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Abstract

Counterfactual explanations offer an intuitive and straightforward way to explain1

black-box models and offer algorithmic recourse to individuals. To address the2

need for plausible explanations, existing work has primarily relied on surrogate3

models to learn how the input data is distributed. This effectively reallocates4

the task of learning realistic explanations for the data from the model itself to5

the surrogate. Consequently, the generated explanations may seem plausible to6

humans but need not necessarily describe the behaviour of the black-box model7

faithfully. We formalise this notion of faithfulness through the introduction of a tai-8

lored evaluation metric and propose a novel algorithmic framework for generating9

Energy-Constrained Conformal Counterfactuals (ECCCos) that are only as plausi-10

ble as the model permits. Through extensive empirical studies, we demonstrate that11

ECCCos reconcile the need for faithfulness and plausibility. In particular, we show12

that for models with gradient access, it is possible to achieve state-of-the-art perfor-13

mance without the need for surrogate models. To do so, our framework relies solely14

on properties defining the black-box model itself by leveraging recent advances15

in energy-based modelling and conformal prediction. To our knowledge, this is16

the first venture in this direction for generating faithful counterfactual explanations.17

Thus, we anticipate that ECCCos can serve as a baseline for future research. We18

believe that our work opens avenues for researchers and practitioners seeking tools19

to better distinguish trustworthy from unreliable models.20

1 Introduction21

Counterfactual explanations provide a powerful, flexible and intuitive way to not only explain black-22

box models but also help affected individuals through the means of algorithmic recourse. Instead of23

opening the black box, counterfactual explanations work under the premise of strategically perturbing24

model inputs to understand model behaviour [1]. Intuitively speaking, we generate explanations in25

this context by asking what-if questions of the following nature: ‘Our credit risk model currently26

predicts that this individual is not credit-worthy. What if they reduced their monthly expenditures by27

10%?’28

This is typically implemented by defining a target outcome y+ ∈ Y for some individual x ∈ X = RD29

described by D attributes, for which the model Mθ : X 7→ Y initially predicts a different outcome:30

Mθ(x) ̸= y+. Counterfactuals are then searched by minimizing a loss function that compares the31

predicted model output to the target outcome: yloss(Mθ(x),y
+). Since counterfactual explanations32

work directly with the black-box model, valid counterfactuals always have full local fidelity by33

construction where fidelity is defined as the degree to which explanations approximate the predictions34

of a black-box model [2, 3].35
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In situations where full fidelity is a requirement, counterfactual explanations offer a more appropriate36

solution to Explainable Artificial Intelligence (XAI) than other popular approaches like LIME [4] and37

SHAP [5], which involve local surrogate models. But even full fidelity is not a sufficient condition for38

ensuring that an explanation faithfully describes the behaviour of a model. That is because multiple39

very distinct explanations can all lead to the same model prediction, especially when dealing with40

heavily parameterized models like deep neural networks, which are typically underspecified by the41

data [6].42

In the context of counterfactuals, the idea that no two explanations are the same arises almost naturally.43

A key focus in the literature has therefore been to identify those explanations and algorithmic44

recourses that are most appropriate based on a myriad of desiderata such as closeness [1], sparsity [7],45

actionability [8] and plausibility [9].46

In this work, we draw closer attention to model faithfulness rather than fidelity as a desideratum for47

counterfactuals. We define faithfulness as the degree to which counterfactuals are consistent with48

what the model has learned about the data. Our key contributions are as follows:49

• We show that fidelity is an insufficient evaluation metric for counterfactuals (Section 3) and50

propose a definition of faithfulness that gives rise to more suitable metrics (Section 4).51

• We introduce a novel algorithmic approach aimed at generating Energy-Constrained Confor-52

mal Counterfactuals (ECCCos) that faithfully explain model behaviour in Section 5.53

• We provide extensive empirical evidence demonstrating that ECCCos faithfully explain54

model behaviour and attain plausibility only when appropriate (Section 6).55

To our knowledge, this is the first venture in this direction for generating faithful counterfactuals.56

Thus, we anticipate that ECCCos can serve as a baseline for future research. We believe that our57

work opens avenues for researchers and practitioners seeking tools to better distinguish trustworthy58

from unreliable models.59

2 Background60

While counterfactual explanations (CE) can also be generated for arbitrary regression models [10],61

existing work has primarily focused on classification problems. Let Y = (0, 1)K denote the one-hot-62

encoded output domain with K classes. Then most counterfactual generators rely on gradient descent63

to optimize different flavours of the following counterfactual search objective:64

Z′ = arg min
Z′∈ZL

{
yloss(Mθ(f(Z

′)),y+) + λcost(f(Z′))
}

(1)

Here yloss(·) denotes the primary loss function, f(·) is a function that maps from the counterfactual65

state space to the feature space and cost(·) is either a single penalty or a collection of penalties that66

are used to impose constraints through regularization. Equation 1 restates the baseline approach to67

gradient-based counterfactual search proposed by Wachter et al. [1] in general form as introduced68

by Altmeyer et al. [11]. To explicitly account for the multiplicity of explanations, Z′ = {zl}L denotes69

an L-dimensional array of counterfactual states.70

The baseline approach, which we will simply refer to as Wachter, searches a single counterfactual71

directly in the feature space and penalises its distance to the original factual. In this case, f(·) is simply72

the identity function and Z corresponds to the feature space itself. Many derivative works of Wachter73

et al. [1] have proposed new flavours of Equation 1, each of them designed to address specific74

desiderata that counterfactuals ought to meet in order to properly serve both AI practitioners and75

individuals affected by algorithmic decision-making systems. The list of desiderata includes but is not76

limited to the following: sparsity, proximity [1], actionability [8], diversity [2], plausibility [9, 12, 7],77

robustness [13, 14, 11] and causality [15]. Different counterfactual generators addressing these needs78

have been extensively surveyed and evaluated in various studies [16, 17, 18, 19, 20].79

The notion of plausibility is central to all of the desiderata. For example, Artelt et al. [19] find80

that plausibility typically also leads to improved robustness. Similarly, plausibility has also been81

connected to causality in the sense that plausible counterfactuals respect causal relationships [21].82
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Consequently, the plausibility of counterfactuals has been among the primary concerns for researchers.83

Achieving plausibility is equivalent to ensuring that the generated counterfactuals comply with the84

true and unobserved data-generating process (DGP). We define plausibility formally in this work as85

follows:86

Definition 2.1 (Plausible Counterfactuals). Let X|y+ = p(x|y+) denote the true conditional87

distribution of samples in the target class y+. Then for x′ to be considered a plausible counterfactual,88

we need: x′ ∼ X|y+.89

To generate plausible counterfactuals, we first need to quantify the conditional distribution of samples90

in the target class (X|y+). We can then ensure that we generate counterfactuals that comply with that91

distribution.92

One straightforward way to do this is to use surrogate models for the task. Joshi et al. [9], for example,93

suggest that instead of searching counterfactuals in the feature space X , we can instead traverse a94

latent embedding Z (Equation 1) that implicitly codifies the DGP. To learn the latent embedding, they95

propose using a generative model such as a Variational Autoencoder (VAE). Provided the surrogate96

model is well-specified, their proposed approach called REVISE can yield plausible explanations.97

Others have proposed similar approaches: Dombrowski et al. [22] traverse the base space of a98

normalizing flow to solve Equation 1; Poyiadzi et al. [12] use density estimators (p̂ : X 7→ [0, 1]) to99

constrain the counterfactuals to dense regions in the feature space; and, finally, Karimi et al. [15]100

assume knowledge about the structural causal model that generates the data.101

A competing approach towards plausibility that is also closely related to this work instead relies on102

the black-box model itself. Schut et al. [7] show that to meet the plausibility objective we need not103

explicitly model the input distribution. Pointing to the undesirable engineering overhead induced by104

surrogate models, they propose that we rely on the implicit minimisation of predictive uncertainty105

instead. Their proposed methodology, which we will refer to as Schut, solves Equation 1 by greedily106

applying Jacobian-Based Saliency Map Attacks (JSMA) in the feature space with cross-entropy loss107

and no penalty at all. The authors demonstrate theoretically and empirically that their approach yields108

counterfactuals for which the model Mθ predicts the target label y+ with high confidence. Provided109

the model is well-specified, these counterfactuals are plausible. This idea hinges on the assumption110

that the black-box model provides well-calibrated predictive uncertainty estimates.111

3 Why Fidelity is not Enough: A Motivational Example112

As discussed in the introduction, any valid counterfactual also has full fidelity by construction:113

solutions to Equation 1 are considered valid as soon as the label predicted by the model matches114

the target class. So while fidelity always applies, counterfactuals that address the various desiderata115

introduced above can look vastly different from each other.116

To demonstrate this with an example, we have trained a simple image classifier Mθ on the well-117

known MNIST dataset [23]: a Multi-Layer Perceptron (MLP) with above 90 percent test accuracy. No118

measures have been taken to improve the model’s adversarial robustness or its capacity for predictive119

uncertainty quantification. The far left panel of Figure 1 shows a random sample drawn from the120

dataset. The underlying classifier correctly predicts the label ‘nine’ for this image. For the given121

factual image and model, we have used Wachter, Schut and REVISE to generate one counterfactual122

each in the target class ‘seven’. The perturbed images are shown next to the factual image from left123

to right in Figure 1. Captions on top of the individual images indicate the generator along with the124

predicted probability that the image belongs to the target class. In all three cases that probability is125

above 90 percent and yet the counterfactuals look very different from each other.126

Since Wachter is only concerned with proximity, the generated counterfactual is almost indistin-127

guishable from the factual. The approach by Schut et al. [7] expects a well-calibrated model that128

can generate predictive uncertainty estimates. Since this is not the case, the generated counterfactual129

looks like an adversarial example. Finally, the counterfactual generated by REVISE looks much more130

plausible than the other two. But is it also more faithful to the behaviour of our MNIST classifier?131

That is much less clear because the surrogate used by REVISE introduces friction: the generated132

explanations no longer depend exclusively on the black-box model itself.133
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Figure 1: Counterfactuals for turning a 9 (nine) into a 7 (seven): original image (left); then from left
to right the counterfactuals generated using Wachter, Schut and REVISE.

