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Abstract

Counterfactual Explanations offer an intuitive and straightforward way to explain1

black-box models and offer Algorithmic Recourse to individuals. To address the2

need for plausible explanations, existing work has primarily relied on surrogate3

models to learn how the input data is distributed. This effectively reallocates4

the task of learning realistic representations of the data from the model itself to5

the surrogate. Consequently, the generated explanations may seem plausible to6

humans but need not necessarily describe the behaviour of the black-box model7

faithfully. We formalise this notion of faithfulness through the introduction of a8

tailored evaluation metric and propose a novel algorithmic framework for gener-9

ating Energy-Constrained Conformal Counterfactuals that are only as plausible10

as the model permits. Through extensive empirical studies involving multiple11

synthetic and real-world datasets, we demonstrate that ECCCos reconcile the12

need for plausibility and faithfulness. In particular, we show that it is possible13

to achieve state-of-the-art plausibility without the need for surrogate models. To14

do so, our framework relies solely on properties defining the black-box model15

itself by leveraging recent advances in energy-based modelling and conformal16

inference. While this work is limited in scope and our proposed methodology is17

only readily applicable to models with gradient access, we anticipate that ECCCo18

can serve as a baseline for future research directed at providing plausible but faith-19

ful Counterfactual Explanations. By highlighting the need for faithfulness in the20

context of Counterfactual Explanations, we believe that in the short term, our work21

will enable researchers and practitioners to better distinguish trustworthy from22

unreliable models.23

1 Introduction24

Counterfactual Explanations provide a powerful, flexible and intuitive way to not only explain black-25

box models but also enable affected individuals to challenge them through the means of Algorithmic26

Recourse. Instead of opening the black box, Counterfactual Explanations work under the premise27

of strategically perturbing model inputs to understand model behaviour [31]. Intuitively speaking,28

we generate explanations in this context by asking simple what-if questions of the following nature:29

‘Our credit risk model currently predicts that this individual’s credit profile is too risky to offer them a30

loan. What if they reduced their monthly expenditures by 10%? Will our model then predict that the31

individual is credit-worthy’?32

This is typically implemented by defining a target outcome y+ ∈ Y for some individual x ∈ X = RD33

described by D attributes, for which the model Mθ : X 7→ Y initially predicts a different outcome:34
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Mθ(x) ̸= y+. Counterfactuals are then searched by minimizing a loss function that compares the35

predicted model output to the target outcome: yloss(Mθ(x),y
+). Since Counterfactual Explanations36

(CE) work directly with the black-box model, valid counterfactuals always have full local fidelity by37

construction [19]. Fidelity is defined as the degree to which explanations approximate the predictions38

of the black-box model. This is arguably one of the most important evaluation metrics for model39

explanations, since any explanation that explains a prediction not actually made by the model is40

useless [18].41

In situations where full fidelity is a requirement, CE therefore offers a more appropriate solution42

to Explainable Artificial Intelligence (XAI) than other popular approaches like LIME [24] and43

SHAP [14], which involve local surrogate models. But even full fidelity is not a sufficient condition44

for ensuring that an explanation faithfully describes the behaviour of a model. That is because45

multiple very distinct explanations can all lead to the same model prediction, especially when dealing46

with heavily parameterized models like deep neural networks which are typically underspecified by47

the available data [32].48

In the context of CE, the idea that no two explanations are the same arises almost naturally. A key49

focus in the literature has therefore been to identify those explanations and algorithmic recourses50

that are deemed most appropriate based on a myriad of desiderata such as sparsity, actionability51

and plausibility. In this work, we draw closer attention to the insufficiency of model fidelity as an52

evaluation metric for the faithfulness of counterfactual explanations. Our key contributions are as53

follows: firstly, we introduce a new notion of faithfulness that is suitable for counterfactuals and54

propose a novel evaluation metric that draws inspiration from recent advances in Energy-Based55

Modelling (EBM); secondly, we a novel algorithmic approach for generating Energy-Constrained56

Conformal Counterfactuals (ECCCo) that explicitly address the need for faithfulness; finally, we57

provide illustrative examples and extensive empirical evidence demonstrating that ECCCos faithfully58

explain model behaviour without sacrificing existing desidarata like plausibility and sparsity.59

2 Background and Related Work60

In this section, we provide some background on Counterfactual Explanations and our motivation for61

this work. To start, we briefly introduce the methodology underlying most state-of-the-art (SOTA)62

counterfactual generators.63

2.1 Gradient-Based Counterfactual Search64

While Counterfactual Explanations can be generated for arbitrary regression models [26], existing65

work has primarily focused on classification problems. Let Y = (0, 1)K denote the one-hot-encoded66

output domain with K classes. Then most SOTA counterfactual generators rely on gradient descent67

to optimize different flavours of the following counterfactual search objective:68

Z′ = arg min
Z′∈ZL

{
yloss(Mθ(f(Z

′)),y+) + λcost(f(Z′))
}

(1)

Here yloss denotes the primary loss function already introduced above and cost is either a single69

penalty or a collection of penalties that are used to impose constraints through regularization. Equa-70

tion 1 restates the baseline approach to gradient-based counterfactual search proposed by Wachter71

et al. [31] in general form where Z′ = {zl}L denotes an L-dimensional array of counterfactual72

states [2]. This is to explicitly account for the multiplicity of explanations and the fact that we may73

choose to generate multiple counterfactuals and traverse a latent encoding Z of the feature space X74

where we denote f−1 : X 7→ Z . Encodings may involve simple feature transformations or more75

advanced techniques involving generative models, as we will discuss further below. The baseline76

approach, which we will simply refer to as Wachter [31], searches a single counterfactual directly in77

the feature space and penalises its distance between the original factual.78

Solutions to Equation 1 are considered valid as soon as the predicted label matches the target label. A79

stripped-down counterfactual explanation is therefore little different from an adversarial example. In80

Figure 1, for example, we have applied Wachter to MNIST data (centre panel) where the underlying81

classifier Mθ is a simple Multi-Layer Perceptron (MLP) with above 90 percent test accuracy. For the82

generated counterfactual x′ the model predicts the target label with high confidence (centre panel83
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in Figure 1). The explanation is valid by definition, even though it looks a lot like an Adversarial84

Example [6]. Schut et al. [25] make the connection between Adversarial Examples and Counterfactual85

Explanations explicit and propose using a Jacobian-Based Saliency Map Attack (JSMA) to solve86

Equation 1. They demonstrate that this approach yields realistic and sparse counterfactuals for87

Bayesian, adversarially robust classifiers. Applying their approach to our simple MNIST classifier88

does not yield a realistic counterfactual but this one, too, is valid (right panel in Figure 1).89

2.2 From Adversial Examples to Plausible Explanations90

The crucial difference between Adversarial Examples (AE) and Counterfactual Explanations is one of91

intent. While an AE is intended to go unnoticed, a CE should have certain desirable properties. The92

literature has made this explicit by introducing various so-called desiderata that counterfactuals should93

meet in order to properly serve both AI practitioners and individuals affected by AI decision-making94

systems. The list of desiderate includes but is not limited to the following: sparsity, proximity [31],95

actionability [29], diversity [19], plausibility [9, 23, 25], robustness [28, 22, 2] and causality [12].96

