHC1paWvTr14\/ly5dz+fJljh49ip+fHytWrMDNzY3Jkyfzww8\/UFlZiZWVFb169WLIkCEEBAQAcP78eQ4fPkx6ejolJSW0tLSgpaXFwIH9WbbsfS5ePEtCwn5ee+0VPDzc8fBwl3U6sJUdSFWRmZkted3ZRdraR1tbm6yr0oKnpZI+PLCXcV22sjLTGOIGYGZhSH2VZrHT0VPRUKm5pqSlq42hhXSjw39C2xyeqakpfn5+4ntj9+7dPPfcc2zYsIHx48e3y\/d+UKqrqzlz5gxn\/pU7de3aNc6cOUNubi7V1dXMnz+fpKQksrOzSUhIIDIyEmtrayZMmACop4f++uuvnD59munTpyvpoQ+RLm0SunjxYrZv3y6+Ae9EEAQcHR2ZO3cub7zxBtB6J2dnZ8eyZcv4y1\/+0sGr7VoIgkB6erqYrnrx4kWGDRtGdHQ0ERERWFlZiTWBiooKMXCsqalJNDFtc9K+k\/T0i2zdGkdc3C4uX763zuPl5SuZROrd04vMTGmz0v79+5OSrDlCwcvLk9xr0rshHy9\/cq5prvEMGTCQtBPZGq\/5+7pTkq5ZQLx87SVdqR1dzbG8pfkYzsTelBm7Hv77t010jI2N8ff3Fwd49+\/fz\/Tp0\/n666955plnHvr3\/XdJSEhg+PDh93x95syZrFmzhujoaE6fPk1FRQUODg4MHz6cd999V81TUEkPbV+6vPCsWLECc3Nz9PX1CQsLY+nSpXh4eJCVlYWnpyenTp2ib9++4nOioqKwsLDgu+++68SVdy0EQeDKlSvExsaydetWzp49S3h4ONHR0URGRmJnZ6fRSbuxsVGMc2hrw7+TS5eusHnzz2zdGse1a9nY29tTVCRtCjp48ECOH9OcrqpSqbC1caS0VPPzwwcNIPmkZidrOUdqgH69+3HlnObdklzqaHB\/d26e1Sx2vn3s0M7RfM3AxYjeb4aJTR36+voaH\/fvcPv2bVJTUzE0NCQgIEAUnfj4eKZOncrq1auZMWOGUnxXeCC69FFbWFgYGzZs4JdffuGrr76isLCQgQMHUlpaKrZFKg4K7Y9KpcLb25tFixaRnJzM5cuXGTt2LJs3b6Znz5489dRTrF69mhs3bqg5aYeGhmJkZMTVq1dJSEjg7NmzFBQUiE7aVlbdGDJkAHv3buPs2ZO88cY8goP7SH74yQW7eXi4SYoOQFOTtJeanCM1QNF16ddtkS4bYSDTSm1iLN25Z+tmr2Z59Ntvv5GdnU1trXRNSI7bt29z6tQp9PX11UTnyJEjPPPMM3zyySeK6Cj8W3TpHc\/d1NTU4OnpycKFC+nfvz+DBg0iPz9fLYTq+eefJy8vj3379nXiSh8PBEEgLy9PzBQ6fvw4ISEhYqZQm8EktJ7bFxUVUVxcTE1NDSYmJlRXV+Pj44OTk5Pa616\/ns+OHXvZsWMPJ06k0NLSgqmpCY0NLTQ1aW5BDh80kBMnzkiu1dHOmdLSConnDiD1pOb2blsbKxpLpHccgU6+FOVKvO7AHuSe1rwbGjTUmco0zbso\/8l9GPxGay2ioaGBmzdvUlxcTFlZGcbGxmJnobGx8X3FoqmpiVOnTqGjo0OfPn1E0UlKSmLChAl8+OGHzJkzRxEdhX+LLr3juRtjY2MCAgLIyMgQu9sUB4XOQ6VS4eLiwty5c0lMTCQ3N5cZM2Zw8OBBAgMDGTJkCP\/4xz\/IyMjA2NgYT09PBgwYgLm5OdXV1RgYGHDp0iVSU1O5fv26GOfg5ORITMxs9u2L5fLlZFatWkp0dITsWhpk5mVcXJwkRQfgdqP0bsepu3Sypq6utEcbQINEYwGAtiD9Pe\/0adPX18fJyYmgoKB7Bn2PHTtGRkYGlZWVaLr\/bG5uFtvgAwMDRdFJSUlh0qRJvPvuu4roKPwuHqsdT0NDA56enrzwwgu8\/fbbODo68tprr7Fw4UKgtXhqa2urNBd0MoIgUFJSwrZt29i6dSuHDh3Cx8eHqKgoamtr+eqrr0hKSsLd3Z26ujqxJnTr1i0sLCzE2oaBgXrGTVlZOXt2H2THzn0kJhwXhUpbWxtTU0uqqzT3Lg\/o349TKdK5Py6OPbhZrPk4bciAAaSd0NzQ4ObqQL20hyredpbU3dIsPuGhtlRkas4TGv4\/o\/EZHyD9wtybFto2Y2Vra4uFhQWCIHD69GkA+vbtK9bXzpw5w7hx41i0aBHz589XREfhd9GlhWf+\/PlERkbi4uJCcXEx7733HomJiZw7dw5XV1eWLVvGBx98wLp16\/Dy8mLp0qUkJCRw+fJl2QAyhY5DEATKy8uJi4sTdz99+\/Zl+PDhREdHq3VX1dfXi91xFRUVmJmZiSamhobqnmeVlVXs2\/crO3fs4\/r1QsmYa4BBAweQ8pvmxgJbW2uqyqR\/hcICQ7ksEU0dGtSLvBTNgmVmYYhFg\/SBRD9vU2qLNfvGjfvfSbgMkLb+uZuWlhbKy8vFv7u2CX1dXV1CQkJE5+bz588zduxYXnvtNRYtWqSIjsLvptPcqTuC69ev86c\/\/YmSkhJsbGzo378\/J06cEB0SFi5cSF1dHTExMZSXlxMWFsb+\/fsV0XmEUKlUdOvWjby8PIqKijhw4IBYF2qz6omKiiI6Opq+ffvi4uKCi4uLWNsoKioiIyMDU1NT8Y7e2NgYc3NTpk6NZurUaGpqajlw4DC7dh7k4IEj1NSoF+ELJOIVQN6RGqDwurQvnKGudOqonYMZDdmahUVLW0VdqXSjwL8bea2lpYWVlRVWVlb07NmTlJQU6uvraW5uZsWKFZw8eZLw8HA+++wzYmJiFNG5iw0bNvDaa6+Rn5+v1kE4adIkjI2N2bBhQyeu7tGkS+94FLoGubm5jBw5ktjYWPz9\/cWvV1dXs2fPHmJjY9mzZw9WVlZiplBoaKh4PNTY2CgW2EtLS9UK7G1u2W3U1zcQf+gYO3cc4JdfEtHT16OqXNqaZnD4IFJOaM4FMjI0QK9e2ux0cJ8gMk5JtFKHuXEzTfNRmrW9MfYN0sIz62DM7xogbXOVaGxsJCgoCB0dHc6dO8fq1avZt28fZWVljB49mkmTJjF+\/Ph\/xVoo1NXV4eDgwFdffcXkyZOB1tyx7t27s2\/fPo0zRY87j1VzQUdwv\/TDB7HpUdIP1XFxcSE9PV1NdKA1U2jKlCn89NNPFBUVsWrVKsrKypg0aRK+vr7MmzePI0eOoKWlRffu3WWdtKuqqhAEAQMDfcaMfYLVaz\/g4uVEvvjiQ56ZFkk3S3ONa5NzpJZrLAC4VSqdGWSgJ90u3c1KOipBS1cbA5koBSna8pUaGhoICgpCV1cXlUqFiYkJhw4d4tlnn+X8+fMMGTKEL774gr59+2psSHgcMTQ0ZNq0aWrBcj\/++CNOTk6PpEnqo4AiPA+ZtvTDzz77TOP1B7HpmTt3Ltu2bWPz5s0cPXqU6upqIiIiaG7WHCT2OKApVvtOjIyMmDBhAj\/88AMFBQWsXbuW+vp6pk2bhpeXF6+++irx8fFAqylkYGAgQ4cOxdPTk9raWpKTk+\/p8tLT02XI0P78Y9X\/48z5XWz++VP+a9YEbG1bTUrv50htay1tlaOjo02pTEebqln6Q93EVE\/ympGV0b99DNbS0sL58+epra0VRQcgJyeHcePGERUVxUcffYSPjw9vvPEGJ0+e5MKFCw\/9uO2PfNP2\/PPPs3\/\/fm7caK3nrVu3TozYVrgX5aitHVGpVGzbto3o6GjgwWx6KisrsbGx4fvvvxft2\/Pz83F2dmbPnj1K+uG\/ye3bt4mPj2fLli3ExcXR3NxMREQEUVFRDBs2TDyTv7vLS0dHRzyOMzc3V\/sAaWlpISX5HAnxv7Er9rhkDWhw6EDOpWRrvObq6kCDTEdbaIALRZmaHa0HDHGmSsIJwdbfgUnrn5V+4bsQBIHz589TVVWl1khw48YNRo8ezZNPPsnatWvFBo72ZO\/evRw7doygoCAmTZqk9rsDsGzZMt5\/\/33Wr19Pz549ee+99zh8+LBaM9CcOXPYuXMn69evFyOry8rKOiSyOjg4mKeffprRo0cTGhpKdna2YrEjgSI87cjdwvMgNj2HDh1ixIgRlJWVqVmyBwYGEh0dzZIlSzr6x+gyNDU1ceTIEbZs2cL27dupqakR7+hHjBghdr61tLSoiZBKpVKLc7j7Q\/js6SvEbT3Evl1HuVlcKX49wCOQvGua6zRyHW0APvaW1Epk+Awe6kS5RKec+3AvnloRJfv30Eabn96tW7cIDg4WRbiwsJCnnnqKgQMH8s0337T7B7Ym\/og3bWvWrGHVqlWMGjWKjIwMfvnll3b9fn9klKO2DuRBbHqU9MP2Q0dHh+HDh\/P555+Tm5vLzp07sbGxYcGCBbi7uzNr1iy2bdtGXV0dNjY2+Pn5MWTIELG2dO7cOQ4fPsyFCxdEJ20AFzcbwof35J87P2TH\/k95ae5UfHq5k58nncEj19Fmam4gKToANP7nAXCCIHDx4kUqKyvVRKe4uJhx48YRGhrK119\/3Smio4lr165RWFioFketr6\/P0KFDxTjqzo6sfvbZZ7lx4wZfffUV\/\/3f\/93u3++PTJdup35Uufvc90GSDZX0w4eLtrY2gwcPZvDgwaxcuZLk5GS2bNnCO++8wwsvvMCoUaOIiopizJgxYquxj48PFRUVFBUVceHCBZqbmzE3N6e8vJyePXu2Wvc4ga+fO3MXTOdaRgGH9pzi0J7TXElXj3IQpBvlsHMwpzFHcys1QFOVdEPDg7RSC4LApUuXKCsrIyQkRBSdkpISIiMj8fPzY\/369fetq3UkcjdtOTk54mM686bNzMyMSZMmsXv3brUjQoV7UXY8HciD2PTcmX4o9RiFh4uWlhZhYWGsWLGCK1eucOTIEXx9fVm2bBlubm5MmTKFH3\/8kcrKSiwsLPDx8WHw4ME4ODhQVlaGtrY2GRkZnDt3jqKiIrEJxN3Lgdl\/HcePv7zFtqPv8cqiifj1cQOgqkRaPMzv05VWVyYzw2Mjv+MRBIHLly9TUlJCcHCw6O5QXl5OVFQUHh4ebNy4UWwweNR41G\/aCgoKePbZZx+KI3hXRhGeDsTd3R17e3u1ZMPGxkYSExPFZEMl\/bBz0dLSIigoiKVLl3LhwgV+++03goOD+d\/\/\/V\/c3NyYOHEi3333HT\/++CMjRozA3t6eoUOHEhISgoGBAZmZmaKTdmFhoWhK6uRmw3\/FjGb9rv\/Hzt8+IPK5MHr1c0FL694PRLlWatNuBjTVSfvKGcnseARBICMjg+LiYoKDg8WaVmVlJdHR0Tg4OPDPf\/5TbDB4lHjUb9rKysrYvHkzhw4d4qWXXmrX79UVeHT20l2E6upqMjMzxf9vSz+0tLQUDTGXLl2Kl5eXaNNjZGTEtGnTAPX0QysrKywtLZk\/f76SftgJqFQqAgICCAgIYPHixVy+fJnY2Fg++ugjcnJyGDp0KElJSWJwnZmZGT169KC6upri4mKysrJIT0\/H0tISOzs7bGxs0NXVxd7RkvGz+zN+dn\/Ki6tI2nuJ47svcC4pm5ZmQbaV2tLaCEqk6z\/GNpqFRxAEMjMzKSgoEOMmAKqqqpg0aRIWFhbExsY+snfqd960tTXmtN20LVu2DFC\/aZsyZQrwfzdty5cvb9f1BQUFUV5ezrJly\/D29m7X79UVUITnIZOSkqI2qfz6668DremH69evfyCbnlWrVqGjo8OUKVPE9MP169c\/MoXexxGVSoWPjw99+vShoKCAjz76iPr6ejZt2sS8efMYOHAg48ePJyoqCkdHR0xNTfH09KSmpobi4mJyc3O5cOEClpaWonWPnp4e3WxNGTszlLEzQ6ksreHkL5fJTy0gP72YpsZ757bMzfVokXbwkWwuyMrKIj8\/n5CQEFF0ampqmDx5Mnp6emzfvv0eP7uO5o9805adnd2ur9\/VUNqpFRQekIqKCry8vFizZg1PP\/000LqTyM3NFTOFkpKSCA0NFa17XFxcxPpCbW2taMR569YtunXrJpkSWlfVwLlfMzmz7woXDmdzu6H1yC5ssDM15zXP8GjpaPFC0mv31DOysrLIzc0lJCREtAiqq6tj8uTJNDY2snfv3kfCn1Ausnr9+vUIgsCSJUv44osvxJu2zz\/\/XM3RQoms\/mOgCE8X5PDhw6xYsYLU1FQKCgruGcSbNWvWPdHeYWFhnDhxQvz\/hoYG5s+fz6ZNm9R+ge8OXXvcKC0txcrKSuM1QRDIz88X4xyOHDlC7969iY6OJioqCk9PT1EU2py0i4qKqKysxNzcXBShu3ce9TWNpCdkcWbfFcwa6ylJ1WxKamJnyozd6nEe2dnZZGdnExwcLIpLfX09f\/rTn6isrOSXX37B3FyzHZCCQnuhCE8X5H4T4LNmzaKoqEjNW0pPTw9Ly\/8ztOzMCfCugCAIFBcXs337drZu3Up8fDw+Pj6iCPn4+Igi1NDQIO6EysvLMTU1FeMc2o7F2mhqaCIv6RpZv2aQfeQqjdX\/V++527UgJyeHrKwsgoODMTMzA1rrItOnT6egoICDBw\/e03qsoNARKMLTxbl7AhxahaeiouIeL6w2OnsCvKshCAJlZWXExcWxdetWDh48iIeHhxjn4OfnJ7ohtDlpFxUVUVZWhomJiVpU9Z00327m+m85ZB3KIDsxE4c+3XnqH9FAq6P31atXCQoKEnc0t2\/fZubMmVy7do1Dhw5J7twUFNobRXi6OFLCs337dvT09LCwsGDo0KG8\/\/772Nq2mloqtj3tS0VFBTt37mTr1q388ssvdO\/eXRShPn36iCJ0+\/ZttTgHQ0NDcSdkYmKi7h\/X3EJNcRWmDuZcv35dDMyzsLAAWu2CnnvuOdLT04mPjxf\/rRUUOgOlq+0xZMyYMUyePBlXV1euXbvG22+\/zRNPPEFqair6+vqdPgHe1bGwsGDGjBnMmDGDqqoqMVNozJgxWFtbExkZyYQJEwgNDcXR0RFHR0eampooKSmhqKiI7OxsDAwMxJqQmZkZWtpamDqYc+PGDa5cuUJQUJAoOs3NzcTExJCWlkZCQoIiOgqdjiI8jyFtx2cA\/v7+hISE4Orqyu7du5k4caLk8xTbnoePqakpU6dOZerUqdTW1rJv3z5iY2OZMGECJiYmYnfcgAEDsLe3x97enubmZkpKSiguLiY1NRVdXV1sbW1bYxpyctR2Os3Nzbz66qucPHmS+Ph4cRBTQaEzUYRHAQcHB1xdXcnIyADUJ8Dv3PUUFxcr7gntiJGRERMnTmTixInU19dz4MABtm7dyjPPPIOenp64Exo0aBB2dnbY2dnR3NxMWVkZ2dnZVFRUoKurS1paGrW1tTz55JMsXLiQhIQEEhISHvuORIVHB8UyR4HS0lLy8vJwcGhNzFRsezofAwMDIiMjWbduHYWFhXz33XeoVCpmzZqFp6cnMTEx7N+\/n+bmZnbt2sWaNWvo06cPAQEBXL58meeeew43Nzc2bdokhqcpKDwqKM0FXZA7J8D79u3LypUrGT58OJaWllhaWrJ48WImTZqEg4MD2dnZLFq0iNzcXC5evKgWqLVr1y7Wr18vToCXlpYq7dSdTFNTE4cPHxYzherr66mtreW1115jwYIFGBgY0NLSwltvvcW+ffsICQnh0KFDNDQ0EBUVxerVq0VjUAWFTkNQ6HLEx8cLwD1\/Zs6cKdTW1gqjRo0SbGxsBF1dXcHFxUWYOXOmkJubq\/YadXV1wssvvyxYWloKhoaGQkRExD2PUehc4uLiBAMDAyEyMlJwdnYWzMzMhMmTJwsTJkwQbG1thfT0dEEQBKG5uVk4evSo8P7773fIut5555173nt2dnbi9ZaWFuGdd94RHBwcBAMDA2Ho0KHC+fPnO2RtCo8GivAoKPwBiY+PF4yNjYWff\/5ZEIRWcUlKShJiYmIEfX194dixY522tnfeeUfw8\/MTCgoKxD\/FxcXi9Q8\/\/FAwNTUVYmNjhXPnzglTp04VHBwchFu3bnXamhU6FkV4FNqFpUuXCiEhIYKJiYlgY2MjREVFCZcuXVJ7zIPc+dbX1wsvv\/yyYGVlJRgZGQmRkZFCXl5eR\/4ojyRFRUXCjh07NF5rbm7u4NWo88477wiBgYEar7W0tAj29vbChx9+KH6tvr5eMDc3F9auXdtBK1TobJTmAoV2ITExkZdeeokTJ05w4MABmpqaGDVqFDU1NeJjli9fzsqVK\/nss89ITk7G3t6ekSNHUlVVJT5m7ty5bNu2jc2bN3P06FGqq6uJiIgQw9YeV2xtbYmMjNR4rW0AtTPJyMjA0dERd3d3nnnmGbKysoAHi7BWeAzobOVTeDwoLi4WACExMVEQhAe7862oqBB0dXWFzZs3i4+5ceOGoKWlJezbt69jfwCFB2bPnj3Cli1bhLS0NOHAgQPC0KFDBTs7O6GkpEQ4duyYAAg3btxQe87zzz8vjBo1qpNWrNDRdP6tkcJjQWVlJYBoRPogd76pqancvn1b7TGOjo74+\/srd8ePMGPGjGHSpEliDs7u3bsB1BzRf0+EtULXQREehXZHEARef\/11wsPDxeyUNuuduyOJ77TlUax7ugbGxsYEBASQkZHxQBHWCl0fRXgU2p2XX36ZtLQ0Nm3adM+133Pnq9wd\/7FoaGjg4sWLODg4qEVYt9EWYa0MJz8+KMKj0K688sor7Nixg\/j4eDXLlge5873TukfqMQqPHvPnzycxMZFr165x8uRJnn76aW7dusXMmTNRqVRihPW2bds4f\/48s2bNUouwVuj6KMKj0C4IgsDLL7\/M1q1bOXToEO7u7mrXH+TOV7Hu+WNy\/fp1\/vSnP+Ht7c3EiRPR09PjxIkTuLq6ArBw4ULmzp1LTEwMISEh3Lhxg\/379z8S8dsKHYNimaPQLsTExLBx40bi4uLw9vYWv25ubi5GOy9btowPPviAdevW4eXlxdKlS0lISODy5cuKdY+CQhdGER6FdkGqBrNu3TpmzZoFtO6KlixZwhdffEF5eTlhYWF8\/vnnYgMCQH19PQsWLGDjxo3U1dUxYsQIVq9ejbOzc0f8GAoKCu2AIjxdgJs3bxIQEMCrr77KokWLADh58iSDBw9m165dau3ICgoKCp2NUuPpAtjY2PDtt9+yePFiUlJSqK6uZvr06cTExDz2ovPBBx8QGhqKqakptra2REdHc\/nyZbXHzJo1C5VKpfanf\/\/+ao9paGjglVdewdraGmNjY8aPH8\/169c78kdRUOgyKDueLsRLL73EwYMHCQ0N5ezZsyQnJz\/2FvhPPfUUzzzzDKGhoTQ1NfHmm29y7tw5Lly4gLGxMdAqPEVFRaxbt058np6enjjsCq21pp07d7J+\/XqsrKyYN28eZWVlSq1JQeF3oAhPF6Kurg5\/f3\/y8vJISUmhd+\/enb2kR46bN29ia2tLYmIiQ4YMAVqFp6Kigu3bt2t8TmVlJTY2Nnz\/\/fdibHh+fj7Ozs7s2bOH0aNHd9TyFRS6BMpRWxciKyuL\/Px8WlpayMnJ6ezlPJLcbd3TRkJCAra2tvTs2ZPnn3+e4uJi8Zpi3aOg8HDR6ewFKDwcGhsbefbZZ5k6dSo+Pj7Mnj2bc+fOKYOWd6DJugdavcUmT56Mq6sr165d4+233+aJJ54gNTUVfX19xbpHQeEhowhPF+HNN9+ksrKSTz\/9FBMTE\/bu3cvs2bPZtWtXZy\/tkaHNuufo0aNqX287PgPw9\/cnJCQEV1dXdu\/ezcSJEyVfT7HuUVD4fShHbV2AhIQEPv74Y77\/\/nvMzMzQ0tLi+++\/5+jRo6xZs6azl\/dIIGXdowkHBwdcXV3JyMgAFOseBYWHjSI8XYBhw4Zx+\/ZtwsPDxa+5uLhQUVHBnDlzOnFlnc\/9rHs0UVpaSl5eHg4ODsDjbd2zevVq3N3dMTAwIDg4mCNHjnT2khS6AIrwKHRpXnrpJX744Qc2btyIqakphYWFFBYWUldXB0B1dTXz588nKSmJ7OxsEhISiIyMxNramgkTJgCtNj+zZ89m3rx5\/Prrr5w+fZrp06eLeTNdlZ9++om5c+fy5ptvcvr0aQYPHsyYMWPIzc3t7KUp\/NHp4OA5BYUOBdD4Z926dYIgCEJtba0watQowcbGRtDV1RVcXFyEmTNnCrm5uWqvU1dXJ7z88suCpaWlYGhoKERERNzzmK5Gv379hBdffFHtaz4+PsLf\/va3TlqRQldBmeNRUFC4h8bGRoyMjPj555\/FnR\/AX\/\/6V86cOUNiYmInrk7hj45y1KagoHAPJSUlNDc3yybEKij8XhThUVDoINasWUPv3r0xMzPDzMyMAQMGsHfvXvG6IAgsXrwYR0dHDA0NGTZsGOnp6Wqv0dGecb8nIVZB4X4owqOg0EE4OTnx4YcfkpKSQkpKCk888QRRUVGiuCxfvpyVK1fy2WefkZycjL29PSNHjqSqqkp8jblz57Jt2zY2b97M0aNHqa6uJiIigubm5oe6Vmtra7S1tWUTYhUUfjedW2JSUHi86datm\/D1118LLS0tgr29vfDhhx+K1+rr6wVzc3Nh7dq1giAIQkVFhaCrqyts3rxZfMyNGzcELS0tYd++fQ99bf369RPmzJmj9jVfX1+luUDhP0bZ8SgodALNzc1s3ryZmpoaBgwYwLVr1ygsLFTzg9PX12fo0KGiH1xHe8a9\/vrrfP3113z77bdcvHiR1157jdzcXF588cWH\/r0UHi8UyxwFhQ7k3LlzDBgwgPr6ekxMTNi2bRu9evUShUNTMb\/N8LWjPeOmTp1KaWkpf\/\/73ykoKMDf3589e\/bg6ur60L+XwuOFIjwKCh2It7c3Z86coaKigtjYWGbOnKnWmvx7ivkP8pjfS0xMDDExMe3y2gqPL8pRm4JCB6Knp0ePHj0ICQnhgw8+IDAwkE8++QR7e3sA2WK+4hmn0FVQhEdBoRMRBIGGhgbc3d2xt7dX84NrbGwkMTFR9IN7nD3jFLoWylGbgkIHsWjRIsaMGYOzszNVVVVs3ryZhIQE9u3bh0qlYu7cuSxduhQvLy+8vLxYunQpRkZGTJs2DVD3jLOyssLS0pL58+d3ec84ha6HIjwKCh1EUVERM2bMoKCgAHNzc3r37s2+ffsYOXIkAAsXLqSuro6YmBjKy8sJCwtj\/\/79mJqaiq+xatUqdHR0mDJlCnV1dYwYMYL169ejra3dWT+WgsK\/jeLVpqCgoKDQoSg1HgUFBQWFDkURHgUFBQWFDkURHgUFBQWFDkURHgUFBQWFDkURHgUFBQWFDkURHgUFBQWFDkURHgUFBQWFDkURHgUFBQWFDkURHgUFBQWFDkURHgUFBQWFDkURHgUFBQWFDuX\/A4gVzc4ux\/doAAAAAElFTkSuQmCC", "text\/plain": "<Figure size 640x480 with 1 Axes>"}, "metadata": {}, "output_type": "display_data"}]}}, "85007844bdc54cdf992dc43ba5b83a41": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "851af3a043f1495ea899768d977eda65": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "86d909bc42c141caa23af6d60020a0db": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "IntSliderModel", "state": {"behavior": "drag-tap", "layout": "IPY_MODEL_246b67cae6d04400856fb146b0a764d3", "max": 199, "style": "IPY_MODEL_2df005db5f0d49dda9dd0c4e6e958c48"}}, "87d61c25a76c41e1a826e0e1bcdaf617": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "88035a6b469f4a4891e35659867ff0c6": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "IntSliderModel", "state": {"behavior": "drag-tap", "layout": "IPY_MODEL_a687e87123924c42ad280c3d1993286b", "max": 1999, "style": "IPY_MODEL_b08f9008f0f040808e2c22dbf9b7d636", "value": 792}}, "8851479464964c8a8ed0ae1f204a6c9a": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"children": ["IPY_MODEL_93f14a52f3064949b531de7e08a42ee6"], "layout": "IPY_MODEL_0221bef15fef48a190eccd595775ec95"}}, "894a4ad9cfb04c80bd06a8491a9b3c14": {"model_module": "@jupyter-widgets\/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": {"layout": "IPY_MODEL_c1912c587d5a48f6a85f569f08c3365e", "outputs": [{"data": {"image\/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG2CAYAAACXuTmvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy\/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABKE0lEQVR4nO3deVxU5eIG8GdmgGEfBVkFERXcwV0hzaUkrcylxbK82uJPS715rTS1brZcMSvbNLst18oyKtfKJekquCsoKKIiCggqiKLMsM4wM+f3Bzo33BWGd2bO8\/185lOcOTM8vs2neTznPe9RSJIkgYiIiEhGlKIDEBERETU2FiAiIiKSHRYgIiIikh0WICIiIpIdFiAiIiKSHRYgIiIikh0WICIiIpIdFiAiIiKSHRYgIiIikh0WICIiIpIdmylA8fHxUCgUmDZtmmWbJEmYO3cugoOD4ebmhgEDBiAzM1NcSCIiInIINlGAUlJS8MUXXyAqKqrO9gULFmDhwoVYtGgRUlJSEBgYiMGDB6OsrExQUiIiInIEwgtQeXk5nnzySXz55Zdo2rSpZbskSfjoo48wZ84cjBo1Cp06dcK3336LyspKLF++XGBiIiIisndOogNMnjwZDzzwAO6991688847lu25ubkoKipCXFycZZtarUb\/\/v2xc+dOTJw48Zrvp9frodfrLT+bzWZcuHABvr6+UCgU1vuDEBERUYORJAllZWUIDg6GUtnwx2uEFqCEhATs378fKSkpVz1XVFQEAAgICKizPSAgACdPnrzue8bHx+PNN99s2KBEREQkREFBAUJCQhr8fYUVoIKCArz44ovYtGkTXF1dr7vflUdtJEm64ZGcWbNmYfr06ZaftVotWrRogYKCAnh7e9c\/OBEREVmdTqdDaGgovLy8rPL+wgrQvn37UFxcjO7du1u2mUwmbN26FYsWLUJWVhaA2iNBQUFBln2Ki4uvOir0V2q1Gmq1+qrt3t7eLEBERER2xlrTV4RNgr7nnnuQkZGB9PR0y6NHjx548sknkZ6ejlatWiEwMBCJiYmW1xgMBiQnJyM2NlZUbCIiInIAwo4AeXl5oVOnTnW2eXh4wNfX17J92rRpmDdvHiIiIhAREYF58+bB3d0dY8aMERGZiIiIHITwq8BuZMaMGaiqqsILL7yAixcvonfv3ti0aZPVzgcSERGRPCgkSZJEh7AmnU4HjUYDrVbLOUBERER2wtrf38IXQiQiIiJqbCxAREREJDssQERERCQ7LEBEREQkOyxAREREJDssQERERCQ7LEBEREQkOyxAREREJDssQERERCQ7LEBEREQkOyxAREREJDuyKUDpBRdFRyAiIiIbIZsC9MbaTOiNJtExiIiIyAbIpgCdOFeBxVtOiI5BRERENkA2BQgAPttyHEcKdaJjEBERkWCyKUAD2\/nBaJYwc+VBGE1m0XGIiIhIINkUoNcf6AAvVyccPKXFf3bkio5DREREAsmmAPl7u+K1B9oDAD7YdAx55ysEJyIiIiJRZFOAAOCxHqG4q40v9EYzZq48CLNZEh2JiIiIBJBVAVIoFIgfGQU3ZxX25F5AQkqB6EhEREQkgKwKEAC08HXHy\/e1BQDMW38EhdoqwYmIiIioscmuAAHA+NiW6BLaBOV6I+asPgRJ4qkwIiIiOZFlAVIpFVjwSBScVQpsPlqMXw+cER2JiIiIGpEsCxAARAZ4YeqgCADAm78dRkm5XnAiIiIiaiyyLUAAMKl\/a7QL9MKFCgPe+v2w6DhERETUSGRdgFyclHj34SgoFcDa9DP475GzoiMRERFRI5B1AQKA6NAmeK5fKwDAnNWHoKuuEZyIiIiIrE32BQgA\/nFvJFr6uqNIV435G46KjkNERERWxgIEwM1FhfhRUQCA5XvysetEieBEREREZE0sQJfEtPbFmN4tAACvrjqIKoNJcCIiIiKyFhagv3h1aDsEerviZEklPvzzmOg4REREZCUsQH\/h7eqMeaM6AQC+2paDAwWlYgMRERGRVbAAXWFQuwAM7xIMswTMXHkQBqNZdCQiIiJqYCxA1\/DPBzvAx8MFR4vKsCTphOg4RERE1MBYgK7B11ONuQ91BAAs2pKNY2fLBCciIiKihiS0AC1ZsgRRUVHw9vaGt7c3YmJisGHDBsvz48ePh0KhqPPo06dPo2QbFhWEe9v7o8YkYcaKgzCZecd4IiIiRyG0AIWEhGD+\/PlITU1FamoqBg0ahOHDhyMzM9Oyz5AhQ1BYWGh5rF+\/vlGyKRQKvD2iE7zUTkgvKMU3O\/Ma5fcSERGR9QktQMOGDcP999+PyMhIREZG4l\/\/+hc8PT2xe\/duyz5qtRqBgYGWh4+PT6PlC9K4Ydb97QEA7\/+RhfySykb73URERGQ9NjMHyGQyISEhARUVFYiJibFsT0pKgr+\/PyIjIzFhwgQUFxff8H30ej10Ol2dR3080SsUMa18UVVjwqurDkKSeCqMiIjI3gkvQBkZGfD09IRarcakSZOwevVqdOjQAQAwdOhQ\/PDDD9i8eTM++OADpKSkYNCgQdDr9dd9v\/j4eGg0GssjNDS0XvkUCgXiR3WGq7MSO0+U4OfUgnq9HxEREYmnkAQf0jAYDMjPz0dpaSlWrlyJr776CsnJyZYS9FeFhYUICwtDQkICRo0adc330+v1dQqSTqdDaGgotFotvL297zjnl1tz8K\/1R+Dl6oQ\/p\/dHgLfrHb8XERER3ZhOp4NGo6n39\/f1CD8C5OLigjZt2qBHjx6Ij49HdHQ0Pv7442vuGxQUhLCwMGRnZ1\/3\/dRqteWqssuPhvD0XS0RHaJBWbURr605xFNhREREdkx4AbqSJEnXPcVVUlKCgoICBAUFNXIqwEmlxIJHouGsUiDx8Fmsyyhs9AxERETUMIQWoNmzZ2Pbtm3Iy8tDRkYG5syZg6SkJDz55JMoLy\/Hyy+\/jF27diEvLw9JSUkYNmwYmjVrhpEjRwrJ2zbQCy8MaAMAeGNtJi5WGITkICIiovoRWoDOnj2LsWPHom3btrjnnnuwZ88ebNy4EYMHD4ZKpUJGRgaGDx+OyMhIjBs3DpGRkdi1axe8vLyEZX5hYGtEBniipMKAt38\/LCwHERER3Tnhk6CtzRqTqNLyL+LhJTthloClT\/fEwLb+DfK+REREVMvhJ0Hbo64tmuKZu8IBAHNWZaCsukZwIiIiIrodLEB3aHpcJFr4uOOMthoLNmaJjkNERES3gQXoDrm7OGH+qM4AgGW7T2Jv7gXBiYiIiOhWsQDVQ2ybZniiV+1K0zNXHkR1jUlwIiIiIroVLED19OrQ9gjwViP3fAU++vP6CzQSERGR7WABqieNmzPeGVF7KuzLbTnIOKUVnIiIiIhuhgWoAQzuEIAHo4JgMkuYsfIgakxm0ZGIiIjoBliAGsjchzqiqbszjhTq8MXWHNFxiIiI6AZYgBpIM0813hjWEQDw8Z\/ZOF5cJjgRERERXQ8LUAMa3iUYA9v6wWAyY8aKgzCZHXqRbSIiIqvJKtJZ9f1ZgBqQQqHAv0Z2hqfaCfvzS7FsV57oSERERHanQm\/E1B\/TrPo7WIAaWHATN7w6tB0AYMEfWSi4UCk4ERERkX2J33AEZ0qrrfo7WICsYEyvFugV7oNKgwmzV2fAwe83S0RE1GB2HD+P73fnW\/33sABZgVKpwPxRnaF2UmJb9nms2HdKdCQiIiKbV643YsaKgwCA0T1DrPq7WICspJWfJ\/4xOBIA8Pbvh1FcZt1DeURERPZu3vojOF1ahZCmbpg+uK1VfxcLkBU91zccnZtroKs24o21maLjEBER2axt2eewfE\/tqa\/3HomGh9rJqr+PBciKnFRKvPtwFJyUCmw4VIQNGYWiIxEREdmcsuoazLx06mtcTBhiWvta\/XeyAFlZh2BvPD+gNQDg9bWZKK00CE5ERERkW\/617gjOaKvRwscdMy9dSW1tLECNYMqgNmjj74nz5Xq8s+6I6DhEREQ2I\/nYOSSkFAAA3nskCu4u1j31dRkLUCNQO6nw7sNRUCiAFftOISmrWHQkIiIi4bRV\/zv1NT62JXq3sv6pr8tYgBpJ97CmGB\/bEgAwc+VBaCtrxAYiIiIS7J3fD6NIV42Wvu6YMcS6V31diQWoEc24rx1a+XngrE6P19ceEh2HiIhImC1Hi\/HLvlNQKID3Ho1utFNfl7EANSI3FxUWPtYFKqUCvx44g98OnBEdiYiIqNFpK2vw6qraU1\/P3BWOni19Gj0DC1Aj6xLaBJMHtgEAvLbmEM7quEAiERHJy1u\/H8ZZnR6tmnng5bjGPfV1GQuQAFMHtUHn5hpoq2owY8VB3iuMiIhk48\/DZ7Fy\/+VTX1Fwc1EJycECJICzSokPR0fDxUmJ5GPn8MMe69\/0jYiISLTSSgNmr84AAEzo1wrdwxr\/1NdlLECCtPH3wswhtYs9\/WvdEeSdrxCciIiIyLre\/O0wisv0aOXngemX7pcpCguQQE\/HtkRMK19U1Zgw\/ed0mMw8FUZERI5pU2YRVqedhlIBvP9oNFydxZz6uowFSCClUoH3H4uGl9oJ+\/NL8XnyCdGRiIiIGtzFCgNmr65d\/mXC3a3QrUVTwYlYgIRr3sQNcx\/qCAD46M9jyDyjFZyIiIioYc39LRPny\/Vo4++Jf9wr9tTXZSxANmBUt+a4r2MAakwSpv90ANU1JtGRiIiIGsTGQ0VYm37GZk59XcYCZAMUCgXmjeyMZp4uyDpbhg8Tj4mOREREVG8XKgx4bU3tVV+T+rdGl9AmYgP9BQuQjfD1VGP+qCgAwBfbcrAnp0RwIiIiovr559pDOF9uQGSAJ168N0J0nDpYgGzIvR0CMLpHKCQJeOmXAyjXG0VHIiIiuiPrMwrx+8FCqJQKvP9oNNROtnHq6zIWIBvz2oPtEdLUDacuVuHt3w6LjkNERHTbSsr1eH1N7VVfz\/dvjaiQJmIDXYPQArRkyRJERUXB29sb3t7eiImJwYYNGyzPS5KEuXPnIjg4GG5ubhgwYAAyMzMFJrY+L1dnfPBoNBQK4KfUAvx5+KzoSERERLfln2szUVJhQLtAL0y9p43oONcktACFhIRg\/vz5SE1NRWpqKgYNGoThw4dbSs6CBQuwcOFCLFq0CCkpKQgMDMTgwYNRVlYmMrbV9W7liwn9WgEAXl11ECXlesGJiIiIbs3vB89gXUYhnGz01NdlCsnG7sTp4+OD9957D8888wyCg4Mxbdo0zJw5EwCg1+sREBCAd999FxMnTryl99PpdNBoNNBqtfD29rZm9AZVXWPC8EU7kHW2DPd1DMDnT3WHQqEQHYuIiOi6zpXpEfdhMi5W1uDv90TU63YX1v7+tpk5QCaTCQkJCaioqEBMTAxyc3NRVFSEuLg4yz5qtRr9+\/fHzp07BSZtHK7OKiwcHQ1nlQJ\/ZJ7Fqv2nRUciIiK6LkmS8NqaDFysrEH7IG9MGWibp74uE16AMjIy4OnpCbVajUmTJmH16tXo0KEDioqKAAABAQF19g8ICLA8dy16vR46na7Ow151DNZg2qUVM+f+monTpVWCExEREV3brwfO4I\/Ms5dOfUXBxUl4xbgh4enatm2L9PR07N69G88\/\/zzGjRuHw4f\/d\/XTlad9JEm64amg+Ph4aDQayyM0NNRq2RvDxLtboVuLJijTG\/Hyzwdg5g1TiYjIxhSXVeONX2vn704dFIGOwRrBiW5OeAFycXFBmzZt0KNHD8THxyM6Ohoff\/wxAgMDAeCqoz3FxcVXHRX6q1mzZkGr1VoeBQUFVs1vbU4qJRY+1gVuzirsyinBNzvzREciIiKykCQJc1YfQmllDToGe+OFga1FR7olwgvQlSRJgl6vR3h4OAIDA5GYmGh5zmAwIDk5GbGxsdd9vVqttlxWf\/lh71o288CcB9oDAN7deBTHix37KjgiIrIfa9PPIPHwWTiraq\/6clbZXLW4JqEpZ8+ejW3btiEvLw8ZGRmYM2cOkpKS8OSTT0KhUGDatGmYN28eVq9ejUOHDmH8+PFwd3fHmDFjRMYW4sneLdA\/0g96oxn\/+OkAakxm0ZGIiEjminX\/O\/X190ERaB9kPwcdnET+8rNnz2Ls2LEoLCyERqNBVFQUNm7ciMGDBwMAZsyYgaqqKrzwwgu4ePEievfujU2bNsHLy0tkbCEUCgUWPBKFuA+3IuO0Fp9uPl6vywuJiIjqQ5IkzF6dAW1VDTo312DSAPs49XWZza0D1NDsdR2g6\/ntwBlM\/TENKqUCK5+Ptak76xIRkXys3HcKL\/1yAC4qJX6b2hdtAxv24IRs1gGiWzMsOhgPRQfDZJYw\/ad0VBlMoiMREZHMFGmr8eZvtae+Xrw3osHLT2NgAbJDbw3viABvNXLOV+DdjUdFxyEiIhmRJAmzVh2ErtqI6BANJt7dSnSkO8ICZIeauLtgwSPRAIBvduZhW\/Y5wYmIiEguVuw7hS1Z5+CiUuL9R6PhZCdXfV3JPlMT+kf6YWyfMADAK78chLayRnAiIiJydIXaKrz1W+1ixdPjIhERYH+nvi5jAbJjs+5vh\/BmHijSVeONXw+JjkNERA5MkiS8ujIDZXojuoQ2wYR+9nnq6zIWIDvm7uKEDx6LhlIBrEk\/g3UHC0VHIiIiB\/VzagGSj52Di1PtqS+V8vq3pbIHLEB2rluLpnhhQO0dd+esyUCxrlpwIiIicjSnS6vwzu9HAAAvx0Wijb+n4ET1xwLkAP5+TwQ6BnujtLIGM1cehIMv7URERI2o9tTXQZTpjejWogme7Wvfp74uYwFyAC5OSnw4ugtcnJTYknUOP+617xvAEhGR7fhxbwG2ZZ+H2kFOfV3GAuQgIgO8MOO+tgCAd9YdxsmSCsGJiIjI3p26WIl\/rau96uuV+9qilZ\/9n\/q6jAXIgTxzVzh6h\/ug0mDCSz8fgMnMU2FERHRnJEnCzJUHUWEwoUdYUzx9V7joSA2KBciBKJUKvP9oNDzVTkg9eRFfbM0RHYmIiOzUD3vyseN4CVydlXjPgU59XcYC5GBCfdzxz2EdAAALE7NwpFAnOBEREdmbgguVmLe+9qqvGffVrjnnaFiAHNCj3UMwuEMAakwS\/vFTOvRG3jCViIhujdksYcaKg6g0mNCrpQ\/Gx7YUHckqWIAckEKhQPyozvD1cMHRojJ8mJgtOhIREdmJ7\/ecxK6cErg5q\/Deo1FQOtipr8tYgBxUM0815o3qDAD499YTSMm7IDgRERHZuvySSsSvPwoAeHVoO4T5Ot6pr8tYgBzYfR0D8Uj3EEgSMP3ndJTrjaIjERGRjTKbJby84gCqakzo08rHcsNtR8UC5OD+OawDmjdxQ8GFKstaDkRERFf6ensu9uZegLuLCu89Eu2wp74uYwFycN6uznj\/0WgAtat5bj56VnAiIiKyNekFpXh3Y+2przkPtEeoj7vgRNbHAiQDMa198Wzf2gWsZqzIwIUKg+BERERkK7RVNZj6434YzRLu7xyIMb1aiI7UKFiAZOKV+9oiwt8T58v1mLM6gzdMJSIiSJKEWasOouBCFUJ93BA\/KgoKhWOf+rqMBUgmXJ1V+HB0FzgpFdhwqAhr0k+LjkRERIJ9vycf6zOK4KxSYNET3aBxcxYdqdGwAMlIp+YavHhPBADgn2szcaa0SnAiIiIS5fAZHd7+vfbimJlD2iE6tInYQI2MBUhmnh\/QGl1Cm6Cs2ohXVhyAmTdMJSKSnQq9EVOW74fBaMY97fwt80TlhAVIZpxUSix8LBquzkrsOF6Cb3fliY5ERESN7PU1h5BzvgJBGle8\/2i0bOb9\/BULkAy18vPE7PvbAwDiNxxFximt4ERERNRYVuw7hVVpp6FSKvDJE13R1MNFdCQhWIBkamyfMNzb3h8GoxmTvt+Hi7w0nojI4R0vLsPraw4BAP5xbwR6tvQRnEgcFiCZUigU+OCxLgjzdcfp0iq8+FM6TJwPRETksKprTJj8Qxqqakzo26YZnh\/QRnQkoViAZEzj5ozPn+oOV2clth47h4\/\/y7vGExE5qjd\/O4yss2Vo5qnGwtHRUDn4rS5uhgVI5toHeSP+0l3jP\/lvNm+VQUTkgH47cAY\/7s2HQgF8NLoL\/L1cRUcSjgWIMLJriOWuv9MS0pFfUik4ERERNZSTJRWYtSoDADB5QBv0jWgmOJFtYAEiAMBrD7ZHl9Am0FUbMen7faiuMYmORERE9aQ3mjBleRrK9Ub0bNkU0+6NEB3JZrAAEQBA7aTCkqe6wdfDBYcLdXhtzSHeL4yIyM69uyELGae1aOrujE+e6AonFb\/2L+NIkEWQxg2fPtEVSkXtOhE\/7i0QHYmIiO5Q4uGz+M+OXADA+49GI0jjJjiRbWEBojpi2zTDK\/e1AwDM\/TUTBwpKxQYiIqLbdrq0Ci\/\/cgAA8FzfcNzTPkBwItvDAkRXmdS\/FeI6BMBgMuP57\/fhAhdJJCKyGzUmM\/7+Yxq0VTWIDtFgxpB2oiPZJKEFKD4+Hj179oSXlxf8\/f0xYsQIZGVl1dln\/PjxUCgUdR59+vQRlFgeFAoF3n8sGuHNPHBGW40XE9K4SCIRkZ34MPEY9p28CC9XJywa0w0uTjzWcS1CRyU5ORmTJ0\/G7t27kZiYCKPRiLi4OFRUVNTZb8iQISgsLLQ81q9fLyixfHi71i6S6Oaswrbs8\/gw8ZjoSEREdBPJx87hs6QTAIB3H45CqI+74ES2y0nkL9+4cWOdn5cuXQp\/f3\/s27cPd999t2W7Wq1GYGBgY8eTvbaBXpj\/cGe8mJCORVuOo0toE9zbgeeRiYhsUbGuGtN\/SgcAPNWnBe7vHCQ2kI2zqeNiWm3tXcl9fOrenC0pKQn+\/v6IjIzEhAkTUFxcfN330Ov10Ol0dR5054Z3aY7xsS0BAP\/4OR155ytu\/AIiImp0JrOEaT+lo6TCgHaBXnjtgQ6iI9k8mylAkiRh+vTp6Nu3Lzp16mTZPnToUPzwww\/YvHkzPvjgA6SkpGDQoEHQ6\/XXfJ\/4+HhoNBrLIzQ0tLH+CA5r9v3t0T2sKcouLZJYZeAiiUREtmTxluPYeaIE7i4qLH6yG1ydVaIj2TyFZCOr3U2ePBnr1q3D9u3bERISct39CgsLERYWhoSEBIwaNeqq5\/V6fZ1ypNPpEBoaCq1WC29vb6tkl4MibTUe\/HQbzpcbMKprc3zwWDQUCnnfSI+IyBbszinBmC93wywBCx+Lxqhu1\/8OtSc6nQ4ajcZq3982cQRo6tSp+PXXX7Fly5Yblh8ACAoKQlhYGLKzr33ncrVaDW9v7zoPqr9AjSs+faIbVEoFVqWdxvd78kVHIiKSvZJyPV5MSINZAh7pHuIw5acxCC1AkiRhypQpWLVqFTZv3ozw8PCbvqakpAQFBQUICuLkrsYW09oXM4e0BQC89Vsm9udfFJyIiEi+zGYJL\/1yAGd1erT288BbwzuKjmRXhBagyZMn4\/vvv8fy5cvh5eWFoqIiFBUVoaqqCgBQXl6Ol19+Gbt27UJeXh6SkpIwbNgwNGvWDCNHjhQZXbYm9GuFoZ0CUWOSMPmH\/Sgpv\/ZcLCIisq6vtucgKesc1E5KLH6yG9xdhF7YbXeEFqAlS5ZAq9ViwIABCAoKsjx++uknAIBKpUJGRgaGDx+OyMhIjBs3DpGRkdi1axe8vLxERpcthUKBBY9EoZWfBwq11Zj6YxqMJrPoWEREsrI\/\/yIWbKxdOPiNYR3RLpDTPW6XzUyCthZrT6KSq+yzZRi+eAcqDSY8P6A1ZnKpdSKiRqGtrMH9n2zD6dIqPBgVhE+f6OqQF6XIYhI02Z+IAC+8+3AUAGBJ0gn8kVkkOBERkeOTJAkzVx7E6dIqtPBxR\/yozg5ZfhoDCxDdsWHRwXjmrtqJ6y\/\/fAC5XCSRiMiqlu0+iY2ZRXBWKbBoTFd4uTqLjmS3WICoXmbd3w49WzZFmd6IScv2odJgFB2JiMghZZ7R4p3fjwAAZg1tj6iQJmID2TkWIKoXZ5USi8d0g5+XGllnyzBrVQYcfFoZEVGjK9cbMWV5GgwmM+5tH4Cn72opOpLdYwGievP3dsXiMbWLJK5NP4Pvdp0UHYmIyGFIkoQ5qzOQe74CwRpXvP9oFOf9NAAWIGoQvcJ9MGto7ZVgb\/9+GPtOXhCciIjIMfySegpr089ApVTgkye6oom7i+hIDoEFiBrMs33D8UBUEIxmCS\/8sB\/nyrhIIhFRfWSfLcM\/fz0EAHgpLhI9WvoITuQ4WICowSgUCrz7cBTa+HvirE6PqT\/u5yKJRER3qMpgwuTl+1FdY0a\/iGaYdHdr0ZEcCgsQNShPtRM+f6o7PFxU2J1zAe\/9kSU6EhGRXXrzt0wcO1sOPy81Fj7WBUol5\/00JBYganBt\/D3x3qPRAIB\/b83BhoxCwYmIiOzL2vTTSEgpgEIBfDy6C\/y81KIjORwWILKK+zsHYUK\/2kUSX1lxECfOlQtORERkH3LPV2D2qgwAwNRBEYht00xwIsfEAkRWM3NIO\/QO90H5pUUSK\/RcJJGI6Eb0RhOm\/rgfFQYTeoX74O+D2oiO5LBYgMhqnFRKfDqmK\/y91MguLsfMlQe5SCIR0Q3Erz+KQ6d1aOrujE8e7wonFb+mrYUjS1bl7+WKz57sBielAr8fLMTSHXmiIxER2aQ\/Movwzc48AMDCx7ogUOMqNpCDYwEiq+vR0gdzHmgPAJi3\/ghS8rhIIhHRX526WIlXfjkAAJh4dysMbOcvOJHjYwGiRjE+tiUeig6G0Sxh8g\/7UVxWLToSEZFNqDGZMfXHNOiqjegS2gQv39dWdCRZYAGiRqFQKBA\/qjMiAzxRXKbHlOVpqOEiiURE+GDTMaTll8LL1QmfPtEVzpz30yg4ytRoPC4tkuipdsLe3At4d8NR0ZGIiIRKyirG58knAADvPRKFUB93wYnkgwWIGlUrP0+8f2mRxK+252LdQS6SSETylFVUhr\/\/mAYA+FtMGIZ0ChKcSF5YgKjRDekUiIn9WwEAZqw4gOPFZYITERE1rlMXK\/G3\/+yBrtqI7mFNMfv+9qIjyQ4LEAnxSlxbxLTyRYXBhInL9qGciyQSkUyUlOvxt6\/34qxOj8gAT\/xnXE+4OqtEx5IdFiAS4vIiiYHerjhxrgIzV3CRRCJyfOV6I57+JgU55yvQvIkbvnumNzTuzqJjyRILEAnTzFONxU92g7NKgXUZhfh6e67oSEREVqM3mjBp2T4cPKWFj4cLvnu2Fxc7FIgFiITqHtYUrz\/YAQAQv+Eoko+dE5yIiKjhmcwSXvr5ALYfPw93FxWWju+J1n6eomPJGgsQCTe2TxhGdWsOk1nCxGWpXCmaiByKJEl487dM\/H6wEM4qBf49tjuiQ5uIjiV7LEAknEKhwPxRURjQ1g\/VNWY8szQFh05rRcciImoQn24+ju92nYRCUXuPr34RfqIjEViAyEa4OCnx+VPd0TvcB2V6I\/72n728PJ6I7N73u09iYeIxAMDcYR0xLDpYcCK6jAWIbIarswpfjeuB6BANLlQY8ORXe1BwoVJ0LCKiO7I+oxCvrz0EAPj7oDYYF9tSbCCqgwWIbIqXqzO+eboXIgM8cVanx5Nf7cFZHW+cSkT2Zefx85iWkA5JAsb0boF\/DI4UHYmuwAJENqephwu+f7Y3wnzdkX+hEk99tQcXKgyiYxER3ZJDp7X4v2X7YDCZMbRTIN4e3gkKhUJ0LLoCCxDZJH9vV3z\/bG8Eersiu7gc4\/6zF7rqGtGxiIhuKO98BcYv3YtyvRExrXzx4eguUClZfmwRCxDZrFAfd3z\/XG\/4ergg47QWz32TiiqDSXQsIqJrKtZVY+x\/9uB8uQEdg73xxd+68xYXNowFiGxaG39PfPtML3i5OmFv3gVM+n4fDEaz6FhERHVoq2rwt\/\/sRcGFKoT5uuObp3vBy5W3uLBlLEBk8zo11+Cbp3vCzVmF5GPn8GJCGowmliAisg3VNSZM+C4VR4vK4OelxrJnesPPSy06Ft0ECxDZhe5hPvjib93holJiw6EivLoqA2Yzb55KRGIZTWZM\/TENe3MvwEvthG+f7oUWvu6iY9EtEFqA4uPj0bNnT3h5ecHf3x8jRoxAVlZWnX0kScLcuXMRHBwMNzc3DBgwAJmZmYISk0j9Ivzw6ZiuUCkVWLHvFN76\/TDvIE9EwkiShNmrM5B4+CxcnJT4alwPdAj2Fh2LbpHQApScnIzJkydj9+7dSExMhNFoRFxcHCoqKiz7LFiwAAsXLsSiRYuQkpKCwMBADB48GGVlXCVYju7rGIj3H40CAHyzM8+ywioRUWN7748s\/Jx6CkoF8OkTXdG7la\/oSHQbFJIN\/RX63Llz8Pf3R3JyMu6++25IkoTg4GBMmzYNM2fOBADo9XoEBATg3XffxcSJE2\/6njqdDhqNBlqtFt7ebOaOYtmuPLy+tvZI4Kyh7TCxf2vBiYhITr7enou3fz8MAJg\/qjMe79VCcCLHY+3vb6c7edFbb711w+f\/+c9\/3lEYrbb2Bpg+Pj4AgNzcXBQVFSEuLs6yj1qtRv\/+\/bFz585rFiC9Xg+9Xm\/5WafT3VEWsm1jY1qiXG\/CuxuPIn7DUXi6OuHJ3mGiYxGRDKxJO20pP6\/c15blx07dUQFavXp1nZ9ramqQm5sLJycntG7d+o4KkCRJmD59Ovr27YtOnToBAIqKigAAAQEBdfYNCAjAyZMnr\/k+8fHxePPNN2\/795P9eX5Aa5RV1+CzpBN4bc0heKqdMLxLc9GxiMiBbckqxsu\/HAAAPH1XS7wwgEef7dUdFaC0tLSrtul0OowfPx4jR468oyBTpkzBwYMHsX379queu3IJcUmSrrus+KxZszB9+vQ6uUJDQ+8oE9m+V+5ri3K9Ed\/tOonpPx+Au4sTBncIuPkLiYhu0\/78i3jh+\/0wmiUM7xKM1x\/owFtc2LEGmwTt7e2Nt956C6+\/\/vptv3bq1Kn49ddfsWXLFoSEhFi2BwYGAvjfkaDLiouLrzoqdJlarYa3t3edBzkuhUKBucM6YlS35jCZJUxevh87jp8XHYuIHMzx4jI8800KqmpMuDvSD+89Eg0lb3Fh1xr0KrDS0lLLPJ5bIUkSpkyZglWrVmHz5s0IDw+v83x4eDgCAwORmJho2WYwGJCcnIzY2NgGy032TalUYMHDUbivYwAMRjMmfJeKfScvio5FRA7iTGkVxn69F6WVNegS2gSfP9UNLk5cRs\/e3dEpsE8++aTOz5IkobCwEMuWLcOQIUNu+X0mT56M5cuXY+3atfDy8rIc6dFoNHBzc4NCocC0adMwb948REREICIiAvPmzYO7uzvGjBlzJ9HJQTmplPjkia547ttUbMs+j6eX7kXC\/8VwTQ4iqpeLFQaM\/XoPCrXVaO3ngaXje8Ld5Y6+OsnG3NFl8FceqVEqlfDz88OgQYMwa9YseHl53dovv86506VLl2L8+PEAasvVm2++iX\/\/+9+4ePEievfujcWLF1smSt8ML4OXl0qDEX\/7ei9ST15EM08X\/DwxBq38PEXHIiI7VGkwYsyXe5BeUIogjStWPB+L5k3cRMeSDWt\/f9vUOkDWwAIkP9qqGoz5cjcyz+gQrHHFz5NiENKUS9MT0a0zGM147rtUbD12Dk3cnfHLxBhEBNzaX+6pYVj7+5snMcnhaNyc8d0zvdDazwNntNV46qs9KC6rFh2LiOyE2SzhlRUHsPXYObg5q\/Cf8T1ZfhwQCxA5JF9PNb5\/rjdCmrohr6QSf\/t6L0orDaJjEZGNkyQJb687jLXpZ+CkVOCzp7qhW4umomORFbAAkcMK0rjhh+d6w99LjaNFZRi3NAXleqPoWERkwz5LOoGlO\/IAAO8\/Go2Bbf3FBiKrYQEihxbm64Hvn+uNJu7OOFBQignfpqK6xiQ6FhHZoIS9+XjvjywAwOsPdsCIrlxZ3pGxAJHDiwzwwnfP9IKn2gm7ckow+Yf9qDGZRcciIhvyR2YRZq\/OAFB7m51n+4bf5BVk71iASBaiQprg63E9oHZS4r9HizH95wMwmR36AkgiukV7ckow9cc0mCXgsR4hmHFfW9GRqBGwAJFs9G7li8\/HdoezSoHfDpzBnNUZcPBVIIjoJg6f0eG5b1NhMJoxuEMA5o3szPt7yQQLEMnKwLb++Gh0VygVQEJKAeatP8ISRCRT+SWVGLd0L8r0RvRq6YNPn+gKJxW\/FuWC\/6VJdh6ICsL8h6MAAF9uy8Wnm48LTkREje1cmR5j\/7MH58r0aBfohS\/H9YCrs0p0LGpELEAkS4\/1CMU\/H+wAAFiYeAz\/2Z4rOBERNZay6hqMX7oXJ0sqEdLUDd890wsaN2fRsaiRsQCRbD3TNxzTB0cCAN76\/TB+TikQnIiIrK3KYML\/fbcPmWd08PVwwbJne8Pf21V0LBKABYhkbeqgNvi\/u1sBAF5ddRDrDhYKTkRE1lKorcKj\/96JXTkl8FQ74dtneiG8mYfoWCSIk+gARCIpFArMGtoOZdVG\/Lg3H9N+SoO7iwoD23H1VyJHkpZ\/Ef+3bB\/Olenh4+GCL8Z2R6fmGtGxSCAeASLZUygUeGdEJzwUHYwak4RJ3+\/D7pwS0bGIqIGsTT+N0V\/sxrkyPdoGeGHt5LvQo6WP6FgkGAsQEQCVUoEPHovGve39oTea8dy3qUgvKBUdi4jqwWyW8N4fR\/FiQjoMRjPubR+AlS\/EItTHXXQ0sgEsQESXOKuUWDSmG2Jb+6Jcb8TjX+zCrwfOiI5FRHegQm\/EpO\/3YfGWEwBqb2\/xxdju8FRz5gfVYgEi+gtXZxW+\/FsP3B3ph+oaM\/7+YxrmrT8CI+8dRmQ3Tl2sxMNLdmLT4bNwcVLiw9HRmDmkHZRKrvBM\/8MCRHQFD7UTlo7viecHtAYAfLE1B+OXpuBihUFwMiK6mdS8Cxi+aAeOFpWhmacaCf\/XByO7hoiORTaIBYjoGlRKBWYOaYfFY7rBzVmF7cfP46HF23H4jE50NCK6jl9SC\/DEl7tRUmFAhyBv\/DrlLnRr0VR0LLJRLEBEN\/BAVBBWvRCLFj7uKLhQhVFLdnBeEJGNMZklzFt\/BK+sOIgak4ShnQKx4vkYBDdxEx2NbBgLENFNtL\/0N8l+Ec0s84LiOS+IyCaUVddgwnep+GJrDgDg74PaYPGYbnB34WRnujEWIKJb0MTdBd883QuT+tfOC\/r31hw8\/U0KSis5L4hIlPySSoz6bCc2Hy2G2kmJT5\/oiulxbTnZmW4JCxDRLVIpFXh1aDt8+kRXuDmrsC37PIYt2o4jhZwXRNTYdp0owfDF25FdXI4AbzV+mRSDYdHBomORHWEBIrpNw6KDseqFWIT6uNXOC\/psJ37jvCCiRvPj3nyM\/XoPLlbWIDpEg1+n9EVUSBPRscjOsAAR3YH2Qd74bUpf9ItohqoaE6b+mIb4DUdgMkuioxE5LKPJjLm\/ZmLWqgwYzRKGRQfjp4kxCODd3OkOsAAR3aEm7i5YOr4nJl66m\/y\/k3MwfulezgsisgJtVQ2e\/iYF3+zMAwC8NDgSnzzeBa7OKrHByG6xABHVg5NKiVn3t68zL+ihRTs4L4ioAeWcK8fIz3ZgW\/Z5uDmr8PlT3TD1nggoFJzsTHeOBYioAQyLDsbK52MR0tQN+Rdqr0z5\/SDnBRHV1\/bs8xixeAdyzlUgWOOKFc\/HYEinINGxyAGwABE1kA7BtfOC+rapnRc0ZXka5m84ynlBRHfou115GLd0L3TVRnRt0QRrptyFjsEa0bHIQbAAETWgph4u+Obp\/80L+jz5BNcLIrpNNSYzXluTgX+uzYTJLGFUt+b4cUIf+HtxsjM1HBYgogZ2eV7QJ090hauzEluPncNDi3bgaBHnBRHdzMUKA\/729V58vzsfCgXw6tB2+ODRaE52pgbHAkRkJQ9dMS9o5GLOCyK6kePFZRjx2Q7syimBh4sKX47tgUn9W3OyM1kFCxCRFXUM1uC3KX1xVxtfzgsiuoEtWcUYuXgnTpZUIqSpG1a+EIt7OwSIjkUOjAWIyMqaerjg26d74f84L4joKpIk4attOXj2mxSU6Y3o1dIHayffhXaB3qKjkYNjASJqBE4qJWbf3x4fP96F84KILjEYzXh1ZQbeWXcEZgkY3SMU3z\/XG76eatHRSAaEFqCtW7di2LBhCA4OhkKhwJo1a+o8P378eCgUijqPPn36iAlL1ACGd2mOlc\/HonmT\/60XtD6jUHQsokZXUq7HU1\/twU+pBVAqgNcf7ID5D3eGixP\/Xk6NQ+gnraKiAtHR0Vi0aNF19xkyZAgKCwstj\/Xr1zdiQqKG1zFYg9+m1s4LqjSY8MIP+7FgI+cFkXwcLdJh+OId2Jt3AV5qJ3w9viee7RvOyc7UqJxE\/vKhQ4di6NChN9xHrVYjMDCwkRIRNQ6fS\/OC3t14FF9uy8VnSSeQeUaHTx7vCo27s+h4RFbz5+GzeDEhDRUGE8J83fH1uB5o4+8lOhbJkM0fa0xKSoK\/vz8iIyMxYcIEFBcX33B\/vV4PnU5X50Fki5xUSsx5oINlXlDysXN4aPF2ZBWViY5G1OAkScLnyScwYVkqKgwmxLb2xZoX7mL5IWFsugANHToUP\/zwAzZv3owPPvgAKSkpGDRoEPR6\/XVfEx8fD41GY3mEhoY2YmKi2ze8S3OsmFQ7L+hkSSVGfraD84LIoVTXmPDSzwcwf8NRSBLwZO8W+PaZXmjq4SI6GsmYQpIkm5h4oFAosHr1aowYMeK6+xQWFiIsLAwJCQkYNWrUNffR6\/V1CpJOp0NoaCi0Wi28vXlZJdmuCxUGTFm+HztPlAAAXhjQGi\/FtYVKyXkRZJ8kScKfR4oRv+EIcs5VQKVUYO6wDhgb01J0NLIDOp0OGo3Gat\/fQucA3a6goCCEhYUhOzv7uvuo1Wqo1byEkuyPj4cLvnumF+I3HMXX22vnBR0u1OHj0ZwXRPbn0Gkt3ll3GLtzLgAAmnm64KPRXdE3opngZES17KoAlZSUoKCgAEFBQaKjEFmFk0qJ1x\/sgM7NNZi58iCSsmrnBX0xtgfaBnKuBNm+M6VVeP+PLKxKOw0AUDsp8WzfcDw\/oDW8XFnkyXYILUDl5eU4fvy45efc3Fykp6fDx8cHPj4+mDt3Lh5++GEEBQUhLy8Ps2fPRrNmzTBy5EiBqYmsb0TX5mjj74mJy\/bhZEklhi\/ejqfvCseku1vzaBDZpHK9EZ8nncCX23KgN5oBACO7NsfL97VF8yZugtMRXU3oHKCkpCQMHDjwqu3jxo3DkiVLMGLECKSlpaG0tBRBQUEYOHAg3n777dua2Gztc4hE1lRSrseLCenYfvw8AMDb1QmTBrTG07HhcHPh3bFJPKPJjJ9TT2Fh4jGcL6+df9kr3AevPdAeUSFNxIYju2bt72+bmQRtLSxAZO8kSULi4bN4f1MWjp0tBwD4eanx90FtMLpnC66cS8IkZRVj3vojls9lS193zLq\/PeI6BHBRQ6o3FqB6YgEiR2EyS1ibfhoLE4\/h1MUqAEALH3dMHxyJh6KDoeTVYtRIjhbp8K91R7Atu\/bIZBN3Z7x4TwSe7B3GQk4NhgWonliAyNEYjGYkpOTjk\/8et5xyaBfohZfj2uKe9v78mzdZTXFZNRZuOoafUwtglgBnlQLjY1tiysAIzk2jBscCVE8sQOSoKg1GLN2Rh8+TT6Cs2ggA6B7WFK\/c1xZ9WvkKTkeOpMpgwpfbcvB58glUGkwAgAc6B2HmkHZo4esuOB05KhagemIBIkdXWmnA58k5+GZnLqpraq++6R\/ph1fua4tOzTWC05E9M5slrEo7jff\/yEKRrhoA0LVFE7z2QHt0D\/MRnI4cHQtQPbEAkVyc1VXj083ZSNhbAOOlO8s\/EBWElwZHopWfp+B0ZG92njiPf607gswztfdTDGnqhplD2uHBqCCeZqVGwQJUTyxAJDcnSyqwMPEYfj1wBpIEqJQKPNYjBH+\/JwJBGq7HQjd2vLgc8zccwZ9Ham887eXqhCkD22BcbEu4OnPpBWo8LED1xAJEcnWkUIf3\/8jCf4\/WfpG5OCkxLiYMLwxow5tQ0lVKyvX46M9sLN+bD5NZgkqpwFO9W+DFeyPhw88LCcACVE8sQCR3qXkXsGBjFvbm1d6TyVPthAn9WuHZfuHwVNvV3XDICqprTFi6Iw+fbTmOMn3tZPp72wdg1v3t0JqnTkkgFqB6YgEiql1MMenYOby3MQuHC2vndPh6uGDywDZ4sk8LqJ14akNuJEnCrwfOYMHGLJwurV1XqlNzb8y+vz1iW\/OGpSQeC1A9sQAR\/Y\/ZLGFdRiEWJh5D7vkKAEDzJm6Ydm8ERnULgYqLKcpCat4FvL3uCA4UlAIAAr1d8cp9bTGya3MuqEk2gwWonliAiK5WYzLjl9RT+Pi\/x3BWV7uYYht\/T7wcF4n7OgbyKh8HdbKkAvM3HMWGQ0UAAHcXFZ7v3xrP9WvFe8uRzWEBqicWIKLrq64x4btdefgs6QRKK2sAANEhGswY0g53teFpEEehrazBJ5uz8d2uPNSYJCgVwOieofjH4Ej4e7mKjkd0TSxA9cQCRHRzuuoafLU1B19tz7Ws9HtXG1+8cl87dAltIjYc3TGD0Yxlu0\/ik\/9mQ1tVW3DvjvTDnPvbo22gl+B0RDfGAlRPLEBEt+5cmR6LtxzH8j35MJhqV5W+r2MAXo5ri4gAfmHai3K9Ef89chYfJh5DXkklAKBtgBdmP9Ae\/SP9BKcjujUsQPXEAkR0+05drMRHf2Zj1f5TMEuAUgGM6haCafdGIKQp7\/1kayRJwolzFUjKKsaWrGLszb2AGlPt\/9qbearxUlwkHusRyknuZFdYgOqJBYjozmWfLcP7m7LwR+ZZAICLSokxvVvgsR6haBfoxSuGBKquMWHXiRJsuVR6Ci5U1Xm+pa87hndpjgl3t+J6T2SXWIDqiQWIqP7SC0rx3h9HseN4iWVbE3dn9A73QUwrX\/Rp7YtIfxYiayu4UFlbeI4WY+eJEuiNZstzLiolerfywcC2\/hjYzh\/hzTwEJiWqPxagemIBImo4O46fx1fbcrAn94JlsvRlPh4utYWotS\/6tPJFhL8nL6evJ4PRjJS8C9hytPYoz4lzFXWeD9a4YmA7fwxs64\/YNr5wd+GRHnIcLED1xAJE1PBqTGZknNZid04Jdp0oQWreRVTV1C1Evh4u6HPp6FBMKx+09mMhuhWF2iokZZ3DlqPF2HH8PCr+UjSdlAr0aNnUcpSHJZMcGQtQPbEAEVmfwWhGxulS7DpRgt05F5B68gKqa8x19mnmqUafVv87QtSqmQe\/vAEYTWbszy+1nNo6WlRW53k\/LzUGRPphYDt\/9I1oBm9XZ0FJiRoXC1A9sQARNT690YSDp7SXClEJ9p28WGe+CgD4e6nRp5WvpRC19HWXTSE6X65HctY5bMkqxtZj56CrNlqeUyiArqFNLEd5OgR5c24VyRILUD2xABGJV11jwoGCUuzKqS1E+\/NLYbiiEAV6u9Y5QtTCx3EKkdks4eBpLbYcLUZSVjEOnNLWeb6puzP6XzrK0y\/CDz4eLoKSEtkOFqB6YgEisj3VNSak5f+vEKXnl1oWXrwsWOP6lzlEvgj1sa\/1h0orDdiafR5JR4uRfOwcSioMdZ7v1NwbA9v6Y0Bbf3QJbcI1eoiuwAJUTyxARLavymDC\/vyLlknVB06VWhbyu6x5EzfL0aGY1r5o3sRNSFZJkmAySzCaJdSYzDCaJNSYa\/9ZUm7A1uxzSMoqxr6TF2H+yx\/BS+2EfpHNMKCtPwZE+sHfm\/fgIroRFqB6YgEisj+VBiP2nfxfITp4Sgujue7\/qkJ93NAn3Bet\/T1hNJlRY6otJpfLiNFkRo259p+1JUWy7Ge8tE+NyXzpNX\/d73qvv7TdfOv\/y2wb4IUB7fwwsK0\/uoc1hbNK2dBDReSwWIDqiQWIyP5V6I1I\/Ushyjithek2ikhjcFYp4OasQq9wHwy4NIFZ1FEqIkdg7e9vrppFRDbPQ+2E\/pF+lht5luuNSMm7gN05JThXpoezUgknlQLOKiWclAo4qZRwVingdGn7tbZd\/ve625RQKRVXbXNSXvrnX19z+XcpFVApFQ4zYZtILliAiMjueKqdai8Tb+svOgoR2SmekCYiIiLZYQEiIiIi2WEBIiIiItlhASIiIiLZYQEiIiIi2WEBIiIiItlhASIiIiLZEVqAtm7dimHDhiE4OBgKhQJr1qyp87wkSZg7dy6Cg4Ph5uaGAQMGIDMzU0xYIiIichhCC1BFRQWio6OxaNGiaz6\/YMECLFy4EIsWLUJKSgoCAwMxePBglJWVNXJSIiIiciRCV4IeOnQohg4des3nJEnCRx99hDlz5mDUqFEAgG+\/\/RYBAQFYvnw5Jk6c2JhRiYiIyIHY7Byg3NxcFBUVIS4uzrJNrVajf\/\/+2Llz53Vfp9frodPp6jyIiIiI\/spmC1BRUREAICAgoM72gIAAy3PXEh8fD41GY3mEhoZaNScRERHZH5stQJddeYdlSZJueNflWbNmQavVWh4FBQXWjkhERER2xmbvBh8YGAig9khQUFCQZXtxcfFVR4X+Sq1WQ61WWz0fERER2S+bPQIUHh6OwMBAJCYmWrYZDAYkJycjNjZWYDIiIiKyd0KPAJWXl+P48eOWn3Nzc5Geng4fHx+0aNEC06ZNw7x58xAREYGIiAjMmzcP7u7uGDNmjMDUREREZO+EFqDU1FQMHDjQ8vP06dMBAOPGjcM333yDGTNmoKqqCi+88AIuXryI3r17Y9OmTfDy8hIVmYiIiByAQpIkSXQIa9LpdNBoNNBqtfD29hYdh4iIiG6Btb+\/bXYOEBEREZG1sAARERGR7LAAERERkeywABEREZHssAARERGR7LAAERERkeywABEREZHssAARERGR7LAAERERkeywABEREZHssAARERGR7LAAERERkeywABEREZHssAARERGR7LAAERERkeywABEREZHssAARERGR7LAAERERkeywABEREZHssAARERGR7LAAERERkeywABEREZHssAARERGR7LAAERERkeywABEREZHssAARERGR7LAAERERkeywABEREZHssAARERGR7LAAERERkeywABEREZHssAARERGR7LAAERERkeywABEREZHssAARERGR7Nh0AZo7dy4UCkWdR2BgoOhYREREZOecRAe4mY4dO+LPP\/+0\/KxSqQSmISIiIkdg8wXIycmJR32IiIioQdn0KTAAyM7ORnBwMMLDw\/H4448jJydHdCQiIiKyczZ9BKh379747rvvEBkZibNnz+Kdd95BbGwsMjMz4evre83X6PV66PV6y886na6x4hIREZGdUEiSJIkOcasqKirQunVrzJgxA9OnT7\/mPnPnzsWbb7551XatVgtvb29rRyQiIqIGoNPpoNForPb9bfOnwP7Kw8MDnTt3RnZ29nX3mTVrFrRareVRUFDQiAmJiIjIHtj0KbAr6fV6HDlyBP369bvuPmq1Gmq1uhFTERERkb2x6SNAL7\/8MpKTk5Gbm4s9e\/bgkUcegU6nw7hx40RHIyIiIjtm00eATp06hSeeeALnz5+Hn58f+vTpg927dyMsLEx0NCIiIrJjNl2AEhISREcgIiIiB2TTp8CIiIiIrIEFiIiIiGSHBYiIiIhkhwWIiIiIZIcFiIiIiGSHBYiIiIhkhwWIiIiIZIcFiIiIiGSHBYiIiIhkhwWIiIiIZIcFiIiIiGSHBYiIiIhkhwWIiIiIZIcFiIiIiGSHBYiIiIhkhwWIiIiIZIcFiIiIiGSHBYiIiIhkhwWIiIiIZIcFiIiIiGSHBYiIiIhkhwWIiIiIZIcFiIiIiGSHBYiIiIhkhwWIiIiIZIcFiIiIiGSHBYiIiIhkhwWIiIiIZIcFiIiIiGSHBYiIiIhkhwWIiIiIZIcFiIiIiGSHBYiIiIhkhwWIiIiIZIcFiIiIiGSHBYiIiIhkxy4K0GeffYbw8HC4urqie\/fu2LZtm+hIREREZMdsvgD99NNPmDZtGubMmYO0tDT069cPQ4cORX5+vuhoREREZKcUkiRJokPcSO\/evdGtWzcsWbLEsq19+\/YYMWIE4uPjb\/p6nU4HjUYDrVYLb29va0YlIiKiBmLt72+nBn\/HBmQwGLBv3z68+uqrdbbHxcVh586d13yNXq+HXq+3\/KzVagHUDiQRERHZh8vf29Y6TmPTBej8+fMwmUwICAiosz0gIABFRUXXfE18fDzefPPNq7aHhoZaJSMRERFZT0lJCTQaTYO\/r00XoMsUCkWdnyVJumrbZbNmzcL06dMtP5eWliIsLAz5+flWGUA50el0CA0NRUFBAU8n1gPHseFwLBsOx7JhcBwbjlarRYsWLeDj42OV97fpAtSsWTOoVKqrjvYUFxdfdVToMrVaDbVafdV2jUbDD2MD8fb25lg2AI5jw+FYNhyOZcPgODYcpdI612vZ9FVgLi4u6N69OxITE+tsT0xMRGxsrKBUREREZO9s+ggQAEyfPh1jx45Fjx49EBMTgy+++AL5+fmYNGmS6GhERERkp2y+AI0ePRolJSV46623UFhYiE6dOmH9+vUICwu7pder1Wq88cYb1zwtRreHY9kwOI4Nh2PZcDiWDYPj2HCsPZY2vw4QERERUUOz6TlARERERNbAAkRERESywwJEREREssMCRERERLLj0AXos88+Q3h4OFxdXdG9e3ds27ZNdCSbN3fuXCgUijqPwMBAy\/OSJGHu3LkIDg6Gm5sbBgwYgMzMTIGJbcfWrVsxbNgwBAcHQ6FQYM2aNXWev5Wx0+v1mDp1Kpo1awYPDw889NBDOHXqVCP+KcS72TiOHz\/+qs9onz596uzDcay9LVDPnj3h5eUFf39\/jBgxAllZWXX24Wfy1tzKWPJzeWuWLFmCqKgoy0KRMTEx2LBhg+X5xvxMOmwB+umnnzBt2jTMmTMHaWlp6NevH4YOHYr8\/HzR0Wxex44dUVhYaHlkZGRYnluwYAEWLlyIRYsWISUlBYGBgRg8eDDKysoEJrYNFRUViI6OxqJFi675\/K2M3bRp07B69WokJCRg+\/btKC8vx4MPPgiTydRYfwzhbjaOADBkyJA6n9H169fXeZ7jCCQnJ2Py5MnYvXs3EhMTYTQaERcXh4qKCss+\/EzemlsZS4Cfy1sREhKC+fPnIzU1FampqRg0aBCGDx9uKTmN+pmUHFSvXr2kSZMm1dnWrl076dVXXxWUyD688cYbUnR09DWfM5vNUmBgoDR\/\/nzLturqakmj0Uiff\/55IyW0DwCk1atXW36+lbErLS2VnJ2dpYSEBMs+p0+flpRKpbRx48ZGy25LrhxHSZKkcePGScOHD7\/uaziO11ZcXCwBkJKTkyVJ4meyPq4cS0ni57I+mjZtKn311VeN\/pl0yCNABoMB+\/btQ1xcXJ3tcXFx2Llzp6BU9iM7OxvBwcEIDw\/H448\/jpycHABAbm4uioqK6oyrWq1G\/\/79Oa43cStjt2\/fPtTU1NTZJzg4GJ06deL4XiEpKQn+\/v6IjIzEhAkTUFxcbHmO43htWq0WACw3luRn8s5dOZaX8XN5e0wmExISElBRUYGYmJhG\/0w6ZAE6f\/48TCbTVTdMDQgIuOrGqlRX79698d133+GPP\/7Al19+iaKiIsTGxqKkpMQydhzX23crY1dUVAQXFxc0bdr0uvsQMHToUPzwww\/YvHkzPvjgA6SkpGDQoEHQ6\/UAOI7XIkkSpk+fjr59+6JTp04A+Jm8U9caS4Cfy9uRkZEBT09PqNVqTJo0CatXr0aHDh0a\/TNp87fCqA+FQlHnZ0mSrtpGdQ0dOtTy7507d0ZMTAxat26Nb7\/91jKhj+N65+5k7Di+dY0ePdry7506dUKPHj0QFhaGdevWYdSoUdd9nZzHccqUKTh48CC2b99+1XP8TN6e640lP5e3rm3btkhPT0dpaSlWrlyJcePGITk52fJ8Y30mHfIIULNmzaBSqa5qg8XFxVc1S7oxDw8PdO7cGdnZ2ZarwTiut+9Wxi4wMBAGgwEXL1687j50taCgIISFhSE7OxsAx\/FKU6dOxa+\/\/ootW7YgJCTEsp2fydt3vbG8Fn4ur8\/FxQVt2rRBjx49EB8fj+joaHz88ceN\/pl0yALk4uKC7t27IzExsc72xMRExMbGCkpln\/R6PY4cOYKgoCCEh4cjMDCwzrgaDAYkJydzXG\/iVsaue\/fucHZ2rrNPYWEhDh06xPG9gZKSEhQUFCAoKAgAx\/EySZIwZcoUrFq1Cps3b0Z4eHid5\/mZvHU3G8tr4efy1kmSBL1e3\/ifyTuctG3zEhISJGdnZ+nrr7+WDh8+LE2bNk3y8PCQ8vLyREezaS+99JKUlJQk5eTkSLt375YefPBBycvLyzJu8+fPlzQajbRq1SopIyNDeuKJJ6SgoCBJp9MJTi5eWVmZlJaWJqWlpUkApIULF0ppaWnSyZMnJUm6tbGbNGmSFBISIv3555\/S\/v37pUGDBknR0dGS0WgU9cdqdDcax7KyMumll16Sdu7cKeXm5kpbtmyRYmJipObNm3Mcr\/D8889LGo1GSkpKkgoLCy2PyspKyz78TN6am40lP5e3btasWdLWrVul3Nxc6eDBg9Ls2bMlpVIpbdq0SZKkxv1MOmwBkiRJWrx4sRQWFia5uLhI3bp1q3PJIl3b6NGjpaCgIMnZ2VkKDg6WRo0aJWVmZlqeN5vN0htvvCEFBgZKarVauvvuu6WMjAyBiW3Hli1bJABXPcaNGydJ0q2NXVVVlTRlyhTJx8dHcnNzkx588EEpPz9fwJ9GnBuNY2VlpRQXFyf5+flJzs7OUosWLaRx48ZdNUYcR+maYwhAWrp0qWUffiZvzc3Gkp\/LW\/fMM89Yvpf9\/Pyke+65x1J+JKlxP5MKSZKk2ztmRERERGTfHHIOEBEREdGNsAARERGR7LAAERERkeywABEREZHssAARERGR7LAAERERkeywABEREZHssAARERGR7LAAERERkeywABEREZHssAARkV05d+4cAgMDMW\/ePMu2PXv2wMXFBZs2bRKYjIjsCe8FRkR2Z\/369RgxYgR27tyJdu3aoWvXrnjggQfw0UcfiY5GRHaCBYiI7NLkyZPx559\/omfPnjhw4ABSUlLg6uoqOhYR2QkWICKyS1VVVejUqRMKCgqQmpqKqKgo0ZGIyI5wDhAR2aWcnBycOXMGZrMZJ0+eFB2HiOwMjwARkd0xGAzo1asXunTpgnbt2mHhwoXIyMhAQECA6GhEZCdYgIjI7rzyyitYsWIFDhw4AE9PTwwcOBBeXl74\/fffRUcjIjvBU2BEZFeSkpLw0UcfYdmyZfD29oZSqcSyZcuwfft2LFmyRHQ8IrITPAJEREREssMjQERERCQ7LEBEREQkOyxAREREJDssQERERCQ7LEBEREQkOyxAREREJDssQERERCQ7LEBEREQkOyxAREREJDssQERERCQ7LEBEREQkOyxAREREJDv\/D4EKy8Dw4IC\/AAAAAElFTkSuQmCC", "text\/plain": "<Figure size 640x480 with 1 