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Abstract
Counterfactual explanations offer an intuitive and straightfor-
ward way to explain black-box models and offer algorithmic
recourse to individuals. To address the need for plausible ex-
planations, existing work has primarily relied on surrogate
models to learn how the input data is distributed. This effec-
tively reallocates the task of learning realistic explanations
for the data from the model itself to the surrogate. Conse-
quently, the generated explanations may seem plausible to
humans but need not necessarily describe the behaviour of
the black-box model faithfully. We formalise this notion of
faithfulness through the introduction of a tailored evaluation
metric and propose a novel algorithmic framework for gen-
erating Energy-Constrained Conformal Counterfactuals that
are only as plausible as the model permits. Through exten-
sive empirical studies, we demonstrate that ECCCo recon-
ciles the need for faithfulness and plausibility. In particular,
we show that for models with gradient access, it is possi-
ble to achieve state-of-the-art performance without the need
for surrogate models. To do so, our framework relies solely
on properties defining the black-box model itself by leverag-
ing recent advances in energy-based modelling and confor-
mal prediction. To our knowledge, this is the first venture in
this direction for generating faithful counterfactual explana-
tions. Thus, we anticipate that ECCCo can serve as a baseline
for future research. We believe that our work opens avenues
for researchers and practitioners seeking tools to better dis-
tinguish trustworthy from unreliable models.

1 Introduction
Counterfactual explanations provide a powerful, flexible and
intuitive way to not only explain black-box models but also
offer the possibility of algorithmic recourse to affected indi-
viduals. Instead of opening the black box, counterfactual ex-
planations work under the premise of strategically perturb-
ing model inputs to understand model behaviour (Wachter,
Mittelstadt, and Russell 2017). Intuitively speaking, we gen-
erate explanations in this context by asking what-if questions
of the following nature: ‘Our credit risk model currently pre-
dicts that this individual is not credit-worthy. What if they
reduced their monthly expenditures by 10%?’

This is typically implemented by defining a target out-
come y+ 2 Y for some individual x 2 X = RD described
by D attributes, for which the model M✓ : X 7! Y ini-
tially predicts a different outcome: M✓(x) 6= y+. Counter-
factuals are then searched by minimizing a loss function that

compares the predicted model output to the target outcome:
yloss(M✓(x),y+). Since counterfactual explanations work
directly with the black-box model, valid counterfactuals al-
ways have full local fidelity by construction where fidelity is
defined as the degree to which explanations approximate the
predictions of a black-box model (Molnar 2022).

In situations where full fidelity is a requirement, counter-
factual explanations offer a more appropriate solution to Ex-
plainable Artificial Intelligence (XAI) than other popular ap-
proaches like LIME (Ribeiro, Singh, and Guestrin 2016) and
SHAP (Lundberg and Lee 2017), which involve local surro-
gate models. But even full fidelity is not a sufficient condi-
tion for ensuring that an explanation faithfully describes the
behaviour of a model. That is because multiple distinct ex-
planations can lead to the same model prediction, especially
when dealing with heavily parameterized models like deep
neural networks, which are underspecified by the data (Wil-
son 2020). In the context of counterfactuals, the idea that no
two explanations are the same arises almost naturally. A key
focus in the literature has therefore been to identify those
explanations that are most appropriate based on a myriad of
desiderata such as closeness (Wachter, Mittelstadt, and Rus-
sell 2017), sparsity (Schut et al. 2021), actionability (Ustun,
Spangher, and Liu 2019) and plausibility (Joshi et al. 2019).

In this work, we draw closer attention to model faithful-
ness rather than fidelity as a desideratum for counterfactuals.
We define faithfulness as the degree to which counterfactu-
als are consistent with what the model has learned about the
data. Our key contributions are as follows: first, we show
that fidelity is an insufficient evaluation metric for counter-
factuals (Section 3) and propose a definition of faithfulness
that gives rise to more suitable metrics (Section 4). Next,
we introduce a ECCCo: a novel algorithmic approach aimed
at generating energy-constrained conformal counterfactuals
that faithfully explain model behaviour in Section 5. Fi-
nally, we provide extensive empirical evidence demonstrat-
ing that ECCCo faithfully explains model behaviour and at-
tains plausibility only when appropriate (Section 6).

To our knowledge, this is the first venture in this direc-
tion for generating faithful counterfactuals. Thus, we antici-
pate that ECCCo can serve as a baseline for future research.
We believe that our work opens avenues for researchers and
practitioners seeking tools to better distinguish trustworthy
from unreliable models.



