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Abstract

Counterfactual Explanations offer an intuitive and straightforward way to explain
black-box models and offer Algorithmic Recourse to individuals. To address the
need for plausible explanations, existing work has primarily relied on surrogate
models to learn how the input data is distributed. This effectively reallocates
the task of learning realistic explanations for the data from the model itself to
the surrogate. Consequently, the generated explanations may seem plausible to
humans but need not necessarily describe the behaviour of the black-box model
faithfully. We formalise this notion of faithfulness through the introduction of a
tailored evaluation metric and propose a novel algorithmic framework for gener-
ating Energy-Constrained Conformal Counterfactuals (ECCCos) that are only as
plausible as the model permits. Through extensive empirical studies involving
multiple synthetic and real-world datasets, we demonstrate that ECCCos reconcile
the need for plausibility and faithfulness. In particular, we show that it is possible
to achieve state-of-the-art plausibility for models with gradient access without the
need for surrogate models. To do so, our framework relies solely on properties
defining the black-box model itself by leveraging recent advances in energy-based
modelling and conformal prediction. To our knowledge, this is the first venture
in this direction for generating faithful Counterfactual Explanations. Thus, we
anticipate that ECCCos can serve as a baseline for future research. We believe that
our work opens avenues for researchers and practitioners seeking tools to better
distinguish trustworthy from unreliable models.

1 Introduction

Counterfactual Explanations (CE) provide a powerful, flexible and intuitive way to not only explain
black-box models but also help affected individuals through the means of Algorithmic Recourse.
Instead of opening the Black Box, CE works under the premise of strategically perturbing model
inputs to understand model behaviour [31]. Intuitively speaking, we generate explanations in this
context by asking what-if questions of the following nature: ‘Our credit risk model currently predicts
that this individual is not credit-worthy. What if they reduced their monthly expenditures by 10%?’

This is typically implemented by defining a target outcome y* € ) for some individual x € X = R”
described by D attributes, for which the model My : X — ) initially predicts a different outcome:
My (x) # y™. Counterfactuals are then searched by minimizing a loss function that compares the
predicted model output to the target outcome: yloss(Mpy(x),y ™). Since Counterfactual Explanations
work directly with the black-box model, valid counterfactuals always have full local fidelity by
construction where fidelity is defined as the degree to which explanations approximate the predictions
of a black-box model [19} [18]].

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



36
a7
38
39
40
41

42
43
44
45
46
47
48
49
50

51

52
53

54

55
56
57
58

59
60
61
62
63
64
65
66
67
68

69
70
71
72
73
74
75
76
77
78
79

80

81
82
83

In situations where full fidelity is a requirement, CE offers a more appropriate solution to Explainable
Artificial Intelligence (XAI) than other popular approaches like LIME [24] and SHAP [14], which
involve local surrogate models. But even full fidelity is not a sufficient condition for ensuring
that an explanation faithfully describes the behaviour of a model. That is because multiple very
distinct explanations can all lead to the same model prediction, especially when dealing with heavily
parameterized models like deep neural networks which are typically underspecified by the data [32].

In the context of CE, the idea that no two explanations are the same arises almost naturally. A key
focus in the literature has therefore been to identify those explanations and algorithmic recourses that
are most appropriate based on a myriad of desiderata such as sparsity, actionability and plausibility.
In this work, we draw closer attention to model faithfulness as a desideratum for counterfactuals.
Our key contributions are as follows: firstly, we propose a definition of faithfulness that is suitable
for counterfactuals; secondly, we introduce a novel algorithmic approach for generating Energy-
Constrained Conformal Counterfactuals (ECCCos) that explicitly addresses the need for faithfulness;
finally, we provide extensive empirical evidence demonstrating that ECCCos faithfully explain model
behaviour without sacrificing plausibility.

2 Background and Related Work

In this section, we provide some background on CE and our motivation for this work. To start, we
briefly introduce the methodology underlying most state-of-the-art (SOTA) counterfactual generators.

2.1 Gradient-Based Counterfactual Search

While Counterfactual Explanations can be generated for arbitrary regression models [26]], existing
work has primarily focused on classification problems. Let )V = (0, 1)* denote the one-hot-encoded
output domain with K classes. Then most counterfactual generators rely on gradient descent to
optimize different flavours of the following counterfactual search objective:

Z' = arg min, {yloss(My(f(2")),y") + Acost(f(Z'))} )

Here yloss denotes the primary loss function already introduced above and cost is either a single
penalty or a collection of penalties that are used to impose constraints through regularization. Equa-
tion [T| restates the baseline approach to gradient-based counterfactual search proposed by Wachter
et al. [31] in general form where Z' = {z;} denotes an L-dimensional array of counterfactual
states [2]. This is to explicitly account for the multiplicity of explanations and the fact that we may
choose to generate multiple counterfactuals and traverse a latent encoding Z of the feature space X
where we denote f~! : X — Z. Encodings may involve simple feature transformations or more
advanced techniques involving generative models, as we will discuss further below. The baseline
approach, which we will simply refer to as Wachter [31]], searches a single counterfactual directly in
the feature space and penalises its distance to the original factual.

Solutions to Equation|[I]are considered valid as soon as the predicted label matches the target label. A
stripped-down counterfactual explanation is therefore little different from an adversarial example. In
Figure[T] for example, we have applied Wachter to MNIST data (centre panel) where the underlying
classifier My is a simple Multi-Layer Perceptron (MLP) with above 90 percent test accuracy. For the
generated counterfactual x’ the model predicts the target label with high confidence (centre panel
in Figure[T). The explanation is valid by definition, even though it looks a lot like an Adversarial
Example [6]. Schut et al. [25] make the connection between Adversarial Examples and Counterfactual
Explanations explicit and propose using a Jacobian-Based Saliency Map Attack (JSMA) to solve
Equation [Tl They demonstrate that this approach yields realistic and sparse counterfactuals for
Bayesian, adversarially robust classifiers. Applying their approach to our simple MNIST classifier
does not yield a realistic counterfactual but this one, too, is valid (right panel in Figure [I).

2.2 From Adversial Examples to Plausible Explanations

The crucial difference between Adversarial Examples (AE) and Counterfactual Explanations is one of
intent. While an AE is intended to go unnoticed, a CE should have certain desirable properties. The
literature has made this explicit by introducing various so-called desiderata that counterfactuals should
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Factual

Figure 1: Explanations or Adversarial Ex-
amples? Counterfactuals for turning a 9
(nine) into a 7 (seven): original image (left);
counterfactual produced using Wachter et al.
[31] (centre); and a counterfactual produced
using the approach introduced by [25] that
uses Jacobian-Based Saliency Map Attacks to
solve Equation|T}

Factual

Strong VAE (p=1.0)

Weak VAE (p=0.02)

Figure 2: Using surrogates can improve plau-
sibility, but also increases vulnerability. Coun-
terfactuals for turning an 9 (nine) into a 7
(seven): original image (left); counterfac-
tual produced using REVISE [9] with a well-
specified surrogate (centre); and a counter-
factual produced using REVISE [9]] with a
poorly specified surrogate (right).

meet in order to properly serve both Al practitioners and individuals affected by Al decision-making
systems. The list of desiderate includes but is not limited to the following: sparsity, proximity [31]],
actionability [29], diversity [19], plausibility [9} 23} 25], robustness [28 22} 2] and causality [[12].

