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Abstract

Counterfactual Explanations offer an intuitive and straightforward way to explain1

black-box models and offer Algorithmic Recourse to individuals. To address the2

need for plausible explanations, existing work has primarily relied on surrogate3

models to learn how the input data is distributed. This effectively reallocates4

the task of learning realistic explanations for the data from the model itself to5

the surrogate. Consequently, the generated explanations may seem plausible to6

humans but need not necessarily describe the behaviour of the black-box model7

faithfully. We formalise this notion of faithfulness through the introduction of a8

tailored evaluation metric and propose a novel algorithmic framework for gener-9

ating Energy-Constrained Conformal Counterfactuals (ECCCos) that are only as10

plausible as the model permits. Through extensive empirical studies involving11

multiple synthetic and real-world datasets, we demonstrate that ECCCos reconcile12

the need for plausibility and faithfulness. In particular, we show that it is possible13

to achieve state-of-the-art plausibility for models with gradient access without the14

need for surrogate models. To do so, our framework relies solely on properties15

defining the black-box model itself by leveraging recent advances in energy-based16

modelling and conformal prediction. To our knowledge, this is the first venture17

in this direction for generating faithful Counterfactual Explanations. Thus, we18

anticipate that ECCCos can serve as a baseline for future research. We believe that19

our work opens avenues for researchers and practitioners seeking tools to better20

distinguish trustworthy from unreliable models.21

1 Introduction22

Counterfactual Explanations (CE) provide a powerful, flexible and intuitive way to not only explain23

black-box models but also help affected individuals through the means of Algorithmic Recourse.24

Instead of opening the Black Box, CE works under the premise of strategically perturbing model25

inputs to understand model behaviour [33]. Intuitively speaking, we generate explanations in this26

context by asking what-if questions of the following nature: ‘Our credit risk model currently predicts27

that this individual is not credit-worthy. What if they reduced their monthly expenditures by 10%?’28

This is typically implemented by defining a target outcome y+ ∈ Y for some individual x ∈ X = RD29

described by D attributes, for which the model Mθ : X 7→ Y initially predicts a different outcome:30

Mθ(x) ̸= y+. Counterfactuals are then searched by minimizing a loss function that compares the31

predicted model output to the target outcome: yloss(Mθ(x),y
+). Since Counterfactual Explanations32

work directly with the black-box model, valid counterfactuals always have full local fidelity by33

construction where fidelity is defined as the degree to which explanations approximate the predictions34

of a black-box model [21, 20].35

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



In situations where full fidelity is a requirement, CE offers a more appropriate solution to Explainable36

Artificial Intelligence (XAI) than other popular approaches like LIME [26] and SHAP [17], which37

involve local surrogate models. But even full fidelity is not a sufficient condition for ensuring38

that an explanation faithfully describes the behaviour of a model. That is because multiple very39

distinct explanations can all lead to the same model prediction, especially when dealing with heavily40

parameterized models like deep neural networks, which are typically underspecified by the data [35].41

In the context of CE, the idea that no two explanations are the same arises almost naturally. A key42

focus in the literature has therefore been to identify those explanations and algorithmic recourses that43

are most appropriate based on a myriad of desiderata such as sparsity, actionability and plausibility.44

In this work, we draw closer attention to model faithfulness rather than fidelity as a desideratum for45

counterfactuals. Our key contributions are as follows:46

• We show that fidelity is an insufficient evaluation metric for counterfactuals (Section 3) and47

propose a definition of faithfulness that gives rise to more suitable metrics (Section 4).48

• We introduce a novel algorithmic approach for generating Energy-Constrained Conformal49

Counterfactuals (ECCCos) in Section 5.50

• We provide extensive empirical evidence demonstrating that ECCCos faithfully explain51

model behaviour without sacrificing plausibility (Section 6).52

Thus, we believe that our work opens avenues for researchers and practitioners seeking tools to better53

distinguish trustworthy from unreliable models.54

2 Background55

While Counterfactual Explanations can be generated for arbitrary regression models [28], existing56

work has primarily focused on classification problems. Let Y = (0, 1)K denote the one-hot-encoded57

output domain with K classes. Then most counterfactual generators rely on gradient descent to58

optimize different flavours of the following counterfactual search objective:59

Z′ = arg min
Z′∈ZL

{
yloss(Mθ(f(Z

′)),y+) + λcost(f(Z′))
}

(1)

Here yloss denotes the primary loss function, f(·) is a function that maps from the counterfactual60

state space to the feature space and cost is either a single penalty or a collection of penalties that61

are used to impose constraints through regularization. Equation 1 restates the baseline approach to62

gradient-based counterfactual search proposed by Wachter et al. [33] in general form as introduced63

by Altmeyer et al. [2]. To explicitly account for the multiplicity of explanations Z′ = {zl}L denotes64

an L-dimensional array of counterfactual states.65

The baseline approach, which we will simply refer to as Wachter [33], searches a single counterfactual66

directly in the feature space and penalises its distance to the original factual. In this case, f(·) is simply67

the identity function and Z corresponds to the feature space itself. Many derivative works of Wachter68

et al. [33] have proposed new flavours of Equation 1, each of them designed to address specific69

desiderata that counterfactuals ought to meet in order to properly serve both AI practitioners and70

individuals affected by algorithmic decision-making systems. The list of desiderata includes but is not71

limited to the following: sparsity, proximity [33], actionability [31], diversity [21], plausibility [11,72

25, 27], robustness [30, 24, 2] and causality [14]. Different counterfactual generators addressing73

these needs have been extensively surveyed and evaluated in various studies [32, 13, 23, 4, 10].74

Perhaps unsurprisingly, the different desiderata are often positively correlated. For example, Artelt75

et al. [4] find that plausibility typically also leads to improved robustness. Similarly, plausibility has76

also been connected to causality in the sense that plausible counterfactuals respect causal relation-77

ships [18]. Consequently, the plausibility of counterfactuals has been among the primary concerns78

for researchers. Achieving plausibility is equivalent to ensuring that the generated counterfactuals79

comply with the true and unobserved data-generating process (DGP). We define plausibility formally80

in this work as follows:81

Definition 2.1 (Plausible Counterfactuals). Let X|y+ denote the true conditional distribution of82

samples in the target class y+. Then for x′ to be considered a plausible counterfactual, we need:83

x′ ∼ X|y+.84
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Figure 1: Counterfactuals for turning a 9 (nine) into a 7 (seven): original image (left); then from left
to right the counterfactuals generated using Wachter, Schut and REVISE

