
We thank the reviewers for their thoughtful comments and
are glad with the overall positive response.

Reviewer #1
1. Experiment results: linguistic explanation. We will
add a linguistic explanation in Section 6 where we highlight
that ECCCo produces plausible counterfactuals iff the clas-
sifier itself has learned plausible explanations for the data.
It thus avoids the risk of generating plausible but potentially
misleading explanations for models that are highly suscepti-
ble to implausible explanations.

2. Core innovation: more visualizations. Figure 1 shows
the relationship between implausibility and the energy con-
straint for MNIST data. As expected, this relationship is pos-
itive and the size of the relationship depends positively on
the model’s generative property (the observed relationships
are stronger for joint energy models). We will add such im-
ages for all datasets to the appendix. We note that our final
benchmark results involve around 1.5 million counterfactu-
als per dataset (not including grid searches).

Figure 1: The L2 distance of randomly drawn MNIST im-
ages with Gaussian perturbations from unperturbed images
in the target class (horizontal axis) plotted against their
energy-constrained score, i.e. target logit (vertical axis).

3. Structural clarity. To facilitate comprehension, we will
follow the reviewer’s advice and add a systematic flowchart
either in the appendix or in place of Figure 2.

Reviewer #2
4. Why use an embedding? There are two main reasons
for using a low-dimensional latent embedding: firstly, to
help with plausibility and, secondly, to reduce computational
costs. The latter is not currently made explicit in the paper
and we will add this in Section 5. The former is discussed in
the context of the results for ECCCo+ in Section 6.3, but we
will highlight the following rationale:

There is indeed a tradeoff between plausibility and faith-
fulness through the introduction of bias: plausibility is im-
proved because counterfactuals are insensitive to variation
captured by higher-order principal components. Intuitively,
the generated counterfactuals are therefore less noisy. We
think that the bias introduced by PCA may be acceptable,
precisely because it ‘will not add any information on the
input distribution’ as the reviewer correctly points out. To
maintain faithfulness, we want to avoid adding any informa-
tion through surrogate models as much as possible.

5. What is ‘epsilon’ and ‘s’? From the paper: ‘[...] the
step-size ϵj is typically polynomially decayed.’ Intuitively,
ϵj determines the size of gradient updates and random noise
in each iteration of SGLD.

Regarding s(·), this was an oversight. In the appendix we
explain that ‘[the calibration dataset] is then used to com-
pute so-called nonconformity scores: S = {s(xi,yi)}i∈Dcal

where s : (X ,Y) 7→ R is referred to as score function.’ We
will add this in Section 4.2 of the paper.

6. Euclidean distance. As we mentioned in the additional
author response, we investigated different distance metrics
and found that the overall qualitative results were largely in-
dependent of the choice of metric. For image data, we still
decided to report the results for a dissimilarity metric that is
more appropriate in this context. All of our distance-based
metrics are computed in the feature space. This is because
we would indeed expect certain discrepancies between dis-
tances evaluated in the feature space and distances evalu-
ated in the latent space of a VAE, for example. In cases
where high dimensionality leads to prohibitive computa-
tional costs, we suggest working in a lower-dimensional sub-
space that is as uninformative as possible (such as PCA).

7. Model fails to learn plausible explanations. In these
cases, ECCCo generally achieves lower plausibility while
maintaining faithfulness (see also points 1 and 9).

8. Faithfulness metric: is it fair? We have taken mea-
sures to not unfairly bias our generator for the unfaithfulness
metric: instead of penalizing the unfaithfulness metric di-
rectly, we penalize model energy in our preferred implemen-
tation. In contrast, Wachter penalizes the closeness criterion
directly and hence does particularly well in this regard. In
the absence of other established faithfulness metrics, we can
only point out that ECCCo achieves strong performance for
other commonly used metrics as well. For validity, which
corresponds to fidelity, ECCCo performs strongly.

Joint energy models (JEM) are indeed explicitly trained to
model X|y, but the faithfulness metric is not computed for
samples generated by JEMs. It is computed for counterfactu-
als generated by constraining model energy and hence there
is no obvious source of bias. Our empirical findings support
this argument: firstly, ECCCo achieves high faithfulness also
for classifiers that have not been trained to model X|y; sec-
ondly, our additional results in the appendix for ECCCo-L1
show that if we do indeed explicitly penalize the unfaith-
fulness metric, we achieve even better results in this regard
(also for models not trained to model X|y).

9. Add unreliable models. We would argue that the sim-
ple multi-layer perceptrons (MLP) are unreliable, especially
compared to ensembles, joint energy models and convolu-
tional neural networks. Simple MLPs are generally more
vulnerable to adversarial attacks, which makes them suscep-
tible to implausible counterfactual explanations as we point
out in Section 3. Our results support this notion, in that the
quality of counterfactuals produced by ECCCo is higher for
more reliable models. Consistent with the reviewer’s idea,
we originally considered introducing ‘poisoned’ VAEs to il-
lustrate what we identify as the key vulnerability of REVISE:
if the underlying VAE is misspecified, this will adversely af-
fect counterfactual outcomes as well. We discarded this idea
due to limited scope and because we decided that Section 3
sufficiently illustrates our line of thinking.


