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Abstract

Counterfactual explanations offer an intuitive and straightforward way to explain
black-box models and offer algorithmic recourse to individuals. To address the
need for plausible explanations, existing work has primarily relied on surrogate
models to learn how the input data is distributed. This effectively reallocates
the task of learning realistic explanations for the data from the model itself to
the surrogate. Consequently, the generated explanations may seem plausible to
humans but need not necessarily describe the behaviour of the black-box model
faithfully. We formalise this notion of faithfulness through the introduction of a tai-
lored evaluation metric and propose a novel algorithmic framework for generating
Energy-Constrained Conformal Counterfactuals that are only as plausible as the
model permits. Through extensive empirical studies, we demonstrate that ECCCo
reconciles the need for faithfulness and plausibility. In particular, we show that for
models with gradient access, it is possible to achieve state-of-the-art performance
without the need for surrogate models. To do so, our framework relies solely on
properties defining the black-box model itself by leveraging recent advances in
energy-based modelling and conformal prediction. To our knowledge, this is the
first venture in this direction for generating faithful counterfactual explanations.
Thus, we anticipate that ECCCo can serve as a baseline for future research. We
believe that our work opens avenues for researchers and practitioners seeking tools
to better distinguish trustworthy from unreliable models.

1 Introduction

Counterfactual explanations provide a powerful, flexible and intuitive way to not only explain black-
box models but also help affected individuals through the means of algorithmic recourse. Instead of
opening the black box, counterfactual explanations work under the premise of strategically perturbing
model inputs to understand model behaviour [[1]. Intuitively speaking, we generate explanations in
this context by asking what-if questions of the following nature: ‘Our credit risk model currently
predicts that this individual is not credit-worthy. What if they reduced their monthly expenditures by
10%”

This is typically implemented by defining a target outcome y* € ) for some individual x € X = R”
described by D attributes, for which the model My : X — ) initially predicts a different outcome:
My (x) # y™. Counterfactuals are then searched by minimizing a loss function that compares the
predicted model output to the target outcome: yloss(Mpy(x),y ™). Since counterfactual explanations
work directly with the black-box model, valid counterfactuals always have full local fidelity by
construction where fidelity is defined as the degree to which explanations approximate the predictions
of a black-box model [2,[3]].
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In situations where full fidelity is a requirement, counterfactual explanations offer a more appropriate
solution to Explainable Artificial Intelligence (XAI) than other popular approaches like LIME [4] and
SHAP [5], which involve local surrogate models. But even full fidelity is not a sufficient condition for
ensuring that an explanation faithfully describes the behaviour of a model. That is because multiple
very distinct explanations can all lead to the same model prediction, especially when dealing with
heavily parameterized models like deep neural networks, which are typically underspecified by the
data [6].

In the context of counterfactuals, the idea that no two explanations are the same arises almost naturally.
A key focus in the literature has therefore been to identify those explanations and algorithmic
recourses that are most appropriate based on a myriad of desiderata such as closeness [1], sparsity [7],
actionability [8] and plausibility [9]].

In this work, we draw closer attention to model faithfulness rather than fidelity as a desideratum for
counterfactuals. We define faithfulness as the degree to which counterfactuals are consistent with
what the model has learned about the data. Our key contributions are as follows:

* We show that fidelity is an insufficient evaluation metric for counterfactuals (Section [3) and
propose a definition of faithfulness that gives rise to more suitable metrics (Section [4)).

* We introduce a ECCCo: a novel algorithmic approach aimed at generating Energy-
Constrained Conformal Counterfactuals that faithfully explain model behaviour in Section 3}

* We provide extensive empirical evidence demonstrating that ecccos faithfully explain model
behaviour and attain plausibility only when appropriate (Section 6)).

To our knowledge, this is the first venture in this direction for generating faithful counterfactuals.
Thus, we anticipate that ECCCo can serve as a baseline for future research. We believe that our work
opens avenues for researchers and practitioners seeking tools to better distinguish trustworthy from
unreliable models.

2 Background

While counterfactual explanations (CE) can also be generated for arbitrary regression models [10],
existing work has primarily focused on classification problems. Let J) = (0, 1)¥ denote the one-hot-
encoded output domain with K classes. Then most counterfactual generators rely on gradient descent
to optimize different flavours of the following counterfactual search objective:

Z' = arg min, {yloss(My(f(Z)),y") + Acost(f(Z')) } )

Here yloss(-) denotes the primary loss function, f(-) is a function that maps from the counterfactual
state space to the feature space and cost(+) is either a single penalty or a collection of penalties that
are used to impose constraints through regularization. Equation T restates the baseline approach to
gradient-based counterfactual search proposed by Wachter et al. [1] in general form as introduced
by Altmeyer et al. [11]]. To explicitly account for the multiplicity of explanations, Z’ = {z; } , denotes
an L-dimensional array of counterfactual states.

The baseline approach, which we will simply refer to as Wachter, searches a single counterfactual
directly in the feature space and penalises its distance to the original factual. In this case, f(-) is simply
the identity function and Z corresponds to the feature space itself. Many derivative works of Wachter
et al. [1]] have proposed new flavours of Equation [T} each of them designed to address specific
desiderata that counterfactuals ought to meet in order to properly serve both Al practitioners and
individuals affected by algorithmic decision-making systems. The list of desiderata includes but is not
limited to the following: sparsity, proximity [1]], actionability [8], diversity [2], plausibility [9} 12} 7],
robustness [13}[14}[11]] and causality [[15]. Different counterfactual generators addressing these needs
have been extensively surveyed and evaluated in various studies [[16} 17,1819} 20].

The notion of plausibility is central to all of the desiderata. For example, Artelt et al. [19] find
that plausibility typically also leads to improved robustness. Similarly, plausibility has also been
connected to causality in the sense that plausible counterfactuals respect causal relationships [21].
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Consequently, the plausibility of counterfactuals has been among the primary concerns for researchers.
Achieving plausibility is equivalent to ensuring that the generated counterfactuals comply with the
true and unobserved data-generating process (DGP). We define plausibility formally in this work as
follows:

Definition 2.1 (Plausible Counterfactuals). Let X|y™ = p(x|y™) denote the true conditional
distribution of samples in the target class y . Then for X' to be considered a plausible counterfactual,
we need: x' ~ X|y™.

To generate plausible counterfactuals, we first need to quantify the conditional distribution of samples
in the target class (X|y ™). We can then ensure that we generate counterfactuals that comply with that
distribution.

One straightforward way to do this is to use surrogate models for the task. Joshi et al. [9], for example,
suggest that instead of searching counterfactuals in the feature space X', we can instead traverse a
latent embedding Z (Equation [T that implicitly codifies the DGP. To learn the latent embedding, they
propose using a generative model such as a Variational Autoencoder (VAE). Provided the surrogate
model is well-specified, their proposed approach called REVISE can yield plausible explanations.
Others have proposed similar approaches: Dombrowski et al. [22] traverse the base space of a
normalizing flow to solve Equation [I} Poyiadzi et al. [12] use density estimators (p : X' > [0, 1]) to
constrain the counterfactuals to dense regions in the feature space; and, finally, Karimi et al. [15]]
assume knowledge about the structural causal model that generates the data.

A competing approach towards plausibility that is also closely related to this work instead relies on
the black-box model itself. Schut et al. [[7] show that to meet the plausibility objective we need not
explicitly model the input distribution. Pointing to the undesirable engineering overhead induced by
surrogate models, they propose that we rely on the implicit minimisation of predictive uncertainty
instead. Their proposed methodology, which we will refer to as Schut, solves Equation[T|by greedily
applying Jacobian-Based Saliency Map Attacks (JSMA) in the feature space with cross-entropy loss
and no penalty at all. The authors demonstrate theoretically and empirically that their approach yields
counterfactuals for which the model My predicts the target label y ™ with high confidence. Provided
the model is well-specified, these counterfactuals are plausible. This idea hinges on the assumption
that the black-box model provides well-calibrated predictive uncertainty estimates.

3 Why Fidelity is not Enough: A Motivational Example

As discussed in the introduction, any valid counterfactual also has full fidelity by construction:
solutions to Equation [I] are considered valid as soon as the label predicted by the model matches
the target class. So while fidelity always applies, counterfactuals that address the various desiderata
introduced above can look vastly different from each other.

To demonstrate this with an example, we have trained a simple image classifier My on the well-
known MNIST dataset [23]: a Multi-Layer Perceptron (MLP) with above 90 percent test accuracy. No
measures have been taken to improve the model’s adversarial robustness or its capacity for predictive
uncertainty quantification. The far left panel of Figure [T|shows a random sample drawn from the
dataset. The underlying classifier correctly predicts the label ‘nine’ for this image. For the given
factual image and model, we have used Wachter, Schut and REVISE to generate one counterfactual
each in the target class ‘seven’. The perturbed images are shown next to the factual image from left
to right in Figure |1} Captions on top of the individual images indicate the generator along with the
predicted probability that the image belongs to the target class. In all three cases that probability is
above 90 percent and yet the counterfactuals look very different from each other.

