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Abstract

Counterfactual Explanations offer an intuitive and straightforward way to explain1

black-box models and offer Algorithmic Recourse to individuals. To address the2

need for plausible explanations, existing work has primarily relied on surrogate3

models to learn how the input data is distributed. This effectively reallocates4

the task of learning realistic explanations for the data from the model itself to5

the surrogate. Consequently, the generated explanations may seem plausible to6

humans but need not necessarily describe the behaviour of the black-box model7

faithfully. We formalise this notion of faithfulness through the introduction of a8

tailored evaluation metric and propose a novel algorithmic framework for gener-9

ating Energy-Constrained Conformal Counterfactuals (ECCCos) that are only as10

plausible as the model permits. Through extensive empirical studies involving11

multiple synthetic and real-world datasets, we demonstrate that ECCCos reconcile12

the need for plausibility and faithfulness. In particular, we show that it is possible13

to achieve state-of-the-art plausibility for models with gradient access without the14

need for surrogate models. To do so, our framework relies solely on properties15

defining the black-box model itself by leveraging recent advances in energy-based16

modelling and conformal prediction. To our knowledge, this is the first venture17

in this direction for generating faithful Counterfactual Explanations. Thus, we18

anticipate that ECCCos can serve as a baseline for future research. We believe that19

our work opens avenues for researchers and practitioners seeking tools to better20

distinguish trustworthy from unreliable models.21

1 Introduction22

Counterfactual Explanations (CE) provide a powerful, flexible and intuitive way to not only explain23

black-box models but also help affected individuals through the means of Algorithmic Recourse.24

Instead of opening the Black Box, CE works under the premise of strategically perturbing model25

inputs to understand model behaviour [31]. Intuitively speaking, we generate explanations in this26

context by asking what-if questions of the following nature: ‘Our credit risk model currently predicts27

that this individual is not credit-worthy. What if they reduced their monthly expenditures by 10%?’28

This is typically implemented by defining a target outcome y+ ∈ Y for some individual x ∈ X = RD29

described by D attributes, for which the model Mθ : X 7→ Y initially predicts a different outcome:30

Mθ(x) ̸= y+. Counterfactuals are then searched by minimizing a loss function that compares the31

predicted model output to the target outcome: yloss(Mθ(x),y
+). Since Counterfactual Explanations32

work directly with the black-box model, valid counterfactuals always have full local fidelity by33

construction where fidelity is defined as the degree to which explanations approximate the predictions34

of a black-box model [19, 18].35
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In situations where full fidelity is a requirement, CE offers a more appropriate solution to Explainable36

Artificial Intelligence (XAI) than other popular approaches like LIME [24] and SHAP [14], which37

involve local surrogate models. But even full fidelity is not a sufficient condition for ensuring38

that an explanation faithfully describes the behaviour of a model. That is because multiple very39

distinct explanations can all lead to the same model prediction, especially when dealing with heavily40

parameterized models like deep neural networks which are typically underspecified by the data [32].41

In the context of CE, the idea that no two explanations are the same arises almost naturally. A key42

focus in the literature has therefore been to identify those explanations and algorithmic recourses that43

are most appropriate based on a myriad of desiderata such as sparsity, actionability and plausibility.44

In this work, we draw closer attention to model faithfulness as a desideratum for counterfactuals.45

Our key contributions are as follows: firstly, we propose a definition of faithfulness that is suitable46

for counterfactuals; secondly, we introduce a novel algorithmic approach for generating Energy-47

Constrained Conformal Counterfactuals (ECCCos) that explicitly addresses the need for faithfulness;48

finally, we provide extensive empirical evidence demonstrating that ECCCos faithfully explain model49

behaviour without sacrificing plausibility.50

2 Background and Related Work51

In this section, we provide some background on CE and our motivation for this work. To start, we52

briefly introduce the methodology underlying most state-of-the-art (SOTA) counterfactual generators.53

2.1 Gradient-Based Counterfactual Search54

While Counterfactual Explanations can be generated for arbitrary regression models [26], existing55

work has primarily focused on classification problems. Let Y = (0, 1)K denote the one-hot-encoded56

output domain with K classes. Then most counterfactual generators rely on gradient descent to57

optimize different flavours of the following counterfactual search objective:58

Z′ = arg min
Z′∈ZL

{
yloss(Mθ(f(Z

′)),y+) + λcost(f(Z′))
}

(1)

Here yloss denotes the primary loss function already introduced above and cost is either a single59

penalty or a collection of penalties that are used to impose constraints through regularization. Equa-60

tion 1 restates the baseline approach to gradient-based counterfactual search proposed by Wachter61

et al. [31] in general form where Z′ = {zl}L denotes an L-dimensional array of counterfactual62

states [2]. This is to explicitly account for the multiplicity of explanations and the fact that we may63

choose to generate multiple counterfactuals and traverse a latent encoding Z of the feature space X64

where we denote f−1 : X 7→ Z . Encodings may involve simple feature transformations or more65

advanced techniques involving generative models, as we will discuss further below. The baseline66

approach, which we will simply refer to as Wachter [31], searches a single counterfactual directly in67

the feature space and penalises its distance to the original factual.68

Solutions to Equation 1 are considered valid as soon as the predicted label matches the target label. A69

stripped-down counterfactual explanation is therefore little different from an adversarial example. In70

Figure 1, for example, we have applied Wachter to MNIST data (centre panel) where the underlying71

classifier Mθ is a simple Multi-Layer Perceptron (MLP) with above 90 percent test accuracy. For the72

generated counterfactual x′ the model predicts the target label with high confidence (centre panel73

in Figure 1). The explanation is valid by definition, even though it looks a lot like an Adversarial74

Example [6]. Schut et al. [25] make the connection between Adversarial Examples and Counterfactual75

Explanations explicit and propose using a Jacobian-Based Saliency Map Attack (JSMA) to solve76

Equation 1. They demonstrate that this approach yields realistic and sparse counterfactuals for77

Bayesian, adversarially robust classifiers. Applying their approach to our simple MNIST classifier78

does not yield a realistic counterfactual but this one, too, is valid (right panel in Figure 1).79

2.2 From Adversial Examples to Plausible Explanations80

The crucial difference between Adversarial Examples (AE) and Counterfactual Explanations is one of81

intent. While an AE is intended to go unnoticed, a CE should have certain desirable properties. The82

literature has made this explicit by introducing various so-called desiderata that counterfactuals should83
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Figure 1: Explanations or Adversarial Ex-
amples? Counterfactuals for turning a 9
(nine) into a 7 (seven): original image (left);
counterfactual produced using Wachter et al.
[31] (centre); and a counterfactual produced
using the approach introduced by [25] that
uses Jacobian-Based Saliency Map Attacks to
solve Equation 1.

