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Abstract

Counterfactual Explanations offer an intuitive and straightforward way to explain1

black-box models and offer Algorithmic Recourse to individuals. To address the2

need for plausible explanations, existing work has primarily relied on surrogate3

models to learn how the input data is distributed. This effectively reallocates4

the task of learning realistic representations of the data from the model itself to5

the surrogate. Consequently, the generated explanations may seem plausible to6

humans but need not necessarily faithfully describe the behaviour of the black-box7

model. We formalise this notion of faithfulness through the introduction of a8

tailored evaluation metric and propose a novel algorithmic framework for gener-9

ating Energy-Constrained Conformal Counterfactuals that are only as plausible10

as the model permits. Through extensive empirical studies involving multiple11

synthetic and real-world datasets, we demonstrate that ECCCo reconciles the12

need for plausibility and faithfulness. In particular, we show that it is possible to13

achieve state-of-the-art plausibility for models with gradient access without the14

need for surrogate models. To do so, ECCCo relies solely on properties defining15

the black-box model itself by leveraging recent advances in energy-based mod-16

elling and conformal inference. Through this work, we also shine new light on the17

explanatory properties of Joint Energy Models. Our framework is intuitive, flexible18

and fully open-sourced. By highlighting the need for faithfulness in the context19

of Counterfactual Explanations, we believe that in the short term, our work will20

enable researchers and practitioners to better distinguish trustworthy from unreli-21

able models. We further anticipate that ECCCo can serve as a baseline for future22

research directed at providing plausible but faithful Counterfactual Explanations.23

1 Introduction24

Counterfactual Explanations provide a powerful, flexible and intuitive way to not only explain black-25

box models but also enable affected individuals to challenge them through the means of Algorithmic26

Recourse. Instead of opening the black box, Counterfactual Explanations work under the premise27

of strategically perturbing model inputs to understand model behaviour [29]. Intuitively speaking,28

we generate explanations in this context by asking simple what-if questions of the following nature:29

‘Our credit risk model currently predicts that this individual’s credit profile is too risky to offer them a30

loan. What if they reduced their monthly expenditures by 10%? Will our model then predict that the31

individual is credit-worthy’?32

This is typically implemented by defining a target outcome y∗ ∈ Y for some individual x ∈ X = RD33

described by D attributes, for which the model Mθ : X 7→ Y initially predicts a different outcome:34

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



Mθ(x) ̸= y∗. Counterfactuals are then searched by minimizing a loss function that compares the35

predicted model output to the target outcome: yloss(Mθ(x),y
∗). Since Counterfactual Explanations36

(CE) work directly with the black-box model, valid counterfactuals always have full local fidelity by37

construction [17]. Fidelity is defined as the degree to which explanations approximate the predictions38

of the black-box model. This is arguably one of the most important evaluation metrics for model39

explanations, since any explanation that explains a prediction not actually made by the model is40

useless [16].41

In situations where full fidelity is a requirement, CE therefore offers a more appropriate solution42

to Explainable Artificial Intelligence (XAI) than other popular approaches like LIME [22] and43

SHAP [12], which involve local surrogate models. But even full fidelity is not a sufficient condition44

for ensuring that an explanation faithfully describes the behaviour of a model. That is because45

multiple very distinct explanations can all lead to the same model prediction, especially when dealing46

with heavily parameterized models like deep neural networks which are typically underspecified by47

the available data [30].48

In the context of CE, the idea that no two explanations are the same arises almost naturally. A key49

focus in the literature has therefore been to identify those explanations and algorithmic recourses50

that are deemed most appropriate based on a myriad of desiderata such as sparsity, actionability51

and plausibility. In this work, we draw closer attention to the insufficiency of model fidelity as an52

evaluation metric for the faithfulness of counterfactual explanations. Our key contributions are as53

follows: firstly, we introduce a new notion of faithfulness that is suitable for counterfactuals and54

propose a novel evaluation measure that draws inspiration from recent advances in Energy-Based55

Modelling (EBM); secondly, we a novel algorithmic approach for generating Energy-Constrained56

Conformal Counterfactuals (ECCCo) that explicitly address the need for faithfulness; finally, we57

provide illustrative examples and extensive empirical evidence demonstrating that ECCCos faithfully58

explain model behaviour without sacrificing existing desidarata like plausibility and sparsity.59

2 Background and Related Work60

In this section, we provide some background on Counterfactual Explanations and our motivation for61

this work. To start, we briefly introduce the methodology underlying most state-of-the-art (SOTA)62

counterfactual generators.63

2.1 Gradient-Based Counterfactual Search64

While Counterfactual Explanations can be generated for arbitrary regression models [24], existing65

work has primarily focused on classification problems. Let Y = (0, 1)K denote the one-hot-encoded66

output domain with K classes. Then most SOTA counterfactual generators rely on gradient descent67

to optimize different flavours of the following counterfactual search objective:68

Z′ = arg min
Z′∈ZL

{yloss(Mθ(f(Z
′)),y∗) + λcost(f(Z′))} (1)

