
Appendices442

The following appendices provide additional details that are relevant to the paper. Appendices A443

and B explain any tasks related to Energy-Based Modelling and Predictive Uncertainty Quantification444

through Conformal Prediction, respectively. Appendix C provides additional technical and implemen-445

tation details about our proposed generator, ECCCo, including references to our open-sourced code446

base. A complete overview of our experimental setup detailing our parameter choices, training proce-447

dures and initial black-box model performance can be found in Appendix D. Finally, Appendix E448

reports all of our experimental results in more detail.449

A Energy-Based Modelling450

Since we were not able to identify any existing open-source software for Energy-Based Modelling451

that would be flexible enough to cater to our needs, we have developed a Julia package from scratch.452

The package has been open-sourced, but to avoid compromising the double-blind review process, we453

refrain from providing more information at this stage. In our development we have heavily drawn on454

the existing literature: Du and Mordatch [25] describe best practices for using EBM for generative455

modelling; Grathwohl et al. [24] explain how EBM can be used to train classifiers jointly for the456

discriminative and generative tasks. We have used the same package for training and inference, but457

there are some important differences between the two cases that are worth highlighting here.458

A.1 Training: Joint Energy Models459

To train our Joint Energy Models we broadly follow the approach outlined in Grathwohl et al. [24].460

These models are trained to optimize a hybrid objective that involves a standard classification loss461

component Lclf(✓) = � log p✓(y|x) (e.g. cross-entropy loss) as well as a generative loss component462

Lgen(✓) = � log p✓(x).463

To draw samples from p✓(x), we rely exclusively on the conditional sampling approach described464

in Grathwohl et al. [24] for both training and inference: we first draw y ⇠ p(y) and then sample465

x ⇠ p✓(x|y) [24] via Equation 2 with energy E(x|y) = µ✓(x)[y] where µ✓ : X 7! RK returns466

the linear predictions (logits) of our classifier M✓. While our package also supports unconditional467

sampling, we found conditional sampling to work well. It is also well aligned with CE, since in this468

context we are interested in conditioning on the target class.469

As mentioned in the body of the paper, we rely on a biased sampler involving separately specified470

values for the step size ✏ and the standard deviation � of the stochastic term involving r. Formally,471

our biased sampler performs updates as follows:472

x̂j+1  x̂j �
✏

2
E(x̂j |y+) + �rj , j = 1, ..., J (7)

Consistent with Grathwohl et al. [24], we have specified ✏ = 2 and � = 0.01 as the default values for473

all of our experiments. The number of total SGLD steps J varies by dataset (Table 3). Following best474

practices, we initialize x0 randomly in 5% of all cases and sample from a buffer in all other cases.475

The buffer itself is randomly initialised and gradually grows to a maximum of 10,000 samples during476

training as x̂J is stored in each epoch [25, 24].477

It is important to realise that sampling is done during each training epoch, which makes training Joint478

Energy Models significantly harder than conventional neural classifiers. In each epoch the generated479

(batch of) sample(s) x̂J is used as part of the generative loss component, which compares its energy480

to that of observed samples x: Lgen(✓) = µ✓(x)[y]� µ✓(x̂J)[y]. Our full training objective can be481

summarized as follows,482

L(✓) = Lclf(✓) + Lgen(✓) + �Lreg(✓) (8)

where Lreg(✓) is a Ridge penalty (L2 norm) that regularises energy magnitudes for both observed and483

generated samples [25]. We have used varying degrees of regularization depending on the dataset (�484

in Table 3).485

Contrary to existing work, we have not typically used the entire minibatch of training data for the486

generative loss component but found that using a subset of the minibatch was often sufficient in487
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Table 3: EBM hyperparemeter choices for our experiments.

Dataset SGLD Steps Batch Size �

Linearly Separable 30 50 0.10
Moons 30 10 0.10
Circles 20 100 0.01

MNIST 25 10 0.01
GMSC 30 10 0.10

Figure 3: Conditionally generated MNIST images for our JEM Ensemble.

attaining decent generative performance (Table 3). This has helped to reduce the computational488

burden for our models, which should make it easier for others to reproduce our findings. Figures 3489

and 4 show generated samples for our MNIST and Moons data, to provide a sense of their generative490

property.491

A.2 Inference: Quantifying Models’ Generative Property492

At inference time, we assume no prior knowledge about the model’s generative property. This means493

that we do not tab into the existing buffer of generated samples for our Joint Energy Models, but494

instead generate conditional samples from scratch. While we have relied on the default values ✏ = 2495

and � = 0.01 also during inference, the number of total SGLD steps was set to J = 500 in all cases,496

so significantly higher than during training. For all of our synthetic datasets and models, we generated497

50 conditional samples and then formed subsets containing the nE = 25 lowest-energy samples.498

While in practice it would be sufficient to do this once for each model and dataset, we have chosen499

to perform sampling separately for each individual counterfactual in our experiments to account for500

stochasticity. To help reduce the computational burden for our real-world datasets we have generated501

only 10 conditional samples each time and used all of them in our counterfactual search. Using more502

samples, as we originally did, had no substantial impact on our results.503
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Figure 4: Conditionally generated samples (stars) for our Moons data using a JEM.