So which of the counterfactuals most faithfully explains the behaviour of our image classifier? Fidelity134

cannot help us to make that judgement, because all of these counterfactuals have full fidelity. Thus,135

fidelity is an insufficient evaluation metric to assess the faithfulness of CE.136

4 A New Notion of Faithfulness137

Considering the limitations of fidelity as demonstrated in the previous section, analogous to Defini-138

tion 2.1, we introduce a new notion of faithfulness in the context of CE:139

Definition 4.1 (Faithful Counterfactuals). Let Xθ|y+ = pθ(x|y+) denote the conditional distribution140

of x in the target class y+, where θ denotes the parameters of model Mθ. Then for x′ to be considered141

a faithful counterfactual, we need: x′ ∼ Xθ|y+.142

In doing this, we merge in and nuance the concept of plausibility (Definition 2.1) where the notion of143

‘consistent with the data’ becomes ‘consistent with what the model has learned about the data’.144

4.1 Quantifying the Model’s Generative Property145

To assess counterfactuals with respect to Definition 4.1, we need a way to quantify the posterior146

conditional distribution pθ(x|y+). To this end, we draw on recent advances in energy-based modelling147

(EBM), a subdomain of machine learning that is concerned with generative or hybrid modelling [24,148

25]. In particular, note that if we fix y to our target value y+, we can conditionally draw from149

pθ(x|y+) by randomly initializing x0 and then using Stochastic Gradient Langevin Dynamics150

(SGLD) as follows,151

xj+1 ← xj −
ϵ2j
2
E(xj |y+) + ϵjrj , j = 1, ..., J (2)

where rj ∼ N (0, I) is the stochastic term and the step-size ϵj is typically polynomially decayed [26].152

The term E(xj |y+) denotes the model energy conditioned on the target class label y+ which we153

specify as the negative logit corresponding to the target class label y+. To allow for faster sampling,154

we follow the common practice of choosing the step-size ϵj and the standard deviation of rj separately.155

While xJ is only guaranteed to distribute as pθ(x|y+) if ϵ→ 0 and J →∞, the bias introduced for156

a small finite ϵ is negligible in practice [27, 24]. Appendix A provides additional implementation157

details for any tasks related to energy-based modelling.158

Generating multiple samples using SGLD thus yields an empirical distribution X̂θ,y+ that approxi-159

mates what the model has learned about the input data. While in the context of EBM, this is usually160

done during training, we propose to repurpose this approach during inference in order to evaluate and161

generate faithful model explanations.162

4.2 Evaluating Plausibility and Faithfulness163

The parallels between our definitions of plausibility and faithfulness imply that we can also use164

similar evaluation metrics in both cases. Since existing work has focused heavily on plausibility,165

it offers a useful starting point. In particular, Guidotti [20] have proposed an implausibility metric166

that measures the distance of the counterfactual from its nearest neighbour in the target class. As167

this distance is reduced, counterfactuals get more plausible under the assumption that the nearest168

4



neighbour itself is plausible in the sense of Definition 2.1. In this work, we use the following adapted169

implausibility metric,170

impl(x′,Xy+) =
1

|Xy+ |
∑

x∈Xy+

dist(x′,x) (3)

where x′ denotes the counterfactual and Xy+ is a subsample of the training data in the target class171

y+. By averaging over multiple samples in this manner, we avoid the risk that the nearest neighbour172

of x′ itself is not plausible according to Definition 2.1 (e.g an outlier).173

Equation 3 gives rise to a similar evaluation metric for unfaithfulness. We merely swap out the174

subsample of individuals in the target class for a subset X̂y+ of the generated conditional samples:175

unfaith(x′, X̂y+) =
1

nE

∑
x∈X̂y+

dist(x′,x) (4)

Specifically, we form this subset based on the nE generated samples with the lowest energy.176

5 Energy-Constrained Conformal Counterfactuals177

Given our proposed notion of faithfulness, we now describe ECCCo, our proposed framework for178

generating Energy-Constrained Conformal Counterfactuals (ECCCos). It is based on the premise that179

counterfactuals should first and foremost be faithful. Plausibility, as a secondary concern, is then still180

attainable, but only to the degree that the black-box model itself has learned plausible explanations181

for the underlying data.182

We begin by stating our proposed objective function, which involves tailored loss and penalty183

functions that we will explain in the following. In particular, we extend Equation 1 as follows:184

Z′ = arg min
Z′∈ZL

{yloss(Mθ(f(Z
′)),y+) + λ1dist(f(Z′),x)

+ λ2unfaith(f(Z′), X̂y+) + λ3Ω(Cθ(f(Z
′);α))}

(5)

The first penalty term involving λ1 induces proximity like in Wachter et al. [1]. Our default choice185

for dist(·) is the L1 Norm due to its sparsity-inducing properties. The second penalty term involving186

λ2 induces faithfulness by constraining the energy of the generated counterfactual where unfaith(·)187

corresponds to the metric defined in Equation 4. The third and final penalty term involving λ3188

introduces a new concept: it ensures that the generated counterfactual is associated with low predictive189

uncertainty. As mentioned in Section 2, Schut et al. [7] have shown that plausible counterfactuals can190

be generated implicitly through predictive uncertainty minimization. Unfortunately, this relies on191

the assumption that the model itself can provide predictive uncertainty estimates, which may be too192

restrictive in practice.193

To relax this assumption, we leverage recent advances in conformal prediction (CP), an approach to194

predictive uncertainty quantification that has recently gained popularity [28, 29]. Crucially for our195

intended application, CP is model-agnostic and can be applied during inference without placing any196

restrictions on model training. Intuitively, CP works under the premise of turning heuristic notions of197

uncertainty into rigorous uncertainty estimates by repeatedly sifting through the training data or a198

dedicated calibration dataset. Conformal classifiers produce prediction sets for individual inputs that199

include all output labels that can be reasonably attributed to the input. These sets tend to be larger for200

inputs that do not conform with the training data and are characterized by high predictive uncertainty.201

In order to generate counterfactuals that are associated with low predictive uncertainty, we use a202

smooth set size penalty introduced by Stutz et al. [30] in the context of conformal training:203

Ω(Cθ(x;α)) = max

0,
∑
y∈Y

Cθ,y(xi;α)− κ

 (6)
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Figure 2: Gradient fields and counterfactual paths for different generators. The objective is to generate
a counterfual in the ‘blue’ class for a sample from the ‘orange’ class. Bright yellow stars indicate
conditional samples generated through SGLD. The underlying classifier is a Joint Energy Model.

Here, κ ∈ {0, 1} is a hyper-parameter and Cθ,y(xi;α) can be interpreted as the probability of label204

y being included in the prediction set. In order to compute this penalty for any black-box model205

we merely need to perform a single calibration pass through a holdout set Dcal. Arguably, data is206

typically abundant and in most applications, practitioners tend to hold out a test data set anyway.207

Consequently, CP removes the restriction on the family of predictive models, at the small cost of208

reserving a subset of the available data for calibration. This particular case of conformal prediction209

is referred to as *split conformal prediction* (SCP) as it involves splitting the training data into a210

proper training dataset and a calibration dataset. Further details are provided in Appendix B.211

Algorithm 1 The ECCCo generator

Input: x,y+,Mθ, f,Λ = [λ1, λ2, λ3], α,D, T, η, nB, nE where Mθ(x) ̸= y+

Output: x′

1: Initialize z′ ← f−1(x) ▷ Map to counterfactual state space.
2: Generate

{
x̂θ,y+

}
nB
← pθ(xy+) ▷ Generate nB samples using SGLD (Equation 2).

3: Store X̂y+ ←
{
x̂θ,y+

}
nB

▷ Choose nE lowest-energy samples.
4: Run SCP for Mθ using D ▷ Calibrate model through split conformal prediction.
5: Initialize t← 0
6: while not converged or t < T do ▷ For convergence conditions see Appendix C.
7: z′ ← z′ − η∇z′L(z′,y+, X̂y+ ; Λ, α) ▷ Take gradient step of size η.
8: t← t+ 1
9: end while

10: x′ ← f(z′) ▷ Map back to feature space.

