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Abstract

Counterfactual explanations offer an intuitive and straightfor-
ward way to explain black-box models and offer algorithmic
recourse to individuals. To address the need for plausible ex-
planations, existing work has primarily relied on surrogate
models to learn how the input data is distributed. This effec-
tively reallocates the task of learning realistic explanations
for the data from the model itself to the surrogate. Conse-
quently, the generated explanations may seem plausible to
humans but need not necessarily describe the behaviour of
the black-box model faithfully. We formalise this notion of
faithfulness through the introduction of a tailored evaluation
metric and propose a novel algorithmic framework for gen-
erating Energy-Constrained Conformal Counterfactuals that
are only as plausible as the model permits. Through exten-
sive empirical studies, we demonstrate that ECCCo recon-
ciles the need for faithfulness and plausibility. In particular,
we show that for models with gradient access, it is possi-
ble to achieve state-of-the-art performance without the need
for surrogate models. To do so, our framework relies solely
on properties defining the black-box model itself by leverag-
ing recent advances in energy-based modelling and confor-
mal prediction. To our knowledge, this is the first venture in
this direction for generating faithful counterfactual explana-
tions. Thus, we anticipate that ECCCo can serve as a baseline
for future research. We believe that our work opens avenues
for researchers and practitioners seeking tools to better dis-
tinguish trustworthy from unreliable models.

1 Introduction

Counterfactual explanations provide a powerful, flexible and
intuitive way to not only explain black-box models but
also help affected individuals through the means of algo-
rithmic recourse. Instead of opening the black box, coun-
terfactual explanations work under the premise of strate-
gically perturbing model inputs to understand model be-
haviour (Wachter, Mittelstadt, and Russell 2017). Intuitively
speaking, we generate explanations in this context by asking
what-if questions of the following nature: ‘Our credit risk
model currently predicts that this individual is not credit-
worthy. What if they reduced their monthly expenditures by
10%?”

This is typically implemented by defining a target out-
come yt € Y for some individual x € X = RP described
by D attributes, for which the model My : X — Y ini-

tially predicts a different outcome: My(x) # y ™. Counter-
factuals are then searched by minimizing a loss function that
compares the predicted model output to the target outcome:
yloss(Mpy(x),y ™). Since counterfactual explanations work
directly with the black-box model, valid counterfactuals al-
ways have full local fidelity by construction where fidelity
is defined as the degree to which explanations approximate
the predictions of a black-box model (Mothilal, Sharma, and
Tan 2020; Molnar 2022).

In situations where full fidelity is a requirement, counter-
factual explanations offer a more appropriate solution to Ex-
plainable Artificial Intelligence (XAI) than other popular ap-
proaches like LIME (Ribeiro, Singh, and Guestrin 2016) and
SHAP (Lundberg and Lee 2017), which involve local surro-
gate models. But even full fidelity is not a sufficient condi-
tion for ensuring that an explanation faithfully describes the
behaviour of a model. That is because multiple very distinct
explanations can all lead to the same model prediction, espe-
cially when dealing with heavily parameterized models like
deep neural networks, which are typically underspecified by
the data (Wilson 2020).

In the context of counterfactuals, the idea that no two ex-
planations are the same arises almost naturally. A key focus
in the literature has therefore been to identify those expla-
nations and algorithmic recourses that are most appropriate
based on a myriad of desiderata such as closeness (Wachter,
Mittelstadt, and Russell 2017), sparsity (Schut et al. 2021),
actionability (Ustun, Spangher, and Liu 2019) and plausibil-
ity (Joshi et al. 2019).

In this work, we draw closer attention to model faithful-
ness rather than fidelity as a desideratum for counterfactuals.
We define faithfulness as the degree to which counterfactu-
als are consistent with what the model has learned about the
data. Our key contributions are as follows:

* We show that fidelity is an insufficient evaluation metric
for counterfactuals (Section 3) and propose a definition
of faithfulness that gives rise to more suitable metrics
(Section 4).

* We introduce a ECCCo: a novel algorithmic approach
aimed at generating Energy-Constrained Conformal
Counterfactuals that faithfully explain model behaviour
in Section 5.

* We provide extensive empirical evidence demonstrating



that ecccos faithfully explain model behaviour and attain
plausibility only when appropriate (Section 6).

To our knowledge, this is the first venture in this direc-
tion for generating faithful counterfactuals. Thus, we antici-
pate that ECCCo can serve as a baseline for future research.
We believe that our work opens avenues for researchers and
practitioners seeking tools to better distinguish trustworthy
from unreliable models.

2 Background

While counterfactual explanations (CE) can also be gener-
ated for arbitrary regression models (Spooner et al. 2021),
existing work has primarily focused on classification prob-
lems. Let ) = (0,1)¥ denote the one-hot-encoded output
domain with K classes. Then most counterfactual genera-
tors rely on gradient descent to optimize different flavours
of the following counterfactual search objective:

7' = arg_min, {yloss(My(f(Z')).y") + Meost(f(2'))}
(D

Here yloss(+) denotes the primary loss function, f(-) is a
function that maps from the counterfactual state space to the
feature space and cost(+) is either a single penalty or a collec-
tion of penalties that are used to impose constraints through
regularization. Equation 1 restates the baseline approach to
gradient-based counterfactual search proposed by Wachter,
Mittelstadt, and Russell (2017) in general form as intro-
duced by Altmeyer et al. (2023). To explicitly account for
the multiplicity of explanations, Z' = {z;},, denotes an L-
dimensional array of counterfactual states.

The baseline approach, which we will simply refer to as
Wachter, searches a single counterfactual directly in the fea-
ture space and penalises its distance to the original factual.
In this case, f(-) is simply the identity function and Z cor-
responds to the feature space itself. Many derivative works
of Wachter, Mittelstadt, and Russell (2017) have proposed
new flavours of Equation 1, each of them designed to ad-
dress specific desiderata that counterfactuals ought to meet
in order to properly serve both Al practitioners and individ-
uals affected by algorithmic decision-making systems. The
list of desiderata includes but is not limited to the follow-
ing: sparsity, proximity (Wachter, Mittelstadt, and Russell
2017), actionability (Ustun, Spangher, and Liu 2019), diver-
sity (Mothilal, Sharma, and Tan 2020), plausibility (Joshi
et al. 2019; Poyiadzi et al. 2020; Schut et al. 2021), ro-
bustness (Upadhyay, Joshi, and Lakkaraju 2021; Pawelczyk
et al. 2022; Altmeyer et al. 2023) and causality (Karimi,
Scholkopf, and Valera 2021). Different counterfactual gen-
erators addressing these needs have been extensively sur-
veyed and evaluated in various studies (Verma, Dickerson,
and Hines 2020; Karimi et al. 2020; Pawelczyk et al. 2021;
Artelt et al. 2021; Guidotti 2022).

The notion of plausibility is central to all of the desider-
ata. For example, Artelt et al. (2021) find that plausibility
typically also leads to improved robustness. Similarly, plau-
sibility has also been connected to causality in the sense that
plausible counterfactuals respect causal relationships (Ma-
hajan, Tan, and Sharma 2019).

Consequently, the plausibility of counterfactuals has been
among the primary concerns for researchers. Achieving
plausibility is equivalent to ensuring that the generated
counterfactuals comply with the true and unobserved data-
generating process (DGP). We define plausibility formally
in this work as follows:

Definition 2.1 (Plausible Counterfactuals). Let X|yt =
p(x|y™) denote the true conditional distribution of samples
in the target class y+. Then for x' to be considered a plau-
sible counterfactual, we need: x' ~ X|y™.

To generate plausible counterfactuals, we first need to
quantify the conditional distribution of samples in the target
class (X]y™). We can then ensure that we generate counter-
factuals that comply with that distribution.

One straightforward way to do this is to use surrogate
models for the task. Joshi et al. (2019), for example, suggest
that instead of searching counterfactuals in the feature space
X, we can instead traverse a latent embedding Z (Equa-
tion 1) that implicitly codifies the DGP. To learn the la-
tent embedding, they propose using a generative model such
as a Variational Autoencoder (VAE). Provided the surro-
gate model is well-specified, their proposed approach called
REVISE can yield plausible explanations. Others have pro-
posed similar approaches: Dombrowski, Gerken, and Kessel
(2021) traverse the base space of a normalizing flow to solve
Equation 1; Poyiadzi et al. (2020) use density estimators
(» : X — [0,1)) to constrain the counterfactuals to dense
regions in the feature space; and, finally, Karimi, Scholkopf,
and Valera (2021) assume knowledge about the structural
causal model that generates the data.

A competing approach towards plausibility that is also
closely related to this work instead relies on the black-
box model itself. Schut et al. (2021) show that to meet
the plausibility objective we need not explicitly model the
input distribution. Pointing to the undesirable engineering
overhead induced by surrogate models, they propose that
we rely on the implicit minimisation of predictive uncer-
tainty instead. Their proposed methodology, which we will
refer to as Schut, solves Equation 1 by greedily applying
Jacobian-Based Saliency Map Attacks (JSMA) in the feature
space with cross-entropy loss and no penalty at all. The au-
thors demonstrate theoretically and empirically that their ap-
proach yields counterfactuals for which the model My pre-
dicts the target label y™ with high confidence. Provided the
model is well-specified, these counterfactuals are plausible.
This idea hinges on the assumption that the black-box model
provides well-calibrated predictive uncertainty estimates.