Researchers have come up with various ways to meet these desiderata, which have been extensively97

surveyed and evaluated in various studies [30, 11, 21, 4, 8]. Perhaps unsurprisingly, the different98

desiderata are often positively correlated. For example, Artelt et al. [4] find that plausibility typically99

also leads to improved robustness. Similarly, plausibility has also been connected to causality in the100

sense that plausible counterfactuals respect causal relationships [15].101

2.2.1 Plausibility through Surrogates102

Arguably, the plausibility of counterfactuals has been among the primary concerns and some have103

focused explicitly on this goal. Joshi et al. [9], for example, were among the first to suggest that104

instead of searching counterfactuals in the feature spaceX , we can instead traverse a latent embedding105

Z (Equation 1) that implicitly codifies the data generating process (DGP) of x ∼ X . To learn the106

latent embedding, they introduce a surrogate model. In particular, they propose to use the latent107

embedding of a Variational Autoencoder (VAE) trained to generate samples x∗ ← G(z) where G108

denotes the decoder part of the VAE. Provided the surrogate model is well-trained, their proposed109

approach —REVISE— can yield compelling counterfactual explanations like the one in the centre110

panel of Figure 2.111

Others have proposed similar approaches. Dombrowski et al. [5] traverse the base space of a112

normalizing flow to solve Equation 1, essentially relying on a different surrogate model for the113

generative task. Poyiadzi et al. [23] use density estimators (p̂ : X 7→ [0, 1]) to constrain the114

counterfactuals to dense regions in the feature space. Karimi et al. [12] argue that counterfactuals115

should comply with the causal model that generates the data. All of these different approaches share116

a common goal: ensuring that the generated counterfactuals comply with the true and unobserved117

DGP. To summarize this broad objective, we propose the following definition:118

Definition 2.1 (Plausible Counterfactuals). Let X|y+ denote the true conditional distribution of119

samples in the target class y+. Then for x′ to be considered a plausible counterfactual, we need:120

x′ ∼ X|y+.121

Surrogate models offer an obvious solution to achieve this objective. Unfortunately, surrogates also122

introduce a dependency: the generated explanations no longer depend exclusively on the black-box123

model itself, but also on the surrogate model. This is not necessarily problematic if the primary124

objective is not to explain the behaviour of the model but to offer recourse to individuals affected by125

it. It may become problematic even in this context if the dependency turns into a vulnerability. To126

illustrate this point, we have used REVISE [9] with an underfitted VAE to generate the counterfactual127

in the right panel of Figure 2: in this case, the decoder step of the VAE fails to yield plausible values128

({x′ ← G(z)} ̸∼ X |y+) and hence the counterfactual search in the learned latent space is doomed.129

2.2.2 Plausibility through Minimal Predictive Uncertainty130

Schut et al. [25] show that to meet the plausibility objective we need not explicitly model the input131

distribution. Pointing to the undesirable engineering overhead induced by surrogate models, they132

propose that we rely on the implicit minimisation of predictive uncertainty instead. Their proposed133

methodology solves Equation 1 by greedily applying JSMA in the feature space with standard cross-134

entropy loss and no penalty at all. They demonstrate theoretically and empirically that their approach135
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Figure 1: Explanations or Adversarial Ex-
amples? Counterfactuals for turning a 9
(nine) into a 7 (seven): original image (left);
counterfactual produced using Wachter et al.
[31] (centre); and a counterfactual produced
using the approach introduced by [25] that
uses Jacobian-Based Saliency Map Attacks to
solve Equation 1.

Figure 2: Using surrogates can improve plau-
sibility, but also increases vulnerability. Coun-
terfactuals for turning an 9 (nine) into a 7
(seven): original image (left); counterfac-
tual produced using REVISE [9] with a well-
specified surrogate (centre); and a counter-
factual produced using REVISE [9] with a
poorly specified surrogate (right).

yields counterfactuals for which the model Mθ predicts the target label y+ with high confidence.136

Provided the model is well-specified, these counterfactuals are plausible. Unfortunately, this idea137

hinges on the assumption that the black-box model provides well-calibrated predictive uncertainty138

estimates.139

2.3 From Fidelity to Model Faithfulness140

Above we explained that since Counterfactual Explanations work directly with the Black Box model,141

the fidelity of explanations as we defined it earlier is not a concern. This may explain why research has142

primarily focused on other desiderata, most notably plausibility (Definition 2.1). Enquiring about the143

plausibility of a counterfactual essentially boils down to the following question: ‘Is this counterfactual144

consistent with the underlying data’? We posit a related, slightly more nuanced question: ‘Is this145

counterfactual consistent with what the model has learned about the underlying data’? We will argue146

that fidelity is not a sufficient evaluation metric to answer this question and propose a novel way to147

assess if Counterfactual Explanations conform with model behaviour.148

The word fidelity stems from the Latin word ‘fidelis’, which means ‘faithful, loyal, trustworthy’ [17].149

As we explained in Section 2, model explanations are generally considered faithful if their corre-150

sponding predictions coincide with the predictions made by the model itself. Since this definition151

of faithfulness is not useful in the context of Counterfactual Explanations, we propose an adapted152

version:153

Definition 2.2 (Faithful Counterfactuals). Let Xθ|y+ = pθ(Xy+) denote the conditional distribution154

of x in the target class y+, where θ denotes the parameters of model Mθ. Then for x′ to be considered155

a conformal counterfactual, we need: x′ ∼ Xθ|y+.156

In words, conformal counterfactuals conform with what the predictive model has learned about157

the input data x. Since this definition works with distributional properties, it explicitly accounts158

for the multiplicity of explanations we discussed earlier. To assess counterfactuals with respect to159

Definition 2.2, we need to be able to quantify the posterior conditional distribution pθ(x|y+). This is160

very much at the core of our proposed methodological framework, which reconciles the notions of161

plausibility and model faithfulness and which we will introduce next.162

3 Methodological Framework163

The primary objective of this work has been to develop a methodology for generating maximally164

plausible counterfactuals under minimal intervention. Our proposed framework is based on the165

premise that explanations should be plausible but not plausible at all costs. Energy-Constrained166

Conformal Counterfactuals (ECCCo) achieve this goal in two ways: firstly, they rely on the Black167

Box itself for the generative task; and, secondly, they involve an approach to predictive uncertainty168

quantification that is model-agnostic.169

4



3.1 Quantifying the Model’s Generative Property170

Recent work by Grathwohl et al. [7] on Energy Based Models (EBM) has pointed out that there is a171

‘generative model hidden within every standard discriminative model’. The authors show that we can172

draw samples from the posterior conditional distribution pθ(x|y) using Stochastic Gradient Langevin173

Dynamics (SGLD). The authors use this insight to train classifiers jointly for the discriminative task174

using standard cross-entropy and the generative task using SGLD. They demonstrate empirically that175

among other things this improves predictive uncertainty quantification for discriminative models.176

