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Abstract

Counterfactual Explanations offer an intuitive and straightforward way to explain1

black-box models but they are not unique. To identify the most plausible expla-2

nations, existing work has primarily relied on surrogate models to learn how the3

input data is distributed. This effectively reallocates the task of learning realistic4

representations of the data from the model itself to the surrogate. Consequently,5

the generated explanations may look plausible to humans but not necessarily faith-6

fully describe the behaviour of the black-box model. We formalise this notion of7

faithfulness through the introduction of a tailored evaluation metric and propose8

a novel algorithmic framework for generating Energy-Constrained Conformal9

Counterfactuals that are only as plausible as the model permits. Through extensive10

empirical studies involving multiple synthetic and real-world datasets, we demon-11

strate that ECCCos reconcile the need for plausibility and faithfulness. In particular,12

we show that it is possible to achieve state-of-the-art plausibility for any black-box13

model with gradient access without the need for surrogate models. To do so, EC-14

CCo relies solely on properties defining the black-box model itself by leveraging15

recent advances in energy-based modelling and conformal inference. The empirical16

findings also highlight that black-box models that are trained jointly to discriminate17

outputs and generate inputs tend to yield more plausible explanations than pure18

discriminative models. Our framework is intuitive, flexible and open-sourced. By19

highlighting the need for faithfulness in the context of Counterfactual Explanations,20

we believe that in the short term, our work will enable researchers and practitioners21

to better distinguish trustworthy from unreliable models. We anticipate that EC-22

CCo can serve as a baseline for future research directed at providing plausible but23

faithful Counterfactual Explanations.24

1 Introduction25

Counterfactual Explanations provide a powerful, flexible and intuitive way to not only explain black-26

box models but also enable affected individuals to challenge them through the means of Algorithmic27

Recourse. Instead of opening the black box, Counterfactual Explanations work under the premise28

of strategically perturbing model inputs to understand model behaviour [29]. Intuitively speaking,29

we generate explanations in this context by asking simple what-if questions of the following nature:30

‘Our credit risk model currently predicts that this individual’s credit profile is too risky to offer them a31

loan. What if they reduced their monthly expenditures by 10%? Will our model then predict that the32

individual is credit-worthy’?33

This is typically implemented by defining a target outcome y∗ ∈ Y for some individual x ∈ X = RD34

described by D attributes, for which the model Mθ : X 7→ Y initially predicts a different outcome:35
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Mθ(x) ̸= y∗. Counterfactuals are then searched by minimizing a loss function that compares the36

predicted model output to the target outcome: yloss(Mθ(x),y
∗). Since Counterfactual Explanations37

(CE) work directly with the black-box model, valid counterfactuals always have full local fidelity by38

construction [17]. Fidelity is defined as the degree to which explanations approximate the predictions39

of the black-box model. This is arguably one of the most important evaluation metrics for model40

explanations, since any explanation that explains a prediction not actually made by the model is41

useless [16].42

In situations where full fidelity is a requirement, CE therefore offers a more appropriate solution43

to Explainable Artificial Intelligence (XAI) than other popular approaches like LIME [22] and44

SHAP [12], which involve local surrogate models. But even full fidelity is not a sufficient condition45

for ensuring that an explanation faithfully describes the behaviour of a model. That is because46

multiple very distinct explanations can all lead to the same model prediction, especially when dealing47

with heavily parameterized models like deep neural networks which are typically underspecified by48

the available data [30].49

In the context of CE, the idea that no two explanations are the same arises almost naturally. A key50

focus in the literature has therefore been to identify those explanations and algorithmic recourses51

that are deemed most appropriate based on a myriad of desiderata such as sparsity, actionability52

and plausibility. In this work, we draw closer attention to the insufficiency of model fidelity as an53

evaluation metric for the faithfulness of counterfactual explanations. Our key contributions are as54

follows: firstly, we introduce a new notion of faithfulness that is suitable for counterfactuals and55

propose a novel evaluation measure that draws inspiration from recent advances in Energy-Based56

Modelling (EBM); secondly, we a novel algorithmic approach for generating Energy-Constrained57

Conformal Counterfactuals (ECCCo) that explicitly address the need for faithfulness; finally, we58

provide illustrative examples and extensive empirical evidence demonstrating that ECCCos faithfully59

explain model behaviour without sacrificing existing desidarata like plausibility and sparsity.60

2 Background and Related Work61

In this section, we provide some background on Counterfactual Explanations and our motivation for62

this work. To start, we briefly introduce the methodology underlying most state-of-the-art (SOTA)63

counterfactual generators.64

2.1 Gradient-Based Counterfactual Search65

While Counterfactual Explanations can be generated for arbitrary regression models [24], existing66

work has primarily focused on classification problems. Let Y = (0, 1)K denote the one-hot-encoded67

output domain with K classes. Then most SOTA counterfactual generators rely on gradient descent68

to optimize different flavours of the following counterfactual search objective:69

Z′ = arg min
Z′∈ZL

{yloss(Mθ(f(Z
′)),y∗) + λcost(f(Z′))} (1)

