
Modelling, Uncertainty and Data for Engineers
(MUDE)

Basic Linux shell commands
Denis Voskov, Ilshat Saifullin

1

Shell introduction

 Shell is …

 command-line interface

 scripting language

 Most popular is Bash

 No clicks as in GUI. Just write the
commands and execute them

 Perfect for repetitive tasks

 Combine scripts and organize your
workflow

2

https://www.reddit.com/r/antiwork/comments/s2igq9/i_automated_my_job_over_a_year_ago_and_ha

vent/?sort=top

Example of automation

https://www.reddit.com/r/antiwork/comments/s2igq9/i_automated_my_job_over_a_year_ago_and_havent/?sort=top

Shell command syntax

 General syntax

COMMAND OPTIONS ARGUMENTS

 Getting help

• COMMAND --help

• man COMMAND

• online help http://man.he.net

3

Example

 ls

 ls -- help

 ls -l *.txt

http://man.he.net/

Shell keys

4

Key Description

Up Previous command

Ctrl+R then type Search in command history

Ctrl+C Interrupt the command

Tab Autocomplete the command or filename

Shell commands: files and directories

5

Commandls Description Examples

ls List current directory ls ls ./logs/1?.txt ls -l

pwd Print current directory path pwd

cd DIR Change directory cd ~ cd .. cd /usr/include

mkdir DIR Make a new directory mkdir data

cp SRC DEST Copy a file or directory cp 1.txt 2.txt cp *.txt ./logs cp -r dir_1 dir_2

mv SRC DEST Move/rename a file or directory mv old.txt new.txt mv new.txt data

rm FILE Remove the file or directory.
Note: removed files cannot be

rm new.txt
rm log*.txt
rm -r data

Shell commands: files and directories

6

Command Description Examples

touch FILE Create an empty file with name FILE touch my_file.txt

which FILE Print the path to executable which python

tar -czf ARCH INPUT Create an archive with name ARCH tar сzf data.tar.gz data data_2

tar -xzf ARCH Unpack the archive tar xzf data.tar.gz

chmod MODE FILE Change mode for the FILE
MODE: u/g/o/a +/- r/w/x

chmod a+x *.sh

find Finds files by name pattern, type, … find mydir/’pattern’

Shell commands: tools

7

Command Description Examples

echo TEXT Display a line of text echo "Hello!"

cat FILE_1 FILE_2 … Concatenate files and print to std output cat cities.txt
cat 1.txt 2.txt

head -n 2 FILE Output the first # lines of file(s) head -n 10 cities.txt

tail -n 2 FILE Output the last # lines of file(s) tail -n 10 *.txt

wc FILE Print line, word, byte counts for file(s) wc -l cities.txt

grep TEXT FILE Print lines of file that match patterns grep Den Haag cities.txt

Shell commands: pipes

8

Command Description Examples

COMMAND > FILE Redirect output to the FILE cat 1.txt 2.txt > 12.txt

COMMAND >> FILE Redirect output to the FILE in append node cat 1.txt >> 12.txt
cat 2.txt >> 12.txt

COMMAND < FILE Use FILE as input to COMMAND tail -n 10 *.txt

CMD1 | CMD2 Use output of the command CMD1 as input to

the command CMD2

cat cities.txt | grep Rotterdam

Shell: Variables

9

Command Description

echo $PATH Show the PATH variable value

s="Hello"
echo $s

Set a variable and print the value.

export s="Hello" Set as an environment variable. Other processes started from this shell will use it.

• Shell variables are treated as strings

• Variables are assigned using "=" symbol

• Add "$" before the name of the variable to use it

• The PATH variable defines the shell’s search path

Example:
a=1
b=5
c=a+b
c=$((a + b))

Shell: loops

10

for f in *.txt
do

echo $f
done

for f in *.txt; do echo $f; done

for f in *.txt
do

tail -n 10 $f >> all.txt
done

for entity in temp pressure
do

for value in 5 10 15
do

echo $entity $value
done

done

for i in $(seq 5 10); do echo $i; done

Shell: conditions

11

if CONDITION
then
COMMANDS_1
else
COMMANDS_2
fi

spaces in [] are mandatory
if [$i == 5]
then
echo " I is 5"
else
echo " I is not 5"
fi

Operator Description

&& logical and

|| logical or

-gt > (greater)

-ge >= (greater or equal)

spaces in [] are mandatory
if [$i -gt 5]
then
echo "I greater than 5 "
fi

Shell: system information

12

Command Description

cat /proc/cpuinfo Processor info

uname -a OS info

lsb_release -a OS version

df -h Free space on disk

free Amount of free and used memory (RAM)

top -c Processes (-c to show command arguments)

Shell: processes and signals

13

Command Description

./my_script.sh use ./ to run executable file from current directory (if not in $PATH)

time ./my_script.sh Run and measure the resource usage

touch my_script.sh
chmod a+x my_script.sh
./my_script.sh
time ./my_script.sh

Text Editor (nano)

14

Command Description

nano my.txt Open the editor

Ctrl+G Show Help

Ctrl+O Save the file

Ctrl+X Exit

Bash script file

15

1. #!/bin/bash at the first line

(interpreter)

2. Using cmd arguments: $#, $1

3. Commenting: #

Exercise 1: count files and run script

16

1. Create a text file with your bash commands

2. Depending on the argument, print the number of files in directory

a) If no arguments: in directory Week_2_2 (recursively)

b) Argument is sub_dir: in directory Week_2_2 /sub_dir

3. Check that the sum of results of two calls with arguments well_logs and

well_tests is equal to result of call without arguments. Use variables.

Exercise 2: search, print and collect the data

17

1. Depending on the argument well_name, print the temperature

from file Week_2_2 /well_tests/well_name_welltest.txt

2. Collect all the filenames and well temperatures to one file

Exercise 3: use archive and process files

18

1. Create an archive with well_test files for the wells with names:

W3, W5, W15, W17.

Files are in the directory:

well_tests/well_name_welltest.txt

2. Create a new directory my_data and copy all the files from

Week_2_2 directory to it. Remove the files for the wells

W1, W2, .. , W10 in my_data