Researchers have come up with various ways to meet these desiderata, which have been extensively
surveyed and evaluated in various studies [30, [11} 21} 4} [8]. Perhaps unsurprisingly, the different
desiderata are often positively correlated. For example, Artelt et al. [4]] find that plausibility typically
also leads to improved robustness. Similarly, plausibility has also been connected to causality in the
sense that plausible counterfactuals respect causal relationships [[15].

2.2.1 Plausibility through Surrogates

Arguably, the plausibility of counterfactuals has been among the primary concerns and some have
focused explicitly on this goal. Joshi et al. [9], for example, were among the first to suggest that
instead of searching counterfactuals in the feature space X', we can instead traverse a latent embedding
Z (Equation [T)) that implicitly codifies the data generating process (DGP) of x ~ X. To learn the
latent embedding, they introduce a surrogate model. In particular, they propose to use the latent
embedding of a Variational Autoencoder (VAE) trained to generate samples x* < G(z) where G
denotes the decoder part of the VAE. Provided the surrogate model is well-trained, their proposed
approach —REVISE— can yield plausible explanations like the one in the centre panel of Figure[2]

Others have proposed similar approaches. Dombrowski et al. [5] traverse the base space of a
normalizing flow to solve Equation [ essentially relying on a different surrogate model for the
generative task. Poyiadzi et al. [23] use density estimators (p : X +— [0, 1]) to constrain the
counterfactuals to dense regions in the feature space. Karimi et al. [12] argue that counterfactuals
should comply with the causal model that generates the data. All of these different approaches share
a common goal: ensuring that the generated counterfactuals comply with the true and unobserved
DGP. To summarize this broad objective, we propose the following definition:

Definition 2.1 (Plausible Counterfactuals). Let X |y™ denote the true conditional distribution of

samples in the target class y*. Then for x' to be considered a plausible counterfactual, we need:
' +
x' ~ XlyT.

Surrogate models offer an obvious solution to achieve this objective. Unfortunately, surrogates also
introduce a dependency: the generated explanations no longer depend exclusively on the black-box
model itself, but also on the surrogate model. This is not necessarily problematic if the primary
objective is not to explain the behaviour of the model but to offer recourse to individuals affected by
it. It may become problematic even in this context if the dependency turns into a vulnerability. To
illustrate this point, we have used REVISE [9] with an underfitted VAE to generate the counterfactual
in the right panel of Figure [} in this case, the decoder step of the VAE fails to yield plausible values
({x' < G(z)} # X|y™) and hence the counterfactual search in the learned latent space is doomed.

2.2.2 Plausibility through Minimal Predictive Uncertainty

Schut et al. [25] show that to meet the plausibility objective we need not explicitly model the input
distribution. Pointing to the undesirable engineering overhead induced by surrogate models, they
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propose that we rely on the implicit minimisation of predictive uncertainty instead. Their proposed
methodology solves Equation[T|by greedily applying JSMA in the feature space with standard cross-
entropy loss and no penalty at all. They demonstrate theoretically and empirically that their approach
yields counterfactuals for which the model My predicts the target label y* with high confidence.
Provided the model is well-specified, these counterfactuals are plausible. This idea hinges on the
assumption that the black-box model provides well-calibrated predictive uncertainty estimates.

3 Methodological Framework

The primary objective of this work has been to develop a methodology for generating maximally
plausible counterfactuals under minimal intervention. Our proposed framework is based on the
premise that explanations should be plausible but not plausible at all costs. Energy-Constrained
Conformal Counterfactuals (ECCCo) achieve this goal in two ways: firstly, they rely on the Black
Box itself for the generative task; and, secondly, they involve an approach to predictive uncertainty
quantification that is model-agnostic. In this section, we first formalise our notion of faithfulness in
the context of CE. We then explain how exactly ECCCos are generated.

3.1 From Fidelity to Model Faithfulness

Above we explained that since Counterfactual Explanations work directly with the black-box model,
the fidelity of explanations as we defined it earlier is not a concern. This may explain why research
has primarily focused on other desiderata, most notably plausibility (Definition [2.T). Enquiring
about the plausibility of a counterfactual essentially boils down to the following question: ‘Is this
counterfactual consistent with the data’? We ask a related question: ‘Is this counterfactual consistent
with what the model has learned about the data’? To answer this question and propose a novel way to
assess if explanations conform with model behaviour.

The word fidelity stems from the Latin word ‘fidelis’, which means ‘faithful, loyal, trustworthy’ [17].
As we explained in Section [2] model explanations are generally considered faithful if their corre-
sponding predictions coincide with the predictions made by the model itself. Since this definition of
faithfulness is not useful in the context of CE, we propose the following definition:

Definition 3.1 (Faithful Counterfactuals). Let Xy|yt = pg(Xy+) denote the conditional distribution

of X in the target class y ™, where 0 denotes the parameters of model My. Then for X' to be considered
a conformal counterfactual, we need: x' ~ Xgly™.

To assess counterfactuals with respect to Definition [3.1] we need to be able to quantify the posterior
conditional distribution pg(x|y™). This is very much at the core of our proposed methodological
framework, which we will introduce next.

3.2 Quantifying the Model’s Generative Property

Recent work by Grathwohl et al. [7] on Energy-Based Models (EBM) has shown that there is a
‘generative model hidden within every standard discriminative model’. They use Stochastic Gradient
Langevin Dynamics (SGLD) to estimate the posterior conditional distribution py(x|y) using and
leverage this to train classifiers jointly for the discriminative and generative task.

Crucially for our purpose, SGLD can be applied during inference to essentially any standard dis-
criminative model. Even models that are not explicitly trained for the joint objective learn about
the distribution of inputs X by learning to make conditional predictions about the output y. We can
leverage this observation to quantify the generative property of models. In particular, note that if we
fix y to our target value y ™, we can sample from pg(x|y ™) using SGLD as follows,

2
X1 & X5 — %E(Xj|y+) + €ry, ] =1,.., J (2)

where r; ~ N(0,1) is the stochastic term and the step-size ¢ is typically polynomially decayed.
The term E(x,|[y™) denotes the model energy conditioned on the target class label y ™. Generating

multiple samples in this manner yields an empirical distribution XG,er that we use in our search
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for plausible counterfactuals, as discussed in more detail below. Appendix [A] provides additional
implementation details for any tasks related to energy-based modelling.

