From e3bf331f56adf70c70c0dce78c114d1b31a9a23a Mon Sep 17 00:00:00 2001 From: Berend Bouvy <b.n.bouvy@student.tudelft.nl> Date: Thu, 5 Dec 2024 23:08:13 +0100 Subject: [PATCH] Final stuff + creating student version --- content/GA_2_4/GA_2_4_Beary Icy.ipynb | 928 ++++++++++++++++++++++++++ content/GA_2_4/GA_2_4_solution.ipynb | 220 ++++-- 2 files changed, 1092 insertions(+), 56 deletions(-) create mode 100644 content/GA_2_4/GA_2_4_Beary Icy.ipynb diff --git a/content/GA_2_4/GA_2_4_Beary Icy.ipynb b/content/GA_2_4/GA_2_4_Beary Icy.ipynb new file mode 100644 index 00000000..564cf6aa --- /dev/null +++ b/content/GA_2_4/GA_2_4_Beary Icy.ipynb @@ -0,0 +1,928 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# GA 2.4: Beary Icy\n", + "\n", + "<h1 style=\"position: absolute; display: flex; flex-grow: 0; flex-shrink: 0; flex-direction: row-reverse; top: 60px;right: 30px; margin: 0; border: 0\">\n", + " <style>\n", + " .markdown {width:100%; position: relative}\n", + " article { position: relative }\n", + " </style>\n", + " <img src=\"https://gitlab.tudelft.nl/mude/public/-/raw/main/tu-logo/TU_P1_full-color.png\" style=\"width:100px\" />\n", + " <img src=\"https://gitlab.tudelft.nl/mude/public/-/raw/main/mude-logo/MUDE_Logo-small.png\" style=\"width:100px\" />\n", + "</h1>\n", + "<h2 style=\"height: 10px\">\n", + "</h2>\n", + "\n", + "*[CEGM1000 MUDE](http://mude.citg.tudelft.nl/): Week 2.4, Time Series Analysis. For: December 6, 2024*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Winter is coming and it is time to start getting our models ready for the ice classic. Our first goal is to improve the temperature model, as that seems to be an important factor in determining breakup day. Temperature is notoriously hard to predict, but we can analyze historical data to get a better understanding of the patterns.\n", + "\n", + "In this assignment we will analyze a time series from a **single year**; in fact, only the **first 152 days of the year**, from January 1 until June 1. This is the period of interest for the ice classic, as the ice forms in this period, reaching its maximum thickness between January-March, and then starts melting, with breakup day typically happening in April or May.\n", + "\n", + "Remember that we have until April 5 to place a bet. Why, then do we want to fit a model several months beyond this point? This gives us confidence in assessing the ability of the model to predict temperature, so that when we use it on April 5 to make **predictions** about the future, we can understand the uncertainty associated with it.\n", + "\n", + "Let's start by loading the data and plotting it, then we will determine which components should be used to detrend it." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from statsmodels.graphics.tsaplots import plot_acf\n", + "from scipy.signal import periodogram" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Part 1: Load the data and plot it\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%\">\n", + "<p>\n", + "<b>Task 1.1:</b> \n", + "\n", + "Do the following:\n", + "\n", + "- load the data\n", + "- create time vector\n", + "- plot the data\n", + "\n", + "</p>\n", + "</div>" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "YOUR_CODE_HERE\n", + "\n", + "data = YOUR_CODE_HERE # Temperature data\n", + "time_days = YOUR_CODE_HERE # Time in days" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%\">\n", + "<p>\n", + "<b>Task 1.2:</b> \n", + "\n", + "Use the Markdown cell below to describe the data (you can use a few bullet points). For example, confirm relevant characteristics like number of points, units, describe the values (qualitatively), etc.\n", + "\n", + "</p>\n", + "</div>" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "_Your answer here._" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Part 2: Extract the Dominant Patterns\n", + "\n", + "We clearly see that the data contains a strong pattern (the general increase in temperature from winter to summer). We will start by fitting a functional model to the data in order to stationarize it. To find the frequency of the seasonal pattern we will use the power spectrum of the data.\n", + "\n", + "We will reuse the function `find_seasonal_pattern` from the workshop.\n", + "\n", + "Remember that for running this function we need to predefine the A-matrix to detrend the data. Since the data only contains the first 5 months of the year, we see that the temperature is increasing over time. What type of model would be most appropriate to remove the seasonal trend? " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%\">\n", + "<p>\n", + "<b>Task 2.1:</b> \n", + "\n", + "Define functions to help carry out this analysis, for example, <code>fit_model</code> and <code>find_frequency</code>.\n", + "\n", + "</p>\n", + "</div>" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def fit_model(data, time, A, plot=False):\n", + " '''\n", + " Function to find the least squares solution of the data\n", + " data: input data\n", + " time: time vector\n", + " A: A-matrix to fit the data\n", + " plot: boolean to plot the results or not\n", + " '''\n", + "\n", + " x_hat = YOUR_CODE_HERE # least squares solution\n", + " y_hat = YOUR_CODE_HERE # model prediction\n", + " e_hat = YOUR_CODE_HERE # residuals\n", + "\n", + " if plot:\n", + " plt.figure(figsize=(10, 5))\n", + " plt.subplot(211)\n", + " plt.plot(time, data, label='Data')\n", + " plt.plot(time, y_hat, label='Estimated data')\n", + " plt.xlabel('Time [days]')\n", + " plt.ylabel('Temperature [°C]')\n", + " plt.title('Data vs Estimated data')\n", + " plt.grid(True)\n", + " plt.legend()\n", + " plt.subplot(212)\n", + " plt.plot(time, e_hat, label='Residuals')\n", + " plt.xlabel('Time [days]')\n", + " plt.ylabel('Temperature [°C]')\n", + " plt.title('Residuals')\n", + " plt.grid(True)\n", + " plt.legend()\n", + " plt.tight_layout()\n", + "\n", + " return x_hat, y_hat, e_hat\n", + "\n", + "def find_frequency(data, time, A, fs, plot=True):\n", + " '''\n", + " Function to find the dominant frequency of the signal\n", + " data: input data\n", + " time: time vector\n", + " A: A-matrix to detrend the data (prior to spectral analysis)\n", + " fs: sampling frequency\n", + " plot: boolean to plot the psd or not\n", + " '''\n", + " # Detrending the data\n", + " _, _, e_hat= fit_model(YOUR_CODE_HERE)\n", + "\n", + " N = len(data)\n", + "\n", + " # Finding the dominant frequency in e_hat\n", + " freqs, pxx = periodogram(YOUR_CODE_HERE, fs=YOUR_CODE_HERE, window='boxcar',\n", + " nfft=N, return_onesided=False,\n", + " scaling='density')\n", + "\n", + " # finding the dominant frequency and amplitude\n", + " # Note: there are many ways to do this\n", + " amplitude = YOUR_CODE_HERE # Amplitude of the dominant frequency\n", + " dominant_frequency = YOUR_CODE_HERE # Dominant frequency\n", + "\n", + "\n", + " # Plotting the PSD\n", + " if plot:\n", + " plt.figure(figsize=(10, 5))\n", + " plt.subplot(211)\n", + " plt.plot(time, e_hat)\n", + " plt.title('Residuals')\n", + " plt.ylabel('Atmospheric Pressure [hPa]')\n", + " plt.grid(True)\n", + " plt.subplot(212)\n", + " plt.plot(freqs[freqs>0], pxx[freqs>0], label='PSD of residuals')\n", + " plt.xlabel('Frequency')\n", + " plt.ylabel('PSD')\n", + " plt.title('Power Spectral Density')\n", + " plt.grid(True)\n", + " plt.plot(dominant_frequency, amplitude, 'ro', label='Dominant Frequency')\n", + " plt.yscale('log')\n", + " plt.xscale('log')\n", + " plt.legend()\n", + " plt.tight_layout()\n", + "\n", + " return dominant_frequency\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%\">\n", + "<p>\n", + "<b>Task 2.2:</b> \n", + "\n", + "Now provide an A-matrix that removes the trend from the data. There are multiple answers that will work, but some are better than others.\n", + "\n", + "First, use the Markdown cell below to define your A-matrix and include a brief explanation justifying your choice.\n", + "</p>\n", + "</div>" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "_Your answer here._" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%\">\n", + "<p>\n", + "<b>Task 2.3:</b> \n", + "\n", + "Now define the A-matrix in code and extract the seasonal pattern. Continue extracting components until the time series is stationary (you will then summarize your findings in the next task).\n", + "</p>\n", + "</div>" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# YOUR_CODE_HERE" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%\">\n", + "<p>\n", + "<b>Task 2.4:</b> \n", + "\n", + "Describe how you have detrended the time series. Include at least: a) the number and types of components used (and their parameters; in task 2.5 you will print those), b) how you decided to stop extracting components.\n", + "</p>\n", + "</div>" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "_Your answer here._" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Fitting the Functional Model\n", + "\n", + "In the next cell we will fit the model to generate stationary residuals. Above, you may have a periodic signal, where for each dominant frequency $f_i$ ($i=1,2$) the model is:\n", + "\n", + "$$a_i \\cos(2\\pi f_i t) + b_i \\sin(2\\pi f_i t)$$ \n", + "\n", + "However, to report the periodic signals we would like to have the amplitude, phase shift and the frequency of those signals, which can be recovered from:\n", + "$$A_i \\cos(2\\pi f_i t + \\theta_i)$$\n", + "Where the amplitude $A_i = \\sqrt{a_i^2 + b_i^2}$ and $\\theta_i = \\arctan(-b_i/a_i)$\n", + "\n", + "Note: in Section 4.1 book this was shown where the angular frequency $\\omega = 2\\pi f$ was used.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%\">\n", + "<p>\n", + "<b>Task 2.5:</b> \n", + "\n", + "Complete the code cell below to create the functional model.\n", + "\n", + "</p>\n", + "</div>" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def rewrite_seasonal_comp(ak, bk):\n", + " '''\n", + " Function to rewrite the seasonal component in terms of sin and cos\n", + " ak: seasonal component coefficient for cos\n", + " bk: seasonal component coefficient for sin\n", + " '''\n", + " YOUR_CODE_HERE\n", + "\n", + "# creating the A matrix of the functional model\n", + "A = YOUR_CODE_HERE\n", + "x_hat, y_hat, e_hat = YOUR_CODE_HERE\n", + "\n", + "# Plotting the data and the estimated trend\n", + "plt.figure(figsize=(10, 3))\n", + "plt.plot(time_days, data, label='Original data')\n", + "plt.plot(time_days, y_hat, label='Estimated trend')\n", + "plt.xlabel('Time [days]')\n", + "plt.ylabel('Temperature [°C]')\n", + "plt.title('Temperature data Nenana, Alaska')\n", + "plt.grid(True)\n", + "plt.legend()\n", + "\n", + "# Plotting the residuals\n", + "plt.figure(figsize=(10, 3))\n", + "plt.plot(time_days, e_hat0)\n", + "plt.xlabel('Time [days]')\n", + "plt.ylabel('Temperature [°C]')\n", + "plt.title('Residuals')\n", + "plt.grid(True)\n", + "\n", + "# Extracting the seasonal component coefficients from the estimated parameters\n", + "a_i = YOUR_CODE_HERE\n", + "b_i = YOUR_CODE_HERE\n", + "freqs = YOUR_CODE_HERE\n", + "\n", + "print(f'Estimated Parameters:')\n", + "for i in range(len(x_hat)):\n", + " print(f'x{i} = {x_hat[i]:.3f}')\n", + "\n", + "print('\\nThe seasonal component is rewritten as:')\n", + "i = 0\n", + "for a, b, f in zip(a_i, b_i, freqs):\n", + " A_i, theta_i = rewrite_seasonal_comp(a, b)\n", + " i += 1\n", + " print(f'A_{i} = {A_i:.3f}, theta_{i} = {theta_i:.3f}, f_{i} = {f:.3f}')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%\">\n", + "<p>\n", + "<b>Task 2.6:</b> \n", + "\n", + "Are the residuals stationary? State yes or no and describe why in the cell below.\n", + "\n", + "</p>\n", + "</div>" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "_Your answer here._" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Part 3: Finding the grizzly\n", + "\n", + "When we look at the residuals after removing the periodic pattern(s), we see that there is still a pattern in the data. From researchers in the Nenana area we have heard that there is a grizzly bear that likes to take a nap (hibernate) in the area. We suspect that the grizzly bear has slept too close to the temperature sensor and has influenced the data. \n", + "\n", + "In the next cell we will write an offset detection algorithm to find the offset in the data. The offset detection algorithm is based on the likelihood ratio test framework. However, due to the presence of autocorrelation in the residuals, the traditional critical values for the likelihood ratio test are not valid. Therefore, we will use a bootstrap approach to estimate the critical values. Luckily, this is **not** the first time we had to remove a grizzly bear from our data, so we know that the estimated critical values is approximately 100 (i.e. you do not have to find this value yourself!).\n", + "\n", + "## The offset detection algorithm\n", + "The offset detection algorithm is based on the likelihood ratio test framework. The likelihood ratio test has a test statistic that is given by:\n", + "\n", + "$$\\Lambda = n \\log \\left( \\frac{SSR_0}{SSR_1} \\right)$$\n", + "\n", + "$$SSR_i = \\sum_{i=1}^n (\\hat{e}_i)^2$$\n", + "\n", + "where $SSR_0$ is the sum of the squared residuals for the model without an offset, $SSR_1$ is the sum of the squared residuals for the model with an offset, and $n$ is the number of data points. The likelihood ratio test statistic is compared to a critical value to determine if an offset is present in the data.\n", + "\n", + "The cell below defines several functions which roughly accomplish the following:\n", + " \n", + "1. Calculate the sum of the squared residuals for the model without an offset, $SSR_0$.\n", + "2. Calculate the sum of the squared residuals for the model with an offset at each possible point, $SSR_1$.\n", + " 1. For each possible offset location, we will calculate the sum of the squared residuals for the model with an offset at that data point.\n", + " 2. The A-matrix for the model with an offset is the same as the A-matrix for the model without an offset, but with an additional column that is 0 till the data point and 1 after the data point.\n", + "3. At each possible offset location, calculate the likelihood ratio test statistic and store it in the `results` vector.\n", + "4. We will find the offset location that maximizes the likelihood ratio test statistic, i.e. the location where an offset is *most* likely.\n", + "5. We will include the offset in the model and repeat the process until the likelihood ratio test statistic is below the critical value.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%\">\n", + "<p>\n", + "<b>Task 3.1:</b> \n", + "\n", + "Using the description above and the comments and docstring in the code, fill in the code below to complete the offset detection algorithm.\n", + "</p>\n", + "</div>" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def A1_matrix(A0, break_point):\n", + " '''\n", + " Function to create the A1 matrix\n", + " A0: A matrix under H0\n", + " break_point: break point location\n", + " return: A1 matrix\n", + " '''\n", + " # create the new column and stack it to the A0 matrix\n", + " YOUR_CODE_HERE\n", + " \n", + " return YOUR_CODE_HERE\n", + "\n", + "\n", + "def LR(e0, e1, cv=100, verbose=True):\n", + " '''\n", + " Function to perform the LR test\n", + " e0: residuals under H0\n", + " e1: residuals under H1\n", + " cv: critical value\n", + " '''\n", + " n = YOUR_CODE_HERE\n", + " SSR0 = YOUR_CODE_HERE\n", + " SSR1 = YOUR_CODE_HERE\n", + " test_stat = YOUR_CODE_HERE\n", + " \n", + " if test_stat > cv:\n", + " if verbose:\n", + " print(f'Test Statistic: {test_stat:.3f} > Critical Value: {cv:.3f}')\n", + " print('Reject the null hypothesis')\n", + " else:\n", + " if verbose:\n", + " print(f'Test Statistic: {test_stat:.3f} < Critical Value: {cv:.3f}')\n", + " print('Fail to reject the null hypothesis')\n", + " return test_stat\n", + "\n", + "def jump_detection(data, time, A, cv=100, plot=True):\n", + " '''\n", + " Function to detect the jump in the data\n", + " data: input data\n", + " time: time vector\n", + " A: A matrix under H0\n", + " cv: critical value\n", + " plot: boolean to plot the results or not\n", + " '''\n", + " # initialize the results vector\n", + " results = YOUR_CODE_HERE\n", + " # find the residuals under H0\n", + " YOUR_CODE_HERE\n", + "\n", + " # loop over the data points\n", + " for i in range(1, len(data)):\n", + " # create the A1 matrix\n", + " A1 = YOUR_CODE_HERE\n", + "\n", + " # We need this statement to avoid singular matrices\n", + " if np.linalg.matrix_rank(A1) < A1.shape[1]:\n", + " pass\n", + " else:\n", + " # find the residuals under H1\n", + " _, _, e_hat1 = YOUR_CODE_HERE\n", + " test_stat = YOUR_CODE_HERE\n", + " results[i] = YOUR_CODE_HERE\n", + "\n", + " results = np.array(results)\n", + " \n", + " # finding the offset location. \n", + " # Offset is the location where the test statistic is maximum\n", + " location = YOUR_CODE_HERE\n", + " value = YOUR_CODE_HERE\n", + "\n", + " if plot:\n", + " plt.figure(figsize=(10, 3))\n", + " plt.plot(time, results)\n", + " plt.plot(time[location], value, 'ro', label='offset')\n", + " plt.plot([0, max(time)], [cv, cv], 'k--', label='Critical Value')\n", + " plt.xlabel('Time [days]')\n", + " plt.ylabel('Test Statistic')\n", + " plt.title('LR Test')\n", + " plt.grid(True)\n", + " plt.legend()\n", + "\n", + " return location, value\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%\">\n", + "<p>\n", + "<b>Task 3.2:</b> \n", + "\n", + "Now we will implement the offset detection algorithm by running the function to find the offset in the data. The function will provide figures from which you will be able to determine the offset.\n", + "\n", + "How is this process similar to the one we used to find the periodic pattern? How is it different? Describe in the cell below.\n", + "</p>\n", + "</div>" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "_Your answer here._" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "YOUR_CODE_HERE" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%\">\n", + "<p>\n", + "<b>Task 3.3:</b> \n", + "\n", + "Write your chosen offset in the cell below (report both the size and location of the offset). \n", + "\n", + "</p>\n", + "</div>" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "My offset is: ..." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%\">\n", + "<p>\n", + "<b>Task 3.4:</b> \n", + "\n", + "Once you have found the offset, identify the offset location and update your A-matrix to include it in the model. Then repeat the process until the likelihood ratio test statistic is below the critical value.\n", + "</p>\n", + "</div>" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "A2 = YOUR_CODE_HERE\n", + "x_hat, y_hat, e_hat = fit_model(YOUR_CODE_HERE)\n", + "\n", + "# Plotting the data and the estimated trend\n", + "plt.figure(figsize=(10, 3))\n", + "plt.plot(time_days, data, label='Original data')\n", + "plt.plot(time_days, y_hat, label='Estimated trend')\n", + "plt.xlabel('Time [days]')\n", + "plt.ylabel('Temperature [°C]')\n", + "plt.title('Temperature data Nenana, Alaska')\n", + "plt.grid(True)\n", + "plt.legend()\n", + "\n", + "# Plotting the residuals\n", + "plt.figure(figsize=(10, 3))\n", + "plt.plot(time_days, e_hat)\n", + "plt.xlabel('Time [days]')\n", + "plt.ylabel('Temperature [°C]')\n", + "plt.title('Residuals')\n", + "plt.grid(True)\n", + "\n", + "# Extracting the seasonal component coefficients from the estimated parameters\n", + "a_i = YOUR_CODE_HERE\n", + "b_i = YOUR_CODE_HERE\n", + "freqs = YOUR_CODE_HERE\n", + "\n", + "print(f'Estimated Parameters:')\n", + "for i in range(len(x_hat)):\n", + " print(f'x{i} = {x_hat[i]:.3f}')\n", + "\n", + "print('\\nThe seasonal component is rewritten as:')\n", + "i = 0\n", + "for a, b, f in zip(a_i, b_i, freqs):\n", + " A_i, theta_i = rewrite_seasonal_comp(a, b)\n", + " i += 1\n", + " print(f'A_{i} = {A_i:.3f}, theta_{i} = {theta_i:.3f}, f_{i} = {f:.3f}')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%\">\n", + "<p>\n", + "<b>Task 3.5:</b> \n", + "\n", + "Use the Markdown cell below to summarize the location and size of the offset(s) you have found. Include the number of components used in the final model.\n", + "</p>\n", + "</div>" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "_Your answer here._" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Part 4: Analyzing the residuals\n", + "Now that we have our residuals we can fit an AR model to the residuals. We will start by plotting the ACF of the residuals. We will then fit an AR model to the residuals and report the parameters of the AR model. Using the likelihood ratio test framework we will determine the order of the AR model." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Lets start with the ACF plot\n", + "fig, ax = plt.subplots(1, 1, figsize=(10, 3))\n", + "plot_acf(e_hat, ax=ax, lags=20);\n", + "ax.grid()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%\">\n", + "<p>\n", + "<b>Task 4.1:</b> \n", + "\n", + "Begin by completing the functions below to define AR(1) (hint: you did this on Wednesday).\n", + "\n", + "</p>\n", + "</div>" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def AR1(s, time, plot=True):\n", + " '''\n", + " Function to find the AR(1) model of the given data\n", + " s: input data\n", + " return: x_hat, e_hat\n", + " '''\n", + " y = YOUR_CODE_HERE\n", + " y_lag_1 = YOUR_CODE_HERE\n", + " A = np.atleast_2d(y_lag_1).T\n", + " x_hat, y_hat, e_hat = fit_model(YOUR_CODE_HERE)\n", + "\n", + " if plot:\n", + " fig, ax = plt.subplots(2, 1, figsize=(10, 5))\n", + " ax[0].plot(time[1:], y, label='Original Residuals')\n", + " ax[0].plot(time[1:], y_hat, label='Estimated Residuals')\n", + " ax[0].set_xlabel('Time [days]')\n", + " ax[0].set_ylabel('Temperature [°C]')\n", + " ax[0].set_title('Original Data vs Estimated Data')\n", + " ax[0].grid(True)\n", + " ax[0].legend()\n", + " plot_acf(e_hat, ax=ax[1], lags=20)\n", + " ax[1].grid()\n", + " fig.tight_layout()\n", + " \n", + " print(f'Estimated Parameters:')\n", + " print(f'phi = {x_hat[0]:.4f}')\n", + "\n", + " return x_hat, e_hat\n", + "\n", + "# Estimating the AR(1) model\n", + "phi_hat_ar1, e_hat_ar1 = AR1(YOUR_CODE_HERE)\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%\">\n", + "<p>\n", + "<b>Task 4.2:</b> \n", + "\n", + "- As you can see, the next task asks you to implement AR(2). State why this is necessary, using the results from the cell above.\n", + "- Based on the ACF plot, will the $\\phi_2$ parameter in the AR(2) be positive or negative? Why? \n", + "</p>\n", + "</div>" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "_Your answer here._" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%\">\n", + "<p>\n", + "<b>Task 4.3:</b> \n", + "\n", + "Now complete the functions to set up AR(2).\n", + "\n", + "</p>\n", + "</div>" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def AR2(s, time, plot=True):\n", + " '''\n", + " Function to find the AR(2) model of the given data\n", + " s: input data\n", + " return: x_hat, e_hat\n", + " '''\n", + " y = YOUR_CODE_HERE\n", + " y_lag_1 = YOUR_CODE_HERE\n", + " y_lag_2 = YOUR_CODE_HERE\n", + " A = YOUR_CODE_HERE\n", + " x_hat, y_hat, e_hat = fit_model(YOUR_CODE_HERE)\n", + "\n", + " if plot:\n", + " fig, ax = plt.subplots(2, 1, figsize=(10, 5))\n", + " ax[0].plot(time[2:], y, label='Original Residuals')\n", + " ax[0].plot(time[2:], y_hat, label='Estimated Residuals')\n", + " ax[0].set_xlabel('Time [days]')\n", + " ax[0].set_ylabel('Temperature [°C]')\n", + " ax[0].set_title('Original Data vs Estimated Data')\n", + " ax[0].grid(True)\n", + " ax[0].legend()\n", + " plot_acf(e_hat, ax=ax[1], lags=20)\n", + " ax[1].grid()\n", + " fig.tight_layout()\n", + "\n", + " print(f'Estimated Parameters:')\n", + " print(f'phi_1 = {x_hat[0]:.4f}, phi_2 = {x_hat[1]:.4f}')\n", + "\n", + " return x_hat, e_hat\n", + "\n", + "# Estimating the AR(2) model\n", + "phi_hat_ar2, e_hat_ar2 = AR2(YOUR_CODE_HERE)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Part 5: Report the Results\n", + "\n", + "_Note: you did this on Wednesday! It was optional then, so you are not expected to know this for the exam; however, you should implement the code using the WS as a template, and your interpretation at the end will be part of the grade for this assignment._\n", + "\n", + "Now that we have found the periodic signals in the data and fitted an AR model to the residuals, we can report the results. By combining including the AR (noise) process, we get residuals that are white noise. When the model has white noise residuals, we can also report the confidence intervals of the model. The estimated variance is only consistent when the residuals are white noise.\n", + "\n", + "We will use the unbiased estimate of the variance of the residuals to calculate the confidence intervals. The unbiased estimate of the variance is given by:\n", + "\n", + "$$\\hat{\\sigma}^2 = \\frac{1}{n-p} \\sum_{t=1}^{n} \\hat{e}_t^2$$\n", + "\n", + "Where $n$ is the number of observations and $p$ is the number of parameters in the model.\n", + "\n", + "The covariance matrix of the parameters is given by:\n", + "\n", + "$$\\hat{\\Sigma} = \\hat{\\sigma}^2 (\\mathbf{A}^T \\mathbf{A})^{-1}$$\n", + "\n", + "Where $\\mathbf{A}$ is the design matrix of the model." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%\"> <p> <b>Task 4.1:</b> \n", + "<p>\n", + "Complete the missing parts of the code cell below. Note that you will need to add one additional term, compared to Wednesday.\n", + "</p>\n", + "</div>" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# combine ar2 and functional model\n", + "A_final = YOUR_CODE_HERE\n", + "x_hat, y_hat, e_hat_final = fit_model(YOUR_CODE_HERE)\n", + "\n", + "# Plotting the acf of the residuals\n", + "fig, ax = plt.subplots(1, 1, figsize=(10, 3))\n", + "plot_acf(YOUR_CODE_HERE, ax=ax, lags=20);\n", + "ax.grid()\n", + "\n", + "# compute the standard errors\n", + "N = YOUR_CODE_HERE\n", + "p = YOUR_CODE_HERE\n", + "sigma2 = YOUR_CODE_HERE\n", + "Cov = YOUR_CODE_HERE\n", + "se = YOUR_CODE_HERE\n", + "\n", + "# Extracting the seasonal component coefficients from the estimated parameters\n", + "a_i = YOUR_CODE_HERE\n", + "b_i = YOUR_CODE_HERE\n", + "freqs = YOUR_CODE_HERE\n", + "\n", + "# Check if the number of coefficients match the number of frequencies\n", + "assert len(a_i) == len(b_i) == len(freqs), 'The number of coefficients do not match'\n", + "\n", + "print(f'Estimated Parameters (standard deviation):')\n", + "for i in range(len(x_hat)):\n", + " print(f'x{i} = {x_hat[i]:.3f}\\t\\t ({se[i]:.3f})')\n", + "\n", + "print('\\nThe seasonal component is rewritten as:')\n", + "i = 0\n", + "for a, b, f in zip(a_i, b_i, freqs):\n", + " A_i, theta_i = rewrite_seasonal_comp(a, b)\n", + " i += 1\n", + " print(f'A_{i} = {A_i:.3f}, theta_{i} = {theta_i:.3f}, f_{i} = {f:.3f}')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<div style=\"background-color:#AABAB2; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%\">\n", + "<p>\n", + "<b>Task 4.2:</b> \n", + "\n", + "Now we have the complete functional model. Reflect on it's suitability for capturing the time dependent variation of temperature throughout the spring. Comment specifically on the time series components that were included and which ones have the most significant influence on the result.\n", + "\n", + "Compare your final parameters to the ones you found in the previous tasks (i.e. model without offset, model with offset). Are they similar? If not, why do you think that is?\n", + "\n", + "Comment also on the suitability of this model for predicting the temperature **beyond the betting deadline of April 5**, assuming that you have data up **until** that date. Remember that the ice typically breaks apart 2 to 6 weeks after the betting deadline.\n", + "</p>\n", + "</div>" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "*End of the assignment.*" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "mude-base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.6" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/content/GA_2_4/GA_2_4_solution.ipynb b/content/GA_2_4/GA_2_4_solution.ipynb index d97c3942..03703aaa 100644 --- a/content/GA_2_4/GA_2_4_solution.ipynb +++ b/content/GA_2_4/GA_2_4_solution.ipynb @@ -35,14 +35,13 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 49, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from statsmodels.graphics.tsaplots import plot_acf\n", - "from scipy.stats import chi2\n", "from scipy.signal import periodogram" ] }, @@ -73,7 +72,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 50, "metadata": {}, "outputs": [ { @@ -89,6 +88,8 @@ ], "source": [ "# YOUR_CODE_HERE\n", + "# data = YOUR_CODE_HERE # Temperature data\n", + "# time_hours = YOUR_CODE_HERE # Time in hours\n", "\n", "# SOLUTION\n", "# Reading the data from the file\n", @@ -175,7 +176,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 51, "metadata": {}, "outputs": [], "source": [ @@ -331,7 +332,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 52, "metadata": {}, "outputs": [ { @@ -341,6 +342,16 @@ "Dominant Frequency: 1.00\n" ] }, + { + "data": { + "text/plain": [ + "np.float64(0.013157894736842105)" + ] + }, + "execution_count": 52, + "metadata": {}, + "output_type": "execute_result" + }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAHpCAYAAACful8UAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9d5geVdn+PfOWbcmm9wJJSKihhk4gARJgo6joh4IFAb8PP/ypwIcoYgFEUBQFxAoixULvLJBAGiG99942fTfb9923zczvj5ln5jlnZt53a5IN574uLrLzTjlz5pSn3o9mWZYFBQUFBQUFBQUFBQUFBQWFDod+uBugoKCgoKCgoKCgoKCgoHC0QindCgoKCgoKCgoKCgoKCgqdBKV0KygoKCgoKCgoKCgoKCh0EpTSraCgoKCgoKCgoKCgoKDQSVBKt4KCgoKCgoKCgoKCgoJCJ0Ep3QoKCgoKCgoKCgoKCgoKnQSldCsoKCgoKCgoKCgoKCgodBKU0q2goKCgoKCgoKCgoKCg0ElQSreCgoKCgoKCgoKCgoKCQidBKd0KCgoKCgpHIJ555hlomub+F41GMWjQIHzlK1/Bpk2bOuWZ9957LzRNa9G5xx57LL75zW92Sjva0h4FBQUFBYUjFdHD3QAFBQUFBQWFcPzjH//ACSecgGQyiU8++QS//OUvMWPGDKxfvx69evXq0Gd961vfwpVXXtmh91RQUFBQUPi0QyndCgoKCgoKRzBOOeUUjBs3DgAwYcIEGIaBn//853jjjTdw4403duizhg4diqFDh3boPRUUFBQUFD7tUOHlCgoKCgoKXQikgO/fv989tnjxYlx99dXo3bs3CgsLccYZZ+Cll14SrkskErjzzjsxYsQIFBYWonfv3hg3bhz+85//uOcEhXNnMhncddddGDhwIIqLi3HRRRdh4cKFvnaFhYJTmPz27dvdYy+++CImT56MQYMGoaioCCeeeCJ+9KMfoampKe/7T58+HRMmTECfPn1QVFSE4cOH44tf/CISiUTeaxUUFBQUFA4HlKdbQUFBQUGhC2Hbtm0AgDFjxgAAZsyYgSuvvBLnnnsu/vKXv6BHjx544YUX8OUvfxmJRMLNu77jjjvw/PPP44EHHsAZZ5yBpqYmrF69GgcPHsz5vP/+7//Gc889hzvvvBOTJk3C6tWrcc0116ChoaHN77Bp0yaUlZXhtttuQ0lJCdavX49f//rXWLhwIaZPnx563fbt2zFlyhSMHz8eTz/9NHr27Indu3fj/fffRzqdRnFxcZvbpKCgoKCg0FlQSreCgoKCgsIRDMMwkM1m3ZzuBx54ABdffDGuvvpqAMCtt96Kk08+GdOnT0c0am/rV1xxBaqqqvDjH/8Y3/jGN6DrOj755BNMnjwZt99+u3vvKVOm5Hz2+vXr8eyzz+L222/Hww8/DACYNGkSBgwYgK9+9attfqef/OQn7r8ty8KFF16IE088EZdccglWrlyJU089NfC6JUuWIJlM4je/+Q1OO+009/j111/f5rYoKCgoKCh0NlR4uYKCgoKCwhGM8847D7FYDN27d8eVV16JXr164c0330Q0GsXmzZuxfv16VwHOZrPuf2VlZdi7dy82bNgAADjnnHPw3nvv4Uc/+hFmzpyJ5ubmvM+eMWMGAPgU7GuvvdZV8NuCrVu34vrrr8fAgQMRiUQQi8VwySWXAADWrVsXet3pp5+OeDyO//mf/8Gzzz6LrVu3trkNCgoKCgoKhwpK6VZQUFBQUDiC8dxzz2HRokWYPn06brnlFqxbtw7XXXcdAC+v+84770QsFhP+u/XWWwEAVVVVAIDHH38cP/zhD/HGG29g4sSJ6N27Nz7/+c/nLD9GoecDBw4UjkejUfTp06dN79PY2Ijx48djwYIFeOCBBzBz5kwsWrQIr732GgDkNAaMGjUKH374Ifr374/vfOc7GDVqFEaNGoXHHnusTW1RUFBQUFA4FFDh5QoKCgoKCkcwTjzxRJc8beLEiTAMA0899RReeeUVjB07FgBw991345prrgm8/vjjjwcAlJSU4L777sN9992H/fv3u17vz372s1i/fn3gtaRY79u3D0OGDHGPZ7NZXy54YWEhACCVSqGgoMA9Tko/Yfr06dizZw9mzpzpercBoLa2Nm9fAMD48eMxfvx4GIaBxYsX4w9/+ANuu+02DBgwAF/5yldadA8FBQUFBYVDCeXpVlBQUFBQ6EJ4+OGH0atXL/zsZz/D6NGjMXr0aKxYsQLjxo0L/K979+6+ewwYMADf/OY3cd1112HDhg2hzN8TJkwAAPzrX/8Sjr/00kvIZrPCsWOPPRYAsHLlSuH422+/LfxNDOdcMQeAv/71r7lfXEIkEsG5556LP/7xjwCApUuXtup6BQUFBQWFQwXl6VZQUFBQUOhC6NWrF+6++27cdddd+Pe//42//vWvuOqqq3DFFVfgm9/8JoYMGYLq6mqsW7cOS5cuxcsvvwwAOPfcc/GZz3wGp556Knr16oV169bh+eefx/nnnx/K+n3iiSfia1/7Gh599FHEYjFcfvnlWL16NX7729+itLRUOLesrAy9e/fGzTffjPvvvx/RaBTPPPMMKioqhPMuuOAC9OrVC9/+9rfx85//HLFYDP/617+wYsWKvO/+l7/8BdOnT8eUKVMwfPhwJJNJPP300wCAyy+/vC3dqaCgoKCg0OlQnm4FBQUFBYUuhu9+97sYPnw47r//flx88cVYuHAhevbsidtuuw2XX345/vd//xcffvihoIheeumleOutt3DjjTdi8uTJePjhh/GNb3zD54mW8fe//x133HEHnnnmGVx99dV46aWX8Oqrr6JXr17CeaWlpXj//ffRvXt3fO1rX8O3v/1tnHLKKbjnnnuE8/r06YN3330XxcXF+NrXvoabbroJ3bp1w4svvpj3vU8//XRks1n8/Oc/x1VXXYWvf/3rqKysxFtvvYXJkye3ogcVFBQUFBQOHTTLsqzWXvTWW2+1+kGTJk1CUVFRq69TUFBQUFBQUFBQUFBQUOiqaJPSreutc5BrmoZNmzZh5MiRrX2UgoKCgoKCgoKCgoKCgkKXRZvDy/ft2wfTNFv0X1iumIKCgoKCgoKCgoKCgoLC0Yw2Kd033HBDq0LFv/a1r/kIVxQUFBQUFBQUFBQUFBQUjna0KbxcQUFBQUFBQUFBQUFBQUEhPxR7uYKCgoKCgoKCgoKCgoJCJ6FD6nQvWrQIL7/8Mnbu3Il0Oi389tprr3XEIw4bTNPEnj170L17d2iadribo6CgoKCgoKCgoKCgoHAEwLIsNDQ0YPDgwTnJxtutdL/wwgv4xje+gcmTJ2PatGmYPHkyNm3ahH379uELX/hCe29/2LFnzx4MGzbscDdDQUFBQUFBQUFBQUFB4QhERUUFhg4dGvp7u5XuBx98EL///e/xne98B927d8djjz2GESNG4JZbbsGgQYPae/vDju7duwOwO/JIJYPLZDKYOnUqJk+ejFgsdribo9ACqG/WtaC+V9eD+mZdC+p7dT2ob9a1oL5X14P6Zl0D9fX1GDZsmKszhqHdSveWLVswZcoUAEBBQQGampqgaRpuv/12XHrppbjvvvva+4jDCgopLy0tPaKV7uLiYpSWlqpJ2UWgvlnXgvpeXQ/qm3UtqO/V9aC+WdeC+l5dD+qbdS3kS0NuN5Fa79690dDQAAAYMmQIVq9eDQCora1FIpFo7+0VFBQUFBQUFBQUFBQUFLos2u3pHj9+PKZNm4axY8fi2muvxfe//31Mnz4d06ZNw2WXXdYRbVRQUFBQUFBQUFBQUFBQ6JJot9L9xBNPIJlMAgDuvvtuxGIxzJkzB9dccw1++tOftruBCgoKCgoKCgoKCgoKCgpdFe1Sunfs2IGpU6cik8ngkksuwcknn4y77roLd911V0e1T0FBQUFBQUFBQUFBQUGhy6LNSvfs2bNRVlbm5m1Ho1E8++yzuO666zqscQoKCgoKCgqtw66aBG55fgluunAEvnhWePkSBQUFBQUFhUODNhOp/fSnP8XEiROxa9cuHDx4EDfddJPycCsoKCgoKBxm/OKdtVizpx7/9/KKw90UBQUFBQUFBbRD6V61ahUeeughDB48GL169cIjjzyCPXv2oKampiPbp6CgoKCgoNAKNKWMw90EBQUFBQUFBYY2K921tbXo37+/+3dJSQmKi4tRW1vbEe1SUFBQUFBQaAPylApVUFBQUFBQOMRoV53utWvXYuXKle5/lmVh3bp1wrHOxOzZs/HZz34WgwcPhqZpeOONN4TfLcvCvffei8GDB6OoqAgTJkzAmjVrOrVNCgoKCgoKhxO60roVFBQUFBSOKLSLvfyyyy6DZVnCsc985jPQNA2WZUHTNBhG54W5NTU14bTTTsONN96IL37xi77fH374Yfzud7/DM888gzFjxuCBBx7ApEmTsGHDBnTv3r3T2qWgoKCgoHC4ENGV0q2goKCgoHAkoc1K97Zt2zqyHW3CVVddhauuuirwN8uy8Oijj+Kee+7BNddcAwB49tlnMWDAAPz73//GLbfcEnhdKpVCKpVy/66vrwcAZDIZZDKZDn6DjgG160htn4If6pt1Lajv1fXwaf5mlmW6/+4q7/9p/l5dFeqbdS2o79X1oL5Z10BLv49mya7qLgpN0/D666/j85//PABg69atGDVqFJYuXYozzjjDPe9zn/scevbsiWeffTbwPvfeey/uu+8+3/F///vfKC4u7pS2KygoKCgodBSeXK9jdY2dPfbY+dnD3BoFBQUFBYWjF4lEAtdffz3q6upQWloael67wssJtbW1WLhwIQ4cOADTNIXfvvGNb3TEI1qNffv2AQAGDBggHB8wYAB27NgRet3dd9+NO+64w/27vr4ew4YNw+TJk3N25OFEJpPBtGnTMGnSJMRiscPdHIUWQH2zrgX1vboePs3f7J3a5VhdcwAAcOWVV0HvAuHmn+bv1VWhvlnXgvpeXQ/qm3UNUFR0PrRb6X777bfx1a9+FU1NTejevTs0RuCiadphU7p5Gzgo1zwMBQUFKCgo8B2PxWJH/IDvCm1UEKG+WdeC+l5dD5/GbxbRPY7Ul5btxdfPO+YwtqZ1+DR+r64O9c26FtT36npQ3+zIRku/TbvYywHg//7v/3DTTTehoaEBtbW1qKmpcf+rrq5u7+3bjIEDBwLwPN6EAwcO+LzfCgoKCgoKRws4kdprS3cdxpYoKCgoKCgoAB2gdO/evRvf+973jrh85xEjRmDgwIGYNm2aeyydTmPWrFm44IILDmPLFBQUFBQUOhFa4D8VFBSOEBimhZ+/uRpvr9hzuJuioKBwiNDu8PIrrrgCixcvxsiRIzuiPa1CY2MjNm/e7P69bds2LF++HL1798bw4cNx22234cEHH8To0aMxevRoPPjggyguLsb1119/yNuqoKCgoKBwKKBLaV4KCgpHFt5asRvPztuBZ+ftwGdPG3y4m6OgoHAI0Cal+6233nL/PWXKFPzgBz/A2rVrMXbsWF9c+9VXX92+FubA4sWLMXHiRPdvIkC74YYb8Mwzz+Cuu+5Cc3Mzbr31VtTU1ODcc8/F1KlTVY1uBQUFBYWjFrrydCsoHNGoqG4+3E1QUFA4xGiT0k1luTjuv/9+3zFN02AYRlse0SJMmDABuSqeaZqGe++9F/fee2+ntUFBQUFBQeFIAvd068rTraBwWFGbSCMW0VFS4IncyUznycYKCgpHJtqkdMtlwRQUFBQUFBQOLfbUNqMmkcbJg3sIx2MRHl5+qFuloKBAaEplcfr90xDVNWx+sMw9nsoqOVpB4dOGdhOpKSgcTpimhVRWWYwVFBQ+fbjgV9Mx5fE52FWTEI7Ho97WHh4LpqCg0NnYWtkEAMiaFgzTm4383woKCp8OtEnpfvzxx5FMJlt8/l/+8hc0NDS05VEKCjlx/VPzcdp9U1GfzBzupigoKCgcFmzcL+6v8UjE/XdaedQUFA4beKQJn4s87cNUCriCwqcCbVK6b7/99lYp0XfddRcqKyvb8igFhZyYv7UayYyJ2RvV+FJQUDi6sa8uid9N24j99Ukhwocr2YDo6Va5owoKhw9c6eZzkZMdpg1lGFNQ+DSgTTndlmXhsssuQzTassubmxVLo0LnoisYik3Twr8X7sQZw3tiTL8jq669goLCkY8bn1mEdXvr8fGmSvz9hrPd4zyHGwj3rikoKBxa8DDy1XvqMH50PwCAzrTutGGiMBbxXaugoHB0oU1K989//vNWnf+5z30OvXv3bsujFBRahFws9kcK3l65Bz95YzUAYNMvJh/m1igoKHQ1rNtbDwBYtrMWjcmse1w2OvJwVUWkpqBw+MCNXl//+0Js/9WUnOcoKCgcvTgkSreCQmfD7AJK97q9itdAQUGhY7B6T53774wUnsrXwwtG9T1kbVI4svDS4gqksya+dt4xh7spn1rICrVpWtB1TZizSulWUPh0QLGXKxwV6ApV7KK6cjkpKCi0H7GIhppE2v37p2+uFn7nnm9L8Zd/KpHKGrjrlZX4yRurUdmQOtzN6TJYv68eM9Yf6LD7pSSDGM3brOHNS6V0KygEoy5xdJEkK6X7U465W6qwdGfN4W5Gm8BDyruCpzuilG4FBYUWIJkxsHRnTSircUE0ggwT1HccFEuG/X3ONvffqjTRpxPcEJ1IZ8NP7ECs2lWHxz7c1KXJ+6589GOXO6EjkMqICnVts61EZNkHUkRqCgp+/Pr99Tjt/ql4b9Xew92UDoNSuj/FONiYwvVPLsA1f5rbJXKiZQjenC7QfKV0KygotAS3v7gc1/xpLp6Zuz3w94KojozRskUv28LzFI5eHKr98bNPzMHvP9woGH26KrZXNXXIfWSjV4PDxZBRnm4FhZz488wtAIB7315zmFvScVBK96cY++u9kLOu6A3hbe4KIZRK6VZQUGgJ3lu9DwDwxxmbA38vLYq12DvWFdd2hfbDYJr2jupEjjM7Hhv2dU3+Ej5XCmIdIx4blqx0O55uNn9TSulWUAiFhqNHdu4wpTudTmPDhg3IZg9NGJNC+8FDsrNdUDDjG2RXaH5rle665gwO1Cc7qTUKCgpHOuqTwflspYVRn3csLFqpK67tCu0H399veHrhIX12V7UvN7Ew/MJox5TwklNElKdbQeHTi3Yr3YlEAjfffDOKi4tx8sknY+fOnQCA733ve/jVr37V7gYqdB6yZtfKiZbBLcgH6o98ohhOpDZ/a3Xe80+7byrOefAj1DLCJAUFhU8PuGBe1eitcb1K4j7G8mQmWHBXnu5PJ6zDqMfpXVTr5mX4OuodZNmKFOxU1st7VzndCgrhOJrKXrZb6b777ruxYsUKzJw5E4WFhe7xyy+/HC+++GJ7b6/QieDCWFf0hhhMIF21u/bwNaSF0NnK8fV/LM55LvdaddVQPQUFhY7DlgON7r+7F8Z8SjcnyyqIelt7tiuUdlDocBxOQ3qkg6TkyoYUXly089ARwe32yvB1lLFKvg/N28aU907K062gEI6jSOduv9L9xhtv4IknnsBFF10EjS20J510ErZs2dLe2yt0IvimbHRBsh0uTNZ0gbICrQkvbylJkoKCwqcDzYwR2jQtn6CeSHu/c0Ffebo/nZBziQ8lOoq/5IanF+KHr67CL95Z1yH3y4eaJi+qrKMcEbLxg+67+YBH1EZzO5kxcOu/luClRRUd8mwFhaMB2lHk6m630l1ZWYn+/fv7jjc1NR1VHXU0grPaVjshzNPX78c5v/wQczZV+c4PK1/TGmw+0IimVMdYrblQsb8L5D63Jlwtme26JVcUFBRaBtO08PW/L8B3/r0077m8DJNhWkhLhjlSug3TEhSGrhjFpNB+5PJ0r9vbsbWoZXSU7LfWKdv11vLdHXK/fGgW5ljHeJ/l6ffS4go0prJCukjSmbsvLqpA+ap9uOvVlR3ybAUFhSML7Va6zz77bLz77rvu37TYPvnkkzj//PPbe3uFTgTPI7r71VUAgJueWYwDDSl87e8LBCV74bZqnHrfVLy4aGebn7dsZw0u/90sTPrdrLY3moF7cBqSRz6BX2vKsvHankpkVlA4OrG1qgkfb6rCuyv3+sLFZfCc7axp+c7f7ISfyx5w5en+dCLXdnPVY3Yt6ramLm2tbMRH6/aH/h7t4Jzu5CEKv+ZKd0dFm8nzb9nOWuyuaRaOUfj8wSbF36KgIGN3bXP+k7oIou29wUMPPYQrr7wSa9euRTabxWOPPYY1a9Zg3rx5mDWrY5Qrhfbj+XnbMapfN1xwXF/3GBfOFm73E3uN/HE5Zv1gAo7pU4Jv/3MJGlNZ/PDVVfjy2cPb1Ib3nTI4e+o6xivNPfUNyQwsyzqioytaI/xyr5YqJ6KgcHSCrwnprIlYRBeIE7nuIoSXW36l+6dvrsaUUwcJBE3yMxQ+PZA93XXNGfQoimHpzhr32PaDTTh+YPdW3/vSR2zZ7pVbzg38vaPLYx6qMZwMSdFoD4IiDvhcBoAE/d0FCW0VFBRajnZ7ui+44ALMnTsXiUQCo0aNwtSpUzFgwADMmzcPZ511Vke0UaGd+GRzFX765hpc/9QC4XhLyDtmb6wEAGTaqfg1JDP46+yt7bqHDL6ZmRbQlD6yQ7LlTTzXns4F52TmyH4vBQWFtsGCqHQDorcrGvG26GZJIZDX78E9C4X7ELpyePmGfQ0C4ZRCyyHvN49M3QAA+N3Uje6xeLT1IiDfj3aG1P9uq+3bNK3QMpmHwtvFPeodltMdcJ9GKTKP5nbXnakKn2ZYloV1e+uFPUohGO1SujOZDG688UYUFxfj2WefxerVq7F27Vr885//xNixYzuqjQrtxGrGyMnDw/e0YBMriNm1KvkGxO/XUjz8/oZWX5MP8qZ4pCunrVG6eSip8nQrKBydyGS9RYDmOU+V4d5sng40a2Olq4yOH21HL3UriAr3IXRVT/eCrQdxxaOzcfUTcw53U7okZKfpOic/mhOQFrRB6a5lpKXdC71gySwbn21lL7/zlRU458GP8OFaf+j61/++IOCKjgXnm3l+3vYOuWdQlLpsSCJlpS2M8+msibrmI59IVuHoxdS1+3HVYx/jxJ+932nP6AhOqSMB7VK6Y7EYXn/99Y5qi0IH4sHydbj/7bUAgPqktyD/0MndBoBflreAEdQZ5zwc6vfTNoacHI5lFTX5T2ol5EmYLyfycEM2ErTU0506wo0JrcW0tfvxl1lbWpXjrqBwNIITJtKcb2DrtWV5SrOsPH/skF0WkWHUke5lpburerrLV+0FAGytbMpzpo2sYfpC6zsDWcPE0p01R/x+Iytw/UvtSAg+PgqikVbfl8sCnHtkw34vP7xPt4JW3xcAXltqE6Y9Pn2T77eWjoP2oLLBIzdbtL1jZJYgZUEmk6U5yj9ZS4xlpmnhysdm47wHP8KOg53fPwoKQXhlyS7334sDUlU7AkeL86nd4eVf+MIX8MYbb3RAUxQ6CvXJDP42eyue/mQbDjam2pUmFCSwcSX+cEJuG/caHYmQN9+WeroPFYnMocJ/P7cYv3pvPZZV1B7upigoHFbw6Jx0gKcb8IyJYUJ4UVyMRvITqXXN9YOirFqKSb+3lY98aVNNqSy2VDbmPCcXHv5gA67501zc9/aaNt/jUEAeLqP7dwMgjo+25F6H8Y3w4+2lVjlcdas7owpKkPda9nSnAww4LTEgNSSz2FrZhOaMgdW769veSAWFdoBHtmw/GJxy0l4Q2WBXR7uJ1I477jj84he/wNy5c3HWWWehpKRE+P173/teex+h0EpwgjHTah+pSTZAYOteGGv1fTrDqSkLoUEb15EE2UiQixxVEGyOIk83z/mp6wK11RUUOhOpgDSSBsmomTFMFMYioR7rYlfpNp37iOtFtoNYmA81Clnocz6SzKxhYluV7enbVpWbHOzKx2ajoroZr996Ac4Y3qvV7fqbw03yz/k78cDnj9w0Ot/+6IyvvswLzRXCzQcacN/ba/H9y0Zj3LG9Q+/bLCndJERytu/2pjTQXt67JI7qQ8jovb/e83R3FBlcUL30JkmBIM4cPsSTGRPF8dz3TmS8+8jkbApdGw3JDKau2Y+JY8LnIiGRzqIxmXWjWQ41dOa+7WAORReJtIE+nXPrQ4p2K91PPfUUevbsiSVLlmDJkiXCb5qmKaX7MIAryhYs6O0wOweVzWjP/ToS8sbe1nC/15buwt66JL4z8biOaFYo5E0xV2u5B+FoCasBxPA9S9HGKHzK8dB7XoqPF14ue7opvDx4HSiK2ds4KddHS8kwrmSnsrbhIQw8GigfOVhFtc1lUr5qb6uV7q6UEiO3lfbHwT2LAs/5f/9ehvX7GvDxpips/9WU0Ptyhu9U1gC5WQRjf3uVbud7lhZGD5nSbZgWKlnt7Alj+rXpPlnDRFPKQI9i2zlBfdGve4G7/4WRHfI+bAlHTVPKO0c21il0bdz+4gp8uG4/Lj2+Hz6XR+++6NczUN2Uxry7L8WgHkW5T+4EcJ2goysXEI50zqaWot3h5du2bQv9b+vWjmWrVmgZ2mNxjkXECZMNVGRbv6F2xkSUPT9t9ejc8dIK/OaDDVizp/UEca2BHFLGm//Bmn34+t8XuMytR6unm0cjdIXa6goKnYktLE+V1u36kPDy/J5u+3dZSemqOd08RzWf4ZGvl/IeFoa22Gi7UlfKbSVFLymUnvN+rwhhIpche7oJGWYUam8/7XLqWHNZZmS/krDTXSQzBl5aXNGmMPHGVFaQlzJtfIkbn1mE0+6fis0H7Bx3us2kkwbgOCfEX3YQ0L7YWmM7D7lV++nRhQ/X2WSC0zdU5j2X1vx5Ww52apvCwGdKZ5XtTRwlzOjtVroVjjzMWH/A/XfWsAJDxMMQi4hDIkhg4/nGLUW0E5Tujg4vP9jYuRZ1mTylgRmmb3l+CT7eVIWH3lsPQBRsjqacbv7NuJVeQeHTDjIayh4rEjbCvIfFBUSkZq8TVIf5pEGl9vEumtP94TpvH8uX38oVyVzOaH6ftuS6d6W+lHOJ08744ooajammVLbFJTe5l5anRyzd4RGPBYVUtwWCUi/t71srG3Hpb2fi5cUV7rG/ztqKu15ZiXMf/KjVz5LLHQU7HPKDCA4v/91sAN6ep2uefCVHEFJ4eViOfBB2HGzCA+94kTJHOrGfQufjjpdWHJLIkN9N24ifvLHKHdt8rnSkqN+9wAvGPlqU7naHl9900005f3/66afb+4g2495778V9990nHBswYAD27dt3mFp0aPCTN1a7/86aVmCIuIwTnBw4eb5kDcsXplaTaP2kjkbC7Tv58vXCICvdWyobcdYxrQsX3MlIHzo7DFNWut/YruN/YNeiJVCN3vV7vWNHk6ebC60dJZgpKBwNqHJCW2WPVU0ijREoCfVYlzocG/T7pgM2Sdhpw3pi7d56GHnW/4ZkBqmsKeT6Hgng0VGpPIbelirdz8/b4f67LetPV8qPD0u/as74PdIrWkFqycchVxL/MH2z+++OYtLmiqRMlHrXKyuxtaoJP3hlJf5r3DAAnncQsOt6D+nZ8lBbOc+af+sP1uxDRXUC3xo/slXtB7wIAl3TQGKQHF5O75luhaf7v/4yDwdYulZXjWhR6FhMX38AXzpraKfdv7Ihhcc/sqsLXHPmUJw5vJcwV9paLjAIPHpGhZc7qKmpEf47cOAApk+fjtdeew21tbUd0MT24eSTT8bevXvd/1atWpX/oqMIhmn6LKCkRPMNiRZ4OV87a5q+zXtHG9gJ5YlIFvZ9dUmc8+BH+O0Hra/jLbfrrldWtvoed726IvR+HQ05p/tgyu6ToHrp3FrZlsiCIxW8jw1lmVdQcHHbi8sBAI2S0l3rGDnD1ieqlUyCz6b9ttJ94iDbkJpLGLcsC+f88iOMe+BDn1HwcMIwLaH2cP7wcq5Ihr8vhS3bz2h9u45kxaaqMYWrn5iD5+fbhgW5G0iha2bKJckCpUUtJ0flhtOwCIQ3l+9p8f045Hx8QemWPtjugH1TVNJb94FlTzcX+G95fgkeeHcdluxofTmk15bZZdDeWbnXla/kqDxyjPDj+ZQMrnADbffMB6ErcRcoiODjZktloy+tsb0IIsPl62JHOlP4nqc83Q6C6nSbpolbb70VI0e23irY0YhGoxg4cODhbsZhQ8awfJsVkdJkW2BFyhiWT9Cg3KfW5GnLbciaFuK6hkembkBlQwpPzNiMO684vsX3Azpmcu+p9XK/Olugki31MUe+iLIcRCKpEXO7jo7FBhD7+EgWYBU+HXhlyS4s2laNX37hlJzROIcSDSkxvLzRScOg+RKLaEL0EilM9PvBJlsYH9rLNqrmMiZWNqZcY+Du2maMGRDO+n0oIXsdWxNenmtf4OtqW8i+ZMWmrVFanYEnpm/Gyl11WLmrDl8/7xif8YH6hQuv1AW5DBUyuFcrlTU7LEnx2bnbfR5g/resqFZKSicAnDOiN9Y7kWOt/bqyUB8U1bDlQBPOOiY/mzQA9CoWDRnVTWkM710MwG8QIPmIR7W1Ni+9o/bTO19egaU7a/Dud8e75QgVug5ojVq5qxZXP/EJ+nUvwKJ7Lu+w+yfZWkzlg08ZUopZG+3c87akOViWhW/+YxGKYhH8+WtnQtM0VDakhH1OlQzLAV3Xcfvtt2PChAm46667OuMRLcamTZswePBgFBQU4Nxzz8WDDz6Y0xiQSqWQSnmLeX29Xfswk8kgkzky2SGpXUHtS6UzSEsKdU1jM/p2K/AxZWYyGV/OWjqTRXPKH07e1Jxq1YIsK/WJZApaQdQlGwlrfy6k0uL5EV1r9T1M9r6NyXSnfuNkVlw0jiu1kMlkUNfkjbc+JTFkMhkkWSmQRDp7xI691oJ/s0zWOKLe652Ve/H03B14/MunuQoLIdccUzgy0ZJvdufLdqTLOcf2xNWnDTok7cqFdDqNLQfEGtLpjD3/M46wUxCNIGN460NJ1Fb6soaJTCbjKtlRzf5/xjkehF0HvWdlM4d3neHfqzYh7xe51+YdVd57pNPhezVfV9NG7vWnNpHBn2ZtxedPH+TmxyelPac+kURxvFPEqFajiRlrMpkM0tK70XrLI6vSjlwj76XNyVSoESrFy1Sls0Bh8BzLZDKwLAvT11diQGkhThlSmrP9P39LrHueSqVFIy0bx6YpOgPcscMUglSOcRCExmZRiaf+4l7f6qZkznu+unS3+2/L8vcL+Sn4OASAtPMsrnR//4XlKDu5f4vb35L9tCVr4itLdgEAPly7F1eePKDFz1foXIR9MzkqIeWs4++v2gvANk515Lre1OzpAzVN9r25HJ1sg7xa2ZBylfY9NU3o370Av5+2XnxuJ8vn7UVL29Zpu8WWLVuQzR5ey8S5556L5557DmPGjMH+/fvxwAMP4IILLsCaNWvQp09wxbeHHnrIlwcOAFOnTkVxcXFnN7ldmDZtGgBAQwSWk5096+M52LZfBzdHv/PBR+hfBDSnIqAs7sZkGuXl5UhnvWMAsHnrNryX3gJ5qLzz3gcoaUW57qoa8b5vvTcVPeLAsgrvvuXl5aHXWxbw6nYdSQO4bpSJiAasqtYAeIq/YVr444vlGNEKZ01TwmvXw++sRGz3spZf3EocrLafVRSx0Gxo6BG3MG3aNCw84L3H4i37UF6+G/sOeO3atWdfzr7pCLxXoWPZQQ23nWKguBNlyE113ruuWbcO5fVrO+9hrcTt8+wX/+4/ZuG/Twi21tIcU+g6oG9mWvaMEh2T9jf/ZPFyRDtx7gfB1hnEyfbCm+9hX30UGiyMKgU212tYumw5YruXYcdOex3XzAz4Wrp04VwAUSTT9hqeNey1Y+miBQCiSKUzoevHtgavDdNnzcambh3+mq3GtGnTsC8B8L6ZPWcu9vQIv+b/5nnnzpo9GxtDtmrqQwCoqNiF8vKdofd8cauOuft1/GPuDjx2vi3L1KTEdr3x7lT0PMSp8Iks8PCKCAqjwA/GGm6e8O5d3ruVl5cL3xYA9u7dh9ffLkdNwju2YOEiNGyysLVePPf1d94P3d+X7/PW8O0Vu3HxaJpj4lguLy/HngTw6xX28YfPyaIgp51evP6Z194TjqWyhjuO/7FBlGno+Lqt3vGZs2ZhQw6RzTCBBZUajiu10L/IL0/U1DfY88n02rZqzTqU14XvWT9i4zDlzEf+DrU1NQA0VOzaI7S/qrrW7i9JVnv33XKEBVIURyJIGN6PW7fvQHn5tvAXZgjbx/iatGLZUpg7VDTa4YM4H1ryzQBg1Vp7jG6pENeDjgJfK5avXI1eVauwcYf3rOUrVqJ434rQ64NwMOnd86V3P8LIUmDTNnEuLF25Br0Org68/khAItGytNt2i9d33HGH8LdlWdi7dy/effdd3HDDDe29fbtw1VVXuf8eO3Yszj//fIwaNQrPPvusr92Eu+++W/itvr4ew4YNw+TJk1FamttSe7iQyWQwbdo0TJo0CZoegTXvQ/e3c887HxvnVwCVHnncmedeiFOH9sCPl34EOJbhjKnhqquuwvfniRN76PDhuHTiKGDxLAC2pda0gIsnXooBpYUtbuMjGz4Gmj0L+9kXXIzj+nfD9+dNdY+VlZWFXl9Rk8Bt8+cAAO750gU4eXApImv2AxvEyd175FiUnT2sxe361drZQNoO4zqQ1DDh8smd5rl4fPMnQKIJQ/t0w6YDTTBMDZMmXY6DS/YCW2yrXmFRMcrKxuMfuxYA9XYJs9JefVBWdnantInw/Z/a32Fv9+Px3YmjOu05n2w5CKxdAgA4bvTxKJtw+FNQCDQWS3r6+5vPsVisFdYmhcMG/s30SBSf/9M8FMUjePG/z3FDgumbn3TSSSg7/5hWP2PJjhp85alFePDzJ+O/zhrSqmubUllg/nTh2JgzzgeWLMKQXsUY3r8bNtdX4uRTxqJs3FBMf2UVULkXPUqK0MDSYiZdOgG/WjEH0CO48srJsJw1fML4i/Do6vmAHkFZ2RWBbZi/tRpYvRgAMO7c81tNRNmR4N9r3f4EsGKB+9sZ487B+NF9Q6/l+8hFF43H8QODLa/v1C4HDtqs6AMHDUZZ2amh9/z304sA2IzctDftrE4AS+e455x9wcUYPeDQWiqmb6hEzaJlQBo4/cIJGNbL1iwXv7MOc/dXuO1dvKMGWL3Iva5Pv/647PKxwMIZ7rGzxo3DxOP7YcG2amDNYvf4RRMuxaAewft75bwdwDabg6V33wEA9uKUc8YD8+YJ55WVldn3XWHf9/xLLsXAHDID/4YA8JtVMfAgcdPScMWVVyGia75zr7rqKmiaht9tmAPAFn4vuHC8y2sQhHdW7sWLC2yOn02/mAys2gdsWImIrsEwLRQWlaCs7CK7msACu89GHTcGZZeG74+8XZFoDGVlV7jH/nz96fjH3B3Y2lCD3v0GANVeKajibt1RVnYBnt29EKivdY9PvvJKX0UZwq/WzkaizlsHFlRG8Oz/uzK0bUD+fay+OQPMt9/1wvPOwUXHBTunFDof8hgP+2bprAnM92T+Y0aORtllx2Hz9M34YJddtjmXbN1azN1yEFhjy3BjTjgBZReNwIr3NgB7bC6J4088GWXnDW/VPTfubwCW2evHmWefiwtG9cGs11ZjUaXHDXHMqNEou/S4DnqLjgdFRedDu7WLZctE74Cu6+jXrx8eeeSRvMzmhxolJSUYO3YsNm3aFHpOQUEBCgr8putYLHbEC9uxWAwLd4i1pi0tgpSUY5E07HN97KaWf3E3LQ3Q7WES1TXEIjqaMwYsLdKq/khL+czNhp1vL7c/DM0saMKAbp+r+9sbidjtWritGp9srsJ3Lz0uZ67msN7F2Ms2LhOte6/WgMLhSgqcHEzLfudm1jfNGROxWEzIZUkb1iEbexa0Tn2WpjNXh9a5z2or4tHwMdAV1oFPE1qSUxuLxVDZlMV6h2CsJmn6DIa0brQWX3nKVmp+/MYaXH/esa26NpvyR1PUO8e6FUQRc0ilLM1e70zHuz2kVzF2OUq3pgHFhXEAdqSPFvHW1BJ23ICOBduqce6I3iiMsegg5jF319UORFtynoPW9qzV8rVCy/EtU2xdzbfW9S7x5AA6T1i/ADQ7a7NlWVi9ux4j+pWgW0HnGG0J++pZupezD2cME3O3eiRfsVgMutRWCxr0iNg2XY8EnpvJ0d8W8z6lnT2tJimOZU2z93feX2Yrx1dQjvLMTdW48hQ/R8/O2hSO699dyPvW88zp3XVeOLmlRdy5UByPoCGZRda0v63B3s1AbjmFw7Ls60viETSlDZw4uCeiEdsoQjXAi2IRNGcM91lypRlbzgoeT76cfbPlckLYPtbc6IXI/uDVVVj8k0ktup9C54FSEsK+WdaSCQDtcyMRb+515LrO9wxIexMAvLRkN24abxum/jxzC4b2KsJnTxuc855pk93TWZNkuT1tdOx7dDRa2rZ27w4zZszIf9IRglQqhXXr1mH8+PGHuymdhiD2cZk1m8hJZKVbJq8BiEjNPj8a0VAQs5Xu1pJ70WYY1TVkTQuNyazw/HxyGa/pTEQNQQRBmjP5r/2rbTUbUFqI688Nt7qdPqwnFm7zhJVMJ9ZhpX4noYz2V84aTMyyaaFe59HD8s1r43Y2W3xb0Rk15RU6Hqmsgc898QlOHtwDj1x7Ws5z+Rq4qybRqiidtqA2kUZDMothvcPjW2W2ZADY75BDFUR1RB3Fk+YJzZ3Th/e0PYiwxyqdx9dq+x5O/W7Twr1vrcELiypwzZlD8LtrT3fPyQikWG0jbFy/rx4/eHklbp80Gpee4OWAbq1sxLV/nYebLhqBWycchx0Hm/DYh5twyyWjQj3RBNlIm4+9nCMXJ1iS9Xk+dugCxqSdzBgojEV8axa1c+ra/bjl+SUYM6Abpt5+SYvb2hbw70SK6T8+2YYtlV6ZriU7anxtNUzLRzJHipus4AaNTfmZgLdPUbk7gmXZ+9Z7q/f6zm0tKLoO8IibZNA45uM53/7Sh5XIq6hJuGOsW0HUUbqpdrbXF1wOyQfqa6p/XhiLuPIZlcArjttKt8teHkAkVxKSvtAZxT/4PKtq7Px6zwr5kY+wWOZhorn755lb2v3srZWNeOyjTfjOxONckk1evpHIKHkbiMhwyY4a/Pp9O4Izn9LN1xva56gUJuFoYS9vN+9kc3OzEMu+Y8cOPProo5g6dWqOqw4N7rzzTsyaNQvbtm3DggUL8KUvfQn19fWHPey9MyHPz6xp+TbQVNaEZfnrd/MN5Y5JY5zrTXcjiEV0VxBprSJIBCFU3iZjmDnZNpfurMG6vV64BldMcyndMrZWNub8XWZazCcYrN1Tj21VbatBSs8qdgjoqPtfWlzhntOcMWBZlmCxl1lbuzI4ed+Ryl5+pLBYK+TGJ5ursH5fA15duivvuaJhq/Pn0+n3T8P4h2cEMiwTpq7d7zvW4CgV8ajuVjWgeUJzRxZGuJFof733vMKYN45fWGSvMa8t3Y17XvfKZgp1gdto3Lv7tVVYtbsONz2zWDj+5MdbUdWYxsPv26HItzy/BK8t240bnl6Y956yINkapTsXE3cB65PCPESgfB0gAVbeM2lNf80Zgxv3595vOgL8O9H3e3vFXuGcXTUJ3/pqmJaPsZ3+lJXxXAJuNqCs1do9tqA94fh+7B5Z/HO+lzPfmm/IURCN4MqTbe92mDGAvgMfN/mqm/C9v7454/Yl7c8033i7eSnPfDBMC9OcOa5pQGlRFLozV0mRJzJal70865fVCAcbU0L989YwzrcUXakO/acFsiNNhiwHk4G5rfON41vPLcaby/fgS3+e6x57a4UX8k1TKEgWb42cvLPa0yFpjZUN40rpdvC5z30Ozz33HACgtrYW55xzDh555BF87nOfw5///Od2N7A92LVrF6677jocf/zxuOaaaxCPxzF//nwcc0zrc/eOVGQME/e/ux7/2aIjlTGQlCZa1rB8CnLGMBGk73DBlAS2rOldXxiLuN6T1kzoZMZwrb3dHKU7nRXrf/P945v/WIhr/jQXVz32scvM2MDa9vW/L0RlQ8oVKrhwKa9P+bYQeZPJpXRXNaZQ9vjHmPjbmXnuGoxUNljp5sKRadnnCcLwUVQyjH/ztpTsORSIRZSn+2gDr1WaNvzzqS3yKx+/vUvi7r/5GN/EqjOksyY+XLvfrW3694+3+u5JSkVBNOJ6OMjyT0I2r6mcMSyh5CBXqGmtlvGvBTvddZUrHm0V0moTwd7HHkVx4W/ygOxrQSkkeV3OtwYO6elVG8i1rPBvk8/IwI0Za/bU+64HPCWvNcrK8/O249gfvYtjf/SuOxZaA26Epb2jf3fRHVoQ9XvlDdNf/pPGgWEEC+5B4PegMfP4DNso8cnmKrfWtiwkz9xwIPSeufaCWERDL4fVjddu56D9kn+HfPtLhSTo0xijSDR6Ty4XcaU3HzKGhQ377HFjWUBxPAqaqtRvJXHPCcHfQ34v07Twlb/NxxWPznbbHaTo0Pd8eXEFXl+W3xjpb/PRY+A/WpDf0y2Og6AInu1tdBRtdaJn6pPeHHhvtccPZbj7iH8s1rO5mm8ucgWdxrXsbMoXmdRV0G6le+nSpW649iuvvIKBAwdix44deO655/D444+3u4HtwQsvvIA9e/YgnU5j9+7dePXVV3HSSScd1jZ1NCKahufn78T8Azqa0gaWbK8WfjdYeHmRk8uXzpqCRZjmNB/kbmiiYbp1+Qqinqe7NYrgvxZ41u5uTj5zOsTTbVkWZm7wCEZI4T8gCWp/nbXFnZxxyTPZmo3D5+nOce1WFr7XthqvTh5XnDZ1+7i8mPiU7jzCoWlaeOCdtXhytl+Il1GXyGDOpqrDpvCqOt0KHYV8HgAOLgBQSLBcaqW1qGKl/koYLTN/FvdKPzdvO7713GJ88xnb0zs6oCY2KSrxqO4qfa6nm+WBckRZ/vNaFh0Uj4Zv72TEzGXcq2pM4dUlu/IKO2HpGBTVBPj7Op/yIq/DrfHC54qAyrYinJ4Lu2T4kA02NJZas5b99E2vNNa3nluU48xgcOMI7V9y3nxTKuv3dFuWr2/oT394eXjlGS47yIaaYb2KXaOyPG5+O3Vj6D1z7bvxqO6Sicl10uXr+X6eLxLuyY+3uf/OGCbzdEeFZzUwhYMrHy0BORuuO8dOcXPDy51nkaebni33A423XTXN2HSgEcmMiTmbqwAEyyCmBeyta8YPXlmJ219c0WolWindhx5Zw8R3/r0Uf5+zLfD3fB5eeZwHrdc3P9v6dQYIcGLJ6Slu6lPuuZYvWpMbxWktojlR4Brxjo463e1WuhOJBLp3t4WHqVOn4pprroGu6zjvvPOwY8eOdjdQITd0XXOFq2TGwOPTNwu/1yQy2O4IOKP6lwBwFF4mfLje6wxXummTs9zjhbGIG57XGq8Ityh3LyDLrl8ASGWN0DzzA1KYZtb0ro8zj44G4PfTvM09n1wtW+hyebqF+qbSItISAZ6sgiSMpk37eXIkQtYQle58C9aczVV4as42/LJ8XV4B+Zo/f4Kv/X0B/rUwuFTOX2a1Pw8oF/j3lb91VWMqVKg6lChftS//SQqHHVwpyjf/fvHOOvffNJ+4otEW9Zsb4fjj31m5J+Bs4O2Vdgjwsp21AODWJf2/SWPQz/FUJtKegTOie2sw4M0XWcnlnm7usYzmiNg46ORrpnN4ur/813n4v5dX4JGpG0LvA4R/BzEnWrw31QIOg9/TnXtd4AJZrrEgKIyt8HTTPlHTJHpaXU93G7lAFm2vafU1fG+4+zU7skEWjpvSWYE/A7DHuxySTH/Lx7/9z6WhzxcNF/YzBpba4/eeKSei2DEKtSYcNNceF9V1d4yFGTfo+/Df84WXy8+nfiUDGpGdcSNaa71t5CWnsUTh5eTZc0PZnWfJY5L6tyHFjYbi+sVZ5rOmiU0sxaG1efTKEH7o8cGa/Xh35V784p3wUnS14VlKPkNJUJQK53toDWTmfF/0TAgnBCDuCx9vqsr5HB5NkpUMaBTZpcLLHRx33HF44403UFFRgQ8++ACTJ08GABw4cOCILbF1tKHQEW6aA4SIqoYULMv2jhzT21G6s6KXmRRp2vh0zctny5iW6+kujOmBCno+9O3mhRny8HJZUFm2s9a3UdJklHO5uhdG3QWgR5HnUTEsC09/EmwxDILchlyW3p+9udp3XjJj4PLfzcLFv5khWOuCQO3tWWwvIsmsaOEjwSlrWgLjfL6+5nmju2py1wqkxfft5cGKQVCYUEeCj7u9dZ4RY9P+Box74EN86S/zgi7rdBypoe4K4YhofqUoDLu5wSxrojGVxZTHP27X8zl5FFcKuSeT5rxlWVhRURt4n1OH9XTfhTyMgZ5u5x0juuauIYCoHHLlJRchIHl5ebiuvM7QWjGN5Z7PWH8A1/51HnYe9NYZzobO1zPuaZe9FPn0IXldzqU8GKaFWh7K2NLw8jyebr4X0VCrTog5vRlXQDx06wdv9+YDjYF5zjz9imCaQZ7u1nvqU0IUlv1sEs57Fsdd721rhORc4fmxqOaO5TCPWtrhqRHTl1r8eGSyphfyXSB5utmYzmf8OWN4T+Fvmg+kgEQk60ixnNPt/D+iix5x3pcuEa7z7a4d55VINUxLiHZpj6e7eyez8CvYCCIwlrGyOnwtX1EhVizqSOLdAh+DuHhvl0gtYJzxof5Q+Trf7xyNjE+K1iIaiz0dpVuFlzv42c9+hjvvvBPHHnsszj33XJx//vkAbK/3GWec0e4GKuQHCT3JjIHThvYQfqMNozgecYUgOZ/aDRl3BnVE19y8VsM03eMF0UibwssH9fDy7Sg0MmOYvg10RUWtb6OkTUsWCmIR3b3+pMHeO6cyphBubuXxYcmbEm1y1U1p/G32FkGh5YIibXxbKhux+UAjKqqbc5K2cYGgV7FthEgamsDqTu3OSJ7ufGzxfNGua259CE57w2xbA97fH6zxhPnXlu0GACwPUUw6Gx1BOqJwaMFDanN5GmWDSjpr4p/zdwikV23J4q9hpEphSiGtWzOkfFa+9p0yuNQVskVPt5jTTddEnNKNbts1LdATyI/LIMFsP0vbCVtjKB0GAG58ZhEWbqvGD15Z4R7jvRtGdCV7X/J5IeX+zLX+1TVnhLU5Z3g5+y2fcMoVwRMH2Q6EmiZZ6Q4XOqltMzYc6NBKDfJalUhnfeN3Z3UiIP/cr3RTv7XG6Cgo3VnRKxWP6G54dnNG3IvOlBRSDr4v3HThCOG3WER3nQBZ0wrcr4KIWVvj6X55yS7GuWK337RsmUqsJCKOwy2VjXh7xR63TbLxIOEoE56nW3xuUdyL/DNNy31Wd+acACSl2/DyvAHgmjOHuL9NXbMfv3pvvXdu1kRVYwoTfjPDZZLOBSEn/hDKBZ9mBKVJyWM8F+ejrLTnqjzQWsSkFKWMVFWC1pMgrohsC6OuANEoa7hKt/3/3iVx9O9egJ7F8cBruxrarXR/6Utfws6dO7F48WK8//777vHLLrsMv//979t7e4UWgIjEkhnDx/hHoVFF8Yh7XmMq6woJuuZZqWnTiUhlaOi47enOH15umhbueHE5/jTTDnUngfiyE/oLir+8QTVnDN9GSQtIkFDDwy0pZ6ohmRU8LK0NL6c2/d9Ly/Fg+Xp8i+XCfO6Mwb7r/t+/l7nHcglxXNghy12z4QkbsYiXtxa0aM5YH05C0yhY4lu24HJjxKEMKTtSc8aOFivqpwmRgPDfIPgrFBjYVydyRLRlBtQk/CGfMmjec1ZxAGhkuaHdC2Puu5ByauexyjndfH0WhZhIiCcwTOkmQypnYw5b08kbxwVB4To2d/gayNvSnDaEtuQrZyOvSbn2m8ak7EUP/5qt8XQL5dSov0I83WFr6P/+cwlu/Mci/H3O1pzPailM08JrS3cLx4I8ysmM4e5lZMw1zZaXDAPC+5H3GxG3kiIYj+qhnu5cwQBpJmNwJZLazz3dQQaMIHkijHQtCNPW7mclwzwN5/l5OyTeA3EcXvbILHz3P8vw4boDwnu47SLPtTOX5dz7EqZNccMUkbnR/XhqG7WBviWXd0jm4s+/96012H4wgT/P3OIr7SaDGy9VqPmhQdASLfd9PIemRmtQLzeCsuNkGZkvSfZ0u+Hl0nHZwCfzkMjge7SbauGM8wuP64uF91yOZ286p5WtPzLRIbVxBg4ciDPOOAO6rqO+vh5vvPEGunfvjhNOOKEjbq+QB4VOyHcy67f2Ul3L4ngEI/ra4eUb9ze450V1b0NzlW5N88rVGKYrfNglw0TijyDM33oQry3b7ZaKSbPrSZBMGyZmb6oUrgvyfpMQF0QWQe8Q0TX0KPLYTaOyOTkH/IuF/fcMh8xtxS4vdIefSosEZ13MpbhxYccNXzM9Ih5eIigoTL0gx6LF82FyfZd5Ww66/+by1KFUhNtaq7Wz0ZEblcKhARdWcnEB+MmJTGHOAG0bl3ze8Gcc08erze3l/IrrF+VoxqM64syrTQa3eCTi5nRTnjbpFFFd83lHYiHKdViIuass5VAoCCQwEYM3IHpnuLLA5xFfsxNpI2e4uwz5e+ZSkOUoB97Vu2ubhXU5l6dbXgf53/SOsqebFL2wtX+us+Y+xUi72oMN+xt8x5rSWV9Ot2F6/U9KWdb0769yDXiOMJ2Lj5N01sT+ZjAZQXPHi6x05/Km03eJ6bovjzQW4TndZqAHO22YyEjv8P0XlvnO4+Bpb/QugOfpBoCtVU0+crag/XKxQ2AbxrhMY1/ugyKmdHMCWVK6SX6bxX6jUHrqBt5fstMlY1jCvp8vDSLNPJnK031oEMQH2prIu0xWzH1OdqCnW640IY99r0635TuPH7t4TD/kgkCwK+V0y+tBV0e73+baa6/FE088AcCu2T1u3Dhce+21OPXUU/Hqq6+2u4EK+eF6utMGpkseUSJ+KYpHcbIThr12b73nJY54IYi06UR0TajHTZMgqmstIlLjDJ+maXnXR7ywyIxh4mcs99E+5q8jSpuWj101Y7ibQpTlONY2pxGLtly4C/N0lwTE8/C2Bb1/rjIrXNihdADDEhcWMhZwYeW0YT3tdubobyEvM8d5v5vmESLxt65pQ9maIFRU29Z0EhSCwPu7Byt91Jl4ft52obZkEDoyJEvh0IAvCbm8MkFleORwt1+/v77VaRZ8LId54NzwO5+33f6b1lnSR93w8pg/p9vgnu5IsKdbRpiie/Mzi2BZlrBehM0Bl2GZKx9OX1mWJXiaufLJuzNI6c7V32lpXc7Fa+HLXXbuu3F/Ay781XSUPebl7vNvtK8+6a7pd72yAmf9YpqQTsSVeVLQqyUiNVq/c639gGgYHekYv9uCIAG9KWVAkwLMDdNTQmmMmZY/z5m+V5DNKixlQ55Pr2/X3WPxqO5GRsjjifd9TVMat/5rCT5aZ6cYufsgM0ARYhEtr6fbNC2f4SPfdJb3SjLs8EoEhTHd976rdos5tIA3N1JSG7zoQU/u4eAewJ+/5clDVF6PIulKGW+NnB4YYWkkxZLckjFMgf8hX8EH5ek+9AgKL/ftWTl0cNqHqFIGrUW8jGVbIBum7WeFebplpdsSDHn5DDhZaS/lzzraSri2W+mePXu2WzLs9ddfh2VZqK2txeOPP44HHnig3Q1UyA+yZO+safb9Rjmyo/qWYLBTy7S6Me0OaB5KTptORNdcS2tTOit4lFuS080nWIKFucUiuhBeLk+mdNZvxXZDqQI84HRfnXm665sziOk8vDz3ZJcXEXpXOQyM/xZ0nd2mltU2pY02a4nCN/UHZzwlkjza1OsSGXz97wvw2lKP/XdfXTChk4wwwXxHQA3HmqY0rv3rPDw/v+UVCD7zhzn49fvr8VB5eO6YWBe48xXdnQcT+Omba/C9/+T2ejS0shQMkNu7qtD54OtMrmgNWYFLZ83AuRAkTOeC7B2kucwNZJ7C7BdKAC98j9ZgN7xc9u6ZFlbvrnfP9Ssm9vUXjOojHI+GeAmypoXqprQg3IUR+pAgLxLX2dftq0/iIPP+cu/xLxl5jpzfa98jh+czhGsj+FzJe+uMi3cdtvitbH2TFcmtVXZe/0uLd6E+mcULrKoD9/q5nm4nvLzUybmldgWlFvGyaDwEWPbItgZBXp+gUjqGFezplt//iRl2OHKQpzssD13+FhlTE3K6yUgjGyL4fP3D9M0oX7UPNz+72L4HM+zLxhnb0+0x+Qcpg1nTwoTfzAxsbxj8aSd+T/fQXsW+84j5P+haX6k7kqmcuSOPed5HDS00VqcNMQ1P1z2lWw7jTWdNnDG8l/t3XgJD9hzL+nQQjD4/bzuufHS2wG8BEFdE578/lzXpebLSncvxTWOOeABqEhmks6awD8kEfy3BRimqxrIsX7touPv4IyRPd75IsqDwctkwfbSg3W9TV1eH3r17AwDef/99fPGLX0RxcTGmTJmCTZs2tbuBCvlBglvQwKZFfWCPQnczy7Aws6ge5OnWXZbxplSWecU9pTmX54FPoF++u84VMmSysEJ5gzDMUE833ZNC5JMZwxUUokzprk1kBGsuF7ibUlnM2HBA6Cd5A6e/g0K8uWBy/ZPzsXJXbWBbg8Dfq8hJ0DFMb8GMsSgAXquXGykA4E+zNuPjTVW44yWPyIjnaeVa3MJK+zSlZQ+BhdeX7cbCbdX46RurW7zxkMd9sVQrnkNUuk333p21t9U2ewJSrvdordL97wU7cdLPP8DczblLYSh0Hvic4sLiql11mMmIy3yCsGH6WIQBT5moTaTx2w82YEsOYkQgvNyg4BE2rJzn0vymUkKkQHFPt2FaWLazxr1W1/0syNGIdy4AfPuSUQDCDW2ALezxtnLPBl/LSOnmHhkS6OQQ4n8tsI10sgKRSBu+cOVc3mF5Xc7FhC0rkjTPMwHvZkjfQZ73vFtFT7eodJMBm75XUEgnbzN/jkxG1BoEfc2mlOHzYNoRZvZzeC1o2eNEXANBCnaYp1P25mZNL+qEs+4HEbkRany58Z5hXh6z8j3lbwjYQn5rSwrxvXJ0/27u/lUQ1TG8t50i0r0gKlQSka/z2u94umXvecaL8qP2c3CZKJdhic/TdNYUIhY4x4PsLMgYplCeL5/HMcyTeTTjp2+uwfp9DXjgXc9I+NrSXTjtvqkYcXc5Hm4BAV17IKRJufnM4ljOxflI34zWJABYs6dOGDN92uD1lmXgtGGGs5cHlCc0WqF087Uh4TxXhZeHYNiwYZg3bx6amprw/vvvuyXDampqUFhYmOdqhY5ALIfSTYgyxltuLY5GvFxiLxQKKHGsvQ1Jz9Md1TWvZFiOZ/Gwsv8s3IlHpm50n8WVyLKxg4TrgjzdlCNIE5gEwNeX7XbP1TXNJSera84IeVI8kPrWfy3Fjf9YhN984C2iPk+3YYYqZ6LQkMG1fxXLW+X0xrBrqQ95eDnP6SaPU0FUF4wUgO3plsG/+/YArzUhwiIAljq1gu12+8MAeRRCQ4ABYu2eery8uMLtK66g5BL0+aJtWcGCXWeRmuUy2ssh8fks/D9+fRXSWRO3/ntpRzSt1bAsO1fvgGSd7wj8aeZm3PTMoiOW9I7APxHPJf7sE3PwzX8sws5qu6yVnJphe7rDt757Xl+NJ2Zsxmf/MCfn82UBOmXYbahinrAF2w46bRXP/YdT1pDWZJIriO04HtFd8iXZk6tBw8Ae4t5KFREqHQMcCeFhud72fcS1g1cT4AKXt15xb5sZ2LY3nVKEPpLMtOHWIifIyhsHtetYJz9+/b760HNlgwbJf3xtoZxqeb2RPdQCIz67L61JpLzTuzQ7cZ9BayQfH2cd43kb21rTGwhWmgI93UzopdJPyYzpCyM/yWFlD1qHSbn9ZHMVfjdto3s/eZ+L6t61sld6CFME+JrKQ7jtc/3h6eI9PRmFj8MJx/cLbb98H+HdTEtYP/qXFmC1E+ly8uAeOGFgdwC2g0I2kqQNUSbhz5eNaUkWPQj4w7s1TWtR+Cxfw2Q5iYeXy3unLBPmDfMNyfk/1DBNSyCPOxTgz+NlZ/+Uh/QxDPvrk3hy9tZAmY2Dp4bQmuPzdOf4DLRPdy+MuiHl6awp7N8frjvQ5hrzBPuewVFF8riRyxLLyroMHtlE6Y6cC+poQrvf5rbbbsNXv/pVDB06FIMGDcKECRMA2GHnY8eObe/tFVoAWuBz1fuL6J5Sl2VWcB7ORRM9qutueHkqa7qTtaXh5T5rKYW5Rbzl5dl5O1xvDQkFuYjUaALzhZEs21Fdc0kk6pozghWY32/WRpuM5ElGapNh/UDPCQt7lDcsWWDLtUEFlfvh4eWxiO6GxbuCd4Cn+4VFFaH3BpDTOyeH7VFf+kKGpHqnPM+RUPb4x/jBKysx0+nTD9bsc38bkSNnURZgggwVP5dy/TsKub6PbNWl6AzLsjBt7X5UhNQ/D/KYHgos3VmL656cj0m/n93h9374/Q2Yvv4A3l+9L//JhxFc8CQ2bS7Y73UYyn1EalkTQfs4fcn5W21FOZ/nLKiW9No9onJIa41syKMSeWQYoNBxUt4KJO8eFzzShokfXnkCTh5cin//97kAgP4OgdLeWvud3brAOQR6IyBckNb1oMgPLhjRvA3N+w0glJLXz9yebjGyqTaH4CrPa8qN/dvsre6xg00p577OXuRyluRQ/Nk7yISeXv5k1hcKv/mAHZbJ90huCJb7vDUhrEGya1Pa7+k2LM+wTsSdzRnD11ckM9Dxob08JTlrWqioTuCrTy3A4x9twuvOmJXX7L7M/mOTAnpt4M8TyETjYg1oXjqzV3Fc2KtiEc0dK++u2ivspaRkBK3tV5480HfMfZ70Do0pw434Gtq7SPBMk5ItX/tniSncsiz3PUjhdz3dIcYvy7J8KSDTbr8YN5x/DADg1KE9kM6amLrWM4ilDVPw9nNPtzyeH3xP9NLm06HD0u0ONX7wykpc8KvpeGdlbi6WjgR3WHQEx8t1f5uPX5avww9fXZnzPD40Nrlrh2wsCb+epyr1J2Ngxh9ZxGW0lqApJfZBxvCTCNJ+6w+HF+d+PmI4LnNThYh01pODjya0+21uvfVWzJs3D08//TQ++eQT6I7iMHLkSJXTfYhAltJcQiInMQNEC2xQTjdt1IBXdiym6y3ydIf9FtF1LGN1mGmD4DUpw4hegliASTCMRDiRWkbweuUVnJ1FxM2zNqxQq5zsvZHRcqXbYTK1NBxosBeYnsUxl6SOwty40p2rv3mOYC75TfZAU9/4rOGmGHIuM/ZybDnQ6Pzf27CO6ROudHMLctCzAeDFxX7DQkcg1/eRPdv0rSf9fjb++7nFuPR3wV7PoNz/QwEK4a9rznQaI3yQB+1IghmgdPO5T+M9KLQ7aJ6QYtVSD7+8HqSzJl7qoLFrh9R6tYn53E1nTZwypAfe/d54XDCqLwCPlJCUExLCc1VysBUKWTm2/+bkaLT28nOpj8LmVJAQ5k8dyhEZ5PRtd4kcKPhc8T67c3jI6FzP+2sISu+SHTWB95Xfl4zSibSB1ZKhZVuVbUjhKVh8rPiJ3+C25Y8zNvtyKYX2Bxg5EgFedk5gSgYC2/sUHCpNCvH5Iz1OANOycOWjnlGPDLokJ5w30k4rTLDHRyV5gkcQ8bHCBWmDGbpjER06U6YBO0JuwTYvZYlzzMhkgxy5QqPlcV/V4EWIdC+ICiVTyZDlXuv0GW/Ta0t3OzXE7b+LY6Kc5PIzSGuGZfk9eaMHdHfzsLsXRvHGMrFE3JYDTaKnm6UIynLCCiZv2c/LLcPIa+XOg8HG5s7Gqw5nzRPTN+c5005lyUXe2lJwborWVMAJA3FJkLMnDFyGID4cf/ShuP7zko3cceM64FL+9bK1UQszNoikzHKeOODNMXl9zhpiCb98MooRINdnlKc7HOPGjcOUKVOwe/duZLN2h02ZMgUXXnhhR9xeIQ/iUi4wAIzsJyo+uhTG5OYNs9Atzl7OFT5aACMRxl6eM6c7eHJvP9gkTC4qW0Ne6qa04RMKKASRJvBnT/NqZZNyGtG8nO501hTCecKUbgolc2uQO5bprGnmrbnLwVnOc4Vu8Rz6GBM4qOTYsX1K3Hc40GBv8nFWuzuoT2kDFcPcwr+L7JUlg4YsgGRNU/D8yr+/xLztRDpDbQbCCcaCoiOo7blIZDoKuYQw+beMYWLHwSZsPpA7r7cVVZA6FLy1+UK32oojnUMnqG40H7eUgxxUO5e+N2f2/dFrtkeipd6doFrSYR6t1nqMoiwySWZsDlqfCiVvAHm4c6V6GGawp7sukcEv3lnLzrP/z9egS8aEh/Xa9/FHAQVVoAiDTA4UVqopVxs4iFSNziXOkuaMIbSVV/8Qyaskpdu5fn99Et/5l5hiQqHTqQClXf43v+fjH23Cbz7YgMk5olf48k574UPvrfezl1uWEHZKIGOKW7qTlG6K+Ip40WxZ0xKMryRw0zXkrSZRIB7VoWleObtd1c3C/suNLsuZMphIe9EC1C6ulMcjOpqZAdBke6lbVi9I6c4xLuRxX0sEeUUxaFLJ1O0OIR6lFIQZwPk9KbKB9jw3aiVgD4ozuYwiO7iSznlJALts3NwtVe55uZRuGfmJ1MTrZcXrUCOfwpUxTIy9dypOvXcqJvxmRodVIWkP2aEMudJELiScNbG+WTSkUYBgdVMaY37yHs78xTTsrbONiy4JIXOsBTGPtzY9/x1nzSSks6aP34DmmC+twTAFDqT8Od08qkjkcYq3ohpRV0C7le5EIoGbb74ZxcXFOPnkk7Fzp83++b3vfQ+/+tWv2t1AhfwgJY5vcJNOGiCcwy3QANxNLMZyusnzQAs4eQMoR7GqIdWi8PKwCaZrYk4TWehpo6moTvgUV5m9/OLRfd3fyAMfddjWqd3cYhnmrbv/nbXIGqa7cA1zwuqyhl8QpU0+aMPMBOR1BcG1zmsecQrghfcVxyNuXiaR28SjEV94edA9uUUxFyOwHGpK1uEgT7dANifd8y4WLkUCpkAUFCIcB3m26Lv+a8FO328dAf7JWuPpThsmNu4XFe6gy4PKfRwK8E01Vzm51oIrskdSndaqxhRu/MdCvL/aEwT4MCNPVYJZ+GkcBrEU01jgzKi7nOoP+SJaCEF5bPJwII9da/PjeSlHm3Xae9aw3kW+88kYSqBUlVy1sYM83amMiX8t3IGFjAyRhCcukFP+d9ickvMxM4blDy/PRY4mebqBcCW9JTnStCfQukYGzmTGDFVUghRledzM31rt86zTMwRPt3OdZfnTl6hfljKyvDDQHjS0V5FArmdBuqdpuTmR3ZjSTYbq7sz7ze/LvccyYZlH8uSEUDvyQdpwFGVi4o8EK4B0/YKtB/HxJo+Asjlt+EiTuLEoFtFcbz3gfYt8nm4+3t5ZuUdI/ZDnI68aAIjpZm5uPEXkOdd2K5BC5Nn7lrD0PLutwcYBCxCM8MSKH2OpgCQXcLzoGL7pPJLt8uXt5rNPyf04zCGUA2zDxHLJc54LHcH8nS/f/QBLfdt+MJGT+6E16MgSotxwsL2qCVf8fjZeXxZMbkdyiGxooal4y/OL3WMz1tsedD53aPwul0h+OwJpI8DT7bRX7i+5ykA+xwDnQXGdQcSPEAnnZuiKaLfSfffdd2PFihWYOXOmQJx2+eWX48UXX2zv7RVagJhEwHVsn2KhbBYghjUDnoIei2pu/hEpYeQRLZE2lbV764U622EI+y0W0QUlhfIXiWyluinty1lzrV6udVt3hU7X063bFvYgATPM063BJmwgAYg2lyBPN1k95Q0zomvCsVzkW26NXSnMnxariK67giAZAuKMSE3OKwNYiSKh3EL4d5FLL1Df+rxSUq4nv+d/ForKsRuWz87JhPQDF9rpvdpDKtQS8Ja0JPyfkDUswUMEAA0BzvhcnsR8mLZ2P3725mohVKylEMrXdWAfykR3RwqemL4ZMzZU4tv/9LyKXFiZts72yHBeCxrX8obfnDEEI5iMlvanr/a2YfpK9pzplGrJZQwLQlRndboNS3jWqUN7+s4vjIrPpbGby8tihuR0r5ZKp3me7gDDX8h7fePphdI9PENHYUwkmQoCrQsl8YhryEhmDCzYehBTHv8YS3awcOMW9q3JvO08HF/+jvS3MMeyouG1IBouCLpKN3u/oHsSaBjL3uog8FrtfH4GERzR9yqIRty1n/ZMl7NFMiZwUi5f1JlrTDCcezjeXObpBjxDpHw9zVeucAP2N8gwTzu9HyEW0XHXlSe4f6eZ0k3v+K+A0pb0Tgu3VeP//XsZyh736rX7CcbEd6A8a648FDMWeLmNvF265u219I1oLn/hjCHCNXJ4eYGzfkRYakkQ6N1kI0V+pTv3XAkiliV84U9z8fk/foI50vcLwtzNVTjrgQ/dCJO2IqzkIeG9VeL9OyIsHAiXGw82ptzoxJaCy913vrwCG/Y34PYXV7jHuOxx8uBSAH7CXJrei7b7DXM8p5vmz787wYkRRKTWnDHwzso9qHecLlyu43Ns5obwEHuZM0iOwFR1uiW88cYbeOKJJ3DRRRcJuQknnXQStmxpG+ufQusgh5fruuYLe41GNGhsQ3WV7ojuWr2JrIbOCbLkxtlmFIYwq1ZRPILzWR1ZCnWjzSybg0iNK60U1kbelNIiR8BshdJt35M2LkZuFuD9oXeV3/ncEb1Fopgcsjr9FpW+DdWCjeqe8YM8rCt31bpCQJDQnpaiAMLOI/SWLOZ0rj//UmS+5O9992urhHNdAYvnLIZ0BLVT17yFtLPZUbm1PaenW/opqKRdkNLdVkf33M1V+O/nFuO5eTvw0zdWt/p6s4XfvLXgY+EI0rkDS/jxPiAFh8938lzL5H31zRnXixdENNZSY0OQp7unNMfS0hw7d0Rv4fcnrj8DgBjmDpCn21uTaOweP6B7YFtkTzel7ORiaQ8K2U5mTJ/yR+lFQdEoQXMqyMOVZQov7StBZbYItC7GorprUEimTXz5b/OxZk89vv/CcvfclkbJ8HW91PV0+8nFElJ4I/+36+mOhfcrPadeyIu3fPckkCLUEn2BLo9omnA+ja/Pnz7YPc+rna254c5kWKdvYPMbeOPLJlwN9soStwcp30Ux8vzav3teV+JSCPaKyWhIZv2ebk1UujnBW5KRkxGx6MEAwyU9bkNAjny4Y0Bk/c+aXm5q9wInDc5Zi2TvHmculxVy+vu6c4b7nsnllgJX6ffC24MiMVxCQJ/SnS+8vLVKt3c+KZuvLd2FfLj+qQWobkrjO+2s7hHPo3Q/9qFYlrijSpyFebq//veFmPjbmdiwL5x3QQY3BBBxJkeQIaROCi/PtcVz5VQ2aHUk0obpGx+JtIH/9+9l7t8eP5PlG7cHG/2EvAB8Roxmaf2NKSI1EZWVlejfv7/veFNT02EjGfq0gRbc5RW2h2JrZZPP20jn0ALfzJRuCt1a4oSrhSndqazpbga5wkXCwstvv3wMbr5ohPs3eaWK3NwwfwgieUNo8Y8xZnUSaiiEUw9SugOEdQIPU6PNNpP1e39kgYvKlMgbq5HDQ5ZlHgpu/HBZWyOaa+UmWJa/BjvfhOhaUUHO4emWBEW6Tg7Bl8PL+QYjKwdBJSO4Enjnyytw5i+mYfXuOlZ6Tne/lU0+03nqnRC6leM58m8Zw/IJiY0Z//hqa3j5Pxd4nplVkmexJci0wMjRFvCNMl/ZtEMJKgnIwZtHbeVh9z9/ex0M079W1QtlEHNvgbnGps/TnfXqmJKxjM6Rc5QJFE309xvGCcdjERbma1rueh4WWSF7XmlNzxVezj3d5H1OZY3AYtCmaWEZKzOYK1IlsOaz4RGpEQ9ESzzdUYdfRD6ff5Z8REUEHu7dgyndvprgTooC9xqGhZcHgfqUE1DS/hVkIKM1tCWebr6PcAMMtZWUa8P0vFKxiO5GYLiebjYO+VoX0T3FUxaa9zeI1QBcz6/s6da9vVR4z5D1ZFdNMzMQ+MPLeTlNwE5Dk88JAs/9lhGWUuB5jj2DF42Pvk5ONzknZPKuJAtRl9cV7sFfe/8Vwm88f50MvdTmNXvq3W/GEebpzkcolje8XCaHDNhbdnVyKS9uYM3HXH3VWJGhPpcM1lJkDH89asDeC9butcPX31y+2/d7GLinNtB4bPllJ194eY7XopDv9iqnczZVCTXdZaSz/ihQ2ThB62pQxGjYnJO/MZVhDJJ5jwa0+23OPvtsvPvuu+7fpGg/+eSTOP/889t7e4UWIEhwlHMv3Lqtklc8FtEQi/qJ1ABxYwbsCRZrh6d7WO9iFEQjruJGnu6imBey7vd0E3u5J3TKYe800QM93UxwOq5/N/ffowd0Y+RmurvZJbOGr/20EJJw5HpepFCunERdUjgrNZUTrewN2Mw4e3lKaluQp7sleeXee9nXN0pMl1lT3HQembbRrQd94sBS4VwSbLgC4tXwNfHKkl2obkrj5cUVAoM7Vyg6syxJLtZgDnncZQx/vfYOdCjnfLaMjGFi7uYqYYPjwkVHerr5xpiLtyEMhmnh2bnbfaWz2gveRdRffL7Rt5UjW1LM49e3my001zVn3P4bznIWg7ApB5GenGOcypquYsfLIALeeiyvXZQGJCvNnEgta3qkNGHh4oWSQa24QBTeAeAzpw4S6iZnDL/3OZU1A1W/tCGSK8pszJy4M2gd5MqLW8LKEa6qm9I+xSLLFEbac/46a6v7O38eGUE5ggxGVEdd00T2cp+n2zFC8rFUn8wilTV8YchBoHWZp41QykKQh9VqhZ5A0z6ia/jJlJPc48SkTfsYj2KIRb39jTxo3dk4TBsm2191l1Pk6TnbhGeT4YQ+r0sW5nQTjeGoZFB22x6yTG0/2JQnvFwT0uW++x/bs0btDAONQz4HZJImGfRdY8zTTHOvn7N+1CQysCzLF+pb2ehxscjGNf4+xfEovnbecBTFIrh5/AghvNxTur1jVKptFBvzxLK/z9mX6R2DSv1x5AsvlxWjoH5ayFjbOwNVLNx49IBuOc70j6mOsD/LewiNCb7e5wt75+DfPiidibeZ+pvWw77dnJJ4OT4bjxKhPY7Q0uw307Twtb8vwJ0vrwhlrOfGCJK5ZYcNre1Zw/LJD2FKN41J6hoi1XXD5pWnW8RDDz2Ee+65B//7v/+LbDaLxx57DJMmTcIzzzyDX/7ylx3RRoU8kC2+pw7t4dvwyHJLm1oi4xGpnXNsb+nc4JzuB68Z63mEc6xuMgGLDLJceZ5ue6OxLL/nRK6PGo1oLnkXgdoZZPlOBJROAIC3lu/xvF0RL7S7OW2EerrpfPIYy0K33CWWZWH+1oOoS2Q8hVMSKjxDhx5Y6obn0MuMlrSI8aiGXAqYLIjSuTLTpezpBoAtlU3OO8qKqN/TXe2QYuxnm2dDygsh5KGzhmnlNOAEWYZbA64A5My5l4SRbICnO+hymcCopeBerXyC0O+mbcT1Ty3AbS96YVxiZEEHerrZmM4XqhiE15buws/fWiPkT7YXH67dL5Sao40+KHVAHsuW5Y1lEmDqmzOuEEMs3GHIZRCpaRIVxbRhuoJGiUsyZbm/8eMENwJJUqajkqeb5kiY55oTjgGMSI3dNx7RMYoZHrnRkLzPWcMKjFCTx5i8JnJvRJCziYfJ9mRe5lTWwKWPzMRp900NNNzZ5EB2e15lYa2Denj8McVxcT8A/PP5lCGlrkGkgCmhzUGe7rRdRkz24nz9KS9PPWdOt9N2LnTSs+k78s9I878l85gTnhGbNgd5tE1LFMbpfYmlm49DTizIx9dry3YLpbtMSzSQkre/2SFS61VMKQ3BOd1h/B07DjblIVLTA6PY8oHe6YkZXtkpGkNBJZUAPxkcN0z1LrHfrz6ZCTTG/dhJvYpHNLdeMkGetw98fixW3jsZQ3oWCZ5Q6lOuzFAFDXmOc7SUWyTXVmNZFp6Zu1041lK+hI6EILvmeby83ncER4w8711ys0TbKqwISneA0dQM2MvpvShdKegz0PrCc7p//cWxwjm82g+tHY2pLB4qX4dVu7wIOzLe0O9B+56d0y0q3XJf8UhYWcmWnVTPzduOu15Z4Y6xPiVedYDmtOF58JWnW8QFF1yAuXPnIpFIYNSoUZg6dSoGDBiAefPm4ayzzuqINirkgbygX3RcX5/S5NVtdULHMuHWMVokiqVw5y+dNdRTAluhwMige5BQT+HlvF3u3xRezsINKZeMQJ5nvriVMqZREua4UGOHmHr3JKEzkc76c5zJ0216QhvgX3Dk0KY3l+/BV/42H5/74xzBq87bmmbCdNBCx9nLZRKzQE93LmOI9JPn6Zbzh/y5nkL4qXBPm+SJ8mcBL2+J92NjMisIdlyhCIuMeGXJLpzy8w/wjFTbuzUQc+7Dx6U8ZHlZKUI24PKO4DDLp3STx4kYowE5h75zPN35SHmCsG5vy3PdWgouNAOeJyLo28peCoMpH7zkD6WdxCKaS2405dRBrWpXtaPA0PrJw+88i7+49siEZySkyNFKsYgeGOIaFg4vh997HkNdOHbb5aPdv7lRpZiVTJTFwlhE8xnzqO52ULh10PrPI44o0qk5Y6CmKeMKszc/t9S7PzPQBYVNcr6FvXVJ3+8+46DpCfNxpoQmM6Zv3U6kDcH7S+CM7rnCy6mveJ/RGuuVwWFGCiYMy7AsSzIuedFoQcJoUYCnOx7R3GgyqvhRGPOI+ppSWTevUlZu+zClWzZEyn1ALNu0t8nh5WFrZX0yK0Q28HvwY0GQZRcAGON4R6lfdwR47rZV2YqsrBzL4eW8XJ8bDZIxfPWvAZs9G7AVqz4+mcr/DvQs0dNt/7tHQDoN32NlyEp3qeRpJ+TaamSjPhAetdjSlLC2EI2KJK65nyOv9x2xH8veW1rP+N7YHFIVJwg8BS3IaPrHmd7+9t7qfbAsLx+a9pGgLZ6iybiBUjbMiGSL9nm/eX89/jp7Kz77xBz3Nx6V85M3VgUaAFNZ090zZCZ/gpv62ZzJq3T/7M01eGnxLnyy2c5DLy2Muv1Tk0i7JI+KSI0hk8ngxhtvRHFxMZ599lmsXr0aa9euxT//+U+MHTs2/w0UOgTywhbVNd9k4KG9gJh/JOf6UghMjNXHI4s3hdXkKlMU5FH8n4tHuv+Ww0W4ci9P1NW77YXF8/TovklIGxUP3enBco9J4AtTpiO65gorzRk/WYRXo5We5wlsHPI69YaT97P9YMLdPOhTUVtJiY3oGiYc7+dG4Eq3zASaNkQSHCD3JuXLW3b6wxcmb/pzmkgwoO9DXf3a0t0+IqOgED6BMVrXmTfECjUU3PnyCgDAvW+vDfy9JWhp3/jZy03fBh7UzI7IR2+Lo5qXbmlJne6gcPkgiEp36xtGGyjQMX0DAOeOFCNxyAsQFHIuKy6m5Rm2ehXH3fm31VEyIrruMsbGAgSiXDn71A5STNJZz7ovh5cTMVhRXFpr3bQf/xpO61oiZQhROUGQSf9kI6t9rY4zh/fCYMdLzOd9kcvMbPnIAbNmcI3sjGm6hkvu+Q2KdGpkYa+kdKcyhuCZmrvVU2rpfWMRLadSvbWyUcg1l38nWJblebpjYilGeV1oSmfzlgzKpXQHlVhrTGWdcmGegEz9bAQo3ZZlr4uf+cMcfOVv8925RLfUNS1QGPVyui2PpDOiu8cbkl6EG63pl/1ulpsXLysF3IDSLH0vH48Akfc5L5ZhRm3AM5z7yoJmTKY4aMI9+LEgPH7d6b5jt044zm57wHpPJKzEB9O/VFK6Kbw8oFxft0LPWPSDV1aGtimiab4qBrm4FXiUCPXpWcf08p2Xywgqy4Dl3x8feF4uA68WMKRpvMpreUtTwgzTcsOFWwq+B7Uk9UpsV+v2rKA9ihR5+maWBUfOMn3ntASCpztgHMhGoeaMF21JFQKClG5qQ4bNHTnq5/iBHu8DyXsrmIebP5OwdGdt8HpvmG5JNjJgy8bYAaX23nKgIeXP/2bP4CUlXYJdXXNTWptYZKQKL2eIxWJ4/fXXO6otCm2ELIhFdN034Fc6dfvIU0ITIBbRQr0v3AIblYRDYrgOKp8Q5OngwqtMjFAU50q3uJg1prKoakwJOd3ywkUCJw/dKYl7VjMKMQ9jU43qOgsvzwbUFyWl2/4/ecXlzUTOS+Re+zBPN50TjWi48cJjIaPAVXYNfEbyxDUkMz6FK4zEjr+H9zcJcpLQmTJ8Xgq5RisJFbM2VuLnb60RzvUUDe95TSxkKRbR3DHGCX9yoSV1MxdsPeiOc4JQ0q0FOfeEoLrCQft/U1vreQaEl4aeGiCvcUbefGGpdYkMzn/oI4FlNAz8m4XVRQ5DQzIjtOtDp4xXeyGvT1TTkys1Xk63n/WV3qkg6pXlo3UrHvXKGAZ9X973BxqSuOZPn+DlxTZjMvU7pbukswYLL48454jh5b611g0vl4iXdN31HNY2p913DfMcyYYJup+gdDv/pnUyyfYAr3qD39NtWcECf12zV3KRG24DPd3Od9E1L0yWl4qSQd8sFvHvZYD3rd5asSfwerkNPKImzkLWM4bpixRJpDyhN0xXkkkvAa/0pcdULkZiJNLe+8ZZ+UwS6rnwbZgWth9swpo99Viwrdotr8mjhYLSAGgvNSUFn8YdpXRFdM2d37x/I7qGC4/zKoxsrfT29+aMIRgifbXhJS81PV8OeQ8qteUa1Vvp6eYcBQQS0gPTHJz+I2VLvjeNC9e5YPg93fnWxYiuoVBSfnJ5fLn8RoY2TdMwfnRf4TzZsCbcg91/YGmhK6PIyEkmGrAA0ndpSa53GMLmaBhaWgLV/l3eo1tn6A0yHtBax1Mw7LHrnfvOyr1t8va3pKQZj5ii7xjU3S5fCONukHWBa84c4kZyUfuD+jSoznZQu95cbn/LfY4hlO/BYwZ0cw3Q1U1pf043k4cv/90s998UXaNrLBI3a7peekWkJuELX/gC3njjjQ5oikJbIVtRI7p/USQSMVoAOHu5vHmSMBAPVLq9zej//XspJv52pq9WYpDwypvIPeiASAIURLaw42BTYHkvQkGApzse9az7JPDJ9+bM4ZywzEeklqXFyv6/mxsqkZa8unSXu2A/N2875m096P4mRxrQ/zdXNrl/F8YiPiGPyqHVNWd8If2rdtf5BNJcXk/5J8+DL96Xh/YQaDzRuAnb1Pn9+Bi0BU5PceBETPJYDbJs/mPuttDnAcCaPXX48t/m4+onPsFSh4Vffrf99X6PGcHPXu4PLw/SD4KYZVuL9pZN256nbujMjQdQ1ZjGu6v25mUkF/NQeX63gaqQkh+E+6WIhGel/MC2QhZudhy035ePdY+93B9enmZCyeSTRLbbWMQr4RdIAMY++sPvb8DSnbX4wSsrHa+l/VsJIyGTw8tlIrWiEGFc9rJHI5rrEa5JZPLmdBfHo0JlAU+Z9wt8tE56hlddKAUZpMzRudyT8vSc7W4ZGB6GHDSeyYtbGIsIkUJhUS75wumDmKlvv3wMADvKwJf6Y1nueC6I6awUo9/Tvb8+KeROBwl9sqd7yqmDcLHDD0Ce/qDyOpzXgppuWhbelfbQjGEJ+wvxZJDAHJbjTJ5c26DhecBICaT5ERbBEdE1XHPG0MDfmtOip1vuF/pTJtkrFIzq/v5OZQzXgF0S96eK5VK6ZWMVN2bQN+Rj1nAN6MH3dut0u+/g5btTSG1z2nQ5BQYzbgFCRNdQKI2PXJ5uIbycGeXkeShHyQDAHZPGuM907xHzlywj5NITg+atzN3gHg/KtXKfIf4mV8HJh3QOT/c9r6/Cd/+zzH2GvH60NtUq6HzXkCilgPC21DVnBGOCTTAY/Gz+HVsSbp9kkR80H4Jei9qTZYY8Ps6G9CzCoB4eZ4BL5hjw7WSjapBRhe+3VMIvY1o4aZAdKfbjshPdPgtaV/kzeKQArcu6pvmcgoDK6fbhuOOOwy9+8Qt86UtfwkMPPYTHH39c+E+h8+GvCaljdH+xnut/jRsGgJUMcwZ1lFnBCbKCTefxYxnDdHNM/zxLrMceJNjn2kR5yLic0w2IillOT7f0DE6WQ23m+OGrK93rouy9fERqpqic9ukm1uLloHImP3tT9P5yIjjAz2JJTKy8684c3tMl0qhNZHztX1FR62trrhA0H5Gas/jKykZtIuNLH6Dw5Bo3jzW8DzKu0u3dN5E2BC8NvX8Qe3lQKPRiiSkWEDf3FRVeyNRTH291/z19vedtfeCddaFtDmqD3F8dySnDhV7ZOytDLiUk900+Fl/uIcmnOPP5x0s0XfTr6Rj3wIc40CAaLviYnLvloPBbrjHSGsjLCYV1B+X++crfWZ7CG4/oGNZb9IzFI56AGiQ0yYJW0HHy5E1bu98LLy+UlG7ydPvCTv2ePcBWlKgucDprut8iF2suV4JojeWvRGusLu0BvCRTmAeLhCTe/rrmtJtnOqBHoc/DySEq3Z5gFWYkzDKFMQimqxR770xEV9GIhj/PFPckixlf4iy0OpX153Rv3N/ghTxqWmBNbtkw2LMoxsKo7Wunrt0vnCN7nzUWYfHJZnHupA0TBxu9PEt6Hy5gB2H0gG7QNXsNp7D8OCsZ1uRGHAT3azzi95YReIqQrgXv44A3lun5PNQ6yUJnyRGQNkyXyInCU4WSYc5zpt1+sa9NsrEqFvHkA/qGJzpKAcCiuyy/YmVfLxKp8TnfjTHenzq0BwDgO5ce52uTrmmhxrUgCOHlbKzJn6E45ldeZSM+YIeo55s3QQgyOrqG+RaUEiO8LaXByUzu+SCs6+y56ayJfy3YibdX7MHz83fY7WqnpzsT4PWle/I5zjkSCDM32CkZNU1pnP+rj/CFP80NlH15/n+Q8WWiVH0hlTV8xlvD8l9HY5nndPP1kORUV2Z35L2gd5ajN7iDp8wpy8bf/4YLjrXbwIxSPGWFVyIioxftYauk8PZmpnTTOOZKuVK6JTz11FPo2bMnlixZgr/97W/4/e9/7/736KOPdkATFfJBnshRXcOtE0cJG4qsmHo53f4NgoQywUviEv74BSsfeVHAwqMLOVr+jY42bJqYY1ipCLvEj+f5kIWCICI1u8yII9Q4TZUVVAqdi+m6e+78rdU+7yX1FbWBwj6DELa5ZpkQB/g9FfsD8hZ/d+3prveqttmvCGcNPwlZkNGC0CgpJHLt2QgTxuX7Zg0LzRnDVSpyGR6CiOsSaVYbmeUzJrOeR4a6xLL8Y2jMANGI9N3/LMNnn5jjflM+B/hG/cKiCvffRPAmwzQtn5AeVKc7TOluS+4yt9DnC68PyrEV25X7+vWM3CxfLlpYTjeFdHPjx/T1+zHmJ+/hBYfgTw4n613iJzlqC2RBymOH9ntE5HB/w/IiUuJRPwuyoPwEhqPaBy3LwjSmRPFvMNPJh128o8YjwImT0i0KRrLS7bGX+xUYni4TNM5lHGDVAmiNfG/1Pt8x19PNop2ijLQtSHBtlvIcAeC4/t2xyCEXO3VIT58HnYNSfLgCmAwIL6dHuwSTIQIXKY+8PV4opl01gsPOcfbSDARPt9SGVNYUSnPJ30zTgry8orJHLOEcdm68pzRH3HFn+YylWcMUDGQvLq7Amj11vtxnGT2KYhjR1y4tRSkUvE439W/YMIpFgsPW6b28ceDfh91SowEM/XLpS8BTxlIZkxlzC4R7AV5k3KCAUHKf4h/RXY97fTKD+VsPCn1L60RYeLmndNv/n7HBqwFP+abNGSNn5Int6Q5O2QtCUMkwwG8YkUPW+fO5spXT0x3airCqA8GKWq7w8kc/3Cj83VrOEi57hKWHkVMjiOCxNQj0dDvvKpMd+nhfnL9fXlKB/fUpLK+odcdxGIK+i98jbGL9PnvPzkWkRnsTj2iJCjKw31EGBL+zz9Pt5pRH3bUunTXd9KygKgnyPKfneMYq+7ypa709CfD2FpsckvYmT1ZVRGoStm3bFvrf1q1b899Aod2QmTEjus3G/YMrjg841x9aWBgT60oGebqpBA1NKj5xg0L5wp4L+AUWnuNLSmNRLOKW86lrzghEQnxhsS3u/o0nFvGEVrvOrRVaJ5R7ugHgF++IYbJEPkOLrlz2hyOXwALwTVI8L6jPehTF3MUtxcIFKbQnHeCVTxv+WudkfSXmWiLFkz349F2CrLpZ0ytZFtE1n1dTeJ5lP5NvQE0p0dO9cb/NHvvvBTvdZ/GQdXkznbO5Uvj77RV7sHp3PeZuqXLb5F0bvMtfeqJIVEf9wpUVQtY0fcoHbxJ/XmtznwFbIGwp5KEhb5r5QsZnbvS8/flI17jinMzYpZM4bwMftv/93BJYFvAjp1SObPAJ8hC2BfLruYosV7qdTkr4mPiBfy20DS9765K+CJNYVAxHPShFAtCY5Uyvdhu8Z/N2UGSFHF5O58j1tGk98B2X1jlS5ltaHzYWEJYteyI5mSavS0xr7Z2Tx7gGnwRT0D93ul2G5v3Ve11CnDEDuvlSlwDg1gmjhOvjUc4cbvjCQ7c69qF8nu7yVbbgxo0olEdvWgHrq+kxAtueQE+QlNfLVNbwwss1LfCbBRlPuKc7aE0xTY80Ug4vl/fQjGEJ9YoB20gs5z7LOc3xqI4hvcTa8zGWasXbG4RYRM9ZAYMiFoLC7un9TxnSQziuaXDDresSGXedKHVy+9OG6XrhSL6IBBjpZa+0vW/7jWhk8Npa2YSv/G0+1jgszwDwy3ftaCeeriZfz9+Fg8gRDdNynQNBrORBhpqg8whcueNlQ2VZQvaI0rPk9hbEIr75T2M4Z043++0b5x8DwG+YJ+RSumWDQ2vTp/i9UwHRTBxyfnJrn7VwmyjHZAzT9eoLZRAtz7PtPct+9oPl691jyYCKMhxB804+d2+dNwZofAYq3WQQyXoGJDGdyP43NzDa1/m/ncxc71b2kVIvSdbgJIq0j/CKCnapPU9x5+fJcyPherq9/nH3C2YUP1rQLqlowYIFuOeee/DDH/4QU6dO7ag2KbQS8gIY5tEDPIsrWZ2IrbMfK3FBggxfdOTFnQvvTXJIZ6Cn2/u3j6mXhXhmWM4aWdXqmjOesKJ7eR+APYFpUnIZgHtvuJcjCNGIyAQrz3FSumnRl5lJObIBodHUBruNoreJQIo0R4x5ZNKG6Xp/PC+aGSjMc8XpNx+sx9h7P8CumoT7HpR/6YaXSwKIaXn9FQ9YRGMRLWduGABU1CQE4i7OyMk3hmU7a10liufeycohsdjLICGQ3zOM3IyPy++/sAwX/Xo6GpIZBMlD6azpU/Zo43tpUYWwUTYkc4eHByGojE0YZKXeV5kgz8cY0N3LO8w1D+TfkxkDT328DRN/O9M9xjdAeZzLPADtzVV3nyP5Z6iNskfEsqxATzdh5voDgWHctG5YloXfS14aGpvy+MsXnRAWXi6vHdSegmhEKPMTY7mpgJf3lsvTzRHkWaM2kPJC5Fx2eLk3z8k4N6C00BXeKWw/FtHcKgqLttcwFuhCnzIPAEOcdY2uj0e5p9vPn7E34Smu1A9EBCRjf31S6A8qPdmYygqKFmB/W3dNi+rSuuYfX5xRd1S/bsLvEV0T9kvAXs/JyGuYJioDlG5O5sa/r2mJJdXsdpm+fVxg9HXa/9QN44RzCiIRXz6xTZYqHgsTZKMRPWdeLK11UV3zkckFKYCA7bGlcfLr99d79dqdKK5EKuvxqwQYpbkizG8d1f38LvGIhmP6lIS2P+V8W1oz45KCSHMjUOlm5Zgak/5IC/6+cvpBS3O6S9kz5Ev+5+KRuO6c4YHXiuHl/ogeMmi3JKc7HtVdY05aWr8IuZTuy2TjdisjwcLKVgZVRfBFfTl///SN1fjlu/mrnsjkoo1JLyKvQAovl0tXBs2TZolRXAZfl6kCiXwfbrAb7HwHw4TPiy5z58SjYoSDVzbS/n/5anvdDir3K987zRR57imnb1kQwMPEPd3prBcNQhEipHPIXvWk02c6m8+ekffoUriBdijdr7/+Oi688EI89thj+Otf/4qrrrpKhZMfJqyVauNWOt6aoLWOLK48tBAQrU8yUzn/t8tyK+XrcnASGoIesInye5MSSoJRRBOVblonuEdBbje3JvcsjgllqXIpG3LNU7nfSAg12aYU5inIGFagQE4Kq5eDJf7OS6oROGlcxvDeodjx6GQNi+WQeps1LW4Zw8QfZ2xBU9rARb+e4SqoFB4vW7FJAOE59PxZMgO7jCtOHuD++0UW1k2obbYX9nhEx3Xn2BwDnzl1kGtQ4d6YlrKjUn4vV1CamLeT12HlSuCby/dgT10SH6zZHzhPsqY/nIz+vMvhAiAE1dfNBcO0ctZc5eDv4tZSlvomn6ebewOCiAo5+O+b9jfil+ViHjzvZ/mpvrIyHZQEH1RDHfAbEGyGaH9ONyGZNXwhm9ySblrwKUuGaQk1TAn0DcJkac/TbQlt9pUSYmtsXzZWo3qwp7uldW+DlG7ySpMAXttkr2vxiC6USCLCwYE9Ct11n5StwlgEt1ziX6uKGAkkrT/xqO4q7WJklXfMxxzufD4eTn/BqD4IwrV/nScSSOUq42VZrjFSDi/3e7pNljOu4d7Pniz8XhiLoLQo6jNKc093UJkkw7IET7VbMsy00CidnzFMVNSISjcP5aTvIo8nHklAiEV0nxKoa8AvPie+F903KOeT4Hq6I5rP8xwWxcX/nLWx0v0OpNhVNaaFXHf5HtTPmibu0xOP7+9TZmNR3SUfDUPW9JiR/Z5uf5QfgYdtNzCP/1fOHiacx8NkCblKD/Jzv3imR2LnCy+PRgJIc/2GrqAUs2LGah8G+i3GIv9ovMpzRCaR5ZBrjLfW+BpWQSMf0SU9a19dEs/P34EnP96Wt+qJrLQ/NWdrYE53XSJgPge8F30H2ZhoueuJd897Xl/ltCHcoEHcTIblN9Qvc5R2bsjjshmNn/edFKOKanv9D5KFa6T3cx0sgiLtOSL42nfQ2R+jLPqFGzNlT7f8TdLuXqr5xvPRVi4MaIfS/eCDD+Kb3/wmamtrUVtbi/vuuw8PPPBAR7atw/CnP/0JI0aMQGFhIc466yx8/PHHh7tJHQqfoEl5SwEZPFF5UNMmExUFCPlYEJEaIZ0Vvbu0GHEhSGYW54hxTzfLD6HNczdTUGLMK+N/hnfPAaWF7rvycLAg7DiY8JXJ4aBredmyMCKbbECNawCCEMf/TwhiA+eEPwDQnMk651I5Iq8ucGHM897Qt+U1kwH4lFu3FJpEKmNanjJPNdR5vdIwwZ/nugfJGLXOwh6L6Bjcw7Okk2ISY2GuuZRuPtbk0H9AjBrgmzZ9A66kGqafZZOeLwsoWTPM0NK6pLWgTS+slilXzt3UjhDrfhi4EUjOu5bBf28IMCbkyl+Xf2qthyMMfgJAu//kdzEsy80dJmxv4B6gSICnm4WXm5ZP0M2aZqDSTePKtIKjVEpYKKppWm5USZh3EBBDwqMR21tFzaH5mMvyz5mUg8LLKXSV2kbejViUhRBmTFcA610Sd9da6oPSwhguPM4uZcQZyzmBVTMLW/fWdU+QLRRyusW5kHLmmLeuRQIVIMBet/n3yhV6b5gQPN08vFyOJEllmKdb09yatISCqG2o4dFFuq65ArVhWmhM+ecZT9uJs/6yLMunxFQ2pAJLV2aY0m7/XzIiRfVAcjAetgzY4+5LZ4nKIp2by1jWmLLHRlCIvVv6J8DT/V2HcGzi8f3c7zCEpUkRaRy9z0A+lgMIAgHgZ589yTefg7zfMrgBOYxILWiP0zSN1Yf3qo5MZsZmwJZ1ZBknqLSZd2Pvn2TkBiBEYOkajTH/+wJA2VivnOhCh2eBg6Ljcm0VfMzHpX1YdiSs2xsceQa0v4xXmNIdVOqK2kxz1CZmNXNekwt/nLGFRfR5H2DKH/w6Q65yY4u2id+ATuVGk5omqkgQvL/1LI55pVUtf8SbYVqobEiJOd1CxKb9b7msb5AMIOsQJFeZFgSlm2TFWIAyzCM8eLQQRbQQV5KPtI0ZsGldk52CRxPa/EYbNmzAXXfdhWjUnsw/+MEPUFtbi6qqqjxXHlq8+OKLuO2223DPPfdg2bJlGD9+PK666irs3LnzcDetwyBvfjTYp5xq596d5jBtAsE53YDIAhqU0+0q4m6etLhQ3PTMIvfftMiKXmi/5Zo/TxbOIrrmWvEpDGdIzyKUFsZCPd3cytejSPR057J46lrwZuSGW5uitTeiacLCQSys1P7Vu+t895KJV7gR4qYLR7j/vqfsRPffmiZ6E0iQIwU9bVgs99Er/UYLvxxCSAsm9SuFENH7uflDJvd0ex47OS9dRk+mdDcGWMJ5Xie1NZUxBS+HzLQZBP6tGgOYrMVyFGIIMiASymVZniVHxrB8luUwWTRXW4MQZJT544wtAWd6bPiA9139+fYt93TnCy/PRcQHiG335ZpL7WitwBMGf063fV9ZmODhu4Sk4Y3VX3/xVJ9CEGXh5aYVoHQHEOoBwN9mb3X//aevnun7vTvjfciY3hj3ebpDokZcngpNNJLm8nT/8KoT3H/Te/7z5nPdYySYd3MEezKCxSO6641olEKYqR2u0s08vM0s5F3TApTugLqx8YinrPGUEwLpqhTh0a0gmpv5ma2PAwPKN407phcAW7H1crq9dmVNC68v2y21wRMYI7q/zymfkT+bRyZkDEuIUBHWVRY2z8PLZcPOpgONfoI3VmJNJkkiBOUTB5GjaQGKodvGHEZEEsZ1LdzTHRReTiHfFjyDSreCqGu4IAMQzQdefYWPIf4tSotijvdbjKLLl4LB53QYkVpLhf2IlO4G2MqyLOP0KBa9v2Hg1/FvRs8I83T3ynN/Wg9a4unWmaebiBh9Od059hEfAWk7crq53JarpBmNRcMSSx62Ntrqs6cNdq/hYyAohSyw3rWz9t387OLAc7ncV+sooXIbM0xWJOOpYQWnNG2pbPQii6SxT/86eXCpcI08BCzLcutvA7a+cNcrdjTfvvqkR6TGUicjmj+aI8oiM21nit0ucrBQFFlSkjHoveySYfY9E5mjV+luHZc/Q2NjI3r27On+XVBQgKKiItTX16Nv374d0bYOwe9+9zvcfPPN+Na3vgUAePTRR/HBBx/gz3/+Mx566CHf+alUCqmUF2JYX29b9DKZDDKZ9tfk7QzcctFwvLbMmzRZw0Qmk0H/kigW/3giSuIRt+00T2hx0GAhk8mI+dC6hkwmA515yqOa3Qcwg5XXGRsqkU6noWmaKxjwTd2yTK8N0jzSLMMLTXQUIo21lRSr7gX2e2jwJm08qrv37cHCyjTLdK9PpTNoaA4vlRTRNaSz/m8bj+jIGAbSWQOZTMZjMpb6oDCqY2TfYmytSqCuKYmbnlvqu1c6471XJpORrNiW+w6W5b2b3d/eN2hyvKGFDptrJmsgxb5rYVRHA4DG5jQymQxSaSlkyK0/6XiTMln7vaSQxXQm6y6EFEmQSmeQTNH303Dzhcfg75/sEO7fLa67Bowg9t6GZhKsvG+bzGSRTGfc49SGRMp/PfURF9QbnHdtZu9am7CPyUrYjA2VSKXSqGFlr7bsb8C4YZ5RipBMZ/C7aZuEY4aFwDUgkUrnXBveX7Mfb63Yi19fczK6F8bQnPSPxb21icB7HKjnSreJdDqNZqlvsoaR8/mC5yCVex1LpHOvcYlk8PWBx7K529VSZA0pB8wZt3trRcb/5mTaHcsXjuqDT7YcRNq0lczGlIEx/YuwYJt4TUyzYLppFiZOHNgN765iz0pnfP0NQBBSRvb2K3vMYYVEMu0RoWlS2KGRRSZDyhqLyjAMZDIWIrrmGA0dZQfBfQ0Ak0/oi1svGYkJY/q655x7bA8svWcillfU4fyRvZHJZFxFp6rR7ouCqI5ipwZwbSLtCYGW4QpBlc6cKYlHoDlrFBm3ohF7vyCBstGZ5zFdc88lxHQNMc2+fzJtoCklhzUCyVTaMwrrlu8ehGP7FMMw7H45dUgpCnS/UErvZZgWmpmXlvaxndUJX+50Kp1F2uk/XdNgZEWBO07vyxUgy4TzWshkDdQn7Dn+xTMHY86mg9jfkBLXUM2LBkpnMq4X6PyRvTFvazXqm1NISx6pRCrjrmcRZ8+Q96JMJgOZv1CzTFiygmCZMI2sHU7OhPmG5hQ+M3YAHng3uLxixUHPwxuBfE+7TaYh9pemWYBFKSGGK3RHNQtFsQiSGS9iS7PsNaNb3OtbnckOXKkws1lkdAtR3XuHWERDNut/L47mVAqGM9fkwJGo068RzT/mAuedZUKX4uR0DcKYnXRi/5zroPBtTAOZDPWF1/6Ibj+f9n6C5vRNkXRcfp7myHJZRw4Jag/JC7oGrNpVI9xLXgPTOdb2jDRu08563VJw5upE2rs2Ka0VXCZzFUPpWYlUWhhL+TCyTxFSGTIs5VbYG5P2s0j2A4BtlQ0479ievnOTqTR0KwqTjYvmjCHIX+65aW/t0SwnytKCu35x/HPedu8Py4Bp8DXJHss/m3ICvvzkQgD+757JZHzOhW4FUaxgZb1cOTqTdcVRw8gK8w6w9ywd3jx3oxC62QahyoYkMpkMEtJ70DqnwXL1gIQra4bvd0caWtrONivdAPDBBx+gRw9PYDVNEx999BFWr17tHrv66qvb84h2IZ1OY8mSJfjRj34kHJ88eTLmzp0beM1DDz2E++67z3d86tSpKC4uDrji8MNeo71Pmazdj/Ly8sBzaw7qAHTX2rVx/VqU165BXbV9HAB2V+xAefk2rD6oAbClx5rqKpSXl8OWs4KHzdvvvoeoDlRVRQBoyKaaQfa2zevXorzGLvOwZ5f3LAD4aNo0JJvta7Zs2w5AR/XBSmw2DgCIoD6RBKChsbEB5eXl2LDPa1eysd59V63eu++G9etQX6cD0LBw0WJ0j1kAouhdYOHGMQZe2BLBboe0p9hKYuGCRe49XZhZABo2bNiE8uYNyGTtNs6eOUPog8b6OsdDo2H6XP99iiIWlq9cBSCCqkr72zTWR9y+2bFtK8rLbZKOtXu8d6P30hGBCQ37qmoAaDi4bw8AHbUNjZg3fyGACJoaGx05UsOM2R9jW3dgOft+ANCUsL/Hgb27AejYtXsPyst3oTFht6W5qRGAhnUbNsAw7esSDXUANCxbuQo1W+0+TKeSOC69BfI42LJpPXToMKFh047dkANp1m7cYn/bygPYmNkPIIKK3XsxP70HQASN9XV2l0PD9Jmz0Lcwgqqkt4m8+245NA3CGFy7aRvKzS1Yvtd71y3761BeXu58E7GNf335Pdi2Gfv4sg3b0K/J/y5r1q33fUfTAqZNm+Y79+NP5mHf6vAN+vvznGiBp/fhC8eaqE3527Vnz26Ul1fAssTQ/OX7xW/45CvvwZavvOu3bbfnaxgqq7yxtmDREqS3hbd1/XZxbspYsnwFCvYux+4msQ32WBXfafuOCpSXi4YZjo/3aXhlWwRXDjVw1bDwNm132hTVLGQtDVu22/etb/TeCwDKP5iGhLOONNRUAtAxc6+OuG7P49mzZmFzvdif8+fMwhbnWGVlFTZlK4XfP1m0FIOKLd+7DSlMY0PK7qcPp37g+33Zonnusfc/mIpU2m7XJx/PEs6d/uE0EJXB1irv+LQP3rcFENO+bscuez7t3LEd5eWel13G8QD2rt6Ivav9v011bEh7Kuz+3FfTBEBDU20VKrba771x206kMhoADR/PmoVMyn7+tgp7zTmwdzfmz6sQ39c07PnmnLtk+UoAEWTTSSxftkzoz5rqKiycfwBAFHVNzVi8dLnwe9YEyqd+6N7/4+kfYmOd+M1cpJqwfIXzrKZazPzIPzdrquxxUNecxpr1GwHo2Lu7AvPm7vCdS6iua8DHcz4BEEUq2YypH7wvnJtKNKK8vBzZlDf+9mzb5OzDEeyoqEDDAQDQsX/3LqRSdn/OnjMHu5vsd6k5WImMc3zGrI9hmE7eY10VAB0r1mxAbb39+5BiC7sTGtas3+hE2+jYtdOe83YOvH3t+AEmysvLUbFTnMNzP56NhmqxDzdv2ojy5g3QLXEOLVq+CiX7LZzUU8faWu8ew0osVDRpeHLOdgDA/rpmfDzzI6FfPli8AcMa16ExA+F4fV09Vq9YDiCCA5VVTvSJhpXLlkIzdOH5CxfMw/41wIZar70L5891x3M27bV32tQPENXhzhHA3ovLy8uhSe/F8cG0j7B1t91HFdu3CX21edMGlDetxwZpzJ3exwxc45YtXoyCiLg+VFdVYc7sme6xqgP7QuUxANiyw/teH7z/nnt8717vuOXMsYo9YrtWrVyB2J7l2NkI5FqPG+rrAWhYsnQZTupF+5gIWtOzmTRWb97pPvvdd8uxU1rv16y15cYgrK8Q27h8xUoU7VsR+v4y1rLxW9uQcPuustn/js1J+zunErbssmr1Gpi7ve8x9cOP0DtH5cpBRRHsbfbGyYaNG7E3DgARVB04gFx7YV1tLcrLy1HX4I21n721Dj0qV0EeJ++9PxVFUeBgtXeuZdnvUFsvjtU16zcAiCCdSmLuJx8DiMI0gSXLlkNeB2ev3+teO+PDD529xH72jr2VKC8vx8GkfSyuWygvL4dpeM8rLy/HAalfD1RWCu+9dZPdnq07KmCY9vHpH30kzDsAmD9nttOXEVRX17rpeFs2rgMQQeXBapSXl2PnHnF9Olhjy5jV1cQkr2PT1u0AdCQTiZxz50hCItEyctx2Kd033HCD79gtt9zi/lvTNNeieDhQVVUFwzAwYICYczNgwADs27cv8Jq7774bd9xxh/t3fX09hg0bhsmTJ6O0tDTwmsON5lQKWDDL/fuRb050613KeO3gUqyv81IAzjh1LMrGDcXr7PiJo0ehbNJoxNcdwDMblwMABg0YgLKyM5AxTPxg4YeB97740knoWRzDc7sXAg216NOjOyqTdmmoayddgFOdMPel5evxyX4vvH9K2ZX445a5OJhKYNCQYcD+3RjQvz/OOLE/Xt2+Fmln8vbu1QNlZechuWw3Xt5mL/gD+/VGWdnZAIDtM7di6m5beR17ysnYuWoftjfW4tTTz7DzjVcvRu/Sbvj2tRciMmcbHv7AlkJ/ePUZttdi/TLhfboVFaKpIYX1zd3wRNlFuH2+zdB/+eWX4edLvf7u26cXEmkDe5sbMPbUU4HNa6T7FOD4E0cA2zZg2ODBKCs7Fc/uWoCdTbY18YQxx6HMyXnb98l2vLHDZlAuKyuz27f4QyQzJvSCYiDRjBOOG4G5B3YgXlCEcWefBKxbih6lpXZuXGUTzjz7PJw3sjeyK/YCGz23XTQeBzIZjB55LOYd2Ik+/e1v+svVs4B0Cn1798SupjqMOm40UGEL9gP798HWhmocf+JJOH1oD2DVQnQrLsKVV1yAuxdNF97ztFNOxkf7NqM+mUWsWy+gts7xokVQk8ig3+ChwL49GDZkMM4c3Qcvbl2Dnn364bTThwAbV6Jfn95I1jSjoS6J8y64EP/csQJIep7JK668EtGIboduLrSfnYj3QlnZudg9Zxuw3f6eiayGSVdcaRPgLZwltHHcuefboXjLbaNb734DcMGFo4AV8wEAV586CG+t3IuRo7w+IBgWMGnSJGDeDOH4mWefjfHHhUf3fH+ePW5m7tVx7/WX2BbgpXNQENVdD8/wYUOhDe+Le99eh8e/fBrOG9kbAPCD+z4EmEep2zFjcfqwHm57AWDosGEoK/OTIhGe3DEfaLQjdk4+9TSUOSWfgrDg7bXA3l2hv4858WSUnTcco38qVqs4e/xlwDyxrwcNHoKysrGB99lRncD3f2+X4Xp/VwR/uGVy6DMXvbMO2FeBEf26YdOBJjRGe6Cs7Hz8Zt1sYXycf/EERNYtADIZ7M8UAbC9jZoeAUwTl106Ed22VeM/W7z5+ZkrJ2HO5oN4dtNK9OrdB6NH9wV2eBEOw487EWcN7wmsWii0qVuP3kBdLX75uZMwZdxQ/G3HPIHQ8vIJl+A3Kz8BAFx62eW4Z/FMAMDkyy/DfWzt+OyUq1yPKY0TAPjMFHvu/2TZdKSSWfTq2x84WIXRo0ai7IoxoX3VEqx8fwNm79uBhOMVGXPsMJw5vCde374GpX36w6o5CMDCpMsvxfM7F+NgKoHSXn2A2hqMPPYYTDx3GH6z0jNaFxXEUVY2Eb9d/zFq080YMfoEYPsm9OhegnPOHoOnnT0EAIYOGojJl47Br1fMQVNWw7DjTgC2ev2dsYDzLrwYWDgXugZ87jNX4ePNB/HkBn/0UElpKU4+ZRiwZS0GDRyAq6ecjjsXiMrE8KGDsapmHyxo6D5gKLBrN8aMGoGJZw4R3oEjVliE884/FVi9EN1KijGl7CLcPt+7b/8+vVBWdg4e2zQHB1O2oPX5iedi3b4GvLVzAwYOGmzn8O7ahlEjj8X29ZWoTTfjvPMvwPKKOmDrBhw7dDBqK2pRV5tEss8YAPZac8roY7Hs4E4MHj4Ca5sOAM3NGNSvF3bvqMWwY0fYxvI9O9xxkEhn3XV4wriTUHbecGybuRXTdntMy5Mum4gvl8Txzv0fucdOPP54lF0yEj9fPgOpZs9D86XLzsU5x/bGu3XLsbbWLn93/9Un4r3V+1Gx1ctTNaHhms+W4YcLvTFrFfVEWdl5qG/O4J7F3hrZq1cPjDtrBJ7ZtAI9evYGmjNAUxMuOv9cTK9eh+oDXprIJeMvwkmDSjFsdx3+tG6B/V4Xj8fxA+1w84fXzUadE+EypcyeO/etnIFmhxSwXx9bHvjpsulIh5B9XTJxItbO2gbs34UTxhyHD/d46/ypp9jrW/8dNfjTWi9l7sbLTkfZ2IHCHAWA8847B90KonhszQL32IAB/XHFpJNxrzPPhw0JXwcBYP20Tfhoj200pT0fAGa8sgpLqmzG6cK4PceWvLse2OHJTmefdSauOHkAth9swiOr7PXmritGo+yiEUJbe/XsgYqmepx62unI7lyGSZMmIRYTQ9LX7KkHVs5HcWEhvnTRSKx8y452uPKqq2zPJ1sDxxx/AsrGj4BpWvjJW2sxql8Jbr7wWADAxo82A7u8Pj35lLEoO3soWorl720AdtvGWisSQ1nZFQCALZVNwPJP3PPKysrww8UfAoaJgX17YffOWhx/wom4cEw/YJl93kUXX4Jjc7DZv1G9FHs3ePLwqONGo2+3OLB1PYYMHoRVNftDrz1mUD+UlZ2JB1fPAlh0bFlZmW+cXHr55ehVHMc/di0AGmy5b1ivIpSVjccjGz4Gkh7nwoiRxwG7tqFbcREumzgODy6fg6wFnHTKWGCjyMjeo1sx6h3ely989ipomubKqdsbNZSVlWF/fRL3L5sNEzrKyq7AXYs+tK2bAK688irsqE7gl6xfe/buA9R7kQ6nnnIS3tq5Af0GDAIq7f6YPOly/H79J+68A4ApV1yO1Xvq8eT6pSju1h1osmX/caefhpe2rkb3Ult+//O2eQAa0LdbHFWNaRQWdwMSTejfrx80ABvrDmLA4KHA/j0o7d4NZWUXhn6DIwkUFZ0PbVa6zQ7K1zsUkPOZLCnvg6OgoAAFBX6FNRaL+RapIwUyuVG/0uJQUplYRLSUFcbt9+KlM+hYYYH3vk1pA7FYDNFouEcqY2mIxWKuilDIyMFKiwvc/iuMicOuqCDuCp4UrRKNRFDsPN8jodARi8XQt7tHSlIUj7r3LWJ5lPFY1HtXPYKspQnnxyLeuVeOHeKrz2vfw+7DHdUJ7KhJuu0oiMdw04Uj8PQn9kYZj0ZAaSpmgGXUtADLOV4QiyAWiyHLvpmm6e476Lr3HdxjzlilvL9uDlN51rSgUa4Xr0vufAfDEsc4tb/Evd5+hlsGwhkD/Dr6VhY0W3lxnlVU4OVvEwriMRTHo6hPZt3wpJ9MORF/nrkFNcggmXFC1uNRFBdQrXALpvN+8WjETUmwNN0tkeb2UySKWCwCndnx6poz9rvKJGd6BBnLb/DTIxFobA6kDQvQ7L+H9CxCX6e8lhHgJTEsBK4BpqW3eG24+/W1+MXnTwFg8xGQ0t2jqADfe9HOo/rms0uw5UFb+JJzXnsUF0AmUrWg5Xw+z7WmsRGGpnTudb2iJunyeHAcTPj72szRrkRG/LbRaDS8Hqdz/Jg+Jdh0oMn75nJOuaW578pLh7njOx6DponrX2lxIWLu+2gwpe/ekDJgaf45XeXMxeMH9UAsFsPQXsWC0t29uACaZnszLC3C5p44bwoD5hHgjTMvT9g+XhCLtnsfikvrb4/iuLvWZk2PdbaoIO4S5iSphEw04s5dQjRij38iiUu6NZcjKIyLbY1HI+he5O2v/1wgVjmoSmpIO+tPSTyKeDyOonjw+6azFqB561887u/LIrYHzXCE68J4FAUF/nt2L4iiIZVFKmt5a51u35fzfhTGI84e4o2l4sI4Sovs51c2pjHQyWMsjEXdb6jrEaScvulWGEPc6a8/zfIUlL7d7PWnOeMRPHZn6zWh0NnHurF9DM4+Ulwg7a+FcXQvFlMgolH7+tpmcTG5cLTtoNDZmNc0Hb1LRJno2nFDEYvFcOqQUqx0yunR+lggrcURXXfHgWF5JYuKC2Mokb5D3JGz+vA9vjDujnlOOGrPZ5E4jfbXnLmgmldmtFAiMKV+ledpUUGw/FcQiwlyB2DnoRYXskoEkdz7Q7ciRkjIzjvQ6IV0RyP2WioT9HV35Kpe3bz+Khs7xPc83ZETvvPiKjw4Llie1Z3xHNE1XH36UPzMUboj0ag7zwiaI4vN3liJl5fYnAjfnjDa+VHei1u+PwLA8/M9o0IyY7jXarq4dkOPuKkKpcSYrunCeZYWyflsmo+9S+KobkpD03RXVpPLyREeumYs7n5tFRJO2+RSmYHP0+12cFG90BmrdHnUSSWiPYjLWYYF9/hJg0qx1iGyozScb15wbOD6F4vFUFzopBaYFiIRcaxqkShM6dvKOd80dzktUkHcP8d6ditEPJZwzvVuQnOJ1gcidRzZtxuqGqvddS4a0d0UJVrr8s2dIwktbefRl6XO0LdvX0QiEZ9X+8CBAz7vd1eGLKzmIp4JKrHB/w94Nfg4qccCh41RJi7hoBw/Iubi7K5hDKR0T2qzm7Ome0qg13b7up6MNISXmeLnRzSPydFgREZ0TN4X+nQrwDnH9haO8fffsK/R/Xe3gihunTjKe5bukco0BTA+Z1luMT0/zci31u/zhPWzju3lu576lRQJj9zMdBdsXddQGPVYgQF/3WQ6XsyIjAD4SGXmMNZzei9OpBYJYFEF7P7itbYBW+glAxDl5vMSNumsKeTjeazCli+nkZ7PyzrRgu2rI5q1Alk6LUskLvl4U5X7vrzUS9Ywce4IcTyEEqm1gr18d22zrzwOAIzo51njcxHPJNJGQL1O8Zx3Vu7BHz7a5L4/V7pzEanJhCpBeGbudrckIUeQvpyrfrhMPhRWWx3wlB1SoGgcy8RtibSXR/alszzPisu6r2m+KgZRVjLMLukk9k9NIhP4PSgPjr6hTEoVj3qkNpx0sbXEMMSITd+ypSXDcsFX25iV0OIkhJwJOukS22g+5loi4YxJ89zuA/HcjzdVopCtEVSejLCrSUOVo2wQy7qsRBLSrMJAGCEdn5tEIFcQDSbbIsG9qjEl1OkG5DrI9n1iLI82HtFxyhA7kmv+1mq8vMSOFolGNPce3/7nUjwyzY5iKo5HAytgFMX96yL1QyprugorvS9vV5oxvnMEMdkHDaMfl3lEfHw+nzG8F06SyJi+f/kY5zzvRCOALMp+llfDPGuaLlljQTTi2y9onMllpwi9GWM+PZuzvLs1vQNkFLpn1jR935cQD5nPctUBAiePIsgkc7nWQcArqSRj7paD7r9pzP2PVK6PiBm7F3r3CHoaf80FlcFrCO8TPq4M01/LnmS8u19bBRnyfpSvpKWMMQM8Er0MK18qE5fVMYMRzV3DEtnLK6pzh/zSeldSQA4H7/owQr6xzjxfu6ceWcMU2hEG6lveFdSnbl46yUTE5q17MqxdLtA+f3DPIowfbUfWNaU8MsswcHldLgdomP5yuoZl4ZozhgAAvnH+MV5lC7Z3apqfQLAgGnHnPp+TpAeQ3EXPozHrld/0xl3KWQdyldrrqjiqle54PI6zzjrLl78ybdo0XHDBBYepVZ2PUI8R4G5+BLdkmCBUOIp4iIAoCwsuCRopcZLnFBCVer6hXeSE5dLkIlbMiO5nV6UJWcpqUnMSHH4+VwzFGtPhfTOqvxiGxN+/3iExK4lHUBiL+JhbSxzhIYjl0jQtHyMmXwgPMubaM4f3wn/++zzM+eHE0HaWuCXDmCKsecYSWrRTUmkGsgoPKLW9HlWO8kSLPymfKxmJhlumSqrTHdSPV54yEE1S6YnieMR9V1KWexTFhA2G6qAXx6NCSTp/yRz7+VTfktoF+A0MacNEc4DX1rT8AsRvPthgv5dUF50ErVOG2AJnmG4dxEYehoKoLpQNmnKqzShttPAeiXQ2QOkWr73theV4ZNpGvOp4IOTyfmHIVXuVI6jGOF9yznIYo40czLGy8kjlUwzTwqLt1ULdWYrkcUn9nHeQa2U3p726z9edM5xdb/9f17VABZravmRHDd5ZtVe4Z20inZMd3hOKxHMKoh479ab9nlGt9Uq3/X+XiK0jlG6ZAVnzSiDykmvRiFeekb5HNKL7FDY6h/YSMjzGI3728oZU1jX6AcFVIxZtt0MbqXxSSTxY4UlnTfd7y8oTgcKSAW/9iEf1QOMFN+B+sMY21JMQyYU/EiL5t4xHdcEYzMsj0jerYsaq4rh/DwG8vTXF2H9JOE1lTXd/jEX97ae57SuDFfCcoPe//ETPEcHn8ylDevgUQ2onj7L75gUjAu+ta57inzXEeumy0k1pcd0Lg5XuIAW1loX+UF/vrxcNgz2KYqwcpeXKKLKBgPYlWcYJKxHKWesJ3AgP5K8Ycd7IPjl/B7y9fVgvkVeI+q8gGsH15w7HVacMxLF97HN4s7hMGLacuezlmqh0B+2ZhgkcbEz5StHx+3jntk7pls9vzhhoSGYw5fE5wnEia43omtsPhmEJRnWZRZywp7YZdc0Zd13zSqp57xrRNWFOE45x+rcpbWBvXdLnGQ5CUL1zGhdyXXDXQaR767IFjdWu9soYkkGXy/Xfusieh18/7xgA4jqVMcRCwgu3V/uVbtM7Z3jvYncscyb5oFr0dBwQFfRCVnaWv58nr9K489rqOd+U0t3lcMcdd+Cpp57C008/jXXr1uH222/Hzp078e1vf/twN+2wQN5koiw8mUBnhI132epLShxNJpLxRU+3xv7tHadSGnKdbl7zz21rhMKQveOrd3t5FHxjjLDNkFtq6X0vciyFYeXHZJBiSGWxuEHBMC3XGxFk9TQsy+fd5IvJj1ipHwA4f1QfDJU2Vw7y+PFa0rx2OAnoYcrgoJ7299pfl4Tp1BEOAy24cp1u2bBzy8UjUVIQ9dUb52XAKmpsA8nA0gL3vqmM6ZZ+OrZvsSu4p7P+eue0OfFvTufIG0faMANrs5uW5VNSCVFmWc4YXnkeiiAI66ZEDi+tjMJYxBsLzOPW0somi7ZX+8p6uWTTloVbnl/sfqc9jkDEFdhcBoKqAA92EHzpLN0LwLuURkaukmGyYEaGp7/M2oL/+ss8nPDT97GvLuk8zz6HlKJkxoDFhCMSxJvThvvMkgL/XI5ootJN3vDdzIhA9XfptJpEOud70NiuaRLnfUE04n7b/3l+CTu/dUIErVf0zXPVom4pZCVMZwZObjSzS9aI3vqorqGPFGpMIprsLefefkKv4njgO/DTDjjGORKES0I8gaksW/9CurU4FsEJjuJNxqKCaHDtb64ArthVa7crl6c7Iu5vQd5ZXhqMo3thNLAN9G0yWW/9oX5IZQ3wcm4y6LegkmEyggzzudYxudQdfesDLOro2nH2fJIFZR7Jtn5fAyvdFvHtF8N6F7v3+L9JY/D1847ByL6eMTyfEB5kYBjRtwT/+ta57vsl0ll3TYnoGj7POC7om8gyDikIpMgQuhf6w2wbU1mhf/Mp3ccP7I7Xb70Ac390aeg5NOZkIxb/1g9+YSz+/LWz3GdzTyQfL2F7DW0NEV0TxqwRUFbTsCxfvWXaF2SlOVeZslTWwCNTN2DJjhrh3hz76pJ46uNtvmvJ2FIcj7D0RL+BQMaBhiQu+NV0nH7/VPcdaA8xTcs1FkcjOt7//sW+6/mYlZm/w+B5ur22eUqo6JChEqQRXRfWSl67Wp7jUUmefPV/z8fPPnuScF/73uJ3/MU7a33jM2t4faiz9A3uBNE18e8bzj/GabPf0+3JkLas6abpRMl5FOTpVkp3l8WXv/xlPProo7j//vtx+umnY/bs2SgvL8cxxxyT/+KjEKHh5Wxinu2E1YaFfBayja1bQdQVhmnx8Oo+By/6XAiIS0oor9MdVpOSK7w3OuQdgN/TTX83ZzxhnDatEwaW4r3vj8eCH1/mXiMLFnyBdOtWx0ng8tqWNS130SaPOAevfUrX8Xc7WwprzwfP083C5JiRghbRsJrLI/t1Q1Esgqa0ga1VTTk3Kc/6yjzdOYS4IE8cjQOKAuhVEncXYtsj7YUU0rnNGcNnQabncyWSvPn+8HIzsDY7D9OSEdVZnXDDMzLQ+KaMAB7KB4jh7vlQENXd1IJYxPO4hRkCZNQ1Z3xKIM23ndUJfLDGI37JGCb21DYLXh85+oGD3oMs+WGQ9faYrgnKPAmojSzVIp018eby3e4z5Nqkn/+jTeTy1MdefutfZtm1y2ke0ncwLXvO0XggIWhfvce7IM9lwFag+Lcf7NR1DqrvTODe86BauK7SLUUfxFhYMUeuKKQgyJ6DjvB0++so+xVmQDSYueXBdDsU/QTuQZaERp5GInssaf28YJTo3bvhgmPdf5Phkr5h0LcE7DElhwn//YZxbuglYAvOsuc3zNPNle5lO2sBAOuc3ElurPYiwdg+FtUDvbCxSHAqzoi+JYF1suNs/aE55YaXZ3h4eYCnW6pZ7LbBUb6OZfM6yEhxLFNuNYnboFDySNMz9rG1hRQEuWm6JgrPNJYKYqKn+2wpteq7l43GLz5/ijBn8oWbVtb71+I3br0Qpwzp4T73mbk73HGjaZqQvuCmi4R4un/6mZOE46VFfuMJpeIRWhIJdcbwXhjcsyj0d+KckVMFikKiQADgkuP7AQCG9S4S9uzyiuBrPE+3+L1M05/KYxvrxevpnFx1uqub0li924uke3rOdvxh+mZ88c9zA88HgE37G7G1qgkySOkuiUfd+WmwfSEMKyrs51uWJyPxvYXPsYE9CgWjDyD2ze8/3Bj4jBHSNdkApTsjeb9pb3x5SYXzHHGNSWS8NVie4xE2LqIRHWcd01tw8FCb99UnBSXbMC1flGDGMF2ZIhrxnDlc7tI1DXvrvNQgSj/RJaXbdmR4US48vL3ADTv3lG4apx2ZTnWk4ahXugHg1ltvxfbt25FKpbBkyRJcfLHfevVpgTyIaVLzyd3PCfHiws5Pppzo/ptbgYviEUFQADxvCb9eDsWTn08bK10bFMJMCyu//uIx/QLvG9E1m0EWtjKSZco84cRBpejDWN7l/bwpxT2EomAphGsxT3d9c0B4uWXh7RV2riwtSu3JVSEhwVY+eDi+3d/pPJ7ugqjuemWa00ZOS3TcIVfJGqKnW4bs/eTHZSU9HtHd+6alPEVZcOegzUnIUc7l6Q5QMLPMUCHDDi/XnPM86z5ZlUlfo/E+zgmjzuUh3nygUfhb8HSz0NOsaUmKTPC3S2ZMn9HACBF2MoaF656cLxyTN1gOeo/+3XPUWAF8/appmtD/3R1yJB72+eeZW/D9F5bjC3+ylesw77EeIGAHKdKJlOEK0SS4/36aJwBFI7rPwxfVNaFfaRxdcfJAn6JA+fwpptgFeSbp+332NJER3s55s38bUFrgvE/gK/vAlwaaa25t41Z6yoPgS9thBruEs/5qjuDtCUHi83l1DPrN9ZaznG6egys8U+qMAaWFOG+EPZ/IWEbPCgrxBBylWwoTvuzEAfjhlV7kUJwZDgi6Fqy03nt1eAUAbkCRvwk9J8igwuc4R8/ieLDS7RyrTmTceU5GITG83Lu2u7MfXOLshbKXltr+yy+M9R3jEIwG0s8+T3eOiAvu2Qbs/gqKALPDy/0Kby6EpO67oLx6Hiov93MyY7BxI763G14uXUNRe/GojqG9POW4tDDmm5M03wkl8eBIjdaAIgrk71acIzrv4S+eitsvH4N/f+s8fLypKvS8j9btx/f+s8xdryO6JhiZbK4Lac+xLF9+cFAINZ1LuPqJOfjMH+Zg2U7bs73pQANkuNFKzrqeNgx3r+UgQ2dxgUeM9+G6A6F7i2VZ+PucbZi54YCvbTT2bKVd9LLy9p82rKdwT+6hF95Z6gOKOuOHw3LV6ZyIrgtGlmY3gkjzebrlCFYZtBf+aeYW4XjWNN29m26RzHpOKu7MaZaUbg5qD611dE/uPMuapjCOClxPNxlO2fUUXq5yuv1YtGgRFixY4Du+YMECLF4cnE+hcPgQpAABogWOrNpnH9sL375kFO7/3Mn41viR7u/cylYQ9YQamiiUn8kV2jAiNfr3iopaAJ6HoTCm+8IQPU+3d1wP8EAA9uSlsPeDjekW5XTLCwlX/JrT5L3xX29YlvvsRDqYSG2PYxV8yyGqao/HinsHkiwMJy59hzBPd5RZPg0rt2WYrJG2Vz08r9TzHIjHjx/YPdDT5JFzeGGUnKSJE9LRewVtphnDDlmSFdF01vSFv9F7hHn27Twlrw/pnUgoo+6k64c7oZBh/QwAf5i+Sfi7MCbmdJOF2jAsweNa15wJNGQkM57nlT4DCQXy+2ZN0xf+livUscoR7Pp2K8APrjhe+I1/Q7/SLUYaUCQAV7qfdDzYFOIbNub4+CFBl9YmLmj8c8EOdp59nDMx83w4QkTXhG9PXtiIruGmC0cI537j/GMBiORVI/uJ3gvAW7/+95JRuPzE/r7nAXCZn39cZhsuv+CQ1Mieczp/dP9u7jGZoLFjPN0B4eWuN8OZixJRVzorzn3OQ/ENJ7TQR6QW0X0KMw/r5SjkZG4Z0cuhaRp+8TlPIf7zV8+022SYOOB4NgtDDLzRiObb80zT8u0tI/uW4ISBpQgDV8L+tWAnAFHgDlKg7ef79zFqV1BOt5uK43CVdC+MuuMklTXc8cuF8Vl3TcSr/3sBLnT4UYKI0/i9gfxGX/lX0YAeHMXBwYVlDcG5sXEpp7slSvd/jRsGwCOzAiAQXtIc5aH+tGcTOdRJg0rdtTUirRN0rvxteHQd57QoiOq+/qa+/c7EUehRFBOi8ToauTzdvUri+P7lo92QfQ4up9z87GK8tWIPHnW8tgXRiPB97fQ8f3SVvO+REi6Hh/P0Neq7t8gJETAO6VGURpfKmO5acP7IPu63JUNOSTyKqQ4Hw7q99XhliVjycm+d/cz1+xrwi3fWuvOX3g3wvrtlWeDErvwcALjy5IG+9gaB1kty/OyoTsCyLGFPdJXukMi7iGavzfQpmjMsvFwmGc5jjKUxKu/dpum1lbiSkhlTkJfDwss5aH7I3zPGeD0MUzTe0Jrtkgzrukcc6oytfEa2roh2v9J3vvMdVFRU+I7v3r0b3/nOd9p7e4UOht/T7Vn4CLTBapqGH111giuAEviGFI96HqVM1kQqa7hh6TxMNSynO0xYsfPuJE9VwIbIz4hLyjhN6lTW8LG+BkFeMLjil2D5NDJM0wq0BhL4HkQhOe0Jm+GCyj/n28rHjoMJX3h52ggOJY7omruYGaYZmqsMcIXXEkL/AeDDO7yIkZH9bEVBDks8pk+Jz9IfYyGf6Sz3oOtuTjeRetmLvn/z46hsTPmUyYxhBirDyYyJxhDCsJgUXk7vS5t8yqlrTEKEGx6VowPlNhRInm4aTlnTQg3bkBdtrw583+aMl9fplnhzzpPD6YNY1XPl71P4f4+imMAgC4h5tckA4hXe/0QOx+ePHLkQFuLPZzS9n6uoscoJGxjjf7EbGujdMxrxc0LomiYIjzdccAw7Xzy3V4nzzTOGa2zi45Y/B7CFownHByvdZLCja3//5dMx884JmPPDS4Xz3/zOhZhy6iA8+Y1x7jEyYDQ4/RfpAClEXlcjuibwb/C2yko+9ROFXQOeUSouK91Rv5fZkjzTBJucknL2PS8LoUex5zHnisb6fXY7Tmbs2lFpr5HbkDUt33vRPc8b2RtB4ErnpSf09/0eto/N21KF0sKAsHNdD8wBpz6k8pA9imJuv6SyHrkaJ1LrXRJ3yQuB8L2F90trI62IVR3IzX0S1IaIrgV6KuMRXfiWLVG6J4zph/LvjceLt5zn3SfACC+uBfbvxMfCDaqaJhplXPZyObw85PtqmuYjtTvGqQv9gytOwIqfT8a5LSBKy4egMQf4jQNhGFgqptBUNaZ952yptKOyejnRKfQNrQBPt2n5q4NkpfRCAm1DdH/A26uChiopd8VxTymjdaNnsUfCSgpsUTziOjUA4LWlu4X73feWXds6zAgPeHLhy0t24W+zbQMxlWfj7/Ot8bZxlnL7w/qfFElXdsgY2F3bLETFZQxL4CaRQW0KSvEpkNbrlnId+L+Nt3eXFnnVQXjaDvW3HF7OQfuHrPxzT3fGsLBkp5d6ITuoeKShF55+9Gnd7X6jtWvX4swzz/QdP+OMM7B27dqAKxQOJ+RBTKRaXAjOt/nx8DVOSpMxLCQZY/Sofp7Hhofe8Q0sLEztQEPS11YSOAXSNzbH+QLIGUSTGdNlh5bZ2zlkOWQA26i4lTHoQlfpzkOqNax3kdu+toKH5K3ZYwudO6sTgiILhHtgefgY/+5XneK34tKCaW+yorJ3XP/ueOF/zsN3Lz3OJdEJkuVkIiTR020IoauU10Z5XwUs/zJsc9q4v8EXSt+YygZusk3pLO56ZUXgfXTdU0hsMhHajEjphtCOoCgRGfJ4K4h69cd5SaVU1nSjPQA7vytIMU1mDNejQKG7FGYnEyHJ7O+87UFwPfBRP+u0GF0he9Qtl7RueO9ijHYUdgplD/LYhxlQmtlGTGRodL2mMdZkdg0J7vwx0QClJqJr+Np5xyCqa/jc6YOl0Fbxfcnqn8p64XdBSjdfD65wvCCkANEca2LEYoRj+5b45sUpQ3rgj9ef6QrtgJ/FuSPCy3loOLWzXzdRKKe2yetUkKedzqW2eYQ//nPd9BrpPgUx3WNQT/vz+fg+wfuNUoCEvFy2bwQp3YZp+d6Lvqt8/GaHCZiPf4qK4O9HY0le/yaM6Y9exf4Q+2hEwwWj+vqOy0RgcTbmUhnTpyQEgY+R7iH9km/7kUPli1ht97ASV2FtiEVs4k0ewWGfowvM9PEARvagdp00uFSYu/ybUbOD1mRSjjNZr9SmzB1DY4V7GIHcyq38LR66ZmzImW3HPSy9j6OlHBFv/r8LhbFJ6+8LCz2vL+03vZ2oBB5J5c/T9kdNeUS64rmknP+HeZjp+8nK28HGlKuY0pxLZUTuBloLapvT7nn8W113zjDhntUJrzKGDHoHysPne+gnTjUX7rmn8UEpWLTHynOC7kt7UDJjuISxtG8HlWLjoGFFBj9KXYxFNYFXCcgfAUVr1SYp3Y2Xs/UMBJ4jJCrI0Uzplp5HcpufqNkrLWaYFn76xhr3txcWis7amO7JejRm8kXUdEW0W+kuKCjA/v37fcf37t2LaLT9uSwKHQtZqOjf3Ra2WlPWQfZ081IHXPk5+9heuHbcUHzvstHC9fEQrzfHwm3VPgEzsLYqE0opTxgg743n6eaLSBjkDYDXJnUFyYDNV2fKAFf0gvbDX11zat525ENhzF+2BxDrPGYNE68tsy2+PFcYIE+3GDYK+FnU+XmGKZZ6IZw3sg/+b/LxgSGUXzzTVsRlJmmuvGQMC7M3VgKw++TEQXafUy50PKq7Rp6w0OhE2vD9VtmQCszpbkplQwkC52+tFsLLacz0lJRuucRHro1T3oQKohEvL5MRqck5j2nDCszJ58ReoxwhlkJRZctxfUAeZS4DAectkEMm+7DcXJmMLWuYrtfhhIHdvTSHrO2hCOI5CMu7O5mFjRa7ZVzsv3XNSz/g70FCyWAWnq9r/lxgXQMG9SjCmvuvwKNfPl34TRaceW1kigAoLYy6vAkEgQujewFW33cFXrrlfACeQEwEOQXR/B5CGTJpX0eEl58peR01zfZycMWS5qzcL7QmP8W88SRw0vrplbbxrwmPX3eGc1/JUxKNuEpXc4DSzdcc7nVe5Rjn+J4iK3yy8m9afk93WHgkKYrcu0vvFTSV5Hkz4YR+boUO4byI5vu29nv4+5u8WjZ7eTi/AIH322cY14Dg6c4zjuRfuUeaKxgXOJEBXx43RDifrxduWljM32auPK9iBFutwbkjPE+yqygGrMkFLIqJ5+3yvYv3K7+DYDBzIviIYIuPr+9eepwbUtyRKA0podZSDCgtxLaHpripCrSH/CigznaJNJ8D63QzIzxBVrppjlHkyiDWL7TWyEaDf87f6TsnbZgunwqPdqKItcJoRJi3YVtckPxA7xBEgKvlGEtyWD8Rp1FUi9977EXY9WNGzyDHAIEMrrROkPEgHtF9vA15Pd3OuN4p1S03LcsXXp5m5Qo5IXFGSmsjgyTg1VaX15UoI5LMGKYwV2T5hpdsdXPCjz6du/1K96RJk3D33Xejrs5bMGtra/HjH/8YkyZNau/tFVqIiNYypTlMaMtXZoGDC49CTnfWdIVpsm4//KXTcMekMcL1YfndHBnDDGUvB+zyGP87YRROHeoJ6XxT93m6WxBezslXThvWU1Da3ltt5wzFg7w3mvcsbikNCuGjOput8XT/X0D/BZabYeW2/rVgp/vOXz13uHierjNPt7fwydZaXWNkIqbnOZcX/DD89r9sA4McXl7ADDUyaEPa5ZQXi0eZpydE6U6ykGvq1qrGlFDmiBBUR52Dh+hTzeI+3WwBMmWKpcxok8rFPC6PYZ7/zEmW5FC9VNYINBo0pLJu6CkJUM1uKRzxfJ53S8hlXBPaJY1zzi7tq59uWC6PQ+8SkSAqY1hoDOI5CAkv52OQ1hLOqutGF7D3IIWIvvfnTx8MTfOXcCIBryAa8Ql7/lI8nqJDxovSopg/vFxaT7oVRN05I9ewDRvzueAPZ29/uJ08z6kE4CBmtCChUl6nSBA+dZi37pKC7irdzKgk48zhtsK/rz4pHC+MRdz+ofB0brDifVcY868fQh635LmUDSXH9imBpml4/uZz3GO0d/hyzQMY1N2wW9/b+Y1JBZEIjpM8vHYb/czuJwzs7vP22gbKgPDyHNIof/8gLy6QP7xcrp/N359HGvzhK6fhm6MN3CMZbMmYD3hjVs5DBbxa7ABQUe2v+dwScOFfY4qijCCDqlxnO2yOcmPI0988G186ayievGGc8ExAJF/tSAQZLNoCTtwZBjmHtzGV9Y1r2wgfTKRGUU8Uzk/rcmBFCWkY8nWY1qBU1mPT5kpgghEu8uEctG8CuVnkYznksaCxJO8tvCyWZVk+GSGZMdxj3ZixLZFjvJAi7yrdzh4b1XVfOlA+Y2xYROmxfYoxy3F68PWBGz7lNZHWjqC54ktH0nX0KokjomtIZU2hxKAM7oTgRGxHG9o9kx955BFUVFTgmGOOwcSJEzFx4kSMGDEC+/btwyOPPNIRbVRoAVpqEQobxGFsyUHgG0ABy+lOG6ZbYzCXJV5Quh0hQ17EepXEfffgC8315w7HD688QQxbZ+dHdM1VDlNZs0Webu7Z1rXgUPGg99I1bwHi5aOCHkXve+fk0SiKWPjOhJGh7SF8yQnd5m0IIkeh8HvTsvDhOi/6pEdxXCCb0XXR+kiQrbe65oWhm2wjycVcy0Hfpnc3MbySC5IcWcNyc2k5Y7UXXmkEhipzTzcPkSIL+/HM0///2Tvr6Ciut49/Zz3uShKCQ3Av7u4UaaFIqbcUK7SlChUo9b41qtCWXyl1w10KLe4OAYKEYCFGkpV5/9id2Tuzs5vN7iabwPM5h0N2dnbmztyZe+/j649lSRQ1coQFZV6RSdQsJ4RZNfQmiz22FrBbUp0JkICj5tea9E1w47bHE8on3zdXHJMI0SF6DeJC9eB5e8ZXYREj5CuQC91KE7pb7uUK1sFQg1ZcBAiLGuF9NFosoqU+TCaYOlMeOGsH+zwKmnWhy1VMUhc2K7ZgTWBjiQHnpaaUcGb5NJp5MUFbqMFR6C5N3W13YlblyIUjX1i65XOA8Fl4zgGICcrk+zasEg5AKrgLbRQuT+4JooT8ndGq7WEXgrJI7UQYCtRpJJZU4fcCrGLCoFVL9k2KCECPNKtylY1zdRbDLmxnx0ZhH6WxSP5YazUcasWGOOynlEjt0U41HJ4RtuSZVegunaWb/Zt9VuU/D5KN/dN61Ebd+BC8YktgF6Bg6Qesiqim0bzD3CGM4wBj8WQUi0LVESVBvLQoxXQrCUp2hSpb/lKaXd7Z3MY+U9VjgvH28MaS8Dkhc/yIlkkOv/WUGkziRndjt0tCuA5Xylf5O/D60iOK2cvlimJhfSDMQ8J7J4z/7DygVAklu6BYMt4FMvXp7YpX+xzA5tlh14GFTsLqXCURVVoXC1uU5qo4WYy8EIJ2y2iWxMuz2wUlRYhBIz5nriqfCO+cIHQL46JWwzmsn9Kvuq4X7my8SI4MxLqj1mzugvANAIeZUokOJSYFQ4HCfXaYr9QcgvUah5wCAPDBPU2k+6o4Ufkh3CtvqvxUVLx+k6tUqYL9+/fjzTffRFpaGpo3b44PPvgABw4cQHJycskHIHyCu2s/Z4s254mNHHGWvdxotojxpu4K3cLgs/D+lpJ9XhvcwLEUR4jzerqAdPLVa9Ri3EsRk/HZVUw3S4BWjf62hFDO2i7AwTFpk7Dd2e9To4Iwp6UZU7rVLLEt8oWJTq1CO1mdW0CqxWbdb+NDDWgiK3UhDGbFslh+dvJRcTL3ctHS7bxvlWLM5O7tQvI9+a5Gi8UhURSbYIlddAL25DIFxXZLtyA0syXDutSJldSoFWJm2XJzAoJ72GWmnqUwYZh4TrR6hug1Yp+7WsDI3cutMVT2hbNwbUol0lilT1igFuEBthjufGsbBCuccO3eJlKTWuCl/aBm3MSERY1wfpOZjfdXSRauxSblhHbO3MvZxZ3gQbDClpmWAxy8HjrVjnEoPSLWJy3FhC23ILNjnOA6b9CqJH63741sXKq6254IzHKlTVlo/oWxgA0D6Wbz+pGfT1BqsUIYJwrd0n2F5+DhjlbFopB8CHBcyKpVHPafvynZxi5I2UMH6tQOZe2cJedMjQ5ELFPC6ZGO1cX2qiRCvbJ7uWjpZoRKV30gt2pr1SqH8BpAyNQrPU6xyeJowVfZF9hFjEePq/lVI4lpZ6zeknlX2iZ5rfrYUANWTOkoJlE1MInU3AlFY5XoQnsOXsgRt1W1KY19ZcEViLE9F4ox3U4s3WoFIwDg3E1Zia/GtcDOF7q7zIBfWr57oLX4NzumjrNVC3i+r3KctytEZbsL7yz5GmnziauK2cvlQqwwhwnzkKB4Eebh/2MqeQhjezjznJzMypMog0T3cqY0oIqz57HZYou51sji7y/eVPaYUJoPBZQ8iIRxQmnOlJdCjA3RIzbEphS/bE/yyWYEF+6XTq0SFRQfrTvpvE22ixLGWmHe1akdLd1CQklnyJP9CTjL+8MmzXW0dFv/v79dKnQaFYY3tyua5PsK1VOEcaiVzfij4oA2sjXs/vM3xfWf+H7ehv7lPgm6DgoKwsMPP+yLQxEe4r6lW3mSc+UiK0ce38bW6XbH/Y11oRMWGaEyS3eNmGCHBVBMCfWD2YVI1ahAsTyFtdaukIDGvRsVHazHmDapmPWXNBmgknDdoEqYwyIGUI7plrr4udUUByuCVs2J2cJZRFdwMw+2O+NDDXigfTX8vvcChjdPluxrZCZONWdNUnLLYs8sKnQjq9l2pXVXsv44lpGwurPq1CqJi5rZRVZhwNqPrHadTVIiT2hSbLKIk79Bq8KrgxtgzFfbYbbYvTqUapwKLp+CtlrFQRKTKQhgwQaN3ariYnXmytLNxrbnKsSU3TLaBfHPxjTHy39Yk5Bcy7cKI2wCMbOFd7B0Ky2sXOnWik1MgjeFfApC32w/c13cBlgnyO9sWfS1apXNIs3BaItLdyhlZrY4TTjILu6EiV9Y5O8/f9MhYSGbU0KAzW3gLvLxin3GhVh5jVolWYgPaVo6q5YnSWHkPymNZd0Vg5sk4ve90rI9rPWkaUo4AMfxUni/WGWDoNCSv+fCvPBUz9roXDsGzVMjxO/k841GzTkoSdjyOmxXBujUDkI7O6cE6zWY3rM2tGoVYkMMijXFAalSxlkiNUEoZJUMwruh9Cp9NqY5ur2z0b6vilNMPMbGL4ptM1sctmnVKiamW1pe0RlSSzcjUCpYvT8a1RTvrj6Oj21l2JzBPhuuLIYCUqHbufLZXa+pkvh4VDMcuZSDjrWsyekU3cuF2FSTPdzMWSK10qJRqxwSFHpLYngAVk/tCJ1Gasl9undd9GuUiJbM++QuwrUK1x+oUzvMG0r9JX/fft97waFmtaCQFsZ7QTAVPrPvs3A8du4sNkuV7qzQbVGwjIvtVavw7ogmePx/uwHAQXknHt/Fc+tqXag0v8vnHLWKE+fjbaevidsFK3Whye6Nx/5WUCirVZzDMyvMF44hTY6W7pIqCjh7ruXeCnICdGoHBbwg/CdHBmL/yz0dSvUqISZIs/323lYp0MvWzNfyixzWHbejpdsjofvPP/9Enz59oNVq8eeff7rcd+DAgR41jCgdblu6mR3ZMiuli+mWWpTZ7OWldi+3/a0UZyhfhMmz/cqJDtahX6MEBOs0iA7Wi5YSa8bnkmO6AWsdxhWHMvFwx+qKAzyr4fz7yfZYduASnuhSE9tt2S9Z7m9XDfM3npJs82SRYdCqEROiF13X1SrOwdIDSIUgIaM1AMSG6mHQqvHvzG4OVh5BMOE467ZbsgyVwj2wWHjxfrpy201LDMVRppwToLAYtz0/eo1U6DaaHbMKGzRq8LblbZFJmjCNtfQKE34wa+k2mcX97LHpdmu5PG4RcMzsHKjTSJ73PLFeu7T+pDMuyuJ6TRZekkjNLnQ7WrqFxVDd+BDUTwyzT+BGabyYcA/kwq3wLrK4Uq6xygD5+2tNOGS9XqHuqVLZGUHRpVOrYDRb+0uo/ypwNa9Y0bJvbQNr6Za2PzOnkHEtZEvKyYRuMSbR/fhKx4RhKnEhJMRpqjnOZSK6ks9R+gWEQ2ktH7jjAtKFn3D72Oc8lKlhLqDipCE+fz/ZHtfyi0XPEYdylOJ7rkbbmtJM3fK+ZZM2CrCWKTb8SadWKbqns0zsak/eySoCL2bbY8nZ9grjikNWdY1jTLfwrCg9CjVkylCl3AKANFMv2wbFRGpMvKhYR92lpZtT/lvigm/d3r9RIvo3sidbcwd33it2bFKyVolzgOS+er7A7tcoQSxVCCgrF4VEascv5+K0LZO0RsVJ+tGTvAtlSS1Z6UbAug5qxYSLlQa50K0UGqW0RpLvV2i0SEpCAvY5TFCICs+9krCrdP5ik0WyjjUw4YHC66+kuNSqOZf1s/ecuwGgBEu3C/dypfndMXbZrrz5kLFei3HpTEy3TqPCxC418dH6k0iKCMD5G7cUhW7heHKBWqtxtHTP6FXH6bUBQLWoIOw5l+2wvdhsQYhBg9xCE94Y2tAhsV5cqMFhnGITBcrbZnBSN14Yr4Q1GatMFAjUaVzmcbpd8EjoHjx4MDIzMxEbG4vBgwc73Y/jOJid1AomfIu7shy7ePh0dHPx77uqR2HziauK1lk5rJZNp1aJrivFJrt7uSu3EHZiE15GuQCkUXEOL7SSkMTCcRw+HmXX2LNuyWY33VU+Ht0MNwqKnWqt2YzIDaqEoYEt27LcUl83PgRP9ayNLzeflig0PHWXWXh/S/T7vy0ArNcpT8ID2Acok8WCpIgAUfgV7iOrLReaIWapVOj43EKTOMltOXlVtK7XT3QeE/10r7oI1KnxcIcaDu0SEBaWeq0aYIRNpeR5ATq12HdFRotYvztEbx+g319jd1sLUrR0q8XrM1nspcDkHgSAValSJTxATIJl0KolC2EhTlqr5uyuUGYhptqEAK00SRcbJ2U9v0WsA6pT25/xHAWh2+7WbN1H7unBLuaLzRaHxY3RbEHH2jFidnjAzURqCvWVNSpHl/OBjRPx576Lkm3Cpes0KuQXWz0QNp+4Ktmn0Gh2WLAJsJbulYcyJZUPjGa7+609iY5jGS97OTr3Ld1sHWIBvUaFgmKzKOCrVRzmDmmIUV/+h6d7u17kANYxgFVAebKAkC8y2bwT3sBalERLN7MIsmcvl1qQ2We7QRXpOODgmu1CgFFaYMrnMLb/GtryMFQJDwDHcQ5eHK6EULZ+el6Ro0cJAPxrs0451g93nJ+Ee/LVuBZ45LtdmFNCiSgloVujdoyV7NswXtFbgJ1vhffG1TziLKab/Y1S6JO7uPNesd5Bu87ecPheSEjqCyuzEkouwcI6RRC4Aev9YRVp7Fi/9dmu6P3+JswaWN9n7fI3bM3kgmKTojeQO5ZuALh0U5oMUXg2hbFZWBMZbXW2g3RqsXLIr7sv4JVBDSTW7/ELdkjWXUI7WPdypXWK4F3lDKEetsuYboX3SQhfUxa65Upp5eS2wvjBupfrNSoxr4zgeq9VcZCrsNWi0C0POXHMiZOikOOHJdFJRv0iowUxIXrkFpqQGh3k8H10sN7B28pVThx5lv02thr18tA0tYpzUDAWmcyO+UZuQ0u3R6OcxWJBbGys+LezfyRwlx+1w6wDQ0k1NNnvWeH3wQ7V8NrgBtg4vUuJ55JYurWymG4XmWsFlOLv5BmuNWqVgtBdOh2RfcBjYrpLWPiqVZxLNzFnpTvkA0in2jGKk4Gn2vz6iWF4tFMNzLYtAOTuhU/3rqOYmfTF/mmKx5NniXQ2aQmDXm6hSawjLSSuUiI+zIDXBjdEChNDLR83lZLOAUCLqhEO/SNJpGay2DN3B+kU3fMFpQhbvk7PuEtbLLz4LDhT4rBJgAJ01j4U7i2bvIW1GhzNzEHaSyvx8p+HHA/IsOxAppiMjdX2KrmXy+uVsvWbAelivts7GyXu6MI9EJ5LwRXQlcc1m0hNSeMsCGLZtphyoeY8i3CfhUWB0kLHZOGRVyR1QRS/Yywfhy7mSKyURjMvXk8hk5le/u4J44sza7oSTZPtrppVbc+u0Nf7bO6KGjWHtjWjcfTV3ni8c8m5GBrKhFKPYrqdxBh7C3vLxJJOzEJOOA8rnJc0t8jb6qrKgXwRXzsuxOHdZy2qIQYtDszqifXTOwNwtFq5mm/iQg3i4m9822ridvZ6hOfQoZSZ7RrY+y60s1u9OBx5tTdGtHCdu0Yp7l+j5hwE54SwAIVEatJ8IcLY4cpjij0uq0iRlDPzYi3rLA6UhR2b5J5PgL2/2Fvjy/hNxURqCiFgGpVK4kXB3v/E8ADsn9ULQ5v5Ljmav1GL3lkWfLrhlMt9WJbutypXhSSEgGOJSuGdFsZm1tJ9/HKepFSnMDYLoVICbB4HIft5kcmeQFVpCBWem851pDla5t9nN8DkFplclueSl/oDgEndrQpfYd5lS/w5hF+plfP6CJ5JhUazJKZbrjxWWpcK2xzKVGo4R0G8BIWVvG2P2PJsSCsiOB4jUKd2NJqU4A3CetAKHhmCl80RW4I2jYJnk8nCK3rY3W54pVo0Go3o0qULjh8/XvLORJkypKoFU7vVxF9Ptne5H1uigxXc9Bo17rurqkRYcoY8ezlbp1sYeJUGMQF2wSBovFUqaWItpQVqSZZuh3baBisTU2PaVWkIJR7vXEPy2dliRymBDiDV1A1rnlSqxEtynu1TVyzdJK8X3iQpXEwIYzbzWHPEmpEyLlRZgWBPpOY61l3Znat0w4azWE+Wl/qnoUVqpIMG2aBVM1nozcgusJfLUmqbUC+STeCl06gkCToEa6ozJQ6b8EfwDBHeFXt8r9313szzeHeVdQz8dttZxWOmKrxXWo1KnJSVrEeCFUBog/z5ZxcBV3KLHGLZjGZ7Qj3BtdKVezmb4E1pshMUY8LC35USjLU2t0qVukKaLTxu2e5j7wZ2t0CLQj1Y9rPZwovPPbtYkSughHMLCecAlGiZrhoViKYp4YgI1OKPJ9op7iM8x+4KvvK6957EdMv7wRfZywF7ghvALsDKE2QC0sVlSeE98tfalWDIeuoceaW3xBvF3i7e4TdC38rdXUuy9Hz/UGvse6mnxFMgglH4iNmRHdzLreeTZC+X1AF3byyUhwPpFJIVAo4LWiHMQf6Muyodxz4zrCuo1NLtOe7kSiiprnQN23zJWtxDSni+SoN8fgSU4+DVKg7XGWvr7bjIZ9Ew8+CJy3mK+8jXbtWjg3DqitU74OYtozgPHbkkVaYIyotbcqHbzOP4ZUfFCwBcUQhREhDKhxYznooqFedYucDWXvn7xHq4mM2806zmgLLCR8j58vqQBmiUFIa3hjW276+glBbGgnoJ9jFGmCsKTWbGC9SeB4lV4ju0SbB0K5RHlFu6S8r1IfcGEyq6FJss4lhqzRVkV+yrOJvBQnZfSwqRlCRsdFIVQmkd/Nawxk4ra9xOeCV0a7VaHDx40CtBgvANBg3weOfqYlkfZ7AaYE+tJmxcoTSRGo83lh8FAKQzLlxy2AGGHTyUaqG+NriBuC0iUDrYlthORjlw4MJN23FL98iz9YnZdskJ0KklgpUwiEtLtvjOfU4+8N1VPUqxNIuzhbI9kZpzty1n20sb98beA45TdpvqYEuAI++eAJ3dfbjQaI9bDtCpFZNsCIJoscTSbV/Qm11YuoXQBHaCEt4Rew1hwcKqkrisO7OqCpPhs30cM80qxTWxfLD2hHitgONCW963Qvy4ULfWaLYvVgTXSleJ1FgvFfnYwPO8w/mUJl9hPW4Xus0Oi3SrF4KtD5jzmCy8xOpULyFUYtF8aUCaeE62BruDJcC2z4PtUwEAjZPC8FgnqfJMDsdx+P7Bu7Dp6S6ihUVOaQVeuRXfE4FZ/oj7ahFyjVnsXrcpJ/SycR2QKsxKErodBFYXz7ZQGSJYrxGf7xZVIyT7uCpjyT4Xa6Z1LHFM4jhO4vIsR/SEkt1wwUU20M3s5c74Y2I7sTKC0B6l4zgokIRQnFIsstlFMutW6iuFTZELi6GAkjfUrAF2rythcc++I5/e19zhN54ya0AakiMDJOsHJUFco3YU4m5nRG84M+8w1wpk5Vrdxoc0rQIAaGJLqghYk6UJxxBye9jD2qxu3A5Ct8ks7ivnqpO6zb3rx4vjR7FZ6l6+5JE20muyvQvsOyEIjALyPDdy3h7e2GGbcF1ta0Tjz4ntJQpi+VysYRRjwms2rHmSXeg2Ktcal5+LxXkiNUcPypJkMPkxhPeuyGQWlZsalQr3tLR77QihcqW1dLPZ24V7Ih975GN7QpgBzatGOIxrniiqKzpeSwFjx47FV1995Yu2EOVA62pR0GtU6FArusRFlDOklm57IrVis0UUbl1pw9kXi13MSJPVWPe5766qeH1IA8wd2tAtK7ykncxCRbACuqqLqNxWR3c/Z7AudUourr7KPCxv17y7G0pdoJn6zM1SIhx+CzDu5bYQEGel1JQmg9Img2MPoVPbM7GyIQWCLOhg6daw7uVsBlC1ch104Vk08ZIYKnsiNV5MqicXuoVEPGxSEuFaHTXTnMRVz5nQLSio5O5g1mM6ZiEFrFZ8FuG9kE9c8lJEQiIboeauyWKvRyvcFzbWcfmBSxILBOtmJhcYzRbe4XxKk69wfKHPik0Wh+RjG49fEc/FWhDNFl5i3bRWQ7B/bpAYJh73FmPplpezEdp1X+tkzGhkwvcPtHRLMRygU0sssEKpK4HSClvyc3oirLFCoIoreXHlLqzyVfDekI/rgGNMt7ttZY+hxCMdq+PVQfXx50S7V8GTXaSKEaOCi7D4HfNc1FSog11ahJhxdpFXPSZItNhKM/SWftmUEBaAe1ulSLYpZvWWJ/RzsvB2pcBlD5vAlAJjnx1vniN3YrrZ90goGdmnoT3RmaBAjw8z4L2RjfHF2BYO2bC9oXpMMDY/3RX3MWXq9Ar3TMVxGNkyGRPaVcMipkTX7Qo7DzqL6xcs2ELsLhtOYK1sIZ0LA5n5pshkERPTCe+O0cwrJgpd9O9ZMXeKHI3aHjZUJBNY5d57wrvACsIGmcBo4Xks+OeM4rms1xrusJ5w9Y44ltGyW7oFpYOaswviJsYLlLWKi9er4vD6kAYO2+TXBVgrNSQo1L12hVwxHSG67lvE+VMrq6ggKvtLKXSz2fDtfSM9RqEsGaOg3JUbxW7HmG6v/XmKi4vx5ZdfYvXq1WjRogWCgqSW1nfffdfbUxA+JD7MgJ0vdPcqS6fcIiIMskY3ExexGmedglURkA54o1vbJ87SINQYZBeY528UuPiFIw5ufS4WXOyCTUnA9qWlW1J/VSUd2NhYSGcu+cIgZ3Ri4RH3U1gYuioZ5upcgFRgD9Srcc3mECEIyA4x3To1hO6zlgyzx0UptU3HKICE+8CWwCo2W8TY9GCD8vDHuk0Lv7PHYDHZyxmrgbOuNYlCqGM/WC3Kjj+07mt3eXQ2+cnzINgndfsxhfg64b4IE+yWE1fxmK3Eypk3+gFgYrptVvHRrVPwv//OAQAsPBATLJ3olZ7nQU0SbcewC91yV+C3Vh5DJ1uNdFboNlosEgH67LV8WbylfRFzzRbbr9OoxGsUEEJWOI5DUpDnGYnry5KWeWtl9iiRGuf4nvsC9j4L2dmV3MulXkmuz+9QbsvF/hq1CmNsNaAF5IkNXVm6XX1XGlZN7Yhfdp3HozZPCPYdYz2rJP3gofJUrohWOg5bbg9gM8C7L3SHBWjRomoENGpO4l7O4s1i1p2fsgqa/7u3KQBp/7IJSUtbes9TlCzdRrMFBq0aLw1Qzn1yuyE8cyYL7zTGgM2yDdjDiQAhLML6w1uM0J1baLKFDdnHYjaRmlBdhOWF3w86bydjDS42W8Q1AMc5JtgV5gQ2dNCek8K6/nNVncceO61y6YKudE72GKySALAaMlSi0G9XSKs5R0u3Rq1CcoTUqCSMOfJ5v6TEcUrIxw82M7wwP2vUKomAL7yvQuinsM4vzXwqCt2yuUueF0IYU5Tu6+2G10L3wYMH0ayZ1S1THttNbucVE6XM16VBvjgThFpXJRlYJDHdEqHbd4tK9lxC3Wmg9HX/SpPYgV3IKMbolJGlW1hMCMKWs1q0LIJHwvc2ocrZdfnCvVwidDO/bZAYhozrVk23EBOvlMhImDCLZBlAlfrSLuyZFfdls6UmhCkvSKUld6SWbtGtWS21nju7J4JbnJKrrVqlbOmWH0tYwMqfKWcKleNZduu1qKTQCJZu6/b7vvrP4XdsTDcAzB5YXxS6eZ4XE4yx7by3VTIWb88QtwmloVjlh1KZLSGrO+vdYjLzEi8No5nHz7vOA7DeK05hsVIvIRQDGydizrKjknb5AscMtd69vx4lUmN+48sFCKuIFKyhSgI2+9yWtNBzSKTmZT+4qmLpygpeGmrHhWBmX3voBysYsjkT2Gz7nsYeP9C+Gn7YnoHBNrddZ0oUrdpabg+wCxLypHSuvKY4jsNPj7ZRXH8Nb56EE1l5aF09stTtn39fczz32wF8cE+TEvdl753wfIUatPhmQitonYx7ZY2Sh5ar5Fq3I/Zkqxancf1swi8AEoFZp2GUzbZ3UBjDjWZ79RqOs28vNlkULd2uUDMZutmYbrVKwftQ5aggZL3DimGN6RbomRaHY5dzxbwWotCtdl/oVnK5Fs6fL1S74DhxTDRbeHEtoFJwL9eoOId64MJ60SFpmwfKV/n6g/VEY/P66JhzyT1PBUWgkseIM5wJ0/KKDsJ+d0JMt9dC9/r1633RDqISwWoadYzQLdToLQl28mOtCb7KzMuiVXNglaylVQQpuQE5g12UKiW6cZVcrrRIyq4Jbki2/4VssULtbSWELOCCW7QwKPdMi8Oqw5cBAEObVlG04HoT083ez1cHN0CoQYthLeyxT3I39wCtWlTmFErcy1VOy4cAVoGN3Vep36KD7c9er/r2rKxKZXaEa16y8wIAYF9Gtj1OnOedKnPk7tYsKs4xCyngaEkSlGTyyTdIr8FDHarhi83pku2sx4lYksR2X7afuY4b+cqxbfIsphq1Cq2rRSL9aj6aVY3AjjPSWvRaNYe7myWJQjebhEW4X4VGi8syZVY3QKsW/b/T1yRWFQB4e9Uxa1tU0n4QCNSpYdCqERGoxQ2bQkUpS7En+HoBUNp8EoBU6eWrmFxAmqBuTBurJxHbS4KQJ3Wrdn1+B0t3GYznAu4qeEsL6z3CKqeDmb9LmkNiQvQOlRkAICkiEHtf7iEKE86eJ52tVB1gn0dKY+l21ca3FGJX3aV3g3j0qh/n1hwaYtBi7tCG4HnpfRQ8XPyBYkknPwj//oRVFDvzgmhuy60gjLU5TGUNFcc5rG2Eudts4UWlLutazXqoJUcGiIp2V9woKJYk47S4LBlm3ZaZYy9hJqxn2DnaoLUK1U92rYVnftlv39d2PQE6tWLpTiXkazmdWiUqpQXFvlrFiee38PZQL6WKG2oVJ1EMAKzLtVzAL/08wIaS1o0PEe9PodEs3lutWqWouBDaIAjdpVn/CdOM/BrubS0NtRH0Db5WdFdEfCYFnDx5EitXrsStW9YXilewbhC3B2zCMAuT5n8nU48z3kXMiUrF4a1hjTB7YP0ySfTCIh8gSnsKwUVdwGV9VNbSLROEAV+7lztaoPJkE0Zp7qew+GCzPFvdw5y7cLsLO0+yE2N0sB7zhjVCSya7tZKlW7hWs5m3u76pVQ59ed9dKYoaXJ1GORs3m2H3FqPh1khc95WFvZu3jOJ+ZgvvdHIQLd0KE5UzSzebWRqwu8HL741eo5LUsRYY0rSKeM+F2Ck2l8FTP+1TbKtS6ZAfHr4L/zzbFQatGuEB0jjvQJ1GsgBjXUqTIqzv9fHLuS6FbtZNX3B3ZxF+KjxzDp4ntgtlM1H7KneCY2iJHyzdzE98mVRGKaEmW95NyAvAPp8lLYDkX3tr6Z4zxHn967JaXrB5C9iswQMbJ2JEiyTRVdoV4Qp1uQXY+8k+D2x5I4kXk+1vef4VX84lpaE0Sut7W6VglGxx7U/k73OgTo27PLD4V2bY7OUxtoz68vlcqNgivL+nr9iT4vLgHcYxwTvEaJZacwWDSl6RSQzLGsPE2LuiQ61oyVzOZi+XI2wTvKcA+3qGzbsihI0ZtCrJHC/M7azRR0gi5wx5tR2dRuVQC1ut4sRkdWYmv4pSIjWNWuVgcBAt+Aru5YC9YsPdbpS0Y6snJEUEMOFmvDjHBmjViu7lbFuEa3WXvrbkc/LxqkaMtNpPqq0sm/zZKq1namXA65H72rVr6NatG2rXro2+ffvi0qVLAIAHH3wQTz31lNcNJCoebHkso9mxth4AfPdAK5fHGN4i2e3M4N4gn1A8eYmV4qeVYNu/51w2AGBqj9r23/rUvdx+LCEmp1qMNJ+Cq2uVW1jFLN1q6SJbsd6pF5bu0u4boLO7hpt5XuIuLV8A3tsqRRJLLMQN6TWOtSYBSLJUs3HBEiWLzL1c2lbbxGXmFZU5FgsvCgdKwrWKU3Y7l7uvhopCt3RfjuMQYtCia91YyfbuaXGiJl6wKgxuYl9EbDlx1bGxsFvI2WvlmAQxkcFSoTsySCeZJFkrYd14azz0uWsFDm5zLFo15/KdErTwwrsj94YRFlxsBmJfuZc7Wrq9O64nQrPEe6aMLN0CrNAtvFulsXTLr8/bfnAlsAkx2CNa+DYemBVu2fbrNCq8OawxBjZOLPEY7o537P1iFY86idBt3SdEln/idrQAlTXyezZnSMM7LgSSzUMizO0tUiMk+wjvgHKiTMd1jBDmZLZYJHHL4YFa8Vm+dNOqbA9w0/slOlgvqYAhxh0rPPcWcY51FBhZV3ghD4RaxUmOI5yHbZs8v4QS7LTGQzkUkU3kJjjnOEuk1sEWmmX/ve07Jwq2JY/chRf7p2HWwJLzESSF2w1lxy/nKXohGXQqp+7lEgWDmwq/mBA9omxl35xVCFg6qT16pMXhxf7Wa5ArHvykWyxTvL6kqVOnQqvV4ty5cwgMtHfsyJEjsWLFCm8PT1RA2InKZLEoWpbkWj93cFV71FPkyVM8mWPZAdLVYodNTjTAtjhjBy5fZi9nrYrCcVvK6iG7yjI7d6jUiqRUl1fFQbHMhjcx3SUhdx8L0KrFgddikbqMK7n/2t3LLSgyO3cv71o3VnIdbAIYSUy3zL1c4KEO1cT9zBZl93JW2FR0L3di6ZYL4kJfO1PasOfmOGn5EoEqEfb30ZkQLHgGaJ24ryWGSb1XIoN0Tus4C5r1K3lFLi3dOrXKpTJKaKogbMsXbcK1s2EqpfXEcIbjIsq743kiJ7F960tB6/2RTcBxwMtMAikll+3SxHQ7Zi8v/Q3TcO6ZsKf3rI1fH2+L1wY7t4Z7ApsnwVNrckk1qlmWTeqAXx5rKy5OAUgyOgtt8DYPC6FQGaMMwx8qKmx5L2EecFa+SilMhwfvoHy0x3RLrbkcx4nJ1IR1hLux/Fo1J3Evz7NZypUq7giCPlv2SzAqSGKqmbYp1ZJmBdHSziFGk+M6WMXEdFt4q1ICcJZIzdom1vNCuM/ycT82xDoPJ4QF4IH21dwaG9hyicF6jcP1cZz1mpWylwOQxOTLM6HLeWtYI4QaNPh0tN17h/VEYw0+9RPD8MXYFmLdcLnbvreK7oqI11e0atUqzJs3D0lJUo1zrVq1cPbsWW8PT1RwjGZecYDyxKrrS6FUQN42paROJcEORK6uixXc2tSIsp6fjb32oVKB4zh8O6EVHutcA10YS6e7MXPyWDZhASJ3W1cqheVNybCSkE8wBq1aYumev/EUAOtELz8uO5kVmSyShDDy4z4hK090S2LpdrTuya+5TnyopF2KQreFFbodJyo1xzkIJtY4O+mxhEnVmfJCHsLAKcTdsVZos4UX3b9ZhPvl7DnlOKkwHxkotXSz1jjBiyC7oNht93JXCM+nPHmc0FR2e0WydNdivIICdaVPocJ2hS+F7nY1o3Hs1T64v101cds9rZIRHqiVlLZy5g6t3Fa50F16oaZVrPVZKal8lEatQrOUCJ/1tXhcpo89dY+fM7QhUiIDMe/ukhUCaYmhYgytYnucWLqJ0iO3opVF4taKjljCymIRY4id5a1Rerd43nGdFmAb10wWez1tYSgQLKdCgjJnCl05GpVK4l4uJDJUFLpt54xjQhoNspKHbAZzB0u3ENPNPA+lDY81WSyKydGkidSs21UKMd1Ce6QGHuv/cvfy+LDSlQsTeH9kEySEGfDG3Q0dQwRsJdakMd3KY05JY+7wFsnY93JPtGCMQO56ODjMubehJ4rXo05+fr7Ewi1w9epV6PV6hV8QtxMxwXpFFy1PkoaVhVZLPqHc06r0MWbsJONq4Ztf7OiizA5Qvrbkd6wdg2d613Wa/MIV8oFTWIBIJlTemu1W8ju1o1t3SZTG0i0oEwSslm67S5xAxo0CB8sbW7aDzbiq16ocrBzyCYWdZNluEvpMvtDQqjlJTDerjMmyxa2zCh6lxYZKQej+4eG7HLwxBEv3TYWyK4B0Meks9tkddzkxUYqL55Stjxxi0Ejua3KkfR7QMvfGpdCtUbn1Xgj3SX4dwrO14lAmc25fWbpl7tIeHJd9BuQZW92hrCzdgOMYEBtiwM7nu0u8YNjns6Tx2SF7uQdCzeCqFrw2KA1fjm1R6t/6AqVYz9JSMzYYm57ugpEtvY9nFuZRErq9Ry5ohHrwPlZ2hHfYbLYLoWy8L2D3ZFR6/h9oX80xBMz2nlsTqdkFW8A+fwrhW+5m3tZqVBIFuiB0BysK3bbfMO+ukExWLSoZeHuokkqlaOlmlaLLDtrnE3dQCrNUse7lFh5/7bto3c45zi2CUlkpB5Cvxv3BTatg28xu1prkKk5itBCzvbNK9SDl98OdcVG+RmxdPUr825U+w7FkWImnqnR4fUkdO3bEt99+K37mOA4WiwVvvfUWunTp4u3hiQrK/PuaY2ybqhjSrIqkLrSAJ/GL02zxz2PbeFaXWwm5e3mXOrFO9nRxDDbGzsWkwVq6BdiFelkkipPjrIyUHPnAKVil2Gs1W3hEBevxUIdqTn/nDqWNo2dLU4UGaMVJR0jGAlgnWvlx1Yxbtby2aGiARpKtXJi83xrWCFFBOolrGitcCIKukiu7XRlgkSg7er2/CYDU0q00capsLngsyZGBDqnrBEHTmSeIdKIWLPOc030A5TALpURqrlCppDVTk9ikiEwWedeWbs5LS7f1t5KYWJ9ZuqXHaVY1vNTHcFUf1h2kdbrLfvyQK0CkQndJv/XevVyvBka2SBKTPJU37Du2i0kM6i+E9pTGZZ1QRj4GRwYqx5nezrDu5XYhVHlcSYmUGtPqxIWgZ/14MemVgDD3mZhEasJ52Azmzs6lJEjLy8oJGcEFSzfrqSYI+uy4L4RoiNnDZZZunYJyjX0+5IqIkmATCguoOU6SPV3g8MUca/lLZn/BE41tgzDXlUXYpfy49pw+9m1syAuLJ8rnJiV4Lim1CXAdIllZ8bo333rrLXz22Wfo06cPiouL8fTTT6NBgwbYtGkT5s2b54s2EhWQ3g3i8cqgBtCqVZIkVN7QJDkcB2f3wuyB9X1yPEBaUzAi0LOFCzvIuNI6skKhALsQPXIpx6PzlwaDu0K3fHFt01az7TXzju5nngg0pdXUspNtalSQKHjkMzWcO9SMdnA9UipnAtit86xlI8KmxR3eIhk7X+iOpil2F092YbDaVj5NrqHXMC5q8jrdQukqidCtIOU6uy2soPVQh2pitYDu9exlzYKYfmbvr1DyRH4fouXWDJlozy5KShPmwWZ7Vsr6zrocKlFSTLdAgJOYbuG+srHJvrJ0s89BVJDOI3dpk9k7oZvtW38kz2LjHEuyUsnvu69i68sTVtEiryJQXkztbk++KcRChpKl22vkAl+Ek+ROtzNaxvJrF0JVaJYS7rBvZJAObw5rJH4WlI5xsso0whhh5nlxvBPmMKXkYnKUPIA0apVEaSeULRMqCszoVVf8ToxNV1inCf8Xmy1MWSpO4qYunIedw98b2cShTQ5tZK5l9F1VHatdqO0Zztm1gJHJNSMgCNhrjmQx7XK0fvtyCmDd1oW2s/0V7UTo9rYqhasZUf6OLi+lx0FlwOtZMS0tDfv370erVq3Qo0cP5OfnY+jQodizZw9q1KhR8gGISo8vS6YG6zU+zSjKuvV6qjF0N6a7QMHSzQ62rNBYVrjrXi6PLxVjuplFJy+6bTFCdzkspOPDDHiqR228NrgBAnT2mO58Rqlxd/MkB2utPFYLsE4mgtdFEVMWjNWuy583pYWBUnyv0C7WaiBw6eatEi3dzoQotjnP90sT26dRq/D3k+3RoVY0ljzSxr4Tc2qzguAcFqB1sCaw57BYeBiZJIBy7xAlhKRqbKw4e0zhPTGVaOlWKT5TgneF8DwL4Q9y67PQt/Fhdiu7r8pVsosLT11R69oSxHgK+4jkullD1pew9+D8DddCKPvu6RWqC1QG2IVocRnVAi+xDcycJSx8PUlMSkiRj7d3oiKDrdMt1o1WcxjjxLswkRlXY2wJvJRKVwLW9YLFwdItU1YrrJ9aVYt02KZRSy3BQjlUxYzqtnOyw41oJVbZXdQF1GpOmn/EVgqTHetqx5U8brNzfmSQTrFSDiv0239n/Z+do9lSqgJiBnZmv6/GtSyxXe6ipNDVSizdykopr0NdXLqXS++hrwx6FQmfrKDj4+Mxe/Zs/P3331i2bBlee+01JCQk+OLQRCVgQOOK29fsS+ypho5dBLmyNim5wrCWLnlpjrLAXaFb7jomJB5hwwLMCm5bnli62cnpEyajpSue7FYL99lqegpdKLjvhxo01hqYskW9RsU59A9rnWSzM7sSCJRc4BxqaDIx3Raeh0XW9R+vPylq4DnOer4qsoWzsza4ElUaVAnDdw+0RoMqYeK2X/dccNiPfe7r2BYQkTbLzt3NkiTnMFl4Say2O4oV4TlhnxfWes7Wgy1J6FYSKITkcUKCO0EpJG+a0N+BzHPvq3rW7LPDWvRLw9y7G2JU6xQsndTeo98LpXYAICu3yMWeZQM7ZrJWGCW8HScqAqxitmU5jNdK6BQWvl3rxoqx9tOYMpSE+yiVXLzTYEtoibWvOQ5pCWGK+7M5NIT68/LxVRibzbJjAo5CtlqlQoda0tJYj3Sqjo6yBLBalQoqJlxMyJfDzmtCGFrPNKsHWLHJPs8ISmYlhbtGxUkyfgseD6X1ZJJPa3JltYqzz0/y8mKAdIzceuoaAEjKfwYouHzXTfBOiStpr6Q0oWPuGrbM1/cPtRb/9iQ3CYsrZaZ8/aZUUaOy45OZMTs7G6tWrcKiRYvw7bffSv75k9TUVHAcJ/n37LPP+rVNtyMVuZwJO2B5WiJEYul2saAf2tRaC5lNPsaWEZMnJSsL3JU3wgK1kgFWKemR3b3cMf6pNLBClycx9XJLt10Ak7mXK1i6dZKYVPduDrvfh/c2BeCYQZQV8NnyKwKL/j0nCuJCm9hSQIDzzJzNbfHJJWVwdoVSmbsJ7VJt30nPa7bwYo1u+W/lNEqyLs7ubub4LNeKs2fqFt0YzRbXJcM0HOJDHbOxKmWxt253tCYA1r6f2r027rsrBdWjpTGHnsJmN/bUwyM2xIA5QxqifqLyorYk3M3RUFYo1XN1hlTBWTnLMbHP3bO96/mlDawwKCjKOI7Dva1ScOaNfpjUrZZf2lXZodrmjDKUGZc1Kg514kOw6IHWWDOto2R/dvwRS1c6sXSbeb5kS7eKk7isA1ZvqXdHNJbuJ+YmcZ5jYuWUjtg2sytqxloFUXb+EeaF+FCrp8gxW2I1oW1sjgQh10tps9kLLvlC/Lf8WjvWjlHMZ8MrhO290M861rw+pIHDNbBeau4monMH9n0Q7jerZKnJVN5olBQu/h1chh4i8rWJUB7tdsLru/fXX39h9OjRyM/PR0hIiGTC4DgOY8eO9fYUXvHKK6/goYceEj8HBwe72JvwlKYp4dhzLhsAHDSZ/oTVPrprBXY4hsS93Pmg9/qQhuhZPw6tq9kzNbIWxLJKiMGy7phraxSLTq2C0WyzJCoski0Wx8nB2wzOnpSSEyYHwT1fEMDkayiNioPcGcndeHzJb5hnJsHmRq2USE2YAHneuoiRIyhchMkzSKeWZLhntdosrwysj9SoQEkMd2lhJy/hnouZay28ZJw2WSyiRpnVzivx3YTW+C/9mqRM3bJJHXAh+5ZEsBQTqTEZbZXbqVJU5MgXdqLQ7RDHb/97cnffCiOswOkvq9iDHarj7VXH/XJuoHTx/b7wKvI3bGhChJPsvWVNPpME8k5M9lVWsGOKu4mdbjdY93Kes0i2tVdYt7FCtxAHzc4PHGefL3meF0MN5YnU2PPLkwIatGqHcV0YS/Ra6ZzJzhUGrRoJjPs7O/40tHmC1YgJxvpjV5CZY1d4qzmpe7kgUI5okYwF/5xBCxcl/Fg+HNUMn244KZZdlIdwsZVXWIQRhhXIhecxPtSAtjWiUGSyiMI8Kwj7MrxPakyy/p0UEYi5QxsiIcwgCUEM1mswokUSzBYoKsl9hXyNzCohbhe8FrqfeuopTJgwAXPmzFEsHeZvQkJCEB8f7+9m3PZ8O6EVnvh+D/o3TMDwFmVv0XUXvcTS7dmA5W4G8gCdGr0bSF3t2azK5UGLqpE4eMG9hG3shKZUv1zMbuplIjXWfdiTDMyi0C1auq1tYAWhdjWjEB6ocyirxVrw3RW6JbWJbdcub7dGpZIsFIwKCbPkJbjYSfb0nL5O3aAjgnR4qmcdt9oKAP93b1NMWrxHsk3J0s0mfmPPbLbwostXSUnIwgK16FlfOp6mJYYiLTFUsk10YzRbXCZO0WmUhW5HS7dKcXtZWq/Y8ULp/SgPPPXO8RWsorKkBR+7wPZXPLS3sPohXyXkKy3sGFYeito7BXa8HWLzSrvTEHNtWHgxCNrVGMoKfIF6Rw8zrdqe20TqXm7/XnJ+WRIz4RxybyjhvPIxp6T1x/LJHbBkRwae7FoTgH38ZPNhqFVSoVtIsFsvIRT/zuwmepeURJXwALw22F5eMTTA8bqUbu0Em5B+7ro9R4aw5uA4Dv97sLX4NyBVfPiyqq60H+1/3+ukrO6bwxorbneXWQPSMOuvw3ixf5rTfeQehfIwyNsBr4XuCxcuYNKkSRVS4AaAefPm4dVXX0VycjKGDx+OGTNmQKdz/lIVFRWhqMgeO5eTYxVgjEYjjEblOrn+RmiXP9tnUANfjbG64ppM5Z/wxxnsmK1Tqzy6R5LS1WZTqY5RPcqA3x+7C7EhesnvyqrPJnauhoVbzwAA6ieGuDy+mXF9rxUT6LBvsdEMo9EINVjXY67UbdZywLZnOkGrVnn0bPC2dgpyj0Fj7cfsfPt7+tmoJjAajeDN0uOfvVYgtpftR1fXoOGY2G/eeg84uejIm2Gx2M91LU8ab5sUbkBBoXWbVmO9Z6wgYjabYFbIEeLJ81A90q55fq5PHWufMc+9Sjyu9fz5RUacvpovfp9TUCSW/dN6+I7I4S2CMse+bXSrZPxvewZ6pcVi5WGrR4bZZIJCCXOoOen91qms91A4roDFbHbaXm/fMY4RtC0WvkKM/+XdBgMj8/drGOfy/DwznlzJLSp1WyvCPGY02c/NWcwwGstfeZBdYB9LKsIz54qK0GeeEKQt/Tx2O8Dx1ue52GQGZxtjOd7i9F4EaznEhepxPb8YNaICrHMhz6wHVBxg+2wyW1BsO46Ksz4TckcZ3mIdr5/rUwdzlh8DAKh5s0MeEy1nbZNONjlwFufjPQDUjA7A832sOQ+MRiMEvenNgmLrcdUcTCYTgrRMaJ3a/vxGBaoB3gyjBwm8AmT6UTUssCgoHxslBjtcgwrOrys6UI0aITyiIiOgV/luHmL1F2qu7N/h0a2S0DstBlHBeqfnks/vKKG/KxLuttNrobtXr17YuXMnqlev7u2hfM7kyZPRrFkzREREYPv27Zg5cybS09Px5ZdfOv3N3LlzMXv2bIftq1atqrCKBYHVq1f7uwkVjovnVRBSF9y8fgXLli0r9TGuXLEfY93atfDE6/Csk+1l02fW17pjWLbL6715y/76Xzq6C8vERlq3Z126gGXLMnDkCgfAOqPk3Ljm0T30hn3X7OcHgPycm1i2bBn+PW3vl7WrVwIArGtk6bAmtLcgXw0hTZmra8gpth9j6z9bcCYQOH/Ofi4A2L5tK84G2Pc7wsSMAUDBrVtYv3EzAA3MxmIsW7YMRpPy+VVQw+JGu5xRbAZCtGoEaoC47ENYtuwQsq/Z23v1ymUsW7YMxzKt91EQeAUW/b0eoVoegAYqi9En/VtgAuT90IBPx4xGQKzhIlbavtu8YR3OXZTeWwA4ceQQ2D4/l34Sy5adQHqu9Lhb/9mCsyWEcHv3jlnPdeOG63epLFFxalh4z58Pb3m1ObD/OocW2gwsW5bhdL8D16Xvqadt9ec8duKm/RpWrFjun0Yw99Ffz1xpqTxrD+v7fOzQPiy7uNe/TfED6Resz1bG+Qs2NbIKJ44fw7L8o05/M7UOYOaBPf+swx4Axy7Zn0/eYsLBAwcAqJF5+TL+/S8TgBr5eXlYtmwZrmVJx/b/tm3FxQPATeY9W7Vyhe1b+7i+ad0aaFVA8S37nAkAG9atRUAppJb0i9bznMu8CoCDBhYsW7YMGXn28+3YuhmnfeAxbdXR2hu3ce1qmGXbAPadtm/ftmUzTrooUPBkfQC4iuXLfTcmseuhG9fLf12nxC3ZumHt6lWoLJFKBQXulZj0SOj+888/xb/79euHGTNm4PDhw2jYsCG0WqlEMnDgQE9O4ZRZs2YpCsUsO3bsQIsWLTB16lRxW6NGjRAREYFhw4Zh3rx5iIqKUvztzJkzMW3aNPFzTk4OkpOT0bNnT4SGhir+xt8YjUasXr0aPXr0cLj/dzp7lh3FP5fPAQCqVklE376NSviFI39c34PD2VcAAH1693SI3fGEsuyzzUWHcCIrDxNHtHTpjjV52yrx7749u4kxRIE1r2Dh1nN4dVA9JEcEQn80C9+d3AsASIyPRd++7mUg9xXqQ5ex4Pg+8XNiXDT69m2Ow6tOYMvldGv7+/YFYNW2T/9vjeT3wnefnt6KzFt5km1K5Baa8OKudQCADu07oE58CA6sOIp1l86J+3Tv0gkpkQGYsX2N4jG0OgNa3dUYOLAdoUGB6Nu3A/68sQdrj15B7dhg9O3bVtz3mZ1rUGizqLlqlyt69jJBq1aJ7nx/Z+/F4WyrcJ2YkIC+fRsje3sGfk4/4vDbhk2aWbNzH9iNxMgQSds8paDYhJk71km29e/TS3T3i6t/DcUmCzrVjkHm+lNYeeGUZN82LZvh+1P2Pm/eKA1921TFvvM38f7B/8TtnTt2lCTQYfHFOya8I6FhYejb9y6PjuEt20yH8cOO82hdLQJ9+/quZExpuMeNfYr2XASOHRQ/l/ZZrgjzWGZOIT46vAmA5++it3Q3WVB/53m0qR4pSWZUEakIfVYa/s7ei9NX8zF5ZJtKm3fAGy5uPo0/z51EbHwCVJwKuHIJ9dPqoa8tyaY7XP/vHH49YxXSgwx6NGlcCz+cPoTo6FjUSIsHjhwErw1A374dsTpvP/Zet9da7tq5I2rFBqO7yYIVn2xDalQg+va1ekiy65GB/fqA4zh8dmYbMm/ZFdr9+/QqVXLHG9sz8PvZI4AuCEABggP06Nu3M3ILjXj7wHoAQL9e3d12KS+JKf/ar2FAvz4oMlnw9Pa1kn2EcYW93p7du4r5Y+SU1Ts2P91+b+Pjyn9dp0RBsQnPMuuG/n37+KwaSVkjeEWXhEfSw+DBgx22vfLKKw7bOI6DWcmH0gsmTpyIe+5xvQRITU1V3H7XXdZF08mTJ50K3Xq9Hnq9Y1F4rVZb4SeVytDG8iY00N6XgXqNR/dHzfjqBuh10PowzrIs+uztEU1K/ZvQQL3Yjh71E9GjfqL4XXiQfTIwaD27h96g08pjpaxteLRzTVwvMGJIsypimzQax9hb4Tu2H11dQzDHJNBSq6HVanEiS6rFDA3Uw+AiTMVo4WHhrOfTaVTQarV4Z0QT/LTzPAY1SZScX6tWiUK3p/c2TPY7nSwuXavVwqBzMtxzKuQWWc8fEaT3Sf8aOMcFbaBBL8aRdaxjjwvfde6mZL/2NaMRFigdg6tEBNmuQdo2rRvPoy/eMR6e9423vDygAdrWjEGn2jEVenzvmhYP/GoXuj1tqz/nseQoLf54oh1CA/zXBq0WmNChhl/O7SmVZe3x+dgWAO7McmGAfS618BANyLpSzunsfKzTqO3HBPDW6hMArKUOtVot9LK5O9igtz0rwOqpncRymoA1xlgsU6oTMopL11qBBn2phLBgg/U4Nwutrr96rXU+j9Rq8UK/eig0mhEX7ptqFwDQomoEdp69gTpxIdDpdOBVjvKP0r0ODih53vX1O8ZWHdJp1BXi/Q1WS58Xvb7yJJJ09/55JHRb5EVpy5Ho6GhER3uWHXvPHmuyIaohfucQztQU9DQpETvG365lRwKdCWSQZuX0R/1d+T2/YYvPigjS4a3h0uQepa2/rQSbVESoSbnxxFXJPkE6DVQqDhwnrcEpYDRbUGwrwyUIwOGBOjzU0TEMx5cZSQXYa9hy0tp2Z8+/hefFGujyJDcen9+htJfzdyczp1DyuVW1SIe62NVigmzHkR6jvBJ2+SmPGgBrQp6BjRNL3tHPRAc7KqsrI96U6iMqNneqsC3AlrlUw14yrDRoZAm4hDGZ5xVqV8uCutn1g1x4jgjU4aosN4p8vVFaq6eQDDO7wGj7bJ9XHuzg+5DYT+5rhh+2Z2Bky2QAzsuCyvHHuqpqVCC2n7kOoHRVKsqS23V9zXLb+tds27YN7733Hvbu3Yv09HT8+OOPeOSRRzBw4ECkpChn5yNuP9iyL55mL2cX+u4OopUBtmyKq8GOzfRZFgJiScgn2tpxIW7/9t5WyeLfswbWB8cBU0ooLcVxHL4Y2wJvD2+MpAjlPA5CdlVnCxaj2V6GS1fChFYWEy6bNbbAJlA7K5lnMvPWbLbwLLu8EioVJ1FWucrC3E1WOq3YZJFkkOc4oI6tz+Ul54pM5SN0+2NRRBAE4UuE7NBspnF1KVNis/tr1SpxfjZbePSqby1zObZNVfF7FlfjaKRCshy9QinT0iAvherpGtBdYkMMmNStFuJClUuNsrSrafe29UeoA2vp9mX9b8I1PrnTa9euRf/+/VGjRg3UrFkT/fv3x5o1yrGO5YVer8eSJUvQuXNnpKWl4aWXXsJDDz2ExYsX+7VdRPkSovfe0l0jxh5XV1niS9yhXoJ7OQpYS7c/NJFyRUejpDAnezrClnBrmhKBo6/2xpTutUv8XY+0OAxrbi99Vz1aKnwLiwf5/Vg/vTMAqyB75FKO4j5yyqI0ESvkfmlzqXTmzWDmmQWYDzXeklJzLq5xag9pf3SrFyu5JwaNWrRQyS3dSREuss/4EBK6CYKo7IiWbjMrdJf2GPa/tWp76Uwzz8Nosh5TyA8jV5K6Ei6V5kFvx135ms9bIb60yD0rpve0z3W9mdKbvlJ2lwbWui3vJ6Ls8Hol8dFHH6F3794ICQnB5MmTMWnSJISGhqJv37746KOPfNFGj2jWrBn+/fdfZGdn49atWzh69ChmzZpV4TOQE76FrXHoqdBdXgv78sc9n9lgxtLtj/q7cqFVLnjJCWXa26l2jOQ7TyfdOYPri3/fVd1ee53VEL85rJF4bpOFx6GLVqH7ZFaey2OXjUBn79smKeEApDVXWcwW31u65cdyNamz72WrapFomhIhWRCw1gn2mIObJCI2xAdpZ90gLMD/8W4EQRDeoGHcy00+sXTbPZq2p19H9i1r6Jcwp5WmzrbS3OO90K1y+bk8eGOovZY3q1hga5P7I+xBUqebLN3lhtd3eu7cuXjvvfewePFiTJo0CZMmTcL333+P9957D3PmzPFFGwnCYwJ8IHTHOckqeafACqrF5eTOyyIXskvSysrjvH0Bm1l03t32DPgSF2oVJ4mJPnvNmnyte704l8cuC0u3yWyf0AUXO2fu5WYLD5NNmeJLTwZp7J9711gvPsRhf7bdbPuapkR428QSeWVQfVSNCsSL/dLK/Fy3A9WirbH3EYGkpCCIiobgfWS2WGDhPVO0CjWvheOx3n8rD10GYB+/5eO+q3Mp5RPxNpxNvuaTu5uXB6nR9kRt7P2Qx7+XN2xf+NLDzVs614kpeadKjNervZycHPTu3dthe8+ePd1OoU4QZQXrUstaQEtDx1ox6FInBg+0r+arZlVa/CF0OyRTKUEr3DMtDvPva4aNMzr7rA3sZMmen3WhVqs4GLRqUeDIsWVMrRbtOjvqzD51AQDj26b6qrkwM5m/BKtxhJMC8zdvGcvE0s3eM2MJHhIfj2qGdjWj8ESXmtZ2SCzdykK3EDdXloxtk4qNM7ogJYo8pNxhwfiWGNq0Cn58pI2/m0IQhAw2kZqgmC1tyBwbC2y28Ip5boQ5W64gd2XRfWVQfcSF6jF7oN2rbIwtNtxTHNzL/WDpZl3qWQ8uiz+zuhQyAgAAvz5JREFUc0K6dtFWoLDJitOSssHrVLUDBw7Eb7/9hhkzZki2//HHHxgwYIC3hycIr2Ddy0M9dBFVqzgsuL+Vr5pUYfBkzPeHe7k8DqwkayzHcZJYbl/ACpDsukGtYM1NigjEjYKbYpKvkrTIHWvHYN9LPREa4JvM4YCy65qz7NJvrTyGaba46tK6GrqCXXAJ2WOd0a9RAvo1svcZ67avdyJ0375hH5WX1OggvDuyib+bQRCEAqx7uYrzTNHar1ECpizZCwAoNJqhNGU4s3S7omZsCP6d2U0imMd7qVh1cC/3g6VbLyvfKf7tZ0FXrVI2HhBli9ervHr16uH111/Hhg0b0KaNVbv977//4p9//sFTTz2F//u//xP3nTRpkrenI4hSEU5ujk7xROguMvrf0u2PyUqnYTTUzC2QuGjZ/haEzSKjNWu4Oxnvw3z8nJoVfNdcLYDKwtLNegQMaVqlVL9lLQJs9vfoYD2apoQjSKdBmpuJAAmCIAj73GS28DCrhJju0o357DxSaDRDqYKw3kmi0ZKQW8JZS3WV8NIrWSuEpdtJTpLhLZLxy+4L6OInd2p3c64QvsVrofurr75CREQEDh8+jMOHD4vbw8PD8dVXX4mfOY4joZsod0IMWvSqH4d/T19Hi6plHwN6u+MPS7c8rqsk9/KygLW8sqeXuJrbJjEhKUmhyfdx0u6iJHQD1nipDceuKOzv+7Zeummvvx1SytAOjZPYN7WKw2+Pt/O6bQRBEHcawvhuNPNQCUK3F/NpodGCvCKTw3YhD0frapEO35UG1svt4Y6lr6vt7+zl1nNKS6wJBOk1+OvJ9uXeHgGpezlZussLr4Xu9PR0X7SDIMqM+fc1R7HZ4pcB93ajfmL5WxcdLN1+0MrqNCp0SrAgKj5J4tasUTu6aAnbiv0odJucCN3OEtOUhaXbnfM6g23HgQs3fd0cgiCIOw5hXM25ZcTFzFwA3ll/efDILXQMHbqrhrUGtbdJQlmB1dmc5gqDbO3gaTJdb3CWk8TfkKXbP/guiNCG2WzGgQMHULVqVUREkGWR8D8cx5HArQDvZskwAFg+uQP+2ncRj3auUYYtUqa0idTKiqGpFvTt20DiAieJixLdy0sXg14WWJwsUJzdOrPZ93W6WUobM1YWGd0JgiDuZASPrYuMF5K3ayMlr6ogWwJbb4U5dt7wpGyjfN5xVSe8rPDHOd1Bae1SEahIiomywOunYcqUKaIbudlsRseOHdGsWTMkJydjw4YN3h6eIIgyojQx3fUSQvF077oINZR/jLxc6K5Ig7JSTLdOttCoSJZuZ31e1pbu0h62IvUxQRDE7YDS+O5t7eq7mydJPus0Knt+Ex+4LQvHalczyutj+cPSzSo1/J2xnOX8jVvi39fzXSc6LU+e61sPEYFazOhVx99NKRO8fiN+/vlnNG5srYv7119/4cyZMzh69CimTJmC559/3usGEgRxZ+Ntrc6yhM32LST/ki80vImZ85RghZqnAJz6NlzJKwLg2+zlBEEQRMVBSZnprSAaYtBiSvda4me2YozWB55T257tijXTOiEhzPtqFd4qGDyBvQfOcq34g7wiu6B9IivXjy2RUj0mGLte6CGWD73d8PoJvHr1KuLj4wEAy5Ytw/Dhw1G7dm088MADOHDggNcNJAjizkYudAv1RSsCrBVeEFjlLnWlrYPqC57rVw8Nq4ThneGNJdt5J5r2pfsvAfCtpfuDe5qIf3uid2iZag1PGtwk0UctIgiCuHNRcvf2hfszq1gOdBLDPLp1ikfHjg01oGZssMdtC2Da448wQzYczZO49LIit9CeAK9Jcrj/GqKAP9ZM5YXXb1tcXBwOHz4Ms9mMFStWoHv37gCAgoICqNUUR0sQFZWKM/y7Rj4A+yODujMCFMqByOOR/REvVSU8AH892d7B9a+kOd+XCVUGNvZOWP7ugdZYeH9LzB3ayEctIgiCuHNRmos4eD/ms3O0QWLpts+FbWtEe30eTxjZMln82x+WbhZnuVb8AXtfHvNDrp47Fa8Tqd1///0YMWIEEhISwHEcevToAQD477//ULduXa8bSBBE2VCBwotKRUWydLOueYLVW+5SV5Hik9mYsvY1o7Hl5FXJ97505Wc1/J4kRjNo1ehcJ9Zn7SEIgriTUYqxDgv0Pk8LO8cZGGsyK+T7axpk52N/J9StOCsXqxJk89NdEBdqcMibQ5QdXgvds2bNQoMGDZCRkYHhw4dDr9cDANRqNZ599lmvG0gQBMFislQcSzfrmhduW7wE6qTDasUSuu1/K8WX6cso0UyAHxLYEARBEHbk1SliQvQeZQUXEHS4rHs5a01ms4f7y2WYbUNsqN4vbbi3VQq2nLyCAV56f/ma5MhAfzfhjsMnJcOGDRvmsG3cuHG+ODRBEIQEbxYJvkaoxQ0A4QE6AEDTlHAs3Grfxx+J1JwRxLj+xYcZHL7Xl1HSugAdCd0EQRD+RO5e3qGmb1y+Je7lWuVEaiFOknuWNez8WzXKP0Lm3KENwfO8xPuLuDPxyQpr48aNGDBgAGrWrIlatWph4MCB2Lx5sy8OTRBEGZEY7ih0VQY61Y7xdxNEWC264KIlryNekZKCPN+vnvh3RKAO0cE6yfdl5WZWPdrzRDgEQRCE98iFbk/H+2Yp4QCA4S2sOUNYA7rBSSK1ED+UGwWAQqNZ/FtQjPsDErgJwAeW7kWLFuH+++/H0KFDMWnSJPA8j61bt6Jbt25YuHAhRo0a5Yt2EgThYx7rXAOZNwvRt1GCv5viNmPbVK1Qk9f9bVNx/HIuxrdNFbfJm+ePRGrOSIoIxPi2qfhj7wU80qk60q/mYf2xK+L3vha6v5nQCicu5/qkxipBEAThOfK5yNPM5QsntMKO9OvoUMuqAJfEdDPu5WyOkGoxQR6dy1tuMUI3xS4T/sZrofv111/Hm2++ialTp4rbJk+ejHfffRevvvoqCd0EUUEJ1GnwlqykVEWnIsVHA0DbmtHYOKOLZJs8G2xFa/OsgfXxYv80qFUcLmTfknzn65ronWrHVCjPBIIgiDsVtSyRmqdCaKhBi2714sTPKieJ1DiOw84XusNk5hHsJ/dyT5J4EkRZ4fXTePr0aQwYMMBh+8CBA5Genu7t4QmCIPBIx+qIDNLhkY4Vv7SF3NJdEZOICYqA45fzJNvJEkAQBHF7Ii8J6avxno2blifjjA7WK+YPKS8e71IDCWEGjGyRXPLOBFHGeP3GJScnY+3atQ7b165di+RkesgJgvCemX3rYefz3f06ebuL3K5dkZOIPdpJqsTwV3ZXgiAIomyRu5P7qoSWyol7eUUgNsSArc92xbxhjfzdFILw3r38qaeewqRJk7B37160bdsWHMdhy5YtWLhwIT744ANftJEgCKJCJSRzhdzS7e/aoK6Y0r0W5m88JX6uGUMJzwiCIG5HtGoVVBwPC2+dpMrC0m2ogJ5dFSkPDHFn47XQ/dhjjyE+Ph7vvPMOfvzxRwBAvXr1sGTJEgwaNMjrBhIEQVQuysaFryyQWz40FP9GEARx26JVAUW23GK+yuGhdhLTTRCEFJ9kNhgyZAiGDBnii0MRBEFUauTu5CEG/ySQcQeyABAEQdw5FJntY76vFMJsrHhFcy8niIqET1eDeXl5sFgskm2hoaG+PAVBEESFpn3NaMnn6OCKHSedlhCKw5dy/N0MgiAIohzxtGSYHNa6XRHdywmiouD1G5eeno5+/fohKCgIYWFhiIiIQEREBMLDwxEREeGLNhIEQVQa1CoOlST8HIBjDDpBEARx++MrSzfr3UWWboJwjteW7tGjRwMAvv76a8TFxZG7IkEQdzz3tkrB//47h9bVIv3dlBJR0ZhNEARxR1A3zIKjN62Csc8s3YygTZZugnCO10L3/v37sWvXLtSpU8cX7SEIgqj0vNg/DW1qRKFDzRh/N6VESOYmCIK4M2gXz+PoTevfvqqswQraFblaB0H4G6/VXC1btkRGRoYv2kIQBHFbYNCq0b9RIsICtf5uSomQdxJBEMSdQYiWF//2mXu5ltzLCcIdvH47vvzyS8ybNw/ffPMNdu3ahf3790v+lRWvv/462rZti8DAQISHhyvuc+7cOQwYMABBQUGIjo7GpEmTUFxcXGZtIgiCqGyQyE0QBHFnEMLogX0ldAfr7U6zWio7SRBO8dq9/MqVKzh16hTuv/9+cRvHceB5HhzHwWw2e3sKRYqLizF8+HC0adMGX331lcP3ZrMZ/fr1Q0xMDLZs2YJr165h3Lhx4HkeH374YZm0iSAIorIRQDF4BEEQdwTBjNBttvDOdywFbIWOvCKTT45JELcjXgvdEyZMQNOmTbF48eJyTaQ2e/ZsAMDChQsVv1+1ahUOHz6MjIwMJCYmAgDeeecdjB8/Hq+//rrTUmZFRUUoKioSP+fkWEvpGI1GGI1GH16B7xDaVVHbRzhCfVa5uJ37a2q3Gth2+hp614+7ra7vdu6z2xHqr8oH9Vnlwmg0Qs8YogsKi33Wd+PapGB7+g20SQ2n58GH0DtWOXC3fzie571SdQUFBWHfvn2oWbOmN4fxmIULF2LKlCnIzs6WbH/ppZfwxx9/YN++feK2GzduIDIyEuvWrUOXLl0Ujzdr1ixRoGf5/vvvERgY6NO2EwRBVASuFwGhWsBH3oYEQRBEBeWXdBXO5XF4sr6ZxnyC8AEFBQUYNWoUbt686dSoC/jA0t21a1e/Ct3OyMzMRFxcnGRbREQEdDodMjMznf5u5syZmDZtmvg5JycHycnJ6Nmzp8sb6U+MRiNWr16NHj16QKut+ImbCOqzygb1V+WD+qxyQf1V+aA+q1wI/TX/4W7UX5UEescqB4JXdEl4LXQPGDAAU6dOxYEDB9CwYUOHh2LgwIFuH8uZlZllx44daNGihVvHU3J1F2LNnaHX66HX6x22a7XaCv/AV4Y2ElKozyoX1F+VD+qzygX1V+WD+qxyQf1V+aA+q9i42zdeC92PPvooAOCVV15x+K60idQmTpyIe+65x+U+qampbh0rPj4e//33n2TbjRs3YDQaHSzgBEEQBEEQBEEQBFEWeC10WywWX7QDABAdHY3o6GifHKtNmzZ4/fXXcenSJSQkJACwJlfT6/Vo3ry5T85BEARBEARBEARBEK7wOoXCt99+K8n2LVBcXIxvv/3W28M75dy5c9i7dy/OnTsHs9mMvXv3Yu/evcjLywMA9OzZE2lpaRgzZgz27NmDtWvXYvr06XjooYcqbGw2QRAEQRAEQRAEcXvhtdB9//334+bNmw7bc3NzJbW7fc1LL72Epk2b4uWXX0ZeXh6aNm2Kpk2bYufOnQAAtVqNpUuXwmAwoF27dhgxYgQGDx6Mt99+u8zaRBAEQRAEQRAEQRAsXruXO0tMdv78eYSFhXl7eKcsXLjQaY1ugZSUFPz9999enUeoqOZuZjp/YDQaUVBQgJycHEq0UEmgPqtcUH9VPqjPKhfUX5UP6rPKBfVX5YP6rHIgyIglVeH2WOhu2rQpOI4Dx3Ho1q0bNBr7ocxmM9LT09G7d29PD19hyM3NBQAkJyf7uSUEQRAEQRAEQRBERSM3N9elwdljoXvw4MEAgL1796JXr14IDg4Wv9PpdEhNTcXdd9/t6eErDImJicjIyEBISIjLUmP+RKglnpGRQfHqlQTqs8oF9Vflg/qsckH9VfmgPqtcUH9VPqjPKgc8zyM3NxeJiYku9/NY6H755ZcBWEt4jRw5EgaDwWGfvXv3okmTJp6eokKgUqmQlJTk72a4RWhoKL2UlQzqs8oF9Vflg/qsckH9VfmgPqtcUH9VPqjPKj7uhFR7nUht3LhxEoH75s2b+OSTT9CsWTMqzUUQBEEQBEEQBEHc0XgtdAusW7cO9913HxISEvDhhx+ib9++YiZxgiAIgiAIgiAIgrgT8Sp7+fnz57Fw4UJ8/fXXyM/Px4gRI2A0GvHLL78gLS3NV20kSkCv1+Pll1+GXq/3d1MIN6E+q1xQf1U+qM8qF9RflQ/qs8oF9Vflg/rs9oLjS8pv7oS+fftiy5Yt6N+/P0aPHo3evXtDrVZDq9Vi3759JHQTBEEQBEEQBEEQdzweW7pXrVqFSZMm4bHHHkOtWrV82SaCIAiCIAiCIAiCuC3wOKZ78+bNyM3NRYsWLdC6dWt89NFHuHLlii/bRhAEQRAEQRAEQRCVGo/dywUKCgrwww8/4Ouvv8b27dthNpvx7rvvYsKECQgJCfFVOwmCIAiCIAiCIAii0uG10M1y7NgxfPXVV/juu++QnZ2NHj164M8///TV4QmCIAiCIAiCIAiiUuGzkmEAUKdOHbz55ps4f/48Fi9e7MtDE0745JNPUK1aNRgMBjRv3hybN2/2d5MIG3PnzkXLli0REhKC2NhYDB48GMeOHZPsw/M8Zs2ahcTERAQEBKBz5844dOiQn1pMsMydOxccx2HKlCniNuqviseFCxdw3333ISoqCoGBgWjSpAl27dolfk99VnEwmUx44YUXUK1aNQQEBKB69ep45ZVXYLFYxH2ov/zLpk2bMGDAACQmJoLjOPz++++S793pn6KiIjz55JOIjo5GUFAQBg4ciPPnz5fjVdxZuOozo9GIZ555Bg0bNkRQUBASExMxduxYXLx4UXIM6rPyo6R3jOWRRx4Bx3F4//33JdupvyonPhW6BdRqNQYPHkxW7jJmyZIlmDJlCp5//nns2bMHHTp0QJ8+fXDu3Dl/N40AsHHjRjzxxBP4999/sXr1aphMJvTs2RP5+fniPm+++SbeffddfPTRR9ixYwfi4+PRo0cP5Obm+rHlxI4dO/D555+jUaNGku3UXxWLGzduoF27dtBqtVi+fDkOHz6Md955B+Hh4eI+1GcVh3nz5mH+/Pn46KOPcOTIEbz55pt466238OGHH4r7UH/5l/z8fDRu3BgfffSR4vfu9M+UKVPw22+/4YcffsCWLVuQl5eH/v37w2w2l9dl3FG46rOCggLs3r0bL774Inbv3o1ff/0Vx48fx8CBAyX7UZ+VHyW9YwK///47/vvvPyQmJjp8R/1VSeGJSkurVq34Rx99VLKtbt26/LPPPuunFhGuyMrK4gHwGzdu5Hme5y0WCx8fH8+/8cYb4j6FhYV8WFgYP3/+fH81844nNzeXr1WrFr969Wq+U6dO/OTJk3mep/6qiDzzzDN8+/btnX5PfVax6NevHz9hwgTJtqFDh/L33Xcfz/PUXxUNAPxvv/0mfnanf7Kzs3mtVsv/8MMP4j4XLlzgVSoVv2LFinJr+52KvM+U2L59Ow+AP3v2LM/z1Gf+xFl/nT9/nq9SpQp/8OBBvmrVqvx7770nfkf9VXkpE0s3UfYUFxdj165d6Nmzp2R7z549sXXrVj+1inDFzZs3AQCRkZEAgPT0dGRmZkr6UK/Xo1OnTtSHfuSJJ55Av3790L17d8l26q+Kx59//okWLVpg+PDhiI2NRdOmTfHFF1+I31OfVSzat2+PtWvX4vjx4wCAffv2YcuWLejbty8A6q+Kjjv9s2vXLhiNRsk+iYmJaNCgAfVhBeHmzZvgOE70CKI+q1hYLBaMGTMGM2bMQP369R2+p/6qvHhcp5vwL1evXoXZbEZcXJxke1xcHDIzM/3UKsIZPM9j2rRpaN++PRo0aAAAYj8p9eHZs2fLvY0E8MMPP2D37t3YsWOHw3fUXxWP06dP49NPP8W0adPw3HPPYfv27Zg0aRL0ej3Gjh1LfVbBeOaZZ3Dz5k3UrVsXarUaZrMZr7/+Ou69914A9I5VdNzpn8zMTOh0OkRERDjsQ2sT/1NYWIhnn30Wo0aNQmhoKADqs4rGvHnzoNFoMGnSJMXvqb8qLyR0V3I4jpN85nneYRvhfyZOnIj9+/djy5YtDt9RH1YMMjIyMHnyZKxatQoGg8HpftRfFQeLxYIWLVpgzpw5AICmTZvi0KFD+PTTTzF27FhxP+qzisGSJUuwaNEifP/996hfvz727t2LKVOmIDExEePGjRP3o/6q2HjSP9SH/sdoNOKee+6BxWLBJ598UuL+1Gflz65du/DBBx9g9+7dpb731F8VH3Ivr6RER0dDrVY7aLWysrIctNCEf3nyySfx559/Yv369UhKShK3x8fHAwD1YQVh165dyMrKQvPmzaHRaKDRaLBx40b83//9HzQajdgn1F8Vh4SEBKSlpUm21atXT0wmSe9YxWLGjBl49tlncc8996Bhw4YYM2YMpk6dirlz5wKg/qrouNM/8fHxKC4uxo0bN5zuQ5Q/RqMRI0aMQHp6OlavXi1auQHqs4rE5s2bkZWVhZSUFHEdcvbsWTz11FNITU0FQP1VmSGhu5Ki0+nQvHlzrF69WrJ99erVaNu2rZ9aRbDwPI+JEyfi119/xbp161CtWjXJ99WqVUN8fLykD4uLi7Fx40bqQz/QrVs3HDhwAHv37hX/tWjRAqNHj8bevXtRvXp16q8KRrt27RzK8B0/fhxVq1YFQO9YRaOgoAAqlXTZoVarxZJh1F8VG3f6p3nz5tBqtZJ9Ll26hIMHD1If+glB4D5x4gTWrFmDqKgoyffUZxWHMWPGYP/+/ZJ1SGJiImbMmIGVK1cCoP6qzJB7eSVm2rRpGDNmDFq0aIE2bdrg888/x7lz5/Doo4/6u2kErAm5vv/+e/zxxx8ICQkRrQNhYWEICAgQa0DPmTMHtWrVQq1atTBnzhwEBgZi1KhRfm79nUdISIgYby8QFBSEqKgocTv1V8Vi6tSpaNu2LebMmYMRI0Zg+/bt+Pzzz/H5558DAL1jFYwBAwbg9ddfR0pKCurXr489e/bg3XffxYQJEwBQf1UE8vLycPLkSfFzeno69u7di8jISKSkpJTYP2FhYXjggQfw1FNPISoqCpGRkZg+fToaNmzokJyS8A2u+iwxMRHDhg3D7t278ffff8NsNotrkcjISOh0Ouqzcqakd0yuFNFqtYiPj0edOnUA0DtWqfFT1nTCR3z88cd81apVeZ1Oxzdr1kwsR0X4HwCK/xYsWCDuY7FY+JdffpmPj4/n9Xo937FjR/7AgQP+azQhgS0ZxvPUXxWRv/76i2/QoAGv1+v5unXr8p9//rnke+qzikNOTg4/efJkPiUlhTcYDHz16tX5559/ni8qKhL3of7yL+vXr1ect8aNG8fzvHv9c+vWLX7ixIl8ZGQkHxAQwPfv358/d+6cH67mzsBVn6Wnpztdi6xfv148BvVZ+VHSOyZHXjKM56m/Kiscz/N8Ocn3BEEQBEEQBEEQBHFHQTHdBEEQBEEQBEEQBFFGkNBNEARBEARBEARBEGUECd0EQRAEQRAEQRAEUUaQ0E0QBEEQBEEQBEEQZQQJ3QRBEARBEARBEARRRpDQTRAEQRAEQRAEQRBlBAndBEEQBEEQBEEQBFFGkNBNEARBEARBEARBEGUECd0EQRAEQRAEQRAEUUaQ0E0QBEEQBEEQBEEQZQQJ3QRBEARBEARBEARRRpDQTRAEQRAEQRAEQRBlBAndBEEQBEEQBEEQBFFGkNBNEARBEARBEARBEGUECd0EQRAEQRAEQRAEUUaQ0E0QBEEQBEEQBEEQZQQJ3QRBEARBEARBEARRRpDQTRAEQVQ6Fi5cCI7jxH8ajQZJSUm4//77ceHCBX83z2uMRiM+++wztGzZEpGRkQgMDETVqlUxaNAg/Pbbb/5uHi5evIhZs2Zh7969ZXJ8oX/PnDnj1n7CP4PBgPj4eHTp0gVz585FVlZWmbTPEziOw6xZs8TPhw8fxqxZs0q8RoIgCKLyQ0I3QRAEUWlZsGABtm3bhtWrV+Ohhx7C4sWL0aFDB+Tn5/u7aV4xZswYPPnkk+jSpQsWLVqEv/76Cy+88AI0Gg1Wrlzp7+bh4sWLmD17dpkJ3aWFfQ4+/vhjNGnSBPPmzUO9evWwZs0afzcPALBt2zY8+OCD4ufDhw9j9uzZJHQTBEHcAWj83QCCIAiC8JQGDRqgRYsWAIAuXbrAbDbj1Vdfxe+//47Ro0f7uXXO4XkehYWFCAgIcPguPT0dS5YswUsvvYTZs2eL27t164aHHnoIFoulPJvqEwoKChAYGFhmx2efAwC4++67MXXqVLRv3x5Dhw7FiRMnEBcXV2bnd4e77rrLr+cnCIIg/AdZugmCIIjbBkGwOXv2LACgsLAQM2fORLVq1aDT6VClShU88cQTyM7OFn8zY8YMhIWFwWw2i9uefPJJcByHt956S9x27do1qFQqfPjhh+K2nJwcTJ8+XXL8KVOmOFjaOY7DxIkTMX/+fNSrVw96vR7ffPON4jVcu3YNAJCQkKD4vUpln7o3bNgAjuOwaNEiTJs2DfHx8QgICECnTp2wZ88eh9/u3LkTAwcORGRkJAwGA5o2bYoff/zRYb8LFy7g4YcfRnJyMnQ6HRITEzFs2DBcvnwZGzZsQMuWLQEA999/v+jaLbhOjx8/HsHBwThw4AB69uyJkJAQdOvWDQCwevVqDBo0CElJSTAYDKhZsyYeeeQRXL16VfFavSElJQXvvPMOcnNz8dlnn5X6Pgiu6+vXr8djjz2G6OhoREVFYejQobh48aJk33Xr1qFz586IiopCQEAAUlJScPfdd6OgoEDch71HCxcuxPDhwwFYlUXCPVy4cCFeffVVaDQaZGRkOFzThAkTEBUVhcLCQl/cIoIgCKKcIKGbIAiCuG04efIkACAmJgY8z2Pw4MF4++23MWbMGCxduhTTpk3DN998g65du6KoqAgA0L17d+Tk5GD79u3icdasWYOAgACsXr1a3LZ27VrwPI/u3bsDsFpvO3XqhG+++QaTJk3C8uXL8cwzz2DhwoUYOHAgeJ6XtO3333/Hp59+ipdeegkrV65Ehw4dFK+hXr16CA8Px+zZs/H555+75X783HPP4fTp0/jyyy/x5Zdf4uLFi+jcuTNOnz4t7rN+/Xq0a9cO2dnZmD9/Pv744w80adIEI0eOxMKFC8X9Lly4gJYtW+K3337DtGnTsHz5crz//vsICwvDjRs30KxZMyxYsAAA8MILL2Dbtm0OrtPFxcUYOHAgunbtij/++EO02J86dQpt2rTBp59+ilWrVuGll17Cf//9h/bt28NoNJZ4naWlb9++UKvV2LRpU6nvg8CDDz4IrVaL77//Hm+++SY2bNiA++67T/z+zJkz6NevH3Q6Hb7++musWLECb7zxBoKCglBcXKzYrn79+mHOnDkAgI8//li8h/369cMjjzwCjUbjoCi4fv06fvjhBzzwwAMwGAw+uDsEQRBEucETBEEQRCVjwYIFPAD+33//5Y1GI5+bm8v//ffffExMDB8SEsJnZmbyK1as4AHwb775puS3S5Ys4QHwn3/+Oc/zPJ+fn8/rdDr+lVde4Xme58+fP88D4J955hk+ICCALyws5Hme5x966CE+MTFRPM7cuXN5lUrF79ixQ3L8n3/+mQfAL1u2TNwGgA8LC+OvX7/u1vUtXbqUj46O5gHwAPioqCh++PDh/J9//inZb/369TwAvlmzZrzFYhG3nzlzhtdqtfyDDz4obqtbty7ftGlT3mg0So7Rv39/PiEhgTebzTzP8/yECRN4rVbLHz582Gn7duzYwQPgFyxY4PDduHHjeAD8119/7fIaLRYLbzQa+bNnz/IA+D/++EP8Tujf9PR0l8cQ9pP3AUtcXBxfr1498bO790E49uOPPy7Z78033+QB8JcuXeJ53t7fe/fuddlWAPzLL78sfv7pp594APz69esd9h03bhwfGxvLFxUVidvmzZvHq1SqEu8JQRAEUfEgSzdBEARRabnrrrug1WoREhKC/v37Iz4+HsuXL0dcXBzWrVsHwOruzDJ8+HAEBQVh7dq1AIDAwEC0adNGTLi1evVqhIeHY8aMGSguLsaWLVsAWK3fgpUbAP7++280aNAATZo0gclkEv/16tULHMdhw4YNkvN27doVERERbl1X3759ce7cOfz222+YPn066tevj99//x0DBw7ExIkTHfYfNWoUOI4TP1etWhVt27bF+vXrAVg9AI4ePSrGubPt7du3Ly5duoRjx44BAJYvX44uXbqgXr16brXVGXfffbfDtqysLDz66KNITk6GRqOBVqtF1apVAQBHjhzx6nzO4BmPg9LcB4GBAwdKPjdq1AiAPYShSZMm0Ol0ePjhh/HNN99IvAs8ZfLkycjKysJPP/0EALBYLPj000/Rr18/pKamen18giAIonwhoZsgCIKotHz77bfYsWMH9uzZg4sXL2L//v1o164dAGtstEajQUxMjOQ3HMchPj5ejJ0GrC7m//77L/Lz87FmzRp07doVUVFRaN68OdasWYP09HSkp6dLhO7Lly9j//790Gq1kn8hISHged4hTtlZjLYzAgICMHjwYLz11lvYuHEjTp48ibS0NHz88cc4dOiQZN/4+HiH37PXePnyZQDA9OnTHdr7+OOPA4DY3itXriApKalUbZUTGBiI0NBQyTaLxYKePXvi119/xdNPP421a9di+/bt+PfffwEAt27d8uqcSuTn5+PatWtITEwEULr7IBAVFSX5rNfrJe2tUaMG1qxZg9jYWDzxxBOoUaMGatSogQ8++MDjdjdt2hQdOnTAxx9/DMCq4Dlz5oyiwoUgCIKo+FD2coIgCKLSUq9ePUnWapaoqCiYTCZcuXJFInjzPI/MzEwxGRhgzQz+4osvYtOmTVi7di1efvllcfuqVatQrVo18bNAdHQ0AgIC8PXXXyuePzo6WvKZtUR7QkpKCh5++GFMmTIFhw4dQv369cXvMjMzHfbPzMwUBUahLTNnzsTQoUMVj1+nTh0A1nj48+fPe9VWpWs9ePAg9u3bh4ULF2LcuHHidiEOvyxYunQpzGYzOnfuDKB096E0dOjQAR06dIDZbMbOnTvx4YcfYsqUKYiLi8M999zjUdsnTZqE4cOHY/fu3fjoo49Qu3Zt9OjRw6NjEQRBEP6FLN0EQRDEbYkgIC9atEiy/ZdffkF+fr5EgG7VqhVCQ0Px/vvvIzMzUxRuunfvjj179uDHH39EWlqaaDEFgP79++PUqVOIiopCixYtHP556gacm5uLvLw8xe8EF2y2HQCwePFiiRv12bNnsXXrVlHYrFOnDmrVqoV9+/YptrVFixYICQkBAPTp0wfr1693cLNmkVt73UEQxIXfCsgThvmKc+fOYfr06QgLC8MjjzwCoHT3wRPUajVat24tWqh3797tdN+S7uGQIUOQkpKCp556CmvWrMHjjz/uteKGIAiC8A9k6SYIgiBuS3r06IFevXrhmWeeQU5ODtq1a4f9+/fj5ZdfRtOmTTFmzBhxX7VajU6dOuGvv/5CtWrVUKNGDQBAu3btoNfrsXbtWkyaNEly/ClTpuCXX35Bx44dMXXqVDRq1AgWiwXnzp3DqlWr8NRTT6F169albvexY8fQq1cv3HPPPejUqRMSEhJw48YNLF26FJ9//jk6d+6Mtm3bSn6TlZWFIUOG4KGHHsLNmzfx8ssvw2AwYObMmeI+n332Gfr06YNevXph/PjxqFKlCq5fv44jR45g9+7dYvzwK6+8guXLl6Njx4547rnn0LBhQ2RnZ2PFihWYNm0a6tatixo1aiAgIAD/+9//UK9ePQQHByMxMdFBGcAi/O7ZZ58Fz/OIjIzEX3/9JckQ7ykHDx4UY7OzsrKwefNmLFiwAGq1Gr/99pvE08Hd++Au8+fPx7p169CvXz+kpKSgsLBQ9H5gwxHkNGjQAADw+eefIyQkBAaDAdWqVRO9E9RqNZ544gk888wzCAoKcshNQBAEQVQi/JrGjSAIgiA8wJ2s1TzP87du3eKfeeYZvmrVqrxWq+UTEhL4xx57jL9x44bDvh988AEPgH/ooYck23v06MEDcMgczvM8n5eXx7/wwgt8nTp1eJ1Ox4eFhfENGzbkp06dymdmZor7AeCfeOIJt67txo0b/GuvvcZ37dqVr1KlCq/T6figoCC+SZMm/GuvvcYXFBSI+wrZy7/77jt+0qRJfExMDK/X6/kOHTrwO3fudDj2vn37+BEjRvCxsbG8Vqvl4+Pj+a5du/Lz58+X7JeRkcFPmDCBj4+P57VaLZ+YmMiPGDGCv3z5srjP4sWL+bp16/JarVaSmXvcuHF8UFCQ4rUdPnyY79GjBx8SEsJHRETww4cP58+dO+eQ2bu02cuFfzqdjo+NjeU7derEz5kzh8/KylL8nTv3wdkzJtxzIev4tm3b+CFDhvBVq1bl9Xo9HxUVxXfq1MnheZFfI8/z/Pvvv89Xq1aNV6vVitngz5w5wwPgH330UZf3gSAIgqjYcDwvKyRKEARBEESlYMOGDejSpQt++uknDBs2zN/NIXzMhx9+iEmTJuHgwYOSGH6CIAiickHu5QRBEARBEBWIPXv2ID09Ha+88goGDRpEAjdBEEQlh4RugiAIgiCICsSQIUOQmZmJDh06YP78+f5uDkEQBOEl5F5OEARBEARBEARBEGUElQwjCIIgCIIgCIIgiDKChG6CIAiCIAiCIAiCKCNI6CYIgiAIgiAIgiCIMoISqZWAxWLBxYsXERISAo7j/N0cgiAIgiAIgiAIogLA8zxyc3ORmJgIlcq5PZuE7hK4ePEikpOT/d0MgiAIgiAIgiAIogKSkZGBpKQkp9+T0F0CISEhAKw3MjQ01M+tub0wGo1YtWoVevbsCa1W6+/mEARRxtA7TxB3FvTOE8SdxZ34zufk5CA5OVmUGZ1BQncJCC7loaGhJHT7GKPRiMDAQISGht4xLyZB3MnQO08Qdxb0zhPEncWd/M6XFIZMidQIgiAIgiAI32I2g9u4EVU2bQK3cSNgNvu7RQRBEH6DhG6CIAiCIAjCd/z6K5CaCk2PHmjx7rvQ9OgBpKZatxMEQdyBkNBNEARBEARB+IZffwWGDQPOn5duv3DBup0Eb4Ig7kAoppsgCIIgCILwHrMZmDwZ4HnH73ge4DhgyhRg0CBArS735hGeYzabYTQa/d0MooJjNBqh0WhQWFgI820SUqJWq6HRaLwuHU1CN0EQBEEQBOE9mzc7WrhZeB7IyLDu17lzuTWL8I68vDycP38evJIyhSAYeJ5HfHw8MjIyvBZSKxKBgYFISEiATqfz+BgkdBMEQRAEQRDec+mSb/cj/I7ZbMb58+cRGBiImJiY20qQInyPxWJBXl4egoODoVJV/ihmnudRXFyMK1euID09HbVq1fL4ukjoJgiCIAiCILwnIcG3+xF+x2g0gud5xMTEICAgwN/NISo4FosFxcXFMBgMt4XQDQABAQHQarU4e/aseG2ecHvcDYIgCIIgCMK/dOgAJCVZY7eV4DggOdm6H1GpIAs3cSfjCwUCCd0EQRAEQRCE96jVwAcfAAB4uZAmfH7/fUqiRhDEHQcJ3QRBEARBEIRvGDoU+PlnFMbGS7cnJQE//2z9niAI4g7jthe6MzIy0LlzZ6SlpaFRo0b46aef/N0kgiAIgiCI25ehQ7Fm2X+45945mDRgBkyrVwPp6SRwEwRDQUEB7r77boSGhoLjOGRnZ5fLeRcuXIjw8HCX+8yaNQtNmjTx6Xk3bNhQrtdZ0bjthW6NRoP3338fhw8fxpo1azB16lTk5+f7u1kEQRAEQRC3L2o1/k1phD/TOsHSsSO5lBPlyvjx48FxHDiOg1arRfXq1TF9+nSJDPDLL7+gdevWCAsLQ0hICOrXr4+nnnpK/H7hwoXiMdRqNSIiItC6dWu88soruHnzptdt/Oabb7B582Zs3boVly5dQlhYmNfHdIeRI0fi+PHj5XIuws5tn708ISEBCbYsmbGxsYiMjMT169cRFBTk55YRBEEQBEHc/pgtVN+ZKH969+6NBQsWwGg0YvPmzXjwwQeRn5+PTz/9FGvWrME999yDOXPmYODAgeA4DocPH8batWslxwgNDcWxY8fA8zyys7OxdetWzJ07FwsWLMA///yDxMREj9t36tQp1KtXDw0aNHD7N0ajEVqt1uNzAtZs3JSJvvyp8JbuTZs2YcCAAUhMTATHcfj9998d9vnkk09QrVo1GAwGNG/eHJs3b1Y81s6dO2GxWJCcnFzGrSYIgiAIgiAAwEwy920Dz/MoKDb55R/Pl+5B0uv1iI+PR3JyMkaNGoXRo0eLcsTff/+N9u3bY8aMGahTpw5q166NwYMH48MPP5Qcg+M4xMfHIyEhAfXq1cMDDzyArVu3Ii8vD08//bTL8//yyy+oX78+9Ho9UlNT8c4774jfde7cGe+88w42bdoEjuPQuXNnxWMIbt5ff/01qlevDr1eD57ncfPmTTz88MOIjY1FaGgounbtin379om/27dvH7p06YKQkBCEhoaiefPm2LlzJwBl9/I33ngDcXFxCAkJwQMPPIDCwkLJ9507d8aUKVMk2wYPHozx48eLnxctWoRWrVohOTkZiYmJGDVqFLKyspzen7Nnz2LAgAGIiIhAUFAQ6tevj2XLlrm4o5WbCm/pzs/PR+PGjXH//ffj7rvvdvh+yZIlmDJlCj755BO0a9cOn332Gfr06YPDhw8jJSVF3O/atWsYO3YsvvzyS5fnKyoqQlFRkfg5JycHgFWzZDQafXRVBADxfpblfbVYeGTmFOLMtQKcuVaAs7b/C01m1IgOQo3YYNSKDULNmGBEBunKrB0EQZTPO08QRMXAbDaLfxcVF0OvqfB2HkIBoU63xWKBxWJBQbEJDWat9ktbDs7qgUCde6ILz/NiuwUMBgOMRiMsFgvi4uJw6NAh7N+/36mlWfgtewwAiI6OxqhRo0QrulohdGLXrl0YMWIEXn75ZYwYMQJbt27FxIkTERERgfHjx+Pnn3/GzJkzcejQIfz888/Q6XQO5xGu4+TJk1iyZAl++uknqNVqWCwW9OvXDxEREfj7778RFhaGzz//HN26dcPRo0cRGRmJ0aNHo0mTJvj444+hVquxd+9e8bfy6/rxxx/x8ssv48MPP0SHDh2waNEifPjhh6hevbqkTfL7Kb/HhYWFmDVrFpKSkpCfn4/p06dj3LhxWLp0qcP9tFgsePzxx1FcXIwNGzYgKCgIhw8fRmBgoOJ98DcWiwU8zyv2t7trmgovdPfp0wd9+vRx+v27776LBx54AA8++CAA4P3338fKlSvx6aefYu7cuQCsgvSQIUMwc+ZMtG3b1uX55s6di9mzZztsX7VqFQIDA724EsIZq1d7N3hbeCCnGLhSyOFKIXDllu3/Qg7XCgEjr1xbcuup65LPwRoe8YFAfACP+EAe8QFAXACPEK3zkqMEQZQeb995giAqPnuucgCsi9M1a9bBUOFXnIQSGo0G8fHxyMvLQ3FxMW4Vm0v+URmRm5MLk8693ABGoxEmk0k0nu3atQvff/89OnXqhJycHIwdOxbr169H48aNkZycjBYtWqBr164YPnw49Ho9AKsQyfO8eAyWqlWrIjc3F2fOnEFMTIzD92+++SY6deqESZMmAQCGDh2KvXv34q233sLQoUOh0Wig0WigUqlE+ULpPEVFRSguLsbHH3+M6OhoAMDSpUuxf/9+nDhxQmzriy++iN9++w2LFi3C+PHjce7cOTzxxBOi+3uvXr3Ec8iv691338Xo0aMxYsQIAMCMGTOwatUqFBYWivuYTCYUFxdL2mgymWA0GsVtw4YNk7T99ddfR7du3XDx4kUEBwejoKAAAJCbmwuVSoUzZ85g4MCBqFq1KgCgY8eOTu+DvykuLsatW7ewadMmmEwmyXfCdZVEpR4Ci4uLsWvXLjz77LOS7T179sTWrVsBWLUw48ePR9euXTFmzJgSjzlz5kxMmzZN/JyTk4Pk5GT07NkToaGhvr2AOxyj0YjVq1ejR48eJcan8DyPrNwiibX6zLUCnLtegLPXC1BodK4V06g4JEcEoGpUIFJt/3QaNU5fzcfJrDycvJKP8zduIc/E4WQOcDJHKmGHB2hRMzYINWODUTPG/n9siB4cSeME4TaleecJgqjc8Acy8c2J/QCAjp07IzqUDBeVkcLCQmRkZCA4OBgGgwEhPI+Ds3r4pS0BWrXb6y6tVouVK1ciKSlJFA4HDhyITz75BKGhoQgNDcWKFStw6tQprF+/Hv/99x9efPFFfPHFF/jnn38QGBgIg8EAjuMU1/+CsCscS86pU6cwcOBAyXddunTB/PnzERQUBLVaDZ1OB41G41K+0Ov1qFq1KqpXry5uO3r0KPLz81GjRg3Jvrdu3cLFixcRGhqKqVOnYtKkSfjll1/QrVs3DBs2TNxffl0nTpzA448/LmlHu3btsGHDBnGbRqOBTqeT7KPRaKDVasVte/bswezZs7Fnzx5kZ2eLFuvs7GwkJiaKygXB5X3y5Ml44oknsGnTJnTr1g1Dhw5Fo0aNnN4Lf1JYWIiAgAB07NgRBoNB8p27SoJKLXRfvXoVZrMZcXFxku1xcXHIzMwEAPzzzz9YsmQJGjVqJMZxfPfdd2jYsKHiMfV6vfgisWi1WloklhHCveV5HlfyinDmagHOXM1H+rV8nLmabxO081HgQruqtgnWqdFBSI0KQrXoINvfgagSHgCN2rVbW0GxCaey8nEiKxcnsvJw4nIeTmTl4tz1AmTfMmLn2WzsPJst+U2oQYNacSGoFRuMmrHBqBUXgtpxwYgPNZAwThAuoPGUIG5/WBdMlVpD73wlxWw2g+M4qFQqqFTWtVRwJchEz3EcunTpgk8//RRarRaJiYmKz2CtWrVQq1YtPPzww3jhhRdQu3Zt/PTTT7j//vvF6xX+Zzl27BhCQ0MRExOj+D3P85J7JrRJOJ5KpZJ8dnUdQUFBkn14nkdCQgI2bNjgsH94eDhUKhVmz56N0aNHY+nSpVi+fDlmzZqFH374AUOGDFG8LldtVfofsFq6hWcjPz8fvXv3Ro8ePfDZZ58hNTUV58+fR69evWAymSTHF/5++OGH0adPHyxduhSrVq3CG2+8gXfeeQdPPvmk0/vhL4T+Ulq/uDu2VWqhW0Au4PA8L25r3759hYwNuFPheR7X8otx5mo+Tl7OwdpzKqxcsg9nr9/C2WsFyCsyOf2tigOSIgKRGh2EalHW/wUhOykiANoSBGtXBOo0aJgUhoZJ0nINhUYzTl3Jw8msPBy/nIsTl61/n7mWj5xCE3advYFdZ29IfhOs11iF8Nhg1IoLFgXzxLAAqFQkjBMEQRC3PxYm6ZWllAmwCMIXBAUFoWbNmm7vn5qaisDAwBJLC2dlZeH777/H4MGDnQrMaWlp2LJli2Tb1q1bUbt2bcUY8NLQrFkzZGZmQqPRIDU11el+tWvXRu3atTF16lTce++9WLBgAYYMGeKwX7169fDvv/9i7Nix4rZ///1Xsk9MTAwuXbokfjabzTh48CC6dOkCwGp9v3r1KubOnYuwsDCEhoZi9+7dJV5LcnIyHn30UTz66KOYOXMmvvjiiwopdPuCSi10R0dHQ61Wi1ZtgaysLAfrN1F+8DyPGwVGpF+1WqrPXstH+jWr9frM1XzkSgRrFXDhsviJ44Aq4QFWS3WUVaiuFh2IqlFBSI4IhK6cE7EYtGrUTwxD/URHYfzMtXwcv5yHk5dt1vGsPJy5mo+8IhP2ZmRjb0a25DeBOrVNGA+xCuO2v5MiSBgnCIIgbi9YQdtEJcOICsasWbNQUFCAvn37omrVqsjOzsb//d//wWg0okcPu/s8z/PIzMwUS4Zt27YNc+bMQVhYGN544w2nx3/qqafQsmVLvPrqqxg5ciS2bduGjz76CJ988onXbe/evTvatGmDwYMHY968eahTpw4uXryIZcuWYfDgwahfvz5mzJiBYcOGoVq1ajh//jx27NihmJAaACZPnoxx48ahRYsWaN++Pf73v//h0KFDEpf2rl27Ytq0aVi6dClq1KiB9957D9nZ2eL3KSkp0Ol0+OijjzB69GicOXMGr776qsvrmDJlCvr06YPatWvjxo0bWLduHerVq+f1/amoVGqhW6fToXnz5li9erVEc7N69WoMGjTIjy27M8guKEb61XycvVZgFbBt7uDpV61WYGdwHJAYFoCqkQHg8q+iY9O6qBEbitToICRHBkCvqfhuSwatGnXjQ1E3XhqHU2yy4My1fNE9/URWHk5ezsPpq3koKDZj//mb2H/+puxYKlEYt1vIQ5ASGQg1CeMEQRBEJcTMOBlaSOgmKhidOnXCxx9/jLFjx+Ly5cuIiIhA06ZNsWrVKtSpU0fcLycnBwkJCWIMdJ06dTBu3DhMnjzZZSx2s2bN8OOPP+Kll17Cq6++ioSEBLzyyiuSEluewnEcli1bhueffx4TJkzAlStXEB8fj44dOyIuLg5qtVqs2nT58mVER0dj6NChiomiAWDkyJE4deoUnnnmGRQWFuLuu+/GY489hpUrV4r7TJgwAfv27cPYsWOh0WgwdepU0coNWC3hCxcuxHPPPYcPP/wQzZo1w9tvv42BAwc6vQ6z2YwnnngC58+fR2hoKHr37o333nvP6/tTUeH40ha9K2fy8vJw8uRJAEDTpk3x7rvvokuXLoiMjERKSgqWLFmCMWPGYP78+WjTpg0+//xzfPHFFzh06JCYDc8bcnJyEBYWhps3b96RidRu3jLa4qrzrbHW1/JFATu7wHWK/IQwg8RaLcRaJ0cGwqBVw2g0YtmyZejbt+9tH+tlNFtw9loBTmZZXdSPZ+XhxOVcnL6Sj2KzcviDTqNCjZhgMWY8UKcGzwNmnoeF58Hz1oWM9bNVG2u22P+28DzMFtj2tW43i+UdrNvNwnFs31ssvO1v6efwQB1e6p+GCCqrRnjBnfTOE8Sdzo87MvD0L9ZEauumtUf12LASfkFURAoLC5Geno5q1ao5JJAiCDkWiwU5OTkIDQ11Gate2XD1HrgrK1Z4S/fOnTslmhQhs/i4ceOwcOFCjBw5EteuXcMrr7yCS5cuoUGDBli2bJlPBO47hdxCo91aLUtgdj2/2OVv40L1ssRl1r9TIgMR4GZZhzsBrdpqza4ZG4zeTDlIk9mCjBu3cEJwUbf9fzIrD0UmC45cysGRSxWjdEKQXo3XBisnICQIgiAIFtalnFLrEARxp1Phhe7OnTujJGP8448/jscff7ycWlQ5yS8yOVqrbRbrq3muBeuYED2qRQUhNVpIYmYVsKtGBSJQV+EfoQqNRq1CtWiroqJnfft2s4XHhRu3rMnbsvJw6koejGYLVBxn+wfr/ypItnEcB7WK/d7+N8dxUAu/VXHgONg+W/9WMb/lbNvVKuB6vhHzVhzF4u0ZuL9dNdSICfbfDSMIgiAqBWaK6SYIghAhiek2oqDYZK1hzVqrrxYg/Vo+ruQWufxtdLCOcQUXkphZXcKD9PSYlDdqFYeUqECkRAWie5r/kwLuOnsDa45cxrzlR/H52Bb+bg5BEARRwbFILN0kdBMEcWdD0lQl52aBEQ9/txNnruXjco5rwToqSIeqUVJrdTWbxTrEQPGVhHOe7VMH645exqrDl7HjzHW0TI30d5MIgiCICoyZEbTNFTt9EEEQRJlDQnclJ9igwZ5z2WIyrohALapGSa3VVsE6CGEBJFgTnlEzNgQjW6Zg8fZzmLPsCH59rC04jjKrEwRBEMqwJcPMZOkmCOIOh4TuSo5axeHj0c0QE6JHalQgwgMpuzRRNkztXgu/77mAPeeyseJgJvo0TPB3kwiCIIgKChvHTUI3QRB3OrdPLvc7mB5pcWiSHE4CN1GmxIYa8FDH6gCAeSuOwuik1BlBEARBkHs5QRCEHRK6CYJwm4c7Vkd0sB5nrhXg+//O+bs5BEEQRAWFEqkRBEHYIaGbIAi3CdZrMKV7LQDAB2tPILfQ6OcWEQRBEBUR1rpNlm6CIO50SOgmCKJUjGyZjOoxQbieX4zPNp72d3MIgiCICoiZYroJFrMZ2LABWLzY+r/Z7O8WlTkcx+H333/3dzOICgIJ3QRBlAqtWoVnetcFAHy55TQybxb6uUW+Jf1qPt5YfhSd3lqP5347QItFwoEtJ67ih+0UXkEQrpAK3X5sCOF/fv0VSE0FunQBRo2y/p+aat1eRowfPx4cx4HjOGi1WsTFxaFHjx74+uuvYbGUzwN56dIl9OnTp1zOxeKusC/cH/Zf+/bty76BdyiUvZwgiFLTMy0OLapGYOfZG3hv9XHMG9bI303yilvFZiw7cAlLdmZge/p1cfvZa+dQaDTjrWGNoVZRibSKwqGLN/H60iOY2KUm2taMLtdzWyw8nvh+N27eMqJGbDDVrCcIJ7Au5RZyL79z+fVXYNgwQP4MXLhg3f7zz8DQoWVy6t69e2PBggUwm824fPkyVqxYgcmTJ+Pnn3/Gn3/+CY2mbMWg+Pj4Mj2+L1iwYAF69+4tftbplJMyG41GaLVUetgbyNJNEESp4TgOM/vWAwD8tCsDxzJz/dyi0sPzPPafz8Zzvx1Aq9fX4Kmf9mF7+nWoOKBznRhM61EbahWHX3dfwMxf91MioDKi2GTBmsOXkVOK/ABfbDqNraeu4ZHvduFkVl4Zts6R8zdu4eYta1uX7r9UrucmiMoEO2aaaPy8MzGbgcmTHQVuwL5typQyczXX6/WIj49HlSpV0KxZMzz33HP4448/sHz5cixcuFDc79y5cxg0aBCCg4MRGhqKESNG4PLly+L3s2bNQpMmTfD1118jJSUFwcHBeOyxx2A2m/Hmm28iPj4esbGxeP311yXnZy3OZ86cAcdx+PXXX9GlSxcEBgaicePG2LZtm7j/tWvXcO+99yIpKQmBgYFo2LAhFi9eLDlm586dMWnSJDz99NOIjIxEfHw8Zs2aJX6fmpoKABgyZAg4jhM/OyM8PBzx8fHiv8jISLGtP/74Izp37gyDwYBFixYBsArp9erVg8FgQN26dfHJJ59Ijrd9+3Z07NgRgYGBaNGiBX777TdwHIe9e/cCABYuXIjw8HDJb37//XdwnNSw8ddff6F58+YwGAyoXr06Zs+eDZPJJLm3X375JYYMGYLAwEDUqlULf/75p+QYhw4dQr9+/RAaGoqQkBB06NABp06dwqZNm6DVapGZmSnZ/6mnnkLHjh1d3i9vIKGbIAiPaF41An0bxsPCA28sP+Lv5rjNjfxiLPgnHX0+2IyBH/2D7/87h9wiE5IjA/BUj9r459muWHh/K0zqVgvvj2wCFQf8uPM8nv/9IAnePqbQaMYD3+zAg9/uxJyl7j1DFguPzSeuAgByi0x4+NudohBcHhy+lCP+veJgJj0TBOEE1qWc3pM7lM2bgfPnnX/P80BGhnW/cqJr165o3LgxfrW5tvM8j8GDB+P69evYuHEjVq9ejVOnTmHkyJGS3506dQrLly/HihUrsHjxYnz99dfo168fzp8/j40bN2LevHl44YUX8O+//7o8//PPP4/p06dj7969qF27Nu69915RmCwsLETz5s3x999/4+DBg3j44YcxZswY/Pfff5JjfPPNNwgKCsJ///2HN998E6+88gpWr14NANixYwcAq3B86dIl8bMnPPPMM5g0aRKOHDmCXr164YsvvsDzzz+P119/HUeOHMGcOXPw4osv4ptvvgEA5OfnY+DAgahZsyZ27NiBWbNmYfr06aU+78qVK3Hfffdh0qRJOHz4MD777DMsXLjQQakxe/ZsjBgxAvv370ffvn0xevRoXL9u9Va8cOECOnbsCIPBgHXr1mHXrl2YMGECTCYTOnbsiOrVq+O7774Tj2UymbBo0SLcf//9Ht+vkiD3coIgPGZGr7pYdegy1h+7gq0nr5a7q6+7WCw8/jl1FUt2ZGDVocsotq0GdRoV+jSIx8gWybirehRUMhfyAY0TYeF5TF2yF4u3n4NGxeGVQfUdNLLeknG9AGuOXEbzqhFokBjm0I7bkYJiEx5YuBPbTl8DACw/mInXBjeARu1aF3z4Ug6u5RcjUKdGeIAWp6/mY/IPe/DVuJalDgHILTQixFA6d7kjjNCdmVOIPRnZaF41olTH8BcWC4/vt5/DZ5tO4ZGONXDfXVX93STwNmuXr98pwv+YmbhZyo1xh3LJTW8gd/fzEXXr1sX+/fsBAGvWrMH+/fuRnp6O5ORkAMB3332H+vXrY8eOHWjZsiUAwGKx4Ouvv0ZISAjS0tLQpUsXHDt2DMuWLYNKpUKdOnUwb948bNiwAXfddZfTc0+fPh39+vUDYBUa69evj5MnT6Ju3bqoUqWKREh98sknsWLFCvz0009o3bq1uL1Ro0Z4+eWXAQC1atXCRx99hLVr16JHjx6IiYkBYLdgl8S9994LtVotfl60aBGaNGkCAJgyZQqGMq7/r776Kt555x1xW7Vq1USheNy4cfjf//4Hs9mMjz76CPHx8WjYsCHOnz+Pxx57rMR2sLz++ut49tlnMW7cOABA9erV8eqrr+Lpp58Wrxuwxu3fe++9AIA5c+bgww8/xPbt29G7d298/PHHCAsLww8//CC6xdeuXVv87QMPPIAFCxZgxowZAIClS5eioKAAI0aMKFVbSwMJ3QRBeEy16CCMbp2Cb7adxdzlR/HHE+0qlMB4IfsWft55Hj/uzMCF7Fvi9rSEUIxsmYzBTaogLNC10DWoSRWYzDym/7wP3/17FmoVh5cHpPlMSNh0/Aomfr8bOYVWTXd0sA6daseiS90YdKgVg7CA0gmFJrMF+85nY9Pxq9hy8irOXS/Ap6OboUUFij3OKzLhkUV7sf3MdQTrNeA44OYtI7anXy9RcbPx+BUAQNsaUZjSvTaGzd+KDceu4K2Vx/Bsn7put+HLzafx2tIjeLRTDTzTu47b/Xk00yp069QqFJstWH7gUqUQuk9dycPMXw5g+xmrFeCPvRf8LnQXGs0Y8OEWpEQG4qvxLf3aFsL3UEw3gYQE3+7nI3ieF8f8I0eOIDk5WRS4ASAtLQ3h4eE4cuSIKHSnpqYiJCRE3CcuLg5qtRoqlUqyLSsry+W5GzWy58BJsF13VlYW6tatC7PZjDfeeANLlizBhQsXUFRUhKKiIgQFBTk9hnCcks7rjPfeew/du3eXHOvKFes826JFC3H7lStXkJGRgQceeAAPPfSQuN1kMiEsLAyA9V42btwYgYGB4vdt2rQpdZt27dqFHTt2SCzbZrMZhYWFKCgoEI/P3oegoCCEhISI92Hv3r3o0KGD0zj08ePHi54Jd911F77++muMGDHC4V77EhK6CYLwiie71cIvuy/gwIWb+Gv/RQxqUsXfTcL6o1lYsPUMNp+4IoaNhRg0GNykCka2TEaDKmGlOt7dzZNgtvB4+pf9WLj1DDQqDs/3q+eV4M3zPL7YfBpvLD8KCw9UjQrEtbxiXM0rxi+7z+OX3eehVnFonhKBznVj0LVuLOrEhSie8+y1fGw6cRVbTlzB1pPXkFtkknz/xebTXgvdhy/moEp4QIlKipIoMAH3f7MLezNuIsSgwbcTWuH7/87hp13nserw5RKF7k02obtj7Rg0qBKGN4c1xqTFezB/4ynUSwhx6/mzWHgs+OcMAGD+xlMoKDZh1oD6bimMjlyy5i+4t1Uyvtl2FssPZnr9LJQ1m09cwQPf7ESxyQIVB1h44GK251UHruUV4Vp+MWrHhZS8swuOX87Fiaw8nMjKQ5HJDL1GXfKPiEoD615OMd13KB06AElJ1qRpSooXjrN+36FDuTbryJEjqFatGgCpAM4i3y4X3oSs6PJtJWVGZ38jHF/4zTvvvIP33nsP77//Pho2bIigoCBMmTIFxcXFTo/h7nmdER8fj5o1a0q2CUI3K4AKx//iiy8kVncAoqWcd0O5plKpHPYzGqUhYhaLBbNnz5ZY2QUMBoP4t6v7EBAQ4LIdsbGxGDBgABYsWIDq1atj2bJl2LBhQ4nt9wYSugmC8IroYD0e7VQdb686jrdWHkPvBvF+XTwv3X8JT3y/W/zcpnoURrZMRu8G8TBoPW/XiJbJMFl4PPfbAXy5JR0atapUFlKWQqMZz/6yH7/vvWg9doskvDq4AThw2Hn2OjYcu4J1R7NwMisP289cx/Yz1/HmimNICDOgc51YdKkTAwtvjW3efMJqzWYJD9SiXc1o1I0LwTurj2P9sSseuVIL7Dl3A0M/3Yo6cSH4+8n2JbqAOyO7wIhPDquRkX8T4YFaLHqgNRpUCcO1vGKr0H0o06UXQV6RCbvO3gAAdKxldaEb2DgRhy/mYP7GU3j65/2oHh2MhkmulSr/pV/Hhexb0GlUMJot+HbbWRQUmzHv7kYuXdRzC43ivX60cw38tOs8LmTfwoELN9EoKdyDO1L2nL2Wj4nf70GxyYL2NaMxpXstDJu/DZk5hTBbeI+y8j/wzU7sP5+NHx5ug1bVPFfmnL1mf26zcoqQHBnoYm/5b/NRZLJ4LfgTZQcbx00x3XcoajXwwQfWLOUcJxW8hXH+/fet+5UT69atw4EDBzB16lQAVqv2uXPnkJGRIVq7Dx8+jJs3b6JevXrl1i4A2Lx5MwYNGoT77rsPgFX4PHHiRKnbodVqYfZxcrq4uDhUqVIFp0+fxujRoxX3SUtLw3fffYdbt24hNDQUABxi3GNiYpCbm4v8/HxRqBeSrAk0a9YMx44dc1AGlIZGjRrhm2++cZl1/cEHH8Q999yDpKQk1KhRA+3atfP4fO5AidQIgvCaB9pXR1yoHudv3MJ32876rR0Z1wvw7K/WOK2hzapg44zOWPzwXRjctIpXArfAqNYpeHVQfQBWC+k7q467pdlluZB9C8Pmb8Xvey9CreIwe2B9zLu7EfQaNXQaFdrWiMZzfethzbRO2Px0F7w6qD661o2FQavCpZuFWLz9HB7+bhceXbQb//vvHM5dL4BWzaF1tUjM6FUHf05sh10v9MDHo5phYteaqB4TZM0QfuRyyY1zwq+7L4DngaOZufhpl4ukOC64lleEMV/vQEY+h8ggLRY/dJfocdC+VjQCdWpcvFmIgxdynB5j26lrMFl4pEQGIjXaroGf0asOOteJQZHJgoe/24kruUUu2/LLbus1DG1aBe+OsJaD+3nXeUz+YQ+MLgoKC1n640MNSAgLQJe6sQCAZQcynf7G11zPL8a0H/dixcGSYyDzikx4yJZorllKOL4a3wJNUyKgVnEwW3iH++SOYJRTaMTejGxYeGDOsiOS57/YVDpLC6ssupzjvuW9yGTG0E+2YuBHW5Av8+ogKg6se7mZ3MvvXIYOtZYFqyLzQkpKKtNyYQBQVFSEzMxMXLhwAbt378acOXMwaNAg9O/fH2PHjgUAdO/eHY0aNcLo0aOxe/dubN++HWPHjkWnTp0k7tXlQc2aNbF69Wps3boVR44cwSOPPOKQYdsdUlNTsXbtWmRmZuLGjRs+a9+sWbMwd+5cfPDBBzh+/DgOHDiABQsW4N133wUAjBo1CiqVCk8++SQOHz6MZcuW4e2335Yco3Xr1ggMDMRzzz2HkydP4vvvv5dkkgeAl156Cd9++y1mzZqFQ4cO4ciRI1iyZAleeOEFt9s6ceJE5OTk4J577sHOnTtx4sQJfPfddzh27Ji4T69evRAWFobXXnutTBOoCZDQTRCE1wTo1HiqRx0AwIfrTuJmQfllkxYwmi2Y9MMe5Baa0CwlHPPuboSqUb6PzRnTJhUvD0gDAHy0/iQ+WHvC7d9uT7+OQR9twcELOYgM0mHRA60xrm2qU8tucmQgxrRJxdfjW2LvSz2x8P6WGN82FdWjg1AzNhjj26bi6/EtsPelnljySBs80aUmGiWFi9ZLjuPQv1EiAODvfZ4lqjFbeCw/aJ/03119vNSCzpXcItzz+b84ejkPoVoeiya0RL2EUPF7g1aNTrWtluuVh5wvMOyu5VIXdLWKwwf3NEX16CBculmIeSuOOj1GQbEJyw9Y78XdzZMwpGkSPh7VFFo1h7/3X8Jji3ah0KhsIThiE7rrJVitq30bWOPxlh+8VGrli6e8+PtB/Lr7Aqb/tB9X86RC8+Lt59DujXWYsHAHPl5/EpMX78Hxy3mIDdFj/n3NodeooVZxiA+1uuddvGnPc/DbnvNoMGsl/t5/0eX5D5y/Kf69NyMbyw9m4kZ+Me7+dCvazVuHM1fz3b6Ws9fs+2aWQujefTYb1/KLUWi0IKsEBUtpMVt43MgvLnnHMmLnmet4f81xl8qfygKbPO02uBzCG4YOBc6cAdavB77/3vp/enqZCtwAsGLFCiQkJCA1NRW9e/fG+vXr8X//93/4448/RJdooaxXREQEOnbsiO7du6N69epYsmRJmbZNiRdffBHNmjVDr1690LlzZ8THx2Pw4MGlPs4777yD1atXIzk5GU2bNvVZ+x588EF8+eWXWLhwIRo2bIhOnTph4cKFoqt+cHAw/vjjDxw7dgzNmzfH888/j3nz5kmOERkZiUWLFmHZsmViSTS25BlgFYb//vtvrF69Gi1btsRdd92Fd999F1Wrup+HJCoqCuvWrUNeXh46deqE5s2b44svvpBYvVUqFcaPHw+z2SwqYcoSci8nCMIn3N08CV9uOY3jl/PwyYaTYh3v8uK91cex51w2QgwafHBPU2g9dIF2h/vbVYPZwuO1pUfw/poT0Kg4TOxay+VvFv17FrP+PASThUdaQig+G9O8VO60Bq0anevEonOd2FK1dUCjBPzf2hPYdOIKbhYYSx2TvePMdVzNK0KoQYPwQB3OXS/A55tOY2qP2iX/GNYYrxk/78OJrDzEherxYPV81IoNdtivZ/04LD+YiVWHMzG9Vx3FY206YRO6ba7lLGEBWrwzojGGfLIVv+4+j0c71UBNhfOsOJiJ/GIzqkYFooUtAVrvBgn4fKwaj363C2uOZOGDtSfwTG/HpGxC5vK6NoVB5zoxMGhVOHutAIcv5aB+YulyBZSW5QcuYalNYZBXZML7a47jtcENAQDnrhVg1p+HUGSy4EL2Law7ak0mo1Or8NmY5ogNtcfBJYQZcCH7Fi5lFwIp1m2rDl1GQbEZL/5+EO1qRCMiSKfYhn3ns8XjFpstmLfiKAJ1GvHevLH8KOaPaS75zY87MrDuaBbeGt5IEuJwhnEvz7zpvtC92fYcAEB2QTEAqXJt3dHL+GzjaYxvm4reDeJLFQIy81dr2Mf3D7b2S/LBYfOtNXujgvUYUwGyy3uDVOgmS/cdj1oNdO5cbqdbuHChgwXVGSkpKfjjjz+cfj9r1iwHwVDp2PKYYFYZm5qa6qCcDQ8Pl2yLjIwU63o7QynuWP6bAQMGYMCAAS6PI28fi1JbBUaNGoVRo0Y5PeZdd92FzZs3IzQ0FCqVCmfOnHHYZ/DgwQ7KBDY5G2AVvHv16lWqtmdnZ0s+N2rUCCtXrnR6DAC4dOkS+vbtKya1K0vI0k0QhE9QqzjM7GMVtBdsPYPzNwpK+IXv+OfkVXy68RQAYN7djUolzHrKgx2qi9my3151HPNt55dTbLJg5q8H8MLvB2Gy8OjfKAG/PNa2XNoIALXiQlAnLgRGM4+Vh0vvprbMJuT1rB+Pp3tbheHPN51GlpuWyb/2X8KGY1egU6uwYFxzxDrJbdK1Thw0Kg7HL+chXcFaevZaPs5eK4BGxTlNttY0JQLd68XBwgPvrTmuuI/dtTxJIox1qROLN+62CrB/77+oOKELgqVgpQ/Sa9C5tlUJsrwEF/P/W3sCc2Xu2KXhRn4xXvzjkK2tVqXD4u0ZOJmVC57n8cIfB1FksqBVtUi81D8NfRvGo2ZsMN4e0RhNU6TZ1RPCrZ1wibF0C/HVNwqMeHOlc0+B/RlWS/djnWsgOliHs9cKcORSDqKCdFBxwIpDmdiefl3c/+/9F/H0L/ux4lAm/twntaKfu+aZe/mWk1fFv7MVvGoWb8/Af+nX8dj/dmPi4j2liif+ced5FJssePDbnW7/piw4fSXPr+f3BeReThBEReXmzZtYs2YN/ve//+HJJ58sl3OS0E0QhM/oXCcGbapHodhkwburlIUeX3MtrwhTluwFzwP3tkpB34blV3rk0U41ML2n1eL7xvKj+HLzacn3V3KLMOqLf7F4+zlwHPBM77r48N6mCNCVb6K5/o2s9+Tv/aVzMWddy/s1TEC/hglokhyOW0azU6GWJbugGK/8ZRUUJ3atqWjhFggL1OKu6lEAgFUKLuaCa3nzqhEI1jt30nqqZ21wnDWh3sELNyXfXcy+ha2nrHXBhzZzzHLeq348dBoVMq7fwsksqdBjsfBiTHdagj15V5+G1jqoyw44dzFfeSgT764+js82nXY4rru88vdhXM0rQs3YYMwf0xw90uJgtvCYu+wo/tp/CZuOX4FOo8IbQxtiQvtq+GR0c6yZ1gkDGyc6HCsxzOZebstgzvO8JL568fYM7D6nHAe432bpblMjSvR2iA3R48dH22BkS6vZ/PWlh2Gx8Nh19jqm/bhP/O3Wk9fEvwuNZolLeWaOe27iN/KLcYDp1+xbxeLxhPufW2gXxJfuv4RdTq7FFdkFRolSQt6GU24IxTfyiz1OIKbyQTZ8nuf9EuojQInUCIKoqAwaNAgDBw7EI488gh49epTLOUnoJgjCZ3Ach+dsbuW/7b3gIPT4GouFx/Sf9uFKbhFqxQbjpf5pZXo+JSZ2rYUp3a2u5a8tPYIF/6QDsAonAz7cgp1nbyDEoMHX41risc41/FJaqr9N8Prn5FVcL0W86s4z13El1+pa3q5mNDjOWioNAJbsyMDxy7kufz9n2RFczStGrdhgPNqpRonn61U/DoByXPfG41brZsfajq7lLPUSQsU49ndXSxUDv+2xJoRrVS1S0dMgUKdB2xpWwX/NEWnN03PXC1BQbIZOo0Iqkyuga91Y6DQqnL6aj+OXHQWx/CITZv15SPx86KLzRHHOWHvkMn7bcwEqDnhrmDXp3rN96kKj4rD2aBae+/UAAGBil5qoHuNcsSGQYBO6BaHyen4x8opM4DhggO1ZeeG3gw5xxVm5hbh4sxAcBzSoEoZRrVLwvwdbY9nkDqgRE4xpPWojSKfGvvM30ey11bj7020oNllQx5ZhfOupq6LwlSHLuH/ZTffyf05dlSRAzi4w4kL2LTR7dTVm2u5Dni3ngFZtfdf2ZWS7dWyel2Zz//6/c4r73b9wB3q9t8nlcQ9euImmTJtKC9uO3EKjR0Lr878fRONXVjlVoJQ1EvdysnQTxB2J4KrepEkTfzdFwoYNG1BQUID33nuv3M5JQjdBED6lYVIYBjVJBM8Dc5d77k7rDl//k471x65Ar1Hhw1Hlb0EWmNytFiZ2sZa2mP3XYTz98z6xLFONmCD88UQ7MdO1P6gWHYT6iaEwW3isOOi+i7ngWt4jzWoBBoCWqZHoVd/qwv3GcuduyFtPXcWPO62u3G/c3VD8vSt6pFmtxnsysiXu68UmC7adsgrdnUoQugFgavdaUKs4rDuaJZYY43ledC0f1izJ6W+71bMK/mtl2d4F1/I6cSGSkmkhBq0YY/7NtjMOz/t7q4/jEiNQeqKIEpL1PdC+mugqXiMmGKNbWy3LeUUmVI8JwiOdqrt1PMG9/GK2Veg+axOA40MNmDUgDWEBWhy+lINJi/dIMpILruU1Y4IRrNeA4zi0qxmN6GA9ACAmRI8nulrfA8Htu13NKPz4aBsE6dS4UWDEYdt9FNzZBdnS3URqW05clXzOLjBif0Y2CorN+M/m1p5XaLKd2xqGsP+8e/c8p9AkERSXK7wrV/OKsDcjGyYLj082nHR6LCGZ35KdGYrff/fvWfR+f5PTMBzB0p1xvQDNX1uDez7/12mCP2cISoP3VpeP15EciukmCIKwQ0I3QRA+Z3rPOtCpVfjn5DVski2SfcWB8zfFhe0L/dNQNz60hF+UHRzH4ametUVrrhAX2r1eLH5/op1b1seyRsxiXkJ2agGzhccywbW8Ubzku2d6W62s645m/X979x0fRZ3+AfwzW9N7CAkkoYTeCUWqdCGKXbGBiHjHoSeI5SxnvVPvTvHQn4flVNCzYQFUDCUiTVBKKNJrIJAQAgmkl83u/v7Y7OzM7mxLNtmUz/v18iW7Ozvz3U1ms888z/f5YtsJx59vpcEoZl/vuSoJqcmeNaRqGx6AfokRMJuBDEnQuzv7MsqqjYgO1qFnvPufc6fYENxSWz7++lrL8iB7z17BqYtlCNCqxJJwJeNrL47szr4sqwqwzed2XBf69kGWIP7z7dl4esUB1NRmiA/mFmHJttMAgGtrS/y9zXRX15jEY987vIPssXkTuiIswFJq/8pNfaDXeHbRKSG8NuiuvRhgnVudFBWE6BA9/j2tH3RqFVYfyJN1c7eWlvdLjHC67zmjO+OLB67CDw+NxL7nJ+Gz2VchPFArrue9rfbiiTXQ75lg+XnmFVd6dIHOOj2gV+3ziioMuFT7c7KWlZdYg+7OlqDb2vzNHUtTNptzl8sdxrRTMl993aELTqcL2GfypcxmM55deQBH8kqcZtOt13X2nL2C6hoTdpwulFVMeKPK4J/W4bI53Qy6m73GWqGBqCnyxe9/qwi6V61ahW7duqFLly744IMP/D0cohYvMSoIM4ZZOu++mn7Y51+4Sqtq8OcvdsNgNOOaXnG4pzbj50+CIOAvk7th7pjOCNCq8OdxKXh/+iBZt2Z/ss7r/u1Ugdt1rAFbaXlogAYjU+TZ5U6xIbir9j1/Of2wQ+nr//18HKcLyhEXpscTCl3AXZnU05JpXnfQFnRb53OP6hIDlcqz8vyHx3eBVi3g11MF2HrikpjlntyrrcufSUJEIHrEh8FkBjYcsZWY25YLcwz6J/Vqi7/d0AuCYFm2a86nu1FWVYNnVhyA0WTGtX3iMXeM5YLMwdwir/54n8gvhcFoRliABu0i5F3oooJ1WD53BL790zBxPrwn4iMs5eWXSqtQXWMSs87J0ZaS+3Hd4/DfewdBr1Fh/ZF8/OF/maiuMWFfbca4X3vnXdpVKgHDOkejT/twhAfa3mdr1nlr7bzu7NrlwgbXdgivrjEpNkWTqjFaOrMDwLDa13ulvBoFtUunFVfUwGw2o6S2vHxY7VSBMwXlDgG1ksu1x48JsXRurzQ4jmnHaVvQbTYDS7dZppNU1Rjxt1WHxM7qZy8rzwcHgFOSRoGBWtuFEmk5vzXTff6KbT/fZJ5TzHavOZCHez/aIb4P9iprvMuQ2zt3uVzWMd5TRs7pbhGsS2tVV/tvKT0ifysvt/ydlC455q0Wv2RYTU0NFixYgA0bNiAsLAwDBw7EzTffjKioxl8KhKg1eWhcCr7adRZH8kqwYk8Obk11XtLrredWHsDpgnIkhAfgn7f09cs8aSWCIOCJyd3x6KRusjmZTUFiVBD6JUZg39krWH3gPGYM6+Bye7FruaS0XGre+C5YvjsHB3OL8d2+HNw0wPLzPXy+GO9tsjSUe/H63gjz8qLDNb3a4rW1R7Ht5CUUVxoQFqC1LRXmQWm5VfvIINw9NBlLt53Gv9YcEZenusWD38MJPdrg8PlirD9yQdxeXC7MSUXF9GEdEBuqx8Nf7sVPhy9g/MJNyCuuRIheg+em9kRkkA46tQrFlTU4d7nC4+711nLsnglhir/nSsuiuRMdrINOo0J1jQkXiitxptASBErXtb+6ayyW3DcY9y/dhc3HLuIv3/4uZrr7to/w+pjWoHtHVqEl0K/NBHeNC0VkkBaXyw24UFLpsFTZxqOWKQLzJ3TFpdJqGE2WedfW132lwoCCUkswUG00obiyRiyJT4wMQnJ0EM4UlOP3c0Xi709pVQ0eWbYXXdqEyC4KWdfnjguzXpSoRm5RBcIDteLFnp21Qfetqe3xTeY5rDlwAS9e3xtrDuThw1+y8OEvWVj155EOAaf0YtGWY7YAtloSaEsDajHolkxNqDGZ8fu5IrFqwGrOp5kAgOe+P4j/3DXQ4b2vb6Z75D83AAC+njNMvEjiCZOse3m9hkB+pNFoEBQUhIsXL0Kr1UKlahX5Oqojk8mE6upqVFZWtojfFbPZjPLycuTn5yMiIkK8CFUXLT7o3rFjB3r16oV27SylhmlpaVi7di3uvPNOP4+MqGWLCNLhoXEpeCX9CBauO4rr+sYjQFv/OdfLd5/D8tqmUm/eOQARQcrrCftTUwu4rab2jce+s1ewap/roNsk7VreV7kUOzpEjz+N6YzX1h7F62uPYUrveGjVKjy1fD9qTJYKhMm9nZdxO5PSJgSdYoNx6mIZNh69iOGdo3EgxxJ4jlJYn9uVuWM748ud2WKGtm1YAIZ3Vl5uTGp8jzj8388nsPnYJVTXmFBZY8S52sylq/L2yb3j8en9esz+eKc4R/mxSV3FIK5r2xAcyCnGwdwiz4Pu2nL0nvG+WwNcEATEhwfgTEE5cq9UyMrLpYZ3jsHiewZi9se7sGJPDgBLc7LuCiX27nSLC0V0sA4FZdXYe/aKeMzkqCDEhQXgcrkBeUWVsosa+85ewQOf7ILBaMbQjtEI1ls+P+JC9YiqDc6vlBsQpLNleKUdx0MCNOjXPqI26L4iBt2vpB9GxqELyDh0ATOGdUDb2sZyl2uz4ZFBOqgEAZdKq3Egpwj3frQTE3vG4em07uLPY974Llh7MA+XSquwJ/sy9kvmjV/3f7/IXntJVY0s67/luPKSZ5WS4Nh6fSX3ijxjnnnmskPQbbU3+4r4b2nQX5dMt9lsxu7sy+gSZ/tZ/36uyKugu8YoLS9v2BL37IJy3Ld0Bx4Y1Ql3DPF/5VNLIggC4uPjkZWVhTNnzvh7ONTEmc1mVFRUIDAwsMkkRHwhIiICbdt6/51GqskH3Zs3b8Zrr72GzMxMnD9/HitWrHBYUH3x4sV47bXXcP78efTq1QuLFi3CqFGjAAC5ubliwA0A7du3R05OTmO+BKJWa8awDvh42xnkXKnAR1uzMHdMSr32l3WpDH9deQAAMH9CV6++ABKQ1icef//xMHaeKUReUaUYbNjbdeYy8p2UlkvNGtERn/5m+fku3XYaARoV9p69glC9Bi9e37vO45zUsy3e3XQS6w7miV/We8aHITZU79V+2oQGYObwjuIa6jcNbOfRBZG+7cIRG6rHxZIq7MgqFDP9CeEBCA9ynbkf0jEK3/xpOOZ9uRftIgIxXXJxo1d8OA7kFONATjEm9/ZsabtD5y3BnHXus69Yg+7zRZVi1tlaXi41tlsbvHpzHzzxze8ALOX1ns4dl7KWna/6/Tz+u+WUeBEjKToIbcMDcCSvBBeKK3H8Qgl+P1eETrHBeOjzPTDUBm6nC8oQXRtotw0PEC+2FVUYZJUY1iA1SKeGWiWgb/twfL8vF3trm8BtPJovm0e99mCeOFfeWl4eEaRFkE6N/TlF+NuqwyitqsEXO7JxbZ94mMxAYlQgEqOCML57G6zcm4u1B/NwOM/5XP3iCoMs6JaWqBdVSINuW3BsDVitF2+u6hSF304VIvNMIQDllQByay84VNeYcDDXdhHAviS90mCEShBcNjdM35+HBz/fLZtOERHoXdWKLNPtJOYurrRcbOka5/2FHKnnvz+AkxfL8OTy/Qy6G4BOp0OXLl1YYk5uGQwGbN68GaNHj65XKXZTotVq65XhtmryQXdZWRn69euH++67D7fccovD48uWLcP8+fOxePFijBgxAu+99x6mTJmCQ4cOISkpSXHunKsrL1VVVaiqsl01Ly62/CE1GAwwGPy33mVLZH0/+b62XGoAj4zvjMe+PYDFG07ilv7xYobKW9U1Jjz0eSbKq40Y0iESfxiZzN8dL8UGa5CaFIHM7Cv4fu853Dc8WXG7H/ZZLkxO6B4LwWyEwUnXZI0AzB/fGX9ZfhD/2XBCnLf56KQuiA5SO/x8PD3nx3eLxrubTmLD0XwYa7+tj0yJqtPP+/7hSfh8+xmUVRtxQ9+2Hu9jTNcYfJ2Zg3UHz6NjjCUY7RoX4tHzO0YF4Pu5VwEATMYamGrfvh5tLeXb+3OueLQfs9ksZla7xgb59Pe9be0FjOMXisU5/glhOsVj3NSvLc5fLse/15/AmC4xdR7HtNR2WHMgDxmHLPP1tWoBMUEatKmdQ33mUhkWrjuGfIWeA6cvlaKy2jLmuFA9QrSWv+OXy6ohwPZ33jpXPESvgcFgQK94Sxl65plCVFRW4eUfD1lea3gAcosqkb4/F3cNtlyYLyixBLgRgRqxvNu6/BgA5F2x7DsxMhAGgwHju8di5d5crD6QJ3ZMfyatG15OPyobe2FpBdqGWr58Gk1msdEbAFwprxLfz9IK2+uuqLZ857BeRJjSK6426L6M6upqxe8xZrPl3Hpk2e/4UdJ5vbjCID6nxmjCuH//AgHAzwtGOb0I9cUOS0bTOq0CAIK0glc/+xpJpG2oqVF87oSFm5BfUoVv/zgUfV30CnDnkmQ+O/8uNBxfBB7UsplMJtTU1ECtVreY3xeTyQSTi2odTz9zmnzQPWXKFEyZMsXp42+88Qbuv/9+zJ49GwCwaNEirF27Fu+88w5effVVtGvXTpbZPnfuHIYOHep0f6+++ipefPFFh/vXrVuHoCDPygHJOxkZGf4eAjUgtRloF6RGTnkNnlj6M27uWLcywxWnVTh4XoUgjRnXRl3E2jWrfTzS1qGDSkAm1Ph8yxHEXXHshmwyA99nqgEIiKk8h/R05SWPrHSSny8AdAw1I/zifqSnO1+f2N05bzIDYVo1iquMWHMwD4AAXcFJpKc7X6LJlYe6AxU1wNGdm3DU/eYAgPBSAYAaP+45g67hZgAqaMvykZ6eXqcxAMCVEgDQYE/WRdl+DCbgo6MqROuBWzvZzo/CKqC4UgO1YMbxzC3I8uH0uLJLKgAqrMk8CUBAoNqMrRuc/1w6APhbKhBacRTp6Z6+i45mdxXw0TEVqk0CIrUmrF2zGsUXLGP54teTuFwtQCuYIQiW5cT6RJmx86IKuw6dQlQAAKhQUXgemb/mANCgqKIaVdXVACzB4y+ZBwGoAEMl0tPTYTQBwRrLcmVPLVmL4/lqqAUz7kkuxb9+12BHViGWfZeOUC2w75RlHBdzziBAbYblsqHN1sx9ANQov3wJ6enpqDICOpVazNqrYEZkwUHM6SFga56AI0UCDCYBGRu34nS45cJApRGQfvU6c/6S+LtwttT22PGTWfh+1UlcKrXcNuXsB6DB5XIDVqxajQDJ0DSCGjVmy+tf+UM6fjwg/2pXYTCJz7lSBZwvsjz+zQ+rEeokEZV7QS2+p1a7MjNRneX55OzCy7Z9nMo6jfT0Uw7b5JdYxvLfH3/FlETL735lDXCkSEDPCDM8XQXyUqHtWPU5R4nIN1rTd3trkzV3mnzQ7Up1dTUyMzPx5JNPyu6fNGkStm3bBgAYMmQIDhw4gJycHISFhSE9PR3PPfec030+9dRTWLBggXi7uLgYiYmJmDRpEsLC/LckUUtkMBiQkZGBiRMntpgSFFIW2b0AM5dmYttFNZ69czSSPZzParXp2EVs/HUPAOCN2wdgfA//rXnd3A0qqcLy1zbhdKmAfsPHOnTE3nXmMop+24kQvQbzpk2A3oP1tSO6FeC+jzOhVQv4z8zh6OKkuZc35/xO0yF8vuMczBAQpFPjT7dN8Gitb18ZU12DT17diIIqE46W6QAYcN2I/khzsdyYO+XVNXjz4M8oNggYPGq8WC6/+kAeDm23lG+/dPfVaB9p+Zn8dDgf2L0XXePCcP11w+r9mqSu7DiLjJzDyC5XATCjc1w40tKu8ukxlKQBmHiuCM//cBg39I9H2rBklOw6hzXnDuFytSVoumdYBzwxqQuMZsu63Ds/3wtDQDiCooOB3DwM69cdNw1NwrOZP8EMARWSQozAmAQgNw9tY2yvZ4fpEL7ceQ7pOVoAJozt1gYP3DYAqwt+w/6cYpgT+iJtcHus+XIfcOECBvftgZgQPb4787ts7JEJnYDTZ9CtUyLS0noBADJNB7Fsl+XCfpe4UNxw3XAAwKMAbn9/O/acLULPfqmY2NPymZVfUgXs2CTuU9AHIy1tJADLuYf9OwEACYlJ6D+8A7D9F+g1Ktx94xS8su8nGIxmXDVqLBIk5+3zezfgSm2ZerdBo4Advzq876nDxyA5OginC8qA3Vst9w0brdiIr6C0ChWHtgOQr53er/8ATPGiT8N/z/wGlFoy5e2TkpGW1sNhm3m/rgMA9O7RDWmjOwIAZn2ciS0nCnDH4Pb4W1pPxX1XVBsRKInIFx7dAlRYLn6kpaV5PEapwrJqaFQCwrwso/eFUxfL8Mrqo3hwTCcMSIpo9OMT+Upr/G5vrYp2p1kH3ZcuXYLRaERcXJzs/ri4OOTlWUqrNBoNFi5ciLFjx8JkMuGJJ55AdLTzpVX0ej30esd5g1qtttX88jQ2vrct35jubXF111hsOnYRi9afxNsKHXadyS+uxF+WWzKyM4d3wOS+7dw8g1xpF6XF0I6W+aFrD13EH6+Wzw9de8jSWXlSzziEBHo2h3psj7b4z10DERmkRc92kW639+Scn9w7AZ/vsCzzNaxTNII9HIuvhGu1GN45GhuPXkRhmSWg6Z0YWa/PqnCtFp1jQ3AivxRHL5YjIcoS8Pyw37Y82vqjlzB7VCcAwNF8Szlzr3bhPv+MTKztVG6dM50cE9xon8OpHWOw6uFR4u12kcGyx28blITAAMvPu0Mby1zfc5crEayzjK9dVDBCAvUI0qlRXi2f+pBXbCkzDgvQia/npgHt8eXOc2JX8+sHtIdWq8X4HnHYn1OMPeeKMH14RxTVln3HhAYiMUp+MQoAcoss+44I0ov7nj6soxh0x4UHyt7D8Np55+9tycK/1h3DnKs7Y6jd0m6nC8px2/s7cEtqe3SQzKk3moCLZZbxxIcHQKfTITxQh0ulVfg9txQ5RdUYXtsRXtoobc2hfCi5XGlEilaLyhpb9rqk2uzwM68xmjB64RbxvZIyCyqPfkfMZjMEQZB3LBcEh+dKp/8F6m2fCVtql5Vbtusc/nFLP4f9f/LraTz33UG8fdcAXNc3AQBQXWPbV11+j0urajD0HxsRGqDB/heu8fr59fXHz/bgdEE5Nh2/hNP/uLbRj0/ka63pu72nr7P593KH4xxt6we+1fXXX49jx47hxIkT+MMf/tDYwyMiAE9O6Q5BAFb9fh57z17x6DkmkxmPfLUXBWXV6BEfhieneLfmMymzflFd9ft52f2WruWW+9L6eNboy+ravvFiEOALV3WKRmiA5bqwN0uF+dL4HrYLugFaFTpEB7vY2jO9ahuiWedqXymvxsajtkBp7UHbXFxb53LfV1nFh8uDSm+rT3zJ2t0dsDRqkzaNS4y0jKuowoDj+Za10uNrGwAqNfbKvWLJzobobTmFwR2ixOcEatWYUFsp0622edfJ/FIAtkZqkcE6h/cHAM5dsZQQSjOhvduFi/OiByfLLzhZl8vbd64IpwvK8eTy/Xh9nWNp/t6zV/DsygOokFxAMBhNyKtdLsw6lvBAy2v68xd7cNcH23EivxRms1nW9XzxxpMO+weAC7UN2UqqbHMPC8sc585Ll1yz99Wus8g8c9nh/vc3n8R9S3agqsaIGqMJNy7ehtkf75Ktza20TneZ5PUGaB2/jjpbzv657ywXYR/6fI94X1U91yK3dp8vqayRzUVvCF/tOoup//eL+PMFIC5paKXUj4iImrdmHXTHxMRArVaLWW2r/Px8h+w3EflXj/gw3DLQsubxK+mHPfpS8c6mk9h6ogCBWjX+784BPllyjIApvdtCrRKwP6cIpy+VifdnZl/GheIqhOo1GNXVdwF0Xeg0KjxxTTeMTInBDf0T/DKG8d1t0xi6xYX6ZCk4a9B9IMfyJT99fx4MRrNY5r/rzGWxsZl0jW5fS7CbVqDUubyxSLvo3zJQXskSrNeIXcutQXFbaxCqsFygtdt3SIAt6FapBFxf+zs0oWccgnSWx6yl1ScvlsFsNovrdEcGadEmVA/7H7d17nZYgLxIcP2CqzF/Qhc8MLqT7P6wQMdiwszTlqC1jUIn/hzJ8mDVRpPYHMw6DSHc7iJD1qUyVEkCZFeNyKwN2cqqbMGptYLDbDbjQnGlZT3a6hrF5wPA1hMFuOWdbQ4B7ivpR7Dh6EWsOZCHPWevYN/ZK/jp8AUcvVAibmNU+LwvlnRuV9VxaaETtRdMpO+DUoDvTn6JLQCucnLRwV5dA+Mnvvkd+3OK8I/VhxUf//H38xj095/w26mCOu2fiJqmZh1063Q6pKamOkzWz8jIwPDhw/00KiJyZsHErtBrVNiRVYj1h5XLIK0yz1zGGxnHAAAvXt9Lce4h1U10iB7DO1vKXH/cb8t2/1ib+Z7YM65Oy0L52vRhHfDp7KF+W4s9ISJQzDL38FG2uXeCJTA6WJvFXrnXUpo8Y1gy+rUPh9kMZBy6gKJygxjk+erYUmEBGgRL5sQmRdU/i19XkUFaJEYFIixAgxv6O04faS/JwguCLWBVynRb16cOtQuM54/vimev64nnp9rmCCdHB0OtElBaVYMLxVWydbo1ahXahsmX1LOuqW0/57dDTDDmT+jqcFHQmumWsgbSUcE6hx4F20/ZlhKrrjGjoPYigHXFB/ugW69RyZYD+/O4Lg7Hs8qp/V0qVch0f/hLFoa+sh7/3XLKoVxfyaajF8V/2weehWXKS0oZFQJhaRd3Z9l1ANh+qgD/t/644j4mL9oMwFIZYOXpuuTl1TXIOHQBlQajLOvsSdC95fhFDPxbBtYcyHO7bdalMtnFTavSKuVxPvj5bhSUVeO+JTvd7puImo8mH3SXlpZi79692Lt3LwAgKysLe/fuRXa2ZZ3NBQsW4IMPPsBHH32Ew4cP45FHHkF2djbmzJnjx1ETkZKEiEDMGmlplvOPNUeclvEVVRjw8Bd7YDSZMbVfAm4b1L4xh9kqXNfXUj7+w75cAPUrLW/JZg7vAJXgu/fEmrXOLizHkbxi7MgqhCAAU/sl4JraJlVrDuaJWe72kYEOwZYvCIKAeEm225+ZbkEQsPxPI7Bm/mjFtdiTJEF3bIgeWrXlq0uEizXTQ/XyoDtQp8b9IzsiJsS2f51GJZbVH8gpEoMt637tqwGsPG20pbRdTW3gGKzXOPxcf8uyZTarjSYUlloC2GgnQXd1jUksLdeoBIzt5nwahvUCTqkk0LVmuv/+oyXj+kr6EY+CbmmgWSEJ+kMDNLhS7izotvz/u705WLjuKMxmM4orbRcAXJWHT3v/NyzMOIZVv+c6PGZ9P6VVKGVOgll7j329Dw98sgsvfH8QR/JsWXlPStWnf7gDl8sNmPNppsvtKg1GjH19I8a8vlFxv5UGo3hx2V6NiyWKiKj5afJB965duzBgwAAMGDAAgCXIHjBggNiBfNq0aVi0aBFeeukl9O/fH5s3b0Z6ejqSk5XXnyUi//rTmM6IDNLiRH4pvs485/C42WzG08v3I+dKBRKjAvHyTb0V16Sl+rmmV1toVAKO5JXgRH4pdjeh0vKm5PbBiTj5SprP5pVHBOnEUvJ/rD4CABjSIQoJEYG4ppcl6N524pJYWtoQ87mtrPOcdRrHrG5jiw3VOw1yEyNt98dLStGlQbd9yXdIgGd9YjvXVtDsPG3JMmvVgjgffPaoThjXvQ1G2vUqUMpgK3G1XZBO7RBEWzPpAGCoMaGgNhMdFaIcdJcbjGLQG6BVQ6NW4V+39EWnWFvVgvU564/k49vMcyiWBd2Oc7pdlZdbSddRl45Zp1aLUyPsfbM7B8WVBsz7ci/+7+cT2J19GSWSoNtVptsqu8D5sjzSLLh1bnx1jQkXS6rw7qaT2H+uCJUGI/afKxKz8+n7LRcPvtx5Vlw7HgCqDL4Ldssk67xLM/uApWrj/c2n8Nb64z47HhE1XU0+6B4zZgzMZrPDf0uXLhW3mTt3Lk6fPo2qqipkZmZi9OjR/hswEbkUFqDFw+MtZZBvZByTfSkBgGU7z+LH/eehUQn4vzsHevwFl7wTEaTDqC6WYGLV77limfmEJlJa3pT4+qJP73aWQHpjbZnujQMsJdWdY0PQpU0IakxmLN12GkDDzOe2SqidG50YGQiVD+arNxRpplvadC080DbtoFOsfPpJiN6zz40Uu6A7Ikgn/rwn926Lj2YORocYeRVAuMJcbSXSOd3SDDtgCbo1Lt5zg9EklpdHByvP6S6vqhHLy62l7bcPTsTPj44Rt7FmyQHg0a/34bPfzoi3CyUBs1WFB5luaXb7siSzbTSbcb6oUukpAIA1+20Z8iqDSRaEVhiMsiDcSnqfs54eZrNZ7MIPAOUGy34nv7kZg1/+Cf9YfQRPLv8dcz7NxNS3f8FfVx7AqYulsn2USv4OeTqn25mTF0vx3qaTqKg2yuaqK801tzZLVGI2A99mnsP0D7ejqMLxvSGi5qXJB91E1PLcPTQZSVFBuFhShQ+2ZIn3H79Qghd+sHSmfeyabuifGOGnEbYO1i7mP+zLxeraL8QsLW94vRJsDa90ahXSetve88m1JebWL9kNmumOsASwyT7oyt6QEiVBt7NMd8cY+Wuwn9PtTEptsL47+woAy/xye/YX/uqS6e7eNlT2WJBOI2skZq/aaBLnR0fXZrrty9XLq42SoFv565z9+5IrCYov282/1qoFsbx8aMcop5+/5dVG/OnTTNz+7q+4XGZ7DUaTSTY32t4xSWO1IL389f9nw0mk/v0nnC2UZ7N/PmLr/VHtZDqS/Vzv8mojqmqMOHXRNo/6YG6xeJHrs+3ZGLdwE5wprjTIMuLu/GP1EezOtnV1H79wE15dfQSL1h+DSbKPGrtxCoDscSWPfr0PW45fwuINJzwai6fKq2vq3fGdiLzDoJuIGp1Oo8ITk7sBAN7bfBIXS6pQaTDiz1/sQaXBhFFdYvCHUZ3c7IXqa2KvOOjUKpy8WIa84kqE6DVi9psaTi9J9npMt1iESwI9a4m5VUNmuif3bose8WG4vYn3TLAuGwbYOpcD8kZq9sGlt+XlVm1CHcvs7YPduszp7uYQdKtl2UudWv51rLrGNqfbWSO18uoaWXm51Ks390Gn2GA8J2kcZ8++6ZleoxYz3UE6tdOs95G8Yqw+kIcdpwtlHcprjGaxe7zVrQPbYXRbS7B8PN+WXTaazLJSd+trtu/YPe/LveK/nWV77YPZsqoanL/iPPh357Z3f8XUt3/B5zuyxfvS95/HV7vOKm7/7qaTuHnxNof7d52+LOvablC4aGAfckurH6SPFThpUFcXVTVG9HlhHQb//ac6dWCvNBixbGe2uAwdEXmGQTcR+cW1feLRr304yquNeHP9Mbz842EcyStBTIgOC2/v16TLXVuKsAAtrpY0X5rQow2XZWsEvdvZMt3W0nKrXglh4pzv8ECt+O+G0L1tGFbPG4XJvZt2dUN8RIDYKMvjTLfew6A7Vv68uWM6O2wjzVjr1CroNZ59dZLOM3fMdKtl61THhMg79JdV16CktuTZWSO1E/mlSK+dFhJod97eOSQJPz86BsnRweK65Pbyiiux6CdbE68ArUqc0x2k18hKrqWkcZo0W240mR0C+ZsHJCBEaxbHa1UjWRJN6vFvflc8JgDFDuCAYzCbe6VCtvxaXX1cO8XDaDJj7me78cQ3v4tLr3lK2gtNMei2i3ntO9rb9mPGrKU7MeOjHTCbzfjl+CVsPOp6BRBnzhZWiBc9nK3r7srCdUfxl2/348b/bK3T8YlaKwbdROQXgiDg6bQeAIDPt2fjf7VzDRfe3l8x20QNw9rFHACu7euf9bBbmzahekzoEYcBSREY110eEAmCIJaY94gPZRNBAFq1SpzX3V7SVE06p9uxvNyzbHRogBY948OgUQl4955UDE9xrPSQzs0OC9R6/DORZro7xQbLspiBOg3evKM/AOBvN/ZGjF3X9gtFloBUrRLEoN8+6F65Nxef/mbJxjorLwcsn6kZj4zGzXZroBtNZiz6ydbEq6CsGiv2WJawC9KqUeZBUzVp4FxjMjuUzAdoVQiuffukgbDRZPY6U7ru0AVxWUMp6XxuADh1qUxcIq0+BFh+XtL3QelCgTOZZy7LAm37ueKWXyP52J0F3cWVNfj5SD42H7uIf2ccwz0fbsfMJTtRJJmXv3RrFv7wyS63TemkVRWvrT2Kg7lFHr4iC+tyn9L5+2cKyvBK+mFmv4lc8OxSMBFRAxjaKRoTesThp8OWzrF/GN0JV/uoSzR5ZkKPOMSF6aFRqVha3kgEQcAH9w5y+vjsUR1x6mIp7hvRsRFH1bS9fGNv7Dl7BQOTIsX7IoPrX14OAF/84SqUVtU4rSqQZrrDPGyiZv+8uLAAhARoxG7fwTo1bujfDmO7t0FYgBYbjsizltb5y5FBOrHqJ9zFEmmuKlTCA7UID9Sio5u5+2YzsO+cJQAL0qkdmlwq+XKnreS60mCUZe+t4wpWGLbBZMaFYs8CWI1KEEvIH/x8t8Pj9ktPnrpY5lUDTq1acAjcAeDohRI88c0+WTVKcUUNFm9Unl9dYzRBYzdNQLq8msEoXyYNALaekJfTX1FobgfI10N/62fb8YsrDeLvxQs/HAIArNyTg9sHJyruB7AG+zbW6oRtJy7hka/24tWb+2Bc9zinz1cy7b3fkFdciV2nC7F87givnitlNJnx9a6z6JkQhr7tI+q8H0+cLSzHo1/vw5yrO3n9eonqgpluIvKrJ6d0R4heg8EdIvHYpG7+Hk6rE6zXYN38q7F6/iiWljcR8eGBWHLfEJ8tU9YSDE+JwYNjU2TTTuLDA6HTqNAuIhDBeo2spDzEw/JywH0Zv7QpmzfBnE6jwovX98JTU7qjfWSQbExBOrVsf7EhjuuTA/Kyc1frtXty7naQXJhwt0RcoE6D127t53afUpcV1uiWZrqlaoyum65JubsY+O3uHNnt7IJyscGcJ9QupjJ9tesc7vrvdvH2W+uP419rjjrd1t72rELx39U1Jjyz4oB4+0q5QdYJ3p400DYodD4HlBuxFTpZK93KvvGcAAHvbTqJuz7YjgvFVZi1dJfL559SKPO3zuW3NiR0dtzCsmqna7kDlm7tTy7fj+vf3up0+Tlf+cu3v2NHVqHb10vkK8x0E5FfpbQJwY5nxkOnVjlkCahxuMqgETVV4YFafPfgCDGYDQ3QiPOgvQm63ZGWiXvaRM3q3uEdxH9bSt4tZc9BOvn4YkLlc7qtooJ9F3RLqwH6JYYj76DzoDdIp8aNA9phVJcYfLzttCy76kxhmWOWNlCrRrDGMTA0GM3IL5Ef/84hSfhC0rzMNu4QbKjtPK7kn2uOyG5X1hi9Wvar0ot1uXecLnT62NMr9juU8FuruADLnO7V+23l8dKA3B37bL6VfQANWNZ4lzp2oQSbj13EjGEdUG004dvdjhcHXl19xOE+XzqSV4zr394qlr6ffCVN8WJH5hlbF/hfTlxEn3bh2HayAHcOSYLWx98P7PsPEDU0Bt1E5Hf2X0CJiDzRQ7KkWligFrlFlQjWqV1mL70lKy/3omzdXqhCptvKfh1vK2nQbd8sTSrAg+Zu0kx3VLDy8ezHFx2ih1rlWbBTWOaYmdRr1AhRuFbwrzVHHEq6O9qth27Vp30Y3p+eij/8L9OjcdQYzajyItPtS/1eXOf0seoaE3QaFWo8WAsdAKTxtH2Hduk2+88VYe7ntvfGvmHbpH9vBmAJ0H/PKVKcF+/MmgPn8U3mOQzvHIPD54tlTSC98frao7K55pUGI4I9uDA24Q3L2GuMZswa6dvpNnX5jCipNOCDLVmY2i8eKW1C3T+BSIJpJSIiImr2rMGxN/O5PSEtL3eVbXZHOq4gu4DDk6BbEAT8+tQ4PHed4zJggTr3me4QvQa3DGyPkSkxmD+hi8vXIt2fRu1ZcKKU6baWl9vHN0olyh1jQhzuAwC1SoVJvdrKmui5YjCavMp0+5Kr41YbTbJmet7Y4SQrbjSZ8Yf/7cLZQlvjuGqF+ekAsCf7imLAbXZYuMxmzqe78dPhfLy06hC+zjyH578/6HasZwocf7b2lSc1TsborEfhS6sOOV0yzhNLtmbhwc92yyoG6hJ0v5FxDG+uPy5eDCDyBoNuIiIiavasTc58WVoOWEq3rcuEeVteLqU0p9vKWdAdYXe8+PBAxbXbPe3HsPD2fvh09lDEhQVgxzPjsf3p8bjZbtk6+/F5GigqZbq1ahU0Kvla61YxITo8NqmreFu6HJyUujYSC/awIqrGZPZb0O1KdY3J5yXSBqPJofmaNdP915X70fGpH8X7nQXX0z/cUefjVxqMDs3hJv7bMSC1P2+sjQKLKgz48ffz4hx8VwsDPL1if53GuGLPObz4wyH8uP880iWN7VR1WBni8PniOo1B6oMtp7BwnXJfACU1RpPiNAJqfur8l8lsNqOgoACCICA6OtqXYyIiIiLyii3T7fseBWGBWlwsqfKqkZo9acbcvlQ8NlQ56FYK8u0DdsCz8nJ7eo0acWFqvDGtP5bvkTcjk0758bTXhqsmWlHBWpyxS9beNSQJ/RIjxNvBeg10GpXDklfWjGSQ3rMLC4YaE6pq/FNe7soL3x9EgY/nERuMJjGAld53Ir9EXE7OSqHnWr0N/FsGyu3K5ZWWLLMPcKuNJjyzYj8+224Z451DkvDqzX1k89ztx7teMj/eE8WVBqw/fAGPLNsn3lcu6chfl0x3iL7+ny1///EwAODW1PZIjg6G2WzG0Qsl6BQT4rBknNFkxtWvbUSAVoWfFlzdoEtIFpZV48j5YgzrHM2lKhuI15/SeXl5mDFjBiIjIxEXF4c2bdogMjISs2bNwoUL3p0QRERERL5gDVDrM+/a6b5r9+nNkmH2pOXl9vNZnXUvVw66Hceg9/HKA9KLAnUtiZZSeh06jUqW+Q3RaxAX5vg+WIMjTzPdBpMJVV40R2ssvg64AcuFDqUsaL7CcmzrDnn3Hf18kfu1zu0Dbk/tzb4iBtwAsLy2udupi46l6VaVBhN2OWlk99/Np/BNpq1BXH5xJaZ/sF0WcAO2TLrZbMbubFvTtue+O4CzheUALEuJnbtcrngcZ9efsi6VYd3BPIf7zWYzTuSXitUH0hJ5awO/ZTvPYvKiLej619V4+Is9sufnXqlAzpUKnLxY5nH1hsFowp3v/+bQYNCd8Qs34q4PtuMHL+b8e+pyWTWe++4A9p9zvyb85bJqrPo9F89/d0C25F5L4NVfj+LiYgwfPhylpaW477770L17d5jNZhw6dAhffPEFfvnlF+zevRshIcrzcoiIiIgagjWT7OvycsA2l7s+c7pdNVJzFswrZdaVMt1K2cX6kDbj8nROtysPXt0Jm45dkt2nVatkAWOIXoP4sEDZ/GTAFvQHSzLdggDo1CrFQKTGKC8v12uUt2sJ/rbqkMN9KkHAo1/vU9jaO8P/8XOdn/v62qNYMLErjuSVoKjC4DCH/2ieY5m22S61rZSZv/XdX3H6H9fK7jt9qQwvp9uyx5UGI8Yv3CSuZCBlzeB+uztHtv9Pfj2DX05cQvrDozDqXxsAADf2T8CiOwbInu+sJH3s6xst+5klX+px+e4cPPr1Pozr3gYfzRyM//16WjIWy/+XbLXd9/2+XAzvHI1xPdqgTah8uoWzSoXCsmo8+90BTBuUiNFdY/HToQv49VQBfj1VgL9M7q78JAWXa6cpZBy6gOv7JXj8PFc+/e0MYkJ0WH0gD9/tzcUnv54Rf34mkxlzP9uN5OggPJXWA7M/3omfDuejfWQgzl22fAZ8LNm+JfDqL9Obb74JtVqNgwcPIjZWvn7oX//6V4wYMQJvvfUWnn76aZ8OkoiIiMiV5GhLd+6kKOUu2PXxh9Gd8d3enHqtne5qTrcgCFg0rT9yiyrw5k/HxSBRKRhXyviWKQQY9SEdqy8y3QOSIrDlibF4Jf0wVtdmr7RqeSl5gFaFOIV53SqFTLdOrYLOSTBdYzKLc4Sfu64n7h3eAV/vOosjeSVYuu20V+PuER/mk3m8jclkNuO8h2ugO2MwmupVjv72hhPQaVR4I+OY4uNldhnyqhoTxi/cVKdj2c8pL6owKAbcgC1o/mFfrsNjpy6WyebHr9ybi0V3DIDRZMbpgjIUVRjczgPfd/aK7DPiw1+yAAA/H8nHlfJqFFc6jst+rv2Ty/cjLECD31+4xuV2Vn9fdQg//n4eP/5+Hqf/ca3DdANv1eVsL6k04HKZAUnRts/e0wVl+OtKy7r03ds6dnrfe+4K1tRWBzw5pTt+OpwPAGLA3RJ5VV7+448/4umnn3YIuAGgTZs2eOqpp/DDDz/4bHBEREREnrixfwI+nz0U8yZ08fm+J/dui3fuSa3nnG7bc5VKxG8c0A5zx6RAJ6lhVcqsK3UqL6v2XdD953EpGNIxSrzt6ZJhVoM7RCrenxgVJBu7VqOSNZATBEGxmZpGYU63TqMSm9spsQZ1HWOCoVYJuGNIEvpL5o97anz3Nl4/x9+cLS/mDfvmbHXhLOAGLCXE9pQ62ivZfOyibM6+IAkTzWazy6ZjpZUGbDyaj/wSx/J7wHGe91vrj2PUP3/G+IWbcPPibch1U3Kf5eI1/HPNEVRUS8ftnDU492RqdZakW/xd//0NJsnVEvvqAU9cKK7EtpOXUGkw4rGv98nWlrfKL6nEhWLbhZ0hL6/H6Nc24PiFErFD/GXJagbSYRTV/m5J15Of/fEup+N5Y93RFtNIzqtP0mPHjmH48OFOHx8+fDiOHvW8Ix8RERGRL2jUKgxPiVEMaJsC65xuvUblsomTtJmSUpBv32wJQJ0CSiVhARo8OqmbrJGS1ovy8uv7JSDQxfuvlQTwerUKfdqH44WpPbFk5mAAwPSrkh2eo1LoXq7XqKDXOJ/HXlplELcTj12HzuHSzJ0zQzpEud2mMX2+Pdv9Rm74unLCnn3jPm/M+GgHXvrBVlYvDUzNZrgM0F744RBmLtnptHrBvqrjjYxjyJVUDZwpkM/1tg9ql+/JwcNf7IHZbKu2sPpix1lsOJov3t5xuhBnC8udVhS8/fNxFEouTki3+2DLKdzw9i8oqjDIqkW2nSzA4fMl4u2NRy867NdgNOHRr/bho1+ykHHoAgpKq2Rj3Z5ViLv+ux3dn12DbzLP4U+f7ZY9v8ZowpCX12PoK+vF51XU/n/ivzdj3L9/gasYud9L62A2mzF/2V7xvvVH8p1u/9bPJ/BN5lnnO2xGvJ7THRER4fTxiIgIFBc3rzIcIiIiooZmndOtNCdbSpqpCg9ynVm/rm88RnWJwS0D29d/gFAO6L3p8qxVq3B9vwRsPnYRnWKDHfclCeC1Gsu/Z47oKN6XGBWE/S9MwpQ3t4hlptY55dKLKQFatcsguqzKEgTotbZt6jI3XWmpM3uv3tKnzqXRTVVpAwfdnvhRIcNq9dn2bLx8Ux+H+01uMt3uuMssS4PgheuOYtnOs/j8gaGybb7flwuNSsDyPTmyPg6AvHT6mRWW0usubZT7YL2+7hheX2erFjDDEuR/+tsZsQP6fzefkvVfAID3N58S/73p2EWcL6rEHYMT8dHWLCzddhrX9onHt7vP4dvaWFo6h9qZ1fvPY8fpQvz12p5igA0AG47kY3LvtrJtzxdVotzu18e+NH757hyvpkBkFyo3tmtuvAq6zWYzVC7KjARBqFMpAxEREVFL1ra2dNq+QZK9Sknn7RA3WftucaGYNjip/oOrpVH4jqd0n5S0UZlOI+DmAe3QLiIQPeMd1xPXqqQZdOX9hgZoZcG/mOmWlJcHatUulzKzBo3SbLiuDpluZ2uHS0UF6bDtyXF4Of0wfmyAzs/+cPJiqb+HgJ9dZD+d2XfuCnaevux+Qye8CWH+7+cTAIAJbziuS27N5DubWy47pofHW5RxDB/UzhG3+ibzHPKKnQev1h4Gv54qEOexvycJygHP5lBbs939EyMwsWec7P6Ft/XzaPxSvmj01xx59QlkNpvRtWtXREVFKf7XvbvnXfKIiIiIWotOsSF4b3oq3rpzgMvtpJkklZMsc9/24QCAqT7qMjyqSwwAYMZwx/JuacntIxO64m839JLN2w6QLC+mVaugUgkY1jlaMUsvnR/uKlMtPaate7k8052s0DDPmpW3ltxKy8vrkumWZsr7tAvHf+4aiDHdYh22SYgIxFNTPP8OPLZb3Rvyeao+vxt59WzE1himf7gdP+zLlWWnb3nnV/xjtXdLZUm5yq43lBP5nl3gsA+4AbgMuKWUGsfVxbwv98JQI79MoBRAF1QBf/7Sdv+xC/6/iNMUeJXpXrJkSUONg4iIiKhFu6ZXW/cbeeCbOcNRVGFAbKjy+t7eeveeVOw7e0XWQM1KGqy2Dddj2uAkbDluW/4rQKuCtb+Uu3nT0vnhSqXsVtLg3BpIS8vyA7VqxITqFPcvLS+WHsNdxh4AtjwxFr+eLEBJVQ0m9oiTvZ57rkrCtX3jsWyXfH6pdRvpzyIuTI8LdmtlJ4QHiPOD7ddpbwhBWjVmj+yoGKy5Y1+y3BRtOX4JW45blvnyFWu3bXKu30vr3G7z8TE1CqqUm9W1Zl6d9ffee29DjYOIiIiIPKDTqHwWcAOWIHB4SoziY9Jg1fpvaSAuLeF2F3RL54e7KveWZrrVCkuGBejUikvDaVUqVEK6Rre047nrTPefxnRGYlQQEiX7LZJ08bY2l5NOo3xgVEfxNUuPNXdMCp7//qB8bJILAIFa1/P6faGyxoiUMOX5wu5I5xI3dTe/s9XfQyA7BVX1X2awJar3pbbKykosW7YMZWVlmDhxIrp08f1SHURERETU+DSy5meWwFGaiQ6QlGC7yl5b9uVZeblaIegOks3pVuHuocnYePQitp0sUBwrYFde7iLT/dUfh2FgUoTD/VpJoK4Sg27b489c21O2/Y5nxqOksgYXFMqzpa9XqZlegFYlm89fX5UGo+xn01L58j0jakhenY2PP/445s2bJ96urq7GsGHD8MADD+Dpp5/GgAED8Ouvv/p8kERERETU+KRZZ2sjNGlDNOmcbp2bedPyRmrOt3WX6Q7UqhGs1+DzB66SP88ukJfOyVbqwr7xsTHY/PhYDOkYpdiYTRqoW59tctFtq01oADrHhsjWZLeSBt0BCkH3M9f2xEiFagP7OeSeqjCYXC6rRtRceDrvvanzKuhevXo1xo8fL97+7LPPcObMGRw/fhyXL1/Gbbfdhr///e8+HyQRERFRa2K/ZrC/SINR67+lAWyAN+XlHs/plgTdCt3LA5yUZ9u/Y9KxVditmwwAHWKCXa7FLb0wYI2/XQXdVtY12Z3uS2FtqmGdohUb5z01pYfb4ymprDbKLjoQNVdrD17w9xB8wquzMTs7Gz172kpp1q1bh1tvvRXJyckQBAHz5s3Dnj17fD5IIiIiotakMeb9ekKjkJ2WzenWelYyDljmXFu5nNOtVsh023UvV5JfUiXZRiULYtuGuV/+y54guC4vdyY5KghD7ZrSSd+bMrulpD6ZNQQpbUIUL7TYZ+j7tAt3PwAAA5IjEB7oep13Imo8XgXdKpVK1kDit99+w1VX2Up7IiIicPly3dfHawhnz57FmDFj0LNnT/Tt2xdff/21v4dERERE5JJSCbI/yOZ0K2S6ZY3U3MzpVnuwTrdlO6Xu5bagWxqcWtfStk8e28/hTowKwqf3D3U5PlcEL4JulUrAsj8OU1z6DADaRQTKth/d1VJCrpQBty/Dd1WWb6VTqzBvfBdEB/uu2Z7VkpmDfb5PotbAq6C7e/fu+OGHHwAABw8eRHZ2NsaOHSs+fubMGcTFxTl7ul9oNBosWrQIhw4dwk8//YRHHnkEZWVl/h4WERERkYOZwzsAAJ5O83zd54akFDhqnDVSczenW6Epm6fHlDYfk8a9n8wagrHdYrFy7gjZPswK0fHILsod2j1hHZEZHkTdtaQl9LvO2JJSaX3iFbdXmlFgn+l2V00AAA+NS0GQToO4MN8H3b09zLQTkZxX3csff/xx3Hnnnfjxxx9x4MABTJkyBR07dhQfT09Px5AhQ3w+yPqIj49HfLzlw61NmzaIiopCYWEhgoOD/TwyIiIiIrnnp/bEH6/uhPjwQPcbNwLZkmG1AZ/GWabb7ZJhnpWXSzO+1hJx6b6l86q7xIViyX2O3z1NnsfGHrEGm97s1zJmy1xy6frhiVFBCNVrUGJXZm4fYA/tGOWQ/XbXIR4AQmvnlLcJC8DD47vgrfXHPR+0C51jgxHYRCowiJobrzLdt9xyC1avXo2+ffvi0UcfdSjVDgoKwty5c70awObNmzF16lQkJCRAEASsXLnSYZvFixejY8eOCAgIQGpqKrZs2eLVMax27doFk8mExMTEOj2fiIiIqCEJgtBkAm5AeW1taUO0AC/mdEvjR1dBt3Q7pXnOJg8iX08annnil7+MxcoHR6BjTLDX+1V6P67qZJnrPX9iVwDAzQPbiY9J56D/7YZeePeeVIfnPzQ2xe1xO8fa1udeMLErnprim6qJZX8chgAPgn4icuRVpruiogLLly/HypUrYTAYsHfvXrz11luIibGU6zz//PNeD6CsrAz9+vXDfffdh1tuucXh8WXLlmH+/PlYvHgxRowYgffeew9TpkzBoUOHkJSUBABITU1FVVWVw3PXrVuHhIQEAEBBQQFmzJiBDz74wOV4qqqqZPsqLi4GABgMBhgMBq9fHzlnfT/5vhK1DjzniZohs1H2b4PBAJUk8JSWlKtgkp3f9ue8oUaS2TXXwOlHgWT/JmMNDAZ54G0wGt1+jpjh/rPGk8+iuBAt4kK04rbSgN/d82ePTMY/1hzDxB5tMOOqJHzyWzaev647DAYDpg9ph6HJ4egcGyzuRyUpXb9jkCUYLy6XH2NgYhh2PDUGQ17d6PS43doEyX8ONY6d2+siXK+C2eSbfRF5oyl/b/B0bIJZadKLE48//jgWL16Mu+++G4GBgfj8888xZswYnzUnEwQBK1aswI033ijeN3ToUAwcOBDvvPOOeF+PHj1w44034tVXX/Vov1VVVZg4cSIeeOABTJ8+3eW2L7zwAl588UWH+z///HMEBTlfVoKIiIiopSmuBp7NtORonupXg7ZBwOqzKqw5Z8l4Tmhnwk85ln//obsRvSKdf638JU/A11mW8uQ3htbAWbL7gyMq7L9sefBfQ2pgXS1s3q+WcQyPM2FaJ5PD86yPA4BaMOONqxwDROk2bw6rcXjcnYW/q5FdJnj0fJMZOFcGJAQBniSIPz2uws5LKtm+K2qAJ3c6jln6OqxmdzOiXbAZUXZTuTNyBKzKrntZeEqYGTd3MKJd7cxM6bE1ghk1ZttFkZs6GLHiNEvQybfqcq42lvLyctx1110oKipCWFiY0+28ynQvX74cH374Ie644w4AwN13340RI0bAaDRCrfb9CVZdXY3MzEw8+eSTsvsnTZqEbdu2ebQPs9mMmTNnYty4cW4DbgB46qmnsGDBAvF2cXExEhMTMWnSJJdvJHnPYDAgIyMDEydOhFbLZS2IWjqe80TNz5VyA57N3AAAGDvmanSMCUbWxlNYc+4EAKBXty74KeckAGDY0CEYmRItPtf+nL+8PRtfZx0BAFx37RTZklxSq67sxf7L+QCAtMnXQF+7RNi8X9cBAG4Z1Q9p/RybkVkfBwAIKqSlXeN0G0EA0tLSPH8jaqmTL+ChL/chrXcc0tL6ef18Vyr35GDn8oMA5GN7cqftdVnvl73WWjOmjhW7uUud2XQKyD5R53Etvm+kWF4PAGdDsvB6hmWeeK92Edh3rggA8NCYTri+XzxWvLm1zsciUlKXc7WxWKui3fEq6D579ixGjRol3h4yZAg0Gg1yc3MbZJ70pUuXYDQaHTqix8XFIS8vz6N9bN26FcuWLUPfvn3F+eL/+9//0KdPH8Xt9Xo99HrHbo9arZZfEhsI31ui1oXnPFHzESD5SmQ9d3WSdbKD9LZzOVCvfG5bnyeobM/T6XROjymd2xyg14kN3DY9PgZ7z17B1L4Jsm2UmMxmt58zdfkcuq5/e/RPjkJ8eKBD47P6um1QMgL1OgxIjJCNbUjHKOzIKgRgG/NTU7rj1dVHZM8P0Cm//4LgPs3+4NjO+M+Gk4qP6e32+9D4rmLQLb1wotdqEBrk+47pRE35O4OnY/Mq6DYajQ4fkhqNBjU1DZvyt78SajabnV4dtTdy5EiYTI4lSERERETkmlIzMGlzswCt593LPW1CJsC2f2lgmxwdjORo56vPzBvfBW/Wdur2UR81Re0jG2a6oUol4Pp+CQ73K33j/ePVnR2Cbmffjd29FYFaNR6/prvToFtp/XDbMeW3g7TuQwuNSkCNr9vLEzVxXgXd1lJtaSa4srISc+bMkS3BtXz5cp8MLiYmBmq12iGrnZ+f3+TWAyciIiJqadSy5cGsS4Ypr9OtdzNxuS5xlqdJFgB4ZGJXMeh2u1/vh+I3dwxJxPasQvRPjHC5nbPEu6uLHd/+aTg6RMsvIqgEYMXcEbjhP5YycU9/BGYAATr3WfWYED3yiis926mP3XNVEj79Ldsvx6bWzaug+95773W475577vHZYOzpdDqkpqYiIyMDN910k3h/RkYGbrjhhgY7LhERERFZstfzxndBhcGIhAjLUmYatTQQ9zzT7WnvXi/i7Fbhxv7tkBIbipQ2IS63c1bu7uptT02OdLhPp1EhIshWMusy023/XBe/AxN7xuFQbjHeuWcgrn/bP/O+545JgdkMfLadgTc1Lq+C7iVLlvh8AKWlpThxwtbcISsrC3v37kVUVBSSkpKwYMECTJ8+HYMGDcKwYcPw/vvvIzs7G3PmzPH5WIiIiIhI7pHaNaWt1LLycuk63f6Plu8f2REf/pKFx6/p5u+h+IwgCOjTPtyj7ZR4sVARAMvFE52kasF1ebng8rbUe/ekup2L39BCAjR4+aY+HgXdk3rGYd2hC40wKmoNvAq6G8KuXbswduxY8ba1c/i9996LpUuXYtq0aSgoKMBLL72E8+fPo3fv3khPT0dycrK/hkxERETUaqmFumW6bx7YHm+uP46x3do02NieSeuBO4ckonOs66xwS+S8vNy7/ejUKpcZaynpId3F9v4OuAH57647vRLC8cuJSyiv5trkVH9+D7rHjBnj9grc3LlzMXfu3EYaERERERF5Qi/JdOvczOmOCtZh97MTZY3YfE2lEpDSJtTtdt7MFW+qYkJ0uFRaLd52lpE2u22lJqfTqMRl2gDAYHTekLi5vY2usvb2NGrBq+2JXPHsMhYRERERkR1p8zR3mW7rNu4CXsY5nlk7fzT+OLqTeNvZnG5vM91au0y3p53GrcF9u9q5//4ytGOU08fcNfuTUqsETOrFxs3kGwy6iYiIiMhj0hBMmglsCnO6PRUoyeQ2V9EheozuGivednaxwtvl07RqAVq1gK5xIWgXEYjESOdBtKDQB75LXNMs7W8bFuBVibtGJWDumJQGHBG1Jgy6iYiIiKhO5EG3b75WKgVyvvLBjEFIjArEx7MGN9gx/MVZKfSEHt7Noddp1BAEAavnjcbGx8dA4+Ln2lnSUd0a3Bv9vAa3syXSpB3ZPZEQEei2YzyRpxh0ExEREVG9+SrobkgTesZhyxPjkJrsvAS5uXLWJGxQhyj8+PBIj/ejq61YUKsEpz/T5XOHY8awZDw5pbvDY0pBd0PO47fni5j/qk5RmNyrbf13RFTL743UiIiIiKj5kCYSpWt2O5tT7LXmU6XepLiaC98rIRyPX9MN3+/NxdELJS73464hHgAMTIrEwCT5Gt/WXwuloPv12/q53ScAjEiJRlxoAJbvyfFoeyXOMt3eNM/78g/DnD628sER2HW6EIdyi+s1TvJMc5q24krTvyRJRERERE1Sz/gwXNc3Hg+M6ujvobRK0vjSXVD54NgUrH1ktNPHR3WJAQDcN6J+P0uloNeTQN5bmx8fq3i/SRL0PzHZtl67r0K37m1DMXtUp2ZR2dES9Gnnfo365oCZbiIiIiKqE0EQ8PZdA327T5/ujTz14b2DcfZyeb3XOFfqdh6g9X2AqneyT+nhpSX3Kh8Noal31+8WF+q2msGVa/vG48ffz/twRPXj3w4BvsNLNERERETkMW/XfabmQadR1S/grs1wSzPND41Nwdhusbi6q3fN3DzhLPiVlrdLm8vVtUHfDw+NRMeY4Hrvp7nolRDm7yHIeNt9v6li0E1ERERETYY3c2+p6TFKoqTHrumGJfcNcTrf//FruuGnBVc73dfcMZ2dPuYs+JWWt0t/ler6a9WnfThevrF3vffTXCgFud/+aXjjD6SFYdBNRERERB7rEB3sfiNqFE2x6mD++K4AgNtS27vdViUILpflemKyY3d0AHjj9n5w1rfPaSM1yb9fuqGX+O/7RnRwN0zZkxs65tY1wbniqcmR7jdqIE3vN7xuOKebiIiIiDw2vHM0XrqhF7rFhTbI/lt4ItGnkqKC/D0EBxN6xmHnMxMQE6Jzu61S1tiTIGtgUqTTigjpnG5Zebnk3zOGdcCMYR2Qc6UCCeEBWLL1tOtxwnE/zi54TO2XgB/25bp7CU6tengkJv17c52f3xRFBmlxudzg72H4FYNuIiIiIvKYIAiYMayDv4dBAJKjg/HxrCGIDnYf4DY0aQgaG6qv0z68mS/tNNNt8ry8vF1EoGfj8iLTff/IjjhTUIb+iREY3yMO9360w6NjWFXXmBT3+eEvWV7tpymp15SRFjKpu+nVLxARERFRqzW7dvmxyb3a+nkkzcPVXWPRu4Usq+RpubwZzgN0o5MgTeUi8HO3pJn0me7iR51ahe8fGomXbujtesNaI1NiMCIlGgDwx6s7ocJgdNjm5oHtHO5bNK2/4v5eudmz4zam+lSvtIyQm5luIiIiImpC+raPwN7nJiI8UOvvoZAXGjshKTiJk513L3cuMTIQJy+WOT+WkzJ1d8wevCmv3twHcWEB2J9ThH7tw1FaVeN4fIXR90uMkN3+aOYgJEUFIaVNKI6/PAVdnlnt8Th96a7ORnx+Uu2XYzdlzHQTERERUZMSEaRjF3NSlBQVhKSoIFkY+kBtdQQAtJGUtvuie7m3z5Vu68l1CJVKgE6jQmpyJDRqFSKCdNj+9Hjcc1WSuE3b8AC3+xnXPQ4pbSx9FrR2zdjiwjwv9/fkQoEzz1/XHX2iHJ9v//4F6ZwH5X+9tofdeOo8nCaFQTcRERERETULGQtGQ60SZFnsW1Lb47PZQzGqSwz+LSm7lpWFu8h1u7vAo/To2G7Ka4/LduVBwKg0Nz0uLABhAbZKj6hgHb7903CsfHCE4j7aR7qem771L+Ow+9mJCNE3bJHzPUOToFeMLm0v8q07B2D2qE5O92H/WFPs0F8XDLqJiIiIiFqJDtGWjue+DsB8ERx50khNXRvV2sfJI1Ji8L/7hyJZsqSd4E0HNFfjUnju5N5txbnY9eFsrrn93anJkegRr7xiQLDO+c9SEACNWoUoD5vtOcssX9snHgDQu12Yy+erVcDah0dAo5KW5EvG4+K5vRJc77s5Y9BNRERERNRKLL1vCG4e0A7L5w7391DqFAdbA2lXjdFs29r+7azbuYdHVRzHiJQYl8/y5EKEs2EpXYBQS15QaIBGLNMe1tl58C/dy5/GdHa63bRBiXhhak+nI154ez/87/4hWDJziHjfmG6xitt2ig2Wrb/+1BTbeusTe8YhKki5X0OwwoWgllJezkZqREREREStRIeYYLzhpPN1ffgiOKpPkKq8rW1rV0G6u316sua4Eo/eEycHVxquRq3Cu/ekotJgREyIHmvnj0bGoQu4Y0ii891LdnTTgHZ4be1R8XZMiB5/v7E3ooJ1GNIxCgDw1vrjivsJ0KoxqoslyN70+BjsPH0ZU3q3Ra/n1ypuL33tNw9sj5EpMYgN1UMQBNw5NAkv/HDI6ZhbIgbdRERERETUJLhr5GWNIb3NdNenkVpydDBevbkPIoPkwbfSUL1Za9wVZ3uZ3Nu2lF5iVBBmjezoZEvH/Tgrk3dlWCfHLHpydLCsjF9JsF7eLK1NmK0ZnF6jRqhegxK7Tu32w7t5YDs8NDbF5XGaCwbdRERERERUL41VBSw4mdOtuK3s364aqbnf151DkhzuC9C6XhqrXtn/BujeH+hmvL70+m39MPez3XhonOdBs/1LvqF/O3SKDVHeuJnhnG4iIiIiIvI7b7LE3ma6EyLcL7vlrTuHJGJQciSemNxN8Zj1irnr8Vwp6fsUEaTD327o5XJ7+wsFdW2Q1yk2BGvmj8Z1fRO8fu6qP4/E67f1w+gurufMNyfMdBMRERERUZ1oVAJqTGaM7qLcVKuheBKUCoKAT2YNwdeZ5/DUlB7un+ClIJ0G3/zJ0pBu39krKCyrRoq3mVknMa3PEt12+5k+rAOe/e6gb4/hY73bhaN3u3B/D8OnGHQTEREREVGd/Pb0eJwpKEdqcqTXz7UGfUlRQcguLMe1feOx/VSBV891uQ2A0V1jMbqr6wsC0gz7jf29z8wCwHvTBznc525+uqdjqg9v99JS1sVualpNeXl5eTmSk5Px2GOP+XsoREREREQtQkyIvk4Bt9QPD43E57OHYtqgRI9DPmlX7jah8tLxuDA9AGBkHcqTF90xwOvnOOPJa3G2fravstBNNZutNC5fXWhoilpN0P3yyy9j6NCh/h4GERERERFJhAdpMTwlBiovF9NeO380vntwhEPguunxsdj11wmIDw/0aD9/mWKZk33vsGSvju+Ou0S3XqOCRq0cjvmuurxpBrIfzhyMyCAt3ryjv3hfQoRnP6/mqFWUlx8/fhxHjhzB1KlTceDAAX8Ph4iIiIiI6qlb21DF+wO0aredxaXGdY/DvucmISywcUMjncZ5/rMxMt2eHMLdhYN370nFnE8z8a9b+3o1rsEdorD72YkQBAFRwTos23kWz1zr+3n3TYXfM92bN2/G1KlTkZCQAEEQsHLlSodtFi9ejI4dOyIgIACpqanYsmWLV8d47LHH8Oqrr/poxERERERE1BD8lZcND9LKStZ9wxaxPjQ2BftfmIT2kZ5lc301Fq/ndHs5pXty77Y4/vIU3D4o0csj2V7jqC6xePuugU5L7VsCvwfdZWVl6NevH95++23Fx5ctW4b58+fjmWeewZ49ezBq1ChMmTIF2dnZ4japqano3bu3w3+5ubn47rvv0LVrV3Tt2rWxXhIREREREdVBS2rjJQ1gH7umG0IDtB4/13eZbu/WJ6/L+691UiJPNn4vL58yZQqmTJni9PE33ngD999/P2bPng0AWLRoEdauXYt33nlHzF5nZmY6ff5vv/2GL7/8El9//TVKS0thMBgQFhaG5557TnH7qqoqVFVVibeLi4sBAAaDAQaDwevXR85Z30++r0StA895otaF5zy5YzSaHH4/TCaT+G+l353m9PuUGKEX/20dt7SjuQDnr8dkdP0+eMPp882Oj5mMRvkmZrPHx2+N57ynr9XvQbcr1dXVyMzMxJNPPim7f9KkSdi2bZtH+3j11VfF4Hzp0qU4cOCA04Dbuv2LL77ocP+6desQFBTkxejJUxkZGf4eAhE1Ip7zRK0Lz3lyZAlBjhw5jPTiQ7JHDIUqWItx09PTYR+uWO5rPmZ1FRCpN4vjrqhQw1r0bTAYnL6eYzkCAMu89Lq9Zsv7ZqxROoblscrKSofHjmfb3n8AKCws9Pr4remcLy8v92i7Jh10X7p0CUajEXFxcbL74+LikJeX1yDHfOqpp7BgwQLxdnFxMRITEzFp0iSEhYU1yDFbK4PBgIyMDEycOBFareflNkTUPPGcJ2pdeM6TM/N+XQcA6NGjB9JGdJA9Ns5gRPxPJzC+eyyGdowSt7VKS0trrGH6hP1o/3V4M1BVCQDQ6bRIS7tG8Xk5v2Th++zjln3U4TVXtM3B39KP4L27B2BoxyjZY9b3NCAgAGlpV8seO7b+BNbmnBJvR0ZFIS1tsEfHbI3nvLUq2p0mHXRb2c9FMJvNdWouMHPmTLfb6PV66PV6h/u1Wm2r+eVpbHxviVoXnvNErQvPeXJGrVI7/G5otVo8f31vp89p/r9Lguzfzl6PRm3rvl6X13zH0A64fXCyy2XYBMHx+GqVyu027rSmc97T19mkZ73HxMRArVY7ZLXz8/Mdst9ERERERNRyjUiJ9vcQfMr1cl7176Tm7brnSq6yy5JT3TTpoFun0yE1NdVhXkBGRgaGDx/up1EREREREVFjSggPwKf3D/X3MHxqQGKE08d8vnqZh6Tdy/92Qy/MHZvin4G0MH4vLy8tLcWJEyfE21lZWdi7dy+ioqKQlJSEBQsWYPr06Rg0aBCGDRuG999/H9nZ2ZgzZ44fR01ERERERI1FEIQGWEfbv16/rZ+/h+CgQ3Sw+O/pwzr4byAtjN+D7l27dmHs2LHibWsTs3vvvRdLly7FtGnTUFBQgJdeegnnz59H7969kZ6ejuTkZH8NmYiIiIiI6mjaoET8dPgCbhvU3t9DaXTSJcOiQxz7SFk1xgUGpUPcOKAdcq9UYDDLyn3K70H3mDFjZL98SubOnYu5c+c20oiIiIiIiKih/PPWvjCazFD7YM5xS9UY74zSMdQqAX8e36URjt66NOk53URERERE1PIw4HatIRPdr93aF5FBWvzn7oENdxCS8Xumm4iIiIiIiGwa8pLEbYMScWtq+xY3R74pY6abiIiIiIioEbieVGvT0AExA+7GxaCbiIiIiIioCWH1fcvCoJuIiIiIiKgpYSa6RWHQTURERERE1AjcLNokYsjdsjDoJiIiIiIiakKY6G5ZGHQTERERERE1IQJz3S0Kg24iIiIiIqImhJnuloVBNxERERERUSMwe7hoGGPuloVBNxERERERUSO4tk8CAKBrXIjL7Zjpblk0/h4AERERERFRa/DE5G7olxiOUV1iXW7HOd0tCzPdRERERETUJHWKDQYAXNOrrZ9H4hsBWjVu6N8OUcE61xsy5m5RmOkmIiIiIqIm6as/DsOW4xcxpXe8v4fSqBhztywMuomIiIiIqEmKCdHjpgHt/T2MRidwUneLwvJyIiIiIiKiJoQhd8vCoJuIiIiIiKgJUTFKa1H44yQiIiIiImpC2L28ZWHQTURERERE1IRwSnfLwqCbiIiIiIiIqIEw6CYiIiIiImpC2L28ZWHQTURERERE1IT0Tgjz9xDIh7hONxERERERURPSKTYEKx8cgZgQnb+HQj7AoJuIiIiIiKiJ6Z8Y4e8hkI+wvJyIiIiIiIiogTDoJiIiIiIiImogDLqJiIiIiIiIGgiDbiIiIiIiIqIGwkZqbpjNZgBAcXGxn0fS8hgMBpSXl6O4uBhardbfwyGiBsZznqh14TlP1Lq0xnPeGiNaY0ZnGHS7UVJSAgBITEz080iIiIiIiIioqSkpKUF4eLjTxwWzu7C8lTOZTMjNzUVoaCgEQXC7/eDBg7Fz506fHd8X+6vPPrx9rjfbFxcXIzExEWfPnkVYWFidxtfa+Pr3qzH4c8yNceyWdM7X5Xk85xsWz/mmd2ye8zznGxLP+aZ3bJ7zPOddMZvNKCkpQUJCAlQq5zO3mel2Q6VSoX379h5vr1arffpL5ov91Wcf3j63LscKCwtrNSdmffn696sx+HPMjXHslnTO1+V5POcbFs/5pndsnvM85xsSz/mmd2ye8zzn3XGV4bZiIzUfe/DBB5vc/uqzD2+f6+vXT3LN8f3155gb49gt6Zyvy/Oa4+9kc9Ic31+e842/P57zLUdzfH95zjf+/njONz8sLye/KS4uRnh4OIqKilrV1TCi1ornPFHrwnOeqHXhOe8cM93kN3q9Hs8//zz0er2/h0JEjYDnPFHrwnOeqHXhOe8cM91EREREREREDYSZbiIiIiIiIqIGwqCbiIiIiIiIqIEw6CYiIiIiIiJqIAy6iYiIiIiIiBoIg24iIiIiIiKiBsKgm5q8s2fPYsyYMejZsyf69u2Lr7/+2t9DIqIGdtNNNyEyMhK33nqrv4dCRA1g1apV6NatG7p06YIPPvjA38MhogbW2v+uc8kwavLOnz+PCxcuoH///sjPz8fAgQNx9OhRBAcH+3toRNRANmzYgNLSUnz88cf45ptv/D0cIvKhmpoa9OzZExs2bEBYWBgGDhyI7du3Iyoqyt9DI6IG0tr/rjPTTU1efHw8+vfvDwBo06YNoqKiUFhY6N9BEVGDGjt2LEJDQ/09DCJqADt27ECvXr3Qrl07hIaGIi0tDWvXrvX3sIioAbX2v+sMuqneNm/ejKlTpyIhIQGCIGDlypUO2yxevBgdO3ZEQEAAUlNTsWXLljoda9euXTCZTEhMTKznqImorhrznCeipqe+nwG5ublo166deLt9+/bIyclpjKETUR3w7379MeimeisrK0O/fv3w9ttvKz6+bNkyzJ8/H8888wz27NmDUaNGYcqUKcjOzha3SU1NRe/evR3+y83NFbcpKCjAjBkz8P777zf4ayIi5xrrnCeipqm+nwFKMxsFQWjQMRNR3fni736rZybyIQDmFStWyO4bMmSIec6cObL7unfvbn7yySc93m9lZaV51KhR5k8++cQXwyQiH2moc95sNps3bNhgvuWWW+o7RCJqQHX5DNi6dav5xhtvFB97+OGHzZ999lmDj5WI6q8+f/db8991ZrqpQVVXVyMzMxOTJk2S3T9p0iRs27bNo32YzWbMnDkT48aNw/Tp0xtimETkI74454mo+fLkM2DIkCE4cOAAcnJyUFJSgvT0dFxzzTX+GC4R1RP/7ntG4+8BUMt26dIlGI1GxMXFye6Pi4tDXl6eR/vYunUrli1bhr59+4pzSP73v/+hT58+vh4uEdWTL855ALjmmmuwe/dulJWVoX379lixYgUGDx7s6+ESkY958hmg0WiwcOFCjB07FiaTCU888QSio6P9MVwiqidP/+639r/rDLqpUdjP1TKbzR7P3xo5ciRMJlNDDIuIGkh9znkA7GRM1My5+wy4/vrrcf311zf2sIiogbg751v733WWl1ODiomJgVqtdshw5efnO1wRI6Lmj+c8UevGzwCi1oXnvGcYdFOD0ul0SE1NRUZGhuz+jIwMDB8+3E+jIqKGwnOeqHXjZwBR68Jz3jMsL6d6Ky0txYkTJ8TbWVlZ2Lt3L6KiopCUlIQFCxZg+vTpGDRoEIYNG4b3338f2dnZmDNnjh9HTUR1xXOeqHXjZwBR68Jz3gf82judWoQNGzaYATj8d++994rb/Oc//zEnJyebdTqdeeDAgeZNmzb5b8BEVC8854laN34GELUuPOfrTzCbzebGDfOJiIiIiIiIWgfO6SYiIiIiIiJqIAy6iYiIiIiIiBoIg24iIiIiIiKiBsKgm4iIiIiIiKiBMOgmIiIiIiIiaiAMuomIiIiIiIgaCINuIiIiIiIiogbCoJuIiIiIiIiogTDoJiIiIiIiImogDLqJiIiIiIiIGgiDbiIiomZg5syZEATB4b8TJ074e2hERETkgsbfAyAiIiLPTJ48GUuWLJHdFxsbK7tdXV0NnU7XmMMiIiIiF5jpJiIiaib0ej3atm0r+2/8+PF46KGHsGDBAsTExGDixIkAgEOHDiEtLQ0hISGIi4vD9OnTcenSJXFfZWVlmDFjBkJCQhAfH4+FCxdizJgxmD9/vriNIAhYuXKlbAwRERFYunSpeDsnJwfTpk1DZGQkoqOjccMNN+D06dPi4zNnzsSNN96I119/HfHx8YiOjsaDDz4Ig8EgblNVVYUnnngCiYmJ0Ov16NKlCz788EOYzWakpKTg9ddfl43hwIEDUKlUOHnyZP3fVCIiogbGoJuIiKiZ+/jjj6HRaLB161a89957OH/+PK6++mr0798fu3btwpo1a3DhwgXcfvvt4nMef/xxbNiwAStWrMC6deuwceNGZGZmenXc8vJyjB07FiEhIdi8eTN++eUXhISEYPLkyaiurha327BhA06ePIkNGzbg448/xtKlS2WB+4wZM/Dll1/irbfewuHDh/Huu+8iJCQEgiBg1qxZDtn9jz76CKNGjULnzp3r9oYRERE1IpaXExERNROrVq1CSEiIeHvKlCkAgJSUFPzrX/8S73/uuecwcOBAvPLKK+J9H330ERITE3Hs2DEkJCTgww8/xCeffCJmxj/++GO0b9/eq/F8+eWXUKlU+OCDDyAIAgBgyZIliIiIwMaNGzFp0iQAQGRkJN5++22o1Wp0794d1157LdavX48HHngAx44dw1dffYWMjAxMmDABANCpUyfxGPfddx+ee+457NixA0OGDIHBYMCnn36K1157zauxEhER+QuDbiIiomZi7NixeOedd8TbwcHBuPPOOzFo0CDZdpmZmdiwYYMsQLc6efIkKioqUF1djWHDhon3R0VFoVu3bl6NJzMzEydOnEBoaKjs/srKSlnpd69evaBWq8Xb8fHx2L9/PwBg7969UKvVuPrqqxWPER8fj2uvvRYfffQRhgwZglWrVqGyshK33XabV2MlIiLyFwbdREREzURwcDBSUlIU75cymUyYOnUq/vnPfzpsGx8fj+PHj3t0PEEQYDabZfdJ52KbTCakpqbis88+c3iutMGbVqt12K/JZAIABAYGuh3H7NmzMX36dPz73//GkiVLMG3aNAQFBXn0GoiIiPyNQTcREVELM3DgQHz77bfo0KEDNBrHP/UpKSnQarX47bffkJSUBAC4fPkyjh07Jss4x8bG4vz58+Lt48ePo7y8XHacZcuWoU2bNggLC6vTWPv06QOTyYRNmzaJ5eX20tLSEBwcjHfeeQerV6/G5s2b63QsIiIif2AjNSIiohbmwQcfRGFhIe68807s2LEDp06dwrp16zBr1iwYjUaEhITg/vvvx+OPP47169fjwIEDmDlzJlQq+deCcePG4e2338bu3buxa9cuzJkzR5a1vvvuuxETE4MbbrgBW7ZsQVZWFjZt2oR58+bh3LlzHo21Q4cOuPfeezFr1iysXLkSWVlZ2LhxI7766itxG7VajZkzZ+Kpp55CSkqKrCyeiIioqWPQTURE1MIkJCRg69atMBqNuOaaa9C7d2/MmzcP4eHhYmD92muvYfTo0bj++usxYcIEjBw5EqmpqbL9LFy4EImJiRg9ejTuuusuPPbYY7Ky7qCgIGzevBlJSUm4+eab0aNHD8yaNQsVFRVeZb7feecd3HrrrZg7dy66d++OBx54AGVlZbJt7r//flRXV2PWrFn1eGeIiIgan2C2n6xFRERErdKYMWPQv39/LFq0yN9DcbB161aMGTMG586dQ1xcnL+HQ0RE5DHO6SYiIqImq6qqCmfPnsWzzz6L22+/nQE3ERE1OywvJyIioibriy++QLdu3VBUVCRbi5yIiKi5YHk5ERERERERUQNhppuIiIiIiIiogTDoJiIiIiIiImogDLqJiIiIiIiIGgiDbiIiIiIiIqIGwqCbiIiIiIiIqIEw6CYiIiIiIiJqIAy6iYiIiIiIiBoIg24iIiIiIiKiBvL/QxwdK87WXg8AAAAASUVORK5CYII=", @@ -350,16 +361,28 @@ }, "metadata": {}, "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAHpCAYAAACful8UAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddXxT1/vHP7EqLW0pbZHi7u4wXMrGBnN332DMfmPO3N2Vbd8JMxgbDBu24e4Up0UKtFCX6O+P5Cbn3nuuJE2aFJ7368WLJrm59+TKOY8/BpfL5QJBEARBEARBEARBEEHHGO4BEARBEARBEARBEMS5CindBEEQBEEQBEEQBBEiSOkmCIIgCIIgCIIgiBBBSjdBEARBEARBEARBhAhSugmCIAiCIAiCIAgiRJDSTRAEQRAEQRAEQRAhgpRugiAIgiAIgiAIgggRpHQTBEEQBEEQBEEQRIggpZsgCIIgCIIgCIIgQgQp3QRBEAQR4cyYMQMGg8H7z2w2o0GDBrjqqquwb9++kBzz2WefhcFg0LVts2bNcNNNN4VkHIGMhyAIgiAiCXO4B0AQBEEQhD6+/vprtGvXDpWVlVi5ciVefPFFLF26FHv27EFycnJQj3Xbbbdh7NixQd0nQRAEQZyPkNJNEARBELWETp06oVevXgCAoUOHwuFw4JlnnsHs2bNx8803B/VYjRs3RuPGjYO6T4IgCII4H6HwcoIgCIKopQgK+MmTJ73vbdiwARMmTEBKSgpiYmLQvXt3/Pzzz6LvlZeX4+GHH0bz5s0RExODlJQU9OrVCz/++KN3G144t81mw6OPPoqMjAzExcVh0KBBWLdunWxcSqHgQpj84cOHve/NnDkTo0ePRoMGDRAbG4v27dvjscceQ1lZmebvX7JkCYYOHYp69eohNjYWTZo0waWXXory8nLN7xIEQRBETUGeboIgCIKopRw6dAgA0KZNGwDA0qVLMXbsWPTt2xeffPIJ6tati59++glXXnklysvLvXnXDz74IL777ju88MIL6N69O8rKyrBjxw4UFBSoHu/222/Ht99+i4cffhijRo3Cjh07MGnSJJSUlAT8G/bt24esrCw88MADiI+Px549e/Dqq69i3bp1WLJkieL3Dh8+jPHjx2Pw4MH46quvkJSUhGPHjmH+/PmwWq2Ii4sLeEwEQRAEEUxI6SYIgiCIWoLD4YDdbvfmdL/wwgsYMmQIJkyYAAC455570LFjRyxZsgRms3uJHzNmDPLz8/H444/jhhtugNFoxMqVKzF69GhMnTrVu+/x48erHnvPnj345ptvMHXqVLz22msAgFGjRiE9PR3XXnttwL/pySef9P7tcrkwcOBAtG/fHhdccAG2bduGLl26cL+3ceNGVFZW4vXXX0fXrl29719zzTUBj4UgCIIgQgGFlxMEQRBELaFfv36wWCxISEjA2LFjkZycjD/++ANmsxn79+/Hnj17vAqw3W73/svKysKJEyeQnZ0NAOjTpw/+/vtvPPbYY1i2bBkqKio0j7106VIAkCnYV1xxhVfBD4SDBw/immuuQUZGBkwmEywWCy644AIAwO7duxW/161bN0RFReGOO+7AN998g4MHDwY8BoIgCIIIJaR0EwRBEEQt4dtvv8X69euxZMkS3Hnnndi9ezeuvvpqAL687ocffhgWi0X075577gEA5OfnAwDee+89/N///R9mz56NYcOGISUlBZdccolq+zEh9DwjI0P0vtlsRr169QL6PaWlpRg8eDDWrl2LF154AcuWLcP69evx+++/A4CqMaBly5ZYvHgx0tLScO+996Jly5Zo2bIl3n333YDGQhAEQRChgsLLCYIgCKKW0L59e2/xtGHDhsHhcOCLL77Ar7/+is6dOwMApk2bhkmTJnG/37ZtWwBAfHw8pk+fjunTp+PkyZNer/dFF12EPXv2cL8rKNZ5eXlo1KiR93273S7LBY+JiQEAVFVVITo62vu+oPQLLFmyBMePH8eyZcu83m0AKCws1DwXADB48GAMHjwYDocDGzZswPvvv48HHngA6enpuOqqq3TtgyAIgiBCDXm6CYIgCKKW8tprryE5ORlPP/00WrdujdatW2Pr1q3o1asX919CQoJsH+np6bjppptw9dVXIzs7W7Hy99ChQwEA33//vej9n3/+GXa7XfRes2bNAADbtm0Tvf/nn3+KXgsVzlnFHAA+/fRT9R8uwWQyoW/fvvjwww8BAJs2bfLr+wRBEAQRSsjTTRAEQRC1lOTkZEybNg2PPvoofvjhB3z66acYN24cxowZg5tuugmNGjXCmTNnsHv3bmzatAm//PILAKBv37648MIL0aVLFyQnJ2P37t347rvv0L9/f8Wq3+3bt8d1112Hd955BxaLBSNHjsSOHTvwxhtvIDExUbRtVlYWUlJScOutt+K5556D2WzGjBkzkJubK9puwIABSE5Oxl133YVnnnkGFosF33//PbZu3ar52z/55BMsWbIE48ePR5MmTVBZWYmvvvoKADBy5MhATidBEARBhATydBMEQRBELeb+++9HkyZN8Nxzz2HIkCFYt24dkpKS8MADD2DkyJG4++67sXjxYpEiOnz4cMyZMwc333wzRo8ejddeew033HCDzBMt5csvv8SDDz6IGTNmYMKECfj555/x22+/ITk5WbRdYmIi5s+fj4SEBFx33XW466670KlTJzzxxBOi7erVq4e5c+ciLi4O1113HW655RbUqVMHM2fO1Pzd3bp1g91uxzPPPINx48bh+uuvx+nTpzFnzhyMHj3ajzNIEARBEKHF4HK5XMHa2Zw5c/z+zqhRoxAbGxusIRAEQRAEQRAEQRBExBBUpdto9M9xbjAYsG/fPrRo0SJYQyAIgiAIgiAIgiCIiCHo4eV5eXlwOp26/inljREEQRAEQRAEQRDEuUBQle4bb7zRr1Dx6667TlZ8hSAIgiAIgiAIgiDOFYIaXk4QBEEQBEEQBEEQhA+qXk4QBEEQBEEQBEEQISKkfbrXr1+PX375BTk5ObBaraLPfv/991AeOuQ4nU4cP34cCQkJMBgM4R4OQRAEQRAEQRAEUYO4XC6UlJSgYcOGqkXFQ6Z0//TTT7jhhhswevRoLFq0CKNHj8a+ffuQl5eHiRMnhuqwNcbx48eRmZkZ7mEQBEEQBEEQBEEQYSQ3NxeNGzdW/DxkSvdLL72Et99+G/feey8SEhLw7rvvonnz5rjzzjvRoEGDUB22xkhISADgPsGRWgzOZrNh4cKFGD16NCwWS7iHQ2hA16t2Qder9kDXqnZB16t2QderdkHXq3ZB1yvyKS4uRmZmplc3VCJkSveBAwcwfvx4AEB0dDTKyspgMBgwdepUDB8+HNOnTw/VoWsEIaQ8MTExopXuuLg4JCYm0oNaC6DrVbug61V7oGtVu6DrVbug61W7oOtVu6DrVXvQSjcOWSG1lJQUlJSUAAAaNWqEHTt2AAAKCwtRXl4eqsMSBEEQBEEQBEEQRMQQMk/34MGDsWjRInTu3BlXXHEFpkyZgiVLlmDRokUYMWJEqA5LEARBEARBEARBEBFDyJTuDz74AJWVlQCAadOmwWKx4L///sOkSZPw1FNPheqwBEEQBEEQBEEQBBExhETpPnLkCBYuXAibzYYLLrgAHTt2xKOPPopHH300FIcjCIIgCIIgCIIgiIgk6Er3ihUrkJWV5c3bNpvN+Oabb3D11VcH+1AEQRAEcd7jcLpw53cbkRRnwRuXdw33cAiCIAiCkBD0QmpPPfUUhg0bhqNHj6KgoAC33HILebgJgiAIIkSsO3QGi3efxK8bj8LucIZ7OARBEARBSAi60r19+3a8/PLLaNiwIZKTk/Hmm2/i+PHjOHv2bLAPRRAEQRDnPSeLK71/V9rlSrfL5cLekyWkkBMEQRBEmAi60l1YWIi0tDTv6/j4eMTFxaGwsDDYhyIIgiAIgqHC6pC9N/3PXRj99gpM/XlrGEZEEARBEERICqnt2rULeXl53tculwu7d+/29u0GgC5duoTi0ARBEARxXmFlvNuVNrHSnV9ahRmrDgMA/tx6HO9f3b0mh0YQBEEQBEKkdI8YMQIul0v03oUXXgiDwQCXywWDwQCHQ26NJwiCIAjCP6qYsPEKidJ98HRZTQ+HIAiCIAgJQVe6Dx06FOxdEgRBEATB4eDpUpRU2ryvpeHlRkNNj4ggCIIgCClBV7qbNm0a7F0SBEEQBCFhxd7TuOGrdaL3ThRVomum77XBQFo3QRAEQYSbkISXCxQWFmLdunU4deoUnE5x1dQbbrghlIcmCIIgiHOanzfkyt47erZc9NpErm6CiBiKym2YNmsbrurdBEPa1A/3cAiCqEFCpnT/+eefuPbaa1FWVoaEhASRtd1gMJDSTRAEQRDVwMjxYtscLsk2NTUagiC0+N/aI5i3PQ/ztufh8Cvjwz0cgiBqkKC3DBN46KGHcMstt6CkpASFhYU4e/as99+ZM2dCdViCIAiCOC/gRY47XVKlm7RugogU8kurwj0EgiDCRMiU7mPHjmHy5MmIi4sL1SEIgiAI4ryFp1DbZZ5uUroJIlKQ2MQIgjiPCJnSPWbMGGzYsCFUuycIgiCI8xqePu2Q1E8hCCJycDh9WvehfGrnRxDnE0HN6Z4zZ4737/Hjx+ORRx7Brl270LlzZ1gsFtG2EyZMCOahCYIgCOK84mRxpew9h8SVJg03JwgifLDP47A3llFeN0GcRwRV6b7kkktk7z333HOy9wwGAxwOh+x9gggGRRU2fLPqMCZ0bYhmqfHhHg5BEETQOVJQhpX7C2Tv252kZBNEpEJGMII4fwlqeLnT6dT1jxRuIpQ8O2cn3lq0Fxe+/1+4h0IQBBES5m3P477vdJKnmzi3KCy34reNR1FWZQ/3UKoNZX8QxPlLyHK6CSJcrDno9v6UngMLNEEQBA8X+Mq01NNNjm+itnPrNxvw0C9b8cLc3eEeSsAUlFbh4V+2Yv1hcfeeSpsDaw4WwOYgbZwgznWCqnS/9957qKyU55gp8cknn6CkpCSYQyAIqg5KEMQ5j9I85yBPN3GOsfHIWQDA3G3HwzySwHl6zk78uvEoDkqKp1312Rpc9dkavL4gO0wjIwiipgiq0j116lS/lOhHH30Up0+fDuYQCIKETIIgznlcCvOcVOlW2o4gahuJsRbtjSKU7Dy+bLwltxAA8NmKgzU4GoIgwkFQC6m5XC6MGDECZrO+3VZUVATz8AQBAApBlwRBEOcO+j3dNTAYIqLZcawIP2/IxZQRrVGvTnS4hxMwdaKDKrLWGIfzy7D/VKnqNvFRpmofx+l0wWjk9BEkCCIiCOoM9swzz/i1/cUXX4yUlJRgDoEgyLNDEMQ5j9IsJyjdDqcLt8xYj8IKW80NiohIhKKip4qr8Mn1PcM8msAxm2qnQjn0jWWa28RV06Dwx5ZjeHLWDnxyfU8MbJVarX0RBBEawqp0E0QoqG06d35pFSxGI+Jqb+QcQRA1jFIajaB0rz5QgOV7KX2L8LEnrzjcQ6gWZuO5W/u3uuaEKT9tAQDc/PV67H1xXLXHQxBE8Dl3ZzAiovlr23Hc/+NmVFiD3z6uNuncpVV29HphMbo+tzDcQyEIohahFDbu8CjjVXb+3EqRQERtxVJLPd16CNZTyetq8N3qw/h909EgHYEgiECpnQkyRI3z3erDKK60456hLWEwVH/hu++HzQCANml1cP+I1tXeH0ttEioPM5VMpf11CYIglFCa54SWYUrTYJXdiRhL9fNHidpHbVxh2PvcdA7nK7tc7t+683gxWqfXQbQ5OM/oiaIKPPXHTgDAJd0aUc43QYQR8nSfpxSWW7Fkz0lZ0R0eNocTT/2xE68vyMZqTw/sYHG6tCqo+wNqV+Eg1n5hq00DJwgiaJRU2vzu08sq1Y2SYr1/2+zu/SiFn5dU2nGkoIz7GUFEGlV233NhMZ3LIqsLM9fn4sL3/8NTs3cEba9FTE0Hm5N6gRNEODmXZzBChSs/XYNbZmzAV/8d0ty20uYLUywotQZ1HHqUfn+pTZ5uA5PJ5aAFkSDOO4rKbej87EKMemu5X99jw0gfHtMGb13RFQBQ4ZmvlWbBKz9bjQteX4aV+/MDGi9B1AQOpwsfLzsgMvSbz2EvrcsFvDhvNwDg5w3+hYKfLvE5L2wOZfnHrvIZQRChJ+RKt9VqRXZ2Nux2e6gPpZtnn30WBoNB9C8jIyPcw6pRsk+6e0b+piPPh7U0Bzu8KxTO3Vqkc4s83bQgEsT5x7rDZwAAhwvK/fqenZk8DTAgztNySKiToTQPHjzt9nL/b80Rf4dKEKrsO1mKab9vw/HC6reD/XlDLl6dvwc3f73e+965vEK6AL+jXQROlVQq75c5aXaKpiOIsBIypbu8vBy33nor4uLi0LFjR+Tk5AAAJk+ejFdeeSVUh9VNx44dceLECe+/7du3h3tIYYH1YivBKt3B9kyHIo9ZKawyEqHwcoI4v2HtmBuPnNX9PdZIZzEZvXnaG7z7UJ9PQhFlRJzfXPzxavy4LheP/rqt2hFn2XklsvcCVUr9xeVy4arPVuPmr9fVWOScy+VCXFRgZZYKy5XbAoqU7ho6fwRB8AlZIbVp06Zh69atWLZsGcaOHet9f+TIkXjmmWfw2GOPherQujCbzX55t6uqqlBV5QvhKS52t96w2Wyw2SKzD6owLrXxFVVoj7+swve7q6zB/b1WhyPo549dIiP12gjYbL4IkMoqq+e9yB4z4UbP80VEBpF8rZxOn+Fz2m/bMPf+Ad7XHy8/iFUHCvD59T1kxc+sTHXyujFGsDPf0YISWG3q0WW2EMy9wSKSr1dtxuVyheSceq+XxxD03/589Hh+Ed65ogsGtKwX0D6dnHSrKlvN3LM5Z8qx5qA7AqW0oqpGCg+6XEBclM8P5s/vLK0Up/2x3620+j6rqLLCFm2k56uWcb5erwqrAx8uO4hRHdLQtXHdcA9HFb3XJmRK9+zZszFz5kz069dPVO26Q4cOOHDgQKgOq5t9+/ahYcOGiI6ORt++ffHSSy+hRYsWitu//PLLmD59uuz9hQsXIi4uLpRDrTaLFi3ivOu+9GfLbXj9+7/RMVnZmnuszLf9Rwu3498NWzG8YXWtv+795eQexbx5OdXclxi73QSh6+Vfc+fhWBnQMB6IxG4juaWAcC4WLl2B9Fil60VEKnS9ag+ReK12FxoAuIX6owUlmDdvnvezt1a754ZXvl+IPmniOffgISOEYLVDW9fgdCUgzCXzFi3B8XLffnnknTwlOlYkEonXK1IRPJr85iLu+6K8rLzGrvnZchtunLER7/YPLLXw8GHf/S2QX3C2RsZ/sgIQztnf8xcguto6t7aobbVaEQOAlV30ZvNtKRA/6+w5OlTiO/6if5YgJdr3PXq+ahfn2/X6K8eIRceM+PTfQwHPIzVFebm+9LCQKd2nT59GWlqa7P2ysrKgtJyqDn379sW3336LNm3a4OTJk3jhhRcwYMAA7Ny5E/Xq8a2y06ZNw4MPPuh9XVxcjMzMTIwePRqJiYk1NXS/sNlsWLRoEUaNGgWLxSL6bMpqX1/oz/aYsO/50aLPjxVWILVONKLNRmzJLQS2rQMAHCwx4GCJCVMuHYTM5MCNDcLxN+Yb8dOUsRpb+8f/bVgMeKzku8yt8Pn2w7ixfxM8mdUuqMcJBluPFgHb1wIAXtpixut97Bg/Vn69iMhD7fkiIotIvlaJ+wvwye6NAAAbjMjKGgPAk3qz2i1kfX/AhD+PmbH84SGoE+1etv+dtRM4eQyDWtXDVZf0hNPpwnvPuLcfMHAwDpwuw4y92xSPG5OQjKysvqH8aQETyddLDZfLFRb5xul04fLP1yLWYsJ3N/eSjUFYb+Pi45CVNTjoxxeuF4+srKyA9rlp3h6syBMb5OMTE5GV1T+g/fnDvlOlwJZVAIDhI0ehbmz17kFW3lKiTlwM0hKjkXfMHUU5aNgoJMXpO6596wlgry9Fkj3naw+dAXZsAAD06j8Y7TISau3zdb5yvl6v37/bBMBd8DPQeaSmEKKftQiZ0t27d2/MnTsX999/PwB4F4HPP/8c/fuHftJUY9y4cd6/O3fujP79+6Nly5b45ptvRIo1S3R0NKKjo2XvWyyWiH8IeGOMMhlhZfJ72M+3HS3EhA9Wol1GAuY/MAQOTup/lcMQtN8d7PPHpip+/t9hAMA3q3Mw/eLOQT1OMDAYxef2RHntuKcIH3S9ag+ReK2MJp+HyuZwecd3tkwcMlpcacd/B87ioq4NAQBWTyjvsHbp3u80qBuDE0WVcBqMcEBd+Ttdao24cyElEq+XEp8sP4DPVhzEr3f1R4v6dWr02McKK7DtqFvoq3IakBDDP2c5Zypq/HwGejyDQS53OJzBlxe4xzb6nsnTZXakJtZMNKOLeWbLbC7U1/lbpc86e45czHm843+bsXraCNF2teX5IvRfryq7I2h93sOL776O9PtU7/hCVkjt5ZdfxhNPPIG7774bdrsd7777LkaNGoUZM2bgxRdfDNVhAyI+Ph6dO3fGvn37wj2UkONwuuByuWBRibX+fdMxAMAeTyETXrG1YBrzXS4XCoLYrzu6FvXylFYsr0VDJ4hzhkqbAzl+Vg8PFjY7v7hRPmdOjGfiXIXWYNFm36QR5fnbandyC1GxJCooZkRgvPL3Hpwps+LFubtr/NgmZkGutJ27xbKsNVQIzMo8k/f/uDmo+37z8q5Y98QITPAYz7zHdDhRxdRp+H3zMdE41FDbji0+d6JIuco5cW4w/c+d6DZ9EQ7ll4V7KNWmNhVF1kvIRPwBAwZg1apVKC8vR8uWLbFw4UKkp6dj9erV6NmzZ6gOGxBVVVXYvXs3GjRoEO6hhJQKqwODXl2CSz9ehTKrctVy6Y1exZnQg1n5dvqfu9DzhcWYt/1EUPYXV/0ErBrDITnX83NJ6yaImubC9//DkNeXYvvRoho/tp0pGCUUi9l/qhS/eYyfLGwP3sJytyc8OS7K+16Uyad0q1U0BgDjOTzVrD1YgAOnS8NybOmcXhOs97SdA4Byq77cx5yCcny35ohI0Qs21THO875bU9XLWZln/6ng3kcOlwtpCTHI6iyWN612p0h5fu+fffho2X5d+1RTuq32c09xIfg4nS58vfIwKmwOvLVob7iHU23OQZ07NEq3zWbDzTffjLi4OHzzzTfYsWMHdu3ahf/973/o3Dn8Ib4PP/wwli9fjkOHDmHt2rW47LLLUFxcjBtvvDHcQwspy7JP4URRJTblFKput+7QGdFrntLNvme1O/HrxqM4FmBvzhmrDgNwewqCQTyn7UZmSmxQ9h1spMaL7Wflj+QLf+3CY7+5W7D8ty8fHy7dX2NtTAjifEAQrOdslSu6ocYqiXZxOF0Y+dZyfLJcXnC0rMqnUBV4ws9T4hml2+PprnI4YeNUfxYfJ+AhRzSH8stw5WdrMOLN5WE5fjg6sbHe2LIqdSX66Fl3RMfIt5fjqdk78PGy0BW2NVZD6+YtcdLIsFCw/1SJ16AVDKRrvNAm1SSpklZudcicIbM265uP2AiA1mni1IaaMlQQ4WfBzjzv38G8h8PFudjWMiRKt8ViwaxZs0Kx66Bw9OhRXH311Wjbti0mTZqEqKgorFmzBk2bNg330EKK3vVvjyQssYoTXl5lc8LlcuGNBdm47su1ePiXrRj3zopqjS9YD5iFE6Pdu1lKUPYdbOwav9nmcOKL/w7hp/W5yDlTjuu+XIvXF2Rj8e5TNTRC/7A7nNh/qpSMAkStJByhuWx4eYXNgef/2qW47YM/b/X+XVzh9mSzxZYEpfuFv3ZpKijOc1CgAYDsPH0FbUJFuOe+Mg1P96BXlwLweUd/WOsrVnassCLg+4L36Oitvs2Dp7DbHE44nS68vmAPFu86GfjOFVh7sAAj31qBO77bGLR9SpVeIRLCzDk5p0vEKSVJTBSLGqynmzXC8Y5PnLuwji+9qQmRDIWX+8HEiRMxe/bsUO2+Wvz00084fvw4rFYrjh07ht9++w0dOnQI97BqAP4K2C4jQfEbpVV2VHIe3uJKG4a+sQwfLN3v9YwXV1avpP/ZIFnm7BwPT6RazHafkAuIrNDGRhSwf+ecCU/+qRZTftqCkW8tx88bcsM9FILwG179ilDDzlcVNoc38kcLwUAQy/QQPunJ2TxwugzlEq9ZRmKM6PW5KNAA4ffgh/u0KtUIUOJUSRVsDid+2ZCLga8swROzt2t/yYPL5fIqdXuLeEqyC6eKA8sjjrHIxVObw4UFO/Pw4dIDuO3bDQHtVw0lz7JWfQQ1lDzdRh0WifYqshkLq1hLj8d+1iXCex0T1YM1VEWZa3/+0Lm4RoWsenmrVq3w/PPPY9WqVejZsyfi4+NFn0+ePDlUhyY8rDxQ4Omx7UaPp1tq5Z6x8hBiLPIc6U+WH8CRIBceKrc68NV/h3DLoObV2g/Pe6zlUQ4X7/8jz9mqtDkR5TFWf7DE9/k/jHc7AluOAwDmevLyP152AFf2bhLm0RCEf/AMjKGGDS8vKNVveBRycaMZ5aSEMXxKDQh1Yy3IYxSgcOQe1wThFtTCffxA1rqyKjveWJgNAPhxXS5entRF1/emztyCFfvyMe/+AVA66jNzduLj6/yv48Pz0JZb7SEtBhatoKgcL6pAW50KsBRpxIlweXiebikJMdoiel5RpSilwCa5/uz8YquB8HwifJiZAsnhbs0cDCLVWVYdQqZ0f/HFF0hKSsLGjRuxcaM4VMdgMJDSHWI2HjmDO/+3GWaYcFWlHSkWi6Kixi5u0jzAM2U2pCbIv3lYoTKi1e6sloXtub92VV/p5iwskRpKOaBlPfyzRxwqXm5zIBFAQWmVKK/z1fm+nPdIn08j1chBEGqEIzTYzsy/Uu+0Eg6nyytAs61h2NxOqdKdGCte7iN1TlRj38kSfLXyMO4b3gqNkvh1OsKt9Ib7+LxILy2Uiu7lninH2kNncEm3hjBz0rZmbzkOAPh14zFFD7+/VZR3nyjGf/vyucVebQ6Xt2p/KFCUXapxSaUylaBI6Ml3t9qdeP6vXWhZvw6u6Ss3Yu88XoTx7/0nes8uMVawkQ+7TxSHPf2BCB3vLPZ1YPI34iUS0ao/VRsJmdJ96NChUO2a0EGrNLdVtsxuQPbJEvRPiFW0fLEKktQSWml3cIWzswqLdLnVjiizvjykUMGzkEeqEmjmtG4Tqs+eKau9hTDORQslce4TDu+APzmXfZu7a1Ow+Xqsd47d14YjZ0XflfZtrU2ebpfLhZX7C3Ddl2sBALuOF+GP+wZxtw230hvu0xqIN3Pa7/KQ8nnbT+Ce7zcBcPeMv31IC9HnrFGn3OqA0mH9PR/j3v1X9fOiCrns8dvGozheWIH7R7SWfbZkz0n8tfUEnr+kE+Kj1UVepUexOveULLzcxS+kxuO//fk4cNpttOAp3bM54fDS40mNMLtPlKB1/cgsLEsEzt6TJSKZsXFy7b7GUqPx4fwyNEuNV9i69lD7g/4JLnVjLd4qlqWeirdKUzzrGZYWXzhdUuWXwrr+8FntjULEqv352HW8mDveSFUCiyvkefDlnlCxUFr0Q02knm+CUKM6hZ+k/LguByv352tu54+SJAjsbJsnVulOl+RtC/Rulowm9eLE+wqjIyQ7rwSfLD+gu13V3zvyvAo3AOw4rlwsLZQ53RVWB37deFTVIBpupVvP3OtyuUS1XFYfLBB9/u7ifV6FGwCW7ZUX7mSV3xiLUbFqex0dIdL+wLZEO+u5Dg/9shVvLtqLHcfkLf9umbEBv28+prv9Fo/qXFNZITVO9XIlBfxkcRX3fYGEGIvsPenxpPOLhWPoJ2o/4S6cll9ahX0nA699IEUqx0vnqNpKyDzdt9xyi+rnX331VagOTXio4+lXLeT5KfVlZS2h0gl7T16x7mIeAHAovxRAuuZ2USajKBSyuvy3Lx/XfbkWaQnRXM9RqJXA0io7rvl8DUa1T+da25XgKdZCWF2FSqhpuCdYLUjpJmoj1WlxxLLtaKHXe3j4lfGq22p5ulukxuPK3pl4+e89XkFEKKpoMhpEYb+fXNcTF3+4UvT9T67riTEd0zH9T3FV9HB6hMd4Ol1Y7U5M1jFfSpUptasUyt/13F878eO6XHRsmIi5kwfX+PH1INxP3689giqbk5uu5XSpj/PtxeIevzZOr2d2DbI7XIpKd4O6fENQoLAdBro/vwirpw33vv5z23F0asQvFnaiUDkX3OZwYvuxIkUjkJ5rumjXSfyw9gheu6wr6idEe9+XprsJ/blZRbturIVryNHquc7L+ZYqK1JZIVKj/ojqIb13f9l4FJf3ykSf5jXTuafXC4sBACseGSYz8AaCLE0i3BUyg0TIPN1nz54V/Tt16hSWLFmC33//HYWFhaE6LMEgWEFLNKqKnyyuQq6nGrZ0gj5TavUrDNGspNlLCHZo49zt7tyyUyVVXIUv1Ergj2tzsO1oEd5ctFd7YwZe/p0wuew/Xar4vUj3gvuzsBeUVuGe7zdi9YFzw5JJ1C7+2OIL0QyWDyj3TIX2Rh60hIkhbeqjTbrb8CnMY8I8HSXJs+2amSSqZg64PVsGg0GmOESCYWztIX3PPK8NpBJsOlSw81f/3OouFLlTzdMe7pxuhwsVVgeemLUDz/21i6vM2RxOv+boKs49yhrNrQ4nlO5if+4zPdfr141HRa/nbjvh/fvT5Qd1H4vl2Tk7MemjVfieaZ8mGpfktc3hxD+7T4q8/bd/uwFLs097a6+4XC6cLbNiabYvSmDL06OQmeJWSMwSpZuH1qmTpowAwJGCclFortzzrT7fbDtaiLHvrMATs7brjkQhwg9bTE/glhnrQ3a8nIJybi/wJXuC08pPGqER6Y4mvYTM083r0+10OnHPPfegRYsWnG8QwUZouSF4RdTm2tFvr8Du58fKJuQyq8O/xVnngxFsb0A+U/WXV0hNb3GZ3DPlMBoNikV6lAjUa88b65uL9sFkMuOJWTsUvxfpSrc/gtY3qw5j3vY8zNuep+kVJIhgM+WnLd6/g5XT7c/8ptVPO8ps9HrFBEFEmJN5NSHMJgPApL0K35UaX8PtkQXUo3lYpAWu1NYk9qNLPlqFAS3r4dExbYNybfUohbkBtHMsqbRxQ4X1Eh9l8kZIOZwuUa9uJSO0P3M0T+BlZQWr3amoIPqTPhHIunb0LN/AdTi/TLd3jKdst8tIwB5PqzDpfj5bcRCvL8hGl8Z1MUdSW0Awcry+IBsfLTsg+oztu83ejkpKtxZKFdCX7z2NMR0zuGPXOicTPnBHyuzJK0FyXBQeHtM2oLERNQuvCKeQWhps9p8qwci3VqBTo0T8df9glFT6Fpxn/9yFmwZWrxgyIJfZF+zMw22Da7/uWKM53UajEVOnTsXbb79dk4c9bxHCDsu9i7H4Jr6sZ2Pv38Jix1sg/bEe67GMulyuoOe9sfvjKcB6dO7iShsGv7YUA19ZAqfThdwz5fjfmiO6fpOeoig8eAvg5twiXP35GtXv6RVWw4U/At1pP9okEUQoCVYdNX+mNy2DncVk8ArXwhwu/M+bd6SCeBOPZ02qMEaCp1tvtXZ/Kq2znuatuYX4eNkBrNwfnCgadhh2hxOdn1mANk/+LRJu/S2A+dmKA+j87ELM2nxUe2MOVXaHqNK3zekUrQ8uuGStsOwOl6axh6WgVJ5bzCriVoey0u1wOrEp5ywu/nAlNh45o3ocpSrqavD62jucLgx9YxlGvb3C7/0JXNytkfdvqdFB6Oe97ag8h1xwdkgVbins+U9jwtH1YHM43c+zwnz12YqDzLbiC6PXMQK4Q+aJ2kFNRiX8tC4XALDjWDGW7jmFzs8uDPoxpCkt4awXFUxqvJDagQMHYLeHxvpCiMkvcS+U7/yzH06nS+QdMBiAZyd0FG0/a/PRaodw6JnQ2cV5WNv61TqeD3UBYt1h9cUeAFbu8xU9sjqcuPD9//Dk7B147599Kt9ywwq6VXYHVh8o0HUu1Tw24z25XzzOJaVbqTcqQdQ0enrn6oFVErUURi3lx2Iyeg2ownzh9XRzxmuSpPi0qF+Hu99IULr1rjf+5PPxvNEFZfyCVC//vRuvzd+DA6dL8eTs7ThWqD8t4Md1OSipssNqd+J1pp2jv2f1pXnu7z7081Y/v+lm1iZxBWu7Q+7pjosShyFvOHJG9Fuv6p2peoxTJfLzJ2o16nAip1S5O8rln6zG1txCXP7JatXjBKJ08+DlQvtzXR4d21ZU/Vl6n0pTOFhiOCHfAGTXgD1/3Zokef/umpmEsR4vNY/Ccit6PL8I9/2wWXFu2ch0LpAa9fyJPIj01qSEG7vDiaf/2Fljx6tkFPybQxTCLm21d64QsvDyBx98UPTa5XLhxIkTmDt3Lm688cZQHZZg+Jex7rd4fB6u6+drOWE0GFBH0j5j6syt+O3uAdU6prTMPw92sUlL0FdkpbTKjp/W5WBc5wZ+h34LVNkd3BwogbuZaq3fr83x5mst3nUKj4xpp7pvtgBT2yfnAwCu69cEL1zSWfV7agK3EP55Wc/Gsjy2YIWXO50ubD9WhLYZCYhREST8xb86AL5z53S6YAxmCWmCUEGqoAUr5Jrdj83pRLRR+dnSUijNRoPXoy0oyrwKyAJK1YmlvywCost1w8spVoJnTOCFlp8ts3qjuD5ZfgBOF7AltxB/3c8vkAa4vcYC6xjPyzerj+genxJ666FIkbbvtDtdKGM873aHS6Zo3frNBtHrxADCm1kDu9XuxOpT/PH/yxiztew8FTZlh8wFbepj+d7TusbGWx9nbT6Gt6/spuv79eKj0DrdZ6ySKq6CN5uHUhqD1MnBKvIJjCyWEG3GRV0bYv7OPO5+5mw9jpJKO+ZuP4H+Lesp/wgP0n7N/vRvjo0KnkxA+M/GI2ex5mABbh0gbxfH8vumY9xWeqFCy2BrtTuVe97rhCcbO5yugKNKI4WQuZg2b94s+rdt2zYAwJtvvol33nknVIclGKRz///W8IuEsOjxKGSmKCu9ejzdQhGaKLMR+ZywNR7P/bkTL8zdjYs/WMn9XI8A6Y8X//m/fJV+s0+WYGtuoer2vNxKf873H/cORK+mSaLPhPHGcxY+PcYNPXy7+jAu/nAl7vhuY1D2J+CPF+0AUzCukgq3EDWI9DYNVoFUcRiyhoCicdADp8u8hilhXw6vp1u+hLNCyf+NVTYWhrvgF6Df++jP3M1VujWOLXxlxzHlAmmAeJ1REv0CPa0B6tyytDG7w4ndJ3yte16Zv0fzHnM6XZrtqaRCvU3UajQ491KVTXmcehRMwP37qxsJFmU2ol1Gorc6uPT+UzPeK+X9S6NSejRNRmqdKPRsmixSUIxGA9dwJuyXVeqfnK1c90XA35xuFopCCy+XfrwKry/Ixu+cfuwsJ4uVK/OHAq017RtOyoe/8O5TNne8thIyT/fSpUtDtWtCJ0aDwW/BSs+EXCfaAoAfhqe2aALAir2nccNX6wC485hiOAqly+WSWYv/81jLpUr6rM1HYTIaYdOh5KkJblpK4nVfrMX26WMUPw+01ZBwvmOjTLJFWTBgxEbJH9PFu0/B7nCK2gUFwrceD80KnR4Efygst4oKx/D4b18+lmb7jl1hdSCO83sJIhRIi7VIFZhAEXm6VebUM2VWHM4vAwCM6ZiOBTvlOZQGQObptqt6un1zwqgOad6/pUsBb85bf/gMbA4nBrRMVRxzoKw5WIB9p0pxbR+f10ZvdXF/jIx6l7ydx+X5uFrTOLvrYIfeBurplnp17U6XaJ2cu+2E5lj12Ei/WXXY295t9YEC3MqElQaj/afT6cI1X6wVvTe4darXU64W0s1SWGHzK4efd28Jz9C4Thn4ecNRmTNB7Xw6XC5uVWfpWh1jMWHVYyNgNhowm+mgYDYaYOEou9uPFaFVWh3dHRZ+WpeDq/o0kUU5+GPYru1exXOFg/nlUIuZVL0fnS78sPYIejZNQYeGiUEZj5a8fECl845eeOvmuVDBPGTSbUVFBVwuF+Li3EVcjhw5glmzZqFDhw4YPXp0qA5LMBgNgNL0qiTs6FG6E6KVbxutYg6fLPcVF4mPMsPCmdRtDheizOL3eSHHxZU2TJ3pzoNrWT9e8ZhCT3A1L7zWw1yiUQUy0FxQwWJoMRlluZg7PEKhkrX5m9VHcCunB6tfhHBNve+HzfjfbX1Vt/lr23HR60ivyk6cW0gt9oH2sC0orUJyXJR3nmKFErUcyh7PL/L+rWRAMxoN3kgau7eQmrLSzQpgbgMpH2kovd3h9ObcbnhyJFLr+FfcSQ27w4nrv1wLm8OF5DjfmPScbYfThX92n5K9b3M4ua3EeIZmnlB6/ZfrZO+Z/NC6lbbU05e6wuqQhe4GquBUWMVr1+sLsmXbaBki9KRVsH1zpYU+g6F07zohjzIY0S7Nq3TrPT3D31iGYo02qSy8wndCKz7BA+1vpMXPG3Jl7/NkBGH/rKfbZDTAwjHATPhgJTo3qourGaOVGk/9sQNX9WkiuzalfpybQJ0JRHAxqwnzEEc/tEqrg/2nfErvrM3H8JQn33vXc2OC4tTQcnIFkqYlDR1n12KjAVj12AikJepLR41kQhY7cvHFF+Pbb78FABQWFqJPnz548803cfHFF+Pjjz8O1WEJhkAmTCFMTFr0g0Vtt5Uanm72oTIZDVwLe0mlDV/+d8jrAQL4Cxa7EB44XSb7XEBQWqujdGsRaHCdUCzCbDTIfqNQVKZYIaTmpXm7uRb1SOG//fma20gjGiKhuBNx/sB6mIDA7r8dx4rQ84XFuPN/vhQNtiq33naFSoY7o8Hn5csvtcJqd3qNBTxF7SAzFybHKyu40t/KGrz25pUgmBwvrPQaH477UawMAE4UVXgLeTVkFFql6BylFll68KeexOwtx7nvaxlu1h4sQPun5+P1BXtE7wesdAfBUKkn4kBtC3/yhJXgCepxKgZ+JfxRuAHgLGcNFTzNUSb3cycormfLrKiwOkR56oCkcKLL5S2Ox6J2fVnjkcnADy8H3N5uvbeJ8LwJjhRhqfXn/JDS7cPucIbN06rl1GGvU/sGYm/2SkYOe/6v3UEZj1ZEmL/L6M1fr0PLx+fhN6Z2EbuGrnpsBDJ0GDNrAyFTujdt2oTBg90FSX799VdkZGTgyJEj+Pbbb/Hee++F6rAEQyBruLC4dG2cpLiNWh62lqebVbLMJgN3IX978V48/9cuDH1jmTePjCcM6RGkxndpgGhvv3LlsVU5tAWXzTnKLQvsAVr6xZ5u/gXr1LAu932H04XLNKrBquF0ukLp6PZSVGFDs8fmotljc2VVZaU/mZTuyORYYQWenbMTRwqUjVu1kSdmiXMi7U4Xdp8oxmI/WuV850nRWLTrpLfgobSQFQ9pVJGSl9Xpgsg7MWPVIa+CoiWMqeWeOl1ug97ek24Fe81BX4eHsiB3Ryis8Ck2P2/wCVZ6HCJCvmJmSixemNjJ+77SXMF7XyvtSUDL0+3SYV7VmsOe89QL+XDpAdF86G+rMcA9hwejvoeeWVftWvnj6VYar4GzGrH3dyDF3qTwqn2fLZMbtaWe7o+XHcANX61D9+cXof3T82Xbs156peuvpEizxwEAk4kfXi6gdou+e1U30evNOWe980y9eHeqV4lfSrfuTc9pXC4XRr+zAgNe+ScsireWQY4N+JGuCeyz+edWvqHQX7RyuoX16euVh/Dy37s1jXpCiuFDv2z1Opl+WOteVxslxZ4zCjcQQqW7vLwcCQkJAICFCxdi0qRJMBqN6NevH44cqX6lT0IbPVb7wa3FuXuCxVpt0uc9Ps3qudMItAqpsUMyGw2ih1H4bBWTj/XuYne7Lp4wpBYK/9vd/bH1mdH44Oru3gW0uEJ5sdHTRkMqoLPwvBtaE6XL5WvjZjYZFBfTIW2U26qxYUT+UFRuQ/9X/lGNEAgWP6z1FZQT+jsKSM8RKd2RyR3fbsCMVYdxzedrtTeuxTidLox791/c9u0G7Dgmz/nlkRzvq1vw8C9bcSi/TKR03/fDJq6iIfVQKikVmclxok4TK/cXqOZ0K9G/hbwQVf+X/sHot1dga24hbv/WV9G6urntp0uqcJppM8W2gvJ3zsorcu8nIzFGZLTlhZYDfAOo3urnSqfT5XKhqNymy0jgjwHWn/ZNUv635gi6PbcQaw9Wvwe5nnDQhbv41bQBd6RYvWj3Pvq1SFHdj1KVZd76ZzIa8MIlnXDLwObo21xfITU1eMYBnqebF/atFFnhdLow7fft3tdKl1+aPiY6HnMvm40G0WspStXRAXdoMcuh/DJvv+O6nvmlgtNOjVDH7nTh4Oky5JdakXOm5g3P/ni6pdEJc7ed8P6tt4aGFppymufj6X/uwqfLD2KzRiFilvc8Mr9Q38SfNo61gZAp3a1atcLs2bORm5uLBQsWePO4T506hcTE4CTzE+p0U/FWC3x+Qy/Ra0FpjlKxyko/ua5fEzw5voPo+0qwyrPZaMSFXRoCcCvtwgJ3kAkr/2rlIRzKL+MKl2oCS2KMBXVjLTAYDIj2hGZe8elqvLVoL3d7PdZLXoVyAZ7lT8trwirqvBwuwG2drp8QvNxKgV825mpWq/UXpYmYPQ1SQ4l0gYiEisqEHKHjwLm2AEr5Z48vd1hvMRg2RxkAcs6Uo5RRurceLcL3jOFJQKqI92nOV1buGNJC1KLIbDR4lWI1YUyaInRl70y8fWVXLJo6xPue4NFeskecM10dZbDC6kDvFxej38v/eOcEJe+a4Dk+erYcU37ajO1H5YaOE0Xuey49MUakjCgpirx8Q+n8riR8Khmqn/pjB7o+t1BXzr8/hkN/KklLeXL2DhRX2nG8SF/lYjVFTs8w9p5Ufh6sDheEWyZKJboC4Cu57jHIz5vT5cJ1/Zri6Ys6VLsFEcCPeOCGl3vOlVprMAGrwym6jkr3Ja9+jYA0p1stvU8t5Lsux3AnpLAJUS/+2LWrMQ2cU7ByrZrRI5iwc5RJRfYE5GNSaqsbrMupNQ86XS7R+HMKynXve1+AjqTaQsiU7qeffhoPP/wwmjVrhr59+6J///4A3F7v7t27h+qwBMPzF7fX3Ebam1kId4s2mzBtHL/djPQBb1A31rufKo1QN1aoMRkNGNMxHb/fMwBz7h+kKBTcMmM9V+lW8yiwixg7pvf+2cdd3PUo3WqLnY3jGdLyQrGKutnEC64D4j0ervuHtwLAX1QDIZBCF5tzzmLKT5uRpyDkCeFAUtiWZ1JhQqZ0R5Cnu7TKjjFvr8Cr8+X5eUTtxeZw4qNl+zU92XqFK2neaUmlTZSPBgBFHMG+UlIAy2Iy4pExbWXbxUaZRGNpnZ6gmtPdLsMdYTauUwPR+yajARO7N5Z5wwC5MKY3D53HrhPu8+pgQp+V5htBEXhw5lb8seU4LvrgP9k2gme0XnwU+jKGCaX6IR8vOyB7j00tqrI78Cfj/WFRmrP1tH8UEATSk8WVeHzWduzmFAgTYJW1i7o21H2MQIiLNnHvLwD4cZ3+38fDandC6BrGFv5M4xiMlQp58QwQ7G0YFKWbk2JWViV/T5BF4nRUTLc6nKIIiFKFoqtq8kAMY6gwGQxonhqvWBxWTayINpvw5Hix3CecV+H86UmREAhWN4faDptrXFMR96yir9XZgB2Ty+XCPw9dEKJRudGS01YfLBBto1SXiIfw/Aiy7muXdQlghJFLyJTuyy67DDk5OdiwYQPmz/flwIwYMQJvv/12qA5LMKTGK3tIlQRKochGXJQJd17QUtdxru3bxJs3rZVfxi7IBoN7HD2aJCMxxqK4qCp5utXyyNKZKodST4A0rxjQq3Qrf8b7PuuFKquy41C+OCyJHb9SfnvOGbeF8N5hrfDWFV2xkPFSVQc9OvcbC7I9FYfd47zyszX4Y8txTJ25hbs9m6vJksLch0fPij2lUjtLJK3xP63LQfbJEq4QT9Revll1GK/Nz8aF78sVPJY/NHqjCjgk89Cy7NMywTuaI7xLw8vNJgP6cULABbo3SQLgVmTUqpd/e0sfPH9xR0y/uCN3PwaDQT7XulxozSjjgqe7pNKGm79eh1mb+c82DzZHVlBAlZRuoQ/ywXw1L6on5clkhNlkxAWedBt/Coix8/Md327E5B83c7fTrF6uA+HaTPlpM35Ym6N6n9mY/tbxKt7NYBAfZcY9Q/Wt6f5idTi93nL23uJFYihFUfDeZ+8btZxovfAi8XjGe6F7ip5Kzza7UzTOdYfOcLdTi5QTngNhO4PBgN/vGcjd9sGftyruJ8psFFXFNxh895gge/ljb69OxMu5wqniSjwzZ6f3dU04BlwuF7YxUT9a4eVCnQgAOFRQJnOmCVQnsoZFyyh7srgq4E4gQvcH4Td3bsSvaVRbCZnSDQAZGRno3r07jEYjiouLMXv2bCQkJKBdO74HlQguevP9Jnu8qIBb0QB8HlYeU0e28f59//BWSIqL8lpqtaqXs55aqfVLLfyN7+lWfqiVJh2AryBbdRRSU1uAeIs569Uf9sYyDHtjmSh8kl3sLUajYmswwP17JvVoLDImCPhjRRTQMx1+sHQ//t2X7w09Fc7bak4OodPpwnYdObCfrjgoei0N56yOhy3YSL2VRO2nwurAC3P1VXD9Z88pUV4yD6fThVckkRC/bjyKg5LQdN6zLTVQRpmM6Nk0Gb/d3R/LHh6KTo0Sce8wn5LUvJ7b82V3Or1pGLx5MS0xBtf3bybKA5ciHY8LQEMmJFGYWz9ZfgBLs09j6syteGLWdsV87JPFlbDanXA6xX40h4bSLRxHreCbsI3QUk2o5M4z8CoZT9n3lyvk5gLBCR21O92hlTuPuT3cakI6GyEVamE+zhMx8d2tfTS3rRcf5VcRraNnK1DhcH/hpgHNAAC9miZzw2KVBH/e++wZUbtH9MK7Z3jHFcLLpW3deFgdTl2RY0IldB6s0i1QN9YiK4ymRbTZKDIc5RVVIdtTKFEwhvgVXh5BkWfh4sgZcWh0MNrjafHnthO44lNfkdxdJ5S7SUhTZU6qpJsEYkSZ9vt2PPDTZlERQj37UYr40ELQEWyMsfVcImS/5oorrsAHH3wAwN2zu1evXrjiiivQpUsX/Pbbb6E6LMGgZh1jJ9P7hrf2/i20ZuHlFDVPjcdLEztjfJcGeP/q7rh9cHPcM9StsAu5T5Ua1cvZxUla2EwtfIzngdCroEnzsip5SrddexJR84bzcsXYgjHCeV2021cVmS2GZDQaVIVkli1PjxK9vptpVaQXf6zd0t/Nk0vVFiK1PG3pR4GEvYeKYFmF/aGowoYv/j2oGMJfmyi32gOu6h8q5iiEFSuhFbmzYGce19AoLVCox9Mt9MXu2TQFzVLj8df9g/HIGJ+B2ter2+Wdv7XCDpWQGiVdLrGQJMytZ5kCaN+vzREJggLZeSXo+9I/aPPk3xjzzgpRCK+wH6WpWnjG1AyOdq/wZfCMnR9VtfHIWbR58m/uPrRqjQio1TLxB4fTpas+BTvHVLeehZaRXZhbB7dWLswpEGMxYcf0MVj8oH+RVYkxZvRqmowtT4/CzDv7+1UAlR9eLj4nozqk+zUeKbz7gFcDQJBF1HKrhc9sdn0B20lxyqlhCTG+zyoYY+/F3Rrp2LOPKJMRdRgFnk2N8jk11EfbgWk5tfHIWcXCd+cLpyS1b2rC+y9N1ft1k3LU1X2SqJ1gGgVsDid+XJeD2VuOY8dxt1Plu9WHsfHIWc3vnmW6Mfgzqwprm2+NO7dK6IdM6V6xYoW3ZdisWbPgcrlQWFiI9957Dy+88EKoDkswqFUvH9/Zl+/Hu6l5i82LEzvhmr5NALjzz54Y38FrCY5R8T6wsIue1IqqZtHi/RY9ijIg96Df9s0G2TZ6JirVlmMKn0mtkOyvEJRZ4fyrRRewJMVFiV6v3C/3PGvBExOUFlfp+zwBWSmU6OuVhxRDOQHgM4nn2+F0n7NgVdmsDuEIrXv89+14Ye5uXP35mho/thr+OgDPllnR4ekFmPTxqtAMiENJpQ0fLNkn8zKz+GtI0frdQjsrLXZyokCkSncGJ4qFRah+bHe4VHO69SD3dLtQwkTMCPe+VOkR2lq5XD7F/8av1nk/33eqVBT+qunp9nyuZnC1SQwMwppTIYlEefoP5e4SVrsT5VY7FuxUrsAN8I0jgdB1+kLFSBn2VLCh+NWd8mI5Y2evc5FK9w4pdqcTcVFmxHLCq9XmZsGbnhQXBZPR4FcBVOHZ7NTIp/RJl5XqniO94eVanu7BrVO920hzupVguxxIYe//6rTrMxoN3vBcKUIKoJavQvqsztaZZnOuIp2na8IYz31uFA47V2JIFu7xYNR7Y2X07LwSzN58DE/9sVPlGz4KGKVbKWKCF6UprAlq0Vy1mZAp3UVFRUhJcRc9mT9/Pi699FLExcVh/Pjx2LdvX6gOS+jg+Us64UWm3ylPoeXlMvFazgj4crqdqosy6zWVeqqVBK/uTZL88nT3lVQBlj60vMI2enK6ecJChdWBO7/bwK1ODIg9ReJ9OTH8zWUAfAt8nWj5Ah+swmlSeJdIaM8m5cnZYmGWF+Zn45y/evFRmP7nLtn7vjHIB+FwunDN52tx9edrwq54h8PTLYTyS/P/w41aEUEey/a6f8c2TjXqUPHi3N14Y+FejH57heI2SuHDSlEmWv1I1Vorsvy0PldWG+DleeIw98RYdaOb4Om1O5zV9gJIle4jBeWi6tSCIvLTenGLP4H7ftyMwa8uQVmVHXkSw4NojvecP6VHWc8z5vV0mwVPt8fAyxg6v197xFthn0eV3YFHf92GO79TjwpS87jzuEChnaOa4sQaMVnjWnVDeXljj1UpYqmGsNbxbi+1XHqzxMDNi8RQuuY7POH4rOyhFvnEemQB4Ne7+ituq7Y/3rru83TLn8mR7dMx4+Y+3m2sdqfmfJ1aJ1p3zn51+673aJLMfV9wPmj55aWykF5nwLmK1LDKk3WCDW+9LdUZcCBcP96j07sZ/95QgnWmHDhdho+W7df9XbZNJM8p88uGXHR5dqGsiKPU001Kt04yMzOxevVqlJWVYf78+d6WYWfPnkVMzLnT6Lw2cl3fJjJvqZR4jgKolu/GhiuqhfKJwukkD6KS0p0QYxE9eIc9C9yvG8XFfW7o3xSf39ALn98oboOm1h9TQI/SPbxdmuy9H9flePsJ8hDa3QgIp3Db0ULvYi/8Mp7g/4sOQSIQeALeqRLf4iJVeNnXvOvEE6Rap8urJLPwogvyS6uw+mAB1hw8g/xSfmuZmoL1gAiCUIXVgZ3Hi8JuEKhp/F339DxPwWb9YXcBI7UCLv7+Di2l0J98MzbU88v/DslaMGnlEwtzoN3p8v5GtWgmNaSGs78k3hKtIjhzt53A8aJKLNqlPPex+1FSno4UlKPK7sCePOWcRUFxF9oqCmvNh0sPYNX+fADAE7OUvdzCPqS/UYDt0uGv0m02GjDBz6rjSm33qptac3WfJrL3WOHdH6X7TJny3Mur9i0gVVB4AvOmHH5o6gdL3QI9W4hMek4u6e4+1y3rx+PlSZ1Fn3XNTFIclwBv3eMZ76Mk9QNY2jdIgInppV2m0fd6+SND8df9g3TXC1CrbcNDKjcYDAZM7C4PS4/SUUjN7nCKWrYCbuP5+cr+U6V4fUG26L1Q5HRX2hz4aV2ON62M99yU6wxUUVuz/Clu9ubCbHR6ZoH3dXGlza90JtZ4xDNsPfLrNgDunHF23qXw8gB54IEHcO2116Jx48Zo0KABhg4dCsAddt65c2f1LxMh49Pre+qa/HlhZWqwLS94+c0CYk+3ROlWWGwcTqdoErrxa3c44x9bjou2i482Y1SHdCTGiL3Deh5aoZCaWoVUnkDGq4TOoiy8+I5T4smllC6eUSYj2qQnqO5ficP5Zbj2izVeA4UUXjg8e19IJ0k2VJJ3Hnh5cVpeQp5xhhWy/GltEmxsDifWMsLfVysPAQAu/3QVxr/3n2aYaqCE8zer4W+BqXAo3VoWcYcL+Holv62d0je1Ugz8FZAFnv9LOQJECUHBtztdeO8fd1RKoPmWWv2H1Z5d1uC0cJf6cyC0HFLLV35r0V7VfQhCrpDTzipCt3yzXvW7AkoKbePkWFE+rb/FuswmA+7S0eVDqz0dUH2l+/YhLWTvBap0C/CGpOaJlT4vuzhRZV+vPOz9e/+pEpxSSdGQpjeM79wAs+4ZgNn3DkTXzCTRb9JjAOMp3bx2cMK+eOdMWNMFJfasioEiymRE03rxyFAI+ebBa+mnxtC29TGmYzoeGuUrcMubl/T06S5k5hNB2Y6kOis1zZwt8tB64fpvPHIG0//cqSkD6uGtRXvx2O/bMcHTMpEns+pdUsd2ylD8TO+6XFplx/tLxF7tsiq7Xx0E2IgYfocA3z3K3mMOpwtOp8t7nwZqWI5UQhY3cs8996BPnz7Izc3FqFGjYPRYSFq0aEE53WHilUmdMaaj8gPJ4m/7EovJAKPBPaFX2h2oC35YtDUAT7fd4UK02ffgHSko526nJADrCU8R2mrUiTYrhoTzrIRqVdIBcYgNAAjduHlDGtBSEr5fjblm6BvLvP8ffmW87HNe8Sd2TFLrfxlTZImbb6SzQE0Lpvcoa5xJjDGjuNKOXKZSaDgLmT/++3aR9+1IvntcQgjkzxuOYkTb1LCMLRz4u+4VqAiioUIrBH77GQMOKcwdSs9aYYX67/C3d7DL5cJ9PyjXOFBDEMSsdqc3pFupPZEWWsqlzeFUFNDYHtcni9Wru/s83crbfLr8oPKHkFcvFwlrGnNEWkI0TpVUQcmG0DUzSWQQiOYYI6SKH4vJKG6/lpkSi9wzck/2he//h6UPD0XzVH7vZaD64eW8NZt9JKrb51r4fqCtgFhenrdb1MmCt0YB8vvGYDCgOxM+3btZimo1eil6z7GwxvFyuoXnUFBA1MLtZ97ZT/fYPru+J+ZsPY77R7TW3pjhoq4NZXId7z4W0lfUDLussa1JvTgUlFnP6wrmvHtdqAZ/6cfuopLZeSX44Xb915nHP54Cu0LBXd45t+m4DA+OaoMbPd0DeOgtKMmT54oqbLL0ETVY45w0BQkAok1G7xrD/l62OwdAnm6/6NWrF8aPH49jx47BbncL7ePHj8fAgfz+g0RouYoTfqaEnv6ULAaDQVcxNbYvqdQjLVWax3ksdkUVNpmid8Un8iq6SkKFnogYwfPLej2+uqmXdwwAsOpAvux70sI7Ui9wYblYaBeEIJ6C0Dg5Fk91r77VVIp0DAD/GrEjknos2EmQF8nAC2lycCRi9rvCOY82G7394d9Y6PN62RxO5J4pxy8bcqud5+Yvv0hSF6SX63wTRNj7ddfxYs3f/45CfYBQouWNz1PQtwFl+9Y1n69VbRvmrziw60Qx5m73r4K6gHANZqw6HND3WXhCOUu51YFPlvP703/KvK/VVs+X0x3Y85JfWoWCMvf5t3jWAFYIU2vp9PVNvXG3py+1kuJcLz5K1GedZ7i1qWj2Tqf4O2o1OOZpXPfjhdXrWKAlEAfSeicjMcarzAtrG29eV+Juhb7g0taRSmh5Wf2tu+HvvM1L+RI8b4K8MeWnLdzvXtu3ichAoMXojhn44JoeuruYAMDfUwZjNKeiO+8+Top1e65Vw8s91zbGYvQ+Z+fbWidQVGHDWY7sJJV/Vh3wv5CtFOnaVciJYLI75auNkFIlcMeQFqpz0JECfbVieFe8qMLmlwLMrpu8mkesTMneYg6mOwdAOd26KS8vx6233oq4uDh07NgROTnukz558mS88soroTosESQCCUXzKd0qrbWYRVIaBiNVmif1aAwA2JNXIgvhWndY7uFRysfTk4ci5A83rRfnfa9B3Vh8fF1PPDDSbXnee7LUO45V+/Pxx5ZjSJAskFIhUMkKrqQfpMb48um7NU5SHO/nN/Tivr/u0Blc+P6/ovcOc7x7vGvETvzScCB2EuSFpvPynHghqscKK7xec8HKqXTdfliXg8GvLcUjv27DR8v4CkAo2HhEfm/VVGuzSI3kY5XurPf+xbNzlCuYsrUBAGD+jtCE4kvR0ikCrea6ZI9y3rLgCenTLAXLHh6KqSN9IZ5t0uugXYY4PUQtH1YLYW6R7jMQtJTlsio75mw9zv2MvUd5RSlZvJ7uAAT3KgfQ/9XlWH/YnQMsKJWsEKYUJt8kJQ7D2qV5v6OkONSNtSh6bpdln8LagwWqofYWs1G0bkkNySxCWKqSDLn9WBGaPTYXPygU5QwE9lr5m68OuBXMeVPcXWhKPIZRtsjammkjVL+flhDt9zFZOjWqq/p5qJVutUg2LSNGsD10QktBlvYNErnGRp5RTdhMzQDmjSoxGr1zfnVb2YWKKrsDv2086q0jMH9HHh79dWtQDPRFFTaMfns5flwnLyQZCgeA9Ap25tz3PCf14t3itUnrGbc5XLpSknh1DoorbLoMdx0bugscKtWuEFB6Fu2kdAfGtGnTsHXrVixbtkxUOG3kyJGYOXNmqA5LBAlpITU9C3aMmd8/lUVQtAa0rIdHxrQVfSZVutlFa4OOvoBKFUT1PLTCBNGNKcYiKFZsa5qD+WWw2p245ou1mPLTFlnREWnhFVmPa8//aov/b3f2w439m+L9a7orbqPUr/Smr9d5Q6AFyqvk3nNeP3X2LGVLCht9zngmeAo7TzBVug/WHnJbhoVQJ6U2PWy1ZzXFJ1D+2HIMd323UbYI8XL8pEp2qKz/kSneyBWF79bwc6MBoNIqvj/eWpStsGVw0QovV7tkal5ytVBsQTiJthjRLDUe9Rklo6zKgfkP+Pocp9aJqpbA1t0zNwXD4KMVll5qtSsqDe0lVaPVELyi0nN/ec/Gmt89KwkwEMJ52XEZFGINBG+PSUNxqBtrEUX1CNudLqnCTV+vx5WfrVFVuuvXiRatW2pepq9XHsIjv2zVfMYfn7VdYwt/8B0tEE83IF6XP1y63zv3pSXEaOYqB1r5eslDF+CLG3qhn0rHFACwSq4Nz+vLIjWwBBKBkZbg/s08j/Ttg5t7/9ZTwNUfOjfS/9xFmUyS176xqP1i4fyw7d4i1dP90dIDeOiXrbjwfXce9F3/24ifNxxV7CQj5UyZVTEfe0tuoWLqjN4QbX+QLj/SekUAwOuQu/GwWC7WU3tFKNamBu+aF1XYvXU1lHg8q513fs4vVU89Unr0HE6XaL4mpVsns2fPxgcffIBBg8RVGzt06IADB2rOa0UEhhBe/vkNvdCwbgy+u7Wv5ne0wstzz5R7PSP3D28tsyJLHy5/CygohYHy2o1JESqqtm+QiKcv7IDr+zX1tiRhq5Ne+vEq9H/5H+/ro2fFXmTpb7LanSIvjzAUtYWsZf14TL+4E9I1+vby4Hmwjp6VWxyrONeIHdF7S8Thwd+s9ilZVXaHTFhhPQ5Cv2GltjmCkCssXnqKUflb4EiNSpsDby7MxpSftmD+zjxZGO0sTl9SqdAeKkEkHAXItPhw6X5v+L8epI+bVt5vsGDXmVKOocnpUp4H7lEIgwXUDY7SftmsgiIY8m4e2AyAO5pGy8OshjAfBuPW43ViYJm77YSiUPTbpqPc93nVo4XzIzUUTGWKPikhvY+E68AqMy64uM+MIBwKU4vS85oUF8XtqMGuJbzIHoHUhCiRgVpNh3O63GkrwXAcSuffP+7lp+yxm/mTj8nCKuuvL8j2ni8tARxQbsUnRfp7WtSvg5EaCjQgD3X/TCECTEB6H7IRWp0UlNpeTcUh4jd5cmYbJ8fJtmWL6gV4umX8cFtfvHZpF1moOhtVI0Xq6f79ngFeo6Ta/CHc/xaTT+mO1EJqy7LdbSmlcp+WsgcAReU29Hh+Ebo/t4j7eQmnf7SA2nwQLFhHgPAM8QJI1ZxRH13bg/u+nvHzDI3FFTZFWW3u5EGY/8Bg3Daohfe+0fKoKxlCHU4XHMzx9cjvtYmQKd2nT59GWpp8YS8rK/O7Ei4ROK0T3U9qNx3tNFjiPUr3qA7pWDVtBPpIel/ziPb2T+UrDvf96CsgxMu/Zp/BP+8b5Hd41qNj23Lf12MpE/J0GibF4pZBzfH8JZ2896nUWs8WiZIKfFKlu8rhxF+cXD6tqsh6EBZ41vPEE3Ie/W2b7D2et5oVTJunKldQdbrk42eFF+HaKi1cQpglG16uJZxtPHIWmxVazfjLtN+3iypz6gm3kobHhkIQyVEq8hVmpC1TtJB6kwIJLVajyu5Adl6JTFBnH/OHf94q+mz7sSIsPCafc1qn1cGMm3vjDk7lZwG1/GdfWxP3Nmx1V6GVFNtP+LUFe8Djt7sHKB5DwCs0B+F8Dm3L7y/NphUJBYP00LNpMpLj5F5eG0fpvndYS+/6wmOXQr9twfDGrgtOFz/CSVAUhXOmZMxKjrOIipv9uy8fN3+9Ds/+6UufUEuX6paZJDIIdmuSpLitP2h5YIsrfEaljU+OVGyXxe6lrkYfeCWkHnK79553n9slD12g+F29nu79p0q1N+Jw2yD3czumo7aCDsiNL+x9oRQJcOug5qLXQppH/TriVlqpdaJgYeSaYC0RA1ql4oremaKYjit7ZWLyiFaK30mSRFykJ8boCi8XDCqsp1urC4kapVV2/LHlmKoSGyhK18uiQ97bedzdTUDJa/3cn8rdJdTmg0BRitgBgL4e2dtfe3xW5wbY8ORI2ft6PPW8lBurw6lYN6ljw7pol5EIo9Hgjf5kIy4zU2Jl31ENLydPt//07t0bc+fO9b4WFJjPP/8c/fuHpvewv3z00Udo3rw5YmJi0LNnT/z777/aX6pl3NjGiYdHtcZnN/T063tqBWqUEPLrlASc7DzfQ8izmLGCWceGiZrhogJX98nEd7f2Qas0fq5jr2baxUyECYBnVZMuuizSnDLpgma1O70TPO941aGnxwJ/pKDMa73kefh48BZBdkyNktS97Ky1dP+pUpG1OcqbZsC/D0orxTndUWYj3ru6m+aYJ360SnMbPUg92TE6vOh2pwtFTCX6YFTwlfLSvN1B32c48DfP0l9umbEeY95ZIaqiDYif3fmSlm6P/Mbv4zz73oEY2jZN1RCsNg8JBhtBLmDnNUHpZue1g6flCuL6J0Z6n2U1hF0Hw+Cj9IsCzUNtlBTLndPLrXbsPlGMl/92Gxsu69kYj4xph7ocBV0g6z33Oix9xHyebt8YXS5+20aL19Pt/v+//fIimIDb0z2+cwPc2L+p972l2adF4ffsXCc1Xg9oKe5gEB9txlidHULUOHq2Asv3nhbNOSwlVe73o81G1OPk+gqwLSsfUPGMqiG9rtJq8i3q18GMm3rCABd+uq23aNs60frkiDu+2+j92596Mpd0b4Q59w3EK5O6yD7j5furKd1Ka/LYThloWV9edV7aVpXt3Q0EJyJFiSkjW/s1Z0WZfDnaatOHEBV3srjKO59WZ7556OctmPLTFjwoMYIGA1bpvv3bDd6/9YT1G0VziAtrDhbguT93eaM0T6kUzwyFp1tN1BV+ZyC2j9Q60dj7wjjsf3GctxaInhQnXosvKUqRIdKOPe796R88W0jNaPC/XWmkEzKl++WXX8YTTzyBu+++G3a7He+++y5GjRqFGTNm4MUXXwzVYXUzc+ZMPPDAA3jiiSewefNmDB48GOPGjfMWfDtXSLAAdw5p7s1DUoIVtm4f3Dyg9iKCUKQ0KbELEm//7CJlNBp0Fz66vl8zDG7N99wAwP+NbacailVpc3hbGvCsamkJMYqtXqQGBmkhHavdKcrzFiYQtiLuyPbqoZ5KCOF95VYH+r30j+7e0btPFGPrUXVDwM8b+CGkAoJCvfN4EUa+tVxUwVUr/18wDPh6oxt15xvqWQz8RatnMeA+N2xP4lAIVIH2XJZSaXNg29HCgCtGV5dQh8iv3O+uCTDD0ztdQE055gkCgL5aFWpCp6BMLtzlrjnA3sfC86lloKmvs9iUQSM/2R+UBBl/0ghYGifHcuf00io7xr37r1fQZ6dXaf0LKZvyxfsTIqnEYc0ubtSQEHmg5SVJiY+C0WhQbdMkzHV1os2Yfe9A1V61SbEWv3oyKzHmnRW48at16PrcQlFNEQFBiJXOmz/crpwGxivEpQdpGPktM9y90VmZYWDLeninv0NmPGI93WrrORut8MWN6iHiUro0TkJyvM/r/PVNvdGsXhy+v60vGieLPWzCGud0unAov8zr9bOYDNyuHO5xG7iFraTGAbPRKInCCO78y56/Bhr3mLSFmMXsk6fUWobd9T+f8UNQTKuz5C7Y6Z4XF+0Kfk0WNqqA3b+etAd2rbA7XbjqszX4auUhXQVbiypsNZbn3rJ+vPf3BHrIKLMRZpPRO38q3ecsSmsWOxe1UImGlOJPZKfd6WKiaULaYCsshOwXDRgwAKtWrUJ5eTlatmyJhQsXIj09HatXr0bPnv55XUPBW2+9hVtvvRW33XYb2rdvj3feeQeZmZn4+OOPwz20sMAKJ0+M7xDQPqLM6g91FONR5CrdAYbwak2y8dFmTBnJF6qcThfaPTXf+1pJSFMq0iadTF6Y2AkdGyaiuyfM0Gp3ioQdb06353vxUSZ8cl1gzwO7wJ8tt+FOxlugxluL9nLfZ4X5nDPqoc5COPmybHmPVN1Kt6cySJTZqHty5VVJry51YnyC4c/r5dVKAXcle/Z2PC3pO+lyufDzhlxsO1oY8DgSmHFIBTqH04W1BwtE/dJdLhdmbT4qK3o35afNmPDBSlnbs5pCeo1CJZ5Iw+SkQv3CnXno/eJidHpmgWLfcDbP9WOFHDh/rPSsICgoRNUJz2QRPE96hCYtgu08aJAkVrqzOruF/hKJEs/eGmoK8brDZ2TpAEqebp4hbscxt1FRK1pKCIlXM/oJufnCOsMzWHx8bQ/cNKAZsjo38Fsgb1ZPnhvM5v4f5rT5UcqrHtAylbu2NkqSh3fqRRr9IHTk4EVtSGHTCPQaVqszVgAY1i4Nyx4Zhp5NU2ReXeHaPDNnJ4a9sQwfLXOnGUWZjNwQWAFe+L40GpANyQ4F7H2n5f2rG2fBL3f5IkrNRqM3ukWvLUCrCGG4iVKQ+/Sk37CXiY3M2qPSjeEiT+TSqeIq5DLykVrxRL1Ir6cwvhcu6exr3abxs7SMt95Cxzo89Uq1R854Wqhd2KUBUuKjuNvw4FVDV6K4wua9hudaaDkABJbko4HNZsMdd9yBp556Ct98800oDlEtrFYrNm7ciMcee0z0/ujRo7FqFT+EtaqqClVVvpCT4mL3w2mz2WCzBT9fJRgI49IzPlZQCPT3RHnW1PIq/jmJNvseIKPLIdvGykwG7vOqz+tSVFYJm03bu/DsRe3x7J/uEN7yyipYTEb8LWln5HTY/fr9lcwYB7eqh+YpMZh9dz98veoINucUotJmh8XoO7dOhxNWqxWVVvcx2mUkwOV0wOZ0+HW9AMDg0j+Rsfs0MGpQs3px3pZiRrh0H7vKaoXNZkaMWT4pqnmCAKCkwgqbzYaKKvcEbjECBpe+kK3SiipYDMEVAhKiTLDZbCitsnPz3wHgwKkS2B2+MR4vqhRdr3/35ePRX93f3ff86IDG0adZktdjGucZk8CM1Ufw4rxs9GyShJ9u7wPA7V2dOnOr7JiCd+H7NUcwsWv1Q12VULpXhOsq4PLjvvKHSpt4DpGuz3doGKE2PD5M9P2R7VK5283ddhzrDhXgkVGtYTQaYHM4kZ1Xig4NEhAXZUK51YHOjRJhs9nE97FnjqvSmMf0nhun5/6ThgcGcm6dQTZeWQwuJDKhxHEer0pRuThMM/dMmXe87TLqYMORQu7+tnDqN9jtnrmZEeCKK23euZSloMw9x7ic6vNKjMl9/owq88+eE24Fvlm9OPe2rMDu+S0j26ViZLtUOB12/LjOv2i5pswczONEYRnu+m4jJnTNwOTh7jzeCk94ucVo4KyjvvPz9uWd8dHyg3j/qm667pNPrumGR37fgdcv7aS5vdXhlK1Z0u/EMHqp7ggYp1w2CBR5upf7HhK6LwidKqLMRjxzYTvEWoy4vm8T2fGv7NkQB0+VoF+LFO9nRok50WRw36MCdkfwfgcAOBxi+UgL0b3vtMPpeW7snOvGQ5ATSj3rdXUJ9hqgJGa8uWgv+jVPUq1j5GTOTVmFb72qsNqRk8+vZZFWx61cF5RZcbrY97y6XIGtbwdPl+GrVUdw55BmovvUZrMhJT4K+aVWJEQZvPON0wXsOnYWd3y/DWM6pmNit4ai/f1xdz/VcQhGivJKZZ3F7nDC7nThDYXaI0LL3IZ1xQq+1u8vLLfhj025XmOsGkcKylBa4V43jMbg3zehQu84Q6J0WywWzJo1C0899VQodl9t8vPz4XA4kJ4uLr6Rnp6OvDx+iO7LL7+M6dOny95fuHAh4uLklupIYtEifoVGFrvTdyvMmzcvoOMUnDYCMOKluTuxeN0OTGouXmRtlSYI2YQrli1FosRQlnPc/X1hDHsKDQC087sOblmF4zq6rCS6AOGWn/XXfNSxAMtOiI/x378rsJdr8OY/Knn5ZwEYkB7rwsR6J73nLtuz39xjx7Gp9Jj3GDt2Z2P4qr04UQ4ABhQVnpGdbz3XCwAOFCuPi6VhnEt0jFMnfef5ikbFeK3AvY8Fu05h7tx5MBiA+jEmnK5UVp7/WbIMabHAgVPya5TmyJe9x3LwSC7mzTuCDZ7vFp0twNo1p3X9lr8XLEaSRpTkviIDok0uNFGMfhIfZ+v27Ug8vQ1lNvlnAsv35QPigu7e67Ro0SIsOe47D4E+PzuZe7GovEq0n6+2up+djTmF3vd/O+S7jm/98Dcax7s8C7T7NzjLzgY8FjH8c8Lu+3gZEG0C6sUA2ZLn1m6zB2kc4vEUFpeK9ltR6DsfRrjgVClO0yHJiZVLec+Z/Lf+sdWdO24/dQDd67nw4wEj1pwyYmxjB5rGGbDbakSXGPe5Zp/J9WvXIH8XsOOY+jym99wcLXPvu7zKBmEebZ7gCujc7jjJH1NSlAvldsDq9M/DsGP7NnRIcqFJvAm96ztx4lguACO27doLNqCu8GyBd7xZKcD2XBOqOMfanb1XNr41q/7DkThgxxnf2G0OF1avW8/9LfPmzcPWAv7v7J/mxPgmTiyY/zcAIXSTf5/v2uP+DcLz5HL41jHeuWfXUj0U5Z9CvNmAMjv/nN/yzSYAwPtLD6JVpTtKKafUPV6btYozBt/xjUc3476WQPb65chW2Ial6tAGPN8NqDq4AfMOam+vtXa5bTv+nY9/lixFvepH6AMAnFbftQKArdu2I+HUNtmYnHYrNv23BCPjgRM7juIEpwRELyNgP3wI8w67X+8+I763DhWUe86He9+HDh/BvHmHZPsJlL3H/Ftjiq3wjuXvv//GTs8zn5eXh0WL3C2p5LKG77z87THevrpgLxoWKxcWU6d6cuWZKiA5ih+Zc5qRY6Q8+P1aPNxF2ZB2qMQ3tvkLF3n/Pn4yH3d/uYy737ycgwBMcDhdWPLvagjXotJqU/xtS48b8G+eEfd1dCBFIrc8s9GEQqsBy3fmegwI7h/51Nd/o7TCCMCAlf/9ixMn3L/T4QJu+GodiqwGfLsmB/sOHhaNc/2//0CNwgL3fjZs2YroE1u427y0xYTTFZCtnWkxLpyqNOBUURkAAw4ePIhhDZyoH2NCr1Sn5Pfzn/cpP2/Dyb2bkB6rvp3TBXwz918AJrjswZYdQkd5ub5CuCFRugFg4sSJmD17Nh588MFQHaLaSEM6XC6XYtjOtGnTRL+luLgYmZmZGD16NBIT9fdPrElsNhsWLVqEUaNGwWJRD4GZsnqh9++srKyAjrescgc2FxxHhcOA5XkGPHvNBaKcqnf3rcSpSndI2rgxo2RhOTOOrgWKirxjSNifj493b1I95qYnhiEhRn94zzNblqCk0o5eAy5Ai/rxOLHyMHDYF249bNhQNE2RG1HY88MSFRsPlJVjROdMXHShLyz/7Lpc/HZ4N9LSM9CuRQpw0G05zDel4GhZoXe7tPqpyMpy57D5c70Ady/J93au09wuJi4eWVmDvK8Xlm7DlgK3cWnksAuwyboXi/e4w8QHDhuFpDgLXt/zL1ApbzUmMHjIBWhZPx6u7Xn44YDYO/zolcPw5+srFL+bltEAWVldUbz+KHBgFxplpOOCwS3x9o41mr+l98AhaJ2mnEtUUFqFKa8uB6DscZZey3btOyCrf1N3q5ENyzXHIDBq1Cjv9Tq29ihwxK2VB/r85DH3os1pwKgxY70hmZ8eXo0T5SWi/S/9dTuQ51YIP95tQnKcxZMn6w59z8jIQFZWt4DGIuBwuoDVfCOQMI6CMiv6vbIMgPucx+09Dez2dSpoVj8BWVnK1bmdTpdf7QGF62e0RCMra6j3/c3Ygy2r3Z6r9g0TsfM432Nx+6BmmDy8pazTALtvHpmtOyKrXxNMecq9zfyjJgxsWQ8oLED3bl2R1a0hth4twns71wIAhgwaiM6N6iJn+UEgZ7/ifvXeL9l5JXh922rYmdZn3989VHdOOEvphqOYeVAuSJujonFtrwb4etURv/bXpUtXTOzeEJdf7H49/a/dWHkyFykNMoHjvsKFqam++Q4Arp8EtH5Kfs6bNW8J5BwWvXfrZe7zFL/3ND7P9t1fHbt0B/bII1SysrIQtfsUvtq7RfbZgC5tcOUF4or1U9fwr31ms+bAsSNo3NA9bz27dSmqPDUCeNdO7R7i0bxpYxzJPo0yu7anRDje5pxCYPs6JMTHIStrsOLxle4tpTH6s33DujHIynL3oVdbux5cyz/WTf2bYMZqeVTAmFEjkBbAPc2jefcSTJ651RtJ0LZ9B0yZJ+/GkMg5j1rUP3wWX2avF72XlZXlPVeNM5sgKyuwVD0euSsO4a8c/9aYlt3OIj7ahA4NElG8/ih+PrgLaenpGDWqE/d6+XtfaFEdufKb1Ufwwrxs3D6oGR4dI67J43K5MEVhXQKA5KS6yMrqp/j5hiNngR3uazdk6DBgo7t4Y6EzGklmCwB56kTPLh0xN9ctx7Xp1A3Y7fH0GE3IyhrDPY6wVmxzZuK1rM7izzznJq/CgA4NEnDMs77/dNC3Lg0begEOrzqC1aeOwuECiqy+uX/1KZ/C/dIlHZHVs5Hi7wXcct/2s3lo3c4t73DHq3D9mzdIwalDZ1HuMQy2btUSV4xsjSsu1r8PAGjTra97zdTYTjgH0dFRyMoaprhdJCFEP2sRMqW7VatWeP7557Fq1Sr07NkT8fHiQlSTJ08O1aE1SU1Nhclkknm1T506JfN+C0RHRyM6Wr4QWCwWXQpSONEzxit7ZWLmhlwMapUa8O+RVvN0GoyifbG5s/Ex0bBIhN7RHRtgc24RmtWLg8VigdGo7uXu1yIFKQn+RRkkxVlQUmlHqc0Fi8UCg0FarMe/61luFSpwm0XfizK7f6sLBjgYIVmaAx5lNsmOp/eeionSl1NzvKhStD82t65ObDQsTK792UoH6teN08xLNBjd43ZJjFRjO2YgKV7sprixf1McKihHr6bJeGvRXticwOpDhXhqjlvoj7aYEROt75zf/9NW3DywOa7t24RrICusYgwFRpO+PELPfWow+leV9GSpO5RQeq/qvX/sDqe4d67kXrS5jIjz7Iu9RsL+T0j6X58tt+EsfIK72WSs9tzkUKl0Kux767EC35tGExwu8e9oWi9ecRxL9pzEfT9sxiuXdvFW+9bL6VIrnv1rD67v39TTrsR3jhrUjeMq3b2bJePx8R0CqogaZTHLfofwmERFuZ/ZuGjfMxkTFQWLxYLLezfFm4uVlW691ygqSrxdjMWIhin6i9mIjmnmL/0Opwt5AfRVNxjF95rZ5InYkOR0O136fq9D4mlplBTr/V605DycKvWkqZgMovnVYrEgysL/nV2apOg+70WVnoKPnrn6loHN8eaivRjZPi0oa7/etlqA79y5PHOFxaz+jOsZX734KG/NA39+z+x7Bwa8dgHA1FHtZEr3cxd3RKMA72keXZqkYNkjwzD5x82Ys/U4/t1/hrvd6dIqv69lmwby4mrsPirtzqDKhp0zfUXq9O53QGtfkVZhDTEYDN7vS69Xn+Yposr9AiaTGQZPJenSKjuOFJShQ4NEv+ZR6ZhX7c+H3enCkDbyIrgfLt3vbVX5+X+H8cSFHUWfH+HUOWDJK9a4ngbfWuFk/i6qsCnmaCfG+eT/Equ46r3W9XDCoLrNrhN8A3FMVBSiPXPYmSrlc90qPVFzDHFRvn7f/t6XCTFiWXNpdj7+bxzfoPTgqDaKdYNumrER39zSBxdwrjmPYMgwNYXecYaskNoXX3yBpKQkbNy4EZ999hnefvtt77933nknVIfVRVRUFHr27CkLrVm0aBEGDNDul3ou8uLETnj10s544/KuAe9DOllJpwihIMQVvRpzW5LdOqg5PrymB3719KzN5HicWQIpQJYU6548ijx5PNIiIf4WbhDa1UiLzXjb+zhdeOVvX36MVOkOtEUPoK9KJ+CuvnuqpJL7WYzFJCpYJ+TsaFVcFpTyI5JcxN15xbKe23dc0BLf3tLHW3G1yu7EDV/5PPT+FFI7cLoMT87egWV75QXcAHG1ywodrTEA32/1t9XVr5t8Hjx/a80cKShDl+kLRfeG9F5kx8O7T4QCT0oEo1gWex8oPRtsAb+yKrvsPKoVRLxlxgaUWx2Y/ONmxW3U+H5tDsa+I7SY8h3HoVC4ZVR79fZgQmsgXguv7Lxi/LxBXGhPuGZC0SG2FZbwfGbUjVGNztCLtCiY3sJUXBROgd3p4hZHlNJK8nukV1i4X8+Wib23eovKqVW7lbZ1POZpc9S3eT3ZtkoRFENa8/P3efzqKUgo3P+3DGqOr27qhY8V1p9PruMX5FNCq4o7D+H8WDjzZqqnf7RaTivL5zf2QkZiDD64prtfY0hLrF4MuEVSDyTKZMQN/ZtVa59KCEWflPqBB9J7ObVONO4Y4ouWmD5BrBieUSjeGChDWqfi7Su7Yt5k/zzyAr4+3crbCEX9HhnTVvT+iLeW4/Zv3fP8xA9XYvx7/2G5whoswNaekK4dVrsT13yx1h0uLenacbqkyqtwK6HVGlWt5RcgrmH0/RpfVI/RYFCUfSwmX371a/N943M4XZqdQgItCGYy+arOrzutPN/rqZcQbVFv5apGvKT1n9r5TVZpBwn42rvxTkmixzEndAvgtfCt7YRM6T506JDiv4MHD2rvIMQ8+OCD+OKLL/DVV19h9+7dmDp1KnJycnDXXXeFe2hhwWwy4sreTarV7kTaxkLqLRUe9qzODbjfjzIbMb5LA2+175b16ygKAhO7N0JSnP7qiQJJnglht8eyKK106b/S7V5YzBIBWBCQ/92XL5rEpVUcq9MSQY/CLmxzvNCndNuY8cRYjKKKwkLlaa3WXMK1fWexONH5TKlVptQIreKEqrorJIt1lMmoWXxNyhGFavLs9Vuss02J8Fv87b3NKhBqbVh4vL1oL8qtDnyy3NeiRHovssor777UMhIYVHKa9WJjFvPVjw3X3L6kUq5011R7FVbpVhOc1PjfbX3x8Og2+Ox6uUL1vzU53mJ5AsJvE65PPaaiKyt0KnlPnr+kk+p4WKS3gJ52Z0oonQWn04XUBO15NSUuCney4dmS0y2cD6HarYCNc13uHNJC9p7a/CP1DAu9hS0mA+4Z2hKA27ALKAttgUQ6CM97fLQZw9ulKxo9+rfUr9AD7ggxvU+I0I5TaDnJM7z+dEd/3Ni/qS6jtNloQI8myVjz+Ahc2EV/pIk/Bu+GCjKFtP/3tf2a6N6nvwgG/ONF6oZKfxnCtCrt0NCdZigYOy7uph7u6y8GgwETuzf2HieQ7wPqRlBfqyYDXpnkC4c+lF+Gxbvd6+k+j+Hipq/Xy3fA8OfW496/pbIKu0YUS5RuXos8KdVtr8nKYV/858u7NxiU1yuT0eCNbJIq/VotsdjfX1Ba5S3kp4XZaBB1LFFCqWc2S4zQXUiherla1XepYVCtK4TWcm/0nGPedrcPdq8Fdsm6ei4REqV77dq1eOKJJ/B///d/WLjQv/ymmuLKK6/EO++8g+eeew7dunXDihUrMG/ePDRtys91ILSRKsHSlj7Cw87LpVRivIKCnpkcWFuRNukJAIDDHqVN+uBrtZiRwi5SLMJkIW2fJPX0mPxUNlmkij6Pjp4Fmm1xwSpSMWaTSJgX2hFperoVFu4XJsqVCEHRUVISosxGvydXXqSE0+nCw79s9b5+8Oetsm14eJVuPz3dQiuf0yVVIst3oEjPOWu9ZpXFD5fuR1G5TXOhD4aRWBDuDQYgTkcYbCnH0x2kjlmasMLkqgMF3G0yNLxzDerG4r7hrVFPZ0/jjUfcVbaF+5ed21gDJq+N087pY3B9P/3rjfQZkSot/sAqnazSa3e68NE12gqV0Qg8NMrnDZNGJRm9nm6x0s2LQPi/se2waOoQ0XtbjxaJXrOepC6N6+JFZp7J87TvM5uMeGh0W8y6ZwBeuMStMPgzr7x2WRfVz3ertBNi8dcYEmsxeY0FWuR7QumV+nQD7iiE6Rd30mVADyRa4sWJnTC2k/6uCBbO+ejbPEW2ft07rJXfY9FLHY+nLtjdr+IYD6DQHu1/t/XFb3f3x6TuwVW6q4vwJKidAtaI2LGhPHxeK6ybhY00k7bAZMcgvSZ6WsWWVurrbKOEkmJtNBiUlW6VBVWrDRc7D137xVo8NZtTqU/he3oMDHocUIKnW6nlpJrMJ50n1KZVrfnPaDCgpNL3m9jnRJDrBEOD3mjO2kTQle5Zs2Zh4MCBePfdd/Hpp59i3LhxYQ8nV+Kee+7B4cOHUVVVhY0bN2LIkCHaXyIUkfZNtDqcWHUgH9d/uRZHCsq8nm5/lG6pR+LVSzujb/MUTOrROKAxCkK3MMFIJ9hAw72lk4OSsHdQ4qG1VCe8XMd3haiB+3/cjOOecGT2/BuNBtHYBUOJlndy5np+W5yBreReHkG4UhLwLCaj38If7x7aebzYqwT5gy+83D+JTBAq3pR4+7VCzZSQRg2wyms0k9P9+oJsPDNnh8h4wiMQb54UGyPcS4UOh9OFg6fF4ZpWuxNWyXnU0zc1GLCHUbp/W6XFc9/nMfMO5UI8UthncfkjQ/HnfYOQlqCudPuTywtwwsur4elmC1VNy2rv/TshxozOjevi1kHNVb9vNhoRZTbi5zv744VLOqF/y3qSzxU83Xb5dTEaDWjtMYYKbM4tkm0nYDAYcG3fphjfxW2QFSIKLCZ3n+TuTZK955tnRFWKLhjWNo37vnfsOo1y/s5lcVEm3D64BeZOHsS9T1jyitwGhpX78z3HCuwZf3lSZ5iMBnzkZyg84H/IJ286bN/AbQxm18lUnYauQNA6r4HSmOkpLqSW1Ik2o2fTFL+KQ9YEPk+38jYOxokQY5Gfs6f/2Cl6rWaoZtcfdv0CAIdKlJhW6Djg/1otRVnp9hnxAKBrY5/hIZpzPgS0vPPsfb4nj5+/zcNsNKCwXF3prqezX7aQ063kORfmFJa6sRZc3acJR+lWvrcv0TA2lVsd3nMQH2VC3xYp3s8EuU64Byi8XAcvvfQSbrrpJhQWFqKwsBDTp0/HCy+8EOzDEBGIdGGz2p245vO1+HdfPq76bI1XoatOWOSVvZtg5p390SxVv/DMIggpggdaalUNdKGUKsB6Peam6oSX6xC42MrGP6x1K8pt0sX5mOwYij0WSK3cyx/X5XIXXMGifQnTQ1I4N0qCz/7TpX57IHhKd3FlYCFngtAuDf3XQvBEF1eIFzE94dTsFqVVdm7+HxspkiQJT1576AxKNISTYMh8wjWOMsmjEarsDm9+lnd7p8t7XoRHYFPOWTzzx45qhwRqoUe59yd/tkk9/UUa2ce9ab14dGaENaB6XmkB6dxUnX0Obp2K+4a1wofXuJWub2/pg7bpCfjyxt4AgIdGu6sFK83Vwlj6NE/BdRxvvTD/SZ9rtTodu57jVwAG+N454RjCXM5L1ZHOkV/e2EsxukDLiKkU3SNFqkg+Ob69ytbue9JgcHsWtdbG44UVcDhdmLHqMIDA8jMB4Oo+TbD7ubGahgYevBQBNXipN8LcVlPho1KlT8pj49oFtN+0xBi8dlkX/N/YdmiUFFj0XU0hnGo1ozDr6eat19J16qNlB2TbCLBXVipnsc8S6xE/XliBe38Qd6zhPRN61uodx5QNd2qebhbps9yiPl/u5CnddlFNlsDmaj2e7j/uG6hrX8keb/jZcn6tgSc53vcFDwzBy5M6y4x7as9tjMWEi7upp6o8O8dtvKkba8FlPTPx2qVd8M9DF3jXZyGSgcLLdZCdnY1HH30UZk911EceeQSFhYXIz5dbUYhzC6k1jA2PPVFU6W7JhMCVbsGzUR0Er6swIUrDvwN9yKWhcnr3E6inQnqMlyd15m6TwskxXbT7FADg8p7uaAFW2Jz2+3ZUWB26FjVeoTIhb6hfC5/nS7gvlJSE0kqb3/cEzwLKW/j0eJ0/W+GuMaHXei4UmRG2l15rf5XLG75cyz3f7HikXtECHUV6WAFi5vocWS69HgTvntlkkCkldqcLB06LIzecLpf3O8K9UG514JvVR/D6gj1QI9AIAfbYWvijdPuj1GodOhieNumUUp1CagaDAQ+PaeudU4e0qY8FU4egqycfNS7KjK1Pj8bmp0dxv681bSnNf4+Na8t9Xzhm9yZJ3M9451c4RHmVUFdDfkzp9R7eTlnJ1Er18dMmB8BdQ+TynplIS4iWhdgKxDDvl2iEzd7/42ZM/slXdLA6Qmmg92SljpxbFt61UypAGiq01pfqjOOKXpm4W2d6QDjR4wf4e4e7o4/JE8kiRVpAceb6XNk2AmxkSGNJOiCr9Are89IqOwa8skRWnJVX3fyNhdrpXL9sUB6bUii11LDGzrFNUuIUa2GUS56JudtOoP3T872v/U1bFDAZDZqe/8bJ+ozDgix4psyKj5btx8i3lqOg1FcQjZfrnRjrljukBl+t+gtTRrT2/p3AiegSdIE6MWaYjAZc0TsTLevX8YaXC3J5YYgN9eEg6Ep3aWkpkpKSvK+jo6MRGxuru4cZUXuRCqlKFRUDFRZjNKzVehDGuGq/O+dTmt+iFM4yQBI+KSVwT3fgiz1buVapBQPrERbyjrbmFgIAfpFU5RXYkluoWQwD4Cu5vEgBYf9K4bBWhxPJ8VGY5oe3ged1+nSF3OruT3E0vTndwuIlLAzSn9zzhcWa+2C/simnkCvQs0KLWr631jH25BXj/37bLqoYrxc2vFx6bR0cI4Xd4fKGvUvz7g8pFL8TUKpIrwe7w6nrnvUntcWf8G2t+0wqwL5/dXfd+xaQzk3+Rmb4S904C+KizNj+7Gi8d3V3PDDSJ0hpRegozWut0hK47wsoGTp43lJhjvW2u+KMSXoPqqVcsHP4ZT3l6UuBGIXiokyoG2fBmmkjFDuD+GtwnLvthPfvJI1KwaGgzOpfPq3QCrBdhu/aC+Hlr1/mPiePjlU2xgQDLU/3uehRkyIU1tRjnNx7soT7LFZKDO1q0wCriEqfQ1bpFlqUCV0IpAjbVlgdmPjRSryxIBu5Z7QL4n2z+ohi0TCluVOqPJtNBsy8ox9+uL0vkuKiFPPhpQ6Ie3/YJDKa6ymGxsNiMmrWmtCLoECXVNrx2vxs7D9Vio+ZSAVerrdgtJTeM3cMlhe/ZGlR32ecef3yrnhwlLjPuuD5j5O0GZYaSU9rVKGvjYSkT/eCBQtQt64vvM7pdOKff/7Bjh2+8IUJEyaE4tBEGJEKqVIvskCgaRpKoT2BUFJlx568Yt2LyEfX9sC87Xl4fNZ27ufSyUG/pztwuxc7DVpMRsy5byCOFJTj9QXZyPEUTmP3rxRS1bVxXW9bHED/2MuYBeqyno0xiMnn5l1jJYFamOzvvKAlru3XFOsPncHNM9Qro/J+y/rD8nzuSptD8xwLwiCrOD1/cUc8JclfExA8VoLiG4gVWzr6Ek5o/PQ/d2LOvYNgNBrw4zp+Dr0qnmGdZPou2xxOv+45QfHn1R7gPd9iT7f4OFpGswOnSnWFu0aZjLJjV9qdusLL/Yks8cfTrdSiTEAqdAUyl0kVxr0n+e2Pgk1CjAUTujbEF//6uo5onZpAlZi1nB7BSkgfO56nOz5Kv4jDPscGuI1rbDit3vByFsHIYzQaFM+JP2OU7T8Ihmg9tE1PQPZJdx4mW6tAD1NGtkbHhnXRv2U9nCyuxLLs07h5YDMA7ui1IW1GIyEmtMYDtXxc4DxRur3h5fzP2fmzpNLONTpKU7jU1j7WQytdr/15loR1+ffNR7E5pxCbcwp1f/ebVYdxxxB5FIIeozUAtE5LQF8mak+6cMdFmVBudYgcEI/+Ki/gOnNDLl4NQHm2mIwY0DIVSbGWant9BcMTu3aWM/JvFWc999YBkNY+0rE2fn1Tb2zOLcToDuk4IKn9IjiApK3I/DGK11ZConTfeOONsvfuvPNO798GgwEOh38hSkTkI/XEKBWe8XeB+/yGXli866RmcR89sJbPXceLZRZKJU93UlwUrunbBBsOn8Hvm4/JPt8tKY6hV16vzmKfGGNGlNkIl8uF5DgL6idEo0vjJM0el1Ku7tNEpGDqHZIQImgwAK9f1kWzcJeSR+e2wb7rWifaLBOQmqfGw2p3ivpS621DVWV3Qt235luAhfu1Y8NEXNevKQ4XlCMtIRov/y0OixaEZGF73jV0OF1+XdtRb6+QvbfjWDHm78xTbLGnhRBOzg7jbLkVuWcq0LFhoq4Fzqt0c67dHZJ8bsAtIAmLt9T7qyX4Sq3eSkSb5Ur3qeJKXR4cf4rL+aN0a3m62fz8BnVj0FrD48sj3IqBP8aaYBfA4YeXi4+xi1NdPC5avxDHerrXHT6DhBizWOkOILCAfcaUQpi1oqjUqE73C3/45e7++HzFQVRYHdwoADWizSZvGkNKfJTXyy0QaoXbPQbtisrnOlotw9g51eF0cuc/afqD0nlzuVwiL6q0GBjPQKrUdlPYVqvODI+X5u3BpB6NZUX69NRCuGlAM29tCyUSYswotzpwgmlF9/OGoyrfCIxgpCcJzwDr0RbO7cz1OaqGiEDmvmHt0jDMk84jTa0RjBSxFomnWyEF51wi6OHlTqdT8x8p3OcmUiVb2jJMwF+BbFSHdLx6WZegWMHYysoFpVacYPpXA9qCrVJlRmnood5FvDotEcwmI7Y8PQrbnhmjaHnU8sAJ+8nq7GsBo1ehFUKxLCajTJnh9YhWEtqv6JUpet23eT0MbVsfdwxpgZ3Tx2D+A4Nx1wXicKaV+/NlUQo8hHtwyZ6T3sIqnRvV5W4jLOpmz+956sIOuIPTQ1gQ5K12d0jzH1tPyLbRW+lYi00BVGMXENoL/b7JZyR6fX42Lv14Fe79fpMuz7AQIsdTGKRtnQD3/SYs3tLcdl6IJ7tbqdVbCZ7yPuWnLViarR6e3jzBP6HNn6KKWs8Mu6cVjw4LSIgKtzOOnasW7Dypum2gBgI2BJmFd3al60g2pypwnB9rBjvmWwY2l93zgYSXs9Ee7P7vusDtfXtpYmfRffb9bX392n9NVfdNjLHgodFt8eSFHUJWCTyUJGu0VAq3Qasm8BVS43/Oyms2p4urdEt7aiulDEkrdO/JKxHlD/uV9uWsXtG9/FJ5iLJS2LlAYowZz07oKDMISUddx5Ov/Miv2/D+P/tQHdTqCgTj7hSUbta48tP6XKw6kI//+40fwekdWzWNe1f1biKKMhPuNema70/NldpK7Zs9iYhFuv4rWc7C2UqDHdPZcqs3DBtwh1lrecKUJkZpVV69C0SdaoQWAm7voJp1kF3cflwnLizC/hZWN2cX3/8bq5xnLSjd0To9YErCmvScm4wGzLi5Dx7Pao/4aDOizSZZDulP63PxyK/bRO9Jq7IDwMBXluCXDbm4ZcYGXPj+fwDk1lSv0u2Uh1Lz7gfB0328qBJT1/Cvn5ZQoVfm2O8JyxJaPA2StGSTeo14LGdypYU8/n/2nMKAV5ZoFn3zero91/ifhy5Q3d7h9D1jbOV8wF3ARZo3r5VryYMnDG4/VqT4W4a1ddc7uLx56Iy9mko3cx8FmlISjBZw1UGpEBgP3vz32qXa4ZXX9PUV6DEaXN77fjCnFaE0FYgnsJlNRrx1RVdYTAbMuLm36rENBgMOvpSFWfcMwLV9m8jOt55ICimsoZi97lf2zsSO6WNEvxdwR9n4w3mgKwYF6Vwk5VxsTSRFMIQr3cWsofjWQc25clqxzv7YvGeFVex486XS48VWVA8EngNEqVe1gJKsIjW81WGU8jcX7eVGf+lF1ZgVhNszyuvpFq+DalXeBdh5LJDrEBtlwgfXyNsTSteU6hQWri2Q0k0Eje6ZyRjZPt37WknpDucCxy4s+aVV3p6M8yYPxqx7tFsvKE04D48WF4LR+xv1KE3VQU0Z+JoRQlklUcjFMhiAu4e2xOan+BWM8z157DEcYbwtx2NVHQ8JT6H+c+tx798ul0sxx1WqnEsjMKweq7fXq6sx8QsLhZqepVWUTY+XHvC1zhCEGKkgpKfqbv8W/PDVvOJK7Dup3jPUzhRSA4CW9esgWaV4E+vplkYwLN97Gvd8L24Hw1rdq+xOVNoc+Hv7CUUFusLqwPEiX3QK7zHrIamA/dkNvbDq0QvQKICSEHrlixHt0lU/D6anIlw0T5U/g0pI79PFDw7BFb0zFbZmvscaJwzAL3f0wRNZ7TH94o6ybaVKsZLxcVKPxtj3YhaG6qgXYPT0+eZFDmXU9b8lFGsIYH9brMXk9ZKxJGl4ZKVEWi/oSCXGYlIsNgqcH+fRl9PNX7ge/sWXi9yjSTJ3G6mnWwmeYXTVAV8HI55SXqNKt0ZOt3JBR+nYxPtZuEs9AkgNqTGWLT4WjPQHwcAt/e16aoOw89gf9+prUSaF9wukKWXVqXFUWzj3fyFRYxiNBnxxYy9c2sOd82V1ONE6TS6ohXOBY/Pn2Nyb2CiTrnEpKWRsay5A/2/0x3ukFzY3itcGS1i82LxSVgl84KctAHzVgJPj+YLgQ55FmqeEdc1MwmfX98TfUwZ736vOhNqrWQreuoJf/RcQe3PVOFVS6a3eLiDzdGuMU4/xQKv9mJrSzatdIBhFpGM3Gg3cEHgBl8ulKmCUabT/sXo93b77mVe5umdTt5DmcPq+w7u3WaHE4XSJjEJWuxOvzt+Du7/fhFsVCuktzT4les0T1G7o3wxbnxmN0R3SPV5Oo6anS4mvblL3jgrUrYEq0uEuMpNaR79CKDUG1Y3V9132e2Yj0DApFrcPacHN+5VOscEOe2Z3P6RNfXx4TXe/9xHDpEKwz3ywqo6fD7nIwUIt0uE8kPU1w8uXaaTnAPrDwnlROayi/d8+eQthpUgSr9Id4L3O+5qW0Vupc4V0iLyUlkCRzl+TmbZbwRCZBaOt9BqeLK7kbS5CSD9snVYHnSTpeXrh3RNyT/e5/yCe+7+QqHGizO6H6999p7m9nMOZP9WrWQq337degY2ncEhDBN3b6c3pDu0jKLXE5pdWeRcx1nPGLkJWlQJhF3drKHsvSUGgHt0xQ+TJr66nblIP5QI+eiuavj5fXmSuyu6Ey+VSzF/++c7+otf6lG51S7pab80GdX3VgYXlUbhmUu/YJd0a4uHRbb3VgOXjcKkKGDd+tQ67OQWoBNg8dwHp+WmXkeC9tvO2n/AWzdG63tJztPpAAb5eeRgAsOHIWW7OufQ7vJBiq8OJurEWfHZDL9V7Rg96vKN6CJZu9NLEzt6/W6QGr5uDHvQWugPkAnJCjL7vssZKLfFeqnBWs827Kt/e0kfUBkcvbI/hEqaas78GlLbp/Fz38yEsOliopWecH8YL9UJqwYQXYde1cZL37+f+2iX7XEmhF94PNK+Yt45oebqVlL8rJdE6L0/SX5H86Nly1c/VCncq1SR4eVJn7vs8lCKBlJRudp1vWi8eax8fgT/vH6T7eFJ4V2/ncbHsIb3GF3WVy5u1HVK6iaAjTB4r9xfgKKf3YrgFhYEt5fmBeisV88J5ed/l6dy890KRw9It0xcaJl3Irvx0NQC3EsAKwul15W1geItcQowZjZNjZe/pIZThsc1SlZVYll+Y1mjxzCL09crDOO6pji41hPRpniJ6rede0aq0qhYWHs0RyHmGEuH9KLMRz1zUEZ9cJ8+ZqrI7NK36V3yyWvEzQclV+80Wk9FroJm7/YQ36kDLOCEVfOZuFxek6zJ9ocyzz57XZvXicC3H4BWsInbBJTjPOeuxf+GSTkHZp15Yr8TrGu1vpHOH3mefXRvK7ernTKoo6S0AWROsfGw4vrqpF4a38xltmqTom6N4dM30eZfqRJu9UQdKhT0J/zifCqntO1mK679ajwPKtlYv8QFG4vGexY4NlT2kDqdLMSWruuHlvPZkWoXUlI5055AWojWndzN+GD6PB2duVf1cbb18aJTb631h5wxkvzAWs+8diN3PjcXVfeTrnxJKhr68Ir7SfbkkPSw9MaZa0VbtOfUqpE4EqbFjVAf1tK3aSMik4PXr12Pt2rWy99euXYsNGwIvNkBEPlrCdriNyrywV91KN0cR5SnOPMt5Yqw8pDAU4TTPX9wRdw5pgYVTh6B3M7HCeOC0u9poUqxFpFw+fWEH2X54iqHD6ZKNWe9EHMpCUIHoWTMZD/Zzf+3CO4vd1UfZNkE8lELPWGwaVePtCp9f16+JSEER8u8EwUN6ClnFlReFUWV3cqNNWEqqlIvjCAose9/nSSzjUWYj3xjlp6dbSmmVHZd9skr0HivMvXNVd8Rx8mKbptSsB1gPwbr12etQ01Wk2ftS2oJHinROCMWzv+1ooej1I2Pa8jcMkOoMuVFSLIa3Sxf97m6ZSXj/6u74yw9v0dc39cbdQ1vi2r5Nve9NHdUG/z46HIsfvAD9q9FujPARbkdATSDciyVVdqw5dBbv7dQ2lusxY5Vx1g/Wm37PUHelfqtK1yKbw6no6a6wOeBwuvCXpEuIwQD8dvcAWTpWk5Q4TBvnKwDLM4DzPN0t6/vWDaW0P7PJiIu7+Qxd/iih6w6fwaSPVip+zsqRF0qiMQe1qoenutvx2qWdEG02oVtmUkDttfpI5EFAXhzvl7v64+0ru3JlwurQKCkWvZqKjRSPjRMX6pXK0npq1tQ2QrZq33vvvcjNzZW9f+zYMdx7772hOiwRAWgJg+G2KvMmK70CLE+Z5inOvBxE3uQfCqU7KS4K07Lao016AsZ1ysBH18o9oNJwpfREnqdbPja7Q95/OtwFnoDAQuZaceoNAMDO4+rVPIPh6VbK+R7RPl3R2AHIlRex0i3fX6XNUS3Pb66nur/afRrFeLpZtO7tPSe08+FsDhfWHCzwvWaMFS6Xi3uuBraKPEVES0nVC3vvhTo1RQp772kJm/70OGfx5zk+VeJrBfTj7f2CHooYirn5oq4N/cqJHNYuDf83tp2oZsi+kyWIjTIpzl+E/5wXhdQC+I6ex7HjMwtkVbsFBbpRUiziPYZRtT7QVXanzDs+vrNb8TxSUI5vVx/G/J15os+NBgN6Nk3GUxd2QF2PQ2NQq1TMuW+gSE7jed150V/s894qjZ/OAYhTPfyd5zappMGxMiivwG5qTPXnJD1ybvsGiZjYvXFIemZL576GSeKoSenvI6XbD3bt2oUePeTCfvfu3bFrlzyfgzh3iDKpP6zhtirzrJjVCfPmCb8t68fL8p+bc3IwQ90iwWAwIKtzYDnsvAmvY8NE2fXj9U1WQqjIGajh5QOFYkZ6ek6zvHtVN0XFIdDKpixaiq5SKF20ggIrhMhJP+nHhL7zPN0niyt1tyeT8ufW43hvyX4A6r85o24Md8xa5+npP3boGsfvm3wpAWwonNPFv49qorVWX0nKgRaPjGmLC9rUx4ectin+IC40VvPz6ONZ7XBpj8aav59zK+rCH9sZazjs5UeYp15ev6wr0hKi8YofeZOhgm1JGQlGztqK0iMTbpmkJgjkmXTp8nW7C2SyxdHYkHBhHWCVbmnYOs/TPamHz6M8/U+5zsBes7+nDMabl3fF1zf3RlJclChKxc4JXeet8ey6kRirHAVQN86CZQ8PxcrHhuuKetNLTRQR0zN38LoqBAsteVe6plW3P3gkErKrHB0djZMn5eXzT5w4AbM5dBeVCD9aCl24rco8pbs6XqMozsRgMBjw7lXdRS3UeApjTVVrbCjJ2dajdLNh1vMmD8aT49vj2n5NZWGX/vRanjyiNTY+ORLjOmXo/g7LhV343ix/FUu1atY8wf8hj7FgyojWuu5frSqvNs/ntwxsLrKcW8xGkZV+U04hKm0O75jYz76/rS8GMP2LeaP6ZcNRvw0SAq8t2OP9m138pPm8D45qAzNHotO6x6w6PfDCbz5wuhTve4wAgNsrWhNRM0JIHNtDWamwjRIp8VH45pY+3CKO/iAqaBcGgeSOIS3x5hVdNZ+BQGs1sZ7up7qr9wRmtw3FPNqhYSLWPj4CV/mRNxlKvr65N0Z1SMe9w1uFeyi1lnlTBnPXnnBH39UEasZI1hscqDHvr22+Fp4ipduzDrDzvbRrxpkyq6zoq1bHCfbnNEyKxaU9G3vngUGtfeviFZ+uxvA3l4uUfqFP90sTO2NS90aYcXNvUSu1cZ3U5+lmqfFolBQbVMNnoNFB/uCPgyQU8BwDLAaDQaSY8+SK2k7IftGoUaMwbdo0FBX5QjULCwvx+OOPY9Qoft9f4twg0hvcx1qCa/RRU9ifndAB/VvUwxc39ELTevG4U9LeqaYE5yt7iwVHPUIqaw3u0DARtw1uAYvJKFu8/fW81AtSqC0AbD9ahPWHz3CLpaihZs3tLunzDAD3DW+Ffx8dhgdGtpZ/gYNWn27h8xb140Xtpnih2u2emu/9mz31A1uJCwLyQuZMRoPf50aArQzO3i/SsLPMlDjuPaCldEvzu5QQfvO8beKcPoeTH14ebL6+uTe+vqk3Hhrt65vKCoRN6wVeIMtfWMGMV7k9Ughc6fb9nSrPeFHcNlTURNSEFKEiMVupHgCGtU3D5zf0QlqCxokhFGmXkYjXOEUAw+0IqAksKgpMzhlfZW1xTRH+9mw7KwE2VJirdKtEkL02f48s5YqX8saiVnG+XYbPQOpwupBzphw7mLQxoZBavTpReOvKbrIuFdLiqUpU19jHdjdg02VChT8OklDA6gbD2tbnbsMq2uTp9oM333wTubm5aNq0KYYNG4Zhw4ahefPmyMvLw5tvvhmqwxIRQKSHvwU7fEZt4m2cHIcf7+iHkZ4qjNLCEVq5v6GiOoYR6TcDud7B8kxd9MF/uPyT1XhzobwVmBpKC7rFZMDH1/aUvW8wGJCZEqdbCM8rrkRRhY37mcvlwm5PPrPFZBCFPFpMxoB7cvIKptkdroCrOseIlG7foDpw8s14Fde17gu9ua3COW+cIs7/cjpdNdLqJyHGgmHt0kQCaD2mZ/Wn18vvl1DBeouCabwKNoGGXfqT0+2qgdZH4eDqPk2w/dnR3FaURPVJiLHgw2t64G5PgS8g8h0FwUDtN77/zz7v36yx9LbB7iJl7TLEOc68glzxjFzF9tYWDIWCEZ9XLXvr0SLZOqUVTaQVnSAdM2t0EMZS3WKUSmPQWywxiSmuWxP2ve3H1OvVhBq2IKQ0n1uAPN0B0qhRI2zbtg2vvfYaOnTogJ49e+Ldd9/F9u3bkZmZqb0DotbCaxMWSTROjkVSnLzQmd7vSuGFlyshVdoacFp1hQJpblZ1lF7pPMhTuLR4eExbNEqKxeNZ7bQ3lvDJdW4lp026r5CQ0BtaL2keT2V6olhxmTqqDTJ0XBNpxIKU+37YjIs/+I+rGPywLsfrWTAZxeHkUWaDqiKp9hnP021zOnV5HYsr5edPLPT4jsvrV8zzuirVdhDOiV4FSziydHOHy1WjlnA2ZYA1SGRoeGSCCXs/BdrOpyYYGGBVbX+U7proNxwueIU4ieAxvksDUYXomgjtDTdSQ5iBkQmqGGMeq4hOHdkGP9/ZH1/d1Fv03dgo9cgmIbqK5+l+ilPLY3DrVFlKVnW74EgVYnatEBR8Ne9/oAxunYpOjeqitUahw1cmdUYhY5hnR8ur/xMMtDqzhBpWtlKSZSxhTqEKNSGdaeLj43HHHXfgww8/xBtvvIEbbrgBFgstJuc64X6wtTAaDQFb0OKizFj/xEgse3io971AQxCbp8bXWAViqbOTp3SzvwkQV+lkMUh83YF4uhslxWLlY8Nxx5CW2htLEI6nVfBMQCpQDWqV6r1mSyW/Wa/wlRyvndN7uKCcW6X8k+UHvH+7Pd2M0m0yqVrw1W7bPs3lio5eT/fznEI1aUwIdWG5+JnuKOm5qSSEjfZEeFzRq7H3fWE4eouqC9Eg0uvtcMpzukNZ0fmCNvXRon48JnZvJHoCajJkr0eTZEzq3gj/N7ZdWEKf9WI2GZEQQESRP/UHzmGdm6gB2DWwpmqrhBPp2mZmpg/W4yoO7zWiT/MUWX41rwhpMaNAOlVyunOZUHaB1DrRspxuALjrAmX5QMvTLf2cnS/szPh4n1cHp06j8vD2aahkcttdLmDmHf0wbVy7gGveaDGiXZrq5yk65JpgoVSsjo3mCoVRJNwENc52zpw5GDduHCwWC+bMmaO67YQJE4J5aCKCGNo2Db9sPKq9YRip0uhdrEb9hGjER/sWnUA9LuEMw+eFmjVLjceQNvWxYu9pAMrWVulaV9O/IyHGPW2d1WncyagbI8pZYxeWuCgzUutEIb/UvS+9BXVSdBbSsjqcMos9K/yYjAZRFEKdGLNqfqHU4MHCu152p1NXTvdqpi2XAKvkSquxy3q1cxTPKLMR713dHZtyzqJ9RiJ+3nDUuy+T0aT7uZm5IReTejSS5QSajUbZ+fjj3oG69hkIMRYT/nnwAhgMBny8zGc4qcn732g04K0ru9XY8arDY1nt8MSsHbhpQDPd3/EnE+Jc9nQToed8U7rl7Zh8fzdhquPz9BzZfM9Rul9fkI0JXRsiMyVOpNRKPd1lVnmBxHKrXZRqJxScvGdYS5GRmkUrtUi6lgt53IDP0x0MT+q4ThnIzivBwfwy0b6bp9bBgdNlyuMzGEQRBk6XC31b1EPfFqFreTllZGtF2fzFiZ00C8gFgxcu6YQ/tx7HnQoGlRKmb/i5WOAwqEr3JZdcgry8PKSlpeGSSy5R3M5gMMDhCFzpISKbcZ0ycGWvTMzcIO/THinw8l/9gVUyAs2ZrVFPlURAVfKws+Gr0y/uyN1GXkitZsNchVzW4kr16sYC0hx+afEtUe9jnZM86+m+vm8mvlvLv9crbQ7Z8dlLUb9ONMoZa3edaLOqMHFxt4bYfqwILeurh5+1y0jAnrwSWO0uXbmvPCGqnBGOpEJXg7ox2ML8ZN7346JMiLGYMKBlKiqY3ygIZII3JMZiRKVN3e195WdrRMrt8HZp6N+yHrYdKxRtFx/CdieA795nFb7zoQhTIFzbtymGtK7PTclRwr+c7kBGRRBu2Lk+ynzuP8NSQztbyJqVh54a30FzX0oRYb9vOoYpI1uLCqlFe7bdebwYAFDKWbdPFld514Vhbevjg6vdnV7UomW0pl2pl/TFubvx690DALiN0e59VP+6f3RtD7hcQIvH5wEABIf9SxM7ISHGjMbJsaKuGwJGgwE2xpBcE9OZWj2jfi3q1Yin+7p+TXFdv6baG+LcrLUQVPOe0+lEWlqa92+lf6Rwn9sYjQa8yqkQGklotXTSghW0A1W6a1JWl45QTxi1UrEx6birW4zEX9giVjzaZSR4w5oB9dwuQDx+rZYWAmykQ4mK8n/xBytl7wkWcQDo3SwF5VW++TDKbOS2tBO4eWBzfH1zb/zmER6kLH5wCJ6/uCNu9HgX7U6nrvuT560trlBWuh8Y2QadG9XFN7f0AcC3SLPh6aJ8OocQfud+rdQvXYrgeb+qdya+uqk3TEYDTtdAxVcicPwpPgjwi/QpEWhVfoIAyNPNU7qv6NUYozvyQ5vvvMBXx0TpfAlpRvml7nnZZDCIDPyniiu5Vcz/3XcaZVXu9SbabPLOGWpzR0tObREWaXusDUfOev8WFGPW8KK3J7kUg8Eglgc981JaYgzevrIbenOKzgFuGZKNIKuJorpq6Yw10QnEX2oq/bImCckvstlsGDZsGPbu3RuK3RNEtQnm/BKo0t2jib6WScFA6kFSsiDqkWOlC6FaK5BQkBhjESl0LK3T6mD+A0OQynwu9URKFWvWU6934WGNFrO3nlDc7lihuKhgToE4n81oNKC0Sqy0q7XSMhkNGNY2DUkK4e2t0hJwff9miPEIHMuyT+OsjiJzPKWbrb7OVvoFgLYZCfjz/kG4oA2/7cfg1qmi+4Q9r8J+hRw+f1tfRUJ3hECfeUKdAa1S8cE13TH3vv6a21J4OVEdRFWSz0HhXorUOM6+FHKL1YpCsl5hi8nATRuJjXJ7Up+c7S6WlnOmXBQxtfN4sajOSZ/mKTAZDai0ObFiX757XDq9m29c3lX18/2nShU/EzzdwczpFrzI0laeSiHSTqdLpHS398PgGChq8k0khnJHoiGguoRkprFYLNixY0dEF3ohwkNPnb15Q82n1/cK2r789bgsnDoEU0a0xv+N879yd7BQslTrsfZKn+rCipovnKfUTmSfZ6FlL4l0DZcaHMSebn1zlj+eETaXbPx7/8o+l+a4GQwGbH92tO7981ArFPi/W/vi6QvFIYSNk8W9pqvsDmSfdLc1++G2vn4LBMMkfU/ZteD2bzdg6Z5TeM8TcqfX0y3AVsu/W6XQTigZ1NotWJ2L4W/h5sIuDdFGoYgjC6fuEkHohlW0z4enWLpmsb9Z8HTHqERZsUYui9mIWM62cZK5vF+LFPRnOhncPGO9qFDWSxM7ew2YQi0ZvYqWUsspgROc1mSCB56X0y20dQ20G8WCqUPw8qTOuHeYeE1SCmFPirOgNTPPBdLJxV+k5zaViRqMxPZcVL3cD2644QZ8+eWXodo9UUuJFGvaqA7p+O//hmFi90b4+ube2l9QwZ+KuwDQJj0BU0e1CXq/cDWkdoFqtQyTLCKhrBithNZ9NL6zuyBI4+RY2XilnlJW6dY7yUu3W/yg25AyuHWqbNsixtNcwni1hT6ibHi5QHVbBqld30GtU2Wt6qRt0r5bfcT7dyM/cnK9x1fxRmefLMHNM9Z7X/vbrofdPi0xBo+FwXjVo0kyZt0zAKseG1HjxybcnKt9uomagV0Wzgf/kFTeYMWWCpt21BEr50SZjNw1RliXBSPtpT0bq9Z84dUmkUaiKSnhgYiSD/+yFRVWhzdVid33lBGt8cblXTHnvsCKcTZKisXVfZrIfi9PVvns+p4wGAx4cWInXN2nCf66fxC3FWewkY6FfR0psjlLJI6puoRM6rdarfjiiy+waNEi9OrVC/Hx4ofrrbfeCtWhiQjhoVFt8OaivXhgZGu8s3gfgMiyKDdOjsPb1agE3CI1HgfzyzBGIQcqkpBOXtUJL2e94W9c3lXm1awJtCbjQa1TMee+gWhaLx5zthzz5nM1rBsja1MWSHi8VFFslZaAqaMScP+Pm2XbKhXta+EROKx6e2f5gZYHVlrTQJpPJhS9Adzh/P7iT+96fyNFpEaTcK3L3WswPYSQM75LA3z+7yHF1oYEoUZCtBntMhJgdTiRlhCYd7M2IQ0vZ6d8odClqtLNbG8xGbnKsBAuLaQOmTSsGbxoWOl+jUYDt61BIJG0y7JPo9/L/3jrsLAG+RiLCZf1bKz01YDhrU/C2NMSYvDypM5BP6YS0nN2sthXEyUSQ7mpZZgf7NixAz169AAAWW43hZ2fH9w3vBUu6d4IjZNjvUp3KNsh1DTzpgzGmTKrZphTJHDzwOaiCpqK4eV6lG5mm1AsUnrQYwHt0jgJgLuKcvPUOujcqC4SY82y+YdVinl9tXkonT8LZ1xK+b9s1XIenRolYsexYtVtlKgbq64oS/NhpT1S2V8htGhTo2GSWGj1J5KCZ/To3iQJm3MKudtLhcdgVKAlah8PjW6Lzo2TMKiVPLqEILQwGAyYO3kwgHPTo6YFu9RVetZAXsi4d3tmHTMZDdxzJqyfvD7YepFGkZmNBrAJbDcPbIZ61aiyzdYqqYmQaq3OHJGCKQJDuc/FWKaQ3XFLly5V/LdkyZJQHZaIIAwGg7d67bKHh+LOIS386tka6cRYTLVC4Qbcvam/9VSaBqqX0x0JE6HSYs4LVTYaDRjUOhV14yxcg18MU+XUrtPrrBQ+zQtPVyr4pFWM66sbxWkPr/nREUCpx7rSsaWe73YNfN5DPUWGRnfIEIXW+6N085T6e4e2Utxe6uke2d6di9eoljyLRHCIsZgwoWvDGmlzQ5ybKCmP5wPi8HJPTreqp1u7GKtQoEyInAokJ1fqcX1S0sLsmYs64r7hrTX3876n7ZgaNaFolnP6kkcikeJV/uUuXxHNmkzBrClC/ov279+PAwcOYMiQIYiNjYXL5SJP93lIs9R4TMtqH+5hnNewHsJqhZdHQC6lkqBkD6C6Eusp1RvqzXq0373CpwzzFFSl9nRaLULSJAVdruiVqWtsgK+XuRLSMUmVcMF4MYppvaaG0WjAk+M7YMw7KwDwle64KBPXu98tMwljOmagZf06GNcpA6dLqxTb1QHAKUmbsGap8VgzbQSS4qqXB08QBHG+ICw/BaVV2OhJv1ILL5euEbwII5vDhW9XH0bOGXeXDj0tOKXR49LvXN0nE4NapaK0yq4r6kpATy2Smgip5rVUjUQNKFKMT72bpWDDkyMB1Hw72pogZL+ooKAAI0aMQJs2bZCVlYUTJ9xtdW677TY89NBDoTosQRAKsIq2sqdbm0jolqSUKxbI2Ng96c3vZheoPs19ub1K4eV2hxNfrzwkfl9ivOAJPGNDVC9AKkD9tD5X3DPU83m8SrihFNarEWWWn4ef7ujH/Z7T5cLkEa0xvksDGI0GVYUbAHafkIfcZ9SN8bsKOkEQxPnE3MmD0KNJEgCf0t3zhcXez9XCy6WebmmrS8Cd0/30Hzu9r9WU2lWPDQcAWaSK1DtuMBjQpF4cOjRMRGaKuMuGGno8tzWhaA5pXV+WAhMBIpSMSMrpTq0TjVQNx0FtJWRK99SpU2GxWJCTk4O4ON+DcuWVV2L+/PmhOixBEAqwinZ1qpdHwoIR1FYSjAKvN6ebjdYR9aPmnFenE3jqj52Y/ucu0fuC4nu5Jy/+odFtZN/tkllX13j08NCoNph9r7syKy8PdpPH2wH4zoM//WtZIUfJ081Dy+Mv5a4wtQkjCIKozXRsWBfvXuUOu+YZqP3xdPPSo86Wi9uHqim1QmqeVOn2t5uFEuyxhU4hUmpC0TQaDXjVj9SwUKNkSDdGkNJ9LhMypXvhwoV49dVX0bixuNBS69atceTIEYVvEQQRKkRKt1LYTi0JL1cqnqWk2OmF1/KLR3KcBaPap6FzshMpTFgzT9m0O534cV2O7H1BaHl5UmfMf2Awbh3UXLaNVvVXf7hxYDN0y0wCAGSmxGHlY8Px4Cifos8aMoTcdn/6UFsY7zZPcFIKNfS3enmnRsEzRBAEQZxPCPM8z9apntMtfs1Lm9qbVyI+lg5FTqZ0BymkmF274hVyg2tK0ZSu423Sa77NqsBzF3cCANwztCWeutCdLy+tk0KEjpCd6bKyMpGHWyA/Px/R0eENG2jWrBkMBoPo32OPPRbWMRFEqGEVQqVJVlchtfDr3LLF/Ifb+6JdRgK+u7Wv3/tid6VXoTMYDPjomm64rZ1T5OnmKalKhdSE980mI9plJHJrXVQn/O2eoWKPsHQYjZJiFaMfbB6Byp/qrmxrMZ6QoySAaRWUk0ICAkEQRGAIa4rDZZAZ0NWWG6dknmZfv+NpvSqtiaJn/RrXqYHodXWi8JSOreTBj4+qmUJd6YnRyOqcgW6ZSfjt7gFoWk+90GkoubRnY2x8ciQeGdMWtw5qjp3Tx2DrM6PDNp7zjZBJL0OGDMG3337rfW0wGOB0OvH6669j2LBhoTqsbp577jmcOHHC++/JJ58M95AIIqRk1PXlyrbPSORuo0ehZvcTLqQK6oCWqZj/wBD0bOp/7+QYc/BygXlKqlJtNj3KZnXaYT0ypi1WPjYcLerH4/KejbltxFiDwO+bjnn/FvK7/Qnjj48249Pre2Ly8Fbo2FB+fykJYP4q3f6EvBMEQRA+2DQg6dxbL17ZISaNSGK/KxhCbXbxNnqMttf3ayoeX5BSx1jlne1QwlJTxcMMBgM+urYnZt87MCAZJdjUqxPtlaHio81UD6UGCZmZ5/XXX8fQoUOxYcMGWK1WPProo9i5cyfOnDmDlStXhuqwuklISEBGhv4iRVVVVaiq8lXNLS52F/Ox2Wyw2WxKXwsrwrgidXyEmFBfr2gj8NUNPXC0sALt0uO4x2GVMKVxPDO+LRwOJ67rlxm2e8vlEmuy1RlH72ZJWH2wwO/98K6XEXIN26qwT4fDqXm8gS3cC3RynCWg35gWb8aCyQNl4xRgZZEZqw7jiXFtPGN2F8kxGfw7J8Pb1MPwNvVgt8uL7Lic/L7kNrsjoPPuDzQX1i7oetUu6HrVHth5uNIqzsGOsyhfQztTZNRms8Hm8O3H4Fn31h0+I/qO02lX3B/7fovUeBzMLwMAmA2uoNxH7O/kFTiVjiGSoecr8tF7bQyuECZo5uXl4eOPP8bGjRvhdDrRo0cP3HvvvWjQoIH2l0NIs2bNUFVVBavViszMTFx++eV45JFHEBWl3O/z2WefxfTp02Xv//DDD9wweoKojew8a8Bne0zoXs+Jm9r4336rpvh8jxE7zro1xr71nbimVeBjtTuBP44Y0THZhXZJ1ZsOlxw34I8jYqvxPe0d+Gi33JLcMsGFyZ34iihLfiVQxwLEhMAY/V+eAb8c8u34oc52NKkD/HbIiBV5Roxq5MSFTYJzH5TYgCc3yO28beo6cW8H+TFe22rCsXK5sPRu/9rR95QgCCLSsDqAR9a55+FXetvx2Hr334kWF57vpbwefZ1txJYz7jX33f52/HrQiH9Pul/f1d6BTzhr3NPd7agXA0xZLZ/32Xn854NGrPTs66oWDvRPr75aUuUAntpoQpXDgKxMB+blysdHawkRLMrLy3HNNdegqKgIiYn8SFIgxH26MzIyuIpquJkyZQp69OiB5ORkrFu3DtOmTcOhQ4fwxRdfKH5n2rRpePDBB72vi4uLkZmZidGjR6ue4HBis9mwaNEijBo1ChYL9bCNdCLhemUBuLGkCqnxURFdzXLO2c3YcfY0AOCdW4ZVu73EhAC+w7tep1YfwR9HskXb9erdG9i9Sfb9T24dhGZhzO0CgIa5hfjls3Xe198eisOq/xuKlbN3AnnH0KldG2QNbRGUYxWW2/DkhqWy97u3zkRWVkfZ+z0GVWLm+qP4YNlB0ftZWVl+HzsSni1CP3S9ahd0vWoPdocTj6xztwnrP3gIsH4VACA+LhZZWUMUv3emXg62/LUHgHsOPvrvIfy7cB8AYGC/vvhk9wbZd4ZcMBRN68Uhqvkp3P3DFgBA67R4TBvbVlS0dMvf2Vh50l1guUe3rsjq3rD6PxRA9wFliDIZsXxfPubl7hZ91rlRIrKy+G0sIw16viIfIfpZi5Aq3YWFhVi3bh1OnToFp1PsybjhhhuCeiwlTzTL+vXr0atXL0ydOtX7XpcuXZCcnIzLLrsMr776KurVq8f9bnR0NLcAnMViifiHoDaMkfAR7uvVKCXy7xUjkyuWXCcWljDmJLHXK8osn1INRvnYvr6pN1pnJIV6aJr0blFf9Lqo0g6LxYIqT2nb+Jjg3YsxCnaRR8a25x4js54FD49tj/m7TmH/qVIAwNKHh1ZrPOF+tgj/oOtVu6DrFfmYzT4vst0lLqSpdu2u798cCbHR6Ns8BRaLBbcObokTxVUY2T4dMQrVwRumxMNiMaN3C5+C/dYV3dG5sbhgaSxT0Cw2Onj3kLDGJh0vlX0WZTbVunuVnq/IRe91CZnS/eeff+Laa69FWVkZEhISZH1tg61033fffbjqqqtUt2nWrBn3/X793Nau/fv3KyrdBEFEJjVVDEUPvKHkFVfK3kuIqZmqqf4iFMfJPVMOAIgLYnVXXlGdCV0bakYp/HpXf9zz/SZc3K0hmqeGNzKAIAiiNmMwGGA2GmB3ulBp84WTaxXNNJuMuKynrwVwjMWEFy7pDADYklso237t4yO86wfbMqtxcqxsW7ZNWLBahrEkx4kVIpPRgOculkdXEUSoCZnk99BDD+GWW27BSy+9VCM5z6mpqUhN1ddjV8rmzZsBIOy55gRB6IOtcBrMXtbVZUAr+Rw07fftsveCqcwGE4fTBafThU05he7XQSz5wTOOdOBUOZeSFBeFH26vHWGABEEQkY7ZJCjdvghUPT21lZBWHG+UFIv0RF+Xk+T4KNw8sBniokxIjpfXTopmOojUUfCaV4fkOPExs58fS10wiLAQMsnv2LFjmDx5csQVGVu9ejXWrFmDYcOGoW7duli/fj2mTp2KCRMmoEmTJuEeHkEQOmD7a0ZS7nnL+nUw/4HBSK0Tjbv/txHrD5/lbqfUwiQSYHutHjglD8sLFKlQ98iYtrhlYPOg7Z8gCILQxh115ERJla+QmAGBr6NREgWWpzg/c5GyZzma8W7HRgU/VYxtYVkvPooUbiJshEzpHjNmDDZs2IAWLYJThCdYREdHY+bMmZg+fTqqqqrQtGlT3H777Xj00UfDPTSCIHQSHwJreLBo5+mBrhb2Hu4CamrYmf6rV/TKDNp+pcaRe4e1Ctq+CYIgCH0InumbZmz0vvfSpM4B70+61sVH+6c4RzNG6PgQRIGx6a31E6pXdJUgqkNQ7+45c+Z4/x4/fjweeeQR7Nq1C507d5YlmU+YEEi94OrTo0cPrFmzJizHJggiOIQiBC3YqCndkeSdl2JnPN1t0usEdd+t0+pgXxC95wRBEIR/8ELJezZNDnh/0rXO3/Qp1lMeFwJPNwBkpsQi90wFLu3RWHtjgggRQZVcL7nkEtl7zz33nOw9g8EAh0O7Py1BEASPSPZ0C/AKh9UGbA6fpzvYReraN0gkpZsgCCKMBHteN0rqqvhbDM1SA0r3T3f0x5oDBbike6OQ7J8g9BBUyVXaFowgCCIU1InQ6t8sllqaN/bLxlzv34YgF6l7aHQb/LvvNG4aQLncBEEQ4SCvuCqo+5Mq8dLCalo4mYKdoSoy2igpFpf2JC83EV4iX3IlCIKQUMfPnLFw4K/gESm8Nj87ZPtuWi8eG58cFdHh9QRBEIR+5Eq3fwZnB1NHJJKLjBJEdQnp3f3PP//gwgsvRMuWLdGqVStceOGFWLx4cSgPSRDEeUD/Fu7WXAkRHGZeWzzdI9un1ejxSOEmCII4d5Aq3dJq5lqwSnewo6sIIpIImVT4wQcfYOzYsUhISMCUKVMwefJkJCYmIisrCx988EGoDksQxHlARt0YrJ42HKumDQ/3UBQx1xJPd3Wq1hIEQRDnNyaJouxvzrhLexOCOCcImZvo5Zdfxttvv4377rvP+97kyZMxcOBAvPjii6L3CYIg/KVB3dhwD0EVC1NILSMxBnnFlQCAga3qhWtIXPz1ShAEQRC1l66N62Lr0aKg7U8aveSv0n1hlwb4cOl+DG6dGrQxEUQkEjJpq7i4GGPHjpW9P3r0aBQXF4fqsARBEBGBxewTPNo1SMDPd/bHxO6N8P7VPcI4Kjm1JQyeIAiCqD5ThrcM6v6kSra/IeIJMRb8++gwvDypSzCHRRARR8ikrQkTJmDWrFmy9//44w9cdNFFoTosQRBERMC2DIuPMqNP8xS8fWU3pMRHhXFUckLVooUgCIKIPILtUZaGlwdStoNyuYnzgZCFl7dv3x4vvvgili1bhv79+wMA1qxZg5UrV+Khhx7Ce++959128uTJoRoGQRBEWGB7lUZHcEVWEnYIgiDOLywGF2yu4Mz9RsnyVmmj9sEEwSNkSveXX36J5ORk7Nq1C7t27fK+n5SUhC+//NL72mAwkNJNEMQ5R6XN4f3bGOGK7UfX9sA9328Svffvo8PCNBqCIAgilBgMCFoFM6mn2+ogpZsgeIRM6T506FCodk0QBBHxiJXuMA5EByPbp4teN6wbg8yUuDCNhiAIggglwbQDS3O6J3ZvGLydE8Q5RI3FPDocDmzZsgVnz56tqUMSBEGEDbZAmUkafxdhSIWmaAvleRMEQZyrDGvgc3NP6t6oWvtiU5Qmdm+E4e3SVbYmiPOXkHm6H3jgAXTu3Bm33norHA4HhgwZgtWrVyMuLg5//fUXhg4dGqpDEwRBhB1WkTVHuKtbOrxoc2QbCQiCIIjAGd3YicuG9USFHRjVIXhK8tC29YO2L4I41wiZZPXrr7+ia9euAIA///wThw8fxp49e/DAAw/giSeeCNVhCYIgIgJWj/W3b2lNYzAYRIo3Kd0EQRDnLiYDcEGb+rioa0PEBDGyiQpzEoQyIZOs8vPzkZGRAQCYN28eLr/8crRp0wa33nortm/fHqrDEgRBRByRXkgNELc4izZTeDlBEAThH9KiagRB+AiZ0p2eno5du3bB4XBg/vz5GDlyJACgvLwcJhMJdARBnD+YaoHjmE07j+QWZwRBEERkEuFBXQQRVkKW033zzTfjiiuuQIMGDWAwGDBq1CgAwNq1a9GuXbtQHZYgCCLiMNYCSYT1UFB4OUEQBOEv6XVjwj0EgohYQqZ0P/vss+jUqRNyc3Nx+eWXIzo6GgBgMpnw2GOPheqwBEEQEQGb21YbQu6izEaUWd1tzii8nCAIgtDLZ9f3xJGCcvRokhzuoRBExBIypRsALrvsMtl7N954YygPSRAEEXFEeiE1AOjQMBEr9xcAAEqr7GEeDUEQBFFbGN0xI9xDIIiIJ6QxhMuXL8dFF12EVq1aoXXr1pgwYQL+/fffUB6SIAgi4ujYsG64h6BJrMVng12+93QYR0IQBEEQBHFuETKl+3//+x9GjhyJuLg4TJ48Gffddx9iY2MxYsQI/PDDD6E6LEEQRESQFGfx/j2mY/D6oIaK2lDsjSAIgiAIojYSsvDyF198Ea+99hqmTp3qfW/KlCl466238Pzzz+Oaa64J1aEJgiDCzm2DW2BrbiHGdW5QK3qX1oYQeIIgCIIgiNpIyHwbBw8exEUXXSR7f8KECTh06FCoDksQBBER1Ik24+ub++CKXpnhHooujhdWhnsIBEEQBEEQ5yQhU7ozMzPxzz//yN7/559/kJlZO4RQgiCI84UtuYXev1+9tHP4BkIQBEEQBHGOEbLw8oceegiTJ0/Gli1bMGDAABgMBvz333+YMWMG3n333VAdliAIgqgmPZtS2xeCIAiCIIhgETKl++6770ZGRgbefPNN/PzzzwCA9u3bY+bMmbj44otDdViCIAiimpiNVFWNIAiCIAgiWIS0T/fEiRMxceLEUB6CIAiCCDIWMyndBEEQBEEQwSKkSrdAaWkpnE6n6L3ExMSaODRBEAThJxaqZE4QBEEQBBE0QubOOHToEMaPH4/4+HjUrVsXycnJSE5ORlJSEpKTKV+QIAgiUqH2YQRBEARBEMEjZJ7ua6+9FgDw1VdfIT09vVb0qSUIgiAAV7gHQBAEQRAEcQ4RMqV727Zt2LhxI9q2bRuqQxAEQRBBIi7KhHKrAwBQLz4qzKMhCIIgCII4dwhZeHnv3r2Rm5sbqt0r8uKLL2LAgAGIi4tDUlISd5ucnBxcdNFFiI+PR2pqKiZPngyr1VqzA/1/9u47Pub7jwP463sre+/IkNg7ywiC2KO2UtQsrdKiaFWX0Zbu6qLVFi2lOtBfFRWb2iH2FhIjIkGmJJe77++Pk687l0nOJbnX89E8evf5rs/3+7mvu/f3s4iIKhBRr3qbLZOIiIiIyo/Jarp/+OEHjBs3DteuXUPDhg2hVCoNljdu3Ngkx83Ly8PTTz+NyMhI/Pjjj0bLNRoNevToAQ8PD+zevRupqakYMWIERFHEV199ZZI8ERFVdCIblRMRERGZhMmC7lu3buHixYsYNWqUlCYIAkRRhCAI0Gg0Jjnu7NmzAQBLly4tdPmmTZtw6tQpJCYmwtfXFwDw6aefYuTIkXj//fc5qjoRWSSRMTcRERGRSZgs6B49ejRCQ0OxcuXKCjWQ2t69e9GwYUMp4AaALl26IDc3F7GxsYiOji50u9zcXOTm5krv09PTAQBqtRpqtdq0mX5EBfmqqPkjQyyvyqWqlZetSo7cfN3UjlXlnApUtbKq6lhelQvLq3JheVUuLK+Kr7RlI4iiaeo37OzscPToUdSsWdMUuy/R0qVLMXnyZNy9e9cg/fnnn8fly5exadMmg3QrKyssXboUgwcPLnR/s2bNkmrR9a1YsQK2trbllm8iInO4nAEsvyBHn+paNHRhtTcRERFRSbKzszFkyBCkpaUV22LaZDXd7du3L7egu6iAV9/BgwcRERFRqv0VVute0Oy9KDNmzMCUKVOk9+np6fD390fnzp0rbJN0tVqNmJgYdOrUyahPPVU8LK/KpSqW13hzZ8BEqmJZVWUsr8qF5VW5sLwqF5ZXxVfQ+rkkJgu6e/bsiVdeeQXHjx9Ho0aNjD4ovXr1KvW+XnrpJTzzzDPFrlO9evVS7cvb2xv79+83SLtz5w7UajW8vLyK3M7KygpWVlZG6UqlssLfBJUhj/QAy6tyYXlVHiyryoXlVbmwvCoXllflwvKquEpbLiYLuseNGwcAmDNnjtGysg6k5u7uDnd393LJV2RkJN5//33cuHEDPj4+AHSDq1lZWSE8PLxcjkFEREREREQEmDDo1mq1ptp1sRISEnD79m0kJCRAo9EgLi4OAFCzZk3Y29ujc+fOqF+/PoYNG4aPP/4Yt2/fxrRp0zB27NgK20yciIiIiIiIKieZqXb8888/G4z2XSAvLw8///yzqQ6Ld955B6GhoZg5cyYyMzMRGhqK0NBQHDp0CAAgl8vxzz//wNraGq1atcLAgQPRp08ffPLJJybLExEREREREVkmkwXdo0aNQlpamlF6RkaGwdzd5W3p0qUQRdHor127dtI6AQEBWLduHbKzs5Gamoqvvvqq0P7aRERERERERI/DZM3LixoN/OrVq3BycjLVYZ+YgpnWSjtinTmo1WpkZ2cjPT2dgy9UAiyvyoXlVXmwrCoXllflwvKqXFhelQvLq+IriAVLmoW73IPu0NBQCIIAQRDQoUMHKBQPDqHRaBAfH4+uXbuW92GfuIyMDACAv7+/mXNCRERERERE5pKRkVFsxXK5B919+vQBAMTFxaFLly6wt7eXlqlUKlSvXh39+/cv78M+cb6+vkhMTISDg0Ox83ubU8Fc4omJiRwkrhJgeVUuLK/Kg2VVubC8KheWV+XC8qpcWF4VnyiKyMjIgK+vb7HrlXvQPXPmTAC6ebMHDRoEa2tro3Xi4uIQEhJS3od+omQyGfz8/MydjVJxdHTkjVqJsLwqF5ZX5cGyqlxYXpULy6tyYXlVLiyviq00XadNNpDaiBEjDALutLQ0LFiwAGFhYZwPm4iIiIiIiCyCyYLuAlu3bsWzzz4LHx8ffPXVV+jevbs0fRcRERERERFRVWaS0cuvXr2KpUuXYvHixcjKysLAgQOhVqvx559/on79+qY4JBXCysoKM2fO5HRolQTLq3JheVUeLKvKheVVubC8KheWV+XC8qo6BLGk8c3LqHv37ti9ezeeeuopDB06FF27doVcLodSqcTRo0cZdBMREREREZHFKPea7k2bNmHixIl48cUXUatWrfLePREREREREVGlUe59unft2oWMjAxERESgefPm+Prrr3Hr1q3yPgwRERERERFRhVfuzcsLZGdn49dff8XixYtx4MABaDQafPbZZxg9ejQcHBxMcUgiIiIiIiKiCsVkQbe+s2fP4scff8SyZctw9+5ddOrUCf/73/9MfVgiIiIiIiIiszL5lGEAUKdOHXz00Ue4evUqVq5c+SQOafEWLFiAoKAgWFtbIzw8HLt27TJ3lgjAvHnz0LRpUzg4OMDT0xN9+vTB2bNnDdYRRRGzZs2Cr68vbGxs0K5dO5w8edJMOaYC8+bNgyAImDx5spTGsqpYrl27hmeffRZubm6wtbVFSEgIYmNjpeUsr4ojPz8fb731FoKCgmBjY4Pg4GDMmTMHWq1WWoflZT47d+5Ez5494evrC0EQsHbtWoPlpSmb3NxcvPzyy3B3d4ednR169eqFq1evPsGzsBzFlZdarcb06dPRqFEj2NnZwdfXF8OHD8f169cN9sHyenJKur/0vfDCCxAEAfPnzzdIZ3lVPk8k6C4gl8vRp08f1nKb2KpVqzB58mS8+eabOHLkCKKiotCtWzckJCSYO2sWb8eOHZgwYQL27duHmJgY5Ofno3PnzsjKypLW+eijj/DZZ5/h66+/xsGDB+Ht7Y1OnTohIyPDjDm3bAcPHsSiRYvQuHFjg3SWVcVx584dtGrVCkqlEhs2bMCpU6fw6aefwtnZWVqH5VVxfPjhh/j222/x9ddf4/Tp0/joo4/w8ccf46uvvpLWYXmZT1ZWFpo0aYKvv/660OWlKZvJkydjzZo1+PXXX7F7925kZmbiqaeegkajeVKnYTGKK6/s7GwcPnwYb7/9Ng4fPozVq1fj3Llz6NWrl8F6LK8np6T7q8DatWuxf/9++Pr6Gi1jeVVCIlU5zZo1E8eNG2eQVrduXfH11183U46oKMnJySIAcceOHaIoiqJWqxW9vb3FDz74QFonJydHdHJyEr/99ltzZdOiZWRkiLVq1RJjYmLEtm3bipMmTRJFkWVV0UyfPl1s3bp1kctZXhVLjx49xNGjRxuk9evXT3z22WdFUWR5VSQAxDVr1kjvS1M2d+/eFZVKpfjrr79K61y7dk2UyWTixo0bn1jeLdHD5VWYAwcOiADEK1euiKLI8jKnosrr6tWrYrVq1cQTJ06IgYGB4ueffy4tY3lVTk+0pptMLy8vD7GxsejcubNBeufOnbFnzx4z5YqKkpaWBgBwdXUFAMTHxyMpKcmg/KysrNC2bVuWn5lMmDABPXr0QMeOHQ3SWVYVy//+9z9ERETg6aefhqenJ0JDQ/H9999Ly1leFUvr1q2xZcsWnDt3DgBw9OhR7N69G927dwfA8qrISlM2sbGxUKvVBuv4+vqiYcOGLL8KIC0tDYIgSC2BWF4Vi1arxbBhw/Dqq6+iQYMGRstZXpVTuc/TTeaVkpICjUYDLy8vg3QvLy8kJSWZKVdUGFEUMWXKFLRu3RoNGzYEAKmMCiu/K1euPPE8Wrpff/0Vhw8fxsGDB42WsawqlkuXLmHhwoWYMmUK3njjDRw4cAATJ06ElZUVhg8fzvKqYKZPn460tDTUrVsXcrkcGo0G77//PgYPHgyA91dFVpqySUpKgkqlgouLi9E6/C1iXjk5OXj99dcxZMgQODo6AmB5VTQffvghFAoFJk6cWOhyllflxKC7ihIEweC9KIpGaWReL730Eo4dO4bdu3cbLWP5mV9iYiImTZqETZs2wdrausj1WFYVg1arRUREBObOnQsACA0NxcmTJ7Fw4UIMHz5cWo/lVTGsWrUKy5cvx4oVK9CgQQPExcVh8uTJ8PX1xYgRI6T1WF4V16OUDcvPvNRqNZ555hlotVosWLCgxPVZXk9ebGwsvvjiCxw+fLjM157lVbGxeXkV4+7uDrlcbvSkKzk52eipNJnPyy+/jP/973/Ytm0b/Pz8pHRvb28AYPlVALGxsUhOTkZ4eDgUCgUUCgV27NiBL7/8EgqFQioPllXF4OPjg/r16xuk1atXTxpAkvdWxfLqq6/i9ddfxzPPPINGjRph2LBheOWVVzBv3jwALK+KrDRl4+3tjby8PNy5c6fIdejJUqvVGDhwIOLj4xETEyPVcgMsr4pk165dSE5ORkBAgPTb48qVK5g6dSqqV68OgOVVWTHormJUKhXCw8MRExNjkB4TE4OWLVuaKVdUQBRFvPTSS1i9ejW2bt2KoKAgg+VBQUHw9vY2KL+8vDzs2LGD5feEdejQAcePH0dcXJz0FxERgaFDhyIuLg7BwcEsqwqkVatWRtPvnTt3DoGBgQB4b1U02dnZkMkMf4LI5XJpyjCWV8VVmrIJDw+HUqk0WOfGjRs4ceIEy88MCgLu8+fPY/PmzXBzczNYzvKqOIYNG4Zjx44Z/Pbw9fXFq6++in///RcAy6uyYvPyKmjKlCkYNmwYIiIiEBkZiUWLFiEhIQHjxo0zd9Ys3oQJE7BixQr89ddfcHBwkGoKnJycYGNjI80DPXfuXNSqVQu1atXC3LlzYWtriyFDhpg595bFwcFB6mtfwM7ODm5ublI6y6rieOWVV9CyZUvMnTsXAwcOxIEDB7Bo0SIsWrQIAHhvVTA9e/bE+++/j4CAADRo0ABHjhzBZ599htGjRwNgeZlbZmYmLly4IL2Pj49HXFwcXF1dERAQUGLZODk54bnnnsPUqVPh5uYGV1dXTJs2DY0aNTIalJIeX3Hl5evriwEDBuDw4cNYt24dNBqN9NvD1dUVKpWK5fWElXR/PfxQRKlUwtvbG3Xq1AHA+6vSMtOo6WRi33zzjRgYGCiqVCoxLCxMmpKKzAtAoX9LliyR1tFqteLMmTNFb29v0crKSmzTpo14/Phx82WaJPpThokiy6qi+fvvv8WGDRuKVlZWYt26dcVFixYZLGd5VRzp6enipEmTxICAANHa2loMDg4W33zzTTE3N1dah+VlPtu2bSv0u2rEiBGiKJaubO7duye+9NJLoqurq2hjYyM+9dRTYkJCghnOpuorrrzi4+OL/O2xbds2aR8sryenpPvrYQ9PGSaKLK/KSBBFUXxC8T0RERERERGRRWGfbiIiIiIiIiITYdBNREREREREZCIMuomIiIiIiIhMhEE3ERERERERkYkw6CYiIiIiIiIyEQbdRERERERERCbCoJuIiIiIiIjIRBh0ExEREREREZkIg24iIiIiIiIiE2HQTURERERERGQiDLqJiIiIiIiITIRBNxEREREREZGJMOgmIiIiIiIiMhEG3UREREREREQmwqCbiIiIiIiIyEQYdBMRERERERGZCINuIiIiIiIiIhNh0E1ERJXa0qVLIQiC9KdQKODn54dRo0bh2rVr5s7eY1Or1fjuu+/QtGlTuLq6wtbWFoGBgejduzfWrFlj7uzh+vXrmDVrFuLi4kyy/4LyvXz5cqnWK/iztraGt7c3oqOjMW/ePCQnJ5skf49CEATMmjVLen/q1CnMmjWrxHMkIqLKiUE3ERFVCUuWLMHevXsRExODsWPHYuXKlYiKikJWVpa5s/ZYhg0bhpdffhnR0dFYvnw5/v77b7z11ltQKBT4999/zZ09XL9+HbNnzzZZ0F1W+p+Db775BiEhIfjwww9Rr149bN682dzZAwDs3bsXY8aMkd6fOnUKs2fPZtBNRFRFKcydASIiovLQsGFDREREAACio6Oh0Wjw7rvvYu3atRg6dKiZc1c0URSRk5MDGxsbo2Xx8fFYtWoV3nnnHcyePVtK79ChA8aOHQutVvsks1ousrOzYWtra7L9638OAKB///545ZVX0Lp1a/Tr1w/nz5+Hl5eXyY5fGi1atDDr8YmI6MliTTcREVVJBYHNlStXAAA5OTmYMWMGgoKCoFKpUK1aNUyYMAF3796Vtnn11Vfh5OQEjUYjpb388ssQBAEff/yxlJaamgqZTIavvvpKSktPT8e0adMM9j958mSjmnZBEPDSSy/h22+/Rb169WBlZYWffvqp0HNITU0FAPj4+BS6XCZ78DW+fft2CIKA5cuXY8qUKfD29oaNjQ3atm2LI0eOGG176NAh9OrVC66urrC2tkZoaCh+++03o/WuXbuG559/Hv7+/lCpVPD19cWAAQNw8+ZNbN++HU2bNgUAjBo1SmraXdB0euTIkbC3t8fx48fRuXNnODg4oEOHDgCAmJgY9O7dG35+frC2tkbNmjXxwgsvICUlpdBzfRwBAQH49NNPkZGRge+++67M16Gg6fq2bdvw4osvwt3dHW5ubujXrx+uX79usO7WrVvRrl07uLm5wcbGBgEBAejfvz+ys7OldfSv0dKlS/H0008D0D0sKriGS5cuxbvvvguFQoHExESjcxo9ejTc3NyQk5NTHpeIiIhMiEE3ERFVSRcuXAAAeHh4QBRF9OnTB5988gmGDRuGf/75B1OmTMFPP/2E9u3bIzc3FwDQsWNHpKen48CBA9J+Nm/eDBsbG8TExEhpW7ZsgSiK6NixIwBd7W3btm3x008/YeLEidiwYQOmT5+OpUuXolevXhBF0SBva9euxcKFC/HOO+/g33//RVRUVKHnUK9ePTg7O2P27NlYtGhRqZofv/HGG7h06RJ++OEH/PDDD7h+/TratWuHS5cuSets27YNrVq1wt27d/Htt9/ir7/+QkhICAYNGoSlS5dK6127dg1NmzbFmjVrMGXKFGzYsAHz58+Hk5MT7ty5g7CwMCxZsgQA8NZbb2Hv3r1GTafz8vLQq1cvtG/fHn/99ZdUY3/x4kVERkZi4cKF2LRpE9555x3s378frVu3hlqtLvE8y6p79+6Qy+XYuXNnma9DgTFjxkCpVGLFihX46KOPsH37djz77LPS8suXL6NHjx5QqVRYvHgxNm7ciA8++AB2dnbIy8srNF89evTA3LlzAQDffPONdA179OiBF154AQqFwuhBwe3bt/Hrr7/iueeeg7W1dTlcHSIiMimRiIioEluyZIkIQNy3b5+oVqvFjIwMcd26daKHh4fo4OAgJiUliRs3bhQBiB999JHBtqtWrRIBiIsWLRJFURSzsrJElUolzpkzRxRFUbx69aoIQJw+fbpoY2Mj5uTkiKIoimPHjhV9fX2l/cybN0+UyWTiwYMHDfb/xx9/iADE9evXS2kARCcnJ/H27dulOr9//vlHdHd3FwGIAEQ3Nzfx6aefFv/3v/8ZrLdt2zYRgBgWFiZqtVop/fLly6JSqRTHjBkjpdWtW1cMDQ0V1Wq1wT6eeuop0cfHR9RoNKIoiuLo0aNFpVIpnjp1qsj8HTx4UAQgLlmyxGjZiBEjRADi4sWLiz1HrVYrqtVq8cqVKyIA8a+//pKWFZRvfHx8sfsoWO/hMtDn5eUl1qtXT3pf2utQsO/x48cbrPfRRx+JAMQbN26IovigvOPi4orNKwBx5syZ0vvff/9dBCBu27bNaN0RI0aInp6eYm5urpT24YcfijKZrMRrQkREFQNruomIqEpo0aIFlEolHBwc8NRTT8Hb2xsbNmyAl5cXtm7dCkDX3Fnf008/DTs7O2zZsgUAYGtri8jISGnArZiYGDg7O+PVV19FXl4edu/eDUBX+11Qyw0A69atQ8OGDRESEoL8/Hzpr0uXLhAEAdu3bzc4bvv27eHi4lKq8+revTsSEhKwZs0aTJs2DQ0aNMDatWvRq1cvvPTSS0brDxkyBIIgSO8DAwPRsmVLbNu2DYCuBcCZM2ekfu76+e3evTtu3LiBs2fPAgA2bNiA6Oho1KtXr1R5LUr//v2N0pKTkzFu3Dj4+/tDoVBAqVQiMDAQAHD69OnHOl5RRL0WB2W5DgV69epl8L5x48YAHnRhCAkJgUqlwvPPP4+ffvrJoHXBo5o0aRKSk5Px+++/AwC0Wi0WLlyIHj16oHr16o+9fyIiMj0G3UREVCX8/PPPOHjwII4cOYLr16/j2LFjaNWqFQBd32iFQgEPDw+DbQRBgLe3t9R3GtA1Md+3bx+ysrKwefNmtG/fHm5ubggPD8fmzZsRHx+P+Ph4g6D75s2bOHbsGJRKpcGfg4MDRFE06qdcVB/totjY2KBPnz74+OOPsWPHDly4cAH169fHN998g5MnTxqs6+3tbbS9/jnevHkTADBt2jSj/I4fPx4ApPzeunULfn5+Zcrrw2xtbeHo6GiQptVq0blzZ6xevRqvvfYatmzZggMHDmDfvn0AgHv37j3WMQuTlZWF1NRU+Pr6AijbdSjg5uZm8N7KysogvzVq1MDmzZvh6emJCRMmoEaNGqhRowa++OKLR853aGgooqKi8M033wDQPeC5fPlyoQ9ciIioYuLo5UREVCXUq1fPYNRqfW5ubsjPz8etW7cMAm9RFJGUlCQNBgboRgZ/++23sXPnTmzZsgUzZ86U0jdt2oSgoCDpfQF3d3fY2Nhg8eLFhR7f3d3d4L1+TfSjCAgIwPPPP4/Jkyfj5MmTaNCggbQsKSnJaP2kpCQpYCzIy4wZM9CvX79C91+nTh0Auv7wV69efay8FnauJ06cwNGjR7F06VKMGDFCSi/oh28K//zzDzQaDdq1awegbNehLKKiohAVFQWNRoNDhw7hq6++wuTJk+Hl5YVnnnnmkfI+ceJEPP300zh8+DC+/vpr1K5dG506dXqkfRER0ZPHmm4iIqryCgLk5cuXG6T/+eefyMrKMgigmzVrBkdHR8yfPx9JSUlScNOxY0ccOXIEv/32G+rXry/VmALAU089hYsXL8LNzQ0RERFGf4/aDDgjIwOZmZmFLitogq2fDwBYuXKlQTPqK1euYM+ePVKwWadOHdSqVQtHjx4tNK8RERFwcHAAAHTr1g3btm0zamat7+Ha3tIoCMQLti3w8IBh5SUhIQHTpk2Dk5MTXnjhBQBluw6PQi6Xo3nz5lIN9eHDh4tct6Rr2LdvXwQEBGDq1KnYvHkzxo8f/9gPboiI6MlhTTcREVV5nTp1QpcuXTB9+nSkp6ejVatWOHbsGGbOnInQ0FAMGzZMWlcul6Nt27b4+++/ERQUhBo1agAAWrVqBSsrK2zZsgUTJ0402P/kyZPx559/ok2bNnjllVfQuHFjaLVaJCQkYNOmTZg6dSqaN29e5nyfPXsWXbp0wTPPPIO2bdvCx8cHd+7cwT///INFixahXbt2aNmypcE2ycnJ6Nu3L8aOHYu0tDTMnDkT1tbWmDFjhrTOd999h27duqFLly4YOXIkqlWrhtu3b+P06dM4fPiw1H94zpw52LBhA9q0aYM33ngDjRo1wt27d7Fx40ZMmTIFdevWRY0aNWBjY4NffvkF9erVg729PXx9fY0eBugr2O7111+HKIpwdXXF33//bTBC/KM6ceKE1Dc7OTkZu3btwpIlSyCXy7FmzRqDlg6lvQ6l9e2332Lr1q3o0aMHAgICkJOTI7V+0O+O8LCGDRsCABYtWgQHBwdYW1sjKChIap0gl8sxYcIETJ8+HXZ2dkZjExARUQVn1mHciIiIHlNpRq0WRVG8d++eOH36dDEwMFBUKpWij4+P+OKLL4p37twxWveLL74QAYhjx441SO/UqZMIwGjkcFEUxczMTPGtt94S69SpI6pUKtHJyUls1KiR+Morr4hJSUnSegDECRMmlOrc7ty5I7733nti+/btxWrVqokqlUq0s7MTQ0JCxPfee0/Mzs6W1i0YvXzZsmXixIkTRQ8PD9HKykqMiooSDx06ZLTvo0ePigMHDhQ9PT1FpVIpent7i+3btxe//fZbg/USExPF0aNHi97e3qJSqRR9fX3FgQMHijdv3pTWWblypVi3bl1RqVQajMw9YsQI0c7OrtBzO3XqlNipUyfRwcFBdHFxEZ9++mkxISHBaGTvso5eXvCnUqlET09PsW3btuLcuXPF5OTkQrcrzXUo6jNWcM0LRh3fu3ev2LdvXzEwMFC0srIS3dzcxLZt2xp9Xh4+R1EUxfnz54tBQUGiXC4vdDT4y5cviwDEcePGFXsdiIio4hFE8aHJQ4mIiKjS2b59O6Kjo/H7779jwIAB5s4OlbOvvvoKEydOxIkTJwz68BMRUcXH5uVEREREFdSRI0cQHx+POXPmoHfv3gy4iYgqIQbdRERERBVU3759kZSUhKioKHz77bfmzg4RET0CNi8nIiIiIiIiMhFOGUZERERERERkIgy6iYiIiIiIiEyEQTcRERERERGRiXAgtUek1Wpx/fp1ODg4QBAEc2eHiIiIiIiIniBRFJGRkQFfX1/IZEXXZzPofkTXr1+Hv7+/ubNBREREREREZpSYmAg/P78ilzPofkQODg4AdBfY0dHRzLmpWtRqNTZt2oTOnTtDqVSaOztEZCK814ksA+91Istgifd6eno6/P39pdiwKAy6H1FBk3JHR0cG3eVMrVbD1tYWjo6OFnPDElki3utEloH3OpFlsOR7vaTuxgy6iQBAowF27QJu3AB8fICoKEAuN3euiIiIiIiokmPQTbR6NTBpEnD16oM0Pz/giy+Afv3Mly8iIiIiIqr0OGUYWbbVq4EBAwwDbgC4dk2Xvnq1efJFRERERERVAmu6qUrSakXk5GuQo9binlqDe3ka5Kh1f9L7XDU6vvgSbEQRRr0wRBGiICB3wss43iQKNtYq2FkpYKuSw0Ylh61SDoWcz6yIiIiIiKh4DLrpiVJrtFLgm5OnC4ilQFitQa5ag8x7eTh4U0Dy3ivI00C3PE+DnHwN7uVpDYNntS6wLlinYH+5+doS89Ii4Rh6Jd8ocrkgirBOuo5P3/4B+wIaGy1XKWSwU8lhq1LARiWH3f2A3O7+e9v7y2wffm2lgK1S/uD1Q8utFDLO/U5EREREVEUw6CaIoojcfK1hLbD6QUBsmK5Xe6y/PK+IdLUuUM69/zpfK5YyV3Lg0tlyOT8rhQzWSjlslLqg2Foph7VShlap6lJt30DIRryjFbLzNMjO00Bz/xzy8rXIy9fiTnbp9lNaMgEGwbqNSiEF9LYPBfVymQwiRNz/D6Koy5sovYdu+f3XuL9OQSkULC9Y/8F699MKttFbpyDNw8EKwyIDUc3ZplzPn4iIiIioKmHQXUXdzsrDvPWnDWuC9QLhnDwNcvK1Ug2yWNpYuJwIAnRBsPJBEGyj0r23UsiQlnoLgX6+sLNSwlopg/X9ZQXr2yjlsFbJYa14sJ11wTLpvQzWCjlksiJqjbergR9KzuvbYzvg7XbtAOgC1jyNFtm5GmSrNbiXl4+sXM39gDwf2Xm6BxBZ918bpumtr7ftPbUGWbn5Uu28VgQyc/ORmZtfTlfbdH7cfQkDwv0xIboG/FxszZ0dIiIiIqIKh0F3FaXWaPF77NWSV3yIUi48CGpLCm6VctiodIHtgxpkvXT99wb7k0ElL7oJtVqtxvr169G9e2PTzvEXFaUbpfzaNRT61EEQdMujovSSBFgp5LBSyOFSztnRaEXcU2uQnasL1LPy8nEvzzCgLwjcC2rdtfdr3QVBlzcBQEEHdQGCLl3vdArSpNXubyMUt41eORXsAwB2nruFvZdSsfJAAn4/lIgB4X6YEF0T/q4MvomIiIiICjDorqIcrZV4rWsdw2C3oEbZoDb4Qe2wtUJmWYODyeW6acEGDNBFk/qBd0GgOX/+E5uvWy4TYG+lgL1V5bgtX2xXAwfib+OLLefw34VU/HowEX/EXkW/sGqYEF0TgW525s7iI7mXp8HN9BwkpefgpvSXi5vpORBFoHmwK9rU8kCgmy373puIRitCXlQLlUJcSc1C7JU7aF3LHZ4O1ibMmbG0bDUW7bqItrU90SzI9Ykem4iIiCqHyvHrnsrMRiXH+HY1zZ2Niq9fP+CPPwqfp3v+fM7TXYJmQa74ZUwLHLp8G19sOY9d51Pw26Gr+PPwNfQJqYaX29dEdfeKEXyrNVqkZOYiKe1BEK0fUBcE2hk5xTfr/+e4bvA9f1cbtKnlgahaHmhZ0w2O1uXTKuNmeg6OJNzBqevpUClkcLFTwdVWBRc7FVxsVXCxU8LFVgVlCQ/IRFFEjlqLO9l5uJutxt3sPNy9p0a+VkS7Oh7llt/ycDdbjdjEFOy+kII9F1KReCcb07vWxXOtg0p8sHHs6l0M+/EA0u6pIQhAs+qu6N7IB10besPLsfQB+LGrdxGfkoWm1V3hW8pxCkRRxGt/HsW/J2/i2x2X8HaPehjRsnqFfxiTmpmLE9fTcTYpHReTs9Cypht6h1Qzd7aw71Iq3O1VqOnpYO6sEBERlStBFJ90b96KY926dZg6dSq0Wi2mT5+OMWPGlHrb9PR0ODk5IS0tDY6OjibMpeV50Ly8u2mbl+vTaIBdu4AbNwAfH12T8idUw12VxF65gy+3nMeOc7cA6AaF6xNSDS+1r4lgD/snnp8ctQb/nkzCH7FXsediqjQIXklslHJ4O1nD08EK3k7W8HLUvc7N12LX+VuIvXIHas2DfcllAkL8nXVBeG13NPFzLlVNbY5ag5PX03Ek4Q6OJN5FXMJdXLt7r1R5dLBWwPV+IO5qp4JCJuDuPTXSstW6QPueGnlFjOIf6GaLRcMiUMf70YKbPRdS8Maa46jubocJ0TXRtHrZanjz8rXYdykVu84lY+OReFzNFgrt4TGkeQDm9GpQZAuc2Ct3MHLxAWTk5sPFVmkwqKEgABGBLujVxBdPR/jDWln4/ZyXr8XH/57B97vipbTqbraIrOGGyBruaF3THa52qkK3XXvkGiavijNIG9zMH7N7NYRKYfpWQ5m5+Vh//yFQz8a+sFE9OMfcfA32X7oNEYCjtQK2KgX2x6fin2M3cODybYPrrZLLsHdGe7jZWwHQPUzYezEVtbwc4OFgVWwePthwBv8cv45nmgZgRMvqsFbIcPxaGrLzNGge5Frq1lMHL9/G09/uhbu9Cv+93h5WitL9+5ubr8HnMecR5G6LQU0DCl1HFMVHehCSo9ZAJghPpCwLk3g7G56OVqW+FhWZWb7XieiJs8R7vbQxocUG3fn5+ahfvz62bdsGR0dHhIWFYf/+/XB1Ld2PRwbdpmOJN2xVcyRBF3xvO/sg+O7VxBcvta+Fmp6mDb5FUcThhDv4I/Yq1h29gQy9AekUMgGeDlbwcrKGl4M1vBz1X1vD28kKno7WcLBSFPsjPTM3H/svpWLX+RTsPHcLl1KyDJY7WivQupY7omp5IKqWO/xcbCGKIq7euYcjiXd1QXbCXZy6no48jWFgLBOAOt6OaFzNCYKgGxTxTnbe/f/rAuqy/KutkAlwtlXBxVYJZ1slEm/fQ1J6DmyUcnz8dGM81di31PsSRRE/7bmMd/85bfAAo0WwKya2r4XIGm7FXreb6TlYsT8BKw4k4FZGrsGymp72aFXDDa1quuNyahbmbTgDUQTa1PbAN0NC4fBQzfz+S6kYvfQgsvI0aFbdFYtHNcXd7DxsPJGE9cdv4HDCXWldb0drvNS+JgZG+BsEUPEpWZi48giOX0sDANT2sseF5EzoP5uxUcrx5eBQdKrvZXQunT7bgfScfEzpVBvWSpmU56bVXbDw2XC42xsHrNl5+fjz8DXsuZCCl9rXRANfp6IveBHOJKVj2d4rWHvkGrLyNAAANzsVnosKQveGPlgbdw3L9yUgJTO3yH3U8LBDXW9HnLyehsup2Xi1Sx1MiNa1jvp+5yW8v/40VHIZeoX4YnSrINTzcTAq298OJeK1P45J751slNCKotRapLqbLca1rYEgdztkqzU4fOUO/j2ZhJTMPHwzJAyRNdykbQcv2oe9l1IBAF8NDkXPJiV/LnPzNXhx+WFsPZMMhUxA3MzOsLdS4NT1dAR72MFaKccba47jj9irqO5mi76hfhjXNrhUAXiOWoMOn+5Abr4G7/RsgJ6NfQrd7kjCHbjbWxU7lsW9PA3O3sxAiL9zicfV32/fBXvQro4Hlo5qVurtinLiWhqCPexgqzJPA0d+rxNZBku81xl0l2DPnj34+OOPsWbNGgDApEmT0KJFCwwePLhU2zPoNh1LvGGrqqOJd/HllvPYciYZgK72sWdjX7zcviZqeZVvE9Jrd+9hzWFd0/Z4vSDYz8UG/cP80DvEF9Xd7Ioezf4xJN7Oxu4LugD8vwspSH+oiXqQux0ycvILDYLc7FQIDXBBaIAzwgJc0NjPCXbF9OvXaEWk31PjdnYe7mTlSUF5Xr72fnCtgvP9ANvZVgU7ldwgWLiTlYeXVx7B7gspAIAX2gbj1c51SqyRzM3X4O21J/DbIV03jD4hvrBRKfBHbKJU6x8W4IyXO9RCu9oe0jFFUcTBy3fw097L+PdEkjRtoLu9FdrUcoNtRiLG9Y2Gn5vh52HTySRM+jUO99Qa1PFywI8jI6QR8nefT8GYnw8iR61Fq5pu+H54hFEwcf3uPaw/fgOLd8fjeloOAF2XgMkdaqNPaDWsOXIN7/x1Atl5GjjbKvFR/8bo3MAb6TlqHIy/jb0XU7H93C1cSM6ETADm9m2EZ5oFSOc0eulBbDt7C42qOWH1+JZQymXYdiYZE1ceQUZuPpxslIgMdkOzIFc0C3KFk40Sy/dfwcr9CdLnw8/FBhsmRRk9UCjObwcT8dqfDwLdYA875OVrcfWOcQsJDwcruNtbIf2eGuk5agR72OOpRj7o1shbupZ/xl7F1N+PwsfJGrtei0ZOvhatP9yKuw9NhVjN2QaRNdzQuqY72tXxwLW799BvwR7k5mvRO8QXx6+mSQ+fHK11D63S7hU9naKtSo6fRzdDRHVX7LmYgiHf75eWta7pjuVjmhttk6/RQgSglMsgiiKeXxaLmFM3peVLRjZF2j01Jq+Kw5jWQZjerS4azvxXmhkCAOb1a4TBzQxrxJPTc+Bub2Xwb8POc7cwfPEB6f27vRtgWGR1g+2W7buCt9eegFIuYFSrIEztXBtWCjnSstXYF5+K5kGusLNSYMC3e3E08S5+Gt0MbWt7GOzj3M0MvLg8FpE13PBen0ZS+sSVR/C/o9cBAJc/6AEAeOevE/gj9ira1fHArF4NjMYvEEURW88ko4m/s8EDn+1nkzFyyUF0beCNb4eFG13X0tJoRZy+kY56Po5lGnMB4Pc6kaWwxHu9ygfdO3fuxMcff4zY2FjcuHEDa9asQZ8+fQzWWbBgAT7++GPcuHEDDRo0wPz58xF1fyTqP/74A9u3b8fXX38NAPj4448hCAKmTZtWquMz6DYdS7xhq7oT19LwxZbz0g9kQQC6N/LBxPa1HrmJM6CrNdRvPl7wr5mtSo7ujXzQP8wPzYNcTRJoFyVfo8Wxa2nYee4Wdp1PQVziXalWWCET0MDX0SDI9nOxeeJ9gPM1Wny86Sy+23EJgC7I+WpwKFyKaEadnJ6DcctjcTjhLmQCMKNbPYyJ0vW3vn73HhbtvISVBxKk4KZRNSdMiK6BO9lq/LTnMs4kZUj7albdFcNbBqJLA29Aqyn2Xj9+NQ3P/XQQyRm5cLe3wg8jInAnKw8vLI9FXr4W7ep44Ntnw4tsOg7oHhas3J+Ar7ddlB56uNtbSa9bBLvi80Eh8HEy7sedr9HijTXHpQcNUzvVxkvta+L3Q1fx2p/HoFLIsO7l1qit9wDpQnImnv/5kFHrB32BbrbIy9fiRloO+oZWw+eDQgyWi6KI3Hyt0XldupWJHl/uxj21Bh3reWJ06yBEBrshXyvif3HXsWD7BVy8lYXwQBeMbFkdXRt6l9j3P0etQcsPtuJ2Vh6+fTYMF29l4eN/zyLY3Q4fDWiMJXsuY9PJJKPuFLZKOTJy8xFdxwM/jmgKEbrWB7ZWCjSq5oQctQYr9ifgj9irUGu1sFbIUd3dFp3qe2H14WvYdT4F9lYKjG4dhB1nk3H0aho61vPCljM3IYrAzlejcSklE8eupsHBWoHzyZn459gNqBQy/PNyayTeyUb/hXuhksvQoJojjiTcxZjWQTiTlIHdF1IQ5G6Hr4eEoseXu+FgpcCwyEAs2H4RKoUMv70QiSZ+Tvjf0etYvDseR6+moUWwKxYMDZe6Ery77hR+3B0PNzsVUrPyUM3ZBu/0rI8PNpzB3L6NkKfRYtSSAwatIppWd8HXQ8Iw5qdDOH4tDQqZgBoe9jh7U/f5H9o8AO/3fRBYX72Tjfaf7pC6gZyc3UV64Db250PSv5eXP+iBa3fvofWHW6V/45r4OeHX5yMNuhT8dyEFQ3/YDzuVHEdndoZcJuCf4zcwf/N5XEjOBAAcndkZTja6ey05IwfHr6ahfV3PIv8NEkURn8ecg6ONEudvZmLVoUR8NrAJ+oX5Ffu5elhJ3+uJt7OxP/42+oT4PtaArvEpWZj06xGMa1sD3Rv5PPJ+iOjRWOJv+NLGhJV2ILWsrCw0adIEo0aNQv/+/Y2Wr1q1CpMnT8aCBQvQqlUrfPfdd+jWrRtOnTqFgIAAFPasobgfvrm5ucjNfVBLlZ6eDkD34VKri36aT2VXcD15XauOOp62WDC4CU7dSMfX2y4h5nQy/jl2A/8cu4GuDbzwUrvgUgffoiji4JU7WHPkBjacSJKa1wJAiyAX9A31RZf6XtKPV40mHxpNUXszjUY+9mjkY48JbYOQfk+Nw4l34WClQANfR6NAKj/fPPOxT+tYE/W97PH6mhPYfSEFPb/aha8Hh6CBr+EXxrGraRi/Mg4303PhaK3A/IGNEVXLXcq3h50Cb3arjedbB+LH/y5j5cGrOH4tDeOWH5b2Ya2UoXcTXzzb3B91C8pZqynxXq/rZYs/XmiO55cdxpmbmXhm0V5otCLUGhEd63pg/qAmkEMLtbrwvusAIAMwtJkf+oZ4Y9m+RHy/Ox4pmbmQywRMjK6BF9oEQS4TiszDe73qwc1OiYU74vFpzDlcupWBTad1LTcmd6iBIFdrg20DXayw7qVIHL+WjoOX7+Dg5Ts4lHAHWbkaRAa7YkRkANrV9sDRq2kY8uNBrDlyDa1ruKJXE12AkJSegym/H0dc4l282b0uhjbzB6B7ADB51RHcU2vQMtgV3zzTBDKZIJVDr8ZeeKqhJzJz8+F4P6iCVgO1tvgPvxzAoPBqWLgzHgu3X8TlVN3DggntgtGkmgPmP90I2b3rIfbKXey5dBs7z6XgXHImMnLz4edsjY/6NYRGo8tD00Cn+4fNh0oGjIz0x8hIf6NjdqjtjueXH8a+eF03FABQKWSY+VQd5KjzsftCKob+sA+JhdTeA8B3Oy7gdlYeAOCpxt5oU8sdRxLu4t+TSVKrhviULGw5lQQAaFjNEZOig3HmRjq2nr2FwYv2onmQK7afS5H2ue/SbfT6ejdWjW0GTwcr7DirK+PpXWpj3sazuHb3Hib8chj5WhG/7LuMu/fU0IpAv1BfdK7niWl/nsDBy3fQ+sOtUGt0o+/na0Up4AZ0LX+W/ncJt7PyEBnsikOX7xiMu7BoxwXYqOR4tnkAsnIffKbSs3KwfE88RBGwU8mhlMtw9Goalvx3EX7ONmhd0w0O1kocjNc1z8/K0+CN1cfg42SNL7ZeNLh2G45dQ/8w3aB545fH4tCVu3i3V30809Q4iD54+Q4+33IBBy/fMUj/dNNZtK7hAhdbw4d0OWoNLqVkoZ63rivCzfQcZOVqEOxhV+K93vWLncjK1UCjyUe/UF3+dl1IwVtrT+G93vURVcvdaJsrt7Ox6uBVjG4VKNXsv7ziME5cT8f4Xw7j/LudCz1WcdQaLRbtuowmfk5oXdOt5A0ew9U79yCXCfBxetBiYeXBROy5eBufDGgElVyAVkSZWxUQmZMl/oYv7blW2ppufYIgGNV0N2/eHGFhYVi4cKGUVq9ePfTp0wfz5s0rtHl58+bNMWTIkEKPMWvWLMyePdsofcWKFbC15bzERGVxLQvYdFWGuNsPajQau2rR1U+LakUMdp6aAxy8JeDALRlScx/8CHGzEtHcU4sIdxFuT3a2qCrhehbw41k5UnIFKAURg2po0dRD97Vw8JaAXy/KkC8K8LIRMaaOBp4lDOydqQZ23JDhv5sCbBVAKy8tmnuKsH2MR7w5GmDpORlO39V9XkLctBheU4tHqRC7lw8cShEQaC8ioAzDC+xKEvBnvAzi/XnqgxxETGygQWl+D2tEICcfsHvoof+GRAEbr8phLRfxWmMNUnIE/Hxehsz8Bztt661Fn+pabLoqYMNVOWzkIqY30cCl+PHNyuROLjD7sFw6Ny8bEa83KfrcUnKAC+kCajuJcH3EfKi1wKFbAs6nC7iaJSDSU4toXxFHUgUsPad7MCVARIib7rNoIwdcrUWsS5BDJROhFYF8UcArDfPhbg28ecj4A+akEpGWJ6CDrxa9ArW4lw8sPifDuTSZtP/O1UTUcdbilwtypOYKCHfXomeAFrMOKyBAxNymGmy+JsOW6w8+bM4qEfc0QK5GwGuN81HNDkjKBpackyPpnu6ijaqtgY+tiKOpAjSigI1XDT+sAnSfvyuZxhc50lOLhEwB17J1y94OzccXJ+RIVwsYVVuDO7nA2isPHt618NRicA0tfrskw383i78pajiIGFtXA2s5MHmf7pq5W4l4O0yDXA2w4qIMtZ1EtPISMfuwHLdzC/8QKAQRQ2pqEe7+4Cfkd6dlOHVXhrF1NKjrLOL1A3KoRQE2chEDgrSo7SQiTwu4W+s+c0n3BNRzFqHRAlP2KwzOBQBe2SeHVtQd/4vIfJy5K+BsmoCn/HX3/ry4B9f72ZoaNPUQMWnvg8/BF5GGDzRzNYBSphs3QyMC8vundi0LOJwiQ8dqWmy8KsP2G7JCty/MsdsCDiQLGFxDa3R/68vTAFuuy9DQRQt/e11eXjugy+vnLfKRnQ9cTBew+P5nf3gtDfbeFJCuFvBaYw3MNJYfEZVCdnY2hgwZUnVruouTl5eH2NhYvP766wbpnTt3xp49ewAAzZo1w4kTJ3Dt2jU4Ojpi/fr1eOedd4rc54wZMzBlyhTpfXp6Ovz9/dG5c2c2Ly9narUaMTEx6NSpk8U0TbFEY6Hrz/jN9kvYcPImjt2W4dhtGTrV88SEdsFo4OuIrNx8bDx5E2virmN//IPaFjsrObo39EbfEF9EBDpX+CmaKrqn76kx9ffj2HE+BcsvyCH3CIBCJmD5hSsAgOg67vh0QGM4WJfuK2NgKY9blnu9l0aLH/+7gjyNFi+2CXqsJqjGbaNK1h1AmxNJmPrHcajkMix6rgWqP+Zc9J01WiQvPoTDCXfxY7w9rqfp5oKv6+2ANrXcsGjXZexIkuGetRtir98FIOK9vo2lWvHytCcnDptO6Wp33+jZBN0beZf7MR7Wu5C0DvlaHPr+ADJy8vF+n/porjf3uSiKiP92H05e19Ue1/N2wIsDW0AQBCxL3IMzN3VNqJVyAWqNLuAGgD5tQtG1gW4gvD5aEd/ujMe2s7cwpWNNtLw/mFv76+no++0+xKbI4OXtA+Ammvg7Y0Cv5oi8ew/bP98Nrah7LHH3/n7trRQY3b+TVBM5NF+LlQcTYadS4OlwwynY2n6yU6qFBwARAq7osotO9TwRc7/1BADsTTb8bGu8GyD9yFnYWykwbXBHnE/OxNqF+6Tl+5JlWPZyV/y2NBa4mYqIQGekZuYhPjXbYD9ymYCLGcDrBxXwdbIGoMtPplaODp064vvdlxGXehFxqcCcEZ0waW9MoeUG6B54LL8gR9PwJvjvYire6FoHk/ZuAQBclvmgYaA31Pt1Yw/c0whYduHBQ4JP+jfErD9PAAB+G9tM1wVi/z7pXNy9fPFWj7rQ7t3+4Br4hWLh3uO6smraEIMi/DBp7yZp+fILcrz5bEdg72YprUXbjnCyUWLk0kPYd//7o30dDxy8cge5+VoEu9thUEQ1fLT3DADAwcsP229cl7ZP92gMABgUUU36jjl3MwPOtip43h/Vf9LbujxUu+eDIDtbPNequtR8f96Gs0hKz8HnTzfGd7visfHABWy8KsP5dzvj4q0s4MB/AICW7Tpi8A8HDbqk1GvYGD+fPwkA8GkYiQ//PYewAGe80a0OUjNz4WqngiAI0GrFR+4+dTM9B1vP3sJTjbzLNK5EgSup2VApZAY19USW+Bu+oPVzSapk0J2SkgKNRgMvL8PRZr28vJCUpGtuplAo8OmnnyI6OhparRavvfYa3NyKbkpkZWUFKyvjR/pKpdJiPlRPGq9t1dfAzxULnnXFuZsZ+GrrBaw7dh0xp5MRczoZYQHOOJOUgez7zccFAWhVwx0Dwv3QpYG3QV9GejzuSiUWj2qG+ZvP4autF/DT3gRp2YToGpjaqY5J+8WX5l5XKoGXOtQ2WR5Ko1eoP5oGu0MUUeq5vIujVAJfPBOK7l/swrW7ugBoUIQ/ZvduAGulHE38XTHltzgcuN+896nGPugX7m+Sh0xj29RAzOlkNPB1RM8Qvyc6DoI+pRL4++XWRZ7jy+1rY9zyWADAs5GBUKl0TZxb1fKQgu6RLasbTAEXVt1N+nwpAUzuVAeTO9Ux2G9IoBsGNwvAiv0JWH9C15c6uo4XlEolqnsosfy55hBFEfM2nJFGu4+o7gJrqwdNrJVKYGybmoXm28PRWgq6uzX0xoYTSdKyES2DpKDbTiU36DIDAL/eH1Mguq4n7Gys0MjfeOyF5h9sl5rcv9qlLhr7OWPNkWvIyFFj3oYz6NnEF0q5gNWHrwGAwQOAHLUWDedsMdhfly//K/Q89GlF4OVfjwIA/nf0hpRey8sB607cLGozfLX9kvT63K1spOcYNs1cdzwJ644nGaRN+f249Pqtv07BWmX878WVu4YDVe66eAf2VnIp4AaArfdn1ACAM0kZmL3ujPR+00nDPL/9v1MAgPUnbqJNbQ/kqDX4Yst5eDlaYf3EKPx6MFFad+P9bX87dA27p7eHQi5g8R7dQ0sRxw3OUalU4mBCmvT+Vla+0RgQq488CP43n0nB0atpOHo1Dc2D3TBu+WEEudtJA4Z+NKAxBkbounEkp+dgworDGNwsoMR+9+NX7sexq2l453+n8enTTdA7xBexV+4gNuEOqjnboHdItSK3TcnMRcf5uwEA8fO6QxAEZOXmY9Kvceja0BsDwgs/tlYrIk+jxb08TZFjiADAsr2XcSU1GzO61zNp8/r0HDV+2BWPXk18UNOzfAd3tXSW9Bu+tOdZJYPuAg9/aT88V2evXr3Qq1evJ50tInpIbS8HfDU4FJM61MTXWy/gf0evS1M+BbnbYUC4H/qGViuXQIcKJ5cJmNq5DhpWc8LU344iX6vFxwOalGrqJktS2IBrj8Pf1RbznwnBF1vOY3hkdYMfqz0a+8DX2RrjfzkMG5Uc7/VpaLJWHU2ru2LjpDbwdrQ2W8BdoLhz7FzfC1G13JGcnmsQFLSt7YEfd8cj2MMOQ5oHSkG3u73qfq1uyV7tXAenrqcjX6tFu9qeGN26urSsYHqz8EAXKeguy/z0I1sG4pVVd9GriS861veSgm6VQobIGm4YFOGP1Kw8TOlUG92/3GWw7aVbuuCqYz1PALp7VSWXGUw3WBBwA0CAmy1sVHIMaa4bpb1VTXcEuNkiV62Fo7USXo7W+HDjGRTnyv1a8rreDni/b0P0X7i32PWz9R4UZOdpcCD+don7BoC31p6AWzHBV1Gm/X7UKK3rfMPrtvJAAur5lD6QevhhR4G9l1Kl6ewA4GZ6Ljp9vtPgmhdIzcpDvXc2GkwPp/+ApcDba09Ir5/6arfRcv1+9Iv/e/AAqWCsDP0ZOl774xgGRvjjm20X8PG/Z6Xt+4X5SSPOqxQyPPfTQfRuUg1TO9fGiCUHcezqg8B/6u9HcSklE99sezAGQK8mvhAEASmZuZix+jjCA11wMP42svLyse/Sg/LNzddCEIBf9l/B5tM3sfn0TdTytEeTh6bIK5iG79pd3VgNW6e2RbCHro9P2j21NOvBldQsvP2XrpY/0N0O7nYqvLn2BLo19MaUTrXhVshUjCXJUWuw49wt3M3Ow8CIBw8uP9xwBr/sT8CXW85LswSU5HJKFj6LOYcX2gY/0pSPAJCUlgMnG2WpKw/yNdrHat1FFUOVDLrd3d0hl8ulWu0CycnJRrXfRFRx1PR0wPxnQvFyh1rYcfYWmvg7ISzAhc3Hn6AuDbzRfLorNFrxkX7cUNl1qOeFDvUK/24KDXDBf9PbI18rGswxbgqPM5PAkyKTCVj2nPF0YlG13PHl4FDU93FAdTdbadTxxn6l737iYqfC2gmtil0nPNAFS/dcBgBEBLqUOt99QqrBz8UWjf2ckKRXy1zDwx5ymYAPBzQudnuZALSr4ym9XzA0DFN+izOanhAAvB6aSqxhtfuBgTUwq1cDAMCtjFws/i8eC4eG4YONZwwCYX0O1gqEB7pi8cgI3M1WY8pvxsHuwwquT2mlPhS8vhRdE19vu2C03rx+jbD/UirWxl03WlaY5IwcONuYpqatsIBbX1zi3SKXNX1/c5HLHtW2M8lSwF1ArdGi/jsbDWYe+HrbBRy9ehe7zqc8vAuDgBvQtYDIzdcg4j1dfvWn59NX9+2NkAkwGMm/9zf/4dtnw9G1oTdO39A1vT11PV0KuAFgxf4E5ORrsHyfrmXVgHA/vNa1Dr7a+qDsN5+6iR3ndK0TftmfgF/2JxQ69R4ALN93BffyNBjbJhgA8O/JJByMv4198ak4ce1B819PB2tE1/VEjlqDX/Y/aNX15prjGNe2BvxdbfHboURsP5uMF9vWRCO/+wNEakWIAD7ceAYbTiThf0evGwTq64/fQEpmLoY/NLVgUloOfj+UiN4h1RDgZosD8bcx8DvdQ6yC7Xeeu4XPYs5BIRPwbItAeDpYoWmQK5RyGS4kZ6DHl7vxfJtgTO1s2EKnwM30HBy8fBtdG3hDIZfh/M0MfLn1AiZ1qFnqGvwctQZjfz6EqFrueL5NjVJto6+wrg6pmbk4evUu2tb2xC/7ryAvX4sxUcHS8iupWTiSoHsYmZyRi/fXn8ZrXepID5ocrBR4pVPtKvMbsEoG3SqVCuHh4YiJiUHfvn2l9JiYGPTuXVgvMiKqSGp42KOGRxlGuaJy5Wxb9ponMh2ZTICKIxgXSxAE9NJrldG0uis2nkwyqHEsD82CXKGQCbBSyIxq8krKX0HNeICrLZxtlbibrUYtT+N/54ZHBuLnvVcM0hr4Okl9hQGgY30vHJvVBf0X7kHsFcPRxUvTUuHtp+phXNtgeDpao2UNd2TkqpGSmYcZq49LQRIAadyC9nW9cCE5o6jdPRZXOxU+HdgEo5YcBAAMbh4gTbuoz9lGifnPhCI3X1to7fHD7mapDYK8iuJWRm7JK5XRqKUHjdJqvbmh0HULC7gLk3ZPjUm/HinVutpChmQetzwWC4aGYfwvh40XAvhhd7zB+z9ir+KP2KsGaYcf+mwDwIjFBxBVyx3j29WUWqBotCLeut964KkmPnC1U2Hc8lgUNlR0wbXyczFstfTL/gTsj7+N5c81x2t/6MYjWH88CXW8HJCalYuUzDzpYV6BczczcDklCyH+ztJ5vvPXSawY2xz2VgrcyVbj3XWncCE5E5/GnIO9lQKZuQ8elP24Ox6d63th+OIDUtqh++dsrZTh5fa1pIcpX229gHFta0AmCDidlI6d527B38UW/cKqocW8LdK59gurJnUj+fvodcS80gZu9lZwsVXi35M3UcPDDtl5Gjz30yHM7tUAqVm56BtaDT2+3I2E29nYdT4F+y/dxp3sPDSs5oSjiXfxw4imOHEtDWGBLnCyUeLk9TS8/89pDGrqj94h1bD9bDJGLjmIZ1sEIPOeGiH3K/B7fLkbSek5mNGtLuZt0LWuee+f0/hnYmtk5Wqkhw+/xybivwupUp71fbn1Av58sSXCy/CQs6KqtKOXZ2Zm4sIF3dOw0NBQfPbZZ4iOjoarqysCAgKwatUqDBs2DN9++y0iIyOxaNEifP/99zh58iQCAwMf+/icp9t0LHGOPyJLxHudTOVyShZ+PZiICdE1HmmQqOLsuZgCG6UcoQGP/iNw+OID2HnuFqZ1ro2X2tcyWJav0WL9iSQk3s6WfnCPbhWEd3rWN9rPyCUHsP1+P2W5TMDQ5gGY07vhI+dr2u9HpcCnX1g1zOhWDx73Bw1LzshBs/e3FLe5gTm9G+Cd+82ECzSr7oJ3ejbAygMJUi3j9K518XybYAz+fh8crBT4YUQErqfloPfX/yEl80GA+vPoZmhT2wPzN5/D/M26qeaq3e9yVFRwXdBHfnavBng6wg8H4m8j9sodg9rU0ujR2Af/HLtR7DqNqjlJXQ+qgsZ+TgZN0B9FPR9Hg4c45c3b0RqhAc4Y17YGen9T8jgEpSGXCdAU9hSBAADBHnZSl5ei2ClEtKvrg39K8XCstErb/N8cqvw83YcOHUJ0dLT0vmBk8REjRmDp0qUYNGgQUlNTMWfOHNy4cQMNGzbE+vXryyXgJiIiooqrursdXu9W1yT7blnDeM7osprSqTZcbZUY3CzAaJlCLkOvJr7YdPLBD9am1QsP8N/qUR+Jtw9hUsfaaBHsCmebx2ulMrljLRxOuINRLatj2EPNZB31Hl60q+MBD3sr3MzIlWqkfZ0eDBbXtrYHhkdWh7ejNd7+6wRupuuCZ0HQNXfX78rgbq+CXCbgtxcipbRqzjbYPT0aw388gAOXdf2H7ax0P1nr6m1b3d0WdbwcDfo9A5CaOxf00+4XVg22KgXa1fHEnezim4ZP7VQbX229IPWZf6tHPdT1dpSC7hoedrC3VuKoXhNyd3sV/nyxJfZdSsU/x25g1aHEwnZtFoU9/CiNxw24AZg04AaApPQcbDiRVKqWD6XFgLt4JQXcAJCVL5RrwF1VVNqgu127diipkn78+PEYP378E8oRERERUclC/J0x/5nQYtex15uiL6KIQdtqetpjy9R25ZYvPxdbbC1if9bKB4M+OVgr8fHTTbB83xUp6PZzsZWCbvf740F0buCN5fsTcDNdt47sft9M/aby7g6Fjx1hrZQbTFNoZ6U7fh3vBzVJ/i62eK1rHVgpZVi4XdcnWSETkK8XODnbKg1aO3jYG/Z5b+LvjFqe9vBytEKgmx36h/nh5Q61DAbfPZzwoJnz6hdbwclWieqv/yOlrZ8UBZVChja1PdCmtgei63og0M0O28/eMhi0Tn/kejc7FayVcqNa+kkdauGLLecN0gaE+xk1vS6t4ZHVHynoJqLyxaHwiIiIiCqYJn7O8HK0QpvaHlIT74pCfr/buKNe8KzfR9bd/kGNu34P84LX+tt5FDNgo0HQrdK9DnC1fbA/QRecT+9aFz+PboZqzjZYPLJpkfsAgFY13fDOUw+a6itkAj55ugle7VIXAyP8pSmq9Adv0j83RxvD/dko5fB8aPC6rg19UM/HEePaBuOLZ0KkdFe9kdpretobLBvaPADHZnXGK52Mp0YcExUEO72RrvuXMB1YgSX3r8XEDrVKWLNsVo5tUa77I7IElbamm4iIiKiqsrNS6OZ8roCD6MllujobR72A1jDofhBIC4VE3fpN1d2LCbr1p1Syv9+8XH/e5mZBD1oAtKntgf9eb2+0j7x8rcF7QRAwunUQ5qw7pZ+lYnk6WGP1+Jawt1JIwXhksBv2XkqVpmYrjCAI6B1SDRk5+VixPwEvta+JQDdbJNzOxjtPNYBKIcPKsS3w34UUTOpYC8r700K526uQkpmHPiG+6B/uh7rejni9W11pKi0HawX+GBeJTzadNZi+q0CQux1e7VIH0XV1I96/0rEW+odVQ9uPt5fibIvmYKXAirEt0MjPCf1Cq2H1kWuFrufnYoOrdyreIHZUeVWFadMYdBMRERFVQMoK9iOzmrMNrt29h24NvQHAoNm2n8uDGmj92mCZXtQt3A9x9Z8juNkX3Q9dv7a5oE83AGye0gYH4u+gd5NqhW2Gd/s0lObCEjoHXAAAQTpJREFUru1V/JRJslJORxT20MB5C58Nw87zKehcv+SpaJ9tEYhnW+jGFHp4OqbIGm7SKNwF/nqpNXadu4W+YdVgpZBL+5i7/gzuqTXoFeKLsAAXrBzbAq0/3GbQRF2lkGHbtHYG+xMEAYH3R6IvTIe6njiXnIFnmwfiSMJdbLw/noCTjRJp99QAdH3pN0yKkspkbr9GWHf8htFDDQDYPb29QfN7oseVx6CbiIiIiCzB3y+3xvmbGVINs5NecO3r/KCmuyBQBAxrkguC7YbVnNDA1xF+LjbFPljQD87156mv6elQ7PzDw1oEoranPRbtvISZPRsUe076+y0LZ1uVwTR15amasw2eeWiQPUEQcOSdTkhKy0F1dzspbfHIpugyf+eD9R7heLN6NYCfiw0EQcBnMeekoDvunU4ImrEegK5pvP5DEGulHKH+ztgfb1zTDhgOrKdvz+vtEZd4F02ru5pkzvLSODqzM87cSMegRftKXPe51kH48aHpzYgeReV+ZEBERERET4SrnQrNg92k4Eu/mbiz7YPX+rXX+hXJBa+VchnWvdwa3w2LKPZ4pa2FLkzzYDf8OLIpAtxsC13+9lP14WqnKnQqtorKWimXAu4CdbwdsHZCK+l9cZesd0jhDwmsFDKpTLV6g9AJgoBfn2+BtrU9MLdvI6PtXmgbDADo2sDbaFlRAwX6OtugeyMfk49ToP95fJiTjRLNg92KXK5vbFQwDrzRobyyRY+oKgwqz6CbiIiIiMpMv3m5Ui7DrJ71MbhZAFrpTasmFNK8/OH0opiyN/tzrYMQ+1bHEpufVwYh/s7Sa6GYqzZ/UAgOv90JM7rVxXfDwqV0/dYGI1tVR6NqTph1/2FEi2A3/DS6mVGwDwDt63ph9/RofDM0zGiZUv4gH5H3A9xRraqX+pwmRNcoeSUAnYpo3p+j1kiv9QfT83e1KWz1Qh14swO8nazh6WiNxn5OBss2T2mLb58NQ7BH0c32qfxUhancGHQTERERUZlZK2Vo4ueEQDdbBHvYYWSrIMzr1wgymX6g/UBZK66LG2StPJQm8K8sejT2AfCg9rkwgiDA1U6FF9rWMHjYoNRrYu9ub4W/X26Nka2CSnVcPxdbg8HtCjSq5oRm1V0xMMIPP4yIwKrnW+CtHoW3KnCzU+HLwYY14yH+D/rQrxjbvNDtmgW54vvhhbeWyFE/6Gs+KMJfeq2UPTjXD/s/qL3/9lnjBwf6o9KvHNsCAyMejBpf09MeXRv6ABUwFtSfku9R+DpZG6W526swqYhR8As+e6ZU0jTRlQGDbiIiIiIqM0EQsHp8K2ye0rbIvtmFNS8vrdGtg9Cxnic+ebrJY+TSMnw2sAn+fDESL7cv+/Rg+rXS5UUhl+G3cZH4aEAT2Fkp0DzYrdDgHNCNSF9c//gWQYU3Bf+gn3GT91Y1dev20WtKrz8Al0LvXAc1DcDlD3rg8gc90LWhT7EPeeysFGjs52yUrt/KQN/Fud2xYGgY1r3cutDm9w97oU0w5vZthKha7jjzblese7m10TqFtRRYM76l9Foll6FVTTesGNscPwyPeORgWFZIOfUJqYanitjfwwGxq5VoVNY/jii+K0lJqkBFNwdSIyIiIqJHI5cJkBfTpNmgSXkZG4zbWSnww4imJa9IsFLIER7oWvKK9wW62iIswBn21kqoKvio0IUFgT8Mj0Cwh71B2ty+jdCjsQ+2nL6Jzg28sTbuOgAYTLsnlxV9riVNz1fX27grwsyeDQqdOk0uE9C9kS5IVZTiocaM7vUAQJqCrmE1J1yc2x013lgvrfNWj/qIruOJ7DwNxi2PRYtgV4OgP/btjlKXjwa+Tmhdyx3/HLsBAFg7oRVsVXJ4O1mj8axNBsce3SoIi/+LR8NqjkhKy8FXg0PRd8Eeg3Wi63qipqc9ujX0hpejNayVcny74yIAwMHqQc369qlROLpnG+o2bY1fY69hyX+XAQC19AY+/PTpJmhdyx3N526R0jwdrJCckQtAN9heyw+2Ghy/KjQvZ9BNRERERCahH+NUodbclZ5MJuDPF3W1pOXRzD66jge2nb2FJkXU/JZGwZR0rnZFTyNXoLA+5kq5ACcbJfqF+Rmk26jkaOLnhKNX0wyaiD+spMsQUd0VXzwTgiC9YzvZKvH3S63R8+vd6NHYRwpy9WkfsWn0w7XFcpmANrU9AAD/vd4eXg5WEAQBp+Z0gUYrGoyx8PD5KGSC1KVgxdjmGPL9fmnZK51qYWybIPg42UAUxUI/D61q6sZpWPjsg7EAxkQFwd5Kgdl/n5LSPO8PkBfsYYeZPRtAJgi4p9YgwM0W597rBhGiNLvBwqFhePGXwwAAH2cbKej2dbbBD8MjMGPNcUQGu6F1LXfYW1X+kLXynwERERERVUj6tduPMxo5lb/y7NP++aAQrDlyDU81Lvs0agXZWPZcM3yx5Txeiq6J+JSsErZ6EMj2auKLA/G30a2RYfPnie1r4t+TNzEsMhDDIwNx4lo6mgcV3RpgYodamLH6OABg6ajCW1j0DjGeG76RnxPOvNsV1ko5xkbdhfNDfapLqqUtoYK9UNX0puizVRUezunfb/q17S1ruGPr1LZo/+kOALpg3sdJt7+yfCYKmuMPbR6AlQcSdPt6aPu3n3rQj//h6fkK5qe3UcrRraE3jibeRYCrbraBjvW90KGeZ5Uad4FBNxERERGZRtX5zUzFcLZVYVQpB197WMGDmWAPe3xxf6qxO9nqYrfRrzz+4pkQaEXjmuEpnetgSuc60vuCIK8ozzT1R4tgNwS4Fj44XHGslbra28L6eHdp4I1/T94EALzSsTaaBbli8PcP5gifWMQAZY9LPwC2vl+7XJjHfRjWsJoTvhocCjc7VaFdAYribKvCkbc7wVoph1IuINjdDhHVHzwUqUoBN8Cgm4iIiIhMRP8HfRX7DU0m1LS6C15oE1zklFz6I4sLgoDyGAtOEASDpuPlpU9INXg5WqO+jyNcCmk671aK5vSPQiYTMDYqCBk5+UbN8fXr3sv6gKEwPe8PhKdWF/+w5GH616NzKQacq8wYdBMRERGRSQhFvCZ6tkUAlu9LwGtd6xgtEwRBGlzsYRsmRcHJ9vGmxXqSZDJB6hNdmEFNA0x27DeLmKbNTq9JemE13TO61cWPu+PxQtsaiKpVdN6p9Bh0ExEREZFJ6P+eZ59u0vdu74Z4KboWvAuZF7o49XwcTZSjJ6+6m61RX2d9MsE002V5O1njze71YGelKLSm+4W2NfB8m+Aq18TbnBh0ExEREZFJsHk5FUUQhDIH3FVNSUGtQiZDnkZrkmOPbRNc7HIG3OWrYk/MR0RERESVlmHzcv6Ip0dTMFJ2VWGr0g1s1iK4+LnVy6O/NVUMFh10x8fHIzo6GvXr10ejRo2QlVXS9AREREREVGp6MQMrzuhR/Ty6GSICXbDq+Rbmzkq52DApCq93q1tkn+sCCgbdVYZFNy8fOXIk3nvvPURFReH27duwsqpaT9GIiIiIzEm/dptBNz2q+r6O+OPFlubORrkJdLPDuLY1SlxPXh7DslOFYLE13SdPnoRSqURUVBQAwNXVFQqFRT+DICIiIipX+hV1bF5OVDZRtTwAVL3m9ZaowgbdO3fuRM+ePeHr6wtBELB27VqjdRYsWICgoCBYW1sjPDwcu3btKvX+z58/D3t7e/Tq1QthYWGYO3duOeaeiIiIiAQ2Lyd6ZO/3bYjpXetizfiqU8tvqSps1W5WVhaaNGmCUaNGoX///kbLV61ahcmTJ2PBggVo1aoVvvvuO3Tr1g2nTp1CQIBuvrvw8HDk5uYabbtp0yao1Wrs2rULcXFx8PT0RNeuXdG0aVN06tSp0Pzk5uYa7Cs9PR2AbhL4sk4ET8UruJ68rkRVG+91oqpPFEX9N7zficrARg6MaaWLayrDvWOJ3+ulPVdBNPjXsGISBAFr1qxBnz59pLTmzZsjLCwMCxculNLq1auHPn36YN68eSXuc+/evZg9ezY2btwIAPj4448BAK+++mqh68+aNQuzZ882Sl+xYgVsbW3LcjpEREREFuHXizLsTdY1rGzmocXQmqaZ/oiIyByys7MxZMgQpKWlwdGx6DnkK2xNd3Hy8vIQGxuL119/3SC9c+fO2LNnT6n20bRpU9y8eRN37tyBk5MTdu7ciRdeeKHI9WfMmIEpU6ZI79PT0+Hv74/OnTsXe4Gp7NRqNWJiYtCpUycolUpzZ4eITIT3OlHVt+evU9ibfBUA4Ovri+7dG5s5R0RkKpb4vV7Q+rkklTLoTklJgUajgZeXl0G6l5cXkpKSSrUPhUKBuXPnok2bNhBFEZ07d8ZTTz1V5PpWVlaFjm6uVCot5kP1pPHaElkG3utEVZdcLjN4zXudqOqzpO/10p5npQy6CwgPjcghiqJRWnG6deuGbt26lXe2iIiIiAgG03RDxpHUiMhCVdjRy4vj7u4OuVxuVKudnJxsVPtNREREROahH2gz5CYiS1Upg26VSoXw8HDExMQYpMfExKBlSw6pT0RERFQRcMowIqIK3Lw8MzMTFy5ckN7Hx8cjLi4Orq6uCAgIwJQpUzBs2DBEREQgMjISixYtQkJCAsaNG2fGXBMRERFRAf04uyxdAImIqpIKG3QfOnQI0dHR0vuCkcNHjBiBpUuXYtCgQUhNTcWcOXNw48YNNGzYEOvXr0dgYKC5skxEREREegQ2LyciqrhBd7t27VDSFOLjx4/H+PHjn1COiIiIiKgs2LyciKiS9ukmIiIioopPgFDoayIiS8Kgm4iIiIhMQr92W8aYm4gsFINuIiIiIjIJmeFIambLBxGROTHoJiIiIiKT4EBqREQMuomIiIjIRPQDbTYvJyJLxaCbiIiIiEzCoKabzcuJyEIx6CYiIiIikzCYMsx82SAiMisG3URERERkEhxHjYiIQTcRERERmYhBTTejbiKyUAy6iYiIiMgkZBy9nIiIQTcRERERmQablxMRMegmIiIiIlMxqOlm1E1ElolBNxERERGZhP7c3Jynm4gsFYNuIiIiIjIJg9ptBt1EZKEYdBMRERGRSRjO082om4gsE4NuIiIiIjIJ/TCbzcuJyFIx6CYiIiIik5DpRdocvZyILNUjB92iKCIlJQWpqanlmR+T6Nu3L1xcXDBgwACD9MTERLRr1w7169dH48aN8fvvv5sph0RERERVG5uXE5GlKnPQnZSUhOHDh8PFxQVeXl7w9PSEi4sLRo8ejZs3b5oij49t4sSJ+Pnnn43SFQoF5s+fj1OnTmHz5s145ZVXkJWVZYYcEhEREVU9BrXbjLmJyEIpyrJyeno6WrZsiczMTIwaNQp169aFKIo4deoUVq5cid27d+Pw4cOwt7c3VX4fSXR0NLZv326U7uPjAx8fHwCAp6cnXF1dcfv2bdjZ2T3hHBIRERFVPTK9qFvG9uVEZKHKVNP9xRdfQC6X4+TJk/j888/xwgsvYNy4cfjyyy9x8uRJiKKIL7/8skwZ2LlzJ3r27AlfX18IgoC1a9carbNgwQIEBQXB2toa4eHh2LVrV5mOURqHDh2CVquFv79/ue+biIiIyBKxopuIqIw13f/88w/eeOMNeHh4GC3z9PTEjBkz8P333+ONN94o9T6zsrLQpEkTjBo1Cv379zdavmrVKkyePBkLFixAq1at8N1336Fbt244deoUAgICAADh4eHIzc012nbTpk3w9fUtMQ+pqakYPnw4fvjhhyLXyc3NNThGeno6AECtVkOtVpd4DCq9guvJ60pUtfFeJ6r6tFqt3msN73eiKswSv9dLe66CKIpiaXfq6uqKvXv3ok6dOoUuP3PmDFq2bInbt2+XdpeGmREErFmzBn369JHSmjdvjrCwMCxcuFBKq1evHvr06YN58+aVet/bt2/H119/jT/++MMgPTc3F506dcLYsWMxbNiwIrefNWsWZs+ebZS+YsUK2NraljofRERERJZi63UBf12RAwCeCtCgU7VS/+wkIqrwsrOzMWTIEKSlpcHR0bHI9crcp9vZ2bnI5c7OzlINcHnIy8tDbGwsXn/9dYP0zp07Y8+ePY+9f1EUMXLkSLRv377YgBsAZsyYgSlTpkjv09PT4e/vj86dOxd7gans1Go1YmJi0KlTJyiVSnNnh4hMhPc6UdV3c88V/HXlLACgdq1a6N6upplzRESmYonf66WNfcsUdIuiCJms6G7ggiCgDBXnJUpJSYFGo4GXl5dBupeXF5KSkkq9ny5duuDw4cPIysqCn58f1qxZg6ZNm+K///7DqlWr0LhxY6kv+bJly9CoUSOjfVhZWcHKysooXalUWsyH6knjtSWyDLzXiaouuVxu8Jr3OlHVZ0nf66U9zzIH3bVr14ZQxOiT5Rlw63v4eKIoFpmHwvz777+Fprdu3dqgrxERERERlR+DgdQ4khoRWagyBd1LliwxVT4K5e7uDrlcblSrnZycbFT7TUREREQVi0zQf82om4gsU5mC7hEjRpgqH4VSqVQIDw9HTEwM+vbtK6XHxMSgd+/eTzQvRERERFQ2+i0TGXITkaUqU9BdmJycHKxatQpZWVno1KkTatWqVabtMzMzceHCBel9fHw84uLi4OrqioCAAEyZMgXDhg1DREQEIiMjsWjRIiQkJGDcuHGPm3UiIiIiMiH9yu2ydA0kIqpKyhR0v/rqq8jLy8MXX3wBQDe6eGRkJE6ePAlbW1u89tpriImJQWRkZKn3eejQIURHR0vvC0YIHzFiBJYuXYpBgwYhNTUVc+bMwY0bN9CwYUOsX78egYGBZck6ERERET1hDLOJiICihyIvxIYNG9ChQwfp/S+//IIrV67g/PnzuHPnDp5++mm89957ZcpAu3btIIqi0d/SpUuldcaPH4/Lly8jNzcXsbGxaNOmTZmOQURERERPnn7ttowROBFZqDIF3QkJCahfv770ftOmTRgwYAACAwMhCAImTZqEI0eOlHsmiYiIiKjyYfNyIqIyBt0ymcxgWrB9+/ahRYsW0ntnZ2fcuXOn/HJHRERERJWWAA6kRkRUpqC7bt26+PvvvwEAJ0+eREJCgkF/7CtXrnAqLyIiIiIC8PCUYebLBxGROZV5ILXBgwfjn3/+wYkTJ9CtWzcEBQVJy9evX49mzZqVeyaJiIiIqPIxaFHO5uVEZKHKVNPdv39/bNiwAY0bN8bUqVPx+++/Gyy3tbXF+PHjyzWDRERERFQ5sXk5EVEZa7rv3buH1atXY+3atVCr1YiLi8OXX34Jd3d3AMDMmTNNkkkiIiIiqoQMBlIzXzaIiMypTDXd77zzDpYuXYoePXpg8ODBiImJwYsvvmiqvBERERFRJSYzmDKMUTcRWaYy1XSvXr0aP/74I5555hkAwNChQ9GqVStoNBrI5XKTZJCIiIiIKiehiNdERJakTDXdiYmJiIqKkt43a9YMCoUC169fL/eMEREREVHlJrB5ORFR2YJujUYDlUplkKZQKJCfn1+umSIiIiKiys+wSTmjbiKyTGVqXi6KIkaOHAkrKyspLScnB+PGjYOdnZ2Utnr16vLLIRERERFVSgLn6SYiKlvQPWLECKO0Z599ttwyQ0RERERVE5uXE5GlKlPQvWTJElPlg4iIiIiqGEHQn6ebUTcRWaYy9ekmIiIiIiotGZuXExEx6CYiIiIi0zCo3Wb7ciKyUAy6iYiIiMgkDKYMM182iIjMikE3EREREZmEjBXdRESWEXT37dsXLi4uGDBggNGyzz//HA0aNED9+vUxceJEiKJohhwSERERVUUPIm0Zo24islAWEXRPnDgRP//8s1H6rVu38PXXXyM2NhbHjx9HbGws9u3bZ4YcEhEREVU9bF5ORGQhQXd0dDQcHBwKXZafn4+cnByo1Wqo1Wp4eno+4dwRERERVU36tdus6CYiS2X2oHvnzp3o2bMnfH19IQgC1q5da7TOggULEBQUBGtra4SHh2PXrl3lcmwPDw9MmzYNAQEB8PX1RceOHVGjRo1y2TcRERGRpWOcTUQEKMydgaysLDRp0gSjRo1C//79jZavWrUKkydPxoIFC9CqVSt899136NatG06dOoWAgAAAQHh4OHJzc4223bRpE3x9fYs89p07d7Bu3TpcvnwZNjY26NatG3bu3Ik2bdoYrZubm2twjPT0dACQasip/BRcT15XoqqN9zpR1afRaqTXolbL+52oCrPE7/XSnqvZg+5u3bqhW7duRS7/7LPP8Nxzz2HMmDEAgPnz5+Pff//FwoULMW/ePABAbGzsIx178+bNqFmzJlxdXQEAPXr0wL59+woNuufNm4fZs2cbpW/atAm2traPdHwqXkxMjLmzQERPAO91oqrr5B0BgBwAcPToUeBqnFnzQ0SmZ0nf69nZ2aVaz+xBd3Hy8vIQGxuL119/3SC9c+fO2LNnz2Pv39/fH3v27EFOTg6USiW2b9+O559/vtB1Z8yYgSlTpkjv09PT4e/vj86dO8PR0fGx80IPqNVqxMTEoFOnTlAqlebODhGZCO91oqrP7twtLDpzBAAQEtIE3RoV3QKRiCo3S/xeL2j9XJIKHXSnpKRAo9HAy8vLIN3LywtJSUml3k+XLl1w+PBhZGVlwc/PD2vWrEHTpk3RokULdO/eHaGhoZDJZOjQoQN69epV6D6srKxgZWVllK5UKi3mQ/Wk8doSWQbe60RVl0Lx4KemSqHgvU5kASzpe72051mhg+4CwkPDXYqiaJRWnH///bfIZe+//z7ef//9R84bERERERVO4JxhRETmH728OO7u7pDL5Ua12snJyUa130RERERUscj0Y27OGUZEFqpCB90qlQrh4eFGnfFjYmLQsmVLM+WKiIiIiEpD0KveZshNRJbK7M3LMzMzceHCBel9fHw84uLi4OrqioCAAEyZMgXDhg1DREQEIiMjsWjRIiQkJGDcuHFmzHXpaTQaixo2vzyo1WooFArk5ORAo9GUvAFVSCqVCjJZhX6uR0REJqZfuS1j1E1EFsrsQfehQ4cQHR0tvS8YIXzEiBFYunQpBg0ahNTUVMyZMwc3btxAw4YNsX79egQGBpory6UiiiKSkpJw9+5dc2el0hFFEd7e3khMTGRTtEpMJpMhKCgIKpXK3FkhIiIz0f8W53c6EVkqswfd7dq1gyiKxa4zfvx4jB8//gnlqHwUBNyenp6wtbXlF00ZaLVaZGZmwt7enjWllZRWq8X169dx48YNBAQE8PNPRGSh9P/95zcBEVkqswfdVZFGo5ECbjc3N3Nnp9LRarXIy8uDtbU1g+5KzMPDA9evX0d+fr7FTBtBRESGDJ65MuomIgvFiMYECvpw29ramjknROZT0Kyc/fKJiCyXfpwtY6snIrJQDLpNiE1qyZLx809ERDIZm5cTETHoJiIiIiKTMBxIzWzZICIyKwbdRERERGQShlOGMeomIsvEoJsqlezsbPTv3x+Ojo4QBOGJTcm2dOlSODs7F7vOrFmzEBISUq7H3b59+xM9TyIiovLFQJuIiEE3SUaOHAlBECAIApRKJYKDgzFt2jRkZWVJ6/z5559o3rw5nJyc4ODggAYNGmDq1KnS8qVLl0r7kMvlcHFxQfPmzTFnzhykpaU9dh5/+ukn7Nq1C3v27MGNGzfg5OT02PssjUGDBuHcuXNP5FhERERVhV6XbjYvJyKLxSnDyEDXrl2xZMkSqNVq7Nq1C2PGjEFWVhYWLlyIzZs345lnnsHcuXPRq1cvCIKAU6dOYcuWLQb7cHR0xNmzZyGKIu7evYs9e/Zg3rx5WLJkCf777z/4+vo+cv4uXryIevXqoWHDhqXeRq1WP/aUVTY2NrCxsXmsfRAREVkaw3m6GXUTkWViTfcTIIoisvPyzfInimKZ8mplZQVvb2/4+/tjyJAhGDp0KNauXQsAWLduHVq3bo1XX30VderUQe3atdGnTx989dVXBvsQBAHe3t7w8fFBvXr18Nxzz2HPnj3IzMzEa6+9Vuzx//zzTzRq1AheXl4IDg7Gp59+Ki1r164dPv30U+zcuROCIKBdu3aF7qOgmffixYsRHBwMKysriKKItLQ0PP/88/D09ISjoyPat2+Po0ePStsdPXoU0dHRcHBwgKOjI8LDw3Ho0CEAhTcv/+CDD+Dl5QUHBwc899xzyMnJMVjerl07TJ482SCtT58+GDlypPR++fLliIiIgIODA7y9vTFkyBAkJycXeX2uXLmCnj17wsXFBXZ2dmjQoAHWr19fzBUlIiIyH8Mpw8yWDSIis2JN9xNwT61B/Xf+NcuxT83pAlvVoxezjY2NNO+4t7c3VqxYgRMnTpSpphkAPD09MXToUCxevBgajQZyudxondjYWAwcOBAzZ85E9+7dcezYMbz00ktwc3PDyJEjsXr1arz++us4ceIEVq9eLc0DXZgLFy7gt99+w59//ikdq0ePHnB1dcX69evh5OSE7777Dh06dMC5c+fg6uqKoUOHIjQ0FAsXLoRcLkdcXFyRNeS//fYbZs6ciW+++QZRUVFYtmwZvvzySwQHB5fpuuTl5eHdd99FnTp1kJycjFdeeQUjR44sMpCeMGEC8vLysHPnTtjZ2eHUqVOwt7cv0zGJiIieFP3B0ziVJBFZKgbdVKQDBw5gxYoV6NChAwDg5Zdfxq5du9CoUSMEBgaiRYsW6Ny5M4YOHQorK6sS91e3bl1kZGQgNTUVnp6eRss/++wzdOjQAW+99RbS09MRFhaGM2fO4OOPP8bIkSPh6uoKW1tbqFQqeHt7F3usvLw8LFu2DB4eHgCArVu34vjx40hOTpby+sknn2Dt2rX4448/8PzzzyMhIQGvvvoq6tatCwCoVatWkfufP38+Ro8ejTFjxgAA3nvvPWzevNmotrsko0ePll4HBwfjyy+/RLNmzZCZmVloMJ2QkID+/fujUaNG0jZEREQVlX6czZCbiCwVg+4nwEYpx6k5Xcx27LJYt24d7O3tkZ+fD7Vajd69e0vNx+3s7PDPP//g4sWL2LZtG/bt24epU6fiiy++wN69e2Fra1vsvguauhf1pPv06dPo3bu3QVqrVq0wf/78ImvHixIYGCgF3ICuFj0zMxNubm4G6927dw8XL14EAEyZMgVjxozBsmXL0LFjRzz99NOoUaNGkXkdN26cQVpkZCS2bdtW6jwCwJEjRzBr1izExcXh9u3b0Gq1AHTBdf369Y3WnzhxIl588UVs2rQJHTt2RP/+/dG4ceMyHZOIiMgcWNFNRJaKfbqfAEEQYKtSmOWvrE25oqOjERcXh7NnzyInJwerV682qpWuUaMGxowZgx9++AGHDx/GqVOnsGrVqhL3ffr0aTg6OhoFvgVEUTTKb1n7pBews7MzeK/VauHj44O4uDiDv7Nnz+LVV18FoOsLfvLkSfTo0QNbt25F/fr1sWbNmkc6PgDIZDKj/Bc01QeArKwsdO7cGfb29li+fDkOHjwoHS8vL6/QfY4ZMwaXLl3CsGHDcPz4cURERBj1qSciIqooDGq6GXUTkYVi0E0G7OzsULNmTQQGBpZqxO/q1avD1tbWYFqxwiQnJ2PFihXo06cPZLLCP3b169fH7t27DdL27NmD2rVrl6mWuzBhYWFISkqCQqFAzZo1Df7c3d2l9WrXro1XXnkFmzZtQr9+/bBkyZJC91evXj3s27fPIO3h9x4eHrhx44b0XqPR4MSJE9L7M2fOICUlBR988AGioqJQt27dYgdRK+Dv749x48Zh9erVmDp1Kr7//vtSXQMiIqInzaBPtxnzQURkTmxeTqU2a9YsZGdno3v37ggMDMTdu3fx5ZdfQq1Wo1OnTtJ6oigiKSlJmjJs7969mDt3LpycnPDBBx8Uuf+pU6eiadOmeO+999C9e3ccP34cX3/9NRYsWPDYee/YsSMiIyPRp08ffPjhh6hTpw6uX7+O9evXo0+fPmjQoAFeffVVDBgwAEFBQbh69SoOHjyI/v37F7q/SZMmYcSIEYiIiEDr1q3xyy+/4OTJkwZ9rNu3b48pU6bgn3/+QY0aNfD555/j7t270vKAgACoVCp89dVXGDduHE6cOIF333232POYPHkyunXrhtq1a+POnTvYunUr6tWr99jXh4iIyBQEztNNRMSgm0qvbdu2+OabbzB8+HDcvHkTLi4uCA0NxaZNm1CnTh1pvfT0dPj4+EAQBDg6OqJOnToYMWIEJk2aBEdHxyL3HxYWht9++w3vvPMO3nvvPfj4+GDOnDkGU2w9KkEQsH79erz55psYPXo0bt26BW9vb7Rp0wZeXl6Qy+VITU2Vzs3d3R39+vXD7NmzC93foEGDcPHiRUyfPh05OTno378/XnzxRfz774NR6kePHo2jR49i+PDhUCgUeOWVVxAdHS0t9/DwwNKlS/HGG2/gyy+/RFhYGD755BP06tWryPPQaDSYMGECrl69CkdHR3Tt2hWff/75Y18fIiIiU9Cfm1vGqJuILJQgPmqnWQuXnp4OJycnpKWlGQWSOTk5iI+PR1BQEKytrc2Uw8pLq9UiPT0djo6ORTZFp4qP9wGVRK1WY/369ejevXupurMQUeVz/mYGOn2+EwCw9sUWCAksfFwXIqr8LPF7vbiYUF+Vj2gSExPRrl071K9fH40bN8bvv/9utE52djYCAwMxbdo0M+SQiIiIqGpi83IiIgtoXq5QKDB//nyEhIQgOTkZYWFh6N69u8Ho1u+//z6aN29uxlwSERERVUX6A6kx6iYiy1Tla7p9fHwQEhICAPD09ISrqytu374tLT9//jzOnDmD7t27mymHRERERFWTfu22jDE3EVkoswfdO3fuRM+ePeHr6wtBELB27VqjdRYsWCD1Cw0PD8euXbse6ViHDh2CVquFv7+/lDZt2jTMmzfvUbNPREREREUwmDKMQTcRWSizNy/PyspCkyZNMGrUqEKnZ1q1ahUmT56MBQsWoFWrVvjuu+/QrVs3nDp1CgEBAQCA8PBw5ObmGm27adMm+Pr6AoA0MvUPP/wgLf/rr79Qu3Zt1K5dG3v27Ck2n7m5uQbHSE9PB6AbMECtVhusq1arIYoitFottFptKa8EFSgY26/gGlLlpNVqIYoi1Gr1Y8+zTlVTwb+dD/8bSkRVhyY/X3qdn6/h/U5UhVni93ppz7VCjV4uCALWrFmDPn36SGnNmzdHWFgYFi5cKKXVq1cPffr0KXUNdW5uLjp16oSxY8di2LBhUvqMGTOwfPlyyOVyZGZmQq1WY+rUqXjnnXeM9jFr1qxCp49asWIFbG1tDdIUCgW8vb3h7+8PlUpVqjwSVTV5eXlITExEUlIS8vV+dBERkeVIyQHePaKr45nRJB/etiVsQERUiWRnZ2PIkCEljl5eoYPuvLw82Nra4vfff0ffvn2l9SZNmoS4uDjs2LGjxH2KooghQ4agTp06mDVrVpHrLV26FCdOnMAnn3xS6PLCarr9/f2RkpJS6JRhiYmJqF69OqdKegSiKCIjIwMODg4Q2Bat0srJycHly5fh7+/P+4AKpVarERMTg06dOlnM1CJElibxTjbaf7YbALBufDPU8XE2b4aIyGQs8Xs9PT0d7u7uJQbdZm9eXpyUlBRoNBp4eXkZpHt5eSEpKalU+/jvv/+watUqNG7cWOovvmzZMjRq1KhMebGysoKVlZVRulKpNPpQaTQaCIIAmUzGeaYfQUGT8oJrSJWTTCaDIAiF3iNE+vgZIaq6lAqlwWve60RVnyV9r5f2PCt00F3g4dpOURRLXQPaunXrUvULHjly5KNkjYiIiIiKwHm6iYgqwOjlxXF3d4dcLjeq1U5OTjaq/a6SNBpg+3Zg5Urd/zUac+fI5IoawZ6IiIgqH/1KEhmjbiKyUBU66FapVAgPD0dMTIxBekxMDFq2bGmmXD0hq1cD1asD0dHAkCG6/1evrks3kZEjR0IQBKlJsJeXFzp16oTFixc/sVHEb9y4gW7duj2RY+krbbBfcH30/1q3bm36DBIREVVCBnNzM+YmIgtl9ublmZmZuHDhgvQ+Pj4ecXFxcHV1RUBAAKZMmYJhw4YhIiICkZGRWLRoERISEjBu3Dgz5trEVq8GBgwAHh7j7to1XfoffwD9+pnk0F27dsWSJUug0Whw8+ZNbNy4EZMmTcIff/yB//3vf1AoTPuR8fb2hlarLXQKuIpiyZIl6Nq1q/S+qBHq1Wq1xfRnISIiKoygF2kz5iYiS2X2mu5Dhw4hNDQUoaGhAIApU6YgNDRUmrZr0KBBmD9/PubMmYOQkBDs3LkT69evR2BgoDmzbToaDTBpknHADTxImzzZZE3Nrays4O3tjWrVqiEsLAxvvPEG/vrrL2zYsAFLly6V1ktISEDv3r1hb28PR0dHDBw4EDdv3pSWz5o1CyEhIVi8eDECAgJgb2+PF198ERqNBh999BG8vb3h6emJ999/3+D4+jXOly9fhiAIWL16NaKjo2Fra4smTZpg79690vqpqakYPHgw/Pz8YGtri0aNGmHlypUG+2zXrh0mTpyI1157Da6urvD29jYYyb569eoAgL59+0IQBOl9UZydneHt7S39ubq6Snn97bff0K5dO1hbW2P58uUAdEF6vXr1YG1tjbp162LBggUG+ztw4ABCQ0NhbW2NiIgIrFmzBoIgIC4uDoBuZH1nZ2eDbdauXWs0rsHff/+N8PBwWFtbIzg4GLNnzzaYqksQBPzwww/o27cvbG1tUatWLfzvf/8z2MfJkyfRo0cPODo6wsHBAVFRUbh48SJ27twJpVJp1NVj6tSpaNOmTbHXi4iILBf7dBMRVYCgu127dhBF0ehPP8AbP348Ll++jNzcXMTGxlbtH/m7dgFXrxa9XBSBxETdek9I+/bt0aRJE6y+37RdFEX06dMHt2/fxo4dOxATE4OLFy9i0KBBBttdvHgRGzZswMaNG7Fy5UosXrwYPXr0wNWrV7Fjxw58+OGHeOutt7Bv375ij//mm29i2rRpiIuLQ+3atTF48GApmMzJyUF4eDjWrVuHEydO4Pnnn8ewYcOwf/9+g3389NNPsLOzw/79+/HRRx9hzpw5UreFgwcPAtAFxzdu3JDeP4rp06dj4sSJOH36NLp06YLvv/8eb775Jt5//32cPn0ac+fOxdtvv42ffvoJAJCVlYWnnnoKderUQWxsLGbNmoVp06aV+bj//vsvnn32WUycOBGnTp3Cd999h6VLlxo91Jg9ezYGDhyIY8eOoXv37hg6dChu374NALh27RratGkDa2trbN26FbGxsRg9ejTy8/PRpk0bBAcHY9myZdK+8vPzsXz5cowaNeqRrxcREVVt+oE2+3QTkcUS6ZGkpaWJAMS0tDSjZffu3RNPnTol3rt3r+w7XrFCFHWhdfF/K1aUw1kYGjFihNi7d+9Clw0aNEisV6+eKIqiuGnTJlEul4sJCQnS8pMnT4oAxAMHDoiiKIozZ84UbW1txfT0dGmdLl26iNWrVxc1Go2UVqdOHXHevHnSewDin3/+Kd65c0e8ePGiCED84YcfjI5z+vTpIs+je/fu4tSpU6X3bdu2FVu3bm2wTtOmTcXp06cbHHfNmjVF7lN/PWtra9HOzk76W7NmjRgfHy8CEOfPn2+wvr+/v7jiobJ69913xcjISFEURfG7774TXV1dxaysLGn5woULRQDikSNHRFEUxSVLlohOTk4G+1izZo2of/tGRUWJc+fONVhn2bJloo+Pj0He33rrLel9ZmamKAiCuGHDBlEURXHGjBliUFCQmJeXV+i5f/jhh9JnQBRFce3ataK9vb2YmZlZ6PqPdR+QRcjLyxPXrl1b5GeOiCq/5PQcMXD6OjFw+jrxcrLxbyYiqjos8Xu9uJhQn9n7dNNDfHzKd71yIupN03b69Gn4+/vD399fWl6/fn04Ozvj9OnTaNq0KQBds20HBwdpHS8vL8jlcoO5t728vJCcnFzssRs3biy99rl/3snJyahbty40Gg0++OADrFq1CteuXUNubi5yc3NhZ2dX5D4K9lPScYvy+eefo2PHjgb7unXrFgAgIiJCSr916xYSExPx3HPPYezYsVJ6fn4+nJycAOiuZZMmTWBraystj4yMLHOeYmNjcfDgQYOabY1Gg5ycHGRnZ0v7178OdnZ2cHBwkK5DXFwcoqKiiuyHPnLkSKllQosWLbB48WIMHDjQ6FoTEREVMGxezppuIrJMDLormqgowM9PN2haYf26BUG3PCrqiWbr9OnTCAoKAlD0POkPpz8cvBWMiv5wWkkjo+tvU7D/gm0+/fRTfP7555g/fz4aNWoEOzs7TJ48GXl5eUXuo7THLYq3tzdq1qxpkFYQdOsHoAX7//7779G8eXOD9eVyOQDdNSuJTCYzWk+tVhu812q1mD17NvoVMsCetbW19Lq462BjY1NsPjw9PdGzZ08sWbIEwcHBWL9+PbZv315i/omIyHIxzCYiYtBd8cjlwBdf6EYpFwTDwLsgoJ0/X7feE7J161YcP34cr7zyCgBdrXZCQgISExOl2u5Tp04hLS0N9erVe2L5AoBdu3ahd+/eePbZZwHogs/z58+XOR9KpRKach6czsvLC9WqVcOlS5cwdOjQQtepX78+li1bhnv37klB78N93D08PJCRkYGsrCwpqC8YZK1AWFgYzp49a/QwoCwaN26Mn376qdhR18eMGYNnnnkGfn5+qFGjBlq1avXIxyMioqqP/biJiCrAQGpUiH79dNOCVatmmO7nZ9LpwgAgNzcXSUlJuHbtGg4fPoy5c+eid+/eeOqppzB8+HAAQMeOHdG4cWMMHToUhw8fxoEDBzB8+HC0bdvWoHn1k1CzZk3ExMRgz549OH36NF544QWjEbZLo3r16tiyZQuSkpJw586dcsvfrFmzMG/ePHzxxRc4d+4cjh8/jiVLluCzzz4DAAwZMgQymQzPPfccTp06hfXr1+OTTz4x2Efz5s1ha2uLN954AxcuXMCKFSsMBhoEgHfeeQc///wzZs2ahZMnT+L06dNYtWoV3nrrrVLn9aWXXkJ6ejqeeeYZHDp0COfPn8eyZctw9uxZaZ0uXbrAyckJ7733HgdQIyKiEjHmJiJi0F1x9esHXL4MbNsGrFih+398vEkDbgDYuHEjfHx8UL16dXTt2hXbtm3Dl19+ib/++ktqEl0wrZeLiwvatGmDjh07Ijg4GKtWrTJp3grz9ttvIywsDF26dEG7du3g7e2NPn36lHk/n376KWJiYuDv7y9NX1cexowZgx9++AFLly5Fo0aN0LZtWyxdulRqqm9vb4+///4bp06dQmhoKN588018+OGHBvtwdXXF8uXLsX79emlKNP0pzwBdMLxu3TrExMSgadOmaNGiBT777LMyTa3n5uaGrVu3IjMzE23btkV4eDi+//57g1pvmUyGkSNHQqPRSA9hiIiIiiKwgTkREQSxNJ1KyUh6ejqcnJyQlpYGR0dHg2U5OTmIj49HUFCQQX9aKh2tVov09HQ4OjoaDLpmKS5fvoygoCAcOXIEISEh5s6OkbFjx+LmzZtGc3w/jPcBlUStVmP9+vXo3r17kV0aiKhyS7unRpPZmwAAO6e1QYC7QwlbEFFlZYnf68XFhPrYp5uISiUtLQ0HDx7EL7/8gr/++svc2SEiokqAzcuJiBh0E1Ep9e7dGwcOHMALL7yATp06mTs7RERERESVAoNuogqmevXqpZpK7Enj9GBERFRWFfDrjIjoibO8DrNPUEUMnIieFH7+iYiIiIgYdJtEwcAB2dnZZs4Jkfnk5eUBgDTqPRERWR726SYiYvNyk5DL5XB2dkZycjIAwNbWFgK/dUpNq9UiLy8POTk5Fjl6eVWg1Wpx69Yt2NraQqHgPzNERJbKWvHgwauTDb8PiMgy8V8/E/H29gYAKfCm0hNFEffu3YONjQ0fVlRiMpkMAQEBLEMiIgumUsiw4eWW2L5zJ2xV/NlJRJaJ//qZiCAI8PHxgaenJ9RqtbmzU6mo1Wrs3LkTbdq0sZg5/qoilUrFlgpERISanvY4Z2vuXBARmQ+DbhOTy+Xs01pGcrkc+fn5sLa2ZtBNRERERESVGquhiIiIiIiIiEyEQTcRERERERGRiTDoJiIiIiIiIjIR9ul+RKIoAgDS09PNnJOqR61WIzs7G+np6ezTTVSF8V4nsgy814ksgyXe6wWxYEFsWBQG3Y8oIyMDAODv72/mnBAREREREZG5ZGRkwMnJqcjlglhSWE6F0mq1uH79OhwcHEo1D3HTpk1x8ODBcjt+eezvUffxKNuVZZv09HT4+/sjMTERjo6OZc6fpSnvz5apmTu/pj4+73Xe66Zi7nvnUZgzz7zXTb9tabfhvV52le1+r8r3enkfg/d61SKKIjIyMuDr61vsVLms6X5EMpkMfn5+pV5fLpeX64evPPb3qPt4lO0eZRtHR0eLuWEfR3l/tkzN3Pk19fF5r/NeNxVz3zuPwpx55r1u+m3Lug3v9dKrbPd7Vb7Xy/sYvNernuJquAtwILUnZMKECRVuf4+6j0fZrrzPnx6obNfW3Pk19fF5r1euz2NlUhmvrTnzzHvd9NtWxs9kZVHZrm1VvtfL+xi81y0Tm5dThZOeng4nJyekpaVZ1FMyIkvDe53IMvBeJ7IMvNeLxppuqnCsrKwwc+ZMWFlZmTsrRGRCvNeJLAPvdSLLwHu9aKzpJiIiIiIiIjIR1nQTERERERERmQiDbiIiIiIiIiITYdBNREREREREZCIMuomIiIiIiIhMhEE3ERERERERkYkw6KZKKzExEe3atUP9+vXRuHFj/P777+bOEhGZSN++feHi4oIBAwaYOytEVI7WrVuHOnXqoFatWvjhhx/MnR0iMiFL/i7nlGFUad24cQM3b95ESEgIkpOTERYWhrNnz8LOzs7cWSOicrZt2zZkZmbip59+wh9//GHu7BBROcjPz0f9+vWxbds2ODo6IiwsDPv374erq6u5s0ZEJmDJ3+Ws6aZKy8fHByEhIQAAT09PuLq64vbt2+bNFBGZRHR0NBwcHMydDSIqRwcOHECDBg1QrVo1ODg4oHv37vj333/NnS0iMhFL/i5n0E0ms3PnTvTs2RO+vr4QBAFr1641WmfBggUICgqCtbU1wsPDsWvXrkc61qFDh6DVauHv7/+YuSaisnqS9zoRVRyPe+9fv34d1apVk977+fnh2rVrTyLrRFRG/K5/PAy6yWSysrLQpEkTfP3114UuX7VqFSZPnow333wTR44cQVRUFLp164aEhARpnfDwcDRs2NDo7/r169I6qampGD58OBYtWmTycyIiY0/qXieiiuVx7/3CejgKgmDSPBPRoymP73qLJhI9AQDENWvWGKQ1a9ZMHDdunEFa3bp1xddff73U+83JyRGjoqLEn3/+uTyySUSPyVT3uiiK4rZt28T+/fs/bhaJyAQe5d7/77//xD59+kjLJk6cKP7yyy8mzysRPZ7H+a631O9y1nSTWeTl5SE2NhadO3c2SO/cuTP27NlTqn2IooiRI0eiffv2GDZsmCmySUSPqTzudSKqfEpz7zdr1gwnTpzAtWvXkJGRgfXr16NLly7myC4RPQZ+15dMYe4MkGVKSUmBRqOBl5eXQbqXlxeSkpJKtY///vsPq1atQuPGjaV+JcuWLUOjRo3KO7tE9IjK414HgC5duuDw4cPIysqCn58f1qxZg6ZNm5Z3domonJTm3lcoFPj0008RHR0NrVaL1157DW5ububILhE9htJ+11vydzmDbjKrh/tuiaJY6v5crVu3hlarNUW2iKicPc69DoAjGhNVUiXd+7169UKvXr2edLaIyARKut8t+buczcvJLNzd3SGXy41qupKTk42ekhFR5cV7ncgy8d4nshy830vGoJvMQqVSITw8HDExMQbpMTExaNmypZlyRUTljfc6kWXivU9kOXi/l4zNy8lkMjMzceHCBel9fHw84uLi4OrqioCAAEyZMgXDhg1DREQEIiMjsWjRIiQkJGDcuHFmzDURlRXvdSLLxHufyHLwfn9MZh07naq0bdu2iQCM/kaMGCGt880334iBgYGiSqUSw8LCxB07dpgvw0T0SHivE1km3vtEloP3++MRRFEUn2yYT0RERERERGQZ2KebiIiIiIiIyEQYdBMRERERERGZCINuIiIiIiIiIhNh0E1ERERERERkIgy6iYiIiIiIiEyEQTcRERERERGRiTDoJiIiIiIiIjIRBt1EREREREREJsKgm4iIiIiIiMhEGHQTERERERERmQiDbiIiokpm5MiREATB6O/ChQvmzhoRERE9RGHuDBAREVHZde3aFUuWLDFI8/DwMHifl5cHlUr1JLNFRERED2FNNxERUSVkZWUFb29vg78OHTrgpZdewpQpU+Du7o5OnToBAE6dOoXu3bvD3t4eXl5eGDZsGFJSUqR9ZWVlYfjw4bC3t4ePjw8+/fRTtGvXDpMnT5bWEQQBa9euNciDs7Mzli5dKr2/du0aBg0aBBcXF7i5uaF37964fPmytHzkyJHo06cPPvnkE/j4+MDNzQ0TJkyAWq2W1snNzcVrr70Gf39/WFlZoVatWvjxxx8hiiJq1qyJTz75xCAPJ06cgEwmw8WLFx//ohIREZkAg24iIqIq5KeffoJCocB///2H7777Djdu3EDbtm0REhKCQ4cOYePGjbh58yYGDhwobfPqq69i27Zt+H97dxMS1RrHcfw3Ti5yjr1IGiMqUgMaGoSGEKSpSG9SQZih4UvHhKiFm1q0yGWQEoUI40LHjCITohZCYMiMk0KIE0JBMKYuFNoVLfJlxPGu7qGTcW92GUvv97N7Hp6Z5z9nM/Pj+Z8zz54908DAgAKBgEKh0Jr2nZubU0lJiQzDUDAY1PDwsAzD0PHjxxWJRKx1fr9fk5OT8vv96unp0f37923Bvba2Vr29vWpra9P79+/V0dEhwzDkcDhkmuaq032fz6fCwkLt3bv31y4YAAAxRns5AAAbUH9/vwzDsMYnTpyQJHk8HrW0tFjzzc3NysvL061bt6w5n8+n9PR0hcNhpaamqqurSw8ePLBOxnt6epSWlramenp7exUXF6fOzk45HA5JUnd3t3bs2KFAIKCjR49Kknbu3Kn29nY5nU5lZ2ervLxcg4ODamxsVDgcVl9fn16+fKmysjJJ0p49e6w9Ll68qObmZo2OjqqgoEBLS0t6+PChWltb11QrAADridANAMAGVFJSIq/Xa41dLpeqqqp08OBB27pQKCS/328L6H+bnJzU/Py8IpGIDh06ZM0nJSUpKytrTfWEQiF9+PBBiYmJtvmFhQVb63dOTo6cTqc1drvdevv2rSRpfHxcTqdTR44c+eEebrdb5eXl8vl8KigoUH9/vxYWFnTu3Lk11QoAwHoidAMAsAG5XC55PJ4fzn8rGo3q1KlTun379qq1brdbExMTP7Wfw+HQysqKbe7be7Gj0ajy8/P16NGjVa/99gFv8fHxq943Go1KkrZu3fqvdVy6dEk1NTW6e/euuru7df78eSUkJPzUZwAA4HcgdAMAsInl5eXp6dOnyszM1JYtq7/2PR6P4uPj9fr1a2VkZEiSPn/+rHA4bDtxTk5O1sePH63xxMSE5ubmbPs8efJEKSkp2rZt2y/Vun//fkWjUQ0NDVnt5d87efKkXC6XvF6vXrx4oWAw+Et7AQCwXniQGgAAm9jVq1f16dMnVVVVaXR0VFNTUxoYGJBpmlpeXpZhGGpoaND169c1ODiod+/eqb6+XnFx9p8IpaWlam9v15s3bzQ2NqbLly/bTq0vXLigXbt26cyZM3r16pWmp6c1NDSkpqYmzc7O/lStmZmZqqurk2maev78uaanpxUIBNTX12etcTqdqq+v140bN+TxeGxt8QAA/IkI3QAAbGKpqakaGRnR8vKyjh07ptzcXDU1NWn79u1WsG5tbVVRUZFOnz6tsrIyHT58WPn5+bb3uXPnjtLT01VUVKTq6mpdu3bN1tadkJCgYDCojIwMnT17Vvv27ZNpmpqfn1/TybfX61VFRYWuXLmi7OxsNTY26uvXr7Y1DQ0NikQiMk3zP1wZAADWh2Pl+xu0AADA/15xcbEOHDige/fu/e5SVhkZGVFxcbFmZ2e1e/fu310OAAD/iHu6AQDAhrC4uKiZmRndvHlTlZWVBG4AwIZAezkAANgQHj9+rKysLH358sX2X+QAAPzJaC8HAAAAACBGOOkGAAAAACBGCN0AAAAAAMQIoRsAAAAAgBghdAMAAAAAECOEbgAAAAAAYoTQDQAAAABAjBC6AQAAAACIEUI3AAAAAAAx8hfdk1JJ1K7pKAAAAABJRU5ErkJggg==", + "text/plain": [ + "<Figure size 1000x500 with 2 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ "# YOUR_CODE_HERE\n", "\n", - "\n", "# SOLUTION\n", "A = np.column_stack((np.ones(len(data)), np.cos(2*np.pi*time_days/365), np.sin(2*np.pi*time_days/365)))\n", "dom_f = find_frequency(data, time_days, A, fs=fs)\n", "print(f'Dominant Frequency: {dom_f:.2f}')\n", + "\n", + "# check whether there is still a significant frequency in the residuals\n", + "find_frequency(data, time_days, np.column_stack((A, np.cos(2*np.pi*time_days), np.sin(2*np.pi*time_days))) , fs=fs, plot=True)\n", "# END SOLUTION BLOCK" ] }, @@ -371,7 +394,7 @@ "<p>\n", "<b>Task 2.4:</b> \n", "\n", - "Describe your results for making the time series stationary. Include at least: a) the number and types of components used (and their parameters), b) how you decided to stop extracting components.\n", + "Describe how you have detrended the time series. Include at least: a) the number and types of components used (and their parameters; in task 2.5 you will print those), b) how you decided to stop extracting components.\n", "</p>\n", "</div>" ] @@ -391,8 +414,9 @@ "<p>\n", "<b>Solution:</b> \n", "\n", - "- annual signal is obvious, then of course daily (definitley periodic)\n", - "- PSD after taking out the daily signal indicates this is enough\n", + "- We have removed a yearly and daily trend as well as an intercept.\n", + "- No linear trend can be detected, observation period is too short\n", + "- We stopped when the power spectrum showed no significant peaks\n", "\n", "</p>\n", "</div>" @@ -431,7 +455,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 53, "metadata": {}, "outputs": [ { @@ -446,8 +470,8 @@ "x4 = 10.409\n", "\n", "The seasonal component is rewritten as:\n", - "Ak = 2.998, theta_k = 1.495, f_k = 1.000\n", - "Ak = 20.606, theta_k = -2.612, f_k = 0.003\n" + "A_1 = 2.998, theta_1 = 1.495, f_1 = 1.000\n", + "A_2 = 20.606, theta_2 = -2.612, f_2 = 0.003\n" ] }, { @@ -534,10 +558,11 @@ " print(f'x{i} = {x_hat[i]:.3f}')\n", "\n", "print('\\nThe seasonal component is rewritten as:')\n", - "for i, j, k in zip(a_i, b_i, freqs):\n", - " Ak, theta_k = rewrite_seasonal_comp(i, j)\n", - " print(f'Ak = {Ak:.3f}, theta_k = {theta_k:.3f}, f_k = {k:.3f}')\n", - "\n" + "i = 0\n", + "for a, b, f in zip(a_i, b_i, freqs):\n", + " A_i, theta_i = rewrite_seasonal_comp(a, b)\n", + " i += 1\n", + " print(f'A_{i} = {A_i:.3f}, theta_{i} = {theta_i:.3f}, f_{i} = {f:.3f}')" ] }, { @@ -579,29 +604,30 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Part 3: Finding the grizzly\n", + "## Part 3: Finding the grizzly\n", "\n", "When we look at the residuals after removing the periodic pattern(s), we see that there is still a pattern in the data. From researchers in the Nenana area we have heard that there is a grizzly bear that likes to take a nap (hibernate) in the area. We suspect that the grizzly bear has slept too close to the temperature sensor and has influenced the data. \n", "\n", - "In the next cell we will write an offset detection algorithm to find the offset in the data. The offset detection algorithm is based on the likelihood ratio test framework. However, due to the presence of autocorrelation in the residuals, the traditional critical values for the likelihood ratio test are not valid. Therefore, we will use a bootstrap approach to estimate the critical values. Luckily, this is **not** the first time we had to remove a grizzly bear from our data, so we know that the estimated critical values is approximately 100.\n", + "In the next cell we will write an offset detection algorithm to find the offset in the data. The offset detection algorithm is based on the likelihood ratio test framework. However, due to the presence of autocorrelation in the residuals, the traditional critical values for the likelihood ratio test are not valid. Therefore, we will use a bootstrap approach to estimate the critical values. Luckily, this is **not** the first time we had to remove a grizzly bear from our data, so we know that the estimated critical values is approximately 100 (i.e. you do not have to find this value yourself!).\n", "\n", "## The offset detection algorithm\n", "The offset detection algorithm is based on the likelihood ratio test framework. The likelihood ratio test has a test statistic that is given by:\n", "\n", - "$$\\Lambda = n \\log \\left( \\frac{S_0}{S_1} \\right)$$\n", + "$$\\Lambda = n \\log \\left( \\frac{SSR_0}{SSR_1} \\right)$$\n", "\n", - "$$S_i = \\sum_{i=1}^n (\\hat{e}_i)^2$$\n", + "$$SSR_i = \\sum_{i=1}^n (\\hat{e}_i)^2$$\n", "\n", - "where $S_0$ is the sum of the squared residuals for the model without an offset, $S_1$ is the sum of the squared residuals for the model with an offset, and $n$ is the number of data points. The likelihood ratio test statistic is compared to a critical value to determine if an offset is present in the data.\n", + "where $SSR_0$ is the sum of the squared residuals for the model without an offset, $SSR_1$ is the sum of the squared residuals for the model with an offset, and $n$ is the number of data points. The likelihood ratio test statistic is compared to a critical value to determine if an offset is present in the data.\n", "\n", "The cell below defines several functions which roughly accomplish the following:\n", " \n", - "1. Calculate the sum of the squared residuals for the model without an offset, $S_0$.\n", - "2. Calculate the sum of the squared residuals for the model with an offset at each data point, $S_1$.\n", - " 1. For each data point we will calculate the sum of the squared residuals for the model with an offset at that data point.\n", + "1. Calculate the sum of the squared residuals for the model without an offset, $SSR_0$.\n", + "2. Calculate the sum of the squared residuals for the model with an offset at each possible point, $SSR_1$.\n", + " 1. For each possible offset location, we will calculate the sum of the squared residuals for the model with an offset at that data point.\n", " 2. The A-matrix for the model with an offset is the same as the A-matrix for the model without an offset, but with an additional column that is 0 till the data point and 1 after the data point.\n", - "3. We will find the offset location that maximizes the likelihood ratio test statistic.\n", - "4. We will include the offset in the model and repeat the process until the likelihood ratio test statistic is below the critical value.\n" + "3. At each possible offset location, calculate the likelihood ratio test statistic and store it in the `results` vector.\n", + "4. We will find the offset location that maximizes the likelihood ratio test statistic, i.e. the location where an offset is *most* likely.\n", + "5. We will include the offset in the model and repeat the process until the likelihood ratio test statistic is below the critical value.\n" ] }, { @@ -619,7 +645,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 54, "metadata": {}, "outputs": [], "source": [ @@ -749,15 +775,80 @@ "<b>Task 3.2:</b> \n", "\n", "Now we will implement the offset detection algorithm by running the function to find the offset in the data. The function will provide figures from which you will be able to determine the offset.\n", + "\n", + "How is this process similar to the one we used to find the periodic pattern? How is it different? Describe in the cell below.\n", + "</p>\n", + "</div>" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "_Your answer here._" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "<div style=\"background-color:#FAE99E; color: black; vertical-align: middle; padding:15px; margin: 10px; border-radius: 10px; width: 95%\">\n", + "<p>\n", + "<b>Solution:</b> \n", + "\n", + "- We remove in a iterative way the most significant pattern in the data\n", + "- When detected, we include the pattern in the model and repeat the process\n", + "- Stopping criteria are different, however we could have implemented Likelihood Ratio Test for the periodic pattern as well\n", + "- Offset detection is based on LR test, periodic pattern detection is based on power spectrum\n", "</p>\n", "</div>" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 55, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Break Point day: 119.625 with : 1305.83\n", + "Break Point day: 58.75 with : 754.18\n", + "Break Point day: 64.16666666666667 with : 77.73\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAAE6CAYAAADgC0jTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACXDUlEQVR4nOzdd3hUVfrA8e+dyWTSJ71BgARCDU16B2mKCIouKnZZy+KiLLqWtYG7Cyv7U1lh7a6wy7JYACsioPTeeycJSUgI6X0ymbm/PyYZiemQTEnez/Pkkdw5c+ed48zkvnPOeY+iqqqKEEIIIYQQQohGpXF0AEIIIYQQQgjRHEmyJYQQQgghhBBNQJItIYQQQgghhGgCkmwJIYQQQgghRBOQZEsIIYQQQgghmoAkW0IIIYQQQgjRBCTZEkIIIYQQQogmIMmWEEIIIYQQQjQBSbaEEEIIIYQQoglIsiWEEMKlLVmyBEVR2LdvX41tEhISUBTF9qPRaAgICGD06NGsW7euzsdo165dpfvX9LNkyZJGeU7z5s3jq6++apRzCSGEcBw3RwcghBBC2MvMmTOZNm0aZrOZU6dOMXfuXCZMmMDPP//M8OHDa7zf6tWrMRqNtt8//vhjPvnkE9auXYvBYLAdb9++faPEOW/ePO68805uu+22RjmfEEIIx5BkSwghRIvRpk0bBg4cCMCQIUOIjY1lxIgRfPLJJ7UmW7179670+9q1awHo06cPwcHBTRewEEIIlybTCIUQQrRYffv2BeDy5cvXfS5VVXn33Xfp1asXnp6eBAQEcOedd3LhwoVK7Q4ePMjEiRMJDQ1Fr9cTGRnJLbfcQnJyMgCKolBYWMjSpUtt0xNHjhx53fEJIYSwPxnZEkII0WLFx8cD0LFjx+s+1+OPP86SJUt46qmneOONN8jKyuL1119n8ODBHD58mLCwMAoLCxk7dizR0dH885//JCwsjLS0NDZu3Eh+fj4AO3fu5MYbb2TUqFG88sorAPj5+V13fEIIIexPki0hhBAthsVioayszLZm63e/+x0RERHMnj37us67a9cuPvroI958881K5xo2bBgdO3bkrbfe4o033uDUqVNkZmbyySefMHnyZFu7qVOn2v49cOBANBoNISEhtimPQgghXJMkW0IIIVqM559/nueff972u6+vLxs3bqRdu3bXdd7vvvsORVG47777KCsrsx0PDw+nZ8+ebNq0CYAOHToQEBDA888/T2pqKsOHD6dr167X9dhCCCGcl6zZEkII0WI8/fTT7N27l23btvF///d/mEwmJk+eTGZm5nWd9/Lly6iqSlhYGDqdrtLPrl27yMjIAMBgMLB582Z69erFn/70J7p160ZkZCSvvfYaJpOpMZ6iEEIIJyIjW0IIIVqM1q1b24piDBkyhPDwcO677z5ee+01Fi9efM3nDQ4ORlEUtm7dil6vr3L71ce6d+/OihUrUFWVI0eOsGTJEl5//XU8PT154YUXrjkGIYQQzkdGtoQQQrRY9957LyNHjuSjjz4iMTHxms8zceJEVFUlJSWFvn37Vvnp3r17lfsoikLPnj15++238ff358CBA7bb9Ho9xcXF1xyPEEII5yAjW0IIIZqFn3/+mYSEhCrHJ0yYUOv93njjDQYMGMCf//xnPv7442t67CFDhvDYY4/x8MMPs2/fPoYPH463tzepqals27aN7t2787vf/Y7vvvuOd999l9tuu42YmBhUVWXVqlXk5OQwduxY2/m6d+/Opk2b+Pbbb4mIiMDX15dOnTpdU2xCCCEcR5ItIYQQzcLVhS+uVlHevSb9+/fnN7/5DUuXLuXFF1+kffv21/T4H3zwAQMHDuSDDz7g3XffxWKxEBkZyZAhQ+jfvz8AsbGx+Pv7s2DBAi5duoS7uzudOnViyZIlPPjgg7Zz/eMf/+DJJ5/k7rvvpqioiBEjRtiKbAghhHAdiqqqqqODEEIIIYQQQojmRtZsCSGEEEIIIUQTkGRLCCGEEEIIIZqAJFtCCCGEEEII0QQk2RJCCCGEEEKIJiDJlhBCCCGEEEI0AUm2hBBCCCGEEKIJyD5b9WSxWLh06RK+vr4oiuLocIQQQgghhBAOoqoq+fn5REZGotHUPH4lyVY9Xbp0iaioKEeHIYQQQgghhHASSUlJtG7dusbbJdmqJ19fX8DaoX5+fg6NxWQysW7dOsaNG4dOp3NoLC2F9Ll9SX/bn/S5/Umf25/0uX1Jf9uf9Ln95OXlERUVZcsRaiLJVj1VTB308/NzimTLy8sLPz8/eSPZifS5fUl/25/0uf1Jn9uf9Ll9SX/bn/S5/dW1vEgKZAghhBBCCCFEE5BkSwghhBBCCCGagEwjFEIIIYQQjcdshq1bUZKSCEpMhPHjQaa0iRZKki0hhBBCCNE4Vq2Cp5+G5GTcgKGA+v778M47MGWKo6NDVVXKysowm82ODqVJmEwm3NzcKCkpabbP0V60Wi1ubm7XveWTJFtCCCGEEOL6rVoFd94Jqlr5+KVL1uNffunQhKu0tJTU1FSKioocFkNTU1WV8PBwkpKSZF/YRuDl5UVERATu7u7XfA5JtoQQQgghxPUxm60jWr9OtABFVUFRYNYsmDwZtFq7h2exWIiPj0er1RIZGYm7u3uzTEYsFgsFBQX4+PjUutGuqJ2qqpSWlnLlyhXi4+OJjY295v6UZEsIIYQQQlyfrVshObnm21UVkpKs7UaOtFtYFUpLS7FYLERFReHl5WX3x7cXi8VCaWkpHh4ekmxdJ09PT3Q6HYmJibY+vRbyf0EIIYQQQlyf1NTGbddEJAERDdEYrxd5xQkhhBBCiOsTEdG47YRoJiTZEkIIIYQQ12fYMGjd2ro2qzqKAlFR1nZCtCCSbAkhhBBCiOuj1cI//gGA5Vc3qRUJ2MKFDimO0ejMZti0Cf73P+t/naDE+vbt2+nevTt6vZ5777230jGdTsdtt93m2ABbMCmQIYQQQgghrt+UKfDll1x55AnCcq/8crxVK2si5gT7bF23q/YRs2nd2uHPb/bs2fTq1Yvvv/8etbwiZMWxH374AR8fn+t+jIceeoicnBy++uqr6z5XSyLJlhBCCCGEaBSW225n2B4dN1w8RmhBNv26GLh77jPorrGSm1OpaR+xlBSH7yN2/vx5nnjiCVq3bk1eXl6VY8JxZBqhEEIIIYRoFBmFRkrRsKtND77pOoJD0d2bz9TBGvYRsx2bNavJphQajUaeeuopQkND8fDwYOjQoezdu5eEhAQURSEzM5NHHnkErVbL8uXL0Wq1tmOKorBkyRKys7O59957CQkJwdPTk9jYWD799FPbY6SkpHDXXXcREBBAUFAQkydPJiEhAYA5c+awdOlSvv76axRFQVEUNm3a1CTPtbmRZEsIIYQQQjSKtNySSr/nlDaTjYMbso9YE3juuedYuXIlS5cu5cCBA3To0IHx48fj6+tLamoqfn5+LFy4kJSUFCZPnkxKSortWGpqKnfddRevvPIKJ06c4IcffuDkyZO89957BAcHA1BUVMSoUaPw8fFhy5YtbNu2DR8fH2666SZKS0t59tlnmTp1KjfddBOpqamkpqYyePDgJnmuzY1MIxRCCCGEEI2iarLloEAamwP3ESssLOS9995jyZIl3HzzzQB89NFHrF+/nn/961/88Y9/RFEUDAYD4eHh5OXl4efnV+kYwMWLF+nduzd9+/YFoF27drbHWLFiBRqNho8//hilvKDJp59+ir+/P5s2bWLcuHF4enpiNBpt5xP1I8mWEEIIIYRoFGl5v0q2jM1kZMuB+4idP38ek8nEkCFDbMd0Oh39+/fn5MmT9T7P7373O+644w4OHDjAuHHjuO2222yjU/v37+fcuXP4+vpWuk9JSQnnz59vnCfSQkmyJYQQQgghGkVq+chW91YGjqbkkt1cRrYq9hFLSal+3ZaiWG9vgn3EKqoLKr/aw0xV1SrHanPzzTeTmJjI999/z4YNGxg9ejRPPvkk//d//4fFYqFPnz7897//rXK/kJCQ63sCLZys2RJCCCGEEI3icnmydUMbfwByS8FiqSY5cTVX7SNWZePmJt5HrEOHDri7u7Nt2zbbMZPJxL59++jSpUuDzhUSEsJDDz3EsmXLWLhwIR9++CEAN9xwA2fPniU0NJQOHTpU+jEYDAC4u7tjdoI9xVyNJFtCCCGEEKJR2Ea2WvujUcCsKmQUNpPhrfJ9xGjVqvLx1q2btOy7t7c3v/vd7/jjH//I2rVrOXHiBI8++ihFRUVMnz693ud59dVX+frrrzl37hzHjx/nu+++syVr9957L8HBwUyePJmtW7cSHx/P5s2befrpp0kuLwzSrl07jhw5wunTp8nIyMBkMjXJ821uHJpsbdmyhVtvvZXIyEgURam0SZrJZOL555+ne/fueHt7ExkZyQMPPMClS5cqncNoNDJz5kyCg4Px9vZm0qRJthdFhezsbO6//34MBgMGg4H777+fnJwcOzxDIYQQQoiWo2LNVusAT0J99QBcyil2ZEiNa8oUSEiAjRth+XLrf+Pjm3x/rb/97W/ccccd3H///dxwww2cO3eOH3/8kYCAgHqfw93dnRdffJEePXowfPhwtFotK1asAMDLy4stW7bQpk0bpkyZQpcuXXjkkUcoLi7Gz88PgEcffZROnTrRt29fQkJC2L59e5M81+bGoWu2CgsL6dmzJw8//DB33HFHpduKioo4cOAAr7zyCj179iQ7O5tZs2YxadIk9u3bZ2s3a9Ysvv32W1asWEFQUBDPPPMMEydOZP/+/WjLh3KnTZtGcnIya9euBeCxxx7j/vvv59tvv7XfkxVCCCGEaMZUVSU115pYRRg8iAr0Ii3PSFJ2Mf0cHFuj0mph5Ei7PqSHhwfvvPMO77zzTrW3VwwiWCyWKscqvPzyy7z88ss1PkZ4eDhLly6t8faQkBDWrVtX/6AF4OBk6+abb7aVsPw1g8HA+vXrKx1btGgR/fv35+LFi7Rp04bc3Fw++eQT/vOf/zBmzBgAli1bRlRUFBs2bGD8+PGcPHmStWvXsmvXLgYMGABYy2UOGjSI06dP06lTp6Z9kkIIIYQQLUBecRklJuvFfpifB20DvdibkE1iZpGDIxPCcVyqGmFubi6KouDv7w9Yy1SaTCbGjRtnaxMZGUlcXBw7duxg/Pjx7Ny5E4PBYEu0AAYOHIjBYGDHjh01JltGoxGj0Wj7PS8vD7BOb3T0HNWKx3d0HC2J9Ll9SX/bn/S5/Umf25/0edOKv2K9Vgr01qHFQqTBHYCLWYUO73OTyYSqqlgslkqjP81NReXCiucqro/FYkFVVUwmk23GXIX6vqZdJtkqKSnhhRdeYNq0aba5o2lpabi7u1eZrxoWFkZaWpqtTWhoaJXzhYaG2tpUZ/78+cydO7fK8XXr1uHl5XU9T6XR/HrkTzQ96XP7kv62P+lz+5M+tz/p86axP0MBtBg0paxZs4bLl62/n028xJo1yXXdvUm5ubkRHh5OQUEBpaXNpGBHLfLz8x0dQrNQWlpKcXExW7ZsoaysrNJtRUX1G7F1iWTLZDJx9913Y7FYePfdd+ts/+t9B6rbg6CuvQlefPFFZs+ebfs9Ly+PqKgoxo0bZ0v2HMVkMrF+/XrGjh2LTqdzaCwthfS5fUl/25/0uf1Jn9uf9HnTOvrjGTibQJ/Y1kyY0A3l6CU+u3AMN29/JkwY6NDYSkpKSEpKwsfHBw8PD4fG0pRUVSU/Px9fX98G7cElqldSUoKnpyfDhw+v8rqpmPVWF6dPtkwmE1OnTiU+Pp6ff/65UqITHh5OaWkp2dnZlUa30tPTbTtih4eHc/ny5SrnvXLlCmFhYTU+rl6vR6/XVzmu0+mc5gPamWJpKaTP7Uv62/6kz+1P+tz+pM8bX1FpGR9vSwBgZOdQdDodwb6eAOQUlzm8v81mM4qioNFo0Gia785HFVMHK56ruD4ajQZFUar9zKjva9qp/y9UJFpnz55lw4YNBAUFVbq9T58+6HS6StMBUlNTOXbsmC3ZGjRoELm5uezZs8fWZvfu3eTm5traCCGEEEKIa/fov62Volv5e3JTt3AA/L2sF6M5RbJGTrRcDh3ZKigo4Ny5c7bf4+PjOXToEIGBgURGRnLnnXdy4MABvvvuO8xms22NVWBgIO7u7hgMBqZPn84zzzxDUFAQgYGBPPvss3Tv3t1WnbBLly7cdNNNPProo3zwwQeAtfT7xIkTpRKhEEIIIcR1WrYrke3nMgF4enQsblrrd/kBFclWsQmzRUWrkWltouVxaLK1b98+Ro0aZfu9Yo3Ugw8+yJw5c/jmm28A6NWrV6X7bdy4kZHl+xu8/fbbuLm5MXXqVIqLixk9ejRLliypVDHkv//9L0899ZStauGkSZNYvHhxEz4zIYQQQojmz2xRWbD2FAAPDGrL1H5RttsMnr9Ms8orNhHg7W73+IRwNIcmWyNHjrSVqKxObbdV8PDwYNGiRSxatKjGNoGBgSxbtuyaYhRCCCGEENU7lpJLXkkZPno3Xp3YtdJtOq0GvVbFaFbIkWRLtFBOvWZLCCGEEEI4r23nMgAY3D7INn3wat7lX+vnFsu6LUfYtGkTiqKQk5NTa7t27dqxcOHCRnvckSNHMmvWrEY7X3XmzJlTZfabM5JkSwghhBBCXJNDSTkADIgJqvZ2r/JkK6eo+e9t1ZTS0tKYOXMmMTEx6PV6oqKiuPXWW/npp59qvd/gwYNJTU3FYDAAsGTJEvz9/au027t3L4899lhThF7Fm2++icFgqHafqpKSEvz9/XnrrbfsEos9SLIlhBBCCCGuydnL1s1zO4f7Vnu7l5t1SYiMbF27hIQE+vTpw88//8yCBQs4evQoa9euZdSoUTz55JM13s9kMuHu7k54eHide26FhITg5eXV2KFX64EHHqC4uJiVK1dWuW3lypUUFRVx//332yUWe5BkSwghhBBCNFiJyUxilnV0IjbMp9o2XuX1ypy5/HthYWGNPyUlJfVuW1xcXK+2DTVjxgwURWHPnj3ceeeddOzYkW7dujF79mx27dpla6coCu+//z7Tpk3D19eXv/zlL5WmEW7atImHH36Y3NxcFEVBURTmzJkDVJ1GmJOTw2OPPUZYWBgeHh7ExcXx3XffAZCZmck999xD69at8fLyonv37vzvf/+r9/MJCQnh1ltv5V//+leV2/71r38xadIkQkJCeP755+nYsSNeXl7ExMTwyiuvYDLV/DqqburibbfdxkMPPWT7vbS0lOeee45WrVrh7e3NgAED2LRpU71jvxZOv6mxEEIIIYRwPufSC1BVa4n3EB99tW1+mUbovMmWj0/1iSLAhAkT+P77722/h4aGVjv9DWDEiBGVLtzbtWtHRkZGlXb1KQBXISsri7Vr1/LXv/4Vb2/vKrf/ekrg3LlzeeWVV3jnnXfQ6XTEx8fbbhs8eDALFy7k1Vdf5fTp00D1z91isXDzzTeTn5/PsmXLaN++PSdOnLBV+i4pKaFPnz48//zz+Pn58f3333P//fcTExPDgAED6vW8pk+fzsSJE4mPjyc6OhqwjuBt3LjR1t++vr4sWbKEyMhIjh49yqOPPoqvry/PPfdcvR6jOg8//DAJCQmsWLGCyMhIVq9ezU033cTRo0eJjY295vPWRpItIYQQQgjRYGfTrVMIY8N8a5ymZku2imXN1rU4d+4cqqrSuXPnerW/5557uO+++/Dz80Oj0VRKtir2qFUUhfDw8BrPsWHDBvbs2cPJkyfp2LEjADExMbbbW7VqxbPPPmv7febMmaxdu5Yvvvii3snW+PHjiYyMZMmSJcydOxeATz/9lMjISNtWTS+//LKtfbt27XjmmWf47LPPrjnZOn/+PP/73/9ITk4mMjISgGeffZa1a9fy6aefMm/evGs6b10k2RJCCCGEEA125nIBAB1rmEIIV63ZcuKRrYKCghpvu3rfVoD09PQa22o0lVfnJCQkXFdc8MsoWF1rrir06dPnuh/z0KFDtG7d2pZo/ZrZbOZvf/sbn332GSkpKRiNRoxGY7UjbzXRarU8+OCDLFmyhNdeew1FUVi6dCkPPfSQrc+//PJLFi5cyLlz5ygoKKCsrAw/P79rfl4HDhxAVdUqz8toNBIUVH2Bl8YgyZYQQgghhGiwiuIYHcOqL44BV49sOW+y1ZAkoana1iQ2NhZFUTh58iS33XabXR7T09Oz1tvffPNN3n77bRYuXEj37t3x9vZm1qxZlJY2bPTykUceYf78+fz8888AXLx4kYcffhiAXbt2cffddzN37lzGjx+PwWBgxYoVvPnmmzWeT6PRVJmiefUaL4vFglarZf/+/VWS6Nqmkl4vSbaEEEIIIUSDVYxsxYbWI9mS0u/XJDAwkPHjx/PPf/6Tp556qkoylZOTU20p95q4u7tjNptrbdOjRw+Sk5M5c+ZMtaNbW7duZfLkydx3332ANYk5e/YsXbp0qXccAO3bt2fEiBF8+umnqKrKyJEjad++PQDbt2+nbdu2vPTSS7b2iYmJtZ4vJCSE1NRU2+9ms5ljx44xatQoAHr37o3ZbCY9PZ1hw4Y1KNbrIdUIhRBCCCFEgxSVlnGxvBJhbdMIvcunETrzyJaze/fddzGbzfTv35+VK1dy9uxZTp48yTvvvMOgQYMadK527dpRUFDATz/9REZGRrXFPkaMGMHw4cO54447WL9+PfHx8fzwww+sXbsWgA4dOrB+/Xp27NjByZMnefzxx0lLS7um5zZ9+nRWrVrF6tWrmT59uu14hw4duHjxIitWrOD8+fO88847rF69utZz3XjjjXz//fd8//33nDp1ihkzZlTazLljx47ce++9PPDAA6xatYr4+Hj27t3LG2+8wZo1a64p/vqQZEsIIYQQQjRIYqb1Ij3AS0dQDZUI4ZeRrTxJtq5ZdHQ0Bw4cYNSoUTzzzDPExcUxduxYfvrpJ957770GnWvw4ME88cQT3HXXXYSEhLBgwYJq261cuZJ+/fpxzz330LVrV5577jnbiNgrr7zCDTfcwPjx4xk5ciTh4eH1muJYnTvuuAO9Xo9er2fKlCm245MnT+YPf/gDv//97+nVqxc7duzglVdeqfVcjzzyCA8++CAPPPAAI0aMIDo62jaqVeHTTz/lgQce4JlnnqFTp05MmjSJ3bt3ExUVdU3x14eiNqT+ZAuWl5eHwWAgNzf3uhbnNQaTycSaNWuYMGECOp3OobG0FNLn9iX9bX/S5/YnfW5/0ueNZ8uZKzzwrz10Dvdl7azh1bYxmUwsX72G1w644aZROPvXm+td6KGxlZSU2MqMe3h4OCQGe7BYLOTl5dmqEYrrU9vrpr65gfxfEEIIIYQQDZJRYAQguJZRLfhlZKvMolJYWvtaISGaI0m2hBBCCCFEg1zJr0i23Gtt564FvZv1clOKZIiWSJItIYQQQgjRIPUd2QIweFqnbOY48V5bQjQVSbaEEEIIIUSDpJePbIX61SfZss4lzJUiGaIFkmRLCCGEEEI0SHqeNdkK86u72IQzjWxJXTjREI3xepFkSwghhBBCNEh6fgkAIb51j2z5VyRbxY5bs1VRfbK6faWEqEnF6+V6qpe6NVYwQgghhBCiZagY2Qr1rcfIlpfjR7a0Wi3+/v6kp6cD4OXl5bAy9E3JYrFQWlpKSUmJlH6/DqqqUlRURHp6Ov7+/mi12ms+lyRbQgghhBCi3opLzeQbywAIq8earYqRLUev2QoPDwewJVzNkaqqFBcX4+np2SyTSXvz9/e3vW6ulSRbQgghhBCi3iqmEHrqtPjo676UrFizlevgNVuKohAREUFoaCgmk+PXjzUFk8nEli1bGD58uGzcfZ10Ot11jWhVkGRLCCGEEELU29WVCOszemJwgjVbV9NqtY1yEe2MtFotZWVleHh4SLLlJBw6mXPLli3ceuutREZGoigKX331VaXbVVVlzpw5REZG4unpyciRIzl+/HilNkajkZkzZxIcHIy3tzeTJk0iOTm5Upvs7Gzuv/9+DAYDBoOB+++/n5ycnCZ+dkIIIYQQzU9KdjFQv0qEcFWBDCeoRiiEvTk02SosLKRnz54sXry42tsXLFjAW2+9xeLFi9m7dy/h4eGMHTuW/Px8W5tZs2axevVqVqxYwbZt2ygoKGDixImYzWZbm2nTpnHo0CHWrl3L2rVrOXToEPfff3+TPz8hhBBCiObm+KVcADqH+9arfUWBDEev2RLCERw6jfDmm2/m5ptvrvY2VVVZuHAhL730ElOmTAFg6dKlhIWFsXz5ch5//HFyc3P55JNP+M9//sOYMWMAWLZsGVFRUWzYsIHx48dz8uRJ1q5dy65duxgwYAAAH330EYMGDeL06dN06tSp2sc3Go0YjUbb73l5eYB1Lqyj5/lWPL6j42hJpM/tS/rb/qTP7U/63P6kzxvHjvMZAHQO86m1Lytu89FZpxpmF5VK3zcxeY3bT3372GnXbMXHx5OWlsa4ceNsx/R6PSNGjGDHjh08/vjj7N+/H5PJVKlNZGQkcXFx7Nixg/Hjx7Nz504MBoMt0QIYOHAgBoOBHTt21JhszZ8/n7lz51Y5vm7dOry8vBrxmV679evXOzqEFkf63L6kv+1P+tz+pM/tT/r82hWY4Pgl6+WjJfkway4frvM+R/btAtzIKihhzZo1TRyhAHmN20N992xz2mQrLS0NgLCwsErHw8LCSExMtLVxd3cnICCgSpuK+6elpREaGlrl/KGhobY21XnxxReZPXu27fe8vDyioqIYN24cfn5+1/akGonJZGL9+vWMHTtWFj/aifS5fUl/25/0uf1Jn9uf9Pn1+/n0Fdh3kA4h3tw1eUitbSv6+5axo3j94FZMFoUbx47HQ9c8i1M4A3mN20/FrLe6OG2yVeHXVW5UVa2z8s2v21TXvq7z6PV69Pqqe0fodDqnefE6UywthfS5fUl/25/0uf1Jn9uf9Pm1S8yyFsfoEmmodx8G+Hig1SiYLSpFZeDrJX3f1OQ13vTq279Ou7V0xQZivx59Sk9Pt412hYeHU1paSnZ2dq1tLl++XOX8V65cqTJqJoQQQgghanY+vRCAmGDvet9HUZRfyr9LRULRwjhtshUdHU14eHilOaelpaVs3ryZwYMHA9CnTx90Ol2lNqmpqRw7dszWZtCgQeTm5rJnzx5bm927d5Obm2trI4QQQggh6nYhowCAmJD6J1twdfl359hrSwh7ceg0woKCAs6dO2f7PT4+nkOHDhEYGEibNm2YNWsW8+bNIzY2ltjYWObNm4eXlxfTpk0DwGAwMH36dJ555hmCgoIIDAzk2WefpXv37rbqhF26dOGmm27i0Ucf5YMPPgDgscceY+LEiTUWxxBCCCGEEJWVmS2cSrVuvxMbWr+y7xUqyr9ny8iWaGEcmmzt27ePUaNG2X6vKEjx4IMPsmTJEp577jmKi4uZMWMG2dnZDBgwgHXr1uHr+8sb/O2338bNzY2pU6dSXFzM6NGjWbJkSaWdwf/73//y1FNP2aoWTpo0qca9vYQQQgghRFUnU/PJN5bh6+FGp3rusVUhvHwD5LTc4qYITQin5dBka+TIkaiqWuPtiqIwZ84c5syZU2MbDw8PFi1axKJFi2psExgYyLJly64nVCGEaNa+OnSJj05oMHTKZGTncEeHI4RwQtvL99fq2zYArab2YmW/FunvCcCl3JJGj0sIZ+a0a7aEEELYx87zmfxx5THO5Gp4eOl+dp7PdHRIQggnY7GofL43CYDRXRpeYKwi2UrJkZEt0bJIsiWEEC1UcamZUf+3iXs+2mU7pqrw4qoj5Mq6CiHEVfYkZHEhoxAfvRu3927V4PtHGqzTCFMl2RItjCRbQgjRQs1bc5L4DGsZ5wAvHX/sYV2LkZBZxH92JTg2OCGEU1l1IBmACd3D8dY3fBWKbRphjkwjFC2LJFtCCNEC7TyfyfI9FwG4OS6c738/mNbe8OJN1iqt72++QH6JjG4JIcBktrDmqHXf0ztuaH1N56hIti7nl2AyWxotNiGcnSRbQgjRgvx4PI2b/7GVez7ahdmicnvvVrx77w2E+OoBuKN3JG0CvSgwlvHvnYkOjlYI4QyOJOdQYCzD4KmjX7vAazpHkLc77loNqgqX82R0S7QckmwJIUQLoaoqj/9nPydT8wAI9Hbnz7fFoSi/VBXTaBSmD40GYPnui7VWjBVCtAz/22MtjDEwJhBNA6sQVtBoFCL8reu2ZCqhaEkanGzFx8dz9uzZKsfPnj1LQkJCY8QkhBCiCZxLL6j0+7zb4/CpZu3FXf2i8HbXkpJTzOHkXHuFJ4RwQvklJr4/kgrAI0Oir+tckYaKdVtSJEO0HA1Oth566CF27NhR5fju3bt56KGHGiMmIYQQTWB3fBYAg9sHceL18dwUF1FtOw+d1lba+d2N5xr8OMnZRexPzJZRMSFcXHGpmQHzfqLYZKZ9iDf9o69tCmGFipEtKf8uWpIGJ1sHDx5kyJAhVY4PHDiQQ4cONUZMQgghmsCBi9kA9GkbgJd77dXEnhzVAYANJy+Tnl//KT9FpWXc8d4O7nhvB8t2yZovIVzZB1vOU1RqBuDlW7pWmnJ8LVqVF8lIzbUmW+n5JTyyZC9fH0q5vkCFcGINTrYURSE/P7/K8dzcXMxmc6MEJYQQovEdvJgDwA1tAups2yncl26RflhU2Hz6Sr0f45tDl7icZwTgo63xMrolhItSVdVWJOepGzswqnPodZ/z1+Xf3990gZ9PpfP0ikOcTqt6bSlEc9DgZGvYsGHMnz+/UmJlNpuZP38+Q4cObdTghBBCNI6swlLbnlq92/jX6z4jO4UAsPZYWr0f59sjl2z/vphVxL7E7PoHKYRwGnvis8gqLMVDp+HJGzs0yjkjyjc2Tsm2jmxtPpNuu+37o6mN8hhCOJsG70q3YMEChg8fTqdOnRg2bBgAW7duJS8vj59//rnRAxRCCHH99pcnPTEh3vh7udfrPmO7hvPPjefZf9G6/qquKUSlZRb2lK8Li2vlx7GUPLaeuXLNpaKFEI6z6oB1at9tvVqhd9M2yjljgn0AiM8oJLuwlAvlXwABbD5zhdljOzbK4wjhTBo8stW1a1eOHDnC1KlTSU9PJz8/nwceeIBTp04RFxfXFDEKIYS4ThtPW79BHtI+uN736Rrhh95NQ06RqdJFUU3OXM7HZFYxeOq4b0BbAHZeyLy2gIUQDmO2qPx06jIAt/SovpDOtWgd4Imv3o1Ss4VVB1NQVXB3s16KHknOIbPA2GiPJYSzaPDIFkBkZCTz5s1r7FiEEEI0keOXrHtrDYip/yiTu5uGHq0N7E3IZn9iNu1DfGptv6s8serR2sCQDtakbn9iNqm5xUSUl3wWQji/TafTySgoxdfDjYExQY12Xo1GoUuEH3sSsmwFdMZ1DeNcegGn0vLZdi6Dyb1aNdrjCeEM6jWydeTIESwWi+3ftf0IIYRwLmaLyuk0a7LVNcKvQfe9oa21mMbBi7WvvSozW/h8n3Xj0+GxIUQFetE/OhCLCl8dvFTrfYUQzmX7OesXJzfHhaPTNngSVK16RhkAbGtIB8YEMbKTtfjGt4dl3ZZofuo1stWrVy/S0tIIDQ2lV69eKIpSbYUpRVGkIqEQQjiZQ0nZlJgseLlraRvk3aD7VlQuPJRU++bGH2+L58xl66bJN3axXjjd2jOSPfFZbDyVzu9Gtr+GyIUQjnAy1frlTN8mWG85NDaEj7bG234f1D4Ii0Xlgy3n2XDyMufSC+gQWvsouhCupF7JVnx8PCEhIbZ/CyGEcA1puSXM/vwwADd1C0eradg+ObHlFz0JGYVYLCqaau5vLDPzyTbr34ZpA9rYphuO7Gj9u7H/Yja5xSYMnrprfh5CCPtQVZWT1zgSXh8DrtoY2VfvRkywN4qiMCgmiB3nM9mbkCXJlmhW6jU23LZtW1sVqsTERFq1akXbtm0r/bRq1YrERNnAUgghnIXFojJ96V4SM4uICvTkuZs6N/gcUYFeaDUKxSYzl2vY3Hjd8ctcyTcS7ufBnFu7VbpvxzAfzBaVz/ZevObnIYSwn9TcEnKKTGg1SpMkPR46La9M7Ep0sDcL7+5lu77sGeUPwOGknEZ/TCEcqcETcUeNGkVWVlaV47m5uYwaNapRghJCCHF9VFXliWX7OX4pD1+9G/97dCDh5XvcNIROq6FtkBeAbZrgr+04b13fcWvPCFtlsQr39G8DwLw1p/jqYEqDH18IYV8Hytdnxob64KFrnJLvvzZ9aDQbnx3J6C5htmM9WlnXch1Jrn3KshCupsHJVk17rWRmZuLt3bC1AEIIIZrG+SsFrDthLd38yNBoWgd4XfO5upRPJapYx3E1i0Xl5/IS0f2jq1Yt+03fKNvUxb/9cAqzpep6XyGE89hZ/uXJoPaNV4WwPrpGWj9nzl0pkM8J0azUu/T7lClTAGsRjIceegi9Xm+7zWw2c+TIEQYPHtz4EQohhGiwXRd+mYHw1OjY6zpXz9YGvj+SyvoTl3l8eEylL9y+2J/E5TwjXu5ahnaouoeXj96N/S+PYcC8n0jLK2H3hUwGV9NOCOEcKvbGG9SIJd/rIyrACw+dhhKThcTMQmLq2GpCCFdR75Etg8GAwWBAVVV8fX1tvxsMBsLDw3nsscdYtmxZowZXVlbGyy+/THR0NJ6ensTExPD666/bytCDdaRtzpw5REZG4unpyciRIzl+/Hil8xiNRmbOnElwcDDe3t5MmjSJ5OTkRo1VCCGcye54a7I1a0xsg4ti/NrNcRFoFOueWf/anlDpti/3Wz9LHx/eHk/36qcc+Xu5M+WG1gB8d1RKOwvhrC7nlXDhSiGKAgOqGaluShqNQmyoL2DdIF2I5qLeI1uffvopAO3atePZZ5+1y5TBN954g/fff5+lS5fSrVs39u3bx8MPP4zBYODpp58GYMGCBbz11lssWbKEjh078pe//IWxY8dy+vRpfH2tb9pZs2bx7bffsmLFCoKCgnjmmWeYOHEi+/fvR6ttmvnIQgjhKKqqsrv82+nGuGCKCvTi7v5tWL77IvPXnOSW7hGEGzxIyy1hb4J1fcfUfq1rPceNnUP5356LtilKQgjns6f8S5pukX4YvOxfPbR9iDdHU3JJyCyy+2ML0VQavGbrueeeqzSFJDExkYULF7Ju3bpGDQxg586dTJ48mVtuuYV27dpx5513Mm7cOPbt2wdYLygWLlzISy+9xJQpU4iLi2Pp0qUUFRWxfPlywFq445NPPuHNN99kzJgx9O7dm2XLlnH06FE2bNjQ6DELIYSjJWQWkZ5vxF2roXcb/0Y557PjOgFQZlGZ9dlBAN7ddA6Avm0DiDB41nr//tGBaBTrRqapucWNEpMQonGdS7cWwekWYXDI47cKsH6OpGTLZ4RoPuo9slVh8uTJTJkyhSeeeIKcnBz69++Pu7s7GRkZvPXWW/zud79rtOCGDh3K+++/z5kzZ+jYsSOHDx9m27ZtLFy4ELDu+ZWWlsa4ceNs99Hr9YwYMYIdO3bw+OOPs3//fkwmU6U2kZGRxMXFsWPHDsaPH1/tYxuNRoxGo+33vDzrwnCTyYTJZGq053gtKh7f0XG0JNLn9iX9fX2OJVtHmzqH+6DFgslkqeMedfe5r7vCG1O68fyq4+y6kMVPJ1L5907rdh+39Yqo8/+VlxvERfpxJCWPDcfTuLuOkbCWQF7n9id9Xrvz6dbpe20CPRqljxra3+G+1noASVmF8v/oGslr3H7q28cNTrYOHDjA22+/DcCXX35JeHg4Bw8eZOXKlbz66quNmmw9//zz5Obm0rlzZ7RaLWazmb/+9a/cc889AKSlpQEQFhZW6X5hYWG2Pb/S0tJwd3cnICCgSpuK+1dn/vz5zJ07t8rxdevW4eV17VW9GtP69esdHUKLI31uX9Lf1+bHZAXQ4lGaw5o1axp039r6XK9CuKeWtGKF6f8+AIBOo6JPPcKaNUfqPHc7rcIRtPxr43H8rljbF5qsiVg1RW5bDHmd25/0efUOX9ACClmJp1iTf7LRzlvf/k7PBXBjf/wVvvt+Dde53LRFk9d40ysqqt901wYnW0VFRba1UOvWrWPKlCloNBoGDhzY6Jsaf/bZZyxbtozly5fTrVs3Dh06xKxZs4iMjOTBBx+0tft1KfqaytM3pM2LL77I7Nmzbb/n5eURFRXFuHHj8PNr/B3VG8JkMrF+/XrGjh2LTmf/OdUtkfS5fUl/X5/1nx+BpDSG9+rEhOHR9bpPffu8Xe88fvPhbkxma2nmJQ/3o3+7wHo9Rt98I9/9fTPx+Qod+w7njR/PsOlMBgBfPj6Anq0dM3XJUeR1bn/S5zVTVZWXDmwEyrhj7DBiw66/GmBD+7u0zMK/5m8kv9SMZ0xfRncJve4YWhp5jdtPxay3ujQ42erQoQNfffUVt99+Oz/++CN/+MMfAEhPT2/0JOSPf/wjL7zwAnfffTcA3bt3JzExkfnz5/Pggw8SHh4OWEevIiIibPdLT0+3jXaFh4dTWlpKdnZ2pdGt9PT0WkvV6/X6SuXtK+h0Oqd58TpTLC2F9Ll9SX9fmwsZ1m/bOkcYGtx/dfV5r7ZBLLrnBpbtSmTagDYMiQ2rse2vtQrUcWPnUDacTOfmRTsq3XbnB7tZ+kh/RnQMaVC8zYG8zu1P+ryqy3klFBjL0CjQPtwPnVvjFRCrb3/rdHD/oHa8v/k8f/vxDDd2rbpRuqgfeY03vfr2b4Nfwa+++irPPvss7dq1Y8CAAQwaNAiwjnL17t27oaerVVFRERpN5RC1Wq2t9Ht0dDTh4eGVhkpLS0vZvHmzLZHq06cPOp2uUpvU1FSOHTsm+4IJIZods0Xl/BXrIvcOoU2zT81NceEs++0AJnSPqLvxrzwxon2Nt72w8gjGMvP1hCaEuEYVxTHaBnmjb8REq6F+f2MHgn30JGQW8ePxmpd7COEqGpxs3XnnnVy8eJF9+/axdu1a2/HRo0fb1nI1lltvvZW//vWvfP/99yQkJLB69Wreeustbr/9dsA6fXDWrFnMmzeP1atXc+zYMR566CG8vLyYNm0aYN0fbPr06TzzzDP89NNPHDx4kPvuu4/u3bszZsyYRo1XCCEcLSW7GGOZBXc3DVGBzrG+9Gp92wUyLNa6qXGbQC/O/OVmtvxxFACpuSV8tjfJkeEJ0WJVfEnTPqTpt/apjY/ejdt7RwKw6fQVh8YiRGNo8DRCsE7Nq5jCV6F///6NEtDVFi1axCuvvMKMGTNIT08nMjKSxx9/nFdffdXW5rnnnqO4uJgZM2aQnZ3NgAEDWLdunW1dGcDbb7+Nm5sbU6dOpbi4mNGjR7NkyRLZY0sI0eycu2KtJhYT7H3dmxk3lY8f7MvGU1cYFBOEu5uGNkFevHZrV+Z+e4JVB1J4YFA7R4coRItz4UohADEhTTMi3hBjuoTx0dZ41h5L5Y07uuOmlamEwnXVK9maMmUKS5Yswc/PjylTptTadtWqVY0SGICvry8LFy60lXqvjqIozJkzhzlz5tTYxsPDg0WLFrFo0aJGi00IIZxRxQVTeye4YKqJ3k3LTXGVv7Ab2zWMud+e4HByDufS8+kQ6lvDvYUQTeFSjnVvq9YBte+ZZw/92gXi5+FGXkkZJ1Lz6NHa39EhCXHN6vVVgcFgsFXu8/Pzw2Aw1PgjhBDCcS5kWJOt6GDHTgVqqNYBXgzvGIKqwkdb4h0djhAtTkp5shVZxwbl9qDRKPQrr3K6NyHbwdEIcX3qNbL16aef2v69ZMmSpopFCCHEdUooT7bauViyBfD48Bi2nLnClrOyTkMIe6sY2WrlBCNbAD1a+/PTqXROptavvLYQzqrBk2BvvPFGcnJyqhzPy8vjxhtvbIyYhBBCXKMEFx3ZAoiLtM6OSM0tIb/E5OBohGg5ikrLyC6yvuci/Z0j2eoUbp0KfTot38GRCHF9Gpxsbdq0idLS0irHS0pK2Lp1a6MEJYQQouGKS81cyi0BXDPZMnjpCPax7m94vnztmRCi6VWMavnq3TB4OsfeTBXrThMyClFV1cHRCHHt6l2N8MiRI7Z/nzhxgrS0X/Y+MJvNrF27llatWjVudEIIIeotvnxUy8/DjQAv57hgaqiYYG8yCowkZhbSK8rf0eEI0SIkZzvXFEKwruMEyDeWkVNkIsDb3cERCXFt6p1s9erVC0VRUBSl2umCnp6eUu1PCCEc6Mxl63SbTuG+tqJGrqZtkBd7ErJIzCxydChCtBiXcqwj4s4yhRDA011LqK+e9HwjF7OKJNkSLqveyVZ8fDyqqhITE8OePXsICQmx3ebu7k5oaKjsWyWEEA50ujzZ6hjmumXTKwp7JGTKNEIh7CUp2/rlRisnSrbAuvF5er6RpOwiespIt3BR9U622rZtC4DFYmmyYIQQQly7M+ULyTuHu26y1SbQOnXoooxsCWE3F64UAM631rNNkBf7ErNt+wcK4YrqnWz92okTJ7h48WKVYhmTJk267qCEEEI03Km0ZjCyFWS92EvMkmRLCHs5l25NtmJCnCvZ6hrhxypSOH4p19GhCHHNGpxsXbhwgdtvv52jR4+iKIqtQkzF+gCz2dy4EQohhKhTfonJtilpJ1ce2QqyjmxdyTdSaCzDW3/N3wkKIeohIaOQ81cK0WoUurcyODqcSrqVbwdxLEX22hKuq8Gl359++mmio6O5fPkyXl5eHD9+nC1bttC3b182bdrUBCEKIYSoy9nyb6bD/PT4e7nuQnKDp85WSbGiuqIQoul8d+QSAIPbBxFUvvWCs+jWyg+AlJxisgurbjskhCtocLK1c+dOXn/9dUJCQtBoNGg0GoYOHcr8+fN56qmnmiJGIYQQdTjTDKYQVugSYb3AOpYiU4eEaGpbzmYAcHNchIMjqcrPQ0e78tHuYzKVULioBidbZrMZHx/rRnPBwcFcumT9RqRt27acPn26caMTQghRLxXrtTo1g2SrourY4eQch8YhRHNnMls4nJQDQP/oQMcGU4NurWQqoXBtDU624uLibBscDxgwgAULFrB9+3Zef/11YmJiGj1AIYQQdavYY6ujC6/XqtCztfXi6nCSfJMtRFM6lZqPscyCv5eOGCerRFghrmLdloxsCRfV4JXHL7/8MoWF1nn0f/nLX5g4cSLDhg0jKCiIFStWNHqAQggh6laRbLly2fcKvaICADiVlkdeiQk/D52DIxKiearYzy421AeNxjk3Qu8WaZ1WfPKSjGwJ19TgZGv8+PG2f8fExHDixAmysrIICAiwVSQUQghhPxkFRjIKSlEU6BDq4+hwrlu4wYPoYG/iMwrZfSGLsV3DHB2SEM1SxWbGUQFeDo6kZrFh1s+0xKwiSsssuLs1eFKWEA7V4FfsI488Qn5+fqVjgYGBFBUV8cgjjzRaYEIIIeqnojhGm0AvvNybR6n0fu2so1sV60mEEI0vKcu6XUTrQOdNtsL9PPDRu2G2qLaROCFcSYOTraVLl1JcXFzleHFxMf/+978bJSghhBD1dyLVOr2mOVQirNC9tT8A+xOzHRuIEM1Ysm1ky9PBkdRMURTal4/YV2y+LIQrqfdXoHl5eaiqiqqq5Ofn4+HhYbvNbDazZs0aQkNDmyRIIYQQNdtaXrq5T9sAB0fSeIa0DwJgb0IWJSYzHjqtgyMSovlJzi4f2XLiaYQAHUJ8OJyUI8mWcEn1Trb8/f1RFAVFUejYsWOV2xVFYe7cuY0anBBCiNqZzBb2xGcBMKJjiIOjaTzRwd4EebuTWVjKidQ8bmjTfBJJIZyBxaKSUp5sRQU678gWQEyItVJiYmaRgyMRouHqnWxt3LgRVVW58cYbWblyJYGBv+zH4O7uTtu2bYmMjGySIIUQQlTv+KU8ik1mDJ66ZrHHVgVFUegV5c9Pp9I5nJQjyZYQjexyfgmlZgtuGoVwP4+67+BAFfFdzitxcCRCNFy912yNGDGCkSNHEh8fz2233caIESNsP4MGDWqyRCslJYX77ruPoKAgvLy86NWrF/v377fdrqoqc+bMITIyEk9PT0aOHMnx48crncNoNDJz5kyCg4Px9vZm0qRJJCcnN0m8QghhT3vLR7X6tQtw2tLN16pic+NDUiRDiEZXMYUwwt8DN61zV/gLN1iTrTRJtoQLqve7Kysri+TkZNq2bWsr8X78+HEefvhhpk6dyvLlyxs9uOzsbIYMGYJOp+OHH37gxIkTvPnmm/j7+9vaLFiwgLfeeovFixezd+9ewsPDGTt2bKWKibNmzWL16tWsWLGCbdu2UVBQwMSJEzGbzY0esxBC2NOehIpkK7COlq6nItmSioRCNL6kLOcv+17BlmzlSrIlXE+9pxE++eSTRERE8NZbbwGQnp7OsGHDiIyMpH379jz00EOYzWbuv//+RgvujTfeICoqik8//dR2rF27drZ/q6rKwoULeemll5gyZQpgrZYYFhbG8uXLefzxx8nNzeWTTz7hP//5D2PGjAFg2bJlREVFsWHDhkr7hgkhhCuxWFT2VSRb0c0w2WptACAhs4icolL8vdwdHJEQzUdF2XeXSLbKpxEWGMvILzHhKxudCxdS72Rr165dlZKef//73wQGBnLo0CHc3Nz4v//7P/75z382arL1zTffMH78eH7zm9+wefNmWrVqxYwZM3j00UcBiI+PJy0tjXHjxtnuo9frGTFiBDt27ODxxx9n//79mEymSm0iIyOJi4tjx44dNSZbRqMRo9Fo+z0vz1pa2WQyYTKZGu05XouKx3d0HC2J9Ll9SX/Xz9nLBWQXmfDUaegU4nVd/eWMfe6tU2gX5EVCZhH7EzIZHhvs6JAalTP2eXMnff6LxExrZb8Ig77J+qOx+ttdA74ebuSXlJGcWdAsNm9vKvIat5/69nG9k620tDSio6Ntv//888/cfvvtuLlZTzFp0iTmz5/fwDBrd+HCBd577z1mz57Nn/70J/bs2cNTTz2FXq/ngQceIC0tDYCwsLBK9wsLCyMxMdEWt7u7OwEBAVXaVNy/OvPnz6+2uuK6devw8nKOb4HWr1/v6BBaHOlz+5L+rt22NAXQ0tqzjA3r1jbKOZ2tz4MUDQlo+PLnvRScVR0dTpNwtj5vCaTP4ch5LaCQmXiaNWtONeljNUZ/eyta8lH4dsNWOvk3z8+CxiSv8aZXVFS/6pj1Trb8/PzIycmhbdu2AOzZs4fp06fbblcUpdJIUGOwWCz07duXefPmAdC7d2+OHz/Oe++9xwMPPFDpsa+mqmqVY79WV5sXX3yR2bNn237Py8sjKiqKcePG4efndy1Pp9GYTCbWr1/P2LFj0elkKN0epM/tS/q7fjZ8cQRI46Y+HZhwY4frOpez9vmVnYnsX3OaIs8wJky4wdHhNCpn7fPmTPrcSlVV5hzeBJiYMmYIca2a5rqmMfv7iyv7STuXSZvOPZhwQ6tGirD5kde4/VTMeqtLvZOt/v3788477/DRRx+xatUq8vPzufHGG223nzlzhqioqIZHWouIiAi6du1a6ViXLl1YuXIlAOHh4YB19CoiIsLWJj093TbaFR4eTmlpKdnZ2ZVGt9LT0xk8eHCNj63X69Hr9VWO63Q6p3nxOlMsLYX0uX1Jf9duf2IOAAPbhzRaPzlbnw+ICQFOcyApB63WrdlVXATn6/OWoKX3eXp+CdlFJjQKdGnlj66JNw1vjP6OMFj3AssoNLXo/3f11dJf4/ZQ3/6tdzXCP//5z3z99dd4enpy11138dxzz1VKXlasWMGIESMaHmkthgwZwunTpysdO3PmjG10LTo6mvDw8EpDpaWlpWzevNmWSPXp0wedTlepTWpqKseOHas12RJCCGeWnF3EpdwS3DQKvdv4OzqcJtMlwhcvdy35JWWcSc+v+w5CiDqdTrO+l9oFeePRxIlWY4kor0iYKhUJhYup98hWr169OHnyJDt27CA8PJwBAwZUuv3uu++uMgp1vf7whz8wePBg5s2bx9SpU9mzZw8ffvghH374IWCdPjhr1izmzZtHbGwssbGxzJs3Dy8vL6ZNmwaAwWBg+vTpPPPMMwQFBREYGMizzz5L9+7dbdUJhRDC1ewtr0LYrZUBL/d6f5S7HDethhvaBLDtXAb7ErLpHO7YadxCNAdnLluLY8SGuU6hiTCDbGwsXFOD/kKHhIQwefLkam+75ZZbGiWgq/Xr14/Vq1fz4osv8vrrrxMdHc3ChQu59957bW2ee+45iouLmTFjBtnZ2QwYMIB169bh6+tra/P222/j5ubG1KlTKS4uZvTo0SxZsgSt1jW+zRFCiF/bE58NQP92AXW0dH09WhvYdi6D45fqNz9eCFG7s5etI1sdw3zraOk8ZGRLuCqn/zp04sSJTJw4scbbFUVhzpw5zJkzp8Y2Hh4eLFq0iEWLFjVBhEIIYX974jMB6B8d5OBIml6XCOto1slUSbaEaAwXrhQCuFQJ9TA/2dhYuKZ6r9kSQgjhHC5cKeD8lUJ0WoX+7ZrfZsa/VpFsnU7Lx2yRks9CXK+UnPINjQOdYyub+mjlby2QkVlYSonJ7OBohKg/SbaEEMLF7LpgXa91Q5sADF7Nv9pUdLA3HjoNxSYziZmFjg5HCJdWZraQVr7uqSKBcQUGTx1e7tblH5fKk0UhXIEkW0II4WIqphAOiGn+UwgBtBqFTuVrS06mSkVCIa7H5XwjZouKTqsQ4lN1ixtnpSiKLTlMkWRLuJAGJ1tarZb09PQqxzMzM6XghGjxSsss/H75AUb8fSPvbz5Pev4vc8tVVWXLmSvsTchCVWUqlLh2exMqimM0/ymEFbpGGgA4kpLj2ECEcHEp2dZEJcLg6XL71rUKKE+2siXZEq6jwQUyarpINBqNuLu7X3dAQriyN9ed5rsjqQD87YdT/O2HU/h6uNE53JfSMguHk3MBeP6mzvxuZHtHhipc1O4LmaTkFKPVKPRqxvtr/VrvNv78b89FDl7McXQoQri05OwiwLWmEFaoiDmp/DkI4QrqnWy98847gHUY9+OPP8bH55cKNmazmS1bttC5c+fGj1AIF5FfYmLF3iQAYkN9KCo1k5JTTH5JmW0kosK7G88xqVekS/6xE46TmFnII0v2AjC5ZyQ+eqcvKNtoekf5A3A0OZcyswU3rcyCF+JaJGRaE5V2wa5THKNCRfXEin3ChHAF9f5L/fbbbwPWka3333+/0pRBd3d32rVrx/vvv9/4EQrhIlYfTCG32ESbQC/WzhqOVqOw5cwV5v9wylay+slR7dl85grHUvJY/PM55k/p7uCohStZvvsihaVmogI9+dMtXRwdjl21D/HBV+9GvrGM05fz6VY+rVAI0TAVRWbaBXk7OJKGq1i7eeayrN0UrqPeyVZ8fDwAo0aNYtWqVQQENP+NNIVoiC/3JwPw8JB2aMvnwQ/vGMLwjiGUmS1cyimhTZAXQzoEM+2j3XxzKIWXb+mCdwsanRDXZ8d5a2GMP47vTLALLWxvDJryaZNbz2ZwKClHki0hrtHFLOvIVhsXKvteoWO4Ndm6mFVEUWkZXu7y91M4vwbPw9i4cWOlRMtsNnPo0CGys7NruZcQzdvptHyOJOei0ypM7tWqyu1uWg1tgqx/2AbFBNEuyIvCUjNrjqbaO1ThokpMZtsI6Q0taK3W1XqVTyU8eDGHrMJS5nxznM/Lp+4KIeqnorhE6wDXS7aCffQE+7ijqnBWphIKF9HgZGvWrFl88skngDXRGj58ODfccANRUVFs2rSpseMTwiWsOmgd1bqxcyiB3rUXilEUhUk9IwHYejajyWMTzcPptHzKLCqB3u4tdq1f7/Ik8+DFbF5cdYQlOxJ4buURjiTnODQuIVxFiclMer4RgNYBrvk50rF8KuFpmUooXESDk60vvviCnj17AvDtt9+SkJDAqVOnmDVrFi+99FKjByiEK9hVPr3r5riIerUf1D4YgJ0XMqUMvKiXE+WjWl0j/FAU1yrX3Fh6RVlnVZy/UsiPxy/bjq85muaokIRwKcnlo1re7lr8XXRDdFuylSbJlnANDU62MjMzCQ8PB2DNmjX85je/oWPHjkyfPp2jR482eoBCOLviUjPHL1kvhPu0rd9axt5t/HHXariSbyQpS/YLEXU7fsm6bUC3SD8HR+I4gd7utA2qOvXpUJJMYxeiPmzFMYK9XfZLm87hUiRDuJYGJ1thYWGcOHECs9nM2rVrGTNmDABFRUWyqbFokQ4l5VBmUQn11dd7WoaHTkvX8ovmg1ddKKqqKiNdoloVCX3XFpxsAYzqFGr796wxsQCcTM2X940Q9RCf4bqVCCt0ibB+Bh5KysFktjg4GiHq1uBk6+GHH2bq1KnExcWhKApjx44FYPfu3bLPlmiR9sRnAdA/OrBB3xRevdgfrHPpp36wk7jXfmT57ouNHaZwYWaLyqlU67e4Lb0K35OjOhDXyo/be7fiiRHt0WoUcotNpOaWODo0IZxegm1ky/WKY1SIa2UgyNud/JIytp2Tdc/C+TU42ZozZw4ff/wxjz32GNu3b0evt5Yf1mq1vPDCC40eoBDObtu5KwAMah/UoPv1jLJeNB9LsU4P+3xfEnsTsiksNfOn1Uc5UT6SIcT5KwUUm8x4uWuJDnbdb6QbQ4ivnu9mDuPtu3rhofulP86mS2UyIeqSWL6hcVsXHtnSahRuLS8y9YfPDtmmRgrhrBqcbAHceeed/OEPfyA4ONh27MEHH2Ty5MmNFpgQriCvxMSB8pGp4bEhDbpvXPkIxYnUPM5czueNH05Vuv29zecbJUbh+ioS8m6RfrY93IRVRbKVkCEXXELUpWIaoat/afPEiPYEeOnIKTLxwkqpFyCcW4OTLbPZzJ///GdatWqFj48PFy5cAOCVV16xlYQXoqXYdT4Ts0UlOtibqAZuEBkT4oOXu5aiUjPTPtpFYamZ1gGefPHEIAC+P3KJpPLNJ0XLdrQ82Ypr1bKnEFan4qIxXpItIWplLDNzKcdakMmV12wBhBs8+Oe0GwBrVV/Z/kE4swYnW3/9619ZsmQJCxYswN39l/2Eunfvzscff9yowQnh7LaXzxcf2iG4jpZVaTWKbbF/RkEpGgX+M30A/doFMqRDEBYVvtif3KjxCtd0PMU6pTSuha/Xqk7FRWOCTCUSolZJWcVYVGvZ92Cf2veDdAWDOwRzSw/rdisbTlyuo7UQjtPgZOvf//43H374Iffee2+l6oM9evTg1KlTtdxTiOanYnHukGtItgB+f2MH3N2sb8O7+kXZvqW/u18bAFbuT5Yqay2cqqq2zTsrqnCJX1Qs9JdphELUruI94spl339tWPnf3l0XshwciRA1c2voHVJSUujQoUOV4xaLBZPJ1ChBCeEKUnOLOX+lEI0Cg2IaVhyjQpcIP1bPGMy59AJuigu3HR/bNQw3jUJKTjHJ2cUNnqIomo/0fCO5xSa0GoWYENee+tMUKr6gSMouxmS2oNNe01JkIZq9hKv22GouBpT/7a0oAy/vf+GMGvyq7NatG1u3bq1y/IsvvqB3796NEpQQrmD7uUwAurf2x+Clu+bzdIs0MLlXK/Ruv4wUe+i0dCtfn7PjfAY7zmew64L18UxmC8cv5cqIVwtxOs06qtUuyAsPnexl+Gthvh546DSYLSrJ2bJBuBA1sSVb1WwM7qraBnrh5a6l1GyR0W3htOqdbD3yyCPk5+fz2muv8fvf/5433ngDi8XCqlWrePTRR5k3bx6vvvpqU8bK/PnzURSFWbNm2Y6pqsqcOXOIjIzE09OTkSNHcvz48Ur3MxqNzJw5k+DgYLy9vZk0aRLJybIWRlyfX9ZrXduoVl3GdQ0D4PmVR5n20W7u/nAXHV/+gUmLt3PLO9sapVrh5bwSpn20i6nv72T57ov85bsTXMyUohzO5Ez5FMJO4b4OjsQ5aTTKL+u25GJLiBolZFg/2129OMbVNBqFjmHWz8ZT5V9MCeFs6p1sLV26lOLiYm699VY+++wz1qxZg6IovPrqq5w8eZJvv/3WtsFxU9i7dy8ffvghPXr0qHR8wYIFvPXWWyxevJi9e/cSHh7O2LFjyc//5U03a9YsVq9ezYoVK9i2bRsFBQVMnDgRs9ncZPGK5k1V1eter1WXSeX7iFyttMzCyVRrsYRFP50jt7h+U3fPXyng6RUH+WJfUqXjf/vhFDvOZ7InIYs/rT7Kx9viGf73jbR74Xv6/Hk9D3+6h/wSmR7sSBUjW7GhkmzVRCoSClG35lL2/dc6l38RdVqSLeGk6p1sXT1lafz48WzevJmCggKKiorYtm0b48aNa5IAAQoKCrj33nv56KOPCAgIqBTTwoULeemll5gyZQpxcXEsXbqUoqIili9fDkBubi6ffPIJb775JmPGjKF3794sW7aMo0ePsmHDhiaLWTRvZ9MLuJJvxEOn4YY2AXXf4RpEBXoxvKN1766BMYG8+ZuelW4vNpn5946EOs9TVFrGg//aw9eHLvHHL4/YkjWLRWXT6fQa75dZWMrG01f4/fKDMmXRgY6Xb27dWUa2alSxBkUqEgpRPWOZmUu51mm2rryhcXUqPhtlZEs4qwYVyHBU9Zonn3ySW265hTFjxvCXv/zFdjw+Pp60tLRKiZ5er2fEiBHs2LGDxx9/nP3792MymSq1iYyMJC4ujh07djB+/PhqH9NoNGI0Gm2/5+VZL3hMJpPDC4FUPL6j42hJft3nW05by8z2aROAFgsmk6VJHnfhb7qTnF1M53AfFEVBoTvHL+URbvDgr2tO89OpyzwxvF2t5/h8b1KltSx/++Ek70/rxd7EbLKLTHjrtex5YRSFpWX46t147duT7IrPwlOn5fTlAjafucLS7Re4d0CbJnmO1ZHXuFVRaRmn0irKvvs0aX+4cp+3CfAA4MKVApeK35X73FW11D6/kF6AqoK3XotBr9jt+dujvzuEWNegnUrLa3H/X6vTUl/jjlDfPm5QstWxY8c6E66srMYtv7lixQoOHDjA3r17q9yWlpYGQFhYWKXjYWFhJCYm2tq4u7tXGhGraFNx/+rMnz+fuXPnVjm+bt06vLycY3Hp+vXrHR1Ci1PR51+f0gAaAkzprFmzpskfN778v1qgB3DlEoAbx5Jz+OrbNbhfVTdBVeFQloKvm4rJovD+KeuNQ8Is7LissPlMBpPfXof1nayhl7+JDevW2u4/xB2GdLL+e4Ne4duLWuZ+d5KSpGNE2Pml39Jf42dzFSyqFn93lQPbfrbLY7pin1vzUTdOJGXY5f3Y2Fyxz11dS+vzPVcUQEuIrowffvjB7o/flP1daAJwIzm7mFXfrMGjwXW2m6eW9hp3hKKi+q1xb9BLcu7cuRgM9ttUMykpiaeffpp169bh4eFRY7tfJ4CqqtaZFNbV5sUXX2T27Nm23/Py8oiKimLcuHH4+Tl2rxuTycT69esZO3YsOt21V8ET9Xd1n2u0brxycCNQxoM3DaJXlL/d41FVlSUJW0nOKUFp05sJPSNst606mMKSXZWLxEQaPFj028FsO5fBH1ce40zuL7e9NHUosaE+1T7OeItK5r/3s+N8Fufd2jJ9QrcmeT6/Jq9xqw+2xMOJswyKDWfChJ513+E6uHKfZxaW8o/jm8guVRg9djx6F6na6Mp97qpaap8f/uE0nEtkWFxbJkzobLfHtVd/v3NmM2l5Rlp1H8iA6MAmexxX0FJf445QMeutLg1Ktu6++25CQ0OvKaBrsX//ftLT0+nTp4/tmNlsZsuWLSxevJjTp08D1tGriIhfLjbT09Nto13h4eGUlpaSnZ1daXQrPT2dwYMH1/jYer0evV5f5bhOp3OaF68zxdJS6HQ69l7MJa+kDIOnjt5tg3Bz0L4eU/pE8c5PZ1l3Ip07+1qn+KmqysfbEiu1697KwLLfDsDgqWNS7yhKLQrPfnEYsO7n1bVVzWvOdMDssZ3YcX4nXx9O5fmbuxDsU/V90VRa+mt8Z7x1pkCfdoF26wdX7PMwgxu+Hm7kl5RxKd9Ex7Cav5xzRq7Y566upfX52SvW9YxdIw0Oed5N3d+9ogJYezyN46kFDO0YVvcdWoCW9hp3hPr2b72vEh2xXmv06NEcPXqUQ4cO2X769u3Lvffey6FDh4iJiSE8PLzSUGlpaSmbN2+2JVJ9+vRBp9NVapOamsqxY8dqTbaEqMmX+6zbBtzULdxhiRbA+G7WPyhbzl6huNRaWXN/YjZn0wvw0bux4rGB/P3OHix/1JpoVbizT2v+cXcvpvZtzV9vi6vzcfq0DaB7KwOlZRbWHb/cNE9GVHEuvYDt5zJRFBjfLbzuO7RgiqIQU14k48IVKZIhxK9VbCFRUSa9uenVxh+wbm4shLOp98iWI6qR+fr6EhdX+WLQ29uboKAg2/FZs2Yxb948YmNjiY2NZd68eXh5eTFt2jQADAYD06dP55lnniEoKIjAwECeffZZunfvzpgxY+z+nIRrO5WWz+pDKQDc3T/KobF0jfCjlb8nKTnFbDl7hfHdwtl61lqOfkSnEAbGBDEwpvo9wCb3asXkXq3q9TiKojC2axhHU3LZcuYK0+xYKKMlW7LDulJvTJcwogKdY52oM4sO9uZwcq6UfxfiV3KKSrmcZy341TGs+injrq5na39Aki3hnOqdbFksTVNt7Xo999xzFBcXM2PGDLKzsxkwYADr1q3D1/eXb2/efvtt3NzcmDp1KsXFxYwePZolS5ag1brGvH7hHFQV/rrmFKoKt3SPoHcTlXyvL0VRGN8tnH9tj+fx/+znxs6h/HzKWsp9VKfGne47NDaYt9afYXd8Zr3WRIprU2Asw12rISm7iM/2WvdEe3hIO8cG5SKig60XkfEZBQ6ORAjncjjZuki3dYAnvh7Nc1pZj9YGNAqk5pZwOa+EMD/XmkosmjeXq9myadOmSr8risKcOXOYM2dOjffx8PBg0aJFLFq0qGmDE83ahXzYFZ+N3k3DCzfbb4FxbR4a3I5vDqeQUVBqS7Q6hvlwW6+qGyJfj64Rfmg1CtlFJi7nGQk3yB+yxrb7QiYPfboXP083jGUWTGaVUZ1CGFTD6KSoLDpENjYWojo7zllnPNQ006E58Na70THMl1Np+Ry8mMNNcTL1WjgPxy04EcLFbEuzvl0m9Yx0mmldbYK8+OrJITwztiPtQ7zx83Bj/pTujb6WzEOnpX35xWzFpsiicS3ZkUCxyczlPCM5RSbc3TTMnRQno4j1VLFmS5ItISrbft6abA3p0HyTLYDesm5LOClJtoSoh7OXCziYab3ofcjJpnW1DvBi5uhYfnpmJIdfG0eftk1T9rZrhHXLgxOSbDU6Y5mZLWeuAKB3s34s/2FMR9oEOUdS7wralSdbGQWl5JXIZp5CAOxLyOJYSh5ajcKQDsGODqdJ9Y6yTu0/cDHbwZEIUZnLTSMUwhE+2haPisK4rqF0i7TfXnMN1ZSjIF0j/fjq0CVOXJJkq7HtvpBFYamZEF89O164kaSsImJCmudC9qbio3cj1FdPer6RhIxCepQvmBeipVJVlQVrrVvkTO0bRahv857+3a98f60DidnkFpkweDXP9WnC9cjIlmix4jMK+XjrBXKKSmttZ7GobDxtnYbx0KC29gjNKXUpH9mSaYSN76eT1pL6ozuHotNqJNG6Ru1kKqEQNscv5bEnIQt3Nw1Pj451dDhNLjrYm05hvpRZVDaclG1KhPOQZEs0O2VmCxZL7VsVZBQYue2f2/nL9yd57ZvjtbY9kZpHTrEJvValV5Tzjmo1tYpphPGZheQWyzStxqKqKj+VFzcZ3UU247westeWEL9YeywNgBs7hbaYokY3d7cWxviqfIsWIZyBJFuiWVmyPZ5ur/1IzJ/WcNcHOzlcw0LZBWtP2RKGbw5fsm34WJ1dFzIBaO+ronPgJsaOFuSjJybYG1W1Vs4TjWNvQjbJ2cV46DTNfgF7U4suT7bOXZHy76JlKzGZ+WyfdfuIigSkJZjQPQKArWczOFpe8l4IR2u5V47CJWw7m8F7m86TnldSZ9ujybn8+fuTGMuse8Ltjs9i8j+3V5lS9K9t8Xy+LxkAb3ctqmpNvmqy87w1sYg12H9jb2dTscB6y9krDo6k+Vh33Prt84TuEXi5yzLa6xHXyjryvD8hG1WV96touVYeSOZKvpEIgwc3x0U4Ohy76Rjmy03drMnl4o1nHRyNEFaSbAmnteXMFe77ZDdvrD3FrYu3kVVY89qq0jILf/zyMGaLyuD2QbwysSs+euuF66j/22QbnSots/De5vMA3N0vim9mDkWrUdhwMp0+f17Pv3cmVDpvmdnCnvgsADr4ycXbyE4hAGw6fUUuZhuByWxh5QFr4j9GphBetz5tA3DXakjLK5F1W6LF+s/OBF5afQyAx4bH4O7Wsi71nh3fEUWBH49f5mwts1aEsJeW9Q4ULuPClQJmfXbI9vvlPCP/t+50je2/3J/MqbR8Arx0vHNPb6YPjeaf995gu33Rz9ZvuNafuMyVfCMhvnr+fFsc7UN8uHdAGwAyC0t59evjtg0gAY6m5JJvLMPPw43W3o38JF3QoPZBuGs1JGcXc17WxVyX1NxiJvxjK9lFJnz0brZEVlw7D53WttfO9vMy1VW0PIeScmzrkFsHeHJ3vzYOjsj+OoT6MrpzKADfH011cDRCSLIlnFCZ2cIjS/aSVVhKm0AvljzcD4DP9yaRnl91OmGBsYy31p8B4MlRHQj20QMwomMI254fhaLA9nOZJGUV8Xn5HPa7+kbZ1l+9fEtXXp3Y1Xa+Od8etxXY2FF+wTYgOhCN7C2Ll7sbA2Ks5XU3nU53cDSuK7fYxH0f7+ZsegE+ejcW3NlDphA2kuEdrUnr+hNSjUy0PAs3nMGiQudwX75/ahie7lpHh+QQFTMFKvYvFMKRJNkSTmfbuQwSMosA+OD+PozsFErvNv6UWVS+OXSpSvtPt8WTUWAkKtCTaQMqf4vXOsCLoeXrjIYt2Mjm8g/eO/u0trVxd9PwyNBoDr82Dl8PN85cLuCTbfEAbC8f5Rrcvmk2CnZFI8ovZjdKsnXNFv98lvNXCokwePDD08Nsi7rF9bs5zrpeY8e5DFJzix0cjRD2k5JTbPsb9/59fTB4ttx9piq+dDmUlENukVTPFY4lyZZwOhV/LO7pH2Xb22lK71ZA1XKuFzOL+HDrBQCeHdep2tGBR4fFVPr9seExtv14rmbw1PHboda2f193mqSsIvYlWneiHxQjVeIqVJQn330hi7wS+SPWUFfyjfxnVyIA827vTlSgl4Mjal5iQnwYEB1ImUXl/U3nHR2OEE3qYmYR93+ymyF/+5khf/sZVYXB7YOq/RvXkkT6e9Ih1AeLCjvOZ9R9ByGakCRbwulUDPsPj/1lDcstPSJx0ygcS8mzLXgtMZm556Nd5JeU0Tncl4k9Iqs93/COIfx5cjdu6RHBmqeG8acJXWp87Bmj2hMV6ElpmXUqY2mZhTA/PTHBckFcITrYm/Yh3pRZVDaflikaDbVkRzwlJgs9o/xlnVYT+f2NHQBYdTAFY5nZwdEI0XR+/78DbD2bQUqOdRTXU6dlzqRuDo7KOVR8SbonIcvBkYiWTpIt4VRScqyFF7QahcHl0/8AAr3dGdnJuuB19UHr6NYX+5JIySkm1FfPpw/3Q1vLoqr7B7Xjn9NuoGukX62Pr9NqmFv+h+psunWvnpvjIlAUWbB1tTFdraNbXx2UjSNrk19i4pnPD/PiqqPsT8ymwFjGf3ZaR7VmjGwvr6smMqR9MKG+evJLymxTgYVobo6l5HKkfC+pp0bHMrVvaz64vw8dw3wdHJlz6NsuAIB9CdkOjkS0dJJsCafyY/mO972i/KvMN7+9fCrh6oMplJZZ+GCLdfrgjJHtiTB4NloMozqF0q08KesY5sOMUe0b7dzNxe29W6FR4KdT6bb1baKqj7fGs/JAMv/bc5E73ttB3Gs/kldSRkywN2Ol1HuT0WgU2zq4745INTLRPFVU6L21ZySzx3ZkwZ09bWuVBPSPtq61Pn4plwJjmYOjES2ZJFvCaZSZLbYL99vKE6urje4Siq/ejdTcEjq+/APJ2cUEebtzVyOXtlUUhU8f7senD/VjzVPDCPX1aNTzNwedw/2YPbYjAH/+7gRJWUUOjsj5lJktrNh7sdrbfjeyPRopb9mkbulhTbbWH78sUwlFs7PzfCabTl/BTaPYPotFZREGT1r5e2JR4dDFHEeHI1owSbaE09gTn0VKTjEBXjp+c1W1wAoeOi2v3NoVt6suUh8ZGt0kpW1DfT0Y1TkUN628RWry+xtj6Rxuna7yu//ut5XLF1Zbz2ZwOc9IoLc7J1+/iUX39ObBQW1ZPK13pWqYomn0aRNAiK+efGMZ+xNlGpFoPlRV5W9rTwFwd/8oolt4MYza9CufSijrtoQjyZWkcBpby9dWjOoUioeu+gRqat8oPn9iEANjAnlseAyPDY+ptp2wj7fv6oWHTsOxlDy+OVy1LH9Ltqp8PduknpF4umu5tWckcyfHMbFHpKzVsgONRrEtkN99QS60RPPx2d4kDifl4KnT8tToWEeH49T6lU8l3CfJlnAgSbaE09h21ppsDY0NrrXdDW0CWPHYIP40oYttY2LhGF0i/Jh5o/WP/d9/PE2Z2eLgiJxDfomJdcet6w+n3FB1Sqywj4HlydbO8s3JhXB1n+9L4oVVRwGYObqDTHOvQ7921mTr4MUcTPL3STiIXKkKp5BVWMqxS9aqSkM71J5sCefyyJBoArx0pOQUs10uagHrZtjGMgsxId50b2VwdDgt1vCO1s+S/RezyS4sdXA0Qlyfbw9f4qXV1kRrbNcwnhguxZvq0iHEB4OnjmKTmZ9OXnZ0OKKFkmRLOIV1x9NQVegc7kuon3xT50o83bW2Pc4+3noBVZW1W4eSrF8cDIgOkimDDtQ6wIvO4b6YLSqbzqQ7OhwhrtnxS7k8veIgJrPKyE4hfHh/HymyUw8ajWKrZPzxVqmcKxzDqZOt+fPn069fP3x9fQkNDeW2227j9OnTldqoqsqcOXOIjIzE09OTkSNHcvz48UptjEYjM2fOJDg4GG9vbyZNmkRycrI9n4qohcWi2qoQ3l5NFULh/KYPjcZdq2Hr2QzWn5BvD48k5wDQs7WMajnamPIS+xtOSLIlXNeS7QlYVOvr+ZMH+8mXOA3wu5Ht0WkV9iVmS7Ec4RBOnWxt3ryZJ598kl27drF+/XrKysoYN24chYWFtjYLFizgrbfeYvHixezdu5fw8HDGjh1Lfn6+rc2sWbNYvXo1K1asYNu2bRQUFDBx4kTMZikH7Aw+3HqBs+kF+OrduGdA45ZxF/bRLtib3w6LBuCva0626FLbFovK0fKNRnu09ndsMILRXayboW89e0VGXYVLKjNbWF8+BW760Gi0MqLVIGF+Hkzqaf0id+byA6Tlljg4ItHSOHWytXbtWh566CG6detGz549+fTTT7l48SL79+8HrKNaCxcu5KWXXmLKlCnExcWxdOlSioqKWL58OQC5ubl88sknvPnmm4wZM4bevXuzbNkyjh49yoYNGxz59JzWpZxi1h1Po7Ss6ReTZhQYeXv9GQBeuqULfh66Ou4hnNWMUR0I8dWTmFnEf3YmOjoch4nPLCTfWIbeTUPHMB9Hh9PixbUy4O6mIa+kjMRM2Q9OuJ69CdnkFJkI8NLZSpmLhnl2fEeig725lFvClHe3c+JSnqNDEi2Im6MDaIjcXOu3xYGB1uoy8fHxpKWlMW7cOFsbvV7PiBEj2LFjB48//jj79+/HZDJVahMZGUlcXBw7duxg/Pjx1T6W0WjEaDTafs/Ls74xTSYTJpOp0Z9bQ1Q8flPEkVlgZOLiHWQVmri9dyQLpsQ1+mNc7eMt5zGWWejR2o8pvcId3rc1aco+by70Gnj6xva8/PUJPtpygXv6tsLd7dq+z3Hl/j6YYC0S0jXCF9VixmRxjVE+V+7zunQJ9+Vwci4HEjNpZXB3dDg2zbnPnZUr9vmaI9ZtJEZ1CnGpzxRwnv4O9nLjkwd6c/dHe7mUW8JLq4/w2aP9m+V0TGfp85agvn3sMsmWqqrMnj2boUOHEhdnTQDS0qyllcPCwiq1DQsLIzEx0dbG3d2dgICAKm0q7l+d+fPnM3fu3CrH161bh5eX13U9l8ayfv36xj9nikJWoXWPq9UHL9HRcpHI63i6qgrVfZapKuy+ovDZBQ2g0M87mx9++OHaH8hOmqLPmxNPCxh0Wi7nG/nLsh8ZGHp907Zcsb+/idcAGnxN2axZs8bR4TSYK/Z5XfxM1v8n32w7jDb5oKPDqaI59rmzc5U+t6jw9QEtoBBSnMSaNRcdHdI1cZb+/l0szDuo5WBSLv9YsZaOhuY7tdhZ+rw5Kyqq32wJl0m2fv/733PkyBG2bdtW5bZffzOhqmqd31bU1ebFF19k9uzZtt/z8vKIiopi3Lhx+Pn5NTD6xmUymVi/fj1jx45Fp2u8aXeqqvL2P7YDv7x4dhWH89EdvRv87U9esYmZnx1md3w2/dr6M6R9EOn5Rnq38adNoBdbzmTwv/PnARjRMZjn7234Y9hTU/V5c3TZP54FP55ld64fcx4YfE0Vs1y5v5d8uBvIZdKQHkzoFenocOrNlfu8LqWHLrF15TGyNP5MmDDQ0eHYNOc+d1au1ue747PI27UPg6cbT9015ppnCziKM/b3ed1Jlu1O4qgplFkT+jg6nEbnjH3eXFXMequLSyRbM2fO5JtvvmHLli20bt3adjw8PBywjl5FRETYjqenp9tGu8LDwyktLSU7O7vS6FZ6ejqDBw+u8TH1ej16vb7KcZ1O5zQv3saOZV9CFgmZRXi5a1nx2EDufG8nm89ksDsxl2GxIfU+T3ZhKQ8u3c+xFOuLcFd8NrvirRWA/rM7qVLbW3tGMn9Kd9zdXeKl6FT//53VfYOieW9TPBcyCtl8Lotx3cKv+Vyu1t+qqnI23VrAp0ebQJeKvYKr9Xl9jOgUBhzj6KU88ktVAr2dZyohNM8+d3au0udry6to3tQtAm/PqtckrsKZ+vvR4e1ZtjuJrecySc0z0SbIOWYrNTZn6vPmqr7969Rfkaiqyu9//3tWrVrFzz//THR0dKXbo6OjCQ8PrzRUWlpayubNm22JVJ8+fdDpdJXapKamcuzYsVqTrZaoYg+KCd0j6NHan7v6RQGw+mBKve6fmlvMf3YmcOf7OziWkofBU8efJnQmJtgbRYEuEX50CPUh3M8DnVbhyVHt+cddvfDRu0aiJerHz0PHvQPbAvD+5vMtqgJcam4JBcYy3DQK7YK8HR2OKBfq50GXCD9UFVYdkG0/hGsoM1tYe8y63OGWHhF1tBb11TbIm2GxwagqLN/jmtMyhWtx6qvcJ598kuXLl/P111/j6+trW2NlMBjw9PREURRmzZrFvHnziI2NJTY2lnnz5uHl5cW0adNsbadPn84zzzxDUFAQgYGBPPvss3Tv3p0xY8Y48uk5lTOX81l7PA2tRuGRIdakdnKvSP6zK5F1xy9TYjLjodPWeP8ys4UHPtnD2fQCAEJ89Sz/7QBiw3x5cHA7MgtKifT3tLW3WFTZkLEZe2RIO/61PZ4DF3O475PdzL+9B1GBnk49VbQxnLls3XKiXbC3y033ae4eHNSWF1Yd5eOt8TwwqJ38/xEO9fWhFN5cd4bbekUya0zHav8e7onPIqOglAAvHYPaBzkgyubr3gFt2Xo2gy/2JfGHsbHo3Wq+vhHiejn1X5v33nuP3NxcRo4cSUREhO3ns88+s7V57rnnmDVrFjNmzKBv376kpKSwbt06fH19bW3efvttbrvtNqZOncqQIUPw8vLi22+/RauVN1eFf5VvKnxj51C6RlrXpN3QJoBIgwcFxjI2nb5S6/2/2J9sS7SGdgjms8cGEhtm/X+gd9NWSrQASbSauVA/D54Z2xGA7ecyGf73jTz67/2YLc17lOtc+XtASr47n9tvaEWor560vBK+OlS/0XohmkJmgZGXVx/jYlYR7/x8jseX7aeotKxKu4pZJTfFhaPTOvXlmssZ0yWUMD89mYWl/Hj8sqPDEc2cU797VVWt9uehhx6ytVEUhTlz5pCamkpJSQmbN2+2VSus4OHhwaJFi8jMzKSoqIhvv/2WqKgoOz8b53UkOYcVe61rqaYP/WWqpkajMLGndYH/t0cu1Xh/k9nCPzacBeCViV1Z9tsBxITIxWZL9+iwGGbe2AF9+QjChpOXWb67ee+/dfayNdnqEOpbR0thb3o3LQ+Xj9r/d7dMHRKOkVdi4rkvj5BvtCZXbhqF9ScuM3zBJvYnZtnabTydzhf7rVNep9zQutpziWvnptVwd782APx7R0KLmu4u7M+pky3R9HKLTDy/8igAE7qHMzCm8lSFW3tYk62fTl6m0Fj1mzeA745cIi2vhBBfPfcNbNO0AQuXodEoPDOuE6f/cjOvT+4GwFvrz9T4OmoOzqRbpxHKyJZz+k3f1rhpFA4n5XAyVTY1FfZVYjJzx7s7+OmUtejFpw/349+P9CfEV09GgZE73tvJ4aQcEjMLmbHsAAA9Whvo21Y2Mm4Kd/ePwk2jsC8xu95r04W4FpJstXDz1pzkZGoeQd7u/GlClyq3x7Xyo12QFyUmCxtOVh1qN5ktvLnuDAAPDGwr855Ftab1b0PbIC+yi0x8fzTV0eE0CYtF5dzlimmEMrLljIJ99IzqHArAzf/Yyu3vbuc/uxLZm5Al32yLJvfmutOcTS/Az8ONRff0ZlSnUAZ3CGb9H4YT5metNHjfx7u575PdFJvM9G7jz/8eHdjs17o6SoTBk6dGxwKweOM5yswWB0ckmitJtlqwtNwSVpZX5vrnvTfQOqBq+VNFUbi1fCrhl/urVvFafSCF5Oxign3c+e2wmKYNWLgsN63GVt3ys71JdbR2Tacv55NvLMPLXUt0sFQidFbPjOtIqK/1wvbgxRxe+eoYv3l/J7M/P4xJLrZEE/l8bxIflVf8ffuuXra/qwD+Xu789MxIukX6kW8sIymrGC93Lf+4qzfeUq23ST0yNBp/Lx0XrhTywZYLjg5HNFOSbLVgy3cnUmZR6d8usMr0wavd3rsVWo3C1rMZ/HTV6JbJbGHRRutarceHt8fTXUa1RM3u7NMarUZhf2K2rWpfc7LzfCYA/doFymJ2J9Y53I89L43h34/0576BbejeygBYixHc9/FuXlx1lGc+P8wPR1M5f6WA9PwS/rnxHFPe3c5b606z6XQ6By5mU2IyO/iZCFfx/ubzPL/qCAAPDGrL6C5hVdr46N14444eBPvo8fNw4+27ejXb/Z+ciY/ejT+O7wTA3388zS3vbOW/uxPJLzE5ODLRnMhXJi1UicnM/8pHGB4Y3LbWtjEhPvx2WDQfbL7An787wbDYENzdNKw+mEJSlnVU615ZqyXqEOrrwejOoaw7cZnnVx7hf48ORKtR2H0hi4MXs7m5ewQdQl13rdOuC9Zkq7YvLoTzGN4xhOEdrZu1bzyVzhPL9rM7Povd8dYiBSur2Y/rwMUc27/D/PT8bUoP27REgISMQpbtSmT/xWzcNArv3tuHEF/X3YhWXL+vDqbwtx9OAdZEa+6kbjW2jWtlYNeLNwLW2QDCPqb1b0NmQSlvrT/D8Ut5vLT6GK98dYwpN7Tm8eExtsrKQlwrSbZaqLc3nOFKvpFIgwfju4XX2X7mjbGs3J9CQmYR609c5pYeEbaKXr8dFoOXu7yURN2eu6kTW85e4eDFHDq/srbSbR9sucCrE7sytZ/rVQq1WFTbRbrsh+N6RnUOZeXvBvPtkUt46dwoMJpYtusixeWjVzqtwk1xEeQVm0jPN3Ipp5jLeUYeXrKXER1D+O2waML9PLjtn9spLP1lxOuej3bxf7/pSa8o/1ofX1VVCo1lMmWsmcktNvHn704A8PtRHXhmXMc6119JkmV/iqLw1OhYbooL57+7EllzLI0r+Ua+3J/M6oMpPDy4Hc/d1Fn25hPXTD7ZW6CswlI+Lp87/vzNnes15clH78bUvq15d9N5Vh5IRqe1VvTSKHCHlKUV9dQh1JeFd/XipdXHyCwstR1XFCgwlvHcyiO8v+U8wd7u9NArTHBgrA1xMi2P3GITPno34sr3qROuJa6VgbjyKYUAz4zrhNmikpZXgsFTR7DPLyNUJSYzf//xNP/aHs/mM1fYfOaXfQi7tzIwLDaYD7dc4Fx6AXe8t4O/TenOb/pW/RJhX2I2H5zU8PTO9QDc0iOChXf1kmmozcQ/Npwls7CUDqE+PD0mVgpdOLmOYb7MnRzH3MlxfHP4Eh9uOc+xlDw+3hbP6cv5vH9fH/lCRFwTedW4qJKSEgoLC9HpdFVu02q1eHh42H4vLCysdPt3B5IxlRTTMcyHcZ0CK93267ZXm9AliHc3nefnU+n8fCodi6mEMV3C8NKUUVhYuZy3oih4ef0y37yoqKjGal+/bltcXIzFUvNCdW9v72tqW1JSgtlc8zqL2tqaTKZKfe7l5WX7w2k0Gikrq7mceUPaenp6otFYL7RKS0sxmWqeN96Qth4eHrZNvBvS1mQyUVpaWmNbvV6Pm5tbg9reFBfB0PaBnEnNIsDLHW93N9zdNLy76Rzvb7rAuZQSzmvd2KfVMiEllx6t/TEajTWe193d3fY+MJvNlJSU1NhWp9Ph7u7e4LYWi4Xi4uIa2/5w2Dold0B0IBql9veRm5sber31wl1VVYqKihqlbV3v+7ra/vo1XkGj0eDp6VmpbU1+3bYh73tn/YwI91IA62dcRVsPnZY/jolhcrcgVuy9yP/2JGG2qLQO9OCfU7sS5GPdBuOv35/i+6OpPLtiP+cuZTCqUyhhBg9CfT345nAKf1p1DLNFRdHpURSF74+kEuql4dmxsTXG2xI+IwDKysrq/b5vSNuK931Nfz8b6zPiuyOX+HTzKSwWledGd0M1l4G2fp8nzvoZUZPaPiN+/bniKp8RozsYGN3hBn46eZkXvjnD1rMZPLFsPx9O69Fo1xxNdR1R8R6C5v0Z4VJUUS+5ubkqoObm5jo6FLW0tFQFavyZMGFCpfZeXl41th0xYkSltsHBwTW27du3r/r75QfUts9/p7Z9/jvVNziixrZdu3atdN6uXbvW2LZt27aV2vbt27fGtsHBwZXajhgxosa2Xl5eldpOmDCh1n672p133llr24KCAlvbBx98sNa26enptrYzZsyotW18fLyt7bPPPltr22PHjtnavvbaa7W23bNnj63tggULam27ceNGW9vFixfX2va7776ztf30009rbfv555/b2n7++ee1th340Mtq2+e/Uycv3qp+++23tbZdvHix7bwbN26ste2CBQtsbffs2VNr29dee83W9tixY7W2jRpxl9r2+e/UlfuT1Pj4+Frbzpgxw3be9PT0Wts++OCDtrYFBQW1tr3zzjsrvYZra9uUnxFXa9u2bY1tW8JnhMViUZ//8rDqHTe61rY/7T+lfns4xfq5esMttbaVzwjrz6effmpr+91339Xa9urPiPXr19fatqk+I5599llbW/mM+IUrfEYcSMxSO760Rm37/HfqgBFjau23qznqOuLMmTPqV199pZaWljbrzwhnUN/cQOYqiAb5x129WD1jMP9+pD+B3u6ODkc0U1P7tEKnqBxKyuX4JefffDa32ITeTcO4eqx/FC2HoijMmdSNrhG1Ty3tHO7LxB6R3NmnNXVt9/Xov/exZHu87AsmhJ30bhPA/QPbApCYWfMInxA1UVT5xK6XvLw8DAYDubm5+Pk5dk2GyWRi1apVjB8/vt7TCEtMZu79eBcnLllLbr9zdy/Gdgtv8VOE6tvWZDLx448/2vpcphFaNdUUIUVRePzDn9iapiHYy40vHu1LqJ9HtW0dOY1QVVUe/c9+dlzI5o6+7Xjrrl4uO0Xo16/xCvIZcW1ta3rf70/M4lRqPl0jfekW7sO6deu4/fbbcXd3p8BYxqR/bORcWh6tAjzo1Tqgyibgis4dRdEw88YO/H5Eu0b7PHG1z4hrnUZYUlLC119/XePfz+v5jEjNzOXWxdvIyC9lVOcQFt1zA1qNUm1bV/yMqEld0wiv/lxx1c+I1Nxihr2xEVOpkaUP9aFfdPWFkJxlGuHatWuZMGECqqo22+sIZ1Df3MB5IhYN4uHhgbe3d7V/LH7N29ub/229wKkME4H+vqz63WBiQqovsX31B0Vdrv5ga8y2V38QN2bbq/9wNLStyWSqsc/1er3tj11dGtLW3d3d9sfZUW11Ol29XmMNbevm5lbrB6bJZOLWNhbSLL6cTS/k6ZUnWfJw3aOpWq223q/hhrTVaDTVtv36UAo7EwvQ6dx5ekxsrW2royhKk7SFhr2Xvb29a32NX+t5W9JnRG2uft8P7+rN8K7W4xV9XnER5aN34+OHBzH5n9tJLSwj9XQ2GncPnhzVnvsGtuVUWj47zmXw0dZ4Fv18juyiUv44vjOHk3LQahQCvNzpFO5ru8C/WnP7jLjWthVJRH3+fjbkM0JRFN7edJEso4YOrYJ4/6EhNe496aqfEdfStq7PFVf5jIgweDK1XxTLd19kwU+JfDszqtr32dWu9TPiettenQQ15+sIVyLJVjOmqiqKolBgLOPdTecBeOGmzjUmWkI4E70WFt/di7s+3sOR5FzGvLWZt+/qxYjyvZEcLSmriHlrTgLWrRHaBtX/YkSImsSE+LDk4X78d9dFcotNDGofxPSh0SiKQoTBk5EdQwjy0fPG2lMs23WR5bsvYrnqy/52QV5M7RfF9KHR6N1ko3l7+ev3J/lyv3Vvtr/cFldjoiVc1zNjO/Lt4UucSM3js71JTBsg+4uK+pFkq5ladSCZv3x/kuhgb7zctWQVlhIT7M2dfaRMu3AdMSHefPnEIB78115Scop58F97+MfdvZjcq5VD47qcV8LUD3ZyOc9ITLA3j4+IcWg8onnp0zaQPm0Dq71NURSeGNGeVv6ezPrsEGaLSlSgJ546LcnZxSRkFrFg7Wk2nkrn4wf6YfCq/C2xqqrsvJDJ+hOX6RLux5QbWsneTtdp/YnLfLwtHoC/TenO4PbBDo5INIUgHz2zx3Zk7rcneHPdaW7v3UqSalEvkmw1Q5/vTeK5lUcA655aFV64ubP8URUup0OoL+v+MJxXvz7OygPJ/PX7k4ztGuawjbSLSsuYvnQvqbkltA/x5n+PDsRDJ39whX3d2jOSTuG+mMwWukb4oSgKuUUmVh9M5s11Z9ibkM2ti7cxe2xHogK92BOfxYnUPI6l5BKf8cuamnd+Pssz4zpya49I+ftwDSwW1TbC/fjwGO7uL6Mdzdl9A9vyr+3xJGUV8+X+JO4f1M7RIQkXIMlWM3Ml38grXx8DoG2QFwZPHbnFJsZ1DWNs1zAHRyfEtfHWuzFvShx7EjJJyirmk63xzBxd815ETUVVVf74xRGOpeQR5O3Okof711i4Q4im1jHMt9LvBi8dDw2JZmD7IKYv2cfFrCJmfXaoyv283LUM7RDMvsRskrOL+cNnh/njF0eY0D2Cv94eh69H062ZyCkq5V/bE9h+LoNwPw+eGh1Lp3Dfuu/opDafuUJ8RiG+Hm485YDPJGFfOq2GR4fF8OrXx/lw6wXu6d9GvqQQdZJkq5n51/Z4jGUWurcy8PWTQ9DUsYBTCFehd9Pyx/Gdeep/B3l/83nu7t+GEN/6LShuDIXGMuatOcn3R1PRaRXev78PUYH1X7AthL10Dvfjh1nD+GjLBZbvvkhRqZmBMYH0bRdITLA3Q2OD8fXQUVxq5r1N53h/ywVKyyx8U74e5aMH+hId3LhrEFVVZdWBFP665mSlGRffH03lqRs7MHtcp0Z9PHuwWFTe+fksAHf1jcJbL5dULcFv+kSxcMNZkrKK+WJ/MvfIaKaog3wyNCMlJjP/3ZUIwMwbO0iiJZqdid0j+HjrBY4k5/LmutP87Y4ednlcs0Xl0X/vY8f5TADmToqjX7vq19QI4Qz8PHQ8M64Ts8d2BLBVPLyap7uW2eM68dToWPYnZvP0ikOcSy/g1kXbuG9gW343sj0Gz+sb5cosMPLl/mR+PpXO7vgsADqG+XBXvzbsic/kx+OXeefncxi83Jk+NPq6HsveXv/uBAcv5uCh0/DYcFm32VJ4umuZMbI9f/n+JG+sPcXYrmEE+9jviz/heiTZakbWnbhMXkkZkQYPRneRKYOi+dFoFF6+pStTP9jJivJqUD1a+zf54/5jwxl2nM/Ey13LP++9gVGdQpv8MYVoDNUlWb/mptUwICaIb2YOYcayA+xLzOb9zefZfOYKM2/sQHpeCQmZRfh5uOFXnnwdTcml0GgmxNed5Oxiukb68Zs+rYkweJKUXcSn2xI4d6WAYym5GMusexi5u2mYNSaWR4fFoNNqmD40mn9uPMfffzzNn787QXpeCbf0iCAu0uD0XxauPZbGkh0JKAq8cUcPmU7cwjw0uB0rD6RwMjWPhz/dy/M3dWZorBRGEdWTZKuZsFhUPtl6AYA7+rSuc/8HIVxV/+hAbusVyVeHLvHB5gv8894bmvTx1h5L5Z2fzwHw19vjJNESzVaorwefPz6I9Scv8+Kqo5xMzWPGfw/U675bz2bwweYL1d7Wo7WBm+MimNA9vMoWCTNGtiev2MQHWy7YfrpE+PH3O3sQ18pw3c+pKaw5msoznx8G4PHh7R1eHVXYn5tWw9t39WTy4u0cTcnlvk92M7RDMDfFhTMwJpAOoa67DlE0Pkm2momvDqVwODkXb3ctD0h1HNHMPTGyPV8dusQPx1JJyCikXROsL9l85gqfbItn+7kMwPpN5u29ZesE0bxpNArju4XTLdKPdzedZ298FmF+HnSN9KO41ExusQkVaBPoiVZRSMsroXO4Hz+fSmdb+XtFo8CYLmHc0iOC6GBvurcy1DjCpigKL9zcmU7hvnyxL5mdFzI5mZrHrYu30bO1P2O7hvHYcOtImCOUmS2Umi146rSk5pYwb81JvjuSCsDwjiH8YawUxWipOof78eUTg1m6M4GvD6Ww7VyG7T1wY+dQ7unfBk+dFhWVQmMZG09d4cDFbIJ99IzpGkZMsDcqKoPbB0tF22auRSVb7777Ln//+99JTU2lW7duLFy4kGHDhjk6rOu243wGz35h/ZbtdyPb27VogBCO0Dncj1GdQth4+gp/+f4EHz3Qt17TpWpSZrZwKCmHs+kFHEjMZtOZK1zJN9pun3JDK166pUtjhC6ES2gd4MW827vXu/0jQ6MxlpmxWECrUXB3q39ypCgKU25ozZQbWpNRYOS1b47z/ZFUDiXlcCgph4MXc3j7rp5NViWxuNTM6cv5JGcXseZoKoeTcvHQacguMpFdVIqqgqKAWr55tFajMGNke2beGNug5yman+6tDfzfb3ry1I2xfL4viUNJOew4n8HPp9L5+VR6tfc5m17AzguZtt+DvN15cHA77ujTmlb+nvYK3WUYy8zc/8keUrKLeWViF26Ki3B0SA3WYpKtzz77jFmzZvHuu+8yZMgQPvjgA26++WZOnDhBmzauV0nGrEJiVhHL96SwbHciFtU6VeO3w2SRrmgZnh3fie3nMtlwMp0FP57mj+M6NWidR1JWEccv5bL5zBXWHb9M5lUV0gB0WoV7+rdh2oA2dA73a+zwhWh29G7X/+18sI+ef067gT+MyWfH+Uz+8t1JNpy8zPAFG7kpLpzRncMYGts4IwEWi8oX+5N4Y+3pShUSq1ORcPVoZeD1yXH0jPK/7scXzUebIC+eHW+tqBmfUciHW85zIDEHsL5utBqFnlH+jOoUSkp2EetOXCa7yERGgZEr+UbeWn+GtzecYWiHYO7s05rx3cJltKvcf3Ymsqe8uM4fPjtMj9b+RLpYUtpikq233nqL6dOn89vf/haAhQsX8uOPP/Lee+8xf/58B0fXMOevFDJ3v5bcXdtsx/q3C+TTh/vJm1O0GN0iDbw2qSsvrT7Ge5vOcyo1j7mT4mgTVLUcu8WikldiIrOwlP0J2SzbnciR5NxKbQK8dPSM8ic21IeRnULp0zZA3k9COEiHUF86hPoS18rAHz47RGJmEf/bk8T/9iTho3djVOdQ2gR60jbQm3bB3rQL9iLER1/rCLeqquSXlHGpEP6z6yLL9iRx4Yp1g2d/Lx1tA73o3SaAMV3C0CgQ6ONOsI8eD52WImMZfp46+UwQdYoO9mb+lNor5T40xFp502S28N2RS3y+1zqFduvZDLaezcBH70a/dgEMiAliQHQg3SINNY6imi0qhaVllJlVtBoFxWLGolpnbOSXlpJbbKLQWIaxzExpmUqgtzsR/h74/WqkWFVVCoxl5BabCPR2x8v9lxShzGwhIbOQU2n5nEnL52RaPrnFJty1Grz1Wrzc3bicV0JOkQlvvZa4VgZ6tDYQF2kgKtCrzvdNicnMgYvZnL1cgLubBq1GIcjbnUh/T97ddN7WrthkZu63x3n/vj7XNZvF3lpEslVaWsr+/ft54YUXKh0fN24cO3bsqPY+RqMRo/GXaUR5eXkAmEwmTCZT0wVbB4tF5fmVR8k1WV9k3Vv58fSN7RnWIRiNRnVobM1ZRb9K/9pHfft76g2RKKqFud+dYuPpK2z8+0Z8PdzwcteiVRQ0GoWi0jJyikxY1Mr3ddMotA/xpn90IKM6BjMwJvBX60IsmEyWRn5mzkte4/YnfV637hE+/DBzMHsSsll7/DJbzmRwKbeEbw9fqtLWW68l2FuPTqtQZlEpLbNgLLOuuar4t5UbHDkFgI/ejd+PiuGBgW1qWRemovfU0tI+ExqDvMbrNjEujIlxYSRlF7HqwCVWHbzEpdwS69+001cA60yLMF89Go2CRbUmRiazdS1YYam5mrO68YddG2p9XG+9llAfPSaLSlFpGfklZZjMv/yhDPFxx9fDjRKThYzCUkrL6v/a35uQXen3AC8dAV7uaBTrSB+AgoJFVSksNZNRYKz02L/WMdSHBXfEcccHu/nx+GXe3XiWx4Y5fquI+r6uFVVVa352zcSlS5do1aoV27dvZ/Dgwbbj8+bNY+nSpZw+fbrKfebMmcPcuXOrHF++fDleXo7byDSpAN46psVNgVlxZlo1bl0AIVxSSiGsTtBwLk9BpeZvuzy1Kv7u0DfEwoBQFd+mWQIihGgiFhUS8uFsnkJuqUJGCVwpUcg2Uut7/2rebirBHtAvxEK/EBUPGawSTsSiWv+mnctTOJ+ncD5foajs2kdx9Brra1ynsRavKSij1vNpFRWzWvV2d41KhBeEe6pEeqsYdNYlLcVmKC6DQD14uUFhGVwsUEgqVLhUCEZL/WI36FSifFRUrH2QVqSQUwoRXvBArJkIL9iSqrAyQcuQMAu/ibbg6MGtoqIipk2bRm5uLn5+NS83aBEjWxV+PeSoqmqNw5Avvvgis2fPtv2el5dHVFQU48aNq7VD7WHksBxWbtjJQ7eNRaeTq0V7MJlMrF+/nrFjpc/t4Vr6+1GgqLSMSzklGMssmC0qZlXF211LgJc7Bk+dLGavhbzG7U/6vPEYyywkZRWRW2zCZFZx0yro3TS4azW4u5X/aDXoNBZ2bN4ofW4n8hq/fqqqcim3hPQ8IyrWkSGNouCmUfDWa/HVu+Gjd0On1WBWVQpLjKzfsJGRI0cS4OOBWzUjtkWlZaTlGrlSYMTdTYOXToufpw5/Tx2e7lqyCktJyyshv6QMD52WAC8drf09G7z/naqq5JWUkZprnWJoTaV+KTajKODt7kaAt/X8V1+Tq6qKRaXSVkYTgMkXMhkYHegU0wgrZr3VpUUkW8HBwWi1WtLS0iodT09PJyys+s1/9Xo9en3Vqn46nc7hHxidIvzpFaQ6RSwtjfS5fTW0vw06HQZv11o462zkNW5/0ufXT6eDLq3qrsRbMe1H+ty+pL+vT7sQd9qF1K+tTqvBWwchBq8a+7zib2WnGs4R5q8jzL9xpk4Fu7sT7Nd4M8KGdwpvtHNdr/q+plvE17zu7u706dOH9evXVzq+fv36StMKhRBCCCGEEKKxtIiRLYDZs2dz//3307dvXwYNGsSHH37IxYsXeeKJJxwdmhBCCCGEEKIZajHJ1l133UVmZiavv/46qampxMXFsWbNGtq2bevo0IQQQgghhBDNUItJtgBmzJjBjBkzHB2GEEIIIYQQogVoEWu2hBBCCCGEEMLeJNkSQgghhBBCiCYgyZYQQgghhBBCNIEWtWbreqjlO7DVdwOzpmQymSgqKiIvL0/2rbAT6XP7kv62P+lz+5M+tz/pc/uS/rY/6XP7qcgJKnKEmkiyVU/5+fkAREVFOTgSIYQQQgghhDPIz8/HYDDUeLui1pWOCQAsFguXLl3C19cXRVEcGkteXh5RUVEkJSXh5+fn0FhaCulz+5L+tj/pc/uTPrc/6XP7kv62P+lz+1FVlfz8fCIjI9Foal6ZJSNb9aTRaGjdurWjw6jEz89P3kh2Jn1uX9Lf9id9bn/S5/YnfW5f0t/2J31uH7WNaFWQAhlCCCGEEEII0QQk2RJCCCGEEEKIJiDJlgvS6/W89tpr6PV6R4fSYkif25f0t/1Jn9uf9Ln9SZ/bl/S3/UmfOx8pkCGEEEIIIYQQTUBGtoQQQgghhBCiCUiyJYQQQgghhBBNQJItIYQQQgghhGgCkmwJIYQQQgghRBOQZMvFvPvuu0RHR+Ph4UGfPn3YunWro0NqNubPn0+/fv3w9fUlNDSU2267jdOnT1dqo6oqc+bMITIyEk9PT0aOHMnx48cdFHHzMn/+fBRFYdasWbZj0t+NLyUlhfvuu4+goCC8vLzo1asX+/fvt90ufd64ysrKePnll4mOjsbT05OYmBhef/11LBaLrY30+fXZsmULt956K5GRkSiKwldffVXp9vr0r9FoZObMmQQHB+Pt7c2kSZNITk6247NwLbX1uclk4vnnn6d79+54e3sTGRnJAw88wKVLlyqdQ/q8/up6jV/t8ccfR1EUFi5cWOm49LfjSLLlQj777DNmzZrFSy+9xMGDBxk2bBg333wzFy9edHRozcLmzZt58skn2bVrF+vXr6esrIxx48ZRWFhoa7NgwQLeeustFi9ezN69ewkPD2fs2LHk5+c7MHLXt3fvXj788EN69OhR6bj0d+PKzs5myJAh6HQ6fvjhB06cOMGbb76Jv7+/rY30eeN64403eP/991m8eDEnT55kwYIF/P3vf2fRokW2NtLn16ewsJCePXuyePHiam+vT//OmjWL1atXs2LFCrZt20ZBQQETJ07EbDbb62m4lNr6vKioiAMHDvDKK69w4MABVq1axZkzZ5g0aVKldtLn9VfXa7zCV199xe7du4mMjKxym/S3A/1/e/cfE3X9xwH8efwUPAQOguOHR5IOECgF5ioJtIilOHRuqGD86MiNEoVs5I9W2ZxGy3RRRmUKLWqwGjh0s0Tkh9gKO0ChFiA/hWDMjUDl8IB7f/9oXt8TNJA7LvT52G7z3u/3fT5vnp8bH1983vc5QbPGsmXLREpKil6br6+v2LVrl4lm9GDr6+sTAERFRYUQQgitVivkcrnIzMzUjRkeHhb29vbis88+M9U0Z73r16+LRYsWiZKSEhEeHi7S0tKEEMzbGHbu3ClCQ0Pv2s/MDS8qKkoolUq9tvXr14sXX3xRCMHMDQ2AKCoq0j2fTL5//fWXsLS0FPn5+box3d3dwszMTPzwww8zNvfZ6s7MJ1JdXS0AiI6ODiEEM5+Ou+Xd1dUlPDw8RENDg/Dy8hKHDx/W9TFv0+KVrVlCo9FApVIhMjJSrz0yMhI//fSTiWb1YBsYGAAAyGQyAEBbWxt6e3v1joG1tTXCw8N5DKZh69atiIqKQkREhF478za84uJihISEICYmBi4uLli6dCmOHj2q62fmhhcaGorS0lI0NTUBAC5duoSqqiqsXr0aADM3tsnkq1KpMDIyojfG3d0dAQEBPAYGMjAwAIlEoruKzswNS6vVIj4+HhkZGfD39x/Xz7xNy8LUE6DJuXbtGsbGxuDq6qrX7urqit7eXhPN6sElhMCOHTsQGhqKgIAAANDlPNEx6OjomPE5Pgjy8/NRU1ODixcvjutj3obX2tqK7Oxs7NixA3v27EF1dTW2b98Oa2trJCQkMHMj2LlzJwYGBuDr6wtzc3OMjY1h//79iI2NBcD3ubFNJt/e3l5YWVnB0dFx3BieX6dveHgYu3btQlxcHObNmweAmRva+++/DwsLC2zfvn3CfuZtWiy2ZhmJRKL3XAgxro2mLzU1FZcvX0ZVVdW4Ph4Dw7h69SrS0tJw5swZzJkz567jmLfhaLVahISE4MCBAwCApUuX4rfffkN2djYSEhJ045i54RQUFCAvLw/ffvst/P39UVdXh/T0dLi7uyMxMVE3jpkb1/3ky2MwfSMjI9i0aRO0Wi0+/fTTfx3PzKdOpVLho48+Qk1NzZSzY94zg8sIZwlnZ2eYm5uP+wtEX1/fuL/Y0fRs27YNxcXFKCsrg6enp65dLpcDAI+BgahUKvT19SE4OBgWFhawsLBARUUFsrKyYGFhocuUeRuOm5sbFi9erNfm5+enu8kO3+OGl5GRgV27dmHTpk0IDAxEfHw8XnvtNbz33nsAmLmxTSZfuVwOjUaD/v7+u46hqRsZGcGGDRvQ1taGkpIS3VUtgJkb0vnz59HX1weFQqE7l3Z0dOD111/Ho48+CoB5mxqLrVnCysoKwcHBKCkp0WsvKSnB008/baJZPViEEEhNTUVhYSHOnTuHBQsW6PUvWLAAcrlc7xhoNBpUVFTwGNyH5557DvX19airq9M9QkJCsHnzZtTV1cHb25t5G9jy5cvHfZ1BU1MTvLy8APA9bgxDQ0MwM9M/1Zqbm+tu/c7MjWsy+QYHB8PS0lJvTE9PDxoaGngM7tPtQqu5uRlnz56Fk5OTXj8zN5z4+HhcvnxZ71zq7u6OjIwM/PjjjwCYt8mZ6MYcdB/y8/OFpaWlOHbsmPj9999Fenq6mDt3rmhvbzf11B4Ir7zyirC3txfl5eWip6dH9xgaGtKNyczMFPb29qKwsFDU19eL2NhY4ebmJgYHB0048wfH/9+NUAjmbWjV1dXCwsJC7N+/XzQ3N4tvvvlG2Nrairy8PN0YZm5YiYmJwsPDQ5w6dUq0tbWJwsJC4ezsLN544w3dGGY+PdevXxe1tbWitrZWABCHDh0StbW1ujvfTSbflJQU4enpKc6ePStqamrEs88+K5544gkxOjpqqh/rP+1emY+MjIjo6Gjh6ekp6urq9M6nt27d0m2DmU/ev73H73Tn3QiFYN6mxGJrljly5Ijw8vISVlZWIigoSHdbcpo+ABM+cnJydGO0Wq145513hFwuF9bW1iIsLEzU19ebbtIPmDuLLeZteCdPnhQBAQHC2tpa+Pr6ii+++EKvn5kb1uDgoEhLSxMKhULMmTNHeHt7izfffFPvP53MfHrKysom/N2dmJgohJhcvmq1WqSmpgqZTCZsbGzEmjVrRGdnpwl+mtnhXpm3tbXd9XxaVlam2wYzn7x/e4/faaJii3mbjkQIIWbiChoREREREdHDhJ/ZIiIiIiIiMgIWW0REREREREbAYouIiIiIiMgIWGwREREREREZAYstIiIiIiIiI2CxRUREREREZAQstoiIiIiIiIyAxRYREREREZERsNgiIqJZZe/evViyZMmM77e8vBwSiQQSiQTr1q2759gVK1YgPT19RuZ1e3+351ZXVzdj+yUionuzMPUEiIiIbpNIJPfsT0xMxCeffIJt27bN0IzGa2xshIuLi8n2P5HCwkK0tLRg2bJlpp4KERH9HxZbRET0n9HT06P7d0FBAd5++200Njbq2mxsbCCVSiGVSk0xPQCAi4sLHBwcTLb/ichkMgwODpp6GkREdAcuIyQiov8MuVyue9jb20MikYxru3MZYVJSEtatW4cDBw7A1dUVDg4OePfddzE6OoqMjAzIZDJ4enri+PHjevvq7u7Gxo0b4ejoCCcnJ6xduxbt7e1TnvPNmzeRkJAAqVQKNzc3fPjhh+PG5OXlISQkBHZ2dpDL5YiLi0NfXx8AQAiBhQsX4uDBg3qvaWhogJmZGVpaWgD8vXxSoVDA2toa7u7u2L59+5TnSkREM4vFFhERzXrnzp3Dn3/+icrKShw6dAh79+7FmjVr4OjoiF9++QUpKSlISUnB1atXAQBDQ0NYuXIlpFIpKisrUVVVBalUihdeeAEajWZK+87IyEBZWRmKiopw5swZlJeXQ6VS6Y3RaDTYt28fLl26hBMnTqCtrQ1JSUkA/l46qVQqkZOTo/ea48eP45lnnsFjjz2G77//HocPH8bnn3+O5uZmnDhxAoGBgfcfGBERzQgWW0RENOvJZDJkZWXBx8cHSqUSPj4+GBoawp49e7Bo0SLs3r0bVlZWuHDhAgAgPz8fZmZm+PLLLxEYGAg/Pz/k5OSgs7MT5eXlk97vjRs3cOzYMRw8eBDPP/88AgMD8dVXX2FsbExvnFKpxKpVq+Dt7Y0nn3wSWVlZOH36NG7cuAEAeOmll9DY2Ijq6moAwMjICPLy8qBUKgEAnZ2dkMvliIiIgEKhwLJly7BlyxYDJEdERMbEYouIiGY9f39/mJn9c0pzdXXVu/Jjbm4OJycn3dI9lUqFK1euwM7OTvcZMJlMhuHhYd2yvcloaWmBRqPBU089pWuTyWTw8fHRG1dbW4u1a9fCy8sLdnZ2WLFiBYC/iygAcHNzQ1RUlG6p46lTpzA8PIyYmBgAQExMDNRqNby9vbFlyxYUFRVhdHR0CgkREZEpsNgiIqJZz9LSUu+5RCKZsE2r1QIAtFotgoODUVdXp/doampCXFzcpPcrhPjXMTdv3kRkZCSkUiny8vJw8eJFFBUVAYDeksWXX34Z+fn5UKvVyMnJwcaNG2FrawsAmD9/PhobG3HkyBHY2Njg1VdfRVhYGEZGRiY9VyIimnm8GyERET10goKCUFBQABcXF8ybN+++t7Nw4UJYWlri559/hkKhAAD09/ejqakJ4eHhAIA//vgD165dQ2ZmJubPnw8A+PXXX8dta/Xq1Zg7dy6ys7Nx+vRpVFZW6vXb2NggOjoa0dHR2Lp1K3x9fVFfX4+goKD7nj8RERkXr2wREdFDZ/PmzXB2dsbatWtx/vx5tLW1oaKiAmlpaejq6pr0dqRSKZKTk5GRkYHS0lI0NDQgKSlJb0mjQqGAlZUVPv74Y7S2tqK4uBj79u0bty1zc3MkJSVh9+7dWLhwod7SxNzcXBw7dgwNDQ1obW3F119/DRsbG3h5eU0vCCIiMioWW0RE9NCxtbVFZWUlFAoF1q9fDz8/PyiVSqjV6ilf6frggw8QFhaG6OhoREREIDQ0FMHBwbr+Rx55BLm5ufjuu++wePFiZGZmjrvN+23JycnQaDS6G2Pc5uDggKNHj2L58uV4/PHHUVpaipMnT8LJyWnqPzwREc0YiZjMgnMiIqKHXHl5OVauXIn+/n6jfanxhQsXsGLFCnR1dcHV1XVKr21vb8eCBQtQW1ur9z1kRERkOryyRURENAWenp6IjY016DZv3bqFK1eu4K233sKGDRumXGitWrUK/v7+Bp0TERFNH69sERERTYJarUZ3dzeAvz+rJZfLDbbt3NxcJCcnY8mSJSguLoaHh8eUXt/d3Q21Wg3gn8+IERGR6bHYIiIiIiIiMgIuIyQiIiIiIjICFltERERERERGwGKLiIiIiIjICFhsERERERERGQGLLSIiIiIiIiNgsUVERERERGQELLaIiIiIiIiMgMUWERERERGREfwPBboVFdoe2ZoAAAAASUVORK5CYII=", + "text/plain": [ + "<Figure size 1000x300 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAE6CAYAAAAcHmMZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACEmUlEQVR4nO3dd3iTVfsH8O+T2aZ7p3uwoWWVJXujiICIoKiA4MTFDxX1daHvKyivIo5X3ICiggMQFREQKEv2noVOuvdukzR5fn+kDZSuBNKk4/u5rl40T06e3DmkSe6cc+4jiKIogoiIiIiIiMwmsXcARERERERELQ0TKSIiIiIiIgsxkSIiIiIiIrIQEykiIiIiIiILMZEiIiIiIiKyEBMpIiIiIiIiCzGRIiIiIiIishATKSIiIiIiIgsxkSIiIiIiIrIQEykiImq2Vq1aBUEQcOTIkXrbJCYmQhAE049EIoGHhwdGjRqFrVu3NnofYWFhNW5f38+qVaus8pgWL16MjRs3WuVcRERkPzJ7B0BERGQNTz31FGbMmAG9Xo8LFy7gjTfewPjx47Fjxw4MHTq03ttt2LABGo3GdPnLL7/EV199hS1btsDNzc10vF27dlaJc/HixZg6dSomT55slfMREZF9MJEiIqJWISQkBAMGDAAADBo0CB06dMCwYcPw1VdfNZhI9erVq8blLVu2AACio6Ph7e3ddAETEVGLxql9RETUKvXp0wcAkJmZedPnEkURn3zyCXr27AlHR0d4eHhg6tSpiI+Pr9Hu+PHjmDBhAnx9faFUKhEQEIDbb78dKSkpAABBEFBaWorVq1ebpgwOHz78puMjIiLb44gUERG1SgkJCQCAjh073vS5Hn30UaxatQpPP/003nnnHeTl5eHNN9/EwIEDcfLkSfj5+aG0tBRjxoxBeHg4/ve//8HPzw8ZGRnYuXMniouLAQD//PMPRo4ciREjRuDVV18FALi6ut50fEREZHtMpIiIqFUwGAyorKw0rZF6/PHH4e/vjwULFtzUeQ8cOIAvvvgC7733Xo1zDRkyBB07dsSyZcvwzjvv4MKFC8jNzcVXX32FSZMmmdpNmzbN9PuAAQMgkUjg4+NjmoZIREQtExMpIiJqFV544QW88MILpssuLi7YuXMnwsLCbuq8v//+OwRBwP3334/KykrTcbVajR49emDXrl0AgPbt28PDwwMvvPAC0tPTMXToUHTt2vWm7puIiJovrpEiIqJW4ZlnnsHhw4exd+9evPvuu9DpdJg0aRJyc3Nv6ryZmZkQRRF+fn6Qy+U1fg4cOICcnBwAgJubG2JiYtCzZ0/861//Qrdu3RAQEIDXX38dOp3OGg+RiIiaEY5IERFRqxAUFGQqMDFo0CCo1Wrcf//9eP311/Hxxx/f8Hm9vb0hCAL27NkDpVJZ6/prj0VFRWHt2rUQRRGnTp3CqlWr8Oabb8LR0REvvvjiDcdARETND0ekiIioVbrvvvswfPhwfPHFF0hKSrrh80yYMAGiKCI1NRV9+vSp9RMVFVXrNoIgoEePHnj//ffh7u6OY8eOma5TKpUoLy+/4XiIiKh54IgUERE1ezt27EBiYmKt4+PHj2/wdu+88w769++Pf//73/jyyy9v6L4HDRqERx55BA8++CCOHDmCoUOHwsnJCenp6di7dy+ioqLw+OOP4/fff8cnn3yCyZMnIyIiAqIoYv369SgoKMCYMWNM54uKisKuXbvw22+/wd/fHy4uLujUqdMNxUZERPbDRIqIiJq9a4tIXKu6xHl9+vXrh7vvvhurV6/GSy+9hHbt2t3Q/X/22WcYMGAAPvvsM3zyyScwGAwICAjAoEGD0K9fPwBAhw4d4O7ujqVLlyItLQ0KhQKdOnXCqlWrMGvWLNO5PvjgAzzxxBO45557UFZWhmHDhpkKVhARUcshiKIo2jsIIiIiIiKiloRrpIiIiIiIiCzERIqIiIiIiMhCTKSIiIiIiIgsxESKiIiIiIjIQkykiIiIiIiILMREioiIiIiIyELcRwqAwWBAWloaXFxcIAiCvcMhIiIiIiI7EUURxcXFCAgIgERS/7gTEykAaWlpCA4OtncYRERERETUTFy5cgVBQUH1Xs9ECoCLiwsAY2e5urraNRadToetW7di7NixkMvldo2lrWCf2x773LbY37bHPrc99rntsc9ti/1tO0VFRQgODjblCPVhIgWYpvO5uro2i0RKpVLB1dWVfyQ2wj63Pfa5bbG/bY99bnvsc9tjn9sW+9v2Glvyw2ITREREREREFmIiRUREREREZCFO7SMiai30emDPHiA9HfD3B4YMAaRSe0dFRETUKjGRIiJqDdavB555BkhJuXosKAj44APgjjvsFxcRkQ3p9XrodDp7h9EkdDodZDIZKioqoNfr7R1OiyaVSiGTyW562yMmUkRELd369cDUqYAo1jyemgpMnQph7VpAqbRPbERENlJSUoKUlBSI178WthKiKEKtVuPKlSvc99QKVCoV/P39oVAobvgcTKSIiFoyvd44ElXXBwdRBAQB0mefNY5MERG1Unq9HikpKVCpVPDx8WmViYbBYEBJSQmcnZ0b3CSWGiaKIrRaLbKzs5GQkIAOHTrccH8ykSIiasn27Kk5ne96ogghJQVe585xih8RtVo6nQ6iKMLHxweOjo72DqdJGAwGaLVaODg4MJG6SY6OjpDL5UhKSjL16Y3g/wIRUUuWnm5WM4f8/CYOhIjI/lrjSBQ1DWsko0ykiIhaMn9/s5pVeHg0cSBERERtCxMpIqKWbMgQICgIYj3fwhoAiEFByO3a1bZxERERtXJMpIiIWjKp1FhIQjQmTdeqvrzniZdRJnI/KSKiRun1wK5dwA8/GP9tBmXG9+3bh6ioKCiVStx33301jsnlckyePNm+AbZhLDZBRNTSTZmC1c++i7GfL0FAcY7pcIaLN94Y9Qj+KggGDgMh3fMwqIOfHQMlImrGGtqPb8oUu4W1YMEC9OzZE3/88YeptHv1sT///BPOzs43fR+zZ89GQUEBNm7ceNPnaks4IkVE1ApsiuiPwY99hb1f/IjL73+G/N//giw5EX91Gmhq880/yXaMkIioGavej+/6KqhV+/Fh/Xr7xAUgLi4OI0eORFBQENzc3Godc3d3t1tsbR0TKSKiViA+pxQGiRQe48ei/fxH4HH7WPi6O2HZtB5Quxo34z2YkA+9oXVuVElEdMMa248PAObPb7JpfhqNBk8//TR8fX3h4OCAwYMH4/Dhw0hMTIQgCMjNzcWcOXMglUrx/fffQyqVmo4JgoBVq1YhPz8f9913n6n8e4cOHbBy5UrTfaSmpmL69Onw8PCAl5cXJk2ahMTERADAokWLsHr1avz6668QBAGCIGDXrl1N8lhbGyZSREQtXF6pFgVlOgBAuLdTjeum9A7CzgVD4CgVUVCuw+HEPHuESETUfJmxHx+uXDG2awILFy7EL7/8gtWrV+PYsWNo3749xo0bBxcXF6Snp8PV1RXLly9HamoqJk2ahNTUVNOx9PR0TJ8+Ha+++irOnTuHP//8E+fPn8eKFSvg7e0NACgrK8OIESPg7OyM3bt3Y+/evXB2dsatt94KrVaL5557DtOmTcOtt96K9PR0pKenY+DAgY1ETQDXSBERtXhn0woBAAFuDlApar+sy6QSdHYXcTxXwPHkAgyI8LJ1iEREzZeZ+/GZ3c4CpaWlWLFiBVatWoXbbrsNAPDFF19g27Zt+Prrr/H8889DEAS4ublBrVajqKgIrq6uNY4BQHJyMnr16oU+ffoAAMLCwkz3sXbtWkgkEnz55ZemfbZWrlwJd3d37Nq1C2PHjoWjoyM0Go3pfGQejkgREbVwhxONm+32C/est02Ayjg95Xx6kU1iIiJqMczcj8/sdhaIi4uDTqfDoEGDTMfkcjn69euH8+fPm32exx9/HGvXrkXPnj2xcOFC7N+/33Td0aNHcfnyZbi4uMDZ2RnOzs7w9PRERUUF4uLirPp42hqOSBERtXBX8soAAJ3UrvW2Caqa8XcmtdAWIRERtRxV+/EhNbXudVKCYLx+yBCr33V1FT7hur0ARVGsdawht912G5KSkvDHH39g+/btGDVqFJ544gm8++67MBgMiI6OxnfffVfrdj4+Pjf3ANo4jkgREbVwyVWJVLCnY71tQpyNb9bxOaUoLNfZJC4iohahej8+wJg0Xav68vLlxnZW1r59eygUCuzdu9d0TKfT4ciRI+jSpYtF5/Lx8cHs2bOxZs0aLF++HJ9//jkAoHfv3rh06RJ8fX3Rvn37Gj/VVQAVCgX0zWDPrJaGiRQRUQu091IOnv/pJDYcT0FSrjGRCvFU1dveWQ4EujsAAM6lcXofEVENU6YAP/8MBAbWPB4UZDzeRPtIOTk54fHHH8fzzz+PLVu24Ny5c3j44YdRVlaGuXPnmn2e1157Db/++isuX76Ms2fP4vfffzclYvfddx+8vb0xadIk7NmzBwkJCYiJicEzzzyDlKoiG2FhYTh16hQuXryInJwc6HT8ws0cnNpHRNTCGAwi7v/qIADgp6NXK001lEgBQFd/V6QWVOBsWiFuaceCE0RENUyZAkyaZKzOl55uXBM1ZEiTjERd6+2334bBYMADDzyA4uJi9OnTB3/99Rc8PDzMPodCocBLL72ExMREODo6YsiQIVi7di0AQKVSYffu3XjhhRcwZcoUFBcXIzAwEKNGjYKrq3FK+MMPP4xdu3ahT58+KCkpwc6dOzF8+PCmeLitChMpIqIWJiG3tNaxoR194K5SNHi7rv4u2HY+C2c5IkVEVDepFLBxAuHg4IAPP/wQH374YZ3XFxQUAAAMBkOtY9VeeeUVvPLKK/Xeh1qtxurVq+u93sfHB1u3bjU/aALARIqIqMW5NhFadEdXJOaWYd6Ido3erluA8ZtHFpwgIiK6eUykiIhamLNVidD9A0Iwe1C42bfr6u8CAIjLLkG5Vg9HRdNOVyEiImrNWGyCiKiFqR6R6hbgZtHtfF2U8HZWwCACFzI4vY+IiOhmMJEiImpBRFHE2TTjiFT1VD1zCYKACG9nAEBKfrnVYyMiImpLmEgREbUg6YUVyC/TQSoR0NHPxeLbB3oY95q6lFVi7dCIiIjaFCZSREQtyMXMYgBAOx8nOMgtX+PUO8QdAHA6pcCKUREREbU9TKSIiFqQzMIKAECAu+MN3b6dr3FqX0JO7RLqREREZD4mUkRELUhWsQaAsXDEjaheI3UlvxzaSkMjrYmIiKg+TKSIiFqQrGLjiJSfq8MN3d7PVQlHuRR6g4jkvDJrhkZERNSmMJEiImpBsopubkRKEASEeTsBAJJyOb2PiKil2rVrFwRBQEFBQYPtwsLCsHz5cqvd7/DhwzF//nyrna8uixYtQs+ePZv0PqyBiRQRUQtSPbXPx+XGRqQAINxbBYDrpIiImoOMjAw89dRTiIiIgFKpRHBwMO644w78/fffDd5u4MCBSE9Ph5ubcU/BVatWwd3dvVa7w4cP45FHHmmK0Gt577334ObmhrKy2jMeKioq4O7ujmXLltkkFltgIkVE1IJkV6+Rcr2xESkACPMyjkjFM5EiIrKrxMREREdHY8eOHVi6dClOnz6NLVu2YMSIEXjiiSfqvZ1Op4NCoYBarYYgCA3eh4+PD1QqlbVDr9PMmTNRXl6OX375pdZ1v/zyC8rKyvDAAw/YJBZbYCJFRNRCiKJ4NZG6wal9ANDZ37iR79m0IqvERUTUXJWWltb7U1FRYXbb8vJys9paat68eRAEAYcOHcLUqVPRsWNHdOvWDQsWLMCBAwdM7QRBwKeffooZM2bAxcUF//nPf2pM7du1axcefPBBFBYWQhAECIKARYsWAag9ta+goACPPPII/Pz84ODggMjISPz+++8AgNzcXNx7770ICgqCSqVCVFQUfvjhB7Mfj4+PD+644w58/fXXta77+uuvMXHiRPj4+OCFF15Ax44doVKpEBERgVdffRU6na7e89Y1nXDy5MmYPXu26bJWq8XChQsRGBgIJycn9O/fH7t27TI79hsha9KzExGR1RSU6aDVGyvt+dxEItU90DgN5Hx6EXR6A+RSfqdGRK2Ts7NzvdeNHz8ef/zxh+myr69vnVPSAGDYsGE1PpSHhYUhJyenVjtRFM2OLS8vD1u2bMFbb70FJyenWtdfP03vjTfewKuvvooPP/wQcrkcCQkJpusGDhyI5cuX47XXXsPFixcB1P3YDQYDbrvtNhQXF2PNmjVo164dzp07B6nUuC9hRUUFoqOj8cILL8DV1RV//PEHHnjgAURERKB///5mPa65c+diwoQJSEhIQHh4OADjyNvOnTtN/e3i4oJVq1YhICAAp0+fxsMPPwwXFxcsXLjQrPuoy4MPPojExESsXbsWAQEB2LBhA2699VacPn0aHTp0uOHzNoSJFBFRC1G9PspdJYdSZvlmvNVCvVRwcZChuKIS8dml6KR2sVaIRERkpsuXL0MURXTu3Nms9vfeey/uv/9+uLq6QiKR1EikFAoF3NzcIAgC1Gp1vefYvn07Dh06hPPnz6Njx44AgIiICNP1gYGBeO6550yXn3rqKWzZsgU//fST2YnUuHHjEBAQgFWrVuGNN94AAKxcuRIBAQEYO3YsAOCVV14xtQ8LC8Ozzz6LdevW3XAiFRcXhx9++AEpKSkICAgAADz33HPYsmULVq5cicWLF9/QeRvDRIqIqIWoLn1+M9P6AOMUkRBPFc6mFSElv4yJFBG1WiUlJfVeVz0KUy0rK6vethJJzZH7xMTEm4oLuDp61dgap2rR0dE3fZ8nTpxAUFCQKYm6nl6vx9tvv41169YhNTUVGo0GGo2mzhGz+kilUsyaNQurVq3C66+/DkEQsHr1asyePdvU5z///DOWL1+Oy5cvo6SkBJWVlXB1db3hx3Xs2DGIoljrcWk0Gnh5ed3weRvDRIqIqIXIrCp9fqN7SF0rwN0RZ9OKkFZY0XhjIqIWypIEoKna1qdDhw4QBAHnz5/H5MmTbXKfjo6ODV7/3nvv4f3338fy5csRFRUFJycnzJ8/H1qt1qL7mTNnDpYsWYIdO3YAAJKTk/Hggw8CAA4cOIB77rkHb7zxBsaNGwc3NzesXbsW7733Xr3nk0gktaZNXrumymAwQCqV4ujRo7US5Iamd94sJlJERC1EdaEJH+ebG5ECgAA3YzKWXlDeSEsiImoKnp6eGDduHP73v//h6aefrpUoFRQU1FnOvD4KhQJ6vb7BNt27d0dKSgpiY2PrHJXas2cPJk2ahPvvvx+AMUG5dOkSunTpYnYcANCuXTsMGzYMK1euhCiKGD58ONq1awcA2LdvH0JDQ/Hyyy+b2iclJTV4Ph8fH6Snp5su6/V6nDlzBiNGjAAA9OrVC3q9HllZWRgyZIhFsd4MrjAmImohTInUTU7tAwB/d+O3kukckSIisptPPvkEer0e/fr1wy+//IJLly7h/Pnz+PDDD3HLLbdYdK6wsDCUlJTg77//Rk5OTp2FM4YNG4ahQ4firrvuwrZt25CQkIA///wTW7ZsAQC0b98e27Ztw/79+3H+/Hk8+uijyMjIuKHHNnfuXKxfvx4bNmzA3LlzTcfbt2+P5ORkrF27FnFxcfjwww+xYcOGBs81cuRI/PHHH/jjjz9w4cIFzJs3r8ZGxB07dsR9992HmTNnYv369UhISMDhw4fxzjvvYPPmzTcUvzmYSBERtRA5JVZMpKpGpFI5IkVEZDfh4eE4duwYRowYgWeffRaRkZEYM2YM/v77b6xYscKicw0cOBCPPfYYpk+fDh8fHyxdurTOdr/88gv69u2Le++9F127dsXChQtNI1mvvvoqevfujXHjxmH48OFQq9VmTTusy1133QWlUgmlUokpU6aYjk+aNAn/93//hyeffBI9e/bE/v378eqrrzZ4rjlz5mDWrFmYOXMmhg0bhvDwcNNoVLWVK1di5syZePbZZ9GpUydMnDgRBw8eRHBw8A3Fbw5BtKROYytVVFQENzc3FBYW3tRCN2vQ6XTYvHkzxo8fD7lcbtdY2gr2ue2xz2/MvZ8fwD/xuVg+vScm9wo0+3Z19feRxDxM/fQfBHs6Ys/CkU0VcpvF57jtsc9trzn1eUVFhanctoPDza8jbY4MBgOKiopMVfvo5jT0nDE3N+D/AhFRC2HVEamqqX0ZhRUwGNr892lEREQWYyJFRNRCZFclUt5WKDbh56KERAB0ehE5pZqbPh8REVFbw0SKiKgF0FTqUVBmLPVqjREpmVRiKqOeVsCCE0RERJayeyKVmpqK+++/H15eXlCpVOjZsyeOHj1qul4URSxatAgBAQFwdHTE8OHDcfbs2Rrn0Gg0eOqpp+Dt7Q0nJydMnDgRKSkptn4oRERNJrPQOGqklEngobLOWgR/lkAnIiK6YXZNpPLz8zFo0CDI5XL8+eefOHfuHN57770aNfOXLl2KZcuW4eOPP8bhw4ehVqsxZswYFBcXm9rMnz8fGzZswNq1a7F3716UlJRgwoQJjdbSJyJqKdIKjcmOv5sDBEGwyjmr10lxU14iai1YQ43MZY3nil035H3nnXcQHByMlStXmo6FhYWZfhdFEcuXL8fLL79sKpu4evVq+Pn54fvvv8ejjz6KwsJCfPXVV/j2228xevRoAMCaNWsQHByM7du3Y9y4cTZ9TERETSGtatQowL3hXektwU15iai1kEqlAACtVgtHR+u9TlLrVb3P1s1UnLRrIrVp0yaMGzcOd999N2JiYhAYGIh58+bh4YcfBgAkJCQgIyMDY8eONd1GqVRi2LBh2L9/Px599FEcPXoUOp2uRpuAgABERkZi//79dSZSGo0GGs3VxdVFRUUAjGU8dTpdUz1cs1Tfv73jaEvY57bHPrdcSl4pAMDPVWlxv9XX334uCuO588v4f2FlfI7bHvvc9ppTn4uiCAcHB2RlZUEqlbbK8uCiKEKr1aK8vNxqMxPaIlEUUVZWhuzsbLi6usJgMMBgMNRoY+5z2q6JVHx8PFasWIEFCxbgX//6Fw4dOoSnn34aSqUSM2fONO2k7OfnV+N2fn5+SEpKAgBkZGRAoVDAw8OjVpv6dmJesmQJ3njjjVrHt27dCpVKZY2HdtO2bdtm7xDaHPa57bHPzXcwXgJAgrKsFGzenHxD57i+v9NyBQBSXEjKwObNqTcfJNXC57jtsc9tr7n0uUQigY+Pj+kLcqL6GAwGFBcX49KlS3VeXz1a1Ri7JlIGgwF9+vTB4sWLAQC9evXC2bNnsWLFCsycOdPU7vqsWxTFRjPxhtq89NJLWLBggelyUVERgoODMXbs2GaxIe+2bdswZswYu29u11awz22PfW659d8eAzJzMKRPJMb3CbLotvX1tzq5AF/HHkKlXIXx44dYO+Q2jc9x22Of215z7HODwQCdTtcq10pVVlZi//79GDhwIGQyu36Eb9EEQYBMJjNNB62Lucm4Xf8X/P390bVr1xrHunTpgl9++QUAoFarARhHnfz9/U1tsrKyTKNUarUaWq0W+fn5NUalsrKyMHDgwDrvV6lUQqmsXT5YLpc3mxeC5hRLW8E+tz32ufkyi4zTkYM8nW64z67vb393JwDGjX5lMhmnijQBPsdtj31ue82tz+v6jNca6HQ6VFZWwtnZuVn1d2tkbv/adQLpoEGDcPHixRrHYmNjERoaCgAIDw+HWq2uMWSs1WoRExNjSpKio6Mhl8trtElPT8eZM2fqTaSIiFqa1KqCEIFWLDbhXbVGqkJnQImm0mrnJSIiagvsOiL1f//3fxg4cCAWL16MadOm4dChQ/j888/x+eefAzAOvc2fPx+LFy9Ghw4d0KFDByxevBgqlQozZswAALi5uWHu3Ll49tln4eXlBU9PTzz33HOIiooyVfEjImrJSjSVKK4wJjr+VkykVAoZnBRSlGr1yC7WwMWB33ASERGZy66JVN++fbFhwwa89NJLePPNNxEeHo7ly5fjvvvuM7VZuHAhysvLMW/ePOTn56N///7YunUrXFxcTG3ef/99yGQyTJs2DeXl5Rg1ahRWrVrV4NxHIqKWoro8uauDDM5K675sezorUJpXjvwyrVXPS0RE1NrZfaXahAkTMGHChHqvFwQBixYtwqJFi+pt4+DggI8++ggfffRRE0RIRGRfqU2wh1Q1TyclruSVI7eEiRQREZElWl+RfSKiVia9sAIA4F+1ga41eaqM0/k4IkVERGQZJlJERM1cehOPSAFAbikTKSIiIkswkSIiauZSC4wjUk2RSHk5Gyv35XFqHxERkUWYSBERNXPphdUjUk0wtc+pKpHi1D4iIiKLMJEiImrmrq6Rsv6IlLezcWpfVtWGv4358O9LeHzNURSW66weCxERUUti96p9RERUP1EUkVa9RqoJEqkwLxUAICGntNG2ybllWLYtFgAQ6uWEF2/rbPV4iIiIWgqOSBERNWN5pVpoKg0QBMDPTWn184d7OwEwllgv01Y22DbmUrbp9+PJ+VaPhYiIqCVhIkVE1IylVRWa8HZWQimz/ibjnk4KBFYVsfgnLrfBtseSriZPl7NKrB4LERFRS8JEioioGUstKAMABDTBHlKAcdPzoR19AACHEvMabHsmtdD0e26pFjkl5q2rIiIiao2YSBERNWMnrhiTl05qlya7j64BrgCA2IzietuUa/WIyzaOQqkUxpGxC+n1tyciImrtmEgRETVjR6pGifqEejbZfXSpStKOJuVDU6mvs835jCIYRMDHRYlhVSNYFzKKmiwmIiKi5o6JFBFRM6Wp1ONU1XS6PmEeTXY/3YPc4eogQ1FFJfbXsU6qsFyH6Z/9Y2wb6IawqgIVKfnlTRYTERFRc8dEioiombqUWQJtpQFujnJTdb2moJBJMKSDcZTpcmbtIhJLt1yATi8CAIZ39kWQh7E4xZW8siaLiYiIqLmzOJFKSEjApUuXah2/dOkSEhMTrRETEREBuJRlXIPUyc8FgiA06X2193WucZ/Vcks0+PHIFQBAsKcj7uodiGAP495THJEiIqK2zOJEavbs2di/f3+t4wcPHsTs2bOtERMREQGIrRod6qh2bvL76uBnvI9jyQUQRdF0fO/lHOj0IjqrXbD7+RFQKWRXR6Tyy2q0JSIiakssTqSOHz+OQYMG1To+YMAAnDhxwhoxERERgEuZxtGhjn5NV7GvWv9wL0gE4/5QGUUVpuPn0owFJfqGeZpGxQI9HCGVCCjT6pFZxBLoRETUNlmcSAmCgOLi2iVvCwsLodfXXe2JiIgsd6lq09vqaXdNycdFic5qYxn0E8kFAIzFLj7bHQ8A6BHsbmqrlEnRzse4Zut8Oiv3ERFR22RxIjVkyBAsWbKkRtKk1+uxZMkSDB482KrBERG1VRU6vamYgy0SKQDoHuQGADiTZqwUuPF4qum6EZ18arStTrrOswQ6ERG1UTJLb7B06VIMHToUnTp1wpAhQwAAe/bsQVFREXbs2GH1AImI2qK47BIYRMDNUQ4fZ6VN7rNb1ca8Z1KNydEvx4yJ1K3d1PC6LobO/i7YdBK42MAmvkRERK2ZxSNSXbt2xalTpzBt2jRkZWWhuLgYM2fOxIULFxAZGdkUMRIRtTn/VO3nFBXo1uQV+6r1CjHuVXU0KR/x2SU4lGDcDPjVO7rWahtRVY49MafUJrERERE1NxaPSAFAQEAAFi9ebO1YiIioSmKuMUHpFeJus/vs6u8KD5Uc+WU6jHwvBgDQxd8Vge6OtdpWb8qbkFMKURRtluwRERE1F2YlUqdOnUJkZCQkEglOnTrVYNvu3btbJTAiorYsoWqkJ9hTZbP7lEgEDO7gg99OppmOjezsU2fbMC9jIlVUUYn8Mh08nRQ2iZGIiKi5MCuR6tmzJzIyMuDr64uePXtCEIQ69w4RBIGV+4iIrOBihrFiX2d105c+v9bjw9phy5l06PQi3FVyLBjTqc52DnIpAtwckFZYgYScEng6edo0TiIiInszK5FKSEiAj4+P6XciImo6uSUa5JRoIAi2q9hXrWuAKzbMG4SLGcW4KzqowbbhPk5IK6xAXFYpokOZSBERUdtiViIVGhpq+j0pKQkDBw6ETFbzppWVldi/f3+NtkREZLnYTONoVIinCirFDS1lvSmRgW6IDHRrtF0XtSv2Xc7FmbRCTEOwDSIjIiJqPiyu2jdixAjk5eXVOl5YWIgRI0ZYJSgiorYsNtNYUryjn22n9VkqqmrfqVMphXaOhIiIyPYsTqTqq86Um5sLJycnqwRFRNSWXaxKpDo180Sqe5A7AODElQIUluvsGwwREZGNmT1nZMqUKQCMBSVmz54NpfLq5ox6vR6nTp3CwIEDrR8hEVEbE1u1yW1HGxeasFSopwqeTgrklWrxWUwcFt7a2d4hERER2YzZiZSbm3EKhyiKcHFxgaPj1X1FFAoFBgwYgIcfftj6ERIRtSGiKLaYESmJRMCUXoH4cm8C9lVtIExERNRWmJ1IrVy5EgAQFhaG5557jtP4iIiaQHphBYorKiGTCAj3bv6vsw8ODseXexNwJrUQpZpKOCltXxyDiIjIHixeI7Vw4cIaa6SSkpKwfPlybN261aqBERG1RZeyjBX7wrydoJBZ/BJtc4Hujghwc4DeIOJMKotOEBFR22Hxu/SkSZPwzTffAAAKCgrQr18/vPfee5g0aRJWrFhh9QCJiNqSuKpEqr2PbfePuhnV1ftOM5EiIqI2xOJE6tixYxgyZAgA4Oeff4ZarUZSUhK++eYbfPjhh1YPkIioLYnLNiZS7Xyb/7S+atVrueJzSu0cCRERke1YnEiVlZXBxcX4prl161ZMmTIFEokEAwYMQFJSktUDJCJqK0o0lTibVgQAaNeCRqSCPFUAgCt5ZXaOhIiIyHYsTqTat2+PjRs34sqVK/jrr78wduxYAEBWVhZcXV2tHiARUVuQWVSByNf/wokrBQCALv4t5/U0hIkUERG1QRYnUq+99hqee+45hIWFoX///rjlllsAGEenevXqZfUAiYjagpjYbNPv0aEe6NzM95C6VpCHcTuMtIIKGAyinaMhIiKyDYvr1E6dOhWDBw9Geno6evToYTo+atQo3HnnnVYNjoiorUi8Zn3RFzP71KiO2tz5uTpAIgBavQE5JRr4ujrYOyQiIqImd0MbfqjVaqjV6hrH+vXrZ5WAiIjaosRcYyL16oSu8HRS2Dkay8ilEqhdHZBWWIGUgnImUkRE1CaYlUhNmTIFq1atgqurK6ZMmdJg2/Xr11slMCKitiQhx7i+KNxbZedIbkyYtxPSCitwKbMYvUM87B0OERFRkzMrkXJzczNNM3F1dW1RU06IiJo7URSRVDUiFebVcsqeX6t7kDv2x+XixJVCTO9r72iIiIianlmJ1MqVK02/r1q1qqliISJqk7KKNSjT6iGVCAj2bJkjUj2DjZvynqyqOkhERNTaWVy1b+TIkSgoKKh1vKioCCNHjrRGTEREbUpCVaGJIA9HyKUWvyw3C1FB7gCA2MxiaCr19g2GiIjIBix+x961axe0Wm2t4xUVFdizZ49VgiIiakuqK/a11Gl9ABDg5gAPlRyVBhGxGSX2DoeIiKjJmV2179SpU6bfz507h4yMDNNlvV6PLVu2IDAw0LrRERG1AUlVG9mGebXMaX0AIAgCugW4Ye/lHJxNK0RUkJu9QyIiImpSZidSPXv2hCAIEAShzil8jo6O+Oijj6waHBFRW5BWUA4ACKza2Lal6hboir2Xc3AmrdDeoRARETU5s6f2JSQkIC4uDqIo4tChQ0hISDD9pKamoqioCHPmzLnhQJYsWQJBEDB//nzTMVEUsWjRIgQEBMDR0RHDhw/H2bNna9xOo9Hgqaeegre3N5ycnDBx4kSkpKTccBxERLaWmm9MpALcW3YiFRlQXXCCiRQREbV+ZidSoaGhCAsLg8FgQJ8+fRAaGmr68ff3h1QqveEgDh8+jM8//xzdu3evcXzp0qVYtmwZPv74Yxw+fBhqtRpjxoxBcXGxqc38+fOxYcMGrF27Fnv37kVJSQkmTJgAvZ6LnYmoZUgtaB2JVL9wTwDA6dRCrNqXgD2XslGiqbRzVERERE3D7Kl91zt37hySk5NrFZ6YOHGiRecpKSnBfffdhy+++AL/+c9/TMdFUcTy5cvx8ssvmzYBXr16Nfz8/PD999/j0UcfRWFhIb766it8++23GD16NABgzZo1CA4Oxvbt2zFu3LgbfXhERDahqdQjo6gCABDs0XLXSAGAn6sDokM9cDQpH4t+OwcAaOfjhO0LhnH/QSIianUsTqTi4+Nx55134vTp0xAEAaIoAoDpTdLSkaAnnngCt99+O0aPHl0jkUpISEBGRgbGjh1rOqZUKjFs2DDs378fjz76KI4ePQqdTlejTUBAACIjI7F///56EymNRgONRmO6XFRUBADQ6XTQ6XQWxW9t1fdv7zjaEva57bHPr0rOLYUoAo5yCdyUQpP0iS37e1xXXxxNyjddjssuxa4LmRjc3qvJ77s54XPc9tjntsc+ty32t+2Y28cWJ1LPPPMMwsPDsX37dkRERODQoUPIzc3Fs88+i3fffdeic61duxbHjh3D4cOHa11XXRXQz8+vxnE/Pz8kJSWZ2igUCnh4eNRqc21VwestWbIEb7zxRq3jW7duhUrVPL4R3rZtm71DaHPY57bHPgcuFAgApHCT6fHnn3826X3Zor+ddUCgSgpBAPQGIL1cwBu/HMH/RbXN6dZ8jtse+9z22Oe2xf5uemVlZWa1sziR+ueff7Bjxw74+PhAIpFAIpFg8ODBWLJkCZ5++mkcP37crPNcuXIFzzzzDLZu3QoHB4d6210/HUQUxUaniDTW5qWXXsKCBQtMl4uKihAcHIyxY8fC1dXVrPibik6nw7Zt2zBmzBjI5XK7xtJWsM9tj31+VeHhK8D58+gc7IPx43s3yX3Yur/vnmT8NyW/HCOW7UFiiYDIAcMR4tk8vqiyBT7HbY99bnvsc9tif9tO9Wy1xlicSOn1ejg7OwMAvL29kZaWhk6dOiE0NBQXL140+zxHjx5FVlYWoqOja5x79+7d+Pjjj03nysjIgL+/v6lNVlaWaZRKrVZDq9UiPz+/xqhUVlYWBg4cWO99K5VKKJXKWsflcnmzeWI2p1jaCva57bHPgbRC4zrTUC+nJu8LW/d3uK/ctGbqy31JWDKle+M3amX4HLc99rntsc9ti/3d9MztX7Or9lWLjIw0bc7bv39/LF26FPv27cObb76JiIgIs88zatQonD59GidOnDD99OnTB/fddx9OnDiBiIgIqNXqGsOXWq0WMTExpiQpOjoacrm8Rpv09HScOXOmwUSKiKi5qK7YF9TCC03UZ1LPAADAn2cyYDCIdo6GiIjIeiwekXrllVdQWloKAPjPf/6DCRMmYMiQIfDy8sLatWvNPo+LiwsiIyNrHHNycoKXl5fp+Pz587F48WJ06NABHTp0wOLFi6FSqTBjxgwAgJubG+bOnYtnn30WXl5e8PT0xHPPPYeoqChTFT8iouYso9CYSPm71z/FuSW7t18I3v7zAgrKdLiQUYyuAfadPk1ERGQtFidS11bCi4iIwLlz55CXlwcPDw+rl7dduHAhysvLMW/ePOTn56N///7YunUrXFxcTG3ef/99yGQyTJs2DeXl5Rg1ahRWrVp1U/taERHZSnqhsfS52rV1JlJyqQR9wzwRE5uNf+JzmUgREVGrYfHUvjlz5tTYEBcAPD09UVZWhjlz5txUMLt27cLy5ctNlwVBwKJFi5Ceno6KigrExMTUGsVycHDARx99hNzcXJSVleG3335DcHDwTcVBRGQLBoOIrCLjVgxqt9aZSAHALe2Mpc//icuxcyRERETWY3EitXr1apSXl9c6Xl5ejm+++cYqQRERtQV5ZVpo9QYAgK9L602k+oQaiwGdTTOvChIREVFLYPbUvqKiIoiiCFEUUVxcXKNkuV6vx+bNm+Hr69skQRIRtUYZVdP6vJ2VUMgs/l6rxWjnY6z0ml5YgTJtJVQKi2eVExERNTtmv5u5u7tDEAQIgoCOHTvWul4QhDo3uSUiorpVJ1Jqt9rbMbQmHk4KeDopkFeqxfn0YkSHejR+IyIiombO7ERq586dEEURI0eOxC+//AJPT0/TdQqFAqGhoQgICGiSIImIWqOMoupCE452jqTp3dLOC3+cSsf285lMpIiIqFUwO5EaNmwYACAhIQEhISFWr9BHRNTWtJURKQAY1tEHf5xKx7GkfHuHQkREZBVmT8rPy8tDSkoKQkNDTUnU2bNn8eCDD2LatGn4/vvvmyxIIqLWKK16Dym31j8i1T3IDYCx4IQocmNeIiJq+cxOpJ544gksW7bMdDkrKwtDhgzB4cOHodFoMHv2bHz77bdNEiQRUWuUmGPc3DzEU2XnSJpeqKcTAKBEU4liTaWdoyEiIrp5ZidSBw4cwMSJE02Xv/nmG3h6euLEiRP49ddfsXjxYvzvf/9rkiCJiFqjxNwyAEC4t5OdI2l6jgopXB2Ms8kzq6Y0EhERtWRmJ1IZGRkIDw83Xd6xYwfuvPNOyGTGN8aJEyfi0qVL1o+QiKgVKizXIa9UCwAIawOJFHB10+HMqk2IiYiIWjKzEylXV1cUFBSYLh86dAgDBgwwXRYEARoN3xyJiMxRPa3Px0UJZ2Xb2FfJz7U6keKIFBERtXxmJ1L9+vXDhx9+CIPBgJ9//hnFxcUYOXKk6frY2FgEBwc3SZBERK1NQlUi1Ram9VXzdjZWJ8wp4ZduRETU8pmdSP373//Gr7/+CkdHR0yfPh0LFy6Eh8fVvUDWrl1rKpFORERXxWeXYOz7MfjXhtOmY6ZEyqvtJFJeTgoAQG7VlEYiIqKWzOz5JD179sT58+exf/9+qNVq9O/fv8b199xzD7p27Wr1AImIWrov9iQgNrMEsZkleHRoBEK9nLDrYhYAoLO/i52jsx1vl6oRqWKOSBERUctn0cR8Hx8fTJo0qc7rbr/9dqsERETU2hxPvroJ7f64XJRp9TiZUgiFVILbo/ztGJltVY9I5XBEioiIWoG2scKZiMhOcko0uJhZbLq873IODifmAQBGdPaBb1UBhraAI1JERNSaMJEiImpCp1MLIYpXL/9+Kt30++SegXaIyH68nYyJVG4pEykiImr5zC42QURElovLKgEAjO7iB3eV3HRc7eqAUV387BWWXXi7VBWbKNFCvDa7JCIiaoGYSBERNaFLmcZEqqu/S431UF/O6gOFrG29BHtWrZGqNIgoLNfZORoiIqKbY/HUPqlUivT0dPj6+tY4npubC19fX+j1eqsFR0TU0l3ONiZS7f1ccGegGzKLNJgaHYTIQDc7R2Z7SpkU7io5Csp0yCzSwF2lsHdIREREN8ziRKq+6RgajQYKBd8UiYiqVej0iM0wFppo7+OMcG8nfDmrj52jsq9Ad0cUlOmQWlCGTuq2U/qdiIhaH7MTqQ8//BAAIAgCvvzySzg7O5uu0+v12L17Nzp37mz9CImImqmiCh1Ucilk0rqn6J1OLUSxphLezgp09HOus01bE+juiLNpRUjJL7d3KERERDfF7ETq/fffB2Ackfr0008hlUpN1ykUCoSFheHTTz+1foRERM3QlbwyjH1/N9r7OmPDvIF1JlOnUgoBAD2DPepNttqaIA8VADCRIiKiFs/sRCohIQEAMGLECKxfvx4eHh5NFhQRUXO38XgqynV6nE4txL64XAzr6GO6rkKnx/HkAuyOzQYARLXB9VD1CfRwBACk5JfZORIiIqKbY/EaqZ07d9a4rNfrcfr0aYSGhjK5IqI2Y8+lHNPvaw8lmxKpogodblu+B6kFV0dceoW42zq8ZivE0zgilZTLRIqIiFo2i+eazJ8/H1999RUAYxI1dOhQ9O7dG8HBwdi1a5e14yMianbKtXocv5JvuvzX2QxT4vTtP0k1kignhRT9wj1tHmNzFe5tTKQSc0q5lxQREbVoFo9I/fTTT7j//vsBAL/99hsSExNx4cIFfPPNN3j55Zexb98+qwdJRNScnLhSAJ1ehNrVAX6uSpxMKcSxpHx4Oyvw+e54AMA7d0XBQS5FkIcKDnJpI2dsO4I9VZAIQKlWj+wSDXxdHOwdEhER0Q2xeEQqNzcXarUaALB582bcfffd6NixI+bOnYvTp09bPUAioubmWLJxNCo61APdqtY/nUopwOmUQhSW6+CilOGu3kGY1DMQ0aGc8nwtpUyKAHfjOqnEHE7vIyKilsviRMrPzw/nzp2DXq/Hli1bMHr0aABAWVlZjUp+RESt1bEkYyLVO9QDg9p5AwA2nkjD5tMZAIAhHb1Zpa8B4d5OAIzT+4iIiFoqi9/pH3zwQUybNg2RkZEQBAFjxowBABw8eJD7SBFRqyeKomlEqneIO8Z09YO3swLZxRp8vc9Y3XRSz0B7htjshXkZE6mEXCZSRETUclm8RmrRokWIjIzElStXcPfdd0OpVAIApFIpXnzxRasHSETUnFzJK0d+mQ4KqQTdAtygkEnwwIAwvL89FgDg4iDDyM6+do6yeQurGpFKyGYiRURELZfFiRQATJ06FQBQUVFhOjZr1izrRERE1IxV738U7OkIhcw4qP/0qPb48cgVpBaUY+YtoZBzWl+DTJX7OCJFREQtmMXv9nq9Hv/+978RGBgIZ2dnxMcbK1S9+uqrprLoREStVVqh8QskfzdH0zFBEPDX/w3FV7P6YP7ojvYKrcWontqXmFsKg4El0ImIqGWyOJF66623sGrVKixduhQKhcJ0PCoqCl9++aVVgyMiam4yCo17RPm71Szb7ayUYVQXP45GmSHYUwWpRECFzoDM4orGb0BERNQMWfyO/8033+Dzzz/HfffdV6NKX/fu3XHhwgWrBkdE1Nykm0akuP/RjZJLJQj2MI7oJbByHxERtVAWJ1Kpqalo3759reMGgwE6nc4qQRERNVemRMrdsZGW1JAwUwl07iVFREQtk8WJVLdu3bBnz55ax3/66Sf06tXLKkERETVX1YmUmiNSN+XadVJEREQtkdlV++bMmYMPPvgAr7/+Oh544AGkpqbCYDBg/fr1uHjxIr755hv8/vvvTRkrEZHdpVetkQpw44jUzajelJdT+4iIqKUye0Rq9erVKC8vxx133IF169Zh8+bNEAQBr732Gs6fP4/ffvvNtDkvEVFrVK7Vo6DMOIWZI1I3J4yJFBERtXBmj0iJ4tUStePGjcO4ceOaJCAiouYqo8g4rc9JIYWrww1tw0dVwqum9iXnlkFvECGVCHaOiIiIyDIWrZESBL7REVHblV5gnNandnPg6+FNCnB3gFwqQKs3IK2qX4mIiFoSi75S7dixY6MfHvLy8m4qICKi5qq60EQAK/bdNJlUghBPFeKyS5GYW4pgT5W9QyIiIrKIRYnUG2+8ATc3t6aKhYioWaue2qd25fooawj3djImUjmlGNLBx97hEBERWcSiROqee+6Br69vU8VCRNSsZRdrAAB+TKSsoroEejwLThARUQtk9hoprgcgorYuu8SYSHk5K+wcSevQUe0CADibVmTnSIiIiCxndiJ1bdU+IqK2KNeUSCntHEnr0CvYHQBwOqUQlXqDfYMhIiKykNmJlMFgsPq0viVLlqBv375wcXGBr68vJk+ejIsXL9ZoI4oiFi1ahICAADg6OmL48OE4e/ZsjTYajQZPPfUUvL294eTkhIkTJyIlJcWqsRIR5ZRoAQDeHJGyiggfZzgrZSjX6Tm9j4iIWhyLyp9bW0xMDJ544gkcOHAA27ZtQ2VlJcaOHYvS0qtvqEuXLsWyZcvw8ccf4/Dhw1Cr1RgzZgyKi4tNbebPn48NGzZg7dq12Lt3L0pKSjBhwgTo9Xp7PCwiaqWqR6S8OSJlFVKJgAgf4zqpRCZSRETUwth1R8ktW7bUuLxy5Ur4+vri6NGjGDp0KERRxPLly/Hyyy9jypQpAIDVq1fDz88P33//PR599FEUFhbiq6++wrfffovRo0cDANasWYPg4GBs376dGwcTkVVU6g3IL9MBALycOCJlLSGeKpxKKURyXpm9QyEiIrKIXROp6xUWFgIAPD09AQAJCQnIyMjA2LFjTW2USiWGDRuG/fv349FHH8XRo0eh0+lqtAkICEBkZCT2799fZyKl0Wig0WhMl4uKjAuddToddDpdkzw2c1Xfv73jaEvY57bXEvs8q6pin0QAnOVCi4q9Ofd3kLuxAmJiTkmzjO9GNec+b63Y57bHPrct9rftmNvHzSaREkURCxYswODBgxEZGQkAyMjIAAD4+fnVaOvn54ekpCRTG4VCAQ8Pj1ptqm9/vSVLluCNN96odXzr1q1QqZrHppDbtm2zdwhtDvvc9lpSn6eWAoAMTjIRW7b8ae9wbkhz7O+CTAGAFEcvJmGzJMHe4Vhdc+zz1o59bnvsc9tifze9sjLzZkk0m0TqySefxKlTp7B3795a111fel0UxUbLsTfU5qWXXsKCBQtMl4uKihAcHIyxY8fC1dX1BqK3Hp1Oh23btmHMmDGQy+V2jaWtYJ/bXkvs8z2Xc4BTxxDg6YLx4wfaOxyLNOf+9ozPw9r4I6iQOmP8+MH2DsdqmnOft1bsc9tjn9sW+9t2qmerNaZZJFJPPfUUNm3ahN27dyMoKMh0XK1WAzCOOvn7+5uOZ2VlmUap1Go1tFot8vPza4xKZWVlYeDAuj/sKJVKKJW1F4vL5fJm88RsTrG0Fexz22tJfV5YYSxe4+Pi0GJivl5z7O8IP+OXVykF5ZBIZZBKWteehc2xz1s79rntsc9ti/3d9MztX7tW7RNFEU8++STWr1+PHTt2IDw8vMb14eHhUKvVNYYwtVotYmJiTElSdHQ05HJ5jTbp6ek4c+ZMvYkUEZGlcoqNpc+5Ga91qV0dIJcK0OlFpBeW2zscIiIis9l1ROqJJ57A999/j19//RUuLi6mNU1ubm5wdHSEIAiYP38+Fi9ejA4dOqBDhw5YvHgxVCoVZsyYYWo7d+5cPPvss/Dy8oKnpyeee+45REVFmar4ERHdrJzqzXidWPrcmqQSAcEeKsTnlCI5rwxBHs1jnSoREVFj7JpIrVixAgAwfPjwGsdXrlyJ2bNnAwAWLlyI8vJyzJs3D/n5+ejfvz+2bt0KFxcXU/v3338fMpkM06ZNQ3l5OUaNGoVVq1ZBKpXa6qEQUSuXXb2HlAtHpKwt1MuYSMVnl2JgO297h0NERGQWuyZSoig22kYQBCxatAiLFi2qt42DgwM++ugjfPTRR1aMjqi23bHZ+OtsBu7pG4KoIDfTcZ3egHf/uogSTSWeHtUBfq4OdoySmkJOiXFqnw8347W6Dn4u2HkxG5cyixtvTERE1Ew0i2ITRC3BpcxizFl1GJUGEd8dTIa3sxJ3RQfC1UGO/XE52Hc5FwBwMaMYPz/O9XmtTU5x9YgUEylr6+DrDACIzSyxcyRERETmYyJFZKZPY+JRabg6ippTosFnMfG12h1JysfWsxkY201ty/Askl2swf64HAxq7w1vjrCYpXqNFEekrK+jn3Gq9qUsjkgREVHLYdeqfUQtRXGFDlvPGouh/PDwAOx4dhj6hXvWaDOkgzfmDDJWnvw0Js7mMZrrpyNX0Pet7Xhm7QlM/+wfFFdwh/TGGAwickuNU/uYeFpfBz/jiFROiRZ5Vf1MRETU3HFEisgMf5/PQrGmEmFeKvQL94RUIuDHR2+BwSAio6gCZ1ILcUs7L5Rr9Vi1PwHHkguQmFOKMG8ne4cOAIjLLsET3x3DhYzi646XYuDbO7D56SEI9mS1tPoUlOugrxqNZPlz61MpZAj2dMSVvHLEZhZjQISXvUMiIiJqFEekiMyw+XQ6AOCOHgE1NgyVSAQEuDtibDc1XBzk8HV1wOAOPgCAX0+k2SXWayXmlOLbA0mY/tk/NZIob2cl1j4yAABQXFGJT3ZdtleILUJ21food5UccilfNptCR1/j9L5YFpwgIqIWgp8IiBpRqqlETGw2AODWyMbXPd1W1eaf+JwmjasxuSUaTPrfPry68Yyp4lywpyNuj/LHrueHY0CEF9ZVJVM/HknhlKoGZBZVAOD6qKbUwY+JFBERtSyc2kfUiJ0Xs6CpNCDUS4Wu/q6Ntu8bZlw7dTy5ANpKAxQy+3xf8d3BZBSWG9c/qRRSvHt3D4yP8q/Rpn+EFzqrXXAhoxg7LmRhanSQPUJt9uKzjdXkwpvJVM3WqKMfK/cREVHLwhEpokYciDeWNR/dxQ+CIDTSGmjn4wR3lRyaSgPOpxc1dXj1Op6cDwB4c1I3nHvz1lpJVLXq6oLbzmXYLLaWJi67FADQrqpMN1mfqXJfZrFZewwSERHZGxMpokacTikEAPQMdjervSAIiAo0btZ7Jq3QdPxSZjHe23oRZ1IL67up1RgMIk5WxR0Z6NZg27Fd/QAAu2NzUKk3NHlsLdHlLOMoSTsfJlJNpb2vMwQByC/TIbWgHF/uiceRxDx7h0VERFQvJlJEDdBWGnA+3bhmo0eQu9m3q05ezqQaR6QMBhHzvjuGj3ZcxoSP9iIpt9SqcRoMNb/BP5dehLxSLVQKKSIDGk6kuvq7QimToFynR0p+uVXjai3isqsTKU7tayoOcilCqypHTv/sAP7zx3nc+8UBpBbwOUlERM0TEymiBpxKKYBWb4CnkwLBno5m3646eTlbNSK1KzYLl7Kurv34ZKf19pnKLKrAsHd3Yuz7MSiq2hNq72VjoYsBEV6NrtGSSAREVI20VCcMdFVRhQ5ZVVX7OLWvaVUXnKhOnnR6EeuPptgzJCIionoxkSJqQPX6qAERnmatj6rWxd/4gfBiRjEKy3X4z+/nAQB9Qj0AAOuPpyCjsMIqMb60/nTV/jsleH9bLPQGETsvZAEwbhJsjuqRlstZTKSuF1+1PsrXRQlXB7mdo2nd6to/6hCn9xERUTPFRIqoAf9UJVK3WLhBaKiXExzlUmgqDXjzt3OIzymFi4MMH8/ojX5hntDpRaw7fOWm48sqqsDOi1mmyyv3JaLdvzbjYILxw+foLn5mnae9L0ek6hPH9VE2M7lnAFwdZFAppFg6tTsA4BKr+BERUTPFRIqoHppKPY4mGSvf1fVNeUOkEgHdAoyl0n85Zpya9OrtXaF2c8CM/iEAgB+PXKm1tslS289nQRSB7kFumD0wrMZ1UYFuCK5ac9KYdqapfdZdu9UamNZH+XJ9VFPzclZiy/yh2LZgGMZ1NVaTzCiqQImm0s6RERER1cZEiqgep1IKUaEzwMtJYRqxscSkXoGm310cZJjQw1h+/NZINVQKKVILynH5uhGghJxS/GvDadPaqoZU6g2mJG1cNzUWTeyGLfOHwFEuBQDMGRxmdqzVidSlzOKbTu5am+oS9tXlualpBbg7ItDdEW4qObyrNkCO50gpERE1Q9yQl6geB+Kq10d5WbQ+qtr0PsHYciYd+y7n4s1J3aBSGP/cHORSdA9yw4H4PBxJzMexpHys3JeI3qHuOJSQh7jsUuy/nINtC4ZBLq3/u473tsXiaFI+5FIBt1ftEdVZ7Yqzb4xDfpkWXlUfQs3R3tcZKoUURRWVuJhZjC5mbDzcFoiiiFNVZeSjGikjT9bXzscJOSUaxGWXoLsFVTOJiIhsgYkUUT2q10cNaGfZtL5qCpkE3z00oM7rBrXzxoH4PPxrw2nTsYuZxabfE3PLsO7wFdw/ILTG7fQGEa9sPIPjyfm4kGFsv3Rqd4R5X512JpEIFiVR1bH2DfNETGw29l3OYSJVJa2wArmlWsgkAvvEDsK9nXAwIQ8JOWX2DoWIiKgWTu0jqsO166NuifC0+vknXzPtrz5rDiTVOrY7Nhs/HEo2JVHRoR6Y3LPxc5ljUHtjwlhdOp2A48nG50AntQscqqZMku1Uf0GQmMO1e9a2/VwmHvv2KFbvT7R3KERELRZHpJqhiooKlJaWQi6vXWpZKpXCwcHBdLm0tP4PGBKJBI6OjjfUtqysDKJY91oZQRCgUqluqG15eTkMBkO9cTg5Od1Q24qKCuj1+htqq9PpavS5SqXCySuF0FQa4OkAqFVCvX2nUqlM0/40Gg0qK+tfFO/o6AiJxPjdhZ+zDL0DHHEkMR8uShn++r+h+ONUGjafycCCMR0x85sTuJhZjBJNJRSCATqdcX+odf9chkFrLJs+d0gY5gyKgMFggFRq/JCv1WpNbevi4OBgaqvT6aDVak3X9Q9ygkFbgb3nUpGeWwAfN2fIZLI6215PqVSa2lZWVkKj0dTbVqFQmH6vrKxs8LwKhcL0d6DX61FRUX/JeLlcbjq3JW0NBgPKy+ve9HX9oTiIeh0GtfdutC0AyGQyKJXG0UBRFFFWVv9IiiVtLfm7r6vt9c/xas39NULtKMCgrcDltBxTbPZ4jbieOX/31X1+7eO25DWisb9lS9pe+3ev1Wrx67FkPPvjSQDA5uOJcJcbMLqrX622lvzdW/s1ovp5aknb6r/7+t4/m+I1wtK2zfU1oj6NvUZc+9qiVCrb7OeI61ny2cCSttV/Q0DTvkbc6OeI693oa0SLIpJYWFgoAhALCwvtHYqo1WpFAPX+jB8/vkZ7lUpVb9thw4bVaOvt7V1v2z59+tRoGxoaWm/brl271mjbtWvXetuGhobWaNunT59623p7e9doO2zYsHrbqlSqGm3Hjx/fYL9da+rUqQ22LSkpET/YHiuGvvC72GnIhAbbZmVlmc47b968BtsmJCSY2j733HMNtu31f1+JoS/8Lm44liK+/vrrDbY9dOiQ6bxLly5tsO3OnTtNbT/++OMG2/7++++mtitXrmyw7Y8//mhq++OPPzbYduXKlaJWqxU3btwobty4scG2H3/8sem8O3fubLDt0qVLTW0PHTrUYNvXX3/d1PbMmTMNtnXtN0U8n258bUhISGiw7bx580znzcrKarDtrFmzTG1LSkoabDt16tQaz+GG2vI1wvjT1K8R1WbNmtVg29TUVFNba75GnDlzxtS2Nb5GVPv9998bbHvta8S2bdsabNtUrxHPPfecqS1fI67ia4RRY68RlnyOiI2NFTdu3ChqtdpW/RrRHJibG3BqH1Edqjfi9XGxbK2RtYytKv1cXZWP7MfXRYnOaq6PotZBU1n/t/MAcDq18YqhVFNBWf3fshNR6yaIYj1jqW1IUVER3NzcUFhYCFdX+35g0ul0WL9+PcaNG8epfTac2vfXX3+Z+lyqUKLHG9ugqTTgjycGIMzToa5TArjxqX2NDZ1nlhowctluSCUC9j43BK5KCT74Oxaf7orHrd3UeP+enqa21hySj7mYhcfWHEOQpwN2vziuSaf2bd68GWPHjm3w/9heU/sqdHrc9ck+xOeU4e27e2LGLe3qbXut5jpt5/rneLWW8Box8t2dSC/U4PuH+6NXiEeLmbZT3ed33nmn6blm76l9eoOI+d8fxq/HriDMW4U/nxmKjcdT8dL6q0VvZAoFHh7aHi/e1rnRqbfNbWpfRUUFfv31V9PzfNPJVLzws/GxOcql+Pdd3TGscwD8XB1u6DUiPrsEL64/jdIKHaIC3bHncjbySnWQyKSYN7IznhndAXKJ0CJfI+pjztS+6tcWTu27qimn9m3ZsgXjx4+HKIqc2teEzM0Nmk/EZOLg4AAnJ6c6E6nrXfuHbc22175oWbPttS+y1mx77ZuCpW11Ol2NPv8nLheaSgO8nZXoGuRpdulzpVJpetNrjEKhqLFW6HoRTkBkoCvOpBZh46ksjO3mh++PZkGicMCEPuH1/l82dt5ryeXyWs+xYd2CoXA4j7QSEWmFWoR4yeptWx+ZTNboi2H1i7RMJjP7vFKp1OznsCVtJRJJjbaiKOJf604gscgADzcXjO8RXG/bhgiC0CRtAcv/7q9/jlvjvLZ6jWgX4I3M8lxkltWOz1avEQ2p7+++us+vff2w5mvEjbT9eMdl/HYmGxKFA2YN7QwnJyfcN7gj7h7QHjsvZuHrvQk4mJCHz3bHY0CEF4Z08Db7OWHt14gbaVudIDg5OUEnCvgo5gokCuP/pQbAwvXnoVLE4ps5/dAnzNPsx6apFLH+dA5e3XjGdCyxKA+AFBKF8QPlJ7vi8MmuOPQMdsfqOf3g5th4XzSn14gbbdvQa0tb+hzREEv+7htre22C0xSvEZa2teTv3pK2LQmn9hFdZ+/lbADA4PY3tn+UtUzoHgAAeGfLBYx6LwYlmkoEeThifKS6ye7TSSlDdKgHAGDruYwmu5/m7EB8Hn49kQaZRMCK+3vDXWXeGwo1jVCvqsp9uazcd63CMh3e2XIBq/YloEJX/zfj1VILyvHRjksAgAnd/TF7YJjpOoVMgnHd1Fj36C24OzoIAPDgqsPo+eY2nEopaIrwb8jx5HzM++4otpxp/LVp5b5EpBVWwNtZiX9P6mY6XqbV472tsWbfZ2G5Drd+sLtGElUt1EuFmOeHY1w3P9OxE1cKMGZZDL75JxH5pZzyR9TacUSK6Dp7LxnLfw/u4GPXOKb3CcZvJ9NwNq0IACCXClh0RzfIGtik1xrGR/njYEIe1hxIwsjOvojwcW7S+2tODAYRb/x2FgAwNToIA9t52zkiCvc2flOdwBLoJnqDiJc3nsbvp9IBAJvPZGDdIwMa/OLnm/2JqDSIGBDhiY/u7VVv2ydGtMevJ9Kg1RtQoqnEf/44j05+Llh/LAW3tPPCu3f3sMuXCzklGtz96T+oNIj480wGNj89pN693U6lFGLZNmOy9PCQcNw/IBQhXk5wVspw96f78U98Ls6mFaJbgFuj9/vh35eQlGucUtctwBXLpvVEJ7ULsos1cFfJIZdK8NkDfbDrYhaWbYvFqZRCZBVr8NqvZ3EurQhv39Xdep1ARM0OR6SIrpFZVIFTVYutB7e374doDycFfn1iEP6aPxSHXh6Fwy+PNpUobkp39AiAu0qOxNwyjHwvBlfy2s5mqD8fTcGFjGIoZBI8M7qDvcMhAGEckarlu4NJpiQKAA4l5GH2ysMoLKt7XUNRhQ4/HEoGADw0OKLBhCvM2wkf3tsT3YPcTOf+9kASSrV6bD+fhXs+P4CckvrXLDWVj3dcRqXBuIZGFIG3/7xQb9tPdydAbxAxrKMP5g4OhyAIGNbRB9GhHri9aqR/0aaz0BsaXiIuiqJp9OvT+6Pxx9ND0EntAsBYiEh+zZdawzv5YtOTg/H8uE6mY1vOZkCnb7i4BxG1bEykiK7x4d+XIIpA3zAPqN3MnwPdVGRSCTqpXeDr4mCzb4E9nRT44eEBpsujl8XgUmaxTe7bnkRRxOd74gEAT41oD3838+fWU9MJr9qUNymn/sXobUlhmc40Ne3JEe3xzl1RUEgliInNRo83t2L/NRtq55Zo8PafF3Db8j0oqqhEuLcTRnb2bfQ+bo30x6YnB+Opke1Nxzr5ucDTSYELGcV447dz1n9gDdh1MQvfVm1Q/p/JkZBJBMTEZps2zAaMf7+iKKKsEtgVa5ye/eJtnWuN4C8c1wlOCikOJ+bj05i4Bu/3clYJUgvKoZBJMKyjeTMUnhjRHpffug1eTgoUlOlwODHPkodKRC0ME6k2Rm8QkWuHbxNbgoScUqw9fAUA8Py4znaOxr66+Lviu4f6Qy4VoKk04Mnvj7f6D7F/nc3A5awSOCmkmDUozN7hUJVgTxUEASjWVCKXa07w8c5LKCzXoZOfC+aP7oDpfUPwy+MD4elk/KLl2Z9OokKnhyiKeOL7Y/g0Jg6pBeUQBODtKVGQSMxf97lgTEd8O7cfNj4xCFvmD8HqB/sBAP44lYakJhohLNNWQlNpXPOl0xuw62IW5q4+Ar1BxO3d/XFf/xBM7hUIwDgqJYrG97Rxy3dj5Pt78eEZKXR6EZ38XOqc+hfsqcKrE7oCAN7dehG/nkitN5at5zIBAAMivOBYVVTCHDKpBMM7GRPWnReyzL4dEbU8TKTakAqdHlNW7Eeft7Y3+OZhCwaDiI93XMJDqw/jQkaRXWMBjFNFXt10DnqDiJGdfdEv3NPeIdndoPbe2PfiSDgppLiYWWz6lrc1+uNUOh7/7hgAYHrfELg6tL7KQi2Vg1yKgKrRwcQ2tE7q1xOp+HJPfI3pZwk5pVi93zgy8+L4q6MtUUFu2PHsMABAemEFnvrhOOauPoID8cbRkCEdvPH17L7oH+FlUQyCIGBIBx/0DHaHIAiICnLD8E4+MIjAqv2JVniUNWUWVWDQ2ztw2/I9WHsoGZ1f3YLZKw9DbxAxtqsf3rmrOwRBwP+N6QilTGJay/n6prOIzSxBSn450suNieKM/iH13s/0vsGY3icYogg899NJpBXULldeqqnEj0eMX6zdSIGf6pG/v5lIEbVqTKTakN9PpePklQKIIrB0y0UYGpkf3lQKy3SY+fUhvLs11jTnPqu4/v08bCG+GDiYkA+5VMC/xnexayzNia+LA+7tZ/xA8snOy3Z7zjS1T3ZdhigCt3ZT49mxHe0dDl0nrI0VnDiTWohn1p7Af/44jzmrDuOHQ8lYsvk8Rry7C1q9AQPbeWH4dVPN3FUKfDOnH2QSAdvOZWJH1Qf4t+6MxLdz+2NEp8an9JljVlW1vx8PX8HRJOtOW/tidzzyy3SIzynFi+tPm5LIPqEe+GhGLzgrjfWxAt0dTdMOX/31rGm9WHSIO5xlIm6PUuP+AaH13o8gCFg8JQp9Qj2g04t1TvH7zx/nkJRbBhelDLfeQCI1pKM35FIB8dmluJxVYvHtiahlYCLVhqypmmMOGEvhnrRDWVtRFPHA1wex95p5/AVlOnx3ILnR2xZV6PDriVQcTcpvtK2lMW1NMf4pTI0ORnvftlOlzhxzBodDKZPgcGI+vqhaQ9SaXMgowtm0IsilApZMiYKTksVMm5vqdVLxbSSRWrHr6gf7mNhsvLT+ND7bbfzbC3BzwFt3RtVZMGJoRx+8e3cPSATA1UGGHx+9Bff1rz+huBFDO/igb5gHSrV6zPjiIM6mFd70OQ0GEav2JeDLvQk1jod6qfDBPT3x7dz+UMpqTq2bN7w9JvU0Fo5wlEux8NZOWPtwP7zVV4/l07pD2sgURqlEwIKqL03WHrqClPyrRXUuZxVjXdU07xX3R9/Q+lRXB7mp6udfZ9vmVhJEbQETqTbiaFIeTlwpgFwqYGA74/SOTSfTbB7H2bQinEoxvvH+Z3IkPrq3FwDgh0PJDVY3KizT4Y6P9uKZtSdw14r9uOOjvdh3TTJ2vVMpBViy+TyScxuvOLfjQjYuFEoglwp4ZGiEhY+o9Qtwd8Trdxj3YVn610UcaWWLp388nAIAGNXZDx5O3DOqOWpfVYK/NXyzn5xbhrtW7Efft7Zj4c8nUXnd697eSzn443Q6BAF4/Y6uiAw0rvPxdVFi5i2h2PvCSFNiWZfJvQKx54WR2PX8iCaZoiyVCFj1YD8M6eANTaUBizefv6nzlWv1eGzNUSyqKmDh46LE+Tdvxbk3xyHm+RGY1DOwzvVJEomA96f1xK9PDMKJ18dg3vD2tdo05pYILwyI8IRWb8C/fzdO7f7+YDJGL9sNgwiM6eqHwR1uvHrruG7GkSwmUkStFxOpNkBvELHw51MAjKWt5w4OBwDjXiGVti3NuvG4cW3W7VH+uH9AKMZ1U8PbWYmsYg22ns2s8zaVegOe+P6YaS8PADidWoiZXx9Cah1z26/kleGezw/gs93xeOTbI42WuP3luDGhnDkgpMEPKG3Zvf2CMalngPG59MupVlPSt1yrx89Hjd88T+8XbOdoqD7tfY0lp+NaQSL12qYzOJqUj+xiDX48koI/r9lctrBchxd+Mb5W39c/BA8OCsfvTw1B4tu349DLo/HmpEizikUEujuaik80BSelDEumREEuFbDvci4OxOfe0HmqC2JUF3UAgKV3dYejQgqVovGRYYlEQI9g91qjVeYSBAGvTegGqUTAX2cz0e5fm/GvDacBAG6Ocrx0280VHRrT1Q+CYNzXypwv9Yio5WEi1QasO3wFcdmlcFJI8eJtnTGsow/8XJXIK9Viiw2/KavUG0yjYNVVlxQyCe6t+gD73cGkOm/30Y7L2Hs5ByqFFJufHoKt/zcUET5O0BtEDHp7Bw5e8yZ+JrUQY96PQZnWWPXpQkYxfqpaMFyXwjKdqYjClF4BN/8gWylBEPDK7V3h6iBDfHZpjWmiLdlvJ9NQVFGJYE9HDLPzBsxUv+rptkl5ZTb/8seaDsTnYtdF4+tN9Xqf97ZeRHGFDpcyi/Hfvy4gtaAcfq7KZl85NMhDhel9ja/dizadrXcPq4ZsrVrLpZBK8NNjtyBhyXiMMKM8uzV1DXDFoju61jjWPcgNax8ZcNObkfu4KE37Ef7YwPsQEbVcTKRaud2x2aZv2B4f3g6+Lg6QSSWY0jsIAPD3+bpHgZrCppNpyCrWwMtJUWNPjml9jG/G/8TnIquoZtGJo0l5+GjHJQDAK7d3RdcAV3T0c8F/p/aAg9z49P3PH+dNe4i8svEMKnQGKKQSzLzFuDbgnS0XkJxbVmsKDQBsOZsOnV6Ev6OIjn4uTfK4WwsfFyVevM1YiGP59kvIb8GlqPNLtfj37+ewsOrb//v7h1pUFppsy89VCRelDHqD2KI35l1Wtf/T/QNCsP+lkVC7OiAxtwxRi7ZizPu7saZqrej/je4IN8fmXznyyREd4KGS40JGsWkkzVyiKOL9bcb+eHhoOPqGeTa4UXBTeuCWMLxzVxRm9A/Bn88MwaYnB9dZOv1GTI02vtduO2e791oish0mUq3YppNpmLXyEAAgKtANjw5rZ7quuuLTnks5NqnEJoqiaQH13CHhUMiuPvWCPVXoHeIOUay5bmvnhSw8+u1RGETg9u7+ppErAIgO9cDO54YDME7zO5yYj7/OZuLElQIoZBLsfH44Xp3QFR39nJFfpsPQ/+7EXSv2o0xbWSOu6vuL9mm533Lb0vS+weisdkFhuQ7Lqj4EZRVV1JmkNhc5JRqsP5aCA/G52B2bjbf+OIdbP9iNr6oWtns7K03frFPzJAgC2lWNSl3KbL7T+3bHZuPZH0/i+4PJKK6o+Vpz8koBDiXmQS4V8OSIDnB1kOPjGb0guy6Bn9I70PTlUnOndnPAt3P7QyoRsOVshlnrJ8u0lfhyTzye//kULmQUw0khxSND2jV6u6Y2vW8IFt8ZZbUEqtrQDj6QCMDFzGKcS7PvVh+aSj0+3nEJPx9NQXaxptFp70TUOJanaqWyiirw2q9nIIrAwHZeWH5PT8iv2eG9d6gHnJUy5JVqcSatEN2D3Js0niNJ+biUVQJHubTOsrRTegfhWHIBvvknCQ8OCkdCTgkeXXMU2koDwr2dsGRK7SpV/m6OuLdfCH44lIxpn/1jOv7IkAgEuhv3nfnv1B6YtfIQCsp0OJlSiOd+OolP7osGYOyj/XHGaYG9vfiGYg6pRMBrd3TFjC8O4tsDSfi2aopfsKcjvp3TH2HNbI3ZjguZeP6nU/Vu5Dq6iy9eGt/lhqpykW2193XGiSsFza7gRHGFDptOpuHv81mmkuO/HEvBusNumB10tV114n5H9wCo3RwAAH3CPLHmof5IyCnF+Cj/FjEKdb3IQDfcHR2EtYev4NOYeHwZVrvAhSiKKNPqkVZQjvnrTuDsNQnFlN5BcFO1vMdtLg8nBcZ1U+PPMxlYfywFXQO6Nn6jJlCh0+OZtcfx1zVrkfuHe+K7h/qb9iMjIsvxr6eV+mpvAgrKdOjq74rVc/rB18WhxvVyqcRUvW+3DTZa/eGQccrKhO7+dW52OqV3IFyUMiTnleHJ74/h8TXHoK00YECEJzY9OajeDVLnDW9nWmsAGBdZPzzkauW9HsHu2PfCSPx3qrEc7ubTGdh82rjnyG+n0iGKQK9gN3g51Do11WNgO288OaJmhawreeV46JsjKK9am2ZP++NycOcn+zBmWQzmrDqC3FItvJ0V8HFRwl0lx+guvrg9yh/r5w3El7P6ot1NroMg2+hUNfX2dGqBfQO5RqmmElNX/IOXN5wxJVGqqgpzJ1MK8XeaAFEUkZhTij+qXnfmVBX7qTYgwgv39gtpkUlUtYeGREAQgO3nM2sVnkjMKcWty/eg2+t/Ycz7u01JlJeTAv3DPfHUKMur7bU0d1atCf7tVJrdRoGWbYutkUQBwMGEPCz966Jd4iFqLTgi1QrtvZRj2nPk2bEda4xEXWtoRx9sPZeJmNhsPDmyQ5PFk1+qNSUv9/Sre7d5lUKGRRO74bmfT5qqWLk6yLB8ei+41JNEAcZpgWse6o+Yi9no4u+Cge29ayRWgLHC1N19gnEpqwSf747H/LUnEOHjhN+qpvVN6O4P5N1Y1am26tmxHREZ6IYtZ9IxorMv3vrjPC5nlWDd4WTMHnT1g2KFTo9dF7PgrJQjKtAN2SUV2HYuCxHejk0SV4mmEk//cBw5JVdHoGb0D8Hrd3S94cpe1DzcUvXFzz9xudBWGmpMD7YHURTxwi+ncDGzGC5KGR4cFIYIH2fc0SMA3x9Kxqsbz+D3ZClOLNuDlALj2s9hHX0QGehm17ibQntfZ9zXPwRrDiTjlY1nsPnpIab/n5c3nsbFzGJTW29nBb57aAA6qdvOmtRhnXzg6iBDZpEGBxNyTftLVdPpDfj7fBba+zpbdR9DbaUBz/50ElvOGNcCA8CH9/bCHd39sXp/Ihb9dg6f747HLe28rLZhM1Fbw0SqldHpDfi/H08AMA7bj2ygAlJ1wYdjyQUoqtDVO+pTl/PpRUjNL8eQjt4NfkDVVhrwwi+nUKEzoIu/K3qHuNfb9q7oIHg6KfDUD8chCMD703uapsA0pGewO3oG13/eagvGdMTBhDycvFKAW5fvAQAIAnBrNz8c2XOm0dvTVYIg4NZINW6NNO6TUlSuw6u/nsWXexNw/4BQyKQSVOj0mL3yEA7E171u4u5wAeOtHNenu+KQU6KFk0KKxVOi0C3A1VQ6m1q2rv6u8HZWIqdEg92x2Rjd1c8m93sqpQAfbL+E26L8TYUDRFHEipg4/H4qHTKJgJUP9kWfa6a03d8/BJkFZfh8d5wpiVIppHhzUjebxGwPz4/tjC1nMnA5qwSfxcThqVEdsPNCFvZdzoVcKuDbuf0hl0oQ6qWCt7PS3uHalFImxe3d/fHDoSv49XhajUSqVFOJB746iGPJBZBJBLx1ZySm9637C0dLffNPoukLQ8D4XnlHd38IgoDZg8KRkFOK1f8k4YWfT2H3whFwkPPLJiJLMZFqRUo1lfjxyBVkF2sAAJ/c17vBKkjBnipEeDshPqcUe2JzcHt3/3rbnkktxK8nUuHhpMCO81k4kpQPwFhNa8X90eisdqm174feIOKhb45gd2w2ZBIBb9exzul6Izr74sRrYyAIQqM701vKQS7F5w9EY/SyGNNC8Du6B8DXpW29qTeFqdHBeH/7JaTkl+PRb4+io9oFn++Or3Mai4uDDMUVldiQKMETBeUI87HOlKYLGUX4Yo9xJHbZ9J6mzTCpdZBIBNzZKwBf7EnAdweTmjyRKtNW4qs9Cfjg70uoNIjYcTELbo7GqaFv/3nBNOr/8u1daiRRgPGLhmdGtUdASSxKfLpBhIDRXf0Q6tW81hBak5tKjpdv74L/W3cS722Lxe5L2ab3ifsHhGJAhJedI7SviT0C8cOhK/jjdDr6hnuiZ7AbnJQyzPvuGI4nFwAAKg0iXvjlNFLyy7FgTMebqmKYU6LBB9svmS539XfF23fVfA9+aXwXbD+fhdSCcvxwKBkPDgqv61RE1AAmUi2QKIq4klcObxeFKXnZH5eD+WtPIKsqiXpocDi8zPjWb1ykGit2xWHt4eR6E6lzaUW494sDtapQAUBmkQZTPtkPQQCGdPDBnEFh6B/uhT2XsvHDoWTsjs2Gg1yC/83ojR5mjBoBaNKFr36uDvjv1B74bHccRnbyxcNDIwA034pzLYWjQornx3XCS+tP4+8LWfi7ar2IQirBN3P7oW+YJ44k5sHDSYEOvs6Y/tk/OJSYj4e+OYbVc/ubioNYIr2wHFvOZKBXiAdCPFWY990xaCoNGNHJB2NtNFpBtnVvvxB8sScBOy9m45+4XNN0P2s7GJ+Lp9ceR2aR8fU0xFOF5LwyPPzNkRrtnh3TEbMHhtV7Hic5cPfAUMjlLXf9kyUm9wzEnks5WH8sFYcTjUnUgAhPvHBr894Tyxb6h3uiW4ArzqYV4bmfTta4ztVBhlVz+mHH+Sx8vPMyPtpxGZtOpmFgOy/c0s4bt3ZTWzSVNaOwAjO+PIBiTSWiAt3w6xOD6tzewUEuxePD2+GVjWfwv51xuL27f6311ETUMCZSLcy6w8lY8ucFFJTp0D3IDesfH4hTqYWYs+owKnTGhMDbWYG5Q8z7ZuneviH4LCYOey7lYMuZdNwaWTOZyiyqwMPfHDElUdXTBSf1DISjXIqHvjmMw4n5EEVj0Yq6Clf8d2oPjOrSfD7YXjslDQB0OiZS1nBvvxA4yCX48O/LcFbKMKlnAGb0DzEl+/2v+Ub6jTu6YPqn+3A5uxRjl8VgTFc/3NEjACM6+Zq1n9Omk2l49scTpnn/1fxclXj37h5224+GmlaEjzNm9A/B9weT8fKG09j8zJCbmo5UqqlEcUUl1G4OuJxVguPJ+TiWXIB1h5NhEIEgD0csGNMRE7oH4KX1p/HLsRTTbV+b0LVW4Yi2ThAELJkShR5B7ijVVqJPqCeiQz2sPrugJZJIBHw1qy+W/Hke+y7nmNZxdvV3xaf3RyPES4XeIR5wc5Tj3a0XkZRbhqTcMvxw6ApGd/HDZw9Em92Pr/56BvHZpVDKJPj35MgGX1Pv7hOEr/cmID6nFHf+bz82PzPkhgqfFFfo8OpPp/H3+UxM6B6A/07tztdhMsuZ1EKcTi3E+Ej/FlnBk4lUC3IoIQ8v/HLadPlUSiGG/XcXcks1qNAZMLyTD5ZP7wlnpczsUZ0QLxUeG9YOn+yKwysbz2JoRx/TB9+U/DJMXfEPMooqEOqlwqYnB9d6gV33yC2IzylFpcGA1fsTsetiNtILK+Agl2BoBx/MHhiGge2967praoXu7BWEO3sFNdquva8z/i9Kj/WZnjidWoSNJ9Kw8UQa7uwViGXT6k6EtJUGxMRmY9fFLPxwyPhBV6WQoqyqUqC3sxKf3Bdt1kgstVwv3NoZ285lIj6nFJ/svIwFYzuZdTuDQURuqRbpheVYd/gKDifmITmvDBU6A7ycFLVK5N/VOwj/ntzN9Hr43rQeePn2LkgrKIdBFJt8y4iWSimTYlYDo3RtmdrNAR/c0wuiKGLjiVRU6AyY0juwxjrjh4dG4J5+wTiUkIeY2Gx8808Stp/PxLtbL5o1srftXCa2ncuERADWzxuIbgENFzdRyqT4aEYvTPhoL1ILyjHr60NY81B/qORSvPDLKfwTn4swLye8MqELOqvr32Nr6dZL+OOUsajUz0dTEB3qgXvrKS4FGAsDXc4qQWe1C9dmtWHaSgNmfn0IeaVafLU3AX/NH9rivnhpNYnUJ598gv/+979IT09Ht27dsHz5cgwZMsTeYVnV8u3GDVBv7+6Pwe298fKG00gtKAdg3HD3fzN6w0lp+X/pM6M74LdTabiSV45v/0nCo8PaIa9Ui5lfH0JGUQUifJzwxcw+dX5LJZEIpipDS6Z0h8EgIiG3FAFujnBU8MWR6uepBH5+pD92x+Vj+7lM/HwsBRuOp+KWCC9Mu26D3LxSLeasOowTVwpMx8Z188OK+6JxOrUQ6YXlGN7Jl2/IbYCboxxvTOyGed8dw4qYONzRIwAd/OovKKI3iFi5z7jWqa7pyQCQW6qFIAB9wzwRGeCGwR28MLJz7VF0TycFPJ245xjdHEEQGvzCycVBjlFd/DCqix96h3hg/roTWLErDu19nHFXdP23KyzTYdGmswCAuYPDG02iqnULcMPPj92CuauP4MSVAvR/azvcVQrT54uU/HLc+/kBbHpyMII9VbVur9UDv500JlHBno64kleON347i8HtvWu0F0URgiBgzyXjxtVZxRoEeThiSq9A3BUd1KrXEDYHuy5mYePxVIR5O+GRoRG11rXbw/HkfORVfYl1OasEf5xOx8QeAXaOyjL270UrWLduHebPn49PPvkEgwYNwmeffYbbbrsN586dQ0iIdarf2NuB+FzsjzNWP3rpts4I8lChk9oF//n9HDydlHjnrqgbSqIA4zdST4/sgOd/PoWPd16GQibBryfSEJ9digA3B3z3UH/4u5m3hkUiEbgvD5lNIhEwpqsfxnT1Q6i3Cku3XMRrm86gna8zokM9ABiTqBlfHMCFjGI4KYzVryb3DMQt7bwgCAJ6BLubvf6OWofbItUY3cUX289n4aX1p/Hjo7eYpi+Jooi0wgocrHrN/Ccu1/SBUBAAVwc5+oV7YmKPAIR5OcHNUY7jV/LRJ8zzhtbqETWlyb0CcTGzGCt2xeHZn07i3a0XMa6bGnMHh9dIUpJyS/H02hNILShHoLsjnjVzpLZadKgnvp3T37i2qqISpVrj38ydvQJxPr0IFzKK8cHfl/Du3T1q3fZAloBSrR7Bno7Y9dwI3Pv5ARxKzMM3/yTi5du7Ir9Ui/e3x2Ld4SvQVNacSp+SX44Pd1zGpzHxePn2Ls1qNPNMaiHOphUi2EMFQTB+aexjg+JUeaVabDyeCoMowt/NEUUVOugNIoZ38oGfs+VT39ILy/FZTDxW7U80Hdt6NhOrHuwLX1frrImLzSxGQk4pvJ0VOJSQjzJtJYZ08EGfUI8Gp5buu5xT4/KmE2lMpOxh2bJlmDt3Lh566CEAwPLly/HXX39hxYoVWLJkiZ2js4y20oC/UwUUHr6Csd0CUK7TY9/lHPy3atO8qdFBCPIwvnj2DvHA+nmDrHK/d/YKxNf7EnE+vQhv/HYOAKCUSfD1g33NTqKIbsZjQ9vhYLxxOsvsrw/hu4f7Q+3mgDmrDuNCRjF8XJT44eH+LGdOEAQBb06KxD9xMTiSlI93t17E8+M6ISY2Gy9vOGNKnKq5OMjw0m1dMK1PUJ3TnkO8an/LTtRcPD+2E4rKdfjhUDLSCyuwan8ivj2QhF7B7vB2VkIpl2DLmQxoKg1wdZDhy1l9bmh0PirIDX88NQQ/H0vBxuOpGNTeG/+ZHInTqYWY/L992HA8FbMHhtXYC61MW4ntqca/qUeHtoNUIuDRYRE4lJiHn46mIMLHGf/5/RxKr9us/Z6+wXhyZHusP5aKmNhsHE3Kx+ubzkIiGKs8CoKAwnIdsos18HJSwKOOkeDq6bpx2SVQyiTwclLCz00JuUSCwnIdCsp1KCrXobBcBwDopHaBr4uy0bVb59KK8GlMHDZdUzq+mrezEoIASASgR5A7bo1Uo2+YJ4I8HG9oTVhuiaZqyno2knJLkV+mQ2ZRRa2EEzDe56jOvvDVCig9moryShHl2kqUafWQCAJ8XJTo6OeCqCA3OCtlSM4tw/K/Y7HpRBoqqyrojo9S41BCHs6lF2HI0p24LVKNaX2CMSDCy6z1ydfS6Q04lpSPZdticTCh9jYnH+24jAA3B8wdEoEZ/ULqnKUUc8mYSD00OBxf7k3A7ths5JZoWtQUfUEURftss20lWq0WKpUKP/30E+68807T8WeeeQYnTpxATExMrdtoNBpoNBrT5aKiIgQHByMnJweurvXPAW5qoihi4S+nsfFkRp3Xd/V3wbcP9oHrDSwENUdOiQZf7k3E+fRihHs7YXJPf7P2Z2rpdDodtm3bhjFjxrSZ6lr2Vl+fl2kr8fC3x3EoMR9yqQCJIEBTaYCHSo7v5/a16maVbUlrfY7/dDQF/9po/OLHx1mB7KoF/DKJgA6+zhjSwQv9wz0RHeJ+wyP2N6q19nlz1tr7PKdEg5MphfjmQDL2x9X+4DowwhNvTOyCsCaYIvfkDyfw17ksKGQSqF2VxgTHWYmUfOOXFv5uSmybPwRKmQR6g4hR7+9BatUeagAQ5qXCS7d1QrlWDw+VHAOvqbgpiiL+u/USvtibCABwVsqgkAnIK9WZ2vi5GBNGqSCgTKdHicaYQNT1CVYqEercegMwfkHsrpLDRSmDIAAGERBFYwwigDKt3lT9GAAivJ0AiKg0iLiSX17n/QHGyos+Lko0lIqIuHpfBhGmZK8uXdQuCPJwRE6JBh4qBfLLtDh+pbCBs18lCIC/qwMyiipQ3Q39wz3wyJBwDO3gjYScUjyz7hTOZ1zdKNvTSQ53RwUqqvq20iBCJhGgUkghl0pQVKFDpUGESi41JemZxRpoqxI+WdUyj6ziCgS5OyLEU4VdsTko0RinUzsppfBxVqJSb4BWL0KnNyC/zPjYpRIBu58bikfXHMeZtCJMiw7EW5Ptv+deUVERvL29UVhY2GBu0OITqbS0NAQGBmLfvn0YOHCg6fjixYuxevVqXLx4sdZtFi1ahDfeeKPW8e+//x4qlf2+mczTAO+ekqK00vinKECEXAI4y4FIDxHjggy4gVFdohZFowc+Oy9FXLHx7yBQJWJWRz38ODBKddidLmB9ogQiBAgQMdhPxB2hBii5XI5asYwyIK1MQIkOKNQJCHES0d1TRFMVyivRAR+dlSKjvPYdqGQiHuqkR7trPmuezBWw6pIEogiMCRRxW7ABDQ14iCLw+xUJdqUJqBSvNnSUiijXN/ygvJTGJKhYC+iuua1SKsJRCqhkgF4EssoBscFUx0gCET28RIwKMCD4mu/uyiqNn9MEAFoDcL5AgrP5AtLLAL144x3vrxLR3UNEoJMIV4UIlQzwdUCt/8uMMmBfpgTpZYBcAjhIAaXU+LtBBAq1wJVSAQXaqzfs4m7AbcEGhF73HaQoAsklwIFsCY7lCKhopI/r4ygVEekpYkKwAe7XDSJVGoBD2QK2pUqQp6n//CMDDJgUakB8EfDBWRmiPAx4sJMBUjvXnCgrK8OMGTPaTiK1f/9+3HLLLabjb731Fr799ltcuHCh1m2a64gUAMRlFuG7Lfuw8J5RkMpkkDfhnkpk1Nq/xWyOGutzURRxLr0YMomAjn7OLKN7k1r7czytoBzphRUI93ZqNsUgWnufN0fs86alrTTgbFoRKg0iXB1kKKqohLuDBOeO7MP4cbX7PKtYA4MoQm3BOpwKnR6pBRXQVOoR6O4IN0c5Csp0uJJfhkq9cWRIpZDCWSmDk9L4b/UIiSiKKCyvhKZSDw+VotbeW9pKAzKKKlBUXmkaKRGEqh8IkAjGfSwjvJ3g4mD+CLam0oDEHOO0vOvfqqo/YYsQIRGEqmmBAgQYR94C3B3g4mD+c9Wc53hWsQbJeWUIcHNAgBnrPit0esRmlqBcp4eDXFpV+VlApV5EuVYPrd44ZVQulaBMq0eFTg+DKMLXVYlAN8dGpwTq9AacSy+GTm+AXCqBXCpALpVAIZXAQS6pMd3yXHoRuvrb93N4NXNHpFr8Gilvb29IpVJkZNScDpeVlQU/v7r3LlIqlVAqa8+/lMvldn/xbefnij4+IhyUCrvH0tY0h///tqahPu8Z2jSbrbZlrfU5HuojR6hP83jzvV5r7fPmjH3eNORyoF87nxrHdDodLknq7vNAT8v/D+RyOTqraiZePm5y+LiZN1vIR1H/FylyOdDO0fprb+RyIDLYtmt6GnqOB3rKEehp/jR4uVyO6PCm24hZLgf6hJvXPz1Cms/7vrmvIS1+uEOhUCA6Ohrbtm2rcXzbtm01pvoRERERERFZS4sfkQKABQsW4IEHHkCfPn1wyy234PPPP0dycjIee+wxe4dGREREREStUKtIpKZPn47c3Fy8+eabSE9PR2RkJDZv3ozQ0FB7h0ZERERERK1Qq0ikAGDevHmYN2+evcMgIiIiIqI2oMWvkSIiIiIiIrI1JlJEREREREQWYiJFRERERERkoVazRupmVO9JXFRUZOdIjHsylJWVoaioiPtg2Aj73PbY57bF/rY99rntsc9tj31uW+xv26nOCapzhPowkQJQXFwMAAgODrZzJERERERE1BwUFxfDzc2t3usFsbFUqw0wGAxIS0uDi4sLBEGwayxFRUUIDg7GlStX4OrqatdY2gr2ue2xz22L/W177HPbY5/bHvvcttjftiOKIoqLixEQEACJpP6VUByRAiCRSBAUFGTvMGpwdXXlH4mNsc9tj31uW+xv22Of2x773PbY57bF/raNhkaiqrHYBBERERERkYWYSBEREREREVmIiVQzo1Qq8frrr0OpVNo7lDaDfW577HPbYn/bHvvc9tjntsc+ty32d/PDYhNEREREREQW4ogUERERERGRhZhIERERERERWYiJFBERERERkYWYSBEREREREVmIiVQz88knnyA8PBwODg6Ijo7Gnj177B1Sq7BkyRL07dsXLi4u8PX1xeTJk3Hx4sUabURRxKJFixAQEABHR0cMHz4cZ8+etVPErcuSJUsgCALmz59vOsb+tr7U1FTcf//98PLygkqlQs+ePXH06FHT9exz66qsrMQrr7yC8PBwODo6IiIiAm+++SYMBoOpDfv85uzevRt33HEHAgICIAgCNm7cWON6c/pXo9Hgqaeegre3N5ycnDBx4kSkpKTY8FG0LA31uU6nwwsvvICoqCg4OTkhICAAM2fORFpaWo1zsM/N19hz/FqPPvooBEHA8uXLaxxnf9sPE6lmZN26dZg/fz5efvllHD9+HEOGDMFtt92G5ORke4fW4sXExOCJJ57AgQMHsG3bNlRWVmLs2LEoLS01tVm6dCmWLVuGjz/+GIcPH4ZarcaYMWNQXFxsx8hbvsOHD+Pzzz9H9+7daxxnf1tXfn4+Bg0aBLlcjj///BPnzp3De++9B3d3d1Mb9rl1vfPOO/j000/x8ccf4/z581i6dCn++9//4qOPPjK1YZ/fnNLSUvTo0QMff/xxndeb07/z58/Hhg0bsHbtWuzduxclJSWYMGEC9Hq9rR5Gi9JQn5eVleHYsWN49dVXcezYMaxfvx6xsbGYOHFijXbsc/M19hyvtnHjRhw8eBABAQG1rmN/25FIzUa/fv3Exx57rMaxzp07iy+++KKdImq9srKyRABiTEyMKIqiaDAYRLVaLb799tumNhUVFaKbm5v46aef2ivMFq+4uFjs0KGDuG3bNnHYsGHiM888I4oi+7spvPDCC+LgwYPrvZ59bn233367OGfOnBrHpkyZIt5///2iKLLPrQ2AuGHDBtNlc/q3oKBAlMvl4tq1a01tUlNTRYlEIm7ZssVmsbdU1/d5XQ4dOiQCEJOSkkRRZJ/fjPr6OyUlRQwMDBTPnDkjhoaGiu+//77pOva3fXFEqpnQarU4evQoxo4dW+P42LFjsX//fjtF1XoVFhYCADw9PQEACQkJyMjIqNH/SqUSw4YNY//fhCeeeAK33347Ro8eXeM4+9v6Nm3ahD59+uDuu++Gr68vevXqhS+++MJ0Pfvc+gYPHoy///4bsbGxAICTJ09i7969GD9+PAD2eVMzp3+PHj0KnU5Xo01AQAAiIyP5f2AlhYWFEATBNPrNPrcug8GABx54AM8//zy6detW63r2t33J7B0AGeXk5ECv18PPz6/GcT8/P2RkZNgpqtZJFEUsWLAAgwcPRmRkJACY+riu/k9KSrJ5jK3B2rVrcezYMRw+fLjWdexv64uPj8eKFSuwYMEC/Otf/8KhQ4fw9NNPQ6lUYubMmezzJvDCCy+gsLAQnTt3hlQqhV6vx1tvvYV7770XAJ/nTc2c/s3IyIBCoYCHh0etNnxvvXkVFRV48cUXMWPGDLi6ugJgn1vbO++8A5lMhqeffrrO69nf9sVEqpkRBKHGZVEUax2jm/Pkk0/i1KlT2Lt3b63r2P/WceXKFTzzzDPYunUrHBwc6m3H/rYeg8GAPn36YPHixQCAXr164ezZs1ixYgVmzpxpasc+t55169ZhzZo1+P7779GtWzecOHEC8+fPR0BAAGbNmmVqxz5vWjfSv/w/uHk6nQ733HMPDAYDPvnkk0bbs88td/ToUXzwwQc4duyYxX3H/rYNTu1rJry9vSGVSmt9e5CVlVXr2za6cU899RQ2bdqEnTt3IigoyHRcrVYDAPvfSo4ePYqsrCxER0dDJpNBJpMhJiYGH374IWQymalP2d/W4+/vj65du9Y41qVLF1OxGj7Hre/555/Hiy++iHvuuQdRUVF44IEH8H//939YsmQJAPZ5UzOnf9VqNbRaLfLz8+ttQ5bT6XSYNm0aEhISsG3bNtNoFMA+t6Y9e/YgKysLISEhpvfSpKQkPPvsswgLCwPA/rY3JlLNhEKhQHR0NLZt21bj+LZt2zBw4EA7RdV6iKKIJ598EuvXr8eOHTsQHh5e4/rw8HCo1eoa/a/VahETE8P+vwGjRo3C6dOnceLECdNPnz59cN999+HEiROIiIhgf1vZoEGDapX0j42NRWhoKAA+x5tCWVkZJJKab6NSqdRU/px93rTM6d/o6GjI5fIabdLT03HmzBn+H9yg6iTq0qVL2L59O7y8vGpczz63ngceeACnTp2q8V4aEBCA559/Hn/99RcA9rfd2anIBdVh7dq1olwuF7/66ivx3Llz4vz580UnJycxMTHR3qG1eI8//rjo5uYm7tq1S0xPTzf9lJWVmdq8/fbbopubm7h+/Xrx9OnT4r333iv6+/uLRUVFdoy89bi2ap8osr+t7dChQ6JMJhPfeust8dKlS+J3330nqlQqcc2aNaY27HPrmjVrlhgYGCj+/vvvYkJCgrh+/XrR29tbXLhwoakN+/zmFBcXi8ePHxePHz8uAhCXLVsmHj9+3FQhzpz+feyxx8SgoCBx+/bt4rFjx8SRI0eKPXr0ECsrK+31sJq1hvpcp9OJEydOFIOCgsQTJ07UeD/VaDSmc7DPzdfYc/x611ftE0X2tz0xkWpm/ve//4mhoaGiQqEQe/fubSrPTTcHQJ0/K1euNLUxGAzi66+/LqrValGpVIpDhw4VT58+bb+gW5nrEyn2t/X99ttvYmRkpKhUKsXOnTuLn3/+eY3r2efWVVRUJD7zzDNiSEiI6ODgIEZERIgvv/xyjQ+U7PObs3Pnzjpfu2fNmiWKonn9W15eLj755JOip6en6OjoKE6YMEFMTk62w6NpGRrq84SEhHrfT3fu3Gk6B/vcfI09x69XVyLF/rYfQRRF0RYjX0RERERERK0F10gRERERERFZiIkUERERERGRhZhIERERERERWYiJFBERERERkYWYSBEREREREVmIiRQREREREZGFmEgRERERERFZiIkUERERERGRhZhIERFRs7Fo0SL07NnT5ve7a9cuCIIAQRAwefLkBtsOHz4c8+fPt0lc1fdXHduJEydsdr9ERNQwmb0DICKitkEQhAavnzVrFj7++GM89dRTNoqotosXL8LX19du91+X9evXIy4uDv369bN3KEREdA0mUkREZBPp6emm39etW4fXXnsNFy9eNB1zdHSEs7MznJ2d7REeAMDX1xfu7u52u/+6eHp6oqioyN5hEBHRdTi1j4iIbEKtVpt+3NzcIAhCrWPXT+2bPXs2Jk+ejMWLF8PPzw/u7u544403UFlZieeffx6enp4ICgrC119/XeO+UlNTMX36dHh4eMDLywuTJk1CYmKixTGXlpZi5syZcHZ2hr+/P957771abdasWYM+ffrAxcUFarUaM2bMQFZWFgBAFEW0b98e7777bo3bnDlzBhKJBHFxcQCMUxpDQkKgVCoREBCAp59+2uJYiYjItphIERFRs7Zjxw6kpaVh9+7dWLZsGRYtWoQJEybAw8MDBw8exGOPPYbHHnsMV65cAQCUlZVhxIgRcHZ2xu7du7F37144Ozvj1ltvhVartei+n3/+eezcuRMbNmzA1q1bsWvXLhw9erRGG61Wi3//+984efIkNm7ciISEBMyePRuAcTrjnDlzsHLlyhq3+frrrzFkyBC0a9cOP//8M95//3189tlnuHTpEjZu3IioqKgb7zAiIrIJJlJERNSseXp64sMPP0SnTp0wZ84cdOrUCWVlZfjXv/6FDh064KWXXoJCocC+ffsAAGvXroVEIsGXX36JqKgodOnSBStXrkRycjJ27dpl9v2WlJTgq6++wrvvvosxY8YgKioKq1evhl6vr9Fuzpw5uO222xAREYEBAwbgww8/xJ9//omSkhIAwIMPPoiLFy/i0KFDAACdToc1a9Zgzpw5AIDk5GSo1WqMHj0aISEh6NevHx5++GEr9BwRETUlJlJERNSsdevWDRLJ1bcrPz+/GiM2UqkUXl5epul0R48exeXLl+Hi4mJac+Xp6YmKigrTVDpzxMXFQavV4pZbbjEd8/T0RKdOnWq0O378OCZNmoTQ0FC4uLhg+PDhAIwJEgD4+/vj9ttvN00//P3331FRUYG7774bAHD33XejvLwcERERePjhh7FhwwZUVlZa0ENERGQPTKSIiKhZk8vlNS4LglDnMYPBAAAwGAyIjo7GiRMnavzExsZixowZZt+vKIqNtiktLcXYsWPh7OyMNWvW4PDhw9iwYQMA1JhG+NBDD2Ht2rUoLy/HypUrMX36dKhUKgBAcHAwLl68iP/9739wdHTEvHnzMHToUOh0OrNjJSIi22PVPiIialV69+6NdevWwdfXF66urjd8nvbt20Mul+PAgQMICQkBAOTn5yM2NhbDhg0DAFy4cAE5OTl4++23ERwcDAA4cuRIrXONHz8eTk5OWLFiBf7880/s3r27xvWOjo6YOHEiJk6ciCeeeAKdO3fG6dOn0bt37xuOn4iImhZHpIiIqFW577774O3tjUmTJmHPnj1ISEhATEwMnnnmGaSkpJh9HmdnZ8ydOxfPP/88/v77b5w5cwazZ8+uMc0wJCQECoUCH330EeLj47Fp0yb8+9//rnUuqVSK2bNn46WXXkL79u1rTBdctWoVvvrqK5w5cwbx8fH49ttv4ejoiNDQ0JvrCCIialJMpIiIqFVRqVTYvXs3QkJCMGXKFHTp0gVz5sxBeXm5xSNU//3vfzF06FBMnDgRo0ePxuDBgxEdHW263sfHB6tWrcJPP/2Erl274u23365V6rza3LlzodVqTUUmqrm7u+OLL77AoEGD0L17d/z999/47bff4OXlZfmDJyIimxFEcyaBExERtWK7du3CiBEjkJ+f32Qb8u7btw/Dhw9HSkoK/Pz8LLptYmIiwsPDcfz48Rr7bBERkf1wRIqIiKhKUFAQ7r33XqueU6PR4PLly3j11Vcxbdo0i5Oo2267Dd26dbNqTEREdPM4IkVERG1eeXk5UlNTARjXRqnVaqude9WqVZg7dy569uyJTZs2ITAw0KLbp6amory8HMDVNVlERGR/TKSIiIiIiIgsxKl9REREREREFmIiRUREREREZCEmUkRERERERBZiIkVERERERGQhJlJEREREREQWYiJFRERERERkISZSREREREREFmIiRUREREREZKH/ByeoaaHSA3paAAAAAElFTkSuQmCC", + "text/plain": [ + "<Figure size 1000x300 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAE6CAYAAAAcHmMZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACsw0lEQVR4nOzdd3xT9f4/8NdJmqRJ914UWvYeIiggUwHBgaLXPVB/LrwqF9f1unCBcr2Ie19B/eJE8SoIFNkisveGFrpLZ9Kk2ef3x8nnZKdJm6Rp+34+Hj6kyWl6epqcc96f9/vz/nA8z/MghBBCCCGEEOI3SVvvACGEEEIIIYS0NxRIEUIIIYQQQkiAKJAihBBCCCGEkABRIEUIIYQQQgghAaJAihBCCCGEEEICRIEUIYQQQgghhASIAilCCCGEEEIICRAFUoQQQgghhBASIAqkCCGEEEIIISRAFEgRQgiJWEuWLAHHcdi1a5fXbYqKisBxnPifRCJBUlISLr30Uqxdu7bZn5GXl+f0/d7+W7JkSVB+p/nz52PFihVBeS1CCCFtJ6qtd4AQQggJhocffhi33HILLBYLjh07hhdffBHTp0/H+vXrMW7cOK/f99NPP8FgMIhff/rpp/jss8+wevVqJCQkiI/36NEjKPs5f/58XH/99bjmmmuC8nqEEELaBgVShBBCOoSuXbvi4osvBgCMGTMGvXr1wvjx4/HZZ5/5DKSGDRvm9PXq1asBAMOHD0dqamrodpgQQki7RqV9hBBCOqQLL7wQAFBZWdnq1+J5Hu+//z6GDh0KpVKJpKQkXH/99Thz5ozTdnv37sWVV16J9PR0KBQKZGdn44orrkBJSQkAgOM4aLVaLF26VCwZnDBhQqv3jxBCSPhRRooQQkiHVFhYCADo3bt3q1/r/vvvx5IlS/DII4/g9ddfR21tLV566SWMHj0a+/fvR0ZGBrRaLSZPnoz8/Hy89957yMjIQEVFBTZs2ACNRgMA+PPPPzFp0iRMnDgRzz33HAAgPj6+1ftHCCEk/CiQIoQQ0iFYrVaYzWZxjtSDDz6IrKwszJ07t1Wvu337dnzyySf4z3/+4/RaY8eORe/evbFo0SK8/vrrOHbsGGpqavDZZ59hxowZ4nY33HCD+O+LL74YEokEaWlpYhkiIYSQ9okCKUIIIR3CU089haeeekr8Oi4uDhs2bEBeXl6rXvfXX38Fx3G47bbbYDabxcczMzMxZMgQbNy4EQDQs2dPJCUl4amnnkJ5eTnGjRuH/v37t+pnE0IIiVw0R4oQQkiH8Oijj2Lnzp3YunUr3njjDZhMJsyYMQM1NTWtet3KykrwPI+MjAzIZDKn/7Zv347q6moAQEJCAjZt2oShQ4fiX//6FwYMGIDs7Gy88MILMJlMwfgVCSGERBDKSBFCCOkQunTpIjaYGDNmDDIzM3HbbbfhhRdewLvvvtvi101NTQXHcdiyZQsUCoXb846PDRo0CN988w14nseBAwewZMkSvPTSS1AqlfjnP//Z4n0ghBASeSgjRQghpEO69dZbMWHCBHzyySc4e/Zsi1/nyiuvBM/zKC0txYUXXuj236BBg9y+h+M4DBkyBG+++SYSExOxZ88e8TmFQoGmpqYW7w8hhJDIQBkpQgghEW/9+vUoKipye3z69Ok+v+/111/HRRddhJdffhmffvppi372mDFjcN999+Guu+7Crl27MG7cOMTExKC8vBxbt27FoEGD8OCDD+LXX3/F+++/j2uuuQbdu3cHz/P48ccfUV9fj8mTJ4uvN2jQIGzcuBG//PILsrKyEBcXhz59+rRo3wghhLQdCqQIIYREPMcmEo5Yi3NvRo4cib/97W9YunQpnn76afTo0aNFP/+jjz7CxRdfjI8++gjvv/8+rFYrsrOzMWbMGIwcORIA0KtXLyQmJmLhwoUoKyuDXC5Hnz59sGTJEtx5553ia7311lt46KGHcNNNN0Gn02H8+PFiwwpCCCHtB8fzPN/WO0EIIYQQQggh7QnNkSKEEEIIIYSQAFEgRQghhBBCCCEBokCKEEIIIYQQQgJEgRQhhBBCCCGEBIgCKUIIIYQQQggJEAVShBBCCCGEEBIgWkcKgNVqRVlZGeLi4sBxXFvvDiGEEEIIIaSN8DwPjUaD7OxsSCTe804USAEoKytDbm5uW+8GIYQQQgghJEIUFxejS5cuXp+nQApAXFwcAOFgxcfHt+m+mEwmrF27FlOmTIFMJmvTfeks6JiHHx3z8KLjHX50zMOPjnn40TEPLzre4aNWq5GbmyvGCN5QIAWI5Xzx8fEREUipVCrEx8fThyRM6JiHHx3z8KLjHX50zMOPjnn40TEPLzre4dfclB9qNkEIIYQQQgghAaJAihBCCCGEEEICRIEUIYQQQgghhASoTQOpzZs346qrrkJ2djY4jsOKFSucnud5HvPmzUN2djaUSiUmTJiAw4cPO21jMBjw8MMPIzU1FTExMbj66qtRUlISxt+CEEIIIYQQ0tm0aSCl1WoxZMgQvPvuux6fX7hwIRYtWoR3330XO3fuRGZmJiZPngyNRiNuM2fOHPz000/45ptvsHXrVjQ2NuLKK6+ExWIJ169BCCGEEEII6WTatGvftGnTMG3aNI/P8TyPxYsX45lnnsHMmTMBAEuXLkVGRgaWLVuG+++/Hw0NDfjss8/w5Zdf4rLLLgMAfPXVV8jNzcW6deswderUsP0uwaTX66HVaj12ZJFKpYiOjha/1mq1Xl9HIpFAqVS2aFudTgee5z1uy3EcVCpVi7ZtamqC1Wr1uh8xMTEt2lav1/sMnn1tazKZnI65SqUSu7QYDAaYzWavrxvItkqlUlzUzWg0wmQyBWXb6OhoSKXSgLc1mUwwGo1et1UoFIiKigp4W7PZDIPB4HVbuVwu/ttsNvt8XblcLn4OLBYL9Hq9121lMpn42oFsa7Va0dTUFJRto6KioFAoAAjnMJ1OF5RtA/nce9rW9T3O0DmiZdv687lnx9zx96ZzhP/nCPY+DWRb9rn3dv2kc0Tg2zZ3jnA8tygUCjpH2ITqPoJ9hoCOfY5oV/gIAYD/6aefxK9Pnz7NA+D37NnjtN3VV1/N33HHHTzP8/zvv//OA+Bra2udthk8eDD//PPPe/1Zer2eb2hoEP8rLi7mAfDV1dW80Whs0/+0Wi0PwOt/06ZNc9pepVJ53XbcuHFO26ampnrddvjw4U7bduvWzeu2/fr1c9q2X79+Xrft1q2b07bDhw/3um1qaqrTtuPGjfO6rUqlctp22rRpPo+b47YzZ870uW1dXZ247e233+5z29LSUnHbBx54wOe2J06cELedO3euz2337t0rbvvss8/63Hbbtm3itgsWLPC5bUFBgbjtW2+95XPbFStWiNt++umnPrddtmyZuO2yZct8bvvpp5/yWq2WX7FiBb98+XKf27711lvi6xYUFPjcdsGCBeK227Zt87nts88+K267d+9en9vOnTtX3PbEiRM+t33ggQfEbUtLS31ue/vtt4vb1tXV+dx25syZTu9hX9vSOUL4L1LOEUVFRXSOQODnCLbtihUrfG7reI747bfffG5L5wjhPzpHCP9FyjkikPuII0eO8CtWrOC1Wm2HPkdEwn/V1dU8AL6hocFn/BKxoV9FRQUAICMjw+nxjIwMnD17VtxGLpcjKSnJbRv2/Z4sWLAAL774otvja9eudRr1iERVVVVYtWqV+LWvEZGamhqnbY0+RgIaGhqctvU18tXY2Oi0bWNjo9dtdTqd07YNDQ1etzUajU7b1tTUeN3WYrE4bVtVVeV1WwBO2/p6bwDAmjVrxNG65ubbrVu3DgkJCQAgvi+92bBhg/h+PnPmjM9tt2zZIr7eyZMnfW77xx9/iL//sWPHfG67fft2cUTRdb6hq127don/3r9/v89t9+7dK3529u7d63Pb/fv3IzU11a9tDx8+LP7tDh486HPbY8eOids2d8xOnjwpbnvu3Dmf2545c0bctrKy0ue2Z8+eFbf19V4HhPcW29bXyDggvGcd38O+0DlCECnniE2bNtE5AoGfI9jfw/FneELnCAGdI+z7197OEYHcR2zZsgUZGRkoKCjo0OeISODr/euIs2WD2hzHcfjpp59wzTXXAAC2bduGMWPGoKysDFlZWeJ29957L4qLi7F69WosW7YMd911l1vaf/LkyejRowc+/PBDjz/LYDA4fQ9bvbi6ujoiFuT95ZdfMGnSJCrtC2Np3/r168VjTqV9glCX9hUUFGDixIk+/8ZU2icIRmmf43ucoXNEy7b1t7Rv/fr1uPLKK8X3D50jQlvap9frsWrVKq/XTzpHBL6tP6V97NxCpX12oSzt+/333zF58mTwPN9hzxGRQK1WIzU1FQ0NDT5jg8jZYxeZmZkAhKjfMZCqqqoSR+wyMzNhNBpRV1fnlJWqqqrC6NGjvb62QqEQT06OZDJZRKwUHR0djcTERL/2JTEx0e/XDWRbNjoS7G0DOb7h2tZkMnk95pG4v8Hc1t/Rn0C3dbyYesJO0kql0u99lslkThf/YG0LwOP5IBjbOs4HC+a2gX7ufb3HW/q6nekc0ZJt2TF3vNGP5P31tm1bnSNasi3g//WTzhHB2dbXuYXOEcHfll07A71fbW/niEjg73GI2HWk8vPzkZmZiYKCAvExo9GITZs2iUHS8OHDIZPJnLYpLy/HoUOHfAZShBBCCCGEENIabZqRamxsxKlTp8SvCwsLsW/fPiQnJ6Nr166YM2cO5s+fj169eqFXr16YP38+VCoVbrnlFgDCCMY999yDxx57DCkpKUhOTsbjjz+OQYMGiV38CCGEEEIIISTY2jSQ2rVrFyZOnCh+PXfuXADAnXfeiSVLluDJJ59EU1MTZs+ejbq6Olx00UVYu3Yt4uLixO958803ERUVhRtuuAFNTU249NJLsWTJErF+kxBCCCGEEEKCrU0DqQkTJnidXAgIEwznzZuHefPmed0mOjoa77zzDt55550Q7CEhhBBCCCGEuIvYOVKEEEIIIYQQEqkokCKEEEIIIYSQAFEgRQghhBBCCCEBokCKEEIIIYQQQgJEgRQhhBBCCCGEBIgCKUIIIYQQQggJEAVShBBCCCGEEBIgCqQIIYQQQgghJEAUSBFCCCGEEEJIgCiQIoQQQgghhJAAUSBFCCGEEEIIIQGiQIoQQgghhBBCAkSBFCGEEEIIIYQEiAIpQgghhBBCCAkQBVKEEEIIIYQQEiAKpAghhBBCCCEkQBRIEUIIIYQQQkiAKJAihBBCCCGEkABRIEUIIYQQQgghAaJAihBCCCGEEEICRIEUIYQQQgghhASIAilCCCGEEEIICRAFUoQQQgghhBASIAqkCCGEEEIIISRAFEgRQgghhBBCSIAokCKEEEIIIYSQAFEgRQghhBBCCCEBokCKEEIIIYQQQgJEgRQhhBBCCCGEBIgCKUIIIYQQQggJEAVShBBCCCGEEBKgiA6kzGYznn32WeTn50OpVKJ79+546aWXYLVaxW14nse8efOQnZ0NpVKJCRMm4PDhw22414QQQgghhJCOLqIDqddffx0ffvgh3n33XRw9ehQLFy7Ev//9b7zzzjviNgsXLsSiRYvw7rvvYufOncjMzMTkyZOh0WjacM8JIYQQQgghHVlEB1J//vknZsyYgSuuuAJ5eXm4/vrrMWXKFOzatQuAkI1avHgxnnnmGcycORMDBw7E0qVLodPpsGzZsjbee0IIIYQQQkhHFdXWO+DLJZdcgg8//BAnTpxA7969sX//fmzduhWLFy8GABQWFqKiogJTpkwRv0ehUGD8+PHYtm0b7r//fo+vazAYYDAYxK/VajUAwGQywWQyhe4X8gP7+W29H50JHfPwo2MeXnS8w4+OefjRMQ8/OubhRcc7fPw9xhzP83yI96XFeJ7Hv/71L7z++uuQSqWwWCx49dVX8fTTTwMAtm3bhjFjxqC0tBTZ2dni99133304e/Ys1qxZ4/F1582bhxdffNHt8WXLlkGlUoXmlyGEkI7AYkHKkSOIrquDPikJNf37A1JpW+8VIYQQEjQ6nQ633HILGhoaEB8f73W7iM5Iffvtt/jqq6+wbNkyDBgwAPv27cOcOXOQnZ2NO++8U9yO4zin7+N53u0xR08//TTmzp0rfq1Wq5Gbm4spU6b4PFjhYDKZUFBQgMmTJ0Mmk7XpvnQWdMzDj455eAXreHM//QTp3LngSkvFx/icHFgWLQJ/7bXB2NUOg97j4UfHPPzomIcXHe/wYdVqzYnoQOqJJ57AP//5T9x0000AgEGDBuHs2bNYsGAB7rzzTmRmZgIAKioqkJWVJX5fVVUVMjIyvL6uQqGAQqFwe1wmk0XMGzOS9qWzoGMefnTMw6tVx/vHH4GbbgJcihi4sjJE3XQT8MMPwMyZQdjLjoXe4+FHxzz86JiHFx3v0PP3+EZ0swmdTgeJxHkXpVKp2P48Pz8fmZmZKCgoEJ83Go3YtGkTRo8eHdZ9JYSQDstiAR591C2IAmB/bM4cYTtCCCGkk4jojNRVV12FV199FV27dsWAAQOwd+9eLFq0CHfffTcAoaRvzpw5mD9/Pnr16oVevXph/vz5UKlUuOWWW9p47wkhpIPYsgUoKfH+PM8DxcXCdhMmhG23CCGEkLYU0YHUO++8g+eeew6zZ89GVVUVsrOzcf/99+P5558Xt3nyySfR1NSE2bNno66uDhdddBHWrl2LuLi4NtxzQgjpQMrLg7sdIYQQ0gFEdCAVFxeHxYsXi+3OPeE4DvPmzcO8efPCtl+EENKpOMxBDcp2hBBCSAcQ0XOkCCGERICxY4EuXQBv3VA5DsjNFbYjhBBCOgkKpAghhPgmlQJvvQUAsLo+x4KrxYtpPSlCCCGdCgVShBBCmjdzJvDDDzgfn+r8eJcu1PqcEEJIpxTRc6QIIYREkJkzMWm3AoMKDyC9sQ6XThqCGQ/fRJkoQgghnRIFUoQQQvxitlihtQDbuw4GAGT36YEZFEQRQgjppKi0jxBCiF8amkw+vyaEEEI6EwqkCCGE+KVO5xpIGdtoTwghhJC2R4EUIYQQv2gNZqevKSNFCCGkM6NAihBCiF/0JovT1xRIEUII6cwokCKEEOIXvdl5FSkKpAghhHRmFEgRQgjxC8tIJShlAIAGHQVShBBCOi8KpAghhPiFBVKZ8dEAALXeDJPF6utb0Ggw4/oPtuHNghMh3z9CCCEknCiQIoQQ4hcWSGUlRiNJJWSlDpepfX7PuiOV2HW2Dm/9fhKnzzeGfB8JIYSQcKFAihBCiF/0JiH7pJJL0T0tFgBQVt/kdXuLlcecb/eJX7/w8+GQ7h8hhBASTgEHUoWFhTh58qTb4ydPnkRRUVEw9okQQkgEYhmpaJlULO+raNB73f5ASb3T12ar7zJAQgghpD0JOJCaNWsWtm3b5vb4X3/9hVmzZgVjnwghhESgJodAKsMWSFWqvQdS52p1Tl/XNNICvoQQQjqOgAOpvXv3YsyYMW6PX3zxxdi3b18w9okQQkgEYqV90VFSZCYoAAAVPgKpkjrnsr866vJHCCGkAwk4kOI4DhqNxu3xhoYGWCwWD99BCCGkI7CX9knEjJS30j6e5/HvNccBANcOywEA1OuM4Hk+DHtKCCGEhF7AgdTYsWOxYMECp6DJYrFgwYIFuOSSS4K6c4QQQiKHRm8GAMRFy8Q5Ut5K+05U2jv0je6RAgAwW3lojTTgRgghpGOICvQbFi5ciHHjxqFPnz4YO3YsAGDLli1Qq9VYv3590HeQEEJIZNDohdK8uOgoZCUoAQilfTzPg+M4p21rtAbx39dd0AVP/HAAAHCwpAGjbIEVIYQQ0p4FnJHq378/Dhw4gBtuuAFVVVXQaDS44447cOzYMQwcODAU+0gIISQCqB0CqfR4YY6U3mSFusnsvm2TsO2F3ZIgkXCQS4XLzdJtReHZWUIIISTEAs5IAUB2djbmz58f7H0hhBASwezrSEUhWiZFkkqGOp0J5eomJNgW6GXqbY0lEpTC41cPzcYPu0vQ0EQNJwghhHQMfgVSBw4cwMCBAyGRSHDgwAGf2w4ePDgoO0YIISSyGM1CICWPErJLGfHRqNOZcN8Xu/H3ST1xw4W54rb1toCJBVg3jsjFD7tLUFynAyGEENIR+BVIDR06FBUVFUhPT8fQoUPBcZzHzkscx1HnPkII6aCMFlsgZSvTy0yIxrEKDc7V6vDkDwdw/QVdIJEIc6VYRipRKQcAdEkS5lSVN3ieU0UIIYS0N34FUoWFhUhLSxP/TQghpPNxzUixzn1MUY0W3dNiAQANTcLiu4m2jFRctPB/i5WHwWxFtEwaln0mhBBCQsWvQKpbt27iv8+ePYvRo0cjKsr5W81mM7Zt2+a0LSGEkI6DBVIKh9I+R3vO1TsEUraMlC2QUjkEThq9mQIpQggh7V7AXfsmTpyI2tpat8cbGhowceLEoOwUIYSQyCOW9kXZS/sclTjMf6ppFDJSrNmERMIhViEMwDUa3Lv8EUIIIe1NwIGUt9r2mpoaxMTEBGWnCCGERB6xtM82R6pXeqzT82xeFAAUVmsBAF2TVeJjSrmQhWoK4aK8/9tfhr3n6kL2+oQQQgjjd/vzmTNnAhAaSsyaNQsKhUJ8zmKx4MCBAxg9enTw95AQQkhEYIGUzJaRGt4tCY9N7o3/FJwAANTrhCyU1cqjulFYkDcnUSl+PysJ1JtDE0htO12NR77eC0WUBH/8cxJSYxXNfxMhhBDSQn4HUgkJCQCEjFRcXByUSvvFUS6X4+KLL8a9994b/D0khBDS5nied+vax3EcHr60FzITovHEDwfElueNRjOstsau8Ur7+lJsXpTBth5VsB0uVQuvb7Ziz9k6TBmQGZKfQwghhAABBFKff/45ACAvLw+PP/44lfERQkgnwoIowD5HiklUCS3OWWlfeb0eAKCSS52aSoQ6I1Wl0Yv/vu/L3Sh67QoAwJ5zddhRWIt7x3aHVEJt1wkhhARHwHOknnzySac5UmfPnsXixYuxdu3aoO4YU1paittuuw0pKSlQqVQYOnQodu/eLT7P8zzmzZuH7OxsKJVKTJgwAYcPHw7JvhBCSGfFyvoAe0DEsM58rFPfsQohMzQgO95pu1BnpDR65yYWBrMFPM9j5vvb8Npvx/DrgbKQ/FxCCCGdk98ZKWbGjBmYOXMmHnjgAdTX12PkyJGQy+Worq7GokWL8OCDDwZt5+rq6jBmzBhMnDgRv/32G9LT03H69GkkJiaK2yxcuBCLFi3CkiVL0Lt3b7zyyiuYPHkyjh8/jri4uKDtCyGEdGaOgRQr7WPio50DKfb/lBjnOUrRMuH7DCHKSOlNzq97qFSN3hn2hhibTpzHjKE5IfnZhJDIYLVaYTQa23o3QsJkMiEqKgp6vR4WS+ia9nQGMpkMUmnrl+EIOJDas2cP3nzzTQDADz/8gMzMTOzduxfLly/H888/H9RA6vXXX0dubq5YVggIpYUMz/NYvHgxnnnmGbEZxtKlS5GRkYFly5bh/vvvD9q+EEJIZ8ZK+6IkHCQu5XFx0cKlRKM3ged5qG2BVILD/CgAUEQJFy3XgCdYmlxe97oPtmHD4xPEr4+Wa0LycwkhkcFoNKKwsBBWa2iy3m2N53lkZmaiuLjYYwdtEpjExERkZma26lgGHEjpdDox07N27VrMnDkTEokEF198Mc6ePdviHfHkf//7H6ZOnYq//e1v2LRpE3JycjB79myxqUVhYSEqKiowZcoU8XsUCgXGjx+Pbdu2eQ2kDAYDDAaD+LVaLZShmEwmmEwmj98TLuznt/V+dCZ0zMOPjnl4BeN4a/XCCK88SuL2OkrblcRk4dHYZBC798XInbeVS4WLlc4QmnNtk9F9farC82rx3ycqNdDo9GFZDJje4+FHxzz8IumY8zyP0tJSSCQS5OTkQCIJePZKxON5HlqtFjExMRRItQLP89DpdDh//jwsFgsyMjLctvH3PR1wINWzZ0+sWLEC1157LdasWYN//OMfAICqqirEx8c3892BOXPmDD744APMnTsX//rXv7Bjxw488sgjUCgUuOOOO1BRUQEAbgcgIyPDZ1C3YMECvPjii26Pr127FiqVysN3hF9BQUFb70KnQ8c8/OiYh1drjne5DgCiwFnNWLVqldNzPA9wkIIHhxUr1+BoiQSABGXnCrFq1Wlxu+pK4fF9Bw8jueZQi/fFm9IKKQDnm4u7l+4R/22x8vjmf2uQrkTY0Hs8/OiYh18kHHOJRIKsrCxkZ2fDbO64i37L5fKICFzbO5lMhri4OJSXl2PPnj3ged7peZ1O5+U7nQUcSD3//PO45ZZb8I9//AOXXnopRo0aBUAIQoYNGxboy/lktVpx4YUXYv78+QCAYcOG4fDhw/jggw9wxx13iNu5RuXeFg1mnn76acydO1f8Wq1WIzc3F1OmTAl6MBgok8mEgoICTJ48GTKZrPlvIK1Gxzz86JiHVzCO94GSBmD/X0iIUWL69HFuzz+/bz3UejNGjBmPXZvOAJXlGDKgL6Zfkidus+3nw9hVXYr8nn0wfUL3lv46Xn16bjugUeOtGwbj0e8OeNym77CLcXH35KD/bFf0Hg8/OubhF0nH3GAw4Ny5c0hISHBaoqcj4XkeGo0GcXFxlJEKAplMBo1Gg0mTJjmtjwvYq9WaE3Agdf311+OSSy5BeXk5hgwZIj5+6aWX4tprrw305XzKyspC//79nR7r168fli9fDgDIzBTWCKmoqEBWVpa4TVVVlcc0HaNQKNwOGCAc0LY+ETCRtC+dBR3z8KNjHl6tOd5mXrhoR8ulHl8jLloGtd6MJjMPna0rX7xK7rStUi7822TlQ/J3N9gaYqTFK/Hj7NGY+f42t23Oa01hfc/Rezz86JiHXyQcc4vFAo7jIJVKO2RZHwBx7hfHcR32dwwnqVQKjuMQFRXl9v719/3cor9CZmYmhg0b5vRHHDlyJPr27duSl/NqzJgxOH78uNNjJ06cQLdu3QAA+fn5yMzMdEopG41GbNq0CaNHjw7qvhBCSGfGGjkovcwvYi3Qi2q00BqEspoYufNYnYJ17QtR+3O2j9FyKfpmxsHTklEVar37g4QQQkgL+JWRmjlzJpYsWYL4+HixO543P/74Y1B2DAD+8Y9/YPTo0Zg/fz5uuOEG7NixAx9//DE+/vhjAEJEPmfOHMyfPx+9evVCr169MH/+fKhUKtxyyy1B2w9CCOns9M0EUiPyknG4TI195+qhNQrbxiicLzHRrGtfyNqfW8Wfo5JHoXdGHI5VCJ36+mYK/65soECKENK+/PHHH3jggQdw7NgxTJkyBb/88ovTY1dccQVWrFjR1rvZKfkVSCUkJIi1mPHx8WGryxwxYgR++uknPP3003jppZeQn5+PxYsX49ZbbxW3efLJJ9HU1ITZs2ejrq4OF110EdauXUtrSBFCSBCJQYqXQGpgTgIA4HilxiEj5bwty0jpQ5SR0tsCOKXt53ZJUomB1PBuSThWoUE5BVKEEF8sFmDLFqC8HMjKAsaOBYKw3lBrzJ07F0OHDsXKlSvFpgjssd9++w2xsbHNvELzZs2ahfr6egrIAuRXIOW4jtOSJUtCtS8eXXnllbjyyiu9Ps9xHObNm4d58+aFb6cIIaSTEcvmvARSfTKEwatTVY3igr3eMlIGc2hL+1jW7GyNVnxubK9U/N9f56i0jxDi3Y8/Ao8+CpSU2B/r0gV46y2gmYqsUDp9+jQeeOABdOnSRWyC4PgYaTsBz5GaNGkS6uvr3R5Xq9WYNGlSMPaJEEJIhBFL++SeA6n8tBgAQHWjEWW2rE9stOc5UqFYkNdkscJsFUZqo20/Z/bEHgCAJ6b2QddkYf+KqrVubW4JIQQ//ghcf71zEAUApaXC40GcuuLKYDDgkUceQXp6OqKjo3HJJZdg586dKCoqAsdxqKmpwd133w2pVIply5ZBKpWKj3EchyVLlqCurg633nor0tLSoFQq0atXL6dESGlpKW688UYkJSUhJSUFM2bMQFFREQBg3rx5WLp0KX7++WdwHAeO47Bx48aQ/b4dScCB1MaNG2E0Gt0e1+v12LJlS1B2ihBCSGQRM1JRni8bsYooZMZHOz2WrJI7fR3KjJRjcMayZtcMzcH2py/F7Ak90D0tBlIJB7XejEq1wdvLEEI6I4tFyER5GmRhj82ZI2wXAk8++SSWL1+OpUuXYs+ePejZsyemTp0qrnMUHx+PxYsXo7S0FDNmzEBpaan4WHl5OW688UY899xzOHLkCH777TccPXoUH3zwAVJTUwEIayJNnDgRsbGx2Lx5M7Zu3YrY2FhcfvnlMBqNePzxx3HDDTfg8ssvR3l5OcrLy6lpm5/8bn9+4IB9TY4jR46Ii+ECQsvJ1atXIycnJ7h7RwghJCK4zj/ypHtajFg6J+GAeKVz+9hQZqRYoMdxgMIW7HEch8wEIbiLlknRLVmFM9VanDnfKD5OCCHYssU9E+WI54HiYmG7CROC+qO1Wi0++OADLFmyBNOmTQMAfPLJJygoKMB///tfPPHEE+A4DgkJCcjMzIRarRb7FbDHAODcuXMYNmwYLrzwQgBAXl6e+DO++eYbSCQSfPrpp2Kfg88//xyJiYnYuHEjpkyZAqVSCYPBIL4e8Y/fgdTQoUPFdJ+nEj6lUol33nknqDtHCCEkMuhtWSRvXfsAoHdGHLadrgEAZMZHQ+rSfzyUGSmDQ8c+bw2RMhOicaZaiwq1HlYrD4mn/uiEkM6nvDy42wXg9OnTMJlMGDNmjPiYTCbDyJEjcfToUb9f58EHH8R1112HPXv2YMqUKbjmmmvErNLu3btx6tQpt0Zser0ep0+fDs4v0kn5HUgVFhaC53l0794dO3bsQFpamvicXC5Heno6pG3c1YQQQkhoNBl9N5sAgAHZ8eK/uySp3J5n32sIYUbKV8aMlR7O/W4/FhWcwJo549waYhBCOqGsrOBuFwA2Z9N1AIjn+YC6ZE+bNg1nz57FypUrsW7dOlx66aV46KGH8MYbb8BqtWL48OH4v//7P7fvc7yfJ4Hz+wrCFsFlqyoTQgjpPJrr2gcA4/s4XJA9XP9DWtpn9D2HCwAyHMr5SuqacKJSg2Fdk4K+L4SQdmbsWKE7X2mp53lSHCc8P3Zs0H90z549IZfLsXXrVnENVJPJhF27dmHOnDkBvVZaWhpmzZqFWbNmYezYsXjiiSfwxhtv4IILLsC3336L9PR0xMfHe/xeuVwOS4jmgHVkATebYI4cOYLVq1fjf//7n9N/hBBCOh77grzeLxvpcdF4YHwPcBww57Jebs+Ho9lEtI+M1Mj8ZKevqxvdGycRQjohqVRocQ4IQZMj9vXixSFZTyomJgYPPvggnnjiCaxevRpHjhzBvffeC51Oh3vuucfv13n++efx888/49SpUzh8+DB+/fVX9OvXDwBw6623IjU1FTNmzMCWLVtQWFiITZs24dFHH0WJbW5YXl4eDhw4gOPHj6O6uhomkynov2tHFHBNw5kzZ3Dttdfi4MGD4DjOLSVJ0SwhhHQ8zbU/Z566vA/uG9cdyTFyt+fC0WzC1xyuiX3SMaFPGjYePw8AqG6k7n2EEJuZM4EffvC8jtTixSFdR+q1116D1WrF7bffDo1GgwsvvBBr1qxBUpL/GXO5XI6nn34aRUVFUCqVGDt2LL755hsAgEqlwubNm/HUU09h5syZ0Gg0yMnJwaWXXipmqO69915s3LgRF154IRobG7FhwwZMCHJjjY4o4EDq0UcfRX5+PtatWyfOl6qpqcFjjz2GN954IxT7SAghpI1pDc2X9gHCoJqnIAoIU0aqmf37750j8Mg3e/HrgXJUayiQIoQ4mDkTmDFD6M5XXi7MiRo7NiSZKEfR0dF4++238fbbb3t8nq3f6ji9xnVN12effRbPPvus15+RmZmJpUuXen0+LS0Na9eu9X+nCYAWBFJ//vkn1q9fj7S0NEgkEkgkElxyySVYsGABHnnkEezduzcU+0kIIaQN1TcJZR6JKs9Bkj8cM1KBTqRujt7UfFdBAJBIOHRLERphUEaKEOJGKg16i3PScQU8R8pisSA2NhYAkJqairKyMgBCM4rjx48Hd+8IIYREhAadMJ8o0WVtqECwjJSVB8xWDxO6W8GfZhhMaqwCAM2RIoQQ0joBZ6QGDhyIAwcOoHv37rjooouwcOFCyOVyfPzxx+jevXso9pEQQkgbYxmppCBkpAAhKyWTtrjfkRt7e/bmX5MFUucpI0UIIaQVAg6knn32WWi1WgDAK6+8giuvvBJjx45FSkqKOKmNEEJIx2EwW6CzBSoJqpZnpBRRjoGUFXHRPjYOkN7cfLMJhgVSRdXa4O0AIYSQTifgQGrq1Kniv7t3744jR46gtrYWSUlJQa13J4QQEhnqdUI2SsIBca1YwJbjOCiiJDCYrTCYg9u5T2/0r6sgAKTFCYFUlcaAjzefxn3jegR1XwghhHQOAddV3H333dBoNE6PJScnQ6fT4e677w7ajhFCCIkMxbU6AEBWghISSesGzFhWijWHCBad0f85UrnJSvHf81cdgzXI87UIIYR0DgEHUkuXLkVTU5Pb401NTfjiiy+CslOEEEIiR6VamEuUndj6WjwW6AQ7I6XRmwEA8dHNZ8wUUVLMvCBH/Lq4ThfUfSGEENI5+F2joVarwfM8eJ6HRqNBdLT9gmqxWLBq1Sqkp6eHZCcJIYS0nUaDUNoXH93y+VGMvQV6cDNSDbZmGPF+dhVcdMNQ7C+ux+nzWpTUNaFbSkxQ94cQQkjH53cglZiYCI7jwHEcevfu7fY8x3F48cUXg7pzhBBC2h7L9sT6ke1pjn1R3uBmpNR6IZBKCKA9e1qcAqfPa1GjpTbohBBCAuf3VXHDhg3geR6TJk3C8uXLkZycLD4nl8vRrVs3ZGdnh2QnCSGEtB21LZCKC0YgxUr7QpWRCiBrlqgUWrmzNbIIIaQ92bhxIyZOnIi6ujokJiZ63S4vLw9z5szBnDlzgvJzJ0yYgKFDh2Lx4sVBeT1P5s2bhxUrVmDfvn0h+xnB4PccqfHjx2PChAkoLCzENddcg/Hjx4v/jRo1ioIoQgjpoBrFQKr1pX1snSe2gG6wsIyUv6V9AJBoa+XOgjBCCGkLFRUVePjhh9G9e3coFArk5ubiqquuwu+//+7z+0aPHo3y8nIkJCQAAJYsWeIxoNq5cyfuu+++UOy6m//85z9ISEiATuc+91Sv1yMxMRGLFi0Ky76Eg9+BVG1tLUpKStCtWzexzfnhw4dx11134YYbbsCyZctCtpOEEELajsYWpMS2ovU5w16DBWfB0qBjpX3+7yNbE4u1dyeEkHArKirC8OHDsX79eixcuBAHDx7E6tWrMXHiRDz00ENev89kMkEulyMzM7PZ5YfS0tKgUqmCvese3XHHHWhqasLy5cvdnlu+fDl0Oh1uv/32sOxLOPgdSD300ENOEWRVVRXGjh2LnTt3wmAwYNasWfjyyy9DspOEEELaTqPB/454zWEZI5ZBCgarlYeG7WMAGSk2n6qeMlKEkDYye/ZscByHHTt24Prrr0fv3r0xYMAAzJ07F9u3bxe34zgOH374IW655RbExcXhlVdewcaNG8FxHOrr67Fx40bcddddaGhoEHsazJs3D4BQ2udYhldfX4/77rsPGRkZiI6OxsCBA/Hrr78CAGpqanDzzTejS5cuUKlUGDRoEL7++mu/f5+0tDRcddVV+O9//+v23H//+19cffXVSEtLw1NPPYXevXtDpVKhe/fueO6552AyeT8XT5gwwa008ZprrsGsWbPEr41GI5588knk5OQgJiYGF110ETZu3Oj3vreE31fF7du34/PPPxe//uKLL5CcnIx9+/YhKioKb7zxBt57770OFWUSQggJbrMJNodJHcTgRWMwg+edX98fbI4UZaQI6bi0Wq3X56RSqVMXal/bSiQSKJXKZreNifG/A2htbS1Wr16NV1991eP3uZbpvfjii3juuefw9ttvQyaTobCwUHxu9OjRWLx4MZ5//nkcP34cABAbG+v2mlarFdOmTYNGo8FXX32FHj164MiRI5BKhfmrer0ew4cPx1NPPYX4+HisXLkSt99+O7p3746LLrrIr9/rnnvuwZVXXonCwkLk5+cDEDJvGzZswMqVKwEAcXFxWLJkCbKzs3Hw4EHce++9iIuLw5NPPunXz/DkrrvuQlFREb755htkZ2fjp59+wuWXX46DBw+iV69eLX5dX/y+KlZUVIgHAwDWr1+Pa6+9FlFRwktcffXVWLBgQfD3kJAg23OuDq+uPIo5l/XC2F5pbb07hEQ8lu2JU7R+jlS8rfROHcTSPhaUKaIkfi3Iy9jnSFGzCUI6Kk/BBDN9+nTxxh4A0tPTPc7tAYReAY7Zjby8PFRXV7ttx/P+L/B96tQp8DyPvn37+rX9zTffjNtuuw3x8fGQSCROgZRcLkdCQgI4jkNmZqbX11i3bh127NiBo0ePil24u3fvLj6fk5ODxx9/XPz64YcfxurVq/H999/7HUhNnToV2dnZWLJkidjR+/PPP0d2djamTJkCAHj22WfF7fPy8vDYY4/h22+/bXEgdfr0aXz99dcoKSkR+zY8/vjjWL16NT7//HPMnz+/Ra/bHL8Dqfj4eNTX16Nbt24AgB07duCee+4Rn+c4DgaDIfh7SEiQ3f/lbpzXGPDGmuMUSBHiBzZHKhhd+0KRkQp0DSkmUUlzpAghbYcFXc3NcWKGDx/e6p+5b98+dOnSxeNSRoCwNuxrr72Gb7/9FqWlpTAYDDAYDAFl2qRSKe68804sWbIEL7zwAjiOw9KlSzFr1iwx8/XDDz9g8eLFOHXqFBobG2E2mxEfH9/i32vPnj3ged7t9zIYDEhJSWnx6zbH76viyJEj8fbbb+OTTz7Bjz/+CI1Gg0mTJonPnzhxArm5uSHZSUKC6bxGCPj3lzTAavV/5IiQziqopX0hmCPFgrJA1pAC7M0mqGsfIR1XY2Oj1+fYTT1TVVXldVuJxLmtQFFRUav2CwB69eoFjuNw9OhRXHPNNc1uH0gw441jeaIn//nPf/Dmm29i8eLFGDRoEGJiYjBnzhwYjYFl7u+++24sWLAA69evBwCcO3cOd911FwBhutBNN92EF198EVOnTkVCQgK++eYb/Oc///H6ehKJxC3b5zinymq1QiqVYvfu3W5/V19Zydby+6r48ssv47LLLsNXX30Fs9mMf/3rX0hKShKf/+abbzB+/PiQ7CQhwZSfGoPCaqG2eXthDUZ0TWjjPSIksrEOe4HMP/JGzEgFsbSvTteyQCpRZZsj1WQCz/N+jwoTQtqPQIKPUG3rTXJyMqZOnYr33nsPjzzyiNtr1tfX+1wfypVcLofF4ntpicGDB6OkpAQnTpzwmJXasmULZsyYgdtuuw2AEKCcPHkS/fr183s/AKBHjx4YP348Pv/8c/A8jwkTJqBHjx4AgD/++APdunXDM888I25/9uxZn6+XlpaG8vJy8WuLxYJDhw5h4sSJAIBhw4bBYrGIzfDCxe+ufUOHDsXRo0fx3XffYdu2bXj55Zednr/pppvw1FNPBX0HCQk2i0MWamdhXRvuCSGRz2Sxims+BaW0j82RCmIWqKy+CQCQneh7pNUVK+0zmq3QB3mBYEII8cf7778Pi8WCkSNHYvny5Th58iSOHj2Kt99+G6NGjQrotfLy8tDY2Ijff/8d1dXVHud7jR8/HuPGjcN1112HgoICFBYW4rfffsPq1asBAD179kRBQQG2bduGo0eP4v7770dFRUWLfrd77rkHP/74I3766Sen6UA9e/bEuXPn8M033+D06dN4++238dNPP/l8rUmTJmHlypVYuXIljh07htmzZ6O+vl58vnfv3rj11ltxxx134Mcff0RhYSF27tyJ119/HatWrWrR/vvD70AKEKLBGTNmeJxsdsUVVzg1oyAkUjmWFLEbMEKIZ1qDPXMUE4R1pEIxR6q6USjXzYhTBPR9KrkUURIhC1VPDScIIW0gPz8fe/bswcSJE/HYY49h4MCBmDx5Mn7//Xd88MEHAb3W6NGj8cADD+DGG29EWloaFi5c6HG75cuXY8SIEbj55pvRv39/PPnkk2Im67nnnsMFF1yAqVOnYsKECcjMzPSr7NCT6667DgqFAgqFAjNnzhQfnzFjBv7xj3/g73//O4YOHYpt27bhueee8/lad999N+68807ccccdGD9+PPLz88VsFPP555/jjjvuwGOPPYY+ffrg6quvxl9//RXSqUetvyoS0o7wPO90A9doDO6ioIR0NFqjcHGVR0kgkwY09uYR65RXF8QGD2JXwQBLDzmOQ6JKhupGI+p1JmQlBJbRIoSQYMjKysK7776Ld9991+s2PM/DarVCrVaLj02YMMFt3tAHH3zgFoC5zudKTk72uM4Te27FihU+99fftZmUSqVT1sjRwoUL3QI9x3Wi5s2bJ66DBQAymQzvv/8+3n//fa8/TyaT4cUXXxQ7BYZD66+KhLQjWqMFjv0lGoM4T4OQjqjJFkgpA2gr7ktyjDAvqclkEV+7tVrTDIPNq6KGE4QQQgLVrgKpBQsWgOM4p4iV53nMmzcP2dnZUCqVmDBhAg4fPtx2O0kimms5UaOBAilCfGHBjkoenEAqVhEFuS2zVaMNzpIZrWnPLjacoBbohBBCAtRuAqmdO3fi448/xuDBg50eX7hwIRYtWoR3330XO3fuRGZmJiZPngyNRtNGe0oimWvLZcpIEeKbzlb+qgxSIMVxnJiVqtUGZ16SvatgCwIpJS3KSwghpGUCDqSkUqnHPvs1NTVufduDpbGxEbfeeis++eQTp5brPM9j8eLFeOaZZzBz5kwMHDgQS5cuhU6nw7Jly0KyL6R9Uzc5B06UkSLEN50puBkpwF7eVxOkQEos7VME3p49NVZoUPHU8oM4WUkDcIQQQvwX8PCd66Q2xmAwQC6Xt3qHPHnooYdwxRVX4LLLLsMrr7wiPl5YWIiKigpMmTJFfEyhUGD8+PHYtm0b7r//fq/7ajDYS0rYxD2TyeS0uFdbYD+/rfejo6ptFLr0xUVHQaM3Q6M30TFvA3TMw6s1x1ujE86V0VGSoP29Em0t0Gs0+qC8Jss0R0cF/jte0jMZ3+4qBgDc+8UuFMy5pNX7A9B7vC3QMQ+/SDrmZrMZPM/DYrHAau2Yyxmwe3DWeIK0jsViAc/zMJvNbu9hf9/TfgdSb7/9NgChLOPTTz91WiXYYrFg8+bN6Nu3r78v57dvvvkGe/bswc6dO92eY33tMzIynB7PyMjwubDXggULPHb0WLt2LVQqVSv3ODgKCgraehc6pJ3nOQBSxHImaMChUW/C2rUF4Dg65m2Bjnl4teR476gSPjON9bVBW4tD1yABIMGfu/ZBVrq31a+n1koBcNi9/Q+UBngKF6aACZfCohodVvyyCo7JtzNqYFe1BFfkWhHTgvWI6T0efnTMwy8SjrlEIkFWVhYaGhoiIrALJZq+EhwajQZarRbr1693SxR5WoPLE78DqTfffBOAEAV/+OGHTmV8crkceXl5+PDDD/19Ob8UFxfj0Ucfxdq1axEdHe11O9fV6Jtbof7pp5/G3Llzxa/VajVyc3MxZcoUxMfHt37HW8FkMqGgoACTJ0+GTNaCqzbxqXr7OeDUMfTISUX5qRpYwWHCpEuxacPvdMzDiN7n4dWa41331zng9DF0zcnE9OlDg7I/281HsK+mBNn5vTB9Us9Wv94/d60DYMVlkyaga3Lgg2HTLrfg4tc3odFgRrchozGsa6L43CX/3oRKtQGxKZl49+ahfr8mvcfDj455+EXSMed5HqWlpdBqtYiPj4dE0m7aAPiN53lotVrExMT4vM8lvvE8D51OB41Gg6ysLAwdOtRtG8c28774HUgVFhYCACZOnIgff/zRaa5SqOzevRtVVVUYPny4+BjLfr377rs4fvw4ACEzlZWVJW5TVVXllqVyxBYHcyWTydr8RMBE0r50JE0mIRWeEW9fL8bECyfbznbMeZ7HvuJ67Cuux6zReW1yUu5sx7ytteR4G23VI7GK4P2tkm3zkjQGa6tfk+d56M3CTsYpFS16PZlMhou7J2Pd0SocKm/EyB5p0JssOFujQ6VaKG3cdqa2xa9N7/HwomMefpFyzHNyclBYWIji4uK23pWQ4HkeTU1NUCqVFEgFQVJSEjIzMz0eS3/fzwHPkdqwYYPT1xaLBQcPHkS3bt2CHlxdeumlOHjwoNNjd911F/r27YunnnoK3bt3R2ZmJgoKCjBs2DAAgNFoxKZNm/D6668HdV9Ix8AW7kxSySCTcjBZeDSZgrOWTXtyslKD6z7YBrWeHQ85rhmW08Z7RSKRjq0jFcRmE4lK1nK89c0mjBYrWEWGohVrXQ3pkoh1R6uwv6QeGr0Jly/egtL6JvF5tt4UISRyyeVy9OrVC0Zjx+zCaTKZsHnzZowbNy4iAtf2TCaTBaVJXsCB1Jw5czBo0CDcc889sFgsGDduHP7880+oVCr8+uuvmDBhQqt3iomLi8PAgQOdHouJiUFKSor4+Jw5czB//nz06tULvXr1wvz586FSqXDLLbcEbT9Ix6G1BVIxiiio5FFoaDKJj3Umvx2qEIMoANhXXE+BFPEo2AvyAkCiSrgBqAvC2k0Gs33CdbSs5aU8Q3ITAQD7i+vx7zXHnYIoALBaPTdaIoREFolE4nM6SHsmlUphNpsRHR1NgVSECDiQ+v7773HbbbcBAH755RcUFRXh2LFj+OKLL/DMM8/gjz/+CPpO+vLkk0+iqakJs2fPRl1dHS666CKsXbsWcXFxYd0P0j6w9WbioqOgkkvR0GTqlBmpc7XOkyhPn29soz0hkU4X5AV5AYdFcJtaH0jpbZ9fjoO40G9LDO6SAEBoOFH81znx8SSVDHU6ExqCsK+EEEI6loCvOjU1NcjMzAQArFq1Cn/729/Qu3dv3HPPPW5leKGwceNGLF68WPya4zjMmzcP5eXl0Ov12LRpk1sWixCm0SDcdMUoosRSJXaj2JkUVWsBADePzAUA/HWmFkYztVIl7uylfYEvdusNy0g1BKG0z2Cb96iIkrRqzkCiSo7cZGHupMWWfVp270X4/bEJAACt0QKThT4jhBBC7AIOpDIyMnDkyBFYLBasXr0al112GQChTWCoFuQlJFgaDcKoslDaJ7xfO1tGqslowa6zdQCAGy7MhSJKAqPFiooGfRvvGYlETSYhixvMjFRSEEv7WEYqOgilh73T7ZUMN43IxegeqYiPtgeQGn3nKwMmhBDiXcCB1F133YUbbrgBAwcOBMdxmDx5MgDgr7/+Csk6UoQEk9aWkYpTREElE26QmjpZRupYhb2lZ7+seLFd9N7iurbaJRLBHLO4wZJgazah1pvE7E9LsTlS0VGtD6S6JNm7eV41JBsAECWVINb2u1N5HyGEEEcBB1Lz5s3Dp59+ivvuuw9//PGH2EZcKpXin//8Z9B3kJBganRoNtFZS/tK6oRJ9CPykhAtk2KobZL92Rr/Fp8jnQtrxhKrCF5GinXA43lAo29dcGLPSLV+zZh7x3UHIOzf6B4p4uNsfymQIoQQ4qhFQ4zXX389AECvt5cC3XnnncHZI0JCqFG8KXQu7VP6+qYOhjWayE0SMlHp8cJgSK22Y7aLJa3j2OkyWORRQpan0WBGnc4kNp9oCb04RyoYGSkVil67wu3xeKUMpfVNFEgRQghxEvAQnsViwcsvv4ycnBzExsbizJkzAIDnnnsOn332WdB3kJBgYl37YjtxRmq3bX5Uv6x4AEByjBBIVTca2myfSORqDEEgBdizPK1dSyqYGSlvEpRU2kcIIcRdwFeeV199FUuWLMHChQshl9tHEQcNGoRPP/00qDtHSDCp9fZW56z9OdD55kiV2dbH6Z0pTKxPjRU+xzWNlJHqyIwW4ESlJuDv0zpkcYOJde5rbQt0NkeqNYvxNodK+wghhHgScCD1xRdf4OOPP8att97q1KVv8ODBOHbsWFB3jpBgOl4h3ERmJ0QjUSWDytbOubN17atUCyW5GbaSvhRbRqpGSxmpjmzZaQmuePdP/LK/LKDv04ag2QTg2AI9WHOkQh9IqSmQIoQQ4iDgQKq0tBQ9e/Z0e9xqtcJkoosMiVx1tjlA6fHR4DgOSlnnK+3Tmyxiy+nMeGHl9xRbRormSHVcDU0m7K0RTvcPf71XXEesOQazBUbb2kmxQVxHCrAvylvX2tI+sy2QigpdaV98NGWkCCGEuAv4yjNgwABs2bLF7fHvv/8ew4YNC8pOERIK9bYAgo2Ed8bSvvMaIeskj5KIo+wpMfZAytrKVtSdSVG1FjPe3YrVh8rbelea9db6005fP/fzIb++j5V7yqQc4qJDM0eqtcGJ2GwiHKV9QVj3ihBCSMfh95Xx7rvvxltvvYUXXngBt99+O0pLS2G1WvHjjz/i+PHj+OKLL/Drr7+Gcl8JaRU28p1kGwlngZSuE5X2VdjK+jJtWTkAiLONtlt5ocwx2CVcHdVLvx7B/pIGPPDVHo+d3iJJo0uLcVbe2Zxy2yLN6XHRkEi4oO5TsAIpQxgyUgkqykgRQghx5/eVZ+nSpWhqasJVV12Fb7/9FqtWrQLHcXj++edx9OhR/PLLL+LivIREojq3jFTnW5DXdX4UIHQ7s8VU0BrNbbFb7Y5ab8L6Y1VtvRt+M5qdM41s3lNz2JygpBhZ0Pcp2BmpsMyRauWaV4QQQjoWv4eeed5+IZ46dSqmTp0akh0iJFQamjxnpDpTs4mnfzwIwN5gAgA4jkOMXFjTR2ewAHFttXftx//2OTds4HlezPBFIhYAPDg+Hx9sKkRpfRMKq7XIT43x6/viFCEMpFpZLmcIQ/vzeOraRwghxIOArjyRfKNASHPqtLbRdVtGqjOuI8XGQ1jrc4YFlZSR8g/rAMlE+ntIbVs/bXBOAgbmCOuHnfSjFbrG9n3Bnh8FBDMjFb6ufRRIEUIIcRTQ1bF3797NBlO1tbWt2iFCQoXNkUoQM1Kdq7TPaLaKi6veMaqb03OxiihUaQwRHxBECtf1mBqaTBE9t0zDMkvRUThUqgYAvLzyCKYMyGzm+1ggFbmlfeI6UqGcI+VjX0+fb4RGb8bQ3MSQ/XxC2gOTxYrfj1ZhfO80caCSkI4uoCv/iy++iISEhFDtCyEhxbr2Jbl07esszSbYnJ746CixvJFRKYRjwQIt4tvJqkanr+t1JmQnKttob5rX0CT8XVlAAADFtU3Nfp9jABZs7TEjpdGbYbHykNoab1Sq9bj0P5sAAD8/NAZDKJgindjHm8/g32uOY+awHCy6cWhb7w4hYRHQ1fGmm25Cenp6qPaFkJBy7dqn7GTtz/eX1AMArhicLd4IMiw7p/OzCUFnVt1oQK3WCI4DshOUKK1vQn1T5K7BxfO8ONcpPjoKP80ejWvf3wZA6HiniPIegLCMVHxEB1Lha38OCMElWwNr77k68fFXVx7Fdw+MCtk+EBLp3ttwCgDw495SCqRIp+F3LQTNjyLtGc/z3teR6iQZqTWHKgAAeSkqt+diaI6U31jnw5QYhdj9UB3Bc2cMZitMFmFyXFy0DENzEyGXCqf+6kbfASDLSMWGIJBiDRwMZquYVWqJcCzIK5NKxPOFY+BX0WBvI7+vuF5cp42QzqizXEsJceT3lcexax8h7U2TyQKjRRi5Frv2yYSbQ5OFh22aRYf1y/4ynKnWAgAu6ZXq9rxKwTJSFEg1p9EhS9MemhCwII8Djxi5FBzHIS1OCACrmllPKpRzpOIUUWLb/dYEooYwZKQAzxm0Gq09EDVarPh5XyldK0mnZLHycHzrW2hxd9JJ+B1IWa1WKusj7RZbQ0om5cSRZcfJsMYOHkgdLG0Q/z0g232eY6yttE/bScocW4PNI4t1CKTUTZEbgLKyPmUUxEV1U22BVHMZFI0hdF37JBIO8dGtD0TDkZECfAdSsbaBiFdWHkWfZ1fjSJk6pPtCSKQpqtE5fR3JWXpCgim0Vx5CIkSd7YYnUSUXy1TlURJE2W4sO3r8UG27YX5iah+Pz7NmE1rKSDVLDKQU7SMjxRpNKB0SNhm2QOpfPx3y+b2hzEgB9jLbVgVSYViQF4DHoK+mUfhcXTssR3zMaLHiP2uPh3RfCIk0ZfXOzWscs7WEdGQUSJFOwbVjH8OyUoYOnpEqsV3kuiR57iwXw5pNdPSIMghYcNFeAik2Mqx0SCqN75MGQGic4au8L5Rd+4DgNJwwhKFrH+B5Ud5KtRBIje6R4rQtTSkmnY1rNQNr7kRIR0eBFOkU2Ek90bXtty2Q6ujxAxstzPHSopsyUv5zLO3zdHMdacTSPql9zsItI7uKN/tna3Wevg1AaLv2AUEKpMwsIxXe0j6LlRcXNe6RHou7x+SL29JoPOlsXK8dtfQZIJ0EBVKkUyi1BRKZ8dFOj7O23x15jpTFyovdxXK8ZKTYHA/q2tc81mwirh1npDiOwzDbmkc1Xjr38TwvBo2hKu1jx4/NYWwJ1vHPVxv3YMhJFM4d52xzQQqOVEJrtCBWEYUeabF48vI+ePvmYQCAQltjF0I6C9dqhjoKpEgnEZphRkIizDnbqLtr62+ljGWkOm4tTqVaD7OVR5SEQ3pctMdtWECppXWkmuWp2UREB1K2wE/lcrZPjhHmSdVoPTec0BktYuetUJX2JccIGeJaL/vgD/uCvKEdF+ydGQcAOFYhZKG2na4GIJTLSiUcpBIpJvfLACCUErP5U4R0Bq6ZbcrKks6CMlKkU2DzQDITnDMyMYqOP0eKZeOyEqPdFuJl2DpSOspINcs+R0omlvZFcocqMSPlkrBJjRWCmH3n6j1+H/s9pRJOHHAItpQY1oa9FYGUOTzNJgbnJAIADpU2oFZrxOnzjQCA64d3EbdRyqXonRELAPjjdG1I94eQSMI6gMpt3TMpI0U6CwqkSKdQYQuk2AKqjLITlPaV1vmeHwXY15GijFTzGg32RWrbR0aKlfY5r+vCAo/thTUev8+x0USoFmTvZQs6TtjmGgXKbLGKWbPoEJf2dU1RoXdGLMxWHle9sxV/nBKO2/BuSU7bXZQvNJ44UdkY0v0hJJKwuYrZCULVQy01myCdBAVSxI3VyrerRSUtVr7ZhUVZd60M1zlSso7fbKJUbDSh8rpNLGs2QRmpZonzhlzmSEXqZ6bBS0aKBQBREs+XAbU+dGtIMSy4r2xhRqrJZP/gKkJc2gcA+akxAOyfqeyEaLd12VhnzIpmzkmEdCRsGYIsW9UHZaRIZ0GBFHHy1faz6P6vVch/ehWW7y5p693xy4ebTmPk/N+R98+VHtdvWbT2uFh24BZIsa59HTgj9VehUGKUm+wjI0VzpPzW6KH9udnKR2zreLZYsOscqb62OT/e5vKwTBb7HUMhLc4+T8tqDTwQZcGePEoCRYgX5AWAbJes7spHxoqlTAw7x1Q1s9gxIR2JwbYwdhbLSFEgRToJCqSIk1dWHhH//dj3+9twT/z37zX24Omd9afEUh9AKP15e/0p8euUGOf25+I6UpF5D9xqOwprsfnEeQDA+N5pXreLEQMpykg1R+PQbEIll4qLOkdqeZ+9tM/5cdboQa03w2RxH0lgc6viQ9SxDwBSbPO0TBa+Rcevni1roJSFrPzQUZcke1b3gq6JSHI5nwBAuq18uKVZNkLaI6OttC+TSvtIJ0OBFHFiacGocFuTSZ1voMob7Cusnz7v3IZY4tJsIdZWtqTvoF37Xl99DAAwrncahtraXXuSGCPcLDeZLGiK0MxKpHDMSHEcJ2ZsWMASaeylfc6f7USVXFxLylMZTjgCKUWUVDx+1S3ocscW2k5UhW4fHQ3rmij+OzfZc6lsui3Ldt7H7xOpZaCEtBSbI5WVyEr7IvN8SEiwUSBFRFYrDw72gEIq4SL+gm+2WOEa+1U6zE04VqEW/71u7ni372c3cboOmIixWnkcLGkAAMye0MPniH2cIkosjWrJDW1nYl9bSQjCxXlSrVgLKVQaDWax9X+KS+d7qYRDsm2Bak+tilnZXLxrKivI0vwIPLwRAymle2YoFLrb5kgB9rkgrhJs+6LRm93OTQCw6cR5DHu5AF9tPxuSfSSkLbBAilV96IzmiL9/ICQYIjqQWrBgAUaMGIG4uDikp6fjmmuuwfHjznNgeJ7HvHnzkJ2dDaVSiQkTJuDw4cNttMft2/lGA4wOJT6WFs77MJqtYctqlDfoYbHykEdJMKSLMOn7vMZ+U8gyUjeP7Iqe6bFu389uwJo6YCDl+Pe80KWzmCuO48SSJJrb4Z3jZ4ItYhwfwZ37SuuawPNC6VuCh1jDvo6TeyDFfp9QzpEC7G3Yz7fgfVffZCvtC1NGyvFYeGsJ77iNp/PK7K92o15n8jifk5D2iq3nlmh7/1t5e3BFiC+v/HoEU9/c7FRN1J5EdCC1adMmPPTQQ9i+fTsKCgpgNpsxZcoUaLX2cq2FCxdi0aJFePfdd7Fz505kZmZi8uTJ0Gha1k63Myu2jVznJCrFeR+BlivpjGZcvOB3jJy/LiwfCtYZKyshGmm2xWYdFxhlC32yUW9X9oxUxyvtK3Foex4lbf6jnhZrywxQIOVVo8McsljXjFQEBlLsM5gZ7/n9zwIpjxmpMJT2ARA/t9WNgc+pCHdpH8dxuHJwFuIUUbhpZK7HbeRREjHIavIwnqS1BeJ1OhP2nKsL2b4SEk4saEpw+CzqTVQmTpr36dZCHK/U4O3fTzW/cQSK6EBq9erVmDVrFgYMGIAhQ4bg888/x7lz57B7924AQjZq8eLFeOaZZzBz5kwMHDgQS5cuhU6nw7Jly9p479uf4johkMpNVoplS2xRTn8t31OKWq0RGr0Z81cdC/mJlM3tSI6RiyPbNQ43ZKxOO9nLjVZHLu0rsf09c5K8d+tzJJZYaahtszcskJJLJVDY1i2K5IxURYNt/bSEaI/Ps2YPtR7K6tggSnwEZ6TYMU9Uhae0DwDeuXkYdj57mVsHUEfsvOKakXIdmPp0y5mg718kOFahxqHShrbeDRJGrNlErCJKnLccqZ1MSWQ6W6NtfqMIFNri9yBraBBOzMnJyQCAwsJCVFRUYMqUKeI2CoUC48ePx7Zt23D//fd7fB2DwQCDwX7RVquFeTQmkwkmU9veDLGf3xb7cbZaeBPnJEajrL4JdToT6hr1MCV7v2FwdaS0Xvz3L/vLIAGPN64fFNB+GM1W1DeZxEnbvlTbbvrjo6OQZJvLUaVuEo9fdSN7XurxmMbIbCd8S9sc81Aqtp2UsuMVfv1uKbaGExUNTSE/Fm35Pm+N+kYhwxOjsL+f4hTCeFSd1hBxv88523sgnXXHc9m/RNtn5rxG7/ZcvW2QIkbGhfT3SrQN2tQ0uu9Dc1gAGCeXhPXYSwGYTN7LluKipahQC5lux/06XlbvtN3xCk3EvWdaq1ZrxOWLtwAAHp/cC/ePyw/bz26v55X2jB1rlpGSwopomRQmixkanQGmmHZ1mxnxOtp73HEeXXl96O89AuHvvrSbdzjP85g7dy4uueQSDBw4EABQUVEBAMjIyHDaNiMjA2fPep/Iu2DBArz44otuj69duxYqlfdFS8OpoKAg7D/zr9MSABJoq4phNUgAcPh9y5+oSPJ/wuj2Y1LAoWHFz/vLMUlV7Pf3W3jgrUNSnGsE7uljxaBk3z97eykHQApdbRUqjZUApDh06ixWrSoEAJyrEPbn1KF9WFWy1+37q/UAEIUmc9sc81DaXST8PdVVpVi1qvm/QV2ZcCz3HDmFVYYTId8/oP0d80INAERBYjFi1apVAIDzpcJxPnAsfMfNX9tPCPtmqC4GctyPd02Z8Py+o+77frrc9tk5vB+ryvaFbB9LKoT33fHCYqxaFVgDhuOFwv4XnzmOVdpjIdm/lrA2CcdO63Je2Vsj/K5Jch51Rg6F5xvxv19XIQxLYIXNsXrhdwSANwpOwlh2FD3iw7sP7e280t5ZeGEtPQDYvGE9JBbh/b9u4yZ0ifH9vaRlOsp7XEhaCqFISZ1WvK5GAp1O59d27SaQ+vvf/44DBw5g69atbs+5diPjed5nh7Knn34ac+fOFb9Wq9XIzc3FlClTEB8f5jO+C5PJhIKCAkyePBkyWXjq/pnV3+wHqioxYsgA1B+pRElhHfoMHIrpQ7L8+n6e5/Hs3g0AnOtZRk+Y7Pcchn3F9Ti7fQcAQBPXDdOn9/e5/eG1J4BzRRjQKw9DuiTgx6KDkMWlYPr0EbBYefxr93oAFlx52Vj08tBsQt1kwst7N8Bo5TB+4qWIUTafBWsvtv18GCgvxeD+vTF9Qvdmt1fvLMFvJUcQnZSO6dMvCOm+teX7vDU2n6wGDu1BelI8pk8fBQAo21qEgtITSErPwfTpgWVfQ+2zc9sBqHHpRUOAkn1ux7tm+zmsKTmG2JRMTJ8+VHzcauUx9691AHjcfMUEt4Vog4k/WIHvCw9AmSB8bgPxZdkOoK4el4wYhmkDM0O0h4H7Tb0fpw9XQmOC0zGv3HYWOHEco3pnYvPJGjQazOg3Yhx6Zbifm9qrpj2lwFF7w6d1tUl4+KZRYfnZ7fW80p6ZTCb8utp+U3/ltKn46MyfaKjV4YKRo5ptdEQC09He47VaI7BjIwDAZOUwbdq0sKwJ6A9WrdacdhFIPfzww/jf//6HzZs3o0uXLuLjmZnChbOiogJZWfab/aqqKrcslSOFQgGFwv2GWSaTRcwbsy32pcmWmo9XypEUIxwfjcHi936cPt8Ijd4MRZQE79w8DPd9KcxlK6zVY2SCf5m+WofZ2SX1Tc3+bLVe2D45Nho5ycLNyHmNATKZDOfrm6A1WiCTcuiTlQipxP3DmSSNAscBPC/Mk0qMkL9/MDQahb9nokru198wN0UYOiyp04ftvRdJnzl/NJmFUdc4pX2/k2PZZ8Uccb8La+CQkxyD0hL3450Wb1vzpcl532u1RnFNuaykWMhCmDJJsTWbaGgK/PixFu0pccqIOvbptvlTGhPndMwrbR1FuyTHICO+EY3nzagP4BzbHpxvdC6HOVujC/vv197OK+2dY5VrjFIBla2jqcnK0d8hRDrKe9zKmV2+liLaS0fUcPP3+EZ0QQHP8/j73/+OH3/8EevXr0d+vnOtdX5+PjIzM51SnEajEZs2bcLo0aPDvbvtntY2kT5GEWWfhO6hm5c3e8/VAwAG5SRgyoBMTOqbDgA4Uel/B8Wyenunv/L65psesK5dSSoZMm03L+UNevA8L64nlR4X7TGIAoQFeuNtczQisVlAa4gLx/rZdY21hy+q0cJsCU3bWp7n8cT3+3HLZzvbZct5dkzjFPYxqEju2qfxsL+OUry0P2fdLuOioyAPcd1Za44f+/yHukV7oFgHTI3Lr8Saf2TGR9sXco7A901rsE6qs0bnARC6FGoN7fDDTvzGupzLpBykEg5KmXDOoGYTpDlGlxb5Bh9zTyNVRAdSDz30EL766issW7YMcXFxqKioQEVFBZqahJttjuMwZ84czJ8/Hz/99BMOHTqEWbNmQaVS4ZZbbmnjvW9/tAbhpKeSS5Fsy0h5aovszYGSegDA0NxEABDLVU5VNfr9Gscr7EFXWUNTswv61enYOjJycR0kg9mKep0JlWrfrc8Z1t5ZHWCHwkinsXUIi/VyE+0qO0GJaJkEJguP0vrQtK4vrW/C97tLsLOoDvtrIyN9HwjXxXgBe1e7SHv/WK08Go3u++so2cuASa2t2yULtEKJreVWH+CCxjzPo17s2hdZgVRqnOdAirWjz050DKQi633TWixY7JURK/5dWEdY0jGxe99oWydTlVw431D7c9Ic10BKb25/75mIDqQ++OADNDQ0YMKECcjKyhL/+/bbb8VtnnzyScyZMwezZ8/GhRdeiNLSUqxduxZxcXFtuOftk8520xWriPI6Uu0Ly0gNtgVSXZOFcr6SAC6iRx0CKb3J2uzNlT0jJUe0TCrud4VaL7bxzvCyhg7DLvaRmFFoDXbTH+/lJtqVRMKJWT0WhAbboVJ7zbEwKb190YhZvsjPSJXWC4vxSjjv74EU24BJnc5eygfYM1LJYQik2LozTSYLDAFcRPUmq3gRTgpj+3N/pLKMlNH5PV7OMlIJyoh937QW+x2zEqKRmyRcA87VUCDVkbFASmHLRLHSLMpIkea4LtrcHoPviJ4j1Vw2AhCyUvPmzcO8efNCv0MdXKOYkbKX9lV7WF/GkwadCYfKhPb0F+UL7em72C6ixbX+ZTcsVh4nKpzLAMsampDk42bOnpESbkoyE6JRozWivKFJDAZ8rfcC2DNSHe2GxtNNf3PS46NRVKMTyyKD7XCZfW2ZM+r2F0ix4DRWYc+AtNUN8V9naqCSR2FQlwSPz7OS2r6Z8VB4qTlPsn1ueF74LLEAoEZcny30zVfiFPZ5ig1NJqTH+VcfX98k7KNMykElj4yaeoatjeWYkTJbrKiyrZWVnRDdYQMpdu7IjFeia7IKB0sbUFwX+sXZSdsx2W7V2Np6Stvnsakd3hST8DK6TCNglVHtSURnpEh4OWakshKESehlfsxTAoA/z9SA54EeaTFi4NLFthBsSZ3Or6D4XK0OTSYLomUS9MsSuif6mifF87yYkWKBFOsuVlrXJF7QmwukEpQdc44Um3sR7+ccKcB+rEIVSDnOl2swcQEv+NzWxDlSHkr7jGZr2EbTPt58Gjd+vB1XvbvV69+KDSRkeVmMFwCipBJx/pTjXJ1aW5OKcJT2SSScPagIoLyPLbadoJRHTJcnJtVhjhQ791Wo9bBYecilEqTGKpBgy6KxgLAjMJgtYhCemRCNLsnC+bi4ljJSHRk77bGMlMo2cNMeswskvFxL+0J17xFKFEgRAMJ8CpaGVymkYhBUodb71XhgV1EtAGBUjxTxsRxbUKM1WlDnxw3S0XKh7KtPRhxybT+fzSnwRGe0iKMZrLSnm62c8JcD5ai0jf42t7BvfAecq2CyWKG1/T0DmT+SYTtWbOQ82IqqnW+oStrZSLU9I2UPpGLlUWC9TMIRjFeq9Zi/yr5m0lkvZVMN4vwh38FQjO13cRwJZJlolpkOtUTbZ7A+gOPHAhA2EBJJ2LxMM8+Jc+dK6+zzoyQSTtymKkRltG2B/S7yKIlTA6DzITqfkMhgsAonQJYZZhkpNjhLiDeupX3+VkFFEgqkCABA5zByFKuIQlqsAnKpBBYrL3Zh8uXUeaGhRP8se5lRtMwekG09Vd3saxyzlfX1yYwTM0tlDd5/Nrvpkksl4gm8a4oQSO0orMXes3UA/MhIsdI+fcfJSDne0MdFSEbKauVRVKMFYL9xZoHUhuNVmPn+HzgZQIfHtqDxEEg5ZlQCbZjQEjttgxaMt2yvVtxX32VvrPSz0aGzGivFYuW5odaS4+c4PzLSRMuk4gDOmWrhPc8auLBzGxu0qOxAQUa5Q1dCjrMHixRIhc7Wk9V4+/eTTnMcw8220obYZEIs7TO2vw5sjr7bWYwbPvwzoHneJDDuzSba33uGAikCANDZbqIkHKCIkkAi4ZCVKNxU+5M1OHNeuFnokea8jPnEPkIL9I3Hqpp9jQpb9qlrskrMZp213Xh7UmcrIUlQycTSHtZyHbDf9KY302wiQWUr7QvDTXC4sEAqLjrKa+t3T9ixCkUgVa7Ww2C2IkrCYUSesEjjrrN1sFp53PX5Tuw5V48XfzkS9J8bTI2sE6LLvDNWyhWOG0bXRiDeJnQ3Oixn4Is9I2UPpM7ZSrFYw5hQSxKb2/h//OxlvZEXSAFAH1vX0uMVwiATy0ixcxsbtKjy8FnjeR6PfrMXt336F0whWoogFFgFQaatnDTdtkbY+XY4ytwe8DyP2z77C4sKTuCH3cVtth/sFCRmpGRsjlT7zkg9ufwAdhTV4pPNZ9p6Vzos9/bn7a8clAIpAsD5posFJTkO8418MZgt4ohNvksgNamfENjsK65vdh9q2LyMWAUGZAtzpA6UNHjdnl2c2ZotgDCCftOIXKftMuJ8Z6RSbRPq/cm8tRctXV+H3fiEotyoyDYy3zVZha62uRP/3XbWKVupifD1ZsT25y7BiXhTrAn9e8g1yG30csy0fgZSLGOltZXhWK28OKcl1/Z3CrX0FpS5sUYzSRHW+pzpkyl0jj1uy7KyjFROkksgpTHA6pJNOF6pwc/7yrD1VLVY8uyquFaH+7/che1nakKy/y3B3ptsXp69fLHjnFsjxT++3Ye+z60Wv958ovmqj1AxuARSKjEj1f5uihm1Q4XK0j/PYtSC3yPqs9ZRGC3O75H2OK+OAikCwD6qHSO333Sxsrzm1hQqrtXBygMxcqlTUAMAQ7skAhDKW5rL+FTbMkypsQoMtHUiK6lrwsoD5Z63t43+p7rMgcpLtQdzcqmk2TlC3W3B3+nz3rNf7U1Dk3M3Q39lhDAjxUqc8lNjMK5Xqvj4Hf/dIf5bE+HllY1eOiGyQCBUbeMduf5tvM1D0BrdyxA9YZ951vjjfKMBBrMVEs5ehhZqYklpAIFova5l7/FwYRkpVrIsBlK2Y5oaKwfHCd1KXdfrc1x773iF53LXL7efxZrDlbjp4+0hW0A7UI6lfY7/1xotTjempHWqGw34aW+p0/ySA6X1bbY/rIJPKRPOJR2h/XmJS7fh8gY93t94Omw/f8PxKmw92XbBcbi4lfbRgrykvWKj1yqH+RQ5iUJZj6+MlM5oxhM/HAAAdEuJceuelRQjR55t3lJzJ3oWGKXEyhEfLRM7o72z/qTn7RtZ4OVc2pOXYg+k0uMVzXb06m4LvM43GjtMeV+1hnVdC6x9dbrDjY+3TEdLsYxUXmoMRvdIQZbSvaa/0secuEjgaY4UYD9u4eg45Jq18dYuli1n0GxGKtq5tI9lo7ITlZBJw3OJaFlGKtJL+4SM1InKRvA8by/tsw1QRUkl4sCTa1OdMw6DOic8zBts0JnwsUO50REvWatwE1uf2zJSSrlUDHQrIvyz3Z68WXDC7bGyev8aQ4WC0eLcbELVAdqfe1pEevOJ82GZi7ajsBZ3fb4Tt332F05UarCjsBbP/HQw6NfkSOAeSLW/9wwFUgSA59FrdsEvqfc+0fKJ7w+IC/GO7Z3qcRtW4nLaYZTVFc/zqLHNj2Cldr/8/RIAwoiup5Kpz7YWArCXjzC9bSPBgH+NFuKio5AoF06Op85HdrMDf7Gyx9TYwAKpWEWU+B4IdlBQ6BBIAcDFGe4Xfa3RErFZKZ7n7V37ol1L+8I3R4r9bbvZBii0zZT2NddsgrXHLzhSiX+vOYZdtiYt4ZofBTgEog7H73iFBh9uOu11jhDLSIVj0eCW6J4WAwnHQ603o6xBL2akuiTajyvL+ruutedYzne80v28ueZwhdPXOwpr3bZpC64ZKcd/lzVT2UD8t+nEefHf/++SfABCZjOQrpfBZGDNJhTOc6Ta400xw+aG986IxcLrBouP/3aoHHVaY0jnLv7lUEI45c3NuOGjP/F/f53D97vabh5cqLgtyBvAouyRggIpAsA+qu24sKU/c6RWHrSX3d06spvHbfJThcCG3Uh7ojNaxJRuapxwY5SXGiM2rzhc5jziqjWYxcBrWG6Sy8+zZ6QS/ZwjlBotBFL+Lh4c6VgLUXYsAyE2nAjyCDK7OeyVLrwfxmfy+O+dF+Dlawbip9mjxXlHoWq93lo6owWsQV6cwvl9xeaWhSMjxYI19j5v7Rwp9hnbdbYO7204jdd+E1qr54apYx9gz0idtx2/RoMZUxdvxmu/HXPKvDiq1bI5UpEZSCmiJEi3xRN/nKyGwWwFx9mzNQCQawtWXUe/HeeGui5SDrh3QV17uDJYu90q7Jzh+Duy+VKUkQoOvcki3uTvfW4ynr2yv5j1q9W2zZpkYtc+Vtonb/+lfSwzP7FPOm4YkYu+tgHhT7cU4qL5v+PRb/aG7GefPu950NnbfMn2zC2QotI+0l5pPZQssdHSsnq922Roht0A3X5xN7H1uCtWOnfGRyDFbvyVMqnYQhUABmQLc6UOlzo3ndhuWwAYAC4fmOn0HMdxeOfmYeieGoPHp/b2+jMdpdgSNx1l4UhW9ug6Z80frOX12SAei8JqLcob9JBwwKAc4W/KccDYnqm4/eJuGNY1CWnxkb2uDgtYpBIO0TLnUyfLSIU6CNSbLGJHxv62Rau9/Ux7MwbfgUafzHiPj185JKuluxkwNkfqfKPQeGGbQ6DgrVFNndj+PDLnSAFAToxwknpyuVD+3CVJCXmU/b3Dsn6O552aRoPTvNQKtd6p5NhkseIP2/F57sr+AHyfW8PFYuXFjCJb0B0AshyWsth4vApnvNwkEv+wrJ/KoWwy2fYZZw2bws2t2YSs/Zf2lYhLQAjv37vHCJm/fcX1MFqsWHWwImSBzUkv1TunfFT1tFdU2kc6DDYRON6hFC4zIRpREg5Gi1WcMO1IZzSLN3GPT+nj9bVZKVeRj1bm1WLHPuebPta9zzUjtcU2CfP64V08vt5VQ7Kx/vEJGN4t2evPdJTCMlIdZL0IsRFHCwIplqEI1g2P1mDGxDc2AhBumL1lSFh3xXB0vmsJ1owh1qGzJeO4/pa3dZ2CgQ04yKUS9LbNwfE00s/zvMMcIt+BxuAuCW6P/X1iT4ztldba3fUbe5+aLDzqdEax/ToAr3MS6iK8tA8A+iU67zsLfhmW9XP8fdfbloronhaDbFs257jDPKmdhbWo0RqRHCPHjKHZAIT3RVsvflrdaIDFykPCOc9bzbJ9Nt7+/SRmfb7TqbkMCVyZw3pk7DzEPgPsMxFuLPGkdFmQtz137WPzFlnDnf7Z7gNO6/1Y1iVQFisvBkwLrxuM7qkxePaKfgCEcmdvg9rtldFWIsmCcNcMVXtAgRQBAKibhItwvEMpnEwqwbjews3UhuPuJ4yzNcLFP1ElQ4KPmzXH1e293WTWeJnTM9CWvXANpNjNI8tutFaymJHqYKV9LQikuqcJpXefbCnEqyuPtDowcCxTmjU6z+t26e0kI+WpCx6bp2cwW8XPUiiwsr60OIUYvHlq299ksogjfc1lpKJlUvz59CTMndwbq+eMxfanL8XjU70PjISCPEqCFNvNYJXG4BRYlHsIFM0Wq5iZS4rgQGp4qmsg5Xy+6mJrL++4Vt//9pcBAK4clIX+toz8gZJ68fmdRcIctkt6piI1ViEucRDouatSrW+2I2sg2Dk5PS4aUQ5NSthcW6akriksJbAdlevCzoB9ALKtFj5mpX0xCudmE+25tK/M5Tj3cph7zbD54cFUXKuDwWyFIkqC64Z3wfrHJ2DW6DzIpRJojRaUdLC5huw6xQbxKSNF2i17Rsr5JpG1qd5tm4DuSOzClhLj9pwjNk9Hb7JC6+XE6q0DH8tInavVOV182c1jhsOk5tZIVnSsjBS7qcloZjFiT3qm2S8Yn2wpRP7Tq1p8w2W18mKHqZxEJe4f38PrtmLntgjNSLHW53HR7oFUtEwqlpj5as7SWucdWv7nijfhOreRX5aNkkslTvMevclKUOKRS3uhb2a80/yWcEoTW8jrnQILTzfdDU0msbTX33mQbUHCAYO72EeyB3XxnJEqrNaiqFoLjd4kZtsv6ZWGoblCILXZoQ3yrrNCY4kLbYtas/eBr8XLXZ2qasTFC37HmNfW45GvgzPXgwW8GS7vH0+ZzV1F7tcT4h821zgn0X6cWTl2SRtdv4xWITPm2v68vZb2NRkt4jk021amqoiSYvvTl2LxjUPx1T0XAQC2na722uynpViXzp7psZBKhOMaJZWgh21usbeyv/ZKDKSUwnvHQHOkSKTzll1go7vxLjcl7MPrae5QkS0jledlbhSjkkeJN3PVXkbMWEbKtV13okqOnrZ92HTc3qmoUt3yQMETNkeqvKHtWsgGS0OTSWzT7Toa7I/h3ZLEAJb52wfbWrQvf56pwY4i4cbv5WsG+Nw2Q+zuFaGBlEH4jHhbl6mHLQAN5XpkrJQ2LVaBnEQl4qKjYLLwboFunda+xlJz7f8jRbrDArWOWahardGtjp6VMMVFRzllPyLR7HHdxX+PyHMuNc5yCDqufGerOPcpMz4aF3RNxOT+wvzPzSfO44s/i2Cx8uIo+PBuQiDFygX/DGCx0CXbCsVA9H/7y4IyCiwuxusyuJUWp8A7Nw9z+tzsLIqMLoPt0QZbOZnje4nNtTvn57xWi5XHV9vP4lRVcLrUGl3nSNnmORvN1rC0Cw82FpDGKaLEG3xAmO5wzbAcjOqRgtRYBXRGC/Z7mcPZEvuK63Hfl7sBuJcBs27Ep6rafj5kMBlsXfrEjBR17SORzGLlcftnOzBu4Qa3eRVqL4EUGzEtrtO5BWHspN21mYwUYC8xYyVnrtiClJ66zI3pkQLAPqG6yWgRM1K5QWrRHC8XyossVt5jKVGkc/zbsC6LSSqZU+MOf8mjJFj+4GhcNSRbfKysQd+iC+Lec8LIc7+seEzqm+Fz226295GndXMigcbLYrwMC/gf+Xovpr65OSTtcVlGiq2PluJlbkS92IghcsveXGWwzn0aAypc1lVyPW+wsuIuYews2FKT+qbh5WsG4r1bLnBbjiFKKhHbVzcazHjgqz0AgIE58YiSSpyWcvjP2hP4bOsZNBrMiFVEoa+tSchl/YTP1bqj/nfuc520HoybwTLb38xTRvOqIdk49OJULLxeaCN9tFwNnudDOp+wo2nQmTB6we84VqGBVMJhUt908Tl7INV85UCT0YLvdhXj2RWHcNmizUHZN7H9ucs6UoD3BcMjGatM6ZKs8jgQJZVwGJkvDGQcKmtwe74ljpSpceNHf4pfX9DNuRtxb4d16ToSNkjGKj2otI9EtCNlamw9VY1ztTr8tLfU6Tm17SYx3uVCn52ohFTCQW+yus3FYKM2uX5kPVjJnrdA6ryXjBRgn7PDbrBPn28EzwuBQkvmAHki4ezdBf+KkDVZ/GUwWzDtrS2Y+MZGqPUmnKsVAs7WBJnRMikW3zgUn88aIT5WWB34CZwtFHrtsOxmtgRG5CVBLpXgZFWj1/avbcnXHCkAuGFErvjv45UafBeCNT/Y54R1Y2SL0bq2PWaBVXONJiIJmyN3tkYrltWwGzLXuR8sEGCNUSIZx3G4/eJuuGKw5y6Iz17ZHw+4lLyyYITjOHE9vYYmE+avElrTD+uaKJb9jOmZCqmEQ3Ftk98luGw7ltHf7zAHq6XO2YJbX+uPscYmfxXWIv/pVZj+9taQrsfTkXy3qxhltkG+wV0SnBaiznXo/ugrOC2rb0K/51fj6R8Pio95uyYHwrXZhCJKAhZ/tMeGE2y+oa97G9ZR+GBp6zv3NRktmP72FqdGCyPyPAdSHa60z8JK+9gcqfZ3PqBAqhNx7PzkOiJpz0g53yTKoyTizcrRcjXKG5pgtfKwWnmx9WdeavM3MyliRspzVyGxtC/WfQSdzQXYdOI8qtR6/LC7BIB9od9gGdtTyHyxLEp7sedsPY5VaFBYrcUFLxWIo9rd/fi7+CKVcJjYNx0X2kbGDpYGPvLGLkhsLTFfElVy8UbrUAt+Vqj5miMFABd0TcKTl9ubNCz761zQ94E14mDziVi3rnq3jFRkr7HkCSvtZM1JlDKpmOVzbfHOAm32fHv3pEtzD8emFIO6JIhNfxjHbESMIkosxf3Lj/I+q5UXKxLG9BTmwPpbEuaLWOqd6j2Q6psZj4E59pKlo+VqbHWY/0W8c8w4zhyW4/Qca9HdaDCLgxCebPfw/ig40vo1yFhGKsZWAcFxnNgC3VvDiS/+LMKQF9dG5PVWrLbxMSggNsIKwrXKcdDtscm98dHtw9Ez3fn+hmWnT1dr0dJqyeJaHe7/che+2xk5C/uyjFSCkppNkHbgpEMgxbIWjDhHKtp9BJuNvNy9ZBdGLViP7v9ahZ/2lqK60QiVXOqxfbKrZkv7fKx71D8rHj3SYmCx8vhmZzG+2n4WAJxKz4JhkO0C35KAoS3tPmvPoJkdzrDd04Jzk8kuGH+e9n8OBiNmLZP9m6vVN0u4eBwtj7zyvuYyUgAwe0JP7HluMgCh02RNEEZ7HYkZKVsglSRmpJxvnsQ1lmLaUUbK9juxpRYyE6K9NiCxZ6Q6RiAlkXDimlAxcqnb2nhPTu0jLpD+4tUDcMeoPKfnx9qaAm10mEfqTXWjASaL0Kb8QtvyEP6UhPnC87zY7KJrsu8BnJF5KU5fHw5SaVRH1mS0iPPKnrq8L24a2dXp+WiZVMwu+gqKj3som958ovn3jC88z7vNkQIApS2o8hRI8TyP538+jIYmEx4J4cK2APD9rmLk/XMlPt582u/vYXPCfVV1DLQNXpyxNYlpDce18h6a2BNTB2S6bZObpEK0TAKj2YrqFs4++HDTaaw5XIknlx9osw6PrgzUtY+0J8edAinnky3r2pfgoQPWyHz3tZge+34/AODyAZlQRDXfFSytmdK+ajEj5R5IcRwnnlgWFZyA2cojMz4aN4/o6rZta7CR0qPlanECZHvgbcFSNneitVit9soD5U4LgzbHcXQ0J9G/QIplriKxe6JGDKR8ByfJMXJ0t2VxDwQ5KGfNWtLFjJSwL65zpOylfe0nI5Xu0qQgL0UlBoyOF32e58WGHh0lIwUIi5ovumEIfnhwtNvaWANzEvDHPyeh6LUrcOfoPLGsj5nYR8hQbTpxvtm5jKw0qEuSSjx+J1s5L7G60Qid0QKOa37Q5N5x+eLnAwAqI3S5g0hSaMtCJKpkeHBCD8g8NFjxp+HECdsgxSvXDMR3948CAPx2qKJVN69GsxU8bF37HAIpFlQ1mdznSDmWoBbXNoW0IcUTPwiLYc9fdczvMsNi2zxjX+/llFiFuM5bawf+jtv+Lh/dPhwSiefmQBIJJ35ey3UtayDkOG3B231DuLl27dPTOlIkkp1wWFS3SmMQ38AGs0WsS3VtNgH4vlmZ1C/d63OOUm03RNUa99I+s8Uq3nB7Ku0DgBEuwdzT0/t6PeG0VJdEJZJUMpgsfItOjMcrNNh+pibsE6jP2G4q513VHysfuQSrHhmLDY9P8LiAYEtMH5iJzPhoaI0W/GvFQb9/P9b0IlElc5tk7w27MLH5FpGksZlmE46GdEkEABwoDl4gxfO80zpSgD1QqnOZI8UyzJ4GRiIVCw6Z7mmxSIuzd/Jjzjca0NBkAscB+a0sX40k8igJZl7QBf2yAv/cDs1NRFx0FBqaTD6bTjQ0mXDrp38BEEoGB2THQ8IJ3Upb0zqbDXxkxUc3O7CWlaDE+scm4IWrhAxcbRstItuesJbnvt7vjvOkvGE37H0y45wqSVYdLG/xvukcgjDH5kZK1gLd6H5j7Fq67WktPH9ZrDzqdUbsKKx167j7sEtr/6V/FjX7ejzPo4RlpJppZjMgh82Tavl53mC24KSte6Jrpz5X4iLsLgnkompts23Y67RGpykdwew22BquGSmj2druFh2mQKqTqG40iBNVAYDn7e1qWTcyjhPafbpyLJ8Z1T0FPz80Bt1SVLhqSDYm9PEzkPJR2scupBLO+5yO0T1SnMoGLg1StsURx3EY1lXIvnhaNwsQ1mfa46Gm+2yNFjPe24qbPt6O9zacCvq+eWOyWMURyKkDMzEgOwH9s+ODeoMZJZXgo9uHQyrhsPJAubhgaHNYqU9zFyNHQ3ITAQjlPq0tlwg2Vtrn6TPiii0UfSAIk/iZhiaTODGXfZ6SvXTt0zQznysSpbkEUj3SYsXgyjEjxdYg6pUeK65X09lFSSXivKl1Pua8vPbbMfHf43qlIkYRJWa3bvnkrxb/fHbzHkgXRfYermyHXVKZJqMFt336FxYVnAjpANoZ25zA7j7mmooZKS+DUJVqPcoa9OA44YY8WiYVv+dYRcszKqx0TxElccqUKsVFed1v8F2vr4Gsgebq7iU7MfSlAtzw0Z947ufD4uMnKzX4xeVa9euB5q9djsuHNPd+Hmib9uDpnsBfJysbYbLwSFDKxLlu3rBAqlzHwWLl8deZGlzz3h+Y8MZGDHlxrc+A2LUbbiinMJTVN6G8wb9yYXtGyj7oZ2hnWSkKpDoJdkPXIy1GvMlm6XXWKjlWEeUxy5McIxdHSa8YnIUhuYnY9MREt7VBfGH1244LbTIsS5UcI3crWWEUUVI8dXlfjOqegi/vGen3zw0UyyQcKXPvxGO18rjp4z8x8/1tGPPaerHZBgD831/nxKzekm1nw5aVKq7VwWzloZRJkREXuoVUh+Qm4j7bejj/XnPcr+/xZxTVVXaiEpnx0bDy7g1R2lpAGSnbQqr7SxrENs+tnS/FgokEpUwMIJK8dO1T+5jzGKkUUVKnRgQ90mLE4MoxI8XW0WGNEojgatucUW83dUazFb/abixTYxW4dlgXAMD1w4Vuk+dqdS1eDJud15u7EXTEzgtFrbiJbmvPrDiIraeq8fbvJ5H/9CpMXrQJM97dGvS1CNm5tLuPLpXNlfaxhZ4Hd0kUM9WzJwjdIlszT40FUq4Lf9tL+9zL6VhDGWZxwckWHTOzxYpNDnO8ftlfJmYzfthTIj7+4W3DAQjX9eYG6NjxS4tTOJUqenKJbW7ipuPnW/w3Z9m5gTnxza75JzacUHPo+0IBbvx4u1iiZ7bymPvdPlR5ye6xcmg2ENjacl5vGnQmTHtrC6a8udmveVhscNBx0K89Ta0AKJDqND7bWghACBSyE9nCp8LFj40cZMZ7vxH/fNYIfHrHhbhlZMvmJfXLiodUwqFCrRd/LlPto/W5oztH5+Hr+y7G2F5pPrdrDXah8nRx31dSL3amKq1vwrS3tuCGj/7ELZ9sx8ebz4jbVTcasMe2aGaosQtsXmpM0EsdXV1qG/EuqXNus/zzvlL831/uwSMLhPzp6uiIvT8jbT0vjR/NJpj+WQmQSjhUNxpQUteE/s+vwfBX1uFHh4t7oFzL+gDHjJTzzUF7zEgBwCSHDHePdHtGis0N43ke622B1OT+wc9Kt2csm376vNbjXMa95+qgMZiREiPHjn9dCnmUcPl/9ZqB4jZT3tzs1gHSH/5MznfFzgvVjcaA5l5GCrXehF/3O2cATlY1Yn9JAxb8dgwLfjsatAn9p1kg5eNc2lwgxTpdDnEo6WONpA6XqVs8+MdKyrwFUq7NJqxWHodtA5VTBwif4R1FtfjvH4UB/2zXgdlGgxkbjlfBbLHipz3CEi8f3jYclw/MRNdkFay892oTxp/W58ywXCEobTSYxd8pUGwdKpbd8mVQTiIAQG3yfK3Xm6xOAaQj9vdnjWzKGvQhqfpYc7hCyOrpzXhz3Ylmt2fz82IVUYiy3cO0txboFEh1AnqTBTtskwynDMhAVoJwgmABTYk4sdL7RTAzIRqX9c9o8c26Sh6FvrZ25a6THFkr3gwPCzmGGxslZQGKI08lMzsKa7HNoZvdFNvN3Zd+1GIHQ6EfF9hgGd4tSVwPbIVtHbK/ztTg0W/24ZmfDjm1cOV5Hn/aWu0O8aOro6PsROf3Z6RgWR5/MlJKuRS9bHMLP9x0WhyV/XRL4DcLDMvKOHa2ZHMKXW/YNAZhX/2dmxYp7hydh+su6IJnpvdDaqzCqdkEz/OoUOtRozVCKuFwQdekZl6tc0mOkSMvRTiH7y12v1lk56nRPVOdzuMSCYe3bx4GQKhOcBwU8hdbILlbiv+BVKwiSmxCc6yi9WvxhNN5jQFL/yiC0WJFlySl+FlnPttaiI82ncHbv5/0+P08z+O9Daf8KgnkeV4s7cv3IyNV3tAklks5YuVzbOFzAOidGQuphEO9zuS2xIC/NF7WoHTt2sfzPPaeq8P2who0GsyIlknw+nWDxe03taB74