Our findings in this work suggest that Joint Energy Models (JEM) also tend to yield more plausible177

Counterfactual Explanations. Based on the definition of plausible counterfactuals (Definition 2.1)178

this is not surprising.179

Crucially for our purpose, one can apply their proposed sampling strategy during inference to180

essentially any standard discriminative model. Even models that are not explicitly trained for the joint181

objective learn about the distribution of inputs X by learning to make conditional predictions about182

the output y. We can leverage this observation to quantify the generative property of the Black Box183

model itself. In particular, note that if we fix y to our target value y+, we can sample from pθ(x|y+)184

using SGLD as follows,185

xj+1 ← xj −
ϵ2

2
E(xj |y+) + ϵrj , j = 1, ..., J (2)

where rj ∼ N (0, I) is the stochastic term and the step-size ϵ is typically polynomially decayed. The186

term E(xj |y+) denotes the energy function where we use E(xj |y+) = −Mθ(xj)[y
+], that is the187

negative logit corresponding to the target class label y+. Generating multiple samples in this manner188

yields an empirical distribution X̂θ,y+ that we use in our search for plausible counterfactuals, as189

discussed in more detail below. Appendix A provides additional implementation details for any tasks190

related to energy-based modelling.191

3.2 Quantifying the Model’s Predictive Uncertainty192

To quantify the model’s predictive uncertainty we use Conformal Prediction (CP), an approach that193

has recently gained popularity in the Machine Learning community [3, 16]. Crucially for our intended194

application, CP is model-agnostic and can be applied during inference without placing any restrictions195

on model training. Intuitively, CP works under the premise of turning heuristic notions of uncertainty196

into rigorous uncertainty estimates by repeatedly sifting through the training data or a dedicated197

calibration dataset. Conformal classifiers produce prediction sets for individual inputs that include all198

output labels that can be reasonably attributed to the input. These sets tend to be larger for inputs that199

do not conform with the training data and are therefore characterized by high predictive uncertainty.200

In order to generate counterfactuals that are associated with low predictive uncertainty, we use a201

smooth set size penalty introduced by Stutz et al. [27] in the context of conformal training:202

Ω(Cθ(x;α)) = max

0,
∑
y∈Y

Cθ,y(xi;α)− κ

 (3)

Here, κ ∈ {0, 1} is a hyper-parameter and Cθ,y(xi;α) can be interpreted as the probability of label203

y being included in the prediction set.204

In order to compute this penalty for any black-box model we merely need to perform a single205

calibration pass through a holdout set Dcal. Arguably, data is typically abundant and in most206

applications, practitioners tend to hold out a test data set anyway. Consequently, CP removes the207

restriction on the family of predictive models, at the small cost of reserving a subset of the available208

data for calibration. This particular case of conformal prediction is referred to as Split Conformal209

Prediction (SCP) as it involves splitting the training data into a proper training dataset and a calibration210

dataset. Details concerning our implementation of Conformal Prediction can be found in Appendix B.211
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3.3 Energy-Constrained Conformal Counterfactuals (ECCCo)212

Our framework for generating ECCCos combines the ideas introduced in the previous two subsections.213

Formally, we extend Equation 1 as follows,214

Z′ = arg min
Z′∈ZM

{yloss(Mθ(f(Z
′)),y+) + λ1dist(f(Z′),x)

+ λ2dist(f(Z′), x̂θ) + λ3Ω(Cθ(f(Z
′);α))}

(4)

where x̂θ denotes samples generated using SGLD (Equation 2) and dist(·) is a generic term for a215

distance metric. Our default choice for dist(·) is the L1 Norm, or Manhattan distance, since it induces216

sparsity.217

The first two terms in Equation 4 correspond to the counterfactual search objective defined in Wachter218

et al. [31] which merely penalises the distance of counterfactuals from their factual values. The219

additional two penalties in ECCCo ensure that counterfactuals conform with the model’s generative220

property and lead to minimally uncertain predictions, respectively. The hyperparameters λ1, ..., λ3221

can be used to balance the different objectives: for example, we may choose to incur larger deviations222

from the factual in favour of faithfulness with the model’s generative property by choosing lower223

values of λ1 and relatively higher values of λ2. Figure 3 illustrates this balancing act for an example224

involving synthetic data: vector fields indicate the direction of gradients with respect to the different225

components our proposed objective function (Equation 4).226

Figure 3: [PLACEHOLDER; may swap
for:] Vector fields indicating the direc-
tion of gradients with respect to the dif-
ferent components of the ECCCo objec-
tive (Equation 4).

Algorithm 1: Generating ECCCos (For more de-
tails, see Appendix C)

Input: x,y+,Mθ, f,Λ, α,D, T, η, nB, NB
where Mθ(x) ̸= y+

Output: x′

1: Initialize z′ ← f−1(x)
2: Generate buffer B of NB conditional samples

x̂θ|y+ using SGLD (Equation 2)
3: Run SCP for Mθ using D
4: Initialize t← 0
5: while not converged or t < T do
6: x̂θ,t ← rand(B, nB)
7: z′ ← z′ − η∇z′L(z′,y+, x̂θ,t; Λ, α)
8: t← t+ 1
9: end while

10: x′ ← f(z′)

227

Figure 4: Original image (left) and ECCCos for turning a 9 (nine) into a 7 (seven) for different
black-box models from left to right: Multi-Layer Perceptron (MLP), Ensemble of MLPs, Joint Energy
Model (JEM), Ensemble of JEMs.

228

The entire procedure for Generating ECCCos is described in Algorithm 1. For the sake of simplicity229

and without loss of generality, we limit our attention to generating a single counterfactual x′ = f(z′)230

where in contrast to Equation 4 z′ denotes a 1-dimensional array containing a single counterfactual231

6



state. That state is initialized by passing the factual x through the encoder f−1 which in our case cor-232

responds to a simple feature transformer, rather than the encoder part of VAE as in REVISE [9]. Next,233

we generate a buffer of NB conditional samples x̂θ|y+ using SGLD (Equation 2) and conformalise234

the model Mθ through Split Conformal Prediction on training data D.235

Finally, we search counterfactuals through gradient descent. Let L(z′,y+, x̂θ,t; Λ, α) denote our loss236

function defined in Equation 4. Then in each iteration, we first randomly draw nB samples from237

the buffer B before updating the counterfactual state z′ by moving in the negative direction of that238

loss function. The search terminates once the convergence criterium is met or the maximum number239

of iterations T has been exhausted. Note that the choice of convergence criterium has important240

implications on the final counterfactual (for more detail on this see Appendix C).241

Figure 4 presents ECCCos for the MNIST example from Section 2 for various black-box models of242

increasing complexity from left to right: a simple Multi-Layer Perceptron (MLP); an Ensemble of243