Since Wachter is only concerned with proximity, the generated counterfactual is almost indistin-
guishable from the factual. The approach by Schut et al. [7]] expects a well-calibrated model that
can generate predictive uncertainty estimates. Since this is not the case, the generated counterfactual
looks like an adversarial example. Finally, the counterfactual generated by REVISE looks much more
plausible than the other two. But is it also more faithful to the behaviour of our MNIST classifier?
That is much less clear because the surrogate used by REVISE introduces friction: the generated
explanations no longer depend exclusively on the black-box model itself.
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Figure 1: Counterfactuals for turning a 9 (nine) into a 7 (seven): original image (left); then from left
to right the counterfactuals generated using Wachter, Schut and REVISE.

So which of the counterfactuals most faithfully explains the behaviour of our image classifier? Fidelity
cannot help us to make that judgement, because all of these counterfactuals have full fidelity. Thus,
fidelity is an insufficient evaluation metric to assess the faithfulness of CE.

4 Faithful first, Plausible second

Considering the limitations of fidelity as demonstrated in the previous section, analogous to Defini-
tion[2.1} we introduce a new notion of faithfulness in the context of CE:

Definition 4.1 (Faithful Counterfactuals). Let Xy|y™ = pg(x|y™) denote the conditional distribution
of X in the target class y ™, where 0 denotes the parameters of model M. Then for X' to be considered
a faithful counterfactual, we need: x' ~ Xp|y™.

In doing this, we merge in and nuance the concept of plausibility (Definition [2.T)) where the notion of
‘consistent with the data’ becomes ‘consistent with what the model has learned about the data’.

4.1 Quantifying the Model’s Generative Property

To assess counterfactuals with respect to Definition we need a way to quantify the posterior
conditional distribution py (x|y ™). To this end, we draw on recent advances in energy-based modelling
(EBM), a subdomain of machine learning that is concerned with generative or hybrid modelling [24,
25]]. In particular, note that if we fix y to our target value y ™, we can conditionally draw from
po(x|y™t) by randomly initializing x and then using Stochastic Gradient Langevin Dynamics
(SGLD) as follows,

2
€4
X1 ¢ X5 — Ejg(xﬂy"‘) +er;, j=1,..,J (2)

where r; ~ A(0, I) is the stochastic term and the step-size ¢, is typically polynomially decayed [26].
The term E(x,|y™") denotes the model energy conditioned on the target class label y* which we
specify as the negative logit corresponding to the target class label y+. To allow for faster sampling,
we follow the common practice of choosing the step-size ¢; and the standard deviation of r; separately.
While x ; is only guaranteed to distribute as py(x|y ™) if € — 0 and J — oo, the bias introduced for
a small finite € is negligible in practice [27, 24]. Appendix [A]provides additional implementation
details for any tasks related to energy-based modelling.

Generating multiple samples using SGLD thus yields an empirical distribution X, y+ that approxi-
mates what the model has learned about the input data. While in the context of EBM, this is usually
done during training, we propose to repurpose this approach during inference in order to evaluate and
generate faithful model explanations.

4.2 Quantifying the Model’s Predictive Uncertainty

Faithful counterfactuals can be expected to also be plausible if the learned conditional distribution
Xply™ (Defintion[4.1) is close to the true conditional distribution X|y* (Definition[2.1). We can
further improve plausibility of counterfactuals without the need for surrogate models that may interfer
with faithfulness by minimizing predictive uncertainty [7]. Unfortunately, this approach relies on
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the assumption that the model itself can provide predictive uncertainty estimates, which may be too
restrictive in practice.

To relax this assumption, we use conformal prediction (CP), an approach to predictive uncertainty
quantification that has recently gained popularity [28}29]. Crucially for our intended application,
CP is model-agnostic and can be applied during inference without placing any restrictions on model
training. Intuitively, CP works under the premise of turning heuristic notions of uncertainty into
rigorous uncertainty estimates by repeatedly sifting through the training data or a dedicated calibration
dataset.

Conformal classifiers produce prediction sets for individual inputs that include all output labels that
can be reasonably attributed to the input. Finally, classification sets are formed as follows,

Co(xi; ) = {y = s(xi,y) < ¢} ©)
where ¢ denotes the (1 — «)-quantile of S and « is a predetermined error rate.

These sets tend to be larger for inputs that do not conform with the training data and are characterized
by high predictive uncertainty. To leverage this notion of predictive uncertainty in the context of
gradient-based counterfactual search, we use a smooth set size penalty introduced by Stutz et al. [30]:

Q(Cy(x;a)) = max | 0, Z Coy(xisa) — kK 4)
yey

Here, x € {0, 1} is a hyper-parameter and Cy , (x;; ) can be interpreted as the probability of label
y being included in the prediction set (see Appendix [B.2]for details). In order to compute this penalty
for any black-box model we merely need to perform a single calibration pass through a holdout set
Dea1. Arguably, data is typically abundant and in most applications, practitioners tend to hold out a
test data set anyway. Consequently, CP removes the restriction on the family of predictive models,
at the small cost of reserving a subset of the available data for calibration. This particular case of
conformal prediction is referred to as *split conformal prediction* (SCP) as it involves splitting the
training data into a proper training dataset and a calibration dataset.

4.3 Evaluating Plausibility and Faithfulness

The parallels between our definitions of plausibility and faithfulness imply that we can also use
similar evaluation metrics in both cases. Since existing work has focused heavily on plausibility,
it offers a useful starting point. In particular, Guidotti [20] have proposed an implausibility metric
that measures the distance of the counterfactual from its nearest neighbour in the target class. As
this distance is reduced, counterfactuals get more plausible under the assumption that the nearest
neighbour itself is plausible in the sense of Definition 2.1] In this work, we use the following adapted
implausibility metric,

. 1 .
impl(x’, Xy+) = | Z dist(x’, x) (5)

where x" denotes the counterfactual and X+ is a subsample of the training data in the target class

y . By averaging over multiple samples in this manner, we avoid the risk that the nearest neighbour
of x’ itself is not plausible according to Deﬁnition (e.g an outlier).

Equation [5] gives rise to a similar evaluation metric for unfaithfulness. We swap out the subsample of
observed individuals in the target class for the set of samples generated through SGLD (X,,+):

1

unfaith(x’, Xg y+) = —=——
‘XG,y‘*' ‘

dist(x’, x) ©)

Xeie‘yﬁ,

Our default choice for the dist(+) in both cases is the L1 Norm, which is consistent with the common
choice for evaluating counterfactuals with respect to the closeness desideratum [[18}|14].



206
207
208
209
210

211
212

213
214
215

216

217
218

219
220
221

Wachter ECCCo (no EBM) ECCCo (no CP) ECCCo

[, &8
°
&2
&
o

A% l 4%

Figure 2: Gradient fields and counterfactual paths for different generators. The objective is to generate
a counterfual in the ‘blue’ class for a sample from the ‘orange’ class. Bright yellow stars indicate
conditional samples generated through SGLD. The underlying classifier is a Joint Energy Model.

S Energy-Constrained Conformal Counterfactuals

Given our proposed notion of faithfulness, we now describe ECCCo, our proposed framework
for generating Energy-Constrained Conformal Counterfactuals. It is based on the premise that
counterfactuals should first and foremost be faithful. Plausibility, as a secondary concern, is then still
attainable, but only to the degree that the black-box model itself has learned plausible explanations
for the underlying data.

We begin by stating our proposed objective function, which involves tailored loss and penalty
functions that we will explain in the following. In particular, we extend Equation [I]as follows:

Z' = arg min {yloss(My(f(Z)),y ") + A dist(f(Z'),x)
zezt” %
+NRAE(Z, Xy y+) + AUCo(f(Z);0))}

The first penalty term involving A; induces proximity like in Wachter et al. [1]]. Our default choice
for dist(-) is the L1 Norm due to its sparsity-inducing properties. The second penalty term involving
Ao induces faithfulness by constraining the energy of the generated counterfactual where we have:

AE=E(f(Z)ly") — E(aly™) ®)

In particular, this penalty ensures that the energy of the generated counterfactual is in balance with

the energy of the generated conditional samples ()A((,’er). The third and final penalty term involving
A3 ensures that the generated counterfactual is associated with low predictive uncertainty.

T~ Xyt

Algorithm 1 The ECCCo generator

Input: x,y*, My, f, A = [A1, X2, A3], 0, D, T, m, n, n where My(x) # y "
Output: x’

1: Initialize z’ <+ f~1(x) > Map to counterfactual state space.
2: Generate {)297y+ }ns — po(Xy+) > Generate ng samples using SGLD (Equation .
3: Store X y+ < {)A(g’y+ }nB > Choose n g lowest-energy samples.
4: Run SCP for My using D > Calibrate model through split conformal prediction.
5: Initialize £ +— 0
6: while not converged ort < T do > For convergence conditions see Appendix
7: 2 2 —nVuL(z,yT,Xgy+; A @) > Take gradient step of size 7.
8: t—1t+1
9: end while
10: X' « f(2') > Map back to feature space.