Figure 2 illustrates how the different components in Equation 5 affect the counterfactual search for a212

synthetic dataset. The underlying classifier is a Joint Energy Model (JEM) that was trained to predict213

the output class (‘blue’ or ‘orange’) and generate class-conditional samples [24]. We have used four214

different generator flavours to produce a counterfactual in the ‘blue’ class for a sample from the215

‘orange’ class: Wachter, which only uses the first penalty (λ2 = λ3 = 0); ECCCo (no EBM), which216

does not constrain energy (λ2 = 0); ECCCo (no CP), which involves no set size penalty (λ3 = 0);217

and, finally, ECCCo, which involves all penalties defined in Equation 5. Arrows indicate (negative)218

gradients with respect to the objective function at different points in the feature space.219

While Wachter generates a valid counterfactual, it ends up close to the original starting point consistent220

with its objective. ECCCo (no EBM) pushes the counterfactual further into the target domain to221

minimize predictive uncertainty, but the outcome is still not plausible. The counterfactual produced222

by ECCCo (no CP) is attracted by the generated samples shown in bright yellow. Since the JEM has223

learned the conditional input distribution reasonably well in this case, the counterfactuals are both224

faithful and plausible. Finally, the outcome for ECCCo looks similar, but the additional smooth set225

size penalty leads to somewhat faster convergence.226

Algorithm 1 describes how exactly ECCCo works. For the sake of simplicity and without loss of227

generality, we limit our attention to generating a single counterfactual x′ = f(z′). The counterfactual228

state z′ is initialized by passing the factual x through a simple feature transformer f−1. Next, we229

generate nB conditional samples x̂θ,y+ using SGLD (Equation 2) and store the nE instances with230
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the lowest energy. We then calibrate the model Mθ through split conformal prediction. Finally,231

we search counterfactuals through gradient descent where L(z′,y+, X̂y+ ; Λ, α) denotes our loss232

function defined in Equation 5. The search terminates once the convergence criterium is met or the233

maximum number of iterations T has been exhausted. Note that the choice of convergence criterium234

has important implications on the final counterfactual which we explain in Appendix C.235

6 Empirical Analysis236

Our goal in this section is to shed light on the following research questions:237

Research Question 6.1 (Faithfulness). To what extent are ECCCos more faithful than counterfactuals238

produced by state-of-the-art generators?239

Research Question 6.2 (Balancing Objectives). Compared to state-of-the-art generators, how do240

ECCCos balance the two key objectives of faithfulness and plausibility?241

The second question is motivated by the intuition that faithfulness and plausibility should coincide242

for models that have learned plausible explanations of the data.243

6.1 Experimental Setup244

To assess and benchmark the performance of our proposed generator against the state of the art, we245

generate multiple counterfactuals for different models and datasets. In particular, we compare ECCCo246

and its variants to the following counterfactual generators that were introduced above: firstly; Schut,247

which works under the premise of minimizing predictive uncertainty; secondly, REVISE, which is248

state-of-the-art with respect to plausibility; and, finally, Wachter, which serves as our baseline.249

We use both synthetic and real-world datasets from different domains, all of which are publicly250

available and commonly used to train and benchmark classification algorithms. We synthetically251

generate a dataset containing two Linearly Separable Gaussian clusters (n = 1000), as well as the252

well-known Circles (n = 1000) and Moons (n = 2500) data. Since these data are generated by253

distributions of varying degrees of complexity, they allow us to assess how the generators and our254

proposed evaluation metrics handle this.255

As for real-world data, we follow Schut et al. [7] and use the MNIST [23] dataset containing images256

of handwritten digits such as the example shown above in Figure 1. From the social sciences domain,257

we include Give Me Some Credit (GMSC) [31]: a tabular dataset that has been studied extensively258

in the literature on algorithmic recourse [18]. It consists of 11 numeric features that can be used to259

predict the binary outcome variable indicating whether retail borrowers experience financial distress.260

For the predictive modelling tasks, we use simple neural networks (MLP) and Joint Energy Models261

(JEM). For the more complex real-world datasets we also use ensembling in each case. Both joint-262

energy modelling and ensembling have been associated with improved generative properties and263

adversarial robustness [24, 32], so we expect this to be positively correlated with the plausibility264

of ECCCos. To account for stochasticity, we generate multiple counterfactuals for each target265

class, generator, model and dataset. Specifically, we randomly sample n− times from the subset266

of individuals for which the given model predicts the non-target class y− given the current target.267

We set n− = 25 for all of our synthetic datasets, n− = 10 for GMSC and n− = 5 for MNIST. Full268

details concerning our parameter choices, training procedures and model performance can be found269

in Appendix D.270

6.2 Results for Synthetic Data271

Table 1 shows the key results for the synthetic datasets separated by model (first column) and generator272

(second column). The numerical columns show sample averages and standard deviations of our key273

evaluation metrics computed across all counterfactuals. We have highlighted the best outcome for274

each model and metric in bold. To provide some sense of effect sizes, we have added asterisks to275

indicate that a given value is at least one (∗) or two (∗∗) standard deviations lower than the baseline276

(Wachter).277

Starting with the high-level results for our Linearly Separable data, we find that ECCCo produces278

the most faithful counterfactuals for both black-box models. This is consistent with our design since279
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Table 1: Results for synthetic datasets: sample averages +/- one standard deviation across counterfac-
tuals. Best outcomes are highlighted in bold. Asterisks indicate that the given value is more than one
(*) or two (**) standard deviations away from the baseline (Wachter).

Linearly Separable Moons Circles

Model Generator Unfaithfulness ↓ Implausibility ↓ Unfaithfulness ↓ Implausibility ↓ Unfaithfulness ↓ Implausibility ↓

ECCCo 0.03 ± 0.06** 0.20 ± 0.08** 0.31 ± 0.30* 1.20 ± 0.15** 0.52 ± 0.36 1.22 ± 0.46
ECCCo (no CP) 0.03 ± 0.06** 0.20 ± 0.08** 0.37 ± 0.30* 1.21 ± 0.17** 0.54 ± 0.39 1.21 ± 0.46
ECCCo (no EBM) 0.16 ± 0.11 0.34 ± 0.19 0.91 ± 0.32 1.71 ± 0.25 0.70 ± 0.33 1.30 ± 0.37
REVISE 0.19 ± 0.03 0.41 ± 0.01** 0.78 ± 0.23 1.57 ± 0.26 0.48 ± 0.16* 0.95 ± 0.32*
Schut 0.39 ± 0.07 0.73 ± 0.17 0.67 ± 0.27 1.50 ± 0.22* 0.54 ± 0.43 1.28 ± 0.53

JEM

Wachter 0.18 ± 0.10 0.44 ± 0.17 0.80 ± 0.27 1.78 ± 0.24 0.68 ± 0.34 1.33 ± 0.32

ECCCo 0.29 ± 0.05** 0.23 ± 0.06** 0.80 ± 0.62 1.69 ± 0.40 0.65 ± 0.53 1.17 ± 0.41
ECCCo (no CP) 0.29 ± 0.05** 0.23 ± 0.07** 0.79 ± 0.62 1.68 ± 0.42 0.49 ± 0.35 1.19 ± 0.44
ECCCo (no EBM) 0.46 ± 0.05 0.28 ± 0.04** 1.34 ± 0.47 1.68 ± 0.47 0.84 ± 0.51 1.23 ± 0.31
REVISE 0.56 ± 0.05 0.41 ± 0.01 1.45 ± 0.44 1.64 ± 0.31 0.58 ± 0.52 0.95 ± 0.32
Schut 0.43 ± 0.06* 0.47 ± 0.36 1.45 ± 0.55 1.73 ± 0.48 0.58 ± 0.37 1.23 ± 0.43

MLP

Wachter 0.51 ± 0.04 0.40 ± 0.08 1.32 ± 0.41 1.69 ± 0.32 0.83 ± 0.50 1.24 ± 0.29

ECCCo directly enforces faithfulness through regularization. Crucially though, ECCCo also produces280

the most plausible counterfactuals for both models. This dataset is so simple that even the MLP has281

learned plausible explanations of the input data. Zooming in on the granular details for the Linearly282

Separable data, the results for ECCCo (no CP) and ECCCo (no EBM) indicate that the positive results283

are dominated by the effect of quantifying and leveraging the model’s generative property (EBM).284

Conformal prediction alone only leads to marginally improved faithfulness and plausibility.285

The findings for the Moons dataset are broadly in line with the findings so far: for the JEM, ECCCo286

yields substantially more faithful and plausible counterfactuals than all other generators. For the287

MLP, faithfulness is maintained but counterfactuals are not plausible. This high-level pattern is288

broadly consistent with other more complex datasets and supportive of our narrative, so it is worth289

highlighting: ECCCos consistently achieve high faithfulness, which—subject to the quality of the290

model itself—coincides with high plausibility. By comparison, REVISE yields the most plausible291

counterfactuals for the MLP, but it does so at the cost of faithfulness. We also observe that the292

best results for ECCCo are achieved when using both penalties. Once again though, the generative293

component (EBM) has a stronger impact on the positive results for the JEM.294

For the Circles data, it appears that REVISE performs well, but we note that it generates valid295

counterfactuals only half of the time (see Appendix E for a complete overview including additional296

common evaluation metrics). The underlying VAE with default parameters has not adequately learned297

the data-generating process. Of course, it is possible to improve generative performance through298

hyperparameter tuning but this example serves to illustrate that REVISE depends on the quality of its299

surrogate. Independent of the outcome for REVISE, however, the results do not seem to indicate that300

