diff --git a/content/GA_2_8/Analysis_02_solution.ipynb b/content/GA_2_8/Analysis_02_solution.ipynb index b8e4ec555493a43496d792f548712f700aa2c8fc..09e2df2b5c8fd28781b524b0d472b0075037a364 100644 --- a/content/GA_2_8/Analysis_02_solution.ipynb +++ b/content/GA_2_8/Analysis_02_solution.ipynb @@ -496,7 +496,7 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 70, "metadata": {}, "outputs": [ { @@ -531,9 +531,10 @@ "print(\" USING MONTE CARLO SIMULATION \")\n", "print(\"=====================================\")\n", "print(f\"Tickets purchased: {t.N()}\")\n", - "FD_expected_winnings = np.sum(sampled_probability*sampled_winnings/(Ns+1))\n", - "print(f\"Expected winnings: {FD_expected_winnings:9.2e} kUSD ({FD_expected_winnings*1000:5.0f} USD)\")\n", - "FD_expected_profit = FD_expected_winnings - t.N()/1000*3\n", + "FD_expected_winnings = sampled_probability*sampled_winnings/(Ns+1)\n", + "FD_expected_winnings_sum = np.sum(FD_expected_winnings)\n", + "print(f\"Expected winnings: {FD_expected_winnings_sum:9.2e} kUSD ({FD_expected_winnings_sum*1000:5.0f} USD)\")\n", + "FD_expected_profit = FD_expected_winnings_sum - t.N()/1000*3\n", "print(f\"Expected profit: {FD_expected_profit:9.2e} kUSD ({FD_expected_profit*1000:5.0f} USD)\")\n" ] },