From 799e4517b0f3f475ad256920c1d737a068da216b Mon Sep 17 00:00:00 2001
From: Pat Alt <55311242+pat-alt@users.noreply.github.com>
Date: Wed, 13 Sep 2023 16:50:30 +0200
Subject: [PATCH] just missing section 6

---
 paper/aaai/bib.bib   | 2837 ------------------------------------------
 paper/aaai/paper.pdf |  Bin 1945434 -> 1947625 bytes
 paper/aaai/paper.tex |    3 +-
 paper/appendix.tex   |    2 +-
 paper/bib.bib        |   14 +
 paper/body.tex       |   81 +-
 6 files changed, 70 insertions(+), 2867 deletions(-)
 delete mode 100644 paper/aaai/bib.bib

diff --git a/paper/aaai/bib.bib b/paper/aaai/bib.bib
deleted file mode 100644
index daed3cba..00000000
--- a/paper/aaai/bib.bib
+++ /dev/null
@@ -1,2837 +0,0 @@
-@TechReport{kingma2017adam,
-  author      = {Kingma, Diederik P. and Ba, Jimmy},
-  date        = {2017-01},
-  institution = {arXiv},
-  title       = {Adam: {A} {Method} for {Stochastic} {Optimization}},
-  doi         = {10.48550/arXiv.1412.6980},
-  note        = {arXiv:1412.6980 [cs] type: article},
-  url         = {http://arxiv.org/abs/1412.6980},
-  urldate     = {2023-05-17},
-  abstract    = {We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.},
-  annotation  = {Comment: Published as a conference paper at the 3rd International Conference for Learning Representations, San Diego, 2015},
-  file        = {arXiv Fulltext PDF:https\://arxiv.org/pdf/1412.6980.pdf:application/pdf},
-  keywords    = {Computer Science - Machine Learning},
-  shorttitle  = {Adam},
-}
-
-@TechReport{xiao2017fashion,
-  author      = {Xiao, Han and Rasul, Kashif and Vollgraf, Roland},
-  date        = {2017-09},
-  institution = {arXiv},
-  title       = {Fashion-{MNIST}: a {Novel} {Image} {Dataset} for {Benchmarking} {Machine} {Learning} {Algorithms}},
-  doi         = {10.48550/arXiv.1708.07747},
-  note        = {arXiv:1708.07747 [cs, stat] type: article},
-  url         = {http://arxiv.org/abs/1708.07747},
-  urldate     = {2023-05-10},
-  abstract    = {We present Fashion-MNIST, a new dataset comprising of 28x28 grayscale images of 70,000 fashion products from 10 categories, with 7,000 images per category. The training set has 60,000 images and the test set has 10,000 images. Fashion-MNIST is intended to serve as a direct drop-in replacement for the original MNIST dataset for benchmarking machine learning algorithms, as it shares the same image size, data format and the structure of training and testing splits. The dataset is freely available at https://github.com/zalandoresearch/fashion-mnist},
-  annotation  = {Comment: Dataset is freely available at https://github.com/zalandoresearch/fashion-mnist Benchmark is available at http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/},
-  file        = {:xiao2017fashion - Fashion MNIST_ a Novel Image Dataset for Benchmarking Machine Learning Algorithms.pdf:PDF},
-  keywords    = {Computer Science - Machine Learning, Computer Science - Computer Vision and Pattern Recognition, Statistics - Machine Learning},
-  shorttitle  = {Fashion-{MNIST}},
-}
-
-@Online{mw2023fidelity,
-  author       = {Merriam-Webster},
-  title        = {"Fidelity"},
-  url          = {https://www.merriam-webster.com/dictionary/fidelity},
-  language     = {en},
-  organization = {Merriam-Webster},
-  urldate      = {2023-03-23},
-  abstract     = {the quality or state of being faithful; accuracy in details : exactness; the degree to which an electronic device (such as a record player, radio, or television) accurately reproduces its effect (such as sound or picture)… See the full definition},
-}
-
-@InProceedings{altmeyer2023endogenous,
-  author    = {Altmeyer, Patrick and Angela, Giovan and Buszydlik, Aleksander and Dobiczek, Karol and van Deursen, Arie and Liem, Cynthia},
-  booktitle = {First {IEEE} {Conference} on {Secure} and {Trustworthy} {Machine} {Learning}},
-  title     = {Endogenous {Macrodynamics} in {Algorithmic} {Recourse}},
-  file      = {:altmeyerendogenous - Endogenous Macrodynamics in Algorithmic Recourse.pdf:PDF},
-  year      = {2023},
-}
-
-%% This BibTeX bibliography file was created using BibDesk.
-%% https://bibdesk.sourceforge.io/
-
-%% Created for Anonymous Author at 2022-12-13 12:58:22 +0100 
-
-
-%% Saved with string encoding Unicode (UTF-8) 
-
-
-
-@Article{abadie2002instrumental,
-  author        = {Abadie, Alberto and Angrist, Joshua and Imbens, Guido},
-  title         = {Instrumental Variables Estimates of the Effect of Subsidized Training on the Quantiles of Trainee Earnings},
-  number        = {1},
-  pages         = {91--117},
-  volume        = {70},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Econometrica : journal of the Econometric Society},
-  shortjournal  = {Econometrica},
-  year          = {2002},
-}
-
-@Article{abadie2003economic,
-  author        = {Abadie, Alberto and Gardeazabal, Javier},
-  title         = {The Economic Costs of Conflict: {{A}} Case Study of the {{Basque Country}}},
-  number        = {1},
-  pages         = {113--132},
-  volume        = {93},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {American economic review},
-  year          = {2003},
-}
-
-@InProceedings{ackerman2021machine,
-  author        = {Ackerman, Samuel and Dube, Parijat and Farchi, Eitan and Raz, Orna and Zalmanovici, Marcel},
-  booktitle     = {2021 {{IEEE}}/{{ACM Third International Workshop}} on {{Deep Learning}} for {{Testing}} and {{Testing}} for {{Deep Learning}} ({{DeepTest}})},
-  title         = {Machine {{Learning Model Drift Detection Via Weak Data Slices}}},
-  pages         = {1--8},
-  publisher     = {{IEEE}},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2021},
-}
-
-@Article{allen2017referencedependent,
-  author        = {Allen, Eric J and Dechow, Patricia M and Pope, Devin G and Wu, George},
-  title         = {Reference-Dependent Preferences: {{Evidence}} from Marathon Runners},
-  number        = {6},
-  pages         = {1657--1672},
-  volume        = {63},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Management Science},
-  year          = {2017},
-}
-
-@Article{altmeyer2018option,
-  author        = {Altmeyer, Patrick and Grapendal, Jacob Daniel and Pravosud, Makar and Quintana, Gand Derry},
-  title         = {Option Pricing in the {{Heston}} Stochastic Volatility Model: An Empirical Evaluation},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2018},
-}
-
-@Article{altmeyer2021deep,
-  author        = {Altmeyer, Patrick and Agusti, Marc and Vidal-Quadras Costa, Ignacio},
-  title         = {Deep {{Vector Autoregression}} for {{Macroeconomic Data}}},
-  url           = {https://thevoice.bse.eu/wp-content/uploads/2021/07/ds21-project-agusti-et-al.pdf},
-  bdsk-url-1    = {https://thevoice.bse.eu/wp-content/uploads/2021/07/ds21-project-agusti-et-al.pdf},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2021},
-}
-
-@Book{altmeyer2021deepvars,
-  author        = {Altmeyer, Patrick},
-  title         = {Deepvars: {{Deep Vector Autoregession}}},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2021},
-}
-
-@Misc{altmeyer2022counterfactualexplanations,
-  author        = {Altmeyer, Patrick},
-  title         = {{{CounterfactualExplanations}}.Jl - a {{Julia}} Package for {{Counterfactual Explanations}} and {{Algorithmic Recourse}}},
-  url           = {https://github.com/pat-alt/CounterfactualExplanations.jl},
-  bdsk-url-1    = {https://github.com/pat-alt/CounterfactualExplanations.jl},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2022},
-}
-
-@Software{altmeyerCounterfactualExplanationsJlJulia2022,
-  author        = {Altmeyer, Patrick},
-  title         = {{{CounterfactualExplanations}}.Jl - a {{Julia}} Package for {{Counterfactual Explanations}} and {{Algorithmic Recourse}}},
-  url           = {https://github.com/pat-alt/CounterfactualExplanations.jl},
-  version       = {0.1.2},
-  bdsk-url-1    = {https://github.com/pat-alt/CounterfactualExplanations.jl},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2022},
-}
-
-@Unpublished{angelopoulos2021gentle,
-  author        = {Angelopoulos, Anastasios N. and Bates, Stephen},
-  title         = {A Gentle Introduction to Conformal Prediction and Distribution-Free Uncertainty Quantification},
-  archiveprefix = {arXiv},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  eprint        = {2107.07511},
-  eprinttype    = {arxiv},
-  file          = {:/Users/FA31DU/Zotero/storage/RKSUMYZG/Angelopoulos and Bates - 2021 - A gentle introduction to conformal prediction and .pdf:;:/Users/FA31DU/Zotero/storage/PRUEKRR3/2107.html:},
-  year          = {2021},
-}
-
-@Misc{angelopoulos2022uncertainty,
-  author        = {Angelopoulos, Anastasios and Bates, Stephen and Malik, Jitendra and Jordan, Michael I.},
-  title         = {Uncertainty {{Sets}} for {{Image Classifiers}} Using {{Conformal Prediction}}},
-  eprint        = {2009.14193},
-  eprinttype    = {arxiv},
-  abstract      = {Convolutional image classifiers can achieve high predictive accuracy, but quantifying their uncertainty remains an unresolved challenge, hindering their deployment in consequential settings. Existing uncertainty quantification techniques, such as Platt scaling, attempt to calibrate the network's probability estimates, but they do not have formal guarantees. We present an algorithm that modifies any classifier to output a predictive set containing the true label with a user-specified probability, such as 90\%. The algorithm is simple and fast like Platt scaling, but provides a formal finite-sample coverage guarantee for every model and dataset. Our method modifies an existing conformal prediction algorithm to give more stable predictive sets by regularizing the small scores of unlikely classes after Platt scaling. In experiments on both Imagenet and Imagenet-V2 with ResNet-152 and other classifiers, our scheme outperforms existing approaches, achieving coverage with sets that are often factors of 5 to 10 smaller than a stand-alone Platt scaling baseline.},
-  archiveprefix = {arXiv},
-  bdsk-url-1    = {http://arxiv.org/abs/2009.14193},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  file          = {:/Users/FA31DU/Zotero/storage/5BYIRBR2/Angelopoulos et al. - 2022 - Uncertainty Sets for Image Classifiers using Confo.pdf:;:/Users/FA31DU/Zotero/storage/2QJAKFKV/2009.html:},
-  keywords      = {Computer Science - Computer Vision and Pattern Recognition, Mathematics - Statistics Theory, Statistics - Machine Learning},
-  month         = sep,
-  number        = {arXiv:2009.14193},
-  primaryclass  = {cs, math, stat},
-  publisher     = {{arXiv}},
-  year          = {2022},
-}
-
-@Article{angelucci2009indirect,
-  author        = {Angelucci, Manuela and De Giorgi, Giacomo},
-  title         = {Indirect Effects of an Aid Program: How Do Cash Transfers Affect Ineligibles' Consumption?},
-  number        = {1},
-  pages         = {486--508},
-  volume        = {99},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {American economic review},
-  year          = {2009},
-}
-
-@Article{angrist1990lifetime,
-  author        = {Angrist, Joshua D},
-  title         = {Lifetime Earnings and the {{Vietnam}} Era Draft Lottery: Evidence from Social Security Administrative Records},
-  pages         = {313--336},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {The American Economic Review},
-  year          = {1990},
-}
-
-@Unpublished{antoran2020getting,
-  author        = {Antor{\'a}n, Javier and Bhatt, Umang and Adel, Tameem and Weller, Adrian and Hern{\'a}ndez-Lobato, Jos{\'e} Miguel},
-  title         = {Getting a Clue: {{A}} Method for Explaining Uncertainty Estimates},
-  archiveprefix = {arXiv},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  eprint        = {2006.06848},
-  eprinttype    = {arxiv},
-  year          = {2020},
-}
-
-@Article{arcones1992bootstrap,
-  author        = {Arcones, Miguel A and Gine, Evarist},
-  title         = {On the Bootstrap of {{U}} and {{V}} Statistics},
-  pages         = {655--674},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {The Annals of Statistics},
-  year          = {1992},
-}
-
-@Article{ariely2003coherent,
-  author        = {Ariely, Dan and Loewenstein, George and Prelec, Drazen},
-  title         = {``{{Coherent}} Arbitrariness'': {{Stable}} Demand Curves without Stable Preferences},
-  number        = {1},
-  pages         = {73--106},
-  volume        = {118},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {The Quarterly journal of economics},
-  year          = {2003},
-}
-
-@Article{ariely2006tom,
-  author        = {Ariely, Dan and Loewenstein, George and Prelec, Drazen},
-  title         = {Tom {{Sawyer}} and the Construction of Value},
-  number        = {1},
-  pages         = {1--10},
-  volume        = {60},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Journal of Economic Behavior \& Organization},
-  year          = {2006},
-}
-
-@Article{arrieta2020explainable,
-  author        = {Arrieta, Alejandro Barredo and Diaz-Rodriguez, Natalia and Del Ser, Javier and Bennetot, Adrien and Tabik, Siham and Barbado, Alberto and Garcia, Salvador and Gil-Lopez, Sergio and Molina, Daniel and Benjamins, Richard and others},
-  title         = {Explainable {{Artificial Intelligence}} ({{XAI}}): {{Concepts}}, Taxonomies, Opportunities and Challenges toward Responsible {{AI}}},
-  pages         = {82--115},
-  volume        = {58},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Information Fusion},
-  year          = {2020},
-}
-
-@Article{auer2002finitetime,
-  author        = {Auer, Peter and Cesa-Bianchi, Nicolo and Fischer, Paul},
-  title         = {Finite-Time Analysis of the Multiarmed Bandit Problem},
-  number        = {2},
-  pages         = {235--256},
-  volume        = {47},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Machine learning},
-  year          = {2002},
-}
-
-@Article{barabasi2016network,
-  author        = {Barab{\'a}si, Albert-L{\'a}szl{\'o}},
-  title         = {Network {{Science}}},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Network Science},
-  year          = {2016},
-}
-
-@Unpublished{bastounis2021mathematics,
-  author        = {Bastounis, Alexander and Hansen, Anders C and Vla{\v c}i{\'c}, Verner},
-  title         = {The Mathematics of Adversarial Attacks in {{AI}}--{{Why}} Deep Learning Is Unstable despite the Existence of Stable Neural Networks},
-  archiveprefix = {arXiv},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  eprint        = {2109.06098},
-  eprinttype    = {arxiv},
-  year          = {2021},
-}
-
-@Article{bechara1997deciding,
-  author        = {Bechara, Antoine and Damasio, Hanna and Tranel, Daniel and Damasio, Antonio R},
-  title         = {Deciding Advantageously before Knowing the Advantageous Strategy},
-  number        = {5304},
-  pages         = {1293--1295},
-  volume        = {275},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Science (New York, N.Y.)},
-  shortjournal  = {Science},
-  year          = {1997},
-}
-
-@Book{berlinet2011reproducing,
-  author        = {Berlinet, Alain and Thomas-Agnan, Christine},
-  title         = {Reproducing Kernel {{Hilbert}} Spaces in Probability and Statistics},
-  publisher     = {{Springer Science \& Business Media}},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2011},
-}
-
-@Misc{bernanke1990federal,
-  author        = {Bernanke, Ben S},
-  title         = {The Federal Funds Rate and the Channels of Monetary Transnission},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  publisher     = {{National Bureau of Economic Research Cambridge, Mass., USA}},
-  year          = {1990},
-}
-
-@Article{besbes2014stochastic,
-  author        = {Besbes, Omar and Gur, Yonatan and Zeevi, Assaf},
-  title         = {Stochastic Multi-Armed-Bandit Problem with Non-Stationary Rewards},
-  pages         = {199--207},
-  volume        = {27},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Advances in neural information processing systems},
-  year          = {2014},
-}
-
-@Article{bholat2020impact,
-  author        = {Bholat, D and Gharbawi, M and Thew, O},
-  title         = {The {{Impact}} of {{Covid}} on {{Machine Learning}} and {{Data Science}} in {{UK Banking}}},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Bank of England Quarterly Bulletin, Q4},
-  year          = {2020},
-}
-
-@Book{bishop2006pattern,
-  author        = {Bishop, Christopher M},
-  title         = {Pattern Recognition and Machine Learning},
-  publisher     = {{springer}},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2006},
-}
-
-@Article{blaom2020mlj,
-  author        = {Blaom, Anthony D. and Kiraly, Franz and Lienart, Thibaut and Simillides, Yiannis and Arenas, Diego and Vollmer, Sebastian J.},
-  title         = {{{MLJ}}: {{A Julia}} Package for Composable Machine Learning},
-  doi           = {10.21105/joss.02704},
-  issn          = {2475-9066},
-  number        = {55},
-  pages         = {2704},
-  urldate       = {2022-10-27},
-  volume        = {5},
-  abstract      = {Blaom et al., (2020). MLJ: A Julia package for composable machine learning. Journal of Open Source Software, 5(55), 2704, https://doi.org/10.21105/joss.02704},
-  bdsk-url-1    = {https://joss.theoj.org/papers/10.21105/joss.02704},
-  bdsk-url-2    = {https://doi.org/10.21105/joss.02704},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  file          = {:/Users/FA31DU/Zotero/storage/7AY87FGP/Blaom et al. - 2020 - MLJ A Julia package for composable machine learni.pdf:;:/Users/FA31DU/Zotero/storage/D69YSMVF/joss.html:},
-  journal       = {Journal of Open Source Software},
-  langid        = {english},
-  month         = nov,
-  shorttitle    = {{{MLJ}}},
-  year          = {2020},
-}
-
-@InProceedings{blundell2015weight,
-  author        = {Blundell, Charles and Cornebise, Julien and Kavukcuoglu, Koray and Wierstra, Daan},
-  booktitle     = {International Conference on Machine Learning},
-  title         = {Weight Uncertainty in Neural Network},
-  pages         = {1613--1622},
-  publisher     = {{PMLR}},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2015},
-}
-
-@Article{borch2022machine,
-  author        = {Borch, Christian},
-  title         = {Machine Learning, Knowledge Risk, and Principal-Agent Problems in Automated Trading},
-  pages         = {101852},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Technology in Society},
-  year          = {2022},
-}
-
-@Unpublished{borisov2021deep,
-  author        = {Borisov, Vadim and Leemann, Tobias and Se{\ss}ler, Kathrin and Haug, Johannes and Pawelczyk, Martin and Kasneci, Gjergji},
-  title         = {Deep Neural Networks and Tabular Data: {{A}} Survey},
-  archiveprefix = {arXiv},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  eprint        = {2110.01889},
-  eprinttype    = {arxiv},
-  year          = {2021},
-}
-
-@Article{bramoulle2009identification,
-  author        = {Bramoull{\'e}, Yann and Djebbari, Habiba and Fortin, Bernard},
-  title         = {Identification of Peer Effects through Social Networks},
-  number        = {1},
-  pages         = {41--55},
-  volume        = {150},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Journal of econometrics},
-  year          = {2009},
-}
-
-@Article{bramoulle2020peer,
-  author        = {Bramoull{\'e}, Yann and Djebbari, Habiba and Fortin, Bernard},
-  title         = {Peer Effects in Networks: {{A}} Survey},
-  pages         = {603--629},
-  volume        = {12},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Annual Review of Economics},
-  year          = {2020},
-}
-
-@Unpublished{branco2015survey,
-  author        = {Branco, Paula and Torgo, Luis and Ribeiro, Rita},
-  title         = {A Survey of Predictive Modelling under Imbalanced Distributions},
-  archiveprefix = {arXiv},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  eprint        = {1505.01658},
-  eprinttype    = {arxiv},
-  year          = {2015},
-}
-
-@Book{brock1991nonlinear,
-  author        = {Brock, William Allen and Brock, William A and Hsieh, David Arthur and LeBaron, Blake Dean and Brock, William E},
-  title         = {Nonlinear Dynamics, Chaos, and Instability: Statistical Theory and Economic Evidence},
-  publisher     = {{MIT press}},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {1991},
-}
-
-@InProceedings{buolamwini2018gender,
-  author        = {Buolamwini, Joy and Gebru, Timnit},
-  booktitle     = {Conference on Fairness, Accountability and Transparency},
-  title         = {Gender Shades: {{Intersectional}} Accuracy Disparities in Commercial Gender Classification},
-  pages         = {77--91},
-  publisher     = {{PMLR}},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2018},
-}
-
-@Unpublished{bussmann2020neural,
-  author        = {Bussmann, Bart and Nys, Jannes and Latr{\'e}, Steven},
-  title         = {Neural {{Additive Vector Autoregression Models}} for {{Causal Discovery}} in {{Time Series Data}}},
-  archiveprefix = {arXiv},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  eprint        = {2010.09429},
-  eprinttype    = {arxiv},
-  year          = {2020},
-}
-
-@Report{card1993minimum,
-  author        = {Card, David and Krueger, Alan B},
-  title         = {Minimum Wages and Employment: {{A}} Case Study of the Fast Food Industry in {{New Jersey}} and {{Pennsylvania}}},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  school        = {{National Bureau of Economic Research}},
-  year          = {1993},
-}
-
-@InProceedings{carlini2017evaluating,
-  author        = {Carlini, Nicholas and Wagner, David},
-  booktitle     = {2017 Ieee Symposium on Security and Privacy (Sp)},
-  title         = {Towards Evaluating the Robustness of Neural Networks},
-  pages         = {39--57},
-  publisher     = {{IEEE}},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2017},
-}
-
-@Article{carlisle2019racist,
-  author        = {Carlisle, M.},
-  title         = {Racist Data Destruction? - a {{Boston}} Housing Dataset Controversy},
-  url           = {https://medium.com/@docintangible/racist-data-destruction-113e3eff54a8},
-  bdsk-url-1    = {https://medium.com/@docintangible/racist-data-destruction-113e3eff54a8},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2019},
-}
-
-@Article{carrell2009does,
-  author        = {Carrell, Scott E and Fullerton, Richard L and West, James E},
-  title         = {Does Your Cohort Matter? {{Measuring}} Peer Effects in College Achievement},
-  number        = {3},
-  pages         = {439--464},
-  volume        = {27},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Journal of Labor Economics},
-  year          = {2009},
-}
-
-@Article{carrell2013natural,
-  author        = {Carrell, Scott E and Sacerdote, Bruce I and West, James E},
-  title         = {From Natural Variation to Optimal Policy? {{The}} Importance of Endogenous Peer Group Formation},
-  number        = {3},
-  pages         = {855--882},
-  volume        = {81},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Econometrica : journal of the Econometric Society},
-  shortjournal  = {Econometrica},
-  year          = {2013},
-}
-
-@Article{carrizosa2021generating,
-  author        = {Carrizosa, Emilio and Ramırez-Ayerbe, Jasone and Romero, Dolores},
-  title         = {Generating {{Collective Counterfactual Explanations}} in {{Score-Based Classification}} via {{Mathematical Optimization}}},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2021},
-}
-
-@Article{cascarino2022explainable,
-  author        = {Cascarino, Giuseppe and Moscatelli, Mirko and Parlapiano, Fabio},
-  title         = {Explainable {{Artificial Intelligence}}: Interpreting Default Forecasting Models Based on {{Machine Learning}}},
-  number        = {674},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Bank of Italy Occasional Paper},
-  year          = {2022},
-}
-
-@Article{chandola2009anomaly,
-  author        = {Chandola, Varun and Banerjee, Arindam and Kumar, Vipin},
-  title         = {Anomaly Detection: {{A}} Survey},
-  number        = {3},
-  pages         = {1--58},
-  volume        = {41},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {ACM computing surveys (CSUR)},
-  year          = {2009},
-}
-
-@Article{chapelle2011empirical,
-  author        = {Chapelle, Olivier and Li, Lihong},
-  title         = {An Empirical Evaluation of Thompson Sampling},
-  pages         = {2249--2257},
-  volume        = {24},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Advances in neural information processing systems},
-  year          = {2011},
-}
-
-@Article{chetty2011adjustment,
-  author        = {Chetty, Raj and Friedman, John N and Olsen, Tore and Pistaferri, Luigi},
-  title         = {Adjustment Costs, Firm Responses, and Micro vs. Macro Labor Supply Elasticities: {{Evidence}} from {{Danish}} Tax Records},
-  number        = {2},
-  pages         = {749--804},
-  volume        = {126},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {The quarterly journal of economics},
-  year          = {2011},
-}
-
-@Article{cortes1995supportvector,
-  author        = {Cortes, Corinna and Vapnik, Vladimir},
-  title         = {Support-Vector Networks},
-  number        = {3},
-  pages         = {273--297},
-  volume        = {20},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Machine learning},
-  year          = {1995},
-}
-
-@Article{crawford2019variable,
-  author        = {Crawford, Lorin and Flaxman, Seth R and Runcie, Daniel E and West, Mike},
-  title         = {Variable Prioritization in Nonlinear Black Box Methods: {{A}} Genetic Association Case Study},
-  number        = {2},
-  pages         = {958},
-  volume        = {13},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {The annals of applied statistics},
-  year          = {2019},
-}
-
-@InProceedings{dai2022counterfactual,
-  author        = {Dai, Xinyue and Keane, Mark T and Shalloo, Laurence and Ruelle, Elodie and Byrne, Ruth MJ},
-  title         = {Counterfactual Explanations for Prediction and Diagnosis in Xai},
-  eventtitle    = {Proceedings of the 2022 {{AAAI}}/{{ACM Conference}} on {{AI}}, {{Ethics}}, and {{Society}}},
-  pages         = {215--226},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2022},
-}
-
-@Article{danielsson2021artificial,
-  author        = {Danielsson, Jon and Macrae, Robert and Uthemann, Andreas},
-  title         = {Artificial Intelligence and Systemic Risk},
-  pages         = {106290},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Journal of Banking \& Finance},
-  year          = {2021},
-}
-
-@Article{daxberger2021laplace,
-  author        = {Daxberger, Erik and Kristiadi, Agustinus and Immer, Alexander and Eschenhagen, Runa and Bauer, Matthias and Hennig, Philipp},
-  title         = {Laplace {{Redux-Effortless Bayesian Deep Learning}}},
-  volume        = {34},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Advances in Neural Information Processing Systems},
-  year          = {2021},
-}
-
-@Article{dehejia1999causal,
-  author        = {Dehejia, Rajeev H and Wahba, Sadek},
-  title         = {Causal Effects in Nonexperimental Studies: {{Reevaluating}} the Evaluation of Training Programs},
-  number        = {448},
-  pages         = {1053--1062},
-  volume        = {94},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Journal of the American statistical Association},
-  year          = {1999},
-}
-
-@Article{dell2010persistent,
-  author        = {Dell, Melissa},
-  title         = {The Persistent Effects of {{Peru}}'s Mining Mita},
-  number        = {6},
-  pages         = {1863--1903},
-  volume        = {78},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Econometrica : journal of the Econometric Society},
-  shortjournal  = {Econometrica},
-  year          = {2010},
-}
-
-@Article{denhengst2020reinforcement,
-  author        = {den Hengst, Floris and Grua, Eoin Martino and el Hassouni, Ali and Hoogendoorn, Mark},
-  title         = {Reinforcement Learning for Personalization: {{A}} Systematic Literature Review},
-  issue         = {Preprint},
-  pages         = {1--41},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Data Science},
-  options       = {useprefix=true},
-  year          = {2020},
-}
-
-@Article{deoliveira2021framework,
-  author        = {de Oliveira, Raphael Mazzine Barbosa and Martens, David},
-  title         = {A Framework and Benchmarking Study for Counterfactual Generating Methods on Tabular Data},
-  number        = {16},
-  pages         = {7274},
-  volume        = {11},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Applied Sciences},
-  options       = {useprefix=true},
-  year          = {2021},
-}
-
-@Article{dhurandhar2018explanations,
-  author        = {Dhurandhar, Amit and Chen, Pin-Yu and Luss, Ronny and Tu, Chun-Chen and Ting, Paishun and Shanmugam, Karthikeyan and Das, Payel},
-  title         = {Explanations Based on the Missing: {{Towards}} Contrastive Explanations with Pertinent Negatives},
-  volume        = {31},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Advances in neural information processing systems},
-  year          = {2018},
-}
-
-@InProceedings{dombrowski2021diffeomorphic,
-  author        = {Dombrowski, Ann-Kathrin and Gerken, Jan E and Kessel, Pan},
-  booktitle     = {{{ICML Workshop}} on {{Invertible Neural Networks}}, {{Normalizing Flows}}, and {{Explicit Likelihood Models}}},
-  title         = {Diffeomorphic Explanations with Normalizing Flows},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2021},
-}
-
-@InProceedings{dorffner1996neural,
-  author        = {Dorffner, Georg},
-  booktitle     = {Neural Network World},
-  title         = {Neural Networks for Time Series Processing},
-  publisher     = {{Citeseer}},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {1996},
-}
-
-@Article{epstein1979stability,
-  author        = {Epstein, Seymour},
-  title         = {The Stability of Behavior: {{I}}. {{On}} Predicting Most of the People Much of the Time.},
-  number        = {7},
-  pages         = {1097},
-  volume        = {37},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Journal of personality and social psychology},
-  year          = {1979},
-}
-
-@Online{barocas2022fairness,
-  author        = {Solon Barocas and Moritz Hardt and Arvind Narayanan},
-  title         = {Fairness and Machine Learning},
-  url           = {https://fairmlbook.org/index.html},
-  urldate       = {2022-11-08},
-  bdsk-url-1    = {https://fairmlbook.org/index.html},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  month         = dec,
-  year          = {2022},
-}
-
-@Article{falk2006clean,
-  author        = {Falk, Armin and Ichino, Andrea},
-  title         = {Clean Evidence on Peer Effects},
-  number        = {1},
-  pages         = {39--57},
-  volume        = {24},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Journal of labor economics},
-  year          = {2006},
-}
-
-@Unpublished{fan2020interpretability,
-  author        = {Fan, Fenglei and Xiong, Jinjun and Wang, Ge},
-  title         = {On Interpretability of Artificial Neural Networks},
-  archiveprefix = {arXiv},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  eprint        = {2001.02522},
-  eprinttype    = {arxiv},
-  year          = {2020},
-}
-
-@Article{fang2011dynamic,
-  author        = {Fang, Hanming and Gavazza, Alessandro},
-  title         = {Dynamic Inefficiencies in an Employment-Based Health Insurance System: {{Theory}} and Evidence},
-  number        = {7},
-  pages         = {3047--77},
-  volume        = {101},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {American Economic Review},
-  year          = {2011},
-}
-
-@Article{fehr2000cooperation,
-  author        = {Fehr, Ernst and Gachter, Simon},
-  title         = {Cooperation and Punishment in Public Goods Experiments},
-  number        = {4},
-  pages         = {980--994},
-  volume        = {90},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {American Economic Review},
-  year          = {2000},
-}
-
-@Article{fix1951important,
-  author        = {Fix, E and Hodges, J},
-  title         = {An Important Contribution to Nonparametric Discriminant Analysis and Density Estimation},
-  number        = {57},
-  pages         = {233--238},
-  volume        = {3},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {International Statistical Review},
-  year          = {1951},
-}
-
-@Book{friedman2008monetary,
-  author        = {Friedman, Milton and Schwartz, Anna Jacobson},
-  title         = {A Monetary History of the {{United States}}, 1867-1960},
-  publisher     = {{Princeton University Press}},
-  volume        = {14},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2008},
-}
-
-@InProceedings{gal2016dropout,
-  author        = {Gal, Yarin and Ghahramani, Zoubin},
-  booktitle     = {International Conference on Machine Learning},
-  title         = {Dropout as a Bayesian Approximation: {{Representing}} Model Uncertainty in Deep Learning},
-  pages         = {1050--1059},
-  publisher     = {{PMLR}},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2016},
-}
-
-@InProceedings{gal2017deep,
-  author        = {Gal, Yarin and Islam, Riashat and Ghahramani, Zoubin},
-  booktitle     = {International {{Conference}} on {{Machine Learning}}},
-  title         = {Deep Bayesian Active Learning with Image Data},
-  pages         = {1183--1192},
-  publisher     = {{PMLR}},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2017},
-}
-
-@Article{galizzi2019external,
-  author        = {Galizzi, Matteo M and Navarro-Martinez, Daniel},
-  title         = {On the External Validity of Social Preference Games: A Systematic Lab-Field Study},
-  number        = {3},
-  pages         = {976--1002},
-  volume        = {65},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Management Science},
-  year          = {2019},
-}
-
-@Article{gama2014survey,
-  author        = {Gama, Jo{\~a}o and {\v Z}liobait{\.e}, Indr{\.e} and Bifet, Albert and Pechenizkiy, Mykola and Bouchachia, Abdelhamid},
-  title         = {A Survey on Concept Drift Adaptation},
-  number        = {4},
-  pages         = {1--37},
-  volume        = {46},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {ACM computing surveys (CSUR)},
-  year          = {2014},
-}
-
-@Unpublished{garivier2008upperconfidence,
-  author        = {Garivier, Aur{\'e}lien and Moulines, Eric},
-  title         = {On Upper-Confidence Bound Policies for Non-Stationary Bandit Problems},
-  archiveprefix = {arXiv},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  eprint        = {0805.3415},
-  eprinttype    = {arxiv},
-  year          = {2008},
-}
-
-@Book{gelman2013bayesian,
-  author        = {Gelman, Andrew and Carlin, John B and Stern, Hal S and Dunson, David B and Vehtari, Aki and Rubin, Donald B},
-  title         = {Bayesian Data Analysis},
-  publisher     = {{CRC press}},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2013},
-}
-
-@Article{gilbert1998immune,
-  author        = {Gilbert, Daniel T and Pinel, Elizabeth C and Wilson, Timothy D and Blumberg, Stephen J and Wheatley, Thalia P},
-  title         = {Immune Neglect: A Source of Durability Bias in Affective Forecasting.},
-  number        = {3},
-  pages         = {617},
-  volume        = {75},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Journal of personality and social psychology},
-  year          = {1998},
-}
-
-@Article{gneezy2006uncertainty,
-  author        = {Gneezy, Uri and List, John A and Wu, George},
-  title         = {The Uncertainty Effect: {{When}} a Risky Prospect Is Valued Less than Its Worst Possible Outcome},
-  number        = {4},
-  pages         = {1283--1309},
-  volume        = {121},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {The Quarterly Journal of Economics},
-  year          = {2006},
-}
-
-@InCollection{goan2020bayesian,
-  author        = {Goan, Ethan and Fookes, Clinton},
-  booktitle     = {Case {{Studies}} in {{Applied Bayesian Data Science}}},
-  title         = {Bayesian {{Neural Networks}}: {{An Introduction}} and {{Survey}}},
-  pages         = {45--87},
-  publisher     = {{Springer}},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2020},
-}
-
-@Article{goldsmith-pinkham2013social,
-  author        = {Goldsmith-Pinkham, Paul and Imbens, Guido W},
-  title         = {Social Networks and the Identification of Peer Effects},
-  number        = {3},
-  pages         = {253--264},
-  volume        = {31},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Journal of Business \& Economic Statistics},
-  year          = {2013},
-}
-
-@Unpublished{goodfellow2014explaining,
-  author        = {Goodfellow, Ian J and Shlens, Jonathon and Szegedy, Christian},
-  title         = {Explaining and Harnessing Adversarial Examples},
-  archiveprefix = {arXiv},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  eprint        = {1412.6572},
-  eprinttype    = {arxiv},
-  year          = {2014},
-}
-
-@Book{goodfellow2016deep,
-  author        = {Goodfellow, Ian and Bengio, Yoshua and Courville, Aaron},
-  title         = {Deep {{Learning}}},
-  publisher     = {{MIT Press}},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2016},
-}
-
-@Article{goodfriend2005incredible,
-  author        = {Goodfriend, Marvin and King, Robert G},
-  title         = {The Incredible {{Volcker}} Disinflation},
-  number        = {5},
-  pages         = {981--1015},
-  volume        = {52},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Journal of Monetary Economics},
-  year          = {2005},
-}
-
-@Article{graham2017econometric,
-  author        = {Graham, Bryan S},
-  title         = {An Econometric Model of Network Formation with Degree Heterogeneity},
-  number        = {4},
-  pages         = {1033--1063},
-  volume        = {85},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Econometrica : journal of the Econometric Society},
-  shortjournal  = {Econometrica},
-  year          = {2017},
-}
-
-@Article{greene2012econometric,
-  author        = {Greene, William H},
-  title         = {Econometric Analysis, 71e},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Stern School of Business, New York University},
-  year          = {2012},
-}
-
-@Article{grether1979economic,
-  author        = {Grether, David M and Plott, Charles R},
-  title         = {Economic Theory of Choice and the Preference Reversal Phenomenon},
-  number        = {4},
-  pages         = {623--638},
-  volume        = {69},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {The American Economic Review},
-  year          = {1979},
-}
-
-@Article{gretton2012kernel,
-  author        = {Gretton, Arthur and Borgwardt, Karsten M and Rasch, Malte J and Sch{\"o}lkopf, Bernhard and Smola, Alexander},
-  title         = {A Kernel Two-Sample Test},
-  number        = {1},
-  pages         = {723--773},
-  volume        = {13},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {The Journal of Machine Learning Research},
-  year          = {2012},
-}
-
-@Unpublished{griffith2020name,
-  author        = {Griffith, Alan},
-  title         = {Name {{Your Friends}}, but {{Only Five}}? {{The Importance}} of {{Censoring}} in {{Peer Effects Estimates}} Using {{Social Network Data}}},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2020},
-}
-
-@Unpublished{grinsztajn2022why,
-  author        = {Grinsztajn, L{\'e}o and Oyallon, Edouard and Varoquaux, Ga{\"e}l},
-  title         = {Why Do Tree-Based Models Still Outperform Deep Learning on Tabular Data?},
-  archiveprefix = {arXiv},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  eprint        = {2207.08815},
-  eprinttype    = {arxiv},
-  year          = {2022},
-}
-
-@Misc{group2020detailed,
-  author        = {Group, Open COVID-19 Data Working},
-  title         = {Detailed {{Epidemiological Data}} from the {{COVID-19 Outbreak}}},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2020},
-}
-
-@InProceedings{gupta2011thompson,
-  author        = {Gupta, Neha and Granmo, Ole-Christoffer and Agrawala, Ashok},
-  booktitle     = {2011 10th {{International Conference}} on {{Machine Learning}} and {{Applications}} and {{Workshops}}},
-  title         = {Thompson Sampling for Dynamic Multi-Armed Bandits},
-  pages         = {484--489},
-  publisher     = {{IEEE}},
-  volume        = {1},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2011},
-}
-
-@Book{hamilton2020time,
-  author        = {Hamilton, James Douglas},
-  title         = {Time Series Analysis},
-  publisher     = {{Princeton university press}},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2020},
-}
-
-@Article{hamon2020robustness,
-  author        = {Hamon, Ronan and Junklewitz, Henrik and Sanchez, Ignacio},
-  title         = {Robustness and Explainability of Artificial Intelligence},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Publications Office of the European Union},
-  year          = {2020},
-}
-
-@Article{hamzacebi2008improving,
-  author        = {Hamza{\c c}ebi, Co{\c s}kun},
-  title         = {Improving Artificial Neural Networks' Performance in Seasonal Time Series Forecasting},
-  number        = {23},
-  pages         = {4550--4559},
-  volume        = {178},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Information Sciences},
-  year          = {2008},
-}
-
-@InProceedings{hanneke2007bound,
-  author        = {Hanneke, Steve},
-  booktitle     = {Proceedings of the 24th International Conference on {{Machine}} Learning},
-  title         = {A Bound on the Label Complexity of Agnostic Active Learning},
-  pages         = {353--360},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2007},
-}
-
-@Article{hansen2020virtue,
-  author        = {Hansen, Kristian Bondo},
-  title         = {The Virtue of Simplicity: {{On}} Machine Learning Models in Algorithmic Trading},
-  number        = {1},
-  pages         = {2053951720926558},
-  volume        = {7},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Big Data \& Society},
-  year          = {2020},
-}
-
-@Article{hartland2006multiarmed,
-  author        = {Hartland, C{\'e}dric and Gelly, Sylvain and Baskiotis, Nicolas and Teytaud, Olivier and Sebag, Michele},
-  title         = {Multi-Armed Bandit, Dynamic Environments and Meta-Bandits},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2006},
-}
-
-@Article{heckman1985alternative,
-  author        = {Heckman, James J and Robb Jr, Richard},
-  title         = {Alternative Methods for Evaluating the Impact of Interventions: {{An}} Overview},
-  number        = {1-2},
-  pages         = {239--267},
-  volume        = {30},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Journal of econometrics},
-  year          = {1985},
-}
-
-@Article{hershfield2011increasing,
-  author        = {Hershfield, Hal E and Goldstein, Daniel G and Sharpe, William F and Fox, Jesse and Yeykelis, Leo and Carstensen, Laura L and Bailenson, Jeremy N},
-  title         = {Increasing Saving Behavior through Age-Progressed Renderings of the Future Self},
-  issue         = {SPL},
-  pages         = {S23--S37},
-  volume        = {48},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Journal of Marketing Research},
-  year          = {2011},
-}
-
-@InProceedings{ho1995random,
-  author        = {Ho, Tin Kam},
-  booktitle     = {Proceedings of 3rd International Conference on Document Analysis and Recognition},
-  title         = {Random Decision Forests},
-  pages         = {278--282},
-  publisher     = {{IEEE}},