MLPs, each of the same architecture as the single MLP; a Joint Energy Model (JEM) based on the244

same MLP architecture; and finally, an Ensemble of these JEMs. Since Deep Ensembles have an245

improved capacity for predictive uncertainty quantification and JEMs are explicitly trained to learn246

plausible representations of the input data, it is intuitive to see that the plausibility of counterfactuals247

visibly improves from left to right. This provides some first anecdotal evidence that ECCCos achieve248

plausibility while maintaining faithfulness to the Black Box.249

4 Empirical Analysis250

In this section, we present our empirical analysis and findings. Our goal is to shed line on the251

following questions:252

Research Question 4.1 (Feasibility). Is it feasible to generate plausible Counterfactual Explanations253

through ECCCo without relying on surrogate models?254

Research Question 4.2 (Drivers). Subject to feasibility, what drives the performance of ECCCo?255

Is it sufficient to rely on energy-based modelling to quantify the model’s generative property? Is it256

sufficient to rely on conformal prediction to quantify the model’s uncertainty?257

In the following, we first briefly describe our evaluation framework and experimental setup, before258

presenting and discussing our results.259

4.1 Key Evaluation Metrics260

Above we have defined plausibility (Definition 2.1) and faithfulness (Definition 2.2) for Counterfactual261

Explanations. These are the main criteria we use to evaluate counterfactuals in this study. In order to262

quantify the plausibility of counterfactuals we use a slightly adapted version of the implausibility263

metric proposed in Guidotti [8]. Formally, for a single counterfactual, we define implausibility as264

follows,265

impl =
1

|x ∈ Xy+ |
∑

x∈Xy+

dist(x′,x) (5)

where Xy+ is a subsample of the training data in the target class y+. This gives rise to a very similar266

evaluation metric for unfaithfulness. We merely swap out the subsample of individuals in the target267

class for a subset X̂nE

θ,y+ of the generated conditional samples:268

unfaith =
1

|x ∈ X̂nE

θ,y+ |

∑
x∈X̂

nE
θ,y+

dist(x′,x) (6)

Specifically, we form this subset based on the nE generated samples associated with the lowest269

energy.270

While we focus on these key evaluation metrics in the body of this paper, we also sporadically discuss271

outcomes with respect to other common measures used to evaluate the validity, proximity and sparsity272

of counterfactuals. Details can be found in Appendix E.273
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Table 1: Results for synthetic datasets. Standard deviations across samples are shown in parentheses.
Best outcomes are highlighted in bold. Asterisks indicate that the given value is more than one (*) or
two (**) standard deviations away from the baseline (Wachter).

Linearly Separable Moons Circles

Model Generator Unfaithfulness ↓ Implausibility ↓ Unfaithfulness ↓ Implausibility ↓ Unfaithfulness ↓ Implausibility ↓

ECCCo 0.10 (0.06)** 0.19 (0.03)** 0.57 (0.58)** 1.29 (0.21)* 0.63 (1.58) 1.44 (1.37)
ECCCo (no CP) 0.10 (0.07)** 0.19 (0.03)** 0.63 (0.64)* 1.30 (0.21)* 0.64 (1.61) 1.45 (1.38)

ECCCo (no EBM) 0.37 (0.28) 0.38 (0.26) 1.73 (1.34) 1.73 (1.42) 1.41 (1.51) 1.50 (1.38)
REVISE 0.41 (0.02)** 0.41 (0.01)** 1.59 (0.55) 1.55 (0.20) 0.96 (0.32)* 0.95 (0.32)*

Schut 0.66 (0.23) 0.66 (0.22) 1.55 (0.61) 1.42 (0.16)* 0.99 (0.80) 1.28 (0.53)

JEM

Wachter 0.44 (0.16) 0.44 (0.15) 1.77 (0.48) 1.67 (0.15) 1.41 (1.50) 1.51 (1.35)

ECCCo 0.03 (0.02)** 0.69 (0.10) 1.68 (1.74) 2.02 (0.86) 0.37 (0.65)** 1.30 (0.68)
ECCCo (no CP) 0.03 (0.02)** 0.68 (0.10) 1.34 (1.66) 2.11 (0.88) 0.50 (0.85)* 1.28 (0.66)

ECCCo (no EBM) 1.25 (0.87) 1.84 (1.10) 2.98 (1.89) 2.29 (1.75) 2.00 (1.46) 1.83 (1.00)
REVISE 1.10 (0.10) 0.40 (0.01)** 2.46 (1.05) 1.54 (0.27)* 1.16 (1.05) 0.95 (0.32)*

Schut 0.81 (0.10)* 0.47 (0.24) 2.71 (1.15) 1.62 (0.42) 1.60 (1.15) 1.24 (0.44)

MLP

Wachter 0.94 (0.11) 0.44 (0.15) 2.95 (1.42) 1.84 (1.33) 1.67 (1.05) 1.31 (0.43)

4.2 Experimental Setup274

To assess and benchmark the performance of ECCCo against the state of the art, we generate multiple275

counterfactuals for different black-box models and datasets. In particular, we compare ECCCo to the276

following counterfactual generators that were introduced above: firstly; Schut [25], which minimizes277

predictive uncertainty; secondly, REVISE [9], which uses a VAE as its surrogate model; and, finally,278

Wachter [31], which serves as our baseline.279

We use both synthetic and real-world datasets from different domains, all of which are publically280

available and commonly used to train and benchmark classification algorithms. The synthetic datasets281

include: a dataset containing two Linearly Separable Gaussian clusters (n = 1000), as well as the282

well-known Circles (n = 1000) and Moons (n = 2500) data. As for real-world data, we follow Schut283

et al. [25] and use the MNIST [13] image dataset. It is composed of 60000 images of 28x28 pixels284

each showing handwritten digits from 0 to 9 such as the examples shown above. From the social285

sciences domain, we include Give Me Some Credit (GMSC) [10]: a tabular dataset that has been286

studied extensively in the literature on Algorithmic Recourse [21]. It consists of 11 numeric features287

that can be used to predict the binary outcome variable indicating whether or not retail borrowers288

experience financial distress.289

As with the example in Section 3, we use simple neural networks (MLP), ensembles of neural290

networks (MLP Ensemble), Joint Energy Models (JEM) and ensembles of JEMs (JEM Ensemble)291

to model our real-world datasets. For the synthetic datasets, we found that the use of ensembles was292

not necessary.293

To account for stochasticity, we generate multiple counterfactuals for each possible target class,294

generator, model and dataset. Specifically, we randomly sample n− times from the subset of295

individuals for which the given model predicts the non-target class y− given the current target. We296

set n− = 25 for all of our synthetic datasets, n− = 10 for GMSC and n− = 5 for MNIST. Note297

that in the latter case, we still end up generating disproportionately more counterfactuals because all298

10 digits appear both as factuals and targets for each other. Full details concerning our parameter299

choices, training procedures and model performance can be found in Appendix D.300

4.3 Results301

Table 1 shows the key results for the synthetic datasets separated by model (first columns) and302

generator (second column). The numerical columns show the average values of our key evaluation303

metrics computed across all counterfactuals. Standard deviations are shown in parentheses. In bold304

we have highlighted the best outcome for each model and metric. To provide some sense of the305

statistical significance of our findings, we have added asterisks to indicate that a given value is at306

least one (∗) or two (∗∗) standard deviations lower than the baseline (Wachter).307

Starting with the high-level results for our Linearly Separable data, we find that ECCCo produces308

the most faithful counterfactuals for both black-box models. This is not surprising, since ECCCo309

directly enforces faithfulness through regularization. Crucially though, ECCCo also produces the310
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Table 2: Results for real-world datasets. Standard deviations across samples are shown in parentheses.
Best outcomes are highlighted in bold. Asterisks indicate that the given value is more than one (*) or
two (**) standard deviations away from the baseline (Wachter).