2 Background
While counterfactual explanations (CE) can also be gener-
ated for arbitrary regression models (Spooner et al. 2021),
existing work has primarily focused on classification prob-
lems. Let Y = (0, 1)K denote the one-hot-encoded output
domain with K classes. Then most counterfactual genera-
tors rely on gradient descent to optimize different flavours
of the following counterfactual search objective:

Z0 = arg min
Z02ZL

�
yloss(M✓(f(Z

0)),y+) + �cost(f(Z0))
 

(1)
Here yloss(·) denotes the primary loss function, f(·) is a

function that maps from the counterfactual state space to the
feature space and cost(·) is either a single penalty or a collec-
tion of penalties that are used to impose constraints through
regularization. Equation 1 restates the baseline approach to
gradient-based counterfactual search proposed by Wachter,
Mittelstadt, and Russell (2017) in general form as intro-
duced by Altmeyer et al. (2023). To explicitly account for
the multiplicity of explanations, Z0 = {zl}L denotes an L-
dimensional array of counterfactual states.

The baseline approach, which we will simply refer to as
Wachter, searches a single counterfactual directly in the fea-
ture space and penalises its distance to the original factual.
In this case, f(·) is simply the identity function and Z cor-
responds to the feature space itself. Many derivative works
of Wachter, Mittelstadt, and Russell (2017) have proposed
new flavours of Equation 1, each of them designed to ad-
dress specific desiderata that counterfactuals ought to meet
in order to properly serve both AI practitioners and individ-
uals affected by algorithmic decision-making systems. The
list of desiderata includes but is not limited to the follow-
ing: sparsity, closeness (Wachter, Mittelstadt, and Russell
2017), actionability (Ustun, Spangher, and Liu 2019), diver-
sity (Mothilal, Sharma, and Tan 2020), plausibility (Joshi
et al. 2019; Poyiadzi et al. 2020; Schut et al. 2021), ro-
bustness (Upadhyay, Joshi, and Lakkaraju 2021; Pawelczyk
et al. 2022; Altmeyer et al. 2023) and causality (Karimi,
Schölkopf, and Valera 2021). Different counterfactual gen-
erators addressing these needs have been extensively sur-
veyed and evaluated in various studies (Verma, Dickerson,
and Hines 2020; Karimi et al. 2020; Pawelczyk et al. 2021;
Artelt et al. 2021; Guidotti 2022).

The notion of plausibility is central to all of the desider-
ata. For example, Artelt et al. (2021) find that plausibility
typically also leads to improved robustness. Similarly, plau-
sibility has also been connected to causality in the sense that
plausible counterfactuals respect causal relationships (Ma-
hajan, Tan, and Sharma 2019). Consequently, the plausibil-
ity of counterfactuals has been among the primary concerns
for researchers. Achieving plausibility is equivalent to ensur-
ing that the generated counterfactuals comply with the true
and unobserved data-generating process (DGP). We define
plausibility formally in this work as follows:
Definition 2.1 (Plausible Counterfactuals). Let X|y+ =
p(x|y+) denote the true conditional distribution of samples

in the target class y+
. Then for x0

to be considered a plau-

sible counterfactual, we need: x0 ⇠ X|y+
.

To generate plausible counterfactuals, we first need to
quantify the conditional distribution of samples in the target
class (X|y+). We can then ensure that we generate counter-
factuals that comply with that distribution.

One straightforward way to do this is to use surrogate
models for the task. Joshi et al. (2019), for example, sug-
gest that instead of searching counterfactuals in the fea-
ture space X , we can instead traverse a latent embedding
Z (Equation 1) that implicitly codifies the DGP. To learn
the latent embedding, they propose using a generative model
such as a Variational Autoencoder (VAE). Provided the sur-
rogate model is well-specified, their proposed approach RE-

VISE can yield plausible explanations. Others have pro-
posed similar approaches: Dombrowski, Gerken, and Kessel
(2021) traverse the base space of a normalizing flow to solve
Equation 1; Poyiadzi et al. (2020) use density estimators
(p̂ : X 7! [0, 1]) to constrain the counterfactuals to dense
regions in the feature space; and, finally, Karimi, Schölkopf,
and Valera (2021) assume knowledge about the structural
causal model that generates the data.

A competing approach towards plausibility that is also
closely related to this work instead relies on the black-
box model itself. Schut et al. (2021) show that to meet
the plausibility objective we need not explicitly model the
input distribution. Pointing to the undesirable engineering
overhead induced by surrogate models, they propose that
we rely on the implicit minimisation of predictive uncer-
tainty instead. Their proposed methodology, which we will
refer to as Schut, solves Equation 1 by greedily applying
Jacobian-Based Saliency Map Attacks (JSMA) in the feature
space with cross-entropy loss and no penalty at all. The au-
thors demonstrate theoretically and empirically that their ap-
proach yields counterfactuals for which the model M✓ pre-
dicts the target label y+ with high confidence. Provided the
model is well-specified, these counterfactuals are plausible.
This idea hinges on the assumption that the black-box model
provides well-calibrated predictive uncertainty estimates.