To generate plausible counterfactuals, we need to be able to quantify the DGP: X|y+. One straight-85

forward way to do this is to use surrogate models for the task. Joshi et al. [11], for example, suggest86

that instead of searching counterfactuals in the feature space X , we can instead traverse a latent em-87

bedding Z (Equation 1) that implicitly codifies the DGP. To learn the latent embedding, they propose88

using a generative model such as a Variational Autoencoder (VAE). Provided the surrogate model89

is well-trained, their proposed approach called REVISE can yield plausible explanations. Others90

have proposed similar approaches: Dombrowski et al. [6] traverse the base space of a normalizing91

flow to solve Equation 1; Poyiadzi et al. [25] use density estimators (p̂ : X 7→ [0, 1]) to constrain92

the counterfactuals to dense regions in the feature space; and, finally, Karimi et al. [14] assume93

knowledge about the structural causal model that generates the data.94

A competing approach towards plausibility that is also closely related to this work instead relies on95

the black-box model itself. Schut et al. [27] show that to meet the plausibility objective we need not96

explicitly model the input distribution. Pointing to the undesirable engineering overhead induced by97

surrogate models, they propose that we rely on the implicit minimisation of predictive uncertainty98

instead. Their proposed methodology, which we will refer to as Schut, solves Equation 1 by greedily99

applying JSMA in the feature space with standard cross-entropy loss and no penalty at all. The100

authors demonstrate theoretically and empirically that their approach yields counterfactuals for which101

the model Mθ predicts the target label y+ with high confidence. Provided the model is well-specified,102

these counterfactuals are plausible. This idea hinges on the assumption that the black-box model103

provides well-calibrated predictive uncertainty estimates.104

3 Why Fidelity is not Enough105

As discussed in the introduction, any valid Counterfactual Explanation also has full fidelity by106

construction: solutions to Equation 1 are considered valid as soon as the label predicted by the model107

matches the target class. So while fidelity always applies, counterfactuals that address the various108

desiderata introduced above can look vastly different from each other. The following motivating109

example illustrates this point and demonstrates why fidelity is an insufficient evaluation metric to110

assess the faithfulness of Counterfactual Explanations.111

We have trained a simple image classifier Mθ on the well-known MNIST dataset [15]: a Multi-Layer112

Perceptron (MLP) with above 90 percent test accuracy. No measures have been taken to improve the113

model’s adversarial robustness or its capacity for predictive uncertainty quantification. The far left114

panel of Figure 1 shows a random sample drawn from the dataset. The underlying classifier correctly115

predicts the label ‘nine’ for this image. For the given factual image and model, we have used Wachter,116

Schut and REVISE to generate one counterfactual each in the target class ‘seven’. The perturbed117

images are shown next to the factual image from left to right in Figure 1. Captions on top of the118

individual images indicate the generator along with the predicted probability that the image belongs119

to the target class. In all three cases that probability is above 90 percent and yet the counterfactuals120

look very different from each other.121

Since Wachter is only concerned with proximity, the generated counterfactual is almost indistin-122

guishable from the factual. The approach by Schut expects a well-calibrated model that can generate123

predictive uncertainty estimates. Since this is not the case, the generated counterfactual looks like an124

adversarial example. Finally, the counterfactual generated by REVISE looks much more plausible125

than the other two. But is it also more faithful to the behaviour of our MNIST classifier? That is much126

less clear because the surrogate used by REVISE introduces friction: the generated explanations no127

longer depend exclusively on the black-box model itself.128
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So which of the counterfactuals most faithfully explains the behaviour of our image classifier? Fidelity129

cannot help us to make that judgement, because all of these counterfactuals have full fidelity. To130

bridge this gap, we introduce a new notion of faithfulness in the following section.131

4 A new Notion of Faithfulness132

Analogous to Definition 2.1, we propose to define faithfulness in the context of Counterfactual133

Explanations as follows:134

Definition 4.1 (Faithful Counterfactuals). Let Xθ|y+ = pθ(Xy+) denote the conditional distribution135

of x in the target class y+, where θ denotes the parameters of model Mθ. Then for x′ to be considered136

a conformal counterfactual, we need: x′ ∼ Xθ|y+.137

In doing this, we merge in and nuance the concept of plausibility (Definition 2.1) where the notion of138

‘consistent with the data’ becomes ‘consistent with what the model has learned about the data’.139

4.1 Quantifying the Model’s Generative Property140

To assess counterfactuals with respect to Definition 4.1, we need a way to quantify the posterior141

conditional distribution pθ(x|y+). To this end, we draw on recent advances in Energy-Based142

Modelling (EBM), a subdomain of machine learning that is concerned with generative or hybrid143

modelling [8? ]. In particular, note that if we fix y to our target value y+, we can conditionally draw144

from pθ(x|y+) using Stochastic Gradient Langevin Dynamics (SGLD) as follows,145

xj+1 ← xj −
ϵ2

2
E(xj |y+) + ϵrj , j = 1, ..., J (2)

where rj ∼ N (0, I) is the stochastic term and the step-size ϵ is typically polynomially decayed [34].146

The term E(xj |y+) denotes the model energy conditioned on the target class label y+ which we147

specify as the negative logit corresponding to the target class label y∗. To allow for faster sampling,148

we follow the common practice of choosing the step-size ϵ and the standard deviation of rj separately.149

While xJ is only guaranteed to distribute as pθ(x|y∗) if ϵ→ 0 and J →∞, the bias introduced for a150

small finite ϵ is negligible in practice [22, 8]. Appendix A provides additional implementation details151

for any tasks related to energy-based modelling.152

Generating multiple samples using SGLD thus yields an empirical distribution X̂θ,y+ that approx-153

imates what the model has learned about the input data. While in the context of Energy-Based154

Modelling, this is usually done during training, we propose to repurpose this approach during155

inference in order to evaluate and generate faithful model explanations.156

4.2 Evaluating Plausibility and Faithfulness157

The parallels between our definitions of plausibility and faithfulness imply that we can also use158

similar evaluation metrics in both cases. Since existing work has focused heavily on plausibility,159

it offers a useful starting point. In particular, Guidotti [10] have proposed an implausibility metric160

that measures the distance of the counterfactual from its nearest neighbour in the target class. As161

this distance is reduced, counterfactuals get more plausible under the assumption that the nearest162

neighbour itself is plausible in the sense of Definition 2.1. In this work, we use the following adapted163

implausibility metric that relaxes this assumption,164

impl =
1

|x ∈ Xy+ |
∑

x∈Xy+

dist(x′,x) (3)

where Xy+ is a subsample of the training data in the target class y+.165

This gives rise to a very similar evaluation metric for unfaithfulness. We merely swap out the166

subsample of individuals in the target class for a subset X̂nE

θ,y+ of the generated conditional samples:167
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unfaith =
1

|x ∈ X̂nE

θ,y+ |

∑
x∈X̂

nE
θ,y+

dist(x′,x) (4)

Specifically, we form this subset based on the nE generated samples with the lowest energy.168

