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Abstract

Counterfactual Explanations offer an intuitive and straightforward way to explain
black-box models and offer Algorithmic Recourse to individuals. To address the
need for plausible explanations, existing work has primarily relied on surrogate
models to learn how the input data is distributed. This effectively reallocates
the task of learning realistic representations of the data from the model itself to
the surrogate. Consequently, the generated explanations may seem plausible to
humans but need not necessarily faithfully describe the behaviour of the black-box
model. We formalise this notion of faithfulness through the introduction of a
tailored evaluation metric and propose a novel algorithmic framework for gener-
ating Energy-Constrained Conformal Counterfactuals that are only as plausible
as the model permits. Through extensive empirical studies involving multiple
synthetic and real-world datasets, we demonstrate that ECCCo reconciles the
need for plausibility and faithfulness. In particular, we show that it is possible to
achieve state-of-the-art plausibility for models with gradient access without the
need for surrogate models. To do so, ECCCo relies solely on properties defining
the black-box model itself by leveraging recent advances in energy-based mod-
elling and conformal inference. Through this work, we also shine new light on the
explanatory properties of Joint Energy Models. Our framework is intuitive, flexible
and fully open-sourced. By highlighting the need for faithfulness in the context
of Counterfactual Explanations, we believe that in the short term, our work will
enable researchers and practitioners to better distinguish trustworthy from unreli-
able models. We further anticipate that ECCCo can serve as a baseline for future
research directed at providing plausible but faithful Counterfactual Explanations.

1 Introduction

Counterfactual Explanations provide a powerful, flexible and intuitive way to not only explain black-
box models but also enable affected individuals to challenge them through the means of Algorithmic
Recourse. Instead of opening the black box, Counterfactual Explanations work under the premise
of strategically perturbing model inputs to understand model behaviour [29]. Intuitively speaking,
we generate explanations in this context by asking simple what-if questions of the following nature:
‘Our credit risk model currently predicts that this individual’s credit profile is too risky to offer them a
loan. What if they reduced their monthly expenditures by 10%? Will our model then predict that the
individual is credit-worthy’?

This is typically implemented by defining a target outcome y* € ) for some individual x € X = R”
described by D attributes, for which the model My : X — ) initially predicts a different outcome:
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My(x) # y*. Counterfactuals are then searched by minimizing a loss function that compares the
predicted model output to the target outcome: yloss(Mpy(x),y*). Since Counterfactual Explanations
(CE) work directly with the black-box model, valid counterfactuals always have full local fidelity by
construction [[17]. Fidelity is defined as the degree to which explanations approximate the predictions
of the black-box model. This is arguably one of the most important evaluation metrics for model
explanations, since any explanation that explains a prediction not actually made by the model is
useless [16]].

In situations where full fidelity is a requirement, CE therefore offers a more appropriate solution
to Explainable Artificial Intelligence (XAI) than other popular approaches like LIME [22] and
SHAP [12], which involve local surrogate models. But even full fidelity is not a sufficient condition
for ensuring that an explanation faithfully describes the behaviour of a model. That is because
multiple very distinct explanations can all lead to the same model prediction, especially when dealing
with heavily parameterized models like deep neural networks which are typically underspecified by
the available data [30]].

In the context of CE, the idea that no two explanations are the same arises almost naturally. A key
focus in the literature has therefore been to identify those explanations and algorithmic recourses
that are deemed most appropriate based on a myriad of desiderata such as sparsity, actionability
and plausibility. In this work, we draw closer attention to the insufficiency of model fidelity as an
evaluation metric for the faithfulness of counterfactual explanations. Our key contributions are as
follows: firstly, we introduce a new notion of faithfulness that is suitable for counterfactuals and
propose a novel evaluation measure that draws inspiration from recent advances in Energy-Based
Modelling (EBM); secondly, we a novel algorithmic approach for generating Energy-Constrained
Conformal Counterfactuals (ECCCo) that explicitly address the need for faithfulness; finally, we
provide illustrative examples and extensive empirical evidence demonstrating that ECCCos faithfully
explain model behaviour without sacrificing existing desidarata like plausibility and sparsity.

2 Background and Related Work

In this section, we provide some background on Counterfactual Explanations and our motivation for
this work. To start, we briefly introduce the methodology underlying most state-of-the-art (SOTA)
counterfactual generators.

2.1 Gradient-Based Counterfactual Search

While Counterfactual Explanations can be generated for arbitrary regression models [24], existing
work has primarily focused on classification problems. Let )V = (0, 1)* denote the one-hot-encoded
output domain with K classes. Then most SOTA counterfactual generators rely on gradient descent
to optimize different flavours of the following counterfactual search objective:

Z' = arg min {yloss(Ms(f(Z")),y") + Acost(f(Z"))} )

Here yloss denotes the primary loss function already introduced above and cost is either a single
penalty or a collection of penalties that are used to impose constraints through regularization. Equa-
tion | restates the baseline approach to gradient-based counterfactual search proposed by Wachter
et al. [29] in general form where Z' = {z;}, denotes an L-dimensional array of counterfactual
states [2]. This is to explicitly account for the multiplicity of explanations and the fact that we may
choose to generate multiple counterfactuals and traverse a latent encoding Z of the feature space X
where we denote f~! : X — Z. Encodings may involve simple feature transformations or more
advanced techniques involving generative models, as we will discuss further below. The baseline
approach, which we will simply refer to as Wachter [29]], searches a single counterfactual directly in
the feature space and penalises its distance between the original factual.

