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Abstract

Counterfactual Explanations offer an intuitive and straightforward way to explain1

black-box models and offer Algorithmic Recourse to individuals. To address the2

need for plausible explanations, existing work has primarily relied on surrogate3

models to learn how the input data is distributed. This effectively reallocates4

the task of learning realistic explanations for the data from the model itself to5

the surrogate. Consequently, the generated explanations may seem plausible to6

humans but need not necessarily describe the behaviour of the black-box model7

faithfully. We formalise this notion of faithfulness through the introduction of a tai-8

lored evaluation metric and propose a novel algorithmic framework for generating9

Energy-Constrained Conformal Counterfactuals (ECCCos) that are only as plausi-10

ble as the model permits. Through extensive empirical studies, we demonstrate that11

ECCCos reconcile the need for faithfulness and plausibility. In particular, we show12

that for models with gradient access, it is possible to achieve state-of-the-art perfor-13

mance without the need for surrogate models. To do so, our framework relies solely14

on properties defining the black-box model itself by leveraging recent advances in15

Energy-Based Modelling and Conformal Prediction. To our knowledge, this is the16

first venture in this direction for generating faithful Counterfactual Explanations.17

Thus, we anticipate that ECCCos can serve as a baseline for future research. We18

believe that our work opens avenues for researchers and practitioners seeking tools19

to better distinguish trustworthy from unreliable models.20

1 Introduction21

Counterfactual Explanations (CE) provide a powerful, flexible and intuitive way to not only explain22

black-box models but also help affected individuals through the means of Algorithmic Recourse.23

Instead of opening the Black Box, CE works under the premise of strategically perturbing model24

inputs to understand model behaviour [1]. Intuitively speaking, we generate explanations in this25

context by asking what-if questions of the following nature: ‘Our credit risk model currently predicts26

that this individual is not credit-worthy. What if they reduced their monthly expenditures by 10%?’27

This is typically implemented by defining a target outcome y+ ∈ Y for some individual x ∈ X = RD28

described by D attributes, for which the model Mθ : X 7→ Y initially predicts a different outcome:29

Mθ(x) ̸= y+. Counterfactuals are then searched by minimizing a loss function that compares the30

predicted model output to the target outcome: yloss(Mθ(x),y
+). Since CE work directly with the31

black-box model, valid counterfactuals always have full local fidelity by construction where fidelity is32

defined as the degree to which explanations approximate the predictions of a black-box model [2, 3].33
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In situations where full fidelity is a requirement, CE offer a more appropriate solution to Explainable34

Artificial Intelligence (XAI) than other popular approaches like LIME [4] and SHAP [5], which35

involve local surrogate models. But even full fidelity is not a sufficient condition for ensuring36

that an explanation faithfully describes the behaviour of a model. That is because multiple very37

distinct explanations can all lead to the same model prediction, especially when dealing with heavily38

parameterized models like deep neural networks, which are typically underspecified by the data [6].39

In the context of CE, the idea that no two explanations are the same arises almost naturally. A key40

focus in the literature has therefore been to identify those explanations and algorithmic recourses that41

are most appropriate based on a myriad of desiderata such as sparsity, actionability and plausibility.42

In this work, we draw closer attention to model faithfulness rather than fidelity as a desideratum for43

counterfactuals. Our key contributions are as follows:44

• We show that fidelity is an insufficient evaluation metric for counterfactuals (Section 3) and45

propose a definition of faithfulness that gives rise to more suitable metrics (Section 4).46

• We introduce a novel algorithmic approach for generating Energy-Constrained Conformal47

Counterfactuals (ECCCos) in Section 5.48

• We provide extensive empirical evidence demonstrating that ECCCos faithfully explain49

model behaviour and attain plausibility only when appropriate (Section 6).50

To our knowledge, this is the first venture in this direction for generating faithful counterfactuals.51

Thus, we anticipate that ECCCos can serve as a baseline for future research. We believe that our52

work opens avenues for researchers and practitioners seeking tools to better distinguish trustworthy53

from unreliable models.54

2 Background55

While CE can also be generated for arbitrary regression models [7], existing work has primarily56

focused on classification problems. Let Y = (0, 1)K denote the one-hot-encoded output domain57

with K classes. Then most counterfactual generators rely on gradient descent to optimize different58

flavours of the following counterfactual search objective:59

Z′ = arg min
Z′∈ZL

{
yloss(Mθ(f(Z

′)),y+) + λcost(f(Z′))
}

(1)

Here yloss(·) denotes the primary loss function, f(·) is a function that maps from the counterfactual60

state space to the feature space and cost(·) is either a single penalty or a collection of penalties that61

are used to impose constraints through regularization. Equation 1 restates the baseline approach to62

gradient-based counterfactual search proposed by Wachter et al. [1] in general form as introduced63

by Altmeyer et al. [8]. To explicitly account for the multiplicity of explanations, Z′ = {zl}L denotes64

an L-dimensional array of counterfactual states.65

The baseline approach, which we will simply refer to as Wachter, searches a single counterfactual66

directly in the feature space and penalises its distance to the original factual. In this case, f(·) is67

simply the identity function and Z corresponds to the feature space itself. Many derivative works68

of Wachter et al. [1] have proposed new flavours of Equation 1, each of them designed to address69

specific desiderata that counterfactuals ought to meet in order to properly serve both AI practitioners70

and individuals affected by algorithmic decision-making systems. The list of desiderata includes but71

is not limited to the following: sparsity, proximity [1], actionability [9], diversity [2], plausibility [10,72

11, 12], robustness [13, 14, 8] and causality [15]. Different counterfactual generators addressing73

these needs have been extensively surveyed and evaluated in various studies [16, 17, 18, 19, 20].74

Perhaps unsurprisingly, the different desiderata are often positively correlated. For example, Artelt75

et al. [19] find that plausibility typically also leads to improved robustness. Similarly, plausibility has76

also been connected to causality in the sense that plausible counterfactuals respect causal relation-77

ships [21]. Consequently, the plausibility of counterfactuals has been among the primary concerns78

for researchers. Achieving plausibility is equivalent to ensuring that the generated counterfactuals79

comply with the true and unobserved data-generating process (DGP). We define plausibility formally80

in this work as follows:81
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Figure 1: Counterfactuals for turning a 9 (nine) into a 7 (seven): original image (left); then from left
to right the counterfactuals generated using Wachter, Schut and REVISE.

Definition 2.1 (Plausible Counterfactuals). Let X|y+ = p(x|y+) denote the true conditional82

distribution of samples in the target class y+. Then for x′ to be considered a plausible counterfactual,83

we need: x′ ∼ X|y+.84

To generate plausible counterfactuals, we need to be able to quantify the DGP: X|y+. One straight-85

forward way to do this is to use surrogate models for the task. Joshi et al. [10], for example, suggest86

that instead of searching counterfactuals in the feature space X , we can instead traverse a latent87

embedding Z (Equation 1) that implicitly codifies the DGP. To learn the latent embedding, they88

propose using a generative model such as a Variational Autoencoder (VAE). Provided the surrogate89

model is well-specified, their proposed approach called REVISE can yield plausible explanations.90

Others have proposed similar approaches: Dombrowski et al. [22] traverse the base space of a91

normalizing flow to solve Equation 1; Poyiadzi et al. [11] use density estimators (p̂ : X 7→ [0, 1]) to92

constrain the counterfactuals to dense regions in the feature space; and, finally, Karimi et al. [15]93

assume knowledge about the structural causal model that generates the data.94

A competing approach towards plausibility that is also closely related to this work instead relies on95

the black-box model itself. Schut et al. [12] show that to meet the plausibility objective we need not96

explicitly model the input distribution. Pointing to the undesirable engineering overhead induced by97

surrogate models, they propose that we rely on the implicit minimisation of predictive uncertainty98

instead. Their proposed methodology, which we will refer to as Schut, solves Equation 1 by greedily99

applying Jacobian-Based Saliency Map Attacks (JSMA) in the feature space with cross-entropy loss100

and no penalty at all. The authors demonstrate theoretically and empirically that their approach yields101

counterfactuals for which the model Mθ predicts the target label y+ with high confidence. Provided102

the model is well-specified, these counterfactuals are plausible. This idea hinges on the assumption103

that the black-box model provides well-calibrated predictive uncertainty estimates.104

3 Why Fidelity is not Enough105

As discussed in the introduction, any valid counterfactual also has full fidelity by construction:106

solutions to Equation 1 are considered valid as soon as the label predicted by the model matches107

the target class. So while fidelity always applies, counterfactuals that address the various desiderata108

introduced above can look vastly different from each other.109

To demonstrate this with an example, we have trained a simple image classifier Mθ on the well-110

known MNIST dataset [23]: a Multi-Layer Perceptron (MLP) with above 90 percent test accuracy. No111

measures have been taken to improve the model’s adversarial robustness or its capacity for predictive112

uncertainty quantification. The far left panel of Figure 1 shows a random sample drawn from the113

dataset. The underlying classifier correctly predicts the label ‘nine’ for this image. For the given114

factual image and model, we have used Wachter, Schut and REVISE to generate one counterfactual115

each in the target class ‘seven’. The perturbed images are shown next to the factual image from left116

to right in Figure 1. Captions on top of the individual images indicate the generator along with the117

predicted probability that the image belongs to the target class. In all three cases that probability is118

above 90 percent and yet the counterfactuals look very different from each other.119