3.3 Quantifying the Model’s Predictive Uncertainty

To quantify the model’s predictive uncertainty we use Conformal Prediction (CP), an approach that
has recently gained popularity in the Machine Learning community [3,[16]]. Crucially for our intended
application, CP is model-agnostic and can be applied during inference without placing any restrictions
on model training. Intuitively, CP works under the premise of turning heuristic notions of uncertainty
into rigorous uncertainty estimates by repeatedly sifting through the training data or a dedicated
calibration dataset. Conformal classifiers produce prediction sets for individual inputs that include all
output labels that can be reasonably attributed to the input. These sets tend to be larger for inputs that
do not conform with the training data and are therefore characterized by high predictive uncertainty.

In order to generate counterfactuals that are associated with low predictive uncertainty, we use a
smooth set size penalty introduced by Stutz et al. [27] in the context of conformal training:

Q(Cy(x;0)) = max | 0, Z Coy(xisa) — kK (3)

yey

Here, x € {0, 1} is a hyper-parameter and Cy , (x;; ) can be interpreted as the probability of label
y being included in the prediction set.

In order to compute this penalty for any black-box model we merely need to perform a single
calibration pass through a holdout set D.,. Arguably, data is typically abundant and in most
applications, practitioners tend to hold out a test data set anyway. Consequently, CP removes the
restriction on the family of predictive models, at the small cost of reserving a subset of the available
data for calibration. This particular case of conformal prediction is referred to as Split Conformal
Prediction (SCP) as it involves splitting the training data into a proper training dataset and a calibration
dataset. Details concerning our implementation of Conformal Prediction can be found in Appendix B}

3.4 Energy-Constrained Conformal Counterfactuals (ECCCo)

Our framework for generating ECCCos combines the ideas introduced in the previous two subsections.
Formally, we extend Equation [I|as follows,

7/ = arg_in, {yloss(My (£(2), y*) + Mdist(/(2), )
+ Xodist(f(Z'), %g) + A3Q(Co(f(Z'); )}

“

where Xg denotes samples generated using SGLD (Equation and dist(-) is a generic term for a
distance metric. Our default choice for dist(+) is the L1 Norm since it induces sparsity.

The first two terms in Equation @ correspond to the counterfactual search objective defined in Wachter
et al. [31] which merely penalises the distance of counterfactuals from their factual values. The
additional two penalties in ECCCo ensure that counterfactuals conform with the model’s generative
property and lead to minimally uncertain predictions, respectively. The hyperparameters Aq, ..., A3
can be used to balance the different objectives: for example, we may choose to incur larger deviations
from the factual in favour of faithfulness with the model’s generative property by choosing lower
values of \; and relatively higher values of As.
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Algorithm 1: Generating ECCCos (For more
details, see Appendix [C)

Input: X, y+7 M@a fa A7 Q, Da Ta n,ns, Ng
where My(x) #y™

Output: x’

1: Initialize z’ < f~1(x)

Generate buffer B of N conditional sam-

ples X¢|y* using SGLD (Equation 2)

Run SCP for My using D

Initialize t < 0

while not converged ort < T do
Xg, < rand(BB,ng)
2 72—V Lz, yT, %o\, @)
tt+1

end while

X' f(z')

»

Figure 3: ECCCos for turning a 9 (nine) into
a 7 (seven) for different black-box models
from left to right: Multi-Layer Perceptron (a),
Ensemble of MLPs (b), Joint Energy Model
(c), Ensemble of JEMs (d).
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The entire procedure for Generating ECCCos is described in Algorithm|I] For the sake of simplicity
and without loss of generality, we limit our attention to generating a single counterfactual x’ = f(z’)
where in contrast to Equation z' denotes a 1-dimensional array containing a single counterfactual
state. That state is initialized by passing the factual x through the encoder f~! which in our case cor-
responds to a simple feature transformer, rather than the encoder part of VAE as in REVISE [9]. Next,
we generate a buffer of N conditional samples Xg|y ™+ using SGLD (Equation [2)) and conformalise
the model My through Split Conformal Prediction on training data D.

Finally, we search counterfactuals through gradient descent. Let £(z', y*,%g+; A, ) denote our loss
function defined in Equation ] Then in each iteration, we first randomly draw nz samples from
the buffer B before updating the counterfactual state z’' by moving in the negative direction of that
loss function. The search terminates once the convergence criterium is met or the maximum number
of iterations 7" has been exhausted. Note that the choice of convergence criterium has important
implications on the final counterfactual (for more detail on this see Appendix [C).

Figure [3|presents ECCCos for the MNIST example from Section 2] for various black-box models of
increasing complexity from left to right: a simple Multi-Layer Perceptron (MLP); an Ensemble of
MLPs, each of the same architecture as the single MLP; a Joint Energy Model (JEM) based on the
same MLP architecture; and finally, an Ensemble of these JEMs. Since Deep Ensembles have an
improved capacity for predictive uncertainty quantification and JEMs are explicitly trained to learn
plausible representations of the input data, it is intuitive to see that the plausibility of counterfactuals
visibly improves from left to right. This provides some first anecdotal evidence that ECCCos achieve
plausibility while maintaining faithfulness to the Black Box.

4 Empirical Analysis

Our goal in this section is to shed light on the following research questions:

Research Question 4.1 (Feasibility). Is it feasible to generate plausible Counterfactual Explanations
through ECCCo without relying on surrogate models?

Research Question 4.2 (Drivers). Subject to feasibility, what drives the performance of ECCCo?
Is it sufficient to rely on energy-based modelling to quantify the model’s generative property? Is it
sufficient to rely on conformal prediction to quantify the model’s uncertainty?

We first briefly describe our experimental setup, before presenting our main results.

4.1 Key Evaluation Metrics

Above we have defined plausibility (Definition[2.1]) and faithfulness (Definition[3.T)) for Counterfactual
Explanations. These are the main criteria we use to evaluate counterfactuals in this study. In order to
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quantify the plausibility of counterfactuals we use a slightly adapted version of the implausibility
metric proposed in Guidotti [8]. Formally, we define implausibility as follows,

. 1 o
lmpl = m Z dlSt(X ,X) (5)

x€Xy+

where X+ is a subsample of the training data in the target class y . This gives rise to a very similar
evaluation metric for unfaithfulness. We merely swap out the subsample of individuals in the target
class for a subset X’e”; + of the generated conditional samples:

1
unfaith = ————— dist(x’, x
Ix € X", | Z;E ()
Y x»EXQ,er

(6)

Specifically, we form this subset based on the ng generated samples with the lowest energy.