5 Energy-Constrained Conformal Counterfactuals (ECCCo)169

In this section, we describe our proposed framework for generating Energy-Constrained Conformal170

Counterfactuals (ECCCos). It is based on the premise that counterfactuals should be faithful, first171

and foremost. Plausibility, as a secondary concern, is then still attainable but only to the degree that172

the black-box model itself has learned plausible explanations for the underlying data.173

We begin by stating our proposed objective function, which involves tailored loss and penalty174

functions that we will explain in the following. In particular, we extend Equation 1 as follows:175

Z′ = arg min
Z′∈ZM

{yloss(Mθ(f(Z
′)),y+) + λ1dist(f(Z′),x)

+ λ2dist(f(Z′), x̂θ) + λ3Ω(Cθ(f(Z
′);α))}

(5)

The first penalty term involving λ1 induces proximity like in Wachter et al. [33]. Our default choice176

for dist(·) is the L1 Norm due to its sparsity-inducing properties. The second penalty term involving177

λ2 constrains the energy of the generated counterfactual by penalising its distance from the lowest-178

energy conditional samples as defined in Equation 4. Intuitively, this component induces faithfulness179

which coincides with plausibility to the extent that the model Mθ has learned the true posterior180

conditional distribution of inputs: pθ(Xy+)→ p(Xy+).181

The third and final penalty term involving λ3 introduces a new but familiar concept: it ensures that the182

generated counterfactual is associated with low predictive uncertainty. As mentioned above, Schut183

et al. [27] have shown that plausible counterfactuals can be generated implicitly through predictive184

uncertainty minimization. Unfortunately, this relies on the assumption that the model itself can185

provide predictive uncertainty estimates, which may be too restrictive in practice.186

To relax this assumption, we leverage recent advances in Conformal Prediction (CP), an approach to187

predictive uncertainty quantification that has recently gained popularity [3, 19]. Crucially for our188

intended application, CP is model-agnostic and can be applied during inference without placing any189

restrictions on model training. Intuitively, CP works under the premise of turning heuristic notions of190

uncertainty into rigorous uncertainty estimates by repeatedly sifting through the training data or a191

dedicated calibration dataset. Conformal classifiers produce prediction sets for individual inputs that192

include all output labels that can be reasonably attributed to the input. These sets tend to be larger for193

inputs that do not conform with the training data and are therefore characterized by high predictive194

uncertainty.195

In order to generate counterfactuals that are associated with low predictive uncertainty, we use a196

smooth set size penalty introduced by Stutz et al. [29] in the context of conformal training:197

Ω(Cθ(x;α)) = max

0,
∑
y∈Y

Cθ,y(xi;α)− κ

 (6)

Here, κ ∈ {0, 1} is a hyper-parameter and Cθ,y(xi;α) can be interpreted as the probability of label198

y being included in the prediction set.199

In order to compute this penalty for any black-box model we merely need to perform a single200

calibration pass through a holdout set Dcal. Arguably, data is typically abundant and in most201

applications, practitioners tend to hold out a test data set anyway. Consequently, CP removes the202

restriction on the family of predictive models, at the small cost of reserving a subset of the available203

data for calibration. This particular case of conformal prediction is referred to as Split Conformal204

Prediction (SCP) as it involves splitting the training data into a proper training dataset and a calibration205

dataset.206
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In addition to the smooth set size penalty, we have also experimented with the use of a tailored207

function for yloss(·) that enforces that only the target label y+ is included in the prediction set Stutz208

et al. [29]. Further details are described Appendix B.209

Figure 2: An example involving linearly separable
synthetic data and illustrating how ECCCo com-
pares to Wachter, Schut and REVISE. The factual
class is 2 and the target class is 1. Contours in-
dicate the predicted probability given by a Joint
Energy Model that the counterfactual belongs to
the target class.

Algorithm 1: Generating ECCCos (For
more details, see Appendix C)

Input:
x,y+,Mθ, f,Λ, α,D, T, η, nB, NB
where Mθ(x) ̸= y+

Output: x′

1: Initialize z′ ← f−1(x)
2: Generate buffer B of NB conditional

samples x̂θ|y+ using SGLD (Equa-
tion 2)

3: Run SCP for Mθ using D
4: Initialize t← 0
5: while not converged or t < T do
6: x̂θ,t ← rand(B, nB)
7: z′ ← z′ −

η∇z′L(z′,y+, x̂θ,t; Λ, α)
8: t← t+ 1
9: end while

10: x′ ← f(z′)

210

The entire procedure for generating ECCCos is described in Algorithm 1. For the sake of sim-211

plicity and without loss of generality, we limit our attention to generating a single counterfactual212

x′ = f(z′) where in contrast to Equation 5 z′ denotes a 1-dimensional array containing a single213

counterfactual state. That state is initialized by passing the factual x through the encoder f−1 which214

in our case corresponds to a simple feature transformer, rather than the encoder part of VAE as in215

REVISE [11]. Next, we generate a buffer of NB conditional samples x̂θ|y+ using SGLD (Equation 2)216

and conformalise the model Mθ through Split Conformal Prediction on training data D.217

Finally, we search counterfactuals through gradient descent. Let L(z′,y+, x̂θ,t; Λ, α) denote our loss218

function defined in Equation 5. Then in each iteration, we first randomly draw nB samples from219

the buffer B before updating the counterfactual state z′ by moving in the negative direction of that220

loss function. The search terminates once the convergence criterium is met or the maximum number221

of iterations T has been exhausted. Note that the choice of convergence criterium has important222

implications on the final counterfactual (for more detail on this see Appendix C).223

Figure 2 illustrates how ECCCos compare to counterfactuals generated using Wachter, Schut and224

REVISE. The example involves synthetically generated linearly separable data that belong to one225

of two classes. Contours indicate the predicted probabilities of a Joint Energy Model that has been226

jointly trained to predict the output class and generate inputs Grathwohl et al. [8]. We have drawn a227

random sample from the factual class 1 and used each generator to produce a counterfactual in the228

target class 2. Both Wachter and Schut yield valid counterfactuals but fail to achieve plausibility in the229

sense that the generated counterfactuals are far away from the densely populated region in the target230

class. Conversely, ECCCo yields a faithful and plausible counterfactual in the neighbourhood of the231

generated conditional samples. REVISE fails to yield a valid counterfactual because the underlying232

surrogate has failed to learn the DGP.233

6 Empirical Analysis234

Our goal in this section is to shed light on the following research questions:235

Research Question 6.1 (Faithfulness). Are ECCCos more faithful than counterfactuals produced by236

our benchmark generators?237
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Research Question 6.2 (Plausibility). How do ECCCos compare to state-of-the-art generators with238

respect to plausibility?239

We first briefly describe our experimental setup, before presenting our main results.240