Here yloss denotes the primary loss function already introduced above and cost is either a single70

penalty or a collection of penalties that are used to impose constraints through regularization. Equa-71

tion 1 restates the baseline approach to gradient-based counterfactual search proposed by Wachter72

et al. [29] in general form where Z′ = {zl}L denotes an L-dimensional array of counterfactual73

states [2]. This is to explicitly account for the multiplicity of explanations and the fact that we may74

choose to generate multiple counterfactuals and traverse a latent encoding Z of the feature space X75

where we denote f−1 : X 7→ Z . Encodings may involve simple feature transformations or more76

advanced techniques involving generative models, as we will discuss further below. The baseline77

approach, which we will simply refer to as Wachter [29], searches a single counterfactual directly in78

the feature space and penalises its distance between the original factual.79

Solutions to Equation 1 are considered valid as soon as the predicted label matches the target label. A80

stripped-down counterfactual explanation is therefore little different from an adversarial example. In81

Figure 1, for example, we have applied Wachter to MNIST data (centre panel) where the underlying82

classifier Mθ is a simple Multi-Layer Perceptron (MLP) with above 90 percent test accuracy. For the83

generated counterfactual x′ the model predicts the target label with high confidence (centre panel84
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in Figure 1). The explanation is valid by definition, even though it looks a lot like an Adversarial85

Example [6]. Schut et al. [23] make the connection between Adversarial Examples and Counterfactual86

Explanations explicit and propose using a Jacobian-Based Saliency Map Attack (JSMA) to solve87

Equation 1. They demonstrate that this approach yields realistic and sparse counterfactuals for88

Bayesian, adversarially robust classifiers. Applying their approach to our simple MNIST classifier89

does not yield a realistic counterfactual but this one, too, is valid (right panel in Figure 1).90

2.2 From Adversial Examples to Plausible Explanations91

The crucial difference between Adversarial Examples (AE) and Counterfactual Explanations is one of92

intent. While an AE is intended to go unnoticed, a CE should have certain desirable properties. The93

literature has made this explicit by introducing various so-called desiderata that counterfactuals should94

meet in order to properly serve both AI practitioners and individuals affected by AI decision-making95

systems. The list of desiderate includes but is not limited to the following: sparsity, proximity [29],96

actionability [27], diversity [17], plausibility [9, 21, 23], robustness [26, 20, 2] and causality [11].97

Researchers have come up with various ways to meet these desiderata, which have been extensively98

surveyed and evaluated in various studies [28, 10, 19, 4, 8]. Perhaps unsurprisingly, the different99

desiderata are often positively correlated. For example, Artelt et al. [4] find that plausibility typically100

also leads to improved robustness. Similarly, plausibility has also been connected to causality in the101

sense that plausible counterfactuals respect causal relationships [13].102

2.2.1 Plausibility through Surrogates103

Arguably, the plausibility of counterfactuals has been among the primary concerns and some have104

focused explicitly on this goal. Joshi et al. [9], for example, were among the first to suggest that105

instead of searching counterfactuals in the feature spaceX , we can instead traverse a latent embedding106

Z (Equation 1) that implicitly codifies the data generating process (DGP) of x ∼ X . To learn the107

latent embedding, they introduce a surrogate model. In particular, they propose to use the latent108

embedding of a Variational Autoencoder (VAE) trained to generate samples x∗ ← G(z) where G109

denotes the decoder part of the VAE. Provided the surrogate model is well-trained, their proposed110

approach —REVISE— can yield compelling counterfactual explanations like the one in the centre111

panel of Figure 2.112

Others have proposed similar approaches. Dombrowski et al. [5] traverse the base space of a113

normalizing flow to solve Equation 1, essentially relying on a different surrogate model for the114

generative task. Poyiadzi et al. [21] use density estimators (p̂ : X 7→ [0, 1]) to constrain the115

counterfactuals to dense regions in the feature space. Karimi et al. [11] argue that counterfactuals116

should comply with the causal model that generates the data. All of these different approaches share117

a common goal: ensuring that the generated counterfactuals comply with the true and unobserved118

DGP. To summarize this broad objective, we propose the following definition:119

Definition 2.1 (Plausible Counterfactuals). Let X|y∗ denote the true conditional distribution of120

samples in the target class y∗. Then for x′ to be considered a plausible counterfactual, we need:121

x′ ∼ X|y∗.122

Surrogate models offer an obvious solution to achieve this objective. Unfortunately, surrogates also123

introduce a dependency: the generated explanations no longer depend exclusively on the black-box124

model itself, but also on the surrogate model. This is not necessarily problematic if the primary125

objective is not to explain the behaviour of the model but to offer recourse to individuals affected by126

it. It may become problematic even in this context if the dependency turns into a vulnerability. To127

illustrate this point, we have used REVISE [9] with an underfitted VAE to generate the counterfactual128

in the right panel of Figure 2: in this case, the decoder step of the VAE fails to yield plausible values129

({x′ ← G(z)} ̸∼ X |y∗) and hence the counterfactual search in the learned latent space is doomed.130

