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Abstract

Counterfactual Explanations offer an intuitive and straightforward way to explain1

black-box models but they are not unique. To address the need for plausible2

explanations, existing work has primarily relied on surrogate models to learn how3

the input data is distributed. This effectively reallocates the task of learning realistic4

representations of the data from the model itself to the surrogate. Consequently, the5

generated explanations may look plausible to humans but not necessarily conform6

with the behaviour of the black-box model. We formalise this notion of model7

conformity through the introduction of tailored evaluation measures and propose8

a novel algorithmic framework for generating Energy-Constrained Conformal9

Counterfactuals that are only as plausible as the model permits. To do so, ECCCo10

leverages recent advances in energy-based modelling and predictive uncertainty11

quantification through conformal inference. Through illustrative examples and12

extensive empirical studies, we demonstrate that ECCCos reconcile the need for13

plausibility and model conformity.14

1 Introduction15

Counterfactual Explanations provide a powerful, flexible and intuitive way to not only explain black-16

box models but also enable affected individuals to challenge them through the means of Algorithmic17

Recourse. Instead of opening the black box, Counterfactual Explanations work under the premise18

of strategically perturbing model inputs to understand model behaviour [29]. Intuitively speaking,19

we generate explanations in this context by asking simple what-if questions of the following nature:20

‘Our credit risk model currently predicts that this individual’s credit profile is too risky to offer them a21

loan. What if they reduced their monthly expenditures by 10%? Will our model then predict that the22

individual is credit-worthy’?23

This is typically implemented by defining a target outcome y∗ ∈ Y for some individual x ∈ X = RD24

described by D attributes, for which the model Mθ : X 7→ Y initially predicts a different outcome:25

Mθ(x) ̸= y∗. Counterfactuals are then searched by minimizing a loss function that compares the26

predicted model output to the target outcome: yloss(Mθ(x),y
∗). Since Counterfactual Explanations27

(CE) work directly with the black-box model, valid counterfactuals always have full local fidelity by28

construction [17]. Fidelity is defined as the degree to which explanations approximate the predictions29

of the black-box model. This is arguably one of the most important evaluation metrics for model30

explanations, since any explanation that explains a prediction not actually made by the model is31

useless [16].32

In situations where full fidelity is a requirement, CE therefore offers a more appropriate solution33

to Explainable Artificial Intelligence (XAI) than other popular approaches like LIME [22] and34

SHAP [12], which involve local surrogate models. But even full fidelity is not a sufficient condition35

for ensuring that an explanation faithfully describes the behaviour of a model. That is because36
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multiple very distinct explanations can all lead to the same model prediction, especially when dealing37

with heavily parameterized models like deep neural networks which are typically underspecified by38

the available data [30].39

In the context of CE, the idea that no two explanations are the same arises almost naturally. A key40

focus in the literature has therefore been to identify those explanations and algorithmic recourses41

that are deemed most appropriate based on a myriad of desiderata such as sparsity, actionability42

and plausibility. In this work, we draw closer attention to the insufficiency of model fidelity as an43

evaluation metric for the faithfulness of counterfactual explanations. Our key contributions are as44

follows: firstly, we introduce a new notion of faithfulness that is suitable for counterfactuals and45

propose a novel evaluation measure that draws inspiration from recent advances in Energy-Based46

Modelling (EBM); secondly, we a novel algorithmic approach for generating Energy-Constrained47

Conformal Counterfactuals (ECCCo) that explicitly address the need for faithfulness; finally, we48

provide illustrative examples and extensive empirical evidence demonstrating that ECCCos faithfully49

explain model behaviour without sacrificing existing desidarata like plausibility and sparsity.50

2 Background and Related Work51

In this section, we provide some background on Counterfactual Explanations and our motivation for52

this work. To start, we briefly introduce the methodology underlying most state-of-the-art (SOTA)53

counterfactual generators.54

2.1 Gradient-Based Counterfactual Search55

While Counterfactual Explanations can be generated for arbitrary regression models [24], existing56

work has primarily focused on classification problems. Let Y = (0, 1)K denote the one-hot-encoded57

output domain with K classes. Then most SOTA counterfactual generators rely on gradient descent58

to optimize different flavours of the following counterfactual search objective:59

Z′ = arg min
Z′∈ZL

{yloss(Mθ(f(Z
′)),y∗) + λcost(f(Z′))} (1)

Here yloss denotes the primary loss function already introduced above and cost is either a single60

penalty or a collection of penalties that are used to impose constraints through regularization. Equa-61

tion 1 restates the baseline approach to gradient-based counterfactual search proposed by Wachter62

et al. [29] in general form where Z′ = {zl}L denotes an L-dimensional array of counterfactual63

states [2]. This is to explicitly account for the multiplicity of explanations and the fact that we may64

choose to generate multiple counterfactuals and traverse a latent encoding Z of the feature space X65

where we denote f−1 : X 7→ Z . Encodings may involve simple feature transformations or more66

advanced techniques involving generative models, as we will discuss further below. The baseline67

approach, which we will simply refer to as Wachter [29], searches a single counterfactual directly in68

the feature space and penalises its distance between the original factual.69

Solutions to Equation 1 are considered valid as soon as the predicted label matches the target label. A70

stripped-down counterfactual explanation is therefore little different from an adversarial example. In71