B Conformal Prediction504

In this Appendix B we provide some more background on CP and explain in some more detail how505

we have used recent advances in Conformal Training for our purposes.506

B.1 Background on CP507

Intuitively, CP works under the premise of turning heuristic notions of uncertainty into rigorous508

uncertainty estimates by repeatedly sifting through the data. It can be used to generate prediction509

intervals for regression models and prediction sets for classification models. Since the literature on510

CE and AR is typically concerned with classification problems, we focus on the latter. A particular511

variant of CP called Split Conformal Prediction (SCP) is well-suited for our purposes, because it512

imposes only minimal restrictions on model training.513

Specifically, SCP involves splitting the data Dn = {(xi,yi)}i=1,...,n into a proper training set Dtrain514

and a calibration set Dcal. The former is used to train the classifier in any conventional fashion.515

The latter is then used to compute so-called nonconformity scores: S = {s(xi,yi)}i2Dcal where516

s : (X ,Y) 7! R is referred to as score function. In the context of classification, a common choice for517

the score function is just si = 1�M✓(xi)[yi], that is one minus the softmax output corresponding518

to the observed label yi [28].519

Finally, classification sets are formed as follows,520

C✓(xi;↵) = {y : s(xi,y)  q̂} (9)

where q̂ denotes the (1 � ↵)-quantile of S and ↵ is a predetermined error rate. As the size of the521

calibration set increases, the probability that the classification set C(xtest) for a newly arrived sample522

xtest does not cover the true test label ytest approaches ↵ [28].523

Observe from Equation 9 that Conformal Prediction works on an instance-level basis, much like CE524

are local. The prediction set for an individual instance xi depends only on the characteristics of that525

sample and the specified error rate. Intuitively, the set is more likely to include multiple labels for526

samples that are difficult to classify, so the set size is indicative of predictive uncertainty. To see why527

this effect is exacerbated by small choices for ↵ consider the case of ↵ = 0, which requires that the528

true label is covered by the prediction set with probability equal to 1.529

B.2 Differentiability530

The fact that conformal classifiers produce set-valued predictions introduces a challenge: it is not531

immediately obvious how to use such classifiers in the context of gradient-based counterfactual532

search. Put differently, it is not clear how to use prediction sets in Equation 1. Fortunately, Stutz et al.533

[30] have recently proposed a framework for Conformal Training that also hinges on differentiability.534

Specifically, they show how Stochastic Gradient Descent can be used to train classifiers not only535

for the discriminative task but also for additional objectives related to Conformal Prediction. One536

such objective is efficiency: for a given target error rate ↵, the efficiency of a conformal classifier537
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Figure 5: Prediction set size (left), smooth set size loss (centre) and configurable classification loss
(right) for a JEM trained on our Linearly Separable data.

improves as its average prediction set size decreases. To this end, the authors introduce a smooth set538

size penalty defined in Equation 6 in the body of this paper. Formally, it is defined as C✓,y(xi;↵) :=539

�
�
(s(xi,y)� ↵)T�1

�
for y 2 Y , where � is the sigmoid function and T is a hyper-parameter used540

for temperature scaling [30].541

In addition to the smooth set size penalty, Stutz et al. [30] also propose a configurable classification542

loss function, that can be used to enforce coverage. For MNIST data, we found that using this543

function generally improved the visual quality of the generated counterfactuals, so we used it544

in our experiments involving real-world data. For the synthetic dataset, visual inspection of the545

counterfactuals showed that using the configurable loss function sometimes led to overshooting:546

counterfactuals would end up deep inside the target domain but far away from the observed samples.547

For this reason, we instead relied on standard cross-entropy loss for our synthetic datasets. As we have548

noted in the body of the paper, more experimental work is certainly needed in this context. Figure 5549

shows the prediction set size (left), smooth set size loss (centre) and configurable classification loss550

(right) for a JEM trained on our Linearly Separable data.551

C ECCCo552

In this section, we briefly discuss convergence conditions for CE and provide details concerning the553

actual implementation of our framework in Julia.554

C.1 A Note on Convergence555

Convergence is not typically discussed much in the context of CE, even though it has important556

implications on outcomes. One intuitive way to specify convergence is in terms of threshold557

probabilities: once the predicted probability p(y+|x0) exceeds some user-defined threshold � such558

that the counterfactual is valid, we could consider the search to have converged. In the binary case,559

for example, convergence could be defined as p(y+|x0) > 0.5 in this sense. Note, however, how560

this can be expected to yield counterfactuals in the proximity of the decision boundary, a region561

characterized by high aleatoric uncertainty. In other words, counterfactuals generated in this way562

would generally not be plausible. To avoid this from happening, we specify convergence in terms of563

gradients approaching zero for all our experiments and all of our generators. This is allows us to get564

a cleaner read on how the different counterfactual search objectives affect counterfactual outcomes.565

C.2 ECCCo.jl566

The core part of our code base is integrated into a larger ecosystem of Julia packages that we567

are actively developing and maintaining. To avoid compromising the double-blind review process,568

we only provide a link to an anonymized repository at this stage: https://anonymous.4open.569

science/r/ECCCo-1252/README.md.570

D Experimental Setup571

Table 4 provides an overview of all parameters related to our experiments. The GMSC data were572

randomly undersampled for balancing purposes and all features were standardized. MNIST data was573

also randomly undersampled for reasons outlined below. Pixel values were preprocessed to fall in the574

range of [�1, 1] and a small Gaussian noise component (� = 0.03) was added to training samples575
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Table 4: Paremeter choices for our experiments.

