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Abstract

We propose Conformal Counterfactual Explanations: an effortless and rigorous
way to produce plausible and conformal Counterfactual Explanations for Black Box
Models using Conformal Prediction. To address the need for plausible explanations,
existing work has primarily relied on surrogate models to learn the data-generating
process. This effectively reallocates the task of learning realistic representations
of the data from the model itself to the surrogate. Consequently, the generated
explanations may look plausible to humans but not necessarily conform with the be-
haviour of the Black Box Model. We formalise this notion through the introduction
of new evaluation measures. In order to still address the need for plausibility, we
build on a recent approach that works by minimizing predictive model uncertainty.
Using differentiable Conformal Prediction, we relax the previous assumption that
the Black Box Model can produce predictive uncertainty estimates.

1 Introduction

Counterfactual Explanations are a powerful, flexible and intuitive way to not only explain Black Box
Models but also enable affected individuals to challenge them through the means of Algorithmic
Recourse. Instead of opening the black box, Counterfactual Explanations work under the premise
of strategically perturbing model inputs to understand model behaviour [32]. Intuitively speaking,
we generate explanations in this context by asking simple what-if questions of the following nature:
‘Our credit risk model currently predicts that this individual’s credit profile is too risky to offer them a
loan. What if they reduced their monthly expenditures by 10%? Will our model then predict that the
individual is credit-worthy’?

This is typically implemented by defining a target outcome y∗ ∈ Y for some individual x ∈ X = RD

described by D attributes, for which the model Mθ : X 7→ Y initially predicts a different outcome:
Mθ(x) ̸= y∗. Counterfactuals are then searched by minimizing a loss function that compares the
predicted model output to the target outcome: yloss(Mθ(x),y

∗). Since Counterfactual Explanations
(CE) work directly with the Black Box Model, valid counterfactuals always have full local fidelity by
construction [20]. Fidelity is defined as the degree to which explanations approximate the predictions
of the Black Box Model. This is arguably one of the most important evaluation metrics for model
explanations, since any explanation that explains a prediction not actually made by the model is
useless [19].

In situations where full fidelity is a requirement, CE therefore offers a more appropriate solution to
Explainable Artificial Intelligence (XAI) than other popular approaches like LIME [25] and SHAP
[15], which involve local surrogate models. But even full fidelity is not a sufficient condition for
ensuring that an explanation adequately describes the behaviour of a model. That is because two
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very distinct explanations can both lead to the same model prediction, especially when dealing with
heavily parameterized models:

[. . . ] deep neural networks are typically very underspecified by the available
data, and [. . . ] parameters [therefore] correspond to a diverse variety of compelling
explanations for the data. — Wilson [33]

When people talk about Black Box Models, this is usually the type of model they have in mind.

In the context of CE, the idea that no two explanations are the same arises almost naturally. Even
the baseline approach proposed by Wachter et al. [32] can yield a diverse set of explanations
if counterfactuals are initialised randomly. This multiplicity of explanations has not only been
acknowledged in the literature but positively embraced: since individuals seeking Algorithmic
Recourse (AR) have unique preferences, Mothilal et al. [20], for example, have prescribed diversity
as an explicit goal for counterfactuals. More generally, the literature on CE and AR has brought
forward a myriad of desiderata for explanations, which we will discuss in more detail in the following
section.

2 From Adversarial Examples to Plausible Explanations

In this section, we provide some background on Counterfactual Explanations and our motivation for
this work. To start off, we briefly introduce the methodology uncerlying most state-of-the-art (SOTA)
counterfactual generators.

While Counterfactual Explanations can be generated for arbitrary regression models [27], existing
work has primarily focused on classification problems. Let Y = (0, 1)K denote the one-hot-encoded
output domain with K classes. Then most SOTA counterfactual generators rely on gradient descent
to optimize different flavours of the following counterfactual search objective:

Z′ = arg min
Z′∈ZM

{yloss(Mθ(f(Z
′)),y∗) + λcost(f(Z′))} (1)

Here yloss denotes the primary loss function already introduced above and cost is either a single
penalty or a collection of penalties that are used to impose constraints through regularization. Follow-
ing the convention in Altmeyer et al. [2] we use Z′ = {zm}M to denote the vector M -dimensional
array of counterfactual states. This is to explicitly account for the fact that we can generate multiple
counterfactuals M , as with DiCE [20], and may choose to traverse a latent representation Z of the
feature space X , as we will discuss further below.