While we focus on these key evaluation metrics in the body of this paper, we also sporadically discuss
outcomes with respect to other common measures used to evaluate the validity, proximity and sparsity
of counterfactuals. Details can be found in Appendix

4.2 Experimental Setup

To assess and benchmark the performance of ECCCo against the state of the art, we generate multiple
counterfactuals for different black-box models and datasets. In particular, we compare ECCCo to the
following counterfactual generators that were introduced above: firstly; Schut [25]], which minimizes
predictive uncertainty; secondly, REVISE [9]], which uses a VAE as its surrogate model; and, finally,
Wachter [31], which serves as our baseline.

We use both synthetic and real-world datasets from different domains, all of which are publically
available and commonly used to train and benchmark classification algorithms. The synthetic datasets
include: a dataset containing two Linearly Separable Gaussian clusters (n = 1000), as well as
the well-known Circles (n = 1000) and Moons (n = 2500) data. As for real-world data, we
follow Schut et al. [25] and use the MNIST [13]] dataset containing images of handwritten digits such
as the examples shown above. From the social sciences domain, we include Give Me Some Credit
(GMSQC) [10]: a tabular dataset that has been studied extensively in the literature on Algorithmic
Recourse [21]. It consists of 11 numeric features that can be used to predict the binary outcome
variable indicating whether or not retail borrowers experience financial distress.

As with the example in Section [3] we use simple neural networks (MLP) and Joint Energy Models
(JEM). For the more complex real-world datasets we also use ensembling in each case. To account
for stochasticity, we generate multiple counterfactuals for each possible target class, generator, model
and dataset. Specifically, we randomly sample n~ times from the subset of individuals for which
the given model predicts the non-target class y~ given the current target. We set n~ = 25 for all
of our synthetic datasets, n~ = 10 for GMSC and n~ = 5 for MNIST. Full details concerning our
parameter choices, training procedures and model performance can be found in Appendix

4.3 Results

Table [T] shows the key results for the synthetic datasets separated by model (first columns) and
generator (second column). The numerical columns show the average values of our key evaluation
metrics computed across all counterfactuals. Standard deviations are shown in parentheses. In bold
we have highlighted the best outcome for each model and metric. To provide some sense of the
statistical significance of our findings, we have added asterisks to indicate that a given value is at
least one (x) or two (x%) standard deviations lower than the baseline (Wachter).

Starting with the high-level results for our Linearly Separable data, we find that ECCCo produces
the most faithful counterfactuals for both black-box models. This is not surprising, since ECCCo
directly enforces faithfulness through regularization. Crucially though, ECCCo also produces the
most plausible counterfactuals for the Joint Energy Model, which was explicitly trained to learn
plausible representations of the input data. This high-level pattern is broadly consistent across all
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Table 1: Results for synthetic datasets. Standard deviations across samples are shown in parentheses.
Best outcomes are highlighted in bold. Asterisks indicate that the given value is more than one (*) or
two (**) standard deviations away from the baseline (Wachter).

Linearly Separable Moons Circles
Model Generator Unfaithfulness | Implausibility |  Unfaithfulness | Implausibility |  Unfaithfulness | Implausibility |
ECCCo 0.03 (0.06)** 0.20 (0.08)** 0.31 (0.30)* 1.20 (0.15)** 0.52 (0.36) 1.22 (0.46)
ECCCo (no CP) 0.03 (0.06)** 0.20 (0.08)** 0.37 (0.30)* 1.21 (0.17)** 0.54 (0.39) 1.21 (0.46)
JEM ECCCo (no EBM) 0.16 (0.11) 0.34 (0.19) 0.91 (0.32) 1.71 (0.25) 0.70 (0.33) 1.30 (0.37)
REVISE 0.19 (0.03) 0.41 (0.01)** 0.78 (0.23) 1.57 (0.26) 0.48 (0.16)* 0.95 (0.32)*
Schut 0.39 (0.07) 0.73 (0.17) 0.67 (0.27) 1.50 (0.22)* 0.54 (0.43) 1.28 (0.53)
Wachter 0.18 (0.10) 0.44 (0.17) 0.80 (0.27) 1.78 (0.24) 0.68 (0.34) 1.33(0.32)
ECCCo 0.29 (0.05)** 0.23 (0.06)** 0.80 (0.62) 1.69 (0.40) 0.65 (0.53) 1.17 (0.41)
ECCCo (no CP) 0.29 (0.05)** 0.23 (0.07)** 0.79 (0.62) 1.68 (0.42) 0.49 (0.35) 1.19 (0.44)
MLp ECCCo (no EBM) 0.46 (0.05) 0.28 (0.04)** 1.34 (0.47) 1.68 (0.47) 0.84 (0.51) 1.23 (0.31)
REVISE 0.56 (0.05) 0.41 (0.01) 1.45 (0.44) 1.64 (0.31) 0.58 (0.52) 0.95 (0.32)
Schut 0.43 (0.06)* 0.47 (0.36) 1.45 (0.55) 1.73 (0.48) 0.58 (0.37) 1.23 (0.43)
Wachter 0.51 (0.04) 0.40 (0.08) 1.32 (0.41) 1.69 (0.32) 0.83 (0.50) 1.24 (0.29)

datasets and supportive of our narrative, so it is worth highlighting: ECCCos consistently achieve
high faithfulness, which—subject to the quality of the model itself—coincides with high plausibility.

Zooming in on the granular details for the Linearly Separable data, note that the list of generators
in Table |1|includes ‘ECCCo (no CP)’ and ‘ECCCo (no EBM)’ in addition to ‘ECCCo’ and our
benchmark generators. These have been added to gain some sense of the degree to which the two
components underlying ECCCo—namely energy-based modelling (EBM) and conformal prediction
(CP)—drive the results. Specifically, ‘ECCCo (no CP)’ involves no set size penalty (A3 = 0 in
Equation[d)), while ‘ECCCo (no EBM)’ does not penalise the distance to samples generated through
SGLD (A2 = 0 in Equation ). The corresponding results indicate that the positive results are
dominated by the effect of quantifying and leveraging the model’s generative property (EBM) in our
search for counterfactuals. Conformal Prediction alone only leads to marginally improved faithfulness
and plausibility relative to the benchmark generators for our JEM. As a final observation for the
Linearly Separable data we note that for the MLP, increased faithfulness comes at the cost of reduced
plausibility. Specifically, this means that counterfactuals generated through ECCCo end up further
away from individuals in the target class than those produced by our benchmark generators.

The findings for the Moons dataset are broadly in line with the findings so far: for the JEM, ECCCo
yields significantly more faithful and plausible counterfactuals than all other generators. For the MLP,
faithfulness is maintained but counterfactuals are not plausible. By comparison, REVISE yields fairly
plausible counterfactuals in both cases, but it does so at the cost of faithfulness. We also observe
that the best results for ECCCo are achieved when using both penalties. Once again though, the
generative component (EBM) has a stronger impact on the positive results for the JEM.