6.1 Experimental Setup241

To assess and benchmark the performance of ECCCo against the state of the art, we generate multiple242

counterfactuals for different black-box models and datasets. In particular, we compare ECCCo243

to the following counterfactual generators that were introduced above: firstly; Schut [27], which244

works under the premise of minimizing predictive uncertainty; secondly, REVISE [11], which is245

state-of-the-art with respect to plausibility; and, finally, Wachter [33], which serves as our baseline.246

We also consider two variations of ECCCo: ‘ECCCo (no CP)’ involves no set size penalty (λ3 = 0 in247

Equation 5), while ‘ECCCo (no EBM)’ does not penalise the distance to samples generated through248

SGLD (λ2 = 0 in Equation 5). These have been added to gain some sense of the degree to which249

the two components underlying ECCCo—namely energy-based modelling (EBM) and conformal250

prediction (CP)—drive the results.251

We use both synthetic and real-world datasets from different domains, all of which are publically252

available and commonly used to train and benchmark classification algorithms. We synthetically253

generate a dataset containing two Linearly Separable Gaussian clusters (n = 1000), as well as the254

well-known Circles (n = 1000) and Moons (n = 2500) data. Since these data are generated by255

distributions of varying degrees of complexity, they allow us to assess how the generators and our256

proposed evaluation metrics handle this.257

As for real-world data, we follow Schut et al. [27] and use the MNIST [15] dataset containing images258

of handwritten digits such as the examples shown above. From the social sciences domain, we259

include Give Me Some Credit (GMSC) [12]: a tabular dataset that has been studied extensively in the260

literature on Algorithmic Recourse [23]. It consists of 11 numeric features that can be used to predict261

the binary outcome variable indicating whether or not retail borrowers experience financial distress.262

For the predictive modelling tasks, we use simple neural networks (MLP) and Joint Energy Models263

(JEM). For the more complex real-world datasets we also use ensembling in each case. Both264

joint-energy modelling and ensembling are associated with generative properties and adversarial265

robustness, so we expect this to be positively correlated with the plausibility of ECCCos. To account266

for stochasticity, we generate multiple counterfactuals for each possible target class, generator, model267

and dataset. Specifically, we randomly sample n− times from the subset of individuals for which268

the given model predicts the non-target class y− given the current target. We set n− = 25 for all269

of our synthetic datasets, n− = 10 for GMSC and n− = 5 for MNIST. Full details concerning our270

parameter choices, training procedures and model performance can be found in Appendix D.271

6.2 Results for Synthetic Data272

Table 1 shows the key results for the synthetic datasets separated by model (first columns) and273

generator (second column). The numerical columns show the average values of our key evaluation274

metrics computed across all counterfactuals. Standard deviations are shown in parentheses. In bold275

we have highlighted the best outcome for each model and metric. To provide some sense of effect276

sizes, we have added asterisks to indicate that a given value is at least one (∗) or two (∗∗) standard277

deviations lower than the baseline (Wachter).278

Starting with the high-level results for our Linearly Separable data, we find that ECCCo produces279

the most faithful counterfactuals for both black-box models. This is consistent with our design since280

ECCCo directly enforces faithfulness through regularization. Crucially though, ECCCo also produces281

the most plausible counterfactuals for both models. This dataset is so simple that even the MLP has282

learned plausible explanations of the input data. Zooming in on the granular details for the Linearly283

Separable data, the results for ‘ECCCo (no CP)’ and ‘ECCCo (no EBM)’ indicate that the positive284

results are dominated by the effect of quantifying and leveraging the model’s generative property285

(EBM). Conformal Prediction alone only leads to marginally improved faithfulness and plausibility286

relative to the benchmark generators.287

The findings for the Moons dataset are broadly in line with the findings so far: for the JEM, ECCCo288

yields significantly more faithful and plausible counterfactuals than all other generators. For the MLP,289
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Table 1: Results for synthetic datasets. Standard deviations across samples are shown in parentheses.
Best outcomes are highlighted in bold. Asterisks indicate that the given value is more than one (*) or
two (**) standard deviations away from the baseline (Wachter).

Linearly Separable Moons Circles

Model Generator Unfaithfulness ↓ Implausibility ↓ Unfaithfulness ↓ Implausibility ↓ Unfaithfulness ↓ Implausibility ↓

ECCCo 0.03 (0.06)** 0.20 (0.08)** 0.31 (0.30)* 1.20 (0.15)** 0.52 (0.36) 1.22 (0.46)
ECCCo (no CP) 0.03 (0.06)** 0.20 (0.08)** 0.37 (0.30)* 1.21 (0.17)** 0.54 (0.39) 1.21 (0.46)

ECCCo (no EBM) 0.16 (0.11) 0.34 (0.19) 0.91 (0.32) 1.71 (0.25) 0.70 (0.33) 1.30 (0.37)
REVISE 0.19 (0.03) 0.41 (0.01)** 0.78 (0.23) 1.57 (0.26) 0.48 (0.16)* 0.95 (0.32)*

Schut 0.39 (0.07) 0.73 (0.17) 0.67 (0.27) 1.50 (0.22)* 0.54 (0.43) 1.28 (0.53)

JEM

Wachter 0.18 (0.10) 0.44 (0.17) 0.80 (0.27) 1.78 (0.24) 0.68 (0.34) 1.33 (0.32)

ECCCo 0.29 (0.05)** 0.23 (0.06)** 0.80 (0.62) 1.69 (0.40) 0.65 (0.53) 1.17 (0.41)
ECCCo (no CP) 0.29 (0.05)** 0.23 (0.07)** 0.79 (0.62) 1.68 (0.42) 0.49 (0.35) 1.19 (0.44)

ECCCo (no EBM) 0.46 (0.05) 0.28 (0.04)** 1.34 (0.47) 1.68 (0.47) 0.84 (0.51) 1.23 (0.31)
REVISE 0.56 (0.05) 0.41 (0.01) 1.45 (0.44) 1.64 (0.31) 0.58 (0.52) 0.95 (0.32)

Schut 0.43 (0.06)* 0.47 (0.36) 1.45 (0.55) 1.73 (0.48) 0.58 (0.37) 1.23 (0.43)

MLP

Wachter 0.51 (0.04) 0.40 (0.08) 1.32 (0.41) 1.69 (0.32) 0.83 (0.50) 1.24 (0.29)

faithfulness is maintained but counterfactuals are not plausible. This high-level pattern is broadly290

consistent other more complex datasets and supportive of our narrative, so it is worth highlighting:291