Solutions to Equation 1 are considered valid as soon as the predicted label matches the target label. A
stripped-down counterfactual explanation is therefore little different from an adversarial example.
In Figure 1, for example, we have the baseline approach proposed in Wachter et al. [32] to MNIST
data (centre panel). This approach solves Equation 1 through gradient-descent in the feature space
with a penalty for the distance between the factual x and the counterfactual x′. The underlying
classifier Mθ is a simple Multi-Layer Perceptron (MLP) with good test accuracy. For the generated
counterfactual x′ the model predicts the target label with high confidence (centre panel in Figure 1).
The explanation is valid by definition, even though it looks a lot like an Adversarial Example [8].
Schut et al. [26] make the connection between Adversarial Examples and Counterfactual Explanations
explicit and propose using a Jacobian-Based Saliency Map Attack (JSMA) to solve Equation 1. They
demonstrate that this approach yields realistic and sparse counterfactuals for Bayesian, adversarially
robust classifiers. Applying their approach to our simple MNIST classifier does not yield a realistic
counterfactual but this one, too, is valid (right panel in Figure 1).

The crucial difference between Adversarial Examples (AE) and Counterfactual Explanations is one
of intent. While an AE is intended to go unnoticed, a CE should have certain desirable properties.
The literature has made this explicit by introducing various so-called desiderata. To properly serve
both AI practitioners and individuals affected by AI decision-making systems, counterfactuals should
be sparse, proximate [32], actionable [30], diverse [20], plausible [12, 24, 26], robust [29, 23, 2] and
causal [14] among other things.

Researchers have come up with various ways to meet these desiderata, which have been extensively
surveyed and evaluated in various studies [31, 13, 22, 5, 10]. Perhaps unsurprisingly, the different
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Figure 1: You may not like it, but this is
what stripped-down counterfactuals look like.
Counterfactuals for turning an 8 (eight) into a
3 (three): original image (left); counterfactual
produced using Wachter et al. [32] (centre);
and a counterfactual produced using JSMA-
based approach introduced by [26].

Figure 2: Using surrogates can improve plau-
sibility, but also increases vulnerability. Coun-
terfactuals for turning an 8 (eight) into a 3
(three): original image (left); counterfactual
produced using REVISE [12] with a well-
specified surrogate (centre); and a counter-
factual produced using REVISE [12] with a
poorly specified surrogate (right).

desiderata are often positively correlated. For example, Artelt et al. [5] find that plausibility typically
also leads to improved robustness. Similarly, plausibility has also been connected to causality in the
sense that plausible counterfactuals respect causal relationships [16].

Arguably, the plausibility of counterfactuals has been among the primary concerns and some have
focused explicitly on this goal. Joshi et al. [12], for example, were among the first to suggest
that instead of searching counterfactuals in the feature space X , we can instead traverse a latent
embedding Z that implicitly codifies the data generating process (DGP) of x ∼ X . To learn the
latent embedding, they introduce a surrogate model. In particular, they propose to use the latent
embedding of a Variational Autoencoder (VAE) trained to generate samples x∗ ← G(z) where G
denotes the decoder part of the VAE. Provided the surrogate model is well-trained, their proposed
approach —REVISE— can yield compelling counterfactual explanations like the one in the centre
panel of Figure 2.

Others have proposed similar approaches. Dombrowski et al. [7] traverse the base space of a
normalizing flow to solve Equation 1, essentially relying on a different surrogate model for the
generative task. Poyiadzi et al. [24] use density estimators (p̂ : X 7→ [0, 1]) to constrain the
counterfactual paths. Karimi et al. [14] argue that counterfactuals should comply with the causal
model that generates the data. All of these different approaches share a common goal: ensuring that
the generated counterfactuals comply with the true and unobserved DGP. To summarize this broad
objective, we propose the following definition:
Definition 2.1 (Plausible Counterfactuals). Let X|y∗ denote the true conditional distribution of
samples in the target class y∗. Then for x′ to be considered a plausible counterfactual, we need:
x′ ∼ X|y∗.