Network Architecture Training

Dataset Sample Size Hidden Units Hidden Layers Activation Ensemble Size Epochs Batch Size

Linearly Separable 1000 16 3 swish 5 100 100
Moons 2500 32 3 relu 5 500 128
Circles 1000 32 3 swish 5 100 100

MNIST 10000 128 1 swish 5 100 128
GMSC 13370 128 2 swish 5 100 250

Table 5: Various standard performance metrics for our different models grouped by dataset.

Performance Metrics

Dataset Model Accuracy Precision F1-Score

JEM 0.99 0.99 0.99Linearly Separable
MLP 0.99 0.99 0.99

JEM 1.00 1.00 1.00Moons
MLP 1.00 1.00 1.00

JEM 0.98 0.98 0.98Circles
MLP 1.00 1.00 1.00

JEM 0.83 0.84 0.83
JEM Ensemble 0.90 0.90 0.89

MLP 0.95 0.95 0.95

MNIST

MLP Ensemble 0.95 0.95 0.95

JEM 0.73 0.75 0.73
JEM Ensemble 0.73 0.75 0.73

MLP 0.75 0.75 0.75

GMSC

MLP Ensemble 0.75 0.75 0.75

following common practice in the EBM literature. All of our models were trained through mini-batch576

training using the Adam optimiser (Kingma and Ba [37]). Table 5 shows standard evaluation metrics577

measuring the predictive performance of our different models grouped by dataset. These measures578

were computed on test data.579

Table 6 summarises our hyperparameter choices for the counterfactual generators where ⌘ denotes580

the learning rate used for Stochastic Gradient Descent (SGD) and �1, �2, �3 represent the chosen581

penalty strengths (Equations 1 and 5). Here �1 also refers to the chosen penalty for the distance from582

factual values that applies to both Wachter and REVISE, but not Schut which is penalty-free. Schut is583

also the only generator that uses JSMA instead of SGD for optimization.584

D.1 Compute585

To enable others to easily replicate our experiments, we have chosen to work with small neural586

network architectures and randomly undersampled the MNIST dataset (maintaining class balance).587

All of our experiments could then be run locally on a personal machine. The longest runtimes we588

Table 6: Generator hyperparameters.

Dataset ⌘ �1 �2 �3

Linearly Separable 0.01 0.25 0.75 0.75
Moons 0.05 0.25 0.75 0.75
Circles 0.01 0.25 0.75 0.75

MNIST 0.10 0.10 0.25 0.25
GMSC 0.05 0.10 0.50 0.50
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experienced for model training and counterfactual benchmarking were on the order of 8-12 hours589

(MNIST data). For the synthetic data, all experiments could be completed in less than an hour.590

We have summarised our system information below:591

Software:592

• System Version: macOS 13.3.1593

• Kernel Version: Darwin 22.4.0594

Hardware:595

• Model Name: MacBook Pro596

• Model Identifier: MacBookPro16,1597

• Processor Name: 8-Core Intel Core i9598

• Processor Speed: 2.3 GHz599

• Number of Processors: 1600

• Total Number of Cores: 8601

• L2 Cache (per Core): 256 KB602

• L3 Cache: 16 MB603

• Hyper-Threading Technology: Enabled604

• Memory: 32 GB605

E Results606

Figure 6 shows examples of counterfactuals for MNIST data where the underlying model is our JEM607

Ensemble. Original images are shown on the diagonal and the corresponding counterfactuals are608

plotted across rows.609

Table 7 reports all of the evaluation metrics we have computed. Table 8 reports the same metrics610

for the subset of valid counterfactuals. The ‘Unfaithfulness’ and ‘Implausibility’ metrics have been611

discussed extensively in the body of the paper. The ‘Cost’ metric relates to the distance between612

the factual and the counterfactual. The ‘Redundancy’ metric measures sparsity in is defined as the613

percentage of features that remain unperturbed (higher is better). The ‘Uncertainty’ metric is just614

the average value of the smooth set size penalty (Equation 6). Finally, ‘Validity’ is the percentage of615

valid counterfactuals.616
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Table 7: All results for all datasets: sample averages +/- one standard deviation over all counterfactuals.
Best outcomes are highlighted in bold. Asterisks indicate that the given value is more than one (*) or
two (**) standard deviations away from the baseline (Wachter).