-  volume        = {1},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {1995},
-}
-
-@Article{hochreiter1997long,
-  author        = {Hochreiter, Sepp and Schmidhuber, J{\"u}rgen},
-  title         = {Long Short-Term Memory},
-  number        = {8},
-  pages         = {1735--1780},
-  volume        = {9},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Neural computation},
-  year          = {1997},
-}
-
-@Unpublished{hoff2021bayesoptimal,
-  author        = {Hoff, Peter},
-  title         = {Bayes-Optimal Prediction with Frequentist Coverage Control},
-  archiveprefix = {arXiv},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  eprint        = {2105.14045},
-  eprinttype    = {arxiv},
-  file          = {:/Users/FA31DU/Zotero/storage/IQK27WVA/Hoff - 2021 - Bayes-optimal prediction with frequentist coverage.pdf:;:/Users/FA31DU/Zotero/storage/K8EAZA25/2105.html:},
-  year          = {2021},
-}
-
-@Misc{hoffman1994german,
-  author        = {Hoffman, Hans},
-  title         = {German {{Credit Data}}},
-  url           = {https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)},
-  bdsk-url-1    = {https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {1994},
-}
-
-@Online{hoffmanGermanCreditData1994,
-  author        = {Hoffman, Hans},
-  title         = {German {{Credit Data}}},
-  url           = {https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)},
-  bdsk-url-1    = {https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {1994},
-}
-
-@Unpublished{houlsby2011bayesian,
-  author        = {Houlsby, Neil and Husz{\'a}r, Ferenc and Ghahramani, Zoubin and Lengyel, M{\'a}t{\'e}},
-  title         = {Bayesian Active Learning for Classification and Preference Learning},
-  archiveprefix = {arXiv},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  eprint        = {1112.5745},
-  eprinttype    = {arxiv},
-  year          = {2011},
-}
-
-@Article{hsee1996evaluability,
-  author        = {Hsee, Christopher K},
-  title         = {The Evaluability Hypothesis: {{An}} Explanation for Preference Reversals between Joint and Separate Evaluations of Alternatives},
-  number        = {3},
-  pages         = {247--257},
-  volume        = {67},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Organizational behavior and human decision processes},
-  year          = {1996},
-}
-
-@Article{hsee2004music,
-  author        = {Hsee, Christopher K and Rottenstreich, Yuval},
-  title         = {Music, Pandas, and Muggers: On the Affective Psychology of Value.},
-  number        = {1},
-  pages         = {23},
-  volume        = {133},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Journal of Experimental Psychology: General},
-  year          = {2004},
-}
-
-@Article{hsieh2016social,
-  author        = {Hsieh, Chih-Sheng and Lee, Lung Fei},
-  title         = {A Social Interactions Model with Endogenous Friendship Formation and Selectivity},
-  number        = {2},
-  pages         = {301--319},
-  volume        = {31},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Journal of Applied Econometrics},
-  year          = {2016},
-}
-
-@Unpublished{immer2020improving,
-  author        = {Immer, Alexander and Korzepa, Maciej and Bauer, Matthias},
-  title         = {Improving Predictions of Bayesian Neural Networks via Local Linearization},
-  archiveprefix = {arXiv},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  eprint        = {2008.08400},
-  eprinttype    = {arxiv},
-  year          = {2020},
-}
-
-@Unpublished{innes2018fashionable,
-  author        = {Innes, Michael and Saba, Elliot and Fischer, Keno and Gandhi, Dhairya and Rudilosso, Marco Concetto and Joy, Neethu Mariya and Karmali, Tejan and Pal, Avik and Shah, Viral},
-  title         = {Fashionable Modelling with Flux},
-  archiveprefix = {arXiv},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  eprint        = {1811.01457},
-  eprinttype    = {arxiv},
-  year          = {2018},
-}
-
-@Article{innes2018flux,
-  author        = {Innes, Mike},
-  title         = {Flux: {{Elegant}} Machine Learning with {{Julia}}},
-  number        = {25},
-  pages         = {602},
-  volume        = {3},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Journal of Open Source Software},
-  year          = {2018},
-}
-
-@Unpublished{ish-horowicz2019interpreting,
-  author        = {Ish-Horowicz, Jonathan and Udwin, Dana and Flaxman, Seth and Filippi, Sarah and Crawford, Lorin},
-  title         = {Interpreting Deep Neural Networks through Variable Importance},
-  archiveprefix = {arXiv},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  eprint        = {1901.09839},
-  eprinttype    = {arxiv},
-  year          = {2019},
-}
-
-@InProceedings{jabbari2017fairness,
-  author        = {Jabbari, Shahin and Joseph, Matthew and Kearns, Michael and Morgenstern, Jamie and Roth, Aaron},
-  booktitle     = {International {{Conference}} on {{Machine Learning}}},
-  title         = {Fairness in Reinforcement Learning},
-  pages         = {1617--1626},
-  publisher     = {{PMLR}},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2017},
-}
-
-@Article{jackson2007meeting,
-  author        = {Jackson, Matthew O and Rogers, Brian W},
-  title         = {Meeting Strangers and Friends of Friends: {{How}} Random Are Social Networks?},
-  number        = {3},
-  pages         = {890--915},
-  volume        = {97},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {American Economic Review},
-  year          = {2007},
-}
-
-@Unpublished{jeanneret2022diffusion,
-  author        = {Jeanneret, Guillaume and Simon, Lo{\"\i}c and Jurie, Fr{\'e}d{\'e}ric},
-  title         = {Diffusion {{Models}} for {{Counterfactual Explanations}}},
-  archiveprefix = {arXiv},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  eprint        = {2203.15636},
-  eprinttype    = {arxiv},
-  year          = {2022},
-}
-
-@Article{johansson2005failure,
-  author        = {Johansson, Petter and Hall, Lars and Sikstr{\"o}m, Sverker and Olsson, Andreas},
-  title         = {Failure to Detect Mismatches between Intention and Outcome in a Simple Decision Task},
-  number        = {5745},
-  pages         = {116--119},
-  volume        = {310},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Science (New York, N.Y.)},
-  shortjournal  = {Science},
-  year          = {2005},
-}
-
-@Article{johnsson2021estimation,
-  author        = {Johnsson, Ida and Moon, Hyungsik Roger},
-  title         = {Estimation of Peer Effects in Endogenous Social Networks: {{Control}} Function Approach},
-  number        = {2},
-  pages         = {328--345},
-  volume        = {103},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Review of Economics and Statistics},
-  year          = {2021},
-}
-
-@Article{jolliffe2003modified,
-  author        = {Jolliffe, Ian T and Trendafilov, Nickolay T and Uddin, Mudassir},
-  title         = {A Modified Principal Component Technique Based on the {{LASSO}}},
-  number        = {3},
-  pages         = {531--547},
-  volume        = {12},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Journal of computational and Graphical Statistics},
-  year          = {2003},
-}
-
-@Article{joseph2021forecasting,
-  author        = {Joseph, Andreas and Kalamara, Eleni and Kapetanios, George and Potjagailo, Galina},
-  title         = {Forecasting Uk Inflation Bottom Up},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2021},
-}
-
-@Unpublished{joshi2019realistic,
-  author        = {Joshi, Shalmali and Koyejo, Oluwasanmi and Vijitbenjaronk, Warut and Kim, Been and Ghosh, Joydeep},
-  title         = {Towards Realistic Individual Recourse and Actionable Explanations in Black-Box Decision Making Systems},
-  archiveprefix = {arXiv},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  eprint        = {1907.09615},
-  eprinttype    = {arxiv},
-  year          = {2019},
-}
-
-@Unpublished{jospin2020handson,
-  author        = {Jospin, Laurent Valentin and Buntine, Wray and Boussaid, Farid and Laga, Hamid and Bennamoun, Mohammed},
-  title         = {Hands-on {{Bayesian Neural Networks}}--a {{Tutorial}} for {{Deep Learning Users}}},
-  archiveprefix = {arXiv},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  eprint        = {2007.06823},
-  eprinttype    = {arxiv},
-  year          = {2020},
-}
-
-@Misc{kaggle2011give,
-  author        = {Kaggle},
-  title         = {Give Me Some Credit, {{Improve}} on the State of the Art in Credit Scoring by Predicting the Probability That Somebody Will Experience Financial Distress in the next Two Years.},
-  url           = {https://www.kaggle.com/c/GiveMeSomeCredit},
-  bdsk-url-1    = {https://www.kaggle.com/c/GiveMeSomeCredit},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  publisher     = {{Kaggle}},
-  year          = {2011},
-}
-
-@online{kagglecompetitionGiveMeCredit,
-	author = {Kaggle Competition},
-	date-added = {2022-12-13 12:58:01 +0100},
-	date-modified = {2022-12-13 12:58:01 +0100},
-	title = {Give Me Some Credit, {{Improve}} on the State of the Art in Credit Scoring by Predicting the Probability That Somebody Will Experience Financial Distress in the next Two Years.},
-	url = {https://www.kaggle.com/c/GiveMeSomeCredit},
-	bdsk-url-1 = {https://www.kaggle.com/c/GiveMeSomeCredit}}
-
-@Article{kahneman1979prospect,
-  author        = {Kahneman, Daniel and Tversky, Amos},
-  title         = {Prospect {{Theory}}: {{An Analysis}} of {{Decision}} under {{Risk}}},
-  pages         = {263--291},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Econometrica: Journal of the Econometric Society},
-  year          = {1979},
-}
-
-@Article{kahneman1990experimental,
-  author        = {Kahneman, Daniel and Knetsch, Jack L and Thaler, Richard H},
-  title         = {Experimental Tests of the Endowment Effect and the {{Coase}} Theorem},
-  number        = {6},
-  pages         = {1325--1348},
-  volume        = {98},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Journal of political Economy},
-  year          = {1990},
-}
-
-@Article{kahneman1992reference,
-  author        = {Kahneman, Daniel},
-  title         = {Reference Points, Anchors, Norms, and Mixed Feelings},
-  number        = {2},
-  pages         = {296--312},
-  volume        = {51},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Organizational behavior and human decision processes},
-  year          = {1992},
-}
-
-@Unpublished{karimi2020algorithmic,
-  author        = {Karimi, Amir-Hossein and Von K{\"u}gelgen, Julius and Sch{\"o}lkopf, Bernhard and Valera, Isabel},
-  title         = {Algorithmic Recourse under Imperfect Causal Knowledge: A Probabilistic Approach},
-  archiveprefix = {arXiv},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  eprint        = {2006.06831},
-  eprinttype    = {arxiv},
-  year          = {2020},
-}
-
-@Unpublished{karimi2020survey,
-  author        = {Karimi, Amir-Hossein and Barthe, Gilles and Sch{\"o}lkopf, Bernhard and Valera, Isabel},
-  title         = {A Survey of Algorithmic Recourse: Definitions, Formulations, Solutions, and Prospects},
-  archiveprefix = {arXiv},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  eprint        = {2010.04050},
-  eprinttype    = {arxiv},
-  year          = {2020},
-}
-
-@InProceedings{karimi2021algorithmic,
-  author        = {Karimi, Amir-Hossein and Sch{\"o}lkopf, Bernhard and Valera, Isabel},
-  booktitle     = {Proceedings of the 2021 {{ACM Conference}} on {{Fairness}}, {{Accountability}}, and {{Transparency}}},
-  title         = {Algorithmic Recourse: From Counterfactual Explanations to Interventions},
-  pages         = {353--362},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2021},
-}
-
-@InProceedings{kaur2020interpreting,
-  author        = {Kaur, Harmanpreet and Nori, Harsha and Jenkins, Samuel and Caruana, Rich and Wallach, Hanna and Wortman Vaughan, Jennifer},
-  booktitle     = {Proceedings of the 2020 {{CHI}} Conference on Human Factors in Computing Systems},
-  title         = {Interpreting Interpretability: Understanding Data Scientists' Use of Interpretability Tools for Machine Learning},
-  pages         = {1--14},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2020},
-}
-
-@Article{kehoe2021defence,
-  author        = {Kehoe, Aidan and Wittek, Peter and Xue, Yanbo and Pozas-Kerstjens, Alejandro},
-  title         = {Defence against Adversarial Attacks Using Classical and Quantum-Enhanced {{Boltzmann}} Machines},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Machine Learning: Science and Technology},
-  year          = {2021},
-}
-
-@Unpublished{kendall2017what,
-  author        = {Kendall, Alex and Gal, Yarin},
-  title         = {What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?},
-  archiveprefix = {arXiv},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  eprint        = {1703.04977},
-  eprinttype    = {arxiv},
-  year          = {2017},
-}
-
-@Article{kihoro2004seasonal,
-  author        = {Kihoro, J and Otieno, RO and Wafula, C},
-  title         = {Seasonal Time Series Forecasting: {{A}} Comparative Study of {{ARIMA}} and {{ANN}} Models},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2004},
-}
-
-@Book{kilian2017structural,
-  author        = {Kilian, Lutz and L{\"u}tkepohl, Helmut},
-  title         = {Structural Vector Autoregressive Analysis},
-  publisher     = {{Cambridge University Press}},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2017},
-}
-
-@Unpublished{kingma2014adam,
-  author        = {Kingma, Diederik P and Ba, Jimmy},
-  title         = {Adam: {{A}} Method for Stochastic Optimization},
-  archiveprefix = {arXiv},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  eprint        = {1412.6980},
-  eprinttype    = {arxiv},
-  year          = {2014},
-}
-
-@Article{kirsch2019batchbald,
-  author        = {Kirsch, Andreas and Van Amersfoort, Joost and Gal, Yarin},
-  title         = {Batchbald: {{Efficient}} and Diverse Batch Acquisition for Deep Bayesian Active Learning},
-  pages         = {7026--7037},
-  volume        = {32},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Advances in neural information processing systems},
-  year          = {2019},
-}
-
-@Unpublished{kuiper2021exploring,
-  author        = {Kuiper, Ouren and van den Berg, Martin and van den Burgt, Joost and Leijnen, Stefan},
-  title         = {Exploring {{Explainable AI}} in the {{Financial Sector}}: {{Perspectives}} of {{Banks}} and {{Supervisory Authorities}}},
-  archiveprefix = {arXiv},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  eprint        = {2111.02244},
-  eprinttype    = {arxiv},
-  year          = {2021},
-}
-
-@Article{kydland1982time,
-  author        = {Kydland, Finn E and Prescott, Edward C},
-  title         = {Time to Build and Aggregate Fluctuations},
-  pages         = {1345--1370},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Econometrica: Journal of the Econometric Society},
-  year          = {1982},
-}
-
-@Unpublished{lachapelle2019gradientbased,
-  author        = {Lachapelle, S{\'e}bastien and Brouillard, Philippe and Deleu, Tristan and Lacoste-Julien, Simon},
-  title         = {Gradient-Based Neural Dag Learning},
-  archiveprefix = {arXiv},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  eprint        = {1906.02226},
-  eprinttype    = {arxiv},
-  year          = {2019},
-}
-
-@InProceedings{lakkaraju2020how,
-  author        = {Lakkaraju, Himabindu and Bastani, Osbert},
-  booktitle     = {Proceedings of the {{AAAI}}/{{ACM Conference}} on {{AI}}, {{Ethics}}, and {{Society}}},
-  title         = {" {{How}} Do {{I}} Fool You?" {{Manipulating User Trust}} via {{Misleading Black Box Explanations}}},
-  pages         = {79--85},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2020},
-}
-
-@InProceedings{lakkaraju2020how,
-  author        = {Lakkaraju, Himabindu and Bastani, Osbert},
-  booktitle     = {Proceedings of the {{AAAI}}/{{ACM Conference}} on {{AI}}, {{Ethics}}, and {{Society}}},
-  title         = {" {{How Do I Fool You}}?" {{Manipulating User Trust}} via {{Misleading Black Box Explanations}}},
-  pages         = {79--85},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2020},
-}
-
-@Unpublished{lakshminarayanan2016simple,
-  author        = {Lakshminarayanan, Balaji and Pritzel, Alexander and Blundell, Charles},
-  title         = {Simple and Scalable Predictive Uncertainty Estimation Using Deep Ensembles},
-  archiveprefix = {arXiv},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  eprint        = {1612.01474},
-  eprinttype    = {arxiv},
-  year          = {2016},
-}
-
-@Unpublished{laugel2017inverse,
-  author        = {Laugel, Thibault and Lesot, Marie-Jeanne and Marsala, Christophe and Renard, Xavier and Detyniecki, Marcin},
-  title         = {Inverse Classification for Comparison-Based Interpretability in Machine Learning},
-  archiveprefix = {arXiv},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  eprint        = {1712.08443},
-  eprinttype    = {arxiv},
-  shortjournal  = {arXiv preprint arXiv:1712.08443},
-  year          = {2017},
-}
-
-@Thesis{lawrence2001variational,
-  author        = {Lawrence, Neil David},
-  title         = {Variational Inference in Probabilistic Models},
-  type          = {phdthesis},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  school        = {{University of Cambridge}},
-  year          = {2001},
-}
-
-@Article{lecun1998mnist,
-  author        = {LeCun, Yann},
-  title         = {The {{MNIST}} Database of Handwritten Digits},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  shortjournal  = {http://yann. lecun. com/exdb/mnist/},
-  year          = {1998},
-}
-
-@Article{lee2003best,
-  author        = {Lee, Lung-fei},
-  title         = {Best Spatial Two-Stage Least Squares Estimators for a Spatial Autoregressive Model with Autoregressive Disturbances},
-  number        = {4},
-  pages         = {307--335},
-  volume        = {22},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Econometric Reviews},
-  year          = {2003},
-}
-
-@Article{lerner2013financial,
-  author        = {Lerner, Jennifer S and Li, Ye and Weber, Elke U},
-  title         = {The Financial Costs of Sadness},
-  number        = {1},
-  pages         = {72--79},
-  volume        = {24},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Psychological science},
-  year          = {2013},
-}
-
-@Article{list2004neoclassical,
-  author        = {List, John A},
-  title         = {Neoclassical Theory versus Prospect Theory: {{Evidence}} from the Marketplace},
-  number        = {2},
-  pages         = {615--625},
-  volume        = {72},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Econometrica : journal of the Econometric Society},
-  shortjournal  = {Econometrica},
-  year          = {2004},
-}
-
-@Article{lucas1976econometric,
-  author        = {Lucas, JR},
-  title         = {Econometric Policy Evaluation: A Critique `, in {{K}}. {{Brunner}} and {{A Meltzer}}, {{The Phillips}} Curve and Labor Markets, {{North Holland}}},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {1976},
-}
-
-@InProceedings{lundberg2017unified,
-  author        = {Lundberg, Scott M and Lee, Su-In},
-  booktitle     = {Proceedings of the 31st International Conference on Neural Information Processing Systems},
-  title         = {A Unified Approach to Interpreting Model Predictions},
-  pages         = {4768--4777},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2017},
-}
-
-@Book{lutkepohl2005new,
-  author        = {L{\"u}tkepohl, Helmut},
-  title         = {New Introduction to Multiple Time Series Analysis},
-  publisher     = {{Springer Science \& Business Media}},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2005},
-}
-
-@Article{madrian2001power,
-  author        = {Madrian, Brigitte C and Shea, Dennis F},
-  title         = {The Power of Suggestion: {{Inertia}} in 401 (k) Participation and Savings Behavior},
-  number        = {4},
-  pages         = {1149--1187},
-  volume        = {116},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {The Quarterly journal of economics},
-  year          = {2001},
-}
-
-@Book{manning2008introduction,
-  author        = {Manning, Christopher D and Sch{\"u}tze, Hinrich and Raghavan, Prabhakar},
-  title         = {Introduction to Information Retrieval},
-  publisher     = {{Cambridge university press}},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2008},
-}
-
-@misc{manokhin2022awesome,
-	author = {Manokhin, Valery},
-	date-added = {2022-12-13 12:58:01 +0100},
-	date-modified = {2022-12-13 12:58:01 +0100},
-	title = {Awesome Conformal Prediction}}
-
-@Article{manski1993identification,
-  author        = {Manski, Charles F},
-  title         = {Identification of Endogenous Social Effects: {{The}} Reflection Problem},
-  number        = {3},
-  pages         = {531--542},
-  volume        = {60},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {The review of economic studies},
-  year          = {1993},
-}
-
-@Article{markle2018goals,
-  author        = {Markle, Alex and Wu, George and White, Rebecca and Sackett, Aaron},
-  title         = {Goals as Reference Points in Marathon Running: {{A}} Novel Test of Reference Dependence},
-  number        = {1},
-  pages         = {19--50},
-  volume        = {56},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Journal of Risk and Uncertainty},
-  year          = {2018},
-}
-
-@Article{masini2021machine,
-  author        = {Masini, Ricardo P and Medeiros, Marcelo C and Mendes, Eduardo F},
-  title         = {Machine Learning Advances for Time Series Forecasting},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Journal of Economic Surveys},
-  year          = {2021},
-}
-
-@Article{mccracken2016fredmd,
-  author        = {McCracken, Michael W and Ng, Serena},
-  title         = {{{FRED-MD}}: {{A}} Monthly Database for Macroeconomic Research},
-  number        = {4},
-  pages         = {574--589},
-  volume        = {34},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Journal of Business \& Economic Statistics},
-  year          = {2016},
-}
-
-@Article{mcculloch1990logical,
-  author        = {McCulloch, Warren S and Pitts, Walter},
-  title         = {A Logical Calculus of the Ideas Immanent in Nervous Activity},
-  number        = {1},
-  pages         = {99--115},
-  volume        = {52},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Bulletin of mathematical biology},
-  year          = {1990},
-}
-
-@Article{migut2015visualizing,
-  author        = {Migut, MA and Worring, Marcel and Veenman, Cor J},
-  title         = {Visualizing Multi-Dimensional Decision Boundaries in {{2D}}},
-  number        = {1},
-  pages         = {273--295},
-  volume        = {29},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Data Mining and Knowledge Discovery},
-  year          = {2015},
-}
-
-@Article{miller2019explanation,
-  author        = {Miller, Tim},
-  title         = {Explanation in Artificial Intelligence: {{Insights}} from the Social Sciences},
-  pages         = {1--38},
-  volume        = {267},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Artificial intelligence},
-  year          = {2019},
-}
-
-@InProceedings{miller2020strategic,
-  author        = {Miller, John and Milli, Smitha and Hardt, Moritz},
-  booktitle     = {Proceedings of the 37th {{International Conference}} on {{Machine Learning}}},
-  title         = {Strategic {{Classification}} Is {{Causal Modeling}} in {{Disguise}}},
-  eventtitle    = {International {{Conference}} on {{Machine Learning}}},
-  pages         = {6917--6926},
-  publisher     = {{PMLR}},
-  url           = {https://proceedings.mlr.press/v119/miller20b.html},
-  urldate       = {2022-11-03},
-  abstract      = {Consequential decision-making incentivizes individuals to strategically adapt their behavior to the specifics of the decision rule. While a long line of work has viewed strategic adaptation as gaming and attempted to mitigate its effects, recent work has instead sought to design classifiers that incentivize individuals to improve a desired quality. Key to both accounts is a cost function that dictates which adaptations are rational to undertake. In this work, we develop a causal framework for strategic adaptation. Our causal perspective clearly distinguishes between gaming and improvement and reveals an important obstacle to incentive design. We prove any procedure for designing classifiers that incentivize improvement must inevitably solve a non-trivial causal inference problem. We show a similar result holds for designing cost functions that satisfy the requirements of previous work. With the benefit of hindsight, our results show much of the prior work on strategic classification is causal modeling in disguise.},
-  bdsk-url-1    = {https://proceedings.mlr.press/v119/miller20b.html},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  file          = {:/Users/FA31DU/Zotero/storage/46I2QMPI/Miller et al. - 2020 - Strategic Classification is Causal Modeling in Dis.pdf:;:/Users/FA31DU/Zotero/storage/NWREET6B/Miller et al. - 2020 - Strategic Classification is Causal Modeling in Dis.pdf:},
-  issn          = {2640-3498},
-  langid        = {english},
-  month         = nov,
-  year          = {2020},
-}
-
-@Article{mischel1988nature,
-  author        = {Mischel, Walter and Shoda, Yuichi and Peake, Philip K},
-  title         = {The Nature of Adolescent Competencies Predicted by Preschool Delay of Gratification.},
-  number        = {4},
-  pages         = {687},
-  volume        = {54},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Journal of personality and social psychology},
-  year          = {1988},
-}
-
-@InProceedings{mittelstadt2019explaining,
-  author        = {Mittelstadt, Brent and Russell, Chris and Wachter, Sandra},
-  booktitle     = {Proceedings of the Conference on Fairness, Accountability, and Transparency},
-  title         = {Explaining Explanations in {{AI}}},
-  pages         = {279--288},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2019},
-}
-
-@Book{molnar2020interpretable,
-  author        = {Molnar, Christoph},
-  title         = {Interpretable Machine Learning},
-  publisher     = {{Lulu. com}},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2020},
-}
-
-@Book{morgan2015counterfactuals,
-  author        = {Morgan, Stephen L and Winship, Christopher},
-  title         = {Counterfactuals and Causal Inference},
-  publisher     = {{Cambridge University Press}},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2015},
-}
-
-@Article{mosteller1951experimental,
-  author        = {Mosteller, Frederick and Nogee, Philip},
-  title         = {An Experimental Measurement of Utility},
-  number        = {5},
-  pages         = {371--404},
-  volume        = {59},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Journal of Political Economy},
-  year          = {1951},
-}
-
-@InProceedings{mothilal2020explaining,
-  author        = {Mothilal, Ramaravind K and Sharma, Amit and Tan, Chenhao},
-  booktitle     = {Proceedings of the 2020 {{Conference}} on {{Fairness}}, {{Accountability}}, and {{Transparency}}},
-  title         = {Explaining Machine Learning Classifiers through Diverse Counterfactual Explanations},
-  pages         = {607--617},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2020},
-}
-
-@Book{murphy2012machine,
-  author        = {Murphy, Kevin P},
-  title         = {Machine Learning: A Probabilistic Perspective},
-  publisher     = {{MIT press}},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2012},
-}
-
-@Book{murphy2012machine,
-  author        = {Murphy, Kevin P},
-  title         = {Machine Learning: {{A}} Probabilistic Perspective},
-  publisher     = {{MIT press}},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2012},
-}
-
-@Book{murphy2022probabilistic,
-  author        = {Murphy, Kevin P},
-  title         = {Probabilistic {{Machine Learning}}: {{An}} Introduction},
-  publisher     = {{MIT Press}},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2022},
-}
-
-@Article{nagel1995unraveling,
-  author        = {Nagel, Rosemarie},
-  title         = {Unraveling in Guessing Games: {{An}} Experimental Study},
-  number        = {5},
-  pages         = {1313--1326},
-  volume        = {85},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {The American Economic Review},
-  year          = {1995},
-}
-
-@Unpublished{navarro-martinez2021bridging,
-  author        = {Navarro-Martinez, Daniel and Wang, Xinghua},
-  title         = {Bridging the Gap between the Lab and the Field: {{Dictator}} Games and Donations},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2021},
-}
-
-@InProceedings{nelson2015evaluating,
-  author        = {Nelson, Kevin and Corbin, George and Anania, Mark and Kovacs, Matthew and Tobias, Jeremy and Blowers, Misty},
-  booktitle     = {2015 {{IEEE Symposium}} on {{Computational Intelligence}} for {{Security}} and {{Defense Applications}} ({{CISDA}})},
-  title         = {Evaluating Model Drift in Machine Learning Algorithms},
-  pages         = {1--8},
-  publisher     = {{IEEE}},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2015},
-}
-
-@Book{nocedal2006numerical,
-  author        = {Nocedal, Jorge and Wright, Stephen},
-  title         = {Numerical Optimization},
-  publisher     = {{Springer Science \& Business Media}},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2006},
-}
-
-@Misc{oecd2021artificial,
-  author        = {{OECD}},
-  title         = {Artificial {{Intelligence}}, {{Machine Learning}} and {{Big Data}} in {{Finance}}: {{Opportunities}}, {{Challenges}} and {{Implications}} for {{Policy Makers}}},
-  url           = {https://www.oecd.org/finance/financial-markets/Artificial-intelligence-machine-learning-big-data-in-finance.pdf},
-  bdsk-url-1    = {https://www.oecd.org/finance/financial-markets/Artificial-intelligence-machine-learning-big-data-in-finance.pdf},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2021},
-}
-
-@Online{oecdArtificialIntelligenceMachine2021,
-  author        = {{OECD}},
-  title         = {Artificial {{Intelligence}}, {{Machine Learning}} and {{Big Data}} in {{Finance}}: {{Opportunities}}, {{Challenges}} and {{Implications}} for {{Policy Makers}}},
-  url           = {https://www.oecd.org/finance/financial-markets/Artificial-intelligence-machine-learning-big-data-in-finance.pdf},
-  bdsk-url-1    = {https://www.oecd.org/finance/financial-markets/Artificial-intelligence-machine-learning-big-data-in-finance.pdf},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  publisher     = {{OECD}},
-  year          = {2021},
-}
-
-@Book{oneil2016weapons,
-  author        = {O'Neil, Cathy},
-  title         = {Weapons of Math Destruction: {{How}} Big Data Increases Inequality and Threatens Democracy},
-  publisher     = {{Crown}},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2016},
-}
-
-@Article{pace1997sparse,
-  author        = {Pace, R Kelley and Barry, Ronald},
-  title         = {Sparse Spatial Autoregressions},
-  number        = {3},
-  pages         = {291--297},
-  volume        = {33},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Statistics \& Probability Letters},
-  year          = {1997},
-}
-
-@Unpublished{parr2018matrix,
-  author        = {Parr, Terence and Howard, Jeremy},
-  title         = {The Matrix Calculus You Need for Deep Learning},
-  archiveprefix = {arXiv},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  eprint        = {1802.01528},
-  eprinttype    = {arxiv},
-  year          = {2018},
-}
-
-@Unpublished{pawelczyk2021carla,
-  author        = {Pawelczyk, Martin and Bielawski, Sascha and van den Heuvel, Johannes and Richter, Tobias and Kasneci, Gjergji},
-  title         = {Carla: A Python Library to Benchmark Algorithmic Recourse and Counterfactual Explanation Algorithms},
-  archiveprefix = {arXiv},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  eprint        = {2108.00783},
-  eprinttype    = {arxiv},
-  year          = {2021},
-}
-
-@Book{pearl2018book,
-  author        = {Pearl, Judea and Mackenzie, Dana},
-  title         = {The Book of Why: The New Science of Cause and Effect},
-  publisher     = {{Basic books}},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2018},
-}
-
-@Article{pearl2019seven,
-  author        = {Pearl, Judea},
-  title         = {The Seven Tools of Causal Inference, with Reflections on Machine Learning},
-  number        = {3},
-  pages         = {54--60},
-  volume        = {62},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Communications of the ACM},
-  year          = {2019},
-}
-
-@Article{pedregosa2011scikitlearn,
-  author        = {Pedregosa, Fabian and Varoquaux, Ga{\"e}l and Gramfort, Alexandre and Michel, Vincent and Thirion, Bertrand and Grisel, Olivier and Blondel, Mathieu and Prettenhofer, Peter and Weiss, Ron and Dubourg, Vincent and others},
-  title         = {Scikit-Learn: {{Machine}} Learning in {{Python}}},
-  pages         = {2825--2830},
-  volume        = {12},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {the Journal of machine Learning research},
-  year          = {2011},
-}
-
-@Book{perry2010economic,
-  author        = {Perry, George L and Tobin, James},
-  title         = {Economic {{Events}}, {{Ideas}}, and {{Policies}}: The 1960s and After},
-  publisher     = {{Brookings Institution Press}},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2010},
-}
-
-@Article{pfaff2008var,
-  author        = {Pfaff, Bernhard and others},
-  title         = {{{VAR}}, {{SVAR}} and {{SVEC}} Models: {{Implementation}} within {{R}} Package Vars},
-  number        = {4},
-  pages         = {1--32},
-  volume        = {27},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Journal of Statistical Software},
-  year          = {2008},
-}
-
-@Book{pindyck2014microeconomics,
-  author        = {Pindyck, Robert S and Rubinfeld, Daniel L},
-  title         = {Microeconomics},
-  publisher     = {{Pearson Education}},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2014},
-}
-
-@Article{pope2011numbers,
-  author        = {Pope, Devin and Simonsohn, Uri},
-  title         = {Round Numbers as Goals: {{Evidence}} from Baseball, {{SAT}} Takers, and the Lab},
-  number        = {1},
-  pages         = {71--79},
-  volume        = {22},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Psychological science},
-  year          = {2011},
-}
-
-@InProceedings{poyiadzi2020face,
-  author        = {Poyiadzi, Rafael and Sokol, Kacper and Santos-Rodriguez, Raul and De Bie, Tijl and Flach, Peter},
-  booktitle     = {Proceedings of the {{AAAI}}/{{ACM Conference}} on {{AI}}, {{Ethics}}, and {{Society}}},
-  title         = {{{FACE}}: {{Feasible}} and Actionable Counterfactual Explanations},
-  pages         = {344--350},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2020},
-}
-
-@Article{qu2015estimating,
-  author        = {Qu, Xi and Lee, Lung-fei},
-  title         = {Estimating a Spatial Autoregressive Model with an Endogenous Spatial Weight Matrix},
-  number        = {2},
-  pages         = {209--232},
-  volume        = {184},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Journal of Econometrics},
-  year          = {2015},
-}
-
-@Article{rabanser2019failing,
-  author        = {Rabanser, Stephan and G{\"u}nnemann, Stephan and Lipton, Zachary},
-  title         = {Failing Loudly: {{An}} Empirical Study of Methods for Detecting Dataset Shift},
-  volume        = {32},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Advances in Neural Information Processing Systems},
-  year          = {2019},
-}
-
-@Unpublished{raghunathan2019adversarial,
-  author        = {Raghunathan, Aditi and Xie, Sang Michael and Yang, Fanny and Duchi, John C and Liang, Percy},
-  title         = {Adversarial Training Can Hurt Generalization},
-  archiveprefix = {arXiv},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  eprint        = {1906.06032},
-  eprinttype    = {arxiv},
-  year          = {2019},
-}
-
-@Unpublished{raj2017taming,
-  author        = {Raj, Vishnu and Kalyani, Sheetal},
-  title         = {Taming Non-Stationary Bandits: {{A Bayesian}} Approach},
-  archiveprefix = {arXiv},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  eprint        = {1707.09727},
-  eprinttype    = {arxiv},
-  year          = {2017},
-}
-
-@InProceedings{rasmussen2003gaussian,
-  author        = {Rasmussen, Carl Edward},
-  booktitle     = {Summer School on Machine Learning},
-  title         = {Gaussian Processes in Machine Learning},
-  pages         = {63--71},
-  publisher     = {{Springer}},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2003},
-}
-
-@InProceedings{ribeiro2016why,
-  author        = {Ribeiro, Marco Tulio and Singh, Sameer and Guestrin, Carlos},
-  booktitle     = {Proceedings of the 22nd {{ACM SIGKDD}} International Conference on Knowledge Discovery and Data Mining},
-  title         = {"{{Why}} Should i Trust You?" {{Explaining}} the Predictions of Any Classifier},
-  pages         = {1135--1144},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2016},
-}
-
-@Article{romer1989does,
-  author        = {Romer, Christina D and Romer, David H},
-  title         = {Does Monetary Policy Matter? {{A}} New Test in the Spirit of {{Friedman}} and {{Schwartz}}},
-  pages         = {121--170},
-  volume        = {4},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {NBER macroeconomics annual},
-  year          = {1989},
-}
-
-@Article{rudin2019stop,
-  author        = {Rudin, Cynthia},
-  title         = {Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead},
-  number        = {5},
-  pages         = {206--215},
-  volume        = {1},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Nature Machine Intelligence},
-  year          = {2019},
-}
-
-@Article{sacerdote2001peer,
-  author        = {Sacerdote, Bruce},
-  title         = {Peer Effects with Random Assignment: {{Results}} for {{Dartmouth}} Roommates},
-  number        = {2},
-  pages         = {681--704},
-  volume        = {116},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {The Quarterly journal of economics},
-  year          = {2001},
-}
-
-@Article{sadinle2019least,
-  author        = {Sadinle, Mauricio and Lei, Jing and Wasserman, Larry},
-  title         = {Least Ambiguous Set-Valued Classifiers with Bounded Error Levels},
-  number        = {525},
-  pages         = {223--234},
-  volume        = {114},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  file          = {:/Users/FA31DU/Zotero/storage/YXQ8N76A/Sadinle et al. - 2019 - Least ambiguous set-valued classifiers with bounde.pdf:;:/Users/FA31DU/Zotero/storage/ZHB56F3V/01621459.2017.html:},
-  journal       = {Journal of the American Statistical Association},
-  publisher     = {{Taylor \& Francis}},
-  year          = {2019},
-}
-
-@InProceedings{satopaa2011finding,
-  author        = {Satopaa, Ville and Albrecht, Jeannie and Irwin, David and Raghavan, Barath},
-  booktitle     = {2011 31st International Conference on Distributed Computing Systems Workshops},
-  title         = {Finding a" Kneedle" in a Haystack: {{Detecting}} Knee Points in System Behavior},
-  pages         = {166--171},
-  publisher     = {{IEEE}},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2011},
-}
-
-@InProceedings{schut2021generating,
-  author        = {Schut, Lisa and Key, Oscar and Mc Grath, Rory and Costabello, Luca and Sacaleanu, Bogdan and Gal, Yarin and others},
-  booktitle     = {International {{Conference}} on {{Artificial Intelligence}} and {{Statistics}}},
-  title         = {Generating {{Interpretable Counterfactual Explanations By Implicit Minimisation}} of {{Epistemic}} and {{Aleatoric Uncertainties}}},
-  pages         = {1756--1764},
-  publisher     = {{PMLR}},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2021},
-}
-
-@Book{schutze2008introduction,
-  author        = {Sch{\"u}tze, Hinrich and Manning, Christopher D and Raghavan, Prabhakar},
-  title         = {Introduction to Information Retrieval},
-  publisher     = {{Cambridge University Press Cambridge}},
-  volume        = {39},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2008},
-}
-
-@Article{shafir1993reasonbased,
-  author        = {Shafir, Eldar and Simonson, Itamar and Tversky, Amos},
-  title         = {Reason-Based Choice},
-  number        = {1-2},
-  pages         = {11--36},
-  volume        = {49},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Cognition},
-  year          = {1993},
-}
-
-@Article{simonson1989choice,
-  author        = {Simonson, Itamar},
-  title         = {Choice Based on Reasons: {{The}} Case of Attraction and Compromise Effects},
-  number        = {2},
-  pages         = {158--174},
-  volume        = {16},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Journal of consumer research},
-  year          = {1989},
-}
-
-@Article{sims1986are,
-  author        = {Sims, Christopher A and others},
-  title         = {Are Forecasting Models Usable for Policy Analysis?},
-  issue         = {Win},
-  pages         = {2--16},
-  volume        = {10},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Quarterly Review},
-  year          = {1986},
-}
-
-@InProceedings{slack2020fooling,
-  author        = {Slack, Dylan and Hilgard, Sophie and Jia, Emily and Singh, Sameer and Lakkaraju, Himabindu},
-  booktitle     = {Proceedings of the {{AAAI}}/{{ACM Conference}} on {{AI}}, {{Ethics}}, and {{Society}}},
-  title         = {Fooling Lime and Shap: {{Adversarial}} Attacks on Post Hoc Explanation Methods},
-  pages         = {180--186},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2020},
-}
-
-@Article{slack2021counterfactual,
-  author        = {Slack, Dylan and Hilgard, Anna and Lakkaraju, Himabindu and Singh, Sameer},
-  title         = {Counterfactual Explanations Can Be Manipulated},
-  volume        = {34},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Advances in Neural Information Processing Systems},
-  year          = {2021},
-}
-
-@Article{slovic1974who,
-  author        = {Slovic, Paul and Tversky, Amos},
-  title         = {Who Accepts {{Savage}}'s Axiom?},
-  number        = {6},
-  pages         = {368--373},
-  volume        = {19},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Behavioral science},
-  year          = {1974},
-}
-
-@Unpublished{spooner2021counterfactual,
-  author        = {Spooner, Thomas and Dervovic, Danial and Long, Jason and Shepard, Jon and Chen, Jiahao and Magazzeni, Daniele},
-  title         = {Counterfactual {{Explanations}} for {{Arbitrary Regression Models}}},
-  archiveprefix = {arXiv},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  eprint        = {2106.15212},
-  eprinttype    = {arxiv},
-  shortjournal  = {arXiv preprint arXiv:2106.15212},
-  year          = {2021},
-}
-
-@Article{srivastava2014dropout,
-  author        = {Srivastava, Nitish and Hinton, Geoffrey and Krizhevsky, Alex and Sutskever, Ilya and Salakhutdinov, Ruslan},
-  title         = {Dropout: A Simple Way to Prevent Neural Networks from Overfitting},
-  number        = {1},
-  pages         = {1929--1958},
-  volume        = {15},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {The journal of machine learning research},
-  year          = {2014},
-}
-
-@Unpublished{stanton2022bayesian,
-  author        = {Stanton, Samuel and Maddox, Wesley and Wilson, Andrew Gordon},
-  title         = {Bayesian {{Optimization}} with {{Conformal Coverage Guarantees}}},
-  archiveprefix = {arXiv},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  eprint        = {2210.12496},
-  eprinttype    = {arxiv},
-  file          = {:/Users/FA31DU/Zotero/storage/XFGZAB9J/Stanton et al. - 2022 - Bayesian Optimization with Conformal Coverage Guar.pdf:;:/Users/FA31DU/Zotero/storage/RPWYDPVW/2210.html:},
-  year          = {2022},
-}
-
-@Article{sturm2014simple,
-  author        = {Sturm, Bob L},
-  title         = {A Simple Method to Determine If a Music Information Retrieval System Is a ``Horse''},
-  number        = {6},
-  pages         = {1636--1644},
-  volume        = {16},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {IEEE Transactions on Multimedia},
-  year          = {2014},
-}
-
-@Article{sunstein2003libertarian,
-  author        = {Sunstein, Cass R and Thaler, Richard H},
-  title         = {Libertarian Paternalism Is Not an Oxymoron},
-  pages         = {1159--1202},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {The University of Chicago Law Review},
-  year          = {2003},
-}
-
-@Book{sutton2018reinforcement,
-  author        = {Sutton, Richard S and Barto, Andrew G},
-  title         = {Reinforcement Learning: {{An}} Introduction},
-  publisher     = {{MIT press}},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2018},
-}
-
-@Unpublished{szegedy2013intriguing,
-  author        = {Szegedy, Christian and Zaremba, Wojciech and Sutskever, Ilya and Bruna, Joan and Erhan, Dumitru and Goodfellow, Ian and Fergus, Rob},
-  title         = {Intriguing Properties of Neural Networks},
-  archiveprefix = {arXiv},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  eprint        = {1312.6199},
-  eprinttype    = {arxiv},
-  year          = {2013},
-}
-
-@Article{thaler1981empirical,
-  author        = {Thaler, Richard},
-  title         = {Some Empirical Evidence on Dynamic Inconsistency},
-  number        = {3},
-  pages         = {201--207},
-  volume        = {8},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Economics letters},
-  year          = {1981},
-}
-
-@Article{thaler2004more,
-  author        = {Thaler, Richard H and Benartzi, Shlomo},
-  title         = {Save More Tomorrow{\texttrademark}: {{Using}} Behavioral Economics to Increase Employee Saving},
-  number        = {S1},
-  pages         = {S164--S187},
-  volume        = {112},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Journal of political Economy},
-  year          = {2004},
-}
-
-@Article{tversky1981framing,
-  author        = {Tversky, Amos and Kahneman, Daniel},
-  title         = {The Framing of Decisions and the Psychology of Choice},
-  number        = {4481},
-  pages         = {453--458},
-  volume        = {211},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Science (New York, N.Y.)},
-  shortjournal  = {science},
-  year          = {1981},
-}
-
-@Article{ungemach2011how,
-  author        = {Ungemach, Christoph and Stewart, Neil and Reimers, Stian},
-  title         = {How Incidental Values from the Environment Affect Decisions about Money, Risk, and Delay},
-  number        = {2},
-  pages         = {253--260},
-  volume        = {22},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Psychological Science},
-  year          = {2011},
-}
-
-@Unpublished{upadhyay2021robust,
-  author        = {Upadhyay, Sohini and Joshi, Shalmali and Lakkaraju, Himabindu},
-  title         = {Towards {{Robust}} and {{Reliable Algorithmic Recourse}}},
-  archiveprefix = {arXiv},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  eprint        = {2102.13620},
-  eprinttype    = {arxiv},
-  year          = {2021},
-}
-
-@InProceedings{ustun2019actionable,
-  author        = {Ustun, Berk and Spangher, Alexander and Liu, Yang},
-  booktitle     = {Proceedings of the {{Conference}} on {{Fairness}}, {{Accountability}}, and {{Transparency}}},
-  title         = {Actionable Recourse in Linear Classification},
-  pages         = {10--19},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2019},
-}
-
-@Article{vanboven2000egocentric,
-  author        = {Van Boven, Leaf and Dunning, David and Loewenstein, George},
-  title         = {Egocentric Empathy Gaps between Owners and Buyers: Misperceptions of the Endowment Effect.},
-  number        = {1},
-  pages         = {66},
-  volume        = {79},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Journal of personality and social psychology},
-  year          = {2000},
-}
-
-@Book{varshney2022trustworthy,
-  author        = {Varshney, Kush R.},
-  title         = {Trustworthy {{Machine Learning}}},
-  publisher     = {{Independently Published}},
-  address       = {{Chappaqua, NY, USA}},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2022},
-}
-
-@Unpublished{verma2020counterfactual,
-  author        = {Verma, Sahil and Dickerson, John and Hines, Keegan},
-  title         = {Counterfactual Explanations for Machine Learning: {{A}} Review},
-  archiveprefix = {arXiv},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  eprint        = {2010.10596},
-  eprinttype    = {arxiv},
-  year          = {2020},
-}
-
-@Article{verstyuk2020modeling,
-  author        = {Verstyuk, Sergiy},
-  title         = {Modeling Multivariate Time Series in Economics: {{From}} Auto-Regressions to Recurrent Neural Networks},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Available at SSRN 3589337},
-  year          = {2020},
-}
-
-@Article{wachter2017counterfactual,
-  author        = {Wachter, Sandra and Mittelstadt, Brent and Russell, Chris},
-  title         = {Counterfactual Explanations without Opening the Black Box: {{Automated}} Decisions and the {{GDPR}}},
-  pages         = {841},
-  volume        = {31},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Harv. JL \& Tech.},
-  year          = {2017},
-}
-
-@Article{wang2018optimal,
-  author        = {Wang, HaiYing and Zhu, Rong and Ma, Ping},
-  title         = {Optimal Subsampling for Large Sample Logistic Regression},
-  number        = {522},
-  pages         = {829--844},
-  volume        = {113},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Journal of the American Statistical Association},
-  year          = {2018},
-}
-
-@Book{wasserman2006all,
-  author        = {Wasserman, Larry},
-  title         = {All of Nonparametric Statistics},
-  publisher     = {{Springer Science \& Business Media}},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2006},
-}
-
-@Book{wasserman2013all,
-  author        = {Wasserman, Larry},
-  title         = {All of Statistics: A Concise Course in Statistical Inference},
-  publisher     = {{Springer Science \& Business Media}},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  year          = {2013},
-}
-
-@Article{widmer1996learning,
-  author        = {Widmer, Gerhard and Kubat, Miroslav},
-  title         = {Learning in the Presence of Concept Drift and Hidden Contexts},
-  number        = {1},
-  pages         = {69--101},
-  volume        = {23},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Machine learning},
-  year          = {1996},
-}
-
-@Unpublished{wilson2020case,
-  author        = {Wilson, Andrew Gordon},
-  title         = {The Case for {{Bayesian}} Deep Learning},
-  archiveprefix = {arXiv},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  eprint        = {2001.10995},
-  eprinttype    = {arxiv},
-  year          = {2020},
-}
-
-@Article{witten2009penalized,
-  author        = {Witten, Daniela M and Tibshirani, Robert and Hastie, Trevor},
-  title         = {A Penalized Matrix Decomposition, with Applications to Sparse Principal Components and Canonical Correlation Analysis},
-  number        = {3},
-  pages         = {515--534},
-  volume        = {10},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Biostatistics (Oxford, England)},
-  shortjournal  = {Biostatistics},
-  year          = {2009},
-}
-
-@Article{xu2020epidemiological,
-  author        = {Xu, Bo and Gutierrez, Bernardo and Mekaru, Sumiko and Sewalk, Kara and Goodwin, Lauren and Loskill, Alyssa and Cohn, Emily and Hswen, Yulin and Hill, Sarah C. and Cobo, Maria M and Zarebski, Alexander and Li, Sabrina and Wu, Chieh-Hsi and Hulland, Erin and Morgan, Julia and Wang, Lin and O'Brien, Katelynn and Scarpino, Samuel V. and Brownstein, John S. and Pybus, Oliver G. and Pigott, David M. and Kraemer, Moritz U. G.},
-  title         = {Epidemiological Data from the {{COVID-19}} Outbreak, Real-Time Case Information},
-  doi           = {doi.org/10.1038/s41597-020-0448-0},
-  number        = {106},
-  volume        = {7},
-  bdsk-url-1    = {https://doi.org/10.1038/s41597-020-0448-0},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Scientific Data},
-  year          = {2020},
-}
-
-@Article{yeh2009comparisons,
-  author        = {Yeh, I-Cheng and Lien, Che-hui},
-  title         = {The Comparisons of Data Mining Techniques for the Predictive Accuracy of Probability of Default of Credit Card Clients},
-  number        = {2},
-  pages         = {2473--2480},
-  volume        = {36},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Expert systems with applications},
-  year          = {2009},
-}
-
-@Article{zhang1998forecasting,
-  author        = {Zhang, Guoqiang and Patuwo, B Eddy and Hu, Michael Y},
-  title         = {Forecasting with Artificial Neural Networks:: {{The}} State of the Art},
-  number        = {1},
-  pages         = {35--62},
-  volume        = {14},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {International journal of forecasting},
-  year          = {1998},
-}
-
-@Article{zhang2003time,
-  author        = {Zhang, G Peter},
-  title         = {Time Series Forecasting Using a Hybrid {{ARIMA}} and Neural Network Model},
-  pages         = {159--175},
-  volume        = {50},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {Neurocomputing},
-  year          = {2003},
-}
-
-@Unpublished{zheng2018dags,
-  author        = {Zheng, Xun and Aragam, Bryon and Ravikumar, Pradeep and Xing, Eric P},
-  title         = {Dags with No Tears: {{Continuous}} Optimization for Structure Learning},
-  archiveprefix = {arXiv},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  eprint        = {1803.01422},
-  eprinttype    = {arxiv},
-  year          = {2018},
-}
-
-@Article{zhu2015optimal,
-  author        = {Zhu, Rong and Ma, Ping and Mahoney, Michael W and Yu, Bin},
-  title         = {Optimal Subsampling Approaches for Large Sample Linear Regression},
-  pages         = {arXiv--1509},
-  date-added    = {2022-12-13 12:58:01 +0100},
-  date-modified = {2022-12-13 12:58:01 +0100},
-  journal       = {arXiv},
-  year          = {2015},
-}
-
-@Article{barber2021predictive,
-  author    = {Barber, Rina Foygel and Candès, Emmanuel J. and Ramdas, Aaditya and Tibshirani, Ryan J.},
-  title     = {Predictive inference with the jackknife+},
-  doi       = {10.1214/20-AOS1965},
-  issn      = {0090-5364, 2168-8966},
-  number    = {1},
-  pages     = {486--507},
-  urldate   = {2022-12-13},
-  volume    = {49},
-  abstract  = {This paper introduces the jackknife+, which is a novel method for constructing predictive confidence intervals. Whereas the jackknife outputs an interval centered at the predicted response of a test point, with the width of the interval determined by the quantiles of leave-one-out residuals, the jackknife+ also uses the leave-one-out predictions at the test point to account for the variability in the fitted regression function. Assuming exchangeable training samples, we prove that this crucial modification permits rigorous coverage guarantees regardless of the distribution of the data points, for any algorithm that treats the training points symmetrically. Such guarantees are not possible for the original jackknife and we demonstrate examples where the coverage rate may actually vanish. Our theoretical and empirical analysis reveals that the jackknife and the jackknife+ intervals achieve nearly exact coverage and have similar lengths whenever the fitting algorithm obeys some form of stability. Further, we extend the jackknife+ to \$K\$-fold cross validation and similarly establish rigorous coverage properties. Our methods are related to cross-conformal prediction proposed by Vovk (Ann. Math. Artif. Intell. 74 (2015) 9–28) and we discuss connections.},
-  file      = {:Barber2021 - Predictive Inference with the Jackknife+.pdf:PDF},
-  journal   = {The Annals of Statistics},
-  keywords  = {62F40, 62G08, 62G09, conformal inference, cross-validation, distribution-free, jackknife, leave-one-out, stability},
-  month     = feb,
-  publisher = {Institute of Mathematical Statistics},
-  year      = {2021},
-}
-
-@TechReport{chouldechova2018frontiers,
-  author        = {Chouldechova, Alexandra and Roth, Aaron},
-  title         = {The {Frontiers} of {Fairness} in {Machine} {Learning}},
-  doi           = {10.48550/arXiv.1810.08810},
-  eprint        = {1810.08810},
-  note          = {arXiv:1810.08810 [cs, stat] type: article},
-  abstract      = {The last few years have seen an explosion of academic and popular interest in algorithmic fairness. Despite this interest and the volume and velocity of work that has been produced recently, the fundamental science of fairness in machine learning is still in a nascent state. In March 2018, we convened a group of experts as part of a CCC visioning workshop to assess the state of the field, and distill the most promising research directions going forward. This report summarizes the findings of that workshop. Along the way, it surveys recent theoretical work in the field and points towards promising directions for research.},
-  archiveprefix = {arxiv},
-  file          = {:chouldechova2018frontiers - The Frontiers of Fairness in Machine Learning.pdf:PDF},
-  keywords      = {Computer Science - Machine Learning, Computer Science - Data Structures and Algorithms, Computer Science - Computer Science and Game Theory, Statistics - Machine Learning},
-  month         = oct,
-  school        = {arXiv},
-  year          = {2018},
-}
-
-@Article{pawelczyk2022probabilistically,
-  author     = {Pawelczyk, Martin and Datta, Teresa and van-den-Heuvel, Johannes and Kasneci, Gjergji and Lakkaraju, Himabindu},
-  title      = {Probabilistically {Robust} {Recourse}: {Navigating} the {Trade}-offs between {Costs} and {Robustness} in {Algorithmic} {Recourse}},
-  file       = {:pawelczyk2022probabilistically - Probabilistically Robust Recourse_ Navigating the Trade Offs between Costs and Robustness in Algorithmic Recourse.pdf:PDF},
-  journal    = {arXiv preprint arXiv:2203.06768},
-  shorttitle = {Probabilistically {Robust} {Recourse}},
-  year       = {2022},
-}
-
-@InProceedings{stutz2022learning,
-  author   = {Stutz, David and Dvijotham, Krishnamurthy Dj and Cemgil, Ali Taylan and Doucet, Arnaud},
-  title    = {Learning {Optimal} {Conformal} {Classifiers}},
-  language = {en},
-  url      = {https://openreview.net/forum?id=t8O-4LKFVx},
-  urldate  = {2023-02-13},
-  abstract = {Modern deep learning based classifiers show very high accuracy on test data but this does not provide sufficient guarantees for safe deployment, especially in high-stake AI applications such as medical diagnosis. Usually, predictions are obtained without a reliable uncertainty estimate or a formal guarantee. Conformal prediction (CP) addresses these issues by using the classifier's predictions, e.g., its probability estimates, to predict confidence sets containing the true class with a user-specified probability. However, using CP as a separate processing step after training prevents the underlying model from adapting to the prediction of confidence sets. Thus, this paper explores strategies to differentiate through CP during training with the goal of training model with the conformal wrapper end-to-end. In our approach, conformal training (ConfTr), we specifically "simulate" conformalization on mini-batches during training. Compared to standard training, ConfTr reduces the average confidence set size (inefficiency) of state-of-the-art CP methods applied after training. Moreover, it allows to "shape" the confidence sets predicted at test time, which is difficult for standard CP. On experiments with several datasets, we show ConfTr can influence how inefficiency is distributed across classes, or guide the composition of confidence sets in terms of the included classes, while retaining the guarantees offered by CP.},
-  file     = {:stutz2022learning - Learning Optimal Conformal Classifiers.pdf:PDF},
-  month    = may,
-  year     = {2022},
-}
-
-@InProceedings{grathwohl2020your,
-  author   = {Grathwohl, Will and Wang, Kuan-Chieh and Jacobsen, Joern-Henrik and Duvenaud, David and Norouzi, Mohammad and Swersky, Kevin},
-  title    = {Your classifier is secretly an energy based model and you should treat it like one},
-  language = {en},
-  url      = {https://openreview.net/forum?id=Hkxzx0NtDB},
-  urldate  = {2023-02-13},
-  abstract = {We propose to reinterpret a standard discriminative classifier of p(y{\textbar}x) as an energy based model for the joint distribution p(x, y). In this setting, the standard class probabilities can be easily computed as well as unnormalized values of p(x) and p(x{\textbar}y). Within this framework, standard discriminative architectures may be used and the model can also be trained on unlabeled data. We demonstrate that energy based training of the joint distribution improves calibration, robustness, and out-of-distribution detection while also enabling our models to generate samples rivaling the quality of recent GAN approaches. We improve upon recently proposed techniques for scaling up the training of energy based models and present an approach which adds little overhead compared to standard classification training. Our approach is the first to achieve performance rivaling the state-of-the-art in both generative and discriminative learning within one hybrid model.},
-  file     = {:grathwohl2020your - Your Classifier Is Secretly an Energy Based Model and You Should Treat It like One.pdf:PDF},
-  month    = mar,
-  year     = {2020},
-}
-
-@Book{murphy2023probabilistic,
-  author     = {Murphy, Kevin P.},
-  date       = {2023},
-  title      = {Probabilistic machine learning: {Advanced} topics},
-  publisher  = {MIT Press},
-  shorttitle = {Probabilistic machine learning},
-}
-
-@TechReport{artelt2021evaluating,
-  author      = {Artelt, André and Vaquet, Valerie and Velioglu, Riza and Hinder, Fabian and Brinkrolf, Johannes and Schilling, Malte and Hammer, Barbara},
-  date        = {2021-07},
-  institution = {arXiv},
-  title       = {Evaluating {Robustness} of {Counterfactual} {Explanations}},
-  note        = {arXiv:2103.02354 [cs] type: article},
-  url         = {http://arxiv.org/abs/2103.02354},
-  urldate     = {2023-03-24},
-  abstract    = {Transparency is a fundamental requirement for decision making systems when these should be deployed in the real world. It is usually achieved by providing explanations of the system's behavior. A prominent and intuitive type of explanations are counterfactual explanations. Counterfactual explanations explain a behavior to the user by proposing actions -- as changes to the input -- that would cause a different (specified) behavior of the system. However, such explanation methods can be unstable with respect to small changes to the input -- i.e. even a small change in the input can lead to huge or arbitrary changes in the output and of the explanation. This could be problematic for counterfactual explanations, as two similar individuals might get very different explanations. Even worse, if the recommended actions differ considerably in their complexity, one would consider such unstable (counterfactual) explanations as individually unfair. In this work, we formally and empirically study the robustness of counterfactual explanations in general, as well as under different models and different kinds of perturbations. Furthermore, we propose that plausible counterfactual explanations can be used instead of closest counterfactual explanations to improve the robustness and consequently the individual fairness of counterfactual explanations.},
-  annotation  = {Comment: Rewrite paper to make things more clear; Remove one theorem \& corollary due to buggy proof},
-  file        = {:artelt2021evaluating - Evaluating Robustness of Counterfactual Explanations.pdf:PDF},
-  keywords    = {Computer Science - Machine Learning, Computer Science - Artificial Intelligence},
-}
-
-@Article{guidotti2022counterfactual,
-  author       = {Guidotti, Riccardo},
-  date         = {2022-04},
-  journaltitle = {Data Mining and Knowledge Discovery},
-  title        = {Counterfactual explanations and how to find them: literature review and benchmarking},
-  doi          = {10.1007/s10618-022-00831-6},
-  issn         = {1573-756X},
-  language     = {en},
-  url          = {https://doi.org/10.1007/s10618-022-00831-6},
-  urldate      = {2023-03-24},
-  abstract     = {Interpretable machine learning aims at unveiling the reasons behind predictions returned by uninterpretable classifiers. One of the most valuable types of explanation consists of counterfactuals. A counterfactual explanation reveals what should have been different in an instance to observe a diverse outcome. For instance, a bank customer asks for a loan that is rejected. The counterfactual explanation consists of what should have been different for the customer in order to have the loan accepted. Recently, there has been an explosion of proposals for counterfactual explainers. The aim of this work is to survey the most recent explainers returning counterfactual explanations. We categorize explainers based on the approach adopted to return the counterfactuals, and we label them according to characteristics of the method and properties of the counterfactuals returned. In addition, we visually compare the explanations, and we report quantitative benchmarking assessing minimality, actionability, stability, diversity, discriminative power, and running time. The results make evident that the current state of the art does not provide a counterfactual explainer able to guarantee all these properties simultaneously.},
-  file         = {Full Text PDF:https\://link.springer.com/content/pdf/10.1007%2Fs10618-022-00831-6.pdf:application/pdf},
-  keywords     = {Explainable AI, Counterfactual explanations, Contrastive explanations, Interpretable machine learning},
-  shorttitle   = {Counterfactual explanations and how to find them},
-}
-
-@TechReport{mahajan2020preserving,
-  author      = {Mahajan, Divyat and Tan, Chenhao and Sharma, Amit},
-  date        = {2020-06},
-  institution = {arXiv},
-  title       = {Preserving {Causal} {Constraints} in {Counterfactual} {Explanations} for {Machine} {Learning} {Classifiers}},
-  doi         = {10.48550/arXiv.1912.03277},
-  note        = {arXiv:1912.03277 [cs, stat] type: article},
-  url         = {http://arxiv.org/abs/1912.03277},
-  urldate     = {2023-03-24},
-  abstract    = {To construct interpretable explanations that are consistent with the original ML model, counterfactual examples---showing how the model's output changes with small perturbations to the input---have been proposed. This paper extends the work in counterfactual explanations by addressing the challenge of feasibility of such examples. For explanations of ML models in critical domains such as healthcare and finance, counterfactual examples are useful for an end-user only to the extent that perturbation of feature inputs is feasible in the real world. We formulate the problem of feasibility as preserving causal relationships among input features and present a method that uses (partial) structural causal models to generate actionable counterfactuals. When feasibility constraints cannot be easily expressed, we consider an alternative mechanism where people can label generated CF examples on feasibility: whether it is feasible to intervene and realize the candidate CF example from the original input. To learn from this labelled feasibility data, we propose a modified variational auto encoder loss for generating CF examples that optimizes for feasibility as people interact with its output. Our experiments on Bayesian networks and the widely used ''Adult-Income'' dataset show that our proposed methods can generate counterfactual explanations that better satisfy feasibility constraints than existing methods.. Code repository can be accessed here: {\textbackslash}textit\{https://github.com/divyat09/cf-feasibility\}},
-  annotation  = {Comment: 2019 NeurIPS Workshop on Do the right thing: Machine learning and Causal Inference for improved decision making},
-  file        = {:mahajan2020preserving - Preserving Causal Constraints in Counterfactual Explanations for Machine Learning Classifiers.pdf:PDF},
-  keywords    = {Computer Science - Machine Learning, Computer Science - Artificial Intelligence, Statistics - Machine Learning},
-}
-
-@TechReport{antoran2023sampling,
-  author      = {Antorán, Javier and Padhy, Shreyas and Barbano, Riccardo and Nalisnick, Eric and Janz, David and Hernández-Lobato, José Miguel},
-  date        = {2023-03},
-  institution = {arXiv},
-  title       = {Sampling-based inference for large linear models, with application to linearised {Laplace}},
-  note        = {arXiv:2210.04994 [cs, stat] type: article},
-  url         = {http://arxiv.org/abs/2210.04994},
-  urldate     = {2023-03-25},
-  abstract    = {Large-scale linear models are ubiquitous throughout machine learning, with contemporary application as surrogate models for neural network uncertainty quantification; that is, the linearised Laplace method. Alas, the computational cost associated with Bayesian linear models constrains this method's application to small networks, small output spaces and small datasets. We address this limitation by introducing a scalable sample-based Bayesian inference method for conjugate Gaussian multi-output linear models, together with a matching method for hyperparameter (regularisation) selection. Furthermore, we use a classic feature normalisation method (the g-prior) to resolve a previously highlighted pathology of the linearised Laplace method. Together, these contributions allow us to perform linearised neural network inference with ResNet-18 on CIFAR100 (11M parameters, 100 outputs x 50k datapoints), with ResNet-50 on Imagenet (50M parameters, 1000 outputs x 1.2M datapoints) and with a U-Net on a high-resolution tomographic reconstruction task (2M parameters, 251k output{\textasciitilde}dimensions).},
-  annotation  = {Comment: Published at ICLR 2023. This latest Arxiv version is extended with a demonstration of the proposed methods on the Imagenet dataset},
-  file        = {arXiv Fulltext PDF:https\://arxiv.org/pdf/2210.04994.pdf:application/pdf},
-  keywords    = {Statistics - Machine Learning, Computer Science - Artificial Intelligence, Computer Science - Machine Learning},
-}
-
-@Misc{altmeyer2022conformal,
-  author   = {Altmeyer, Patrick},
-  date     = {2022-10},
-  title    = {{Conformal} {Prediction} in {Julia}},
-  language = {en},
-  url      = {https://www.paltmeyer.com/blog/posts/conformal-prediction/},
-  urldate  = {2023-03-27},
-  abstract = {A (very) gentle introduction to Conformal Prediction in Julia using my new package ConformalPrediction.jl.},
-}
-
-@InProceedings{welling2011bayesian,
-  author     = {Welling, M. and Teh, Y.},
-  date       = {2011-06},
-  title      = {Bayesian {Learning} via {Stochastic} {Gradient} {Langevin} {Dynamics}},
-  url        = {https://www.semanticscholar.org/paper/Bayesian-Learning-via-Stochastic-Gradient-Langevin-Welling-Teh/aeed631d6a84100b5e9a021ec1914095c66de415},
-  urldate    = {2023-05-15},
-  abstract   = {In this paper we propose a new framework for learning from large scale datasets based on iterative learning from small mini-batches. By adding the right amount of noise to a standard stochastic gradient optimization algorithm we show that the iterates will converge to samples from the true posterior distribution as we anneal the stepsize. This seamless transition between optimization and Bayesian posterior sampling provides an inbuilt protection against overfitting. We also propose a practical method for Monte Carlo estimates of posterior statistics which monitors a "sampling threshold" and collects samples after it has been surpassed. We apply the method to three models: a mixture of Gaussians, logistic regression and ICA with natural gradients.},
-  annotation = {[TLDR] This paper proposes a new framework for learning from large scale datasets based on iterative learning from small mini-batches by adding the right amount of noise to a standard stochastic gradient optimization algorithm and shows that the iterates will converge to samples from the true posterior distribution as the authors anneal the stepsize.},
-  file       = {:welling_bayesian_2011 - Bayesian Learning Via Stochastic Gradient Langevin Dynamics.html:URL;:welling2011bayesian - Bayesian Learning Via Stochastic Gradient Langevin Dynamics.pdf:PDF},
-}
-
-@Article{gill2010circular,
-  author       = {Gill, Jeff and Hangartner, Dominik},
-  date         = {2010},
-  journaltitle = {Political Analysis},
-  title        = {Circular {Data} in {Political} {Science} and {How} to {Handle} {It}},
-  doi          = {10.1093/pan/mpq009},
-  issn         = {1047-1987, 1476-4989},
-  language     = {en},
-  number       = {3},
-  pages        = {316--336},
-  url          = {https://www.cambridge.org/core/journals/political-analysis/article/circular-data-in-political-science-and-how-to-handle-it/6DF2D9DA60C455E6A48FFB0FF011F747},
-  urldate      = {2023-05-15},
-  volume       = {18},
-  abstract     = {There has been no attention to circular (purely cyclical) data in political science research. We show that such data exist and are mishandled by models that do not take into account the inherently recycling nature of some phenomenon. Clock and calendar effects are the obvious cases, but directional data are observed as well. We describe a standard maximum likelihood regression modeling framework based on the von Mises distribution, then develop a general Bayesian regression procedure for the first time, providing an easy-to-use Metropolis-Hastings sampler for this approach. Applications include a chronographic analysis of U.S. domestic terrorism and directional party preferences in a two-dimensional ideological space for German Bundestag elections. The results demonstrate the importance of circular models to handle periodic and directional data in political science.},
-  file         = {Full Text PDF:https\://www.cambridge.org/core/services/aop-cambridge-core/content/view/6DF2D9DA60C455E6A48FFB0FF011F747/S1047198700012493a.pdf/div-class-title-circular-data-in-political-science-and-how-to-handle-it-div.pdf:application/pdf},
-  publisher    = {Cambridge University Press},
-}
-
-@InProceedings{liu2023goggle,
-  author     = {Liu, Tennison and Qian, Zhaozhi and Berrevoets, Jeroen and Schaar, Mihaela van der},
-  date       = {2023-02},
-  title      = {{GOGGLE}: {Generative} {Modelling} for {Tabular} {Data} by {Learning} {Relational} {Structure}},
-  language   = {en},
-  url        = {https://openreview.net/forum?id=fPVRcJqspu},
-  urldate    = {2023-05-15},
-  abstract   = {Deep generative models learn highly complex and non-linear representations to generate realistic synthetic data. While they have achieved notable success in computer vision and natural language processing, similar advances have been less demonstrable in the tabular domain. This is partially because generative modelling of tabular data entails a particular set of challenges, including heterogeneous relationships, limited number of samples, and difficulties in incorporating prior knowledge. Additionally, unlike their counterparts in image and sequence domain, deep generative models for tabular data almost exclusively employ fully-connected layers, which encode weak inductive biases about relationships between inputs. Real-world data generating processes can often be represented using relational structures, which encode sparse, heterogeneous relationships between variables. In this work, we learn and exploit relational structure underlying tabular data to better model variable dependence, and as a natural means to introduce regularization on relationships and include prior knowledge. Specifically, we introduce GOGGLE, an end-to-end message passing scheme that jointly learns the relational structure and corresponding functional relationships as the basis of generating synthetic samples. Using real-world datasets, we provide empirical evidence that the proposed method is effective in generating realistic synthetic data and exploiting domain knowledge for downstream tasks.},
-  file       = {Full Text PDF:https\://openreview.net/pdf?id=fPVRcJqspu:application/pdf},
-  shorttitle = {{GOGGLE}},
-}
-
-@TechReport{du2020implicit,
-  author      = {Du, Yilun and Mordatch, Igor},
-  date        = {2020-06},
-  institution = {arXiv},
-  title       = {Implicit {Generation} and {Generalization} in {Energy}-{Based} {Models}},
-  doi         = {10.48550/arXiv.1903.08689},
-  note        = {arXiv:1903.08689 [cs, stat] type: article},
-  url         = {http://arxiv.org/abs/1903.08689},
-  urldate     = {2023-05-16},
-  abstract    = {Energy based models (EBMs) are appealing due to their generality and simplicity in likelihood modeling, but have been traditionally difficult to train. We present techniques to scale MCMC based EBM training on continuous neural networks, and we show its success on the high-dimensional data domains of ImageNet32x32, ImageNet128x128, CIFAR-10, and robotic hand trajectories, achieving better samples than other likelihood models and nearing the performance of contemporary GAN approaches, while covering all modes of the data. We highlight some unique capabilities of implicit generation such as compositionality and corrupt image reconstruction and inpainting. Finally, we show that EBMs are useful models across a wide variety of tasks, achieving state-of-the-art out-of-distribution classification, adversarially robust classification, state-of-the-art continual online class learning, and coherent long term predicted trajectory rollouts.},
-  file        = {arXiv Fulltext PDF:https\://arxiv.org/pdf/1903.08689.pdf:application/pdf},
-  keywords    = {Computer Science - Machine Learning, Computer Science - Computer Vision and Pattern Recognition, Statistics - Machine Learning},
-}
-
-@Comment{jabref-meta: databaseType:biblatex;}
diff --git a/paper/aaai/paper.pdf b/paper/aaai/paper.pdf
index 651f2d1402b9fcdf8e0491ae3a93c9c6617842e8..e5ed3b84baf5907a1df38a75275cc3049fde990b 100644
GIT binary patch
delta 91097
zcmV(!K;^&M-gfElc90~Oa6kzvf3;fckL0$I|L(tH^5Kwf+_a+i!@=RO*{pMGc#(s5
z4sj3%h+55=7Dg>~^vLY^uTNF|ifXBw6B`HQlZr)(EEelc{_f$c-+Ys#cR}n$aT?w|
zJl+LG;AKH^m*$Zd1nJ$w;qEV+Z?<8wDeLk0I5pc{nE0Dd-N7jM;mf%xf7^1byLJF(
zJoeil-*nT{ar@VYZ|`<d?8QZLw+j-lhy%>|p*1wh-#oqU-qW9BU)HTTU;;us@{(PD
zDjSQM+R^lnWi?J^Gw{41J@ASo5z_PAi}Q?D3%wx2BJbL+eLZ!P5;jcxQ#}ks>HL4;
z6=|6A@4LeHiXy$+r8(hpf1O~@lvSgSFYdT6jqUi1R^A1<7Zf_)lF2&*skCw!Y|J)D
zHfu%^wv$~x5+kHpw*2)sbvsV=SaaV$_&;O24*-N&Psj1G>$fy~CrtK<Al?h;co716
z{vq?V^~#N4Gj{mSB-JfO?VGZC-tD_D=s)oh59q?u*_vX;H&0zpe{ylEt0fT;i0Dn#
zP5r>+rxDgoL)zT|TdNOzk{)^=wz<F25#`~~n_<x3jt1D)h<Ff+_bmVsKMnQ1(Gl2@
ziyarn-*0zOk?PQT80+>47~xUZKcjUl2LR{3-V!g$zHVND=}l8JB@B}w$#<CgzI)n|
zl8nZ|h?$kSvY)<<e<}MG;IU(VylB7dH)lSbrxCbAIhKHGo#jBJ_w}BSe;Uof1NPx)
z`;DGcwR4cO6fN0Rp3|<%rs*o8pEsUopo4qHa(D(rhc90t9gL%a{3kQALg$U7-=2n?
zUzDeIjZ`-n<wSDdovu1hur&<U<6xRc?eA9OlGP!2=wr)be_Sm1`()aY_MRpil887^
zzBBM-$THCs2Q+Urm$4_-CI$v$PJkA|DD!oWWslRT<SC-8*y!P*0pS*?V-zVvYbsI#
zD|pm%FhfOWZqUNEc^-2td8&WZq-;RZLEUm4KP1Ug&$(&YOCZb^>^zv`q2o`io%;Ku
zSmk=q<|s19e-Ke#i$V~*ra*VUoW6yE7p&mDcnWP80AvIE?l4uDk})iO{4I54SvOrT
zCV^T863uR^ndG2cYG_DjSWKfB7A=a%hV<RJlg%&|pSI&eR|V0Yg{2e3V_%*O^maBJ
zk=iEiCoytaA{H%H9qWHC{v^!2gedjZJvuxNdC%PTe~b6b*?YRCioB5gtPXwem@4(+
zEVcs{?)P@C*!O&Lr@wqI$cJO5DDjeL9{9d<Ocjs|PUgj~U8x8RTc&bEToEKGZFF_U
zWiN8crdjlcWKm2xVHOI?&2q2;tcY0=XsGE=WNTFVAFPCO7wo}!b-KFxuyWcF5o=E8
znuLzye}JgS$#qYM+Q18Cn-?8)FejYBs0h2o-+Yq>OZKF(7y894Bk$ikxflgroF;Y@
zdtoJZ7Ziz?X7NfQtGW@JA6ipNfSMzMAkPfkC~w5t*6KKAZr#-5Y&Z!0vDNOfCl4_-
zWxtJmGP$>`dl9=yG1}}6xh0GcNC;uTI#Y&Ue~2DHPkp&%w@79kh_Yhyd5=b|$Xfp+
zjUQ^4dO|wr_{6&er1#aaHmgIW&oI(S?YhSuF>FUW!%z|$k^Q#PVN6{o7Cx|IM#F@+
z4&w+$XX{vkFuCs7L$?i-7(R3uFm(4ozylEAvQA-+*k#alx`w^~EhS=b(_Ad0p<^=x
zf7%E0qwj}s{M^>aEMEnVX=e3^d#t~fQLp$m3wHM9lj{@^TO=G?RC1tEl2cR&`%df~
z&|A0YF&AUFF9(s_M9FA$s$3<N@RgXTo50!n2#MGWI!*E|wYVP+u8QOmp;D*tnStjP
z(%P8Alex!0ctq~CU-fG7h8froBgTORe-!KY+FQGvmikvB_fQi%)Wrsc6&T+JEZ8Zv
zmzs*9l_M+Rk&D>Ibqo^k@a{v3&yN!;6N4`X-?Al@uFoQ-+<wbw`MH+{@y{8pkQVl5
z_g5hoiYUJ7FF8;oMq9r4@Nv@-8?|mx?j_`_ZqzC)h+UIqbU|V@PzYNc<z(|Yf4bqW
zJ!{A+^C}9pLJaA_7Yn`O8Awqir=t$UVmR8#3~y>WnL#3hY?e@B`T;nIDFJ6rJ2?xa
zq^q5~DcpR<K~rPwIyQt+RKQ#jYH!BT^uSS$;6By%X{v{#=IZ@4jJg@JrOD<Mc*Nlh
zO)XoE5?NN_&(_G1fv1_5=fNHEf5FRx0?P&4UEupZd4dsD0UOj=5m;p48T}u}QYQ#3
zx11TZAGtDWU!pk)-Rgq@qEtN8l;)Y5d!R@cBTWObHy=@<a!f*z+}fj?ggglrX*D<a
z1o$iQI|B$n7+Pi8j93`VWZ}^gN*ioeu%tpcNdXY85&PlhXqq#i(&l-{e^>mQ^cu)H
z#zw;cI2lPs806qu=A$ro=UV&{`%-FZ6MGNMj}*I@@_+`C#86a1bHvc*Xd!m4VE5%7
z5Su6GqSxmh$Du19i-Uza@|dYTuo5tc&C&?6=O;;87%SVQFJdm|+D{y`@d?IB$gZ8N
z$6ofsZFO-BN}4_ZW*OkGf2>bI0_*bC@V$GrRSFk|1xaV(i(R4sgf&{CChEyIpK4O^
zhGsvE_ZX{%p?vfGG>|=PfDI{Zr&$6I&5zeIeDVEDLWZ*`*}}-w;cV+|QVguCniYyW
zh99UEL#}qzco_(Z0mO_yYZ7$5{tKDfUClC-#+;=Ox&SvjMMIhhe|YSg28s<yBNS0Y
zX8vn5{`N<ShX|_Jn{yyRp=n<a&#t9y{9h2^6oa8aK+V9$0s}hX4H&P!xwzIk^x8gT
z^gOE&;XMDf1xEZFCeh|k@H_-DPr?M757bOYq={rsQ8tz2x$Xf{J~18}9i+!)h(>14
zfQk06E>joy|MB0yf0hn-tR0#6h&?oSKIndP-5Vt;uV<?#f<B!ab0W^6K$gjYbH_4v
zWPAzqSR!yUBia-#Yo=mXU+}2vPDZ_kzwjDi>_z^Z?Yv?{7*SeUWKoU;HT2WFh@y}L
zgZ>kPqUAK~vbcDB85MGn6m0(N@Khls#qpenA;!pJ3aL-5e<4|PEf2R;=d`hW4vM}w
z2@2<3DJehb=HewO0Z}~1P5*@vakdyCJPhrK?{$uJ!Jy2e#Bj-=-#hk9P!g>eWD8R8
zndCryFXD83d1!lkAS;R@?@}>vtrdiHrZdUqxTtkX?wr~1mw=aJT^+A#Vo+t*!X(Z9
zTp9V~;6>r3e<@#8cyXap|Dzv<4#v~KB)eOT``U4cnO9tjCqHa=X&P;^U$LvtoPx#G
zmbu1Lx0<68HYe)hEcN^-vtb<6j;mi6`^0I47RU~@t<_5kg|ua4CHmUMnK%?7_!-Wm
zzl1Zfm-s8rurqV$K;-4wwF;~zqV2{r_t=*?IUL8cfB2`4N&G9_SdqZi?Q%f>+IXZZ
z<FPunR5G01Vw8tN(CGD&ZSI1Cg50!NYspoSi-be!SPYO%w}6ndh_Me~S^0Y+DLK_Y
zAuA8Wvht_tq`peV^>J#ek+KLBQiJ?bKl5+w>$!w`NK>2Lr&hRd`I26;`;^5AR}^Wg
zw>yj9f0m|Q2hXy1?Q~v+T8C}(y*Q5+0^mC&cO^wXBe%&fl-uOrBDZgo{aeQ>u@{H=
z|HrLekupnWa!t=lgqfaM{XJCoKG&#a5$G-<B#uxpT2`Gz<g<u$G+zrFiWy?S@=WV^
zp}oyv)Uv3QYc=N{W3<j+AJBD6+JKI-c{|oBe_thY4sGOZt9wzf;mZ&7@r9Uz9KH|*
zT-}sG64*o%;!+Y}?<pAbLdm?j`N=^CszZs5jc}ELx-`m2#`ZIDPrWf1AgV@qb$kpu
z0&<?|OzH5K`n0%|TxD0X0R4C=bqzqsRSSJfe3nNM%oj!svVwf-C=6~&IUGWLK9>Ed
zf0RaglTYi)Qc9BwPvTRa68gWjuL_#B>}Pa{^kp54CaF&HvBf3uKtb)i>vZP7TolVm
zGPFECxrEl+<r1IX{Cy&U<jD0NnCixGJ0jAnYyR+;T=R#hUGe>Tuj!PW)48uTzY4fC
zJL$z&h^&&oAHF!nS?UTX&jdxWdDlzLe~33+)l3&7Df#1CC}nY#49n%@et7p$jDZXx
zuh0VO*jpT#T5g@Yvy|<nQJ&o-^c|(C;yHZMn)-PgprGbQo9{k;`T#sH`8|b;b>C?T
zhV0AJ@gBWMVhQ;NPWpODCJ9YhYziW!n&XzI&;Rr8e`!D*%NpNN`n}hRFtC_Ae@-^v
zi4GCQCdc<^T2+dr2ph9Kpo8z4xd=!dY7BT9Dbc&D2DWa`Rl&J#&vn7yiKi^`&7!*4
z0;6Ior?L=J`Uxf?M+(V6iO(>JNa2t*yyG%2WgYH93WO=KZznh@Y-tyW8j{FXIFm@#
z@}|C~f3Giy1!uE>VNOC_6kOd>e}^%i6NE7$mRPyv0rdcKVkDZ3*_*1I<S7Xcotm*e
zOVN(H^eW*MeFu5eQ8^<VSIscjTC-2mEyv)?1BU}pqI<r*>mXn#CB^fL*$n#m!hqhR
z&kSdGou{%<J4Hk<i0lYD@DmDLtEAQ!5_B}mGW!RGXS6(-rTV8;I5yzoe`QuYM~HPW
z=1ij^zT2C65#%T#*w%iZrMe%bvnmjX7?g%BvV6v)ymdBJ%>pQt5O)9iwv!=yu5VZf
zLTQVXtZs&G;RKx4K3f}m4KL%X(o(9=11^Sp84cXy7yXx#bK<w1PUI|=D}P|X4<MHh
zid^=8B}u8T3`>2xlyAjFfBNdd*m2FNlUpEyrC?QFo?9^P9X@)RTJ1^s4z!vEXDA`D
zhrMJZfJ_M2>!x1Yc+Z3py?N{`es7HZwZoT~(~kAys~xUyBhriVI0gH{hdfn#n<wj6
z6Wn7f$AgXbg#SEJSSPQ2gfn@%a*Ga$)~i0Y$09{B;uZRwUg;;>fAxqjSt;6C4<Qs2
z4ug;90b!hODoR33D_1g#an@iRd%vp47JAvpz@;Kfjiu9JBTni(sHulT{#+erFJTRS
zqyB?5B*4$Es{t`SrCz^Nw2;Ys|2K?Nt7YTQ=aQW5s*<dA<81R?Jpn@$7V2#YJ=c}z
z%YEn3V@Xx)Z@b}Gf1@c|NPOLbC^=^TS4tkS(M6fj-ms8yx<`k+m!R)~FZ<<<0Jr4e
zdi+q*NwgY^tND&DwwgyQUD(^2t<RHulGt*TScqZ7NTHvt9ks7PJAd(+rENL^0k`Wr
zlNHY;-SeGfen}9Z7LHd`xk~XRf4a&V^tl}4t$iodH7&b0e{P*Lh!PEr6G?f<$s+9F
z;0X>(!YH_Ho4gRpdPxG0(6j{a2cf$(?OvWp*q<B}u;)+-l6pP^Ytu*w_6Kv3@bVNH
zL^Gg>%ay@^Qba5zhFy?(ajJ6oV;CmeUE=$fQ%H-&!xVn`YCT7Bm0D=bmT7*&?bZ>k
z5#I4+P5#qYe`-uyPBdLtitxTHaA&<pI?0gC4+Uss1dZlCef1VBU%iER^%l-GdRr`V
z90jfkT{0N^)|xZ)w76%|&K{R<J|vO9NPrj`rg}sMBY0te)6cE;#>W|7?8(k@EB4+#
z$k-3&r-j-qaq}tf624xbg6n61(zA4Ea$$N#^7Gbtf0gx#B|YQ!+atcq_Zr;(aCyG6
zdI`^c@9~~)%PYGW^4={4_Q?W23Am2gxp#FV&4a9gjIQ64z7cFN?^g$rI1V9r>l7l1
znHM+pY@_Fgbytt*XzcP4oo_QJ4pb`Z5atJTdad}?hlj8J30v+ZISOTNWOH<KWnpa!
zWo~3|mq39U1Q$3UFd%PYY6?6&3NK7$ZfA68AT}^CH<J-5D1Xg7S##vJneYA;+P7A%
z#1H__aqYu+Ja%l)BvTn}lHE94#b!flde~%}M`X>f-|qr1p*=pTw)RB?KcGPX-+e$|
z+<o?kuj2eF5AsAOS9kYUNfP9-x=M8xgeJYZJ6!!^Hyn%M`c_A3XUno|dv4!ft8iCT
z!|{Hs>nDWioqxSn@$RQ{T~rMZI<*H|b8~Nx#kCH1|Ek)tV^Gl?_;<xH;7|T}_w7}9
zb*n;HL(boZxyHWQS9LYuH{x*DHnp@KkGA1faXxqLxvPr7GT{3#4&U2ys9G7307M1!
zg<BouSq7hp0<C0=ch?!re0^(Tv!msiINE(^+G`!}9)D|lc(6CzIUK8=Tl|awVj1v#
z80xMc_~l=C61Ew}&hjukk>v!@?odIW+LgDwD#U?VZ(f!k<-7Z~<Hmz+Y*!3b^B^4y
zEHI>O$7Zk{ca+0e)P2A`cgL~6;pU^|XVDB*S>1Y1o(~fS5&mJsAHGV|f>cZr#G!_t
z(eT%=UVpu6dDM!aj0vJFa-+&ZHq_gWk4V<h%ab4bqPKO`*v;neM?Oz%ceb}hR~`kY
z34Ae2WCt04>~DxvA_xQ2S63FXIenE-M}+Ngj*Uk=wzm5q;InOd9?P`LSRHN8{k$@0
zxYgLs4F}Tp9cl+CsSvL;(x?<p!hRrh8kOvZwtuY!KC}$l+X2wYutU`&>c^@-%AjuS
z2U+uQypDHIzOUYQ?TOi7Y&tlIVqXiN5P$Z8;4QgQ3Vs!9L|mE$nSm44I?#E<6X|Q1
zHw<@Q6y=A9?pkGVaJ<nC)^FXfl?n8Ok7I@3HAZ`gl;M*AX$m}~o}tLiuU;bu%de4&
zuzvxx-EwPB6C36aM3tAOfuup=7?3!GIcyZ&z8bosd%{;lB(C5A@Yxgd;SfF~Zj)d+
zw}?Lm*g@v01D-*LTH#V}d<)?HF%}VnOM=6<V?o&0Kq%Fz=qeO-2)}R3v8T1e3#|*D
zWnI83QS6ijiwcB-B;0#9U)vK(0s~C&#(xS!n{a`&NChE?AYs-2;t@Jpi~#b$mW=q1
z>)Qwj6ptj7!RcbK4udqFru*D8T@*w*a|7tmWKePiYA7`s4gx{~!ZbmmVjlRNhu(0X
zAj@wT!w$A-QG(%qSw=$x@OFD_hg;i}fYgHk$KgB<B8Af+i8f;R(4Gnw-`VaFM1QSk
zuW=NlW|DH=73v_J#UNtN5;kDYJJMs=I<>4nGCzX=oaMi$j3f;rm~^c(S`sXvU4he|
zm^PV^6_9mts6Z+4+rjpwyl9p-0Bp}gb*esE8B*P&%)GbVG!V$mh%AIZAUAs-t+n?o
zU+Cbmao^T8Yg1NT0P<}S;Vel-*?;eUKrKEC?iX^jOS*+`YeQxWefz%!Kly@)(jW{K
z(3?_*2ZbJTjDr|8@M08DxK1;W5wPSW1pKg(0^e7Q$#oK_GzXa%gmJoFLk8c>Gn|g5
z592Eku=!>U%Z2J7$zwRnd6af@#f!O+5mU9C><y1nOR9uvRel8`SQ!!E-+zZH^bltp
zWJ+D#g3TxEf2!NQ_Z$)Mbd*gzjhydc1`}j6slWBGbRHxL>V_c7r*&!V6%aA3Xf^KB
zU%dCC7Eblqs#jEmb4+7?GYtWkBmNenP^>LP+j7|{h=hD2AXjTz3CJgz!7SF41UgKX
zYx;N3ni3F-(X%xHX=^==Uw<x3B|yk(J}w<!BpD~qP;PnD1y1y9h~;;nF8UPe^zTKT
zdXBo8VSure&khQM1eO36YY;_x-o!L5bipa*TCGjjKU%VLGkuX0BajqJB)Nkz7Y_y`
zxAJd0Nf-0@wgD8BO=_PNYtPGL0iQX8<%wTt&D6Rd8}h<#d~{~=Ab$$YuSfoG+GF+$
z_Beg3lI0hIBfwuW;mBFlvNafKLg!29e0M6&J;TKA*0~&$xuEo5KtHg%1w;CCQCj&~
z>n68eyWSS;5UE_dpJ9{yYHVEK%M6Y+`9C_=I7qW>d91iD3sw{w(6m@tKG+4dtRK9t
zqDFroUs@Vx+_(}934c5J%voS^ug@IkVuR!|Tg5(GJ~@5hY!Z(_gH3DdZ24K8&TTKf
zCHNuWAymyU&Cs>u!_kKkaUaGSZ1<03l%tIY9@Fa|M`xqM8w%f?d{{(#&p<X(p)q^E
z_(rjf0u3S>)cQW_47*$WDOt73Z$SdwnOE4xs7X8hVvpt`=zj$Ao8gP-c1GdO>&U#V
zz$>j``G?^K+<+)!qKl$*_m>fD+qz~bQkM=@${Gi|(UQg<wq$Dtf;)DSX?lLbad)lP
zk2#DbdvOV`IEr^K>)}Kv|HN)tB5qmi+_FR#q7BD^sBa4T;COL7tFjtunYAeC40!-L
zjGo0XW9Q&WkAFa8{QD<{5dG!qnNNG;(O}A`Ku5`^br?E0$z>gu1SX8w4N9B|`<%DI
zdIUP&$lZ<M0hXp4@X=$!#X*?sl?hjSg-8e*Z87M<GZlVoJ=GhJ96>iQUQRWuAvo)z
z@#vQ*2BAHvmp5LSpU&G9nW9Y`sBG&3RwvtFM8G*IMSs^7E+BdT34exooa0oUAm1Ia
zJ-GY}wpVIm`y1|jJXXZC*p%^)6*3u)?Lk~|q(FmAx#wt+_;m0rdQbFj6>ppZW+;zK
zq*r2oPc#p#j%>0PFqmi}ktl=;LvoscBG0kyJsE=$&}(#4OX4^LP}tZ+PF+T*;RG%6
z<u&thbbmEWo$@nb!g2^<B=@VH#cQ&whMwUVL@Sz7eo2P}-6DNc&^OgXMR>-y#hL>j
z|9{gklXF-XTP2{;XYGL40Vn7Gjj@xaYGv%?Ga2!IM6Ol9XM@NzwX}J1<$|1B=@O~H
zBwJbbEL;=jv-hxw*r8VvB*|8-_UE=aP;4v|lz)j)g@DNpLZ~AJfCI{HeIGFVEyxJe
z5ZraJokSJjPqB<JaK8)7U5suR&|1$FB|x){YQ%9&l1tTSo~cIcJ}!dHJZ4hRo>epy
z&whk~N$d;D5S*5pL`(Yvpz4O7mhFngI5^W2Lk_mD9vafL@J442&*I?M$rvz2lNrz7
zmVX?S^hli;tn4J8J&7L3tHb>kL*b#5C<32s;u*2rGH;H9JJ2qZF=WcY^JJ~W_EZS!