MNIST GMSC

Model Generator Unfaithfulness ↓ Implausibility ↓ Unfaithfulness ↓ Implausibility ↓

ECCCo 116.09 (30.70)** 281.33 (41.51)** 41.65 (17.24)** 40.57 (8.74)**
REVISE 348.74 (65.65)** 246.69 (36.69)** 74.89 (15.82)** 6.01 (5.75)**

Schut 355.58 (64.84)** 270.06 (40.41)** 76.23 (15.54)** 6.02 (0.72)**JEM

Wachter 694.08 (50.86) 630.99 (33.01) 146.02 (64.48) 128.93 (74.00)

ECCCo 89.89 (27.26)** 240.59 (37.41)** 26.55 (12.94)** 33.65 (8.33)**
REVISE 292.52 (53.13)** 240.50 (35.73)** 52.47 (14.12)** 6.69 (3.37)**

Schut 319.45 (59.02)** 266.80 (40.46)** 56.34 (15.00)** 6.27 (1.06)**JEM Ensemble

Wachter 582.52 (58.46) 543.90 (44.24) 125.72 (70.80) 126.55 (93.75)

ECCCo 212.45 (36.70)** 649.63 (58.80) 46.90 (15.80)** 37.78 (8.40)**
REVISE 839.79 (77.14)* 244.33 (38.69)** 81.08 (19.53)** 4.60 (0.72)**

Schut 842.80 (82.01)* 264.94 (42.18)** 90.67 (20.80)** 5.56 (0.81)**MLP

Wachter 982.32 (61.81) 561.23 (45.08) 191.68 (30.86) 200.23 (15.05)

ECCCo 162.21 (36.21)** 587.65 (95.01) 74.65 (144.69)* 71.87 (145.19)
REVISE 741.30 (125.98)* 242.76 (41.16)** 80.90 (14.59)** 5.20 (1.52)**

Schut 754.35 (132.26) 266.94 (42.55)** 85.63 (19.15)** 6.00 (0.99)**MLP Ensemble

Wachter 871.09 (92.36) 536.24 (48.73) 220.05 (17.41) 203.65 (14.77)

most plausible counterfactuals for the Joint Energy Model, which was explicitly trained to learn311

plausible representations of the input data. This high-level pattern is broadly consistent across all312

datasets and supportive of our narrative, so it is worth highlighting it here: ECCCos consistently313

achieve high faithfulness, which—subject to the quality of the black-box model itself—coincides314

with high plausibility.315

Zooming in on the granular details for the Linearly Separable data, note that the list of generators316

in Table 1 includes ‘ECCCo (no CP)’ and ‘ECCCo (no EBM)’ in addition to ‘ECCCo’ and our317

benchmark generators. These have been added to gain some sense of the degree to which the two318

components underlying ECCCo—namely energy-based modelling (EBM) and conformal prediction319

(CP)—drive the results. Specifically, ‘ECCCo (no CP)’ involves no set size penalty (λ3 = 0 in320

Equation 4), while ‘ECCCo (no EBM)’ does not penalise the distance to samples generated through321

SGLD (λ2 = 0 in Equation 4). The corresponding results indicate that the positive results are322

dominated by the effect of quantifying and leveraging the model’s generative property (EBM) in our323

search for counterfactuals. Conformal Prediction alone only leads to marginally improved faithfulness324

and plausibility relative to the benchmark generators for our JEM.325

As a final key observation for the Linearly Separable data we note that for the MLP, increased326

faithfulness comes at the cost of reduced plausibility. Specifically, this means that counterfactuals327

generated through ECCCo end up further away from individuals in the target class than those produced328

by our benchmark generators.329

The findings for the Moons dataset are broadly in line with the findings so far: for the JEM, ECCCo330

yields significantly more faithful and plausible counterfactuals than all other generators. For the331

MLP, faithfulness is maintained but not plausibility. For comparison, REVISE yields fairly plausible332

counterfactuals in both cases, but it does so at the cost of faithfulness. For the Circles data, ...333

Moving on to our real-world datasets, the results are shown in Table 2. Once again the findings334

indicate that the plausibility of ECCCos is positively correlated with the capacity of the black-335

box model to distinguish plausible from implausible inputs. The case is very clear for MNIST:336

ECCCos are consistently more faithful than the corresponding counterfactuals produced by any of the337

benchmark generators and their plausibility gradually improves through ensembling and Joint Energy338

modelling. For the JEM Ensemble, ECCCo is essentially on par with REVISE and does significantly339

better than the baseline generator.340

The results for GMSC ...341
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To conclude this section, we summarize our findings with reference to the opening questions. Con-342

cerning the feasibility of our proposed methodology (Research Question 4.1), our findings clearly343

demonstrate that it is indeed possible to generate plausible counterfactuals without the need for surro-344

gate models. A related important finding is that ECCCo never sacrifices faithfulness for plausibility:345

any plausible ECCCo also faithfully describes model behaviour. This mitigates the risk of generating346

plausible explanations for models that are, in fact, highly susceptible to implausible counterfactuals as347

well. Our findings here indicate that ECCCo achieves this result primarily by leveraging the model’s348

generative property. We think that further work is needed, however, to definitively answer Research349

Question 4.2, on which we elaborate in the following section.350

5 Limitations351

Even though we have taken considerable measures to study our proposed methodology carefully,352

this work is limited in scope, which caveats our findings. In particular, we have found that the353

performance of ECCCo is sensitive to hyperparameter choices. In order to achieve faithfulness, we354

generally had to penalise the distance from generated samples slightly more than the distance from355

factual values. This choice is associated with relatively higher costs to individuals since the proposed356

recourses typically involve more substantial feature changes than for our benchmark generators.357

Conversely, we have not found that penalising prediction set sizes disproportionately strongly had358

any discernable effect on our results. As discussed above, we also struggled to achieve good results359

by relying on conformal prediction alone. We want to caveat this finding by acknowledging that360

the role of CP in this context needs to be investigated more thoroughly through future work. Our361

suggested approach involving a smooth set size penalty may be insufficient in this context.362

The fact that our findings are primarily driven by applying ideas from energy-based modelling363

presents a challenge in itself: while our approach is readily applicable to models with gradient access364

like deep neural networks, more work is needed to generalise our methodology to other popular365

machine learning models such as gradient-boosted trees. Relatedly, we have encountered common366

challenges associated with energy-based modelling during our experiments including sensitivity to367

scale, training instabilities and sensitivity to hyperparameters. We have also struggled to apply our368

proposed approach to low-dimensional tabular data.369

6 Conclusion370

This work leverages recent advances in energy-based modelling and conformal prediction in the371

context of Explainable Artificial Intelligence. We have proposed a new way to generate Counterfactual372