3 Why Fidelity is not Enough: A
Motivational Example

As discussed in the introduction, any valid counterfactual
also has full fidelity by construction: solutions to Equation 1
are considered valid as soon as the label predicted by the
model matches the target class. So while fidelity always ap-
plies, counterfactuals that address the various desiderata in-
troduced above can look vastly different from each other.
To demonstrate this with an example, we have trained
a simple image classifier My on the well-known MNIST
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Figure 1: Counterfactuals for turning a 9 (nine) into a 7
(seven): original image (left); then from left to right the
counterfactuals generated using Wachter, Schut and RE-
VISE.

dataset (LeCun 1998): a Multi-Layer Perceptron (MLP) with
above 90 percent test accuracy. No measures have been
taken to improve the model’s adversarial robustness or its ca-
pacity for predictive uncertainty quantification. The far left
panel of Figure 1 shows a random sample drawn from the
dataset. The underlying classifier correctly predicts the la-
bel ‘nine’ for this image. For the given factual image and
model, we have used Wachter, Schut and REVISE to gener-
ate one counterfactual each in the target class ‘seven’. The
perturbed images are shown next to the factual image from
left to right in Figure 1. Captions on top of the individual
images indicate the generator along with the predicted prob-
ability that the image belongs to the target class. In all three
cases that probability is above 90 percent and yet the coun-
terfactuals look very different from each other.

Since Wachter is only concerned with proximity, the gen-
erated counterfactual is almost indistinguishable from the
factual. The approach by Schut et al. (2021) expects a well-
calibrated model that can generate predictive uncertainty es-
timates. Since this is not the case, the generated counter-
factual looks like an adversarial example. Finally, the coun-
terfactual generated by REVISE looks much more plausible
than the other two. But is it also more faithful to the be-
haviour of our MNIST classifier? That is much less clear be-
cause the surrogate used by REVISE introduces friction: the
generated explanations no longer depend exclusively on the
black-box model itself.

So which of the counterfactuals most faithfully explains
the behaviour of our image classifier? Fidelity cannot help us
to make that judgement, because all of these counterfactuals
have full fidelity. Thus, fidelity is an insufficient evaluation
metric to assess the faithfulness of CE.

4 Faithful first, Plausible second

Considering the limitations of fidelity as demonstrated in the
previous section, analogous to Definition 2.1, we introduce
a new notion of faithfulness in the context of CE:

Definition 4.1 (Faithful Counterfactuals). Let Xply™ =
po(x|y ™) denote the conditional distribution of X in the tar-
get class yT, where 0 denotes the parameters of model M.
Then for x' to be considered a faithful counterfactual, we
need: x' ~ Xply™.

In doing this, we merge in and nuance the concept of
plausibility (Definition 2.1) where the notion of ‘consistent
with the data’ becomes ‘consistent with what the model has
learned about the data’.

4.1 Quantifying the Model’s Generative Property

To assess counterfactuals with respect to Definition 4.1, we
need a way to quantify the posterior conditional distribu-
tion pg(x|y ™). To this end, we draw on recent advances in
energy-based modelling (EBM), a subdomain of machine
learning that is concerned with generative or hybrid mod-
elling (Grathwohl et al. 2020; Du and Mordatch 2019). In
particular, note that if we fix y to our target value y ™, we can
conditionally draw from py(x|y™) by randomly initializing
Xo and then using Stochastic Gradient Langevin Dynamics
(SGLD) as follows,

€2

Xj+1 & X5 — Ejgg(Xj‘y—F) + €;r;, ] = 1, ceny J (2)

where r; ~ N(0,1) is the stochastic term and the step-
size ¢; is typically polynomially decayed (Welling and Teh
2011). The term &(x;|y™) denotes the model energy con-
ditioned on the target class label y* which we specify as
the negative logit corresponding to the target class label y™.
To allow for faster sampling, we follow the common prac-
tice of choosing the step-size ¢; and the standard deviation
of r; separately. While x ; is only guaranteed to distribute
as po(x|y™) if e - 0 and J — oo, the bias introduced
for a small finite € is negligible in practice (Murphy 2023;
Grathwohl et al. 2020). Appendix A provides additional im-
plementation details for any tasks related to energy-based
modelling.

Generating multiple samples using SGLD thus yields an

empirical distribution Xy + that approximates what the
model has learned about the input data. While in the context
of EBM, this is usually done during training, we propose to
repurpose this approach during inference in order to evaluate
and generate faithful model explanations.

4.2 Quantifying the Model’s Predictive
Uncertainty

Faithful counterfactuals can be expected to also be plausible
if the learned conditional distribution Xy|y ™ (Defintion 4.1)
is close to the true conditional distribution X[yt (Defini-
tion 2.1). We can further improve plausibility of counter-
factuals without the need for surrogate models that may
interfer with faithfulness by minimizing predictive uncer-
tainty (Schut et al. 2021). Unfortunately, this approach relies
on the assumption that the model itself can provide predic-
tive uncertainty estimates, which may be too restrictive in
practice.

To relax this assumption, we use conformal prediction
(CP), an approach to predictive uncertainty quantification
that has recently gained popularity (Angelopoulos and Bates
2021; Manokhin 2022). Crucially for our intended applica-
tion, CP is model-agnostic and can be applied during infer-
ence without placing any restrictions on model training. In-
tuitively, CP works under the premise of turning heuristic
notions of uncertainty into rigorous uncertainty estimates by
repeatedly sifting through the training data or a dedicated
calibration dataset.



Conformal classifiers produce prediction sets for individ-
ual inputs that include all output labels that can be reason-
ably attributed to the input. Finally, classification sets are
formed as follows,

Co(xi;0) = {y : s(xi,¥) < ¢} (3)
where ¢ denotes the (1 — «)-quantile of S and « is a pre-
determined error rate.

These sets tend to be larger for inputs that do not con-
form with the training data and are characterized by high
predictive uncertainty. To leverage this notion of predictive
uncertainty in the context of gradient-based counterfactual

search, we use a smooth set size penalty introduced by Stutz
et al. (2022):

Q(Cy(x;)) = max | 0, Z Coy(xisa) — K 4

yey

Here, k € {0,1} is a hyper-parameter and Cp y(x;; )
can be interpreted as the probability of label y being in-
cluded in the prediction set (see Appendix B for details). In
order to compute this penalty for any black-box model we
merely need to perform a single calibration pass through a
holdout set D, . Arguably, data is typically abundant and in
most applications, practitioners tend to hold out a test data
set anyway. Consequently, CP removes the restriction on the
family of predictive models, at the small cost of reserving
a subset of the available data for calibration. This particular
case of conformal prediction is referred to as *split confor-
mal prediction* (SCP) as it involves splitting the training
data into a proper training dataset and a calibration dataset.

4.3 Evaluating Plausibility and Faithfulness

The parallels between our definitions of plausibility and
faithfulness imply that we can also use similar evaluation
metrics in both cases. Since existing work has focused heav-
ily on plausibility, it offers a useful starting point. In partic-
ular, Guidotti (2022) have proposed an implausibility met-
ric that measures the distance of the counterfactual from its
nearest neighbour in the target class. As this distance is re-
duced, counterfactuals get more plausible under the assump-
tion that the nearest neighbour itself is plausible in the sense
of Definition 2.1. In this work, we use the following adapted
implausibility metric,

. /
lmpl(X 7:)( |Xy+‘ Z dlSt X X (5)

where x’ denotes the counterfactual and X+ is a subsam-
ple of the training data in the target class y*. By averaging
over multiple samples in this manner, we avoid the risk that
the nearest neighbour of x’ itself is not plausible according
to Definition 2.1 (e.g an outlier).

Equation 5 gives rise to a similar evaluation metric for
unfaithfulness. We swap out the subsample of observed in-
dividuals in the target class for the set of samples generated

through SGLD (Xy+):

1
dist(x’, x)

unfaith(x’, )A(g,y+ ) = (6)

|X9’y+ ‘ xeig,)ﬁ

Our default choice for the dist(-) function in both cases is
the Euclidean Norm.

S Energy-Constrained Conformal
Counterfactuals

Given our proposed notion of faithfulness, we now describe
ECCCo, our proposed framework for generating Energy-
Constrained Conformal Counterfactuals. It is based on the
premise that counterfactuals should first and foremost be
faithful. Plausibility, as a secondary concern, is then still at-
tainable, but only to the degree that the black-box model
itself has learned plausible explanations for the underlying
data.

We begin by substituting the loss function in Equation 1,

) + Acost(f(Z))}
(7
where Ljpm(f(Z'); My, y™) is a hybrid loss function
used in joint-energy modelling evaluated at a given coun-
terfactual state for a given model and target outcome:

Z = i L 7 Mg,y
argz{rélgL{ JEM(f( ), 0,y

LJEM(f(Z/); ) = Lclf(f(zl); ) + Lgen(f(zl); ) (8)

The first term, Ly, is any standard classification loss
function such as cross-entropy loss. The second term, Lgen,
is used to measure loss with respect to the generative task'.
In the context of joint-energy training, L., induces changes
in model parameters 6 that decrease the energy of ob-
served samples and increase the energy of samples generated
through SGLD (Du and Mordatch 2019).

The key observation in our context is that we can rely
solely on decreasing the energy of the counterfactual itself.
This is sufficient to capture the generative property of the un-
derlying model since it is implicitly captured by its parame-
ters 6. Importantly, this means that we do not need to gener-
ate conditional samples through SGLD during our counter-
factual search at all as we explain in Appendix C.

This observation leads to the following simple objective
function for ECCCo:

) + Ajcost(f(Z))
+ ME(f(Z)lyh) + AU Co(f(Z'); )}

Z = in {Lae(f(Z): My, yT
argzl}élgL{ ar(f(Z'); Mg,y

€))

The first penalty term involving A; induces closeness
like in Wachter, Mittelstadt, and Russell (2017). The second
penalty term involving A5 induces faithfulness by constrain-
ing the energy of the generated counterfactual. The third and
final penalty term involving Ag ensures that the generated
counterfactual is associated with low predictive uncertainty.