Here yloss denotes the primary loss function already introduced above and cost is either a single69

penalty or a collection of penalties that are used to impose constraints through regularization. Equa-70

tion 1 restates the baseline approach to gradient-based counterfactual search proposed by Wachter71

et al. [29] in general form where Z′ = {zl}L denotes an L-dimensional array of counterfactual72

states [2]. This is to explicitly account for the multiplicity of explanations and the fact that we may73

choose to generate multiple counterfactuals and traverse a latent encoding Z of the feature space X74

where we denote f−1 : X 7→ Z . Encodings may involve simple feature transformations or more75

advanced techniques involving generative models, as we will discuss further below. The baseline76

approach, which we will simply refer to as Wachter [29], searches a single counterfactual directly in77

the feature space and penalises its distance between the original factual.78

Solutions to Equation 1 are considered valid as soon as the predicted label matches the target label. A79

stripped-down counterfactual explanation is therefore little different from an adversarial example. In80

Figure 1, for example, we have applied Wachter to MNIST data (centre panel) where the underlying81

classifier Mθ is a simple Multi-Layer Perceptron (MLP) with above 90 percent test accuracy. For the82

generated counterfactual x′ the model predicts the target label with high confidence (centre panel83
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in Figure 1). The explanation is valid by definition, even though it looks a lot like an Adversarial84

Example [6]. Schut et al. [23] make the connection between Adversarial Examples and Counterfactual85

Explanations explicit and propose using a Jacobian-Based Saliency Map Attack (JSMA) to solve86

Equation 1. They demonstrate that this approach yields realistic and sparse counterfactuals for87

Bayesian, adversarially robust classifiers. Applying their approach to our simple MNIST classifier88

does not yield a realistic counterfactual but this one, too, is valid (right panel in Figure 1).89

2.2 From Adversial Examples to Plausible Explanations90

The crucial difference between Adversarial Examples (AE) and Counterfactual Explanations is one of91

intent. While an AE is intended to go unnoticed, a CE should have certain desirable properties. The92

literature has made this explicit by introducing various so-called desiderata that counterfactuals should93

meet in order to properly serve both AI practitioners and individuals affected by AI decision-making94

systems. The list of desiderate includes but is not limited to the following: sparsity, proximity [29],95

actionability [27], diversity [17], plausibility [9, 21, 23], robustness [26, 20, 2] and causality [11].96

Researchers have come up with various ways to meet these desiderata, which have been extensively97

surveyed and evaluated in various studies [28, 10, 19, 4, 8]. Perhaps unsurprisingly, the different98

desiderata are often positively correlated. For example, Artelt et al. [4] find that plausibility typically99

also leads to improved robustness. Similarly, plausibility has also been connected to causality in the100

sense that plausible counterfactuals respect causal relationships [13].101

2.2.1 Plausibility through Surrogates102

Arguably, the plausibility of counterfactuals has been among the primary concerns and some have103

focused explicitly on this goal. Joshi et al. [9], for example, were among the first to suggest that104

instead of searching counterfactuals in the feature spaceX , we can instead traverse a latent embedding105

Z (Equation 1) that implicitly codifies the data generating process (DGP) of x ∼ X . To learn the106

latent embedding, they introduce a surrogate model. In particular, they propose to use the latent107

embedding of a Variational Autoencoder (VAE) trained to generate samples x∗ ← G(z) where G108

denotes the decoder part of the VAE. Provided the surrogate model is well-trained, their proposed109

approach —REVISE— can yield compelling counterfactual explanations like the one in the centre110

panel of Figure 2.111

Others have proposed similar approaches. Dombrowski et al. [5] traverse the base space of a112

normalizing flow to solve Equation 1, essentially relying on a different surrogate model for the113

generative task. Poyiadzi et al. [21] use density estimators (p̂ : X 7→ [0, 1]) to constrain the114

counterfactuals to dense regions in the feature space. Karimi et al. [11] argue that counterfactuals115

should comply with the causal model that generates the data. All of these different approaches share116

a common goal: ensuring that the generated counterfactuals comply with the true and unobserved117

DGP. To summarize this broad objective, we propose the following definition:118

Definition 2.1 (Plausible Counterfactuals). Let X|y∗ denote the true conditional distribution of119

samples in the target class y∗. Then for x′ to be considered a plausible counterfactual, we need:120

x′ ∼ X|y∗.121

Surrogate models offer an obvious solution to achieve this objective. Unfortunately, surrogates also122

introduce a dependency: the generated explanations no longer depend exclusively on the black-box123

model itself, but also on the surrogate model. This is not necessarily problematic if the primary124

objective is not to explain the behaviour of the model but to offer recourse to individuals affected by125

it. It may become problematic even in this context if the dependency turns into a vulnerability. To126

illustrate this point, we have used REVISE [9] with an underfitted VAE to generate the counterfactual127

in the right panel of Figure 2: in this case, the decoder step of the VAE fails to yield plausible values128

({x′ ← G(z)} ̸∼ X |y∗) and hence the counterfactual search in the learned latent space is doomed.129

2.2.2 Plausibility through Minimal Predictive Uncertainty130

Schut et al. [23] show that to meet the plausibility objective we need not explicitly model the input131

distribution. Pointing to the undesirable engineering overhead induced by surrogate models, they132

propose that we rely on the implicit minimisation of predictive uncertainty instead. Their proposed133

methodology solves Equation 1 by greedily applying JSMA in the feature space with standard cross-134

entropy loss and no penalty at all. They demonstrate theoretically and empirically that their approach135
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Figure 1: Explanations or Adversarial Ex-
amples? Counterfactuals for turning an 8
(eight) into a 3 (three): original image (left);
counterfactual produced using Wachter et al.
[29] (centre); and a counterfactual produced
using the approach introduced by [23] that
uses Jacobian-Based Saliency Map Attacks to
solve Equation 1.