Solutions to Equation|[I]are considered valid as soon as the predicted label matches the target label. A
stripped-down counterfactual explanation is therefore little different from an adversarial example. In
Figure|l| for example, we have applied Wachter to MNIST data (centre panel) where the underlying
classifier My is a simple Multi-Layer Perceptron (MLP) with above 90 percent test accuracy. For the
generated counterfactual x’ the model predicts the target label with high confidence (centre panel
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in Figure[T). The explanation is valid by definition, even though it looks a lot like an Adversarial
Example [6]]. Schut et al. [23]] make the connection between Adversarial Examples and Counterfactual
Explanations explicit and propose using a Jacobian-Based Saliency Map Attack (JSMA) to solve
Equation [Tl They demonstrate that this approach yields realistic and sparse counterfactuals for
Bayesian, adversarially robust classifiers. Applying their approach to our simple MNIST classifier
does not yield a realistic counterfactual but this one, too, is valid (right panel in Figure [I)).

2.2 From Adversial Examples to Plausible Explanations

The crucial difference between Adversarial Examples (AE) and Counterfactual Explanations is one of
intent. While an AE is intended to go unnoticed, a CE should have certain desirable properties. The
literature has made this explicit by introducing various so-called desiderata that counterfactuals should
meet in order to properly serve both Al practitioners and individuals affected by Al decision-making
systems. The list of desiderate includes but is not limited to the following: sparsity, proximity [29],
actionability [27], diversity [17]], plausibility [9, 21} 23], robustness [26} 20} 2] and causality [11].

Researchers have come up with various ways to meet these desiderata, which have been extensively
surveyed and evaluated in various studies [28, [10, |19} 4, [8]. Perhaps unsurprisingly, the different
desiderata are often positively correlated. For example, Artelt et al. [4] find that plausibility typically
also leads to improved robustness. Similarly, plausibility has also been connected to causality in the
sense that plausible counterfactuals respect causal relationships [[13]].

2.2.1 Plausibility through Surrogates

Arguably, the plausibility of counterfactuals has been among the primary concerns and some have
focused explicitly on this goal. Joshi et al. [9], for example, were among the first to suggest that
instead of searching counterfactuals in the feature space X', we can instead traverse a latent embedding
Z (Equation [T)) that implicitly codifies the data generating process (DGP) of x ~ X. To learn the
latent embedding, they introduce a surrogate model. In particular, they propose to use the latent
embedding of a Variational Autoencoder (VAE) trained to generate samples x* < G(z) where G
denotes the decoder part of the VAE. Provided the surrogate model is well-trained, their proposed
approach —REVISE— can yield compelling counterfactual explanations like the one in the centre
panel of Figure 2]

Others have proposed similar approaches. Dombrowski et al. [3]] traverse the base space of a
normalizing flow to solve Equation [I] essentially relying on a different surrogate model for the
generative task. Poyiadzi et al. [2I]] use density estimators (5 : X +— [0, 1]) to constrain the
counterfactuals to dense regions in the feature space. Karimi et al. [[11] argue that counterfactuals
should comply with the causal model that generates the data. All of these different approaches share
a common goal: ensuring that the generated counterfactuals comply with the true and unobserved
DGP. To summarize this broad objective, we propose the following definition:

Definition 2.1 (Plausible Counterfactuals). Let X|y* denote the true conditional distribution of
samples in the target class y*. Then for x' to be considered a plausible counterfactual, we need:
x' ~ X|y*

Surrogate models offer an obvious solution to achieve this objective. Unfortunately, surrogates also
introduce a dependency: the generated explanations no longer depend exclusively on the black-box
model itself, but also on the surrogate model. This is not necessarily problematic if the primary
objective is not to explain the behaviour of the model but to offer recourse to individuals affected by
it. It may become problematic even in this context if the dependency turns into a vulnerability. To
illustrate this point, we have used REVISE [9]] with an underfitted VAE to generate the counterfactual
in the right panel of Figure [} in this case, the decoder step of the VAE fails to yield plausible values
({x’ + G(2z)} # X|y*) and hence the counterfactual search in the learned latent space is doomed.