'In practice, regularization loss is typically also added. We fol-
low this convention but have omitted the term here for simplicity.



Wachter ECCCo (no EBM) ECCCo (no CP) ECCCo

® ®

S b < > S
‘ J*‘ 1 .:'5 | {"';!. ‘ l«i.

Figure 2: Gradient fields and counterfactual paths for differ-
ent generators. The objective is to generate a counterfual in
the ‘blue’ class for a sample from the ‘orange’ class. Bright
yellow stars indicate conditional samples generated through
SGLD. The underlying classifier is a Joint Energy Model.

Figure 2 illustrates how the different components in Equa-
tion 9 affect the counterfactual search for a synthetic dataset.
The underlying classifier is a Joint Energy Model (JEM)
that was trained to predict the output class (‘blue’ or ‘or-
ange’) and generate class-conditional samples (Grathwohl
et al. 2020). We have used four different generator flavours
to produce a counterfactual in the ‘blue’ class for a sample
from the ‘orange’ class: Wachter, which only uses the first
penalty (A2 = A3 = 0); ECCCo (no EBM), which does not
constrain energy (A2 = 0); ECCCo (no CP), which involves
no set size penalty (A3 = 0); and, finally, ECCCo, which
involves all penalties defined in Equation 9. Arrows indicate
(negative) gradients with respect to the objective function at
different points in the feature space.

While Wachter generates a valid counterfactual, it ends
up close to the original starting point consistent with its ob-
jective. ECCCo (no EBM) pushes the counterfactual further
into the target domain to minimize predictive uncertainty,
but the outcome is still not plausible. The counterfactual pro-
duced by ECCCo (no CP) is attracted by the generated sam-
ples shown in bright yellow. Since the JEM has learned the
conditional input distribution reasonably well in this case,
the counterfactuals are both faithful and plausible. Finally,
the outcome for ECCCo looks similar, but the additional
smooth set size penalty leads to somewhat faster conver-
gence.

6 Empirical Analysis

Our goal in this section is to shed light on the following re-
search questions:

Research Question 6.1 (Faithfulness). To what extent are
counterfactuals generated by ECCCo more faithful than
those produced by state-of-the-art generators?

Research Question 6.2 (Balancing Objectives). Compared
to state-of-the-art generators, how does ECCCo balance the
two key objectives of faithfulness and plausibility?

The second question is motivated by the intuition that
faithfulness and plausibility should coincide for models that
have learned plausible explanations of the data.

6.1 Experimental Setup

To assess and benchmark the performance of our proposed
generator against the state of the art, we generate multiple

counterfactuals for different models and datasets. In par-
ticular, we compare ECCCo and its variants to the follow-
ing counterfactual generators that were introduced above:
firstly; Schut, which works under the premise of minimiz-
ing predictive uncertainty; secondly, REVISE, which is state-
of-the-art with respect to plausibility; and, finally, Wachter,
which serves as our baseline.

We use both synthetic and real-world datasets from dif-
ferent domains, all of which are publicly available and
commonly used to train and benchmark classification algo-
rithms. We synthetically generate a dataset containing two
Linearly Separable Gaussian clusters (n = 1000), as well as
the well-known Circles (n = 1000) and Moons (n = 2500)
data. Since these data are generated by distributions of vary-
ing degrees of complexity, they allow us to assess how the
generators and our proposed evaluation metrics handle this.

As for real-world data, we follow Schut et al. (2021) and
use the MNIST (LeCun 1998) dataset containing images of
handwritten digits such as the example shown above in Fig-
ure 1. From the social sciences domain, we include Give Me
Some Credit (GMSC) (Kaggle 2011): a tabular dataset that
has been studied extensively in the literature on algorithmic
recourse (Pawelczyk et al. 2021). It consists of 11 numeric
features that can be used to predict the binary outcome vari-
able indicating whether retail borrowers experience financial
distress.

For the predictive modelling tasks, we use simple neural
networks (MLP) and Joint Energy Models (JEM). For the
more complex real-world datasets we also use ensembling
in each case. Both joint-energy modelling and ensembling
have been associated with improved generative properties
and adversarial robustness (Grathwohl et al. 2020; Laksh-
minarayanan, Pritzel, and Blundell 2016), so we expect this
to be positively correlated with the plausibility of ECCCo.
To account for stochasticity, we generate multiple counter-
factuals for each target class, generator, model and dataset.
Specifically, we randomly sample n~ times from the subset
of individuals for which the given model predicts the non-
target class y~ given the current target. We set n= = 25
for all of our synthetic datasets, n~ = 10 for GMSC and
n~ = b for MNIST. Full details concerning our parameter
choices, training procedures and model performance can be
found in Appendix D.

6.2 Results for Synthetic Data

Table 1 shows the key results for the synthetic datasets sep-
arated by model (first column) and generator (second col-
umn). The numerical columns show sample averages and
standard deviations of our key evaluation metrics computed
across all counterfactuals. We have highlighted the best out-
come for each model and metric in bold. To provide some
sense of effect sizes, we have added asterisks to indicate that
a given value is at least one (x) or two (xx*) standard devia-
tions lower than the baseline (Wachter).

Starting with the high-level results for our Linearly Sep-
arable data, we find that ECCCo produces the most faithful
counterfactuals for both black-box models. This is consis-
tent with our design since ECCCo directly enforces faithful-
ness through regularization. Crucially though, ECCCo also



produces the most plausible counterfactuals for both mod-
els. This dataset is so simple that even the MLP has learned
plausible explanations of the input data. Zooming in on the
granular details for the Linearly Separable data, the results
for ECCCo (no CP) and ECCCo (no EBM) indicate that
the positive results are dominated by the effect of quantify-
ing and leveraging the model’s generative property (EBM).
Conformal prediction alone only leads to marginally im-
proved faithfulness and plausibility.

The findings for the Moons dataset are broadly in line
with the findings so far: for the JEM, ECCCo yields sub-
stantially more faithful and plausible counterfactuals than
all other generators. For the MLP, faithfulness is maintained
but counterfactuals are not plausible. This high-level pattern
is broadly consistent with other more complex datasets and
supportive of our narrative, so it is worth highlighting: EC-
CCo consistently achieves high faithfulness, which—subject
to the quality of the model itself—coincides with high plau-
sibility. By comparison, REVISE yields the most plausible
counterfactuals for the MLP, but it does so at the cost of
faithfulness. We also observe that the best results for ECCCo
are achieved when using both penalties. Once again though,
the generative component (EBM) has a stronger impact on
the positive results for the JEM.

For the Circles data, it appears that REVISE performs
well, but we note that it generates valid counterfactuals only
half of the time (see Appendix E for a complete overview
including additional common evaluation metrics). The un-
derlying VAE with default parameters has not adequately
learned the data-generating process. Of course, it is possible
to improve generative performance through hyperparameter
tuning but this example serves to illustrate that REVISE de-
pends on the quality of its surrogate. Independent of the out-
come for REVISE, however, the results do not seem to in-
dicate that ECCCo substantially improves faithfulness and
plausibility for the Circles data. We think this points to a
limitation of our evaluation metrics rather than ECCCo it-
self: computing average distances fails to account for the
‘wraparound’ effect associated with circular data (Gill and
Hangartner 2010).

6.3 Results for Real-World Data

The results for our real-world datasets are shown in Ta-
ble 2. Once again the findings indicate that the plausibility
attained by ECCCo is positively correlated with the capacity
of the black-box model to distinguish plausible from implau-
sible inputs. The case is very clear for MNIST: ECCCo con-
sistently generates more faithful counterfactuals than other
generators and plausibility gradually improves through en-
sembling and joint-energy modelling. Interestingly, faithful-
ness also gradually improves for REVISE. This indicates that
as our models improve, their generative capacity approaches
that of the surrogate VAE used by REVISE. The VAE still
outperforms our classifiers in this regard, as evident from
the fact that ECCCo never quite reaches the same level of
plausibility as REVISE. With reference to Appendix E we
note that the results for Schut need to be discounted as it
rarely produces valid counterfactuals for MNIST. Relatedly,
we find that ECCCo is the only generator that consistently

achieves full validity. Finally, it is worth noting that ECCCo
produces counterfactual images with the lowest average pre-
dictive uncertainty for all models.

For the tabular credit dataset (GMSC) it is inherently chal-
lenging to use deep neural networks in order to achieve
good discriminative performance (Borisov et al. 2022; Grin-
sztajn, Oyallon, and Varoquaux 2022) and generative per-
formance (Liu et al. 2022), respectively. In order to achieve
high plausibility, ECCCo effectively requires classifiers to
achieve good performance for both tasks. Since this is a
challenging task even for Joint Energy Models, it is not sur-
prising to find that even though ECCCo once again achieves
state-of-the-art faithfulness, it is outperformed by REVISE
and Schut with respect to plausibility.

6.4 Key Takeways

To conclude this section, we summarize our findings with
reference to the opening questions. The results clearly
demonstrate that ECCCo consistently achieves state-of-the-
art faithfulness, as it was designed to do (Research Ques-
tion 6.1). A related important finding is that ECCCo yields
highly plausible explanations provided that they faithfully
describe model behaviour (Research Question 6.2). ECCCo
achieves this result primarily by leveraging the model’s gen-
erative property.

7 Limitations

Even though we have taken considerable measures to study
our proposed methodology carefully, limitations can still be
identified.

7.1 Evaluation Metrics

Our proposed distance-based evaluation metrics for plau-
sibility and faithfulness may not be universally applicable
to all types of data. In any case, they depend on choos-
ing a distance metric on a case-by-base basis for different
datasets. Arguably, commonly used metrics for measuring
other desiderata such as closeness suffer from the same pit-
fall. We therefore think that future work on counterfactual
explanations could benefit from defining universal evalua-
tion metrics.