For the Circles data, the most faithful counterfactuals are generated by ECCCo. While it appears
that REVISE generates the most plausible counterfactuals in this case, we note that they are valid
only half of the time (see Appendix [E]for a complete overview of all evaluation metrics). It turns
out that in this case, the underlying VAE with default parameters has not adequately learned the
data-generating process. Of course, it is possible to achieve better generative performance through
hyperparameter tuning. But this example serves to illustrate that REVISE depends strictly on the
quality of the surrogate model. Independent of the outcome for REVISE, however, the results do not
seem to indicate that ECCCo significantly improves our plausibility metric for the Circles data.

Moving on to our real-world datasets, the results are shown in Table 2] Once again the findings
indicate that the plausibility of ECCCos is positively correlated with the capacity of the black-box
model to distinguish plausible from implausible inputs. The case is very clear for MNIST: ECCCos are
consistently more faithful than the corresponding counterfactuals produced by any of the benchmark
generators and their plausibility gradually improves through ensembling and joint-energy modelling.
For the JEM Ensemble, ECCCo is essentially on par with REVISE and does significantly better than
the baseline generator. We also note that ECCCo is the only generator that consistently achieves full
validity for all models (Appendix [E). Interestingly, ECCCo also yields lower-cost outcomes than the
baseline generator for the JEMs.
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Table 2: Results for real-world datasets. Standard deviations across samples are shown in parentheses.
Best outcomes are highlighted in bold. Asterisks indicate that the given value is more than one (*) or
two (**) standard deviations away from the baseline (Wachter).

MNIST GMSC
Model Generator  Unfaithfulness |  Implausibility |  Unfaithfulness |  Implausibility |
ECCCo  116.09 (30.70)** 281.33 (41.51)**  41.65 (17.24)**  40.57 (8.74)**
JEM REVISE  348.74 (65.65)**  246.69 (36.69)**  74.89 (15.82)%** 6.01 (5.75)**
Schut 355.58 (64.84)**  270.06 (40.41)**  76.23 (15.54)** 6.02 (0.72)**
Wachter 694.08 (50.86) 630.99 (33.01) 146.02 (64.48) 128.93 (74.00)
ECCCo 89.89 (27.26)**  240.59 (37.41)**  26.55 (12.94)**  33.65 (8.33)**
JEM Ensemble REVISE  292.52 (53.13)**  240.50 (35.73)**  52.47 (14.12)** 6.69 (3.37)**
Schut 319.45 (59.02)**  266.80 (40.46)**  56.34 (15.00)%** 6.27 (1.06)**
Wachter 582.52 (58.46) 543.90 (44.24) 125.72 (70.80) 126.55 (93.75)
ECCCo  212.45 (36.70)%** 649.63 (58.80) 46.90 (15.80)**  37.78 (8.40)**
MLP REVISE  839.79 (77.14)*  244.33 (38.69)**  81.08 (19.53)*:* 4.60 (0.72)**
Schut 842.80 (82.01)*  264.94 (42.18)**  90.67 (20.80)** 5.56 (0.81)**
Wachter 982.32 (61.81) 561.23 (45.08) 191.68 (30.86) 200.23 (15.05)
ECCCo  162.21 (36.21)** 587.65 (95.01) 74.65 (144.69)*  71.87 (145.19)
MLP Ensemble REVISE  741.30 (125.98)*  242.76 (41.16)**  80.90 (14.59)** 5.20 (1.52)*%*
Schut 754.35(132.26)  266.94 (42.55)**  85.63 (19.15)** 6.00 (0.99)**
Wachter 871.09 (92.36) 536.24 (48.73) 220.05 (17.41) 203.65 (14.77)

For the tabular credit dataset (GMSC) we have struggled to get good generative and discriminative
performance for our JEMs. Consequently, it is not surprising to find that ECCCo never achieves
state-of-the-art plausibility, although it does improve outcomes compared to the baseline (Wachter).
Concerning faithfulness, ECCCo once again consistently outperforms all other generators.

To conclude this section, we summarize our findings with reference to the opening questions. Concern-
ing the feasibility of our proposed methodology (Research Question[d.I)), our findings demonstrate
that it is indeed possible to generate plausible counterfactuals without the need for surrogate models.
A related important finding is that ECCCo never sacrifices faithfulness for plausibility: any plausible
ECCCo also faithfully describes model behaviour. This mitigates the risk of generating plausible
explanations for models that are, in fact, highly susceptible to implausible counterfactuals as well.
Our findings here indicate that ECCCo achieves this result primarily by leveraging the model’s
generative property. We think that further work is needed, however, to definitively answer Research
Question on which we elaborate in the following section.

5 Limitations

Even though we have taken considerable measures to study our proposed methodology carefully,
this work is limited in scope, which caveats our findings. In particular, we have found that the
performance of ECCCo is sensitive to hyperparameter choices. In order to achieve faithfulness, we
generally had to penalise the distance from generated samples slightly more than the distance from
factual values. This choice is associated with relatively higher costs to individuals since the proposed
recourses typically involve more substantial feature changes than for our benchmark generators.

Conversely, we have not found that penalising prediction set sizes disproportionately strongly had
any discernable effect on our results. As discussed above, we also struggled to achieve good results
by relying on conformal prediction alone. We want to caveat this finding by acknowledging that
the role of CP in this context needs to be investigated more thoroughly through future work. Our
suggested approach involving a smooth set size penalty may be insufficient in this context.

The fact that our findings are primarily driven by applying ideas from energy-based modelling
presents a challenge in itself: while our approach is readily applicable to models with gradient access
like deep neural networks, more work is needed to generalise our methodology to other popular
machine learning models such as gradient-boosted trees. Relatedly, we have encountered common
challenges associated with energy-based modelling during our experiments including sensitivity to
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scale, training instabilities and sensitivity to hyperparameters. We have also struggled to apply our
proposed approach to low-dimensional tabular data.

6 Conclusion

This work leverages recent advances in energy-based modelling and conformal prediction in the
context of Explainable Artificial Intelligence. We have proposed a new way to generate Counterfactual
Explanations that are maximally faithful to the black-model they aim to explain. Our proposed
counterfactual generator, ECCCo, produces plausible counterfactual if and only if the black-model
itself has learned realistic representations of the data. This should enable researchers and practitioners
to use counterfactuals in order to discern trustworthy models from unreliable ones. While the scope
of this work limits its generalizability, we believe that ECCCo offers a solid baseline for future work
on faithful Counterfactual Explanations.
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Appendices

A JEM

While x ; is only guaranteed to distribute as pp(x|y ™) if € — 0 and J — oo, the bias introduced for
a small finite e is negligible in practice [20} [7]. While Grathwohl et al. [[7] use Equation [2] during
training, we are interested in applying the conditional sampling procedure in a post-hoc fashion to
any standard discriminative model.