Figure 2]illustrates how the different components in Equation [7] affect the counterfactual search for a
synthetic dataset. The underlying classifier is a Joint Energy Model (JEM) that was trained to predict
the output class (‘blue’ or ‘orange’) and generate class-conditional samples [24]. We have used four
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different generator flavours to produce a counterfactual in the ‘blue’ class for a sample from the
‘orange’ class: Wachter, which only uses the first penalty (Ao = A3 = 0); ECCCo (no EBM), which
does not constrain energy (A2 = 0); ECCCo (no CP), which involves no set size penalty (A3 = 0);
and, finally, ECCCo, which involves all penalties defined in Equation[7} Arrows indicate (negative)
gradients with respect to the objective function at different points in the feature space.

While Wachter generates a valid counterfactual, it ends up close to the original starting point consistent
with its objective. ECCCo (no EBM) pushes the counterfactual further into the target domain to
minimize predictive uncertainty, but the outcome is still not plausible. The counterfactual produced
by ECCCo (no CP) is attracted by the generated samples shown in bright yellow. Since the JEM has
learned the conditional input distribution reasonably well in this case, the counterfactuals are both
faithful and plausible. Finally, the outcome for ECCCo looks similar, but the additional smooth set
size penalty leads to somewhat faster convergence.

Algorithm [T] describes how exactly ECCCo works. For the sake of simplicity and without loss of
generality, we limit our attention to generating a single counterfactual x’ = f(z’). The counterfactual
state z’ is initialized by passing the factual x through a simple feature transformer f~!. Next, we
generate ng conditional samples Xy .+ using SGLD (Equation and store the n g instances with
the lowest energy. We then calibrate the model My through split conformal prediction. Finally,
we search counterfactuals through gradient descent where £(z', y ™+, Xg y+; A, ) denotes our loss
function defined in Equation[/| The search terminates once the convergence criterium is met or the
maximum number of iterations 7" has been exhausted. Note that the choice of convergence criterium
has important implications on the final counterfactual which we explain in Appendix [C|

6 Empirical Analysis

Our goal in this section is to shed light on the following research questions:

Research Question 6.1 (Faithfulness). To what extent are counterfactuals generated by ECCCo
more faithful than those produced by state-of-the-art generators?

Research Question 6.2 (Balancing Objectives). Compared to state-of-the-art generators, how does
ECCCo balance the two key objectives of faithfulness and plausibility?

The second question is motivated by the intuition that faithfulness and plausibility should coincide
for models that have learned plausible explanations of the data.

6.1 Experimental Setup

To assess and benchmark the performance of our proposed generator against the state of the art, we
generate multiple counterfactuals for different models and datasets. In particular, we compare ECCCo
and its variants to the following counterfactual generators that were introduced above: firstly; Schut,
which works under the premise of minimizing predictive uncertainty; secondly, REVISE, which is
state-of-the-art with respect to plausibility; and, finally, Wachter, which serves as our baseline.

We use both synthetic and real-world datasets from different domains, all of which are publicly
available and commonly used to train and benchmark classification algorithms. We synthetically
generate a dataset containing two Linearly Separable Gaussian clusters (n = 1000), as well as the
well-known Circles (n = 1000) and Moons (n = 2500) data. Since these data are generated by
distributions of varying degrees of complexity, they allow us to assess how the generators and our
proposed evaluation metrics handle this.

As for real-world data, we follow Schut et al. [7] and use the MNIST [23] dataset containing images
of handwritten digits such as the example shown above in Figure|l| From the social sciences domain,
we include Give Me Some Credit (GMSC) [31]: a tabular dataset that has been studied extensively
in the literature on algorithmic recourse [18]]. It consists of 11 numeric features that can be used to
predict the binary outcome variable indicating whether retail borrowers experience financial distress.

For the predictive modelling tasks, we use simple neural networks (MLP) and Joint Energy Models
(JEM). For the more complex real-world datasets we also use ensembling in each case. Both joint-
energy modelling and ensembling have been associated with improved generative properties and
adversarial robustness [24, 32]], so we expect this to be positively correlated with the plausibility



272
273
274
275
276
277

278

293
294
295
296
297
298
299
300
301

302
303
304
305
306
307
308
309

311

312
313
314
315
316
317
318
319
320
321
322
323

of ECCCo. To account for stochasticity, we generate multiple counterfactuals for each target class,
generator, model and dataset. Specifically, we randomly sample n~ times from the subset of
individuals for which the given model predicts the non-target class y~ given the current target. We
set n~ = 25 for all of our synthetic datasets, n~ = 10 for GMSC and n~ = 5 for MNIST. Full
details concerning our parameter choices, training procedures and model performance can be found
in Appendix [D]

6.2 Results for Synthetic Data

Table[T|shows the key results for the synthetic datasets separated by model (first column) and generator
(second column). The numerical columns show sample averages and standard deviations of our key
evaluation metrics computed across all counterfactuals. We have highlighted the best outcome for
each model and metric in bold. To provide some sense of effect sizes, we have added asterisks to
indicate that a given value is at least one (x) or two (xx) standard deviations lower than the baseline
(Wachter).

Starting with the high-level results for our Linearly Separable data, we find that ECCCo produces
the most faithful counterfactuals for both black-box models. This is consistent with our design since
ECCCo directly enforces faithfulness through regularization. Crucially though, ECCCo also produces
the most plausible counterfactuals for both models. This dataset is so simple that even the MLP has
learned plausible explanations of the input data. Zooming in on the granular details for the Linearly
Separable data, the results for ECCCo (no CP) and ECCCo (no EBM) indicate that the positive results
are dominated by the effect of quantifying and leveraging the model’s generative property (EBM).
Conformal prediction alone only leads to marginally improved faithfulness and plausibility.

The findings for the Moons dataset are broadly in line with the findings so far: for the JEM, ECCCo
yields substantially more faithful and plausible counterfactuals than all other generators. For the
MLP, faithfulness is maintained but counterfactuals are not plausible. This high-level pattern is
broadly consistent with other more complex datasets and supportive of our narrative, so it is worth
highlighting: ECCCo consistently achieves high faithfulness, which—subject to the quality of the
model itself—coincides with high plausibility. By comparison, REVISE yields the most plausible
counterfactuals for the MLP, but it does so at the cost of faithfulness. We also observe that the
best results for ECCCo are achieved when using both penalties. Once again though, the generative
component (EBM) has a stronger impact on the positive results for the JEM.

For the Circles data, it appears that REVISE performs well, but we note that it generates valid
counterfactuals only half of the time (see Appendix [E|for a complete overview including additional
common evaluation metrics). The underlying VAE with default parameters has not adequately learned
the data-generating process. Of course, it is possible to improve generative performance through
hyperparameter tuning but this example serves to illustrate that REVISE depends on the quality of its
surrogate. Independent of the outcome for REVISE, however, the results do not seem to indicate that
ECCCo substantially improves faithfulness and plausibility for the Circles data. We think this points
to a limitation of our evaluation metrics rather than ECCCo itself: computing average distances fails
to account for the ‘wraparound’ effect associated with circular data [33]].

6.3 Results for Real-World Data

The results for our real-world datasets are shown in Table[2] Once again the findings indicate that the
plausibility attained by ECCCo is positively correlated with the capacity of the black-box model to
distinguish plausible from implausible inputs. The case is very clear for MNIST: ECCCo consistently
generates more faithful counterfactuals than other generators and plausibility gradually improves
through ensembling and joint-energy modelling. Interestingly, faithfulness also gradually improves
for REVISE. This indicates that as our models improve, their generative capacity approaches that
of the surrogate VAE used by REVISE. The VAE still outperforms our classifiers in this regard, as
evident from the fact that ECCCo never quite reaches the same level of plausibility as REVISE. With
reference to Appendix [E] we note that the results for Schut need to be discounted as it rarely produces
valid counterfactuals for MNIST. Relatedly, we find that ECCCo is the only generator that consistently
achieves full validity. Finally, it is worth noting that ECCCo produces counterfactual images with the
lowest average predictive uncertainty for all models.
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Table 1: Results for synthetic datasets: sample averages +/- one standard deviation across counterfac-
tuals. Best outcomes are highlighted in bold. Asterisks indicate that the given value is more than one
(*) or two (**) standard deviations away from the baseline (Wachter).

