diff --git a/experiments/mnist.jl b/experiments/mnist.jl
index 5e1e94750b20e21b89a8b0fe2b6eb6f6e0f1ffb2..21cb7b7924ccabb210dcafd3eb6dde6d9bdb9761 100644
--- a/experiments/mnist.jl
+++ b/experiments/mnist.jl
@@ -35,7 +35,7 @@ run_experiment(
     𝒟x = Uniform(-1.0, 1.0),
     α = [1.0,1.0,1e-2],
     sampling_batch_size = 10,
-    sampling_steps=25,
+    sampling_steps=50,
     use_ensembling = true,
     n_individuals = 5,
     nsamples = 10,
@@ -43,4 +43,5 @@ run_experiment(
     use_variants = false,
     use_class_loss = true,
     add_models = add_models,
+    epochs = 10,
 )
\ No newline at end of file
diff --git a/experiments/models/train_models.jl b/experiments/models/train_models.jl
index 5f3010b0a934e6edc6c984f6e54c514d874132b9..863584a48bd8570fd672666290f912f9abac958c 100644
--- a/experiments/models/train_models.jl
+++ b/experiments/models/train_models.jl
@@ -4,19 +4,7 @@
 Trains all models in a dictionary and returns a dictionary of `ConformalModel` objects.
 """
 function train_models(models::Dict, X, y; kwargs...)
-    if USE_THREADS
-        model_dicts = [Dict{Any,Any}() for i in 1:Threads.nthreads()] 
-        mod_names = collect(keys(models))
-        mod_values = collect(values(models))
-        Threads.@threads for i in eachindex(mod_names)
-            mod_name = mod_names[i]
-            model = mod_values[i]
-            model_dicts[Threads.threadid()][mod_name] = _train(model, X, y; mod_name=mod_name, kwargs...)
-        end
-        model_dict = reduce(merge, model_dicts)
-    else
-        model_dict = Dict(mod_name => _train(model, X, y; mod_name=mod_name, kwargs...) for (mod_name, model) in models)
-    end
+    model_dict = Dict(mod_name => _train(model, X, y; mod_name=mod_name, kwargs...) for (mod_name, model) in models)
     return model_dict
 end