Figure 1, for example, we have applied Wachter to MNIST data (centre panel) where the underlying72

classifier Mθ is a simple Multi-Layer Perceptron (MLP) with above 90 percent test accuracy. For the73

generated counterfactual x′ the model predicts the target label with high confidence (centre panel74

in Figure 1). The explanation is valid by definition, even though it looks a lot like an Adversarial75

Example [6]. Schut et al. [23] make the connection between Adversarial Examples and Counterfactual76

Explanations explicit and propose using a Jacobian-Based Saliency Map Attack (JSMA) to solve77

Equation 1. They demonstrate that this approach yields realistic and sparse counterfactuals for78

Bayesian, adversarially robust classifiers. Applying their approach to our simple MNIST classifier79

does not yield a realistic counterfactual but this one, too, is valid (right panel in Figure 1).80

2.2 From Adversial Examples to Plausible Explanations81

The crucial difference between Adversarial Examples (AE) and Counterfactual Explanations is one of82

intent. While an AE is intended to go unnoticed, a CE should have certain desirable properties. The83

literature has made this explicit by introducing various so-called desiderata that counterfactuals should84
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Figure 1: Explanations or Adversarial Ex-
amples? Counterfactuals for turning an 8
(eight) into a 3 (three): original image (left);
counterfactual produced using Wachter et al.
[29] (centre); and a counterfactual produced
using the approach introduced by [23] that
uses Jacobian-Based Saliency Map Attacks to
solve Equation 1.

Figure 2: Using surrogates can improve plau-
sibility, but also increases vulnerability. Coun-
terfactuals for turning an 8 (eight) into a
3 (three): original image (left); counterfac-
tual produced using REVISE [9] with a well-
specified surrogate (centre); and a counter-
factual produced using REVISE [9] with a
poorly specified surrogate (right).

meet in order to properly serve both AI practitioners and individuals affected by AI decision-making85

systems. The list of desiderate includes but is not limited to the following: sparsity, proximity [29],86

actionability [27], diversity [17], plausibility [9, 21, 23], robustness [26, 20, 2] and causality [11].87

Researchers have come up with various ways to meet these desiderata, which have been extensively88

surveyed and evaluated in various studies [28, 10, 19, 4, 8]. Perhaps unsurprisingly, the different89

desiderata are often positively correlated. For example, Artelt et al. [4] find that plausibility typically90

also leads to improved robustness. Similarly, plausibility has also been connected to causality in the91

sense that plausible counterfactuals respect causal relationships [13].92

2.2.1 Plausibility through Surrogates93

Arguably, the plausibility of counterfactuals has been among the primary concerns and some have94

focused explicitly on this goal. Joshi et al. [9], for example, were among the first to suggest that95

instead of searching counterfactuals in the feature spaceX , we can instead traverse a latent embedding96

Z (Equation 1) that implicitly codifies the data generating process (DGP) of x ∼ X . To learn the97

latent embedding, they introduce a surrogate model. In particular, they propose to use the latent98

embedding of a Variational Autoencoder (VAE) trained to generate samples x∗ ← G(z) where G99

denotes the decoder part of the VAE. Provided the surrogate model is well-trained, their proposed100

approach —REVISE— can yield compelling counterfactual explanations like the one in the centre101

panel of Figure 2.102

Others have proposed similar approaches. Dombrowski et al. [5] traverse the base space of a103

normalizing flow to solve Equation 1, essentially relying on a different surrogate model for the104

generative task. Poyiadzi et al. [21] use density estimators (p̂ : X 7→ [0, 1]) to constrain the105

counterfactuals to dense regions in the feature space. Karimi et al. [11] argue that counterfactuals106

should comply with the causal model that generates the data. All of these different approaches share107

a common goal: ensuring that the generated counterfactuals comply with the true and unobserved108

DGP. To summarize this broad objective, we propose the following definition:109

Definition 2.1 (Plausible Counterfactuals). Let X|y∗ denote the true conditional distribution of110

samples in the target class y∗. Then for x′ to be considered a plausible counterfactual, we need:111

x′ ∼ X|y∗.112

Surrogate models offer an obvious solution to achieve this objective. Unfortunately, surrogates also113

introduce a dependency: the generated explanations no longer depend exclusively on the black-box114

model itself, but also on the surrogate model. This is not necessarily problematic if the primary115

objective is not to explain the behaviour of the model but to offer recourse to individuals affected by116

it. It may become problematic even in this context if the dependency turns into a vulnerability. To117

illustrate this point, we have used REVISE [9] with an underfitted VAE to generate the counterfactual118

in the right panel of Figure 2: in this case, the decoder step of the VAE fails to yield plausible values119