Axes>"}, "metadata": {}, "output_type": "display_data"}]}}, "8d43b8903d1c4542ac1d493441e99717": {"model_module": "@jupyter-widgets\/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": {"layout": "IPY_MODEL_7cc9130632e24968ac7630fa1302ec66", "outputs": [{"data": {"image\/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG2CAYAAACXuTmvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy\/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAiRklEQVR4nO3dfWyV9f3\/8dfhpocCbSNCe05HaTptdVhgG0Voo1JQGjplQF2CYkzJNiJykzXVEQvZOJrZEhL44tLZTWcYOFhJpjh\/47b+oEXW1W9BkA4Nq6NAda2djN5Q8FTg8\/tj4fw4tMXK2l7n9PN8JFfidXNO3\/14JT5znYO4jDFGAAAAFhnk9AAAAAD9jQACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1gmZACoqKpLL5VJeXl7gmDFGPp9P8fHxioyMVGZmpk6cOOHckAAAYEAIiQCqrq7WK6+8ookTJwYdX7dunTZs2KDi4mJVV1fL4\/Fo1qxZamtrc2hSAAAwEDgeQBcuXNATTzyhV199VbfddlvguDFGGzdu1OrVq5WTk6PU1FRt3rxZFy9e1LZt2xycGAAAhLshTg+wbNkyPfzww3rooYf0i1\/8InC8rq5OjY2NysrKChxzu92aPn26Kisr9dRTT3X5fn6\/X36\/P7B\/9epV\/fvf\/9btt98ul8vVd78IAADoNcYYtbW1KT4+XoMG9f7zGkcDqLS0VO+\/\/76qq6s7nWtsbJQkxcXFBR2Pi4vTmTNnun3PoqIiPf\/88707KAAAcER9fb3Gjh3b6+\/rWADV19frJz\/5ifbt26dhw4Z1e92NT22MMTd9klNQUKD8\/PzAfktLi8aNG6e\/n6pT3O2j\/vvB+8nFjsu698X\/K0n639UPaniE4w\/rJIXmXKE2E\/MwD\/PYM48UmjNJoTtXT1zsuKy0n\/8ffVqySFFRUX3yMxxbjSNHjqipqUmTJ08OHLty5YoOHjyo4uJinTx5UtJ\/ngR5vd7ANU1NTZ2eCl3P7XbL7XZ3Oh4VFa3o6Ohe\/A361pCOyxrkHi5Jio6ODpkbNxTnCrWZmId5mMeeeaTQnEkK3bl64vrZ++rrK459CfrBBx9UTU2Njh07FtjS0tL0xBNP6NixY\/rmN78pj8ejsrKywGs6OjpUUVGhjIwMp8YGAAADgGM5GBUVpdTU1KBjI0aM0O233x44npeXp8LCQiUnJys5OVmFhYUaPny4Fi5c6MTIAABggAjp52ErV67UpUuXtHTpUp0\/f15Tp07Vvn37+uzzQAAAYIeQCqDy8vKgfZfLJZ\/PJ5\/P58g8AABgYHL8f4QIAADQ3wggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdawJoMihg50eAQAAhAhrAsjlcjk9AgAACBHWBBAAAMA1BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6zgaQCUlJZo4caKio6MVHR2t9PR07d69O3B+0aJFcrlcQdu0adMcnBgAAAwEQ5z84WPHjtXatWt15513SpI2b96suXPn6ujRo7rnnnskSbNnz9amTZsCr4mIiHBkVgAAMHA4GkBz5swJ2n\/xxRdVUlKiqqqqQAC53W55PB4nxgMAAANUyHwH6MqVKyotLVV7e7vS09MDx8vLyxUbG6uUlBQtXrxYTU1NN30fv9+v1tbWoA0AAOB6jgdQTU2NRo4cKbfbrSVLlmjHjh0aP368JCk7O1tbt27V\/v37tX79elVXV2vmzJny+\/3dvl9RUZFiYmICW0JCQn\/9KgAAIEw4+hGYJN111106duyYmpub9cYbbyg3N1cVFRUaP368FixYELguNTVVaWlpSkxM1M6dO5WTk9Pl+xUUFCg\/Pz+w39raSgQBAIAgjgdQRERE4EvQaWlpqq6u1ksvvaTf\/OY3na71er1KTExUbW1tt+\/ndrvldrv7bF4AABD+HP8I7EbGmG4\/4jp37pzq6+vl9Xr7eSoAADCQOPoEaNWqVcrOzlZCQoLa2tpUWlqq8vJy7dmzRxcuXJDP59Ojjz4qr9er06dPa9WqVRo9erTmz5\/v5NgAACDMORpAn332mZ588kk1NDQoJiZGEydO1J49ezRr1ixdunRJNTU12rJli5qbm+X1ejVjxgxt375dUVFRTo4NAADCnKMB9Nprr3V7LjIyUnv37u3HaQAAgC1C7jtAAAAAfY0AAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUcDaCSkhJNnDhR0dHRio6OVnp6unbv3h04b4yRz+dTfHy8IiMjlZmZqRMnTjg4MQAAGAgcDaCxY8dq7dq1Onz4sA4fPqyZM2dq7ty5gchZt26dNmzYoOLiYlVXV8vj8WjWrFlqa2tzcmwAABDmHA2gOXPm6Hvf+55SUlKUkpKiF198USNHjlRVVZWMMdq4caNWr16tnJwcpaamavPmzbp48aK2bdvm5NgAACDMhcx3gK5cuaLS0lK1t7crPT1ddXV1amxsVFZWVuAat9ut6dOnq7Ky0sFJAQBAuBvi9AA1NTVKT0\/XF198oZEjR2rHjh0aP358IHLi4uKCro+Li9OZM2e6fT+\/3y+\/3x\/Yb21t7ZvBAQBA2HL8CdBdd92lY8eOqaqqSk8\/\/bRyc3P14YcfBs67XK6g640xnY5dr6ioSDExMYEtISGhz2YHAADhyfEAioiI0J133qm0tDQVFRVp0qRJeumll+TxeCRJjY2NQdc3NTV1eip0vYKCArW0tAS2+vr6Pp0fAACEH8cD6EbGGPn9fiUlJcnj8aisrCxwrqOjQxUVFcrIyOj29W63O\/DH6q9tAAAA13P0O0CrVq1Sdna2EhIS1NbWptLSUpWXl2vPnj1yuVzKy8tTYWGhkpOTlZycrMLCQg0fPlwLFy50cmwAABDmHA2gzz77TE8++aQaGhoUExOjiRMnas+ePZo1a5YkaeXKlbp06ZKWLl2q8+fPa+rUqdq3b5+ioqKcHBsAAIQ5RwPotddeu+l5l8sln88nn8\/XPwMBAAArhNx3gAAAAPoaAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6jgZQUVGRpkyZoqioKMXGxmrevHk6efJk0DWLFi2Sy+UK2qZNm+bQxAAAYCBwNIAqKiq0bNkyVVVVqaysTJcvX1ZWVpba29uDrps9e7YaGhoC265duxyaGAAADARDnPzhe\/bsCdrftGmTYmNjdeTIET3wwAOB4263Wx6Pp7\/HAwAAA1RIfQeopaVFkjRq1Kig4+Xl5YqNjVVKSooWL16spqambt\/D7\/ertbU1aAMAALheyASQMUb5+fm67777lJqaGjienZ2trVu3av\/+\/Vq\/fr2qq6s1c+ZM+f3+Lt+nqKhIMTExgS0hIaG\/fgUAABAmQiaAli9fruPHj+sPf\/hD0PEFCxbo4YcfVmpqqubMmaPdu3fr73\/\/u3bu3Nnl+xQUFKilpSWw1dfX98f4AACgl0QOHaz\/Xf1gn\/4MR78DdM2KFSv09ttv6+DBgxo7duxNr\/V6vUpMTFRtbW2X591ut9xud1+MCQAA+oHL5dLwiL5NFEcDyBijFStWaMeOHSovL1dSUtJXvubcuXOqr6+X1+vthwkBAMBA5OhHYMuWLdPvf\/97bdu2TVFRUWpsbFRjY6MuXbokSbpw4YKeffZZ\/fWvf9Xp06dVXl6uOXPmaPTo0Zo\/f76TowMAgDDm6BOgkpISSVJmZmbQ8U2bNmnRokUaPHiwampqtGXLFjU3N8vr9WrGjBnavn27oqKiHJgYAAAMBI5\/BHYzkZGR2rt3bz9NAwAAbBEyfwoMAACgvxBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsI6jAVRUVKQpU6YoKipKsbGxmjdvnk6ePBl0jTFGPp9P8fHxioyMVGZmpk6cOOHQxAAAYCBwNIAqKiq0bNkyVVVVqaysTJcvX1ZWVpba29sD16xbt04bNmxQcXGxqqur5fF4NGvWLLW1tTk4OQAACGdDnPzhe\/bsCdrftGmTYmNjdeTIET3wwAMyxmjjxo1avXq1cnJyJEmbN29WXFyctm3bpqeeesqJsQEAQJi7pQB64YUXbnr+5z\/\/+S0N09LSIkkaNWqUJKmurk6NjY3KysoKXON2uzV9+nRVVlZ2GUB+v19+vz+w39raekuzAACAgeuWAmjHjh1B+19++aXq6uo0ZMgQ3XHHHbcUQMYY5efn67777lNqaqokqbGxUZIUFxcXdG1cXJzOnDnT5fsUFRXp+eef\/9o\/HwAA2OOWAujo0aOdjrW2tmrRokWaP3\/+LQ2yfPlyHT9+XIcOHep0zuVyBe0bYzodu6agoED5+flBcyUkJNzSTAAAYGDqtS9BR0dH64UXXtDPfvazr\/3aFStW6O2339aBAwc0duzYwHGPxyPp\/z8JuqapqanTU6Fr3G63oqOjgzYAAIDr9eqfAmtubg58j6cnjDFavny53nzzTe3fv19JSUlB55OSkuTxeFRWVhY41tHRoYqKCmVkZPTa3AAAwC639BHYL3\/5y6B9Y4waGhr0+uuva\/bs2T1+n2XLlmnbtm3605\/+pKioqMCTnpiYGEVGRsrlcikvL0+FhYVKTk5WcnKyCgsLNXz4cC1cuPBWRgcAALi1APqf\/\/mfoP1BgwZpzJgxys3NVUFBQY\/fp6SkRJKUmZkZdHzTpk1atGiRJGnlypW6dOmSli5dqvPnz2vq1Knat2+foqKibmV0AACAWwugurq6XvnhxpivvMblcsnn88nn8\/XKzwQAAODvAgMAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdRwPo4MGDmjNnjuLj4+VyufTWW28FnV+0aJFcLlfQNm3aNGeGBQAAA4ajAdTe3q5JkyapuLi422tmz56thoaGwLZr165+nBAAAAxEQ5z84dnZ2crOzr7pNW63Wx6Pp58mAgAANgj57wCVl5crNjZWKSkpWrx4sZqamm56vd\/vV2tra9AGAABwvZAOoOzsbG3dulX79+\/X+vXrVV1drZkzZ8rv93f7mqKiIsXExAS2hISEfpwYAACEA0c\/AvsqCxYsCPxzamqq0tLSlJiYqJ07dyonJ6fL1xQUFCg\/Pz+w39raSgQBAIAgIR1AN\/J6vUpMTFRtbW2317jdbrnd7n6cCgAAhJuQ\/gjsRufOnVN9fb28Xq\/TowAAgDDm6BOgCxcu6OOPPw7s19XV6dixYxo1apRGjRoln8+nRx99VF6vV6dPn9aqVas0evRozZ8\/38GpAQBAuHM0gA4fPqwZM2YE9q99dyc3N1clJSWqqanRli1b1NzcLK\/XqxkzZmj79u2KiopyamQAADAAOBpAmZmZMsZ0e37v3r39OA0AALBFWH0HCAAAoDcQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALCOowF08OBBzZkzR\/Hx8XK5XHrrrbeCzhtj5PP5FB8fr8jISGVmZurEiRPODAsAAAYMRwOovb1dkyZNUnFxcZfn161bpw0bNqi4uFjV1dXyeDyaNWuW2tra+nlSAAAwkAxx8odnZ2crOzu7y3PGGG3cuFGrV69WTk6OJGnz5s2Ki4vTtm3b9NRTT\/XnqAAAYAAJ2e8A1dXVqbGxUVlZWYFjbrdb06dPV2VlZbev8\/v9am1tDdoAAACuF7IB1NjYKEmKi4sLOh4XFxc415WioiLFxMQEtoSEhD6dEwAAhJ+QDaBrXC5X0L4xptOx6xUUFKilpSWw1dfX9\/WIAAAgzDj6HaCb8Xg8kv7zJMjr9QaONzU1dXoqdD232y23293n8wEAgPAVsk+AkpKS5PF4VFZWFjjW0dGhiooKZWRkODgZAAAId44+Abpw4YI+\/vjjwH5dXZ2OHTumUaNGady4ccrLy1NhYaGSk5OVnJyswsJCDR8+XAsXLnRwagAAEO4cDaDDhw9rxowZgf38\/HxJUm5urn73u99p5cqVunTpkpYuXarz589r6tSp2rdvn6KiopwaGQAADACOBlBmZqaMMd2ed7lc8vl88vl8\/TcUAAAY8EL2O0AAAAB9hQACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdUI6gHw+n1wuV9Dm8XicHgsAAIS5IU4P8FXuuecevfPOO4H9wYMHOzgNAAAYCEI+gIYMGcJTHwAA0KtC+iMwSaqtrVV8fLySkpL02GOP6dSpU06PBAAAwlxIPwGaOnWqtmzZopSUFH322Wf6xS9+oYyMDJ04cUK33357l6\/x+\/3y+\/2B\/dbW1v4aFwAAhImQfgKUnZ2tRx99VBMmTNBDDz2knTt3SpI2b97c7WuKiooUExMT2BISEvprXAAAECZCOoBuNGLECE2YMEG1tbXdXlNQUKCWlpbAVl9f348TAgCAcBDSH4HdyO\/366OPPtL999\/f7TVut1tut7sfpwIAAOEmpJ8APfvss6qoqFBdXZ3ee+89\/eAHP1Bra6tyc3OdHg0AAISxkH4C9Mknn+jxxx\/X559\/rjFjxmjatGmqqqpSYmKi06MBAIAwFtIBVFpa6vQIAABgAArpj8AAAAD6AgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOmERQC+\/\/LKSkpI0bNgwTZ48We+++67TIwEAgDAW8gG0fft25eXlafXq1Tp69Kjuv\/9+ZWdn6+zZs06PBgAAwlTIB9CGDRv0ox\/9SD\/+8Y\/1rW99Sxs3blRCQoJKSkqcHg0AAISpIU4PcDMdHR06cuSInnvuuaDjWVlZqqys7PI1fr9ffr8\/sN\/S0iJJam1t7btB+8DFjsu66r8o6T+zX44IjX9VoThXqM3EPMzDPPbMI4XmTFLoztVT1\/67bYzpmx9gQtinn35qJJm\/\/OUvQcdffPFFk5KS0uVr1qxZYySxsbGxsbGxDYDtH\/\/4R580RljkoMvlCto3xnQ6dk1BQYHy8\/MD+83NzUpMTNTZs2cVExPTp3MOdK2trUpISFB9fb2io6OdHidssY69h7XsPaxl72Ade09LS4vGjRunUaNG9cn7h3QAjR49WoMHD1ZjY2PQ8aamJsXFxXX5GrfbLbfb3el4TEwMN2MviY6OZi17AevYe1jL3sNa9g7WsfcMGtQ3X1cO6S9BR0REaPLkySorKws6XlZWpoyMDIemAgAA4S6knwBJUn5+vp588kmlpaUpPT1dr7zyis6ePaslS5Y4PRoAAAhTIR9ACxYs0Llz5\/TCCy+ooaFBqamp2rVrlxITE3v0erfbrTVr1nT5sRi+Htayd7COvYe17D2sZe9gHXtPX6+ly5i++vNlAAAAoSmkvwMEAADQFwggAABgHQIIAABYhwACAADWGdAB9PLLLyspKUnDhg3T5MmT9e677zo9Usjz+XxyuVxBm8fjCZw3xsjn8yk+Pl6RkZHKzMzUiRMnHJw4dBw8eFBz5sxRfHy8XC6X3nrrraDzPVk7v9+vFStWaPTo0RoxYoS+\/\/3v65NPPunH38J5X7WOixYt6nSPTps2Lega1lEqKirSlClTFBUVpdjYWM2bN08nT54MuoZ7smd6spbclz1TUlKiiRMnBv5Hkenp6dq9e3fgfH\/ekwM2gLZv3668vDytXr1aR48e1f3336\/s7GydPXvW6dFC3j333KOGhobAVlNTEzi3bt06bdiwQcXFxaqurpbH49GsWbPU1tbm4MShob29XZMmTVJxcXGX53uydnl5edqxY4dKS0t16NAhXbhwQY888oiuXLnSX7+G475qHSVp9uzZQfforl27gs6zjlJFRYWWLVumqqoqlZWV6fLly8rKylJ7e3vgGu7JnunJWkrclz0xduxYrV27VocPH9bhw4c1c+ZMzZ07NxA5\/XpP9snfMBYC7r33XrNkyZKgY3fffbd57rnnHJooPKxZs8ZMmjSpy3NXr141Ho\/HrF27NnDsiy++MDExMebXv\/51P00YHiSZHTt2BPZ7snbNzc1m6NChprS0NHDNp59+agYNGmT27NnTb7OHkhvX0RhjcnNzzdy5c7t9DevYtaamJiPJVFRUGGO4J\/8bN66lMdyX\/43bbrvN\/Pa3v+33e3JAPgHq6OjQkSNHlJWVFXQ8KytLlZWVDk0VPmpraxUfH6+kpCQ99thjOnXqlCSprq5OjY2NQevqdrs1ffp01vUr9GTtjhw5oi+\/\/DLomvj4eKWmprK+NygvL1dsbKxSUlK0ePFiNTU1Bc6xjl1raWmRpMBfLMk9eetuXMtruC+\/nitXrqi0tFTt7e1KT0\/v93tyQAbQ559\/ritXrnT6C1Pj4uI6\/cWqCDZ16lRt2bJFe\/fu1auvvqrGxkZlZGTo3LlzgbVjXb++nqxdY2OjIiIidNttt3V7DaTs7Gxt3bpV+\/fv1\/r161VdXa2ZM2fK7\/dLYh27YoxRfn6+7rvvPqWmpkrinrxVXa2lxH35ddTU1GjkyJFyu91asmSJduzYofHjx\/f7PRnyfxXGf8PlcgXtG2M6HUOw7OzswD9PmDBB6enpuuOOO7R58+bAF\/pY11t3K2vH+gZbsGBB4J9TU1OVlpamxMRE7dy5Uzk5Od2+zuZ1XL58uY4fP65Dhw51Osc9+fV0t5bclz1311136dixY2pubtYbb7yh3NxcVVRUBM731z05IJ8AjR49WoMHD+5Ug01NTZ3KEjc3YsQITZgwQbW1tYE\/Dca6fn09WTuPx6OOjg6dP3++22vQmdfrVWJiomprayWxjjdasWKF3n77bR04cEBjx44NHOee\/Pq6W8uucF92LyIiQnfeeafS0tJUVFSkSZMm6aWXXur3e3JABlBERIQmT56ssrKyoONlZWXKyMhwaKrw5Pf79dFHH8nr9SopKUkejydoXTs6OlRRUcG6foWerN3kyZM1dOjQoGsaGhr0t7\/9jfW9iXPnzqm+vl5er1cS63iNMUbLly\/Xm2++qf379yspKSnoPPdkz33VWnaF+7LnjDHy+\/39f0\/e4pe2Q15paakZOnSoee2118yHH35o8vLyzIgRI8zp06edHi2kPfPMM6a8vNycOnXKVFVVmUceecRERUUF1m3t2rUmJibGvPnmm6ampsY8\/vjjxuv1mtbWVocnd15bW5s5evSoOXr0qJFkNmzYYI4ePWrOnDljjOnZ2i1ZssSMHTvWvPPOO+b99983M2fONJMmTTKXL1926tfqdzdbx7a2NvPMM8+YyspKU1dXZw4cOGDS09PNN77xDdbxBk8\/\/bSJiYkx5eXlpqGhIbBdvHgxcA33ZM981VpyX\/ZcQUGBOXjwoKmrqzPHjx83q1atMoMGDTL79u0zxvTvPTlgA8gYY371q1+ZxMREExERYb773e8G\/ZFFdG3BggXG6\/WaoUOHmvj4eJOTk2NOnDgROH\/16lWzZs0a4\/F4jNvtNg888ICpqalxcOLQceDAASOp05abm2uM6dnaXbp0ySxfvtyMGjXKREZGmkceecScPXvWgd\/GOTdbx4sXL5qsrCwzZswYM3ToUDNu3DiTm5vbaY1YR9PlGkoymzZtClzDPdkzX7WW3Jc998Mf\/jDw3+UxY8aYBx98MBA\/xvTvPekyxpiv98wIAAAgvA3I7wABAADcDAEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQgr\/\/rXv+TxeFRYWBg49t577ykiIkL79u1zcDIA4YS\/CwxA2Nm1a5fmzZunyspK3X333frOd76jhx9+WBs3bnR6NABhggACEJaWLVumd955R1OmTNEHH3yg6upqDRs2zOmxAIQJAghAWLp06ZJSU1NVX1+vw4cPa+LEiU6PBCCM8B0gAGHp1KlT+uc\/\/6mrV6\/qzJkzTo8DIMzwBAhA2Ono6NC9996rb3\/727r77ru1YcMG1dTUKC4uzunRAIQJAghA2PnpT3+qP\/7xj\/rggw80cuRIzZgxQ1FRUfrzn\/\/s9GgAwgQfgQEIK+Xl5dq4caNef\/11RUdHa9CgQXr99dd16NAhlZSUOD0egDDBEyAAAGAdngABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACs8\/8AtbWCzAbd7joAAAAASUVORK5CYII=", "text\/plain": "<Figure size 640x480 with 1 Axes>"}, "metadata": {}, "output_type": "display_data"}]}}, "8dd363de61704f07a67c5ec15fad0230": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "93f14a52f3064949b531de7e08a42ee6": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "IntSliderModel", "state": {"behavior": "drag-tap", "layout": "IPY_MODEL_50615551594a42e7a11ed3bdcdb1d54d", "max": 1999, "style": "IPY_MODEL_1ca2a7bb9b014ae1b78b7354b28675e1", "value": 132}}, "95d2ea1d34c947c9a61397dc75af7d2d": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": {"description_width": ""}}, "95f53f8f40c649b39f598db4f0e8da4f": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"children": ["IPY_MODEL_1cb2605db91a4ce1bac51f5960e5afc9"], "layout": "IPY_MODEL_203d095fdbec4a809af8ff2adf77a8fb"}}, "960f46250b0944599227534c8b8fe510": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"children": ["IPY_MODEL_b0c6e5b072744bb8aad4aa1c343ebe1e"], "layout": "IPY_MODEL_b4929e71adfe4fd7a3084599938b8a62"}}, "961bbf4dea01495c90b3a8be804ceea6": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": {"description_width": ""}}, "99f37541ac7b4dbfac2f489c1a5b0353": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "PlayModel", "state": {"description": "step", "layout": "IPY_MODEL_29adfb5bcde241fc8e8984961ab42ea5", "max": 1999, "playing": true, "style": "IPY_MODEL_68c14ca25ed0479898eac1351d769142", "value": 132}}, "9a7563fbc02148c9bdac79a88a31221b": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": {"description_width": ""}}, "9ab997a6587c4746904cd3476fe428de": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "IntSliderModel", "state": {"behavior": "drag-tap", "layout": "IPY_MODEL_efb79abbdfb2428e84cb236aa84bc460", "max": 199, "style": "IPY_MODEL_bc360c0bab0f4addb40d8aecfb729f92", "value": 1}}, "9c44cf9efe144da9b5dfcbe527ac3102": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "9c5112e1cfd44ed2a63e5978fc06fccc": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "9e0470afffb74df5adab27914911762d": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "9e913bb98541408496f49af403c639af": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "9f27a61d3d764ea5ac7b2042ff4e679c": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": {"source": ["IPY_MODEL_754124660050415e84f351699e0454bd", "value"], "target": ["IPY_MODEL_0fcdff9aa34e4e13927e34ae27360da7", "value"]}}, "a0998547957e4b50bb0570d6e89b4c2e": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "IntSliderModel", "state": {"behavior": "drag-tap", "layout": "IPY_MODEL_cd847b071b4e47ea8ae6cd18c02e2b45", "max": 599, "style": "IPY_MODEL_fb3e5d085e2d43b7a3490b9ff0cd3738", "value": 19}}, "a1cb4b44b1f54cde815f8e713ca3e68d": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "PlayModel", "state": {"description": "step", "layout": "IPY_MODEL_13187a1f6c2a44f9a3ccd12f5eff4464", "max": 199, "style": "IPY_MODEL_9a7563fbc02148c9bdac79a88a31221b", "value": 1}}, "a20388231297411295366afa518f917b": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "a37fd745c2154e37a420c30c21efe3c9": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "a687e87123924c42ad280c3d1993286b": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "a6e490f9a95046848e772f941811ea6e": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "PlayModel", "state": {"description": "step", "layout": "IPY_MODEL_55226787171c4752aa32a82a887b8b98", "max": 199, "style": "IPY_MODEL_0197503ee5c44b87a3d0c980bc2571da", "value": 199}}, "a7c8a0264f214268bfafc38c4c68055d": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": {"description_width": ""}}, "a8120820b9c8411dba949b22cd333241": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "a813b3e4592a4ba6a5ac586705a144b1": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": {"description_width": ""}}, "a926a010639c46938c18e60b9cb1cfc8": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"children": ["IPY_MODEL_e0fa11145e0d4e40ad744eba44c54f34"], "layout": "IPY_MODEL_e17d149775dd4f96bcd56c6c7455e2b0"}}, "aa3568c9e4d040d4a33c7bcc314f221a": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": {"_dom_classes": ["widget-interact"], "children": ["IPY_MODEL_1691534cae544c41ac19238706d81934", "IPY_MODEL_2f094b8f56ff4ac3b16dacdf8948dda6"], "layout": "IPY_MODEL_fc190c980cf64f58821e1fed76b8dc9b"}}, "ab8b9c40294846d9820000b7038b3311": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": {"description_width": ""}}, "abc536027e9f46dca983b3512682b4b6": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "IntSliderModel", "state": {"behavior": "drag-tap", "layout": "IPY_MODEL_851af3a043f1495ea899768d977eda65", "max": 149, "style": "IPY_MODEL_cfe6894555d9429bafafa321a999ad79", "value": 94}}, "af438b7498634a0896c9e60d78805898": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"children": ["IPY_MODEL_9ab997a6587c4746904cd3476fe428de"], "layout": "IPY_MODEL_d405cdb662334ea1920afee0c3ff1475"}}, "af86ac9bb8014c268c8513ac6ee499e7": {"model_module": "@jupyter-widgets\/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": {"layout": "IPY_MODEL_4ed234d89eda4e43ac8997df827fca2b", "outputs": [{"data": {"image\/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG2CAYAAACXuTmvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy\/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAxiklEQVR4nO3de2zUdb7\/8df0Ni10OgWhnWmn9HQVdLVQXXAR4gXZQ3\/2rKzKnvzcdWMgJzG6gjmE3WMWyTlWs0uN+cnBE85yzl7iQY+kJmfF4++oCAYpa1j2V1iKXXQ57LFKgZYKtjNtaae3z++PMtOWtlDamfnOzPf5SCZxvnP5vvvJJLz8XB3GGCMAAAAbSbG6AAAAgFgjAAEAANshAAEAANshAAEAANshAAEAANshAAEAANshAAEAANshAAEAANshAAEAANshAAEAANuJmwBUVVUlh8Oh9evXh68ZY1RZWamCggJlZWVp2bJlOn78uHVFAgCApBAXAai2tla\/+MUvtGDBghHXX3zxRW3ZskXbtm1TbW2tPB6PVqxYofb2dosqBQAAycDyANTR0aEf\/OAH+uUvf6kZM2aErxtjtHXrVm3atEmrVq1SaWmpduzYoYsXL2rnzp0WVgwAABJdmtUFrF27Vt\/+9rf1l3\/5l\/rpT38avt7Q0KDm5maVl5eHrzmdTt1zzz06ePCgHn\/88TG\/LxgMKhgMhp8PDAzoq6++0nXXXSeHwxG9PwQAAESMMUbt7e0qKChQSkrk+2ssDUDV1dX6wx\/+oNra2lGvNTc3S5Ly8\/NHXM\/Pz9cXX3wx7ndWVVXpueeei2yhAADAEo2NjfL5fBH\/XssCUGNjo\/72b\/9We\/bsUWZm5rjvu7zXxhhzxZ6cjRs3asOGDeHnfr9fc+bMUWNjo3JycqZeOAAAiLpAIKCioiK5XK6ofL9lAejIkSNqaWnRwoULw9f6+\/t14MABbdu2TSdOnJA02BPk9XrD72lpaRnVKzSc0+mU0+kcdT0nJ4cABABAgonW9BXLJkF\/61vfUn19verq6sKPRYsW6Qc\/+IHq6ur0ta99TR6PR3v37g1\/pqenRzU1NVq6dKlVZQMAgCRgWQ+Qy+VSaWnpiGvTp0\/XddddF76+fv16bd68WXPnztXcuXO1efNmTZs2TY888ogVJQMAgCRh+SqwK3n66afV1dWlJ598Uq2trVq8eLH27NkTtfFAAABgDw5jjLG6iGgKBAJyu93y+\/3MAQIAIEFE+99vyzdCBAAAiDUCEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB3bBCB\/V6\/VJQAAgDhhmwB0tu2i1SUAAIA4YZsAdKat2+oSAABAnLBNAGpq67K6BAAAECdsE4DoAQIAACG2CUDMAQIAACH2CUB+eoAAAMAg+wSgVuYAAQCAQbYJQIHuPrV3sxcQAACwUQCSpDOsBAMAALJZADr9FQEIAADYLQC1shIMAADYLAAxBAYAACSbBaDTrAQDAAAiAAEAABuyVQBiCAwAAEg2C0BfdfaoM9hndRkAAMBitglArsxUSfQCAQAAGwWggtxpkqQzzAMCAMD2bBSAMiWxFxAAALBVAMqSJJ1mCAwAANuzTwByh3qACEAAANidfQLQpTlABCAAAGCbAFR4aQ4Qk6ABAIClAWj79u1asGCBcnJylJOToyVLlui9994Lv75mzRo5HI4RjzvuuGNS9wrNATrfEVR3b39E6gcAAIkpzcqb+3w+vfDCC7rhhhskSTt27NADDzygo0eP6pZbbpEk3XfffXrllVfCn8nIyJjUvdxZ6cp2pqkj2KfTrV26IS976n8AAABISJYGoJUrV454\/rOf\/Uzbt2\/XoUOHwgHI6XTK4\/FM+V4Oh0O+GVn6U3O7zrQRgAAAsLO4mQPU39+v6upqdXZ2asmSJeHr+\/fvV15enubNm6fHHntMLS0tV\/yeYDCoQCAw4hFSGFoKz15AAADYmuUBqL6+XtnZ2XI6nXriiSe0a9cu3XzzzZKkiooKvf7669q3b59eeukl1dbWavny5QoGg+N+X1VVldxud\/hRVFQUfs03IxSAmAgNAICdOYwxxsoCenp6dOrUKbW1tek3v\/mNfvWrX6mmpiYcgoZrampScXGxqqurtWrVqjG\/LxgMjghIgUBARUVF8vv9eqPuvH727qf6TlmB\/un7t0XtbwIAAFMTCATkdrvl9\/uVk5MT8e+3dA6QNDipOTQJetGiRaqtrdXLL7+sf\/3Xfx31Xq\/Xq+LiYp08eXLc73M6nXI6nWO+VjiDITAAABAHQ2CXM8aMO8R14cIFNTY2yuv1Tuq7GQIDAACSxT1AzzzzjCoqKlRUVKT29nZVV1dr\/\/792r17tzo6OlRZWanvfve78nq9+vzzz\/XMM89o1qxZeuihhyZ1P9+Mwd2gW9qDCvb1y5mWGsk\/BwAAJAhLA9C5c+f06KOPqqmpSW63WwsWLNDu3bu1YsUKdXV1qb6+Xq+++qra2trk9Xp177336o033pDL5ZrU\/WZMS1dWeqq6evt1tq1bJbOmR\/gvAgAAicDSAPTrX\/963NeysrL0\/vvvR\/R+ob2ATrZ06HTrRQIQAAA2FXdzgKItNA+IM8EAALAv2wWgQiZCAwBge7YLQKGJ0CyFBwDAvmwYgC4NgbXRAwQAgF3ZLgANnQdGAAIAwK5sF4BCQ2DNgW719A1YXA0AALCC7QLQrOwMOdNSZIzU7O+2uhwAAGAB2wUgh8PBmWAAANic7QKQNHwlGPOAAACwI5sGoEs9QKwEAwDAlmwZgIZWgjEEBgCAHdkyAPnYDRoAAFuzaQAanAPEeWAAANiTTQPQYA9Qc6Bbff3sBQQAgN3YMgDNznYqIzVF\/QNGTewFBACA7dgyAKWkDO0FxJlgAADYjy0DkMSZYAAA2JltA5CP3aABALAt2wcgVoIBAGA\/tg1AhewFBACAbdk2AIXPA2tjCAwAALuxcQAa7AFqautW\/4CxuBoAABBLtg1Aea5MpaU41DdgdC7AXkAAANiJbQNQaopDBSyFBwDAlmwbgKRhK8GYBwQAgK3YOgCFN0P8ih4gAADsxNYBKLwSjCEwAABsxeYBiPPAAACwI1sHoEKOwwAAwJZsHYBCPUBn27o1wF5AAADYhq0DkCcnU6kpDvX0D+jLjqDV5QAAgBixdQBKS02RJydTEsNgAADYia0DkDQ0DMZKMAAA7IMAxFJ4AABsx\/YBqJAeIAAAbMfSALR9+3YtWLBAOTk5ysnJ0ZIlS\/Tee++FXzfGqLKyUgUFBcrKytKyZct0\/PjxiNbgYyk8AAC2Y2kA8vl8euGFF3T48GEdPnxYy5cv1wMPPBAOOS+++KK2bNmibdu2qba2Vh6PRytWrFB7e3vkamAzRAAAbMfSALRy5Ur91V\/9lebNm6d58+bpZz\/7mbKzs3Xo0CEZY7R161Zt2rRJq1atUmlpqXbs2KGLFy9q586dEavBlzs4B+hMa5eMYS8gAADsIG7mAPX396u6ulqdnZ1asmSJGhoa1NzcrPLy8vB7nE6n7rnnHh08eDBi9\/W4M5XikIJ97AUEAIBdpFldQH19vZYsWaLu7m5lZ2dr165duvnmm8MhJz8\/f8T78\/Pz9cUXX4z7fcFgUMHgUJAJBAJXvH9G2uBeQGf93TrT2qU8V+YU\/hoAAJAILO8BuvHGG1VXV6dDhw7phz\/8oVavXq1PPvkk\/LrD4RjxfmPMqGvDVVVVye12hx9FRUVXrYGVYAAA2IvlASgjI0M33HCDFi1apKqqKpWVlenll1+Wx+ORJDU3N494f0tLy6heoeE2btwov98ffjQ2Nl61BvYCAgDAXiwPQJczxigYDKqkpEQej0d79+4Nv9bT06OamhotXbp03M87nc7wsvrQ42qGVoKxFB4AADuwdA7QM888o4qKChUVFam9vV3V1dXav3+\/du\/eLYfDofXr12vz5s2aO3eu5s6dq82bN2vatGl65JFHIlpHYS5DYAAA2ImlAejcuXN69NFH1dTUJLfbrQULFmj37t1asWKFJOnpp59WV1eXnnzySbW2tmrx4sXas2ePXC5XROtgCAwAAHtxmCTf\/CYQCMjtdsvv9487HPb5+U4t+z\/7lZWeqk+e\/19XnGQNAACibyL\/fk9F3M0BsoI3d3Dpe1dvv77q7LG4GgAAEG0EIEnOtFTl5zglMQwGAIAdEIAuCc0D4kwwAACSHwHokqGVYCyFBwAg2RGALvGxGzQAALZBALokPARGAAIAIOkRgC7hPDAAAOyDAHTJ0BDYRSX51kgAANgeAeiS0CTozp5++bt6La4GAABEEwHoksz0VM3KZi8gAADsgAA0zPBhMAAAkLwIQMMwERoAAHsgAA3DXkAAANgDAWiY0F5ABCAAAJIbAWgY36WVYJwHBgBAciMADcMkaAAA7IEANExoEnR7dx97AQEAkMQIQMNMy0jTzOkZkjgTDACAZEYAugzDYAAAJD8C0GVYCg8AQPIjAF2mkJVgAAAkPQLQZYb2AmIIDACAZEUAugxDYAAAJD8C0GVCS+EZAgMAIHkRgC4TmgPUdrFX7d3sBQQAQDIiAF3GlZmu3GnpkugFAgAgWRGAxhBeCcY8IAAAkhIBaAxMhAYAILkRgMbAUngAAJIbAWgMbIYIAEByIwCNgSEwAACSGwFoDENDYAQgAACSEQFoDKHNEL\/q7NHFnj6LqwEAAJFGABqDOytdrsw0SSyFBwAgGRGAxsEwGAAAyYsANI7QSrDTrAQDACDpWBqAqqqqdPvtt8vlcikvL08PPvigTpw4MeI9a9askcPhGPG44447ol7b0Eow9gICACDZWBqAampqtHbtWh06dEh79+5VX1+fysvL1dnZOeJ99913n5qamsKPd999N+q1sRQeAIDklWblzXfv3j3i+SuvvKK8vDwdOXJEd999d\/i60+mUx+OJaW2hAMQkaAAAYu\/tujNR\/f64mgPk9\/slSTNnzhxxff\/+\/crLy9O8efP02GOPqaWlZdzvCAaDCgQCIx6TwSRoAACs0dM3oGf\/7ydRvUfcBCBjjDZs2KA777xTpaWl4esVFRV6\/fXXtW\/fPr300kuqra3V8uXLFQwGx\/yeqqoqud3u8KOoqGhS9YR6gM53BNXd2z+p7wAAANfuT80B9fYNRPUelg6BDbdu3Tp9\/PHH+uijj0Zcf\/jhh8P\/XVpaqkWLFqm4uFjvvPOOVq1aNep7Nm7cqA0bNoSfBwKBSYUgd1a6pmekqrOnX2faunT97Oxr\/g4AAHDt6hrbon6PuAhATz31lN5++20dOHBAPp\/viu\/1er0qLi7WyZMnx3zd6XTK6XROuSaHwyHfjGk6ca5dp1sJQAAAxErdqbao38PSITBjjNatW6c333xT+\/btU0lJyVU\/c+HCBTU2Nsrr9Ua9PpbCAwAQe3Wn26J+D0sD0Nq1a\/Xv\/\/7v2rlzp1wul5qbm9Xc3KyursGJxx0dHfrxj3+s3\/3ud\/r888+1f\/9+rVy5UrNmzdJDDz0U9foKWQkGAEBM+S\/26rMvO6\/+ximyNABt375dfr9fy5Ytk9frDT\/eeOMNSVJqaqrq6+v1wAMPaN68eVq9erXmzZun3\/3ud3K5XFGvj72AAACIrY\/PtEmSimZmRfU+ls4BMsZc8fWsrCy9\/\/77MapmtKGl8AyBAQAQC6H5P\/ML3DoYxfvEzTL4eBQ6D+wM54EBABATxy7N\/5nvc0f1PgSgKwgNgZ0LBBXsYy8gAACiyRgTXgJfWkgAsszM6RnKSk+VJJ1t67a4GgAAktuZti6d7+hRWopDX\/fmRPVeBKArcDgcrAQDACBGQr0\/X\/fmKPNSB0S0EICugr2AAACIjWOXAtCtRblRvxcB6CpYCg8AQGyEeoDKCEDWK8wdXArPSjAAAKKnr39A9Wf8kugBigsMgQEAEH0nzrWru3dArsw0fW3W9KjfjwB0FQyBAQAQfccaB3t\/yny5SklxRP1+BKCrKAzvBdStnr4Bi6sBACA51TW2SpLKiqK7\/08IAegqZmc75UxL0YCRmv3sBQQAQDSEeoBuLZoRk\/sRgK5i+F5AzAMCACDyOoJ9+u+Wdkn0AMWV0Jlgp1kJBgBAxH18uk3GDP57m+fKjMk9CUATMHQqPAEIAIBIGxr+yo3ZPQlAE8BSeAAAoifWE6AlAtCE+DgPDACAqIn1BGiJADQh7AUEAEB0NPu71RzoVmqKQ6WF0T0BfjgC0ASE5gA1B7rV189eQAAAREro\/K95+S5Ny0iL2X0JQBMwO9upjNQU9Q8YNQfYCwgAgEipC58AH7v5PxIBaEJSUhwqyB1clscwGAAAkXMsHIByY3pfAtAEsRQeAIDI6h8w+vh0mySpjAAUn0KbIbISDACAyPifLzvU2dOvaRmpmpvnium9CUATxF5AAABEVt2pNknS\/EK3UmNwAvxwBKAJ8s1kKTwAAJFUd2n469Y5uTG\/NwFoggpzB+cAneE8MAAAIiLUA3SrLzfm9yYATVBoCOxsW5f6B4zF1QAAkNi6evp14tzgCfD0AMWx\/JxMpaU41DdgdI69gAAAmJI\/nvWrf8AoP8cprzsr5vcnAE1QaopD3kt7ATEMBgDA1ISGv8osGP6SCEDXxJcb2guIlWAAAEyFlROgJQLQNQkvhf+KHiAAAKbCygnQEgHomhReCkAMgQEAMHlftgd1pq1LDoc03xfbM8BCCEDXgOMwAACYutD5XzfMzpYrM92SGghA14DdoAEAmLpjofk\/MT7\/azgC0DUInQd2tq1bA+wFBADApNRd6gGK9QGowxGAroHXnanUFId6+gf0ZUfQ6nIAAEg4AwMmPARm2x6gqqoq3X777XK5XMrLy9ODDz6oEydOjHiPMUaVlZUqKChQVlaWli1bpuPHj1tSb1pqijw5g3sBMQwGAMC1a7jQqUB3n5xpKbrRE9sT4IezNADV1NRo7dq1OnTokPbu3au+vj6Vl5ers7Mz\/J4XX3xRW7Zs0bZt21RbWyuPx6MVK1aovb3dkpoLZ3AoKgAAkxXq\/Zlf6FZ6qnUxJM2yO0vavXv3iOevvPKK8vLydOTIEd19990yxmjr1q3atGmTVq1aJUnasWOH8vPztXPnTj3++OMxr9k3I0v\/r4EABADAZMTD\/B9pkgHo+eefv+Lr\/\/AP\/zCpYvx+vyRp5syZkqSGhgY1NzervLw8\/B6n06l77rlHBw8eHDMABYNBBYND83MCgcCkahkPS+EBAJi8eJj\/I00yAO3atWvE897eXjU0NCgtLU3XX3\/9pAKQMUYbNmzQnXfeqdLSUklSc3OzJCk\/P3\/Ee\/Pz8\/XFF1+M+T1VVVV67rnnrvn+E+XLZTNEAAAmo7u3X580DXZMJGQAOnr06KhrgUBAa9as0UMPPTSpQtatW6ePP\/5YH3300ajXHA7HiOfGmFHXQjZu3KgNGzaMqKuoqGhSNY2FvYAAAJicT5sC6u03um56RvjfU6tEbPZRTk6Onn\/+ef393\/\/9NX\/2qaee0ttvv60PP\/xQPp8vfN3j8Uga6gkKaWlpGdUrFOJ0OpWTkzPiEUmhIbAzrV0yhr2AAACYqLphw1\/jdWTESkSnX7e1tYXn8UyEMUbr1q3Tm2++qX379qmkpGTE6yUlJfJ4PNq7d2\/4Wk9Pj2pqarR06dKI1X0tPO5MORxSsG9A5zt6LKkBAIBEdCxOJkBLkxwC+6d\/+qcRz40xampq0muvvab77rtvwt+zdu1a7dy5U\/\/5n\/8pl8sV7ulxu93KysqSw+HQ+vXrtXnzZs2dO1dz587V5s2bNW3aND3yyCOTKX3KMtIG9wJq8nfrdOtFzXY5LakDAIBEUxcnE6ClSQagf\/zHfxzxPCUlRbNnz9bq1au1cePGCX\/P9u3bJUnLli0bcf2VV17RmjVrJElPP\/20urq69OSTT6q1tVWLFy\/Wnj175HJZt3mSb0bWpQDUpdvmzLCsDgAAEkVrZ48+vzA4f7bMl2ttMZpkAGpoaIjIzScyh8bhcKiyslKVlZURuWckFOZmqVatrAQDAGCCQgegfm3WdLmnWXMC\/HCcBTYJQ3sBsRIMAICJiJcNEEMIQJPAcRgAAFybeNkAMYQANAmhvQvOEIAAALgqYww9QMlg+HEY7AUEAMCVNX7VpdaLvcpITdHXvdYtYhqOADQJXnemJKmrt19fdbIXEAAAV3K0sVWS9PWCHDnTUi2uZhABaBIy01OVd2n\/H1aCAQBwZccaBzdJvi1Ohr8kAtCk+ZgIDQDAhNRd6gEqK3JbXMkQAtAkFbIUHgCAq+rtH9Afz4ZOgI+fzYMJQJPESjAAAK7uT03t6ukbkDsrXX9x3TSrywkjAE0SQ2AAAFxd3aUdoMvi4AT44QhAk1SYSwACAOBq6k61SYqfDRBDCECTFNoL6EwbewEBADCe0Blgt8bRBGiJADRpoSGwjmCf\/F29FlcDAED8CXT36n++7JAUHyfAD0cAmqTM9FTNys6QxDAYAABjqT\/tlzFS0cwsXZfttLqcEQhAU1A47EgMAAAwUl34ANT4Wf4eQgCagqGVYOwFBADA5Y5emgBd5ouv+T8SAWhKfKwEAwBgTMNPgL9tTq6ltYyFADQF4c0QOQ8MAIARzvq7db4jqLQUh24poAcoqfiYAwQAwJiOXer9ucnrUmZ6fJwAPxwBaAoKmQMEAMCYQsNf8bb8PYQANAWh3aDbu9kLCACA4YZWgOVaWsd4CEBTMN2ZppnTB\/cC4lBUAAAG9fUPqP60XxIBKGkNnQnGMBgAAJJ0sqVDXb39ynam6frZ2VaXMyYC0BSxEgwAgJFCw18LfG6lpMTPCfDDEYCmaGgzRAIQAADS0AqweB3+kghAU8YQGAAAI8X7BGiJADRlob2AGAIDAEDqDPbpv8+1SyIAJTXfTIbAAAAIqT\/j14CRCtyZysvJtLqccRGApig0BNZ2sVcdwT6LqwEAwFqh+T9lcdz7IxGApsyVmS53Vrok9gICACAR5v9IBKCI8HEkBgAAkoYdgUEASn5DK8HoAQIA2Ne5QLea\/N1KcUjzC+PvBPjhCEARwEowAACGen\/m5bs03ZlmbTFXQQCKAIbAAABIjA0QQwhAEVDIbtAAACTM\/B\/J4gB04MABrVy5UgUFBXI4HHrrrbdGvL5mzRo5HI4RjzvuuMOaYq8gfB4YAQgAYFMDA0Yfx\/kJ8MNZGoA6OztVVlambdu2jfue++67T01NTeHHu+++G8MKJyY0B+hCZ48u9rAXEADAfv7nyw51BPuUlZ6quXnxeQL8cJbOUKqoqFBFRcUV3+N0OuXxeGJU0eS4s9LlcqapPdinM61dmpvvsrokAABiKjT8Nd\/nVlpq\/M+wifsK9+\/fr7y8PM2bN0+PPfaYWlparvj+YDCoQCAw4hEL4XlArAQDANhQomyAGBLXAaiiokKvv\/669u3bp5deekm1tbVavny5gsHguJ+pqqqS2+0OP4qKimJSa2gYjInQAAA7Ona6TVLiBKC4XqT\/8MMPh\/+7tLRUixYtUnFxsd555x2tWrVqzM9s3LhRGzZsCD8PBAIxCUEshQcA2FV3b7\/+1BT\/J8APF9cB6HJer1fFxcU6efLkuO9xOp1yOp0xrGoQK8EAAHZ1\/KxffQNGs11Oed3xewL8cHE9BHa5CxcuqLGxUV6v1+pSRvGxFxAAwKaOnmqTNNj743A4rC1mgiztAero6NCf\/\/zn8POGhgbV1dVp5syZmjlzpiorK\/Xd735XXq9Xn3\/+uZ555hnNmjVLDz30kIVVj60wlzlAAAB7OpZA+\/+EWBqADh8+rHvvvTf8PDR3Z\/Xq1dq+fbvq6+v16quvqq2tTV6vV\/fee6\/eeOMNuVzxt8w81AN0viOo7t5+ZaanWlwRAACxUdfYKokANGHLli2TMWbc199\/\/\/0YVjM1udPSNT0jVZ09\/TrT1qXrZ8f\/JlAAAEzVhY6gGr\/qksMxuAdQokioOUDxzOFwcCYYAMB2Qsvfr5+drZzMdGuLuQYEoAgK7QXESjAAgF3UXZoAXebLtbSOa0UAiiD2AgIA2E1daAL0nFxrC7lGBKAIKsxlCAwAYB\/GGB0LHYFBD5B9hYfAOA8MAGADn1+4KH9XrzLSUnSTN\/5WaF8JASiCGAIDANhJaPl7aUGO0hPgBPjhEqvaOBdaBXYuEFSwr9\/iagAAiK5jjaENEGdYXMm1IwBF0HXTM5SZPtikTW3dFlcDAEB0Hb00\/6esKHH2\/wkhAEWQw+EIzwNiIjQAIJkF+\/r16dmAJOk2eoAwtBKMeUAAgOT1aVO7evoHNHN6hopmZlldzjUjAEVYaCI0K8EAAMkstPy9zOdOmBPghyMARRhDYAAAO6gL7f+TgMNfEgEo4gpZCg8AsIFjCTwBWiIARVx4CIweIABAkvJf7NVn5zslSbcW5VpbzCQRgCIsFICaA93q6RuwuBoAACIvdAL8X1w3TbnTMqwtZpIIQBE2a7pTGWkpGjBSs5+9gAAAyWdo\/k+upXVMBQEowlJSHPKFlsK3MQ8IAJB8hub\/5Fpax1QQgKJgaCI084AAAMnFGEMPEMbmIwABAJLU6dYuXejsUXqqQ1\/35lhdzqQRgKIgtBcQK8EAAMkm1PtzszdHmemp1hYzBQSgKPCxFxAAIEnVJcH8H4kAFBVD54HRAwQASC7HkmD+j0QAiorQEFhzoFt9\/ewFBABIDr39A6o\/45dEDxDGkOdyKj3Vof4Bo+YAewEBAJLDieZ2BfsGlJOZppLrpltdzpQQgKIgJcWhAobBAABJZvj8n5SUxDsBfjgCUJRwJhgAINkky\/wfiQAUNb7cwXlA9AABAJJFMmyAGEIAipJClsIDAJJIe3ev\/vxlh6TEnwAtEYCiJjwE1kYPEAAg8dWf9suYwX\/fZmU7rS5nyghAURJaCs8QGAAgGdSdbpOUHL0\/EgEoakJDYGfbutQ\/YCyuBgCAqak71SZJuo0AhCvJdzmVluJQ34BRSzt7AQEAEtsxeoAwEWmpKfLmZkpiGAwAkNia\/F06FwgqNcWh0gK31eVEBAEoiobOBGMlGAAgcYWGv27MdykrI3FPgB+OABRFoYnQbIYIAEhkoQnQt87JtbSOSLI0AB04cEArV65UQUGBHA6H3nrrrRGvG2NUWVmpgoICZWVladmyZTp+\/Lg1xU6CbwbHYQAAEl+oB+hWX66ldUSSpQGos7NTZWVl2rZt25ivv\/jii9qyZYu2bdum2tpaeTwerVixQu3t7TGudHIKOQ8MAJDg+gdM+AT4ZOoBSrPy5hUVFaqoqBjzNWOMtm7dqk2bNmnVqlWSpB07dig\/P187d+7U448\/HstSJyU8BMZmiACABHWypV0Xe\/o1PSNV18\/OtrqciInbOUANDQ1qbm5WeXl5+JrT6dQ999yjgwcPjvu5YDCoQCAw4mGV4QeiDrAXEAAgAYUOQF3gy1Vqgp8AP1zcBqDm5mZJUn5+\/ojr+fn54dfGUlVVJbfbHX4UFRVFtc4r8bgzleKQevoH9GVH0LI6AACYrPABqEk0\/CXFcQAKcThGpk1jzKhrw23cuFF+vz\/8aGxsjHaJ40pPTZHXzTwgAEDiqmscnP9TlkQToKU4DkAej0eSRvX2tLS0jOoVGs7pdConJ2fEw0rsBQQASFQXe\/p0onlwKslt9ADFRklJiTwej\/bu3Ru+1tPTo5qaGi1dutTCyq4NS+EBAInqj2cCGjCSJydT+TmZVpcTUZauAuvo6NCf\/\/zn8POGhgbV1dVp5syZmjNnjtavX6\/Nmzdr7ty5mjt3rjZv3qxp06bpkUcesbDqaxOeCM1KMABAgqlrbJUk3Zok538NZ2kAOnz4sO69997w8w0bNkiSVq9erX\/7t3\/T008\/ra6uLj355JNqbW3V4sWLtWfPHrlcLqtKvmaF9AABABLUsdD8HwJQZC1btkzGjL883OFwqLKyUpWVlbErKsJCewExBwgAkGjCK8CSMADF7RygZDF8L6ArhT0AAOJJS3u3zrR1yeGQ5vuS4wT44QhAUeZ1Z8nhkIJ9Azrf0WN1OQAATEho+GtenkvZTksHjKKCABRlGWkpyncNzpxnGAwAkChCO0CXFSVf749EAIoJVoIBABLN0PyfGdYWEiUEoBhgJRgAIJEMDBh6gDB1Q5shMgQGAIh\/n53vVHuwT5npKboxP3G2nrkWBKAYCC2FP0MPEAAgAYSGv+YXupWWmpxRITn\/qjgzdB4YAQgAEP+OJfH+PyEEoBgYfh4YewEBAOJdsk+AlghAMVFwqQeoq7dfrRd7La4GAIDxdff269OmwRPgk3UCtEQAionM9FTNdjklMREaABDfjp8NqG\/AaFa2MzyFIxkRgGLEx1J4AEACGJr\/45bD4bC2mCgiAMUIK8EAAIkgmQ9AHY4AFCNDK8EYAgMAxK9jp9skSWUEIEQCQ2AAgHj3VWePvrgw+D\/qC3y51hYTZQSgGOE8MABAvAv1\/nxt9nS5s9KtLSbKCEAxwl5AAIB4V3eqTVLyz\/+RCEAxU5g7OAm6I9gnfxd7AQEA4k+oB4gAhIjJykjVrOwMScwDAgDEH2OMLY7ACCEAxRBnggEA4tWpry6q9WKvMtJSdJMnx+pyoi7N6gLsxDdjmo6d9uuJfz9idSkAAIzploIcZaQlf\/9I8v+FceSeG2criTfVBAAkgfsXFFhdQkzQAxRD\/3tRkSpKPerpG7C6FAAARklPS1FOZnIvfw8hAMWYyyY\/LAAA4hlDYAAAwHYIQAAAwHYIQAAAwHYIQAAAwHYIQAAAwHYIQAAAwHYIQAAAwHYIQAAAwHYIQAAAwHYIQAAAwHYIQAAAwHbiOgBVVlbK4XCMeHg8HqvLAgAACS7uD0O95ZZb9MEHH4Sfp6amWlgNAABIBnEfgNLS0uj1AQAAERXXQ2CSdPLkSRUUFKikpETf+9739Nlnn1ldEgAASHBx3QO0ePFivfrqq5o3b57OnTunn\/70p1q6dKmOHz+u6667bszPBINBBYPB8PNAIBCrcgEAQIJwGGOM1UVMVGdnp66\/\/no9\/fTT2rBhw5jvqays1HPPPTfqut\/vV05OTrRLBAAAERAIBOR2u6P273fcD4ENN336dM2fP18nT54c9z0bN26U3+8PPxobG2NYIQAASARxPQR2uWAwqE8\/\/VR33XXXuO9xOp1yOp0xrAoAACSauO4B+vGPf6yamho1NDTo97\/\/vf76r\/9agUBAq1evtro0AACQwOK6B+j06dP6\/ve\/r\/Pnz2v27Nm64447dOjQIRUXF1tdGgAASGBxHYCqq6utLgEAACShuB4CAwAAiAYCEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsB0CEAAAsJ2ECEA\/\/\/nPVVJSoszMTC1cuFC\/\/e1vrS4JAAAksLgPQG+88YbWr1+vTZs26ejRo7rrrrtUUVGhU6dOWV0aAABIUA5jjLG6iCtZvHixvvGNb2j79u3ha1\/\/+tf14IMPqqqq6qqfDwQCcrvd8vv9ysnJiWapAAAgQqL973daxL8xgnp6enTkyBH95Cc\/GXG9vLxcBw8eHPMzwWBQwWAw\/Nzv90sabEgAAJAYQv9uR6ufJq4D0Pnz59Xf36\/8\/PwR1\/Pz89Xc3DzmZ6qqqvTcc8+Nul5UVBSVGgEAQPRcuHBBbrc74t8b1wEoxOFwjHhujBl1LWTjxo3asGFD+HlbW5uKi4t16tSpqDSgnQQCARUVFamxsZHhxCmgHSOHtowc2jIyaMfI8fv9mjNnjmbOnBmV74\/rADRr1iylpqaO6u1paWkZ1SsU4nQ65XQ6R113u938GCMkJyeHtowA2jFyaMvIoS0jg3aMnJSU6KzXiutVYBkZGVq4cKH27t074vrevXu1dOlSi6oCAACJLq57gCRpw4YNevTRR7Vo0SItWbJEv\/jFL3Tq1Ck98cQTVpcGAAASVNwHoIcfflgXLlzQ888\/r6amJpWWlurdd99VcXHxhD7vdDr17LPPjjkshmtDW0YG7Rg5tGXk0JaRQTtGTrTbMu73AQIAAIi0uJ4DBAAAEA0EIAAAYDsEIAAAYDsEIAAAYDtJHYB+\/vOfq6SkRJmZmVq4cKF++9vfWl1S3KusrJTD4Rjx8Hg84deNMaqsrFRBQYGysrK0bNkyHT9+3MKK48eBAwe0cuVKFRQUyOFw6K233hrx+kTaLhgM6qmnntKsWbM0ffp0fec739Hp06dj+FdY72rtuGbNmlG\/0TvuuGPEe2jHwWOBbr\/9drlcLuXl5enBBx\/UiRMnRryH3+TETKQt+V1OzPbt27VgwYLwRpFLlizRe++9F349lr\/JpA1Ab7zxhtavX69Nmzbp6NGjuuuuu1RRUaFTp05ZXVrcu+WWW9TU1BR+1NfXh1978cUXtWXLFm3btk21tbXyeDxasWKF2tvbLaw4PnR2dqqsrEzbtm0b8\/WJtN369eu1a9cuVVdX66OPPlJHR4fuv\/9+9ff3x+rPsNzV2lGS7rvvvhG\/0XfffXfE67SjVFNTo7Vr1+rQoUPau3ev+vr6VF5ers7OzvB7+E1OzETaUuJ3ORE+n08vvPCCDh8+rMOHD2v58uV64IEHwiEnpr9Jk6S++c1vmieeeGLEtZtuusn85Cc\/saiixPDss8+asrKyMV8bGBgwHo\/HvPDCC+Fr3d3dxu12m3\/5l3+JUYWJQZLZtWtX+PlE2q6trc2kp6eb6urq8HvOnDljUlJSzO7du2NWezy5vB2NMWb16tXmgQceGPcztOPYWlpajCRTU1NjjOE3ORWXt6Ux\/C6nYsaMGeZXv\/pVzH+TSdkD1NPToyNHjqi8vHzE9fLych08eNCiqhLHyZMnVVBQoJKSEn3ve9\/TZ599JklqaGhQc3PziHZ1Op265557aNermEjbHTlyRL29vSPeU1BQoNLSUtr3Mvv371deXp7mzZunxx57TC0tLeHXaMex+f1+SQofLMlvcvIub8sQfpfXpr+\/X9XV1ers7NSSJUti\/ptMygB0\/vx59ff3jzowNT8\/f9TBqhhp8eLFevXVV\/X+++\/rl7\/8pZqbm7V06VJduHAh3Ha067WbSNs1NzcrIyNDM2bMGPc9kCoqKvT6669r3759eumll1RbW6vly5crGAxKoh3HYozRhg0bdOedd6q0tFQSv8nJGqstJX6X16K+vl7Z2dlyOp164okntGvXLt18880x\/03G\/VEYU+FwOEY8N8aMuoaRKioqwv89f\/58LVmyRNdff7127NgRntBHu07eZNqO9h3p4YcfDv93aWmpFi1apOLiYr3zzjtatWrVuJ+zczuuW7dOH3\/8sT766KNRr\/GbvDbjtSW\/y4m78cYbVVdXp7a2Nv3mN7\/R6tWrVVNTE349Vr\/JpOwBmjVrllJTU0elwZaWllHJElc2ffp0zZ8\/XydPngyvBqNdr91E2s7j8ainp0etra3jvgejeb1eFRcX6+TJk5Jox8s99dRTevvtt\/Xhhx\/K5\/OFr\/ObvHbjteVY+F2OLyMjQzfccIMWLVqkqqoqlZWV6eWXX475bzIpA1BGRoYWLlyovXv3jri+d+9eLV261KKqElMwGNSnn34qr9erkpISeTyeEe3a09Ojmpoa2vUqJtJ2CxcuVHp6+oj3NDU16Y9\/\/CPtewUXLlxQY2OjvF6vJNoxxBijdevW6c0339S+fftUUlIy4nV+kxN3tbYcC7\/LiTPGKBgMxv43OclJ23GvurrapKenm1\/\/+tfmk08+MevXrzfTp083n3\/+udWlxbUf\/ehHZv\/+\/eazzz4zhw4dMvfff79xuVzhdnvhhReM2+02b775pqmvrzff\/\/73jdfrNYFAwOLKrdfe3m6OHj1qjh49aiSZLVu2mKNHj5ovvvjCGDOxtnviiSeMz+czH3zwgfnDH\/5gli9fbsrKykxfX59Vf1bMXakd29vbzY9+9CNz8OBB09DQYD788EOzZMkSU1hYSDte5oc\/\/KFxu91m\/\/79pqmpKfy4ePFi+D38Jifmam3J73LiNm7caA4cOGAaGhrMxx9\/bJ555hmTkpJi9uzZY4yJ7W8yaQOQMcb88z\/\/sykuLjYZGRnmG9\/4xoglixjbww8\/bLxer0lPTzcFBQVm1apV5vjx4+HXBwYGzLPPPms8Ho9xOp3m7rvvNvX19RZWHD8+\/PBDI2nUY\/Xq1caYibVdV1eXWbdunZk5c6bJysoy999\/vzl16pQFf411rtSOFy9eNOXl5Wb27NkmPT3dzJkzx6xevXpUG9GOZsw2lGReeeWV8Hv4TU7M1dqS3+XE\/c3f\/E343+XZs2ebb33rW+HwY0xsf5MOY4y5tj4jAACAxJaUc4AAAACuhAAEAABshwAEAABshwAEAABshwAEAABshwAEAABshwAEAABshwAEAABshwAEAABshwAEAABshwAEIKF8+eWX8ng82rx5c\/ja73\/\/e2VkZGjPnj0WVgYgkXAWGICE8+677+rBBx\/UwYMHddNNN+m2227Tt7\/9bW3dutXq0gAkCAIQgIS0du1affDBB7r99tt17Ngx1dbWKjMz0+qyACQIAhCAhNTV1aXS0lI1Njbq8OHDWrBggdUlAUggzAECkJA+++wznT17VgMDA\/riiy+sLgdAgqEHCEDC6enp0Te\/+U3deuutuummm7RlyxbV19crPz\/f6tIAJAgCEICE83d\/93f6j\/\/4Dx07dkzZ2dm699575XK59F\/\/9V9WlwYgQTAEBiCh7N+\/X1u3btVrr72mnJwcpaSk6LXXXtNHH32k7du3W10egARBDxAAALAdeoAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDtEIAAAIDt\/H+Rca6BQhfqwwAAAABJRU5ErkJggg==", "text\/plain": "<Figure size 640x480 with 1 Axes>"}, "metadata": {}, "output_type": "display_data"}]}}, "afd4d4ef3418418c84e31eca235aa44d": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": {"_dom_classes": ["widget-interact"], "children": ["IPY_MODEL_a1cb4b44b1f54cde815f8e713ca3e68d", "IPY_MODEL_3500924f544141ef8070a2456337d727"], "layout": "IPY_MODEL_146343a7a95746e6bd0c8bac2c97a33d"}}, "b08f9008f0f040808e2c22dbf9b7d636": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": {"description_width": ""}}, "b0c6e5b072744bb8aad4aa1c343ebe1e": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "IntSliderModel", "state": {"behavior": "drag-tap", "layout": "IPY_MODEL_6f20477e70534303aec0ee8da489b89f", "max": 599, "style": "IPY_MODEL_e46635f4f9934df89aca0c64f1f991c0"}}, "b2d5441b46204c32aa0b7776daef31c7": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"children": ["IPY_MODEL_86d909bc42c141caa23af6d60020a0db"], "layout": "IPY_MODEL_e092e093af954b0485ddd6ac2a722e83"}}, "b361054bfbfd4aa193975eb438f70d68": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "PlayModel", "state": {"description": "step", "layout": "IPY_MODEL_a8120820b9c8411dba949b22cd333241", "max": 149, "style": "IPY_MODEL_4252ab6bb32e4e3aadefa67e72c98374", "value": 94}}, "b4929e71adfe4fd7a3084599938b8a62": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "b49c03f7736a47e5987fbc229507c0fe": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "b6777499fb2c4600a2f7e42865bb8a24": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": {"description_width": ""}}, "b7b5d8c7976e490db14a6f301a8d5fca": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "IntSliderModel", "state": {"behavior": "drag-tap", "layout": "IPY_MODEL_6353f692403c49e1ac433f1fbcbf728e", "max": 149, "style": "IPY_MODEL_f7f5ff74aa334e5d93bf738f8697b5b5"}}, "b8830934433247b6b9746042c69a6d37": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": {"source": ["IPY_MODEL_8330e0092c10467f85f9264bfaf88a6f", "value"], "target": ["IPY_MODEL_4dcc29bcdeb94273acb042225680f938", "value"]}}, "b9abd987449641d5aaa3a6363b08ec5c": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": {"source": ["IPY_MODEL_ffd206a2fd774da69a72e07e90044435", "value"], "target": ["IPY_MODEL_86d909bc42c141caa23af6d60020a0db", "value"]}}, "b9b135e17db64c5c95f90edcb6aeed01": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": {"description_width": ""}}, "bb659ed2914a4508a2242c7023f25aac": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": {"source": ["IPY_MODEL_51e8446de9bf4b1492c6377090f082a9", "value"], "target": ["IPY_MODEL_1cb2605db91a4ce1bac51f5960e5afc9", "value"]}}, "bc360c0bab0f4addb40d8aecfb729f92": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": {"description_width": ""}}, "be405b01c12847da8c4d79ceb2eaed2f": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": {"source": ["IPY_MODEL_57644913df96434395a7d95953ca96ed", "value"], "target": ["IPY_MODEL_88035a6b469f4a4891e35659867ff0c6", "value"]}}, "c1912c587d5a48f6a85f569f08c3365e": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "c249b3bb2eff444bbbec6fd556309218": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "ca88519f972d46d6b6be2b7c6c2fa0d4": {"model_module": "@jupyter-widgets\/output", "model_module_version": "1.0.0", "model_name": "OutputModel", "state": {"layout": "IPY_MODEL_5a437050674241259e1208543a3a72f0", "outputs": [{"data": {"image\/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG2CAYAAACXuTmvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy\/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAiRklEQVR4nO3dfWyV9f3\/8dfhpocCbSNCe05HaTptdVhgG0Voo1JQGjplQF2CYkzJNiJykzXVEQvZOJrZEhL44tLZTWcYOFhJpjh\/47b+oEXW1W9BkA4Nq6NAda2djN5Q8FTg8\/tj4fw4tMXK2l7n9PN8JFfidXNO3\/14JT5znYO4jDFGAAAAFhnk9AAAAAD9jQACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1gmZACoqKpLL5VJeXl7gmDFGPp9P8fHxioyMVGZmpk6cOOHckAAAYEAIiQCqrq7WK6+8ookTJwYdX7dunTZs2KDi4mJVV1fL4\/Fo1qxZamtrc2hSAAAwEDgeQBcuXNATTzyhV199VbfddlvguDFGGzdu1OrVq5WTk6PU1FRt3rxZFy9e1LZt2xycGAAAhLshTg+wbNkyPfzww3rooYf0i1\/8InC8rq5OjY2NysrKChxzu92aPn26Kisr9dRTT3X5fn6\/X36\/P7B\/9epV\/fvf\/9btt98ul8vVd78IAADoNcYYtbW1KT4+XoMG9f7zGkcDqLS0VO+\/\/76qq6s7nWtsbJQkxcXFBR2Pi4vTmTNnun3PoqIiPf\/88707KAAAcER9fb3Gjh3b6+\/rWADV19frJz\/5ifbt26dhw4Z1e92NT22MMTd9klNQUKD8\/PzAfktLi8aNG6e\/n6pT3O2j\/vvB+8nFjsu698X\/K0n639UPaniE4w\/rJIXmXKE2E\/MwD\/PYM48UmjNJoTtXT1zsuKy0n\/8ffVqySFFRUX3yMxxbjSNHjqipqUmTJ08OHLty5YoOHjyo4uJinTx5UtJ\/ngR5vd7ANU1NTZ2eCl3P7XbL7XZ3Oh4VFa3o6Ohe\/A361pCOyxrkHi5Jio6ODpkbNxTnCrWZmId5mMeeeaTQnEkK3bl64vrZ++rrK459CfrBBx9UTU2Njh07FtjS0tL0xBNP6NixY\/rmN78pj8ejsrKywGs6OjpUUVGhjIwMp8YGAAADgGM5GBUVpdTU1KBjI0aM0O233x44npeXp8LCQiUnJys5OVmFhYUaPny4Fi5c6MTIAABggAjp52ErV67UpUuXtHTpUp0\/f15Tp07Vvn37+uzzQAAAYIeQCqDy8vKgfZfLJZ\/PJ5\/P58g8AABgYHL8f4QIAADQ3wggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdawJoMihg50eAQAAhAhrAsjlcjk9AgAACBHWBBAAAMA1BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6zgaQCUlJZo4caKio6MVHR2t9PR07d69O3B+0aJFcrlcQdu0adMcnBgAAAwEQ5z84WPHjtXatWt15513SpI2b96suXPn6ujRo7rnnnskSbNnz9amTZsCr4mIiHBkVgAAMHA4GkBz5swJ2n\/xxRdVUlKiqqqqQAC53W55PB4nxgMAAANUyHwH6MqVKyotLVV7e7vS09MDx8vLyxUbG6uUlBQtXrxYTU1NN30fv9+v1tbWoA0AAOB6jgdQTU2NRo4cKbfbrSVLlmjHjh0aP368JCk7O1tbt27V\/v37tX79elVXV2vmzJny+\/3dvl9RUZFiYmICW0JCQn\/9KgAAIEw4+hGYJN111106duyYmpub9cYbbyg3N1cVFRUaP368FixYELguNTVVaWlpSkxM1M6dO5WTk9Pl+xUUFCg\/Pz+w39raSgQBAIAgjgdQRERE4EvQaWlpqq6u1ksvvaTf\/OY3na71er1KTExUbW1tt+\/ndrvldrv7bF4AABD+HP8I7EbGmG4\/4jp37pzq6+vl9Xr7eSoAADCQOPoEaNWqVcrOzlZCQoLa2tpUWlqq8vJy7dmzRxcuXJDP59Ojjz4qr9er06dPa9WqVRo9erTmz5\/v5NgAACDMORpAn332mZ588kk1NDQoJiZGEydO1J49ezRr1ixdunRJNTU12rJli5qbm+X1ejVjxgxt375dUVFRTo4NAADCnKMB9Nprr3V7LjIyUnv37u3HaQAAgC1C7jtAAAAAfY0AAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUcDaCSkhJNnDhR0dHRio6OVnp6unbv3h04b4yRz+dTfHy8IiMjlZmZqRMnTjg4MQAAGAgcDaCxY8dq7dq1Onz4sA4fPqyZM2dq7ty5gchZt26dNmzYoOLiYlVXV8vj8WjWrFlqa2tzcmwAABDmHA2gOXPm6Hvf+55SUlKUkpKiF198USNHjlRVVZWMMdq4caNWr16tnJwcpaamavPmzbp48aK2bdvm5NgAACDMhcx3gK5cuaLS0lK1t7crPT1ddXV1amxsVFZWVuAat9ut6dOnq7Ky0sFJAQBAuBvi9AA1NTVKT0\/XF198oZEjR2rHjh0aP358IHLi4uKCro+Li9OZM2e6fT+\/3y+\/3x\/Yb21t7ZvBAQBA2HL8CdBdd92lY8eOqaqqSk8\/\/bRyc3P14YcfBs67XK6g640xnY5dr6ioSDExMYEtISGhz2YHAADhyfEAioiI0J133qm0tDQVFRVp0qRJeumll+TxeCRJjY2NQdc3NTV1eip0vYKCArW0tAS2+vr6Pp0fAACEH8cD6EbGGPn9fiUlJcnj8aisrCxwrqOjQxUVFcrIyOj29W63O\/DH6q9tAAAA13P0O0CrVq1Sdna2EhIS1NbWptLSUpWXl2vPnj1yuVzKy8tTYWGhkpOTlZycrMLCQg0fPlwLFy50cmwAABDmHA2gzz77TE8++aQaGhoUExOjiRMnas+ePZo1a5YkaeXKlbp06ZKWLl2q8+fPa+rUqdq3b5+ioqKcHBsAAIQ5RwPotddeu+l5l8sln88nn8\/XPwMBAAArhNx3gAAAAPoaAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6jgZQUVGRpkyZoqioKMXGxmrevHk6efJk0DWLFi2Sy+UK2qZNm+bQxAAAYCBwNIAqKiq0bNkyVVVVqaysTJcvX1ZWVpba29uDrps9e7YaGhoC265duxyaGAAADARDnPzhe\/bsCdrftGmTYmNjdeTIET3wwAOB4263Wx6Pp7\/HAwAAA1RIfQeopaVFkjRq1Kig4+Xl5YqNjVVKSooWL16spqambt\/D7\/ertbU1aAMAALheyASQMUb5+fm67777lJqaGjienZ2trVu3av\/+\/Vq\/fr2qq6s1c+ZM+f3+Lt+nqKhIMTExgS0hIaG\/fgUAABAmQiaAli9fruPHj+sPf\/hD0PEFCxbo4YcfVmpqqubMmaPdu3fr73\/\/u3bu3Nnl+xQUFKilpSWw1dfX98f4AACgl0QOHaz\/Xf1gn\/4MR78DdM2KFSv09ttv6+DBgxo7duxNr\/V6vUpMTFRtbW2X591ut9xud1+MCQAA+oHL5dLwiL5NFEcDyBijFStWaMeOHSovL1dSUtJXvubcuXOqr6+X1+vthwkBAMBA5OhHYMuWLdPvf\/97bdu2TVFRUWpsbFRjY6MuXbokSbpw4YKeffZZ\/fWvf9Xp06dVXl6uOXPmaPTo0Zo\/f76TowMAgDDm6BOgkpISSVJmZmbQ8U2bNmnRokUaPHiwampqtGXLFjU3N8vr9WrGjBnavn27oqKiHJgYAAAMBI5\/BHYzkZGR2rt3bz9NAwAAbBEyfwoMAACgvxBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsI6jAVRUVKQpU6YoKipKsbGxmjdvnk6ePBl0jTFGPp9P8fHxioyMVGZmpk6cOOHQxAAAYCBwNIAqKiq0bNkyVVVVqaysTJcvX1ZWVpba29sD16xbt04bNmxQcXGxqqur5fF4NGvWLLW1tTk4OQAACGdDnPzhe\/bsCdrftGmTYmNjdeTIET3wwAMyxmjjxo1avXq1cnJyJEmbN29WXFyctm3bpqeeesqJsQEAQJi7pQB64YUXbnr+5z\/\/+S0N09LSIkkaNWqUJKmurk6NjY3KysoKXON2uzV9+nRVVlZ2GUB+v19+vz+w39raekuzAACAgeuWAmjHjh1B+19++aXq6uo0ZMgQ3XHHHbcUQMYY5efn67777lNqaqokqbGxUZIUFxcXdG1cXJzOnDnT5fsUFRXp+eef\/9o\/HwAA2OOWAujo0aOdjrW2tmrRokWaP3\/+LQ2yfPlyHT9+XIcOHep0zuVyBe0bYzodu6agoED5+flBcyUkJNzSTAAAYGDqtS9BR0dH64UXXtDPfvazr\/3aFStW6O2339aBAwc0duzYwHGPxyPp\/z8JuqapqanTU6Fr3G63oqOjgzYAAIDr9eqfAmtubg58j6cnjDFavny53nzzTe3fv19JSUlB55OSkuTxeFRWVhY41tHRoYqKCmVkZPTa3AAAwC639BHYL3\/5y6B9Y4waGhr0+uuva\/bs2T1+n2XLlmnbtm3605\/+pKioqMCTnpiYGEVGRsrlcikvL0+FhYVKTk5WcnKyCgsLNXz4cC1cuPBWRgcAALi1APqf\/\/mfoP1BgwZpzJgxys3NVUFBQY\/fp6SkRJKUmZkZdHzTpk1atGiRJGnlypW6dOmSli5dqvPnz2vq1Knat2+foqKibmV0AACAWwugurq6XvnhxpivvMblcsnn88nn8\/XKzwQAAODvAgMAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdRwPo4MGDmjNnjuLj4+VyufTWW28FnV+0aJFcLlfQNm3aNGeGBQAAA4ajAdTe3q5JkyapuLi422tmz56thoaGwLZr165+nBAAAAxEQ5z84dnZ2crOzr7pNW63Wx6Pp58mAgAANgj57wCVl5crNjZWKSkpWrx4sZqamm56vd\/vV2tra9AGAABwvZAOoOzsbG3dulX79+\/X+vXrVV1drZkzZ8rv93f7mqKiIsXExAS2hISEfpwYAACEA0c\/AvsqCxYsCPxzamqq0tLSlJiYqJ07dyonJ6fL1xQUFCg\/Pz+w39raSgQBAIAgIR1AN\/J6vUpMTFRtbW2317jdbrnd7n6cCgAAhJuQ\/gjsRufOnVN9fb28Xq\/TowAAgDDm6BOgCxcu6OOPPw7s19XV6dixYxo1apRGjRoln8+nRx99VF6vV6dPn9aqVas0evRozZ8\/38GpAQBAuHM0gA4fPqwZM2YE9q99dyc3N1clJSWqqanRli1b1NzcLK\/XqxkzZmj79u2KiopyamQAADAAOBpAmZmZMsZ0e37v3r39OA0AALBFWH0HCAAAoDcQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALCOowF08OBBzZkzR\/Hx8XK5XHrrrbeCzhtj5PP5FB8fr8jISGVmZurEiRPODAsAAAYMRwOovb1dkyZNUnFxcZfn161bpw0bNqi4uFjV1dXyeDyaNWuW2tra+nlSAAAwkAxx8odnZ2crOzu7y3PGGG3cuFGrV69WTk6OJGnz5s2Ki4vTtm3b9NRTT\/XnqAAAYAAJ2e8A1dXVqbGxUVlZWYFjbrdb06dPV2VlZbev8\/v9am1tDdoAAACuF7IB1NjYKEmKi4sLOh4XFxc415WioiLFxMQEtoSEhD6dEwAAhJ+QDaBrXC5X0L4xptOx6xUUFKilpSWw1dfX9\/WIAAAgzDj6HaCb8Xg8kv7zJMjr9QaONzU1dXoqdD232y23293n8wEAgPAVsk+AkpKS5PF4VFZWFjjW0dGhiooKZWRkODgZAAAId44+Abpw4YI+\/vjjwH5dXZ2OHTumUaNGady4ccrLy1NhYaGSk5OVnJyswsJCDR8+XAsXLnRwagAAEO4cDaDDhw9rxowZgf38\/HxJUm5urn73u99p5cqVunTpkpYuXarz589r6tSp2rdvn6KiopwaGQAADACOBlBmZqaMMd2ed7lc8vl88vl8\/TcUAAAY8EL2O0AAAAB9hQACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdQggAABgHQIIAABYhwACAADWIYAAAIB1CCAAAGAdAggAAFiHAAIAANYhgAAAgHUIIAAAYB0CCAAAWIcAAgAA1iGAAACAdUI6gHw+n1wuV9Dm8XicHgsAAIS5IU4P8FXuuecevfPOO4H9wYMHOzgNAAAYCEI+gIYMGcJTHwAA0KtC+iMwSaqtrVV8fLySkpL02GOP6dSpU06PBAAAwlxIPwGaOnWqtmzZopSUFH322Wf6xS9+oYyMDJ04cUK33357l6\/x+\/3y+\/2B\/dbW1v4aFwAAhImQfgKUnZ2tRx99VBMmTNBDDz2knTt3SpI2b97c7WuKiooUExMT2BISEvprXAAAECZCOoBuNGLECE2YMEG1tbXdXlNQUKCWlpbAVl9f348TAgCAcBDSH4HdyO\/366OPPtL999\/f7TVut1tut7sfpwIAAOEmpJ8APfvss6qoqFBdXZ3ee+89\/eAHP1Bra6tyc3OdHg0AAISxkH4C9Mknn+jxxx\/X559\/rjFjxmjatGmqqqpSYmKi06MBAIAwFtIBVFpa6vQIAABgAArpj8AAAAD6AgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOmERQC+\/\/LKSkpI0bNgwTZ48We+++67TIwEAgDAW8gG0fft25eXlafXq1Tp69Kjuv\/9+ZWdn6+zZs06PBgAAwlTIB9CGDRv0ox\/9SD\/+8Y\/1rW99Sxs3blRCQoJKSkqcHg0AAISpIU4PcDMdHR06cuSInnvuuaDjWVlZqqys7PI1fr9ffr8\/sN\/S0iJJam1t7btB+8DFjsu66r8o6T+zX44IjX9VoThXqM3EPMzDPPbMI4XmTFLoztVT1\/67bYzpmx9gQtinn35qJJm\/\/OUvQcdffPFFk5KS0uVr1qxZYySxsbGxsbGxDYDtH\/\/4R580RljkoMvlCto3xnQ6dk1BQYHy8\/MD+83NzUpMTNTZs2cVExPTp3MOdK2trUpISFB9fb2io6OdHidssY69h7XsPaxl72Ade09LS4vGjRunUaNG9cn7h3QAjR49WoMHD1ZjY2PQ8aamJsXFxXX5GrfbLbfb3el4TEwMN2MviY6OZi17AevYe1jL3sNa9g7WsfcMGtQ3X1cO6S9BR0REaPLkySorKws6XlZWpoyMDIemAgAA4S6knwBJUn5+vp588kmlpaUpPT1dr7zyis6ePaslS5Y4PRoAAAhTIR9ACxYs0Llz5\/TCCy+ooaFBqamp2rVrlxITE3v0erfbrTVr1nT5sRi+Htayd7COvYe17D2sZe9gHXtPX6+ly5i++vNlAAAAoSmkvwMEAADQFwggAABgHQIIAABYhwACAADWGdAB9PLLLyspKUnDhg3T5MmT9e677zo9Usjz+XxyuVxBm8fjCZw3xsjn8yk+Pl6RkZHKzMzUiRMnHJw4dBw8eFBz5sxRfHy8XC6X3nrrraDzPVk7v9+vFStWaPTo0RoxYoS+\/\/3v65NPPunH38J5X7WOixYt6nSPTps2Lega1lEqKirSlClTFBUVpdjYWM2bN08nT54MuoZ7smd6spbclz1TUlKiiRMnBv5Hkenp6dq9e3fgfH\/ekwM2gLZv3668vDytXr1aR48e1f3336\/s7GydPXvW6dFC3j333KOGhobAVlNTEzi3bt06bdiwQcXFxaqurpbH49GsWbPU1tbm4MShob29XZMmTVJxcXGX53uydnl5edqxY4dKS0t16NAhXbhwQY888oiuXLnSX7+G475qHSVp9uzZQfforl27gs6zjlJFRYWWLVumqqoqlZWV6fLly8rKylJ7e3vgGu7JnunJWkrclz0xduxYrV27VocPH9bhw4c1c+ZMzZ07NxA5\/XpP9snfMBYC7r33XrNkyZKgY3fffbd57rnnHJooPKxZs8ZMmjSpy3NXr141Ho\/HrF27NnDsiy++MDExMebXv\/51P00YHiSZHTt2BPZ7snbNzc1m6NChprS0NHDNp59+agYNGmT27NnTb7OHkhvX0RhjcnNzzdy5c7t9DevYtaamJiPJVFRUGGO4J\/8bN66lMdyX\/43bbrvN\/Pa3v+33e3JAPgHq6OjQkSNHlJWVFXQ8KytLlZWVDk0VPmpraxUfH6+kpCQ99thjOnXqlCSprq5OjY2NQevqdrs1ffp01vUr9GTtjhw5oi+\/\/DLomvj4eKWmprK+NygvL1dsbKxSUlK0ePFiNTU1Bc6xjl1raWmRpMBfLMk9eetuXMtruC+\/nitXrqi0tFTt7e1KT0\/v93tyQAbQ559\/ritXrnT6C1Pj4uI6\/cWqCDZ16lRt2bJFe\/fu1auvvqrGxkZlZGTo3LlzgbVjXb++nqxdY2OjIiIidNttt3V7DaTs7Gxt3bpV+\/fv1\/r161VdXa2ZM2fK7\/dLYh27YoxRfn6+7rvvPqWmpkrinrxVXa2lxH35ddTU1GjkyJFyu91asmSJduzYofHjx\/f7PRnyfxXGf8PlcgXtG2M6HUOw7OzswD9PmDBB6enpuuOOO7R58+bAF\/pY11t3K2vH+gZbsGBB4J9TU1OVlpamxMRE7dy5Uzk5Od2+zuZ1XL58uY4fP65Dhw51Osc9+fV0t5bclz1311136dixY2pubtYbb7yh3NxcVVRUBM731z05IJ8AjR49WoMHD+5Ug01NTZ3KEjc3YsQITZgwQbW1tYE\/Dca6fn09WTuPx6OOjg6dP3++22vQmdfrVWJiomprayWxjjdasWKF3n77bR04cEBjx44NHOee\/Pq6W8uucF92LyIiQnfeeafS0tJUVFSkSZMm6aWXXur3e3JABlBERIQmT56ssrKyoONlZWXKyMhwaKrw5Pf79dFHH8nr9SopKUkejydoXTs6OlRRUcG6foWerN3kyZM1dOjQoGsaGhr0t7\/9jfW9iXPnzqm+vl5er1cS63iNMUbLly\/Xm2++qf379yspKSnoPPdkz33VWnaF+7LnjDHy+\/39f0\/e4pe2Q15paakZOnSoee2118yHH35o8vLyzIgRI8zp06edHi2kPfPMM6a8vNycOnXKVFVVmUceecRERUUF1m3t2rUmJibGvPnmm6ampsY8\/vjjxuv1mtbWVocnd15bW5s5evSoOXr0qJFkNmzYYI4ePWrOnDljjOnZ2i1ZssSMHTvWvPPOO+b99983M2fONJMmTTKXL1926tfqdzdbx7a2NvPMM8+YyspKU1dXZw4cOGDS09PNN77xDdbxBk8\/\/bSJiYkx5eXlpqGhIbBdvHgxcA33ZM981VpyX\/ZcQUGBOXjwoKmrqzPHjx83q1atMoMGDTL79u0zxvTvPTlgA8gYY371q1+ZxMREExERYb773e8G\/ZFFdG3BggXG6\/WaoUOHmvj4eJOTk2NOnDgROH\/16lWzZs0a4\/F4jNvtNg888ICpqalxcOLQceDAASOp05abm2uM6dnaXbp0ySxfvtyMGjXKREZGmkceecScPXvWgd\/GOTdbx4sXL5qsrCwzZswYM3ToUDNu3DiTm5vbaY1YR9PlGkoymzZtClzDPdkzX7WW3Jc998Mf\/jDw3+UxY8aYBx98MBA\/xvTvPekyxpiv98wIAAAgvA3I7wABAADcDAEEAACsQwABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQgr\/\/rXv+TxeFRYWBg49t577ykiIkL79u1zcDIA4YS\/CwxA2Nm1a5fmzZunyspK3X333frOd76jhx9+WBs3bnR6NABhggACEJaWLVumd955R1OmTNEHH3yg6upqDRs2zOmxAIQJAghAWLp06ZJSU1NVX1+vw4cPa+LEiU6PBCCM8B0gAGHp1KlT+uc\/\/6mrV6\/qzJkzTo8DIMzwBAhA2Ono6NC9996rb3\/727r77ru1YcMG1dTUKC4uzunRAIQJAghA2PnpT3+qP\/7xj\/rggw80cuRIzZgxQ1FRUfrzn\/\/s9GgAwgQfgQEIK+Xl5dq4caNef\/11RUdHa9CgQXr99dd16NAhlZSUOD0egDDBEyAAAGAdngABAADrEEAAAMA6BBAAALAOAQQAAKxDAAEAAOsQQAAAwDoEEAAAsA4BBAAArEMAAQAA6xBAAADAOgQQAACwDgEEAACs8\/8AtbWCzAbd7joAAAAASUVORK5CYII=", "text\/plain": "<Figure