Since Wachter is only concerned with proximity, the generated counterfactual is almost indistinguish-120

able from the factual. The approach by Schut et al. [12] expects a well-calibrated model that can121

generate predictive uncertainty estimates. Since this is not the case, the generated counterfactual122

looks like an adversarial example. Finally, the counterfactual generated by REVISE looks much more123

plausible than the other two. But is it also more faithful to the behaviour of our MNIST classifier?124
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That is much less clear because the surrogate used by REVISE introduces friction: the generated125

explanations no longer depend exclusively on the black-box model itself.126

So which of the counterfactuals most faithfully explains the behaviour of our image classifier? Fidelity127

cannot help us to make that judgement, because all of these counterfactuals have full fidelity. Thus,128

fidelity is an insufficient evaluation metric to assess the faithfulness of CE.129

4 A New Notion of Faithfulness130

Considering the limitations of fidelity as demonstrated in the previous section, analogous to Defini-131

tion 2.1, we introduce a new notion of faithfulness in the context of CE:132

Definition 4.1 (Faithful Counterfactuals). Let Xθ|y+ = pθ(x|y+) denote the conditional distribution133

of x in the target class y+, where θ denotes the parameters of model Mθ. Then for x′ to be considered134

a faithful counterfactual, we need: x′ ∼ Xθ|y+.135

In doing this, we merge in and nuance the concept of plausibility (Definition 2.1) where the notion of136

‘consistent with the data’ becomes ‘consistent with what the model has learned about the data’.137

4.1 Quantifying the Model’s Generative Property138

To assess counterfactuals with respect to Definition 4.1, we need a way to quantify the posterior139

conditional distribution pθ(x|y+). To this end, we draw on recent advances in Energy-Based140

Modelling (EBM), a subdomain of machine learning that is concerned with generative or hybrid141

modelling [24, 25]. In particular, note that if we fix y to our target value y+, we can conditionally142

draw from pθ(x|y+) by randomly initializing x0 and then using Stochastic Gradient Langevin143

Dynamics (SGLD) as follows,144

xj+1 ← xj −
ϵ2

2
E(xj |y+) + ϵrj , j = 1, ..., J (2)

where rj ∼ N (0, I) is the stochastic term and the step-size ϵ is typically polynomially decayed [26].145

The term E(xj |y+) denotes the model energy conditioned on the target class label y+ which we146

specify as the negative logit corresponding to the target class label y∗. To allow for faster sampling,147

we follow the common practice of choosing the step-size ϵ and the standard deviation of rj separately.148

While xJ is only guaranteed to distribute as pθ(x|y∗) if ϵ→ 0 and J →∞, the bias introduced for149

a small finite ϵ is negligible in practice [27, 24]. Appendix A provides additional implementation150

details for any tasks related to energy-based modelling.151

Generating multiple samples using SGLD thus yields an empirical distribution X̂θ,y+ that approxi-152

mates what the model has learned about the input data. While in the context of EBM, this is usually153

done during training, we propose to repurpose this approach during inference in order to evaluate and154

generate faithful model explanations.155

4.2 Evaluating Plausibility and Faithfulness156

The parallels between our definitions of plausibility and faithfulness imply that we can also use157

similar evaluation metrics in both cases. Since existing work has focused heavily on plausibility,158

it offers a useful starting point. In particular, Guidotti [20] have proposed an implausibility metric159

that measures the distance of the counterfactual from its nearest neighbour in the target class. As160

this distance is reduced, counterfactuals get more plausible under the assumption that the nearest161

neighbour itself is plausible in the sense of Definition 2.1. In this work, we use the following adapted162

implausibility metric,163

impl(x′,Xy+) =
1

|Xy+ |
∑

x∈Xy+

dist(x′,x) (3)

where x′ denotes the counterfactual and Xy+ is a subsample of the training data in the target class164

y+. By averaging over multiple samples in this manner, we avoid the risk that the nearest neighbour165

of x′ itself is not plausible according to Definition 2.1 (e.g an outlier).166
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Equation 3 gives rise to a similar evaluation metric for unfaithfulness. We merely swap out the167

subsample of individuals in the target class for a subset X̂nE

θ,y+ of the generated conditional samples:168

unfaith(x′, X̂nE

θ,y+) =
1

|X̂nE

θ,y+ |

∑
x∈X̂

nE
θ,y+

dist(x′,x) (4)

Specifically, we form this subset based on the nE generated samples with the lowest energy.169

5 Energy-Constrained Conformal Counterfactuals170

In this section, we describe ECCCo, our proposed framework for generating Energy-Constrained171

Conformal Counterfactuals (ECCCos). It is based on the premise that counterfactuals should first172

and foremost be faithful. Plausibility, as a secondary concern, is then still attainable, but only to the173

degree that the black-box model itself has learned plausible explanations for the underlying data.174

We begin by stating our proposed objective function, which involves tailored loss and penalty175

functions that we will explain in the following. In particular, we extend Equation 1 as follows:176

Z′ = arg min
Z′∈ZM

{yloss(Mθ(f(Z
′)),y+) + λ1dist(f(Z′),x)

+ λ2unfaith(f(Z′), X̂nE

θ,y+) + λ3Ω(Cθ(f(Z
′);α))}

(5)

The first penalty term involving λ1 induces proximity like in Wachter et al. [1]. Our default choice177

for dist(·) is the L1 Norm due to its sparsity-inducing properties. The second penalty term involving178

λ2 induces faithfulness by constraining the energy of the generated counterfactual where unfaith(·)179

corresponds to the metric defined in Equation 4. The third and final penalty term involving λ3180

introduces a new concept: it ensures that the generated counterfactual is associated with low predictive181

uncertainty. As mentioned above, Schut et al. [12] have shown that plausible counterfactuals can182

be generated implicitly through predictive uncertainty minimization. Unfortunately, this relies on183

the assumption that the model itself can provide predictive uncertainty estimates, which may be too184

restrictive in practice.185

To relax this assumption, we leverage recent advances in Conformal Prediction (CP), an approach to186

predictive uncertainty quantification that has recently gained popularity [28, 29]. Crucially for our187

intended application, CP is model-agnostic and can be applied during inference without placing any188

restrictions on model training. Intuitively, CP works under the premise of turning heuristic notions of189

uncertainty into rigorous uncertainty estimates by repeatedly sifting through the training data or a190

dedicated calibration dataset. Conformal classifiers produce prediction sets for individual inputs that191

include all output labels that can be reasonably attributed to the input. These sets tend to be larger for192

inputs that do not conform with the training data and are characterized by high predictive uncertainty.193

In order to generate counterfactuals that are associated with low predictive uncertainty, we use a194

smooth set size penalty introduced by Stutz et al. [30] in the context of conformal training:195

Ω(Cθ(x;α)) = max

0,
∑
y∈Y

Cθ,y(xi;α)− κ

 (6)

Here, κ ∈ {0, 1} is a hyper-parameter and Cθ,y(xi;α) can be interpreted as the probability of label196

y being included in the prediction set. In order to compute this penalty for any black-box model197

we merely need to perform a single calibration pass through a holdout set Dcal. Arguably, data is198

typically abundant and in most applications, practitioners tend to hold out a test data set anyway.199

Consequently, CP removes the restriction on the family of predictive models, at the small cost of200

reserving a subset of the available data for calibration. This particular case of conformal prediction is201

referred to as Split Conformal Prediction (SCP) as it involves splitting the training data into a proper202

training dataset and a calibration dataset. In addition to the smooth set size penalty, we have also203

experimented with the use of a tailored function for yloss(·) that enforces that only the target label204

y+ is included in the prediction set Stutz et al. [30]. Further details are provided in Appendix B.205
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Figure 2: Gradient fields and counterfactual paths for different generators. The objective is to generate
a counterfual in the ‘blue’ class for a sample from the ‘orange’ class. Bright yellow stars indicate
conditional samples generated through SGLD. The underlying classifier is a Joint Energy Model.

Algorithm 1 The ECCCo generator

Input: x,y+,Mθ, f,Λ = [λ1, λ2, λ3], α,D, T, η, nB, nE where Mθ(x) ̸= y+

Output: x′

1: Initialize z′ ← f−1(x) ▷ Map to counterfactual state space.
2: Generate

{
x̂θ,y+

}
nB
← pθ(xy+) ▷ Generate nB samples using SGLD (Equation 2).

3: Store X̂nE

θ,y+ ←
{
x̂θ,y+

}
nB

▷ Choose nE lowest-energy samples.
4: Run SCP for Mθ using D ▷ Calibrate model through Split Conformal Prediction.
5: Initialize t← 0
6: while not converged or t < T do ▷ For convergence conditions see Appendix C.
7: z′ ← z′ − η∇z′L(z′,y+, X̂nE

θ,y+ ; Λ, α) ▷ Take gradient step of size η.
8: t← t+ 1
9: end while

10: x′ ← f(z′) ▷ Map back to feature space.