Figure 2: Using surrogates can improve plau-
sibility, but also increases vulnerability. Coun-
terfactuals for turning an 9 (nine) into a 7
(seven): original image (left); counterfac-
tual produced using REVISE [9] with a well-
specified surrogate (centre); and a counter-
factual produced using REVISE [9] with a
poorly specified surrogate (right).

meet in order to properly serve both AI practitioners and individuals affected by AI decision-making84

systems. The list of desiderate includes but is not limited to the following: sparsity, proximity [31],85

actionability [29], diversity [19], plausibility [9, 23, 25], robustness [28, 22, 2] and causality [12].86

Researchers have come up with various ways to meet these desiderata, which have been extensively87

surveyed and evaluated in various studies [30, 11, 21, 4, 8]. Perhaps unsurprisingly, the different88

desiderata are often positively correlated. For example, Artelt et al. [4] find that plausibility typically89

also leads to improved robustness. Similarly, plausibility has also been connected to causality in the90

sense that plausible counterfactuals respect causal relationships [15].91

2.2.1 Plausibility through Surrogates92

Arguably, the plausibility of counterfactuals has been among the primary concerns and some have93

focused explicitly on this goal. Joshi et al. [9], for example, were among the first to suggest that94

instead of searching counterfactuals in the feature spaceX , we can instead traverse a latent embedding95

Z (Equation 1) that implicitly codifies the data generating process (DGP) of x ∼ X . To learn the96

latent embedding, they introduce a surrogate model. In particular, they propose to use the latent97

embedding of a Variational Autoencoder (VAE) trained to generate samples x∗ ← G(z) where G98

denotes the decoder part of the VAE. Provided the surrogate model is well-trained, their proposed99

approach —REVISE— can yield plausible explanations like the one in the centre panel of Figure 2.100

Others have proposed similar approaches. Dombrowski et al. [5] traverse the base space of a101

normalizing flow to solve Equation 1, essentially relying on a different surrogate model for the102

generative task. Poyiadzi et al. [23] use density estimators (p̂ : X 7→ [0, 1]) to constrain the103

counterfactuals to dense regions in the feature space. Karimi et al. [12] argue that counterfactuals104

should comply with the causal model that generates the data. All of these different approaches share105

a common goal: ensuring that the generated counterfactuals comply with the true and unobserved106

DGP. To summarize this broad objective, we propose the following definition:107

Definition 2.1 (Plausible Counterfactuals). Let X|y+ denote the true conditional distribution of108

samples in the target class y+. Then for x′ to be considered a plausible counterfactual, we need:109

x′ ∼ X|y+.110

Surrogate models offer an obvious solution to achieve this objective. Unfortunately, surrogates also111

introduce a dependency: the generated explanations no longer depend exclusively on the black-box112

model itself, but also on the surrogate model. This is not necessarily problematic if the primary113

objective is not to explain the behaviour of the model but to offer recourse to individuals affected by114

it. It may become problematic even in this context if the dependency turns into a vulnerability. To115

illustrate this point, we have used REVISE [9] with an underfitted VAE to generate the counterfactual116

in the right panel of Figure 2: in this case, the decoder step of the VAE fails to yield plausible values117

({x′ ← G(z)} ̸∼ X |y+) and hence the counterfactual search in the learned latent space is doomed.118

2.2.2 Plausibility through Minimal Predictive Uncertainty119

Schut et al. [25] show that to meet the plausibility objective we need not explicitly model the input120

distribution. Pointing to the undesirable engineering overhead induced by surrogate models, they121
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propose that we rely on the implicit minimisation of predictive uncertainty instead. Their proposed122

methodology solves Equation 1 by greedily applying JSMA in the feature space with standard cross-123

entropy loss and no penalty at all. They demonstrate theoretically and empirically that their approach124

yields counterfactuals for which the model Mθ predicts the target label y+ with high confidence.125

Provided the model is well-specified, these counterfactuals are plausible. This idea hinges on the126

assumption that the black-box model provides well-calibrated predictive uncertainty estimates.127

3 Methodological Framework128

The primary objective of this work has been to develop a methodology for generating maximally129

plausible counterfactuals under minimal intervention. Our proposed framework is based on the130

premise that explanations should be plausible but not plausible at all costs. Energy-Constrained131

Conformal Counterfactuals (ECCCo) achieve this goal in two ways: firstly, they rely on the Black132

Box itself for the generative task; and, secondly, they involve an approach to predictive uncertainty133

quantification that is model-agnostic. In this section, we first formalise our notion of faithfulness in134

the context of CE. We then explain how exactly ECCCos are generated.135

3.1 From Fidelity to Model Faithfulness136

Above we explained that since Counterfactual Explanations work directly with the black-box model,137

the fidelity of explanations as we defined it earlier is not a concern. This may explain why research138

has primarily focused on other desiderata, most notably plausibility (Definition 2.1). Enquiring139

about the plausibility of a counterfactual essentially boils down to the following question: ‘Is this140

counterfactual consistent with the data’? We ask a related question: ‘Is this counterfactual consistent141

with what the model has learned about the data’? To answer this question and propose a novel way to142

assess if explanations conform with model behaviour.143

The word fidelity stems from the Latin word ‘fidelis’, which means ‘faithful, loyal, trustworthy’ [17].144

As we explained in Section 2, model explanations are generally considered faithful if their corre-145

sponding predictions coincide with the predictions made by the model itself. Since this definition of146

faithfulness is not useful in the context of CE, we propose the following definition:147

Definition 3.1 (Faithful Counterfactuals). Let Xθ|y+ = pθ(Xy+) denote the conditional distribution148

of x in the target class y+, where θ denotes the parameters of model Mθ. Then for x′ to be considered149

a conformal counterfactual, we need: x′ ∼ Xθ|y+.150

To assess counterfactuals with respect to Definition 3.1, we need to be able to quantify the posterior151

conditional distribution pθ(x|y+). This is very much at the core of our proposed methodological152

framework, which we will introduce next.153

3.2 Quantifying the Model’s Generative Property154

Recent work by Grathwohl et al. [7] on Energy-Based Models (EBM) has shown that there is a155

‘generative model hidden within every standard discriminative model’. They use Stochastic Gradient156

Langevin Dynamics (SGLD) to estimate the posterior conditional distribution pθ(x|y) using and157

leverage this to train classifiers jointly for the discriminative and generative task.158

Crucially for our purpose, SGLD can be applied during inference to essentially any standard dis-159

criminative model. Even models that are not explicitly trained for the joint objective learn about160

the distribution of inputs X by learning to make conditional predictions about the output y. We can161

leverage this observation to quantify the generative property of models. In particular, note that if we162

fix y to our target value y+, we can sample from pθ(x|y+) using SGLD as follows,163

xj+1 ← xj −
ϵ2

2
E(xj |y+) + ϵrj , j = 1, ..., J (2)

where rj ∼ N (0, I) is the stochastic term and the step-size ϵ is typically polynomially decayed.164