Linearly Separable Moons Circles

Model  Generator Unfaithfulness | Implausibility |  Unfaithfulness | Implausibility |  Unfaithfulness | Implausibility |
ECCCo 0.03 + 0.06%* 0.20 + 0.08%* 0.31 + 0.30* 1.20 + 0.15** 0.52+0.36 1.22£0.46
ECCCo (no CP) 0.03 + 0.06%* 0.20 + 0.08%* 0.37 £0.30* 1.21 £0.17%* 0.54 +0.39 1.21 £0.46

JEM ECCCo (no EBM)  0.16 +0.11 0.34 £0.19 0.91 £0.32 1.71£0.25 0.70 +£0.33 1.30 £0.37
REVISE 0.19 +£0.03 0.41 £0.01%** 0.78 £0.23 1.57+0.26 0.48 + 0.16* 0.95 + 0.32*
Schut 0.39 +0.07 0.73 £0.17 0.67 £0.27 1.50 £ 0.22% 0.54 +0.43 1.28 £0.53
Wachter 0.18 £0.10 0.44 £0.17 0.80 £ 0.27 1.78 £0.24 0.68 +0.34 1.33£0.32
ECCCo 0.29 + 0.05°* 0.23 + 0.06%* 0.80 + 0.62 1.69 £ 0.40 0.65 +0.53 1.17 £ 0.41
ECCCo (no CP) 0.29 + 0.05%* 0.23 +0.07+* 0.79 + 0.62 1.68 £0.42 0.49 +0.35 1.19+0.44

MLp  ECCCo (no EBM) 0.46 +0.05 0.28 + 0.04%* 1.34 £0.47 1.68 £0.47 0.84 £0.51 1.23 £0.31
REVISE 0.56 £ 0.05 0.41+£0.01 1.45+0.44 1.64 +£0.31 0.58 +£0.52 0.95 +0.32
Schut 0.43 +0.06* 0.47 £0.36 1.45£0.55 1.73+£0.48 0.58 £0.37 1.23+£0.43
Wachter 0.51 £0.04 0.40 +0.08 1.32£0.41 1.69 +0.32 0.83 +0.50 1.24£0.29

Table 2: Results for real-world datasets: sample averages +/- one standard deviation across counter-
factuals. Best outcomes are highlighted in bold. Asterisks indicate that the given value is more than
one (*) or two (**) standard deviations away from the baseline (Wachter).

MNIST GMSC
Model Generator ~ Unfaithfulness | ~ Implausibility | Unfaithfulness |  Implausibility |
ECCCo 1928 £5.01%% 31476 +32.36%  79.16 + 11.67+*  18.26 + 4.92%*
IEM REVISE  188.70 £26.18%  255.26 + 41.50%*  186.40 + 28.06 5.34 + 2.38%+
Schut 211.62+27.13  290.56 +40.66%  200.98 + 28.49 6.50 + 2.01%*
Wachter 22290 +26.56  361.88+39.74  214.08 +45.35 61.04 £2.58
ECCCo 15.99 + 3.06%* 29472 +30.75%* 8328 + 13.26%*  17.21 + 4.46**
JEM Ensemble  REVISE  173.50£20.65%%  246.32 + 37.46**  194.24 £ 35.41 4.95 + 1.26%*
NSEMbIC  gehut 20436 +23.14  290.64 +39.49%  208.45 + 34.60 6.12 + 1.91%%
Wachter ~ 217.67+23.78  363.23+3924  186.19+33.88  60.70 +44.32
ECCCo 41.95 £ 6.50%*  591.58 + 36.24 75.93 £ 14.27%%  17.20 + 3.15%*
MLP REVISE 36582+ 15.35%  249.49 + 41.55%* 196.75 + 41.25 4.84 + 0.60%*
Schut 379.66 + 17.16  290.07 £42.65%  212.00 + 41.15 6.44 + 1.34%%
Wachter  386.05+ 16.60  361.83+42.18 21834 +53.26  45.84 +39.39
ECCCo 3143 £391%%  490.88 +27.19 73.86 £ 14.63%%  17.92 + 4.17%*
MLP Ensemble REVISE  337.74.+ 11.89%  247.67 £ 38.36** 207.21 £ 43.20 5.78 £ 2.10%*
Schut 35480+ 13.05 28579 +41.33%  205.36 +32.11 7.00 + 2.15%
Wachter  360.79 + 1439 357734255 213715417  73.09 + 64.50

For the tabular credit dataset (GMSC) it is inherently challenging to use deep neural networks in order
to achieve good discriminative performance [34}135] and generative performance [36], respectively. In
order to achieve high plausibility, ECCCo effectively requires classifiers to achieve good performance
for both tasks. Since this is a challenging task even for Joint Energy Models, it is not surprising to
find that even though ECCCo once again achieves state-of-the-art faithfulness, it is outperformed by
REVISE and Schut with respect to plausibility.

6.4 Key Takeways

To conclude this section, we summarize our findings with reference to the opening questions. The
results clearly demonstrate that ECCCo consistently achieves state-of-the-art faithfulness, as it was
designed to do (Research Question[6.1]). A related important finding is that ECCCo yields highly
plausible explanations provided that they faithfully describe model behaviour (Research Question|[6.2)).
ECCCo achieves this result primarily by leveraging the model’s generative property.
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7 Limitations

Even though we have taken considerable measures to study our proposed methodology carefully,
limitations can still be identified.

7.1 Evaluation Metrics

Our proposed distance-based evaluation metrics for plausibility and faithfulness may not be univer-
sally applicable to all types of data. In any case, they depend on choosing a distance metric on a
case-by-base basis for different datasets. Arguably, commonly used metrics for measuring other
desiderata such as closeness suffer from the same pitfall. We therefore think that future work on
counterfactual explanations could benefit from defining universal evaluation metrics.

7.2 Experiments

While we have employed various datasets in our experiments that are commonly used in the related
literature, we acknowledge that additional real-world data and application is needed to test ECCCo
and improve upon the ideas we have presented in this work. One challenge in this context is that
counterfactual explanations do not scale very well to high-dimensional input data like images [37, 138]].
Consequently, we have limited ourselves to studying small image datasets only.

7.3 Generalizability

While our approach is readily applicable to models with gradient access like deep neural networks,
more work is needed to generalise it to other machine learning models such as decision trees.
Relatedly, common challenges associated with energy-based modelling including sensitivity to scale,
training instabilities and sensitivity to hyperparameters also apply to ECCCo.

7.4 Ablation Studies

In our experiments we have used ablation to understand the roles of the different components of
ECCCo. Our results here indicate that conformal prediction alone is often not sufficient to achieve
faithfulness and plausibility. To test this initial finding more throughly, future work could benefit
from more extensive abalation studies that thoroughly tune hyperparameters and investigate different
approaches to conformal prediction.

8 Conclusion

This work leverages recent advances in energy-based modelling and conformal prediction in the con-
text of Explainable Artificial Intelligence. We have proposed a new way to generate counterfactuals
that are maximally faithful to the black-box model they aim to explain. Our proposed generator,
ECCCo, produces plausible counterfactuals if and only if the black-box model itself has learned
realistic explanations for the data, which we have demonstrated through rigorous empirical analysis.
This should enable researchers and practitioners to use counterfactuals in order to discern trustworthy
models from unreliable ones. While the scope of this work limits its generalizability, we believe that
ECCCo offers a solid baseline for future work on faithful counterfactual explanations.
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Appendices

The following appendices provide additional details that are relevant to the paper. Appendices [A]
and[B]explain any tasks related to Energy-Based Modelling and Predictive Uncertainty Quantification
through Conformal Prediction, respectively. Appendix [C|provides additional technical and implemen-
tation details about our proposed generator, ECCCo, including references to our open-sourced code
base. A complete overview of our experimental setup detailing our parameter choices, training proce-
dures and initial black-box model performance can be found in Appendix [D] Finally, Appendix [E]
reports all of our experimental results in more detail.

A Energy-Based Modelling

Since we were not able to identify any existing open-source software for Energy-Based Modelling
that would be flexible enough to cater to our needs, we have developed a Julia package from
scratch. The package has been open-sourced, but to avoid compromising the double-blind review
process, we refrain from providing more information at this stage. In our development we have
heavily drawn on the existing literature: ? ] describe best practices for using EBM for generative
modelling; Grathwohl et al. [24] explain how EBM can be used to train classifiers jointly for the
discriminative and generative tasks. We have used the same package for training and inference, but
there are some important differences between the two cases that are worth highlighting here.

A.1 Training: Joint Energy Models

To train our Joint Energy Models we broadly follow the approach outlined in Grathwohl et al. [24].
These models are trained to optimize a hybrid objective that involves a standard classification loss
component Leg(6) = — log pg(y|x) (e.g. cross-entropy loss) as well as a generative loss component
Lgen(e) = - log Do (X)

To draw samples from pp(x), we rely exclusively on the conditional sampling approach described
in Grathwohl et al. [24] for both training and inference: we first draw y ~ p(y) and then sample
x ~ pp(x|y) [24] via Equationwith energy €(x|y) = ug(x)[y] where p1g : X — R returns
the linear predictions (logits) of our classifier My. While our package also supports unconditional
sampling, we found conditional sampling to work well. It is also well aligned with CE, since in this
context we are interested in conditioning on the target class.