7.2 Experiments

While we have employed various datasets in our experi-
ments that are commonly used in the related literature, we
acknowledge that additional real-world data and application
is needed to test ECCCo and improve upon the ideas we have
presented in this work. One challenge in this context is that
counterfactual explanations do not scale very well to high-
dimensional input data like images (Samoilescu, Van Loov-
eren, and Klaise 2021; Chen and Storchan 2021). Conse-
quently, we have limited ourselves to studying small image
datasets only.

7.3 Generalizability

While our approach is readily applicable to models with gra-
dient access like deep neural networks, more work is needed



Table 1: Results for synthetic datasets: sample averages +/- one standard deviation across counterfactuals. Best outcomes are
highlighted in bold. Asterisks indicate that the given value is more than one (*) or two (**) standard deviations away from the

baseline (Wachter).

Linearly Separable Moons Circles

Model  Generator Unfaithfulness | Implausibility | ~ Unfaithfulness | Implausibility |  Unfaithfulness | Implausibility |
ECCCo 0.03 + 0.06+* 0.20 + 0.08** 0.31 + 0.30* 1.20 + 0.15%* 0.52£0.36 1.22 +0.46
ECCCo (no CP) 0.03 = 0.06%* 0.20 £ 0.08** 0.37 £0.30* 1.21 £ 0.17%%* 0.54 £0.39 1.21 £0.46

JEM ECCCo (no EBM)  0.16+0.11 0.34+0.19 0.91+0.32 1.71 £0.25 0.70 £ 0.33 1.30 +£0.37
REVISE 0.19 £ 0.03 0.41 £0.01** 0.78 £0.23 1.57 £0.26 0.48 + 0.16* 0.95 + 0.32*
Schut 0.39 £0.07 0.73+£0.17 0.67 £0.27 1.50 + 0.22%* 0.54 £0.43 1.28 £0.53
Wachter 0.18 £0.10 0.44 +£0.17 0.80 £0.27 1.78 £ 0.24 0.68 £0.34 1.33+£0.32
ECCCo 0.29 + 0.05%* 0.23 £0.06** 0.80 +0.62 1.69 +0.40 0.65 +0.53 1.17+£0.41
ECCCo (no CP) 0.29 £ 0.05** 0.23 + 0.07+* 0.79 £ 0.62 1.68 +0.42 0.49 £ 0.35 1.19+0.44

MLP ECCCo (no EBM)  0.46 +£0.05 0.28 £0.04%* 1.34 +0.47 1.68 +£0.47 0.84 £0.51 1.23£0.31
REVISE 0.56 £0.05 0.41 £0.01 1.45+0.44 1.64 + 0.31 0.58 £0.52 0.95 +0.32
Schut 0.43 + 0.06* 0.47 £0.36 1.45 £0.55 1.73 £0.48 0.58 £0.37 1.23+£0.43
Wachter 0.51+0.04 0.40 £ 0.08 1.32+£0.41 1.69 £0.32 0.83£0.50 1.24+£0.29

Table 2: Results for real-world datasets: sample averages
+/- one standard deviation across counterfactuals. Best out-
comes are highlighted in bold. Asterisks indicate that the
given value is more than one (*) or two (**) standard devia-
tions away from the baseline (Wachter).

MNIST GMSC
Model Generator  Unfaithfulness | Implausibility |~ Unfaithfulness | Implausibility |
ECCCo 19.28 + 501 314.76 + 32.36% 79.16 + 11.67* 18.26 £ 4.92%*
JEM REVISE 188.70 £26.18%  255.26 + 41.50%*  186.40 + 28.06 5.34 +£2.38%*
Schut 211.62 +£27.13 290.56 +40.66%  200.98 + 28.49 6.50 £2.01%*
‘Wachter 222.90 +26.56 361.88 +39.74 214.08 £45.35 61.04 £2.58
ECCCo 15.99 + 3.06** 294.72 +30.75%*  83.28 + 13.26%* 17.21 £ 4.46**
JEM Ensemble REVISE 173.59 +£20.65%*  246.32 £ 37.46**  194.24 + 35.41 4.95 £ 1.26%*
” Schut 204.36 +23.14 290.64 + 39.49* 208.45 + 34.60 6.12+ 1.91%*
‘Wachter 217.67 +23.78 363.23 +39.24 186.19 + 33.88 60.70 + 44.32
ECCCo 41.95 + 6.50** 591.58 +36.24 75.93 + 14.27+* 17.20 £ 3.15%*
MLP REVISE  365.82+15.35%  249.49 £ 41.55%% 196.75 +41.25 4.84 + 0.60%*
Schut 379.66 + 17.16 290.07 £42.65%  212.00 £41.15 6.44 & 1.34%*
‘Wachter 386.05 + 16.60 361.83 £42.18 218.34 £53.26 45.84 +£39.39
ECCCo 31.43 £3.91%  490.88 +27.19 73.86 + 14.63%* 17.92 £ 4.17%*
MLP Ensemble REVISE  337.74+11.89%  247.67 £ 38.36** 207.21 +43.20 5.78 + 2.10%*
Schut 354.80 + 13.05 28579 £41.33%  205.36 £ 32.11 7.00 £2.15%*
‘Wachter 360.79 + 14.39 357.73 £42.55 213.71 £54.17 73.09 £ 64.50

to generalise it to other machine learning models such as de-
cision trees. Relatedly, common challenges associated with
energy-based modelling including sensitivity to scale, train-
ing instabilities and sensitivity to hyperparameters also ap-
ply to ECCCo.

7.4 Ablation Studies

In our experiments we have used ablation to understand
the roles of the different components of ECCCo. Our re-
sults here indicate that conformal prediction alone is often
not sufficient to achieve faithfulness and plausibility. To test
this initial finding more throughly, future work could ben-
efit from more extensive abalation studies that thoroughly
tune hyperparameters and investigate different approaches
to conformal prediction.

8 Conclusion

This work leverages recent advances in energy-based mod-
elling and conformal prediction in the context of Explain-
able Artificial Intelligence. We have proposed a new way to
generate counterfactuals that are maximally faithful to the
black-box model they aim to explain. Our proposed genera-
tor, ECCCo, produces plausible counterfactuals if and only
if the black-box model itself has learned realistic explana-
tions for the data, which we have demonstrated through rig-
orous empirical analysis. This should enable researchers and
practitioners to use counterfactuals in order to discern trust-
worthy models from unreliable ones. While the scope of this
work limits its generalizability, we believe that ECCCo of-
fers a solid baseline for future work on faithful counterfac-
tual explanations.
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Appendices

The following appendices provide additional details that are relevant to the paper. Appendices A and B explain any tasks related
to Energy-Based Modelling and Predictive Uncertainty Quantification through Conformal Prediction, respectively. Appendix C
provides additional technical and implementation details about our proposed generator, ECCCo, including references to our
open-sourced code base. A complete overview of our experimental setup detailing our parameter choices, training procedures
and initial black-box model performance can be found in Appendix D. Finally, Appendix E reports all of our experimental
results in more detail.

A Energy-Based Modelling

Since we were not able to identify any existing open-source software for Energy-Based Modelling that would be flexible enough
to cater to our needs, we have developed a Julia package from scratch. The package has been open-sourced, but to avoid
compromising the double-blind review process, we refrain from providing more information at this stage. In our development
we have heavily drawn on the existing literature: Du and Mordatch (2019) describe best practices for using EBM for generative
modelling; Grathwohl et al. (2020) explain how EBM can be used to train classifiers jointly for the discriminative and generative
tasks. We have used the same package for training and inference, but there are some important differences between the two
cases that are worth highlighting here.

Training: Joint Energy Models To train our Joint Energy Models we broadly follow the approach outlined in Grathwohl
et al. (2020). Formally, JEMs are defined by the following joint distribution:

log po(x,y) = log pa(y|x) + log py(x) (10)
Training therefore involves a standard classification loss component L¢(6) = — log pg(y|x) (e.g. cross-entropy loss) as well
as a generative loss component Lge,(6) = — log ps(x). Analogous to how we defined the conditional distribution over inputs

in Definition 4.1, py(x) denotes the unconditional distribution over inputs. The model gradient of this component of the loss
function can be expressed as follows:

Vo Lgen(0) = =V logpp(x) = = (Epx) {Ve€o (%)} — Epyx) {Vs(x)}) (11)

To draw samples from pg(x), we rely exclusively on the conditional sampling approach described in Grathwohl et al. (2020)
for both training and inference: we first draw y ~ p(y) and then sample x ~ pg(x|y) (Grathwohl et al. 2020) via Equation 2
with energy Ey(x|y) = po(x)[y] where g : X — R™ returns the linear predictions (logits) of our classifier Mp. While our
package also supports unconditional sampling, we found conditional sampling to work well. It is also well aligned with CE,
since in this context we are interested in conditioning on the target class.

As mentioned in the body of the paper, we rely on a biased sampler involving separately specified values for the step size €
and the standard deviation o of the stochastic term involving r. Formally, our biased sampler performs updates as follows:

~ ~ € ~ .
Xjp1 X5 — 559(Xj|y+) +or;, j=1,..,J (12)

Consistent with Grathwohl et al. (2020), we have specified e = 2 and 0 = 0.01 as the default values for all of our experiments.
The number of total SGLD steps J varies by dataset (Table 3). Following best practices, we initialize xo randomly in 5% of all
cases and sample from a buffer in all other cases. The buffer itself is randomly initialised and gradually grows to a maximum
of 10,000 samples during training as X is stored in each epoch (Du and Mordatch 2019; Grathwohl et al. 2020).