Model Data Generator Cost ↓ Unfaithfulness ↓ Implausibility ↓ Redundancy ↑ Uncertainty ↓ Validity ↑
ECCCo 0.74 ± 0.21 0.52 ± 0.36 1.22 ± 0.46 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00**

ECCCo (no CP) 0.72 ± 0.21 0.54 ± 0.39 1.21 ± 0.46 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00**
ECCCo (no EBM) 0.52 ± 0.15 0.70 ± 0.33 1.30 ± 0.37 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00**

REVISE 0.97 ± 0.34 0.48 ± 0.16* 0.95 ± 0.32* 0.00 ± 0.00 0.00 ± 0.00 0.50 ± 0.51
Schut 1.06 ± 0.43 0.54 ± 0.43 1.28 ± 0.53 0.26 ± 0.25* 0.00 ± 0.00 1.00 ± 0.00**

JEM

Wachter 0.44 ± 0.16 0.68 ± 0.34 1.33 ± 0.32 0.00 ± 0.00 0.00 ± 0.00 0.98 ± 0.14

ECCCo 0.67 ± 0.19 0.65 ± 0.53 1.17 ± 0.41 0.00 ± 0.00 0.09 ± 0.19** 1.00 ± 0.00
ECCCo (no CP) 0.71 ± 0.16 0.49 ± 0.35 1.19 ± 0.44 0.00 ± 0.00 0.05 ± 0.16** 1.00 ± 0.00

ECCCo (no EBM) 0.45 ± 0.11 0.84 ± 0.51 1.23 ± 0.31 0.00 ± 0.00 0.15 ± 0.23* 1.00 ± 0.00
REVISE 0.96 ± 0.31 0.58 ± 0.52 0.95 ± 0.32 0.00 ± 0.00 0.00 ± 0.00** 0.50 ± 0.51

Schut 0.57 ± 0.11 0.58 ± 0.37 1.23 ± 0.43 0.43 ± 0.18** 0.00 ± 0.00** 1.00 ± 0.00

Circles

MLP

Wachter 0.40 ± 0.09 0.83 ± 0.50 1.24 ± 0.29 0.00 ± 0.00 0.53 ± 0.01 1.00 ± 0.00
ECCCo 17.45 ± 2.92** 79.16 ± 11.67** 18.26 ± 4.92** 0.00 ± 0.00 0.10 ± 0.01 1.00 ± 0.00
REVISE 3.43 ± 1.67** 186.40 ± 28.06 5.34 ± 2.38** 0.00 ± 0.00 0.51 ± 0.22 1.00 ± 0.00

Schut 1.27 ± 0.33** 200.98 ± 28.49 6.50 ± 2.01** 0.77 ± 0.07** 0.07 ± 0.00 1.00 ± 0.00

JEM

Wachter 57.71 ± 0.47 214.08 ± 45.35 61.04 ± 2.58 0.00 ± 0.00 0.07 ± 0.00 1.00 ± 0.00

ECCCo 17.43 ± 3.04** 83.28 ± 13.26** 17.21 ± 4.46** 0.00 ± 0.00 0.16 ± 0.11 1.00 ± 0.00
REVISE 2.94 ± 1.13** 194.24 ± 35.41 4.95 ± 1.26** 0.00 ± 0.00 0.51 ± 0.29 1.00 ± 0.00

Schut 1.03 ± 0.20** 208.45 ± 34.60 6.12 ± 1.91** 0.85 ± 0.05** 0.09 ± 0.04 1.00 ± 0.00

JEM Ensemble

Wachter 56.79 ± 44.68 186.19 ± 33.88 60.70 ± 44.32 0.00 ± 0.00 0.07 ± 0.00 1.00 ± 0.00

ECCCo 17.05 ± 2.87** 75.93 ± 14.27** 17.20 ± 3.15** 0.00 ± 0.00 0.19 ± 0.08 1.00 ± 0.00**
REVISE 2.93 ± 1.24** 196.75 ± 41.25 4.84 ± 0.60** 0.00 ± 0.00 0.38 ± 0.18 1.00 ± 0.00**

Schut 1.49 ± 0.87** 212.00 ± 41.15 6.44 ± 1.34** 0.77 ± 0.13** 0.12 ± 0.01 1.00 ± 0.00**

MLP

Wachter 42.97 ± 39.50 218.34 ± 53.26 45.84 ± 39.39 0.00 ± 0.00 0.06 ± 0.06 0.50 ± 0.51

ECCCo 16.63 ± 2.62** 73.86 ± 14.63** 17.92 ± 4.17** 0.00 ± 0.00 0.23 ± 0.07 1.00 ± 0.00**
REVISE 3.73 ± 2.36** 207.21 ± 43.20 5.78 ± 2.10** 0.00 ± 0.00 0.33 ± 0.19 1.00 ± 0.00**

Schut 1.20 ± 0.47** 205.36 ± 32.11 7.00 ± 2.15** 0.79 ± 0.09** 0.12 ± 0.01 1.00 ± 0.00**

