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Abstract

Counterfactual Explanations offer an intuitive and straight-
forward way to explain black-box models and offer Algorith-
mic Recourse to individuals. To address the need for plausi-
ble explanations, existing work has primarily relied on surro-
gate models to learn how the input data is distributed. This
effectively reallocates the task of learning realistic explana-
tions for the data from the model itself to the surrogate. Con-
sequently, the generated explanations may seem plausible to
humans but need not necessarily describe the behaviour of the
black-box model faithfully. We formalise this notion of faith-
fulness through the introduction of a tailored evaluation met-
ric and propose a novel algorithmic framework for generating
Energy-Constrained Conformal Counterfactuals (ECCCos)
that are only as plausible as the model permits. Through ex-
tensive empirical studies, we demonstrate that ECCCos rec-
oncile the need for faithfulness and plausibility. In particular,
we show that for models with gradient access, it is possible
to achieve state-of-the-art performance without the need for
surrogate models. To do so, our framework relies solely on
properties defining the black-box model itself by leveraging
recent advances in Energy-Based Modelling and Conformal
Prediction. To our knowledge, this is the first venture in this
direction for generating faithful Counterfactual Explanations.
Thus, we anticipate that ECCCos can serve as a baseline for
future research. We believe that our work opens avenues for
researchers and practitioners seeking tools to better distin-
guish trustworthy from unreliable models.

Introduction

Counterfactual Explanations (CE) provide a powerful, flex-
ible and intuitive way to not only explain black-box models
but also help affected individuals through the means of Al-
gorithmic Recourse. Instead of opening the Black Box, CE
works under the premise of strategically perturbing model
inputs to understand model behaviour (Wachter, Mittelstadt,
and Russell 2017). Intuitively speaking, we generate expla-
nations in this context by asking what-if questions of the
following nature: ‘Our credit risk model currently predicts
that this individual is not credit-worthy. What if they reduced
their monthly expenditures by 10%?’

This is typically implemented by defining a target out-
come y™ € Y for some individual x € X = RP described
by D attributes, for which the model My : X — ) ini-
tially predicts a different outcome: My(x) # y ™. Counter-
factuals are then searched by minimizing a loss function that

compares the predicted model output to the target outcome:
yloss(Mpy(x),y ™). Since CE work directly with the black-
box model, valid counterfactuals always have full local fi-
delity by construction where fidelity is defined as the de-
gree to which explanations approximate the predictions of a
black-box model (Mothilal, Sharma, and Tan 2020; Molnar
2020).

In situations where full fidelity is a requirement, CE
offer a more appropriate solution to Explainable Arti-
ficial Intelligence (XAI) than other popular approaches
like LIME (Ribeiro, Singh, and Guestrin 2016) and
SHAP (Lundberg and Lee 2017), which involve local sur-
rogate models. But even full fidelity is not a sufficient con-
dition for ensuring that an explanation faithfully describes
the behaviour of a model. That is because multiple very dis-
tinct explanations can all lead to the same model prediction,
especially when dealing with heavily parameterized models
like deep neural networks, which are typically underspeci-
fied by the data (Wilson 2020).

In the context of CE, the idea that no two explanations are
the same arises almost naturally. A key focus in the literature
has therefore been to identify those explanations and algo-
rithmic recourses that are most appropriate based on a myr-
iad of desiderata such as sparsity, actionability and plausibil-
ity. In this work, we draw closer attention to model faithful-
ness rather than fidelity as a desideratum for counterfactuals.
Our key contributions are as follows:

* We show that fidelity is an insufficient evaluation metric
for counterfactuals (Section ) and propose a definition of
faithfulness that gives rise to more suitable metrics (Sec-
tion ).

* We introduce a novel algorithmic approach for gen-
erating Energy-Constrained Conformal Counterfactuals
(ECCCos) in Section .

* We provide extensive empirical evidence demonstrating
that ECCCos faithfully explain model behaviour and at-
tain plausibility only when appropriate (Section ).

To our knowledge, this is the first venture in this direc-
tion for generating faithful counterfactuals. Thus, we antici-
pate that ECCCos can serve as a baseline for future research.
We believe that our work opens avenues for researchers and
practitioners seeking tools to better distinguish trustworthy
from unreliable models.



Background

While CE can also be generated for arbitrary regression
models (Spooner et al. 2021), existing work has primarily
focused on classification problems. Let ) = (0,1)% denote
the one-hot-encoded output domain with K classes. Then
most counterfactual generators rely on gradient descent to
optimize different flavours of the following counterfactual
search objective:

Z' = arg ZrlréiélL {yloss(My(f(Z')),y") + Acost(f(Z"))}
(€]

Here yloss(+) denotes the primary loss function, f(-) is a
function that maps from the counterfactual state space to the
feature space and cost(-) is either a single penalty or a collec-
tion of penalties that are used to impose constraints through
regularization. Equation 1 restates the baseline approach to
gradient-based counterfactual search proposed by Wachter,
Mittelstadt, and Russell (2017) in general form as intro-
duced by Altmeyer et al. (2023). To explicitly account for
the multiplicity of explanations, Z' = {z;} denotes an L-
dimensional array of counterfactual states.

The baseline approach, which we will simply refer to as
Wachter, searches a single counterfactual directly in the fea-
ture space and penalises its distance to the original factual.
In this case, f(-) is simply the identity function and Z cor-
responds to the feature space itself. Many derivative works
of Wachter, Mittelstadt, and Russell (2017) have proposed
new flavours of Equation 1, each of them designed to ad-
dress specific desiderata that counterfactuals ought to meet
in order to properly serve both Al practitioners and individ-
uals affected by algorithmic decision-making systems. The
list of desiderata includes but is not limited to the follow-
ing: sparsity, proximity (Wachter, Mittelstadt, and Russell
2017), actionability (Ustun, Spangher, and Liu 2019), diver-
sity (Mothilal, Sharma, and Tan 2020), plausibility (Joshi
et al. 2019; Poyiadzi et al. 2020; Schut et al. 2021), ro-
bustness (Upadhyay, Joshi, and Lakkaraju 2021; Pawelczyk
et al. 2022; Altmeyer et al. 2023) and causality (Karimi,
Scholkopf, and Valera 2021). Different counterfactual gen-
erators addressing these needs have been extensively sur-
veyed and evaluated in various studies (Verma, Dickerson,
and Hines 2020; Karimi et al. 2020; Pawelczyk et al. 2021;
Artelt et al.; Guidotti).

Perhaps unsurprisingly, the different desiderata are of-
ten positively correlated. For example, Artelt et al. find
that plausibility typically also leads to improved robustness.
Similarly, plausibility has also been connected to causality
in the sense that plausible counterfactuals respect causal re-
lationships (Mahajan, Tan, and Sharma). Consequently, the
plausibility of counterfactuals has been among the primary
concerns for researchers. Achieving plausibility is equiv-
alent to ensuring that the generated counterfactuals com-
ply with the true and unobserved data-generating process
(DGP). We define plausibility formally in this work as fol-
lows:

Definition 0.1 (Plausible Counterfactuals). Let X|y* =
p(x|y™) denote the true conditional distribution of samples

in the target class y . Then for x' to be considered a plau-
sible counterfactual, we need: x' ~ X|y™.

To generate plausible counterfactuals, we need to be able
to quantify the DGP: X|y™. One straightforward way to
do this is to use surrogate models for the task. Joshi et al.
(2019), for example, suggest that instead of searching coun-
terfactuals in the feature space X', we can instead traverse
a latent embedding Z (Equation 1) that implicitly codifies
the DGP. To learn the latent embedding, they propose us-
ing a generative model such as a Variational Autoencoder
(VAE). Provided the surrogate model is well-specified, their
proposed approach called REVISE can yield plausible ex-
planations. Others have proposed similar approaches: Dom-
browski, Gerken, and Kessel (2021) traverse the base space
of a normalizing flow to solve Equation 1; Poyiadzi et al.
(2020) use density estimators (p : X +— [0,1]) to constrain
the counterfactuals to dense regions in the feature space;
and, finally, Karimi, Scholkopf, and Valera (2021) assume
knowledge about the structural causal model that generates
the data.

A competing approach towards plausibility that is also
closely related to this work instead relies on the black-
box model itself. Schut et al. (2021) show that to meet
the plausibility objective we need not explicitly model the
input distribution. Pointing to the undesirable engineering
overhead induced by surrogate models, they propose that
we rely on the implicit minimisation of predictive uncer-
tainty instead. Their proposed methodology, which we will
refer to as Schut, solves Equation 1 by greedily applying
Jacobian-Based Saliency Map Attacks (JSMA) in the feature
space with cross-entropy loss and no penalty at all. The au-
thors demonstrate theoretically and empirically that their ap-
proach yields counterfactuals for which the model My pre-
dicts the target label y™ with high confidence. Provided the
model is well-specified, these counterfactuals are plausible.
This idea hinges on the assumption that the black-box model
provides well-calibrated predictive uncertainty estimates.