It is important to realise that sampling is done during each training epoch, which makes training Joint Energy Models
significantly harder than conventional neural classifiers. In each epoch the generated (batch of) sample(s) X ; is used as part of
the generative loss component, which compares its energy to that of observed samples x:

Lgen(0) = p19(x)[y] — po(%5)[y] (13)

Our full training objective can be summarized as follows,

Ligm(0) = Leir(0) + Lgen(0) + ALreg (6) (14)

where Les(6) is a Ridge penalty (L2 norm) that regularises energy magnitudes for both observed and generated samples (Du
and Mordatch 2019). We have used varying degrees of regularization depending on the dataset (A in Table 3).

Contrary to existing work, we have not typically used the entire minibatch of training data for the generative loss component
but found that using a subset of the minibatch was often sufficient in attaining decent generative performance (Table 3). This
has helped to reduce the computational burden for our models, which should make it easier for others to reproduce our findings.
Figures 3 and 4 show generated samples for our MNIST and Moons data, to provide a sense of their generative property.



Table 3: EBM hyperparemeter choices for our experiments.
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Figure 3: Conditionally generated MNIST images for our JEM Ensemble.



Target: 1

Figure 4: Conditionally generated samples (stars) for our Moons data using a JEM.

Inference: Quantifying Models’ Generative Property At inference time, we assume no prior knowledge about the model’s
generative property. This means that we do not tab into the existing buffer of generated samples for our Joint Energy Models, but
instead generate conditional samples from scratch. While we have relied on the default values € = 2 and ¢ = 0.01 also during
inference, the number of total SGLD steps was set to J = 500 in all cases, so significantly higher than during training. For all
of our synthetic datasets and models, we generated 50 conditional samples and then formed subsets containing the ng = 25
lowest-energy samples. While in practice it would be sufficient to do this once for each model and dataset, we have chosen to
perform sampling separately for each individual counterfactual in our experiments to account for stochasticity. To help reduce
the computational burden for our real-world datasets we have generated only 10 conditional samples each time and used all of
them in our counterfactual search. Using more samples, as we originally did, had no substantial impact on our results.

B Conformal Prediction

In this Appendix B we provide some more background on CP and explain in some more detail how we have used recent
advances in Conformal Training for our purposes.

Background on CP Intuitively, CP works under the premise of turning heuristic notions of uncertainty into rigorous uncer-
tainty estimates by repeatedly sifting through the data. It can be used to generate prediction intervals for regression models and
prediction sets for classification models. Since the literature on CE and AR is typically concerned with classification problems,
we focus on the latter. A particular variant of CP called Split Conformal Prediction (SCP) is well-suited for our purposes,
because it imposes only minimal restrictions on model training.

Specifically, SCP involves splitting the data D,, = {(x;,¥:)}i=1,... » into a proper training set Dy, and a calibration set Dey;.
The former is used to train the classifier in any conventional fashion. The latter is then used to compute so-called nonconformity
scores: S = {s(x;,yi) biep,, Where s : (X,Y) — Ris referred to as score function. In the context of classification, a common
choice for the score function is just s; = 1 — My(x;)[y;], that is one minus the softmax output corresponding to the observed
label y; (Angelopoulos and Bates 2021).

Finally, classification sets are formed as follows,

Co(xi; ) = {y : s(x4,y) < G} (15)

where § denotes the (1 — a)-quantile of S and « is a predetermined error rate. As the size of the calibration set increases, the
probability that the classification set C'(xeg) for a newly arrived sample x5 does not cover the true test label y,.s approaches
« (Angelopoulos and Bates 2021).

Observe from Equation 15 that Conformal Prediction works on an instance-level basis, much like CE are local. The prediction
set for an individual instance x; depends only on the characteristics of that sample and the specified error rate. Intuitively, the
set is more likely to include multiple labels for samples that are difficult to classify, so the set size is indicative of predictive
uncertainty. To see why this effect is exacerbated by small choices for a consider the case of o = 0, which requires that the
true label is covered by the prediction set with probability equal to 1.

Differentiability The fact that conformal classifiers produce set-valued predictions introduces a challenge: it is not immedi-
ately obvious how to use such classifiers in the context of gradient-based counterfactual search. Put differently, it is not clear
how to use prediction sets in Equation 1. Fortunately, Stutz et al. (2022) have recently proposed a framework for Conformal
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Figure 5: Prediction set size (left), smooth set size loss (centre) and configurable classification loss (right) for a JEM trained on
our Linearly Separable data.

Training that also hinges on differentiability. Specifically, they show how Stochastic Gradient Descent can be used to train clas-
sifiers not only for the discriminative task but also for additional objectives related to Conformal Prediction. One such objective
is efficiency: for a given target error rate «, the efficiency of a conformal classifier improves as its average prediction set size
decreases. To this end, the authors introduce a smooth set size penalty defined in Equation 4 in the body of this paper. Formally,
it is defined as Cy y (x;; @) := o ((s(x,y) — )T~ ') fory € Y, where o is the sigmoid function and 7" is a hyper-parameter
used for temperature scaling (Stutz et al. 2022).

In addition to the smooth set size penalty, Stutz et al. (2022) also propose a configurable classification loss function, that can
be used to enforce coverage. For MNIST data, we found that using this function generally improved the visual quality of the
generated counterfactuals, so we used it in our experiments involving real-world data. For the synthetic dataset, visual inspection
of the counterfactuals showed that using the configurable loss function sometimes led to overshooting: counterfactuals would
end up deep inside the target domain but far away from the observed samples. For this reason, we instead relied on standard
cross-entropy loss for our synthetic datasets. As we have noted in the body of the paper, more experimental work is certainly
needed in this context. Figure 5 shows the prediction set size (left), smooth set size loss (centre) and configurable classification
loss (right) for a JEM trained on our Linearly Separable data.

C ECCCo
In this section, we explain ECCCo in some more detail, briefly discuss convergence conditions for counterfactual explanations
and provide details concerning the actual implementation of our framework in Julia.

Deriving the search objective The counterfactual search objective for ECCCo was introduced in Equation 9 in the body of
the paper. We restate this equation here for reference:

Z' = arg min {yloss(My(f(Z)),y ") + Adist(f(Z'),x)
Z'eZL (16)
+ X2(Z', Xo,y+) + AsQ(Co(f(Z'); )}
We can make the connection to energy-based modeling more explicit by restating the counterfactual search objective in terms
Ligm(0), which we defined in Equation 14. In particular, consider the following counterfactual search objective,

Z' = arg min {Lsem(6; Mo(f(Z')), y )+ Aidist(f(Z'),x) + AsQ(Co(f(Z'); )} (17)

where we have simply used the JEM loss function as yloss(My(f(Z')),y ™).

Now note that aside from the additional penalties in Equation 16, the only key difference between our counterfactual search
objective and the joint-energy training objective is the parameter that is being optimized. In joint-energy training we optimize
the objective with respect to the network weights 6. Recall that y(x|y) = ug(x)[y]. Then the partial gradient with respect to
the generative loss component of Lygy(6) can be expressed as follows:

Vo Lgen(0) = Vopo(x)[y] = Vope(x7)[y] (18)

During the counterfactual search, we take the network parameters as fixed and instead optimize with respect to the counter-
factual itself2,

VicLgen(0) = Vaepro () [y "] = Vaepro (%) [y "] = Vapo () [y "] = Vo (x|y™) (19)

Here we omit the notion of a latent search space to make the comparison easier.



where the second term is equal to zero because 19 (X 7)[y] is invariant with respect to x. Since this term has zero gradients, we
can remove it from the loss function altogether. For the regularization loss component of Lygy () we can proceed analogously
such that we can rewrite Equation 17 as follows:

Z' =arg min, {yloss(My(f(Z')),y") + & (f(Z)ly") +[1€(£(Z))ly )3
+ Audist(f(Z'), x) + AsQ(Co(f(Z); )}

Now we notice that Equation 20 is equivalent to Equation 16 for Ao = 1. For the sake of simplicity, we omitted the regular-
ization component from Equation 9 in the main text. Intuitively, taking iterative gradient steps according to Equation 19 has the
effect of constraining the energy of the counterfactual until. The generative property of the underlying model implicitly enters
this equation through 6.

(20)

The ECCCo algorithm Algorithm 1 describes how exactly ECCCo works. For the sake of simplicity and without loss of
generality, we limit our attention to generating a single counterfactual x’ = f(z’). The counterfactual state z’ is initialized
by passing the factual x through a simple feature transformer f~!. Next, we generate ng conditional samples Xg y+ using
SGLD (Equation 2) and store the n g instances with the lowest energy. We then calibrate the model My through split conformal
prediction. Finally, we search counterfactuals through gradient descent where £(z’, y T, Xy y+; A, ) denotes our loss function
defined in Equation 9. The search terminates once the convergence criterium is met or the maximum number of iterations 7" has
been exhausted. Note that the choice of convergence criterium has important implications on the final counterfactual which we
explain in Appendix C.

Algorithm 1 The ECCCo generator

Inpl“’: X, y+u M97 f7 A= [)‘17 >\27 )\3]7 «, D7 T7 nnp,Ne where M@(X) # y+
Output: x’

1: Initialize z’ <+ f~1(x) > Map to counterfactual state space.
2: Generate {)297y+ }ns — po(Xy+) > Generate ng samples using SGLD (Equation 2).
3: Store X y+ {)A(g’y+ }nB > Choose n g lowest-energy samples.
4: Run SCP for My using D > Calibrate model through split conformal prediction.
5: Initialize t < 0
6: while not converged ort < T do > For convergence conditions see Appendix C.
7: 2 2 — VL2, y", Xgy+i A @) > Take gradient step of size 7).
8: t<—1t+1
9: end while
10: X' « f(2') > Map back to feature space.