ECCCos consistently achieve high faithfulness, which—subject to the quality of the model itself—292

coincides with high plausibility. By comparison, REVISE yields the most plausible counterfactuals293

for the MLP, but it does so at the cost of faithfulness. We also observe that the best results for ECCCo294

are achieved when using both penalties. Once again though, the generative component (EBM) has a295

stronger impact on the positive results for the JEM.296

For the Circles data, it appears that REVISE performs well but we note that it generates valid297

counterfactuals only half of the time (see Appendix E for a complete overview of all evaluation298

metrics). It turns out that in this case, the underlying VAE with default parameters has not adequately299

learned the data-generating process. Of course, it is possible to achieve better generative performance300

through hyperparameter tuning but this example serves to illustrate that REVISE depends strongly on301

the quality of the surrogate model. Independent of the outcome for REVISE, however, the results302

do not seem to indicate that ECCCo significantly improves faithfulness and plausibility for the303

Circles data. We think this points to a limitation of our evaluation metrics rather than ECCCo itself:304

computing average distances fails to account for the ‘wraparound’ effect associated with circular305

data [7].306

6.3 Results for Real-World Data307

The results for our real-world datasets are shown in Table 2. Once again the findings indicate that the308

plausibility of ECCCos is positively correlated with the capacity of the black-box model to distinguish309

plausible from implausible inputs. The case is very clear for MNIST: ECCCos are consistently more310

faithful than the corresponding counterfactuals produced by any of the benchmark generators and311

their plausibility gradually improves through ensembling and joint-energy modelling. For the JEM312

Ensemble, ECCCo is essentially on par with REVISE and does significantly better than the baseline313

generator. We also note that ECCCo is the only generator that consistently achieves full validity for314

all models (Appendix E). Interestingly, ECCCo also yields lower-cost outcomes than the baseline315

generator for the JEMs.316

For the tabular credit dataset (GMSC) it is inherently challenging to use deep neural networks317

in order to achieve good discriminative performance [5, 9] and discriminative performance [16],318

respectively. In order to achieve high plausibility, ECCCo effectively requires classifiers to achieve319

good performance for both tasks. Since this is a challenging task even for Joint Energy Models, it is320

not surprising to find that even though ECCCo once again achieves state-of-the-art faithfulness, it is321

outperformed by REVISE and Schut with respect to plausibility.322

6.4 Key Takeways323

To conclude this section, we summarize our findings with reference to the opening questions. The324

results have clearly demonstrated that ECCCo consistently achieves state-of-the-art faithfulness, as it325

was designed to do (Research Question 6.1). A related important finding is that ECCCo yields highly326
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Table 2: Results for real-world datasets. Standard deviations across samples are shown in parentheses.
Best outcomes are highlighted in bold. Asterisks indicate that the given value is more than one (*) or
two (**) standard deviations away from the baseline (Wachter).

MNIST GMSC

Model Generator Unfaithfulness ↓ Implausibility ↓ Unfaithfulness ↓ Implausibility ↓

ECCCo 81.78 (17.49)** 299.40 (29.48)** 199.40 (38.02) 17.26 (5.64)**
REVISE 190.01 (28.89)** 263.01 (46.46)** 206.57 (41.88) 4.86 (0.90)**

Schut 210.14 (27.35)** 286.50 (40.67)** 197.85 (37.95) 6.46 (2.11)**JEM

Wachter 280.70 (26.17) 499.25 (38.25) 195.02 (32.35) 68.48 (60.80)

ECCCo 72.46 (11.11)** 276.48 (26.75)** 182.04 (26.62) 16.85 (4.49)**
REVISE 173.81 (22.22)** 248.50 (41.54)** 206.02 (41.79) 4.76 (0.63)**

Schut 202.69 (22.90)** 282.77 (39.72)** 204.53 (24.20) 6.53 (1.55)**JEM Ensemble

Wachter 272.32 (23.03) 494.77 (37.74) 185.59 (33.79) 59.26 (49.56)

ECCCo 155.25 (22.13)** 519.58 (33.92) 177.98 (39.03) 19.09 (5.00)**
REVISE 367.93 (14.90)** 256.16 (44.23)** 201.61 (30.74) 5.33 (1.74)**

Schut 382.40 (16.67)* 286.14 (41.39)** 199.35 (32.06) 6.84 (1.96)**MLP

Wachter 406.24 (17.34) 488.30 (39.64) 195.51 (23.99) 81.62 (54.15)

ECCCo 144.74 (20.08)** 484.56 (31.26) 196.45 (34.80)* 20.18 (5.20)**
REVISE 340.33 (13.32)** 251.30 (42.13)** 202.67 (27.80)* 4.82 (0.40)**

Schut 358.83 (13.17)* 283.12 (43.27)** 199.64 (42.29)* 6.35 (1.66)**MLP Ensemble

Wachter 375.22 (18.91) 456.68 (47.21) 244.65 (44.55) 63.00 (53.77)

plausible explanations provided that they faithfully describe model behaviour (Research Question 6.2).327

Our findings here also indicate that ECCCo achieves this result primarily by leveraging the model’s328

generative property.329

7 Limitations330

Even though we have taken considerable measures to study our proposed methodology carefully,331

this work is limited in scope, which caveats our findings. In particular, we have found that the332

performance of ECCCo is sensitive to hyperparameter choices. In order to achieve faithfulness, we333

generally had to penalise the distance from generated samples slightly more than the distance from334

factual values. This choice is associated with relatively higher costs to individuals since the proposed335

recourses typically involve more substantial feature changes than for our benchmark generators.336

Conversely, we have not found that penalising prediction set sizes disproportionately strongly had337

any discernable effect on our results. Our results indicate that Conformal Prediction alone is often338

not sufficient to achieve faithfulness and plausibility, although we acknowlege that this needs to be339

investigated more thoroughly through future work.340

Furthermore, while our approach is readily applicable to models with gradient access like deep neural341

networks, more work is needed to generalise our methodology to other popular machine learning342

models such as gradient-boosted trees. Relatedly, common challenges associated with energy-based343

modelling during our experiments including sensitivity to scale, training instabilities and sensitivity344

to hyperparameters also apply to ECCCo.345

8 Conclusion346

This work leverages recent advances in energy-based modelling and conformal prediction in the con-347

text of Explainable Artificial Intelligence. We have proposed a new way to generate Counterfactual348

Explanations that are maximally faithful to the black-model they aim to explain. Our proposed coun-349

terfactual generator, ECCCo, produces plausible counterfactual if and only if the black-model itself350

has learned realistic representations of the data, which we demonstrate through rigorous empirical351

analysis. This should enable researchers and practitioners to use counterfactuals in order to discern352

trustworthy models from unreliable ones. While the scope of this work limits its generalizability, we353

believe that ECCCo offers a solid baseline for future work on faithful Counterfactual Explanations.354
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Appendices446