Why Fidelity is not Enough

As discussed in the introduction, any valid counterfactual
also has full fidelity by construction: solutions to Equation 1
are considered valid as soon as the label predicted by the
model matches the target class. So while fidelity always ap-
plies, counterfactuals that address the various desiderata in-
troduced above can look vastly different from each other.
To demonstrate this with an example, we have trained
a simple image classifier My on the well-known MNIST
dataset (LeCun 1998): a Multi-Layer Perceptron (MLP) with
above 90 percent test accuracy. No measures have been
taken to improve the model’s adversarial robustness or its ca-
pacity for predictive uncertainty quantification. The far left
panel of Figure 1 shows a random sample drawn from the
dataset. The underlying classifier correctly predicts the la-
bel ‘nine’ for this image. For the given factual image and
model, we have used Wachter, Schut and REVISE to gener-
ate one counterfactual each in the target class ‘seven’. The
perturbed images are shown next to the factual image from
left to right in Figure 1. Captions on top of the individual
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Figure 1: Counterfactuals for turning a 9 (nine) into a 7
(seven): original image (left); then from left to right the
counterfactuals generated using Wachter, Schut and RE-
VISE.

images indicate the generator along with the predicted prob-
ability that the image belongs to the target class. In all three
cases that probability is above 90 percent and yet the coun-
terfactuals look very different from each other.

Since Wachter is only concerned with proximity, the gen-
erated counterfactual is almost indistinguishable from the
factual. The approach by Schut et al. (2021) expects a well-
calibrated model that can generate predictive uncertainty es-
timates. Since this is not the case, the generated counter-
factual looks like an adversarial example. Finally, the coun-
terfactual generated by REVISE looks much more plausible
than the other two. But is it also more faithful to the be-
haviour of our MNIST classifier? That is much less clear be-
cause the surrogate used by REVISE introduces friction: the
generated explanations no longer depend exclusively on the
black-box model itself.

So which of the counterfactuals most faithfully explains
the behaviour of our image classifier? Fidelity cannot help us
to make that judgement, because all of these counterfactuals
have full fidelity. Thus, fidelity is an insufficient evaluation
metric to assess the faithfulness of CE.

A New Notion of Faithfulness

Considering the limitations of fidelity as demonstrated in the
previous section, analogous to Definition 0.1, we introduce
a new notion of faithfulness in the context of CE:

Definition 0.2 (Faithful Counterfactuals). Let Xp|ly™ =
po(x|y™) denote the conditional distribution of x in the tar-
get class y ™, where 0 denotes the parameters of model My.
Then for X' to be considered a faithful counterfactual, we
need: x' ~ Xyly™.

In doing this, we merge in and nuance the concept of
plausibility (Definition 0.1) where the notion of ‘consistent
with the data’ becomes ‘consistent with what the model has
learned about the data’.

Quantifying the Model’s Generative Property

To assess counterfactuals with respect to Definition 0.2, we
need a way to quantify the posterior conditional distribu-
tion pg(x|yT). To this end, we draw on recent advances in
Energy-Based Modelling (EBM), a subdomain of machine
learning that is concerned with generative or hybrid mod-
elling (Grathwohl et al. 2020; Du and Mordatch). In partic-
ular, note that if we fix y to our target value y*, we can
conditionally draw from pg(x|y™) by randomly initializing
Xo and then using Stochastic Gradient Langevin Dynamics
(SGLD) as follows,

2

€
Xj+1 < X5 — 55(Xj|y+) + €rj, ] = 17 vy J (2)

where r; ~ N(0,1) is the stochastic term and the step-
size € is typically polynomially decayed (Welling and Teh).
The term &(x,|y™) denotes the model energy conditioned
on the target class label y™ which we specify as the negative
logit corresponding to the target class label y*. To allow for
faster sampling, we follow the common practice of choosing
the step-size € and the standard deviation of r; separately.
While x; is only guaranteed to distribute as py(x|y™*) if
€ — 0 and J — oo, the bias introduced for a small finite € is
negligible in practice (Murphy; Grathwohl et al. 2020). Ap-
pendix provides additional implementation details for any
tasks related to energy-based modelling.

Generating multiple samples using SGLD thus yields an
empirical distribution Xe,y+ that approximates what the
model has learned about the input data. While in the context
of EBM, this is usually done during training, we propose to
repurpose this approach during inference in order to evaluate
and generate faithful model explanations.

Evaluating Plausibility and Faithfulness

The parallels between our definitions of plausibility and
faithfulness imply that we can also use similar evaluation
metrics in both cases. Since existing work has focused heav-
ily on plausibility, it offers a useful starting point. In par-
ticular, Guidotti have proposed an implausibility metric that
measures the distance of the counterfactual from its near-
est neighbour in the target class. As this distance is reduced,
counterfactuals get more plausible under the assumption that
the nearest neighbour itself is plausible in the sense of Def-
inition 0.1. In this work, we use the following adapted im-
plausibility metric,

1
impl(><’,Xy+):m E dist(x’, x) 3)
y

XEXy+

where x’ denotes the counterfactual and X+ is a subsam-
ple of the training data in the target class y*. By averaging
over multiple samples in this manner, we avoid the risk that
the nearest neighbour of x’ itself is not plausible according
to Definition 0.1 (e.g an outlier).

Equation 3 gives rise to a similar evaluation metric for
unfaithfulness. We merely swap out the subsample of indi-
viduals in the target class for a subset ng; . of the generated
conditional samples:

- 1
unfaith(x’, X3% ) = DA(T Z dist(x’, x)

. “)
0,yt+ ‘ XEXQ§+
Specifically, we form this subset based on the ng gener-
ated samples with the lowest energy.



Energy-Constrained Conformal
Counterfactuals

In this section, we describe ECCCo, our proposed frame-
work for generating Energy-Constrained Conformal Coun-
terfactuals (ECCCos). It is based on the premise that coun-
terfactuals should first and foremost be faithful. Plausibility,
as a secondary concern, is then still attainable, but only to
the degree that the black-box model itself has learned plau-
sible explanations for the underlying data.

We begin by stating our proposed objective function,
which involves tailored loss and penalty functions that we
will explain in the following. In particular, we extend Equa-
tion 1 as follows:

2/ = arg_min {yloss(Ma(f(Z)),y") + Mdist(f(Z'),x)

+ Aqunfaith(f(Z), X22 ) + A3Q(Cy(f(Z'); )

0,y+
&)

The first penalty term involving A; induces proximity
like in Wachter, Mittelstadt, and Russell (2017). Our de-
fault choice for dist(-) is the L1 Norm due to its sparsity-
inducing properties. The second penalty term involving Ao
induces faithfulness by constraining the energy of the gener-
ated counterfactual where unfaith(-) corresponds to the met-
ric defined in Equation 4. The third and final penalty term
involving A3 introduces a new concept: it ensures that the
generated counterfactual is associated with low predictive
uncertainty. As mentioned above, Schut et al. (2021) have
shown that plausible counterfactuals can be generated im-
plicitly through predictive uncertainty minimization. Unfor-
tunately, this relies on the assumption that the model itself
can provide predictive uncertainty estimates, which may be
too restrictive in practice.

To relax this assumption, we leverage recent advances in
Conformal Prediction (CP), an approach to predictive uncer-
tainty quantification that has recently gained popularity (An-
gelopoulos and Bates 2021; Manokhin). Crucially for our in-
tended application, CP is model-agnostic and can be applied
during inference without placing any restrictions on model
training. Intuitively, CP works under the premise of turning
heuristic notions of uncertainty into rigorous uncertainty es-
timates by repeatedly sifting through the training data or a
dedicated calibration dataset. Conformal classifiers produce
prediction sets for individual inputs that include all output
labels that can be reasonably attributed to the input. These
sets tend to be larger for inputs that do not conform with the
training data and are characterized by high predictive uncer-
tainty.

In order to generate counterfactuals that are associated
with low predictive uncertainty, we use a smooth set size
penalty introduced by Stutz et al. (2022) in the context of
conformal training:

Q(Cy(x;0)) =max | 0, Z Coy(xisa) — K (6)
yeY

Here, k € {0,1} is a hyper-parameter and Cpy y (x;; cv)
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Figure 2: Gradient fields and counterfactual paths for differ-
ent generators. The objective is to generate a counterfual in
the ‘blue’ class for a sample from the ‘orange’ class. Bright
yellow stars indicate conditional samples generated through
SGLD. The underlying classifier is a Joint Energy Model.

can be interpreted as the probability of label y being in-
cluded in the prediction set. In order to compute this penalty
for any black-box model we merely need to perform a sin-
le calibration pass through a holdout set D.,. Arguably,
ta is typically abundant and in most applications, practi-
tioners tend to hold out a test data set anyway. Consequently,
CP removes the restriction on the family of predictive mod-
els, at the small cost of reserving a subset of the available
data for calibration. This particular case of conformal pre-
diction is referred to as Split Conformal Prediction (SCP) as
it involves splitting the training data into a proper training
dataset and a calibration dataset. In addition to the smooth
set size penalty, we have also experimented with the use of
a tailored function for yloss(-) that enforces that only the
target label y T is included in the prediction set Stutz et al.
(2022). Further details are provided in Appendix .