2.2.2 Plausibility through Minimal Predictive Uncertainty131

Schut et al. [23] show that to meet the plausibility objective we need not explicitly model the input132

distribution. Pointing to the undesirable engineering overhead induced by surrogate models, they133

propose that we rely on the implicit minimisation of predictive uncertainty instead. Their proposed134

methodology solves Equation 1 by greedily applying JSMA in the feature space with standard cross-135

entropy loss and no penalty at all. They demonstrate theoretically and empirically that their approach136

3



Figure 1: Explanations or Adversarial Ex-
amples? Counterfactuals for turning an 8
(eight) into a 3 (three): original image (left);
counterfactual produced using Wachter et al.
[29] (centre); and a counterfactual produced
using the approach introduced by [23] that
uses Jacobian-Based Saliency Map Attacks to
solve Equation 1.

Figure 2: Using surrogates can improve plau-
sibility, but also increases vulnerability. Coun-
terfactuals for turning an 8 (eight) into a
3 (three): original image (left); counterfac-
tual produced using REVISE [9] with a well-
specified surrogate (centre); and a counter-
factual produced using REVISE [9] with a
poorly specified surrogate (right).

yields counterfactuals for which the model Mθ predicts the target label y∗ with high confidence.137

Provided the model is well-specified, these counterfactuals are plausible. Unfortunately, this idea138

hinges on the assumption that the black-box model provides well-calibrated predictive uncertainty139

estimates.140

2.3 From Fidelity to Model Conformity141

Above we explained that since Counterfactual Explanations work directly with the Black Box model,142

the fidelity of explanations as we defined it earlier is not a concern. This may explain why research has143

primarily focused on other desiderata, most notably plausibility (Definition 2.1). Enquiring about the144

plausibility of a counterfactual essentially boils down to the following question: ‘Is this counterfactual145

consistent with the underlying data’? We posit a related, slightly more nuanced question: ‘Is this146

counterfactual consistent with what the model has learned about the underlying data’? We will argue147

that fidelity is not a sufficient evaluation measure to answer this question and propose a novel way to148

assess if Counterfactual Explanations conform with model behaviour.149

The word fidelity stems from the Latin word ‘fidelis’, which means ‘faithful, loyal, trustworthy’ [15].150

As we explained in Section 2, model explanations are generally considered faithful if their corre-151

sponding predictions coincide with the predictions made by the model itself. Since this definition152

of faithfulness is not useful in the context of Counterfactual Explanations, we propose an adapted153

version:154

Definition 2.2 (Conformal Counterfactuals). Let Xθ|y∗ = pθ(x|y∗) denote the conditional distri-155

bution of x in the target class y∗, where θ denotes the parameters of model Mθ. Then for x′ to be156

considered a conformal counterfactual, we need: x′ ∼ Xθ|y∗.157

In words, conformal counterfactuals conform with what the predictive model has learned about158

the input data x. Since this definition works with distributional properties, it explicitly accounts159

for the multiplicity of explanations we discussed earlier. To assess counterfactuals with respect to160

Definition 2.2, we need to be able to quantify the posterior conditional distribution pθ(x|y∗). This is161

very much at the core of our proposed methodological framework, which reconciles the notions of162

plausibility and model conformity and which we will introduce next.163

3 Methodological Framework164

The primary objective of this work has been to develop a methodology for generating maximally165

plausible counterfactuals under minimal intervention. Our proposed framework is based on the166

premise that explanations should be plausible but not plausible at all costs. Energy-Constrained167

Conformal Counterfactuals (ECCCo) achieve this goal in two ways: firstly, they rely on the Black168

Box itself for the generative task; and, secondly, they involve an approach to predictive uncertainty169

quantification that is model-agnostic.170
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3.1 Quantifying the Model’s Generative Property171

Recent work by Grathwohl et al. [7] on Energy Based Models (EBM) has pointed out that there is a172

‘generative model hidden within every standard discriminative model’. The authors show that we can173

draw samples from the posterior conditional distribution pθ(x|y) using Stochastic Gradient Langevin174

Dynamics (SGLD). The authors use this insight to train classifiers jointly for the discriminative task175

using standard cross-entropy and the generative task using SGLD. They demonstrate empirically that176

among other things this improves predictive uncertainty quantification for discriminative models.177

Our findings in this work suggest that Joint Energy Models (JEM) also tend to yield more plausible178

Counterfactual Explanations. Based on the definition of plausible counterfactuals (Definition 2.1)179

this is not surprising.180

Crucially for our purpose, one can apply their proposed sampling strategy during inference to181

essentially any standard discriminative model. Even models that are not explicitly trained for the joint182

objective learn about the distribution of inputs X by learning to make conditional predictions about183

the output y. We can leverage this observation to quantify the generative property of the Black Box184

model itself. In particular, note that if we fix y to our target value y∗, we can sample from pθ(x|y∗)185

using SGLD as follows,186

xj+1 ← xj −
ϵ2

2
E(xj |y∗) + ϵrj , j = 1, ..., J (2)

where rj ∼ N (0, I) is the stochastic term and the step-size ϵ is typically polynomially decayed.187