To provide some further intuition about our objective defined in Equation 5, Figure 2 illustrates how206

the different components affect the counterfactual search for a synthetic dataset. The underlying207

classifier is a Joint Energy Model (JEM) that was trained to predict the output class (‘blue’ or208

‘orange’) and generate class-conditional samples [24]. We have used four different generator flavours209

to produce a counterfactual in the ‘blue’ class for a sample from the ‘orange’ class: Wachter, which210

only uses the first penalty (λ2 = λ3 = 0); ECCCo (no EBM), which does not constrain energy211

(λ2 = 0); ECCCo (no CP), which involves no set size penalty (λ3 = 0); and, finally, ECCCo, which212

involves all penalties defined in Equation 5. Arrows indicate (negative) gradients with respect to the213

objective function at different points in the feature space.214

While Wachter generates a valid counterfactual, it ends up close to the original starting point consistent215

with its objective. ECCCo (no EBM) pushes the counterfactual further into the target domain to216

minimize predictive uncertainty, but the outcome is still not plausible. The counterfactual produced217

by ECCCo (no CP) is attracted by the generated samples shown in bright yellow. Since the JEM has218

learned the conditional input distribution reasonably well in this case, the counterfactuals are both219

faithful and plausible. Finally, the outcome for ECCCo looks similar, but the additional smooth set220

size penalty leads to somewhat faster convergence.221

Algorithm 1 describes how exactly ECCCo works. For the sake of simplicity and without loss of222

generality, we limit our attention to generating a single counterfactual x′ = f(z′). The counterfactual223

state z′ is initialized by passing the factual x through a simple feature transformer f−1. Next, we224

generate nB conditional samples x̂θ,y+ using SGLD (Equation 2) and store the nE instances with225

the lowest energy. We then calibrate the model Mθ through Split Conformal Prediction. Finally,226

we search counterfactuals through gradient descent where L(z′,y+, X̂nE

θ,y+ ; Λ, α) denotes our loss227

function defined in Equation 5. The search terminates once the convergence criterium is met or the228

maximum number of iterations T has been exhausted. Note that the choice of convergence criterium229

has important implications on the final counterfactual which we explain in Appendix C.230
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6 Empirical Analysis231

Our goal in this section is to shed light on the following research questions:232

Research Question 6.1 (Faithfulness). Are ECCCos more faithful than counterfactuals produced by233

our benchmark generators?234

Research Question 6.2 (Balancing Objectives). Compared to our benchmark generators, how do235

ECCCos balance the two key objectives of faithfulness and plausibility?236

The second question is motivated by the intuition that faithfulness and plausibility should coincide237

for models that have learned plausible explanations of the data. Next, we first briefly describe our238

experimental setup before presenting our main results.239

6.1 Experimental Setup240

To assess and benchmark the performance of our proposed generator against the state of the art, we241

generate multiple counterfactuals for different models and datasets. In particular, we compare ECCCo242

and its variants to the following counterfactual generators that were introduced above: firstly; Schut,243

which works under the premise of minimizing predictive uncertainty; secondly, REVISE, which is244

state-of-the-art with respect to plausibility; and, finally, Wachter, which serves as our baseline.245

We use both synthetic and real-world datasets from different domains, all of which are publicly246

available and commonly used to train and benchmark classification algorithms. We synthetically247

generate a dataset containing two Linearly Separable Gaussian clusters (n = 1000), as well as the248

well-known Circles (n = 1000) and Moons (n = 2500) data. Since these data are generated by249

distributions of varying degrees of complexity, they allow us to assess how the generators and our250

proposed evaluation metrics handle this.251

As for real-world data, we follow Schut et al. [12] and use the MNIST [23] dataset containing images252

of handwritten digits such as the example shown above in Figure 1. From the social sciences domain,253

we include Give Me Some Credit (GMSC) [31]: a tabular dataset that has been studied extensively in254

the literature on Algorithmic Recourse [18]. It consists of 11 numeric features that can be used to255

predict the binary outcome variable indicating whether retail borrowers experience financial distress.256

For the predictive modelling tasks, we use simple neural networks (MLP) and Joint Energy Models257

(JEM). For the more complex real-world datasets we also use ensembling in each case. Both joint-258

energy modelling and ensembling have been associated with improved generative properties and259

adversarial robustness [24, 32], so we expect this to be positively correlated with the plausibility260

of ECCCos. To account for stochasticity, we generate multiple counterfactuals for each target261

class, generator, model and dataset. Specifically, we randomly sample n− times from the subset262

of individuals for which the given model predicts the non-target class y− given the current target.263

We set n− = 25 for all of our synthetic datasets, n− = 10 for GMSC and n− = 5 for MNIST. Full264

details concerning our parameter choices, training procedures and model performance can be found265

in Appendix D.266

6.2 Results for Synthetic Data267

Table 1 shows the key results for the synthetic datasets separated by model (first column) and generator268

(second column). The numerical columns show sample averages and standard deviations of our key269

evaluation metrics computed across all counterfactuals. We have highlighted the best outcome for270

each model and metric in bold. To provide some sense of effect sizes, we have added asterisks to271

indicate that a given value is at least one (∗) or two (∗∗) standard deviations lower than the baseline272

(Wachter).273

Starting with the high-level results for our Linearly Separable data, we find that ECCCo produces274

the most faithful counterfactuals for both black-box models. This is consistent with our design since275

ECCCo directly enforces faithfulness through regularization. Crucially though, ECCCo also produces276

the most plausible counterfactuals for both models. This dataset is so simple that even the MLP has277

learned plausible explanations of the input data. Zooming in on the granular details for the Linearly278

Separable data, the results for ECCCo (no CP) and ECCCo (no EBM) indicate that the positive results279

are dominated by the effect of quantifying and leveraging the model’s generative property (EBM).280

Conformal Prediction alone only leads to marginally improved faithfulness and plausibility.281
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Table 1: Results for synthetic datasets: sample averages +/- one standard deviation across counterfac-
tuals. Best outcomes are highlighted in bold. Asterisks indicate that the given value is more than one
(*) or two (**) standard deviations away from the baseline (Wachter).

Linearly Separable Moons Circles

Model Generator Unfaithfulness ↓ Implausibility ↓ Unfaithfulness ↓ Implausibility ↓ Unfaithfulness ↓ Implausibility ↓

ECCCo 0.03 ± 0.06** 0.20 ± 0.08** 0.31 ± 0.30* 1.20 ± 0.15** 0.52 ± 0.36 1.22 ± 0.46
ECCCo (no CP) 0.03 ± 0.06** 0.20 ± 0.08** 0.37 ± 0.30* 1.21 ± 0.17** 0.54 ± 0.39 1.21 ± 0.46
ECCCo (no EBM) 0.16 ± 0.11 0.34 ± 0.19 0.91 ± 0.32 1.71 ± 0.25 0.70 ± 0.33 1.30 ± 0.37
REVISE 0.19 ± 0.03 0.41 ± 0.01** 0.78 ± 0.23 1.57 ± 0.26 0.48 ± 0.16* 0.95 ± 0.32*
Schut 0.39 ± 0.07 0.73 ± 0.17 0.67 ± 0.27 1.50 ± 0.22* 0.54 ± 0.43 1.28 ± 0.53

JEM

Wachter 0.18 ± 0.10 0.44 ± 0.17 0.80 ± 0.27 1.78 ± 0.24 0.68 ± 0.34 1.33 ± 0.32

ECCCo 0.29 ± 0.05** 0.23 ± 0.06** 0.80 ± 0.62 1.69 ± 0.40 0.65 ± 0.53 1.17 ± 0.41
ECCCo (no CP) 0.29 ± 0.05** 0.23 ± 0.07** 0.79 ± 0.62 1.68 ± 0.42 0.49 ± 0.35 1.19 ± 0.44
ECCCo (no EBM) 0.46 ± 0.05 0.28 ± 0.04** 1.34 ± 0.47 1.68 ± 0.47 0.84 ± 0.51 1.23 ± 0.31
REVISE 0.56 ± 0.05 0.41 ± 0.01 1.45 ± 0.44 1.64 ± 0.31 0.58 ± 0.52 0.95 ± 0.32
Schut 0.43 ± 0.06* 0.47 ± 0.36 1.45 ± 0.55 1.73 ± 0.48 0.58 ± 0.37 1.23 ± 0.43

MLP

Wachter 0.51 ± 0.04 0.40 ± 0.08 1.32 ± 0.41 1.69 ± 0.32 0.83 ± 0.50 1.24 ± 0.29

The findings for the Moons dataset are broadly in line with the findings so far: for the JEM, ECCCo282

yields substantially more faithful and plausible counterfactuals than all other generators. For the283

MLP, faithfulness is maintained but counterfactuals are not plausible. This high-level pattern is284

broadly consistent with other more complex datasets and supportive of our narrative, so it is worth285

highlighting: ECCCos consistently achieve high faithfulness, which—subject to the quality of the286

model itself—coincides with high plausibility. By comparison, REVISE yields the most plausible287

counterfactuals for the MLP, but it does so at the cost of faithfulness. We also observe that the288

best results for ECCCo are achieved when using both penalties. Once again though, the generative289

component (EBM) has a stronger impact on the positive results for the JEM.290

For the Circles data, it appears that REVISE performs well, but we note that it generates valid291

counterfactuals only half of the time (see Appendix E for a complete overview including additional292

common evaluation metrics). The underlying VAE with default parameters has not adequately learned293

the data-generating process. Of course, it is possible to improve generative performance through294

hyperparameter tuning but this example serves to illustrate that REVISE depends on the quality of its295

surrogate. Independent of the outcome for REVISE, however, the results do not seem to indicate that296