Note that Definition 2.1 is consistent with the notion of plausible counterfactual paths, since we can
simply apply it to each counterfactual state along the path.

Surrogate models offer an obvious solution to achieve this objective. Unfortunately, surrogates also
introduce a dependency: the generated explanations no longer depend exclusively on the Black Box
Model itself, but also on the surrogate model. This is not necessarily problematic if the primary
objective is not to explain the behaviour of the model but to offer recourse to individuals affected by
it. It may become problematic even in this context if the dependency turns into a vulnerability. To
illustrate this point, we have used REVISE [12] with an underfitted VAE to generate the counterfactual
in the right panel of Figure 2: in this case, the decoder step of the VAE fails to yield plausible values
({x′ ← G(z)} ̸∼ X |y∗) and hence the counterfactual search in the learned latent space is doomed.

3 Evaluating the Faithfulness of Counterfactuals

In Section 2 we explained that Counterfactual Explanations work directly with Black Box Model, so
fidelity is not a concern. This may explain why research has primarily focused on other desiderata,
most notably plausibility (Definition 2.1). Enquiring about the plausibility of a counterfactual
essentially boils down to the following question: ‘Is this counterfactual consistent with the underlying
data’? To introduce this section, we posit a related, slightly more nuanced question: ‘Is this
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counterfactual consistent with what the model has learned about the underlying data’? We will argue
that fidelity is not a sufficient evaluation measure to answer this question and propose a novel way
to assess if explanations conform with model behaviour. Finally, we will introduce a framework
for Conformal Counterfactual Explanations, that reconciles the notions of plausibility and model
conformity.

3.1 From Fidelity to Model Conformity

The word fidelity stems from the Latin word ‘fidelis’, which means ‘faithful, loyal, trustworthy’ [18].
As we explained in Section 2, model explanations are considered faithful if their corresponding
predictions coincide with the predictions made by the model itself. Since this definition of faithfulness
is not useful in the context of Counterfactual Explanations, we propose an adapted version:
Definition 3.1 (Conformal Counterfactuals). Let Xθ|y∗ = pθ(x|y∗) denote the conditional distri-
bution of x in the target class y∗, where θ denotes the parameters of model Mθ. Then for x′ to be
considered a conformal counterfactual, we need: x′ ∼ Xθ|y∗.

In words, conformal counterfactuals conform with what the predictive model has learned about the
input data x. Since this definition works with distributional properties, it explicitly accounts for the
multiplicity of explanations we discussed earlier. Except for the posterior conditional distribution
pθ(x|y∗), we already have access to all the ingredients in Definition 3.1.

How can we quantify pθ(x|y∗)? After all, the predictive model Mθ was trained to discriminate
outputs conditional on inputs, which is a different conditional distribution: pθ(y|x). Learning the
distribution over inputs pθ(x|y∗) is a generative task that Mθ was not explicitly trained for. In the
context of Counterfactual Explanations, it is the task that existing approaches have reallocated from
the model itself to a surrogate.

Fortunately, recent work by Grathwohl et al. [9] on Energy Based Models (EBM) has pointed out
that there is a ‘generative model hidden within every standard discriminative model’. The authors
show that we can draw samples from the posterior conditional distribution pθ(x|y) using Stochastic
Gradient Langevin Dynamics (SGLD). In doing so, it is possible to train classifiers jointly for
the discriminative task using standard cross-entropy and the generative task using SGLD. They
demonstrate empirically that among other things this improves predictive uncertainty quantification
for discriminative models.

To see how their proposed conditional sampling strategy can be applied in our context, note that if we
fix y to our target value y∗, we can sample from pθ(x|y∗) using SGLD as follows,

xj+1 ← xj −
ϵ2

2
E(xj |y∗) + ϵrj , j = 1, ..., J (2)

where rj ∼ N (0, I) is the stochastic term and the step-size ϵ is typically polynomially decayed. The
term E(xj |y∗) denotes the energy function where as in [9] we use E(xj |y∗) = −Mθ(xj)[y

∗], that
is the negative logit corresponding to the target class label y∗.