The term E(xj |y+) denotes the model energy conditioned on the target class label y+. Generating165

multiple samples in this manner yields an empirical distribution X̂θ,y+ that we use in our search166
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for plausible counterfactuals, as discussed in more detail below. Appendix A provides additional167

implementation details for any tasks related to energy-based modelling.168

3.3 Quantifying the Model’s Predictive Uncertainty169

To quantify the model’s predictive uncertainty we use Conformal Prediction (CP), an approach that170

has recently gained popularity in the Machine Learning community [3, 16]. Crucially for our intended171

application, CP is model-agnostic and can be applied during inference without placing any restrictions172

on model training. Intuitively, CP works under the premise of turning heuristic notions of uncertainty173

into rigorous uncertainty estimates by repeatedly sifting through the training data or a dedicated174

calibration dataset. Conformal classifiers produce prediction sets for individual inputs that include all175

output labels that can be reasonably attributed to the input. These sets tend to be larger for inputs that176

do not conform with the training data and are therefore characterized by high predictive uncertainty.177

In order to generate counterfactuals that are associated with low predictive uncertainty, we use a178

smooth set size penalty introduced by Stutz et al. [27] in the context of conformal training:179

Ω(Cθ(x;α)) = max

0,
∑
y∈Y

Cθ,y(xi;α)− κ

 (3)

Here, κ ∈ {0, 1} is a hyper-parameter and Cθ,y(xi;α) can be interpreted as the probability of label180

y being included in the prediction set.181

In order to compute this penalty for any black-box model we merely need to perform a single182

calibration pass through a holdout set Dcal. Arguably, data is typically abundant and in most183

applications, practitioners tend to hold out a test data set anyway. Consequently, CP removes the184

restriction on the family of predictive models, at the small cost of reserving a subset of the available185

data for calibration. This particular case of conformal prediction is referred to as Split Conformal186

Prediction (SCP) as it involves splitting the training data into a proper training dataset and a calibration187

dataset. Details concerning our implementation of Conformal Prediction can be found in Appendix B.188

3.4 Energy-Constrained Conformal Counterfactuals (ECCCo)189

Our framework for generating ECCCos combines the ideas introduced in the previous two subsections.190

Formally, we extend Equation 1 as follows,191

Z′ = arg min
Z′∈ZM

{yloss(Mθ(f(Z
′)),y+) + λ1dist(f(Z′),x)

+ λ2dist(f(Z′), x̂θ) + λ3Ω(Cθ(f(Z
′);α))}

(4)

where x̂θ denotes samples generated using SGLD (Equation 2) and dist(·) is a generic term for a192

distance metric. Our default choice for dist(·) is the L1 Norm since it induces sparsity.193

The first two terms in Equation 4 correspond to the counterfactual search objective defined in Wachter194

et al. [31] which merely penalises the distance of counterfactuals from their factual values. The195

additional two penalties in ECCCo ensure that counterfactuals conform with the model’s generative196

property and lead to minimally uncertain predictions, respectively. The hyperparameters λ1, ..., λ3197

can be used to balance the different objectives: for example, we may choose to incur larger deviations198

from the factual in favour of faithfulness with the model’s generative property by choosing lower199

values of λ1 and relatively higher values of λ2.200
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Figure 3: ECCCos for turning a 9 (nine) into
a 7 (seven) for different black-box models
from left to right: Multi-Layer Perceptron (a),
Ensemble of MLPs (b), Joint Energy Model
(c), Ensemble of JEMs (d).

Algorithm 1: Generating ECCCos (For more
details, see Appendix C)

Input: x,y+,Mθ, f,Λ, α,D, T, η, nB, NB
where Mθ(x) ̸= y+

Output: x′

1: Initialize z′ ← f−1(x)
2: Generate buffer B of NB conditional sam-

ples x̂θ|y+ using SGLD (Equation 2)
3: Run SCP for Mθ using D
4: Initialize t← 0
5: while not converged or t < T do
6: x̂θ,t ← rand(B, nB)
7: z′ ← z′ − η∇z′L(z′,y+, x̂θ,t; Λ, α)
8: t← t+ 1
9: end while

10: x′ ← f(z′)

201

The entire procedure for Generating ECCCos is described in Algorithm 1. For the sake of simplicity202

and without loss of generality, we limit our attention to generating a single counterfactual x′ = f(z′)203

where in contrast to Equation 4 z′ denotes a 1-dimensional array containing a single counterfactual204

state. That state is initialized by passing the factual x through the encoder f−1 which in our case cor-205

responds to a simple feature transformer, rather than the encoder part of VAE as in REVISE [9]. Next,206

we generate a buffer of NB conditional samples x̂θ|y+ using SGLD (Equation 2) and conformalise207

the model Mθ through Split Conformal Prediction on training data D.208

Finally, we search counterfactuals through gradient descent. Let L(z′,y+, x̂θ,t; Λ, α) denote our loss209

function defined in Equation 4. Then in each iteration, we first randomly draw nB samples from210

the buffer B before updating the counterfactual state z′ by moving in the negative direction of that211

loss function. The search terminates once the convergence criterium is met or the maximum number212

of iterations T has been exhausted. Note that the choice of convergence criterium has important213

implications on the final counterfactual (for more detail on this see Appendix C).214

Figure 3 presents ECCCos for the MNIST example from Section 2 for various black-box models of215

increasing complexity from left to right: a simple Multi-Layer Perceptron (MLP); an Ensemble of216

MLPs, each of the same architecture as the single MLP; a Joint Energy Model (JEM) based on the217

same MLP architecture; and finally, an Ensemble of these JEMs. Since Deep Ensembles have an218

improved capacity for predictive uncertainty quantification and JEMs are explicitly trained to learn219

plausible representations of the input data, it is intuitive to see that the plausibility of counterfactuals220

visibly improves from left to right. This provides some first anecdotal evidence that ECCCos achieve221

plausibility while maintaining faithfulness to the Black Box.222

4 Empirical Analysis223

Our goal in this section is to shed light on the following research questions:224

Research Question 4.1 (Feasibility). Is it feasible to generate plausible Counterfactual Explanations225

through ECCCo without relying on surrogate models?226

Research Question 4.2 (Drivers). Subject to feasibility, what drives the performance of ECCCo?227

Is it sufficient to rely on energy-based modelling to quantify the model’s generative property? Is it228

sufficient to rely on conformal prediction to quantify the model’s uncertainty?229

We first briefly describe our experimental setup, before presenting our main results.230

4.1 Key Evaluation Metrics231

Above we have defined plausibility (Definition 2.1) and faithfulness (Definition 3.1) for Counterfactual232

Explanations. These are the main criteria we use to evaluate counterfactuals in this study. In order to233
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quantify the plausibility of counterfactuals we use a slightly adapted version of the implausibility234

metric proposed in Guidotti [8]. Formally, we define implausibility as follows,235

impl =
1

|x ∈ Xy+ |
∑

x∈Xy+

dist(x′,x) (5)

where Xy+ is a subsample of the training data in the target class y+. This gives rise to a very similar236

evaluation metric for unfaithfulness. We merely swap out the subsample of individuals in the target237

class for a subset X̂nE

θ,y+ of the generated conditional samples:238

unfaith =
1

|x ∈ X̂nE

θ,y+ |

∑
x∈X̂

nE
θ,y+

dist(x′,x) (6)