ECCCo substantially improves faithfulness and plausibility for the Circles data. We think this points297

to a limitation of our evaluation metrics rather than ECCCo itself: computing average distances fails298

to account for the ‘wraparound’ effect associated with circular data [33].299

6.3 Results for Real-World Data300

The results for our real-world datasets are shown in Table 2. Once again the findings indicate that the301

plausibility of ECCCos is positively correlated with the capacity of the black-box model to distinguish302

plausible from implausible inputs. The case is very clear for MNIST: ECCCos are consistently more303

faithful than the counterfactuals produced by our benchmark generators and their plausibility gradually304

improves through ensembling and joint-energy modelling. Interestingly, faithfulness also gradually305

improves for REVISE. This indicates that as our models improve, their generative capacity approaches306

that of the surrogate VAE used by REVISE. The VAE still outperforms our classifiers in this regard,307

as evident from the fact that ECCCo never quite reaches the same level of plausibility as REVISE.308

With reference to Appendix E we note that the results for Schut need to be discounted as it rarely309

produces valid counterfactuals for MNIST. Relatedly, we find that ECCCo is the only generator that310

consistently achieves full validity. Finally, it is worth noting that ECCCo produces counterfactual311

images with the lowest average predictive uncertainty for all models.312

For the tabular credit dataset (GMSC) it is inherently challenging to use deep neural networks in order313

to achieve good discriminative performance [34, 35] and generative performance [36], respectively. In314

order to achieve high plausibility, ECCCo effectively requires classifiers to achieve good performance315

for both tasks. Since this is a challenging task even for Joint Energy Models, it is not surprising to316

find that even though ECCCo once again achieves state-of-the-art faithfulness, it is outperformed by317

REVISE and Schut with respect to plausibility.318
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Table 2: Results for real-world datasets: sample averages +/- one standard deviation across counter-
factuals. Best outcomes are highlighted in bold. Asterisks indicate that the given value is more than
one (*) or two (**) standard deviations away from the baseline (Wachter).

MNIST GMSC

Model Generator Unfaithfulness ↓ Implausibility ↓ Unfaithfulness ↓ Implausibility ↓

ECCCo 19.28 ± 5.01** 314.76 ± 32.36* 79.16 ± 11.67** 18.26 ± 4.92**
REVISE 188.70 ± 26.18* 255.26 ± 41.50** 186.40 ± 28.06 5.34 ± 2.38**
Schut 211.00 ± 27.21 286.61 ± 39.85* 200.98 ± 28.49 6.50 ± 2.01**JEM

Wachter 222.90 ± 26.56 361.88 ± 39.74 214.08 ± 45.35 61.04 ± 2.58

ECCCo 15.99 ± 3.06** 294.72 ± 30.75** 83.28 ± 13.26** 17.21 ± 4.46**
REVISE 173.59 ± 20.65** 246.32 ± 37.46** 194.24 ± 35.41 4.95 ± 1.26**
Schut 205.33 ± 24.07 287.39 ± 39.33* 208.45 ± 34.60 6.12 ± 1.91**JEM Ensemble

Wachter 217.67 ± 23.78 363.23 ± 39.24 186.19 ± 33.88 60.70 ± 44.32

ECCCo 41.95 ± 6.50** 591.58 ± 36.24 75.93 ± 14.27** 17.20 ± 3.15**
REVISE 365.82 ± 15.35* 249.49 ± 41.55** 196.75 ± 41.25 4.84 ± 0.60**
Schut 382.44 ± 17.81 285.98 ± 42.48* 212.00 ± 41.15 6.44 ± 1.34**MLP

Wachter 386.05 ± 16.60 361.83 ± 42.18 218.34 ± 53.26 45.84 ± 39.39

ECCCo 31.43 ± 3.91** 490.88 ± 27.19 73.86 ± 14.63** 17.92 ± 4.17**
REVISE 337.74 ± 11.89* 247.67 ± 38.36** 207.21 ± 43.20 5.78 ± 2.10**
Schut 359.54 ± 14.52 283.99 ± 41.08* 205.36 ± 32.11 7.00 ± 2.15**MLP Ensemble

Wachter 360.79 ± 14.39 357.73 ± 42.55 213.71 ± 54.17 73.09 ± 64.50

6.4 Key Takeways319

To conclude this section, we summarize our findings with reference to the opening questions. The320

results clearly demonstrate that ECCCo consistently achieves state-of-the-art faithfulness, as it was321

designed to do (Research Question 6.1). A related important finding is that ECCCo yields highly322

plausible explanations provided that they faithfully describe model behaviour (Research Question 6.2).323

ECCCo achieves this result primarily by leveraging the model’s generative property.324

7 Limitations325

Even though we have taken considerable measures to study our proposed methodology carefully,326

limitations can still be identified. In particular, we have found that the performance of ECCCo is327

sensitive to hyperparameter choices. In order to achieve faithfulness, we generally had to penalise the328

distance from generated samples slightly more than the distance from factual values.329

Conversely, we have not found that strongly penalising prediction set sizes had any discernable330

effect. Our results indicate that CP alone is often not sufficient to achieve faithfulness and plausibility,331

although we acknowledge that this needs to be investigated more thoroughly through future work.332

While our approach is readily applicable to models with gradient access like deep neural networks,333

more work is needed to generalise it to other machine learning models such as decision trees.334

Relatedly, common challenges associated with Energy-Based Modelling including sensitivity to scale,335

training instabilities and sensitivity to hyperparameters also apply to ECCCo.336

8 Conclusion337

This work leverages recent advances in Energy-Based Modelling and Conformal Prediction in the338

context of Explainable Artificial Intelligence. We have proposed a new way to generate counterfactu-339

als that are maximally faithful to the black-box model they aim to explain. Our proposed generator,340

ECCCo, produces plausible counterfactuals if and only if the black-box model itself has learned341

realistic explanations for the data, which we have demonstrated through rigorous empirical analysis.342

This should enable researchers and practitioners to use counterfactuals in order to discern trustworthy343

models from unreliable ones. While the scope of this work limits its generalizability, we believe that344

ECCCo offers a solid baseline for future work on faithful Counterfactual Explanations.345
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Appendices442

The following appendices provide additional details that are relevant to the paper. Appendices A443

and B explain any tasks related to Energy-Based Modelling and Predictive Uncertainty Quantification444

through Conformal Prediction, respectively. Appendix C provides additional technical and implemen-445

tation details about our proposed generator, ECCCo, including references to our open-sourced code446

base. A complete overview of our experimental setup detailing our parameter choices, training proce-447

dures and initial black-box model performance can be found in Appendix D. Finally, Appendix E448

reports all of our experimental results in more detail.449

A Energy-Based Modelling450

Since we were not able to identify any existing open-source software for Energy-Based Modelling451

that would be flexible enough to cater to our needs, we have developed a Julia package from scratch.452

The package has been open-sourced, but to avoid compromising the double-blind review process, we453

refrain from providing more information at this stage. In our development we have heavily drawn on454

the existing literature: Du and Mordatch [25] describe best practices for using EBM for generative455

modelling; Grathwohl et al. [24] explain how EBM can be used to train classifiers jointly for the456

discriminative and generative tasks. We have used the same package for training and inference, but457

there are some important differences between the two cases that are worth highlighting here.458

A.1 Training: Joint Energy Models459

To train our Joint Energy Models we broadly follow the approach outlined in Grathwohl et al. [24].460

These models are trained to optimize a hybrid objective that involves a standard classification loss461

component Lclf(θ) = − log pθ(y|x) (e.g. cross-entropy loss) as well as a generative loss component462

Lgen(θ) = − log pθ(x).463

To draw samples from pθ(x), we rely exclusively on the conditional sampling approach described464

in Grathwohl et al. [24] for both training and inference: we first draw y ∼ p(y) and then sample465

x ∼ pθ(x|y) [24] via Equation 2 with energy E(x|y) = µθ(x)[y] where µθ : X 7→ RK returns466

the linear predictions (logits) of our classifier Mθ. While our package also supports unconditional467

sampling, we found conditional sampling to work well. It is also well aligned with CE, since in this468

context we are interested in conditioning on the target class.469

As mentioned in the body of the paper, we rely on a biased sampler involving separately specified470

values for the step size ϵ and the standard deviation σ of the stochastic term involving r. Formally,471

our biased sampler performs updates as follows:472

x̂j+1 ← x̂j −
ϵ

2
E(x̂j |y+) + σrj , j = 1, ..., J (7)

Consistent with Grathwohl et al. [24], we have specified ϵ = 2 and σ = 0.01 as the default values for473

all of our experiments. The number of total SGLD steps J varies by dataset (Table 3). Following best474

practices, we initialize x0 randomly in 5% of all cases and sample from a buffer in all other cases.475

The buffer itself is randomly initialised and gradually grows to a maximum of 10,000 samples during476

training as x̂J is stored in each epoch [25, 24].477

It is important to realise that sampling is done during each training epoch, which makes training Joint478

Energy Models significantly harder than conventional neural classifiers. In each epoch the generated479

(batch of) sample(s) x̂J is used as part of the generative loss component, which compares its energy480

to that of observed samples x: Lgen(θ) = µθ(x)[y]− µθ(x̂J)[y]. Our full training objective can be481

summarized as follows,482

L(θ) = Lclf(θ) + Lgen(θ) + λLreg(θ) (8)

where Lreg(θ) is a Ridge penalty (L2 norm) that regularises energy magnitudes for both observed and483

generated samples [25]. We have used varying degrees of regularization depending on the dataset (λ484

in Table 3).485

Contrary to existing work, we have not typically used the entire minibatch of training data for the486

generative loss component but found that using a subset of the minibatch was often sufficient in487
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Table 3: EBM hyperparemeter choices for our experiments.