B Conformal Prediction

The fact that conformal classifiers produce set-valued predictions introduces a challenge: it is not
immediately obvious how to use such classifiers in the context of gradient-based counterfactual
search. Put differently, it is not clear how to use prediction sets in Equation[I} Fortunately, Stutz et al.
[27] have recently proposed a framework for Conformal Training that also hinges on differentiability.
Specifically, they show how Stochastic Gradient Descent can be used to train classifiers not only
for the discriminative task but also for additional objectives related to Conformal Prediction. One
such objective is efficiency: for a given target error rate «, the efficiency of a conformal classifier
improves as its average prediction set size decreases. To this end, the authors introduce a smooth set
size penalty defined in Equation[3]in the body of this paper

Formally, it is defined as Cp y (x;; ) := o ((s(x;,y) — a)T ') fory € Y, where o is the sigmoid
function and 7" is a hyper-parameter used for temperature scaling [27].

Intuitively, CP works under the premise of turning heuristic notions of uncertainty into rigorous
uncertainty estimates by repeatedly sifting through the data. It can be used to generate prediction
intervals for regression models and prediction sets for classification models [1]. Since the literature
on CE and AR is typically concerned with classification problems, we focus on the latter. A particular
variant of CP called Split Conformal Prediction (SCP) is well-suited for our purposes, because it
imposes only minimal restrictions on model training.

Specifically, SCP involves splitting the data D,, = {(x;,¥:)}i=1,....n into a proper training set Dirin
and a calibration set D.,. The former is used to train the classifier in any conventional fashion.
The latter is then used to compute so-called nonconformity scores: S = {s(x;,y:) }iep,, Where
s:(X,Y) — Ris referred to as score function. In the context of classification, a common choice for
the score function is just s; = 1 — Mpy(x;)[y;], that is one minus the softmax output corresponding
to the observed label y; [3].

Finally, classification sets are formed as follows,

Co(xi;a) = {y : s(xi,¥) < G} @)

where § denotes the (1 — «)-quantile of S and « is a predetermined error rate. As the size of the
calibration set increases, the probability that the classification set C' (X ) for a newly arrived sample
Xest does not cover the true test label y.s: approaches o [3]].

Observe from Equation [/| that Conformal Prediction works on an instance-level basis, much like
Counterfactual Explanations are local. The prediction set for an individual instance x; depends only
on the characteristics of that sample and the specified error rate. Intuitively, the set is more likely
to include multiple labels for samples that are difficult to classify, so the set size is indicative of
predictive uncertainty. To see why this effect is exacerbated by small choices for o consider the case
of a = 0, which requires that the true label is covered by the prediction set with probability equal to
1.

C Conformal Prediction
D Experimental Setup
E Results
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Table 3: All results for all datasets. Standard deviations across samples are shown in parentheses.
Best outcomes are highlighted in bold. Asterisks indicate that the given value is more than one (*) or
two (**) standard deviations away from the baseline (Wachter).