A Note on Convergence Convergence is not typically discussed much in the context of CE, even though it has important
implications on outcomes. One intuitive way to specify convergence is in terms of threshold probabilities: once the predicted
probability p(y+|x’) exceeds some user-defined threshold ~y such that the counterfactual is valid, we could consider the search
to have converged. In the binary case, for example, convergence could be defined as p(y*|x’) > 0.5 in this sense. Note,
however, how this can be expected to yield counterfactuals in the proximity of the decision boundary, a region characterized
by high aleatoric uncertainty. In other words, counterfactuals generated in this way would generally not be plausible. To avoid
this from happening, we specify convergence in terms of gradients approaching zero for all our experiments and all of our
generators. This is allows us to get a cleaner read on how the different counterfactual search objectives affect counterfactual
outcomes.

ECCCo.jl The core part of our code base is integrated into a larger ecosystem of Julia packages that we are actively
developing and maintaining. To avoid compromising the double-blind review process, we only provide a link to an anonymized
repository at this stage: https://anonymous.4open.science/r/ECCCo- 1252/README.md.

D Experimental Setup

Table 4 provides an overview of all parameters related to our experiments. The GMSC data were randomly undersampled
for balancing purposes and all features were standardized. MNIST data was also randomly undersampled for reasons outlined
below. Pixel values were preprocessed to fall in the range of [—1, 1] and a small Gaussian noise component (¢ = 0.03) was
added to training samples following common practice in the EBM literature. All of our models were trained through mini-batch
training using the Adam optimiser (Kingma and Ba (2014)). Table 5 shows standard evaluation metrics measuring the predictive
performance of our different models grouped by dataset. These measures were computed on test data.



Table 4: Paremeter choices for our experiments.

Network Architecture Training

Dataset Sample Size Hidden Units Hidden Layers Activation Ensemble Size Epochs Batch Size

Linearly Separable 1000 16 3 swish 5 100 100
Moons 2500 32 3 relu 5 500 128

Circles 1000 32 3 swish 5 100 100

MNIST 10000 128 1 swish 5 100 128

GMSC 13370 128 2 swish 5 100 250

Table 5: Various standard performance metrics for our different models grouped by dataset.

Performance Metrics

Dataset Model  Accuracy  Precision  F1-Score
Linearly Separable JEM 0.99 0.99 0.99
MLP 0.99 0.99 0.99

Moons JEM 1.00 1.00 1.00
MLP 1.00 1.00 1.00

Circles JEM 0.98 0.98 0.98
MLP 1.00 1.00 1.00

MNIST JEM 0.83 0.84 0.83
JEM Ensemble 0.90 0.90 0.89

MLP 0.95 0.95 0.95

MLP Ensemble 0.95 0.95 0.95

GMSC JEM 0.73 0.75 0.73
JEM Ensemble 0.73 0.75 0.73

MLP 0.75 0.75 0.75

MLP Ensemble 0.75 0.75 0.75

Table 6 summarises our hyperparameter choices for the counterfactual generators where 7 denotes the learning rate used for
Stochastic Gradient Descent (SGD) and A;, Ao, A3 represent the chosen penalty strengths (Equations 1 and 9). Here \; also
refers to the chosen penalty for the distance from factual values that applies to both Wachter and REVISE, but not Schut which
is penalty-free. Schut is also the only generator that uses JSMA instead of SGD for optimization.

Compute To enable others to easily replicate our experiments, we have chosen to work with small neural network architec-
tures and randomly undersampled the MNIST dataset (maintaining class balance). All of our experiments could then be run
locally on a personal machine. The longest runtimes we experienced for model training and counterfactual benchmarking were
on the order of 8-12 hours (MNIST data). For the synthetic data, all experiments could be completed in less than an hour.

We have summarised our system information below:

Software:

* System Version: macOS 13.3.1
¢ Kernel Version: Darwin 22.4.0

Table 6: Generator hyperparameters.

Dataset n A1 A2 A3

Linearly Separable =~ 0.01 025 0.75 0.75
Moons 0.05 025 075 0.75

Circles 0.0l 025 0.75 0.75

MNIST 0.10 0.10 025 025

GMSC 0.05 0.10 0.50 0.50




Hardware:

¢ Model Name: MacBook Pro

¢ Model Identifier: MacBookPro16,1

¢ Processor Name: 8-Core Intel Core 19
* Processor Speed: 2.3 GHz

* Number of Processors: 1

» Total Number of Cores: 8

* L2 Cache (per Core): 256 KB

e L3 Cache: 16 MB

* Hyper-Threading Technology: Enabled
* Memory: 32 GB

E Results

Figure 6 shows examples of counterfactuals for MNIST data where the underlying model is our JEM Ensemble. Original images
are shown on the diagonal and the corresponding counterfactuals are plotted across rows.

Table 7 reports all of the evaluation metrics we have computed. Table 8 reports the same metrics for the subset of valid
counterfactuals. The ‘Unfaithfulness’ and ‘Implausibility’ metrics have been discussed extensively in the body of the paper. The
‘Cost’ metric relates to the distance between the factual and the counterfactual. The ‘Redundancy’ metric measures sparsity in
is defined as the percentage of features that remain unperturbed (higher is better). The ‘Uncertainty’ metric is just the average
value of the smooth set size penalty (Equation 4). Finally, ‘Validity’ is the percentage of valid counterfactuals.
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Figure 6: Counterfactuals for MNIST data and our JEM Ensemble. Original images are shown on the diagonal with the corre-

sponding counterfactuals plotted across rows.



Table 7: All results for all datasets: sample averages +/- one standard deviation over all counterfactuals. Best outcomes are
highlighted in bold. Asterisks indicate that the given value is more than one (*) or two (**) standard deviations away from the

baseline (Wachter).