Explanations that are maximally faithful to the black-model they aim to explain. Our proposed373

counterfactual generator, ECCCo, produces plausible counterfactual if and only if the black-model374

itself has learned realistic representations of the data. This should enable researchers and practitioners375

to use counterfactuals in order to discern trustworthy models from unreliable ones. While the scope376

of this work limits its generalizability, we believe that ECCCo offers a solid baseline for future work377

on faithful Counterfactual Explanations.378
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Appendices458

A JEM459

While xJ is only guaranteed to distribute as pθ(x|y+) if ϵ→ 0 and J →∞, the bias introduced for460

a small finite ϵ is negligible in practice [20, 7]. While Grathwohl et al. [7] use Equation 2 during461

training, we are interested in applying the conditional sampling procedure in a post-hoc fashion to462

any standard discriminative model.463

B Conformal Prediction464

The fact that conformal classifiers produce set-valued predictions introduces a challenge: it is not465

immediately obvious how to use such classifiers in the context of gradient-based counterfactual466

search. Put differently, it is not clear how to use prediction sets in Equation 1. Fortunately, Stutz et al.467

[27] have recently proposed a framework for Conformal Training that also hinges on differentiability.468

Specifically, they show how Stochastic Gradient Descent can be used to train classifiers not only469

for the discriminative task but also for additional objectives related to Conformal Prediction. One470

such objective is efficiency: for a given target error rate α, the efficiency of a conformal classifier471

improves as its average prediction set size decreases. To this end, the authors introduce a smooth set472

size penalty defined in Equation 3 in the body of this paper473

Formally, it is defined as Cθ,y(xi;α) := σ
(
(s(xi,y)− α)T−1

)
for y ∈ Y , where σ is the sigmoid474

function and T is a hyper-parameter used for temperature scaling [27].475

Intuitively, CP works under the premise of turning heuristic notions of uncertainty into rigorous476

uncertainty estimates by repeatedly sifting through the data. It can be used to generate prediction477

intervals for regression models and prediction sets for classification models [1]. Since the literature478

on CE and AR is typically concerned with classification problems, we focus on the latter. A particular479

variant of CP called Split Conformal Prediction (SCP) is well-suited for our purposes, because it480

imposes only minimal restrictions on model training.481
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Specifically, SCP involves splitting the data Dn = {(xi,yi)}i=1,...,n into a proper training set Dtrain482

and a calibration set Dcal. The former is used to train the classifier in any conventional fashion.483

The latter is then used to compute so-called nonconformity scores: S = {s(xi,yi)}i∈Dcal where484

s : (X ,Y) 7→ R is referred to as score function. In the context of classification, a common choice for485

the score function is just si = 1−Mθ(xi)[yi], that is one minus the softmax output corresponding486

to the observed label yi [3].487

Finally, classification sets are formed as follows,488

Cθ(xi;α) = {y : s(xi,y) ≤ q̂} (7)

where q̂ denotes the (1 − α)-quantile of S and α is a predetermined error rate. As the size of the489

calibration set increases, the probability that the classification set C(xtest) for a newly arrived sample490

xtest does not cover the true test label ytest approaches α [3].491

Observe from Equation 7 that Conformal Prediction works on an instance-level basis, much like492

Counterfactual Explanations are local. The prediction set for an individual instance xi depends only493

on the characteristics of that sample and the specified error rate. Intuitively, the set is more likely494

to include multiple labels for samples that are difficult to classify, so the set size is indicative of495

predictive uncertainty. To see why this effect is exacerbated by small choices for α consider the case496

of α = 0, which requires that the true label is covered by the prediction set with probability equal to497

1.498

C Conformal Prediction499

D Experimental Setup500

E Results501
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Table 3: All results for all datasets. Standard deviations across samples are shown in parentheses.
Best outcomes are highlighted in bold. Asterisks indicate that the given value is more than one (*) or
two (**) standard deviations away from the baseline (Wachter).

Model Data Generator Cost ↓ Unfaithfulness ↓ Implausibility ↓ Redundancy ↑ Uncertainty ↓ Validity ↑
ECCCo 39.14 (3.71) 236.79 (51.16) 39.78 (3.18) 0.00 (0.00) 2.00 (0.00) 1.00 (0.00)
REVISE 4.39 (2.08) 284.51 (52.74) 5.58 (0.81)** 0.01 (0.03) 1.85 (0.32) 1.00 (0.00)

Schut 4.17 (1.84) 263.55 (60.56) 8.00 (2.03) 0.25 (0.24)* 1.88 (0.31) 1.00 (0.00)JEM

Wachter 2.03 (1.01) 274.55 (51.17) 7.32 (1.80) 0.00 (0.00) 1.90 (0.31) 1.00 (0.00)
ECCCo 34.85 (4.67) 249.44 (58.53) 35.09 (5.56) 0.00 (0.00) 2.00 (0.00) 1.00 (0.00)
REVISE 4.53 (1.97) 268.45 (66.87) 5.44 (0.74)** 0.00 (0.00) 1.95 (0.21) 1.00 (0.00)

Schut 0.98 (0.38)** 279.38 (63.23) 7.64 (1.47) 0.84 (0.06)** 2.00 (0.00) 1.00 (0.00)JEM Ensemble

Wachter 2.00 (0.59) 268.59 (68.66) 7.16 (1.46) 0.00 (0.00) 1.90 (0.31) 1.00 (0.00)
ECCCo 37.47 (4.59) 230.92 (48.86) 37.53 (5.40) 0.00 (0.00) 1.00 (0.00)** 1.00 (0.00)
REVISE 3.38 (2.06) 281.10 (53.01) 5.34 (0.67)** 0.00 (0.00) 1.10 (0.31) 1.00 (0.00)

Schut 0.88 (0.51)** 285.12 (56.00) 6.48 (1.18)** 0.72 (0.22)** 1.00 (0.00)** 1.00 (0.00)MLP

Wachter 5.35 (10.88) 262.50 (56.87) 9.21 (10.41) 0.00 (0.00) 1.05 (0.22) 1.00 (0.00)
ECCCo 38.33 (4.99) 212.47 (59.27)* 38.17 (6.18) 0.00 (0.00) 1.00 (0.00)** 1.00 (0.00)
REVISE 3.41 (1.79) 284.65 (49.52) 5.64 (1.13)* 0.00 (0.00) 1.05 (0.22) 1.00 (0.00)

Schut 0.84 (0.56)** 269.19 (46.08) 7.30 (1.94) 0.81 (0.11)** 1.00 (0.00)** 1.00 (0.00)

California Housing

MLP Ensemble

Wachter 2.00 (1.39) 278.09 (73.65) 7.32 (1.75) 0.00 (0.00) 1.07 (0.23) 1.00 (0.00)
ECCCo 1.34 (1.48) 0.63 (1.58) 1.44 (1.37) 0.00 (0.00) 0.98 (0.14) 0.98 (0.14)