While xJ is only guaranteed to distribute as pθ(x|y∗) if ϵ→ 0 and J →∞, the bias introduced for
a small finite ϵ is negligible in practice [21, 9]. While Grathwohl et al. [9] use Equation 2 during
training, we are interested in applying the conditional sampling procedure in a post hoc fashion to
any standard discriminative model. Generating multiple samples in this manner yields an empirical
distribution X̂θ|y∗, which we can use to assess if a given counterfactual x′ conforms with the model
Mθ (Definition 3.1).

TBD

• What exact sampler do we use? ImproperSGLD as in Grathwohl et al. [9] seems to work
best.

3.2 Evaluation Measures

Above we have defined plausibility (2.1) and conformity (3.1) for Counterfactual Explanations.
In this subsection, we introduce evaluation measures that facilitate a quantitative evaluation of
counterfactuals for these objectives.
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Firstly, in order to assess the plausibility of counterfactuals we adapt the implausibility metric
proposed in Guidotti [10]. The authors propose to evaluate plausibility in terms of the distance of the
counterfactual x′ from its nearest neighbour in the target class y∗: the smaller this distance, the more
plausible the counterfactual. Instead of focusing only on the nearest neighbour of x′, we suggest
computing the average over distances from multiple (possibly all) observed instances in the target
class. Formally, for a single counterfactual, we have:

impl =
1

|x ∈ X |y∗|
∑

x∈X|y∗

dist(x′,x) (3)

This measure is straightforward to compute and should be less sensitive to outliers in the target class
than the one based on the nearest neighbour. It also gives rise to a very similar evaluation measure for
conformity. We merely swap out the subsample of individuals in the target class for the empirical
distribution of generated conditional samples:

conf =
1

|x ∈ Xθ|y∗|
∑

x∈Xθ|y∗

dist(x′,x) (4)

As noted by Guidotti [10], these distance-based measures are simplistic and more complex alternative
measures may ultimately be more appropriate for the task. For example, we considered using statisti-
cal divergence measures instead. This would involve generating not one but many counterfactuals and
comparing the generated empirical distribution to the target distributions in Definitions 2.1 and 3.1.
While this approach is potentially more rigorous, generating enough counterfactuals is not always
practical.

4 A Framework for Conformal Counterfactual Explanations

Now that we have a framework for evaluating Counterfactual Explanations in terms of their plausibility
and conformity, we are interested in finding a way to generate counterfactuals that are as plausible
and conformal as possible. We hypothesize that a narrow focus on plausibility may come at the cost
of reduced conformity. Using a surrogate model for the generative task, for example, may improve
plausibility but inadvertently yield counterfactuals that are more consistent with the surrogate than
the Black Box Model itself. We suggest that one way to ensure model conformity is to rely strictly on
the model itself. In this section, we introduce a novel framework that meets this requirement, works
under minimal assumptions and does not impede the plausibility objective: Conformal Counterfactual
Explanations.

4.1 Plausible Counterfactuals through Minimal Uncertainty

Our proposed methodology is built on the findings presented in Schut et al. [26]. The authors
demonstrate that it is not only possible but remarkably easy to generate plausible counterfactuals for
Black Box Models that provide predictive uncertainty estimates. Their proposed algorithm solves
Equation 1 by greedily applying JSMA in the feature space with standard cross-entropy loss and no
penalty at all. They show that this is equivalent to minimizing predictive uncertainty and hence yields
counterfactuals for which the model Mθ predicts the target label y∗ with high confidence. Provided
the model is well-calibrated, these counterfactuals are plausible which the authors demonstrate
empirically through benchmarks [26].

Unfortunately, this idea hinges on the crucial assumption that the Black Box Model provides predictive
uncertainty estimates. The authors argue that in light of rapid advances in Bayesian Deep Learning
(DL), this assumption is overall less costly than the engineering overhead induced by using surrogate
models. This is even more true today, as recent work has put Laplace Approximation back on the
map for truly effortless Bayesian DL [11, 6, 4]. Nonetheless, the need for Bayesian methods may be
too restrictive in some cases.