2.2.2 Plausibility through Minimal Predictive Uncertainty

Schut et al. [23]] show that to meet the plausibility objective we need not explicitly model the input
distribution. Pointing to the undesirable engineering overhead induced by surrogate models, they
propose that we rely on the implicit minimisation of predictive uncertainty instead. Their proposed
methodology solves Equation [T|by greedily applying JSMA in the feature space with standard cross-
entropy loss and no penalty at all. They demonstrate theoretically and empirically that their approach
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Factual

Figure 1: Explanations or Adversarial Ex-
amples? Counterfactuals for turning an 8
(eight) into a 3 (three): original image (left);
counterfactual produced using Wachter et al.
[29] (centre); and a counterfactual produced
using the approach introduced by [23] that
uses Jacobian-Based Saliency Map Attacks to
solve Equation|T}

Factual Strong VAE (p=1.0) Weak VAE (p=0.97)

H

Figure 2: Using surrogates can improve plau-
sibility, but also increases vulnerability. Coun-
terfactuals for turning an 8 (eight) into a
3 (three): original image (left); counterfac-
tual produced using REVISE [9] with a well-
specified surrogate (centre); and a counter-
factual produced using REVISE [9]] with a
poorly specified surrogate (right).

yields counterfactuals for which the model M, predicts the target label y* with high confidence.
Provided the model is well-specified, these counterfactuals are plausible. Unfortunately, this idea
hinges on the assumption that the black-box model provides well-calibrated predictive uncertainty
estimates.

2.3 From Fidelity to Model Conformity

Above we explained that since Counterfactual Explanations work directly with the Black Box model,
the fidelity of explanations as we defined it earlier is not a concern. This may explain why research has
primarily focused on other desiderata, most notably plausibility (Definition[2.T). Enquiring about the
plausibility of a counterfactual essentially boils down to the following question: ‘Is this counterfactual
consistent with the underlying data’? We posit a related, slightly more nuanced question: ‘Is this
counterfactual consistent with what the model has learned about the underlying data’? We will argue
that fidelity is not a sufficient evaluation measure to answer this question and propose a novel way to
assess if Counterfactual Explanations conform with model behaviour.

The word fidelity stems from the Latin word ‘fidelis’, which means ‘faithful, loyal, trustworthy’ [[15].
As we explained in Section [2] model explanations are generally considered faithful if their corre-
sponding predictions coincide with the predictions made by the model itself. Since this definition
of faithfulness is not useful in the context of Counterfactual Explanations, we propose an adapted
version:

Definition 2.2 (Conformal Counterfactuals). Let Xy|y™ = po(x|y*) denote the conditional distri-
bution of x in the target class y*, where 0 denotes the parameters of model My. Then for x' to be
considered a conformal counterfactual, we need: x' ~ Xy|y*.

In words, conformal counterfactuals conform with what the predictive model has learned about
the input data x. Since this definition works with distributional properties, it explicitly accounts
for the multiplicity of explanations we discussed earlier. To assess counterfactuals with respect to
Definition we need to be able to quantify the posterior conditional distribution py (x|y*). This is
very much at the core of our proposed methodological framework, which reconciles the notions of
plausibility and model conformity and which we will introduce next.

3 Methodological Framework

The primary objective of this work has been to develop a methodology for generating maximally
plausible counterfactuals under minimal intervention. Our proposed framework is based on the
premise that explanations should be plausible but not plausible at all costs. Energy-Constrained
Conformal Counterfactuals (ECCCo) achieve this goal in two ways: firstly, they rely on the Black
Box itself for the generative task; and, secondly, they involve an approach to predictive uncertainty
quantification that is model-agnostic.
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3.1 Quantifying the Model’s Generative Property

Recent work by Grathwohl et al. [7] on Energy Based Models (EBM) has pointed out that there is a
‘generative model hidden within every standard discriminative model’. The authors show that we can
draw samples from the posterior conditional distribution pg(x|y) using Stochastic Gradient Langevin
Dynamics (SGLD). The authors use this insight to train classifiers jointly for the discriminative task
using standard cross-entropy and the generative task using SGLD. They demonstrate empirically that
among other things this improves predictive uncertainty quantification for discriminative models.
Our findings in this work suggest that Joint Energy Models (JEM) also tend to yield more plausible
Counterfactual Explanations. Based on the definition of plausible counterfactuals (Definition [2.1])
this is not surprising.

Crucially for our purpose, one can apply their proposed sampling strategy during inference to
essentially any standard discriminative model. Even models that are not explicitly trained for the joint
objective learn about the distribution of inputs X by learning to make conditional predictions about
the output y. We can leverage this observation to quantify the generative property of the Black Box
model itself. In particular, note that if we fix y to our target value y*, we can sample from pg(x|y™*)
using SGLD as follows,

2
€ .
Xjr1 < X — 5 Exjly") +erj, j=1,...,J (2)

where r; ~ N(0,I) is the stochastic term and the step-size e is typically polynomially decayed.
The term £(x;|y*) denotes the energy function where we use £(x;|y*) = —Mpy(x;)[y*], that is the
negative logit corresponding to the target class label y*. Generating multiple samples in this manner
yields an empirical distribution )29|y* that we use in our search for plausible counterfactuals, as
discussed in more detail below. Appendix [A]provides additional implementation details for any tasks
related to energy-based modelling.