The term E(xj |y∗) denotes the energy function where we use E(xj |y∗) = −Mθ(xj)[y
∗], that is the188

negative logit corresponding to the target class label y∗. Generating multiple samples in this manner189

yields an empirical distribution X̂θ|y∗ that we use in our search for plausible counterfactuals, as190

discussed in more detail below. Appendix A provides additional implementation details for any tasks191

related to energy-based modelling.192

3.2 Quantifying the Model’s Predictive Uncertainty193

To quantify the model’s predictive uncertainty we use Conformal Prediction (CP), an approach that194

has recently gained popularity in the Machine Learning community [3, 14]. Crucially for our intended195

application, CP is model-agnostic and can be applied during inference without placing any restrictions196

on model training. Intuitively, CP works under the premise of turning heuristic notions of uncertainty197

into rigorous uncertainty estimates by repeatedly sifting through the training data or a dedicated198

calibration dataset. Conformal classifiers produce prediction sets for individual inputs that include all199

output labels that can be reasonably attributed to the input. These sets tend to be larger for inputs that200

do not conform with the training data and are therefore characterized by high predictive uncertainty.201

In order to generate counterfactuals that are associated with low predictive uncertainty, we use a202

smooth set size penalty introduced by Stutz et al. [25] in the context of conformal training:203

Ω(Cθ(x;α)) = max

0,
∑
y∈Y

Cθ,y(xi;α)− κ

 (3)

Here, κ ∈ {0, 1} is a hyper-parameter and Cθ,y(xi;α) can be interpreted as the probability of label204

y being included in the prediction set.205

In order to compute this penalty for any black-box model we merely need to perform a single206

calibration pass through a holdout set Dcal. Arguably, data is typically abundant and in most207

applications, practitioners tend to hold out a test data set anyway. Consequently, CP removes the208

restriction on the family of predictive models, at the small cost of reserving a subset of the available209

data for calibration. This particular case of conformal prediction is referred to as Split Conformal210

Prediction (SCP) as it involves splitting the training data into a proper training dataset and a calibration211

dataset. Details concerning our implementation of Conformal Prediction can be found in Appendix B.212
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3.3 Energy-Constrained Conformal Counterfactuals (ECCCo)213

Our framework for generating ECCCos combines the ideas introduced in the previous two subsections.214

Formally, we extend Equation 1 as follows,215

Z′ = arg min
Z′∈ZM

{yloss(Mθ(f(Z
′)),y∗) + λ1dist(f(Z′),x)

+ λ2dist(f(Z′), x̂θ) + λ3Ω(Cθ(f(Z
′);α))}

(4)

where x̂θ denotes samples generated using SGLD (Equation 2) and dist(·) is a generic term for a216

distance metric. Our default choice for dist(·) is the L1 Norm, or Manhattan distance, since it induces217

sparsity.218

The first two terms in Equation 4 correspond to the counterfactual search objective defined in Wachter219

et al. [29] which merely penalises the distance of counterfactuals from their factual values. The220

additional two penalties in ECCCo ensure that counterfactuals conform with the model’s generative221

property and lead to minimally uncertain predictions, respectively. The hyperparameters λ1, ..., λ3222

can be used to balance the different objectives: for example, we may choose to incur larger deviations223

from the factual in favour of conformity with the model’s generative property by choosing lower224

values of λ1 and relatively higher values of λ2. Figure 3 illustrates this balancing act for an example225

involving synthetic data: vector fields indicate the direction of gradients with respect to the different226

components our proposed objective function (Equation 4).227

Figure 3: [PLACEHOLDER] Vector
fields indicating the direction of gradi-
ents with respect to the different com-
ponents of the ECCCo objective (Equa-
tion 4).

Algorithm 1: Generating ECCCos (For more de-
tails, see Appendix C)

Input: x,y∗,Mθ, f,Λ, α,D, T, η, nB, NB
where Mθ(x) ̸= y∗

Output: x′

1: Initialize z′ ← f−1(x)
2: Generate buffer B of NB conditional samples

x̂θ|y∗ using SGLD (Equation 2)
3: Run SCP for Mθ using D
4: Initialize t← 0
5: while not converged or t < T do
6: x̂θ,t ← rand(B, nB)
7: z′ ← z′ − η∇z′L(z′,y∗, x̂θ,t; Λ, α)
8: t← t+ 1
9: end while

10: x′ ← f(z′)

228

Figure 4: [SUBJECTO TO CHANGE] Original image (left) and ECCCos for turning an 8 (eight) into
a 3 (three) for different Black Boxes from left to right: Multi-Layer Perceptron (MLP), Ensemble of
MLPs, Joint Energy Model (JEM), Ensemble of JEMs.