A JEM447

While xJ is only guaranteed to distribute as pθ(x|y+) if ϵ→ 0 and J →∞, the bias introduced for448

a small finite ϵ is negligible in practice [22, 8]. While Grathwohl et al. [8] use Equation 2 during449

training, we are interested in applying the conditional sampling procedure in a post-hoc fashion to450

any standard discriminative model.451

B Conformal Prediction452

The fact that conformal classifiers produce set-valued predictions introduces a challenge: it is not453

immediately obvious how to use such classifiers in the context of gradient-based counterfactual454

search. Put differently, it is not clear how to use prediction sets in Equation 1. Fortunately, Stutz et al.455

[29] have recently proposed a framework for Conformal Training that also hinges on differentiability.456

Specifically, they show how Stochastic Gradient Descent can be used to train classifiers not only457

for the discriminative task but also for additional objectives related to Conformal Prediction. One458

such objective is efficiency: for a given target error rate α, the efficiency of a conformal classifier459

improves as its average prediction set size decreases. To this end, the authors introduce a smooth set460

size penalty defined in Equation 6 in the body of this paper461

Formally, it is defined as Cθ,y(xi;α) := σ
(
(s(xi,y)− α)T−1

)
for y ∈ Y , where σ is the sigmoid462

function and T is a hyper-parameter used for temperature scaling [29].463

Intuitively, CP works under the premise of turning heuristic notions of uncertainty into rigorous464

uncertainty estimates by repeatedly sifting through the data. It can be used to generate prediction465

intervals for regression models and prediction sets for classification models [1]. Since the literature466

on CE and AR is typically concerned with classification problems, we focus on the latter. A particular467

variant of CP called Split Conformal Prediction (SCP) is well-suited for our purposes, because it468

imposes only minimal restrictions on model training.469

Specifically, SCP involves splitting the data Dn = {(xi,yi)}i=1,...,n into a proper training set Dtrain470

and a calibration set Dcal. The former is used to train the classifier in any conventional fashion.471

The latter is then used to compute so-called nonconformity scores: S = {s(xi,yi)}i∈Dcal where472

s : (X ,Y) 7→ R is referred to as score function. In the context of classification, a common choice for473

the score function is just si = 1−Mθ(xi)[yi], that is one minus the softmax output corresponding474

to the observed label yi [3].475

Finally, classification sets are formed as follows,476

Cθ(xi;α) = {y : s(xi,y) ≤ q̂} (7)

where q̂ denotes the (1 − α)-quantile of S and α is a predetermined error rate. As the size of the477

calibration set increases, the probability that the classification set C(xtest) for a newly arrived sample478

xtest does not cover the true test label ytest approaches α [3].479

Observe from Equation 7 that Conformal Prediction works on an instance-level basis, much like480

Counterfactual Explanations are local. The prediction set for an individual instance xi depends only481

on the characteristics of that sample and the specified error rate. Intuitively, the set is more likely482

to include multiple labels for samples that are difficult to classify, so the set size is indicative of483

predictive uncertainty. To see why this effect is exacerbated by small choices for α consider the case484

of α = 0, which requires that the true label is covered by the prediction set with probability equal to485

1.486

C Conformal Prediction487

D Experimental Setup488

E Results489
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Table 3: All results for all datasets. Standard deviations across samples are shown in parentheses.
Best outcomes are highlighted in bold. Asterisks indicate that the given value is more than one (*) or
two (**) standard deviations away from the baseline (Wachter).

Model Data Generator Cost ↓ Unfaithfulness ↓ Implausibility ↓ Redundancy ↑ Uncertainty ↓ Validity ↑
ECCCo 39.14 (3.71) 236.79 (51.16) 39.78 (3.18) 0.00 (0.00) 2.00 (0.00) 1.00 (0.00)
REVISE 4.39 (2.08) 284.51 (52.74) 5.58 (0.81)** 0.01 (0.03) 1.85 (0.32) 1.00 (0.00)

Schut 4.17 (1.84) 263.55 (60.56) 8.00 (2.03) 0.25 (0.24)* 1.88 (0.31) 1.00 (0.00)JEM

Wachter 2.03 (1.01) 274.55 (51.17) 7.32 (1.80) 0.00 (0.00) 1.90 (0.31) 1.00 (0.00)
ECCCo 34.85 (4.67) 249.44 (58.53) 35.09 (5.56) 0.00 (0.00) 2.00 (0.00) 1.00 (0.00)
REVISE 4.53 (1.97) 268.45 (66.87) 5.44 (0.74)** 0.00 (0.00) 1.95 (0.21) 1.00 (0.00)

Schut 0.98 (0.38)** 279.38 (63.23) 7.64 (1.47) 0.84 (0.06)** 2.00 (0.00) 1.00 (0.00)JEM Ensemble

Wachter 2.00 (0.59) 268.59 (68.66) 7.16 (1.46) 0.00 (0.00) 1.90 (0.31) 1.00 (0.00)
ECCCo 37.47 (4.59) 230.92 (48.86) 37.53 (5.40) 0.00 (0.00) 1.00 (0.00)** 1.00 (0.00)
REVISE 3.38 (2.06) 281.10 (53.01) 5.34 (0.67)** 0.00 (0.00) 1.10 (0.31) 1.00 (0.00)

Schut 0.88 (0.51)** 285.12 (56.00) 6.48 (1.18)** 0.72 (0.22)** 1.00 (0.00)** 1.00 (0.00)MLP

Wachter 5.35 (10.88) 262.50 (56.87) 9.21 (10.41) 0.00 (0.00) 1.05 (0.22) 1.00 (0.00)
ECCCo 38.33 (4.99) 212.47 (59.27)* 38.17 (6.18) 0.00 (0.00) 1.00 (0.00)** 1.00 (0.00)
REVISE 3.41 (1.79) 284.65 (49.52) 5.64 (1.13)* 0.00 (0.00) 1.05 (0.22) 1.00 (0.00)

Schut 0.84 (0.56)** 269.19 (46.08) 7.30 (1.94) 0.81 (0.11)** 1.00 (0.00)** 1.00 (0.00)

California Housing

MLP Ensemble

Wachter 2.00 (1.39) 278.09 (73.65) 7.32 (1.75) 0.00 (0.00) 1.07 (0.23) 1.00 (0.00)
ECCCo 1.34 (1.48) 0.63 (1.58) 1.44 (1.37) 0.00 (0.00) 0.98 (0.14) 0.98 (0.14)

ECCCo (no CP) 1.33 (1.49) 0.64 (1.61) 1.45 (1.38) 0.00 (0.00) 0.98 (0.14) 0.98 (0.14)
ECCCo (no EBM) 0.85 (1.49) 1.41 (1.51) 1.50 (1.38) 0.00 (0.00) 1.04 (0.28) 0.98 (0.14)