3.2 Quantifying the Model’s Predictive Uncertainty

To quantify the model’s predictive uncertainty we use Conformal Prediction (CP), an approach that
has recently gained popularity in the Machine Learning community [3,[14]]. Crucially for our intended
application, CP is model-agnostic and can be applied during inference without placing any restrictions
on model training. Intuitively, CP works under the premise of turning heuristic notions of uncertainty
into rigorous uncertainty estimates by repeatedly sifting through the training data or a dedicated
calibration dataset. Conformal classifiers produce prediction sets for individual inputs that include all
output labels that can be reasonably attributed to the input. These sets tend to be larger for inputs that
do not conform with the training data and are therefore characterized by high predictive uncertainty.

In order to generate counterfactuals that are associated with low predictive uncertainty, we use a
smooth set size penalty introduced by Stutz et al. [25] in the context of conformal training:

Q(Cy(x;a)) = max | 0, Z Coy(xi;a) — K 3)

yey

Here, x € {0, 1} is a hyper-parameter and Cjy  (x;; ) can be interpreted as the probability of label
y being included in the prediction set.

In order to compute this penalty for any black-box model we merely need to perform a single
calibration pass through a holdout set D.,. Arguably, data is typically abundant and in most
applications, practitioners tend to hold out a test data set anyway. Consequently, CP removes the
restriction on the family of predictive models, at the small cost of reserving a subset of the available
data for calibration. This particular case of conformal prediction is referred to as Split Conformal
Prediction (SCP) as it involves splitting the training data into a proper training dataset and a calibration
dataset. Details concerning our implementation of Conformal Prediction can be found in Appendix [B]
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3.3 Energy-Constrained Conformal Counterfactuals (ECCCo)

Our framework for generating ECCCos combines the ideas introduced in the previous two subsections.
Formally, we extend Equation E] as follows,

Z' = arg Z]/ngiZnM{yloss(Mg(f(Z’))7 v) + Midist(f(Z'), x)
+ Nodist(f(Z'),%g) + A3Q(Co(F(Z'); )}

“

where Xy denotes samples generated using SGLD (Equation and dist(-) is a generic term for a
distance metric. Our default choice for dist(-) is the L1 Norm, or Manhattan distance, since it induces
sparsity.

The first two terms in Equation 4] correspond to the counterfactual search objective defined in Wachter
et al. [29] which merely penalises the distance of counterfactuals from their factual values. The
additional two penalties in ECCCo ensure that counterfactuals conform with the model’s generative
property and lead to minimally uncertain predictions, respectively. The hyperparameters A1, ..., A3
can be used to balance the different objectives: for example, we may choose to incur larger deviations
from the factual in favour of conformity with the model’s generative property by choosing lower
values of \; and relatively higher values of A\o. Figure [3|illustrates this balancing act for an example
involving synthetic data: vector fields indicate the direction of gradients with respect to the different
components our proposed objective function (Equation [)).

Wachter (y=0.5) Schut

Algorithm 1: Generating ECCCos (For more de-
tails, see Appendix [C)

Input: x,y*, My, fu A a, D,T, n,ns3, Ng
where Mp(x) # y*
Output: x’
1: Initialize z’ <+ f~1(x)
2: Generate buffer B of Nz conditional samples
Xg|y* using SGLD (Equation [2)
Run SCP for My using D
Initialize £ < 0
while not converged or t < T do
Xg,+ < rand(B, ng)
z 2 —nVL(2,y* %o A\, @)

[ele]sle/e o o0

A I A A s

Figure 3: [PLACEHOLDER] Vector t—t+1
fields indicating the direction of gradi- end while
ents with respect to the different com- 10: X' « f(2')

ponents of the ECCCo objective (Equa-
tionfd).

Factual

Figure 4: [SUBJECTO TO CHANGE] Original image (left) and ECCCos for turning an 8 (eight) into
a 3 (three) for different Black Boxes from left to right: Multi-Layer Perceptron (MLP), Ensemble of
MLPs, Joint Energy Model (JEM), Ensemble of JEMs.

The entire procedure for Generating ECCCos is described in Algorithm|I] For the sake of simplicity
and without loss of generality, we limit our attention to generating a single counterfactual x’ = f(z’)
where in contrast to Equation z' denotes a 1-dimensional array containing a single counterfactual
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state. That state is initialized by passing the factual x through the encoder f~! which in our case cor-
responds to a simple feature transformer, rather than the encoder part of VAE as in REVISE [9]. Next,
we generate a buffer of Ng conditional samples Xy|y™* using SGLD (Equation [2)) and conformalise
the model My through Split Conformal Prediction on training data D.