In looking for ways to lift that restriction, we found a promising alternative candidate for predictive
uncertainty quantification (UQ) that we will briefly introduce next: Conformal Prediction.
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4.2 Conformal Prediction

Conformal Prediction (CP) is a scalable and statistically rigorous approach to predictive UQ that
works under minimal distributional assumptions [3]. It has recently gained popularity in the Machine
Learning community [3, 17]. Crucially for our intended application, CP is model-agnostic and can be
applied at test time. This allows us to relax the assumption that the Black Box Model needs to learn
to generate predictive uncertainty estimates during training. In other words, CP promises to provide a
way to generate plausible counterfactuals for any standard discriminative model without the need for
surrogate models.

Intuitively, CP works under the premise of turning heuristic notions of uncertainty into rigorous
uncertainty estimates by repeatedly sifting through the data. It can be used to generate prediction
intervals for regression models and prediction sets for classification models [1]. Since the literature
on CE and AR is typically concerned with classification problems, we focus on the latter. A particular
variant of CP called Split Conformal Prediction (SCP) is well-suited for our purposes because it
imposes only minimal restrictions on model training.

Specifically, SCP involves splitting the data Dn = {(xi,yi)}i=1,...,n into a proper training set Dtrain
and a calibration set Dcal. The former is used to train the classifier in any conventional fashion.
The latter is then used to compute so-called nonconformity scores: S = {s(xi,yi)}i∈Dcal where
s : (X ,Y) 7→ R is referred to as score function. In the context of classification, a common choice for
the score function is just si = 1−Mθ(xi)[yi], that is one minus the softmax output corresponding
to the observed label yi [3].

Finally, classification sets are formed as follows,

Cθ(xi;α) = {y : s(xi,y) ≤ q̂} (5)

where q̂ denotes the (1 − α)-quantile of S and α is a predetermined error rate. As the size of the
calibration set increases, the probability that the classification set C(xtest) for a newly arrived sample
xtest does not cover the true test label ytest approaches α [3].

Observe from Equation 5 that Conformal Prediction works on an instance-level basis, much like
Counterfactual Explanations are local. The prediction set for an individual instance xi depends only
on the characteristics of that sample and the specified error rate. Intuitively, the set is more likely
to include multiple labels for samples that are difficult to classify, so the set size is indicative of
predictive uncertainty. To see why this effect is exacerbated by small choices for α consider the case
of α = 0, which requires that the true label is covered by the prediction set with probability equal to
one.

4.3 Conformal Counterfactual Explanations

The fact that conformal classifiers produce set-valued predictions introduces a challenge: it is not
immediately obvious how to use such classifiers in the context of gradient-based counterfactual
search. Put differently, it is not clear how to use prediction sets in Equation 1. Fortunately, Stutz et al.
[28] have recently proposed a framework for Conformal Training that also hinges on differentiability.
Specifically, they show how Stochastic Gradient Descent can be used to train classifiers not only
for the discriminative task but also for additional objectives related to Conformal Prediction. One
such objective is efficiency: for a given target error rate alpha, the efficiency of a conformal classifier
improves as its average prediction set size decreases. To this end, the authors introduce a smooth set
size penalty,

Ω(Cθ(x;α)) = max

0,
∑
y∈Y

Cθ,y(xi;α)− κ

 (6)

where κ ∈ {0, 1} is a hyper-parameter and Cθ,y(xi;α) can be interpreted as the probability of label y
being included in the prediction set. Formally, it is defined as Cθ,y(xi;α) := σ

(
(s(xi,y)− α)T−1

)
for y ∈ Y where σ is the sigmoid function and T is a hyper-parameter used for temperature scaling
[28].
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Penalizing the set size in this way is in principal enough to train efficient conformal classifiers [28].
As we explained above, the set size is also closely linked to predictive uncertainty at the local level.
This makes the smooth penalty defined in Equation 6 useful in the context of meeting our objective
of generating plausible counterfactuals. In particular, we adapt Equation 1 to define the baseline
objective for Conformal Counterfactual Explanations (CCE):

Z′ = arg min
Z′∈ZM

{yloss(Mθ(f(Z
′)),y∗) + λΩ(Cθ(f(Z

′);α))} (7)

Since we can still retrieve unperturbed softmax outputs from our conformal classifier Mθ, we are free
to work with any loss function of our choice. For example, we could use standard cross-entropy for
yloss.