Figure 2: Using surrogates can improve plau-
sibility, but also increases vulnerability. Coun-
terfactuals for turning an 8 (eight) into a
3 (three): original image (left); counterfac-
tual produced using REVISE [9] with a well-
specified surrogate (centre); and a counter-
factual produced using REVISE [9] with a
poorly specified surrogate (right).

yields counterfactuals for which the model Mθ predicts the target label y∗ with high confidence.136

Provided the model is well-specified, these counterfactuals are plausible. Unfortunately, this idea137

hinges on the assumption that the black-box model provides well-calibrated predictive uncertainty138

estimates.139

2.3 From Fidelity to Model Conformity140

Above we explained that since Counterfactual Explanations work directly with the Black Box model,141

the fidelity of explanations as we defined it earlier is not a concern. This may explain why research has142

primarily focused on other desiderata, most notably plausibility (Definition 2.1). Enquiring about the143

plausibility of a counterfactual essentially boils down to the following question: ‘Is this counterfactual144

consistent with the underlying data’? We posit a related, slightly more nuanced question: ‘Is this145

counterfactual consistent with what the model has learned about the underlying data’? We will argue146

that fidelity is not a sufficient evaluation measure to answer this question and propose a novel way to147

assess if Counterfactual Explanations conform with model behaviour.148

The word fidelity stems from the Latin word ‘fidelis’, which means ‘faithful, loyal, trustworthy’ [15].149

As we explained in Section 2, model explanations are generally considered faithful if their corre-150

sponding predictions coincide with the predictions made by the model itself. Since this definition151

of faithfulness is not useful in the context of Counterfactual Explanations, we propose an adapted152

version:153

Definition 2.2 (Conformal Counterfactuals). Let Xθ|y∗ = pθ(x|y∗) denote the conditional distri-154

bution of x in the target class y∗, where θ denotes the parameters of model Mθ. Then for x′ to be155

considered a conformal counterfactual, we need: x′ ∼ Xθ|y∗.156

In words, conformal counterfactuals conform with what the predictive model has learned about157

the input data x. Since this definition works with distributional properties, it explicitly accounts158

for the multiplicity of explanations we discussed earlier. To assess counterfactuals with respect to159

Definition 2.2, we need to be able to quantify the posterior conditional distribution pθ(x|y∗). This is160

very much at the core of our proposed methodological framework, which reconciles the notions of161

plausibility and model conformity and which we will introduce next.162

3 Methodological Framework163

The primary objective of this work has been to develop a methodology for generating maximally164

plausible counterfactuals under minimal intervention. Our proposed framework is based on the165

premise that explanations should be plausible but not plausible at all costs. Energy-Constrained166

Conformal Counterfactuals (ECCCo) achieve this goal in two ways: firstly, they rely on the Black167

Box itself for the generative task; and, secondly, they involve an approach to predictive uncertainty168

quantification that is model-agnostic.169
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3.1 Quantifying the Model’s Generative Property170

Recent work by Grathwohl et al. [7] on Energy Based Models (EBM) has pointed out that there is a171

‘generative model hidden within every standard discriminative model’. The authors show that we can172

draw samples from the posterior conditional distribution pθ(x|y) using Stochastic Gradient Langevin173

Dynamics (SGLD). The authors use this insight to train classifiers jointly for the discriminative task174

using standard cross-entropy and the generative task using SGLD. They demonstrate empirically that175

among other things this improves predictive uncertainty quantification for discriminative models.176

Our findings in this work suggest that Joint Energy Models (JEM) also tend to yield more plausible177

Counterfactual Explanations. Based on the definition of plausible counterfactuals (Definition 2.1)178

this is not surprising.179

Crucially for our purpose, one can apply their proposed sampling strategy during inference to180

essentially any standard discriminative model. Even models that are not explicitly trained for the joint181

objective learn about the distribution of inputs X by learning to make conditional predictions about182

the output y. We can leverage this observation to quantify the generative property of the Black Box183

model itself. In particular, note that if we fix y to our target value y∗, we can sample from pθ(x|y∗)184

using SGLD as follows,185

xj+1 ← xj −
ϵ2

2
E(xj |y∗) + ϵrj , j = 1, ..., J (2)

where rj ∼ N (0, I) is the stochastic term and the step-size ϵ is typically polynomially decayed.186

The term E(xj |y∗) denotes the energy function where we use E(xj |y∗) = −Mθ(xj)[y
∗], that is the187

negative logit corresponding to the target class label y∗. Generating multiple samples in this manner188

yields an empirical distribution X̂θ|y∗ that we use in our search for plausible counterfactuals, as189

discussed in more detail below. Appendix A provides additional implementation details for any tasks190

related to energy-based modelling.191

3.2 Quantifying the Model’s Predictive Uncertainty192

To quantify the model’s predictive uncertainty we use Conformal Prediction (CP), an approach that193

has recently gained popularity in the Machine Learning community [3, 14]. Crucially for our intended194

application, CP is model-agnostic and can be applied during inference without placing any restrictions195

on model training. Intuitively, CP works under the premise of turning heuristic notions of uncertainty196

into rigorous uncertainty estimates by repeatedly sifting through the training data or a dedicated197

calibration dataset. Conformal classifiers produce prediction sets for individual inputs that include all198

output labels that can be reasonably attributed to the input. These sets tend to be larger for inputs that199

do not conform with the training data and are therefore characterized by high predictive uncertainty.200

