From f0b6e7dcfadf91c73e13161c23f11cbc76d8e697 Mon Sep 17 00:00:00 2001 From: Frans van der Meer <f.p.vandermeer@tudelft.nl> Date: Wed, 20 Nov 2024 21:11:41 +0100 Subject: [PATCH] Fem project --- content/GA_2_2/Report.md | 55 ++++++++++++++++----------- content/GA_2_2/the_big_M.ipynb | 69 +++++++++++++++++----------------- 2 files changed, 68 insertions(+), 56 deletions(-) diff --git a/content/GA_2_2/Report.md b/content/GA_2_2/Report.md index a58a4b78..3bac3293 100644 --- a/content/GA_2_2/Report.md +++ b/content/GA_2_2/Report.md @@ -18,34 +18,47 @@ Please keep your solutions as **concise** as possible, and, where possible, answ ## Questions -**Question 1: Boundary conditions** - -- What boundary conditions are actively enforced? On which part of the boundary are they enforced? - -On the remainder of the boundary, nothing is done in the implementation to enforce any boundary conditions. - -- Give a mathematical expression for the boundary condition that is naturally applied. **Also** describe an observation about the obtained solution that confirms that this boundary condition is indeed satisfied. +**Question 1: Derivation** + +Follow the steps from strong form to discretized form to derive the expression $\mathbf{M}=\int_\Omega\mathbf{N}^T\mathbf{N}\,\mathrm{d}\Omega$ in the term $\mathbf{M}\dot{\mathbf{u}}$. You will only be assessed on how you deal with the term that contains the time derivative. The other terms exactly following the recipe outlined for the [Poisson equation in 2D](https://mude.citg.tudelft.nl/2024/book/fem/poisson2d.html) in the book. + +**Question 2: Problem definition** + +Investigate the code and results to find out which problem is being solved. + +- Give a mathematical description of the problem in terms of governing equation and boundary conditions. Be as specific as possible, indicating the values that are used as input to the calculation. + +- In the final visualization contour lines are visible, connecting points that have the same temperature. As the solution evolves, these contour lines remain approximately perpendicular to the boundary. Which boundary condition does this observation relate to? + + +**Question 3: Integration scheme** + +- In the `get_element_M` function, how many integration points are used and where in the triangles are they positioned? -**Question 2: Integration scheme** +- In the `get_element_K` a simpler implementation is used. What is the essential difference between $\mathbf{K}_e$ and $\mathbf{M}_e$ that is the reason why this simpler implementation is valid for $\mathbf{K}_e$? (The subscript $_e$ is used to indicate the contribution to the matrix from a single element, or the *element matrix*). -- Which integration schemes are used to compute the element contributions to the $\mathbf{K}$ and $\mathbf{M}$ matrices? Comment on the locations and weights of the integration points. +**Question 4: Shape functions** -- Which changes would you make to the code to evaluate the $\mathbf{M}$-matrix with a single integration point at the center of gravity of each element? Give your answer by indicating where you would replace existing code and typing out the new lines of code as **part of your answer in this report**. +Investigate the shape functions for the element with index 10 in the mesh. Use the `get_shape_functions_T3` function defined in the notebook to find expressions for the shape functions in that element and check that they satisfy the shape function properties. -**Question 3: Time step size dependence** +- What are the coordinates of the nodes of element 10? -Try increasing the step size $\Delta t$ and observing what happens when you rerun the code. -- What is the reason this code does not suffer from instability for large time steps? +- What are the shape functions of the element? -Try decreasing the time step to very small numbers. If you make the time step small enough, some unphysical behavior can be observed in the solution, at least for initial time steps. -- What is the source of this behavior? +- Assert that the shape functions satisfy the partition of unity property: -**Question 4: $\mathbf{B}$-matrix** - -Shape functions in the triangular element each have the form $N_i=a_ix+b_iy+c_i$ with $i\in[1,3]$. For every $i$, the coefficients $a_i, b_i, c_i$ are computed in the code to form the B-matrix. - - Why does the $\mathbf{B}$-matrix inside the element not depend on $x$ and $y$? +$$ +\sum_i N_i(\mathbf{x}) = 1 +$$ + +- Assert for one of the shape functions that it satisfies the Kronecker delta property -- Give an expression for the $\mathbf{B}$-matrix in terms of these nine coefficients ($a_1, a_2, a_3, b_1, b_2, b_3, c_1, c_2, c_3$). +$$ +N_i(\mathbf{x}_j) = \begin{cases} + 1, & i = j \\ + 0, & i\neq j +\end{cases} +$$ **Last Question: How did things go? (Optional)** @@ -54,4 +67,4 @@ _Use this space to let us know if you ran into any challenges while working on t **End of file.** <span style="font-size: 75%"> -© Copyright 2024 <a rel="MUDE" href="http://mude.citg.tudelft.nl/">MUDE</a>, TU Delft. This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by/4.0/">CC BY 4.0 License</a>. \ No newline at end of file +© Copyright 2024 <a rel="MUDE" href="http://mude.citg.tudelft.nl/">MUDE</a>, TU Delft. This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by/4.0/">CC BY 4.0 License</a>. diff --git a/content/GA_2_2/the_big_M.ipynb b/content/GA_2_2/the_big_M.ipynb index 46a2e010..98459874 100644 --- a/content/GA_2_2/the_big_M.ipynb +++ b/content/GA_2_2/the_big_M.ipynb @@ -29,7 +29,7 @@ "source": [ "## Finite element formulation for the diffusion equation\n", "\n", - "In this assignment we will model the heat equation in 2D on a geometry that is non-trivial. Let us first recall the diffusion equation:\n", + "In this assignment we will model the heat equation in 2D on a geometry that is non-trivial. Let us first recall the diffusion equation with source term:\n", "\n", "$$\\frac{\\partial u}{\\partial t} = \\nu \\left(\\frac{\\partial^{2} u}{{\\partial x}^{2}} + \\frac{\\partial^{2} u}{{\\partial y}^{2}}\\right) + f$$\n", "\n", @@ -40,7 +40,7 @@ "\\nu \\nabla u\\cdot \\mathbf{n} = h \\quad \\text{on} \\quad \\Gamma_N\n", "$$\n", "\n", - "Here, the diffusion equation is interpreted as the heat equation, meaning that the unknown field $u(x,y,t)$ is the temperature. This equation can be turned into a discretized form with the standard finite element procedure. Finite elements are only used for the discretization in space, discretization in time will be discussed later. \n", + "Here, the diffusion equation is interpreted as the heat equation, meaning that the unknown field $u(x,y,t)$ is the temperature and the source term $f$ is a heat source. This equation can be turned into a discretized form with the standard finite element procedure. Finite elements are only used for the discretization in space, discretization in time will be discussed later. \n", "\n", "$$ \\left[\\int_{\\Omega} \\mathbf{N}^T \\mathbf{N} \\,d \\Omega\\right] \\dot{\\mathbf{u}} + \\left[\\int_{\\Omega} \\mathbf{B}^T \\nu \\mathbf{B} \\,d \\Omega\\right] \\mathbf{u} = \\int_{\\Omega} \\mathbf{N}^T f \\,d \\Omega + \\int_{\\Gamma_N} \\mathbf{N}^T h \\,d \\Gamma$$ \n", "\n", @@ -124,23 +124,12 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "id": "homeless-remove", "metadata": { "tags": [] }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d1Rc63nv/x2G3jsIEFWIIgkQCCQhiiR6F6id4yTXKTc3tpO7fON14/x8HSexk1wve53EWXbiONdOs3N8JDozwAy9i96LQIAoovc2DEx7f3+Q2WaYPQ2hcqz9WeusI3Z5956ZXZ73Kd+HRQghYGBgYGBgYPhg0XvXJ8DAwMDAwMDwbmGMAQYGBgYGhg8cxhhgYGBgYGD4wGGMAQYGBgYGhg8cxhhgYGBgYGD4wGGMAQYGBgYGhg8cxhhgYGBgYGD4wGGMAQYGBgYGhg8cxhhgYGBgYGD4wGGMAQYGBgYGhg8cxhhgYGBgYGD4wGGMAQYGBgYGhg8cxhhgYGBgYGD4wGGMAQYGBgYGhg8cxhhgYGBgYGD4wGGMAQYGBgYGhg8cxhhgYGBgYGD4wGGMAQYGBgYGhg8cxhhgYGBgYGD4wGGMAQYGBgYGhg8cxhhgYGBgYGD4wGGMAQYGBgYGhg8cxhhgYGBgYGD4wGGMAQYGBgYGhg8cxhhgYGBgYGD4wNF/1yfwIdDR0YFvfetb+NrXvnbqMf7sz/4Mv/d7vwcvL69Tj/G7v/u7+OEPfwhzc/NT7b+/v48vfelL+Pd//3fo6Z3Ojnzx4gUmJyfx93//96fan4HhQ+CP//iP4enpCX9//1OPMTMzgx/84Adnfq9NTU3hH//xH/HJJ5+c6bh0EELwd3/3d/jrv/5rREREvPHjfciwCCHkXZ/ErzsTExNYXl7GxsYGMjIyTjVGWVkZxGIx7t27d6r9x8bGIJVK8eLFi1OPweFwEBsbi2fPniElJeVUYxQWFiIyMhIjIyO4e/fuqcZgYPh1pra2FoGBgWhpaUFOTg5YLNapxsnPz0dERATm5+dx8+bNMzk3Qgjy8/Ph6emJc+fOwc3N7UzGVXWsoqIiuLq6ws7ODhcuXHhjx2JgwgRvDScnJ4SFhaGsrEznfefm5uDq6gpvb29MTk6e6vijo6MIDAyEm5sbZmZmdN5/aWkJdnZ2sLKygo2NDWZnZ3Ueo7m5Gbdu3YKzszPMzc0xMTGh8xgMDL/OjI+Pw9zcHM7OzoiPj0dVVdWpxmlsbER0dDTc3d2xsbEBgUBwJudXVVWFhIQEhIeHo6ur60zGpIMQgsLCQty+fRt2dnZv7DgMv4IxBt4iLi4uCA4OBp/P12m/vr4+BAcHIygoCIODgzofd3FxEc7OzgCAa9euobu7W+cxWltbcevWLQDAjRs30NbWBl2cSiKRCJubm3BycgIAREREYHBwEEKhUOdzYWD4dUQoFGJoaIhyh1tZWUFPTw+bm5s6jSMQCLC3t0fdaykpKTo/c+hYXl6GsbExrK2tAQCurq6Ym5t77XFPQghBQUEB7t69C1tb2zMfn4Eexhh4y7i5uSEgIACVlZVa78NisShXoa+vL8bHx3U6ZkdHh0K87dq1a+jo6NB6/9HRUfj5+SksS0hI0GnWUlFRgcTERIVlmZmZ4HA4Wo/BwPDrDIfDQWZmpsKyuLg41NbW6jROZWUlkpKSqL/19PRw+fJl9Pf3v9b5NTY2IiYmhvr7TXgH5GGI+Ph42NjYnOnYDOphjIF3gIeHBy5cuICamhqN2y4tLVEWPgBcunQJw8PDWh9rd3cXFhYWCnFHd3d3zM/PQyqVajXG8+fPERgYqLDMxsYGxsbGWFxc1Lj/6uoqrKysYGRkpLCczWYjNjZW54cdA8OvG7W1tYiNjQWbzVZYzmKxEBQUpPWL/MWLF/Dx8VEax8/PD1NTUxCJRKc6P3nY4SRn6R0ghCAvLw8JCQmU94Hh7cEYA+8Ib29veHh4oK6uTu123d3dCAsLU1jm5+eH0dFRrY7T0NCA2NhYpeWJiYlazezb29tx/fp12nUxMTFoamrSGC5Q9SABwOQPMHzwHM8ToMPX1xcvX77UaLwTQjA4OIigoCDa9ampqSgvL9f5/La3tyEUCmnP76y8A4QQ5ObmIikpiTEE3hGMMfAOuXDhAlxcXNDY2KhyG0KIUjZxQECAVsaAWCyGnp6e0iwBAMzMzGBgYICtrS2V+0ulUiwtLcHFxUXlNnfu3EFDQ4PK9cPDw7h06ZLajGgmf4DhQ+VknoAqkpKSUFFRoXab2tpatRU6hoaG8PT0xIsXL3Q6x8rKSqUQ33Fe1zsgNwRSUlJgZWV16nEYXg/GGHjH+Pn5wd7eHi0tLUrrVldX4eDgQLtfYGCgxnBBXV0d7ty5o3L93bt31XomampqEBcXp/YYDg4OkEqlWF9fV1pHCMHo6KhWtdJM/gDDhwhdngAdpqamsLS0xNLSEu36ra0tEEI0xtlDQkIwMDAAmUym1fl1dXUhLCxMrTH/Ot4BQgiePn2K1NRUWFpanmoMhrOBMQbeAwIDA2FlZYXW1laF5Z2dnQgPD6fd5+LFi2oTCQkhEAqFMDExUbkNi8WCj48P7Tj7+/uQyWRaCRTdvXuXNv+hoaEBt2/f1rg/wOQPMHx4qMoTUEVUVBTtpAHQznCXk5ycrFV1gVAoxOLiIry9vTVuexrvgEwmw9OnT5GWlgYLCwud9mU4exhj4D3h8uXLMDU1Vcjyl8lkapX+Ll++jIGBAdp1LS0tiIqK0njcoKAg2jGqq6uRkJCgxZkfGRW3bt1Cc3Mztezg4AACgUCnGmEmf4DhQ0FTnoAqwsPDlSqBBgcHcfnyZa3FiczNzWFjY4NXr16p3Y7H42ktLqard0BuCKSnpzOGwHsCYwy8RwQHB8PAwADd3d3Y3NzU6PK7cOECXr58SbtuY2ND6xfxrVu3FGYccoEhbWcswNHMYG9vD9vb2wDoSwm1gckfYPh1R9s8ATrc3d2xtLREVQVIpVKMj48rlf5q4ubNm2q1QoaHh+Hv7w99fe0V693c3DQaGMCvDIHMzMxTS6MznD2MMfCecfXqVRBC8KMf/Qg3btzQuH1wcDD6+voUlg0MDODKlStaH9PZ2Rnr6+sQi8UAFAWGdCEpKQmVlZVYWFiAg4MDDAwM1G5PCMHu7i5mZmbQ29uLmpoa8Pl8GBoanlrumIHhfScpKQmGhoaoqanByMgIFe/XluNu/pOaArqgKmdIIpFgbGxMqZxYE9oImslkMjx58gRZWVkwMzPTaXyGNwvTqOg9YmlpCT09PQCA0tJShIaGQk9PD5GRkSrLbby8vFBcXIyQkBBq2fT0tFZJSceRZytfuHBB51mGWCzG5uYmNjc3IZVK4erqCj6fj4qKCoWHnNyNKV/GYrFgYWEBW1tbuLq64tKlSzA0NMTGxga+9KUvacyOZmD4vFFTU4NvfetbcHd3h5eXF5aWljA6Okp51OiMAhMTE7i4uMDFxQVmZmYwNDSEs7Mzuru7YWZmduqXqtxzuLa2Bnt7e2p5eXk5UlNTTzWm3Dtw/vx5pXVSqRRPnz7FvXv3YGpqeqrxGd4cTKOit4A8Bk7XaGN0dBSTk5NgsVhwcnLC1atXoaenh4qKCiQlJUEikaC1tRXb29vQ19dHVFSUkmttZmYG6+vrCA0NxfT0NLa3txEcHKzzeVZWVuLJkyf4yle+gq2tLdq65uMvcjn6+vqwsbGBjY0NFhYWMDQ0hPj4ePj4+Oh8DgBQUlKCzMxMdHR0MA1KGH5tGB8fx+bmJiIiIlBQUIDs7Gytun/u7+9jcXERCwsLCj0GUlJSwOPxwGKxYGNjgwsXLugs3ytX/Hv48CEA4OXLl9jY2MC1a9d0+3DHKC4uVmqGJjcEsrOz1SY106Hu+clwdjCegbeMVCpFV1cXVYrn5+eHtLQ0ldvr6+tTgj0ikQjPnj3D3t4ejIyMEBUVBRMTE3h4eKC3txehoaEYGBhQ6xUghGBtbQ1jY2PY29tTWDc9PY2RkRF4eHggJCREp3ihnL6+PvzBH/wBysvLYWFhAUdHR53239nZoRQTr1+/jsLCQri6uur8AGFgeJ8QCoUYHBxETk4OgF954rQJh5mamsLHx0fBuK6srMTQ0BA2NzcRFRWFjY0NTE5OorOzU8m7YGlpiQsXLsDBwUEpyZDFYuHmzZtobW3FjRs30NPTgwcPHrzWZz3pHZBIJHj69Cnu378PY2Pj1xqb4c3BGANvge3tbTQ1NeHixYvQ09PDtWvXVKr6qcPQ0JAq1RMKhWhpacHBwQHMzMwQFBSEiooKKulQLBbj5cuXmJmZUaopdnBwQHBwsFIWb2lpKcrKytDT06N1JcFx2tvbqaSo1NRU5OXlITU1VSc3Zn19PdLT06m/s7KykJeXh48++kjn82FgeF8oKSmhZt/AUUa/lZUV5ufn4erqqtNYz58/h729PS5duoTS0lIcHBzA1tZWpVdge3sbk5OT6O3tVVpnamqKCxcuYHNzE0VFRadK+j3JtWvXUFxcjPPnzzOGwOcIxhh4S6yuruLevXvw9PQ8k/FMTEwQHx8PANjb20NDQwPS09NRVlYGPp8PAwMDeHt7Iy4uTqeqADs7O1haWmJqagpeXl5a70cIwcLCgoKRc//+fXz22Wd4/PixVl4GgUAAExMTBdfpcf0BJn+A4fNITU0Nbt++rXQfRkZGIi8vT8FI0MTu7i7Gx8cp719ycjLKysqQlZWlch8rKyuEhobSrtvb28PLly8xMDCAb3zjG+DxeNQ6ulJFPT09WFtbK/xHlyjs5uaGqakpPHv2DA8ePFDqS8Lw/sHkDLwF5DGvlZUVSCQShc5fqpDnDGjDixcvMDQ0BKFQCCsrK4WZtbYMDw/DxMSEEhjJz8/HvXv3tA4V1NfXIzg4WKkc8uDgAEVFRfjoo4801kFzuVykpKTQHrO9vZ3JH2D43HE8T4COlZUVPH/+nLZ/yEkIIXjy5AkeP36sYDB3d3fDzs7u1BON9vZ2GBgYYHl5WWPYQiKRYGdnB5ubm9ja2sLW1hZVhQQoJgmnpKRgb2/vtasGmJyBtwNTWvgWiYyMhI+PD3Jzc3FwcPDa48lkMpSWlkIgECAnJwd2dnZwdXXVuonRcaamphSUxjIyMlBaWqrVvhKJBLu7u7S6CMbGxkhOTtYoNSwUCmFgYKDS+Lh+/ToGBgYY/QGGzw3yPAF1egKOjo4QiURqe4TIkfcIOJl0GBYWprGkTxUNDQ2wsLBAaGgoWCyWRplifX192NrawsfHB2FhYYiLi0NycjL1X1JSEpX4vLq6Ci6Xi7W1tVOdG8PbhTEG3jKurq7IyckBj8d7LaW96elpFBQU4M6dO7h69SqAI2v86tWrGBkZ0alVKV0zJCMjIwQEBNDGGU9SVVVFhSzosLGxwdWrV9W2bK6trdUop5qVlYWSkhKN58PA8D5QUlKi1n0vJz4+HtXV1Wq3GRkZgaOjo0ohsZMKoNpQWVkJNzc3Sk/g8uXLGBoa0mkMOnp6euDj4wN7e3s8fvwYnZ2dp5qgMLxdGGPgHaCvr4/s7GxsbGzorMVPCEFFRQWWlpbw8OFDygW3s7NDNfrIyMgAl8vVesz+/n7atqd+fn5YXFzEzs6Oyn339/fBYrE0Zvu7u7vj3LlzSlKqAHB4eAgWi6VRpIjpX8DweUFVngAdLBYLoaGhKmf3u7u7mJycpIx+OpydnbG1taW154zL5SIwMFChQsHNzQ3z8/Na7a+K5eVlbGxsICAgAMDRZ0tJScHOzo7OxgrD24UxBt4hERERuHTpEp48eaJQP6yKxcVF5OXl4fr160rqhJOTk9SNbWBggCtXrmjtOpybm6MVCQF+VcusiurqarVegeMEBgaCEILnz58rLNelycq5c+dgZmbG9C9geG8ZHx+HhYWFTn0HvL29MT8/j8PDQ4XlhBCUlpaqLT+Wk5ycjMrKSrXbyHUFbty4ATc3N63PTxskEgnq6uponwcRERFwdXVFSUmJTmqLDG8Pxhh4xzg5OeHRo0eorq5W60qrq6vD+Pg4Hj16RKtGuLy8DCcnJ+rvixcvYmlpSe2sHqAPERyHxWIhNjYW9fX1Sus2NzdhYWGhkx7B9evXsbCwQHU4E4vFkMlkOmUbM/kDDO8r2uQJqCIlJQXl5eUKy+Ryw9qIE+nr6+P8+fOYnp6mXS+VSvHkyRMkJiaqbI0O0KsgakNJSYmS2NBxvLy8cOfOHXz22WfY398/1TEY3hyMMfAeoKenh6ysLAiFQiUJ3/X1dTx9+hSXLl1SW4VA91JPSUnR2Kq0u7sbYWFhardxdnaGvr6+UovS+vp6rVsUHycuLg6dnZ3Y2trSmCsglUqxtLSE7u5uVFRUgM/nU6WT2noTGBjeFnFxcTA0NASfzwePx0NnZyfW1ta0esHKy4FfvHgB4KjCx8nJSSdVwdDQUErS/DgikQifffYZ7t27R4UT6bhw4cKpvG4tLS0ICwvTqCVgaWmJx48fg8fj6dzymOHNwpQWvgV0KY1ZX19HVVUV2Gw2XFxcsL+/j/j4eI1learajc7Pz2NyclKlIVFWVqaVCxIAcnNzcf/+fbDZbMzNzWFhYeFUMyDgyHj5+7//e8zOziItLQ0SiYR2Oz09PTg6OsLV1RV2dnbUDKmmpoaKcTL6AwzvA7W1tZT6XlxcHAgh2NjYwNTUFG1GvVyC3MvLC1ZWVtTygoICxMfHo7GxERkZGTqfx/LyMsbHx6kW5vv7+ygqKsKjR4+0ah7G5/N1ahQ2PT2Nubk5rVqmH6e2tha2trYKfVXoYEoL3w6M6NB7hp2dHW7fvo1z586huLhYq2xkgF4gBDiqXnjx4gWWlpaUYpgymUzrHugAkJ6ejvLycmRkZKCzsxPZ2dlqt9/e3sbMzAwWFxeVZkaEEExPT0MmkyE2NlbjQ+o4YrEYAoEAfn5+2N7exsTEBPOgYHinjI+Pw9zcHBcvXsTY2BhEIhEMDQ1hZ2ensgJAJpNhZWUFIyMjVKMieXmftbU1ysvLUV1dDTs7Ozg4OMDe3l4rFT8nJyd0d3dDKBTi8PAQfD4fH3/8sVahBl2eB8CRjkhXV9epJIzv3r2LgYEBnXKGGN4cjGfgLaCtZSsSiVBRUQFbW1vs7e3B29sb/f39SE1N1djlS5VnQI5crOT4zd7W1oYLFy4odCzTxNDQEF68eAE/Pz+4urpienoay8vL1Prjl5OVlRU8PT3h5OSk9CDa399HY2MjAgICsLCwgJs3b2p9Dnw+H7GxsVQFQ1FREZKTk5n+BQzvBKFQCD6fTxnHBwcHqK2tPVXnP0IInj59Cn19fWoisLGxgbW1NayuruLg4AAsFkuhYdjJR7iZmRlsbGxQUFCAK1euIDs7W6eXvKZnyXGePHmCBw8enKqPiZzFxUW0tLQgOzubtvqC8Qy8HRjPwHsAIQQtLS3Y2tqiep3z+Xz4+vrC29sb5eXlcHFxURnbPzw81JiAJ++BfvwmX19fV6pKUIVYLKbi/Pfv38fPf/5z7O7uwtPTE0FBQVrNOo5TXV2N1NRU6Ovr4+XLl0oJkKqQJw0ef/FnZmYiPz8fjx8/1ukcGBjOAg6HozAzNjY2hr6+Pvb29pQ6jGpCbtgaGxujrq4OiYmJcHJy0urekCMQCLC6uorGxkZcvnwZW1tbtIJgqnBxccHc3JzGaoPq6mrcuXPntQwB4KhCKC0tDU+fPkVaWppCyITh7cEkEL5jxsfHUVxcjIsXLyI9PR2GhoYK69lsNjIyMmBtbY28vDzaEkRt+ghYW1vDzs4Ok5OTAI7KgDTVQM/NzYHH44HH46G+vh4BAQGIj49HZWUlTE1NERAQAGdnZ50NgZWVFdja2lIPkTt37qC+vl6rJCu6UkZGf4DhXVFbW4vY2FileykuLk6tyBYdXC4X0dHRsLa2hrGxMQ4PDzUqAtJhZmaGubk5/PKXv0ROTg56e3tRXV2tdZWANuJDz58/h62trU5GijpMTEzw8ccfo6GhgXpGMbxdGGPgHbG1tYXCwkIcHBwgOztbqdUvm82GVCql/vbx8UFOTg7q6urQ2dmpsO3s7KxKnYDjREREoLe3FxKJBG1tbUpegcPDQzQ1NaG8vBzl5eXY2NhAcnIyUlJSkJCQABsbG7S2tuLmzZvIyclBeXn5qcr7WlpacOvWLYVlqampSmVVJ9ne3oapqSntTMTZ2Rnm5uaM/gDDW0OeJ0CnJ8Bms2FjY6O1FC+fz0doaKhCyV9MTAwaGxt1Pi+xWIyNjQ04OTmBxWLh7t27CA8PR1FREcbGxjTuz2az1RoO8jwdVc2PTguLxUJmZiaWl5fR3t5+pmMzaIYxBt4yUqkUfD4f3d3dyM7OxpUrV2i3MzU1VXrRstlspKenw9bWFnl5edjb26PG1NZVl56ejtLSUmxvb8Pa2hpTU1PUy7+pqQnBwcFITU1FamoqgoKClGKNctcni8XCo0ePUFRUpLISgI6JiQn4+PgojWthYQE3NzclQaLj1NfX486dOyrXR0REYHBwkNEfYHjjCIVCDA0Nqa2miY6ORlNTk8axamtr4e/vr9TK2MrKCtvb2zrX/dM1ObOyskJOTg5EIhEKCwu1EjmjgxCC8vLyUzVD05bIyEjY2NigrKyMESh6izA5A2+Rrq4uzM3NISEhQWMnL1NTU+zv79PGHH18fODl5QU+nw8HBweVyUESiQRbW1vY2NjA5uYmtre3IZPJ8Pz5c/zFX/wFiouL4eXlhZSUFK0SjCQSiYLRwWazcf/+feTl5Sl1UlPF4OCgyiqE4OBgcDgceHh4KCVMrqyswN7eXuMxmPwBhrfByTwBOlgsFtzd3TE7Owt3d3fabZqbm+Hm5qay4+CNGzfQ3t6udW7P2toaLCwsVOYQXblyBYGBgaisrIS5uTmio6Npt7O1tcX6+rpSJURZWRlSU1N1rjrQlYsXL8Le3h5PnjxBUFAQ0wL5LcBUE7wFamtr8eTJE3zzm9+Eh4eHVvuMjY3ByMhIY1vS4eFhREZGIjc3FwAUsozZbDasra1ha2sLGxsbWFpags1mo7KyEmw2G+7u7vD19dX6czQ1NSEoKEgpwWdvbw88Hg8PHjxQ+5Do6emBra2t2s8klUpRUFCAR48eKSwvKirCvXv3tHoILS0tYWRkhNEfYHgj1NbWIjAwUGu54eLiYlplvvb2dpiZmeHy5ctq99e24REAFBYWal09sLy8jObmZoSHhysZKyKRCI2NjQr5OT09PTAxMaH6DrxpRCIRJicnce/ePfzt3/7tG/VGMDCegbeCu7s7bt26hbGxMbi7u2t1o5qammJ3d1ftNqurqxgaGkJubi5iY2O1qkEmhODg4ACZmZmoqqqCiYmJ1hrlOzs7tJm+5ubmuHv3LrhcLjIzM1Ued3p6WmOckc1mIzIyEk1NTdSsZWZmRuvvDTjKH5idnWX0BxjOHHV5Aqrw9/fH8+fPFV6ivb29MDQ01GgIAEBQUBAGBgZom4kdZ3R0FH5+flrfJ05OTrh//z46OjrQ29uLlJQUKoHZ0NAQYrGY2nZ5eRnr6+tISEjQamxtIIRgdXUVL1++VGjhLD9/Q0NDODo64gtf+AL8/PzO7LgM9DDGwFvi1q1bcHBwQEFBAcLDwzV6CExNTRXq908yPT2NwcFBPH78GIeHh2hoaEBiYqLG8+ju7sa1a9cAAAkJCeByuTA2NtaoNSCVStW66O3s7BAWFkYbrwR0ky52c3PDy5cvMT8/D1dXV/T09GgUOAKOZhIzMzOYmZmBRCLB//gf/wOtra2M/gDDmSAUCvHo0SN897vfRUNDA3x9fXHu3DmNL19/f38UFxdTxsDw8DBEIhGuX7+u1XG9vLzA4XDUGgOEEAwPD+P+/fvaf6D/IiIiAiKRCHw+H+fOnUN4eLjCeolEgtraWnz88cc6jy0UCjE9PY1Xr14pVUawWCw4OjrC39+ftt+KvJfCRx999MbDEgxMmOCtcFI0o729Hevr60hOTlb5ghUKhejs7KSVER4aGsLq6qpCMh2Xy9VKupTD4SjM3uVdzFJSUtTWRLe2tsLPz0+jTvrk5CTm5uYQGxtLLROLxeDz+TpLqz59+hRBQUEghFA91+XtXJeWlpS2NzAwgIeHBzw8PCAUCtHa2ort7W2lkAMDw2nIzc2FiYkJEhMTIZVKMTExgYWFBYVtCCGwt7eHr6+vwgtudnYWKysrsLS0xMrKis7SvSMjIzAwMFAZ1mtqaoKfn59SVZKuTE9Po7OzE7GxsRgdHUVoaCgqKiqQlpZG63mUyWRYXFzEy5cvaZMSTUxM4OnpCTc3N63aOR8nNzcXGRkZVFtlxsv3ZmE8A++A69evY29vD4WFhbh69apCT3E5xsbGtFnx7e3t0NPTU8qq9/X1xYsXL3Dx4kWVx6UTEmGxWHjw4AGePHmCnJwclYk6GxsbWjVM8fHxwcHBAdrb26mZT2VlpU7uxc3NTYyPj8PAwACBgYHg8XiYnZ0FcBSS8PHxQXBwsNrZQmlpKbKysrCysoK6ujq1VQgMDJqoq6tDTEwMbGxsUFNTQ1Xb0M3W19fX8fz5c6VKgN/4jd/AT3/601PN3gMDA8HhcGiNAbFYjM3Nzdc2BADA09MTHh4eaGxsxOrqKn7wgx/g3r17ePHiBRYWFhRykuT/d3FxwdWrV3UWWFJHWVkZ7ty5w3j13iKMMfCOMDc3x4MHD9Dd3Q0Oh4O0tDQFy5nuRVdTUwMXFxfaBB5/f39wuVy1xkBPTw9tTJ/FYuHhw4fIzc3F48ePlSx4XXsYXLp0CT09Pejv74eXlxeMjIyUZhUCgQATExNYXFxU2t/a2hq+vr5wcHDAkydP4OLiojFeehy57oKenh6VPzA5OUlrdDEwaGJiYkIpT0Cd6qednZ2SvPbs7Cy+8Y1vQCgUorS0FHp6erh+/brKvgV0uLi4UKGz46gKzZ2Gvb099PT0QCAQYG9vD3/+53+OO3fuwNvbG5cvX9ZZYOw0NDY2IjAwUG2bZYazhzEG3jFhYWEIDAxESUkJAgMD4e/vr7QNIQRcLhchISEqS5SAo4QbeYOUkwiFQrUJhvr6+sjOzkZ+fj4ePXqk8PLv6uqi8gy0JTQ0FM3NzXjw4AG+9rWvKbVSNjMzw4ULF2i1DOQ8e/YMjx8/RmlpKby8vGBhYaHVseUaDnIiIiJQXFwMFxcXZqbBoBNyPYHj1QDx8fGUnLY2zM/PY3h4GP/7f/9v8Hg8pKamQiqVoqOjAxsbG2CxWIiIiNCYt3Pt2jVwOBwFY0BTKaE6CCGYmprC2NgYNeM3NzdHaGgozM3NUVpairKyMoSHh7+10r7e3l5YW1trVFRlOHsYY+A9wMTEBDk5Oejv70dRURHS09OpLn5SqRR5eXlITEzU6KaXi5zQdQCrr6/X2BnMxMQESUlJKC4uVniZrq6uatWqWCaTYXBwEPPz82CxWJT70t/fX2OJ5En29vYoLYa0tDTKa6GJ/v5+Wi9CRkYGbckiA4M6uFyukltfbmxr0xNkcXERfX19Sm3C2Ww25T2QyWTo6OhAW1sbWCwWwsPDVbr8bWxsFEJ2jY2NWiXXAkcNlHp7exUy9728vJCUlKQ045dXEty5cwdNTU1KEuBvgomJCezv7yupkzK8HRhj4D0iODgY/v7+KC0tha+vL4RCIRXL12ZGS6daCBzNAMRiMa3H4CTW1ta4efMm1blMXX6pVCpFf38/lpeXQQiBnp4erly5guDgYABHBkhtbS3q6upgbm6uU3fEhoYGyvXJYrFw584d1NbWqtUOIIRgcnISOTk5SuvYbDZiYmI0jsHAIKe2thYxMTG0iW/x8fGoqqpSeskfZ3l5GV1dXQqJs/JcoOP3s56eHiUqJJPJ0NXVRUmOh4WFKYQnoqKiqBJeTaWECwsLGBoaomTNjYyMcPXqVa2aFtXV1eHu3bswMTHBwcGBxu1fl+XlZUxMTCA5OfmNH4uBHsYYeM8wMjJCdnY2uFwusrOz0dfXp5Nr28PDQ6lxEV0fAnU4OzvD398f9fX1sLS0xNWrVwEclRj19/djZWUFwNFDLCgoSKV2wN7eHiwsLJCRkYG8vDykpaVpVF4Ejh6IMplMQe3Q0dERpqammJ6eVull0FS+yOgPMGiLJj0BQ0NDsFgsld6BtbU1tLa2KokNyRUFVV2nenp6lBdOJpOhu7sbXV1dAI4Mg3PnzsHU1BQCgUChlFAikWBgYEChHPncuXO4e/euzl0FCSEQCoWUCqiHh4fa++51EQgEaGpq0qjoyPBmYYyB94z9/X1UVlbC09MTPB4PVlZWKC0tBQCEh4dr7BJ25coVcLlcBWNgdXVVKaFJE15eXhAIBEhNTcVPfvIT9PX1gc1mIyQkRGUr5eMcf0jKKxY+++wzPHr0iAqBqKK5uZm29OrGjRvIz8+Hq6ur0hgikQh7e3saQykREREoKiqCq6srkz/AQIs8T0CT+12Vd2BjYwMNDQ20VQNymXFt0NPTo2r+CSHo6elBd3c3JBIJUlNT8aUvfQk8Hg/AUc6POsNcF07ef1euXEFpaekbMQYkEglKSkrw0UcfnfnYDLrBGAPvEU1NTdjb20NGRgbYbDYqKirg6ekJT09PEELQ2dmJrq4uGBkZISoqSmVCIJvNpvoIaNPeWA4hBKOjo5ienqbGSUhIgJWVlc5xvJaWFkRGRlJ/6+npURULH3/8sdqsZHX91zMyMsDlcpVCAZWVlVpnVDP9CxjUoU3fAeDIO6Cnp6dg+G5tbaGmpkbt/oQQEEJ0qtBhsVgIDg7G7u4udnd30djYiJ/85CdvRBp4Y2NDqcpBT08PUqlUZ60Adcg1Tu7fv/9WqhQY1MMYA+8BU1NT6OnpQXR0tMrEIXnGMXA0c2lqasLh4SGcnZ0RFham8GCRJxLeuXMHg4ODKiWCgaNM54GBAerh5Ofnh5SUFABHbn4jIyPY29vrHGvf399XCgkYGhoiKysL+fn5ePjwIe3DUJNWgpGREYKCgtDZ2UnNmjY2NmBubq5VTgRwZOTExsYiPz+fcU0yKCCX9tb2pRcXF0dVFuzu7qKiokKpGuckFy9exPj4uNrr/DgTExN4/vw59PX1ERUVhfn5eYyPj2NkZAQuLi60EuGnpaenhwoLHicqKgotLS20IminhcPhICkpiWlC9J7AGAPvkIODA1RUVMDNzU0nIRITExNKxGdpaYlq9RkcHAx3d3dYWFhgb29PISNfzubmJrq6uqi2wy4uLrTZxMDRgyEsLAzm5uYwMjKikgo1oa6MUVMfg7GxMY1KhRcuXEBlZSXVVa2hoYG2EYyc/f19jIyMYG1tTUE05cc//jFCQkKY/AEGAEd5Aj/5yU9gaWlJu15PTw9OTk44f/48bGxswGKxKAN0Y2MDlZWVePz4scYZv6+vL8rLy9UaA/v7+2hsbIRYLMaFCxcU7onx8XFkZGTAx8cHn332Ga02yGl59eoVbajB0tISOzs7Z3IM4Cg5U9tkRoa3A2MMvCOePXuGzc1NpKWlqUzw0UYp2tnZGenp6SCEYGBgAAMDA9DX14e1tTV++ctf4gtf+AIaGxuxt7cH4KhaIDY2VqtZtEAgoFTFPD09YWRkhOLiYmRlZal94LW0tKgNK9jb2yMkJATV1dUKJUtbW1taz3ISEhKQm5uLsLAweHt7U6WM4+PjlFqhHBMTEwQGBipoJUxNTeGHP/whBgcHmfwBBipP4N///d+xtrZG+0KUSqVYWVnB5OQkNjY2qOUCgQB2dnbg8XiYnJyEt7f3qdzehBD09vZiYWEBJiYmuHv3rtJ9KhaLqXwZFouF7OxsFBUVnYmH68WLF2q7mDo6OmJ5eVlj3pImOjs74eTkpFYzheHtwxgDb5nZ2Vl0dXXh5s2bCjH110UeUwwODoZYLMbPfvYzfOUrX4Gnpydu3ryptWDPcU4aI+fOnUNMTAzy8vLw4MEDlQ+8g4MDjS9Xd3d3CIVCPHv2jPoempubtRJyIYRgbm4ObDYbvr6+4PF4WFxchL6+Pnx9fZGUlKRxdjY8PIz09HQEBAQw+QMMVJ4Am81GX18frTHAZrNx7tw5nDt3jlomFouRl5eH4uJixMfHY2pqClVVVQpNeSwtLXHlyhUFj4O8IsDMzIyqPACAq1evqk0CPN7NEzgydG/evHkmJbOjo6NqQ4rh4eEoKyt7rVbCo6OjkMlkuHTp0qnHYHgzMMbAW0IkEoHD4cDZ2Zm2Dp6O03Tqkkql4PP5uHnzJkpKSrC2tkbVGeuCKgliW1tbpKam4smTJ3j06JGSV0MgEFAlSZrw8/NDb28vent7KSXCkwbG/v4+hoeHsba2BuBX34mbmxuuX7+OoqIiHBwcaPRWHEcikVBuVXn+AKM/8OFSW1urkCegbSmdXBDs4cOH2N/fR3NzM27fvq00u97e3sbQ0BC2t7epZYeHh/jiF7+IL37xi7Czs0NaWppW3gS5AXEcV1dXrK2tadXmWBWLi4sa2zLL7y9dkx/lzM/PY25u7q0IGDGcAsLwxqmpqSEZGRnk8PBQp/34fL5O209PT5Pc3Fyyt7dH7S+TyQiHwyGTk5M6jTU8PEymp6dVrj84OCD/+Z//SQ4ODhSWV1ZWKi3TRHNzM/nxj39MBgcHSUVFBeHxeKS8vJyUl5eT+vp6srq6Srsfh8MhMpmMbG5uks8++4yIxWKtjldXV0d2dnYUlrW3t5Px8XGdzpvh88+LFy9Ie3u70vKSkhK1+8lkMvLkyROyv7+v9T7Hqa+vJ3/+539ONjY2tN5nbm6OdHV1qVxfVVVFFhYWtB7vOCUlJUQmk2ncbnl5mbS1tek8/vb2NiksLDzNqZHx8XHm3nwLMPUcbwF3d3d87WtfA4fDUYpnnwWEEFRWVmJhYQEPHz6kZg7kvyz4jIwMLCwsUOIl2jAzM6M2pmdkZITHjx8jPz+fykcAtJNoJYRgZmYGFRUV4PF42NnZwVe+8hXMzMzg7t27SE5ORkpKClJSUhAbG0urXEiOJQJaW1sjOzsbubm5WtVwy8WQjhMREYHBwUFaBUeGX0/keQJ0UtvW1tbY3NxUuW9hYSFSUlIUwmGXL1/G4OCgxuOOjY3BzMwMf/mXfwk+n09J/2qip6dHbQghPj4ezc3NOisGbm9vw9LSUqvZvqOjI1ZXV3UaXyQSoaysTG2SL8O7hzEG3hJubm548OABlpaWUFJScmYSnysrK8jNzcW1a9cUhIXIiXh/VFQUTE1NUVlZqfXYmh4O+vr6+Pjjj1FWVoaNjQ3s7u7StjFdXFxEVVUVeDweeDwe+Hw+BAIB4uPjkZKSgrCwMLS3t8PQ0BBzc3NanVt/fz9CQkKov42MjPDRRx+hrKyMCinQsbCwoBDzPU5mZiY4HI5Wx2f4/MPhcFTGyKOiotDc3Ey7jsvlIjY2VqnqwNvbG1NTU2qPubW1hYmJCVy7dg0sFgs5OTkoLCzUeK5yw17TPSlPKDx5/6ujsbFRp5JBKysrhf4G6iD/pSXw4MGDU4UWGN4eTM7AWyYiIgJisRgVFRWwtramVdo7DlETn2tqaoJYLKZNfjsuJyonMDAQtra2yMvLQ05OzpmUI+np6eHRo0coKSnB9vY2kpKSUFdXh4ODA+qBdO7cOdy+fVul8mBXVxdSUlLAYrFQWVkJFosFDw8Ptcd99eqVgjEgP5eHDx+irKwMly5doo35dnd3q0yAYvIHPhxO5gmcRE9PD/r6+kpdQCsqKhAaGqqyz4azszOWlpZo4+8ymQx8Pl/hfjUyMsKdO3fA5/PV6vK3tbXh+vXrGj+Xvr4+kpOTtU70Ozg4gIGBgU7VD5GRkeDz+Wr7Msg52XiN4f2F8Qy8AwwMDJCeno4LFy6goKBA5WzCyMgIIpFIafnOzg5yc3Ph7e2t8qVFl2gE/KoU8enTpyrrhtfW1nTqs/7q1Svo6+vjt3/7t9HS0oIbN24gJSUFqampSE1NxdWrV9U+DI4bPImJiXj+/DlevXqlcntVbZrlpKWlYWpqCsPDwwrL5UmR6mYozs7OMDc3x8TEhMptGD7faOo7IEfeHEtOfX09Ll68qNBC+CTh4eFUk6GTlJSUIDMzU+n6c3R0hIeHh9ow3traGhwcHNSerxwbGxv4+fmhra1N47byhkS6wGazFaolVFFZWYkbN26o1G1geL9gjIF3iLOzM+7fv4+NjQ0UFRUpxbvNzc0V4vHA0cy2paUFDx8+VPtQUmUMAEflSB9//DFqa2tpcxj6+vqUZt0nkfdQKC0txdbWFtLT08Hj8WBiYqLWTX8SutyE5ORkDA0NYX5+nnafpqYmjR6VO3fuYH9/H+3t7dSytrY2rco5IyIiUF5ejpmZGS0+AcPnienpaRQUFFCdNdVhbGwMkUgEQgiePXsGZ2dnjdLeLBaL6kx4nObmZoSGhqqstAkICMDBwQHtxGB7e1tnlUFfX18QQtQatVKpFFKpVGvlzuMEBwejr69P5frW1lZ4eHjAxcVF57EZ3g1MmOA9ICwsDCEhIaioqICpqSliY2PBYrFgZmaGvb092NnZ4fDwEKWlpQgODtaqUZBAIFBrkbNYLNy7dw8NDQ3Y2NhQePmrandMCEFXVxeWl5dhamqK27dvU9uJRCIYGBggLi4OPB4PhBCtREWGhoZotQVSUlJQXl4OFoul9EChkzqmIzw8HCMjI6ipqUFcXBzW19eVGhnt7u5ieHgYm5ubCjM2kUiE4uJifPWrX9V4HIbPDzweD/r6+nj27BkODw9VbsdisWBvbw9PT09873vfQ2pqKvz9/bU6hjzUJHf7j4+Pw8DAQGPoKyoqCiUlJbC1tVV4+be0tGjdd+M4N2/eBJfLhb29PaytrZXWNzQ0IDY2VudxgaOk6JN5O3KGhoZgaGgIPz+/U43N8G5gjIH3BDabjdTUVKyurqKwsBBBQUEwNzfHzs4ORkZGMD4+jqysLK3bkQoEApWJcseJjY3F4OCg2jj5/Pw8ent7wWKxcO3aNaonwHFGR0eph2VKSgr4fD4IIRofgIDqRMXU1FSUlpaCxWJRn2V1dVVrdylwlCdhbm6Ov/mbv4G1tTVlYMixsLCgcimOI5PJEBoairq6Oty5c0fr4zG8v9TV1SE7OxsdHR0af1OZTIb19XU8f/4c3/jGNxAcHIyFhQUAR/kEPj4+8PLyoo21GxoaQiwWgxCCnZ0djI6OapTYlpOZmakkMSyTyU6d35Oenk5pghwfgxBCW1WjCyYmJtjf31fwdszMzGBtbU1tK3GG9xMW0SXtlOFUyF11umjg9/f3o7m5GXV1dfiLv/gLXLlyRadj1tXVITIyUusmIPPz82hvb0daWhrlhpc3Q3J1dUVISIjaWDufz1dS/quoqIC/v79Kg2BkZATGxsbw9vZWe25cLhcRERFwcnJCaWkp0tLSVJ6LTCbD1NQUJiYmFOKa2dnZ+P3f/338n//zf7QyksrLy5GamoqOjg7Y2dnBx8dH4z4M7y8TExPY3NxEeHg4Zmdnsb6+TtuQ5ySFhYUICwvDxsYGtb1UKsXk5CSmpqaoDoTAr2SvHR0dsbGxgeHhYbx69Qoff/yxTpn0BwcH4HK5ePjwIYaHh2FiYqLxHlGHUChEWVmZgmRxW1sbvLy8XktaWCQSKXhANjY20NzcrFbF8DSc5vnJoDuMZ+A9RSKRwMLCAiYmJlhYWMClS5d0yvg9PDzUKRbo6uqKpKQkODk54Tvf+Q4AICYmRmtjgq7qISkpCZWVlSCE0Gb2T01NaZWRnJGRAQ6Hgxs3bigcZ21tDcPDwxAKhQq6A15eXoiPj6dmQh0dHZR3ZXx8HMPDw4iLi1NrUMjXRUREoLi4GC4uLkz/gs8pcj0BeZ27u7s7+vr6NBoDz58/p4zZ/v5+ans2m42LFy8qNRoSCoUYGRlBT08PCCFITU1FQUEBKioqABxdm+bm5rC2toa1tTVsbGxgYmKidB0aGxsjKioKVVVVODw8fC35X+DISImMjKTCZcBRSfKNGzdea1xDQ0Oq4dnBwQGqqqrw6NGj1xqT4d3BGAPvGUtLS2hpaUFoaCg+/vhjuLm5ITw8HCUlJTh//rxCsx1N6DIbGR8fx9DQEL797W/D29sbbm5uZ9JaNDExEVVVVSCEKCRf6eqQioyMhKenJ7785S9TlQl2dna4du2a2vyBnZ0dbGxsICIiAi9evEBMTAzW19eRl5eHmJgY2ozysbExhfhwRkYGCgoKmAfd5xQul6vUFdTJyUlt0x1CCJ4/f05Jh/v5+SmEwugwMTFBWFgYVVtfVFSEO3fuUPF/QggEAgE2NzexsbGBly9fYn9/X8GQPX785uZm/OhHP0Jubi6Ao/CE3IiQGxTahg1dXFywurqKgYEBsFgsXL58Wav9NHHx4kWMjo6ip6dHY+tmhvcbxhh4T5BrD9jY2FAPLplMRnkIsrOzMT09TbktNcXitb0pp6en0dvbC19fX2RnZ6OiogJJSUno6elR6ip42uMlJCSguroahBDK3dnd3a02EVIkEqGjowM7OztgsViws7PDZ599Bmtra+jp6antingcPp+Phw8fKiyzs7PDo0eP0NjYiOHhYdy9e1fh/KenpxVqvtlsNmJiYpj8gc8hdXV1iImJUYq5R0REqGyjDRwl1x2Pe/v5+YHD4WhMIpTJZMjNzUVycjLMzMxQV1eHxMREAL/yDJibm+P8+fNqx5FKpdjY2MB//Md/UMmDEokE29vb2NzcxNTUFLa2tiCVSpXuvZOGtryc1tLSEj09PRgaGsLXv/51TExMQCKRQCKRQCwW0/5bG6M9LS1NoQST4fMJYwy8B3R2dmJhYQFJSUkwNjamluvp6SncjJ6envD09ERXVxd6enqQkJBAq/inDQsLC+jo6IC7uzuys7OV1oeGhmJ1dRVPnz5FRkaG2uZD6+vrGvuSx8fHo6amBoQQ+Pj4YHl5WcHLQQjB6OgopqenARxpMYSHhytkVZeXlyM6Ohqzs7PIy8tDZmamWu/Fs2fPcPPmTephaWBgoKBREBMTg7W1NeTl5SE2NlZhlnjyAevs7IzZ2VlMTk4y+QOfEyYmJlTqCbBYLKXrQc7+/j6EQqFSUqmmBkZSqRS5ubnIyMig7kttpYZPUlRUhOzsbCwtLaG/vx/BwcHQ19eHnZ2dThogcmQyGZXM2Nvbi/39fRgZGcHExAT6+vrQ19eHgYGBwr/ZbLZWoUkulwt/f3/U1dVRYQMTExOEhoYyGgOfIxhj4B2ysLCA1tZWlRn6AL07/dq1awgNDUVVVRVYLBbi4+O1zidYXV1Fc3MzXFxcNGqFOzg44MGDBygtLcWlS5dUJvAMDw+r1UyXExcXh9raWkilUujp6WFtbQ3d3d1UV0V/f3+kpKSo3F/+gnZ3d8e5c+fA5XIREhJCm1y1ubkJgUCgMAMLCgrCwMCAghFib2+PR48eoaGhAcPDw2pn/kz+wOeHk3kCdNy+fRsNDQ1ISEhQWF5VVUUbpw8ODgaHw6E1BsRiMXJzc5GTk6Nwbejr60MsFuukwFdXV4cbN27AxMQEXl5eKCkp0UoXQR16enqYnJzEtWvX8OjRI9TU1Ghd4aCOnZ0dWFhYwNHRUeF7FAqF6OnpoYTNWCwWLl26pNEjwvDuYIyBd4BYLAafz4ednZ1SLFNb9PT0kJSUhN3dXXA4HJw/f16t231rawv19fWwt7fHvXv3tA4jsNlsZGVloaOjA/X19bQlQ/v7+1p7KFxcXHD58mV85StfgZ2dHeLi4rSKey4sLCjM8AwMDJCTk4P29nZMT08rlUVWVVUphQccHBzQ3d1NO35sbCxWV1fx1a9+FYeHhzA3N4eVlRWsrKxgaWkJS0tLsNlsJn/gcwJdnsBJTExMlHqEzMzMwNXVVWUpn5OTk5LcsEgkQl5eHh48eKDkqbp58yba2toQHR2t1XkPDw/DysoKbm5u1LKAgACMjIwgMDBQqzHoGBsbg0gkop4Rnp6eGB4exqVLl049JqDcI0SOiYmJQihPJpNhZGQEQ0ND1DL5s+AsZNEZXh/GGHjLtLe3Y3l5GUlJSWeSoGdhYYF79+5R+QTXrl1TEPvZ29tDTU0NLC0tkZWVdeoEn4iICCwsLCA3NxdZWVkK564prjg5OYnR0VEAR7N/DoeDCxcuoL+/H0FBQVoZA4ODg1Qm9HGuX7+O5eVlPH36FOnp6TAzM0NjYyOio6NpP6u6c93f30dcXBwMDQ0RGhqK7e1t7OzsYGlpCTs7O1SpYnNzMxYWFvC//tf/0njeDG+fTz75BEtLS7C0tMTVq1fVls8FBwejt7eXqhTo7u6mkgbpiIiIAIfDQVZWFoCjGXBhYSEeP35Mex1bWlpid3dXq/NeWVnB3NycksDQxYsXUVJScmpjYGFhATMzM1TuAgBcuXIFJSUl8PLyUhsC1IRAINBKq0BPTw+XL19WSFycn59HdXU1dV+ZmZkhLCxMK0ExhrOHMQbeEnNzc+jv70dERIRWDUd05WQ+gUAgAJfLhbGxMdLT08/E+nZxcUFOTg44HA5CQ0NVxk4BYHZ2FgMDAwAAHx8fhRLCiYkJXLhwAZ6enigvL4enpyeCgoLUHlsqlao0GpycnPDw4UOUlpbCxsYGEolEKy2B44yMjGB5eRlZWVkoKyuDmZkZzMzMaOVU9/f34erqSn0OhveH8fFxxMTEYGVlBYmJiejt7aW8QTY2NggPD1e4juRKelevXkV7ezttO+PjsFgs2NjYYHNzEwYGBuBwOPjoo4/U3l9yLQJ1hrhYLEZdXR1t0zHgqMb+xYsXSuWMmtjZ2UFbWxutgZOeno6ioiIF/YG3iaurq4Kk+u7uLrq6uihZdjabrfG5wHB2ML0J3gKzs7P45JNPkJqaqnPMTNeZfFhYGExNTfGbv/mbYLPZiIuLO1M3nL6+PnJycrCwsIDm5mbIZDIqX2FpaQmlpaVUv4K0tDSkp6cjICBAYQz57FxfXx+ZmZkwMDBAUVERbVMmbdnf3webzcZv/dZvYWdnBy9evKDdzs7ODuvr6wrLurq6sLu7S+ULODs7Y3FxkXb/trY2REREICIiAoODg0oa9AzvDnmegPyFzmKxEBYWRjXM8vPzQ21tLcrLy8Hj8ah22Y6Ojpifn8fS0pKCe14V0dHRKC0tRVlZmUZDAPhVroo6CgsLaRN55Vy6dAnPnz/XeG7HEYvFKC0tVTkum81GREQEnj17ptO4xzlLzToLCwvExsYiJSUFKSkpuHv3LqampvDFL36RtocKw9nCeAbeAu7u7vjkk09QV1cHQ0NDtYI3r8Pw8DBGR0dx9+5d8Pl8REZGoqSkBO7u7lr1M9CFyMhIvHr1Cl/4whdw+fJliMViODs7q1UHVEVAQAB8fHxQVlYGf39/JeNBnYDS/Pw8uru7YW5ujuTkZPzzP/8zkpKS8Pz5c5SUlMDV1VUhYTA4OBgtLS1UjkFDQwNsbW0VFB5DQ0NRXl6uJIhECMHi4iIl1pKZmYn8/HyVszmGtwuHw6FmuSEhIUrxbFtbW8pVTgjBwMAABgcHQQjBjRs3UFRUhIqKCoUXnKpr+f/+3/+L7373u1hfX9coj33+/HkMDAyoTAKsrKzEnTt3NIqEeXp6YmpqSmOzJACU1sGDBw/U3o/u7u4YHx/HysoKHB0dNY57nK2tLZ0bKGmLXGdhf38f//Iv/6K1ngLD6WG+4beEvr4+UlNTsbW1heLiYnh6emolh6oN6+vrqK+vR2BgoELS1Gn0CXQ5Zk9PD+zt7eHh4UG90LWB7uFkaGiI7OxsDAwMoKSkBGlpadQDgE4tbmBgADMzM3BxcVGoFZc/yAMCAhAQEID5+XmUlJTA0tISsbGxCm2h+Xw+Ll68qFSNoOrhebKxC5vNpprS6NoGluFsqa2tRWxsLDVLd3NzU5ncBhz9xsHBwXByckJzczO+/OUvw8HBQWv9ih/84AdISkpCa2srnj17hqioKLUlf6quqd7eXri6umr1Ig4ODqbi/JooLi5GWlqaViqkcXFxePr0qc6iQf39/TqJoGnLyMgIRkdHERsbCzs7O6ad+FuCMQbeMtbW1sjOzsbLly9pE/5Oos4NJ5VKqU6HOTk5Km/kk/kE8fHxp25QsrKygmfPnsHOzo6q809OTkZnZycmJyeRkJCg8YGi7jMFBQXB19eXKqe6cOEC1tfXcf36dchkMjQ2NmJnZwdXrlzRqjRKHpfc3t5GWVkZ2Gw2Dg8PUVhYiFu3bqlMLvP19VWI0UqlUmxvbyvVnsv1B5j8gXfH+Pg4rZ4Ai8VSCGMdRyaToaKiAmZmZnjw4AHMzc1hYWGBzs5OlWW+J2GxWIiMjKRmsRsbG4iJiaHV3HB1dcWrV68UwoTz8/PY2trSScjK1dUVc3NzasMZVVVVuH79uk41/klJSaioqFAQ29KEtt1DtWVtbQ0NDQ0IDAxUm8TJ8GZgjIF3hLe3N7y9vdHZ2Ynu7m6dBYTkQkUJCQlaZwPL9QnkGbwJCQla5xPIRYocHR0VqhLk/w8PD8fGxgZyc3ORkJCg9NLUBRMTE9y/fx/d3d0oLS2FUChEeXk5ZDIZoqOj1bomVRkiVlZWyMjIwPb2NqytrfHpp59ibW1NpTFw8eJFlJWVUcZATU2NSjXGiIgIFBUVwdXVldEfeMvI8wTo4uIRERFob2/HzZs3FZY/f/4cIyMjSEpKgrm5OaRSKZWs1t3djb6+PpUeBQBKBgaLxUJ0dDQIIWhsbMTW1hZu376tcJ0GBQWhvLycMgaEQiHa2tp0Li2+du0aSkpKVBoDra2tcHd3p018VYe1tTXs7e3fiVErV1+1tLRUO6lheLMwxsA7Jjw8HGFhYZRcb0JCgloBobm5OXR0dCAsLEzrGcxx9PT0kJiYiL29PXC5XLi6uqodZ3Z2Fj09PTh37pxGkSJbW1s8evQIVVVVVOY2Hdre7E5OTnjx4gW+8IUvYHh4+LXqrIGjGvLu7m5UVlYiNjYWc3Nz4HK5YLFYuH79Om3slxACkUgEsVisdhbE5A+8G47nCZzE3t4e7e3t1N/7+/tUaOj4S/j4jD0sLAxtbW1qa/Dn5uZoE4FZLBZiY2Mhk8nQ0NBAJaVaWFgo9R0oKSlR0sHQFkdHR9q+CkNDQzAwMICfn9+pxr127RoKCgrg4eGhk0jS6/Ds2TOsra2dWak1w+lhjIH3gJMvaBcXF6UX6cHBASoqKuDs7HwmLjRzc3Pcu3cPr169QlFREUJCQhRikVNTUxgYGICbm5taI4BOBz0xMRGTk5MoKChARkaGUtxSXZiAEILu7m4sLi7C1dUVH3/8MWxtbSESiVBYWIjU1FQFyWZtaW9vh0gkQk5ODkZGRrC0tER5ZwghaG9vR1tbG0xMTBAdHQ0jIyNcvXoVvb29WFhYUKjRpoPJH3j7nMwToEOuANjZ2YnNzU1kZWUpbT81NaXgPbhx4waamppUlvJNTk4iMjJS5TH19PRw584dyGQy1NXVQSAQ4O7du7C0tMT29jaam5uRnJx86iqfGzduKGgdAEeG7traGq0omC5kZGSAy+VqfMasr6+/lvdvYmIC/f39iIyMVPtdMrw9GGPgPcLc3BxZWVnUCzo4OJhyPe7u7iok1Z0V58+fx/nz59HT04O+vj709fVBKBTC09NT4WGjKz4+Pjh//jxKS0sRFBSk0fUoEolQX1+Pw8NDhIaGKiUmhYSE4NKlS+DxeDh37pzW8s2EEHC5XAQEBMDX1xcAcO7cOYyNjVG5GiwWi6oQEAqFaGxsxOHhIZydnTExMQE7OzsYGhpif38fi4uLWFhYgEAgAIvFUjre//k//wd5eXlM/4I3zMTEBP74j/8Y3/ve9wAod/yTL9ve3oaXlxc6OjpUvnQODw+VDMzo6GjU1tbCwMBAKWHv8PBQq1msnp4e4uLiIJVKUVdXh93dXXzve9/D7/zO78Da2lqXj6uAXOtgfX0ddnZ22NjYwMDAwJnICxsaGuLy5cvo6elRKzE+MDBwqhbI29vbqKmpgY+Pz6nVVxneDIwx8B4if0Hn5+fj4cOHGBsbQ0xMzBs9pre3N16+fIkf/ehHKCsrUxszPY46l7+hoSFycnLQ2dmJiooKJCYmUh3U5KysrKCtrQ2GhoaIjY1VirlLJBJqBmVgYIDMzExMTU0hNzcX8fHxamcnu7u7KC0tRVpamkIylbW1Nba2tmj3MTExoTTW5+bmEB4ejn/4h3+AVCqFiYkJXFxccPXqVdr8jrW1NfzDP/wDBgcHmf4FbxB5nkBBQQEEAoFa3f7q6mqUlZWhs7MTGRkZtCE4Vdfw3bt3UVFRAQMDA630B1SxsLCAw8NDAMB3v/td3Lp1C5OTk9Rx5cYLIQRWVlZwdnaGs7Oz2lyg6OhocDgcJCUloaqq6kzlsS9evAgej4ft7W2V+TkHBwc6Xd9SqRRVVVXQ19dHdnY2kxfwHsIYA+8h+/v7qKiowIULF8Dj8bCwsICxsTEkJCScykWuDplMhqqqKrDZbNy/fx8WFhZwdXVFbm4uUlJSTl11cJzjyYUxMTEwNDTE4OAgpqen4eDggIyMDJUPh93dXaWsaC8vL3h6eqK2thaEEAXdBvn/JyYmMDw8jMePHyu9ALR5EB0cHKCxsRHFxcUwNTXFxYsXNZZltra2Ij09HTKZjOlf8AaR9x1gs9koLCxEUFAQ7W8qlUqxv7+P4OBg+Pj44OnTp0hJSdFpVp6UlITS0lIYGBhQMXptqmX6+voo4So3NzekpqaiqakJi4uL6Orqos3aJ4Rgd3cXS0tLCkp8J40G+bLBwUHU19fjk08+OfOXa3JyMnJzc88kB6arqwtzc3NISEhgpIbfYxhj4D2CEIKmpiYIBAJkZmaCzWajoqICt2/fhlgsRnV1NfT19REXF6d1l0J1DAwMYHJyUqnU0N3dHW5ubuDz+XB0dDyTWmJbW1vk5OTg/v376O/vR319vVZuzZ2dHdoSKRaLhbi4OGxsbCA/Px/Xrl2Dm5sb9PX10dLSQjVYOg1bW1vg8/l4/PgxqqurkZCQAD6fDzabrXKGKBaLwWazwWKxwGazERMTg7q6Op3Kxhg0U1dXh5iYGMpbFBUVhebmZtpGQMe/f3Nzc3z00UcoLy+Hl5eXTsmoctne2NhY2Nra0ua8HB4eorW1lXqBh4SEKGljbG9vw9nZGS4uLrRZ+ywWi2qKpUl2WCaTYXZ2Fm1tbaisrARw5Im7du3amQgBsVgs3L59+7Wu4dnZWXR1dSEsLOyN6BEwnC2MMfCeMDU1hZ6eHkRHR9MKkBgYGCAlJQW7u7vgcrlwdHRUKpnSFnk9b1BQkEqpUj09PaSmpmJychL5+flIS0ujdQtqI0cqnw0ZGBjgr/7qr7C9vY2uri4YGRlpLIHa2dlRGwqwtbXFw4cP0dnZifLycgwODuJP//RPtRJmoUNeQvn48WOF2VZycjLKysqgp6dHe86NjY0KgkRy/YHJyUkmf+CMmJiYUNITcHR0RGtrKyQSiUI+jUwmw/7+voKRy2KxkJaWhp6eHlRXVyM+Pp7qG6CJe/fuIT8/H3fv3qUy7dfW1tDZ2QmZTAZjY2PcuHFD5cz3uMJfaGgoCgoK4OXldeokwuXlZQQEBCA9PR1jY2O4ffs2Dg4O0N3dTbUNfl3jwMnJCRMTE0r6CMvLy2pFkgQCAaqqquDq6sroBXyOYIyBd4xQKASfz4e7u7tWCTUWFhbIysrC0tISioqK4Ovrq9AJTB1SqRR8Ph/m5uZa1/P6+PjA09MTZWVl8PDw0LqvOiEEHR0dWF1dhbOzM9LT08FisdDX1wdfX1/ExMSgpaUFvb29ajOrd3Z21DZEkn+u7e1tbG9vQywWY2hoCA4ODjrpNgBHL5uXL1+qrJ5IS0sDl8sFm81WKuuiE2CJiIhAcXExkz9wBsjzBOh+m4SEBFRXVyu43lW12waOXsZLS0t4+vQpoqOj1SoHEkIgEAiwubkJX19f+Pn54ctf/jIODw9hb2+PxMRErV7oHR0dCvLWKSkp4PF4SE9P17gvHS0tLVRJ5eTkJGZnZ+Hu7q6goHgWxsGtW7eQm5sLV1dXyhs5NDSEqKgopW0JIaipqYFYLEZGRgbTmvhzBmMMvENaWlqwtbWFjIwMnasEnJ2dkZ2djRcvXqCoqAhhYWFqlQy7u7vx6tUrJCYmqkxMUjVDYrPZyMzMxOjoKIqKiiiZU7pObLu7u2hqaoJUKsX169eVOjQKBALqJX3r1i3s7++Dw+HAx8eHtkPZ3t6eytmWVCpFfX099vf3cefOHYSEhGB6ehohISGor6+HQCBAZGSkRu144ChksrOzo1RCePI7ycjIQFFREaKjo2Fvbw8AVCtmOjIyMpj8gTNAnidAh6mpKVgsFgQCAczMzCCTybC3t6dWgc/Z2Rm3bt2Cq6sr/vZv/xYbGxsKVQjH/21mZgZbW1s4OTlRyaQpKSlax+mPj3X8nM+dO3cqz1FLS4tCZURUVBT1wj7+AjY2Nj4T4yAtLQ1lZWVUWE8kEilVU/T392NychJ37959rUoJhncHYwy8A2ZmZtDV1YXIyEidW+2e5OLFi7h48SK6u7vR3d2N27dvK8ihLi4u4tmzZwgNDdXYrEgkEqnVMvf394e3tzfVUMjd3Z0yLEZHRyk3bmJiokrjRiAQKBgjpqamyM7OxtjYGPLz85GQkKD0cDqZHyGv397f38ft27cpV7BEIoFYLIa+vj7lAm5tbUVrayuuXLmiMnQgr2agm+3Qce/ePRQUFODu3buwtbXF7OysSo8Jkz/w+pzME6AjPj4epaWlyMrKUuohIWdnZwednZ1UZr+TkxOKiopwcHBAVbqoQyKRwNLSElFRUSgpKdEowiVHlcRxWFgY8vPz4enpqfUsWiAQYHt7WylUJdcHUHdOpzUOzMzM4OnpSSvEJH++BAUFMSGBzzmMMfAWOTw8BJ/Ph4uLy5nX2IaFhSE0NBQNDQ3Y29vD4eEhuFwubG1ttT6WUCjU6M4+3lDohz/8IaRSKba2tuDn56eVy1Mmk9E++Pz8/HDx4kVUVVVRZYYnH86qjAA5BgYGkEgk1N9y7XgAVAMkb29vXLlyBYaGhhCJRGhqaoKrqyv8/f1pz5fuBcFisXD//n3k5+cjJCREIX4qk8mwtraGxcVFrKysQCqVAgB+9KMfwdzc/FSqkR8yHR0d+MEPfoCvfOUrAEA1xrK3t1f4bdhsNuzs7LC8vIydnR1YWVnh8PAQnZ2d1MvOwsICt27doipyDg8Psba2hujoaCpRVB0NDQ2IiYmBubk5QkJC0NjYqFXJ78rKCtVW+SQpKSng8/lKHTJVUVFRQfvCNzExgb+/P3p7e7VugKbKONje3gYAGBkZUcbBlStXwOFwqKZe8meZvb09oxfwawJjDLwlWltb8fz5c6Smpr4xqU95BnBLSws1e9FFGEQbY0COSCSiXnZeXl4as5+1Qa5euLa2hsLCQkr05LiS2+3bt1W6fw0MDCAWi2nXBQUFISgoCC9fvgSHw8Hq6iqGh4eRlpYGFxcX7O3tQSKRUP9JpVJIJBK0tbXB0dER29vbODg4oM4TOHq5XLx4EcXFxeDz+QCOvBj29vY4d+4cLl26RHlIDg8PMTc3h8uXLzP5A1oiFAoxPz+PL33pS0hOTgYhBGtra5idnUV3d7fS9oQQODs749NPP0V5ebnCy4wO+cvcxMQE1tbWGnX59/f3qRCXp6cn1tfX1coWA0cVBOrCFWZmZnBycsLLly+VumeeZGhoCAEBASorifz9/VFeXg5vb+9TJQ1qMg6MjY3xySefwMrKClKp9I0+yxjePowx8BaYnZ1FU1MTvva1r73Rm2dubg7t7e2IiIgAn89HVFQUysrKqPa9mtyg2hgDS0tLaGlpQVhYGP7oj/4IMpkMEokEBQUFVOOX10U+2+js7ERycjKePn2K5ORkjV3Y5NKz6vD29oapqSm+9a1v4Wc/+xnOnz+PV69eQV9fH/r6+mCz2dS/9fX1QQiBi4sLAgIClDQeBgYG0N/fj7GxMbVljKOjo/Dz84Ovry/Tv0AH5H0H5IYWi8WCg4ODyhyQvr4+fPzxx7C2tkZqaqrG8Y8L54SHh6OwsBDu7u60obLnz58raf6HhYWhsrISdnZ2Sh0T5bS0tCApKUnteVy7do0KF6h60UulUrx48UKjKz4lJQVPnz5VqoY5DceNA0IIGhoa8Od//uf4/ve/j2vXrjGGwK8Zr1+szqARd3d3fP3rX4dMJkNRURFevXp1puMfHh6Cw+Fgfn4e9+/fp8qAzMzMkJmZiaCgIBQXFys0baFDnTEgFotRWlqKyclJ3L9/H56enlSiVUBAALKzs9HU1ISWlpbX/jwymQy1tbVYXFzEp59+CnNzczx79oxyuatCT09PY98DPp+P8fFxfP/730dbWxtVKnjr1i1cv34d165dQ0hICC5fvgx/f3+kpqZCX19fyRA4ODjA1NQUgoKCEBkZiYaGBpXHHRsbg7+/v0L/Agb1HO874O/vj+fPn6vdvru7G1KpFF/84hcRHByM8vJytdvPzMwoiUjJ4+50jI+P03q/EhMT0djYSHmNTiLviKgJebhAFXw+HykpKRrHketv1NTUaNxWG+TtmblcLgIDA8Hj8fAnf/InmJycBIfDofIvGD7/MMbAWyQwMBDZ2dlUWeDGxsZrj9na2orKykokJycrZe7LsbW1RXZ2Ntzc3FBcXIzBwUHa7YRCIa3CYUdHB8rLyxEfH6/gRjyeda2np4eUlBR4eXkhPz8fS0tLOn8WuRFQWlqKsLAwZGZmws7ODqmpqYiOjgaXy0VTU5PaF76q2dDLly9RUFCAmzdvIjo6GoaGhhCLxcjMzMTm5iYaGxtp97t06RKGh4eVlpeVlVFxXldXVxgZGWFycpL2uMcTF52dnWFubo6JiQm138WHzPj4uIKegI+PD16+fKly+46ODrDZbCpB1tXVVaNBMDAwoFQBYmBggNDQUCWjWZXwlZycnBwUFBQoXZeDg4O4cuWKyv2OY2ZmBgcHB0xNTSmtm5ubg62trdbhJQcHB1hYWKj9zjQh74nC5XLh7++PzMxMhdyYW7duISUlBVVVVWhsbNRKq4Hh/YYxBt4B4eHhuHfvHgYGBsDhcCjVMl2YmZmh2o3SdQakw9XVFffu3YOJiQmKioqUXkgn9cbn5+dRUFAAZ2dnZGVlKRkKdI16XFxc8ODBA4yPj4PP50MmkyntcxK5EcDlcikjgC6j+d69e/Dz80NRURH6+vpoP+PJ85FIJOBwONjc3MSDBw+ocQ0NDalZTUREBDw9PZGfn6+QgCg/7snfp6enB8HBwQoVEzdu3MDAwACEQqHCtoODg0ovnYiICAwODipty/ArPQFVCXcnefbsGUxMTJR6acgNgrKyMqV9pFKpSne8l5cX9vb2sLq6Si1ramqiVTiUo6+vj/T0dJSUlCgsn5mZ0aiRcZzw8HB0d3cr3TNtbW06C4xdv34dvb29GsNmJ5HJZKivrweXy8Xly5eRmZlJldCKRCKF0ICBgQHS09MREBCAoqIijI6O6nQshvcLxhh4R8iT/VJTU9HY2Agej6f0IqLj4OAAJSUlWF1dxf379zUq+NFx4cIFZGdnY39/H0VFRZifnwfwqzCBSCQCh8PB7Ows7t+/r1K/gM4YkBMdHY1bt26hqKgIY2NjtNvIEwPlnoCsrCyNiU+Ojo7IycmBpaUlioqKaGfjcoaGhsDhcJCYmKhUVnkyv8Dd3R3p6enIz89XeBEAigbG3t4eFhYWaBPNMjMzweFwqL/n5+dV/j4nt2U4gsPhIDMzU2m5l5eX0ky3qakJNjY2Kmffrq6uCAkJUTIInj17puDhOklcXBzV94IQorIC5jhWVlYIDg6mPExCoVCrzoYnSU5OVggXyCsYTkNGRobW15hMJkNNTQ1KS0sREhKCzMxMJeXPvr4+2gZmDg4OyMnJgVQqRUFBwZl4PBnePkwC4TtGX18fycnJEAqF4PF4MDc3x+3bt2ln0M3Nzdje3j6zVsbyDPv29nZ0dHTg4OAAnZ2dWFlZQVJSksaHmTpjADjKtr9//z4GBgZQXFxMZYTLZx+7u7uIjY09lUiJt7c3vL290d/fj8LCQty6dQtOTk5gsVgQCoUoLy9HQECAyoQruu/X2NgYH330ESoqKnDu3DlaISEej6eylIrNZuPOnTuU1G1XV5fKxMLj+QN3797V4ZP/+nI8T+AkgYGBKCsrozLu6+vr4eLiorGKxdXVFYBiWGd7e1vjNSdXCLS2ttZ6Vu7l5YW1tTWMjIxgbm6OVutAE+bm5rC3t8f09DRsbW1xcHCgVvpXHYaGhggODlapcwAceUlqa2shFArVVuoAwMbGhlqPzaVLlxAYGIiGhgbs7++r1RtheP9gfqn3BBMTE2RkZGBzc5OSsJXnALx8+RK9vb2IiopSksE9C65fv465uTmcP38e//RP/4Tf+73f0ypTWJMxICcoKIhKPvroo4/w2WefISYm5kyUyoKDgxEUFISWlha0traiqqoKYrEY9+7dO7UcalJSEgYGBlBRUYGkpCSwWCzIZDJ0dnYiIiJCbZMoR0dH2Nraorm5mXKvyrUHFhYWsLKyQrmBWSwWvvOd78DNze1MSjM/z7x48QLf+ta38Gd/9mcwNDTE5cuXVV7r1dXV8PLy0lq577hBcP36dbXywwAog1UoFOJP//RP8R//8R949eoV1X5bT0+P+vfx//T09GBtbY3Kykp0dnYiICAABgYGCtUp+vr6MDAwoMagIyIiAvn5+QDw2jX8Fy5cQGVlJdbX1xU+t0QiQU1NDUQiEe7cuXMmVUDArzyeQqEQZWVlcHJy0qm8meHdwRgD7xk2NjbIzs7G3NwcfvnLX+I3fuM30N3d/caEPUQiEdWdkM/nIzY2FuXl5XB2dlaZkChHW2MAAHp7eyGRSPCtb30LEokEq6urZyZbymKx4OHhgcXFRfB4PDx48OC1uzoGBQXh3LlzePLkCQICAtDf34/NzU2l70Re+z4zM4O1tTVqeUpKCn7+859jb2+PKolzcXHBlStXFIwUsViM4eFhnD9//oPVHxAKhRgeHsY3v/lNpKSk4PDwECMjI+jp6aG2YbFY2N/fxz//8z8jKSlJp1g8cJTL8urVKzg4OKC8vBwVFRUqt2WxWFS4KjIykjIm5GEDubFw/O/jy83NzbG5uYmdnR0F7Qq5QqZcx0IdTU1NKCoqUhLWOn6/mZubw87ODnZ2drC1tVU5C09ISKDKDeVGgFgsRlxcnEpp8pPomiBoYmKCrKwszM/Po7CwECEhIRp1FBjeLYwx8J6yvLwMS0tL/PCHP6RKEeUiPGdFR0cHFhcXkZycDCMjI1RUVMDY2BhZWVl49eoVCgoKEB4efqqcATnPnz/H2NgYwsLCEB4eTs22BwYGUFhYiJiYGGoGfRrkHdJcXFzw8OFDWFhY4MqVKygoKMDVq1dfq2Ogg4MDHjx4gLy8PHzhC19AeXk5bfmXXBUvLCyMmu2VlZVhf38f169fV2n0TE1NwcPDA4GBgR+0/oBcT6CiogKEEBgZGSmp6MlkMvzsZz/DX//1X8PDw4NKViOEwNDQEF5eXtR1ure3h6GhIWxubgL4VUjIyMgIn3zyCfz8/DS+mKRSKRYWFvD9738fHR0dGtUJ5WxsbMDFxQXf+c53YGJicqoX4MzMDExNTREXF6dSo4AQgr29Payvr+PVq1fo7+9Xa2AQQuDv74+/+7u/w927d3U2PGdnZ5VKMbVB3rmwt7cXRUVFSu3SGd4jCMMbZ3x8nIyPj2u17fb2NsnLyyOTk5OEEEL4fD4hhJCZmRlSXFxMWltbiUwm0ziOfD865ufnSX5+PpmZmdG4T3t7OykuLiZCoVBp3cLCAunv76c9xuzsLCksLCQjIyMqjyGTyUhDQwPhcDjk4OBAp88hk8lIdXU14fF4RCKR0G7f3d1NCgsLac9d3dhydnd3CZfLJVwulzx8+JB0dHSo3V7Ozs4OaWhoIDKZjDx58oTs7u7SbsfhcKh/Ly4ukpqaGq3G/3WipqaGLC4uEkIImZqaIkNDQ7Tb9fT0kIGBAcLj8ZTWHRwckNHRUcLhcIihoSFpbGwkGxsbStvl5eURmUxGCgsLNZ4Xj8cje3t7hJCj62RnZ0erz/P06VPq/iwqKtJqn+MIBAKSn59PCCFkenqa9Pb26jwGHcXFxaSkpIRMTU2dan8+n0+kUulrnYNUKiUVFRU6j6XL85Ph9DCegfeI5uZmCAQC3L9/Xyme6O7uDnd3dywuLoLD4cDOzg63bt3SSWVMLBaDz+fDzs5O67BDREQEJBIJKioqYGFhgejoaOqY8lj6cTY2NtDQ0AA3NzdkZ2erHZvFYiEmJgYikQhVVVUwNTVVmTx5nP7+frx8+RJ3795VW30QGhqKoKAg8Pl82NraKnR6U8fCwgI6Ozthbm6OlJQUsNlsGBgYwMLCAqWlpUhLS1N7jp2dnYiMjASLxcLDhw/x5MkT5OTkKJRmSiQSBbeus7MzZmdnNUri/jpxUk/A09MT5eXlSvK+U1NT2NvbQ3R0NFX5chwjIyP4+flhYGAABQUFiIqKUvp9WltbcePGDbBYLFy7dk1tUt36+jqMjIyobpkJCQkoKSnReD3LM//lx5ZXQGjrHSCEoKSkhOpw6eHhgf7+ftoMfl0oLi7GzZs34eTkhLy8PLi7u+scRiOEvHboTU9PD4mJidjb20NJSQk8PDzO3NvJcHqY0sL3gJWVFeTl5cHb25tKWFPFuXPnkJWVBX9/f3A4HNTV1Sm9kOno6upCeXk5EhIStH4pytHX10daWhr8/f1RWFhI6RMcDxMIhUJwOBwMDg7i3r17Kh+0hCasYGhoiLS0NISEhKC4uBi9vb20+y4sLKCwsBBmZmbIzs7WSn9dXgMu1xGYm5tTue3w8DCl5JiZmYm4uDiF+L6/vz9u3bqFJ0+eqNWGODg4oF78enp6ePz4MQoKChRKGelq1z8k/QFt9QQ2NzcxNDSkts4fOJL9vXHjBi5duqRU7y4QCLC5uQk3NzcAwPnz5zE/P6/SrV5fX4/bt29Tf+vp6cHT01NtGevq6iqkUqmCLHFwcDAGBgbUnvdxysvLkZycrHDNOTo6Ynl5WesxTlJUVITIyEgqGfNk6aK20N23p8Xc3BzZ2dmwsbFBQUHBmSuyMpwOxhh4hxBCUF1djefPn+Phw4c6aQbY29sjKysLV69eRWlpKaqrq2kfbsvLyygoKICdnR2tcJAuODo64v79+9jb20NhYSEEAgEkEgn4fD4aGhqQmpqqVQ8EVciTJ62trVFUVITp6WkAv9JWmJmZQU5OjtqZs6qHllwMaW5uDhwOh3oxE0LQ0tICDocDIyMjZGZmIjw8XOVnsLGxwaNHj8Dj8TAzM6PV52Kz2Xj06BFyc3Op30ggENBmcH8o+gOq9AQsLCywu7sL4FeerOPdME1NTSEQCBT2WVxchEQiwfnz5+Hp6UldN3LkeSrHiY+Pp5XslasGnvz9r169qlboSlWLajp9BDq6urrg7e2t0H4cOKr00SQjruqcCgsLERUVpVCaaGFhATs7O6XvSB17e3uUl+Qs8fLywv3797GwsIDi4uJTia8xnCHvKj7xIUEX85qZmSF5eXm0sc3jaIpry9nd3SUcDofw+XwiEolIaWkpKS0tJY2NjVqfp7bHIuQo/veFL3yBWFpaqoyJ00EX81VFV1cXAUA+/fRTIhaLz2z8g4MDUlBQQAwNDUlJSQlZXV3VuA/dd9PQ0EDa29sVli0sLJCenh7aMYRCIfn0009VxoIlEglZXFwk5eXl5Ktf/arGc/q88rWvfY0MDAzQrjs4OCBVVVVEJpORX/7yl+Tw8FBh/crKCuns7KT+lkql5OnTpwrblJeXU/8eGBggz58/pz1WRUWFwrUrlUpJQUGByvOen58nLS0tSstramrIysqKyv005Q68evWK1NXVqVxfXl5ORCKR2jGOI5PJSH5+vtrr+unTp1rH7RsaGnS6x0+DWCwmZWVlpLq6WikniskZeDswnoG3jFQqRVlZGRYXF/HgwQOlmcBpMTc3R0ZGBmJjY/HJJ58gPT0dt27d0uhePQ0TExMoKSnBn/zJn6CsrAxVVVW0LWVfh97eXszMzOCXv/wlXFxcUF5efmYzh56eHrDZbPzN3/wNRCLRqWOhMTExsLKyApfLpTwS/f39CA4Opt1eX18fbm5u8PT0xNLSEvh8vsJ/tbW1WFpaQmBgIGxtbdW6pT+vTExMwNjYGAcHB+DxeNR/ra2tlGqfSCRCaWkpkpOTlWS2HRwcFEo4j4sJHYcQAolEgvHxcfj7+9OeS3x8PKqrq6m/q6ur1VYNuLi4YG1tDSKRiFq2tLQEfX19lZ0UgSOBLFXegYODA7S2tiqEJU4SGxuL+vp6leuPQ/7LI3D79m21VTrJyclqyyuPo8qLdZbo6+sjNTUVoaGhKCwsVNk/heHNwSQQvkXGxsYwNDSE5OTkN+J2k8lkqKqqQnR0NOrr69Ha2gqJRKJTPbE6dnZ2UFNTA29vb2RnZ2N2dhaGhoaIiorC9PQ0CgsLcfXqVYXGPLoyPT2Nnp4ehISEICcnBxUVFbh9+zZVHy2VSpGQkHCq9qnPnz/H6Ogobty4gZs3b4LP5yMpKYnKu4iLi9M5xOHn5wdHR0d89tlnuHfvHmQyGWVcbG1tobe3l+pox2azceXKFfzsZz+DoaGhSuXBqqoqfP3rXwefz4eLi8uvjf6APE/g93//9yEQCBS68G1ubqKtrQ0HBwdIS0vDv/3bv2l8AQ0ODsLb21vpXrpw4QImJiYwOjqqtpWxvGPlq1evYGFhATabrbHsLSkpCRUVFcjIyKCa+cgT/lQh7xp6MpGQEIKioiI8fPhQ7f6mpqYquyKeHK+goAB3795VkhI+iaWlJWxtbWm7N75LbGxscP/+fYyNjSE/P/+NTGYYVPAu3RIfCp2dneQv//IvSV9fn877auu6n5ubI0+fPiV7e3tkbm6OcsOKxWLC5/NJSUmJxvIoVceSlwRVVVUpuBYnJibIixcvFLaVl/NtbW3RjqXKjb+5uUkKCgpIV1eX2nMSCoWEy+UqnYu68RcWFmjLHI9vu7m5SfLy8lS6IzX9DhKJhPz0pz8ljo6OpLy8nJSXl5OWlhayv7+vdC7d3d2ks7OTjI6O0o7F5XKpMU+6wD/PPH36lCoDLSsrU1ovk8kIh8MhP/nJT8jOzg7h8/mEy+WSlpYWhfJRHo9HlX3SIZPJyI9//GOtS0ELCgpIQUGBViW7hBy5zZeWlkhlZSVZX1/Xap/+/n4yMTGhsIzH42kVoiLkKKyorsxQJpOR3NxcjWHHk+Tm5qoNF0ilUp1Ce2eJTCYjjY2N5Bvf+AZpbW19J+fwIcF4Bt4CLBYLRkZGWFpawqVLl85cr7uhoQF6enrUDEU+0wGO3G9JSUmQSqWor6/H3t6eyn4AhCb5rq+vD9PT04iLi1OaNYnFYqWExNDQUISEhKC2thYikUijPrlYLEZlZSWMjY2RnZ2tcWZubGyM9PR07OzsgMvlqi2xFAgEqK6uhqOjo8ayMGtrazx48IASR0lJSdEq2ZIQgq6uLiwtLcHf3x+/8zu/A0dHR6XGSHL6+vqQlJQEPT09cDgcuLi4KHyvx1ses9lsxMTEqExO+zxRW1uLmJgYlRLREokEBQUFSEhIQGdnJywsLKikv42NDVRWVkIqlcLJyQmEEJSVleHhw4c4PDzE3Nwc5ubmFKowvvKVr4DP52vlCv/P//xPrK+vw9TUVOE6kt8P8qoZebmhnZ0dvv71r+N3f/d3Nc7A5ci9A3IRrN7eXri5uWktuOXu7q6yURAhBHl5eUhMTNRZ1VPu6TjupTnO2NiYyjDLm0IsFqO7u5sSjWpubqZNNmU4Wxhj4C1gZWWFBw8ewMXFBTweD6amprhz585r1+3u7u6ivLwcMTExOHfuHLV8b29PKYbJZrMRFxcHmUyGxsZGbG1tISoqSuXDaGFhAW1tbQgJCcG9e/dotzlZKy9HT08P8fHx2N/fR1lZGRwcHJTKGQkhaGpqwvb2NhISEnSucrC0tERWVhZWVlZQXFxM1SyzWCxIpVIqFpyenq7yBURnQFy9ehWXL18Gn8+Hk5OTytK37e1tNDc3gxBCqSsCRwaIqakp+Hw+kpOTlfY7HkbIyMjAkydP8NFHH1HnMjw8jIyMDGp7uf7A5OTka6kpvksmJiYU9ASAo6z2nZ0dWFpaYm9vDxwOh9JikHeUlIeCbG1tqZfV4uIibt68ie985zuorKyEkZERXF1dER4eToXC2traUFdXBycnJwQEBKg9N6lUCoFAAD09Pdrf6zgikQh7e3vY3d1FV1cXYmNjlcpAra2t4efnR5sL5O3tjcnJSZiammJjYwNxcXGav7xjODo6YmVlRaE6gBCC3NxcJCcna1VqexJN4YLp6WmN38vrIpPJMDQ0RGlIGBgYIDQ0lOrx8Rd/8RevpVLKoB2MMfAWMTU1RUZGBjWrtbGxURDx0YW+vj7Mz8/j4cOHSkbF7u6uynirnp4ebt++DUIImpubsba2hps3b1IP6sPDQ1RUVFBtSdVx/IFNh6mpKbKysrC4uIjCwkJKTGZwcBATExOIjo5+7ZtcPuufmZlBcXExvvWtb+Gv//qvER8ff+q8DAMDA2RkZGBmZgZ5eXlUchchBH19fZibm4OlpaVSTbicgIAAODg44OnTp8jOzqaS4MRisYLxxGKxqO54qampkEgktONFRESgqKjoc5k/IBQKMTg4qOSZiYiIQFNTEy5fvoyWlhZ89NFH1HVsamoKoVBIe22Njo5idHQU4+PjtC8pqVSKpaUl3Lt3DyUlJRqNAR6Ph5SUFKysrKCnp0etCI6hoSFsbW3x7NkztLe3o66uTukctra2MDY2Rs1q5bDZbHh7e6OzsxMsFutU0tPXr18Hl8ulZsmvawgcH1cuRkT3LDptqbA6Xr58idHRUarJ0+XLl5W6hM7OzoIQ8l7lNPw6wxgD7wD5rHZ9fR0lJSVwdnbWurOXRCJBaWkp/Pz8aLOogaMXujbth6Ojo0EIQVtbG9ra2vB3f/d3kEqlSElJ0SpBT5MxIOfcuXPIyclBdXU1UlJS0NTUpNFtryvGxsaQSCS4ceMGpFIptre3XztJ08PDA+7u7qiqqkJycjI4HA5CQkKUdPPpsLe3R05ODoqKinD79m04OjpSXQ+PY21tTSnNbW5u0iZMEUJw69Yt/O7v/i4+++yz1/pMb5uPP/4YX/va19De3g42mw19fX3q/7/4xS/whS98QUkN08TEBPv7+0rtdJuamuDq6ooLFy5gbGyM9ng1NTWIj48HcGSUjYyMIDAwkHbb2dlZODg4wMTEBB4eHujt7dWoiDcyMgJ3d3eYm5tTVRHHvVrW1ta0Db4kEgkGBwfx8ccfIy8vjxL+kXc7lFeZqDP2WCwWDAwMKKPy6dOnSE1NVdt2WFuSkpLA5/NVhgtel5WVFfT29lI6G97e3khJSVFpaIjFYrS3t+Phw4eUyBnDm4UxBt4hdnZ2uHfvHhYXF1FcXAx3d3e1D6Pp6Wl0dXUhPT39tcSDjsNiseDk5IT5+Xk4OjpCLBbj8PDwTI0BkUiEiooK2NnZoby8HCwWC8XFxbR5CLoik8lQWVkJMzMzPHjwgIo1t7a2oqOjA/Hx8acuixKLxaipqYFMJsMvfvELHB4eauw2dxwDAwM8evSIaqS0ublJ6z6+dOkSeDwenj17Bn19fezt7SltY29vj6tXr36u8gfq6uoQFRWFq1evQiqVUt365B389PT0IBaLQQhReCmYmJgoud9bW1thZ2dHtXo2NTXF/v6+QpXM/v4+1TUQAC5evIiSkhJaY4AQgo6ODjx48IBapkmmWCgUYnx8HFlZWQCOSkvr6+tVNhM6zuLiIqanpzEzM4Pt7W1cuXKFWieVSjE3N4f29nalqgFCCOzs7ODj4wNbW1uqzHB9fR1paWln1vTH0tISNjY2CuGC9fV1rXMiTrK7u4uOjg6qDNPBwQHx8fFatxXncDjU98zwdmCMgfeAc+fO4d69e5Sr+8KFC7h8+TK1nhCCmpoamJubKzy8VKGtW29/fx8VFRXw8PDAgwcPYG5ujoSEBFRXV4MQgoSEBLU370m3Nx3Pnj3D+vo6kpKSYGhoCD6fj1u3bkEmk1H91BMSEpTqybXhxYsXGBwcRGJiotJD8ebNm5BKpQrliNombsr3E4lEiIuLg4mJCaVi19HRgZGRESQnJ2ud85GQkIDKykp8+ctfxv/7f/+PNkltdXUV//RP/4SvfvWrtKGTtbU1REdHg81mfy7yB+R5Ar/zO7+D7u5upTr61tZWfO9736NmuDk5OdQ1YGpqip2dHWrbrq4umJqaKrzUb968iebmZsoLAByVZB5XKwRUewdOSg4DgJubG7q6ulQaA6WlpQqhM7kmgiYGBgawsbGB7OxsEEIwPDysYAyw2Wx4eHjQusMJIdjY2MDLly/R2dkJmUyGtLQ05Obmorm5GRYWFvD19YWjo+Nru/Nv3LihEC7o6+tDVFSUVvseHh6iq6sLOzs7IITAwsICt27dOtWk5dmzZwgLCzvVM4Hh9DDGwHuE/IEwPj6O4uJiBAYGYnNzE7m5uYiLi9M6vk5XFXByfVNTE3Z3d5GRkaHwkmSz2UhKSsLe3h64XK7aEIY6z8DLly/R29uLyMhI2l4Ienp6SEhIwMHBASoqKmBqaoq7d+9q9UA7PDwEj8ej5ExVwWazkZiYiP39fZSXl8PW1lZtcyeZTIba2lrs7+8jLi6ONswQEREBgUCAoqIiBAUFwdfXV+25kv+SnDY0NMQ//uM/qkzGKi0txdLSEp4+fYqPP/5YydBob29Hamoq5VV5n/MH5HoC8sTT7e1tpWtldXUVN2/eBADcv38fBQUFiI+Ph729PUxMTCg9/r6+PrBYLCUhJ2NjYxweHlJ/Ly0twc7OTsl4pfMObG5uQiqV0t5P169fR1tbm9I1/+zZM1y/fl1p/KtXr6K3t1dl6Ki+vh42NjaU4aHrC5vFYsHOzg52dnaQSqV48uQJ6urqEBgYCEdHR+zs7GBiYoLq53H83re2tsbFixdhZ2en9fHk1QXJyckQiUQqw41SqRT9/f1YWloCi8WCoaEhrl279lq5CwAwNzcHiUQCT0/P1xqHQXcYY+A9xNfXF76+vviXf/kX/Pf//t+pB8pZIH9JR0dHK2Qln0xeMzc3x7179zA3N4fCwkJcuXJF6cUnlUqVHo4CgQBVVVVwd3fXqjOisbExMjIysLW1Rb3k6GKucrq6urCwsIC0tDSthYdMTU2RmZlJVR5cuHBBYWZGCEF9fT12d3dx+/ZtjTFYMzMz3L9/H729vSgpKUFaWhqt12FmZgYdHR2Ii4uDra0txsfHMTo6qlSqJX+A6+vr4969eygoKFAQoiGEKLjSMzIyUFBQoFHs5l3B5XIVfvvExERUVVVRAkB9fX0KL3cDAwM8fvwYfD4f3t7ecHNzowyKw8NDldcDm82mKlqePXumMg8lMDAQw8PDVAJrTU2Nymvz3LlzaG9vV/i+V1ZWcHBwAHd3d6Xt3dzcaI0BQgiKi4sRFhZGu5+uiMVi5Obm4v79+zA0NKTKAS0tLVWGFjc3NzE+Po7Ozk6lc7O3t4evr69SKaKlpSWsra2V+m4QQjA+Po7x8XEqzyE4OPhMuw6KxWI8e/bsvb2uf91hjIH3kK2tLVRVVSEhIQF8Ph8hISGoqKiAVCqFr6+vxrpfutmHUCgEn89X+ZJWJTnq5uYGNzc3DAwMoLCwELGxsQozDfmxyH81axGLxcjIyNA6NijH2toa2dnZmJ+fR2FhIfz8/BRa2W5ubqKmpgZhYWG4du2aTmPLkVcejI+Po6ioCGtra2hsbMTm5qZK7QV1XL16FQEBAeByufDz86Nmn1KpFDweDw4ODgovdV9fX5SWlir9fsdnomZmZoiJiaGy3AEovWzeZ/2Buro6JT0BExMTsNls7O3twdzcHLOzs0r18vLKivb2dqyurqKvrw+hoaG4deuWymPJm/jY2dnBz89P5azb19cXJSUluHTpErq6uhAWFqZ2hh4ZGYnW1lZERkZS17W67H97e3usrq5S5bxCoRDFxcVIT08/k5j+4eEh8vPz8fDhQ8p1rk2nUhsbG9rSWEII1tbWMDIygu3tbWq5/DtxcnJCRUUFDA0NwePxKMPI19eX8k69CZg8gXcLYwy8Z7S0tEAgEFC5Ac+fP4eVlRU1qxofH0dpaSlYLBYiIyO18hg0NTVhZ2dHKSRwHPmDWhVBQUG4cuUKGhsbsbOzo5A0NTIygtHRUdy5c+e1PRiurq7IycnB6OgoCgsLsba2htraWhBCcP/+/TN5EMk9HBcvXsRPf/pTPHr06NQZ2XKxpKGhIRQVFWF8fBx7e3tISUmhlYA2MjJSykBfX1+nXObA0cP44sWLaG5uRlRUFBYWFpRmYO+j/gCdnoCc+Ph4cLlcBAYG0oZWtre3qZdTW1sbvv3tb4PH46GiogIsFgvnzp2Du7u7ghvaxsYGW1tbWF5e1lgGGxgYiJ6eHiwsLGg0Jh0dHfHs2TMQQlTqRRznxo0bKCsrQ3p6OpaWltDc3IxHjx6pNIjZbDatV40OoVCIwsJCPH78WOHelXdvPE3FDIvFgoODA20/BUII5ubm8P3vfx9sNhvDw8NnLpJGR2trK0JDQzVWQTG