Dataset SGLD Steps Batch Size λ

Linearly Separable 30 50 0.10
Moons 30 10 0.10
Circles 20 100 0.01

MNIST 25 10 0.01
GMSC 30 10 0.10

Figure 3: Conditionally generated MNIST images for our JEM Ensemble.

attaining decent generative performance (Table 3). This has helped to reduce the computational488

burden for our models, which should make it easier for others to reproduce our findings. Figures 3489

and 4 show generated samples for our MNIST and Moons data, to provide a sense of their generative490

property.491

A.2 Inference: Quantifying Models’ Generative Property492

At inference time, we assume no prior knowledge about the model’s generative property. This means493

that we do not tab into the existing buffer of generated samples for our Joint Energy Models, but494

instead generate conditional samples from scratch. While we have relied on the default values ϵ = 2495

and σ = 0.01 also during inference, the number of total SGLD steps was set to J = 500 in all cases,496

so significantly higher than during training. For all of our synthetic datasets and models, we generated497

50 conditional samples and then formed subsets containing the nE = 25 lowest-energy samples.498

While in practice it would be sufficient to do this once for each model and dataset, we have chosen499

to perform sampling separately for each individual counterfactual in our experiments to account for500

stochasticity. To help reduce the computational burden for our real-world datasets we have generated501

only 10 conditional samples each time and used all of them in our counterfactual search. Using more502

samples, as we originally did, had no substantial impact on our results.503
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Figure 4: Conditionally generated samples (stars) for our Moons data using a JEM.

B Conformal Prediction504

In this Appendix B we provide some more background on CP and explain in some more detail how505

we have used recent advances in Conformal Training for our purposes.506

B.1 Background on CP507

Intuitively, CP works under the premise of turning heuristic notions of uncertainty into rigorous508

uncertainty estimates by repeatedly sifting through the data. It can be used to generate prediction509

intervals for regression models and prediction sets for classification models. Since the literature on510

CE and AR is typically concerned with classification problems, we focus on the latter. A particular511

variant of CP called Split Conformal Prediction (SCP) is well-suited for our purposes, because it512

imposes only minimal restrictions on model training.513

Specifically, SCP involves splitting the data Dn = {(xi,yi)}i=1,...,n into a proper training set Dtrain514

and a calibration set Dcal. The former is used to train the classifier in any conventional fashion.515

The latter is then used to compute so-called nonconformity scores: S = {s(xi,yi)}i∈Dcal where516

s : (X ,Y) 7→ R is referred to as score function. In the context of classification, a common choice for517

the score function is just si = 1−Mθ(xi)[yi], that is one minus the softmax output corresponding518

to the observed label yi [28].519

Finally, classification sets are formed as follows,520

Cθ(xi;α) = {y : s(xi,y) ≤ q̂} (9)

where q̂ denotes the (1 − α)-quantile of S and α is a predetermined error rate. As the size of the521

calibration set increases, the probability that the classification set C(xtest) for a newly arrived sample522

xtest does not cover the true test label ytest approaches α [28].523

Observe from Equation 9 that Conformal Prediction works on an instance-level basis, much like CE524

are local. The prediction set for an individual instance xi depends only on the characteristics of that525

sample and the specified error rate. Intuitively, the set is more likely to include multiple labels for526

samples that are difficult to classify, so the set size is indicative of predictive uncertainty. To see why527

this effect is exacerbated by small choices for α consider the case of α = 0, which requires that the528

true label is covered by the prediction set with probability equal to 1.529

B.2 Differentiability530

The fact that conformal classifiers produce set-valued predictions introduces a challenge: it is not531

immediately obvious how to use such classifiers in the context of gradient-based counterfactual532

search. Put differently, it is not clear how to use prediction sets in Equation 1. Fortunately, Stutz et al.533

[30] have recently proposed a framework for Conformal Training that also hinges on differentiability.534

Specifically, they show how Stochastic Gradient Descent can be used to train classifiers not only535

for the discriminative task but also for additional objectives related to Conformal Prediction. One536

such objective is efficiency: for a given target error rate α, the efficiency of a conformal classifier537

14



Figure 5: Prediction set size (left), smooth set size loss (centre) and configurable classification loss
(right) for a JEM trained on our Linearly Separable data.

improves as its average prediction set size decreases. To this end, the authors introduce a smooth set538

size penalty defined in Equation 6 in the body of this paper. Formally, it is defined as Cθ,y(xi;α) :=539

σ
(
(s(xi,y)− α)T−1

)
for y ∈ Y , where σ is the sigmoid function and T is a hyper-parameter used540

for temperature scaling [30].541

In addition to the smooth set size penalty, Stutz et al. [30] also propose a configurable classification542

loss function, that can be used to enforce coverage. For MNIST data, we found that using this543

function generally improved the visual quality of the generated counterfactuals, so we used it544

in our experiments involving real-world data. For the synthetic dataset, visual inspection of the545

counterfactuals showed that using the configurable loss function sometimes led to overshooting:546

counterfactuals would end up deep inside the target domain but far away from the observed samples.547

For this reason, we instead relied on standard cross-entropy loss for our synthetic datasets. As we have548

noted in the body of the paper, more experimental work is certainly needed in this context. Figure 5549

shows the prediction set size (left), smooth set size loss (centre) and configurable classification loss550

(right) for a JEM trained on our Linearly Separable data.551

C ECCCo552

In this section, we briefly discuss convergence conditions for CE and provide details concerning the553

actual implementation of our framework in Julia.554

C.1 A Note on Convergence555

Convergence is not typically discussed much in the context of CE, even though it has important556

implications on outcomes. One intuitive way to specify convergence is in terms of threshold557

probabilities: once the predicted probability p(y+|x′) exceeds some user-defined threshold γ such558

that the counterfactual is valid, we could consider the search to have converged. In the binary case,559

for example, convergence could be defined as p(y+|x′) > 0.5 in this sense. Note, however, how560

this can be expected to yield counterfactuals in the proximity of the decision boundary, a region561

characterized by high aleatoric uncertainty. In other words, counterfactuals generated in this way562

would generally not be plausible. To avoid this from happening, we specify convergence in terms of563

gradients approaching zero for all our experiments and all of our generators. This is allows us to get564

a cleaner read on how the different counterfactual search objectives affect counterfactual outcomes.565

C.2 ECCCo.jl566

The core part of our code base is integrated into a larger ecosystem of Julia packages that we567

are actively developing and maintaining. To avoid compromising the double-blind review process,568

we only provide a link to an anonymized repository at this stage: https://anonymous.4open.569

science/r/ECCCo-1252/README.md.570

D Experimental Setup571

Table 4 provides an overview of all parameters related to our experiments. The GMSC data were572

randomly undersampled for balancing purposes and all features were standardized. MNIST data was573

also randomly undersampled for reasons outlined below. Pixel values were preprocessed to fall in the574

range of [−1, 1] and a small Gaussian noise component (σ = 0.03) was added to training samples575

15

https://anonymous.4open.science/r/ECCCo-1252/README.md
https://anonymous.4open.science/r/ECCCo-1252/README.md
https://anonymous.4open.science/r/ECCCo-1252/README.md


Table 4: Paremeter choices for our experiments.

Network Architecture Training

Dataset Sample Size Hidden Units Hidden Layers Activation Ensemble Size Epochs Batch Size

Linearly Separable 1000 16 3 swish 5 100 100
Moons 2500 32 3 relu 5 500 128
Circles 1000 32 3 swish 5 100 100

MNIST 10000 128 1 swish 5 100 128
GMSC 13370 128 2 swish 5 100 250

Table 5: Various standard performance metrics for our different models grouped by dataset.

Performance Metrics

Dataset Model Accuracy Precision F1-Score

JEM 0.99 0.99 0.99Linearly Separable
MLP 0.99 0.99 0.99

JEM 1.00 1.00 1.00Moons
MLP 1.00 1.00 1.00

JEM 0.98 0.98 0.98Circles
MLP 1.00 1.00 1.00

JEM 0.83 0.84 0.83
JEM Ensemble 0.90 0.90 0.89

MLP 0.95 0.95 0.95

MNIST

MLP Ensemble 0.95 0.95 0.95

JEM 0.73 0.75 0.73
JEM Ensemble 0.73 0.75 0.73

MLP 0.75 0.75 0.75

GMSC

MLP Ensemble 0.75 0.75 0.75

following common practice in the EBM literature. All of our models were trained through mini-batch576

training using the Adam optimiser (Kingma and Ba [37]). Table 5 shows standard evaluation metrics577

measuring the predictive performance of our different models grouped by dataset. These measures578

were computed on test data.579

Table 6 summarises our hyperparameter choices for the counterfactual generators where η denotes580

the learning rate used for Stochastic Gradient Descent (SGD) and λ1, λ2, λ3 represent the chosen581

penalty strengths (Equations 1 and 5). Here λ1 also refers to the chosen penalty for the distance from582

factual values that applies to both Wachter and REVISE, but not Schut which is penalty-free. Schut is583

also the only generator that uses JSMA instead of SGD for optimization.584

D.1 Compute585

To enable others to easily replicate our experiments, we have chosen to work with small neural586

network architectures and randomly undersampled the MNIST dataset (maintaining class balance).587

All of our experiments could then be run locally on a personal machine. The longest runtimes we588

Table 6: Generator hyperparameters.