REVISE 0.99 (0.35) 0.96 (0.32)* 0.95 (0.32)* 0.00 (0.00) 0.50 (0.51) 0.50 (0.51)
Schut 1.00 (0.43) 0.99 (0.80) 1.28 (0.53) 0.25 (0.25) 1.11 (0.38) 1.00 (0.00)**

JEM

Wachter 0.74 (1.50) 1.41 (1.50) 1.51 (1.35) 0.00 (0.00) 0.98 (0.14) 0.98 (0.14)
ECCCo 1.39 (0.23) 0.37 (0.65)** 1.30 (0.68) 0.00 (0.00) 1.00 (0.00)** 1.00 (0.00)

ECCCo (no CP) 1.33 (0.28) 0.50 (0.85)* 1.28 (0.66) 0.00 (0.00) 1.04 (0.20)* 1.00 (0.00)
ECCCo (no EBM) 1.15 (0.69) 2.00 (1.46) 1.83 (1.00) 0.00 (0.00) 0.97 (0.10)** 1.00 (0.00)

REVISE 0.98 (0.36) 1.16 (1.05) 0.95 (0.32)* 0.00 (0.00) 0.50 (0.51)* 0.50 (0.51)
Schut 0.61 (0.11) 1.60 (1.15) 1.24 (0.44) 0.34 (0.24)* 1.00 (0.00)** 1.00 (0.00)

Circles

MLP

Wachter 0.53 (0.15) 1.67 (1.05) 1.31 (0.43) 0.00 (0.00) 1.28 (0.46) 1.00 (0.00)
ECCCo 859.68 (91.05) 40.65 (5.67)** 605.67 (19.56) 0.00 (0.00) 3.00 (0.00)** 1.00 (0.00)
REVISE 500.28 (86.07) 693.81 (118.47)* 467.88 (132.24) 0.00 (0.00) 3.20 (2.28)** 0.80 (0.45)

Schut 10.00 (0.00)** 871.82 (64.75) 561.81 (94.76) 0.99 (0.00)** 0.00 (0.00)** 0.00 (0.00)JEM

Wachter 100.86 (13.85) 902.84 (88.79) 586.49 (97.17) 0.00 (0.00) 10.00 (0.00) 1.00 (0.00)
ECCCo 679.19 (66.95) 59.61 (32.93)** 500.50 (27.51) 0.00 (0.00) 4.00 (0.00)** 1.00 (0.00)
REVISE 476.47 (147.09) 533.64 (102.81)* 356.60 (79.57)* 0.00 (0.00) 4.80 (1.30)** 1.00 (0.00)

Schut 10.00 (0.00)** 688.61 (86.83) 445.55 (99.03) 0.99 (0.00)** 0.00 (0.00)** 0.00 (0.00)JEM Ensemble

Wachter 92.50 (9.31) 714.63 (54.58) 470.54 (96.18) 0.00 (0.00) 10.00 (0.00) 1.00 (0.00)
ECCCo 885.97 (29.70) 65.36 (20.64)** 791.07 (14.51) 0.00 (0.00) 2.00 (0.00)** 1.00 (0.00)**
REVISE 323.10 (102.63) 856.08 (73.66) 394.73 (252.67) 0.00 (0.00) 1.00 (1.00)** 0.60 (0.55)

Schut 10.00 (0.00)** 928.77 (42.27) 518.98 (143.30) 0.99 (0.00)** 0.00 (0.00)** 0.00 (0.00)MLP

Wachter 94.57 (10.26) 916.45 (50.09) 546.35 (145.24) 0.00 (0.00) 3.61 (4.01) 0.80 (0.45)
ECCCo 869.65 (67.92) 47.37 (7.72)** 751.83 (11.87) 0.00 (0.00) 1.00 (0.00)** 1.00 (0.00)
REVISE 267.88 (69.67) 822.34 (57.55) 307.50 (105.09)* 0.00 (0.00) 3.00 (4.00) 0.80 (0.45)

Schut 10.00 (0.00)** 891.57 (70.10) 449.79 (149.32) 0.99 (0.00)** 0.00 (0.00)** 0.00 (0.00)

FashionMNIST

MLP Ensemble

Wachter 91.50 (16.35) 874.21 (59.36) 476.59 (150.76) 0.00 (0.00) 4.60 (4.93) 1.00 (0.00)
ECCCo 40.78 (8.79)** 41.65 (17.24)** 40.57 (8.74)** 0.00 (0.00) 1.50 (0.51) 1.00 (0.00)**
REVISE 5.10 (6.48)** 74.89 (15.82)** 6.01 (5.75)** 0.00 (0.00) 1.81 (0.40) 1.00 (0.00)**

Schut 1.10 (0.39)** 76.23 (15.54)** 6.02 (0.72)** 0.77 (0.09)** 1.55 (0.51) 1.00 (0.00)**JEM

Wachter 127.26 (75.11) 146.02 (64.48) 128.93 (74.00) 0.00 (0.00) 1.00 (1.03) 0.50 (0.51)
ECCCo 33.87 (8.25)** 26.55 (12.94)** 33.65 (8.33)** 0.00 (0.00) 2.00 (0.00) 1.00 (0.00)**
REVISE 6.00 (4.92)** 52.47 (14.12)** 6.69 (3.37)** 0.00 (0.00) 1.80 (0.52) 0.95 (0.22)**

Schut 1.29 (0.92)** 56.34 (15.00)** 6.27 (1.06)** 0.74 (0.16)** 1.62 (0.52) 1.00 (0.00)**JEM Ensemble

Wachter 124.35 (95.08) 125.72 (70.80) 126.55 (93.75) 0.00 (0.00) 1.00 (1.03) 0.50 (0.51)
ECCCo 38.91 (7.68)** 46.90 (15.80)** 37.78 (8.40)** 0.00 (0.00) 1.00 (0.00) 1.00 (0.00)
REVISE 4.16 (2.35)** 81.08 (19.53)** 4.60 (0.72)** 0.00 (0.00) 1.23 (0.40) 1.00 (0.00)

Schut 0.72 (0.32)** 90.67 (20.80)** 5.56 (0.81)** 0.87 (0.06)** 1.00 (0.00) 1.00 (0.00)MLP

Wachter 199.28 (14.78) 191.68 (30.86) 200.23 (15.05) 0.00 (0.00) 1.00 (0.00) 1.00 (0.00)
ECCCo 72.42 (145.72) 74.65 (144.69)* 71.87 (145.19) 0.00 (0.00) 1.00 (0.00) 1.00 (0.00)
REVISE 4.75 (2.94)** 80.90 (14.59)** 5.20 (1.52)** 0.00 (0.00) 1.07 (0.12) 1.00 (0.00)

Schut 0.65 (0.24)** 85.63 (19.15)** 6.00 (0.99)** 0.88 (0.04)** 1.00 (0.00)** 1.00 (0.00)