({x′ ← G(z)} ̸∼ X |y∗) and hence the counterfactual search in the learned latent space is doomed.120
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2.2.2 Plausibility through Minimal Predictive Uncertainty121

Schut et al. [23] show that to meet the plausibility objective we need not explicitly model the input122

distribution. Pointing to the undesirable engineering overhead induced by surrogate models, they123

propose that we rely on the implicit minimisation of predictive uncertainty instead. Their proposed124

methodology solves Equation 1 by greedily applying JSMA in the feature space with standard cross-125

entropy loss and no penalty at all. They demonstrate theoretically and empirically that their approach126

yields counterfactuals for which the model Mθ predicts the target label y∗ with high confidence.127

Provided the model is well-specified, these counterfactuals are plausible. Unfortunately, this idea128

hinges on the assumption that the black-box model provides well-calibrated predictive uncertainty129

estimates.130

2.3 From Fidelity to Model Conformity131

Above we explained that since Counterfactual Explanations work directly with the Black Box model,132

the fidelity of explanations as we defined it earlier is not a concern. This may explain why research has133

primarily focused on other desiderata, most notably plausibility (Definition 2.1). Enquiring about the134

plausibility of a counterfactual essentially boils down to the following question: ‘Is this counterfactual135

consistent with the underlying data’? We posit a related, slightly more nuanced question: ‘Is this136

counterfactual consistent with what the model has learned about the underlying data’? We will argue137

that fidelity is not a sufficient evaluation measure to answer this question and propose a novel way to138

assess if Counterfactual Explanations conform with model behaviour.139

The word fidelity stems from the Latin word ‘fidelis’, which means ‘faithful, loyal, trustworthy’ [15].140

As we explained in Section 2, model explanations are generally considered faithful if their corre-141

sponding predictions coincide with the predictions made by the model itself. Since this definition142

of faithfulness is not useful in the context of Counterfactual Explanations, we propose an adapted143

version:144

Definition 2.2 (Conformal Counterfactuals). Let Xθ|y∗ = pθ(x|y∗) denote the conditional distri-145

bution of x in the target class y∗, where θ denotes the parameters of model Mθ. Then for x′ to be146

considered a conformal counterfactual, we need: x′ ∼ Xθ|y∗.147

In words, conformal counterfactuals conform with what the predictive model has learned about148

the input data x. Since this definition works with distributional properties, it explicitly accounts149

for the multiplicity of explanations we discussed earlier. To assess counterfactuals with respect to150

Definition 2.2, we need to be able to quantify the posterior conditional distribution pθ(x|y∗). This is151

very much at the core of our proposed methodological framework, which reconciles the notions of152

plausibility and model conformity and which we will introduce next.153

3 Methodological Framework154

The primary objective of this work has been to develop a methodology for generating maximally155

plausible counterfactuals under minimal intervention. Our proposed framework is based on the156

premise that explanations should be plausible but not plausible at all costs. Energy-Constrained157

Conformal Counterfactuals (ECCCo) achieve this goal in two ways: firstly, they rely on the Black158

Box itself for the generative task; and, secondly, they involve an approach to predictive uncertainty159

quantification that is model-agnostic.160

3.1 Quantifying the Model’s Generative Property161

Recent work by Grathwohl et al. [7] on Energy Based Models (EBM) has pointed out that there is a162

‘generative model hidden within every standard discriminative model’. The authors show that we can163

draw samples from the posterior conditional distribution pθ(x|y) using Stochastic Gradient Langevin164

Dynamics (SGLD). The authors use this insight to train classifiers jointly for the discriminative task165

using standard cross-entropy and the generative task using SGLD. They demonstrate empirically that166

among other things this improves predictive uncertainty quantification for discriminative models.167

Our findings in this work suggest that Joint Energy Models (JEM) also tend to yield more plausible168

Counterfactual Explanations. Based on the definition of plausible counterfactuals (Definition 2.1)169

this is not surprising.170
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Crucially for our purpose, one can apply their proposed sampling strategy during inference to171

essentially any standard discriminative model. Even models that are not explicitly trained for the joint172

objective learn about the distribution of inputs X by learning to make conditional predictions about173

the output y. We can leverage this observation to quantify the generative property of the Black Box174

model itself. In particular, note that if we fix y to our target value y∗, we can sample from pθ(x|y∗)175

using SGLD as follows,176

xj+1 ← xj −
ϵ2

2
E(xj |y∗) + ϵrj , j = 1, ..., J (2)

where rj ∼ N (0, I) is the stochastic term and the step-size ϵ is typically polynomially decayed.177