As mentioned in the body of the paper, we rely on a biased sampler involving separately specified
values for the step size € and the standard deviation o of the stochastic term involving r. Formally,
our biased sampler performs updates as follows:

N ~ € N .
Rjp1 X5 = SEK ) Fory, G=1,T ©)

Consistent with Grathwohl et al. [24]], we have specified ¢ = 2 and 0 = 0.01 as the default values for
all of our experiments. The number of total SGLD steps J varies by dataset (Table3). Following best
practices, we initialize xg randomly in 5% of all cases and sample from a buffer in all other cases.
The buffer itself is randomly initialised and gradually grows to a maximum of 10,000 samples during
training as Xy is stored in each epoch [? [24].

It is important to realise that sampling is done during each training epoch, which makes training Joint
Energy Models significantly harder than conventional neural classifiers. In each epoch the generated
(batch of) sample(s) Xy is used as part of the generative loss component, which compares its energy
to that of observed samples x: Lgen(6) = p9(x)[y] — po(%.s)[y]. Our full training objective can be
summarized as follows,

Ligm(0) = Leir(0) + Lgen(0) + ALreg (6) (10)

where Ly,(#) is a Ridge penalty (L2 norm) that regularises energy magnitudes for both observed and
generated samples [? ]. We have used varying degrees of regularization depending on the dataset (A
in Table[3).

Contrary to existing work, we have not typically used the entire minibatch of training data for the
generative loss component but found that using a subset of the minibatch was often sufficient in
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Table 3: EBM hyperparemeter choices for our experiments.

Dataset SGLD Steps  Batch Size A

Linearly Separable 30 50 0.10
Moons 30 10 0.10

Circles 20 100 0.01

MNIST 25 10 0.01

GMSC 30 10 0.10

JEM Ensemble

l
BEEEOHEEER
lalal= =

Figure 3: Conditionally generated MNIST images for our JEM Ensemble.

'k

L)

attaining decent generative performance (Table [3). This has helped to reduce the computational
burden for our models, which should make it easier for others to reproduce our findings. Figures 3|
and [ show generated samples for our MNIST and Moons data, to provide a sense of their generative

property.

A.2 Inference: Quantifying Models’ Generative Property

At inference time, we assume no prior knowledge about the model’s generative property. This means
that we do not tab into the existing buffer of generated samples for our Joint Energy Models, but
instead generate conditional samples from scratch. While we have relied on the default values € = 2
and ¢ = 0.01 also during inference, the number of total SGLD steps was set to J = 500 in all cases,
so significantly higher than during training. For all of our synthetic datasets and models, we generated
50 conditional samples and then formed subsets containing the np = 25 lowest-energy samples.
While in practice it would be sufficient to do this once for each model and dataset, we have chosen
to perform sampling separately for each individual counterfactual in our experiments to account for
stochasticity. To help reduce the computational burden for our real-world datasets we have generated
only 10 conditional samples each time and used all of them in our counterfactual search. Using more
samples, as we originally did, had no substantial impact on our results.
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Figure 4: Conditionally generated samples (stars) for our Moons data using a JEM.

B Conformal Prediction

In this Appendix [B]we provide some more background on CP and explain in some more detail how
we have used recent advances in Conformal Training for our purposes.

B.1 Background on CP

Intuitively, CP works under the premise of turning heuristic notions of uncertainty into rigorous
uncertainty estimates by repeatedly sifting through the data. It can be used to generate prediction
intervals for regression models and prediction sets for classification models. Since the literature on
CE and AR is typically concerned with classification problems, we focus on the latter. A particular
variant of CP called Split Conformal Prediction (SCP) is well-suited for our purposes, because it
imposes only minimal restrictions on model training.

Specifically, SCP involves splitting the data D,, = {(x;,¥;) }i=1,...,» into a proper training set Dyin
and a calibration set D.,;. The former is used to train the classifier in any conventional fashion.
The latter is then used to compute so-called nonconformity scores: S = {s(x;,y:) }ien,, Where
s:(X,Y) — Risreferred to as score function. In the context of classification, a common choice for
the score function is just s; = 1 — Mpy(x;)[y;], that is one minus the softmax output corresponding
to the observed label y; [28]].

Finally, classification sets are formed as follows,

Co(x4;0) = {y : s(xs,y) < ¢} (1D

where ¢ denotes the (1 — «)-quantile of S and « is a predetermined error rate. As the size of the
calibration set increases, the probability that the classification set C'(Xey) for a newly arrived sample
Xeest does not cover the true test label y.s approaches « [28].

Observe from Equationl];flthat Conformal Prediction works on an instance-level basis, much like CE
are local. The prediction set for an individual instance x; depends only on the characteristics of that
sample and the specified error rate. Intuitively, the set is more likely to include multiple labels for
samples that are difficult to classify, so the set size is indicative of predictive uncertainty. To see why
this effect is exacerbated by small choices for « consider the case of o = 0, which requires that the
true label is covered by the prediction set with probability equal to 1.

B.2 Differentiability

The fact that conformal classifiers produce set-valued predictions introduces a challenge: it is not
immediately obvious how to use such classifiers in the context of gradient-based counterfactual
search. Put differently, it is not clear how to use prediction sets in Equation[I] Fortunately, Stutz et al.
[30] have recently proposed a framework for Conformal Training that also hinges on differentiability.
Specifically, they show how Stochastic Gradient Descent can be used to train classifiers not only
for the discriminative task but also for additional objectives related to Conformal Prediction. One
such objective is efficiency: for a given target error rate «, the efficiency of a conformal classifier
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Figure 5: Prediction set size (left), smooth set size loss (centre) and configurable classification loss
(right) for a JEM trained on our Linearly Separable data.

improves as its average prediction set size decreases. To this end, the authors introduce a smooth set
size penalty defined in Equationin the body of this paper. Formally, it is defined as Cy y (x;; o) :=
o ((s(xi, y)— a)Tﬁl) for y € ), where o is the sigmoid function and 7" is a hyper-parameter used
for temperature scaling [30].

In addition to the smooth set size penalty, Stutz et al. also propose a configurable classification
loss function, that can be used to enforce coverage. For MNIST data, we found that using this
function generally improved the visual quality of the generated counterfactuals, so we used it
in our experiments involving real-world data. For the synthetic dataset, visual inspection of the
counterfactuals showed that using the configurable loss function sometimes led to overshooting:
counterfactuals would end up deep inside the target domain but far away from the observed samples.
For this reason, we instead relied on standard cross-entropy loss for our synthetic datasets. As we have
noted in the body of the paper, more experimental work is certainly needed in this context. Figure 3]
shows the prediction set size (left), smooth set size loss (centre) and configurable classification loss
(right) for a JEM trained on our Linearly Separable data.

C ECCCo

In this section, we explain ECCCo in some more detail, briefly discuss convergence conditions
for counterfactual explanations and provide details concerning the actual implementation of our
framework in Julia.

C.1 More detail on our generator

The counterfactual search objective for ECCCo was introduced in Equation[7]in the body of the paper.
We restate this equation here for reference:

Z' = arg min {yloss(My(f(Z)),y ") + Adist(f(Z'),x)
Z'cZL - (12)
+ M AE(Z X y+) + X3Q(Co(f(Z'); )}

We can make the connection to energy-based modeling more explicit by restating this equation in
terms of Equation[I0} In particular, for A,

C.2 A Note on Convergence

Convergence is not typically discussed much in the context of CE, even though it has important
implications on outcomes. One intuitive way to specify convergence is in terms of threshold
probabilities: once the predicted probability p(y T |x’) exceeds some user-defined threshold + such
that the counterfactual is valid, we could consider the search to have converged. In the binary case,
for example, convergence could be defined as p(y+|x’ ) > 0.5 in this sense. Note, however, how
this can be expected to yield counterfactuals in the proximity of the decision boundary, a region
characterized by high aleatoric uncertainty. In other words, counterfactuals generated in this way
would generally not be plausible. To avoid this from happening, we specify convergence in terms of
gradients approaching zero for all our experiments and all of our generators. This is allows us to get
a cleaner read on how the different counterfactual search objectives affect counterfactual outcomes.
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Table 4: Paremeter choices for our experiments.

Network Architecture Training

Dataset Sample Size Hidden Units Hidden Layers  Activation Ensemble Size Epochs Batch Size

Linearly Separable 1000 16 3 swish 5 100 100
Moons 2500 32 3 relu 5 500 128

Circles 1000 32 3 swish 5 100 100

MNIST 10000 128 1 swish 5 100 128

GMSC 13370 128 2 swish 5 100 250

Table 5: Various standard performance metrics for our different models grouped by dataset.

Performance Metrics

Dataset Model  Accuracy  Precision  F1-Score
Linearly Separable JEM 0.99 0.99 0.99
MLP 0.99 0.99 0.99

Moons JEM 1.00 1.00 1.00
MLP 1.00 1.00 1.00

Circles JEM 0.98 0.98 0.98
MLP 1.00 1.00 1.00

MNIST JEM 0.83 0.84 0.83
JEM Ensemble 0.90 0.90 0.89

MLP 0.95 0.95 0.95

MLP Ensemble 0.95 0.95 0.95

GMSC JEM 0.73 0.75 0.73
JEM Ensemble 0.73 0.75 0.73

MLP 0.75 0.75 0.75

MLP Ensemble 0.75 0.75 0.75

C.3 ECCCo.jl

The core part of our code base is integrated into a larger ecosystem of Julia packages that we
are actively developing and maintaining. To avoid compromising the double-blind review process,
we only provide a link to an anonymized repository at this stage: https://anonymous.4open,
science/r/ECCCo-1252/README . md.