In order to generate prediction sets Cθ(f(Z
′);α) for any Black Box Model we merely need to

perform a single calibration pass through a holdout set Dcal. Arguably, data is typically abundant and
in most applications practitioners tend to hold out a test data set anyway. Our proposed approach
for CCE therefore removes the restriction on the family of predictive models, at the small cost of
reserving a subset of the available data for calibration.

5 Experiments

6 Discussion

Consistent with the findings in Schut et al. [26], we have demonstrated that predictive uncertainty
estimates can be leveraged to generate plausible counterfactuals. Interestingly, Schut et al. [26]
point out that this finding — as intuitive as it is — may be linked to a positive connection between
the generative task and predictive uncertainty quantification. In particular, Grathwohl et al. [9]
demonstrate that their proposed method for integrating the generative objective in training yields
models that have improved predictive uncertainty quantification. Since neither Schut et al. [26] nor
we have employed any surrogate generative models, our findings seem to indicate that the positive
connection found in Grathwohl et al. [9] is bidirectional.
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7 Submission of papers to NeurIPS 2023

Please read the instructions below carefully and follow them faithfully.

7.1 Style

Papers to be submitted to NeurIPS 2023 must be prepared according to the instructions presented
here. Papers may only be up to nine pages long, including figures. Additional pages containing only
acknowledgments and references are allowed. Papers that exceed the page limit will not be reviewed,
or in any other way considered for presentation at the conference.

The margins in 2023 are the same as those in previous years.

Authors are required to use the NeurIPS LATEX style files obtainable at the NeurIPS website as
indicated below. Please make sure you use the current files and not previous versions. Tweaking the
style files may be grounds for rejection.

7.2 Retrieval of style files

The style files for NeurIPS and other conference information are available on the website at

http://www.neurips.cc/

The file neurips_2023.pdf contains these instructions and illustrates the various formatting re-
quirements your NeurIPS paper must satisfy.

The only supported style file for NeurIPS 2023 is neurips_2023.sty, rewritten for LATEX 2ε.
Previous style files for LATEX 2.09, Microsoft Word, and RTF are no longer supported!

The LATEX style file contains three optional arguments: final, which creates a camera-ready copy,
preprint, which creates a preprint for submission to, e.g., arXiv, and nonatbib, which will not
load the natbib package for you in case of package clash.
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Preprint option If you wish to post a preprint of your work online, e.g., on arXiv, using the
NeurIPS style, please use the preprint option. This will create a nonanonymized version of your
work with the text “Preprint. Work in progress.” in the footer. This version may be distributed as you
see fit, as long as you do not say which conference it was submitted to. Please do not use the final
option, which should only be used for papers accepted to NeurIPS.

At submission time, please omit the final and preprint options. This will anonymize your
submission and add line numbers to aid review. Please do not refer to these line numbers in your
paper as they will be removed during generation of camera-ready copies.

The file neurips_2023.tex may be used as a “shell” for writing your paper. All you have to do is
replace the author, title, abstract, and text of the paper with your own.

The formatting instructions contained in these style files are summarized in Sections 8, 9, and 10
below.

8 General formatting instructions

The text must be confined within a rectangle 5.5 inches (33 picas) wide and 9 inches (54 picas) long.
The left margin is 1.5 inch (9 picas). Use 10 point type with a vertical spacing (leading) of 11 points.
Times New Roman is the preferred typeface throughout, and will be selected for you by default.
Paragraphs are separated by 1/2 line space (5.5 points), with no indentation.

The paper title should be 17 point, initial caps/lower case, bold, centered between two horizontal
rules. The top rule should be 4 points thick and the bottom rule should be 1 point thick. Allow 1/4 inch
space above and below the title to rules. All pages should start at 1 inch (6 picas) from the top of the
page.

For the final version, authors’ names are set in boldface, and each name is centered above the
corresponding address. The lead author’s name is to be listed first (left-most), and the co-authors’
names (if different address) are set to follow. If there is only one co-author, list both author and
co-author side by side.

Please pay special attention to the instructions in Section 10 regarding figures, tables, acknowledg-
ments, and references.

9 Headings: first level

All headings should be lower case (except for first word and proper nouns), flush left, and bold.