GMSC

MLP Ensemble

Wachter 202.64 (14.71) 220.05 (17.41) 203.65 (14.77) 0.00 (0.00) 1.00 (0.00) 1.00 (0.00)
ECCCo 0.91 (0.14) 0.10 (0.06)** 0.19 (0.03)** 0.00 (0.00) 0.97 (0.03)** 1.00 (0.00)

ECCCo (no CP) 0.91 (0.14) 0.10 (0.07)** 0.19 (0.03)** 0.00 (0.00) 0.98 (0.03)** 1.00 (0.00)
ECCCo (no EBM) 0.90 (0.17) 0.37 (0.28) 0.38 (0.26) 0.00 (0.00) 1.23 (0.49) 1.00 (0.00)

REVISE 0.42 (0.14)* 0.41 (0.02)** 0.41 (0.01)** 0.00 (0.00) 0.81 (0.82) 0.50 (0.51)
Schut 1.14 (0.27) 0.66 (0.23) 0.66 (0.22) 0.21 (0.25) 1.74 (0.43) 1.00 (0.00)

JEM

Wachter 0.61 (0.12) 0.44 (0.16) 0.44 (0.15) 0.00 (0.00) 1.50 (0.50) 1.00 (0.00)
ECCCo 1.52 (0.16) 0.03 (0.02)** 0.69 (0.10) 0.00 (0.00) 1.00 (0.00)** 1.00 (0.00)

ECCCo (no CP) 1.52 (0.16) 0.03 (0.02)** 0.68 (0.10) 0.00 (0.00) 1.00 (0.00)** 1.00 (0.00)
ECCCo (no EBM) 2.66 (1.10) 1.25 (0.87) 1.84 (1.10) 0.00 (0.00) 1.00 (0.00)** 1.00 (0.00)

REVISE 0.44 (0.13)* 1.10 (0.10) 0.40 (0.01)** 0.00 (0.00) 1.64 (0.78) 0.82 (0.39)
Schut 0.76 (0.14) 0.81 (0.10)* 0.47 (0.24) 0.26 (0.25)* 1.00 (0.00)** 1.00 (0.00)

Linearly Separable

MLP

Wachter 0.60 (0.14) 0.94 (0.11) 0.44 (0.15) 0.00 (0.00) 1.54 (0.50) 1.00 (0.00)
ECCCo 269.99 (57.02)** 116.09 (30.70)** 281.33 (41.51)** 0.00 (0.00) NA 1.00 (0.00)**
REVISE 143.79 (43.43)** 348.74 (65.65)** 246.69 (36.69)** 0.00 (0.01) NA 0.80 (0.40)

Schut 9.90 (0.55)** 355.58 (64.84)** 270.06 (40.41)** 0.99 (0.00)** NA 0.15 (0.36)JEM

Wachter 453.86 (16.96) 694.08 (50.86) 630.99 (33.01) 0.00 (0.00) NA 0.90 (0.30)
ECCCo 260.94 (52.14)** 89.89 (27.26)** 240.59 (37.41)** 0.00 (0.00) NA 1.00 (0.00)**
REVISE 138.82 (33.99)** 292.52 (53.13)** 240.50 (35.73)** 0.00 (0.01) NA 0.81 (0.39)

Schut 9.97 (0.28)** 319.45 (59.02)** 266.80 (40.46)** 0.99 (0.00)** NA 0.05 (0.22)JEM Ensemble

Wachter 365.46 (35.14) 582.52 (58.46) 543.90 (44.24) 0.00 (0.00) NA 0.96 (0.20)
ECCCo 658.48 (65.03) 212.45 (36.70)** 649.63 (58.80) 0.00 (0.00) NA 1.00 (0.00)
REVISE 150.41 (51.81)** 839.79 (77.14)* 244.33 (38.69)** 0.00 (0.00) NA 0.95 (0.22)

Schut 9.95 (0.41)** 842.80 (82.01)* 264.94 (42.18)** 0.99 (0.00)** NA 0.06 (0.25)MLP

Wachter 400.08 (34.33) 982.32 (61.81) 561.23 (45.08) 0.00 (0.00) NA 1.00 (0.00)
ECCCo 616.12 (102.01) 162.21 (36.21)** 587.65 (95.01) 0.00 (0.00) NA 1.00 (0.00)**
REVISE 149.48 (47.90)** 741.30 (125.98)* 242.76 (41.16)** 0.00 (0.01) NA 0.92 (0.27)

Schut 9.98 (0.23)** 754.35 (132.26) 266.94 (42.55)** 0.99 (0.00)** NA 0.03 (0.18)

MNIST

MLP Ensemble

Wachter 374.37 (41.37) 871.09 (92.36) 536.24 (48.73) 0.00 (0.00) NA 1.00 (0.05)
ECCCo 1.87 (0.79) 0.57 (0.58)** 1.29 (0.21)* 0.00 (0.00) 0.99 (0.18)** 1.00 (0.00)

ECCCo (no CP) 1.83 (0.80) 0.63 (0.64)* 1.30 (0.21)* 0.00 (0.00) 1.13 (0.35) 1.00 (0.00)
ECCCo (no EBM) 1.30 (1.72) 1.73 (1.34) 1.73 (1.42) 0.00 (0.00) 0.94 (0.27)* 1.00 (0.00)

REVISE 1.07 (0.26) 1.59 (0.55) 1.55 (0.20) 0.00 (0.00) 1.30 (0.40) 1.00 (0.00)
Schut 1.36 (0.35) 1.55 (0.61) 1.42 (0.16)* 0.03 (0.12) 1.11 (0.30)* 1.00 (0.00)

JEM

Wachter 0.89 (0.21) 1.77 (0.48) 1.67 (0.15) 0.00 (0.00) 1.45 (0.47) 1.00 (0.00)
ECCCo 2.53 (1.24) 1.68 (1.74) 2.02 (0.86) 0.00 (0.00) 1.11 (0.31) 1.00 (0.00)

ECCCo (no CP) 2.45 (1.36) 1.34 (1.66) 2.11 (0.88) 0.00 (0.00) 1.24 (0.41) 1.00 (0.00)
ECCCo (no EBM) 2.53 (2.03) 2.98 (1.89) 2.29 (1.75) 0.00 (0.00) 0.99 (0.07)** 1.00 (0.00)

REVISE 0.98 (0.33)* 2.46 (1.05) 1.54 (0.27)* 0.00 (0.00) 1.40 (0.49) 1.00 (0.00)
Schut 0.75 (0.23)** 2.71 (1.15) 1.62 (0.42) 0.31 (0.27)* 0.94 (0.24)* 0.94 (0.24)

Moons

MLP

Wachter 1.49 (1.76) 2.95 (1.42) 1.84 (1.33) 0.00 (0.00) 1.33 (0.48) 1.00 (0.00)
13
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