ECCCo substantially improves faithfulness and plausibility for the Circles data. We think this points301

to a limitation of our evaluation metrics rather than ECCCo itself: computing average distances fails302

to account for the ‘wraparound’ effect associated with circular data [33].303

6.3 Results for Real-World Data304

The results for our real-world datasets are shown in Table 2. Once again the findings indicate that the305

plausibility of ECCCos is positively correlated with the capacity of the black-box model to distinguish306

plausible from implausible inputs. The case is very clear for MNIST: ECCCos are consistently more307

faithful than the counterfactuals produced by our benchmark generators and their plausibility gradually308

improves through ensembling and joint-energy modelling. Interestingly, faithfulness also gradually309

improves for REVISE. This indicates that as our models improve, their generative capacity approaches310

that of the surrogate VAE used by REVISE. The VAE still outperforms our classifiers in this regard,311

as evident from the fact that ECCCo never quite reaches the same level of plausibility as REVISE.312

With reference to Appendix E we note that the results for Schut need to be discounted as it rarely313

produces valid counterfactuals for MNIST. Relatedly, we find that ECCCo is the only generator that314

consistently achieves full validity. Finally, it is worth noting that ECCCo produces counterfactual315

images with the lowest average predictive uncertainty for all models.316
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Table 2: Results for real-world datasets: sample averages +/- one standard deviation across counter-
factuals. Best outcomes are highlighted in bold. Asterisks indicate that the given value is more than
one (*) or two (**) standard deviations away from the baseline (Wachter).

MNIST GMSC

Model Generator Unfaithfulness ↓ Implausibility ↓ Unfaithfulness ↓ Implausibility ↓

ECCCo 19.28 ± 5.01** 314.76 ± 32.36* 79.16 ± 11.67** 18.26 ± 4.92**
REVISE 188.70 ± 26.18* 255.26 ± 41.50** 186.40 ± 28.06 5.34 ± 2.38**
Schut 211.62 ± 27.13 290.56 ± 40.66* 200.98 ± 28.49 6.50 ± 2.01**JEM

Wachter 222.90 ± 26.56 361.88 ± 39.74 214.08 ± 45.35 61.04 ± 2.58

ECCCo 15.99 ± 3.06** 294.72 ± 30.75** 83.28 ± 13.26** 17.21 ± 4.46**
REVISE 173.59 ± 20.65** 246.32 ± 37.46** 194.24 ± 35.41 4.95 ± 1.26**
Schut 204.36 ± 23.14 290.64 ± 39.49* 208.45 ± 34.60 6.12 ± 1.91**JEM Ensemble

Wachter 217.67 ± 23.78 363.23 ± 39.24 186.19 ± 33.88 60.70 ± 44.32

ECCCo 41.95 ± 6.50** 591.58 ± 36.24 75.93 ± 14.27** 17.20 ± 3.15**
REVISE 365.82 ± 15.35* 249.49 ± 41.55** 196.75 ± 41.25 4.84 ± 0.60**
Schut 379.66 ± 17.16 290.07 ± 42.65* 212.00 ± 41.15 6.44 ± 1.34**MLP

Wachter 386.05 ± 16.60 361.83 ± 42.18 218.34 ± 53.26 45.84 ± 39.39

ECCCo 31.43 ± 3.91** 490.88 ± 27.19 73.86 ± 14.63** 17.92 ± 4.17**
REVISE 337.74 ± 11.89* 247.67 ± 38.36** 207.21 ± 43.20 5.78 ± 2.10**
Schut 354.80 ± 13.05 285.79 ± 41.33* 205.36 ± 32.11 7.00 ± 2.15**MLP Ensemble

Wachter 360.79 ± 14.39 357.73 ± 42.55 213.71 ± 54.17 73.09 ± 64.50

For the tabular credit dataset (GMSC) it is inherently challenging to use deep neural networks in order317

to achieve good discriminative performance [34, 35] and generative performance [36], respectively. In318

order to achieve high plausibility, ECCCo effectively requires classifiers to achieve good performance319

for both tasks. Since this is a challenging task even for Joint Energy Models, it is not surprising to320

find that even though ECCCo once again achieves state-of-the-art faithfulness, it is outperformed by321

REVISE and Schut with respect to plausibility.322

6.4 Key Takeways323

To conclude this section, we summarize our findings with reference to the opening questions. The324

results clearly demonstrate that ECCCo consistently achieves state-of-the-art faithfulness, as it was325

designed to do (Research Question 6.1). A related important finding is that ECCCo yields highly326

plausible explanations provided that they faithfully describe model behaviour (Research Question 6.2).327

ECCCo achieves this result primarily by leveraging the model’s generative property.328

7 Limitations329

Even though we have taken considerable measures to study our proposed methodology carefully,330

limitations can still be identified. In particular, we have found that the performance of ECCCo is331

sensitive to hyperparameter choices. In order to achieve faithfulness, we generally had to penalise the332

distance from generated samples slightly more than the distance from factual values.333

Conversely, we have not found that strongly penalising prediction set sizes had any discernable334

effect. Our results indicate that CP alone is often not sufficient to achieve faithfulness and plausibility,335

although we acknowledge that this needs to be investigated more thoroughly through future work.336

While our approach is readily applicable to models with gradient access like deep neural networks,337

more work is needed to generalise it to other machine learning models such as decision trees.338

Relatedly, common challenges associated with energy-based modelling including sensitivity to scale,339

training instabilities and sensitivity to hyperparameters also apply to ECCCo.340
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8 Conclusion341

This work leverages recent advances in energy-based modelling and conformal prediction in the con-342

text of Explainable Artificial Intelligence. We have proposed a new way to generate counterfactuals343

that are maximally faithful to the black-box model they aim to explain. Our proposed generator,344

ECCCo, produces plausible counterfactuals if and only if the black-box model itself has learned345

realistic explanations for the data, which we have demonstrated through rigorous empirical analysis.346

This should enable researchers and practitioners to use counterfactuals in order to discern trustworthy347

models from unreliable ones. While the scope of this work limits its generalizability, we believe that348

ECCCo offers a solid baseline for future work on faithful counterfactual explanations.349
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Appendices446

The following appendices provide additional details that are relevant to the paper. Appendices A447

and B explain any tasks related to Energy-Based Modelling and Predictive Uncertainty Quantification448

through Conformal Prediction, respectively. Appendix C provides additional technical and implemen-449

tation details about our proposed generator, ECCCo, including references to our open-sourced code450

base. A complete overview of our experimental setup detailing our parameter choices, training proce-451

dures and initial black-box model performance can be found in Appendix D. Finally, Appendix E452

reports all of our experimental results in more detail.453

A Energy-Based Modelling454

Since we were not able to identify any existing open-source software for Energy-Based Modelling455

that would be flexible enough to cater to our needs, we have developed a Julia package from scratch.456

The package has been open-sourced, but to avoid compromising the double-blind review process, we457

refrain from providing more information at this stage. In our development we have heavily drawn on458

the existing literature: Du and Mordatch [25] describe best practices for using EBM for generative459

modelling; Grathwohl et al. [24] explain how EBM can be used to train classifiers jointly for the460

discriminative and generative tasks. We have used the same package for training and inference, but461

there are some important differences between the two cases that are worth highlighting here.462

A.1 Training: Joint Energy Models463

To train our Joint Energy Models we broadly follow the approach outlined in Grathwohl et al. [24].464

These models are trained to optimize a hybrid objective that involves a standard classification loss465

component Lclf(θ) = − log pθ(y|x) (e.g. cross-entropy loss) as well as a generative loss component466

Lgen(θ) = − log pθ(x).467

To draw samples from pθ(x), we rely exclusively on the conditional sampling approach described468

in Grathwohl et al. [24] for both training and inference: we first draw y ∼ p(y) and then sample469

x ∼ pθ(x|y) [24] via Equation 2 with energy E(x|y) = µθ(x)[y] where µθ : X 7→ RK returns470

the linear predictions (logits) of our classifier Mθ. While our package also supports unconditional471

sampling, we found conditional sampling to work well. It is also well aligned with CE, since in this472

context we are interested in conditioning on the target class.473

As mentioned in the body of the paper, we rely on a biased sampler involving separately specified474

values for the step size ϵ and the standard deviation σ of the stochastic term involving r. Formally,475

our biased sampler performs updates as follows:476

x̂j+1 ← x̂j −
ϵ

2
E(x̂j |y+) + σrj , j = 1, ..., J (7)
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Table 3: EBM hyperparemeter choices for our experiments.