Model Data Generator Cost | Unfaithfulness | Implausibility | ~ Redundancy T  Uncertainty | Validity 1
Circles JEM ECCCo 0.74 £0.21 0.52 +0.36 1.22 +0.46 0.00 + 0.00 0.00 + 0.00 1.00 + 0.00%*
ECCCo (no CP) 0.72+0.21 0.54 +0.39 1.21 £ 0.46 0.00 + 0.00 0.00 + 0.00 1.00 + 0.00%*
ECCCo (no EBM) 0.52+£0.15 0.70 + 0.33 1.30 + 0.37 0.00 + 0.00 0.00 + 0.00 1.00 + 0.00%*
REVISE 097 £0.34 0.48 + 0.16* 0.95 + 0.32* 0.00 £ 0.00 0.00 £ 0.00 0.50 £0.51
Schut 1.06 +£0.43 0.54 +0.43 1.28 +£0.53 0.26 + 0.25* 0.00 £ 0.00 1.00 + 0.00**
Wachter 0.44 £ 0.16 0.68 +£0.34 1.33+0.32 0.00 £ 0.00 0.00 £ 0.00 0.98 £0.14
MLP ECCCo 0.67£0.19 0.65 +0.53 1.17+0.41 0.00 £ 0.00 0.09 £0.19%*  1.00 = 0.00
ECCCo (no CP) 0.71 £0.16 0.49 £ 0.35 1.19 £0.44 0.00 £ 0.00 0.05 £0.16%*  1.00 = 0.00
ECCCo (no EBM) 0.45+0.11 0.84 +0.51 1.23+0.31 0.00 + 0.00 0.15+0.23*  1.00 = 0.00
REVISE 0.96 +0.31 0.58 £ 0.52 0.95 +0.32 0.00 £ 0.00 0.00 + 0.00** 0.50 +0.51
Schut 0.57 £0.11 0.58 +0.37 1.23+0.43 0.43 £ 0.18**  0.00 + 0.00%* 1.00 + 0.00
Wachter 0.40 = 0.09 0.83 £0.50 1.24+0.29 0.00 £ 0.00 0.53 £0.01 1.00 = 0.00
JEM ECCCo 17.45 +2.92%% 79.16 + 11.67** 18.26 £4.92**  0.00 + 0.00 0.10 +0.01 1.00 + 0.00
GMSC REVISE 343 + 1.67** 186.40 + 28.06 5.34 +2.38%* 0.00 £ 0.00 0.51+£0.22 1.00 £ 0.00
Schut 1.27 + 0.33** 200.98 +28.49 6.50 +2.01%* 0.77 £ 0.07**  0.07 £ 0.00 1.00 £ 0.00
Wachter 57.71 £ 0.47 214.08 +45.35 61.04 +2.58 0.00 +0.00 0.07 + 0.00 1.00 + 0.00
JEM Ensemble ECCCo 17.43 + 3.04** 83.28 + 13.26** 17.21 £ 4.46%* 0.00 £ 0.00 0.16 £0.11 1.00 + 0.00
REVISE 2.94 + 1.13%* 194.24 +35.41 4.95 + 1.26** 0.00 + 0.00 0.51+0.29 1.00 + 0.00
Schut 1.03 £ 0.20%* 208.45 + 34.60 6.12 + 1.91%* 0.85 £ 0.05**  0.09 +0.04 1.00 + 0.00
Wachter 56.79 + 44.68 186.19 +33.88 60.70 +44.32 0.00 + 0.00 0.07 + 0.00 1.00 + 0.00
MLP ECCCo 17.05 + 2.87** 75.93 + 14.27+* 17.20 £3.15%*  0.00 £ 0.00 0.19 +0.08 1.00 + 0.00%*
REVISE 2.93 + 1.24%* 196.75 +41.25 4.84 + 0.60** 0.00 + 0.00 0.38 +0.18 1.00 + 0.00%*
Schut 1.49 + 0.87** 212.00 £41.15 6.44 + 1.34%* 0.77 £ 0.13**  0.12+£0.01 1.00 = 0.00%*
Wachter 42.97 £39.50 218.34 £53.26 45.84 £39.39 0.00 £ 0.00 0.06 + 0.06 0.50 +£0.51
MLP Ensemble ECCCo 16.63 + 2.62%* 73.86 + 14.63** 17.92 £4.17%* 0.00 £ 0.00 0.23 +£0.07 1.00 = 0.00%*
REVISE 3.73 £2.36%* 207.21 £43.20 5.78 £ 2.10%* 0.00 £ 0.00 0.33+0.19 1.00 + 0.00**
Schut 1.20 + 0.47%* 205.36 +32.11 7.00 + 2.15%* 0.79 £ 0.09%*  0.12+0.01 1.00 + 0.00%*
Wachter 69.30 + 66.00 213.71 £54.17 73.09 + 64.50 0.00 + 0.00 0.06 + 0.06 0.50+0.51
. JEM ECCCo 0.75£0.17 0.03 + 0.06%* 0.20 + 0.08** 0.00 £ 0.00 0.00 + 0.00 1.00 + 0.00
Linearly Separable ECCCo o CP)  0.75+0.17 0.03 % 0.06%* 020+0.08% 000000  0.000.00  1.00 % 0.00
ECCCo (no EBM) 0.70 £0.16 0.16 £ 0.11 0.34+0.19 0.00 £ 0.00 0.00 + 0.00 1.00 + 0.00
REVISE 0.41 +0.15 0.19 £ 0.03 0.41 +0.01%* 0.00 + 0.00 0.36 + 0.36 0.50+0.51
Schut 1.15+0.35 0.39 £ 0.07 0.73+0.17 0.25 £ 0.25 0.00 £ 0.00 1.00 = 0.00
Wachter 0.50 £0.13 0.18 £0.10 044 +0.17 0.00 £ 0.00 0.00 £ 0.00 1.00 = 0.00
MLP ECCCo 0.95+£0.16 0.29 £ 0.05%* 0.23 £ 0.06** 0.00 £ 0.00 0.00 £ 0.00%*  1.00 = 0.00
ECCCo (no CP) 094 £0.16 0.29 + 0.05%* 0.23 £ 0.07%** 0.00 £ 0.00 0.00 £ 0.00%*  1.00 = 0.00
ECCCo (no EBM) 0.60 £ 0.15 0.46 + 0.05 0.28 + 0.04%* 0.00 £ 0.00 0.02 +0.10%*  1.00 + 0.00
REVISE 0.42 +0.14 0.56 + 0.05 0.41 +£0.01 0.00 £ 0.00 0.47 £ 0.50 0.48 +0.50
Schut 0.77 £0.17 0.43 + 0.06* 0.47 +0.36 0.20 £ 0.25 0.00 + 0.00**  1.00 + 0.00
Wachter 0.51 £0.15 0.51 £0.04 0.40 £ 0.08 0.00 £ 0.00 0.59 +0.02 1.00 + 0.00
JEM ECCCo 334.61 +46.37 19.28 £5.01%*  314.76 £32.36*  0.00 = 0.00 4.43 £0.56 0.98 + 0.12
MNIST REVISE 170.68 £ 63.26 188.70 +£26.18* 255.26 + 41.50**  0.00 + 0.00 439+£0091 0.96 +0.20
Schut 9.44 + 1.607** 211.00 £27.21 286.61 +39.85* 0.99 £ 0.00**  1.08 + 1.95* 0.24+0.43
Wachter 128.36 + 14.95 222.90 +26.56 361.88 +£39.74 0.00 + 0.00 4.37+0.98 0.95+0.21
JEM Ensemble ECCCo 342.64 £41.14 15.99 + 3.06** 294.72 £30.75*%*%  0.00 = 0.00 2.07 £0.06%*  1.00 + 0.00%**
REVISE 170.21 + 58.02 173.59 £20.65**  246.32 + 37.46** .00 + 0.00 2.56+0.83 0.93+0.26
Schut 9.78 + 1.02°%* 205.33 +24.07 287.39 £39.33*  0.99 £0.00%*  0.32+0.94** 0.11 +£0.31
Wachter 135.07 £ 16.79 217.67 +23.78 363.23 +£39.24 0.00 + 0.00 2.93+0.77 0.94+0.23
MLP ECCCo 605.17 +44.78 41.95 + 6.50**  591.58 + 36.24 0.00 + 0.00 0.57 £ 0.00%*  1.00 * 0.00%*
REVISE 146.61 +36.96 365.82 +15.35%  249.49 +41.55** (.00 + 0.00 0.62 +0.30 0.87 +0.34
Schut 9.95 £ 0.37** 382.44 +17.81 285.98 +£42.48* 0.99 £ 0.00**  0.05+0.19** 0.06 +0.24
Wachter 136.08 £ 16.09 386.05 = 16.60 361.83 £42.18 0.00 £ 0.00 0.68 +0.36 0.84 +0.36
MLP Ensemble ECCCo 525.87 +34.00 31.43 £3.91%*  490.88 +27.19 0.00 + 0.00 0.29 + 0.00%*  1.00 * 0.00%*
REVISE 146.60 + 35.64 337.74 £ 11.89* 247.67 + 38.36**  0.00 + 0.00 0.39 +0.22 0.85 +0.36
Schut 9.98 + 0.25%* 359.54 £ 14.52 283.99 +£41.08* 0.99 £ 0.00**  0.03 £ 0.14** 0.06 +0.24
Wachter 137.53 + 18.95 360.79 + 14.39 357.73 £42.55 0.00 £ 0.00 0.47 £ 0.64 0.80 + 0.40
Moons JEM ECCCo 1.56 £ 0.44 0.31 + 0.30* 1.20 + 0.15%* 0.00 + 0.00 0.00 + 0.00**  1.00 + 0.00%*
ECCCo (no CP) 1.56 + 0.46 0.37 £ 0.30* 1.21 £0.17%* 0.00 £ 0.00 0.00 + 0.00**  1.00 + 0.00%*
ECCCo (no EBM) 0.80 +0.25 0.91+£0.32 1.71+£0.25 0.00 + 0.00 0.00 + 0.00**  1.00 + 0.00%*
REVISE 1.04+0.43 0.78 +£0.23 1.57+0.26 0.00 + 0.00 0.00 + 0.00**  1.00 + 0.00%*
Schut 1.12+0.31 0.67 £0.27 1.50 £ 0.22%* 0.08 + 0.19 0.00 £ 0.00%* 0.98 +£0.14
Wachter 0.72 £ 0.24 0.80 +0.27 1.78 £0.24 0.00 £ 0.00 0.02+0.10 0.98 +0.14
MLP ECCCo 2.18 +1.05 0.80 £ 0.62 1.69 + 0.40 0.00 £ 0.00 0.15 £0.24* 1.00 + 0.00
ECCCo (no CP) 207 +1.15 0.79 £ 0.62 1.68 +0.42 0.00 £ 0.00 0.15 £ 0.24* 1.00 = 0.00
ECCCo (no EBM) 1.25+£0.92 1.34 £ 0.47 1.68 +0.47 0.00 + 0.00 0.43+0.18 1.00 + 0.00
REVISE 0.79 £0.19* 1.45+0.44 1.64 +0.31 0.00 + 0.00 0.40 +0.22 1.00 + 0.00
Schut 0.73 £ 0.25* 1.45+0.55 1.73 £ 0.48 0.31+£0.28*  0.00 +0.00%* 0.90 + 0.30
Wachter 1.08 +£0.83 1.32+0.41 1.69 +0.32 0.00 £ 0.00 0.52 +£0.08 1.00 = 0.00




Table 8: All results for all datasets: sample averages +/- one standard deviation over all valid counterfactuals. Best outcomes
are highlighted in bold. Asterisks indicate that the given value is more than one (*) or two (**) standard deviations away from

the baseline (Wachter).

Model Data Generator Cost | Unfaithfulness | Implausibility | ~ Redundancy T  Uncertainty | Validity 1
Circles JEM ECCCo 0.74 +0.21 0.52 +0.36 1.22 +0.46 0.00 + 0.00 0.00 + 0.00 1.00 + 0.00
ECCCo (no CP) 0.72+0.21 0.54 £ 0.39 1.21 £ 0.46 0.00 + 0.00 0.00 + 0.00 1.00 + 0.00

ECCCo (no EBM) 0.52+0.15 0.70 £ 0.33 1.30 + 0.37 0.00 + 0.00 0.00 + 0.00 1.00 = 0.00

REVISE 1.28 +0.14 0.33 + 0.01°* 0.64 + 0.00** 0.00 + 0.00 0.00 + 0.00 1.00 + 0.00

Schut 1.06 +£0.43 0.54 +£043 1.28 +£0.53 0.26 + 0.25* 0.00 £ 0.00 1.00 £ 0.00

Wachter 0.45 £ 0.15 0.68 +0.34 1.33+0.32 0.00 = 0.00 0.00 £ 0.00 1.00 £ 0.00

MLP ECCCo 0.67 +0.19 0.65 £0.53 1.17+0.41 0.00 = 0.00 0.09 £0.19%*  1.00 £ 0.00

ECCCo (no CP) 0.71 £0.16 0.49 £0.35 1.19+0.44 0.00 = 0.00 0.05 £0.16%*  1.00 = 0.00

ECCCo (no EBM) 0.45+0.11 0.84 £0.51 1.23+0.31 0.00 + 0.00 0.15+0.23*  1.00 £ 0.00