zBiUH-BywQmZHFs?rr}=#2oK+O#1Q~pW-Op{-wsD^z5Ip;Y-0P^#R;wi1>1p1tn!~9
z@4zVdiA3B=4pjq$j2!H#A3!z@$5T}@;C}!IjXLS}RJaTR$la%YkU%di_RjA(fLI(j
z2}O9vWE7(U(IDxnvK|jsQdN5-s!@L8@>igKxlvcAidTy{70RLk!GLJz%vih#{;fBk
zITSp+fPoo_@vcW<1C)j&nk9&YpK$&s9)V2bVLKSOVY|$+T{g3w=Oi2hk}6A(n14{o
zPx(f}hU0(s!`RS}boc&TG!Mt=)ATDsGc?{*BR62$e3}+j&MaRpXD52zWzOGx3j|ix
zMU9)u<K6pX(VdDL?&qCBgG^Y;hQJUoZ$tSg_N`N=ZrX3#{#bca6M)Ugh{cQz+{5SG
zeAgnUJypfwW5p29XdTMv_vLXME`JY`><GPHF!7n*`k`T|k|@T)xj0act8fIOlW<2H
zy5Uj6Z{hAu@!><!6+es&$FF|Q&37bi@Xw>I%a2bVE}n(TWZBSw2{i6b<r`lEJAI>#
zI6TTZM$jk$9|dCrC&Dd#2Y%wI@_JZsiUd~RL8qWiF_gwCU9)L`!KKV-e1EvEw*EkR
z>wJI1$si^a5DS03R%le#z~bEF5D{?ymzzjGrk8vUBn$<|O;oi4(>>bcA5ex+3L*+o
zTaaQP;e_v?UC^tJLXaNT9%R&7?IC1uF(ZO4cAf?_zGoIfk&K=Fc$t}GI>Hm4fe~qp
z4LfW8dX$`?SfBXho~~-go__(r{RfI4;0vOSPtyuR8a%#|P97w`#JZlP9*HzFwfiHO
z_@u2u$1@0JLSV2R7)JE88TXugeLry&?-8~yJCKqCdnQ(%{Hr*e_yn3?kJX_ahHC22
za|OjkF9r-|&<Yaf$XL0cCBBwK0I9?l#{^X8Y;CsdkdFl5elNCpHh&omv$g113h1za
zjhV0ToG8(oL_$dgn7CBSfr?v>f_ml2@q#3B@d72*89_qbICF?h5rnSx<_i!!ovX6o
z3K^^mpo}%PYFiwnSYQwk*xy}?%Vgp`Ftlrz;xJ&~d!UxOK;uLtVa!Xppjak_rZdhl
zYn{5a0EqbwVP)GiVt;#J2dxajv*<!_C8OC(06-56Dos}{a-oukDge9*PBJS}vh`sF
zGK#*-?atO5Ksi?Do<XE13-6wf#SaCkY@lAzlJdr!2n|-Lj=))AGlA<g220UgB?il&
zgmYfOr|pj;Q0#o_CY(dNutBhSK;wWX1&#U4jl>AN;a>?AGk;Q`L8!P$+NTypX>8=^
zu`vbS@deOV+79a`@QsQbu(2pl2^jLSJW4$b3g=H2Ud2&DJR5_T0%x#roodn-*pIY=
zPauV{Bax4znNz5rRtzAiVe)%5e!8G|rUW^lO<8zqNoHSRC5*IK%tK>r+Wlm;A2_yo
z0O{bRmt|p<iGL|HT9WmFFGy!!e*MnrOMtlAB5WTli3WPpa&SNZle~+m+~h<;!1Lv*
zak+AG#N%*PgcNdZ)GCGEznBVkR#|Y+$B~lo*q6MhiluRcBp!Gp0VarM7YjG~Ze~>c
z*{kOWSp*f5Rag<TT~l}>@c4gOFhwT(H7F_#w3?zIe}4yN0?PTp7co_VG3L{`(M2fK
zmm5_k2vg;Yn6831$eKYKZ+yqIH;5A|^K0^zKY30e3BqWKviWwuO4|MA%}Zi<F>1!_
z3T+9|Rk$v!(Q)kRJ7Qr!Y=H<m5Y=(~GopA~SBVQL*_l|PreMR7M(!oZ2OBW4hdolK
zYp_vt*MA_v9?0Gr7)Av(o^wj0B{}_?gWBwWdr$#?mrHlBCHaAE99;)Sr5jYQ!upKr
z=VASI*d&N!v-&<MX87!04h54`WE#QAkn#o?s<t#)m<7O0c(8hH5ely_L)gscqAwq%
z6D@XM`Hj*#h|~O+Z8BbMaz*r5exp|<T;GQ#<bMjBpAiIF1=(Ch@$)E-e-Vn~mHb-g
z^HmHYERWW*)+Lgn*i6a|-=d|_gPk7bcEdf7@`I^}7=d`=43@N?&nEbB#3J5%s=#(!
z5@j1Uj8Y#PMr>l^aL0xOteVYa$Z`r(c3#VlnGa}0T?$)kOsV9*RI2OWg3N6$e}ha>
z-G6$ax^*m-qzD|OmRzIxf@WMNBV4*z2_NVMh7l?#UAQDs9++rbE3h{B;;CMMm`=j(
z$ZKTStoyf!yXb@c8BGwZ$fR`j!*KwaM5aX19k_$vp7;etNQ6bjt-O={fi3qOq-P|j
z9cz`xu4^BzF<fge5~M4a)h3n#={chVihrW$KLp(5P!x5O9CvXdY)Ei?4x&YFu6X0g
zA*3H49&A7O6SQ=W1`P71AHe5Y8ssh;&NYcfUAE6TGv)Fk(3o-#Gz;Y%p40tiEr0js
zHRB{+B-EmitMj8UW9me}v~+v{<j(Puu9vX|cY=#V204Q4X>Sh)vG2EbRu1+|6o36}
zl12yNy4DYq2rf&5oSJVmiP)MZlVV<KG6JxL=_Qw6j|@if50ofCvBM)RH^9`U087BH
zlX!(Tc+Fk28jgGRTJ(Gn8Vu&?Adp-%dm@|)!d}U-aM#GeDufpdagM?2@&L5m)fO1i
zkEOR7q>zmj{E!$NUQ-ddjH`b+4u36|BX>MZ0!%>GFJFt;Lhw5Y4OCROygC44OTSkm
zyb4m>%$ITa@(NzOd9-zXJ7sL_;fA|m=Bnf7Tq1&Rb1@3OVO+x=Jj!&liod-6>o@OT
z`_joV5zq2+2&U?uDq9~o54VgOK+m?8LUMb59*%OKBHSj?p!e(!=T^SAHh<z}ciLbA
z6oV@K;<jqR+akc1?P=eM1NMO;&H(({b{zO?1i;Y+XncnwEhZj(h*^i1wDPgFR)S;f
z#_9lWx%x200X75`{AkF_tUfXctBkUOtz-%58?8*y)^b3erOm0r2%Kn)2jX*+0sshw
zy|u&~u_1d3h4;||C+VcoMSpHMyFowfhw8*p;tMC^Ed^Hd-Gu+~xo9ESfs-Wlxn_9~
z%^u?mk5EiER!W?QyY%0DDfTollU4tZ@E4Z${><Hne|ne$r&#ClZ%riGZ?h;%6EFor
zq6;A=`~jEvhlC3|T_Dg~e@jZ(`1TDJbZm+;%u@9krpC{C1knBsLw_muKmiXIC^I{k
z>!6`7yP@&Z;4A#<^oD35=*-i#7Lw$c+2lNOy^ZN&QDNVYC(FI7>weO`Zz=1UOQ9>m
z;Lt}nR*YKvY+(slPM52;)||5*`^^Q31BI<GSavVj{6b67a)=6FXJL%lr9l{-?Y*9d
ztfP1c5p}FmvGOq7j(-O4We20IK|+$w&T<aIk^;&&I*dTE904*%t`I((E&NN$q2MqQ
zE}2wtU}Ikw<p+N%u>A>!q>($#D2?a34urdGW6D+}_OnDvw?TY_^hYNTaiAPV${~1!
zOw|IuIzOz@*yJ+6k9l@Sg$F*$lbtvm$O&_dpgt=$Ox^a3xPM*VIN_OyF-tuz0fFDO
z7<X(Wh?z-7C36WBXp9Y}P&&Q<hydF>RItMCLKJwBjp&YyO7ssJslmjTJrP#C_6?|q
z9f2F?T{xQy-zJ-jyZjjgGJ}Dh_#zXwh;Ec{4K|!f$#18s0SVJP?WNev$LG1ThiZc)
zgpU|5znDYBOMl6nvC@u~$>1;;_dx>*J7_B|=ufDI{*xV!?V+vPhpCnUpst87lp;O^
zRhznm%t>J?<BLMYq#0f)<BJl|dXrLn&$WBw;87=91^KFU59gi?fu6sy(EZS>_(2#B
z@%k8$a>dD4jnb!na%6Lx;C;{a>3v(2?Y=6S+b_5%8Gnno--CGq#;#BT)^oot&fN8K
z7(fQ}{6duq@87;;#>H`{g|LTEj}51VeEBZ1kkZ6C)X*xsw(oB--`JkXlwq)3RY+YG
zM~ZwZfiqWzPQ8OXYjRPcb$66+T*$fs1yCJOn1ISXv9=~toU0An4n(=j42Dvzf_?UM
zuDZD=aevB#e@1pW4nO;EZ9DTkPuPs6+P?ULW1A=9RYOCF6Pr@}=X@OB)y|k=9G|%3
z6<@gHwJ~#|I9e9=0<SJg0i$GFiCa<~e&T}9ShO~Wr>LVY_HNm$=u&0^kT<_Ox|9bx
zUI!|L%HY$->OopypP>~5)>df)Ugz3{b6apX8Go|vRZeF=q`BNj3BCSWn!CCR9N|ZF
z>TWw^3zy1U(0a#ND3q<&Xtx*qf*}$s9TYos^_K`BE9xvk#c;Y};RH2;SizGrNBBfo
z9{P1h<dR{yW#EQt&pAT^`s6v^ZwGnq#5R>Uu&-hLciauoSH^eTlT>hN<c|B_jxI(3
z(|>#g>zV%rh0D{CLdVAI1`7{g@XJfum%%tOUx3de5$bPSSg|4>FWeQwqMZCShqJsl
z=~ZB;J|5^TlPhE|dp1hJ4k)p<?ZB_(3%KH427t5!UClSJ2sBs0!i%JEEBU>r;>Q=&
zn92sGN&@^BAPi!XpDP9S@?>v?SMq{?1b@0`luQ0|sX?|-LHMS;E1+86G@h~^bO7m;
zlE&=2K<GX_Jo}c4QWg+CBryG0S`bXg%1uX=muY;-Aaneg06iCjRKO>W=o7V(OCbl!
z18%=>`T5BI6aky7vr9tSNa$j=QU`ZQ?4xZ>!r)R2GgXc)p(S-$4s5xxs(V7fvVSNP
z->b&2=!nJ~Yl6=-8;ug-E+oZWx2+_#`CI+q0^ggP=9KTA{%Zx7DbrmGx;GZbyUT@0
zE?B7Zwc3r0OR-}YOKfaWjMapjs4|VQ{M^*1;XLSfOZ|ekP6O{S87`=|+y*K1AkF#z
zHn=+$>uZr=25L(G)(g~|=yI-?x+Ik>yGX1kY>;$yo^RvJ*y|vj*Yc-t-rwP%&tBhs
z_P?oU+J2MgC?^9qH8PVCDJXyKJll@kHkR-Hir%NFF<pvC>S|-Km^gOezz&ji&t`#{
z0Y+7&?oy(XD!NR&=j->}s9Uk@PU0Et!=lj;c}P*@;kom$)Kvg~>MBY6G`fnjz&Am1
zwL3oh<(VHuS*)pjR-`7QgMezOJOTRUo1?n=x_R~k{3#iA!^3W7<9>g2`|QitQFfL2
zFk*aldv_IuS8<~KI5AhZ`>Vfrugm+PEv`4A2|e|kpD&xC?u+*BS_NLd>xaDRxZ$p8
zu@HIv(AH&r&(NG789)9SL;<uF@Kg*b>%N)wjJ)LfZ@1sVls78yGngGs1mEk5YaMz2
zxK@!@)Hnc6D9pU3E$@HJI<K&ndgU>{FSr3;s*1ZF`@UdMe<*4$-L=h;-@q=?+VB$w
zJoMuWi}|EHpPdT{Q4o3eMP0OcU+lR$bchHT;LF#snju=5*jGsm!_sg+US}G{!KEEw
zSbkx#GX{1gO>F-g$B>C1>Bx3?&tna}V<?^Y+V;!qy=!)vAC7-r{_E9-FtE|u_(6~^
zH|D?Jynp5TM&O4)L^6ag12Ax7LO;ngH|_I2?+QS+%2L{}x5dk$#%kule=7TotvN&A
z4b`>s`f~F&e*{z!?E9kK6{o&!>S-Y7x*|V{Q#-A9Z@+g;9TuNWh-5;=F(1nQAnQ<(
zA7*BWh<w{1%9(#Wfp*fs%L05V?}W3fdj|GJC#8J18(QA<$Llx(EK%?88g4!oc?Znb
zaqW;_>tHsz^0oz#vV&Fn{AZ-ff>2?Ird0-fc09F<8B*h+;MQZaFRCxDqsZ&HCEs(u
zw#(ZRc?*GUv&C5qU0)Yn$8R<*x0SsBcKOCNty8`$`^SIljRCG8Nr8n^TkOkSUrvmT
z@X#CTUD5VA$Od`imm#nF@~=UlcX?knwa?(&Lm?v)Bg&}6(9S8;MTK1wuerl#JPNp2
z8BcLjcW7`r4;@!??$`pSpunIW`SDa04Bxjo&ikR}CYCB#S__VBLGL*K$jJPmFx2~^
ztsY5gnh1Z8Smj+u>qQdB9=oP(i(Owma#b+bajoZZLa%Zoe@p8I8v8p6-!Hh#yAX%)
zcG)qAgs0Et*SIe363GXk@BM7AY8ht|g0oS$DDq`3K8f6Jt~VO!_@Th(n!>SV=n9u~
zN@G7$>8})>>BmH8<m)tklIRS5R=yt-o{6v0ne>0WAR$czYIf{~T#8F3^?`V>GB?nE
zvX;4^UI4q$sj0D`GKV_i4n@8@aF4QP2yY}7fLl}wAM9laq&RN+`$E%x;WPBsP0%3R
zK;Lgs;pr^qz3;FLn~$7@K+94!S7FvL@`s*lwDe3!3;~N(jAKe0@|R;4tiz3Fd1rKJ
zbvS>5c<p9l_Av33&)r_;CzK~0_h@Q6$cdXtPH4+u8qJkGb3nPr`8lRCVnAoqdq>-a
zHC~|!tdW4sh48#;kngcbN@ms>3c~4xV0ag#_}0ne`L?V`!s-Z+ddLyIQ6l3+6BYpm
z;sCzbNe9rT&7yCzAP#(&h{NZ$H#NiZs<MA?wS|*3b|C3GrfZo`%JZM53QeVSSt(Ei
zp#s%&1&RY8*AeuQW=Dfde`EtEZq7_K9R*(1G(U4mRNW)j_T?S!@LkdJHvz<A9ZSqn
zSZd(2Eow}*ZjiIlBv5`5Cn8BoP-6}W0a9dUg*-ukMZO8g{)Dd(NV7&=fTdl7>au?(
z3W2K75R?GdAIc+Q8bt98!x&jm03sA26K8&!WJ`=$BQ^}&(goo-lQ00otU5Mi)C5fN
zT@QL}D7!<xMKy_Fv9^Qkl3tt*j&uf^hIAtqK*4$^;78@PNUFR60N+0H^ZgEmH5Cha
z${>aeL6D(}%{b~pvgcHg?&RU=@lbzM)y8S+=T*5CY-pXb?&6|QH8ANeuNh?Rf3CUg
z8-y?H8+^a$+;j^}3kD;~sw@$DqN1p5DDgA(>ZZ3%(g)e^W(AwMC-{==?4)om?+RlH
zd4})?R#wS&reLv_=h|+>u8ecCnq+fdqr+B>bQxQ^g!&Vi7&<5Md_7nNk~n{7w=DF-
z$UI3Q>(L6Z3xz?C15q578q#P`I#oHic1YgDLCOSvux25k4pb*;D(Hs-%M6A+;944=
zYhNJ+V}Z64pHc^D)o_VFjwQwdaQWR($zaXuL)*fMLb0*RW<b?r4Cyy|4z0^BO8q1a
zM|bJFH}7v<h*KawMoVUHx&D7A4}QyR0wt1N@D!AS(_fJzfv{aw<T5Ke`%M=3aTKq$
z3fP4xg00B_W-mBOZF7Gev1x=&WIIyHNfSzGA3pySq6pR44fwTf_QQ^}8Vr5cB6BzO
zbDo72Z5tIPejKi>wmGRza;VDdTnrF|){W(}`W`6-%lqO~)Qh)v6%c>lBvUF8giSrM
zlFJFG^4-syZS#Tkmz85s1mCTw?k?*wq%JT$9u6g$lTakP$XIg{3eJECHn3{I(wuC`
zjWKG%LJ1h)Etl^v7)jjKZLuI=azF35X#|LwgRm7TBItDqizd^9UDcYzCbk@k>cr5Y
zbEyF`Q%&R@^HJ<!s7rrHJNAAW_V>jREQT9y*%p>ip~AKj6qw(La=9&bV(v2QS|yT!
zP912}3<F((mUVF)0fD!Np}RS2r#i7AJV`zUu>XL3aJNv!g6R`e|6NJe4>pT8pm7}o
zQLAf$$D#*zV1goK!4vS${2c|BS(kKBkIjS`c)on)3m?Y7r7(Ydq=^xYA0S8R$d5wB
zUkqWw0nG0;P0h+f90V88cC-~x`+gMGRP72dnD!24-`J0+*f)s;s9pkZ0@1YOn(IJh
ztOgIiLepwwUTC2u1nCmp7($TteQ|`oy%hogLC?gF>7Y3<AK2Gu28u=~oI8H-hHD@@
zs^(rA8S4oCy1;)K)Ftf{LA0;rm4||#qbPH_5{#&tzWyMUhKHN)m3t@4dbQzz?tXIl
z7JL1C-0Nu@0@{EmmR(-1CQP*#`pU6;F@Vi1Y!^@fV<ZcF(Gj{P!|;3#Dv114F9Vos
zv%(Li@4YP~TwsD_C?GOpDDi)|2Q<ZgmY9@-wkk+qy?%d~g?8pzJB9+60Xok5{Uo!V
zchV%Y<#VF;U=h>jVqXXGmGNU0bEiK@r*ILQ_G1*mvu=NsZpoZmz#H|GNUccLvB(H8
zrFoIjdXbAS<08|mML!$IU98i9!7(c34-Ra_z{evZekZ1)%b1FxIb=jdvvBb_tzfW!
zq=S6{yhMM(-@2{_T~~0Nki^Nd1pvBHZ3$v|d#y5WKrfy7588l#&X=UZ%%8l<53ax&
zxRJ?Z%dBRAKK~SWQdtHD(#nD%#Ya4xO1#LiH$c+SZ^7&eVQb8iEYH9O0kg;?Ug4lf
zFhpamCJ|t1?Ch8%TW&?iLyNouuMMLgAUZ&!!N-4K%^ky8Y-M6Ooqt~$AS*Ru_??3l
zV2k4D0xK-0Iq`e6JVP-++ri4yxTRAq15?A8u47M9KhD;q0a%!C3Np+L-GOsc3=r6S
zQ%K{$XSWo7Mt_o(CGF6j+j5!N<gi4e<9WwY_=dYYi1{2TU#S)C)kU#??qcK+W|RDu
zr7eF12A&I<6(<{vJ|(GBZi8fxwf?MvJN*|hjqkE@V&iA25+%$1Fs2vk#M?J~ZmVO8
zFx)T{Z3cWE3yBJHwXC@(1>_J=4><)WuuRN^1qx1`dhW`C%W33`M{NUxSwg~psr(TN
zri=u0pn}q%;G%?&lgUuY_?Sm$srPpx%&vb&lh$GHNW^TC0U4dse8EMq<eQ@v67!K*
zAdT-nNX&IMiuJK#Jl^Qsf$Ll%cW5qeo1tGBPc)I4Neu4>nIfWzfoiW}VD7+(r-qgh
z+r&T6f!Q6OC@ltj$47m@p<=In!;Wc*lI|bYw?VU+cDum<|D%JB*i18)tZ%Q=fZ~71
zU}ueHKa`!0AvOr&pwt!}#^bos%NVPjXS44{UUgcnC?YVdMIt8z98iQMe`FYmDtP`P
zh~X|07|Xm9xT#>|(|K2xE!8o0WOdBPpBF-P>=vzcLJB6}$lCvJ9l0!boNzRm+I+Gr
z<b-7qMPU7OTq)}P4VNC|?AIQ_a*cmoo)Cy?Ck|{xK}mEGYl_?;q^w2NBz_pGRp`4G
zIrq5P<{byYV`k-w#Ul)WxPSH4J6zEXcgVS+8@BuAn3He}NaFG9`R-8G#YGXoC%<tb
z5d{;+914t+d3YbI%s1HK-ZJj|^c;Hdp>5(Ft|RYp+m`YotiVaRc3EH?(z1WPfiVvp
zojjnr4r4O<u$kiO2+)BJUNG$ILE2CaVB5Q<1))WeA^__^Wr!u8t8Z%e$$Z<FyP*QZ
zD-6ig0~b}S<Urdf3%ad${CtoWlo20X#<0?$ptBVXFQ_i{wOXFP!nhn5#ZS&pz@Wi~
zKMKdk678p%`YnFf(t(}$C7yq5-q~XDkU>s`L3KxZ6&IaE76k;8WX2g-vuCF(2?d6J
zmYF9?sPKsrD*V4Aq2eb=sQ9B23OY`~;;mqpQ$j4ROH@^PRsM5K_*zVOqeAdbqG-8i
zADlDCwa>8~IA#QH46JX~iP?{&B{>6Q@);H1_stG0kRAhcC>?>v_vL>mAK&Kny+oSi
z)vq7x{8;Wfd%OYUX3jJ6-hcD<Yca+s*e6k;rm7@`=Ei{uaDg&dANYwzFR>7R6bnB&
za0NS;jZFRr<qE+V-@w!tG#R>R5(LJSu=cBFw4&S)cxCaqAaL0Q;NwIoY-4Ih<){+J
z5<~cGI9IjWF*gvWNbrBzY+lb^-9Gze%>FbfxPYO#ijve<sln{ezx*w@+Cw7<W3b}V
zs|V_O1i2VdT&ucz|Lh0O5nV8i$pSxwPepO+r#9^4@_Z6M3pGqKHG+y)P8L-2T)U@A
zi{G#_U_NH)XNsV~SStLaT$%L}F421IzaR!!K{N|ojD!%M5yF4w6AL(7W$PR&QK^%;
zl8+7bLVSy#981=LKe^$5WXD;#mWrv9qdklxf@Sjj`Ex48-nR}>7Xk~z#su-q?A2CK
zV>Tu%OoI)lV?RlS9@#N;>@UjAQR`pAP4-D*V&h@K<`^yr1LJ+?!VdHd;$K7OE}0Se
z$z;;JaBe<$+_rzi8>fOc;WD+=rC9=#&67=xvIolwe8#yV!G@weatkY<W#8gt4{{Sg
z*y<p+EB{%zJ*Mz?FvD^wDq6%|_}~kS?8j5N6FUj2r>1(Wn`1da_QfuL<eWA(iho3Z
z#9GP-<TNBG++HWpVpD@byR8i~FyYi_0SA)v87fAdLxX={jBq5;3o<jzo<K~|r-Www
z`GjWr?{gP{l;Zd-f{Uo_Eovq1g0RV(<0deZZHOCHej2XwbIF9Zz7{!?u_ftvnHYx+
zHfs`^s(fps!b`)#q`%uWfEjAo&bg&(5947H4>CE7qEKW5E4j7ZB9IEHa-67ZlSwKj
zXHG1$l%RjHYVOOPi<EubozTS~1~8c%h-cGS3zx}^8KpGR1>E430+nX}0@vxI;c^>W
z&<aoH8#(2~D(6IFfnrA(6XH7Me8bvrxJoFe{>%3zPZY`Qc;swS?VZ|ucOho9lQeRh
zkG?xJ&1ALnXaFWjdP!b_>dkcgnFOW={c!G8#Pfft04#6C+1QKQFl7a7@DxO=Xn8E?
zKCx27>%o%@mFQ!$MvHaUsVh!7p0ZaqAHo>p{dg!Vr}u7Py6TDcrF`I9XFLIuC}*8W
zcVcc;&Dk!-yB}a$b<c51!?8|;&x4D-%^||%hje|(q;nF0uj0=ZVN9MFVT?ZIzsH~Q
z-~WHDDkGWB;mbQ$6a<`=^qhyx(sMPF-u(~P$$12-DOs6tYa$8H?+>i)A3X&>zIFMu
z3iMVoO=J@RExDGhBY(<axLKqKCf>HpZLXos1=(Ab0sj8_ev?Q>x`u_1?np^ZMkk&G
z>RrMq0XH`>=XhQ1j!_GP6NVSXRF(IfxMP3hz{yZnZN3xHsrjzgyP-W%w39(P(B=iN
z1^nG`%|)vKCn_kbvp8`W3K-xNqYbNnI$;i8`9W&@uotSzeIa@--_H;6Gp{_l??P3S
zDV9ruP8x$8?emgS=2CkxC&iOBz8prCKJR{(4sB6M4sRMu?q_@+wsz%c*&y~=u3vv5
z3}g?3SOsO?aj5!IZaZai^Qq&?7+%Ue3<PnhKMd0RSQgb@$~JImKZpTS(J;mFRJLf0
zV~S3=6ouoFib|IGyr5RJABCdpx6XJQpXkoIxz2G@vbCXen(CQo1ovfhu+%~-ndB_F
zL4(}PQqVvoLDLi!C`MF2X3b>=6bgU1%u0>9!aXA(KXKN6-t*PJP|g*Bif0L?8bxsI
z*j%K$gbo{_kj{=50cwvIjZI=R$Wtc^!;?mzp{y$j%6TI8eAT3jY%T|h(UB{7@~^&n
zN15F=S6$1A20n*w5LXK-d%DGh9ruG|*#Wd~^Ri}p3#$|YhbQ3X)O6AxDBpiEfwnk-
zG~iBwvR}t+Im9gA9)Q~TF-nG`%O1PJR^>3D-BS)Ojw0s+t5isL_FOH;xwE?ft7N&e
z4BT}#u=Bt-Kzr7YY-VEU>tBD^%ZIvhD`7hD#bw~NlrSQ3kVPU6{ye*=;7BDHU%`W5
zd1aY)hdJKvBVZHCtqDq&Wx#)QIfH376fYx`Ja{Z^C8u_og1^3mHRaiImhFrYqII%W
zbV2Hvb$V5rnolM3#ZS!%Nk3yUUvyd4q=b`|iDc6%<ZK-f5K2}BOP2)if3KV-Qp^b^
zRTFEOM9kO3UXDXRI~3Auj$v$i3WnjcK{iX5+^8^iq6R1w%;(>Y8(4pyfzk!!l$+_W
zjc|B&+D}(#Bp=1+8i$GGa!oE>?uJ(GePrqRJ!}LnlV1=*4q=x4nj1Q(F5-aBhe^(3
zh0}22K$0V{#6Qyjh2^CQgpfe$?3<)@V&xt4M<<IBPvf#e709VHUG+Lk3dZ*BBexzw
zsvr4~jNq;tQV6FTQWt+$Jzkwse8tON0fQ=8a!QLO2LOBhOR9ga0RjC`kM7|O!$nU(
zX{INj2DVmNIBx`Sl2JNk9_3v(98Wg;XuKXab(t=Y;l(YwbirU2gh&XJNofIyp9|50
z<-vcjx;776S9EfN?1npxK_lK(f>G{Xj4G~SKwBWIu5abX$|iqJtc_W*#xI(bHrx_|
zWsa8X2QD(gF-2^`+YL8y!ddFk{Ru39IDuU|l94#SR;RqCzL-&lgz@tGF++o|J0NXM
z8%!4x8-6+|5zX8=Qt|cmZxJ~6hPNK?bdo8iB1uRgt4D<#aw}OQLF1`8VfF*(z9~*G
z`BQygRABB5AaQ>g%9aHbz9Q?;@m(bL7ffI8^1Au?Pzqr|gSK1%jW63_Hw$-@Ou%lO
z|A5p9++FWE0-hqqs`A1QJIKCiuuorp&(Bg)yolO2`F-8+fdRJ3^<5)0pBh%^so{?l
z(mI-FI2@X1=dvKR={h^Pls8H~xuLh?5t5lBg_V)M`Qm>DK!{<Jc;wDxvOj&UzPWHE
zaVY!cMJyI5sPPaPCQ+P)*0kii0hoU2fm=qs38Z%{S*t3R{HRRrujpXqPyjv%iLS)A
z#;!$cw!gJrUolnkLp#{imiJ9dw?-Tt^&~X7x_!K0Wf$m!QfMoQyso?xr!hgR3x>Zx
z*h(P<K`A5G(A(e=dAsnG>b~GR^LzJ|a=wf^UPT#yPeYEp{}&4Ex5%@MK#}T~aa|n~
z12s1?m!XOgDSz!;Ta(*3c7FG-&|B0Si-Q|U(5b1)*yC|#YMji*uG%EKn_5a@w>U$I
zZIYUv-d~?{0Z34S+}$oanTI?P06_pcI5_7!7wF~tXJ37n7K<V&GL<dfUoSEZMZL(C
zO@z)D@3)ITFJHBX>$cmM&DBa}dbw%JzOVlxgsQrpn}2S*b^vNXmA`x3RK8Me>&;NN
z2d?+k;JU#mSTM`_u&u9Dy8N}ilFRMt>aXvASgZ<~c_l?sz>;X@BhIO11|QrWaTG1{
z<*+LU-@0jz+lrgZ#`SHF19axbrd(G|&+Y!Ze7PwP+_ZMzc2(K82VRG8OR&6za^2iR
zr$Q~uVd(1hl@fo;<4|q6ZD`$dS8;(BnsE8M`T&c%zsl0(b8eYPw<(!G*vbUbg<h6j
zHCuxt15zJnRH;~&JwLD8rfHFecl~qx=Bw{i9_(Y9CR(e-O35Ub+U=w3mo2iS$hF0O
zc_N{gOiW?8(_e&AuAd3UGf67!V%9Ge+%FYDKb_dz!1{lw&u@_lvqYGDHe(%`PA9M}
z;dK8L`HdzqP#1nZQbz{L5+kQBsRZKXcKJ2;)Zxk{kODT{^}UY#Hj@-q`40Dy$t?a#
z-{D1USCUkxzC#}+a~Axf&rRX{5fnc8#Q}xyqvTa0o6+~2uvwBBHT6*@GLDpqnu!13
zk@c=bl23obe2C0r5-UdH-nd^A$~I$@tjKXBRTLAAwO==$79gXNK)e*hpOXN0yNZwH
z$(mK3q^W-LnrBPO6JST*VOt&Ap~CZREJ>6If8d;H$RRO`12u)vQ!gPRiz^aaJo)sT
z|AHAiu09;g!%#OB|AzKDwoR}L**NOE$dCo_!nl9>^01989`?z?H)pG#jbjsQ$8l;$
z*ODKgq@3CT22Knem_X`ptD)-l^}$Qss_RI1L9r``DxpsUg=L+HeZQ-E)C76zr8<;`
z>VWDZ&sbeR%i8s6%I-?q<xSObofIT?9Q7T3&Uy<<TlYDz33uCo`a~@vmzQ-YDi7#w
z_40qN9(G(}b%lkltPiM!4>#PfEr*gzB`w;rQli3US9awF2vh&Pa_`pn{M^+yyO`$k
zSb&uMl}wj7lrYQVVN-Pj%sr5LM1?8z^8J++%a(fp4~^e+<&FDp*x^26U!VaiP-q1{
zqi1Bch(-_RUTKp9vH8hVfx@Oe3>AL=+rWPfGyyzsx^i1rhheoYdm;gKK0@#A`bvUw
z-V6v?B82FxvfJzc1}H6-cX&RuTps(18%nPC`?kd`!X{uJ*9g?+rrQee1TGqzVfhTY
zw)}GK+TRVw;qS2((0B+SnuH4|JrrnrJlHSdGTDG|2VeqPK#wO)O?qj5Bthtm^5lR2
z3~J1!7b-&WaR6bTC;~$e0grsS$KzMJ`Q>bQP-@yNlt_e1c?2=;Or8|l5%r&=P$Gx1
zRw@yN3O+si0fm((zfjHrho-v894-ID5mE*l18U0Jg0P~_in+2cf_|W2?WlXyf5vz~
zC517_3WZ3Y$_aqPM-U=scm_n>$3TAw{78_$zdvkhKS{fuU?*YigNhtw{u#bH;e&k6
zh%&~A-^BDgd}Om3Cn9-G1T<-sHg5cX0n8M$OVkVkPph5d7r;$w#7)2%sSqBK&qWkq
z%L#v8Iw9&*2AE3_S4LrFFv3j~W@MQSVTR60qT^$Cl`ijZLA`_3xVi=PxkrCs;kv|;
zjexzf+0zB-{~w?8tpSY)78R6dnvl$Y1L_)K7(Q!M-~b-Ttj7j4vW+Mh5n#h@*RIQT
z-PEXlu>lbQKFPrlA(kv)LUn2_&K3ttQg+0!>#9Z!#>*L@DQFNW=kSGG9;o!Qf{=>>
zR-$!c!`$~$I24hyvhOR`>zjXDfD+sKH?F<p9?m&aAoeZmrbm({{ObEd3{bS)mRMO8
zjBAwzEVKvQTDeBXYET-13sxB8LTA_ofLN||-ISYOR_pdRuI}4y)o}4H>Jr(5d?Ck-
z0_<857K0M6L&AiegS}8G`OyP?n~KYuvZ>ddcfsHXW#79Yc3peC+4+A@BUA6%X4|5J
zNf{<^L}mbQPM&~o$ITDVa0a@R&PwXJvWW{9KAWyr!qa}kcEgdpQ|w>DW=8K=Vsi&J
z;r_P9k>wJpg)Jq!unt?W)LaW9efo&^d6g*;LH2~;ZBO1a*tgqT9Is{<R{xw^Z_zZU
zv4y;X<fvo22VT;?Kns78j$7KJAI<mm!_#kwB4}K$GM;bl2ylDz0bjg=)l?sjfX^qQ
zfF<ziCw|>k`xd`s%b@2*J~{NZAG-1AKm$KhZ-}4y<Y@YRO-#tPE<K|b5400U6S2?;
z9r)=i4hzVi-IoT>P(RFvgr!y8uP7cO>%jfa@@0QqGl4Sx4%>g6R6rWTj{k})f`bh#
zQ}KJpEl_f2--ZVx;aBhJ6yrNkUqih)qRkpv$EGA>rqDb+Iy(cmaWT1toym$#G%`H9
z>KY7e5^Bz;iml}7g!&))Tadfl#$%E;jY<Xb7Z);+gMYvVmVfVF{lw@Udz3xDz>%>I
zyl;p|AlsXfMX-MdO+S!y#*WU_E1m6pvMb(yz@$w{x3tdi;s>Y_1O!wbhoBmM)Q@J`
zVLSV5CbELwi4z(b>XSkg5~YSf-H{Z9Ta8IH7%6}rm#=>%wr!5(Fi!hZQy%-;E4SI)
z-!ab&yX#|fsQNx4pzw#AL`XY2KtPG*8FCA-G&$d~x~_kQyQ)IHo2PL2J8s=p=nFrP
z*l-<5vEui$Rbh+6OYwsktZ}8STGsnpI+<2^{|P!kDsEx_KNQNQZ@EOKI2QUE&UD%F
z2hIn9L?Dv2hqx|6$>9V_?Zn5LEqN&6$>^PkdRHGdPT;VEq3+#AKnqE<w)=%^yV8w#
z-ENNLZ9so%w5#|qN7<i*5i0D~;ewHfD6fZ6DCW%e)bkpD-8DyY7`NgBCIoUi3^Cxr
zr$yqBEpYUN3%HFWLv%?bF5qCH;L~dP=2&lAI80cRGY<s6-#Jm`<R-M>acSAv0$<R^
zY2MzDKd=q9A-V+E8(e1L7y(QBs_c&)>44m!JS=}~VK++NAgGZX3tvY(J=A{PwR<kr
zLmykgp(;DlZ>lJuQs3;>bOf+U{8IQ?u;6`yu0O?$5-xw!`_8p11xqfR)`zEeZk|dd
zbQd85NEP`pJ-^_Ir38(Ijz4U2v~FA#umcG&>Ed2kfHfZXw^8~#k)^fY0PP%*SeQsd
zm5F~ePz7pM&9y7{{0x_Z&4<}|22cWEfGAqUfdF-W8;BfkQHewsPQtbCU8^H8l>D(I
zI8m_k4w~6{r>ut%HVDbNBMs1MTi&8o5j(6WER6D&B?;Nh3$4+<f#yVs;FFjYY!j8s
zPYD|pXV#lZqz@Oy%xM6IfJ9e8uS;R0(RzQ2d7RK>CKJ|LH8)HZ`?U1rZ<3(L++6<{
zwF0Hg(1j(zP>O~57Rn|DX3Nk8GFkc0UcZ0#;Tcj*EaXCFBC$YjVC6)DHNV+E`}1GL
zVhb-};}Q*;^p3jj(Ssoi{B_OZ-LpSFdx;_Rx%a}4B@{f}oIgj%1jNj~Ael}aNvD5g
z`Z?kzLdRW}qFY6I>=1PrW{EZ&T-LU@%u)t^pq$(|=L4nWa6F+v_}gI9QuIA(n|+J`
zA}5D&md^-q5^2lx937P7mZ0d2ohCp_Mf!--ls<HtvM+F&9`tix@Pq)@qL&Kh62?wH
zEsePG6l|M!^#!rdIqL$4*!*E}qLY72rZWP}BeHNN&0-bw8e^cc$XK$<B8_TZ>@d2}
z=Dru;%WU#_eg2bmVxbE-GU3Up-SSIbJep?Z-nn$pFQkD`D-tx0UvHaBkRvb<tngMv
z?j1j2#}GB-4mHGRljX49vzWe~?HtDRaZj?#zdD20Zs)SeGXWF7yys^C<hp<I#+yki
znHNCR{6sfTW_ib%Li=Mg)J&EPlzIt@uX0I5^wTpR3Z%~E;ZS*$iLdTlCX%;%L4DU-
z|CM{!)%`ENsT`uXg%Ozu;hUJlH!+5|=R_7F$;=~<M|Symr0gULdX10>E!W<ysC7#V
zu~C5sWz%-siSod4Ixpsk(A$5eC#VQo2o?D-VU^r?%aEV#acJtQV;|v#SorG?NAF>?