8ORhj4D1hY2MDNTU1iIyMhKurK4CjGcHJJBp5CEEqlaK1tRWbm5uwtLTErVu3lG7aly9foqenB9HR0VQ/c1VoMgaAo4dIbGwsRCIRKisr8eMf/xgCgQABAQEaH8a64u/vDxMTE3h6euJf//VfkZiYeCaGgEgkAo/Hg7u7O3g8HhITE1FbWwuxWKxTkuFJ3NzcMDw8jG9+85vgcDgqx4mOjkZTUxPVEGdzc5PWI+Hj44Pd3V20tbVRuQEikQhzc3N49eoVlW3/pS99CS0tLe88f0AoFOLRo0f47ne/S5XNAUfGkq2tLWxsbGBqagoul4vo6GiFbYAjYa6AgABYW1tDIBCAw+FQL2G5dsDIyIhCYiFwJCr105/+VCulweTkZHC5XIVtDQwMYGFhAUtLS+r/ZmZmiI6Oxr/9278hJCREYxxc7jYfHBykGpCpQ95mWZMRJxAIUFJSgo8++kjJcKBLoDwLVldX8ezZMzx58gQ2NjbIzc3Fw4cPT9ULRFvm5+chEoleq6cJw+vDGAPvAY2NjRCLxXjw4IHCC0+d5c9ms6lM352dHVRVVUEikcDHx4dyU54/f16r6gPgyBjQNrbJZrOpeC2LxYJYLNZqP22RSCTg8XhwdHQEn89HYmIiurq60NXVhWvXrlHGkq709fVhZmYGKSkpMDQ0RG1tLSQSiUa1RE3nWlVVBUNDQzx69AhWVla4c+cOVZIYFxen4AU4mfj27NkzlbXdhoaGuHr1Kn784x9DLBbD0NAQrq6uuHbtGnVdHB4egsvlvvM4K5fLxV/91V8hNjZW4fMeHBxgc3MTGxsbmJiYwF/91V9hcnJSpbKjPLYvkUgwNTUFLy8vsNlsuLq6Kv3u29vbePr0KRwdHdV2/QOOKk8KCgrg4eGhkC8iEomwu7uLnZ0drK2tYWpqCgKBAGKxGL/3e79HeScAxeQ8uUSxnN7eXnz7299GXV2dxu/K29sbdXV1ao2BnZ0dlJWVKYgxHefkdXQWDA8PY25uDo8fP0ZLSwscHR3x8OFD5OXl4d69e2fS7OwkEokELS0t7/z6ZQDTqOhtoKof98rKCnn69ClZXFyk3W92dpYMDQ3pdKy8vDwCgNTV1WndeIUQQurr64lQKNS4XW9vLyksLCS7u7tU857x8XFSUFBAZmdnNe6vqenJ4OAgKSgooBr8VFVVEbFYTK3v6OggxcXFZG5ujnZ/uoZCOzs7JD8/n4yNjSksb29vV2o0s7i4SAoKCsjz5881jtvW1kaKi4uJQCCg/XwikYjweDzC5XIVtnn+/DnV4InD4SiMKRKJSHV1NSkpKSEvXrwgJSUlCg1+jjM+Pk5GRkbI4uIiqa2tVVr/tqitrSWLi4vk8PCQtgERIYQIBAJSUlJCOjo6yKtXr2i3kclkJD8/n/pbVSMiOU+ePCEymYyUlJSo3U4qlVLjFhcXq91WTklJCVlcXCR1dXVabV9QUEAkEgkpKysjbW1tGrdXdx9sbGyQp0+farx/eTyewr3xOtTV1ZHu7m7q78rKSuqak0ql5MmTJ2Rzc/NMjnWcgoICjc8dVc9PhrPl9cTxGU4F+a+kpKGhITx8+JA2xgqo9wycRCKRoKioCJcuXQKfz8eVK1fA4XDQ0NCgsdQQOJrBqYvXraysID8/H+bm5sjOzlYIKVy4cAE5OTlYWlpCUVERdnd3tTrn4+zv76OwsBB6enrIycmh3N6GhoYKtdzh4eHIysrCwsICiouLMTc3p3bclpYWtLS0IDs7mxKskWNubq4k8OPs7IycnBxIpVIUFhZiZWUFwK8y14Gj8EthYSFcXV2RlZWlcsZkYGCA5ORkJCcno6WlBRwOB7u7u/D398fY2JhC45nl5WVwOBxUVVXhxo0byMzMhEAgQHBwMNLT01FaWqo0/ujoKAICAuDs7AwzM7N3otR2PE9AHtKiq70vKytDWloawsPD0dXVRTtWfX29QkLk8e+cbtvY2FiwWCyEhoaiu7tb5TlWVlYiMTERwFHuS39/v9rPNDY2Bg8PDzg7O2N7e1tjsp5cqIjNZiM1NRUuLi7Iz8/H+vq6yn1U3ZOrq6uoq6vDw4cPNYbFIiIi0NHRoXYbTUilUhQUFMDHx0chL+V4ToO8CVpdXR2WlpZe63jHkfc+OSsBNYbXgwkTvGWWl5fR1NSE2NhY2gSe4wgEAq1qhOUlbOnp6TAxMcHs7Czs7OyQlZWFzc1NcLlcWFpaIiYmRq1QDt3DRyKRgM/nw9LSUmMCX3h4OMLCwlBTUwOJRKJ1DL6trQ3r6+vIyspSio0aGhrShiHCw8OpF0t3dzfCwsLg5uZGrZd/z5GRkXBxcaE9roWFhUrD5dKlSwgMDERLSwva2tpgbm6OpaUldHR0wMvLS2WOBN33o6+vj4SEBKpzpEAgwMHBAV6+fAmJRIK+vj44OjoiIyNDYf/jWfe+vr4YGBig9NtPvkzk/QtcXV3fWv4AXd+BuLg41NTUKIQ+Ttbou7u7KzXGEQqFEAqFCop3UVFRaG5uVgoBLCwsQE9PjzKi3dzc0NPTQ9spcmlpCWZmZlRWv5eXF0pKSpR0C+RIJBIMDQ1RFTe3b99GQ0ODyqoNmUyGubk5BaGi8+fPw83NDfX19ZDJZFrrZywuLqK9vV3r/BtbW1ulHgi6sL29jfLycrUGrRwWi4Xs7GzweDwEBAS8tg7AwsICDg4O4O3t/VrjMJwh79Yx8WEwPj5OXrx4QaqqqkhDQ4PW+zU0NCi4l+moqakhLS0tCsvoXJCbm5ukuLiY1NTU0PYvp3ODd3Z2kqKiIsplr80+cgQCASkuLibNzc0qz21lZYXk5uaqDS90dXWRlZUVletPnutPf/pTUlFRodX3vLGxQdrb2zVud3h4SBwdHUlmZqba3u+EENLY2Ej29vbUbiOVSsl3vvMdAoA0NTWpPLfGxkaFZaWlpWRnZ4cQQkh/fz+ZmZlRWC+RSMiTJ080fZwz48mTJ7Thi9LSUiISiQghR79xVVWV0jZFRUUKfxcXF9O6vE+GUWQyGe1nHB4epkIvx8nLy1NaNj09TXp6epSWy4938novLi5W+btXVFRQvwkd6+vrJDc3l0xPTyss5/F4CmGAV69eaQyL0FFWVqZTOFDOxMQEKSkpUbmvunu7trZWKYymC2KxWKfrlAkTvB2YMMFbYHZ2Ft/85jdx9epVxMTEaL3f/v6+ylnezs4Onjx5gkuXLikkvMlkMtpZiLW1NbKysnDt2jWUlpZSMr10LCwsoLCwEA4ODrh3796pZpryjoU+Pj4oLCzE8+fPqXWEEFRWVmJwcBAPHjzA+fPnVY6jyjNwkmvXriEsLAy///u/j8XFRQUvgSrMzMxo+wAcp7e3F6WlpSgrK8N3vvMdFBcXo6+vT+X27u7uePXqlcr1m5ubKCwsxG/91m+Bx+PBxsYGpaWlqKurU3CJt7S0KNXYp6amgsfjATi6pk4mfMob3vzhH/6h2s90FvzhH/4hHBwcaN3dd+/epcpBa2pqaFv1enl5YXJyEsCR6pyzszOtF8nFxQULCwvU38f1F44TGBiocI0BR98hXTKoh4cHZmdnlZaPj4/Dzc1N6Xq/c+cO6uvrlbbf39+HVCpVqyVga2uLhw8fYmlpCaWlpdQ9d+7cOSwuLgI48uwNDQ0pSSlrw6VLlzA8PKzTPm1tbVheXkZmZqZKjwXd7yrnzp072Nzc1BhuUQWXy2X0BN5DmDDBW8Dd3R2//du/jdbWVhgYGCAmJkbrFyzdzdrb24vFxUU8fvxYaf3e3p7amnlLS0tkZmZid3cX5eXlMDY2xt27dwH8qqGQvOPeWSCPwY+MjKCgoABdXV3Y3d1FfHy8VpoEBgYGGvXf5caFhYUFampqEBUVhdHRUZSUlODixYsq29iqMzSWl5fR3NyM4OBg5OTkYGpqCiKRCDk5OZiYmEBBQQFu3LihlOHu4uKCxsZGWpXB+vp6SKVSKtwyOjqKS5cu4dKlSxAIBKiuroZEIkFQUBAIIUohHXlpZ21tLVgsFg4PD9HX14eNjQ3q4e3t7Q0HBwdMTEzgwoULar+30zI+Pg5PT084Ozujvr5ewYixtLREUFAQRCIRVQlCdw0HBwejuLgYPj4+6OjoUHm9hYaGorS0FC4uLhgfH4eTk5PK69ve3h4rKytwdHTE3t4ednZ2VIaI5HkG8tCCVCrFwMAArSCXpaUl9vb2lLQB6HohqOL69evY399HSUkJ/P39cfHiRbS3t0MoFOLly5catQxU4eHhgbKyMoVeJqoghKC0tBQBAQGvfW3cvHkTPT09aG9vV6sYepL29nZcuXKFyRN4D2GMgbfExYsXceHCBYhEIjQ2NuLg4ACenp5qb+KTD1GJRAIul4uAgABKhOgkW1tbWumDW1hYICMjA3t7eygvL0dmZiaKi4upsruzxtfXFxMTE/jXf/1X3LhxA3t7e1oZA5o8A/Pz82hpaUFiYiKsra3R2dmJ3d1dBAUFISgoCC9evACHw8H58+e1aj0sFovB5/NhY2Oj8GIwMjKi8gsuXLiACxcuoK2tDZ2dnUhMTKRirgYGBkpJb69evUJ7eztu376tsr+EmZkZ9UL4gz/4AxwcHCj9DvIXfkpKCh48eAAjIyNcvXpVIa9kZGQEv/3bv43e3t43kj8glwn+4z/+Y1RXVyu9xLa2ttDb24uxsTF8/etfR3l5ObVOX18fzs7OcHV1hbW1NXx9ffH06VOVZYYAqH73IpFI5ctazs2bN8HlcpGZmYnKykqqNwId58+fV8gz0NS+V+4dkHs5FhcX4eDgoJPSpqmpKXJycjA0NITy8nJMTExQDcFeB23yEeTlxikpKVopbWozZmhoKEZGRtDQ0IDY2FiN2y8uLmJ/f18n44Hh7cEYA28ZQ0NDSihkamoKpaWlYLPZiI6OViv6MzMzg87OTo3ti7e2trRuaCQfVyKR4Ec/+hEIIejv71fZte209Pb2YnZ2FsnJyfj5z3+OpKQkdHd3o7u7GwEBAfDz81O5r4GBgVI7W+BXDYBMTEwUapQtLS2xu7tLvSAvXryIixcvYnZ2FhwOBw4ODrhx4wbtw661tRWrq6tISkpSqqyQ964/zo0bNyCVSlFZWQl9fX3ExcUpzOalUin4fD7s7Oy01nsYGxvDH/zBH+DVq1e0rXEHBwdRXV2NtbU1bG5uKonBTE9PIzU1FefPn0d+fr5aGd3TwOFw8ODBA5WZ/tbW1oiKisLS0hJKSkoUjAWxWIylpSW8ePECm5ubODw8xEcffQQ+n4+xsTEAivLWhBCYmJjAzMwMsbGxKCwsVNsci8ViwcTEBO3t7QgMDNTYVVLestjW1hbOzs5qk+gsLCyosACbzUZra6vW3jOpVIqpqSlMTU1RYYLDw0P8f//f/4eysjJUVFQgPDz81O2CXVxcMDc3pzI0Jm+PrE4V8STqwgTHCQwMxMuXL6munqqQSqVobGw88+uR4exgjIF3iJeXF7y8vCCRSNDU1ASBQABXV1eEhIQovKxqampgamqq1Qtle3tbKxfg3NwcOjs7ERgYiOzsbEp2dXZ2FoWFhQgNDX3tjOGtrS1UV1cjJCREKUYYFhaGsLAwjIyMoLi4GB4eHrQzdzrPwOLiIpqamhAfH6/0ALW0tMTq6qrSOO7u7nB3d6dK+KysrKj8jenpaXR1deHmzZsKssDHMTIyohV5YbPZSElJwfb2NkpKSqjvbHR0FCMjI0hKStK6PHRvbw9jY2PIzMyEnZ2dQukhcGQ8bmxsIC4uDnw+n+owZ21trdRlj81mUyEFeRjodamtrUVsbCz1QvH29qaVQ66srERSUhJWV1cVGgQZGBjg/PnzVI5IQUEBampqcPXqVZVeooODAzQ2NsLY2Bhzc3MYGRmhjBD5C+u4AXFwcIDExETw+XylZjtmZmYKSoMODg7o6OjAzMyMVveWPBfCxcVFqSUycBRmGx8fV8oZ0dPTg5eXF+7cuUPlReTn52Nqagqbm5u4cuUKOjs7qcoAR0dHhIaGat0iOzg4GDwej9YY6O3txdbWllZNw06Lt7c3jI2NUVJSojIPgcPhIDMz842dA8PrwxgD7wH6+vpU6dLc3BzKysrAYrEwPz+PJ0+e4O7duwodBtUhEAjUuoa3t7dRV1cHFxcX2i5v8pdmd3c3ent7ERcXp7NuP/kvHYXj8XFVBAYGIjAwENPT0yguLoajoyNu3rxJ7XM8Z0CekCZX+6PDwsKCSkyjw8nJCVlZWdja2kJhYSEePnyItrY2jS8DeU8BVVhZWSE7Oxt9fX1ITk7GL37xC/zmb/6m2jGPfy/yeK78c3l4eCgYAysrK3j+/LlCeIjFYlEGXF5enlJ8Xt6/4CzyB8bHx5X6DgQGBoLL5SoYA3Nzc7C0tKT+43A4Cg2n5LS3tyM0NBQeHh7g8XhIS0ujPS4hBEKhED/+8Y/BZrM1eq1KSkpQVFSkpIRICMH+/j52dnaws7ODqakp7Ozs4M/+7M9w/fp1mJubK6kKyv82MjKitPwFAgE6OjoQFBQEHo+n8H0bGhrC19cXSUlJaq/5zs5OhIWFwdPTE/39/bh69aqCEbq8vIzKykrIZDLo6ekhNDRU7f1/8rzlVFZWwsXF5VTNrHSV/nZxcUF0dDTy8vLw4MEDBUOms7MTly9ffueS2QzqYYyB9wx5l8AXL14gPT0dXC4X/f39uHXrltZyoHQ3skgkQlVVFYyNjZGZmUmbnHacsLAwXL16lZLsTUhI0MrFKJ9lq4uP0+Hp6QlPT09q5m5hYYHbt29TnoHl5WU0NDTg7t27asc1MzODQCDQeLylpSWw2Wz88pe/xPLyMqqrq3Hnzh2Vn1FfX19l9QVw5AKvrKyEkZERysvLcfnyZZSWlsLAwEDpxXQc8l8d4aqrqxEfH6/wu/j5+WF0dBRubm5oaGhQ6IB4HHd3d5w/fx7/7b/9N5ibmyv9tn/0R3+E+vr6U8vJ7u/v40tf+hKqqqqU1unp6VEvLUIIWltbFc7T0tISOzs7Cgbl2toadnd3qdixTCZTaBl8HHkdvL6+PjgcjpJw1HEmJiZw/vx5XL58GVVVVQoGBovFgpmZGczMzHDu3DkAR+JR//7v/46lpSXcvn1b5W90cHCAtbU1LCwsgMfjoaOjA5WVlbS6BpoQCoVYWlqijJpr166ho6NDIW/CyclJoS9DT08PJdRkY2OD8PBwpcoLS0tLbG9vw8rKCmKxGIWFhbh9+7bGniRnia2tLdLS0vDkyROqn8Hy8jJ2dnbOPPTI8AZ4KwWMHzi61sl2dHSQlpYWqtb34OCA1NbWktLSUlJdXa1WvvNkfbBMJiO1tbWEy+WSg4MDrfc7zt7eHikqKlKqyT++j0gkouRm1aHuOMfZ2toiJSUlpLi4mPzP//k/tZaF1XQMiURCOBwO6e/vJ4T8SvdgZ2eHlJSUkKqqKpU15XT6DXTf7/HjHxwckMrKSsLhcMjU1JTCvh0dHWRtbY2MjIyorHvPy8sjn376qdI5lZeXK9SId3Z2kq6uLlq53fz8/NfSH3jy5An5+c9/TjgcDuFyuWRra4tat7GxQWklVFRUKEnWSiQSUlpaSv0tk8nIZ599pnDuc3NzpKurS+m4XV1dCvfNs2fPyNLSEu05SqVSBU0BHo+n9j6RSqUkNzeXEHJ07WojUyyTyUhRURGZm5sj1dXVGreno6CgQElPoaioSGutgLW1NcLn80lpaSkpKyujZLlFIhGpqKggq6ur5LPPPiOHh4enOj852t6ndBweHpJPP/2U7O3tnYnuBaMz8HZgPAPvGRUVFXB3d0dAQADVIMXIyIhy9QmFQjQ3N+Pw8BBmZmaIjIxUmf3f3d2NV69eITY29rVaC5uZmeHevXt49eoVCgsLERISoqAcJm8AlJycfGYtSK2srJCUlIRf/OIXqK+vR0JCAubn50/dpAj4ldciNTVVaZZsYWFBlVyWlpbCzMwMd+7cURu37erqwqtXr3D79m2V36+RkRGVLT44OAgulwsrKytERUXB2dkZ4+PjWF1dRUZGBoAj/Yj+/n7Ku/Htb38bf/mXf4ne3l6EhoZSs2dnZ2csLy/D2dkZbW1tMDY2RkhICGQymcL3NDg4iODgYJibm58qf0CeJ9DT04PU1FTIZDI0NTVRuSmBgYHY3NzE/Pw8TE1NlTLV2Wy2wsxfnpty3Avg6uqqpCC4t7eHpaUlhWU3btxQ2fP+ZAJbXFwcKisrVYYfjusVGBgYwNXVVUkV8SSNjY3UvbS1taVQmqgNw8PD8Pf3V5rVR0ZGorW1VasGWXZ2dtTnlMlkGBgYQF9fH1gsFr761a/ihz/8IW3J8dvE0NAQycnJsLCwQGtr6zs7DwbdYIyB9wS5RnhsbKxa156JiQlVjbC3t4f6+nqIxWJYWFggMjIShBBMTExgcHAQoaGhWj+s/n/23ju6rfw8838A9l7F3ptYxC6JFJsokmLvlDSadZzYjpP4xBuXOGvvSWL/zsaJ4zhZexPHJdn12I7LSGIBQRIE2HvvTRR7772AAAEC9/cHfa8BopKqM4PPOTozRLno9/t+3/I8hBrdw2Tz18DAAEpKSrCzs4Pi4mIEBwe/chGR1dVVtLW14TOf+QwcHByQlpaGgYEB9Pf3w8rKSqqvQNVrIX6nQ2Bubq6yN4AMCg4PDxUGBZOTkxgbG0N4eDhu3ryp9msKDAxEYGAg9vf3UVlZCT6fj4cPH6KiooISEzIxMUFISAglZEOj0ZCSkoKVlRWq7BAfHw8/Pz90dHRgdnYWJiYmlBPfrVu3wGQyqWBgdnaW+mwu2z8g2SdgYGAAHo8HAwMDaoxsamoK5eXl6Orqwvj4OL7+9a/LPc6dO3fQ0dEBa2tr2Nrayh1tu1hO4HA4Mt365LTAycmJVDC3tLQEMzMzKfEfHR0daGlpgc/ny6T/5+bmYGNjIzW9c/PmTcrVUB5isRgHBwdU0BcQEIC2tja5DZTyODs7w+TkpNw+HRsbG7S3tysslSiCTqcjJCQEN27cAIvFQmJiIk5PT9He3o6oqKi3EhCcnp6ipqYGhoaGqKysxLVr16jGWkUS0BreEd5mWuKTgqo018HBAfGb3/xGJq15mVTdwcEBUVpaSgAgqqqqLv0cVbkJSiISiQg2m00AIMrKyi6VkqyqqlIp6dvf30/U1dVRf190wtva2iLKy8uJiooKqZQ1ieRrWVtbI54+farQcU3V6z44OCCYTCZRW1tLfPDBB0RRURExPDys9D7qfG5zc3PEs2fPiLi4OLkpckXH4vP5RFVVFcFkMok7d+4QY2NjMvdpbW0lNjc3iefPn8s4NZaUlCiUl5bk5OSEKCkpof4+OjqSkXgWi8VEa2sr8eUvf5mwtrYmOBwOwWazpf61trYSKysrxNOnT6WOdxHS8Y8gCKKjo0NGvpdEIBDIlB2ePn2q1m0J4vy7q+j2q6urMvLZJDU1NXJlhysqKoitrS2595GEyWQqLVvs7OxcSqqcZHJykigqKiJ4PB4lcbyxsUEwGAy13BMVcdkygUgkImprawkWi0WdDySPMTc3R5SWlko5I6qLpkzwZtBkBt4yCwsLGBgYwPvvv/9Skfzm5iZEIhEqKipgbGwMJpOJ+/fvv1TToTz6+vqwuLiI+/fvg8PhID4+HtXV1ZSSoapxKENDQ/B4PLnjdgRBgMPhwMXFRSqdbWNjQynLAedKc5mZmRCLxWhtbcXBwQHc3Nyo3TH5WpqamgDgpbzSTU1NkZmZiWfPnuFzn/scmpqa1FJ7U4RYLAabzaa84slRNwaDgaysLJXGTmTZoaysDJaWllhYWMDCwgJoNBrMzMwQGhqKqKgolJWVAYBMxiY7O1st/QFST4BE0uGRIAhK0jYqKgrJycn4whe+gNPTU5ndH9m5/9577+EXv/gFlQExNDREYGAgNRpK6hbs7+/j8PBQZlSSREdHBwRBUPP+9fX1cuWOydtqaWlRGQ3gvDygSLDL3t4efX19MtmEs7Mz8Hg8ubLD6enpePr0KfLy8hSWyGZnZ+Ho6KhUH4Q0HSKbMVUhEolQWVkJR0dHamzQ3Nwch4eHsLGxQW5uLtbW1lBaWgonJ6dLZbAuS1dXF9bW1pCQkKBw8ohsEF5cXKQyV6/zOWm4PJpg4C0yMDCAw8NDpUpp6lBfXw9jY2Pk5+eDw+EgKioKIpEINTU10NLSkhHDuYhIJFJ5AlpaWkJPT49M6UFPTw+ZmZk4ODhAWVkZbG1tFc7qA+eLytHRkUwwwOfzwWAwcP/+fZlpgZCQENTX11M2tCR0Op3SCiAFnHR1dbG5uYlnz54hLi5OoT20JISS9Ozs7Cz6+/uRmZkJDoeDgIAAMJlM2NnZKVywFDEzM0ONHkq+fh8fH7i4uIDBYCAyMlKpVwOXy0VZWRkyMjJgZWWFGzduUGn3/f19dHR0gM/n46tf/SpycnJkxuuA8yBpa2sL//2//3e5j/HDH/4QL168oJQs9fX1qS5+8sQfGRlJfc40Gg2+vr4oLS2Fr6+v1KJoamoKKysrtLe34+DggOqS53K5GB0dxd7eHvW8tra2KJlbZdy9exdNTU0ICgoCjUZT6uyZmJiIqqoqZGZmYm5uDteuXVMq7pWamkopcpKQkx7yoNFoePDgAZ49eyY3oCcIAv39/WrpGMTHx6OxsVFlXwf5nUxLS5P6Hjk5OWF5eZn63Ozt7aleH2VaHhdR53wAnKtdTkxMICIiQm1VQXJ0eXl5GUwmE/b29koVKDW8OTTBwFuirq4ONjY2asl4KoLH46GsrAxxcXHUuBR5MtLS0kJqaiqOjo5QVlYGR0dHheM9JycnCoVxuFwuampq4ODgoFRxzczMjNqNMBgMeHt7y91BS+4wSVZWVtDe3o6HDx/K3Rlra2sr9LUnIQWcmpub8Yd/+IcoKyvD0dGRymDAxMQEx8fHMrs+kUgENpsNOzs76kROEASsrKykdl0uLi5SPvDyIHdxDg4OUuIvkkGIvr4+Hj58iNbWVszNzck1tJqfn8fAwADee+890Ol0REZGSkkCm5ub4969eyAIAt/73vcAQK4qHJ/Ph4ODg9z+gampKURERMDFxYU6Lo/Hw+TkJL74xS/iRz/6kcLgNSMjAxUVFTJ1cdJ7QFKa2MjISGYBqaioQEpKCrq7u2VUJ2k0GnR0dKjF5OjoCA0NDSoXWR0dHejo6IDL5aKnp0dllkhbWxsODg6Yn5+Hm5sbTk9PIRaLlc7Ia2trIzMzE0wmU+a9qa6ulgliFWFmZibXA4FELBaDw+Hg2rVrcl+3nZ0d5XchCdnrMz8/DyaTCQ8PDyqLJo+LPRkXIQXL/Pz85PZAqAM5Qr26uorS0lLY2toqVAbV8GbQBANvGLFYjJKSEty5c+elOuPJJkFSGlYRJiYmyM3NpZQFg4KCZBaAo6Mjmd0SQRCor6+HQCBAVlaW2jKm9vb2yMvLw+TkJBgMBkJDQ6WUDE1MTCi3NuC87HB4eKhwhl5deDweKioqEB4eTqnzvXjxAuXl5dDT08Pdu3flpnEtLS2xu7srFQxMTU1heHgYaWlpCk+K5K5rYWFBafAzOTmJ0dFRpKWlySwo8nZgMTExWFlZwbNnz6gJA+B8QT09PZU6+SrSPmhoaEBCQgIODw/R09MjFQT29vYiPDwczs7OYDAYUv4FpO9AXl4exsfHMTExgevXr8PAwADW1tb48MMPcXR0JFWy2draojI5Ojo68PX1xejoKPVeDA4OUqUDUrhJXrq8tbUVvr6+oNPpCgNkgUCAxcVFtLa24l//9V9haGioUhCLIAicnZ3B2NgYIyMjODs7U1mKIZsJ3dzcUFdXpzArIImpqSnCw8PR0NBATf6sra1RqofqkpiYiPr6ehm/goWFBXR3d1Nd+vJQpYVBpuqnp6dRWloKHx8fuUqKXC5XbvZkf38fDQ0NcHR0vHIQcBEHBwfk5uZS8tXXrl17a82Pn3Q0wcAbhMvlorS0FLm5uWpL1MqDLAtc5gdJ7qiGhoYoQRKyXnt8fCz14x8aGsLs7CwSEhLUMj2SB+kJ0N/fj/7+fsTFxcHa2prKDBAEATabDTc3N7UmHsj7yTtJjY6OYmZmBvn5+dDS0sLU1BQAwNfXF76+vpSk7enpKby9vaW8ECwtLbG6ugpXV1ecnZ2hsrISzs7Oasu3urq6wtXVFVNTUygtLaU08U9PT8HhcODq6qowoyIWi+UGWWQduLy8nPKO8PLykuvhYGZmRonNAOc1+rOzM1haWsLS0hIjIyNSC/Dy8jJVq73YPyDZJ+Dn5wcmk0k9ZmdnJ/WePHnyBA8ePIC2tjYGBwcRHx9PPR8/Pz9qodHR0cHs7Cz1+iMjI9HZ2Sl1e+B8/NHQ0JAy8pqbm4O7u7vMa9XV1aUC2e985ztYX19XqodPMjc3h6985Svg8/kyLoskWlpacHBwgKurK4yNjREdHY3a2lpoaWmpbdzl7OyM/f199Pf3IywsDG1tbWp7UpAYGRmBz+dTHgxkH425uflLB8wkpNHW5OQkmEwm/Pz8pMScLv7OJCcEcnNzX8tCbWdnh9zcXGxublL9MDExMZqg4A2iCQbeECsrKxgaGsL777+vtub4RXg8HphMJuLj49WqhcsjODgYQUFBaGpqwvHxMZKTk3F8fAxnZ2esra2ho6MDQUFBryzyDwsLQ2hoKFpbWyld/Z2dHTx58gTJyclK672ShIeHo6enR2ohOTs7A4vFgpeXl9LRRn19fWqnNTk5ifLycujq6iIuLg4WFhYYHR2lvATS09OvZK/q7e0Nb29vjI2N4f3338cXvvAF/O3f/q3SYymrzWppaeH27dvIy8vDL37xC4VWvJGRkairq6MWxdraWqlUdVpaGsrLy5GXl4euri6p+qykfwEAKd8B4HxxW1xcxPb2tlStOTc3F6WlpXjw4AHOzs5kjIMyMjLAYrFgYmIiVf82MjLCycmJ1G0XFhaws7NDfa5+fn5gs9lygwHgPIU9MjKCvLw8Kl2tTN1OLBajt7cX//Iv/wIWi6VQH//s7Ayrq6sYHBykylhpaWkoLi5GVVWVlA+C5P9raWnB2NgYxsbGMDIygp2dHQYGBvDzn/9cocaBKpKSklBbW4vAwEC0t7dTjpyvGjJgJ/1BAgMD4enpiePjY9jZ2UEsFqOhoYHye3gdbqYXsbGxQU5ODra3t8FkMmFhYQEHBwdNUPAG0AQDb4DFxUX80z/9E771rW/h5OREaQOTIqampjA2NoaHDx9eyjZVHjQaDfHx8Tg9PUV1dTUqKysRFxendBf7so8XGxsLkUiEH//4x/jSl76EiooKLC4uQl9fX60sycWFZHZ2FgMDA8jIyLjU4k2eAE9PT9Hc3Awul4v3338fXV1dL/3aDw4O8OLFC/z7v/87zMzMwOFwEBwcrHBhU5QZIGvD5ubm6OrqgpeXF7hcLsrLyymHSzJVLNlPMT4+TqXaSbS1teHl5YWJiQmsra1RdfqzszPKSe+73/0udHV18ZWvfAUGBgZwcXGBk5MTwsLCwGAwQBCE1Hujr6+P27dvo6WlRea5Hx4eYmpqChMTEygsLER3d7fU9TQajeqY39/fx+DgoFQgp+ykTxAEysrKqLq/k5MTent7lQYDpLgQuWjv7+/LXVi1tbWp7Blwnq0g3TaVZR+EQiG4XC64XC6Oj4+xuLiIk5MTfO5zn6McSa+ykKWnp+ODDz7AZz/72Uvf97KQ/iAjIyNgMpk4Pj7Gzs4Ourq6cO/evUt7k7wKrK2tkZubi93dXXz2s5/Fl7/85Zf219CgHE0w8AZwcXHBj370I9jY2EjtPIDzWmNwcLDSBbGurg6mpqYvPXVwEV1dXRgZGaG3txfR0dGv9Ud/cnKCqqoq3L17F1/72tdw584dCAQC9Pf3y3gJ6OnpwcvLC05OTnK7s6uqqmBlZfVSTmx6enqIiIhARUUFvvnNb2J+fh6Hh4eIjo5WePJWJnJUW1sLGo2G/Px8LC8v4/DwEAEBARgcHERpaancoEDeGNlFt8O5uTlsbW3h+vXrcHZ2xtnZGVpbW3F0dARnZ2eEhITA1NQU+/v7eP78ucx7wufzIRaL4evri//3//4fOBwOgPOsgIeHBxITE3F0dAQ9PT2kpqbi5OQEi4uLaGpqwtnZGfLz8/HjH/+YUsOUpLy8HCwWCz/5yU+oy0xMTODt7Y2MjAykpaWBxWIBAOLi4mBmZoawsDD09/dTRj+PHz+WOa6hoSG4XK7Mb6K6ulrGvyE8PFyhEuDs7KyUuFB8fDzKy8tVCmSdnJxgbm4O2dnZlBKiokycjo4OzM3NpQKMmZkZcLlcNDQ0SFk4q8vu7i6+9rWv4ebNm2AwGEhJSbmyr8RlCAwMhEgkQlhYGH7wgx/gi1/8osr+itfJyckJ6uvr8ed//udUkKbh9aEJBt4gpqamiImJkbqMlDWV3PWam5sjODgYJycnePr06WsxHBkdHcXk5CTi4+PxD//wD0hMTMTk5CSKi4sRFxeHa9euvbLHam1txeHhIbKzs6GlpUWlQR89eiT3JMvn8zE9PY3nz59LpWS///3vY3Z2Fn/wB3/w0mlTSX0HDoeDtLQ07OzsULu5e/fuyTT8aWlpUbVcEnLxTkhIoJ6TpaUl5ufnAZyPRYaEhMgNCiTLBDweD2w2G97e3lK7cGtrawwPD1O1e21tbSqlvri4iPLycgDAF77wBfzpn/4ptdiT6Ovr4/r162AwGODxeDKOep2dnYiIiMDw8DDEYjEMDQ2pXovJyUn09vZiZWVF7u746OgIaWlpuHnzpsw4aF9fH1JTUxEUFASRSETpQfj4+GBjYwNFRUV4+PCh3AArIiICHR0dUiWG0dFR2NnZyTyOs7OzjJQxcB5o9fX1SdXZ6XQ6rKyssL29rdTsisViUZ9BTEwMSkpK1M4atbe3486dO1Rzo7JAQhHkKGNgYCD8/f1RXV0NY2NjxMbGXuo4l2F0dBTT09OUHXJ8fDzKysoQHByslsLiq6a/vx+rq6vIy8vD3NzcG3/8TyRvVOLoE8plFbR2dnYIBoNBACAqKysvpfCnSjlsfX2dKC4uJl68eEFdVl1dTZydnREEca7o1tTUpJayoKrHWlxcJAoLC4nV1VWZ+62srFAGN+ry4Ycfyj3eZZ/XwMAA0djYSP1dWVkpdf3p6SlRVVVFMBgMqcfq6+sjNjc3CYI4NzYqLi4mRkdHZY4vFosVKhsODAwQDAaDmJ2dJXZ2doju7m6is7OTKC8vlzGwUXUsgjhXfiOVJ+vr6xXerrKyktjZ2SGYTCZ1mVAopAx6dnd3pdT3eDwepRhYXV1NHB8fSx2vt7eXmJ6eJgji3MjoorrexfeUpKuriwBAFBYWElwuV+HzlVSd3N3dlVGhlGRhYUFG2a68vFzmORPE782GFNHe3i6jfjgxMaFSdZIgztUqL77uoqIilfeTpLm5mVhZWZH5Dq+vrxNFRUUKlRlJWlpaiKOjI7Uf78WLFwSDwSAmJyepyyQfu6enR8YUS12uYnZ0cnJCFBYWSj0fjQLhm+FqnWwaXiva2toQCARgs9m4d+8eGhoaUF5ejr29vSsfk8/no6ysDNPT08jPz5fqTJfcndFoNMTFxSE5ORlVVVVoaWlRy7dAEqFQiPLycqyuruLBgweUBoIkDg4O4PF42N3dVeuYPT09iIyMxIMHDzA6Oornz59f6jmR1NXVUY1zJNeuXcPm5ib1t66uLpKTk5GTk4OlpSUwmUwMDw/D0tISOzs7qK+vR0dHB3Jzc2VmuoHz91BRSSEkJAS5ubk4ODjAP/3TP+GP/uiPYG9vj8zMTLkpWWX15rm5OZSUlCApKQkcDgdmZmZobm6Wud3s7Czc3d1haWmJwMBASplRcgbewsJC6vtVXl5OjTbeu3cPjY2N1HU8Hg+rq6vUjrGgoAAlJSVKvydnZ2fgcDg4Pj4Gm81GdnY2urq6wGKx0NbWBrFYLHMfgiCo/gnSVEgeLi4uWFxcpP6enp6Gvb293NIbjUaDvb09VldXZa7b3t4Gl8uV8Sfw8fHB5OSkyt9BVVWVTFng1q1bMn0Titjd3aU0IC5ia2uLgoICqtteIBDIPYaTkxNWVlZUPtbMzAxKS0shFouRm5sLb29vube7efMmoqOjUVRUJDUS/DoYHBxETU0N8vLyFD4fDa8PTTDwjnFycgIWi0WlN/X19ZGSkoLMzEyMjo6ivLwcs7Ozcu8r72RFEAQaGhpQW1uLtLQ0REdHq/U89PT0kJWVBR8fH5SUlGBiYkKt+/X396OyshLJyckqVcnIcoEqBAIBVldXKb2C+/fv4+TkBO3t7Wo9J+A8bVxUVITr16/LCK4EBgZiZGRE5j40Gg23b99GTk4OjI2N8etf/xp+fn4IDg5GcnLyladCxGIxNjY2cO/ePXzxi1/E4OAgOjo61A66SEnjra0tPHjwgFr0wsLC4OzsDCaTKXUsUi8AOBdnMjMzQ319PQwMDKRKIWRA0NbWhsjISCo4If9LNipKOv6R12dlZYHBYAA4DzwlNR06OzvBYrFw9+5dJCQkgEajQVdXF/fu3UNGRgb8/PzA4XBQUVFBBXnkZ1JRUYGsrCyVTXihoaEYGBiASCTC4OCg0nHViIgImQWaIAjU1dUplDZOSEhAQ0ODwmN2d3fj5s2bMs/TxcUF6+vrChdvSZQpHZLcunULqampqKqqkhtkODg4KA0GFhYWUFpaCi6Xi9zcXPj5+al8Xqampnj48CGmpqaoQPJVwufzUVxcDAMDA6qUqOHNowkG3iFOT09RWloq14KU7MjPysqiJGn7+vpk7i/ZWT82NgYGg4GgoCBkZmbKjIBJomghInckQqEQJSUlCnfy29vbKCoqgrm5OXJyctSyMqbRaIiJiUFra6vS28nbGd68eRM2NjaoqKhQuYhyuVw8efIEaWlpcHJykrleT09P5claV1cXoaGh+M1vfoO2tjZUVVVBKBQqvY88Xrx4AQaDgTt37iA1NRWenp7Izs6Gp6cnysvLUVVVhdPTU4X3X1xcRHFxMWJiYuTKuLq7uyM+Ph4ffvghdRxCQumQy+VifX0dn/70p8Hn88HhcMBms9HX14fg4GAUFxdDJBLJSCKTUrkjIyPw9/eXyWKYmJggIiICdXV1GB4eRlBQEGZmZlBSUgJnZ2fk5ORIBR6Sn5mlpSXS09ORmZkJPT09VFRUYGhoCN/+9rfh5uam1rSJq6srFhcXlXoPSOLi4oKFhQXq75qaGty/f19h0GFhYQE+ny+jjAicv6dbW1sKp0ZSU1Nlejku0tLSovZcva6uLrKysmBnZ4fi4mKsr69LXSfve7mysoLS0lLs7OwgNzcXQUFBKh/nInFxcbh+/TqePXuGg4ODS99fHsPDw6iqqkJOTo5cHQ0Nbw5NA+E7glAopARgyB2nohMDaYW7vLyMsrIyGBsb4+7du5S4zMbGBlpbWxEQEKBW45M6J6AbN24gICAAjY2N4PF4VHpZLBajuroaenp6KCgouPQYlYODA8bGxrC7u0uJIEmyuLgIOzs7uTPOXl5esLCwwNOnT1FQUCA32FlZWUFnZyceP3585Z38/Pw8JiYmkJGRQe2KeTweqqurIRaLkZCQoHLB4nK54HA4uH79ulTHP/l+2djYIDs7G3w+Hw0NDTg9PUVUVBTVyEn8borCzMxMpfiMmZkZHj16RDWDamlpYWBgAMvLyzA0NERiYiJ+8Ytf4N69e9SivrW1hba2NvzJn/wJ2Gy2zOJlY2OD8fFxbG1tIS8vD6enp1Q5hHwNdnZ22NvbwwcffIDY2Fi4u7vL/f7p6enJBK4kbm5uWFlZwd7eHoqKivAHf/AHaqenKyoq0NHRgX/5l3+BmZkZAgICFE7IhIWFUXr98/PzMDMzk/v9kyQ5ORkVFRUyUz1sNlvp70xXVxf29vZYWFiQa5GsrDygDHIUsrW1Ff39/UhJSZHZVW9ubqK9vZ1S+ntZ7Ozs8PDhQ2qiR9lYpzJOT0/BYrHg5+f3yu3PNVwNTTDwDiASifDs2TOF2vyKIPW9j46OwOFwMDo6iqmpKXzmM59Bfn7+KxfqoNFouHfvHng8HiorK/HNb34T3/rWt3D//v2XGktMSkpCYWGhXN347u5upSpuVlZWyM/PR1FREdLS0qSmDEZGRrC5uflSI4gzMzOYm5uT6aY3MDBARkYGzs7O0NDQgJOTE8TExMgVUWppacHR0RFyc3NVpkD19fWRmpoKgiDQ0dGB9vZ2lJSU4OjoCMnJyWorQmpra+O9996jRjC/+c1vSgkHkaY2ZOnF0tIS29vbGB8fB51Ol1KkE4vF2N7eRnFxMUJDQ2Fvbw+CIKh/AKj/39/fxw9+8AMkJCRgdXUVtra2Mj0jpqamODw8lAoGVlZW0N/fDzqdjpiYGAwNDWFnZwd1dXVqLRYEQeDw8BCZmZlITU3F3t4eRkZGcHR0JHUbe3t7+Pr6Ql9fH15eXnjx4gVGR0fVUgrU1taGnZ0dlpeXqQxTf38/QkJCVAaat27dQnFxsdxgoLa29qXUBWNiYnBycoLy8nJ4eHgAOA8wmpubKRGfV3kuoNFoSE1NxczMDIqKipCZmXkprQ9yciErK0tptlLDm0UTDLxlxGIxtbOVt/uVTPEqwsTEBF5eXhgfH4epqSn4fP6ln8dlmgT5fD4EAgHCwsJAo9Gwubn5UsGAZLlAcvSytbVVrXEqXV1dPH78GOXl5VQ/QFNTE0xNTRXWgC9ibW2Nra0tqZFKUqhHso5rbm6Ovb09WFhYADhfIO7fvw+CICiVRdK4aGlpCd3d3YiOjr70eBmNRkNUVBTa2towODiIvLw8TE1NqW37enh4CDabjX/9139FSEgIurq6YGlpSWUw3Nzc0NXVBTc3NxAEgcLCQhQUFEBfXx8sFksqGKDT6ZiamsIvf/lLGflhSc7OzlBYWIitrS1MT08jIiICAwMDGBgYAEEQuH79Ory8vGBiYoKjoyNYWlpSmgmOjo7IzMykvuv7+/uwtLREZGQkOjo6lDphAr9P8x8fH1OqhBf7YwiCwPr6Ojo6OqgSSlpaGkpKStDf3w8fHx+VgmCRkZEoLi6Gk5MTeDwelpeXFaoaXiQmJgYtLS1S3+nLlAeUQUoFd3V1Uc6LVwkCLnMe8PT0hKurK6UCKq+ZVhKhUIiKigr4+Pi8cs0UDS+PJhh4ixAEgWfPnslYzZIYGhoqdRQEzoOJyspKODk54Qtf+AIGBwcREBCAkpIS+Pj4KHUnI1H3hCESiVBdXQ1dXV0UFBTAxMQEKSkplN+B5Kz9ZblYLuByuTg8PFRbX4FGoyEpKQkffPAB/uIv/gJ9fX1q2bWSkNKv5Gz78+fPpWRySUJCQtDZ2UmZ0Ug+PnmS7+joQGpqKv7rv/4Ln/70p5U+rqKTr1AoBJPJxK1bt/C9730PKSkplBWttbW1UnGkvr4+bGxs4NGjR6iuroa/vz/VpGdtbY2IiAgYGBhQCyKTyURqaqqM3TF5/IWFBRAEAVdXV+jo6CiUAC4pKUFeXh709fXR1dUFGo0m5ej44sULsFgsjIyMoLu7G5///OcRExMjE0iOjY1RBjrOzs4YGxuT8l+4yPb2tpT4T29vr9xmPnKSgMxU1NfX49mzZ1TQcFEQDDgPhNzc3ODu7k7tYslmRVKYSF1sbW3R399PuQJetTwgj42NDXR2dsLS0hIsFgtnZ2cYGxuTa56ljMPDw0v5kWhrayMnJwejo6NgMpnIzMyUm/0aHx/H+Pg4MjMz34issYbLowkG3hLkbiw9PV3hYk+a0Ci6fmlpCZ2dnUhLS4OxsTFEIhFOTk5gYWGBgoICTE5OoqioCLGxsSoXVVU7gt7eXiwtLSE5OVnm+ZB+B6TLYXJy8pU6giXLBdXV1XJPtCKRCIuLi5iZmZExnDEwMEBAQAC+9a1v4fT0FGw2m7pOT08PgYGBCsWU9PX1qcVxeHgYx8fHcrMSBgYGSjMvHR0d2N7eRllZGTw9PdWyjL3I8vIyOjo6kJOTA11dXbx48QLA761ot7a2wGQyYWJigvj4eOq9FggEKC8vR1BQENVNTxAElcLOyMjA/Pw8CgsLKa+G6upq3Lp1SyqII0WSQkNDIRAI0NPTQ6XRHRwc0NPTI/OcSXVJMqCQpyLo6+sLd3d3HBwcwN3dHYmJiXIbTWdmZqQ++5SUFEqkSB6NjY1SpSDSEElZNqG7uxt2dna4d+8eWCwWMjMzKSdGSc7OzqQUGYHz9zQ9PR3/5//8HwwNDcHW1hY2NjZqLXLJyckoKytDXl7eS5cHgPNzQH9/P2xtbZGdnQ0ajYaqqiqkp6dT00cZGRlq98tIOlJehhs3bsDT0xMMBgPh4eFUM+XZ2RkqKirg4eHxWqTONbw6NMHAW6K0tBRJSUlK0+tkMHBx50COQRkYGEidTLS0tKQWdR8fH3h7e6O1tRVdXV1ISUmRe/JVlhkgG/DCw8OVpqhpNBoSExNxcnKCiooK2NnZqRwtlHeMmJgYfPDBB3Bzc0NnZycODw+lbqOlpQVXV1fExcXJPfmWlpbi61//Otra2qQmEPh8PkZGRtDb20tdpqOjg8DAQKlAaWBgAEKhEFFRUZd67gsLC+jt7UVkZCTu3LmDqqoqSvOdnOl2cnJSmebv6OiAUChUukhcu3YNubm5ODw8RGVlJbS1tfH8+XOcnJwgOztbaR3Wzc0Nrq6uqKmpQUZGBjo7O2WstB0dHalggMlkyqR0AwMDMTQ0RFkT9/b2wsXFRep9jI6ORkNDg1SvhUgkknJJLCwsxOPHj6W+fxsbGzKLETni2dXVJfOdIs2XJI9hZ2eHzs5OhSU2cnxR0r5X0W21tbXh4eFB1eKB86Dr5z//OeVYubGxgcnJSZXTJZaWlrCzs4OzszN+9rOfIS0t7crlgZmZGYyOjlKTGvK4ceMG3N3dUVxcjOjoaLUyEJubm9TnelkMDAzw4MEDdHV1YXJyEi9evACXy72y+ZeGN4smGHgLlJeXIzo6WmX3spmZmUwn9e7uLmpqapCQkKCWZDCZvhYIBFQ3emxsrMqTEJ/PR1VVFWxsbC7VgGdoaIicnBwsLy+jpKTk0nKmDg4O6OzshJOTE8LDwy+VspyenoaXlxeMjIxwdnaG09NTKvjR19eXSW2fnp5idHQU/f39AICsrCx8+9vfxvvvv6+yV4O8nsfjgcPhKLU99vT0hKenJ5aXl1FaWirXs/3s7AxMJhNhYWEyI2qKsjakvDWbzcZf/dVfUelyVdBoNOjr6+Mb3/gGJW5FXn7t2jUEBQWBRqOhsbERd+7ckTmmh4cHmEwmgoODMTs7i9PTU5kg5+KIG5kJy8/Pp5pkk5OTUVlZKeXu19XVRYkdSeLq6ornz5/j6OiIMmni8XjY3NyUG3SSPSgXszuLi4tYW1uT6iW5c+cOOjo61A4A2Ww2PvWpT6GyshKWlpawtrZWWS8Xi8XY3d3FxsYGFhYW0N3djT/+4z9W6/EkGR8fx+TkJDw9PeUGAWdnZ1JZOSMjIzx8+BDNzc2YmZlR2YNzfHz8UvbqZ2dn4PP5mJ2dxde+9jUIhUKN4+BHBE0w8IZhs9kICwtTKxVHNlqRdHR04Pj4GI8ePbr0D4ycTd7c3ERJSQlu3LghNdcr2RXe0tKCw8NDpKenX7nbl5x0GBgYQElJCRITE9Ve2P/jP/4DRUVFlwoEgPMuZXIXe//+fVRXVyu1kdXT06PS6VwuF7/97W9hamoKHo8nZcxDEAQsLCxw48YNGBsbw8PDA7Ozs1haWgKXy0VWVpZaUyDke0KqyJmZmUFHRwdzc3Po7e1Fdna2WvoMACjHSWNjY+Tl5aG+vh7Nzc2IiopSWRKqra2Fq6srsrOz4eXlJTUBsbm5iebmZrS1teGnP/0pfvvb32JsbAz6+vpwcXGBo6MjdHV1cf36dXR1dWFjY0Nh3dzJyQlLS0twdnZGaWkp0tLSpLQGrKys4Onpie7ubty+fRs8Hg/6+voKv9spKSkoKSmhShYcDkdu4ACcN4Tu7OxIBXW7u7sYGBiQWUStrKzUVsIcHx+Hp6cndHR0kJCQgPr6epVCQcB574G1tTWsra3x/Plz/PSnP1Xr8UiGhoYwPz8PX19fpdMVq6urcjMAcXFxWFlZwdOnT5GZmal0wb9K0+HQ0BBWVlagpaWF6OhoCIVCrKysyM0saXg30QQDb5Da2lr4+/vLpGUVoaWlRfUBVFRUICIiQu5o0mUgd/qjo6MoLi7GvXv3qB//5OQkRkZGEBsbe6W6oTxCQ0MRHByM+vp6CIVCSp9AGTQaDdHR0TLTBcqYm5ujxuSA8xKAnp4eDg8P1Zp04HA4ePDgAdhsNjw8PGSU2ciFhMvl4vT0FJ/61KcwNzd3JUMnctxrf38f8fHxMDExwQ9+8AOFfRaSJ2eyRMTn85GSkgJdXV2MjY3By8sLzs7OKC8vR1hYmMLvGIvFwo0bN+Dq6gqBQIDm5mapxczGxgbBwcHg8/m4c+cOleY/OTnB0tISWlpaIBQKIRaLkZGRgcrKSnA4HNDpdDg4OMDV1ZXauQcHB4PFYmF0dBR37tyRG9z5+vqitbUVc3NzePHihdLpDzqdjps3b6KrqwtmZmbw8vJSGoSRQkn37t0Dn89HTU2N3PFV4DwguDhNcpGzszOMj49TtW8TExPweDycnZ2pPRLc2tqqtPnzIj09PVhdXUVQUJBaI5bLy8sKmwYdHR3x4MEDsFgseHp6qsxmqGJxcRHDw8Og0WgIDg5GSEgIdZ1AIICtrS1u3bpFTXpoeLfRBANvCPKkdJnFnCAIDAwMQCAQoKCg4JXKdJIiQg0NDfjud7+L999/H+Hh4S81k68IOp2OpKQkcLlc/PKXv8Tw8LBSj3jg99MFkmN8yhgaGpLZgSQkJKCsrEzlzqS/vx/BwcGg0+m4f/8+VU+XxNLSkkqxcjgc9Pb2orOzU2oc7jKIRCI0NDSgqKgIExMTcHFxQX19PUQiEYDzvoCQkBBoa2uDTqdDJBKhv78fKysruHfvntTCury8TJ1ss7KywGazIRKJpGxfCYIAg8FAVFQUNeYoT63u9PQUdXV1ePToETo7OymHP0NDQ1y/fp3KJpWVlaGtrQ0ODg5wc3ODSCTC6uoqhoaGKEtqgiCQlZWFH/3oR9R7dNEHw8DAAIaGhvjVr36F1dVVtTTpm5qasLCwgO9973tKyznm5uY4PDyEUChEcXGxTH+CJJGRkZT0sSIqKytl1A0TExNRV1en8vsMXE5ciMPhYHFxEenp6ZcS9jk6OlIa/GppaSE7O5uSek5PT7+UGNfh4SHa29splcqMjAyl339HR0ecnJygra1NbSl0DW8HTTDwBnjx4gW+973vwdnZGdPT05e6769+9Sv827/922upu52enoLL5cLe3h56enqXNiS6DARBoLu7G66urmqPUiUlJSntIidZXFyUkc8Ffp+aVdYhfXFWXFdXF/r6+gozCmdnZxAKhfD19cW1a9fw7NkzPHjw4FKB2vb2Nmpra5GdnQ1DQ0NMTEzAxsZGKmuyubmJuro6iEQi/PM//zNevHiB3NxcuQuD5MQAcD47X11djbOzM9BoNKpen5SUpLRPhSAIKg1Po9EQGRlJddpLMjAwAG9vb/j5+YHJZMLNzQ1aWlrUtAPJ1NQUGhoaIBQK5e4MxWIx+Hw+Tk5OYGZmhpWVFbW/52dnZxgYGJAZBSRfL/n/QqEQurq64HK5Sj8j8nEVBRdTU1NwdnaWaYQzNDTE2dkZBAKBymmCuro6tcSNgPOSiLGxMfr6+mBlZfXKG/ACAwPh7u5OTRvJMxMjEQqFaG9vB5fLhampKe7fv6/0vVxYWJAKRL29vcHlcjE4OCiVPdDwjvEqrA81KGdqaoqoqKggGhoaLnW/k5MToqGhgTg4OCBKSkqI7u5ulfdRxzZUKBQSHA6HqKysJAQCAVFXV0cIBAJiYmKCKCwsJPb29tR6fupalC4vLxOFhYWU/e9lrE3VsTpWZkkrFospK155FBcXy1gHk7bA8qiqqpKy3j05OSF+/etfEycnJ1K3U/QaBwYGiKqqKilL2JGREWJ2dlbu7U9PT4knT54Qv/3tbxXayCqyOK6rqyN+8IMfEL/97W8V2trW1dURfD6fIAiCYDKZMp99eXm51OPu7OxIvbaOjg5ibW1N5rhcLpf6XMrLy5XaYQ8PDxPDw8NES0sL9R1RxOTkJNHX10eUl5cTIpFI6W0JgiAaGhqI73znOwSDwSDa29uVWvFubm4S7e3tMpefnZ0ptSLm8XgKLZtJWlpaiJWVFZXPl4R8jwUCAVFRUUHU1dWpZSOszO5aEY2NjdRvjHxcsVhM9PX1ERUVFQSHw7mULbIiy+OWlhYpa2J10VgYvxk0RkVviOvXr8PJyQn19fVq32d+fh7u7u4wNTVFXl4ebG1tUVJScunsAglBEGhsbERlZSViY2ORlpYGHR0diMVi0Gg0+Pj4oKCgAD09PaitrX3pTAHprrewsIAHDx5cqb5OWh0rsm9eWVlRmmmg0WhwdXWVMqUhGRkZgZ+fn0y9l06nw8bGRsoABjhP7Z+ensLQ0JC6zMDAAI8fP0ZZWRl2dnYUPg+CIMBisaCjo4Pk5GSp3eeNGzcUWjIzmUzk5+cjLS0NlZWVCo8vj5s3b+KrX/0qDAwM0Nraira2NiqFTxIaGor+/n40NzcjKChIRjQqIiICXV1d1GuQtD2+eL0k5eXlVLZFmTvl4eEhFhYWEBgYiOjoaLS1tSl8PWdnZxgeHkZYWBiioqJUulbOzs7CwMAA8fHxiI2NhZubG5hMpkJL4WvXrmF7e1vmclUWyuSuXZH+xMuIC+no6CAjIwOhoaEoLS3F4ODgpY+hirt378LNzQ2FhYUYHR0Fi8UCm82GnZ0dMjIyqCyFuhAKsisxMTGYnZ2Vax+t4e2jCQbeIF5eXnBzc1PLthc4FxSRdNlzcXFBfn4+Tk5OwGAwlC4+F+nu7gaTyURQUBCVniaR/PHSaDTcv38f4eHhKC4uvnLgMT09DQaDgZiYmEvP7F9E2WLS09Mj171PkrCwMAwMDEhdJhAIMD09rdDClRw3k6ShoYFSKJRES0sLjx49Qnt7O+bn5wFIjwMeHh7iyZMniI6OvlTTVlNTE6Kioih1PU9PTxmnSkVMT0+jsbERExMTCAgIQGpqKgIDA9Hf3w8Oh0P9m5+fR319PUxMTKQaMEmuXbuGra0tAOfNh+np6TJ1fzMzM+zv71OXkaOvZOlCX18fdDpdxvGPDJDI/gxSIVCRMZFkycLS0lJhgAicL8yDg4OIiIjA7du30d3dDXt7e+Tm5sLR0RFMJlPue2llZSX1u5qbm4ONjY3U70UeSUlJqKurk3udMmtkdbGwsEBeXh5MTExQUlKCpaWllzoeydraGjgcDkZGRnBycoK///u/R0hICNLT068UvIhEIqU9CCkpKejq6pL6vmh4N9AEA28YDw8PeHl5qbQ0Bc531vJqc0FBQcjNzaUUxpRZ3o6OjoLBYFCuZfJqxsSFmjNwfvJ58OABjo6OwGAw1PY7EAqFKCsrw9HRESVZ/LJIThdIsr6+rrZcsa+vL8bHx6m/L863y8PT0xMzMzMAzk9yPB5P4UgWjUZDVlYW5ubmMDo6StWux8fH0dTUhMePHyuVavb29sbU1BT19/T0NPT19aWmAnx9fXF0dCTlV7+zsyNjjtTe3o7t7W1kZ2dLHdfU1BSxsbFITU2l/gkEAvzt3/4tNjY2UFVVhaqqKnA4HLS0tGBjYwMEQcDS0hKNjY1wc3OT20cRFxeH5uZmAOejd1ZWVjJZIHkBnTzb4IiICLk799HRUXh5eUmNXjo7O2NxcVHu+ymZmdDS0oJYLKauc3R0RE5ODmxsbMBkMqUCRVK9EDj/XfT19anVwKejowNtbW2cnJxIXX7Z6QFVeHp6Ij8/H+vr62AwGFKjx+qwvLxM2VZXVlZibW0N9+/fR1paGjVi+eLFC4yNjV3p+anTF5Cbmws2m30lDxUNrw9NMPAWcHNzQ0BAwKXTvpLQaDTcvXsXKSkpqK2tRX19vdRudHZ2FgwGA7q6usjLy5PKMFxEUVoPOE8jZ2Vloba2VmanfBGyQzklJeVSvgDqIK9c0NnZicjISLXu7+vrS8n6krPiqhq+goKCMDw8DOD30yCqIMfY+vr6wOFwwOPxkJWVpXIx8PHxweTkJIDzMb6RkRG5Yjrx8fFob2+nAsCJiQnKVEgsFqO0tBR2dnbU+6Lscbe2trC9vU35WaSkpCAlJQWpqakIDQ3F6uoqqqursbS0hHv37lELSUtLC1ZXV6nvG51Op6yzp6ampPwISLS1tWFgYEApSk5OTlKCPRdxdnaWKuvw+XxMT0/LZFVCQkIwNDQkc38yoyJZ/rGwsJDJJJDqfZaWlmAymRgeHgadTqccGC+WRFRBThaQvErvgYvcunULOTk56OzsBIfDgUgkgkAgkNEFmZ+fB5vNpv7t7u4iOTkZaWlpSE9PR1hYGKVcSp4HEhMTwefzlZZsFLGxsaHSlItGo+Hhw4coLi6mpmc0vH000wRvCWdnZ9DpdJSXlysdZ1KFrq4uMjIysLe3h9LSUjx79gxcLhceHh7Iy8t7Jc9VW1sbmZmZWF5eRmFhIWJiYqS6j09OTsBms+Hv7//KHlMektMFW1tbsLa2vtSOKywsDN3d3VhaWlJ7hDIoKAiDg4M4OTmRqZseHx9jeXkZKysrMiN6f/M3f4PPfe5zePjwITgcDgiCgLW1Nby9vVWaOZWVlSmdoMjNzUVJSQnee+89yljm6OiI+i7Jy8ZcDPi4XC4aGxvx8OFDKl0vOQlgbGyM0NBQEASBJ0+eoKysDMnJyaDT6Tg6OsLc3BxGRkaogEAoFMLOzg7V1dWYmZmBq6urTC9GQkICysvLkZycjLGxMYXflbCwMJSWllJjuCwWS+GMvY6OjlQn//z8PHR1dWV0FiIiIlBTU4PU1FSZY5CywrOzsygtLYWpqSkYDAbs7e0v5capra0NQ0NDahLlMtMDV4EcheVyuSgvLwePx4OpqSmlKEn8zlwqNTVV5e/kotRzeHg4ZmZm5JaGXgXa2tqU9fhVRNQ0vHo0wcBbxNHREVpaWmAymWoJiiiCIAi8ePEC2traWFpaglgsfmlxInk4OTnh4cOHaG1tRX9/P2g0Grq7u7G1tYXc3NxXqoMgD8lywfb2ttL3jMvlYmtrC1tbW9jb26MWrdTUVDAYDCmFQVWkpqbi6dOnMqUdIyMjODs7IzY2VibLUFFRQZkj2dragiAI7OzsYHx8HAcHBwCk+wpsbW3h7OyMf/3Xf8V/+2//Tel7qaOjg/j4eNTU1AA416kfGRnB48eP5dZrPTw8MDc3R+nrk9LHjx8/BqB8rI7NZiMtLQ1isRjt7e2IiYmBiYkJgoKCEBQURN2upqYGP//5z3H37l0ZYx8SOp2Ozc1NfP/738c3vvENha8POE+HT09P4/DwEEFBQQpFfe7evYumpibcv38fp6en6O3tlbsAkwJeyvDw8IChoSGePXuGL3/5y1RfBfneGBsbw8bGBjY2NjA3N5e7gN27dw/l5eWwsrJ6peUBZRgZGeHu3bv40pe+hJCQEPzlX/7lpR93e3tbJsvm6ekJc3NzPHv2DAUFBSqFlS4rZWxgYID79+9LlXQ0vD00wcBbxs7ODnfu3KHsXyVPzKrY29tDW1sbCIJAREQEpSOfkpKCuro6aGlpIT4+/pWfkGJiYjA6OorAwEC1au+vEgcHB1RWVqKlpUXp7LWRkRGuXbsGDw8PWFhYgE6nQyAQ4OnTpzAwMFBLJIbkV7/6FUxMTOTuKuVBTmckJSXhyZMnePjwIbS0tCg52osQBIGNjQ2UlJTgq1/9Knx9fWWuJyE/SzLw+9u//VsUFRUpFVa6fv06paxI/E5zoKCgQCpwCA4OxvDwsJRJzejoKJycnKhMhiLJ3rm5OZiamiI4OBgDAwOIiIiAl5eXzO1EIhF++ctf4le/+hXCw8NlNAHI12pmZgYHBwfU1tbCzs5ObtmBRNJFUpXAFNnoKJmZIX4npUuWPWxtbREREYHq6mo4OztLfRZkgDk1NSUVYF58/kVFRYiPj1dbPfNlGRkZwdLSEv7rv/4LpaWlKn01LrKzs6NQf8LKygq5ubmUw6oyifDu7m6lTpHysLS0RGho6CtpstTwcmiCgXcAGxsb3L17F8XFxSgoKACNRsPOzo7ChWNgYAArKyswNzdXqCCWlJSE7e1tFBUVITIyUq4oz1Ugd6EeHh5gs9lwcXEBg8FAWlraG3Mm++M//mOYmpqqvTiTNDQ0IDs7G93d3djY2FCr+XB8fBwRERE4PDzE1NSUWgp5AwMD1AKWnZ1NWdYqgkajQSAQwN/fH5WVlUhISFDpCSEUClFZWQkXFxccHh5SqWEbGxsEBQVJ3V9yYWAwGMjIyJDxQHB2dpZyIjw4OMDCwoJUoOfi4oKFhQWprJNQKERfXx+1G5c3ZkgyOTmJ4OBg/Nu//RtiY2OlfApICILA0dERVldX8fnPfx4//elPpTIykgGElZUVHBwc4Ovri5/85CfIzMxU+r5FRkaitrYWcXFx6OzsBI/Hk5HSJQgCpaWlyMvLQ2lpqVQwYGRkBCMjI7lTF5IcHh6+tDWxOhAEgaqqKjg4OFDKiPfu3UNjY6PcqRdFdHR0yCgrSqKnp0eNz4aEhCjMOvL5fLmfqSqcnZ3B5XLR0dFx6WBCw6tDEwy8I1hZWSExMRFFRUV48OABZmdnpXZXx8fHaG5uhkgkQmhoqMLdkrGxMbhcLoyNjWFtbY2HDx+is7MTQ0NDSEtLu3Iqn7RM9fDwoHZfq6ur8Pf3h4+PDzgcDuzs7FRa9L4KSKvjy3gXEAQBgUAAfX19xMXFUe+zKqanp6mejpKSEri6uqpsPFxfX6cMkAwNDREQEICenh6FXemHh4fo7+9Hbm4uuFwumpubVe6ShoaG4Obmhh/84Afw8fGhJgo2NzfR2NhIpej19PSo70pVVRXu3LmjsA6upaVFud5VVlZSZQSSkJAQlJWVSS0GFyV8LS0t5U447O/vY3Z2FhkZGRAIBKirq5M7u0+j0WBqaoqWlhbs7e2hpaVFbtBHEAR2d3exuroKDoeDr3/96/Dw8MDz58/lZhuA88zEw4cPwWKxcOfOHbkLV2NjI+Lj4wEAAQEBGBsbu9Q4aEtLC2JiYl57eeD4+Jjqv5B8r83NzXF8fAyRSKTWb12yCVQZNBoNOTk5aGxsxP7+vlyb45fRJfH19UV/fz+Gh4elyk8a3iCvUsFIg3wuo6C1v79PPHnyhGCz2YRYLCZGRkYIJpNJ1NfXyyjlyWNsbIxYWFiQuZzL5RLFxcXE2NiYzHXKFAGnpqYIBoNBDA8Pq7zf7OwsUVhYSOzv7yt9jpdRIFRGdXU1sbOzo9ZtW1tbie3tbervlZUVorW1Vel9jo+PiZqaGurv09NTpUp0JBUVFTKX1dTUEOvr6zKXC4VCGXXB8vJypccfHh6m1ChFIhHBYrEU3pbH4xHt7e1EYGAg8alPfYpgs9kEh8MhxsfHCYFAIHXb/f19oqmpiaisrFSoQslmsynFwr6+PmJiYkLqepFIJPP8RSIR8eGHH0q9xrKyMoUKgl1dXdRxWSwWcXZ2pvD1dXV1Ef39/Sq/U2KxmPjwww+JiooKhWqIAoGAKCsrk7pMkRKlPHZ2dojq6mq1b68MZa/nxYsXRGlpqcL37/j4mKiqqlLrcTo6OoiNjY1LPbeBgQGisbFR6rKlpSViYGDgUseRR3NzMzE9PS11mUaB8M2gGS18xzAzM0NcXBzS0tLw7NkzGBoaIjs7G/fu3VPLGe2iaAqJoaEh8vPzKf35iwIwF5mengaTyQSfz0dubi4CAwNVPra7uzsKCgrQ3d2NlpYWlbd/WZSJEV3k4m7VwcEBh4eHSue0m5ubcffuXepvXV1dBAcHo7e3V+F91tfX5Y5WJSUloaGhQaqJjSAIFBcXIz8/X2onSabj5TExMYGDgwMqy0COwilCX18fRkZG+MUvfoHHjx8jNTUV9+/fh76+Ppqbm6UEiNrb2/EXf/EXMDExUTjxEB8fj6amJuzv72NjY4MaaySRHM0jKSsrkxmvjImJkTu6trCwgNPTU+q4ZAZIHq2trTAyMlJrjLWiogLJycmIiYlRqEAoz10vKChI7viiPGpra9WyM34Z6uvrcXR0hJycHIW7eSMjIwiFQqX6IyRbW1uXdiglSwVMJpP6nEdGRl7Jjj42NhbT09My6p8aXj+aYOAdQSAQoL6+HhUVFZicnERpaSlMTEykBGbUwcLCQqk3e0BAAHJyclBXV0eJq0gyPT2NsrIy8Pl85OTkKLRDVbQAkQqG3t7eKCoqwsbGxqWe/2WQLBcoY3R0VG6qNyUlBdXV1Qrvd3Z2JlOD9vLywtbWlkIFtYGBAYWLE9k/QMJms5GYmChTv5fUN5Bkfn4eKysrMqURBwcHhd+T+fl57O7uUqUC4ncCU25ubkhMTJQSIIqJiYGnpyc2NzfBZrMpcRryX39/P4RCIfh8PqqqqhT2bEhKFLe3tyM4OFimy9zCwkLmPTw5OUFfXx/lDgmcCyXJC9jq6+thY2OjVgq/qakJgYGBsLS0hJmZGaV1IMnR0RF0dHRk+l7c3d0pVUllvO7yAJ/Px9OnT+Hv769WKe7+/fsKFRFJlDUOqsLNzQ13797Fhx9+CIFAIFe47KqkpKSgvb1d7uek4fWhCQbeImKxGB0dHaioqEBjYyMiIiKQmZmJu3fvwsrKCnFxcbh+/TqKi4sxNzen1jHl2dJeREtLC5mZmbC3t8ezZ8+wvb1NZQJOT0+RnZ2tMAggUXUisbOzw4MHDzAxMYHq6urX5ohIihEpC4BmZ2fh6ekpczmdTkdgYKDcnd/g4KDcuihwPmqoaDRRLBYrPClK9g+0t7fDx8dHbpMo8Pv6Pcna2hrGx8flNoaFhITI1azf3d3F8PAwVQO/desWenp65D4e8TutgeLiYmhrayMtLQ2pqalIS0uj/t/R0RHDw8P4//6//w8sFotSK2xra5MS9LGxscHW1hbm5uZAo9Hg7u4u9zEDAgIwOjpKPT6TyZQ7DWBnZyclUUxORlzMSshjYGAAFhYWKpv+lHWzk/4Ninid4kLA+bQGi8VCQUGBSkEfEl1dXWhpacl4UUjS2dn5Ug175ubmePjwIX7+859T5xFJpceXIS8vDywWS63shoZXg6aB8A1DEAQ1CkSj0RARESHTbAX8Xp42NDQUBQUF6Ovrw/DwMFJSUl5Z1z7ZCObm5oZf//rX+NSnPqX2fdfW1pTanpLExcVhf38fxcXFCA8PV7gwvAxJSUkoLCzEo0ePZK5bXl6WEaCRxMfHBwwGA/7+/lJZgKWlJYWyqjQaDffu3ZNZQNSxsfX09ERKSgoCAgLw53/+5wqDh9jYWLS2tiI+Ph47Ozvo7u5WqKsgbzd6enqK6upqvPfee9Rltra2CoMBMsVNo9FgZGSE4+NjKZElGo0GW1tbGBgY4Lvf/S54PB5SUlJAo9FweHiI58+fS+30CwsL8b//9/9GUVGRwlE3Dw8PlJWV4caNG5S4jbz3Ijw8nPIlKCsrw82bN2UWXnnB5szMDLhcrkwmhfQ/IL+/6+vruHbtmsIgzsXFRWpCRN5797qmB1pbW0Gn09UWyZIkKSkJlZWVckXNCIJQGriqgiAIdHZ2YmdnBy4uLhAKhZifn0d/f7/SgMDMzAx2dnaws7NTOnlAqhQ+e/YMN2/efGVZBw2K0QQDb4i5uTlKDveiYIs8bGxspDTTw8PDERwcjKqqKlhYWLy0+c/29jaam5vh6uqKiooK2NvbX2q0Z2NjQ2YeXhHm5uZ48OABenp6MDY29spTqcqmC/r7+1UKmqSnp6OyspJabA8ODlQqz9nY2MDAwACLi4uUd/tFFTdJSE0IOp2On//851hZWYGOjo5U1kRPTw8hISGwtLSEiYkJjo6OcHR0hPr6epWTD6RIj5eXF8RiMYqLi+Uqu+nq6uL09FSqNHFRGvju3buoqqqSqx9RU1ODvLw8bG1toaOjA1FRUTA1NZUSrDk7O6N2ifPz85QhkOSCbWJiAi8vL9jb24PJZMLf31/hDDv5Gp49e4aEhASF2RRJNjc3MTExIXdkjvwdkcFAR0eHUn0C4Dyr0t3dLWOK9brKA0KhEIWFhYiIiKC+X5dFS0sLxsbGMtoKwLkmgKLvqjLm5uao3/Dt27dx584dasRRVfmCIAgcHh5ifX0d3d3dUn1LkiOjwLmOho2NDaKiovCb3/xGbqCv4dWiCQbeAIuLi/jxj3+MDz74ABYWFmrdR97JRVtbGxkZGVhbW0NxcTFu3bp16RPF8fExamtrYWlpiby8PPD5fOzv7yMsLAzj4+Oor69Xa0ZZXj1dFT4+PpiYmMDAwMArFypycHDA2NgYdnd3qfLF4eGhWkZJenp6cHJywszMDDw9PdHa2qqWhkFUVBSePXtGKUkeHR3JBBEvXrzA1NSUjCbE2NgYIiMjKVVA4PdOe2TKvb6+Hl/5ylfQ3NysUkjG19cXFRUV8PLyAoPBQHZ2ttyGUzLjQGY0eDwenj9/LrUYkvc7OzuTOsbw8DACAgJAp9Nha2uLzs5OmedF/E5058GDB6itraXEhS5yeHiImZkZtLe34ytf+QrYbDZmZmZkFgXg/Lfw05/+FNHR0YiIiJAbDEg+xsnJCRobGxUuIJJNl9PT0/D09FS5mDs4OKCnp0fq9b7O8kBjYyOio6MxOjqKlZUV3Lp1S60G4ovEx8ejrKxMJqu0ubmpdjBwfHyMlpYWiEQiuLm5Uc6RJOoGQqTDpZmZGa5fv670tkKhEFtbW5ifn8fPfvYzBAcHq6XxoeHqaIKBN4CLiwu+973vobe3F8bGxi8trGFvb0917Q8MDCA1NVWmCe0iQqEQ1dXV0NHRQVZWFjWDLFk39PPzg4GBASorK5WKkFwWgiCorv9PfepTMo52r4qL5YLm5malPvSShIeHo6ioCO7u7grdIuWRmZmJiooKqZOtWCxGa2srDg4O4OPjozBNexF9fX1qh727u4ujoyOEhoZie3sbo6OjchXvbGxs4OHhATMzM8pcJyoqSqH/vIGBgdSOrLy8XG4KOj4+Ho2NjVR3vEgkwtTUlNRtydtIGjhVVFRQ0wrkblreomNqagoLCwvcuHEDo6Oj0NLSUphpOjo6Ao1GQ3JyMnp7ezE4OKiwXCYSicBgMGQ0Ei5Cp9MhEokwMjKitp/GnTt3pH4vr7M8cP/+fUolc3d3F/X19VQPiZ+fn9rlNhqNBmtra2xublJTA+o0DorFYnR2dmJ3dxfGxsZISkq6dPD/MpCeE6urq6isrLxSIKThcmje4TcE2WW/tLSEZ8+eITU19VImKPK4ffs2hEIhOBwOrK2t5QYZYrEY9fX14PP5SEpKkjmB8ng8Ka92Nzc3GBgYyB15uwovXrzA6OgokpKSVBr0vCyS5YKIiAjQ6fRLiSzdv38f//AP/4A//dM/Vfs+hoaG8PT0BIPBgIuLC1gsFgiCQExMzJVf79LSEgYHBymTI39/f4UiLxsbG3j+/DkODw/x7//+7xCLxfja176G0dFR+Pj4wMXFReYzJIWBRkdHERMTI/c9MjIywsnJCbUTljc9YGZmhuPjYyqD0NTUhBs3blA9MLa2tgrH+NbW1vD8+XMq6CwuLsb169flft9qa2upYOvmzZtS5bLo6Gip2xYXFyMvL0/l5x4eHo6f/exnMqOEyrCxsUFHRwcIgqBKUm/Ce8DS0pJyTyR+50NCOp7q6enh9u3bSjNgUVFRUs2ZyhQHZ2ZmMD4+DjqdrrCf6U1Ayqw/ePAA09PTb+U5fNLQBANvGGdnZzg5OaGqqgqWlpYyNciLqEoPkzv95eVlFBcXS+3COjo6sLGxgXv37smtxypq9LG1taV09R89eiT3xKrqJHh8fIzq6mp4e3u/Vue2i5DlAgaDQaUzz87OsLW1hc3NTWxtbUl16V98Hd/61rfg6+srN1Ajd+byXnt+fj7+5//8n/ibv/kbhbtySch0+MVjvXjxAisrK1Q2IS4uTqEiIY1Go5qxxsbG8A//8A/Y2NhAamoqhEIhpqamUFVVJfW8jY2N4e/vjydPniA0NFRpijsyMhKdnZ1wd3eHiYmJXBOapKQk1NXVUeY9F3es5ubmUqUb4Hyn29nZKbUjJ2V0L9pEz8/Pw8XFRaqBTEdHB5mZmVhbW0NJSQlVq66srER8fLxUcAucN3ZubGxgbW1Naurkz/7sz8DhcCjraOA8Y2Bqakqls83MzGBgYEB9TjExMSgrK4OhoeFrmx5QBo1Gg5+fH/z8/ACcl5a6u7txfHwM4HzyIiQkROr9otFocHJywtLSEpycnGTGAA8PD9HW1gaxWAwPDw+ZMsCbRCQSobS0FGFhYa+l2ViDYjTBwFuARqMhNTUV8/PzKCwsRFpamtwFxN7eHuvr62p17Ts5OcHJyQmdnZ34wz/8Q/zHf/wHIiMjlZYklM3Em5mZIS8vD0+ePMGDBw9kyhCKRgUJgkBTUxMlVvQ2uoCTkpIQFRVFBUBaWlq4du0abGxsZKYGJFlbW6MCqMsYGfX29qKiogLOzs7o7OwEn8+Hvb09wsLCFAZNrq6uWFxclJL27evrg0AgkFr4yR26MhYWFrC5uYl79+6hsrISYrEYOjo68Pf3h7+/v9RtDw8PMTAwgC9+8YuUloAkRkZGcHJygoODA2xsbNDV1YWVlRUqoBOJRDg4OMDu7i52d3exv7+Pv/3bv8Xjx4/xl3/5lzLPLTo6Gmw2m+oROT4+Rk1NjUw939LSEnw+H1wuVyro6O/vR35+vtzXbW9vj/z8fDQ0NCA1NRX//u//Ljdw1dXVha2tLby8vGBhYQEajYampib8+te/xr1796QmQEQiEQ4PD3FwcIDNzU1MTU3JvP//+I//iI6ODrnP6U1DymuTrK+vo7q6mjLLCg4OhoODA27evAkGg4HV1VXcvn0bIpEIHR0d2N/fh6mpKe7fv//WU/Gbm5uor69HTk7OlTwONLwcmmDgLeLm5gYXFxew2WzY2trKdON6eXmhr69PrWDg5OSEso0tLS2FgYGByvtJaujLQ19fH++99x4KCwuRmZmpshlvZmYGg4ODuHv3rlod368LGo2GoqIizM3NXco5rqenB1lZWWhpacH29rZar2FjYwN7e3vIyMiQ6rVYXV2lSgY3b96U+Sy8vb3R0NBABQMtLS0wMzOT+3mQjZfymq52d3cxODhIpdHJ3byiaRNTU1NsbGxgenoax8fHMuWH4+NjrKysoK2tDQKBAP/4j/8Ia2trKljV0tKCubk5LC0t4e3tTfUq+Pv7U2ZJdnZ2CA0NBY1Gk1IkFAgEYDKZeP/99+UGScnJyVKmTr29vQq/n0tLSxgZGQFBENDS0sLf/d3fITMzUy3r7tPTUxwdHaGgoACNjY1UCp58fRYWFgobfVtbW1FSUvJGygNXwc7OjirniMViDA8PUxoUKysrePr0Kf7gD/4AdDodd+7cUbuh+XUzMDCAra0tlb0eGl4fmmDgLUOn05GRkYGZmRkUFRUhPT2dSnOqsyucnJzExMQEDA0NpZp8mEymSplWdU5o2traePz4MUpKShAbGwsbGxuZrACPx0NVVRVcXV2vNA/9OnB0dMTz589lUtSKEAgE0NbWBo1GQ2xsrEIBHElEIhEaGhrknsAcHBzg4OAAgiDQ19eHvr4+GBgYIDY2Frq6utDW1qakidlsNnx8fOQKIwHnFsTl5eUywQCfz5fZZVtaWkoJAF2kvr4esbGxsLe3R3l5uUwwYGxsjOvXr+P69es4OjrCN7/5TVhZWcHU1FTpKKmzszPljLm2tkYFBteuXUNYWBi6u7sxNTWFx48fK8wWaWlpwdXVFbOzs3Bzc8PS0hIVIBMEgcHBQUp8yMnJCWlpaaDRaCgtLcVf//Vfg8ViqRUMVFdXIyUlBbq6uuDz+Wpb/r5ucaFXDZ1OR0hICEJCQrC1tYWtrS0UFxfjj/7oj155JuCqwRFBEKisrISbm5tUUKbhzaMJBt4RPD094ebmhsrKSjg5OSldyM/OztDc3Izj42N4e3vL7VYPCQlBf3+/QqGUxcVFtW2NaTQaCgoKUFFRgcDAQJibm1M19ba2Nuzv7yMzM/OtpxkvokyM6CJNTU2UUh+NRqMkfpUJFjGZTKkpAjMzM5mZbhqNRi1oPB4PTU1NOD09hYuLC6UHEBUVpTKLY2hoKJVCF4vFKCkpUVtLADj3NTA1NaUey9TUFAcHBwrn+6uqqpCfnw86nY6amhqYmpqqtRDa29tTj7G5uYm2tjbk5+eDwWBQErlmZmawsbGBjY0NjIyMqNcQFhaG4uJiTE9PIzY2Fo2NjeByuaDRaAgJCZH5XSwsLFCjneSkhLIU8/b2NkxMTKjSwM2bN9Hb26vQUVKS1zk98LoQiUSoqqqCoaEh/vAP/xB2dnaIi4tDZWUlzM3NERsb+0qyHFdRGD06OkJFRQXS0tJee3OxBjV4dZ5HGhRxWdetiYkJoqioiODxeASbzaYuX1tbI5hMJsFisYijoyOVx2EwGAqvq6iokHKRU5fa2lqitLSUaGxsJAoLC4m1tbVLH+NVuRaqw/LyMtHS0qLydhfd6ghC+fvX0dEh464mEAjUdoubn58nAFAOlTMzM0o/D6FQKOVOWFhYSBwfH8u97cnJCVFbWyt12dHREcFkMqUuOzs7k+uwSBDnjoQXX19RUZHc753kd/QiU1NTRElJCVFbW0scHBwQBHHuILi3t0dMTEwQra2tBIfDof5VVVUR3/ve9wgARE1NjcrvuaSLpEAgICorK5Xevri4WOZ9vvi+yKOlpYVYWVlRebtXxav4jQwODhIlJSVS3xPJ425ubhLFxcXE4ODgSz+Wsu+APF68eEEwmUy1zkEa18I3w7u1ldMA4LxG7OHhARaLhYmJCZibm2NzcxO2trYy7m/KIDXVFWUHrrIj8PX1haurK77xjW/g7//+79/Z2imJOuWC4eFhuV4MHh4elBCRJMvLyzg9PZW5XEdHR2pSQRnDw8NobW2Fvb093NzcMDk5KdXMZ2BggJCQEGrHpK2tjbOzMxAEAQ6Hg7i4OLnd/eR9+Xw+9TdBEKioqJDJkGhpaUEsFsukyXk8HlZXV2W+N2RD6aNHj9TKAtXX18PY2Bh5eXk4OztDdXU10tPTQaPRYG5uDnNzcxl/gYODAxwdHaGsrAxxcXFK5Z17e3ul+mx0dHQgFAoVpv0nJyfh7e0tcx3Zaa8oU/ZRKw9sb2+jsbERwcHBSjUUrl27hvz8fMzMzKCkpARhYWEqPRxeBfX19TA1NVWpDKrhzaIRfH5HIQgCBgYG+Na3voXR0VEYGhpSTVnq4urqiqWlJZnL1VXmk2R4eBhlZWVYW1tDRUUFvvrVr6KkpEQtR7e3DTn+poj5+Xm5Y0zy3AOFQiHa29ulrI0lIcVslNHU1ISAgABERUXhxYsXoNPp8PX1pUyB0tLSEBERgfHxcSmLYTqdjn/6p3+Cj4+PSttZsgQAABwOBykpKXJr9bdv35bxK+BwOHIVGEmNfNJvQBE8Ho9y2CNHZyV7JJTdr7KyEvn5+SodJcViMZaWlmR6BG7fvq1Q22B0dFSuFXdYWJiU9PdFlJkYvUuIRCKw2WyMjo6ioKBAbcU+T09P5OfnY3d3FwwGQ6nplyLUOS+dnp7i6dOn8PPzU8t5UcObRZMZeMc4Pj5GQ0MDtLS0EB8fj+rqauqH09jYCIFAACcnJwQHB6v1A5SXHejq6lK4mEkiFovR3NyMw8NDBAYGUpE8KXJUUFCA3t5eDA8PIy0t7Y0qlF0GGo2G6Ohoud4Fu7u7Sjuq/f39MTY2RlnlqmosJJ0BJbX6JRkcHISZmZmUDLE8DAwMZMZCy8vL8Xd/93cICQnB1NQUgPMF2t3dHR4eHlJjdVFRUaipqYGDgwNcXFwUvsaLwkAjIyPw8/NTuPPX09PD/fv3KeOgi0xNTWFsbAwPHjyQGfPz8/PD8+fPZcYdgfMgq6SkBI8fPwaNRoOuri7MzMyklPMkqampkSsYZGdnJzcY6OzsVPiZAOfv98nJiYxGQWtrK6Kjo9/5DNjQ0BBmZ2eRnJysMGOkirCwMISGhqKpqQlHR0eUkuSrYHFxEd3d3cjPz39nzxOfdDTBwDvC+vo6urq6YGxsjPT0dOpEamFhgb29PTg6OlLdtktLS2CxWADOFx9bW1uFx3VxcZEJBlS5652cnKChoQEEQSA2NlZhgxlw3oB1enqKyspKuLi4qJxgeFvI8y4AzhsglfkkXL9+HQwGAwEBAWhpacHt27eVvndWVlbo6uqSe93c3BwODw+l5sK1tbUhFApVniD7+/vh5OQEJpOJ2NhY6iQtEokwNzeHuro6KREpLS0tVFVVISUlRaXPgrW1Nba2tmBmZoaZmRmVUxRWVlbw9/dHc3Oz1Gupra2FmZmZwvt7eXmhvLxcJhgQi8V49uwZHj58KBVAxMTEoKSkRGZC5fDwEHQ6XaG4k6Ojo1TaXyQSYWNjQ2kwEB8fj9raWin56o9CeWBnZweNjY0ICgpSW1ZZGTQaDfHx8RAKhaipqYGuri4SEhJU6oUoyxR1dnZCKBS+UfExDZdHEwy8ZaampjA+Pg4bGxtkZ2fL7EAkgwEScoyLIAj09PSgp6dHamztImFhYVRAcHZ2plCqdXV1Fb29vTA0NERKSora0wF6enrIycmhxiMTExPfmfllSZKSklBUVER1hItEImoWXhlkh7u9vf2VHeR2dnYwNjYms5smMwnKXCiHhoYgFotx8+ZN8Pl8tLa2Up4BWlpa8PLygpeXl9R9BAIBvvSlL+H69euoqqqiLicIAvb29vD29qZ2wZGRkWCxWBCJRGp7Unh4eODw8BBdXV0QiUR48uQJEhISVJYvSM158ntK/M7YKCcnR+a7S6PRKO8CyZ6Ouro6hXbOwLnUcFlZGRUM1NTUUO+XsudF9mSQv8G6urp3dgETi8WoqqqCvr7+K5ENv4iOjg7S09NxeHiIsrIyODg4qFRLvYhIJAKTyURwcLDCsVkN7w6aYOAt0dfXh5WVFXh5eSltpLGwsMDc3Jzc60gbUeD3u3mhUAhnZ2cEBQVRJwjJ7EBPT4/Mj3pkZATz8/Owt7e/VIPiRTw9PeHh4YG6ujrQaDQkJCS8U+nVi+WClpYWxMbGyr0tQRCYmpqidNG/8pWv4Kc//Sn6+vqUKgsC52JSc3NzVB8Cn89HbW2t3BFHCwsL7O/vKzzW6Ogo+Hw+JTOtr68v1RyoiIqKCvT396O2tlZKTZH4nZ9Bb2+vlGHR+++/j7/+67++dFr4f/yP/4GJiQl0dHSoNR4WFxeHlpYWqgZfVlaGxMREhbv869evo6SkBAEBAaDRaJQGgaoATk9PD3w+H0KhEHQ6Xa3UeVRUFGXL/C6XB4aHhzE9PY3k5GS1pK9fBlNTU+Tm5mJ5eRkMBgP+/v5yxa8uvk/b29uoqalBTk6OTOlFw7uJJhh4g4jFYrS0tODg4ABhYWFK1f9IDA0NVQoPkbcjT/qLi4tUGeH27duwsbFBWFgY+vr6qDS5pLNeQECAXK0CeSjLLADnJ4WkpCTs7u5SHcrvksa4ZLng8PCQKoGcnp6iv78f+/v7VMrT29ubShv/53/+J9LS0ihBHYIgYGZmhsjISJkMip+fH9hsNuWAqEgPQBWkAdHFrAGZLVKUfWlra0NYWBgMDAxgYmKCw8NDShdC0s+ARCwW4z//8z9hYGBwKRlm4HxWXEtLC/b29mhpaYFQKKSuMzU1RVBQkNSCZWhoSAUhVVVVuHXrlkozHEnfgsHBQYXyxJLEx8ejoaEBfD5f7a51KysrbG9vv7PlAdK9MCgoSK334FVCyp0/f/4cDAYDkZGRCrUxhoaGsL6+TvV/aPhooAkG3gD7+/uoq6uDv78/4uLilNbgLyLP310VLi4ucHFxkSkjbG9vg0ajUfr1V3HWW11dVeskaWlpiYKCAvT19WFkZASpqalKa+1vkqSkJHzlK1+Bp6enlPtbaGio3PHD+fl5auRKUlCH/FzPzs6gp6eHqKgoGBoaSp0AGQwGsrOzlZZcyJq9pLXzxMQEdnZ25GYuIiMjUV1dLdeeeXZ2FnQ6nXq+sbGxYLPZSs1nqqqqkJWVhYWFBZmUvDKampoQFxeHjY0NHB0dyXTc7+/vY2BgAFwul7pMX18f+vr6+M1vfoPIyEi1vksWFhbg8XhobGxUmqoWiUTgcrngcrk4Pj7G//pf/wuf+cxnMDg4SJWDaDSazD/JywmCwLe//W18//vfV+s9eBOQJQE9PT0UFBS81QWW9Lvo6OhAV1cXkpKSqGCPIAiw2Wy4uLhcOqjU8PbRBANvCIFAADMzs5e2Lb4MkmWE5eVlfPrTn8bZ2RmWl5ev3NG7sLBwqSbB8PBwBAYGgsPhwMnJSaHmwZuERqPhvffeA5/PR0JCgsrbT0xMyO1cNzc3p056PB4PHR0d4PF4oNPpEAgEKCkpQVRUlMpUbnh4OGpqaqhGv+npaaytrVGKiBfR0tKSO6bH5XIxNDQk1UimpaUFgiAgFovlptZXVlZgZmYGY2NjBAQEgMlkwsvLS2W54ODgAKenp5SKIIPBkNEMIBXuJOHz+Xj27Bn+6I/+CBwOh5qKULXAcblcZGRkgMPhYGxsTO5tyHKAsbExDA0NERgYCA8PD8qpj3wfyP+X/Edevre3h4cPH74zO1qyJHD//v1LjwO/Tu7cuQORSIS6ujqIRCIcHR3hyZMnSE1NfSf7hTSowRuRNvqEQypobWxsEEVFRcTz588vdf/LqntJsrq6SpSWlhLNzc1EQ0MDsbKyQvz2t78l9vf3r3Q8VQpvypiZmSEKCwuJH/7wh1c+xqukurqa2NnZUXm7y77/AoGA+JM/+RPC3d2dqKysJCorK4mBgQFCIBAovA+pLjg7OyujHiiPwcFBYmFhgfpbLBYTv/nNbwiRSCRz2729PaKxsVHucQoLC6X+FgqFUqp+iigsLJRSj5ueniaGhoZU3u/k5IQoLS0l2Gw2wefzVd6eIM5f229/+1uirKxMbdVMFotFHB4eEuXl5WrdniAIYmdnh6iurlb79q+TH/7wh0RhYSHx4sWLV3ZMkUiktkKmugiFQqK0tJQAQPT397/SY5NoFAjfDBrRoTeIjY0NCgoKIBaLUVRUhO3t7df2WPPz82AymVhcXER2djZiY2NxenoKBwcHPH78GK2trRgZGXltjy+Po6Ojt2JprIikpCTU1ta+0mOurKyAwWDgG9/4BoqLiykRIVtbWzQ1NYHNZlP/ent7cXp6St13YWEB09PTagncXBREYrPZSE1Nlfv+mpubUwJEkpBpfkm0tbURHByM/v5+hY/d398vI4Dl6emJmZkZlc+7oqICmZmZVB+AOpCvLTw8XKk4EMnU1BTs7OxgYmJCeTqogzpTB28KGo0GHR0drK6uSo2MvgwikUhpv89lODs7Q1VVFTgcDpKSksBms2FgYIDi4mKpxlQNHx3enTPzJ4iAgAAUFBRgdHQU5eXlUk1X8rhMynJiYgJMJhP7+/vIyclBREQEdX/id70HNBoNGRkZlGMYcYmehKukT5eWlsBgMGBsbIz8/Hy1ldFeN5LTBYoQCoVqj1g2NTVhZmYGjx49AkEQUmlde3t7JCUlSakMuri4oK2tDWw2GzU1NVQJZWJiAgKBQOVzJz+LgYEBuLm5KXVn9PX1xfj4OPW3ZJr/Il5eXlhfX8fx8bHMdaenp1haWpI7Knb79m2FGgsA0NHRgdu3b0NLSwt6eno4PT1V+d3r7++Hu7s7LCws4ODgQLkWKkIoFGJ4eJh6L2NjY9HS0qL0PgCoyZJ3pTzg5eWFnJwchIWFoby8HLW1tSoVHFXxKoIBoVBIKWLGxsYiMzOTmtTw9fVFTk4OamtrlQaTGt5NND0DbwlS3OP09BRsNhuWlpYy6niXYXh4GHNzc/Dx8VE6gy1JUFAQXFxc8PTpU6Smpr5y57CjoyPU1tbCycnplQiivA5UeRcMDw8jKChI6TGOj4/BYrEQGxtLNcQdHx9LdezLw8bGBgkJCejv70deXh4SExORkJCApaUltLW1yQQENBoNjo6O8PDwgIGBAQICAqjMhqodrY+PD8rKyuDn5wfgfBeszG46NTUVJSUlMnP2bDZboUiTo6Mjuru75XoDbG1tgcvlSskHk9LB5NjkRdbW1rC/vy/VZ3JRp+AiZOZB8vaqgu13dXoAOHd3zMnJwdHREVgsFgwMDJCQkHClRf1lggGBQID6+nqIRCIkJCTIOEOSn7e2tjaysrIwNTWFoqIipKWlXVkRUcObRRMMvGX09PSQnZ2N9fV1FBcX48aNG3LneBXR09OD1dVVBAYGqgwC5O16zM3N8d5774HD4cDR0VHlwqcOIpEI1dXV0NbWRk5OzjtVGpCHMqvjzc1NpSOgIyMjWFhYwMOHD6Ve59HRkYwQkDzq6upga2uLuLg4sFgs0Gg0uLm5yTWMEYvFWF1dRXd3N/h8Png8HvLy8qjMgru7O9zc3BRmMiwsLLC7u4v5+XmVPhd0Oh23b9+WkvGdmpqCm5ub0ubTuLg4NDc3S8ldEwSB+vp6mfdXkXQwcL74tLa2ylgGx8TEoLW1VW7j59DQEPz8/GSsm/38/DA+Pk4FQhepqalRy+b6bWJiYoLs7GwcHx+jsrISurq6SExMvJRt+FWCAYFAgNraWhAEgcTERLV1KLy9veHh4QEOhwMbGxu1LKI1vF00wcA7gp2dHQoKCjAyMoLi4mLcu3dPYdqXIAi0trZiZ2cHt27dUvuHpiglS6PRkJaWhtHRUVRUVCAjI0PuQiEWi1WmUTs6OrC5uYn79+9/ZMRGlHkXKEIkEoHFYsHLy0vu2J48nXtJxGIxGAwG7ty5Q+1IIyIi0NXVJeNJQEKn06l577OzMzx9+hQsFouSi52fn0dDQwOVTiY/b2tra1y/fh3R0dFgMBjQ1tZWa6rDxcUFExMT2Nvbg5mZGYaHh5VmE4DzWf39/X2phaempgbJyclyvzuurq5So5skpaWlcrNJkjoFknC5XCwuLsrVyyBlkOUFA+9aeUAVxsbGyMrKwsnJCdhsNrS1tZGUlKTWdNBlgoHT01PU1taCRqMhMTFRJsBSBy0tLWRkZGB2dhaFhYVITU19pyYiNEijCQbeMQIDA3Hjxg00NDSAx+MhJSWFOqmLxWI0Njbi6OgI0dHRsLa2Vvu48lK3F7lx4wZcXFzw5MkTpKSkyAQj6+vrCoVGJiYmMDY2hsjISIWL2buMonKBvPdsaWkJXV1dyMjIkEmXkhAEoTAjcnx8jLKyMuTm5koFDNbW1ujs7FT5XEkt/wcPHlBmUklJSXJliYFzNbiRkREcHR3hwYMHKCkpkZIoBs4zVNbW1rC2toaVlRW1uJASzqamppQ3hioSExNRX1+P+/fvY2ZmBhYWFgrHzYKDg1FWViYVDNTX1yMuLk7hAkdmOCQ/p8rKSqWBCtmjILmovcvlAVUYGhoiKysLPB4P1dXVlNiXMi0PdYIBPp+Puro60Ol03L9//5Vog3h4eMDNzQ1VVVWwsLBQ6hGh4e2hCQbeQUgpXx6PBxaLhaamJtBoNJyeniI+Pv5KWgWK3N8uYmpqisePH6Oqqgp2dnYICQmhrpufn6fc+0i2trbQ2toKb2/vN66K9qpJSkrCs2fP8N577wEA9vb2ZPooGhsboaure2XN+uXlZfT09ODx48dygwVVNXHid1r+2dnZ1MKmqnubXOTb2trw/PlzLC4uyojC8Pl87OzsYGNjA2NjYzg7O6Oum52dxbe+9S2UlZVRgSnZ0GdnZyezaBsbG0MgEIDL5WJgYEDle2VsbIzj42MYGxvj+fPnsLCwUNpvERkZiaqqKkp0qb29HREREUrLUWT5QlIv4qNQHlCFgYEBMjIyqJ28snS+smCAx+Ohrq4O2trarywIkIROpyMtLQ0LCwsoLCxEcnLypcTXNLx+NMHAOwydToeuri4YDAYCAwORnJx8ZdGihYUFtWrYwHkwkpqaiufPn6O8vBwZGRmg0+ky8r1VVVUwNzdHbm7uRybNqgwajSblWTA4OEhlOQ4PD8FmsxEfH6/UJVIZw8PD2N7eVtpMqawmDpxr+SckJEgJGXl4eGBmZkapGczCwgIIgoCfnx+mp6dlFgZ9fX04OjpKGWKRHB0dobCwkAogCILA/v4+VldXMTk5KdOgR6PRIBKJYGxsjPb2dmxtbcHa2lrhdyQuLg5VVVW4c+cOFhYW5CorSkKn06lxu52dHXC5XJUGUvr6+lJjnB+18oAq9PT0kJ6eDoFAQAkBJSYmSmWu5AUDJycnqKurg46ODlJSUl67vbCrqytcXFxQXV0NY2NjREdHv9bH06A+mmDgHYSM0rW0tJCQkICf/OQnSE1NRVtbGwYGBpCWlnbpRqDd3d1LK4P5+/vD2dkZT58+pVLEBEFQJYy0tLSPnTe5ZLng9PQU+vr6GBwcxOrq6pX8BUgaGxthbm6uUvHQyMhIoRdFdXU1wsPDZcpDAQEBKC8vVxgMnJ6eoqenh9qhx8fHo6mpSS31RdKwh8fjYWRkBIGBgaDRaFTq/2KmiGRwcBD/8i//AldXVywtLWFgYEDuvDyNRoONjQ1WVlZQWVmJT33qUyqfE3DeBzA1NYX+/n61d/fu7u6YnZ2Fubn5R7Y8oApdXV2kpaVBKBSirq4OQqEQCQkJMDIykgoGuFwu6uvroaenh7S0tEs1Ir4sNBoNKSkpWF5eRmFhIRITE5WOxWp4M2iCgXeI4+NjNDQ0QFdXVypKJxeg6OhonJycoKysDJ6enpfu/L/KQmZiYoLHjx+juroaf/VXfwUej4f4+PiPteQoWS4wNDSknNrUtfa9CEEQYDKZCAsLU9v+2NTUVMpcCACam5spaV15KCsvlJaWStXTTUxMcHR0pLKP5OjoCMfHx1SfSFlZGQIDA1U+/6OjI6ysrOALX/gCOjo6lI49isVibG1toaioCK6urlL+DMqg0WjIyckBh8PB4uIiTExMYGJiojQ4DQgIQEVFBbhc7ke+PKAKHR0dpKam4uzsDPX19eDz+fDw8MDp6SnKysqgr6//xoOAizg5OeHBgweoq6uDnp6eQgdRDW8GTTDwDrC/v4+mpiYYGRkhPT1d6a7f0NAQeXl5mJiYQFFR0UuVDtTh8PAQra2tEIlEiIiIgFgsVjm3/VGHRqMhNjYWjo6OYDAYmJ+fB5fLhZOTE6ytrdUeleTxeCgtLUVmZualuqijoqJQW1tLeRX09PTAwsJCaZmHrIlfXHjr6upw9+5dmZN+dHQ02tralE5PVFdXS5U0bG1tsb6+rlI/gc1mU/r+XC5XadBBp9MxNTWF//t//y/GxsbUNriZnJzEpz/9aXh4eOD4+JgySzo7O5Oamrn4uP/rf/0vMJnMj015QBXa2tpITk7G9vY24uPjoaOjg66urnfGNIxsfFxbW8OzZ8+QkJBwqcZoDa8OTTDwFtne3kZbWxvMzMyQlZV1qXn869evw9vbGzU1NdDT08Pdu3df2QmOIAj09/djdXUVJiYmSElJAY1Gg66uLpKTk9Ha2oru7u43UmN8Wzg4OFBpeXNzc2xtbWF5eRkDAwMKRzSNjY3h6OgIBwcHbGxsgMVi4dGjR5cu6Whra1PjgaRktKodubyRuxcvXsDc3Fzu4m1tbY2dnR2FxxsaGkJgYKDUd/L27dsoLy9Xagnc1NQkVYu/desWent7FY6/Tk1NQVdXF66urgoNiC7C5XLx/PlzfOc738HU1JTa0yu7u7v4zne+87EsDyhiZWUFvb29sLCwwI9+9CMEBASAxWJdKbOoiMsomCrC3t4eDx8+RENDA+h0ukKTLg2vD00w8BZYX19HZ2cnrK2tkZ2dfeVFnE6nIyUlBdvb2yguLsbNmzflitWoy/7+Ptra2iAWixEWFiYltjM1NQVPT09q10wqJ9rY2HxsR4UkxYhsbW1VNg6S6fHGxkZ85jOfQXFxMaUQeHG3ShAEtLS0YGFhASsrK1haWsLU1JT6Ltja2lIyuuqmTyUbCQ8PDzE1NSV37p7k5s2b6O3txc2bN6UuFwqFmJubQ25urtTlNBoN+vr64PP5crvVV1ZWQKfTpcZPHRwc0NvbK/fxDw8P8eLFC+o52tnZYW1tTeH4KnD+PpaXl+PRo0eg0+lqjWKS1NbWyogYfVyZnJzE+Pg4HBwcKDEyDocDa2tr5OXlYXJyEsXFxUhMTHxp5dGzs7NXUm4gp6g2NzdRWFiIuLi4Kzfrarg8mmDgDbK0tIT+/n7Y2toiJyfnle3kra2t8eDBA/T09GBoaAjp6elq79gJgkBvby/W19dhbm6O1NRUuTvZmZkZqTlzUjlxZWUFxcXFCAsLg7u7+yt5Pe8K5HSBumJEJiYm8PX1xcTEBPh8PkpLSxWK7QDnJ9H9/X3s7u5ifHwcBwcHVEp9a2sLn/70p8Fms8HhcKCtrQ03Nze4uroq/GzJRkIPDw+wWCw8fvxY6fN1dHREX1+fzOVsNlthR398fDzq6upkrheLxWhra5Nbi3d3d5eZdhCLxTLPMSQkBBwOR2kwUF1djfv371MZCwMDA5UCT8D59EBMTMzHvjwwMDCAxcVFlbLkPj4+8Pb2Rl1dHYBzbYirvjcX9RteFhsbGzx8+BBNTU0YHR2Fi4vLx/5zexfQBANvgMXFRXz44Yf4whe+oLZvwFW4desWTk9PUVlZCScnJ2pnf3R0JDWKBpynTNvb20EQhFoqhopEdBwdHVFQUIC+vj4MDg4iOTn5Y6VF7uDggLGxMYXeBReZmZmBi4sL9PT0kJSUhOrqaoV1cG1tbUoDQBKxWIynldmLdgAAUupJREFUT5+ioaEBwcHBsLCwgEAgwPz8PJqamigNADLbQKfT4eDgAA8PD+jo6KCsrAxpaWlqnUADAgIwOjqKGzduADjXFHB0dFR4ctfV1YVQKJTpA2CxWAo9CwIDA6mmV5KysjJkZWVJHYNOpytNOY+OjsLe3h5WVlbUZTExMWhqalIqiPRRFhdSB4Ig0NbWhp2dHYSGhiI0NFSt+5H1+r29PZSUlCAwMBA+Pj6XfvxXHQyQ3L17Fzs7O/izP/sz/Pmf/7nao9EaroYmGHgDuLi4ID4+HktLS/Dz87uUTC9BEJeqyenp6SEnJwezs7MoKipCQkICVldX4erqCoIg0NXVha2tLVhaWiI9PV3tPgVVC0t4eDhCQkJQU1MDXV1d3Lt372MTzSvzLpCEIAgpkR0rKyvY29tLLbbqQNblDQ0NwWQykZubC11dXfj4+Mg9WZOeBX19fSgrKwODwcAHH3wAOp0OX19fpTsrT09PMJlM3LhxAwRBoK+vT2UqPSoqCu3t7dSM+PPnz+Hq6qo0CDQ3N8fe3h4sLCzQ0dGBwMBAmQAVOA+QhEKhTPZjb28Pi4uLMlMdenp6Kh0eP67lgbOzM2rMNzo6WipIugwWFhYoKCjA8PAwGAwGUlJSLnWOeh3BwM7ODjo7OyEWi/H5z39e7UkcDVdHEwy8ISIiIuDm5kYtlgkJCWotllwuV+5JUxUeHh5wd3dHQ0MDvv3tb+PLX/4yhoaGcPv27UvX+NUNSLS0tJCamoq9vT0wGAz4+vrC39//0s/9XUPdckFdXZ1MN39QUBAqKyvh6Oio1jhmX18ffH19qYXV0dERy8vLCkcKgd97FoyNjeEv//IvkZmZibS0NIhEIrx48QIcDoe6rY6ODgIDA6VqsZ6enpiamsL8/LyUQp8irK2t0dHRAeB8YmJqakplxismJgYsFgsBAQEgCEKhJgLpZCgpRiMWi8HhcBSWPZT1GnwcywM8Hg/19fUAzss2ryoTFxQUhICAAFRVVcHMzExtQaBXFQwIhUK0trbi+PgYVlZWSEtLA51Ox/T09EsfW4NqNMHAG0RbWxtpaWnUYunt7a2yS5xUb7ssPB4Pra2tEAgEMDExAUEQcg111GFpaelSkbmFhQXy8/MxPj6O4uJixMfHX3nX8q6gqlywvb0NLS0tuc1YaWlpePLkCd577z2lmZjNzU3s7u5KNW7eunULDAZDaTBAahncunULjo6OmJycBHAenAUEBEgJAwkEAoyMjEj5zRsYGKC7uxu3b99Wu5nM29sbk5OTGBoaUilDLRKJsLu7i/r6eszPz+Mv/uIvFN7WwsIC+/v7UpeRtsSKFvTw8HBUVFTINEt+3MoDe3t7aGlpgb6+PpKTk1/LJI+WlhbS09OxtraG4uJi3L59G87OzkrvQ4pzXZXh4WEsLi5CW1sbMTExV9r8aHh5NMHAW4BcLCcnJ1FUVITY2FiFXbNbW1tKZWYlEYvF6OjowN7eHvT19REbGwsdHR3Q6XSEh4ejrKxM6ViYIiYmJnDv3r1L38/Pzw++vr5oamrCyckJUlJSruyn/i6grFzQ2Nio0CiHRqMhKysLFRUVCt9/sViM+vp6ubtfsilRnrW1WCymtN7JzIO9vT1WV1flLoK6uroylswrKyu4d+8eCgsLqSzCxYWXzAyRlxMEgYyMDPz4xz9GTU2N1Gu9mEXS1taGhYUFQkJCoK+vj4qKCujp6SEmJkau0ZPkY/f29uL69etKdRrIx7zYx/BxKQ9Ijgde7LN4Xdjb26OgoABdXV0YHBxEamqqwuDj9PT00j4DGxsb6OnpAXDeU3LVjYqGV4cmGHiLkB29bW1t6OrqQkpKiky6jayzKmN0dBTz8/Og0+mIjIyU2rm2tbUhMjISFhYWuHXrFrXLugwikejKo0M0Gg3x8fE4OTlBRUWFXO37jwqKygXd3d24deuW0pO0sbExfH195Y7yAb9vqJOHn58fGAyGTDBwenqKoqIi5OXlSdV4g4ODUV1drdaOeH19Hd3d3eDz+WhpaVGqFiiJQCDAt7/9bfj5+SEuLk6t+xwcHCAmJga6urrg8/loa2sDj8eDoaEhdTlwrky3tLQEHR0dHB4eyn2/LhIcHIzh4WEEBwcD+HiUByYnJ/HixQup8cCrwuPxrrR7j4iIkNuULIm6ZYLT01O0tLSAz+fD1tZWoVW6hreDJhh4y5ALjEAgoGp1kqItirr4V1ZWMDAwAOC8I1zRAr+/vy+1YwwNDVU6Ova6MDQ0RHx8PP7rv/4Ls7OzaivNvWtcLBfw+XxsbGzg9u3bKu/r4+ODhoYGmfp2b28v/P39ldZ+w8LC0NfXJzUhQs7bX9yxSRr5KGNhYQFjY2OUyqCkkY8qSHnq58+fY3BwUMrdUhFCoZBa8PX19ZGYmAjgXIa7sbERAoEAZmZmuHPnDthsNng8ntqywa6urhgZGUFwcPDHojzA4XDg4uKCL3/5y5cSI1PE2trald8PyabkwsJC3Lt3T6p0qUh3Avi9gNn6+jp0dXUVZoM0vH00wcA7gq6uLrKysrC5uYmSkhLcuHFDZid4eHiItrY2iEQiODg4qIysT05OZH6kjo6OEIvFqKqqemML8s7ODlpbW2FmZoYvfvGLUmnljyKS5QIOh6NwpE4e9+7dw9OnT1FQUABtbW1sbGxgf39f5e7X1dUV/f39CAsLw/b2NpqamvD+++8r/fyVyQBPTExgaWlJqjtfS0tLbif/RXZ3d2FsbAxdXV2EhISgqakJc3NzKnUmlCk3kqOB+/v7qKmpQXZ2NkpLSymhHGdnZ9jY2Ch9vVpaWjg7O/tYlAdSU1MRHR2N0tLSV9KIu7a29tKKg2RTclNTE/h8PpKTk0Gn0+VmBsjNCo1GQ2hoqNyMgoZ3C00w8I5hY2ODgoICjI6OoqSkhDIv4nK5MDU1xf3799VO2be2tuLu3bsylzs7O0MkEqGmpkZl9/jGxgZsbGyu9Fo2NjbQ0dEBKyurl1JafNcgszk///nPERYWdulGrtzcXJSWliIvLw8NDQ0qxYFIYmNj8dvf/hZmZmbU+KIi/P39MT4+LncRGRkZwcHBgUxJIDIyEl1dXSoFlpqamqTUCe/evYvy8nKYmpq+dKOoqakpDg4OUF1djeDgYFy7dg07OztYXFzE4OCg3IBCW1sbDg4OCAkJwXe/+1187nOf+1h814yNjZGfn4/nz5+jpKQEycnJV26uOzo6upQ/hiLIst/R0REVqIjFYmhpaYHH46GlpQVCoVCtzYqGdwtNMPCOEhAQgPX1dRQUFFA7ycs23wkEAoW1PDc3N6ppTZmV7djY2KU9x5eXl9Hb2/vKlRbfJRwcHNDZ2Ql9fX2sr68rve3F5jvgfHetra2NkpISVFVVKb2t5GV///d/j3/+539Gf38/QkNDFb63bm5uqKyslAkGyKYteQu+ubk5Dg4OlL6WmZkZeHh4yDxuZmYmnj17htzcXIXfOVXfA6FQiGfPniEvLw8GBgZgsVjIzMyUK8x08X6rq6vo6enB8vLyR7o8IA9/f3/4+vqiuroahoaGavdovE5MTEyQn5+P0dFRpKamoqSkBKamprh79+5rESDS8PrRBAPvIENDQ5ibm0NCQgI4HA5iYmLAZDLh7u6utrqYOiOJHh4eEIvFaGxsVGgMoiyguMj8/DyGhobg6Ogoo2v/ceSnP/0pioqKrlRuefHiBT744AO4ubmp/ZkCwPe//32kpaVhZWUFLBYLwHmTlzrWv62trTA1NVWZLlZWXlA0Skij0VBQUIBnz57h8ePHcuvcyrQq+Hw+ioqK8OjRI6qvQN6EgDx0dHTg6uqK7u5u/OQnP1F6248qdDodqamp2NjYQHFxMW7duvXWhHhIca3V1VXQ6XT87Gc/A5fLRWZm5sfWuOyTwMt3pmh4ZaytrYHBYMDY2Bi5ubmUNbGRkRHy8/NhamqKoqIibGxsqDwWOTeuCi8vLzg4OKC5ufnKz3tqagpMJhP7+/vIyclRq/v74wCNRkN0dDRaW1svdT+xWIyxsTF89rOfhUAgUNut7+DggBrhcnR0RGZmJjIyMjA9PY3y8nI0NTVRbofA79X8gHNBpGvXrqkMBAIDAzE6Oir3up6eHqWfrba2NrKzs8FgMNR6PSTHx8coLi7G48ePpax1w8PDpfQQlNHa2oro6OiPZRZKEltbWxQUFGBtbQ1lZWVv1E58fHwcLBYLLBYLtra2yMzMRHp6Ouzs7PDo0SM8e/aMksrW8NFDkxl4B+Dz+aiursa1a9ek/OMv4unpCU9PT7S0tKCnp0ephbCiKQR5+Pj4QCQSoa2t7VIlgfHxcUxOTsLT0/O1ei68y5DTBeqMgJJUV1dTDXMRERFoaWnB1NQUvL29ld5vdHRURqSKRqNRFr4HBweoqqqCSCRCQEAA5Uq4t7cHf39/tRwtXVxcUFlZKfM4YrEYy8vLKj0sjI2NcefOHbn9KPIW6r29PVRXV+P999+X+b46ODioFQx8HKYHLgs58sdiseDi4oKwsLDX8jjz8/MYGRkBjUaDr6+vTLMsme3R1dXFgwcP8PTpUzx+/PgjrSfySUWTGXiLEASBpqYm1NfXIy0tTW1f9tjYWCQlJaGyshLd3d0y109PT6stVETi5+dH6caT7O3tyRUTGR4eBpPJBJ1OR05OzqV09z+OJCUlUVbFqtjc3IS+vr5UM1dsbCwWFhawuLio9L6Hh4dUtkgeZmZmSE9PR1ZWFng8HhoaGhAVFYXr16+/lLU1ANTX11OjgKpwcHCAk5OTzHfzYplgY2MDDQ0NlB2xPPT19XFycqL08erq6tR+bh8n9PT0kJubCzMzMxQWFmJnZ+eVHHd9fR0VFRWoqKjA8fExMjMzkZmZKdcoaHZ2ljrX6OnpUT1OkhkqDR8NNMHAW2J8fBwMBgMBAQGXshwm0dfXR05ODuzs7FBcXIzl5WXquhcvXsDPz+/Sz8nf3x/Gxsbo6uoCcN51LplW7u/vB5PJhJGREXJycuQq4n0SuUy5oLm5We6ER1JSEkZHR5U2I6qbAheLxVhbW4Oenh6Ki4uxsLCAiooKdHd3q+UxQfohkPB4PAgEAqWByEX8/PxAEARevHgh9/qlpSX09PQgPz9f6euKi4tT+r5+UsoDyvD09MSDBw8wNDSE6urqSxmbkezt7aGyshIsFgvLy8vIyMhAZmYmbty4ofS9vZjR0tfXR15eHp4+faqW1oWGdwdNmeANs729jebmZvj5+anUdFcHFxcXuLi4oLOzE319fUhNTX2pE2NgYCCGhobQ29uLk5MTGBkZoaurC+vr6wgNDX1t6ciPOuqUC1QpFaanp4PBYODu3btq2SXLo6urC6urq0hISICZmRmqqqqoaZGNjQ1UVlZCLBYjJCREoeZ8UFAQ2Gw25YdQU1Mj4xaoDhEREaipqYGZmRns7e2p1z0zM4OZmRm1lDB1dXUVuhJ+EssDiqDRaEhISMD+/j6Ki4sRFBREOVwqUgjkcrloa2uDUCiEubn5leTC5ZUjDQwMkJubi6dPn6r049Dw7qAJBt4QQqEQLBYLxsbGyMvLe+U7mcjISAgEAgQHB+Nzn/vcleWDgfNGsLGxMXz5y19GaWkpbt26hYiIiFf4bD+eJCUloaioSK7gzenpKdbX11U2debm5qKwsBDp6elSM+Wqdnvj4+MYHx/H7du3FX5WpAQsQRAYGhrC0NAQdHV1ERsbK6UKJ+kvsLm5CUtLyyt/n+7fv4/i4mKkpKSAIAiMj49jY2OD6plQBzc3N7miRnV1dSr1Fj5pmJubU1mCkpISpKamYnNzk1K8PD09lZKBjo+Pl2rafFUYGhoiKyuL6iH4JGduPipogoE3wOLiIr773e+irKzspdy9lLG2toaWlhZUVlZiZWVFpXCMIgiCwNnZGQ4PD/HZz34WYrEYR0dHr/jZfjyRLBdcfP/ZbLZaSoU0Gg0PHz7EkydPkJeXR31fFhYW5Nb9V1ZW0N3dDV9fX7mZJnlBBI1GQ0hICEJCQnB6eorW1lbweDzY2dkhPDwcNBqNEv9pa2t76THRvLw8PHnyBPPz8zA1NVU4xqqIGzduoLy8XCoY0JQHlBMcHIyAgABwOBwMDAwgNDQUMzMz0NXVRXR0tJSXxVXh8/lKx46NjY2RmZlJZQg0n9W7jSYYeAO4uLjg29/+NjgcDmxsbHDnzp1X9sMgCAK1tbXQ19endNwV1WnVgUajoaqqCrdu3YKRkRGSk5Px/PlzlJaWIiQk5KUb0T7uyCsXTE9Pw9XVVe2+EBqNhkePHuHp06d4+PAhdHR0MDU1JeUceXBwgIaGBtjb2yudQAGU6wbo6elRzXdra2uorKwEQRAICgrCL3/5SyQmJkrdVywW4/j4GAcHB9S/4+NjuWJJ5GMD5wp4f/M3fwM2mw02mw1XV1dcv35d7bQ0jUaDSCSClpaWpjygJlpaWjA0NMQHH3yAr3/963jw4IFaehTqMjQ0RBlDKcLExATp6ekoLCzEw4cPNQHBO4wmGHhDWFlZISIiAhsbGygtLYWTk5PKMS1VrKysoK2tDUlJSVI15qv+4AiCAJPJxJ07d2Bra0vNv/v7+8Pf3x8DAwMYHBxERESElNGOBmkkywUEQWBwcPDS6WwtLS08ePAAhYWFePz4MeUcKRAIUFNTA319fWRnZ6usx5Kqgubm5iof097enioj/PCHP8SXv/xlVFZWUs2EZFBhYmICMzMzmJubw9XVFcbGxiq/c6WlpWhoaEBwcDDMzc2xtLSEuro6qsmMHF1zcXGRe6zo6Gi0t7cjNjZWUx5Qg87OTqyvryM+Ph6/+tWvEBISQjWQJiQkvJJFeXd3Vy35aVNTU6SkpKCoqAgPHjzQBATvKJpg4A1ja2uLvLw8LC8vg8FgwN3dXS3HN0kIgkBNTQ0MDQ3VdnVT55hFRUVITExU2LwWGhqK0NBQdHZ2orOzE3FxcS+tRf9xRLJcwOfz1bYFvoiuri7VQ2BiYoK6ujrweDzcv39fbVVIGxsbbG5uqhUMCAQCNDQ04PT0FCkpKaiurgaPx0N2dvaVnj/J/Pw8XFxcEBoaCiaTidzcXKrxlUQkEmFiYgIcDoe6TFdXF8HBwbC2toaFhQX29/c15QEVDA8PY2ZmBhEREYiMjARw3tDH4/GQkJCA7e1tFBYWIjo6+qXtxC8ztWBmZoakpCQUFxejoKBA8/m9g2iCgbeEk5MTnJycMDc3h9LSUnh7eyMgIEDl/ZaXl9HR0YGkpCSFXet0Op1KqaqDWCzGs2fPkJ6eLjM+Ji/FHBkZCYIg0Nrait3dXdy7d+9SY2efBBwcHMBms1FfX//SM9fHx8d4/Pgxnj17hqSkpEtpv9va2mJgYIDqLJfH3t4eWlpaoKuri/j4eOjr64PFYiEtLQ1TU1NS1slXYWBggCplXLt2DRsbG7C1tZW6jZaWFpWBIjk9PcXw8DDlp1BcXIyYmJgr98N8nJmZmcHw8DACAwNlykZkMAAA1tbWePToEVpbWzE6Oork5OQ3tjBbWFjg3r17YDAYr2SSSsOrRRMMvGXc3d3h7u6OyclJlJaWws/PT+78PkEQqK6uhomJiUp7Vm9vb0xNTcHX11fl45+dnVEGMxebikxMTHB0dCR3oafRaIiNjaXMjng8HpKSkjRe5RJ87nOfg4mJyUtZRRMEgQ8//BANDQ3w8/PD+Pg49vf3AQB2dnYICQlRWiowMjICl8uVe938/DyGh4dhbm6OzMxMqeOQI2PXr19HbW0tNjc3r+ReOTk5KRWIREVFUY6NqtDT05MqpR0dHX3krYlfNevr6+jo6ICnp6fC91QyGCCJiYnBwcEBioqKcOvWrUv3Al3VzdTKygpxcXEoLS39RPiXfJTQDIC+I/j4+CA3NxdnZ2coLS3F7Owsdd3i4iKKiooQGRmJqKgolcdyc3PD/Py8ytsJBALKEVFed7GtrS02NzeVHoNOpyMpKQlpaWloampCZWXlG9VLf5chrY4v610gCZvNRlpaGu7evYuOjg5ERUUhPT0d6enpsLe3R1VVFSorK1FVVYXt7W21jjkwMAAmk4mDgwNkZ2cjLi5OKhCYmJiQWsCTkpKunOF4/vy5VMaLRqPB2dkZS0tLlzpOS0sLYmJiNOnl33FwcIDS0lLMzc0hLy9PqeeEvr4++Hy+zOVmZmZ4+PAhNjc3UVFRcanPd3h4WKXPhSKsra0RFRUFJpN5pftreD1oMgPvGAEBAQgICKDmhP/6r/8av/jFLy61I1LnhMnj8cBgMPDo0SOFXe62trYYGhqSK0N6EW1tbaSmpoLP56Oqqgp6enpISEj4xGuUk9MFu7u7lxYSGhoagouLC1UOcnR0xNLSEiUWZG9vTzVynp2doa+vj5IAtra2Rnh4OLS0tEAQBMRiMZqbm3F4eIjg4GClTolTU1MygkDZ2dkoLy+/1G5ueHhYrlT1zZs3UVpaqlD06CKa6YHfw+fzUVtbC0NDQ7UaSAH5mQFJbt++jZOTE5SWliIwMFBpSYlEKBS+lD6BjY0NIiIiUF5ejqysrCsfR8OrQ5MZeEcxNzeHSCRCYmIiNjc3MTg4+MqOfXR0hNLSUrz33ntKx92MjIxwfHx8qWPr6+sjMzMTd+7cAYvFQmNj45XkUT9OXMa7gGRnZwfr6+tSi+mtW7fQ29sr9/ba2tqIiIigsgZubm6oqakBi8XC5z//ebBYLISEhCA7Oxuurq4KH1csFssNJg0NDREQECDXC0MRMzMzCgNJDw8PzMzMqHWc2traKzdhflwQiUSorq5GQ0MDUlJSkJCQoLayn6pgADj/fAsKCqig4E1k9+zs7HDz5k3KilvD20UTDLxjiMViVFZWYm1tDQ8fPkR2djays7NhYWGBsrIyNDQ0vFRD2t7eHthstlrOYi+TkjU2NkZ2djaCg4NRVlaG9vb2T2xQcNlygVgsRk1NjVyVPh8fH0xMTKg8ho2NDVJTUwEAhYWF0NfXV2uioKOjQ6Fhlre3N46Pj7G2tqbyOL29vUrtjoOCgjA8PKzyOJ/08gBpZsZisRAdHY20tLRL+5gok3S+SEhICNLS0lBRUYGRkRG5t7lMc7Iq7O3tERISAjab/UqOp+HqaIKBd4j5+XkUFxcjNjaWGgsicXV1RXZ2NsLDw8Fms8FisRQ2hgGApaWljIvZ5uYmGhoa3qj4h4WFBXJycuDp6YnS0lL09fW9kcd913BwcACPx8Pu7q7K25aVlSErK0vuZxQQEIDnz5+r9ZjV1dW4ceMG7ty5Ay8vL7WyE3t7e0rLGQkJCWhublbqW08QhFQ5QxFkQ6QiPunlgZ6eHpSWluLGjRvIzs6GkZHRlY5z2d+6np4e8vLyoKWlheLiYpl+g6saoSnC0dERN27ckBor1fDm0QQD7wBisRgsFgsbGxt4+PChlL3tRUxNTZGZmYmUlBR0dnairKwMq6urMre7ceMGRkdHqb9XV1fR1dWl0iXuIq9qN29ra4usrCx0dXV9YncB6pQLuru7cePGDaUn/pCQEAwMDCg9Tn19PTw9PamSgLu7Ozw8PFBXV6fwPicnJ2rJ1Obk5KCsrEzh9e3t7YiOjlZ5HF9fX6VqmZ/k8gCHw0FfXx+ysrLempaHv78/cnJyUF1djf7+furyxcVFtfs91MXZ2Rl+fn6oqqp6pcfVoD6aYOAtMzc3h+LiYsTFxV3KDEhbWxuJiYnIysrC6uoqmEymVFrP0NCQqhMuLCxgeHj4rTbqDA4Oory8HJ/97GeRlpb21p7H20RVuWBlZQU8Hk9lw6a7uzvm5+cVBmrNzc1wdHSkfOZJPDw84Obmhvr6ern3k+epIA99fX2EhISgs7NT5jqCILC1taX22FlwcLDcfphPenkgNTUVn/nMZ8Bisd5qNk1bWxvZ2dkwNTVFUVER1UP0Oj4XUqK6pqbmlR9bg2o0wcBbgswGbG1tqcwGKINGo+HmzZvIycmBkZERysrK0NzcTMm8Tk9PY2pqiqofX+X4L8P+/j6KiopgZGSEvLy8T7wOgaJygVAoRHt7O+7evavWcaKiotDe3i5zeUdHBywtLeVqVQCAp6cnXFxc0NDQIHOdQCBQu0Pcw8MDAoGAkiomaWxsvJQRkYeHB+bm5qQu+6SXB0j09fWRk5MDS0tLFBcXqxzzfZ14eXkhPz8fTCYTX/rSl9Da2oqVlRXqPPOqcHNzg6enp9IMlobXg2a08C0wOzuLvr4+pKWlSdnUviweHh7w8PDA/v4+WCwWHj16BCaTeSm72FcFQRDUD1ojPypNUlISCgsLpaSkS0tLkZOTo/YxbG1t0dHRAbFYTHWV9/b2wtDQUO44nyReXl4gCEJq4V5dXb2030RcXBwKCwuRm5sLHR0diEQiHB0dqdWoKMnt27fR3d1N2TvX1tZqxIUkcHd3h5ubG1pbW9HX14fk5OQ3PrJLGmM5OTnh3/7t3xAcHIyFhQWMjY3JzVCZmZnB3d0dNjY2l/7te3h4gCAINDQ0SJlzaXi9aIKBNwg5KWBra/taT3aGhoY4OzvDN7/5TRAEgfLyciQkJFy5AemyTE9PY2hoCAkJCQolkz/JSJYLYmJi0NzcjDt37lx6bjshIQENDQ1ITEykUu2qXORIvL29qU71u3fvor+/Xy2L5Yvk5OSAyWTiwYMHqKuroxwQL4OjoyNlokO+J5rgURpS8fPk5ATl5eXw8PC4sujPZTg+PkZ9fT01HUSn08Fms2FiYoIbN24oDDz39/cxPz+PoaEhmWCBIAhYW1vD3d0dlpaWcj9rT09PiMViNDU1vbSHggb10AQDb4iZmRkMDAwgPT39UovyZRv4hoeHMTc3h4yMDBgaGiIlJQUikQgNDQ04OTnB3bt3YWZmpvbx9PX1wePx1Erv8/l8cDgcuLm5oaCg4FLP+5MGKUbU29sLPT09ODk5XfoYpqam4PF4GBgYwOnpqcwEiip8fHxAEARaWlqU2hwrQ1dXF7du3UJDQwMEAsGVA86YmBiUlZXB0NDwE18eUIahoSFyc3MxNTWFoqIiJCQkXFrMSh14PB5ljZ6RkSGViTA3N5ey6JaHubm5QgM2giCws7ODubk59Pb+/+3dWUzba3o/8O8PsxjCGuAAJ2xhSwJmTQg7Yd8SwNjg5KYzvajU08tqNBeVphetWqk66pl2Lno1I02nqv5KANtsCethCWFNAiQQOA6QsAYIIWE1m5f/RWQ3hM0bts/h+UhHmmP/fu/7ojO2n9+7PM+zQ99xDMPAw8MDly9fhkKhQGdnJ1JSUgzyd5HjUTBgBDMzM/iv//ov/PnPfz6zp/Pt7W3U19erdwB/icViISsrS52Fbm1tDUlJSXBzczu1XVXVu5MS1QCfS6Z++PABd+7cgaUl/d9KE1lZWfjNb36D3NxcnXdRy+Vy/PM//zO+++47ndvo6OiAk5OTXhnl/vjHP+JXv/qVXrvBnzx5gu+//17n+8+T4OBgBAUFoa2tDTKZDFlZWRonITrJ7u4uWlpawGKxkJ+ff+RnOSYmBk+ePNFpFgj4/GPv5uZ27PePUqnE0tISRkdHsbq6in/4h3/An/70J40yoRLd0be2Efj6+uKHH35Qp6VNTEzUeLe1Jk9rAwMDmJ+fR1FR0YEPL4vFgkwmU79mYWGBtLQ0KJVKdHV1YWVlBTdv3jxxrdjDwwMTExPHBgOLi4vo6uo6UDKVaIZhGPz+97/Xux1t9hocRZ9CSubWxnnCMAwyMjKwsbGB6upqXLly5UDVR23s7++jpaUFSqUS2dnZJwaGNjY2Gicx0gXDMPD09IRCocDs7CwePXpEVVGNgIIBI2EYBqmpqVAqleju7kZXVxfi4+O13rT1pa2tLdTX1yMqKgoxMTGH3lcdL/z6pIJqzRr4fK69v78fUVFRR/7gu7i44NOnT4del8vlaGhogJOTEy0JEGJCDg4OKCkpwdjYGIRCIbKzszX+8ZTL5WhpacHe3p5ZVR3t6OgAwzAQCASYmJgw9XDOBQoGjIxhGCQlJUGpVKKvrw99fX24ceOG1mvG/f39WF5eBo/HO3Z60M7ODlKp9MRji6od3IODgxgaGkJYWNiB6TiGYQ6t6Q0PD6uPK2qSpIYQcvauXbuGq1evoqWlBRYWFsjIyFDPLH79GVYoFGhra8PW1hYyMzO1Xr60trbGzs4O2Gy2wcYPfD610NDQgNTUVL0elIj2KBgwEYZh1NPqT58+xbNnzxAdHX3o6fzrD/H6+joaGxsRGxur/iE/jioY0ER0dDSio6MxMjKC6upqBAcHH5pyXF9fR3NzMzgcDng8nkbtEkKMh2EYZGdn49OnTxCLxeBwOAeqEKpOkKytrSE9PV3n6feYmBgMDg4eW8dCF8+fP8f79+8hEAjoNIkJUDBgBmJjYxEbG4uBgQEMDg4iIiICAQEBh67r7u7G+vo6SktLNfqw2NnZYW1tTauxqI4LvX79GtXV1fD391ef+d3f39c6nTEhxPhcXFzA4/Hw8uVLiEQi9amRlZUV3Lp1S+8jvy4uLlhdXTXIWHd3d1FXV4fIyEhcv37dIG0S7VEwYEZiYmIQExODly9foqqqCmFhYWAYBh8/fkRzczOSkpK0Wk6ws7PTqMLcUUJCQhASEoL29nYUFBSgq6uLEoAQ8jMTEREBhmEQERGBP//5zygtLTVYojNDPBRIJBKMjo6iqKhI62qMxLAoHbEZioiIAJfLxd7eHvLy8lBVVQWBQKD1vgJtlgm+JpPJUFtbiwsXLqiTjAiFQq1nGgghprGysgKRSAQrKyvU19fjr/7qr9DX14fq6mqDpDZmGEbndMQKhQJ1dXXY3t5GSUkJBQJmgGYGzNTi4iJGR0fxl7/8BVevXkVtbS3y8vK0OgtuY2NzqPyoJl6+fIk3b94gLy8PbDYbjY2NCA8PB4fDQUtLCxQKBbKzsw1yrpkQYlhyuRxNTU2wtbVFSUkJGIbB1NQUWCwWMjMzoVQq0dvbi97eXoSFhR0qaKWp0NBQjI6Onpr++mvz8/Po6upCQUGBQdOxE/1QMGBmlEolmpubYWtri7KyMjQ2NuLmzZvY29tDY2MjPDw8Tt04qKLtNN7m5iYaGxvB4XDA5XIPjEnVXnZ2NjY2NlBVVYXAwECN098SQs7ewMAAZmZmkJOTc+ikjyrLJMMw6o1/IyMjqKmpga+v77EZA4/j4+ODkZERrYKBtrY2WFlZHajLQcwDBQNm5O3bt3j+/Dmys7MPpQy2trZGYWEhZmZmIBQKkZiYqNHRG03TGT958gSbm5soKSk58MS/sbFxKHp3cHAAj8fD+Pg4hEIhUlJSNE6iRAgxvIWFBfT09CA6OvrInCO2trbY2dk5lEdAtWF4enoaNTU1cHFxOZPaEKurq2hqasKtW7fg4eFh0LaJYVAwYAZkMhkaGhrg6emJ0tLSE6/19fWFr68vurq6MDAwgNzcXL3S/y4sLKCrqwtJSUlHBhcLCwvH5opXpUR98uQJ+vv7kZubS2t/hBiRasbQ1dX1xOO+zs7OWF1dPTapkJ+fH/z8/LCysoLa2lqw2Wykp6cb5PP89OlTrKysoKysjE4imTEKBkxsdHQUEokEeXl5WmX/SkpKwvb2Nurq6uDn54fo6Ogjrzvuw6dQKNDU1AR7e/sTA5B3794hLi7u2PdV1dR2dnbUFRkpLTEhZ6+7uxsrKyvIzc09dS+RKhg4bTbR1dUVRUVFkEqlaG5uhkKhQFpa2rFr+97e3pidnYWPj8+h91RHBqOiohAbG6v5H0ZMgoIBE9nZ2UF9fT1CQkJQUlKiUxu2trbgcrmYmJhAZWUl0tPT4erqeup9EokEIyMjyM3NPXUDz+7urkZBCpvNRnFxMebm5iAUChEbGwtfX1+N/xZCiGampqYwMDCA+Ph4JCYmanSPs7Mz3r17p3EfdnZ2KCgogFwuR3t7OzY3N5GQkHBoOTAsLAxNTU2HgoGxsTFIJBIUFxdT4bKfCfqvZAKqwkKFhYUG+aAEBQUhMDAQHR0d2NnZQU5OzpE7/VUBSGBg4JnVE/D29oa3tzeePn2qXsYwl3znhPycSaVS9Q+vthlAHRwcsL6+rnWfX59A6OnpAYfDUZ9AsLCwOLAvSaFQ4OHDh/D19T2wCZmYPwoGjGh9fR1NTU3HbvLRB8MwSEtLw8bGBsRiMa5evYqwsDD1+0+fPsXi4iLu3LljlHX92NhYREdHo6mpCRcuXEBqaiqtFxKiA6VSifb2duzs7KCwsBAsFkvrNr7+0dbW1ycQqqur4efnd+AEwuzsLHp6enD79u0zK9VOzg4FA0bS1dUFT0/PEwsLGYKDgwP4fL66gtmHDx9QWVmJGzdu6LRup88XiKWlJQoKCvDhwweIRCJwOBxcuXJF5/YIOW8kEglevXqFW7duabQEaAyqEwhTU1Oorq7GTz/9hK2tLXh5edGRwZ8xyhpjBDMzM+ju7kZAQIDREvX4+/vDysoK3333HZKTk+Hv72+Ufo/i5uYGPp+Pvb09iEQiTE9Pm2wshPwcTE1NQSQSqeuBGCIQMPTMnL+/P65fv46PHz/ihx9+wOXLlw3aPjEuCgaMwNfXF7/97W+xs7MDsViM5eXlM+trf38f9fX1aG9vR05ODurr69HT04NPnz7p1J4hv0BcXV0hk8mwtbVlsDYJ+SWSSqVQKBSwsbEx9VCOJJfL8fDhQ8zNzeF3v/sd/v3f/x0TExN4/PixqYdGdETBgBGFh4eDy+VCIpGgpqYG29vbBmtboVCgpaUFjY2NSE9PR35+PiQSiTqbYFNTk9Y/wvosEXzdTlNTE96+fQuBQHCoNDIh5KDQ0FCUlpZia2sLIpHIrALo4eFh1NTUICMjA/Hx8bCxscHu7i5SU1MRFBSE8vJybGxsmHqYREu0Z8DIGIZBcnIyZDIZWlpa1Lt1dV0+UJUm/fTp06H65PPz8+p0wWVlZbh//z5KS0s1rm+wurqqd6nT6elpPH369MisioSQk0VFRSE8PBxNTU1gs9lIS0sz2UZcVbrysLCwA8ehrayssL+/DwD49ttvUVpaivr6ely6dEnrFMfEdCgYMBFLS0vk5eVhY2MDtbW18PT0PDG5z1H6+vqwsLCAlJSUU9cULSwsUFZWhoqKCty9e1ejHcnv3r07NvvgaRQKBRoaGuDm5nZqVkVCyPFYLBby8/OxsrICoVCIyMhIBAcHG3UMjx8/hlQqPZSuHDi8lGhhYYHbt2/jp59+glgsNtgRanK2aJnAxBwcHFBcXAxvb2+IxWJIJJJT73nx4gWqqqrg7e0NLper8eYiKysrlJSUoKKiQqMlgIWFBZ3yiE9MTEAsFiM1NVXjokqEkJO5urqitLQUUqnUaEsHc3NzqKioQEhICPLy8rSawbx69SoKCgpQXV2NN2/enOEoiSFQMGAmLl26hJKSEshkMojFYiwuLh66RiKRQCwWw97eHlwuF5cuXTq2vcXFxSN/yG1tbZGfnw+xWHzqmGQymVY5CWQyGWpra7G+vg4+n0/lSQk5A5GRkSguLkZnZyfa2toMtrfnS3K5HHV1dZidnUVZWRk8PT1PvP64MdjY2IDP5+PDhw9obGw8k7ESw6C5GzMTFhaGsLAwdHd3o6+vD3K5HFNTUxgaGtIqdfHLly+Rnp5+5HtOTk5ITk5GXV0d7ty5c2wb2qxNjo2NYWxsDPn5+ZRxkJAzxmKxkJeXh5WVFYhEIkRERBhs6WB4eBjj4+PIy8s7VAZZVzdv3sTHjx9RXl6OzMxMuLm5GaRdYjg0M2CmEhMTkZSUBD6fj9raWnC5XK124Z/2VP/NN98gIiICzc3Neo1zb28P1dXVkMlk4PF4FAgQYkSurq7g8/nqpYPNzU2d29rc3IRQKISlpSV4PJ5WgYAmDw4XL16EQCDA0NAQenp6dB4nORs0M2CG5HI5GhsbYWNjg/r6enA4HJSXl6OgoMCgU+++vr7Y3d1FZ2cnUlJStL5/eHgYk5OTKCgo0PiEAiHE8CIjI9WnDmxsbI48dcBms7GzswM2m33o/s7OTmxubh65QdCQGIZBVlYWpqenUVFRgTt37tADhJmgmQEz09/fj9raWqSlpSEzMxMMw8Db2xulpaXo6OjA0NDQqW3s7u5q/OMcHBwMFxcXPH36VOMx7uzsQCQSwcrKClwulwIBQsyAhYUF8vLyEBERAZFIhPHx8QPvq8oYf2l+fh6VlZUIDg5Gfn6+0TKk+vn5gcfjoampCa9evTJKn+RkFAyYienpaQiFQnh6eoLL5R6aolMd17G1tYVYLFaf6z3K4OAgoqOjNe6bw+GAYRi8fPny1GsHBgbQ3NyMoqIiXL16VeM+CCHGoVo62N7ePrB08GUwoNogODU1hdLS0lM3CJ4FFouF4uJiKBQK1NTUQKFQGH0M5P/QMoGJbW1tqcuSalJW+MqVK7h8+TJqa2vB4XAQEhJy6JqPHz9qncv8xo0b6OrqwuvXrxESEgKFQnHgKWFrawsNDQ2IjIw0eMVFQojhRUREgMPhoLm5GdbW1oiOjsbCwgJGRkbw+vVrg24Q1Ed4eDgCAgJQWVmJhIQE+Pj4mHpI5xLNDJiIUqlEc3MzHj9+jKKiIty4cUPje62trcHj8bC5uYmHDx8eiqh1zVCWlJSE2dlZTE9PY3l5Ge7u7gA+L110dHSgpKQEQUFBOrVNCDE+CwsL5ObmIiIiAlVVVUhPT4eFhYXWGwTP2oULFyAQCDA9PY22tjZTD+dcomDABF6+fAmxWIzY2Fjk5+frVJ8cAGJiYpCamorKykrMz88D0L+eQGZmJl69eoXBwUFcuHABFRUV8PDwQEFBgdHWEwkhhqNUKvHy5Ut4eXnhd7/7HSYnJyGXy009rCMlJycjNDQU9+/fx9ramqmHc67QMoERLS4u4smTJ4iIiACPxzNImw4ODhAIBHjy5Alev34Nf39/jUqJyuVyrK+vY319HWtra1hfX1dnNFOdYf7hhx/w93//9ybLhU4I0c/r168xMjKCtLQ0XLx4EQCQkpICsVhskrTGmvDw8MDdu3fR0NAAd3d3ODs7m