3 Why Fidelity is not Enough: A
Motivational Example

As discussed in the introduction, any valid counterfactual
also has full fidelity by construction: solutions to Equation 1
are considered valid as soon as the label predicted by the
model matches the target class. So while fidelity always ap-
plies, counterfactuals that address the various desiderata in-
troduced above can look vastly different from each other.

To demonstrate this with an example, we have trained
a simple image classifier M✓ on the well-known MNIST

dataset (LeCun 1998): a Multi-Layer Perceptron (MLP) with
test set accuracy > 0.9. No measures have been taken to im-
prove the model’s adversarial robustness or its capacity for
predictive uncertainty quantification. The far left panel of
Figure 1 shows a random sample drawn from the dataset.
The underlying classifier correctly predicts the label ‘nine’
for this image. For the given factual image and model, we
have used Wachter, Schut and REVISE to generate one coun-
terfactual each in the target class ‘seven’. The perturbed im-
ages are shown next to the factual image from left to right



Figure 1: Counterfactuals for turning a 9 (nine) into a 7
(seven): original image (left), then the counterfactuals gen-
erated using Wachter, Schut and REVISE.

in Figure 1. Captions on top of the images indicate the gen-
erator along with the predicted probability that the image
belongs to the target class. In all cases, that probability is
very high, while the counterfactuals look very different.

Since Wachter is only concerned with closeness, the gen-
erated counterfactual is almost indistinguishable from the
factual. The approach by Schut et al. (2021) expects a well-
calibrated model that can generate predictive uncertainty es-
timates. Since this is not the case, the generated counter-
factual looks like an adversarial example. Finally, the coun-
terfactual generated by REVISE looks much more plausible
than the other two. But is it also more faithful to the be-
haviour of our MNIST classifier? That is much less clear be-
cause the surrogate used by REVISE introduces friction: the
generated explanations no longer depend exclusively on the
black-box model itself.

So which of the counterfactuals most faithfully explains
the behaviour of our image classifier? Fidelity cannot help us
to make that judgement, because all of these counterfactuals
have full fidelity. Thus, fidelity is an insufficient evaluation
metric to assess the faithfulness of CE.

4 Faithful first, Plausible second
Considering the limitations of fidelity as demonstrated in the
previous section, analogous to Definition 2.1, we introduce
a new notion of faithfulness in the context of CE:

Definition 4.1 (Faithful Counterfactuals). Let X✓|y+ =
p✓(x|y+) denote the conditional distribution of x in the tar-

get class y+
, where ✓ denotes the parameters of model M✓.

Then for x0
to be considered a faithful counterfactual, we

need: x0 ⇠ X✓|y+
.

In doing this, we merge in and nuance the concept of
plausibility (Definition 2.1) where the notion of ‘consistent
with the data’ becomes ‘consistent with what the model has
learned about the data’.

4.1 Quantifying the Model’s Generative Property
To assess counterfactuals with respect to Definition 4.1, we
need a way to quantify the posterior conditional distribution
p✓(x|y+). To this end, we draw on ideas from energy-based
modelling (EBM), a subdomain of machine learning that is
concerned with generative or hybrid modelling (Grathwohl
et al. 2020; Du and Mordatch 2019). In particular, note that
if we fix y to our target value y+, we can conditionally draw
from p✓(x|y+) by randomly initializing x0 and then using
Stochastic Gradient Langevin Dynamics (SGLD) as follows,

xj+1  xj �
✏2j
2
E✓(xj |y+) + ✏jrj , j = 1, ..., J (2)

where rj ⇠ N (0, I) is the stochastic term and the step-
size ✏j is typically polynomially decayed (Welling and Teh
2011). The term E✓(xj |y+) denotes the model energy con-
ditioned on the target class label y+ which we specify as
the negative logit corresponding to the target class label y+.
To allow for faster sampling, we follow the common prac-
tice of choosing the step-size ✏j and the standard deviation
of rj separately. While xJ is only guaranteed to distribute
as p✓(x|y+) if ✏! 0 and J !1, the bias introduced for a
small finite ✏ is negligible in practice (Murphy 2023).

Generating multiple samples using SGLD thus yields an
empirical distribution bX✓,y+ that approximates what the
model has learned about the input data. While in the context
of EBM, this is usually done during training, we propose to
repurpose this approach during inference in order to eval-
uate the faithfulness of model explanations. The technical
appendix provides additional implementation details for any
tasks related to energy-based modelling.