Algorithm 1 The ECCCo generator

Input: X, y+» M97 f7 A = [)\17 )‘27 )\5]7 «, Du Ta nnp,NE
where My(x) # y*
Output: x’
1: Initialize z’ < f~!(x)
space.
2: Generate {Xg y+ }nB < po(Xy+)
samples using SGLD (Equation 2).
3: Store Xg”’;+ — {Xpy+ }nB
lowest-energy samples.
4: Run SCP for My using D
Split Conformal Prediction.
5: Initialize £ +— 0
6: while not converged ort < T do
conditions see Appendix .
7: z 7z —nVuL(z,yT, Xg-ji'*;A’ Q)
gradient step of size 7. /
8: t—t+1
9: end while
10: X' « f(z')

> Map to counterfactual state

> Generate ng

> Choose ng

> Calibrate model through

> For convergence

> Take

> Map back to feature space.

To provide some further intuition about our objective de-
fined in Equation 5, Figure 2 illustrates how the different
components affect the counterfactual search for a synthetic
dataset. The underlying classifier is a Joint Energy Model
(JEM) that was trained to predict the output class (‘blue’
or ‘orange’) and generate class-conditional samples (Grath-



wohl et al. 2020). We have used four different generator
flavours to produce a counterfactual in the ‘blue’ class for
a sample from the ‘orange’ class: Wachter, which only uses
the first penalty (Ay = A3 = 0); ECCCo (no EBM), which
does not constrain energy (A; = 0); ECCCo (no CP), which
involves no set size penalty (A3 = 0); and, finally, ECCCo,
which involves all penalties defined in Equation 5. Arrows
indicate (negative) gradients with respect to the objective
function at different points in the feature space.

While Wachter generates a valid counterfactual, it ends
up close to the original starting point consistent with its ob-
jective. ECCCo (no EBM) pushes the counterfactual further
into the target domain to minimize predictive uncertainty,
but the outcome is still not plausible. The counterfactual pro-
duced by ECCCo (no CP) is attracted by the generated sam-
ples shown in bright yellow. Since the JEM has learned the
conditional input distribution reasonably well in this case,
the counterfactuals are both faithful and plausible. Finally,
the outcome for ECCCo looks similar, but the additional
smooth set size penalty leads to somewhat faster conver-
gence.

Algorithm 1 describes how exactly ECCCo works. For
the sake of simplicity and without loss of generality, we
limit our attention to generating a single counterfactual x’ =
f(2'). The counterfactual state z’ is initialized by passing the
factual x through a simple feature transformer f~!. Next,
we generate np conditional samples Xy ,+ using SGLD
(Equation 2) and store the n g instances with the lowest en-
ergy. We then calibrate the model My through Split Confor-

mal Prediction. Finally, we search counterfactuals through
gradient descent where £(z',y ™, XZ‘; +; A, ) denotes our
loss function defined in Equation 5. The search terminates
once the convergence criterium is met or the maximum num-
ber of iterations 7" has been exhausted. Note that the choice
of convergence criterium has important implications on the

final counterfactual which we explain in Appendix .

Empirical Analysis
Our goal in this section is to shed light on the following re-
search questions:

Research Question 0.1 (Faithfulness). Are ECCCos more
faithful than counterfactuals produced by our benchmark
generators?

Research Question 0.2 (Balancing Objectives). Compared
to our benchmark generators, how do ECCCos balance the
two key objectives of faithfulness and plausibility?

The second question is motivated by the intuition that
faithfulness and plausibility should coincide for models that
have learned plausible explanations of the data. Next, we
first briefly describe our experimental setup before present-
ing our main results.

Experimental Setup

To assess and benchmark the performance of our proposed
generator against the state of the art, we generate multiple
counterfactuals for different models and datasets. In par-
ticular, we compare ECCCo and its variants to the follow-
ing counterfactual generators that were introduced above:

firstly; Schut, which works under the premise of minimiz-
ing predictive uncertainty; secondly, REVISE, which is state-
of-the-art with respect to plausibility; and, finally, Wachter,
which serves as our baseline.

We use both synthetic and real-world datasets from dif-
ferent domains, all of which are publicly available and
commonly used to train and benchmark classification algo-
rithms. We synthetically generate a dataset containing two
Linearly Separable Gaussian clusters (n = 1000), as well as
the well-known Circles (n = 1000) and Moons (n = 2500)
data. Since these data are generated by distributions of vary-
ing degrees of complexity, they allow us to assess how the
generators and our proposed evaluation metrics handle this.

As for real-world data, we follow Schut et al. (2021) and
use the MNIST (LeCun 1998) dataset containing images of
handwritten digits such as the example shown above in Fig-
ure 1. From the social sciences domain, we include Give Me
Some Credit (GMSC) (Kaggle 2011): a tabular dataset that
has been studied extensively in the literature on Algorithmic
Recourse (Pawelczyk et al. 2021). It consists of 11 numeric
features that can be used to predict the binary outcome vari-
able indicating whether retail borrowers experience financial
distress.

For the predictive modelling tasks, we use simple neural
networks (MLP) and Joint Energy Models (JEM). For the
more complex real-world datasets we also use ensembling
in each case. Both joint-energy modelling and ensembling
have been associated with improved generative properties
and adversarial robustness (Grathwohl et al. 2020; Laksh-
minarayanan, Pritzel, and Blundell 2016), so we expect this
to be positively correlated with the plausibility of ECCCos.
To account for stochasticity, we generate multiple counter-
factuals for each target class, generator, model and dataset.
Specifically, we randomly sample n~ times from the subset
of individuals for which the given model predicts the non-
target class y~ given the current target. We set n= = 25
for all of our synthetic datasets, n~ = 10 for GMSC and
n~ = b for MNIST. Full details concerning our parameter
choices, training procedures and model performance can be
found in Appendix .

Results for Synthetic Data

Table 1 shows the key results for the synthetic datasets sep-
arated by model (first column) and generator (second col-
umn). The numerical columns show sample averages and
standard deviations of our key evaluation metrics computed
across all counterfactuals. We have highlighted the best out-
come for each model and metric in bold. To provide some
sense of effect sizes, we have added asterisks to indicate that
a given value is at least one (x) or two (xx*) standard devia-
tions lower than the baseline (Wachter).

Starting with the high-level results for our Linearly Sep-
arable data, we find that ECCCo produces the most faithful
counterfactuals for both black-box models. This is consis-
tent with our design since ECCCo directly enforces faithful-
ness through regularization. Crucially though, ECCCo also
produces the most plausible counterfactuals for both mod-
els. This dataset is so simple that even the MLP has learned
plausible explanations of the input data. Zooming in on the



Table 1: Results for synthetic datasets: sample averages
+/- one standard deviation across counterfactuals. Best out-
comes are highlighted in bold. Asterisks indicate that the
given value is more than one (*) or two (**) standard devia-
tions away from the baseline (Wachter).

Table 2: Results for real-world datasets: sample averages
+/- one standard deviation across counterfactuals. Best out-
comes are highlighted in bold. Asterisks indicate that the
given value is more than one (*) or two (**) standard devia-
tions away from the baseline (Wachter).

Lincarly Separable Moons Circles
Model ~ Generator U 1 1L 4 yl U 4 h
ECCCo 0.03+0.06%* . 1.20 £ 015+ 1222046

ECCCo (no CP) 0.03 +0.06** 121+ 0.17+% 121 +0.46

jem  ECCComoEBM)  0.160.11 1.71£0.25 130 +0.37
REVISE 0.19+0.03 1.57+0.26 0.95 +0.32*

Schut 0.39+0.07 1.50 + 0.22* 1.28 +0.53

Wachter 0.18 +0.10 0.80 +0.27 1.78+0.24 0.68 +0.34 133032

ECCCo 0.29 + 0.05%* 0.80 +0.62 1.69 + 0.40 0.65+0.53 117+ 041

ECCCo (no CP) 0.29 £ 0.05%* 0.79 + 0.62 1.68 + 0.42 0.49 £0.35 1,19+ 0.44

MmLp  ECCCo (o EBM)  0460.05 1.34+047 1.68 +0.47 084051 123+031

- REVISE 0.56 +0.05 145044 1.64£0.31 0.58 £0.52 0.95£0.32

Schut 0.43 +0.06% 0. 6 1.45+0.55 1734048 0584037 1234043

‘Wachter 0.51 +0.04 0.40 +0.08 1.32+041 1.69 +0.32 0.83 £0.50 1.24+0.29

granular details for the Linearly Separable data, the results
for ECCCo (no CP) and ECCCo (no EBM) indicate that
the positive results are dominated by the effect of quantify-
ing and leveraging the model’s generative property (EBM).
Conformal Prediction alone only leads to marginally im-
proved faithfulness and plausibility.