size 640x480 with 1 Axes>"}, "metadata": {}, "output_type": "display_data"}]}}, "cd847b071b4e47ea8ae6cd18c02e2b45": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "cd9c5d4ded2646918e55e9f584926817": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": {"_dom_classes": ["widget-interact"], "children": ["IPY_MODEL_8330e0092c10467f85f9264bfaf88a6f", "IPY_MODEL_84db1e5aacf844f2b99f65c3e1097e2a"], "layout": "IPY_MODEL_3dfd829e56824d288459d82647e0ac61"}}, "cfe6894555d9429bafafa321a999ad79": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": {"description_width": ""}}, "d095a4e7d8d4445e86d3db1fdff6244f": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "PlayModel", "state": {"description": "step", "layout": "IPY_MODEL_9c44cf9efe144da9b5dfcbe527ac3102", "max": 199, "style": "IPY_MODEL_0962612e4e404b54ac1fac8d640cd6c0", "value": 75}}, "d1b23fb8d92a428ebfbc64e7b3117db4": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "d405cdb662334ea1920afee0c3ff1475": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "d46db30322c046b3a3b40e07893e8e0f": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "d6771ef21c534c6eb6d533999eb19a55": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": {"_dom_classes": ["widget-interact"], "children": ["IPY_MODEL_ebe4490fa75a4192ba04152508adf1b4", "IPY_MODEL_1af575622d2045659ef592a3a3d82a91"], "layout": "IPY_MODEL_40b159f172e843e0be00be922ba726d0"}}, "d6f350aa761a4296923db4d01c4bd139": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": {"source": ["IPY_MODEL_99f37541ac7b4dbfac2f489c1a5b0353", "value"], "target": ["IPY_MODEL_93f14a52f3064949b531de7e08a42ee6", "value"]}}, "daa0b5546c1d408a865e572be327f49c": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": {"source": ["IPY_MODEL_1691534cae544c41ac19238706d81934", "value"], "target": ["IPY_MODEL_e1d833787d964958adf9bf27c7c8465d", "value"]}}, "db46a3c449cf4e6d85de539fd7e30166": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": {"description_width": ""}}, "db9041c22a5d4c00b62ba6ef68b628f2": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "de278670da40468392c76821e50a39de": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": {"_dom_classes": ["widget-interact"], "children": ["IPY_MODEL_51e8446de9bf4b1492c6377090f082a9", "IPY_MODEL_ca88519f972d46d6b6be2b7c6c2fa0d4"], "layout": "IPY_MODEL_5d52cc6b2314438da6e9896470a62a61"}}, "e043ddd08fa044f0805e72d08d64fb52": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "e092e093af954b0485ddd6ac2a722e83": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "e0a901d1b6bf4aaf9d6a7959832d535a": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "e0fa11145e0d4e40ad744eba44c54f34": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "IntSliderModel", "state": {"behavior": "drag-tap", "layout": "IPY_MODEL_fb1d23bcc05342c0b382ab4170ce6aaa", "max": 199, "style": "IPY_MODEL_95d2ea1d34c947c9a61397dc75af7d2d", "value": 75}}, "e149cc3bb9774b248e8b07cdf7ae6dfa": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"children": ["IPY_MODEL_abc536027e9f46dca983b3512682b4b6"], "layout": "IPY_MODEL_40ddbc947f924670b1c89507cec96d03"}}, "e17d149775dd4f96bcd56c6c7455e2b0": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "e1d833787d964958adf9bf27c7c8465d": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "IntSliderModel", "state": {"behavior": "drag-tap", "layout": "IPY_MODEL_db9041c22a5d4c00b62ba6ef68b628f2", "max": 149, "style": "IPY_MODEL_72d3e88fdf024cba8257fa4e8a109544"}}, "e201f43e69ea4c10af62d9a3b611e43b": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"children": ["IPY_MODEL_7a2ac2d705c34d2599661107d0b6a5a5"], "layout": "IPY_MODEL_e0a901d1b6bf4aaf9d6a7959832d535a"}}, "e2037de5a9b542a394546c32006e26cf": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "VBoxModel", "state": {"_dom_classes": ["widget-interact"], "children": ["IPY_MODEL_754124660050415e84f351699e0454bd", "IPY_MODEL_75be4fb6e3894ef2ac842e505a05bca9"], "layout": "IPY_MODEL_29a880f5e6de435795b50f46a66a942e"}}, "e2a00839a46e4bb39cd41f9aa4edaaea": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": {"description_width": ""}}, "e4081c6091bb48838c726ff8e86ca60b": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "e46635f4f9934df89aca0c64f1f991c0": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": {"description_width": ""}}, "e84b526ca1ae4e019432105a43b87ec1": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "DescriptionStyleModel", "state": {"description_width": ""}}, "e9f56784337d42cbbf92f7219b1e0c47": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "ea5d62a115f443e4bf326bbe2a8d0260": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "ebba55e865d6472fad5ee32c335e445b": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"children": ["IPY_MODEL_0fcdff9aa34e4e13927e34ae27360da7"], "layout": "IPY_MODEL_12a14e08898b4abf991365cd41d07a93"}}, "ebe4490fa75a4192ba04152508adf1b4": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "PlayModel", "state": {"description": "step", "layout": "IPY_MODEL_372d2a496a5f46259db10a571b9ffb16", "max": 149, "style": "IPY_MODEL_106c527c21f1485f80938702414243e8"}}, "efb79abbdfb2428e84cb236aa84bc460": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "f2f9b1c03492463397087bed2642a8b2": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "LinkModel", "state": {"source": ["IPY_MODEL_a1cb4b44b1f54cde815f8e713ca3e68d", "value"], "target": ["IPY_MODEL_9ab997a6587c4746904cd3476fe428de", "value"]}}, "f32037d5c9d24da1a34f099ded323912": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": {"children": ["IPY_MODEL_a0998547957e4b50bb0570d6e89b4c2e"], "layout": "IPY_MODEL_148898f7302f4f45809429230ac34e24"}}, "f7f5ff74aa334e5d93bf738f8697b5b5": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": {"description_width": ""}}, "fb1d23bcc05342c0b382ab4170ce6aaa": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "fb3e5d085e2d43b7a3490b9ff0cd3738": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "SliderStyleModel", "state": {"description_width": ""}}, "fc190c980cf64f58821e1fed76b8dc9b": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "fe5db7fffd844d8983fe53f0eaa44849": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "ffbdb787fdf940fab9e0d3b457888162": {"model_module": "@jupyter-widgets\/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": {}}, "ffd206a2fd774da69a72e07e90044435": {"model_module": "@jupyter-widgets\/controls", "model_module_version": "2.0.0", "model_name": "PlayModel", "state": {"description": "step", "layout": "IPY_MODEL_9e913bb98541408496f49af403c639af", "max": 199, "style": "IPY_MODEL_b6777499fb2c4600a2f7e42865bb8a24"}}}, "version_major": 2, "version_minor": 0} -</script> </html> diff --git a/synced_files/GA_1_6/Analysis_solution.md b/synced_files/GA_1_6/Analysis_solution.md index 86bfda86..a14fbd7e 100644 --- a/synced_files/GA_1_6/Analysis_solution.md +++ b/synced_files/GA_1_6/Analysis_solution.md @@ -1,16 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - -<!-- #region id="9adbf457-797f-45b7-8f8b-0e46e0e2f5ff" --> # GA 1.6: An ODE to Probably Doing Enough (PDE) <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> @@ -25,7 +14,7 @@ jupyter: </h2> *[CEGM1000 MUDE](http://mude.citg.tudelft.nl/): Week 1.6. For: 11 October, 2024.* -<!-- #endregion --> + # Overview diff --git a/synced_files/GA_1_7/Solution/Discharge/Analysis_discharge_solution.html b/synced_files/GA_1_7/Solution/Discharge/Analysis_discharge_solution.html index c43b8bfb..822803f2 100644 --- a/synced_files/GA_1_7/Solution/Discharge/Analysis_discharge_solution.html +++ b/synced_files/GA_1_7/Solution/Discharge/Analysis_discharge_solution.html @@ -8365,7 +8365,7 @@ The correlation between the simulations is: 0.0020271910707288735 </div> </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=5585ed73"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=eb35a2d3"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> diff --git a/synced_files/GA_1_7/Solution/Discharge/Analysis_discharge_solution.ipynb b/synced_files/GA_1_7/Solution/Discharge/Analysis_discharge_solution.ipynb index 89183e36..03128b66 100644 --- a/synced_files/GA_1_7/Solution/Discharge/Analysis_discharge_solution.ipynb +++ b/synced_files/GA_1_7/Solution/Discharge/Analysis_discharge_solution.ipynb @@ -604,7 +604,7 @@ }, { "cell_type": "markdown", - "id": "47689f2f", + "id": "1c042a63", "metadata": {}, "source": [ "<div style=\"background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", diff --git a/synced_files/GA_1_7/Solution/Discharge/Analysis_discharge_solution.md b/synced_files/GA_1_7/Solution/Discharge/Analysis_discharge_solution.md index dfbeb8ca..a36ee458 100644 --- a/synced_files/GA_1_7/Solution/Discharge/Analysis_discharge_solution.md +++ b/synced_files/GA_1_7/Solution/Discharge/Analysis_discharge_solution.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # Group Assignment 1.7: Distribution Fitting <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> @@ -25,7 +15,7 @@ jupyter: *[CEGM1000 MUDE](http://mude.citg.tudelft.nl/): Week 7, Friday Oct 18, 2024.* -<!-- #region id="1db6fea9-f3ad-44bc-a4c8-7b2b3008e945" --> + ## Case 3: Discharges on a structure **What's the propagated uncertainty? *How large will be the discharge?*** @@ -47,11 +37,9 @@ $$ 2. Fit the chosen distributions to the observations of $u$ and $h$. 3. Assuming $d$ and $h$ are independent, propagate their distributions to obtain the distribution of $q$. 4. Analyze the distribution of $q$. -<!-- #endregion --> -<!-- #region id="d33f1148-c72b-4c7e-bca7-45973b2570c5" --> + ## Importing packages -<!-- #endregion --> ```python import numpy as np @@ -97,7 +85,6 @@ print(stats.describe(h)) print(stats.describe(u)) ``` -<!-- #region id="bfadcf3f-4578-4809-acdb-625ab3a71f27" --> <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 1:</b> @@ -107,7 +94,7 @@ Describe the data based on the previous statistics: <li>What does the skewness coefficient means? Which kind of distribution functions should we consider to fit them?</li> </p> </div> -<!-- #endregion --> + <div style="background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <b>Solution:</b> @@ -163,7 +150,6 @@ axes[1].legend() axes[1].grid() ``` -<!-- #region id="bfadcf3f-4578-4809-acdb-625ab3a71f27" --> <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 3:</b> @@ -171,7 +157,7 @@ axes[1].grid() Based on the results of Task 1 and the empirical PDF and CDF, select <b>one</b> distribution to fit to each variable. For $h$, select between Uniform or Gaussian distribution, while for $u$ choose between Exponential or Gumbel. </p> </div> -<!-- #endregion --> + <div style="background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <b>Solution:</b> diff --git a/synced_files/GA_1_7/Solution/Emissions/Analysis_emissions_solution.html b/synced_files/GA_1_7/Solution/Emissions/Analysis_emissions_solution.html index ef7ab411..d9061522 100644 --- a/synced_files/GA_1_7/Solution/Emissions/Analysis_emissions_solution.html +++ b/synced_files/GA_1_7/Solution/Emissions/Analysis_emissions_solution.html @@ -7751,7 +7751,7 @@ $$</p> </div> </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=99556ba2"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=a6930fb4"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -7886,7 +7886,7 @@ $$</p> </div> </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=554ae5cf"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=c645b7cd"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -8028,7 +8028,7 @@ $C$: Uniform</p> </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=4fa83a06"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=ef6eb16e"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -8129,7 +8129,7 @@ The p-value for the fitted Uniform distribution to C is: 0.0 </div> </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=4f846ae6"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=70948c0d"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -8259,7 +8259,7 @@ The p-value for the fitted Uniform distribution to C is: 0.0 </div> </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=95e3a51e"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=4379f766"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -8277,7 +8277,7 @@ The p-value for the fitted Uniform distribution to C is: 0.0 </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=c082a3a1"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=12f4760a"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -8300,7 +8300,7 @@ The p-value for the fitted Uniform distribution to C is: 0.0 </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=f4b7f7c8"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=a18aa4fc"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -8332,7 +8332,7 @@ The p-value for the fitted Uniform distribution to C is: 0.0 </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=7c169d02"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=a4b31aae"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -8365,7 +8365,7 @@ The correlation between the simulations is: -0.013637688852272484 </div> </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=dae7f6ad"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=1b17176f"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> diff --git a/synced_files/GA_1_7/Solution/Emissions/Analysis_emissions_solution.ipynb b/synced_files/GA_1_7/Solution/Emissions/Analysis_emissions_solution.ipynb index db6f38ad..0d4cb0a8 100644 --- a/synced_files/GA_1_7/Solution/Emissions/Analysis_emissions_solution.ipynb +++ b/synced_files/GA_1_7/Solution/Emissions/Analysis_emissions_solution.ipynb @@ -157,7 +157,7 @@ }, { "cell_type": "markdown", - "id": "8750486d", + "id": "b7e053e1", "metadata": {}, "source": [ "<div style=\"background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", @@ -260,7 +260,7 @@ }, { "cell_type": "markdown", - "id": "20d2b004", + "id": "da48396b", "metadata": {}, "source": [ "<div style=\"background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", @@ -372,7 +372,7 @@ { "cell_type": "code", "execution_count": null, - "id": "3debb049", + "id": "a3dc58c3", "metadata": {}, "outputs": [], "source": [ @@ -435,7 +435,7 @@ }, { "cell_type": "markdown", - "id": "031cbec5", + "id": "279eb86e", "metadata": {}, "source": [ "<div style=\"background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", @@ -536,7 +536,7 @@ }, { "cell_type": "markdown", - "id": "a770fee1", + "id": "c707ebc4", "metadata": {}, "source": [ "<div style=\"background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", @@ -550,7 +550,7 @@ }, { "cell_type": "markdown", - "id": "af3e2583", + "id": "861e4aa2", "metadata": {}, "source": [ "If you run the code in the cell below, you will obtain a scatter plot of both variables. Explore the relationship between both variables and answer the following questions:\n", @@ -571,7 +571,7 @@ { "cell_type": "code", "execution_count": null, - "id": "dfd1cbdd", + "id": "a575bb7f", "metadata": {}, "outputs": [], "source": [ @@ -587,7 +587,7 @@ { "cell_type": "code", "execution_count": null, - "id": "c515a918", + "id": "c8f88889", "metadata": {}, "outputs": [], "source": [ @@ -600,7 +600,7 @@ }, { "cell_type": "markdown", - "id": "640fee3c", + "id": "ae1ca76f", "metadata": {}, "source": [ "<div style=\"background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", diff --git a/synced_files/GA_1_7/Solution/Emissions/Analysis_emissions_solution.md b/synced_files/GA_1_7/Solution/Emissions/Analysis_emissions_solution.md index 8ff15176..328b968e 100644 --- a/synced_files/GA_1_7/Solution/Emissions/Analysis_emissions_solution.md +++ b/synced_files/GA_1_7/Solution/Emissions/Analysis_emissions_solution.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # Group Assignment 1.7: Distribution Fitting <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> @@ -25,7 +15,7 @@ jupyter: *[CEGM1000 MUDE](http://mude.citg.tudelft.nl/): Week 7, Friday Oct 18, 2024.* -<!-- #region id="1db6fea9-f3ad-44bc-a4c8-7b2b3008e945" --> + ## Case 2: $CO_2$ emissions from traffic **What's the propagated uncertainty? *How large will be the $CO_2$ emissions?*** @@ -41,11 +31,9 @@ $$ 2. Fit the chosen distributions to the observations of $H$ and $C$. 3. Assuming $H$ and $C$ are independent, propagate their distributions to obtain the distribution of emissions of $CO_2$. 4. Analyze the distribution of emissions of $CO_2$. -<!-- #endregion --> -<!-- #region id="d33f1148-c72b-4c7e-bca7-45973b2570c5" --> + ## Importing packages -<!-- #endregion --> ```python import numpy as np @@ -92,7 +80,6 @@ stats.describe(H).mean print(stats.describe(C)) ``` -<!-- #region id="bfadcf3f-4578-4809-acdb-625ab3a71f27" --> <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 1:</b> @@ -102,7 +89,7 @@ Describe the data based on the previous statistics: - What does the skewness coefficient means? Which kind of distribution functions should we consider to fit them?</li> </p> </div> -<!-- #endregion --> + <div style="background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <b>Solution:</b> @@ -158,7 +145,6 @@ axes[1].legend() axes[1].grid() ``` -<!-- #region id="bfadcf3f-4578-4809-acdb-625ab3a71f27" --> <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 3:</b> @@ -166,7 +152,7 @@ axes[1].grid() Based on the results of Task 1 and the empirical PDF and CDF, select <b>one</b> distribution to fit to each variable. For $H$, select between Gumbel or Gaussian distribution, while for $C$ choose between Uniform or Lognormal. </p> </div> -<!-- #endregion --> + <div style="background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <b>Solution:</b> diff --git a/synced_files/GA_1_7/Solution/Force/Analysis_force_solution.html b/synced_files/GA_1_7/Solution/Force/Analysis_force_solution.html index 3994682f..079b9b49 100644 --- a/synced_files/GA_1_7/Solution/Force/Analysis_force_solution.html +++ b/synced_files/GA_1_7/Solution/Force/Analysis_force_solution.html @@ -7752,7 +7752,7 @@ $$</p> </div> </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=daa74242"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=1f5d0df7"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -7888,7 +7888,7 @@ $$</p> </div> </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=1b57c3ac"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=1807b351"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -8028,7 +8028,7 @@ $T$: Gumbel</p> </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=91071051"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=a4b14e54"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -8129,7 +8129,7 @@ The p-value for the fitted Uniform distribution to d is: 0.0 </div> </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=3cdacd06"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=6c179a0a"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -8261,7 +8261,7 @@ The p-value for the fitted Uniform distribution to d is: 0.0 </div> </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=88ca7895"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=85675ad1"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -8280,7 +8280,7 @@ The p-value for the fitted Uniform distribution to d is: 0.0 </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=7ef03e54"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=20a4ad80"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -8303,7 +8303,7 @@ The p-value for the fitted Uniform distribution to d is: 0.0 </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=ce163eea"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=d648b089"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -8335,7 +8335,7 @@ The p-value for the fitted Uniform distribution to d is: 0.0 </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=f14cbecc"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=9fc8a6ee"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -8368,7 +8368,7 @@ The correlation between the simulations is: -0.0049550215283467956 </div> </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=1da62bf4"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=64ffc2cd"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> diff --git a/synced_files/GA_1_7/Solution/Force/Analysis_force_solution.ipynb b/synced_files/GA_1_7/Solution/Force/Analysis_force_solution.ipynb index 6cb3ce75..48e980a2 100644 --- a/synced_files/GA_1_7/Solution/Force/Analysis_force_solution.ipynb +++ b/synced_files/GA_1_7/Solution/Force/Analysis_force_solution.ipynb @@ -162,7 +162,7 @@ }, { "cell_type": "markdown", - "id": "4033f550", + "id": "6d35c61a", "metadata": {}, "source": [ "<div style=\"background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", @@ -267,7 +267,7 @@ }, { "cell_type": "markdown", - "id": "33bf2f42", + "id": "cc0500ec", "metadata": {}, "source": [ "<div style=\"background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", @@ -380,7 +380,7 @@ { "cell_type": "code", "execution_count": null, - "id": "0609a128", + "id": "9f1e89a1", "metadata": {}, "outputs": [], "source": [ @@ -443,7 +443,7 @@ }, { "cell_type": "markdown", - "id": "09e8fac7", + "id": "f56243a4", "metadata": {}, "source": [ "<div style=\"background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", @@ -544,7 +544,7 @@ }, { "cell_type": "markdown", - "id": "1334b1d7", + "id": "9fed8c92", "metadata": {}, "source": [ "<div style=\"background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", @@ -559,7 +559,7 @@ }, { "cell_type": "markdown", - "id": "1f9ab8e4", + "id": "05704b85", "metadata": {}, "source": [ "If you run the code in the cell below, you will obtain a scatter plot of both variables. Explore the relationship between both variables and answer the following questions:\n", @@ -580,7 +580,7 @@ { "cell_type": "code", "execution_count": null, - "id": "a5e5f708", + "id": "362b9a87", "metadata": {}, "outputs": [], "source": [ @@ -596,7 +596,7 @@ { "cell_type": "code", "execution_count": null, - "id": "2262f788", + "id": "9af0fc94", "metadata": {}, "outputs": [], "source": [ @@ -609,7 +609,7 @@ }, { "cell_type": "markdown", - "id": "cefec011", + "id": "efa199b3", "metadata": {}, "source": [ "<div style=\"background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", diff --git a/synced_files/GA_1_7/Solution/Force/Analysis_force_solution.md b/synced_files/GA_1_7/Solution/Force/Analysis_force_solution.md index 91358bf5..a98839c6 100644 --- a/synced_files/GA_1_7/Solution/Force/Analysis_force_solution.md +++ b/synced_files/GA_1_7/Solution/Force/Analysis_force_solution.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # Group Assignment 1.7: Distribution Fitting <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> @@ -25,7 +15,7 @@ jupyter: *[CEGM1000 MUDE](http://mude.citg.tudelft.nl/): Week 7, Friday Oct 18, 2024.* -<!-- #region id="1db6fea9-f3ad-44bc-a4c8-7b2b3008e945" --> + ## Case 1: Wave impacts on a crest wall **What's the propagated uncertainty? *How large will the horizontal force be?*** @@ -47,11 +37,9 @@ $$ 2. Fit the chosen distributions to the observations of $H$ and $T$. 3. Assuming $H$ and $T$ are independent, propagate their distributions to obtain the distribution of $F_h$. 4. Analyze the distribution of $F_h$. -<!-- #endregion --> -<!-- #region id="d33f1148-c72b-4c7e-bca7-45973b2570c5" --> + ## Importing packages -<!-- #endregion --> ```python import numpy as np @@ -97,7 +85,6 @@ print(stats.describe(H)) print(stats.describe(T)) ``` -<!-- #region id="bfadcf3f-4578-4809-acdb-625ab3a71f27" --> <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 1:</b> @@ -107,7 +94,7 @@ Describe the data based on the previous statistics: <li>What does the skewness coefficient means? Which kind of distribution functions should we consider to fit them?</li> </p> </div> -<!-- #endregion --> + <div style="background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> @@ -165,7 +152,6 @@ axes[1].legend() axes[1].grid() ``` -<!-- #region id="bfadcf3f-4578-4809-acdb-625ab3a71f27" --> <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 3:</b> @@ -173,7 +159,7 @@ axes[1].grid() Based on the results of Task 1 and the empirical PDF and CDF, select <b>one</b> distribution to fit to each variable. For $H$, select between Exponential or Gaussian distribution, while for $T$ choose between Uniform or Gumbel. </p> </div> -<!-- #endregion --> + <div style="background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <b>Solution:</b> diff --git a/synced_files/GA_1_7/Student/Discharge/Analysis_discharge.html b/synced_files/GA_1_7/Student/Discharge/Analysis_discharge.html index 6619691f..70397bc6 100644 --- a/synced_files/GA_1_7/Student/Discharge/Analysis_discharge.html +++ b/synced_files/GA_1_7/Student/Discharge/Analysis_discharge.html @@ -7983,7 +7983,7 @@ $$</p> </div> </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=5e189212"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=5c36b94e"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -8006,7 +8006,7 @@ $$</p> </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=47164a61"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=f0b597e8"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -8026,7 +8026,7 @@ $$</p> </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=748e2372"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=3f86df0b"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> diff --git a/synced_files/GA_1_7/Student/Discharge/Analysis_discharge.ipynb b/synced_files/GA_1_7/Student/Discharge/Analysis_discharge.ipynb index d1c15f48..a5649906 100644 --- a/synced_files/GA_1_7/Student/Discharge/Analysis_discharge.ipynb +++ b/synced_files/GA_1_7/Student/Discharge/Analysis_discharge.ipynb @@ -382,7 +382,7 @@ }, { "cell_type": "markdown", - "id": "59aabeb3", + "id": "9131aa84", "metadata": {}, "source": [ "If you run the code in the cell below, you will obtain a scatter plot of both variables. Explore the relationship between both variables and answer the following questions:\n", @@ -403,7 +403,7 @@ { "cell_type": "code", "execution_count": null, - "id": "880d54ce", + "id": "04f237b9", "metadata": {}, "outputs": [], "source": [ @@ -419,7 +419,7 @@ { "cell_type": "code", "execution_count": null, - "id": "c5f193bd", + "id": "72edc495", "metadata": {}, "outputs": [], "source": [ diff --git a/synced_files/GA_1_7/Student/Discharge/Analysis_discharge.md b/synced_files/GA_1_7/Student/Discharge/Analysis_discharge.md index 0df7007f..eb7d680d 100644 --- a/synced_files/GA_1_7/Student/Discharge/Analysis_discharge.md +++ b/synced_files/GA_1_7/Student/Discharge/Analysis_discharge.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # Group Assignment 1.7: Distribution Fitting <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> @@ -25,7 +15,7 @@ jupyter: *[CEGM1000 MUDE](http://mude.citg.tudelft.nl/): Week 7, Friday Oct 18, 2024.* -<!-- #region id="1db6fea9-f3ad-44bc-a4c8-7b2b3008e945" --> + ## Case 3: Discharges on a structure **What's the propagated uncertainty? *How large will be the discharge?*** @@ -47,11 +37,9 @@ $$ 2. Fit the chosen distributions to the observations of $d$ and $h$. 3. Assuming $d$ and $h$ are independent, propagate their distributions to obtain the distribution of $q$. 4. Analyze the distribution of $q$. -<!-- #endregion --> -<!-- #region id="d33f1148-c72b-4c7e-bca7-45973b2570c5" --> + ## Importing packages -<!-- #endregion --> ```python import numpy as np @@ -97,7 +85,6 @@ print(stats.describe(h)) print(stats.describe(u)) ``` -<!-- #region id="bfadcf3f-4578-4809-acdb-625ab3a71f27" --> <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 1:</b> @@ -107,7 +94,7 @@ Describe the data based on the previous statistics: <li>What does the skewness coefficient means? Which kind of distribution functions should we consider to fit them?</li> </p> </div> -<!-- #endregion --> + ## 2. Empirical distribution functions @@ -133,7 +120,6 @@ def ecdf(YOUR_INPUT: #Your plot ``` -<!-- #region id="bfadcf3f-4578-4809-acdb-625ab3a71f27" --> <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 3:</b> @@ -141,7 +127,7 @@ def ecdf(YOUR_INPUT: Based on the results of Task 1 and the empirical PDF and CDF, select <b>one</b> distribution to fit to each variable. For $h$, select between Uniform or Gaussian distribution, while for $u$ choose between Exponential or Gumbel. </p> </div> -<!-- #endregion --> + ## 3. Fitting a distribution diff --git a/synced_files/GA_1_7/Student/Emissions/Analysis_emissions.html b/synced_files/GA_1_7/Student/Emissions/Analysis_emissions.html index c221918e..2779d68c 100644 --- a/synced_files/GA_1_7/Student/Emissions/Analysis_emissions.html +++ b/synced_files/GA_1_7/Student/Emissions/Analysis_emissions.html @@ -7981,7 +7981,7 @@ $$</p> </div> </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=c6b0153a"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=75ff9d50"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -8004,7 +8004,7 @@ $$</p> </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=c959337c"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=3400e594"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -8024,7 +8024,7 @@ $$</p> </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=1c43eb66"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=53a5425d"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> diff --git a/synced_files/GA_1_7/Student/Emissions/Analysis_emissions.ipynb b/synced_files/GA_1_7/Student/Emissions/Analysis_emissions.ipynb index 1d8d8ec2..117e0f0e 100644 --- a/synced_files/GA_1_7/Student/Emissions/Analysis_emissions.ipynb +++ b/synced_files/GA_1_7/Student/Emissions/Analysis_emissions.ipynb @@ -376,7 +376,7 @@ }, { "cell_type": "markdown", - "id": "38d9e3ff", + "id": "2771410f", "metadata": {}, "source": [ "If you run the code in the cell below, you will obtain a scatter plot of both variables. Explore the relationship between both variables and answer the following questions:\n", @@ -397,7 +397,7 @@ { "cell_type": "code", "execution_count": null, - "id": "7f51c7b1", + "id": "7580681b", "metadata": {}, "outputs": [], "source": [ @@ -413,7 +413,7 @@ { "cell_type": "code", "execution_count": null, - "id": "6f2b5809", + "id": "65651ae7", "metadata": {}, "outputs": [], "source": [ diff --git a/synced_files/GA_1_7/Student/Emissions/Analysis_emissions.md b/synced_files/GA_1_7/Student/Emissions/Analysis_emissions.md index 725c106c..63907c47 100644 --- a/synced_files/GA_1_7/Student/Emissions/Analysis_emissions.md +++ b/synced_files/GA_1_7/Student/Emissions/Analysis_emissions.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # Group Assignment 1.7: Distribution Fitting <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> @@ -25,7 +15,7 @@ jupyter: *[CEGM1000 MUDE](http://mude.citg.tudelft.nl/): Week 7, Friday Oct 18, 2024.* -<!-- #region id="1db6fea9-f3ad-44bc-a4c8-7b2b3008e945" --> + ## Case 2: $CO_2$ emissions from traffic **What's the propagated uncertainty? *How large will be the $CO_2$ emissions?*** @@ -41,11 +31,9 @@ $$ 2. Fit the chosen distributions to the observations of $H$ and $C$. 3. Assuming $H$ and $C$ are independent, propagate their distributions to obtain the distribution of emissions of $CO_2$. 4. Analyze the distribution of emissions of $CO_2$. -<!-- #endregion --> -<!-- #region id="d33f1148-c72b-4c7e-bca7-45973b2570c5" --> + ## Importing packages -<!-- #endregion --> ```python import numpy as np @@ -91,7 +79,6 @@ print(stats.describe(H)) print(stats.describe(C)) ``` -<!-- #region id="bfadcf3f-4578-4809-acdb-625ab3a71f27" --> <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 1:</b> @@ -101,7 +88,7 @@ Describe the data based on the previous statistics: - What does the skewness coefficient means? Which kind of distribution functions should we consider to fit them?</li> </p> </div> -<!-- #endregion --> + ## 2. Empirical distribution functions @@ -127,7 +114,6 @@ def ecdf(YOUR_INPUT): #Your plot here ``` -<!-- #region id="bfadcf3f-4578-4809-acdb-625ab3a71f27" --> <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 3:</b> @@ -135,7 +121,7 @@ def ecdf(YOUR_INPUT): Based on the results of Task 1 and the empirical PDF and CDF, select <b>one</b> distribution to fit to each variable. For $H$, select between Gumbel or Gaussian distribution, while for $C$ choose between Uniform or Lognormal. </p> </div> -<!-- #endregion --> + ## 3. Fitting a distribution diff --git a/synced_files/GA_1_7/Student/Force/Analysis_force.html b/synced_files/GA_1_7/Student/Force/Analysis_force.html index 9ad3a002..9bc91400 100644 --- a/synced_files/GA_1_7/Student/Force/Analysis_force.html +++ b/synced_files/GA_1_7/Student/Force/Analysis_force.html @@ -7983,7 +7983,7 @@ $$</p> </div> </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=0115ed7b"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=6d9bfea3"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -8006,7 +8006,7 @@ $$</p> </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=26bdb48f"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=a245efa5"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -8026,7 +8026,7 @@ $$</p> </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=a09ad624"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=11ef22e8"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> diff --git a/synced_files/GA_1_7/Student/Force/Analysis_force.ipynb b/synced_files/GA_1_7/Student/Force/Analysis_force.ipynb index 0b6399ae..f3e379c4 100644 --- a/synced_files/GA_1_7/Student/Force/Analysis_force.ipynb +++ b/synced_files/GA_1_7/Student/Force/Analysis_force.ipynb @@ -382,7 +382,7 @@ }, { "cell_type": "markdown", - "id": "69b71826", + "id": "659232ce", "metadata": {}, "source": [ "If you run the code in the cell below, you will obtain a scatter plot of both variables. Explore the relationship between both variables and answer the following questions:\n", @@ -403,7 +403,7 @@ { "cell_type": "code", "execution_count": null, - "id": "30a79e9c", + "id": "cf7c4700", "metadata": {}, "outputs": [], "source": [ @@ -419,7 +419,7 @@ { "cell_type": "code", "execution_count": null, - "id": "ed5df6e0", + "id": "52dfe420", "metadata": {}, "outputs": [], "source": [ diff --git a/synced_files/GA_1_7/Student/Force/Analysis_force.md b/synced_files/GA_1_7/Student/Force/Analysis_force.md index e5f9cc18..5ebfd852 100644 --- a/synced_files/GA_1_7/Student/Force/Analysis_force.md +++ b/synced_files/GA_1_7/Student/Force/Analysis_force.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # Group Assignment 1.7: Distribution Fitting <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> @@ -25,7 +15,7 @@ jupyter: *[CEGM1000 MUDE](http://mude.citg.tudelft.nl/): Week 7, Friday Oct 18, 2024.* -<!-- #region id="1db6fea9-f3ad-44bc-a4c8-7b2b3008e945" --> + ## Case 1: Wave impacts on a crest wall **What's the propagated uncertainty? *How large will the horizontal force be?*** @@ -47,11 +37,9 @@ $$ 2. Fit the chosen distributions to the observations of $H$ and $T$. 3. Assuming $H$ and $T$ are independent, propagate their distributions to obtain the distribution of $F_h$. 4. Analyze the distribution of $F_h$. -<!-- #endregion --> -<!-- #region id="d33f1148-c72b-4c7e-bca7-45973b2570c5" --> + ## Importing packages -<!-- #endregion --> ```python import numpy as np @@ -97,7 +85,6 @@ print(stats.describe(H)) print(stats.describe(T)) ``` -<!-- #region id="bfadcf3f-4578-4809-acdb-625ab3a71f27" --> <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 1:</b> @@ -107,7 +94,7 @@ Describe the data based on the previous statistics: <li>What does the skewness coefficient means? Which kind of distribution functions should we consider to fit them?</li> </p> </div> -<!-- #endregion --> + ## 2. Empirical distribution functions @@ -133,7 +120,6 @@ def ecdf(YOUR_INPUTS): # Your plot here ``` -<!-- #region id="bfadcf3f-4578-4809-acdb-625ab3a71f27" --> <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 3:</b> @@ -141,7 +127,7 @@ def ecdf(YOUR_INPUTS): Based on the results of Task 1 and the empirical PDF and CDF, select <b>one</b> distribution to fit to each variable. For $H$, select between Exponential or Gaussian distribution, while for $T$ choose between Uniform or Gumbel. </p> </div> -<!-- #endregion --> + ## 3. Fitting a distribution diff --git a/synced_files/GA_1_7/Unused/Temp/Distribution_Fitting_T.html b/synced_files/GA_1_7/Unused/Temp/Distribution_Fitting_T.html index 6dfc5489..34927ac2 100644 --- a/synced_files/GA_1_7/Unused/Temp/Distribution_Fitting_T.html +++ b/synced_files/GA_1_7/Unused/Temp/Distribution_Fitting_T.html @@ -7752,7 +7752,7 @@ Describe the data based on the previous statistics: </div> </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=22ad7091"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=d4218672"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -7885,7 +7885,7 @@ Based on the results of Task 1 and the empirical PDF and CDF, select <b>one</b> </div> </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=39aba001"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=3a20a50f"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -8025,7 +8025,7 @@ Assess the goodness of fit of the selected distribution using: </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=b2216275"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=2726878a"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -8126,7 +8126,7 @@ Interpret the results of the GOF techniques. How does the selected parametric di </div> </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=6881d4c2"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=36b25266"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -8254,7 +8254,7 @@ Interpret the figures above, answering the following questions: </div> </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=9fc06728"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=34b969be"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -8270,7 +8270,7 @@ Interpret the figures above, answering the following questions: </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=6a9e6e1b"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=33eb48ed"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -8293,7 +8293,7 @@ Interpret the figures above, answering the following questions: </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=b0bf856d"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=2d3b51a3"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> diff --git a/synced_files/GA_1_7/Unused/Temp/Distribution_Fitting_T.ipynb b/synced_files/GA_1_7/Unused/Temp/Distribution_Fitting_T.ipynb index fb579293..93b9baaa 100644 --- a/synced_files/GA_1_7/Unused/Temp/Distribution_Fitting_T.ipynb +++ b/synced_files/GA_1_7/Unused/Temp/Distribution_Fitting_T.ipynb @@ -161,7 +161,7 @@ }, { "cell_type": "markdown", - "id": "a705ade2", + "id": "5493d4fc", "metadata": {}, "source": [ "<div style=\"background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", @@ -261,7 +261,7 @@ }, { "cell_type": "markdown", - "id": "8d70f4ab", + "id": "88a03eea", "metadata": {}, "source": [ "<div style=\"background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", @@ -370,7 +370,7 @@ { "cell_type": "code", "execution_count": null, - "id": "5355f51e", + "id": "fd0e4448", "metadata": {}, "outputs": [], "source": [ @@ -432,7 +432,7 @@ }, { "cell_type": "markdown", - "id": "57228d07", + "id": "cae26c95", "metadata": {}, "source": [ "<div style=\"background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", @@ -531,7 +531,7 @@ }, { "cell_type": "markdown", - "id": "d9528484", + "id": "2ee5b4aa", "metadata": {}, "source": [ "<div style=\"background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px\">\n", @@ -544,7 +544,7 @@ }, { "cell_type": "markdown", - "id": "e25c8090", + "id": "6b3dc9d3", "metadata": {}, "source": [ "If you run the code in the cell below, you will obtain a scatter plot of both variables. Explore the relationship between both variables and answer the following questions:\n", @@ -565,7 +565,7 @@ { "cell_type": "code", "execution_count": null, - "id": "959fe8d5", + "id": "2c362f7d", "metadata": {}, "outputs": [], "source": [ diff --git a/synced_files/GA_1_7/Unused/Temp/Distribution_Fitting_T.md b/synced_files/GA_1_7/Unused/Temp/Distribution_Fitting_T.md index 82f4d7b9..bb511677 100644 --- a/synced_files/GA_1_7/Unused/Temp/Distribution_Fitting_T.md +++ b/synced_files/GA_1_7/Unused/Temp/Distribution_Fitting_T.