The term E(xj |y∗) denotes the energy function where we use E(xj |y∗) = −Mθ(xj)[y
∗], that is the178

negative logit corresponding to the target class label y∗. Generating multiple samples in this manner179

yields an empirical distribution X̂θ|y∗ that we use in our search for plausible counterfactuals, as180

discussed in more detail below. Appendix A provides additional implementation details for any tasks181

related to energy-based modelling.182

3.2 Quantifying the Model’s Predictive Uncertainty183

To quantify the model’s predictive uncertainty we use Conformal Prediction (CP), an approach that184

has recently gained popularity in the Machine Learning community [3, 14]. Crucially for our intended185

application, CP is model-agnostic and can be applied during inference without placing any restrictions186

on model training. Intuitively, CP works under the premise of turning heuristic notions of uncertainty187

into rigorous uncertainty estimates by repeatedly sifting through the training data or a dedicated188

calibration dataset. Conformal classifiers produce prediction sets for individual inputs that include all189

output labels that can be reasonably attributed to the input. These sets tend to be larger for inputs that190

do not conform with the training data and are therefore characterized by high predictive uncertainty.191

In order to generate counterfactuals that are associated with low predictive uncertainty, we use a192

smooth set size penalty introduced by Stutz et al. [25] in the context of conformal training:193

Ω(Cθ(x;α)) = max

0,
∑
y∈Y

Cθ,y(xi;α)− κ

 (3)

Here, κ ∈ {0, 1} is a hyper-parameter and Cθ,y(xi;α) can be interpreted as the probability of label194

y being included in the prediction set.195

In order to compute this penalty for any black-box model we merely need to perform a single196

calibration pass through a holdout set Dcal. Arguably, data is typically abundant and in most197

applications, practitioners tend to hold out a test data set anyway. Consequently, CP removes the198

restriction on the family of predictive models, at the small cost of reserving a subset of the available199

data for calibration. This particular case of conformal prediction is referred to as Split Conformal200

Prediction (SCP) as it involves splitting the training data into a proper training dataset and a calibration201

dataset. Details concerning our implementation of Conformal Prediction can be found in Appendix B.202

3.3 Energy-Constrained Conformal Counterfactuals (ECCCo)203

Our framework for generating ECCCos combines the ideas introduced in the previous two subsections.204

Formally, we extend Equation 1 as follows,205

Z′ = arg min
Z′∈ZM

{yloss(Mθ(f(Z
′)),y∗) + λ1dist(f(Z′),x)

+ λ2dist(f(Z′), x̂θ) + λ3Ω(Cθ(f(Z
′);α))}

(4)

where x̂θ denotes samples generated using SGLD (Equation 2) and dist(·) is a generic term for a206

distance metric. Our default choice for dist(·) is the L1 Norm, or Manhattan distance, since it induces207

sparsity.208
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The first two terms in Equation 4 correspond to the counterfactual search objective defined in Wachter209

et al. [29] which merely penalises the distance of counterfactuals from their factual values. The210

additional two penalties in ECCCo ensure that counterfactuals conform with the model’s generative211

property and lead to minimally uncertain predictions, respectively. The hyperparameters λ1, ..., λ3212

can be used to balance the different objectives: for example, we may choose to incur larger deviations213

from the factual in favour of conformity with the model’s generative property by choosing lower214

values of λ1 and relatively higher values of λ2. Figure 3 illustrates this balancing act for an example215

involving synthetic data: vector fields indicate the direction of gradients with respect to the different216

components our proposed objective function (Equation 4).217

Figure 3: [PLACEHOLDER] Vector
fields indicating the direction of gradi-
ents with respect to the different com-
ponents of the ECCCo objective (Equa-
tion 4).

Algorithm 1: Generating ECCCos (For more de-
tails, see Appendix C)

Input: x,y∗,Mθ, f,Λ, α,D, T, η, nB, NB
where Mθ(x) ̸= y∗

Output: x′

1: Initialize z′ ← f−1(x)
2: Generate buffer B of NB conditional samples

x̂θ|y∗ using SGLD (Equation 2)
3: Run SCP for Mθ using D
4: Initialize t← 0
5: while not converged or t < T do
6: x̂θ,t ← rand(B, nB)
7: z′ ← z′ − η∇z′L(z′,y∗, x̂θ,t; Λ, α)
8: t← t+ 1
9: end while

10: x′ ← f(z′)

218

Figure 4: [SUBJECTO TO CHANGE] Original image (left) and ECCCos for turning an 8 (eight) into
a 3 (three) for different Black Boxes from left to right: Multi-Layer Perceptron (MLP), Ensemble of
MLPs, Joint Energy Model (JEM), Ensemble of JEMs.