Finally, we search counterfactuals through gradient descent. Let £(z’, y*, X¢,,; A, @) denote our loss
function defined in Equation[d] Then in each iteration, we first randomly draw nz samples from
the buffer B before updating the counterfactual state z’' by moving in the negative direction of that
loss function. The search terminates once the convergence criterium is met or the maximum number
of iterations 7" has been exhausted. Note that the choice of convergence criterium has important
implications on the final counterfactual (for more detail on this see Appendix [C).

Figure ] presents ECCCos for the MNIST example from Section 2] for various black-box models of
increasing complexity from left to right: a simple Multi-Layer Perceptron (MLP); an Ensemble of
MLPs, each of the same architecture as the single MLP; a Joint Energy Model (JEM) based on the
same MLP architecture; and finally, an Ensemble of these JEMs. Since Deep Ensembles have an
improved capacity for predictive uncertainty quantification and JEMs are explicitly trained to learn
plausible representations of the input data, it is intuitive to see that the plausibility of counterfactuals
visibly improves from left to right. This provides some first anecdotal evidence that ECCCos achieve
plausibility while maintaining faithfulness to the Black Box.

4 Empirical Analysis

In this section, we bolster our anecdotal findings from the previous section through rigorous empirical
analysis. We first briefly describe our evaluation framework and data, before presenting and discussing
our results.

4.1 Evaluation Measures

Above we have defined plausibility (Definition[2.T)) and conformity (Definition[2.2)) for Counterfactual
Explanations. In this subsection, we introduce evaluation measures that facilitate a quantitative
evaluation of counterfactuals for these objectives.

Firstly, in order to assess the plausibility of counterfactuals we adapt the implausibility metric
proposed in Guidotti [8]. The authors propose to evaluate plausibility in terms of the distance of the
counterfactual x’ from its nearest neighbour in the target class y*: the smaller this distance, the more
plausible the counterfactual. Instead of focusing only on the nearest neighbour of x’, we suggest
computing the average over distances from multiple (possibly all) observed instances in the target
class. Formally, for a single counterfactual, we have:

. 1 .
impl = e Xy Z dist(x’, x) (5)

This measure is straightforward to compute and should be less sensitive to outliers in the target class
than the one based on the nearest neighbour. It also gives rise to a very similar evaluation measure for
conformity. We merely swap out the subsample of individuals in the target class for the empirical
distribution of generated conditional samples:

conf = ;* Z dist(x’, x) (6)

As noted by Guidotti [8]], these distance-based measures are simplistic and more complex alternative
measures may ultimately be more appropriate for the task. For example, we considered using statisti-
cal divergence measures instead. This would involve generating not one but many counterfactuals and
comparing the generated empirical distribution to the target distributions in Definitions and
While this approach is potentially more rigorous, generating enough counterfactuals is not always
practical.
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Table 1: Results for synthetic datasets. Standard deviation in parentheses.

Moons
Model Generator Non-conformity | Implausibility |
ECCCo 0.10 (0.03) 1.01 (0.24)
JEM REVISE 0.64 (0.34) 1.12 (0.51)
Schut 0.54 (0.38) 1.10 (0.37)
Wachter 0.74 (0.36) 1.38 (0.38)
ECCCo 0.20 (0.36) 1.45 (0.86)
MLP REVISE 0.38 (0.39) 1.10 (0.51)
Schut 0.73 (0.53) 1.26 (0.67)
Wachter 0.78 (0.52) 1.33 (0.60)

Table 2: Results for real-world datasets. Standard deviation in parentheses.

Model Generator

California Housing

GMSC

MNIST

Non-conformity |

Implausibility |  Non-conformity |

Implausibility |  Non-conformity |

Implausibility |

ECCCo 4.31(0.58) 537 (0.46) 3.14(0.31) 534(127) 99.01 (12.50) 120.76 (9.23)
JEM REVISE 5.01 (0.59) 5.33(0.58) 2.86 (0.17) 3.99 (0.44) 101.01 (15.20) 115.14 (20.10)
Schut 5.23(0.74) 6.50 (0.84) 3.43(0.53) 529 (1.27) 179.39 (29.17) 19001 (34.50)
Wachter 5.29 (0.52) 6.48 (0.70) 3.40 (0.38) 5.50 (1.35) 197.35 (32.89) 199.65 (35.60)

ECCCo 3.51(0.62) 5.33(0.53) 3.01 (0.76) 6.09 (1.01) 85.30 (14.79) 102.27 (4.72)
JEM Ensemble  REVISE 433 (0.38) 473 (0.22) 2.21(0.72) 453 (0.86) 119.87 (1620)  110.30 (12.11)
Schut 5.81(0.61) 6.53 (0.81) 3.10 (0.75) 6.06 (1.01) 171.19 (22.13) 178.31 (24.94)
Wachter 5.02 (0.85) 6.07 (1.04) 2.89 (0.76) 5.87 (0.88) 222.18 (23.50) 212.40 (27.99)
ECCCo 145.15 (28.83) 8.84 (1.01) 38.28 (3.68) 5.14(0.87) 416.59 (14.69) 204.16 (24.95)