Model Data Generator Cost | Unfaithfulness | | Implausibility | | Redundancy T | Uncertainty | Validity T
ECCCo 39.14 (3.71) 236.79 (51.16) 39.78 (3.18) 0.00 (0.00) 2.00 (0.00) 1.00 (0.00)
JEM REVISE 4.39 (2.08) 284.51 (52.74) 5.58 (0.81)** 0.01 (0.03) 1.85(0.32) 1.00 (0.00)
Schut 4.17 (1.84) 263.55 (60.56) 8.00 (2.03) 0.25 (0.24)* 1.88 (0.31) 1.00 (0.00)
Wachter 2.03 (1.01) 274.55 (51.17) 7.32(1.80) 0.00 (0.00) 1.90 (0.31) 1.00 (0.00)
ECCCo 34.85(4.67) 249.44 (58.53) 35.09 (5.56) 0.00 (0.00) 2.00 (0.00) 1.00 (0.00)
JEM Ensemble REVISE 4.53(1.97) 268.45 (66.87) 5.44 (0.74)** 0.00 (0.00) 1.95 (0.21) 1.00 (0.00)
s Schut 0.98 (0.38)** 279.38 (63.23) 7.64 (1.47) 0.84 (0.06)** 2.00 (0.00) 1.00 (0.00)
California Housing Wachter 2.00 (0.59) 268.59 (68.66) 7.16 (1.46) 0.00 (0.00) 1.90 (0.31) 1.00 (0.00)
ECCCo 37.47 (4.59) 230.92 (48.86) 37.53 (5.40) 0.00 (0.00) 1.00 (0.00)** 1.00 (0.00)
MLP REVISE 3.38 (2.06) 281.10 (53.01) 5.34 (0.67)** 0.00 (0.00) 1.10 (0.31) 1.00 (0.00)
Schut 0.88 (0.51)** 285.12 (56.00) 6.48 (1.18)** 0.72 (0.22)** | 1.00 (0.00)** 1.00 (0.00)
Wachter 5.35(10.88) 262.50 (56.87) 9.21 (10.41) 0.00 (0.00) 1.05 (0.22) 1.00 (0.00)
ECCCo 38.33(4.99) 212.47 (59.27)* 38.17 (6.18) 0.00 (0.00) 1.00 (0.00)** 1.00 (0.00)
MLP Ensemble REVISE 3.41(1.79) 284.65 (49.52) 5.64 (1.13)* 0.00 (0.00) 1.05(0.22) 1.00 (0.00)
Schut 0.84 (0.56)** 269.19 (46.08) 7.30 (1.94) 0.81 (0.11)** | 1.00 (0.00)** | 1.00 (0.00)
Wachter 2.00 (1.39) 278.09 (73.65) 7.32(1.75) 0.00 (0.00) 1.07 (0.23) 1.00 (0.00)
ECCCo 1.34 (1.48) 0.63(1.58) 1.44(1.37) 0.00 (0.00) 0.98 (0.14) 0.98 (0.14)
ECCCo (no CP) 1.33 (1.49) 0.64 (1.61) 1.45 (1.38) 0.00 (0.00) 0.98 (0.14) 0.98 (0.14)
JEM ECCCo (no EBM) 0.85(1.49) 1.41 (1.51) 1.50 (1.38) 0.00 (0.00) 1.04 (0.28) 0.98 (0.14)
REVISE 0.99 (0.35) 0.96 (0.32)* 0.95 (0.32)* 0.00 (0.00) 0.50 (0.51) 0.50 (0.51)
Schut 1.00 (0.43) 0.99 (0.80) 1.28 (0.53) 0.25 (0.25) 1.11(0.38) | 1.00 (0.00)**
Circles Wachter 0.74 (1.50) 1.41 (1.50) 1.51(1.35) 0.00 (0.00) 0.98 (0.14) 0.98 (0.14)
ECCCo 1.39(0.23) 0.37 (0.65)** 1.30 (0.68) 0.00 (0.00) 1.00 (0.00)** | 1.00 (0.00)
ECCCo (no CP) 1.33(0.28) 0.50 (0.85)* 1.28 (0.66) 0.00 (0.00) 1.04 (0.20)* 1.00 (0.00)
MLP ECCCo (no EBM) 1.15 (0.69) 2.00 (1.46) 1.83 (1.00) 0.00 (0.00) 0.97 (0.10)** |  1.00 (0.00)
REVISE 0.98 (0.36) 1.16 (1.05) 0.95 (0.32)* 0.00 (0.00) 0.50 (0.51)* 0.50 (0.51)
Schut 0.61 (0.11) 1.60 (1.15) 1.24 (0.44) 0.34 (0.24)* | 1.00 (0.00)** | 1.00 (0.00)
Wachter 0.53 (0.15) 1.67 (1.05) 1.31(0.43) 0.00 (0.00) 1.28 (0.46) 1.00 (0.00)
ECCCo 859.68 (91.03) 40.65 (5.67)** 605.67 (19.56) 0.00 (0.00) 3.00 (0.00)%* | 1. .
JEM REVISE 500.28 (86.07) | 693.81 (118.47)* | 467.88 (132.24) 0.00 (0.00) 3.20 (2.28)** | 0.80(0.45)
Schut 10.00 (0.00)** 871.82 (64.75) 561.81 (94.76) 0.99 (0.00)** | 0.00 (0.00)** | 0.00 (0.00)
‘Wachter 100.86 (13.85) 902.84 (88.79) 586.49 (97.17) 0.00 (0.00) 10.00 (0.00) 1.00 (0.00)
ECCCo 679.19 (66.95) 59.61 (32.93)** 500.50 (27.5T) 0.00 (0.00) 4.00 (0.00)** | 1.00 (0.00)
JEM Ensemble REVISE 476.47 (147.09) | 533.64 (102.81)* | 356.60 (79.57)* 0.00 (0.00) 4.80 (1.30)** | 1.00 (0.00)
> Schut 10.00 (0.00)%** 688.61 (86.83) 445.55 (99.03) 0.99 (0.00)** | 0.00 (0.00)** | 0.00 (0.00)
FashionMNIST Wachter 92.50 (9.31) 714.63 (54.58) 470.54 (96.18) 0.00 (0.00) 10.00 (0.00) 1.00 (0.00)
ECCCo 885.97 (29.70) 65.36 (20.64)** 791.07 (14.51) 0.00 (0.00) 2.00 (0.00)** | 1.00 (0.00)**
MLP REVISE 323.10 (102.63) 856.08 (73.66) 394.73 (252.67) 0.00 (0.00) 1.00 (1.00)** | 0.60 (0.55)
Schut 10.00 (0.00)%** 928.77 (42.27) 518.98 (143.30) | 0.99 (0.00)** | 0.00 (0.00)** | 0.00 (0.00)
Wachter 94.57 (10.26) 916.45 (50.09) 546.35 (145.24) 0.00 (0.00) 3.61 (4.01) 0.80 (0.45)
ECCCo 869.65 (67.92) 47.37 (7.72)%F 751.83(11.87) 0.00 (0.00) 1.00 (0.00)™ | T .00)
MLP Ensemble REVISE 267.88 (69.67) 822.34 (57.55) | 307.50 (105.09)* 0.00 (0.00) 3.00 (4.00) 0.80 (0.45)
Schut 10.00 (0.00)%** 891.57 (70.10) 449.79 (149.32) | 0.99 (0.00)** | 0.00 (0.00)** | 0.00 (0.00)
Wachter 91.50 (16.35) 874.21 (59.36) 476.59 (150.76) 0.00 (0.00) 4.60 (4.93) 1.00 (0.00)
ECCCo 40.78 (8.79)*F 41.65 (17.24)* 40.57 (8.74)*F 0.00 (0.00) 1.50 (0.51) | 1.00 (0.00)**
JEM REVISE 5.10 (6.48)** 74.89 (15.82)** 6.01 (5.75)** 0.00 (0.00) 1.81(0.40) | 1.00 (0.00)**
Schut 1.10 (0.39)%* 76.23 (15.54)%* 6.02 (0.72)** 0.77 (0.09)** 1.55(0.51) | 1.00 (0.00)**
Wachter 127.26 (75.11) 146.02 (64.48) 128.93 (74.00) 0.00 (0.00) 1.00 (1.03) 0.50 (0.51)
ECCCo 33.87 (8.25)%F 26.55 (12.94)* 33.65 (8.33)"F 0.00 (0.00) 2.00 (0.00) | 1.00 (0.00)**
JEM Ensemble REVISE 6.00 (4.92)** 5247 (14.12)%* 6.69 (3.37)** 0.00 (0.00) 1.80(0.52) | 0.95 (0.22)**
Schut 1.29 (0.92)** 56.34 (15.00)** 6.27 (1.06)** 0.74 (0.16)** 1.62(0.52) | 1.00 (0.00)**
GMSC Wachter 124.35 (95.08) 125.72 (70.80) 126.55 (93.75) 0.00 (0.00) 1.00 (1.03) 0.50 (0.51)