Dataset SGLD Steps Batch Size λ

Linearly Separable 30 50 0.10
Moons 30 10 0.10
Circles 20 100 0.01

MNIST 25 10 0.01
GMSC 30 10 0.10

Consistent with Grathwohl et al. [24], we have specified ϵ = 2 and σ = 0.01 as the default values for477

all of our experiments. The number of total SGLD steps J varies by dataset (Table 3). Following best478

practices, we initialize x0 randomly in 5% of all cases and sample from a buffer in all other cases.479

The buffer itself is randomly initialised and gradually grows to a maximum of 10,000 samples during480

training as x̂J is stored in each epoch [25, 24].481

It is important to realise that sampling is done during each training epoch, which makes training Joint482

Energy Models significantly harder than conventional neural classifiers. In each epoch the generated483

(batch of) sample(s) x̂J is used as part of the generative loss component, which compares its energy484

to that of observed samples x: Lgen(θ) = µθ(x)[y]− µθ(x̂J)[y]. Our full training objective can be485

summarized as follows,486

L(θ) = Lclf(θ) + Lgen(θ) + λLreg(θ) (8)

where Lreg(θ) is a Ridge penalty (L2 norm) that regularises energy magnitudes for both observed and487

generated samples [25]. We have used varying degrees of regularization depending on the dataset (λ488

in Table 3).489

Contrary to existing work, we have not typically used the entire minibatch of training data for the490

generative loss component but found that using a subset of the minibatch was often sufficient in491

attaining decent generative performance (Table 3). This has helped to reduce the computational492

burden for our models, which should make it easier for others to reproduce our findings. Figures 3493

and 4 show generated samples for our MNIST and Moons data, to provide a sense of their generative494

property.495

A.2 Inference: Quantifying Models’ Generative Property496

At inference time, we assume no prior knowledge about the model’s generative property. This means497

that we do not tab into the existing buffer of generated samples for our Joint Energy Models, but498

instead generate conditional samples from scratch. While we have relied on the default values ϵ = 2499

and σ = 0.01 also during inference, the number of total SGLD steps was set to J = 500 in all cases,500

so significantly higher than during training. For all of our synthetic datasets and models, we generated501

50 conditional samples and then formed subsets containing the nE = 25 lowest-energy samples.502

While in practice it would be sufficient to do this once for each model and dataset, we have chosen503

to perform sampling separately for each individual counterfactual in our experiments to account for504

stochasticity. To help reduce the computational burden for our real-world datasets we have generated505

only 10 conditional samples each time and used all of them in our counterfactual search. Using more506

samples, as we originally did, had no substantial impact on our results.507

B Conformal Prediction508

In this Appendix B we provide some more background on CP and explain in some more detail how509

we have used recent advances in Conformal Training for our purposes.510

B.1 Background on CP511

Intuitively, CP works under the premise of turning heuristic notions of uncertainty into rigorous512

uncertainty estimates by repeatedly sifting through the data. It can be used to generate prediction513

intervals for regression models and prediction sets for classification models. Since the literature on514
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Figure 3: Conditionally generated MNIST images for our JEM Ensemble.

Figure 4: Conditionally generated samples (stars) for our Moons data using a JEM.
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CE and AR is typically concerned with classification problems, we focus on the latter. A particular515

variant of CP called Split Conformal Prediction (SCP) is well-suited for our purposes, because it516

imposes only minimal restrictions on model training.517

Specifically, SCP involves splitting the data Dn = {(xi,yi)}i=1,...,n into a proper training set Dtrain518

and a calibration set Dcal. The former is used to train the classifier in any conventional fashion.519

The latter is then used to compute so-called nonconformity scores: S = {s(xi,yi)}i∈Dcal where520

s : (X ,Y) 7→ R is referred to as score function. In the context of classification, a common choice for521

the score function is just si = 1−Mθ(xi)[yi], that is one minus the softmax output corresponding522

to the observed label yi [28].523

Finally, classification sets are formed as follows,524

Cθ(xi;α) = {y : s(xi,y) ≤ q̂} (9)

where q̂ denotes the (1 − α)-quantile of S and α is a predetermined error rate. As the size of the525

calibration set increases, the probability that the classification set C(xtest) for a newly arrived sample526

xtest does not cover the true test label ytest approaches α [28].527

Observe from Equation 9 that Conformal Prediction works on an instance-level basis, much like CE528

are local. The prediction set for an individual instance xi depends only on the characteristics of that529

sample and the specified error rate. Intuitively, the set is more likely to include multiple labels for530

samples that are difficult to classify, so the set size is indicative of predictive uncertainty. To see why531

this effect is exacerbated by small choices for α consider the case of α = 0, which requires that the532

true label is covered by the prediction set with probability equal to 1.533

B.2 Differentiability534

The fact that conformal classifiers produce set-valued predictions introduces a challenge: it is not535

immediately obvious how to use such classifiers in the context of gradient-based counterfactual536

search. Put differently, it is not clear how to use prediction sets in Equation 1. Fortunately, Stutz et al.537

[30] have recently proposed a framework for Conformal Training that also hinges on differentiability.538

Specifically, they show how Stochastic Gradient Descent can be used to train classifiers not only539

for the discriminative task but also for additional objectives related to Conformal Prediction. One540

such objective is efficiency: for a given target error rate α, the efficiency of a conformal classifier541

improves as its average prediction set size decreases. To this end, the authors introduce a smooth set542

size penalty defined in Equation 6 in the body of this paper. Formally, it is defined as Cθ,y(xi;α) :=543

σ
(
(s(xi,y)− α)T−1

)
for y ∈ Y , where σ is the sigmoid function and T is a hyper-parameter used544

for temperature scaling [30].545

In addition to the smooth set size penalty, Stutz et al. [30] also propose a configurable classification546

loss function, that can be used to enforce coverage. For MNIST data, we found that using this547

function generally improved the visual quality of the generated counterfactuals, so we used it548

in our experiments involving real-world data. For the synthetic dataset, visual inspection of the549

counterfactuals showed that using the configurable loss function sometimes led to overshooting:550

counterfactuals would end up deep inside the target domain but far away from the observed samples.551

For this reason, we instead relied on standard cross-entropy loss for our synthetic datasets. As we have552

noted in the body of the paper, more experimental work is certainly needed in this context. Figure 5553

shows the prediction set size (left), smooth set size loss (centre) and configurable classification loss554

(right) for a JEM trained on our Linearly Separable data.555

C ECCCo556

In this section, we briefly discuss convergence conditions for CE and provide details concerning the557

actual implementation of our framework in Julia.558

C.1 A Note on Convergence559

Convergence is not typically discussed much in the context of CE, even though it has important560

implications on outcomes. One intuitive way to specify convergence is in terms of threshold561

probabilities: once the predicted probability p(y+|x′) exceeds some user-defined threshold γ such562
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Figure 5: Prediction set size (left), smooth set size loss (centre) and configurable classification loss
(right) for a JEM trained on our Linearly Separable data.

Table 4: Paremeter choices for our experiments.

Network Architecture Training

Dataset Sample Size Hidden Units Hidden Layers Activation Ensemble Size Epochs Batch Size

Linearly Separable 1000 16 3 swish 5 100 100
Moons 2500 32 3 relu 5 500 128
Circles 1000 32 3 swish 5 100 100

MNIST 10000 128 1 swish 5 100 128
GMSC 13370 128 2 swish 5 100 250

that the counterfactual is valid, we could consider the search to have converged. In the binary case,563

for example, convergence could be defined as p(y+|x′) > 0.5 in this sense. Note, however, how564

this can be expected to yield counterfactuals in the proximity of the decision boundary, a region565

characterized by high aleatoric uncertainty. In other words, counterfactuals generated in this way566

would generally not be plausible. To avoid this from happening, we specify convergence in terms of567

gradients approaching zero for all our experiments and all of our generators. This is allows us to get568

a cleaner read on how the different counterfactual search objectives affect counterfactual outcomes.569

C.2 ECCCo.jl570

The core part of our code base is integrated into a larger ecosystem of Julia packages that we571

are actively developing and maintaining. To avoid compromising the double-blind review process,572

we only provide a link to an anonymized repository at this stage: https://anonymous.4open.573

science/r/ECCCo-1252/README.md.574

D Experimental Setup575

Table 4 provides an overview of all parameters related to our experiments. The GMSC data were576

randomly undersampled for balancing purposes and all features were standardized. MNIST data was577

also randomly undersampled for reasons outlined below. Pixel values were preprocessed to fall in the578

range of [−1, 1] and a small Gaussian noise component (σ = 0.03) was added to training samples579

following common practice in the EBM literature. All of our models were trained through mini-batch580

training using the Adam optimiser (Kingma and Ba [37]). Table 5 shows standard evaluation metrics581

measuring the predictive performance of our different models grouped by dataset. These measures582

were computed on test data.583

Table 6 summarises our hyperparameter choices for the counterfactual generators where η denotes584

the learning rate used for Stochastic Gradient Descent (SGD) and λ1, λ2, λ3 represent the chosen585

penalty strengths (Equations 1 and 5). Here λ1 also refers to the chosen penalty for the distance from586

factual values that applies to both Wachter and REVISE, but not Schut which is penalty-free. Schut is587

also the only generator that uses JSMA instead of SGD for optimization.588

D.1 Compute589

To enable others to easily replicate our experiments, we have chosen to work with small neural590

network architectures and randomly undersampled the MNIST dataset (maintaining class balance).591

All of our experiments could then be run locally on a personal machine. The longest runtimes we592
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Table 5: Various standard performance metrics for our different models grouped by dataset.