4.2 Quantifying the Model’s Predictive
Uncertainty

Faithful counterfactuals can be expected to also be plausible
if the learned conditional distribution X✓|y+ (Defintion 4.1)
is close to the true conditional distribution X|y+ (Defini-
tion 2.1). We can further improve the plausibility of coun-
terfactuals without the need for surrogate models that may
interfere with faithfulness by minimizing predictive uncer-
tainty (Schut et al. 2021). Unfortunately, this idea relies on
the assumption that the model itself provides predictive un-
certainty estimates, which may be too restrictive in practice.

To relax this assumption, we use conformal prediction
(CP), an approach to predictive uncertainty quantification
that has recently gained popularity (Angelopoulos and Bates
2021; Manokhin 2022). Crucially for our intended appli-
cation, CP is model-agnostic and can be applied during
inference without placing any restrictions on model train-
ing. It works under the premise of turning heuristic notions
of uncertainty into rigorous estimates by repeatedly sifting
through the training data or a dedicated calibration dataset.

Conformal classifiers produce prediction sets for individ-
ual inputs that include all output labels that can be reason-
ably attributed to the input. These sets are formed as follows,

C✓(xi;↵) = {y : s(xi,y)  q̂} (3)
where q̂ denotes the (1� ↵)-quantile of S and ↵ is a pre-

determined error rate. These sets tend to be larger for inputs
that do not conform with the training data and are character-
ized by high predictive uncertainty. To leverage this notion
of predictive uncertainty in the context of gradient-based
counterfactual search, we use a smooth set size penalty in-
troduced by Stutz et al. (2022):

⌦(C✓(x;↵)) = max

0

@0,
X

y2Y
C✓,y(xi;↵)� 

1

A (4)



Here,  2 {0, 1} is a hyper-parameter and C✓,y(xi;↵)
can be interpreted as the probability of label y being in-
cluded in the prediction set (see appendix for details). In
order to compute this penalty for any black-box model, we
merely need to perform a single calibration pass through a
holdout set Dcal. Arguably, data is typically abundant and in
most applications, practitioners tend to hold out a test data
set anyway. Consequently, CP removes the restriction on the
family of predictive models, at the small cost of reserving
a subset of the available data for calibration. This particular
case of conformal prediction is referred to as split conformal

prediction (SCP) as it involves splitting the training data into
a proper training dataset and a calibration dataset.

4.3 Evaluating Plausibility and Faithfulness
The parallels between our definitions of plausibility and
faithfulness imply that we can also use similar evaluation
metrics in both cases. Since existing work has focused heav-
ily on plausibility, it offers a useful starting point. In partic-
ular, Guidotti (2022) have proposed an implausibility met-
ric that measures the distance of the counterfactual from its
nearest neighbour in the target class. As this distance is re-
duced, counterfactuals get more plausible under the assump-
tion that the nearest neighbour itself is plausible in the sense
of Definition 2.1. In this work, we use the following adapted
implausibility metric,

impl(x0,Xy+) =
1

|Xy+ |
X

x2Xy+

dist(x0,x) (5)

where x0 denotes the counterfactual and Xy+ is a subsam-
ple of the training data in the target class y+. By averaging
over multiple samples in this manner, we avoid the risk that
the nearest neighbour of x0 itself is not plausible according
to Definition 2.1 (e.g an outlier).

Equation 5 gives rise to a similar evaluation metric for
unfaithfulness. We swap out the subsample of observed in-
dividuals in the target class for the set of samples generated
through SGLD (bXy+ ):

unfaith(x0, bX✓,y+) =
1

|bX✓,y+ |

X

x2bX✓,y+

dist(x0,x) (6)

Our default choice for the dist(·) function in both cases
is the Euclidean Norm. Depending on the type of input data
other choices may be more adequate, which we discuss fur-
ther in Section 6.1.

5 Energy-Constrained Conformal
Counterfactuals

Given our proposed notion of faithfulness, we now describe
ECCCo, our proposed framework for generating Energy-
Constrained Conformal Counterfactuals. It is based on the
premise that counterfactuals should first and foremost be
faithful. Plausibility, as a secondary concern, is then still at-
tainable to the degree that the black-box model itself has
learned plausible explanations for the underlying data.