The findings for the Moons dataset are broadly in line
with the findings so far: for the JEM, ECCCo yields sub-
stantially more faithful and plausible counterfactuals than
all other generators. For the MLP, faithfulness is maintained
but counterfactuals are not plausible. This high-level pattern
is broadly consistent with other more complex datasets and
supportive of our narrative, so it is worth highlighting: EC-
CCos consistently achieve high faithfulness, which—subject
to the quality of the model itself—coincides with high plau-
sibility. By comparison, REVISE yields the most plausible
counterfactuals for the MLP, but it does so at the cost of
faithfulness. We also observe that the best results for ECCCo
are achieved when using both penalties. Once again though,
the generative component (EBM) has a stronger impact on
the positive results for the JEM.

For the Circles data, it appears that REVISE performs
well, but we note that it generates valid counterfactuals only
half of the time (see Appendix for a complete overview
including additional common evaluation metrics). The un-
derlying VAE with default parameters has not adequately
learned the data-generating process. Of course, it is possible
to improve generative performance through hyperparameter
tuning but this example serves to illustrate that REVISE de-
pends on the quality of its surrogate. Independent of the out-
come for REVISE, however, the results do not seem to in-
dicate that ECCCo substantially improves faithfulness and
plausibility for the Circles data. We think this points to a
limitation of our evaluation metrics rather than ECCCo it-
self: computing average distances fails to account for the
‘wraparound’ effect associated with circular data (Gill and
Hangartner).

Results for Real-World Data

The results for our real-world datasets are shown in Ta-
ble 2. Once again the findings indicate that the plausibil-
ity of ECCCos is positively correlated with the capacity of
the black-box model to distinguish plausible from implausi-
ble inputs. The case is very clear for MNIST: ECCCos are

MNIST GMSC
Model Generator ~ Unfaithfulness | Implausibility |~ Unfaithfulness | ~ Implausibility |
ECCCo 19.28 £5.01%*%  314.76 + 32.36* 79.16 £ 11.67**F  18.26 + 4.92%*
JEM REVISE  188.70 £26.18% 25526 + 41.50** 186.40 + 28.06 5.34 £2.38"*
Schut 211.62+27.13 290.56 +40.66*  200.98 + 28.49 6.50 £ 2.01%*

‘Wachter 222.90 +26.56 361.88 +39.74 214.08 +£45.35 61.04 £2.58
ECCCo 15.99 +£3.06%*  294.72 +30.75%*  83.28 + 13.26%* 17.21 £ 4.46%*

JEM Ensemble REVISE  173.59 +20.65%*  246.32 + 37.46** 194.24 +35.41 4.95 £ 1.26**
Schut 204.36 +23.14 290.64 +£39.49%  208.45 + 34.60 6.12+ 1.91%*
‘Wachter 217.67 £23.78 363.23 +39.24 186.19 + 33.88 60.70 + 44.32

ECCCo 41.95 £ 6.50**  591.58 +36.24
REVISE  365.82+15.35%  249.49 +41.55%% 196.75 +41.25

75.93 £ 14.27** 17.20 £ 3.15%*
4.84 £ 0.60%*

MLP Schut 37966+ 1716 290.07+42.65%  20200+41.15 644+ 1345
Wachter  386.05+ 1660 361834218 2183445326  45.84+39.39

ECCCo  3143£391%%  49088427.19 7386+ 14.63%*  17.92+4.17+

MLP Ensembie REVISE 3377421189  247.6753836™ 2072144320  578%2.10%

: Schut 35480+ 1305  285.79+4133*%  20536+3211 7.0+ 2.15%

Wachter 360.79 + 14.39 357.73 £42.55 213.71 £54.17 73.09 £ 64.50

consistently more faithful than the counterfactuals produced
by our benchmark generators and their plausibility gradually
improves through ensembling and joint-energy modelling.
Interestingly, faithfulness also gradually improves for RE-
VISE. This indicates that as our models improve, their gen-
erative capacity approaches that of the surrogate VAE used
by REVISE. The VAE still outperforms our classifiers in
this regard, as evident from the fact that ECCCo never quite
reaches the same level of plausibility as REVISE. With refer-
ence to Appendix we note that the results for Schut need to
be discounted as it rarely produces valid counterfactuals for
MNIST. Relatedly, we find that ECCCo is the only genera-
tor that consistently achieves full validity. Finally, it is worth
noting that ECCCo produces counterfactual images with the
lowest average predictive uncertainty for all models.

For the tabular credit dataset (GMSC) it is inherently chal-
lenging to use deep neural networks in order to achieve
good discriminative performance (Borisov et al. 2021; Grin-
sztajn, Oyallon, and Varoquaux 2022) and generative per-
formance (Liu et al.), respectively. In order to achieve
high plausibility, ECCCo effectively requires classifiers to
achieve good performance for both tasks. Since this is a
challenging task even for Joint Energy Models, it is not sur-
prising to find that even though ECCCo once again achieves
state-of-the-art faithfulness, it is outperformed by REVISE
and Schut with respect to plausibility.

Key Takeways

To conclude this section, we summarize our findings with
reference to the opening questions. The results clearly
demonstrate that ECCCo consistently achieves state-of-the-
art faithfulness, as it was designed to do (Research Ques-
tion 0.1). A related important finding is that ECCCo yields
highly plausible explanations provided that they faithfully
describe model behaviour (Research Question 0.2). ECCCo
achieves this result primarily by leveraging the model’s gen-
erative property.



Limitations

Even though we have taken considerable measures to study
our proposed methodology carefully, limitations can still be
identified. In particular, we have found that the performance
of ECCCo is sensitive to hyperparameter choices. In order
to achieve faithfulness, we generally had to penalise the dis-
tance from generated samples slightly more than the dis-
tance from factual values.

Conversely, we have not found that strongly penalising
prediction set sizes had any discernable effect. Our results
indicate that CP alone is often not sufficient to achieve faith-
fulness and plausibility, although we acknowledge that this
needs to be investigated more thoroughly through future
work.

While our approach is readily applicable to models with
gradient access like deep neural networks, more work is
needed to generalise it to other machine learning models
such as decision trees. Relatedly, common challenges asso-
ciated with Energy-Based Modelling including sensitivity to
scale, training instabilities and sensitivity to hyperparame-
ters also apply to ECCCo.

Conclusion

This work leverages recent advances in Energy-Based Mod-
elling and Conformal Prediction in the context of Explain-
able Artificial Intelligence. We have proposed a new way to
generate counterfactuals that are maximally faithful to the
black-box model they aim to explain. Our proposed genera-
tor, ECCCo, produces plausible counterfactuals if and only
if the black-box model itself has learned realistic explana-
tions for the data, which we have demonstrated through rig-
orous empirical analysis. This should enable researchers and
practitioners to use counterfactuals in order to discern trust-
worthy models from unreliable ones. While the scope of this
work limits its generalizability, we believe that ECCCo of-
fers a solid baseline for future work on faithful Counterfac-
tual Explanations.
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Table 3: EBM hyperparemeter choices for our experiments.

Dataset  SGLD Steps  Batch Size A

Linearly Separable 30 50 0.10

Moons 30 10 0.10

Circles 20 100 0.01

MNIST 25 10 0.01

GMSC 30 10 0.10
Appendices

The following appendices provide additional details that are relevant to the paper. Appendices and explain any tasks related
to Energy-Based Modelling and Predictive Uncertainty Quantification through Conformal Prediction, respectively. Appendix
provides additional technical and implementation details about our proposed generator, ECCCo, including references to our
open-sourced code base. A complete overview of our experimental setup detailing our parameter choices, training procedures
and initial black-box model performance can be found in Appendix . Finally, Appendix reports all of our experimental results
in more detail.

Energy-Based Modelling

Since we were not able to identify any existing open-source software for Energy-Based Modelling that would be flexible
enough to cater to our needs, we have developed a Julia package from scratch. The package has been open-sourced, but
to avoid compromising the double-blind review process, we refrain from providing more information at this stage. In our
development we have heavily drawn on the existing literature: Du and Mordatch describe best practices for using EBM for
generative modelling; Grathwohl et al. (2020) explain how EBM can be used to train classifiers jointly for the discriminative
and generative tasks. We have used the same package for training and inference, but there are some important differences
between the two cases that are worth highlighting here.

Training: Joint Energy Models To train our Joint Energy Models we broadly follow the approach outlined in Grathwohl
et al. (2020). These models are trained to optimize a hybrid objective that involves a standard classification loss component
Ls(0) = —log pe(y|x) (e.g. cross-entropy loss) as well as a generative loss component Lgen () = — log pg(x).

To draw samples from pg(x), we rely exclusively on the conditional sampling approach described in Grathwohl et al. (2020)
for both training and inference: we first draw y ~ p(y} and then sample x ~ pg(x|y) (Grathwohl et al. 2020) via Equation 2
with energy £(x|y) = uo(x)[y] where g : X — R™ returns the linear predictions (logits) of our classifier My. While our
package also supports unconditional sampling, we found conditional sampling to work well. It is also well aligned with CE,
since in this context we are interested in conditioning on the target class.