Bnb2oZ9M+Mw8wKhJfxX289i66lqVGkMSFLJxJJX1jSLdT/0prjO/0EBiYQTX3fN4YqA9x+AeG/G5lv5khanELsFAsDfhnfBj7NH4/T86fi3bbHr73f5DqQu6JYkDlAFa00qnucx+/92I++fK/H+RvvUhmV/nWu2soQFUkq5VJxX194WcaZAqhM4VNoAk4VHnCIKUwdkijeqpfVCAGOvb/e/LKMlBtvK5lwXfyyzZcSyIyCQYqOktVqjOGGfYTcib/xtCI69fLk4esJMH5SJWaPzxG3DUd53xo+Sj2DhOA5PXt4XALB8dwl4nsdah+Dy5V+PiiNcZ2t0KKlrgkzK4eLuKR5fzxt7IBU5GSme51GjFW40UpvJnDKsTPT/HNaTKqnzvWCmL+xmKsfhc5pl+8w0GsxOo4vqJuFClKBsXxmplFgF/nPDENxrKyNlgZTRYkVDk0ksp+2eGkPzozxgweVeDxlxtnzB6B7un8erh2TjKdtnu+BIZcDvUX/W3fGElYwfKW8/gdQzPx3EiFfX4T8Fwmj7TSNysXrOONw7Nh8zhjovyeEp+3H6fCN+PVCOf685jrd/P4n9Jb7L6mq0Rmj0ZnAckJfi/TyfFqeAIkoCK+95EKqo2rbOl0Owq4iSihUALV1LTM0CKZdzjUpsNiE8//bvp3Dt+9vEuXgDsoVFhdfMGQdAWA8x0O6BrNFS97QYsUxx66lqLN1WBEB4X7PM68g8IeBZsdf3PKlzfjaaYFhHYU9rdDWnptGAE5XCeX1cL/9Kld++aTCm5Fjx1g2D8e+/DcEFXZMglXCYOjATHCcMrrqW9/E8LzYb654aY1/cN0jlfYdK1Vh1UAgki1zm6PlqfgPYA22lTCpWULDgvL2gQKoTmPX5TgDA6J4p4DgOOWLplHNGKtSBFMtMuHYyK7fdMGf72SI7lGIVUeLNW5FDVkqtN4nzzEb3SEG0TIqTr07D5icmYvmDo/D6dYOw4NrBuKBbEuRRElRpDGKQE0qF5wOfh9Qa0wdlQS6V4Ey1FmdrdOJoGiDczP91Rvh6y0lhdHF4tyTEBDifjQUHrpNVD5Y04I01x6HRm2AwW/DdzuKwjWTrjPbOlt46S7oa6CETp9abW9yhap/thos15ACETC+b78BKIa1WXgyq2tMcKU8UUVLx96vSGMRumsHqSNnRDOuaCMA+T4rneewvrsd5jUHMUnkKpADglpFdoZRJcbKq0e+GMoAw94p9VrsGkJEC7H/HlpZFhdsHG087DYwAwIyhOZBKODxzRX+8ddMwXO6wBtC5WueBkwMl9bh88WanbnJrm8lksPm6wjpC3gcPOI7zWt7nuM5XN5dgrLkmFc1ReznXKF1K+1a7/J6sIU/vjFhkJ0SjyWQJeHFm9nvmpcSgZ3ocuqfGwGThscG2nhqb/wfYM1Kl9U0+54SJjT38HJwcapsPe7RcE3Abd9bko1uKyu+lKnKTVLiiqxXTBzmvNRUfLRMHqx2rQwBh6ZuyBj3kURIMzElArwy27EFwMlKesnxs0WhWiu0Jz/NitYZSLhUbTqgjrNFUcyiQ6sB4nsfidSfEbmPXDBXe2K6lU2IqO4COSy3BPuQHSxuc2luyjFRWBGSkAM+ToHecqYWVF55jx4/jOHRNUWF4t2TcOKIrElRCE4DhtlHhbS1YwDYQGr1JzO71clkFPVRiFVEYaruR//ea42LnnzE9hZsz9vWmE8IFsSXz2TyV9pktVjzw1W68u+EUBs1biwWrjuHJ5Qdw1Ttbm615DwY2j08pk/odGA61vd8ZVk7h7YZlV1Etnl1x0ONocqPBjJ22oNX1de2BpxBINTSZwD5e7WkdKW8cO/exjFRLWoR3Bmye1L7ielisPF5bfQwz3vsDI15dB5OFR06i0mvWKEElw71j8wEAL/1yxO/J84fLGsQ1jjwtqO4La/fcHgIpk8XqVLYEAHMu6+VWAvbOLcOw/MHRkEk5NBrMTvN43v79FEwW55vtP5vJZLCg+AJbkOyLt0CqRmuE1ss6X2wB5VPn3W+qrVYe/2/pLlz3wTavJVos++06H9MxkDJZrDhV5Zz9YAu9cxwnduEN9Jrpmgkd38d+vRnWNdGpeU1eaoy4lAsrTffkVJVw3fd3se/81FgoZVI0mSworA4sMPnL9rcf5EdZnz9uGSkEjuuOOgcvaw4JWSHWqZNlpE4EqbSPXYN72ILPwV0SMOey3uJz3prYGMxWsHEGykiRiPTx5jNYvM5eo80mGYqlfXVN4HlenFwZSOvaluidEQu5VIJGg9mpWQG70ERCRgoA8m0jdqxsALCf4Ed5Gc11dFF3YeRrT4hv8H/ZXw6d0YKe6bFOF4xQ+9uFQrevlQ6tVqf0F95bB0sbYLJY8edpIZAa37sFgRSbw+fQbGLFvjKn98wSW+mGycLjtd+OOn3/D7tLcOU7W8Q1U4KBzUHyNxsFCKPtVw7OwkX5ydj97GXoY5sj6K2EZuGa4/hq+znc/Ml2t+fWH6tCk8mCnEQl+mU5B80skKqwDUiw5QTioqPEspb2LD2ede7TUyDVjL6ZcUhUyaDRm/HI13vx0Sbn+U4PTOjhszPY7Ik9kaiSoUZrxC4/z1+sG9yF3ZKb7Trmiq1ldLxC3ap1rMKh4EglNHozklQynJk/HUWvXSHeLDqSSSUY3i1JvBFn5yGrlRdH7uOjo3DVkGxwnFCG6WvtJ3aTyhZG98XTWlI8z4ud4bITlG7rfLFrx0EPJYafbj2DdUcrsftsnVPrfEf2OVKeS/v0JguOlWvcAkjHzOgAW2byZFVg52w274f93tcP74JomQR9M+Pw1o3D3N6Pj08R/l6rD1d4LF9t0JnEQbMefi72LZVwYmb1UGlgAwIbbfPC/F1GpjmX2AYuD5TUO2V11h4RsoFTbNlS1v3vRJCukQdK6wEAL80YiJ9mj8aXd1+ErikqDMpJgMXKY9UBz23ZHZfeiZFHiVlNdRNlpEgE4Hke3+60p3eX/b+LxJMKu1HVGi04V6sTTxzdUkMbSEVJJeLJiaW067RGsWECa0bR1nqk20boHEZrttkCA29lMY5Y9x1PLdSD6Xdb7fG1w3ICvoFpjZkXdEGfDPvf6ueHxoijiwdKGrDnbB20RguSY+TNLjDoSZat9PS8xiC2Qf15n/cRxL3n6sXJqXqTBY9/vx+HStV49Ju9Xr8nUMdtteSBlFBKJRzeveUCfHv/KKTEKnwumKkzmsUyybM1OvH34XlhrZDHv98PALhySBaipM6n7cwE5zllrBU66+jX3rEsR1m9XmxqwG4EiLMoqQSX2Ub3V7qsKXNhtyTcNCLX07eJomVSXJwvnOP8WQON53lxdH/awMxmtnaXnajEyLxkWHngmZ8OBTxHJlxWHijH7P/bA0DoFulP0yU2cMLOHcV1OjQ0mSCPkmD3c5Pxzs3DMMo2f9RbKaXVyovNmfxpruIpI/Wvnw6K5f2ePjfDbQHazqJap5tvq5XHV9vtZYy/H6tEQ5MJS/4odNpff0r7tp4Srp8T+qRhzmW9sPjGoU4Dp71s15NAlrwoqtaiuLYJURJODMgHZCdg97OTsfKRsR7LTMf1TkO0TILi2iaxTNgRC3RzEpUBLbHCGkC4tnX3pUFnEgPcS4K0lAPLOFt5YJ9tnmRxrQ6Hy9SQcBDPDT3T4yDhhIWQW7MGFiBUa7DB+AHZ8RjWNQkJKuG9wLoy7izy/DNYCXqsXFh6h0r7SETZdroGZ6q1UMqk2P/CFIx2+KAq5faF+H61jRSkxynCMp+CBUvHbXNb2Khnz/RYpARYFhIqYtrbdgGsbjSIgd8oPxonDLCN8J0639jsauMtpTdZ8IctuGNdicJFKuHw7f0X49aLuuKFq/pjSG4i+tva21c3GvDcz4cACBeHlnR5TImRi5mUygYDNHqTOJH398fGY+PjE3D3mHx8dc9FyE6IhtnKixcNx4DrWIXGKYvVGmykcWArSjC62T5znubO/e5SinG0XI3T5xuR//Qq3PjxdrELl6fGHfaMlBBI1TR2rEAq3bYsw+6zdTBbecTIpT6XaujsHOfo9MuKx5o541D02hX44cHRkEmbv+QPst2UfrerpNmy2VNVjThTrYU8SoKpLQikAGD+zEGQSyXYdOI8+j63OuB5Ms2xWPlWretUpzXise/3iV8/PKmXX9/HAil27WCZqV7pseLfgZXbr9hbKmZIeJ5HwZFK3P/lLvR+9jdo9GYoZVK/BhpdAymN3oSvd9gHVPtkug9s9cmIQ8/0WBjMVqw+aJ/HVKHW41ytDlIJh5xEJXgeeH/DKcz75Qge+XqvOADrrdkEK4FuaDLh9dVCNmty/wzMuaw3rrHNn3Hd7wq1HiYff6uGJhM+2Hgaf52pwcbjwjnzwrwkp+6kjotMu1LJo8QqCU8DbSts148pAwJbWoFlC/8q9K80saHJhJdXHoGVF5o/ZAZxWgMrvd9vC8BZQ6gRecniNSFBKcMVg4XGKGsOtazbILPRNh9tQHa8Wyn5SNugzF+FtR4zgGzaCeuEy7KarFy0vaBAKoJZrTw+2XwG/9tfFnAXJdYpZcbQbHGytiNWHrTSFkj5Ww/cWq4Xlx22E88IW0edSMACqcJqLYxmq9jtql9WvF/BXlaCElkJ0bBYeacOhWsPV2D6W1vw8q9HnOaIBepkpQajX1sPvcmK7IToNsnkJarkePXaQbhrjDCnQimXikHmicpGSDjg5hauOcZxnNjBsayhCWsOV8Jk4ZGfGoMeabHIS43B81f1xyW9UjHCNoF4R5Fwov7v1iKn17p36S6PrYADxUYOW1PL7hqgO/rFZUT6vQ2ncel/NrltN9LD54QFUt/uKkbeP1eKmYSUDhJIsYwU+xzmp8WENQPb3lzWPwNv3jgE791yAX57dKx4zvUX60J2qqoR132wTbxh9YTdpF3SM7XFi6T3TI/FTSPtmbKnlh9o0et4YrHy+H9Ld2LIi2vdPmP++m5XMfQmK3ISlTjxyjS/18pilQl7ztYJXdNsn/veDtn8ywdlQh4lwcmqRjFD8tpvx3DvF7uw5nAlzLbrxOUDM90y0Z6wLAwLpBybAUXLJLjBVpbtiOM4XGsLbJ5cfkCsArB3r1NirK2jnGOWkzUq8Lb4d5ItK+HY1vzKwc5dDRk2eMbz9gEhVzwv/C1fX30Mt376F95eL8xXmxhgWRwLIE5WNWKXQ5OEQ6UN4u933QXux8kXVvJ/pFzd7DpsR8vVGPv6evywW2hTfqet02+wXJgnBHVbbFlA1sxk6gDngQ62VMv3u0vc2o2vO1KJhauPOVVP1GmNWH2o3K2hxl5bRsvTAumDuyRALpWgutHg1s0PcF/vkDJSbez9999Hfn4+oqOjMXz4cGzZsqWtd6nVVh+uwKurjuKRr/fi3i92w2rl8cqvR5D3z5UY8uJar5PW67RGfP5HEQAhle0JK81ibWdZOVuosRvRXw+UY8FvR8WR+JH5kbMmTFZCNBKUMpitPA6XNYhlfWP8KOtj2AgVmyel1pvw2Hf7caRcjc+2FuLrned8fbtX1Y0GzHx/m1i+1dych3B6/frBYgB095h8v+aTeeO41lmBrb6bjd46utAWWHy/qwSfbinE8UoNVHIplj84CoDw/u797G9YvO5EwB2VGKPZKo4m+7Noojd9bYMXp89rnVZuV+tN4qjetR46Hd0/vju+vGck9j432WOjC3asmPc3ngbQkTJSQiDFujuFa9CnPbt2WBdcMTirRd/bMz3WqdTo6x3ez1XsJm1KKxdHfnhSLzHwL2towqHSBvx1psZtCYpArT1cgQ3Hz0NrtODhr/fi0W/24ofdJW4DWVYrj9d+O4Y53+x16xbKBiUfnNAjoDmHF+YlQSblUFrfhLM1Opy2zbnt6TD3Jj5aJi5C/fP+Uuw9V4ePbOt4TR+UiZkX5ODqIdl4Ymofv34maxil0ZtRpzXij1PC4MPlAzLx+2MT0N3LZ8fxJvu9DcL5g91f5CarxJJmx8YZLCNVzwIpl4xUsssyEaO6p3gc1AWE9ZjYtaPYy1y59ceqxBIxs5VHrdYICQdcNcRzcObNVYOzxHLGx77fLw60LVxzHDwvtEwPtPIgPS4a3dNiwPP2AR9PfthdgmlvbRGzeNcOy8HtF3cL6Gc1h1Wo7CqqxakqjViu6LqA+bSBmchNVqJWa0SBwzImKw+U4/99sQvvbzyNsQs34L9bC9FoMOPa9//AA1/twdzv9jkN7O+xVYMMc+gmy0TLpGKGbIeHbJ1Y2me7rsWJGSkKpMLu22+/xZw5c/DMM89g7969GDt2LKZNm4Zz51p2s9qWeJ5HqVaYM/HJFvtE4XVHK7Go4AQ+3Sos6NnQZMLDX+/x+Br/+G4fADgtRufKdSJluG5OLu6eIq5j8dGmMzhTrYVKLsX43uEtT/OF4zhcbGsY8eeZGoeFLP0PDC60nahZacyKvaXQOJT5zV951GMgrDdZ8OuBMtQ0el4ccd2RSvF1Xr5mYNBPwq2Rk6jEiofG4L1bLsDT0/u16rVY/XxRjQ7bbDcDE/q4Dwpc1i8dHCe0tH11ldB04u4x+RjeLRkvzRggbrd43Um3phT+OlzWAKPFivjoKLeOV4HIjBcCdIuVd2o7+799ZTBarOiVHotnr+gHhcPN2m+PjsXT0/phbK80JHkJjLxlHFIjpFS2tVw7wXVPpUAq1D647QJxYv6aw5WY8d4fuGj+Onyw8bR4E3WqqhH7Sxog4SB2XWuptDgFdj83GX0z48DzwJXvbMWNH2/HiFfW4c2CE17Ph78eKMPlizdjwaqjqPSwdg4bUGR+3leGx7/fjw83n3Z6/M11J/DhptNYsa8M1763TczkNBkt4hylsX6u88Oo5FHivKatp6rFRgqu19prhgmBwEebzuDa97eJP+v9W4dj0Q1D8fbNw/xuxORYtn+wtAF/2LISVw7JEhc/9qRneiwentQTgLCYvN5kwT5bZrt3RpzHuaHsb8K6hbqW27oO5Dx6me+SSNawYZeH+TQ8z+MD2wDRpX3TkaCUiS3nA21SxXEcnr1CuD6drdFh/qqjOF6hweYT58FxwONT/AtaXV1qu9d67Pv9ePz7/WJHPkDo+Pj8z4fEua5dkoRr5Zs3Dm1R+bsvXZJUGJAdDysP/OvHQ7DyQtmdayY1SirBjCHCwN0qWyauokGPf7pkhF/69QgGvrBGzCj9vK9MLBet0ujFJUi8NUNhbed3FNr/ricrhbJ7e0ZKCLBZVpO69rWBRYsW4Z577sH/+3//D/369cPixYuRm5uLDz74oK13LWA/7i3DwgNRGPLyerdFFd/d4Nx6dX9JAwqrtdAazNCbLNh2uhrf7SoWR7cfmtjT67oTru2ywxVISSUclt17sdPoyDNX9Iu40fPRPYSL5tc7zuFsjQ5REk6s9/UHG/HadbYOO4tq8epK4Sb+X9P7YmR+MrRGCx77fh8sVh46oxlHy9U4UFKPe7/Yhb8v24upizdj2+lqLFx9DHO/24evd5zDqSoNvvjzLADgial9cPvF3SImG8Wkx0fjisFZXmvU/cW6OL39+0loDGYkqmQeRwmzEpR4bLK9c9bUARmYY7tg3zEqD8devlxcaPSzrYVY49Ctqahaixd+PoQ31hz3OvJttljFxR3H9U5r1fHmOE58X3zxZxF4Xpi78eEm4QbhxhG5SIlVYOndI/HKNQNx6tVpfnWnS4tTYOF1g8U24cwlAd74Rap8l/VcAi1VI4GLi5bh75N6icHD/uJ6VKoNYlnV4bIG8aZwUt90ce291pp5gXPW2Wix4q3fT+K6D7bhUGmD00j4NzvO4eGv9+JYhQYfbT6Dq97ZijWHK7GtksOhUiHzv6OoFlESDvOu6u/0uh9uPC2O1P+yvwzvrLdfWyvUetzw0Z9YtPY4tp6qbrZtvC8ss/fBxtM4VKoGxwFDcp3PY5f2y3AKclJi5HjBZX8Dwdqkf7LljNjowp+5vXMu643shGjU6Uzo+9xqLLOtlzUyP9ljJmv3uXp8s+Mcqm1zMl3n+TiWFnOcfe6ON2ypjN8OVWDud/tw40d/il06Vx2swK6zdZBLJZg/cxA2Pj4B2/45Cfdckt/s7+XJsK5JeOWagQCEDrBTF28GAFzaNyPgtdCYuy/JR3KMHDqjBT/sLsGtn/6Fz/8oxIq9pbjmvT/Ea/cdo7ph0xMTmz0ercHur3bY3uOuZX0M6+S8+UQ1jlWocflbm6ExmDEwJx4bH58gDigDwt+QLXPy6sojaNCZ8PCyveB5oYlJhpd5q6z8fs3hCry34RRm/99uTH5zM2a8u1UsHUy0lYGmxSnQPTVGrEJoL9rXsvceGI1G7N69G//85z+dHp8yZQq2bdvm8XsMBgMMBvsIl1otfFhNJhNMprZNKb5RcNLp67E9U3Dl4Ew89eNh+zbXDcSynSXYc64eE9/YCAkntFw1OMwFuaRnCu68ONfr79M1UahJZmntXmnKsP3uaTFReP/mIajRGmGx8kiPU7TpcWc/23EfRuUnAoDYjWZkfhIUEt7v/eyZqkSMQgqN3oy/ffin8Jrdk3HLhTm4rG8qrnr3T+wsqsPIV9ehyWQRFy1kqhuN4grwAPDjHnsTBZVcir9dkNXm79XW8HTMHU3qk4JXVkJcD+mqQZmwWsywemjqdf/YPMy6OBfn6prQMy0GvNUCk21DKYD/N6YrTlWpsXxPGe7/cjeSY2TgeaBOZ//Zn28rRFZ8NEwWHiaLFRaeh1wqQa1t/RUAuG5YdquP+WV9U7H+WBW+21WCjcfPw8rzqG40Ikklww0XCK8/PDcew3PjnX6P5lw7NBPXDs3Ew9/sx+rDQplG/4wYt+PcHt8zqaoodEmMRomtK2H/zJh28Xu052POPDOtD541mlHeoEesIgqnz2ux7XQNrnh7KwChFOeh8d2D9jtePywbvx4oQ1qsAnMv64lnfj6CfcUNKKrR4cp3tiIjXgGeF0b42ec3I04BcECl2oC/f7MfgBTffmhfQuCOi7vi1pFd0D8zFnmpKty9dA8Olanxtw//RFqsHOdtgcDdo7vh+uE5uHvpblSoDeIcHAC4rF8azObAR8mnD0zHuxtOiU1vRuUnI1UV5Xa83r1pCB76eh9yk5V468YhSImRt/iYzhiShRX7ysS29Jf2TUO8QuLX682e0B3P/nxE/FrCAUNy4pCskiEjXoFKtf2+6Zf9ZU7zzuJkzu91lcPdZW6SElJYYTJ5n6/KrrlHy9ViAHX1u1uREadAhe3nzhrdFclKNjgsbdX77sbh2dAbTXh7/Wmo9WYkKKPw2GU9Wvyaqaoo/HD/SCzZdg7LdhTDbOXx4i/2YymTclj0t8G4fECG12uZP/w5r0zqnSoufcNxwOX90zxu3ztNKZ5bL18sTIeRR0nwxnWDkJMgx5I7h+P5/x3BumNVeGRiD9w8IhdXvrcNJ6u0GPLSWgDC3LuFMwd63Z/B2bGQSoQ11f695rj4eHWjUfyM5SZGw2QyYVzPZIx7dEyzv1+4+LsPHB9oF4MIU1ZWhpycHPzxxx8YPXq0+Pj8+fOxdOlSHD9+3O175s2bhxdffNHt8WXLlkGlCm0LcF/0FuDpnVJYeWHUu0+CFbP7Cyee/52V4PcyCXJjeMwdZMGROg7/PSGBhbePkCskPAxWDtFSHg/2syCvmYHbFUUSbCiXYHCyFff0af2E/I5meaEEmyskkEt4/H2ABd0CTNrtOM/hm9PC36hPghV397EiWmp/btkpCXgIfz8px8PCc5BLeEzpYsWeagnKdBxiongMSOJRo+dQqAGs4HBlVwsm57Trj61ffiqSYGO5BDFRPJ4cbEFiKwapzFZgxVkJ/qjkxM8XAHSL5aEzA+f13jNNMVE8xmdZMSWHR2sTgFYeWFMiwbpSDmbbfnDgcXsvK4antv5vurWCw/eFUvRLtOKBfh3nM/1HJYfvzkiRF8tjzkBLq/8OpGUKNcDnJ6RoMHLoEsPjrt4WpIa4gWKdQTgXHKrjnK53EvC4NIfHFblWVDYBX5yUQmsWbuiLtRw48JiWa8XkHB6OCXKDBfi+UIJd5znx/HtRmhU39bCK222t4LC8SAIrzyFJLrznWnr+Ye9duYTHQ/2bvy63Fs8DHx2T4Gi9BLEyHn/vb0FWALc1O89zOFjL4byew+gMK8ZmCuclx3PLWQ0HncV+UEelC8fP1afHJDhYJ8FN3S0YldH8+Y1tL+V4KKVAo9n+M4alWHF7LyukQf7sm61AiRbIVALRQUotWHngh0IJ/qzikBENDE7mMTrD2qprWCB4HvjPQSmKtRymdbHg8lzvx35PNYcvTgr3Il1ieNzf14J4HwVCx+o5fHZcAqOVgwQ8buphxUXpvv+2PxZJsKlcKIDLi+WRFs1jd41wLZZxPOYOtiC77W69vdLpdLjlllvQ0NCA+Hjv1SEdJpDatm0bRo0aJT7+6quv4ssvv8SxY+6LyHnKSOXm5qK6utrnwQqHovNq/HflH7hz2hj0yHDelzPntchJjIbCVq5XpzOiUm2AIkoCk8WKnmmxMFt5SCWcX6VVViuPw+Vq9MmI6xALd7aUyWRCQUEBJk+eDJnMPhmW53mcrGpESqyixR3QNHozjBarx+8vqtGivEGPZJUcvTNiwXEceJ4Hx3Ewmq04WqFB91SVWD9codajXmeKmPW2WsPbMXfE8zzO1TUhSSkTu/m0VpPRgpNVjVBESZCokiE9TgGLlcfxykY0GsyQSSWIknCQcByMFivioqPQPTWm1aWKrhoNZpyobITRbEVustLn/IVAWK08jlZokJ+qgkpuvyvw53hHuhOVGnRJUjr9XpGsIxxzT3RGM4pqdOidHutXJ7lg0RrMOFqhgVImhcFsRXZitNu8HHbM+48YC4VcJna09KS60YDyBj3io2Xo5qGcq0KtR6XagL4ZseI1t6VOn9ciLjrKrfw2VAwmC05Xa9EjLdZpzmVrna3RITsxGmq9GX+cqkHP9BjEyTkc2L4FU6a4v8+NZitK6prQ3aU81xuzxYrjlY3omqxCrEKKw2UamCxWJKpkyEtRRVwpe3PY9TyY/D2v6E0WlNQ1OTU38aakrsl2b+HfZ1qjN6O0vgmpsXK/5uLyPI9TVVp0TVaKn6XyBj2K63TIS4kJ2+ciUGq1Gqmpqc0GUu3jiuRDamoqpFIpKiqce+FXVVUhI8PzBFiFQgGFwv0PJ5PJ2vyCl5cWj4vTefTIiHfblz7ZiU5fpyfIkJ7gfIIK9O14QV7HmEcRDJ7+/gO6tK4te7KP91OvzET08rL0ikwGXJjv/NfMTZEht+WN8CJSc5+5nhnBnTsnk8kwPN/95mpot/CeyJNkMlwUG5zgydXQbt7fJJFwjmup1n4W20p7PuaeJMhkGBITmveuL4kyGUb19O/n5qXFNXvMs5JkyEryfpMpnG+DM2jV1+XaHWoymQxDugY/VdgzU5jfpYpW4LoLhXsPk8mEg5zn97lMBvRR+n9ulcmcz8XD8jrYBS+ImjuvyGQy9FP59x7ITw/s/JQskyE5LrBzQP8uztfyrqkydE2N7EFhf8/b7T4NIZfLMXz4cBQUFDg9XlBQ4FTqRwghhBBCCCHB0u4zUgAwd+5c3H777bjwwgsxatQofPzxxzh37hweeOCBtt41QgghhBBCSAfUIQKpG2+8ETU1NXjppZdQXl6OgQMHYtWqVejWLXLW2CGEEEIIIYR0HB0ikAKA2bNnY/bs2W29G4QQQgghhJBOoN3PkSKEEEIIIYSQcKNAihBCCCGEEEICRIEUIYQQQgghhASow8yRag22JrFarW7jPRHWZNDpdFCr1R1q7ZFIRsc8/OiYhxcd7/CjYx5+dMzDj455eNHxDh8WE7AYwRsKpABoNBoAQG5ubhvvCSGEEEIIISQSaDQaJCQkeH2e45sLtToBq9WKsrIyxMXFgeO4Nt0XtVqN3NxcFBcXIz4+vk33pbOgYx5+dMzDi453+NExDz865uFHxzy86HiHD8/z0Gg0yM7OhkTifSYUZaQASCQSdOnSpa13w0l8fDx9SMKMjnn40TEPLzre4UfHPPzomIcfHfPwouMdHr4yUQw1myCEEEIIIYSQAFEgRQghhBBCCCEBokAqwigUCrzwwgtQKBRtvSudBh3z8KNjHl50vMOPjnn40TEPPzrm4UXHO/JQswlCCCGEEEIICRBlpAghhBBCCCEkQBRIEUIIIYQQQkiAKJAihBBCCCGEkABRIEUIIYQQQgghAaJAKsK8//77yM/PR3R0NIYPH44tW7a09S51CAsWLMCIESMQFxeH9PR0XHPNNTh+/LjTNjzPY968ecjOzoZSqcSECRNw+PDhNtrjjmXBggXgOA5z5swRH6PjHXylpaW47bbbkJKSApVKhaFDh2L37t3i83TMg8tsNuPZZ59Ffn4+lEolunfvjpdeeglWq1Xcho5562zevBlXXXUVsrOzwXEcVqxY4fS8P8fXYDDg4YcfRmpqKmJiYnD11VejpKQkjL9F++LrmJtMJjz11FMYNGgQYmJikJ2djTvuuANlZf+/vXuPaer8wwD+FCiIVsHioCCWyTCgiDeI2SbeNiVDDRoT71MYzozNC8yl8xY3F6PD+6Y4nE5xGVsgW8CgiZuoXMRFYdAqzA28oCjTEBPmhYst9P394c+zHUFtpVBkzydpYt/37Tlvn55w/HLeHv6SbYOZW+5Zx/i/vffee1AoFPjiiy9k7czbflhIdSLp6elISEjAmjVroNfrMXr0aERGRqKqqsreU3vh5eXlYfHixThz5gyys7PR1NSEiIgI1NXVSWM2b96M7du3IykpCUVFRdBoNJg4cSLu3btnx5m/+IqKirB3714MGTJE1s68bau2thajRo2CUqnE0aNHceHCBWzbtg3u7u7SGGZuW5s2bcKePXuQlJSEP/74A5s3b8aWLVuwa9cuaQwzb5u6ujoMHToUSUlJrfZbkm9CQgIyMzORlpaGgoIC3L9/H1OmTEFzc3NHvY0XytMyr6+vR0lJCdauXYuSkhJkZGSgoqICUVFRsnHM3HLPOsYfOXToEM6ePQsfH58WfczbjgR1GiNHjhRxcXGytqCgILFy5Uo7zajrqqmpEQBEXl6eEEIIs9ksNBqNSExMlMY0NjYKNzc3sWfPHntN84V37949MWDAAJGdnS3Gjh0r4uPjhRDMuz2sWLFChIeHP7Gfmdve5MmTRWxsrKxt+vTp4u233xZCMHNbAyAyMzOl55bk+/fffwulUinS0tKkMdXV1cLBwUH8/PPPHTb3F9XjmbemsLBQABDXrl0TQjDztnhS3jdu3BB9+/YVZWVlws/PT+zYsUPqY972xStSnYTRaERxcTEiIiJk7REREfj111/tNKuu686dOwAAtVoNAKisrMStW7dk+bu4uGDs2LHMvw0WL16MyZMnY8KECbJ25m17WVlZCAsLw4wZM+Dp6Ynhw4dj3759Uj8zt73w8HCcOHECFRUVAIBz586hoKAAkyZNAsDM25sl+RYXF8NkMsnG+Pj4YPDgwfwMbOTOnTtQKBTS1W9mbltmsxnz58+HTqdDcHBwi37mbV9O9p4APXT79m00NzfDy8tL1u7l5YVbt27ZaVZdkxACy5cvR3h4OAYPHgwAUsat5X/t2rUOn2NXkJaWhpKSEhQVFbXoY962d+XKFSQnJ2P58uVYvXo1CgsLsWzZMri4uGDBggXMvB2sWLECd+7cQVBQEBwdHdHc3IwNGzZgzpw5AHictzdL8r116xacnZ3Ru3fvFmN4bm27xsZGrFy5EnPnzkWvXr0AMHNb27RpE5ycnLBs2bJW+5m3fbGQ6mQUCoXsuRCiRRu1zZIlS3D+/HkUFBS06GP+tnH9+nXEx8fj2LFj6Nat2xPHMW/bMZvNCAsLw8aNGwEAw4cPx++//47k5GQsWLBAGsfMbSc9PR2pqan44YcfEBwcDIPBgISEBPj4+CA6Oloax8zb1/Pky8+g7UwmE2bPng2z2YyvvvrqmeOZufWKi4vx5ZdfoqSkxOrsmHfH4NK+TqJPnz5wdHRs8duDmpqaFr9to+e3dOlSZGVlIScnB76+vlK7RqMBAOZvI8XFxaipqUFoaCicnJzg5OSEvLw87Ny5E05OTlKmzNt2vL29MWjQIFnbwIEDpZvV8Bi3PZ1Oh5UrV2L27NkICQnB/Pnz8eGHH+Lzzz8HwMzbmyX5ajQaGI1G1NbWPnEMWc9kMmHmzJmorKxEdna2dDUKYOa2dOrUKdTU1ECr1Urn0mvXruGjjz7Cyy+/DIB52xsLqU7C2dkZoaGhyM7OlrVnZ2fj9ddft9Osug4hBJYsWYKMjAycPHkS/fv3l/X3798fGo1Glr/RaEReXh7zfw5vvvkmSktLYTAYpEdYWBjmzZsHg8EAf39/5m1jo0aNanFL/4qKCvj5+QHgMd4e6uvr4eAgP406OjpKtz9n5u3LknxDQ0OhVCplY27evImysjJ+Bs/pURF18eJFHD9+HB4eHrJ+Zm478+fPx/nz52XnUh8fH+h0Ovzyyy8AmLfd2ekmF9SKtLQ0oVQqxf79+8WFCxdEQkKC6NGjh7h69aq9p/bCe//994Wbm5vIzc0VN2/elB719fXSmMTEROHm5iYyMjJEaWmpmDNnjvD29hZ3796148y7jn/ftU8I5m1rhYWFwsnJSWzYsEFcvHhRfP/996J79+4iNTVVGsPMbSs6Olr07dtXHDlyRFRWVoqMjAzRp08f8fHHH0tjmHnb3Lt3T+j1eqHX6wUAsX37dqHX66U7xFmSb1xcnPD19RXHjx8XJSUl4o033hBDhw4VTU1N9npbndrTMjeZTCIqKkr4+voKg8EgO58+ePBA2gYzt9yzjvHHPX7XPiGYtz2xkOpkdu/eLfz8/ISzs7MYMWKEdHtuahsArT5SUlKkMWazWXz66adCo9EIFxcXMWbMGFFaWmq/SXcxjxdSzNv2Dh8+LAYPHixcXFxEUFCQ2Lt3r6yfmdvW3bt3RXx8vNBqtaJbt27C399frFmzRvYfSmbeNjk5Oa3+7I6OjhZCWJZvQ0ODWLJkiVCr1cLV1VVMmTJFVFVV2eHdvBielnllZeUTz6c5OTnSNpi55Z51jD+utUKKeduPQgghOuLKFxERERERUVfB70gRERERERFZiYUUERERERGRlVhIERERERERWYmFFBERERERkZVYSBEREREREVmJhRQREREREZGVWEgRERERERFZiYUUERERERGRlVhIERFRp7Fu3ToMGzasw/ebm5sLhUIBhUKBadOmPXXsuHHjkJCQ0CHzerS/R3MzGAwdtl8iIno6J3tPgIiI/hsUCsVT+6Ojo5GUlISlS5d20IxaKi8vh6enp93235qMjAxcvnwZI0eOtPdUiIjoX1hIERFRh7h586b07/T0dHzyyScoLy+X2lxdXaFSqaBSqewxPQCAp6cn3N3d7bb/1qjVaty9e9fe0yAiosdwaR8REXUIjUYjPdzc3KBQKFq0Pb60LyYmBtOmTcPGjRvh5eUFd3d3fPbZZ2hqaoJOp4NarYavry8OHDgg21d1dTVmzZqF3r17w8PDA1OnTsXVq1etnnNdXR0WLFgAlUoFb29vbNu2rcWY1NRUhIWFoWfPntBoNJg7dy5qamoAAEIIBAQEYOvWrbLXlJWVwcHBAZcvXwbwcEmjVquFi4sLfHx8sGzZMqvnSkREHYuFFBERdWonT57EX3/9hfz8fGzfvh3r1q3DlClT0Lt3b5w9exZxcXGIi4vD9evXAQD19fUYP348VCoV8vPzUVBQAJVKhbfeegtGo9Gqfet0OuTk5CAzMxPHjh1Dbm4uiouLZWOMRiPWr1+Pc+fO4dChQ6isrERMTAyAh8sZY2NjkZKSInvNgQMHMHr0aLzyyiv46aefsGPHDnz99de4ePEiDh06hJCQkOcPjIiIOgQLKSIi6tTUajV27tyJwMBAxMbGIjAwEPX19Vi9ejUGDBiAVatWwdnZGadPnwYApKWlwcHBAd988w1CQkIwcOBApKSkoKqqCrm5uRbv9/79+9i/fz+2bt2KiRMnIiQkBN9++y2am5tl42JjYxEZGQl/f3+8+uqr2LlzJ44ePYr79+8DAN555x2Ul5ejsLAQAGAymZCamorY2FgAQFVVFTQaDSZMmACtVouRI0di0aJFNkiOiIjaEwspIiLq1IKDg+Hg8M/pysvLS3bFxtHRER4eHtJyuuLiYly6dAk9e/aUvnOlVqvR2NgoLaWzxOXLl2E0GvHaa69JbWq1GoGBgbJxer0eU6dOhZ+fH3r27Ilx48YBeFggAYC3tzcmT54sLT88cuQIGhsbMWPGDADAjBkz0NDQAH9/fyxatAiZmZloamqyIiEiIrIHFlJERNSpKZVK2XOFQtFqm9lsBgCYzWaEhobCYDDIHhUVFZg7d67F+xVCPHNMXV0dIiIioFKpkJqaiqKiImRmZgKAbBnhu+++i7S0NDQ0NCAlJQWzZs1C9+7dAQD9+vVDeXk5du/eDVdXV3zwwQcYM2YMTCaTxXMlIqKOx7v2ERFRlzJixAikp6fD09MTvXr1eu7tBAQEQKlU4syZM9BqtQCA2tpaVFRUYOzYsQCAP//8E7dv30ZiYiL69esHAPjtt99abGvSpEno0aMHkpOTcfToUeTn58v6XV1dERUVhaioKCxevBhBQUEoLS3FiBEjnnv+RETUvnhFioiIupR58+ahT58+mDp1Kk6dOoXKykrk5eUhPj4eN27csHg7KpUKCxcuhE6nw4kTJ1BWVoaYmBjZMkOtVgtnZ2fs2rULV65cQVZWFtavX99iW46OjoiJicGqVasQEBAgWy548OBB7N+/H2VlZbhy5Qq+++47uLq6ws/Pr21BEBFRu2IhRUREXUr37t2Rn58PrVaL6dOnY+DAgYiNjUVDQ4PVV6i2bNmCMWPGICoqChMmTEB4eDhCQ0Ol/pdeegkHDx7Ejz/+iEGDBiExMbHFrc4fWbhwIYxGo3STiUfc3d2xb98+jBo1CkOGDMGJEydw+PBheHh4WP/miYiowyiEJYvAiYiIurDc3FyMHz8etbW17fYHeU+fPo1x48bhxo0b8PLysuq1V69eRf/+/aHX62V/Z4uIiOyHV6SIiIj+z9fXF3PmzLHpNh88eIBLly5h7dq1mDlzptVFVGRkJIKDg206JyIiajtekSIiov+8hoYGVFdXA3j43SiNRmOzbR88eBALFy7EsGHDkJWVhb59+1r1+urqajQ0NAD45ztZRERkfyykiIiIiIiIrMSlfURERERERFZiIUVERERERGQlFlJERERERERWYiFFRERERERkJRZSREREREREVmIhRUREREREZCUWUkRERERERFZiIUVERERERGSl/wHNJsethkIfgQAAAABJRU5ErkJggg==", + "text/plain": [ + "<Figure size 1000x300 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# YOUR_CODE_HERE\n", "\n", @@ -766,7 +857,7 @@ "\n", "while True:\n", " break_point, test_stat = jump_detection(data, time_days, A_offset)\n", - " print(f'Break Point: {break_point} with : {test_stat:.2f}')\n", + " print(f'Break Point day: {break_point/24} with : {test_stat:.2f}')\n", " if test_stat < 100:\n", " break\n", " A_offset = A1_matrix(A_offset, break_point) \n", @@ -824,9 +915,10 @@ "x4 = 2.315\n", "x5 = -6.076\n", "x6 = 4.487\n", + "\n", "The seasonal component is rewritten as:\n", - "Ak = 3.011, theta_k = 1.496, f_k = 1.000\n", - "Ak = 19.842, theta_k = -3.025, f_k = 0.003\n" + "A_1 = 3.011, theta_1 = 1.496, f_1 = 1.000\n", + "A_2 = 19.842, theta_2 = -3.025, f_2 = 0.003\n" ] }, { @@ -852,11 +944,11 @@ ], "source": [ "# A2 = YOUR_CODE_HERE\n", - "# YOUR_CODE_HERE = fit_model(YOUR_CODE_HERE)\n", + "# x_hat, y_hat, e_hat = fit_model(YOUR_CODE_HERE)\n", "\n", "# SOLUTION\n", "A2 = A_offset\n", - "x_hat, y_hat, e_hat0 = fit_model(data, time_days, A2)\n", + "x_hat, y_hat, e_hat = fit_model(data, time_days, A2)\n", "# END SOLUTION (PART 1 of 2)\n", "\n", "# Plotting the data and the estimated trend\n", @@ -871,7 +963,7 @@ "\n", "# Plotting the residuals\n", "plt.figure(figsize=(10, 3))\n", - "plt.plot(time_days, e_hat0)\n", + "plt.plot(time_days, e_hat)\n", "plt.xlabel('Time [days]')\n", "plt.ylabel('Temperature [°C]')\n", "plt.title('Residuals')\n", @@ -892,10 +984,12 @@ "for i in range(len(x_hat)):\n", " print(f'x{i} = {x_hat[i]:.3f}')\n", "\n", - "print('The seasonal component is rewritten as:')\n", - "for i, j, k in zip(a_i, b_i, freqs):\n", - " Ak, theta_k = rewrite_seasonal_comp(i, j)\n", - " print(f'Ak = {Ak:.3f}, theta_k = {theta_k:.3f}, f_k = {k:.3f}')" + "print('\\nThe seasonal component is rewritten as:')\n", + "i = 0\n", + "for a, b, f in zip(a_i, b_i, freqs):\n", + " A_i, theta_i = rewrite_seasonal_comp(a, b)\n", + " i += 1\n", + " print(f'A_{i} = {A_i:.3f}, theta_{i} = {theta_i:.3f}, f_{i} = {f:.3f}')" ] }, { @@ -906,7 +1000,7 @@ "<p>\n", "<b>Task 3.5:</b> \n", "\n", - "Use the Markdown cell below to summarize the number and value of all offsets that you found.\n", + "Use the Markdown cell below to summarize the location and size of the offset(s) you have found. Include the number of components used in the final model.\n", "</p>\n", "</div>" ] @@ -926,7 +1020,10 @@ "<p>\n", "<b>Solution:</b> \n", "\n", - "Should be 2, at 70 and 120, with a value of around 5 (true values were around 6 and 4).\n", + "Should be 2 locations, at 58 and 120, with a value of +4.5 and -6 respectively. The final model should have 5 components:\n", + "intercept, yearly trend, daily trend, offset at 58 and offset at 120. \n", + "\n", + "Daily trend is one component, yet it has 2 parameters (amplitude and phase shift), same for the yearly trend.\n", "\n", "</p>\n", "</div>" @@ -942,7 +1039,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 57, "metadata": {}, "outputs": [ { @@ -959,7 +1056,7 @@ "source": [ "# Lets start with the ACF plot\n", "fig, ax = plt.subplots(1, 1, figsize=(10, 3))\n", - "plot_acf(e_hat0, ax=ax, lags=20);\n", + "plot_acf(e_hat, ax=ax, lags=20);\n", "ax.grid()" ] }, @@ -979,7 +1076,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 58, "metadata": {}, "outputs": [ { @@ -1042,7 +1139,7 @@ "# phi_hat_ar1, e_hat_ar1 = AR1(YOUR_CODE_HERE)\n", "\n", "# SOLUTION\n", - "phi_hat_ar1, e_hat_ar1 = AR1(e_hat0, time_days)\n", + "phi_hat_ar1, e_hat_ar1 = AR1(e_hat, time_days)\n", "# END SOLUTION\n", "\n", "\n", @@ -1057,8 +1154,8 @@ "<p>\n", "<b>Task 4.2:</b> \n", "\n", - "As you can see, the next task asks you to implement AR(2). State why this is necessary, using the results from the cell above.\n", - "\n", + "- As you can see, the next task asks you to implement AR(2). State why this is necessary, using the results from the cell above.\n", + "- Based on the ACF plot, will the $\\phi_2$ parameter in the AR(2) be positive or negative? Why? \n", "</p>\n", "</div>" ] @@ -1078,7 +1175,11 @@ "<p>\n", "<b>Solution:</b> \n", "\n", - "ACF at lag 1 not zero (or not within the confidence interval).\n", + "- ACF at lag 1 not zero (or not within the confidence interval). So still some autocorrelation left AR(1) is not sufficient.\n", + "- When we try to fit an AR(1) model to a higher order AR process, the AR(1) coefficient will try to capture the effect of the higher order AR process.\n", + " - If $\\phi_2$ is positive, the AR(1) estimation will overestimate the effect which will lead to a negative autocorrelation at lag 1 in the residuals of the AR(1) model.\n", + " - If $\\phi_2$ is negative, the AR(1) estimation will underestimate the effect which will lead to a positive autocorrelation at lag 1 in the residuals of the AR(1) model.\n", + " - Therefore, $\\phi_2$ will most likely be positive.\t\n", "\n", "</p>\n", "</div>" @@ -1100,7 +1201,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 59, "metadata": {}, "outputs": [ { @@ -1108,12 +1209,12 @@ "output_type": "stream", "text": [ "Estimated Parameters:\n", - "phi_1 = 0.7088, phi_2 = 0.1989\n" + "phi_1 = 0.7328, phi_2 = 0.2150\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAHqCAYAAAAZLi26AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gURR/Hv1vuLj303quINEUFVEABFeyKitgAEesrgqigiAgoVSkKqEhRLCAISO+9E3ovIYFQQhLSy7Xdef/Yu71t15ILCTif5+Eht3W2zcyvM4QQAgqFQqFQKBQKhUKhUCghhy3pBlAoFAqFQqFQKBQKhXKrQoVuCoVCoVAoFAqFQqFQigkqdFMoFAqFQqFQKBQKhVJMUKGbQqFQKBQKhUKhUCiUYoIK3RQKhUKhUCgUCoVCoRQTVOimUCgUCoVCoVAoFAqlmKBCN4VCoVAoFAqFQqFQKMUEFbopFAqFQqFQKBQKhUIpJqjQTaFQKBQKhUKhUCgUSjFBhW4KhUKhAAB2796N559/HlWrVoXZbEaVKlXQvXt37Nq1K6jjDB8+HAzDFKoNmzdvBsMw2Lx5c6H2D5SOHTuiY8eOAW3HMAwYhgHLsoiOjkaDBg3w/PPPY+HChRBFsdBt+PPPPzFp0qRC719S9OrVS74nRv+CYefOnRg+fDgyMzN16wJ9RsXBypUrMXz48GI5dqDXVadOHdW7FxsbiyZNmuC1117D2rVri9SGadOmYc6cOUU6BoVCoVAChwrdFAqFQsH333+P++67D5cuXcK4ceOwfv16TJgwAZcvX8b999+PH374IeBj9e3bN2hB3c2dd96JXbt24c477yzU/sVBvXr1sGvXLuzcuRNLlizB4MGDUVBQgOeffx4dO3ZEVlZWoY57swrdABAeHo5du3YZ/guGnTt34quvvjIUuqdNm4Zp06aFqMXBsXLlSnz11Vclcm4l9913n/zu/fPPP3j//feRkJCARx55BN27d4fD4SjUcanQTaFQKDcWvqQbQKFQKJSSZceOHfjwww/RrVs3LF68GDzvGRp69OiBZ555Bv3790erVq1w3333eT1Ofn4+IiIiUKNGDdSoUaNQbYmJiUGbNm0KtW9xER4ermtT3759MXv2bPTp0wf9+vXD/PnzS6h1JQPLssX+nG6//fZiPf7NQJkyZVT3uXPnznjvvfcwfPhwfPXVVxg6dCjGjh1bgi2kUCgUSiBQSzeFQqH8xxk9ejQYhsH06dNVAjcA8DyPadOmgWEYjBkzRl7udiE/cOAAunfvjrJly6J+/fqqdUpsNhs++ugjVKlSBREREWjfvj3279+POnXqoFevXvJ2Ru7lvXr1QlRUFM6dO4du3bohKioKNWvWxEcffQSbzaY6z1dffYV7770X5cqVQ0xMDO68807MnDkThJAQ3S0PvXv3Rrdu3bBgwQJcuHBBXj516lS0b98elSpVQmRkJJo1a4Zx48aprJIdO3bEihUrcOHCBUPX7MJex6RJk8AwDM6dO6db9+mnn8JsNiMtLQ0AcPDgQTz++OOoVKkSLBYLqlWrhsceewyXLl0q6q0BAIiiiFGjRqFx48YIDw9HmTJl0Lx5c0yePBmA9J58/PHHAIC6devK98D97LVu2ImJiWAYBuPHj8fYsWNRp04dhIeHo2PHjjhz5gwcDgcGDx6MatWqITY2Fs888wxSUlJUbZo/fz4efvhhVK1aFeHh4WjSpAkGDx6MvLw8eZtevXph6tSpAKB6NomJiQAAQgimTZuGli1bIjw8HGXLlkX37t1x/vx51bkIIRg3bhxq166NsLAw3HnnnVi1alVI7u3w4cPRtGlT/PDDD7BarfLyQN6bOnXq4Pjx49iyZYt8bXXq1AEAWK1WfPTRR2jZsiViY2NRrlw5tG3bFv/++29I2k2hUCj/Vailm0KhUP7DCIKATZs2oXXr1l6t0zVr1sRdd92FjRs3QhAEcBwnr3v22WfRo0cPvP322yrBRUvv3r0xf/58fPLJJ3jooYdw4sQJPPPMM8jOzg6onQ6HA08++STeeOMNfPTRR9i6dStGjhyJ2NhYDBs2TN4uMTERb731FmrVqgVAilP/3//+h8uXL6u2CxVPPvkkVq5ciW3btqF27doAgPj4ePTs2RN169aF2WzG4cOH8fXXX+PUqVOYNWsWAMm9t1+/foiPj8fixYt1xy3sdbzyyiv49NNPMWfOHIwaNUpeLggCfv/9dzzxxBOoUKEC8vLy0KVLF9StWxdTp05F5cqVkZycjE2bNiEnJyega3c6nbplLMuCZSV9/rhx4zB8+HAMHToU7du3h8PhwKlTp2RX8r59+yI9PR3ff/89Fi1ahKpVqwLwb+GeOnUqmjdvjqlTpyIzMxMfffQRnnjiCdx7770wmUyYNWsWLly4gEGDBqFv375YunSpvO/Zs2fRrVs3fPjhh4iMjMSpU6cwduxY7N27Fxs3bgQAfPHFF8jLy8PChQtV7vLu9r311luYM2cOPvjgA4wdOxbp6ekYMWIE2rVrh8OHD6Ny5coAJAH4q6++whtvvIHu3bsjKSkJb775JgRBQOPGjQO6x7544oknMGbMGMTFxeH+++8HENh7s3jxYnTv3h2xsbGy+77FYgEgKcfS09MxaNAgVK9eHXa7HevXr8ezzz6L2bNn47XXXityuykUCuU/CaFQKBTKf5bk5GQCgPTo0cPndi+++CIBQK5du0YIIeTLL78kAMiwYcN027rXuTl+/DgBQD799FPVdn/99RcBQF5//XV52aZNmwgAsmnTJnnZ66+/TgCQv//+W7V/t27dSOPGjb22WRAE4nA4yIgRI0j58uWJKIryug4dOpAOHTr4vGb3dk2bNvW6ftWqVQQAGTt2rM82/Pbbb4TjOJKeni6ve+yxx0jt2rX9tsHXdRjx7LPPkho1ahBBEORlK1euJADIsmXLCCGExMXFEQBkyZIlfs+vxf08jP516tRJ3u7xxx8nLVu29Hms8ePHEwAkISFBt077jBISEggA0qJFC9W1TZo0iQAgTz75pGr/Dz/8kAAgWVlZhucWRZE4HA6yZcsWAoAcPnxYXvfee+8RoynSrl27CADy7bffqpYnJSWR8PBw8sknnxBCCMnIyCBhYWHkmWeeUW23Y8cOAiCgd6927drkscce87p++vTpBACZP3++4Xpf703Tpk0DaoPT6SQOh4O88cYbpFWrVn63p1AoFIox1L2cQqFQKH4hLvdUrdv4c88953ffLVu2AABeeOEF1fLu3bvr3Nm9wTAMnnjiCdWy5s2bq9y6AWDjxo3o3LkzYmNjwXEcTCYThg0bhuvXr+tcjUMBMXD3PnjwIJ588kmUL19ebsNrr70GQRBw5syZgI5blOvo3bs3Ll26hPXr18vLZs+ejSpVqqBr164AgAYNGqBs2bL49NNP8eOPP+LEiRNBXLUU575v3z7dP2Xis3vuuQeHDx/Gu+++izVr1gTs1eCPbt26ydZ0AGjSpAkA4LHHHlNt515+8eJFedn58+fRs2dPVKlSRb6vHTp0AACcPHnS77mXL18OhmHwyiuvwOl0yv+qVKmCFi1ayK7xu3btgtVqxcsvv6zav127drJHRFExevdC8f4vWLAA9913H6KiosDzPEwmE2bOnBnQ/aFQKBSKMVToplAolP8wFSpUQEREBBISEnxul5iYiIiICJQrV0613O1y64vr168DgOx264bneZQvXz6gdkZERCAsLEy1zGKxqOJZ9+7di4cffhgAMGPGDOzYsQP79u3D559/DgAoKCgI6FzB4Bb6q1WrBkAS8B544AFcvnwZkydPxrZt27Bv3z45RjiQNhT1Orp27YqqVati9uzZAICMjAwsXboUr732mhwaEBsbiy1btqBly5b47LPP0LRpU1SrVg1ffvllQBmxWZZF69atdf8aNWokbzNkyBBMmDABu3fvRteuXVG+fHl06tQJcXFxfo/vC+07aDabfS53vyO5ubl44IEHsGfPHowaNQqbN2/Gvn37sGjRIgCBPZtr166BEILKlSvDZDKp/u3evVuOl3e/81WqVNEdw2hZYdC+e6F4/xctWoQXXngB1atXx++//45du3Zh37596NOnj+pbo1AoFEpw0JhuCoVC+Q/DcRwefPBBrF69GpcuXTKM67506RL279+Prl27quK5Ab3l2wi3YH3t2jVUr15dXu50OmXhJBTMmzcPJpMJy5cvVwnoS5YsCdk5tCxduhQMw6B9+/byufLy8rBo0SKVRfPQoUMBH7Oo18FxHF599VVMmTIFmZmZ+PPPP2Gz2dC7d2/Vds2aNcO8efNACMGRI0cwZ84cjBgxAuHh4Rg8eHDA7fUGz/MYOHAgBg4ciMzMTKxfvx6fffYZHnnkESQlJSEiIqLI5wiGjRs34sqVK9i8ebNs3QZgWK7MGxUqVADDMNi2bZscB63Evcz9zicnJ+u2SU5OlhOXFRZCCJYtW4bIyEi0bt0aQGje/99//x1169bF/PnzVd+2NmEhhUKhUIKDWropFArlP86QIUNACMG7774LQRBU6wRBwDvvvANCCIYMGVKo47sFUm1ZrYULFxom4yosDMOA53mVYqCgoABz584N2TmUzJ49G6tWrcJLL70kJ65yCypKgYwQghkzZuj2t1gshtbHUFxH7969YbVa8ddff2HOnDlo27YtbrvtNsNtGYZBixYtMHHiRJQpUwYHDhwI+DyBUqZMGXTv3h3vvfce0tPT5Uzg7vtUHF4IWoyeDQD89NNPum29tevxxx8HIQSXL182tPQ3a9YMANCmTRuEhYXhjz/+UO2/c+dOXUhEYfjqq69w4sQJ9O/fXxawg3lvfL17ZrNZJXAnJyfT7OUUCoVSRKilm0KhUP7j3HfffZg0aRI+/PBD3H///Xj//fdRq1YtXLx4EVOnTsWePXswadIktGvXrlDHb9q0KV566SV8++234DgODz30EI4fP45vv/0WsbGxqvjcovDYY4/hu+++Q8+ePdGvXz9cv34dEyZMMLRIBkNBQQF2794t/33+/HksWbIEy5cvR4cOHfDjjz/K23bp0gVmsxkvvfQSPvnkE1itVkyfPh0ZGRm64zZr1gyLFi3C9OnTcdddd8ku26G4jttuuw1t27bF6NGjkZSUhJ9//lm1fvny5Zg2bRqefvpp1KtXD4QQLFq0CJmZmejSpYvf44uiKN8TLa1atYLFYsETTzyBO+64A61bt0bFihVx4cIFTJo0CbVr10bDhg3lewAAkydPxuuvvw6TyYTGjRsjOjo64GsNlHbt2qFs2bJ4++238eWXX8JkMuGPP/7A4cOHddu62zV27FjZw6N58+a477770K9fP/Tu3RtxcXFo3749IiMjcfXqVWzfvh3NmjXDO++8g7Jly2LQoEEYNWoU+vbti+effx5JSUkYPnx4UO7lmZmZ8n3Oy8vD6dOnMW/ePGzbtg0vvPACvvrqK3nbYN4bt5fD/PnzUa9ePYSFhaFZs2Z4/PHHsWjRIrz77rtyxvWRI0eiatWqOHv2bLC3nEKhUChuSiiBG4VCoVBKGbt27SLdu3cnlStXJjzPk0qVKpFnn32W7Ny5U7etO0N5amqq13VKrFYrGThwIKlUqRIJCwsjbdq0Ibt27SKxsbFkwIAB8nbespdHRkYGdJ5Zs2aRxo0bE4vFQurVq0dGjx5NZs6cqcuQHUz2ciiyc0dGRpJ69eqR7t27kwULFqiyaLtZtmwZadGiBQkLCyPVq1cnH3/8sZzlXHld6enppHv37qRMmTKEYRjVtQR6Hb74+eefCQASHh6uy+B96tQp8tJLL5H69euT8PBwEhsbS+655x4yZ84cv8f1lb0cADl79iwhhJBvv/2WtGvXjlSoUIGYzWZSq1Yt8sYbb5DExETV8YYMGUKqVatGWJZV3SNv2cvHjx+v2t/9zixYsEC1fPbs2QQA2bdvn7xs586dpG3btiQiIoJUrFiR9O3blxw4cIAAILNnz5a3s9lspG/fvqRixYrys1He91mzZpF7772XREZGkvDwcFK/fn3y2muvkbi4OHkbURTJ6NGjSc2aNYnZbCbNmzcny5YtC/jdq127tnxPGYYhUVFRpHHjxuTVV18la9asMdwn0PcmMTGRPPzwwyQ6OpoAUGXRHzNmDKlTpw6xWCykSZMmZMaMGYbfGoVCoVAChyHEIP0lhUKhUCjFzM6dO3Hffffhjz/+QM+ePUu6ORQKhUKhUCjFAhW6KRQKhVLsrFu3Drt27cJdd92F8PBwHD58GGPGjEFsbCyOHDmiy0xOoVAoFAqFcqtAY7opFAqFUuzExMRg7dq1mDRpEnJyclChQgV07doVo0ePpgI3hUKhUCiUWxpq6aZQKBQKhUKhUCgUCqWYoCXDKBQKhUKhUCgUCoVCKSao0E2hUCgUCoVCoVAoFEoxQYVuCoVCoVAoFAqFQqFQion/VCI1URRx5coVREdHg2GYkm4OhUKhUCgUCoVCoVBuUgghyMnJQbVq1cCy3u3Z/ymh+8qVK6hZs2ZJN4NCoVAoFAqFQqFQKLcISUlJqFGjhtf1/ymhOzo6GoB0U2JiYkq4NcY4HA6sXbsWDz/8MEwmU0k3hxIg9LndnNDndvNCn93NCX1uNyf0ud2c0Od2c0Kf281FdnY2atasKcuZ3vhPCd1ul/KYmJhSLXRHREQgJiaGfmg3EfS53ZzQ53bzQp/dzQl9bjcn9LndnNDndnNCn9vNib/QZZpIjUKhUCgUCoVCoVAolGKCCt0UCoVCoVAoFAqFQqEUE1ToplAoFAqFQqFQKBQKpZj4T8V0UygUCoVCoVAolKIhiiLsdntJN+OWxOFwgOd5WK1WCIJQ0s35z2MymcBxXJGPQ4VuCoVCoVBKIYeSMvHt2tP4rFsTNKlaOpN/UiiU/x52ux0JCQkQRbGkm3JLQghBlSpVkJSU5Dc5F+XGUKZMGVSpUqVIz4MK3RQKhUKhlEKenroDAPDJwiNY9r/7S7g1FAqFIgmEV69eBcdxqFmzJliWRqqGGlEUkZubi6ioKHp/SxhCCPLz85GSkgIAqFq1aqGPRYVuCoVCoVBKMel51IWTQqGUDpxOJ/Lz81GtWjVERESUdHNuSdyu+2FhYVToLgWEh4cDAFJSUlCpUqVCu5rTJ0mhUCgUSinGxBm7s+2Kv47hS4+jwE5j/igUyo3BHWNsNptLuCUUyo3DrWByOByFPga1dFMoFAqFUoohBsscgoiXZuwGAMSE8Rj4cOMb2ygKhfKfhsYaU/5LhOJ9p5ZuCoVCoVBKMSLRi92T15+V/068nn8jm0OhUCgUCiVIqNBNoVAoFEopxkDmxt9xSTe+IRQKhfIfJTExEQzD4NChQwHvM2fOHJQpU6bE2xFqAmnD5s2bwTAMMjMzQ3puhmGwZMmSkB7zRkGFbgqFQqFQSil1mavgRX0MGatwdTNyP6dQKBSKmqSkJLzxxhuoVq0azGYzateujf79++P69et+961ZsyauXr2KO+64I+Dzvfjiizhz5kxRmlwoOnbsCIZhwDAMzGYz6tevjyFDhsBms4Xk+IW5FxQa002hUCgUSqniXEouzqfm4j72KP4wj8ZeezMAj6i2YWk4JYVCoQTM+fPn0bZtWzRq1Ah//fUX6tati+PHj+Pjjz/GqlWrsHv3bpQrV85wX7vdDrPZjCpVqgR1zvDwcDnz9Y3mzTffxIgRI2C327Fv3z707t0bADB69OgiH5vjuKDvBYVauikUCoVCKVV0/m4L+s3dj17cWgDAPeSobhtlUhdi5H9OoVAoFJn33nsPZrMZa9euRYcOHVCrVi107doV69evx+XLl/H555/L29apUwejRo1Cr169EBsbizfffNPQpXrp0qVo2LAhwsPD8eCDD+LXX39VuVRr3cuHDx+Oli1bYu7cuahTpw5iY2PRo0cP5OTkyNusXr0a7du3R+3atVGxYkU8/vjjiI+PD/p6IyIiUKVKFdSqVQvPPfccunTpgrVr18rrCSEYN24c6tWrh/DwcLRo0QILFy6U12dkZODll19GxYoVER4ejoYNG2L27NkAjN3LV65ciUaNGsn3IjExUdUe97UrmTRpEurUqSP/3rdvH7p06YIKFSogNjYWHTp0wIEDB7xeo91ux/vvv4+qVasiLCwMderUCYlSobigQjeFQqFQKKUQM7yXJlGWbqUiN4VCKSkIIci3O0vkX6AKx/T0dKxZswbvvvuuzvJcpUoVvPzyy5g/f77qeOPHj8cdd9yB/fv344svvtAdMzExEd27d8fTTz+NQ4cO4a233lIJ7t6Ij4/HkiVLsHz5cixfvhxbtmzBmDFj5PV5eXn48MMPsXHjRqxbtw4sy+KZZ56BKIoBXasRhw8fxo4dO2AymeRlQ4cOxezZszF9+nQcP34cAwYMwCuvvIItW7YAAL744gucOHECq1atwsmTJzF9+nRUqFDB8PhJSUl49tln0a1bNxw6dAh9+/bF4MGDg25nTk4OXn/9dWzbtg27d+9Gw4YN0a1bN5VSQsmUKVOwdOlS/P333zh9+jR+//13lRBf2qDu5RQKhUKhlEJ4eK+/zdJyPRQKpYgcuJiBSDOPxlWiC32MAoeA24etCWGrAufEiEcQYfYvypw9exaEEDRp0sRwfZMmTZCRkYHU1FRUqlQJAPDQQw9h0KBB8jZay+2PP/6Ixo0bY/z48QCAxo0b49ixY/j66699tkUURcyZMwfR0dI9f/XVV7FhwwZ5v+eeew6iKCI7OxsxMTGYOXMmKlWqhBMnTgQVQz1t2jT88ssvcDgcsNvtYFkWU6dOBSAJ9t999x02btyItm3bAgDq1auH7du346effkKHDh1w8eJFtGrVCq1btwYAn8Ls9OnTUa9ePUycOBEMw6Bx48Y4evQoxo4dG3B7AemeK/npp59QtmxZbNmyBY8//rhu+4sXL6Jhw4a4//77wTAMateuHdT5bjTU0k2hUCgUSinECU7+W2vRUQnd1NRNoVCCJDXHhmen7cQjk7biu7WnS7o5JYq7f1WG7biFTW+cPn0ad999t2rZPffc4/dcderUkQVuAKhatSpSUlLk3/Hx8Xj55ZfRsmVLlClTBnXr1gUgCZjB8PLLL+PQoUPYtWsXXnjhBfTp0wfPPfccAODEiROwWq3o0qULoqKi5H+//fab7Mr+zjvvYN68eWjZsiU++eQT7Ny50+u5Tp48iTZt2qjun1uYD4aUlBS8/fbbaNSoEWJjYxEbG4vc3Fyv196rVy8cOnQIjRs3xgcffKByny+NUEs3hUKhUCilEDs8roCCvQC8JUL+rZa5qdRNoVCC42pWgfz3lI3nMKBLI5XQFCjhJg4nRjzif8NiINzE+d8IQIMGDcAwDE6cOIGnn35at/7UqVMoW7asyn06MjLS5zEJIbr7FYi7u9LFG5AEfaXr+BNPPIEaNWpg8uTJaNCgAQDgjjvugN1u93tsJbGxsfL+v//+O5o2bYqZM2fijTfekM+3YsUKVK9eXbWfxWIBAHTt2hUXLlzAihUrsH79enTq1AnvvfceJkyYoDtXINfNsqxuO4dDHULVq1cvpKamYtKkSahduzYsFgvatm3r9drvvPNOJCQkYNWqVVi/fj1eeOEFdO7cWRWbXpqgQjeFQqFQKKUQh8LSLRRkqYRuydJNUJ+5AoZUKoHWUSiUW4n0PDvKR1mC3o9hmIBcvEuS8uXLo0uXLpg2bRoGDBigiutOTk7GH3/8gddeey0opcNtt92GlStXqpbFxcUVqZ3Xr1+X46dbtGiBmJgYnxbmQDGZTPjss88wZMgQvPTSS7j99tthsVhw8eJFdOjQwet+FStWRK9evdCrVy888MAD+Pjjjw2F7ttvv11XO3v37t26YyUnJ6uUFdo639u2bcO0adPQrVs3AFKseFpams9ri4mJwYsvvogXX3wR3bt3x6OPPor09HSvmehLEupeTqFQKBRKKUSZSI0UZKvWsQwwgP8HGywf46m0GTe6aRQK5SZHmxci1+YsoZbcGH744QfYbDY88sgj2Lp1K5KSkrB69Wp06dIF1atX9xuLreWtt97CqVOn8Omnn+LMmTP4+++/MWfOHAAolMcAAJQtWxbly5fHjBkzcP78eWzcuBEDBw4s1LG09OzZEwzDYNq0aYiOjsagQYMwYMAA/Prrr4iPj8fBgwcxdepU/PrrrwCAYcOG4d9//8W5c+dw/PhxLF++3GtM/Ntvv434+HgMHDgQp0+fxp9//infCzcdO3ZEamoqxo0bh/j4eEydOhWrVq1SbdOgQQPMnTsXJ0+exJ49e/Dyyy/7LLk2ceJEzJs3D6dOncKZM2ewYMECVKlSRZUxvjRBhW4KhUKhUEohFoXQLdq0QjeD/vwiAMDDmfNvaLsoFMqthyDe2mEqDRs2RFxcHOrXr48XX3wR9evXR79+/fDggw9i165dQVtG69ati4ULF2LRokVo3rw5pk+fLmcvd7toBwvLspg3bx4OHDiAdu3a4aOPPpITtRUVs9mM999/H+PGjUNubi5GjhyJYcOGYfTo0WjSpAkeeeQRLFu2TI4hN5vNGDJkCJo3b4727duD4zjMmzfP8Ni1atXCP//8g2XLlqFFixb48ccf8c0336i2adKkCaZNm4apU6eiRYsW2Lt3rypRHQDMmjULGRkZaNWqFV599VV88MEHcmI7I6KiojB27Fi0bt0ad999NxITE7Fy5UqwbOkUbxnyHyrwmZ2djdjYWGRlZSEmJqakm2OIw+HAypUr0a1bN13cB6X0Qp/bzQl9bjcvt+qzS8m24rFvFuIRLg4vcRvRlL0AAMh7ZSUiG9wnb9d18jasylBkcx2edaObWihu1ed2q0Of282Jr+d27HIWHv9+u/x7/cD2aFDJfxZzq9WKhIQE1K1bF2FhYSFv883M119/jR9//BFJSUlFOo4ye3lpFSD/a/h67wOVL0t3EAaFQqFQKP8h7h+7CSvM36Ahe1m1XHSqE8mwtGIYhUIpAlr3cuctbukuDqZNm4a7774b5cuXx44dOzB+/Hi8//77Jd0sSimFCt0UShEghOBSRgEqR9FPiUKhFB27IKKh6bJuORHUWV4jYL1RTaJQKLcgbpn7ZW49ajPXIDjvLdkG3YScPXsWo0aNQnp6OmrVqoWPPvoIQ4YMKelmUUopVFKgUIrAhLWnMXVTPD5+uCFqlHRjKBTKLYuoEbofsm0qoZZQKJRbAXdw6demWQCApDMdgRr9Sq5BNyETJ07ExIkTS7oZlJuEgITuI0eOBH3g22+/HTxPZXpKcKw+loz9F9IxpGsTsDeB/+TUTfEAgPFrz2Jy2xJuDIVCuWUhTrXQTRga50ehUAqPSAgAj0s5m3+95BpDofwHCEgqbtmyJRiGCaj4OSBl3ztz5gzq1atXpMYpGT58OL766ivVssqVKyM5OTlk56CUPG//vh8A0LxGGTzRoloJt4ZCoVBKB1pLt4OlCYwoFErhEUSCJ9hd8m+R4UqwNRTKrU/Apug9e/agYsWKfrcjhOCOO+4oUqO80bRpU6xfv17+zXG0g7hVScmxlXQTKBQKpUQ4LtaWs5a70cZ0w0SFbgqFUnhEQvC9+Qf5twA6p75ZIYRAJAQczXReqglI6O7QoQMaNGgQcLHx9u3b+yxmXlh4nkeVKlVCflxK6aP0O5ZTKBRK8ZAPfY1XrXs5Zwr9GEuhUP47iBrvVe1vys1DUno+MgscaFQ5GmEmqjwprQSkEtm0aVPAAjcArFy5ElWrVi1sm7xy9uxZVKtWDXXr1kWPHj1w/vz5kJ+DUjpgqNRdYuy/kI6d59JKuhmUYiIr34Fnpu3AnB0JJd0UihdMEHTL3Jbu08k56DV7Ly5nO3TbUCgUSqAIomaBqO93KDcHmQXSeHA9l3qJlmaCynSWnZ2NqKgoXaF2QRCQl5fnsyB4Ubn33nvx22+/oVGjRrh27RpGjRqFdu3a4fjx4yhfvrzhPjabDTab5wXMzs4GADgcDjgcpXPC4m5XaW3fjUIUxZvyHtyMbVYiigTPTZdivPYO6YiyEeYSblHx8l/83qZvPouDFzNx8GImXr7n5s25f6s+u/vZo2jJxuuWCw4rHA4HXpu5B9dybOjA5gOKz/NmuQ+36nO71aHPLXiuZlmxNzEDTzSrUmKJYX09N7tmmeiwBfR8HQ6H5M4sihBFreROCQXuHFru++yLPLtHWSKI/renFA5RFEEIgcPh0IU3B9ovMiTA7GiLFy/Gp59+ikOHDiEiIkK1Lj8/H61atcKECRPwxBNPBNj8opGXl4f69evjk08+wcCBAw23MUq+BgB//vmn7hoopYP+uyQ90HN1BLSvWvpdndztBYDJbZ0l2JLQIIjAwD3SNX3W0onK1IP1luOfBBZbkyXF6a3wzt5qPHXwNcPl2yq9ivTqXeQ+pyN7EHPM4+X1/7b67Ya0j0KhBMaUYxzicxg8WkNE15qlTxA6k8Xg4/Ovyr+3lHkOmXWf8rufO9SzZs2aMJtvbcW8P/78808MGTIEFy5c8L9xMZFpA9yOT+EcUNHPvK00tDmQNowZMwYrVqzAtm3bQnbe7du344knnkBiYiJiY2OD2tdutyMpKQnJyclwOtVzp/z8fPTs2RNZWVk+DdABW7qnT5+OTz75xFBYjYiIwKeffooffvjhhgndkZGRaNasGc6ePet1myFDhqgE8uzsbNSsWRMPP/xwsVrli4LD4cC6devQpUsXmEymkm7ODaf/rrUAgDvuaIpu99Yq4db4x91eNzf7c7M5RWCPlKzw/vvbo2HlqBJuUfHyX/zeDq48ha3JFwEA3bp1K+HWFJ5b9tkdNF5cv05ttOnSTe5zWKiVkjfLs7xln1sJYneKeH1OHFrUiMXgRxsXyzluxHNbeOAyWAZ4tlX1Yjn+jcb9re66bsb3bz1UIm3w9dxi468DiijNalUqo10A/YjVakVSUhKioqIQFnbzJHTs3bs3fvtNr5x8+OGHsWrVKr/716tXD/3790f//v3lZa+//jqeffbZkMsUhBDk5OQgOjoaDMNgzpw5GDhwINLT03XbFuTYAIfk1WsymRAT41vqDgsLA8MwPtustORGRkaifv366N+/P3r16lW4C9IQyH2zWCzgOC6k99Ytw0ZHRwd9XKvVivDwcLRv31733rs9qf0RsNB97NgxTJs2zev69u3bY+jQoYEersjYbDacPHkSDzzwgNdtLBYLLBZ9QhqTyVTqB/uboY3FCc9xN8X1V8V1zDWPxm9CFzjETjf9c3MSj5sSc5M8g1Bwsz+3YOAVg+mtcM3/lWfHQlBdp1bovtnuwX/lud0INpy+irgLmYi7kIkvniie6jFuiuu5pefZMWTxcQDA03fWhIW/dZJBMQxT4u+60XNjWPU91vYx3hAEAQzDgGVZXbhpaYZhGDz66KOYPXu2arnFYgn4OtzX7SYyMhKRkZEhbScA2UVce5+N2skokiAxjPE2SnwdS8ns2bPx6KOPIi8vD/Pnz8cbb7yB6tWr45FHHgnqWowI5L65ryuU75jy2oM9Lsuy8res/U4C/b4DPmNGRobOnK7E4XAgIyMj0MMFzaBBg7BlyxYkJCRgz5496N69O7Kzs/H6668X2zkpN576zGUM5v+ExZFZ0k0JiEGmv9GAvYIRpl8x6/TNM/h4Q5m9VBBLv3s/JXhoksKbE+K0q35zULuriiKBU5cZifJfwCHc/H11miIB1K1wPUrYUtrpipoxXtD0MbciFosFVapUUf0rW7asvH748OGoVasWLBYLqlWrhg8++AAA0LFjR1y4cAEDBgwAwzCyQDhnzhxVounhw4ejZcuWmDVrFmrVqoWoqCi88847EAQB48aNQ5UqVVCpUiV8/fXXqnZ99913aNasGSIjI1GzZk289957yM3NBQBs3rwZvXv3RlZWlnzu4cOHA5Bcnkd+8Rm6tG6CNo2q4emHO2Lz5s2qY8+ZMwe1atVCREQEnnnmGVy/fj2ge1WmTBlUqVIF9evXx2effYZy5cph7VqPd2dWVhb69euHSpUqISYmBg899BAOHz4srz98+DAefPBB2ap81113IS4uzvC+AZI7eeXKlREdHY033ngDVqtVtb5jx4748MMPVcuefvpplfX9999/R+vWrREdHY0qVaqgZ8+eSElJ8XqNFy5cwBNPPIGyZcsiMjISTZs2xcqVKwO6P4UhYEt3nTp1EBcXh9tuu81wfVxcHGrXrh2yhmm5dOkSXnrpJaSlpaFixYpo06YNdu/eXaznpNxYRJFghfkzhDEOJB3LA9ovKekm+cUMT/KEE5k3v9AtFFLoTs6y4uuVJ/FW+3q4o3pwcTKUG0thJ4BWh0BLkZQg2gkxo7F0Pz1tB3KsTqwb0B48d/P3RZT/FjlWj1FHuIWEbh5OsIze47I0oC0RtvVUMhoV5kCEAI78kLQpaEwRIdMkL1y4EBMnTsS8efPQtGlTJCcny0LkokWL0KJFC/Tr1w9vvvmmz+PEx8dj1apVWL16NeLj49G9e3ckJCSgUaNG2LJlC3bu3Ik+ffqgU6dOaNOmDQDJijplyhTUqVMHCQkJePfdd2G32zFjxgy0a9cOkyZNwrBhw3D69GkAQFSUFPrXu3dvnDl3HjOmTULTKuFYsHo7Hn30URw9ehQNGzbEnj170KdPH3zzzTd49tlnsXr1anz55ZdB3RdBEPDPP/8gPT1dtugSQvDYY4+hXLlyWLlyJWJjY/HTTz+hU6dOOHPmDMqVK4eXX34ZrVq1wvTp08FxHA4dOuTVIvz333/jyy+/xNSpU/HAAw9g7ty5mDJlCurVqxdUW+12O0aOHInGjRsjJSUFAwYMQK9evbwK0u+99x7sdju2bt2KyMhInDhxQr63xUHAQvezzz6Lzz//HF26dEHlypVV65KTkzF06FC88sorIW+gm3nz5hXbsSmlA4EQhDGSEFsx81DJNiZAHMEVACj1EIWhTAiiZufkDWew7PAVLDt8BYljHiuGllFCBVOICcqUDWfx3boz+OvNNmhb37haBEVN31/3IbvAiXn92gScuVgQCbypNURFnW4GIliNpfvIpUwADBKv56FBpejCNZpCKSFybR6h23GLZF+uguvYYBmEJdb7cfTS3WhWo3QppAVBXSKMNyhVGBCOfOCbaiFoUSH47ApgDty9e/ny5Tqh6tNPP8UXX3yBixcvokqVKujcuTNMJhNq1aqFe+65BwBQrlw5cBwnW1B9IYoiZs2ahejoaNx+++148MEHcfr0aaxcuRIsy6Jx48YYO3YsNm/eLAvdSgtu3bp18dVXX+Hdd9/FjBkzYDabERsbC4ZhVOeOj4/HX3/9hbV7j6NzNckqPPjtl7B+5wHMnj0b33zzDSZPnoxHHnkEgwcPBgA0atQIO3fuxOrVq/3eq5deegkcx8FqtUIQBJQrVw59+/YFIJWSPnr0KFJSUuQw3gkTJmDJkiVYuHAh+vXrh4sXL+Ljjz+WjbUNGzb0eq5JkyahT58+8vFHjRqF9evX66zd/ujTp4/8d7169TBlyhTcc889yM3NNRSmL168iOeeew7NmjWT9ylOAlaHDx48GNHR0WjYsCHeffddTJ48GVOmTME777yDRo0aISoqSn6oFEphUFlWbxJFt0DUn5C2GECezYkP/jqI1ceSIYoEr83ai4F/H7qBLQwOpaCtdT3zxZXM4DpGSsnBMkBTJhG3MRcD3ue7dWcAAF8uPVZczbqlcAoi1p9Mwd7EdJxPywt4P7vTu7AhuizdlZCBvZZ38ZnpT9V6MyShxUnDQig3IVaHgEgUoB5z5ZYJberDr0YkY8PL/Aa8NmtPSTdHh01T5sjdh9zKPPjggzh06JDq33vvvQcAeP7551FQUIB69erhzTffxOLFi32G1XqjTp06iI72KD4rV66M22+/XRVDXLlyZZXb86ZNm9ClSxdUr14d0dHR6NWrF9LT05GX5338OHDgAAgheLLD3YhqeJ/8b8uWLYiPl8pOnjx5Em3btlXtp/3tjYkTJ+LQoUNYt24dWrZsiYkTJ6JBgwYAgP379yM3Nxfly5dHVFSU/C8hIUE+98CBA9G3b1907twZY8aMkZcboW2nSAjuaNU66L7g4MGDeOqpp1C7dm1ER0ejY8eOACTh2ogPPvgAo0aNwn333Ycvv/wSR44cCep8wRKwmS46Oho7duzAkCFDMH/+fDl+u2zZsnjllVfwzTffqF4yCiVYlB8Xg5tD0+3Q2KUOXcrCPfUqyr9/2hKPpYevYOnhK1j94QPYeiYVADChe4sSq9vpC6W7WTCTdxN1Z71psIhWrLB8Jv1wvgHwgZd8oc85MJTfToE9cOuR3SnCW95ZQZAmyO/wS1GR0WdKNcMBO0y3jMBC+W9hdQhYY/kUNZg0XLvaDIhpU9JNKjImhRCbkV/66pv/ues8lPWGwhmb1219YoqQLM4lgSm48r+RkZGy4KilZs2aOH36NNatW4f169fj3Xffxfjx47Fly5agEuHpEtYZJNJjGEZOlnbhwgV069YNb7/9NkaOHIly5cph69atePPNN33WfxZFERzHYcHK9WjMX/OsqNxUtuoGWBXakCpVqqBBgwZo0KABFixYgFatWqF169a4/fbbIYoiqlatqosfByDHag8fPhw9e/bEihUrsGrVKnz55ZeYN28ennnmGb/nzsizw+YQ4VDkKWFZVnc9yvuTl5eHhx9+GA8//DB+//13VKxYERcvXsQjjzwCu904X0Hfvn3xyCOPYMWKFVi7di1Gjx6Nb7/9Fv/73/8CuEPBE9QMKjY2FtOmTUNaWhquXbuG5ORkpKWlYdq0abqAeAolWNRC3s0xcXQq9Fbj+R+Rr5lgp+R4BjHlZNheShMeiSJBB/YwvuF/gWgrCHg/vhQqECjGmEVF7J0tsDIXbqjQHRjKvuzzJUd1671NhGwad08MOospwrMAgCMX0gDoY7nduK1UVkchXUQplBLE5hRRg5HecUv8mhJuTWhQumuXxlxqTk2eiMa894RTPmEYycW7JP6F+MaGh4fjySefxJQpU7B582bs2rULR49KfbjZbNa55IeCuLg4OJ1OfPvtt2jTpg0aNWqEq1evqrYxOnerVq0gCAIy0lLRoG4tz78GDWQ39Ntvvx27d+9W7af9HQgNGjTAc889hyFDhgAA7rzzTiQnJ4PneVkwd/+rUKGCvF+jRo0wYMAArF27Fs8++6wuc7ybJk2aqNrlEAiOHIxTbVOxYkXVfREEAceOebzvTp06hbS0NIwZMwYPPPAAbrvtNp9J1NzUrFkTb7/9NhYtWoSPPvoIM2bMCOymFIJCzaAYhkHFihVRqVKlQsUHUihGqCzdRdDO3UgExSf0PL9VZ2VSWrOVl1RaJ8YiAX41j0VPfiOqHpse8H48x+ALfi7G8j+rL5RS+mA87yyxB+76DAAmjvb3gaDMIn7kUpZq3fIjV9ByxDpsP5um20+XtdkUDrsoedMU+IltM8OBCFhRYC+dCj0KxRc2xZgoMDd3KbkrmQVYf+KaSugujRnMW1RTx7jeTs4CQumzyIcSm82G5ORk1b+0NKkvnjNnDmbOnIljx47h/PnzmDt3LsLDw+WEzXXq1MHWrVtx+fJleZ9QUL9+fTidTnz//ffyeX/66SfVNnXq1EFubi42bNiAtLQ05Ofno1GjRnihx0sYPOB9LFq5AQkXL2PHwVMYPvIbOXHYBx98gNWrV2PcuHE4c+YMfvjhh4DiuY346KOPsGzZMsTFxaFz585o27Ytnn76aaxZswaJiYnYuXMnhg4diri4OBQUFOD999/H5s2bceHCBezYsQP79u1DkyZNDI/dv39/zJo1C7NmzcKZM2cw/puRiD9zSrXNQw89hBUrVmDFihU4deoU3n33XWRmZsrra9WqBbPZLN/HpUuXYuTIkT6v6cMPP8SaNWuQkJCAAwcOYOPGjV7bGAoCFrpTUlLQr18/9OjRA8ePHy+2BlFKN7/vvoCHvt2MSxmhz1TpVCRPuVncywnUA+naEx4XH1Ek+HOPJ45k93lPmQabj9jNkkQZ0x2edS7g/SIZG97gV+FFfjNI1qXiaBolRCgngk5rbkD7mOHAk+wOlENwlvH/Kk6R4D72KL7kf4UFamvS+38eRFaBA2/NjdPtp4vpZk1wukJYTK7n5s3SPdY0A8csb4CknAzBFVAoNxblmHizC93txmxE39/iVH1taQz7IKKB8r+kspDfIFavXo2qVauq/t1///0AJLfoGTNm4L777kPz5s2xdt16/Pn3IpQvLyUPHTFiBBITE1G/fn1UrFjR12mComXLlvjuu+8wduxY3HHHHfjjjz90JcXatWuHt99+Gy+++CIqVqyIcePGAQC+/3EGejz3FD4aMRGN2z+D7n0+wLadu1CzZk0AQJs2bfDLL7/g+++/R8uWLbF27VoMHTq0UO1s1qwZOnfujGHDhoFhGKxcuRLt27dHnz590KhRI/To0QOJiYmoXLkyOI7D9evX8dprr0nKgRdeQNeuXfHVV18ZHvvFF1/EsGHD8Omnn+Kuu+7CpaSLeP7V3qpt+vTpg9dffx2vvfYaOnTogLp16+LBBx+U11esWBFz5szBggULcPvtt2PMmDGYMGGCz2sSBAHvvfcemjRpgkcffRSNGzfGtGnTCnV/AiHgmO7evXvjrrvuQqdOndC1a1dcuHCBWrn/gwxdIrlyfL3iJKa/cldIj61OpFY6hVJ/zI+7jLHdWwIA5u6+oFo3asVJlEM2qjDpsDlK5/Upk6exjsDcy9Nybdhx5BTgqoridDpQ2qZMJVHuavjS44i0cPj4EeMyiyUFp/i2BGuO32dldQgYyC/A2/xyXLy+CsCjxdq+WwGnQPCHeTQAIJXEAtDHsOXZBUzddA7d76qByjFhAAyEbs6ELnfUAE4DVaN9D9cdOCkBTLWjU4H7Hij6RVBuKuowV1EWgSnRSiMOuycUy8ncGlVBeEYt1E7ZcBYrjlzF32+1RWxEyY+SRDBIEmYkiN8izJkzB3PmzPG6/umnn8bTTz8t/5YqQnjmD23atFHVoQaAXr16qepEDx8+XK6hrTyvFm0s9IABAzBgwAD5tyiKeOqppxATEyMvmz59OqZPV3sgcjyPCR/3xoSPJQHVRkw4TWqgWY0y8jZ9+vRRZfUGJKu1L7yFQCnrdEdHR2PKlCmYMmWK4bZ//fWX1+Nr7xsAfPbZZ/jsMynfzNWsAqTm2DDgM4+QbjKZMG3aNJ9C8UsvvYSXXnrJ67V07NhR9fv777/3eqziIGBL98GDB/Hiiy/ihRdeQHJyMlJTU4uzXZRSTkExuEc7BbV7+YXredhxLnQuPKEmz+Y7q+XexHQAwOPsLnRi9wMAdln+h5WWz0CSizdDYmFR9rOsMzDX45HLT6CCwgJqz88JdbOKxKbTKbjti9X4eav3zJmhJik9H3N2JmLqpnhVIpDSAKdI7uO0+n/Gnyw8gme57QCAWo7zxdauWwml1049NtnrduPXnMb//jwo/7Y7RcSLVT0bsBwsYZI2K0rM0u5uiBig9wIlOArsgs/s8iUJAbDZ8hEWW74EMhKL9VznU/MwaMFhJASRlT8QRKtn3BBvEaHbpLB0f8T/je/WncHpazn4c2/glSOKE1aQFB12ZR3xW1joLizOG1g3nrjmvsnZgSW108rG3jyhbkaiYEU0As8tdDMQsND99NNPY8iQIfjggw/QvHlzVKpUqTjbRSnlFIenlKBJpNZh/Ga8/MseHLsc2GTzRpNn1wvd7Vm1FrQssvGD+XvMNH8LHk5YXHXIzRe23JA2BovSvZx1BuZmdiWzQJX1VChlk/5Bf0vP5JuVp/xsGTqUifJKm1shx3jadiLput9QkaWHr+hcpCm+UU7SunNbNWsJ7mVOIsZllXQr5wBNgsXXlgIACqKluqG1HAkBndsk3lqTlNKA1SHg9i9Xo/24TSXWhuu5Nmw9k+q3lCNJKd5+7tXZcVi4/xLe/E0fHlEYdp+/ju/WnoazQCF0G1lgbwJEkeDzxZ7EiUr38v/xS+S/S4uTaLgjEwCQz8XAQVyeYOLNee9DjcrSewOfV75dQFaBA2m5/oVukRCkZKtzfZgZJ8rcxB4vMoSgHnsVddnkW+qdDFjo/uGHH/Diiy/itttuw8aNG4uzTZSbgGBqOAeK04t7+cmrpTOONM+m1whPNKuTX7zIbZb/joXHMiA4S2eyEmXJsKw8a0DlJhiGUU0uxCCTcxU3JV23uLQJ3VBMaH/efAr3j/UvSFjgeV9Lm+W+NKJ75xTf0ZPsTsy3jMR88ygAQJt65eR1+XaPYg4WKcmRM1aKzbMQ34nU3PACFbpDzenkHBACJGcH9gyKg8e/347XZu3F4oOXfW5XlBJBgeCuyHEuJRfxqblFngv0+Hk3pmw8h9UHPTlEiPPmVPLtiE/DH3sugoWI25iLMMN4nI8w39hQJ2+EOSWDRj5fxpMU9hYScIqCtYRCAIP5ftNybIbzi1rsreCJrLiuW8j7ImChm2VZvPzyy3jvvfdUMQaU/yZiMQzsys6DKNwzw0vJAKXFyL28PDLlvznRgcGmefLvN/mV8t+lVuhWljWz27HNIMOyFpYBOIXQXdoSsThLWEgsaaFfi6iYVCmVJb4IYzzva3peaCfEiw9ewhPfb8flzFtHWFS6l0sLJAXWtWyrbPluwl7E69waNCEeC3ZWgQNhbq8CXorzZkxS5W4LsUEUtakb9ZiF0vX9hRJBJHh77n78sPHsDT2vMvN0cSicA+FqliTwrzp21ed2hsmxiolO327B50uO+d8wAMKVpQyFQtaLLmHcc4Kh/O9YbRmMh7hDqvUxyMWT7E5EsqVDqWB2hZDZ+Gg5YSMVuqV+5mxKDlgQhMN2Iw3dQTmHWx1CqXAnLxZFn+qYpcQ1JATQoquUQlEcQrc6e7kii/YNToAVKPl2AXUY7/GaZZxqgfVtfpn8dyjd57IKHCETLJXzSR4CzqZIbkqEEBxKyjQUuFiGUcWuGSZnKUEc1NKtRvF8zAj+WYVaiTBg/mEcvZyFYSGavJcGdDGAjgJ88e8x3PvNBpWi4yvTr/g42ZPQJrvA6fEqcAndnDlC+gkBguCAyc8zE5nS2V+Ggo2nUrD6eDImrD1zQ8+rdAcuaSWarqychlArxfQQPMQeQCVkAAD+ClF8ciTj8SK4WS3dHCtNqfvwxiWZZpi/wxTzD2h1fMyNbJZXWFG6zyJrgihbum8dq2JhcXtz1WOuoCF7BZwt84adWxVk6berYUpc6HYIIk4l5yA5K7ReQCV9XcVFQEL3nXfeiYyMjIAPev/99+PyZd8uUJTi5+L1fHQYvwm/a7Joh4LijulmQdCBPYx55pEoY00K/clCgN0poipz3ev646dPe10nCKEZ2JKzrGjx1Vo88cOOkBxP+Qx4CLJ+8aet5/H01B24c+Q6nXsxB4KJJk82SbGUDdqs6MCPpol4lVvrf+MQQQgBCxExyNVbPUuQNceT8U9covybL4TQLRaT50B6fugm2lezCtB9+k4sPXwlZMcMBq1gZi3Ixe+7JeFEGVMPABHEY+HLtuot3ZwlXF6fnJbpsUh5QbhFklAZkW+QR+NGoBS6S1qJ5i+84889oR/vlTzJ7sIs8wSstwwK6XHDFHkjyE1aK5pnfVvk7mWlePval5beiOb45dQVKZ8E4UxwFsK9vLhDGUoKtxEjgpHeSd4WuPxTZIhk1+UCKZvL3Hjh1OoQcCWzQL5HqTk2OAQRKTkhDr1RvVul4z0TQzCXC2h0PnToEA4fPoxy5cr539i1vc12c7oH3UrM23cRF67nY+iSY3ilTe2QHrs4OlvlRJVlCH41jwUAZO75Ami1KuTnKypOUUS4QYIpm8MBi8mk0twb7RsK1p2U6oKHKu5d6cHAM4I82RyzypOcJ98mIDbCo6+7zX4MUcprLWWW7qeZLXiU24dHuX0AJt+QczpFgr/Mo3Avewop6S2A6NJRNuytuftxp0Lou587hkxEAXjM6z5lNbW5LQnrgfJPhbxtocwMPXrlKcRdyEDchQw82aJayI4bKE6nWvE0b6dHAeckeqHZXZLGYbPD5C4z5HIr50weoXvAH7vQg/GtnGBu0nKLgVAcHlaBwCjcG6W++8Z6E2w6leI5v5GlW3FfsguK10r8EHcAABDDhDYcRJk3AuLNKXRzfoRuN6SITqZnr+Vg8KKj+LBzQzzQsHD1om1OQfZQswoshCDcy00mExiGQWpqKipWrHjLlQ8uKLAjwpkNKyt9V04I4K03Jp+DzeZALeEiLIwT2baqsFrNYFnj90Ww20CcdrmdKgoKQICQP5vTydJ8wGm3oVJMGJyuNkinLAjZ+fLy82F1ywRWK8CXnOBNCIHdbkdqaipYloXZbC70sQJWiXfq1ClgQetW+wBvVvyVtCosFZGJM8mht6Z4syBw9tJVgsqNUyCqrN1uWn2xFLP7dUQ4vCueQuU+F+ovTSV0KyzdSgRNP8BrLHelzdJdAfrs94eSMnHyajaea1mlWM7pFIhs1bCc/Aeo/XmxnKcwKN2bn+W2S+XAct4Eoo3vxQD+H/X+aScAlG6hO7eY+r5AETSWunOXUwHEwgwHRIOvSv7u7AoFh1lKpGY28bASE8IYB66mZSDW5DszLUNK1/cXSkrKaaSkLd1fLj0OMxxow56ATbjXYAtPm5TWmO83nEXl2DC80LpmyNoS6jHnQfYgRppmY7twh7zsRoYoOQURBQ4B0WFFr5sdqNBd1Lv4zh8HcC4lF6/O3IvEMd4Vpr4QRcihKg7wHg+aAPoPjuNQo0YNXLp0CYmJiYU6f2km3+5ERP4VuLNtiFwY2Kwb890X2AWE50t5G2xcAcxRZb3KVBl5dtjsdrBMOojG1VzMsSAlx44wE4syEYUXErWkZEjKthwTi6wIE5KzPPNcZ5Y5ZEkCr2XkwM5IHgYkmwfDlXxd+4iICNSqVcurEiQQApKcEhICK1WipEaNGkHvQwktAiGohjSUYUJXPqAHtxFjTL9gsvNZAI+E7LiA91qITlNUSM9jxOKDl+AQSFCTE6dIDC3dPAR8vuQYmsOHZtRROpNGKeeTlZlMRDjSAdQFIA3QZZGjix93shbV79LmGmhRJAHLtjoQE2bC01Mld/yKkcXjiqucmJc2JYTWvRkAkJfmVeiuxGSqfjstZULfKIQ2K7qZK9l0JVpLtzU/D62Zq1hoGWG4vft9YRxSYiMHY4GJlyZKEWYOVpgRBgfCGDuiNRbGqyiPqvCEubA3qdCda3PiamYBGlaO9rpNSVm6AUnZXJlJL5GYboYBBvIL8Ta/DNuz7gfQSb1e8cyTswrgEEQkpuXh23VS7HsohW42ELfXIJhtHg8A6MFv9iy8gWNI18nbcDYlF/uHdkb5KIv/HfzQhj3hdxvCMDh4MQM/bTmPz7o1Qa3yEUGdI5ByUv4QCJGFbgFc0NnLo6Ki0LBhQzgcnmd1NbMAq44l45lW1VE2MnSC3o1m7fFkPLzDk2sjo3wrlH1pxg0596bTKXhwRw8AwOHKz6P+0wNhMhkLnH+vPoUyJxeirWkFbEw4LMQzNsxv+Rt+3iN5yPz9VtuQvNsA0HfRJtRiUlChekMcuKT2gut5by28cX/dkJxnzOI/8JN5IgBgY8vJeOj++0Jy3MLCcRx4ni+yUTmgGWft2qF1TaYUnsS0PFQtEwYL71+bJAgEO8M+kH7kPOd1Uh0MI/nZAID+/CIAs4t8PCXeLAj5kTVRNqRnUmN1CBgwX6rl3KVJ5YAHC0EkCDOwZrszeUcZWMHdMM7SKXSvPpaMlorf7Y59CXRcjgpRFvxsH4Y72XO4ltYciGkub6NN7HQjs+f6IyPPrirbcim9ALdX8wxg51LzULUYzuv0kom/pIkJ48HbDZ6Pj4FEO8kmbPFonENp6TbzJSt0ixpPlitp6Vho+cbr9kJBDhBWDqxdUpDa+Qi473KEmZfj+/pyK3XfWzaibwmh++HvtuBKlhX/vNMWd9U2DmWTZG4SWLxjCBEJwb6wdwEAacntgAZ33dDzswwj56S4375dt55RKCMYEPy++wJa1iwjLxNEEoQV1jfKozRmLuIqKR+S46q4gRm03clCt59Lw1MtqxfpWE6RYJ6rFKAvCFg8M20nACDP7sTcN4y8F4oXQSSye7mTMUlhLwyCSqTGcRw4zjMXfXHmdqTk2LDrQnaxXNPKo1eRnGVFnxAJdkY4BRFfLD+DJ4knl5A5vDrCwsKK7ZxK7IRDWK50brFMHsLCwrwK3VxBGvrbfgRsgMjFIEzwCMFpOfm4nCM9y35/HsGKDx4ISfva5m/CBNNP+Ovsg1jmfBMA8Aq3DgJY5Av9QnafsnJyEWaR7sPZqxnodoPuf3FDs5ffROyMT0PHCZvxwo+7Ato+0u6JA0N2aBIKFcCjLSOE4HJmQcjiu7Vuy26slgohOb7X8yoEpGDcUgWnHWZGP0DxECCKBOVdFsIUrrJuG8ZZcvVeffHjlnjV7/LZktb+iRZVcScr1VFN27tAtY02GVdpErrbjdmojhXUUFyuoptPe769UCTfCBVNyjGYazbInMt4Hwq03mLFZbm3h9LSXcJCt9bSXYtJ8bKlBHtRmoCzDkkAcHCR8roIMydbt1/iN+mE7hwmUvX7ZnMvz7c7sXD/JVxxZb9dc/ya121FQjDbNA7bLP1vqLeQ8hPmL2y5Yed1wzBAKinjfb3imTdmk3AuJVf1DWw/J1XSOHk1GzO2ni+iV4mnz1xjGSw9i1BTAt5SbAjCIoUA+3rlqBPqUonbzqbi6xUn/D5jUVRYuhmPpdtZhNA3dw33PQnphT6GL9794wBGLD+Bk1ezkZZrQ4fxmzBlQ2jLBy46cBlZBer370YmjHMqlM9GoUhKIkWPF6tW2apM0Hn8Smhy/gDAMH4uAGksAqQyeKNMszHaNBNmIXTzWuU4J96kOR6MoEL3TcQ/+6WM8Icv6WNUjQh3Kj40NjRxFvkKoXvGtvO4b8xGfBui8i3eMnozxfzBKV0Wg3FfVMZlXyAeLwIeImxOEY2YSwCABFND3b7X0jML0VI1iWl5uJiej5bMObRnDxf5eMZI98PkqucJAHOOqjtWE9EMUKUokVqBQ/ApdBdXzd3vN56T/yalqO5pR6eXLPc+km9diVAngSMhyryvJS3XjkcnbQ1JxnEzK2KWaRyGuiYINxpRIzQ0YXxnlHbffeKUJq0i6/G20ZZMNGlqq+cy6vCbULv/BoMoEszanoDDSZkB7zN0yTEMWuDpv3xNMwVC8CB3GNWYdCBRb/EtLpQKYeK48UliGQB1WO/KCCieeX9+MUQCmBQhFm/M2QdAcqX+euVJ/LozsVDtIESqLKIklimGuvAlMMkOhdDtLUROCwEDMxx4mVuPmvCtkDMiM9/7/Xl15l7M2JaAP/f4LuUmEAKekcYmJ2OSY7o3Hi96/8sVc16nlBwbftwcjwvX8/HdutCWD0zK0L/P4g1KTrn/Qga+XnbIc14/IprIepyVTUTdL10+VzwlOGMU33sErIiGR2m04VhoKieIIoGJ8cybimvOURJQofsmwmIK7nFxgucjHPjXvpCUDotQxClPWHkUAPDDpnPeNg8KwWksnBS35VRp7QzG8ik6PQNfTu/NyCOSQqIfvxzlncmIcLmeZ3NldPsSewHOXit8gjibU0DHCZvx89bzWGIZht/MY4Es32X68u1OPDJxK4YuOWq4/pLBYOMeOstYL8nL7EQdlXIsSV2PnIgC1h5PxqqjVwO4kuLDXcLCrIjp1s4FbkR4ZlHe3+/WnsZTU3eErFRSuOjlnRM8CqRNp1Pw1tw4XHfFDTpETb/jw5I6ZcNZdBi/KajyIQxE/I9bhLbscZxKzsEHfx0MeF9vVLRdxEPcIfTlVwH5xWN18YWgUTzFMnletpRwu6OLrj6QKJSkrMYtWGvptmm+R5aUnJJn2ZErGLH8BJ6aGngJw0UHAi8vWtzf6+GkTOyMT9MtV44LpARCg5oJfuKEDfoYpQJZG4d+9HJginstl/JCW6LIm9KTuUGKSlEkiEEuOrIHC1U+UUug8wcCBm9xy/C1aRYm5Rau9Fondj/qMt7H2KR038oQUSRoxUhzt3rlw2UBLz2n6EqUUIUyeMMpiLA6i2deKH0r6udoc2UuL7AL2Hw6JaShUEqem74TDptn7PQndCvDbDhNv5+bmRraxkH/vZ4I64NNloHy707Zi0NyHqfoSUQLAJH20F9LSUGF7puIYJMDsaJH6L6YmoWhS4qu+TogNpL/9pWduzBorUOeFcWr9XZqhO7d568HJDQo28vyZrnkRm9+DWY5ByPMVdrHzuhjUcIYO/45cLnQbn45VncHq+gEc3wLuVvPpOH0tRz8vvui4WRn6JJjqvhnwFN+KNzhqVOpTEx2LdsKi2ayIjgd6Dd3P9754wCyfGjki5uvlkoTVaWlm888r9rGW0hDUSCEgFEMhoEK3TbNJIIQgikbz+FwUiY2nAzeGmKEt8msUoHUe/Y+rDl+DaNWnAQAcKLa3dCXJ8N3687gwvV8zNqeGHCbnue24CPTQvxl/jrgffyheqzZgQt1vrA7RQxZdAQrA1Amae9RLHwL3W6vGeJWfviIm5eF7lptgccnItepnuCWZEx3fKrv6zSGYBA/H93Y3fBXj1Xl5lkM3+5TU3eg54w9SM1Rj20qDyjHjQ8NqiH6eec0fUzr60vhFAjKIwsbzB+hP/ePlx39s/7ENfy4JR6EEBQIDHgDT4qDFwtXx9jhzR37BgndDlHEfPMozDGPR9iBn4t8PG2SUW8QMHiYiwMAlCXBKUAEkaANewIzzd9ik+Ujr9v5MzYLhOABTpoTVmHSkQ0pmVuUWHhX5LLIxg+mKXiAKS7POwmHQIotNEwUCcyaOQ0nSIq2IYuOoNfsfRi96mSxnBtQz1fO+nkUcfGaeUHX8Z7jMFJO+ve5xWjJhMYwZvS9KkMs+/OhEboFkbjyRkn0uToyJMctDRRK6M7MzMQvv/yCIUOGID1dsiIcOHAAly+HZnJDMSZYSzersHSbDGKPC8N54kk75ctttzAoJ/5KmBtg6W7EJOElbgOe/GErevy8G+1Gb/S7n3uCLIIFz3FwKj6nCsiS74+R5SkMdvy4JR7frCxc5+2eBCrLP2ljh/ecv46uk7chLlH6RpXvj1H204x8Bz7i/9Yt/3ThEWw55Zn09eVWyn8LIlFZkgHAqRA4cmwlJ3SvOHoVlZCBx7k98rIK+76V/45BXrHEaokEaMl4YuO1rlGCSHTl/ObuvoDbh63BJkUsuCeujKBMRGiSl7FeJrOCQRyf21LCasMHApgQBxOmcTfjqWEdgzyUNyjxFiyq6wxR/zE/Lgl/7U3Cu38c8LutUyN0P8j5noTKoSouRR5h1dbrpCpd5L9lt7tHRwOt+8CpsXQzJehebilELH1H9jDe5//FNPMUxFneQe3sOK/bigqhhoTQ4gqoBXqd0C2WrNDtYHx//9pkjc9dHgeREOwPewf12asYYPoHVofnO1B+nnN2JOC7dWe89oV9f4vDmFWnsDshHQRAuEFVjtdm7Q38YhR4E5wY0YFsqwOrjyWr2h1q7E4RTVjJDbv8+aVFPl6goUQEjC5MJFAy8u24k/HvUu0vy7Ly1gu17sclIuXOibZexYaT1wrlXTWE/wuPc7sxHaFToLpRvp8HL2bg7LVcfMAtwrvckoD2tzkF/Lw1Hme8eBgW2AU8NXUHftp6Hj+bvlOtM7mE7iWHJNf72TsSg7+AALEoKuIcSfPdx2XnabwS7u2HTYyUwM4MB34yTcQg0wIssQwLSduKy8Kvxanpz0yMcEPj6ouToEfII0eOoFGjRhg7diwmTJiAzMxMAMDixYsxZMiQULePosDCc2AggoNg6CKcb3fixJVs+eXkFJZuSQAs+kurjBe0MJ7O4fiVwk+URZHgXEqO4cQfQEBJVQgh+G7taTkeNNvqwL7E9IA+VEEkWGv5FKNNM/G4uBmA3h3PsN0uJYHAcGBZRrZ0u3F3nsmsPmt8VUYShAvbeUudH1G5+2snMC/+vBsnr2bj+Z+kxHs2h4A7mTPowsYhzyiDNSF4idukWiSIIubHJamsG41Yj3LNKRBEaiZhSitfcfeTokjwxZJjhvFrDETsDXtP3TZXgz7gFuFI2JtokOZfuRIsgkjwKr/O81sjgL308240/XINUrI99+2LJccgiAS9Z++Tl1kdIp5lt2K/5W2UuR4ay4G3/AhuoW//BY8rtsP1PrHafbxYp5yCiDuZM/jb/BVqFJwy3MYIpefEFssAbLR8BNgKH3oBABxR9CUhErqvZQUubHlTIKqwxOIcpNKastDtaqtW6D52+wD572quvgOcFPft1PQ7XAlaugsjdNdmPa6DFZhsvHj6Q6/bEkVs5ccLjuDrFSdClpdB2X9q5RVVTHcJJMHMdvi+r8TgmWvHg9PJ+m+q769xGL7sBKZsOIuDBnH4ymOcT80DIUAUo79+j+dVcDgEgnNiNf0K0Yl+v8Xh7d/3Y8yqwPuSwpxfPmUIKpB7C5HTIvlCFc7RNKvAgU9MeuW4EiaAqxFFgtOi1P9Yqt+BdBIDADiVcAFv/BqHjxccAQB8+e+xgJ9BTab43ICV7+JPW8/j/IULGGhaKN0Lu38Pmxlbz+Oblafw8MSthut3xqfhcFImImBFR42SlCc3Lo+DWRHL7Esxs/HUNZXRxU0ekRR0FjjQiSt6qJYSRwA5C0LRHxvlRigoRuXbjSTor37gwIHo1asXzp49q0oN37VrV2zdavwyU0JDxQgG68yfYLF5GBbs1ruLPDN1J7pN2YZ1J6SEK6wiTnOOeVxApSz8wStq/FaGx6XssSmFT2rz0YLD6PzdVmw4ZuwpwQQQo7jhZAqmbDwnx4M+P30Xnv9xFxYf9O99oezMlXEk/nBrtUVw4BgGDp3QLU28s8vejnhRXZiqEpOJtuzxgM+lxe4UMYafgSNh/eRl3lyl3YtzbQJ+MU/ADPN34BM26bYTiUESJtckl/PS+dsFEXWYZPVxBGOLSnEwZNFRzN19AZ8tViuhzqXk4mVug257kUiDwkDTQgDAw+dHh7xNIiG4RjxF7pwaS/del+fBqmPq++YmIS0Pa44nIy3Xhu/MP6I8k4MGOwYabhss2rgvN4JLSLyUUQCAoA5zVRYcdft4sebYnCLmmkfjHvY0nj/xv4DbZCMeK15ZJldKzJRdtHwAymzOXsNWgiQYy6q3pJAq+q5DIqQSRW6vGcblVUAYjfWaM7B0uoRubb9Tku7lSqE7UPdPC6tur7d3FFBbEq/n2TBjWwLWHDf+joLFl6JVqWfKz8/1ul1xERGmr7F70ZVEKj3PbliWUHv/ldnM9yakY+uZVKw/6UnOlpajFywy8+2ozSTjTW45RKcNApG8UbS0KKT7qlMQDWPEWcGG3eelfvLvuCTd+lBhDyJTdCCIASYRFcGgAIrSpEEMlP5C0h5jd+OwpR/qZu32uZ0gElloYzgzalSpBACIcinRVxy9isuZBfh11wX8uCVe551lBMsUnyVUIARd2T343fQ1KiJTHd4YgGL1UJJvw1C21YFGTBIe5/TVgdxhdo0qR+Fu5lRAngaBcPZaji5cSRUO58NDtc+cOEOh3O56r8LgxYhVBAIJhwzEYFWYY+Tml84yu8EStNC9b98+vPXWW7rl1atXR3JyaAY/ijHh9nQ0YK+gOZuAtuxxnUbptMtt5l+XtZcX1YNoG/akqnPaeiYVD0/cggNBxGPxigFyoWUEYpFbZHdGt2C8+5xxdtZAkqocvpQpbetqi/teLNx/ydsuMsoP/Cl2B8bxP2EY/5vf/dyTeYHhwbEMBKKe/Lpjul9r3wSbxJa6/QcZuHIHis0poge/WbXMX7mS/IIClGOkCSOfplcuEBCdFSPCVZLCW11chyCiN79GtazA5nnvREJgcwqIS0wPON4tUOJTczHfy4QsLjEdD7N6N1WRAAsPeN4Jkxh6DbZIiEoDTby4oyonxXWZq9hleR+vc2swZtVJvDV3Px7/3qPIIkxoqg94S7IlukMlCEEPbhM2Wz5Cn7xfAACczr3ceCLgFAgiXbXpw4XALdVW5eTT3R574ZP5nE7OwfbTnolMyIRuIpVHKQP/10YCOSdvgeASrmWh231vNZZuhtcLXe5ttB42bCHdVkOBhefwOrcGb3NLYQ3QPZUPQtZhDISaVINQmcKgDIlgGMkddfyaU9h/IUPVtwq24Cd/RXWNrBmrV7o8PW0Hpmw4iyGLjhgqwnRCN8egBpOKr/jZMOdc0LmEG1mxcqxO/GCags9Nf6L9yeEgxDgp4L9Buq8SIuVOuZ5nLBiwCm+CYEJVAsXqENB9+k5VeFcFpuhllQIVugkB8onimw6i/J3D6ft+TDVPQQyTjx4+PEYAV/ZyePobJy+VHoxkClCfuYxwWFGg8Igbu9q/QaI4KyeIIjDdPBn3c8fxm3k0XuYVSvUA5oj+crtl5jswzTQZ40wz9Pu6FJlNkIgFlhFYZBnuN3FtIHSZuBXv/nEA289KyRsbMJcw3zxCXv8467s88PO8vnyhA1JfMci0QLeuqATiXh6KWHutezkAOBMCT85Zmgla6A4LC0N2tr5zOn36NCpWrBiSRlGMUU7kWrNnkOdlUuPuWwxdSZ02iCLBvsR0vDZrL85cy0WPn31rRJWwjPqDOhzWD7NN471s7R+rQ0B1pGK+eQSeNHlpRwAd6vcbz+EX03hsMn+E5QcS5OU7468jx+p7AqycUJkYAS/wW9CHX+0367HbJVR0Cd3arqaCKza1bLmKOhdQADq37GAw6vx8DfiEEDjyM+XfWusYANSxn9cti49ogQrIQnPWc0+vWup6jmMgSG88eRWvcWuw2DwM6ddT0HjoanT/cRcmrQ9dPU1RJOj0rTTgVEMabmPU7uUmjjWcHOZF18a2s57sxDzRT/oS0vJ0dTqDahsBKjAerTrxMqFSDk5f8zNRlUnHV6ZfsfGUPmmawIUXuj1K3EJ3bpV7kSR6+mtil9pICDDGJAnbz9iXAdAL3d6yl3tNiuQHG/QChaMIQvdrs/aocx2EqIQdEQUcCeuHQ2FvAU7fgl5Alm4+DE7Xtbv7ErdXj9a9nOH0iglYogHovVDYG1TexghOtOIr068YbJoHkhTYuBLOBv58jLyevM2l/9p7EW/NjcO1bCt6/LzLrwJWEKXEYw+wR8AQ4M4R6zB1Uzyem75TFTKjzJUSCAv3X8LdX2/AEZdiuDAwimSGbotsuktgjUvMMBTqtZPfmPh/MdM0Hq/z6/CH6Rvd9kYTXYcgohmbCABocG0NREL8JgUMhGVHrqLHz7vx2JRtxpZup+f7L458WauOXUXchQxVecIaTFqRFcM6BR8fDpStq9vOCU41JyAFgRs+7CFSXosi8VhSWR4OThK6H2CPYoPlYywzD8WGk9dQFdfRlj2O33b5rn5z4XqeV+U8AKw+loxftunnGG4EkWDEshNYccTYy0npydeETcK7vCcG/+AF/27t2pJwyVlWHHNl8SeEYMyyQ2jAGpdLM7vcy+s4FB4deaFzpT/mCs+cZpqsKsH3AHcM8BHO0p3TexcbjaehIpB3z5kt3cM956/jSiFr0Bu5l+fyFQp1rNJG0EL3U089hREjRsDhkDoXhmFw8eJFDB48GM8991zIG0jxoBS63+f/RV6GsWVY7lyMrC1OK+bsTMTzP3o0aMEkR+AN3Ic6cofRkT0U8DGU5Fid+NU8FveypzCE+8NwG1b07SZzNasAMchDZ+4g6rDX8OOC5ar1g/8xLpHlxms/4kfD7p6IiQwPjgHKaIQ8MyOggIsGytaBWPF23f63sUnoyu7RLQ8Eo87v8nW1Bc4COwbzf6I1cwpbz6bBke9RlgkGMaeVBL2nig0mxIW9g7f5ZfIypQeF3SniGikDANgjSvWceQgYYfoVrdhzOD7fYwGZvsWTXKyoKL0TdoZ9gNWWwUC2Z8A086wuEzsgJTXzZXWKT83FgxM2456v1xe6bYJIZIWL1FjjQdN9DTangPIKK0uMmIVh/G/4kv/Vc0xOnwG/MLiF7vzq7VSJ/+x5WSCEYODf+thxbR12m92uy7QOBOZ6ZoQDvH5ZQeGF7mvZNlVZrVAJ3Wanwq04T19WSklACZV4C5xuN3JXX+1OAEc02csNLd2R0iRE+56XpKVbKZCSXN/3yE0YE8TzUdzXukwyBvALYXIaex4MWXQUa45fw73fbMDu8+mqWuBGCCLBesvHmGseg5j4f1V5L65mep59IOFOSgYtOIy0XFuRSuEJdkWfy3jehSq4DjNr/I5rw40izq1EY1ZSPNRUxNH/YfoaiWE9weXq+3+l9VtgTAARDOcAwbLE5d3mEIih0G0SClAdqVhsHoauCL2Fy1s97blFLKuqq+zQaznw7i5sLt9DtZglTpVi0JoTeFlDnWKgkDkrtJbu+CzpnpRnpO+pAXsFo1edwq6w/+Ev89dozfi2dM/ekejT0v327/sxasVJHL2kd/POyndgwtrTmLUjAe/9aZyo0pcF9Z1f/c+jWI2002b0Bjz+/XbEp+bCKfpWJpmJDSAEZoWSXvSWg6gQuD/VKoyB8iXXeJ7vDZvBeBoqAhnj2XMbcDgpEy/+vBvtxvjPmXM+NRc7z6nHCsNnHVMp4HaWZoIWuidMmIDU1FRUqlQJBQUF6NChAxo0aIDo6Gh8/XXoMxZSFGiEaPasx63X7hRREZkYwC9AeUEaUI0mfttPJWHEcqmUUgxy8Z1pGl7l1gbcBBNr3PHNMY8D0r1rMb3hFEWv2kU311J8dzqCSFSWTo+7pdTWFX5K/Bhp+KXd/QxmruchMhw4ltXVzwUgaY8ZBr3f/gTJLf+HHXd/r1o/3TzZ9zm8YKQo+XrZEdXvN7kVeJtfjoWWEUjPs0EsUFpfA7OyG2WO5xQeFHZBlMtr5BDJGqu04Jvs2WAh4lF2L6qxhSsrY4QnvlbxPl73CPUmjtWV/QAAOAp8RubucHX+tiJk6SSEIILxTJIZjdDdnInHeP5HhNmk7zTX6kS0Qrs9wzQBffjVKrd9wUcJqWBwx8synFlllUhJS0VSeoFhrVr3PnbXYL766GV0HL9Zt523iaw/jCyVTlvR4mbVQndo3MtVnkOM76EzIEGfD/O4l7ss53IsusbSzfJqSzep30n+26yJ+2NBvCa7K26UWePFQKz9AMKYwJ+PckwbZpqL/vwi3H1yTOAN9IEgEpR1hd9EJq5TrRu51KO4LayreFEstvHJHqHM7eraid2P3WH/wwhxsi6mO5svrxPORD5C9bsjexAtmXO4j5Nyi7Q6MgJalJNsJ2sC60vAC+Kdy7M58Ti7C+3Zw4bWUV60YZhpLlqx5zCZl8ZMpyBi1PIT2HgqOCHECDPP4hVuHQbwC1XLD14o2hil++5ZHjCF43pYLdVinjhUCbP6/LgOyQEmatSFAfjxuvHG6eQcj9DNmeD0kyF/nOlnn0myGMbV9/ghNVd/nQ+M24jpm30r5bec8W5Z9hX77Gkfg47sIV35LCl8hKgSA2thQQCnFSZFQjXBEfrQtAKDUCsYCPeEEIR5KdlrIwbHkHYKqi2iSBCfmqvq7wJyL3facORy4ImVH/p2C3r+sgffrfVUMTGakzeqVTPgY5Zmgha6Y2JisH37dvzzzz8YM2YM3n//faxcuRJbtmxBZGRkcbTxP8+UDWfxwLiNWHFQ7ULLWD3WsckbzmCaeRL684vx1sVB0kIDofuzBfvlv5/mduBZbjtGmuYE3BbOR6dK/Fh/jAhkoh7hJz7UKRC57AcA3M2ewrvcv9hh+QCf8PP8Ht+rBlXwrcmUE6mxPDgWEAw+JycvCaLhFhOqPD0KLTv31G1z4krwsWRGnZ9W6K+vUGbUzd4Pu8JaYmR9NepOjeJ3ldl7HQKRLW3HSR0AQGNGETPNONGD24QfzZOwjPvE8FoKg3scULnom6RJ5fnUXLz9+37UZ/XKlrNX0nDoTNGsGf4QRKJy+eU07qhLLV/geX4rHjr5JQBJwI9QDKDNGb3yioQgyQ/gEaBZzqQKFWFtWTiZnG0Y8sC7LN0214SAg4irBhPEwlq6TaxBEihr0VxYVTH1AWYU9ofqOXrJAi+vDkTo5iyeia7otnS7jqsVujWJ1Jiu4+S/jTw6tApDQSTFVnIlz+bEL9vOIy3XplJwCAEqOyyFtHS7qZy+32DD4FFZht2Jk5gkjOV/RnlFuEhhi4Dw/oJKvZCcZVUnV3K92x+4auJ2EbbpStTlczE6pYejbH3V7znm8XiF93j0ROXo+x3l5FdgTIAvLwo/34SSqIIr+MH8PX4zjzUUmCykQBUeZHeKWHTwMn7ZnoA+c4xLyo1eeRLP/7gzYM+9UabZqlrAAGASC+9hAwBEew9c3602XCQMNtUzjRRzMcOH67USXRiP0rskiG+8/7xDKku3YCB0K/P11GOTse2c9zkeQ6AKQ/OGUROzXdnvazCpqM8Yx0r78hQxyuKtpbwzBXPM43Tls+xOEU6R+C+Ba88Hr/C6JH7mh8HgNiJYjQRmg7maIBJ8Y5ppeCwb8WLpDrK949eeRqdvt2Dmds8zDWSMd9isKBfhuY5AS/5N2XhOfn8L7CJSXB6U8feMAP53wH/h+ZuEoIRup9MJnudx7NgxPPTQQxg0aBA++eQTdO7cubjaRwHw3bozSEovQGaueiIqKCZiSw5ewd2slFGxil0SKnSuTvBkRrTArnJpDVRb6st9yF8iLyMC+Ygrm3xrgJ2iiHtZT0KUEaZf8YlpPqoz11VxP97wLnT76YRlS7cU023kJitorAuRFh7OKi1Vyz78y3tdWm/YHPpnq81kqRTUbts7ROVSbmTpNroNRq6UFjjk5+ZweizdF8XKAIByivfKDKccelCGycWIZSe8XVJQuJPrNFMO8qzk4eAr4UtWdg5ibb49K4JlwprTGL/Gc06RqBPPcaLx+1s55xgAaVAKV2QaNXLfDJXQ7XYvZ3iTyq2Tc+bjrbn78Si3T7W9KBJZmZNPPFlRY6G3RGszjgY6ATQZXFpuZgpOJWfj1Zl7cMiglJE/lH2bGGDtXH9wguI5+ukb3Aq5NFN17xuxrGeiK8d0uyfBmjJgnGaojvaUITT06FBcs80poPN3W/D67H367ULAtM3nMGrFSbw2c69qIkoCGFPybE4IdnXcXzLjw43QQAlo5J6sLY8VDquxckKBchwghICFiLWWT/EivxnbLJ6SbcHWBy+HbHzD/4ImpHA5LXJtTtzJerIlsxABUVRlJ9YqefKtVrw7V+1y64iorDu2MibUbNdbeZVWVQLG0PNJJgiPkmibx5Xd6P01izYIxPPOPzp5q9+SfT9tPY99iRlYe8J/Qt98m3FbLUUUunXeHS4PJW0iTBOciIbnXIP5v1BGDMzK7tAKMUpFV5DuFP6E7v9FqaucFPhIjhjhzAzonN6HBYLtlv7YYPkYCCLGHQA+5/+E4GcuGSsoXPhFAXWYq3iHWwrRlgdBICjvJUGm3Z0g15GnsXSHPjv4LlEfhmgkdBc4BDzLqSsG5d7/OQDA6k3oDiJZHwDZ82DUCs/c2u4niR8ALN53HhEWDq2ZUxjEz0dOrn+vta7sHrzEbZDz2ZxMzpYVPvXv6gyUr+9r95uKoIRunudRu3btwJLEUEKOVpvntx6ewWTT4pow77e8jf4uTTkAIEB3TsaHy3VhOqFAyguY/dRItDsJmjG+NaznUrxfnyASZJMIgxX+rFkuoZs1IYznZPdbJU5WH4vr7KMuZSUWwj3MYdd3oNr3Q3lnBT5S5fpp1JErB8Od5nYAjN3LoxgrslIla7bD6YTJZalIRSwAIEbhKm2GU3VfZu1IwMmrRc8S655cvMGt9LTfdX1STgPj9yqMsfsUXwkBPud/xw+mKQG5Y2XlO/DDpnOYuikeWfmu94EQVV1zraXbjUnIw9xdibA6RFWtasN2+W1JYMiWbt6kdgV0vctjNZlbHaIoK3PcWvje/BocDusH5Krd/bQWJkdWYG6gRqWdj58+jWen7cS2s2l4dlpwMZ0N2Ssq7x0j5WNhUClPfPQN605cw+I4yfOGaAMJNQhyTLfUd7JyIjX1BNikFbpNnsR6hsKk4ls/ey0XCWl52HomVZWNOFTM3BqP97nFqHptE4hSsRdAzOPm06mqcBUASBF8eMwZKlD0X0f/eQfRhLmA97nFKIdsnAzrgz2W93y2RSWwEBGPscaJ4HyNgUaMNM1CT34jpuYNCmo/N1aHgDtZtcBORKfKMqcV9jgi6N22/STYM6o4oFWK+ypH53TYseTgZVwOJHmSYvwJN3CT5RkRnEL5eD41DyaehQV2hMGGf3wkxQvEe07l9aWgVfZmv/v6QtfXcK7wEUY/N1AqBhuwV/BkYmAlXQXtORRjdLDlmuRxiuUNQ5juwTH19oIPpYQQmHu8txbGKJQQyNGPHd6+RwDowu1H2pFVPs8rsgorsj0P880j8alpHlqfHo8F+5Mw3zJSt48ADnmQ+lrRlg+H1fNuhyqmm4cThMAwTwoAOO36+zpN64r//K+I6ix5EhoZf6QDBT/PNMMhC78pOVa8NMN3NnUAyMrJhSAQLLSMwPv8vzCfWuJzewvsmG6ejNGmmdi0T8q78cnCI7C4lXFGSURvYoJ2Lx86dCiGDBmC9PTAEz9QQoPSmgtAPcExEBCM6p1WYLJwOKyfrjTUtbTAMjH6snQ7A4wTVhKIpdsow7TqvKIIsw+hpT17GJ8s9J5ExykSY/ckP+5yjOCpqcuyDOxEP2iVydPHKVlMmnrewbhXujAqW9NOV/fbI146+Qh1uSgjoVvxt9kiDTTe7n3BZclirXzmr3a5FwBUCUmkupdqi0sg9T794Z5bXCcxnmWu78HMs16zqLZjj+NJTi3EKeUQQgje5FficW43cPWQ33YoXf3crpiiy0rmRpl4Tqko40Dwxb/H5SzEviAkVO7l0sWynEl235Ia5kRFqK0LuWwMnAKRvy1tBn6SoM6cqp3wiZcC8+AwGVj289IuI9/1YIKNhX2RU1tnQuUGyCsmlb6O+eZvcbLLrFZ41kJc3krukm1yn61xJw8zaYZqhSXcKJeEUjh1C+wmOHE5s2iWPCNak6MYZFqAmeZvIdo8ghvxkXXXzbVsK1qwUh+ZzpYDAETA5t1LwsjSbbBtRtpVrLIMwSDTAvxlloSZskyuz7hjtaVbxPfmHwy3C6SEpZLbmaKFs9icIspqPEsyc/NVirpTV9TzMZ4RdPkZvJX684VKgCUEJzK8H2PBvgR8OP8QHpyw2e9xRcW4EckYCwNad1+eIVht/hR7Le9hyILgvcO8nV/J82lTi3Zc7bvh+v4dRD/V1iZerZXuX6ABDGKJFfMU7XxKSPFeTzoMNs87xJkMhe58ojYaNDw2xevxyph8fxfhsKIFc86wpnxPbgOOhL3pWcDp2/KOH6/Ff7Ye8rleVHgbEHseKjOZAID619aorLlKCMPJcdbpmRkwE8UYUMhYeiWvcOtwxvI6aqTvxqZTKTAZzAUFA6F79TGNN0d4WUWjvfRxzuAs3Q1jgW2W/vjdNBoAcM/XGwJy43+AOwqnQglIrL7ju+synmu5I3cnAKkih2y8CSsTVLtLO0EL3VOmTMG2bdtQrVo1NG7cGHfeeafqH6V44OHEJyZ1XWdlNvNGol64M9LID9QkDnGTlew/FgfwCN2ZRG+NEL1Yunefvy6XZtBiVBtUizZ7sv4YovHE08Vv5rHyBN4IbQyuZ4V0PSeuZKPzd1t0HZ0yphuAoaWbN9D+MprYlEec+lqLAJCZb/eqlBAMOnxV3UqoXZKdfKQqEZQ2uRegyeLuGvQsxHhyIqZL7wtRTABM0VI2ZWUSsbqsWmMdAWtI6jgSQvAl/6uqVrksdHOs18GhApONt/gVqmVns9RupTKFUCIB0vukPL9S6NZmFAYIEq77j19275WZb8ejk7Zi6qZzPrc3QhSJPBFnOTM+dHgsf0Rw6OIbOeJUfVthmkQzomaS5hREpCmUIM4Ay5wZWborMxlgIeJtbilaMMFdawGjnigWJnv59VwbftoSj9Qc44R4gh8rh9tl1p/QnVYgPdmTSVKspLc63WEmfYk/+VwGEzWn0yn3HWuOJ2MM/zOOWfqAuRh4echAaajI4bBkl0fxF4glqCD9ChqzlyCCxcyYdwFIVj+7oryhEsZA2WGx6w0AbcVD8t/ujN0AfCbHVPZLlzO8Kyd8WXsB4My1HLz3xwGcvSYpIEwBJHnyhd2Wj3DNt2ez2xEJzyQ6LUstlJsg4Clup2qZWBihWzOmJ2Z777v3nJP6+oBiqgNQyDRn1HOaYwlXUJe9hhgmX/XOuamGNLzMrQfrw+Kab3fi30OXkZVT9LJnRjBaDxhXwkW7gdCtxWopH9A5HNp5lkLQ11r5hcve46Af5xR9ActDNHAvjyTq96rMdePM4gAAm+ebsTLqvl8UCf4wf4N/LcNwZt3PqnXJWVZ9fLLBu2o1SjKmIC3XtxDMK3KYOK2e67II3t8FwrAocNVTz8/LRVnGo1T0NwYEwijTbLAMwcOnPgfDMIahFoLBPCRbW9LU5PHU9JZgLdD5zKnkbPSZsw9Vco6gMpMpJVp05Y8yzK6u4R72tMp70+i9UqK8pz1SJgLQGJAiygXU7puFoIXup59+GoMGDcKQIUPQs2dPPPXUU6p/lNATBhv+xy/Rr1AIUU2JXqPJGUwOvCW6sFw31vRpcVsVjkbco2+OgUZOqpG6G49/r44/ybM5seHkNeT7iBFyY4LDp6uvlMzL93F8rbc7RV08NADANVl/788DOJciJedS4rF0SxNiI7ceo3hDLR/YZ+iWvTU3Di1HrMMLPxlrv0UD93Itylt2PpvBkYvXPQsMXJ6VSXOIy6UnTDQ+D3HVMFcOCIzJv5A1jP/NQPDUc+ZaDn7aEu/V5UokUGX3BjzWRwsHzDaNM9rNkFiHQjGg1BIH4EYqytdCZIvsqOUnVZZ2ldCtUTjssbyHvUf9f3tuBcqcnYk4lZyD8WtO+9lDj9Kjg+XNSCBV8bVDSux3+GIaohj1s+bghEPwxHQ7NLFiokYwtAuiStlgpKHXYneKyLfqJy/lmWy8xG3EYNM8/KtJfOMPK9RCd2Hcywf8fRijV53CG7964qAZhaXAX+Zaiyve1t+EI9chDcG5+dKElZVd6gIXun829wIA/Cg8CdHlEfHctK24f+xGOAUR3607gx78ZlgYJ6ITVvtsjz8IIToXdWXCqwdYRZbvACxBYqYkPOWbKyDD7Il/F06vMdyeMSgfmRmpr4Mc7sV66qu8kqjoly6ne5+I+ysZ1uPn3Vhx9Cp6/rIHTkH0Wbs4EIR8vcL6ke82IUbxvVZzqoXQSkymLkHqsQDqhF/LVn+z6vec+FRuH0wIvG6xyU8ZUADglIkeIWLHSU+y1AoK1+yVR6/ixJVsLLd8hq9Ns3DbKe/W6i//PY7+8w7hr12hK1+pQjuuusYTRwCeSjnhNQI6hS5sQ/FOa5OsCQphTEujyrGeH7wFvEFlmiiN0O3rKkS755vRli0UCcGdrKQ8vSfDo/QetfwE2oxWGwukhuvfjwJvWbldPC4YHEeBamyy5vrYUgHLoQCS0G3Nz1G9d8HkMPAHQ0REmDm5jdfu/VyO79bmvACA61rvOMXcS6mMUxGgpfvRSduw8VQKohTHcVyX5IaJpsA8QZR9v7/5XkVk6pY9F62YE7Hex76bkaALun355ZfF0Q6KD34wTUFnTq+xVFq6RY3+hAjOoGLPAi0h5bZ0R0REQ/ttG7mXK8tgEEJkK2//eQex/mQKbqsSDaNpYDYJx3jni56Jg9MGmIxrFfuzdAPAyNwvATxkuM7udKoyOcu4lBo5VuNjO12WVbc1y8jSLTR8tFBVE9ccv4Z6zBUISfFwCG11MZ3+Jv2iSMAq3HYv5jIqaz5rFGestIS7LN3etKaia9ByW7McjEmXYdmIHvxm7Aig1MbDEyXX5Xy7gAFdGunWG1nL3ZbuCmIq2nGBJ2zrfP0PAH2Qle/A6BXH0Nv1mhHB6Td9mSASfMT/jWe47RByNgHRtbD6eDI+NyuFbs8A6RQJbISXQwoqM5l4Im+R7rha3Fdrc4roxLqVP48FdoGKtrqtoqzJjNuqRMOZKg1oJgi60BG3pdutsPpd6Iyh7B/y+sNX8nDXbZ5v2imoJ+WCowBWh4ATV7PRskYZsAbZm9efvKbKkOuGh4D72GO65f5IzbEhSzCr1MmkEJOjra7yNEcuZeFcSi4aVIpSWdBEgzr3bp7nNmO8SbLmEJbHeMcL+FjjpaTlaZdVUk50p7N0e9ePf/Xe6/hx/wOoWqEshMUrwELAtYw8XEMYrmZZUQ6eiWJRXe0/W3wU/xy4jJUf3I8GlaIBqN3b3+aXezZ29Q37L6TjYno+nmllIFS4akPbwivCrJj0OxhjBR5j0G/lmitBayNUJiZU4cM1XBke4eu792fpdoeLpObYcDYlFxX8jE3+cGfyzycW2YtIqyQeapdKT9rBe1UwF9h9fweXSAUQhZV69bGr+PTvODzqHnaJ7yzRDHHgQ34hrpLy8Nc3eVWKeOFn07cY6XxV/t2elcpj7ktMx7t/SNbXxDBpTKp8bav+AC4WHpCUE77C0fwhiAQ/bolH2/rlcWetsqp1uvczQnozHaJ/+1Y+Xwajlp9A2/rl0amJPumdfH6d0K3oc0UCB+Fk7woBvOH8IyPPjuPJuZCNx5ZoVR4SN9EaoTurwIEY3VYS1nzPtmZil4RS15xAqgkuoXx3f9lubAQyCu3zZ+m+U/Q9XijnP18tOYivCSPP++4wqBgCSC7pVpfnlL0gF+UUydYKk4vHGwwREGbiYHN9uwV8tFz61mis0XqBwOxRrlwmFQzPce5yKhpUC6w99ZgreJtfJv+2uerI383qjXtGsAUeA4/oR+E0xewR5DPMVVEWQBKkZJoFMXURmL/czUPQlm7KjcdI4AbUk0lB476UELcaXBCDPQkws6F7wiEaaFCNEudwiom2UlBaf1LKUngq2ThjZBtxFmp0etuzwEsyKgBwOkW/cdEtnEe8rvOWAM6XpWbm9gQcviC5hLrLgRhZui1PTfLZLm9EogDLzJ9jqeULpMYf0q038ipQYtVYiPOJRTXYsUbXphROOEm7G814sXTbpIm8W1njZMy6WsLeqH78p4C2A4ADF43dmYxiPt1xsWFccG6U+YL0jn677rRqYA7ELdkpEPyPX4IaTBrW/TJUXs4pXEpNxCa7HQgCQZ7GEpt73bhEihLi6qrDiA0zzd9ipvlboCDTqyeAYVtFjyWa5UyY/1Zb8CbpOfMQdIIKBxFOp0eh1aB1F9X6HzacwYqjnrJsTlGt/BLtBej7axyenbYTc3YmGrapwC4YTvYas5fQjdsb8LW5GfzPEZ3yS3DYsO7ENVz3436oJMrCoyZzDdWQhs7fSeEfrMIldtbWM17DJJRlCkXWhCXRL+m2yQuTso93YNW5JtzeSVq3dLNC6VZwh7rsYI2yEXi78x2oGGWRyxYqrasD+QXy3wJbtKQ0a/Yex+tkKRZvOyQvM/QSgmd8em76LgyYfxgHDb5lsUCy4pKwsniuY2t5uTfLIGPQb7EGioQob9YeA6G7wC7gw3kHsfyw5102UgTJ5wsgplvKTE0QZuK83p9AcSuz7eDhcGVSNgyHAmB1WeWM4IwUy8r1mmt++/cDqiR9LAS0Yr2HenRj9+JDfpEuGaMRXp8PgEWWp3XLOnMH8QTr8fp6g5eSZh03CFvzpRRhXQpCpWKigPFd6nbh/ktYf8LjDfXX3osYv0ZK9KjFHf6QTqJwv22yLAzZRP+W7sRMB37ZnoA3fjWOVxdFgtGrTmLzCc14oXEvTyCeygbelPMjV5yQY+kTKzwIAMjnY3XbRRO1x4fOwuoiLdeG4xc0ccaKkrZKA7yvd0jGQFHqT+j2h7LcrenaIZWhpQ3rxduM4WBnpG/KXpCLCEUuJOJF8Wp1CJi/72LAddcB6Z0VRSLPt8pGR8sx6EbVNyq54tFlFPPxvCYv4gen3uvYmRy4IWKjZRBasB5FhDUnuHLAvM3zXQaj9C7gJEWuO29GfoUWQZ33ZiBooZtlWXAc5/UfpYhkJKBq5j4wlwIo76KYbGhtcvakQ4bu5d4QA7A+5tudsrsUHxalb47BMZThy0aZNY0mD47HJuHI8EfRtIZHY7fvnL7msrx9ETWOTi+u2levuQcR4nIX9bR/5PITctILt9CtTaSWUadr0PEo51NzMXL5CdzBJMqDojVBH4fpLRGMmwK7gLsZjwsyA3WcMavIxPzvocuoM3iFSvlgD/PdbsYuabXdigknYwpY6I5JCbx0kbdMtEbyjtuNOMzP5FJLWVHS4l7OKFAJgLossQYoBS+H3W2FcqIa44kzZSHKk4hcuxP5GqG7AnwnGgGArHzXs1GUUtm4Zz8aD12N+fsuetlLjVPwvAOcyYzYcBPqVynjarOAZKJ/5naHTbaO31mnomrdy9wG7Doer9hWhFmhbBDsVmx31XWdu9s4mZRACF7gjXMaFIZjV7LQmlFr4+Pir+LN3+Lw1NTAs6DXsuRhm2UAVlsGg4UoeY4oLN1x51Ow9ri+NBEhBBUVLoiENWHFB/frtktt8joA4DSpqVruFhgYjddIhJnHIbGetO6u1w3bbOJZOdmdMvNzDcYzYTJKlhQM08yT8bnpT7x80aNg8uZlpHXrN6ogwTslt3pijkSz2xrLQqU398+Nx/WxvFqX82OXs1STY3Wj9ML0nJ2JWHLoCn5Q5EnwpmwEoE5IaUAT5gKOhvXFZNNUiIQgAoXLDZGeZ8fQJUdx8pJkNXIyJtmjzVucuDa0QomRcku93qBetkKZzYt2jDH94nX/T0zzfR7fzbmUHER6ez6AqhyekkGmBbpldkHEl/yv+Nn0rWehD6UIyxC0Zw+jjiJ5U1pv7/3CpYx8DFpwGH1/i5MVvcevZONe5iRaM/rSlInXpP75Eipj0ltPetqpMIq433EtBV7KmLlZd/IaftpyHscvXVevUAg1Wq8/0Ysx5ey1XIS73kunS2CLqnabbrsYqIXulqyxW/66E9d0WejdCjVAHbqhxWLkleKa217KyMeOc2lYeviKcQ1rBVlGFWgUKOeaw/i5qnXeMn4ThoXNbem25iFCcY3ejDIT15/Bp/8cxZM/bNetI4Sg/7yDGLLoqGo5Q0QIhKCJK+libO3mcLraZCS0ap8LzJ75+NfdW+FQww90+5iswQnOSpy5wZVwg90T3+/LK0yL2ztX9tINwHvyZiNooXvx4sVYtGiR/G/+/PkYPHgwqlatip9//tn/ASg+YU+vwD0J34PdP8v/xoqP0aYZL5mcy37d4FQEEO8Rn5InD8yMRa8dNuqElJZuZVIwHk48x241LPVlatUTPMeC41jYXHGkH/6+G2sMJrkAIHop/xEoxIvQfeykNKiWI5k4ZnkDM0zfqdZ7alxKHUMGo9cUe2MgBhouf/mXPZi5PQH3cZ5Omc3Tl8/wFy9pdYrIgWcQup29gFf5dfJvZRmr/vMOScsUE/XL5dr4PD7jyHO1QxocBcYMnucgBBC7lno9DUnpgWVR9mZNNBrEBdf3YDKITTPiR+cTAFyucJAS3AVt6Va5pEp/v8v9q9vuRJL0DBfEJcFmkOUeAC6KFQ2XA0BBjjTRWrnPo5H/da2UFf7Tf47ih41n/dbFdopEtrrJoQCud5eHE2VcCU321Orn2cdhlydxjEap0oXbj1eufC3/FjQWx2MXPO9tQloexqw6Bac2u67m+a5rrv7GgqWu87xOiD/lSlJ2KSPw7K2teUnLH8PkoymTiBybE6yij/yAX4yCnEzdfjZNEinCmsCxDF61D8Zs5yN4yDYBHzv64ertvQEAZR9UTI4I8biXa2K6w80cHK+uwOFnNiGsrvG3aeZYWShz902EAEnwCDHuDNZZBQ68OnMPFvoovaSFECJbhKplHZKXa7NMe86l/n6MkmZaiHRPiUkaT/ayzQEAgt24fzA6F6twRZ29IwFvfv8vKjJeFFkGAllqjg01mFRUhycm+V5WL1DJ53ONq+dScvHbrkRd4rC+rkSNT3E7XSEdhbN0D/v3GH7ffRFrjiQBkMrLubNNj+ONvYVy2Givx9NWndNSkclSjSuNmCQsNA+Xf5vg8OsqKuOjL+r83VadpXsB6ST/HWgCRgBwOEX05tfgYc6TbyUj1/t3fj9zFL+Zx0qeQgCyLFVRsWotr9srQ8vkb9uei/mWkVhoGQE4rCCEYPL6s/hr70VcTpPeuzJRkWhdx6PEVLqXZ8NYOOThxFj+Z0wxfW94/zJdiled54SmZJhSIeO0WTF5wznsTtE/t0iXACnyUnuMwrj8lbJ0Y+JYVQJVAFgZ5/mGvMX1RiEfj7AGSnjXWH7/2E14+Zc9+OCvg3rrrgalhd8IVXJTTcUMr2W2wCDTKa1bfzhBJXR7i+ne4PLiTMnRz9GuZFnx76Er+GvvRVVuDAYCRFHRv0WUky3dRjlJvjP/qF5g8QjdMWEmTO7RUt+wAJIXAsC9jN7q78xLR1lFmJI/lPlPjEKa/j10GR3Hb8Kp5GxsEZrLy93jHyeHWd16htygw02NkqV1794dTZs2xfz58/HGG2+EpGH/VYjFJbj5SbMPqDOLWp1QPU0m95rP8l76g/kW4g5czMCz03ZiiVnazmYqo9tGdNoki5BC0GYZBk2ZRNRjrsAheNxTO7EH8K2243DDS+48Jo6BAzwscOIn80RM+SMRj3wzXLd5UbJICiLxOsEr7yqh1E3cAhMjoItiYAcImrnigNyW7sxGL+Hi1TzUypNc2W2x9b2e9/NBg4EJegHjqsslKUphHTFUCvjpQAvsgsrCcqfGpUtb9uYH02S5tNcq4W6/8dlul053WSCBNYFlGDjB+Q1rqOS4glbjNmHay3eiW7OqhtuUQQ5e5DZjceL9KLDfg3CzuvM1FMbdMfYBJs6qXa0KkALwroGOY4EP+X/k9acup6PlHb6PoWzHXewZ5NqceIbTa7hf/2kr9o15GTzL6CyDbVnJ7esqyqOWYuKvpLIra6iyHJv7OM2ZeERvnI2EBt+hXi3vE0jJvVwtQBPXoPYg53FztsRW8lyfSujWu642yfG4fBKN8mvXmSsAWsm/f9wSj1rlItDzXk8bld4EWTU7IT88wKAzL7QQ9S50hYnfjDULcJeNXWYZipRTDVTZy1ux5xB7ZjLQTt2H2ZyiytZIWB7hJg7bxObYJkqTi/NCNfSOlITMyhUVihbR6SkZZmCRvrthNQDe74+ZZ+E0cC/nI6IhzxVdfeW0zeew7Wwatp1NQ3QYj7b1yyMmTH9OQSSS4Mizrqz8evxZuk1wogFzGQ7n7bptLKJ0k0WTNGm0M2EAAQSbcZ9sVJOcVVi656zbh11h/zPcVzqRvq1m2LHd0t/7PtrzuZ6RO+zA6hDQr72nr3cqEg4GUhLTG6ddoVfu+yswJtnZylvOilQxGt5GnUDc3KMOzwK6fAQA+Mn0nS5b8XyhI17iNxntinixKuqzkkea3W6D2eLd6h6psf5bFRUHSKAhEIRANBi7qzPeLXr3aNyIRdYEM8dipXAPunF7kcdEQGlOkHKpSDc93y7F3bq9vAAA9jwcSbZi4nrJu+ZX00YAQNU89XmU7uU5iER56MPqyjC56MK5soPnXAVi1N96hFl6r3Tfm+Kd1lq65+06ix/SKwHgMEK5DxEw0CRVsnEL3VGWwmSfkTBxjM7SHX9oC/BoN+kcXpTnv5nH6OYmgJQrRqkjasacRwfOe4ggALRkz8NpKwBvMVbaeAvJAIzz8QAAJ9rk7OWxTJ5KCeGtOoMoErRhT+CqgecYIQQPsQfQhj2JAttDcrwyQ0RYHYLCkMNDZFiA+HfP3iE0xX2aZZEWHrb3DsJxajXidm1Gx/w1AdfpnqiIsZavKT8Ds82+85IoYRyK79JA6HYbet774wCUaVLdCk1vpTNvBUIW033vvfdi/fr1oTrcf5fwMtL/PoTuVEjb7D6bLGvZtZ1ackpKUFl7GT+W7hlbJQHT3bHaTPp0Gg6bFQ9+uxk9Z6jdoVdYPsP35h/AJHqEkdaV/FsjOZaRYxTvYBPxs3mi4Xb+XK294RREPDJpK6at19a3lgizes/G2p3bip7uyYdL6I6MLoMq/Tegu20YZjq7Irn5u173Lxfpe2KhnFweSdRb+P0l8dgZn+bTRVKZZC8Geapa2jaYQHjjCdNRtrG0v2CHKBKkZUqTB4E1g2cZXS1nI8oyuaiK6/hpi7GrWlJ6PkaaZmOI6S/MM4/ErB16bwgjxTlxT4YCrKNbsbyU5IZ3dfDV7Ynoxa+V12dv/9lveTNlxvfmbAKeGT4TuQapPxqwUhxetTLhchKhXCJt57ZMhMVU0u3nxu1O1r68p19wvyNLLV/gdX4donZ/a7iv3FZlojOXUGdU0oqEeyYLs7adkeMfjYRuJaJDPQE2skr+c0BtWWWU7o+cWWfhDRRCCESRGNZQltoRXMhBFKexWJ9eqStFVCFDn2tDVy6JM4PnWOz9vBN2D+mEcd2b48PODXF7Nan/ZHjF/Rfs8sSwMPfBzLNy8p3e3CosNg8DY02HyamfAGXle57NW3P3o69BHKnVIaD9uE1oNHQV3pob57WevFFtWQByMqSv+DlYZRmCupf0CQPl6giu2Fc7K/U7xKZ2n8y1OfHrzkR0Mshvwiks3co4ROM26SfeYSS42uU8Ud+HQ0mZqt/KPlAZHmNjfbu/esMtLAuM/3ciOtJ7fLI/t3gAOH3So3yrYSC8RvDS9Wwv/5y8LMnloWOH511eeSjJ6zlqM8k6bxQn6+lbSIAT7fPXMrDjeKJuua/YdaugHp9E1gSWZTDDKSV+s2rimgkhGMvPwE7L/1CQKXnuKGsQw2lFns2J+sxl3MuclAVDk6bvsyss3WmMOvmam0il0Mrop+aRFg6PsHvxk0kzD9LEdCuFbnN2IrpzW/Al/6tq0LzT7jEgRER5S42mx+7FNd7EsTqhu7/Vo5DUjaOucdNI4AYAUSNovqkp8+mN2b//6nWdryoC0TDuAzhnPhKJlNTuVW6dap23OVhtIQHzzKOwxaL3ZnQKBLPME9CPXwEc/lNezoLgzd/2et5dlofoUgSIghPHLmdh6qZzsDtFXT88tcYEw3ZYKtZD1APvItMktZ8EaOnWJmUGAFKQ4TW0wM0pph5SXSVD1ZZuY6VBfeYyctPVxkF3HyV76bKFVwSVVkIidBcUFOD7779HjRqBlTygeOdctvSS5WUZa2uzSQR+cEjeBhWYLKTkSB8Sr3Fha88dRWd2v2rZFS9ZDQHjrLBKpAQkRHavsfFldNtcSMnEhev52Bl/HZPXnwWgdgNmrnk0lWGsfwuAiWP1bj9GCbS8JELzx/m0PJxLyZWFA6vG7TfMKrkJGZX9UnbAFodHEGIYBnHkNox0vooqFbzX3dTW6nYThXzMN4/AK4qa25Xz1TGqhBDsOXPF67EBKU4x2keyGmXoQU9OXWrDYgkH0ZT/Wizch7fsA7CnQndpf9GGD+YdxN5zkkJAdLnRRgaYlXZX2P/wVr5xOEr3cf/gCVcN0XpssmH9TSP3cuKKdw40cYdgVmdfDtdYX9pzR2Fz+J6oaicTLdlzhkL3X+avAWsWRJHI1uoUqCdfMTHewxMiYQUIQVlFeTMznHiI9dRNNWV6yQTrQuV6KLuXG2TcN8fA6YpB3HYqWb4/rMn3ZFhb2qQMk4sw2PAitwkPsgfxi2k8IpK24HyqwlKkELoJyxd6kO37axw6T9xiqGiMRj7Wmj/Bd6ZpOHnVv4scIQQpmWpL1JHjx8FphG6nWf+8tIntWJdQXSk6DFViw/BC65r4sLPHjZNTuuwLdo9bXSE0/GbOE9Pdk9+EVuw5xMT9AIuoEGBd3wYLgnnmkfjFNB4Awd4Efa3rw0mZaJm9CWvNH+PUicMYpyhTp5yYebV0uwTcnrxk/Wt3aoxuG464vlWXQsfpFro1CpxhS47hy6XHDb23lJbuMNaPNdfQ0h2c+7dJVPdHjCafilNxb1RlGA0EKV8QAHczp/AyLxkzxADi8WOjInBONPaGOJigD1PScl4Rd59vkJQt0iWcOHmPcO9wvXPK2NysfO+KjGmmybplOYxH8MtxBnafHp+0CclpgZcpA9SKAQAQXVb1l++TvkmtQsUpErzIb0Y1Jh1h+yQLoKoWt6MAZp7FTNMEzLeM9HreM0xdrBPuwkTHc7jIVFetWyfcBQDq2H+Dd8XEsfjJPAk1WfU1K8OglCFEAFCDScUE00/oza8Bk7BZXh5OPP1uTEwZr+3WYuO8uMazjGHMvdxGoom5VnoLGG2vEWjziW+Fr5s3kz71WhbQV7jllyZ1jHcGkTxvCso0RBKRlOFlGLUi0Julu6HTe6I4ZfgRua5WEKqqDrCcR8kmOPH499sxfs1pNBq6Ct9vPKva76fX7/Z6PgAQXeVfjZJQBgqx+S+xVjXMISt9BYXSNCVTv+9dzGlssHyMadx4lTLE/YzYIoyDpZ2ghe6yZcuiXLly8r+yZcsiOjoas2bNwvjx44ujjf8pTqZLk3hHgXFW7x+dj+OiqxNowlyUtV5GZUJiGfXAl8t417T7+yA5CFhp/kzu8G28J3bsLCvVSeWIAzycGMf/hPMbZ0F0uSa6UbpJG1mktPCcgeXUYD/iR2EAAMm8XiFk4VkwEGW38TyNsBRhdycs0Qt4SnekmBy1BnDZ+/fjzzfvRZVY7+51ALCowjsAgBzeY1l80bRdF0+ozay5JyHdb13yrrdX8BmPpczOqxX/m9aqCJjUFpOHOnfDFx9/gohI6bmzgh3Lj1yVra0CawbPBRjv56Jbvj72GQCmmH9Q/TZyTTMSui9ckhQRxKDciCEaodvJGHgfnDd2pXSjTQ44lP8dLRnjQTfvwgEwzgI5xvM60SQjNHv/PjmGSAKqYkLxGLcbs8weLfeupALsOX/daHcAgKDIXu4Wbo3iJ0VLjPzdWRi7rH1nON/eGd+vVZdseZNfiVNhvTHWNAOzzePRmTuI70zTceyKK/M9ITiWqEiQKAq6UlmBsuFUCs6n5qIGo5+EP8NtRyP2Mp7ltuOpH/wnU5u1IxFWq1qB0IXbD0eBevLgNOvjZ7Ux3b5cbAGowzgEp1zftlBCN8/KnkGeBmXDInjGAXd2ZS77ItqwJ9GZO4ih/O9yFnVRJLIV/NVZezHVPAWN2MuYbx6J5fs9/RxhPP2yV6FVdKryDGgFGkCROM5ddtH1PhKN2/D6k5LAaGSt4l2Ce0q2FRH+QgkMJuTu/QPFXY3AAjseZvfJceluBC+WbjEALyAldYQLWGAZgSc5KYTDqHvVxVibIrC7yRDD4/XnF/s9Z0PW44lSYCR0u65VVFim3der9KxyWr0L3U1ZfVJFy509sF5ohTmRfZAeoOPaXewZfMR7EfQMBCK7U8TrvLr+u1vo5lxVHDjN2KFK5JkrKeFVSiZHPmxOEXVYjULjhd9UP60iizcdH2Gy8ByEcI8yPptE4C9Byh4eqfRMM0j4J3gJVUjL9gg4To17eZjC4k4U2cSJYtRnLJpxyAfeBAYTr1+Ty3oUKaeTc5BOPP2lLS3R53mUivMo5HtNHGjEvB3GmcgDnRdMrTEe3e1f4h/hfiQ/8jNa1DY2VnlNEGbw7NwolbJJqerQjV9MCou1271c0e4ol8JLaelezbZHtEFYkKqdrko0TICW7jCDxHba/lhJvCiFCObX7CDPG5z5HkNU/Hm9hfwFTvJ0uYs9q8olJAvd0BgHbiGCFronTpyo+jdlyhQsX74cFy5cwJNPPun/ABSfuCe2bouHVuB4uV195LjcUmuyqRg0dR4uZxbgtor+NYG5iPS6Tus6qaW6PQG3KwZLJxeOXCJNKM+YpFi9rJxcDOQX4gV+Cyabp6Hf3DhVqQhlWTLGy0Qnq0xT+W+eZVQxrABQUKD/+N1Z023E+4Rda7kFJOt9X24lPuQlt8cCTW3YaIfkbWAkSionf6LGFbtZjVi0q+/dq8ANX/NOAEA+69Kq2oWASotcyijwLlC7briF8e1JoNT61ozVTAb5MERFqwWK2Oq3oUbZCBCXRcpmLUBTJhEzzFJcuuhyLw8FWqWDUdZ7I6Gbt7uEOYXm/8fIdxAvVpWtCUqIKxmgO86ZN/C+YK75LrOhtXTHMvkI8/JshPxMcK42imCRTdTfY8XKVbHn7kkoIGasNWgv7HkqpVNHTbkpBgQv/qzPdO/GocheDlc/syJR/8xEc5TsYaJ0eWT9uJcbDdZaKjJZ8ve07WwaDp3zuKES0QnGWwUML9YLABi2VHpGA/h/8CqvD3FSZmD+HzNPt17LjK3nDa23z3HbVL8dBiE2Nof6HTJFGruSuuE41uOyKdjlihOFci/nWF3pyIzcApVVCy6r8JYzHuVEX34VfjWPBQD0m7sfLUasxZlrOSpX+SpMBuIs78i/icJTx5ulG4LTsMqAEtmy7/IIEDhXX6qwdI9dfQrZroRWRiELDBGw9PAV3PPNBuTnqxUjy4V71RsbKG3ZQJV07u1B8NPGExjJz8bP5onofXWU+hSKEcOpmJiLQVq6GwhqS5hRdnFdLKopAt27v4wFUS8HdS4397AebwajUKEIl/cUUfQFgkX6DpTJ6+4/o/dq8EWfB5uA6Tkfz7w/DvlCYMqJueYxskeUjoIM3aIcq0MXo05c/SBrlt47k0Yx5FBMYNzPVeU67iiAzWrgURajtmYrY/sZZUUTcwTqVZb6CJVnmkF/J3rpA9fu94yXkqXb845HKQR5wnmemfIdZc3+E9cdF2tL23oJUWAV/cE/YgcAQGp0E3nZ50uOqrLn265f8Jn40+29+Ba3DMfC+uJpVp8nxRuTVxwwXC4EUF5zq9AM8TH3gKnYGN+YP0TNBs3g9BLW4c3S7U3o/jsuCauPeUIFz165joNiA/n3A5xCac3yEN3nFQU8ye7AsbC+WGAejk2HPJbuRh3V5SMN2+man/rzZnWjDRMA9K7pyrm29dlfcbbVZxAfGQ2naywzFXjGl7qsPjxS6Zmrci939XG8nEiNupfjoYcewmuvvYbXX38dr7/+Ol599VU8+uijKFu2LC5eDKx0DcUHLs2O2+1Om/XRZLKgS4s68u9vTDOx+dQ1WYi6Rsp4PXSeD0s36+eDFDn1hLtS2VjcY5uGltafkMtJbpZR2efwLr9U3ib91HaVcKQUur3VOiWKbIU8yyKcUXdsU9YaxF+7Or9sH0oFzmCwcIoEn5s8cTU2Vj34uOMNjdzLlZM/p8l7xlifuJ611WrF6eQcTN8Sj1Gm2cbbKu4jx3rieS9V6YTnRM8ER04q5y9cQCF06yw9vBllo6PUpU3CpImBO663rjMeKyyfeZrHmVUDbyhpmr5Ot0wkQCpRu/dGuN8V17uVEtkIj70xDO/ETsf65gb5AFyTRR4CREHArtP6snROS6xumWq9l5JmRhDBKWvwnQyvi50yVWqEex/rjcvvnMMm/gH9Aey5YBQCglb7LxqqhzwIygmZ6907mqe/PmKOkifcqy2D5eXa7OVaAhG6AU8ZwS1nUtGD2+hZLjq9u5cbJGNx89e+S3iFW4f+vDpm+HD4vbpt/8cv8ds+nmMME3Zp7/ex85eQZ9OUxUpVC31cmO++gWMZTwiN0r28EKW9TDwLm8Z9dn9CKqIU5ZncrrHentX2kxfRkT2EeTvPoCmTqFoXpSrzJD1EQojXhJ35Viu2nEmRfxtZerVuhG6h++D5K/K9nb5ZspREwGrYbpYIGLdaEjy0HkBXK2q+IwMXU070/m5dav4/QwXYtHXH5LjkZnnqes2sYrzIzlaUTWKCs3RrexYjnab2eTPmCISZOES095FMzkU6YrBSuAerBGP3VK0CBwAi3UI3a8YYRw8sFNrjuFlfS7dxxma/51di4s3o1KQyYsNNfuciAWFg1cu26ucAbqGbMUnvnc69XOmp4PpTlY3ekY/D8Zq62YCuH6tT3jM3ETmPkl7gwnBbdcnyrVLWKgS3Q0mZSM6yQnAaz5kq53jmRA6HQxXTXlaRsE2ZE0CpLOZ4z/I37QNxSKyHw67yhG6mOJ8BIPXRfebsw4XrGldrhULAUqs1AHXYh1Mg4BT3TXRYfeZLcY+TQ0x/SW0MogxopJdcNr4s3e6kZ987nwEDBis/eAC7hnRyJac07ouJV6Fb39bDSZlIWDwKzXe8Ly9jBBsqesvIzvKwCtIHv2j/BUxxJTe7mz2DP8yeiiHVIgO4Ly6hO9DvyqiPZTSl55Rz4qYt70XDpz4FbzLL84ZIh8fjzqgknHJ/I/dyzkvpzFuBoIXuunXrIjVV78J3/fp11K1bNySN8sW0adNQt25dhIWF4a677sK2bdv873QTwZpcE1vBAacg6jomhjOBV2gmW7Nn0ChpodzB5RHv7ozXnWrBeZdwO96zSyVr/H2QrKbTa9uoMv73aEt8/0YnOdasvaLMFQAssgyHoDR1K1zYvbmXp1T3ZDjnDGYZB857TypWoMiA6iQsvnD08rTfQOjW3lu7Jl6Jh9NlOdZ3bMrJHfHjdusV132rzabgl+9H4O8N3q2UykkEyzCy0E/4cLzx1MPyuiX7E6XlPoQUQJ1ITZv9nXUUoFykWS1khLmsel6snSJrNhSEg0WXiApAz6Sv9OcjRJeNlBVcE0LXBIAwPGqWi8Dajx7Eq+3q6E9m9kyE+s7ZbZjdVzD5dr3z5vIHAKmNXlK3WXTKZZREcCivKWvER0kJiRpUiUVzI5c2e55Pi6+/kIMTV7I91+iaFH7QtaVuO2dkFUMrl1EddqVLfhgTmNBdNlPS6NeMZvC6oowdRKf3rPl+3mcjZZW9jPfqAb4wcSzqMvp+Rssj7F4M+cvjrk4IwTd/qS3tXLjvJEU8q8hbITqLlkiNY2GF+hlVQTpqMB7B1+1e3onVJyQDgNGmXzDHPA6dLk7B+wG4IxMCr0L32eRMTJ670LOtgaXXXenAbdFwCyTPYDNmb5Da2J49jH2Wd3AirA/u4/RKVwYiCJHcL7VWmgdu08Q3G407PnJAMByPdaJe6P7ZbFzajhCimlB+tdCToFII0r1ce7+M8oBoQ2JYizSGsbz/ySrPm1HzrYU4efc3+nMTog9VgEfo5s0W/Cg8iUGOt4tc+11qsOfehIvGoXVBYRAul12gf85E614OEVDGSCv6d7cspfLsEJ34Z7dBeTmN0P3Ns83wTKvqWPRuO5XQ7WDDjZWZrvH5VHI2np66A21Gb5ATE2oRMjzeQlqX50asRyEgKgR5d5UUQJ1XYp3YGk/bR+GUqK6CYXWFGoQxDtQ6+xtemaCuya70LnOXk1W66nMso7J0Cw6rzoPtOonGSuEe6XhFqEgzQ1mzXYmP77wqI+W0yEMYut9VA2aehdnlMu/UeJO4QzqMyrbanaKhYi/uQgY+Nc3Do5ynPFqUmGuYrBAAwHDId0j35wONorgZmyj/zdn8VzmCy2AWqNCdQPQVZThBK3TrcVevAYAIp6ddFcL1W6ut256/3Upn6l6uwJtLSG5uLsLCfMevFZX58+fjww8/xOeff46DBw/igQceQNeuXW8tC7trADNBQIPPV+GvveprYziTKtMnANweP0MWYvPg/Rlo3QA3iK2QCXcH6fuDNGmEVoY14Z2O9fFAw4o+hU5l6QBlRkqtS98YRw98YH8fFxr19pzToLCoNisoANnSrZyA/IbHMVd4GM/YvnKdT91+QohO6HYYJQkRbLDa9Z3oNrGZ/Hd+TOEm90oBY7zpZ12dS3XjFK75/2fvrOOlqPo//pnauF1wA27Q3d0gpaCIqCgpgigWKIqKjT72Yze2j/mELf4UxVYQCSUUpJFuuLU79ftjdmbP1MbtC+f9evmSOzs7e3Zn5sz51ufLMLhVeDN0DM700N78txatZaKIiemT2sodR1BeZp5QfcFDSE+wnFNfyJh2UTVnGc0QPivwD8fXY+X1n7fFtJ+sqLb6Tk5XzAwtAMi6U69DzRlDRCFXbzvg2FrKtW5LH0eE31nMbGX6W5VFIKR8qzCcrUe9KSrqFPENloCJoEA8nFuJ7oxzf+FVO47ghv/9bqTS6w+zywaaIxpLsqeB4zhDHImEYRhDYM34TsS/myTF1h6pwwqtSUi6tW2OIrkbmzGK45nG5kuL+z0AkC3vdW2LZGXOlsuMf9/2/mostbSr4qMY3RzLGOJOxSUnDA9/LEaTFYFjbEZ3P24dGjDhWk49U+JGwZ5mH5BknMNpToR+Rz6IKLypozm/nNcEZ7C/oIEajng4Gt36Iis0h5GRjeFrbwAAXM//27Hv9l5Vy75hVQXpyiGs9V1iylwCgIQEy5zuaHS7z7sM50Faiv0cuvXxlhXVlAWVSGQHqHEut2yZKwyLl6QzTJtExnydsB7NScjGYAgrDIcOjVPh89odqaKsOjoJdOOkV8vGaJ2TjAk9C6DGoKpu+lynXt/EfPcNY89QiRvHSLeD0R263lgh/Fz79o+/sfNwKZZtOYRXlqw2tutZe+Q6KhAoR5pD+y+rsZCd4sOjF3RG14J0Q9gKAGTO6xzNCzlXV24/Smxydriezi031jKR2qcqYvj7k44hJ0fnXpjbXZWr4THfKbyO773XYs+WsAOMFHNTQroMZKTby0imPtuKWG4rEdunZhjlEpGCBtuVhlgsd3V9vYm1vl4nBiGxFy4ZiD7NzAK4ouX6LmH0dG3zNbbveDna3fF/KAva55hy0X7uCghnKIkCFmBZZDDRnU9s2xhKeuOIdKuqil8Ve792Vg4YJQZr8yc5Zn+S3YYUQnhNcCglZV0i3ZylZRh7KqeXz507F3PnzgXDMLj99tuNv+fOnYs5c+bgggsuQOfOnatxqMAjjzyCGTNm4JJLLkGbNm3w2GOPIT8/H88++2y1fm5Noj8EvIyIZJRiwcfmmlKW4yFb+liyqmQYsaURjO40S320CN4w4PkoN6THKmRBLI4jqqoSN59KROmskeeEhk2wJmO4KTLhJMw1JviZbZs+QZPpU+d3zcWvtw5D+yKtXQKC4RrFBR+vQ7/7l+BQifk7kx5oAylgnmBCDwpS2XVz5xvs74sBa2uUefy7LnvCZHRzRMQj9cg6MESUYMQOLQITLdLNhrzej3yx0eaMyTjzbqQlWM6poC1e3dpGFRz8Doqq2hS5Sd6Whpj+Pu7Nse2zbHNsarRahM088euRbn1hTZYqeByMbiUxfK0JkHAR97l9nygP6khGeUJiislIVWU5HOlmWLs4DPGAcWrlheCJiG1PAOC/3rscty9evw992HXh+zh0fGv0rGVuOrw8a9RmWekTeArnBW43xFOOesO/YWN/bNEJlQ0JxFh+263dbnWv4YpwPXdyEa5T+ei1ik60Dq6NvlMIvS8xAGSvfMz2Op8QOfODYxkcDdX2v/3t7+FatwpkzzAMY1ocO8EqQcduAEC4LaTODN4+1+rod56iAqyLfgTHqKY6ZKc0biONkNdb2IXPf6tSrTazI2tX5b86eBVeb621JGKhYJDsnCXkaWhZQDpkijAR0k4ZVkBqctjo3u3Qe5dEUlQkEwKmrZlwFJKJcu9asRrpDMthrVJk2hZkzPOxHul21UYgMHRjHOJWZaIcsf2jPzkD/3fNQNw3rkPcafOfKL3tGwmHzFGlYq3VTDgZ3aUO5zkUBeQIo3v2G8sw4MGvccHCpZi68w5ju+6jDxI13J//vhMXceE2kwYRjAVSA0ZleJdId0i8kjg1R4vNejYy4byQt3ynHTvC84qsQSazoniHrhR/WCLdrfMb2PZJ+Dks/EUKn6mhtQIZyGkBs3ie6pBeXgaPEVVWXZ6r94kTMCj4GGaK1zu+HpEYtBsaZabZ32a5vksRuscsbXbf/mUHRFk1r0tCmZ5OlXdufcN1Z5dVz8gJLq1R1H307MRIgbUV24/g2ndX44v1+3Ah/43tdUEpN2aJ1gPGuRrdTRntediFaAXHOQhoku8nI/d6MIgzggMnn9Ed8zdatUpL9VJVFWvWrIHHE54oPB4POnXqhOuvr8CNECPBYBArVqzATTfdZNo+YsQI/PTTT47vCQQCCATCF9rx45rHXxRFiGL8kZOagOznOIf/H/4hTTG9rjD2uj1WkcDo6cZCAtzEZDOIiAcAdO45CM0lFlij3ZCRfpMEznxQUQEQ2l+J4OlWCEETRQr/7tb08osHtMCs9n3BQIEYEiNSHTy744PvQxRfMH9GSBVdJlPtVBmpXhbN8xoCe4AMphjr1i5Hy3Zd8cqP2wAAr/24FX2J46gOBqVYXmKaIMRgAGA5YzG5UBqNfhlZxveK67qyRH7OIFKPbOMoPQYkaKr1ZP2UyrCm7JPOJ77TxiBGr+kWRREso+IC7hvTa3JaIaDI2KE0QEFIrV4EB4iiszEYoijdB57n8Yo0Ei2Yv1ECP/qza4w2YtZ0xTI+FX7L75WtOHupRVHE8TIRq/8+hn7NMhEURcdItyiKxgJAZTjjfKiKjA1KY7Qi1HkZKAiqHDyMjHTmBIY59ACWAuURz6kYcBcgTCzqalKJlcRyIxLhVN+q/8ba2O1P6UDx0YhtT4zjOIzXi4DWtkzfR2WMz1oqtzdEXFSw4KDaW/UBkCQJB5CGA2oaPm0yH7O3zwajSMbn+eTobUW0D1EhiiKkgLaIPKimoFfgabyY1AzyiaPO3ylQaozX+j0/9N7u+B43Z2C0e3SXlGrKn9ujZhgRPrfjvblsh6PTBkJixM9TFRlHoWU4HD6wG82YkAK/GudcEiKAyEa3KgVx979/gL1pE2x1mtEQRRFBUball29RctA0JJ7TkBCuYqCanr1b9x83DD8VrHbvWuZEURQdKyrvnTocX+/1ABtCpTIu4kVikjlVUgqUQrX8rpH61yoMC5F4rhxSU5DncC20vu0zrLl9GAJBybRYHsOF1yaMqsR1Tq0lrzzH2VpeWX8dVvBDFMWoAnYAkCAf084H4Rg8qKYgVRRxorTcMb1cRxKSjN/R7fnv9l2dyhFEol75qiFNgf+LPv5ISOXFtvN8tNg+P6msoD0HWRayyoBjVKQwJeBUBYPZ1SZxK1nRzt8fuw5Bv82KD+7ERP47+/ch1kdWSOV3heFMzmGdkrJSeETRFKh46LP1uICICxxDIjKgfSfx71VgCvtGfB5JwVLjnMwm9C+kjBbGWOec1gzLtx9Bv+RWAJHMMbRDIWDuLAqF9RjHk4Lh9YYUCl5wSvhet35DKVCG8oAIUvGiVPUaopLBQJnjvZ/Wqh8QikNdGLwVbwr3gGNUPC+NxmhumZGu7XTtxdIyS1RZ+3mzOOrKmARAPQRGDK8NPlu7F4+F2uSa14tlmgPVoa1tgoNgGRCac0QRm9U8DMZvjvsYx49hPtEF9DjZfY1/7rPaPPXFur1Y53DbC0o52NDZUFTgRnEWHvU8i3+nXYJz9HlAlmwaTADAK3Z7y60kiYOCYCBglCLoz4X6QKzjjNno/vprLd3u4osvxuOPP44Uh5Sr6uTgwYOQZRnZ2dmm7dnZ2di717n+7r777sOCBfZ60C+++MKedlZHWLu3HOeH/n0J/5nWn5fgjz83YlOpWZxHlQKQVW0B+7eU5lxwASCTSFfZrORCVXn8vVur+WGlcixatMh1XAd37zT9/dnnXxpRiWPF7v2g169cBr0i7uD+fVi2aBEUFThRWma6+latWY8jO82XY7kMXOBwTOs49+/WUvDJxcOunTuwYdEi/L4t/J1LF92GZ9ZeCYCHByJ27TFfNyccar6+/vL/0INQdP2/RZ9AYQWk8dpEnOFjsWnF99D9eosX20W/3Ni4+yDOinHfpUs+weEkLV3590Mw3ldcJmLlyhUgkw4XLVqEPbs047IcgqltiA6jyli0aBG8+/fZIq7677tFHohr2f9p2/5P8+b/9fdR1zF+/n+f4cHuwNYTk/ClyODVjSw8kLDRdxEAYIOab9r/REDFUsu59J8wX2fkmB74jcPuUgZnF8polqyinWXilstLsGjRIhw9rDkKikvLsTx0/BIReDh4C1b4wgrMvyz7Ge0hwAPZ9QH414b1WFbsfl9s2F+MES6vLfl5NcjY/sY//8S2YGiRYnnmvC/3A7tiBxCKjK3aehBW/eEV3/1f2AMcAaf7eM9O84Lziy+XGO3C7hVnYRmnCbxs3/k31pX9gMEOToElS5ZAv2lPHNEMD0UMGJ+nlGrbSlVvxFKJYydK8PWni7B1+zYAmgKzDA7LfvkFoqRgtMN7vlvyJYp99lqzYxGC6zv3HUIfh+2LPv3UOfQQglFEY5XYtvxlXM2/j8v5j43Xi8rfwjZfWDX23x8uwtpVP2KaYJ8Hf1qxBkc2uC+EjwSAvFCkO/noRmRxmmP0tzXrcHRX/CnmnIvoj06w9ARyjn3omOOWuc09sm1FVVR8tmgRgjLQ1BL1+FbpZBjddwmvmV7Tr5VVBxnMeXIp3hS0ueePPzfg4KFFOGTpj/7pp4sw1uHzV6xajT+OpWEMtAWcLAbtK3sA3/ywDKTbevnP32P/OnOq+qG9u12/5+at27H3WDjqd1h1XvfMU1/Dpx+VoBwCWhJCTiO5X8M7yYGIz1grZeWWXsVl5WiVzoEMgJUr5hP556atOHhsEdYdYXB6lONzqoRPFi3Chp0srgzOxtOeJyCCx6JFi3CgDOgXITL//fLfcHyt5lA5WmK/vvezDfCzy3f1h+awP5V8tGa1+Y78XdzlUGPnl59/wIH15mtp3S6HcR4+ihWLFuGvYwz6woMEBPC991rHYx48eAirFy0yZYbxR7c57rvkm+9Q7nHOiti9L+y0KS4tx8bN9mOc88xPaNZoG9K8gH5h85a5/4iajAxGm9fX/LkZ+44twobdh3Cm46cCf65bg4MHtd+5EVLQFNo9uujnPwBobbaaAmjaEFi7w/zbrfnjLwy0HG/zgXLsCp23P/edMNYgW/7WHOeMVGac1xTVHPDZvnkDtpQuNj3j0hM82FWmfdctmzfhiaf/D+bu2UATHECmNx2KCiwNtkXbwCvoyv6F5UorDGdXGGvfRZ9+YgtqlJdEr3/+Ysm3ph70AHDE0gu+ONQzvOTEUXzw8SJ4OGDOz9pzsTe7HgPZ3419//fRp/B7vdi6037t+V2ekZLK4stFi/CQND5ittEd4kXoGsN8sn13KJAhlkaYf7TxlwZFOCXLCkoAfCjC/8svv+J9ZQC+Ku+KxuV+eEPHDMowbBcS1mHe87iUJAHAZ59+DG8oqPXnX5ux53jsc2ZtUlrq3laNJO7Y/SuvuKgr1xDWdEhVVR0FRgBg/vz5mDt3rvH38ePHkZ+fjxEjRtS40yBWipduAggRZWttYYdOXfDTwbbY9HMemrPaYoHhePjAABJwmM3E5MB8vOG5z3bsr+XOuCCUOvKt0gmTR50B6ZufgZ8ADyNi1KhRruM69s4BgFi3nzH6TGNSe2v3esCljKZd6+ZAaE2Tnp6KUaNG4b1Vu+DBq6b9evXuC7apeVovF2Xgd9iwjvO9bT8A5YA3swDr95WiLbsdOSPmoFnTXlj36W9AKNjSKPAXnl0rYxL3De4RXsZDCf8A2aXDl9oQH+7ti7OJ6MSQAX2xbU1YmOP0EcMATyI+XfsuIAI9WjVG3qhREEURixcvxvDhwyE4pGs5wS1d5fq76eiR2M4t8+HrrH1v37pdQKjUX8gqQq8e3YFt5t9n+9v/A4qBcsYPn0NNDaPKKOjUH0X7Fhnnh3w/ADzz64e2baU/rgW+cR4reV5+//sYXt24DEEImBScjwHsWvQ69xrgo1eNfRK8gu1cln/0gXG+SL4PFGJ3qeYg2hhIw6QRbcD+pS0KZwWvwXOex+DnVYwaNQpv7fwNCAD+lHTT8Ru0OYDD/04yFiqDBvRHcKM2BSa5KJ42KypA7+Hu94Xwyxpgl1aneKc01WRknHb6GChr50FPPWnetAl2l+Zr34/3gPSFeM5biBFtww7FhUv/hrVNbnaCiENuaSwETvdx8ZJlAKHZMuKM0UatF5+3BfhU2960sDFyew1G4A+7BXP2qBG4c6WmNl5YVAT8Dni48Of9d8PnQClQHlq8ulEgb8f+DB4BORc4AgRUAX6BxaxzT8O3Gw8CDn6Xgf37AA3bmraVB4K4/YEHMdUluzW3qDWw2r6978AhSEt2d7oeO7Ib2Ab8pjRFKXxgvYlG9tAaS3ovAPTsPwiT1k51PFafAYOBXLu6M8kXa7S+9O0Q7mfatXsP+FoPd3uLK28sfzPi636BhcB44OS7OZcPi5JuUsLPl7ekIZhoeQ4xLINRo0ahNChh6+qwY/tjuTcek87Fxbw96n/ck41RobnyoYe160hPp2/fqSsSOo/Cu/v/Aggx6GEjT3c8h/0GDUPx5nJgr2Z0e3jWSe8Sp48caUTGAKBHl45QW43CgRMBrNp5FENbN8TRA1uAv+3vBYDWbdvh+7+SjDEdhPO6YQb/GQ6mD4DSbRr2/eaceZGsFkd8xlpZte53kMK/iUlJyG6QD2wkdhL8pnmkc/de8LQbheS/DpqeCW6MGjUKm5Zswue7tC/ogYRRo0bhz70n4FnvHrnpf9pIIF0Tzn1l5x+muQUAZG+a63ddtkorgSonHETWfQ+v1OZpUeVsTuHjagJSmMgL3M4d2kFobz7msW9WA5Yy2oa5jdFh1Cis2nkUwc18xHkrMy0ZHUeNwlfLfjG2JQsKnN5y2vCRQKI9JRsAjrwvGtdkQnIqWrdpbxsXBwWf/c3hvnPaofuOq9CYOYC3pNNM+5QR1lHvva9DnPEI1G9/cl1TtGjWBD0Har/Jl78+CQC4VbwYdzicp/Kf1gPELd++aw/bOiG3RQd0Gqa9l1/2O7Bbq0du1rINsBTwMIpxXt9a+rjpeZaT3RAFpw0FiEqe5MwcyHsYQAWCniR8v42F6DWf/6GDB2LohE7478pdmP/+OgTgwc9KOyw4qw2CnxPX08jhNtHXd//8P9N6z4kRo86y6das2Pee6btLnhQgqKXrP7c1Ff83ux/m/Pw5OjBb8Y7HrGlT2K4burcswJGvV9ruEWtAzYBhMWrUKMz5+QscUxOQ6nKtD7/oFvRqErncBQCCX3wJLAe8rOJ6T875WQuquF3/PgSN6HTvfv1wXW5DvPDDNjw8pSeaN9R0JIKSgrdXDrHZLAIj2T73q9D158SwQX3x0ypNrb1tuw7o0jP2ObM20TOpo1GhhPnly5fjP//5D3bs2IFg0BxqeO+991zeVTmysrLAcZwtqr1//35b9FvH6/XC6yASIghCzIZRjROllk/w+MCxHP4hTcarngcBaOldulKkygr4QemA46ofKYQh8Y3cCf+QJhtG9xqlCTweDzw+zasnqEFwEX4Tazq44An/rpH695IpwKu2H8KZgoA/9pagoyUNxeNPBGP5fMYh7QqA7dxxpdpsJqTlYUnrO/BzyT7MaNVfO64vrD6dxxzG6577jV6kVx2+x3ScMj4F14hjsUCcis+9N6ABo6k9H1RT0SK06hI4BhCEcO0J7zGNJ55ri/dGrzndqTZEM2YPThzcheTQcQXCgbuj281I8JmvGUEQjJr5AHwA7JOBl5Fw5b+WYXSefaz6+MnaJH2bx+tsrLzW7DFcRHzvnPSwt/iBebOhqsCOw+aHx8ETpdi+47hJuISVnFNcf165GoPY3fhW6QQVwOYdO9Az9DDWF2+sKkEQBKIeyGs6F8Pb5Zns+QSvx0ijJlOvSZjQMd1gQ2MQwWGl0sL0mpCYZnqssoxidAGw1muO7tTY9Pc6tdD+WYoctaYbsN8fAJDImxeugjfBUAxOTwvX4fOQkOjzoswhXSY9yY//zuoDjmWwaY1WQ8tCJq4XbWzRUpwBoONXU/CweBMu8GhiV6uvHwEvz+F4UMHbktODWwEs3+tEuYRHucdcP+NEgy6O22969m28dMss1/d5WO0cZaUkYs1VI7D4xe+NBVNaSgruH9gB73w02Kh9c0vD/Zc0DFPyu0WMqgOARxBgPa0er79Cz6g/1YKIrzOq6Jp2n1Aa9nboBjcArM6fgol7LEa3qoIXBHAKY6RTPiiOx4F203Ds96OOxz/uy0OKoLfEVPCs8IQhSOb1+SAIgk1Uykl8DQAEfxI4j/ajsVAhBoNwCvL7fR48J52FWaFMBV4VAUHAqKe+xtFSEXef3Q6cSycNAEjLLoS8JTwnHVPduxkwB/4Ew/KO/bQB7Vl49KeXkTnoMsfXrSgW8cDigqFgJfMzwyqq6k9MAysI2jUVA4IggGU5Yx70sdr9rIB1778OQPAlGfdjgLc7IjiXeVNRVE3kkwsrYuvjIJkSvBk382/iGX4yrpT+hb5c2HMyS7wGb3nsiusmVMV2TNZBU4AVtOsuyee1le1ZYRQJHMdjIh/Os/bIzgaR4PXb5ivjOB7iGcryELz20OKV/Ad4X+4Pge+EcznNGdbLYxbv28HkoD3Cegfkc9/xc0PnRJIVo6Y7AOf1SnK62WHAexNxQE0xiTKyDBOe+0O6DjI48KE1Aq+Kxus8Yx7Xzg0r0GKkeX3HeBJxQtQyIPvtfQPAGQiCN3UVETw+QBAgEG3OLu5XhIm9i7Dh8/DxBFa1/f58DDXdgjcRYM1zzm5vM7wijTQciXIoQywRZdh8oATHAwrGsd/jEc9ztuOlHlkLQWjmmG3olIoNAIlqiTH2YAQTrX9LZ7vHCh9aA3uVMtdnSgGzDw8KC/GB3M/YtlXJxnPcBDygPgaBkQ2BSF7w4uphrXDlaS3BEh2GWE7FUdjnR14VwfK86Tnoll4OALxcapxz3uOt0HOwNoh1nHGrl7/zzjvo168f1q9fj/fffx+iKGL9+vVYsmQJUlMr1y4oEh6PB926dbOl7y5evBh9+/Z1eVf9w9q71woreDC1byFOqOGHr8T5jdq4AW00YSM/4SKfEbwOF4vzcAIJGBF4ADeLMzBx5vWh42nH0VplRJiUIr3m4Cj4Q9FSicl6uTM5rX0KzwDjuB9M+zsJdDm1DLMNS1ERCKUNZWRkYdbQdpgxJuwRHtHeLNbVk0gVt/anLsrLRpOsZBQVFIQFPWTRLBQUqu8xamsr0dLAtT0SwRGPllIrHQsvglVikRhIbgQv76A0HTpfAcbdIfK4eCcUovZ7ldIcN4gzI49ZcD7e6JHmZMZGaX48N7kr3p7ZG43TE5CfkYCsJPN7k1GKCS+YBZCkMmfFzh99c/Ca5wFcz78LVQVyloRTAHUjT//OXEh0y0lVn6y34jkWQTXyOYgmSKcrwsoMh2bZ4cVnkPECLGeq6d59uNhQL1cZDn+H1KF3JLR3OLLDtS8HXRf0JLuP2BeCatDi4iccWl5P+MHOyQF4eda153f3ogx0KUg3BM/IRZ5+T0RbvAKaMKPev1NmvcY1fLQkiPnSJfY3OMw/Qcn9t7gqeDUgOOTJAXhJvDHy4AwhPh7JPgHehPBCQuZ8uLBnAV6UNe/7MSTZenXr3CZNj2pwA+E5n7w2mRjmPifcBPDE0Pbk8r3wuUQzGonOXUBG9Ghn26b3M9bUy7X5cb1ahMHtm9r21SGvlZ743aRhobctsmod7D/hEnnk/WAIgSNr6q2xnWVwvzQB38odtQ2h59HR0iAaM/vx9Z/7IwqpeRo0M9SYAZjuZyveHd9A/vKuiK37Mr++AYMfik0ZnxSnul28CMVdL7M5JWyiqqF2TWwcKzsVMIxu/XeUFBUexv17kNHAneX2ebZh+Vag3J7O+87ynRAY3eBzd86tU4swSbwFGS374Jgl4XyFg7qyFcmpp7VDTa++7vAK0Z8FjBKEpKjozf5hbPPLLtGtCEJqjElIjYPiTbPtcya3DC95Ho5wtQFBa/q6qhrCnuT60CCkJxKQFHhCBtT5PZ07r2RantWiymKXpZsBeX3q6uUKE+6moq+vyoKyTak7RTxg6oEOAIw3yaSHMJP71NCDMQhd/2d2zEXHxqm4bGBT3HFWOwgci90qoTru8Lxwus91QVADhxtHVVXcL4Xbf0q85lQoYA9gm28irrr3cUzhv7S9DwDyVz+qDTvCczvgct29MKVL3B0PHAl1nvGq5a7r+IeE59Gb/QP3Cy8CAI6oSRgSfBQ/8eFOAo2YUCeK0LzLWp5RLAPHoAALFWv/PmTZ5m50K2XHjXnIqU1pfSfuM3rvvffi0UcfxSeffAKPx4PHH38cf/zxB8aPH4+Cgshe9soyd+5cvPjii3j55Zfxxx9/4Nprr8WOHTswa5Z71KK+oUJ1vQkBgOMFNEz2oUNh2MtVzqcYC5rMlCR8NmeAKSXnmJoIFSwuG9gUG9V8vCUPRatc7UbkyGhrBEGZeIzuL+UuhgKjtd/i+lU/IkE66nAMuzHnVjZgGpaiGrUxngS7l61j4zQ8Lo1zfK/Vk5/g9eCr6wbhn+d3MqJXkiSZDJ0PV27H4Ie+RnlIoM9VbTkGHFuFWNDVoQ/v3REWTCMMwcYZKc7tsEIPPIlx/4we7Aakh372zUourvA/iFFTw0rsVnVwAOAF50kwKzXZtu309rmmKHZGoge3ixcZYilN2H14SnjCeF1VVez8a43tOCRX8R+C278GQ7iwwMixUE1sinIU5aKMo4e1B7yT0U0umgWOiehJBmAsVNwwRNtYAUNahx/ges938vNa/fEUdh7SFmkqw2Fi8BY8L43Gu01jbLOm2MXjnPjk1fvt47Qa3QSk00ZOyoVXsBvdBywtZPRrlyOE3ZiQmJW1bZXr54YWfmQLnV5NM+HmcLBS7tDTXec4Ekz9Z21E6Heuz3VK6N5R+HBkascx7X1NGmrzp8DIKA7Yj/WIeJ778S04Lay4GATznMhIds6eKWa0e8THiOgQWB3XMb2JabZtJby2TVXC88SVp7XCqA45yE5xdswFgiIUxd52CYARHbO2qdpxyCWNWPCBJZRt3frd8qGFod5Ks7REKy2ZwX2GH7zXYPzRhWCJa6tEtYw9qwUYwnljWthbSCrZgZzfnjIp2juxze07WdDnlsVyN7wuj0RCcrpNSE2xzu8p2hzExfDs1JncuwBBNWR0h54bsqIahtmLljZl2geE760V+5zvw7INX9m2vf3LDuO4QSb6PJGZ6MED0oWmbef2aBL1fWQLKwNHo1sbg0/gojsLFcmmuJ0lu3TbiCA4yniIe5TlwXncO87omVFOdCjKxltER5BjxSXGNePUOlaRCaM75Pjo3szeQQQAOjROxQYlnH11pFzFUdX8jN+0k8i5DjkqZbDG9xEgAqqKF776DfcJL5nem4wyW8swf+CAKehkbf8HwHBm+AQOH13VH/NHtTFeul2cFt7PYb3q1D3hC6W7/TMsMIzZkXyQMXdoedtzj2OLTYBoSRfhuV3uct0NbtkgQuVz7HjI+TvgHNTItGRD6k4bhvfZW/y5ZKAyDOMaFDi+8CzTMzeSY1IJHAcfCnTF0oWhvhG30b1582aMHq1J3Xi9XpSUlIBhGFx77bVYuHBhlQ+Q5IILLsBjjz2Gu+66C507d8Z3332HRYsWobDQnopZX1FU4C35NNfX9ehoUAhPgCLnNyYU3uO1RYgPQVsgzh/VBq9c3AOvTe+JFF8oVZl8AIgVNLotPWUXSFMhwbktUNsPRyF1hUM9R4QU9UgoqmrUxjAeZwmWtKToonlblWwk9JgEhmEgcKwx0SiyZCwSAODeT9Zi26FSw3PJVKC1jw4Xg9FdnKA9+DofXYxvV/8ZGlOo17PKID8rGT7BfBtvPlBsRH2lKD1UGyZo35MTvPh5/lAMbtXQeO0vtbFtf8GhjZt2gOi/Q4NkLxIHXIFJwVuMbWdyS43JOCApyGUOub3dYJH3ZtPfFwwI90xf+f6juJzRxN+sQioAMCt4LU6ofjyTOhcCx0Y1uqNGukO/swweDNFXPsjqRneYBCaANTu176cwHHao2bhPmoQST0NYIX9n3QHExBjpvvSYXZtaEd2Nbo5lMC5wJ96ShsDXYwo8HIuWzC7TPm8WmdPv9T7SpJq63hIpktOQZCCrOVgUIlrXs0kGrhnWwr6zw3kIiO4LmRNqgmt7O7fj6TBEpBsAFCE8f5QKaQCAUZ00BzOnSCh1iHR/r3TAv2b0dP98Aj2F2tQ7t4JGtxvHibS/IcyKmN8XgAd+b/j8/ChrUW89E+jQDy+jLau1A+palAmGYfDMJOceuk0Cf+Lpj74zvV9Hn7ut7XkCbtkMvA8MEZXSy6Zsu3EszuqUZyya//X1alx/70O4TXgDAHD6sf+ACT07P5Z7o30gbBx8LWu1+CxhFB0riiZPFp0H+edj2zF0HeoL+qwkL4pl85ymWJ2+yZqTNpYsMZ2GyT7cfa5WisFBARQZkqIYKZ5LM8+xv4mI1o7u2db+OoDdB4/ix00H8eYHH2H14+MhHdoGAOjMaq3ptjD5ju8DgCcmdMHgVg1wzbAW6Nixm8kAHNXR/lyyojqUDDAOQQU96uzjWZS5OAtXsFomEiOLkC2GYkt2l9NbImbAseSai2GQmehx7TvNuqjyA4DHl4AHiAjsc4uWQQ21fi1zaB3IhBzI5WI4Vdgtcy3Bw2MP4WAql1kch3kdNXDvazjxdyjlPfQMVxjO1H4NUgBH//7LdvxMIWhzYHBMDG31IgQ59iIz/OxxiGpbSyRj5eZRbUA6gltn2X+zQsa5kF53/DMRnLyRnNSRMmtiJSXRH3YmEt2ESKwlUidC59orcPbxuRjdAFzXJ3259cB2TStJVZ2zaPRgjFp23DgOW4n1dV0lbqM7IyMDJ05o3pJGjRph7VpNCeHo0aMxq7dVhiuuuALbtm1DIBDAihUrMHCgVVOxfuPh7C3BSHSj+6CQZyyAGEWGoGqTreBNsD1we3Vsh0+u1mqch7RqiEEtw/U6HoELT1QRIt2Mg5fQeM1yY5SpPsNjqTq0rnJUZHS5uY6rkQ1mRVXhD6VLMl5no3vPieiT7fYLvkJiupY9wLJMONItSyavXBJThnPY79EAR7XPrIQnjuGjGycBopd0wRda6req6JG4UJqPJaqx5I0Hjfo1mRGMxaMjIePD41BfvkjtjbvEKRgbCPd+FjiXKSPGNPsbT2+N1AZ55o2h605VEVH1mkSfoH9Tmpqi+X3X3238O6V4i+19y9Q26Bh4AUt8wyFwbMS+9gAAp4iJ6XWybU74WhB5e6QbAHpgnbadMC6cglLPT+mGXaFFz08+bY5jFDFimloklEBYBdEazWuVnYyW3YeidOQjSEnLBM+xtvMwY6j5GtIj3YwiQlVVyIpqtMxw89xbmRSqjVQsWS7dCh16vTs4/QIuke4f5HYoy2zn2H820vF0GNVidBOR7tatNAOjRNZOmpcRcfub9ojedWe0x4AWzkJKVpSQ0U0uRJgKGt1OreYAQIqzl7JOkPXBJ4Tfq6f6sqqEn1auQtOfiMyYkBGc6ndfKF2ySssAsBrdCJU5yRZHmaSo9kgLoD0vomQZbcrUnNdPTugCb0i75DL5bfwzaM4sCTusfUgm9DGaZWnnnSWcLvPP6YkP5MqVs43nvwV2LIu6X2GyZpSUwYsv5w6E38OhTLTEvojfYL+aZvS1taZ+RsNDRltl0RTpfu4ihx4ARJZB26bOxvMzX23A1Bd/wqTVU9D5yOc48N+5aCCGswBWcJ1xizgdFwZvtb13TKc8vHpxT6QlePDAuR1Nr1kjpE6oDvM2I9vXN7rz0CdwKLMqV0JTiP7Sr0X6WUWELMcYe3TRIgAAny98PXGqhO5FGbhamo1VSnP7+CLM94zgwzHCmXb+phuM/tYSeHwndzDtrxKRbt3ojsVZDgBndm7suBbjVmrpyGR6uUnjRw5AdMgW8yslkBUV+9Q0Y1t5Vge8KkdxakW459vlpRgOqtd/+Au/WzqtcKEsDtKBEykCrdO0QRI+vyZsZzT0BIzySZ1s5iicKAnpiqgR5vMyy/P4Yd6hvKoSpPiE8DrHwfl+vFw0tVIFgGJo83HTBon2NVmE7L+9qruw24lyonTFocZdf7aIpceI9PL6Uc8dD3Eb3QMGDDDqqsePH485c+Zg5syZmDBhAoYOHVrlAzzVOKtjTsTom55SN6pDLl6StYfBiZISJISivbw30Uip07l/Qh+0b+Rcb+/hCSO/gunljCWN89EpfSGFJr8T21a6H5PEn+a4eXJwPtYr7pkMR0pFY1JgBGcD3S31h2Rwm7AhyDLhOkvZEum+k38Nj3qeRX9OM55iqct2gxSKu150FtfhE8IGSNMyLTL44a9aZEk3PDmWMS1cZh573KhfkhgBF4s34GZxhuPx9fR/J3ElFSxels/AajW8GODdjO440hkPePKxVyUMq1A2BOlAiYYnVD7xXu5cyC7RfF/Zftu23k0zoILFpN4F4DkGGxT3aAuAiBFRADharDkaZYYzeYDFUHq5NU37Cu4DbTtpdDt4s3s3zcQZgftwTmABfvVpi15GFm1KvgAwNPBQ5O8AQC0Pp4+NCDxoeo1lGdx/bkdcMsC9Hjc50eyUYUPXi4eRsfK7jzHhhaUoDWjXnNM5tC5SSKxGNwMGk4Pzcbc4GSt0cTqH81Am2n+LicGb8UzBI/j42qFQweKQJSXSINJ8ZohShnQd+PB3T0jRHCFkb+LJDvV8/Vs3cj2+FTU0P3kR+VqrDM1U51Z80ZA5n6YMHqJlbhoAzej+9PtfTfvq85lrNgw08aDvNx3EgXKL8RIyuq013bKiOgvVMQzYCAvw28WLsKzNTcbfEutuXLChxXirRpl4dXo4O8EvhLKAPD5cHJyHy4LXIjMrG3ycdYaHHcTX1EObHPY0kxBqA9qjVQGaN9Su4y1MPt6T+4ePQ/wGvxK1zm7p5asV53ucI8qG1u08CFlW4A05gXiP3SFL4vX5UWpNywdQyO7FZl+4YZunZA8KJcIRygp4Ux6GpYpzpFzH7+FMETRJiW4oORk5jGyfl9hQVNbLsyh3iA437j8JjRtozypGCdoi3a5EeB56/eF1CqtK4FgGT0zug3OC9va2EY1u3oeW2eFrq6m4yZgnBY8XT0ljTfurRk23HF7TRMgGIjNvkv0eCH77XKrqDslQFFkBB44Q2UXgBCTR7gDxquVQgsVGudQHcl/sa3MR2nXujU/k3q5jisSCMe0MbYL2y67H0ueuML3Ohsb4pec0zBdnYFbyk44ldE5kJIavDSk19szaMil0HUS4Zkltg9VKM3yXFs4scdNWiYckH2+s8Vds2YOxT/+Iv/aF08zX7bLrEvD+NIzv3hjXDHPQTwja+93rvBzBabLt7WuwaeceiLLiKNKoi/R5f3zQ6NPNRCjTqK/EbXQ/9dRTuPBCrcZm/vz5uP7667Fv3z6MGzcOL730UpR3U6LhE7jIyqOhB8fZnfPQIFXzDLVUNhsCYYIvwRT5/F2JXP/k5Yn0kRgj3feIE82vWRYhvVs1RjNGq/cZfOQ/rsc8qKbgtMA/MSpwL+B1Xhx36nUaRgXvw93iZMfX5/3nN0N8wy2dNDGKIaeAMRlMHBOOdJeWB5HHhPtqDuDWmt4bS122G2R61UGi/+tWJVyvz/nsC7aS3ZrBrzsbkn0C/lLMi3xWISOw7rXL+nl1Mrp9DgJtkRbUsRKQFCyRO4c3hLyvZKlArMwb2wuSS2RVdUjpevXinvhszgCM7dwIHo7FngieWQBo9NcbUBcOAYrtBvy+4+X4cMU2bewMb7qGdLGV3RbxGWNshNHtFJTycCyOIwmr1BaaYiv0SLf54X1h8NaIisrGZwS0B9oiuSeuPMe9fMUVa0SE8EB3+3oKftl6GPmMVt/4l2o3OBcr3fC0NMbx0KpVDIoBflA64CV5lCFutOmH/5r2KQvKuOAFc7RwWnAe9mb0wuvTe0LgWJQEZQx3c0hEEM9aZ5QAhIxu0ugIfW9RDd9P1no4ADFHkLTP0eYaL+n9b1aBcwTAsR6+MjAseJbBS9IZ2K+mYUszrTUap0ooL7UIZYWuab10yY3pr620L7pCjg1rBFySFFcdA9bNAQjgdXkkmGRCYyFCCqc+V4L1wEMcUzc6hrfNxtdKF/zs0Zxf1hT4aNii+gCOB1Vs/GIhAv+eCZS41KOHOjmQNfUlQQXzxXAkjHTcZhLK0m7p5X4Xxw6Zxnnjf36FQkazOAGPueiiAECCwNlSjwFgNv+B6e+jOf1MiuV8HM8SstZXlFX8oUTWD3KKdLMORre+ZuA5FmWMPetp5rBOxr3MKmJMBn80EolsCr3rzGmtG6JTvj3D58QP7iWbHMvinnOs0WzteILHi6Q0y7NHF1cVFXgZ3eh2d6gwVoPUYa0jh94vntCuYZH1QuB4bAutYcS/V5uvJQDHQhFz9uhOw5nyUepktCvMxj3ntMc2NZIqt7uRzLGMEezpym7CpfynpjpiXfdoXI8myBp0GW6dfp7J6P61q10LRSctQcA5gQV4VjoLe9rFHoluti6kWRNBVb6c0Da4RZyBRy/obPxNPmcqiodjjWzW1z75BtfsnY9XXwtfV06ZI2kZmXjwvE5I9TvM5VkO5V8hyuE1ZRKQdGC3ofR/V0GU1Yg13QnFO8JONq7y37+uEZfRLUkSPv74YyONjGVZ3HDDDfjoo4/wyCOPID3dIS2QEjdypPTMUN01wzBo29gu6sJ7E0wPs+yMtIif5eVZIr3c3TjV62H+Jw/AO8JY82vEA/sbuRM4lkMm4yzYQCKCxxY1Dz37DHbd566z22H9XSNNrQwQmiTW7TqCy3dchxahuio3pUOOifygtEZXGMLo/mrFH+EHlANMJSYFSVHxndwBO5QGuO2qSzEycD/uESfiNXmksY8s2A2qBfxrpr8zEj3o2tQsiKIvJOWQMe2YoolwnZeT6NgrF/dAdooXzxI1mq7p5XEQtKYFh5w9igpDFC9WklKzILl4Qz9rebdtm0/g0CY3BQzDwMuzOOzSd5eE2b0S8rd24+2Hvw4akWeF5U0LYInXHGJXiHMcj0ka3dkp9sUez7H4x9j2uHlUa0OTgFVFW81UUOUN/YRIsEHtfizKy8bEXtEFL3coltRo6/XhNV+X+cw+DOe0WuGdakOcHrgf70iDAQA/y22xo92Vrp+lWvqiJnjD91TTUOuq5rs+MO3z7cYDeMhSG+tHELlpPiMbozQg4YhDCxMAESPdukG4+0RIaZ4Pl63oxolkinTb08vj6WqgGxS+kEH0g9yuwhoXkRJObhUvjvt4acG98Akc7pamoFfgKTC6UJcqgbemKoacB2kJAkYF7sX/5AEuR1UxgjVHyXWFXdli0KpS0F1MKkp6eevcsCM3UslDoCRkrHoSTc9OfUHerTAdn1zdH9/O00SrYsmcIhHB2Up8ln7+Nlr+NA/e9f9G4NObHN/nV0K/L3Gv9WySbu5wIiRgtaIpUB9ICXdBsJYc6fgIo5ssfeEFHpIayu4Sg1DItQDvxWPSuTgeEley1h/7PZwhZhkJnmNQRug9nNVOW7/0bhq91zAZ8ZNkFZeK10bY27mm+8c/7c3YyQi/aOn0IYLX7kNdDEsRUXLURTgNwAJxCpbInXGP/7qIY0skukXwivY78xyLF6Z0s+174ZFIRjdMTiIARqRbZXk0zbNohYScDgFJQTJCpaC+6M8/HSfRWP05t26VVq/7F9sUJ8pFQ3Dw+PFj4NXwtfRfeSA2qFrWk+/AasOh9uK0PhA4FgkeHsnpdo0TgxT3DCKOdQguhH4PWVGNVqIpiYm4bkQrNE5PMKWXFwx2nx8FjkVay754L2MmWjSKMD4nDm+JGOkOEo6o4Z2aoGmD8P1uLXm4OngVAOA//vExf7yWzapd53cIr2Ew9xvuKQ2XDFpr6wEYQTBHx1hKnn0bgZs2AgB0PPolRFlxTC+/W5wEAFivFIbXOad6pJvneVx++eUIBOJbGFPiw6pQaiIrnOqrOlyQjJBgSi3z+iM/DD08G450RxBb0lMuRZXDlN7m9BrS2F2nFsZcT5bCBfG/y/vg9jPd08sYhkGChzeLOYSMtHf//aYp8sy6GMDR6nasCz0yvXzLlo0R3+v2mbEgySouEm/EkOAjaJbXEBvUArwgn2l4awGYlHN1Ehh7NPi8XuZ6MN3oTkl0ri02CKUKyYL9OulelIFlNw/DGR3CEaOqMLoDkiVpyqjpVk2LQtN73MS5fKmQGcGYsHWelMYiv+uIiONgGAZNY+y4ECiz61UIPIuUUJZFEB4wZB1fSBhqi5qHJuVv2A/Isnhuclec360xpvRxTleb3LsQlw5sZhi8jUr/REPGLISSm5GMZjlmZ+de3rwwCUoKDh/cCwDwpsRWZzxVtBgCFiPS6uD63hteBMsqiz/VAtwkzUSf8icxQbwVgtePIexvcMRi0HdqnIrx3Rvjwh75rrVyXoHF+fx3pm1+BEzGRopfMCmD3y5ehGI1dD9FKBtIZbRzui+oLXjIvrp6ZCzgEBUz4VLq4oTugPEx4XrMiuM+98aqKm8lN9WHszvnYVzXAvh92vfnIBuRWIOQ04lhGJw2eBiuEy93PN6Z7FKjxzkQurc9zurlfLlzFBjQIn1uzsRHL+iErgXh+8JJWEqHCc2BaemZpvmNbHHWvlEq0kMpphsC7grmTvCCF6st9bojlXDLzOBu544NXl0glLiWpvVtgsFklwTGhznilZgvzkDKyHCJERnpNko0AGR5ZdwgzkS5KuDtVo+Fx8gyhmJwM2WbuesI58G384ZgUOBRzA3OwtXi1aZxJng4W1svR2TRJBA4sktzvHdFX7wyLbrgoMnoVhTsVLON8ionnLKceob0NEhYwuFXypq/gwAJYBjjnmcVEUs/dBbBW6q0QbNRc/Bow3tw+oVXRfwuCR4iq04JP8tj6dZCwkGxPY/1mm6FFVDqtRrdeqRbQhJCaz1PhL7zlqiyky6Evk5KZ7R7iE/NRVqCx1jDFJeWwaOE7YUNSmNsU7Xrt+TQ7rBgFtF3W/akOY7ngJoS0avIMoy9ZWLIeSTKivFZpKOF/I4NHZzfJC9P64HPrxkY9xqodPNSx+tRh2zratXkII3uIYGH8bHSF13Kn8MbiRfF/PmkTpRTMMyaiQAATMgJyltaqG1U3J0eAPDMpK4oVSP/jqIcVs+fHrze2L4pJNzLcUQ5SSW6A9VV4l5B9+rVC6tWraqOsVBCuClOnxNYAKQXhTc4RVMEn+mBa40iWfGaarrdnSl6W5X8rFRbnQeZmhaIsLixkqgUo1thRkxGeibZAz5kpPkV86LPLdU7Wpsl6yKXI4TUEqKkplcmvVxSFKhgjYXml3MH4cMr+yHVS6Q4OkTvP5N72bYJHkuKbsjo9vn8+OHGIWiQGn64kgZs8fFQ6rzHpfbVQqInviiPE32aZZo90mI40s27nCtXnQOWg6qq+JCocwSAAa1y0bNJ9AiKmmBeQO8nhF1IrP1wAUBgGYznvgUAbGCbm9LLVeL3dGoJlSgewentc/HQ+Z1MQlVOBNnwg5csdQCAp6cNwMX9zb1WrSUAS/7chyxGSwVWE2MzurepueZWQRbD2C2SBpBKqAz2QPt9Zw9tbuhOWFEtUV2GYfDgeZ1w7XBLPZmeBhcsRVrpdttxDiEVbfPCkZuR7XLQjvibh2LU/CGCkm06tAVk+xZaaY5KGN1caMElKSr+K0cQ8UyI3TBTjfRybY4VK2F0R5pJ2xfGGaHRj8kwePzCLnh4fCdjvmOhwqcUW3c0/nn9yFb46rpBjjXEQzmzzsd2Pux0KrcYPr7S3XCDJTKSSF5LmYVzulhSHEvduyIkhqJ+QmKqKXLocTH4t6q5jtvdYDgBbIRsK5ZhEZQUo52aDh8y+knBTQ/PYmKfIuPvcgjYrubgbXkoBrQPbyftAvI34lQR/5aHoF3gZfydHq6dJbU6nlLuMRbiMliA5VCYmYhZp3fHe8pA3HZ2F9M4fQKHEmKhrUfMbSgSeshh5Xy2cVd0LUiHP4ZnCjmH5oSMo8GBRxFQBVu5GwCost3IccpI4YjnptuzXn8Gs6qEjXuOGtvJiP93ckec1q4xPr66P7oVRn7uJBKZPKbuD3FWhnCMavvt9IxEhRXACF50Ln8eT+q13aE1nFheCk7PHnEp6wMcjG6HeUl3zmSy2lqsSX5j9G6aYcxhTy3ZgBI9kwRAfrofbChzo6z4aFgYlDCuFL9zxqw3QkoyoK3bbHOn3sVFUQ01flKcK9aabkCbB+MVKASAq9/fhHeWbXV93dw6z3z8NUR5qD7vHEFk54MVgY/cpcWpnSjrDxnd1kh3lLKpUR1ysUCaGnGfclExdF+yC1phaOAh9Cx/GoPaaQGQZE4Ez9D0coMrrrgC1113HZ566in8/PPP+P33303/USqP6NBb+SbxElw0/nzzRifj3JtsMrplX+QHgCnSLUWIdIcWAAUN00zCOgDAEg+uMd3dxZgqwx1jO0LUvZhGDbBlJ5dUlGiRbmuNHsMwhgf3OuG/Tm8JH7syRrdFCbV5wyR0yk8ztc1wakmmRxX+JQ0ztgmW+mtdNAScgMbpCfB4w4bNBcHbtM9XWZQXH9U+J8Y0M6caHz29MVZuP6utWeTFSC9XXc+V5JDSeSBUB89zLIKW1/Mbxljqkhiue/tVaYldLjXYjkY3x2IopzkgM9JSTEa33gKpcbpzzRwXocbLynElgpCRkADRMo3zlnpllmHQkQkJGCVHTg1zxXIdSopqpJtaGd4uF7mpPjx4bkf8effpWH7LMOSm+h3PIQDsDzofx2rYb99/GD/+YyRwby66fDjM9NqD4ni0G3AO5gwNR/U4lsHdY8MptxxkYwz/XrYFy7eFHRhrdx3Dp79ryspZnLaAbNAgVLJBqJfri2RFUR3FowBgXODOuBZFqpFerp235MTYo+R2InwuFyU6H+JB8QL3F4n7IA2WqIllHk328bgoeBMeEs2pkNasm4Yp4fNfxpm/u69UOyeyymCZ0to8FNYuNLRJycM36efahh2pS0GyHvXzJkPgWPwWchQcyR/uuL+u7BsrMutxdSYCgKQCn95zHnbc183UtlOfI6xtc8j7omFGeJ4jI6VuTjF9fpXBmQxtq/jq+l80sVzSYT29XxEe7yNhfHezQ8OaieaWqccoIiaIHzi+Fg1SjK5nkwzcdmZb7EYWWgVewwvymbb9VQfNBtEhMk62t9oqpjl+tv4M5pSg6fkU5MNjCoJHsi82AyHRyxlaO7tbhrVqWIbB/yzO40hwjIo0y/P4vB1a2rDKCji9fQ6OIhmHdL0Yfe4qOxp+g0ubVcA+k1izUAAYZQhpbOge8qWayvMeEhbiMiWs6zOqYx6CrHb/bNi5L3xfEEY34yKq65SSTKIZ3ZYxhlLqZUUNK2JzpNFd+Rr9aEzivsI1/P9M20ghWYmIdA9rY65nf1C6AK9Lw3Fu4A7T9oQojnoSgWOcMwUPbMR/vluNZZ+9ZnuJ94fWVpZ5ITM1enBmg1qAt6UhWKcU4rTAP/E20UseAPjf3zK0e8rZBGxWG2E/0pGUrH2mRymnkW6SCy64AFu3bsXs2bPRr18/dO7cGV26dDH+T6k8IvHQuk2chqGBhyB3noqxXSypHU7tqryp4FgGt4oXY51SiD3d50X8LFJkQXHp010eFDG+7N8AnCO75KLAn1CZBaM7yT4hLNYSemjY9B9c+gdG621sVb8mI93RqExLAz0Sa3NiEN5X2eqAObrDePiUEqlH1touXZFXr9UmeyFnF2iGCc8ohggd54/N6E7xC4ZK7hK5MzqUv4hxDqqrEY/hE3AA6Vinq9JLZcCqN5H42Wwj2rdY7op/ECnjHtb+cPynpBkHU/sU2hZ6XIwKw6RIUUayH9eKl2OZ0hofyeY2ObKDMSMQ541tPhQMKY4WEsD76CrnRZRHjr29YikTYZHvSYRs8WLr514nycujcUjkrCTLLLzjxgdX9jNvsDz8uuSn4XpxluN7s5M9+Hn+UIzvkQ+fwKFBsnad7lOdHSF/+x0UUmF/4L//71fRT1pq2+9ruROekcfihjPaIMFjHid5DAEyGoQi/r5lj+PfL9xnvHbVU//B+ndvx+rNOyGE7i8mpKhNptJzoYWrrKqutWsrVefv44Y10p2bEVvWiRMlbNgQMGUqAHh/V2z3+EdKXxxxEecjf4tMWIXUzHMQxzA4hiT8SzY7SKzTNmksWiPdCWUho5v1YG7wcuxX0/CwqLUdYxnGUNjWuUG8FL2a2rMMXpXcS00GcVqwgBX8EDgGFwVvxJzgFdjXba7j/idcnE1uSJwvYr/dwNF9OEf9CkXiZmBTWAlfv9asrSUZaLWdi+WuaDTkErwwtTuWXDfItA/peCcjlgzR95k02KwRrWsPm9uqRcJv6eXrVvMeOOGebRCNm6VLsEYpwqOpN4FhGMzobxaI3a5Ysjgcamh/UDQHHHlfkEb3sy5Cj0pIV0WwlFPopRYAkJWahCRvjEa3h8clwesxMzgXx1qHo/QsA1wnXhHhnRaS85DiF3BZ0F7frrICBrRogP9d3hepCaFxKgpOlIsIfEKsCSOla9si3Q7nNWR0CxY1dFLUrxkbbhOX6E9AkNPunwuVRWG9BuL5wiY6B4qcFK9JHCPdJ7SyKkVRDf0VMntws1oxJ7TTb3F64H5MDN5s234at9rodqNDZoaQmWwdmprX+L3yfLhduhiTx4/HZQM1Z2DDZC/uHRfbcxwABJZ1bIcnvjwKvb88DzcFnrC9xiekAbALMkbTRwK08rD50kyMDt6HLWoevlTMGhDpSx805u1SokyLDWWUedRyWtNNsnXrVtt/W7ZsMf5PqTwqYQT+rTbAZrURhrV1UHR0SvXwpYBnWbwhD8fo4H1QEiKnFJKRbjngbAh88M4LET+TE8I3NBdHOkiv8qdi3jfZx+OovhAs0yJUqtXqrmB6uWIxulkGsRvdlUh/yc9IwPc3DMGvt5oXpdsRfhDYHiJHtqFhgjYRDmoTnqAFi+HeLhjKOglNWjLxUBvZOZyNMI77XtvNE5uzxCdwmBmciwfFC3CjOBMnkGAW9okDvaxh+YbtwIdXwL/uHTRh9wEAFkpn4kV5lLGvoNq93JP7twIApCV48OQkc10gG6MQlZ9o3yKwLLapubggeDsWy2ZRmy/X7bG+Fe8u32H8uzSzvUlIjQ/9nhmJHlw2sCl+ls26BYJsqYeNQMRFvifJVtfKqdZIN4zUuoy06Cn3ANA5P828wbI4y89IQLMcyz7657n0JL1RmonFcjcctYguDe3knCnBc4xJgIorP+K43yzxWmeVVWiGma6W+60SPtYY7mc8JCwESjRD4D+euzBP+DeSv77dltbLEAsPvc63VXay40LGadEVDT3Txkj5rET2zAq+C/4lDcPN4gz8Q5pieu23UrMx6hT5A7QMmGnBG7BBaYxHs+8zv0iMLYtYWAOwOT312bnYpmxtXegT9boWMStPye7QdgG70AA9A0/jSVlT0naK5q5UW9oMMkBLyXxdco5cG6PgPUhP8KBN0yIcaHI2OhTlOO4Xd6SbS8ArEVrpNETYGFUJXRU+ZMhY57KgpOBjpS9mitfDn5qF4W2zTeJLgPm3KcoKv8aoCu4+ux1Oa93QJKhord2MB59gbrdldYBuUbTfsXife4ptNAqbt8NZwXvRaIBzF5Mt1pR/h/IRvTsAef7I+t7CXPNaSW/NJvvSAAAJKDOpv+/0hTMvpvRrEXNNtl/gsB/pWKx0R2Zy+Nzq7/9ebu/2VgBaHewL0iioHc4HxzLOat+h5363wvSwc0CRcceH6zCa+yWmcXosArKkYKfulFNDWWrhOTOUFeAS6JA7T0SQc4iuEw47Ick524xzE1TUx8uxNmO4/CPNcSararh+nFiz/UsejsekcVp2UhzMFy+xPcf+VAvwkxL53OmQ4yxnEzBfnIE7xalAkvkaPKtAwffzBuKcLo0xf1QbbL1vFH65ZRiaZMWgoRCCZRnsh/25L5QdQD7rLAyoByMEy7xQlt4m6uddOSSsXzG+e2Pbc1Il9FQuH6E9ky/qU2isQb1qIOxgqcSzsK4S90xbWFgY8T9K5VEIw1Y3/kY4GN2OPew4AeR9Eqn2EtBahunGjxR0jnRv2BTuKeqkEE5u42OM/M4IXocObaLfwDpJXh6HEYoAhbyXtsW9SyrKr0qriMe2ppezRHp5NKxRiHjJz0iwtdj5ie2KW8TpGBe40yZeIgdKDAM0gcgqUBQVt4jTjb87iasBOEe6SWVkXbxJj+rFwtSh3fCu73wcQMW7FXTOTzMWat/99JPtde26D1+7Tm16muaGjQje44FMGp8xRrr9PsLTSqYOWpwdF4gfoPToPuPvY2Ui8teHnVG8x2NSgBeIxdzZnRvhJsncZoRxMUydCDgtUsIfDFlV0af8SUwN3qhtsqRWyrJkRBTyG6TaDlFRGmc6R05Zl3rpv9WGmClehx+VdqbtmRnO11GSl8cd0jTjb15xnp+SEhKx7Oahjq9xLIMBgccxLPAg1qlFNhVpvbRBj4A33veV0RtXV+sl51Dd6B7TKc8xvTzWRReJaokQx9NuzArDsrhNmo63ZO33mBG8DpLK4vXsGwDAJDj4iyVdW+fOsR3xm9ocI4MPYo2/h+k1ljCsM6yiPJbvkeYXkOTlbXOpzdgnft+0BA+GBR7E+lAWDFeqLQpl1hMSoGKMnrluekZuQkdu5Q06LOcByzJ4+9LeeGtmb9fjOPVzjoTC+3AYKZgQvCXqvpKoRQ5VVTUMF2s2VbkUnjuc2joC5ghVaW5YA4RRZUzpU4SXp/UwaUlUphUkwzCmjCzr3Lk31JaxCxu9N7kbz0/phrdn9sa5Xe3tiC7onm9zrFuFq1RVNcSbmjQKO1NIkbpZg5qaSrb2hzJzFG94zrxe0FKl35EGQ+EIgzmO3u0sy+C2M9vi6tOaG/3XARitI2eL7kJsJ5gkLFG64h5pMoRQa9nT2tl/E7J/u9EpQ5Xwxfq9MY/TKmp6IhA2ej+TNSc3GzgBHNqMwYym06CnbjvVf/9LGgbOmwyJc1hrEOP1JMXmGLbi4VmbO8+3XxPvVJSw0U2W7Eng8Zh0XtzZSWvVpugWeM7IugGAdy+Nrb/4O9JgU6q+wgh4Wx6KVx0ccwwT1jDQ/q7YfXqQie839aZq2i/WGvY9PW6M+t6OjdOMfz94Xif8btH1EFTtugpCQOfCBlh/10gsOLs9OK+2zvEiaAQJ3LJX6zMVcm/+61//Qr9+/ZCXl4ft2zVBm8ceewwffvhhlQ7uVEUl0k0kcJg1qJnzzeYSZSW91tEc2ALHEEa3c013CRt+MFijaICmzmq8HjI2xgTs7Zp0bhOnodWA8/H4hZ0jD44gxScYCzH5b02MhVUswicuqSifKr1wdfAq3CzOcHzdml7OMgxkNzEYC1x1eOIYBm/Kw7BSbYmgwpuipHLJEfChSYuMgAQkJZwJYBqgNr4TfNhA5RwcBayDSrob1wxrgRW3DUfD5NiiyU788/xOxnVXxO6zvW7NNHDqIy54wwsmD8eaIiyxRrpJh1FqcXhR6CRmxXxxm/HvJ776C/OFt42/uxRmQSUWcD6LaJj13Hzc6oGYxgcAqYk+lFtqsvaoGXhF0lrLyYqKPcjEBkVrxWK9RxWJ+DuO6zVaRM9NRJCJUq9uXXwzLmKPDMNgh5ptlL/wil1lNaDyeO/y3q5idDzL4DgSsUltjGl9i/CJpWzA+lD3iMeJxZn2uWSLH+R21N7GMmjUID4VazdsQnuVmFOsT4mvlG5oHXgVPyaNxKgOOXhJHo3Lg3PwmDQO77m09BrWLpxBY3XachxrqEbb0sstbdh4jsUvtwxFUWYCHiEWpzbjlzDWZw9tjpxmnQ3FbTWoZV9JjIB/X9YHQ1o1wBszNCPS+kycHXQ3Vvo2y4za6ivWUqHpA9371DqhhDQBflba4Vu5Y8R9pRItm0NRw9kp1prucjFsYLoJO3Esg+nB6/GaNBxHul+Dx0N9tn9s7Wz4u/X1HurW597COPZb49/W3sL7KuGc1Unw8OjTLNNxnOmJHvs1ZXH8SYpqlG8cEXKxX03DZiUXaBh2/PMhh5VO93xtzjbSs8njgTOtG9zalboxo38TXDfCHAzQr+cjSMFzkr1OHQAW+MNGj+4UKnTQLzHdG/ocp8gYoCyPeYxeSw21RGRCbg9F19nyowi8HB6r7nxwyhQsg1dr68U5ZNURRrfPH37uPCudZZR67UzqZHsbiYdjXR07sqoShlzV1AnL4ExlI72aZuKzOQMwOTgfD4gX2h28Ie5iLkNbNiwEKtdACnWAja/s05dVZPxbz/j4n9wfDbIjq5cDQE6qD19fPxgrQhmcDbIamFTK9ee4Pia9JIwj1nMJeutYml4OPPvss5g7dy5GjRqFo0ePQg6pRKalpeGxxx6r6vGdksiEB3XmkLaYa1Xx1XGZPMjnktfFE67DMIzRn1JxaRnmZ8MPMKdUbbJXtVrYFwDwu9oML1lqCnV+VVph5sBmJhXPaCT5eBxSNY9zabEWYWFkq9Htdjkz+Fjp69ruwCm9PFZNy8rUdMeCAmCCeAvWKEUAAM/HlxvK5KSh3Djd79jjWvfqHvTm4zZxGq4KXg3eQQsgHqO7ot5WkhR/WHynHbPN9rr1oe3UHk/wEanhHGsylGNdBLGEwyhJDad8Oxrd+8N1WXuPmY1qQfCYMrB5r/n3PG5JsV2bbKmZjsCM/k2MjASdqcGbsEDS2obofTb1MXOQTTWNMtkSJI6H2EE1clRcdZl/GAcRIxKrArs1Qkpy19ntjMiZxyHS7WUk5KW5OwfInt8X9yuyReE+evd5rPhv2LBgQEREQvd2opfH0MBDuDR4Lbii8HmTefvndmqcahiFsaJahRwdRPsqwnehvtISeMgK8PD5nQEAnym98Jh0Hk64OFV4XsCto9ugYbIXt4w2ZyOxLGNEsWztZ0R7eVKCh8e94zrgCXmcIYZlU5G2RLrfuKQXUhK0+0ef42XWg/aNUvHKxT0NhXqrQ2Clam7LRfL8lG6OQlCmYcSYYZCTHnZCSyqLbuXPhlvROaDyfkN/JJrhLxdriumSohgplqxgHleZGD1LhmUYLFG64g7pYni8CXhUOhc9yp/GmoZnOe7vFtU/mmBP1XeCFIay3mPLHTIqNrLxiW86cePprdE6JxmzBjXF3dIU7FXTDYeQNdItyophRJaySRgQeAyjgveZHFxNG5gzipplas+GbIdWUm0aZ5qi+9ZzVBHIddtGxR69Lip/Cy16jcZncwbgy7kDDQcE+QzTMaV3M2GjuxDhMimr5oMVq9HtU8LrQ73LBxc4Am9JuMOA7iCyKp/r7+FYxtkAJJ4lPMvgcekcLJa74p/SeMwXL8Et4nQ8n3OH/X0EVm0cElJIrSpTlq1CjqoK/KB0wLPyGNfWj6RwJOAcUKhqgg7izG78Vx4INiWcDXKzOAMzgtfhFnFGxGctSZOsRGQmaddlSUAKd0gCjPMQtGQ88F6HjD6aXg48+eSTeOGFF3DLLbeAIxbv3bt3x5o1zv0mKfERIERJhnRu6TqZuEaaGAZXDWmOib0K0KxBhNTUEFKoZYHikl6exIYnXyeju1xScE5gASYEb0FiTjgK4CY0VAYP0hLiu5k4lkFCaCF25IRmHLGyZbw2ZTUzex3qWoBwPRL5WVbhCzfi9XDHi2ZQMejAbjO26QtRry88aRVmJjr3uA49BFmGwb/kEfhE6eMYLeA88dUpArE7Jpzg2XCrutbsTtvr1pRU1WFBzCST/cMZBIiHHBNjpNu62Lx7bHuk+HjkpNuzBoJE/9BsaZf5RZZHUFKwQJyCn+S2YLuG22Y0SvPbopnndrMvqtxonJ6gRWVcsBrdAFD8S1iR1NSHM46H2Ptyf2xXGuI/knNrLMbF6OakyCJxVjVrpLmXJbXLSzEMFUGN3L7PiUZpfswc0MRQNbfWm475+xF0W2sWjTJq/0KLoYxEDzarjfCF0sN87zhE6D+8qj/6t3CuSXTDll5eiTklLy08poLM8OK2QbIHfg+Hly7qbmz7VumEtUoRVlp6SIPlccmAplh281Bb7SDLMEZUMYWxnOfG5lR0nb7NspDg4VxVrZ0U1/UIkid0zp0WppzF6JZUDjed4Zwyn+wTojpIY3WgkhomB5GKQ0hFt8BzmBW8xnF/VfCjUWixGs3wV4q1dHpJDjt/OMvc1yo7utAeeZ16eAYAgwNIR7MGDtlQsIsW6vz38r5RPwsA7iLaBFmNjeZ59oyQa7zxiW86cfngZvi/awYiLcGDrWouegeewovyaO1FS9aFKKnw6It9CAjAY1pnAUCb3BRM6Bmuc9fV4/VyBpKM5ASTs57hKp71ZRyDuA+sYwOAe85pj4v7NUGb3BRzWrrDs070EmsdPdKtyggSGXx6irgb/5E1cb7VjJZpl8SEjW69GwAjmddghg6Gw+pgr5oBlgECrFN6OSFCyjB4VDofM8XrIYNDCfx4Ux6GxvlFEcfrdTO69/wGRSGE2KrAyD27s6a7Y53TFGIN6qYLNK1vkelvp4BCVVOYHT0r6281C0Xlb9kEUsvhxVdKNwxqV+CaEROJjESPY0lO0OJ88Xp4lFn3o+rlmpCak0q51+tFSUns4kAUd0x9+3zu0Sar0U16m68f2Qr3ntMhpqikGEpnV10j3eEHGOsgkFEuyliltsDPSjtTZN2t9m3+mK4VipYmJ4YWgKH0FNYa6Y6CWzuoBkGz0RfP2LjEqkkxdUOy9UUDuFAk0e83P7yOJTukPYYegnpv9al9Ch0XWJwn9ki3zv0hBc15IyPXzDuR5OVRHEEgzPbAcpp808ILJFuk28H774RVtXdK70Ksvn0EmmbbU/bIB6qtBRAroDQo4xX5DEwUb4U/MXzfpiYItt+odU5sStI6l4pmJeUcn4QbTteO2TK0CCcjTMrSheF/hxagCpi4aqR4fwoGBR/Fi5nOHRDcIt1c8ITjdp2flXC5xDmBBUCELAuOZVESuk4mSh9EGbEzt4xui2uHt4SqwuSYcaMzuxlAeAHZMjsJE3oW4IrB5jKfyogoktgi3ZU47j/GdsDQ1g3x+nRtQf3i1O4Y0TYb80ZqxuiAFg3QOicZYzrlIQAPzgzeiznileaDhM6r0zzIMQ5teaC1bIt0bb09s7ct7TiMg9EdckR4QiVEMuPgdLO8bXyvppg1yD2CSqYgXxGcbXs9ZqOb2E9XIQ7AIcVZHyfvwcvTeqB/86yoPdiVUD9xra+w5Diunk0y8OykrvjiWvc+8SbfEMvik6v7455z2mNkOwfRLZj7dOucKd4fs2DTHjVs5BUT7dmuDM7GEcHsMJwnXorDcnV0OWGMNYduDP628yjmvLMK2w+XwBvKFip3df6EjSkAUBO138onOCyTWcHkCKpq57uTo2JSr0LHAAznsT/rjjQ+LfxHyDnAKJKpbO7s7pGzGJ6Rx2Bq8Ebc6NNKEpIQXh/qzxoxYF4z6ornTiuoOWd20+r/efM1JYM13cxtc83PxtNaN8TtZ7a1GatWeI7FAnGKbXvZR/O09HKj93PljdxHx3fGqtuG4z1mKP5SGuFZScsgIeM+bmJyEwgBQ8Cit1NNqDG0i3QT1rzzrLZom5uCf4yNXTGd5IkJXUyRbuPzLNeBl2xfrEONbqBJkyZYvXq1bftnn32Gtm3b2t9AiZsAqfYXwegmPWSKyuCsQOxtPkj0SLfq0jIsgQlHysQCex1gWdB5crHdQCFGdiqKc4Qa+kOOCakf8taabpfJVDd4bLWTcbBaaWqoIJMwCVVvdN9+pnYfXTawKXqH2t8slEYbr+stw3w+83h+59ra6hr1lMm2eSn48+7TcdfZ7W2GJlAxo3tom2z8cdfpJrXKWPHwLPaxzgtAAOhUkIkXp3Y3WsHszBmO8wK34z25P64MzsbYwF0mQTgPzyJI1D3HKnBHem71hQTLMo6RdZPz3mpgsCzKibRPa61l65yKt4ECgM1qIzwlnW38/fq8CbhisPa792ueiYfP74Sx3cIRY9JgUkORbrd0NzfemNELXQrScd0I5/IW10i3GNnoPoDwnLZXdc4+0eFZBodQud9OpzAzIa7fQDd2GIbBfeM64IbTWzu+rnO7eFGFxmWNdMeapeFETqoPL03rgYEtNSGcYW2zsXBqdyNa5+FZfDZnAJ6YEHacS1ZjOMJCh2WdBcmKW42LOC6BY21pxzqqwwpd/0307AbZYWFqNUDOIgwmJ0qJFPCtVrVruF/Ptv2I8+5NTEV6gi4e5bxo9SmlaJWTjDcu6YVSNooRW6Kll6tHdhitlpzaH57RIddwtjlBzj88x6B9o1RM6lXo6lC2Cql9LPcGkxP7IptcVJPO1Lb9x2CfJcPsS7krLh9c+fRyJ/Q2mmwo2+bsp3/Eh6t344o3Vxo13ZGMnCQvj0uD1+IDuS/Kemjtu5z0IhiOr1RNtxPkc9mfYL5OpgRvcn0f5+Bg9rQkOqLoZXeqYnJmT+4X2Vkugcd3SiejjZ9e27taaYoGadq1p0rmNRgbQc+jIFubk5TEBqbtiuW+KchMwPtX9MXs05qjb7NMPDK+E6b3b+Kq20FywtYpAQhKEmRZcez93L6RZuDHkhFKwrIM0hM9KGcTMTz4EB6QJgAA/J7w72tNz9exKoI7ObyqGjWGZ4rs1X6LTEtmx7R+TbBozgCj9We8tMxORo9m9rWe3ejm7E7Jk9DojvsbzZs3D1deeSXKy8uhqip++eUXvP3227jvvvvw4osvVscYTzlK2STcKM6EpHJ4OIKqNLno+0LpXmE1aYnzAop7pNsT6s33t5oFoflI2+vD2+Xgzo/XGxOYjtXollQWR5GErAiOhEjoD0tf+X4AQJZPhZ4x9Ko0AtPSChzfd8XgZjizYy4mLFwKxJ+hCkAz2FMt6ZQKGLAV/C6ROKtTHvo1z0J6ggCGYfC/y/vg6mcP4lL+UwAwPPbWaK6sqPhMsaSMEcaj/tByag/DVyC9HAD8noqrS5Z7MuDWevPB87tCzWyIPsHbMIRbjW4tZ+HX9X/hV9E5fZRnGdOinouxRp18AD7OTIYR03VI+SJFUziHxYWb8wkABrZsAEllwcfQ59KNJ6VzcFxNwHKlNd5PCC9kGYbBud0ao1SUAb0qglhD6+nlVsHAaHRonIr3r3CvPXeLyB7ucR2cljB5qT7sPlaOnWo2bhGn47iagD2I7LTiWAYH1KoxuhmGQaaPQZQOggZslAc+mWn0ljQEr8sjcVcFxlXKmlN+2WquY9MNr1cv7oGZr/+K0R0KgD9NA3B9r1Mv3G7lz+KDMwe5vEPDwzPYpuagGVFTqnOg8EykWbbpDtLGqra/U3q537IIb0GoUjtxDOHfeVCHJsDGiLu7wpPXvScRyYyAI6Wia722Ryo2/p2OyA4p/9GNwN+/wvtuWNCLdap1jALRjtu1XpvEug8LBY9e0DnmzyMdnqVEpFtiPPh6SwmITRg/qDOm9qmeTjf6moMlSlwa4QB2H8mEx6vN2dMGtsbnB/bhYofIaU6qD18oPfCF0gM/e7Tf3UkhXmUFkwBWPOrlbggci3cv7Q1RVrF15WJj+5PSWHyvuAvwCZZ1wGYlF7npxPNcz1xRJZPRHWtmh66d8KvaGgMDj2KvmoHbCsuAPwBWFfGHUoA2rNY+U+9c4dTZQfBpvyefZDa6JYa3xUG7FKSjS0H861mnaK2ochCe74McJtRykphfX5zaA6/9vA2Te1fserTqSjRvmIxL+jdBVrIX3q+cjW6WZbBeKTTE1PoUpaJpMBFndIg8f1UG1UWslCQxOQMfTu2Hwsyqz0KxZQYCkHlLejnP2ufQk7CmO26j++KLL4YkSbjhhhtQWlqKiRMnolGjRnj88cdx4YUXVscYTzlUAO/KmgjOwxH283jir/VyQo8iJO/4EoGfnoO3r7mmQwgZCovlbjjL4QHeKM2P1bcPRxIhWvTN9YPx9KPfGH8/Ip6HV+TTwUDF7xVsA6CGxtngyGrg8FZkehVAAp6WxuAh6UJMc3kfwzAozEzENcNbAp/YX79evAz/tGwrVwWTeJVTfY7IeOCtAlExJ8g6sm6FGaaFrscQBLH0P1Tt42QcjM+qqumuLMkJPuC4y4ssC4ZhsBeZeFseii5ObUYIBI5FWQWE1Mjf4m8QPTIdavRMif4ObbEiCRxpkb7KXSsBeLBQdhZCArS2KDpkfaCeXh6v0R0VB0Po/MDtuKdhZ8fdP7iqH37efAhz3lmNN2UtEnPZwKaO++rwLIPDiC8VPxIeVorZ6GYc1NJNEAuC1Wpz95rCKJRwFsedpzpSb+0MbtUQf90zCv/96U+z0R1hTmMZBpLKGU6dMtWDQ0iN+t0FjjXEl3SuC87CfqThkuYTYCuMsY7B4ZnhJdJ+f5Lbom+U3+24mmCMu2+rxnajW43twiAjU6onCU+c1wWXvPYrklQ/nDJKPXLY6C5nIkeLvOJx4MWhZok7b/zP9RQ/j075aVAUFQ2SokeorCVHvYvSkdnQuf7biYn9WgBaUxFT1FtivUb0GQAuC16DZ0e2rhIxTpIrBjfDM99sNow9NpRePppdiqc9T+BTuacReczLSsO385yzMjMTPRA4BooafgZ7HdLLGY6HQopTVaLNH0mvUGbbxpXhY/+hFOB6l2wjwO4wYaAiK5Hs/60LqZkj3dE0cHTIS2NHSLWc4bR7Jat8B7LIFrUhZ/QRh+wkNuTESPZ7sFXJRpNQ1xIpDpGvaDiVb6w/DAxUiBJC4rmVk+rDjac7O/JjwanE+dZQpuJvX7k/Py4K3ojlPi2TIpktx5LrB1d4DLGgCNEdd4wvBZ3y06rl848KDWzbZMuYfAJrerYAoOrlOjNnzsT27duxf/9+7N27Fzt37sSMGc7tmCjVh8ATQh5Q8fyUbhU6jhyq6fYGDsP7xY3ATnNbCQ+rTbAyWFdRt7QEj2kxUpSVCA+R/vyGPAwnkICOzSvh4Sa9Xr//G1wozTzWvqnWWiGdH2V7b11rqqCT0V2VD4toNM1OM/7did2i/cNiWKqqalPTDDa0t61wSi8XvDVvdKcnRfhMS51rgjeyo8bDs2jOhMXNYlUiBoCLg/PwqHgutmYQNZJRogCqg9EdST0VgGForvF1j7ifE5f0j64irBKLqKTDa8PbJb2mu2p7XiqWLJwxgbuxXG3tGllrmOzD2Z3NHQTmj2rjuK8OwzA44tQKL8QOLr75pISN3YBnoxndxIKgWPXjqYld4xqL8V6L0a0vTmsKstVdNFjGHOnWVfmjXfsCx5rm0H1qGv6nDMT3SkdTBomOYrn/C47+YtvHL3A4PXA//imej4vFG6KOnWxd5UtwuKZiNEJMBqonEZ3z07D8lqEY2No5UnWw4+XGvx8InBvTZ5jwxe90YhgG71/eFx9e2c+1rZh1fxI2Vs9UCPJ8kedzSp8ilBFGdwBCTOOJl3kjW+GXm4ciO0vLAGKlUih3puNpzxMAgNHcL0RNr7sTgmEYrL59BFbeNtzQp3FyKLGqjCApCFbFETmR0DDo0aEtrjrNvU2dwFuzFFTzb8yFI90mgdKkhogFazQXcC/f0sVNFzq1PAsFAFL8gqk1m1yF66jWjcKZU7pAJC8Wm3eqIi0OQBNeBYArh9jLJZyEbe8TNP2MA0RuDx84WmXjcUPyRs/IZPxp1fb5JXyarZtRRtkO098Cx9pLdKL1PK6HVPgb7d+/H3/88Qc2btyIAwcOVOWYTnn6ZmsPvJ5NItc7egiju11+FopiFD2xolgfQsfNysy6IERhgxSk+GKfIHliru7fOg9vz+wdV8qaFaaEuM44AV5FE+4j56zDDgAAaMFJREFU09ki4dqLtKvd02m9+U84iH5ZVc+rk2kDHOqmLedNC3Sav6PSwG7UOP0ObIQyhuoiYnpbKLJ10xmtMaxNNka2Cy9ouxSk4ZVpZqVkgWPhZYjzEaPRrQL4WumCx+Vz8cgFhECkw/tVMCgOSOh692Is/cveW/zifk3Qq0kG/jHW7sQBgPulCZgZnIunG9wa09hIbj2zLTbdcwam9S3Cc5OdnWtea81bSAkZIcFBqYoFW2TebLj8rjbDnWe1jSq+9NFV/eDhWcweGr3fcW6qDyUR7u+XU650fc2JtVy7mPdlZef0QB2RECUqht+o7Y2XEs5sVDExigBWFXwcEXqOZUxz44mQzkW0FGbr+8oc0k9JnAxxKz6Bw59qAZ6Sz3FUe7ayQmqChdJoPC+NBuN3WITGuOjkLEY3EDJaCSfMViVcwygVhEs0Dlii/THhqVgGG8sycRm404Jhx4WTYGokyrhkrFGK8IdSYHKSNUzxgSGyFIrSq+faZhgGDVN8kFhtrgiWHHV3HESpb0308kj1E6njDIPPZbOjNGv7IovRXbVzqy5uCwA9WuZH3FfgGCwj2rJlJZnnIf33Z1TF6D6zW82I+Xp3Nrrtc/Lb0hBwzQYDANapRfYDhTI22ualmFSqqzIDSyKOpYsc9uXWm3eqwnN1dudGWHnbcEOoksSppvu/yhDj36sVLcsr0Ops235VjeyJbnSX5vWuts9nwOAXxawhkFFsTjWyli59IVcsiFjXidvoPn78OKZMmYK8vDwMGjQIAwcORF5eHiZPnoxjx45VxxhPORonAj/eMAhvXRK536vJA1sJj5DN6LbWMoZ6XjYnoq2xYHiWAVx5elf0aZZZYTEGANhEXF6B0uNIkrXc5EiRMBK3tiiXDrYLilhrSzamD8HAwKOmbV7VWXiuOnBsD2d58LXLMy/eVyrN0STL/ttYhTy0Y9XsQh8A1EhlBqHIyaxBzfDiRd0hcCyWXDcIb83shfev6Ichrc1eeqsQEKT4zw1Zy+RUV6sCePD//sTxklIMZH+3vZ7qF/DuZX1c68MC8GCx0h0lDmIvscBzLO4c0w6nt3eOqHl5Fu9Kg42/jx/RHANMQPP0O7ZqqQSKQ0R2Ugy1cR0bp2HNnSMwd7h7yqROopeH7KKqCgCHeXvaWiS4OERr2NzIQlJHysOR0WLVj9wYe5ha2VZqfp8gO2trVBdOGg9usIx5btSVqqNFutMTPKZ2WWQKslN82aro7kQstcoksgLcK03CfdIkk+F8SE3GneJUIDM2cS/yOaImhK8/iRjzP6TJeFg8D0MDDyHRE36eBuAxOXCPO4hz2qjCyFwkvlE6G/+W/XG2vQOLs4P/wOjgvYaCtc5948L30ewJYyo1xmgwoTmJLT/qvlMM9a1W5omXmf7e2+lKiGTJUxWnwcqE0d2+yL1dJKA9d24SZxp/29p1ES3D9Ojr70r0a33BmHZI8fF4eLw9W86preGj0nlgXe7JicGbAb+WadK3WZbp/ncSSawoMmG0lcBlPq7ic+XUUg5wFhImS9AuCN6OQYFHoORHXudXBZGM7nJVwE3iJShpdV41j8K8Rlva3byetka63YQ36ztxW2qXXHIJli1bhk8//RRHjx7FsWPH8Mknn+DXX3/FzJkzox+AEhMNk71RVQ3JhY63Aj1sdRhLeqGtb2wolTbeFjlfs33xldwFt4oXo1Ul1ZsB4GO1v/HvQMkxJISM7sMxqhu7ef3zs+zvJ1WOlystkdV/Kv5W41vgVyWOolWWB9/953Y0Gd471IaO39kx4l+BhUilieThdhCxatogCX2bOS8GBY41i6ikRFYydsLklHFwQqiqit92HMYm31TMFf4b9/HDx6nwWyOS4OFMC65/fBLy8Ae1jBCRq9paYSe1Z2vvZDe8DuJEbkgRHlNqnCnzHMvg0yj9aQ2iGGGk8Xnj2B5GL+Z4+WWf+YLg1MgR9qrGzRnpBNmnGwgrgkc7hodn4feG5yuy7Zaj1V0NWhkDiP7ppOPxI7kvXpVPj/k45PxZ3riP8e+gEv5dDqspeFIeh81qI1O/dAD4Sw2XWJARyrrAZcFr8Y3cCQd7z4/7vQpYKGDxsaz9JhuUxgA0Z2C/8sdxVuAfyGgcf3vJeEhK1oyLJMVZsE5WmQo5MY4jEb8qYSfh4aJRCHKE01Gp2nvWlHId5dmckegxq/FbHjB6pNsrFWOB8BoAd6V9kov6FmH17SPQvpH2m75zaW+0aJiEdy/t7dhhgSwjAMJiat/InfCTYs7+SvCH74lqi3TDJZBQQ+Jc14mX27ZdPyJ8/QfgwXY1Jy6nZ0UJKgyCLs7rtWoTvCOfBl8lRHGjccmAJrYWan/4zK2nrdlQsVyj9ZG4z/ann36Kl19+GSNHjkRKSgqSk5MxcuRIvPDCC/j000+rY4wUF7w8ix9kLV3yUOtJFT6O329eFFgXuUwFje7jigczxHl4Qx5e4bGRlCk87hO11gylJ47CF0ovT03NwHUxRM3cFoaMw6S3mEhtmRC8FQk+r7keqoZRnR5MlgyFBsle3HV2OH1Wdpm0nGq6ayPSHbkdRHyWqcCxZg9/cmxKoKl+QheBWOg7qdGqYNBF+s22/bzA7XGMFMhKqp6+nINbNQTLhH+DgbtD3SQC2gI0WMVGd1Cyp29WR72m9Tp+X+6HE6ofL0unx/15HMMY7V0qPS7inuzVuqjCx7HOK2K78RU+VkXIiiP7iGMZU9ok5wstwmMwkgWBENhiBIxs2xBNshLRp5ldwT7W9o5rF4zE7NOa46Or3FX2df41oxfentkbS+cPNRnOsaSyk/Asi3GBOzFPvBRS4WBjexkTdrp0LtS+091nm8sZ5o1shdVKuFTIaqjUNp8rPTBNvBFBb3ytMFVi7l2tNsegwCMYE9RamHIsg11ogDVqZNHEqiAhScvs8jPOegyHED3N1g2eaLVxsFQxl+v4I5cCxotMpkBHKf2yRloliyq07hxNDu43trkp7Vsh59feTTOxeO4g9Gqa6bgWJCO7/zy/E8YG78Ib0lDcKNqDcef2DDs0nToTVJQyoiWf4HfRQqihNlTr1CJsUczrkIv7FZn+zkryVtt6gIRlGXznooAvhlpGerjqM3K7FKQbpQ06acnmTDmeZUzXZbwtTusLcVsRmZmZSE21T1ypqalIT69YyypKxfDwLGaI8zAs8CDEJsOiv8EFf6L54tdbDGHvWuDdySiStwGIvcWETiCCmnNFkBQVxaGUIebEXkP98vHJvXB1DPWhTrVJbtwnTcCt4sXoXf4kJPBG25C3pNMqMPIqwGnsDoYhufhNSXD2kDtGuuMQU6oqVIuz401pKPFifEa3W71+NIoyE3FOkYyHzzOnEjum8wPwW8RR1ihF+FWNLVr14tTuGNKqAW4eHVk8rKL4BHOk+0xuGQCAETXnlMxXrUBXQJLxX1kTn9uqZOPlafELxMXCcqIW7KCagrvFKegcWIi7pKloFOdXOrdbI0OBt7IwpNp1BRSmSbYRNcB8Ys0+R/PTw/f+XjXyZ7MMg3ahVjcAkJ6ebiguR4MU2xIg4ckLO+GruYMc++9as61+TR/leMwkL4+5I1qhY+O0mMbQp1kmclJ9JsejVXwyGhzLYKXaEv+RByOREHg8zGdjrVKEY2oCbph4Jv4zqw8m9jKXW/RumokgkVprnU/qCgGpcs/u7WqOUWcfa/ZLlRBFpTna9e3G+1f0NRkNfZtnwe/hcV7gdkwLzgOSq2ZO0RH5JDwsnodHxPOAhMgGvZfn8MykrrgqeDW2KtlY1ul+0+uKQw2zFKFkJxY4BwOtf8uwgTmwRRY2qvm4VZqBzu3a4L0r+pr2JbuqVGV6+Qk2bJsEGZcMAU/sqvyVxaqmrq/PHhnfCbMGNcPyW4ZWuZK/E10L0kxG7B9KWCdAN3Q5p2BMFWLVWDini1lUledYSGp4jJ0K4ytxqS/EbXTfeuutmDt3LvbsCffb3Lt3L+bNm4fbbrutSgdHiUyqX0AAHmxSGzu2tYgV3tJqRQoG8f2vvwHP9QP++BgdFK2fDBdnpDsoV7wnsROyohr1cNkHfwq/EEGNlCQew6wMPrwhD8feUB9hPZX/UakC6rPVhcP3Jh0L3Zo4p8NbI/4jA/fXWN0gCWOJ3hfDhzekofi3NKhCi5iKRo0G56oY08lcN+dW0y1ZFjDxZD8Ma5uNVy7uiYbJ1ZnKb3dWHNmjqd2Xeqr2IZbsE7BAnIq7xcm4I+MBnNa6aheeOmvZ1pgcnI8BgUfRM/AMDiPFiH63So3POTOjf9VF23iFKOmpxEKuQ6NU01mLt1a5spCGo7Ue14o1KYiJ43uTRnczeQsYxl3oi4x0fyF3wwd5c2P+nFgg58CgrUtwZMjfwE+kZMoqMDZ4F/oFnoA/JR09ijJsz5zmDZLAEIvP1+XhkFX3koevZYd62mriEaJ2tygzPm/W9H5NkOTlMbFXgVHipGtkZMbQsqyqYKK0vix2EESNhS4F6aYa4RSfgBS/gF/V1vhG6RLhnRXnSXkcnpDHxbTvqA65+ETpgyHBR3EoxZzCHxDSbPsn+iun78Fbno9BCHj54vA1TN7Xc4a2RFdLz23WE34GOmbxVZBiQpSSFKMzf3jNza+8iyDhuK6NcdMZVd86z41BLRuYosh/q2FNHL2+3lPNz53tTNjI3q+m2Z5z1kg3cxK2CwMq0Kf72WefxaZNm1BYWIiCggIAwI4dO+D1enHgwAE8//zzxr4rV66supFSbDTJSkSjND9OlItonF6JSdRSM6RI5cDHV8DWpz7OSPc/xnbA9f/5DbNPc1DeriCOSsYxqlHGU7uYn+HHzsNhQaNGod+XTHW9Q7wIC2I+YuVwDPw6pISbvqFLGpVVK2CDWlDxgVUGy/g8kHCrpLUerEiCbTH8SEbViFA5CW6pKiBb+uwa7dvqCDajSVXhLd0DcMCqEymoyuXhuK6NcMdH6/CSPAodrL2mqxAPz+KHgF3UrCLZDRXNiHBiL984/EckUcAoLJzaDWUPh8flWP5RjfgETutzza3HO/JgzI6wry1qGU+GjFUrJBKWmmt/DOrk8cCzLB4Wz8NY7kdsazUdz3aOvbZaksP3mEkkTZIhgUdxhGVVaoJgmqO/VzqiWeBNAMBobqJp37nBWfhA6Y+ammHGdW2MgS0boCQgxW0oZ6f4sOr24RA4FruPlmHhd1swrW8RAKBHUTquGNwMTRtUf4SRiRLpdmr9GSv3iJPwoec2fOQ7C2OBmPqfV5TKzACyYn4GBD326H6rvMrN16xFk0NhWJMBSa5XclPtazayW0pV2p0y68Xd4iSkMKVg+MgCdDXBYSSjGbQA5WXBa/B8lP2rC4ZhkIoS4+9SIkAhgceEnvmVEjmOhU18OBt1s5IHa8M63lLTrdZQ7X1NE7fRPXbs2GoYBqUiMAyDL+cOQkCSkeCphLfQYnTLYgAt2F223eJNLz+vW2MMatmgympWXpzaHS/86w/7CzHenCzLYKPSCC0dvpuVz+YMxAerduHWD7R+x1mJXswb2QrPf77C2Gej2tjt7VWOCq2W9Rzux/BGB2cDGel2FF9DfM6HasUyvsNq5VJ0X5LOwK3Cm/gZHdAn+u4RcRQxVFXUsD1UefaugTeUwrr1eNUeOploH1gdtdw6VmX6V6b1wCOLN+LWUa2wd+1PLu+KzEdyH4zhfq7UuIrZZPQufxJl8MJe6R87ual+bCaW2Y7dBaoRgWNxmTgX3eUNaNApsqCY1WnBCLHP7UIcbajISPceNQOFSnwZDdHgOAZPyuPwpDwOP53VG3lxiOAFCC0DP5EaXxqM7fvF0gP7iuBsLFJ6oXLmV/xoNaYVW3zrkau8ND/uHBOuZWcYBjecXjOCcVyUSHeBg2hqrKxRm6JzYCEap+dgLIAJPQvw2do96N+89gRWY0Hh7Y6xykZYOd787LYKWmYleTCsTTYSvRzSHFop8h7iGouhU0E8vCSPBgDMYe2z8gdyX4yt0k+LzA3iZXhYeBZPS2fjK6V2W2AN5NYY/y4lWja2bZyJM8Y513tXJV6exVYxG03YffhI6WNbo1mF1Gqq9r6miftb3XHHHdUxDkoF8Xs4U4pbRbD2hVWCAe2mtMzLbAVugqr0ng1rm40fmzQCdlteiCPSPTZ4N4qYvVjkvTnivkleHhf0yMftH64FyzBI8vGYOaApnv48PJEH1JrzxKkqcK14hdnodop0k+fM5XyRC2dJZU1phTWKJa1sV5vpwNqjFT7cy/IZWKcWoUGr3pU3uonfaKnSBr3ZPwBVAs/aF8z/u7yvbVttofcmNQgWwxMydoa1rz4nUXX6cR4e3wnTX/3V+Ltv80wMad0foihi0dr4jze6Qy5mr7kaS5W2uFd4qcLjUgGj/KSykGJe1enAcOMEEvC10gV3No78fawpgVwcPW+PHTtqrDgW+G5EpBmY/D32IQOFVfyTkPd3vE7IIrK1IPHeWI1up0+zOpYWKdXXM/dkRojWFaGSBt5xJKIkpFXj93D4z6zqmfs75afF/Z5pfYvw3cYDjrWyViptdFsc5lYNBoZh8OJF7hofPKFHw8STARMFMsAjWdLLv5K74A5xWo0a3VvVXIwL3lWDnxgbZCmeWsU95t3w8izGlSxAJ3YLEtuOsL3OMIxJfb6mVOZrmkpd7cXFxTh+/LjpP0r9g7UYb4pUjlKnNO4ajsA4wfkcUtRinDRYlkEpfFivFsW0v8CxWHPnSKy5cyQ4loGHZzF7eNhjn5bqoo5ZDWjqsFYviN2oNkW63dLLiYWiIiRgXNeai9ibsD64o6QGRkMBi5+VdjgkVv4hwrEMlodaxCwK1VsyiowktcS03+KUc9GtsO4ISB6D5TdUZPg5bZHYulHVGIgkI9pqddwzB1SfMvFprbOx/q6RGNMpDxN6FsTVbswJXeH/LXko7hYnG9t3q2HBoiAbve6+Klu/xaugXV3IUb6TtR83F0ek249y49+/MpF7oB86FFZaPsRkxNTTPR5M82ScBkhmkhdfXTcIS+cPNW2P1Xa39VGGFh0WKyluRYneL97WDjUOxnbW2lDOGhRbP/fKcEb7HPzz/E744tqBMb/nzjHt8NV1g5DoNT9XnUpqKruSs3Z8UeN0ZpDOEbfe3hXhwp4FyEj04J5z2kO1CLRdKs7FMdSciNqXcwfV2GfFS6nJ6K4Z47YoKxFHkIJvlM4Y1825pNHUqeQkremO+2rfunUrRo8ejcTEREOxPD09HWlpaVS9vJ5ylEnBKqKNiSIFsFYpsu3npuhck6heB0M3xnFVJK060cubMglIMaA7zq+5CKfjAt9hsUg+C93Sy02Rbq5ygiqVgXQKbFca4vT2mvqpUw1YPMSjUu+GX+AwIXgr2pW/hH0hxVteLsWVB8xe65UptaRm78L/ZPMiTT2+C/2xGgDAOqjdV5ZnJnXFt/MGY1SH6q2fS/DweGJCF9w3LrKxFgvk9R8gRLSOqeEF2dtNH4x6HLW6Gq7XIolRsqZ4lsHfaliQj42SzkuSwISF54JRMqzJ+sPf7z4TjdOruMd8JaeIZg2SkGOZp24Z3RZNsxLxwLmRr9EDaprj8daoTWzbre2gKJGxZgzYqIT2wsPjO+N/l/fF+d2q30nNMAzO69YYLbPjS4d3ciAFJAW/K00s+1VqeDaHfrzODJNzpBLnxErXgnSsuHUYJvUqtLXIlMFiej/7PVZdNG9YcwZ+vORkhR3MVudEdfHgeeEUdrc1mmKKdNP0cgDApElaP+iXX34Z2dnZNaa+R6k+yiXgnOAC3MO/jEn8V1CloGkxquNmxNUkjFNrnhh7TFeFMaYyPO4XL0QCU47Zzaqn9ZPj58a4n+k7ungKyRTRck8mar5ZmAbpHV+sdMPI3BR8ff1gZKdUrCThucnd8NTXf+GOs9pWemwJHg4SeEjgDe9r5rF1tv3qgiOKZIuaZ97w1d3GP516j1cWnmNRGKfScW1DPrPIee4IYXQf9ptbPTlRlSb3fjUNLRBda6K6WDCmHb7/6yDO6doo4n4Mw2BC8BZ8771W+zuO/sQJCBvdCVEeJWQv8OpQczdHuqvmmE2yErHk+sFR93tFHok27HZ8LvfAkxO64H8r/8Yto9vg7kfPwaueh7AxsTs+mNEPD33+J24eVXPPmJMBD8disdwVwzlnEd94I7IkHMvUqaymWNl+uBQTgrdinW+Gsa2yayHW8jvGHekmnCNsFRrdQHh+/zshfO/IKgOAwYAWJ2cbqli4LHgNnvc8BgAIssSqr4bWMKTj1O3ykwmju66traqKuK2o33//HStWrECrVq2i70ypF0iKAoBBMHQ5qGIAAiT7jnVA2IDz+CCqHASGqJ+LMQ2FjHDJKgOOqdiy+Tl5DABEVPmtamKNqpHB/EiR7quDV2EO/x7+6HQfzqqKAVYEwgiUwEFWVDTJqrgBd3r7HCNaXlnIRYkUISEoXnHBmkYtOWgkLldHpLs+YrpHCNP5KJF6GEudYWWuVSs3iJfiUeYZLE0aVqPzis5FfYtwUUhtOho7iT7ncm7sevgJRHr52YWRQ91eRoz4emVJTxBwRvscKKqKzBqOJpfDi9ni1QCApzvl4axOeSgOSPhG6YIzAvehQ8vOeDA/DW9eQuu648UrsJguXoc17CVIZhw6WVRh/XB94aLeBfh0zR7Ttso6mqzdPeItjzG1p+KrJ9suwR828vaEtDeqsntFvPRvXrsGP9kmLE05bPw75fhfNT6WiJFu/ZF8kqaXx21F9ejRAzt37qRG90mEGCrkM4xuKeCoNFsXIt0+gUcx/EhHcXhjjOMi290oYMHFoaarU9dTShlGq0XuwW5EeetxcKo65xgGHyt98XGwL+5Jrv76NDdUos+4DNaWrlmbdCtKB88yKMhMgHTI/fpia0iEpKKIkgRv6LKnRrcGGenOwAnj3yb1/BjmlGuHt0RQUnBWp7yo+0ZjFxpgfPAOtPYk14rRHS+jAveiIXME/8htH/N7PlN6oT+3DpuVXKRHSWbRFferC4Zh8Ozk2lUTJvGF0m3/UAuxZ1Mxohc3UJzQurgwKIfg3D6yipWy6wNamrPZyKl0TTcT+e9okOnljiWDVYCPKJXRyydrulzjk6v74+Uft6Jjo1SMq4GyhEiQ7fKOeMLlYLxU7LR7tZKf4ZxfKRNGd0XW5/WBuK2oF198EbNmzcKuXbvQvn17CILZG9GxY/VLz1OqFknWog7BUKqlKgfAM/YLviLq5VWNT+BQrPqRzsQ/UZBKswpYoB7d1J0ap8W0H8swuCB4O5JQii/Ti5z3IX4HpjYFnAiDVQUDn1B3FkQpPgGrbh8OL8/h+de2ADud9xvRIXI6bm3DEe2JrIKJpyrkFU/W0QaIXtBqDCmPSV4ed4+N3eg8mVivFmG9WhTXPfu2fBp2qg3wu9oMC6LsS6aXnwqQCtNHS0+t716VJIVExFiX4o9Y7uuTjSSv/TvzSrnDnrFjax0YZzBC4FgEVB5eRsKxgmGovNvSzs+bD+F68TKMYpfhdnEaZg9tgfaNKtefPF7aN0rFI+M71+hnurFFzcUJ1Y+jahIWHu2FSaHtvFy5ayEe3ruiLw6eCLhmifFMeL3iK9tbU8OqUeK2og4cOIDNmzfj4osvNrYxDANVVcEwDGS5/hgyFA1dKCyohi4HKeiYXu6mhl2T+ATWpLwYL2sXjIQkK1AeqF9aBEVZiXj0gk7Ah5H3YxnNoXAcSTHpLdSmJINK9If31cG1kNGHOsJCrX1+1SuCV4ZRHXIAl2yxqlSJrc+Q1/yPSntMD16PjWo+JnNfEvvUzgVZlxxPsRDPeBWw+E7pFErvdyhfItitnnq1l1cNaY6nvt6E+WfUTE/rk5Gi0GLezeg+FdPLGYbB+U1kgMgwFwKH3d8QA9b0YCdF/kgIHIshgUfQmt2BK5vY20dVBZcMaIJb3h+E/8qDMHtoiyrvgFDfCEJA98CzkMFCCsrQGxSxNWh0dy2IrImgSKLhFWfqeBZhRYl7Bpo+fTq6dOmCn3/+GVu2bMHWrVtN/6fUPy4Z0BQ9izIghnwweZvfxZncMtt+DFf7C0KfwLk/UGMgycsjLcFjSrWJ9/Nri44xRrt1arN+KRbI/pDDW9ct49VEJGdTHas7euBcc6ZRkBAK46XSmh5OnSTBw2NMpzyMaJuNFJ+AJUpX/K02QIDwQXO1lIqf7Kt9x2Y0ehaFxdN8UVo0ORGLiNM/pfPxb2kQLgzeGvfx6zq6mFObXHNa7dzhLbHkukG4dGD1td872Uny8vj+hiF4VnJWKjlVhX9zElTMDM41/j7ReHCljmc3uqO0I7Dg4VjsRhaWKF3h81TPnDegeQPj302yaksutm4RgAdS6Dn3ijQSALCt8/W1OSQzcjjLJ15HTn0h7ifm9u3b8cADD6BXr14oKipCYWGh6T9K/SPVL+Dfs/ogOyMt4n5sHVATzE31mWo9Ktrb9HdFW9hIcSZ7TOhZgK4FaZg3suY1DYQ4+6RzsUS6KzqYKoC8nvg4H9o1CmO+RvT+3QBqTPkzVgSOxUdyH+Nvsk0T02xIbQypTvLEhC5YOLU7JCX8YJeJuWRqv+ZOb6t26oPRffmQsA4EX4HsiVjsnuNIwg3SZViqVL4TQV3j8Qu74MbTW+PVi3uYtrMsg6YNYstQoriTn5GAF+TRGB24p7aHUmfwsMBipTu6lz+LWcFrcKTdlEodz+rPjzcQQtZ0V1cgI4mYS/OruOXgycACaSp6lD+DfY3PqO2hGJBlrZx6cpbZxP3EPO200/Dbb79Vx1gotYwSxYCoC0JqLbOTTR6w/oHHK3Sca8Ur8JY0BHfmPh3X+xK9PN67oh+uHFLzi3I+Wg9SmPt5x5JJV5vrOzLdma3D9fXW6/49eUAtjSQ6LMPgBvFS2/arg1eBj6On8qmCJIdvGIEJpzynJtfsIu3aYS2RkejB/DPqfosoTyXLFE51ozIj0YPLBzdDdkrdEY482VDBYp1D33NWrcPO3WpECN2yB5GK/1N6VjqTx5pFV+yLryqbbBlWbUa3lzC6XYS7TiXsfcMZHEAaysW6s/Yiy1pZNXIJUn0lbivqrLPOwrXXXos1a9agQ4cONiG1MWPGVNngKDWLwkaula4LNd0JHg4g2snsQ+x9Ykn2IQM3SzMxgK8/tYM8x+BecQJuFt7GktyZOC3K/jFFumtxAUymqLFK3fVqWvtFHlRTsVAaDS+CuCixbl0/PMugHF58IXfDCG6Fsf0EEmzRCQqgEF6q2hTvmjOsBWYPbV4vDNI+TTMxqkMOWmVXTHWYXoeUmmJa8Ab0YP/ElfxHAACWOTWNbqu/no8za86KdZ76tuujODee8RCTAF9NE4KHZ/H4hZ0RlBTq4ALQPi8Fm/bbBYjLpbpjdK9SWhilrcHMky/LCaiA0T1r1iwAwF133WV7jQqp1W/IFk5OsHztG90+gcPD0hjcLbyKD+W+lT6eUsdbgJHwLIsX5NH4TumEvrn9HI1u8ttEqp08r1tjLN1yCKM75LruU914iRQzXnZo71JXsES6S+DDvZKm/XlRbYwnAroyvVWzIAChXhh0Nc2LF3XH5W+sxL3j2uPP/35cq2OpL+eHZRk8M6ni7bZiqemmUKqCb5TO+EbpZBjd8apsnyxY77ikSpaxkEbzA+KFKEiML9LtJ9p5pfqrr0Tr7M51u7tITVKQGVYMT08QcCTUJaFcrDuOqJfl09GB3YJklKGg3WTk1PaAqoG47zxFqTsniFK1KA5qgZuVXDRjNdlLpg6IRnl5Fm/Kw7BOKcI6tajSx5OV+vMQ5jkGKlj8qRagj4u6MtlHPJIz+5/ndzI6DtQWiUT6FyfWfK/IWOGsRrda973mMszXh9GZgGJicKuGWHPnCPAci9bvjkAbdju+kLvjmdoe2ElMdUW2KBRniIyquqwdUo1k+oCCDD92HNac23mplXuGkbfwQaSgaZz3tJfn8OXcQQDUetexob5y+aBmOFQcwOntc9Ag2YvTH/seANCjKLKieE2igsU14lUAgCXCyaleXqmVWHl5OXy+ur8ApcSIQ6T7BMK1MGwdUC9nGAYKWKxUq6b9Q33yIZFCaoJLXWWskW6g9iNryaTRXZeVtS1lFcWo27XRQ1o1gLTFfH08P63yWSEnK7oYWDm8xgOfUvU8fmFn3PnROjw9oTMOrP+5todDOQVhTtGabpYBvrymP9bvK0V6QuWznliGwQJxCvqw6/GB3B99KuBIs9cYU6oTv4fDPed0MP5eddtwHCgOoHnD5FoclTt1vftORYm7sEOWZdx9991o1KgRkpKSjDZht912G1566aUqHyCl5lAdIt0iETGrCzXdVU3bvIrVJdYGZDp2YaazMAipflzX0zgTvTw+lnsDAA50uKyWR+MOa4l0l9bxSPdLF/WwqfJnpNAFDqV2ObtzI6y8bXidiqxQTi1O1Ug3oDnZO+enoZBIM64oLMPgFfkMXCpeBxE8rZmuh6QnetAyu24a3IBZFPhkIm6j+5577sGrr76KBx98EB5P2Ejr0KEDXnzxxSodHKVmkQX7ZCyRaaknkdH96ez+uHxwM1w3omoi5jUByzJ4emJXnNu1Mc7t2thxn4bJPjx4bkc8MaFLnfcUJnp5zBavQq/yp1BaGE0WrvZgLEqvj180ABmJHjx2QefaGVAUWJaBZBFFZAW6KKLUPvFG2Oq435BSR3lxaneXFOqTdCVfw5Bri64FaejdNLMWR0M5GalPekvxELfR/frrr2PhwoWYNGkSOCLduGPHjvjzzz+rdHAkRUVFYBjG9N9NN91UbZ93KrIvqbVtGxnpritG95VEn9i0hIrVmbfLS8WNp7dGsq/269TjYXTHXDw8vlPEOqjxPfIxplN8wia1QbKPhwoW+5BRpxfX1pZhPVvmY8WtwzC2S90VaSm1psDXsX7iFEos1PVsHUrdZFjbbLw6vaf9hTqgS3MyQN6Wz0/pXucd/JT6waCWDYx/1yO5pbiI2+jetWsXmje39yhWFAWiWL0tV+666y7s2bPH+O/WW2+t1s871eB5AQ+IF5q2SXXQ6L5+RCu8f0VfjO6Yi39f1qe2h0OpIKSQWlCqu2l/ViE1cHyt18NHo5yxRHn4yJ0JKFr/ZErdgq7lKRUlP91egqXWkTXMyYRg7UdGoVSQ5yaHu2I0Tq/b2jkVJe4ZqF27dvj+++9RWFho2v6f//wHXbp0qbKBOZGcnIycnJNRRL5u4OFYPCuPwXnct4ZieSZzPLxDQsV6Ylc1DMOgS0E6np5IawPrMwlEtL4sWHdbDbJ8/TPGyhmfOZPSQa+BYub16T2x4ON1uPF0e8YPpWa5+rTmeHLJJtx1dvvaHgqlnuL3cPjt9hFYt+cY8C9t28moS1MbkKm/vIuoK4USL34Ph/V3jYSknLyq9jHPQNOnT8fjjz+OO+64A1OmTMGuXbugKAree+89bNiwAa+//jo++eST6hwrHnjgAdx9993Iz8/H+eefj3nz5pnqyimVY8+xcgDm6HY6ToR3qCNGN+XkgCXCWGwdDmlZhdTqAwHGaza6BWfhPUqY9o1S8Z9ZVOW9LjB3eEtc1LcIWUk0Q4NScVITBKSQJWS0zKZKILu+0BaAlKokwVP/1lvxEPO3e+2113D//ffjrLPOwrvvvot7770XDMPg9ttvR9euXfHxxx9j+PDh1TbQOXPmoGvXrkhPT8cvv/yC+fPnY+vWrRHF2wKBAAKBgPH38eNa1FYUxWpPha8o+rhqY3xfrN+rfTZxWQhMOAJZV3+zukBtnrf6zPzTW2LDvmJ0aZRcK79dTOfNkkpeH86xzITvYQksVJUF6sG444Hec/WTWM9bqpel57YOUW/vNyW8hlFZrv6Nv5JUx3kLEsdSZQniKawKX13U2/vtFCXW88SoamwScSzLYu/evWjYsGGlBkZy5513YsGCBRH3Wb58Obp3727b/r///Q/nnXceDh48iMxMZ+VEt+O/9dZbSEigkR8rN/zCISAzWMC/gov4xQCAPWoGcpnDAIAPu7xem8OjUGqFn/cxuH/3FOPv+nAfLF/xI/7BPg8AOIEELOnyXC2PiEKhUGqevaVAy/UPYwj3G97M/weSsgpqe0j1np3FwD/XaI7dx3pLdVoIlUKpCUpLSzFx4kQcO3YMKSnurYjjiuNXtXjQVVddhQsvvDDiPkVFRY7be/fW+vtu2rTJ1eieP38+5s6da/x9/Phx5OfnY8SIERF/lNpEFEUsXrwYw4cPhyDUbCrURu8mPP3NFjwoXYjjSMSvCQNwV/kDQOi0jxo1qkbHU5+ozfNGqTixnLfyVbuA3eG/68N9sGrNCkDS/p2M0nox5nih91z9hJ63+kl9PW/bD5VixG8sUsVivDx0BNo3qptrv+qiOs7b9sOl+OeaHwAAo0effM+WukB9vd9OVfRM6mjEZXS3bNkyquF9+PDhmI+XlZWFrKyseIZgsGrVKgBAbm6u6z5erxder70mTBCEOn8R18YY5wxrhZ1HyvHRb7vxsDQeeYwPQYTHUNd/s7pAfbi2KHYinTefR7DtW9dRGbMISX0Yc0Wh91z9hJ63+kl9O29ejwAFLI4gBT5v/Rp7VVKV5615dipuP7MtMhI9p+zvWVPUt/vtVCXWcxSX0b1gwQKkpqZWaECV4eeff8bSpUsxZMgQpKamYvny5bj22msxZswYFBTQVKGqwsOzeGJCF3z0mxbWk1UVL8ln4H72RXwrd8SgWh4fhVIb1McepB6PB6ClYBQK5RSHJ1pa0fZWVcf0/k1qewgUSr0jLqP7wgsvrNKa7ljxer149913sWDBAgQCARQWFmLmzJm44YYbanwspxKKCrwrD8YfSgHSCjtRo5tySsIS2T3Xsjfg0VocS6zkpCcBJdq/X1bHYHrtDodCoVBqBZ5lHf9NoVAoNU3MRndV13PHQ9euXbF06dJa+/xTFVVVoYLFb2pzDBBOzkb1FEo0GADnBu5AI+YgliX1qu3hxATZj/aEfHL2u6RQKJRokC2t6mPWEoVCOXmI2eiOUeScchIhK+FzzlJ5SsopzAq1FVaordCYqyeREpac2um9S6FQTk04mlJOoVDqCDEb3YpC+/CdapBGN/UQU05VSH+Th68fRrfKhqPbPZg/a3EkFAqFUnvwdO1CoVDqCPVjBUmpUR44twP8AofnpnQzttEHF4UCeOpJpJsh1Ms5hjpMKRTKqQkZMPAJtNSGQqHUHnEJqVFODS7oUYBzuzYGz7GY1KsAby7bgQt75tf2sCiUWoevJ6mK5cGg8W8GtDSIQqGcmnh5Dnec1RZBSUGDZHsLWQqFQqkpqNFNcYQPRfT+MbY9rhzSHLmpvloeEYVS+3D1RP12w+7Dxr9L215YiyOhUCiU2uXifrS9FYVCqX2o0U2JCMMwyEujyuUUCgDUk0A3fERKudBtSi2OhEKhUCgUCoVSP8I2FAqFUgeYN7J1bQ8hJrxc2Ojm60kdOoVCoVAoFMrJCl2NUSgUSgS8hPhOn2aZtTiS2CnhUo1/s1QEkUKhUCgUCqVWoenlFAqFEoGBLRpgaOuGaJObUttDiZl1Qgc8Lp2DjUo+pipUSI1CoVAoFAqlNqFGN4VCoUSAYxm8NK1HbQ8jLjwCh0el8wEAk6nNTaFQKBQKhVKr0PRyCoVCOcngiZRyVaVWN4VCoVAoFEptQo1uCoVCOclgmLDRLVOjm0KhUCgUCqVWoUY3hUKhnGSQ0W0/IQRHoVAoFAqFQql5qNFNoVAoJxmkdlq3wvTaGwiFQqFQKBQKhRrdFAqFcrJBJpSTqeYUCoVCoVAolJqHGt0UCoVyskHruCkUCoVCoVDqDNToplAolJMManJTKBQKhUKh1B2o0U2hUCgnGTTQTaFQKBQKhVJ3oEY3hUKhnGSoNNZNoVAoFAqFUmegRjeFQqGcZNx0ehsAwPR+TWp5JBQKhUKhUCgUvrYHQKFQKJSqpX+LLKy5cwSSfUJtD4VCoVAoFArllIdGuikUCuUkhBrcFAqFQqFQKHUDanRTKBQKhUKhUCgUCoVSTVCjm0KhUCgUCoVCoVAolGqCGt0UCoVCoVAoFAqFQqFUE9ToplAoFAqFQqFQKBQKpZo4pdTLVVXrXXv8+PFaHok7oiiitLQUx48fhyBQIaT6Aj1v9RN63uov9NzVT+h5q5/Q81Y/oeetfkLPW/1Ctyt1O9ONU8roPnHiBAAgPz+/lkdCoVAoFAqFQqFQKJSTgRMnTiA1NdX1dUaNZpafRCiKgt27dyM5ORkMw9T2cBw5fvw48vPzsXPnTqSkpNT2cCgxQs9b/YSet/oLPXf1E3re6if0vNVP6Hmrn9DzVr9QVRUnTpxAXl4eWNa9cvuUinSzLIvGjRvX9jBiIiUlhd5o9RB63uon9LzVX+i5q5/Q81Y/oeetfkLPW/2Enrf6Q6QItw4VUqNQKBQKhUKhUCgUCqWaoEY3hUKhUCgUCoVCoVAo1QQ1uusYXq8Xd9xxB7xeb20PhRIH9LzVT+h5q7/Qc1c/oeetfkLPW/2Enrf6CT1vJyenlJAahUKhUCgUCoVCoVAoNQmNdFMoFAqFQqFQKBQKhVJNUKObQqFQKBQKhUKhUCiUaoIa3RQKhUKhUCgUCoVCoVQT1OimUCgUCoVCoVAoFAqlmqBGdx3jmWeeQZMmTeDz+dCtWzd8//33tT0kSoj77rsPPXr0QHJyMho2bIixY8diw4YNpn1UVcWdd96JvLw8+P1+DB48GOvWraulEVOcuO+++8AwDK655hpjGz1vdZddu3Zh8uTJyMzMREJCAjp37owVK1YYr9NzV/eQJAm33normjRpAr/fj6ZNm+Kuu+6CoijGPvS81T7fffcdzjrrLOTl5YFhGHzwwQem12M5R4FAAFdffTWysrKQmJiIMWPG4O+//67Bb3HqEem8iaKIG2+8ER06dEBiYiLy8vIwdepU7N6923QMet5qh2j3HMlll10GhmHw2GOPmbbTc1d/oUZ3HeLdd9/FNddcg1tuuQWrVq3CgAEDcMYZZ2DHjh21PTQKgG+//RZXXnklli5disWLF0OSJIwYMQIlJSXGPg8++CAeeeQRPPXUU1i+fDlycnIwfPhwnDhxohZHTtFZvnw5Fi5ciI4dO5q20/NWNzly5Aj69esHQRDw2WefYf369Xj44YeRlpZm7EPPXd3jgQcewHPPPYennnoKf/zxBx588EE89NBDePLJJ4196HmrfUpKStCpUyc89dRTjq/Hco6uueYavP/++3jnnXfwww8/oLi4GGeeeSZkWa6pr3HKEem8lZaWYuXKlbjtttuwcuVKvPfee9i4cSPGjBlj2o+et9oh2j2n88EHH2DZsmXIy8uzvUbPXT1GpdQZevbsqc6aNcu0rXXr1upNN91USyOiRGL//v0qAPXbb79VVVVVFUVRc3Jy1Pvvv9/Yp7y8XE1NTVWfe+652homJcSJEyfUFi1aqIsXL1YHDRqkzpkzR1VVet7qMjfeeKPav39/19fpuaubjB49Wp0+fbpp27hx49TJkyerqkrPW10EgPr+++8bf8dyjo4ePaoKgqC+8847xj67du1SWZZV/+///q/Gxn4qYz1vTvzyyy8qAHX79u2qqtLzVldwO3d///232qhRI3Xt2rVqYWGh+uijjxqv0XNXv6GR7jpCMBjEihUrMGLECNP2ESNG4KeffqqlUVEicezYMQBARkYGAGDr1q3Yu3ev6Rx6vV4MGjSInsM6wJVXXonRo0dj2LBhpu30vNVdPvroI3Tv3h3nn38+GjZsiC5duuCFF14wXqfnrm7Sv39/fPXVV9i4cSMA4LfffsMPP/yAUaNGAaDnrT4QyzlasWIFRFE07ZOXl4f27dvT81iHOHbsGBiGMTKE6HmruyiKgilTpmDevHlo166d7XV67uo3fG0PgKJx8OBByLKM7Oxs0/bs7Gzs3bu3lkZFcUNVVcydOxf9+/dH+/btAcA4T07ncPv27TU+RkqYd955BytXrsTy5cttr9HzVnfZsmULnn32WcydOxc333wzfvnlF8yePRterxdTp06l566OcuONN+LYsWNo3bo1OI6DLMu45557MGHCBAD0nqsPxHKO9u7dC4/Hg/T0dNs+dN1SNygvL8dNN92EiRMnIiUlBQA9b3WZBx54ADzPY/bs2Y6v03NXv6FGdx2DYRjT36qq2rZRap+rrroKv//+O3744Qfba/Qc1i127tyJOXPm4IsvvoDP53Pdj563uoeiKOjevTvuvfdeAECXLl2wbt06PPvss5g6daqxHz13dYt3330Xb7zxBt566y20a9cOq1evxjXXXIO8vDxcdNFFxn70vNV9KnKO6HmsG4iiiAsvvBCKouCZZ56Juj89b7XLihUr8Pjjj2PlypVxnwd67uoHNL28jpCVlQWO42yeqv3799s8zZTa5eqrr8ZHH32Er7/+Go0bNza25+TkAAA9h3WMFStWYP/+/ejWrRt4ngfP8/j222/xxBNPgOd549zQ81b3yM3NRdu2bU3b2rRpY4hL0nuubjJv3jzcdNNNuPDCC9GhQwdMmTIF1157Le677z4A9LzVB2I5Rzk5OQgGgzhy5IjrPpTaQRRFjB8/Hlu3bsXixYuNKDdAz1td5fvvv8f+/ftRUFBgrFW2b9+O6667DkVFRQDouavvUKO7juDxeNCtWzcsXrzYtH3x4sXo27dvLY2KQqKqKq666iq89957WLJkCZo0aWJ6vUmTJsjJyTGdw2AwiG+//Zaew1pk6NChWLNmDVavXm381717d0yaNAmrV69G06ZN6Xmro/Tr18/Wlm/jxo0oLCwEQO+5ukppaSlY1ry84DjOaBlGz1vdJ5Zz1K1bNwiCYNpnz549WLt2LT2PtYhucP/111/48ssvkZmZaXqdnre6yZQpU/D777+b1ip5eXmYN28ePv/8cwD03NV3aHp5HWLu3LmYMmUKunfvjj59+mDhwoXYsWMHZs2aVdtDo0AT4nrrrbfw4YcfIjk52YgApKamwu/3G72f7733XrRo0QItWrTAvffei4SEBEycOLGWR3/qkpycbNTd6yQmJiIzM9PYTs9b3eTaa69F3759ce+992L8+PH45ZdfsHDhQixcuBAA6D1XRznrrLNwzz33oKCgAO3atcOqVavwyCOPYPr06QDoeasrFBcXY9OmTcbfW7duxerVq5GRkYGCgoKo5yg1NRUzZszAddddh8zMTGRkZOD6669Hhw4dbIKVlKoj0nnLy8vDeeedh5UrV+KTTz6BLMvGWiUjIwMej4eet1ok2j1ndZAIgoCcnBy0atUKAL3n6j21pJpOceHpp59WCwsLVY/Ho3bt2tVoR0WpfQA4/vfKK68Y+yiKot5xxx1qTk6O6vV61YEDB6pr1qypvUFTHCFbhqkqPW91mY8//lht37696vV61datW6sLFy40vU7PXd3j+PHj6pw5c9SCggLV5/OpTZs2VW+55RY1EAgY+9DzVvt8/fXXjs+0iy66SFXV2M5RWVmZetVVV6kZGRmq3+9XzzzzTHXHjh218G1OHSKdt61bt7quVb7++mvjGPS81Q7R7jkr1pZhqkrPXX2GUVVVrSH7nkKhUCgUCoVCoVAolFMKWtNNoVAoFAqFQqFQKBRKNUGNbgqFQqFQKBQKhUKhUKoJanRTKBQKhUKhUCgUCoVSTVCjm0KhUCgUCoVCoVAolGqCGt0UCoVCoVAoFAqFQqFUE9ToplAoFAqFQqFQKBQKpZqgRjeFQqFQKBQKhUKhUCjVBDW6KRQKhUKpg9x5553o3LlzjX/uN998A4ZhwDAMxo4dG3HfwYMH45prrqmRcemfp49t9erVNfa5FAqFQqFUBr62B0ChUCgUyqkGwzARX7/ooovw1FNP4eqrr66hEdnZsGEDGjZsWGuf78R7772HzZs3o2fPnrU9FAqFQqFQYoYa3RQKhUKh1DB79uwx/v3uu+/i9ttvx4YNG4xtfr8fSUlJSEpKqo3hAQAaNmyItLS0Wvt8JzIyMnD8+PHaHgaFQqFQKHFB08spFAqFQqlhcnJyjP9SU1PBMIxtmzW9fNq0aRg7dizuvfdeZGdnIy0tDQsWLIAkSZg3bx4yMjLQuHFjvPzyy6bP2rVrFy644AKkp6cjMzMTZ599NrZt2xb3mEtKSjB16lQkJSUhNzcXDz/8sG2fN954A927d0dycjJycnIwceJE7N+/HwCgqiqaN2+Of/7zn6b3rF27FizLYvPmzQC0tPqCggJ4vV7k5eVh9uzZcY+VQqFQKJS6BDW6KRQKhUKpJyxZsgS7d+/Gd999h0ceeQR33nknzjzzTKSnp2PZsmWYNWsWZs2ahZ07dwIASktLMWTIECQlJeG7777DDz/8gKSkJJx++ukIBoNxffa8efPw9ddf4/3338cXX3yBb775BitWrDDtEwwGcffdd+O3337DBx98gK1bt2LatGkAtJT66dOn45VXXjG95+WXX8aAAQPQrFkz/Pe//8Wjjz6K559/Hn/99Rc++OADdOjQoeI/GIVCoVAodQBqdFMoFAqFUk/IyMjAE088gVatWmH69Olo1aoVSktLcfPNN6NFixaYP38+PB4PfvzxRwDAO++8A5Zl8eKLL6JDhw5o06YNXnnlFezYsQPffPNNzJ9bXFyMl156Cf/85z8xfPhwdOjQAa+99hpkWTbtN336dJxxxhlo2rQpevfujSeeeAKfffYZiouLAQAXX3wxNmzYgF9++QUAIIoi3njjDUyfPh0AsGPHDuTk5GDYsGEoKChAz549MXPmzCr45SgUCoVCqT2o0U2hUCgUSj2hXbt2YNnwozs7O9sUCeY4DpmZmUZK94oVK7Bp0yYkJycbNeIZGRkoLy830rljYfPmzQgGg+jTp4+xLSMjA61atTLtt2rVKpx99tkoLCxEcnIyBg8eDEAzpgEgNzcXo0ePNlLgP/nkE5SXl+P8888HAJx//vkoKytD06ZNMXPmTLz//vuQJCmOX4hCoVAolLoHNbopFAqFQqknCIJg+pthGMdtiqIAABRFQbdu3bB69WrTfxs3bsTEiRNj/lxVVaPuU1JSghEjRiApKQlvvPEGli9fjvfffx8ATKnsl1xyCd555x2UlZXhlVdewQUXXICEhAQAQH5+PjZs2ICnn34afr8fV1xxBQYOHAhRFGMeK4VCoVAodQ2qXk6hUCgUyklK165d8e6776Jhw4ZISUmp8HGaN28OQRCwdOlSFBQUAACOHDmCjRs3YtCgQQCAP//8EwcPHsT999+P/Px8AMCvv/5qO9aoUaOQmJiIZ599Fp999hm+++470+t+vx9jxozBmDFjcOWVV6J169ZYs2YNunbtWuHxUygUCoVSm9BIN4VCoVAoJymTJk1CVlYWzj77bHz//ffYunUrvv32W8yZMwd///13zMdJSkrCjBkzMG/ePHz11VdYu3Ytpk2bZkp1LygogMfjwZNPPoktW7bgo48+wt13/3979x4dRX3/f/y1hGSTAAmSkJuEEC1ISIhFghDkGksUlMqlKKIIFSkItIXUIwWLJN9aItj61RbBYsGAqPVrEYVCkRy5iDXQQIkgUn5Qg+GSCAmXIIRcYH5/0GxZNwkLyWR2zfNxzh6Yz3xm9j27+WTy2rnsr13W5ePjo/Hjx2vWrFn63ve+53TKelZWlpYuXarPP/9cX375pd544w0FBAQoJiamfi8EAAAWInQDAPAdFRgYqI8//ljt27fXiBEjFBcXp8cff1xlZWXXfeT7hRdeUL9+/fTDH/5QP/jBD9SnTx91797dMb9t27bKysrSu+++qy5duuj55593+XqwahMmTFBFRYXjBmrVWrdurddee0133XWXEhMT9dFHH2nt2rUKCQm5/o0HAMBD2Ax3LtQCAABNwpYtWzRw4ECdPn1arVu3NuU5/v73v2vAgAE6evSowsPDr2vZw4cPKzY2Vrt373b6HnMAADwVR7oBAICLdu3a6eGHH27QdZaXl+vQoUOaM2eOHnzwwesO3IMHD1Z8fHyD1gQAgNk40g0AABzKysp07NgxSVeu5Y6IiGiwdWdlZWnChAn6/ve/rzVr1ujmm2++ruWPHTumsrIySf+9hhwAAE9H6AYAAAAAwCScXg4AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQCAG37/+9/LZrMpISGhXutZv3690tPTG6YoD3f48GHZbDZlZWVd97LHjx9Xenq68vLyXOalp6fLZrPVv0AAABoBoRsAADcsW7ZMkrRv3z7t2LHjhtezfv16ZWRkNFRZ31nHjx9XRkZGjaH7iSeeUE5OTuMXBQDADSB0AwBwDTt37tRnn32m++67T5K0dOlSiysy14ULF2psNwxDZWVljVyNq3bt2qlXr15WlwEAgFsI3QAAXEN1yH7++efVu3dv/fnPf3YKplu2bJHNZtOWLVuclvv26dXjx4/XK6+8Ikmy2WyOx+HDhyVJFy9e1KxZsxQbGys/Pz/dfPPNmjp1qs6cOeNS01tvvaXk5GS1bNlSLVu21Pe//32XDwOWLVum22+/Xf7+/mrTpo2GDx+u/fv3O/UZP368WrZsqb179yo1NVWtWrXS3Xff7ahx2rRpevXVVxUXFye73a7ly5dLkg4ePKgxY8YoLCxMdrtdcXFxjm2ry6FDh/TjH/9YHTt2VGBgoG6++WYNHTpUe/fudXo9e/ToIUn68Y9/7Hidqk/Lr+n08suXL2vBggXq3Lmz7Ha7wsLC9Nhjj+no0aNO/QYMGKCEhATl5uaqb9++CgwM1C233KLnn39ely9fvmb9AABcL0I3AAB1KCsr09tvv60ePXooISFBjz/+uM6dO6d33333utc1Z84c/ehHP5Ik5eTkOB6RkZEyDEPDhg3Tb3/7W40dO1br1q1TWlqali9frpSUFJWXlzvW8+yzz+qRRx5RVFSUsrKytHr1ao0bN05fffWVo09mZqYmTJig+Ph4vffee3r55Ze1Z88eJScn6+DBg051VVRU6Ic//KFSUlL0wQcfOJ3+/v7772vx4sV69tln9eGHH6pv37764osv1KNHD33++ef63e9+p7/+9a+677779LOf/eyap84fP35cISEhev7557Vhwwa98sorat68uXr27KkDBw5Iku644w69/vrrkqRf/epXjtfpiSeeqHW9Tz75pGbOnKlBgwZpzZo1+vWvf60NGzaod+/eKi4udupbVFSkRx55RI8++qjWrFmjwYMHa9asWVq5cmWdtQMAcEMMAABQqxUrVhiSjFdffdUwDMM4d+6c0bJlS6Nv376OPps3bzYkGZs3b3ZaNj8/35BkvP766462qVOnGjXtfjds2GBIMhYsWODU/s477xiSjCVLlhiGYRhffvml4ePjYzzyyCO11nz69GkjICDAGDJkiFN7QUGBYbfbjTFjxjjaxo0bZ0gyli1b5rIeSUZwcLBx6tQpp/Z77rnHaNeunXH27Fmn9mnTphn+/v6O/jVt/7dVVVUZFRUVRseOHY0ZM2Y42nNzc2tddu7cuU6v4f79+w1JxpQpU5z67dixw5BkzJ4929HWv39/Q5KxY8cOp75dunQx7rnnnlrrBADgRnGkGwCAOixdulQBAQEaPXq0JKlly5YaNWqUtm3b5nLEuD42bdok6crp3lcbNWqUWrRooY8++kiSlJ2drUuXLmnq1Km1risnJ0dlZWUu64qOjlZKSopjXVcbOXJkjetKSUnRTTfd5Ji+ePGiPvroIw0fPlyBgYGqqqpyPIYMGaKLFy9q+/bttdZWVVWlefPmqUuXLvLz81Pz5s3l5+engwcPupz67q7NmzdLcn3t7rzzTsXFxblsb0REhO68806ntsTERKczBQAAaCiEbgAAanHo0CF9/PHHuu+++2QYhs6cOaMzZ844ThGvvqN5QygpKVHz5s3Vtm1bp3abzaaIiAiVlJRIkk6ePCnpys3E6lqXJEVGRrrMi4qKcsyvFhgYqKCgoBrX9e11lJSUqKqqSn/4wx/k6+vr9BgyZIgkuZzOfbW0tDTNmTNHw4YN09q1a7Vjxw7l5ubq9ttvv+GbtF3v9oaEhLj0s9vtHnGTOADAd09zqwsAAMBTLVu2TIZh6C9/+Yv+8pe/uMxfvny5nnvuOfn7+0uS03XXUt3h89tCQkJUVVWlkydPOgVvwzBUVFTkuLFY9byjR48qOjq61nVJUmFhocu848ePKzQ01Kmtru+8/va8m266ST4+Pho7dmytR9tjY2NrXd/KlSv12GOPad68eU7txcXFat26da3L1eXq7f32hxE1bS8AAI2JI90AANTg0qVLWr58uW699VZt3rzZ5fGLX/xChYWF+tvf/qYOHTpIkvbs2eO0jjVr1ris1263S5LLUdXqO4Z/+2Zeq1at0vnz5x3zU1NT5ePjo8WLF9dae3JysgICAlzWdfToUW3atMmxrhsRGBiogQMHavfu3UpMTFRSUpLLo6YjydVsNpvjNai2bt06HTt2zKmtttepJikpKZJcX7vc3Fzt37+/XtsLAEB9caQbAIAa/O1vf9Px48c1f/58DRgwwGV+QkKCFi5cqKVLl+r+++/XD37wA2VmZuqmm25STEyMPvroI7333nsuy3Xt2lWSNH/+fA0ePFg+Pj5KTEzUoEGDdM8992jmzJkqLS3VXXfdpT179mju3Lnq1q2bxo4dK0nq0KGDZs+erV//+tcqKyvTww8/rODgYH3xxRcqLi5WRkaGWrdurTlz5mj27Nl67LHH9PDDD6ukpEQZGRny9/fX3Llz6/XavPzyy+rTp4/69u2rJ598Uh06dNC5c+d06NAhrV271nF9ek3uv/9+ZWVlqXPnzkpMTNSuXbv0wgsvuByhvvXWWxUQEKA333xTcXFxatmypaKiohQVFeWyzttuu00/+clP9Ic//EHNmjXT4MGDdfjwYc2ZM0fR0dGaMWNGvbYXAIB6sfhGbgAAeKRhw4YZfn5+xokTJ2rtM3r0aKN58+ZGUVGRUVhYaPzoRz8y2rRpYwQHBxuPPvqosXPnTpc7cJeXlxtPPPGE0bZtW8NmsxmSjPz8fMMwDKOsrMyYOXOmERMTY/j6+hqRkZHGk08+aZw+fdrluVesWGH06NHD8Pf3N1q2bGl069bN5U7ff/rTn4zExETDz8/PCA4ONh544AFj3759Tn3GjRtntGjRosbtk2RMnTq1xnn5+fnG448/btx8882Gr6+v0bZtW6N3797Gc88959Tn29t/+vRpY8KECUZYWJgRGBho9OnTx9i2bZvRv39/o3///k7P8fbbbxudO3c2fH19DUnG3LlzDcNwvXu5YRjGpUuXjPnz5xudOnUyfH19jdDQUOPRRx81jhw54tSvf//+Rnx8vMv2jBs3zoiJialxWwEAqA+bYRiGlaEfAAAAAIDvKq7pBgAAAADAJIRuAAAAAABMQugGAAAAAMAkloTujz/+WEOHDlVUVJRsNpvef//9ay6zdetWde/eXf7+/rrlllv06quvml8oAAAAAAD1YEnoPn/+vG6//XYtXLjQrf75+fkaMmSI+vbtq927d2v27Nn62c9+plWrVplcKQAAAAAAN87yu5fbbDatXr1aw4YNq7XPzJkztWbNGu3fv9/RNnnyZH322WfKyclphCoBAAAAALh+XnFNd05OjlJTU53a7rnnHu3cuVOVlZUWVQUAAAAAQN2aW12AO4qKihQeHu7UFh4erqqqKhUXFysyMrLG5crLy1VeXu6Yvnz5sk6dOqWQkBDZbDZTawYAAAAAfHcZhqFz584pKipKzZrVfjzbK0K3JJeQXH1WfF3hOTMzUxkZGabWBQAAAABouo4cOaJ27drVOt8rQndERISKioqc2k6cOKHmzZsrJCSk1uVmzZqltLQ0x/TZs2fVvn175efnq1WrVqbVeyN+v+nfWpFToEs1XGLvY5MeS47Rz1JutaAywLNVVlZq8+bNGjhwoHx9fa0uB/BojBfAfYwXwH1NdbycO3dOsbGx18yWXhG6k5OTtXbtWqe2jRs3Kikpqc431W63y263u7S3adNGQUFBDV5nfYwf6K83/nlSzWq4rZ3NJv14YLxCQlo0fmGAh6usrFRgYKBCQkKa1C954EYwXgD3MV4A9zXV8VK9rde6dNmSG6l98803ysvLU15enqQrXwmWl5engoICSVeOUD/22GOO/pMnT9ZXX32ltLQ07d+/X8uWLdPSpUv11FNPWVG+KWJDW2j+yEQ1u+r98rFJzWzS/JGJ6hBK4AYAAAAAb2PJke6dO3dq4MCBjunqU8DHjRunrKwsFRYWOgK4JMXGxmr9+vWaMWOGXnnlFUVFRen3v/+9Ro4c2ei1m2lUUrQSbg7S4Jc/kSSNS47RY71jCdwAAAAA4KUsCd0DBgxQXV8PnpWV5dLWv39//fOf/zSxKs8Qc9Up5D+/+1YFtwiwsBoAAAAAQH14xfd0AwAAAADgjQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJLA3dixYtUmxsrPz9/dW9e3dt27at1r5btmyRzWZzefzrX/9qxIoBAAAAAHCfZaH7nXfe0fTp0/XMM89o9+7d6tu3rwYPHqyCgoI6lztw4IAKCwsdj44dOzZSxQAAAAAAXB/LQveLL76oCRMm6IknnlBcXJxeeuklRUdHa/HixXUuFxYWpoiICMfDx8enkSoGAAAAAOD6NLfiSSsqKrRr1y798pe/dGpPTU3Vp59+Wuey3bp108WLF9WlSxf96le/0sCBA2vtW15ervLycsd0aWmpJKmyslKVlZX12ALzVFZWOf3fU+sEPEX1GGGsANfGeAHcx3gB3NdUx4u722tJ6C4uLtalS5cUHh7u1B4eHq6ioqIal4mMjNSSJUvUvXt3lZeX64033tDdd9+tLVu2qF+/fjUuk5mZqYyMDJf2jRs3KjAwsP4bYoLyS1L127Jp0ybZOZAPuCU7O9vqEgCvwXgB3Md4AdzX1MbLhQsX3OpnSeiuZrPZnKYNw3Bpq3bbbbfptttuc0wnJyfryJEj+u1vf1tr6J41a5bS0tIc06WlpYqOjlZqaqqCgoIaYAsa3oWKKj39j02SpJSUFAW38Le4IsCzVVZWKjs7W4MGDZKvr6/V5QAejfECuI/xArivqY6X6jOpr8WS0B0aGiofHx+Xo9onTpxwOfpdl169emnlypW1zrfb7bLb7S7tvr6+HvvD4Gv890MHX9/mHlsn4Gk8eVwDnobxAriP8QK4r6mNF3e31ZIbqfn5+al79+4upx9kZ2erd+/ebq9n9+7dioyMbOjyAAAAAABoEJadXp6WlqaxY8cqKSlJycnJWrJkiQoKCjR58mRJV04NP3bsmFasWCFJeumll9ShQwfFx8eroqJCK1eu1KpVq7Rq1SqrNgEAAAAAgDpZFrofeughlZSU6H/+539UWFiohIQErV+/XjExMZKkwsJCp+/srqio0FNPPaVjx44pICBA8fHxWrdunYYMGWLVJgAAAAAAUCdLb6Q2ZcoUTZkypcZ5WVlZTtNPP/20nn766UaoCgAAAACAhmHJNd0AAAAAADQFhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABMQugGAAAAAMAkhG4AAAAAAExC6AYAAAAAwCSEbgAAAAAATELoBgAAAADAJIRuAAAAAABM0tzqAgAAAABcn/zi8/q/nUd09HSZ2t0UoAeTohUb2sLqsgDUgNANoEbszAEAZvCG/Ut+8Xn9ecdXyv1/zfRF84Ma3TPGo2r8v51H9MtVe2Sz2WQYhmw2m/649d+aPzJRo5KirS4PwLdYGroXLVqkF154QYWFhYqPj9dLL72kvn371tp/69atSktL0759+xQVFaWnn35akydPbsSK4S07SmqsH3bmDcPT32dv4Q2vozfU6Om84TX0hho9nTfsXxw1yqbLhk2ffXJYr32S7zE15hef1y9X7dFlQ5JhXGn8z78zV+1Rjw5t1IGfSzQiT/+QyhPYDKN6tDaud955R2PHjtWiRYt011136Y9//KP+9Kc/6YsvvlD79u1d+ufn5yshIUETJ07UpEmT9Pe//11TpkzR22+/rZEjR7r1nKWlpQoODtbZs2cVFBTU0JvUIC5UVKnLsx9Kkj6bk6LgFgENst4T5y7Wex1rPzuu36zbL5tsMmQ4/v3VfXG6//aoBqiy/qix/gpOXdCDr+Zc2Zl/SzOb9O7kZEW3CWz8wmpQcOqCPth9VPsOfqX4jjF6oFs7tfeQ2jz9ffYW3vA6ekONEuOlvryhRunK+7z2s+MqPHNRka39NfT2KI95n71h/+INNb6y+ZBW5hToUg1/wvvYpEeTYzR14PcsqKwOlqQNNIa1nx3Xb9bvl03SZcNQM5tNhnTld2Ni/X43tmnhp+Y+nn0LMnfzpWWhu2fPnrrjjju0ePFiR1tcXJyGDRumzMxMl/4zZ87UmjVrtH//fkfb5MmT9dlnnyknJ8et56x+UQpPlnh06E567iNJUs7M/gpu4d8g6/1H/inV550uKr2o2av31rgOm03KHN5V4UENU+uNosaG8e6uI9rweVGtf3DcmxChUd2t/6R/28GTev3Tw7JJjqMlhqTHe8eqT8dQS2vzhvfZG3jD6+gNNUqMl/ryhhqlb73PkuNfT3ifJe/Yv3hDja9u/bf+cbjmv+tsNunODm00uf+tjV+YFyoqvahtB0+q5JsKhbT0U9+ObRXhAWP5ap5co9m/G7u2C1Kgn2dfDV1aWqrItiGeGborKioUGBiod999V8OHD3e0//znP1deXp62bt3qsky/fv3UrVs3vfzyy4621atX68EHH9SFCxfk6+vrskx5ebnKy8sd06WlpYqOjlb09P9TM7tnfOoLAAAAAPA+l8sv6MhLD14zdFtyvL64uFiXLl1SeHi4U3t4eLiKiopqXKaoqKjG/lVVVSouLq5xmczMTAUHBzse0dHWH50DAAAAADQdlh6vt9lsTtPVp7xdT/+a2qvNmjVLaWlpjunqI91/f7qfx55eLkmVlVXatGmTUlJS5OvbMG/Rrq9O1+v08lX/PK4NX3xd++lWXcI18g5rr2mjxobxdelFPfPB/hovv7JJ+s0DXRQeZG/sspz8cVu+cg+fqblGm9QjprUm9Y1t9Lqq8T43DG94Hb2hRsZL/XlDjZ7+Pkve8XvHG2qUpE/+XaKsTwtks111KYEhje/dXn1uDbG6PH1yqERZOQWO17GZzbPq84YxTY1SfFSQAvx86lGh+UpLS9X+pWv3syR0h4aGysfHx+Wo9okTJ1yOZleLiIiosX/z5s0VElLz4LXb7bLbXX8xBrcIUFAD3aDMDJWVlbL7SMEt/Gs8bf5GBPpfqFfo/kF8hP72xdc1zjMkDYqPVKC/tTshamwYsf52Tep/i/748Zcu1wVO6neLYsOs/8AqIjhQNtuZmq8h+s98K19Hb3ift+/5+sofa7Vch7X98Bk9fKfrTS0bkze8jt5QI+Ol/ryhRk9/nyXv2L+41HjVPRA8pUZJSo2PUmK7Ntp84IROflOuti3tGnhbmCKCrb/Wt/BsmbK2Fzh9cFEdyrJyCpTYro3ldZ6+WFXrvd2M/8y3erx4Q41m/24MauHv8dd02y5VutXPkq3w8/NT9+7dlZ2d7XRNd3Z2th544IEal0lOTtbatWud2jZu3KikpKQGC6bfZXER9dtJdIkMUsbQeKWv3XfVnVuvDKj0ofFK6RzWIHXWBzU2nC6RQbqva5RW7z6m42fKFNU6QMO73ewxd8B9ok+s/rrneK3zJ/a9xdJaveF9rqi6fM35XSKt/ePSG15Hb6iR8VJ/3lCjp7/P1Tx9/yL9t8ZVuwq05/8dVmKnGI3s3t6japSu1OkJP3vflv3F12ommy7VEBmbSdp77KzldcdFBOkfX56qtca4iFaKi2zV+IVdJS6ilefXGNlK6UPjlbF2n8vdy+cOjdfAzm3rtX57c88+yn09LP/KsFdffVXJyclasmSJXnvtNe3bt08xMTGaNWuWjh07phUrVkj671eGTZo0SRMnTlROTo4mT578nfvKMOnKke7169dryJAhHveBwuHi83rnqu8ofSgp2uO+C5Iam4Z3dx7RzP981+vly5cdv+Q95XtUJc9+n+dv+JeWfPylLtVwTphPM5t+0u8Wzby3swWVufLk17Gap9fIeGkYnl7j1e+z4witYXjU++xNPPnvMU/207d3a92e47WecnxfYpT+8HC3xi/sKvnF53X377bUWuOmXwywfGx7Q43VDhef19s7vlLuF/9Wjy636uGeMR5Tm9k8/ivDJGnRokVasGCBCgsLlZCQoP/93/9Vv379JEnjx4/X4cOHtWXLFkf/rVu3asaMGdq3b5+ioqI0c+ZMTZ482e3nI3QD3y1N+Zd8fXnTzhwNg/HSNHj6BwPehL/Hboy3fKjrDR9SeUON1ZrqePGK0N3YCN3Adw/j5cZ5084cDYPxAriP8XJjvOlDXW/4kMobapSa7nhxN1969pXpAADTjEqKVo8ObbxiZw4A8A6xoS00f2RirR/qetI+pkNoC4846l4Xb6gR10boBoAmjJ05AKCh8aEu4IzQDQAAAKBB8aEu8F/NrC4AAAAAAIDvKkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJLQvfp06c1duxYBQcHKzg4WGPHjtWZM2fqXGb8+PGy2WxOj169ejVOwQAAAAAA3IDmVjzpmDFjdPToUW3YsEGS9JOf/ERjx47V2rVr61zu3nvv1euvv+6Y9vPzM7VOAAAAAADqo9FD9/79+7VhwwZt375dPXv2lCS99tprSk5O1oEDB3TbbbfVuqzdbldERERjlQoAAAAAQL00+unlOTk5Cg4OdgRuSerVq5eCg4P16aef1rnsli1bFBYWpk6dOmnixIk6ceKE2eUCAAAAAHDDGv1Id1FRkcLCwlzaw8LCVFRUVOtygwcP1qhRoxQTE6P8/HzNmTNHKSkp2rVrl+x2e43LlJeXq7y83DFdWloqSaqsrFRlZWU9t8Q81bV5co2Ap2C8AO5jvADuY7wA7muq48Xd7W2w0J2enq6MjIw6++Tm5kqSbDabyzzDMGpsr/bQQw85/p+QkKCkpCTFxMRo3bp1GjFiRI3LZGZm1ljTxo0bFRgYWGetniA7O9vqEgCvwXgB3Md4AdzHeAHc19TGy4ULF9zq12Che9q0aRo9enSdfTp06KA9e/bo66+/dpl38uRJhYeHu/18kZGRiomJ0cGDB2vtM2vWLKWlpTmmS0tLFR0drdTUVAUFBbn9XI2tsrJS2dnZGjRokHx9fa0uB/BojBfAfYwXwH2MF8B9TXW8VJ9JfS0NFrpDQ0MVGhp6zX7Jyck6e/as/vGPf+jOO++UJO3YsUNnz55V79693X6+kpISHTlyRJGRkbX2sdvtNZ567uvr6xU/DN5SJ+AJGC+A+xgvgPsYL4D7mtp4cXdbG/1GanFxcbr33ns1ceJEbd++Xdu3b9fEiRN1//33O925vHPnzlq9erUk6ZtvvtFTTz2lnJwcHT58WFu2bNHQoUMVGhqq4cOHN/YmAAAAAADglkYP3ZL05ptvqmvXrkpNTVVqaqoSExP1xhtvOPU5cOCAzp49K0ny8fHR3r179cADD6hTp04aN26cOnXqpJycHLVq1cqKTQAAAAAA4Joa/e7lktSmTRutXLmyzj6GYTj+HxAQoA8//NDssgAAAAAAaFCWHOkGAAAAAKApIHQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdAMAAAAAYBJCNwAAAAAAJiF0AwAAAABgEkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACaxJHT/5je/Ue/evRUYGKjWrVu7tYxhGEpPT1dUVJQCAgI0YMAA7du3z9xCAQAAAACoB0tCd0VFhUaNGqUnn3zS7WUWLFigF198UQsXLlRubq4iIiI0aNAgnTt3zsRKAQAAAAC4cZaE7oyMDM2YMUNdu3Z1q79hGHrppZf0zDPPaMSIEUpISNDy5ct14cIFvfXWWyZXCwAAAADAjWludQHuyM/PV1FRkVJTUx1tdrtd/fv316effqpJkybVuFx5ebnKy8sd02fPnpUknTp1SpWVleYWXQ+VlZW6cOGCSkpK5Ovra3U5gEdjvADuY7wA7mO8AO5rquOl+qxrwzDq7OcVobuoqEiSFB4e7tQeHh6ur776qtblMjMzlZGR4dIeGxvbsAUCAAAAAJqkc+fOKTg4uNb5DRa609PTawy4V8vNzVVSUtINP4fNZnOaNgzDpe1qs2bNUlpammP68uXLOnXqlEJCQupczmqlpaWKjo7WkSNHFBQUZHU5gEdjvADuY7wA7mO8AO5rquPFMAydO3dOUVFRdfZrsNA9bdo0jR49us4+HTp0uKF1R0RESLpyxDsyMtLRfuLECZej31ez2+2y2+1Obe7eLd0TBAUFNakfWqA+GC+A+xgvgPsYL4D7muJ4qesId7UGC92hoaEKDQ1tqNU5iY2NVUREhLKzs9WtWzdJV+6AvnXrVs2fP9+U5wQAAAAAoL4suXt5QUGB8vLyVFBQoEuXLikvL095eXn65ptvHH06d+6s1atXS7pyWvn06dM1b948rV69Wp9//rnGjx+vwMBAjRkzxopNAAAAAADgmiy5kdqzzz6r5cuXO6arj15v3rxZAwYMkCQdOHDAcbdxSXr66adVVlamKVOm6PTp0+rZs6c2btyoVq1aNWrtjcFut2vu3Lkup8YDcMV4AdzHeAHcx3gB3Md4qZvNuNb9zQEAAAAAwA2x5PRyAAAAAACaAkI3AAAAAAAmIXQDAAAAAGASQjcAAAAAACYhdHuYRYsWKTY2Vv7+/urevbu2bdtmdUmAx0lPT5fNZnN6REREWF0W4BE+/vhjDR06VFFRUbLZbHr//fed5huGofT0dEVFRSkgIEADBgzQvn37rCkWsNi1xsv48eNd9je9evWypljAYpmZmerRo4datWqlsLAwDRs2TAcOHHDqwz6mZoRuD/LOO+9o+vTpeuaZZ7R792717dtXgwcPVkFBgdWlAR4nPj5ehYWFjsfevXutLgnwCOfPn9ftt9+uhQsX1jh/wYIFevHFF7Vw4ULl5uYqIiJCgwYN0rlz5xq5UsB61xovknTvvfc67W/Wr1/fiBUCnmPr1q2aOnWqtm/fruzsbFVVVSk1NVXnz5939GEfUzO+MsyD9OzZU3fccYcWL17saIuLi9OwYcOUmZlpYWWAZ0lPT9f777+vvLw8q0sBPJrNZtPq1as1bNgwSVeOQERFRWn69OmaOXOmJKm8vFzh4eGaP3++Jk2aZGG1gLW+PV6kK0e6z5w543IEHIB08uRJhYWFaevWrerXrx/7mDpwpNtDVFRUaNeuXUpNTXVqT01N1aeffmpRVYDnOnjwoKKiohQbG6vRo0fryy+/tLokwOPl5+erqKjIaV9jt9vVv39/9jVALbZs2aKwsDB16tRJEydO1IkTJ6wuCfAIZ8+elSS1adNGEvuYuhC6PURxcbEuXbqk8PBwp/bw8HAVFRVZVBXgmXr27KkVK1boww8/1GuvvaaioiL17t1bJSUlVpcGeLTq/Qn7GsA9gwcP1ptvvqlNmzbpd7/7nXJzc5WSkqLy8nKrSwMsZRiG0tLS1KdPHyUkJEhiH1OX5lYXAGc2m81p2jAMlzagqRs8eLDj/127dlVycrJuvfVWLV++XGlpaRZWBngH9jWAex566CHH/xMSEpSUlKSYmBitW7dOI0aMsLAywFrTpk3Tnj179Mknn7jMYx/jiiPdHiI0NFQ+Pj4unwKdOHHC5dMiAM5atGihrl276uDBg1aXAni06rv8s68BbkxkZKRiYmLY36BJ++lPf6o1a9Zo8+bNateunaOdfUztCN0ews/PT927d1d2drZTe3Z2tnr37m1RVYB3KC8v1/79+xUZGWl1KYBHi42NVUREhNO+pqKiQlu3bmVfA7ihpKRER44cYX+DJskwDE2bNk3vvfeeNm3apNjYWKf57GNqx+nlHiQtLU1jx45VUlKSkpOTtWTJEhUUFGjy5MlWlwZ4lKeeekpDhw5V+/btdeLECT333HMqLS3VuHHjrC4NsNw333yjQ4cOOabz8/OVl5enNm3aqH379po+fbrmzZunjh07qmPHjpo3b54CAwM1ZswYC6sGrFHXeGnTpo3S09M1cuRIRUZG6vDhw5o9e7ZCQ0M1fPhwC6sGrDF16lS99dZb+uCDD9SqVSvHEe3g4GAFBATIZrOxj6mNAY/yyiuvGDExMYafn59xxx13GFu3brW6JMDjPPTQQ0ZkZKTh6+trREVFGSNGjDD27dtndVmAR9i8ebMhyeUxbtw4wzAM4/Lly8bcuXONiIgIw263G/369TP27t1rbdGAReoaLxcuXDBSU1ONtm3bGr6+vkb79u2NcePGGQUFBVaXDViiprEiyXj99dcdfdjH1Izv6QYAAAAAwCRc0w0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJiE0A0AAAAAgEkI3QAAAAAAmITQDQAAAACASQjdAAAAAACYhNANAAAAAIBJCN0AAAAAAJjk/wP+ZMFmV+F0wwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAHqCAYAAAAZLi26AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gUVRfG3ylbkpBC7x1BepEioGADpSgW7BVFUSyoWMDPAliwiw07YEFBFBQxSm/SQ+89kEKA9Lq7U+73x+xO35KQkETv73l4yE69uzNz5557znkPQwghoFAoFAqFQqFQKBQKhVLusJXdAAqFQqFQKBQKhUKhUP6tUKObQqFQKBQKhUKhUCiUCoIa3RQKhUKhUCgUCoVCoVQQ1OimUCgUCoVCoVAoFAqlgqBGN4VCoVAoFAqFQqFQKBUENbopFAqFQqFQKBQKhUKpIKjRTaFQKBQKhUKhUCgUSgVBjW4KhUKhUCgUCoVCoVAqCGp0UygUCoVCoVAoFAqFUkFQo5tCoVAoQdm4cSNuvvlmNGzYEE6nEw0aNMDIkSOxYcOGUh1n0qRJYBimTG1YtWoVGIbBqlWryrR/pFx22WW47LLLItqOYRgwDAOWZREbG4s2bdrg5ptvxi+//AJZlsvchh9//BHTpk0r8/6VxX333af+Jnb/SsP69esxadIk5ObmWtZFeo0qgsTEREyaNKlCjh3p92rRooXh3ouPj0f79u1xzz33YMmSJefUhunTp2PWrFnndAwKhUKh2EONbgqFQqHY8vHHH6N///5ITU3F22+/jWXLluHdd99FWloaLrnkEnzyyScRH2v06NGlNtQD9OjRAxs2bECPHj3KtH9F0KpVK2zYsAHr16/Hb7/9hgkTJqCkpAQ333wzLrvsMuTl5ZXpuNXV6AaAqKgobNiwwfZfaVi/fj0mT55sa3RPnz4d06dPL6cWl47ExERMnjy5Us6tp3///uq99+uvv+Kxxx7D8ePHcfXVV2PkyJEQBKFMx6VGN4VCoVQcfGU3gEKhUChVj3Xr1uHJJ5/E0KFDsWDBAvC89rq47bbbcMMNN2DcuHHo3r07+vfvH/Q4xcXFiI6ORpMmTdCkSZMytSUuLg4XX3xxmfatKKKioixtGj16NGbOnIn7778fDz30EObOnVtJrascWJat8OvUoUOHCj1+dSAhIcHwO1911VV49NFHMWnSJEyePBkvvvgi3nrrrUpsIYVCoVDMUE83hUKhUCxMnToVDMPgs88+MxjcAMDzPKZPnw6GYfDmm2+qywMh5Nu2bcPIkSNRs2ZNtG7d2rBOj9frxfjx49GgQQNER0djwIAB2Lp1K1q0aIH77rtP3c4uvPy+++5DjRo1cOTIEQwdOhQ1atRA06ZNMX78eHi9XsN5Jk+ejD59+qBWrVqIi4tDjx498M0334AQUk6/lsaoUaMwdOhQzJs3DydOnFCXf/rppxgwYADq1auHmJgYdO7cGW+//bbBK3nZZZfhzz//xIkTJ2xDs8v6PaZNmwaGYXDkyBHLuueffx5OpxOZmZkAgO3bt2P48OGoV68eXC4XGjVqhGHDhiE1NfVcfxoAgCzLeO2119CuXTtERUUhISEBXbp0wYcffghAuU+effZZAEDLli3V3yBw7c1h2MnJyWAYBu+88w7eeusttGjRAlFRUbjssstw6NAhCIKACRMmoFGjRoiPj8cNN9yAM2fOGNo0d+5cDB48GA0bNkRUVBTat2+PCRMmoKioSN3mvvvuw6effgoAhmuTnJwMACCEYPr06ejWrRuioqJQs2ZNjBw5EseOHTOcixCCt99+G82bN4fb7UaPHj3w119/lctvO2nSJHTs2BGffPIJPB6PujyS+6ZFixbYu3cvVq9erX63Fi1aAAA8Hg/Gjx+Pbt26IT4+HrVq1ULfvn3x+++/l0u7KRQK5b8A9XRTKBQKxYAkSVi5ciV69uwZ1DvdtGlTXHTRRVixYgUkSQLHceq6G2+8Ebfddhsefvhhg+FiZtSoUZg7dy6ee+45XHHFFdi3bx9uuOEG5OfnR9ROQRBw3XXX4YEHHsD48eOxZs0avPrqq4iPj8fLL7+sbpecnIwxY8agWbNmAJQ89ccffxxpaWmG7cqL6667DomJiVi7di2aN28OADh69CjuuOMOtGzZEk6nEzt37sTrr7+OAwcOYMaMGQCU8N6HHnoIR48exYIFCyzHLev3uOuuu/D8889j1qxZeO2119TlkiThhx9+wLXXXos6deqgqKgIgwYNQsuWLfHpp5+ifv36yMjIwMqVK1FQUBDRdxdF0bKMZVmwrDLH//bbb2PSpEl48cUXMWDAAAiCgAMHDqih5KNHj0Z2djY+/vhjzJ8/Hw0bNgQQ3sP96aefokuXLvj000+Rm5uL8ePH49prr0WfPn3gcDgwY8YMnDhxAs888wxGjx6NhQsXqvsePnwYQ4cOxZNPPomYmBgcOHAAb731FjZv3owVK1YAAF566SUUFRXhl19+MYTLB9o3ZswYzJo1C0888QTeeustZGdnY8qUKejXrx927tyJ+vXrA1AM4MmTJ+OBBx7AyJEjkZKSggcffBCSJKFdu3YR/cahuPbaa/Hmm28iKSkJl1xyCYDI7psFCxZg5MiRiI+PV8P3XS4XAGVyLDs7G8888wwaN24Mn8+HZcuW4cYbb8TMmTNxzz33nHO7KRQK5V8PoVAoFApFR0ZGBgFAbrvttpDb3XrrrQQAOX36NCGEkFdeeYUAIC+//LJl28C6AHv37iUAyPPPP2/Y7qeffiIAyL333qsuW7lyJQFAVq5cqS679957CQDy888/G/YfOnQoadeuXdA2S5JEBEEgU6ZMIbVr1yayLKvrBg4cSAYOHBjyOwe269ixY9D1f/31FwFA3nrrrZBt+O677wjHcSQ7O1tdN2zYMNK8efOwbQj1Pey48cYbSZMmTYgkSeqyxMREAoD88ccfhBBCkpKSCADy22+/hT2/mcD1sPt35ZVXqtsNHz6cdOvWLeSx3nnnHQKAHD9+3LLOfI2OHz9OAJCuXbsavtu0adMIAHLdddcZ9n/yyScJAJKXl2d7blmWiSAIZPXq1QQA2blzp7ru0UcfJXbDpg0bNhAA5L333jMsT0lJIVFRUeS5554jhBCSk5ND3G43ueGGGwzbrVu3jgCI6N5r3rw5GTZsWND1n332GQFA5s6da7s+1H3TsWPHiNogiiIRBIE88MADpHv37mG3p1AoFAohNLycQqFQKGWC+MNTzWHjN910U9h9V69eDQC45ZZbDMtHjhxpCWcPBsMwuPbaaw3LunTpYgjrBoAVK1bgqquuQnx8PDiOg8PhwMsvv4ysrCxLqHF5QGzCvbdv347rrrsOtWvXVttwzz33QJIkHDp0KKLjnsv3GDVqFFJTU7Fs2TJ12cyZM9GgQQMMGTIEANCmTRvUrFkTzz//PD7//HPs27evFN9ayXPfsmWL5Z9e+Kx3797YuXMnxo4di8WLF0cc1RCOoUOHqt50AGjfvj0AYNiwYYbtAstPnjypLjt27BjuuOMONGjQQP1dBw4cCADYv39/2HMvWrQIDMPgrrvugiiK6r8GDRqga9euamj8hg0b4PF4cOeddxr279evnxoRca7Y3Xvlcf/PmzcP/fv3R40aNcDzPBwOB7755puIfh8KhUKh0JxuCoVCoZioU6cOoqOjcfz48ZDbJScnIzo6GrVq1TIsD4TchiIrKwsA1LDbADzPo3bt2hG1Mzo6Gm6327DM5XIZ8lk3b96MwYMHAwC++uorrFu3Dlu2bMH//vc/AEBJSUlE5yoNAaO/UaNGABQD79JLL0VaWho+/PBDrF27Flu2bFFzhCNpw7l+jyFDhqBhw4aYOXMmACAnJwcLFy7EPffco6YGxMfHY/Xq1ejWrRteeOEFdOzYEY0aNcIrr7wSkSI2y7Lo2bOn5V/btm3VbSZOnIh3330XGzduxJAhQ1C7dm1ceeWVSEpKCnv8UJjvQafTGXJ54B4pLCzEpZdeik2bNuG1117DqlWrsGXLFsyfPx9AZNfm9OnTIISgfv36cDgchn8bN25U8+UD93yDBg0sx7BbVhbM91553P/z58/HLbfcgsaNG+OHH37Ahg0bsGXLFtx///2GZ41CoVAowaE53RQKhUIxwHEcLr/8cvz9999ITU21zetOTU3F1q1bMWTIEEM+N2D1fNsRMKxPnz6Nxo0bq8tFUVSNk/Jgzpw5cDgcWLRokcFA/+2338rtHGYWLlwIhmEwYMAA9VxFRUWYP3++waO5Y8eOiI95rt+D4zjcfffd+Oijj5Cbm4sff/wRXq8Xo0aNMmzXuXNnzJkzB4QQ7Nq1C7NmzcKUKVMQFRWFCRMmRNzeYPA8j6effhpPP/00cnNzsWzZMrzwwgu4+uqrkZKSgujo6HM+R2lYsWIF0tPTsWrVKtW7DcC2XFkw6tSpA4ZhsHbtWjUPWk9gWeCez8jIsGyTkZGhCpeVFUII/vjjD8TExKBnz54Ayuf+/+GHH9CyZUvMnTvX8GybBQspFAqFEhzq6aZQKBSKhYkTJ4IQgrFjx0KSJMM6SZLwyCOPgBCCiRMnlun4AYPUXFbrl19+sRXjKisMw4DnecPEQElJCb7//vtyO4eemTNn4q+//sLtt9+uClcFDBW9QUYIwVdffWXZ3+Vy2Xofy+N7jBo1Ch6PBz/99BNmzZqFvn374sILL7TdlmEYdO3aFR988AESEhKwbdu2iM8TKQkJCRg5ciQeffRRZGdnq0rggd+pIqIQzNhdGwD44osvLNsGa9fw4cNBCEFaWpqtp79z584AgIsvvhhutxuzZ8827L9+/XpLSkRZmDx5Mvbt24dx48apBnZp7ptQ957T6TQY3BkZGVS9nEKhUEoB9XRTKBQKxUL//v0xbdo0PPnkk7jkkkvw2GOPoVmzZjh58iQ+/fRTbNq0CdOmTUO/fv3KdPyOHTvi9ttvx3vvvQeO43DFFVdg7969eO+99xAfH2/Izz0Xhg0bhvfffx933HEHHnroIWRlZeHdd9+19UiWhpKSEmzcuFH9+9ixY/jtt9+waNEiDBw4EJ9//rm67aBBg+B0OnH77bfjueeeg8fjwWeffYacnBzLcTt37oz58+fjs88+w0UXXaSGbJfH97jwwgvRt29fTJ06FSkpKfjyyy8N6xctWoTp06fj+uuvR6tWrUAIwfz585Gbm4tBgwaFPb4sy+pvYqZ79+5wuVy49tpr0alTJ/Ts2RN169bFiRMnMG3aNDRv3hwXXHCB+hsAwIcffoh7770XDocD7dq1Q2xsbMTfNVL69euHmjVr4uGHH8Yrr7wCh8OB2bNnY+fOnZZtA+1666231AiPLl26oH///njooYcwatQoJCUlYcCAAYiJicGpU6fwzz//oHPnznjkkUdQs2ZNPPPMM3jttdcwevRo3HzzzUhJScGkSZNKFV6em5ur/s5FRUU4ePAg5syZg7Vr1+KWW27B5MmT1W1Lc98Eohzmzp2LVq1awe12o3Pnzhg+fDjmz5+PsWPHqorrr776Kho2bIjDhw+X9ienUCiU/yaVJOBGoVAolGrAhg0byMiRI0n9+vUJz/OkXr165MYbbyTr16+3bBtQKD979mzQdXo8Hg95+umnSb169Yjb7SYXX3wx2bBhA4mPjydPPfWUul0w9fKYmJiIzjNjxgzSrl074nK5SKtWrcjUqVPJN998Y1HILo16OXTq3DExMaRVq1Zk5MiRZN68eQYV7QB//PEH6dq1K3G73aRx48bk2WefVVXO9d8rOzubjBw5kiQkJBCGYQzfJdLvEYovv/ySACBRUVEWBe8DBw6Q22+/nbRu3ZpERUWR+Ph40rt3bzJr1qywxw2lXg6AHD58mBBCyHvvvUf69etH6tSpQ5xOJ2nWrBl54IEHSHJysuF4EydOJI0aNSIsyxp+o2Dq5e+8845h/8A9M2/ePMPymTNnEgBky5Yt6rL169eTvn37kujoaFK3bl0yevRosm3bNgKAzJw5U93O6/WS0aNHk7p166rXRv+7z5gxg/Tp04fExMSQqKgo0rp1a3LPPfeQpKQkdRtZlsnUqVNJ06ZNidPpJF26dCF//PFHxPde8+bN1d+UYRhSo0YN0q5dO3L33XeTxYsX2+4T6X2TnJxMBg8eTGJjYwkAg4r+m2++SVq0aEFcLhdp3749+eqrr2yfNQqFQqHYwxBiI3VJoVAoFEolsH79evTv3x+zZ8/GHXfcUdnNoVAoFAqFQjlnqNFNoVAolEph6dKl2LBhAy666CJERUVh586dePPNNxEfH49du3ZZlMkpFAqFQqFQqiM0p5tCoVAolUJcXByWLFmCadOmoaCgAHXq1MGQIUMwdepUanBTKBQKhUL510A93RQKhUKhUCgUCoVCoVQQtGQYhUKhUCgUCoVCoVAoFQQ1uikUCoVCoVAoFAqFQqkgqNFNoVAoFAqFQqFQKBRKBUGF1EzIsoz09HTExsaCYZjKbg6FQqFQKBQKhUKhUKoghBAUFBSgUaNGYNng/mxqdJtIT09H06ZNK7sZFAqFQqFQKBQKhUKpBqSkpKBJkyZB11Oj20RsbCwA5YeLi4ur5NbYIwgClixZgsGDB8PhcFR2cygRQK9Z9YNes+oHvWbVD3rNqh/0mlU/6DWrftBrVn3Iz89H06ZNVRsyGNToNhEIKY+Li6vSRnd0dDTi4uLog1hNoNes+kGvWfWDXrPqB71m1Q96zaof9JpVP+g1q36ES0umQmoUCoVCoVAoFAqFQqFUENToplAoFAqFQqFQKBQKpYKgRjeFQqFQKBQKhUKhUCgVBDW6KRQKhUKhUCgUCoVCqSCo0U2hUCgUSjXhx00nMeb7JHgEqbKbQqFQKBQKJUKo0U2hUCgUSjWAEIIXFuzG4r2nsXhvRmU3h0KhUCgUSoRQo5tCoVAolGpAfomo/u3g7F/fHkGCKMnnq0kUCoVCoVAigBrdFAqFQqFUA7yiFlIuE2JZX+KTcOFLf2PQB2vOZ7MoFAqFQqGEgRrdFAqFQqFUA7yijH7sHvzinARH5n7L+kveWgEAOJ5ZdL6bRqFQKBQKJQR8ZTeAQqFQKBRKeLyihB+dbwAAcrY9B1yx1bA+q8in/i3LBCzLnNf2USgUCoVCsYd6uikUCoVCqeJIMoFH0HK1ozxnQm9vE35OoVAoFAqlcqCebgqFQqFQqjCCJGPwB2twKq8EBzhlmQQu5D6STOAIvQmFQqFQKJTzBPV0UygUCoVShdmTlofjmUUGTzdkMfgOAESZeroplKqALBN8889xHMwoqOymUCiUSoR6uikUCoVCqcKwjDU3myc+my01JIka3RRKVWDlwTN4ddE+AEDym8MquTUUCqWyoEY3hUKhUChVGDuj2xHE6B7ObkB39ggk+UoAjgpuGYVCCUdKdrH6NxU4pFD+u1Cjm0KhUCiUKoxmc2veaxb2nuxPnB8DAPIOLgIuGlnBLaNQKOHQG9kSIWBBjW4K5b8INbopFAqFQqnCiDJBf3Y3ujFHI9+p4FTFNYhCoUSMLBOM5v7EAHYXPMWXwhEbV9lNolAolQAVUqNQKBQKpQojSDJmO6fiWcfPEe8jS6GF1igUyvlBIsCLjtkYwO3G2x+8U9nNoVAolQQ1uinVijP5HqTlllR2MygUCuW88eScHfYrTLW4r2PXaaskqQJbRKFQIoURtDHLGQ8ddlMo/1Xo00+pNhBC0PuN5ej/5goUeqkXh0Kh/PvxCFLwiUZJMHz8yPmp+rcsU6ObUn0p9okQJDn8htUAXtBKhRUhqhJbQqFQKhNqdFOqDYKuBE5GnqcSW0KhUCjnh5D1tqXgZcMIDS+nVFMKPAK6TFqC6z9dF37jKowsE6w4cBo5BUXqMg7KRAIhtKQfhfJfgxrdlGqDpBt82lTQoVAolH8doiQDQZTKzUa3QDj1byIL5q0plGrBxmPZEGWCven5ld2Uc2LOlhTcPysJ85OOq8s4SFiyNwM9X1uGeUkpldg6CoVyvqFGN6XaIMhaqBm1uSkUyn8BQSKqd8yCbPRml8ClraI53ZRqSl7Jv2PCKHG3UkHAAe05neF8F2O/34SsIh+e/WVXZTWNQqFUAtToplQbRF14OUtd3RQK5T+AKMvozhy2X2nydIu6VzpVL//vUuARsDs1r9qGMBd4BAxhN+Ep/hdI1TSvmxCCnGLl+XTC+Cz2ZfdVRpMoFEolQ41uSrUhEGbpgi9YsCWFQqH8qxBEgl9cU+xX+o3uPWl5+GnzSUjU6KYAuGbaWlz7yT9YefBMZTelTAiSjM+cH2IcPx/SsdWV3ZwyMfmPfdibno/L2e3oxR40rGNBcAe3HD2YQ+d0DlGS8UbifqyqpteZQvmvwUey0a5dpQ+B6dChA3g+osNTKBEhyARv8F/jDn4lTmStAup0r+wmUSgUSoWiT6ux4FcvH/7xPwCAK1ya0S2J1Oj+rxJQu0/cnYErLqxfya0pPYKo3fNSUVYltqTszFqfjCbMGcx0WutyD2B34QH+L/+np8p8jnlbU/HlmmP4cs0xJL85rMzHoVAo54eIrOJu3bqBYZiIQ5VYlsWhQ4fQqlWrc2ocpfpR6BWx7UQO+rWuDZ4r30AKUZJxB78SAJCw7TOg3ZflevzyRpYJxs3dgZZ1YvD4ZS0ruzkUCqUaok+rsWAJL9eE1Kinm1JdIYJWnUSCoxJbcm40hv2EwRBuU7kcPzWnOOg6SSZIzSlG89ox5XIuCoVy7kTsit60aRPq1q0bdjtCCDp16nROjaKcP9JyS+BgGdSLc5fL8e6fuQWbk7Px5FUX4Mmr2pbLMQPoS+cQueoPKLeezMEfO9MBgBrdFAqlTISsVWwyuvNIDTRmlIE+Eb0V2SwKpcJgfZpquViNsyDlIJKvjZjsCj/3uDnbsWjXKUy7tRuu7964ws9HoVDCE5HRPXDgQLRp0wYJCQkRHXTAgAGIioo6l3ZRzgPFPhFDpq1BvkfEnslXo4br3NMBNicrL5O5W1LK3+jWeXwIqfriKh6BqgdTKJRzI7TRbVR5PkYaoANOAACI6LHbg0Kp8siePPVvqRpPHkkRTBgUeASM+X4rru7YAPf2a1Gq45f4gvcNi3YpyumfrTpKjW4KpYoQ0RTiypUrIza4ASAxMRENGzYsa5vKzKRJk8AwjOFfgwYNzns7KpOXf9+DEZ+ug1cMb/BlFfqQ71E8xodPF5RrO/Q1tcsL/eCThMpzrCJQhXUKhaLn3cUH8e365FLtI4bqS/2e7ngU4jp2HWpAM7S9nmKMmrkZy/efLktTKZTzjiwTFHpFMF7N0y17SyqxRecCQXv2ZNitvlh1FOuPZuGVhXtLfYYZ647DBR9c8IXfmEKhVDqlcm3m5+ejRo0aYFmjrS5JEoqKihAXF1eujSsLHTt2xLJly9TPHMeF2Prfx3cbFC/Hsn1nMKxL6IkPryihLnIxkNsJ2dcdQM1ya0cF2NzGwWc18HTrTe6KmISgUCjVhyNnCvDJyiMAUCqPlk8M3tdJgg8cgBnOd3ARaywrlnImByvTzmLlwbNUZIlSIRBCkJxZhKa1osGx5z7JfPtXG7HpeDZGN9JyoWWhehrdd3HL8JpjZtjtUjNzwUECU4aaLCxkbHaNBQ8JkK4FOOuQns79UyhVh4iTZRYsWICePXvC47GGrHm9XvTq1Qt//PFHuTauLPA8jwYNGqj/IslD/zdS5A2f8+wRZCxwvYx3HV+gzt4Z5Xp+uQLqg4rVzNOtt7rFalprlEKhlA/FPi36KLMw8pBZc9SS77rPcFRWJlR9PuV9bDa4AcAFwbKM8t+gNvLwILcINcScCj3Pot0ZuOzdVXj2l53lcrxNx5X0tLQMLTpDFs5PmgQhBD9uOol96fnhN46AR/iFEW0Xy/qQ6JyIv50TQEopflgLBYhnihHDeIGis5b1dZELVNNa7RTKv5GIje7PPvsMzz33HKKjoy3roqOj8fzzz+OTTz4p18aVhcOHD6NRo0Zo2bIlbrvtNhw7dqyym1QpeCIIL/eKMpowmQCAuIyN5Xr+ijC6hWqW082AwRv8V1jsfA6CN7jKKIVC+ffDMgw6MskYzm7A0z8bjZQzBR4s338ask1EjFcw9nWO7rcjC0pUWfLp3KDnc0GAAyJQBg8apXrzufMD/M/xI+5JealCz/PBMiVyY/62NMxcdxzHzhaWy3FrMJp3WxbPz+TRol2n8MKC3Rj60dpyOd4pUjui7RrjNNqxqWjDpqMoK61U55jg+En7YBoTDWc3YIt7LB72fFWqY1IoVQVZJijw/LsmjyMOL9+zZw+mT58edP2AAQPw4osvlkujykqfPn3w3XffoW3btjh9+jRee+019OvXD3v37kXt2vYdoNfrhdereR3y85VZTkEQIAhV82IH2hWqfS//vhe39GgUMuSr2KPlARWzMeCKPIhylk84viSTcv/9vLrjybJUZa9PAEkS1RJnOfv/AJBQ5dtM0YjkOaNULaryNZMkEX+6XgAA3Hy4JgShu7puyLS1yCry4d2RnTGiqzEtqKjE6OkTRRECUV7df+88gdaX+uC0OV8CU4A1ridxSG4CQbi6fL9MOVKVr1l1pRd7CADQqnhXhfyugWPmewR0ZY7gLEnA5D/2AQAOvzr4nI+vj9KQBM95uTd2nNQUxcvjfIFnNBwJnlT179zMDLhqNor4HCO5Ndr5vEWArt0Bg/x67x+G8Sx9zqoP//Vrdu/MJKw/lo1lT12C5rWsDt+qRKTXKGKjOycnB6IYPPRFEATk5FRsKFM4hgwZov7duXNn9O3bF61bt8a3336Lp59+2nafqVOnYvLkyZblS5YssfXqVyWWLl1q+EwI0IFJxXXcBnwtDsWLs/7GpQ2Cezn25jC41P930sl8jH9tGd7pI+FcUrPqoAgTHT9itvdKJCaWb1jYvhwGl/n/zs3OwsTP/gYD4NrmVdPrfTiPwSX+v/9YvwvxFwywXDNK1Ydes+pHVbxmKYVAV//fHdlkJCYmquuyipRX8ddLd+Lg7h1oX5OA8/fDO0/5MFJ3nMTERMT7X921pCws+vMv3GhzvvZsCgCgIZeNhX/+AcJUbX2TqnjNqioyAdafZtAylqCxTRnmEbq/9fdZeVPXewK/u14GALTw/HjO5xvKJuF5fg52kDbqshPHj2F7BX6HAEeTWQSCP8vjN6uJyJ4332ktNSRp3XIwhzMi2k8mwA26z2tXLEVBVBP1c3fCqClu+u9Dn7Pqx3/1mq0/przn3p23BkOaVs1xfoDi4siiWSM2ulu0aIGkpCRceOGFtuuTkpLQvHnzSA93XoiJiUHnzp1x+LA13y3AxIkTDQZ5fn4+mjZtisGDB1cJYTg7BEHA0qVLMWjQIDgcDnW5JBM4tw7DUG4zLmb3YWbc1xg6tLO6PrPQi3eWHMZtvZqge9MEcHtPA8n+fcFCJAwGXjkIsW4HykzSdRjBrcdN3FoIQzPLfhwbXPu09hJHFJanKy/I9x64CtHOcy93Vt6sP5oF+LMbDuQQtPMCNw83XjNK1SXYc0apulTla7b9ZC7gfxVNcnwHYej76rrJG37B7dwKzMsbiK/yauLtGzvh2u6Kx6twzU7APw4X7l+OoQ27YvORH4GCnbgoPh/NBl8NhEmp7dezE+Lrt6yAb3XuVOVrFgxRkvHr9nT0al4TreraWL0VzKJdpzBv424AQTzL27U/hw4dWu7nD1yz7qw1fe9czjdi+z0AgOY4oy5r0qg+Lq6A72Bm658HcM+Zr8CCYKju2Swrq5M+iGi7ujEc4A+2bNusPi64IrLvWuKTgB3a50su7g2mcTf1c+rWZ9W/hwwZAlEUq91z9l+nOvaN5cm4DUsAAO3aXoChl7eu5NaEJhAlHY6ILZUbb7wR//vf/zBo0CDUr1/fsC4jIwMvvvgi7rrrrtK1soLxer3Yv38/Lr300qDbuFwuuFwuy3KHw1Hlb3JzG2VRwlBuMwCgG3sUgkwM61/+YyeW7juN+dvTkfzmMMiyFrkgB9L7Wf6cvndjRjO0y//307z2KdlF6t8c74DDUfWMbrDaTLcDIgS5etxXFCP0mlU/quI1k2EMIQq0T5IJpjk+xQBuNwZxW3G9bwo2Hs/BLb39k9j+etsC44SjWU8AQHaNC4CCv+EUclEgEISbHi7JTEWdJm3L9fuUN1XxmgVjTlIyXvpdCaeuDGX4Q2c1r0q436wif1Oj4jYBwJT5fCSIDgwjC+flvnBKRXjR8S0A4PjpiWjZJPIwbzvECIfXDlEr1yoXZ0f8XYtN0ayM7DOOB3WSTal5PjRNUMa51ek5oyhEes02HcvCoTOFuKtPMzD/Etn6BBTAwXNV/p6NtH0RC6lNmDABsbGxuOCCCzB27Fh8+OGH+Oijj/DII4+gbdu2qFGjBiZMmFDmBpcHzzzzDFavXo3jx49j06ZNGDlyJPLz83HvvfdWarsqmhKfhO82JONkVjHyiRYSf3G2UT3TXItb8Ggv7pHcGixyvgBf0bmlCBSSKPXvrEIvpibux9FyEleRRC0HnQXBvdxi/Oh4DVJx+aiNljeSpInZTXZ8C09J+fwOFAql9BBC8OZfBzAvKaVSzi8J9orlOcU+DOAUr2U39ih2uR7EtYwm5uTz9xsCq00OS7zSz3NiCQ5lGPt1O9jC0gk0UUKz9UTlptLx5VCeqzxgdUZ3ayYd8Sj7Oy5oPXrp/OSz6o3f35LOXYDXi8gG4U5BG78s37oPaw5ZVchtjy8ZxXIlwRjeKumG9/8WA4wSmlu/3IiXftuDNYfLN8q0sniK/wU73GPQ/syfld2UciNiozs2Nhbr1q3DXXfdhblz5+Kpp57Ck08+iZ9//hl33XUX1q1bh9jY2Ipsa1hSU1Nx++23o127drjxxhvhdDqxcePGKhf2Xt68s/ggXv59LwZ9sAZe3ezqPVnTDNtJpplkyWfspDuxyXBtO7fSYYXQjO4nvvgTX6w5hmHlpAYqS0aje7LjW/Tj9oHfNbtcjl/emFVX3UetJfWyi3xIydaug516MYVCOXe2nsjB56uP4tlfdlXK+WVTfwtC8MPGE7jyvdWGxXFMMfoeekv9XFSkGAMSp/WtJGB0SyXwhqjjHYDxFoXdpjpCCMHTc3dgauL+83petpKNmI9XHEFd5KIO8iLe56s1x3DFu6twJr/8tFY4aIbfctez2Ol+qMzHEoKU1STny+gWdNFz8rmfU2ZMnu4JKUjt84plO6fO2K+FfNwzY3NEx/eZnnvzeEPv6WYKT0V0TEr15cgZbcJrd2pu5TWkHBnHzwcADDj8ZiW3pPyI2OgGgPj4eEyfPh2ZmZk4ffo0MjIykJmZienTpyMhIaGCmhg5c+bMQXp6Onw+H9LS0vDrr7+iQ4cOld2sCmfNYW1m1GurY6sYcynZJbiBXYtujFLmQ/RZPS+SoJTq8AgSUrKLMeyjtfi5FJ6h/XIz9e/TmWf9xyofAQRZ0Bvd2jGrqrwC0U0SAEA0rL93j1eX4tK3Vyr59osPoPurSw1GOIVCKR+KdHWyg4WyViRmo/tUVjZe/G0P8kqsA3yvpBl13mJlMCXzbnUZcShGN/EWQZQj6AHLwYioihzIKMD87Wn4Ys15Lg1ayY5DHiK2uMciyf0IZF9JyG0X71UEAV5P3I9jmUV4b8mhcmuHm4Q+d2kQxGCebuU9ajYyy4vkzCI898tOnM3U8sijxNxzPi5LtPQ9gXUD7jjkdH7Asl2UoEVNXMbuRF1EFkXhE2UclhurnyXBON7w6MaCcUmVX86XUrG8t+QgAIK6yEW+p3T13qs6JEJRwupAqYzuAAzDoG7duqhXrx4NW6kC6K+AL0iZiv0Z+biIOYgPnJ/hN7/aqODzWbaTZCA9twTdpizBpW+vxN70fDxXCs9Q7RgtpCoK1uOfC7IuvLwPq3k2JFdCuZ6nvDCXEBBCdBz7T+Xj05VHkVci4KPlwYX/Kpuv1hzDnM0nK7sZFEqpcfPa667YJ4XYsmKQTJ6oF+ZuAgcJnRirwZgjaV5txuf3dDu0SDLZb3T7Sgqx/UQOPCR0KCuR/l2DsAAe4fxfR6ByPd2EENSAZux6Tx8Iuf2Y77caPs/1T6JnF/kw9a/9Bg9ZaZBkIJaxGt1lndDyBfF0Q/Lh/aWH0PGVv7E3PXLPfqQ8+F0Sfk5KxakzmtHde8+UczqmLBNDFEAg9521GXHXJpqR3ZQ9i6Wu5yI6h0+SDTn1+vERAEOqITlPtc4plQfLMHiS/xVb3GPR7ezC8DtUI8i/yM6M2Og+c+YMHnroIdx2223Yu3dvRbaJUkoC92NT5jRasfblJiSZoA2brn4+W+A15EgHyMj3od+bK1TvtBMCnIi8w3aw2kugEZOl/n0g49zzromoeYpdjDaIlFh7735lM3eTcTDdiz1kGJAU+7TvoM9nq6oB5um5JXg9cT8mzN9Nw+Ap1Q6eY1AXOWjFpKPQe/6NUNE08D2cehov8d9jketFy7b1GW0g7vApfafk0uTSGKeimB0NL/7efgxuJnQfTeR/p9Et6/rT89knsQzwCv8tHufmn7dzBpBkAid0IqgFoXOAXTaT34QQPP/rLnyxunTpX6k5xfg5KQWiJKNQBGJgDVV/++/QkwDBECQZhcRtWc4IHny0/DAEiWBqYtmOHYrD/kmHON1ERlcbVfbSIMgyeH0MHlH+5m2s7nomz3YCE1kqiCASw9jMHF5ewmi/paBLTaH8O5Fkgif94dhDj79Rya05d/Rj5ape7rI0RGx0jxo1Cg0aNMANN9yAIUOGVEp4HiU4DZCFta6nDMt8uk6XEIDTvQQOZORDtBH22XA8W/07Ch6sdj2Ff1zjQDwRyuEz2jm+cGolM66Zdu553eaXira8fD3q5cWB1CzD5w7sCTX/khCC4R//gx7MIbzCf4unvluHS9ldWOd6HO0KI8vpOt+U6LxKQb0SFEoVRZAIZjvfwArXM/Cm7T7v5zd7uhsgG/fxS2y3jWJ8gL9fc0n+8HJnvLreGVUDgOIZG+wIUy8MOG9iVOWNGKaf0dvZ8nkck9T1pWIUvxjjHb8A8vn1tgsSwWP8b+rncO+/+7jF6t+3c8sxzfEJfD4Ptp9UjL1INAEC3PL5Bjz3yy58t/EkZAKDxz3AV6vLFr4umDy32grNCI0olaKU1EQ+5jqnYAxv1Fw5lzGuJBPwuokRxj/24mxG3E7Gev9IMgkZxZG4+xS+35gMh25fWfeMSzIBS7R1HnfdUrWfUv2ILTpe2U0oV4yOqP+gp3v79u249dZbccsttyAjIwNnz0amsEipeOqTs9joftyyPI+vrf5NALzh+Eb9XOKTbEMOi7xKR90QWbiaTUJDJhv1mFx4Mg5G1BbOlGE9zzkJY7nfI9o3HMEGF+dLaKW0XNXaWr+1OFcJYTtb6EXG2SzMd03CKH4xnmDm4Hvnm2jMZOHBE8+c76ZGBKcL8QkmekOhVFVEiaAtq6h4xxw+/+F3smjsb8fyYdrgUUJpHaJidBBnDXWVyGuho6943wl77uro6Z617jg6vLwYm3UTwWYkmeBl/jssd46H7D1/1SFYRmeQec9v9QyfJOMefqn62S5iTc9Ex08AgMHsFkx1fIPrufVI37YEdjbl63/uQ/cpS4LqiqTnlaAecrBo1ynIBEhgrL/59dy6UnwbICW7GFe+twqz1ifbD619ReAhoi+7F5ysOQpCRTZ4RQlShJEPI7k16MMeQEf2hGG5IJXd6BYkYvB0M/4fO9K0hGs//gfdpixBUZCInLGzt+HnpFSTp1u7DwRJhku3bvMhWr3g38yZAg92n/h32WR/7tLE/wT5P2h0X3/99Zg4cSKeeOIJdOnSBfXq1avIdlGCIUvg5t2DSw69BniVXL8u4h7bTTmidbrmWVuPKNt6PzhGRgNkYYP7cUxzTleXF+UHH/jo0c+uAkpI9XOOuedUSiSAWZhMXV5FPd11i6wTFXKakl9X4pMw3fGhuvxmbrVl26oGpytTU1GiNhRKRSHovGTn0yuqntPU39ZjckPv4K/PzfhF0BheKxlWJJcypaaKTkzacSbfg8d+3IZJf+yDT5Lx9M87gm4rE4L7+b/Rmj0FZtfc89ZGQ7hjhFFg5YV5wtMcQWGLLBkmeT5dddSyyaM/bsNXa48jp1jAxPn2kSBD2U3Y7H4Ud3tmQyJATRuj+13HF+Hbo+Pl3/fg6NkizFyXbOvp5oQijOfn4Sfn6xib8x4AYHdqHrpOXoIZ/1i9e8U+ERe9ugzXfxqZ8S8G0VrxecsuaCpKssEgDgi/2oWX27HvVD48goztJ3Mt6/STDQ59moHuPhBlAocup/xsTuWWuKNULAt3pCNKJ9RbzNesxNaUD0/O3aH+XRxMZLEaErHR/cknn+DWW2/FhRdeiBUrVlRkmyihYDkwx1ejdtEhoFgJX/YxLttN9Ua3edb3bOpRW0XbOsiz9ZrvPJQcWfuIfUjUJtejkPPt883D8dfuUxj9bRKKiu2VUiva000IwYGM/FJ7d3mfdTAmFinLSgQJl3FaWKidIE1VQ2+o0PBySnVD0IVrymXTELVQ6BUx4tN1+HTlkbDbmnO6O7HJoXfwTzIy/v9ZXjO0mzeoE3S39Da3WxdWoqf7xd92454ZmyP2PH684ggSd6Wp4bmhnIOyIW22fL+jLCvlyOyurd7YOd+ebvN7KCCSpZ9Y3yCZqrYUZyHZ0Vr7WFwMhlFKVPEQcfm7qwyepYwgZcUe5BMBALcUz4FMgJoIUiO+FBMRZwu9uItbikFskqHudwCnVITRnHLe/t41OJFVhJd+34MCr4gpi/ZZtt9+MheFXhG70yITXfMFq6e9z1ri0wwhxLb6gCQTuBnNGbCl2WgA9kJqQY4MgMDBWW9+fditS3cf6sdBgijDqdN5aM3QkmH/ZhKinWjDatEMZ9wtzuv596XnY/Ife5FdVDEOMKmc3tdVgYi/CcuyuPPOO/Hoo48iLi4u/A6UCqOYU35/T54SqiwEeWnwupIVZs/kNbvGgbUxuu/il9seK9oTWafNEntjzM0IEFO22q4LhSwTPDJ7G/7ZfxIbD9u3oaKN7lnrk3HNtLUY/3MEuZM6nJJ1plzyT5SUVIJ68rkiyQSD2CRM5GfDJ5RugEs945TKRtJFypSXp3v2xhPYmZKLdxaHT7+RS6sg7heOZPzGJOvQ+vlLOmilGZPl+gCATNQEHt2CzAGvw0eM3rvKDC//YeNJrDl0FknJkUVLZRZ48LvzRSx1PotezAG4iFV7JIBBSK2cnSGbk7Mxf3ua7bXldV7E8+3pFk1hz7LoRbFPxJXvrcbz/kojXvOYwFtgMMrvZBejMTmNbe6Hscj5PxzP1PKmWci2/TUhxOhZJUAME6Tmty/yuvD1io/gNcdMfOV8H3YyosRXZBh0D3xnFXRBV0jOLFsN+vVHMvH23wfs88gBSGFKsQHA4z9tR9fJSyyq6oJM1PDu+TXvR8c7FGErfbRYKMZyC7HV9TBiC62CbjIhqIM8jON+hUtnWAuCMbxc72nvEJ0b9pySTKhAajWFhYx3HF+qnzPzi/Dr1tTzdv6hH63FzHXJ+N+CitFKsdOOqK78e6YP/kMcL1EE0orzMgEAEmNfJgySD0fOKDPRZs9kY+/RUg3EahVGVsbKHF6uR+DsPfKhOJldjOvZf7DXdT9GSEttt6no8PLp/lC8hTvTw2xpxCnbdBT+Wr0rD5yxrqviyITgK+f7GMP/Cff+XyLe76s1x9Bp0mKsP5JZga2jUIJzpsCD8T8lqZ8JKZ8csdKUHoukbE/OpZOQTmopHyTF2GT9EUsMp3m6GZbD3wmKR7sFexqAInyJum3B8w6rOFMVKBkWqWJ8TaYAndlktGRPY55rCqZ6pwbdVtIZkkVesVwFXvXVJczo83XFktxyO2ckmN/lRBLw565TOJZZpJYDY03aKpBFcLpJ+P7MLlxBNgIALmRT1OVfON7HMfddGOr503JeUSYGT7QMk8dfT5BUMDvivFoEnJ0BHAOPxdMVxYqY73wZr/DfYtIf1mo6HCTEoCSkEXnH15swfdVRW3V3ABAl4zN07Gwhnv55h6HE2iJ/dMDMdckAgIw8D+ZsPolpSw+pRveNI25CtFsZ+0RqdD/nmIvaTAGabnnd2i6Z4HvnVDzl+NWwfO0BbXzik2RDeHmoiStAMbivfG8VWr2QiKmJ+0NuS6l6eDzGsWZP9hDeXrC+ws63ZG8GftxkLR37156yRbPaUR/aJG08U/ZUj6pGREZ3jx49kFOKnJBLLrkEaWlUuKGiKIAi0EX8L3uOMb5Y9sgtAAAuCHhqzjYASriRGbYUHmJWjGymiTG/7HWI3iCz4iHI9wiY5pwOjiEYBnsF9Ehq0OYW+/D23wdw7Gzpc8u5MtYIdMrW7ztvywl8uvIIPlpRdWtxB0M/1mOzwofTBng9cT9qiLm49+vSCexQKOXFZ6uOGr105aSGKhOCIewmXM/+E37bMP2tDBYlPcbAF6i57Z9MDBhLLGf0XuY66xs+x/i9AU7e+t2YSvJ0642eQBnKcNSVjYJAveTgEUZ6I/uj5YdxyVsryy3E0Wy/yzLBnrQ8CJKMeJf2G58+UzoBox0pudh4LCv8hkHwiTIyiJazKYkCPIKEDkwy+rF7/DWiTb+1JBiMbsD4DPzsnIxWTDqu5pSJqQnyV7bn1b/fZWLy+JvOl1XoDas+DwCyoL0n7ZS8Y5kSi9HNnlyPHuwRjOIXw+tRDMq8YgFT/tiHvel5mO98BXvdD0AoCD+57QpSElUyjSse+DYJ87el4favNqrL2jIp+MLxPpqLikf6ti83YML83Zi3NVUr0cpr5bpKPZawKZUkSQTtWavBcypbC/UXJGM5MYfNWERPclYRkrMUw+aLNccium6UqoO3xDo+/42fUCHnyisR8ND3W/HCgt04W+DF1hPZYCCjJ3NAmfgtJ8bwiwyfjydbdSiqI0FcpEZ27NiBnTt3olatWhEddMeOHfB6Q8+sUcqOh/AAAxQWK52kebZ5WrNP8EXKteAZGYXZykysKFqvx/Zjp4AI9XgiNboD4eW75RbobMpZlIXSh4hEEpbMCOHDy8bN2YHVh85i8d4MLB9/GV5btA8cy2Di0PZh9410dtqMi1i/r4MR8c7ig+hQh0c5aMudVww5mZ7I8uUAoAlzBv+4nsRW+QIAI8q/YRRKGGTZVNO2vDyikg+fOf2CiEXPADG1g24qhzF8fawLPMeiMPBa9nu6OSICDMDwxs5aZu0jh2zFmirJ6BZkGRcwqbiS3QahqAWAhmH3iUPk4cJm2yAttwTfrk/GU4PaWrYlhCgCU3Z1m4LghKAKFHWdsgQFHhF39GmGrrrULKk4cocEIUQV+Nr+0iDUjCmlIB6AXam5GKy7l4kowCPISHS9AADwZN8GjjEb3T5F40X3KtOX4enNHsQKV+iqGT5RNnq6SXBP9/EzObj8u4Po3aIWfn64b8jjspIPQbTMVOJMmid68bN4UYn0mLxoL+ZvU5w9yW7FCCaHlwI97wp5bBejfYcPa72IcdmvKecwVRsIhOCfLdDGUt8530QDJgcDjjwO4AbVcG3C6CZidM8txzJYK3XCpdwe7IkbiE75moDqR+L1eEJXCg4ACKtNtJ3MKkZuiQ+NE+xrbrdjU3GmwIN6sW4Ikoxo3fcKZ3QH7oTL2O1ozpxBes5ANKtTI+Q+lKqDZFP+tyHKPrEXiuTMIjzAJeJubim27PgeY//MxChuMV5xfI/1UgcAN5XLecwT41/+uQFTH20dZOvqQ0RGNwBceeWVEYduMWX0DFIiw0eUyzZjzWHc2iHXUA8SAJ6/thtyp9dAbRSgre8Avl2fjNpO6+x/jVKId3FSZDNYjD+8XKp1AZCbbFgn+Uo/CxaJYFdKejoahVgvSjK2HTqBBc43sTqnC/JK+uNrv+rpwwNbhx34xDJFWOF8Bivk7khK7ouVB8/g0cvbINoZ+vEJeBa8hMc6uROu4HaonoHLGviAyJ3FVQK9ocL4Ip8xGMEqYU4XsdXPu0/5d8AwDJz6frKcdCB4SdeHhpmYlMOEl4uMCxzLqMJORPCAATRBMZOnm3CmfitW6QUdfNUxuiWZYAo/C325fTixKxfoG15hnCeRe6pF0ewZJUEnVJ6YswOrDpzBdw/0xhNztmPMgNa46+LmQY9NCLDCNR5NmEyg8AoUeJTf8MdNJ9Gxm9ZGYjOhHQz9+yyn2Fcmo/vbdckYoVMqJpIAwad9lvLSLOHlk37bib6yqBq3yTX7guSFGafJEsBqxq0gGY3uw3kwPlM6lu1OBeDE5gjy+PV5yZHwAPcnMog2udW/eBWAkdiRkgsHRAg6g1wSgt9LXZkjeIJfoA7us7uMRtbpBup6vQc+gBteeHSeigaMMuESJSle5lZMOt51fI5jRDci0XmrWZbBM8LDaCelYESnvui0XjO6rxt2PYr//gvRjK4sGquNMQa8sxIAMH9sP9hN7V3InMTaQ5m46aIm8IkyEnTXxhkmvDxQyuwjx6eIY4qRcbA3UCf0ZAWlanDkTCG+Xn0Qo93n53xeUcZLjh8AAEsWfwjgTtzJKVpQ/TirsGFZMUe3XJU7D0D1vycjMrqPHy990fUmTZqUeh9KZPj8l80JASM+XYc7o4yDvWa1o+FilJfAF84P0GJhL0y7rpnlOG85rCFkwYjU6A4M7mSHdZbUzugmhGD8vJ1oXbcGHr28jWV9JLUyWU9oT8PPSal4hF+I7uwRdGeP4NKP71bXncrzhB34DJLWoRWbgVbsX2jx+QZ1+bNXXxhyv4B6/Cz33YgVswBpB9ozJ9GGSUUdvxJ7SnQHNC0uv47KzPxtqYhx8bi6Y4PwG4dB7+kOVr7NjqBiOxTKeYJnGfTjtNzP8hJf5PSGdhARSe2cYTzd4MGzrCqCJQtecNAm7xg+jNF9w+cAAIddZE5lebolgr7+gViDzA1htlZgbIydYIi633Q4twGP8wuwIu9tAO0s2/7h1+S4YboyCfjib3tCG92AYnADkI+vAeBGNDxgQPD3rhTcGfj5S9EXBt5nDogRl48y04kchFtnqBLJB6FYizwqkhyW8PL9qVm4lNdNUBASPsWiOBuoUVf96BVlgzG/JIXA4bK/r/alZgIhp8I1YkKEpB4jDdHKpLz9kmM2UmStXXeXfA/gE/C+Amx2jUWSrF37pGNnMDCIo/0X52Q4dOHsjCMKQwcPAb5XPpsj8y7kM7CAm4DfpX4AhoMQYvkFb+ZWowd7BD30M+r1tGg6lmFwGrVwWq6FW+LqGvZ1RcfBBx7R+gkV1iqSuyctDz1svk8bNh0HJMUbbxZScxEvhBD9k2JzE8T5c2e5HKuAG+X8QQjBM/N2wcUDfcJEgbz8+x44mPPXv3t1E53R8GAKP9PwjG7ZcwC9OoUeG0cCMRndXYXSCRlXVSLq9Zs3b17qfxwX5k6hlJmA0d3Sf6N7TKH8TlP4XBfmqO2srZmzTPAyNAaPThASd5+Czx+S5Y6JtayXbNqwJTkH87fZK8QCgE8IL1RUhwvdtiX7MtCT1Y6fkq1tP/SjtcgqDD0LXCxrc1PxKMQAdieOp4cXBeP9A91bLm4Nt0sJBb2S245lrufgEpRBkuAIUglAPnd184w8D57+eSfGfL+1XASG9KJFkRotp/M94PR5f+XwvSiU0hJFig3qruVlhBr6xXA52/5zHpYb264vEQGOY9Scbkn0QJaJ6ulmTUKUFqO7eT8AsA2fZmwqVZwPjGXCIoyUi3SCF4CkE9HsxR5CHSYf1x0IHSYdKfo+U5ZlRMGDfe77sdf9AK5mt2jblWICxyfKmMTPwh7XA3DkJ5epXV0ZY4gUkUSkntIGve8t3m8J++YZ0bCMITIKvKEnibYlG/OhfZLR6I6C16InEyA1Mx+v8d/gNf6bkOeQZYJYBBdJ2hV7qe3ypqw1j/4ScQNqMoUYxGlVUjYcOW27f1puicHgBgDW4cbFretgHnsNAICYQnav5LYjivHhNn4VQIhtCbzGjHFckFr/CkPNuxouHqMvaYn7+7dE3drGdE3WHWMpXybbGN0v/24VjgvQbKsiOqjkdJv6uDDpfYNZTWhSssklp5w/0nJL8Ou2VPy4ORXhpDBEu2tdgXi9Wn93F78c9/BLwer6gVdnLymX85j1ofIQXS7HrWyoenk15Ap2BwDgXl5R8+ZNLw9zeP9C10uQ/S+QEhLcq1vMxgRdx8uhDdP1RzMxdvY2dXbVXaOmZRs7w99rCQ9UWLbvNG7/ciNSz4bPl2Ol0G3r2jge3XUDldf5b/CeYzpmO15HWyYFaw+HNqBTS7TfbKf7IXznfAsPZL4Vtl1cYLDMOyGbFOZjBL8HhbfPzzp19tzzcXJLtAFppDVyQ6EXRTqUnhORIX/vjM3G8jWlCEunUMoLt1lfobyMbr2nO0SYcVJyNpKOKkYMGyTvWwYLnmXUSVUieCERAqd/0srq6dbiCdMTegL+8HPepravebLryJlCPDNvJ05kla3cUigEScb4n3fig6WHjIJMEU78+Uoib5MsWA1eu/zVXam5hs8XMKkGdVzbY+uaK4ginuHnqZ8NpTVLYXQLkoz7+CVwMQJikz6OeD89UUKu8Zg+Dxwe7bscSs+2DMK/dbyFAZxWzochEqx+WiOJO7SSQ8v2ncaV7602GKrxTPDrdCm3C3fxy5XfqST4O/zB75JU72qA7bIW8SZzkcXM/ro1FYLH2p575d9tt5/xjzV6k3Mo72LepfxPTEaqj9E9f5JgqJcNAOm5JfCYx1e8VXfhxeEd8PK1HcA73JB1VRR4Vw312Q9wNNuHf8KMT/IZLaqwdsYaAMp9Zsm3D2F0SzLBl84P1M/m8Qrl/KIXnQzXbTIMVKX6fGI0TPOKBTzyw1Ys2Vt+quJCmDRRMZxAQ4SYyx5mtrmlXI5b2VCjuxpSk9EMl+f4OWgQZvAAALI/t8ncqevxcMGFMxxhjO7dqYrntoY/VEyKrmvZxvwSA4xqnnojbvR3SdhwLAsf/L0r5HkBgAsjEtKAyTQMFu7kl+Mm7h/05/ZiEv9t2LzxNvWt3uiLitaE3IcQolMddoKwxt89J1OZgScO+9m7yfM3hzx+JDC6QZV5gFAW9Ia7KPiwIyU37D4HMgqMYUJlENOjUM4V3uxlLUN4uVeU8PeeDOR7tH1ZSTMYpBBG98jPN6geUcJZvVcA0JQ54ze6/Z5uwQtJ5+nmTEJqjEM3oHdq/Ugknu7HftyGX7am4s6vNwVtc1lZfzQLx7evwImVM3EyS3tXMREY3VmFXmRkGo0MiTAoCVKaTbIN7bae55HvtmCV8ykku+/AAHYnlrqewyb3Y6Ebo2uvKEl4gP/Lfrsw99KZAg92+vtKvTAoYUufzw0AUaJRxHLpnjTknU5WP7/n+MwQWgwAvElYjSFyWKOb1Rlto79TvKBRutDnm7jg70CDIFiI6778wBmLpzuFaGOHYimyAfz4eTsNbQvQkLGfvBZshKdYp2LgS6zf0De9qwy/lqQ8m5LOaJ761wFLfrpdeHgAl4NDMbRnmHe64SXG7Xdk+HDXN6Gf0RJGe/YbM1kAIfCJosWTDyF4RIFZB0Gm4uWViiQT3Mf9je8cU8GEcSqxDIOH/ErfXs7oOJu27CD+2pOBh77fahAAPKe2hbiPAJtyhWEghGBfej48pqjWIqI5pLKGz0Cf218s1XGrKtToruaM5Rda6jXaIfsHhHKIWtmFxDqrvENW1ALtyl/pYRkG9ZGNtv6an4Iz3rYNkxbuxax12iyzXhncLn87WDmPfBKFrx13AAjvhYe3IOiqeKYorLenfkzphQFFmagzzazDCZkxvkzrMMrAqVh2Yq9szSvcf/I0kiIQoQkFwwB1kIcuzFEI5VACRB9e7oCIIq/WSRYGqZHLQcINrK7UWyXlllL+u5T4JMzeYFItLEUeboAPlh7Gwz9sxehvtTBMRjcAEcN4ANQBeYg+mOdYeP0ToxlZuYZ+xKxenuvV9UtObcLUVp3b5Ok+kFGAQWwSGuRuD9nmsnAisxAznO9gmnM6HPsX6NaEN7qPZRahL2MMn+UYgr1pubbb24nTccRqoHcqXKfWM//OGT5KCQAYXYmteVusJZpUwtxLvV9fjhGfrsOetDysOqSFRZsnYiPFJSkTGQEDjYeIukyuur4VmwGnP8fTQ4IZfeHfB6ypxFhbJgW1Ge1d2o8NHuas5/iZ3KDr3PDiFn61YZneW5ySH1k6UgcmGQNZ6wT9SdhrmfAl1ncr51QG+VLg+RS9IIRgxYHT2JeeD6/eKBB9EGXjtMUfO9NRnzF59YNMsAHKc1qiE2XjHE6L1z+wnhCCjkwynuHnoi2TYtiGmKLlkg/tgqQT1vMR/8RFSE+38XNpNFv+7XgECUnJ2eUSLRgpoixjkuM7DOB2o2X2qpDbthaP4EZOKVnJmCIrcnO0Saf/LdiN8iBc6d8G5mcgDD9uPomhH63FhS/9jbwSrT+vF608Xevjh6N2z5sA7t8RfUGN7n8pm2SjkAHxDw7Nxp+eXNnYeZcQJx7xPQkgvPolA4JN7sfQiFFeZgJvDVU/nZWHWeuTMemPfVi+XxkAcSyDfuwe3M4tN3icOUi4nN2Opow1d2tdzRG4p+481Oo0CEB4o5uEGAx3ZE/g+5U7UegNYQxGUAfcjCgRNeSHc7gMKqQA1Jdzw7q18LjwuGX/F/gfMVIn2lZaCr0iTuV5kOR+BAtdLwHpO8p8rAD62e/+3F5w/t/9o+WH0emVxejw8mLLPrdxK9FMn39Hje4qy86UXNw4fR22nji3yZ6qxoLtaZZQS0by4r0lB7G4FGF3v21XyhFtPp6N6asUI57VGd2yjfcMUNIyLmBS8RT/C4DQ3i8Aqqd77sajkCSieqxYk9Ht1UUtMXGaaJV+IjMHirYGkQX8uOkkTuWVQJYJ+rJ78ZXzfcxwvhuyLWVByElDgj/0eOG6HVobwwjNAUBGbgl6+fU3Vvf+Ql2ekLnVdnsSoehaE5v3SFh0fdW+9NwQ20UWNbHpeDZe+m2P+lkKcx+YKfKKikaGrBhEhVAmyXlIFm9xvL/sWgnsJ3gYImOAjZGqp4FHmxzvy+7FEtfzhvWn+OBiuXvkFurfC5KSg273Mv+9ZZmvoSYTVihFNtBOdL2A/px1EiCWt3/fsN5cyzLOofyegZD2HcdPoeXERNw/KwlDP1qLK9lt2saSFz9tPmnIZR3MbsHF7H7TiYJfYyfPwqszunneYeutj0MhZAL86XoBj/G/W64D44w2TNw///NWQwmpPPjHYiE8lGaDsryEJv8NjJuzHSM/34BPVpy/cjOizgHFh9G4iCX56t/mibwGvhPq3wcygjufSkO4KkRfO98DACzcmY7L3lmJfen5IbefuS4Z9ZGN//E/4P4PfgaghMUXlyj3a+uGkZWqri6UyejOzc3F119/jYkTJyI7Wxmgbdu2DWlpaeXaOIo9bwi3h91maq3XDJ85n/LA2QlzBChhjEZ3AaIxqGtLAP6yNSE6YrN6osRrIU/bnT2Vc/sHSC2ZUxj3rRKaxjAMfnS+gamObyCf2Kjucz27DjOd72C+a5LlXP0fn4nfHrsUUTGKd4cRPcgtDj4zS8KE57zl+Aqn84N3JEwZDEVBltXfhOMdFmGS3v6BZe3mHZBDrGH9V3NJlmWloe/U5bh3hhaiziSvDbF1ZEimmLPG+xRhqveXHkIrJh3txf2WffqavSFUSK3KctfXm7DtZC5u+qzskz1VkWKfaKnUcCozBx+vOIIx39sbc3bUjHHiMW4BnuJ/wdt/H4QkE7CiNpB9Yd422zBojyhhIv+jOiHJOly4xftS0PMEDMTnuB8hyrJaZpA1ec30oagNmrYyrLvF+xK+Ewfh1/j7AADHT+fhhQW7cd0n61DkE3ETp/QHcUzxOcWSSjLBwp3pOKPrP71Fmqfjam6Lbuvw58nJzkSsv5RlVkJndXm9HR/Zbm/Xt5+OsSrnuhG5506WCTYdy0JxieYZZEJ56cNMyrrgQw/mEFiTB56UMm+2zxvL0eeN5apBFTCo7+OXoC5jDDkP/Ib6VDQ9DJExmAt979+X9or697X+so/GcyjX/HDNgZZ1euPR4wn+br2DX2FZdu0947Gx3fPIvmtJeIX1MHBB3t2cx87TrRjbxO/pduui7Goh35ATD9GDd03ir/qcaO2goTzdjFr+FQAcTpclsm8cvwC73A9ByE0PehywPN4VtXxXoTjPIFpb6A/TNaux67GU2aOebpXFe0+Dh4gZugjNikbvgArXawqsFqHqNJVb3Hs8FU2Ys/jOMRU9pR3l0jYpwhTBJ37ajuSsYjz8Q/h37BfOD/Agn4gPvS8DANYeOYsOjDJhwATRQKmulNro3rVrF9q2bYu33noL7777LnJzcwEACxYswMSJE8u7fRQbFklBamDo+Gb0AMPngEdG5py43fc/+51Mnoi01rfhqm4ttQUhHjZzDtmFTeriRvE1vBY9AYddHQAAx05loTNzDCtd4/Gn8wV8tcZYloKc1V5ird3GQUSAbFJDrR3K+oVPHLIX3aYsDWo4h/OGDOG2gAtVTkMu/QtI8XQHjG4XRNi/fLk6bdC1bSvbdZGq/doRqCkbIFjt2tKw+ZhRzTbudGBATbDC9YwyQZJvLO9SYBL2qGqebp8oBxXz+69RECraoxrjEyX0ZA8ZlpUUl15ArJ0rE8845mEcPx8NkIWcYp8hvLyoKB9/7j5l2c8jyLiC26F+drjcqN3xcst2JYPeBqBNyHGMopCspqmYQgf1k2BMl9sM67548Qlc9cz34GMSlH39Bt/ZAi8KvSJG6vNxw0xKhuLz1Ucx+adVePAb7Xh6T0hvXdWIQHf2955TuPqDNTho43kpylIm7ku4WNSI1wZbviB6I4zNO0mwieaKYoJ8R5sJh+83nsCtX27ElN+1EjUJCCEAGcZA+cjxCea7JqHjyR/QJFabfA01AW5HIBor8K5tolPKvscvqhopciknPwtslINjiPIMEYc26A/U1q2nC3dvk/NPqc4VHxODi29/AbXa9EE95IbdPhROYv/ud9ukyzG8/3v4xxVR8CIaHrzKz8A298PGjUVfZO9Uc4UBfdt4FoIuWoXjHZbaxAHIkeW2ywGAJwIGDrtT/fy+4zN1YkYADykgbBVics2i+UI93SqdmGPY63oAozH/vJ3TaxBSC6O9oNNFcsglmF5vkvrZDR/+cY3DAG433vdOsu5cBuQwnm49N7JrUDsndKkvSSboxh4F4O/TJAFOjsWVnJL6FB1rFWWuzpTa6H766adx33334fDhw3C7tc52yJAhWLMmtLgUpXwYNdBag9RMjMs4i84I/kED58INN9yOBVJ/yz55JgPpyIVj4HTqFDZDGN2BmtQBot1uzH55LCaMf17NI2/DpuEPlyKG0Jw9g9cT9xteXLJXGwjX4O1faLV0M/e8f2Y6jinGZ44P8MWcIJ1iCIGjAHGHfgm+sgyGoijJang563DCw9qrlMMVi7suboFXhHux0n2VYdU+1/0RK/6auYbdjN+cmvCEXTqSXo3cJ8q4/cuNmPqX1Vsd4OvVhw2fA96futBNkBQaS7RYwhurkNEtyQR93liGi99YblRZpvwrWH8kE+PmbEd2rnUCL6gRFoLWnGbkbHQ/jqKjGwzh5V86P0CdHGuOdIlJIIawTozo1hgfCDdhiXQRPhWvw1b5Ajh73g0A+EO6WN1WIlqaijmnrc9FFyFFrot9bFvA5A2oGeNEo4QocAFFc52oUqFpQg5i5IMoMwv+2YGt7kcwI/d+dVlQ4R//a+ThH7bh4OkCPP7TNssmYkmglGIsrmxfX12eF29f9/XnDYctyzjd+Yt9Ij5bdTR4LWib/ujHTSdRH9kGde7/OX603x9aJNSUP/Zh/M87LdoWgailTie+w4OtNA+r6CrbYNJZipq8SU1H2S7PK/JgpxxssteKXZh6DFHufb2KfgavlMMLeNoB4JasTyM+DwBAV788Hefm5XISn+07lLUL2Q1MavmN7oHcLuxz34+7+WXWbSWv7TvVDBPC6I528gajG6wD2Q2s4zIgtBAqL3txa69m6ucW7Gk11UVieNWQJyEcC9bw8qrznq5MtiRnY4pjFlyMgMfJT+ftvF5B+/3DjUz0ETkOqRhjxz6FdVJHAEBLpvxUy9X2RPC+ECUZV7Db8L7zcyxwvRJyW/PkFclNMTiNajS3q0pffSm10b1lyxaMGTPGsrxx48bIyCj/C0yx0qCWVaTMjIs3XlrGGzC6HbilV1OIRJtxP0Vq4VXhLnzO3KouKyFOXNejOdxOXhP7CJETxJpn+zknopwceI5VVVoNXg8Aa53jDJ297NMGOZEMLBxObSAwhNuCu8+8Y7sdicDodmRYB4Dq/mFmfQ9mFGDjMaNKqqDzUIF1wMPYq5TDGYurOtTHHY+/jr7jfzasima8kMqQiy3LBJ87p6Ebq0USmF+qaw+fRZfJS/D7DsWztPFYFg4dO4bENRtsDdASn2QzcFWO2cmtGdp5xV7TFqZZ2ipkdOcW+5BTLKj//uvUQDG+cryLEWzpPFNVlTu+3oTfd6Rj/iarYeaCD2O53zGZn4llEeZ1xzqMz0XWqs8Mnm4A6L5nqmU/S8g570LvlrXwoXQTHhLG4x3xNtzkmwzOpfQRQpe7AACn3K0NETPm/NDBnZsic9Q6NHk2+PXi+IDYltYGS0SDv9b1pyuPYMDbK3GmIHIjvINPyVHWC2yxQXKcJZMHOqvQ6iF2+CeHBS4GHMvgz+jrAQDEax+ZYFaLBqDmPAPAc7/sQuHSN42efT02/VEd5GCT+zGsco2338cEI/kgSjJmrDuOX7el4mS2dk/oDXBOFsDp6rqXNvooHoV4kFtkeY+Gov1I+zSGTmwyurLHbNcZ8LdRsql6EvB0g3fiXt/z+FocgmU1rou4bZGwNW7QOe3PQraNROBsjW5l8iAgqBYS0WcRNLMlhPhTjJMzllfiHGh0x3TbbWdvPGG7HAB42QenabwXSOUTGYcaok9CRDdY7sUyRPf9Gxn7eSJ6sOcvlxsAsot8WLgtWf0cLsUi5Wyu+negypDHP2Yfzp17qph5EtFcv96OBVtP4Eo2MpFO830p5KSg0KO7/+p1iOg41YVSG91utxv5+dbE+IMHD6JuXWuZKEr5wzjCvxQYhsFr9d5XPx9JVQaWxP9i0Zfy3ipfgG+koXj7jn64xfsS9srNsb7/N3DxHNwOVpvlDqV+aQ450b9sePvZ3qbsWRBRe7iITxuscEE6/cLO92iHdRiP21K0H0QwEczMmQeExpWhX0BXT1uD277ciNQcnZKxvk4m54TstA+PhEtZ3q5BLNwODnMSRhtWJyeXPo/IrgSa+aV6z4zNKPSKGDdnh7psrvNVrHU9hczDW2Bm6l/78bbjC8OyQGfcJy5XXTb7nwPG81Zho1uUCUZzf2Kh83/gffbpDP8lHuD+wiBuGz502g/8qhNzk5Qaw7WRhwXOly3ru7HH8JxjLu7ll+KdHxZY1ps5U+DBxkPGvMoeOX9D9BrDjmWbEoDmUigs70StGCd2vDwIB169Bvf2bY5nr9ailwKlwDhZ8JcMC3i6TSXDGAbdW9ZHXFRwNfSA0c1BQjPmNOJQhAKPqCkaA2p4+TuLD+JkdjF6v74cz86zemwBIN8jICk5G9lFPsgygdvG6A0mbFniDxFnIKM3sx+caDWkeUlZJjiUbQPaIESwbpuWW4L6sCrlcrrzZx3agGcdPxs8rwZsJgg6yQdsNgwOK3kMnkj9/KZ+spMlojGUv5R94c/OKQaPuxwm7BQAYmrEI+WKTyI6/hFHO+QzscaF/jbyjPVeiPZ7uuNq1EBJ88uxpOk4uKKsAqqhWCN1Drn+q/v7lep4ttg4C3jZ5n5Qje7wtcElwYM+ZtE0GzhH8GeTYRgIeqOb5YD4xjj5iE0N8cwQ5yKSQTwRAL79R5loFBkn5MAwP0R4uXlSnolQoPDfjlkL5Hxw+5cbsXKPVi0h3xf8Oc8p8qGxLs0kgMefztiZTT6ntkycvwuXvr0SeTqnRGFhiFQbP1zy6ohLh3U0aQHJoheSzi74t6iWByi10T1ixAhMmTIFgqBcBIZhcPLkSUyYMAE33XRTuTeQYiUwkArHddfdhFyivATjmED+lTKIidZ5LZvXjcfPY/qib+vaeP3JMdhz7SJcdtW1AAA3z6mzZqGMblm0eroDkBAlchivZuzIupAmlth7S1iXrjSOM/hxDUSQs2hWFzecM8KcR72HQ5CIFtLJOcC4rLW+AQBRRmXGW8e9iwyihR2+/WfofBg7zIN8wBhKbkehx4s2rGJUcMet4jZ/7cnAVZxx5jIQrqb3NrU8a93X2JCqkz/tFWS86JiNLuxxOJO+PG/n/X1HGj5ZYfW+VjY1ghkmIcgs9BpEtKoKL/6+Dy2ZU9jqfgTN2TMht/3B+UbYNI7X/9wPl40YV33BKB4qOBMs25ifR7dbmTRNiHbC7eAweUQnPHp5G3U96+87OaKUJVJFKssw+Ai8K1oxp7DG9RQ2u8aiuKgITn0NX38kUAIKcAe3HHEowrytqdhrozr72qJ9GP/FAlz26m947KdtcOnVlv2/YbAJ04B6+TB2E352vYrp5A3LNg6/IR4wtkX//6zPONBbvv80+r+5wtbw4XXnb8KGKV9j0x8VsbE2GwaHEYrgk2RwkFAXOdDbP/oJUIaIYHVRV6SURnc7NtXwWV9uKkAx0d6JPsYFcDyaDrgbq6SuYY/f+v6vII839Uv+CWs3Y72mgbztuLh4zH3oYsx96GKQEOHUdhQitAOhdd0gk9WlwSbSzXZiyO8c4JxBotIA7JebAlCMbl8QnRY9gWc9GAKxPtPN6lvVmh/kE4Mew7YqgH88JjG85um2KaUXQJaM6/afSA2y5X+L0pa/Kg8Oni4wCD9ut9rUKt1fXYo3HN9Ylnts+oay8NPmFBTlnMbMdYpDa/amE9h2LHxk2I37xkV8DtE0eSiLAhi9o6uUfUpVp9RG97vvvouzZ8+iXr16KCkpwcCBA9GmTRvExsbi9ddfr4g2UkyYZzX1iDrVcI7VZlIf5hcpCx2KER6tGyw1738rerdUOvoL6sfi1l7N1HO4HZxWN1MMYXSbZ0b1oZAhHhrGoze6NeMtmOqo1