We begin by substituting the loss function in Equation 1,

Z0 =arg min
Z02ZL

{LJEM(f(Z0);M✓,y
+) + �cost(f(Z0))}

(7)
where LJEM(f(Z0);M✓,y+) is a hybrid loss function

used in joint-energy modelling evaluated at a given coun-
terfactual state for a given model and target outcome:

LJEM(f(Z0); ·) = Lclf(f(Z
0); ·) + Lgen(f(Z

0); ·) (8)

The first term, Lclf, is any standard classification loss
function such as cross-entropy loss. The second term, Lgen,
is used to measure loss with respect to the generative task1.
In the context of joint-energy training, Lgen induces changes
in model parameters ✓ that decrease the energy of ob-
served samples and increase the energy of samples generated
through SGLD (Du and Mordatch 2019).

The key observation in our context is that we can rely
solely on decreasing the energy of the counterfactual itself.
This is sufficient to capture the generative property of the un-
derlying model since it is implicitly captured by its parame-
ters ✓. Importantly, this means that we do not need to gener-
ate conditional samples through SGLD during our counter-
factual search at all as we explain in the technical appendix.

This observation leads to the following simple objective
function for ECCCo:

Z0 =arg min
Z02ZL

{Lclf(f(Z
0);M✓,y

+) + �1cost(f(Z0))

+ �2E✓(f(Z0)|y+) + �3⌦(C✓(f(Z
0);↵))}

(9)
The first penalty term involving �1 induces closeness

like in Wachter, Mittelstadt, and Russell (2017). The second
penalty term involving �2 induces faithfulness by constrain-
ing the energy of the generated counterfactual. The third
and final penalty term involving �3 ensures that the gen-
erated counterfactual is associated with low predictive un-
certainty. To tune theses hyperparameters we have relied on
grid search.

Concerning feature autoencoding (f : Z 7! X ), EC-

CCo does not rely on latent space search to achieve its pri-
mary objective of faithfulness. By default, we choose f(·)
to be the identity function as in Wachter. This is generally
also enough to achieve plausibility, provided the model has
learned plausible explanations for the data. In some cases,
plausibility can be improved further by mapping counterfac-
tuals to a lower-dimensional latent space. In the following,
we refer to this approach as ECCCo+: that is, ECCCo plus
dimensionality reduction.

Figure 2 illustrates how the different components in Equa-
tion 9 affect the counterfactual search for a synthetic dataset.
The underlying classifier is a Joint Energy Model (JEM) that
was trained to predict the output class (blue or orange) and
generate class-conditional samples (Grathwohl et al. 2020).
We have used four different generator flavours to produce

1In practice, regularization loss is typically also added. We fol-
low this convention but have omitted the term here for simplicity.



Figure 2: Gradient fields and counterfactual paths for different generators. The objective is to generate a counterfactual in the
blue class for a sample from the orange class. Bright yellow stars indicate conditional samples generated through SGLD. The
underlying classifier is a Joint Energy Model.

a counterfactual in the blue class for a sample from the
orange class: Wachter, which only uses the first penalty
(�2 = �3 = 0); ECCCo (no EBM), which does not con-
strain energy (�2 = 0); ECCCo (no CP), which involves no
set size penalty (�3 = 0); and, finally, ECCCo, which in-
volves all penalties defined in Equation 9. Arrows indicate
(negative) gradients with respect to the objective function at
different points in the feature space.

While Wachter generates a valid counterfactual, it ends
up close to the original starting point consistent with its ob-
jective. ECCCo (no EBM) pushes the counterfactual further
into the target domain to minimize predictive uncertainty,
but the outcome is still not plausible. The counterfactual pro-
duced by ECCCo (no CP) is energy-constrained. Since the
JEM has learned the conditional input distribution reason-
ably well in this case, the counterfactuals are both faithful
and plausible. Finally, the outcome for ECCCo looks simi-
lar, but the additional smooth set size penalty leads to some-
what faster convergence.

6 Empirical Analysis
Our goal in this section is to shed light on the following re-
search questions:

Research Question 6.1 (Faithfulness). To what extent are

counterfactuals generated by ECCCo more faithful than

those produced by state-of-the-art generators?

Research Question 6.2 (Balancing Desiderata). Compared

to state-of-the-art generators, how does ECCCo balance the

two key objectives of faithfulness and plausibility?

The second question is motivated by the intuition that
faithfulness and plausibility should coincide for models that
have learned plausible explanations of the data.

6.1 Experimental Setup
To assess and benchmark the performance of our proposed
generator against the state of the art, we generate multiple
counterfactuals for different models and datasets. In par-
ticular, we compare ECCCo and its variants to the follow-
ing counterfactual generators that were introduced above:
firstly; Schut, which works under the premise of minimiz-
ing predictive uncertainty; secondly, REVISE, which is state-
of-the-art (SOTA) with respect to plausibility; and, finally,

Wachter, which serves as our baseline. In the case of EC-

CCo+, we use principal component analysis (PCA) for di-
mensionality reduction: the latent space Z is spanned by
the first nz principal components where we choose nz to be
equal to the latent dimension of the VAE used by REVISE.