ECCCo (no CP) 1.33 (1.49) 0.64 (1.61) 1.45 (1.38) 0.00 (0.00) 0.98 (0.14) 0.98 (0.14)
ECCCo (no EBM) 0.85 (1.49) 1.41 (1.51) 1.50 (1.38) 0.00 (0.00) 1.04 (0.28) 0.98 (0.14)

REVISE 0.99 (0.35) 0.96 (0.32)* 0.95 (0.32)* 0.00 (0.00) 0.50 (0.51) 0.50 (0.51)
Schut 1.00 (0.43) 0.99 (0.80) 1.28 (0.53) 0.25 (0.25) 1.11 (0.38) 1.00 (0.00)**

JEM

Wachter 0.74 (1.50) 1.41 (1.50) 1.51 (1.35) 0.00 (0.00) 0.98 (0.14) 0.98 (0.14)
ECCCo 1.39 (0.23) 0.37 (0.65)** 1.30 (0.68) 0.00 (0.00) 1.00 (0.00)** 1.00 (0.00)

ECCCo (no CP) 1.33 (0.28) 0.50 (0.85)* 1.28 (0.66) 0.00 (0.00) 1.04 (0.20)* 1.00 (0.00)
ECCCo (no EBM) 1.15 (0.69) 2.00 (1.46) 1.83 (1.00) 0.00 (0.00) 0.97 (0.10)** 1.00 (0.00)

REVISE 0.98 (0.36) 1.16 (1.05) 0.95 (0.32)* 0.00 (0.00) 0.50 (0.51)* 0.50 (0.51)
Schut 0.61 (0.11) 1.60 (1.15) 1.24 (0.44) 0.34 (0.24)* 1.00 (0.00)** 1.00 (0.00)

Circles

MLP

Wachter 0.53 (0.15) 1.67 (1.05) 1.31 (0.43) 0.00 (0.00) 1.28 (0.46) 1.00 (0.00)
ECCCo 859.68 (91.05) 40.65 (5.67)** 605.67 (19.56) 0.00 (0.00) 3.00 (0.00)** 1.00 (0.00)
REVISE 500.28 (86.07) 693.81 (118.47)* 467.88 (132.24) 0.00 (0.00) 3.20 (2.28)** 0.80 (0.45)

Schut 10.00 (0.00)** 871.82 (64.75) 561.81 (94.76) 0.99 (0.00)** 0.00 (0.00)** 0.00 (0.00)JEM

Wachter 100.86 (13.85) 902.84 (88.79) 586.49 (97.17) 0.00 (0.00) 10.00 (0.00) 1.00 (0.00)
ECCCo 679.19 (66.95) 59.61 (32.93)** 500.50 (27.51) 0.00 (0.00) 4.00 (0.00)** 1.00 (0.00)
REVISE 476.47 (147.09) 533.64 (102.81)* 356.60 (79.57)* 0.00 (0.00) 4.80 (1.30)** 1.00 (0.00)

Schut 10.00 (0.00)** 688.61 (86.83) 445.55 (99.03) 0.99 (0.00)** 0.00 (0.00)** 0.00 (0.00)JEM Ensemble

Wachter 92.50 (9.31) 714.63 (54.58) 470.54 (96.18) 0.00 (0.00) 10.00 (0.00) 1.00 (0.00)
ECCCo 885.97 (29.70) 65.36 (20.64)** 791.07 (14.51) 0.00 (0.00) 2.00 (0.00)** 1.00 (0.00)**
REVISE 323.10 (102.63) 856.08 (73.66) 394.73 (252.67) 0.00 (0.00) 1.00 (1.00)** 0.60 (0.55)

Schut 10.00 (0.00)** 928.77 (42.27) 518.98 (143.30) 0.99 (0.00)** 0.00 (0.00)** 0.00 (0.00)MLP

Wachter 94.57 (10.26) 916.45 (50.09) 546.35 (145.24) 0.00 (0.00) 3.61 (4.01) 0.80 (0.45)
ECCCo 869.65 (67.92) 47.37 (7.72)** 751.83 (11.87) 0.00 (0.00) 1.00 (0.00)** 1.00 (0.00)
REVISE 267.88 (69.67) 822.34 (57.55) 307.50 (105.09)* 0.00 (0.00) 3.00 (4.00) 0.80 (0.45)

Schut 10.00 (0.00)** 891.57 (70.10) 449.79 (149.32) 0.99 (0.00)** 0.00 (0.00)** 0.00 (0.00)

FashionMNIST

MLP Ensemble

Wachter 91.50 (16.35) 874.21 (59.36) 476.59 (150.76) 0.00 (0.00) 4.60 (4.93) 1.00 (0.00)
ECCCo 40.78 (8.79)** 41.65 (17.24)** 40.57 (8.74)** 0.00 (0.00) 1.50 (0.51) 1.00 (0.00)**
REVISE 5.10 (6.48)** 74.89 (15.82)** 6.01 (5.75)** 0.00 (0.00) 1.81 (0.40) 1.00 (0.00)**

Schut 1.10 (0.39)** 76.23 (15.54)** 6.02 (0.72)** 0.77 (0.09)** 1.55 (0.51) 1.00 (0.00)**JEM

Wachter 127.26 (75.11) 146.02 (64.48) 128.93 (74.00) 0.00 (0.00) 1.00 (1.03) 0.50 (0.51)
ECCCo 33.87 (8.25)** 26.55 (12.94)** 33.65 (8.33)** 0.00 (0.00) 2.00 (0.00) 1.00 (0.00)**
REVISE 6.00 (4.92)** 52.47 (14.12)** 6.69 (3.37)** 0.00 (0.00) 1.80 (0.52) 0.95 (0.22)**

Schut 1.29 (0.92)** 56.34 (15.00)** 6.27 (1.06)** 0.74 (0.16)** 1.62 (0.52) 1.00 (0.00)**JEM Ensemble

Wachter 124.35 (95.08) 125.72 (70.80) 126.55 (93.75) 0.00 (0.00) 1.00 (1.03) 0.50 (0.51)
ECCCo 38.91 (7.68)** 46.90 (15.80)** 37.78 (8.40)** 0.00 (0.00) 1.00 (0.00) 1.00 (0.00)
REVISE 4.16 (2.35)** 81.08 (19.53)** 4.60 (0.72)** 0.00 (0.00) 1.23 (0.40) 1.00 (0.00)

Schut 0.72 (0.32)** 90.67 (20.80)** 5.56 (0.81)** 0.87 (0.06)** 1.00 (0.00) 1.00 (0.00)MLP

Wachter 199.28 (14.78) 191.68 (30.86) 200.23 (15.05) 0.00 (0.00) 1.00 (0.00) 1.00 (0.00)
ECCCo 72.42 (145.72) 74.65 (144.69)* 71.87 (145.19) 0.00 (0.00) 1.00 (0.00) 1.00 (0.00)
REVISE 4.75 (2.94)** 80.90 (14.59)** 5.20 (1.52)** 0.00 (0.00) 1.07 (0.12) 1.00 (0.00)