Hqw+rfZ6D4h18PedKvHkokgvJxIwV9IvFR6YyS32Aen6ul2gI0KMpBzGGfVGYZBktxW/RysTnkoPIL1JbzvlPF3cRIfPnR8guvY9SCEoCRfyzUUbDpsO6NdkmQMen81UjK10NIhRb+pf2fkeSylmiCL8AiSrRftfOPRCaiFCr0rb8bN2YF3lxzCzpTc83bOSLAbxIdClGT0fG0Zer+x3Haip6KYvy0V7y05GPYemu6YZlmW5WpqWVaXyQ85oQgoAmR2KS9mBeiD+Q7Ls2J+HqNjE0KeKzBJyRHRL6Rm7+mOBM5vSMT5J1TcjABvkUm52d8/fuj4FG84vsEM5zu4lN0FQVS+b26xT+kjfBKObl2O1a6n8ZHjEyTuzjDkTwfEl4KFlwfqPo/gFCXsnjZh0oz/GAEdENn/vmJMnu4v/SKcdsJTPPGixCfh+w3J8HrC9N027xl9KH4kZOdk47Eft+MHx1RscT8Kty5VSRCN98KBVN0IuhR5s3Y1go+ThpZlHp0h6NPpiESiAs5wLrC8yQj0G29mVWQ9XExtMAwDhmHClsMzE8Mqv0EqqRN0m7NESadbzFxiWbdUiiDf06Zvd9hNpAc83S57b/2p2C7w+n9f0ecxVA8IRpQr9DNbLsaR3+jWT7h84FDy6CVW83SHesdJpnr3VzOby6wn82+BEBKxt7a80U9ylaXcYST3ZiQMYHdiu/thtN3/EbaeyMH/FuzBbVwYx4qfkBUfAJzKK0FeiYDW9YxjYyIJBlsgVNm96kipje64uDj8888/+PXXX/Hmm2/iscceQ2JiIlavXo2YmNKFFlHKRrSTs12e1/RKcKP+VD8rRrdJUM0/ixvNaEZyXI/gEQpKeLnyYhCD5NUBNjVq9aUy+OAeadajzSTKojYIMQuzPeIbh5Hel+Fuq5UnMRvdLkbApmPWUiCRqI+LrgTLsh0pubhm2hoUFQapb+grgiwT9GAO4SX+e3D+MLasQi9Gfr7BEF7OuyP3nuiv2YuO2RHvF8DOANpw1Jhzfhe3FCO49fjI+Qk2HEqHr0BbL9lMUrSWky3LMgpFHD5TqJSTs2HOlpMGMSIAOJtXhAtf+huP/RhZvk9Fov+dJC58SGF5kx2izF1lUALdbxDBgCvfI6IlcwrXs/8gv+T8fZenf96Jj1ccwdYTob0QLZjTlmUl7nr2G4eJZnFwbHAxLh2XFiTincXG8OTx83YYPjtjQgtosf60GV72GdTLyzL4MKfgAMCHf5r0K0QvdqXmYiCn1G3uyR7C9843UefYb9iVmotuU5biybk7sOl4Fkb7PW6XcTux3DkeYwKTuYCahsMFMdACRndxkNrRgK6v9n9X1ejW6X18tuooNh1X+nm78HaWSHhn8UG89PteuE2Ced+LRrFKO5VmR4iJzgMdn7Ysi0Mx1h86hb7cPgBAzJ4f1HWn8vU53AwkXQpVacLLRZvQ4FeFuy3L9HWfBS64x9YWzgHePKHvfy5CTf6y0ZpnVraJasvm7A3qvBIBrP96l5Dg98SNvkl4V7gZaf1fRyEx9tMfiTcG3U9rlM3Eiq2n2z/Z5bZ619PiL0KDccvV31fyeS1jKztcNRuHXB/qWYgUxu/B/rWLFq3VklX6vmipQDO6Q/Tpst1EmSf3nNtWnTlb6K0Uo7slcwqLnC+on2/nV9pGa4SLXjQjRBCZYWY8Pw8AMDT7B2w8loXayMPlXOmjL80TjNlFPvSdugK9XluG5jWdpk0FtV+WwajViv4tlMroFkURPM9jz549uOKKK/DMM8/gueeew1VXXRV+Z0q5USvaOpBayA9G/APzwTTWZn55lrGEL7Euq6fbkOBtwu3g1JxuoSS40W2pl6ozupkQRre+5MuhU7kAgBNZRZZw9VfvHYJPJjwKB6fdsi7TgNINn+3cWiA83PzC1iPaDBYe/C4JBzIKDDVH9XizTkIiBPNdk/AA/xea7voQALDmsDIzqXpMWB58tDW8/PStf9keV3/N9KVXIsVjUwLLfIXrMFroaI1/3oCvRJtYsCsJ0Ru7LcvOMHXRn92NodwmddluZzf17xgnjxu4dYZ9lu9TQtjtSiudbzxebaBx1n8b+kQZqw6eQbGv4nLPmzKncRe3NLjKcyVheClHUDLGJ8pY6RqPac7pcB9eFHb78iarKLih34ZJRZRNSKzMB+kDwkTDxDBeTHJ8F1G73OveUv9+f+kh9Ck0egb4MEZ3oHQRT8w53aUfNLE2olBxMPXjkhfrjmRZtos/sQRfrD6G3sx+HNm5HodOF2CIru52a/YUGjK6SU6/0c0GMSZlUcCZAg+6M8FTK1Qvuf+7Er/RnZmdhdWHlH71rb8PACBozaShKWNNHeAgYdUhZbnZWOzY9xpzoyz7u0MYmI3adMGPorHcW3P2DNa6nlQ/642bo2e039onM4aw0dIoRIuS9c3WotUFlmUenYfLEaRcVlBYHizD4CavTm3Y/1yYS4Lq4aIT1L+9jgTLekG0/55v/rVfTU0KFWXD1mqJT6QbcHm3C/BJjccN6y5qFWQSTY/NNXbYlAwLeLr5KOu7msQ2AMM7IfoN7bzCIlxkKkMY4KDcBEXXz4TQawyYDiNCNi2YN/Ax3+O2y/UEogMOXvAgAKBVFxvlc0aLcggVzfdbko1QW4gc8P8CvV9fDtZ8fSrA+7//VD4+X31ULV36Gj9DjUxSyUm27CfIMm7mVhmWBe5PS7sBSEzkxuunK4+gxYQ/DZFEPMsggQmfzw0AqXHdjWNOky7S4dMF4CChvnwKPsHYtxDRB+LfXmb4kPZJdaRURjfP82jevDmkEA8vpeJJiDYOvlp4fsTQiXMt23Esa1THhJYTHR2B1wZQVNAD4eVCCE+3RdGQDe3pPiz7Z4B1ImepWYoh+Nqf+y0v+To1E9Ag3jhgdjmM3y2BKULdPKtxGDC6c0gIb7M5Jx1KSOlFzEFlphGKorue4syThrC/qDyl1iDLMKiBYk28h3MiykZgpn57e5EYX5gZ9LMFXoz4dB1+3Wqfd+URZEv5N3Mopz7csH36fEPZCb2gnbq9zcuGIyJmO6caVNKjo7VBfk3e+psyVURITZIJVu06qn6euVnJU3rzrwO4b+YWPDo7uJr9uUAIwTLns3jNMRPN9p9/kZaQ6F9uEUwI6CcmuFM7KqBBoQnmuUkuAF7mv7ffiQnybIUJL2/gORpyvZ5xvCbMtn3lr/jIaSyZxEQlhD6APyScJz78knTSkKZSWjintd95XNc+AIDohcNmJEAYBkLeKfzsehV/ul7AG4lhhKMCEzVBShM5IOHXrWloxgYPl2T8RncgN5jxTxL3Yg/hx9kzAACXsruQ7L4Ty13Pog9rFT1jiQxZkvE8/xNuMqmWx9Uw/R42/VEoA9PtjtLqHuvQTz7sSc9Xa2rrPdTFcKMto+uzS5HSYlcy6pnh3S3LPDrPaQ1Ba5OlioQdnAMcy2AraadqwUBSBPOcNnoGAVhdDvSRQus9Wp/JxdlURQE6I8+D9UcyQQjBjpQ8dVLEriRZgMVPDsCmF65EyzoxuP/hZwzrLJ55O0zXWJIJfB6bsYx/nOK0SQUjLiXEXWCU+7KouAj383/bnm6M8w3EdLsRjmFvh9Vh+JO7AgBw0NnRsHyR3Bd/S71C7rt38I94v9U36HjjBKXdDs4SVswRSWc4Bb/f3KzNMxskTeS/hEXLwJOHYp+IZ+btxJIIq16EY8iHa/HmXwfw9VpFQM9OW8VcJQNQJuLecWjRDbkkBot6K+89O6PbSbwRTxq8s/ggnud/Mii3OxkJNRBZqqXlLKbxRLSTx+eOaVjregq1z242rJMlQfWMS8He19WYUoeXv/jii5g4cSKys61hvJTzQ6zbeCMmPnEpeM4mt41lLAYcF6OEgkVHWKeWYRh4GcXYFe1eVH6IpWSY1vmzJvXy14U7IPpvPX0u+F38chBC4BVloycesDXczWXRAODy3c9ZlgXUbHOghY3193xoCDUkNkY3Cxm/uiarnwtgNGQ9WSeMgyGd0bLHrVMh55y4/MJ6YV+iASwCLaaO8v5ZW1ArbSUKFzyJrDNGISdACZs2e2sGcUYjUj8IE53xEH2639umg7dTynURawfs1IXyO4h2zB3+mrCSKOIV/lu8wn9r2fd8Mmt9MhZu1gbsbv/99sMmZcZ/5cHS51FFgiARuPy5wbUy1lfIOcqKYWAegac7RxcebxdWWtEEi66bd8iLAZx18g1A0EGw1xO8HCIAFElGQ2uLTnfBDkkmuOOrjfje+aZ1pTt0yUc5SvGE85Awf+MBLX2jDDndrNsaYmwWRIToxfEMq1rPvlOFyEjRJhvqIjf0yfzvACaIYFMU48NnfyeFbq/J083q3iNfMIrwWrCcwi+iFI8fCwm9pa14hP/DMCEIAI5appx+m/vczYbw6vJOy0S2mZTsYlz06lIAgOzT+kg3fLiVX6VtWAqjxi6n2xllDYM+pxxh1gHO/w5T30GiF4IsaxM/NjA6o9vntIqAAcCWJXPQYsKfuHrq7/h1xjvYfDAFkiyjvl+o6m8oE9B2ud1uB4f6ccoYJMZpfH5znA3Cfy+T0b328FnbKJiAp9sVbTM5739mRUbL6Q7GF6OvCN8mP0+MGYsv2kxHzTHWSKGPxRtC7nt13154+p6RcPDK/ejiWTCmcGgOktavh/BcN3Yr/V8RUwPeQKRdBO+AfzNjud/RxKwMXpyFn7ek4NetJ/Hk9+vKVZtmT5qiu1NArNFJxGZS2Csar+fBy77A8KuVSB6Hjf4IC2JwcoUiCh48wv9hWBYr50VsN7CyYAzNN91LPknCIL8eSq/8ZYZ1siio7xKZGt3ARx99hLVr16JRo0Zo164devToYfhHqXjMxmaHRvbK2HY53XxMbQDAz5KSG72D7xL2fD5WGVBLNh5QFZ3RWkxchjwMc3h5TLeb1IGLWYBtxKs/YFfyaTW/UGu4tSNy8dbBj9OmDA3rf+Dzdd7fnx69EvMbPY1vxCEAlHAxMz0Zo3fYHJ4u5KSbalorLzfWHA7DOdAgzo2sro+jp+czrJC6YYzwlOV8Af52DjYuMHVYu9Ny8YXjfdzLL0XBymmW/T0+wbZ+rR69gSU4Yg0DE7sOXj/my/JHDETZlF3hdGF7gTJyAhxqLtzegwcwil+MUfxikILT2Hw8Gz8npZx3YbVft6YaQlNf8ufOcxUcymTIzQziEawsWF1ZoF0nzqjhbsG46TNt0kBgz7/RbWeIAMBY+Ufb5QBwoqn9QPahGetslwfo0lDpO/JINFp4fkQSb3zXtfAYtRd2puaicfKv9gdzJ4Q8F+Gi1L6mBZMBLnBdypDTzbmshpkZwVeCYztWW5ZnFQmG8OzXHTNCHygw8Wq6r/fILdS/7wghwpOcVQSff/KPCXi6bbz7drn6hwZOR4srRgFQBpd1ZXvJX1K7nXGBTUSHM0jlDEDJt9eHXOYT66TGLfxqvIIvAELA6qpzxDHG96fXG7lAp2hTBtJpk3vsIedgdHM8WJZBz+Y11cl6InohSkRV7vcSXlXwVtGlbNw2oLPtBO3mo8o12+l+CO85P4frn7cQK+ao6tDH2Ba42PMxrvS+G7qJJs92Iay/vwUbT/c17Gbrdv57Li7a2pe5i5S0qEBp0fmbg0e+tGsQuX7LhQ3jMeauO1GvtnWyYi9pgTE+6ziBMBzITd8ArHEc6ORZY1UCAJ4aTSGRgJBa8PdNlE+5DgVcvDapVEWi0s43PlFGcmYRnnNYo0fhzUeJIOMrx3vY4XoQRzeVX1pVYAi0j7SwrJO81rH39JXG+uF92jVVnW9xCDJWDxPRFeACxurMiRZy8ZMztFj2V1A0FlhZNAiPZmca+2z9hIF5ElOWfOqYl3q6AVx//fV45plnMHHiRNxxxx0YMWKE4R+l4mEiNAw4lrHc0I5YpXP/WLwRo3zP4vXYF8MeR2CVl6ps8+Cr6DzdH9U11sVlTQrdDw/uquaebDtqrH27UH4Mz8gzrce383TbxETaKY0HlG9LGM1wb9agDhaM7a8KmWQdVl7ChBDMWnccScnZuLixccDnNXmgia/Y4OkmjNIeO6MbAGo4AC62Hu4XnkNe86ut39HPyw+MxFmim0jx/7apOcW4ZtoadGGOqS9XJtOaV+bzhp/N1JsrgiNWFbQBAMZGpV5v4KyVldqqbmK9H4ryc3XNVo4jsE41naAjk6yun7pwGx7+YjE2zf8E6w+cvxIl6bkliMnYbPsC4VgmqDBceSDocjODeQQrC6duZnrsdxvx3C+7QmwNJEDL71pyJLJcr/KgI3McE/gfLWWkAnRgT9ouT5HrIrPRZbbrnvd9EjL0jveLgPnctbHtpUFo0kDLJU12tEG3pjUNBlixVzKE/hlwBykf6Kddg1jkQQnvfV1fDqYMJcN4d3hxU6/HY/ssDOc24kqdV9ys1G4hoF5uuq8XSRerf9/MWY17QNFUGDRtHYpL/H2X3wCKVA27bdP64HS/Dx/Ei2z5PfyD0H3p+Ziz+aSiWGyO2tLBcEZPt/mdEOAOfiWQk2wVGNXR+uj36PDCb0jNCR1lASjh5XoP2GzxSjgc1vtBCOOFD4n/t/7mvl5qmLLoU2qQq2Hgwz7BWZJg3M+htSvG7VLvXT08JDzDa0ZMm+xV6CTuUT9f0akpMlAbnZvXD91E07uVZRhc630t9PcyGY9uB4cYO4+d/9h2ZcocHiXyyeNXhI9EVLE8SLKJqGEeWAqm80jLcjsnRE6n+3Qlw4K/1xw+JbWvhI/T0ieqqNEtSDLmbD6JE1nKuG7NobMYO3srsgrLRyPl7R//xOEPh9uuI95CNHZ5cBW3HU5GgiNti+12ZYGEUPsWbCboftpses85tfv2ALFW6QCA4rPJEbVloesly7IaQojaZX4uaNYIgKJAXhOaTpA3fY9hO59B7Nf0vSWdkNq/TLkcQATyiyZeeeWV8BtRqgQcy6jKlQGcNRRPtwAeK+Xu6B1mAAgAIusGZED2Wb3B2kbKS2gzfxHGjHrIsIp1GA1mLipODS/vlLsS5nHCXfxy6/EdVk+30yak3qx6XuwTUUs8A3CAXOdCINsf3uifnQ8oAw/gdiM9pxh7TxVg0h+KCu1r7ThA18+Yw76J6DEYo4G/WHPuFB+luop/HN0L87adwv2XtLB+Rz+dGscjiTRQShkBqtH9wdLDOJBRgGH6nEgbAahQKvN2nC5hsfXUWQQiE1kbo1uf0x0bVxMoAqJsjO7mTIYS9cA7IfsHtCLjQro/bLCxLlxr9Z5kzHB+hW7sUexflw20L98c58V7M/DT5pN444bOaJSg3T//HM7EPNcU233qMTmY73oaiVJvAINttzkXREPd3qrl6XbovCRfO97FN7uHALdZ80YDtGS0nLbWp/8G8GpFNk/lT9f/AADH9tYAen0R8X77SHM1FNNMB/YEcHIj0Lyv/c5+I05mHKgb44RLl/fpY9347dH+eOKFUfjI+SkKmRrwBdE9WSJdhME1QhsWtWs44SEswABd2OPaijKEl8tseFV+j6cIwfzheu2P0yQB9f3CjrkkBgmmygSap9v43de6L8MEaQ4ARXzNgL9fOZKvGAaB/jjg4bbzdNtOOTuiweiiqzyeYtjZw5br70+lGfrRWgBAXJRDTUeyJaauwdMdSn/j9x8+RAZrLeul5xLswCVvOZD85rCQ20kyQQGiEIsSDPe+Br5JD9xp8/7Tv+9za7RGQsijmvD/1k6OVd9136w6gJtv7a1GTsXH2twprPYb1HDxyCaxqGkSXDJX4chuOABFqVqffEfvZmjSsSl6tbQPT1ebaPJ0TxhyIQbuycA34hA8wP+FNVJna2qJKXde1nl8M0mcQVQUAKKcHLJILGozmtFwpuczSABQzNcEJOBqnaBgYsd3MXSvMde8vGjftD5gznQKUrrVaZNul9D/AZxY44/8CaF2HYhQk1iXNnFTRcPLv99wAlMWKWO05DeH4Z4Zm1EHeZjq4PDuLd3C7l/ik1DgEVAvzr5vbHboWwzi7TVdhJICEJ+uHy6HiYl4FOJ6bh0KxOtACLGWWUWQKFNfIfQFR6DT7/hUvB4x8OA+folhl6K0vYhuHjoimRB7BQi+OHjK3Qm5HkhUTWTWUCKJiCwYnivO5AwTdSXqfIJocP8SSdC9b6mnm1JFOCg3AQAcrnVZ0G3sREbYaCVf8J2RXdCyTgym3tg57LlEfzklfX6antxiHw6lKzn+jWvHo2aMcXDI6YzuRKk3ON6JXn7lz6C5l2ZsckbZCERUdpzMVfPGBgy+AYvr3ItDPV5UZ7VrQ+sYBr/1J8bO1rw5jMnjYRlgCR4UeHRh2f6uijN7MHUemGa1ojFhyIWoFxt6MLxQ0g3+/S8/AoJ6yEFXVgtt8xZby5mJwSISdIONTjqP84ECl6GjZ2zyfvTdMOdU2m4XXu5kJJCziuBS4H4ROReyoRgpgWsBALEoRjf/d7ng1EL7NpcBQZLx5ZqjePb7Neh85At88stiw/rtx4Irp9/MLEcCU6R4qioAQ5mrKuTpnrbskJJL5edCNiW4p9bPczrPVa8gSr4VSVRGsPxg+8HlP3InXBgq9DOEh1PNMfPPvEsOzfjIKFaejeYdegMAPDJrqc0NAMlyfTwkjA+rxsox1gglAGUKL+/bJnj94wBJR4MLAt3Kac9BwOD+R+5k3z5/P6WfTPqfcD/6du+K9VIH+xP4DSKGAR7n5uMBXqnoECibxpi8+4JNmDUAwBFtyP8OJobGMgzu9k3QHVDrw1zwYf+p/KAlzwAA8U0M391Hgg8KR2TPxCOZbwQ/FkILiOnJKfapfXTNGtH46p6ettvpJwQ29nhP/TuYuRXQ2gCg3l8OjoHX/67bcvSUwdPN8FHYE2tSyXZpz1SMi0MOwodXSwwPj6xXWvfhyvb1EecOfY+bX/nNa8fg0GtD8Kp4N1p4ZuMhwVrSzWwYCTr9kgPmUHk/X4vGSZALuvijNWLqAgA6spra90W9Lw3Z5rKw6pnLMPm6jhhzlVFg7aijLdC0j+0+dho38dEuXcmwEO8bnWexqoeXb0k26kndwq1EkvsRXJIS2QTswHdWovcby20jTGSZoJeNOGMAsTgfst6pUQ4VSN53fIbJjm8xNuMlHDxdoD5rIljsk5srp7EZe1/NmrzsOqN70sjeeEO807KPXZi6GTvRRgBgdKkyeg7H9wM7bjsaPb0Wsj8NlJFFJOgmrYgpjVTUee4D5e0CyKKgCmr+Gz3dpTa6WZYFx3FB/1UFpk+fjpYtW8LtduOiiy7C2rVrK7tJ5c59vufxtnArjvezEerxYyeuFvDw3tyzKVY+c5ltKJWZgEgSCWJ0v7fkEG7klN+Y2HhjWF1oeM3GF0RkLAPAcbk+/pZ64WfmGkv+UqR4RVlVg4yKrYmrH/sIba97Vl2vF57Z5HoU9aQzeJafg9f4byxGdz6JMXyG6MGHy7XyN4Ewrkjqgoej7606QTh/O2q5GKxzPYGHeK0We1vvHvOuhg7NgL8j84kyYnX5hSyMQjmsTYi+3ugO3A9RQZQsSzKVsCciBmbPncglyn1WT2d06w01XvIgObN0HvpgvP33AbyReACvOmZivOMXPJv2pGH96u3BVZi95VA3NRRPfK8TTyuFenFFM23ZYTQyi8aEQJKJWpe4ojieWYQSn/E30uf+u0oyVJXoAG/8ddAyS58s18eSeqPw2LgXUTsmxPW1iaZRMYW7Ed0Ap2EjZeCeEKssi0cRZq47DjMPCuMx7+EgnnQddhFKAMpUr9TtCL6PQJR1DY4FyT0HVNE/PQ07X2kw7lRMQmrzxAG4/M4J6Ng4ztDf6EnLUQZmDIDxjl/U5Zz/PWX2dCdnFtkbkI5oMLrxh50CMKCkJK2Vu2CdpBgzs1bvx51fb8Td3BIcdN+HC7JXgdP13/r85E2kA8A5IBLtPF/HP2Z7nkj53vkmJvGzwm6XmlOCGv6og28fvgJ1Y5X72Fx3XH/fiLVDi/0BwF65pfbB/47lWEb1dDshGoxu8C7c+vArOK0PMa+hpVrEuHjkkPBjCkg+1CvWTdQ1tp9EMMMwDFYxitGZ1+Iatb3+tejRupHNuYwTMKJuHGMWRw3gvOQxFOlqhzN+Y0KKspb74x3ho0lKS4s6Mbi3XwvERmvHziRxaDFxc9AqBglR9svlCITUAikVhNWlT5yDevmpvBL8tftUqWtJR4LDNK59jVe0Jq4vCK7loedMgWIorz1sfd8t3X8aeUHjfgDRU2CM+AxTajISAik8bbz7wLOMmgud3OVppDPKsyXaCf0ypt9W9066pWdTrJ54Nf4n3I9kub46uRSR0W1TnhAASEmu7fJ6bXuhae0acLpcqmdaFn2G8oiyKZdcCpVbLpRo71vq6QYWLFiA+fPnq//mzp2LCRMmoGHDhvjyy9CekfPB3Llz8eSTT+J///sftm/fjksvvRRDhgzByZP2eX7Vlds7x6P2Nc9j0EUXBt3GPPP5l9QLqNUqyNbBkTj/YDRIWJPnzBH09BtQDG81unmn9uJoXj90+JgBZw2cuOoL3PjiT0E3iURFWC1z4LKG0nv7PKH+HcN4sc49Do/yC3EXvxz1vMmmcxlFeBjJg3VHtI6b+Ado+hrjj/vKNihrXT9ezeEr8Sjt5wtSDCHAKnnGfGghmBKz/wVR7BMRpesQr+fW42PnJ+pnTufp9okyjpwpMNQTlf2iWcHKR/gK/Ya1v2OVWDcubd/Ess/zjjmG/S57d5V9u0vJrPXJAIDLWeVlVpPkGNbHMFZPfrZ/oHjWpxu4VED498WsZqiyYvgX4PnianYLbtMrK4fBJ9r8NuUohpeUnI3L312F4R8bJ0z16Ry1mEJ40o2G/8z1J9BAV74pk8ThMt/7GDx2GurXqwsHz+JBn403DDB4+s0UFivXSvYLKck6T3d8I6VesugfIDgYCanJR2Dmp7GXo1eL8P0fE8zTXc4if4G+pBt7zFIOMRRMVKxt+4jkxeKdJ8FmKd+9d+u6uKpDfYzo2thakcHP1e8qyrWM6d5h/bnX5vdJsVc0lDtUcRo93WN0E5N64twOfHhbN7UudHTKGoxIfgOvOmYBAIYe/B94v9E9kxuJy32at7heT0WEz8tqkzOj7h6FdFKKd5oN9/FLsO1kDg5mFAQ1UopLSlTFbTZKU7+fIt6Dk3Jd9bPe4B3cMXRoO2BfJ5phGNWDX5/JgSjJWuQA70btuGgUP7QJE4QHsfAqY0SQi2eRrzNa7ETVAOBMbiFedujK+tmMG4LR48k5ODFwGuJvU9KR9HP4Lw6zRlQQs5Ca3/CQweBPv97AVhj3G3d1J7wq3q0t8E9ICLx1DOFwVtxErX4M54ltbgmv18NzLBZL1skLzdMd/H22L1UZx8icU5tUOodJ4YFvr8Ijs7fh123lr9Xi5Fk8yf+Ce7jFmDjzL4t4XKRIMsGZAg9eXbQPR88q6RBjvt9qEI+07OMpMDifzI6Zc4VjWVW0sETmdUastU1v8SZ7yzQp2zA+CpOmvIemkw7iuFN5R5mNXzvEIJMzxKNFhZ7mtKoBnM4hti1NmZBowmQaK+iYtC2kEOr/rDeferr1mIXTRo4ciddffx1vv/02Fi4svxDRsvL+++/jgQcewOjRo9G+fXtMmzYNTZs2xWeffVbZTStXmtcA7rm4WUhRNfOMYMY1X5Vp4Cb5w8vtagUCMOT2uXw5lvX68HKuFGJAdaQzGDOwtb3H3k/JrfPwQXOtDm6JqWTJjpM5mqHntM5gDhvQG8dk+7IjbtEYTvOjdAW+EYeohj4jelGP136TwPCFBGbpCAN391uCtj0UivK80on+/enTOHKmAHUP/GC/cbFmZMgywY/rDtpv529Xak4J4hHcq6wXVbth+jqM+eAntGVS1GVnokNPdAhFAaNb6WhlzgmHUxlUhXpBxqEw6LqyEBfE26UX+AgQmIQwpBDoXjLlhb4Uns8RunRUKPJKBKRkl5/R/gQ/v1Tb++zCfMvRc79ol5ICcPSs8T412yTRu74zfL6TW6aGQQOB8itan8ezDJbKQUJzbbwJAXYmK/lsuYHLp69/7VbCaQmrGQ632qQn1EmI7HoH9XRXILYllIIQF19LVUQGNHXyouISJPx6M27mldrYhFH6L5ZlgtaJXuh8EbIkY3+20TDi/CHLrMmrJwoe8Hb1hh3RYSPtjtZXPKMjujVWwyBv4VfjFl4n7saw4P3h5Vd1bornhnVVV9WIVvbZ1+AG7JBb4z1hJFw8ByFEiHmkPD79d7imX4QlXz5vu57R90W6yeNXb+yOk0TzNK+RlWokBSTKNsfXzFfSMOyXm2GScI9heW1/PuYkx3d4dt4urRqGP2qtSb3a6Nv7UgzpY0xPYxgGAqdNSgTLec/PDJ7iE464+FpofvkoVZCQYRgM79IQfVvVtk0fCRgsHkFCdpFPTXsSGBcS5T64wTsZT7snG/ZhWUZV0Nfjc1qPzznOj9Edk1AvxJYKhzqMsywLCLyGChcPRLoViZw2oXYOOd01pUw8z/+EffutkXjnSh3pLJ7k52OK41tMPXFbqffvyRzAJ46P4C45jWfn7cI3/xzHiE+06hUXMlYH3SZZcW75SgogeXTjlHI2uiVZxoX+sZarbitI/j6U2FwLTufpDjaR7OBYRVA5IIYcSpfJTzBPN+PT+qCt/T7X2qEz9vXpP/ryYsSUshgsVRUAWG+ullJJPd3B6dOnD5YtWxZ+wwrE5/Nh69atGDzYKIA0ePBgrF9ftWrini/0j8+o/i2DbhcKNU8jiKc7itU6c162zmDpPd08H/lDFEusxpGZAR1b4KpB1+Jp38MAgHy3Fl52MKMAX6/ap3VONuVznBxrKaumrjOFWb9956X4qdYjWBmj5HuxkheX1NE64BK3IpAk+V/yIsNFlDNvh4Nl1YH3Ddxa3PfBr2q+oxl9ia/cEsFSo1vF/4KYtT4ZcWYRJB16Ve2j6Wex3PWsmuP8szgQso2SvB4xYHRLyr0gs66IRKDmOsOo0EYIAwbBshjXH8nEg3yiZXkU4wORjYrTpMQ4gbQvPR9/7wme/xoJDXTh9T7OGNpY6BVxMMN4z+eVCPh9RxqKfcYB05tvTYIwrTuyjplqLpeRYGGWwbDNrS3HHEC7ygSAUdAPUCYEx87eiu5TluDxrxZbylrVYDy4sUdj9bPbwWFEN2MI6m6/0SiHCBUMGB1nS/zn103gMf5QaP1Y5TrW5n0T5rkJwDJQhSbNZQqrAjVr1jZ4ugP95/HTueijy4dkGG0bW+80gFZsBv7YvB+Hc433E28SVFOP4y2y90Q5osEwWsi8mZeE+7C3s5bLXRzEs0/AqF4YhneDdWoGJOufMH77zn74tuMMDHrkPdsKIeGYJ11mWbbOPQ4t2NO4JuMLW2OHEZR+wcO4DRoht/VuZlDiXiRfjEd84/BlW6MXTD/pMVu8Uv07ldTFEN+bmCVdY9i+LaN5KMmJ9Vq/xYe/HyWD0W3vqWrOnFs/auaTO3rgp4cuBssy+FC80dgeSbmXLn93FXq8uhRncnIBAALjhAwW28kFaFk/wXJMZ5NulmWiw87TfQ5l2sLg0qWHmPUN7Hj89usgEmPfqXm6g4QNE6Ia3SWybjx0DuHlXzvfxSP8H3godWKZjxGMqDDlUMPxi2sKhnMbcfGeSTiekoLlzvEYKykOjaHsRtsJSNGlOHM8RXnIy9ZykJlyyOnWXy9RJoj3j83atm2vlswiJk+3uYRgSSvj82s5h/+ZDJYiqkcI4unmfUof5IUT7bv2VpcTnfhoNhsk6scSXh5C/b8kF4x/LPFv9HSXyzRCSUkJPv74YzRp0qQ8DldmMjMzIUkS6tc3qsPWr18fGRn2nbzX64XXqz04+fnKbI4gCBCEqqneGGhXJO3TD3XK+n00T3eJ7TH0CrcMkSzbMDp1U5blIAhCkFexlUja3KaOG6dR09LGm6cl4kvHx9qxCAeYjydLIYxuzaA+XPNSXHlhXVx5YV38PGszkAbIkog2CSzgL2koSSIEQVBFL2SGByNLEGSpVNcMUELi9DkxY7nfg27rLc4D5z+uJIpw+18aZ0gCvhUH41nHz8q5vUWAIKBFrSjDsc3or+E1JrGOEjjBhOkIfSWFyv6B8HLOFdGMZXv2JISSgogGdqFgIeINXiu1lBXVAnH+73PH15vws9Peo777WDr0Vevzc5SXa+C3CCgc/zqmD7o0KZuXur4u9JnxFRnuh2umrUVqTgl+fKAXerVQ7ueJsxZj1KnJWJh0M266V6nZWuARMRWfACyQm/gMhDF/l6kteoKFFwe7X4s9PhyRG6ENq5X8E3wlsJQiKCMOXcelb4PXJxoEWzNLCGL2zcF2x5fqc6hnef1ReP269oZjvHVDR2Cq8vc+ublqGCzbdRKSJwVDOimRLz5RRlaRDw3j3WpkSIN69ZRnnNcmKYi/T8uBdk+0Yq3vG4Gw1v7HBlmU1IFyNolFDcaDX6QBGFHG/jvY0/qKcC8mO74t9fGIIwYThQcx1/UqvnHfi24epdxiZp4xMkQGo/7u2+U26M3aR+BsP5JiET7jPFkQBEHz0vkRivM1r6t+OWFB5MDvZvWEfy8Nxn0XtFLbUyQ7bV0OMhg45RKAA2rFxxmMfiIr/XvdGB5v36jkhJ/O96AAIbQAbOjavi1waFXQ9Wt37MOU1Tl484ZOaj8T0OkQGaf1/aor9ffE5W2waHcNTB7eK+izq8/Hf+/WHhj/y268N7KzYftM1ERDKH2VvtKDAOUeDvU+yxE49bf1mt6tu+UW6Mwmoy1rfFjLc6z1gXgTZotX4iPnJ7iY3Q/RUwhGEHAqTxmnbD96CqMACKwL3426CN9vTMErwy+0tOGRm4fh03lvom/3zugc+L68jUic+R4tx+9iEGVluIiO/Zt0CW7m1+CQsz1aCoI64SUJPtv26dMHfODVSSTBUxRRf2VHZzYZANDQe7zcx9HBRBIBYMW+U7j0gtDikYEnOqHwMIawm9CanMJYdiEEn8+gl6PH60wABMBXlA9Xse6aiN4yfb8l+07jZHYJRl/SAjI48P5n2OMVwPn7L4Ewani5JHiwcn8GXlq4D5OGX4iUnBKM0h1v2i2dQ7ZD8kdhEW9R0O0IIZBkgnmbjuNRm/UO/8SfzHAgsohLvNNwAZOGaU37q8fMYezHRUfSs1CjyIMop3JvhcotF4qygWh/lCTDV1k7zEyk7Sy10V2zZk1DSDMhBAUFBYiOjsYPPwQJfz3PmEOuCSFBw7CnTp2KyZMnW5YvWbIE0dGl8/6cb5YuXRp2m9Y64yox0erhi4TMPOUBycrJwUuf/Y1rmxtnwooztRdoYX4+VpnOsy+HweX+vw+k5eFMYiL2C7dhgimn18zHtV9Gswjb3KWOA8gHZG+B+j1f4n8wqKMn/r3EEl7vlYBb/C8IM06vMujYznXFiWYPYJ//uFnZuQAAT1EB0k9qgklnT2fggbcWI96bjus4xchfbGp/JNcMAPJ8wB26a3cHvyLotkkb/kHWQWVQVigAF/kHt7l8HSTXuxZ5ZxYhninGL4nLEJ3QEEfTiK1AUgBZ8Kq/YUuT8eCFE6czrCkEAJCE9uiJ/TiddgI7EhORn31G+S5FXpxITbfdx8zqhT+iyG0f7h8gpRCI4oE6QWzzG7DWoD6eJbjxj3odeOyTm9saAC9+swALdc7I7RvWALU6qdcsFj50Zw/jt6U+pNYvW5BQA1YzTITiPMMzmZqjdMef/bkJZ1sqz9iQ9OnoxR1Cr9TXMe+PdpChXOMH/PsUF+ZhdRmf6wAyAeoGqU2e+Oef6jOT71PiB+KdQKYHGGQa/Cz5+y+IfIzNUUpPchqDaAiozRh/I48E3Krb7mjaWbzjmGs9AIDbfC+id40LsGSxdVJihP9/HiIEv5c/cWcK/ty+Cx+eVMrFfLCbQ3Ihg6c6iWjC5wIAvBKDxMRE7D7jVY9x5OBBnM1PxJFkFoukizGc22jbnsQlKyJK7xFloLl/4Bvl92KelOuVuf8eEWR5uyaNcexUA9sJglCs37oLbVu3Rd+UmbirGQffwSSAAY4dO6728wCQeyYVu/xtzm15PT487sQ4foHleCVnTuB6zihuuCqrPsTEROw7XYTrdMv3bNuIdjYThol//YVj+UA3sLZSiBO7itizcRUCwa6FssPe6JYJ4qC87/YdOYnt2IeAD+n4wX1ILzBegwIBgNwS3dhjNme1JyszeOkdAPjq1z/xEpeI72dcict7KuV9kpMVtWwf4bDcdB/MEW/HT87XsYzph9aegxh3AbBhlTHqUD+S0Rvd5OQ2vNVT+T9RF1XbjfC2tdlWrlqNEqdm1Ni9z2rKuTqj2ziZl8U3AORkyz5lvbft4XEGNVHkjxLZvW0zMlKjEBjuegqU91eJxCHnwCYMTwC2/mP/fmpSvxFS0rOQkq6072iatZ/86+8lhmesPL+LR9T6u9ScEhyN4Nivy/dik9AefJ2u6JuYCN7v4D569DDQsKXlmgkycKe/TGuBRwRITXRCMv5ZtRT5h8sWvXSuv4dHAtxB5m/PpKXYrwDw8vd/49mLQ2ssBNrG+IqQJzvV+/y3X37CBUEi5DK9iqmefzYNDk+CurwwN8v2+wky8Nk+DhfEyxjS1HrMrzeexHXcenydMgL36p7H35atw9N+o3v12nXw+u37tJQTGLU5Ca2ZdDz4fRE6xsuq0f0K+wR6rAw9rsz3KAfKPpOm9slmvjvM4mAeg87kMB61sQxdYj7AABJhsHP9KvAxdZHC1sHKpUvU11perv1FG5DzK178rBt6XaCosZ88btU8CdAwfxfyPIr3PL/Yi6Ry7RsqjuLiyNL9Sm10f/DBBwYDlmVZ1K1bF3369EHNmlZlx/NJnTp1wHGcxat95swZi/c7wMSJE/H001o+RH5+Ppo2bYrBgwcjLi58DevKQBAELF26FIMGDYLDEdrruGerNks9dOjQMp3vdE4WkAxEk2IcOnUWLa+/Hu0bajO+CzIPAf5+0NfsUut5dmdgyuG70ZQ5gzvvfAUMx2PcBh4XsKm4ifvH9pwHb1qGMe26hsxZ1yMtWQpsAaIZn3r+Y1tfMGwzdNgwy34+UQZ22R8zihEBAsQ3aYthw4ery+dlnwROANFRLjSqVwuBFOE8icOJQgbtGAngAMI51LaU5poBQFaRD/zeyIS8ulzYGlE9lfOcLfCi0R4lP6+tdAT3XtMXvu+Uxzw5pxjP3DEUp1YfAM4EP56T0+6Vb7bMM6zr2boBtie0BXZqy94SbsN20gbXJiSjZ/F+1K8Vh+5Dh2J+8jrAB9SoVQ/NG7UBtiIsl/XuDNKkV9D1p/M9GPeOkjN6+FX7OtppW40D+xg3r36fzzd+ZaldGWCh6yXD546tm2JLDtRr1nxrb3Rjj2Fn7JPoMPTF8F/GhqXbtbDPaF42PCvvbvwed3LLkd3gfgwdOgAAcGDry+r6dNGJNrvfR6s4zbMWXbNBmZ/rAF5Bwt5t9qWNhg65GmB5SDLBha8oL/bdL1+JtFwPXPuMRvfgq64AomufU1sCnF5/As9kDEUL9jSE3huAOooQTIFHwKmdtdDQHzFQq3ErINe6/4/iFXjsvnvQJ1jdX39U/lmSoA6z3ndMxwBpF4ZeMxdgOfxvw28Yzu7EWedwtORKABmo36oTOg0ZCm5PhupZ79C2FWIuHYqkPw+g8Kz9TNB9vufwlU3/Y4ckE+zcrlyPgNbA5R0aoVNZr3OQDIRr+nVBzq+l1/joe9nV6Fu3HQJ35uY3PgAIUCehBvSyDPVqxaltHgpAlEZg/xtb0Z415kx2iS/CfR7jhP3gm5Q+jN1xAtDZQ11b1oMrzepRGDp0KLan5EI6Yh30bXH1xf0jjb/diqSP7L8cyyNOVqIaul08EAXoDvirQ7VvVhvdBhuPk1ss4KcdpdNDaN76QiA7+PrvnG8BAAZgN4ShisBVyR8LgRwAvMvyvI/bwGOg9320anUBvhxqr46/KulD9W+9XkCwviNt67OWZZvkC3H5iLsBhgn5PtOfy2cy3k/UvRw4bZyUmlLvQ0w8xz5Mz17+EOZvT0eRV3kWmzVtjFtX8aiBYnRhjyHWyQE+gHHFlLrvzNx4ElhuXDZ02DBgh+5zOX4XnyhjwrbRuI1bCX7IWxjaOrwQbtd+JdhwrCeu69IQTp7F4q1K/m3rli1w2gPLNSvyiji6vS7qMbmIcbuQ5lUmVVhGKvt30fU5pT3GvK2pePm3XXjp2s64o7e1pNucKZ8GDaha7nwG7NAwk4j+trkgID42Ru2zLm5bB00P2U+ecTWbAGeBWjE8aogiAnPU8THW51H5Dmk4u2kz8gsEfDzGquszYrvyGx+X4wzpKbuOHAXvVAzkgZdfiYVH1gIC0Kh+XTxwJhEv+evdv1g4SnXZP3R1d9TrEfo3/uXEJiAbqBUXhS5Brse4l5RxkcxItpZhNCkBGCXke/iwoRg2VHlz6sfoB51HgE32bXit8CW1P/v1lxzAvgIZAKBVTIkydoxLKNfnqSIJREmHo9RG9xVXXIGmTZvaGkMnT55Es2bNSnvIcsPpdOKiiy7C0qVLccMNN6jLly5dihEj7Of7XS4XXC7r3LjD4YjIOKpMImnjD+y16I4PcCiuH9qW8fuwLsV71YrNwBrXUziYUhOOZtrvq89By+3zLFqaztO8bizGSUMAAKPcmsGQQ+zreV7mfQ+rOgc3vOyIrqkotdaQ8sFynG2JMbvfiuftZzYBwE0U7zHLOw37BnKrWCIZyssQSUQP5hB6+r2oMsNbzhnpfRVVCm0WpuiMekyWM4ZWOp0O1PWL4jye+w4cjqfBhsm9ZYmkHq+Om0DvBK1XuyYcTmMIka/llWhZ60IgWQlVZSUvvt2YguwzOcqLgXfjVFFkytZbN66A3Lsd+ra2N97SdCGsPM/b9kOiqVtjiah+n5f57y3bByNn/3KgwY3qNQt4s1qlLYTDYY2OiQROF/rKSyWGe2GG411cwKbh5IljcDg2AIBB8O6OvWNQl8uDXgNPdkSdcz/llZmgiq0ORgYcDuTke3ApuwuXsTuRXdgPMjhDmTkAcLAMYNOWvGIBsz+aiI71ozBw1KsRtSnGxaOFv37ngfULcaz13RjRrTFYgSCHxKpGNwmSh33R4DvRrq39RCsA3O2bgAe5P/GC+AA+cijK/S5GxK38KuDoYqDDCLzqmIkbuHXYnrYfp4jyXTmn8nu7XJoHz8kSOBwO3NqrGTYn2Rvdq+RuEV8nnhBVqCzKL7zXpF7NcnkfnSXxqMsoo50oB4uSCATU0kktNNKlRThiahqus8g4AAI4SoweXIfsM7TZ4VDqds93TTJsV1O2WqCB/RiXMdpMzD+l3quH5ca4wB+m7HA44HI4bHPHV3X/AL1Mv91OuTWu5qx13qPkQtT3h3TyMbXQyBmDr8UhuIVbhag+91uuAccTaynJMDii47FdboPubHBvj7ptoF/359dKrNP2PjhBGqC9OyboPfKFOAyXsTvwMX8fNngb4wH+L+W6Btne7neMG/OXJX/Z7n32kXgDBnHKDKtXl9yQw9fBHycduFf3bpss3I0xd95WrmOtF4Z1xMShHTDnJUVg9bfNhzGUzcV0pzLRstHTHmCVqhqlPW/35rWwUuqKyzlt1tnuHV9e8DzBHOkKzJGuwLoGzSI6dou6DrSoqzmMApMsrP9dab5mrARVnLDeRcOxf4WiHVMDxYbt8ooFOHlWDRGOFHObt57IRp0aLjSvbX1uvtuQjK8WrsQO10TM+etyOPoboyGLvCJmscG1X1yMaPsOCqCvDsATH5rFsarRLftChDy7FIciL5XApct5Zk19XACvRLDL/aDyQRoOuLUxkz4fu2bOThwgTdGbUcaM812T4PPrUjhcUWq1DBBJNbgB4DXHTPXvhlES2DD3BfGXw2RFb9h7yKz3syjhLgzP/UEVV+QlT9BjPHFV26BGNwB8sPwonrvmQtuyuiJhwTPKb1NbUN79hHdVeTssQKTtLHWMZMuWLXH2rDU8KisrCy1blk2oqzx5+umn8fXXX2PGjBnYv38/nnrqKZw8eRIPP/xwZTetUnjuqecxu9sPqD86dCh3KJxuY+dYz6SiLfuN7lVMb3Rv0xhmujVNwAe3dsWCsf0My4uD1ER+585LS91Gd4JSNoWFDJQogzi7cihmQnnSXcSfq24WAfPnqDNEwsaDWmg9R0TMd03CCw6lxJl0DsqLfAS1zPOJMiA9m6bNzprLPXC671fDHzYZzFAJwOryyARTzW+nkI+4BGNEy0sj+2LqjV0gB3KxRS/W/DUHz/lzycG7DbXaQ8Hv/w17Zj6GLL/YjWU9xyIaHjRAFoQgKpuSaRqc1QnClKa2dMdTv9kuZ0hkuTvvLTmIa6atMdSS1v+2Dtl4HQIGRLMSpY0eQTIogAaMJT2kHLQwBVGGw29APys8ZFzpH4i88OtOfO98Ew/wfyFm2+cQ9GWEAgSZzJn9zwGM9XyFgSc+AvIjSzOI0ZWWS9mxHB3mD8LZfWshE/8z7kcMUnqkRf3QUVdr5S64R5iIp0YOwnTROCGbknEa+9LzcQOnKNp2z1umCXv5SxvF6AaerN8g79Q4HgJvNBIBYLi3dAKBDMNA9ueJBkQgz6UW8E5Z84496Buv/u1gJDRmssLuv0bqgiu972gLnMb3QWCSy+0xhs9wsrWf2Ubaorvnc8MyphSl+aSck2qpsweFZ3BCroevRWVCl2MZQyUNALjC+y4ev9JabWGGSThMT72A+r3DjXYNYtHglvdx+uH9cNSxehkTohzIL6UIoSMqFvf6nivVPgERTHUQbkPz2sHbkUQuxIXeWVjgGo6H77kLN4hvYMs1fwTd3k5tvn3jyEqjpREt/Dwf2r0yq+lrSCN1Dds+//xkNIgvf7FAhmHUZ7GXuFU1uAHgYlZJZTjjKX2UR49mNbGggaYQfrDVfQAUzQIAKGTLNzqSYRh8cfdFeGdkFzROKJ12QICALkKwkmGSRODwG91tG9VWJ5F8+Zl4f+oEbEvagHyPgJGvzsBzU98Oe7603OBiXcfOFuKmzzZg4DurLOuOnCnEy7/vxZP8fNRgPBhtIxybU+yz1XSIFMkkJndnuhbhJfiCj4skv2o98RQgStDew6yN8QgAkl7oLNM4uebRldssKSnGWWJ0YgTyu8E6lPQVAM0Pzggqqsm2tY/400P4gNEd/Npcyu7CbMfr6MQqKZOrpS7o4JmB9Jj2AIBYfzUY/ZjEjNsRekKm37r7ldKigvUYhY5aOCwr9oNb8jtX2LKPoasqpR6xBVNALCwshNtd+Uqrt956K6ZNm4YpU6agW7duWLNmDRITE9G8efPKblqlUD8+Cndefy3i48penig+3rQvY3ywAiU57BRAA9zQvQm6N9MGwnMeuhglQTqRXm2tIUVh21gjBqn+l72cquRkhuocIsFNlP3NqqGMv0RCkceLa7jN6nKnaZApn4vRzYUfEKRzSgfFFWiGv76OcRFf076uZ4jSSIDmjU3cfQq8ycD0xjRBzZqmwZd/EC77y1I0zViihkgCAONwR/xbXMQeVtTFN31uu97JsVjofBEb3Y/jwH77vADJ1K1xfqM7WN8VisBLVf+7shGWxvp4xREcyCjAnM1aOK3e0+2US0LWti72SYYSY3YEU4UuDYKsGd3P3WZ6gXtyAQDuw9oA3Zm2GYIkW73jQYzukgKdYZdno3Zmg96LPpTbjAvYNJANn0ImBJzO6Gb87TOjV5224/O7emDsZa1xY4/GOE2MBvr7y47hho+Wqx4HQDOsA8JacVE6T1HNFurffJR10L2HtMKYAeHDQvWYS4axpahjbGa07xm8LtyBHp7PsYO0UZfzHIcZYmjVWwDo17YBjpGG2CpfgI1ye4PXBgAkvyEY48s0tlmyTog0TohCDoy/kUMO7mGKcf6fvfMOk5rqwvibybTtvcJWlqUtfem9CwgiSJcuCoJUEUFpIgiIoihFUEDlU7CgIkVBpagU6YIgdekgnS3sTkny/TEtmcm0ZSuc3/PwsJPcJHfmziT33HPOe6T3DU3mBevfbepXRzP9AvxUZpTpejILqOeEWNmJYB40WMc1dnpdANbF1ierxaJ8jPwijkLBoFqC84gKOVQ+AciEPxrr3nff2FLix1KGUkbEcumztdCxWgxealXe5ak4sFCxCrSqFIWvZgzHUw3SnLa1N7rXVV/uvq9mpjxdy/q3qWSfiaSk8sgWic4d5xOgDSyYdBQ51D4mQyldcUp2/31D/kQf26VXtP4dFmmKsJuoGI/Vxlb4raH3woRur1clGt3TvZ8TWbDeS5w8tzhBsN7/tRqNdRGpQe52jNMtQa0NT+CfK5nYqnkFHwhzcPLgTpfXm/aV80pB/9pV5xBzM0uHZ9mt6Mb+7rTNvQceGNxXDzvdxdnXnBRh0DufF13RmT6T+Lx/UUtx2rpd4aRkGC/eLoq6vJBxGud//9K2y5iHjqI5JAAoLNV2WJWkTK8/40TxW+vB3N68aMtyzo3uz9Vz0Ij9x6q7cQ/+eAAtBJV3i4qSBVo7GrP/APcuWivb7EY1vG3oAZ2gxM602cgxy6RqjabvifA4q5db8p4ZhsHUqVMlImMcx2Hv3r2oUaNGgXcwP7z44ot48cUXi7sbjwwB/tIwcMFeqI6zTEg9NzLrJ4dhm9LJxFjl/YpupZhA7OHLoCx7C3dvXkFYBSBUph6zN1iNdlbqpRXMq28Gg0EiFKOB9Kb4MOUOlDLh8fbkBiYC905D+8BW89Qoeqh8nzQd9WRqtQrmMhd50EArY9RZvLGLt5/BF6xUvTyq5XBk37a7+ZvLJ3HOVMeVWhgE74xDTY6jcSYIAq5+NR7tzIrZm9csQbWqHzm0y+UVkuVE1rxwwPGC1/k0/jpTftj7v5yCRflBXFLNFRG4h7bsfgg6W8oNK3DWHEcWvGkybTao8gQVtOZV/L8y7qBMiA9C3SwcFYjRzdkmXYH24pHmsmnlFbYSQhzHQ28wWEPBbJ2RN7q1oioAxqz/PBsDwfFcmuyL0PGCxNNd99oX8sdrg12e/om0GDyRZpow59mJPb2jWoo5WC6pKc9wBoCFtXZvmWAf9NBNQbriFMaldbG2M7COE5TtLzd36YWUwz5ag1Xnf0H7JoKxnDNpUlSMDsAnt9qjquIc6pZriQXGTAxWula/FxQqtK0Sg27/TAcAnLe7/1siegKN0jBxpcHx/vvjS43x9f5LyPrNx+o50WU7T+5rlBKOJTW+Q82Dk1FfcQLKPNs1xj9RFTWTY9GonGmx1X6BcTPnPEXp2+ENcHa5471DggdlDgFAYVen2ZWYHgCofAMBPECO4EH0T/Z/QGiyNTqJUzj2SfxddoeaNd0YVazr54v9faXr0455qc4QL3iJU3061UnF1os8YHb8Xa0xCpU9Pqv38Cp/wLmNYZ3ge4va37borDEvzH8+riv2nW+OJ6q4FgEtDqxGtzNPNy+ISvSpUTUpFrgsbbP91A1Y1AIS1ncDajkXA4y5Zkt656GQLB+6elrxgiAJm5YjM8+90c3dvwI2tobsPqNLo9v5s3bZ2SC8Yv66iI1fZ55uiKMJzZEGHC8gbFVjJIiOVwtODGkAUCgRyriew94T/BDssoXlQqY5msrovk63hfvmiAfGLrLJHWcFx2hXKQJ4nakfZSLCsOhSFyzjnsRrEdUQbv5N+nLm980+eka3x57uQ4cO4dChQxAEAUePHrW+PnToEP79919Ur14dq1atKsSuEsUFa5dXJ/A8Lt5+gGk/HMOlOw8gmFf17GuqusMoMkrfCxiPeerh+KXyWx4p/NqjVbHgzZMk3lyq6jBfzqNjMwXXRr79+7J4uqOYu5LJFWvn2XkYT7cH0eXICzSlc0Q9OIV9Z0zGIc8LuCOYbrBCQIxs/pWltqSOcTLp443IyjMgWbiEQMYuvFytRpi/3cTP4oVzYnQzSg3usWG4KzjWSXcGL6OCve/8XbTLtAm7RYpqXosx2tXqtayaGnnBoYapHLu4yrjIm8IgWV6PHJ0RC3+zhYh5anR/oZ6FWaoVaHzGtPJ7/X6e47EG20PwvigU07iiI65fda7SaiEfznsHjBxvDdm1NyC4B/dw/4FBEoZsUKjAicLDdIKlrqv85xIkCvnNe+DZQ1+QqQNuZNQO4eVOCYx138ZMcozU26ZgHNX9K5rFvyzh5SF+aowcNACNB82GUmn7nXMKx99AYrifx4KQFuw93azq4WsBD26UhHFtUjHT2A899NMAVoV1Y59AhbxVmGl4Fi1078gfqFBiYe+aGNgwCasG1XXYbTR7ukN5aai6Os8xdD3UT43nmiSjl94mWpiQd8KhnfUcSgWGd2mJS+EmYUElb7rHGqGEVqNGh6oxCPI1Xd/ejlxgfAZda8pPAGsnhDotFWnF0+eZqN06rjFGGl5Ca908p550lU8Adk5ogc61PIi+yzaF7F+8eQ9A/j0/Xcy16V9q6dobbkEuvNxjRJFw4t8qqw1A55q2BciW5QtXeDfHTSk3/4j86Q+FB2hxQwgGADAppprnUYFaPFktFko3ixnFgdVJ4uS5ZeQF6/0frAoc43iv2bfTtjDnqtwoAGSKIggMrHQMGAYYr/wKH6nedXheuDKIredzklImOY9M/y1wLo6/cUMqwNZb/5r17+515VNnnXm6FZIUPtPnf/52joO3WuvG6N7I1XO+H8Ar4Ytc7rfAa00LRVqD/AKnXErAffghPtQXkWGepZVYsJQ7dca1XxYBOrNRrTVFPRmgRNkQX+Qxpu+LH2/xdD/G4eXbtm3Dtm3bMGDAAGzevNn6etu2bfj555/x0UcfoXx5z27oROnC3ug2KHzQf8VefL47Ax8vXwg/4z0AgMJLo1sQPZz7Dx6JVybPQese+Y9QMDAWo9t0w/N0Jfsp/ZtYaOyC37ga8g2cGN2hjLTes30ZqocxusWT9MuiHDkJIbaQ1bzPTZ4IIy9YRVG61EmEj1yOjTm83OAkP1DDGPHmN7sQLdyS3R/hr8F6zlElV2DlP+/Au8fA8QLeMXaXfx8ycDIhTXfu3ZO8bqQ45tAGgEQNFDCJI4EzwMDxuGyXUyjHA2isEQwMZwDHC6jF2EIUGRkvrByWHO2km6Zyby+sPmDNnbNisD3sxIJMDdnj8P3LicKyiIeaHFu6wPHWcG6FUvqdyMvLxYJfTuEZ1hZSKEABTpTrn2vWZlh/6ALu5DhOQsR5ZEadfI10ewSZCSIH1iG83ClerM7XT3W3Mg/rooNCFIHSNDUCDVPsfpsPEQYuhrNL4VE+hKd7Qc/qaFEhAmPblEeT8hGIDdKidaVIAED5qAC0qBKPT7gOyBBi8JOcd5hVQaNkMb1zFTSvEOmw23Kfi7CTkb8S39mhLWDySL8/dgA2cPUBwCNBMcuzQmM2ug0yHl/WLjqoS3oS3u1Zw+k59SKjO0+QuRd66OkWt6uSWh4AgzNCWflzAmDU/ogP80X9iu6NPi7zOnadvokJWaZ0Hd7TPtnxbo8a+GNiC3Ss5plH3P4e6g2CAGznquMiH4GDvGhOyDASrRJFVJV8X8MTbupdP38rpqS43O+MGnHB+LTaaqyqsBT+5d2kKJQALAt4ghOjludtkU5QqHDmruPzbYLyK8nrnFznXmGD6PZ8z0e6sMQwDF5Sfm8SMczYYd2uM3J4c4N7vRWjzGKsPRfPOV/Es9e8EVPuvC3sO4OPwm6+Csbph6EHPwu968r/Vp15ui3RhOYXAMzl2OzwcZU+xqqwhXctKDyjv/v0IABQBZqeUz7G+7Ir9cvWb3PY1qVBZfw2vhlYjdRZcoxPdHmtTwZK+7zU+KTkdcw/y6DQm3K2FT6BWDEwHWNbp6JVpUjozIvWARZ1O5n7fGnH62W5lStXlthSWkThoLIT8dEp/XHldiZOagZgRu5beDr3WwDeG91igavQoOCH7qfRanSbJmYub2giMoQYvGvs4ZDbaYGxn0h7uPr2sKt0Hxi7AADWl30ZHxlN5Yb28zZRIJ9g2wS4CWNSU72bo7caUP4+Pg5G96Fz18CYV2eNLkR5hp163ul+hmEkuckWBCdpAUpejzB/Nf7gnecQbrBb0TVqZMYiV7pKm6q4IivMpZfzYOXehZETcA/ujbHIsFCr6i7DG2DkBYniskZ/z+05xBiMRtx7oMflSxcchdxEiqlZdp6ZrP/Ouz23JQyU5wXsOPkfbme5WDl31j9ReLm94B1v1OP0Hqngkl4VCM78G+PBWPvQedcz2L5kNBwQaQgYc+551CdGxmuuZzTgBcGW81ZAGOD5fYvl3NxT7IyiUfqR+emSg6f7YYTUnq5ZFisH1UWAVgUfNYudr7TA8v7p1v0LetbAF8/Vw7xu1TDWMBzddVMlv0fGzX3Mcp+wH5fIzs4V/lMi/b0zIM0LnRZxS6NMlI7GLpWmfwPXnmSxsvZrftMcG3jYP0aUfhQUFm1d0LCvomDFvCCk8CAdi/1mAM5/aytPmF9PqkLBoGyI5ykOEwwv5Os6FgYaXkEL/bu4qJAuaLEKBs1076KnbgoQWdHJ0QWDkXV9r/dU3NMehmEwoVsTDOzdO1/HFzVWsU0ni8X3HhisC/VgVbIpDNchfR7f2+U8DDzBX2zYSu8J4iXiQ2dMMexZeQZUn7EFN29cgzt2Hjjqtk35v6Y4z1934U1XidKJ2urfho+KxTq+KSIqNHSa7qeUMbonfvM3Vv9py/uGOf3S1bVlMd93M3jnmhExQZ6lYvoFmrzVShix+fB5jPziIB7obd8HzQPHGrIa/zAoWQUEtdTo/pJr6fJa/molKuStwhJjJ3TVTcccYx88sEulsYjRKbRBaFkxCqNblwfDMNCZ07MspTKFxzm8XMy+ffvwyiuvoFevXujatavkH/HoobL3lhpNghfimxQAr/MvNhjr4l8+Du8YnpEt8eUtFs9tyMm1EAQBPh6UwxFzE/KCFM7Cy93hSmnWE94xdke1vGUIqd4R84090U//KsYahlv3s1rHkmsTvj5izQuGQgWNUoGphgHW/dxnXQGz4eAqDCtJcR2GPJtBuMjYGc9r51tfK2W8jYyTSQyv1GJYs3I4L8Sgve4t1M1bhHmGnlhi7GRt8yMnVbbnZVakdx7512GbcN3xISzrCdVlwcDzkn5bcj7tIwkCAgKtE3LBbHTbk3tdXpxHjgAmF4cv3MJgGTVWiIRS7MNdNbn/uT23xdP948EMlPlfc5xe4NnKt6QLnE1IjVGq0V73lnUfb9Tjf+q3pAdwRmt4uR4qScRH12zHHGtBZHSH73rDoz4JMpMmlf4+eN7J+IpwGhniBIPC88m3QkaRW7JfdK+YY+iFlt3zF7mTy0iNbIeFv4dAySokkTQ+ahYNU8LxTO2yeKF1VXR4sisEcaqIm/s6JxPy/D//QfD3c230yBnOzrAoMKt4U9SEUcYwsBdd89e47neuaCLYrEYFxwYePs8YUXSIOjASH/VLx+5JLiamZqM7z+BZmkqfPFvlEYXaO22A/HJcSMTvnGmR9IaqrFfHxgRpATDgwOJmbCvMN3THs/pJAEzaKxeEaOwVKhV0lx2wD222xxsNmtKM5bcDJ0bfGxv+QZgld5hVyxrdkSrpYq7/FediZ3H+tutoDNLaxeL7jnb/EgDAjlM3kWfg8ZLye9nzcbyAqT8cw/eHrmDAqRFOrytGt/cT2e2uQth15siUG0IwDFDi+xGN8ELTZMx+uipUToRtVXbh4XkGDmv3X5KW08yvkCvDoE2lyAKJZhPrMn381XdocWIq1v5sizTgZJ63WrOhbl+28fnW1VxeS6FgoIMac429cd43DQentMHPfLqkTQBnSg1kfaRzboNCei1vU1ZLA15bOmvWrEGjRo1w/PhxfPfddzAYDDh+/Dh+++03R5Vr4pFAbb+6btShPHPZoZ07j4g9Rm0YntDPxQdcwSzWKPWm1TNtZgZ02fesq2XLjR1QP+8Dp8ct61cbw5qVwwVeXgTF3oPvqQebf+gbBoNM+EPFKvDlsCZIrtcJvZtUte5V2tVMhVGPpCyR8BmrhkLB4DPOpkidjuPWfCMjo8JMQ1+nV68Ybnqfe/mK2BH3IsYO6Gm7toyn25kA3vkaLyNAq8K52R3wxgu9UC45BYu5p/CB0Vbr3b7sjsA5CqakXVnrsM2Y5SjoIts3fQ6MnC30fmONpRhuGIOqeR/jgCh6AAA4lR/0gsjTLRPSlvW5889NjjKn/ye7/dotU9iyzsg5qIHn8abfnbNSIabOmo75+9AepCiuoj5/CMjLdN5eBrGnG6waJ4QEa6oFL6d0z+utugmeeIkFd95huWNkJgF+uusehZfPcvGdlsMok4ftDNZJDp+FLINtgpQhRKNGXLBXfbFw114ex0sF2fygUDAY0zoVgxolwSgeVzfGiX1pxDmGXtgY1Mvt9Y7p5e+32wMdw9It4eVlGVPKi9yCoYN+RahrxXhxyUqtf7BjAw893eLPShMUAVbBICbIxypO5YBZbfjqvTx8YXTtNbJH8RARD94QEaDBGMMIvG/siuWJ73p1bN2kULzWoRJWDqqD93rXQkblFzH2BZPnPCpQi1/GNcXeya0Ko9sSchWufzOeLp6XdmxCavKLPBfO20qOQqGUjeQLFOyMZxfXU+hti7Aao1QITFwesJLBFvX1LLsVQ+wWpS1VSH7+5zo+230BY9YeRrJCmnftDO632bLb9UYX4eUKk6d9N2+S96sQHYBJHSohyFflNMJEJRisXvX/MvPQ75O9KIObEq2fjP/umfrkracbwPs9qxWI0a1Wa2Awa918oZ6Nbuzv6HzUFoXFGR3nW9oAk9YJazevi4h0Lxb4/YhGaFguDJ8PqYtQPzVmGZ6V7A/m7wEAlL7Bku1GOyHSxzqn28Ls2bOxYMECbNiwAWq1Gu+//z5OnDiBHj16ID4+f8IURMlGbRe2x3A6ZMvVJvVy5fijfrWREumPTwc7ivPkh0qMrTST4dY5qzL3z1w6rsN5aZK2VaLxavuKknBDMX43D0tee7pCLjxETreYGnFBSE8MxYyn0iRl+Vj7G5I+G9WZs7bX5n52qCrN42N4W3j5J1xHjNUPhxy+5kiBiJAQfPVCA1SKsaWVnBQcS5gwTozukHhT7p5CwaBOYig0KtP36QG0qJO3CDXyPpJ4nQB5o9sy4RYjt3ItK7RlNrotxmXHGvHoUy8BFRLKOITKq3R3obdEKXAGGGSuEZnj2tNtv6p9Z/83yBYcfzNR3zwNGHLx24kbDgI19RQmz/6/gvP7qirHNFHwFSvn37vgcnJhj8HI2YTDzIaGJafzr7OOkxyGM1g93c50ASTtRaIy/5kFiNwiM0H0098Gb9S5FVJjNd6prQoQcJz3sKSkyrV3Vmx0Z8IPkYH5C2G9YrQTHbQL8StschW2z9Cdt8G+SsM5IUa+VKEd9sKKnxnboL3uLXwRJhOSz0ifQRF6R5FBtVKB6Yb+uC/4ooNutltBTom+g9oxaggeipbl8ra+aYNsoaDiqBpLfve2mOesofK1E0JwSFTCLVdwb+TbCx0WFt+PaIQyZePxU8RgPNepmVfHMgyDoU2T0aJCJMoE+2BR31qonWALT06JDEBUYOEvHhhcRHIB3jsJSitWo82JenltcUk1BQuVzP01SJAaz87Mx1w9hzv3bAKnWi5LEurNOlmIklMtZ8EDPI+7D7yLWASAHD2H0/85Kn/rPHguPhA0WNy3lmSb0tX9zFzWb8aP/+DI+Rv4Uzsao5XrrLuP7tkCwGmgAQDnv30VqygQo1ujUlirdFjqnIfpTal5p//LQnaW42dlUem3X3DQ+rh/FtWIC8YXQ+ujSqxpgfGWXRRpGEzfEaWfdDtvV9Eo9Krr8nSlEa+N7rNnz6JjR1N+qUajQU5ODhiGwdixY7Fs2bIC7yBR/DAA2ujm4Veupuk1p8MtQSav38uHWO2EEPwyrhmapboXt/KEvbwtZC371mUEm8Ne78OzCWtksMzEC4AuWOoxUXhoTD/sKt3vr7TAt8MbIiXS1i/xBJdV2hvdObgqiBYXzN6xoU2k/bfkdFtUSp2J5lgEsORKgX1o7IKlxifRRW8LF3ZWGzkhTGoEvdzWFMo5qFEi3h/6BH59/WnUKCdVmzYaHB+0ciJoBrMX+la2Dtk60wM9JVxmQqfPNoeX23LXZj9dFd8Mb+ggblbm2q+2CRtvQMYtz8tsWLBf1a6n+BcTVWsc2ikYAfh7LVSsAiHmED+LcrqF23K/NTOGeyaxtozz563bNh44i9TXN2Pf3j+AA6sAF+IxAMCJP2uz0W3Ji//zpGOeHcMbrLoJBkaN/xndeK1ECyjZbioFWLGbIBoEFgwE3L52QdbTfUUIw2JjZ3xubI26lVId9rsiPSEUP9ilNzjtVg3XXnSj6N6wYEBz+Krzdw+4ydtFjWmK1ui+y4vGyZ3RbbfwclcIcD1JNWN/31lkfAonhASJwKYVxrOpyiruCVTXLcdxIdFt25/4OvjQ+BSmGAbKe5A9THnSicLE2SBbDrNSlH7VWj8f4/XDULPvTOu2OokhuOtnq7BxzIM+K5yVZSxgygT7YP3Ixtg8ukmRGMiFgYp17clm3Ox/VODNvx3BidEtvmchsAw4mXmLvdGtviJfEm/JjrOSBWAGApBle4YoZBZTXUZdc3qwDIMWikPoqvDcAItgMrH7wEGH7TojB85N+dJmaYkOjgq5Enu8+Twvf7EHgiAg895d7NM4OjA631lpbu/8jebC+WJagRjdShZ5Mk6lK3ey8M778zFQt9rxIHPZTa1deqkiwrvnKwA8U1uaohIOU+SExk+qFWCfRuWXeRaPGl4b3aGhocgyr4qUKVMGx46ZFITv3buHBw8euDqUKKXoOR6nhbJWtVmG00Mv8wMu7vyLuUZbSOPVa1etuaa3hUB0q+U+L83XV94guFJhgHSDh55uTvVwE+W4UF+JhwAABNEEl/WxM8Zu2tTTT/Bx1smyRim9aVpKhqk1psmUs9I5LGcyunmZ3LgH0GKOsQ8O8zZPDeNh6GNamSD8O/MJTOtUBQ3LhSPMX4MsO4Gzawc3Ytu/UnGPcLWjIf6/XRk4cS0T6W/+gmrTfwYA+MjMpQRLeLllIiyaWNjXad6b+rJVHOpyJoehnx9yON/h4LYO28QYecHtw91Czu0rYBkg2KzYeU8hHXO9TO1nCwEw3XMrMuet21b/afJc1NncEfhxNHByo8vri8t/gVVjef9063dCBaO1JNg+cxg+wxsgWIxuqLCPt8uH1ds9B0Th5SFqDz3wduHlN8zh1jO/+h1qcxj+18amOMvH4AtjCwzFNMwz9sIU42AEabx7rDUuH47lXEeP2ircqKKLxQejI50L4LjD3jNQ1J7uG3pR6HW2o1ihGPvw8vvwc6r2K6ZBeWmYYq75dxgZ4DgBlTXEZRjfJhUAg2HN3JeLPDztCdyt/yoGjpkl0aOYZeiDanmeOxBuMqKFTlGpOpXIq/flhB4YMvI1BPvbfssMw6B6XZsXOYJ1v7ineAgV+8eNrIBkl0rLngjZPQpYhdSciIulhZn27+SqAgyDSxrHKkTiso8A4KOTr2xy+r8sh7JYd7+bYHshWoC9zYSY++cCTgdWwWCl+m28q17qqqUDbf99zWFbnoF3LnBoQUY3Qcky+JuXlg2zREYOPz8KS1d+Ap8rfyKIcW4DyenUWMi1q7TTQJQOab84aRG53OrT3un57FErFcgTHO+r935biKXq95CmOO94kE8wACDIx/ZM+55rCAR4/1yb37265LUvY56D+gVLttuXRNRpvCtXVhrw2uhu0qQJtm7dCgDo0aMHRo8ejaFDh6J3795o1arw83SIoicl0h/BviqbojOnk0worOSzhmhBcR/+VnEs/k6G6X8w+GR4W8zpVtXVoQAcy/QAJg9bWoJ0cihXCsyiLi7GN8Sz8izeIDDAJMMQzDH0AhMiDYn9L+MoqkaZJq7XFbY+W8K5LVjKXKg1Pvh2eEME+TnxPloUqpWO+/3M+ZOVRSHnCifh5XLYr54GRCZglH4E/uVNYet1FSex/ytpXpY/55irrL7zL04v7oGnFb9bw7fidSaj8ytjM6sYkFGfZxYMs3m6LXxoVom3cC+qnjVnNOO+EZ0Vuxyu6+fmq27kBZwRnJeiOsHbwvMzOQ14o84a4n2Tkxp2CWXLmiZEMvgjFxAEq8EOAKHIwmSlLYc875rzEioAYDRKje42laPAmo2Ql5VfW/v1C1cbgMXTbTpGodZa1cst6OckSfLKxbVM1WbhmWyd0WX5lz1npCJyltrr81VL4Wd+YM829kEr/TuYbByK+JQ0LO+fjl/G5q+Ej71auDPkPB5iJKkK5klLfjjN2y0Saoq2YkiuSPnZ97/9Ltvah5d/NKQ52lZxn/dnX55ufu96eKJKtDUSRoKHRvdLrcrj/JyOeLW9e2XsIB8VpjxZGeUi/K0h34BJSCnTw+goALiFQLTXvYVGee9LQtrFkVdxob6oHOs4hh2r2+4DGpX75ycX67qEEGGjb4NkPKmf5XT/4xJebsvpdrzf3nugx83bJgM6IMhkBCseQtRWrVRIyksCQNCFn219ERndgXymyQh35ermDFDmszth2acdtukMRmt4tTMYmYVVpYJBd720woFFqLec4hqGXxzv1HlhgeeclxrViUQlPzQ+hSEdbc8xcenbX7iaGGkYhVa6t/FxoGeicoCpskO2TN36sqc/d36QeaHXV81igaEbTvBxuFR/pvP2+UChtbsn2ulo7E+bWqDXKwl4/XX+8MMP0auXyaM4adIkvPzyy/jvv//QtWtXfPKJvGIgUbrRKFnsmdQK9cubjEgFp0dyiMwNpgSsHFtqHQvntgMAOChRMyHM7WQZkAriWPiRb+BwrF5GeKks4yjoxQY61rQtCL7kWmEp19mxXw8y4asw3diTom3eF/tSOhajm2c1qJ0QgogQW/j658bW1r8v3zA9jJUax5XfdS82wjO1y+KjfrWt29iHUNYd3ao8uLRnsEc0UZ3A2/K8/sq4gwrIcDhuiHIzOrO7sUC9BInMNRiNRtTLMdWcjGbuWCMyjPo8GHnBljctCtM8LZRFO90c6+s21RKs6sgaGLBQ/aHDddVw/eA2crwptE6Gr5h2knAygTdKBMvsw8CYqCoYaXgJUwwDMdNOkIRlBECfAx+l7VpTVZ/heaXNu23vybeHN4eX82CsxofFeymuAOAfZv798wYIZkOdV6gRrJV+v9R8HnDRFn7IiIxuJa/DvQd6pE37GW3fcx4u2Pb6cslry2p/qrn2OQCsHdUOz9QuiwCtEq88UQFtKkchITR/38FqZT0TAXWXq+wjVrOVyxP2kJv2QmpFfG8N8LdNhs5VG++yLW+ndpxUxr3BDUgjozgwaFEpFkv71UaIn+P31VNPd34Rp38LUOCFZq5F2MTk6TmcEBJwBdK0kP9xrTDP0BPPY4rTY/00onFlGLxh6Id9fCrelBEDfNXwHLhKT3ncr8edpqkR+Ha487SRx069XMbonvfzSasorsacX9uwnPvqD2d5eYdCKH/XYdu5uG7Wv49dtHnIVQwH6LIAu3Sh6+LSrUYdlIxjvz82tkcv/evorZd6szvqbIssSplKE3qde1FPOaObNStyu2KM8lvZ7f9ozXMkJ5EGgFQb5Yq2PIY0tnnVc0RCqs8ZXgbA4KxQBrwX90S1UiGbngdXwqDmm2JkgBbvc93QXj8Xw56o5by9G/7kqjhudDC6pXOfO76J+b5eScUro9toNOLHH3+0roQpFAq88sorWL9+Pd59912EhMjXOSZKP1oVa83Z1RjuIRT3HdoUd3j5hpcaW1Ww6ypModYqN8aRGPswSQCokeB4o9IpHFcMfWVqgsvdvAsSJcugq2669XXEma+h4EyTfnHJH42SxQqjrZRUtzumxTHBvKooiCbNy8xhtrzAQCOY3pNS6/g+KkQHYH736ogTGTmq/C5JAwjxU2NRn1r42EmY72e7MiTeXDm2a8Zjx26bsRfF3LVGZ3D6XBg53qYQLvp8Vg6qI1mlVmt8rWVTNE7KzjEy9TnFSBTB7ahZPl5yPYEzSFbBExhpWH1CXFkse741Pufa4qacEJkuE0pRDdYo5p5k97EzF1yWJ7KElxuhsj5oDTJlY9RmNVPBqJcY3fai0QAkRqKStxmiakGHXWdME69zN52H0zZj/7b+3U43R1Z3IDU2FPO7V8fhqW2RHPFw4ddfvdAArxsGPdQ5AOCaUqRN8BAeoy+H1redUyiGEDuR5zcrup6LhoBesBsbjWeLDWJDmoXgWvjM7rNcon74sXLG/D71MKm95yWt4sPkF3oEKLCYewonfJ1PVMWVQXgosIJrj+766YgtlyZpN1D/CtZwLfNdp/txxSLkJIfiMfF0w4WQWtad/zBAaYpctaTDPdckyaGd4xnlF5RVnC282jLnYETif2v2nJMeYMgFYyeauo5rghxLKDSnc9BcuSyE401jP+zhK2M3XwUV8lbhbUMPvG98Gv8Itr7L9dFgn/oEYI2xufS9yczbLA4Oo2D7/b1lkNZpr6GQzz+ukncAgLw4rLVfIqM7xFctKa32hbkutim83ba9U3WpDo4rNEoWN2TmDv5G6SLJdSEEi4ydUTtviXVbkK8Kq4fUw5rn63vkvHLGSMNLMh2TGt2Cnae7VZp35QpLA159gkqlEsOHD4fOg9Ui4tHDkvcWqruMdtk/OO4v5pXjtDJB1nIsBYVSRi1WJ1NfdoHxGYdt3oRbe4o4P1ulUOCgkIpFRlOJHW32JfjrTGG5rCi/WsUy+JZran3tC1OutuUGx4tudOM6mCaICkZAFGO6IatljG45/DUPP/6yq7EA6sf5mLy6bmC22Fa+j/DlrMYtv2cp+NxMW2iZyOhuUSESTVJEq/sqLTjzGA9hZWprQxoyLYeR5x3r2JvJi6oJTvTwBmeAwNuM5mjmjqS9Wq1G/eQwnJnVHmlxMir8uiwoBOeha/9evIYFW52rrXNGi5q9bfzuKhyvY1mcuXU/GzuOm7wjPKuBXAlTsXq72OhWQMDYL/ZaX4/58gC2/+OoRC2mbQvXZZU8Ucp2h1bFYjXXBnMN7ktdueIGG4PuuqloqZvvvrELygTb7h2+qqI3tMS1euunuM7hu5ZtN5n3tBSTN88LkYG+2NgZXyoL1uPLgMFSYyfs5ipDVdG7Wvdj26Ti2frx+GZYA9n9FaKcL0KIK4OI0zRYrW0RaSbzPLbzNQDIlEUjXKJiFfjKKK++XtzzlaLCkjbHXNyFoHM/AKJnTRm9LXrMaDa6PTGsApz4VyyLx3cFf9wzVycQl1n0Z3KlBxjzoOClz648QW3TDOIM8iVAReigxiKuCxYYu7vtt1GX57DtgiCNzGFl5jtaFYt53arhrijtxDfQ88VQ4fCX4F14usUlEDVq6Yf7jzYdnXRvYm7UO/jqhQYY2SIFnw6ui771PKy4ASDEVyUpkWjBXpT0W64J3jb2gk4jff43Lh+O+snOKwB5wl3IpEjZC4TaGd2BfoVfKrOo8fppXq9ePRw65CgsRDz6uBPKKgk5Ujpl/kM6Wbk6lkpHj599KuoSYyf8LTgK9xSG6E339LKoXjYIo1uVB2u2drQib75KbxI5VPvYHhyBWpX8urR5EYUXh8uLboId2L8AAAoPSzDJhYXmugnJ8hSV0TMF8ZbsYevfkd3mWcuhBOacR/C3ooey3XeZFVuOrAac+eavdZL/pXDj6TZyAtRmT/d3XCPJvqS4OMkEW+AMEMyGLweFQ+kwtTnCRMkq4Ovr+J3icu+7NLrLM1fwyz+OKuTW65s93Zxotf3vbMfFK0vubpriPCoqLpm3qWVLeBnzbOOl5qQTrW2acViuegfr1a9h1Ik+qP5VfeDBHftTWHm+aTIUruV2CowlXGcM04+xvpat0uAChmGwT6iIc4LnXgg5lKLvYzHY3PhHUwMH+RR8YWwJhZtFjQfOv3ouuZHtejIt5m6erW2GEI2WFQs+dWeOsTd6G153UNB1R6BWhTe7VEV6onQSvnpIPbSrEoXZTzvXExEbOP4aFaqVDcKgRonI87fler/YNAlL+tbC0mdr5VsN/3GFVTB4xfg8Bupfcdj3+AipmX6/EQ/Oovn9b6E/+IV1n/g5pPVx/5wfrX8RAKBmjIDR8RmYEm6aUxihQGyEOfLVaLv/d2bt9FEMuWDsnl050NoiwYw65OZJnXxlmVt4r2cNJMpEmGwc5VrTw6h3NLpbVLIzukPlPf096sRhhH408gQVPgkYJhFfdMfx7Wux9Z8rTveLje4+9aWpLcMr83iqfXssGtQEdZNC8XK7CmiWGuHVYjPDMAgMcP8sq59WHp2rx+Kb4fILiA/DB71rSl6vVHR1bGQfLcsWzPyxJOH1XefFF1/E+PHjcfnyZdSuXRt+ftIfarVq1Qqsc0TJQrasigimBPxA9A9hdMsZLs5C5n/haqI1ewhP6t7EMcF0k7wv+ErUK5UP74BzwFetxA8jbQ+WMa3LY/9vqRgCk0dWyZmMHbXW5ilTKBi0TPYD7O75Fk/3TW0i7gl+uC0Eyo4xK5PTLUeonxp/cFXQmP0H4/XD4M/kYp+6DjZ59Q7lUXhodFvYytVCubJlEQlb+FSqUeTttSu9c0dTFkf4ZGQKvmjCqiTef9n+uPF0Gzgefmaj+xNjezzN/mnd5x8YKi0DwhutHgIOrMTo3stXRL2kJtbXgkxdbC73vkMInphm7N8Yq1sMQN5jLHAWo9v2ONjBS+/jtxEsEUocrvzRdCyrBisTtmjMy7JmpuvzsiGODo9l7iCWlRrZe/bsRP2WXWT7p1QonIYzFgbiHPjbQiDCGZMo3PLQlzHUzbEF9ZMXG91F+d4tCAo1uprLAfZx09YHjhNZT9Dxti9FBh8FV4GER69mWb9D1dOqotsT7oXSipvG5cPRuLzr/FgVy+C2EIAwJgs3Y5pifW/Tvf2tTTZjXKFSo31V+RxawhMY7OEr4Z7gh2CRCvdjY3Tbl9u7LQ7xtt1nwgNtc/nB+pfxgnIDtNCjusLW3qJFEmS8BbxpjkqbdMW6WK8x518rVWoIrKktIxLqzLEvGWnMA3jps9ao8oPeXDHj9JWbeOOH6+hkNy3pUrMMutQsg8RXbdolKwfVgZpVIEvwQQCTiwtRrWDvCzaYje5MwQeBZq+7EJIoaROckAZn/CVUQpruE3RPSkZYxo9O29nzzy0e/M0NEMu17OSqoil7FADAKVRYbWyFKooLqFmjg+RYfxXQo0ECVB4ILbrC6KIKioW4svFY2Lim23b5oWl5aRRjmyqOQrMONkQJsCkKGq/X0Hv27ImMjAyMGjUKjRo1Qo0aNVCzZk3r/8Sji8LNyl5JCNcyqPJvdF9VOZa5kVtI6FAtBs8ZXkb5vM+sBjcAfGTsJGnHygh5FDRjWqdiM1/X+lprzqmyFz+7opERBjK/Nz8/P9TVLUY7/VyolI7hi54KpMWH+mKoYTye0r2Bb/km+JRrh2uMd+UlKsXIr8ayRucT+9uC45j7BkchOcIfaich3vYrqgqFEk/pZ6KfYRLAMDDI5O1L2gtuhNR4wWoIOwiZaQOlRjdngMCbzsczSolwTE/9VEkYrn1JDQAQbvzrNgTvSeNW2e3/Xr0Lnz/mmrohOre90un8wIkQZDyAAquBQaaGssWjcOzKffjA9QIFAHz2ywGn+1gF42B4eqo2nh9yRaVVMhXB1r+vaNyXoRpvVt5+tr77klmuEOf6FofRPamDKaf5+abuBcX8kb9SoUbRGJoEgpwT6mebdXdpXr/Aw6yd3XcKG4Zh0Ek3C5MMQ3Cqgq3Gb/3kMPTTv4pPjW2QV+HpYunbo0QeNGig+wCD9bbv2eNSp1uwu1dKF5Rt9xZWdH//ja+FnvqpOMFL72MP4LgoLxy2VcqwpEkJjBK8xegWlYzU2/v5DLlg7MLLn2lQEWUZk+6HZsOL6MDuhTO+Hd4ArStFYseE5mhRIRIMw+Adc5i53LOSM4uGGqBEL/3rmGfogdxy0tJbjAtNii1jm2Jo8wp49YmK0MssgDujh3IH5qqk4qBiXRcjo8HrxiF4Wv+GbHRlQcAp3Ude+ocUjvgvAPhqpL+37BQZ/R67ihYoAdGzBY3XM5eMjAyHf+fOnbP+Tzy6uAuXLm4hNQDg1PmfPN1lw/GEbg5eMdj8WXKhhuUi/PHHxJaSm+ZbXatiKWdndHP58wB5S596CbhnVm0PNtcmt/dYZ8PXsfaseRFlbJtUpMVHYGbXmlDKhCwpPQwv16pYfDWyNYb16QHLCjrjShxJhm+HN0Af/WQApnJtFgQX4dOZguOiQEyMaRVVrMbuCpN6NQNLvy+rXRsbrFshNd4aXp5axu5BppEa3b53T0DgTEYzx7C4ahbO0gkqvP2M1OP85QXHCUHOf2fdGt3O+PzzT9CKPWS+tu27/qqdkFSztCTZkoAMq8QvbBMcFNVrB2zibLkGzlTWzA2TVbaQx7VfrZbskwuju+Prubq0t4gnhuIazPalseRoUC4MR6a1xcynnHtLPEEsmJXpl/hQ58oPtRNCcPyNdpjcwb2g2CUhf/XIOdFawjOprhe5xNUC/EMfLnRfjuggLbaMbYo9k4q+7OlVhONLrpXVSAGA5hUicCWsAZYHvIjwUBKofRg6VjNFCeRCK6kawZaA+UpRYO/pFus1KHnb70qhcpzrHBak9/UHMrWe84y2H7JFLIxjWKuYq0K0YO5Q9eP2aQh2pbT8A4Otf8fjOmaoPnW4poXaCaH4eEAdJISZ5iiBWqV1Xqa6dQJ7FvZH3q3z1vacuQyqSqXG3Yh62BU7EIG+tvf0Ffuk02sBQGpUACY+URFBvioYZKrdAMB2rrrsdnvEof2ePFseFk7p3nmiDiq8iBoVq8BNwZa2JkRUdmijEN0DDVC6FtcspXhtdCckJLj8Rzy6sDKhx8d525gz9qtUxYCgeTghtX+FeEmNXGf5fWVDfPGaeUL6avuK6F03HjwUEgOQqdRJ9tiCZnCjRGvYXCXFRQCORrcgCA61Z63CeH5qrHuxEXrXjZcVUZFTL3dG1bJBDxUK6atW4jxvyrHioQD/4B6ETzuh1rllTo/Jkak/KfibDN03jc/ipl1ebp28xQ7tn62fgNc6VMKGl0zhnT9dcR3VwfJ6U41RJxiNvFW9fFAzu1BYTYDE6A69sQe5d68DAHiwGKR/Bb9wNTGnzEJ0T4+THHoiy/E3ePt+lsvwclfweVnWv314mzp8ldhAbOVsqsvtqpaRjXRRwgg9o0FX/RuSz5Uzmj4bP7USQYz71ACLZwMAeh6X1h9VMHDIG99UaQ4Kmnd7VEf/BgmolmhbJLnA2j5/T8P7gnxUXi822aNiGfTXT0QGH4V/Ul54qHPlF0/zh/9A/iLcVCKBvTIhru8xlkoKAIBCqgqRGhWA6KCC1+HwlORw2/tiGAZbxjTFL+OaPZRiMAEs6lMLT5oNb/FCruIx8XTD3ugWeWgv3LCl+bAycx17YVM5TzfnY0uhsCiR84wSsPN038jKgy8jjf67eeGEpFwmAASE5m8RDwAiA7XWRdMyhguof+cHZH1qE8e0iIbyChU2jW6CdcMbSlKC6tSu4/G18hjHz6KT7k0MNEx0e2wz3buoojhvfc0XwQJQnirY5f5rQiiU0TJlvQqQl0QK5hVlooskZSRlqgk9CuTrbv7555+jUaNGiI2NxYULFwAA7733Hn74wVHRmnh0kMv3/U9UhqAkCKnx9nX/8kGO6MGicHEzHNo0GXsnt8KwZqaw09/GN4OPqHSYKqRoyh2wMqWJ7EPCOd4xRJXXOnpQHtbotic/podFfE3DGLBy9jAwGTuRdHsHAOAiH4H++on4wNjF2l6uDvWDKqY6tzqosZVLt27PETSY0K2pQ3slq8DQpskmBXwAD1SulUmD9deB2WWAg5/L7jdyBijMausCa2esKliHgOE7h9YDAHiGxUkhHs8ZJuCKNtVlH2wX00HJ5E/NSjzeAUbbBCzIR4UfRAJwDKuGUu34OSsFAyxC5TcRjG8506KFZSLFCwKC4F0+/gneZuie5suAYRiH79H9Qqjf2bVWWbzxVBrOsclYYOiGUfqRyFPYfkdDm1co8Gs6Q6VQYCdfHS30C5Bd1vH7WpIQALykHwmdoMSy6OkeH5fF2O7V7upwq8VG9yPm/fhxZGMs6VvLeu+xoGQV0KoeE8OwkJnUoRIqxQTCKDI4mSLwLpYEGLtqApzot9aB325rF+0o+PefIJ0jvNS+hkMbsSq3JSJNYJQQlKbFcEvE393LpzFSKbURrl67JimXCQBBYTHYweVfG6pSGamOQkTWCevfRoOl1KUKrIKBQiFN3ol2s/gn5qSyArZx1bGftz2nhzYrjyqxgXhBPxZH+GRs4OTLLV4QoiXioEXxK7+lc27ufcM1RVPde4UW2m5hD18J0w390Vv/muzCNCOKtjB6Eb5fmvDa6F6yZAnGjRuHDh064N69e+DMYZHBwcF47733Crp/RAnCoHI0aDMhWp0vAeFakeH5z0mpHGt6fzmCzeh2p9geFWjbnxzhLykTVRCljDxBLiTcPhXAT6aclyG5jeO5ZOo/qTwMLxfTsJwpLLdPPe9zW5un2aIn0hQZkn0GKLGTr271hgNAtr04C4Dksrb9OnEYmFKLHnXiHNrbM6t7HdmwdQmcDlg/Uv749Uesf8v9LgQ7M3KYWZhMvLrrzrawhqdxes883Tm3HTYFKuXD5KuWCZLmdbMqqGTK5yntctuNZgEcQWR0B5jFBcU1Tl1x2xyZ8ImxPTrp3wTg6OkuTPScgPe5bljPN4ReZHRHBxeOh1UOsWJ4kE/x31ddMaJFCn7kG6KKbgX+CW7u8XFXVPF42fACeutfc9tWg8LXxyguHjY6iHBPmWAfbB7dBC2qiBbCPdQqKe0o7IxuS7UKAMgWPePYONvi9MLeNfF802R0bSb1/Bq14cgTpPcjwSh6BpgNaJ5RAubnhaXSR8a6GQ59C0S2Q/1qVUAEhhnGuHtbTnEpgmruq7NwbkbjudPmno7BIMNE9NO/at3WqVo0No5qgp/5OnhK/6YkalLMp4PrSoxujSJ/kWresPGG85JfWYKPJF2y8GCwinsCu3l5j7pCNHZckfSn6PHa6P7ggw+wfPlyvPbaa2BF4Tnp6ek4evRogXaOKFnczNZjtqG3ZFuOKMdHUQLCyxNi8m90j25VHiNalMMzDW3hwIpCXvkrCOSMe1YtNURf61gJAXaGd/nyjp47lYzRrfBQvVzM8v7pWD2kHka3Ku/1sTWTbQZzMiMtdWU0rwlnwtanW4yjx96yyPDt8IbQiTzhRoVn4xkdpMUNURTH64ZBHh1n4ew1m9dYnCunM4ekHRXkc5LFHj+FjNWdHO6Hz4xtkCX44GutqTY8w+k8yunO/qK/w7ZYX3mRLoZhUE60cAGFEkqN4+KGistFkigsVqU2l6GzhBkKtlqgYoE4WQ6b8rotZdr+4isiz5yDydodW5hhwO3TTO87IcxXUsoFStd5xwVNuL/p2jXig4v0ut4ytInpu2yEEkqZqBtncALwDdfM6QRMzCGFKf9PL5Dnl8g/RvFEvpDSFEoajN1vUhCpiSvNToI5hl6SmvGdq8dicodK8A2we7aqNA4h58ore2zXsoaXs2BU5lKX5jSSnDxHjRt/412J0d1NNw3QBCAXWpx0YrCuNrrWXeBdPOMZ8wIAL/KiCgLwlqE3tnK1IFR6yuW5xWTmmRYY9KJFfcaukofBiQ+7WWoEIpl71texASzSygSid133DoH8oglyHrbvIHBXSCRHuP7NiefbWsG9FkxpJF9CanIq5RqNBjk53oUREqULjVKBZdyT1hBSwO6GUwI83b4aaR+2hvT0+Fg/jRIT2lVElSSbUI+MDeoSywNhV5CMMmMhIWd0K1RSAyEmyAc/jLSFCx/lE2XDe2QnzSrvjQ0/jRKNy4dLBKE8RatWIVcw3XwjmPuSfRbV6kzBdvPO1UgnAWJqJ4Qg0N/WlvMwZCnUT407sImWHbITCnOFIAhIV5wEAFM+uWhVXW9WRV9s7IyNXF2HY3k3RveHfWphqnEQauuW4qbKJBbHcHpZo1v8OwUA/yt/OLTxceFBvKER1Sv1CZEV1NP5l8Xbz1THUzVi8e3whuDNKSZWQR1e8Fzk7fvhMOp11j7JpQ1YeLqmY7mRguLZ+glY3j8d64Y3hFIs/OPrOuWgoNn5SgscntoGgdriv6+6QuyVrxjtefUIQfBclf1flEMH3WzU0y3yqm8EIUbiPVP7O2/4CGEfXg6R0a0x399yoZGdR4T6S6ObLt7RSZ6LAOB39HPgpul5Zw0vVyjBmIXUlOacblbmOeCfcx6CufzmZSEcBwSTI2DHhObWiCd7/uCd1703Xdv5/ZLhbDndYj7iOmGo4WWwMmJyzuhU3RSdwokNa1+pN5lzETg+39Dd+rcaBmx4qQne6lp4JZdndamKy4It9D6DtxnhAX5+WNjb0a4raCwLtG0qyy8AiGufa4SiESIuaryeESclJeHw4cMO2zdv3ozKlR3V6IhHh5514gAwuCbYbiziEBkmoPhD5PzsyhKsD3dXWdcRtSg0W8l4V67nDaMpX+WbqNFeXze/yIaxy5SHEBtxRicrm3Lh5VAVbRheqK/aIZfMgqXMkNjT7croBgBeYbuRcwrXAmkWQvzU0InC6GLiyqGdbg466ma7PZbjBSxXvQsAuCKES4wSg1lBVAc1RsiE0KkEW7h3RIBjX8uGmox2PVSikix6q2ibhef04/E/D5TbVUabkNramFck+7IV/mitm4dOujcBbSBUWsfvwZVa4xEdpMX7vWqidkKIKawQAMzh5YIgeBUafv6/29Y65XmCGn3N6QnTDAMl7fKzmOMpSlaBNpWjEOavkSjMwn7yWsj4qpUI9i35kTYA8M2wBnipZQoGNkr0+BjeC6NbEAQcFxJxF8VT2ot4NGDEht9j4ul2CC+XMbp1TpS408oE4TBvi8q6l2vAXZkSnbhuinJlrOHlLIxa0yJloPEWkHMLStFzYLqhP3IFNXwM9xCUdQaAaUHkl3HNAACRAVrccfJbN7rJgJYNL7991tQ/c3kyqdEtyq32IiVw4hMVsbB3TdN9Tz8BY/XDgRBTalyNuGAArjWBFnM2r7pGd8dpu4Kigt2C6FnB5lxqlRaHztULviqEPb3qxOGnMU2wuG8t2f3eLHqUVryeuUyYMAEjRozA2rVrIQgC/vrrL8yaNQuTJ0/GhAkTCqOPRAnBT6NExlsdYBBsBptYjVIRWVHusCJFnLv8PdcQinzUDheL19iHtbpDD5UpXNJePKsQUSoYa8kw20ZHo1v8QEmKlFd5l1XKzYen+2EI81fjkiBvSAeYy08F+tu8FHeVboxucZ6Qh+I5ARqlpBa0Sq3GSSEeGUK0Q1u9UfodMfKCNT/qshAhWezgWNcLGMGGG1jctxZaV4rE2NaOQmoBGiXap0WjVcVIqwdfxeU4eJNPC2XcTk4AQK3PBACsMrbF4Qip2n7POnE4I5SFX5Ip108rI6QWHpMkeW3JSRdE4eXelDPrvWgbNObw8hnP1MaMzqbQ41/42h6foyD5na2PI3wylhpdl5J53ElPDMX4thW8Utr2VB0dMH2PCOJhyWFFhlwRp4sUFwb7Z47Z88zzAjTmBc6udeUjuZLC/STqI+kJIfJaJ+aogdBckwbLA3U47qmicN/S9sFtyeLrXp8muGp23vjobgIAtFotUiJN5/FRs7gtZ9zDtvDuDLnSZ7hqKotp8XQ784Z7I8OjVbHoXD0WoX5qbOdr4ju+iXXft8Mb4tiMdmBlUi4tHmYeClwxfwaZsY0d2hU0KpaRVAnJE5XPk5svFgYMw6BidKDT50RpSOd8WLy2SAYNGgSj0YhXXnkFDx48QJ8+fVCmTBm8//776NWrl/sTEKUahmFwRGEzrsUhQ1ovJlGFRbCPGt1009CL3YbZxj5okQ+lW4kwWXD+cmwetmSQN7AKBi1087FfO9y2UUYATtwlZ6kAsjfDIp6clAnxwRHIL1okKv7DVy80wLf7MnD2WAyy4IO/ferg8J1kRDD3kSeo8X3sWIwXHSOuf+upp5thGEk+uSXXWi73af/aWWjYd4r19Z9/n0Qrs+H4b1QnJIq+T7x5AaN33Th8+dcl2Wt3qBqDDk6ElRiGwZJnTQboipWmiUTcgxMOy6d6QQWjnSL0TZ8k2C9PaIym8P1zQoyDenLbytH4dngD63YfteN3IyFMOgGzTGZCLv8KAOA4HqwX0SK92d+sE4OKZSOBYi6XlAsNnjKLuQ0r1p48ekx9sjKu3M3FwAbxwLXDLttyXnjFCcIZOWww+ugnI09QY50X+gOlmVyVXdSY2dOdZ+SsC5zVE53n+4r1vdtVicYamWcgBwVYALcvnwZY4JZ/Bfz491X0hhrAA4DTW73qAJCeHI2sf03PQo3+HgDHCga5MuXJAODZuq6rwihlSlvymdegAMCY65KLjW7xrSU/8za5CgOsgoG/Rmla4LA75WDDK9hm/vtp3Rtozh7GM2nDUdi1buyjw3SicXRWGreoYWXEWh818nXXGTp0KC5cuIAbN27g+vXruHTpEoYMGVLQfSNKKH8x1fCCfgxa6d6WeL1LAlGBGhwQKmCCcRjuIlAS2usprIJBP/2rmG/oDkUF73KzR7QohyAfFca09l5ALL+wCga3EIR/RDXT3YWXO1vptVdCX2rsBOQjWuBhiAzQWnOD5aibFAqeUaKdfi666t8AWBW66N9EI90HaKV/B6f90iXtBdFDmPMiAiFOcdN2DrMH1wgWvCD9jBqenm/928DxuPLdVOtrjUZjt9hherjNfCoNAPCh0XPhFnvu8s4XQ6okxSLAT7o/28fxse5vvAsASIyLR686UqV5hYJB7YRQaJSmSYVW6Ti5sJ+kGDmTN8Mn+yKMN05j5R9nXb6H/9mJ4oxTfWN7IfoOq1kFsoWiWY0XExtcfHWbH3XiQn2xaXQTPF3TfVijN/nfBOEMAcAuPg0HBQ/LMT4CPLCvz2w2unP1nDWVRyUjkmlBbHQrFAwEmQV7zpCHPAOHUJgip/xCotA+Ldq6SL1rxStoxR6ytm9WpSyyzF7wWtfWAIDDM593UnC0SZRBdruFM9ccq3QIuz409d9idIui3x62ykyXGmVQtUyQtXSsBM6xr+EhtkWQGwjBV1wLpJRxHa1XENjP7ZQixwwjs1BRHFB4uQtu3LiBEydO4NSpU7h586b7A4hHBpZh8DNfF2eFMk5zgYoLhmGwYqDN6Opd1/uSVayCwe98NXzIPQ2V0rufyIR2FXFwShvEhRZdHrTloSEtjeV4E5U8XDzwdHMCgznG3rLtCht3NRojAzUwwhQCbi845pCXztoeLoKH6uX2vPxEZWhVCpSL8Hep9Hn40j30V261vu5ZL1nSP7VZHETJKvDnqy3xgfHpfPUHAK7mOf+MPh7aArUTpaIuFlVwC39fvodI3uRV7ti4ttvJh5JV4E1DX5dtsnJt4ie7/toD7SlbXdb3jF0d2s83dnfYZkWU1vDHxBboq5+Mw3w5vB+/0GUfCpK53aqheYUI/O85+XqrRNFA4eUEkT9y2GDJa8YcXp5r4OBvTtdSaJ0LINo/FcRlLS3whjwYeQEhjEkjpEpKEp6pXdYatdRQv0vSvkFqrLQkJRw93eKf/HRDf5uaeYpr9fK/9EkO29ic6wBsRrc4p7t62WA0TgnPt3K4j5rFjy81xqvtHdMr93GOizuLBpoEbVtXMkUXfDOsAUL9Ct/YtDe6xXMshZvSuEWFUuTpFou+PUp4bXRnZmaiX79+iI2NRbNmzdC0aVPExsbi2Wefxf37992fgCj1WOpZA8A3XFMAwD+C442uuGhZMQpnZrXHnkmtUDtBXpDLFWK14PysghZVfW4LFsVxvcTodly5ltimTjzJYoNVAINXnnAsK1YUuFMZH9asHNpWjsKHfWoizO6B1aCcXT1K0QIEy+ev3m/5mBAcm94OE9pVlH7OdtgPfXign8Tozg21iU1GBmgk5cwA4KvIMR73yVn4nakjLFhBmkttyWez8MF3O6zefN8Yzzw/H3OuIz/E9ccb7BuNhWqb2vQy45Mon/cZvuca4m8+CQ3zFuKBq/cg8nRHBmpxREhBF/1MnPEpPIVXe8qG+GLVoLpolPJoTgBKC/YCmQSRH9JiHz8hvphYuwgn83Mgz8AhkHlg2qaV13gBpJ5uADDKlO3j9LngOAFacwi5UusvKUEm5mcuHVqNxqE6BW9nzG/gGgAATvFlsIp7Ap30s1AnbxEUoYlO+wrAab3pQz+tQu/bHwCQRvopFAxWP1evUJTD9wqVHEqfRYYEAwCW9auNI1PbIj2xaKpisAoG+3jbc74sf9X6N1MCyv0CpmjM2nlL8KJ+FJro3ivu7hQKXseNPvfcczh8+DA2btyIBg0agGEY7Nq1C6NHj8bQoUPx1VdfFUY/iRLE+71q4p0tJzGwUSI6LgSa6d4FGxSL34q7YyKUrCLftXwTw/0wulV5hPiqijQ3O79YDD1J2LOMp1viEXbm6RblufEqP7zY3PNSWQWJkVECLrxbAVoVlvU3RTTUTQrFtft5aFI+HJGBWnSrZTfJEH0WZe8fyF+HGAZKloGKZSS5UPbYe90VSjVYBdBBNxvd2N9Rt8FrsGRr2688A8DPvk+ih4dduqt0nocHAFfUSfiGa4pU5hKqKTKgsFtw8OVNoYA3hSCEhbgP8fXkp3BXsAncqRip0c9BAQOUGGMYad2mtFNdl+BEwM8b1Wvi0WBJ39oYs/YwXmlXPIuAxKPBs/UToOd4NCz3+CyiBfhLRVYti6+5eh5x8MToliJn1PL6XBh53lpFw/Tck39gbOTqo52CcTDe7VPeTjGJaK57BzfMlUz0UOEmQmSfm5K+OHk+BO6aY3UzCnIK54XE91xjTFSssW0wz0cUCgZBvkVn7DIMg118FdRRnAIA6Iw8LFqrSmPJqIl9PTMPtxGETXz94u5KoeG1p3vjxo1YsWIF2rVrh8DAQAQEBKBdu3ZYvnw5Nm7cWBh9JEoY0UFavN29OqrEBmFO16q4iGg837JKcXerQBnbJhUDG5Uc770rGIbBF8/Vkz4cZQwWVpLT7d7TbVAWX0kVzov1wMgALda+0AAjW5ZHj/Q4h4c9k8/QqY+N7QHYaq8DpsUcV55uhzrnrBIMw+C4kIiZxn7wDbJN9hiGga9aOvFo70RATY6YEMcxviyE431zyDonAC8bhmGe0SRwydp5uiPMh+ug8kj7oFKMey/RF5zz0D9O5nEjt82KE0XV2HwuphGll7QyQfhlXDO0reJYPYAgPEXJKvB803IOopGPMmpWgad0b+AHriEAm9Gte3DfKqQGbbDz4yFNSxKbtFs5k6inkHsPqqNrUE5hEh9llFrHZ6GZW+ZSYAa76hr24eVpZYJwXoixRkPtntQSf73Wyq0jxFLxwh5L3wA4dToUBuKF5U1cXc9WrwuJf3lbuuUMY3/r3wquZBjdzSvYctvLBD+a1QW8NrrDwsIQFOR4wwoKCkJIiPehvETpplfdeByd3g698pE7TRQcDVPCwYhVomVWchUMgxO8KW/pXvlnZM8jzum+HVKjQPvoDTmc9AE832DK/b3MeF8LXshn+bY5xt7oqpuOGcYB1m0qBQO9N+KBCpVkMSRAYxdC91JjnBA9CLvWLOPxqSe0q+BQVqWLbiYWmPOkjeZEWEu9cfvQ+spRpoeas3A8e/w1Suyc0MJlGyPrg+1cddl9qdHBAIDVQ+qhW62y+HpYA7zU0kVYu93kZNWgOuhaswxGtSo6kUKCIIjSjFqpwBEhBT9xdUwbzGlHZfbOFDXylznShJaRLtZquBzr39YSmg9uI/DnUbZGrMqpp/uyuRyo/XPH3hHwYe+a6FQ9FolhvnihWTJignwQGeB+wdWTlML8arvkh218DQDAHcEfLxrGFNl15djM18UMQz901U3HWcE218hPad3CICbIB2uer4+2laPw6eA6xd2dQsHrT/r111/HuHHj8NlnnyEmxjQBvn79OiZMmIApU6a4OZp4FPHXlIwf7OOOJLxcZjWVUQBP699AHHMT75ZtJnsOFcugk+5NdGd3IDDtdRTXUgqvUEmW1JdynXBWiMXloBr40ctzicuELQsZj+c9PM4IJQ4KqagcYzNs3Xm6HUobMQzyDLb6pAFa6bGxwT44I1r79EZtPybIBx31r2Kj5jXb9UUmPseZ+mIRfgvOvQg8uAP4mnPIjCYPho/W8xXlED/XHoINLzXBxUXzZff98FIT5OiMCPZVo3F5k8f/RqYOG7m66Mj+5fbazStEonmFSI/7ShAE8bhj0TixRBUxvBG3snWIOStKBXVRPs0H0sXaQMZmdN8WzNFPD+wUw1m10zDwsZ1NopT3IY2ksze640J98UHvmk775Qz70liyFJGn+6kasfjhMNBWNxfXhaLJ3XYNg5Vce+urGYZ+aK04iGrV+hRjn6TUTw5D/eQw9w1LKV57upcsWYI9e/YgISEBKSkpSElJQXx8PHbt2oWPPvoItWrVsv4jCKLoyIFr44llGORBg9NCWacRTgzD4KiQjKnGQTBoggu+kx5ivwpuhBKb+Xq4zXsfFiguE3ZF6f0yQnK4bXKgZBlZ9XJBEPD04j/RZdEf0h08J8kx06qkt1ytivXY0yzHP0ISPjB2sb7Ohi8mmVVUw/xNq/lisTb+0Gpbn82lY3gn5ePkkK3jLqJCdAA4Rl70SsUqEOwr9TBwgoARhjHoonvD4z4QBEEQnhET5IM/X22J8uZII/AcZq7/2+PjBbus7kBLHjiAHIsQpsEuPNlFTvfTdU3RTQd4qT5DfiPS7LE39u1LfAIoMqP77WdMUV+nhDhkovjS9ZyxkmuPvobXoHShXk8ULF7P9rp06VII3SgYEhMTceHCBcm2iRMnYs6cOcXUI4IoOm4Krg1Se5EvdxSniJwzQ9SYj9pBOWrbqqm/1vuHbe2EYOvfKicegd1nb+PYxVsYp1wn3SHwqBIbiK61yiAuxFf2M51sGIIv1LOwUtkT47zuHfCesRv+5pPxN5+MozOfhFZlMnpfblsB/2XqcO5fm0opr1DbVlrNuX2cF0a3UsFgqH4cFqo+xK6qMyGXwW2vQusK3jye9vl9BEEQRMFQJtgHPhrTgicjGBF6/Q83R9h4UT8ai9Xv42P/YXgVsCmew1amNDsnGxLFDxeebovBu4OvhhxBAz/GtPhbUOJm9tfNgxq+dt56Tl00Of1qpQI+Kha5Bs594yKgWtkg/H3ZscpUUVfceZzx2uieNm1aYfSjwHjjjTcwdOhQ62t/f+e5KgTxKLHI+BSqKs5hrbob3pTZL7YXPbGni/M2LFYv/5ZrguRwP5y7lYPWlV0rdsuhY23TgUGNy3l83JbRjfDJjzvRK92mhq5kGfjAUXTkfq4Bp7X9HbYjJBEMw+DdHjWcXueEkICauo8QrtLmy+jmwGIrb1JytxjcABDip8bHA9Ixasll4D/TNl6cy2Y2ur3Jb2MVDLby6UjTfYLXY6rK98cLo5szG90WhVqCIAiiEDAvrjI8B6XCJu71vH4slrk47C+hEtJ1S1AtIhgAMN/QA19r3sBKYzurXog+z+6ZyDr3dFsI0KiwnOuIMZaF6gLydNtfNw8qB6MbmqIrHdc+LRrrDl0BAEzvVNlN68JlUZ9aePvnkxjaJBmh/moMWvkXutQs47S8G1HwPFQybnZ2Nniel2wLDCzeOogBAQGIjiaFU+Lx4woi0Ek/GxVD5UOFxJ5uxgOTujirpYk93Z8b22DNC/Xx24kb6FzDfWkrBxQMphoGIJm5hoGp9Tw+LCncDw2jBEmOmIpVIITJcmgrN8FomLcQu7Se3g8ZCPkohfVO9+oY//UR12cW1es2QmELNudMOd3ehJczDIMaccE4fOke0hPkc9Q4N+XeJG3N7/kmgiXb1yVMQVd3x3IcDAapsq7BYIBSqUReXh44rmR4FwjX0Ji5R6VSgWUpGoTIP4z5+8PwRhhFK/D29bKdHG2dP+wTKqJq3sfIY30xOfkscBlIzNwnbS4IYBgGA/UTsEr9tuwZPxlYB799LIoMkylzmh8YhsEaY3P0Um7HYVV1ROovObTJq+ju6VJwvNElDbUTQ9C2cjQiAgrmPeaXuFBfLBTlyW8ZK6/tQxQeXhvdGRkZGDlyJLZv3468vDzrdsH8Iyvuh+bcuXMxc+ZMxMXFoXv37pgwYQLU6qJTKiSI4mJkixR8uO0MxreVr2UrMbo9MKirxBZfWRWjSKzMCAUiA7T5VsgP81NjNtcOADDwIVcSVCyDIFF4nQVxqTULV+GdGEion/f3qW61y6Jb7bL45fh/SI2SX2y5r7ZFB/huHg3UG2h6YfZ0e2N0A8DXwxrg+v08xIX6yu73xujmZdIFrghhOBL6hFOjWxAEXL9+Hffu3ZPdFx0djUuXLhVregThOTRmnhEcHIzo6Gj6jIh8wZiFyhjBCD1vW8B5rrFnpVHFC8tZ8IWGUch6p//gqqCxv0nwcjtvM/BuCoEYqn8Z35tf100KxSaxwV9ARjcATDcOwB6+Mm6FNcMbN0dLwvb28hURFVR0kVX+GiX61ksosusRJRuvje6+ffsCAFasWIGoqKgS9QAYPXo0atWqhZCQEPz111+YNGkSMjIy8PHHHzs9RqfTQaezhZ5kZmYCMK2+23tRSgqWfpXU/hGOFMWYjWqRhJ7psYgO1MpeR+xJVQi80778MqYxrmfmITlM/jxFgTjHt0rZ0IfqR8vUcMzeBIT4qrw6j+yY8U4WFWUXGxmPrrdiQC0s/O0sZj9VJd/vs1l5k9dZ7ni1WjqZ0ev1YBgGjNG0eMApNF5fNzrA+WcpV2N9tP5FzJdprzPYwhwnGYZgnPIbzDD0RxTv/Pv533//ITMzExEREfD1lebJC4KAnJwc+Pn5lahnE+EcGjPXCIKABw8e4ObNm+A4DlFR3qfYFDQ0Byl9CGbvNiNwMIgWO9PjAj0aRwaCpB2rYMCz9sKYDJ41TMZpo9H+cCw3dsRhIUVyjrKRocBdS//UBfZ9yoMG3/ON0dgnWCIk+rmxNaYbB2C3qnR8d+l3VnrwdIy8Nrr//vtvHDhwABUqyHvTCprp06djxowZLtvs27cP6enpGDt2rHVbtWrVEBISgmeeeQZz585FWJi81+mtt96SPf+WLVvg6yvvySkpbN26tbi7QHhJcY9Z2zIK5BiBf/ftwL9u2m46USRdkuWBkbHWVqjqcx+bNm16qPNNrgH4KY35Oo94zO7rAZnMbRzcvwctZbZ7er1BZYHTB3bitNe9c8/dm9J8rTc+3Yw6kUDebVOe2e0cI44/5Ocrxp+7b/Us7OdTMUo/ElcRjpYy1+DyAMtj6EuuFb7kTNJsTS9cwKZNGQ7tGYZBTEwMoqOjoVLJG/5qdcFN3oiigcbMNSqVCgEBAbh27RoOHjyYr1SUwqC4n2eE59y4YSrrxRl00PHZ1u1/HTmO++ccjWQbpvvzvbt3zM8z02uBM+LqzTuSliY1c0b03FNitP5FPMHuw2quDWqF8ZJn4v0cm8Pr6o1b+KeAnkNNoxW4lMOgsvKGJHz+hhAMDix2b/+lQK5TVNDvrOTz4IFjBKQcXhvdderUwaVLl4rM6B45ciR69erlsk1iYqLs9vr16wMAzpw549TonjRpEsaNs8kXZWZmIi4uDm3bti32/HRnGAwGbN26FW3atIFKVTSlD4iHo6SMWYdiu7J37D5yGDDLRfTs0AIISynyPsiN2f1cA0Yeegmvqf6HyYYhWGnOV2tQuxpgZyN++0I9VCtbfCH6FsrfyAaW2143uPMN2g5cgV/PbQT0QEBkHGp3KLhvxq7982EJVNjK1cZVhKNjWjQ6dKgm275t6zz8b+8lLNlp+wDffLY5YoK0Dm11Oh0uXryI0NBQ+Pg4lsgTBAFZWVkICAggr2kpgcbMM1QqFbKystCyZUtoNMWbG1pSnmeE51z7ej1wClArAB+WBcxrXA27jwLjok73IfyLVbsvYlbP+qgVH4zv7xzEtpO3MLhJOYTdzwVEi/O5MH0vO5ifJ7qYq3hlHfAD3xgr+tdC3aRQaESiXZ9ePwdcM/1dJj4ZDQroOWQ5y7Ermbh+1hZKfhcBkv6VdOh3VnqwREm7w2uj++OPP8awYcNw5coVpKWlOXwRqlWTn1jll/DwcISHh+fr2EOHDgEAYmJinLbRaDSyDzCVSlXiv+SloY+EFBozzzAyts9IpdYCxfiZiccslFViA98AG3QN4C+qV5q6b6rkmC1cbbRNyt99q6CpXCYEBoGFijGFwHfMXQ+oVFBzZm+HNrhAv5M6UT6+EqZrvtOzBlQqeSGosmEqjGlbwWp0rx/ZCPHh8vnpHMeBYRiwLAuFzETRIuzJMIzsfqLkQWPmGSzLgmEYKJXKEvMMoedZ6YFVmTy+CnBQ8CaLew9fCfXdLOBMf6oqXmlfCb5qk7mwuG86Dl+6hzqJIfjyB2lsVp6gxqvtK1q/EzqRznKLSo56BIzaFk2q0AYU+HcpPNAHG/lUtGdNQm+HeVP1ktL2naXfWcnH0/Hx2ui+efMmzp49i0GDBlm3MQxT7EJqu3fvxp49e9CiRQsEBQVh3759GDt2LDp37oz4+PwJMBEEUTxI6nSzJedhoxCJyYj7GHFho6TdH3wa2hZZr9yjhxIqSO/NivuXARbg/CIL9Fo7+Wpoyx4AYFPG1ToxuC1olCy+GdYA1+7noVrZ4ALtD0EQxOMOw5qeVwrBiNncuwAAveCZCWAxuAHAR82iQTlT5KhCKX02q7W+GNbMVpYzKczPdn2ZKBZBZYtWYn3kF1ofhhA/Ne7D1gd9WEVs7FO3wK9DEJ7i9bLy4MGDUbNmTezevRvnzp1DRkaG5P/iQqPRYO3atWjevDkqV66MqVOnYujQofjyyy+LrU8EQeQPQaxkqnioyoYFztAmSUgM80V8uPP0Ew4lq7wPZ3erv5+VhbLMTQBAjl/BLkp+ydmy288IZTDEQ3Xc9MRQdKqej5Jwjwnnz58HwzA4fPiwx8esWrUKwcHBxd6PgsaTPmzfvh0Mw8iq3D8MDMPg+++/L9BzEkRhw5gNZB8u201Lz2FZ6bOZs1Mzb5QShg9618Qv4+RLUzFKm9Gt8in4dE4/NYuNXH1s5WrjZcMLWD+6ZbFWZSEIr2ezFy5cwPr165GSUvQ5lq6oVasW9uzZU9zdIAiiAODVQYBFY8XLklaFzWsdK+O1jpXx9b6LwEb5NjJlu4uVHPggELnW1/rcLGgZU8mwPMYxd/ph4MCiv34iKjEXMbD/EDRLLVhPemnm0qVLmD59OjZv3oxbt24hJiYGXbp0wdSpU53qjliIi4vDtWvXvEq36tmzZ7HkLzZv3hw7duwAYAq7i4uLQ48ePTB9+vQCyUfOz2dBEI8zCrbgS+cqlFITQmClzxKGYVwupDJqm9GtLgRPN8MweAAthhrGAwDmu4m4IojCxmtPd8uWLXHkyJHC6AtBEAQAQNCIHsAlNM9TqVRAL8g/xPvXL1kpLVcEqXHCGYxQw6RY2yC1YL3LdZNCsZOvjo+4TqgVHyoJyX+cOXfuHNLT03Hq1Cl8+eWXOHPmDJYuXYpff/0VDRo0wJ07d5weq9frwbIsoqOjoVR6vlbu4+ODyMjiWfQYOnQorl27hjNnzmDevHlYtGgRpk+fXiDnzs9nQRCPMwZtqMM2rerhnq2MXRQar/RuAZdjbUa3xr/oamcTRHHh9S+uU6dOGDt2LKZPn45vv/0W69evl/wjCIJ4WIw+IiOxEFboCwIFw8DoJFgoTMPLbi8uJhhekLxWXDuMSOYeAECrdVQBfxhebmurbOGjJs+ChREjRkCtVmPLli1o1qwZ4uPj0b59e/zyyy+4cuUKXnvtNWvbxMREvPnmmxg4cCCCgoIwdOhQ2ZDq9evXo3z58vDx8UGLFi3w6aefSkKq7cPLp0+fjho1auDzzz9HYmIigoKC0KtXL2RlZVnb/PTTT2jcuDGCg4MRFhaGJ598EmfPnvX6/fr6+iI6Ohrx8fHo1q0b2rRpgy1btlj3C4KAefPmISUlBTExMahZsya++eYb6/67d++ib9++iIiIgI+PD8qXL4+VK1cCkA8v37RpE1JTU62fxfnz5yX9sbx3Me+9956k+sm+ffvQpk0bhIeHIygoCM2aNcPBgwedvke9Xo+RI0ciJiYGWq0WiYmJeOutt7z+rAiisGFUjgZxmeCHu/crWOn9XfDS6BbroqhDyz5UX5zx9jMmcefJHSoWyvkJwhu8XiYeNmwYAOCNN95w2FecQmoEQTw6KH0CMFD/ChTgsULt5/6AYkDNKmB0krvNGj2r2VhUZAjSCg6RG/rZXhTwooa/RjSRUhZ+lIIgCMg1mJ47PM8jV89BqTcWuhK2j4r1uMTVnTt38PPPP2PWrFkOpc6io6PRt29frF27FosXL7ae8+2338aUKVPw+uuvy57z/PnzeOaZZzB69Gg899xzOHToEF5++WW3fTl79iy+//57bNiwAXfv3kWPHj0wZ84czJo1CwCQk5ODcePGoWrVqsjJycHUqVPx9NNP4/Dhw/n+TI8cOYI///xTYuC+/vrrWLduHRYtWoSYmBgcPHgQzz77LCIiItCsWTNMmTIFx48fx+bNmxEeHo4zZ84gNzdX9vyXLl1C165dMWzYMAwfPhz79+/H+PHjve5nVlYWBgwYgIULFwIA3nnnHXTo0AGnT59GQIBj+OvChQuxfv16fPXVV4iPj8elS5dw6dIlr69LEIWNUibi6KEr9Nl7ulnvjO5s1pbHrQ6KfsjOyNM9PQ7NKkQgwr94y+wRBJAPo9tS3oMgCKKw8FcrsZGvUdzdcImSVcAgMrpXGdtioNLkyVMoSpGHV1mwk5FKMQEY0CABMQ/pRfGUXAOHylN/LpJriTn+RjuJqq8rTp8+DUEQUKlSJdn9lSpVwt27d3Hz5k1rOHjLli0lRrS953bp0qWoUKEC3n7bVCu+QoUKOHbsmNV4dgbP81i1apXViOzXrx9+/fVX63HdunWTtP/kk08QGRmJ48ePIy0tzaP3CwCLFy/Gxx9/DIPBAL1eD4VCgUWLFgEwGfbvvvsufvvtN9SrVw+ZmZmoVq0adu3ahY8++gjNmjXDxYsXUbNmTaSnpwOAxGC3Z8mSJUhOTsaCBQvAMAwqVKiAo0ePYu7cuR73FzB95mI++ugjhISEYMeOHXjyyScd2l+8eBHly5dH48aNwTAMEhISvLoeQRQVSpkFs4e2ue2E1Bgvn3s6aFA3bxE4KHCgEJ+ZkQEFq1tCEPnloVwBeXl5BdUPgiAIK4E+JT9XU8UyEk93Nnww0/AsDvPJ0NUaUow98xK2YI1uhmEw46k0SekYwjWCIACQltWxGJvOOHnyJOrUqSPZVreu+3I4iYmJEq9tTEwMbty4YX199uxZ9OnTB8nJyQgMDERSkkl9/uLFi+7fiIi+ffvi8OHD2L17N3r06IHBgwdbDfrjx48jLy8Pbdq0QWBgIMqWLYvAwEB89tln1lD24cOHY82aNahRowZeeeUV7Nq1y+m1Tpw4gfr160s+vwYNGnjVXwC4ceMGhg0bhtTUVAQFBSEoKAjZ2dlO3/vAgQNx+PBhVKhQAaNGjZKEzxNESULJMrghBEu2PWwskH1Ot7fyHRwv4AZCcBukKE48Hng9s+U4DrNnz8bSpUvx33//4dSpU0hOTsaUKVOQmJiIIUNK0WSTIIgSyQvNymHD39fQuQSXkFKxCklO2nUhFKu5NviE64DDfiVLFKZZagTgzGZSlsyceU/xUbE4/kY7ACYvblZmFgICA4okvNxTUlJSwDAMjh8/ji5dujjs//fffxESEiJR4/bzc51WIQiCQ3i7xXh3hUolrQbAMIwkgq1Tp06Ii4vD8uXLERsbC57nkZaWBr1e7/bcYoKCgqxVTlavXo0qVargk08+wZAhQ6zX27hxI2JiYpCdnQ1/f38oFAqrunn79u1x4cIFbNy4Eb/88gtatWqFESNGYP78+bKfhTsUCoVDO4PBIHk9cOBA3Lx5E++99x4SEhKg0WjQoEEDp++9Vq1ayMjIwObNm/HLL7+gR48eaN26tSQ3nSBKApm5Bjylm4nd2pes2xjG/e/GFYydp1sB785npMhZ4jHD61nJrFmzsGrVKsybNw9qtW2yVrVqVXz88ccF2jmCIB5Pwv012PVqS0zqIB+OWxJQKhhwgu0Wekuwrdar2JKluD6hXQXnO0uoUJ2nMAwDX7XS+s9HzUpeF9Y/T/O5ASAsLAxt2rTB4sWLHfKSr1+/jv/973/o2bOnV+esWLEi9u3bJ9m2f/9+j4+X4/bt2zhx4gRef/11tGrVyhr2/rCoVCpMnjwZr7/+Oh48eIDKlStDo9Hg4sWLSElJQXJyMlJSUpCSkoK4uDjrcRERERg4cCBWr16N9957D8uWLZM9f+XKlR1Khtq/joiIwPXr1yWGt32d799//x2jRo1Chw4dUKVKFWg0Gty6dcvlewsMDETPnj2xfPlyrF27Ft9++61LJXqCQYPrqwAAT61JREFUKA6ap0bgGqRlCb2538hhn0bFwjsjOtindD97CMJbvJ4ZfvbZZ1i2bBn69u0LVqRcWK1aNfz7778F2jmCIB5fHnZCUNiolFIhtfa1bOHUfpqSFR6vZBmM1w9z2G4UFKXe6C4tfPjhh9DpdGjXrh127tyJS5cu4aeffkKbNm1QpkwZt7nY9rzwwgv4999/MXHiRJw6dQpfffUVVq1aBSD/v52QkBCEhYVh2bJlOHPmDH777TeMGzcuX+eyp0+fPmAYBosXL0ZAQABefvlljB07Fp9++ikyMjJw6NAhLFq0CJ9++ikAYOrUqfjhhx9w5swZ/PPPP9iwYYPTnPhhw4bh7NmzGDduHE6ePIkvvvjC+llYaN68OW7evIl58+bh7NmzWLRoETZv3ixpk5KSgs8//xwnTpzA3r170bdvXwfhOzELFizAmjVr8O+//+LUqVP4+uuvER0dLVGMJ4iSQHKEY+SMknvIFFEHT7d3RvfzzZLRqmIk3utZ4+H6QRClBK+N7itXrlhDxsTwPO8QqkUQBPGoolJIw8ubVo7HrKfTsOGlxsXYK3m0Shbf8k1xno+SbG+jf7sAJGwJTyhfvjz279+PcuXKoWfPnihXrhyef/55tGjRArt370ZoqGMdXVckJSXhm2++wbp161CtWjUsWbLEWnbMEqLtLQqFAmvWrMGBAweQlpaGsWPHWoXaHha1Wo2RI0di3rx5yM7OxsyZMzF16lTMnTsX9erVQ/v27fHjjz9ac8jVajUmTZqEatWqoWnTpmBZFmvWrJE9d3x8PL799lv8+OOPqF69OpYuXYrZs2dL2lSqVAmLFy/GokWLUL16dfz1118Oau8rVqzA3bt3UbNmTfTr1w+jRo1yWefc398fc+fORXp6OurUqYPz589j06ZNhZ7aQBD5IcpHGv6t0T9cRIa9kFpmdD2vjg/UqvDJwDroUrPMQ/WDIEoLjOBJMpSI9PR0jBkzBs8++ywCAgJw5MgRJCcnY8aMGfjll1/w+++/F1Zfi4TMzEwEBQXh/v37CAwMdH9AMWAwGLBp0yZ06NDBIT+PKJnQmJU+3I3ZiWuZwJJGqKQwJUs/GPQbfBNqF3U3PSJHZ0SVaT/jV/V4lFNcs26vlbcUB+f0LsaeeUdeXh4yMjKQlJQErdZRkZbneWRmZiIwMPCxNHxmzZqFpUuXlqqyVY/7mHmKu+9+UULPs9KHwWDAim824eqxXzFDZYomOVXrdaR2npDvc/54+DI6fV8FAPCVsRli+n+MJqnOF6kI76DfWenBU9vR4xjIwYMH4/3338e0adPQr18/XLlyBTzPY926dTh58iQ+++wzbNiwoUA6TxAEUdJRsQqkKGzqZCptyawnDtjC3Q12t/zysWFyzYlSwuLFi1GnTh2EhYXhzz//xNtvv42RI0cWd7cIgiiBqFngU64d1nAtUJG5iJcr9kLqQ5yPFxUd+x/XCq+ypahUJkEUAx4vK3/66afIzc1Fp06dsHbtWmzatAkMw2Dq1Kk4ceIEfvzxR7Rp06Yw+0oQBFFiULHSsGyVpuQa3QDwTvfq4Oxu+auGNi2m3hAFwenTp/HUU0+hcuXKmDlzJsaPH4/p06cXd7cIgiiBaMy3fx3UOCKkQMk+nPYILwj4lmuC37k0/C0kIyKgYMtPEsSjhse/OHEUert27dCuXbtC6RBBEERpwEGhXBMg37CEUL9cGK7DJprGQQEfLU2SSjMLFizAggULirsbBEGUAjR2jugA7UMa3Tww3jDc+jopvGQvPBNEceNVAlVJVxMmCIIoKpR2nm5oSqYGhAWWYZAj2HJBDVCRiBpBEMRjgtJuxl8h+uEWinmRM27/663BKuh5QhCu8GqZKzU11a3hTfUpCYJ4HFDZiz6VcBEohQLIhq38kYFRo3jlmAiCIIii5OBrLXEtS4+IAI1jtJaXiI3ucH+KmiIId3hldM+YMQNBQUGF1ReCIIhSg8rebVDCUSoUEk+3UUH1uQmCIB4nArRKhAY4rz3vDbxXtY8IgvDK6O7Vq5fLmpUEQRCPC0oFg/18KtIVp/AnVwWNirtDbmAZBjki37aBIc8EQRAEkT84sroJwis8Nropn5sgCMKGilVggH4iqinOYS9fCeeKu0NuUCgAI2xKOjqWRG8IgiCI/CEOLycIwj35Ui8nCIJ43GEVDHLgg918leLuikewCgZG0S1fx/oXY28IgiCI0kx8qG9xd4EgShUeJyXyPE+h5QRBEKUUFauQ1OlOeXCoGHtDFASrVq1CcHBwcXfDK0pCnz3pw/Tp01GjRo0Cve727dvBMAzu3btXoOcliOKgWWoEpnWqjDXP1y/urhBEqaB0KQERBEEQ+ULFKhDkZ/NMZCrDirE3jx8DBw4EwzAO/5544gmPjk9MTMR7770n2dazZ0+cOnWqEHorpagNZfHn4+/vj+rVq2PVqlUFdv6i+twI4lGGYRgMapSE+sn0LCEIT/BKSI0gCIIoxbAq65/vcD0xoxi78jjyxBNPYOXKlZJtGk3+Be18fHzg41MwSsQljZUrV+KJJ55ATk4O1q5di0GDBiEmJgbt2rV76HM/yp8bQRAEUTIhTzdBEMRDMvXJysXdBY8QFDYhtSyBqnQXNRqNBtHR0ZJ/ISEh1v3Tp09HfHw8NBoNYmNjMWrUKABA8+bNceHCBYwdO9bqAQYcPdCWkOgVK1YgPj4e/v7+GD58ODiOw7x58xAdHY3IyEjMmjVL0q93330XVatWhZ+fH+Li4vDiiy8iOzsbgCkketCgQbh//7712tOnTwcA6PV6vPLKKyhTpgz8/PxQr149bN++XXLuVatWIT4+Hr6+vnj66adx+/Ztjz6r4OBgREdHo1y5cpg8eTJCQ0OxZcsW6/779+/j+eefR2RkJAIDA9GyZUscOXLEuv/IkSNo0aIFAgICEBgYiNq1a2P//v2ynxsAzJkzB1FRUQgICMCQIUOQl5cn2d+8eXOMGTNGsq1Lly4YOHCg9fXq1auRnp6OgIAAREdHo0+fPrhx44bT93jhwgV06tQJISEh8PPzQ5UqVbBp0yaPPh+CIAiidEGeboIgiHwyuUNFHLhwF/0bJBR3VzwiQMix/p0nPCJ1ugUBMDww/c3zpr/1rEmuvTBR+QIFWNXjm2++wYIFC7BmzRpUqVIF169ftxqR69atQ/Xq1fH8889j6NChLs9z9uxZbN68GT/99BPOnj2LZ555BhkZGUhNTcWOHTuwa9cuDB48GK1atUL9+qZcTIVCgYULFyIxMREZGRl48cUX8corr2Dx4sVo2LAh3nvvPUydOhUnT54EAPj7m0T4Bg0ahPPnz2PNmjWIjY3Fd999hyeeeAJHjx5F+fLlsXfvXgwePBizZ89G165d8dNPP2HatGlefS4cx+Hbb7/FnTt3oFKZIjUEQUDHjh0RGhqKTZs2ISgoCB999BFatWqFU6dOITQ0FH379kXNmjWxZMkSsCyLw4cPW4+356uvvsK0adOwaNEiNGnSBJ9//jkWLlyI5ORkr/qq1+sxc+ZMVKhQATdu3MDYsWMxcOBAp4b0iBEjoNfrsXPnTvj5+eH48ePWz5YgCIJ4tCCjmyAIIp8837RccXfBK1QPrlv/9lE9IoFOhgfA7FgAptCt4KK67uSrgNq7smsbNmxwMKomTpyIKVOm4OLFi4iOjkbr1q2hUqkQHx+PunXrAgBCQ0PBsqzVg+oKnuexYsUKBAQEoHLlymjRogVOnjyJTZs2QaFQoEKFCpg7dy62b99uNbrFHtykpCTMnDkTw4cPx+LFi6FWqxEUFASGYSTXPnv2LL788ktcvnwZsbGmz//ll1/GTz/9hJUrV2L27Nl4//330a5dO7z66qsAgNTUVOzatQs//fST28+qd+/eYFkWeXl54DgOoaGheO655wAA27Ztw9GjR3Hjxg1reP78+fPx/fff45tvvsHzzz+PixcvYsKECahYsSIAoHz58k6v9d5772Hw4MHW87/55pv45ZdfHLzd7hg8eLD17+TkZCxcuBB169ZFdna2rDF98eJFdOvWDVWrVrUeQxAEQTyaPCKzLoIgCMId2QbbLX9ovYhi7MnjSYsWLXD48GHJvxEjRgAAunfvjtzcXCQnJ2Po0KH47rvvYDQavb5GYmIiAgICrK+joqJQuXJlKESe/6ioKEnY87Zt29CmTRuUKVMGAQEB6N+/P27fvo2cnBw44+DBgxAEAampqfD397f+27FjB86ePQsAOHHiBBo0aCA5zv61MxYsWIDDhw9j69atqFGjBhYsWICUlBQAwIEDB5CdnY2wsDDJtTMyMqzXHjduHJ577jm0bt0ac+bMsW6X42H6KebQoUN46qmnkJCQgICAADRv3hyAybiWY9SoUXjzzTfRqFEjTJs2DX///bfX1yQIgiBKB+TpJgiCeExQMTYjLqpCvWLsSQGi8jV5nWHy8mZmZSEwIEBiZBbadb3Ez8/PajjaExcXh5MnT2Lr1q345Zdf8OKLL+Ltt9/Gjh07nIZFy3bLri3DMLLbeJ4HYMor7tChA4YNG4aZM2ciNDQUf/zxB4YMGQKDweD0OjzPg2VZHDhwACzLSvZZvLqCIHjcb3uio6ORkpKClJQUfP3116hZsybS09NRuXJl8DyPmJgYh/xxANZc7enTp6NPnz7YuHEjNm/ejGnTpmHNmjV4+umn89UfhULh8H7En09OTg7atm2Ltm3bYvXq1YiIiMDFixfRrl076PV62XM+99xzaNeuHTZu3IgtW7bgrbfewjvvvIOXXnopX30kCIIgSi7k6SYIgnhMUMNmdLORqcXYkwKEYUxh3pZ/Kl/p68L6V4D53BZ8fHzQuXNnLFy4ENu3b8fu3btx9OhRAIBarQbHcQV+zf3798NoNOKdd95B/fr1kZqaiqtXr0rayF27Zs2a4DgON27csBrHln+WMPTKlStjz549kuPsX3tCSkoKunXrhkmTJgEAatWqhevXr0OpVDpcOzw83Hpcamoqxo4diy1btqBr164OyvEWKlWq5LafERERuHbtmvU1x3E4duyY9fW///6LW7duYc6cOWjSpAkqVqzoUkTNQlxcHIYNG4Z169Zh/PjxWL58ufsPhCAIgih1kKebIAjiMYETrbOqCtsTTDig0+lw/fp1yTalUonw8HCsWrUKHMehXr168PX1xeeffw4fHx8kJJhE+hITE7Fz50706tULGo1GYlw+DOXKlYPRaMQHH3yATp064c8//8TSpUslbRITE5GdnY1ff/0V1atXh6+vL1JTU9G3b1/0798f77zzDmrWrIlbt27ht99+Q9WqVdGhQweMGjUKDRs2xLx589ClSxds2bLFo3xuOcaPH4/q1atj//79aN26NRo0aIAuXbpg7ty5qFChAq5evYpNmzahS5cuqFKlCiZMmIBnnnkGSUlJuHz5Mvbt24du3brJnnv06NEYMGAA0tPT0bhxY/zvf//DP//8I8mxbtmyJcaNG4eNGzeiXLlyWLBgAe7du2fdHx8fD7VajQ8++ADDhg3DsWPHMHPmTJfvacyYMWjfvj1SU1Nx9+5d/Pbbb6hUqVK+Ph+CIAiiZEOzLoIgiMeEt409cImPwBuGflCyBe+pJVzz008/ISYmRvKvcePGAExh0cuXL0ejRo1QrVo1/Prrr/jxxx8RFhYGAHjjjTdw/vx5lCtXDhERBZePX6NGDbz77ruYO3cu0tLS8L///Q9vvfWWpE3Dhg0xbNgw9OzZExEREZg3bx4AUy3t/v37Y/z48ahQoQI6d+6MvXv3Ii4uDgBQv359fPzxx/jggw9Qo0YNbNmyBa+//nq++lm1alW0bt0aU6dOBcMw2LRpE5o2bYrBgwcjNTUVvXr1wvnz5xEVFQWWZXH79m30798fqamp6NGjB9q3b48ZM+Qr0/fs2RNTp07FxIkTUbt2bVy4cAHDhw+XtBk8eDAGDBiA/v37o1mzZkhKSkKLFi2s+yMiIrBq1Sp8/fXXqFy5MubMmYP58+e7fE8cx2HEiBGoVKkSnnjiCVSoUAGLFy/O1+dDEARBlGwY4WGSrh5BMjMzERQUhPv37yMwMLC4uyOLwWDApk2b0KFDB69y/Yjig8as9PEojlniqxutf2e81cFa77m0kJeXh4yMDCQlJUGrdawzzvM8MjMzERgYWPg53USBQGPmGe6++0XJo3hvfNShMSt90JiVHjy1HekJRxAE8RhS2gxugiAIgiCI0kqpMbpnzZqFhg0bwtfX16pOas/FixfRqVMn+Pn5ITw8HKNGjXKqGkoQBEEQBEEQBEEQhU2pEVLT6/Xo3r07GjRogE8++cRhP8dx6NixIyIiIvDHH3/g9u3bGDBgAARBwAcffFAMPSYIgiAIgiAIgiAed0qN0W0RQFm1apXs/i1btuD48eO4dOkSYmNjAQDvvPMOBg4ciFmzZpXY/GyCIAiCIAiCIAji0aXUhJe7Y/fu3UhLS7Ma3ADQrl076HQ6HDhwoBh7RhAEQRQkpP9JPG7Qd54gCKJ0U2o83e64fv06oqKiJNtCQkKgVqsd6qKK0el00Ol01teZmZkATKqBBoOhcDr7kFj6VVL7RzhCY1b6eNTHrLS+L0EQkJ2dDY1GI7vP8j/P80XdNSIf0Jh5RnZ2tvWzKu7f7qN+b3wUoTErfdCYlR48HaNiNbqnT5/utG6mhX379iE9Pd2j88mp8QqC4FKl96233pLtw5YtW+Dr6+vRdYuLrVu3FncXCC+hMSt9PEpj9nQig+/Os+hdjsOmTZuKuzv5IiAgADqdDnl5eVCr1bL399u3bxdDz4iHgcZMHkEQoNfrcevWLdy9exenT58u7i5ZeZTujY8LNGalDxqzks+DBw88alesRvfIkSPRq1cvl20SExM9Old0dDT27t0r2Xb37l0YDAYHD7iYSZMmYdy4cdbXmZmZiIuLQ9u2bUtsHrjBYMDWrVvRpk0bqt1XSqAxK308imPWAcCUPCMCtKU3yEkQBNy4ccMalWS/Ly8vD1qtlkqilRJozDwjIiICVapUKRGf0aN4b3zUoTErfdCYlR7k5iNyFOvMKzw8HOHh4QVyrgYNGmDWrFm4du0aYmJiAJi81RqNBrVr13Z6nEajkQ1TVKlUJf5LXhr6SEihMSt9PGpjFvoIvJeyZcuC4ziHkC6DwYCdO3eiadOmj9SYPcrQmLlHpVKBZdni7oYDj9q98XGAxqz0QWNW8vF0fEqNu+PixYu4c+cOLl68CI7jcPjwYQBASkoK/P390bZtW1SuXBn9+vXD22+/jTt37uDll1/G0KFDS6zHmiAIgsgfLMs6GCIsy8JoNEKr1dIkpZRAY0YQBEE8DpQao3vq1Kn49NNPra9r1qwJANi2bRuaN28OlmWxceNGvPjii2jUqBF8fHzQp08fzJ8/v7i6TBAEQRAEQRAEQTzmlBqje9WqVU5rdFuIj4/Hhg0biqZDBEEQBEEQBEEQBOGGR6ZON0EQBEEQBEEQBEGUNEqNp7uosNTB9FSJrjgwGAx48OABMjMzKQeulEBjVvqgMSt90JiVPmjMSh80ZqUPGrPSB41Z6cFiM1psSGeQ0W1HVlYWACAuLq6Ye0IQBEEQBEEQBEGUdLKyshAUFOR0PyO4M8sfM3iex9WrVxEQEFAi6mHKYaklfunSJVJmLyXQmJU+aMxKHzRmpQ8as9IHjVnpg8as9EFjVnoQBAFZWVmIjY2FQuE8c5s83XYoFAqULVu2uLvhEYGBgfRDLGXQmJU+aMxKHzRmpQ8as9IHjVnpg8as9EFjVjpw5eG2QEJqBEEQBEEQBEEQBFFIkNFNEARBEARBEARBEIUEGd2lEI1Gg2nTpkGj0RR3VwgPoTErfdCYlT5ozEofNGalDxqz0geNWemDxuzRg4TUCIIgCIIgCIIgCKKQIE83QRAEQRAEQRAEQRQSZHQTBEEQBEEQBEEQRCFBRjdBEARBEARBEARBFBJkdBMEQRAEQRAEQRBEIUFGdylj8eLFSEpKglarRe3atfH7778Xd5cIM2+99Rbq1KmDgIAAREZGokuXLjh58qSkjSAImD59OmJjY+Hj44PmzZvjn3/+KaYeE/a89dZbYBgGY8aMsW6jMSt5XLlyBc8++yzCwsLg6+uLGjVq4MCBA9b9NGYlC6PRiNdffx1JSUnw8fFBcnIy3njjDfA8b21DY1a87Ny5E506dUJsbCwYhsH3338v2e/J+Oh0Orz00ksIDw+Hn58fOnfujMuXLxfhu3i8cDVmBoMBEydORNWqVeHn54fY2Fj0798fV69elZyDxqzocfdbE/PCCy+AYRi89957ku00bqUTMrpLEWvXrsWYMWPw2muv4dChQ2jSpAnat2+PixcvFnfXCAA7duzAiBEjsGfPHmzduhVGoxFt27ZFTk6Otc28efPw7rvv4sMPP8S+ffsQHR2NNm3aICsrqxh7TgDAvn37sGzZMlSrVk2yncasZHH37l00atQIKpUKmzdvxvHjx/HOO+8gODjY2obGrGQxd+5cLF26FB9++CFOnDiBefPm4e2338YHH3xgbUNjVrzk5OSgevXq+PDDD2X3ezI+Y8aMwXfffYc1a9bgjz/+QHZ2Np588klwHFdUb+OxwtWYPXjwAAcPHsSUKVNw8OBBrFu3DqdOnULnzp0l7WjMih53vzUL33//Pfbu3YvY2FiHfTRupRSBKDXUrVtXGDZsmGRbxYoVhVdffbWYekS44saNGwIAYceOHYIgCALP80J0dLQwZ84ca5u8vDwhKChIWLp0aXF1kxAEISsrSyhfvrywdetWoVmzZsLo0aMFQaAxK4lMnDhRaNy4sdP9NGYlj44dOwqDBw+WbOvatavw7LPPCoJAY1bSACB899131teejM+9e/cElUolrFmzxtrmypUrgkKhEH766aci6/vjiv2YyfHXX38JAIQLFy4IgkBjVhJwNm6XL18WypQpIxw7dkxISEgQFixYYN1H41Z6IU93KUGv1+PAgQNo27atZHvbtm2xa9euYuoV4Yr79+8DAEJDQwEAGRkZuH79umQMNRoNmjVrRmNYzIwYMQIdO3ZE69atJdtpzEoe69evR3p6Orp3747IyEjUrFkTy5cvt+6nMSt5NG7cGL/++itOnToFADhy5Aj++OMPdOjQAQCNWUnHk/E5cOAADAaDpE1sbCzS0tJoDEsI9+/fB8Mw1qggGrOSCc/z6NevHyZMmIAqVao47KdxK70oi7sDhGfcunULHMchKipKsj0qKgrXr18vpl4RzhAEAePGjUPjxo2RlpYGANZxkhvDCxcuFHkfCRNr1qzBwYMHsW/fPod9NGYlj3PnzmHJkiUYN24cJk+ejL/++gujRo2CRqNB//79acxKIBMnTsT9+/dRsWJFsCwLjuMwa9Ys9O7dGwD9zko6nozP9evXoVarERIS4tCG5ijFT15eHl599VX06dMHgYGBAGjMSipz586FUqnEqFGjZPfTuJVeyOguZTAMI3ktCILDNqL4GTlyJP7++2/88ccfDvtoDEsOly5dwujRo7FlyxZotVqn7WjMSg48zyM9PR2zZ88GANSsWRP//PMPlixZgv79+1vb0ZiVHNauXYvVq1fjiy++QJUqVXD48GGMGTMGsbGxGDBggLUdjVnJJj/jQ2NY/BgMBvTq1Qs8z2Px4sVu29OYFR8HDhzA+++/j4MHD3o9BjRuJR8KLy8lhIeHg2VZh1WsGzduOKw+E8XLSy+9hPXr12Pbtm0oW7asdXt0dDQA0BiWIA4cOIAbN26gdu3aUCqVUCqV2LFjBxYuXAilUmkdFxqzkkNMTAwqV64s2VapUiWroCT9zkoeEyZMwKuvvopevXqhatWq6NevH8aOHYu33noLAI1ZSceT8YmOjoZer8fdu3edtiGKHoPBgB49eiAjIwNbt261erkBGrOSyO+//44bN24gPj7eOie5cOECxo8fj8TERAA0bqUZMrpLCWq1GrVr18bWrVsl27du3YqGDRsWU68IMYIgYOTIkVi3bh1+++03JCUlSfYnJSUhOjpaMoZ6vR47duygMSwmWrVqhaNHj+Lw4cPWf+np6ejbty8OHz6M5ORkGrMSRqNGjRxK8Z06dQoJCQkA6HdWEnnw4AEUCul0g2VZa8kwGrOSjSfjU7t2bahUKkmba9eu4dixYzSGxYTF4D59+jR++eUXhIWFSfbTmJU8+vXrh7///lsyJ4mNjcWECRPw888/A6BxK81QeHkpYty4cejXrx/S09PRoEEDLFu2DBcvXsSwYcOKu2sETGJcX3zxBX744QcEBARYvQJBQUHw8fGx1n+ePXs2ypcvj/Lly2P27Nnw9fVFnz59irn3jycBAQHWnHsLfn5+CAsLs26nMStZjB07Fg0bNsTs2bPRo0cP/PXXX1i2bBmWLVsGAPQ7K4F06tQJs2bNQnx8PKpUqYJDhw7h3XffxeDBgwHQmJUEsrOzcebMGevrjIwMHD58GKGhoYiPj3c7PkFBQRgyZAjGjx+PsLAwhIaG4uWXX0bVqlUdBCqJgsHVmMXGxuKZZ57BwYMHsWHDBnAcZ52ThIaGQq1W05gVE+5+a/aLIyqVCtHR0ahQoQIA+q2VaopJNZ3IJ4sWLRISEhIEtVot1KpVy1qOiih+AMj+W7lypbUNz/PCtGnThOjoaEGj0QhNmzYVjh49WnydJhwQlwwTBBqzksiPP/4opKWlCRqNRqhYsaKwbNkyyX4as5JFZmamMHr0aCE+Pl7QarVCcnKy8Nprrwk6nc7ahsaseNm2bZvs82vAgAGCIHg2Prm5ucLIkSOF0NBQwcfHR3jyySeFixcvFsO7eTxwNWYZGRlO5yTbtm2znoPGrOhx91uzx75kmCDQuJVWGEEQhCKy7wmCIAiCIAiCIAjisYJyugmCIAiCIAiCIAiikCCjmyAIgiAIgiAIgiAKCTK6CYIgCIIgCIIgCKKQIKObIAiCIAiCIAiCIAoJMroJgiAIgiAIgiAIopAgo5sgCIIgCIIgCIIgCgkyugmCIAiCIAiCIAiikCCjmyAIgiBKAdOnT0eNGjWK/Lrbt28HwzBgGAZdunRx2bZ58+YYM2ZMkfTLcj1L3w4fPlxk1yUIgiAIb1AWdwcIgiAI4nGHYRiX+wcMGIAPP/wQL730UhH1yJGTJ08iMjKy2K4vx7p163D27FnUrVu3uLtCEARBEE4ho5sgCIIgiplr165Z/167di2mTp2KkydPWrf5+PjA398f/v7+xdE9AEBkZCSCg4OL7fpyhIaGIjMzs7i7QRAEQRAuofBygiAIgihmoqOjrf+CgoLAMIzDNvvw8oEDB6JLly6YPXs2oqKiEBwcjBkzZsBoNGLChAkIDQ1F2bJlsWLFCsm1rly5gp49eyIkJARhYWF46qmncP78ea/7nJOTg/79+8Pf3x8xMTF45513HNqsXr0a6enpCAgIQHR0NPr06YMbN24AAARBQEpKCubPny855tixY1AoFDh79iwAU1h9fHw8NBoNYmNjMWrUKK/7ShAEQRDFCRndBEEQBFFK+e2333D16lXs3LkT7777LqZPn44nn3wSISEh2Lt3L4YNG4Zhw4bh0qVLAIAHDx6gRYsW8Pf3x86dO/HHH3/A398fTzzxBPR6vVfXnjBhArZt24bvvvsOW7Zswfbt23HgwAFJG71ej5kzZ+LIkSP4/vvvkZGRgYEDBwIwhdQPHjwYK1eulByzYsUKNGnSBOXKlcM333yDBQsW4KOPPsLp06fx/fffo2rVqvn/wAiCIAiiGCCjmyAIgiBKKaGhoVi4cCEqVKiAwYMHo0KFCnjw4AEmT56M8uXLY9KkSVCr1fjzzz8BAGvWrIFCocDHH3+MqlWrolKlSli5ciUuXryI7du3e3zd7OxsfPLJJ5g/fz7atGmDqlWr4tNPPwXHcZJ2gwcPRvv27ZGcnIz69etj4cKF2Lx5M7KzswEAgwYNwsmTJ/HXX38BAAwGA1avXo3BgwcDAC5evIjo6Gi0bt0a8fHxqFu3LoYOHVoAnxxBEARBFB1kdBMEQRBEKaVKlSpQKGyP8qioKIknmGVZhIWFWUO6Dxw4gDNnziAgIMCaIx4aGoq8vDxrOLcnnD17Fnq9Hg0aNLBuCw0NRYUKFSTtDh06hKeeegoJCQkICAhA8+bNAZiMaQCIiYlBx44drSHwGzZsQF5eHrp37w4A6N69O3Jzc5GcnIyhQ4fiu+++g9Fo9OITIgiCIIjih4xugiAIgiilqFQqyWuGYWS38TwPAOB5HrVr18bhw4cl/06dOoU+ffp4fF1BENy2ycnJQdu2beHv74/Vq1dj3759+O677wBAEsr+3HPPYc2aNcjNzcXKlSvRs2dP+Pr6AgDi4uJw8uRJLFq0CD4+PnjxxRfRtGlTGAwGj/tKEARBEMUNqZcTBEEQxGNCrVq1sHbtWkRGRiIwMDDf50lJSYFKpcKePXsQHx8PALh79y5OnTqFZs2aAQD+/fdf3Lp1C3PmzEFcXBwAYP/+/Q7n6tChA/z8/LBkyRJs3rwZO3fulOz38fFB586d0blzZ4wYMQIVK1bE0aNHUatWrXz3nyAIgiCKEvJ0EwRBEMRjQt++fREeHo6nnnoKv//+OzIyMrBjxw6MHj0aly9f9vg8/v7+GDJkCCZMmIBff/0Vx44dw8CBAyWh7vHx8VCr1fjggw9w7tw5rF+/HjNnznQ4F8uyGDhwICZNmoSUlBRJyPqqVavwySef4NixYzh37hw+//xz+Pj4ICEh4eE+CIIgCIIoQsjoJgiCIIjHBF9fX+zcuRPx8fHo2rUrKlWqhMGDByM3N9drz/fbb7+Npk2bonPnzmjdujUaN26M2rVrW/dHRERg1apV+Prrr1G5cmXMmTPHoTyYhSFDhkCv11sF1CwEBwdj+fLlaNSoEapVq4Zff/0VP/74I8LCwrx/8wRBEARRTDCCJ4lZBEEQBEE8lmzfvh0tWrTA3bt3ERwcXCjX+PPPP9G8eXNcvnwZUVFRXh17/vx5JCUl4dChQ5I65gRBEARRUiBPN0EQBEEQbilbtix69+5doOfU6XQ4c+YMpkyZgh49enhtcLdv3x5VqlQp0D4RBEEQREFDnm6CIAiCIJySm5uLK1euADDlckdHRxfYuVetWoUhQ4agRo0aWL9+PcqUKePV8VeuXEFubi4AWw45QRAEQZQ0yOgmCIIgCIIgCIIgiEKCwssJgiAIgiAIgiAIopAgo5sgCIIgCIIgCIIgCgkyugmCIAiCIAiCIAiikCCjmyAIgiAIgiAIgiAKCTK6CYIgCIIgCIIgCKKQIKObIAiCIAiCIAiCIAoJMroJgiAIgiAIgiAIopAgo5sgCIIgCIIgCIIgCgkyugmCIAiCIAiCIAiikCCjmyAIgiAIgiAIgiAKCTK6CYIgCIIgCIIgCKKQIKObIAiCIAiCIAiCIAoJMroJgiAIgiAIgiAIopAgo5sgCIIgCIIgCIIgCgkyugmCIAgiHyxcuBAMwyAtLe2hzrNp0yZMnz69YDpVwjl//jwYhsGqVau8Pvbq1auYPn06Dh8+7LBv+vTpYBjm4TtIEARBEIUAGd0EQRAEkQ9WrFgBAPjnn3+wd+/efJ9n06ZNmDFjRkF165Hl6tWrmDFjhqzR/dxzz2H37t1F3ymCIAiC8AAyugmCIAjCS/bv348jR46gY8eOAIBPPvmkmHtUuDx48EB2uyAIyM3NLeLeOFK2bFnUr1+/uLtBEARBELKQ0U0QBEEQXmIxsufMmYOGDRtizZo1EsN0+/btYBgG27dvlxxnH149cOBALFq0CADAMIz13/nz5wEAeXl5mDRpEpKSkqBWq1GmTBmMGDEC9+7dc+jTF198gQYNGsDf3x/+/v6oUaOGw2LAihUrUL16dWi1WoSGhuLpp5/GiRMnJG0GDhwIf39/HD16FG3btkVAQABatWpl7ePIkSOxdOlSVKpUCRqNBp9++ikA4PTp0+jTpw8iIyOh0WhQqVIl63tzxZkzZzBo0CCUL18evr6+KFOmDDp16oSjR49KPs86deoAAAYNGmT9nCxh+XLh5TzPY968eahYsSI0Gg0iIyPRv39/XL58WdKuefPmSEtLw759+9CkSRP4+voiOTkZc+bMAc/zbvtPEARBEO4go5sgCIIgvCA3Nxdffvkl6tSpg7S0NAwePBhZWVn4+uuvvT7XlClT8MwzzwAAdu/ebf0XExMDQRDQpUsXzJ8/H/369cPGjRsxbtw4fPrpp2jZsiV0Op31PFOnTkXfvn0RGxuLVatW4bvvvsOAAQNw4cIFa5u33noLQ4YMQZUqVbBu3Tq8//77+Pvvv9GgQQOcPn1a0i+9Xo/OnTujZcuW+OGHHyTh799//z2WLFmCqVOn4ueff0aTJk1w/Phx1KlTB8eOHcM777yDDRs2oGPHjhg1apTb0PmrV68iLCwMc+bMwU8//YRFixZBqVSiXr16OHnyJACgVq1aWLlyJQDg9ddft35Ozz33nNPzDh8+HBMnTkSbNm2wfv16zJw5Ez/99BMaNmyIW7duSdpev34dffv2xbPPPov169ejffv2mDRpElavXu2y7wRBEAThEQJBEARBEB7z2WefCQCEpUuXCoIgCFlZWYK/v7/QpEkTa5tt27YJAIRt27ZJjs3IyBAACCtXrrRuGzFihCD3OP7pp58EAMK8efMk29euXSsAEJYtWyYIgiCcO3dOYFlW6Nu3r9M+3717V/Dx8RE6dOgg2X7x4kVBo9EIffr0sW4bMGCAAEBYsWKFw3kACEFBQcKdO3ck29u1ayeULVtWuH//vmT7yJEjBa1Wa20v9/7tMRqNgl6vF8qXLy+MHTvWun3fvn1Oj502bZrkMzxx4oQAQHjxxRcl7fbu3SsAECZPnmzd1qxZMwGAsHfvXknbypUrC+3atXPaT4IgCILwFPJ0EwRBEIQXfPLJJ/Dx8UGvXr0AAP7+/ujevTt+//13B4/xw/Dbb78BMIV7i+nevTv8/Pzw66+/AgC2bt0KjuMwYsQIp+favXs3cnNzHc4VFxeHli1bWs8lplu3brLnatmyJUJCQqyv8/Ly8Ouvv+Lpp5+Gr68vjEaj9V+HDh2Ql5eHPXv2OO2b0WjE7NmzUblyZajVaiiVSqjVapw+fdoh9N1Ttm3bBsDxs6tbty4qVark8H6jo6NRt25dybZq1apJIgUIgiAIIr+Q0U0QBEEQHnLmzBns3LkTHTt2hCAIuHfvHu7du2cNEbcomhcEt2/fhlKpREREhGQ7wzCIjo7G7du3AQA3b94EYBITc3UuAIiJiXHYFxsba91vwdfXF4GBgbLnsj/H7du3YTQa8cEHH0ClUkn+dejQAQAcwrnFjBs3DlOmTEGXLl3w448/Yu/evdi3bx+qV6+eb5E2b99vWFiYQzuNRlMiROIIgiCI0o+yuDtAEARBEKWFFStWQBAEfPPNN/jmm28c9n/66ad48803odVqAUCSdw24Nj7tCQsLg9FoxM2bNyWGtyAIuH79ulVYzLLv8uXLiIuLc3ouALh27ZrDvqtXryI8PFyyzVXNa/t9ISEhYFkW/fr1c+ptT0pKcnq+1atXo3///pg9e7Zk+61btxAcHOz0OFeI36/9YoTc+yUIgiCIwoQ83QRBEAThARzH4dNPP0W5cuWwbds2h3/jx4/HtWvXsHnzZiQmJgIA/v77b8k51q9f73BejUYDAA5eVYtiuL2Y17fffoucnBzr/rZt24JlWSxZssRp3xs0aAAfHx+Hc12+fBm//fab9Vz5wdfXFy1atMChQ4dQrVo1pKenO/yT8yRbYBjG+hlY2LhxI65cuSLZ5uxzkqNly5YAHD+7ffv24cSJEw/1fgmCIAjCW8jTTRAEQRAesHnzZly9ehVz585F8+bNHfanpaXhww8/xCeffIInn3wSrVu3xltvvYWQkBAkJCTg119/xbp16xyOq1q1KgBg7ty5aN++PViWRbVq1dCmTRu0a9cOEydORGZmJho1aoS///4b06ZNQ82aNdGvXz8AQGJiIiZPnoyZM2ciNzcXvXv3RlBQEI4fP45bt25hxowZCA4OxpQpUzB58mT0798fvXv3xu3btzFjxgxotVpMmzbtoT6b999/H40bN0aTJk0wfPhwJCYmIisrC2fOnMGPP/5ozU+X48knn8SqVatQsWJFVKtWDQcOHMDbb7/t4KEuV64cfHx88L///Q+VKlWCv78/YmNjERsb63DOChUq4Pnnn8cHH3wAhUKB9u3b4/z585gyZQri4uIwduzYh3q/BEEQBOEVxSzkRhAEQRClgi5dughqtVq4ceOG0za9evUSlEqlcP36deHatWvCM888I4SGhgpBQUHCs88+K+zfv99BgVun0wnPPfecEBERITAMIwAQMjIyBEEQhNzcXGHixIlCQkKCoFKphJiYGGH48OHC3bt3Ha792WefCXXq1BG0Wq3g7+8v1KxZ00Hp++OPPxaqVasmqNVqISgoSHjqqaeEf/75R9JmwIABgp+fn+z7AyCMGDFCdl9GRoYwePBgoUyZMoJKpRIiIiKEhg0bCm+++aakjf37v3v3rjBkyBAhMjJS8PX1FRo3biz8/vvvQrNmzYRmzZpJrvHll18KFStWFFQqlQBAmDZtmiAIjurlgiAIHMcJc+fOFVJTUwWVSiWEh4cLzz77rHDp0iVJu2bNmglVqlRxeD8DBgwQEhISZN8rQRAEQXgDIwiCUJxGP0EQBEEQBEEQBEE8qlBON0EQBEEQBEEQBEEUEmR0EwRBEARBEARBEEQhQUY3QRAEQRAEQRAEQRQSJdbo3rlzJzp16oTY2FgwDIPvv//e7TE7duxA7dq1odVqkZycjKVLlxZ+RwmCIAiCIAiCIAjCCSXW6M7JyUH16tXx4YcfetQ+IyMDHTp0QJMmTXDo0CFMnjwZo0aNwrffflvIPSUIgiAIgiAIgiAIeUqFejnDMPjuu+/QpUsXp20mTpyI9evX48SJE9Ztw4YNw5EjR7B79+4i6CVBEARBEARBEARBSCmxnm5v2b17N9q2bSvZ1q5dO+zfvx8Gg6GYekUQBEEQBEEQBEE8ziiLuwMFxfXr1xEVFSXZFhUVBaPRiFu3biEmJkb2OJ1OB51OZ33N8zzu3LmDsLAwMAxTqH0mCIIgCIIgCIIgSifC/9u7/+Co6vvf468lJEtCSbghJJv9kl/18jMBBxKFpPLTLxnwW0Z+DMLXuRHurSkU6S3uZUBKW0OnmsG2lnYQv2KtiKiXOhSVC1fJXEiqBRSRCEXKl2owERPDD0mA6GaBc/+IWYn5sZHkk3NCno+ZneScPWfzPmf3fc6+cs6etSxdvHhRXq9XvXq1fjz7pgndkpqF5MYz59sKz4WFhVqzZo3RugAAAAAAN6eKigoNGjSo1ftvmtDt8XhUVVXVZFx1dbV69+6tAQMGtDrfqlWr5PP5gsM1NTVKTk5WWVmZ+vXrZ6zeb+sPez7U5v3lutrCR/DDXNJ92Sn6n1NusaEywJkCgYD27t2ryZMnKzw83O5yAEeiT4DQ6BMgtJ7aJxcvXlRaWlrI3HjThO7s7Gzt2LGjybjdu3crKyurzSfe7XbL7XY3Gx8bG6vo6OhOr/NGLZzcR8+/d0a9Wrjsncsl/ffJ6RowoG/XFwY4VCAQUFRUlAYMGNCjNv7At0GfAKHRJ0BoPbVPGpc11MeSHXshtUuXLqm0tFSlpaWSGr4SrLS0VOXl5ZIajlDfd999wekXL16sjz/+WD6fT8ePH9ef/vQnPfPMM1q+fLkd5Xe6tLi+WjtnlHpd93yGuaReLmntnFFKjSNwAwAAAIDTOPZI97vvvqvJkycHhxtPAV+wYIE2bdqkysrKYACXpLS0NO3atUsPPvignnjiCXm9Xv3hD3/QnDlzurx2U+ZmJSnjX6I1/fdvSZIWZKfovpw0AjcAAAAAOJRjQ/ekSZPU1leIb9q0qdm4iRMn6r333jNYlf1SrjuF/Cd33qKYvpE2VgMAAAAAaItjTy8HAAAAAKC7I3QDAAAAAGAIoRsAAAAAAEMI3QAAAAAAGELoBgAAAADAEEI3AAAAAACGELoBAAAAADCE0A0AAAAAgCGEbgAAAAAADCF0AwAAAABgCKEbAAAAAABDCN0AAAAAABhC6AYAAAAAwBBCNwAAAAAAhhC6AQAAAAAwhNANAAAAAIAhhG4AAAAAAAwhdAMAAAAAYAihGwAAAAAAQwjdAAAAAAAYQugGAAAAAMAQQjcAAAAAAIYQugEAAAAAMITQDQAAAACAIYRuAAAAAAAMIXQDAAAAAGAIoRsAAAAAAEMI3QAAAAAAGELoBgAAAADAEEI3AAAAAACGELoBAAAAADCE0A0AAAAAgCGEbgAAAAAADHF86N6wYYPS0tLUp08fZWZm6s0332x12uLiYrlcrma3f/zjH11YMQAAAAAADRwdurdu3aply5Zp9erVOnz4sMaPH6/p06ervLy8zflOnDihysrK4G3w4MFdVDEAAAAAAF9zdOh+/PHH9YMf/ED333+/hg8frnXr1ikpKUlPPvlkm/PFx8fL4/EEb2FhYV1UMQAAAAAAX+ttdwGtqa+v16FDh/TQQw81GZ+bm6t9+/a1Oe/o0aP15ZdfasSIEfrZz36myZMntzqt3++X3+8PDtfW1kqSAoGAAoFAB5bAjEDgSpPfnVgj4ASNvUGPAK2jT4DQ6BMgtJ7aJ+1dXseG7rNnz+rq1atKSEhoMj4hIUFVVVUtzpOYmKiNGzcqMzNTfr9fzz//vO68804VFxdrwoQJLc5TWFioNWvWNBu/e/duRUVFdXxBOpn/qtT4tO3Zs0duDuIDbSoqKrK7BMDx6BMgNPoECK2n9UldXV27pnNs6G7kcrmaDFuW1Wxco6FDh2ro0KHB4ezsbFVUVOg3v/lNq6F71apV8vl8weHa2lolJSUpNzdX0dHRnbAEnauu/opWvLNHkjRlyhTF9O1jc0WAMwUCARUVFWnq1KkKDw+3uxzAkegTIDT6BAitp/ZJ41nSoTg2dMfFxSksLKzZUe3q6upmR7/bMm7cOG3ZsqXV+91ut9xud7Px4eHhjnzBhFtf/8MhPLy3I2sEnMSpvQw4CX0ChEafAKH1tD5p77I69kJqERERyszMbHaKQlFRkXJyctr9OIcPH1ZiYmJnlwcAAAAAQEiOPdItST6fT3l5ecrKylJ2drY2btyo8vJyLV68WFLDqeGnT5/W5s2bJUnr1q1Tamqq0tPTVV9fry1btmjbtm3atm2bnYsBAAAAAOihHB26582bp3PnzumXv/ylKisrlZGRoV27diklJUWSVFlZ2eQ7u+vr67V8+XKdPn1akZGRSk9P186dO3XXXXfZtQgAAAAAgB7M0aFbkpYsWaIlS5a0eN+mTZuaDK9YsUIrVqzogqoAAAAAAAjNsZ/pBgAAAACguyN0AwAAAABgCKEbAAAAAABDCN0AAAAAABhC6AYAAAAAwBBCNwAAAAAAhhC6AQAAAAAwhNANAAAAAIAhhG4AAAAAAAwhdAMAAAAAYAihGwAAAAAAQwjdAAAAAAAYQugGAAAAAMAQQjcAAAAAAIYQugEAAAAAMITQDQAAAACAIYRuAAAAAAAMIXQDAAAAAGAIoRsAAAAAAEMI3QAAAAAAGELoBgAAAADAEEI3AAAAAACGELoBAAAAADCE0A0AAAAAgCGEbgAAAAAADCF0AwAAAABgCKEbAAAAAABDCN0AAAAAABhC6AYAAAAAwBBCNwAAAAAAhvS2uwAAAAAAN6bs7GX9+d0KffL5Fxr0XyJ1T1aS0uL62l0WgOsQugEAAGALpwfGsrOX9b/f/lgH/7OXPuh9UvPHpjiqvj+/W6GHth2Ry+WSZVlyuVx6quRDrZ0zSnOzkuwuD8BXHB+6N2zYoF//+teqrKxUenq61q1bp/Hjx7c6fUlJiXw+n44dOyav16sVK1Zo8eLFXVgxcPNz+puk7oB1ePPjOe44p69Dp9fndE4PjMH65NI1y6X33zqlp98qc0x9ZWcv66FtR3TNkmRZDSO/+rly2xHdlhqrVF6P6AJO/+eUE7gsq7FLnWfr1q3Ky8vThg0b9L3vfU9PPfWU/vjHP+qDDz5QcnJys+nLysqUkZGh/Px8LVq0SH/729+0ZMkSvfTSS5ozZ067/mZtba1iYmJUU1Oj6Ojozl6kDqurv6IRv3hDkvT+z6copm9kpzxuTV1A/qtXO/w45efrtOP9T1V54Usl9u+jGbd6lRwb1QkVdh6n1+j0+na8/6ke2XlcLrlkyQr+/Nm/Ddf3b/XaXZ6khnX46uFPdOzkx0ofnKK7Rw9iHd5k6JOOo09u7vokZ/dJ+fk63fMf+xsC4zf0ckkvL85Wko21Or0+SXpi7z+1ZX+5rrbwVj7MJf237BQ9MPm/2lBZGxybOpwt2Ms1Xyoxxlm9vOP9T/XIruNySbpmWerlcsmSGraFozq2LYyMCFO/PuGdUqcp7c2Ojg7dY8eO1ZgxY/Tkk08Gxw0fPlwzZ85UYWFhs+lXrlyp1157TcePHw+OW7x4sd5//33t37+/XX+zccVVnjnn2NCd9av/J0nav3KiYvr26ZTHPVF1URfqAh16jDdPntGz+07JpYZtauPP/5GTpjsGx3VClR3n9BqdXl9V7Zf66fajammr4XJJhbNGKiG6c16TN6rJOvzqyAnr8OZCn3QcfdIxTq9Pcn6fvHyoQq//varVUDstw6O5mfYdTXZ6fZL0HyUf6p1T51t9Hd6eGqvFE2/p+sK6oaraL/XmyTM6d6leA74TofGDB8rjkH2xk3vZ9LYwIbqPUuOc8c+F1tTW1ipx4IDuG7rr6+sVFRWll19+WbNmzQqO/8lPfqLS0lKVlJQ0m2fChAkaPXq0fv/73wfHbd++Xffcc4/q6uoUHt78PyV+v19+vz84XFtbq6SkJCUt+7N6uZ39JAMAAAAA7HHNX6eKdfeEDN2O/cqws2fP6urVq0pISGgyPiEhQVVVVS3OU1VV1eL0V65c0dmzZ1ucp7CwUDExMcFbUpL9n9EBAAAAANwcHH8hNZfL1WS48TS4bzN9S+MbrVq1Sj6fLzjceKT7bysmOPL0ckkKBK5oz549mjJlisLDO+cpPFl9STUdOL38qTfLdPDUhRY/quNySbel9Nei8Wk3XmAncHqNTq9Pkra996le/+Cz1k+3G5GgOWPs+ywj67DjPqv9UqtfPd7yOpT0yN0jlBDt7uqygniOO4512HFOr687PMdO39Y4vb5Gb314Tpv2lcvluu7UY0tamJOsO24ZYGtt3WEd0ssdY3r9xUf3UXJs51y/ypTa2lolrws9nWNDd1xcnMLCwpod1a6urm52NLuRx+NpcfrevXtrwICWNzxut1tud/OGj+kbqehOukhZZwsEAnKHSTF9+7R4yvyN6NsnoMC1Gz/xwRMTJZfrQsuf6fjq/qg+9m5YnV6j0+uTpH9N9+j/fvBZi/dZkqamJ7IOQ3D6Ojxw5LOGN2+tfD7rwKkL+vfbm1/IsqvwHHcc67DjnF5fd3iO0/q4tWjid/XUXz9q9lnVRRO+q7R4ew98NKvvumsfOKG+RrnpXo0aFKu9J6p15pJfA7/j1uSh8fLE2P95ZKfvTyTp8y+vtHptN+ur++nl1pneFn4n0t1pF402xXW1fQctHRu6IyIilJmZqaKioiaf6S4qKtLdd9/d4jzZ2dnasWNHk3G7d+9WVlZWp4XTm1VybJS8MTf+8f7770jT/znyaav354//ru1XWXR6jU6vT5JGJEZrzYx0Few4dt0Vexs2rAUz0jVlWLyt9bEOO67+yrWQ949ItO/NJs9xx7EOb/76usNzLDWsx38b6dX2w6f16YUv5O0fqVmj/8URtUlf17ftULmO/OcpjRqSojmZyY6pr9GIxGjbX3Mtcfr+RJKGe6L1zkfndbWF6N1L0nBPPw1P7Nf1hX3lB3ekttnL949Ps/X1ODyxnwpmpGvNjmPNrl7+8Ix0TR42sEOP7+4d1il1OoFjQ7ck+Xw+5eXlKSsrS9nZ2dq4caPKy8uD37u9atUqnT59Wps3b5bUcKXy9evXy+fzKT8/X/v379czzzyjl156yc7F6Bb6ujv2UhgV1V9r54zSym9836ZlWVo7Z5RGDorppEpv3hqdXl+j+3JSNWHIQG297rtp52UlOeK7QL+5Dq9duxbc+LMO2ydtYN+Gj+O08G91l8ultIF9FRNl3z8x6ZOOo086h5Pr6y59Ikkjo2IcVc83jYyK0bCEYdqlj3TXXcM4iPMtOH1/Ikl52SnatK+sxfssSfdlp6p/VETXFnWd/lERbfbyqEH9baut0YKcVE0cMlAvvf2xDn7woW4b8V39+9gUR2wLncSxVy9vtGHDBj322GOqrKxURkaGfve732nChAmSpIULF+rUqVMqLi4OTl9SUqIHH3xQx44dk9fr1cqVK4MhvT2c/j3dUsPp5bt27dJdd93luI3/qbOXHfkG5HpOr9Hp9XUHp85evm7jfwsb/2+h7Oxl3fnb4lY/n7Xnf01yxLqkTzqOPrn50Sedw8nvu5ysu+xPXn63otVQOzfLGRdY7g693FP75Kb4nm47ELqBmwN9cuO6wxsQdA76BAiNPrlx3WV/0h1CrdP11D5pb3Z09OnlAICuNzcrSbelxvIGBADQId1lf5Ia11crpw2zuwzcxAjdAIBmeAMCAOgM7E+AhgvzAQAAAAAAAwjdAAAAAAAYQugGAAAAAMAQQjcAAAAAAIYQugEAAAAAMITQDQAAAACAIYRuAAAAAAAMIXQDAAAAAGAIoRsAAAAAAEMI3QAAAAAAGELoBgAAAADAEEI3AAAAAACGELoBAAAAADCE0A0AAAAAgCGEbgAAAAAADCF0AwAAAABgCKEbAAAAAABDCN0AAAAAABhC6AYAAAAAwBBCNwAAAAAAhhC6AQAAAAAwhNANAAAAAIAhhG4AAAAAAAwhdAMAAAAAYAihGwAAAAAAQwjdAAAAAAAYQugGAAAAAMAQQjcAAAAAAIYQugEAAAAAMITQDQAAAACAIY4N3Z9//rny8vIUExOjmJgY5eXl6cKFC23Os3DhQrlcria3cePGdU3BAAAAAAB8Q2+7C2jNvffeq08++USvv/66JOmHP/yh8vLytGPHjjbnmzZtmp599tngcEREhNE6AQAAAABojSND9/Hjx/X666/rwIEDGjt2rCTp6aefVnZ2tk6cOKGhQ4e2Oq/b7ZbH4+mqUgEAAAAAaJUjTy/fv3+/YmJigoFbksaNG6eYmBjt27evzXmLi4sVHx+vIUOGKD8/X9XV1abLBQAAAACgRY480l1VVaX4+Phm4+Pj41VVVdXqfNOnT9fcuXOVkpKisrIy/fznP9eUKVN06NAhud3uFufx+/3y+/3B4draWklSIBBQIBDo4JKY0ViXU+sDnIA+AUKjT4DQ6BMgtJ7aJ+1d3i4N3QUFBVqzZk2b0xw8eFCS5HK5mt1nWVaL4xvNmzcv+HtGRoaysrKUkpKinTt3avbs2S3OU1hY2GJNu3fvVlRUVJu12q2oqMjuEgDHo0+A0OgTIDT6BAitp/VJXV1du6br0tC9dOlSzZ8/v81pUlNTdeTIEX322WfN7jtz5owSEhLa/fcSExOVkpKikydPtjrNqlWr5PP5gsO1tbVKSkpSbm6uoqOj2/23ulIgEFBRUZGmTp2q8PBwu8sBHIk+AUKjT4DQ6BMgtJ7aJ41nSYfSpaE7Li5OcXFxIafLzs5WTU2N3nnnHd1+++2SpLfffls1NTXKyclp9987d+6cKioqlJiY2Oo0bre7xVPPw8PDHf+C6Q41AnajT4DQ6BMgNPoECK2n9Ul7l9WRF1IbPny4pk2bpvz8fB04cEAHDhxQfn6+vv/97ze5cvmwYcO0fft2SdKlS5e0fPly7d+/X6dOnVJxcbFmzJihuLg4zZo1y65FAQAAAAD0YI4M3ZL0wgsvaOTIkcrNzVVubq5GjRql559/vsk0J06cUE1NjSQpLCxMR48e1d13360hQ4ZowYIFGjJkiPbv369+/frZsQgAAAAAgB7OkVcvl6TY2Fht2bKlzWksywr+HhkZqTfeeMN0WQAAAAAAtJtjj3QDAAAAANDdEboBAAAAADCE0A0AAAAAgCGEbgAAAAAADCF0AwAAAABgCKEbAAAAAABDCN0AAAAAABhC6AYAAAAAwBBCNwAAAAAAhhC6AQAAAAAwhNANAAAAAIAhhG4AAAAAAAwhdAMAAAAAYAihGwAAAAAAQwjdAAAAAAAYQugGAAAAAMAQQjcAAAAAAIYQugEAAAAAMITQDQAAAACAIYRuAAAAAAAMIXQDAAAAAGAIoRsAAAAAAEMI3QAAAAAAGELoBgAAAADAEEI3AAAAAACGELoBAAAAADCE0A0AAAAAgCGEbgAAAAAADCF0AwAAAABgCKEbAAAAAABDCN0AAAAAABhC6AYAAAAAwBBCNwAAAAAAhjg2dD/yyCPKyclRVFSU+vfv3655LMtSQUGBvF6vIiMjNWnSJB07dsxsoQAAAAAAtMKxobu+vl5z587Vj370o3bP89hjj+nxxx/X+vXrdfDgQXk8Hk2dOlUXL140WCkAAAAAAC1zbOhes2aNHnzwQY0cObJd01uWpXXr1mn16tWaPXu2MjIy9Nxzz6murk4vvvii4WoBAAAAAGiut90FdJaysjJVVVUpNzc3OM7tdmvixInat2+fFi1a1OJ8fr9ffr8/OFxTUyNJOn/+vAKBgNmib1AgEFBdXZ3OnTun8PBwu8sBHIk+AUKjT4DQ6BMgtJ7aJ41nVFuW1eZ0N03orqqqkiQlJCQ0GZ+QkKCPP/641fkKCwu1Zs2aZuPT0tI6t0AAAAAAwE3n4sWLiomJafX+Lg3dBQUFLQbc6x08eFBZWVk3/DdcLleTYcuymo273qpVq+Tz+YLD165d0/nz5zVgwIA257NTbW2tkpKSVFFRoejoaLvLARyJPgFCo0+A0OgTILSe2ieWZenixYvyer1tTteloXvp0qWaP39+m9Okpqbe0GN7PB5JDUe8ExMTg+Orq6ubHf2+ntvtltvtbjKuvVdLt1t0dHSPelEDN4I+AUKjT4DQ6BMgtJ7YJ20d4W7UpaE7Li5OcXFxRh47LS1NHo9HRUVFGj16tKSGK6CXlJRo7dq1Rv4mAAAAAABtcezVy8vLy1VaWqry8nJdvXpVpaWlKi0t1aVLl4LTDBs2TNu3b5fUcFr5smXL9Oijj2r79u36+9//roULFyoqKkr33nuvXYsBAAAAAOjBHHshtV/84hd67rnngsONR6/37t2rSZMmSZJOnDgRvNq4JK1YsUJffPGFlixZos8//1xjx47V7t271a9fvy6t3TS3262HH3642WnxAL5GnwCh0SdAaPQJEBp90jaXFer65gAAAAAA4IY49vRyAAAAAAC6O0I3AAAAAACGELoBAAAAADCE0A0AAAAAgCGE7m5ow4YNSktLU58+fZSZmak333zT7pIAxygoKJDL5Wpy83g8dpcF2Oqvf/2rZsyYIa/XK5fLpVdeeaXJ/ZZlqaCgQF6vV5GRkZo0aZKOHTtmT7GATUL1ycKFC5vtX8aNG2dPsYANCgsLddttt6lfv36Kj4/XzJkzdeLEiSbTsD9pGaG7m9m6dauWLVum1atX6/Dhwxo/frymT5+u8vJyu0sDHCM9PV2VlZXB29GjR+0uCbDV5cuXdeutt2r9+vUt3v/YY4/p8ccf1/r163Xw4EF5PB5NnTpVFy9e7OJKAfuE6hNJmjZtWpP9y65du7qwQsBeJSUleuCBB3TgwAEVFRXpypUrys3N1eXLl4PTsD9pGV8Z1s2MHTtWY8aM0ZNPPhkcN3z4cM2cOVOFhYU2VgY4Q0FBgV555RWVlpbaXQrgSC6XS9u3b9fMmTMlNRyV8Hq9WrZsmVauXClJ8vv9SkhI0Nq1a7Vo0SIbqwXs8c0+kRqOdF+4cKHZEXCgpzpz5ozi4+NVUlKiCRMmsD9pA0e6u5H6+nodOnRIubm5Tcbn5uZq3759NlUFOM/Jkyfl9XqVlpam+fPn66OPPrK7JMCxysrKVFVV1WTf4na7NXHiRPYtwDcUFxcrPj5eQ4YMUX5+vqqrq+0uCbBNTU2NJCk2NlYS+5O2ELq7kbNnz+rq1atKSEhoMj4hIUFVVVU2VQU4y9ixY7V582a98cYbevrpp1VVVaWcnBydO3fO7tIAR2rcf7BvAdo2ffp0vfDCC9qzZ49++9vf6uDBg5oyZYr8fr/dpQFdzrIs+Xw+3XHHHcrIyJDE/qQtve0uAN+ey+VqMmxZVrNxQE81ffr04O8jR45Udna2brnlFj333HPy+Xw2VgY4G/sWoG3z5s0L/p6RkaGsrCylpKRo586dmj17to2VAV1v6dKlOnLkiN56661m97E/aY4j3d1IXFycwsLCmv2nqLq6utl/lAA06Nu3r0aOHKmTJ0/aXQrgSI1X92ffAnw7iYmJSklJYf+CHufHP/6xXnvtNe3du1eDBg0Kjmd/0jpCdzcSERGhzMxMFRUVNRlfVFSknJwcm6oCnM3v9+v48eNKTEy0uxTAkdLS0uTxeJrsW+rr61VSUsK+BWjDuXPnVFFRwf4FPYZlWVq6dKn+8pe/aM+ePUpLS2tyP/uT1nF6eTfj8/mUl5enrKwsZWdna+PGjSovL9fixYvtLg1whOXLl2vGjBlKTk5WdXW1fvWrX6m2tlYLFiywuzTANpcuXdI///nP4HBZWZlKS0sVGxur5ORkLVu2TI8++qgGDx6swYMH69FHH1VUVJTuvfdeG6sGulZbfRIbG6uCggLNmTNHiYmJOnXqlH76058qLi5Os2bNsrFqoOs88MADevHFF/Xqq6+qX79+wSPaMTExioyMlMvlYn/SGgvdzhNPPGGlpKRYERER1pgxY6ySkhK7SwIcY968eVZiYqIVHh5ueb1ea/bs2daxY8fsLguw1d69ey1JzW4LFiywLMuyrl27Zj388MOWx+Ox3G63NWHCBOvo0aP2Fg10sbb6pK6uzsrNzbUGDhxohYeHW8nJydaCBQus8vJyu8sGukxL/SHJevbZZ4PTsD9pGd/TDQAAAACAIXymGwAAAAAAQwjdAAAAAAAYQugGAAAAAMAQQjcAAAAAAIYQugEAAAAAMITQDQAAAACAIYRuAAAAAAAMIXQDAAAAAGAIoRsAAAAAAEMI3QAAAAAAGELoBgAAAADAEEI3AAAAAACG/H/2wG2wb7g8xQAAAABJRU5ErkJggg==", "text/plain": [ "<Figure size 1000x500 with 2 Axes>" ] @@ -1131,6 +1232,7 @@ " '''\n", " # y = YOUR_CODE_HERE\n", " # y_lag_1 = YOUR_CODE_HERE\n", + " # y_lag_2 = YOUR_CODE_HERE\n", " # A = YOUR_CODE_HERE\n", " # x_hat, y_hat, e_hat = fit_model(YOUR_CODE_HERE)\n", "\n", @@ -1176,7 +1278,7 @@ "\n", "_Note: you did this on Wednesday! It was optional then, so you are not expected to know this for the exam; however, you should implement the code using the WS as a template, and your interpretation at the end will be part of the grade for this assignment._\n", "\n", - "Now that we have found the periodic signals in the data and fitted an AR model to the residuals, we can report the results. By combining including the AR (noise) process, we get residuals that are white noise. When the model hat white noise residuals, we can also report the confidence intervals of the model.\n", + "Now that we have found the periodic signals in the data and fitted an AR model to the residuals, we can report the results. By combining including the AR (noise) process, we get residuals that are white noise. When the model has white noise residuals, we can also report the confidence intervals of the model. The estimated variance is only consistent when the residuals are white noise.\n", "\n", "We will use the unbiased estimate of the variance of the residuals to calculate the confidence intervals. The unbiased estimate of the variance is given by:\n", "\n", @@ -1206,7 +1308,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 60, "metadata": {}, "outputs": [ { @@ -1257,11 +1359,11 @@ "# x_hat, y_hat, e_hat_final = fit_model(YOUR_CODE_HERE)\n", "\n", "# SOLUTION\n", - "A_final = np.column_stack((A2[2:], e_hat0[1:-1], e_hat0[:-2]))\n", + "A_final = np.column_stack((A2[2:], e_hat[1:-1], e_hat[:-2]))\n", "x_hat, y_hat, e_hat_final = fit_model(data[2:], time_days[2:], A_final, plot=True)\n", "# END SOLUTION\n", "\n", - "# Plottint the acf of the residuals\n", + "# Plotting the acf of the residuals\n", "\n", "# fig, ax = plt.subplots(1, 1, figsize=(10, 3))\n", "# plot_acf(YOUR_CODE_HERE, ax=ax, lags=20);\n", @@ -1310,7 +1412,7 @@ "i = 0\n", "for a, b, f in zip(a_i, b_i, freqs):\n", " A_i, theta_i = rewrite_seasonal_comp(a, b)\n", - " i = i + 1\n", + " i += 1\n", " print(f'A_{i} = {A_i:.3f}, theta_{i} = {theta_i:.3f}, f_{i} = {f:.3f}')\n" ] }, @@ -1324,6 +1426,8 @@ "\n", "Now we have the complete functional model. Reflect on it's suitability for capturing the time dependent variation of temperature throughout the spring. Comment specifically on the time series components that were included and which ones have the most significant influence on the result.\n", "\n", + "Compare your final parameters to the ones you found in the previous tasks (i.e. model without offset, model with offset). Are they similar? If not, why do you think that is?\n", + "\n", "Comment also on the suitability of this model for predicting the temperature **beyond the betting deadline of April 5**, assuming that you have data up **until** that date. Remember that the ice typically breaks apart 2 to 6 weeks after the betting deadline.\n", "</p>\n", "</div>" @@ -1337,6 +1441,10 @@ "<p>\n", "<b>Solution:</b> \n", "\n", + "Parameters in offset without AR vs with AR: results are similar, including autoreressive terms does not change the model significantly, but it does reduce the variance of the residuals. \n", + "\n", + "parameters in offset with AR vs model without offset: the parameters are different, as the offset is now included in the model. Daily pattern is not effected, since the offset does not change the daily pattern. The yearly pattern is slightly effected, as the offset changes the overall trend of the data, as well as the intercept.\n", + "\n", "The model only includes \"memory\" for 2 points, which is 2 hours. However, from the ACF prior to removing the residuals, we see that the \"effect\" of the memory lasts around 20 points. This is 20 hours, so the inclusion of AR(2) is useless and the functional model without these terms would be a fine best estimate for temperature on a given day several weeks in the future.\n", "\n", "</p>\n", -- GitLab