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # Group Assignment 1.7: Distribution Fitting <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> @@ -25,7 +15,7 @@ jupyter: *[CEGM1000 MUDE](http://mude.citg.tudelft.nl/): Week 7, Friday Oct 18, 2024.* -<!-- #region id="1db6fea9-f3ad-44bc-a4c8-7b2b3008e945" --> + ## Case 1: Wave impacts on a crest wall **What's the propagated uncertainty? *How large will be the horizontal force?*** @@ -47,11 +37,9 @@ $$ 2. Fit the chosen distributions to the observations of $H$ and $T$. 3. Assuming $H$ and $d$ are independent, propagate their distributions to obtain the distribution of $F_h$. 4. Analyze the distribution of $F_h$. -<!-- #endregion --> -<!-- #region id="d33f1148-c72b-4c7e-bca7-45973b2570c5" --> + ## Importing packages -<!-- #endregion --> ```python import numpy as np @@ -97,7 +85,6 @@ print(stats.describe(T10)) print(stats.describe(T90)) ``` -<!-- #region id="bfadcf3f-4578-4809-acdb-625ab3a71f27" --> <div style="background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 1:</b> @@ -106,7 +93,7 @@ Describe the data based on the previous statistics: <li>What does the skewness coefficient means? Which kind of distribution functions should we consider to fit them?</li> </p> </div> -<!-- #endregion --> + <div style="background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <b>Solution 1: TO UPDATE</b> @@ -160,14 +147,13 @@ axes[1].legend() axes[1].grid() ``` -<!-- #region id="bfadcf3f-4578-4809-acdb-625ab3a71f27" --> <div style="background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 3: TO UPDATE</b> Based on the results of Task 1 and the empirical PDF and CDF, select <b>one</b> distribution to fit to each variable. For $H$, select between Exponential or Gaussian distribution, while for $T$ choose between Uniform or Gumbel. </p> </div> -<!-- #endregion --> + <div style="background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <b>Solution 3:</b> diff --git a/synced_files/GA_1_8/Analysis.md b/synced_files/GA_1_8/Analysis.md index 161c725b..681f6e60 100644 --- a/synced_files/GA_1_8/Analysis.md +++ b/synced_files/GA_1_8/Analysis.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # GA 1.8: Multivariate Distributions <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> @@ -129,9 +119,8 @@ Build the bivariate distribution by instantiating the <code>Bivariate</code> cla </p> </div> -<!-- #region id="0491cc69" --> + <div style="background-color:#facb8e; color: black; width: 95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p>Use the helper function <code>plot_contour</code> in <code>helper.py</code>; it works exactle the same as in WS 1.8.</em></p></div> -<!-- #endregion --> ```python # plot_contour? # uncomment and run to read docstring @@ -169,12 +158,11 @@ For each of the three cases, do the following: </p> </div> -<!-- #region id="0491cc69" --> + <div style="background-color:#facb8e; color: black; width: 95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p>Note that the optional arguments in the helper function <code>plot_contour</code> will be useful here. Here is an example code that shows you what it can do (the values are meaningless) </p></div> -<!-- #endregion --> ```python region_example = np.array([[0, 5, 12, 20, 28, 30], @@ -325,9 +313,8 @@ axes.legend() axes.grid() ``` -<!-- #region id="0491cc69" --> <div style="background-color:#facb8e; color: black; width: 95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"><p>In case you are wondering, the data for this exercise was computed with a Clayton Copula. A Copula is a useful way of modelling non-linear dependence. If you would like to learn more about this, you should consider the 2nd year cross-over module CEGM2005 Probabilistic Modelling of real-world phenomena through ObseRvations and Elicitation (MORE).</p></div> -<!-- #endregion --> + **End of notebook.** <h2 style="height: 60px"> diff --git a/synced_files/GA_1_8/solution/GA_1_8_solution_HT.md b/synced_files/GA_1_8/solution/GA_1_8_solution_HT.md index f2adc95a..de8d45a8 100644 --- a/synced_files/GA_1_8/solution/GA_1_8_solution_HT.md +++ b/synced_files/GA_1_8/solution/GA_1_8_solution_HT.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # GA 1.8: Multivariate Distributions <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> @@ -213,9 +203,8 @@ Build the bivariate distribution by instantiating the <code>Bivariate</code> cla </p> </div> -<!-- #region id="0491cc69" --> + <div style="background-color:#facb8e; color: black; width: 95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p>Use the helper function <code>plot_contour</code> in <code>helper.py</code>; it works exactle the same as in WS 1.8.</em></p></div> -<!-- #endregion --> ```python # plot_contour? # uncomment and run to read docstring @@ -258,12 +247,11 @@ For each of the three cases, do the following: </p> </div> -<!-- #region id="0491cc69" --> + <div style="background-color:#facb8e; color: black; width: 95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p>Note that the optional arguments in the helper function <code>plot_contour</code> will be useful here. Here is an example code that shows you what it can do (the values are meaningless) </p></div> -<!-- #endregion --> ```python region_example = np.array([[0, 5, 12, 20, 28, 30], @@ -318,9 +306,9 @@ which is then defined in Python and included in the `plot_contours` function as </p> </div> -<!-- #region id="0491cc69" --> + <div style="background-color:#facb8e; color: black; width: 95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p>Note: order of the tasks in this solution is not important.</p></div> -<!-- #endregion --> + ### Case 1 and 2 @@ -431,9 +419,8 @@ print(f'The c.o.v. is of p is {1/np.sqrt((N+1)*p_Z90_data):.3f}.') print('\n') ``` -<!-- #region id="0491cc69" --> <div style="background-color:#facb8e; color: black; width: 95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p>Note: the bivariate figures are an important concept for the exam, so if using the code is too difficult for you to use when studying on your own, try sketching it on paper.</p></div> -<!-- #endregion --> + <div style="background-color:#FAE99E; color: black; width: 95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> @@ -591,9 +578,8 @@ axes.legend() axes.grid() ``` -<!-- #region id="0491cc69" --> <div style="background-color:#facb8e; color: black; width: 95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"><p>In case you are wondering, the data for this exercise was computed with a Clayton Copula. A Copula is a useful way of modelling non-linear dependence. If you would like to learn more about this, you should consider the 2nd year cross-over module CEGM2005 Probabilistic Modelling of real-world phenomena through ObseRvations and Elicitation (MORE).</p></div> -<!-- #endregion --> + **End of notebook.** <h2 style="height: 60px"> diff --git a/synced_files/GA_1_8/solution/GA_1_8_solution_hu.md b/synced_files/GA_1_8/solution/GA_1_8_solution_hu.md index 86630e89..08413648 100644 --- a/synced_files/GA_1_8/solution/GA_1_8_solution_hu.md +++ b/synced_files/GA_1_8/solution/GA_1_8_solution_hu.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # GA 1.8: Multivariate Distributions <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> @@ -216,9 +206,8 @@ Build the bivariate distribution by instantiating the <code>Bivariate</code> cla </p> </div> -<!-- #region id="0491cc69" --> + <div style="background-color:#facb8e; color: black; width: 95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p>Use the helper function <code>plot_contour</code> in <code>helper.py</code>; it works exactle the same as in WS 1.8.</em></p></div> -<!-- #endregion --> ```python # plot_contour? # uncomment and run to read docstring @@ -261,12 +250,11 @@ For each of the three cases, do the following: </p> </div> -<!-- #region id="0491cc69" --> + <div style="background-color:#facb8e; color: black; width: 95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p>Note that the optional arguments in the helper function <code>plot_contour</code> will be useful here. Here is an example code that shows you what it can do (the values are meaningless) </p></div> -<!-- #endregion --> ```python region_example = np.array([[0, 5, 12, 20, 28, 30], @@ -321,9 +309,9 @@ which is then defined in Python and included in the `plot_contours` function as </p> </div> -<!-- #region id="0491cc69" --> + <div style="background-color:#facb8e; color: black; width: 95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p>Note: order of the tasks in this solution is not important.</p></div> -<!-- #endregion --> + ### Case 1 and 2 @@ -434,9 +422,8 @@ print(f'The c.o.v. is of p is {1/np.sqrt((N+1)*p_Z90_data):.3f}.') print('\n') ``` -<!-- #region id="0491cc69" --> <div style="background-color:#facb8e; color: black; width: 95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p>Note: the bivariate figures are an important concept for the exam, so if using the code is too difficult for you to use when studying on your own, try sketching it on paper.</p></div> -<!-- #endregion --> + <div style="background-color:#FAE99E; color: black; width: 95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> @@ -594,9 +581,8 @@ axes.legend() axes.grid() ``` -<!-- #region id="0491cc69" --> <div style="background-color:#facb8e; color: black; width: 95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"><p>In case you are wondering, the data for this exercise was computed with a Clayton Copula. A Copula is a useful way of modelling non-linear dependence. If you would like to learn more about this, you should consider the 2nd year cross-over module CEGM2005 Probabilistic Modelling of real-world phenomena through ObseRvations and Elicitation (MORE).</p></div> -<!-- #endregion --> + **End of notebook.** <h2 style="height: 60px"> diff --git a/synced_files/GA_1_8/solution/GA_1_8_solution_traffic.md b/synced_files/GA_1_8/solution/GA_1_8_solution_traffic.md index 0fca67b7..b5d5facc 100644 --- a/synced_files/GA_1_8/solution/GA_1_8_solution_traffic.md +++ b/synced_files/GA_1_8/solution/GA_1_8_solution_traffic.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # GA 1.8: Multivariate Distributions <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> @@ -212,9 +202,8 @@ Build the bivariate distribution by instantiating the <code>Bivariate</code> cla </p> </div> -<!-- #region id="0491cc69" --> + <div style="background-color:#facb8e; color: black; width: 95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p>Use the helper function <code>plot_contour</code> in <code>helper.py</code>; it works exactle the same as in WS 1.8.</em></p></div> -<!-- #endregion --> ```python # plot_contour? # uncomment and run to read docstring @@ -257,12 +246,11 @@ For each of the three cases, do the following: </p> </div> -<!-- #region id="0491cc69" --> + <div style="background-color:#facb8e; color: black; width: 95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p>Note that the optional arguments in the helper function <code>plot_contour</code> will be useful here. Here is an example code that shows you what it can do (the values are meaningless) </p></div> -<!-- #endregion --> ```python region_example = np.array([[0, 5, 12, 20, 28, 30], @@ -317,9 +305,9 @@ which is then defined in Python and included in the `plot_contours` function as </p> </div> -<!-- #region id="0491cc69" --> + <div style="background-color:#facb8e; color: black; width: 95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p>Note: order of the tasks in this solution is not important.</p></div> -<!-- #endregion --> + ### Case 1 and 2 @@ -430,9 +418,8 @@ print(f'The c.o.v. is of p is {1/np.sqrt((N+1)*p_Z90_data):.3f}.') print('\n') ``` -<!-- #region id="0491cc69" --> <div style="background-color:#facb8e; color: black; width: 95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p>Note: the bivariate figures are an important concept for the exam, so if using the code is too difficult for you to use when studying on your own, try sketching it on paper.</p></div> -<!-- #endregion --> + <div style="background-color:#FAE99E; color: black; width: 95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> @@ -590,9 +577,8 @@ axes.legend() axes.grid() ``` -<!-- #region id="0491cc69" --> <div style="background-color:#facb8e; color: black; width: 95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"><p>In case you are wondering, the data for this exercise was computed with a Clayton Copula. A Copula is a useful way of modelling non-linear dependence. If you would like to learn more about this, you should consider the 2nd year cross-over module CEGM2005 Probabilistic Modelling of real-world phenomena through ObseRvations and Elicitation (MORE).</p></div> -<!-- #endregion --> + **End of notebook.** <h2 style="height: 60px"> diff --git a/synced_files/GA_2_1/Analysis.md b/synced_files/GA_2_1/Analysis.md index 0483f6f6..548b4ec3 100644 --- a/synced_files/GA_2_1/Analysis.md +++ b/synced_files/GA_2_1/Analysis.md @@ -1,16 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - -<!-- #region id="9adbf457-797f-45b7-8f8b-0e46e0e2f5ff" --> # GA 2.1: FVM with an Unstructured Mesh (diffusion) <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> @@ -25,7 +14,7 @@ jupyter: </h2> *[CEGM1000 MUDE](http://mude.citg.tudelft.nl/): Week 2.1. For: 15 November, 2024.* -<!-- #endregion --> + # Overview diff --git a/synced_files/GA_2_1/Analysis_solution.md b/synced_files/GA_2_1/Analysis_solution.md index 33b118ff..4a2082f2 100644 --- a/synced_files/GA_2_1/Analysis_solution.md +++ b/synced_files/GA_2_1/Analysis_solution.md @@ -1,16 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - -<!-- #region id="9adbf457-797f-45b7-8f8b-0e46e0e2f5ff" --> # GA 2.1: FVM with an Unstructured Mesh (diffusion) <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> @@ -25,7 +14,7 @@ jupyter: </h2> *[CEGM1000 MUDE](http://mude.citg.tudelft.nl/): Week 2.1. For: 15 November, 2024.* -<!-- #endregion --> + # Overview diff --git a/synced_files/GA_2_1/mesh/mesh.md b/synced_files/GA_2_1/mesh/mesh.md index c9d4b0fe..fc43a030 100644 --- a/synced_files/GA_2_1/mesh/mesh.md +++ b/synced_files/GA_2_1/mesh/mesh.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - ```python length = 10 height = (length**2 - (length/2)**2)**0.5 diff --git a/synced_files/GA_2_1/mesh_dev.md b/synced_files/GA_2_1/mesh_dev.md index 42af77ef..74917023 100644 --- a/synced_files/GA_2_1/mesh_dev.md +++ b/synced_files/GA_2_1/mesh_dev.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - ```python length = 10 height = (length**2 - (length/2)**2)**0.5 diff --git a/synced_files/GA_2_1/mesh_tips.md b/synced_files/GA_2_1/mesh_tips.md index 55ca7175..82302559 100644 --- a/synced_files/GA_2_1/mesh_tips.md +++ b/synced_files/GA_2_1/mesh_tips.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # GA 2.1: Mesh Tips <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/GA_2_2/the_big_M.md b/synced_files/GA_2_2/the_big_M.md index 1bc3b59d..3ddcd1ee 100644 --- a/synced_files/GA_2_2/the_big_M.md +++ b/synced_files/GA_2_2/the_big_M.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # GA 2.2: M is for Modelling <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/GA_2_3/Analysis.md b/synced_files/GA_2_3/Analysis.md index ac610343..f66e8c21 100644 --- a/synced_files/GA_2_3/Analysis.md +++ b/synced_files/GA_2_3/Analysis.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # GA 2.3: Beam Beats <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> @@ -34,9 +24,8 @@ As a warming up you will create and analyze some elementary signals yourself, an Most of the Tasks in this notebook consist of both coding, producing a plot, and answering (open) questions. Typically, as you work your way through the Tasks, you can often re-use code, or part of it, from earlier Tasks and assignments. That will save you a lot of work!! -<!-- #region id="0491cc69" --> + <div style="background-color:#facb8e; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%"> <p>In many of the code blocks below, template code to create figures is provided. Note that there is a lot of code missing, and one line of <code>YOUR_CODE_HERE</code> does not imply that only one line of code is missing!</p></div> -<!-- #endregion --> <!-- #region --> ### Data Acquisition System @@ -90,9 +79,8 @@ import matplotlib.pyplot as plt </p> </div> -<!-- #region id="0491cc69" --> + <div style="background-color:#facb8e; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%"> <p>We will give you the answers in this code cell for free!</p></div> -<!-- #endregion --> ```python T_meas = 5 diff --git a/synced_files/GA_2_3/Analysis_solution.md b/synced_files/GA_2_3/Analysis_solution.md index f02e80c4..e3eb9eeb 100644 --- a/synced_files/GA_2_3/Analysis_solution.md +++ b/synced_files/GA_2_3/Analysis_solution.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # GA 2.3: Beam Beats <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> @@ -34,9 +24,8 @@ As a warming up you will create and analyze some elementary signals yourself, an Most of the Tasks in this notebook consist of both coding, producing a plot, and answering (open) questions. Typically, as you work your way through the Tasks, you can often re-use code, or part of it, from earlier Tasks and assignments. That will save you a lot of work!! -<!-- #region id="0491cc69" --> + <div style="background-color:#facb8e; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%"> <p>In many of the code blocks below, template code to create figures is provided. Note that there is a lot of code missing, and one line of <code>YOUR_CODE_HERE</code> does not imply that only one line of code is missing!</p></div> -<!-- #endregion --> <!-- #region --> ### Data Acquisition System @@ -90,9 +79,8 @@ import matplotlib.pyplot as plt </p> </div> -<!-- #region id="0491cc69" --> + <div style="background-color:#facb8e; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%"> <p>We will give you the answers in this code cell for free!</p></div> -<!-- #endregion --> ```python T_meas = 5 diff --git a/synced_files/GA_2_4/GA_2_4_Beary_Icy.md b/synced_files/GA_2_4/GA_2_4_Beary_Icy.md index c5508e03..5d6c6738 100644 --- a/synced_files/GA_2_4/GA_2_4_Beary_Icy.md +++ b/synced_files/GA_2_4/GA_2_4_Beary_Icy.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # GA 2.4: Beary Icy <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/GA_2_4/GA_2_4_solution.md b/synced_files/GA_2_4/GA_2_4_solution.md index b9489ab5..16c9e9e0 100644 --- a/synced_files/GA_2_4/GA_2_4_solution.md +++ b/synced_files/GA_2_4/GA_2_4_solution.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # GA 2.4: Beary Icy <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/GA_2_5/Analysis_GA.md b/synced_files/GA_2_5/Analysis_GA.md index 04e07c5c..02bd7b0d 100644 --- a/synced_files/GA_2_5/Analysis_GA.md +++ b/synced_files/GA_2_5/Analysis_GA.md @@ -1,16 +1,6 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - -<!-- #region pycharm={"name": "#%% md\n"} --> +<!-- #region --> # Evolve and drive @@ -29,7 +19,6 @@ jupyter: <!-- #endregion --> -<!-- #region pycharm={"name": "#%% md\n"} --> ## Introduction _Note: part of the background material for this project was already available in [Chapter 5.11 of the textbook](https://mude.citg.tudelft.nl/2023/book/optimization/project.html)._ @@ -39,13 +28,11 @@ _Note: part of the background material for this project was already available in * Think about larger problems, like the road network of Amsterdam or Shanghai, and it will be even harder! * Here we show how a metaheuristic such a the genetic algorithm can be used to find good (not necessarily optimal) solutions for the problem in potentially less time -<!-- #endregion --> -<!-- #region pycharm={"name": "#%% md\n"} --> + <div style="background-color:#facb8e; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%"> <p> <b>Note:</b> You will need to select mude-week-2-5 as your kernel as it includes the required packages.</p></div> -<!-- #endregion --> -<!-- #region pycharm={"name": "#%% md\n"} --> + ## Genetic algorithm for NDP As we discussed, it is challenging to use MILP for large-scale NDPs. Therefore, in this assignment, we’re going to use a genetic algorithm to address this problem. @@ -61,9 +48,8 @@ Basic Components of a Genetic Algorithm: * **Replacement**: New offspring replace some of the least fit individuals in the population. * **Termination Criteria**: Conditions under which the algorithm stops, e.g., a maximum number of generations or satisfactory fitness level. -<!-- #endregion --> -<!-- #region pycharm={"name": "#%% md\n"} --> + ### GA steps Reminding you about the GA steps … @@ -76,16 +62,14 @@ Reminding you about the GA steps … * Termination (end): The algorithm stops when a termination criterion is met.  -<!-- #endregion --> -<!-- #region pycharm={"name": "#%% md\n"} --> + ### PyMOO PyMOO is a Python library that provides a comprehensive and easy-to-use framework for multi-objective optimization (MOO). For this case, we are going to deal with only one objective; nevertheless, this is an useful tool if you have more objectives. In addition, PyMOO easily allows us to define our optimization problem by specifying the objectives, constraints, and decision variables. -<!-- #endregion --> -<!-- #region pycharm={"name": "#%% md\n"} --> +<!-- #region --> ## Problem definition and formulation Here is the problem formulation as presented in the previous Jupyter notebook @@ -109,7 +93,6 @@ So let's see how that works. <!-- #endregion --> -<!-- #region pycharm={"name": "#%% md\n"} --> ### The network design sub-problem The network desing is where we use the genetic algorithm. As explained before, GA uses a population of solutions and iteratively improves this population to evolve to new generations of populations with a better objective function value (being that minimization or maximization). In this problem, the decision variables are links for capacity expansion and the objective function value is the total system travel time that we want to minimize. @@ -122,9 +105,8 @@ The network desing is where we use the genetic algorithm. As explained before, G \end{align} Where the values of $x_{ij}$ are not decision variables anymore, they will be obtained from solving the Traffic Assignment problem with Gurobi which evaluates the travel times on the network. This part of the problem will not be solved mathematically anymore, the $y_{ij}$ variables are decided by the genetic algorithm through the process you learned. -<!-- #endregion --> -<!-- #region pycharm={"name": "#%% md\n"} --> +<!-- #region --> ### The traffic assignment sub-problem This is just part of the original NDP that assigns traffic to the network based on a set of given capacity values, which are defined based on the values of the DP decision variables (links selected for capacity expansion). The main difference (and the advantage) here is that by separating the binary decision variables, instead of a mixed integer programming problem, which are hard to solve, here we have a quadratic programming problem with continuous decision variables, which will be transformed to a linear problem that Gurobi can solve very fast. @@ -148,11 +130,11 @@ The following is a diagram that shows what you are finally doing to solve the sa  -<!-- #region pycharm={"name": "#%% md\n"} --> + ## Part 1: Data preprocessing The demand of the network is given by an **OD matrix**, which will be constructed below. The OD matrix is as table that tells you how many cars go from node i to node j in an a given timeframe. The functions for this can be found in the helper function in utils/read.py. You do not need to edit anything in this codeblock. -<!-- #endregion --> + <div style="background-color:#AABAB2; color: black; vertical-align: middle; width:95%; padding:15px; margin: 10px; border-radius: 10px; width: 95%"> <p> @@ -199,9 +181,8 @@ from utils.read import create_nd_matrix ### Network Display We will use the same function we used in the previous notebook to visualize the network. -<!-- #region pycharm={"name": "#%% md\n"} --> + Now that we have the required functions for reading and processing the data, let's define some problem parameters and prepare the input. -<!-- #endregion --> ```python # define parameters @@ -234,18 +215,16 @@ coordinates_path = 'input/TransportationNetworks/SiouxFalls/SiouxFallsCoordinate G, pos = network_visualization(link_flow = fftts,coordinates_path= coordinates_path) # the network we create here will be used later for further visualizations! ``` -<!-- #region pycharm={"name": "#%% md\n"} --> Now we are ready to build our models! -<!-- #endregion --> -<!-- #region pycharm={"name": "#%% md\n"} --> + ## Part 2: Modeling and solving the traffic assignment sub-problem with Gurobi ### Defining functions In this section we build a Gurobi model to solve the Traffic Assignment sub-problems. The decision variables, objective function, and the constraints of this problem were described before. Here we wrap the code in a function so that we can use it later within the GA. -<!-- #endregion --> + <div style="background-color:#AABAB2; color: black; vertical-align: middle; width:95%; padding:15px; margin: 10px; border-radius: 10px; width: 95%"> <p> @@ -310,15 +289,12 @@ def ta_qp(dvs, net_data=net_data, ods_data=ods_data, extension_factor=2.5): return total_travel_time, capacity, link_flows, links_selected ``` -<!-- #region pycharm={"name": "#%% md\n"} --> ### Modeling with PyMOO Let's define a model in MyMOO and deal with the links selection problem with the GA. -<!-- #endregion --> -<!-- #region pycharm={"name": "#%% md\n"} --> + First, we need to define a problem class. -<!-- #endregion --> ```python #If you want to know more about the library that is being used: https://pymoo.org/algorithms/soo/ga.html @@ -343,13 +319,11 @@ class NDP(ElementwiseProblem): out["G"] = g ``` -<!-- #region pycharm={"name": "#%% md\n"} --> Now, let's initiate an instance of the problem based on the problem class we defined, and initiate the GA with its parameters. Note that depending on the problem size and the number of feasible links, you might need larger values for population and generation size to achieve good results or even feasible results. Of course this increases the computation times. -<!-- #endregion --> -<!-- #region id="0491cc69" --> + <div style="background-color:#facb8e; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%"><p><b>Note:</b> population size <code>pop_size</code> is 200 originally. If you change this, you will see different results. This is problem-dependent!</p></div> -<!-- #endregion --> + <div style="background-color:#AABAB2; color: black; vertical-align: middle; width:95%; padding:15px; margin: 10px; border-radius: 10px; width: 95%"> <p> @@ -374,13 +348,10 @@ method = GA(pop_size=pop_size, crossover=HalfUniformCrossover()) ``` -<!-- #region pycharm={"name": "#%% md\n"} --> Now we are ready to minimize the NDP problem using the GA method we defined. -<!-- #endregion --> -<!-- #region id="0491cc69" --> + <div style="background-color:#facb8e; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%"><p><b>Note:</b> Maximum computation time (termination criteria) is set here as a keyword argument.</p></div> -<!-- #endregion --> ```python @@ -405,12 +376,10 @@ print("Best solution found: %s" % opt_results.X) #f_min: Minimum objective function value ``` -<!-- #region pycharm={"name": "#%% md\n"} --> ### Convergence curve Let's first define some functions (to use later) to get the results and plot them. -<!-- #endregion --> ```python def get_results(opt_results): @@ -464,10 +433,8 @@ def plot_results(number_of_individuals, optimal_values_along_generations): plt.show() ``` -<!-- #region pycharm={"name": "#%% md\n"} --> Now let's use these functions to plot the results. -<!-- #endregion --> ```python number_of_individuals, optimal_values_along_generations = get_results(opt_results) diff --git a/synced_files/GA_2_5/Analysis_GA_solution.md b/synced_files/GA_2_5/Analysis_GA_solution.md index 04e07c5c..02bd7b0d 100644 --- a/synced_files/GA_2_5/Analysis_GA_solution.md +++ b/synced_files/GA_2_5/Analysis_GA_solution.md @@ -1,16 +1,6 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - -<!-- #region pycharm={"name": "#%% md\n"} --> +<!-- #region --> # Evolve and drive @@ -29,7 +19,6 @@ jupyter: <!-- #endregion --> -<!-- #region pycharm={"name": "#%% md\n"} --> ## Introduction _Note: part of the background material for this project was already available in [Chapter 5.11 of the textbook](https://mude.citg.tudelft.nl/2023/book/optimization/project.html)._ @@ -39,13 +28,11 @@ _Note: part of the background material for this project was already available in * Think about larger problems, like the road network of Amsterdam or Shanghai, and it will be even harder! * Here we show how a metaheuristic such a the genetic algorithm can be used to find good (not necessarily optimal) solutions for the problem in potentially less time -<!-- #endregion --> -<!-- #region pycharm={"name": "#%% md\n"} --> + <div style="background-color:#facb8e; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%"> <p> <b>Note:</b> You will need to select mude-week-2-5 as your kernel as it includes the required packages.</p></div> -<!-- #endregion --> -<!-- #region pycharm={"name": "#%% md\n"} --> + ## Genetic algorithm for NDP As we discussed, it is challenging to use MILP for large-scale NDPs. Therefore, in this assignment, we’re going to use a genetic algorithm to address this problem. @@ -61,9 +48,8 @@ Basic Components of a Genetic Algorithm: * **Replacement**: New offspring replace some of the least fit individuals in the population. * **Termination Criteria**: Conditions under which the algorithm stops, e.g., a maximum number of generations or satisfactory fitness level. -<!-- #endregion --> -<!-- #region pycharm={"name": "#%% md\n"} --> + ### GA steps Reminding you about the GA steps … @@ -76,16 +62,14 @@ Reminding you about the GA steps … * Termination (end): The algorithm stops when a termination criterion is met.  -<!-- #endregion --> -<!-- #region pycharm={"name": "#%% md\n"} --> + ### PyMOO PyMOO is a Python library that provides a comprehensive and easy-to-use framework for multi-objective optimization (MOO). For this case, we are going to deal with only one objective; nevertheless, this is an useful tool if you have more objectives. In addition, PyMOO easily allows us to define our optimization problem by specifying the objectives, constraints, and decision variables. -<!-- #endregion --> -<!-- #region pycharm={"name": "#%% md\n"} --> +<!-- #region --> ## Problem definition and formulation Here is the problem formulation as presented in the previous Jupyter notebook @@ -109,7 +93,6 @@ So let's see how that works. <!-- #endregion --> -<!-- #region pycharm={"name": "#%% md\n"} --> ### The network design sub-problem The network desing is where we use the genetic algorithm. As explained before, GA uses a population of solutions and iteratively improves this population to evolve to new generations of populations with a better objective function value (being that minimization or maximization). In this problem, the decision variables are links for capacity expansion and the objective function value is the total system travel time that we want to minimize. @@ -122,9 +105,8 @@ The network desing is where we use the genetic algorithm. As explained before, G \end{align} Where the values of $x_{ij}$ are not decision variables anymore, they will be obtained from solving the Traffic Assignment problem with Gurobi which evaluates the travel times on the network. This part of the problem will not be solved mathematically anymore, the $y_{ij}$ variables are decided by the genetic algorithm through the process you learned. -<!-- #endregion --> -<!-- #region pycharm={"name": "#%% md\n"} --> +<!-- #region --> ### The traffic assignment sub-problem This is just part of the original NDP that assigns traffic to the network based on a set of given capacity values, which are defined based on the values of the DP decision variables (links selected for capacity expansion). The main difference (and the advantage) here is that by separating the binary decision variables, instead of a mixed integer programming problem, which are hard to solve, here we have a quadratic programming problem with continuous decision variables, which will be transformed to a linear problem that Gurobi can solve very fast. @@ -148,11 +130,11 @@ The following is a diagram that shows what you are finally doing to solve the sa  -<!-- #region pycharm={"name": "#%% md\n"} --> + ## Part 1: Data preprocessing The demand of the network is given by an **OD matrix**, which will be constructed below. The OD matrix is as table that tells you how many cars go from node i to node j in an a given timeframe. The functions for this can be found in the helper function in utils/read.py. You do not need to edit anything in this codeblock. -<!-- #endregion --> + <div style="background-color:#AABAB2; color: black; vertical-align: middle; width:95%; padding:15px; margin: 10px; border-radius: 10px; width: 95%"> <p> @@ -199,9 +181,8 @@ from utils.read import create_nd_matrix ### Network Display We will use the same function we used in the previous notebook to visualize the network. -<!-- #region pycharm={"name": "#%% md\n"} --> + Now that we have the required functions for reading and processing the data, let's define some problem parameters and prepare the input. -<!-- #endregion --> ```python # define parameters @@ -234,18 +215,16 @@ coordinates_path = 'input/TransportationNetworks/SiouxFalls/SiouxFallsCoordinate G, pos = network_visualization(link_flow = fftts,coordinates_path= coordinates_path) # the network we create here will be used later for further visualizations! ``` -<!-- #region pycharm={"name": "#%% md\n"} --> Now we are ready to build our models! -<!-- #endregion --> -<!-- #region pycharm={"name": "#%% md\n"} --> + ## Part 2: Modeling and solving the traffic assignment sub-problem with Gurobi ### Defining functions In this section we build a Gurobi model to solve the Traffic Assignment sub-problems. The decision variables, objective function, and the constraints of this problem were described before. Here we wrap the code in a function so that we can use it later within the GA. -<!-- #endregion --> + <div style="background-color:#AABAB2; color: black; vertical-align: middle; width:95%; padding:15px; margin: 10px; border-radius: 10px; width: 95%"> <p> @@ -310,15 +289,12 @@ def ta_qp(dvs, net_data=net_data, ods_data=ods_data, extension_factor=2.5): return total_travel_time, capacity, link_flows, links_selected ``` -<!-- #region pycharm={"name": "#%% md\n"} --> ### Modeling with PyMOO Let's define a model in MyMOO and deal with the links selection problem with the GA. -<!-- #endregion --> -<!-- #region pycharm={"name": "#%% md\n"} --> + First, we need to define a problem class. -<!-- #endregion --> ```python #If you want to know more about the library that is being used: https://pymoo.org/algorithms/soo/ga.html @@ -343,13 +319,11 @@ class NDP(ElementwiseProblem): out["G"] = g ``` -<!-- #region pycharm={"name": "#%% md\n"} --> Now, let's initiate an instance of the problem based on the problem class we defined, and initiate the GA with its parameters. Note that depending on the problem size and the number of feasible links, you might need larger values for population and generation size to achieve good results or even feasible results. Of course this increases the computation times. -<!-- #endregion --> -<!-- #region id="0491cc69" --> + <div style="background-color:#facb8e; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%"><p><b>Note:</b> population size <code>pop_size</code> is 200 originally. If you change this, you will see different results. This is problem-dependent!</p></div> -<!-- #endregion --> + <div style="background-color:#AABAB2; color: black; vertical-align: middle; width:95%; padding:15px; margin: 10px; border-radius: 10px; width: 95%"> <p> @@ -374,13 +348,10 @@ method = GA(pop_size=pop_size, crossover=HalfUniformCrossover()) ``` -<!-- #region pycharm={"name": "#%% md\n"} --> Now we are ready to minimize the NDP problem using the GA method we defined. -<!-- #endregion --> -<!-- #region id="0491cc69" --> + <div style="background-color:#facb8e; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%"><p><b>Note:</b> Maximum computation time (termination criteria) is set here as a keyword argument.</p></div> -<!-- #endregion --> ```python @@ -405,12 +376,10 @@ print("Best solution found: %s" % opt_results.X) #f_min: Minimum objective function value ``` -<!-- #region pycharm={"name": "#%% md\n"} --> ### Convergence curve Let's first define some functions (to use later) to get the results and plot them. -<!-- #endregion --> ```python def get_results(opt_results): @@ -464,10 +433,8 @@ def plot_results(number_of_individuals, optimal_values_along_generations): plt.show() ``` -<!-- #region pycharm={"name": "#%% md\n"} --> Now let's use these functions to plot the results. -<!-- #endregion --> ```python number_of_individuals, optimal_values_along_generations = get_results(opt_results) diff --git a/synced_files/GA_2_5/Analysis_LP.md b/synced_files/GA_2_5/Analysis_LP.md index 332c379f..e49e09ad 100644 --- a/synced_files/GA_2_5/Analysis_LP.md +++ b/synced_files/GA_2_5/Analysis_LP.md @@ -1,16 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - -<!-- #region pycharm={"name": "#%% md\n"} --> # Don't do math and drive <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> @@ -25,9 +14,8 @@ jupyter: </h2> *[CEGM1000 MUDE](http://mude.citg.tudelft.nl/): Week 2.5. For: 13th December, 2024.* -<!-- #endregion --> -<!-- #region pycharm={"name": "#%% md\n"} --> +<!-- #region --> # Problem description _Note: part of the background material for this project was already available in the textbook._ @@ -66,12 +54,12 @@ Using the simplifcations and assumptions referred to above we can formulate an N <div style="background-color:#facb8e; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%"> <p> <b>Note:</b> You will need to select mude-week-2-5 as your kernel as it includes the required packages.</p></div> -<!-- #region pycharm={"name": "#%% md\n"} --> + ## Part 1: Data preprocessing The demand of the network is given by an **OD matrix** (origin-destination), which will be constructed below. The OD matrix is a table that tells you how many cars go from node i to node j in an a given timeframe. The functions for this can be found in the helper function in utils/read.py. You do not need to edit anything in this codeblock. -<!-- #endregion --> + <div style="background-color:#AABAB2; color: black; vertical-align: middle; width:95%; padding:15px; margin: 10px; border-radius: 10px; width: 95%"> <p> @@ -187,13 +175,12 @@ plt.yticks(ticks=np.arange(od_matrix.shape[0]), labels=od_matrix.index) plt.show() ``` -<!-- #region pycharm={"name": "#%% md\n"} --> ## Part 2: Modeling in Gurobi ### Defining Parameters Now that we have the required functions for reading and processing the data, let's define some problem parameters and prepare the input. -<!-- #endregion --> + <div style="background-color:#AABAB2; color: black; vertical-align: middle; width:95%; padding:15px; margin: 10px; border-radius: 10px; width: 95%"> <p> @@ -246,7 +233,6 @@ model.params.NonConvex = 2 model.params.PreQLinearize = 1 ``` -<!-- #region pycharm={"name": "#%% md\n"} --> ### Decision variables We have a set of binary variables $y_{ij}$, these variables take the value 1 if link $(i,j)$ connecting node $i$ to node $j$ is selected for expansion, and 0 otherwise. @@ -264,7 +250,6 @@ Therefore, mathematically we define the domain of the variables as follows: \end{align} As you will see below in the code block, we have one extra set of variables called x2 (x square). This is to help Gurobi isolate quadratic terms and perform required transformations based on MCE to keep the problem linear. This is not part of your learning goals. -<!