Specifically, we form this subset based on the nE generated samples with the lowest energy.239

While we focus on these key evaluation metrics in the body of this paper, we also sporadically discuss240

outcomes with respect to other common measures used to evaluate the validity, proximity and sparsity241

of counterfactuals. Details can be found in Appendix E.242

4.2 Experimental Setup243

To assess and benchmark the performance of ECCCo against the state of the art, we generate multiple244

counterfactuals for different black-box models and datasets. In particular, we compare ECCCo to the245

following counterfactual generators that were introduced above: firstly; Schut [25], which minimizes246

predictive uncertainty; secondly, REVISE [9], which uses a VAE as its surrogate model; and, finally,247

Wachter [31], which serves as our baseline.248

We use both synthetic and real-world datasets from different domains, all of which are publically249

available and commonly used to train and benchmark classification algorithms. The synthetic datasets250

include: a dataset containing two Linearly Separable Gaussian clusters (n = 1000), as well as251

the well-known Circles (n = 1000) and Moons (n = 2500) data. As for real-world data, we252

follow Schut et al. [25] and use the MNIST [13] dataset containing images of handwritten digits such253

as the examples shown above. From the social sciences domain, we include Give Me Some Credit254

(GMSC) [10]: a tabular dataset that has been studied extensively in the literature on Algorithmic255

Recourse [21]. It consists of 11 numeric features that can be used to predict the binary outcome256

variable indicating whether or not retail borrowers experience financial distress.257

As with the example in Section 3, we use simple neural networks (MLP) and Joint Energy Models258

(JEM). For the more complex real-world datasets we also use ensembling in each case. To account259

for stochasticity, we generate multiple counterfactuals for each possible target class, generator, model260

and dataset. Specifically, we randomly sample n− times from the subset of individuals for which261

the given model predicts the non-target class y− given the current target. We set n− = 25 for all262

of our synthetic datasets, n− = 10 for GMSC and n− = 5 for MNIST. Full details concerning our263

parameter choices, training procedures and model performance can be found in Appendix D.264

4.3 Results265

Table 1 shows the key results for the synthetic datasets separated by model (first columns) and266

generator (second column). The numerical columns show the average values of our key evaluation267

metrics computed across all counterfactuals. Standard deviations are shown in parentheses. In bold268

we have highlighted the best outcome for each model and metric. To provide some sense of the269

statistical significance of our findings, we have added asterisks to indicate that a given value is at270

least one (∗) or two (∗∗) standard deviations lower than the baseline (Wachter).271

Starting with the high-level results for our Linearly Separable data, we find that ECCCo produces272

the most faithful counterfactuals for both black-box models. This is not surprising, since ECCCo273

directly enforces faithfulness through regularization. Crucially though, ECCCo also produces the274

most plausible counterfactuals for the Joint Energy Model, which was explicitly trained to learn275

plausible representations of the input data. This high-level pattern is broadly consistent across all276
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Table 1: Results for synthetic datasets. Standard deviations across samples are shown in parentheses.
Best outcomes are highlighted in bold. Asterisks indicate that the given value is more than one (*) or
two (**) standard deviations away from the baseline (Wachter).

Linearly Separable Moons Circles

Model Generator Unfaithfulness ↓ Implausibility ↓ Unfaithfulness ↓ Implausibility ↓ Unfaithfulness ↓ Implausibility ↓

ECCCo 0.03 (0.06)** 0.20 (0.08)** 0.31 (0.30)* 1.20 (0.15)** 0.52 (0.36) 1.22 (0.46)
ECCCo (no CP) 0.03 (0.06)** 0.20 (0.08)** 0.37 (0.30)* 1.21 (0.17)** 0.54 (0.39) 1.21 (0.46)

ECCCo (no EBM) 0.16 (0.11) 0.34 (0.19) 0.91 (0.32) 1.71 (0.25) 0.70 (0.33) 1.30 (0.37)
REVISE 0.19 (0.03) 0.41 (0.01)** 0.78 (0.23) 1.57 (0.26) 0.48 (0.16)* 0.95 (0.32)*

Schut 0.39 (0.07) 0.73 (0.17) 0.67 (0.27) 1.50 (0.22)* 0.54 (0.43) 1.28 (0.53)

JEM

Wachter 0.18 (0.10) 0.44 (0.17) 0.80 (0.27) 1.78 (0.24) 0.68 (0.34) 1.33 (0.32)

ECCCo 0.29 (0.05)** 0.23 (0.06)** 0.80 (0.62) 1.69 (0.40) 0.65 (0.53) 1.17 (0.41)
ECCCo (no CP) 0.29 (0.05)** 0.23 (0.07)** 0.79 (0.62) 1.68 (0.42) 0.49 (0.35) 1.19 (0.44)

ECCCo (no EBM) 0.46 (0.05) 0.28 (0.04)** 1.34 (0.47) 1.68 (0.47) 0.84 (0.51) 1.23 (0.31)
REVISE 0.56 (0.05) 0.41 (0.01) 1.45 (0.44) 1.64 (0.31) 0.58 (0.52) 0.95 (0.32)

Schut 0.43 (0.06)* 0.47 (0.36) 1.45 (0.55) 1.73 (0.48) 0.58 (0.37) 1.23 (0.43)

MLP

Wachter 0.51 (0.04) 0.40 (0.08) 1.32 (0.41) 1.69 (0.32) 0.83 (0.50) 1.24 (0.29)

datasets and supportive of our narrative, so it is worth highlighting: ECCCos consistently achieve277

high faithfulness, which—subject to the quality of the model itself—coincides with high plausibility.278

Zooming in on the granular details for the Linearly Separable data, note that the list of generators279

in Table 1 includes ‘ECCCo (no CP)’ and ‘ECCCo (no EBM)’ in addition to ‘ECCCo’ and our280

benchmark generators. These have been added to gain some sense of the degree to which the two281

components underlying ECCCo—namely energy-based modelling (EBM) and conformal prediction282

(CP)—drive the results. Specifically, ‘ECCCo (no CP)’ involves no set size penalty (λ3 = 0 in283

Equation 4), while ‘ECCCo (no EBM)’ does not penalise the distance to samples generated through284

SGLD (λ2 = 0 in Equation 4). The corresponding results indicate that the positive results are285

dominated by the effect of quantifying and leveraging the model’s generative property (EBM) in our286

search for counterfactuals. Conformal Prediction alone only leads to marginally improved faithfulness287

and plausibility relative to the benchmark generators for our JEM. As a final observation for the288

Linearly Separable data we note that for the MLP, increased faithfulness comes at the cost of reduced289

plausibility. Specifically, this means that counterfactuals generated through ECCCo end up further290

away from individuals in the target class than those produced by our benchmark generators.291