D Experimental Setup

Table ] provides an overview of all parameters related to our experiments. The GMSC data were
randomly undersampled for balancing purposes and all features were standardized. MNIST data was
also randomly undersampled for reasons outlined below. Pixel values were preprocessed to fall in the
range of [—1, 1] and a small Gaussian noise component (o = 0.03) was added to training samples
following common practice in the EBM literature. All of our models were trained through mini-batch
training using the Adam optimiser (Kingma and Ba [39]]). Table [5]shows standard evaluation metrics
measuring the predictive performance of our different models grouped by dataset. These measures
were computed on test data.

Table [6| summarises our hyperparameter choices for the counterfactual generators where 7 denotes
the learning rate used for Stochastic Gradient Descent (SGD) and A1, A2, A3 represent the chosen
penalty strengths (Equations[T]and[7). Here A; also refers to the chosen penalty for the distance from
factual values that applies to both Wachter and REVISE, but not Schut which is penalty-free. Schut is
also the only generator that uses JSMA instead of SGD for optimization.
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Table 6: Generator hyperparameters.

Dataset n A A2 A3

Linearly Separable  0.01 025 0.75 0.75
Moons 0.05 025 0.75 0.75

Circles 001 025 075 0.75

MNIST 0.10 0.10 025 025

GMSC 005 0.10 0.50 0.0

D.1 Compute

To enable others to easily replicate our experiments, we have chosen to work with small neural
network architectures and randomly undersampled the MNIST dataset (maintaining class balance).
All of our experiments could then be run locally on a personal machine. The longest runtimes we
experienced for model training and counterfactual benchmarking were on the order of 8-12 hours
(MNIST data). For the synthetic data, all experiments could be completed in less than an hour.

We have summarised our system information below:

Software:

» System Version: macOS 13.3.1
» Kernel Version: Darwin 22.4.0

Hardware:

* Model Name: MacBook Pro

¢ Model Identifier: MacBookPro16,1

¢ Processor Name: 8-Core Intel Core i9
* Processor Speed: 2.3 GHz

e Number of Processors: 1

* Total Number of Cores: 8

* L2 Cache (per Core): 256 KB

e L3 Cache: 16 MB

* Hyper-Threading Technology: Enabled
* Memory: 32 GB

E Results

Figure [6] shows examples of counterfactuals for MNIST data where the underlying model is our JEM
Ensemble. Original images are shown on the diagonal and the corresponding counterfactuals are
plotted across rows.

Table [7 reports all of the evaluation metrics we have computed. Table [§]reports the same metrics
for the subset of valid counterfactuals. The ‘Unfaithfulness’ and ‘Implausibility’ metrics have been
discussed extensively in the body of the paper. The ‘Cost’ metric relates to the distance between
the factual and the counterfactual. The ‘Redundancy’ metric measures sparsity in is defined as the
percentage of features that remain unperturbed (higher is better). The ‘Uncertainty’ metric is just
the average value of the smooth set size penalty (Equationd). Finally, ‘Validity’ is the percentage of
valid counterfactuals.
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Table 7: All results for all datasets: sample averages +/- one standard deviation over all counterfactuals.
Best outcomes are highlighted in bold. Asterisks indicate that the given value is more than one (*) or
two (**) standard deviations away from the baseline (Wachter).