As mentioned in the body of the paper, we rely on a biased sampler involving separately specified values for the step size e
and the standard deviation o of the stochastic term involving r. Formally, our biased sampler performs updates as follows:

N N € ~ .
Xjt1 ¢ Xj — §€(xj|y+) +or;, j=1,...,J @)

Consistent with Grathwohl et al. (2020), we have specified e = 2 and 0 = 0.01 as the default values for all of our experiments.
The number of total SGLD steps J varies by dataset (Table 3). Following best practices, we initialize xo randomly in 5% of all
cases and sample from a buffer in all other cases. The buffer itself is randomly initialised and gradually grows to a maximum
of 10,000 samples during training as X is stored in each epoch (Du and Mordatch; Grathwohl et al. 2020).

It is important to realise that sampling is done during each training epoch, which makes training Joint Energy Models
significantly harder than conventional neural classifiers. In each epoch the generated (batch of) sample(s) X ; is used as part of
the generative loss component, which compares its energy to that of observed samples x: Lgen () = pg(x)[y]| — po(%xs)[y].
Our full training objective can be summarized as follows,

L(0) = Lat(0) + Lgen(6) + ALreg(0) (8)

where Leg(6) is a Ridge penalty (L2 norm) that regularises energy magnitudes for both observed and generated samples (Du
and Mordatch). We have used varying degrees of regularization depending on the dataset (A in Table 3).

Contrary to existing work, we have not typically used the entire minibatch of training data for the generative loss component
but found that using a subset of the minibatch was often sufficient in attaining decent generative performance (Table 3). This
has helped to reduce the computational burden for our models, which should make it easier for others to reproduce our findings.
Figures 3 and 4 show generated samples for our MNIST and Moons data, to provide a sense of their generative property.
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Figure 3: Conditionally generated MNIST images for our JEM Ensemble.

Target: 1

Figure 4: Conditionally generated samples (stars) for our Moons data using a JEM.



Inference: Quantifying Models’ Generative Property At inference time, we assume no prior knowledge about the model’s
generative property. This means that we do not tab into the existing buffer of generated samples for our Joint Energy Models, but
instead generate conditional samples from scratch. While we have relied on the default values € = 2 and ¢ = 0.01 also during
inference, the number of total SGLD steps was set to J = 500 in all cases, so significantly higher than during training. For all
of our synthetic datasets and models, we generated 50 conditional samples and then formed subsets containing the ng = 25
lowest-energy samples. While in practice it would be sufficient to do this once for each model and dataset, we have chosen to
perform sampling separately for each individual counterfactual in our experiments to account for stochasticity. To help reduce
the computational burden for our real-world datasets we have generated only 10 conditional samples each time and used all of
them in our counterfactual search. Using more samples, as we originally did, had no substantial impact on our results.

Conformal Prediction

In this Appendix we provide some more background on CP and explain in some more detail how we have used recent advances
in Conformal Training for our purposes.

Background on CP Intuitively, CP works under the premise of turning heuristic notions of uncertainty into rigorous uncer-
tainty estimates by repeatedly sifting through the data. It can be used to generate prediction intervals for regression models and
prediction sets for classification models. Since the literature on CE and AR is typically concerned with classification problems,
we focus on the latter. A particular variant of CP called Split Conformal Prediction (SCP) is well-suited for our purposes,
because it imposes only minimal restrictions on model training.

Specifically, SCP involves splitting the data D,, = {(x;,¥:) }i=1,...,» into a proper training set Dyz,n and a calibration set Dey;.
The former is used to train the classifier in any conventional fashion. The latter is then used to compute so-called nonconformity
scores: S = {s(x;,¥i) biep,, Where s : (X,Y) — Ris referred to as score function. In the context of classification, a common
choice for the score function is just s; = 1 — My(x;)[y;], that is one minus the softmax output corresponding to the observed
label y; (Angelopoulos and Bates 2021).

Finally, classification sets are formed as follows,

Co(xi; ) = {y : s(xi,y) < ¢} ©)

where § denotes the (1 — a)-quantile of S and « is a predetermined error rate. As the size of the calibration set increases, the
probability that the classification set C'(Xes) for a newly arrived sample x5 does not cover the true test label y. approaches
« (Angelopoulos and Bates 2021).

Observe from Equation 9 that Conformal Prediction works on an instance-level basis, much like CE are local. The prediction
set for an individual instance x; depends only on the characteristics of that sample and the specified error rate. Intuitively, the
set is more likely to include multiple labels for samples that are difficult to classify, so the set size is indicative of predictive
uncertainty. To see why this effect is exacerbated by small choices for a consider the case of o« = 0, which requires that the
true label is covered by the prediction set with probability equal to 1.

Differentiability The fact that conformal classifiers produce set-valued predictions introduces a challenge: it is not immedi-
ately obvious how to use such classifiers in the context of gradient-based counterfactual search. Put differently, it is not clear
how to use prediction sets in Equation 1. Fortunately, Stutz et al. (2022) have recently proposed a framework for Conformal
Training that also hinges on differentiability. Specifically, they show how Stochastic Gradient Descent can be used to train clas-
sifiers not only for the discriminative task but also for additional objectives related to Conformal Prediction. One such objective
is efficiency: for a given target error rate «, the efficiency of a conformal classifier improves as its average prediction set size
decreases. To this end, the authors introduce a smooth set size penalty defined in Equation 6 in the body of this paper. Formally,
it is defined as Cy y (x;; @) := o ((s(x,y) — )T ') fory € Y, where o is the sigmoid function and 7" is a hyper-parameter
used for temperature scaling (Stutz et al. 2022).

In addition to the smooth set size penalty, Stutz et al. (2022) also propose a configurable classification loss function, that can
be used to enforce coverage. For MNIST data, we found that using this function generally improved the visual quality of the
generated counterfactuals, so we used it in our experiments involving real-world data. For the synthetic dataset, visual inspection
of the counterfactuals showed that using the configurable loss function sometimes led to overshooting: counterfactuals would
end up deep inside the target domain but far away from the observed samples. For this reason, we instead relied on standard
cross-entropy loss for our synthetic datasets. As we have noted in the body of the paper, more experimental work is certainly
needed in this context. Figure 5 shows the prediction set size (left), smooth set size loss (centre) and configurable classification
loss (right) for a JEM trained on our Linearly Separable data.

ECCCo

In this section, we briefly discuss convergence conditions for CE and provide details concerning the actual implementation of
our framework in Julia.
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Figure 5: Prediction set size (left), smooth set size loss (centre) and configurable classification loss (right) for a JEM trained on
our Linearly Separable data.

Table 4: Paremeter choices for our experiments.

Network Architecture Training

Dataset Sample Size Hidden Units Hidden Layers Activation Ensemble Size Epochs Batch Size

Linearly Separable 1000 16 3 swish 5 100 100
Moons 2500 32 3 relu 5 500 128
Circles 1000 32 3 swish 5 100 100
MNIST 10000 128 1 swish 5 100 128
GMSC 13370 128 2 swish 5 100 250

A Note on Convergence Convergence is not typically discussed much in the context of CE, even though it has important
implications on outcomes. One intuitive way to specify convergence is in terms of threshold probabilities: once the predicted
probability p(y|x’) exceeds some user-defined threshold + such that the counterfactual is valid, we could consider the search
to have converged. In the binary case, for example, convergence could be defined as p(y*|x’) > 0.5 in this sense. Note,
however, how this can be expected to yield counterfactuals in the proximity of the decision boundary, a region characterized
by high aleatoric uncertainty. In other words, counterfactuals generated in this way would generally not be plausible. To avoid
this from happening, we specify convergence in terms of gradients approaching zero for all our experiments and all of our
generators. This is allows us to get a cleaner read on how the different counterfactual search objectives affect counterfactual
outcomes.

ECCCo.jl The core part of our code base is integrated into a larger ecosystem of Julia packages that we are actively
developing and maintaining. To avoid compromising the double-blind review process, we only provide a link to an anonymized
repository at this stage: https://anonymous.4open.science/r/ECCCo- 1252/README.md.

Experimental Setup

Table 4 provides an overview of all parameters related to our experiments. The GMSC data were randomly undersampled
for balancing purposes and all features were standardized. MNIST data was also randomly undersampled for reasons outlined
below. Pixel values were preprocessed to fall in the range of [—1, 1] and a small Gaussian noise component (¢ = 0.03) was
added to training samples following common practice in the EBM literature. All of our models were trained through mini-
batch training using the Adam optimiser (Kingma and Ba). Table 5 shows standard evaluation metrics measuring the predictive
performance of our different models grouped by dataset. These measures were computed on test data.