Performance Metrics

Dataset Model Accuracy Precision F1-Score

JEM 0.99 0.99 0.99Linearly Separable
MLP 0.99 0.99 0.99

JEM 1.00 1.00 1.00Moons
MLP 1.00 1.00 1.00

JEM 0.98 0.98 0.98Circles
MLP 1.00 1.00 1.00

JEM 0.83 0.84 0.83
JEM Ensemble 0.90 0.90 0.89

MLP 0.95 0.95 0.95

MNIST

MLP Ensemble 0.95 0.95 0.95

JEM 0.73 0.75 0.73
JEM Ensemble 0.73 0.75 0.73

MLP 0.75 0.75 0.75

GMSC

MLP Ensemble 0.75 0.75 0.75

Table 6: Generator hyperparameters.

Dataset η λ1 λ2 λ3

Linearly Separable 0.01 0.25 0.75 0.75
Moons 0.05 0.25 0.75 0.75
Circles 0.01 0.25 0.75 0.75

MNIST 0.10 0.10 0.25 0.25
GMSC 0.05 0.10 0.50 0.50

experienced for model training and counterfactual benchmarking were on the order of 8-12 hours593

(MNIST data). For the synthetic data, all experiments could be completed in less than an hour.594

We have summarised our system information below:595

Software:596

• System Version: macOS 13.3.1597

• Kernel Version: Darwin 22.4.0598

Hardware:599

• Model Name: MacBook Pro600

• Model Identifier: MacBookPro16,1601

• Processor Name: 8-Core Intel Core i9602

• Processor Speed: 2.3 GHz603

• Number of Processors: 1604

• Total Number of Cores: 8605

• L2 Cache (per Core): 256 KB606

• L3 Cache: 16 MB607

• Hyper-Threading Technology: Enabled608

• Memory: 32 GB609
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Figure 6: Counterfactuals for MNIST data and our JEM Ensemble. Original images are shown on the
diagonal with the corresponding counterfactuals plotted across rows.

E Results610

Figure 6 shows examples of counterfactuals for MNIST data where the underlying model is our JEM611

Ensemble. Original images are shown on the diagonal and the corresponding counterfactuals are612

plotted across rows.613

Table 7 reports all of the evaluation metrics we have computed. Table 8 reports the same metrics614

for the subset of valid counterfactuals. The ‘Unfaithfulness’ and ‘Implausibility’ metrics have been615

discussed extensively in the body of the paper. The ‘Cost’ metric relates to the distance between616

the factual and the counterfactual. The ‘Redundancy’ metric measures sparsity in is defined as the617

percentage of features that remain unperturbed (higher is better). The ‘Uncertainty’ metric is just618

the average value of the smooth set size penalty (Equation 6). Finally, ‘Validity’ is the percentage of619

valid counterfactuals.620
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Table 7: All results for all datasets: sample averages +/- one standard deviation over all counterfactuals.
Best outcomes are highlighted in bold. Asterisks indicate that the given value is more than one (*) or
two (**) standard deviations away from the baseline (Wachter).

Model Data Generator Cost ↓ Unfaithfulness ↓ Implausibility ↓ Redundancy ↑ Uncertainty ↓ Validity ↑

ECCCo 0.74 ± 0.21 0.52 ± 0.36 1.22 ± 0.46 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00**
ECCCo (no CP) 0.72 ± 0.21 0.54 ± 0.39 1.21 ± 0.46 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00**

ECCCo (no EBM) 0.52 ± 0.15 0.70 ± 0.33 1.30 ± 0.37 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00**
REVISE 0.97 ± 0.34 0.48 ± 0.16* 0.95 ± 0.32* 0.00 ± 0.00 0.00 ± 0.00 0.50 ± 0.51

Schut 1.06 ± 0.43 0.54 ± 0.43 1.28 ± 0.53 0.26 ± 0.25* 0.00 ± 0.00 1.00 ± 0.00**

JEM

Wachter 0.44 ± 0.16 0.68 ± 0.34 1.33 ± 0.32 0.00 ± 0.00 0.00 ± 0.00 0.98 ± 0.14

ECCCo 0.67 ± 0.19 0.65 ± 0.53 1.17 ± 0.41 0.00 ± 0.00 0.09 ± 0.19** 1.00 ± 0.00
ECCCo (no CP) 0.71 ± 0.16 0.49 ± 0.35 1.19 ± 0.44 0.00 ± 0.00 0.05 ± 0.16** 1.00 ± 0.00

ECCCo (no EBM) 0.45 ± 0.11 0.84 ± 0.51 1.23 ± 0.31 0.00 ± 0.00 0.15 ± 0.23* 1.00 ± 0.00
REVISE 0.96 ± 0.31 0.58 ± 0.52 0.95 ± 0.32 0.00 ± 0.00 0.00 ± 0.00** 0.50 ± 0.51

Schut 0.57 ± 0.11 0.58 ± 0.37 1.23 ± 0.43 0.43 ± 0.18** 0.00 ± 0.00** 1.00 ± 0.00

Circles

MLP

Wachter 0.40 ± 0.09 0.83 ± 0.50 1.24 ± 0.29 0.00 ± 0.00 0.53 ± 0.01 1.00 ± 0.00
ECCCo 17.45 ± 2.92** 79.16 ± 11.67** 18.26 ± 4.92** 0.00 ± 0.00 0.10 ± 0.01 1.00 ± 0.00
REVISE 3.43 ± 1.67** 186.40 ± 28.06 5.34 ± 2.38** 0.00 ± 0.00 0.51 ± 0.22 1.00 ± 0.00

Schut 1.27 ± 0.33** 200.98 ± 28.49 6.50 ± 2.01** 0.77 ± 0.07** 0.07 ± 0.00 1.00 ± 0.00

JEM

Wachter 57.71 ± 0.47 214.08 ± 45.35 61.04 ± 2.58 0.00 ± 0.00 0.07 ± 0.00 1.00 ± 0.00

ECCCo 17.43 ± 3.04** 83.28 ± 13.26** 17.21 ± 4.46** 0.00 ± 0.00 0.16 ± 0.11 1.00 ± 0.00
REVISE 2.94 ± 1.13** 194.24 ± 35.41 4.95 ± 1.26** 0.00 ± 0.00 0.51 ± 0.29 1.00 ± 0.00

Schut 1.03 ± 0.20** 208.45 ± 34.60 6.12 ± 1.91** 0.85 ± 0.05** 0.09 ± 0.04 1.00 ± 0.00

JEM Ensemble

Wachter 56.79 ± 44.68 186.19 ± 33.88 60.70 ± 44.32 0.00 ± 0.00 0.07 ± 0.00 1.00 ± 0.00

ECCCo 17.05 ± 2.87** 75.93 ± 14.27** 17.20 ± 3.15** 0.00 ± 0.00 0.19 ± 0.08 1.00 ± 0.00**
REVISE 2.93 ± 1.24** 196.75 ± 41.25 4.84 ± 0.60** 0.00 ± 0.00 0.38 ± 0.18 1.00 ± 0.00**

Schut 1.49 ± 0.87** 212.00 ± 41.15 6.44 ± 1.34** 0.77 ± 0.13** 0.12 ± 0.01 1.00 ± 0.00**

MLP

Wachter 42.97 ± 39.50 218.34 ± 53.26 45.84 ± 39.39 0.00 ± 0.00 0.06 ± 0.06 0.50 ± 0.51

ECCCo 16.63 ± 2.62** 73.86 ± 14.63** 17.92 ± 4.17** 0.00 ± 0.00 0.23 ± 0.07 1.00 ± 0.00**
REVISE 3.73 ± 2.36** 207.21 ± 43.20 5.78 ± 2.10** 0.00 ± 0.00 0.33 ± 0.19 1.00 ± 0.00**

Schut 1.20 ± 0.47** 205.36 ± 32.11 7.00 ± 2.15** 0.79 ± 0.09** 0.12 ± 0.01 1.00 ± 0.00**

GMSC

MLP Ensemble

Wachter 69.30 ± 66.00 213.71 ± 54.17 73.09 ± 64.50 0.00 ± 0.00 0.06 ± 0.06 0.50 ± 0.51

ECCCo 0.75 ± 0.17 0.03 ± 0.06** 0.20 ± 0.08** 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00
ECCCo (no CP) 0.75 ± 0.17 0.03 ± 0.06** 0.20 ± 0.08** 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00

ECCCo (no EBM) 0.70 ± 0.16 0.16 ± 0.11 0.34 ± 0.19 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00
REVISE 0.41 ± 0.15 0.19 ± 0.03 0.41 ± 0.01** 0.00 ± 0.00 0.36 ± 0.36 0.50 ± 0.51

Schut 1.15 ± 0.35 0.39 ± 0.07 0.73 ± 0.17 0.25 ± 0.25 0.00 ± 0.00 1.00 ± 0.00

JEM

Wachter 0.50 ± 0.13 0.18 ± 0.10 0.44 ± 0.17 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00
ECCCo 0.95 ± 0.16 0.29 ± 0.05** 0.23 ± 0.06** 0.00 ± 0.00 0.00 ± 0.00** 1.00 ± 0.00