z*)qjPzPt$>BR#)?ov64(ZX!zu2m1!5SQazIsGT7be}Jxmi>YLXQ$vx0&iV3B7<8ua
zvYot&(B89y>6YKHze@NZF|_cpCLYChjzL>WZJS^)s2lI*{<YpZkez>W$XTUM!ePVg
z{K5-9zx0ZoGik=2fYH?x(cY=1;EGC8<M?GA;ZBfxDN-ls_QgeHmaCbFBte&Y7Zv=r
zn+lF_>7g=+2~diKJaI9#KwI2-GQ5Bbom_a~@tj9<S{6yV$Z|`e55RICo&iK4r7jjz
ziC$<S1l96X_|~t!->ZMcw=JN%KaOLrc+gca>dUk2NjGtZc|VRG-_<uqvZIV%su%ox
z<I)JYMwyh&w&$92#_G7W3GKJ#uycKxGmHT!<IVVst}&ht1hb=b+mTTTy#L<okaqoZ
zb>g`sUE|H<mizmy@^XG=8}l-)@V?}zOa-C)w{>%@{(;M$*E4@JWr&uc<ah7b%$|fe
zjM8@H;bt~Y!sVA8i0P<UzpuQNhD>D0z0q?K&+dkQ8PrbLEmT8LnHZL;K5P(~@ZFmq
zzjY}WOzKpy3EkX}KDaQa*7*(lnfvbtbh~izH7Yxl70zgUi=Jhc!WsY-Ak3A?5-amF
z!52$nvx!vZ^PzuT^C+}yK9;di0Qh{22s2+;ggw>FREd)I<7TGOd6G)CNOM@Zl^-)R
zL3NN#A6S|52&o?`(+LPr=V*#VWr3ii^{0UA>!|Jk@LymOZ0^bMQOi$*QDUBE`586i
z7-P|9%RO3H$7Yj2Zd&`;?SheL3bqo{k6VewW30psO+bH}=MP(n+2`}Qe9F1`0#+g{
z4H0KbHqH3cvbdF)`Mi;Lx7EgFwNLr(3M?Q3;zjOq5V7Pvm)R7tf>xJKhs_)t%7gsZ
z8JpTX$)<db3;b?pfz{X16w{2({Md=a`J_DIcjB>1PhxF@&j$@ufpB@16wmSU-Dw!M
z8Zdu!lG%S0uN-4G5>sZBlf*@igvI@K@I3Wl8~Pkn@BIpcoMaXHrQq!hoQy+lxcC%I
zQp8*E6AEwazjFH7yLuzJ5<psEG<{~J`^9epG~ggBn?6vOJo7-PF&~q<T=Vl3aX;tg
zJBRrWlN!cQP`~NwwcB(M9`g`WunVtWy?WKgGL?U3S<f(+(S-{&84;`&o3AkwhiCUO
z7wkmv1K&IC&M6rt)VYp7++?$b&9+9HEW9{_nWC@GUG52Y{C?mkB}|y{JYZ8BB&Ws`
zZ1-e887-WD9ZON~zEQ=p-?hhP%boDVcD?(8a3>aE#T5tpv9^w;(1sgJ(8kWAh)x1P
zGhcsK;k0Xb^cAA2vb*OhR5n$2aD8jn7k(-+5{8~IaMd(iE93DUOy$L(Htx7kOLs$u
zEA0WzIV>T1HNu5&v0+OAxSOtWbw@m*rY=EJ3RXEOCFaU^R=HL=hwU)ErK!q}IRRP&
z(;TZD`-8?q=|Z2H;s+hSW*ZY@3=>R@OpAZ+pfl^+zw~Bp3byH*e<~WCRK4dXAYbNi
ztk6Nh!gNrm`P?Q*!OFcp9yYW$?cw=FllyL0Z!nRDGfQI8brhLp-LxHZdjWEj0=PaY
z1v^a1L(od|I*J(|(ZgQxETKEcJ945pTi()H;IP^7D_Cl)c>pKje&4(PLH2`lG(mqO
zOENz?=eyuQ==%6rEDRPbFJ9+*5z+3LgozLbppN&H{#OJ~fCLvR=5?Ou`=yAAgI-@V
zjx9Ujg$&&w^&x`BU~<5>E0`nA=S#2w%!1K{AvArGw;ZlhC0Rk)Ph&6T$4Y~-q$I~d
z(Cx=aXd|VoLjh#Dj(VDdOzC@Kvxt8&BmkA_b5M73aVh|HZzBK%uthdc?RqfLJ$?L)
z*U=q)RKQ{!<C9tEJYX@V#GfxaCs-~X30W_BqSJ6qamx&Y2d8Vo@T(g8pIjXhVFGd*
znK%Umq-I+vqdaA@BHX_x+6rG}lhcPbS$^6kUs!Vb&<5vEwn-2ItHkJxu&{p?b93!1
z^<6!AFV$oA@)2&6^nYnfztp*XXvx1f_l$a!d*;zHKt7pqbo~CnoN+$S6{&|cNB&67
zk^YW3FqZmn;mE5`xs-K|3}zZAc6CES5o3{(d_yA@^4N{w0L5{VV`c&i3jg=O166#3
z*GIWDhrSNVpE8CnlJLI6MSg#jGe@3`dNvR#hIcRynD*84VgTI#R`1b7<1kAG8)8mi
zdsF{{lCNTe5pgm;$(|@TyJ3v9qIvkX9)_v`Lt;BT=YDKQLgC+!Jy=BzS2)v8=I&Af
zHvJn}<}k*#T3ycTJT?UI&2qDAYfN*)G8;;1dP(70k>sIX@O-T=@-=^Kq>OWIW*_jG
z<%toqTgEzd5eh8)D0!v-%GVK~WqWk5DB6iphrxZ+gN@O{-uSz`c%l8|UNUVary_%`
zz^TMTP3fiB@SY9F)Y;jt*L3?Lb$p4X$MB^BJ*Q;xSu`x&#SvPfsW@Io9GO!o8Oh{D
z`ArvF@y>?#uDIkn=@WnNROnr!7o6)CbU5+uiKtso#q&&*%3K-@b@@0hkQz)I`v}fU
zAHjJKd22KBjtd_g?YgSJg<bF6y@i(7?ud|1`LQc$(!>}UNt4xjOv>hz+l+5V!!roy
z>vWkV+{zrMahkewU$E&81saFEUr?FY5PKsV#ylyHU`hkVaAtoW&y!}RyiX`t=-E}{
z>frN&>2?OCtNMEy3NL^MQ9rt?5sT5<>CXmwNAXm_dQNWC^zEjeJj#<3Ifzb*=yehf
zAf8;Hzu*QM!_PwCMM{vt=ubQ1N#ehnfcD)uq4$qr>l9Pw(6Nwoy{kPy)qO}l6lkB^
z9WghM^La?Q%=v#&x`8(?(by#s%Q!iqoiERGnIpuKu65D7`vZJGP>wfL!&?!j%*ARO
z<U$yIHR?3_iaqL{pCxy2(N}B<qpw(h%Qw}qI34$y`&waaZ94EjynY);B1+hZDWuax
z+Ea?U8x4}(*W_`ubRh*@a(r^FyA5Z@%P_8y|N22rf0KV?g^$2vGyVu4oTqLbKmQiH
zcH{pe31jfV)fzhgP?$0Wutt-tW>Ix)9z!YkS4cSf8~9|$e)(N<@t+Lv51GjK3<U+)
z!e3W}s&{=V7=3=B0N=X16a~8bIEzc2@p_@AGzqQ(bLb$Q?AS#U{fXj2PXC96m69LG
z+?Z#M4#$5J9tXh7V%DEOER35V<hVb=@&7oi@);5_07dx{+Fx?hN(cE8*i56oh;S_C
zuW31gnm=73u{TIVf`5_F3u-+ZgkEqm@BXE`bbMFSAoY8G?G`nGXjV;HlaFE^<QV_>
z!itNg4yZJpKUpiptSgLx%TOzPeaV)SPloLJar1wHlGM?ZK(bszXzOjL*#=rb7~^(u
zylkZ1!IfXXe0vGe>Lg1|u$$Q3?Ixw6wxl^Mryja|EtRMuKg-u*#D>c71f@~lQ*<M9
znPi`78<oya$ck?6C|QAfiu_@+rW4fnWHo9cEBq>V$1s95K#*rMs+#eP;2_ZuiOV4Q
zANLox*Ki7DZe(+Ga%Ev{3T19&Z(?c+GC7l=Krx3XLIH;;LIQ^<LIZ~=LIj5>LIsB?
zLI#H@LI<}fLI_Cy0y#F55h*Bt%{*&!+%}Tm{VViwRHxw)FFx!`ZN*y0<*c1#Bh~Fy
zC3{uW45i_kLn<UEvhwS%9{>qb7)f@Lt1Y`spaFtFqu<@*UtWll82*S8qfb(mMoBDA
zHv1Pp{WCt<0{q*PI7;*M<c?<TPfV=gS)W|I`1_03moNVF8<U*mQJ%<u<mB?2){t4G
zH1xJ7Kdrv5Z`!UJcKg${H1SHD{`2x%cqN~`5=oW7n)JfuuH-q1@aBj#$}{EWyg5HV
zZv!hS73o~NSvO@<cE!+kIP=Au%NM`QPAXND=h^b43P8_4sSr_?3I5!>=JqhWw7ZJ^
zUCBtqx!ctzo*`3jMiRw;I&~9X1(wi}mYJJyZ&y(8UY@FqSCDaXqM}3?p7bBV&m=;h
zti4&UPS+wyS0C);#9LA5D9+W%S^!Gz?4M&P1Iy~j#OaAQ&#roXx;D}sM{55z;l_=0
z=lMB~6;MZ-t-j*NPl1m}3C(<ZMVbH>Oq2;Z+p-AmSHnsV_j_c2Q4vS5d4Ey)XDq4$
zczUqtKSP*_(!?Vk`&9ubRSx;erzK$`nT+iA*T9M?wiYX1o~|?H9ZJCR#`PP!Nba3b
ziAaikcEs0#Z<#2EBR|Aj6C%kt(s4Fh@=ZVr<dKxZU-E8Oc4Y{2NtDTvrb0}RM@eFi
z@qm7e2Y!xC9FhfpQI?veDA3150W2Z{Hwb*Jg`1NE7Kz>9SAi`67L7>0M3~IP-&(~$
zCus`Ufy1YoXMTSej!D5hQn6efJ)eCRkM4ao9xpe8WfD!F)gYr69~CbHQ~;tmHzOwB
zHPuiRb@f{r+8P`r9>wc#fvp*kg)*?U*|nI+0NeQD_2*cB#{s$%z_Oz*yAFO1$Y{1s
z9Ea~ojwcjH<;Q$SN6Auu0a?!3$-urR^&15)C5?1C(!ht}mW_g;<>#h7G(*{4pNe=@
zY=%QoGrS*)p|s80VpB#Tx=@LVWQNioFWyP&qm(gT_gl6SEL{lyKq`y0Ht-Q(ZF_JL
z2a%&R2y>u+A|-j^{|0cp2EJ1Y9|Et>$8_?53)W~@NKfRfl^87pF`KT^2h1$t=JQM_
zrhzOoAer)9&X`%uEdv1}0p<R9P!ZT0>Q@1KlTqw2?BsMd`(!RjYR0jgN&XqT0CJ&$
zZ>7)YmfPU2K->M%LVC#!3#2da=yNc?pdG|K5`}nwl(~d~&*$pd%rz%#86fL;et`@5
zlZ7<*>~pY+m}&05*x%M=&y0HLtLBEA7jNJHm0O7KH@_T;p=uk3NIY(spAG17Ani5S
zE2(rw($kXu0u25TGfN<oECFlDIM?JV#H0d*IPkJJ?SBFUkbzwwnE=G+6TpHEvW%s|
zL;;R}55z-0c$P3SER4kSgi-#73M2D8VWgfRj7<KdG?KqV8qJj#*cB3#r6-S`<gxQz
z+x9^YlYoe9$ze&5!}N0uSv#q2Po-JimHn_r_C6Ka>gL`mMrOV!Y%&?521HewTdL4c
zv(k@;Cgh6eU<{2`^TqiOfpsJxGag0gHM`({ONpkzEl!_lee0!QpM5SNPu`oy(&r(w
zNpNbj$6Ozg<{$u`FJ{ldro8G#^JL#{OKY?YyRJRl?3~$BSA#Qh8o<Zi**3Rbxve%R
z5QA4Ia}^2XXRz8welVYJ@6O3{X73I`4?`tpGWT>y(9HC5&{R*bZMSYMp5$e~m6&gT
z{ccy)p%4%VaFLCsPSZ~KJk{~)S6~N~u5QqFEVrR36Ugi-3KOPC40KIsp;*L!@#8YE
zZEzn=I&OR0hE~jCFixILP2ZdfgIk*&3}Ken%VtxKgWC$J#;V)Cv;$w?-j*=*iF@Z^
z)e7v1K|YiRnbY2B$Z3Nk=F|Qk_l%N%$2}v(en_&Uskv|J)70<yTpZ_%&&46rGWP==
z6x0YUrs9zmx}Yt9eyuO1ehX@$SY*B}5ZXBKdQM7N=aygI2Q_?_3eOjNGS2Whh+Kx2
zfINIe{?6cJ@~q(G{99rXE&>JihZ}KESn)}~WI1NVi$x$VRw20{C_)|x+6Cl)Y#e1O
zd&>8Y6JL-#DQPZGGw`uLlC)$|anlvss%!@5a+lUQZ?7#RtV=|!NHINNqPg$|9ti{n
zd>bVPX{zRWE_)dc+Ib@BbClOnr*a5josG-bUHMu{=_N0`jf4A=QBcy`c>c7O10l_L
z_0-*bVF5R)=j)0%B&2!bvjS^>UnrxWj$X}Cmz!sZC;dg@Nk1x{j&O%kAX2k0h)i7-
zn~(Dt)pc16hwec%>Op$Rq+qVVkv=QEG|!5`UqFKv&fvj_dk&f&SX3pJAqfN;zo>_M
z?o1e;p&(O$f$aJD6MZ}@0d5I!syFGY)3pY15{InPG%~`c2JwowSv1>!Gd>51ND2F|
z?@tr6Itv(niSTTwqp3gi??$pb<BtGuZFV>rbU_TBb0+5eR9Op4f|#q>&_a6(yj$20
zHyF2-gKtaPZn@=d)$r2`YCtcI`1y6$vBTE8*<kA1m<;T6W*FnOH6?E0=G3fUF?^A?
zL`1!oIv-^;uBWrrT{Y}~c%Uo$+j287m`D|X!>(jNd-X3E^j75Y>qE1#n}%L7%(i7Q
zw5_i3wd=AQRl{vt@eZI}HO|>7A7u}^C`GYZ;oR$g9JBK?Ql|DM|8bhjRk6Ws?}oAq
z-8@(hnOP)#@xH(XUlsiL6%PUK&=$LSAkciq^Uz7dCrIa>=_b{GQJO5o@ByVmlB_m0
zy8qN9oa2)a0m{7Xs++1IFAu=|P;>(a#GpqQv`c^mUxBi9eS4+QstCup($zY2Gm9&Y
z0+_@UT)s$}!;*%H&9>jX{xC_+xkxnRR=ddSq2Cb~z&rMoCLFN``1PTKIUS=AynNWl
z1J*;7sm!8`8in<La_|ze6g;YZfdoclcJjVzsyz!n=sD-vr)+!^2)pbCczKwF$`XH9
z$n^*Kl*lvQgUA8dhhfw1ONLfG1N)&uaeyFlI}vtU7l*#OssZsdaOqYEp#&$~c5Uz;
zw}%Z&6Sca!4_#sw>81Fi+2bWDy*mHl$Q>rB@4i$$zgi4`LkD}~?`r%mf%#gY;h4zo
zt1tFzca<he<79pU8}!ZOs^77^L#dD{mJR^E0$$h++`cbs8^yw#iFo2g#f~kE58?6;
z12)X$n}7S}Ln!DZBd|W*oLylzRhLD_0y|S~c{o4{VrG7h(Wk~MQwi?>_CU&3gB<LK
zuCg>kG7~3%bY;=Q^sD-w`*&qs^Zd%r7<Pzrglvkw3=$&KzY0+fzN$cob#}&8i_!sG
zJPCxw^`W+t(4fR2pE7aan`*9ImzsyZuTcd$+Q-fqvzy&R8b`@w!yeVe7^xXAt8Uwm
zJulh=@7BQOpmfg|GIAky#+?+~@ghdD%k+Zm`h81(=+GizqezR?8bt^ijUogC4QzXc
zqa>l3cvPgrT`}+o<FrRDLo*fu7}!^kfhj6;RLgnwPdY{y0v>2a^cx^2<Qs%qw&4yL
z0iS>X>X0}PI*-JZM}OoB;)(C?@MLZGv5)u@F3!Zr%{Ar}9@3-+lcgVhMC_q2NYHA3
zTUVfeltD|~Gl<9!8>qorx>4wWg6!w7vS_I*Cz<)3GKAO~s0F14Tupnxpcvc<NG{No
zY_!<RM6eZDtYHCOFc_o2b;+QBTn@y$1YlQxQI*2N1zMH@d=;?CLAb_IY8GPX&v&WJ
zvs@~(bgAY9<_DNa2WqDS^${JYY$88Yk`hOMnNeS|``M<zR)dDWdsg8nk6k=`%K+4Q
zxTV{o=S(F6C+(mlI63L^Vjd$MxJr{OtNa$}oMg&(jOhVoQnFG_#%xtGXf&j;1KPUj
zF>6o;!`4Pcxyb*Zf|6uWP_jTUrUSi&BHrM4EVPC*>ug~pT`%bR4uwcM@@goUWOS5&
zO*ni!Gp&zjrs1neI?D&mR6B0M<*FZYK!zU!2{0u_|IPBJp<v|l_@I6KV5CjP<H0Ez
z&omAv70U?IB14}V&d_s{WV}o@@Nr8%UTP+LZ4ng&lYb)iBN@;%e?|&aC$pQZ8W19&
zaC`o|^_NoTlfdStBq<M+jWb@sKupYk;=p4T)mo#u0GBi4s3^2yRm21Mpc^mK#{=Bp
zlwSY^Dx<QXKO(=Gf(wxQSeTNFumhJ|geE5!CsSoDjES^ZgeUifwNm}$BLEE8ilEcs
zz@X2eF<Ol@hWv{!^<YnLcGjp3nylm@@&=t+$3&Ce`xI!_Dkn>bJ396YHD|GZ$vpQx
z(f@~>h<R2{#Qe^jh<Q%IcJN#O200P)r{qM^-<K0v6exK`=Gzince1yE=+K<Bwl9_x
zFB}UtTFJ{ABV<Y?e(VniD+`{)B|_7Pp_k698`%Zgz$$z2#s*eAOMAB^Cs^bzau+|6
z1IAh4LBN95Vb62f)X7)-a^MDkC6eRV1vg-%_*CuP^yaV+x-(bk{$LD;5<e7(BGVdE
z%>fDp4X3=UQb>YlI-fh`u=rI;aut?m%V7sT>rieZ9{sKzN*8G=hFN6ItTwy0+E_a+
zHB^B$M<eb#Paesi<DiE-=<>dx0Tx)>fr1&vZjB*Zn`j3Jsl_}QO~rVBsXr;0{dheq
zho!k`L#2!baNS)*)jf~o^Ak=d0ey3TJb_yQcLMaAab@AKFSzD6``fC6BiK)W4V$~~
zt3Gg1YqyNhQQ`_&zbD5FwCGJsOF*k?oWiZF67DG!DOS#8aB%X@aC}GM7iiTs5CqM(
zndxn_x^7)$h}}2<b!Cu$L>)`vfqprFqQ~nArQBkw9<+Mr#}eN|I$(A*tH0ZKxd-wp
zM80{H`oB9dF*(mR^wN}l?@6E8&w~sl^XDn2nJb?G>!cIwfQ`}ePB<iitrAuFCk_u|
zzn~%)=cFVOByheAVlmB)+SmXQa8(RdjA3p8Zv(;T1DRO3pdx~Q_O1N_^{&SV6HWtO
zY{CI74uexQ)2W85bumrD-xzDS*X{Kh?t5KyHkYv27<?T1{a-%sDkZp1(^X;*lxyfJ
z!Hk-I_<~pYx~RdHw1ukK>icD$<k;QjpdW>K>~7P@OrF$vyT7$Jw{?0443-B$7i1Ty
zLa37R2&&Hbm0f#($Bk`EmNCqCkzxQ|(J@Qz91&c@olS7sc#n!#_U3H%=vP<S>k0y{
zJsx04;d0tG1X*F2=P#j1Ey!)1s1t3x1m`8koG_S&?i#m$8Sho2%Iz7tZ{00PN6!ep
zy65NMR;rreP))CsG9moCK-~lHes(0C+9T<7b|i-MyY^6j+tE#10Ud2i?p>4Sg$DTs
zcBS#-i}35NKpr3Sa)7-lU_GI-Uh0Xa@T$Mum5gb)Z7~#{s({bMSocY61YVF-mXT2A
zSv~RT7WCmBB#l!Q7v*rc4O|{`qHuVlN)i-YalR`0o-jvkibuy8sQPBJ+ZWwOhI6<(
z#;kQmg^)ylnFzpB&=YkI&FI=&5G~sf+NK|Ol4Vs;))bvXYiW(<7yotyo3y?^2E28~
zE%I$tHpM0gx<AxIbz2AdCFuERE%@@$nOUSxam>*JwmD#``L6nMpx7+H-!=S1iE%9C
zJXD**6h~J|+XJ9OhN32vLcsz6{dC+|M{4>>oXshJXii3AgE_9NipD`GGv|^=2$=M^
z^Fc)#rRjtG9|k1ia0(IO;|2HJXG;)UcjzQi3;4Tp$_C8%RdLlKe=sw>JZ7JD{ZQY(
z3T2*iaE?ZmeZfiR!w?c+V0=y06jW`XoLQ%go&xSXa%i?_RpSVw31HxR@2kFKD3K-r
zZF<vxBF=!%rb2k51Y{uhiFrmZ_xZ}EFG-#rudfgq{JDJeo_~Dv-|sF$u^1(zWOC5X
zcyW8^dAbz!mrJvOCREwdLibc#9=jk8w5B?S+?L$rb8Yg9L0mn8ttYETWUPRs<!96r
zz%euLm>khm2^W>lBASyO-<RD~KZ2^zN#;X;=PHT%vaXs3i6WIqw=s@7DKMZ8L>F4S
zgdc$V`v!0ZjL!qinHo*xqF!5atG7JpBnr>C?%F-KKq9S=>pv@}3|SGFc}L>{dsGX9
zjrN+K_S`gvtcZ=<!xeZ+m<S~>>ok-VRb7zwB5<<}%hLV6ZSY;0D?B{vzFb=ZP#FGy
zCZ{7;Rv%;he$pxk-_#h#M`GBx*d<IV>YH%VoicJLag~-H=H-NDA}IoSIstkGKP-y5
z1MGziN35wd?3eE&K#YrRya$3PIyyL5Y!@ZUe6;Sayox~2rp%&AI=uy+=s^tgtD73#
z=Z;K2ajXO^1;1|cNSaXWJ4$sn{dSmtD&NJJDwuOg4C=&>xQR2~N?|v_xo``yMz4$%
z)t4<ZjWWq;{u-Rfj~IPyTpdB68Vqv;BYU1#WLIy-SpI{eFu&+6h!zkJB6|!gIV_TU
zSb;M<f|YdoZz^o$Jjos5FGZ7zVlzdE+cCs4*EQgQPQR*s<PhoS9s=aj(L?BeWpE8;
zAm;TKVuLMB%w&#L9Ezgj<Ps`2Z){CnXF;>_66+#jZQY{AqUT{UZeiG(9``|pX5JGR
zPo^5WuA~Yu@DNG0ikvK?n$71a`HT~g0s(r@(~7Y?g$55jgUQN){%GL>Y&T8JkGWO8
z6*F^@M#V51xz@fP-J06}o#eiM1k`NoBH)K_okM_8n4>!7YYN09)*(qBY6~313p(Q_
zMWbl`gav%<VuNN74VCs;)Dbt3AZ09tOA{rdln-ec(rjM*>|w>4R~P@`yLT6tVGXV4
z`SADU`N0O}M4o4MFS(iIw2cUka+;%i#SJO!oT8ny=R`%>GINRez5|tiF;L9XU^UPU
zm**K!%m=mswAJ}8q6Gk3$-zlo1o-t)#>~xCo>AGMZ>pOhopWuagkwhh{D!nUw)nFW
zD_b@dIdK5&H&tn~Wzb{2e#V_UyAp71ec0O0+j*5Jto9*D*B4YMq`(G0M>}-j_9UEU
zw>nh}z5Q@;9*hS>O3nX&dx3GizZExB!-0Jn3!<}^*rh5DgboGE4D^TyFezu}H_+8)
zn!d8QS_(+(F(8fMm&3LqeoWjI!o~L<Vn|^pw!SUVPKT*g&9QR6Bp7Jzgu)d8f%z7)
zM!-NnbY%0z%uqj&8G!$QTHO40|B;9IOqTf=A<TFY!{6C)TUFYBbC3OMAQ{2W=CB7>
ze-rYmZPkGvvf%gz85+>IvLOy@q~WC221wW+ac|mrS5*Td+m<1N48auT-j*dhUouGO
zY&61!yQ*pC+E`+ekZMb5uq%P1YaY02UA;A1LNIK@C2(9D`iE)kF*L*@!HQ?lLLlQG
z3RSiEk)DdBi)M&_a49NGAeX;p^@Q__{v+De_{yD~!qz@C#`+IvH|3#o<!=Ew+LVLu
zV<ty=Pb<Hs;KTdSuXP19WwKzu#OC|4@hulDW5)N5_q$^p`d~vEk8A<`e^~SJ;!W6t
zS1{mc8dK6Ex)b9S=;Yw5n}t8Nr>X?>bUbDMTsP^?zFO3OeLM5Qu!5j3_gA(3N%4|r
zC=UqaTo&a06SwqKd<nqU)`3e`|3VzjezuL{K6$usBP|yGWFCqcsywygOXXytp!_H6
z3P;$v#uiXl=P4XJ?n>uogv<5Hz&G^EhY))*X~5^UHo?|oREX*d(pA^8MD7QUq~b&*
zj<+3_6%0FnzKC7TBm9Gw%t|$Q9k?`p#jy9q$9@+S5SU2qiu(ds85LS0S3iJ={jIER
zk1Z`|ysk0)Le2>EKq@58TY+xh@{^QdB1eHig3Q(Lh9YoCBa-Ezl7OwYuZD$+!0`>p
zq_VcRA;;U0w&WZ^^T;wn+UsB(14}xS&-)!r^hoqHVhr4ZvsP><496X^78N*d{m^be
zL4r5zS<KQ3E-8G^7<yy0l-{*ry)lG|Kal!APW}=wmqk|zCjvD$m!XOgDSxe7S(D^8
za(>sZ=(nwo=;D&#0a6Y>NaG%PWR0~u)3J)M<p{G$bQd)&vczLstzYlFz^hO*CGS3T
z7mxr!9Er>?4}Sab)t}$S*-hqUiAruBo^ImkMyu5GLw)m5-u(CO={E3pc`=N6-QVs*
zKiWOD9T!Yq9Jn;(-EENWo`222^`g%E{*KGfrZHVUz(bM06WXyYP0hu;DY;PQL*ARg
zyZxVs?{EB@ec*c;%#0@S@nnkXXWv&vUe~X;NsI%jMD1P-{sy}ahG~z`MASY%o@#>w
z{rRoZi^T<@_QEiM;c3`Lx@0$rm+3I2^?O-*6M9LIa36T9&)rtrlz+iEH~U4up*otL
zU;os#N1oPjFfya@5!Oaa+Xu1ok|>cCru=yO1iPTpUDcG;t%`SluS(f*Ao7kw;pI@#
zmP3(-#=<lAzYXG@X_#cU7mBCOlvOeGn}?dV*}FD+b&#+CI!IZ*zgT{hdA^SAKE68k
zG4Yh2&_>3e-AH(Q2!EyhqUUx+b|XXB$YSg|)5z@R*?Qdi({1YS3^&StpK*ZlQkdv9
z9B?*q6)i^!yg15M6aUxSeUwH!6+70sR{;#1#OwX$la13I@HG}RGXfCWQCj-f239{*
z1-HvJf!pO;Tm*AU{yB?_^!ehn-UY5hREg)$n~IB~K1r|~GJp1h)OPvq{l_<saYEP{
z+XV%~`4aa^MP3j@>uvl;R_c3c7@w^)2zRbiRKDlO$rlzH!HCNCdH<j9K0dfcN<E!U
zy^w!ZxO+Pi8$hWvLtgRy2c~bE!gNj5JaZ%S1{6+tmmkewI+iS{??vf`!-_*&6{aV7
zne2uxuXr4+oqxKvFy+{>;L<FMu|Wg~^)VeR^O(a7m{8;m_kJ`k3G&pAG)nA)EaTsA
zPA3Cm?KiIdn<u-G;NE9`7T|XHctJp>C>{l*$1M!&`@0XOA8V9f`0Nu32D~y@`8Zz;
z8W%2xW1n$)k>{tP&K^)g<c~EiCfx=2lkNILizC1EOn()zo$WrM@-rxiUb&^4W&^Es
zc~|`xcNOXOu1cdhIb|-K;b2M@T92>%Yb7|yw4eRhN7dK$RwlRgcx-?iaGf<M6lP6J
zReZ2Fz&oXg&bD5^UsR6_1}qr)!R`Uq68UP^j7QT|pm3SaZ|%8a_ltXqx}}!<R{0{j
zyZqVo+<!yv@^<C@01bIp%5E7}eECqdjhqBZL;4+MtItk^AHsimJ<_AR+sE5rX9ie+
z?0(T6Pb2QL>ja9f?Xh1Jupm|uZr9kr&069gkGohcgXP0w!Tj8zdOp<fM`wy%m^+~G
zXz&QJPdg4yR)9&8g3heU&n(D-(n72Akt2<k$baRk;orx$E<G+1x3^q|%Z{@IU?H#Q
z@nx=4F-?y%hIP^Q!>^%>_hgEJ>wWb*ixeooNZ-v)Kshf<+5;^1u$5K+spsm@;%`7`
zr^p99Dkcnvd~lu+G-tsU86e3XJr0n8%;}k&5Byu3yq99z7%t$&U`Y}BE1jpkSVvYQ
z!+)I%9r7dswW8)ecnN9nj(>+2<d>EwbKyl{>P1Pme9wh<VJSR+*W%hhZMrslftMQg
zEloGLPOcQl$(paO5h)5g-q@1i!XpT+x@x30FJi6bg3OyW;ZL_2-0}hs<{;{5tJ;;9
z1$wy{Pv#pbFD8W!^4}K~{1Kqt!1@lh^M9op4qRd!7zA|7_O+SWq2>;gfW``6B0P`L
zsi<{`7(u4=1FSgj(1gGzK3ZYD4^rqAg<F}8FC{(VRP7TqMioH1Hx^qZ#sgQZXrqbW
zH#5_LH*MAZn>TM-*M<UOi2~aTZg)8rtjJ@lkYbP-JzTDVD=f-jFQ3L*)&_&5Fn`EK
z2%QN&gr3&$i(`;5bRIx@tn=d2{;~ayt0baOOk%HxLnROLZ;UvmuX?xPL7-lR_OP+U
zLO(<n@2lsAiG77g#BrEDEG4^Q(^NKXZCQ07(#UFrkxc^&<Sh*S)n-{v0P8UTAhCv?
zrYE~t!=`ub_)Hct0tIA{=dsSa>VJ1qOCI-n(~U(%RxI@!4*1NSYe8x1g=zG~6#=+O
zrh5oy)$(MOQeL#df-{qZQ7Cr_v=K1Lz@$^1kA3x6vp`0Qn;GCCW(MdX%m5`geJ8+R
zmOv%UEU|z_Ot!?n6{J)#pujTSkfo-#vY*<VoB#qaQIp(!|HEHgcNA=Je}B3?hg?ts
zsEe)<kgyLj;1;zpHS8AQ^wN}}$ZtSwCfJf@tT$5&3{y1g0eo-~SMG7Q|7zPKgK_G@
zzXV{?X>r?&^4#SOa+NquCNp7n%!C*AB?AM@PaNV79tCmtS&;^o#e&O3sFCM~m<S41
z@QMzCcLA0^vvr+jq0Ztpmw$u#m66_Qunc(N&0k3SozF{yHJ_wsCgbKJfuj1-8}7e-
zf8iCd^u(WDA&ABB2oqcZEuq2cOEyA{k3Zg>+P)eV*oCRHF#(ml6KaV(!4?5l(IUX#
zX{;3%gF5qCy!&;`o1uDob&6N!vMdx64+=}&2}phF!0*XImgRrC1%I*KGeOLY^)i4C
zQU#2}0q2=Tw5hV0PFLQWwjp~G&5AIy{wad(QHXvJf@#>)Hprb=f?HYk+>Xc*Nk?)0
zz*g0^TXl4<-2z{la%m08S-P_XM`~^@SGnX>T@B=I<drZSTj3P8mV!`}I_x6OGmyK8
z4eq;$+%n&%_bo~ehktAjJQc2P9f?dFme>Vf^w_m|Njm^klp#nY^u~OtGPt=LJs@~W
zTRf%x)%>xJq8NX9qq?u9MiNGzbKEpgMzfFS`}_AUe_!gQ{-mc}iZ21tkzS$pW(fUS
znYy$SA0PL#_)cSeZgLKyf6-n&ww>6!!V(CV2p~;{EA?B5eSfxw9cmFDAUN$ZV92Zt
z!SsWz>$o`C>!com@D^FLmDUSe4BVGS(dU&LK=Vw+^B&W94weUMCBMhKYCx6Dx(|3y
z!w#<&@rV{4>9H_zZvi&2B!fcJO4n)gJgy52fRYQwt5EMw`2b@(cak1WlbP{Vss&jJ
zh=fJ~kx;Vx4S${ZtdWS$fSOe|6BeGDRG+yk1jqE_>C|>x0Vq~7+JJ;tfzagLT2S7J
z;U;!rHLQ(Qwi!E`GLR<^0$j(h9Xue=Zn`1+%ZSf?d6e%3*<{4ddxyIjppqyK)#6Ng
zq_Sg!+qbNA$7G65{H&CQJNOIgC!Q9+Y^@k^BO+~GBYz1hFOs!HrTqk=wCc$n3AAbe
z+w=)vQnX+RR3+hc=p!c{B{EN>A>TPw!dkWic-6aa;o`q?5xE0kd*3!rT<)WnbrMh?
z?*I1g<Go8lC0?k~GZAH19Y)Cny!Ar7$n8tKG)S(o%TntrN-yEz3<avbLSiHfiGjmS
z*BvXB{C}3Mk=K%nfZu$W-%f>sm&G`k*Au`T{EZF0<suXgzCU@_f-GZmhN$ghZ@THy
z`M$Lae9>XpTl{PO!V7>EH||uv_M+^IR`%ZZ+nE2vnc4QHkjD?hbY!7GI~*zjt0)sY
z37by_K+8}W_9te$AKAB#!#&>u60GFmg>86dE`PHhL_0xQ2*3z=7?2c2%Anf<m2o>+
zJlK+Ry&t-^c{Uvr!T!pNfm_<<;sgjPokQDrc>uAX2J2yRU8vZL)9{bL2J1QsA}><e
z8j?*)G>W1NZv^n5gK4lgRd)+2r>ITu_FJX1n?)=i92ze~6v1(wPGCs&_I*x&4!}J<
z&wu{1$j}~`Z<9-hBQL!bqsoiJEs!&HP3k>e>SoQZrVzutgJFtX7ob(rM>vQ59jW!B
zRwcJy(C#UtatA{k@){$Tum=>ujAAS1A_|Q&i9-@Xp2I@ebk9U_E5yW?P-jg&$ny&z
z-~F90-izDZDeAFg{~;JKd0AFyV&t{;Lw_BQXmDWJ6+b{ad)9l2jIcioXAvj6(H%Q4
z4VcsPP6UE~yA8s4_su=yMb=J8FAeW0Tn{EpF+7Q_(9NU(Oe;O|(tv&(%x2>Sl~|Vr
z;VHhBAp@Gd6%HhV5LIEkj|DAs`SEE2a$QdlB}{}n62XNUulKB%e1{fKe3TYT6Mu_|
zPHPe9n|Pu>yUnn20QvU{UDkok?R!TFVd`kX_8K{krVV7qb`qCD!lXT<1I-;Csp@(J
z*+&*V(cKp~$N<G8SKQ#(OXiDSnhBc4p4J<mJaRw9Lt^&%D0_S=Uf>}m7QQ0v!-Rh9
zx|USMK#&?p@0!x!fQ*2lGe2bg27gHSe9TGi-ucoa-}7g*d3oiS)S{ON0!EZD;nLM$
zvw$M&JBq@E(;ld0%fH0_SO9@>6py7eRdNCM8eY1^mexNLM%ks)jNp{6u`r_<HemwK
z!gR#JH*8PSPaS3!_O%v8kj5UY<R%FhDOM|Q1K_5>BDzZ&6TNZ%_4-TstAB8W$M2YO
zW#~0k^NGoPhp==4fK7*za=;F0xmCO{>Xd|G1yOaZ1}j0MMD#!+*$Pl_iduxhHcpEb
zxQb-3g=7Hajq@_bOZ(+>2N+M9yBemum;tAT+n8tl^tCnZF;G0o@l8OR`;-+jLt(?)
za^|&2aPm>%qXlVECbC1wSAUoMy8rvq<skJid*V+L`CT~r!VqJqeOpwLD*)}{#eq^$
zb%pqZp&y<x(^1`iS5Zny=wAxL|9jq$DCvgA#srlg_>%+Aov8s#Z8J5(FJ@|dFnPWI
z=~g49F0V+}2qU%huf@SEBCx`H87pQjZiY9A8I5m1+HBKfjU8t3oPWE}aFtwUFcc?-
zI3*-`eGm#OkAE4kV`&ELSQAv9uDxkNy6_rvH!_)mY<^%R0$lE+L7X!bK7V|53$--8
zCTbYW?)FOJ@mmm2ZWW*xZP%GvoY88E%_$o!#xB6Mg`M?YXP%#K1TxBjAd9S>wh9_z
zRjhmJ((*6fFW9}Y>VFSRSh(M?${Che!bs89$WJFDzn07k3cuL&jR%{LQRI~85Q!ru
z3hX_9m3D+yT)Y&!0R1zkL0(Mt$|zG%dbvD0@e*8o=IEl?Iw))gC!T_*vt;Yxm^?b6
zT7i8|5bX>%tYX5{=5{kEEtvw?g?(zS;MC;NWC1kgsqp#T27iFp_HZ0f5M>8#&s~nW
zuC-JhYE@;6;3`T+HvsR=@v&xPXy1*6Ur>+jab^@Tcx5Va9rpIP{tg#yi0$SKV`m)L
zcLjhI=01tHLM@ks4d+Y3P8WCzxJ4!U58^G4hZM)EKV{Y!sV)LlN#JGM{7DLbD(k_7
zTg`!dNzz%*{(o)~09D5woKSx$8mJf8$z7Wl2SzF9{sfYVaMc(#D2on*720LWY+GS%
z>`5cSBTl&(M4=a_*>xM5E)z1XtiYkyuLL%!Z3=}>JTR0tB5xcf>m6`YBp4`_%y>#=
zCxZ`3q&?DTLSB(g9w4n;-Z3qgHp%v3ppOKSg%@2!k$;*p_-)kR35h|H0XDq`QUz1+
zp;_U2de^UGHB6wM4|{o-lq)Fh+vFWgixYQYns{-RIpgjYBqt&6h$DF9dtnm&KMorP
z{0VIn233iI`9Fa`U`?Nh?E&P4*8-^bOnec)Z5Dcdpw?=LeK4V(^uD%wUoY}Wv2sBm
z_#ocrxqp7-B&%_7DVo^J7GF0Qx)+**ruf=Nc`K+_mh#e0yrs#<D?!5q45W>W=m0_S
z2NrsjZKPMOqvTRx2>M-EUxG>Ne>hzl2mHX;#LDX_>K7`t^^>9E2&UAlQ27@xLI9j`
zjcpNR$r46|%6_GQd6Nxmvvp3ceJM4pqAtw!0Ds`ZbeoyFjl?K4)JINIjpwbOgBjT2
zt%SuzjfuCCetUj!8FFG{TO8FFT_FFE!+gOofy=pw^aL~wrwn5sftrC05<#=gTqG|)
zxvn>+84^#OaeL=5%V6uK9x<;Tku@o)rK_6bwXr{?v~3aqvW>GDY;2h*7IJn=kx7Px
z0)Mj{1}@K;Pkwwkxl)6D9e&|!356ds=}mqp3~JxRSO9*T14=SZbi>&k@+qY)hRYXh
zjN#feoDUMk2^+KM^z6xg(!0`_6O$S<c9h3KWyyT)KJ`pt!wSs*t~A|pEWPDwCz5R2
zlKoaFth$PFVm1h4`*8vga6i9oF?Pp*g@1@fTw;0caRH!``WG&K*Hst5<nKfNOM}W+
zN4p<ifgf61V^pg{1O)+FmhG=&KK{myIJSgY=B|-DP6KpU0kX>8{VBz?G|k@u{7{Wp
z33*BIn`5e;$7TEGJFbFiIic?W;r7z76Da{b-ZlIyCxkCyw`h3H32~S;OwzM#nSZ+r
z8LhKw`dn6rp4fhNfNV_DkiNtKtU+I{U~LPlFgZ{XAp<`FyD9suT*dsMP<Sp1qcvY)
z6MGz>g`;>#f?NCvO-d|(tfZ$!aY*FfNPK2nuPfZa>7J=Lrs1#@ZSx$VO{7x1Y@JhZ
zpl!6QW81cEO>CPJ+cv+L6DJefwylXdv2ELP{=IMaxqWZns#Vp!dOiI?q=3t`&3uJh
z-bc;rJ}RcZ5Jds<=|Uw5$mbr!TzUlCvWLM%q7J$#Y9hh*NwYb7{f@<5SJy0)N%j))
zi?ucRZNc~;FlB~{KJr;#BZ|QaMb)~1{{etF)jQ@rlcc?PbKjo0#ce`TXe~@tOq_uY
zpi6^A|7{0xJ}+^8mFVthBV5rtozar-cJtr|ux<w2GhQ?}sH6-5rEFrH$u_Jsm-W_}
z9)AokXB>Ndzr^;}Z*b4;$XdVrY~Y*Zgc7)_yFFf;RYA+^wXPanSiSjSeGs&bKLOQ!
zupaZ3?#fTZn!L`EF<oJn-1=KOdwO64o`tv!;rKvZPgU9qbP@f=^k@b33nXxs|N6<u
zSHVhvN-plfGA9w}C+Gh<DpyVN4g#io<{n10EiZO=k$#mQaK7lul+$?HB~P$0uz!_)
za{F>O&mN1A(UK@rOXSJ*5*{B9vCksnqodLFhyTtK?Rgq_tk(&nApFLBUim@=iGc8f
zWWZh>qhIXZBX*H6vGEyyI*&Zl=EWWC&GZ)e>HFP-F+T)!Z_^9nMD`cLbLsG3dVtR?
zpU@>fCeQpPlB>==iBc<j%c@@Z87_yPDC9b{u4>nD(C>s2m`rpO@^A(}gHkQ{#!;12
zce;2iU;o!I?4(2BZgKG6Kc%TGUP}$mF#FW$$YZv0^6vW<2od6=m5et2QQiZEZ8qWV
z6Zq>v*E~!>Rwiqz`*#8;KNfvdk2U7dyRfbVXne5*|2K<7zuuseBe8z;@P|&=xlEWS
z?*Rc)jzeG7kO7$+{<Sn3C`z{95*%S1)y+|rLBn^0q0p}qH9c0{;o-Ql))NBj_tx9F
z-}YN<!ypN%AvlEC9+YmC*m6{001<)ZK6z2$hnz8RZ_H{zUl+w;&79!>N8urD$9Hg`
zCyituJ9RD|gPjbjscIw>@$BmEg1evt?6-6t*l%rPtMVlJM#McTdRw%1G#4?#%eaom
zgI8{hRokL|ZG9)(m6%ZiDgK=E%6dZwKlgvPOaDMUr1pFNZ`_)LJuS^176X(m8HJV>
zIMUNi+u%z2A0kN6x-IQ+>fxo@zPk%Q`Yh#DhIjhZ+R*P+#$4rMQPs1@@An#buSD&0
zP2aCpWG)d92)MAyI;Oz)u35+4x9yS`w;Z1<?7SQ78733-npj2bytWvCQD}!^o~?`i
zAuClex#S&O2$<L~U2FMtG33^>%But%(mY4P4cm0mTD(`n9oOxE)6sDUx8~0)$qw^v
zGh}a^Q=wiR=Ym?%|ES27_RDrdfp4)MlRMGX^yhR4&DQ5!e!Ug(8fn}w+;Gy{Zll$9
zE1UQF+aAV;rfn53U!gk5JD(p9#MtvDC57(igN2?WL$#rRejK`Q69Zkq_7ZU9F+Jj_
zn_g)J3?z1k5p9?xyYq5;bX8x-6`U84tXq#8H}BL_(Z?4^&ELBka`Pg?4TaWDq0oF1
zbeuANmWleKmwFFNtRxGHQU5R}YtCh1mCqp6;Shfw=6q4;A=V<fJw<A5Wr$?Jo=^El
zp|S?Df|u<ZYuNL4`xYClR0M>H&fiDrUq~}^eQ@{n>QFOrE^_@YFZd^1XJ3g$pYVrc
z<Tvp3<ELE#q?OL7b+=b>z(-h!3OTk|hu&uI+s5q|oQ0l3>8AtL)z1>!tkbagC%%?A
zt!MITI@<|qgEjkrF+5EWOzYjbvdq;|4*4!WLyj!8Vp<0GVtq=BD-)pURuJmvH18Xp
z=3;W4T{qV<!eM*}&cTX|%|FMGRSX}x7s`++++$-Uzs6f8gQ{V+KEb7pZt-yO`TK}&
zu&`@ohMKm!`x{JK)A_6Gc=Ob@;Y!Eem%kz!`^ytQ(|`Z@aJ+V5tGmBgeC-{T0!g}D
z#qyNUaZ?(MWYX#5&%OYB^(2b5NKF6D%J5@4pU4Oal>68$cId5fbd=}2cBrEIffjpL
zE&s&NeHi+9xw)uE5IW1I6Am>lnCD{y4Q<xa3+7|4-sx;%|MGO)ffK`T(Ugo8yO74=
z>tNwnom%;2zvyR&-Xr}SLr$M)b5vX4Q<AEf-}V>G{@cRbh$tHnwrU-|8=3G*XdKJ?