3pI5wIFA0awurqKhoYGpKWlnVme/uTkZLx//x7BwcG4f/8+pqamAHxeMlDNFnz5v1ksFhwdHeHo6Ag3NzcEBgbCzs4ODMNgfHwcP/zwA5KTk1FTU4OAgACEh4efybgJIYa3ubmJpqYmBAUFHXrwsLOzQ2lpKQYGBlBbW4uCggKdZyfPCsMwyM/Px/j4OP7yl7+guLjY1EP6xaNgwIiUSiWUSuWZPGlLpVK0t7fjD3/4A7Kzs3UuDLK0tIQ3b95AIBBgdXUVxcXFmJiYQFVVFfz9/akKGSFmTKlUoq2tDfv7++ByuScu7cXExODq1atmO0uwv7+PiYkJ9UMKOVsUDBiBs7Mz7t27BwcHB4hEInA4HFy5csVg7b969Qpv3rwBn8/H+Pg45ubm4O/vr3U7W1tb6OzsRGlpKWQyGcbGxsDhcBAUFISgoCBMTU2hqqoKPj4+uH79usHGTwjR3+vXrzE8PIz09HT1ksBpzHGWQC6Xo7W1Fbu7u8jMzDS7IOWXinaEGZGHhwf4fD729vYgEonw6dMnvdpTKBSora2FQqFAYWEhWCwW/P391UsE2pDL5aiurlZPKVpaWh7aZOTv7w8ul4tvvvkG1dXV6O/v12v8hBD9bWxsQCQSYXd3F3w+X+NA4EsxMTHIzMxEVVUVJiYmzmCUp1MoFPjxxx/x6NEjJCYmUnZCI6OZARMIDw8Hh8NBW1sbtre3kZubq/W0/rt37/DkyZNDKYrZbDZ2d3e1akupVKKyshI8Hk+jEwM+Pj7w8fHB/Pw8qqqq4OHhgfj4eJrKI8SItFkS0ISdnR34fL7RZwmUSiUeP36M1dVVpKWlwcnJ6cz7JIdRMGAiDMMgIyMDUqkUdXV18PLyQlxcnEb3dnZ2QqlUQiAQGGQsjx49QlZW1pE5y09y6dIlXLp0CYuLi6iuroabmxuSkpIoKCDkjEkkEoyMjGi1JKAp1V6CqqoqREZGnlluEaVSie7ubiwvLyM1NdXgfwfRDi0TmJidnR24XC4uXboEoVCIt2/fHnvt1tYWHjx4gICAAKSmph57nTa5Bh4/fozQ0FCtMxZ+SZVC+cqVK6ipqcHjx4+pbjkhZ0C1JLC3t6fzkoAmVLME6+vrqK2tNXhegv7+flRXVyM4OBhcLpcCATNAMwNmwtvbG97e3nj+/DkGBweRnZ0NBwcH9fuvXr3C5OQkSktLDTZ1NzQ0BCcnJ43yEmjC3d0dxcXF+PjxI6qrq+Hk5IRbt25RsiJC9KRUKtHa2gqZTGaQJQFNaTpLoGnwPzAwgJmZGcTGxuLmzZuGHCrREwUDZub69euIjo5Gc3MzGIaBXC5HbW0t/P39UVRUZLB+3rx5g42NDZ1KF5/m4sWL4HK5WF1dRW1tLezt7dVpUAkh2jnLJQFNGGIvgarceXR0NNU2MVP07WyGVPnEnZ2dcfv2bVy8eFGrpD9OTk6HSpV+6cOHDxgbGzs1EHB0dNQrJaizszOKi4sRGxuLuro6NDc3m20aVELMzcbGBoRC4ZkvCWhKdeJALBYfOnFw3D6hsbExVFVVwdbWFlwuF35+fsYYKtEBBQNmaGVlBSKRCPb29mhoaICXlxfEYjEWFhY0uj8wMBBv3rw58r3t7W20traioKDg1HZ8fHwwNzen1diP4ujoiKKiIiQkJOBPf/oTHj16pHebhPySPXr0CP/7v/+LkpISs8r+qcpLsLa2duJeAlWiMoZhwOVyqcDZzwAFA2Zkf38fDx8+xMjICEpKShAaGgoACAgIQElJCaamplBTU4OdnZ0T23F3d8f79+8Pva5QKCAWi8Hn8zXa8e/p6alxAKKJ4eFhXLlyRaNAhJDzrKCgAHFxcaiqqlLXDDEn169fP3KWQJWYbGdnB1wuF1evXjXhKIk2aM+Amejp6cHy8jJycnKOPeKXkJCA/f19NDU1wcHBASkpKUf+qB/3Qy8UClFcXKzxep+VlRVkMpnmf8Qx9vf3UVNTg5iYGFy+fBmNjY16t0nIL11MTAwiIyPR1NQENpuNtLQ0szq2q5oleP78Of7u7/4OP/zwgzoxGfn5oWDAxCYnJ/HixQvEx8cjISHh1OutrKxw+/ZtLC8vo6qqCqGhoRqlNq6vr0dqaiouXLhgiGFrbHZ2Fn19fSgsLISNjY1R+ybk547FYiE/Px8rKysQi8UIDQ01q6ftt2/fYm5uDgUFBdje3jarJQ2iHVomMJH19XWIxWJsbGyAx+Ph22+/1ep+d3d3lJSUQCaTQSwWH0pt/OVRn66uLgQFBcHDw8MgY9dUV1cXpqenUVpaSoEAIXpwdXUFj8eDTCaDUCjUa2OvIUgkElRXV2N9fR3FxcW4c+cOeDweHjx4oHUGVGIeaGbAyORyOVpaWsBisVBcXKz3cbuwsDCEhoaivb0dOzs7yMnJObAMMDw8DDabbdRiH3t7e6ipqcHNmzfh6+trtH4J+aXjcDgICwtDS0sLlEolsrKyjHpkd3h4GG/evEFISMihssJsNht3795FeXk5iouLjT4LSfRDwYARPX/+HLOzs8jKyjpQT0BfDMMgPT0d29vbePjwIby8vGBpaYk3b97gw4cPSE9PN1hfp5mamsLz589RXFwMKysro/VLyHnBMAyys7Oxvr6OqqoqBAcHn/n0/MDAAGZnZ8HhcA4FAaoxAZ8LnN27dw/l5eXIzc2Fi4vLmY6LGA4tExjBzMwM/u3f/g2urq7gcrkGDQS+ZGtri6KiInh6euKPf/wj/uZv/saogUBHRwcWFhbA5/MpECDkjDk6OoLH48Ha2hpCoRArKysGbV+pVKK3txfV1dXq7KKBgYHHXqtiYWGBu3fvoq2tDYuLiwYdEzk7NDNgBL6+vkhPT8fLly/h5eV1puvn29vbGBgYwK9//WtsbGygtrYWVlZWSE1NhZ2dndbtOTg4YH19HY6Ojsdes7Ozg5qaGiQlJeHSpUv6DJ8QoqUrV64gJCQEHR0dkEqlyM3N1StluVKpRGdnJz59+oT4+HjEx8dr3QbDMODxeHj48CE4HA4lG/oZoGDASOLi4uDn54empiY4OTkhOTnZoO2rypnu7Ozg9u3bkMvl6O7uRnp6Ovb29tDZ2QmpVAp/f3+tphS9vb0xNzenznnwtYmJCQwPD4PH42ldhpkQYhgMwyAtLQ1SqRS1tbXw8fHB9evXtWpDoVCgvb0dm5ubSE5O1irj4XFHHm/fvo2Wlhbs7u4iJCREq/EQ46JvbyNSHQtcWlqCUChEVFTUsdNu2hgeHsb4+DjS09PVa3SWlpbqXb3W1tbIzMwE8HlNv7a2FiwWCykpKQeKIR3l22+/RUdHx5HBQGtrK+zt7VFSUqL330AI0Z+qCurbt28hFAqRmJgILy+vE++RyWRobW3F7u4ubt26deIsoC6ysrLw+PFj7O3tgcPhGLRtYjgUDJiAh4cH+Hw+hoaGIBaLkZ2drdM+gsXFRXR1dSE8PBw8Hu/Q+0dF6/7+/vD394dMJkNnZyc2Nzdx6dIlREdHH3n9UYmHVE8faWlpRj+uSAg53eXLl3H58mV0d3fj2bNnyM3NhbW19YG1/d3dXbS2tkKhUCA9PV2nZURNpaamor+/H8+fP9d6xoIYBwUDJhQVFYWIiAg0NzfDysoK6enpGmUY293dRWNjI1xdXcHn83Xq29LSUr25cG5uDnV1dbCwsEBycjKcnJyOvU8ikeCnn35CWVkZVSEkxMwlJiaqvy/c3d0BfA7mW1tbYWlpiYyMDIPsYdKkhPHNmzfx4sUL9PT0aJRgjRgXBQMmpqpQ+OnTJ4jFYly9evXY9XmlUonHjx9jY2MD+fn5Btux7+3tDW9vb8jlcnR1dWFtbQ0eHh6IjY1VBydKpRLNzc1wdXU98mgRIcQ82djYoLCwELOzs0hISIBQKERRUZFJ9vhERkZibGwM7e3tSEtLM3r/5HgUDJgJFxcX8Hg8jI6OQigUIiMj48AZ3dHRUfz0009ITU2Fm5vbmYyBxWIhNTUVALCwsIC6ujowDIP5+Xk8ePAAWVlZZ9Y3IeTsTE5OYmhoCEKhEAqFAp8+fVLPFBiCNjUTrl27BhsbGzQ2NiI3N9dgYyD6oXleMxMaGgoej4fBwUE0NDTg/fv3EAqF6qM6xvox9vLywp07d+Dg4IDvvvsO9vb2Jq+nTgjRjkKhwKNHj7C6ugo+n68uLtTb24uZmRmD9aFtAaWAgABwOBzU1NQYZAxEfxQMmCGGYZCSkoK1tTX86le/QnBwMK5du2bUMUxOTkIkEuHatWtoaGhAWloahEIhpqamjDoOQohupqamIBaLcevWLfWmPdWPdmFhIcbHx/H69Wu9+9na2tJpA/SlS5eQmJiIyspKjfYckLNFwYAZ6u3tRX19PYqLi9HQ0AA2m43KyspDxYjOglQqRVVVFdbX18Hn8/HNN98AAOzt7VFWVoalpSU8evQICoXizMdCCNGeQqFAfX093r9/Dz6ff2yNgMzMTCwvL+PFixd69XdaUrKTuLm5IScnB/fv34dcLtdrHEQ/tGfAjLx9+xYDAwOHsn6FhIQgODgYra2tkMvlGhcn0SbaViqV6OjowPb2NgoLC4/NYBYXF4f19XUIhULExcVRISJCzMjMzAz6+/uRm5t7ag4RAEhKSsLAwAD6+voQFxenU5/r6+sa9XUcR0dHcLlcPHjwAKWlpbC2tta5LaI7mhkwA5ubm+oyxHw+/8iUvgzDIDMzE/Hx8aiqqsLo6KjB+h8fH4dYLAaHw0F+fv6pqUwdHR1RVlaG+fl5NDQ00BQfISamVCrR2NiId+/eobS09Ngf56M+qzExMXBwcEB7e7tOfW9sbOidqMjW1hZlZWWorKyEVCrVqy2iGwoGTEipVKKlpQVdXV0oLi5GTEzMqfeoipMolUoIhUKsr68fe+1pm3o2NzchEomwvb2t0+bEhIQEJCQkoKKiAnNzc1rdSwgxjLm5OVRWVupcRwD4vHHZz88PDQ0NWt+r78yAipWVFe7du4eamhqsra3p3R7RDi0TmIgqhXBGRgacnZ21vj8sLAzXrl1Dc3OzOnmIpjt6VXUM9vf3weVy9Uoe5OTkBIFAgO7uboyOjiI7O1vrncWEEO2pcn+o9vNo4qTP5uXLl8FmsyEWi8HlcjX+HMtkMoPlLFBVPBSJREhNTTXo8UdyMpoZMDLVUUEbGxvweDydAgEVVcKi6OhoiEQijI+PH3j/qClBiUQCkUiEqKgo5ObmGiyLYGJiImJjY1FRUYF3794ZpE1CyNHevXuHiooKxMbGIjEx0WDtenl5IT09HQ8ePNB4Q5+hg3+GYcDn89Hb20szjkZEwYCR7O/vo66uDhKJBDwez6AVvC5evAg+nw+pVAqRSIStrS31e6qAYGNjAyKRCPv7++Dz+WeSM8DFxQUCgQCTk5Nobm6mvQSEGJhqaXFychICgeBAYjJDcXZ2RlFRER48eIC9vT2Dt6+pwsJCjI6OYnJy0mRjOE9omcAIZmZm8B//8R+orKw0SB7w40RGRoLD4aCxsREXLlwAm83Gzs4Ourq6oFQq9V4S0FRKSgpWVlZQUVGB1NRUeHp6nnmfhPzSLS4u4vHjx8jMzISrq6vW9yuVSo0DdDs7O/WGvsLCQp3yCBhCVFQUfv3rX+O3v/0tgoKCTDKG84KCASPw9fXFb37zG9TV1SE2NvZMj+OxWCwUFBTg/fv3iI2NRWFhIf7lX/5Fr+UIXbi6ukIgEKCjowOvXr3Sak8DIeT/KJVKdWEhgUCgczu7u7tgs9kaX29lZYW7d++q06MfF4AYegZwenoaw8PDYBgG7u7u+MMf/kBF0YyAggEj8fb2RlpaGvr7+zE4OIjc3FytPpiaUigUePLkCVZXV/GP//iPCAkJwcjICJKTkw3elyZu3bqF5eVlVFRUIC0tTZ3EiBByuvfv36O9vR3p6el6b6bb3NzUete/hYUFSktLUVtbi5iYGHh7e+s1hqMolUqMjY3h7du3AAA/Pz/cvn1b/fAwMTFh8D7JYRQMGNnNmzexv7+PxsZGODk5ISUlxSDt7u3toa2tDXt7e0hOToaLiwsaGhqQmpqK2dlZVFRUoKioSKdlCn0jf3d3dwgEArS1tRk0PwIhv2Sqc//6zAZ8aWNjQ6fpfoZhUFRUhObmZuzs7Byartdlxk+hUGBgYABLS0sAPhcvun37ttbtEMOhYMAErKyscOfOHSwtLUEoFCI6OhoBAQE6tbW+vo6Ojg5YWVkhLS3tyNkGHx8feHl5oaamBpGRkQgMDNT3T9BJXFwc/t//+38YGRmhamWEnKC+vh5hYWHIyckxWJubm5s67TVQyc7ORmdnJ7a3txEeHq71/TKZDL29vVhbWwPDMIiJicGNGzd0Hg8xLAoGTMjDwwN8Ph+Dg4MQi8XIyck5No/41969e4dnz57B0dERt2/fPnVNzdLSEjweD/39/ZienkZGRobG49R3rV8mk6GlpQUMw+Cv//qv8eOPP+rVHiG/dPn5+cjNzcXQ0BBevHgBDw8P3Lx5U6/P4sbGBvz8/PQaV0pKCp49e4anT58iNjb21Ou3t7fR09OD7e1tsFgsxMfHG33/EtEMBQNmIDo6GhEREWhqagKbzUZaWtqxH3qJRAKJRAIvLy8UFRUd2+bW1hZsbW0PvX7z5k0sLS3hwYMHuHPnjsbBhy6USiU6OzuxtraGzMxM2NnZnVlfhPwSRUVFISoqCouLi6itrYW1tfWxM4Cn2dzcNMjn/caNG3j16hUeP36M1NTUQ++vra2ht7cXMpkMbDYbiYmJR34XEfNCwYCZYLFYyM/Px8rKCsRiMcLCwnDlyhUAn39Unz17hoWFBVy5cuXEIEBldHQUYWFhR77n4eGBsrIy1NXVISgoCKGhoQb9WwDg+fPnmJmZQWpqql5Tk4QQwNPTE0VFRdjd3UV7ezt2d3dx48YNfPvttxq3oVQqT607oqmwsDBMTk6isbERALC0tITnz59DqVTC0dERGRkZsLKyMkhfxDgoGDAzrq6u4PF4GB4eRmVlJf7nf/5H/cHXZFpOZWVl5cTrLSwsUFRUhKGhIdTX1yMvL88gR/8kEglGR0cRExOjrqFOCDEMGxsb5Obmqh8Qnj17Bm9vb43qmhjSx48fMT09jenpafzt3/4tnj59iry8PDoC+DNGwYAZU220CQsL0+oJQBtRUVHw8/PD/fv3kZ+fr/N63rt379DX14eQkBCUlJQYdpCEkAMYhlEH+7Ozs6ipqYGtrS3S0tIM/kQul8vx6tUrzM/Pq1+7ePEikpKSYGVlhVevXmF6epoCgZ85CgbMzMrKCtrb2xEeHo7IyEgUFRVhfHwcy8vLOlckO42Liwvu3buHhoYGeHl5ISoqSuN719bW0NbWBi8vLwoCCDEBHx8f+Pj4YHt7Gy0tLdjf30dCQsKhvASaHhFeWVnB0NCQOhUxi8VCWFgYIiIiDl27traGlJQU2Nvbo7m5GdnZ2fr/QcQkKBgwE3K5HI2NjbCzswOPxwPDMGhoaMD169fh7u6O8fFx1NXVHUjGYUgMwyA/Px+jo6Oorq5GYWHhiZH+7u4umpubYWtri6KiInoqIMTEbG1tkZ+fD6VSid7eXvT09ODy5csnHgOUy+UYGRk5UFzM1dUVycnJp+Yk2dvbU89C+Pr6QiaTobW1VauTSsR8UDBgBgYGBjA9PY3c3NwDO+6VSqX6hz84OBju7u64f/8+uFzuibtzl5aWdM70p6prXl5ejvT0dHh4eBx4X6FQoKWlBTKZDDk5ObC2ttapH0LI2WAYBgkJCQCAN2/eoKamBvb29pDL5fjw4QOGhoawv78P4P+e+iMjI7Xup6ur60Bm04CAAMhksmNPGRDzRsGACS0tLeHJkyeIjo7WaAOQs7MzBAIBxGIxEhIScOnSpSOvGx0dVX8Z6OLChQu4d+8efvzxR0xPTwP4HJh0d3fjw4cPyMjI0DqtKSHE+AICAhAQEICZmRkEBASof6gNEcRLpdJDRxVDQkIgl8vR3d1t0NLK5OzR3K4JqMoZj4+Pg8/na5V9kMViobS0FBKJBENDQ0deo21BkuNkZmbC2toaeXl5EIlECAwMRHFxMQUChPyMfPr0Cf39/djc3MTHjx8NEghsb28f+x1z7do1ODg4oL+/X+9+iPHQzICR9ff3Y2FhQe9CRRkZGRgeHkZLSwuysrIMMrYvdw2rlifs7e3xxz/+Efv7+1RkiJCfmdXVVfz444/g8/nqKoCzs7Pw8fHRq92vlwi+Fh4ejoGBAQwMDBj92CPRDQUDRjI3N4cXL14gNjYWN2/ePPX6ra2tU7OFhYeHw93dHeXl5eDxeLC01O4/57t37zAyMgKFQgHgc+6B0NDQA7uG3759CycnJwQEBKC8vBwCgYA2CxLyM7C6uorm5maUlpaqg/u4uDgIhUK9gwFNZh9jYmLw9OlTvHz58siTCMS8UDBgBDMzM/jP//xP/Ou//it8fX01uufNmzcaLR94enqiuLgYlZWVyMnJgZOT05E/1lKpFIODg9jY2Dhwb0ZGxolBxMjICAoLCwEARUVFePDgAe7evUsBASFmbG1tDU1NTSgrKzt0+igpKQlPnjzRuay5NtUPY2Nj0dPTg9HR0TPJdEoMh4IBI/D19cXvf/97WFlZoa6uDgAQHx8PNze3Y++Zn58/Np3w12xsbHD37l3U19dDJpMhNDQUY2NjmJqaUn8R2NraIioqCk5OThqPe2tr68DpBjs7OxQXF1NAQIgZW19fR0NDAwQCwZHHkD09PTEwMACpVKpTvZDu7m6tjg8mJCSgs7MTr1+/RkhIiNb9EeOgYMCI/Pz84OfnB4VCgb6+PvT29sLe3h7JyclHPp1r8mO7v78PiUSCubk5WFhYoLi4GN9//z3Kysr0TjHc0dFxqIQqBQSEmK+NjQ3U19cfGwio5Obmora2FlwuV+s+ZDKZ1lkOU1JS0NbWBktLS53LtZOzRcGACVhYWKiP/m1sbKC5uRkymQxBQUG4du0agKOzha2trWF4eBibm5vq16ysrHD16lWEhYVhfn4eXV1d2NnZgaWlpV6BgFKphFwuPzJIsbOzA5fLxYMHDyAQCAxW/IQQoruNjQ08fPgQd+/ePfWzz2KxEBgYCIlEoi6IpomPHz/CxcVFp/Glp6ejpaUFLBZL71LKxPAoGDAxBwcH5OfnAwAmJiZQV1cHhmHw7NkzWFpaQi6Xq691dHREZGTksUf7ent7UVpaCgAQiURwdnbWeG3vqLZOSn9sa2urDgju3r1LAQEhJrS5ualxIKASHh4OoVCIkJAQje/p6+s7NFuojaysLDQ0NMDS0vLYPCnENGiO14wEBQXhzp07sLW1xbNnz5Ceno68vDz1P4mJiccGAh0dHQeyfpWUlKCmpuZAMKGNDx8+HMpt/jVbW1uUlJTgwYMHOvdDCNHP5uYm6urqTl0aOEpWVhZaWlo0vl6hUOgd+Ofl5WFwcBBLS0t6tUMMi4IBM9PW1gZvb2/80z/9ExYWFjS6Z319HTs7OwfyADAMAx6PB5FIpPUYpqenNT71YGtrCx6PRwEBISawtbWF2tpanY/8Ojk5gcVi4ePHj6deq0+a86/duXMHPT09WFlZMUh7RH8UDJiR1tZW+Pj4ICQkBDExMcdmGPxaU1PTkVN3bDYbt27dQkNDg1bjePnypVa5ytlsNgUEhBiZVCpFTU2N3ht509PT0dbWdup1z549w40bN3Tu52vFxcVoa2vD6uqqwdokuqNgwEy0tLTAz88PQUFB6tesra2xu7t74n2Dg4OIjIw8dnrwm2++weXLl9HX16fROKRS6YlFkI5DAQEhxiOVSlFVVWWQEz0MwyAqKgqDg4MaXWsoDMOAz+ejsbHxQP4TYhoUDJiB5uZmBAYGIjAw8MDrt27dQkdHx7H37e/vY3p6GsHBwSe2r9otLJFITh1LR0cHbt26pcGoD/syIJDJZDq1QQg52fb2NqqqqnDv3j2DHe0NDAzE9PT0sZ/b2dlZeHt7G6SvLzEMA4FAgLq6OkilUoO3TzRHwYCJNTY2IiQkBJcvXz70HpvNPnFm4NGjR+qTCKeJi4vD27dvT9y0o1QqdTpD/CU2mw0+n4/y8nIKCAgxsO3tbYjF4jPJ8ZGXl4fGxsYj3zvLlMIMw+Du3buoqqo6dSaUnB0KBkyooaEB165dO/HM7XHTd5OTk/D29oaNjY3G/eXl5aGjowPb29tHvt/X14e4uDiN2zuOjY0NBQSEGNjOzo46EDiLo7xsNhuurq6Ym5s78n1DLhF8zcLCAgKBAEKhEPv7+2fWDzkeBQMm8ujRI3A4nFN37fv4+Bz6cCqVSgwMDOD69eta98vn8yEWi9XFib60vLxssN3CFBAQYjg7OzsQCoVnntMjPj7+0P6iiYmJQ0uYZ8HS0hKlpaUoLy+nfUcmQMGACdTV1SEyMlLjNTg3NzcsLy+r/72lpQXZ2dk69c1isVBUVITq6uoDr8/MzOhdyexrqoDgwYMHFO0ToqPd3V2IRCKjJfdKTExEV1eX+t8lEgmuXr165v0CnzdNq74zjnpgIWeHggEjq62txfXr17XKvvVltP7hwwdYWlrC2dlZ5zHY29sjNjYWra2t6tdevHiBqKgonds8jo2NDcrKylBeXk4BASFa2t3dhVAohEAg0LpEua68vLywurpqsg19bDYbXC4X5eXlR6ZlJ2eDggEjqq6uRmxsLLy8vLS6j2EYsFgsyGQytLW1IS0tTe+xeHt745tvvsHAwAC2t7dPrU2uD2tra5SVlaGiooICAkI0tLe3h8rKSqMGAip5eXloamoyWelhOzs73L59GxUVFRQQGAkFA0ZSVVWFhIQEeHp66nR/SkoKvv/+e8TFxRlsIw+Hw4FUKsV///d/63ycUFPW1tYoLS2lgIAQDezt7aGiosIkgQDweTkxICAATU1NR550MgYHBwfk5ORALBabpP/zhgoVGYGlpSXs7e01SupxkuXlZYyNjWFsbMxAI/vsp59+0igDmSE4OjpSUSNCTsFiseDk5HRgKc8UZmZmjj1uaCxOTk4mCYjOG0ZJczCEEELIuUbLBIQQQsg5R8EAIYQQcs5RMEAIIYSccxQMEEIIIeccBQOEEELIOUfBACGEEHLOUTBACCGEnHMUDBBCCCHnHAUDhBBCyDlHwQAhhBByzlEwQAghhJxzFAwQQggh5xwFA4QQQsg5R8EAIYQQcs5RMEAIIYSccxQMEEIIIeccBQOEEELIOUfBACGEEHLOUTBACCGEnHMUDBBCCCHnHAUDhBBCyDlHwQAhhBByzlEwQAghhJxzFAwQQggh5xwFA4QQQsg59/8Bff3Wu5j0jAgAAAAASUVORK5CYII=", - "text/plain": [ - "<Figure size 640x480 with 1 Axes>" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import numpy as np\n", @@ -205,8 +194,8 @@ "from scipy.sparse import linalg\n", "\n", "# Function makes the coefficients of shape functions for a 3-node triangle\n", - "# the shape function for node i is defined as N_i = a_i*x + b_i*y + c_i\n", - "# this function returns the coefficients as coeff[i] = [c_i, a_i, b_i]\n", + "# the shape function for node i is defined as N_i = a_i + b_i*x + c_i*y\n", + "# this function returns the coefficients as coeff[i] = [a_i, b_i, c_i]\n", "def get_shape_functions_T3( n1, n2, n3 ):\n", " coordinate_Matrix = np.ones((3,3))\n", " coeffs = np.zeros((3,3))\n", @@ -328,12 +317,12 @@ "outputs": [], "source": [ "# Set problem parameters\n", - "nu = 1\n", - "q = 0\n", "dt = 0.005\n", - "T_initial = 50\n", "nt = 500\n", - "u_bar = 10\n", + "nu = 1\n", + "q = 15\n", + "T_initial = 30\n", + "T_edge = 10\n", "\n", "# Find the constrained nodes\n", "constrained_nodes = []\n", @@ -343,8 +332,8 @@ "min_x = min(nodes[:,0])\n", "max_x = max(nodes[:,0])\n", "for i in range(len(nodes)):\n", - " if nodes[i,1] == min_y and nodes[i,0] < 0.5*max_x:\n", - " constrained_nodes.append(i)\n", + " if nodes[i,1] == min_y and nodes[i,0] > 0.5*max_x:\n", + " constrained_nodes.append(i)\n", " else:\n", " n_free += 1\n", " free_nodes.append(i) \n", @@ -373,7 +362,7 @@ "\n", "# Solve system of equations for subsequent time steps\n", "for i in range(nt):\n", - " us[i+1, constrained_nodes] = u_bar\n", + " us[i+1, constrained_nodes] = T_edge\n", " fmod = M.dot(us[i]) / dt + f\n", " ff = fmod[free_nodes] - Kmodfp.dot(us[i+1, constrained_nodes])\n", " us[i+1, free_nodes] = solver(ff)\n" @@ -423,7 +412,7 @@ " ax = fig.add_subplot(projection='3d')\n", " \n", " # Set the color limits to get the right scale of our color-plot\n", - " norm = colors.Normalize(vmin=5, vmax=55)\n", + " norm = colors.Normalize(vmin=8, vmax=52)\n", " \n", " # For each element draw a triangular surface\n", " x = nodes[:,0]\n", @@ -436,13 +425,15 @@ " ax.set_zlim((0, 55))\n", " \n", " # Set the data of the colorbar indicating the different temperatures\n", - " cmap = cm.ScalarMappable(norm = colors.Normalize(5, 55), cmap = cm.coolwarm)\n", + " cmap = cm.ScalarMappable(norm = colors.Normalize(8, 52), cmap = cm.coolwarm)\n", " cmap.set_array(result)\n", " fig.colorbar(cmap, ax=ax)\n", "\n", - "# Plot the results for one time step \n", - "# Change the time step number in the second argument to plot a different time step\n", - "plot_result(nodes, us[1], (min_x, max_x), (min_x,max_x))" + "# Select time step for plotting\n", + "time_step = 5\n", + "\n", + "# Plot the results for selected time step \n", + "plot_result(nodes, us[time_step], (min_x, max_x), (min_x,max_x))" ] }, { @@ -467,7 +458,7 @@ " ax = fig.add_subplot(projection='3d')\n", " \n", " # Set the color limits to get the right scale of our color-plot\n", - " norm = colors.Normalize(vmin=5, vmax=55)\n", + " norm = colors.Normalize(vmin=8, vmax=52)\n", " \n", " # For each element draw a triangular surface\n", " x = nodes[:,0]\n", @@ -481,7 +472,7 @@ " ax.set_zlim((0, 55))\n", " \n", " # Set the data of the colorbar indicating the different temperatures\n", - " cmap = cm.ScalarMappable(norm = colors.Normalize(5, 55), cmap = cm.coolwarm)\n", + " cmap = cm.ScalarMappable(norm = colors.Normalize(8, 52), cmap = cm.coolwarm)\n", " cmap.set_array(results[step])\n", " fig.colorbar(cmap, ax=ax)\n", " \n", @@ -515,9 +506,9 @@ " ax = fig.add_subplot()\n", " x = nodes[:,0]\n", " y = nodes[:,1];\n", - " cscale = colors.Normalize(5, 55)\n", + " cscale = colors.Normalize(8, 52)\n", " ax.set_aspect('equal')\n", - " tcf = ax.tricontourf(x, y, conn, results[step], norm=cscale, cmap=cm.coolwarm)\n", + " tcf = ax.tricontourf(x, y, conn, results[step], norm=cscale, cmap=cm.coolwarm, levels=12)\n", " ax.triplot(x,y,conn, 'k-', lw=0.2)\n", " \n", " cmap = cm.ScalarMappable(norm = cscale, cmap = cm.coolwarm)\n", @@ -566,11 +557,19 @@ "<span style=\"font-size: 75%\">\n", "© Copyright 2024 <a rel=\"MUDE\" href=\"http://mude.citg.tudelft.nl/\">MUDE</a> TU Delft. This work is licensed under a <a rel=\"license\" href=\"http://creativecommons.org/licenses/by/4.0/\">CC BY 4.0 License</a>." ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "694bc791", + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { "kernelspec": { - "display_name": "mude-base", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -584,7 +583,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.5" + "version": "3.12.3" }, "latex_envs": { "LaTeX_envs_menu_present": true, -- GitLab