229

The entire procedure for Generating ECCCos is described in Algorithm 1. For the sake of simplicity230

and without loss of generality, we limit our attention to generating a single counterfactual x′ = f(z′)231

where in contrast to Equation 4 z′ denotes a 1-dimensional array containing a single counterfactual232
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state. That state is initialized by passing the factual x through the encoder f−1 which in our case cor-233

responds to a simple feature transformer, rather than the encoder part of VAE as in REVISE [9]. Next,234

we generate a buffer of NB conditional samples x̂θ|y∗ using SGLD (Equation 2) and conformalise235

the model Mθ through Split Conformal Prediction on training data D.236

Finally, we search counterfactuals through gradient descent. Let L(z′,y∗, x̂θ,t; Λ, α) denote our loss237

function defined in Equation 4. Then in each iteration, we first randomly draw nB samples from238

the buffer B before updating the counterfactual state z′ by moving in the negative direction of that239

loss function. The search terminates once the convergence criterium is met or the maximum number240

of iterations T has been exhausted. Note that the choice of convergence criterium has important241

implications on the final counterfactual (for more detail on this see Appendix C).242

Figure 4 presents ECCCos for the MNIST example from Section 2 for various black-box models of243

increasing complexity from left to right: a simple Multi-Layer Perceptron (MLP); an Ensemble of244

MLPs, each of the same architecture as the single MLP; a Joint Energy Model (JEM) based on the245

same MLP architecture; and finally, an Ensemble of these JEMs. Since Deep Ensembles have an246

improved capacity for predictive uncertainty quantification and JEMs are explicitly trained to learn247

plausible representations of the input data, it is intuitive to see that the plausibility of counterfactuals248

visibly improves from left to right. This provides some first anecdotal evidence that ECCCos achieve249

plausibility while maintaining faithfulness to the Black Box.250

4 Empirical Analysis251

In this section, we bolster our anecdotal findings from the previous section through rigorous empirical252

analysis. We first briefly describe our evaluation framework and data, before presenting and discussing253

our results.254

4.1 Evaluation Measures255

Above we have defined plausibility (Definition 2.1) and conformity (Definition 2.2) for Counterfactual256

Explanations. In this subsection, we introduce evaluation measures that facilitate a quantitative257

evaluation of counterfactuals for these objectives.258

Firstly, in order to assess the plausibility of counterfactuals we adapt the implausibility metric259

proposed in Guidotti [8]. The authors propose to evaluate plausibility in terms of the distance of the260

counterfactual x′ from its nearest neighbour in the target class y∗: the smaller this distance, the more261

plausible the counterfactual. Instead of focusing only on the nearest neighbour of x′, we suggest262

computing the average over distances from multiple (possibly all) observed instances in the target263

class. Formally, for a single counterfactual, we have:264

impl =
1

|x ∈ X |y∗|
∑

x∈X|y∗

dist(x′,x) (5)

This measure is straightforward to compute and should be less sensitive to outliers in the target class265

than the one based on the nearest neighbour. It also gives rise to a very similar evaluation measure for266

conformity. We merely swap out the subsample of individuals in the target class for the empirical267

distribution of generated conditional samples:268

conf =
1

|x ∈ Xθ|y∗|
∑

x∈Xθ|y∗

dist(x′,x) (6)

As noted by Guidotti [8], these distance-based measures are simplistic and more complex alternative269

measures may ultimately be more appropriate for the task. For example, we considered using statisti-270

cal divergence measures instead. This would involve generating not one but many counterfactuals and271

comparing the generated empirical distribution to the target distributions in Definitions 2.1 and 2.2.272

While this approach is potentially more rigorous, generating enough counterfactuals is not always273

practical.274

7



Table 1: Results for synthetic datasets. Standard deviation in parentheses.
Moons

Model Generator Non-conformity ↓ Implausibility ↓

ECCCo 0.10 (0.03) 1.01 (0.24)
REVISE 0.64 (0.34) 1.12 (0.51)

Schut 0.54 (0.38) 1.10 (0.37)JEM

Wachter 0.74 (0.36) 1.38 (0.38)

ECCCo 0.20 (0.36) 1.45 (0.86)
REVISE 0.38 (0.39) 1.10 (0.51)

Schut 0.73 (0.53) 1.26 (0.67)MLP

Wachter 0.78 (0.52) 1.33 (0.60)

Table 2: Results for real-world datasets. Standard deviation in parentheses.
California Housing GMSC MNIST

Model Generator Non-conformity ↓ Implausibility ↓ Non-conformity ↓ Implausibility ↓ Non-conformity ↓ Implausibility ↓

ECCCo 4.31 (0.58) 5.37 (0.46) 3.14 (0.31) 5.34 (1.27) 99.01 (12.50) 120.76 (9.23)
REVISE 5.01 (0.59) 5.33 (0.58) 2.86 (0.17) 3.99 (0.44) 101.01 (15.20) 115.14 (20.10)

Schut 5.23 (0.74) 6.50 (0.84) 3.43 (0.53) 5.29 (1.27) 179.39 (29.17) 190.01 (34.50)JEM

Wachter 5.29 (0.52) 6.48 (0.70) 3.40 (0.38) 5.50 (1.35) 197.35 (32.89) 199.65 (35.60)

ECCCo 3.51 (0.62) 5.33 (0.53) 3.01 (0.76) 6.09 (1.01) 85.30 (14.79) 102.27 (4.72)
REVISE 4.33 (0.38) 4.73 (0.22) 2.21 (0.72) 4.53 (0.86) 119.87 (16.20) 110.30 (12.11)