For the predictive modelling tasks, we use multi-layer
perceptrons (MLP), deep ensembles, joint energy mod-
els (JEM) and convolutional neural networks (LeNet-5
CNN (LeCun et al. 1998)). Both joint-energy modelling and
ensembling have been associated with improved generative
properties and adversarial robustness (Grathwohl et al. 2020;
Lakshminarayanan, Pritzel, and Blundell 2016), so we ex-
pect this to be positively correlated with the plausibility of
ECCCo. To account for stochasticity, we generate multiple
counterfactuals for each target class, generator, model and
dataset. Full details concerning our parameter choices, train-
ing procedures and model performance can be found in the
appendix.

We perform benchmarks on eight datasets from different
domains. From the credit and finance domain we include
three tabular datasets: Give Me Some Credit (GMSC) (Kag-
gle 2011), German Credit Hoffman (1994) and California

Housing Pace and Barry (1997). All of these are commonly
used in the related literature (Karimi et al. 2020; Altmeyer
et al. 2023; Pawelczyk et al. 2021). Following related litera-
ture (Schut et al. 2021; Dhurandhar et al. 2018) we also in-
clude two image datasets: MNIST (LeCun 1998) and Fash-

ion MNIST (Xiao, Rasul, and Vollgraf 2017). Detailed de-
scriptions and results for all datasets can be found in the
appendix.

In the following, we will focus on the most relevant re-
sults highlighted in Tables 1 and 2. The tables show sample
averages along with standard deviations for our key evalua-
tion metrics for the California Housing and GMSC datasets
(Table 1) and the MNIST dataset (Table 2). For each metric,
the best outcomes are highlighted in bold. Asterisks indicate
that the given value is more than one (*) or two (**) standard
deviations away from the baseline (Wachter). For the tabu-
lar datasets, we use the default Euclidian distance to measure
unfaithfulness and implausibility as defined in Equations 6
and 5, respectively. The third metric presented 1 in Table
quantifies the predictive uncertainty of the counterfactual as
measured by Equation 4. For the vision datasets, we rely
on measuring the structural dissimilarity between images for



Figure 3: Counterfactuals for turning a 3 into a 5: factual
(left), then the counterfactuals generated by ECCCo, EC-

CCo+, REVISE, Schut and Wachter.

our unfaithfulness and implausibility metrics (Wang, Simon-
celli, and Bovik 2003).

6.2 Faithfulness
Overall, we find strong empirical evidence suggesting that
ECCCo consistently achieves state-of-the-art faithfulness.
Across all models and datasets highlighted here, all varia-
tions of ECCCo consistently outperform all other generators
with respect to faithfulness, in many cases substantially. This
pattern is mostly robust across all other benchmark datasets
(Tables 7 to 14 in the technical appendix).

In particular, we note that the best results are generally ob-
tained when using the full ECCCo objective (Equation 9). In
other words, constraining both energy and predictive uncer-
tainty typically yields the most faithful counterfactuals. We
expected the former to play a more significant role in this
context and that is typically what we find across all datasets.
For example, the results for GMSC in Table 1 indicate that
faithfulness can be improved substantially by relying solely
on the energy constraint (ECCCo (no CP)). In some cases
though, as for the California Housing dataset, ECCCo (no

EBM) actually outperforms ECCCo (no CP). This indicates
that predictive uncertainty minimization plays an important
role in achieving faithfulness.

We also generally find that the highest degree of faithful-
ness is obtained when the counterfactual search is performed
directly in the feature space X . While ECCCo+ typically at-
tains high levels of faithfulness compared to most other gen-
erators, it is consistently outperformed by ECCCo. The case
is even stronger for REVISE, which performs worst out of all
generators for faithfulness on the GMSC dataset and better
only than Wachter on California Housing.

These findings are consistent with the notion that surro-
gate models may inhibit faithfulness. Even though dimen-
sionality reduction through PCA in the case of ECCCo+ can
be considered a relatively mild form of intervention, the first
nz principal components fail to capture some of the varia-
tion in the data, that the underlying model itself may be sen-
sitive to. This notion is illustrated nicely in Figure 3, where
the counterfactual produced by ECCCo is somewhat noisier
and grainier than the one produced by ECCCo+.

In conclusion, we recommend in light of the findings here
to use the full ECCCo search objective whenever model
faithfulness is a key priority.