First-level headings should be in 12-point type.

9.1 Headings: second level

Second-level headings should be in 10-point type.

9.1.1 Headings: third level

Third-level headings should be in 10-point type.

Paragraphs There is also a \paragraph command available, which sets the heading in bold, flush
left, and inline with the text, with the heading followed by 1 em of space.

10 Citations, figures, tables, references

These instructions apply to everyone.
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10.1 Citations within the text

The natbib package will be loaded for you by default. Citations may be author/year or numeric, as
long as you maintain internal consistency. As to the format of the references themselves, any style is
acceptable as long as it is used consistently.

The documentation for natbib may be found at

http://mirrors.ctan.org/macros/latex/contrib/natbib/natnotes.pdf

Of note is the command \citet, which produces citations appropriate for use in inline text. For
example,

\citet{hasselmo} investigated\dots

produces

Hasselmo, et al. (1995) investigated. . .

If you wish to load the natbib package with options, you may add the following before loading the
neurips_2023 package:

\PassOptionsToPackage{options}{natbib}

If natbib clashes with another package you load, you can add the optional argument nonatbib
when loading the style file:

\usepackage[nonatbib]{neurips_2023}

As submission is double blind, refer to your own published work in the third person. That is, use “In
the previous work of Jones et al. [4],” not “In our previous work [4].” If you cite your other papers
that are not widely available (e.g., a journal paper under review), use anonymous author names in the
citation, e.g., an author of the form “A. Anonymous” and include a copy of the anonymized paper in
the supplementary material.

10.2 Footnotes

Footnotes should be used sparingly. If you do require a footnote, indicate footnotes with a number2

in the text. Place the footnotes at the bottom of the page on which they appear. Precede the footnote
with a horizontal rule of 2 inches (12 picas).

Note that footnotes are properly typeset after punctuation marks.3

10.3 Figures

All artwork must be neat, clean, and legible. Lines should be dark enough for purposes of reproduction.
The figure number and caption always appear after the figure. Place one line space before the figure
caption and one line space after the figure. The figure caption should be lower case (except for first
word and proper nouns); figures are numbered consecutively.

You may use color figures. However, it is best for the figure captions and the paper body to be legible
if the paper is printed in either black/white or in color.

10.4 Tables

All tables must be centered, neat, clean and legible. The table number and title always appear before
the table. See Table 1.

Place one line space before the table title, one line space after the table title, and one line space after
the table. The table title must be lower case (except for first word and proper nouns); tables are
numbered consecutively.

2Sample of the first footnote.
3As in this example.
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Figure 3: Sample figure caption.

Table 1: Sample table title

Part

Name Description Size (µm)

Dendrite Input terminal ∼100
Axon Output terminal ∼10
Soma Cell body up to 106

Note that publication-quality tables do not contain vertical rules. We strongly suggest the use of the
booktabs package, which allows for typesetting high-quality, professional tables:

https://www.ctan.org/pkg/booktabs

This package was used to typeset Table 1.

10.5 Math

Note that display math in bare TeX commands will not create correct line numbers for sub-
mission. Please use LaTeX (or AMSTeX) commands for unnumbered display math. (You
really shouldn’t be using $$ anyway; see https://tex.stackexchange.com/questions/
503/why-is-preferable-to and https://tex.stackexchange.com/questions/40492/
what-are-the-differences-between-align-equation-and-displaymath for more infor-
mation.)

10.6 Final instructions

Do not change any aspects of the formatting parameters in the style files. In particular, do not modify
the width or length of the rectangle the text should fit into, and do not change font sizes (except
perhaps in the References section; see below). Please note that pages should be numbered.

11 Preparing PDF files

Please prepare submission files with paper size “US Letter,” and not, for example, “A4.”

Fonts were the main cause of problems in the past years. Your PDF file must only contain Type 1 or
Embedded TrueType fonts. Here are a few instructions to achieve this.

• You should directly generate PDF files using pdflatex.

• You can check which fonts a PDF files uses. In Acrobat Reader, select the menu
Files>Document Properties>Fonts and select Show All Fonts. You can also use the program
pdffonts which comes with xpdf and is available out-of-the-box on most Linux machines.