Schut 5.81 (0.61) 6.53 (0.81) 3.10 (0.75) 6.06 (1.01) 171.19 (22.13) 178.31 (24.94)JEM Ensemble

Wachter 5.02 (0.85) 6.07 (1.04) 2.89 (0.76) 5.87 (0.88) 222.18 (23.50) 212.40 (27.99)

ECCCo 145.15 (28.83) 8.84 (1.01) 38.28 (3.68) 5.14 (0.87) 416.59 (14.69) 204.16 (24.95)
REVISE 119.53 (11.72) 5.28 (0.97) 40.31 (3.38) 3.94 (0.86) 444.47 (10.01) 95.53 (13.46)

Schut 151.20 (28.78) 7.04 (1.27) 35.73 (6.30) 5.12 (0.85) 477.40 (17.45) 197.85 (25.43)MLP

Wachter 131.81 (40.19) 6.81 (1.22) 36.70 (14.79) 5.28 (0.87) 444.82 (13.20) 198.27 (24.73)

ECCCo 125.55 (22.76) 10.06 (1.40) 34.32 (4.47) 5.09 (1.20) 397.02 (7.99) 214.01 (21.17)
REVISE 151.49 (20.56) 6.17 (1.83) 35.26 (4.48) 4.15 (0.72) 430.37 (10.51) 95.87 (7.51)

Schut 106.34 (30.66) 8.49 (2.22) 30.44 (6.35) 5.15 (1.18) 471.16 (7.93) 203.43 (19.51)MLP Ensemble

Wachter 152.35 (21.75) 7.68 (1.89) 36.15 (8.28) 5.03 (0.78) 421.75 (9.75) 206.04 (20.35)

4.2 Data275

4.3 Results276

See Table 2277

5 Discussion278

5.1 Key Insights279

Consistent with the findings in Schut et al. [23], we have demonstrated that predictive uncertainty280

estimates can be leveraged to generate plausible counterfactuals. Interestingly, Schut et al. [23]281

point out that this finding — as intuitive as it is — may be linked to a positive connection between282

the generative task and predictive uncertainty quantification. In particular, Grathwohl et al. [7]283

demonstrate that their proposed method for integrating the generative objective in training yields284

models that have improved predictive uncertainty quantification. Since neither Schut et al. [23] nor285

we have employed any surrogate generative models, our findings seem to indicate that the positive286

connection found in Grathwohl et al. [7] is bidirectional.287

5.2 Limitations288

• BatchNorm does not seem compatible with JEM289

• Coverage and temperature impacts CCE in somewhat unpredictable ways290

• It seems that models that are not explicitly trained for generative task, still learn it implictly291

• Batch size seems to impact quality of generated samples (at inference, but not so much292

during JEM training)293
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• ECCCo is sensitive to optimizer (Adam works well), learning rate and distance metric (l1294

currently only one that works)295

• SGLD takes time296

• REVISE has benefit of lower dimensional space297

• For MNIST it seems that ECCCo is better at reducing pixel values than increasing them298

(better at erasing than writing)299

• JEMs are more difficult to train300

6 Conclusion301
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B Conformal Prediction383

The fact that conformal classifiers produce set-valued predictions introduces a challenge: it is not384

immediately obvious how to use such classifiers in the context of gradient-based counterfactual385

search. Put differently, it is not clear how to use prediction sets in Equation 1. Fortunately, Stutz et al.386

[25] have recently proposed a framework for Conformal Training that also hinges on differentiability.387

Specifically, they show how Stochastic Gradient Descent can be used to train classifiers not only388

for the discriminative task but also for additional objectives related to Conformal Prediction. One389

such objective is efficiency: for a given target error rate α, the efficiency of a conformal classifier390

improves as its average prediction set size decreases. To this end, the authors introduce a smooth set391

size penalty defined in Equation 3 in the body of this paper392

Formally, it is defined as Cθ,y(xi;α) := σ
(
(s(xi,y)− α)T−1

)
for y ∈ Y , where σ is the sigmoid393

function and T is a hyper-parameter used for temperature scaling [25].394

Intuitively, CP works under the premise of turning heuristic notions of uncertainty into rigorous395

uncertainty estimates by repeatedly sifting through the data. It can be used to generate prediction396

intervals for regression models and prediction sets for classification models [1]. Since the literature397

on CE and AR is typically concerned with classification problems, we focus on the latter. A particular398

variant of CP called Split Conformal Prediction (SCP) is well-suited for our purposes, because it399

imposes only minimal restrictions on model training.400

Specifically, SCP involves splitting the data Dn = {(xi,yi)}i=1,...,n into a proper training set Dtrain401

and a calibration set Dcal. The former is used to train the classifier in any conventional fashion.402