219

The entire procedure for generating ECCCos is described in Algorithm 1. For the sake of simplicity220

and without loss of generality, we limit our attention to generating a single counterfactual x′ = f(z′)221

where in contrast to Equation 4 z′ denotes a 1-dimensional array containing a single counterfactual222

state. That state is initialized by passing the factual x through the encoder f−1 which in our case cor-223

responds to a simple feature transformer, rather than the encoder part of VAE as in REVISE [9]. Next,224

we generate a buffer of NB conditional samples x̂θ|y∗ using SGLD (Equation 2) and conformalise225

the model Mθ through Split Conformal Prediction on training data D.226

Finally, we search counterfactuals through gradient descent. Let L(z′,y∗, x̂θ,t) denote our loss227

function defined in Equation 4. Then in each iteration, we first randomly draw nB samples from228

the buffer B before updating the counterfactual state z′ by moving in the negative direction of that229

loss function. The search terminates once the convergence criterium is met or the maximum number230

of iterations T has been exhausted. Note that the choice of convergence criterium has important231

implications on the final counterfactual (for more detail on this see Appendix C).232

Figure 4 presents ECCCos for the MNIST example from Section 2 for various black-box models of233

increasing complexity from left to right: a simple Multi-Layer Perceptron (MLP); an Ensemble of234
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MLPs, each of the same architecture as the single MLP; a Joint Energy Model (JEM) based on the235

same MLP architecture; and finally, an Ensemble of these JEMs. Since Deep Ensembles have an236

improved capacity for predictive uncertainty quantification and JEMs are explicitly trained to learn237

plausible representations of the input data, it is intuitive to see that the plausibility of counterfactuals238

visibly improves from left to right. This provides some first anecdotal evidence that ECCCos achieve239

plausibility while maintaining faithfulness to the Black Box.240

4 Empirical Analysis241

In this section, we bolster our anecdotal findings from the previous section through rigorous empirical242

analysis. We first briefly describe our evaluation framework and data, before presenting and discussing243

our results.244

4.1 Evaluation Measures245

Above we have defined plausibility (Definition 2.1) and conformity (Definition 2.2) for Counterfactual246

Explanations. In this subsection, we introduce evaluation measures that facilitate a quantitative247

evaluation of counterfactuals for these objectives.248

Firstly, in order to assess the plausibility of counterfactuals we adapt the implausibility metric249

proposed in Guidotti [8]. The authors propose to evaluate plausibility in terms of the distance of the250

counterfactual x′ from its nearest neighbour in the target class y∗: the smaller this distance, the more251

plausible the counterfactual. Instead of focusing only on the nearest neighbour of x′, we suggest252

computing the average over distances from multiple (possibly all) observed instances in the target253

class. Formally, for a single counterfactual, we have:254

impl =
1

|x ∈ X |y∗|
∑

x∈X|y∗

dist(x′,x) (5)

This measure is straightforward to compute and should be less sensitive to outliers in the target class255

than the one based on the nearest neighbour. It also gives rise to a very similar evaluation measure for256

conformity. We merely swap out the subsample of individuals in the target class for the empirical257

distribution of generated conditional samples:258

conf =
1

|x ∈ Xθ|y∗|
∑

x∈Xθ|y∗

dist(x′,x) (6)

As noted by Guidotti [8], these distance-based measures are simplistic and more complex alternative259

measures may ultimately be more appropriate for the task. For example, we considered using statisti-260

cal divergence measures instead. This would involve generating not one but many counterfactuals and261

comparing the generated empirical distribution to the target distributions in Definitions 2.1 and 2.2.262

While this approach is potentially more rigorous, generating enough counterfactuals is not always263

practical.264

4.2 Data265

4.3 Results266

5 Discussion267

5.1 Key Insights268

Consistent with the findings in Schut et al. [23], we have demonstrated that predictive uncertainty269

estimates can be leveraged to generate plausible counterfactuals. Interestingly, Schut et al. [23]270

point out that this finding — as intuitive as it is — may be linked to a positive connection between271

the generative task and predictive uncertainty quantification. In particular, Grathwohl et al. [7]272

demonstrate that their proposed method for integrating the generative objective in training yields273
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Figure 5: [SUBJECTO TO CHANGE] Original image (left) and ECCCos for turning an 8 (eight) into
a 3 (three) for different Black Boxes from left to right: Multi-Layer Perceptron (MLP), Ensemble of
MLPs, Joint Energy Model (JEM), Ensemble of JEMs.

models that have improved predictive uncertainty quantification. Since neither Schut et al. [23] nor274

we have employed any surrogate generative models, our findings seem to indicate that the positive275

connection found in Grathwohl et al. [7] is bidirectional.276

5.2 Limitations277

• BatchNorm does not seem compatible with JEM278

• Coverage and temperature impacts CCE in somewhat unpredictable ways279

• It seems that models that are not explicitly trained for generative task, still learn it implictly280

• Batch size seems to impact quality of generated samples (at inference, but not so much281

during JEM training)282

• ECCCo is sensitive to optimizer (Adam works well), learning rate and distance metric (l1283

currently only one that works)284

• SGLD takes time285

• REVISE has benefit of lower dimensional space286

• For MNIST it seems that ECCCo is better at reducing pixel values than increasing them287