The findings for the Moons dataset are broadly in line with the findings so far: for the JEM, ECCCo292

yields significantly more faithful and plausible counterfactuals than all other generators. For the MLP,293

faithfulness is maintained but counterfactuals are not plausible. By comparison, REVISE yields fairly294

plausible counterfactuals in both cases, but it does so at the cost of faithfulness. We also observe295

that the best results for ECCCo are achieved when using both penalties. Once again though, the296

generative component (EBM) has a stronger impact on the positive results for the JEM.297

For the Circles data, the most faithful counterfactuals are generated by ECCCo. While it appears298

that REVISE generates the most plausible counterfactuals in this case, we note that they are valid299

only half of the time (see Appendix E for a complete overview of all evaluation metrics). It turns300

out that in this case, the underlying VAE with default parameters has not adequately learned the301

data-generating process. Of course, it is possible to achieve better generative performance through302

hyperparameter tuning. But this example serves to illustrate that REVISE depends strictly on the303

quality of the surrogate model. Independent of the outcome for REVISE, however, the results do not304

seem to indicate that ECCCo significantly improves our plausibility metric for the Circles data.305

Moving on to our real-world datasets, the results are shown in Table 2. Once again the findings306

indicate that the plausibility of ECCCos is positively correlated with the capacity of the black-box307

model to distinguish plausible from implausible inputs. The case is very clear for MNIST: ECCCos are308

consistently more faithful than the corresponding counterfactuals produced by any of the benchmark309

generators and their plausibility gradually improves through ensembling and joint-energy modelling.310

For the JEM Ensemble, ECCCo is essentially on par with REVISE and does significantly better than311

the baseline generator. We also note that ECCCo is the only generator that consistently achieves full312

validity for all models (Appendix E). Interestingly, ECCCo also yields lower-cost outcomes than the313

baseline generator for the JEMs.314
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Table 2: Results for real-world datasets. Standard deviations across samples are shown in parentheses.
Best outcomes are highlighted in bold. Asterisks indicate that the given value is more than one (*) or
two (**) standard deviations away from the baseline (Wachter).

MNIST GMSC

Model Generator Unfaithfulness ↓ Implausibility ↓ Unfaithfulness ↓ Implausibility ↓

ECCCo 116.09 (30.70)** 281.33 (41.51)** 41.65 (17.24)** 40.57 (8.74)**
REVISE 348.74 (65.65)** 246.69 (36.69)** 74.89 (15.82)** 6.01 (5.75)**

Schut 355.58 (64.84)** 270.06 (40.41)** 76.23 (15.54)** 6.02 (0.72)**JEM

Wachter 694.08 (50.86) 630.99 (33.01) 146.02 (64.48) 128.93 (74.00)

ECCCo 89.89 (27.26)** 240.59 (37.41)** 26.55 (12.94)** 33.65 (8.33)**
REVISE 292.52 (53.13)** 240.50 (35.73)** 52.47 (14.12)** 6.69 (3.37)**

Schut 319.45 (59.02)** 266.80 (40.46)** 56.34 (15.00)** 6.27 (1.06)**JEM Ensemble

Wachter 582.52 (58.46) 543.90 (44.24) 125.72 (70.80) 126.55 (93.75)

ECCCo 212.45 (36.70)** 649.63 (58.80) 46.90 (15.80)** 37.78 (8.40)**
REVISE 839.79 (77.14)* 244.33 (38.69)** 81.08 (19.53)** 4.60 (0.72)**

Schut 842.80 (82.01)* 264.94 (42.18)** 90.67 (20.80)** 5.56 (0.81)**MLP

Wachter 982.32 (61.81) 561.23 (45.08) 191.68 (30.86) 200.23 (15.05)

ECCCo 162.21 (36.21)** 587.65 (95.01) 74.65 (144.69)* 71.87 (145.19)
REVISE 741.30 (125.98)* 242.76 (41.16)** 80.90 (14.59)** 5.20 (1.52)**

Schut 754.35 (132.26) 266.94 (42.55)** 85.63 (19.15)** 6.00 (0.99)**MLP Ensemble

Wachter 871.09 (92.36) 536.24 (48.73) 220.05 (17.41) 203.65 (14.77)

For the tabular credit dataset (GMSC) we have struggled to get good generative and discriminative315

performance for our JEMs. Consequently, it is not surprising to find that ECCCo never achieves316

state-of-the-art plausibility, although it does improve outcomes compared to the baseline (Wachter).317

Concerning faithfulness, ECCCo once again consistently outperforms all other generators.318

To conclude this section, we summarize our findings with reference to the opening questions. Concern-319

ing the feasibility of our proposed methodology (Research Question 4.1), our findings demonstrate320

that it is indeed possible to generate plausible counterfactuals without the need for surrogate models.321

A related important finding is that ECCCo never sacrifices faithfulness for plausibility: any plausible322

ECCCo also faithfully describes model behaviour. This mitigates the risk of generating plausible323

explanations for models that are, in fact, highly susceptible to implausible counterfactuals as well.324

Our findings here indicate that ECCCo achieves this result primarily by leveraging the model’s325

generative property. We think that further work is needed, however, to definitively answer Research326

Question 4.2, on which we elaborate in the following section.327

5 Limitations328

Even though we have taken considerable measures to study our proposed methodology carefully,329

this work is limited in scope, which caveats our findings. In particular, we have found that the330

performance of ECCCo is sensitive to hyperparameter choices. In order to achieve faithfulness, we331

generally had to penalise the distance from generated samples slightly more than the distance from332

factual values. This choice is associated with relatively higher costs to individuals since the proposed333

recourses typically involve more substantial feature changes than for our benchmark generators.334

Conversely, we have not found that penalising prediction set sizes disproportionately strongly had335

any discernable effect on our results. As discussed above, we also struggled to achieve good results336

by relying on conformal prediction alone. We want to caveat this finding by acknowledging that337

the role of CP in this context needs to be investigated more thoroughly through future work. Our338

suggested approach involving a smooth set size penalty may be insufficient in this context.339

The fact that our findings are primarily driven by applying ideas from energy-based modelling340

presents a challenge in itself: while our approach is readily applicable to models with gradient access341

like deep neural networks, more work is needed to generalise our methodology to other popular342

machine learning models such as gradient-boosted trees. Relatedly, we have encountered common343

challenges associated with energy-based modelling during our experiments including sensitivity to344
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scale, training instabilities and sensitivity to hyperparameters. We have also struggled to apply our345

proposed approach to low-dimensional tabular data.346

6 Conclusion347

This work leverages recent advances in energy-based modelling and conformal prediction in the348

context of Explainable Artificial Intelligence. We have proposed a new way to generate Counterfactual349