The latter is then used to compute so-called nonconformity scores: S = {s(xi,yi)}i∈Dcal where403

s : (X ,Y) 7→ R is referred to as score function. In the context of classification, a common choice for404

the score function is just si = 1−Mθ(xi)[yi], that is one minus the softmax output corresponding405

to the observed label yi [3].406

Finally, classification sets are formed as follows,407

Cθ(xi;α) = {y : s(xi,y) ≤ q̂} (7)

where q̂ denotes the (1 − α)-quantile of S and α is a predetermined error rate. As the size of the408

calibration set increases, the probability that the classification set C(xtest) for a newly arrived sample409

xtest does not cover the true test label ytest approaches α [3].410

Observe from Equation 7 that Conformal Prediction works on an instance-level basis, much like411

Counterfactual Explanations are local. The prediction set for an individual instance xi depends only412

on the characteristics of that sample and the specified error rate. Intuitively, the set is more likely413

to include multiple labels for samples that are difficult to classify, so the set size is indicative of414

predictive uncertainty. To see why this effect is exacerbated by small choices for α consider the case415

of α = 0, which requires that the true label is covered by the prediction set with probability equal to416

1.417

C Conformal Prediction418

A Submission of papers to NeurIPS 2023419

Please read the instructions below carefully and follow them faithfully.420

A Style421

Papers to be submitted to NeurIPS 2023 must be prepared according to the instructions presented422

here. Papers may only be up to nine pages long, including figures. Additional pages containing only423

acknowledgments and references are allowed. Papers that exceed the page limit will not be reviewed,424

or in any other way considered for presentation at the conference.425

The margins in 2023 are the same as those in previous years.426
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Authors are required to use the NeurIPS LATEX style files obtainable at the NeurIPS website as427

indicated below. Please make sure you use the current files and not previous versions. Tweaking the428

style files may be grounds for rejection.429

B Retrieval of style files430

The style files for NeurIPS and other conference information are available on the website at431

http://www.neurips.cc/432

The file neurips_2023.pdf contains these instructions and illustrates the various formatting re-433

quirements your NeurIPS paper must satisfy.434

The only supported style file for NeurIPS 2023 is neurips_2023.sty, rewritten for LATEX 2ε.435

Previous style files for LATEX 2.09, Microsoft Word, and RTF are no longer supported!436

The LATEX style file contains three optional arguments: final, which creates a camera-ready copy,437

preprint, which creates a preprint for submission to, e.g., arXiv, and nonatbib, which will not438

load the natbib package for you in case of package clash.439

Preprint option If you wish to post a preprint of your work online, e.g., on arXiv, using the440

NeurIPS style, please use the preprint option. This will create a nonanonymized version of your441

work with the text “Preprint. Work in progress.” in the footer. This version may be distributed as you442

see fit, as long as you do not say which conference it was submitted to. Please do not use the final443

option, which should only be used for papers accepted to NeurIPS.444

At submission time, please omit the final and preprint options. This will anonymize your445

submission and add line numbers to aid review. Please do not refer to these line numbers in your446

paper as they will be removed during generation of camera-ready copies.447

The file neurips_2023.tex may be used as a “shell” for writing your paper. All you have to do is448

replace the author, title, abstract, and text of the paper with your own.449

The formatting instructions contained in these style files are summarized in Sections B, C, and D450

below.451

B General formatting instructions452

The text must be confined within a rectangle 5.5 inches (33 picas) wide and 9 inches (54 picas) long.453

The left margin is 1.5 inch (9 picas). Use 10 point type with a vertical spacing (leading) of 11 points.454

Times New Roman is the preferred typeface throughout, and will be selected for you by default.455

Paragraphs are separated by 1/2 line space (5.5 points), with no indentation.456

The paper title should be 17 point, initial caps/lower case, bold, centered between two horizontal457

rules. The top rule should be 4 points thick and the bottom rule should be 1 point thick. Allow 1/4 inch458

space above and below the title to rules. All pages should start at 1 inch (6 picas) from the top of the459

page.460

For the final version, authors’ names are set in boldface, and each name is centered above the461

corresponding address. The lead author’s name is to be listed first (left-most), and the co-authors’462

names (if different address) are set to follow. If there is only one co-author, list both author and463

co-author side by side.464

Please pay special attention to the instructions in Section D regarding figures, tables, acknowledg-465

ments, and references.466

C Headings: first level467

All headings should be lower case (except for first word and proper nouns), flush left, and bold.468

First-level headings should be in 12-point type.469
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A Headings: second level470

Second-level headings should be in 10-point type.471

A.1 Headings: third level472

Third-level headings should be in 10-point type.473

Paragraphs There is also a \paragraph command available, which sets the heading in bold, flush474

left, and inline with the text, with the heading followed by 1 em of space.475

D Citations, figures, tables, references476

These instructions apply to everyone.477

A Citations within the text478

The natbib package will be loaded for you by default. Citations may be author/year or numeric, as479

long as you maintain internal consistency. As to the format of the references themselves, any style is480

acceptable as long as it is used consistently.481

The documentation for natbib may be found at482

http://mirrors.ctan.org/macros/latex/contrib/natbib/natnotes.pdf483

Of note is the command \citet, which produces citations appropriate for use in inline text. For484

example,485

\citet{hasselmo} investigated\dots486
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Hasselmo, et al. (1995) investigated. . .488