Dataset η λ1 λ2 λ3

Linearly Separable 0.01 0.25 0.75 0.75
Moons 0.05 0.25 0.75 0.75
Circles 0.01 0.25 0.75 0.75

MNIST 0.10 0.10 0.25 0.25
GMSC 0.05 0.10 0.50 0.50
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experienced for model training and counterfactual benchmarking were on the order of 8-12 hours589

(MNIST data). For the synthetic data, all experiments could be completed in less than an hour.590

We have summarised our system information below:591

Software:592

• System Version: macOS 13.3.1593

• Kernel Version: Darwin 22.4.0594

Hardware:595

• Model Name: MacBook Pro596

• Model Identifier: MacBookPro16,1597

• Processor Name: 8-Core Intel Core i9598

• Processor Speed: 2.3 GHz599

• Number of Processors: 1600

• Total Number of Cores: 8601

• L2 Cache (per Core): 256 KB602

• L3 Cache: 16 MB603

• Hyper-Threading Technology: Enabled604

• Memory: 32 GB605

E Results606

Figure 6 shows examples of counterfactuals for MNIST data where the underlying model is our JEM607

Ensemble. Original images are shown on the diagonal and the corresponding counterfactuals are608

plotted across rows.609

Table 7 reports all of the evaluation metrics we have computed. Table 8 reports the same metrics610

for the subset of valid counterfactuals. The ‘Unfaithfulness’ and ‘Implausibility’ metrics have been611

discussed extensively in the body of the paper. The ‘Cost’ metric relates to the distance between612

the factual and the counterfactual. The ‘Redundancy’ metric measures sparsity in is defined as the613

percentage of features that remain unperturbed (higher is better). The ‘Uncertainty’ metric is just614

the average value of the smooth set size penalty (Equation 6). Finally, ‘Validity’ is the percentage of615

valid counterfactuals.616
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Table 7: All results for all datasets: sample averages +/- one standard deviation over all counterfactuals.
Best outcomes are highlighted in bold. Asterisks indicate that the given value is more than one (*) or
two (**) standard deviations away from the baseline (Wachter).

Model Data Generator Cost ↓ Unfaithfulness ↓ Implausibility ↓ Redundancy ↑ Uncertainty ↓ Validity ↑

ECCCo 0.74 ± 0.21 0.52 ± 0.36 1.22 ± 0.46 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00**
ECCCo (no CP) 0.72 ± 0.21 0.54 ± 0.39 1.21 ± 0.46 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00**

ECCCo (no EBM) 0.52 ± 0.15 0.70 ± 0.33 1.30 ± 0.37 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00**
REVISE 0.97 ± 0.34 0.48 ± 0.16* 0.95 ± 0.32* 0.00 ± 0.00 0.00 ± 0.00 0.50 ± 0.51

Schut 1.06 ± 0.43 0.54 ± 0.43 1.28 ± 0.53 0.26 ± 0.25* 0.00 ± 0.00 1.00 ± 0.00**

JEM

Wachter 0.44 ± 0.16 0.68 ± 0.34 1.33 ± 0.32 0.00 ± 0.00 0.00 ± 0.00 0.98 ± 0.14

ECCCo 0.67 ± 0.19 0.65 ± 0.53 1.17 ± 0.41 0.00 ± 0.00 0.09 ± 0.19** 1.00 ± 0.00
ECCCo (no CP) 0.71 ± 0.16 0.49 ± 0.35 1.19 ± 0.44 0.00 ± 0.00 0.05 ± 0.16** 1.00 ± 0.00

ECCCo (no EBM) 0.45 ± 0.11 0.84 ± 0.51 1.23 ± 0.31 0.00 ± 0.00 0.15 ± 0.23* 1.00 ± 0.00
REVISE 0.96 ± 0.31 0.58 ± 0.52 0.95 ± 0.32 0.00 ± 0.00 0.00 ± 0.00** 0.50 ± 0.51

Schut 0.57 ± 0.11 0.58 ± 0.37 1.23 ± 0.43 0.43 ± 0.18** 0.00 ± 0.00** 1.00 ± 0.00

Circles

MLP

Wachter 0.40 ± 0.09 0.83 ± 0.50 1.24 ± 0.29 0.00 ± 0.00 0.53 ± 0.01 1.00 ± 0.00
ECCCo 17.45 ± 2.92** 79.16 ± 11.67** 18.26 ± 4.92** 0.00 ± 0.00 0.10 ± 0.01 1.00 ± 0.00
REVISE 3.43 ± 1.67** 186.40 ± 28.06 5.34 ± 2.38** 0.00 ± 0.00 0.51 ± 0.22 1.00 ± 0.00

Schut 1.27 ± 0.33** 200.98 ± 28.49 6.50 ± 2.01** 0.77 ± 0.07** 0.07 ± 0.00 1.00 ± 0.00

JEM

Wachter 57.71 ± 0.47 214.08 ± 45.35 61.04 ± 2.58 0.00 ± 0.00 0.07 ± 0.00 1.00 ± 0.00

ECCCo 17.43 ± 3.04** 83.28 ± 13.26** 17.21 ± 4.46** 0.00 ± 0.00 0.16 ± 0.11 1.00 ± 0.00
REVISE 2.94 ± 1.13** 194.24 ± 35.41 4.95 ± 1.26** 0.00 ± 0.00 0.51 ± 0.29 1.00 ± 0.00

Schut 1.03 ± 0.20** 208.45 ± 34.60 6.12 ± 1.91** 0.85 ± 0.05** 0.09 ± 0.04 1.00 ± 0.00

JEM Ensemble

Wachter 56.79 ± 44.68 186.19 ± 33.88 60.70 ± 44.32 0.00 ± 0.00 0.07 ± 0.00 1.00 ± 0.00

ECCCo 17.05 ± 2.87** 75.93 ± 14.27** 17.20 ± 3.15** 0.00 ± 0.00 0.19 ± 0.08 1.00 ± 0.00**
REVISE 2.93 ± 1.24** 196.75 ± 41.25 4.84 ± 0.60** 0.00 ± 0.00 0.38 ± 0.18 1.00 ± 0.00**

Schut 1.49 ± 0.87** 212.00 ± 41.15 6.44 ± 1.34** 0.77 ± 0.13** 0.12 ± 0.01 1.00 ± 0.00**

MLP

Wachter 42.97 ± 39.50 218.34 ± 53.26 45.84 ± 39.39 0.00 ± 0.00 0.06 ± 0.06 0.50 ± 0.51

ECCCo 16.63 ± 2.62** 73.86 ± 14.63** 17.92 ± 4.17** 0.00 ± 0.00 0.23 ± 0.07 1.00 ± 0.00**
REVISE 3.73 ± 2.36** 207.21 ± 43.20 5.78 ± 2.10** 0.00 ± 0.00 0.33 ± 0.19 1.00 ± 0.00**

Schut 1.20 ± 0.47** 205.36 ± 32.11 7.00 ± 2.15** 0.79 ± 0.09** 0.12 ± 0.01 1.00 ± 0.00**

GMSC

MLP Ensemble

Wachter 69.30 ± 66.00 213.71 ± 54.17 73.09 ± 64.50 0.00 ± 0.00 0.06 ± 0.06 0.50 ± 0.51

ECCCo 0.75 ± 0.17 0.03 ± 0.06** 0.20 ± 0.08** 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00
ECCCo (no CP) 0.75 ± 0.17 0.03 ± 0.06** 0.20 ± 0.08** 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00

ECCCo (no EBM) 0.70 ± 0.16 0.16 ± 0.11 0.34 ± 0.19 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00
REVISE 0.41 ± 0.15 0.19 ± 0.03 0.41 ± 0.01** 0.00 ± 0.00 0.36 ± 0.36 0.50 ± 0.51

Schut 1.15 ± 0.35 0.39 ± 0.07 0.73 ± 0.17 0.25 ± 0.25 0.00 ± 0.00 1.00 ± 0.00

JEM

Wachter 0.50 ± 0.13 0.18 ± 0.10 0.44 ± 0.17 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00
ECCCo 0.95 ± 0.16 0.29 ± 0.05** 0.23 ± 0.06** 0.00 ± 0.00 0.00 ± 0.00** 1.00 ± 0.00

ECCCo (no CP) 0.94 ± 0.16 0.29 ± 0.05** 0.23 ± 0.07** 0.00 ± 0.00 0.00 ± 0.00** 1.00 ± 0.00
ECCCo (no EBM) 0.60 ± 0.15 0.46 ± 0.05 0.28 ± 0.04** 0.00 ± 0.00 0.02 ± 0.10** 1.00 ± 0.00