In order to generate counterfactuals that are associated with low predictive uncertainty, we use a201

smooth set size penalty introduced by Stutz et al. [25] in the context of conformal training:202

Ω(Cθ(x;α)) = max

0,
∑
y∈Y

Cθ,y(xi;α)− κ

 (3)

Here, κ ∈ {0, 1} is a hyper-parameter and Cθ,y(xi;α) can be interpreted as the probability of label203

y being included in the prediction set.204

In order to compute this penalty for any black-box model we merely need to perform a single205

calibration pass through a holdout set Dcal. Arguably, data is typically abundant and in most206

applications, practitioners tend to hold out a test data set anyway. Consequently, CP removes the207

restriction on the family of predictive models, at the small cost of reserving a subset of the available208

data for calibration. This particular case of conformal prediction is referred to as Split Conformal209

Prediction (SCP) as it involves splitting the training data into a proper training dataset and a calibration210

dataset. Details concerning our implementation of Conformal Prediction can be found in Appendix B.211
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3.3 Energy-Constrained Conformal Counterfactuals (ECCCo)212

Our framework for generating ECCCos combines the ideas introduced in the previous two subsections.213

Formally, we extend Equation 1 as follows,214

Z′ = arg min
Z′∈ZM

{yloss(Mθ(f(Z
′)),y∗) + λ1dist(f(Z′),x)

+ λ2dist(f(Z′), x̂θ) + λ3Ω(Cθ(f(Z
′);α))}

(4)

where x̂θ denotes samples generated using SGLD (Equation 2) and dist(·) is a generic term for a215

distance metric. Our default choice for dist(·) is the L1 Norm, or Manhattan distance, since it induces216

sparsity.217

The first two terms in Equation 4 correspond to the counterfactual search objective defined in Wachter218

et al. [29] which merely penalises the distance of counterfactuals from their factual values. The219

additional two penalties in ECCCo ensure that counterfactuals conform with the model’s generative220

property and lead to minimally uncertain predictions, respectively. The hyperparameters λ1, ..., λ3221

can be used to balance the different objectives: for example, we may choose to incur larger deviations222

from the factual in favour of conformity with the model’s generative property by choosing lower223

values of λ1 and relatively higher values of λ2. Figure 3 illustrates this balancing act for an example224

involving synthetic data: vector fields indicate the direction of gradients with respect to the different225

components our proposed objective function (Equation 4).226

Figure 3: [PLACEHOLDER] Vector
fields indicating the direction of gradi-
ents with respect to the different com-
ponents of the ECCCo objective (Equa-
tion 4).

Algorithm 1: Generating ECCCos (For more de-
tails, see Appendix C)

Input: x,y∗,Mθ, f,Λ, α,D, T, η, nB, NB
where Mθ(x) ̸= y∗

Output: x′

1: Initialize z′ ← f−1(x)
2: Generate buffer B of NB conditional samples

x̂θ|y∗ using SGLD (Equation 2)
3: Run SCP for Mθ using D
4: Initialize t← 0
5: while not converged or t < T do
6: x̂θ,t ← rand(B, nB)
7: z′ ← z′ − η∇z′L(z′,y∗, x̂θ,t; Λ, α)
8: t← t+ 1
9: end while

10: x′ ← f(z′)

227

Figure 4: [SUBJECTO TO CHANGE] Original image (left) and ECCCos for turning an 8 (eight) into
a 3 (three) for different Black Boxes from left to right: Multi-Layer Perceptron (MLP), Ensemble of
MLPs, Joint Energy Model (JEM), Ensemble of JEMs.

228

The entire procedure for Generating ECCCos is described in Algorithm 1. For the sake of simplicity229

and without loss of generality, we limit our attention to generating a single counterfactual x′ = f(z′)230

where in contrast to Equation 4 z′ denotes a 1-dimensional array containing a single counterfactual231
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state. That state is initialized by passing the factual x through the encoder f−1 which in our case cor-232

responds to a simple feature transformer, rather than the encoder part of VAE as in REVISE [9]. Next,233

we generate a buffer of NB conditional samples x̂θ|y∗ using SGLD (Equation 2) and conformalise234

the model Mθ through Split Conformal Prediction on training data D.235

Finally, we search counterfactuals through gradient descent. Let L(z′,y∗, x̂θ,t; Λ, α) denote our loss236

function defined in Equation 4. Then in each iteration, we first randomly draw nB samples from237

the buffer B before updating the counterfactual state z′ by moving in the negative direction of that238

loss function. The search terminates once the convergence criterium is met or the maximum number239

of iterations T has been exhausted. Note that the choice of convergence criterium has important240

implications on the final counterfactual (for more detail on this see Appendix C).241

Figure 4 presents ECCCos for the MNIST example from Section 2 for various black-box models of242

increasing complexity from left to right: a simple Multi-Layer Perceptron (MLP); an Ensemble of243

MLPs, each of the same architecture as the single MLP; a Joint Energy Model (JEM) based on the244

same MLP architecture; and finally, an Ensemble of these JEMs. Since Deep Ensembles have an245

improved capacity for predictive uncertainty quantification and JEMs are explicitly trained to learn246

plausible representations of the input data, it is intuitive to see that the plausibility of counterfactuals247

visibly improves from left to right. This provides some first anecdotal evidence that ECCCos achieve248

plausibility while maintaining faithfulness to the Black Box.249

4 Empirical Analysis250

In this section, we bolster our anecdotal findings from the previous section through rigorous empirical251

analysis. We first briefly describe our evaluation framework and data, before presenting and discussing252

our results.253

4.1 Evaluation Measures254

Above we have defined plausibility (Definition 2.1) and conformity (Definition 2.2) for Counterfactual255