-- #endregion --> ```python # decision variables: @@ -277,7 +262,6 @@ link_flow_sqr = model.addVars(links, vtype=gp.GRB.CONTINUOUS, name='x2') ``` -<!-- #region pycharm={"name": "#%% md\n"} --> ### Objective function The objective function of the problem (in its simplest form), is the minimization of the total travel time on the network, that means that you multiply the flow of vehicles in each link by the corresponding travel time and sum over all links ($A$ is the collection of all links to simplify the notation): @@ -314,7 +298,6 @@ Now, for gurobi (and other solvers as well), we have to keep binary variables an Therefore, we use this equation to model our objective function in gurobi. You do not need to know fully understand this equation. -<!-- #endregion --> ```python # objective function (total travel time) @@ -327,7 +310,6 @@ model.setObjective( for (i, j) in links)) ``` -<!-- #region pycharm={"name": "#%% md\n"} --> ### Constraints We have four sets of constraints for this problem. Let's go through them one by one and add them to the model. @@ -336,25 +318,21 @@ We have four sets of constraints for this problem. Let's go through them one by We can only extend the capacity of certain number of links based on the available budget. So first, we have to make sure to limit the number of extended links to the max number that can be expanded: $$ \sum_{(i,j) \in A}{ y_{ij}} \leq B $$ -<!-- #endregion --> ```python # budget constraint c_bgt = model.addConstr(gp.quicksum(link_selected[i, j] for (i, j) in links) <= extension_max_no) ``` -<!-- #region pycharm={"name": "#%% md\n"} --> #### 2. Link flow conservation constraints We have two sets of decision variables representing link flows; $x_{ij}$, representing flow on link $(i,j)$, and $x_{ijs}$, representing flow on link $(i,j)$ going to destination $s$. So we have to make sure that the sum of the flows over all destinations equals the flow on each link. $ \sum_{s \in D}{x_{ijs}} = x_{ij} \quad \forall (i,j) \in A $ -<!-- #endregion --> ```python # link flow conservation c_lfc = model.addConstrs(gp.quicksum(dest_flow[i, j, s] for s in dests) == link_flow[i, j] for (i, j) in links) ``` -<!-- #region pycharm={"name": "#%% md\n"} --> #### 3. Node flow conservation constraints The basic idea of this constraint set is to make sure that the incoming and outgoing flow to and from each node is the same (hence flow conservation) with the exception for origin and destination nodes of the trips where there will be extra outgoing flow (origins) or incoming flow (destinations). Think about a traffic intersection, vehicles enter and leave the intersection when they are moving in the network. This assures the continuity of the vehicle paths. $d_{is}$ here is the number of travelers from node $i$ to node $s$ with the exception of $d_{ss}$, which is all the demand that arrives at node $s$. @@ -363,7 +341,6 @@ $ \sum_{j \in N; (i,j) \in A}{ x_{ijs}} - \sum_{j \in N; (j,i) \in A}{ x_{jis}} The figure gives an example:  -<!-- #endregion --> ```python # node flow conservation @@ -374,11 +351,9 @@ c_nfc = model.addConstrs( ) ``` -<!-- #region pycharm={"name": "#%% md\n"} --> #### 4. Quadratic variable constraints (you do not need to fully understand this) These are basically dummy equations to help gurobi model quadratic terms (that we defined as dummy variables earlier). So essentially instead of using $x^2_{ij}$ in the model, we define a new set of decision variables and define a set of constrains to set their value to $x^2_{ij}$. This let's Gurobi know these are quadratic terms and helps gurobi to replace it with variables and constraints required to keep the problem linear. This is not part of your learning goals! -<!-- #endregion --> ```python # dummy constraints for handling quadratic terms @@ -397,11 +372,10 @@ After running the whole model once for 300s, come back and set up a new constrai </p> </div> -<!-- #region id="0491cc69" --> + <div style="background-color:#ffa6a6; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%"><p><b>Note:</b> The cell below only has to be used when adding the constraint. </p></div> -<!-- #endregion --> ```python # constrain the vehicles to the capacity of the road: diff --git a/synced_files/GA_2_5/Analysis_LP_solution.md b/synced_files/GA_2_5/Analysis_LP_solution.md index c3497302..fe720371 100644 --- a/synced_files/GA_2_5/Analysis_LP_solution.md +++ b/synced_files/GA_2_5/Analysis_LP_solution.md @@ -1,16 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - -<!-- #region pycharm={"name": "#%% md\n"} --> # Don't do math and drive <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> @@ -25,9 +14,8 @@ jupyter: </h2> *[CEGM1000 MUDE](http://mude.citg.tudelft.nl/): Week 2.5. For: 13th December, 2024.* -<!-- #endregion --> -<!-- #region pycharm={"name": "#%% md\n"} --> +<!-- #region --> # Problem description _Note: part of the background material for this project was already available in the textbook._ @@ -66,12 +54,12 @@ Using the simplifcations and assumptions referred to above we can formulate an N <div style="background-color:#facb8e; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%"> <p> <b>Note:</b> You will need to select mude-week-2-5 as your kernel as it includes the required packages.</p></div> -<!-- #region pycharm={"name": "#%% md\n"} --> + ## Part 1: Data preprocessing The demand of the network is given by an **OD matrix** (origin-destination), which will be constructed below. The OD matrix is a table that tells you how many cars go from node i to node j in an a given timeframe. The functions for this can be found in the helper function in utils/read.py. You do not need to edit anything in this codeblock. -<!-- #endregion --> + <div style="background-color:#AABAB2; color: black; vertical-align: middle; width:95%; padding:15px; margin: 10px; border-radius: 10px; width: 95%"> <p> @@ -187,13 +175,12 @@ plt.yticks(ticks=np.arange(od_matrix.shape[0]), labels=od_matrix.index) plt.show() ``` -<!-- #region pycharm={"name": "#%% md\n"} --> ## Part 2: Modeling in Gurobi ### Defining Parameters Now that we have the required functions for reading and processing the data, let's define some problem parameters and prepare the input. -<!-- #endregion --> + <div style="background-color:#AABAB2; color: black; vertical-align: middle; width:95%; padding:15px; margin: 10px; border-radius: 10px; width: 95%"> <p> @@ -246,7 +233,6 @@ model.params.NonConvex = 2 model.params.PreQLinearize = 1 ``` -<!-- #region pycharm={"name": "#%% md\n"} --> ### Decision variables We have a set of binary variables $y_{ij}$, these variables take the value 1 if link $(i,j)$ connecting node $i$ to node $j$ is selected for expansion, and 0 otherwise. @@ -264,7 +250,6 @@ Therefore, mathematically we define the domain of the variables as follows: \end{align} As you will see below in the code block, we have one extra set of variables called x2 (x square). This is to help Gurobi isolate quadratic terms and perform required transformations based on MCE to keep the problem linear. This is not part of your learning goals. -<!-- #endregion --> ```python # decision variables: @@ -277,7 +262,6 @@ link_flow_sqr = model.addVars(links, vtype=gp.GRB.CONTINUOUS, name='x2') ``` -<!-- #region pycharm={"name": "#%% md\n"} --> ### Objective function The objective function of the problem (in its simplest form), is the minimization of the total travel time on the network, that means that you multiply the flow of vehicles in each link by the corresponding travel time and sum over all links ($A$ is the collection of all links to simplify the notation): @@ -314,7 +298,6 @@ Now, for gurobi (and other solvers as well), we have to keep binary variables an Therefore, we use this equation to model our objective function in gurobi. You do not need to know fully understand this equation. -<!-- #endregion --> ```python # objective function (total travel time) @@ -327,7 +310,6 @@ model.setObjective( for (i, j) in links)) ``` -<!-- #region pycharm={"name": "#%% md\n"} --> ### Constraints We have four sets of constraints for this problem. Let's go through them one by one and add them to the model. @@ -336,25 +318,21 @@ We have four sets of constraints for this problem. Let's go through them one by We can only extend the capacity of certain number of links based on the available budget. So first, we have to make sure to limit the number of extended links to the max number that can be expanded: $$ \sum_{(i,j) \in A}{ y_{ij}} \leq B $$ -<!-- #endregion --> ```python # budget constraint c_bgt = model.addConstr(gp.quicksum(link_selected[i, j] for (i, j) in links) <= extension_max_no) ``` -<!-- #region pycharm={"name": "#%% md\n"} --> #### 2. Link flow conservation constraints We have two sets of decision variables representing link flows; $x_{ij}$, representing flow on link $(i,j)$, and $x_{ijs}$, representing flow on link $(i,j)$ going to destination $s$. So we have to make sure that the sum of the flows over all destinations equals the flow on each link. $ \sum_{s \in D}{x_{ijs}} = x_{ij} \quad \forall (i,j) \in A $ -<!-- #endregion --> ```python # link flow conservation c_lfc = model.addConstrs(gp.quicksum(dest_flow[i, j, s] for s in dests) == link_flow[i, j] for (i, j) in links) ``` -<!-- #region pycharm={"name": "#%% md\n"} --> #### 3. Node flow conservation constraints The basic idea of this constraint set is to make sure that the incoming and outgoing flow to and from each node is the same (hence flow conservation) with the exception for origin and destination nodes of the trips where there will be extra outgoing flow (origins) or incoming flow (destinations). Think about a traffic intersection, vehicles enter and leave the intersection when they are moving in the network. This assures the continuity of the vehicle paths. $d_{is}$ here is the number of travelers from node $i$ to node $s$ with the exception of $d_{ss}$, which is all the demand that arrives at node $s$. @@ -363,7 +341,6 @@ $ \sum_{j \in N; (i,j) \in A}{ x_{ijs}} - \sum_{j \in N; (j,i) \in A}{ x_{jis}} The figure gives an example:  -<!-- #endregion --> ```python # node flow conservation @@ -374,11 +351,9 @@ c_nfc = model.addConstrs( ) ``` -<!-- #region pycharm={"name": "#%% md\n"} --> #### 4. Quadratic variable constraints (you do not need to fully understand this) These are basically dummy equations to help gurobi model quadratic terms (that we defined as dummy variables earlier). So essentially instead of using $x^2_{ij}$ in the model, we define a new set of decision variables and define a set of constrains to set their value to $x^2_{ij}$. This let's Gurobi know these are quadratic terms and helps gurobi to replace it with variables and constraints required to keep the problem linear. This is not part of your learning goals! -<!-- #endregion --> ```python # dummy constraints for handling quadratic terms @@ -397,11 +372,10 @@ After running the whole model once for 300s, come back and set up a new constrai </p> </div> -<!-- #region id="0491cc69" --> + <div style="background-color:#ffa6a6; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%"><p><b>Note:</b> The cell below only has to be used when adding the constraint. </p></div> -<!-- #endregion --> ```python # constrain the vehicles to the capacity of the road: diff --git a/synced_files/GA_2_6/Analysis.md b/synced_files/GA_2_6/Analysis.md index 6f2849fb..70d10674 100644 --- a/synced_files/GA_2_6/Analysis.md +++ b/synced_files/GA_2_6/Analysis.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # GA 2.6: A stethoscope for beams - neural networks for detecting defects on bridges <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/GA_2_6/Analysis_solution.md b/synced_files/GA_2_6/Analysis_solution.md index 43e2280d..1692d9fe 100644 --- a/synced_files/GA_2_6/Analysis_solution.md +++ b/synced_files/GA_2_6/Analysis_solution.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # GA 2.6: A stethoscope for beams - neural networks for detecting defects on bridges <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/GA_2_7/rain_solution.md b/synced_files/GA_2_7/rain_solution.md index 7e55d38f..94393603 100644 --- a/synced_files/GA_2_7/rain_solution.md +++ b/synced_files/GA_2_7/rain_solution.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # Group Assignment 2.7: Extreme Value Analysis <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> @@ -25,7 +15,7 @@ jupyter: *[CEGM1000 MUDE](http://mude.citg.tudelft.nl/): Extreme Value Analysis, Week 2.7, Friday, Jan 10, 2024.* -<!-- #region id="1db6fea9-f3ad-44bc-a4c8-7b2b3008e945" --> + In this project, you will work on the uncertainty of precipitation in TurÃs, close to Valencia (Spain), where the past month of October an extreme flood occurred. TurÃs was the location where the highest rainfall was recorded. You have daily observations since 1999. The dataset was retrieved from the Ministry of Agriculture [here](https://servicio.mapa.gob.es/websiar/SeleccionParametrosMap.aspx?dst=1). **The goal of this project is:** @@ -34,7 +24,6 @@ In this project, you will work on the uncertainty of precipitation in TurÃs, cl 3. Compare the results from both methods in terms of design return levels. _Read the instructions for this project in `README.md` before beginning the analysis._ -<!-- #endregion --> ```python import numpy as np @@ -117,7 +106,7 @@ plt.grid() </p> </div> -<!-- #region id="0491cc69" --> + <div style="background-color:#facb8e; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%"> <p><b>Tip:</b> save the parameters of an instance of <code>rv_continuous</code> as a tuple to make it easier to use the methods of the distribution later. <br><br>For example, define parameters like this: <br><code>params = ... .fit( ... )</code> @@ -125,7 +114,6 @@ plt.grid() <br><code>param1, param2, param3 = ... .fit( ... )</code> <br>(see WS15 solution for examples). </p></div> -<!-- #endregion --> ```python #Function for the ECDF @@ -213,9 +201,9 @@ Apply POT on the timeseries using a declustering time of 48 hours and a threshol </p> </div> -<!-- #region id="0491cc69" --> + <div style="background-color:#facb8e; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%">Hint: you can use the function <code>find_peaks</code> from Scipy, as done in PA15.</div> -<!-- #endregion --> + <div style="background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%"> <b>Solution:</b> @@ -246,9 +234,9 @@ plt.grid() </p> </div> -<!-- #region id="0491cc69" --> + <div style="background-color:#facb8e; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%">Hint: you need to fit a GPD with a location parameter of 0 on the excesses. You can force the fitting of a distribution with a given value of the parameters using the keyword argument <code>floc</code>.</div> -<!-- #endregion --> + <div style="background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%"> <b>Solution:</b> @@ -336,9 +324,9 @@ In this section, we are going to use the distributions found in the previous two </p> </div> -<!-- #region id="0491cc69" --> + <div style="background-color:#facb8e; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%"> <p>Remember you can use tuple unpacking as an argument for methods of <code>scipy.stats.rv_continuous</code>, like this: <code>*params</code> (see WS15 solution for examples).</p></div> -<!-- #endregion --> + <div style="background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%"> <b>Solution:</b> @@ -468,11 +456,10 @@ The degree of freedom is 1, and you can use a significance level of 0.05. The nu </p> </div> -<!-- #region id="0491cc69" --> + <div style="background-color:#facb8e; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%"> <p>Hint: while our primary objective in EVA is evaluating the distribution of the random variable $X$, the number of excesses observed in a given period (regardless of BM or POT) is also a random variable, which in the case of POT can be described using the Poisson distribution. Recall that the Poisson distribution is a <em>discrete probability distribution,</em> which is defined using a <em>probability mass function</em> (PMF) instead of a PDF. The PMF can be described using notation $p_X(X=x)$, which produces the probability of observing the discrete value $x$ of random variable $X$. The implementation in Python is slightly different, inheriting methods from the parent class <code>rv_discrete</code> instead of <code>rv_continuous</code>.</p></div> -<!-- #endregion --> ```python # YOUR_CODE_HERE diff --git a/synced_files/Week_1_2/In_Class_Activity.md b/synced_files/Week_1_2/In_Class_Activity.md index 497d59e4..8f2caa86 100644 --- a/synced_files/Week_1_2/In_Class_Activity.md +++ b/synced_files/Week_1_2/In_Class_Activity.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # Lecture 1.2 Activity: The Best Model? You Bet! <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> @@ -25,7 +15,7 @@ jupyter: *[CEGM1000 MUDE](http://mude.citg.tudelft.nl/): Week 1.2, Monday, Sep 9, 2024. This assignment does not need to be turned in.* -<!-- #region cell_id="21f9833788f64e78a35bc8cac535e76d" deepnote_cell_type="markdown" --> + ## Overview In this assignment we will fit two models to observations of ice break-up date and reflect on their performance. @@ -41,7 +31,6 @@ We will follow these steps: 3. Fit a linear regression model and reflect on its goodness of fit; 5. Apply confidence intervals to the model; 6. Fit a non-linear model and reflect on its goodness of fit -<!-- #endregion --> ```python import numpy as np @@ -50,9 +39,8 @@ import scipy.stats as sci import scipy.optimize as opt ``` -<!-- #region cell_id="b1d3e3d2f92c4de29aba4aa61c525867" deepnote_cell_type="markdown" jp-MarkdownHeadingCollapsed=true --> ## Part 1: Import data -<!-- #endregion --> + We will import the dataset by using the `numpy` function `loadtxt`. If you open the *data-days.csv* file, you will notice that the comma is used as decimal separator for the number of recorded days. For this reason, we will import the data in the following steps: @@ -74,25 +62,19 @@ data = data.astype(float) data[0:10] ``` -<!-- #region jp-MarkdownHeadingCollapsed=true --> ## Part 2: Preliminary Analysis -<!-- #endregion --> -<!-- #region cell_id="1b15837c64e748b89fafad1f8007a399" deepnote_cell_type="markdown" --> + One of the first steps when getting familiar with new data is to see the dimensions of the data. To this end, we can use the `numpy` function `shape`. -<!-- #endregion --> ```python np.shape(data) ``` -<!-- #region cell_id="e901697b36064391b4a62d78c955dd6b" deepnote_cell_type="markdown" --> The result is a (103, 2) array, i.e., a matrix with 103 rows and 2 columns. The first column contains the year of record, while the second one contains the measured data. -<!-- #endregion --> -<!-- #region cell_id="43139b45e34f4252a6a270336ca401ba" deepnote_cell_type="markdown" --> + We can also compute the mean and the standard deviation of the variable of interest (second column) to get a sense of how the variable behaves. -<!-- #endregion --> ```python mean = np.mean(data[:,1]) @@ -102,9 +84,7 @@ print(f'Mean: {mean:.3f}\n\ Standard deviation: {std:.3f}') ``` -<!-- #region cell_id="2a1ddf21c02141dc8dfebee83c602a73" deepnote_cell_type="markdown" --> We can also quickly plot them to see the scatter of the data and the evolution in time. -<!-- #endregion --> ```python plt.scatter(data[:, 0], data[:, 1], label='Measured data') @@ -114,15 +94,13 @@ plt.title(f'Number of days per year between {data[0,0]:.0f}-{data[-1,0]:.0f}') plt.grid() ``` -<!-- #region cell_id="37edb558a10b47d88b3e4f683da56221" deepnote_cell_type="markdown" --> In the figure above, we have plotted the year of the measurement in the x-axis and the number of days until the ice broke during that year in the y-axis. We can see that there is a significant scatter. Also, there seems to be a trend over time: as we go ahead in time (higher values in the x-axis), the number of days until the ice broke seems to decrease. We have identifid a trend but **can we model it**? -<!-- #endregion --> -<!-- #region cell_id="a05297ff6298401192d49f8e257ff9ec" deepnote_cell_type="markdown" jp-MarkdownHeadingCollapsed=true --> + ## Part 3: Fit a linear regression model: is it a good model? -<!-- #endregion --> + We are going to create a model which allows us to predict the number of days until the ice broke as function of the year. For that, we are going to assume a linear relationship between the variables (a linear model) and we will fit it using linear regression. This is, we will fit a regression model $days=m\cdot year+q$, where $m$ represents the slope of the line, and $q$ is the intercept. @@ -172,9 +150,8 @@ r_sq, q, m = regression(data[:,0], data[:,1]) </p> </div> -<!-- #region cell_id="143e5d1bf8324d9f80fca4af9a0d162c" deepnote_cell_type="markdown" --> + We can also plot the data and the fitted model to see how the fit looks. To do so, we can make computations using the previous equation $days=m\cdot year+q$ with the fitted intercept $q$ and slope $m$. We have already defined a function which does it for you. -<!-- #endregion --> ```python def calculate_line(x, m, q): @@ -218,7 +195,6 @@ axes[1].grid() axes[1].set_title('(b) Observed and predicted number of days'); ``` -<!-- #region cell_id="b564cab0d51c40f2aa3c7ebb9affaade" deepnote_cell_type="markdown" --> <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 3.2:</b> @@ -228,13 +204,11 @@ axes[1].set_title('(b) Observed and predicted number of days'); </ol> </p> </div> -<!-- #endregion --> -<!-- #region cell_id="67e44fda81f24273b8d28edd35a50d87" deepnote_cell_type="markdown" --> + We can also assess the scatter using the Root Mean Square Error ($RMSE$). Don't you remember it? Go back to the [book](https://mude.citg.tudelft.nl/2024/book/modelling/gof.html)! Let's see how our model performs for this metric. -<!-- #endregion --> ```python def RMSE(data, fit_data): @@ -261,7 +235,6 @@ def RMSE(data, fit_data): RMSE_line = RMSE(data[:,1], line) ``` -<!-- #region cell_id="b564cab0d51c40f2aa3c7ebb9affaade" deepnote_cell_type="markdown" --> <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 3.3:</b> @@ -273,7 +246,7 @@ RMSE_line = RMSE(data[:,1], line) </ol> </p> </div> -<!-- #endregion --> + Finally, we can compute the bias of our model using $rbias$. @@ -299,7 +272,6 @@ def rbias(data, fit_data): rbias_line = rbias(data[:,1], line) ``` -<!-- #region cell_id="b564cab0d51c40f2aa3c7ebb9affaade" deepnote_cell_type="markdown" --> <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 3.4:</b> @@ -309,11 +281,10 @@ rbias_line = rbias(data[:,1], line) </ol> </p> </div> -<!-- #endregion --> -<!-- #region cell_id="19496dbefd3247f09c2226579c7b665f" deepnote_cell_type="markdown" jp-MarkdownHeadingCollapsed=true --> + ## Part 4: Confidence Intervals -<!-- #endregion --> + One way of assessing the uncertainty around the predictions of a model are confidence intervals. They give us insight into the precision of their predictions by transforming them into probabilities. In short, the 95% confidence interval (significance $\alpha=0.05$) shows the range of values within which my observation would be with a probability of 95%. Here, we want you to focus on their interpretation. In the following weeks (1.3), you will learn more about how to compute them. @@ -351,7 +322,6 @@ plt.legend() plt.title('Number of days as function of the year') ``` -<!-- #region cell_id="b564cab0d51c40f2aa3c7ebb9affaade" deepnote_cell_type="markdown" --> <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 4.1:</b> @@ -360,19 +330,17 @@ plt.title('Number of days as function of the year') </ol> </p> </div> -<!-- #endregion --> -<!-- #region cell_id="a19fb5b7e1cd4c32b435b8b967933700" deepnote_cell_type="markdown" jp-MarkdownHeadingCollapsed=true --> + ## Part 5: Non-linear Models -<!-- #endregion --> + As we have seen, the data-driven linear model is not really a good choice for representing the data we have. Let's try with one which is slightly more complicated: a non-linear model. In this section, we will analyze the fitting of a quadratic model as $days = A \cdot year^2 + B \cdot year + C$. The steps are the same as in the previous section, so we will go fast through the code to focus on the interpretation and comparison between the two models. -<!-- #region cell_id="ca8a6b9d68234ae69a799a3f4f3866a2" deepnote_cell_type="markdown" --> + You do not need to worry about this right now, but in case you are curious: we will make use of the `scipy.optimize` library, which contains the `curve_fit` function. For further info on the function see [here](https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html). -<!-- #endregion --> ```python def parabola(x, a, b, c): @@ -401,19 +369,15 @@ print(f'Covariance matrix for parameters:\n\ Sigma = {pcov_parabola}') ``` -<!-- #region cell_id="10efd81771064ce0ac4d50095be06e23" deepnote_cell_type="markdown" --> Therefore, our parabola now looks like $days = -1.277 \cdot 10^{-3} \cdot year^2 + 4.942 \cdot year - 4654.244$. Now that we have fitted it, we can use it to compute predictions. -<!-- #endregion --> ```python fitted_parabola = parabola(data[:,0], *popt_parabola) ``` -<!-- #region cell_id="6cc6a36c668f4ee2b26d41b27d335691" deepnote_cell_type="markdown" --> We can also determine the confidence intervals for this fit and see how it looks! -<!-- #endregion --> ```python k = conf_int(data[:,1], fitted_parabola, 0.05) @@ -441,7 +405,6 @@ print(f'Coefficient of determination = {R2_parabola:.3f}') rbias_parabola = rbias(data[:,1], fitted_parabola) ``` -<!-- #region cell_id="b564cab0d51c40f2aa3c7ebb9affaade" deepnote_cell_type="markdown" --> <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 5.1:</b> @@ -450,7 +413,7 @@ rbias_parabola = rbias(data[:,1], fitted_parabola) </ol> </p> </div> -<!-- #endregion --> + **End of notebook.** <h2 style="height: 60px"> diff --git a/synced_files/Week_1_2/In_Class_Activity_Solution.md b/synced_files/Week_1_2/In_Class_Activity_Solution.md index 6225ccd3..715f9a4f 100644 --- a/synced_files/Week_1_2/In_Class_Activity_Solution.md +++ b/synced_files/Week_1_2/In_Class_Activity_Solution.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # Lecture 1.2 Activity: The Best Model? You Bet! <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> @@ -25,7 +15,7 @@ jupyter: *[CEGM1000 MUDE](http://mude.citg.tudelft.nl/): Week 1.2, Monday, Sep 9, 2024. This assignment does not need to be turned in.* -<!-- #region cell_id="21f9833788f64e78a35bc8cac535e76d" deepnote_cell_type="markdown" --> + ## Overview In this assignment we will fit two models to observations of ice break-up date and reflect on their performance. @@ -41,7 +31,6 @@ We will follow these steps: 3. Fit a linear regression model and reflect on its goodness of fit; 5. Apply confidence intervals to the model; 6. Fit a non-linear model and reflect on its goodness of fit -<!-- #endregion --> ```python import numpy as np @@ -50,9 +39,8 @@ import scipy.stats as sci import scipy.optimize as opt ``` -<!-- #region cell_id="b1d3e3d2f92c4de29aba4aa61c525867" deepnote_cell_type="markdown" jp-MarkdownHeadingCollapsed=true --> ## Part 1: Import data -<!-- #endregion --> + We will import the dataset by using the `numpy` function `loadtxt`. If you open the *data-days.csv* file, you will notice that the comma is used as decimal separator for the number of recorded days. For this reason, we will import the data in the following steps: @@ -74,25 +62,19 @@ data = data.astype(float) data[0:10] ``` -<!-- #region jp-MarkdownHeadingCollapsed=true --> ## Part 2: Preliminary Analysis -<!-- #endregion --> -<!-- #region cell_id="1b15837c64e748b89fafad1f8007a399" deepnote_cell_type="markdown" --> + One of the first steps when getting familiar with new data is to see the dimensions of the data. To this end, we can use the `numpy` function `shape`. -<!-- #endregion --> ```python np.shape(data) ``` -<!-- #region cell_id="e901697b36064391b4a62d78c955dd6b" deepnote_cell_type="markdown" --> The result is a (103, 2) array, i.e., a matrix with 103 rows and 2 columns. The first column contains the year of record, while the second one contains the measured data. -<!-- #endregion --> -<!-- #region cell_id="43139b45e34f4252a6a270336ca401ba" deepnote_cell_type="markdown" --> + We can also compute the mean and the standard deviation of the variable of interest (second column) to get a sense of how the variable behaves. -<!-- #endregion --> ```python mean = np.mean(data[:,1]) @@ -102,9 +84,7 @@ print(f'Mean: {mean:.3f}\n\ Standard deviation: {std:.3f}') ``` -<!-- #region cell_id="2a1ddf21c02141dc8dfebee83c602a73" deepnote_cell_type="markdown" --> We can also quickly plot them to see the scatter of the data and the evolution in time. -<!-- #endregion --> ```python plt.scatter(data[:, 0], data[:, 1], label='Measured data') @@ -114,15 +94,13 @@ plt.title(f'Number of days per year between {data[0,0]:.0f}-{data[-1,0]:.0f}') plt.grid() ``` -<!-- #region cell_id="37edb558a10b47d88b3e4f683da56221" deepnote_cell_type="markdown" --> In the figure above, we have plotted the year of the measurement in the x-axis and the number of days until the ice broke during that year in the y-axis. We can see that there is a significant scatter. Also, there seems to be a trend over time: as we go ahead in time (higher values in the x-axis), the number of days until the ice broke seems to decrease. We have identifid a trend but **can we model it**? -<!-- #endregion --> -<!-- #region cell_id="a05297ff6298401192d49f8e257ff9ec" deepnote_cell_type="markdown" jp-MarkdownHeadingCollapsed=true --> + ## Part 3: Fit a linear regression model: is it a good model? -<!-- #endregion --> + We are going to create a model which allows us to predict the number of days until the ice broke as function of the year. For that, we are going to assume a linear relationship between the variables (a linear model) and we will fit it using linear regression. This is, we will fit a regression model $days=m\cdot year+q$, where $m$ represents the slope of the line, and $q$ is the intercept. @@ -172,7 +150,7 @@ r_sq, q, m = regression(data[:,0], data[:,1]) </p> </div> -<!-- #region cell_id="9a082db4cf644c9c9854af0a458c0b8a" deepnote_cell_type="markdown" --> + <div style="background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> @@ -181,11 +159,9 @@ $\textbf{Solution}$ 2. Based on the answer to the previous question, the linear model is not an accurate model. Whether this low level of accuracy is good enough or not, depends on the use we want to give to the model. </p> </div> -<!-- #endregion --> -<!-- #region cell_id="143e5d1bf8324d9f80fca4af9a0d162c" deepnote_cell_type="markdown" --> + We can also plot the data and the fitted model to see how the fit looks. To do so, we can make computations using the previous equation $days=m\cdot year+q$ with the fitted intercept $q$ and slope $m$. We have already defined a function which does it for you. -<!-- #endregion --> ```python def calculate_line(x, m, q): @@ -229,7 +205,6 @@ axes[1].grid() axes[1].set_title('(b) Observed and predicted number of days'); ``` -<!-- #region cell_id="b564cab0d51c40f2aa3c7ebb9affaade" deepnote_cell_type="markdown" --> <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 3.2:</b> @@ -239,9 +214,8 @@ axes[1].set_title('(b) Observed and predicted number of days'); </ol> </p> </div> -<!-- #endregion --> -<!-- #region cell_id="9a082db4cf644c9c9854af0a458c0b8a" deepnote_cell_type="markdown" --> + <div style="background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> @@ -252,13 +226,11 @@ In the plot (a), we observe that the observations have a high scatter around the In the plot (b), we compare the observations with the predictions of the model. The perfect fit would correspond to the 45-degrees line in black. Thus, the model has a poor performance as we already quantified using the coefficient of determination. Both results are aligned. </p> </div> -<!-- #endregion --> -<!-- #region cell_id="67e44fda81f24273b8d28edd35a50d87" deepnote_cell_type="markdown" --> + We can also assess the scatter using the Root Mean Square Error ($RMSE$). Don't you remember it? Go back to the [book](https://mude.citg.tudelft.nl/2024/book/modelling/gof.html)! Let's see how our model performs for this metric. -<!-- #endregion --> ```python def RMSE(data, fit_data): @@ -285,7 +257,6 @@ def RMSE(data, fit_data): RMSE_line = RMSE(data[:,1], line) ``` -<!-- #region cell_id="b564cab0d51c40f2aa3c7ebb9affaade" deepnote_cell_type="markdown" --> <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 3.3:</b> @@ -297,9 +268,8 @@ RMSE_line = RMSE(data[:,1], line) </ol> </p> </div> -<!-- #endregion --> -<!-- #region cell_id="604f11f41ac54d59b11422bac89e6411" deepnote_cell_type="markdown" --> + <div style="background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> @@ -308,7 +278,7 @@ $\textbf{Solution}$ 2. Based on the previous interpretation, the linear model is not accurate. Whether this low level of accuracy is good enough or not, depends on the use we want to give to the model. </p> </div> -<!-- #endregion --> + Finally, we can compute the bias of our model using $rbias$. @@ -334,7 +304,6 @@ def rbias(data, fit_data): rbias_line = rbias(data[:,1], line) ``` -<!-- #region cell_id="b564cab0d51c40f2aa3c7ebb9affaade" deepnote_cell_type="markdown" --> <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 3.4:</b> @@ -344,9 +313,8 @@ rbias_line = rbias(data[:,1], line) </ol> </p> </div> -<!-- #endregion --> -<!-- #region cell_id="604f11f41ac54d59b11422bac89e6411" deepnote_cell_type="markdown" --> + <div style="background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> @@ -354,11 +322,10 @@ $\textbf{Solution}$ 1. <code>rbias</code> provides an standardized measure of the systematic tendency of our model to under- or over-prediction. It is very low for our model, so it does not have a clear tendency to under- or overestimate and, thus, does not seem to be biased. </p> </div> -<!-- #endregion --> -<!-- #region cell_id="19496dbefd3247f09c2226579c7b665f" deepnote_cell_type="markdown" jp-MarkdownHeadingCollapsed=true --> + ## Part 4: Confidence Intervals -<!-- #endregion --> + One way of assessing the uncertainty around the predictions of a model are confidence intervals. They give us insight into the precision of their predictions by transforming them into probabilities. In short, the 95% confidence interval (significance $\alpha=0.05$) shows the range of values within which my observation would be with a probability of 95%. Here, we want you to focus on their interpretation. In the following weeks (1.3), you will learn more about how to compute them. @@ -404,7 +371,6 @@ plt.legend() plt.title('Number of days as function of the year') ``` -<!-- #region cell_id="b564cab0d51c40f2aa3c7ebb9affaade" deepnote_cell_type="markdown" --> <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 4.1:</b> @@ -413,28 +379,25 @@ plt.title('Number of days as function of the year') </ol> </p> </div> -<!-- #endregion --> -<!-- #region cell_id="604f11f41ac54d59b11422bac89e6411" deepnote_cell_type="markdown" --> + <div style="background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Solution:</b> If you consider that you need to place a bet with not only the day but also the hour and minute at which the ice would break, the model is not accurate enough. You can see that the confidence interval spans almost 20 days! </p> </div> -<!-- #endregion --> -<!-- #region cell_id="a19fb5b7e1cd4c32b435b8b967933700" deepnote_cell_type="markdown" jp-MarkdownHeadingCollapsed=true --> + ## Part 5: Non-linear Models -<!-- #endregion --> + As we have seen, the data-driven linear model is not really a good choice for representing the data we have. Let's try with one which is slightly more complicated: a non-linear model. In this section, we will analyze the fitting of a quadratic model as $days = A \cdot year^2 + B \cdot year + C$. The steps are the same as in the previous section, so we will go fast through the code to focus on the interpretation and comparison between the two models. -<!-- #region cell_id="ca8a6b9d68234ae69a799a3f4f3866a2" deepnote_cell_type="markdown" --> + You do not need to worry about this right now, but in case you are curious: we will make use of the `scipy.optimize` library, which contains the `curve_fit` function. For further info on the function see [here](https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html). -<!-- #endregion --> ```python def parabola(x, a, b, c): @@ -463,19 +426,15 @@ print(f'Covariance matrix for parameters:\n\ Sigma = {pcov_parabola}') ``` -<!-- #region cell_id="10efd81771064ce0ac4d50095be06e23" deepnote_cell_type="markdown" --> Therefore, our parabola now looks like $days = -1.277 \cdot 10^{-3} \cdot year^2 + 4.942 \cdot year - 4654.244$. Now that we have fitted it, we can use it to compute predictions. -<!-- #endregion --> ```python fitted_parabola = parabola(data[:,0], *popt_parabola) ``` -<!-- #region cell_id="6cc6a36c668f4ee2b26d41b27d335691" deepnote_cell_type="markdown" --> We can also determine the confidence intervals for this fit and see how it looks! -<!-- #endregion --> ```python k = conf_int(data[:,1], fitted_parabola, 0.05) @@ -503,7 +462,6 @@ print(f'Coefficient of determination = {R2_parabola:.3f}') rbias_parabola = rbias(data[:,1], fitted_parabola) ``` -<!-- #region cell_id="b564cab0d51c40f2aa3c7ebb9affaade" deepnote_cell_type="markdown" --> <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 5.1:</b> @@ -512,7 +470,7 @@ rbias_parabola = rbias(data[:,1], fitted_parabola) </ol> </p> </div> -<!-- #endregion --> + <div style="background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> diff --git a/synced_files/Week_1_2/PA_1_2_Random_Adventure.md b/synced_files/Week_1_2/PA_1_2_Random_Adventure.md index 31a407ea..999373e1 100644 --- a/synced_files/Week_1_2/PA_1_2_Random_Adventure.md +++ b/synced_files/Week_1_2/PA_1_2_Random_Adventure.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # PA 1.2: A Random Adventure <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/Week_1_2/PA_1_2_solution.md b/synced_files/Week_1_2/PA_1_2_solution.md index 6d639e3f..01b880f7 100644 --- a/synced_files/Week_1_2/PA_1_2_solution.md +++ b/synced_files/Week_1_2/PA_1_2_solution.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # Programming Assignment 02: A Random Adventure <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/Week_1_2/WS_1_2_Pipe_Dreams.md b/synced_files/Week_1_2/WS_1_2_Pipe_Dreams.md index e7749762..8f7409f5 100644 --- a/synced_files/Week_1_2/WS_1_2_Pipe_Dreams.md +++ b/synced_files/Week_1_2/WS_1_2_Pipe_Dreams.md @@ -1,16 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - -<!-- #region id="9adbf457-797f-45b7-8f8b-0e46e0e2f5ff" --> # WS 1.2: Mean and Variance Propagation **Sewer Pipe Flow Velocity** @@ -27,9 +16,8 @@ jupyter: </h2> *[CEGM1000 MUDE](http://mude.citg.tudelft.nl/): Week 1.2. Wed Sep 11, 2024.* -<!-- #endregion --> -<!-- #region id="1db6fea9-f3ad-44bc-a4c8-7b2b3008e945" --> +<!-- #region --> ## Overview In this notebook you will apply the propagation laws for the mean and variance for a function of two independent random variables. You will assess how well the approximations correspond with the <em>simulation-based</em> equivalents. You will also assess the distribution of the function. @@ -128,7 +116,7 @@ $$\sigma^2_X \approx \left(\frac{\partial q(\mu_Y )}{\partial Y_1 } \right)^2 \s We are interested to know how the uncertainty in $R$ and $S$ propagates into the uncertainty of the flow velocity $V$. We will first do this analytically and then implement it in code. -<!-- #region id="bfadcf3f-4578-4809-acdb-625ab3a71f27" --> + <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 1.1:</b> @@ -136,7 +124,7 @@ We are interested to know how the uncertainty in $R$ and $S$ propagates into the Use the Taylor series approximation to find the expression for $\mu_V$ and $\sigma_V$ as function of $\mu_R$, $\sigma_R$, $\mu_S$, $\sigma_S$. Write your answer on paper or using a tablet; later we will learn how to include images directly in our notebooks! For now you can skip this step, as you are not turning this notebook in. </p> </div> -<!-- #endregion --> + <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> @@ -219,7 +207,7 @@ Interpret the figures above, specifically looking at differences between Case 1 _You can write an answer in this cell using Markdown._ -<!-- #region id="a7e4c13f-a2ca-4c2d-a3e2-92d4630715a0" --> + ## Part 2: Simulation-Based Propagation We will use again the following values: @@ -230,7 +218,7 @@ We will use again the following values: Furthermore, it is assumed that $R$ and $S$ are independent normally distributed random variables. We will generate at least 10,000 simulated realizations each of $R$ and $S$ using a random number generator, and then you need to use these to calculate the corresponding sample values of $V$ and find the moments of that sample. -<!-- #endregion --> + <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> diff --git a/synced_files/Week_1_2/WS_1_2_solution.md b/synced_files/Week_1_2/WS_1_2_solution.md index abcd56d7..965a17a1 100644 --- a/synced_files/Week_1_2/WS_1_2_solution.md +++ b/synced_files/Week_1_2/WS_1_2_solution.md @@ -1,16 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - -<!