GMSC

MLP Ensemble

Wachter 69.30 ± 66.00 213.71 ± 54.17 73.09 ± 64.50 0.00 ± 0.00 0.06 ± 0.06 0.50 ± 0.51

ECCCo 0.75 ± 0.17 0.03 ± 0.06** 0.20 ± 0.08** 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00
ECCCo (no CP) 0.75 ± 0.17 0.03 ± 0.06** 0.20 ± 0.08** 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00

ECCCo (no EBM) 0.70 ± 0.16 0.16 ± 0.11 0.34 ± 0.19 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00
REVISE 0.41 ± 0.15 0.19 ± 0.03 0.41 ± 0.01** 0.00 ± 0.00 0.36 ± 0.36 0.50 ± 0.51

Schut 1.15 ± 0.35 0.39 ± 0.07 0.73 ± 0.17 0.25 ± 0.25 0.00 ± 0.00 1.00 ± 0.00

JEM

Wachter 0.50 ± 0.13 0.18 ± 0.10 0.44 ± 0.17 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00
ECCCo 0.95 ± 0.16 0.29 ± 0.05** 0.23 ± 0.06** 0.00 ± 0.00 0.00 ± 0.00** 1.00 ± 0.00

ECCCo (no CP) 0.94 ± 0.16 0.29 ± 0.05** 0.23 ± 0.07** 0.00 ± 0.00 0.00 ± 0.00** 1.00 ± 0.00
ECCCo (no EBM) 0.60 ± 0.15 0.46 ± 0.05 0.28 ± 0.04** 0.00 ± 0.00 0.02 ± 0.10** 1.00 ± 0.00

REVISE 0.42 ± 0.14 0.56 ± 0.05 0.41 ± 0.01 0.00 ± 0.00 0.47 ± 0.50 0.48 ± 0.50
Schut 0.77 ± 0.17 0.43 ± 0.06* 0.47 ± 0.36 0.20 ± 0.25 0.00 ± 0.00** 1.00 ± 0.00

Linearly Separable

MLP

Wachter 0.51 ± 0.15 0.51 ± 0.04 0.40 ± 0.08 0.00 ± 0.00 0.59 ± 0.02 1.00 ± 0.00
ECCCo 334.61 ± 46.37 19.28 ± 5.01** 314.76 ± 32.36* 0.00 ± 0.00 4.43 ± 0.56 0.98 ± 0.12
REVISE 170.68 ± 63.26 188.70 ± 26.18* 255.26 ± 41.50** 0.00 ± 0.00 4.39 ± 0.91 0.96 ± 0.20

Schut 9.44 ± 1.60** 211.00 ± 27.21 286.61 ± 39.85* 0.99 ± 0.00** 1.08 ± 1.95* 0.24 ± 0.43

JEM

Wachter 128.36 ± 14.95 222.90 ± 26.56 361.88 ± 39.74 0.00 ± 0.00 4.37 ± 0.98 0.95 ± 0.21

ECCCo 342.64 ± 41.14 15.99 ± 3.06** 294.72 ± 30.75** 0.00 ± 0.00 2.07 ± 0.06** 1.00 ± 0.00**
REVISE 170.21 ± 58.02 173.59 ± 20.65** 246.32 ± 37.46** 0.00 ± 0.00 2.56 ± 0.83 0.93 ± 0.26

Schut 9.78 ± 1.02** 205.33 ± 24.07 287.39 ± 39.33* 0.99 ± 0.00** 0.32 ± 0.94** 0.11 ± 0.31

JEM Ensemble

Wachter 135.07 ± 16.79 217.67 ± 23.78 363.23 ± 39.24 0.00 ± 0.00 2.93 ± 0.77 0.94 ± 0.23

ECCCo 605.17 ± 44.78 41.95 ± 6.50** 591.58 ± 36.24 0.00 ± 0.00 0.57 ± 0.00** 1.00 ± 0.00**
REVISE 146.61 ± 36.96 365.82 ± 15.35* 249.49 ± 41.55** 0.00 ± 0.00 0.62 ± 0.30 0.87 ± 0.34

Schut 9.95 ± 0.37** 382.44 ± 17.81 285.98 ± 42.48* 0.99 ± 0.00** 0.05 ± 0.19** 0.06 ± 0.24

MLP

Wachter 136.08 ± 16.09 386.05 ± 16.60 361.83 ± 42.18 0.00 ± 0.00 0.68 ± 0.36 0.84 ± 0.36

ECCCo 525.87 ± 34.00 31.43 ± 3.91** 490.88 ± 27.19 0.00 ± 0.00 0.29 ± 0.00** 1.00 ± 0.00**
REVISE 146.60 ± 35.64 337.74 ± 11.89* 247.67 ± 38.36** 0.00 ± 0.00 0.39 ± 0.22 0.85 ± 0.36

Schut 9.98 ± 0.25** 359.54 ± 14.52 283.99 ± 41.08* 0.99 ± 0.00** 0.03 ± 0.14** 0.06 ± 0.24

MNIST

MLP Ensemble

Wachter 137.53 ± 18.95 360.79 ± 14.39 357.73 ± 42.55 0.00 ± 0.00 0.47 ± 0.64 0.80 ± 0.40