(better at erasing than writing)288

6 Conclusion289
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Appendices365

A JEM366

While xJ is only guaranteed to distribute as pθ(x|y∗) if ϵ→ 0 and J →∞, the bias introduced for367

a small finite ϵ is negligible in practice [18, 7]. While Grathwohl et al. [7] use Equation 2 during368

training, we are interested in applying the conditional sampling procedure in a post-hoc fashion to369

any standard discriminative model.370

B Conformal Prediction371

The fact that conformal classifiers produce set-valued predictions introduces a challenge: it is not372

immediately obvious how to use such classifiers in the context of gradient-based counterfactual373

search. Put differently, it is not clear how to use prediction sets in Equation 1. Fortunately, Stutz et al.374

[25] have recently proposed a framework for Conformal Training that also hinges on differentiability.375

Specifically, they show how Stochastic Gradient Descent can be used to train classifiers not only376

for the discriminative task but also for additional objectives related to Conformal Prediction. One377

such objective is efficiency: for a given target error rate α, the efficiency of a conformal classifier378

improves as its average prediction set size decreases. To this end, the authors introduce a smooth set379

size penalty defined in Equation 3 in the body of this paper380

Formally, it is defined as Cθ,y(xi;α) := σ
(
(s(xi,y)− α)T−1

)
for y ∈ Y , where σ is the sigmoid381

function and T is a hyper-parameter used for temperature scaling [25].382

Intuitively, CP works under the premise of turning heuristic notions of uncertainty into rigorous383

uncertainty estimates by repeatedly sifting through the data. It can be used to generate prediction384

intervals for regression models and prediction sets for classification models [1]. Since the literature385

on CE and AR is typically concerned with classification problems, we focus on the latter. A particular386

variant of CP called Split Conformal Prediction (SCP) is well-suited for our purposes, because it387

imposes only minimal restrictions on model training.388
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Specifically, SCP involves splitting the data Dn = {(xi,yi)}i=1,...,n into a proper training set Dtrain389

and a calibration set Dcal. The former is used to train the classifier in any conventional fashion.390

The latter is then used to compute so-called nonconformity scores: S = {s(xi,yi)}i∈Dcal where391

s : (X ,Y) 7→ R is referred to as score function. In the context of classification, a common choice for392

the score function is just si = 1−Mθ(xi)[yi], that is one minus the softmax output corresponding393

to the observed label yi [3].394

Finally, classification sets are formed as follows,395

Cθ(xi;α) = {y : s(xi,y) ≤ q̂} (7)

where q̂ denotes the (1 − α)-quantile of S and α is a predetermined error rate. As the size of the396

calibration set increases, the probability that the classification set C(xtest) for a newly arrived sample397

xtest does not cover the true test label ytest approaches α [3].398

Observe from Equation 7 that Conformal Prediction works on an instance-level basis, much like399

Counterfactual Explanations are local. The prediction set for an individual instance xi depends only400

on the characteristics of that sample and the specified error rate. Intuitively, the set is more likely401

to include multiple labels for samples that are difficult to classify, so the set size is indicative of402

predictive uncertainty. To see why this effect is exacerbated by small choices for α consider the case403

of α = 0, which requires that the true label is covered by the prediction set with probability equal to404

1.405

C Conformal Prediction406

A Submission of papers to NeurIPS 2023407

Please read the instructions below carefully and follow them faithfully.408

A Style409

Papers to be submitted to NeurIPS 2023 must be prepared according to the instructions presented410

here. Papers may only be up to nine pages long, including figures. Additional pages containing only411

acknowledgments and references are allowed. Papers that exceed the page limit will not be reviewed,412

or in any other way considered for presentation at the conference.413

The margins in 2023 are the same as those in previous years.414

Authors are required to use the NeurIPS LATEX style files obtainable at the NeurIPS website as415

indicated below. Please make sure you use the current files and not previous versions. Tweaking the416

style files may be grounds for rejection.417

B Retrieval of style files418

The style files for NeurIPS and other conference information are available on the website at419

http://www.neurips.cc/420

The file neurips_2023.pdf contains these instructions and illustrates the various formatting re-421

quirements your NeurIPS paper must satisfy.422

The only supported style file for NeurIPS 2023 is neurips_2023.sty, rewritten for LATEX 2ε.423

Previous style files for LATEX 2.09, Microsoft Word, and RTF are no longer supported!424

The LATEX style file contains three optional arguments: final, which creates a camera-ready copy,425

preprint, which creates a preprint for submission to, e.g., arXiv, and nonatbib, which will not426

load the natbib package for you in case of package clash.427

Preprint option If you wish to post a preprint of your work online, e.g., on arXiv, using the428