-- #region id="9adbf457-797f-45b7-8f8b-0e46e0e2f5ff" --> # WS 1.2: Mean and Variance Propagation **Sewer Pipe Flow Velocity** @@ -27,9 +16,8 @@ jupyter: </h2> *[CEGM1000 MUDE](http://mude.citg.tudelft.nl/): Week 1.2. Wed Sep 11, 2024.* -<!-- #endregion --> -<!-- #region id="1db6fea9-f3ad-44bc-a4c8-7b2b3008e945" --> +<!-- #region --> ## Overview In this notebook you will apply the propagation laws for the mean and variance for a function of two independent random variables. You will assess how well the approximations correspond with the <em>simulation-based</em> equivalents. You will also assess the distribution of the function. @@ -128,7 +116,7 @@ $$\sigma^2_X \approx \left(\frac{\partial q(\mu_Y )}{\partial Y_1 } \right)^2 \s We are interested to know how the uncertainty in $R$ and $S$ propagates into the uncertainty of the flow velocity $V$. We will first do this analytically and then implement it in code. -<!-- #region id="bfadcf3f-4578-4809-acdb-625ab3a71f27" --> + <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 1.1:</b> @@ -136,7 +124,7 @@ We are interested to know how the uncertainty in $R$ and $S$ propagates into the Use the Taylor series approximation to find the expression for $\mu_V$ and $\sigma_V$ as function of $\mu_R$, $\sigma_R$, $\mu_S$, $\sigma_S$. Write your answer on paper or using a tablet; later we will learn how to include images directly in our notebooks! For now you can skip this step, as you are not turning this notebook in. </p> </div> -<!-- #endregion --> + <div style="background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> @@ -238,16 +226,15 @@ Interpret the figures above, specifically looking at differences between Case 1 </p> </div> -<!-- #region id="d3bdade1-2694-4ee4-a180-3872ee17a76d" --> + <div style="background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> $\textbf{Solution:}$ The standard deviation of $V$ is a non-linear function of $\sigma_R$ and $\sigma_S$ - the left figure shows how $\sigma_V$ increases as function of $\sigma_R$ for a given value $\sigma_S$. If $\sigma_S$ is zero, there is no uncertainty in the slope of the pipe, and the standard deviation of $V$ becomes a linear function of $\sigma_R$ (right figure). The uncertainty of $V$ is smaller now, since it only depends on the uncertainty in $R$. </div> -<!-- #endregion --> -<!-- #region id="a7e4c13f-a2ca-4c2d-a3e2-92d4630715a0" --> + ## Part 2: Simulation-Based Propagation We will use again the following values: @@ -258,7 +245,7 @@ We will use again the following values: Furthermore, it is assumed that $R$ and $S$ are independent normally distributed random variables. We will generate at least 10,000 simulated realizations each of $R$ and $S$ using a random number generator, and then you need to use these to calculate the corresponding sample values of $V$ and find the moments of that sample. -<!-- #endregion --> + <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> @@ -455,7 +442,6 @@ def samples_slideplot(sigma_R): validate_distribution(50000, sigma_R); ``` -<!-- #region id="782c842e-ceb8-4e3c-b767-1f3efa4fb9b2" --> <div style="background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> $\mathbf{Solution:}$ @@ -468,7 +454,7 @@ Using a different value for $\sigma_R$ has several impacts: The reason for this is that $V$ is a non-linear function of the normally distributed random variables $R$ and $S$, due to the non-linearity $V$ will <em>not</em> be Normally distributed. </div> -<!-- #endregion --> + <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> diff --git a/synced_files/Week_1_4/WS_1_4_Nonlinear_Rain.md b/synced_files/Week_1_4/WS_1_4_Nonlinear_Rain.md index 9752e96c..ae3cbe94 100644 --- a/synced_files/Week_1_4/WS_1_4_Nonlinear_Rain.md +++ b/synced_files/Week_1_4/WS_1_4_Nonlinear_Rain.md @@ -1,16 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - -<!-- #region id="c-kJ0rgzjVsW" --> # WS 1.4: Non-Linear Water <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> @@ -25,9 +14,8 @@ jupyter: </h2> *[CEGM1000 MUDE](http://mude.citg.tudelft.nl/): Week 1.4. Wed Sep 25, 2024.* -<!-- #endregion --> -<!-- #region id="taoAYUNojl6N" --> + In this notebook we will apply the least-squares method to a non-linear model: [non-linear least-squares estimation](https://mude.citg.tudelft.nl/2024/book/observation_theory/07_NLSQ.html). In this case our model is non-linear in the unknown parameters of interest: $$ @@ -69,9 +57,8 @@ where $a$ [days] is a scaling parameter representing the memory of the system (d $$ h_k(t) = p\cdot r\left(\exp\left(-\frac{t-t_e}{a}\right)-\exp\left(-\frac{t-t_0}{a}\right)\right), \;\; \text{for}\;\; t > t_{\text{end}} $$ -<!-- #endregion --> -<!-- #region id="aGZfDs4VT3DM" --> + ## Functional model For this example, we consider a single rainfall event. At $t_0=4$ days, it starts raining, and at $t_{\text{end}}=7$ days it stops raining (and we assume the amount of rainfall to be constant during these days, for the sake of the example...). The observation equations become: @@ -91,7 +78,6 @@ $$\mathbb{E}\left[L(t_i)\right] = d + H(t_i-t_{0}) \cdot p\cdot r \left(1-\exp\l with $H(\Delta t) = 1$ if $\Delta t \geq 0$ and $H(\Delta t) = 0$ otherwise. <b>Check yourself that this gives indeed the same observation equations as above.</b> The functional model can be defined as follows, using <a href="https://numpy.org/doc/stable/reference/generated/numpy.heaviside.html"> NumPy's heaviside</a> function: -<!-- #endregion --> ```python import numpy as np @@ -143,7 +129,6 @@ def compute_y(x, times, rain): return h ``` -<!-- #region id="4IEjIQSAT78k" --> ### Apply the Functional Model If we generate a vector of time steps, we can plot the (exact) response of a system with parameters using the ```rain_event``` function defined above. @@ -151,7 +136,7 @@ If we generate a vector of time steps, we can plot the (exact) response of a sys The known input is: $p=0.05$ m. Choose your own values for $d$, $a$, and $r$. -<!-- #endregion --> + <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> @@ -179,11 +164,9 @@ plt.xlim([0, test_n_days]) plt.ylim([0, 5]); ``` -<!-- #region id="wnp2SL3dj0on" --> ## Reading in the observations We collected observations of the water level in the aquifer for 25 consecutive days and are stored ```data``` folder. Observations start at $t=1$. -<!-- #endregion --> ```python n_days = 25 @@ -196,7 +179,6 @@ plt.xlabel('Time [days]') plt.ylabel('Waterlevel [m]'); ``` -<!-- #region id="SPXDSa9AkFkY" --> ## Estimating the parameters using Gauss-Newton iteration Using only the data of the observations we want to find the values for $d$, $a$ and $r$. This can be done with Gauss-Newton iteration. @@ -215,12 +197,11 @@ Our stop criterion is: $$ \Delta \hat{\mathrm{x}}_{[i]}^T \mathrm{N}_{[i]} \Delta \hat{\mathrm{x}}_{[i]} < \delta \;\; \text{with} \;\;\mathrm{N}_{[i]}=\mathrm{J}_{[i]}^T \Sigma_{Y}^{-1} \mathrm{J}_{[i]} $$ -<!-- #endregion --> -<!-- #region id="1-REMPFykGZi" --> + ## Computing the partial derivatives for the Jacobian matrix -<!-- #endregion --> + <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> @@ -253,7 +234,6 @@ def jacobian(x, times, rain): return J ``` -<!-- #region id="MfBggMEPkQyZ" --> ## Running the Gauss-Newton iteration <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> @@ -272,7 +252,6 @@ Next we will set the stochastic model, and initialize some other variables neede Note in particular the 2 stop criteria used for the while loop. You should reach a solution within 50 iterations, otherwise you should reconsider the initial values. </p> </div> -<!-- #endregion --> ```python d_init = YOUR_CODE_HERE @@ -363,13 +342,12 @@ plt.xlabel('Time [days]') plt.ylabel('Water level [m]'); ``` -<!-- #region id="KXE88mjeOzOn" --> ## Visualization ### Estimates vs. iteration number Now we will consider how the estimate of the model parameter changes during the Gauss-Newton iteration. -<!-- #endregion --> + <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> @@ -422,7 +400,6 @@ else: print(f"(T = {Tq:.1f}) > (K = {k:.1f}), OMT is rejected.") ``` -<!-- #region id="MfBggMEPkQyZ" --> <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 8:</b> @@ -430,7 +407,7 @@ else: Play with the value of <code>alpha</code> and see how it changes the critical value <code>k</code>. Why does it become smaller/larger? What is the impact on the probability of rejecting the null hypothesis? </p> </div> -<!-- #endregion --> + **End of notebook.** <h2 style="height: 60px"> diff --git a/synced_files/Week_1_4/WS_1_4_solution.md b/synced_files/Week_1_4/WS_1_4_solution.md index 46fa5de3..3966789b 100644 --- a/synced_files/Week_1_4/WS_1_4_solution.md +++ b/synced_files/Week_1_4/WS_1_4_solution.md @@ -1,16 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - -<!-- #region id="c-kJ0rgzjVsW" --> # WS 1.4: Non-Linear Water <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> @@ -25,9 +14,8 @@ jupyter: </h2> *[CEGM1000 MUDE](http://mude.citg.tudelft.nl/): Week 1.4. Wed Sep 25, 2024.* -<!-- #endregion --> -<!-- #region id="taoAYUNojl6N" --> + In this notebook we will apply the least-squares method to a non-linear model: [non-linear least-squares estimation](https://mude.citg.tudelft.nl/2024/book/observation_theory/07_NLSQ.html). In this case our model is non-linear in the unknown parameters of interest: $$ @@ -69,9 +57,8 @@ where $a$ [days] is a scaling parameter representing the memory of the system (d $$ h_k(t) = p\cdot r\left(\exp\left(-\frac{t-t_e}{a}\right)-\exp\left(-\frac{t-t_0}{a}\right)\right), \;\; \text{for}\;\; t > t_{\text{end}} $$ -<!-- #endregion --> -<!-- #region id="aGZfDs4VT3DM" --> + ## Functional model For this example, we consider a single rainfall event. At $t_0=4$ days, it starts raining, and at $t_{\text{end}}=7$ days it stops raining (and we assume the amount of rainfall to be constant during these days, for the sake of the example...). The observation equations become: @@ -91,7 +78,6 @@ $$\mathbb{E}\left[L(t_i)\right] = d + H(t_i-t_{0}) \cdot p\cdot r \left(1-\exp\l with $H(\Delta t) = 1$ if $\Delta t \geq 0$ and $H(\Delta t) = 0$ otherwise. <b>Check yourself that this gives indeed the same observation equations as above.</b> The functional model can be defined as follows, using <a href="https://numpy.org/doc/stable/reference/generated/numpy.heaviside.html"> NumPy's heaviside</a> function: -<!-- #endregion --> ```python import numpy as np @@ -152,7 +138,7 @@ As described in the docstring there are three unkown parameters of interest (d, </p> </div> -<!-- #region id="4IEjIQSAT78k" --> + ### Apply the Functional Model If we generate a vector of time steps, we can plot the (exact) response of a system with parameters using the ```rain_event``` function defined above. @@ -160,7 +146,7 @@ If we generate a vector of time steps, we can plot the (exact) response of a sys The known input is: $p=0.05$ m. Choose your own values for $d$, $a$, and $r$. -<!-- #endregion --> + <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> @@ -193,11 +179,9 @@ plt.xlim([0, test_n_days]) plt.ylim([0, 5]); ``` -<!-- #region id="wnp2SL3dj0on" --> ## Reading in the observations We collected observations of the water level in the aquifer for 25 consecutive days and are stored ```data``` folder. Observations start at $t=1$. -<!-- #endregion --> ```python n_days = 25 @@ -210,7 +194,6 @@ plt.xlabel('Time [days]') plt.ylabel('Waterlevel [m]'); ``` -<!-- #region id="SPXDSa9AkFkY" --> ## Estimating the parameters using Gauss-Newton iteration Using only the data of the observations we want to find the values for $d$, $a$ and $r$. This can be done with Gauss-Newton iteration. @@ -229,12 +212,11 @@ Our stop criterion is: $$ \Delta \hat{\mathrm{x}}_{[i]}^T \mathrm{N}_{[i]} \Delta \hat{\mathrm{x}}_{[i]} < \delta \;\; \text{with} \;\;\mathrm{N}_{[i]}=\mathrm{J}_{[i]}^T \Sigma_{Y}^{-1} \mathrm{J}_{[i]} $$ -<!-- #endregion --> -<!-- #region id="1-REMPFykGZi" --> + ## Computing the partial derivatives for the Jacobian matrix -<!-- #endregion --> + <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> @@ -285,7 +267,6 @@ def jacobian(x, times, rain): return J ``` -<!-- #region id="MfBggMEPkQyZ" --> ## Running the Gauss-Newton iteration <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> @@ -304,7 +285,6 @@ Next we will set the stochastic model, and initialize some other variables neede Note in particular the 2 stop criteria used for the while loop. You should reach a solution within 50 iterations, otherwise you should reconsider the initial values. </p> </div> -<!-- #endregion --> ```python # d_init = YOUR_CODE_HERE @@ -429,13 +409,12 @@ plt.xlabel('Time [days]') plt.ylabel('Water level [m]'); ``` -<!-- #region id="KXE88mjeOzOn" --> ## Visualization ### Estimates vs. iteration number Now we will consider how the estimate of the model parameter changes during the Gauss-Newton iteration. -<!-- #endregion --> + <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> @@ -501,7 +480,6 @@ else: print(f"(T = {Tq:.1f}) > (K = {k:.1f}), OMT is rejected.") ``` -<!-- #region id="MfBggMEPkQyZ" --> <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 8:</b> @@ -509,7 +487,7 @@ else: Play with the value of <code>alpha</code> and see how it changes the critical value <code>k</code>. Why does it become smaller/larger? What is the impact on the probability of rejecting the null hypothesis? </p> </div> -<!-- #endregion --> + <div style="background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> diff --git a/synced_files/Week_1_6/PA/PA_1_6_Boxes_and_Bugs.md b/synced_files/Week_1_6/PA/PA_1_6_Boxes_and_Bugs.md index 4c55074e..377bca19 100644 --- a/synced_files/Week_1_6/PA/PA_1_6_Boxes_and_Bugs.md +++ b/synced_files/Week_1_6/PA/PA_1_6_Boxes_and_Bugs.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # PA 1.6: Boxes and Bugs <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/Week_1_6/PA/PA_1_6_solution.md b/synced_files/Week_1_6/PA/PA_1_6_solution.md index 4498b0b6..6917058e 100644 --- a/synced_files/Week_1_6/PA/PA_1_6_solution.md +++ b/synced_files/Week_1_6/PA/PA_1_6_solution.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # PA 1.6: Boxes and Bugs <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/Week_1_6/WS_1_6_solution.md b/synced_files/Week_1_6/WS_1_6_solution.md index ec847a68..136b3d1e 100644 --- a/synced_files/Week_1_6/WS_1_6_solution.md +++ b/synced_files/Week_1_6/WS_1_6_solution.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - <!-- #region --> ## Overview diff --git a/synced_files/Week_1_6/WS_1_6_time_to_c_ode.md b/synced_files/Week_1_6/WS_1_6_time_to_c_ode.md index 48c0fb4e..6c68fed3 100644 --- a/synced_files/Week_1_6/WS_1_6_time_to_c_ode.md +++ b/synced_files/Week_1_6/WS_1_6_time_to_c_ode.md @@ -1,16 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - -<!-- #region id="9adbf457-797f-45b7-8f8b-0e46e0e2f5ff" --> # WS 1.6: Understanding Ordinary Differential Equation <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> @@ -26,7 +15,6 @@ jupyter: </h2> *[CEGM1000 MUDE](http://mude.citg.tudelft.nl/): Week 1.6. For: 9th October, 2024.* -<!-- #endregion --> <!-- #region --> ## Overview diff --git a/synced_files/Week_1_7/PA/PA_1_7_Classy_Distributions.md b/synced_files/Week_1_7/PA/PA_1_7_Classy_Distributions.md index 7bd15114..8c84cdc0 100644 --- a/synced_files/Week_1_7/PA/PA_1_7_Classy_Distributions.md +++ b/synced_files/Week_1_7/PA/PA_1_7_Classy_Distributions.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # PA 1.7: Classy Distributions <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/Week_1_7/PA/PA_1_7_solution.md b/synced_files/Week_1_7/PA/PA_1_7_solution.md index 0a85fccc..b145f4f8 100644 --- a/synced_files/Week_1_7/PA/PA_1_7_solution.md +++ b/synced_files/Week_1_7/PA/PA_1_7_solution.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # PA 1.7: Classy Distributions <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/Week_1_7/WS_1_7_lets_be_concrete.md b/synced_files/Week_1_7/WS_1_7_lets_be_concrete.md index f252ac4c..0a5264c9 100644 --- a/synced_files/Week_1_7/WS_1_7_lets_be_concrete.md +++ b/synced_files/Week_1_7/WS_1_7_lets_be_concrete.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # WS 1.7: Modelling Uncertain Concrete Strength <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> @@ -25,7 +15,7 @@ jupyter: *[CEGM1000 MUDE](http://mude.citg.tudelft.nl/): Week 1.7. Due: October 16, 2024.* -<!-- #region id="1db6fea9-f3ad-44bc-a4c8-7b2b3008e945" --> + Assessing the uncertainties in the compressive strength of the produced concrete is key for the safety of infrastructures and buildings. However, a lot of boundary conditions influence the final resistance of the concrete, such the cement content, the environmental temperature or the age of the concrete. Probabilistic tools can be applied to model this uncertainty. In this workshop, you will work with a dataset of observations of the compressive strength of concrete (you can read more about the dataset [here](https://www.kaggle.com/datasets/gauravduttakiit/compressive-strength-of-concrete)). **The goal of this project is:** @@ -35,7 +25,6 @@ Assessing the uncertainties in the compressive strength of the produced concrete 4. Assess the fit using goodness of fit techniques and computer code. The project will be divided into 3 parts: 1) data analysis, 2) pen and paper stuff (math practice!), and 3) programming. -<!-- #endregion --> ```python import numpy as np @@ -80,7 +69,6 @@ df_describe = pd.DataFrame(data) df_describe.describe() ``` -<!-- #region id="bfadcf3f-4578-4809-acdb-625ab3a71f27" --> <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 1.1:</b> @@ -89,7 +77,7 @@ df_describe.describe() <li>Justiy your choice.</li> </p> </div> -<!-- #endregion --> + _Your answer here._ @@ -139,14 +127,13 @@ You can summarize you answers in the following table (report your values with 3- Now, let's assess the performance using further goodness of fit metrics and see whether they are consistent with the previously done analysis. -<!-- #region id="bfadcf3f-4578-4809-acdb-625ab3a71f27" --> + <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 3.1:</b> Prepare a function to compute the empirical cumulative distribution function. </p> </div> -<!-- #endregion --> ```python def ecdf(YOUR_CODE_HERE): @@ -154,7 +141,6 @@ def ecdf(YOUR_CODE_HERE): return YOUR_CODE_HERE ``` -<!-- #region id="bfadcf3f-4578-4809-acdb-625ab3a71f27" --> <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 3.2:</b> @@ -163,7 +149,7 @@ Transform the fitted parameters for the selected distribution to loc-scale-shape </div> Hint: the distributions are in our online textbook, but it is also critical to make sure that the formulation in the book is identical to that of the Python package we are using. You can do this by finding the page of the relevant distribution in the [Scipy.stats](https://docs.scipy.org/doc/scipy/reference/stats.html) documentation. -<!-- #endregion --> + <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> diff --git a/synced_files/Week_1_7/WS_1_7_solution.md b/synced_files/Week_1_7/WS_1_7_solution.md index 2ffb00fb..09951d64 100644 --- a/synced_files/Week_1_7/WS_1_7_solution.md +++ b/synced_files/Week_1_7/WS_1_7_solution.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # WS 1.7: Modelling Uncertain Concrete Strength <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> @@ -25,7 +15,7 @@ jupyter: *[CEGM1000 MUDE](http://mude.citg.tudelft.nl/): Week 1.7. Due: October 16, 2024.* -<!-- #region id="1db6fea9-f3ad-44bc-a4c8-7b2b3008e945" --> + Assessing the uncertainties in the compressive strength of the produced concrete is key for the safety of infrastructures and buildings. However, a lot of boundary conditions influence the final resistance of the concrete, such the cement content, the environmental temperature or the age of the concrete. Probabilistic tools can be applied to model this uncertainty. In this workshop, you will work with a dataset of observations of the compressive strength of concrete (you can read more about the dataset [here](https://www.kaggle.com/datasets/gauravduttakiit/compressive-strength-of-concrete)). **The goal of this project is:** @@ -35,7 +25,6 @@ Assessing the uncertainties in the compressive strength of the produced concrete 4. Assess the fit using goodness of fit techniques and computer code. The project will be divided into 3 parts: 1) data analysis, 2) pen and paper stuff (math practice!), and 3) programming. -<!-- #endregion --> ```python import numpy as np @@ -80,7 +69,6 @@ df_describe = pd.DataFrame(data) df_describe.describe() ``` -<!-- #region id="bfadcf3f-4578-4809-acdb-625ab3a71f27" --> <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 1.1:</b> @@ -89,11 +77,11 @@ df_describe.describe() <li>Justiy your choice.</li> </p> </div> -<!-- #endregion --> + _Your answer here._ -<!-- #region id="d3bdade1-2694-4ee4-a180-3872ee17a76d" --> + <div style="background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <b>Solution:</b> @@ -101,7 +89,7 @@ _Your answer here._ - Uniform and Gaussian distributions are symmetric so they are not appropriate to model the observations. We can see it by computing the difference between the minimum value and the P50% and between the maximum value and P50%. $d_{min, 50}= 33.87-2.33 = 31.54 < d_{max, 50} = 82.60 - 33.87 = 48.72$. </div> </div> -<!-- #endregion --> + ## Part 2: Use pen and paper! @@ -119,7 +107,7 @@ Fit the selected distribution by moments. _Your answer here._ -<!-- #region id="d3bdade1-2694-4ee4-a180-3872ee17a76d" --> + <div style="background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <b>Solution:</b> Fitting by moments a distribution implies equating the moments of the observations to those of the parametric distribution. Applying then the expressions of the mean and variance of the Gumbel distribution we obtain: @@ -133,7 +121,7 @@ $ $ </div> </div> -<!-- #endregion --> + We can now check the fit by computing manually some probabilities from the fitted distribution and comparing them with the empirical ones. @@ -157,7 +145,7 @@ You can summarize you answers in the following table (report your values with 3- |Empirical quantiles [MPa] | | | | | | |Predicted quantiles [MPa] |||||| -<!-- #region id="d3bdade1-2694-4ee4-a180-3872ee17a76d" --> +<!-- #region --> <div style="background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <b>Solution:</b> @@ -187,14 +175,13 @@ The values close to the central moments (P25%, P50% and P75%) are well fitted. R Now, let's assess the performance using further goodness of fit metrics and see whether they are consistent with the previously done analysis. -<!-- #region id="bfadcf3f-4578-4809-acdb-625ab3a71f27" --> + <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 3.1:</b> Prepare a function to compute the empirical cumulative distribution function. </p> </div> -<!-- #endregion --> ```python # def ecdf(YOUR_CODE_HERE): @@ -209,7 +196,6 @@ def ecdf(observations): return [y, x] ``` -<!-- #region id="bfadcf3f-4578-4809-acdb-625ab3a71f27" --> <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Task 3.2:</b> @@ -218,17 +204,17 @@ Transform the fitted parameters for the selected distribution to loc-scale-shape </div> Hint: the distributions are in our online textbook, but it is also critical to make sure that the formulation in the book is identical to that of the Python package we are using. You can do this by finding the page of the relevant distribution in the [Scipy.stats](https://docs.scipy.org/doc/scipy/reference/stats.html) documentation. -<!-- #endregion --> + _Your answer here._ -<!-- #region id="d3bdade1-2694-4ee4-a180-3872ee17a76d" --> + <div style="background-color:#FAE99E; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <b>Solution:</b> The Gumbel distribution is already parameterized in terms of loc-scale-shape. You don't need to do anything! </div> </div> -<!-- #endregion --> + <div style="background-color:#AABAB2; color: black; width:95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> diff --git a/synced_files/Week_1_7/scipy_stats.md b/synced_files/Week_1_7/scipy_stats.md index f3c236f6..191516cf 100644 --- a/synced_files/Week_1_7/scipy_stats.md +++ b/synced_files/Week_1_7/scipy_stats.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # Tips for Teachers: Week 1.7, Continuous Distributions Book chapters [here](https://mude.citg.tudelft.nl/2024/book/probability/Reminder_intro.html). diff --git a/synced_files/Week_1_8/PA/PA_1_8_Equations_Done_Symply.md b/synced_files/Week_1_8/PA/PA_1_8_Equations_Done_Symply.md index 89f8859a..319b2435 100644 --- a/synced_files/Week_1_8/PA/PA_1_8_Equations_Done_Symply.md +++ b/synced_files/Week_1_8/PA/PA_1_8_Equations_Done_Symply.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # PA 1.8: Equations Done Symply <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/Week_1_8/PA/PA_1_8_solution.md b/synced_files/Week_1_8/PA/PA_1_8_solution.md index d606b78b..7bc2986c 100644 --- a/synced_files/Week_1_8/PA/PA_1_8_solution.md +++ b/synced_files/Week_1_8/PA/PA_1_8_solution.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # PA 1.8: Equations Done Symply <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/Week_1_8/WS/WS_1_8_Thingamajig.md b/synced_files/Week_1_8/WS/WS_1_8_Thingamajig.md index 4e620bfa..d54a23c5 100644 --- a/synced_files/Week_1_8/WS/WS_1_8_Thingamajig.md +++ b/synced_files/Week_1_8/WS/WS_1_8_Thingamajig.md @@ -1,16 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - -<!-- #region id="9adbf457-797f-45b7-8f8b-0e46e0e2f5ff" --> # WS 1.8: The Thingamajig! <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> @@ -25,7 +14,6 @@ jupyter: </h2> *[CEGM1000 MUDE](http://mude.citg.tudelft.nl/): Week 1.8. For: 23 October, 2024.* -<!-- #endregion --> <!-- #region --> ## Objective @@ -177,11 +165,10 @@ Build the bivariate distribution using <code>scipy.stats.multivariate_normal</co </p> </div> -<!-- #region id="0491cc69" --> + <div style="background-color:#facb8e; color: black; width: 95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p>Use the helper function <code>plot_contour</code> in <code>helper.py</code>; it was already imported above. Either look in the file to read it, or view the documentation in the notebook with <code>plot_contour?</code></p> <p><em>Hint: for this Task use the optional </em><code>data</code><em> argument!.</em></p></div> -<!-- #endregion --> ```python # plot_contour? # uncomment and run to read docstring @@ -221,12 +208,11 @@ For each of the three cases, do the following: </p> </div> -<!-- #region id="0491cc69" --> + <div style="background-color:#facb8e; color: black; width: 95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p>Note that the optional arguments in the helper function <code>plot_contour</code> will be useful here--<b>also for the Project on Friday!</b> Here is an example code that shows you what it can do (the values are meaningless) </p></div> -<!-- #endregion --> ```python region_example = np.array([[0, 5, 12, 20, 28, 30], @@ -275,9 +261,8 @@ YOUR_CODE_HERE # probably several cells too ;) ``` -<!-- #region id="0491cc69" --> <div style="background-color:#facb8e; color: black; width: 95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p>Note: the bivariate figures are an important concept for the exam, so if using the code is too difficult for you to use when studying on your own, try sketching it on paper.</p></div> -<!-- #endregion --> + ## Part 3: Validate Bivariate with Monte Carlo Simulation @@ -380,9 +365,8 @@ axes.legend() axes.grid() ``` -<!-- #region id="0491cc69" --> <div style="background-color:#facb8e; color: black; width: 95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"><p>In case you are wondering, the data for this exercise was computed with a Clayton Copula. A Copula is a useful way of modelling non-linear dependence. If you would like to learn more about this, you should consider the 2nd year cross-over module CEGM2005 Probabilistic Modelling of real-world phenomena through ObseRvations and Elicitation (MORE).</p></div> -<!-- #endregion --> + **End of notebook.** <h2 style="height: 60px"> diff --git a/synced_files/Week_1_8/WS/WS_1_8_solution.md b/synced_files/Week_1_8/WS/WS_1_8_solution.md index 4ac2710d..a62badc0 100644 --- a/synced_files/Week_1_8/WS/WS_1_8_solution.md +++ b/synced_files/Week_1_8/WS/WS_1_8_solution.md @@ -1,16 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - -<!-- #region id="9adbf457-797f-45b7-8f8b-0e46e0e2f5ff" --> # WS 1.8: The Thingamajig! <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> @@ -25,7 +14,6 @@ jupyter: </h2> *[CEGM1000 MUDE](http://mude.citg.tudelft.nl/): Week 1.8. For: 23 October, 2024.* -<!-- #endregion --> <!-- #region --> ## Objective @@ -223,11 +211,10 @@ Build the bivariate distribution using <code>scipy.stats.multivariate_normal</co </p> </div> -<!-- #region id="0491cc69" --> + <div style="background-color:#facb8e; color: black; width: 95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p>Use the helper function <code>plot_contour</code> in <code>helper.py</code>; it was already imported above. Either look in the file to read it, or view the documentation in the notebook with <code>plot_contour?</code></p> <p><em>Hint: for this Task use the optional </em><code>data</code><em> argument!.</em></p></div> -<!-- #endregion --> ```python # plot_contour? # uncomment and run to read docstring @@ -304,12 +291,11 @@ For each of the three cases, do the following: </p> </div> -<!-- #region id="0491cc69" --> + <div style="background-color:#facb8e; color: black; width: 95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p>Note that the optional arguments in the helper function <code>plot_contour</code> will be useful here--<b>also for the Project on Friday!</b> Here is an example code that shows you what it can do (the values are meaningless) </p></div> -<!-- #endregion --> ```python region_example = np.array([[0, 5, 12, 20, 28, 30], @@ -364,9 +350,9 @@ which is then defined in Python and included in the `plot_contours` function as </p> </div> -<!-- #region id="0491cc69" --> + <div style="background-color:#facb8e; color: black; width: 95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p>Note: order of the tasks in this solution is not important.</p></div> -<!-- #endregion --> + ### Case 1 and 2 @@ -552,9 +538,9 @@ You should be able to confirm these observations by considering how the contours </p> </div> -<!-- #region id="0491cc69" --> + <div style="background-color:#facb8e; color: black; width: 95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p>Note: the bivariate figures are an important concept for the exam, so if using the code is too difficult for you to use when studying on your own, try sketching it on paper.</p></div> -<!-- #endregion --> + <div style="background-color:#FAE99E; color: black; width: 95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> @@ -734,9 +720,8 @@ axes.legend() axes.grid() ``` -<!-- #region id="0491cc69" --> <div style="background-color:#facb8e; color: black; width: 95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"><p>In case you are wondering, the data for this exercise was computed with a Clayton Copula. A Copula is a useful way of modelling non-linear dependence. If you would like to learn more about this, you should consider the 2nd year cross-over module CEGM2005 Probabilistic Modelling of real-world phenomena through ObseRvations and Elicitation (MORE).</p></div> -<!-- #endregion --> + **End of notebook.** <h2 style="height: 60px"> diff --git a/synced_files/Week_1_8/WS/linearity_or_not.md b/synced_files/Week_1_8/WS/linearity_or_not.md index 66e99562..caef2114 100644 --- a/synced_files/Week_1_8/WS/linearity_or_not.md +++ b/synced_files/Week_1_8/WS/linearity_or_not.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - ```python import numpy as np import matplotlib.pyplot as plt diff --git a/synced_files/Week_1_8/data.md b/synced_files/Week_1_8/data.md index 789ed298..fc80c7ab 100644 --- a/synced_files/Week_1_8/data.md +++ b/synced_files/Week_1_8/data.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - ```python import numpy as np from scipy import stats diff --git a/synced_files/Week_1_8/intersection.md b/synced_files/Week_1_8/intersection.md index 10e8148c..e7489c75 100644 --- a/synced_files/Week_1_8/intersection.md +++ b/synced_files/Week_1_8/intersection.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - ```python import numpy as np from scipy import stats diff --git a/synced_files/Week_1_8/test_bivariate.md b/synced_files/Week_1_8/test_bivariate.md index c7c94f4f..00707966 100644 --- a/synced_files/Week_1_8/test_bivariate.md +++ b/synced_files/Week_1_8/test_bivariate.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # Illustration `bivariate` diff --git a/synced_files/Week_2_1/PA/PA_2_1_classy_city.md b/synced_files/Week_2_1/PA/PA_2_1_classy_city.md index 07a38819..803cfc39 100644 --- a/synced_files/Week_2_1/PA/PA_2_1_classy_city.md +++ b/synced_files/Week_2_1/PA/PA_2_1_classy_city.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # PA 2.1: Classy City <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/Week_2_1/PA/PA_2_1_solution.md b/synced_files/Week_2_1/PA/PA_2_1_solution.md index 2bccb7c5..0c403723 100644 --- a/synced_files/Week_2_1/PA/PA_2_1_solution.md +++ b/synced_files/Week_2_1/PA/PA_2_1_solution.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # PA 2.1: Classy City <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/Week_2_1/PA/PA_dev.md b/synced_files/Week_2_1/PA/PA_dev.md index 6dc2cbf0..126f31ce 100644 --- a/synced_files/Week_2_1/PA/PA_dev.md +++ b/synced_files/Week_2_1/PA/PA_dev.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - ```python %load_ext autoreload %autoreload 2 diff --git a/synced_files/Week_2_1/PA/U.md b/synced_files/Week_2_1/PA/U.md index 0411e592..5964207f 100644 --- a/synced_files/Week_2_1/PA/U.md +++ b/synced_files/Week_2_1/PA/U.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - ```python length = 10 height = (length**2 - (length/2)**2)**0.5 diff --git a/synced_files/Week_2_1/WS_2_1_solution.md b/synced_files/Week_2_1/WS_2_1_solution.md index 0f1cabba..0349b358 100644 --- a/synced_files/Week_2_1/WS_2_1_solution.md +++ b/synced_files/Week_2_1/WS_2_1_solution.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # WS 2.1: Wiggles <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 90px;right: 30px; margin: 0; border: 0"> @@ -248,13 +238,12 @@ def check_variables_1D(): print(f'CFL: {calculated_CFL:.2e}') ``` -<!-- #region id="0491cc69" --> <div style="background-color:#facb8e; color: black; width: 95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>Start of code to define a dictionary to help keep track of analysis "cases." This is not part of the handout.</b> </p> </div> -<!-- #endregion --> + To help present specific cases in the solution, a dictionary is used to store the key Python variable values that define the problem of interest are stored: ``` @@ -322,13 +311,12 @@ p0, c, L, Nx, T, Nt, dx, dt, central, square = case_set(C[3]) check_variables_1D() ``` -<!-- #region id="0491cc69" --> <div style="background-color:#facb8e; color: black; width: 95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> <b>End of dictionary code.</b> Note that it is used below, for example with <code>case_set</code> </p> </div> -<!-- #endregion --> + Variables are set below, then you should use the functions provided, for example, `check_variables_1D`, prior to running a simulation to make sure you are solving the problem you think you are! @@ -555,13 +543,12 @@ $$ The code is set up in a very similar way to the 1D case above. Use it to explore how the advection problem works in 2D! In particular, see if you observe the effect called "numerical diffusion" --- when the numerical scheme causes the square pulse to "diffuse" into a bell shaped surface. Even though only the advection term was implmented! </div> -<!-- #region id="0491cc69" --> + <div style="background-color:#facb8e; color: black; width: 95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> The initial values of the variables below will result in numerical instability. See if you can fix it! </p> </div> -<!-- #endregion --> ```python p0 = 2.0 diff --git a/synced_files/Week_2_1/WS_2_1_wiggle.md b/synced_files/Week_2_1/WS_2_1_wiggle.md index 499bba28..7bf9440e 100644 --- a/synced_files/Week_2_1/WS_2_1_wiggle.md +++ b/synced_files/Week_2_1/WS_2_1_wiggle.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # WS 2.1: Wiggles <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 90px;right: 30px; margin: 0; border: 0"> @@ -412,13 +402,12 @@ $$ The code is set up in a very similar way to the 1D case above. Use it to explore how the advection problem works in 2D! In particular, see if you observe the effect called "numerical diffusion" --- when the numerical scheme causes the square pulse to "diffuse" into a bell shaped surface. Even though only the advection term was implmented! </div> -<!-- #region id="0491cc69" --> + <div style="background-color:#facb8e; color: black; width: 95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> The initial values of the variables below will result in numerical instability. See if you can fix it! </p> </div> -<!-- #endregion --> ```python p0 = 2.0 diff --git a/synced_files/Week_2_1/WS_2_1_wiggle_test_ci.md b/synced_files/Week_2_1/WS_2_1_wiggle_test_ci.md index 499bba28..7bf9440e 100644 --- a/synced_files/Week_2_1/WS_2_1_wiggle_test_ci.md +++ b/synced_files/Week_2_1/WS_2_1_wiggle_test_ci.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # WS 2.1: Wiggles <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 90px;right: 30px; margin: 0; border: 0"> @@ -412,13 +402,12 @@ $$ The code is set up in a very similar way to the 1D case above. Use it to explore how the advection problem works in 2D! In particular, see if you observe the effect called "numerical diffusion" --- when the numerical scheme causes the square pulse to "diffuse" into a bell shaped surface. Even though only the advection term was implmented! </div> -<!-- #region id="0491cc69" --> + <div style="background-color:#facb8e; color: black; width: 95%; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px"> <p> The initial values of the variables below will result in numerical instability. See if you can fix it! </p> </div> -<!-- #endregion --> ```python p0 = 2.0 diff --git a/synced_files/Week_2_2/PA/PA_2_2_love_is_sparse.md b/synced_files/Week_2_2/PA/PA_2_2_love_is_sparse.md index c3a9d680..e55b0aae 100644 --- a/synced_files/Week_2_2/PA/PA_2_2_love_is_sparse.md +++ b/synced_files/Week_2_2/PA/PA_2_2_love_is_sparse.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # PA 2.2: Love is Sparse <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/Week_2_2/PA/PA_2_2_solution.md b/synced_files/Week_2_2/PA/PA_2_2_solution.md index d3a2fbe3..68a12a97 100644 --- a/synced_files/Week_2_2/PA/PA_2_2_solution.md +++ b/synced_files/Week_2_2/PA/PA_2_2_solution.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # PA 2.2: Love is Sparse <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/Week_2_2/PA_2_2_love_is_sparse.md b/synced_files/Week_2_2/PA_2_2_love_is_sparse.md index 99b781fe..9d41a5f0 100644 --- a/synced_files/Week_2_2/PA_2_2_love_is_sparse.md +++ b/synced_files/Week_2_2/PA_2_2_love_is_sparse.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # PA 2.2: Love is Sparse <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/Week_2_2/PA_2_2_solution.md b/synced_files/Week_2_2/PA_2_2_solution.md index a61bf58e..1718225b 100644 --- a/synced_files/Week_2_2/PA_2_2_solution.md +++ b/synced_files/Week_2_2/PA_2_2_solution.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # PA 2.2: Love is Sparse <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/Week_2_2/WS_2_2_more_support.md b/synced_files/Week_2_2/WS_2_2_more_support.md index 47edc1fe..ef2c96c2 100644 --- a/synced_files/Week_2_2/WS_2_2_more_support.md +++ b/synced_files/Week_2_2/WS_2_2_more_support.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # WS 2.2: More support <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/Week_2_2/WS_2_2_solution.md b/synced_files/Week_2_2/WS_2_2_solution.md index a0ea3b14..caa3affc 100644 --- a/synced_files/Week_2_2/WS_2_2_solution.md +++ b/synced_files/Week_2_2/WS_2_2_solution.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # WS 2.2: More support <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/Week_2_2/old/PA_2_1_solution.md b/synced_files/Week_2_2/old/PA_2_1_solution.md index bab1794d..de3ea599 100644 --- a/synced_files/Week_2_2/old/PA_2_1_solution.md +++ b/synced_files/Week_2_2/old/PA_2_1_solution.