Explanations that are maximally faithful to the black-model they aim to explain. Our proposed350

counterfactual generator, ECCCo, produces plausible counterfactual if and only if the black-model351

itself has learned realistic representations of the data. This should enable researchers and practitioners352

to use counterfactuals in order to discern trustworthy models from unreliable ones. While the scope353

of this work limits its generalizability, we believe that ECCCo offers a solid baseline for future work354

on faithful Counterfactual Explanations.355
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Appendices435

A JEM436

While xJ is only guaranteed to distribute as pθ(x|y+) if ϵ→ 0 and J →∞, the bias introduced for437

a small finite ϵ is negligible in practice [20, 7]. While Grathwohl et al. [7] use Equation 2 during438

training, we are interested in applying the conditional sampling procedure in a post-hoc fashion to439

any standard discriminative model.440

B Conformal Prediction441

The fact that conformal classifiers produce set-valued predictions introduces a challenge: it is not442

immediately obvious how to use such classifiers in the context of gradient-based counterfactual443

search. Put differently, it is not clear how to use prediction sets in Equation 1. Fortunately, Stutz et al.444

[27] have recently proposed a framework for Conformal Training that also hinges on differentiability.445

Specifically, they show how Stochastic Gradient Descent can be used to train classifiers not only446

for the discriminative task but also for additional objectives related to Conformal Prediction. One447

such objective is efficiency: for a given target error rate α, the efficiency of a conformal classifier448

improves as its average prediction set size decreases. To this end, the authors introduce a smooth set449

size penalty defined in Equation 3 in the body of this paper450

Formally, it is defined as Cθ,y(xi;α) := σ
(
(s(xi,y)− α)T−1

)
for y ∈ Y , where σ is the sigmoid451

function and T is a hyper-parameter used for temperature scaling [27].452

Intuitively, CP works under the premise of turning heuristic notions of uncertainty into rigorous453

uncertainty estimates by repeatedly sifting through the data. It can be used to generate prediction454

intervals for regression models and prediction sets for classification models [1]. Since the literature455

on CE and AR is typically concerned with classification problems, we focus on the latter. A particular456

variant of CP called Split Conformal Prediction (SCP) is well-suited for our purposes, because it457

imposes only minimal restrictions on model training.458

Specifically, SCP involves splitting the data Dn = {(xi,yi)}i=1,...,n into a proper training set Dtrain459

and a calibration set Dcal. The former is used to train the classifier in any conventional fashion.460

The latter is then used to compute so-called nonconformity scores: S = {s(xi,yi)}i∈Dcal where461

s : (X ,Y) 7→ R is referred to as score function. In the context of classification, a common choice for462

the score function is just si = 1−Mθ(xi)[yi], that is one minus the softmax output corresponding463

to the observed label yi [3].464

Finally, classification sets are formed as follows,465

Cθ(xi;α) = {y : s(xi,y) ≤ q̂} (7)

where q̂ denotes the (1 − α)-quantile of S and α is a predetermined error rate. As the size of the466

calibration set increases, the probability that the classification set C(xtest) for a newly arrived sample467

xtest does not cover the true test label ytest approaches α [3].468

Observe from Equation 7 that Conformal Prediction works on an instance-level basis, much like469

Counterfactual Explanations are local. The prediction set for an individual instance xi depends only470

on the characteristics of that sample and the specified error rate. Intuitively, the set is more likely471

to include multiple labels for samples that are difficult to classify, so the set size is indicative of472

predictive uncertainty. To see why this effect is exacerbated by small choices for α consider the case473

of α = 0, which requires that the true label is covered by the prediction set with probability equal to474

1.475

C Conformal Prediction476

D Experimental Setup477

E Results478
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Table 3: All results for all datasets. Standard deviations across samples are shown in parentheses.
Best outcomes are highlighted in bold. Asterisks indicate that the given value is more than one (*) or
two (**) standard deviations away from the baseline (Wachter).

Model Data Generator Cost ↓ Unfaithfulness ↓ Implausibility ↓ Redundancy ↑ Uncertainty ↓ Validity ↑
ECCCo 39.14 (3.71) 236.79 (51.16) 39.78 (3.18) 0.00 (0.00) 2.00 (0.00) 1.00 (0.00)
REVISE 4.39 (2.08) 284.51 (52.74) 5.58 (0.81)** 0.01 (0.03) 1.85 (0.32) 1.00 (0.00)

Schut 4.17 (1.84) 263.55 (60.56) 8.00 (2.03) 0.25 (0.24)* 1.88 (0.31) 1.00 (0.00)JEM

Wachter 2.03 (1.01) 274.55 (51.17) 7.32 (1.80) 0.00 (0.00) 1.90 (0.31) 1.00 (0.00)
ECCCo 34.85 (4.67) 249.44 (58.53) 35.09 (5.56) 0.00 (0.00) 2.00 (0.00) 1.00 (0.00)
REVISE 4.53 (1.97) 268.45 (66.87) 5.44 (0.74)** 0.00 (0.00) 1.95 (0.21) 1.00 (0.00)

Schut 0.98 (0.38)** 279.38 (63.23) 7.64 (1.47) 0.84 (0.06)** 2.00 (0.00) 1.00 (0.00)JEM Ensemble

Wachter 2.00 (0.59) 268.59 (68.66) 7.16 (1.46) 0.00 (0.00) 1.90 (0.31) 1.00 (0.00)
ECCCo 37.47 (4.59) 230.92 (48.86) 37.53 (5.40) 0.00 (0.00) 1.00 (0.00)** 1.00 (0.00)
REVISE 3.38 (2.06) 281.10 (53.01) 5.34 (0.67)** 0.00 (0.00) 1.10 (0.31) 1.00 (0.00)

Schut 0.88 (0.51)** 285.12 (56.00) 6.48 (1.18)** 0.72 (0.22)** 1.00 (0.00)** 1.00 (0.00)MLP

Wachter 5.35 (10.88) 262.50 (56.87) 9.21 (10.41) 0.00 (0.00) 1.05 (0.22) 1.00 (0.00)
ECCCo 38.33 (4.99) 212.47 (59.27)* 38.17 (6.18) 0.00 (0.00) 1.00 (0.00)** 1.00 (0.00)
REVISE 3.41 (1.79) 284.65 (49.52) 5.64 (1.13)* 0.00 (0.00) 1.05 (0.22) 1.00 (0.00)

Schut 0.84 (0.56)** 269.19 (46.08) 7.30 (1.94) 0.81 (0.11)** 1.00 (0.00)** 1.00 (0.00)

California Housing

MLP Ensemble

Wachter 2.00 (1.39) 278.09 (73.65) 7.32 (1.75) 0.00 (0.00) 1.07 (0.23) 1.00 (0.00)
ECCCo 1.34 (1.48) 0.63 (1.58) 1.44 (1.37) 0.00 (0.00) 0.98 (0.14) 0.98 (0.14)

ECCCo (no CP) 1.33 (1.49) 0.64 (1.61) 1.45 (1.38) 0.00 (0.00) 0.98 (0.14) 0.98 (0.14)
ECCCo (no EBM) 0.85 (1.49) 1.41 (1.51) 1.50 (1.38) 0.00 (0.00) 1.04 (0.28) 0.98 (0.14)