Explanations. In this subsection, we introduce evaluation measures that facilitate a quantitative256

evaluation of counterfactuals for these objectives.257

Firstly, in order to assess the plausibility of counterfactuals we adapt the implausibility metric258

proposed in Guidotti [8]. The authors propose to evaluate plausibility in terms of the distance of the259

counterfactual x′ from its nearest neighbour in the target class y∗: the smaller this distance, the more260

plausible the counterfactual. Instead of focusing only on the nearest neighbour of x′, we suggest261

computing the average over distances from multiple (possibly all) observed instances in the target262

class. Formally, for a single counterfactual, we have:263

impl =
1

|x ∈ X |y∗|
∑

x∈X|y∗

dist(x′,x) (5)

This measure is straightforward to compute and should be less sensitive to outliers in the target class264

than the one based on the nearest neighbour. It also gives rise to a very similar evaluation measure for265

conformity. We merely swap out the subsample of individuals in the target class for the empirical266

distribution of generated conditional samples:267

conf =
1

|x ∈ Xθ|y∗|
∑

x∈Xθ|y∗

dist(x′,x) (6)

As noted by Guidotti [8], these distance-based measures are simplistic and more complex alternative268

measures may ultimately be more appropriate for the task. For example, we considered using statisti-269

cal divergence measures instead. This would involve generating not one but many counterfactuals and270

comparing the generated empirical distribution to the target distributions in Definitions 2.1 and 2.2.271

While this approach is potentially more rigorous, generating enough counterfactuals is not always272

practical.273
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Table 1: Results for synthetic datasets. Standard deviations across samples are shown in parentheses.
Best outcomes are highlighted in bold. Asterisks indicate that the given value is more than one (*) or
two (**) standard deviations away from the baseline (Wachter).

Circles Linearly Separable Moons

Model Generator Non-conformity ↓ Implausibility ↓ Non-conformity ↓ Implausibility ↓ Non-conformity ↓ Implausibility ↓

ECCCo 0.63 (1.58) 1.44 (1.37) 0.10 (0.06)** 0.19 (0.03)** 0.57 (0.58)** 1.29 (0.21)*
ECCCo (no CP) 0.64 (1.61) 1.45 (1.38) 0.10 (0.07)** 0.19 (0.03)** 0.63 (0.64)* 1.30 (0.21)*

ECCCo (no EBM) 1.41 (1.51) 1.50 (1.38) 0.37 (0.28) 0.38 (0.26) 1.73 (1.34) 1.73 (1.42)
REVISE 0.96 (0.32)* 0.95 (0.32)* 0.41 (0.02)** 0.41 (0.01)** 1.59 (0.55) 1.55 (0.20)

Schut 0.99 (0.80) 1.28 (0.53) 0.66 (0.23) 0.66 (0.22) 1.55 (0.61) 1.42 (0.16)*

JEM

Wachter 1.41 (1.50) 1.51 (1.35) 0.44 (0.16) 0.44 (0.15) 1.77 (0.48) 1.67 (0.15)

ECCCo 0.37 (0.65)** 1.30 (0.68) 0.03 (0.02)** 0.69 (0.10) 1.68 (1.74) 2.02 (0.86)
ECCCo (no CP) 0.50 (0.85)* 1.28 (0.66) 0.03 (0.02)** 0.68 (0.10) 1.34 (1.66) 2.11 (0.88)

ECCCo (no EBM) 2.00 (1.46) 1.83 (1.00) 1.25 (0.87) 1.84 (1.10) 2.98 (1.89) 2.29 (1.75)
REVISE 1.16 (1.05) 0.95 (0.32)* 1.10 (0.10) 0.40 (0.01)** 2.46 (1.05) 1.54 (0.27)*

Schut 1.60 (1.15) 1.24 (0.44) 0.81 (0.10)* 0.47 (0.24) 2.71 (1.15) 1.62 (0.42)

MLP

Wachter 1.67 (1.05) 1.31 (0.43) 0.94 (0.11) 0.44 (0.15) 2.95 (1.42) 1.84 (1.33)

Table 2: Results for real-world datasets. Standard deviation in parentheses.
California Housing GMSC MNIST

Model Generator Non-conformity ↓ Implausibility ↓ Non-conformity ↓ Implausibility ↓ Non-conformity ↓ Implausibility ↓

ECCCo 4.31 (0.58) 5.37 (0.46) 3.14 (0.31) 5.34 (1.27) 99.01 (12.50) 120.76 (9.23)
REVISE 5.01 (0.59) 5.33 (0.58) 2.86 (0.17) 3.99 (0.44) 101.01 (15.20) 115.14 (20.10)

Schut 5.23 (0.74) 6.50 (0.84) 3.43 (0.53) 5.29 (1.27) 179.39 (29.17) 190.01 (34.50)JEM

Wachter 5.29 (0.52) 6.48 (0.70) 3.40 (0.38) 5.50 (1.35) 197.35 (32.89) 199.65 (35.60)