ECCCo 1.56 ± 0.44 0.31 ± 0.30* 1.20 ± 0.15** 0.00 ± 0.00 0.00 ± 0.00** 1.00 ± 0.00**
ECCCo (no CP) 1.56 ± 0.46 0.37 ± 0.30* 1.21 ± 0.17** 0.00 ± 0.00 0.00 ± 0.00** 1.00 ± 0.00**

ECCCo (no EBM) 0.80 ± 0.25 0.91 ± 0.32 1.71 ± 0.25 0.00 ± 0.00 0.00 ± 0.00** 1.00 ± 0.00**
REVISE 1.04 ± 0.43 0.78 ± 0.23 1.57 ± 0.26 0.00 ± 0.00 0.00 ± 0.00** 1.00 ± 0.00**

Schut 1.12 ± 0.31 0.67 ± 0.27 1.50 ± 0.22* 0.08 ± 0.19 0.00 ± 0.00** 0.98 ± 0.14

JEM

Wachter 0.72 ± 0.24 0.80 ± 0.27 1.78 ± 0.24 0.00 ± 0.00 0.02 ± 0.10 0.98 ± 0.14

ECCCo 2.18 ± 1.05 0.80 ± 0.62 1.69 ± 0.40 0.00 ± 0.00 0.15 ± 0.24* 1.00 ± 0.00
ECCCo (no CP) 2.07 ± 1.15 0.79 ± 0.62 1.68 ± 0.42 0.00 ± 0.00 0.15 ± 0.24* 1.00 ± 0.00

ECCCo (no EBM) 1.25 ± 0.92 1.34 ± 0.47 1.68 ± 0.47 0.00 ± 0.00 0.43 ± 0.18 1.00 ± 0.00
REVISE 0.79 ± 0.19* 1.45 ± 0.44 1.64 ± 0.31 0.00 ± 0.00 0.40 ± 0.22 1.00 ± 0.00

Schut 0.73 ± 0.25* 1.45 ± 0.55 1.73 ± 0.48 0.31 ± 0.28* 0.00 ± 0.00** 0.90 ± 0.30

Moons

MLP

Wachter 1.08 ± 0.83 1.32 ± 0.41 1.69 ± 0.32 0.00 ± 0.00 0.52 ± 0.08 1.00 ± 0.00
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Table 8: All results for all datasets: sample averages +/- one standard deviation over all valid
counterfactuals. Best outcomes are highlighted in bold. Asterisks indicate that the given value is
more than one (*) or two (**) standard deviations away from the baseline (Wachter).

Model Data Generator Cost ↓ Unfaithfulness ↓ Implausibility ↓ Redundancy ↑ Uncertainty ↓ Validity ↑
ECCCo 0.74 ± 0.21 0.52 ± 0.36 1.22 ± 0.46 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00

ECCCo (no CP) 0.72 ± 0.21 0.54 ± 0.39 1.21 ± 0.46 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00
ECCCo (no EBM) 0.52 ± 0.15 0.70 ± 0.33 1.30 ± 0.37 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00

REVISE 1.28 ± 0.14 0.33 ± 0.01** 0.64 ± 0.00** 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00
Schut 1.06 ± 0.43 0.54 ± 0.43 1.28 ± 0.53 0.26 ± 0.25* 0.00 ± 0.00 1.00 ± 0.00

JEM

Wachter 0.45 ± 0.15 0.68 ± 0.34 1.33 ± 0.32 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00

ECCCo 0.67 ± 0.19 0.65 ± 0.53 1.17 ± 0.41 0.00 ± 0.00 0.09 ± 0.19** 1.00 ± 0.00
ECCCo (no CP) 0.71 ± 0.16 0.49 ± 0.35 1.19 ± 0.44 0.00 ± 0.00 0.05 ± 0.16** 1.00 ± 0.00

ECCCo (no EBM) 0.45 ± 0.11 0.84 ± 0.51 1.23 ± 0.31 0.00 ± 0.00 0.15 ± 0.23* 1.00 ± 0.00
REVISE 1.24 ± 0.15 0.06 ± 0.01** 0.64 ± 0.00** 0.00 ± 0.00 0.00 ± 0.00** 1.00 ± 0.00

Schut 0.57 ± 0.11 0.58 ± 0.37 1.23 ± 0.43 0.43 ± 0.18** 0.00 ± 0.00** 1.00 ± 0.00

Circles

MLP

Wachter 0.40 ± 0.09 0.83 ± 0.50 1.24 ± 0.29 0.00 ± 0.00 0.53 ± 0.01 1.00 ± 0.00

ECCCo 17.45 ± 2.92** 79.16 ± 11.67** 18.26 ± 4.92** 0.00 ± 0.00 0.10 ± 0.01 1.00 ± 0.00
REVISE 3.43 ± 1.67** 186.40 ± 28.06 5.34 ± 2.38** 0.00 ± 0.00 0.51 ± 0.22 1.00 ± 0.00