z3BNrtpsrr<`CZqO8vQjAYu0GAEw_QnhZ5T`{I|_)JklxXgf4e#x0*$mk4aBo&&zEo
zTFCDuDy`b2$k~M%rFhVfrA0W-#HBu6maG`s#<W1E%lKA%x0H2gMbaj&q~-f@kC@m|
zXtO#y{y=!wE^P{6slhCdUNl2L5GV01o`m(S?kUEy27CBZ^hd|o=*Vz6Mvks*v_Ose
zdRRj&q^QssmQV2L{K~=;f_Z`38ZXr8Pm9;4969VW35~(N4u7Nis!fe=OJd7l+>b)Y
zUOx0)lJF90E1zmu_>Y4KrA4evO}uWTdaOk*XEKr8r1WKg)LxfkBH7>L47Nt$X_`ww
zzmvw!17{O{`cE9636p)76}>*#RP>gs;ObNB!iaEgyrCt13x(u0obH+~)EAm0bufcB
zVXIh8k8mI%_un5XDLw)8B5|Nf(hC?~lNBC@CSGQ>k(zqmAeblA1e}E?0hrjNiV_Ah
zqj3T(9{Zqxw25sC3weMQ6%4Js)g~soY&vqZ48EypSDgF3#Pht5ih-|lVghwz2%}0N
zXiL#^j31r~Cu*;U&9H#X#}X#if<PbLnkW*T*%qZiUQ99+)bO1+!zE>K$ra(qpbQA0
zlD&wXE`f%YM>U%vOfNQTRAT2hZ{0J@bs{N7@+%HN5?e)&f}{%2#Hcm`3(5F+JTN?=
zV(GO5%b`FmN^NvWU#Q!(Lgj>}l+L>&6M+pa>9Er4_%EnihOLl482g^&He>yL%4tn>
zx=Y4_)R0HXS;Hmw1?_jvS`n3+vN$Z7Y<U#@*H)q9C^vbE%HxbZOFP$`3zB1(-*R8<
zC$lr~7lTke?}WEtDB&dZ7~Wg)6!Sit=e|K#MlIs73^Z);kQ!5QAxAstOwljgjT(#k
zO!0cY?8jZ~-yA)(<gk-*CHy=Jp_-FJYW16-E1Qf5xiLUA3K#OL^i8SSvE6415IvIl
zM#rO`3R@29AOqfuX(I1*R55HsRWW3<m&1TT>=F@BsP~ldI!6%co|8W^cQI%M%LN9L
z-gD#GqC|_Ofhjh|pb>tXCr{s>chBrNCZ>gMZ$o7pFRH))f=c?lDuQ2~uWc5}EjPIT
z_hM|6r^g)`RQ?nVQKA7CZ0een-y9`V1}kf>;bI@m1{nx2H9-}B)TMv^AiTby_y=%M
zVQp$De(MBk+~iGu<%}1j%mi*AK@k<YL)(<+AzK=)d;L1qpyLTd(l2?tC;ad85v|k-
zB;<<vxpTZtB}4ckw}r+usw0f|)unfZv6<ig&7e+}V!Uz~R6;aiTbgP|nr(+4213n_
z`TP%d0u6^0)rEImY?q;SKszBc2#CTvMT5yN?)O6_s(F#olm4$P+G_xIemp%wpnxPe
z_F~j2I3DRzsdjQF*fVUkM50fn%qWKQdUOgDEMM((<rL-;pz}V&Dze2wKLum;%!Iip
z3WS9mhnK;a_GTnQ=TZsT4MZ5Wv`(07%zTfa79{D9|7p`7s=jVkNRS2!0`w|caAaZ_
zwHeaD`2J^i>v5jqg_JU(N`!7XjY~kVAn9q><cVEfkb=zSrFdgPfLKj!YLS=yV-^ln
zWaZC^1ucCNh1$gcM<WkRU^A7y$3ut=n_{#1dcr};YRO_1H5EO&;v_NZL7^0OGx?$y
z2EpNthx!GNn|UJK50_Y&1n9i7!BBv~i2oKHV1G_;X+%d!j~LAt;35<uK@FBRDvpOj
zQTFNm^$3ZwJ1n(y?28~{018Woh1OM1Ghxj}fkVm`CUF+92DACF8O!>MqP@z1kEZ^)
zgQIMqM&VLx03wH~Uit-39%O?vjf#1r2|j&Sl~VjuIH^_33o=lK9Vi8VJb!hMM45J0
z=%_*+@M=>$UWhaTFiDC<*-(1GUhsqi{hbF%)_V|ORIjI{3@7PXc01oXF0h(}R=`C$
z{xVges`v^k8|{%B`%fSSvIyn$7atO!%%F);!z37pf`G5%PY3;FCqq;WLe(rt8laVi
zK%T<&fOEzV8i)%01suElmhu%>dvQnUmvH;_0tdk&D~*N6&(wnldb>WgnI+oB+5-j(
zBGeNIvfT{_sw(gTd)oXi3jy*$sQVvCe4z?OxRHrU<cAL@*s1iR9YXL%jPt;!mEu9i
z&Wb3AWmprP)24KRG&>q~cE2|N6TUte^(!Wd;6AP(sW1acD3H7Rx=ASv^QxNG?{zi@
zLlGYr4~x=o7*8qeG}IUb{g4GdbH9gwO&96Oku|(wWNa=h3<)}W`LtH`*Kf_X@#ma~
z+A&qJf7d&dU}Tz(j!S_rpAj2I%#(l+Yg5<p{wSSW9SiE~FmqP*^iEiv=UcIH7V*6e
zK2#BN@{xts3Q&`7!B82ImFnz}ac8P)l;o29upxMpxi87c{TV%^@J<F>)m4UBO4I=*
zn=Uj$R#M|V>^tSUeWGCCjt1+Ggpc06&Ddw}px)@mW8r!97qPo<$YzT3=EXfMjkMu!
zLkR}!B6?KT?<#NA%IS5}kQj8T>LBCv+Ss7>?vW>ZRsb{2S;KepvOUH4o3nLNL8pz^
zyh}79KxC63sbOw#T)W(+$$v&8VxQrQkRu%3+B_<z^*1KX37cx#&fhIv)4O$Bm9K?1
zWgmRmm(lCh(C<BIlE(sp;1hms=7wO1lNYfJjW0&M1GUfAO_w_)tZ!G0vp7TV8trve
z_mO+>8(`EX>8In*bO&=2J#-D1=r5PjEKcsrBOhV2ORS)UV59*lyc^uGY?gf9?GQ+W
z*V_+L$7lf<EqW5R8OUdkTRjiRoOtaPKZMz>!+Z$aN46c}3B0%GP|<LIFHi*)V%^$P
z^WQtS>0o(J4Y1@ax<O3NBl4FM>E%1BG<UR-DnL(hh_;}!1d7M0*a<0>*;m8dq51Mt
zjrn{5L5NZJ0W$FjdxG7AoW?;g(WKu8ORkffpLC*q8>9p5HA!nW@ekuXM%x$(dAKs%
zwLRs183c#YP<AghUd~Cn**57qS<V5HWp^*_;V47SmP3$7(?;KO#}aC($&@G9o=5_M
zCSa8~6VJ0?M?3r0OIW6e*0Z2;^;n1GiuL3qN;tt<e!yeB>4PAG3R-zL=FNEu`{BTB
zZJ_n)6am)2XIjrSuW#-Q0fXzu+-Eo0wix#})=QvJC=%x{dA7x{y`jiv1+Z+G^<Fl*
z-;enH?z*nF8lHOd4s7c1)$nki!-(<TxPaujP3-_XpGtXKd5AqT4^hj$uwa~4Pq%Od
zLx2e0!<;#BfGemue`DwLGbfEz7jN&u1h5$>)^$ise0mhm=~%%dw2qzfvDk!>zR37b
z-2!rrs(dj~^WXT$OIP<kQbC#FwugIDfm&}bb6$osu&c+U_<n(EW>l}nCnFtw3wXoP
z8+{v}eFPs-4&(tG_69DllNw{jeyv;1AL8w@j=uM3P9Xcsu2?B5Db*Ax6ocjAMw^Tb
z;UME6B~-$+c`~UZ|IGgW#Q{}PNXp)&{U!+NM}`lCP{>I{4dYJQq>;c`!+O+(x(+sS
zUIFCfB2I{q$9^&iVd>-S7mPDW0|Y)8yRdi(Z-^U~HDzR_cUn|$K^Ik@s|j{Cp#`;C
zGtY!tVTN78qx1PD0*u1QW0bh{nSH)6m$pMZ5~E5E+#x%l8os;8#LHv@-plo*C8fF0
z%1FI1DUGd$aekQw%|pzIom8`LFOqln)UC)xp$m1%bG=R<f#P2`3G1!f0EV6FZ4Q@+
zDwj5GhxO%`u_LxLvp41KPxY+(c0vQ)(1^Gm2n?o5iftouG8D8^knF7L^4vR3%x@&P
zO?9+|U<Xthe0AJ)iw7ghp)~z#hkg~Pp<jI^pq}9Tm=3cOT#sW&`->6Zo;>=Dt8|FQ
z$!*N*bdap8b8?HbnBlZ;04lU;Lh*_+KF8xm7aRUpiLP)onPZ;HUtxX;6ed`t=oo4w
z*;|SFRDLom{)fo?FaZ?1Nhq-TTrga_y8e*T4a6j8GE-af7Q6GLK>`}pbnw|Zteh~|
zMW|pns2_8qJ5#*K^UN#^J<(4VW&((>*e1|uSj}+lwItsH@XJHy0D);g_t=^o``;L9
zi`%IJB6;rDYhSkhTQ~=>N7J}HU(E$XG`xZ%$BPdpY=0`YSvSW}awNBQZqSF@O4u#7
z0es#rGGc#6hit;dCPytu=<CC&96Lyjzy8I12*lluxa)~&CbyOHkT#O=E%JIJ6LIz*
zD1H4rU8RD8mw$|q0KWLW7$I20PZS?vR8i!$xtBZX&3}Az!<~63=fMY|G%QDO9uwD%
z27V2e_>U3mgIIq~36=%M7vAHWgQAifD9&==XaY?weI;zV_Cep9hAB>rS=HYLoF+V5
zI-OYE$&6n4;8r1&ZZ|<4SvHx`KJO$Df@?q()p=+TjKCZa0T4HQ{^tkZgs(I;*MAuT
ziyS%Ec)!#Y4;^1|8P`7%<>(FW*IiIF>?8M3q1jj2+9+4yTE(}&jEsI=eDR+srOb4w
zmAK{(QJsjb4u47g!=p!uyL|)oKZ5^5-A=!o8nEF8Nl*UKi3(yD5gG(tKfbbAfqd5R
zHia9ixq2ox4TPirN4nQU#V77?xTn{~{55mQg}*~ODDfuU89Rz7(&$fYDr%hfWsq<B
zHe9FH46~EZ`FOq`?;saRrser`Ller1AHWnhPJ<XuO8;EYd3=JBfU%Tm3lrMFVhrmy
zZkvn_<sRbmq}T`*P?PPO!zwHvZ6(z@D#8OUtg0?v3Y`9GLpetEEvRWfp_VhnAh>nf
zBN&rWtRZ!8<AWi`pz0p>Q`)6$#ULDpDfnQr?GWB3vxe<9ax!Rs6!ZM_K)V(ID(1p>
zCVp(}kThdRKp<Z_Yb6}Ow!{}a$%i%oNDgKjoCCVW1u)!iCA381cqqCdF?l!065yH`
z5)p&lK((I@{JnkwXCPwAI-xG)Wr~*RY9Of>lrcUjb36&(X#~{suOz%pb}yz(0epty
z#%CksVA{u=|A1>Z$?<IxUE^8N(5IQE^oH(;+G~kD!rTT5*`IrC)Qdz_RLn8;g0aEF
zar_)lLBElh(7D>O-cim``r2!(@<@Yr`NRtufwYLhA@5u4DNYW7<IisJb47l{>Pt1W
zlg#vUceDy@4OC_@#7ga*mw@!=3ka~qWQonDuvju#;i3PkpUF-M^nsp%VzC*_Y`8z7
zH@3oWi#Cbgkrt=eIbs#nvZLEzc_-T9KQ0mVX$2aFtZx?8M3KY{<j3?U%xd3BOQGIc
zfl~3N6Ibvn|9_rDAjuD3gfSn*PY*k9Uwt52d`yDJpISuyv{QJGCp2?G;l7XOZF;@v
z`UUYfeP1wFf0*BJ$?4|-i1^HlKIXu92+G@gHRTo0Pgxy8{_WQXWWBqlKY2sOQDdQ&
zN>sU?i{=?yOI6=SCje-9q(uAwI%8?`fv}`toGfYi(WrDl%a3uF&Gw|1Z#cpV7|dz^
zI|73gtjR`-jUv@P^U@QL1|v)cES>2Qo3jf;Dz*VK+LWRXi75#Pc61t)4olIpm%i=~
zloP3rENT%Kw|`eOad8VIu01RQorc6;b$=rjmr{K{ftS2MHr{)G?)U=`8P}cIg-a_`
zh}tx0@c?R|Z~S<5mOuxy@kr<33ESc~@nHNghpmo>uJ`5W47_|C|H+{js#(Ru)9Q==
z=oho!WVZPejod)F9Js*M#!8xdMJ`SQN94o12xi?ve;wlIs58os!oeCs?|MY!Ug|RY
z?8#nh^Dy>>KrLB+5(D%@$#F*V+0DDZo?y%{#yDX>uB%GTg_O>czZ^wdq1E}*<lu8m
z>S`s}+5VUcra;<}=~lS|I1bq6c;TPefp=p(J}pc_+x_^srFb-Md30^Vx|ofEaV>0Y
zY!1FE`a^|uo9)vrhN<T9Qkzxjl#v<P|Mtg!y96U>VzNIDcsw$DuW~O+H@Z=<1krih
zRWOr*9qD=XN}uAko$giLsE-YNoL8(4n8D$v?oGdb*sED#YXEnTOz49VCW+?p?$%TZ
zDEdL*xcf)at7UAltCRTx3kUm;pc7_Z&;xEq49J%T3@>I5hdO;}u<J0f%r5xvP|z8V
z5{l}|&eGO<_bu#luJ)eAGaElDMNowDtQr~sw%hjbC!!f_3@*uX<rUtO6M>gv{OL%W
zq^#&ue+Lxmvf&lP<!RW=;fsNK&inL3uu1g*dcpXv(}9SE_=D0@2-QvGRTtDUd8A}7
zvLCa15681T!Q)W>Q_~#72^;j+6yl)YpS03s^N31}qiV}rd|>6ADd6Tm1x_)RLu&y1
zt_)!CEp7iRjpL`j<m1R6_&(%(%nRiUXL!H3c*HFk05<#zqSL53BAH4#R&5~Q>|h-*
z(G5B#)v$F9K(UlDk!q_dGcb(}rw9=6M++r!a^5vv(XF*|9WU(|d7y=)JZey9IgScu
z`^-PlFu|-m-^J_G(oN4|1t1_ik=g<%9mW{()j>)z37q}&=jL5ix=W6+r1`kXj5TIO
zW^&Y$s^>wNYuE3JjzJK(i^$LLWzUg6mP;kXS_bQ8YLQO6@=BTB6Ge8OC}yRmpYOS&
zdsrUPdHEp4)|S0kgyQzHl)VR@E=!<x9EvxiD;L@c<hAe+%TqrY5&pXDQV#;Pi1$UO
z#JJB<M!b9!MhxHHzs>L7@7+ueC}d(Si~q=F+s<n?DpN!Bx}Cw=!8)Z=?0O%@1!BIE
z_}8=4ByF)1*=+H*Bx4Sg!X%Zca%g^#^W70qGK+PE#kV>J?EV>_-nU+35Jl@06bG5Y
zcqU}YV(9&Tuf$xpY6+cp0i6YA>m6g6r+@fFP?rw++j89_%X4*kVvId3$!(0+FuF+#
za4YU-_#2Z%Nr;v=#d_?cw);=>5!64(=4fbfk4WNxVPW}=|3VAN5ZM!EEM>2X#41fK
zfyi4x<JETE*mD$bs-b_9?PVT+sjQ;A%a;w~;*(`7OYD28Ow@Ivt%(Kj12Vf3xw+@s
z_lJd>0#L5Zs6&>*1DTLqXFbY;vP#cBm0@}2TONEq<`%uEX0OnrT~dsGHP69?9LTNl
zC&C&XQm5r&hX;FsgxKmqUFI`nq>u~v!Dhg>zRLR#MeUgN)MRZz9Tbhh=fosxh)W;x
zSDEgdaXsGaeCQ1!<^Kbe?=Aap%y$=RsN9ZmYiArB=b(mXgyJ5AZ4XPgNh#*(0&%pV
zFUOGA+|ETJU;^>0AQy02c#Ju2rq5@fQv(r&+U!VqWp5v~sze)rUKO|JlJ!MSwasN)
zopp?HB^Pe^Pu#zVZWHcq%_<l_{^9+i>qVtDcGBfGvW-Sm)9(Nt5%`Jiy^sd>mzFQl
zQBeeCWNB{&a1n+s|3)Doh07f9tlT*hm|BS7{yCW37io4;SgrZi?!q#6xSUOaDO*jE
zPX6gOHY+fu)krb<kDSnC$PIQL@}4z*j0Mtr3;}XX3iLC)$iCBt*cfD>L(Ypw4LQ64
zT2Y%bjO!~CBvt@OJjDRZ?ZW%@i%$5I!EysDy2s6G7#0eD0oG?8l^zUKpRMG)I^rTk
zR}q@~8#APKZ}h2~au}Amrg5AUMlbvL00rcfv^`>sbhv&`Ktx!Dh0X}eoYpG=H(pd4
z-R|xmW#oFe-l=3(CJE`+k_$ocZPFetKil=Xel{wdvtSfZ7?5wL+}9ZsZ?Wt>>mc%I
zYYX923m&e#k=qGK*hV?FL0IIHn>{gPJzG1C%X?lepd*mF@CUIVFCzDW{fhd7QDUV_
zxFr`(W2?M2QJAP7#VZmgn2_s>Sm>!)L^3NKi|~{Q#q6#G&f@Jq-d~$oSX9s|!qR4j
zZx-u7&wB(U%)==6KDVInxGy8dY$X^_%%ovEwYGp7qIfma&tPTZvE_Wnqh}V2Rr$fx
zn5@nSagBO)axoR8oCrd2lR|K-GAT~;BDAU<Xc3k(BKAFQA(^<=uZ#b2#y64_LFisu
zejn`l-Ri$vTJy+jb+c1FxKZW4<sPlHJ5!=YB*+K^YJb{S=D+=r!?fCWa`DxGrYY|<
zFQd`HumKy9bWlO>A>i38c)G@yDGxWHpqvgCCZFntu4l`tvC7?5uPz1W;C+fXJ<hJi
zk?+=cCxLdCDvV+$^4oRS5K41V$bcp;vx&jm89?q^^~=NV@J^Y!N6PUSZnz7TXEz=#
z>)ZlJn3YR4X<~WWCFkdbUdZ}ZetntL144@Z4gp$(1S6gai|0|aQ277p6<w%2v@xMW
zOlIzSX#Ij)Hz!O{i^*Ir(D8-+k#317t7XRdz{=m1S1bmD|6StK?{8!_$^~-jnHIKz
z_bCPS<?m8OGrEK;|LUQ`6HF=e`pLft%v}I@F8P`tu6`TQ)HTdJ4u(H{CBWH0vo0YL
zvyOlg7trq??mhf>2SWNCx2DzZhibm=j6}q8)x(guSYLkf*kqBEOiO~gB!`SbT2H^F
zEVXavOAx(+>dW`0+=Zm5)o{aWE!fP~?~PhW6e7`}CrgV!|A4#}8y4MF28!$Cadrdz
z-E$B0D|s+TScI=oq)j){A$7#^ohIxS_yt<CkJy5Xwmo)8jfe#?T<MV^G?+0keB1pm
z$O&K?VGAbE!zbG3gTaxK3(KxwDy=58<M<C6azEZYzyf1J=U}FsY-1s7C5l@49AyNi
zbjPxWUNOjOWBCh)&liNXMkMPB&B=kVTU0ih*4SH93ew!HFi=5+N~RX*YR{clPsM2$
z43;vnMEDq_TcbvLa+iXeaAUzQyEw4==I-L?dz;KjTO7F1+Mi05qaZ9x2QQC4OfB|W
zKaD%mzd%<ikXJC<c59$~<mWFMiTjYBal}iv#tUt0dINTaK}Zw!K;ou#%Ax>#%Xz?Q
zv3;yUCsu6T$Zav$nnhrsjCL7v&&dEjZrzl7Nu%`cBzaGMR0{V`)I&i<TWCG6NpZSG
zDd|e^T@+{25cJGmNyP(YuBDRd!JNV;>D?=w4)|?DLjKAU`8P>Ag+0x#OgLGj0xL^@
zG*{%}8e`8?Cpbr1VLIf$DKj93I8JR$Lp|h39xKGWz&7oV#c%_ATD%OdHTBf2&X*fr
zCn?WoMIO=tihz4M1cfm#jU@&F<zBg|J0fx4Qf8_+pZDNNZ)zwe6qC4k{)hZa)LDPA
zls4#n;h0V>B$ObG!GbA$m%_B#$p~?r!g?(eS8#SsZPqm(%KJ(P=PN)kc>s(gO604`
z<gVH91|)R$Z+k-uMsC5Rjw0&|89#NPDlx7`%5v;OQmCg%nQD?%8v~FzUQ0)~5X`Uy
zaha6nh9aSMFf)2SgLjn63)8apo_xs!mfiHyXtbHa^><R}QgFA14JWM4Tp&)MWnD*u
zAWRRo9}oAi&}Z806~NDqFk*tWvb&72CW8}v1FH$bS2W%LB)vgQms_7C7zZK4nrrLG
zH||np@oGd?VOGz8aJ9>NpUB7-AN6Oxo$i2D_pX<lZBRqH+K{xy)9Lo|wi}9{aYD<;
zH?5dFbDmr(k^J29Cxu4&e`hs2|DcP1?DO<~wiV*hBK(UmA_0gR_Y#P?l_zV>qm?YM
ztg#T}vo!jQEG3cq7vPPf@nPCqWG532ge6~&?(dJma<q`PGpeN2Q1|wg#@DoJHPnzh
zW&SH8RHGYbg=_qD;x%(7t*=i!nmdK*0dea(gP#g;awH*o-j+KJl0@coV`OPxm8jTy
zLT0(Z|Ec&9I01ZuL4$C3H&%356SbL^wmke8w<roTG;TAc|5sqGu$}S`hA$Oy?jD*6
z>$IP9zDC8aTrG{9-Cqu8Q<`^<p*9_XK{UD*Q%qg-`=`pD$u!~zA;e%Xd7$?z^7g{)
zn(j58%mAIJLxp0{P@NcY%aOt60Mc8zGUrQbJ6a`^U<*(;EOOem)vJ;_vmZ?R&#mGd
zu}WB$qY8xkEFtuC-km%BO8fNcWwDj&Uykm4NDnFu!NFLbw;Ye#c}kh}gq}qwY_j8s
zq#w2Ui&&-pUSK6Al%GX^@g9q|ah@0p-p2Xsp&Q5KTv#9umk^SlEa^Lz5*TC=$g(@)
zPp|47F*+bP3WRj~k47Yr<we$_=_~FyGI*Q`-<gFHx+Xn)XK$zwlCH<~OxK9rVURQ{
zz&VxcZ4;QDg3jN94P|Yk!26%3I?nZJzhc=_)DRk&d9xUttJ}YT4O0AO6&(jZ(P`z|
z5Z_$;ZUvp$u!Y^R1R02|?OoF@y6`8B1nMq8y#Y2|ekJM{CH31-s=zvI#=lsV2Z@SO
z4dIqG8iLZ-lgh4W3uK#xOKSfCt~lFKiA6zv3Hj-hBZJu*vU`RY!KAEZTeZ4l1nwS=
zBVs`y{8=Kh3Hu%k2YYa#&i79D%5p;H$`$*G9`?X|%2kQciJx$!z8ONjqdM_25ymVB
zZVsqr#k-;J%y@b18ow*9kvY8v|BQpiK<WM6%kgV45g(THRsdfkO_%JHOJPgM;q=Jw
zFtEZRG?}W?rtVnT1mit<SX!$cnS!UI?C)p@ED}QrdUk>>m2r9MAbG;oAN0D{<3V(N
z+&5sxx^Z>-^DQT0SZ-dLy0>9I+>VaLzX>Rk<$8f7iJkWk_ID8z?u@b!nBdR)5Td(v
zvPPkD9Hk4C!xwwYy`6kA;gQs{&uoF?F&9j&-QF8%ZL>s?a=47me66oO*)-V7s)mls
zjSr%wE;H%~1kI>Cs}5AorHfqS$jw}g)I)W_NG3b_sR{8#(~+ab_C?*annTBxa|Vp)
zT)Yu54`pO^da`s}qTZS#@0?QU>x8)Ja+LHIfKtf$`1uDNHWuE+`dEoSh%$HLL(i%)
zlyAUu6ncZ<31z4Lm(AkF@BlyPb~dsnd`&j!yov}vy24FK6%ZVaUcC{-)~Ckd>5NXs
zS!Rf&56p2HQJSL6c5~}}_2BIqPX*$2Aynd`uF)wvcFqR1kNw<WXKK-HS;Y#Pmh9!W
z7>BCNhf)~>h%1GDukJSquM^99I=!uHnZR{Kov}u>=q<WMfM&6gydgLG{^k>tpEGFD
zmlInTLbxu)9_5h#%H}S8tncHtX@E+GHvx{%4FeHxA;>0#fG1{<QEW4IRG`2i3eDCb
zrqnHh8KEITp0g(j^}i*Ty8af^^|^Zyk?$K{o);4=$T}d3LarAfPX4HRB1Zc-0!eVA
zP@a|%P0wTR28*K`1j#c*p{^7%7tZXJj<3U`9hXI34`Z_$l>4Vz8E3@tlT_Ql7Y$r0
z15(I25>@MyOzkdYz@?+x2e6FxKQ#8r5X!M&s$1337hYBEuK1`u7agBDzu%AAU^VZi
zSup1p&NPU*qb67BP(xPbT-AuFr$1eAH7pKH!}NO&ht-6V#)U&*@{QuQrl;aLz$}+;
z8A}qEN{_%FroZ--B7xC*BoSEV0yR|7{dR0e2`+SAERo^BcVd}P17HJx4dPBlpTGVl
z{6)_Ci~X@=7F?_UU`nCqw%&?@bcZ!on}bDrPJdfji${SKr@yLd^5Vf2&#(c5+3Tx=
z;RfBPd*`wA*QM0ZSGi6bmdam;no_c`;2;N>4KOWt5-Mb)5Jz!DaREu4hr4k44a&l-
zv2|HHTaAg<Q}<lVAi!P+fjhFHaeO*7x}N)~+;e3tntJ-8IMEfcaZXn9BG;aPuy?n#
z3J?BHdr43D*#uo{Sh1__x6iZfAWYliw}4Zf>}t0rIp(o*SZ}bEY%IpDP7YM7@<E@6
zApzSu$;{urT@DfrIZH)T4LhGsbfSAmRGc}=!MiQo&;U}mU0@RnV$L%V$J_F_unaT7
z>GzZ0Qfi>-@51vMRN|#kaF`zu5;1G1CIo}#Qc5bFp<Mq&0$&0;d@BA{8>ugul%bkY
zG5lD?$!x^$by+utBirHiC!PA<CKOe%Zmr~8DviVsZy!`NR)HP9GQz>6LeZ0+7x7Y=
zyXd8=t4~Mr6#~=|5ly(q%Q9Zt&3<>g|1f6b$ep^h&i;G*kFz|_P<Y3enjx%Ev;`XO
z=q&4k#JajJ`^_57dF|`sYI>_YI(G)Hq)K1^rtT_?kC|hSaX9Xzu^_3V6|d4L(>0{8
z;)$?1;UA~SkS0Ft*`W{8@#J*DQ6J79`3Kj}Gy=l7-d<orHV5TY4_h`I&=Q`nF9DN&
zUrr)X$6j-Sbk>$7R+n0XSG0QMi%(y*UK3kYVzS*|!Uqg2hIrNRLlP2W?+*Hrky6&4
z|EU)Pw`nmShTn*mO7#2xHvz}VO2R_o_#b(cpC67{-rV88N_P@g7B2SxrHi_2D!6X&
zAoQGQy*7(YQ_#uyTPi6oa46)gDegOXS~fvTT99!y9-`8=Z5tX2=V!N9Wg~!*!0ZYL
z3+fW}bje5Spkh_XTTYJZpv|)V*P1n9F}ZX}>~Z4rvg7PT_7JKc+E;|q6jSrI+$mer
zv!~{@n^5oC6TtSw>OI@zjtiKv;tQxZ-FvS0F3v!MtpI5&?1Dc~`58zWNTJ6|LUB|k
z)<mmnS*Ow4sk6TtoGof>__EukO*eW7Y|U#rPV~-au7{4<Qlg6M4Y_PIAYnHu^b@EM
zR3j-YJ=00yR%&Vx=p^n62^J)c3v%-`%6gx^*EOVb6RJR1gF4ehW&j=hu~2_x2)!#!
zkIK%CXVO5B9`_U;cc@TZef%e7TfXUwvR3xmpII&(Y4$rh0{U6*{visCXdYaT-H~fs
zlAKDZ*TL!Rj#<g}!{FIir7x|0;H2<a3nDHmM*93F4+|NscNsxvntAd|5^JcC@?x({
z^57sz*O2+D#=?<AWdP*Is!_dXT7}n$Eb0RbJ)D;b%onb#w6?BI4;Yhn^ormDe(ilc
z7%5Fd^4+^gK>S=JjcF(Cyijtr{pkzaSUz#7ZF9?Lab}vb!ogxlMeGLTcs~}0@`kW>
zVIw?*$AZHmj*rv`!LM`-Z=8YbHxoaKftwO}+MW3W62r@X5WoTeB??m-^g1Rk=z<vv
zuO>)-7x>TqAa*50<(D|rG^Vgg59SFD5Hw6MKvW8MzPxqNzw3f#wGz+%@;zFrIUQI^
zi6~D2%UxN$OUd_3&F{QI01eO5+?FF2;n$(@0II+X<|tfY2R2z*aOLlMQiorzovn&B
z+1#lAL`drUPk`1o&6Sq6yoh4RXv<ZQ{N_5m6PHG_9i&SBcf+IdH>9TZXC!1Wtklw)
zu-`%XG}%jVC}a&^&a$-+-?t;1+#UM#WvERQme`#f9)5HW+QHjWGiwnsvu%5a1V;s%
z@$;$YtwV~Xax3s~FZhIMBBU8ii3=J$A_xC%D}EU?-~h}L`)<Wfs1{^=cDh6{ZKROG
z`4XeeCyr3LrQ}K?fpyTY>f60L3SO_#89une!(Umj<1>qjx<z<wiyzF;xvi24dp7#I
zniG7R4bG&iYGs;|+;NKV+IhJ}h&B|uS9p-{YfxZ2*knnLmv!AR64|{ieO5Bwc_E=r
z|M8`${-et#bW|xv8<l~HMY)WLa{Ru9_3K$uj?hH}R-*F>!cj0k!sY9)a;ZNL-loB1
z!Bph)iKRds-+dxLWB%&xqRBn*KN1@sG%qEnvLQW0^}WJ>vy7EK+sYme8A5%2-QH^u
zVyQwk6YwCls_HN!%0Y!`MGje)JcZZBmng;#GixCzZy8$1jXRbnXU%XNl;OsfCAp%)
z8DNZy8wP?EjJ=q$c6&Vrct4`YG@A|ne`X8U|D7!y+*}<0Gh5QU5@8iU8`J(I!cG9@
zXp9y}qKshLatp=(66k#Vn4PI47?Ph11{uE6dmw%e<JwWBl1-TWeA%d^eW(pE(v#ys
z<ZGf)J=2_wsbWc;=Su2kr3H)fa&V(l@9YpIn&ViyXtjTT>fg27#oVp&E-p;u)@ZAf
z`=Pm~ZU1K`#9TN8lR)Z{>0@W7+uIh1kUW{Zm&T#d_v;JzIzA3L6?7ruLvt<{%x&9O
zK#4?H=73HT#^y)CjqZ0@NyDaF&s8*6OSd(`8SSvulBH!wK*5w5OS=kOVUXVYv*;e9
zwy8Bu7@TA;IBU_F-HF9K&#W<EdS6%`UTJ@y359W#pvCz@g!I<`;I`REA0z@8MH$}q
zb>p_1%56c#OwdNy`k+eaip(1Fc~R7>{p_JFzsv6T8@lMWv4alfzoqm3#~u&OabLhN
zbtao14l&qx$=VL$!i?7sBDp1?ClK*N7v<4iH^p7yQH7Np<o4g0tgvIbm1Dhy%xxd%
zM<aL=#}GK^H{W1w6(C*l%!>xZ<qs9uj&^|yY&Ijp)D@A^RvVW&WXbvLq<&SnEeHR=
zL9YQBZuS{XetT}`ktB&+p5T@8BbxXssCa%Xx6Xs9i!19CzZ)MTx8rkVpRXl^#xsLp
z9yIDuvz3li@}yMeA{OS4aPgJVgCpQ~t%yTIrPl21Y47N;7U-@9Cp8DGeD&FUrhAFt
zUHM;EQ`^k7xO~@3xGZCwhNmJSa!TvfPgTnx-}Rs7EFBdEWZFKKZ+|p<^uq;bj)llT
z-6T+e_fdCdik$^iAXM!<Wa)l$p2OhP^0Ad6D$gMuL|IUE8bIipa0kkpsx1B-iFi%i
z?<y`U01r4|J)Rg8{1XR23}&LA8i^s=_P=Evgh%M-+yK4nEjPEUn?#9cXNdW>Ug%b`
zf&SaKI8d9d2mI8rdAw)^hOqDcI-qT+CkAN4S1-X(o<|i|;kiaEfq2pi54K(ic$SNg
zc34&{%itT(lH&b04OgpEBtG!RoG5K9>K2m!WH55bTK0+Kh%kU(X1JtjY+%P3=EJ-z
zvQm$|6$pfwR`I?M_=Aq438jQE!{I1_zwE$ZHg!?R+K?e~!U(#__|(6I5kTs&FXi>$
zpFP^8nq9jv)?{xd$RCU8AM?>;+{N)Mtw%fav47+u6=zxS<GA-%v4UNr232XmWShO}
zR9S(|pMmAmPJ#hz_(9UNp8|*2vWkOPzL-a%6oaks=jnfWi_aF$<<U?jgD{Ef{&Y_G
zi$WnVn*YezRXz0Vez#vCvR(?<Dfka5=Fm(VoU<L#UG}Gz0pF)Dg{`}Z&|yq^7821b
z?bc8i({2ppt&qZqtu&Nyg0#Ql{O#Cwxpa<Z9d%~U23iWxMkywjWrRqf5}8j%nIDcX
zJ+YTM#~`x$yP3f`)=Xen3~|$wh+4f3V)Qy<r2e#c4xJyH|IED^Q<7znM{Zz6e1L;d
zWHbWvM~DViJ<%D@E{17z<poio^}jr_D2VnJo|lFexD9PW)=ILlc0IDTmCdps@LZ2{
ztCh5lly3>V=(ij!d6)~$(UmblOUww$v3xL)=aKcVp6PU(L7uPU&Fxv$oe`hC*`B)P
z)BBWXxKga%Rk)l*en-Nwqttql7{k4AC&7L1a_4K+8bbz(+44faqep{qPJobFl!4&L
zgbPnb)+VH)ztleT{^!`NJwd!zK+261{7k<OcdiC_sRA)DlkQ-mO<R12d-qbi4`J6n
z(HBpA-B`SLqy6*C2G*%7P8}>ah*Fqau-f>^LmOCajr_<6;St-h&EoVH9{hG%_D14P
z#_fw7ulS5SgRnTD*afkc7#$pqw|3o*oM!havz#eab{2++LVX;691hv=p06Pqu=<x@
zBXI(sS#>aE4E$-}(51UVN;7_7KeJ(6V&N;U=qb2}I0etc@Jd!BcV0iSUHr;yEe9bO
zV~u+U&$Mm(*)Av-p3q7a;2;^&Yo}u}e@xAw^qBe3xkcp@`<%W){9)SUS>Uj{1zB``
zU^utrR;mhhAmaMXJsW7EPUA1*7>~XXCD06naw)=4RCAapGlA<R8+OPk3Q^fKUeH}{
zTnEr;5yfN#zmfgf3e|jCTrBaVf*{?-@E(1bURm?u;*r^U=7+&l->7H!w_hTw$<UNP
z+4gsBluWMwAcCm@#MuWklEw7E+HmJyzJT0AjbrQBL0WY-`e(6Bdt^S%tRAUR^QkEi
zN~*mG6xROadxpq%V0%ejU^k=^<(05Mf1U}^M2VJG@K@X<H<%+uW1B-FB^nV-ipoPv
z)KejAq!;vh4zF}LzfHD;qD=Bqb-&>+9~KRd5*vHyB7`TDiV<wY@C-iiA!M1ybV7Pf
z^s3<553L?415@JNczU6Hhmn*1{?BWo%@CXByV+C53?uuU%=k)y6ox4<EPTK?^PMLl
zlq4|(qzw=VVpF7wA<_)9?&3w#MC-Q{x^dygJwo{WGYgJ|gD7GRpB+zz6g@u_J5*7k
zRC?D<vcy#!_`-w759ms=W5XBQSux7z+oS$FoxZfbZi{D1K263CGlU2_9vBF$G|_Pu
zTi|!(k496wy3>-f-g=qViw?1B%WPFDpOUyN!QrMD#a^!O3D=lcQ<&kS;U$-ND9j!r
zhI!elTmE{X$n-w=6c1L1=bRMJQxD6+Dt^eY%7YL-Jm92fME>oN>Br~E@6{nT{u;8t
zo9o^$PQ`N?{?m<}ziJeAPDlq}J&8u4^FbpG-uY6kS=`@O6)43@R+9A+clRd_d_5K<
z`N;eLi4A*zQtDIZ<uv$o&CYf?9VVS)!AzXdtaT5=7N0cJoe6*7g(ag+dUG=LYQqU#
z8)Z3llsKc$v8kfc*AxrTd(>!%*Z?7~01Q#TLv9)~rWVxBZi^ze$P$4{*m&QABp<s1
z@zcxXL>f%IT<ovf9tM;WbOWHT9Sq(q>l4}?fpF6#8TlZ0#~THlohBx5*SY`wyU#C|
z%8APY4|}WA1?R_<>V6A}CkkGROt9()hq;Y>-6{bWj>=NM2b~97qU|T4_aYm@J~`K_
zy{eMvcZ;P|M&!XMsw(iKi?68-qTu$cpmGwIkuA0m!a<{3mOx<-34wS;pfd~YvhdC<
z<Pn4zU+RW@?EFja9GGQa)e|AnR~wk(&47Dd=V`s2B#q9y;%~Xj27R6u?$Zz=^+dJ1
zqB%fEY40R=#2sKbYP_0`ku#hsI(hvh)9)vhKVakl&kzfF;s;iDPD@$A_3{Jiqd<R*
zHm}g8G{Q-Xl2cdc-fxD>j9Ha%G@CXAjH_t;N*Qc6H$JFO&ZO$EWhCNR_PH326q{+!
z{IyB<t-C?WuRG(akxkNXRXhK^)qGB7$Fio`Q-O?Add3nVqc@wZEZa^bw>@Q6qi_mN
zskE61N1ok<Rtn6`U_q%Qyf*F{Lm{hNj)(GEvP5vx{17K~UC0+ihlGgHi?pf{unnn2
zq&_o48qjapBEAnOfBr1Ij6=Vujyz}O)1W&faJ}vZBY|yPgJx6f;~3zX;#L~xDYLWS
zJC$Za!V6hRfj_)p$%W(D+IH_bq4^11p?+!MzD|++Dgf$~Gc(=*0o^XJJX|x9PY6Eu
z)I-^mKsIeS(N?S!gU3PD-%&6Cj9+ad7T-ecI+FjjOQ40|?Z&U=lm37b*dY=pm1Kit
zUKCc4ecClE$Dv9FN=amGNA=7|j0C;Zl2eHcWtv6~rx;ZN6L~etiUyyl%89Npl7ZMV
zKEJvn9H0hKN|<z*9?EShSMvIDhtd;fIoPycVC{Qx=BJhCfF9`VJ@ieSsh5At=?GW1
zsv2+-Y7FfP=Su3N+3MPy1cQXBOjf*2pWGb}2OJ{2D&_jqkod9fJyAzXL-rzyv+Rj;
zXR|4`uB@z-VmcbWT{en`q#)ioxtCgAOIxl80rIIZ8iC_Xw>jG7n}G_NLErs;!U-eQ
z?;#92qu944v~!a@4Do^HetSvV1p&ia4$m;8awEsACvGIoQerhcq=?H9>IOEEPDuX>
zpdMVJke+zcs_kywkR)$|??b4M(a#hawBPxER-0sHW2j?Da}<Fk)=GHW%A)_tRI;(g
z0*s(dv3B9r;Db@ri(pvrCbRR(=FsK6!=4DL5D+l?!uDEm<9`&b=G#BAeIhZY9tkJQ
zaTY9PsVX2_bJXkeqrRtVy;-_8hd(cAU??KAbwR%~+C|X_k{mF`7=sq`a);WhZaFLw
zDN4MVTPeI9$@%o2$h5CpHWunxV+|?J06i*S25YoE4e-=cTc9DWqwfQS!hQ2Vr}(I8
zi7&x$Dcu4uv!YQYhfxTl2G_G$pk6^>-5KSPwtZ`gK}JbK%s7T{(a0hF6E{2z7`m(Q
zfgf56WLa&sqqnG}b%R(F0%}GzHO?Ro^hOsGv!tox9r=dz;&k!E6;kjOE1*RPj26ub
zH9(n>Fwetir(4+pn5NusI5Eo9I#xukP^KdJnR$gqOUW2^mn>2LRL5w3Hby<w_2XPG
z=c;9FES%mit{;;XH_D5dqFxbXzc;PmQH6xd`e-?~L>^2@S7j<3@p8&7VI*Qjx#+VV
zL<B3d1<-smp}pWzTd`M%aQ+$qgk?KKZTB9Tj%oT!ij1H6QDvK14o+OaL&?pVD*S<R
zyE4;nc88f_rzSVfKNb@OXJ!+7-im)V;7(Ix{8pS6(&)KOs>jaYT$S<>vxbIZFgtq=
zhx2RgN}E9*ttT3q?91rHQKr;k2AGM3rp)7a7?f2*(EY+KcTv|&Mq3_%+tuwxPE6gX
zAi{Uv%kw{1DPYEg{#=vW0DAv9Zx?JJpVqwa<f}$Ks8b1a7h~4=VDRmjRz2AlCo2x<
z-evdH@n#v~Jj)403f6R2(hp5=?g`4GRg~ClIJtatQGKrh5C66K#u2i1_SEtpLCWoF
zd^*$!nl|RBa6QlE`_je0JoV&asnXP<q|(^pxjPJ>KLbR~(4$&-zECI9ZUc(jr;g~H
zgDNP&=2UX2!BL1PuAc`S<LC6F^*PIzQ2CICBy;o-CQ}~m@{Lzb^#U1er+jUr2+&ZF
zzcIh8+5RWAEM*LW(N%Nf2mTITycCN!&|<TNPSyFC;}KlSxv33c4knh)^cdLl%FHG!
z<n327Mbl}PM;Xl+^cpUUD^=-63(BdCC7Zw~4gL#hy!YG$34lA<5D&}~ptZ!$xkJ0@
z=47Fp6x>ksGw`F?=MV!8hF6la$W4d3&1zL?lKSiFWF~T}@_s`*3<IE>1TJQ#cCiM!