ECCCo 3.51 (0.62) 5.33 (0.53) 3.01 (0.76) 6.09 (1.01) 85.30 (14.79) 102.27 (4.72)
REVISE 4.33 (0.38) 4.73 (0.22) 2.21 (0.72) 4.53 (0.86) 119.87 (16.20) 110.30 (12.11)

Schut 5.81 (0.61) 6.53 (0.81) 3.10 (0.75) 6.06 (1.01) 171.19 (22.13) 178.31 (24.94)JEM Ensemble

Wachter 5.02 (0.85) 6.07 (1.04) 2.89 (0.76) 5.87 (0.88) 222.18 (23.50) 212.40 (27.99)

ECCCo 145.15 (28.83) 8.84 (1.01) 38.28 (3.68) 5.14 (0.87) 416.59 (14.69) 204.16 (24.95)
REVISE 119.53 (11.72) 5.28 (0.97) 40.31 (3.38) 3.94 (0.86) 444.47 (10.01) 95.53 (13.46)

Schut 151.20 (28.78) 7.04 (1.27) 35.73 (6.30) 5.12 (0.85) 477.40 (17.45) 197.85 (25.43)MLP

Wachter 131.81 (40.19) 6.81 (1.22) 36.70 (14.79) 5.28 (0.87) 444.82 (13.20) 198.27 (24.73)

ECCCo 125.55 (22.76) 10.06 (1.40) 34.32 (4.47) 5.09 (1.20) 397.02 (7.99) 214.01 (21.17)
REVISE 151.49 (20.56) 6.17 (1.83) 35.26 (4.48) 4.15 (0.72) 430.37 (10.51) 95.87 (7.51)

Schut 106.34 (30.66) 8.49 (2.22) 30.44 (6.35) 5.15 (1.18) 471.16 (7.93) 203.43 (19.51)MLP Ensemble

Wachter 152.35 (21.75) 7.68 (1.89) 36.15 (8.28) 5.03 (0.78) 421.75 (9.75) 206.04 (20.35)

4.2 Data274

4.3 Results275

See Table 2276

5 Discussion277

5.1 Key Insights278

Consistent with the findings in Schut et al. [23], we have demonstrated that predictive uncertainty279

estimates can be leveraged to generate plausible counterfactuals. Interestingly, Schut et al. [23]280

point out that this finding — as intuitive as it is — may be linked to a positive connection between281

the generative task and predictive uncertainty quantification. In particular, Grathwohl et al. [7]282

demonstrate that their proposed method for integrating the generative objective in training yields283

models that have improved predictive uncertainty quantification. Since neither Schut et al. [23] nor284

we have employed any surrogate generative models, our findings seem to indicate that the positive285

connection found in Grathwohl et al. [7] is bidirectional.286

5.2 Limitations287

• BatchNorm does not seem compatible with JEM288

• Coverage and temperature impacts CCE in somewhat unpredictable ways289

• It seems that models that are not explicitly trained for generative task, still learn it implictly290
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• Batch size seems to impact quality of generated samples (at inference, but not so much291

during JEM training)292

• SGLD takes time293

• REVISE has benefit of lower dimensional space294

• For MNIST it seems that ECCCo is better at reducing pixel values than increasing them295

(better at erasing than writing)296

• JEMs are more difficult to train297

• There is a tradeoff: higher cost vs. higher conformity/plausibility298

• Results are sensitive to choices of penalty strength and step size299

• Counterfactuals may end up looking fairly homogenous300

• For MNIST data we found CP to have little effect301

• JEMs themselves are sensitive to scale302

• ECCCo can backfire, in case generative property of model is poor303

6 Conclusion304
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Appendices380

A JEM381

While xJ is only guaranteed to distribute as pθ(x|y∗) if ϵ→ 0 and J →∞, the bias introduced for382

a small finite ϵ is negligible in practice [18, 7]. While Grathwohl et al. [7] use Equation 2 during383

training, we are interested in applying the conditional sampling procedure in a post-hoc fashion to384

any standard discriminative model.385

B Conformal Prediction386

The fact that conformal classifiers produce set-valued predictions introduces a challenge: it is not387

immediately obvious how to use such classifiers in the context of gradient-based counterfactual388

search. Put differently, it is not clear how to use prediction sets in Equation 1. Fortunately, Stutz et al.389

[25] have recently proposed a framework for Conformal Training that also hinges on differentiability.390

Specifically, they show how Stochastic Gradient Descent can be used to train classifiers not only391

for the discriminative task but also for additional objectives related to Conformal Prediction. One392

such objective is efficiency: for a given target error rate α, the efficiency of a conformal classifier393

improves as its average prediction set size decreases. To this end, the authors introduce a smooth set394

size penalty defined in Equation 3 in the body of this paper395

Formally, it is defined as Cθ,y(xi;α) := σ
(
(s(xi,y)− α)T−1

)
for y ∈ Y , where σ is the sigmoid396

function and T is a hyper-parameter used for temperature scaling [25].397

Intuitively, CP works under the premise of turning heuristic notions of uncertainty into rigorous398

uncertainty estimates by repeatedly sifting through the data. It can be used to generate prediction399

intervals for regression models and prediction sets for classification models [1]. Since the literature400

on CE and AR is typically concerned with classification problems, we focus on the latter. A particular401

variant of CP called Split Conformal Prediction (SCP) is well-suited for our purposes, because it402

imposes only minimal restrictions on model training.403

Specifically, SCP involves splitting the data Dn = {(xi,yi)}i=1,...,n into a proper training set Dtrain404

and a calibration set Dcal. The former is used to train the classifier in any conventional fashion.405