ECCCo (no CP) 0.94 ± 0.16 0.29 ± 0.05** 0.23 ± 0.07** 0.00 ± 0.00 0.00 ± 0.00** 1.00 ± 0.00
ECCCo (no EBM) 0.60 ± 0.15 0.46 ± 0.05 0.28 ± 0.04** 0.00 ± 0.00 0.02 ± 0.10** 1.00 ± 0.00

REVISE 0.42 ± 0.14 0.56 ± 0.05 0.41 ± 0.01 0.00 ± 0.00 0.47 ± 0.50 0.48 ± 0.50
Schut 0.77 ± 0.17 0.43 ± 0.06* 0.47 ± 0.36 0.20 ± 0.25 0.00 ± 0.00** 1.00 ± 0.00

Linearly Separable

MLP

Wachter 0.51 ± 0.15 0.51 ± 0.04 0.40 ± 0.08 0.00 ± 0.00 0.59 ± 0.02 1.00 ± 0.00
ECCCo 334.61 ± 46.37 19.28 ± 5.01** 314.76 ± 32.36* 0.00 ± 0.00 4.43 ± 0.56 0.98 ± 0.12
REVISE 170.68 ± 63.26 188.70 ± 26.18* 255.26 ± 41.50** 0.00 ± 0.00 4.39 ± 0.91 0.96 ± 0.20

Schut 9.44 ± 1.60** 211.00 ± 27.21 286.61 ± 39.85* 0.99 ± 0.00** 1.08 ± 1.95* 0.24 ± 0.43

JEM

Wachter 128.36 ± 14.95 222.90 ± 26.56 361.88 ± 39.74 0.00 ± 0.00 4.37 ± 0.98 0.95 ± 0.21

ECCCo 342.64 ± 41.14 15.99 ± 3.06** 294.72 ± 30.75** 0.00 ± 0.00 2.07 ± 0.06** 1.00 ± 0.00**
REVISE 170.21 ± 58.02 173.59 ± 20.65** 246.32 ± 37.46** 0.00 ± 0.00 2.56 ± 0.83 0.93 ± 0.26

Schut 9.78 ± 1.02** 205.33 ± 24.07 287.39 ± 39.33* 0.99 ± 0.00** 0.32 ± 0.94** 0.11 ± 0.31

JEM Ensemble

Wachter 135.07 ± 16.79 217.67 ± 23.78 363.23 ± 39.24 0.00 ± 0.00 2.93 ± 0.77 0.94 ± 0.23

ECCCo 605.17 ± 44.78 41.95 ± 6.50** 591.58 ± 36.24 0.00 ± 0.00 0.57 ± 0.00** 1.00 ± 0.00**
REVISE 146.61 ± 36.96 365.82 ± 15.35* 249.49 ± 41.55** 0.00 ± 0.00 0.62 ± 0.30 0.87 ± 0.34

Schut 9.95 ± 0.37** 382.44 ± 17.81 285.98 ± 42.48* 0.99 ± 0.00** 0.05 ± 0.19** 0.06 ± 0.24

MLP

Wachter 136.08 ± 16.09 386.05 ± 16.60 361.83 ± 42.18 0.00 ± 0.00 0.68 ± 0.36 0.84 ± 0.36

ECCCo 525.87 ± 34.00 31.43 ± 3.91** 490.88 ± 27.19 0.00 ± 0.00 0.29 ± 0.00** 1.00 ± 0.00**
REVISE 146.60 ± 35.64 337.74 ± 11.89* 247.67 ± 38.36** 0.00 ± 0.00 0.39 ± 0.22 0.85 ± 0.36

Schut 9.98 ± 0.25** 359.54 ± 14.52 283.99 ± 41.08* 0.99 ± 0.00** 0.03 ± 0.14** 0.06 ± 0.24

MNIST

MLP Ensemble

Wachter 137.53 ± 18.95 360.79 ± 14.39 357.73 ± 42.55 0.00 ± 0.00 0.47 ± 0.64 0.80 ± 0.40

ECCCo 1.56 ± 0.44 0.31 ± 0.30* 1.20 ± 0.15** 0.00 ± 0.00 0.00 ± 0.00** 1.00 ± 0.00**
ECCCo (no CP) 1.56 ± 0.46 0.37 ± 0.30* 1.21 ± 0.17** 0.00 ± 0.00 0.00 ± 0.00** 1.00 ± 0.00**

ECCCo (no EBM) 0.80 ± 0.25 0.91 ± 0.32 1.71 ± 0.25 0.00 ± 0.00 0.00 ± 0.00** 1.00 ± 0.00**
REVISE 1.04 ± 0.43 0.78 ± 0.23 1.57 ± 0.26 0.00 ± 0.00 0.00 ± 0.00** 1.00 ± 0.00**

Schut 1.12 ± 0.31 0.67 ± 0.27 1.50 ± 0.22* 0.08 ± 0.19 0.00 ± 0.00** 0.98 ± 0.14

JEM

Wachter 0.72 ± 0.24 0.80 ± 0.27 1.78 ± 0.24 0.00 ± 0.00 0.02 ± 0.10 0.98 ± 0.14

ECCCo 2.18 ± 1.05 0.80 ± 0.62 1.69 ± 0.40 0.00 ± 0.00 0.15 ± 0.24* 1.00 ± 0.00
ECCCo (no CP) 2.07 ± 1.15 0.79 ± 0.62 1.68 ± 0.42 0.00 ± 0.00 0.15 ± 0.24* 1.00 ± 0.00

ECCCo (no EBM) 1.25 ± 0.92 1.34 ± 0.47 1.68 ± 0.47 0.00 ± 0.00 0.43 ± 0.18 1.00 ± 0.00
REVISE 0.79 ± 0.19* 1.45 ± 0.44 1.64 ± 0.31 0.00 ± 0.00 0.40 ± 0.22 1.00 ± 0.00

Schut 0.73 ± 0.25* 1.45 ± 0.55 1.73 ± 0.48 0.31 ± 0.28* 0.00 ± 0.00** 0.90 ± 0.30

Moons

MLP

Wachter 1.08 ± 0.83 1.32 ± 0.41 1.69 ± 0.32 0.00 ± 0.00 0.52 ± 0.08 1.00 ± 0.00
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Table 8: All results for all datasets: sample averages +/- one standard deviation over all valid
counterfactuals. Best outcomes are highlighted in bold. Asterisks indicate that the given value is
more than one (*) or two (**) standard deviations away from the baseline (Wachter).

Model Data Generator Cost ↓ Unfaithfulness ↓ Implausibility ↓ Redundancy ↑ Uncertainty ↓ Validity ↑

ECCCo 0.74 ± 0.21 0.52 ± 0.36 1.22 ± 0.46 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00
ECCCo (no CP) 0.72 ± 0.21 0.54 ± 0.39 1.21 ± 0.46 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00

ECCCo (no EBM) 0.52 ± 0.15 0.70 ± 0.33 1.30 ± 0.37 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00
REVISE 1.28 ± 0.14 0.33 ± 0.01** 0.64 ± 0.00** 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00

Schut 1.06 ± 0.43 0.54 ± 0.43 1.28 ± 0.53 0.26 ± 0.25* 0.00 ± 0.00 1.00 ± 0.00

JEM

Wachter 0.45 ± 0.15 0.68 ± 0.34 1.33 ± 0.32 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00

ECCCo 0.67 ± 0.19 0.65 ± 0.53 1.17 ± 0.41 0.00 ± 0.00 0.09 ± 0.19** 1.00 ± 0.00
ECCCo (no CP) 0.71 ± 0.16 0.49 ± 0.35 1.19 ± 0.44 0.00 ± 0.00 0.05 ± 0.16** 1.00 ± 0.00

ECCCo (no EBM) 0.45 ± 0.11 0.84 ± 0.51 1.23 ± 0.31 0.00 ± 0.00 0.15 ± 0.23* 1.00 ± 0.00
REVISE 1.24 ± 0.15 0.06 ± 0.01** 0.64 ± 0.00** 0.00 ± 0.00 0.00 ± 0.00** 1.00 ± 0.00

Schut 0.57 ± 0.11 0.58 ± 0.37 1.23 ± 0.43 0.43 ± 0.18** 0.00 ± 0.00** 1.00 ± 0.00

Circles

MLP

Wachter 0.40 ± 0.09 0.83 ± 0.50 1.24 ± 0.29 0.00 ± 0.00 0.53 ± 0.01 1.00 ± 0.00

ECCCo 17.45 ± 2.92** 79.16 ± 11.67** 18.26 ± 4.92** 0.00 ± 0.00 0.10 ± 0.01 1.00 ± 0.00
REVISE 3.43 ± 1.67** 186.40 ± 28.06 5.34 ± 2.38** 0.00 ± 0.00 0.51 ± 0.22 1.00 ± 0.00

Schut 1.27 ± 0.33** 200.98 ± 28.49 6.50 ± 2.01** 0.77 ± 0.07** 0.07 ± 0.00 1.00 ± 0.00

JEM

Wachter 57.71 ± 0.47 214.08 ± 45.35 61.04 ± 2.58 0.00 ± 0.00 0.07 ± 0.00 1.00 ± 0.00

ECCCo 17.43 ± 3.04** 83.28 ± 13.26** 17.21 ± 4.46** 0.00 ± 0.00 0.16 ± 0.11 1.00 ± 0.00
REVISE 2.94 ± 1.13** 194.24 ± 35.41 4.95 ± 1.26** 0.00 ± 0.00 0.51 ± 0.29 1.00 ± 0.00