z+3=ITzSYuQ%h~|BvMfZ?+!~qZseKyia0|^_iM*0ZhWTfU*G|<U-wE)r{Uxv=v!evR
z){Gf0ePu<2L*OOzkJi~r;YPgN`P?s+ys`;dCFc){Lg~=>mXthHv1X*wgL=|yWIM__
zEf{76=wpb>cm$z|iKt)=P`o=AeBzc{^cJqPbOnr{{%i4YCsHt)Hbxi~bH(M1`TYj-
zL3oj&Q+?9;;{v9(55>U89M>v}#(k?Xs}(eL$r%$JvuM(N4d6M!PJ>k5!({{&H9XnX
zL#F;zoWYV_i}sX*(}VQOiK8!!%jc|7Lt{%7lgbGf|53|Yg!VdOHf8pzk*>Qdh{+aS
zB`R6B!IcW+g16Y=X_~Ja;DD?vp@5{L7ZZEB72-<SvSkTD^t+gXl-<PmY<RP{i&`L|
zORyrDnin>#cI~&lvB<lP-Tp`r@Pz$Z%33=Q;kax^$}o>fz<mT_-gFJUyF@h4t_rG^
z9$U(e9Yt7SfBv!v(1nRZq_~&f5m_k9%&dUxbrb_;-TYc9^l86SX2cIbCIqp#KEMG<
zNc)S5ziOOwj{jZCuhpE4^lS7<J}<Vg_jWgPad3101}~%s>#n|@k_vXqTNP~Lolm%G
zduxjC$X}jDeDCcQ`ZvrzmMt3aj<lhcTpr4g?AXOVlJ7;up4LnLlHQpSdD5xbZJ2$;
zA<oWAyw4zHmm3rQ(Re1OMFuurb^S#-@;YF<hWM$$bh7yk`43j%{{Q+rT&!ud#jwJF
zl4A%7PQ*<BT-=q&#AM%Z!nUPig-)}KHg{;Q3RaahapaHZB9kZuUv25zlZ#1meh{(%
z5HM}>Ka`rH`E^upGAx*GpIAfxkF9SC&ZG;pjcwbuZ5tEY_Qc5~Uu@g9HL-2mnAmo5
zbIy7E@56f7Z(ZHHs%x!U(1Z|{()<nG-MP*V$G`D!2{Fy@G(BxPF4nVQJV*qFR+@ZV
zks!YgNGOVCk}9uL=sL2BCUlxk1wb<zz#nv+Xct*gYg>8##+f9ukfHEgqUrnZU5&zM
z+RUcM>Z*kq1(C6%g|A8PGe=o2t=&Z}njsqYCh=0FZUF6RLlkObIsK@S;{{Hx*^`ga
z_Cqecv{ITV_v1EQfLr=N<L;%JPf^yQmG_RTFG3bf%y@XPn(vFy^PqBJO48kj`#m0N
z-)oDTa5pAKXKT@bFiw8a&hGr`<Vi0<Y%BQ6)eoV@dIHHc3IFj6m=P=Y`M)odo#kiw
ziz#%w7`kP<7zQ&nl{+39F0oRGJd}bT_6Kl3fN!DTM;P@>4PHP%1!HGp{~sldI+dXt
z0TJWZ;xXMv-L@XCO_p<JCUnBUCAd=MQmRTf0tFyT_fR+|Xl&_ok0z#Oo(VQcruOPt
z1F+TUfT#wbZ<Jq3S-O1WP(3}`DJ{T1A5hs6K-w*}H((ziEV~n3QukqAUioF~+m{=$
zOZdRF)pj;gdfv134TX9<J(&Ls*pS3>eTCFV_27YvU2Wt|bxY|sUU-N}j*_7T|1<Z!
z{TxvK0&Qs2>1kW>8Te|vBG32XVY&*faT9vZwG9`xv6M2mCWHLXuT<i!uL=$#D0#@s
zj3ngLLruC98p;Jw1xY8KsiM{d3Or)M{OdHnXVZPL{Ib=E&P}y!qn_2k=@_Q;1ARET
z4$<ozxU~ae$ef2r#zP5b8UG~rw)#mGKLW7OR*qFIYQdwZ`%)jsUH(#2%nI-*n0D#r
zyoxH^rs%^>nuA!nWKsuLz&v(yD<d~nal7m$IIp3{vCgUYAJ4y5SahJ;%e=!v`VfqD
z9RNL{2c50&eZ71FEvn7Xu0{58rSG#`0II7+kO~}Hj9R>dwO5;yTM`n(DnUT5U<1IL
zCScQiP??T*k(6qn{L?ah`vW_0bW8CN*EAWx6eB-Uu;p!@#H2}c44r%@mj>?1pn(dr
zW9SrDRI*cTk;f!;yaatZzzw%Q8l%i6D!I{|>s7=(g{zze2?I71@H0$Dl1>)S?eDRm
zP?}vL2V^}Cwz?XffdJ(4JV3aEf&{QU=0mzs&Ry%hvHnNQJCh-b%^mqQ*LcDgW_EUw
z140rLd^46urzCCJzDzH#!v;_M3qzFs=I)`J==Y<j4gigWPMCs2anYlSFs8|L>VXfz
zfmryxz&;;CY2jIF8Xw?)9}gFC%XD`raDYKW9OjT5m$_FS+(mGnu={Qd#)dZHZ!P80
zzA{$FBod!`vxAJZN{NvQ)rUX~kdQ_hogDv4=^z`mEFW*u21yC@fhyoDQMl%Vgx^3D
z9y<*#%^sJ>@<#B+HLL6LY~9=rSrliF+89p`C{NDyFtsujSHVHe2RhlrB+m-;k9nxI
zYRk;vcU^b77ZTA)RM7josRiqEQj89|EFCLUPD-AJGY6knK@|%&Un(mE@Zr-m6lu*T
zh~>MK`2$kK=O#KtON7v9oc#=zgqy?k%R;83*Ch+cAqTdIsNf^XDG=lUf}9DALr78E
zYWY3<MF4z0Z5<h6IZHnVLqRvSK|g?6>Jk_s?|s85PrXa=#vsWH@63vlaJYsK12jvV
z-^R>u$H2l7O;tdBDqY|lQ2D8<-W{w%|I4lPo()4C035bx*t4RO3dP#S6ef$+V%hBS
z<}>hSb)-<aunTad8Vg{RuAYO4j7AgifoYt2L(`tRg0*8-4u=ATSuhMS8>3Jvdr6HA
zC4l8gTCMu&dR_p1Q9|dpaj1Wd^*;fND6Oe&h1~NLWv4$dDco`bl%9p+EElE1KKgVW
z=SVitf?<1dAwgvz!z;78`|yC$@J-|Fb>sAc0UePG$K}<Hf?KM^fq_hQ5y7wh`@F(&
z0}fistXZOiDRL+w!fjq(A-C_6EZaq(5Uye|;V%S=NQ<t2c>7bc`_H#{-Tk5TupWa5
ze;%j~8Z_i;kbGSTKzA8&w;+o6-c#x|;@tTv^c`$vIBXS>;ccn#$9LBUyrDh+E`D$q
zrHeeBBuENc)<>-X>0U{>o-z^k-%4E(#ipT!^L4FS=V^4i5Y%mwchqsYU|{R-X{Wa5
zyz}~kSmo=)CvJ*_aO!yRj6Hq596g3WRZZthA6|vOHs_q$fP~Fiq1H7nq{in`|6Zo}
z<@Z^U22yd0BAz8taV0w-V8<*keF~shbWMoB<=s_?X&@xbSSdnNrr*#E5Vq4VV(=G4
zLa23ekPn8+elZ>jIxHj}YO=!|2V&Ns88rg_MSU}cj*TXc2HCVpg77P$Z@mhTE;zAF
zI|K3Bmia*9aBCPy7oSq!#mzpBtEu#Z2n>MW%{s0Slvp}WGf;hUCRkiIX9FC8ym38w
z8tjNp$lnW#q&4PeZT13x?h(GDksx}{1s4EQ&asNe?WS#^Sb6Q&8xh`u%Lnlgvt@d_
z-~lEps+4gRIp8)=OE?u`B+3^Qdp*Oru=30x`zPNJU>@>-ye)r*(vp*M1W8~Nh-S%>
zT3FQ%7`E7EseE}@B31c1IC_k{KakD+qf@LcCXa#6aGKv##!k;ipdZp8i&5t$OKcm!
z9&=IUKh8Y)%6ilCUA?awn#fe*Ap~+<Wu`8;2BxCZ>uI&I<E2RwG1E+5dQq{MeWv+T
zqag%zKuM6zcL~g3ZnB{RzncpVnU-9LOH)&G>Q@Qa)QQX6GG``G&p6H{<O~xs)@6(h
zE^g`szBss+wa=*mKNh7w5MXhr^@;n+AB1q`^kJM;1MJHG(Kpw3MR(4+W-wcJ;o=Zt
zZ~nrF&!eR9^H#nzOW!DNY_q*~o)sZ0XtXL6@P796^prfq0eo1txUVT6M-7^?j3yCJ
z2NK;#6N2H=&zPDPIKW4^qr-c845bizF3O0Yn$>m^Uzb%6icsO+h3q{_s9(f_T;%!j
z9v6_$Ph}>Ia>O7pc(|cCN`yf>@}cisDmRLIRbDm3>&SM_?{|Vf0_cKQEn+m0Y~8p9
zw85SzTLKDTs2~%tsA#m$!GxkOZug+_{NA*yH2WFrNDv8#Q(xjI1_%+iFig9VFQBZ1
zh2w>4sk1sTIz*vE4js=AV3DPa3hCUx!sL^tkTV&R`A?l2EN);*xvd|t*U);%G84X?
z8>l};*3f*iZO3yH<@YA7-)xE%VYtWv@U_iC*q(RX`V*i`riQ(vn)D+T&)|{$WKzc}
zx7oHhV&mZf*0`Pmd&M6xBu2O2j5D@cNR)038ac=q$4{7o9ObA=PdO4OWbx$74+dqD
zNelxG<t+SP7hBz8Q}MEPssXHO_!Zrhq%6jfyb`%OfLtj|@L=(d>fX*3nx#1a)XP4Q
z!VoKh!%yY2rVLEk_j`&3-yIMZB$>NQ5ys`R*ljSkx9C*x>xD~!R&BFPuy8^xUi#gt
zawq+m9MG_bzO({K8158|i~Kd>$F~oTgaH=+FX1!WkW~JJ)O2Rxbxmz$9rDBBpSvx`
zu%eE#eIs!4x+&9@%V!CUP9_WRe^3s}*LWK;rl<VsJ6el0KCR7pjYI8E9W=aqKYq_-
zT));2*~D6(({MqEcA-~6eSui0%VS~^Y9H{R@jc90@W^?w$>W>#wSb#fE@L~0GZO%8
zUP3(BDTiNk?-B-tQ!LSt=v`C{H>weHVc)KlN0CE9u8~uB+7nik@VWz37V57>hq2JQ
z4-A3PM3H6q#(Fo?A<DaJ95-{Xxidz56)zqQU3VSXP}8OI+teHnf<kNdp!m7HZ4jjW
zV}(eCcZ7<f`f+Os$wXggdZ}tVo1+Vz1z^fQ8YCH-V$=imbzq)I6f~L_$2rCtVM}zk
z6sOlumjj*f25G(^HBA8Dl{x#ry$85eU$CnQrhWQH-Ob1Y9nJT@pLStWRCo~Y8&|-_
z2G?hFz0|3dK+nLDgFFQs8qgr_EA5g3@&h#5cjpdIi=mra#Y1WuA3y2lt%DyxD2aHy
z)7~pCrAo?1+emb0C2?BG2w_j3VQy3fYsG~7r!}Gt#`#iT82<nQFK2j2C3YYy!W>kV
zOOx7AcRb~}s11H-oTz8`=eUi0p@$I+O+%S#RbVdqi+|o^lVvbQ9TK$`#kwILM_x>A
z_Q9-Q{+FHpc7xSvswnK%s%XCbL^n&z5e-MEcd!<@;f?9}sBH_ao2$zCs!JA@9bTpw
zKG18EBo8Ery4x>2+tjAc`(c}G3mKna+*T+`T^NGAqd9;uedFkL4t)#~)U5GPDp9zA
zh$ihSDNla*bJ>aaaf0#8dp_eDpG`c7sq4p5rB-P~ku@^Gn!71>QL5lL0tTQ6MDjO%
zLJz_95HXrXUS|QHmr8(3bL6CYUyg+qBW7gS@ye<)3zBqeQ^6NoW(3x20)-Kb%(c){
zT3A}qxe>8lMY^tTL%7*0e&!Y|UEec0&sg9Wb0Mt5RkQrzW{~nm4VJYGOk(Cj5n~qk
zw%;EXX+Xd=zayXBV&8{6<UD|ch-j!J$fefwWIAHt#GXq!GKnp{k&rEdI%HIR44j8F
zaP|o~VX!RcqoQs)Lh?3E_pJ8D+MTHCMM0R-9w~?sjCrr1S1dl_>O<~3Q2K?+BY$$h
z{#PjLs9_B{jXkq5UvxDV<jJu;GrkiYI@JZ!vn@B*vkNNeg&K3xBr)Isr#_}TdR{Bi
zjP<f@!OD7An^71L5H$rl2akZ3HCPaq8dKaq*;so_hMnEVsfbZe!<7cU_aSN#vJZTL
zBjwXpDcnx2v6cl@3RXFaQoL{l?cDy{kYpJktwb>=Mk%J2W%uaOxlF8E{MvZrQW4?I
zIT3%xUaFwnTI4t9?hFW7ju9kO;Bf_wMEeOxlcX@3rub9ij4-CbW5G6Zc&z;ut-fx6
z{>c{5Lg>pK!?v5tgx&}`=;os&*}oOZ3`8^HDi&Zw;X&dvd+;q&S=Fs-2r9Zdq}Z29
zPOIXFV?pR(V@sSusk6J_bEP$5Na|qkIFF<TR<#V?L8SlDm<AZ<+h}i@8IAWkec3vj
zN+=k{8^jIXGz+YLoY!-ZdQG0fDa_>DbcOq+e`J|ClI|qM{OYZ6zV0PP(Da**C=k+S
zx3}BA$T7U9xWViNd6*Kyhaq?mYk|mvaA?CVRC4BQK&#sW+xDH(g6+&PBY`eWKkO~!
z9Z$@!3f&yj=mSJ-@9J8VDj5-7CP`w_PLZ}7k41Aw`e5{pXTj^g08S$LOU~?s?@#S!
zv-!i7xQgY20>(qbC5=5xSj|SX&`2>h3(c!6b=ZcP5)|(ysd-3D($nS=l1DMwDo!eF
z^L|amtvU8)z@6l>Dvy*GUvf0C?`%ddyx_W$<Y(A5Q2<6jGI$IJgZ_9U#;MgH2~mlL
zu|aIHxh3(7Vg7k>KZ!)uYOzgbN?Q~^T4l-k)GS5}Zp(Kkmm^^9jhU6Hp)fcGwRNIN
z8RN1;TL08|i68?pm=JC;q7bpnq~!{bmnwQgl#^b3v|~?Fg?3g*2QK>okipcR7f((~
zErRGiV6*!9ZHoAg$>cYTib-k^g+2j}Hy+Wu7u7qC?!Y51<b^6+ZdvNs_ljX-{j}rI
zwzM1^^W^KZb-o1T*@^}{C07U@9(bNjHHb&EI;i!x%0w%R>_Nox!FzMz)0U@SR<_FZ
zZMKm4f|G1+oSH{tQU|AO+t~0_a*8_@8J=7ez?7OQw$(U=qXg$q5o<1AP9@mLBIbdP
zcldm?!HkGpy_Qj`$>?Idd2q6u+sIzW5;~hqQKGbLQ)#FH;$ja0yy4Mvw}+u}`)tyz
zH<M1@6f+CI3U<((jPx~a3@#Jo`k)>ex=c6(mF5O#$U?eSgcYA#$Vs)tK8N{&%8C^`
z0RJcoF#%Pa69|ms&s@~x{5y<$0Xv+O?s0@dkc7R7K;uHq#yykQgsaL_S$1Tjd`mwD
zMn|bu?@O3Rk*dM3?BD)+DC^!`;N;{aPy?3uAX=gQjHG)y<aVa241Y+IDRLvDhW*DE
zzhnJ8a~$k@9@iE~l;#c-@zWVVWXqE@09r)zk(U3?ynsO)?Rzvm3YWFsW-x>l4Pf#p
z86jrHQ+lwbU2CcV8eGq>pIy(UJViXawE<!jm@j2R1R?kR#i2}w7ASIYVa5}L+o75-
zNc8U118;5<juL1=&M?D?oFjd0S_t7)-}_zUP=i?<uA(GIZFF$x5F$gVe02)BfQTg$
zr0g_Rtv_{2f?4euW~ttSjJdGBCJbYE)m_hTb!%BOM&@)UirzaG)6v5kw3Ki`jip#2
z{!!}0lpLL#d=K?J*~cIHE}u+KcJoWFFtl1@>xU+_ar=5`N3h3Cxs)0Y{1(i(s1c3T
z9pVLlGuW}%5+D|!*L%|Otd|XK0i`08foLV(&h8>G>nSC??C{xR!^;vpr7F%c?kfe$
zo@sB!D>qTyMgJTZTn2<Lk6aukMVj;w^k!Fm81`Ehd_^s{vBKiAvydJH@TA73U{mqo
zV*PrL#J7r<DAn*r*RI}AceZz4rJ$+!a%#ny51v9KeE)?bet>}@AFP6s045x^L~!?=
z!f|bqZnon{(Q2k>c}ZsOWclSD;21Xzp@bpPn8t;TDrUp?$n%{0C*Mu6LzCOC=g=V>
z>%n93zMWiIIHCQageyhATOMi~Yw8_unIgTp$0og49a|rDs4m8@!Rst{1dYXO^$ys2
zY}r0fg>hpnIYKCg9Lu5!0k!(%Hs`dg^$T>jmmus|hzj>U=GVCmgIP9d#aB$U3P4y3
zd`WoWA*Aj^c80mF_4TYS57#KnhI2;q&zG>P(}=MA&Bi}N02~YHqUCC?6jIfq-m2z2
zDzJp&?$-*zo{V5>=MP2(BE_XL{!$CxdI%5;TZ6_A;uVo0ld;sd095a<2XtnH?i(ry
zdiJ_I%l(#WU*OuEbdxQ<@8$a@zBeeEqLVIOl_y7u4H%z5)`Dmbuavb!)*RcE`$|$j
zuAnfr`!L45Gn+4k9-|2c{W6R7_Y%<36WA|S^uuA<(HFbfP17te!&2Oeds3bk%Q3HY
z_X!qC>jDeoCN6<3fJdXtM#XyONAJ4%rSjJ<2?_?%zxOx)oo2Djv@f^?xX7%Y<ZH}y
z**&U;44V1&(sBgSGlJ=lOxMh3*g};Pov4h5<T>4VPd!x6BvqI4BEF5jfkuYw^U#CQ
z!VYzzy@_18re5Zm*`3dSvRsM62|D*;l1@><d)*qHcznZ~0O0#A!oA7@PDb^s8(;>4
zc>OX?rmW*}HIr@1xZR+Dztt&-#5*^lqwWsdou}Ow^@YA0!wxC8+S?VMNw1)J9o-Tm
zYPX^sQ9SaXfO;uAi||3j+=bVvb0N?>HA9(}s2hVcci+g+BrlZDW~Ur5LXEX&_own4
z_}%??o+QN#{f@MtQ|6pd%Zmds#g~L!-m|U=mS^4Gi^i{+SQQmafdF7{j)|jx+9$VD
z9q$fbko4uB;{TOIIk^7oA7tfZ;rL(w;NSv+JFt5y-y%X30OnXsay|w>pmtmQx0B<q
zcc-XQIj$X`_^L_*zZi_|Xl}Eu;6;L4IcJSf0!rTu2z&c@_;f{BN?#D03$@)!vZFpl
z%<!9wW&htl54(f>IK61jgdcckqH|PojBt&KGs?#fH~sRPMNex$>$zz+@?0@7&yVPY
z>CQ-&&c%ubP#AP*Z{KjThCPm`va9|gEYtsZFk`II3x$_QSbBSvb90sr@fu<DZLD!=
zKP~R8e_wA~q54WA<IXed3pMIOw3D&-CDK3KKGRvRq325nnTSZ%@{2+ks1(Bz(V^M)
zYEuF;Dsm7}v<S8n)^oZ;W+B|YSX59ZApAL93ahvqkTjDY4`X1>9q-Yp2>l_2ecdGY
zNu|~~(?Wz^#PJI{uB=Lc8@rVlpX6r6OgSy2@7s1ff5#7y$e%V1-wDFrt+f6#1W|Q2
z+v~cJ`Q~O4ey);9xb?8I7DtFl6&s^2Nrt8!;@E#2iV~2;M~)V&NDlG}QolfQb0EZD
zZeE28$d5{<3`WBAt|mPlJ255{C%Ww$5<s##d3-hlkZJz2N+Sp+-XD-7X8WrIJg}<x
zp#3h`Y`3rhZm8TMl!pOJ#`46Y5^eGDC}%(}MwlcXdh6xSX_l%{0_Y4~LYdha(Dygu
z*%)ZKb`SuLA7${Ph2kSOj7*K2(doArom;8~q`aIROyRbOAPvT9D9vaCE4)bOgP;P<
z-1IQB(;hrQVo+&&k0|+rBQ3vl2FRB!zBl8;wI~5@ULkPuf&PL_fI(pUUdtsqtoc%-
zrv<KJe|r{`gokHKsZQkN%JVv!cyJ|qs^^0kwotwQx$t%|Sgn>+RmiYh!-+{jX`S;2
z@cR`n63`v2q;4|VV#GyT{pQ`~4q&6djY&5vuTr$*G@a^YId=P-0Nq<I<2HAa^6Piq
z2VQ7rHM|G$3B>je?!Zk0_VBzGm1%IF=}jZ#6&$_dnIZ)vB1W2^Yn0gEW9(u*d|mTP
zEFR6-de+bSYM5a@*GoG$9reTDhmiRP03-IM0@<lyz0>|GRE;6&@3c`kL^^01eJPO9
zY?u<NT~p@%;+Izu1t_c~O-~fqtX{?a*}Yb?0KI>uPH}PgkI7*`@MtmdUxQM82{K><
zd9bim1{}*EU9l8npT;XP8aB{O4zM)FCK^KIOO=1A6uhfw;t9#d=||=>aaEMU0HFC~
zP)N;1oKKF2G9K^!hDxJ*S^D~C2Lq`_`{&%g@6u9TeZu>+={#A!raPfQjsB_T+_O}E
zq?VfQMAE^UWR+M74Ul0Mj+G6qrZ1m-wKTeorxO7KZQzFld<1lpCHz4HD!=K?%8-Cp
zw@gApcOM{#b+naV_@27=C^Mlf0h=lE%lxb1NM3n*VdRntPzSJiT>tK@?rb~utxUw$
z0x(tr^_a+GugPcq31J=q)tc5rXF){LQj~3<=Md!KaN-D}wps*&@)RhHE$QhkP1RV+
zEW}BPRPh55%I3sbO#va(cL_t7K34lhoO@#<80-hWd%iqqG-%AoZORvx07=4L&t=Cz
zG1(L94q{n3(jxSmKUDBz#6RI4W!ajhMNLc~RJiBV28l*_$KNUU9$*PsffiKW5xL=r
zM0$B|V(axew}qt3S9BCiPC;qts~1GR+b%dQC-VipyeTJthy_3zjT-VV$Fm?MW|<wk
zc4@7+bMwn)!r-_$(~*GI0DR>qjBPz_fGkjJoA#&}gxgWY{=^wvWOGQqc(X=uy&O4a
z=z?EW0gjzGU|BR=6}A_$P>Vhg%D*;PGT60m7E&^gjU4#pIz?BOS0nlsvlSo`J7fuj
zZ6ao<DTInjr%(;&lLt@>Nn-nfFXqGt?rSC@P!>!}z$#tsAgq3T>WOS$9jDq8sOge}
z<utM;7p+byPC9IKw!0@$fL&xAbFQ84uFU2EL+ZHk_rYUg&>4Pzv`Xn2tis?#7@=>3
z1u2n#0!6r5fg%BQ)285o(jvet=UFaSz<J`HLN|Rbb=a~N1INS_kD781Pnd~}q&y>y
z#VLaFHjQWp`w~Cg_q2g1u#A}us@d`P=h0N=@^|q%lRnSWf$1Glu4QOG7zU5Euu`fk
z=)lYGq7K!6jddq2yQFPHchYmTv>i+2I5sC3dCAPblC_jCux#&|0Vj|uim)gH(!bTA
zqzA@|09chQ8><?Au7%XP+-9%G7ctYkNgSra5LfgoTE{q*fcJ8ORdq;dC|?e(TtGe3
zf|@spk5U}GV;h1B5}T~9yRcqpl+nDan9eEBPt}lci#1bm3<jh?+Ex>3TGXeV8qXO%
zqX7<Wo)n?^aS0_VB-XQ={YD&r07evPM^AFFliVz5nQt>}vmCS!i~|H4a0%a{V*1H+
z)_ONsc2h7EAO<3sHEs3`lFLh{k{4m19N_87zF;@9ji^&+=$o5rnOM_Ko3O%PG8M;W
z<NEmdSlL2Y``KRCfZ$2pKqPdewVM3!w?X0Ia){vG>)MNj6Axe<ZHlFc+YrDD<3pby
zX(sWoMl6V7AsNG;$J&n^(rA`_9Vmgo(N6k~k;q~OP%UX9<5AIi3|m6$Xz-O+J}Qut
zR$81JAzvkm^W7iJhC#yRAtru-Ni9|{@o?bjSV0JCsirQDnQIdP+g3@^(G(9$$^{Bf
z26OabSLlUN)k<u<5qV~FBf?P)jz+D-a2gNwj|26%t9L$_1Zx)3XY!>|+W&~It^f*<
zD&G<SwB|L|>l{K_cWG&dR#li(oaxw4@k$bC@LHH}QS?bZWDSg*?1V(f9A(9eg%g5V
zus7<M;3q^Yf@pqq+`(qTU#<VKGzAcC`Ut_YSXVBPkpUSAQt-JUBo_-2;7P{1k=Pzj
zb7Z6ILH>=q8{_`_;zYVT(#n~x0$Yz>7I+T@pu~F>bK$SPJBEkJC#*>CpV1K~*`w@3
zGjN{t^FEd|Pz=362UGV+Un{g+Z)l<PbNg#oRf!SFW|a*tY54EJa@z^X_6C-oJ$&1s
zZadv;WAQ`kL~xw8Bs<d3<akk=%zZv0G}%yr6a{>3LklAd9ek`BrdoLA!+zu~dDdhO
zaMk8)sW-_MJrKU6n)?guyHKUb7%@tTFUn<&)$01~Q8GmJ(60~MvT4Roqv&KduOB7v
z?i~|o5s6FH&9(A5W+?pHWCWeFA9DG*MfImTI^wuG91KKY!(|)Qur{LVNZlKUDD{+@
z76=Y4xChwR=f}wqu&Mxjb{>@*21<zs*azS3nemuNRrV`>og*wgL5<I%J`iT@u`82!
zZbsPMMJCFxSFx^RG~u+fSP!JHp+EQ6QR9HZ-Kd#v<thcw{k+>+(YlDpJLSpqfgJJO
zFNoiLfIYr>$ISKK_4AU=PIqNozfiMYZgp}r)qa06WBO!5{kQUm>Hv6I&IkJp5WVte
zJhByHG1fKPmHZvGdNU-+z0;2g<Vn68{c5fYTy>(w@2dLPd0f>wr4RKgwzc;1POb<8
zrlJ|fo!RtN#V4OB4uvO%j&wc{t*8;CY7P=HrLX=N^<O_K@2=*XFith&r@19@;uWM^
z#2C_gRJ6B)d~U7n&Xk5jHFNzwpxX{st)VVh#$hp<&CZUIcy5*!vyKO-?nb#?he*$!
zuFMCYaz<03Iz{Ds<1k?Ad<iRhTI!@;Sa8!{kpMfWo^zQ~xG7UjS4kKbIKzVz@BKBT
z27ten2?D0oA=uWvnn7#}=%UZ0neR@x6WlKNGmSxQ-LOshq~eo<ga=m%K)}p787m-=
zFU@PpQ3Qsp@?ubmM5(s0_tw46Th=xxRC^Ia>xEh^a0xn$s9>|W*xVn%(qU$UQe*)i
z71S+4YCpELiM3SW5RrrLFG<ZG8*V{%-0Ulo-ZA(-|D1YsYr+XuNpiM&9ei+X;_Wk@
zhnVRNNV|K+J#xe2P*=(a5Ke^0znh%GoEl}l#S6d^>)x3&TK&|?t-%Zv6Dv7$d_kT|
z-ggK{?nvxvw?<+z7%Uk#4<ZbZr<z><nGVg2t!-7~_!N4~EZzXsasNVw5(nx@^qo5W
zH+dxB4~yE@?spgRxt7u<?Gtxc?z@ljXB2*ScQw=~$1hlF9NQQJAc8mZmT(U*NAq%-
zCrY^k(Q1LcTP&OW(&jtnA1B?FH+4R^y$_3=r8Dm?m1e%ALb04yPihD9VE!l%eI)gi
znb4Jtv3<h>a)3poR8vw~5(MLN>koXM1>+PtC8vHiiYWFF^}v8U#?n*BC>F<%F)Mx>
zoH|qfu>QPxpt{5b5QRyk(jJ27fp_~Wi|(+<pvKoVzh}pmQeh;;$?>G-7(h6jbvU7B
zW1zD!Q*}aG71dD(W18xMIa^siEpzKK8s77%3zyKb?JEvp<1d8!{<+%qNoRY6ElczC
zUVl2k2=jum^T+9;{%g^elmq7WQ7w^>7~!2yzO4n}MA@?ez^!p!<Ctr~eJS_!YpoqA
zt9j{!n_njq94YmV+n89L909Wd^w8ads*$<=&m$sy6Sc?h{L|te<HymnF~jg*2U_sd
zXS-FMbm}YmOJt#vB}I(M{!LU)-~4)(UJ%fai3d8OFW~A3y?wdkcmO6ArbT==Z7~aN
z62@v)pk^~S>COZ^F4e``)8U4^H`Y~~YKIvJXc+LkNAlS|C+#-`zH}dY>P8m=;s4rM
z688~86Za8Y68Dj~i!eD^|I6{XIJr}S)$yrQ;X;vxK~Tk76ho1*fdL1>w{RiMA)Fcu
zY%0U+Vj@ts){>H_2Nfdaa(7N`)c4lt!MVxLo=gA8yy;oMij_>|30g)MVp|kR4a_gl
z&W(qQynszAg*+eAn1Aa_^dL|St2Gpbxo+CKDc<AuwM{B|Gc9+a2p;y~u;!Ir?_YJa
zzGvjRkG-3zRgHf~5(B7jXgX0ueS7^kxkYPZ;JO4@{w;+h?pw^5JtnC-w<_#bPSxmg
zvOglxt%1wBDaj|mh!b(+<C3w*?UwM`v<qb}!&CYflC(B~MbOB9f7x(2#M5&@P}IC{
z=Mo{lbN!yFgIiw$zf2}bXa*iVb;j1E3_Sn%4a!nhYKj%ilMFD*o91Hm;21YdkAvsO
z7Lc>J)-jy=6zA6nsrP0W?Zre&&D%K%*s}GD>1`!?c??MPa^$LW;(AfCAE((N%=m~+
zdPhVAbDcY4&Z}|*rSGt}OW-G}p~TuuYdnElK^9D5RS$@lQQG=mDij#g=xIA@x^A`s
z9o!#v+tH97je#uW_-nQAOP_ikjvNk_9$fX2$`^}Fk(v{M%m<*0a^76b+#=h4FtcLZ
z>TY2fm7pimKyk`4*g+<(u3xzYFPfX=+=()Wu#e#E*`6OVMW$~c%S6kBo+{MJQ8<z&
z7&`s)OEs}4pp-0sFKO86#$z_5Wsfc2>Bd3|3c7V(#O+#XvEgolltCJ&7#aGTK|o=D
z49%@^Z6EJaB@LhibmDQZGPskr9*M9bjWSiRDgttBJBdvdh=@aPezG4^PD94F%8H)A
zw>xc)cMSJ(=)B8;)rlLXVBwi$;rtW&Iju20Oc$t2;SHfx-<Eo1{HZy*^BN_MdXI3I
z;2U!4U!umyi@Ug#zB}PYI!V&CDc46HFTF0_pO&=f>;M!h(bYKf1^R9}>2qI@$vEBa
zU5%)DA^LP2Aqd&)Cj_>x=j+ARK{?m4PnLdw6hw~&9<BtwWpSaZFEb!2GDo`;%!~N@
zy$D%_L@IJ>Nc$>C)(OyAw70h@oL(7rQ93cvTMucGx6|Wb?C~LZXt_7UZv=|!x!G>r
zoY7>WI{=FBAj%_O2Bu^u;<&U2VU5oLJh*RvGW@8Vio4-T$sp2db)Tc>Fxw&U8S}Ov
z0(I&yLn}z64Ff5x@@%X+ylR!l?Qnf9E^GD_ST^ygQi!2V5eWjPgPPAdiNitFGjiB*
z)Hsv^KtrRVxZ?O?SrXos_4qdhF)+(Y$i^Ems{s+%Az#nzlH*o})+1flG&LEZ`al;t
zE5&)Fewl@&?~yK4aIguUl7y+WgPLv`EsiFbWpm<5bDKJ1W#8iA)hB808x8a;_B6$8
z<J6`EH4*JJ#@*>Y-CI#fS9X8mH3IC+jx)ntm)1O~(H~|N+(zzb%@9ovJ_M@%y0_aD
zF#|S*>wigKvL$tVSQ^@sDkyp)%G<$mXO*x)AHDqgLy3-tXFKo54liR@y!za`#Lx=<
zZBAHqnvTq&N$b$2T;Ou#U8>8vp}k}K$t_L2p@-N+x|yRqHup!&?4Q<vhtDA`HjGOh
z56zR!)D$&fMAPtEfzk9(WH_{fNZ6lTCIE0O$is(Gvi%?r8Tf$7*T?&p=6Tk<YQ>ly
z#|Yu-CAe-Yi(*J-Im^AZB8b7eI@AXIXLCKoUE6TITHaYmZ_hTWv?V2(xBrU(|1u5V
zISHaL?gI(;aQC%qark#h+d-7g5UzR19xyKH7VZRROA-9JOpA_l<A}#FPhnF*uPdNW
z>hKX<%tOf|`na|;fEl>kmIMJatU1dnEhMIVoB1V{8FEv&n<0p<>WUAV#{L_mo%p`a
zOd;yxC{DOW=0(FV+z(PTVy|m&k}Eclhqd)rr`Z7f)TJe;&8)V!%llI0P&0wRAD}B~
zp(`TLCseF_Akk3pBz<Tspm1?^#TbCoz&hy1f=ycTQ4lYfGaZ*1C{}5okN6+S`-Rw_
zanSkdq!Krq4c!5ekDGz80gnN(15TgUTtWnOmV4s9w`By)vb`t>2j#n{@2qBCy@^#q
zGN0kye;^WQvDu%EecW*UoD=&~-@8hnxc`+2xtNJk*MV_RQcYr!c~O4cr+=k0T_#u@
zCJ^N2GN@d_QtM)o2>=9%*I;|D{$n7Ubg3v4!J2L>!Giji5(qi+cSn%n?OJHl_DO`5
zrhm;qpvbrm^Q?hsfwWi$>wwfi1$LXS%`4}lQt<9VCv^KMS#3&fGg08oF3q{+fGwlt
z1uH+TC&r@5h(Qj`PDSY=LQ}WA(dz`Kxy9RJG0P=*u*Hh)0|3?O*X67cSY|ydPnn{v
zf9Dc$dLUd!!c4@5*b!hpDla?qCx|s43olgvB*D!v?j@mkuu+@cRGE<ABe_ROElf;{
zp(D(6@qU3?n^cc8<bMd>^gpiw;QFNMR<BP@T^7!#58%8%^h<sA*szXOQ8^l#%_G2Z
zK@?8*<83ScL4v*eB^RZ7L?Hj)PZ%v8ITS4(<p-!gK>Gpu4={d!`2(yLw0P`6$5d`)
z9JJI6U>tgYp7TL7y3hX%BVEK`>HZ;g&~i_drr3~fuz&l>r&d=_S<`HklQ~d)cVmK4
z%N!AdkGm|V3y>W}kU{C{X1%-mX=qsF`dIaoq4mk|ws{FMd+jGtCH?qYGshGcDxDci
z?%gYgUgfO#U2{iztlx&LlYKQAIS?x^DLxNAKY0LplM8n2UFi<TnL}>(o^L*^J)eK=
zt$i7W9uBzEPmTG%&6L@1Q)kRir`|ix+NRum-B}HGiU3=5)5Yn&y3;Ka?;Q^dKDLF{
zR9(Ea-tIo%jxBmsJGrQc`(E!%26hoH$4kbI)%t){{oI9zujZ@%KV4kkuV<OzX_HcD
zeX4+jm%5L`fr#%7hF047iqkuWPapT5cIx><Ox&;a-}kxlAEif>_9-j(mn2)8zG)8U
zm1m^}DTkKh-5S+CQ9Y9yh)bvw@^9YWJ^DowZRuxozr=3$bNj<!zX;WOYAa_xFh+cO
zo+q#Jed>ohAdRa9xMR0yGSj|ud_8-*d+Y!bK&B5dl-_^oI?Tjg#{fxh&Qrg1MjSA2
zs~cA|ECy>MpzFKQMMlFP+v7f--<~ddEP_cL7C^mI53AqUwN8W*v1zTLZl@ImBgf!(
z_6X1!TE`p?om)_G|LjE{o-h5oTzl?#wpenv@Fw(K(uUhc|J5Gu+5oj)MBLrhqg4lR
z!*;lQsIA)iBQ2uXqrF*=<4|}4U+=+qt<~dE_48q$b&{4bOpO`GhrhB3xL?XjL}XP2
zZ=XAgIwvkepAjoNhRi{=|EfYQtdt}Lt2O)X+vo?~hfdvX{r<c8g|N=rJ=--EE~29*
zcssCv<ga#m#d8L0tAJ7D4*v!Fv)>Dtt-!u}H15h~yf)l%p^8%N>S7K4%j@*vp&-_o
zm%`~$6@f0iAbecl%TZxYcaCFI<{AutR^M>C%bQ$Xt@JCi{}wd`7hb>Ap}V`Y^PhM{
z_-4{y4UI@iZ5fS%xIe{NVW|?$4zxPk>MF*rc00?r%}Vu7P6CDHTpnVfFF!@a@?Hi8
z0@nTjS>xt+)O;V|DLJL@Oh^?=53GFO+x-Hugw`mSLRE08FCh;0j7_zb)EzaUlHw?q
z#7`Db61DtzY}fHBNuq&6Gx(iZ((wtj1k6WZAotPp$4X9VLo~TmjQBO^N&g(`zo=;<
zEnBQmbdHLfmLLoMfTtrRL%~kK*X?;rZQHdljXeVw6B|5_WM_cq<>HQE^sP|QlgF{p
z#yE!lSjnlOP^qcJ!bcSg<qXsg1_upn>r}hyxGK*~NhpHZ+tb?ss5eiBhI1A>Y)a~x
zURL`YJM^G68cN1ZFk4N02G~w=iKw-;qUFC%?1EB%%Jl`0^9=ZC6TC%0#NWK%Jl&q3
zC7q|L!egFJ`3(f#2pA_i54urX3%|0<i}f3{@{h#N_xe|b0|IE?*rdwPnevK@H&QY*
zP5Vy6p=%7ipI237-O$}jGFoS*P1CI19##qOM^$xzFwopG?BG?mv`xXbm)S;DAs;>?
zBbB2ctD1GV-Hz(@N(k%#yh17?cTnDu8iD!L3;Cr+4!6i2%rrhFBshykRLWyGMPoS>
zbEc~b^_w`4bxy9GA(~yHDot|K8a!a#^h-l!C7IO{SrFbQ5CYBf%_dmM(!v~~1>CCL
ztB`HBqUTt+8Av96)pfQ-Nz;GoSJWq^U|a`z?rEa@jY^%4DD`RqJjBu|Ir=R;r*sEZ
zeVPAaaV%Pq$TKID#Ud~~kw<e2hSlrPEgs4HZYyd{0d2YlwHRh#g15E<W^zJetSW1F
zoIAc6nXh?=i5GllmZNp|1afk!^<KluE;zq|2mOY@iQ6F6xKe`&nKU^Qz8e&mkAY1g
z&zWcM6bO2o?v~{NCd&oESbWGRXDFw=_VWmAx?v?Za}%~ItL2t63CxFePZ|I=$bbH+
zl`4=0xS4^cAPUmIyWajyclXpq1@P}BflTlrIM#k+SXMkRn{$OMm$(QLPUyeVU6`Is
zhDE|T8jOR<hS;_rkQk!jF?L9-6bH_^r^rLC%NGkVu*&`gxKsovtH4%4=)m-Q;kxVv
zIuP~ye?h1EZ`n5dGClO#{Pb<J9{MyDYz8q$!@EVz$u9)YfHUHdiw@K;kI{?ZP)uMD
zll9<3F&n4U^w<>5^DHiR8DPO1zyCe!ZC)?RVmH??exh<yj}ZT2_JqE~MVxT7EmjKw
zVhRh47Rd++AnF3?6D$w&cm+BYa#O@yM*xzF<S$|dVo5<?2a>Kh6|C)Q9#f-$h!_F-
z1?rws_aFg2dUF9p?T1S|gyi?o>qx7oSr00eV7C@5=l4Jqg=7vT6hPEGm<8v@R;6mH
z4U`@*)-kouvHbg>Fu%gj^`Mw|SXO;c-Jwb0l}K+5aN{;xt-7~>N+*}3bVQ*_ZTx5<
zEQhT*_8=8DmXiq$K~e(5Q0%V7P)sedu{S@Lj}??w0KaAmK}0dHAA1uaP8;Y`0@gF)
z2g~=X{23_qv5OrzBV*EuaQA0B9Gw)T=8oU!-rw9&6WeldJsh!$;fkzPqK)qwqL*EI
z)+Z+sz(Sb3s}0Iq@o@S@R}Snb&%#=T-}S4P%9yswohw+WpyN`+onClIHW-aS%q100
z^^$9%49#7_<+$eWQck9l5u6L;bZVXCTo)s4$ef;Mx5FjZNe$h%Ii8Taj^>htduA$=
zVWKr~yAC_lR-o<sz`wgW{KF5oxgEmLE3TbgfS*h97Q6ur7Gl}3_r(NftD7AD0wrld
zN5ErIYV_5wUP~`OR(lzc2~wbV>d}aktKJ*aJE`BZ{HEq21~}~-VGW%j;olM>nx6NS
zoDPf=8ysq(7DZuw_J|+(h1c9Xg8L_|=6^l$mrIn%RPuz*22WH+qe}dcEAZPi_55#T
z0i57!XPWgwfe!~oG3c4*;=p&EO2jk5CD5TVO{p7_d$o0?=v)LU^0U?$CjV6Xe(w=&
z;?r*orfI-cbe8SHm~2WvTJur5vcti4<8{#5IB9w%JBE}4*u!pz3WH6LFN@Y$3xeaf
z!b@pYN)jBCt_)@2(B#?uER^tOYSN%)0ewK|oPP~)<QCzD%6avj0{0r$!{Ptxn4iU-
zEKZl#r7>j)Uy-1CugG4BBmpfUL96*q8}oCNvM|@lU$Mk(qC?V;EQMR5)3BsmQkY;H
zs{hTKB{s5taR?Ienv?6f@*}%d_4cX=a|9ZSb#f6q08{#C>(>gNG-ql{Di|?W0fYc+
ztx1;9%O_t9fBQEI3#hN37RO`c2tC5IuW%Ud9b7f`*h~^MJV|8b_EWwNSRA^vr=fR=
zIoR!Gl=VTzJ522Bm0Ti+nKLltBr|iY+D|b2K1J@Zdov5YbYoDF;FTLFui_xd#ErN5
z%gd4zom<H~efufKEt;*uF<~320+{4jWkfTX%gc%E7$VLym%Q=oc)Yx`XEvzyRjlpS
z``|H{Ifu&h$Qmz?m@M`h)%EcOd1O#?(K(UWa@<XkofNsDBaY>AjH*?nFjqDlkTlOa
z;n7ysM-25;H``Jj(zfTFu^@Fv_JmP=F(1JP_wz21e#I-&I_R7go~N2l0g&X_BrW{n
zV4bPhBVmifKrh~V#=tI`nAp?R`F*j+EB4u<_SNHp-UaEO-*mCsuU1adXVgMh%pBG)
zfu6yya4B}-4}R~fRlr21)Y#MOb_-3xYTvWzz{SUoW2iiiut$xgZO|}oBuSTom(zr<
z2d*!qH8zI?!NnzN*$O753P8(#j*^#E<tA*8)Sc9%DR4GMq%jDCfPgia51~GX4~r__
zpA_p#;mh-TSYMTSxqv527%<sO)!{OmCei3kNSSE)B?tP<?gn90M80tw&(WQfZgvjb
zey33-@u->YUjspv-Tyj);F2sHh@VSSa!n(}MdKOnNs7<Qj{y9X4uI8SKWjc$9i|Lz
z7t>q5Yo1GST9^|@xRB6U#mJ8Y?$fNJ%@5VRo1ndvU}Jc9S#<^S48qflx5h+qolghr
zKv+%Ed{EEDa05?UV&NdH%MXIGuaR!0J?Lf^gz2aXGBWFxDT;7b?`Pt!n^CA>n}7~M
zmqNZV9hJjMQ9{kO0idDVc`0o%;d$6qFd@LauXb=i=q%4YL5NfrYQ`AXQ5b5`xwY{y
zt%8AM1}05m@N9dL4ay1|!sF9s{uwGui!kBep$L~K@W23q?2U}@t;L4-Tf@p5AjzN$
zxZb?@Vgm}<IDt?CF(!t1nf{0$zGf$yH0lw1SA_3%gtfu~0rZy5)4N{2G~mn;1Bs4n
zApX<-m${+Z&d8n_81Y0!;x2vR-3=4gLuYPU?c18$Ni9oEVJ5@uTIamxOc>r-{3>ou
zS`!aJm*(LW#TC=aoDaq!5(LZ*j?YR-02XNW$s~Kk1pQ5owBk-&1EhmrRr8qex$tz#
z#aAz2O3d(^43Ol&l4?T4FwS<-9JQAXYz>x*S^TF6+pm?vFOZ81kK=b}D@<NVjMEpT
zq;7J0pCG)`glMmv_&^2c+1KTHi$-{;8P_jf|InrEbVGWF>qPP$Q;H<<DvpYIU2=gD
zJ$tC!=&>P~q=S}rWz)g8bA|V55_V@Yg(bQe)ebkOG=O1mxvPScCh|j4j;|LYg;c_8
z54FJ&-V=M?{3i35d@*+MVp3V;PfcI#AmC>MW_cp+`7|{6HKst1{6+|0^1BEXbk=_3
z?(#U_rwh!8(n8XmWvLJYcFUV4<(}zK2^M{5dOoKgCL)RR`#8>;Q`%=lBC+eZKkq)n
z)Hws11Yj-gIj6O<jhQ*JIlOSTj?zlCWnsv^6lX&AH&Fq_--7n&hLp&bZ9W7i2cVQV
zSk;EA2$$K0^%&jM=6uABh3?ly0lXG#JuQVfzYZZ|=clmZhdQtet?*WihZR!6viKs?