If you wish to load the natbib package with options, you may add the following before loading the489

neurips_2023 package:490

\PassOptionsToPackage{options}{natbib}491

If natbib clashes with another package you load, you can add the optional argument nonatbib492

when loading the style file:493

\usepackage[nonatbib]{neurips_2023}494

As submission is double blind, refer to your own published work in the third person. That is, use “In495

the previous work of Jones et al. [4],” not “In our previous work [4].” If you cite your other papers496

that are not widely available (e.g., a journal paper under review), use anonymous author names in the497

citation, e.g., an author of the form “A. Anonymous” and include a copy of the anonymized paper in498
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B Footnotes500

Footnotes should be used sparingly. If you do require a footnote, indicate footnotes with a number1501

in the text. Place the footnotes at the bottom of the page on which they appear. Precede the footnote502

with a horizontal rule of 2 inches (12 picas).503
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Figure 5: Sample figure caption.

Table 3: Sample table title
Part

Name Description Size (µm)

Dendrite Input terminal ∼100
Axon Output terminal ∼10
Soma Cell body up to 106

C Figures505

All artwork must be neat, clean, and legible. Lines should be dark enough for purposes of reproduction.506

The figure number and caption always appear after the figure. Place one line space before the figure507

caption and one line space after the figure. The figure caption should be lower case (except for first508

word and proper nouns); figures are numbered consecutively.509

You may use color figures. However, it is best for the figure captions and the paper body to be legible510

if the paper is printed in either black/white or in color.511

D Tables512

All tables must be centered, neat, clean and legible. The table number and title always appear before513

the table. See Table 3.514

Place one line space before the table title, one line space after the table title, and one line space after515

the table. The table title must be lower case (except for first word and proper nouns); tables are516

numbered consecutively.517

Note that publication-quality tables do not contain vertical rules. We strongly suggest the use of the518

booktabs package, which allows for typesetting high-quality, professional tables:519

https://www.ctan.org/pkg/booktabs520

This package was used to typeset Table 3.521

E Math522

Note that display math in bare TeX commands will not create correct line numbers for sub-523

mission. Please use LaTeX (or AMSTeX) commands for unnumbered display math. (You524

really shouldn’t be using $$ anyway; see https://tex.stackexchange.com/questions/525

503/why-is-preferable-to and https://tex.stackexchange.com/questions/40492/526

what-are-the-differences-between-align-equation-and-displaymath for more infor-527

mation.)528

1Sample of the first footnote.
2As in this example.
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F Final instructions529

Do not change any aspects of the formatting parameters in the style files. In particular, do not modify530

the width or length of the rectangle the text should fit into, and do not change font sizes (except531

perhaps in the References section; see below). Please note that pages should be numbered.532

E Preparing PDF files533

Please prepare submission files with paper size “US Letter,” and not, for example, “A4.”534

Fonts were the main cause of problems in the past years. Your PDF file must only contain Type 1 or535

Embedded TrueType fonts. Here are a few instructions to achieve this.536

• You should directly generate PDF files using pdflatex.537

• You can check which fonts a PDF files uses. In Acrobat Reader, select the menu538

Files>Document Properties>Fonts and select Show All Fonts. You can also use the program539

pdffonts which comes with xpdf and is available out-of-the-box on most Linux machines.540

• xfig "patterned" shapes are implemented with bitmap fonts. Use "solid" shapes instead.541

• The \bbold package almost always uses bitmap fonts. You should use the equivalent AMS542

Fonts:543

\usepackage{amsfonts}544

followed by, e.g., \mathbb{R}, \mathbb{N}, or \mathbb{C} for R, N or C. You can also545

use the following workaround for reals, natural and complex:546

\newcommand{\RR}{I\!\!R} %real numbers547

\newcommand{\Nat}{I\!\!N} %natural numbers548

\newcommand{\CC}{I\!\!\!\!C} %complex numbers549

Note that amsfonts is automatically loaded by the amssymb package.550

If your file contains type 3 fonts or non embedded TrueType fonts, we will ask you to fix it.551

A Margins in LATEX552

Most of the margin problems come from figures positioned by hand using \special or other553

commands. We suggest using the command \includegraphics from the graphicx package.554

Always specify the figure width as a multiple of the line width as in the example below:555

\usepackage[pdftex]{graphicx} ...556

\includegraphics[width=0.8\linewidth]{myfile.pdf}557

See Section 4.4 in the graphics bundle documentation (http://mirrors.ctan.org/macros/558

latex/required/graphics/grfguide.pdf)559

A number of width problems arise when LATEX cannot properly hyphenate a line. Please give LaTeX560

hyphenation hints using the \- command when necessary.561

F Supplementary Material562

Authors may wish to optionally include extra information (complete proofs, additional experiments563

and plots) in the appendix. All such materials should be part of the supplemental material (submitted564

separately) and should NOT be included in the main submission.565

References566

References follow the acknowledgments in the camera-ready paper. Use unnumbered first-level567

heading for the references. Any choice of citation style is acceptable as long as you are consistent. It568
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is permissible to reduce the font size to small (9 point) when listing the references. Note that the569
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