Schut 1.03 ± 0.20** 208.45 ± 34.60 6.12 ± 1.91** 0.85 ± 0.05** 0.09 ± 0.04 1.00 ± 0.00

JEM Ensemble

Wachter 56.79 ± 44.68 186.19 ± 33.88 60.70 ± 44.32 0.00 ± 0.00 0.07 ± 0.00 1.00 ± 0.00

ECCCo 17.05 ± 2.87 75.93 ± 14.27** 17.20 ± 3.15 0.00 ± 0.00 0.19 ± 0.08 1.00 ± 0.00
REVISE 2.93 ± 1.24* 196.75 ± 41.25 4.84 ± 0.60** 0.00 ± 0.00 0.38 ± 0.18 1.00 ± 0.00

Schut 1.49 ± 0.87** 212.00 ± 41.15 6.44 ± 1.34 0.77 ± 0.13** 0.12 ± 0.01 1.00 ± 0.00

MLP

Wachter 4.48 ± 0.18 184.03 ± 48.16 7.49 ± 0.89 0.00 ± 0.00 0.12 ± 0.00 1.00 ± 0.00

ECCCo 16.63 ± 2.62 73.86 ± 14.63** 17.92 ± 4.17 0.00 ± 0.00 0.23 ± 0.07 1.00 ± 0.00
REVISE 3.73 ± 2.36 207.21 ± 43.20 5.78 ± 2.10** 0.00 ± 0.00 0.33 ± 0.19 1.00 ± 0.00

Schut 1.20 ± 0.47** 205.36 ± 32.11 7.00 ± 2.15* 0.79 ± 0.09** 0.12 ± 0.01 1.00 ± 0.00

GMSC

MLP Ensemble

Wachter 4.97 ± 0.47 177.20 ± 25.86 10.27 ± 3.21 0.00 ± 0.00 0.11 ± 0.00 1.00 ± 0.00

ECCCo 0.75 ± 0.17 0.03 ± 0.06** 0.20 ± 0.08** 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00
ECCCo (no CP) 0.75 ± 0.17 0.03 ± 0.06** 0.20 ± 0.08** 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00

ECCCo (no EBM) 0.70 ± 0.16 0.16 ± 0.11 0.34 ± 0.19 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00
REVISE 0.41 ± 0.14 0.15 ± 0.00** 0.41 ± 0.01** 0.00 ± 0.00 0.72 ± 0.02 1.00 ± 0.00

Schut 1.15 ± 0.35 0.39 ± 0.07 0.73 ± 0.17 0.25 ± 0.25 0.00 ± 0.00 1.00 ± 0.00

JEM

Wachter 0.50 ± 0.13 0.18 ± 0.10 0.44 ± 0.17 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00

ECCCo 0.95 ± 0.16 0.29 ± 0.05** 0.23 ± 0.06** 0.00 ± 0.00 0.00 ± 0.00** 1.00 ± 0.00
ECCCo (no CP) 0.94 ± 0.16 0.29 ± 0.05** 0.23 ± 0.07** 0.00 ± 0.00 0.00 ± 0.00** 1.00 ± 0.00

ECCCo (no EBM) 0.60 ± 0.15 0.46 ± 0.05 0.28 ± 0.04** 0.00 ± 0.00 0.02 ± 0.10** 1.00 ± 0.00
REVISE 0.39 ± 0.15 0.52 ± 0.04 0.41 ± 0.01 0.00 ± 0.00 0.98 ± 0.00 1.00 ± 0.00

Schut 0.77 ± 0.17 0.43 ± 0.06* 0.47 ± 0.36 0.20 ± 0.25 0.00 ± 0.00** 1.00 ± 0.00

Linearly Separable

MLP

Wachter 0.51 ± 0.15 0.51 ± 0.04 0.40 ± 0.08 0.00 ± 0.00 0.59 ± 0.02 1.00 ± 0.00

ECCCo 334.98 ± 46.54 19.27 ± 5.02** 314.54 ± 32.54* 0.00 ± 0.00 4.50 ± 0.00** 1.00 ± 0.00
REVISE 170.06 ± 62.45 188.54 ± 26.22* 254.32 ± 41.55** 0.00 ± 0.00 4.57 ± 0.14 1.00 ± 0.00

Schut 7.63 ± 2.55** 199.70 ± 28.43 273.01 ± 39.60** 0.99 ± 0.00** 4.56 ± 0.13 1.00 ± 0.00

JEM

Wachter 128.13 ± 14.81 222.81 ± 26.22 361.38 ± 39.55 0.00 ± 0.00 4.58 ± 0.16 1.00 ± 0.00

ECCCo 342.64 ± 41.14 15.99 ± 3.06** 294.72 ± 30.75** 0.00 ± 0.00 2.07 ± 0.06** 1.00 ± 0.00
REVISE 171.95 ± 58.81 173.05 ± 20.38** 246.20 ± 37.74** 0.00 ± 0.00 2.76 ± 0.45 1.00 ± 0.00

Schut 7.96 ± 2.49** 186.91 ± 22.98* 264.68 ± 37.58** 0.99 ± 0.00** 3.02 ± 0.26 1.00 ± 0.00

JEM Ensemble

Wachter 134.98 ± 16.95 217.37 ± 23.93 362.91 ± 39.40 0.00 ± 0.00 3.10 ± 0.31 1.00 ± 0.00

ECCCo 605.17 ± 44.78 41.95 ± 6.50** 591.58 ± 36.24 0.00 ± 0.00 0.57 ± 0.00** 1.00 ± 0.00
REVISE 146.76 ± 37.07 365.69 ± 14.90* 245.36 ± 39.69** 0.00 ± 0.00 0.72 ± 0.18 1.00 ± 0.00

Schut 9.25 ± 1.31** 371.12 ± 19.99 245.11 ± 35.72** 0.99 ± 0.00** 0.75 ± 0.23 1.00 ± 0.00

MLP

Wachter 135.08 ± 15.68 384.76 ± 16.52 359.21 ± 42.03 0.00 ± 0.00 0.81 ± 0.22 1.00 ± 0.00

ECCCo 525.87 ± 34.00 31.43 ± 3.91** 490.88 ± 27.19 0.00 ± 0.00 0.29 ± 0.00** 1.00 ± 0.00
REVISE 146.38 ± 35.18 337.21 ± 11.68* 244.84 ± 37.17** 0.00 ± 0.00 0.45 ± 0.16 1.00 ± 0.00

Schut 9.75 ± 1.00** 344.60 ± 13.64* 252.53 ± 37.92** 0.99 ± 0.00** 0.55 ± 0.21 1.00 ± 0.00

MNIST

MLP Ensemble

Wachter 134.48 ± 17.69 358.51 ± 13.18 352.63 ± 39.93 0.00 ± 0.00 0.58 ± 0.67 1.00 ± 0.00

ECCCo 1.56 ± 0.44 0.31 ± 0.30* 1.20 ± 0.15** 0.00 ± 0.00 0.00 ± 0.00** 1.00 ± 0.00
ECCCo (no CP) 1.56 ± 0.46 0.37 ± 0.30* 1.21 ± 0.17** 0.00 ± 0.00 0.00 ± 0.00** 1.00 ± 0.00

ECCCo (no EBM) 0.80 ± 0.25 0.91 ± 0.32 1.71 ± 0.25 0.00 ± 0.00 0.00 ± 0.00** 1.00 ± 0.00
REVISE 1.04 ± 0.43 0.78 ± 0.23 1.57 ± 0.26 0.00 ± 0.00 0.00 ± 0.00** 1.00 ± 0.00

Schut 1.13 ± 0.29 0.66 ± 0.25 1.47 ± 0.10** 0.07 ± 0.18 0.00 ± 0.00** 1.00 ± 0.00

JEM

Wachter 0.73 ± 0.24 0.78 ± 0.23 1.75 ± 0.19 0.00 ± 0.00 0.02 ± 0.11 1.00 ± 0.00

ECCCo 2.18 ± 1.05 0.80 ± 0.62 1.69 ± 0.40 0.00 ± 0.00 0.15 ± 0.24* 1.00 ± 0.00
ECCCo (no CP) 2.07 ± 1.15 0.79 ± 0.62 1.68 ± 0.42 0.00 ± 0.00 0.15 ± 0.24* 1.00 ± 0.00

ECCCo (no EBM) 1.25 ± 0.92 1.34 ± 0.47 1.68 ± 0.47 0.00 ± 0.00 0.43 ± 0.18 1.00 ± 0.00
REVISE 0.79 ± 0.19* 1.45 ± 0.44 1.64 ± 0.31 0.00 ± 0.00 0.40 ± 0.22 1.00 ± 0.00

Schut 0.78 ± 0.17* 1.39 ± 0.50 1.59 ± 0.26 0.28 ± 0.25* 0.00 ± 0.00** 1.00 ± 0.00

Moons

MLP

Wachter 1.08 ± 0.83 1.32 ± 0.41 1.69 ± 0.32 0.00 ± 0.00 0.52 ± 0.08 1.00 ± 0.00
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