Table 6 summarises our hyperparameter choices for the counterfactual generators where 7 denotes the learning rate used for
Stochastic Gradient Descent (SGD) and A1, A2, A3 represent the chosen penalty strengths (Equations 1 and 5). Here A; also
refers to the chosen penalty for the distance from factual values that applies to both Wachter and REVISE, but not Schut which
is penalty-free. Schut is also the only generator that uses JSMA instead of SGD for optimization.

Compute To enable others to easily replicate our experiments, we have chosen to work with small neural network architec-
tures and randomly undersampled the MNIST dataset (maintaining class balance). All of our experiments could then be run
locally on a personal machine. The longest runtimes we experienced for model training and counterfactual benchmarking were
on the order of 8-12 hours (MNIST data). For the synthetic data, all experiments could be completed in less than an hour.

We have summarised our system information below:

Software:



Table 5: Various standard performance metrics for our different models grouped by dataset.

Performance Metrics

Dataset Model  Accuracy  Precision  F1-Score
Linearly Separable JEM 0.99 0.99 0.99
MLP 0.99 0.99 0.99

Moons JEM 1.00 1.00 1.00
MLP 1.00 1.00 1.00

Circles JEM 0.98 0.98 0.98
MLP 1.00 1.00 1.00

MNIST JEM 0.83 0.84 0.83
JEM Ensemble 0.90 0.90 0.89

MLP 0.95 0.95 0.95

MLP Ensemble 0.95 0.95 0.95

GMSC JEM 0.73 0.75 0.73
JEM Ensemble 0.73 0.75 0.73

MLP 0.75 0.75 0.75

MLP Ensemble 0.75 0.75 0.75

Table 6: Generator hyperparameters.

Dataset n A1 A2 A3

Linearly Separable ~ 0.01 025 0.75 0.75
Moons 0.05 025 0.75 0.75

Circles 0.01 025 075 0.75

MNIST 0.10 0.10 025 0.25

GMSC 0.05 0.10 0.50 0.50




* System Version: macOS 13.3.1
¢ Kernel Version: Darwin 22.4.0

Hardware:

* Model Name: MacBook Pro

¢ Model Identifier: MacBookPro16,1

¢ Processor Name: 8-Core Intel Core i9
* Processor Speed: 2.3 GHz

e Number of Processors: 1

¢ Total Number of Cores: 8

* L2 Cache (per Core): 256 KB

e L3 Cache: 16 MB

* Hyper-Threading Technology: Enabled
* Memory: 32 GB

Results

Figure 6 shows examples of counterfactuals for MNIST data where the underlying model is our JEM Ensemble. Original images
are shown on the diagonal and the corresponding counterfactuals are plotted across rows.

Table 7 reports all of the evaluation metrics we have computed. Table 8 reports the same metrics for the subset of valid
counterfactuals. The ‘Unfaithfulness’ and ‘Implausibility’ metrics have been discussed extensively in the body of the paper. The
‘Cost’ metric relates to the distance between the factual and the counterfactual. The ‘Redundancy’ metric measures sparsity in
is defined as the percentage of features that remain unperturbed (higher is better). The ‘Uncertainty’ metric is just the average
value of the smooth set size penalty (Equation 6). Finally, ‘Validity’ is the percentage of valid counterfactuals.
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Figure 6: Counterfactuals for MNIST data and our JEM Ensemble. Original images are shown on the diagonal with the corre-

sponding counterfactuals plotted across rows.



Table 7: All results for all datasets: sample averages +/- one standard deviation over all counterfactuals. Best outcomes are
highlighted in bold. Asterisks indicate that the given value is more than one (*) or two (**) standard deviations away from the

baseline (Wachter).