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # Programming Assignment 10: Love Is Sparse <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/Week_2_2/old/PA_2_1_solution_sympy.html b/synced_files/Week_2_2/old/PA_2_1_solution_sympy.html index 47b10dcc..d74305fd 100644 --- a/synced_files/Week_2_2/old/PA_2_1_solution_sympy.html +++ b/synced_files/Week_2_2/old/PA_2_1_solution_sympy.html @@ -8031,7 +8031,7 @@ BSR: 0.0106 </div> </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=7da1f6e4"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=5b06a029"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -8041,7 +8041,7 @@ BSR: 0.0106 </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=094f5a0c"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=38146d2e"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -8055,7 +8055,7 @@ BSR: 0.0106 </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=01665b5b"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=7fdcd51a"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -8069,7 +8069,7 @@ BSR: 0.0106 </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=85815c2b"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=033c58ff"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -8085,7 +8085,7 @@ BSR: 0.0106 </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=215ca219"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=39e2b25b"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -8100,7 +8100,7 @@ BSR: 0.0106 </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=3b24ecd7"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=f856ffc1"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -8127,7 +8127,7 @@ $\displaystyle 1.63099252391669 \cdot 10^{-851}$ </div> </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=e0325631"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=43767b07"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -8137,7 +8137,7 @@ $\displaystyle 1.63099252391669 \cdot 10^{-851}$ </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=0ca80f86"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=69098051"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -8199,7 +8199,7 @@ $\displaystyle 1.63099252391669 \cdot 10^{-851}$ </div> </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=f0b537b6"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=5506a6e8"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> diff --git a/synced_files/Week_2_2/old/PA_2_1_solution_sympy.ipynb b/synced_files/Week_2_2/old/PA_2_1_solution_sympy.ipynb index 4a446ea1..56f04276 100644 --- a/synced_files/Week_2_2/old/PA_2_1_solution_sympy.ipynb +++ b/synced_files/Week_2_2/old/PA_2_1_solution_sympy.ipynb @@ -386,7 +386,7 @@ }, { "cell_type": "markdown", - "id": "e4e1ee66", + "id": "536c28de", "metadata": {}, "source": [ "You could also solve this problem using sympy! What would be the benefit of doing this? Check below how long it will take! You won't need timeit for this one..." @@ -395,7 +395,7 @@ { "cell_type": "code", "execution_count": null, - "id": "f6230b91", + "id": "8732437c", "metadata": {}, "outputs": [], "source": [ @@ -405,7 +405,7 @@ { "cell_type": "code", "execution_count": null, - "id": "b995896d", + "id": "304e5fcd", "metadata": {}, "outputs": [], "source": [ @@ -415,7 +415,7 @@ { "cell_type": "code", "execution_count": null, - "id": "f6373304", + "id": "49fd394b", "metadata": {}, "outputs": [], "source": [ @@ -427,7 +427,7 @@ { "cell_type": "code", "execution_count": null, - "id": "131a6ff8", + "id": "c5541506", "metadata": {}, "outputs": [], "source": [ @@ -438,7 +438,7 @@ { "cell_type": "code", "execution_count": null, - "id": "461986b3", + "id": "57742cdd", "metadata": {}, "outputs": [], "source": [ @@ -447,7 +447,7 @@ }, { "cell_type": "markdown", - "id": "30ac8973", + "id": "2a9a31d8", "metadata": {}, "source": [ "What is the result for the 501th value using float values?" @@ -456,7 +456,7 @@ { "cell_type": "code", "execution_count": null, - "id": "b9a8ccb6", + "id": "98d72428", "metadata": {}, "outputs": [], "source": [ @@ -496,7 +496,7 @@ }, { "cell_type": "markdown", - "id": "e3fbadc9", + "id": "f3646d71", "metadata": {}, "source": [] } diff --git a/synced_files/Week_2_2/old/PA_2_1_solution_sympy.md b/synced_files/Week_2_2/old/PA_2_1_solution_sympy.md index f7cf5981..8d856d8f 100644 --- a/synced_files/Week_2_2/old/PA_2_1_solution_sympy.md +++ b/synced_files/Week_2_2/old/PA_2_1_solution_sympy.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # Programming Assignment 10: Love Is Sparse <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/Week_2_2/old/WS_2_2_more_support.md b/synced_files/Week_2_2/old/WS_2_2_more_support.md index c14ba761..b054037f 100644 --- a/synced_files/Week_2_2/old/WS_2_2_more_support.md +++ b/synced_files/Week_2_2/old/WS_2_2_more_support.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # WS 2.2: More support <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/Week_2_2/old/old_PA10_Love_is_Sparse.md b/synced_files/Week_2_2/old/old_PA10_Love_is_Sparse.md index 38f46a8f..b2aec04c 100644 --- a/synced_files/Week_2_2/old/old_PA10_Love_is_Sparse.md +++ b/synced_files/Week_2_2/old/old_PA10_Love_is_Sparse.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # Programming Assignment 10: Love Is Sparse <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/Week_2_2/old/old_PA10_solution_sympy.html b/synced_files/Week_2_2/old/old_PA10_solution_sympy.html index 097ab60b..0cec8d4a 100644 --- a/synced_files/Week_2_2/old/old_PA10_solution_sympy.html +++ b/synced_files/Week_2_2/old/old_PA10_solution_sympy.html @@ -8031,7 +8031,7 @@ BSR: 0.0106 </div> </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=620f7209"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=c37367c3"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -8041,7 +8041,7 @@ BSR: 0.0106 </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=078290b3"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=807abf87"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -8055,7 +8055,7 @@ BSR: 0.0106 </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=c03d112e"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=f7224df3"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -8069,7 +8069,7 @@ BSR: 0.0106 </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=f4c294a7"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=fcfd38d1"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -8085,7 +8085,7 @@ BSR: 0.0106 </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=83ec3105"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=c51b913e"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -8100,7 +8100,7 @@ BSR: 0.0106 </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=3e66efa8"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=754d411f"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -8127,7 +8127,7 @@ $\displaystyle 1.63099252391669 \cdot 10^{-851}$ </div> </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=ba702843"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=20a27a80"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -8137,7 +8137,7 @@ $\displaystyle 1.63099252391669 \cdot 10^{-851}$ </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=e683b3e8"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=e547c60f"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -8199,7 +8199,7 @@ $\displaystyle 1.63099252391669 \cdot 10^{-851}$ </div> </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=8eef908b"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=787336a8"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> diff --git a/synced_files/Week_2_2/old/old_PA10_solution_sympy.ipynb b/synced_files/Week_2_2/old/old_PA10_solution_sympy.ipynb index 73b1c22e..97d02b93 100644 --- a/synced_files/Week_2_2/old/old_PA10_solution_sympy.ipynb +++ b/synced_files/Week_2_2/old/old_PA10_solution_sympy.ipynb @@ -386,7 +386,7 @@ }, { "cell_type": "markdown", - "id": "2085d56f", + "id": "cdcefd0b", "metadata": {}, "source": [ "You could also solve this problem using sympy! What would be the benefit of doing this? Check below how long it will take! You won't need timeit for this one..." @@ -395,7 +395,7 @@ { "cell_type": "code", "execution_count": null, - "id": "b963caf2", + "id": "0db705b7", "metadata": {}, "outputs": [], "source": [ @@ -405,7 +405,7 @@ { "cell_type": "code", "execution_count": null, - "id": "73b7c9f2", + "id": "120d57a7", "metadata": {}, "outputs": [], "source": [ @@ -415,7 +415,7 @@ { "cell_type": "code", "execution_count": null, - "id": "f5dc367c", + "id": "6a3d883c", "metadata": {}, "outputs": [], "source": [ @@ -427,7 +427,7 @@ { "cell_type": "code", "execution_count": null, - "id": "bd1cf299", + "id": "f2da29c6", "metadata": {}, "outputs": [], "source": [ @@ -438,7 +438,7 @@ { "cell_type": "code", "execution_count": null, - "id": "35d15a39", + "id": "d2f742c3", "metadata": {}, "outputs": [], "source": [ @@ -447,7 +447,7 @@ }, { "cell_type": "markdown", - "id": "8ac2ada4", + "id": "68fa3ccf", "metadata": {}, "source": [ "What is the result for the 501th value using float values?" @@ -456,7 +456,7 @@ { "cell_type": "code", "execution_count": null, - "id": "a434bb22", + "id": "d63a6b79", "metadata": {}, "outputs": [], "source": [ @@ -496,7 +496,7 @@ }, { "cell_type": "markdown", - "id": "e75def24", + "id": "fb84dd97", "metadata": {}, "source": [] } diff --git a/synced_files/Week_2_2/old/old_PA10_solution_sympy.md b/synced_files/Week_2_2/old/old_PA10_solution_sympy.md index f7cf5981..8d856d8f 100644 --- a/synced_files/Week_2_2/old/old_PA10_solution_sympy.md +++ b/synced_files/Week_2_2/old/old_PA10_solution_sympy.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # Programming Assignment 10: Love Is Sparse <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/Week_2_3/PA/PA_2_3_iter_remoto.md b/synced_files/Week_2_3/PA/PA_2_3_iter_remoto.md index 91adbdd4..5a6c1c31 100644 --- a/synced_files/Week_2_3/PA/PA_2_3_iter_remoto.md +++ b/synced_files/Week_2_3/PA/PA_2_3_iter_remoto.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # PA 2.3: iTer-remoto <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/Week_2_3/PA/PA_2_3_solution.md b/synced_files/Week_2_3/PA/PA_2_3_solution.md index 4a8fba3c..4151f74b 100644 --- a/synced_files/Week_2_3/PA/PA_2_3_solution.md +++ b/synced_files/Week_2_3/PA/PA_2_3_solution.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # PA 2.3: iTer-remoto <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/Week_2_3/WS_2_3_DFT_you_try_meow.md b/synced_files/Week_2_3/WS_2_3_DFT_you_try_meow.md index 90496b9d..0b4eeb30 100644 --- a/synced_files/Week_2_3/WS_2_3_DFT_you_try_meow.md +++ b/synced_files/Week_2_3/WS_2_3_DFT_you_try_meow.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # WS 2.3: Discrete Fourier Transform (DFT): You Try Meow (Miauw) <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> @@ -44,10 +34,9 @@ That's right! We convert our signal into the frequency domain. And if you would like an additional explanation of the key frequencies, you can find it [here](https://medium.com/@kovalenko.alx/fun-with-fourier-591662576a77). -<!-- #region id="0491cc69" --> + <div style="background-color:#facb8e; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%"> <p>Note the use of <code>zip</code>, <code>stem</code>, <code>annotate</code> and the modulo operator <code>%</code>. Refer to PA 2.3 if you do not understand these tools. Furthermore, note that the term _modulus_ is also used here (and in the textbook), which is another term for _absolute value._</p></div> -<!-- #endregion --> ```python import numpy as np diff --git a/synced_files/Week_2_3/WS_2_3_solution.md b/synced_files/Week_2_3/WS_2_3_solution.md index deab5c58..c9072595 100644 --- a/synced_files/Week_2_3/WS_2_3_solution.md +++ b/synced_files/Week_2_3/WS_2_3_solution.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # WS 2.3: Discrete Fourier Transform (DFT): You Try Meow (Miauw) <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> @@ -39,10 +29,9 @@ _Find the answer [here](https://tudelft.h5p.com/content/1292126914399042257/embe That's right! We convert our signal into the frequency domain. And if you would like an additional explanation of the key frequencies, you can find it [here](https://medium.com/@kovalenko.alx/fun-with-fourier-591662576a77). -<!-- #region id="0491cc69" --> + <div style="background-color:#facb8e; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%"> <p>Note the use of <code>zip</code>, <code>stem</code>, <code>annotate</code> and the modulo operator <code>%</code>. Refer to PA11 if you do not understand these tools. Furthermore, note that the term _modulus_ is also used here (and in the textbook), which is another term for _absolute value._</p></div> -<!-- #endregion --> ```python import numpy as np diff --git a/synced_files/Week_2_4/PA/PA_2_4_A_gurobilicious.md b/synced_files/Week_2_4/PA/PA_2_4_A_gurobilicious.md index 22314c00..10b86ae6 100644 --- a/synced_files/Week_2_4/PA/PA_2_4_A_gurobilicious.md +++ b/synced_files/Week_2_4/PA/PA_2_4_A_gurobilicious.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # PA 2.4A: Gurobi Environment and License <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/Week_2_4/PA/PA_2_4_B_axis_of_awesome.md b/synced_files/Week_2_4/PA/PA_2_4_B_axis_of_awesome.md index c74c3a6c..b5f65398 100644 --- a/synced_files/Week_2_4/PA/PA_2_4_B_axis_of_awesome.md +++ b/synced_files/Week_2_4/PA/PA_2_4_B_axis_of_awesome.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # PA 2.4B: [Axis of Awesome](https://youtu.be/5pidokakU4I?si=Y5ewcgPFFQ5cLmC6) <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/Week_2_4/PA/PA_2_4_B_solution.html b/synced_files/Week_2_4/PA/PA_2_4_B_solution.html index 5be84496..b9c20481 100644 --- a/synced_files/Week_2_4/PA/PA_2_4_B_solution.html +++ b/synced_files/Week_2_4/PA/PA_2_4_B_solution.html @@ -7977,26 +7977,39 @@ Max coins spent in any year: 290.0 <p><strong>End of notebook.</strong></p> <h2 style="height: 60px"> </h2> -<h3 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; bottom: 60px; right: 50px; margin: 0; border: 0"> +<h3 style="position: relative; display: flex; flex-direction: row-reverse; margin: 20px 50px; border: 0"> <style> .markdown {width:100%; position: relative} article { position: relative } + .footer-links { + display: flex; + flex-direction: row-reverse; + align-items: center; + gap: 20px; + margin-bottom: 20px; + } + .footer-links img { + height: auto; + max-width: 100px; + } </style> -<a href="http://creativecommons.org/licenses/by-nc-sa/4.0/" rel="license"> -<img alt="Creative Commons License" src="https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png" style="border-width:; width:88px; height:auto; padding-top:10px"/> +<div class="footer-links"> +<a href="http://creativecommons.org/licenses/by/4.0/" rel="license"> +<img alt="Creative Commons License" src="https://i.creativecommons.org/l/by/4.0/88x31.png" style="width:88px; padding-top:10px"/> </a> <a href="https://www.tudelft.nl/en/ceg" rel="TU Delft"> -<img alt="TU Delft" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/tu-logo/TU_P1_full-color.png" style="border-width:0; width:100px; height:auto; padding-bottom:0px"/> +<img alt="TU Delft" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/tu-logo/TU_P1_full-color.png" style="width:100px;"/> </a> <a href="http://mude.citg.tudelft.nl/" rel="MUDE"> -<img alt="MUDE" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/mude-logo/MUDE_Logo-small.png" style="border-width:0; width:100px; height:auto; padding-bottom:0px"/> +<img alt="MUDE" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/mude-logo/MUDE_Logo-small.png" style="width:100px;"/> </a> +</div> </h3> <span style="font-size: 75%"> -© Copyright 2023 <a href="https://studiegids.tudelft.nl/a101_displayCourse.do?course_id=65595" rel="MUDE Team">MUDE Teaching Team</a> TU Delft. This work is licensed under a <a href="http://creativecommons.org/licenses/by-nc-sa/4.0/" rel="license">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>. - - -</span></div> +© Copyright 2024 <a href="http://mude.citg.tudelft.nl/" rel="MUDE">MUDE</a> TU Delft. This work is licensed under a <a href="http://creativecommons.org/licenses/by/4.0/" rel="license">CC BY 4.0 License</a>. +</span> +<p><userstyle>Normal</userstyle></p> +</div> </div> </div> </div> diff --git a/synced_files/Week_2_4/PA/PA_2_4_B_solution.ipynb b/synced_files/Week_2_4/PA/PA_2_4_B_solution.ipynb index b5137380..53ccf677 100644 --- a/synced_files/Week_2_4/PA/PA_2_4_B_solution.ipynb +++ b/synced_files/Week_2_4/PA/PA_2_4_B_solution.ipynb @@ -357,24 +357,39 @@ "**End of notebook.**\n", "<h2 style=\"height: 60px\">\n", "</h2>\n", - "<h3 style=\"position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; bottom: 60px; right: 50px; margin: 0; border: 0\">\n", + "<h3 style=\"position: relative; display: flex; flex-direction: row-reverse; margin: 20px 50px; border: 0\">\n", " <style>\n", " .markdown {width:100%; position: relative}\n", " article { position: relative }\n", + " .footer-links {\n", + " display: flex;\n", + " flex-direction: row-reverse;\n", + " align-items: center;\n", + " gap: 20px;\n", + " margin-bottom: 20px;\n", + " }\n", + " .footer-links img {\n", + " height: auto;\n", + " max-width: 100px;\n", + " }\n", " </style>\n", - " <a rel=\"license\" href=\"http://creativecommons.org/licenses/by-nc-sa/4.0/\">\n", - " <img alt=\"Creative Commons License\" style=\"border-width:; width:88px; height:auto; padding-top:10px\" src=\"https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png\" />\n", - " </a>\n", - " <a rel=\"TU Delft\" href=\"https://www.tudelft.nl/en/ceg\">\n", - " <img alt=\"TU Delft\" style=\"border-width:0; width:100px; height:auto; padding-bottom:0px\" src=\"https://gitlab.tudelft.nl/mude/public/-/raw/main/tu-logo/TU_P1_full-color.png\"/>\n", - " </a>\n", - " <a rel=\"MUDE\" href=\"http://mude.citg.tudelft.nl/\">\n", - " <img alt=\"MUDE\" style=\"border-width:0; width:100px; height:auto; padding-bottom:0px\" src=\"https://gitlab.tudelft.nl/mude/public/-/raw/main/mude-logo/MUDE_Logo-small.png\"/>\n", - " </a>\n", - " \n", + " <div class=\"footer-links\">\n", + " <a rel=\"license\" href=\"http://creativecommons.org/licenses/by/4.0/\">\n", + " <img alt=\"Creative Commons License\" style=\"width:88px; padding-top:10px\" src=\"https://i.creativecommons.org/l/by/4.0/88x31.png\" />\n", + " </a>\n", + " <a rel=\"TU Delft\" href=\"https://www.tudelft.nl/en/ceg\">\n", + " <img alt=\"TU Delft\" style=\"width:100px;\" src=\"https://gitlab.tudelft.nl/mude/public/-/raw/main/tu-logo/TU_P1_full-color.png\" />\n", + " </a>\n", + " <a rel=\"MUDE\" href=\"http://mude.citg.tudelft.nl/\">\n", + " <img alt=\"MUDE\" style=\"width:100px;\" src=\"https://gitlab.tudelft.nl/mude/public/-/raw/main/mude-logo/MUDE_Logo-small.png\" />\n", + " </a>\n", + " </div>\n", "</h3>\n", "<span style=\"font-size: 75%\">\n", - "© Copyright 2023 <a rel=\"MUDE Team\" href=\"https://studiegids.tudelft.nl/a101_displayCourse.do?course_id=65595\">MUDE Teaching Team</a> TU Delft. This work is licensed under a <a rel=\"license\" href=\"http://creativecommons.org/licenses/by-nc-sa/4.0/\">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>." + "© Copyright 2024 <a rel=\"MUDE\" href=\"http://mude.citg.tudelft.nl/\">MUDE</a> TU Delft. This work is licensed under a <a rel=\"license\" href=\"http://creativecommons.org/licenses/by/4.0/\">CC BY 4.0 License</a>.\n", + "</span>\n", + "\n", + "<userStyle>Normal</userStyle>" ] } ], diff --git a/synced_files/Week_2_4/PA/PA_2_4_B_solution.md b/synced_files/Week_2_4/PA/PA_2_4_B_solution.md index 62560128..b1cff44f 100644 --- a/synced_files/Week_2_4/PA/PA_2_4_B_solution.md +++ b/synced_files/Week_2_4/PA/PA_2_4_B_solution.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # PA 2.4B: [Axis of Awesome](https://youtu.be/5pidokakU4I?si=Y5ewcgPFFQ5cLmC6) <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> @@ -191,21 +181,36 @@ plot_acf(strong_autocorr_positive); **End of notebook.** <h2 style="height: 60px"> </h2> -<h3 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; bottom: 60px; right: 50px; margin: 0; border: 0"> +<h3 style="position: relative; display: flex; flex-direction: row-reverse; margin: 20px 50px; border: 0"> <style> .markdown {width:100%; position: relative} article { position: relative } + .footer-links { + display: flex; + flex-direction: row-reverse; + align-items: center; + gap: 20px; + margin-bottom: 20px; + } + .footer-links img { + height: auto; + max-width: 100px; + } </style> - <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/"> - <img alt="Creative Commons License" style="border-width:; width:88px; height:auto; padding-top:10px" src="https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png" /> - </a> - <a rel="TU Delft" href="https://www.tudelft.nl/en/ceg"> - <img alt="TU Delft" style="border-width:0; width:100px; height:auto; padding-bottom:0px" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/tu-logo/TU_P1_full-color.png"/> - </a> - <a rel="MUDE" href="http://mude.citg.tudelft.nl/"> - <img alt="MUDE" style="border-width:0; width:100px; height:auto; padding-bottom:0px" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/mude-logo/MUDE_Logo-small.png"/> - </a> - + <div class="footer-links"> + <a rel="license" href="http://creativecommons.org/licenses/by/4.0/"> + <img alt="Creative Commons License" style="width:88px; padding-top:10px" src="https://i.creativecommons.org/l/by/4.0/88x31.png" /> + </a> + <a rel="TU Delft" href="https://www.tudelft.nl/en/ceg"> + <img alt="TU Delft" style="width:100px;" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/tu-logo/TU_P1_full-color.png" /> + </a> + <a rel="MUDE" href="http://mude.citg.tudelft.nl/"> + <img alt="MUDE" style="width:100px;" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/mude-logo/MUDE_Logo-small.png" /> + </a> + </div> </h3> <span style="font-size: 75%"> -© Copyright 2023 <a rel="MUDE Team" href="https://studiegids.tudelft.nl/a101_displayCourse.do?course_id=65595">MUDE Teaching Team</a> TU Delft. This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>. +© Copyright 2024 <a rel="MUDE" href="http://mude.citg.tudelft.nl/">MUDE</a> TU Delft. This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by/4.0/">CC BY 4.0 License</a>. +</span> + +<userStyle>Normal</userStyle> diff --git a/synced_files/Week_2_4/PA/PA_2_4_B_solution.py b/synced_files/Week_2_4/PA/PA_2_4_B_solution.py index 48444df0..700cf58d 100644 --- a/synced_files/Week_2_4/PA/PA_2_4_B_solution.py +++ b/synced_files/Week_2_4/PA/PA_2_4_B_solution.py @@ -189,21 +189,36 @@ plot_acf(strong_autocorr_positive); # **End of notebook.** # <h2 style="height: 60px"> # </h2> -# <h3 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; bottom: 60px; right: 50px; margin: 0; border: 0"> +# <h3 style="position: relative; display: flex; flex-direction: row-reverse; margin: 20px 50px; border: 0"> # <style> # .markdown {width:100%; position: relative} # article { position: relative } +# .footer-links { +# display: flex; +# flex-direction: row-reverse; +# align-items: center; +# gap: 20px; +# margin-bottom: 20px; +# } +# .footer-links img { +# height: auto; +# max-width: 100px; +# } # </style> -# <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/"> -# <img alt="Creative Commons License" style="border-width:; width:88px; height:auto; padding-top:10px" src="https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png" /> -# </a> -# <a rel="TU Delft" href="https://www.tudelft.nl/en/ceg"> -# <img alt="TU Delft" style="border-width:0; width:100px; height:auto; padding-bottom:0px" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/tu-logo/TU_P1_full-color.png"/> -# </a> -# <a rel="MUDE" href="http://mude.citg.tudelft.nl/"> -# <img alt="MUDE" style="border-width:0; width:100px; height:auto; padding-bottom:0px" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/mude-logo/MUDE_Logo-small.png"/> -# </a> -# +# <div class="footer-links"> +# <a rel="license" href="http://creativecommons.org/licenses/by/4.0/"> +# <img alt="Creative Commons License" style="width:88px; padding-top:10px" src="https://i.creativecommons.org/l/by/4.0/88x31.png" /> +# </a> +# <a rel="TU Delft" href="https://www.tudelft.nl/en/ceg"> +# <img alt="TU Delft" style="width:100px;" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/tu-logo/TU_P1_full-color.png" /> +# </a> +# <a rel="MUDE" href="http://mude.citg.tudelft.nl/"> +# <img alt="MUDE" style="width:100px;" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/mude-logo/MUDE_Logo-small.png" /> +# </a> +# </div> # </h3> # <span style="font-size: 75%"> -# © Copyright 2023 <a rel="MUDE Team" href="https://studiegids.tudelft.nl/a101_displayCourse.do?course_id=65595">MUDE Teaching Team</a> TU Delft. This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>. +# © Copyright 2024 <a rel="MUDE" href="http://mude.citg.tudelft.nl/">MUDE</a> TU Delft. This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by/4.0/">CC BY 4.0 License</a>. +# </span> +# +# <userStyle>Normal</userStyle> diff --git a/synced_files/Week_2_4/WS_2_4_Feel_the_Pressure.md b/synced_files/Week_2_4/WS_2_4_Feel_the_Pressure.md index 0a041e87..2a13ab63 100644 --- a/synced_files/Week_2_4/WS_2_4_Feel_the_Pressure.md +++ b/synced_files/Week_2_4/WS_2_4_Feel_the_Pressure.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # WS 2.4: Atmospheric Pressure <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/Week_2_4/WS_2_4_solution.md b/synced_files/Week_2_4/WS_2_4_solution.md index 6437cca2..cb9a0f93 100644 --- a/synced_files/Week_2_4/WS_2_4_solution.md +++ b/synced_files/Week_2_4/WS_2_4_solution.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # WS 2.4: Atmospheric Pressure <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/Week_2_5/PA/PA_2_5_data_framework.md b/synced_files/Week_2_5/PA/PA_2_5_data_framework.md index 44bbf96c..0e9c308d 100644 --- a/synced_files/Week_2_5/PA/PA_2_5_data_framework.md +++ b/synced_files/Week_2_5/PA/PA_2_5_data_framework.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # PA 2.5: Data Framework <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/Week_2_5/PA/PA_2_5_solution.md b/synced_files/Week_2_5/PA/PA_2_5_solution.md index c46fe9c1..c6e5101a 100644 --- a/synced_files/Week_2_5/PA/PA_2_5_solution.md +++ b/synced_files/Week_2_5/PA/PA_2_5_solution.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # PA 2.5: Data Framework <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/Week_2_5/WS_2_5_Profit_vs_Planet.md b/synced_files/Week_2_5/WS_2_5_Profit_vs_Planet.md index 8123d032..aedbffd8 100644 --- a/synced_files/Week_2_5/WS_2_5_Profit_vs_Planet.md +++ b/synced_files/Week_2_5/WS_2_5_Profit_vs_Planet.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # WS 2.5: Profit vs Planet <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/Week_2_5/WS_2_5_solution.md b/synced_files/Week_2_5/WS_2_5_solution.md index 3ed5f1df..2986169e 100644 --- a/synced_files/Week_2_5/WS_2_5_solution.md +++ b/synced_files/Week_2_5/WS_2_5_solution.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # WS 2.5: Profit vs Planet <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/Week_2_6/PA/PA_2_6_3_way_split.md b/synced_files/Week_2_6/PA/PA_2_6_3_way_split.md index 410620bc..07fee4c0 100644 --- a/synced_files/Week_2_6/PA/PA_2_6_3_way_split.md +++ b/synced_files/Week_2_6/PA/PA_2_6_3_way_split.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # PA 2.6: 3-Way Split <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/Week_2_6/PA/PA_2_6_solution.md b/synced_files/Week_2_6/PA/PA_2_6_solution.md index 2c4d5ad3..1cfffd78 100644 --- a/synced_files/Week_2_6/PA/PA_2_6_solution.md +++ b/synced_files/Week_2_6/PA/PA_2_6_solution.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # PA 2.6: 3-Way Split <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/Week_2_6/WS_2_6_be_a_NN.md b/synced_files/Week_2_6/WS_2_6_be_a_NN.md index f6fd1017..270db5c1 100644 --- a/synced_files/Week_2_6/WS_2_6_be_a_NN.md +++ b/synced_files/Week_2_6/WS_2_6_be_a_NN.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # WS 2.6 Be like a Neural Network <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/Week_2_6/WS_2_6_solution.md b/synced_files/Week_2_6/WS_2_6_solution.md index 35a294b3..43613849 100644 --- a/synced_files/Week_2_6/WS_2_6_solution.md +++ b/synced_files/Week_2_6/WS_2_6_solution.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # WS 2.6: Be like a Neural Network <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/Week_2_7/PA/PA_2_7_Times_Tables.md b/synced_files/Week_2_7/PA/PA_2_7_Times_Tables.md index b9526ea8..2779fe29 100644 --- a/synced_files/Week_2_7/PA/PA_2_7_Times_Tables.md +++ b/synced_files/Week_2_7/PA/PA_2_7_Times_Tables.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # PA 2.7: Times Tables test <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/Week_2_7/PA/PA_2_7_solution.md b/synced_files/Week_2_7/PA/PA_2_7_solution.md index 8dd3e5df..dbf9ee09 100644 --- a/synced_files/Week_2_7/PA/PA_2_7_solution.md +++ b/synced_files/Week_2_7/PA/PA_2_7_solution.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # PA 2.7: Times Tables <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/Week_2_7/WS_2_7_solution.html b/synced_files/Week_2_7/WS_2_7_solution.html index 3927c55c..5fce9b8a 100644 --- a/synced_files/Week_2_7/WS_2_7_solution.html +++ b/synced_files/Week_2_7/WS_2_7_solution.html @@ -7793,7 +7793,7 @@ Name: Date, Length: 3909, dtype: datetime64[ns]</pre> </div> </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=27cb928e"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=501d379d"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -7809,7 +7809,7 @@ Based on the above plots, briefly describe the data. </div> </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=9a39108c"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=91993c04"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -7836,7 +7836,7 @@ Based on the above plots, briefly describe the data. </div> </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=aee75fd3"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=b4346b41"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -7871,7 +7871,7 @@ Sample monthly maxima from the timeseries and plot them on the timeseries. Plot </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=37391f1a"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=d34bdefa"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -7922,7 +7922,7 @@ Sample monthly maxima from the timeseries and plot them on the timeseries. Plot </div> </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=7be79b5a"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=ec3abd62"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -7938,7 +7938,7 @@ Look at the previous plots. Are the sampled maxima independent and identically d </div> </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=ac284558"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=8e6434c7"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -8033,7 +8033,7 @@ Compute PDF and the empirical cumulative distribution function of the observatio </div> </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=78306e6f"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=46f1f770"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> diff --git a/synced_files/Week_2_7/WS_2_7_solution.ipynb b/synced_files/Week_2_7/WS_2_7_solution.ipynb index 0fb415b2..bebb5600 100644 --- a/synced_files/Week_2_7/WS_2_7_solution.ipynb +++ b/synced_files/Week_2_7/WS_2_7_solution.ipynb @@ -130,7 +130,7 @@ }, { "cell_type": "markdown", - "id": "30cae0c1", + "id": "450bb4ab", "metadata": {}, "source": [ "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%\">\n", @@ -143,7 +143,7 @@ }, { "cell_type": "markdown", - "id": "652592df", + "id": "df84ffa7", "metadata": {}, "source": [ "<div style=\"background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%\">\n", @@ -166,7 +166,7 @@ }, { "cell_type": "markdown", - "id": "c2905476", + "id": "0af017c5", "metadata": {}, "source": [ "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%\">\n", @@ -196,7 +196,7 @@ { "cell_type": "code", "execution_count": null, - "id": "a0d21f36", + "id": "d2a2b498", "metadata": {}, "outputs": [], "source": [ @@ -223,7 +223,7 @@ }, { "cell_type": "markdown", - "id": "4ca84250", + "id": "900a7477", "metadata": {}, "source": [ "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%\">\n", @@ -236,7 +236,7 @@ }, { "cell_type": "markdown", - "id": "66d45180", + "id": "0fd88d1f", "metadata": {}, "source": [ "<div style=\"background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%\">\n", @@ -309,7 +309,7 @@ }, { "cell_type": "markdown", - "id": "66b18235", + "id": "7084f1db", "metadata": {}, "source": [ "<div style=\"background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%\">\n", diff --git a/synced_files/Week_2_7/WS_2_7_solution.md b/synced_files/Week_2_7/WS_2_7_solution.md index bce683a2..8732dd1d 100644 --- a/synced_files/Week_2_7/WS_2_7_solution.md +++ b/synced_files/Week_2_7/WS_2_7_solution.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # Workshop 2.7: Extreme temperature <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> @@ -25,7 +15,7 @@ jupyter: *[CEGM1000 MUDE](http://mude.citg.tudelft.nl/): Extreme Value Analysis, Week 2.7, Wednesday, Jan 8, 2024.* -<!-- #region id="1db6fea9-f3ad-44bc-a4c8-7b2b3008e945" --> + In this session, you will work with the uncertainty of extreme temperatures in the airport of Barcelona to assess the extreme loads induced by temperature in a steel structure in the area. You have daily observations of the maximum temperature for several years. The dataset was retrieved from the Spanish Agency of Metheorology [AEMET](https://www.aemet.es/es/portada). Your goal is to design the structure for a _lifespan of 50 years_ with a _probability of failure of 0.1_ during the design life. **The goal of this project is:** @@ -34,7 +24,6 @@ In this session, you will work with the uncertainty of extreme temperatures in t 3. Assess the Goodness of fit of the distribution. 4. Compute the return level plot. 5. Compute the design return level. -<!-- #endregion --> ```python import numpy as np @@ -228,10 +217,9 @@ Fit a distribution to the monthly maxima. Print the values of the obtained param </p> </div> -<!-- #region id="0491cc69" --> + <div style="background-color:#facb8e; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%"> <p>Use <a href="https://docs.scipy.org/doc/scipy/reference/stats.html" target="_blank">scipy.stats</a> built in functions (watch out with the parameter definitions!), similar to Week 1.7 and use the DataFrame created in Task 2. </p></div> -<!-- #endregion --> ```python params_T = stats.genextreme.fit(max_list['T']) @@ -330,10 +318,10 @@ Considering that you have sampled monthly maxima, compute and plot the return le </p> </div> -<!-- #region id="0491cc69" --> + <div style="background-color:#facb8e; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%"> <p>The three missing variables listed below are all type <code>numpy.ndarray</code>; the last is found using your <code>scipy.stats</code> distribution from Task 3. </p></div> -<!-- #endregion --> + <div style="background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%"> <b>Solution:</b> diff --git a/synced_files/Week_2_7/WS_2_7_student.html b/synced_files/Week_2_7/WS_2_7_student.html index 55b73b02..a0c99ead 100644 --- a/synced_files/Week_2_7/WS_2_7_student.html +++ b/synced_files/Week_2_7/WS_2_7_student.html @@ -7690,7 +7690,7 @@ a.anchor-link { </div> </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=23be66ca"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=6562ef15"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -7717,7 +7717,7 @@ Based on the above plots, briefly describe the data. </div> </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=70c47495"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=ac944347"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> @@ -7753,7 +7753,7 @@ Sample monthly maxima from the timeseries and plot them on the timeseries. Plot </div> </div> </div> -<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=98171604"> +<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=a8574be0"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> diff --git a/synced_files/Week_2_7/WS_2_7_student.ipynb b/synced_files/Week_2_7/WS_2_7_student.ipynb index a3b56c9d..aae5336d 100644 --- a/synced_files/Week_2_7/WS_2_7_student.ipynb +++ b/synced_files/Week_2_7/WS_2_7_student.ipynb @@ -130,7 +130,7 @@ }, { "cell_type": "markdown", - "id": "e5972dfb", + "id": "445076f7", "metadata": {}, "source": [ "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%\">\n", @@ -151,7 +151,7 @@ }, { "cell_type": "markdown", - "id": "16b560ba", + "id": "d1494520", "metadata": {}, "source": [ "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%\">\n", @@ -180,7 +180,7 @@ }, { "cell_type": "markdown", - "id": "bb31f828", + "id": "e47c30b2", "metadata": {}, "source": [ "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%\">\n", diff --git a/synced_files/Week_2_7/WS_2_7_student.md b/synced_files/Week_2_7/WS_2_7_student.md index 84c0c50a..431668e8 100644 --- a/synced_files/Week_2_7/WS_2_7_student.md +++ b/synced_files/Week_2_7/WS_2_7_student.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # Workshop 2.7: Extreme temperature <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> @@ -25,7 +15,7 @@ jupyter: *[CEGM1000 MUDE](http://mude.citg.tudelft.nl/): Extreme Value Analysis, Week 2.7, Wednesday, Jan 8, 2024.* -<!-- #region id="1db6fea9-f3ad-44bc-a4c8-7b2b3008e945" --> + In this session, you will work with the uncertainty of extreme temperatures in the airport of Barcelona to assess the extreme loads induced by temperature in a steel structure in the area. You have daily observations of the maximum temperature for several years. The dataset was retrieved from the Spanish Agency of Metheorology [AEMET](https://www.aemet.es/es/portada). Your goal is to design the structure for a _lifespan of 50 years_ with a _probability of failure of 0.1_ during the design life. **The goal of this project is:** @@ -34,7 +24,6 @@ In this session, you will work with the uncertainty of extreme temperatures in t 3. Assess the Goodness of fit of the distribution. 4. Compute the return level plot. 5. Compute the design return level. -<!-- #endregion --> ```python import numpy as np @@ -153,10 +142,9 @@ Fit a distribution to the monthly maxima. Print the values of the obtained param </p> </div> -<!-- #region id="0491cc69" --> + <div style="background-color:#facb8e; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%"> <p>Use <a href="https://docs.scipy.org/doc/scipy/reference/stats.html" target="_blank">scipy.stats</a> built in functions (watch out with the parameter definitions!), similar to Week 1.7 and use the DataFrame created in Task 2. </p></div> -<!-- #endregion --> ```python params_T = #your code here diff --git a/synced_files/Week_2_8/WS_2_8_dirty_water.html b/synced_files/Week_2_8/WS_2_8_dirty_water.html index 41bb0bb2..4f9b8fdf 100644 --- a/synced_files/Week_2_8/WS_2_8_dirty_water.html +++ b/synced_files/Week_2_8/WS_2_8_dirty_water.html @@ -7358,11 +7358,12 @@ a.anchor-link { if (!diagrams.length) { return; } - const mermaid = (await import("https://cdnjs.cloudflare.com/ajax/libs/mermaid/10.6.0/mermaid.esm.min.mjs")).default; + const mermaid = (await import("https://cdnjs.cloudflare.com/ajax/libs/mermaid/10.7.0/mermaid.esm.min.mjs")).default; const parser = new DOMParser(); mermaid.initialize({ maxTextSize: 100000, + maxEdges: 100000, startOnLoad: false, fontFamily: window .getComputedStyle(document.body) @@ -7433,7 +7434,8 @@ a.anchor-link { let results = null; let output = null; try { - const { svg } = await mermaid.render(id, raw, el); + let { svg } = await mermaid.render(id, raw, el); + svg = cleanMermaidSvg(svg); results = makeMermaidImage(svg); output = document.createElement("figure"); results.map(output.appendChild, output); @@ -7448,6 +7450,38 @@ a.anchor-link { parent.appendChild(output); } + + /** + * Post-process to ensure mermaid diagrams contain only valid SVG and XHTML. + */ + function cleanMermaidSvg(svg) { + return svg.replace(RE_VOID_ELEMENT, replaceVoidElement); + } + + + /** + * A regular expression for all void elements, which may include attributes and + * a slash. + * + * @see https://developer.mozilla.org/en-US/docs/Glossary/Void_element + * + * Of these, only `<br>` is generated by Mermaid in place of `\n`, + * but _any_ "malformed" tag will break the SVG rendering entirely. + */ + const RE_VOID_ELEMENT = + /<\s*(area|base|br|col|embed|hr|img|input|link|meta|param|source|track|wbr)\s*([^>]*?)\s*>/gi; + + /** + * Ensure a void element is closed with a slash, preserving any attributes. + */ + function replaceVoidElement(match, tag, rest) { + rest = rest.trim(); + if (!rest.endsWith('/')) { + rest = `${rest} /`; + } + return `<${tag} ${rest}>`; + } + void Promise.all([...diagrams].map(renderOneMarmaid)); }); </script> @@ -7532,7 +7566,7 @@ a.anchor-link { </div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> <h2 id="Introduction">Introduction<a class="anchor-link" href="#Introduction">¶</a></h2><p>In this exercise we apply a few simple concepts from the textbook to derive a safety standard to regulate spills in a chemical factory. You are asked to consider an economic and societal standard, then make a recommendation to the city council.</p> <h2 id="Case-Study">Case Study<a class="anchor-link" href="#Case-Study">¶</a></h2><p>A city with population 10,000 uses an aquifer for its water supply, as illustrated in the figure. The city owns a factory in the region that manufactures hazardous chemicals, and recently a chemical spill occurred that resulted in 10 residents getting sick and total damages of €7,000M*. The city is going to enforce stricter regulations on the factory, and <em>you have been hired to advise the city council on the maximum allowable probability of a spill occurring (per year)</em>. You will make a recommendation based on the more stringent criteria between economic and societal risk limits.