• xfig "patterned" shapes are implemented with bitmap fonts. Use "solid" shapes instead.
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• The \bbold package almost always uses bitmap fonts. You should use the equivalent AMS
Fonts:

\usepackage{amsfonts}

followed by, e.g., \mathbb{R}, \mathbb{N}, or \mathbb{C} for R, N or C. You can also
use the following workaround for reals, natural and complex:

\newcommand{\RR}{I\!\!R} %real numbers
\newcommand{\Nat}{I\!\!N} %natural numbers
\newcommand{\CC}{I\!\!\!\!C} %complex numbers

Note that amsfonts is automatically loaded by the amssymb package.

If your file contains type 3 fonts or non embedded TrueType fonts, we will ask you to fix it.

11.1 Margins in LATEX

Most of the margin problems come from figures positioned by hand using \special or other
commands. We suggest using the command \includegraphics from the graphicx package.
Always specify the figure width as a multiple of the line width as in the example below:

\usepackage[pdftex]{graphicx} ...
\includegraphics[width=0.8\linewidth]{myfile.pdf}

See Section 4.4 in the graphics bundle documentation (http://mirrors.ctan.org/macros/
latex/required/graphics/grfguide.pdf)

A number of width problems arise when LATEX cannot properly hyphenate a line. Please give LaTeX
hyphenation hints using the \- command when necessary.

Acknowledgments and Disclosure of Funding

Use unnumbered first level headings for the acknowledgments. All acknowledgments go at the
end of the paper before the list of references. Moreover, you are required to declare funding
(financial activities supporting the submitted work) and competing interests (related financial activities
outside the submitted work). More information about this disclosure can be found at: https:
//neurips.cc/Conferences/2023/PaperInformation/FundingDisclosure.

Do not include this section in the anonymized submission, only in the final paper. You can use
the ack environment provided in the style file to autmoatically hide this section in the anonymized
submission.

12 Supplementary Material

Authors may wish to optionally include extra information (complete proofs, additional experiments
and plots) in the appendix. All such materials should be part of the supplemental material (submitted
separately) and should NOT be included in the main submission.

References

References follow the acknowledgments in the camera-ready paper. Use unnumbered first-level
heading for the references. Any choice of citation style is acceptable as long as you are consistent. It
is permissible to reduce the font size to small (9 point) when listing the references. Note that the
Reference section does not count towards the page limit.

[1] Alexander, J.A. & Mozer, M.C. (1995) Template-based algorithms for connectionist rule extraction. In
G. Tesauro, D.S. Touretzky and T.K. Leen (eds.), Advances in Neural Information Processing Systems 7, pp.
609–616. Cambridge, MA: MIT Press.

[2] Bower, J.M. & Beeman, D. (1995) The Book of GENESIS: Exploring Realistic Neural Models with the
GEneral NEural SImulation System. New York: TELOS/Springer–Verlag.

13

http://mirrors.ctan.org/macros/latex/required/graphics/grfguide.pdf
http://mirrors.ctan.org/macros/latex/required/graphics/grfguide.pdf
https://neurips.cc/Conferences/2023/PaperInformation/FundingDisclosure
https://neurips.cc/Conferences/2023/PaperInformation/FundingDisclosure


[3] Hasselmo, M.E., Schnell, E. & Barkai, E. (1995) Dynamics of learning and recall at excitatory recurrent
synapses and cholinergic modulation in rat hippocampal region CA3. Journal of Neuroscience 15(7):5249-5262.

14


	Introduction
	From Adversarial Examples to Plausible Explanations
	Evaluating the Faithfulness of Counterfactuals
	From Fidelity to Model Conformity
	Evaluation Measures

	A Framework for Conformal Counterfactual Explanations
	Plausible Counterfactuals through Minimal Uncertainty
	Conformal Prediction
	Conformal Counterfactual Explanations

	Experiments
	Discussion
	Submission of papers to NeurIPS 2023
	Style
	Retrieval of style files

	General formatting instructions
	Headings: first level
	Headings: second level
	Headings: third level


	Citations, figures, tables, references
	Citations within the text
	Footnotes
	Figures
	Tables
	Math
	Final instructions

	Preparing PDF files
	Margins in LaTeX

	Supplementary Material