Model Data Generator Cost | Unfaithfulness | Implausibility | ~ Redundancy T Uncertainty | Validity 1
Circles JEM ECCCo 0.74 £0.21 0.52+0.36 1.22+0.46 0.00 +0.00 0.00 +0.00 1.00 £ 0.00**
ECCCo (no CP) 0.72 +0.21 0.54 +0.39 1.21+0.46 0.00 +0.00 0.00 + 0.00 1.00 £ 0.00**
ECCCo (no EBM) 0.52+0.15 0.70 +0.33 1.30 +£0.37 0.00 +0.00 0.00 + 0.00 1.00 % 0.00°**
REVISE 0.97 £0.34 0.48 +0.16* 0.95 £ 0.32* 0.00 +0.00 0.00 +0.00 0.50 +0.51
Schut 1.06 £ 0.43 0.54 +£0.43 1.28 +0.53 0.26 £0.25%  0.00 +0.00 1.00 £ 0.00**
‘Wachter 0.44 +£0.16 0.68 +0.34 1.33+0.32 0.00 +0.00 0.00 + 0.00 0.98 +0.14
MLP ECCCo 0.67 £0.19 0.65+0.53 1.17+£0.41 0.00 +0.00 0.09 £0.19%*  1.00 £ 0.00
ECCCo (no CP) 0.71 £0.16 0.49 +0.35 1.19+0.44 0.00 + 0.00 0.05 +0.16**  1.00 + 0.00
ECCCo (no EBM) 0.45+0.11 0.84 +£0.51 1.23+0.31 0.00 +0.00 0.15+0.23*  1.00 £ 0.00
REVISE 0.96 +0.31 0.58 +£0.52 0.95 +0.32 0.00 +0.00 0.00 £ 0.00%*  0.50 +0.51
Schut 0.57+0.11 0.58 +0.37 1.23+043 0.43 +£0.18**  0.00 + 0.00**  1.00 + 0.00
‘Wachter 0.40 + 0.09 0.83 +0.50 1.24+£0.29 0.00 +0.00 0.53+0.01 1.00 £ 0.00
JEM ECCCo 17.45 +2.92%* 79.16 + 11.67** 18.26 £4.92%*  0.00 +0.00 0.10 +0.01 1.00 + 0.00
GMSC REVISE 343 £ 1.67% 186.40 + 28.06 5.34 £2.38%* 0.00 +0.00 0.51+0.22 1.00 + 0.00
Schut 1.27 £ 0.33+* 200.98 +28.49 6.50 +2.01%* 0.77 £0.07**  0.07 +0.00 1.00 + 0.00
‘Wachter 57.71 £0.47 214.08 +45.35 61.04 £2.58 0.00 + 0.00 0.07 + 0.00 1.00 + 0.00
JEM Ensemble ECCCo 17.43 £3.04%* 83.28 + 13.26%* 17.21 £4.46%*  0.00 +0.00 0.16 £0.11 1.00 +0.00
REVISE 2.94 &+ 1.13%* 194.24 +£35.41 4.95 £ 1.26%* 0.00 = 0.00 0.51+0.29 1.00 £ 0.00
Schut 1.03 + 0.20°** 208.45 + 34.60 6.12+1.91%* 0.85 +0.05%*  0.09 +0.04 1.00 + 0.00
‘Wachter 56.79 + 44.68 186.19 + 33.88 60.70 +44.32 0.00 +0.00 0.07 £ 0.00 1.00 £ 0.00
MLP ECCCo 17.05 + 2.87** 75.93 + 14.27%* 17.20 £3.15%  0.00 + 0.00 0.19 +0.08 1.00 + 0.00°*
REVISE 2.93 + 1.24%* 196.75 +41.25 4.84 £ 0.60** 0.00 +0.00 0.38+0.18 1.00 £ 0.00**
Schut 1.49 £ 0.87+* 212.00 £41.15 6.44 + 1.34%+ 0.77 £0.13**  0.12+0.01 1.00 £ 0.00**
‘Wachter 42.97 +39.50 218.34 +53.26 45.84 +£39.39 0.00 +0.00 0.06 + 0.06 0.50 +0.51
MLP Ensemble ECCCo 16.63 +2.62%* 73.86 + 14.63+* 17.92 +£4.17%%  0.00 £0.00 0.23+£0.07 1.00 £ 0.00**
REVISE 3.73 £2.36%* 207.21 £43.20 5.78 £ 2.10%* 0.00 + 0.00 0.33+0.19 1.00 + 0.00°*
Schut 1.20 £ 0.47* 205.36 +32.11 7.00 +2.15%* 0.79 £0.09**  0.12+0.01 1.00 £ 0.00°**
‘Wachter 69.30 £ 66.00 213.71 £54.17 73.09 £ 64.50 0.00 +0.00 0.06 + 0.06 0.50 £0.51
Lincarly Separable JEM ECCCo 0.75+0.17 0.03 + 0.06%* 0.20 + 0.08%* 0.00 + 0.00 0.00 + 0.00 1.00 £ 0.00
ECCCo (no CP) 0.75+0.17 0.03 +0.06%** 0.20 + 0.08** 0.00 +0.00 0.00 = 0.00 1.00 £ 0.00
ECCCo (no EBM) 0.70 +£0.16 0.16 £0.11 0.34 £0.19 0.00 +0.00 0.00 = 0.00 1.00 £ 0.00
REVISE 0.41 +£0.15 0.19 +£0.03 0.41 +£0.01%* 0.00 + 0.00 0.36 +0.36 0.50 +0.51
Schut 1.15+0.35 0.39 +0.07 0.73+0.17 0.25 +0.25 0.00 = 0.00 1.00 £ 0.00
Wachter 0.50 +0.13 0.18 £0.10 044 +0.17 0.00 + 0.00 0.00 + 0.00 1.00 £ 0.00
MLP ECCCo 0.95+0.16 0.29 +0.05%* 0.23 +0.06** 0.00 +0.00 0.00 £ 0.00%*  1.00 £ 0.00
ECCCo (no CP) 0.94 +£0.16 0.29 +0.05%* 0.23 £ 0.07* 0.00 +0.00 0.00 £ 0.00%*  1.00 £ 0.00
ECCCo (no EBM) 0.60 +0.15 0.46 +0.05 0.28 +0.047* 0.00 +0.00 0.02 +£0.10%*  1.00 + 0.00
REVISE 0.42 +£0.14 0.56 +0.05 0.41+0.01 0.00 +0.00 0.47 +0.50 0.48 +0.50
Schut 0.77 £0.17 0.43 +0.06* 0.47 +£0.36 0.20 +£0.25 0.00 £ 0.00%*  1.00 £ 0.00
‘Wachter 0.51+0.15 0.51 +0.04 0.40 +0.08 0.00 +0.00 0.59 +0.02 1.00 £ 0.00
JEM ECCCo 334.61 £46.37 19.28 £5.01%*  314.76 +£32.36*  0.00 = 0.00 4.43 +£0.56 0.98 +0.12
MNIST REVISE 170.68 + 63.26 188.70 £26.18*  255.26 + 41.50**  0.00 + 0.00 4.39+091 0.96 +0.20
Schut 9.44 + 1.60** 211.00 +27.21 286.61 +£39.85%  0.99 £0.00%* 1.08 £ 1.95*  0.24 £0.43
Wachter 128.36 + 14.95 222.90 £ 26.56 361.88 +39.74 0.00 +0.00 4.37+0.98 0.95+0.21
JEM Ensemble ECCCo 342.64 +41.14 15.99 £3.06%*  294.72 +30.75**  0.00 + 0.00 2.07 £0.06™*  1.00 + 0.00**
REVISE 170.21 + 58.02 173.59 £20.65%*  246.32 + 37.46**  0.00 = 0.00 2.56 +0.83 0.93+0.26
Schut 9.78 + 1.02+* 205.33 £24.07 287.39+£39.33*%  0.99 £0.00%*  0.32£0.94%* 0.11+0.31
‘Wachter 135.07 £ 16.79 217.67 +23.78 363.23 +39.24 0.00 + 0.00 2.93+0.77 0.94 +0.23
MLP ECCCo 605.17 +44.78 41.95 £ 6.50%*  591.58 +36.24 0.00 +0.00 0.57 £0.00%*  1.00 % 0.00**
REVISE 146.61 +36.96 365.82+15.35%  249.49 +41.55%*  0.00 +0.00 0.62 +0.30 0.87 £0.34
Schut 9.95 + 0.37+* 382.44 +17.81 285.98 +42.48*%  0.99 £0.00%*  0.050.19** 0.06 +0.24
Wachter 136.08 + 16.09 386.05 + 16.60 361.83 £42.18 0.00 +0.00 0.68 +0.36 0.84 +£0.36
MLP Ensemble ECCCo 525.87 +34.00 31.43 £3.91%*  490.88 +27.19 0.00 +0.00 0.29 £0.00%*  1.00 % 0.00**
REVISE 146.60 + 35.64 337.74 £ 11.89%  247.67 + 38.36**  0.00 + 0.00 0.39 +£0.22 0.85+0.36
Schut 9.98 + 0.25%* 359.54 + 14.52 283.99 +41.08%  0.99 +£0.00%*  0.03+0.14** 0.06 + 0.24
‘Wachter 137.53 £ 18.95 360.79 + 14.39 357.73 £42.55 0.00 +0.00 0.47 +0.64 0.80 +0.40
Moons JEM ECCCo 1.56 +0.44 0.31 +0.30* 1.20 + 0.15%* 0.00 +0.00 0.00 + 0.00%*  1.00 * 0.00**
ECCCo (no CP) 1.56 +0.46 0.37 +0.30% 1.21 £0.17%* 0.00 + 0.00 0.00 £ 0.00%*  1.00 % 0.00**
ECCCo (no EBM) 0.80 +0.25 0.91 +£0.32 1.71£0.25 0.00 +0.00 0.00 £ 0.00%*  1.00 % 0.00**
REVISE 1.04 £0.43 0.78 £0.23 1.57 £0.26 0.00 +0.00 0.00 + 0.00%*  1.00 % 0.00**
Schut 1.12+0.31 0.67 £0.27 1.50 +0.22* 0.08 +0.19 0.00 £ 0.00%*  0.98 +£0.14
‘Wachter 0.72 £0.24 0.80 +0.27 1.78 £0.24 0.00 +0.00 0.02+0.10 0.98 +0.14
MLP ECCCo 2.18+1.05 0.80 + 0.62 1.69 +0.40 0.00 +0.00 0.15+0.24*  1.00 £ 0.00
ECCCo (no CP) 2.07+1.15 0.79 +0.62 1.68 +0.42 0.00 +0.00 0.15+0.24*  1.00 £ 0.00
ECCCo (no EBM) 1.25+0.92 1.34 £0.47 1.68 £0.47 0.00 +0.00 0.43+0.18 1.00 £ 0.00
REVISE 0.79 +0.19* 1.45+0.44 1.64 £0.31 0.00 + 0.00 0.40 +0.22 1.00 £ 0.00
Schut 0.73 £ 0.25* 1.45+0.55 1.73£0.48 0.31£0.28*  0.00 £ 0.00%* 0.90 +0.30
Wachter 1.08 £0.83 1.32£0.41 1.69 £ 0.32 0.00 +0.00 0.52+0.08 1.00 £ 0.00
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Table 8: All results for all datasets: sample averages +/- one standard deviation over all valid
counterfactuals. Best outcomes are highlighted in bold. Asterisks indicate that the given value is
more than one (*) or two (**) standard deviations away from the baseline (Wachter).

Model Data Generator Cost | Unfaithfulness | ~ Implausibility | ~ Redundancy T  Uncertainty | Validity T
Circles JEM ECCCo 0.74 +£0.21 0.52+0.36 1.22+£0.46 0.00 +0.00 0.00 +0.00 1.00 £ 0.00
ECCCo (no CP) 0.72+0.21 0.54 £0.39 1.21 £0.46 0.00 +0.00 0.00 +0.00 1.00 £ 0.00

ECCCo (no EBM) 0.52+0.15 0.70 £0.33 1.30 £ 0.37 0.00 +0.00 0.00 +0.00 1.00 + 0.00

REVISE 1.28 £0.14 0.33 £ 0.01+* 0.64 £ 0.00%* 0.00 +0.00 0.00 +0.00 1.00 £ 0.00

Schut 1.06 +0.43 0.54 £0.43 1.28+£0.53 0.26 + 0.25* 0.00 +0.00 1.00 + 0.00

‘Wachter 045+ 0.15 0.68 +0.34 1.33+£0.32 0.00 +0.00 0.00 +0.00 1.00 + 0.00

MLP ECCCo 0.67 +0.19 0.65+0.53 1.17 £0.41 0.00 £ 0.00 0.09 £0.19%*  1.00 +0.00
ECCCo (no CP) 0.71+0.16 0.49 £0.35 1.19 £ 0.44 0.00 +0.00 0.05 +£0.16%*  1.00 + 0.00

ECCCo (no EBM) 045+0.11 0.84 £0.51 1.23+0.31 0.00 +0.00 0.15 +£0.23* 1.00 £ 0.00

REVISE 1.24+0.15 0.06 £ 0.01°* 0.64 £ 0.00%* 0.00 £ 0.00 0.00 £ 0.00%* 1.00 +0.00

Schut 0.57+0.11 0.58 +£0.37 1.23+£043 0.43 £0.18**  0.00 = 0.00** 1.00 = 0.00

‘Wachter 0.40 = 0.09 0.83 +£0.50 1.24 +£0.29 0.00 +0.00 0.53+0.01 1.00 £ 0.00

JEM ECCCo 17.45 £2.927%* 79.16 + 11.67%* 18.26 + 4.92%+* 0.00 +0.00 0.10+0.01 1.00 + 0.00
GMSC REVISE 3.43 £ 1.67%* 186.40 + 28.06 5.34 +2.38%* 0.00 +0.00 0.51+0.22 1.00 + 0.00
Schut 1.27 £ 0.33%* 200.98 + 28.49 6.50 £2.01%* 0.77 £0.07*  0.07 £ 0.00 1.00 £ 0.00