ECCCo 38.91 (7.68)%F 46.90 (15.80)** 37.78 (8.40)%F 0.00 (0.00) 1.00 (0.00) 1.00 (0.00)
MLP REVISE 4.16 (2.35)** 81.08 (19.53)%* 4.60 (0.72)** 0.00 (0.00) 1.23 (0.40) 1.00 (0.00)
Schut 0.72 (0.32)** 90.67 (20.80)** 5.56 (0.81)** 0.87 (0.06)** 1.00 (0.00) 1.00 (0.00)
Wachter 199.28 (14.78) 191.68 (30.86) 200.23 (15.05) 0.00 (0.00) 1.00 (0.00) 1.00 (0.00)
ECCCo 7242 (145.72) 74.65 (144.69)* 71.87 (145.19) 0.00 (0.00) 1.00 (0.00) 1.00 (0.00)
MLP Ensemble REVISE 4.75 (2.94)%* 80.90 (14.59)** 5.20 (1.52)** 0.00 (0.00) 1.07 (0.12) 1.00 (0.00)
> Schut 0.65 (0.24)** 85.63 (19.15)%* 6.00 (0.99)** 0.88 (0.04)** | 1.00 (0.00)** 1.00 (0.00)
Wachter 202.64 (14.71) 220.05 (17.41) 203.65 (14.77) 0.00 (0.00) 1.00 (0.00) 1.00 (0.00)
ECCCo 0.91 (0.14) 0.10 (0.06)** 0.19 (0.03)** 0.00 (0.00) 0.97 (0.03)** | 1.00 (0.00)
ECCCo (no CP) 0.91 (0.14) 0.10 (0.07)%** 0.19 (0.03)** 0.00 (0.00) 0.98 (0.03)** | 1.00 (0.00)
JEM ECCCo (no EBM) 0.90 (0.17) 0.37 (0.28) 0.38 (0.26) 0.00 (0.00) 1.23 (0.49) 1.00 (0.00)
REVISE 0.42 (0.14)* 0.41 (0.02)** 0.41 (0.01)** 0.00 (0.00) 0.81 (0.82) 0.50 (0.51)
Schut 1.14(0.27) 0.66 (0.23) 0.66 (0.22) 0.21 (0.25) 1.74 (0.43) 1.00 (0.00)
Linearly Separable Wachter 0.61 (0.12) 0.44 (0.16) 0.44 (0.15) 0.00 (0.00) 1.50 (0.50) 1.00 (0.00)
Y ep ECCCo 1.52(0.16) 0.03 (0.02)% 0.69 (0.10) 0.00 (0.00) 1.00 (0.00)** | 1.00 (0.00)
ECCCo (no CP) 1.52 (0.16) 0.03 (0.02)%** 0.68 (0.10) 0.00 (0.00) 1.00 (0.00)** |  1.00 (0.00)
MLP ECCCo (no EBM) 2.66 (1.10) 1.25(0.87) 1.84 (1.10) 0.00 (0.00) 1.00 (0.00)** | 1.00 (0.00)
REVISE 0.44 (0.13)* 1.10 (0.10) 0.40 (0.01)** 0.00 (0.00) 1.64 (0.78) 0.82 (0.39)
Schut 0.76 (0.14) 0.81 (0.10)* 0.47 (0.24) 0.26 (0.25)* | 1.00 (0.00)** | 1.00 (0.00)
Wachter 0.60 (0.14) 0.94 (0.11) 0.44 (0.15) 0.00 (0.00) 1.54 (0.50) 1.00 (0.00)
ECCCo 269.99 (57.02)* | 116.09 (30.70)** | 281.33 (41.51)** 0.00 (0.00) NA 1.00 (0.00)™*
JEM REVISE 143.79 (43.43)%* | 348.74 (65.65)** | 246.69 (36.69)** 0.00 (0.01) NA 0.80 (0.40)
Schut 9.90 (0.55)** 355.58 (64.84)** | 270.06 (40.41)** | 0.99 (0.00)** NA 0.15 (0.36)
Wachter 453.86 (16.96) 694.08 (50.86) 630.99 (33.01) 0.00 (0.00) NA 0.90 (0.30)
ECCCo 260.94 (52.14)* | 89.89 (27.26)** | 240.59 (37.41)** 0.00 (0.00) NA 1.00 (0.00)**
JEM Ensemble REVISE 138.82 (33.99)** | 292.52 (53.13)** | 240.50 (35.73)** 0.00 (0.01) NA 0.81(0.39)
Schut 9.97 (0.28)** 319.45 (59.02)** | 266.80 (40.46)** | 0.99 (0.00)%** NA 0.05 (0.22)
MNIST Wachter 365.46 (35.14) 582.52 (58.46) 543.90 (44.24) 0.00 (0.00) NA 0.96 (0.20)
ECCCo 658.48(65.03) | 212.45 (36.70)** | 649.63 (58.80) 0.00 (0.00) NA 1.00 (0.00)
MLP REVISE 150.41 (51.81)** | 839.79 (77.14)* | 244.33 (38.69)** 0.00 (0.00) NA 0.95(0.22)
Schut 9.95 (0.41)** 842.80 (82.01)* | 264.94 (42.18)** | 0.99 (0.00)** NA 0.06 (0.25)
Wachter 400.08 (34.33) 982.32 (61.81) 561.23 (45.08) 0.00 (0.00) NA 1.00 (0.00)
ECCCo 616.12(102.01) | 162.21 (36.21)** | 587.65 (95.01) 0.00 (0.00) NA 1.00 (0.00)™*
MLP Ensemble REVISE 149.48 (47.90)** | 741.30 (125.98)* | 242.76 (41.16)** 0.00 (0.01) NA 0.92 (0.27)
i Schut 9.98 (0.23)** 754.35 (132.26) | 266.94 (42.55)** | 0.99 (0.00)** NA 0.03 (0.18)
Wachter 374.37 (41.37) 871.09 (92.36) 536.24 (48.73) 0.00 (0.00) NA 1.00 (0.05)
ECCCo 1.87(0.79) 0.57 (0.58)** 1.29 (0.2D* 0.00 (0.00) 0.99 (0.18)** 1.00 (0.00)
ECCCo (no CP) 1.83 (0.80) 0.63 (0.64)* 1.30 (0.21)* 0.00 (0.00) 1.13 (0.35) 1.00 (0.00)
JEM ECCCo (no EBM) 1.30 (1.72) 1.73 (1.34) 1.73 (1.42) 0.00 (0.00) 0.94 (0.27)* 1.00 (0.00)
REVISE 1.07 (0.26) 1.59 (0.55) 1.55 (0.20) 0.00 (0.00) 1.30 (0.40) 1.00 (0.00)
Schut 1.36 (0.35) 1.55(0.61) 1.42 (0.16)* 0.03 (0.12) 1.11 (0.30)* 1.00 (0.00)
Moons ‘Wachter 0.89 (0.21) 1.77 (0.48) 1.67 (0.15) 0.00 (0.00) 1.45 (0.47) 1.00 (0.00)
ECCCo 2.53(1.24) 1.68 (1.74) 2.02 (0.86) 0.00 (0.00) L.IT(0.31) 1.00 (0.00)
ECCCo (no CP) 2.45(1.36) 1.34 (1.66) 2.11(0.88) 0.00 (0.00) 1.24 (0.41) 1.00 (0.00)
MLP ECCCo (no EBM) 2.53(2.03) 2.98 (1.89) 2.29 (1.75) 0.00 (0.00) 0.99 (0.07)** | 1.00 (0.00)
REVISE 0.98 (0.33)* 2.46 (1.05) 1.54 (0.27)* 0.00 (0.00) 1.40 (0.49) 1.00 (0.00)
Schut 0.75 (0.23)** 2.71(1.15) 1.62 (0.42) 0.31 (0.27)* 0.94 (0.24)* 0.94 (0.24)
Wachter 1.49 (1.76) 2.95(1.42) 1.84 (1.33) 0.00 (0.00) 1.33(0.48) 1.00 (0.00)

13



	Introduction
	Background and Related Work
	Gradient-Based Counterfactual Search
	From Adversial Examples to Plausible Explanations
	Plausibility through Surrogates
	Plausibility through Minimal Predictive Uncertainty


	Methodological Framework
	From Fidelity to Model Faithfulness
	Quantifying the Model's Generative Property
	Quantifying the Model's Predictive Uncertainty
	Energy-Constrained Conformal Counterfactuals (ECCCo)

	Empirical Analysis
	Key Evaluation Metrics
	Experimental Setup
	Results

	Limitations
	Conclusion
	JEM
	Conformal Prediction
	Conformal Prediction
	Experimental Setup
	Results


