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Here we show that the T-test statistics of the LS-HE can include the PSD (of Fourier Transform) as a special
case. The T-test statistic is obtained using the following formula
T=28l lec(CTlepic) CTQ
where y is the vector of time series observations, &, = Piy is the Ieast squares residuals under the null
hypothesis Hy, PAl is an orthogonal projector, @, is the covariance matrix of observations, and C is a
matrix containing two columns of sin and cos, as the signal to be tested. This test statistic, having chi-
square distribution, can be tested in a given confidence level (2 is the columns of C)
T~ x*(2,0)

A special case of the above formula can deal with a zero-mean time series. For this situation, the design
matrix A is not present, so A = 0 and therefore Pi- = I is an identity matrix. This will then give &, = y.
Further simplification regards the situation where the time series consist of unit white noise resulting in
Qy = 1. The T-test statistics become then

T=yTC(CTC)1CTy
This can, in fact, be shown to be identical to the multiplication of PSD by a factor of 2, i.e. as

2
T(K) = 25y, (k) = = V() I

Proof. To be consistent with the PSD of the week ‘Signal Processing’, we consider the time series as y =
[Yo, V1, -+-» Ym—1] at timeinstances y = [tg, t1, -, tm—_1] = [0,1, ..., m — 1]. We then have T = mAt = m
The matrix C is then as follows:
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We then define the following frequencies as we have in Fourier Transform (note that LS-HE does not this
requirement, so in principle any frequency can be tested):

k 2mk
Wy = Zﬂfk = 27'[? = T,k = 0,1, e, M = 1
We therefore have
m—1
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i=0

Using the identity
1
sin(a) cos(a) = Esin(Za)

it follows that
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or (let us assume m is an even number, when m is odd a S|m|Iar procedure can be repeated)
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which gives
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We know that sin(2n %} ati = 0 is zero and therefore
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Writing out the series as (put some of the terms together: the first and last terms, the second and the last
but one, ...), we will have
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or
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Using the identity sin(2km — a) = —sin(a) we have
()—'22k '22k+'24k '24k+—0+0+ =0
cs(wy) = sin( rcm) sin( rcm) sin( nm) sin( nm) = =
In a similar manner we can prove that

cc(wy) = ss(wg) = z
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which gives
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We can also simply show that
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which gives
T(wy) =y"C(CTC)™CTy
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The Power Spectral Density (PSD) is obtained as

Sy () = —— [V () |2 = — [V (k) 2
VYA mAt m (k)
where Y (k) is the Fourier Transform of y
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Using the Euler formula e/® = cos 6 + j sin 6, we have
m-1

Y@ =ve= . (yicos(2o0) —j yisiny)

i=0

ity 2rki anl
Y(k) =Y, = z Yi cos( ) Z Vi sm(
i=1
This will then give

Syy(k) = IY(k) pot (Z )i cos (2nkl)> (z osin <2nkl))

When compared with

Ty = 2> (Z ’i cos(zmk ) (Z ” Sm(ka )

T(k) = 25, (k)

and finally, it results in
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It follows that