MLP REVISE  119.53 (11.72) 5.28 (0.97) 4031 (3.38) 3.94 (0.86) 444.47(1001) 9553 (13.46)
Schut 151.20 (28.78) 7.04 (1.27) 35.73 (6.30) 5.12(0.85) 477.40 (17.45) 197.85 (25.43)
Wachter  131.81 (40.19) 6.81(1.22) 36.70 (14.79) 5.8 (0.87) 444.82 (1320)  198.27 (24.73)
ECCCo 12555 (22.76) 10.06 (1.40) 3432 (4.47) 5.09 (1.20) 397.02(7.99) 21401 (21.17)

MLP Ensemble REVISE 151.49 (20.56) 6.17 (1.83) 35.26 (4.48) 4.15 (0.72) 430.37 (10.51) 95.87 (7.51)
Schut 106.34 (30.66) 8.49 (2.22) 30.44 (6.35) 5.15(1.18) 471.16(7.93)  203.43 (19.51)
Wachter 152.35 (21.75) 7.68 (1.89) 36.15 (8.28) 5.03 (0.78) 421.75 (9.75) 206.04 (20.35)

4.2 Data

4.3 Results

See Table[2]

5 Discussion

5.1 Key Insights

Consistent with the findings in Schut et al. [23]], we have demonstrated that predictive uncertainty
estimates can be leveraged to generate plausible counterfactuals. Interestingly, Schut et al. [23]]
point out that this finding — as intuitive as it is — may be linked to a positive connection between
the generative task and predictive uncertainty quantification. In particular, Grathwohl et al. 7]
demonstrate that their proposed method for integrating the generative objective in training yields
models that have improved predictive uncertainty quantification. Since neither Schut et al. [23] nor
we have employed any surrogate generative models, our findings seem to indicate that the positive
connection found in Grathwohl et al. [[7] is bidirectional.

5.2 Limitations

* BatchNorm does not seem compatible with JEM

* Coverage and temperature impacts CCE in somewhat unpredictable ways

* It seems that models that are not explicitly trained for generative task, still learn it implictly

* Batch size seems to impact quality of generated samples (at inference, but not so much
during JEM training)
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» ECCCo is sensitive to optimizer (Adam works well), learning rate and distance metric (11
currently only one that works)

SGLD takes time
REVISE has benefit of lower dimensional space

» For MNIST it seems that ECCCo is better at reducing pixel values than increasing them
(better at erasing than writing)

¢ JEMSs are more difficult to train

6 Conclusion
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Appendices

A JEM

While x 7 is only guaranteed to distribute as py(x|y*) if € — 0 and J — oo, the bias introduced for
a small finite € is negligible in practice [18, [7]]. While Grathwohl et al. [7] use Equation [2| during
training, we are interested in applying the conditional sampling procedure in a post-hoc fashion to
any standard discriminative model.
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B Conformal Prediction

The fact that conformal classifiers produce set-valued predictions introduces a challenge: it is not
immediately obvious how to use such classifiers in the context of gradient-based counterfactual
search. Put differently, it is not clear how to use prediction sets in Equation[I} Fortunately, Stutz et al.
[25]] have recently proposed a framework for Conformal Training that also hinges on differentiability.
Specifically, they show how Stochastic Gradient Descent can be used to train classifiers not only
for the discriminative task but also for additional objectives related to Conformal Prediction. One
such objective is efficiency: for a given target error rate «, the efficiency of a conformal classifier
improves as its average prediction set size decreases. To this end, the authors introduce a smooth set
size penalty defined in Equation[3]in the body of this paper

Formally, it is defined as Cy y (x;; ) := o ((s(xi,y) — a)T ') fory € Y, where o is the sigmoid
function and 7' is a hyper-parameter used for temperature scaling [25].

Intuitively, CP works under the premise of turning heuristic notions of uncertainty into rigorous
uncertainty estimates by repeatedly sifting through the data. It can be used to generate prediction
intervals for regression models and prediction sets for classification models [[1]. Since the literature
on CE and AR is typically concerned with classification problems, we focus on the latter. A particular
variant of CP called Split Conformal Prediction (SCP) is well-suited for our purposes, because it
imposes only minimal restrictions on model training.

Specifically, SCP involves splitting the data D,, = {(x;,¥:) }i=1,... . into a proper training set Dyin
and a calibration set D.,. The former is used to train the classifier in any conventional fashion.
The latter is then used to compute so-called nonconformity scores: S = {s(x;,y;) }iep,, Where
s:(X,Y) — Risreferred to as score function. In the context of classification, a common choice for
the score function is just s; = 1 — Mpy(x;)[y;], that is one minus the softmax output corresponding
to the observed label y; [3].

