
Figure 1: The distance of randomly drawn MNIST images
from images in the target class (horizontal axis) plotted
against their energy-constrained score (vertical axis).

Experiment results: linguistic explanation. In Section 6,
we will add the following linguistic explanation:

‘Our findings demonstrate that ECCCo produces plausi-
ble counterfactuals if and only if the black-box model itself
has learned plausible explanations for the data. Thus, EC-
CCo avoids the risk of generating plausible but potentially
misleading explanations for models that are highly suscepti-
ble to implausible explanations. Thus, ECCCo can be instru-
mental in discerning unreliable from trustworthy models.’

Core innovation: more visualizations. Figure 1 shows
the relationship between implausibility and the energy con-
straint for MNIST data. As expected, this relationship is pos-
itive and the size of the relationship depends positively on
the model’s generative property (the observed relationships
are stronger for joint energy models). We will add such im-
ages for all datasets to the appendix. We note that our final
benchmark results involve around 1.5 million counterfactu-
als per dataset (not including grid search).

Structural clarity. To facilitate comprehension, we will
follow the reviewer’s advice and add a systematic flowchart
either in the appendix or in place of Figure 2.

Why use an embedding? For any type of surrogate
model, there is a risk of introducing bias. In exceptional
cases, it may be necessary to accept some degree of bias
in favor of plausibility. Our discussion of the results for EC-
CCo+ in Section 6.3 demonstrates this tradeoff. The bias
introduced through PCA can be explained intuitively: by
constraining the counterfactual search to the space spanned
by the first nz principal components, the search is sensitive
only to the variation explained by those components. It is an
intuitive finding, that the generated counterfactuals are less
noisy. We will highlight this rationale in Section 6.3.

We think that the bias introduced by PCA may be accept-
able, precisely because it ‘will not add any information on
the input distribution’ as the reviewer correctly points out.
To maintain faithfulness, we want to avoid introducing ad-
ditional information through surrogate models as much as
possible. We will make this intuition clearer in Section 6.3.

Another argument for using a low-dimensional latent em-
bedding is the reduction in computational costs, which can
be prohibitive for some data. We will add this in Section 5.

What is ‘epsilon’ and ‘s’? From the paper: ‘[...] the step-
size ϵj is typically polynomially decayed.’ Intuitively, ϵj de-
termines the size of gradient updates and random noise in
each iteration of SGLD.

Regarding s(·), this was an oversight. In the appendix we
explain that ”[the calibration dataset] is then used to com-

pute so-called nonconformity scores: S = {s(xi,yi)}i∈Dcal

where s : (X ,Y) 7→ R is referred to as score function.” We
will add this in Section 4.2 of the main paper.

Euclidean distance. As we mentioned in the additional
author response, we investigated different distance metrics
and found that the overall qualitative results were largely
independent of the choice. In the context of the high-
dimensional image data, we still decided to report the re-
sults for a dissimilarity metric that is more appropriate in
this context. All of our distance-based metrics are computed
in the feature space. This is because we would indeed expect
certain discrepancies between distances evaluated in the fea-
ture space and distances evaluated in the latent space of the
VAE, for example. In cases where high dimensionality leads
to prohibitive computational costs, we suggest working in a
lower-dimensional subspace that is independent of the un-
derlying classifier itself (such as PCA).

Faithfulness metric: is it fair? We have taken measures
to not unfairly bias our generator for the unfaithfulness met-
ric: instead of penalizing the unfaithfulness metric directly,
we penalize model energy in our preferred implementation.
In contrast, Wachter penalizes the closeness criterion di-
rectly and hence does particularly well in this regard. In the
lack of other established metrics to measure faithfulness, we
can only point out that ECCCo achieves strong performance
for other commonly used metrics as well. For validity, which
corresponds to fidelity, ECCCo typically performs strongly.

Our joint energy models (JEM) are indeed explicitly
trained to model X|y and the same quantity is used in our
proposed faithfulness metric. However, the faithfulness met-
ric itself is not computed for samples generated by our
JEMs. It is computed for counterfactuals generated by con-
straining model energy and we would therefore argue that
it is not unfairly biased. Our empirical findings support this
argument: firstly, ECCCo achieves high faithfulness also for
classifiers that have not been trained to model X|y; secondly,
our additional results in the appendix for ECCCo-L1 show
that if we do indeed explicitly penalize the unfaithfulness
metric, we achieve even better results in this regard.

Add unreliable models. We would argue that the simple
multi-layer perceptrons (MLPs) are unreliable, especially
compared to ensembles, joint energy models and convolu-
tional neural networks for our image datasets. Simple neural
networks are vulnerable to adversarial attacks, which makes
them susceptible to implausible counterfactual explanations
as we point out in Section 3. Our results support this notion,
in that they demonstrate faithful model explanations only
coincide with high plausibility if the model itself has been
trained to be more reliable. Consistent with the idea pro-
posed by the reviewer, we originally considered introducing
‘poisoned’ VAEs as well, to illustrate what we identify as
the key vulnerability of REVISE: if the underlying VAE is
trained on poisoned data, this will adversely affect counter-
factual outcomes as well. We ultimately discarded this idea
due to limited scope and because we decided that Section 3
sufficiently illustrates our thinking.