REVISE 0.99 (0.35) 0.96 (0.32)* 0.95 (0.32)* 0.00 (0.00) 0.50 (0.51) 0.50 (0.51)
Schut 1.00 (0.43) 0.99 (0.80) 1.28 (0.53) 0.25 (0.25) 1.11 (0.38) 1.00 (0.00)**

JEM

Wachter 0.74 (1.50) 1.41 (1.50) 1.51 (1.35) 0.00 (0.00) 0.98 (0.14) 0.98 (0.14)
ECCCo 1.39 (0.23) 0.37 (0.65)** 1.30 (0.68) 0.00 (0.00) 1.00 (0.00)** 1.00 (0.00)

ECCCo (no CP) 1.33 (0.28) 0.50 (0.85)* 1.28 (0.66) 0.00 (0.00) 1.04 (0.20)* 1.00 (0.00)
ECCCo (no EBM) 1.15 (0.69) 2.00 (1.46) 1.83 (1.00) 0.00 (0.00) 0.97 (0.10)** 1.00 (0.00)

REVISE 0.98 (0.36) 1.16 (1.05) 0.95 (0.32)* 0.00 (0.00) 0.50 (0.51)* 0.50 (0.51)
Schut 0.61 (0.11) 1.60 (1.15) 1.24 (0.44) 0.34 (0.24)* 1.00 (0.00)** 1.00 (0.00)

Circles

MLP

Wachter 0.53 (0.15) 1.67 (1.05) 1.31 (0.43) 0.00 (0.00) 1.28 (0.46) 1.00 (0.00)
ECCCo 859.68 (91.05) 40.65 (5.67)** 605.67 (19.56) 0.00 (0.00) 3.00 (0.00)** 1.00 (0.00)
REVISE 500.28 (86.07) 693.81 (118.47)* 467.88 (132.24) 0.00 (0.00) 3.20 (2.28)** 0.80 (0.45)

Schut 10.00 (0.00)** 871.82 (64.75) 561.81 (94.76) 0.99 (0.00)** 0.00 (0.00)** 0.00 (0.00)JEM

Wachter 100.86 (13.85) 902.84 (88.79) 586.49 (97.17) 0.00 (0.00) 10.00 (0.00) 1.00 (0.00)
ECCCo 679.19 (66.95) 59.61 (32.93)** 500.50 (27.51) 0.00 (0.00) 4.00 (0.00)** 1.00 (0.00)
REVISE 476.47 (147.09) 533.64 (102.81)* 356.60 (79.57)* 0.00 (0.00) 4.80 (1.30)** 1.00 (0.00)

Schut 10.00 (0.00)** 688.61 (86.83) 445.55 (99.03) 0.99 (0.00)** 0.00 (0.00)** 0.00 (0.00)JEM Ensemble

Wachter 92.50 (9.31) 714.63 (54.58) 470.54 (96.18) 0.00 (0.00) 10.00 (0.00) 1.00 (0.00)
ECCCo 885.97 (29.70) 65.36 (20.64)** 791.07 (14.51) 0.00 (0.00) 2.00 (0.00)** 1.00 (0.00)**
REVISE 323.10 (102.63) 856.08 (73.66) 394.73 (252.67) 0.00 (0.00) 1.00 (1.00)** 0.60 (0.55)

Schut 10.00 (0.00)** 928.77 (42.27) 518.98 (143.30) 0.99 (0.00)** 0.00 (0.00)** 0.00 (0.00)MLP

Wachter 94.57 (10.26) 916.45 (50.09) 546.35 (145.24) 0.00 (0.00) 3.61 (4.01) 0.80 (0.45)
ECCCo 869.65 (67.92) 47.37 (7.72)** 751.83 (11.87) 0.00 (0.00) 1.00 (0.00)** 1.00 (0.00)
REVISE 267.88 (69.67) 822.34 (57.55) 307.50 (105.09)* 0.00 (0.00) 3.00 (4.00) 0.80 (0.45)

Schut 10.00 (0.00)** 891.57 (70.10) 449.79 (149.32) 0.99 (0.00)** 0.00 (0.00)** 0.00 (0.00)

FashionMNIST

MLP Ensemble

Wachter 91.50 (16.35) 874.21 (59.36) 476.59 (150.76) 0.00 (0.00) 4.60 (4.93) 1.00 (0.00)
ECCCo 40.78 (8.79)** 41.65 (17.24)** 40.57 (8.74)** 0.00 (0.00) 1.50 (0.51) 1.00 (0.00)**
REVISE 5.10 (6.48)** 74.89 (15.82)** 6.01 (5.75)** 0.00 (0.00) 1.81 (0.40) 1.00 (0.00)**

Schut 1.10 (0.39)** 76.23 (15.54)** 6.02 (0.72)** 0.77 (0.09)** 1.55 (0.51) 1.00 (0.00)**JEM

Wachter 127.26 (75.11) 146.02 (64.48) 128.93 (74.00) 0.00 (0.00) 1.00 (1.03) 0.50 (0.51)
ECCCo 33.87 (8.25)** 26.55 (12.94)** 33.65 (8.33)** 0.00 (0.00) 2.00 (0.00) 1.00 (0.00)**
REVISE 6.00 (4.92)** 52.47 (14.12)** 6.69 (3.37)** 0.00 (0.00) 1.80 (0.52) 0.95 (0.22)**

Schut 1.29 (0.92)** 56.34 (15.00)** 6.27 (1.06)** 0.74 (0.16)** 1.62 (0.52) 1.00 (0.00)**JEM Ensemble

Wachter 124.35 (95.08) 125.72 (70.80) 126.55 (93.75) 0.00 (0.00) 1.00 (1.03) 0.50 (0.51)
ECCCo 38.91 (7.68)** 46.90 (15.80)** 37.78 (8.40)** 0.00 (0.00) 1.00 (0.00) 1.00 (0.00)
REVISE 4.16 (2.35)** 81.08 (19.53)** 4.60 (0.72)** 0.00 (0.00) 1.23 (0.40) 1.00 (0.00)

Schut 0.72 (0.32)** 90.67 (20.80)** 5.56 (0.81)** 0.87 (0.06)** 1.00 (0.00) 1.00 (0.00)MLP

Wachter 199.28 (14.78) 191.68 (30.86) 200.23 (15.05) 0.00 (0.00) 1.00 (0.00) 1.00 (0.00)
ECCCo 72.42 (145.72) 74.65 (144.69)* 71.87 (145.19) 0.00 (0.00) 1.00 (0.00) 1.00 (0.00)
REVISE 4.75 (2.94)** 80.90 (14.59)** 5.20 (1.52)** 0.00 (0.00) 1.07 (0.12) 1.00 (0.00)