The latter is then used to compute so-called nonconformity scores: S = {s(xi,yi)}i∈Dcal where406

s : (X ,Y) 7→ R is referred to as score function. In the context of classification, a common choice for407

the score function is just si = 1−Mθ(xi)[yi], that is one minus the softmax output corresponding408

to the observed label yi [3].409

Finally, classification sets are formed as follows,410

Cθ(xi;α) = {y : s(xi,y) ≤ q̂} (7)

where q̂ denotes the (1 − α)-quantile of S and α is a predetermined error rate. As the size of the411

calibration set increases, the probability that the classification set C(xtest) for a newly arrived sample412

xtest does not cover the true test label ytest approaches α [3].413

Observe from Equation 7 that Conformal Prediction works on an instance-level basis, much like414

Counterfactual Explanations are local. The prediction set for an individual instance xi depends only415

on the characteristics of that sample and the specified error rate. Intuitively, the set is more likely416

to include multiple labels for samples that are difficult to classify, so the set size is indicative of417

predictive uncertainty. To see why this effect is exacerbated by small choices for α consider the case418

of α = 0, which requires that the true label is covered by the prediction set with probability equal to419

1.420

C Conformal Prediction421

A Submission of papers to NeurIPS 2023422

Please read the instructions below carefully and follow them faithfully.423
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A Style424

Papers to be submitted to NeurIPS 2023 must be prepared according to the instructions presented425

here. Papers may only be up to nine pages long, including figures. Additional pages containing only426

acknowledgments and references are allowed. Papers that exceed the page limit will not be reviewed,427

or in any other way considered for presentation at the conference.428

The margins in 2023 are the same as those in previous years.429

Authors are required to use the NeurIPS LATEX style files obtainable at the NeurIPS website as430

indicated below. Please make sure you use the current files and not previous versions. Tweaking the431

style files may be grounds for rejection.432

B Retrieval of style files433

The style files for NeurIPS and other conference information are available on the website at434

http://www.neurips.cc/435

The file neurips_2023.pdf contains these instructions and illustrates the various formatting re-436

quirements your NeurIPS paper must satisfy.437

The only supported style file for NeurIPS 2023 is neurips_2023.sty, rewritten for LATEX 2ε.438

Previous style files for LATEX 2.09, Microsoft Word, and RTF are no longer supported!439

The LATEX style file contains three optional arguments: final, which creates a camera-ready copy,440

preprint, which creates a preprint for submission to, e.g., arXiv, and nonatbib, which will not441

load the natbib package for you in case of package clash.442

Preprint option If you wish to post a preprint of your work online, e.g., on arXiv, using the443

NeurIPS style, please use the preprint option. This will create a nonanonymized version of your444

work with the text “Preprint. Work in progress.” in the footer. This version may be distributed as you445

see fit, as long as you do not say which conference it was submitted to. Please do not use the final446

option, which should only be used for papers accepted to NeurIPS.447

At submission time, please omit the final and preprint options. This will anonymize your448

submission and add line numbers to aid review. Please do not refer to these line numbers in your449

paper as they will be removed during generation of camera-ready copies.450

The file neurips_2023.tex may be used as a “shell” for writing your paper. All you have to do is451

replace the author, title, abstract, and text of the paper with your own.452

The formatting instructions contained in these style files are summarized in Sections B, C, and D453

below.454

B General formatting instructions455

The text must be confined within a rectangle 5.5 inches (33 picas) wide and 9 inches (54 picas) long.456

The left margin is 1.5 inch (9 picas). Use 10 point type with a vertical spacing (leading) of 11 points.457

Times New Roman is the preferred typeface throughout, and will be selected for you by default.458

Paragraphs are separated by 1/2 line space (5.5 points), with no indentation.459

The paper title should be 17 point, initial caps/lower case, bold, centered between two horizontal460

rules. The top rule should be 4 points thick and the bottom rule should be 1 point thick. Allow 1/4 inch461

space above and below the title to rules. All pages should start at 1 inch (6 picas) from the top of the462

page.463

For the final version, authors’ names are set in boldface, and each name is centered above the464

corresponding address. The lead author’s name is to be listed first (left-most), and the co-authors’465

names (if different address) are set to follow. If there is only one co-author, list both author and466

co-author side by side.467

Please pay special attention to the instructions in Section D regarding figures, tables, acknowledg-468

ments, and references.469
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C Headings: first level470

All headings should be lower case (except for first word and proper nouns), flush left, and bold.471