Model Data Generator Cost | Unfaithfulness | Implausibility | ~ Redundancy T  Uncertainty | Validity 1
Circles JEM ECCCo 0.74 £0.21 0.52 +0.36 1.22 +0.46 0.00 + 0.00 0.00 + 0.00 1.00 + 0.00%*
ECCCo (no CP) 0.72+0.21 0.54 +0.39 1.21 £ 0.46 0.00 + 0.00 0.00 + 0.00 1.00 + 0.00%*
ECCCo (no EBM) 0.52+£0.15 0.70 + 0.33 1.30 + 0.37 0.00 + 0.00 0.00 + 0.00 1.00 + 0.00%*
REVISE 097 £0.34 0.48 + 0.16* 0.95 + 0.32* 0.00 £ 0.00 0.00 £ 0.00 0.50 £0.51
Schut 1.06 +£0.43 0.54 +0.43 1.28 +£0.53 0.26 + 0.25* 0.00 £ 0.00 1.00 + 0.00**
Wachter 0.44 £ 0.16 0.68 +£0.34 1.33+0.32 0.00 £ 0.00 0.00 £ 0.00 0.98 £0.14
MLP ECCCo 0.67£0.19 0.65 +0.53 1.17+0.41 0.00 £ 0.00 0.09 £0.19%*  1.00 = 0.00
ECCCo (no CP) 0.71 £0.16 0.49 £ 0.35 1.19 £0.44 0.00 £ 0.00 0.05 £0.16%*  1.00 = 0.00
ECCCo (no EBM) 0.45+0.11 0.84 +0.51 1.23+0.31 0.00 + 0.00 0.15+0.23*  1.00 = 0.00
REVISE 0.96 +0.31 0.58 £ 0.52 0.95 +0.32 0.00 £ 0.00 0.00 + 0.00** 0.50 +0.51
Schut 0.57 £0.11 0.58 +0.37 1.23+0.43 0.43 £ 0.18**  0.00 + 0.00%* 1.00 + 0.00
Wachter 0.40 = 0.09 0.83 £0.50 1.24+0.29 0.00 £ 0.00 0.53 £0.01 1.00 = 0.00
JEM ECCCo 17.45 +2.92%% 79.16 + 11.67** 18.26 £4.92**  0.00 + 0.00 0.10 +0.01 1.00 + 0.00
GMSC REVISE 343 + 1.67** 186.40 + 28.06 5.34 +2.38%* 0.00 £ 0.00 0.51+£0.22 1.00 £ 0.00
Schut 1.27 + 0.33** 200.98 +28.49 6.50 +2.01%* 0.77 £ 0.07**  0.07 £ 0.00 1.00 £ 0.00
Wachter 57.71 £ 0.47 214.08 +45.35 61.04 +2.58 0.00 +0.00 0.07 + 0.00 1.00 + 0.00
JEM Ensemble ECCCo 17.43 + 3.04** 83.28 + 13.26** 17.21 £ 4.46%* 0.00 £ 0.00 0.16 £0.11 1.00 + 0.00
REVISE 2.94 + 1.13%* 194.24 +35.41 4.95 + 1.26** 0.00 + 0.00 0.51+0.29 1.00 + 0.00
Schut 1.03 £ 0.20%* 208.45 + 34.60 6.12 + 1.91%* 0.85 £ 0.05**  0.09 +0.04 1.00 + 0.00
Wachter 56.79 + 44.68 186.19 +33.88 60.70 +44.32 0.00 + 0.00 0.07 + 0.00 1.00 + 0.00
MLP ECCCo 17.05 + 2.87** 75.93 + 14.27+* 17.20 £3.15%*  0.00 £ 0.00 0.19 +0.08 1.00 + 0.00%*
REVISE 2.93 + 1.24%* 196.75 +41.25 4.84 + 0.60** 0.00 + 0.00 0.38 +0.18 1.00 + 0.00%*
Schut 1.49 + 0.87** 212.00 £41.15 6.44 + 1.34%* 0.77 £ 0.13**  0.12+£0.01 1.00 = 0.00%*
Wachter 42.97 £39.50 218.34 £53.26 45.84 £39.39 0.00 £ 0.00 0.06 + 0.06 0.50 +£0.51
MLP Ensemble ECCCo 16.63 + 2.62%* 73.86 + 14.63** 17.92 £4.17%* 0.00 £ 0.00 0.23 +£0.07 1.00 = 0.00%*
REVISE 3.73 £2.36%* 207.21 £43.20 5.78 £ 2.10%* 0.00 £ 0.00 0.33+0.19 1.00 + 0.00**
Schut 1.20 + 0.47%* 205.36 +32.11 7.00 + 2.15%* 0.79 £ 0.09%*  0.12+0.01 1.00 + 0.00%*
Wachter 69.30 + 66.00 213.71 £54.17 73.09 + 64.50 0.00 + 0.00 0.06 + 0.06 0.50+0.51
. JEM ECCCo 0.75£0.17 0.03 + 0.06%* 0.20 + 0.08** 0.00 £ 0.00 0.00 + 0.00 1.00 + 0.00
Linearly Separable ECCCo o CP)  0.75+0.17 0.03 % 0.06%* 020+0.08% 000000  0.000.00  1.00 % 0.00
ECCCo (no EBM) 0.70 £0.16 0.16 £ 0.11 0.34+0.19 0.00 £ 0.00 0.00 + 0.00 1.00 + 0.00
REVISE 0.41 +0.15 0.19 £ 0.03 0.41 +0.01%* 0.00 + 0.00 0.36 + 0.36 0.50+0.51
Schut 1.15+0.35 0.39 £ 0.07 0.73+0.17 0.25 £ 0.25 0.00 £ 0.00 1.00 = 0.00
Wachter 0.50 £0.13 0.18 £0.10 044 +0.17 0.00 £ 0.00 0.00 £ 0.00 1.00 = 0.00
MLP ECCCo 0.95+£0.16 0.29 £ 0.05%* 0.23 £ 0.06** 0.00 £ 0.00 0.00 £ 0.00%*  1.00 = 0.00
ECCCo (no CP) 094 £0.16 0.29 + 0.05%* 0.23 £ 0.07%** 0.00 £ 0.00 0.00 £ 0.00%*  1.00 = 0.00
ECCCo (no EBM) 0.60 £ 0.15 0.46 + 0.05 0.28 + 0.04%* 0.00 £ 0.00 0.02 +0.10%*  1.00 + 0.00
REVISE 0.42 +0.14 0.56 + 0.05 0.41 +£0.01 0.00 £ 0.00 0.47 £ 0.50 0.48 +0.50
Schut 0.77 £0.17 0.43 + 0.06* 0.47 +0.36 0.20 £ 0.25 0.00 + 0.00**  1.00 + 0.00
Wachter 0.51 £0.15 0.51 £0.04 0.40 £ 0.08 0.00 £ 0.00 0.59 +0.02 1.00 + 0.00
JEM ECCCo 334.61 +46.37 19.28 £5.01%*  314.76 £32.36*  0.00 = 0.00 4.43 £0.56 0.98 + 0.12
MNIST REVISE 170.68 £ 63.26 188.70 +£26.18* 255.26 + 41.50**  0.00 + 0.00 439+£0091 0.96 +0.20
Schut 9.44 + 1.607** 211.00 £27.21 286.61 +39.85* 0.99 £ 0.00**  1.08 + 1.95* 0.24+0.43
Wachter 128.36 + 14.95 222.90 +26.56 361.88 +£39.74 0.00 + 0.00 4.37+0.98 0.95+0.21
JEM Ensemble ECCCo 342.64 £41.14 15.99 + 3.06** 294.72 £30.75*%*%  0.00 = 0.00 2.07 £0.06%*  1.00 + 0.00%**
REVISE 170.21 + 58.02 173.59 £20.65**  246.32 + 37.46** .00 + 0.00 2.56+0.83 0.93+0.26
Schut 9.78 + 1.02°%* 205.33 +24.07 287.39 £39.33*  0.99 £0.00%*  0.32+0.94** 0.11 +£0.31
Wachter 135.07 £ 16.79 217.67 +23.78 363.23 +£39.24 0.00 + 0.00 2.93+0.77 0.94+0.23
MLP ECCCo 605.17 +44.78 41.95 + 6.50**  591.58 + 36.24 0.00 + 0.00 0.57 £ 0.00%*  1.00 * 0.00%*
REVISE 146.61 +36.96 365.82 +15.35%  249.49 +41.55** (.00 + 0.00 0.62 +0.30 0.87 +0.34
Schut 9.95 £ 0.37** 382.44 +17.81 285.98 +£42.48* 0.99 £ 0.00**  0.05+0.19** 0.06 +0.24
Wachter 136.08 £ 16.09 386.05 = 16.60 361.83 £42.18 0.00 £ 0.00 0.68 +0.36 0.84 +0.36
MLP Ensemble ECCCo 525.87 +34.00 31.43 £3.91%*  490.88 +27.19 0.00 + 0.00 0.29 + 0.00%*  1.00 * 0.00%*
REVISE 146.60 + 35.64 337.74 £ 11.89* 247.67 + 38.36**  0.00 + 0.00 0.39 +0.22 0.85 +0.36
Schut 9.98 + 0.25%* 359.54 £ 14.52 283.99 +£41.08* 0.99 £ 0.00**  0.03 £ 0.14** 0.06 +0.24
Wachter 137.53 + 18.95 360.79 + 14.39 357.73 £42.55 0.00 £ 0.00 0.47 £ 0.64 0.80 + 0.40
Moons JEM ECCCo 1.56 £ 0.44 0.31 + 0.30* 1.20 + 0.15%* 0.00 + 0.00 0.00 + 0.00**  1.00 + 0.00%*
ECCCo (no CP) 1.56 + 0.46 0.37 £ 0.30* 1.21 £0.17%* 0.00 £ 0.00 0.00 + 0.00**  1.00 + 0.00%*
ECCCo (no EBM) 0.80 +0.25 0.91+£0.32 1.71+£0.25 0.00 + 0.00 0.00 + 0.00**  1.00 + 0.00%*
REVISE 1.04+0.43 0.78 +£0.23 1.57+0.26 0.00 + 0.00 0.00 + 0.00**  1.00 + 0.00%*
Schut 1.12+0.31 0.67 £0.27 1.50 £ 0.22%* 0.08 + 0.19 0.00 £ 0.00%* 0.98 +£0.14
Wachter 0.72 £ 0.24 0.80 +0.27 1.78 £0.24 0.00 £ 0.00 0.02+0.10 0.98 +0.14
MLP ECCCo 2.18 +1.05 0.80 £ 0.62 1.69 + 0.40 0.00 £ 0.00 0.15 £0.24* 1.00 + 0.00
ECCCo (no CP) 207 +1.15 0.79 £ 0.62 1.68 +0.42 0.00 £ 0.00 0.15 £ 0.24* 1.00 = 0.00
ECCCo (no EBM) 1.25+£0.92 1.34 £ 0.47 1.68 +0.47 0.00 + 0.00 0.43+0.18 1.00 + 0.00
REVISE 0.79 £0.19* 1.45+0.44 1.64 +0.31 0.00 + 0.00 0.40 +0.22 1.00 + 0.00
Schut 0.73 £ 0.25* 1.45+0.55 1.73 £ 0.48 0.31+£0.28*  0.00 +0.00%* 0.90 + 0.30
Wachter 1.08 +£0.83 1.32+0.41 1.69 +0.32 0.00 £ 0.00 0.52 +£0.08 1.00 = 0.00




Table 8: All results for all datasets: sample averages +/- one standard deviation over all valid counterfactuals. Best outcomes
are highlighted in bold. Asterisks indicate that the given value is more than one (*) or two (**) standard deviations away from

the baseline (Wachter).

Model Data Generator Cost | Unfaithfulness | Implausibility | ~ Redundancy T  Uncertainty | Validity 1
Circles JEM ECCCo 0.74 +0.21 0.52 +0.36 1.22 +0.46 0.00 + 0.00 0.00 + 0.00 1.00 + 0.00
ECCCo (no CP) 0.72+0.21 0.54 £ 0.39 1.21 £ 0.46 0.00 + 0.00 0.00 + 0.00 1.00 + 0.00

ECCCo (no EBM) 0.52+0.15 0.70 £ 0.33 1.30 + 0.37 0.00 + 0.00 0.00 + 0.00 1.00 = 0.00

REVISE 1.28 +0.14 0.33 + 0.01°* 0.64 + 0.00** 0.00 + 0.00 0.00 + 0.00 1.00 + 0.00

Schut 1.06 +£0.43 0.54 +£043 1.28 +£0.53 0.26 + 0.25* 0.00 £ 0.00 1.00 £ 0.00

Wachter 0.45 £ 0.15 0.68 +0.34 1.33+0.32 0.00 = 0.00 0.00 £ 0.00 1.00 £ 0.00

MLP ECCCo 0.67 +0.19 0.65 £0.53 1.17+0.41 0.00 = 0.00 0.09 £0.19%*  1.00 £ 0.00

ECCCo (no CP) 0.71 £0.16 0.49 £0.35 1.19+0.44 0.00 = 0.00 0.05 £0.16%*  1.00 = 0.00

ECCCo (no EBM) 0.45+0.11 0.84 £0.51 1.23+0.31 0.00 + 0.00 0.15+0.23*  1.00 £ 0.00

REVISE 1.24+0.15 0.06 + 0.01°* 0.64 + 0.00** 0.00 + 0.00 0.00 = 0.00**  1.00 + 0.00

Schut 0.57 +0.11 0.58 +0.37 1.23+0.43 0.43 £0.18**  0.00 + 0.00%* 1.00 + 0.00

Wachter 0.40 + 0.09 0.83 £0.50 1.24 +0.29 0.00 £ 0.00 0.53 £0.01 1.00 £ 0.00

JEM ECCCo 17.45 +£2.92%% 79.16 + 11.67** 18.26 £4.92**  0.00 £ 0.00 0.10 +0.01 1.00 + 0.00

GMSC REVISE 343 £ 1.67** 186.40 + 28.06 5.34 +2.38%* 0.00 + 0.00 0.51+£0.22 1.00 £ 0.00
Schut 1.27 + 0.33** 200.98 +28.49 6.50 £ 2.01%* 0.77 £ 0.07**  0.07 £ 0.00 1.00 £ 0.00