6.3 Balancing Desiderata
Overall, we find strong empirical evidence suggesting that
ECCCo can achieve near state-of-the-art plausibility with-
out sacrificing faithfulness. Figure 3 shows one such exam-

ple taken from the MNIST benchmark where the objective
is to turn the factual three (far left) into a five. The under-
lying model is a LeNet-5 CNN. The different images show
the counterfactuals produced by the generators, of which all
but the one produced by Schut are valid. Both variations of
ECCCo produce plausible counterfactuals.

Looking at the benchmark results presented in Tables 1
and 2 we firstly note that although REVISE generally per-
forms best, ECCCo and in particular ECCCo+ often ap-
proach SOTA performance. Upon visual inspection of the
generated images we actually find that ECCCo+ performs
much better than REVISE (see appendix). Zooming in on the
details we observe that ECCCo and its variations do particu-
larly well, whenever the underlying model has been explic-
itly trained to learn plausible representations of the data. For
both tabular datasets in Table 1, ECCCo improves plausibil-
ity substantially compared to the baseline. This broad pat-
tern is mostly consistent for all other datasets, although there
are notable exceptions for which ECCCo takes the lead on
both plausibility and faithfulness (see, for example, Tables 9
and 12 in the appendix).

While we maintain that generally speaking plausibility
should hinge on the quality of the model, our results also
indicate that it is possible to trade off some degree of faith-
fulness for plausibility if needed: ECCCo+ generally out-
performs other variants of ECCCo in this context at the
small cost of slightly reduced faithfulness. For the vision
datasets especially, we find that ECCCo+ is consistently
second only to REVISE for all models and regularly sub-
stantially better than the baseline. Looking at the California

Housing data, latent space search markedly improves plau-
sibility without sacrificing faithfulness: for the JEM Ensem-
ble, ECCCo+ performs substantially better than the baseline
and only marginally worse than REVISE. Importantly, EC-

CCo+ does not attain plausibility at all costs: for the MLP,
plausibility is still very low but this seems to faithfully rep-
resent what the model has learned.

We conclude that ECCCo offers us a way to balance the
objectives of faithfulness and plausibility. ECCCo+ can be
used to tilt the scale in favour of plausibility if needed.

6.4 Additional Desiderata
While we have deliberately focused on our key metrics of
interest so far, it is worth briefly considering other common
desiderata for counterfactuals. With reference to the right-
most columns for each dataset in Table 1, we firstly note that
ECCCo typically reduces predictive uncertainty as intended.
Consistent with its design, Schut performs well on this met-
ric even though it does not explicitly address uncertainty as
measured by conformal prediction set sizes.

Another commonly discussed desideratum is close-
ness (Wachter, Mittelstadt, and Russell 2017): counterfactu-
als that are closer to their factuals are associated with smaller
costs to individuals in the context of algorithmic recourse.
As evident from the additional tables in the appendix, the
closeness desideratum tends to be negatively correlated with
plausibility and faithfulness. Consequently, both REVISE

and ECCCo generally yield more costly counterfactuals than
the baseline. Nonetheless, ECCCo does not seem to stretch



Table 1: Results for tabular datasets: sample averages +/- one standard deviation across counterfactuals. Best outcomes are
highlighted in bold. Asterisks indicate that the given value is more than one (*) or two (**) standard deviations away from the
baseline (Wachter).

California Housing GMSC
Model Generator Unfaithfulness ↓ Implausibility ↓ Uncertainty ↓ Unfaithfulness ↓ Implausibility ↓ Uncertainty ↓

ECCCo 67.91 ± 1.63** 3.41 ± 2.28 0.14 ± 0.02 80.15 ± 1.86** 2.03 ± 1.30 0.18 ± 0.03*
ECCCo+ 82.72 ± 1.12** 2.71 ± 2.32 0.17 ± 0.12 98.25 ± 0.57 1.64 ± 1.01 0.20 ± 0.04
ECCCo (no CP) 88.72 ± 2.28** 3.40 ± 2.28 0.14 ± 0.03 82.52 ± 1.18* 2.02 ± 1.30 0.18 ± 0.03
ECCCo (no EBM) 75.47 ± 1.60** 0.98 ± 0.32 0.15 ± 0.03 92.86 ± 1.05 1.00 ± 0.77 0.20 ± 0.04
REVISE 98.98 ± 0.23** 0.64 ± 0.19* 0.21 ± 0.15 118.36 ± 1.68 0.71 ± 0.37 0.28 ± 0.08
Schut 87.66 ± 2.05** 1.02 ± 0.31 0.13 ± 0.00** 114.37 ± 1.21 1.32 ± 0.72 0.16 ± 0.00**