REVISE 1.24+0.15 0.06 + 0.01°* 0.64 + 0.00** 0.00 + 0.00 0.00 = 0.00**  1.00 + 0.00

Schut 0.57 +0.11 0.58 +0.37 1.23+0.43 0.43 £0.18**  0.00 + 0.00%* 1.00 + 0.00

Wachter 0.40 + 0.09 0.83 £0.50 1.24 +0.29 0.00 £ 0.00 0.53 £0.01 1.00 £ 0.00

JEM ECCCo 17.45 +£2.92%% 79.16 + 11.67** 18.26 £4.92**  0.00 £ 0.00 0.10 +0.01 1.00 + 0.00

GMSC REVISE 343 £ 1.67** 186.40 + 28.06 5.34 +2.38%* 0.00 + 0.00 0.51+£0.22 1.00 £ 0.00
Schut 1.27 + 0.33** 200.98 +28.49 6.50 £ 2.01%* 0.77 £ 0.07**  0.07 £ 0.00 1.00 £ 0.00

Wachter 57.71 £ 0.47 214.08 +45.35 61.04 +2.58 0.00 + 0.00 0.07 + 0.00 1.00 + 0.00

JEM Ensemble ECCCo 17.43 £3.04%* 83.28 + 13.26** 17.21 £ 4.46%* 0.00 £ 0.00 0.16 £0.11 1.00 £ 0.00

REVISE 2.94 + 1.13%* 194.24 +35.41 4.95 + 1.26** 0.00 + 0.00 0.51+0.29 1.00 + 0.00

Schut 1.03 + 0.20%* 208.45 + 34.60 6.12 + 1.91%* 0.85 £ 0.05%*  0.09 +0.04 1.00 + 0.00

Wachter 56.79 + 44.68 186.19 + 33.88 60.70 + 44.32 0.00 + 0.00 0.07 + 0.00 1.00 + 0.00

MLP ECCCo 17.05 +2.87 75.93 + 14.27** 17.20 £3.15 0.00 + 0.00 0.19 +0.08 1.00 + 0.00

REVISE 2.93 + 1.24% 196.75 £ 41.25 4.84 + 0.60** 0.00 + 0.00 0.38 £0.18 1.00 = 0.00

Schut 1.49 + 0.87%* 212.00 £41.15 6.44 +1.34 0.77 £ 0.13**  0.12+£0.01 1.00 £ 0.00

Wachter 448 £0.18 184.03 £ 48.16 7.49 +0.89 0.00 £ 0.00 0.12 £+ 0.00 1.00 £ 0.00

MLP Ensemble ECCCo 16.63 +2.62 73.86 + 14.63** 17.92 +4.17 0.00 + 0.00 0.23 +0.07 1.00 + 0.00

REVISE 3.73+2.36 207.21 £43.20 5.78 £ 2.10%* 0.00 £ 0.00 0.33 +£0.19 1.00 £ 0.00

Schut 1.20 + 0.47** 205.36 £32.11 7.00 +2.15% 0.79 £ 0.09*%*  0.12 £0.01 1.00 = 0.00

Wachter 4.97 £047 177.20 + 25.86 10.27 £3.21 0.00 + 0.00 0.11 + 0.00 1.00 + 0.00

. JEM ECCCo 0.75+0.17 0.03 £ 0.06** 0.20 £ 0.08** 0.00 = 0.00 0.00 £ 0.00 1.00 £ 0.00
Linearly Separable ECCCo 0 CP)  0.75+0.17 0.03 % 0.06%* 020+0.08%  000+000  0.00+0.00  1.00=0.00
ECCCo (no EBM) 0.70 +0.16 0.16 £0.11 0.34+0.19 0.00 + 0.00 0.00 + 0.00 1.00 + 0.00

REVISE 0.41 +0.14 0.15 £ 0.00%* 0.41 +£0.01%* 0.00 + 0.00 0.72 £ 0.02 1.00 + 0.00

Schut 1.15+0.35 0.39 £ 0.07 0.73+£0.17 0.25 £ 0.25 0.00 = 0.00 1.00 £ 0.00

Wachter 0.50+0.13 0.18 £0.10 044 +£0.17 0.00 +0.00 0.00 £ 0.00 1.00 £ 0.00

MLP ECCCo 0.95+0.16 0.29 + 0.05** 0.23 £ 0.06** 0.00 £ 0.00 0.00 £ 0.00**  1.00 £ 0.00

ECCCo (no CP) 0.94+0.16 0.29 + 0.05%* 0.23 £ 0.07** 0.00 +0.00 0.00 £ 0.00%* 1.00 + 0.00

ECCCo (no EBM) 0.60 +0.15 0.46 £ 0.05 0.28 + 0.04** 0.00 +0.00 0.02 £0.10%*  1.00 £ 0.00

REVISE 0.39 +0.15 0.52 +0.04 0.41+£0.01 0.00 + 0.00 0.98 + 0.00 1.00 + 0.00

Schut 0.77 £ 0.17 0.43 + 0.06* 0.47 £ 0.36 0.20 £ 0.25 0.00 + 0.00**  1.00 = 0.00

Wachter 0.51+0.15 0.51+£0.04 0.40 +0.08 0.00 + 0.00 0.59 +0.02 1.00 + 0.00

JEM ECCCo 334.98 + 46.54 19.27 £5.02%*  314.54 £32.54*  0.00 = 0.00 4.50 + 0.00** 1.00 = 0.00

MNIST REVISE 170.06 + 62.45 188.54 +£26.22%* 254.32 + 41.55%*  0.00 £ 0.00 4.57+0.14 1.00 £ 0.00
Schut 7.63 + 2.55%* 199.70 +£28.43 273.01 £39.60%*  0.99 + 0.00** 4.56+0.13 1.00 £ 0.00

Wachter 128.13 + 14.81 222.81 £26.22 361.38 £39.55 0.00 £ 0.00 4.58 £0.16 1.00 £ 0.00

JEM Ensemble ECCCo 342.64 £41.14 15.99 + 3.06** 294.72 £30.75*%*%  0.00 = 0.00 2.07 £0.06%* 1.00 = 0.00

REVISE 171.95 +58.81 173.05 £20.38%*  246.20 + 37.74**  0.00 £ 0.00 2.76 £0.45 1.00 £ 0.00

Schut 7.96 + 2.49** 186.91 £22.98*  264.68 +37.58**  0.99 + 0.00** 3.02+0.26 1.00 + 0.00

Wachter 134.98 + 16.95 217.37 +£23.93 362.91 +39.40 0.00 + 0.00 3.10+0.31 1.00 + 0.00

MLP ECCCo 605.17 +44.78 41.95 £ 6.50**  591.58 +36.24 0.00 + 0.00 0.57 £ 0.00**  1.00 = 0.00

REVISE 146.76 + 37.07 365.69 + 14.90%  245.36 +39.69%*  0.00 + 0.00 0.72 +0.18 1.00 + 0.00

Schut 9.25 + 1.31%* 371.12 £ 19.99 245.11 + 35.72%% 0,99 + 0.00**  0.75 £ 0.23 1.00 + 0.00

Wachter 135.08 + 15.68 384.76 £ 16.52 359.21 £42.03 0.00 £ 0.00 0.81+£0.22 1.00 £ 0.00

MLP Ensemble ECCCo 525.87 + 34.00 31.43 £3.91%%  490.88 +27.19 0.00 + 0.00 0.29 + 0.00**  1.00 = 0.00

REVISE 146.38 £ 35.18 337.21 £ 11.68* 244.84 + 37.17%*  0.00 £ 0.00 0.45+0.16 1.00 £ 0.00

Schut 9.75 £+ 1.00%* 344.60 + 13.64* 252.53 £37.92%%  0.99 £ 0.00*%*  0.55+0.21 1.00 £ 0.00

Wachter 134.48 £ 17.69 358.51 +£13.18 352.63 £39.93 0.00 +0.00 0.58 £0.67 1.00 £ 0.00

Moons JEM ECCCo 1.56 +0.44 0.31 £ 0.30* 1.20 + 0.15%* 0.00 £ 0.00 0.00 £ 0.00%*  1.00 +0.00
ECCCo (no CP) 1.56 +0.46 0.37 £0.30* 1.21 £ 0.17%* 0.00 +0.00 0.00 £ 0.00%*  1.00 + 0.00

ECCCo (no EBM) 0.80+0.25 091 +0.32 1.71 £0.25 0.00 + 0.00 0.00 + 0.00** 1.00 = 0.00

REVISE 1.04 +£0.43 0.78 +£0.23 1.57+0.26 0.00 £ 0.00 0.00 + 0.00**  1.00 = 0.00

Schut 1.13+0.29 0.66 + 0.25 1.47 £ 0.10%* 0.07 £0.18 0.00 + 0.00** 1.00 = 0.00

Wachter 0.73 £ 0.24 0.78 £0.23 1.75+£0.19 0.00 £ 0.00 0.02+0.11 1.00 = 0.00

MLP ECCCo 2.18+1.05 0.80 + 0.62 1.69 + 0.40 0.00 + 0.00 0.15+0.24*  1.00 £0.00

ECCCo (no CP) 207 +1.15 0.79 + 0.62 1.68 +0.42 0.00 + 0.00 0.15 £0.24* 1.00 £ 0.00

ECCCo (no EBM) 1.25+0.92 1.34+047 1.68 +0.47 0.00 +0.00 043 +£0.18 1.00 £ 0.00

REVISE 0.79 £ 0.19* 1.45+0.44 1.64 £0.31 0.00 £ 0.00 0.40 £0.22 1.00 £ 0.00

Schut 0.78 +0.17* 1.39 +0.50 1.59 +0.26 0.28 £0.25*  0.00 + 0.00%* 1.00 + 0.00

Wachter 1.08 + 0.83 1.32 £ 0.41 1.69 + 0.32 0.00 + 0.00 0.52 +0.08 1.00 + 0.00