Wachter 57.71 £ 0.47 214.08 +45.35 61.04 +2.58 0.00 + 0.00 0.07 + 0.00 1.00 + 0.00

JEM Ensemble ECCCo 17.43 £3.04%* 83.28 + 13.26** 17.21 £ 4.46%* 0.00 £ 0.00 0.16 £0.11 1.00 £ 0.00

REVISE 2.94 + 1.13%* 194.24 +35.41 4.95 + 1.26** 0.00 + 0.00 0.51+0.29 1.00 + 0.00

Schut 1.03 + 0.20%* 208.45 + 34.60 6.12 + 1.91%* 0.85 £ 0.05%*  0.09 +0.04 1.00 + 0.00

Wachter 56.79 + 44.68 186.19 + 33.88 60.70 + 44.32 0.00 + 0.00 0.07 + 0.00 1.00 + 0.00

MLP ECCCo 17.05 +2.87 75.93 + 14.27** 17.20 £3.15 0.00 + 0.00 0.19 +0.08 1.00 + 0.00

REVISE 2.93 + 1.24% 196.75 £ 41.25 4.84 + 0.60** 0.00 + 0.00 0.38 £0.18 1.00 = 0.00

Schut 1.49 + 0.87%* 212.00 £41.15 6.44 +1.34 0.77 £ 0.13**  0.12+£0.01 1.00 £ 0.00

Wachter 448 £0.18 184.03 £ 48.16 7.49 +0.89 0.00 £ 0.00 0.12 £+ 0.00 1.00 £ 0.00

MLP Ensemble ECCCo 16.63 +2.62 73.86 + 14.63** 17.92 +4.17 0.00 + 0.00 0.23 +0.07 1.00 + 0.00

REVISE 3.73+2.36 207.21 £43.20 5.78 £ 2.10%* 0.00 £ 0.00 0.33 +£0.19 1.00 £ 0.00

Schut 1.20 + 0.47** 205.36 £32.11 7.00 +2.15% 0.79 £ 0.09*%*  0.12 £0.01 1.00 = 0.00

Wachter 4.97 £047 177.20 + 25.86 10.27 £3.21 0.00 + 0.00 0.11 + 0.00 1.00 + 0.00

. JEM ECCCo 0.75+0.17 0.03 £ 0.06** 0.20 £ 0.08** 0.00 = 0.00 0.00 £ 0.00 1.00 £ 0.00
Linearly Separable ECCCo 0 CP)  0.75+0.17 0.03 % 0.06%* 020+0.08%  000+000  0.00+0.00  1.00=0.00
ECCCo (no EBM) 0.70 +0.16 0.16 £0.11 0.34+0.19 0.00 + 0.00 0.00 + 0.00 1.00 + 0.00

REVISE 0.41 +0.14 0.15 £ 0.00%* 0.41 +£0.01%* 0.00 + 0.00 0.72 £ 0.02 1.00 + 0.00

Schut 1.15+0.35 0.39 £ 0.07 0.73+£0.17 0.25 £ 0.25 0.00 = 0.00 1.00 £ 0.00

Wachter 0.50+0.13 0.18 £0.10 044 +£0.17 0.00 +0.00 0.00 £ 0.00 1.00 £ 0.00

MLP ECCCo 0.95+0.16 0.29 + 0.05** 0.23 £ 0.06** 0.00 £ 0.00 0.00 £ 0.00**  1.00 £ 0.00

ECCCo (no CP) 0.94+0.16 0.29 + 0.05%* 0.23 £ 0.07** 0.00 +0.00 0.00 £ 0.00%* 1.00 + 0.00

ECCCo (no EBM) 0.60 +0.15 0.46 £ 0.05 0.28 + 0.04** 0.00 +0.00 0.02 £0.10%*  1.00 £ 0.00

REVISE 0.39 +0.15 0.52 +0.04 0.41+£0.01 0.00 + 0.00 0.98 + 0.00 1.00 + 0.00

Schut 0.77 £ 0.17 0.43 + 0.06* 0.47 £ 0.36 0.20 £ 0.25 0.00 + 0.00**  1.00 = 0.00

Wachter 0.51+0.15 0.51+£0.04 0.40 +0.08 0.00 + 0.00 0.59 +0.02 1.00 + 0.00

JEM ECCCo 334.98 + 46.54 19.27 £5.02%*  314.54 £32.54*  0.00 = 0.00 4.50 + 0.00** 1.00 = 0.00

MNIST REVISE 170.06 + 62.45 188.54 +£26.22%* 254.32 + 41.55%*  0.00 £ 0.00 4.57+0.14 1.00 £ 0.00
Schut 7.63 + 2.55%* 199.70 +£28.43 273.01 £39.60%*  0.99 + 0.00** 4.56+0.13 1.00 £ 0.00

Wachter 128.13 + 14.81 222.81 £26.22 361.38 £39.55 0.00 £ 0.00 4.58 £0.16 1.00 £ 0.00

JEM Ensemble ECCCo 342.64 £41.14 15.99 + 3.06** 294.72 £30.75*%*%  0.00 = 0.00 2.07 £0.06%* 1.00 = 0.00

REVISE 171.95 +58.81 173.05 £20.38%*  246.20 + 37.74**  0.00 £ 0.00 2.76 £0.45 1.00 £ 0.00

Schut 7.96 + 2.49** 186.91 £22.98*  264.68 +37.58**  0.99 + 0.00** 3.02+0.26 1.00 + 0.00

Wachter 134.98 + 16.95 217.37 +£23.93 362.91 +39.40 0.00 + 0.00 3.10+0.31 1.00 + 0.00

MLP ECCCo 605.17 +44.78 41.95 £ 6.50**  591.58 +36.24 0.00 + 0.00 0.57 £ 0.00**  1.00 = 0.00

REVISE 146.76 + 37.07 365.69 + 14.90%  245.36 +39.69%*  0.00 + 0.00 0.72 +0.18 1.00 + 0.00

Schut 9.25 + 1.31%* 371.12 £ 19.99 245.11 + 35.72%% 0,99 + 0.00**  0.75 £ 0.23 1.00 + 0.00

Wachter 135.08 + 15.68 384.76 £ 16.52 359.21 £42.03 0.00 £ 0.00 0.81+£0.22 1.00 £ 0.00

MLP Ensemble ECCCo 525.87 + 34.00 31.43 £3.91%%  490.88 +27.19 0.00 + 0.00 0.29 + 0.00**  1.00 = 0.00

REVISE 146.38 £ 35.18 337.21 £ 11.68* 244.84 + 37.17%*  0.00 £ 0.00 0.45+0.16 1.00 £ 0.00

Schut 9.75 £+ 1.00%* 344.60 + 13.64* 252.53 £37.92%%  0.99 £ 0.00*%*  0.55+0.21 1.00 £ 0.00

Wachter 134.48 £ 17.69 358.51 +£13.18 352.63 £39.93 0.00 +0.00 0.58 £0.67 1.00 £ 0.00

Moons JEM ECCCo 1.56 +0.44 0.31 £ 0.30* 1.20 + 0.15%* 0.00 £ 0.00 0.00 £ 0.00%*  1.00 +0.00
ECCCo (no CP) 1.56 +0.46 0.37 £0.30* 1.21 £ 0.17%* 0.00 +0.00 0.00 £ 0.00%*  1.00 + 0.00

ECCCo (no EBM) 0.80+0.25 091 +0.32 1.71 £0.25 0.00 + 0.00 0.00 + 0.00** 1.00 = 0.00

REVISE 1.04 +£0.43 0.78 +£0.23 1.57+0.26 0.00 £ 0.00 0.00 + 0.00**  1.00 = 0.00

Schut 1.13+0.29 0.66 + 0.25 1.47 £ 0.10%* 0.07 £0.18 0.00 + 0.00** 1.00 = 0.00

Wachter 0.73 £ 0.24 0.78 £0.23 1.75+£0.19 0.00 £ 0.00 0.02+0.11 1.00 = 0.00

MLP ECCCo 2.18+1.05 0.80 + 0.62 1.69 + 0.40 0.00 + 0.00 0.15+0.24*  1.00 £0.00

ECCCo (no CP) 207 +1.15 0.79 + 0.62 1.68 +0.42 0.00 + 0.00 0.15 £0.24* 1.00 £ 0.00

ECCCo (no EBM) 1.25+0.92 1.34+047 1.68 +0.47 0.00 +0.00 043 +£0.18 1.00 £ 0.00

REVISE 0.79 £ 0.19* 1.45+0.44 1.64 £0.31 0.00 £ 0.00 0.40 £0.22 1.00 £ 0.00

Schut 0.78 +0.17* 1.39 +0.50 1.59 +0.26 0.28 £0.25*  0.00 + 0.00%* 1.00 + 0.00

Wachter 1.08 + 0.83 1.32 £ 0.41 1.69 + 0.32 0.00 + 0.00 0.52 +0.08 1.00 + 0.00