MLP

Wachter 114.38 ± 2.14 0.98 ± 0.32 0.16 ± 0.04 84.37 ± 0.99 0.99 ± 0.77 0.21 ± 0.05
ECCCo 65.20 ± 7.42** 0.73 ± 0.26* 0.11 ± 0.02** 76.30 ± 4.15* 0.78 ± 0.20 0.24 ± 0.20
ECCCo+ 81.01 ± 3.33** 0.63 ± 0.20** 0.12 ± 0.02** 96.72 ± 7.19 0.68 ± 0.12* 0.21 ± 0.19
ECCCo (no CP) 84.79 ± 0.49** 0.73 ± 0.27* 0.12 ± 0.03** 82.18 ± 4.59 0.78 ± 0.19 0.22 ± 0.22
ECCCo (no EBM) 77.03 ± 5.57** 1.07 ± 0.51 0.48 ± 0.28 87.72 ± 1.01 0.87 ± 0.20 0.13 ± 0.02
REVISE 94.52 ± 0.61** 0.54 ± 0.12** 0.21 ± 0.12** 111.55 ± 5.38 0.66 ± 0.11* 0.23 ± 0.08
Schut 85.81 ± 4.65** 1.21 ± 0.39 0.73 ± 0.16 110.80 ± 5.99 1.25 ± 0.22 0.10 ± 0.01**

JEM Ensemble

Wachter 107.85 ± 2.52 1.12 ± 0.48 0.68 ± 0.22 82.68 ± 3.58 0.86 ± 0.20 0.13 ± 0.02

Table 2: Results for vision dataset. Formatting details are the
same as in Table 1.

MNIST
Model Generator Unfaithfulness ↓ Implausibility ↓

ECCCo 0.22 ± 0.01** 0.42 ± 0.02
ECCCo+ 0.23 ± 0.01* 0.32 ± 0.02*
REVISE 0.24 ± 0.01 0.30 ± 0.03**
Schut 0.25 ± 0.01 0.34 ± 0.03*

MLP

Wachter 0.24 ± 0.01 0.37 ± 0.04
ECCCo 0.24 ± 0.01 0.39 ± 0.03
ECCCo+ 0.24 ± 0.01 0.33 ± 0.02
REVISE 0.25 ± 0.01 0.30 ± 0.03*
Schut 0.25 ± 0.01 0.34 ± 0.03

LeNet-5

Wachter 0.25 ± 0.01 0.35 ± 0.03

costs unnecessarily: in Figure 3 useful parts of the factual
three are clearly retained.

7 Limitations
Despite having taken considerable measures to study our
methodology carefully, limitations can still be identified.

Firstly, we recognise that our proposed distance-based
evaluation metrics for plausibility and faithfulness may not
be universally applicable to all types of data. In any case,
they depend on choosing a distance metric on a case-by-case
basis, as we have done in this work. Arguably, commonly
used metrics for measuring other desiderata such as close-
ness suffer from the same pitfall. We therefore think that fu-
ture work on counterfactual explanations could benefit from
defining universal evaluation metrics.

Relatedly, we note that our proposed metric for measuring
faithfulness depends on the availability of samples gener-
ated through SGLD, which in turn requires gradient access

for models. This means it cannot be used to evaluate non-
differentiable classifiers. Consequently, we also have not ap-
plied ECCCo to some machine learning models commonly
used for classification such as decision trees. Since ECCCo

itself does not rely on SGLD, its defining penalty functions
are indeed applicable to gradient-free counterfactual gener-
ators. This is an interesting avenue for future research.

Next, common challenges associated with energy-based
modelling including sensitivity to scale, training instabilities
and sensitivity to hyperparameters also apply to ECCCo to
some extent. In grid searches for optimal hyperparameters,
we have noticed that unless properly regularized, ECCCo is
sometimes prone to overshoot for the energy constraint.

Finally, while we have used ablation to understand the
roles of the different components of ECCCo, the scope of
this work has prevented us from investigating the role of
conformal prediction in this context more thoroughly. We
have exclusively relied on split conformal prediction and
have used fixed values for the predetermined error rate and
other hyperparameters. Future work could benefit from more
extensive ablation studies that tune hyperparameters and in-
vestigate different approaches to conformal prediction.

8 Conclusion
This work leverages ideas from energy-based modelling and
conformal prediction in the context of counterfactual expla-
nations. We have proposed a new way to generate counter-
factuals that are maximally faithful to the black-box model
they aim to explain. Our proposed generator, ECCCo, pro-
duces plausible counterfactuals iff the black-box model it-
self has learned realistic explanations for the data, which we
have demonstrated through rigorous empirical analysis. This
should enable researchers and practitioners to use counter-
factuals in order to discern trustworthy models from unreli-
able ones. While the scope of this work limits its generaliz-
ability, we believe that ECCCo offers a solid base for future
work on faithful counterfactual explanations.
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