REVISE 0.42 ± 0.14 0.56 ± 0.05 0.41 ± 0.01 0.00 ± 0.00 0.47 ± 0.50 0.48 ± 0.50
Schut 0.77 ± 0.17 0.43 ± 0.06* 0.47 ± 0.36 0.20 ± 0.25 0.00 ± 0.00** 1.00 ± 0.00

Linearly Separable

MLP

Wachter 0.51 ± 0.15 0.51 ± 0.04 0.40 ± 0.08 0.00 ± 0.00 0.59 ± 0.02 1.00 ± 0.00
ECCCo 334.61 ± 46.37 19.28 ± 5.01** 314.76 ± 32.36* 0.00 ± 0.00 4.43 ± 0.56 0.98 ± 0.12
REVISE 170.68 ± 63.26 188.70 ± 26.18* 255.26 ± 41.50** 0.00 ± 0.00 4.39 ± 0.91 0.96 ± 0.20

Schut 9.44 ± 1.60** 211.00 ± 27.21 286.61 ± 39.85* 0.99 ± 0.00** 1.08 ± 1.95* 0.24 ± 0.43

JEM

Wachter 128.36 ± 14.95 222.90 ± 26.56 361.88 ± 39.74 0.00 ± 0.00 4.37 ± 0.98 0.95 ± 0.21

ECCCo 342.64 ± 41.14 15.99 ± 3.06** 294.72 ± 30.75** 0.00 ± 0.00 2.07 ± 0.06** 1.00 ± 0.00**
REVISE 170.21 ± 58.02 173.59 ± 20.65** 246.32 ± 37.46** 0.00 ± 0.00 2.56 ± 0.83 0.93 ± 0.26

Schut 9.78 ± 1.02** 205.33 ± 24.07 287.39 ± 39.33* 0.99 ± 0.00** 0.32 ± 0.94** 0.11 ± 0.31

JEM Ensemble

Wachter 135.07 ± 16.79 217.67 ± 23.78 363.23 ± 39.24 0.00 ± 0.00 2.93 ± 0.77 0.94 ± 0.23

ECCCo 605.17 ± 44.78 41.95 ± 6.50** 591.58 ± 36.24 0.00 ± 0.00 0.57 ± 0.00** 1.00 ± 0.00**
REVISE 146.61 ± 36.96 365.82 ± 15.35* 249.49 ± 41.55** 0.00 ± 0.00 0.62 ± 0.30 0.87 ± 0.34

Schut 9.95 ± 0.37** 382.44 ± 17.81 285.98 ± 42.48* 0.99 ± 0.00** 0.05 ± 0.19** 0.06 ± 0.24

MLP

Wachter 136.08 ± 16.09 386.05 ± 16.60 361.83 ± 42.18 0.00 ± 0.00 0.68 ± 0.36 0.84 ± 0.36

ECCCo 525.87 ± 34.00 31.43 ± 3.91** 490.88 ± 27.19 0.00 ± 0.00 0.29 ± 0.00** 1.00 ± 0.00**
REVISE 146.60 ± 35.64 337.74 ± 11.89* 247.67 ± 38.36** 0.00 ± 0.00 0.39 ± 0.22 0.85 ± 0.36

Schut 9.98 ± 0.25** 359.54 ± 14.52 283.99 ± 41.08* 0.99 ± 0.00** 0.03 ± 0.14** 0.06 ± 0.24

MNIST

MLP Ensemble

Wachter 137.53 ± 18.95 360.79 ± 14.39 357.73 ± 42.55 0.00 ± 0.00 0.47 ± 0.64 0.80 ± 0.40

ECCCo 1.56 ± 0.44 0.31 ± 0.30* 1.20 ± 0.15** 0.00 ± 0.00 0.00 ± 0.00** 1.00 ± 0.00**
ECCCo (no CP) 1.56 ± 0.46 0.37 ± 0.30* 1.21 ± 0.17** 0.00 ± 0.00 0.00 ± 0.00** 1.00 ± 0.00**

ECCCo (no EBM) 0.80 ± 0.25 0.91 ± 0.32 1.71 ± 0.25 0.00 ± 0.00 0.00 ± 0.00** 1.00 ± 0.00**
REVISE 1.04 ± 0.43 0.78 ± 0.23 1.57 ± 0.26 0.00 ± 0.00 0.00 ± 0.00** 1.00 ± 0.00**

Schut 1.12 ± 0.31 0.67 ± 0.27 1.50 ± 0.22* 0.08 ± 0.19 0.00 ± 0.00** 0.98 ± 0.14

JEM

Wachter 0.72 ± 0.24 0.80 ± 0.27 1.78 ± 0.24 0.00 ± 0.00 0.02 ± 0.10 0.98 ± 0.14

ECCCo 2.18 ± 1.05 0.80 ± 0.62 1.69 ± 0.40 0.00 ± 0.00 0.15 ± 0.24* 1.00 ± 0.00
ECCCo (no CP) 2.07 ± 1.15 0.79 ± 0.62 1.68 ± 0.42 0.00 ± 0.00 0.15 ± 0.24* 1.00 ± 0.00

ECCCo (no EBM) 1.25 ± 0.92 1.34 ± 0.47 1.68 ± 0.47 0.00 ± 0.00 0.43 ± 0.18 1.00 ± 0.00
REVISE 0.79 ± 0.19* 1.45 ± 0.44 1.64 ± 0.31 0.00 ± 0.00 0.40 ± 0.22 1.00 ± 0.00

Schut 0.73 ± 0.25* 1.45 ± 0.55 1.73 ± 0.48 0.31 ± 0.28* 0.00 ± 0.00** 0.90 ± 0.30

Moons

MLP

Wachter 1.08 ± 0.83 1.32 ± 0.41 1.69 ± 0.32 0.00 ± 0.00 0.52 ± 0.08 1.00 ± 0.00
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Table 8: All results for all datasets: sample averages +/- one standard deviation over all valid
counterfactuals. Best outcomes are highlighted in bold. Asterisks indicate that the given value is
more than one (*) or two (**) standard deviations away from the baseline (Wachter).

Model Data Generator Cost ↓ Unfaithfulness ↓ Implausibility ↓ Redundancy ↑ Uncertainty ↓ Validity ↑

ECCCo 0.74 ± 0.21 0.52 ± 0.36 1.22 ± 0.46 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00
ECCCo (no CP) 0.72 ± 0.21 0.54 ± 0.39 1.21 ± 0.46 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00

ECCCo (no EBM) 0.52 ± 0.15 0.70 ± 0.33 1.30 ± 0.37 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00
REVISE 1.28 ± 0.14 0.33 ± 0.01** 0.64 ± 0.00** 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00

Schut 1.06 ± 0.43 0.54 ± 0.43 1.28 ± 0.53 0.26 ± 0.25* 0.00 ± 0.00 1.00 ± 0.00

JEM

Wachter 0.45 ± 0.15 0.68 ± 0.34 1.33 ± 0.32 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00

ECCCo 0.67 ± 0.19 0.65 ± 0.53 1.17 ± 0.41 0.00 ± 0.00 0.09 ± 0.19** 1.00 ± 0.00
ECCCo (no CP) 0.71 ± 0.16 0.49 ± 0.35 1.19 ± 0.44 0.00 ± 0.00 0.05 ± 0.16** 1.00 ± 0.00

ECCCo (no EBM) 0.45 ± 0.11 0.84 ± 0.51 1.23 ± 0.31 0.00 ± 0.00 0.15 ± 0.23* 1.00 ± 0.00
REVISE 1.24 ± 0.15 0.06 ± 0.01** 0.64 ± 0.00** 0.00 ± 0.00 0.00 ± 0.00** 1.00 ± 0.00

Schut 0.57 ± 0.11 0.58 ± 0.37 1.23 ± 0.43 0.43 ± 0.18** 0.00 ± 0.00** 1.00 ± 0.00

Circles

MLP

Wachter 0.40 ± 0.09 0.83 ± 0.50 1.24 ± 0.29 0.00 ± 0.00 0.53 ± 0.01 1.00 ± 0.00

ECCCo 17.45 ± 2.92** 79.16 ± 11.67** 18.26 ± 4.92** 0.00 ± 0.00 0.10 ± 0.01 1.00 ± 0.00
REVISE 3.43 ± 1.67** 186.40 ± 28.06 5.34 ± 2.38** 0.00 ± 0.00 0.51 ± 0.22 1.00 ± 0.00

Schut 1.27 ± 0.33** 200.98 ± 28.49 6.50 ± 2.01** 0.77 ± 0.07** 0.07 ± 0.00 1.00 ± 0.00

JEM

Wachter 57.71 ± 0.47 214.08 ± 45.35 61.04 ± 2.58 0.00 ± 0.00 0.07 ± 0.00 1.00 ± 0.00

ECCCo 17.43 ± 3.04** 83.28 ± 13.26** 17.21 ± 4.46** 0.00 ± 0.00 0.16 ± 0.11 1.00 ± 0.00
REVISE 2.94 ± 1.13** 194.24 ± 35.41 4.95 ± 1.26** 0.00 ± 0.00 0.51 ± 0.29 1.00 ± 0.00