NeurIPS style, please use the preprint option. This will create a nonanonymized version of your429

work with the text “Preprint. Work in progress.” in the footer. This version may be distributed as you430
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see fit, as long as you do not say which conference it was submitted to. Please do not use the final431

option, which should only be used for papers accepted to NeurIPS.432

At submission time, please omit the final and preprint options. This will anonymize your433

submission and add line numbers to aid review. Please do not refer to these line numbers in your434

paper as they will be removed during generation of camera-ready copies.435

The file neurips_2023.tex may be used as a “shell” for writing your paper. All you have to do is436

replace the author, title, abstract, and text of the paper with your own.437

The formatting instructions contained in these style files are summarized in Sections B, C, and D438

below.439

B General formatting instructions440

The text must be confined within a rectangle 5.5 inches (33 picas) wide and 9 inches (54 picas) long.441

The left margin is 1.5 inch (9 picas). Use 10 point type with a vertical spacing (leading) of 11 points.442

Times New Roman is the preferred typeface throughout, and will be selected for you by default.443

Paragraphs are separated by 1/2 line space (5.5 points), with no indentation.444

The paper title should be 17 point, initial caps/lower case, bold, centered between two horizontal445

rules. The top rule should be 4 points thick and the bottom rule should be 1 point thick. Allow 1/4 inch446

space above and below the title to rules. All pages should start at 1 inch (6 picas) from the top of the447

page.448

For the final version, authors’ names are set in boldface, and each name is centered above the449

corresponding address. The lead author’s name is to be listed first (left-most), and the co-authors’450

names (if different address) are set to follow. If there is only one co-author, list both author and451

co-author side by side.452

Please pay special attention to the instructions in Section D regarding figures, tables, acknowledg-453

ments, and references.454

C Headings: first level455

All headings should be lower case (except for first word and proper nouns), flush left, and bold.456

First-level headings should be in 12-point type.457

A Headings: second level458

Second-level headings should be in 10-point type.459

A.1 Headings: third level460

Third-level headings should be in 10-point type.461

Paragraphs There is also a \paragraph command available, which sets the heading in bold, flush462

left, and inline with the text, with the heading followed by 1 em of space.463

D Citations, figures, tables, references464

These instructions apply to everyone.465

A Citations within the text466

The natbib package will be loaded for you by default. Citations may be author/year or numeric, as467

long as you maintain internal consistency. As to the format of the references themselves, any style is468

acceptable as long as it is used consistently.469

The documentation for natbib may be found at470
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Figure 6: Sample figure caption.

http://mirrors.ctan.org/macros/latex/contrib/natbib/natnotes.pdf471

Of note is the command \citet, which produces citations appropriate for use in inline text. For472

example,473

\citet{hasselmo} investigated\dots474

produces475

Hasselmo, et al. (1995) investigated. . .476

If you wish to load the natbib package with options, you may add the following before loading the477

neurips_2023 package:478

\PassOptionsToPackage{options}{natbib}479

If natbib clashes with another package you load, you can add the optional argument nonatbib480

when loading the style file:481

\usepackage[nonatbib]{neurips_2023}482

As submission is double blind, refer to your own published work in the third person. That is, use “In483

the previous work of Jones et al. [4],” not “In our previous work [4].” If you cite your other papers484

that are not widely available (e.g., a journal paper under review), use anonymous author names in the485

citation, e.g., an author of the form “A. Anonymous” and include a copy of the anonymized paper in486

the supplementary material.487

B Footnotes488

Footnotes should be used sparingly. If you do require a footnote, indicate footnotes with a number1489

in the text. Place the footnotes at the bottom of the page on which they appear. Precede the footnote490

with a horizontal rule of 2 inches (12 picas).491

Note that footnotes are properly typeset after punctuation marks.2492

C Figures493

All artwork must be neat, clean, and legible. Lines should be dark enough for purposes of reproduction.494

The figure number and caption always appear after the figure. Place one line space before the figure495

caption and one line space after the figure. The figure caption should be lower case (except for first496

word and proper nouns); figures are numbered consecutively.497

You may use color figures. However, it is best for the figure captions and the paper body to be legible498

if the paper is printed in either black/white or in color.499

1Sample of the first footnote.
2As in this example.
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Table 1: Sample table title
Part

Name Description Size (µm)

Dendrite Input terminal ∼100
Axon Output terminal ∼10
Soma Cell body up to 106

D Tables500

All tables must be centered, neat, clean and legible. The table number and title always appear before501

the table. See Table 1.502

Place one line space before the table title, one line space after the table title, and one line space after503

the table. The table title must be lower case (except for first word and proper nouns); tables are504

numbered consecutively.505

Note that publication-quality tables do not contain vertical rules. We strongly suggest the use of the506

booktabs package, which allows for typesetting high-quality, professional tables:507

https://www.ctan.org/pkg/booktabs508

This package was used to typeset Table 1.509

E Math510

Note that display math in bare TeX commands will not create correct line numbers for sub-511

mission. Please use LaTeX (or AMSTeX) commands for unnumbered display math. (You512

really shouldn’t be using $$ anyway; see https://tex.stackexchange.com/questions/513