</p> -<p><img alt="" src="./sketch.png"/></p> +<p><img alt="sketch of factory, houses and contamination plume" src="./sketch.png"/></p> <p>Experts have been consulted and it appears under the current plan the probability of a spill is 1/100 per year. The city council is considering two strategies to upgrade the spill prevention system. A small upgrade would cost €25M and can reduce spill probability by a factor 10; a large upgrade with investment costs of €50M would reduce the probability by factor 100.</p> <p>The city has also considered the regulations in a nearby region which uses a maximum allowable probability of 1 person getting sick as p_f=0.01. The city agrees with this, however, they are very much <em>risk averse</em> (that's a hint!), regarding spills with more significant consequences.</p> <p><em>*M = million, so 7,000M is 7e9, or 7 billion. All costs in this exercise are expressed in units €M.</em></p> @@ -7663,8 +7697,8 @@ a.anchor-link { .markdown {width:100%; position: relative} article { position: relative } </style> -<a href="http://creativecommons.org/licenses/by-nc-sa/4.0/" rel="license"> -<img alt="Creative Commons License" src="https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png" style="border-width:; width:88px; height:auto; padding-top:10px"/> +<a href="http://creativecommons.org/licenses/by/4.0/" rel="license"> +<img alt="Creative Commons License" src="https://i.creativecommons.org/l/by/4.0/88x31.png" style="border-width:; width:88px; height:auto; padding-top:10px"/> </a> <a href="https://www.tudelft.nl/en/ceg" rel="TU Delft"> <img alt="TU Delft" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/tu-logo/TU_P1_full-color.png" style="border-width:0; width:100px; height:auto; padding-bottom:0px"/> @@ -7674,7 +7708,8 @@ a.anchor-link { </a> </h3> <span style="font-size: 75%"> -© Copyright 2023 <a href="https://studiegids.tudelft.nl/a101_displayCourse.do?course_id=65595" rel="MUDE Team">MUDE Teaching Team</a> TU Delft. This work is licensed under a <a href="http://creativecommons.org/licenses/by-nc-sa/4.0/" rel="license">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>. +© Copyright 2024 <a href="http://mude.citg.tudelft.nl/" rel="MUDE">MUDE</a> TU Delft. This work is licensed under a <a href="http://creativecommons.org/licenses/by/4.0/" rel="license">CC BY 4.0 License</a>. + </span></div> </div> diff --git a/synced_files/Week_2_8/WS_2_8_dirty_water.ipynb b/synced_files/Week_2_8/WS_2_8_dirty_water.ipynb index b688da6c..54e0db8a 100644 --- a/synced_files/Week_2_8/WS_2_8_dirty_water.ipynb +++ b/synced_files/Week_2_8/WS_2_8_dirty_water.ipynb @@ -34,7 +34,7 @@ "\n", "A city with population 10,000 uses an aquifer for its water supply, as illustrated in the figure. The city owns a factory in the region that manufactures hazardous chemicals, and recently a chemical spill occurred that resulted in 10 residents getting sick and total damages of €7,000M*. The city is going to enforce stricter regulations on the factory, and _you have been hired to advise the city council on the maximum allowable probability of a spill occurring (per year)_. You will make a recommendation based on the more stringent criteria between economic and societal risk limits.\n", "\n", - "\n", + "\n", "\n", "Experts have been consulted and it appears under the current plan the probability of a spill is 1/100 per year. The city council is considering two strategies to upgrade the spill prevention system. A small upgrade would cost €25M and can reduce spill probability by a factor 10; a large upgrade with investment costs of €50M would reduce the probability by factor 100.\n", "\n", @@ -148,19 +148,19 @@ " .markdown {width:100%; position: relative}\n", " article { position: relative }\n", " </style>\n", - " <a rel=\"license\" href=\"http://creativecommons.org/licenses/by-nc-sa/4.0/\">\n", - " <img alt=\"Creative Commons License\" style=\"border-width:; width:88px; height:auto; padding-top:10px\" src=\"https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png\" />\n", + " <a rel=\"license\" href=\"http://creativecommons.org/licenses/by/4.0/\">\n", + " <img alt=\"Creative Commons License\" style=\"border-width:; width:88px; height:auto; padding-top:10px\" src=\"https://i.creativecommons.org/l/by/4.0/88x31.png\" />\n", " </a>\n", " <a rel=\"TU Delft\" href=\"https://www.tudelft.nl/en/ceg\">\n", - " <img alt=\"TU Delft\" style=\"border-width:0; width:100px; height:auto; padding-bottom:0px\" src=\"https://gitlab.tudelft.nl/mude/public/-/raw/main/tu-logo/TU_P1_full-color.png\"/>\n", + " <img alt=\"TU Delft\" style=\"border-width:0; width:100px; height:auto; padding-bottom:0px\" src=\"https://gitlab.tudelft.nl/mude/public/-/raw/main/tu-logo/TU_P1_full-color.png\" />\n", " </a>\n", " <a rel=\"MUDE\" href=\"http://mude.citg.tudelft.nl/\">\n", - " <img alt=\"MUDE\" style=\"border-width:0; width:100px; height:auto; padding-bottom:0px\" src=\"https://gitlab.tudelft.nl/mude/public/-/raw/main/mude-logo/MUDE_Logo-small.png\"/>\n", + " <img alt=\"MUDE\" style=\"border-width:0; width:100px; height:auto; padding-bottom:0px\" src=\"https://gitlab.tudelft.nl/mude/public/-/raw/main/mude-logo/MUDE_Logo-small.png\" />\n", " </a>\n", " \n", "</h3>\n", "<span style=\"font-size: 75%\">\n", - "© Copyright 2023 <a rel=\"MUDE Team\" href=\"https://studiegids.tudelft.nl/a101_displayCourse.do?course_id=65595\">MUDE Teaching Team</a> TU Delft. This work is licensed under a <a rel=\"license\" href=\"http://creativecommons.org/licenses/by-nc-sa/4.0/\">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>." + "© Copyright 2024 <a rel=\"MUDE\" href=\"http://mude.citg.tudelft.nl/\">MUDE</a> TU Delft. This work is licensed under a <a rel=\"license\" href=\"http://creativecommons.org/licenses/by/4.0/\">CC BY 4.0 License</a>." ] } ], diff --git a/synced_files/Week_2_8/WS_2_8_dirty_water.md b/synced_files/Week_2_8/WS_2_8_dirty_water.md index e546e358..ce501d2f 100644 --- a/synced_files/Week_2_8/WS_2_8_dirty_water.md +++ b/synced_files/Week_2_8/WS_2_8_dirty_water.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # Workshop 16: Dirty Water <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> @@ -34,7 +24,7 @@ In this exercise we apply a few simple concepts from the textbook to derive a sa A city with population 10,000 uses an aquifer for its water supply, as illustrated in the figure. The city owns a factory in the region that manufactures hazardous chemicals, and recently a chemical spill occurred that resulted in 10 residents getting sick and total damages of €7,000M*. The city is going to enforce stricter regulations on the factory, and _you have been hired to advise the city council on the maximum allowable probability of a spill occurring (per year)_. You will make a recommendation based on the more stringent criteria between economic and societal risk limits. - + Experts have been consulted and it appears under the current plan the probability of a spill is 1/100 per year. The city council is considering two strategies to upgrade the spill prevention system. A small upgrade would cost €25M and can reduce spill probability by a factor 10; a large upgrade with investment costs of €50M would reduce the probability by factor 100. @@ -115,16 +105,16 @@ We added <a href="https://mude.citg.tudelft.nl/book/pd/reliability-component/con .markdown {width:100%; position: relative} article { position: relative } </style> - <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/"> - <img alt="Creative Commons License" style="border-width:; width:88px; height:auto; padding-top:10px" src="https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png" /> + <a rel="license" href="http://creativecommons.org/licenses/by/4.0/"> + <img alt="Creative Commons License" style="border-width:; width:88px; height:auto; padding-top:10px" src="https://i.creativecommons.org/l/by/4.0/88x31.png" /> </a> <a rel="TU Delft" href="https://www.tudelft.nl/en/ceg"> - <img alt="TU Delft" style="border-width:0; width:100px; height:auto; padding-bottom:0px" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/tu-logo/TU_P1_full-color.png"/> + <img alt="TU Delft" style="border-width:0; width:100px; height:auto; padding-bottom:0px" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/tu-logo/TU_P1_full-color.png" /> </a> <a rel="MUDE" href="http://mude.citg.tudelft.nl/"> - <img alt="MUDE" style="border-width:0; width:100px; height:auto; padding-bottom:0px" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/mude-logo/MUDE_Logo-small.png"/> + <img alt="MUDE" style="border-width:0; width:100px; height:auto; padding-bottom:0px" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/mude-logo/MUDE_Logo-small.png" /> </a> </h3> <span style="font-size: 75%"> -© Copyright 2023 <a rel="MUDE Team" href="https://studiegids.tudelft.nl/a101_displayCourse.do?course_id=65595">MUDE Teaching Team</a> TU Delft. This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>. +© Copyright 2024 <a rel="MUDE" href="http://mude.citg.tudelft.nl/">MUDE</a> TU Delft. This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by/4.0/">CC BY 4.0 License</a>. diff --git a/synced_files/Week_2_8/WS_2_8_dirty_water.py b/synced_files/Week_2_8/WS_2_8_dirty_water.py index a165a7c0..624e7720 100644 --- a/synced_files/Week_2_8/WS_2_8_dirty_water.py +++ b/synced_files/Week_2_8/WS_2_8_dirty_water.py @@ -33,7 +33,7 @@ # # A city with population 10,000 uses an aquifer for its water supply, as illustrated in the figure. The city owns a factory in the region that manufactures hazardous chemicals, and recently a chemical spill occurred that resulted in 10 residents getting sick and total damages of €7,000M*. The city is going to enforce stricter regulations on the factory, and _you have been hired to advise the city council on the maximum allowable probability of a spill occurring (per year)_. You will make a recommendation based on the more stringent criteria between economic and societal risk limits. # -#  +#  # # Experts have been consulted and it appears under the current plan the probability of a spill is 1/100 per year. The city council is considering two strategies to upgrade the spill prevention system. A small upgrade would cost €25M and can reduce spill probability by a factor 10; a large upgrade with investment costs of €50M would reduce the probability by factor 100. # @@ -114,16 +114,16 @@ import matplotlib.pyplot as plt # .markdown {width:100%; position: relative} # article { position: relative } # </style> -# <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/"> -# <img alt="Creative Commons License" style="border-width:; width:88px; height:auto; padding-top:10px" src="https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png" /> +# <a rel="license" href="http://creativecommons.org/licenses/by/4.0/"> +# <img alt="Creative Commons License" style="border-width:; width:88px; height:auto; padding-top:10px" src="https://i.creativecommons.org/l/by/4.0/88x31.png" /> # </a> # <a rel="TU Delft" href="https://www.tudelft.nl/en/ceg"> -# <img alt="TU Delft" style="border-width:0; width:100px; height:auto; padding-bottom:0px" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/tu-logo/TU_P1_full-color.png"/> +# <img alt="TU Delft" style="border-width:0; width:100px; height:auto; padding-bottom:0px" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/tu-logo/TU_P1_full-color.png" /> # </a> # <a rel="MUDE" href="http://mude.citg.tudelft.nl/"> -# <img alt="MUDE" style="border-width:0; width:100px; height:auto; padding-bottom:0px" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/mude-logo/MUDE_Logo-small.png"/> +# <img alt="MUDE" style="border-width:0; width:100px; height:auto; padding-bottom:0px" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/mude-logo/MUDE_Logo-small.png" /> # </a> # # </h3> # <span style="font-size: 75%"> -# © Copyright 2023 <a rel="MUDE Team" href="https://studiegids.tudelft.nl/a101_displayCourse.do?course_id=65595">MUDE Teaching Team</a> TU Delft. This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>. +# © Copyright 2024 <a rel="MUDE" href="http://mude.citg.tudelft.nl/">MUDE</a> TU Delft. This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by/4.0/">CC BY 4.0 License</a>. diff --git a/synced_files/Week_2_8/WS_2_8_solution.html b/synced_files/Week_2_8/WS_2_8_solution.html index a7725b12..e5600664 100644 --- a/synced_files/Week_2_8/WS_2_8_solution.html +++ b/synced_files/Week_2_8/WS_2_8_solution.html @@ -3,34 +3,7 @@ <html lang="en"> <head><meta charset="utf-8"/> <meta content="width=device-width, initial-scale=1.0" name="viewport"/> -<title>Notebook</title><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script><script> -(function() { - function addWidgetsRenderer() { - var mimeElement = document.querySelector('script[type="application/vnd.jupyter.widget-view+json"]'); - var scriptElement = document.createElement('script'); - - var widgetRendererSrc = 'https://unpkg.com/@jupyter-widgets/html-manager@*/dist/embed-amd.js'; - - var widgetState; - - // Fallback for older version: - try { - widgetState = mimeElement && JSON.parse(mimeElement.innerHTML); - - if (widgetState && (widgetState.version_major < 2 || !widgetState.version_major)) { - - var widgetRendererSrc = 'https://unpkg.com/@jupyter-js-widgets@*/dist/embed.js'; - - } - } catch(e) {} - - scriptElement.src = widgetRendererSrc; - document.body.appendChild(scriptElement); - } - - document.addEventListener('DOMContentLoaded', addWidgetsRenderer); -}()); -</script> +<title>Notebook</title><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script> <style type="text/css"> pre { line-height: 125%; } td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } @@ -7358,11 +7331,12 @@ a.anchor-link { if (!diagrams.length) { return; } - const mermaid = (await import("https://cdnjs.cloudflare.com/ajax/libs/mermaid/10.6.0/mermaid.esm.min.mjs")).default; + const mermaid = (await import("https://cdnjs.cloudflare.com/ajax/libs/mermaid/10.7.0/mermaid.esm.min.mjs")).default; const parser = new DOMParser(); mermaid.initialize({ maxTextSize: 100000, + maxEdges: 100000, startOnLoad: false, fontFamily: window .getComputedStyle(document.body) @@ -7433,7 +7407,8 @@ a.anchor-link { let results = null; let output = null; try { - const { svg } = await mermaid.render(id, raw, el); + let { svg } = await mermaid.render(id, raw, el); + svg = cleanMermaidSvg(svg); results = makeMermaidImage(svg); output = document.createElement("figure"); results.map(output.appendChild, output); @@ -7448,6 +7423,38 @@ a.anchor-link { parent.appendChild(output); } + + /** + * Post-process to ensure mermaid diagrams contain only valid SVG and XHTML. + */ + function cleanMermaidSvg(svg) { + return svg.replace(RE_VOID_ELEMENT, replaceVoidElement); + } + + + /** + * A regular expression for all void elements, which may include attributes and + * a slash. + * + * @see https://developer.mozilla.org/en-US/docs/Glossary/Void_element + * + * Of these, only `<br>` is generated by Mermaid in place of `\n`, + * but _any_ "malformed" tag will break the SVG rendering entirely. + */ + const RE_VOID_ELEMENT = + /<\s*(area|base|br|col|embed|hr|img|input|link|meta|param|source|track|wbr)\s*([^>]*?)\s*>/gi; + + /** + * Ensure a void element is closed with a slash, preserving any attributes. + */ + function replaceVoidElement(match, tag, rest) { + rest = rest.trim(); + if (!rest.endsWith('/')) { + rest = `${rest} /`; + } + return `<${tag} ${rest}>`; + } + void Promise.all([...diagrams].map(renderOneMarmaid)); }); </script> @@ -7532,7 +7539,7 @@ a.anchor-link { </div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> <h2 id="Introduction">Introduction<a class="anchor-link" href="#Introduction">¶</a></h2><p>In this exercise we apply a few simple concepts from the textbook to derive a safety standard to regulate spills in a chemical factory. You are asked to consider an economic and societal standard, then make a recommendation to the city council.</p> <h2 id="Case-Study">Case Study<a class="anchor-link" href="#Case-Study">¶</a></h2><p>A city with population 10,000 uses an aquifer for its water supply, as illustrated in the figure. The city owns a factory in the region that manufactures hazardous chemicals, and recently a chemical spill occurred that resulted in 10 residents getting sick and total damages of €7,000M*. The city is going to enforce stricter regulations on the factory, and <em>you have been hired to advise the city council on the maximum allowable probability of a spill occurring (per year)</em>. You will make a recommendation based on the more stringent criteria between economic and societal risk limits.</p> -<p><img alt="" src="./sketch.png"/></p> +<p><img alt="sketch of factory, houses and contamination plume" src="./sketch.png"/></p> <p>Experts have been consulted and it appears under the current plan the probability of a spill is 1/100 per year. The city council is considering two strategies to upgrade the spill prevention system. A small upgrade would cost €25M and can reduce spill probability by a factor 10; a large upgrade with investment costs of €50M would reduce the probability by factor 100.</p> <p>The city has also considered the regulations in a nearby region which uses a maximum allowable probability of 1 person getting sick as p_f=0.01. The city agrees with this, however, they are very much <em>risk averse</em> (that's a hint!), regarding spills with more significant consequences.</p> <p><em>*M = million, so 7,000M is 7e9, or 7 billion. All costs in this exercise are expressed in units €M.</em></p> @@ -7544,10 +7551,10 @@ a.anchor-link { <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [1]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> +<div class="highlight hl-python"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> <span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span> </pre></div> </div> @@ -7572,12 +7579,14 @@ a.anchor-link { <b>Solution:</b> </p> </div> -$$ +<p>$$ R = p_f \cdot D -$$<p>where $R$ is risk and $D$ is damages (€M). The total cost, $T$, for investment $I$ is:</p> -$$ +$$</p> +<p>where $R$ is risk and $D$ is damages (€M). The total cost, $T$, for investment $I$ is:</p> +<p>$$ T = I + R -$$<table> +$$</p> +<table> <thead> <tr> <th style="text-align:center">Strategy</th> @@ -7648,27 +7657,30 @@ $$<table> <p> <b>Solution:</b> <p>The goal is to create a limit line, <a href="https://mude.citg.tudelft.nl/book/pd/risk-evaluation/safety-standards.html#limits-for-individual-and-societal-risk" target="_blank">as described here</a>. The equation is of form:</p> -$$ +<p>$$ 1 - F_N(n) \leq \frac{C}{n^\alpha} -$$<p>From the information provided, we can create a limit line where one point is provided from the guidelines of the neighboring city $p_f=0.01$ and $N=1$; thus $C=0.01$. If the city is risk averse, $\alpha=2$. As the factory spill causes 10 people to get sick, the maximum allowable probability is</p> -$$ +$$</p> +<p>From the information provided, we can create a limit line where one point is provided from the guidelines of the neighboring city $p_f=0.01$ and $N=1$; thus $C=0.01$. If the city is risk averse, $\alpha=2$. As the factory spill causes 10 people to get sick, the maximum allowable probability is</p> +<p>$$ p_f/d=10/10.000=0.001\% -$$$$ +$$</p> +<p>$$ 1 - F_N(n) \leq \frac{C}{n^\alpha} = \frac{0.01}{10^2} = 10^{-4} \;\;\textrm{per year} $$</p> +</p> </div> </div> </div> </div> -</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell"> +</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs"> <div class="jp-Cell-inputWrapper" tabindex="0"> <div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser"> </div> <div class="jp-InputArea jp-Cell-inputArea"> -<div class="jp-InputPrompt jp-InputArea-prompt">In [14]:</div> +<div class="jp-InputPrompt jp-InputArea-prompt">In [ ]:</div> <div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline"> <div class="cm-editor cm-s-jupyter"> -<div class="highlight hl-ipython3"><pre><span></span><span class="n">C</span> <span class="o">=</span> <span class="mf">0.01</span><span class="o">*</span><span class="mi">1</span><span class="o">**</span><span class="mi">2</span> +<div class="highlight hl-python"><pre><span></span><span class="n">C</span> <span class="o">=</span> <span class="mf">0.01</span><span class="o">*</span><span class="mi">1</span><span class="o">**</span><span class="mi">2</span> <span class="n">alpha</span> <span class="o">=</span> <span class="mi">2</span> <span class="n">pf_societal</span> <span class="o">=</span> <span class="n">C</span><span class="o">/</span><span class="mi">10</span><span class="o">**</span><span class="n">alpha</span> @@ -7694,25 +7706,6 @@ $$</p> </div> </div> </div> -<div class="jp-Cell-outputWrapper"> -<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser"> -</div> -<div class="jp-OutputArea jp-Cell-outputArea"> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0"> -<pre>0.0001 -</pre> -</div> -</div> -<div class="jp-OutputArea-child"> -<div class="jp-OutputPrompt jp-OutputArea-prompt"></div> -<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0"> -<img alt="No description has been provided for this image" class="" src=""/> -</div> -</div> -</div> -</div> </div> <div class="jp-Cell jp-MarkdownCell jp-Notebook-cell"> <div class="jp-Cell-inputWrapper" tabindex="0"> @@ -7785,9 +7778,10 @@ $$</p> <p> <b>Solution:</b> <p>The two areas are a series system, since a leak happens if either fails. Under the independent assumption, this is:</p> -$$ +<p>$$ p_f = p_A + p_B - p_A p_B -$$<p>If one material is faulty, so is the other, implying positive correlation. Positive correlation between events increases the intersection probability (parallel), which would decrease the union probability (series). However, this is only true if $p_A$ and $p_B$ remain the same; since this new information affects these probabilities, it is hard to say for sure.</p> +$$</p> +<p>If one material is faulty, so is the other, implying positive correlation. Positive correlation between events increases the intersection probability (parallel), which would decrease the union probability (series). However, this is only true if $p_A$ and $p_B$ remain the same; since this new information affects these probabilities, it is hard to say for sure.</p> <p>End result: we better study this important topic more so we can get hired by the city to do the component reliability analyses required to revise the estimates of $p_A$ and $p_B$.</p> </p> </div> @@ -7817,34 +7811,28 @@ $$<p>If one material is faulty, so is the other, implying positive correlation. </div> <div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt"> </div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown"> -<p><strong>End of notebook.</strong></p> -<h2 style="height: 60px"> -</h2> -<h3 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; bottom: 60px; right: 50px; margin: 0; border: 0"> -<style> - .markdown {width:100%; position: relative} - article { position: relative } - </style> -<a href="http://creativecommons.org/licenses/by-nc-sa/4.0/" rel="license"> -<img alt="Creative Commons License" src="https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png" style="border-width:; width:88px; height:auto; padding-top:10px"> -</img></a> +<p><strong>End of notebook.test</strong></p> +<div style="margin-top: 50px; padding-top: 20px; border-top: 1px solid #ccc;"> +<div style="display: flex; justify-content: flex-end; gap: 20px; align-items: center;"> +<a href="http://mude.citg.tudelft.nl/" rel="MUDE"> +<img alt="MUDE" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/mude-logo/MUDE_Logo-small.png" style="width:100px; height:auto;"/> +</a> <a href="https://www.tudelft.nl/en/ceg" rel="TU Delft"> -<img alt="TU Delft" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/tu-logo/TU_P1_full-color.png" style="border-width:0; width:100px; height:auto; padding-bottom:0px"/> +<img alt="TU Delft" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/tu-logo/TU_P1_full-color.png" style="width:100px; height:auto;"/> </a> -<a href="http://mude.citg.tudelft.nl/" rel="MUDE"> -<img alt="MUDE" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/mude-logo/MUDE_Logo-small.png" style="border-width:0; width:100px; height:auto; padding-bottom:0px"/> +<a href="http://creativecommons.org/licenses/by/4.0/" rel="license"> +<img alt="Creative Commons License" src="https://i.creativecommons.org/l/by/4.0/88x31.png" style="width:88px; height:auto;"/> </a> -</h3> -<span style="font-size: 75%"> -© Copyright 2023 <a href="https://studiegids.tudelft.nl/a101_displayCourse.do?course_id=65595" rel="MUDE Team">MUDE Teaching Team</a> TU Delft. This work is licensed under a <a href="http://creativecommons.org/licenses/by-nc-sa/4.0/" rel="license">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>. - -</span></div> +</div> +<div style="font-size: 75%; margin-top: 10px; text-align: right;"> + © Copyright 2024 <a href="http://mude.citg.tudelft.nl/" rel="MUDE">MUDE</a> TU Delft. + This work is licensed under a <a href="http://creativecommons.org/licenses/by/4.0/" rel="license">CC BY 4.0 License</a>. + </div> +</div> +</div> </div> </div> </div> </main> </body> -<script type="application/vnd.jupyter.widget-state+json"> -{"state": {}, "version_major": 2, "version_minor": 0} -</script> </html> diff --git a/synced_files/Week_2_8/WS_2_8_solution.ipynb b/synced_files/Week_2_8/WS_2_8_solution.ipynb index 6abc6a00..a725a29e 100644 --- a/synced_files/Week_2_8/WS_2_8_solution.ipynb +++ b/synced_files/Week_2_8/WS_2_8_solution.ipynb @@ -34,7 +34,7 @@ "\n", "A city with population 10,000 uses an aquifer for its water supply, as illustrated in the figure. The city owns a factory in the region that manufactures hazardous chemicals, and recently a chemical spill occurred that resulted in 10 residents getting sick and total damages of €7,000M*. The city is going to enforce stricter regulations on the factory, and _you have been hired to advise the city council on the maximum allowable probability of a spill occurring (per year)_. You will make a recommendation based on the more stringent criteria between economic and societal risk limits.\n", "\n", - "\n", + "\n", "\n", "Experts have been consulted and it appears under the current plan the probability of a spill is 1/100 per year. The city council is considering two strategies to upgrade the spill prevention system. A small upgrade would cost €25M and can reduce spill probability by a factor 10; a large upgrade with investment costs of €50M would reduce the probability by factor 100.\n", "\n", @@ -261,27 +261,25 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "**End of notebook.**\n", - "<h2 style=\"height: 60px\">\n", - "</h2>\n", - "<h3 style=\"position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; bottom: 60px; right: 50px; margin: 0; border: 0\">\n", - " <style>\n", - " .markdown {width:100%; position: relative}\n", - " article { position: relative }\n", - " </style>\n", - " <a rel=\"license\" href=\"http://creativecommons.org/licenses/by-nc-sa/4.0/\">\n", - " <img alt=\"Creative Commons License\" style=\"border-width:; width:88px; height:auto; padding-top:10px\" src=\"https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png\" />\n", + "**End of notebook.test**\n", + "\n", + "<div style=\"margin-top: 50px; padding-top: 20px; border-top: 1px solid #ccc;\">\n", + " <div style=\"display: flex; justify-content: flex-end; gap: 20px; align-items: center;\">\n", + " <a rel=\"MUDE\" href=\"http://mude.citg.tudelft.nl/\">\n", + " <img alt=\"MUDE\" style=\"width:100px; height:auto;\" src=\"https://gitlab.tudelft.nl/mude/public/-/raw/main/mude-logo/MUDE_Logo-small.png\" />\n", " </a>\n", " <a rel=\"TU Delft\" href=\"https://www.tudelft.nl/en/ceg\">\n", - " <img alt=\"TU Delft\" style=\"border-width:0; width:100px; height:auto; padding-bottom:0px\" src=\"https://gitlab.tudelft.nl/mude/public/-/raw/main/tu-logo/TU_P1_full-color.png\"/>\n", + " <img alt=\"TU Delft\" style=\"width:100px; height:auto;\" src=\"https://gitlab.tudelft.nl/mude/public/-/raw/main/tu-logo/TU_P1_full-color.png\" />\n", " </a>\n", - " <a rel=\"MUDE\" href=\"http://mude.citg.tudelft.nl/\">\n", - " <img alt=\"MUDE\" style=\"border-width:0; width:100px; height:auto; padding-bottom:0px\" src=\"https://gitlab.tudelft.nl/mude/public/-/raw/main/mude-logo/MUDE_Logo-small.png\"/>\n", + " <a rel=\"license\" href=\"http://creativecommons.org/licenses/by/4.0/\">\n", + " <img alt=\"Creative Commons License\" style=\"width:88px; height:auto;\" src=\"https://i.creativecommons.org/l/by/4.0/88x31.png\" />\n", " </a>\n", - " \n", - "</h3>\n", - "<span style=\"font-size: 75%\">\n", - "© Copyright 2023 <a rel=\"MUDE Team\" href=\"https://studiegids.tudelft.nl/a101_displayCourse.do?course_id=65595\">MUDE Teaching Team</a> TU Delft. This work is licensed under a <a rel=\"license\" href=\"http://creativecommons.org/licenses/by-nc-sa/4.0/\">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>." + " </div>\n", + " <div style=\"font-size: 75%; margin-top: 10px; text-align: right;\">\n", + " © Copyright 2024 <a rel=\"MUDE\" href=\"http://mude.citg.tudelft.nl/\">MUDE</a> TU Delft. \n", + " This work is licensed under a <a rel=\"license\" href=\"http://creativecommons.org/licenses/by/4.0/\">CC BY 4.0 License</a>.\n", + " </div>\n", + "</div>" ] } ], diff --git a/synced_files/Week_2_8/WS_2_8_solution.md b/synced_files/Week_2_8/WS_2_8_solution.md index b00e4b7a..64ebfcaa 100644 --- a/synced_files/Week_2_8/WS_2_8_solution.md +++ b/synced_files/Week_2_8/WS_2_8_solution.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # Workshop 16: Dirty Water <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> @@ -34,7 +24,7 @@ In this exercise we apply a few simple concepts from the textbook to derive a sa A city with population 10,000 uses an aquifer for its water supply, as illustrated in the figure. The city owns a factory in the region that manufactures hazardous chemicals, and recently a chemical spill occurred that resulted in 10 residents getting sick and total damages of €7,000M*. The city is going to enforce stricter regulations on the factory, and _you have been hired to advise the city council on the maximum allowable probability of a spill occurring (per year)_. You will make a recommendation based on the more stringent criteria between economic and societal risk limits. - + Experts have been consulted and it appears under the current plan the probability of a spill is 1/100 per year. The city council is considering two strategies to upgrade the spill prevention system. A small upgrade would cost €25M and can reduce spill probability by a factor 10; a large upgrade with investment costs of €50M would reduce the probability by factor 100. @@ -210,24 +200,22 @@ We added <a href="https://mude.citg.tudelft.nl/book/pd/reliability-component/con </div> -**End of notebook.** -<h2 style="height: 60px"> -</h2> -<h3 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; bottom: 60px; right: 50px; margin: 0; border: 0"> - <style> - .markdown {width:100%; position: relative} - article { position: relative } - </style> - <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/"> - <img alt="Creative Commons License" style="border-width:; width:88px; height:auto; padding-top:10px" src="https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png" /> +**End of notebook.test** + +<div style="margin-top: 50px; padding-top: 20px; border-top: 1px solid #ccc;"> + <div style="display: flex; justify-content: flex-end; gap: 20px; align-items: center;"> + <a rel="MUDE" href="http://mude.citg.tudelft.nl/"> + <img alt="MUDE" style="width:100px; height:auto;" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/mude-logo/MUDE_Logo-small.png" /> </a> <a rel="TU Delft" href="https://www.tudelft.nl/en/ceg"> - <img alt="TU Delft" style="border-width:0; width:100px; height:auto; padding-bottom:0px" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/tu-logo/TU_P1_full-color.png"/> + <img alt="TU Delft" style="width:100px; height:auto;" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/tu-logo/TU_P1_full-color.png" /> </a> - <a rel="MUDE" href="http://mude.citg.tudelft.nl/"> - <img alt="MUDE" style="border-width:0; width:100px; height:auto; padding-bottom:0px" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/mude-logo/MUDE_Logo-small.png"/> + <a rel="license" href="http://creativecommons.org/licenses/by/4.0/"> + <img alt="Creative Commons License" style="width:88px; height:auto;" src="https://i.creativecommons.org/l/by/4.0/88x31.png" /> </a> - -</h3> -<span style="font-size: 75%"> -© Copyright 2023 <a rel="MUDE Team" href="https://studiegids.tudelft.nl/a101_displayCourse.do?course_id=65595">MUDE Teaching Team</a> TU Delft. This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>. + </div> + <div style="font-size: 75%; margin-top: 10px; text-align: right;"> + © Copyright 2024 <a rel="MUDE" href="http://mude.citg.tudelft.nl/">MUDE</a> TU Delft. + This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by/4.0/">CC BY 4.0 License</a>. + </div> +</div> diff --git a/synced_files/Week_2_8/WS_2_8_solution.py b/synced_files/Week_2_8/WS_2_8_solution.py index b642da08..46a161a9 100644 --- a/synced_files/Week_2_8/WS_2_8_solution.py +++ b/synced_files/Week_2_8/WS_2_8_solution.py @@ -33,7 +33,7 @@ # # A city with population 10,000 uses an aquifer for its water supply, as illustrated in the figure. The city owns a factory in the region that manufactures hazardous chemicals, and recently a chemical spill occurred that resulted in 10 residents getting sick and total damages of €7,000M*. The city is going to enforce stricter regulations on the factory, and _you have been hired to advise the city council on the maximum allowable probability of a spill occurring (per year)_. You will make a recommendation based on the more stringent criteria between economic and societal risk limits. # -#  +#  # # Experts have been consulted and it appears under the current plan the probability of a spill is 1/100 per year. The city council is considering two strategies to upgrade the spill prevention system. A small upgrade would cost €25M and can reduce spill probability by a factor 10; a large upgrade with investment costs of €50M would reduce the probability by factor 100. # @@ -209,24 +209,22 @@ plt.show() # </div> # %% [markdown] -# **End of notebook.** -# <h2 style="height: 60px"> -# </h2> -# <h3 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; bottom: 60px; right: 50px; margin: 0; border: 0"> -# <style> -# .markdown {width:100%; position: relative} -# article { position: relative } -# </style> -# <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/"> -# <img alt="Creative Commons License" style="border-width:; width:88px; height:auto; padding-top:10px" src="https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png" /> +# **End of notebook.test** +# +# <div style="margin-top: 50px; padding-top: 20px; border-top: 1px solid #ccc;"> +# <div style="display: flex; justify-content: flex-end; gap: 20px; align-items: center;"> +# <a rel="MUDE" href="http://mude.citg.tudelft.nl/"> +# <img alt="MUDE" style="width:100px; height:auto;" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/mude-logo/MUDE_Logo-small.png" /> # </a> # <a rel="TU Delft" href="https://www.tudelft.nl/en/ceg"> -# <img alt="TU Delft" style="border-width:0; width:100px; height:auto; padding-bottom:0px" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/tu-logo/TU_P1_full-color.png"/> +# <img alt="TU Delft" style="width:100px; height:auto;" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/tu-logo/TU_P1_full-color.png" /> # </a> -# <a rel="MUDE" href="http://mude.citg.tudelft.nl/"> -# <img alt="MUDE" style="border-width:0; width:100px; height:auto; padding-bottom:0px" src="https://gitlab.tudelft.nl/mude/public/-/raw/main/mude-logo/MUDE_Logo-small.png"/> +# <a rel="license" href="http://creativecommons.org/licenses/by/4.0/"> +# <img alt="Creative Commons License" style="width:88px; height:auto;" src="https://i.creativecommons.org/l/by/4.0/88x31.png" /> # </a> -# -# </h3> -# <span style="font-size: 75%"> -# © Copyright 2023 <a rel="MUDE Team" href="https://studiegids.tudelft.nl/a101_displayCourse.do?course_id=65595">MUDE Teaching Team</a> TU Delft. This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>. +# </div> +# <div style="font-size: 75%; margin-top: 10px; text-align: right;"> +# © Copyright 2024 <a rel="MUDE" href="http://mude.citg.tudelft.nl/">MUDE</a> TU Delft. +# This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by/4.0/">CC BY 4.0 License</a>. +# </div> +# </div> diff --git a/synced_files/tutorials/Week_1_3/Analysis.md b/synced_files/tutorials/Week_1_3/Analysis.md index 80abd925..70747795 100644 --- a/synced_files/tutorials/Week_1_3/Analysis.md +++ b/synced_files/tutorials/Week_1_3/Analysis.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # Week 1.3: Programming Tutorial <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/tutorials/Week_1_5/Tutorial.md b/synced_files/tutorials/Week_1_5/Tutorial.md index 16e5aaab..79f44e36 100644 --- a/synced_files/tutorials/Week_1_5/Tutorial.md +++ b/synced_files/tutorials/Week_1_5/Tutorial.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # Week 1.5: Programming Tutorial <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/tutorials/Week_1_6/Tutorial.md b/synced_files/tutorials/Week_1_6/Tutorial.md index 514955ef..71afe98c 100644 --- a/synced_files/tutorials/Week_1_6/Tutorial.md +++ b/synced_files/tutorials/Week_1_6/Tutorial.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # Week 1.5: Programming Tutorial <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/week_1_1/PA_1_1_Catch_Them_All.md b/synced_files/week_1_1/PA_1_1_Catch_Them_All.md index 83d32d3f..802243e9 100644 --- a/synced_files/week_1_1/PA_1_1_Catch_Them_All.md +++ b/synced_files/week_1_1/PA_1_1_Catch_Them_All.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # PA 1.1: Catch Them All <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/week_1_3/PA_1_3_Data_Cleaning_and_Boosting_Productivity.md b/synced_files/week_1_3/PA_1_3_Data_Cleaning_and_Boosting_Productivity.md index 1c41d7ba..08bfdb08 100644 --- a/synced_files/week_1_3/PA_1_3_Data_Cleaning_and_Boosting_Productivity.md +++ b/synced_files/week_1_3/PA_1_3_Data_Cleaning_and_Boosting_Productivity.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # PA 1.3: Data Cleaning and Boosting Productivity <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/week_1_3/PA_1_3_solution.md b/synced_files/week_1_3/PA_1_3_solution.md index 0a7562b7..46af01c7 100644 --- a/synced_files/week_1_3/PA_1_3_solution.md +++ b/synced_files/week_1_3/PA_1_3_solution.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # PA 1.3: Data Cleaning and Boosting Productivity <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/week_1_3/WS_1_3_Moving_Ice.md b/synced_files/week_1_3/WS_1_3_Moving_Ice.md index 1e1a7945..0f41e209 100644 --- a/synced_files/week_1_3/WS_1_3_Moving_Ice.md +++ b/synced_files/week_1_3/WS_1_3_Moving_Ice.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # Workshop 2: Is it Melting? <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/week_1_3/WS_1_3_solution.md b/synced_files/week_1_3/WS_1_3_solution.md index af25cece..4d1a2c61 100644 --- a/synced_files/week_1_3/WS_1_3_solution.md +++ b/synced_files/week_1_3/WS_1_3_solution.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # Workshop 2: Is it Melting? <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/week_1_5/PA/PA_1_5_solution.md b/synced_files/week_1_5/PA/PA_1_5_solution.md index 2ec7827f..a21e7a5a 100644 --- a/synced_files/week_1_5/PA/PA_1_5_solution.md +++ b/synced_files/week_1_5/PA/PA_1_5_solution.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # PA 1.5: A Few Useful Tricks <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/week_1_5/PA/PA_1_5_useful_tricks.md b/synced_files/week_1_5/PA/PA_1_5_useful_tricks.md index f4fbd564..68c95d2c 100644 --- a/synced_files/week_1_5/PA/PA_1_5_useful_tricks.md +++ b/synced_files/week_1_5/PA/PA_1_5_useful_tricks.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # PA 1.5: A Few Useful Tricks <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/week_1_5/PA_ice/PA_plots.md b/synced_files/week_1_5/PA_ice/PA_plots.md index 7d36956d..06096587 100644 --- a/synced_files/week_1_5/PA_ice/PA_plots.md +++ b/synced_files/week_1_5/PA_ice/PA_plots.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - ```python import pandas as pd diff --git a/synced_files/week_1_5/WS_1_5_dont_integr_hate.md b/synced_files/week_1_5/WS_1_5_dont_integr_hate.md index 6e36dac0..aa936397 100644 --- a/synced_files/week_1_5/WS_1_5_dont_integr_hate.md +++ b/synced_files/week_1_5/WS_1_5_dont_integr_hate.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # Workshop 5: Exploring Numerical Summing Schemes <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 90px;right: 30px; margin: 0; border: 0"> diff --git a/synced_files/week_1_5/WS_1_5_solution.md b/synced_files/week_1_5/WS_1_5_solution.md index 113ffe5e..e395f109 100644 --- a/synced_files/week_1_5/WS_1_5_solution.md +++ b/synced_files/week_1_5/WS_1_5_solution.md @@ -1,15 +1,5 @@ <userStyle>Normal</userStyle> ---- -jupyter: - jupytext: - text_representation: - extension: .md - format_name: markdown - format_version: '1.3' - jupytext_version: 1.16.6 ---- - # WS 1.5 Exploring Numerical Summing Schemes <h1 style="position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 90px;right: 30px; margin: 0; border: 0"> -- GitLab