Schut 1.03 ± 0.20** 208.45 ± 34.60 6.12 ± 1.91** 0.85 ± 0.05** 0.09 ± 0.04 1.00 ± 0.00

JEM Ensemble

Wachter 56.79 ± 44.68 186.19 ± 33.88 60.70 ± 44.32 0.00 ± 0.00 0.07 ± 0.00 1.00 ± 0.00

ECCCo 17.05 ± 2.87 75.93 ± 14.27** 17.20 ± 3.15 0.00 ± 0.00 0.19 ± 0.08 1.00 ± 0.00
REVISE 2.93 ± 1.24* 196.75 ± 41.25 4.84 ± 0.60** 0.00 ± 0.00 0.38 ± 0.18 1.00 ± 0.00

Schut 1.49 ± 0.87** 212.00 ± 41.15 6.44 ± 1.34 0.77 ± 0.13** 0.12 ± 0.01 1.00 ± 0.00

MLP

Wachter 4.48 ± 0.18 184.03 ± 48.16 7.49 ± 0.89 0.00 ± 0.00 0.12 ± 0.00 1.00 ± 0.00

ECCCo 16.63 ± 2.62 73.86 ± 14.63** 17.92 ± 4.17 0.00 ± 0.00 0.23 ± 0.07 1.00 ± 0.00
REVISE 3.73 ± 2.36 207.21 ± 43.20 5.78 ± 2.10** 0.00 ± 0.00 0.33 ± 0.19 1.00 ± 0.00

Schut 1.20 ± 0.47** 205.36 ± 32.11 7.00 ± 2.15* 0.79 ± 0.09** 0.12 ± 0.01 1.00 ± 0.00

GMSC

MLP Ensemble

Wachter 4.97 ± 0.47 177.20 ± 25.86 10.27 ± 3.21 0.00 ± 0.00 0.11 ± 0.00 1.00 ± 0.00

ECCCo 0.75 ± 0.17 0.03 ± 0.06** 0.20 ± 0.08** 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00
ECCCo (no CP) 0.75 ± 0.17 0.03 ± 0.06** 0.20 ± 0.08** 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00

ECCCo (no EBM) 0.70 ± 0.16 0.16 ± 0.11 0.34 ± 0.19 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00
REVISE 0.41 ± 0.14 0.15 ± 0.00** 0.41 ± 0.01** 0.00 ± 0.00 0.72 ± 0.02 1.00 ± 0.00

Schut 1.15 ± 0.35 0.39 ± 0.07 0.73 ± 0.17 0.25 ± 0.25 0.00 ± 0.00 1.00 ± 0.00

JEM

Wachter 0.50 ± 0.13 0.18 ± 0.10 0.44 ± 0.17 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00

ECCCo 0.95 ± 0.16 0.29 ± 0.05** 0.23 ± 0.06** 0.00 ± 0.00 0.00 ± 0.00** 1.00 ± 0.00
ECCCo (no CP) 0.94 ± 0.16 0.29 ± 0.05** 0.23 ± 0.07** 0.00 ± 0.00 0.00 ± 0.00** 1.00 ± 0.00

ECCCo (no EBM) 0.60 ± 0.15 0.46 ± 0.05 0.28 ± 0.04** 0.00 ± 0.00 0.02 ± 0.10** 1.00 ± 0.00
REVISE 0.39 ± 0.15 0.52 ± 0.04 0.41 ± 0.01 0.00 ± 0.00 0.98 ± 0.00 1.00 ± 0.00

Schut 0.77 ± 0.17 0.43 ± 0.06* 0.47 ± 0.36 0.20 ± 0.25 0.00 ± 0.00** 1.00 ± 0.00

Linearly Separable

MLP

Wachter 0.51 ± 0.15 0.51 ± 0.04 0.40 ± 0.08 0.00 ± 0.00 0.59 ± 0.02 1.00 ± 0.00

ECCCo 334.98 ± 46.54 19.27 ± 5.02** 314.54 ± 32.54* 0.00 ± 0.00 4.50 ± 0.00** 1.00 ± 0.00
REVISE 170.06 ± 62.45 188.54 ± 26.22* 254.32 ± 41.55** 0.00 ± 0.00 4.57 ± 0.14 1.00 ± 0.00

Schut 7.63 ± 2.55** 199.70 ± 28.43 273.01 ± 39.60** 0.99 ± 0.00** 4.56 ± 0.13 1.00 ± 0.00

JEM

Wachter 128.13 ± 14.81 222.81 ± 26.22 361.38 ± 39.55 0.00 ± 0.00 4.58 ± 0.16 1.00 ± 0.00

ECCCo 342.64 ± 41.14 15.99 ± 3.06** 294.72 ± 30.75** 0.00 ± 0.00 2.07 ± 0.06** 1.00 ± 0.00
REVISE 171.95 ± 58.81 173.05 ± 20.38** 246.20 ± 37.74** 0.00 ± 0.00 2.76 ± 0.45 1.00 ± 0.00

Schut 7.96 ± 2.49** 186.91 ± 22.98* 264.68 ± 37.58** 0.99 ± 0.00** 3.02 ± 0.26 1.00 ± 0.00

JEM Ensemble

Wachter 134.98 ± 16.95 217.37 ± 23.93 362.91 ± 39.40 0.00 ± 0.00 3.10 ± 0.31 1.00 ± 0.00

ECCCo 605.17 ± 44.78 41.95 ± 6.50** 591.58 ± 36.24 0.00 ± 0.00 0.57 ± 0.00** 1.00 ± 0.00
REVISE 146.76 ± 37.07 365.69 ± 14.90* 245.36 ± 39.69** 0.00 ± 0.00 0.72 ± 0.18 1.00 ± 0.00

Schut 9.25 ± 1.31** 371.12 ± 19.99 245.11 ± 35.72** 0.99 ± 0.00** 0.75 ± 0.23 1.00 ± 0.00

MLP

Wachter 135.08 ± 15.68 384.76 ± 16.52 359.21 ± 42.03 0.00 ± 0.00 0.81 ± 0.22 1.00 ± 0.00

ECCCo 525.87 ± 34.00 31.43 ± 3.91** 490.88 ± 27.19 0.00 ± 0.00 0.29 ± 0.00** 1.00 ± 0.00
REVISE 146.38 ± 35.18 337.21 ± 11.68* 244.84 ± 37.17** 0.00 ± 0.00 0.45 ± 0.16 1.00 ± 0.00

Schut 9.75 ± 1.00** 344.60 ± 13.64* 252.53 ± 37.92** 0.99 ± 0.00** 0.55 ± 0.21 1.00 ± 0.00

MNIST

MLP Ensemble

Wachter 134.48 ± 17.69 358.51 ± 13.18 352.63 ± 39.93 0.00 ± 0.00 0.58 ± 0.67 1.00 ± 0.00

ECCCo 1.56 ± 0.44 0.31 ± 0.30* 1.20 ± 0.15** 0.00 ± 0.00 0.00 ± 0.00** 1.00 ± 0.00
ECCCo (no CP) 1.56 ± 0.46 0.37 ± 0.30* 1.21 ± 0.17** 0.00 ± 0.00 0.00 ± 0.00** 1.00 ± 0.00

ECCCo (no EBM) 0.80 ± 0.25 0.91 ± 0.32 1.71 ± 0.25 0.00 ± 0.00 0.00 ± 0.00** 1.00 ± 0.00
REVISE 1.04 ± 0.43 0.78 ± 0.23 1.57 ± 0.26 0.00 ± 0.00 0.00 ± 0.00** 1.00 ± 0.00

Schut 1.13 ± 0.29 0.66 ± 0.25 1.47 ± 0.10** 0.07 ± 0.18 0.00 ± 0.00** 1.00 ± 0.00

JEM

Wachter 0.73 ± 0.24 0.78 ± 0.23 1.75 ± 0.19 0.00 ± 0.00 0.02 ± 0.11 1.00 ± 0.00

ECCCo 2.18 ± 1.05 0.80 ± 0.62 1.69 ± 0.40 0.00 ± 0.00 0.15 ± 0.24* 1.00 ± 0.00
ECCCo (no CP) 2.07 ± 1.15 0.79 ± 0.62 1.68 ± 0.42 0.00 ± 0.00 0.15 ± 0.24* 1.00 ± 0.00

ECCCo (no EBM) 1.25 ± 0.92 1.34 ± 0.47 1.68 ± 0.47 0.00 ± 0.00 0.43 ± 0.18 1.00 ± 0.00
REVISE 0.79 ± 0.19* 1.45 ± 0.44 1.64 ± 0.31 0.00 ± 0.00 0.40 ± 0.22 1.00 ± 0.00

Schut 0.78 ± 0.17* 1.39 ± 0.50 1.59 ± 0.26 0.28 ± 0.25* 0.00 ± 0.00** 1.00 ± 0.00

Moons

MLP

Wachter 1.08 ± 0.83 1.32 ± 0.41 1.69 ± 0.32 0.00 ± 0.00 0.52 ± 0.08 1.00 ± 0.00

19



Figure 6: Counterfactuals for MNIST data and our JEM Ensemble. Original images are shown on the
diagonal with the corresponding counterfactuals plotted across rows.
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