Finally, classification sets are formed as follows,

Co(xi;a) = {y : s(x;,¥) < G} @)

where § denotes the (1 — «)-quantile of S and « is a predetermined error rate. As the size of the
calibration set increases, the probability that the classification set C'(Xs) for a newly arrived sample
Xest does not cover the true test label y.s: approaches o [3]].

Observe from Equation [/| that Conformal Prediction works on an instance-level basis, much like
Counterfactual Explanations are local. The prediction set for an individual instance x; depends only
on the characteristics of that sample and the specified error rate. Intuitively, the set is more likely
to include multiple labels for samples that are difficult to classify, so the set size is indicative of
predictive uncertainty. To see why this effect is exacerbated by small choices for o consider the case
of a = 0, which requires that the true label is covered by the prediction set with probability equal to
1.

C Conformal Prediction
A Submission of papers to NeurIPS 2023

Please read the instructions below carefully and follow them faithfully.

A Style

Papers to be submitted to NeurIPS 2023 must be prepared according to the instructions presented
here. Papers may only be up to nine pages long, including figures. Additional pages containing only
acknowledgments and references are allowed. Papers that exceed the page limit will not be reviewed,
or in any other way considered for presentation at the conference.

The margins in 2023 are the same as those in previous years.
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Authors are required to use the NeurIPS I&TEX style files obtainable at the NeurIPS website as
indicated below. Please make sure you use the current files and not previous versions. Tweaking the
style files may be grounds for rejection.

B Retrieval of style files
The style files for NeurIPS and other conference information are available on the website at
http://www.neurips.cc/

The file neurips_2023.pdf contains these instructions and illustrates the various formatting re-
quirements your NeurIPS paper must satisfy.

The only supported style file for NeurIPS 2023 is neurips_2023.sty, rewritten for IATEX 2¢.
Previous style files for I’TgX 2.09, Microsoft Word, and RTF are no longer supported!

The I4TEX style file contains three optional arguments: final, which creates a camera-ready copy,
preprint, which creates a preprint for submission to, e.g., arXiv, and nonatbib, which will not
load the natbib package for you in case of package clash.

Preprint option If you wish to post a preprint of your work online, e.g., on arXiv, using the
NeurlIPS style, please use the preprint option. This will create a nonanonymized version of your
work with the text “Preprint. Work in progress.” in the footer. This version may be distributed as you
see fit, as long as you do not say which conference it was submitted to. Please do not use the final
option, which should only be used for papers accepted to NeurIPS.

At submission time, please omit the final and preprint options. This will anonymize your
submission and add line numbers to aid review. Please do not refer to these line numbers in your
paper as they will be removed during generation of camera-ready copies.

The file neurips_2023.tex may be used as a “shell” for writing your paper. All you have to do is
replace the author, title, abstract, and text of the paper with your own.

The formatting instructions contained in these style files are summarized in Sections [B] [C| and [D]
below.

B General formatting instructions

The text must be confined within a rectangle 5.5 inches (33 picas) wide and 9 inches (54 picas) long.
The left margin is 1.5 inch (9 picas). Use 10 point type with a vertical spacing (leading) of 11 points.
Times New Roman is the preferred typeface throughout, and will be selected for you by default.
Paragraphs are separated by /2 line space (5.5 points), with no indentation.

The paper title should be 17 point, initial caps/lower case, bold, centered between two horizontal
rules. The top rule should be 4 points thick and the bottom rule should be 1 point thick. Allow ¥4 inch
space above and below the title to rules. All pages should start at 1 inch (6 picas) from the top of the

page.

For the final version, authors’ names are set in boldface, and each name is centered above the
corresponding address. The lead author’s name is to be listed first (left-most), and the co-authors’
names (if different address) are set to follow. If there is only one co-author, list both author and
co-author side by side.

Please pay special attention to the instructions in Section [D|regarding figures, tables, acknowledg-
ments, and references.

C Headings: first level

All headings should be lower case (except for first word and proper nouns), flush left, and bold.

First-level headings should be in 12-point type.
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A Headings: second level

Second-level headings should be in 10-point type.

A.1 Headings: third level

Third-level headings should be in 10-point type.

Paragraphs There is also a \paragraph command available, which sets the heading in bold, flush
left, and inline with the text, with the heading followed by 1 em of space.

D Citations, figures, tables, references

These instructions apply to everyone.

A Citations within the text
The natbib package will be loaded for you by default. Citations may be author/year or numeric, as

long as you maintain internal consistency. As to the format of the references themselves, any style is
acceptable as long as it is used consistently.

The documentation for natbib may be found at
http://mirrors.ctan.org/macros/latex/contrib/natbib/natnotes.pdf

Of note is the command \citet, which produces citations appropriate for use in inline text. For
example,

\citet{hasselmo} investigated\dots
produces
Hasselmo, et al. (1995) investigated. ..