Schut 1.27 ± 0.33** 200.98 ± 28.49 6.50 ± 2.01** 0.77 ± 0.07** 0.07 ± 0.00 1.00 ± 0.00

JEM

Wachter 57.71 ± 0.47 214.08 ± 45.35 61.04 ± 2.58 0.00 ± 0.00 0.07 ± 0.00 1.00 ± 0.00

ECCCo 17.43 ± 3.04** 83.28 ± 13.26** 17.21 ± 4.46** 0.00 ± 0.00 0.16 ± 0.11 1.00 ± 0.00
REVISE 2.94 ± 1.13** 194.24 ± 35.41 4.95 ± 1.26** 0.00 ± 0.00 0.51 ± 0.29 1.00 ± 0.00

Schut 1.03 ± 0.20** 208.45 ± 34.60 6.12 ± 1.91** 0.85 ± 0.05** 0.09 ± 0.04 1.00 ± 0.00

JEM Ensemble

Wachter 56.79 ± 44.68 186.19 ± 33.88 60.70 ± 44.32 0.00 ± 0.00 0.07 ± 0.00 1.00 ± 0.00

ECCCo 17.05 ± 2.87 75.93 ± 14.27** 17.20 ± 3.15 0.00 ± 0.00 0.19 ± 0.08 1.00 ± 0.00
REVISE 2.93 ± 1.24* 196.75 ± 41.25 4.84 ± 0.60** 0.00 ± 0.00 0.38 ± 0.18 1.00 ± 0.00

Schut 1.49 ± 0.87** 212.00 ± 41.15 6.44 ± 1.34 0.77 ± 0.13** 0.12 ± 0.01 1.00 ± 0.00

MLP

Wachter 4.48 ± 0.18 184.03 ± 48.16 7.49 ± 0.89 0.00 ± 0.00 0.12 ± 0.00 1.00 ± 0.00

ECCCo 16.63 ± 2.62 73.86 ± 14.63** 17.92 ± 4.17 0.00 ± 0.00 0.23 ± 0.07 1.00 ± 0.00
REVISE 3.73 ± 2.36 207.21 ± 43.20 5.78 ± 2.10** 0.00 ± 0.00 0.33 ± 0.19 1.00 ± 0.00

Schut 1.20 ± 0.47** 205.36 ± 32.11 7.00 ± 2.15* 0.79 ± 0.09** 0.12 ± 0.01 1.00 ± 0.00

GMSC

MLP Ensemble

Wachter 4.97 ± 0.47 177.20 ± 25.86 10.27 ± 3.21 0.00 ± 0.00 0.11 ± 0.00 1.00 ± 0.00

ECCCo 0.75 ± 0.17 0.03 ± 0.06** 0.20 ± 0.08** 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00
ECCCo (no CP) 0.75 ± 0.17 0.03 ± 0.06** 0.20 ± 0.08** 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00

ECCCo (no EBM) 0.70 ± 0.16 0.16 ± 0.11 0.34 ± 0.19 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00
REVISE 0.41 ± 0.14 0.15 ± 0.00** 0.41 ± 0.01** 0.00 ± 0.00 0.72 ± 0.02 1.00 ± 0.00

Schut 1.15 ± 0.35 0.39 ± 0.07 0.73 ± 0.17 0.25 ± 0.25 0.00 ± 0.00 1.00 ± 0.00

JEM

Wachter 0.50 ± 0.13 0.18 ± 0.10 0.44 ± 0.17 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00

ECCCo 0.95 ± 0.16 0.29 ± 0.05** 0.23 ± 0.06** 0.00 ± 0.00 0.00 ± 0.00** 1.00 ± 0.00
ECCCo (no CP) 0.94 ± 0.16 0.29 ± 0.05** 0.23 ± 0.07** 0.00 ± 0.00 0.00 ± 0.00** 1.00 ± 0.00

ECCCo (no EBM) 0.60 ± 0.15 0.46 ± 0.05 0.28 ± 0.04** 0.00 ± 0.00 0.02 ± 0.10** 1.00 ± 0.00
REVISE 0.39 ± 0.15 0.52 ± 0.04 0.41 ± 0.01 0.00 ± 0.00 0.98 ± 0.00 1.00 ± 0.00

Schut 0.77 ± 0.17 0.43 ± 0.06* 0.47 ± 0.36 0.20 ± 0.25 0.00 ± 0.00** 1.00 ± 0.00

Linearly Separable

MLP

Wachter 0.51 ± 0.15 0.51 ± 0.04 0.40 ± 0.08 0.00 ± 0.00 0.59 ± 0.02 1.00 ± 0.00

ECCCo 334.98 ± 46.54 19.27 ± 5.02** 314.54 ± 32.54* 0.00 ± 0.00 4.50 ± 0.00** 1.00 ± 0.00
REVISE 170.06 ± 62.45 188.54 ± 26.22* 254.32 ± 41.55** 0.00 ± 0.00 4.57 ± 0.14 1.00 ± 0.00