Schut 0.65 (0.24)** 85.63 (19.15)** 6.00 (0.99)** 0.88 (0.04)** 1.00 (0.00)** 1.00 (0.00)

GMSC

MLP Ensemble

Wachter 202.64 (14.71) 220.05 (17.41) 203.65 (14.77) 0.00 (0.00) 1.00 (0.00) 1.00 (0.00)
ECCCo 0.91 (0.14) 0.10 (0.06)** 0.19 (0.03)** 0.00 (0.00) 0.97 (0.03)** 1.00 (0.00)

ECCCo (no CP) 0.91 (0.14) 0.10 (0.07)** 0.19 (0.03)** 0.00 (0.00) 0.98 (0.03)** 1.00 (0.00)
ECCCo (no EBM) 0.90 (0.17) 0.37 (0.28) 0.38 (0.26) 0.00 (0.00) 1.23 (0.49) 1.00 (0.00)

REVISE 0.42 (0.14)* 0.41 (0.02)** 0.41 (0.01)** 0.00 (0.00) 0.81 (0.82) 0.50 (0.51)
Schut 1.14 (0.27) 0.66 (0.23) 0.66 (0.22) 0.21 (0.25) 1.74 (0.43) 1.00 (0.00)

JEM

Wachter 0.61 (0.12) 0.44 (0.16) 0.44 (0.15) 0.00 (0.00) 1.50 (0.50) 1.00 (0.00)
ECCCo 1.52 (0.16) 0.03 (0.02)** 0.69 (0.10) 0.00 (0.00) 1.00 (0.00)** 1.00 (0.00)

ECCCo (no CP) 1.52 (0.16) 0.03 (0.02)** 0.68 (0.10) 0.00 (0.00) 1.00 (0.00)** 1.00 (0.00)
ECCCo (no EBM) 2.66 (1.10) 1.25 (0.87) 1.84 (1.10) 0.00 (0.00) 1.00 (0.00)** 1.00 (0.00)

REVISE 0.44 (0.13)* 1.10 (0.10) 0.40 (0.01)** 0.00 (0.00) 1.64 (0.78) 0.82 (0.39)
Schut 0.76 (0.14) 0.81 (0.10)* 0.47 (0.24) 0.26 (0.25)* 1.00 (0.00)** 1.00 (0.00)

Linearly Separable

MLP

Wachter 0.60 (0.14) 0.94 (0.11) 0.44 (0.15) 0.00 (0.00) 1.54 (0.50) 1.00 (0.00)
ECCCo 269.99 (57.02)** 116.09 (30.70)** 281.33 (41.51)** 0.00 (0.00) NA 1.00 (0.00)**
REVISE 143.79 (43.43)** 348.74 (65.65)** 246.69 (36.69)** 0.00 (0.01) NA 0.80 (0.40)

Schut 9.90 (0.55)** 355.58 (64.84)** 270.06 (40.41)** 0.99 (0.00)** NA 0.15 (0.36)JEM

Wachter 453.86 (16.96) 694.08 (50.86) 630.99 (33.01) 0.00 (0.00) NA 0.90 (0.30)
ECCCo 260.94 (52.14)** 89.89 (27.26)** 240.59 (37.41)** 0.00 (0.00) NA 1.00 (0.00)**
REVISE 138.82 (33.99)** 292.52 (53.13)** 240.50 (35.73)** 0.00 (0.01) NA 0.81 (0.39)

Schut 9.97 (0.28)** 319.45 (59.02)** 266.80 (40.46)** 0.99 (0.00)** NA 0.05 (0.22)JEM Ensemble

Wachter 365.46 (35.14) 582.52 (58.46) 543.90 (44.24) 0.00 (0.00) NA 0.96 (0.20)
ECCCo 658.48 (65.03) 212.45 (36.70)** 649.63 (58.80) 0.00 (0.00) NA 1.00 (0.00)
REVISE 150.41 (51.81)** 839.79 (77.14)* 244.33 (38.69)** 0.00 (0.00) NA 0.95 (0.22)

Schut 9.95 (0.41)** 842.80 (82.01)* 264.94 (42.18)** 0.99 (0.00)** NA 0.06 (0.25)MLP

Wachter 400.08 (34.33) 982.32 (61.81) 561.23 (45.08) 0.00 (0.00) NA 1.00 (0.00)
ECCCo 616.12 (102.01) 162.21 (36.21)** 587.65 (95.01) 0.00 (0.00) NA 1.00 (0.00)**
REVISE 149.48 (47.90)** 741.30 (125.98)* 242.76 (41.16)** 0.00 (0.01) NA 0.92 (0.27)

Schut 9.98 (0.23)** 754.35 (132.26) 266.94 (42.55)** 0.99 (0.00)** NA 0.03 (0.18)

MNIST

MLP Ensemble

Wachter 374.37 (41.37) 871.09 (92.36) 536.24 (48.73) 0.00 (0.00) NA 1.00 (0.05)
ECCCo 1.87 (0.79) 0.57 (0.58)** 1.29 (0.21)* 0.00 (0.00) 0.99 (0.18)** 1.00 (0.00)

ECCCo (no CP) 1.83 (0.80) 0.63 (0.64)* 1.30 (0.21)* 0.00 (0.00) 1.13 (0.35) 1.00 (0.00)
ECCCo (no EBM) 1.30 (1.72) 1.73 (1.34) 1.73 (1.42) 0.00 (0.00) 0.94 (0.27)* 1.00 (0.00)

REVISE 1.07 (0.26) 1.59 (0.55) 1.55 (0.20) 0.00 (0.00) 1.30 (0.40) 1.00 (0.00)
Schut 1.36 (0.35) 1.55 (0.61) 1.42 (0.16)* 0.03 (0.12) 1.11 (0.30)* 1.00 (0.00)

JEM

Wachter 0.89 (0.21) 1.77 (0.48) 1.67 (0.15) 0.00 (0.00) 1.45 (0.47) 1.00 (0.00)
ECCCo 2.53 (1.24) 1.68 (1.74) 2.02 (0.86) 0.00 (0.00) 1.11 (0.31) 1.00 (0.00)

ECCCo (no CP) 2.45 (1.36) 1.34 (1.66) 2.11 (0.88) 0.00 (0.00) 1.24 (0.41) 1.00 (0.00)
ECCCo (no EBM) 2.53 (2.03) 2.98 (1.89) 2.29 (1.75) 0.00 (0.00) 0.99 (0.07)** 1.00 (0.00)

REVISE 0.98 (0.33)* 2.46 (1.05) 1.54 (0.27)* 0.00 (0.00) 1.40 (0.49) 1.00 (0.00)
Schut 0.75 (0.23)** 2.71 (1.15) 1.62 (0.42) 0.31 (0.27)* 0.94 (0.24)* 0.94 (0.24)

Moons

MLP

Wachter 1.49 (1.76) 2.95 (1.42) 1.84 (1.33) 0.00 (0.00) 1.33 (0.48) 1.00 (0.00)
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