If you wish to load the natbib package with options, you may add the following before loading the
neurips_2023 package:

\PassOptionsToPackage{options}{natbib}

If natbib clashes with another package you load, you can add the optional argument nonatbib
when loading the style file:

\usepackage [nonatbib] {neurips_2023}

As submission is double blind, refer to your own published work in the third person. That is, use “In
the previous work of Jones et al. [4],” not “In our previous work [4].” If you cite your other papers
that are not widely available (e.g., a journal paper under review), use anonymous author names in the
citation, e.g., an author of the form “A. Anonymous” and include a copy of the anonymized paper in
the supplementary material.

B Footnotes

Footnotes should be used sparingly. If you do require a footnote, indicate footnotes with a numbe
in the text. Place the footnotes at the bottom of the page on which they appear. Precede the footnote
with a horizontal rule of 2 inches (12 picas).

Note that footnotes are properly typeset after punctuation marksE]
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Figure 5: Sample figure caption.

Table 3: Sample table title

Part
Name Description Size (pm)
Dendrite  Input terminal ~100
Axon Output terminal  ~10
Soma Cell body up to 10°

C Figures

All artwork must be neat, clean, and legible. Lines should be dark enough for purposes of reproduction.
The figure number and caption always appear after the figure. Place one line space before the figure
caption and one line space after the figure. The figure caption should be lower case (except for first
word and proper nouns); figures are numbered consecutively.

You may use color figures. However, it is best for the figure captions and the paper body to be legible
if the paper is printed in either black/white or in color.

D Tables

All tables must be centered, neat, clean and legible. The table number and title always appear before
the table. See Table[3l

Place one line space before the table title, one line space after the table title, and one line space after
the table. The table title must be lower case (except for first word and proper nouns); tables are
numbered consecutively.

Note that publication-quality tables do not contain vertical rules. We strongly suggest the use of the
booktabs package, which allows for typesetting high-quality, professional tables:

https://www.ctan.org/pkg/booktabs

This package was used to typeset Table[3]

E Math

Note that display math in bare TeX commands will not create correct line numbers for sub-
mission. Please use LaTeX (or AMSTeX) commands for unnumbered display math. (You
really shouldn’t be using $$ anyway; see https://tex.stackexchange.com/questions/
503/why-is-preferable-to and https://tex.stackexchange.com/questions/40492/
what-are-the-differences-between-align-equation-and-displaymath|for more infor-
mation.)

!Sample of the first footnote.
2As in this example.
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F Final instructions

Do not change any aspects of the formatting parameters in the style files. In particular, do not modify
the width or length of the rectangle the text should fit into, and do not change font sizes (except
perhaps in the References section; see below). Please note that pages should be numbered.

E Preparing PDF files

Please prepare submission files with paper size “US Letter,” and not, for example, “A4.”

Fonts were the main cause of problems in the past years. Your PDF file must only contain Type 1 or
Embedded TrueType fonts. Here are a few instructions to achieve this.

* You should directly generate PDF files using pdflatex.

* You can check which fonts a PDF files uses. In Acrobat Reader, select the menu
Files>Document Properties>Fonts and select Show All Fonts. You can also use the program
pdffonts which comes with xpdf and is available out-of-the-box on most Linux machines.

» xfig "patterned" shapes are implemented with bitmap fonts. Use "solid" shapes instead.

* The \bbold package almost always uses bitmap fonts. You should use the equivalent AMS
Fonts:

\usepackage{amsfonts}

followed by, e.g., \mathbb{R}, \mathbb{N}, or \mathbb{C} for R, N or C. You can also
use the following workaround for reals, natural and complex:

\newcommand{\RR}{I\!\!R} %real numbers
\newcommand{\Nat}{I\!'\!N} %natural numbers
\newcommand{\CCHI\!\!\!\!C} Ycomplex numbers

Note that amsfonts is automatically loaded by the amssymb package.

If your file contains type 3 fonts or non embedded TrueType fonts, we will ask you to fix it.

A Margins in BTgX

Most of the margin problems come from figures positioned by hand using \special or other
commands. We suggest using the command \includegraphics from the graphicx package.
Always specify the figure width as a multiple of the line width as in the example below:

\usepackage [pdftex] {graphicx} ...
\includegraphics [width=0.8\1inewidth] {myfile.pdf}

See Section 4.4 in the graphics bundle documentation (http://mirrors.ctan.org/macros/
latex/required/graphics/grfguide.pdf)

A number of width problems arise when I&IEX cannot properly hyphenate a line. Please give LaTeX
hyphenation hints using the \- command when necessary.

F Supplementary Material

Authors may wish to optionally include extra information (complete proofs, additional experiments
and plots) in the appendix. All such materials should be part of the supplemental material (submitted
separately) and should NOT be included in the main submission.

References

References follow the acknowledgments in the camera-ready paper. Use unnumbered first-level
heading for the references. Any choice of citation style is acceptable as long as you are consistent. It
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is permissible to reduce the font size to small (9 point) when listing the references. Note that the
Reference section does not count towards the page limit.
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