‘Wachter 57.71 £ 0.47 214.08 +45.35 61.04 £2.58 0.00 +0.00 0.07 +£0.00 1.00 + 0.00

JEM Ensemble ECCCo 17.43 £ 3.04%* 83.28 £ 13.26%* 17.21 £ 4.46%* 0.00 +0.00 0.16 +£0.11 1.00 £ 0.00
REVISE 2.94 & 1.13%* 194.24 +35.41 4.95 + 1.26%* 0.00 +0.00 0.51+0.29 1.00 + 0.00

Schut 1.03 £ 0.20%* 208.45 + 34.60 6.12 £ 1.91%* 0.85 £ 0.05**  0.09 +0.04 1.00 + 0.00

‘Wachter 56.79 + 44.68 186.19 +33.88 60.70 + 44.32 0.00 +0.00 0.07 = 0.00 1.00 £ 0.00

MLP ECCCo 17.05 +2.87 75.93 + 14.27%* 17.20 +3.15 0.00 +0.00 0.19 +£0.08 1.00 + 0.00
REVISE 2.93 +1.24% 196.75 + 41.25 4.84 + 0.60** 0.00 +0.00 0.38+0.18 1.00 £ 0.00

Schut 1.49 £ 0.87+* 212.00 £41.15 6.44 +1.34 0.77 £ 0.13**  0.12+0.01 1.00 £ 0.00

‘Wachter 448 +£0.18 184.03 +48.16 7.49 +0.89 0.00 +0.00 0.12 +0.00 1.00 + 0.00

MLP Ensemble ECCCo 16.63 +2.62 73.86 + 14.63%* 17.92+4.17 0.00 £ 0.00 0.23£0.07 1.00 £ 0.00
REVISE 3.73+2.36 207.21 +£43.20 5.78 £ 2.10%* 0.00 +0.00 0.33+0.19 1.00 + 0.00

Schut 1.20 + 0.47%* 205.36 +32.11 7.00 £2.15% 0.79 £ 0.09%*  0.12+0.01 1.00 + 0.00

Wachter 4.97 £0.47 177.20 +25.86 10.27 £3.21 0.00 £ 0.00 0.11 £ 0.00 1.00 £ 0.00

Linearly Separable JEM ECCCo 0.75+0.17 0.03 £ 0.06%* 0.20 £ 0.08%* 0.00 +0.00 0.00 +0.00 1.00 + 0.00
ECCCo (no CP) 0.75+£0.17 0.03 £ 0.06%* 0.20 £ 0.08** 0.00 +0.00 0.00 = 0.00 1.00 £ 0.00

ECCCo (no EBM) 0.70+0.16 0.16 £0.11 0.34+0.19 0.00 +0.00 0.00 +0.00 1.00 + 0.00

REVISE 0.41+0.14 0.15 £ 0.00%* 0.41 £0.01%* 0.00 +0.00 0.72+0.02 1.00 + 0.00

Schut 1.15+£0.35 0.39 £0.07 0.73£0.17 0.25+0.25 0.00 = 0.00 1.00 £ 0.00

Wachter 0.50 £0.13 0.18 +£0.10 0.44 £0.17 0.00 +0.00 0.00 +0.00 1.00 + 0.00

MLP ECCCo 0.95+0.16 0.29 + 0.05** 0.23 £0.06%* 0.00 +0.00 0.00 = 0.00%*  1.00 +0.00
ECCCo (no CP) 0.94£0.16 0.29 £ 0.05%* 0.23 £0.07%* 0.00 £ 0.00 0.00 £ 0.00%* 1.00 +0.00

ECCCo (no EBM) 0.60 £0.15 0.46 +0.05 0.28 £ 0.04%* 0.00 +0.00 0.02 £0.10%*  1.00 + 0.00

REVISE 0.39 +£0.15 0.52 +£0.04 0.41 £0.01 0.00 +0.00 0.98 +£0.00 1.00 £ 0.00

Schut 0.77 +0.17 0.43 £ 0.06* 0.47 £0.36 0.20 £ 0.25 0.00 £ 0.00%*  1.00 +0.00

‘Wachter 0.51+£0.15 0.51+0.04 0.40 +0.08 0.00 +0.00 0.59 £0.02 1.00 + 0.00

JEM ECCCo 334.98 +46.54 19.27 £5.02%% 31454 +£32.54%  0.00 +0.00 4.50 £ 0.00%* 1.00 +0.00
MNIST REVISE 170.06 + 62.45 188.54 +26.22* 254.32 + 41.55**  0.00 = 0.00 4.57+0.14 1.00 + 0.00
Schut 7.63 £ 2.55%* 199.70 +28.43 273.01 £39.60%*  0.99 £ 0.00%*  4.56+0.13 1.00 + 0.00

Wachter 128.13 + 14.81 222.81+£26.22 361.38 +39.55 0.00 £ 0.00 4.58£0.16 1.00 £ 0.00

JEM Ensemble ECCCo 342.64 +41.14 15.99 + 3.06%* 294.72 +30.75*%*  0.00 + 0.00 2.07 £0.06%* 1.00 + 0.00
REVISE 171.95 £ 58.81 173.05 +20.38%*  246.20 + 37.74**  0.00 + 0.00 2.76 £0.45 1.00 £ 0.00

Schut 7.96 + 2.49%* 186.91 +22.98* 264.68 £37.58%*  0.99 £ 0.00%*  3.02 +0.26 1.00 £ 0.00

‘Wachter 134.98 + 16.95 217.37 +23.93 362.91 +39.40 0.00 +0.00 3.10+0.31 1.00 + 0.00

MLP ECCCo 605.17 +44.78 41.95+6.50%  591.58 +36.24 0.00 £ 0.00 0.57 £ 0.00%*  1.00 +0.00
REVISE 146.76 + 37.07 365.69 + 14.90* 245.36 +39.69**  0.00 = 0.00 0.72+0.18 1.00 + 0.00

Schut 9.25 + 1.31°+* 371.12+19.99 245.11 +£35.72*%*  0.99 £ 0.00%* 0.75+0.23 1.00 £ 0.00

Wachter 135.08 + 15.68 384.76 + 16.52 359.21+42.03 0.00 £ 0.00 0.81+0.22 1.00 +0.00

MLP Ensemble ECCCo 525.87 +34.00 31.43 £3.91%* 490.88 +27.19 0.00 +0.00 0.29 £ 0.00%*  1.00 £ 0.00
REVISE 146.38 +35.18 33721 £11.68%  244.84 £ 37.17+*  0.00 £ 0.00 0.45£0.16 1.00 £ 0.00

Schut 9.75 + 1.00%* 344.60 + 13.64* 252.53 £37.92%%  0.99 +£0.00%* 0.55+0.21 1.00 + 0.00

‘Wachter 134.48 + 17.69 358.51 +13.18 352.63 £39.93 0.00 +0.00 0.58 £0.67 1.00 £ 0.00

Moons JEM ECCCo 1.56 £ 0.44 0.31 £ 0.30* 1.20 £ 0.15%* 0.00 +0.00 0.00 = 0.00%*  1.00 +0.00
ECCCo (no CP) 1.56 £ 0.46 0.37 £0.30% 1.21 £0.17%% 0.00 +0.00 0.00 + 0.00%*  1.00 + 0.00

ECCCo (no EBM) 0.80 £0.25 0.91£0.32 1.71£0.25 0.00 +0.00 0.00 = 0.00%*  1.00 +0.00

REVISE 1.04 £0.43 0.78 £0.23 1.57 £0.26 0.00 +0.00 0.00 = 0.00%*  1.00 +0.00

Schut 1.13£0.29 0.66 +0.25 1.47 £ 0.10%* 0.07 +£0.18 0.00 + 0.00%*  1.00 + 0.00

‘Wachter 0.73 +£0.24 0.78 £0.23 1.75+£0.19 0.00 +0.00 0.02+0.11 1.00 £ 0.00

MLP ECCCo 2.18 £ 1.05 0.80 +0.62 1.69 + 0.40 0.00 +0.00 0.15 +£0.24% 1.00 + 0.00
ECCCo (no CP) 2.07+1.15 0.79 + 0.62 1.68 +£0.42 0.00 +0.00 0.15 +£0.24% 1.00 £ 0.00

ECCCo (no EBM) 1.25+0.92 1.34 £0.47 1.68 £0.47 0.00 £ 0.00 0.43+0.18 1.00 +0.00

REVISE 0.79 £0.19* 1.45+0.44 1.64 £ 0.31 0.00 +0.00 0.40+0.22 1.00 + 0.00

Schut 0.78 + 0.17* 1.39 £ 0.50 1.59 £ 0.26 0.28 + 0.25* 0.00 + 0.00%*  1.00 +0.00

Wachter 1.08 +£0.83 132+ 0.41 1.69 +£0.32 0.00 £ 0.00 0.52 +0.08 1.00 +0.00
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Figure 6: Counterfactuals for MNIST data and our JEM Ensemble. Original images are shown on the
diagonal with the corresponding counterfactuals plotted across rows.
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