503/why-is-preferable-to and https://tex.stackexchange.com/questions/40492/514

what-are-the-differences-between-align-equation-and-displaymath for more infor-515

mation.)516

F Final instructions517

Do not change any aspects of the formatting parameters in the style files. In particular, do not modify518

the width or length of the rectangle the text should fit into, and do not change font sizes (except519

perhaps in the References section; see below). Please note that pages should be numbered.520

E Preparing PDF files521

Please prepare submission files with paper size “US Letter,” and not, for example, “A4.”522

Fonts were the main cause of problems in the past years. Your PDF file must only contain Type 1 or523

Embedded TrueType fonts. Here are a few instructions to achieve this.524

• You should directly generate PDF files using pdflatex.525

• You can check which fonts a PDF files uses. In Acrobat Reader, select the menu526

Files>Document Properties>Fonts and select Show All Fonts. You can also use the program527

pdffonts which comes with xpdf and is available out-of-the-box on most Linux machines.528

• xfig "patterned" shapes are implemented with bitmap fonts. Use "solid" shapes instead.529

• The \bbold package almost always uses bitmap fonts. You should use the equivalent AMS530

Fonts:531

\usepackage{amsfonts}532

followed by, e.g., \mathbb{R}, \mathbb{N}, or \mathbb{C} for R, N or C. You can also533

use the following workaround for reals, natural and complex:534
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\newcommand{\RR}{I\!\!R} %real numbers535

\newcommand{\Nat}{I\!\!N} %natural numbers536

\newcommand{\CC}{I\!\!\!\!C} %complex numbers537

Note that amsfonts is automatically loaded by the amssymb package.538

If your file contains type 3 fonts or non embedded TrueType fonts, we will ask you to fix it.539

A Margins in LATEX540

Most of the margin problems come from figures positioned by hand using \special or other541

commands. We suggest using the command \includegraphics from the graphicx package.542

Always specify the figure width as a multiple of the line width as in the example below:543

\usepackage[pdftex]{graphicx} ...544

\includegraphics[width=0.8\linewidth]{myfile.pdf}545

See Section 4.4 in the graphics bundle documentation (http://mirrors.ctan.org/macros/546

latex/required/graphics/grfguide.pdf)547

A number of width problems arise when LATEX cannot properly hyphenate a line. Please give LaTeX548

hyphenation hints using the \- command when necessary.549

F Supplementary Material550

Authors may wish to optionally include extra information (complete proofs, additional experiments551

and plots) in the appendix. All such materials should be part of the supplemental material (submitted552

separately) and should NOT be included in the main submission.553

References554

References follow the acknowledgments in the camera-ready paper. Use unnumbered first-level555

heading for the references. Any choice of citation style is acceptable as long as you are consistent. It556

is permissible to reduce the font size to small (9 point) when listing the references. Note that the557

Reference section does not count towards the page limit.558

[1] Alexander, J.A. & Mozer, M.C. (1995) Template-based algorithms for connectionist rule extraction. In559

G. Tesauro, D.S. Touretzky and T.K. Leen (eds.), Advances in Neural Information Processing Systems 7, pp.560

609–616. Cambridge, MA: MIT Press.561

[2] Bower, J.M. & Beeman, D. (1995) The Book of GENESIS: Exploring Realistic Neural Models with the562

GEneral NEural SImulation System. New York: TELOS/Springer–Verlag.563

[3] Hasselmo, M.E., Schnell, E. & Barkai, E. (1995) Dynamics of learning and recall at excitatory recurrent564

synapses and cholinergic modulation in rat hippocampal region CA3. Journal of Neuroscience 15(7):5249-5262.565

15

http://mirrors.ctan.org/macros/latex/required/graphics/grfguide.pdf
http://mirrors.ctan.org/macros/latex/required/graphics/grfguide.pdf
http://mirrors.ctan.org/macros/latex/required/graphics/grfguide.pdf

	Introduction
	Background and Related Work
	Gradient-Based Counterfactual Search
	From Adversial Examples to Plausible Explanations
	Plausibility through Surrogates
	Plausibility through Minimal Predictive Uncertainty

	From Fidelity to Model Conformity

	Methodological Framework
	Quantifying the Model's Generative Property
	Quantifying the Model's Predictive Uncertainty
	Energy-Constrained Conformal Counterfactuals (ECCCo)

	Empirical Analysis
	Evaluation Measures
	Data
	Results

	Discussion
	Key Insights
	Limitations

	Conclusion
	JEM
	Conformal Prediction
	Conformal Prediction

	Submission of papers to NeurIPS 2023
	Style
	Retrieval of style files

	General formatting instructions
	Headings: first level
	Headings: second level
	Headings: third level


	Citations, figures, tables, references
	Citations within the text
	Footnotes
	Figures
	Tables
	Math
	Final instructions

	Preparing PDF files
	Margins in LaTeX

	Supplementary Material