Schut 7.63 ± 2.55** 199.70 ± 28.43 273.01 ± 39.60** 0.99 ± 0.00** 4.56 ± 0.13 1.00 ± 0.00

JEM

Wachter 128.13 ± 14.81 222.81 ± 26.22 361.38 ± 39.55 0.00 ± 0.00 4.58 ± 0.16 1.00 ± 0.00

ECCCo 342.64 ± 41.14 15.99 ± 3.06** 294.72 ± 30.75** 0.00 ± 0.00 2.07 ± 0.06** 1.00 ± 0.00
REVISE 171.95 ± 58.81 173.05 ± 20.38** 246.20 ± 37.74** 0.00 ± 0.00 2.76 ± 0.45 1.00 ± 0.00

Schut 7.96 ± 2.49** 186.91 ± 22.98* 264.68 ± 37.58** 0.99 ± 0.00** 3.02 ± 0.26 1.00 ± 0.00

JEM Ensemble

Wachter 134.98 ± 16.95 217.37 ± 23.93 362.91 ± 39.40 0.00 ± 0.00 3.10 ± 0.31 1.00 ± 0.00

ECCCo 605.17 ± 44.78 41.95 ± 6.50** 591.58 ± 36.24 0.00 ± 0.00 0.57 ± 0.00** 1.00 ± 0.00
REVISE 146.76 ± 37.07 365.69 ± 14.90* 245.36 ± 39.69** 0.00 ± 0.00 0.72 ± 0.18 1.00 ± 0.00

Schut 9.25 ± 1.31** 371.12 ± 19.99 245.11 ± 35.72** 0.99 ± 0.00** 0.75 ± 0.23 1.00 ± 0.00

MLP

Wachter 135.08 ± 15.68 384.76 ± 16.52 359.21 ± 42.03 0.00 ± 0.00 0.81 ± 0.22 1.00 ± 0.00

ECCCo 525.87 ± 34.00 31.43 ± 3.91** 490.88 ± 27.19 0.00 ± 0.00 0.29 ± 0.00** 1.00 ± 0.00
REVISE 146.38 ± 35.18 337.21 ± 11.68* 244.84 ± 37.17** 0.00 ± 0.00 0.45 ± 0.16 1.00 ± 0.00

Schut 9.75 ± 1.00** 344.60 ± 13.64* 252.53 ± 37.92** 0.99 ± 0.00** 0.55 ± 0.21 1.00 ± 0.00

MNIST

MLP Ensemble

Wachter 134.48 ± 17.69 358.51 ± 13.18 352.63 ± 39.93 0.00 ± 0.00 0.58 ± 0.67 1.00 ± 0.00

ECCCo 1.56 ± 0.44 0.31 ± 0.30* 1.20 ± 0.15** 0.00 ± 0.00 0.00 ± 0.00** 1.00 ± 0.00
ECCCo (no CP) 1.56 ± 0.46 0.37 ± 0.30* 1.21 ± 0.17** 0.00 ± 0.00 0.00 ± 0.00** 1.00 ± 0.00

ECCCo (no EBM) 0.80 ± 0.25 0.91 ± 0.32 1.71 ± 0.25 0.00 ± 0.00 0.00 ± 0.00** 1.00 ± 0.00
REVISE 1.04 ± 0.43 0.78 ± 0.23 1.57 ± 0.26 0.00 ± 0.00 0.00 ± 0.00** 1.00 ± 0.00

Schut 1.13 ± 0.29 0.66 ± 0.25 1.47 ± 0.10** 0.07 ± 0.18 0.00 ± 0.00** 1.00 ± 0.00

JEM

Wachter 0.73 ± 0.24 0.78 ± 0.23 1.75 ± 0.19 0.00 ± 0.00 0.02 ± 0.11 1.00 ± 0.00

ECCCo 2.18 ± 1.05 0.80 ± 0.62 1.69 ± 0.40 0.00 ± 0.00 0.15 ± 0.24* 1.00 ± 0.00
ECCCo (no CP) 2.07 ± 1.15 0.79 ± 0.62 1.68 ± 0.42 0.00 ± 0.00 0.15 ± 0.24* 1.00 ± 0.00

ECCCo (no EBM) 1.25 ± 0.92 1.34 ± 0.47 1.68 ± 0.47 0.00 ± 0.00 0.43 ± 0.18 1.00 ± 0.00
REVISE 0.79 ± 0.19* 1.45 ± 0.44 1.64 ± 0.31 0.00 ± 0.00 0.40 ± 0.22 1.00 ± 0.00

Schut 0.78 ± 0.17* 1.39 ± 0.50 1.59 ± 0.26 0.28 ± 0.25* 0.00 ± 0.00** 1.00 ± 0.00

Moons

MLP

Wachter 1.08 ± 0.83 1.32 ± 0.41 1.69 ± 0.32 0.00 ± 0.00 0.52 ± 0.08 1.00 ± 0.00
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Figure 6: Counterfactuals for MNIST data and our JEM Ensemble. Original images are shown on the
diagonal with the corresponding counterfactuals plotted across rows.
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