First-level headings should be in 12-point type.472

A Headings: second level473

Second-level headings should be in 10-point type.474

A.1 Headings: third level475

Third-level headings should be in 10-point type.476

Paragraphs There is also a \paragraph command available, which sets the heading in bold, flush477

left, and inline with the text, with the heading followed by 1 em of space.478

D Citations, figures, tables, references479

These instructions apply to everyone.480

A Citations within the text481

The natbib package will be loaded for you by default. Citations may be author/year or numeric, as482

long as you maintain internal consistency. As to the format of the references themselves, any style is483

acceptable as long as it is used consistently.484

The documentation for natbib may be found at485

http://mirrors.ctan.org/macros/latex/contrib/natbib/natnotes.pdf486

Of note is the command \citet, which produces citations appropriate for use in inline text. For487

example,488

\citet{hasselmo} investigated\dots489

produces490

Hasselmo, et al. (1995) investigated. . .491

If you wish to load the natbib package with options, you may add the following before loading the492

neurips_2023 package:493

\PassOptionsToPackage{options}{natbib}494

If natbib clashes with another package you load, you can add the optional argument nonatbib495

when loading the style file:496

\usepackage[nonatbib]{neurips_2023}497

As submission is double blind, refer to your own published work in the third person. That is, use “In498

the previous work of Jones et al. [4],” not “In our previous work [4].” If you cite your other papers499

that are not widely available (e.g., a journal paper under review), use anonymous author names in the500

citation, e.g., an author of the form “A. Anonymous” and include a copy of the anonymized paper in501

the supplementary material.502

B Footnotes503

Footnotes should be used sparingly. If you do require a footnote, indicate footnotes with a number1504

in the text. Place the footnotes at the bottom of the page on which they appear. Precede the footnote505

with a horizontal rule of 2 inches (12 picas).506

1Sample of the first footnote.
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Figure 5: Sample figure caption.

Table 3: Sample table title
Part

Name Description Size (µm)

Dendrite Input terminal ∼100
Axon Output terminal ∼10
Soma Cell body up to 106

Note that footnotes are properly typeset after punctuation marks.2507

C Figures508

All artwork must be neat, clean, and legible. Lines should be dark enough for purposes of reproduction.509

The figure number and caption always appear after the figure. Place one line space before the figure510

caption and one line space after the figure. The figure caption should be lower case (except for first511

word and proper nouns); figures are numbered consecutively.512

You may use color figures. However, it is best for the figure captions and the paper body to be legible513

if the paper is printed in either black/white or in color.514

D Tables515

All tables must be centered, neat, clean and legible. The table number and title always appear before516

the table. See Table 3.517

Place one line space before the table title, one line space after the table title, and one line space after518

the table. The table title must be lower case (except for first word and proper nouns); tables are519

numbered consecutively.520

Note that publication-quality tables do not contain vertical rules. We strongly suggest the use of the521

booktabs package, which allows for typesetting high-quality, professional tables:522

https://www.ctan.org/pkg/booktabs523

This package was used to typeset Table 3.524

E Math525

Note that display math in bare TeX commands will not create correct line numbers for sub-526

mission. Please use LaTeX (or AMSTeX) commands for unnumbered display math. (You527

really shouldn’t be using $$ anyway; see https://tex.stackexchange.com/questions/528

503/why-is-preferable-to and https://tex.stackexchange.com/questions/40492/529

what-are-the-differences-between-align-equation-and-displaymath for more infor-530

mation.)531

2As in this example.
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F Final instructions532

Do not change any aspects of the formatting parameters in the style files. In particular, do not modify533

the width or length of the rectangle the text should fit into, and do not change font sizes (except534

perhaps in the References section; see below). Please note that pages should be numbered.535

E Preparing PDF files536

Please prepare submission files with paper size “US Letter,” and not, for example, “A4.”537

Fonts were the main cause of problems in the past years. Your PDF file must only contain Type 1 or538

Embedded TrueType fonts. Here are a few instructions to achieve this.539

• You should directly generate PDF files using pdflatex.540

• You can check which fonts a PDF files uses. In Acrobat Reader, select the menu541

Files>Document Properties>Fonts and select Show All Fonts. You can also use the program542

pdffonts which comes with xpdf and is available out-of-the-box on most Linux machines.543

• xfig "patterned" shapes are implemented with bitmap fonts. Use "solid" shapes instead.544

• The \bbold package almost always uses bitmap fonts. You should use the equivalent AMS545

Fonts:546

\usepackage{amsfonts}547

followed by, e.g., \mathbb{R}, \mathbb{N}, or \mathbb{C} for R, N or C. You can also548

use the following workaround for reals, natural and complex:549

\newcommand{\RR}{I\!\!R} %real numbers550

\newcommand{\Nat}{I\!\!N} %natural numbers551

\newcommand{\CC}{I\!\!\!\!C} %complex numbers552

Note that amsfonts is automatically loaded by the amssymb package.553

If your file contains type 3 fonts or non embedded TrueType fonts, we will ask you to fix it.554

A Margins in LATEX555

Most of the margin problems come from figures positioned by hand using \special or other556

commands. We suggest using the command \includegraphics from the graphicx package.557

Always specify the figure width as a multiple of the line width as in the example below:558

\usepackage[pdftex]{graphicx} ...559

\includegraphics[width=0.8\linewidth]{myfile.pdf}560

See Section 4.4 in the graphics bundle documentation (http://mirrors.ctan.org/macros/561

latex/required/graphics/grfguide.pdf)562

A number of width problems arise when LATEX cannot properly hyphenate a line. Please give LaTeX563

hyphenation hints using the \- command when necessary.564

F Supplementary Material565

Authors may wish to optionally include extra information (complete proofs, additional experiments566

and plots) in the appendix. All such materials should be part of the supplemental material (submitted567

separately) and should NOT be included in the main submission.568

References569

References follow the acknowledgments in the camera-ready paper. Use unnumbered first-level570

heading for the references. Any choice of citation style is acceptable as long as you are consistent. It571
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is permissible to reduce the font size to small (9 point) when listing the references. Note that the572

Reference section does not count towards the page limit.573
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