Schut 0.65 (0.24)** 85.63 (19.15)** 6.00 (0.99)** 0.88 (0.04)** 1.00 (0.00)** 1.00 (0.00)

GMSC

MLP Ensemble

Wachter 202.64 (14.71) 220.05 (17.41) 203.65 (14.77) 0.00 (0.00) 1.00 (0.00) 1.00 (0.00)
ECCCo 0.91 (0.14) 0.10 (0.06)** 0.19 (0.03)** 0.00 (0.00) 0.97 (0.03)** 1.00 (0.00)

ECCCo (no CP) 0.91 (0.14) 0.10 (0.07)** 0.19 (0.03)** 0.00 (0.00) 0.98 (0.03)** 1.00 (0.00)
ECCCo (no EBM) 0.90 (0.17) 0.37 (0.28) 0.38 (0.26) 0.00 (0.00) 1.23 (0.49) 1.00 (0.00)

REVISE 0.42 (0.14)* 0.41 (0.02)** 0.41 (0.01)** 0.00 (0.00) 0.81 (0.82) 0.50 (0.51)
Schut 1.14 (0.27) 0.66 (0.23) 0.66 (0.22) 0.21 (0.25) 1.74 (0.43) 1.00 (0.00)

JEM

Wachter 0.61 (0.12) 0.44 (0.16) 0.44 (0.15) 0.00 (0.00) 1.50 (0.50) 1.00 (0.00)
ECCCo 1.52 (0.16) 0.03 (0.02)** 0.69 (0.10) 0.00 (0.00) 1.00 (0.00)** 1.00 (0.00)

ECCCo (no CP) 1.52 (0.16) 0.03 (0.02)** 0.68 (0.10) 0.00 (0.00) 1.00 (0.00)** 1.00 (0.00)
ECCCo (no EBM) 2.66 (1.10) 1.25 (0.87) 1.84 (1.10) 0.00 (0.00) 1.00 (0.00)** 1.00 (0.00)

REVISE 0.44 (0.13)* 1.10 (0.10) 0.40 (0.01)** 0.00 (0.00) 1.64 (0.78) 0.82 (0.39)
Schut 0.76 (0.14) 0.81 (0.10)* 0.47 (0.24) 0.26 (0.25)* 1.00 (0.00)** 1.00 (0.00)

Linearly Separable

MLP

Wachter 0.60 (0.14) 0.94 (0.11) 0.44 (0.15) 0.00 (0.00) 1.54 (0.50) 1.00 (0.00)
ECCCo 269.99 (57.02)** 116.09 (30.70)** 281.33 (41.51)** 0.00 (0.00) NA 1.00 (0.00)**
REVISE 143.79 (43.43)** 348.74 (65.65)** 246.69 (36.69)** 0.00 (0.01) NA 0.80 (0.40)

Schut 9.90 (0.55)** 355.58 (64.84)** 270.06 (40.41)** 0.99 (0.00)** NA 0.15 (0.36)JEM

Wachter 453.86 (16.96) 694.08 (50.86) 630.99 (33.01) 0.00 (0.00) NA 0.90 (0.30)
ECCCo 260.94 (52.14)** 89.89 (27.26)** 240.59 (37.41)** 0.00 (0.00) NA 1.00 (0.00)**
REVISE 138.82 (33.99)** 292.52 (53.13)** 240.50 (35.73)** 0.00 (0.01) NA 0.81 (0.39)

Schut 9.97 (0.28)** 319.45 (59.02)** 266.80 (40.46)** 0.99 (0.00)** NA 0.05 (0.22)JEM Ensemble

Wachter 365.46 (35.14) 582.52 (58.46) 543.90 (44.24) 0.00 (0.00) NA 0.96 (0.20)
ECCCo 658.48 (65.03) 212.45 (36.70)** 649.63 (58.80) 0.00 (0.00) NA 1.00 (0.00)
REVISE 150.41 (51.81)** 839.79 (77.14)* 244.33 (38.69)** 0.00 (0.00) NA 0.95 (0.22)

Schut 9.95 (0.41)** 842.80 (82.01)* 264.94 (42.18)** 0.99 (0.00)** NA 0.06 (0.25)MLP

Wachter 400.08 (34.33) 982.32 (61.81) 561.23 (45.08) 0.00 (0.00) NA 1.00 (0.00)
ECCCo 616.12 (102.01) 162.21 (36.21)** 587.65 (95.01) 0.00 (0.00) NA 1.00 (0.00)**
REVISE 149.48 (47.90)** 741.30 (125.98)* 242.76 (41.16)** 0.00 (0.01) NA 0.92 (0.27)

Schut 9.98 (0.23)** 754.35 (132.26) 266.94 (42.55)** 0.99 (0.00)** NA 0.03 (0.18)

MNIST

MLP Ensemble

Wachter 374.37 (41.37) 871.09 (92.36) 536.24 (48.73) 0.00 (0.00) NA 1.00 (0.05)
ECCCo 1.87 (0.79) 0.57 (0.58)** 1.29 (0.21)* 0.00 (0.00) 0.99 (0.18)** 1.00 (0.00)

ECCCo (no CP) 1.83 (0.80) 0.63 (0.64)* 1.30 (0.21)* 0.00 (0.00) 1.13 (0.35) 1.00 (0.00)
ECCCo (no EBM) 1.30 (1.72) 1.73 (1.34) 1.73 (1.42) 0.00 (0.00) 0.94 (0.27)* 1.00 (0.00)

REVISE 1.07 (0.26) 1.59 (0.55) 1.55 (0.20) 0.00 (0.00) 1.30 (0.40) 1.00 (0.00)
Schut 1.36 (0.35) 1.55 (0.61) 1.42 (0.16)* 0.03 (0.12) 1.11 (0.30)* 1.00 (0.00)

JEM

Wachter 0.89 (0.21) 1.77 (0.48) 1.67 (0.15) 0.00 (0.00) 1.45 (0.47) 1.00 (0.00)
ECCCo 2.53 (1.24) 1.68 (1.74) 2.02 (0.86) 0.00 (0.00) 1.11 (0.31) 1.00 (0.00)

ECCCo (no CP) 2.45 (1.36) 1.34 (1.66) 2.11 (0.88) 0.00 (0.00) 1.24 (0.41) 1.00 (0.00)
ECCCo (no EBM) 2.53 (2.03) 2.98 (1.89) 2.29 (1.75) 0.00 (0.00) 0.99 (0.07)** 1.00 (0.00)

REVISE 0.98 (0.33)* 2.46 (1.05) 1.54 (0.27)* 0.00 (0.00) 1.40 (0.49) 1.00 (0.00)
Schut 0.75 (0.23)** 2.71 (1.15) 1.62 (0.42) 0.31 (0.27)* 0.94 (0.24)* 0.94 (0.24)

Moons

MLP

Wachter 1.49 (1.76) 2.95 (1.42) 1.84 (1.33) 0.00 (0.00) 1.33 (0.48) 1.00 (0.00)
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