z1sRfWN1$&0b4Eed7C4on`!t@0C6!8oZ<yx-1QgkB(fy*zx=0l8M)Z6G9W{7#GD65r
z)MyV<hB}dB$Kt@df+AG{ua+e*&Bkm-#cL9?#2)+@mG+J?=Ml+$q%6W^a?mkfdO~Mh
zM+nDVScPz@Nt=;o&Erxa5Y)KPibdZ@cbr2v8Kw)Qe$FLOn%>?VX<V%w=*No7{jol(
zofLX35&2(m#WZX@{Uf{ypT-T51mR0I;2^~i%>GUC=bh;7dgcofJJ;6c|07Uv{#WB>
zW#{Jn-}I&@GL9rLbW0yH&I~ZX&0EaMPMo5K2>xm2V|2PGgJvpmS@FX)p4_eZ?PbrZ
zJB=aLP*paW$;U)SOUrCU@y}2Mm#6mh_RLY^5}_gA0qquVR#}tUIi+vfHh(=7y?tR;
z@1Ci+S7SH84|t4uDnI|#?X5Lq62sAnM^)m9afaz{CZ%sDSpgVWnr1P8Hve$?tiX`t
zx4A6}n~k1XpcjJ`&x?Yzjcn3l$#3Ol&)HqqocpQAM|PW1ir*#}dU`g|O-Z$4<gYT^
z$c)jpJL();>L$jX|3{&67=tZ$6ndnuy&OvWc<m+0T1j*~71;@1@cWms>dI<sdn)%N
zWwD`CKEXhJ%Vv?}0HV-OBgj>>`n?QauCwn)j~jAK;0u3)O*z1LnaY3R2B5cJPAf76
zkK?q--XJ>oew=OL=J4Jq-06D=rPZ)6+Mn}A_AL5VyQFt7cLvSQF}-t0-JYRi>DH6c
ztVP+mV#>b{cN>?aHNwQZ<m6|%wY^<E9iVzct(QHtgM-v~0hUBL=L4DtsRr5iXsw!?
z#R5Ew*Jd~{oR6pC+lx)fi*T%lbhL1{Yj-;3IkPLMupL6yafDj3V1=}rwud=_tU#A)
z<<nB5s+!29{8D8&BcM$+#~NvmYU)YMwH$w&22=+9o~ceY)vz+D4qK5c>D8`p9C%tI
zwK2mtG+&h}1+Xi9EYp$RG?y6LpwDh9JDdu6qa!qE^zO%P#Z~oHBw0y8wESgAK_TmC
zj{CQV0b3zwQo!F!Bnl5fJe2n<0eX^NEg(HmE@gy5_SsLkc1)!8V=S}kY4M`Lx<x!0
zi;q<{Z<W#?FU+xM-s)1*R=2hYduQ*%MK*(>!40QV8sNKX&k|n~E;v1<asW@e8wNHa
z-hFiXcya5df6UC)>za_<`xECEzTn)cwzJw@J;pMLP{)9YDu;yQELf990}uW+$+Viy
zx0tpZpBw+dxDg?sqmB29y?<#8+6CV;uEQC_?D$hGwt+H^<%CtWNKxiSoSwIpy4Kz3
zY3~rs43JCNL~ew-|K~qbdJj^ds1dMaOtiCxijne)>a`CGp2YU6RooB!j>;#<I<I(K
zL*2G%icI5*`#D+AD9h0AAa4J$a6gE{Y`Na8I(4MtpCO+Xn4oY6v#1g}pP|j2OMtRT
zCfhUjHJH&DeES_So78UaTM%u~2%c4IAt}7H8h{9q6yCR=cLhQ+ga&tbSU6N^gj_t6
zTw0@Gh@XP|Er=yRZ*m)WPPU{*<J?c{z6y!=XcIkyAO(A?)5D`PA0IYby)>MYtyY32
znz<nuIATpBAYR|!GEEh%>vxn3(Owa)9b)efbID3HG?i0rVNOsL1+p>NXr@6OsOiEQ
z0}S^zNrry#QcHw1niK&c1fqo+7C|oSSRHLckV-duV!|-b2NFr81u~%wW<$HdFwNI#
z*6$09jN;KSq%6E^l19beH3Y}`#94(ACl<H<#i@4o6<-PI#HXYkLiY9wXbYb&;tP`D
zQ~##TqXv~t7eKab_%;vl&!hG;Io0#m0a#VcKDD{HP$LA$%?)3mEvEugB<KnPG4Vsl
z?W)RrTGK}m$IK?MS^vuK@(5=keM)MxI5gVyvhNg=X1GS^l}#|Tn_MQtz-DBxGnGMn
zq>{!DNFjrSWSJ{`D3Op2J-7^t#n>&xh>E>Xbh)%faAvF1ShtuVxtremT*DQ>1Q?Q<
zPIA{Nd%8hX@xyb_O!Qzw*3GG_|E-@J2eCDEHU;L;c17ZVSaYLP(e8x8Rqm%vuU!D!
zM7WVy(?%%vo369QE8TY7_$xY|Cdft1Mx&d-<=#qf$mZckYsC`l4qq}UETZlJ+;7KX
zHs?kqx0(%#3lH0Q`&&$+m?D+!0g&pjqgT4Yq48cLrEE5c;Ue-=p5eE8X}K(fqbq5d
z^B1v=V&1e%!BYyjfs#h{vp%1DE<L_!TA${~JnoBaO_rSWAH-@)fVJ4{2-`*Jf;s{=
zxIuqTNkTxA@{3|c!msY03ti2D6)&YVl<S%HhJgRa(>sL+(tKaIv2B|Z+s4Gs#P-CV
zWRi4j+qRvV*tTuk#+h?||L<JZQ@z&io4%;7wcpJ}dPDkC6r0*wlCT)gPZ{XW%u)9<
z5$7u14AXXKmTA|cB}n2aa``U*E-Yw8N@q1SL50o+3)Kpm`(6;Qx|Rr(mh6?(ya$xG
zirR$X<MEg!K83EWz7|xoDks}eqd!%&&_Xj9a4_h8Gi<5ELMegEtKUd8F;rEc&?X`y
zEyS5BlM{_hq?L_JceHV5iv~_u`@j;RRfL;os4*@>5!)Isg{w^h(%5J)kj$U!WO#Vx
znfvC{C%>5nfZHI`*7dL=C@_z<ht;q768urzH}Oc-ucY<klK#clUktTjP0g(8I0f>%
z-~9XB!gl#`$p%<HVTg}WtX6Y=i{lR+nm%hBk*e4-CpAlDh@WeiW*vZrz(m7a6n#CF
z1Y$(#jOH<v1}wCbnE+M~@)hQmg(08Huc(%CmgQ^jG->Br+0OpnaC9wA6&v&ezf~g%
zDUme=t|_jD0he3uFLI%GyVtXQ$9kl|u%(*J^0nV;ioX?eJc{)@L|a-0U_vyDs(6iZ
zbD#qB;B0u8!?P)tquc-~xV8)qwZ*8US>gAlsEOs_MU?}5q3pceELG+>^H|Qv@h#N6
zKjh);mTy1efpwiAs4-{yf2~Sdsch~bo{#Uk-z9=G3E0ANTV_Xf4dmH=As?qS$D^hH
zkgyu{%$uzo3!IWch7u`{(#%&9Xi}`?xHO@sYq@<M*W@61IW`1X*HUly$%8=rx0cTe
zPMc(*FlWFZ1|H=Tlj_B|MLSa;#&seJ!o=3Rb=}*L%O_~8`cmWH{TsVVw0S8*WV3T!
z7G>2~@UDG>1~I&lVh6@dhMc#TzzQjKme9Q!VrN?x!I$^7R<kDRjy1qCproREJwy>Q
zSS@2Ql~~w*z%K!)e`p<-d<Bs0ph7bsc7^uvM+!?@FBE(=#eLMlGHtenDYpiguoNLP
z<H>bm>$ohSCk@xS%lbgOPZ-E$tPw_hdS6u`tvH?or3S)>$4E;2Nh2GXHX#yyF<zBS
z8xW{TC{sM&a_ZC$qN5NB(U`OR)FN0()N4(&W(-LX2?l@)2Rwp@I<BIq{2w^i8;Of`
zxvkg|9KE6QojT$9R4BEAqleYK1<V-0ha=+_x-pHIF21j(#96v0#k?9P$QyCL<P-<}
zc74b{qDNZiy{nc%%)#~;Vs|%4{Ft)Z7>iOJB$#|ODH!(h+p~vg?qDm95?YkiPc36T
z-p*c@5-~tgS0v%|x|n2Z4r4wb1?oPoLBsSzn|&`u5R0UIg*%%nHySZ50+4Vz3GwNh
zo&g;Rch1Kmo?ueJXOyoz;+sy30JXwqTmcpRIP?qOQ5gypZ<`xf$f6nQDMI)<P|Dgt
zgJ3m}QmeDTet?mfc#<HZKF!@H9myKsJAeMOkPWQtA%Mu2{<=e3{fUUSTgctNs!8^^
zvYOLNyY!;GQYN4fC#LQ2=eu%4Y|P%$gy<O)cGt)0hJ3SgFf`sYgXtUptlJ*tUz@80
zc4zhlg<#e(u4FA-SSMziH!+sp{OQfsJlL6v<$m}4!yGy{=R~)QUh<yA$VJMa?~n-L
z-%x<Mjt-$e=rQA8Vz9P`J@qCz>HbBcX6SW{72ADo!yPur(-9hk-rprk54CcmO@wYk
z#*g>9?;mA3z_UozM!!?TZ2V@9x?9$%e(@I-unJ*!W!{DRD$6t!CgIZs{_5w18uJy=
zc1FRa1hSn~%~FmEn~&Y270HqthizQiqT>NB;~=N0@s!@?zY9?~C9sIuK={Cdsbi{j
zBaIa9d6tu6cwna~DMZ>ZtKKMDuO~Tu&1XP4^Y6!rex*k+@=lmt#|hAIDH4{n_hU#p
zd|cfAaD&lbJ}ngsk+AZZ&*KWRF_x3cyWVMzHUx}fn=DbzZ5AeO=wc6d3r={W4S9fp
z8JAzgw5C&3D#8B38<`hDNc*%xy)dp)iG=UW>}er>F}fo+w&9p0|A;Qojk)6b{9dMK
z@Hq3c${B7eGa-=3$>g{~j9lJ~Ut`2g=v~rlCzBp;D2k(1imNlL#B<?dBm*fiqgr&i
z=iJOy_!(m{xd9i(J`VfRECqb~hMVvk4ZdAn&&WRw?%7gU{O~Y9*-}u`@G)Adi19k9
zKso;31!jw%Bwju~DA)gXxQ+1;i9vb(x6t;(%O?S2W%=K8==pfVc>g(Ex8p%G|L1^s
zf!F*0JM6>Yb5Q)}z{r5FKmf+}|2bf^#7pDzu>a2ivt`E{p9vq7qvhW_v=jVSezysq
znCL$-);xapH!$}9D?j#$uSxJ<d2W0H7?OWt5k7)9nE#2<Ta?5JKA`>+8_N<TVS{n}
zUu8rSf?S;c6Qgmma{kArXC-0bU}t4bF%l=h0%zr7O;L`6r3R{6Ok60|7a7xChB$f4
zmz!-1OsFy2jMtiZ6?mI%*G_XyTx~Xdo&=A)EY5#l<~Vl|b4XT&SqM4{I#(%6C{z~8
zFxmXHM@Xz~aW1wnH{1oK(OkuA^Hn>y#XSFeaD3obob21>=Em*hq)eR~*HF}vl^Vwu
z3!Mwf4jBq64+7BBgP7ad*>OAhmUaY$BozG(V)H$13y0!hVAue(K4C#|e!nYDZOO$J
z{U!9>y~5VWjp_(sn4WxL>i=@h|AqqN&<p}LPH*cAqAWqlU<D}+l2q91?n^O^bZlx0
zuH?khT*nSNtd$OOAuRmUH?0G``)~`|H>@M8>_Di>4+r=(h7ACb1c?Qo?!UFio8Evp
zzK)4N+6Hl{Z-Vgq^nup&2RT%bbejY$wr!AW8`<g{Sw2F#4cgK^x?p&?SH7ZZKhECZ
zi%pT8pwhUtc)7tpf2gA+JaZ{pz>^;VKLhB$T0tMp0dn~ZdEHN|6NAn!W}stIGTDv9
zmu-6E1<27J6!tBn9PSw$-m|~xGDK2H{>tA0t8ZlcVuEr3q0apqmr#a?0`Urehy9jw
z@~)BN`&IRu92y!w1~6OuqB{i~Yh9o~ZO3u8Q?))9*&Y9}B-dw=qHl8a;+okSpqbe|
z*6dDquZ6s;g-Za$(9@i(yieKQ;rY$UL2yGjfIYxOt=9ch2Tk|^C}Hgba)!SU(Y{(>
z-nYoEzJwgVR13Z?(7wJproLbqc8pC53{BtMK|enRK|TdpCEa|xt`LNguBXKIjNiUw
zSn8V^Z=SzoUZ*S(x4Txtm)BB1OB7dEj<2KwFUG${d;7cZ?F%TSdS?kO%S}&gj6s<J
zw)z*o8epYsEe$NohW^4AaQ#@40=*xXll$6HZK!3hYkvC<@(8r~x)py(f7PgckxkK5
zm6DQHioXHBbiXi5@7-ZD7x)Q2o!*G6hSxGaYx;zk$;cirL6|(vkr+V)=<x5h+MZHS
zxS$iJzVi0Fd{e*9=<WB<O;3=fU)BIF^t-OsFXEgp-jfgL$Uj+O9VbH81*bNq7O(De
zpD8=UEnyJ}a|V82t}kD1A3{@Ks~#lNgqC0}%{KPE_%=z|Njtg`S$zDo#dBL@@2=ea
zI~D=j%6>qTcZ`AOGm?AIj*dKx*dF`T_l%+0vc9)Ygoz$Yres7j#c$V&f}H>|t*Zg(
zDN{I-!fJr9<VQ{@t_9wVeoBPX8p<kx+$nTh!sxeGN_!=UIl@W>=9HNE&%$cRPaIQZ
zB&kj+s|Ux_ESe}o%ch_b3k>O@805qN6Y@SWfu&gQw_lAsj<x&klFOa6CH*6lM8OK~
zh*ZR}Ox2l4hFe3r1dV2k;<x~sT*fNf!9=;w%(EE_()152)^o-MHKFy@(UMZ=Q;CRW
z!NgG7wt0f7C23yKMg$~AR9}vM3$zrGPOq3N??@}BU>JNpFW-y<Q)7$DphTmpO537v
z<|~O9ZqNd1f0`s$iwNSoeG4PSG+MY)wnsCKU+Bz}{GniO8xL8&ccDO_lYy|MnP;^=
zWF#5BSQWN)@?DQE`amd`Tjif^Ipx=&qND5K1IL=*Dtfk2crk^*gjfJt>)yXcW}>;s
zs#TW59wG)G5?Zgd(Sy92Yytfi{|Dc`>}Fkq!C~%YnT2+?n!>M#k(j5yXn|wQHwe*P
zn*7w?e~a9c`q9Hx8o~nXe=IyPkEm%{zN@*V=I(HA8A2aB^yE^W@QpSLPdITs7$Lv+
zj)HDA719t$%TBdP$qJF`njZHhR+c#WBw467>PpIv@U1Gr-@`cUOr7=;t3<jCzMXLM
zbuE-0Lx{x^diYpQOpnmbpHA#hi~B5TTJ2o<Z(@SXB@pJh_4oocJX{RXNy2pOHDvo{
zv;*Y;XvG(u;D-65vx4GifmtnQDA(rC9g$wOb9{RQv7pvQzr4%#y{E+Ar70nuxrk8J
zV3tSE#JO`wY!J&nZQ0U(O%iQ;OBc}09mp5UZGlu*=g;Z3Yzor9zQVHLB<u43MTRO9
z&S>D%Q38+~vXueJkj7ERwek42;NJ(uX9j@gv3i$4bc^b8SACkA#~uR&dJVoPE?4fK
znN~;Z{RfjN<K{MU>itTjK%4<pe6&LS#QIiB?VTI=*?C@pYJeR5=LM>=o&`VX0r&g;
z8C56t!6UPwH;8J`&6b}$cuUJ$5@9K&I#GV#YxSMVmn*<?^5I-VT=JdRx@~x#+HdpP
zEnQJjAnN4IB0Z>K{C*1j_cN=X{;~QOo%`@*DSG2ut;!yUSJ6jnaWtO$h*fQ~r3aCU
z^PRc2T&rM2aPu#iT5_pw;zEMhFZ<+A1Fzd~By1{l1S)RpPiKv|9B!Y|MG~!~VCt%V
zZ?%+|1xx@bewfRk|GbnHb?&kCSo_5>6{$!BM>Oj_2Pb8lCF{?bW-4+XI#Jh)D}N>H
z@*lwTOqqu7@J5x(_?gL4TmMOL`+!;x``FuHP4?b;g){t${>PWGt<t`P6v3ODo^x7I
z*r~Ov-utg}uC|RPX(iEXXhmUBvi=k4!NH;L1!+L@BqWC<Stm(+cZsbE^6%ZBT<ToO
ze1K=2Z1f?UI-VG@1>b9oP4pr=u5j9g2XKJXJ_|3#Kg8t85aB*iih=GSBZRI_ZFi6j
zZ5o-A&@sbx!#gK3f}c25URx&GQ#XJ6^JrmLnBPa5@x}{(6gHcB@>;));>|}SZMbzM
z1^^uO^f`P=n<Fa0TQ(vXw`qJ|Ub2<q+8a1!4<vDSCUzeoa9_u<;2`V;7#IzoxbN-=
zX?-CYbbAZiJ}+pN4-RHoowWvyit{-?B*{~~B^_aqwV*xR4o}WoNBOtLD2FG;kX(hN
zLg;V>k&n1lP|IRmIOa$+5=0f!dQnLz+yIRW)lFLM?tA@__Ne$3WB(!lVrdDbP6dCa
zuO<P29g)ftKFb9M?C*nlHgYy6^bG@7rDcPOv6n^lmaMvI+9DX|Y(^oSCdn&vQtER1
zDOVNL!iVz)sa$`$0cDm+p5R*o8#lGavBhGD3VRHEI8?*LPyreJaGTPr=(kYF10ec_
z=R{-8a;g;540_c9>nWxcZ>8Qi<jUak;lMo8zRD%Bq9h>1&9v%a&4*5)Jl_o&g9?Ew
zUXSTrm?MN~B0qZNyG&|E>F2{olc_a2OlAEpg~3v<ODmlLr?Dk2q;k4REF{hBWH-#8
zfG39FFlV&Dqgby62F@sPLero=0B8w#;~XL`k<=7=glC(*y5KH9$Y_YRu^#GkmfHMb
zAae+sz{j5Isi&{M7BxGrP9$CJfp;?>fnbseh$z{b(7w1Ir$zL2S8RJQGIqw$C5fSx
zB&j(vt8xIUJY7ttW&JXg)56x17jQ>}C?AI+k9O+iH$zLN7{LAca<T0!kh46F0VQ@$
zU10U#PyTS0Gf1FnSDE*F@W{tIX2s)2D|R`b1z8mT4VsAgyZ~VfUDmT7UbXS{N%40y
z_sVL;r;+xjjg+M+e+bf6?2R7BvA<Kga-<JXYRW_MY?7b6u6d;<E{ogNnh_BA^g*w3
zVcUC3KQkS(!YLe}`p|Rs0BF%-bZj@1)9d#q0AUmSOPEV{^i*1dBdpaatMM%V5J_cp
zl_W$$$~)O<>r+qNum25ovY#5Zuznzp34wBHEhynb*fsKHo|!)t&zA=|Xc&pqeSD*;
zbF|D8tK#_~o6fwPjvCi#U$}S06xY9aO{6oD<js0l_kP~Vm&+{;AbYs<$(iZyR+m+|
zQNUblax7ALDjbEoDZR!e3W7kokhns7SH&LsQO3mz|3&pa0c!`Mq{*N+=E01l?43vR
z-MH;18(QYmxgZFchu4E>5{nnVb|NI11*M2Ui)pTV_5PsDg;RA54C(UYtcni*hlde8
zV-|P%D(PxKmw1>l0D)Fpl0+L}VrP1&RUHTO;8qlF+LNFyUxEp#ur1Zoox;7M7#q1K
zJ4aVtZB386dW@3!kS5lz;K%^W;N^-#92K&XFo|_C{#XE_?!UT}txXRpIYj;zf_o6N
z?kCSb3f*b+#(l@L=Pr=hJDt_r(Rg5h0i~{;_v}4B^6}IH=w6wym0lDviA8-+n>XM4
zi%m;MkSty-!h;zE){-oSs9^3!Z~^zQ)G5(pim~pGxFQ~#<2Zh&)1q%%B~lqK1J)M?
zc2LvRA4>4I!UC-B!6#%euPF+Da3#9f#YNu0jT_+G&FT8Z6fmAn!2@T5W?c!(?G?m#
zP0^6}X=8E^6ul~+t-@v-o0@$+CJtu=U*G!&DPIT_Gcu8=BgiHGaogy>^Q&8i#gMXq
zc(OPy!xGq1$RrQNzZyX1UZ-{kj3OVU;<|6(Rqs&`eh$v$sgM?Uir^rh1TR$2gLj=6
z)6X84NlH@G>-&y&17BL4w6!<<P4)*a4FODdx#Y$Govee2e+x761?zmLO))iv!e--j
zzqPV>bC|{kSJ|b5s24~oj<UQP4$Dj@#fYMYV79s#<l0&%Rv11L-qvNDACEdW+Ir0~
zy`_jB6jJiy-26nrDc=F&^swWKP1-;L<iiyy<qf)ZA*5t69wvg_N<>-uyO#M+OW5wL
z_e*bJ7RDW2U+ROBE*vJ%Vf5*jNKlynn#U!A9tkFv#V$ruR^N7LE5#%8eGqq9yfY!}
znJ1HWe?Q?Z<OqlKY2gUS=kvRcxr32D3U`C<pBY!3mjsfh0uT2{g^_j2l_?!^1>Tte
ziByf5V_NI+J<o6D_049AUz!g|En8S`{V{j|A^Wz$hXWsf3Vr$2OUt7W!Mq!tAyr5}
z3|{1P`nmI@y-9QP(sZ5aVVT{)?;==iP)GL8!cx_njIQRgMtT^pz7_6@)`@VBm_n!+
z`jun>_z6`6EN_Nt<Uu^+tCV2{r(^68YA5ipcMhef(m=_ZUz*G89|h&x6utMi>@m~;
zFLG*VRnN#m811EvKjD0;S^8PI>zm4o!tDZCr{ndG_6mx(hHiiGZ(4bsbpspJH0Gf-
z(#AX7n`8rT>BXEy984DS_UUXi3W~PQ;aR7P0%+&)X6;qxUt&rzGQqS3YF}_?3uYwH
z_Ai{Dq|tI)8!7^s(<Yt%Bh6@DHGk^>Okuy|da?r8E2JjQZ)Sp8SiAGoNQ8*C6Jx~D
zQa?QB0%FILWmBCf**;js40Mj}`~xS^1awGLj`vsI%@Den=VSc#^y<44xxK5Y|Lo~M
zhLCeQw$MvSG?}0@ny&PCX8z+&Nld6-z_D2whc28c{=i_eKZFwc^r+cT+!qc68pA!+
z<=<{(Q|B2keqvh7TM+s%STKiyc5&*llQ{jc(?$u(6@<vq<#!F0)HFFLo=}L{z?KdO
zY-UMtf?0@B3%PKG+9-;Qp9V{6VvdqfVe~3k{!?8$bG#Fs1+bAG(~<Hhg2RS@E__>M
zb0d~whs1r3!0Etka40^}=Eq?I7VI}rcZ=ti8H}Oj2Vw-V3Cu~CeS~Jm8hFhNe#tsN
zqP|T3I|7yenK<qAyr#%zO-Kb@QNUY85rRY#M`I57lX>MA<8#CQ^E{@kumh{*2zPJx
z)1?zTV9b}ifK6quv(R|qVk?c6&U=RvZ(qxY+l6Hk-WT2q{*|v!kPciN$h6MD4**fl
zJ7Uc5^gbl;Fz)($^=I06Jlvpc0gI_&G-o?%!r42=al-oAa=}Bb101c|CFTA6^F1<<
z=~MwUlyRqf>Z5ojaM)FDlETze(#6TFbRq>mz%Wig`Dd^2vNRTc47^#V4=ZM-J(J5d
z`GxqhuCLJAcdmI4$6jt8Kv%nadT_q&dp7xnTT4uxya%nWqWWl(5w9>}C{F=7!}9#)
zk;6OqAEOZV@FErJ;hfNHs`wNb|MCO-0JyB9z<dgo8|M8dy+P2S*=L^qFP>q!12inB
z(2LyiTFV<xE)V0Kf`as|`n-HY(0>?GW!YJ2;s;MP#n+AZXOgdXAn5r@C`ZYsEvJct
zn!p7Hdr2QkLoozq1JlY7#QvTUyCx`TjMK}sZEv_oNu?Ey9BS4>!i{QBfWtE+9<H<=
zM@<EpcEg|)R$TM%y<2AjvBjeI9aT`w-x%4t&|uqmxs5mbk`tbA$a&}&lBgt{sR**m
z!eF@@v>GX&1tpYx;8olL-zI{&4_*bbZ+B^dbC*U8ZgX;!(L#2C!av$mc#=|T!<RVj
z@b%fMvKjl;?l@xjQ$34GCV`OV?=8q`8Oe(or@STt1uIy6#-LHV)?k*9t3D?h%-j<}
zYKof4Bir+bKv8dOxwU)BKgwN!j*(tr4sO&B92YWg8E;k{Kz>po;9D9Nww>u?KljfQ
zS)R8eG9EswZ0U8132~A=gy!|nRS=y?EKc>8*psAd(k<`I2@cvn$|WObl|}A>wrB2L
z#VPry@#vH}9Ym0qw@;wzJ=RxoDm7<|4RXizI#=5~GgT8Bqu(?HE%*o`ABGIDiV_#t
z6@L>s9xhcc0a<?=5BGwXl58^xG+_Tu1l{fip?4H>Zn}LkYaZJRezbT9e}JVP(YWEB
zrevzU8hLM@wv7ALLiF5-FIylCo;O^}yU*c`GjFe8ystBhjRq__5#*ayDEK_f{i4Ug
zSGUp5DGg?r@XzVDCvzYU*26EC8@Y}$WKo4LjZ|l71&9$_L+0D6dRN&;Xgp9oV_F5&
zEy;;+8u7Ud@$!Ny4aW}3{0T#aI$5mtvbp1RI@Fi?<56W(PEEUutXz!Ol!_p6Sf#6(
z@7Z|J2eQrqm1FaGSktTaV@kv<x5vDD&MnM^Qv5o^_RFc7r7yWRQDu~*5JG!*=B@0P
z2_AGA;5i;_pRXm}wcwFv0Ry6W$V-rV_K<sQf2*)?V~w0V^h2{8_up_awKUbrcx&(j
z=as9L713qOyR+Zm?Oa|o#WZ!%Q=Z#fIsD1G(q~<*zu!WO6F%1ToaAN_?rhbJ5-HFt
z15UiBN$f801y-F-rJbKLqNXTQ>ASTPgV*k+0aE^g%%xYjh<Fav>1<#95V>z^M*Qa?
z{C9JmLXimd(CTDeRaM4@Fa};)+Q{VvOg;NE@%T9Idw2Xh%4i`j8mVv9@c9f4h-fZB
zRxxAG4^#t!KX|4~!_eJi_A;5loAQgI*^rth!21=$Ja%Gi4#7=OPIN9^b4W)CF!vh&
zb^rK0nL0{%rdpSL&6BNzGsQn9UZPtVGqD?3S7}UIKl^pTS3^<B_%w9hj=14GH;GV=
zvGhchgD)mGW+?q-7#3|!-bjQt*el1WfUf^Ak$r7YLn|$<zP?b)&I9nrQlT6WP<%_m
zb3(YM4_bZ?6H1!8-j@Ave8zg)#HI?j21IErBvWir@rbsha@=%WN6Yjgt2TU&^JAIw
zf@#Wn+fOb!SJzD~@Z-v8v|C3vDnEl}Z-*De8ZygQJZ~pH+8|n0_agC@^<@8bVK_4S
zn*@n<nU5v=s;;1;j#h!ouAhigmWPk#5A2g4yPYs9!A+v!^*qNa3Cqw;LrBc>1Ko%i
z+!crkvQN-nrRQfFV?3NK=pVP0lQsVa2S2E<$HAr=drbT`dqENvxf49Saox#3iU85D
zb2uqg3eEn7r`yQi5Po_~HUI)Y4cU&hnCBLudB^ARcx)^;96(8K6Wd{O{p)*G2Zs6M
zhMA?82s#>#-UawZH(Q3ng>(3%6!7W_Z=w^Ak5A9TT_Z<3>2G2m9>jHDhdt0EeMMy^
zU@up1MX8+Te=!tI7_LWBROVTkUR9HpxD4TK;}bvN-H<LqZ{|ytTWDy*p5Ek37Br_U
zG{fno+ll2Bty`-@HMN?nn~H^eqlxivtc42#(R$F*YGP*R`ZwVhW~XH20l;*BfWHRB
z$=bslyAQcFW;N+X!XX%=i~F02vDQ8RaX0kHR<T+1zmL%wqC1LYx}knOP~nRtYRLp6
zEAk=&=ZqmJyGR<`tW6dB%ojZtFH(hZ8e#r#p*ZcN^^IlU>jQJcO0se4BkD|OS!qDz
z{K?8Llx(Ijts^?BCI#$KDWG$SSo~{&GA1Q1*w3pYqJ5V$s${L;4V1rz8_kL!)iV`u
z%FKS8NNTUlCG~)f(<~f2LBiI%D=}>f(~OF4dZcmjJEA1wM=y(|C~pxQmbWUa@{m4Q
zfPo<;jnCa04yl5*5Ngh2%S*Xl&EMRw^wo4eW30hR;u*uZ_8<<V7J%oJ#DFgc{FS&z
z`Tj4#r|FeQwZgy|G8dh7jS)QdUSK9S>WJ}B;MrI*->jNZ10y4r1!iG@G13Juu_|+q
zn#ZM}ACkz*7;Rf$&zr*9PfrYk_CAOY4`z9?C&JC~#qL#!EA#JsNnT()g#rW`(regW
zsewOhRwlFM)Fq%;qJd*6lM!a**A)$-TGRj!8`gltcYN3Hyee)TgCXBm=SFb3OSP<)
zD+1V(W@D%WX%EZAJ&y^^)YV@S>S#Q?UAAV2$qZF`QtmWHFQ#U*2&q0bP2~BBmR#9Q
zadI(_82$unf^*BQ-rKjMY>DI%fpHy`>g!v<q_U3p?J6R#NC38>HYb~O`p}%22H*p<
zb~4JcNsoreX3r_ujwpd_DErol&1vy0gW>Ka#bDs`I#;7z`q*T_<GKs;C)`%UA<-tG
zK@+hIQ=8gfhP*Y_8KlkF$B`Q7t7Wa=$tkWsAJr@hZ4;|@HtfN@Y(6-d3(3YiQnAft
z%CfVxW@N7$Jb)$5s%y7`RJtF366G?9i9%tx%c;9N`%qPi<faAqrLuMVf6z_w+qx^A
zyl=vP`d{s)mJQg$Y@I8n+qy;i>@7&Ne<8IcH^_E|JGn6WBg*#;1b#b`Y9BP|ufpsu
zdp3>zRkQ2!rpe}hOMOTG2fvKY>yuCmW3`K6iyIl_Q3T+9fU0tVlq14B$X5W)hLbqU
z_iv^s5O9g+LJu@FP7gtNb3_^DI8yR7!-V?tGd~QY=}TWVfg9I%-wWyCW>Pjz@8pL_
zbjXC|Bf_B9W#XIn3Bl6Z!)#I9n#)N+*e0P83oH@TuzUPJ;Rh6*V^27;aj2$X??f%3
zN;p3L!2lk^JV=CYvbXFABt?{%5<=(v?x!)CEk0ty74udd&M;zIdu2+5Gx!;)Jo%y%
zHHklda?iTnbn%(L)9CviGXONAYP^Qza<mb)sWBN#V0lf9<<^7YOddBUa7@mk!7s<J
zDps*pf1;(GT+AM0=y>Zck7lzqhvy!wD`kS10wtlSlYSIu68qND@aa%Sy8*oC1wlS%
zLcj0>uHciR=w#gjIi~UZ&^0HEGWQhzx^=Zthph?jBQBaY7*(HAM-zzRkm*JI$-MRK
z@d#a#2GwBJlgR~DPZO1r;gjet>{0ac6&A)g*w_>H9Zi0u*bhoKNay)PzVdFIn=ze1
z1||z?aZzxztRyphGJI?AqH^2}^wgbC9z!i*<E3Syg04!hXv)i;_?8X7xi`ZEw}lY~
zFH}l#>R;7(Y8U?d(Y$W9k|fW7xT(@lO^*g9GyF=rk~)ex?i7fRCWx-@3d-kBm?rT9
zhv4z?5VHr&_CSZR)c!h26K0naIenaY9H`%7MpMuyD5q|UY9iUI_&6@t+CvwA1z&Cm
zPDCA1W718mnMKe!I1dgFmeh*s{h|>w7xNZcoYVhKY2S*|LPeAvQo$+KUyPShDc|kK
zX;cqeJL`rf_l?FH8HPDJ(5}QjW&y#9ORg_ydg!ngJ7ses+YVOgWG*!OwRNx30)VDB
z7fhT*?Z0$ukdL$-cpJ==i463$Q?U*qSxOx#lM3*qG(_2AFYHz{QJyloFY@1fi6~_-
zW)8j4Om<8)+@RVW{u*pIxW0cln@;}e@Sw`3GoZ-zcF3U1{zH{UpTcS~1vdZNk`R`M
zyq6Wp@d+9dkJiSsSNNG4QtH;4H!!feRRQ%gk%b;n4HDsQkI;_WBfg>$!q)taH$%m*
zcJJ~7p)&S57)3<|t*a5`#VBj&uLgq$q8;H-s<H9=jFvcngmu$4p_0;#ZL1FNGf8Ms
z)tG8YFnV8#+7%JtQ=z8(6}bD=K&al8Pd`h;-M&Li6ifE^)>EKDaph-~9ste>qp$bI
zB6mCFBlI$zJ37O)5$)GZ*{`V^>h<0BL%noqEY)hJGXn+Tso42!xL&dKFGq5!LE`)O
z08i|eYk^V^NNjIh82nuu-r8EU>SxpjDV>esf)jcjjZ_#!YL)&<I2N*V0~(p|)SK$K
zm@~+WOO~MP)j}@B%0iNrG{CBvOnHv=Q{4}-qV!uJ;^)z73)&VN5&6SN`dfXALv5`d
zv_?T^e8=t#c7zuUsia^dp1TEC_Z+}&kb`;;-k6F3i=XR*scQ_<pyvJg*WQ8aDTC|I
zmCeEMUfnLTzuC&QlMolTcSpmb+|Tzw$-XZYf;Bsryaw{PF4RSf2%syYdrDt2CUJ&;
zlN>ifxvH=v(~d<8ewkQ0XO?Qcl9pa-U(mDl1T}t%`gcca&>bD-B!Aks5b$%T9sT`b
z?6LQ^OcGq(={6y)E8jjEA^4|UmV?2&_EZoPq4&eCT-4xZYvYkXR(rLunk)k*L_}`{
zbyTIc)WMKQYjhaX0id<3%8|@mL6b>yY%K18KmHz0{@Re0nFlHdi;tmD2hDFrv!HwT
zJED*lPxV0fYNn<~5QkmHKZ=y9iuE<0)hn%xiWpo{6VCDM+#foMYcR80@}=-WN~dY1
zj{~<l>EtLO9_EP?&x%0H%8bNXUN-Gxbb?O)e!z0}Wxmv)1Hin&ecP*;aEAhu)IYn0
z54TC#E|2W9V4N~-Bs@Yy4#cv7-W$<nDIu?t?NE;2Iu|q5!V|77uRicTCkZ;DX{FhE
z?O*wDJ_~ekwQ7)4hL_QXTp2m)0}Y>Y!)~JTh;6yBEjLD>JrAdbn_M@75zh0SQ)XoC
zQ-0Oxl<7611$2@w%2Ls=EYL+s`sdK(fRXqPO2ZG09%07sKQn48f;+m7d>dH4ts*&g
zKpzJFIkwI==&xEn_ix3ID-ib=O#B_V1%p;yky@)y&kG@OpI>m~S0@$_D&TItAMWc-
zKC`=QEYG<V4I*tJW@tgHx1k0nW0;L9m7P@`)GzAG13*&Yw^_nz!&&p@JRyC{F(bA}
zh6o<VODdZCNq_XCZ_7?<Rv~s&qt1y>XAHss-PLW@#JLm*!fzluf37vPi_iTP)Op%e
zzVYjv;=N1(G&u3NvXS|(ESoBWe}+fU-#&9&Fym|JD5wvs`_BAh{A9sP4XC(URll2M
z$(tl=1;B|^Mpr7rE(I49cIL-(CmNA!-u~WT0CZqshSn#{aI=*#Qq4YW7bSstM(bJC
zDefBff=c^e_A|1$oek^;o41a4A^a})8(Zvm$7^cV<{0aKfBRhOZRpeM5ZQr#CC%(r
zzp2Os5!=QND)f<!4ufO5wy<w6i?<|p6_<9+%z)e86)Nq<sVYtknhm`Li=zIVZ!zh&
zkP9dHt)j+J8tU0G=0n_J{IJJFfn+xjqF9@;iL<+!iT5_Nwxn7F|DhdIynbg7-19=S
zYc2cPKU^wcCs=&4Jd*9WwJtN)8VwVy`7@faLPlJy2`|3Z2QIv3MuXuX8Nm-P(J9eG
z2mppW<8&SFF~;7QlXMcD0`3>d!r}y0O1HOrLmD6IU!OPcMRszG&)?MW!9z0y(`yZX
zZ|7!p85RxNG~V$ZcJ+t(Q@h#@QpRi$Tx|~01x)iegudr@3XQEPpo_xqBB1GRv-*qh
zZ)2D5sxI6-a|Wv$&q1z|`{-UrTDHmm<^rrhw|oA;n2%@1hBI)}+2LTIsa`5Z$S5`>
z|6UyoY^8PJNa)e8@0!-F{|6l?`t3{gkOpt?-fUw#T0VcnY|#il;Z->Z4`#z6Q?rQO
z-P6T9x!&LFf``Z;F(}N5U%jq=ySXRF;MD7lmKt7188#-4p5FP;ET2?0^-OQ~3;>6B
zKUZqejBF{v3wEPYzz!rKQ#*g}NMn=#+RT!15A1K_Od>9!!cRo42CB?=e=6aqTNv?P
zwX$3iYWw6Q8(${WHwDL+o(K*W>qL6TfXVYg_-{b1YNa1?MK08+gkhTd;2HkQi$d3(
zK&I(EZGANhVnx6NyREomg+HTnK>=-dAm}a=mG%BO7p-%C<v0YRhJ?e03od1CPy=5W
z*1tMKbWUQ%(A##(U|ri7nj;Ft2&Bx0$=jG1HAFvY_nZuJ9J*DOVro%-Vf|Jh93GW~
z6odHveTF3%<YT@dl1kAGnx)aeL}u>+A1zY4(^>m2@SD^}RJHQ8{Ok0BwHff6ig<@v
zI8(7NY_LY9h;Yg)YZ281{o6l6OBY<AOsLGyjN*E8BgBM$sJ}A^0(XeJ+uC1~W(93T
zx9i`?CO0)eSZuc@cS`SXe`9-ABXgbV(Qo#YcifGS2pV+lRN!$unvhxR)*904RO5nC
zcBEsO#F4E>T*3EP5N7oqK_UTaU<kZSE4Q#nzcl7@TyY0-GRQHFu3)y6T9P5;5{;9M
z=3Yj^tG=PSV4#C`rNylF%7;%M#KxG53d-U?T6a_ZP040YoXh%QZl?8+H+)saIwgo<
zT2<Fmu64>j`N?m-SKRTe%+{JLYOeE=h*A0|A&QmMFY_W%qQ)USvVIRd&gzwxbZBw~
zkkFz%Y>3MKX}V?O^(eGOwGF3)uMGUgA~`73hcv$CTO9*x>01$P)h9G((WnnlfPE)T
zlbmQv@4Vel#ld6v9(u6;GoptCL8IS~D61=%Paok$ZU^KAdEL_?x5r3Qptp6Fm5sm;
zx6}I`)J-|#&OZtBZ@3UJGXcNQPH1=7dZqC=vcdJ2uHD)fG!@S%p9k6HUqJD$aK&a<
ziOp@qoC@bCWxVg*N3XEs_mOY&zAYve0VBLrZl-nTb-Hu9mn@AR#vOj*hEj7~UQOp*
z&%V&^f)5LkpvyUJnn#uR@Rm0okw{Hkmnf1qe#p-i88tYg$81=DqfHCGCSc4@&wrUM
z(jxG-CU9XoOt&iD_Z6y6OlJ5~AL_taKe}|fJ!Ta#cT<zCNzF^}<wH!1^N&73^gM!3
z$d@dKJOhkeCzp7UV0jORd+D^Xc#h7Bz);T~Zqejls<5Q|{F#6bRwA-W-+1g0Gm3Xe
zTcdY4Jr-zpK7}@b&IOFe(>exjmp0czaEz0s{j#`gU3m0J#Af!TL6})iPtL=d#p2$_
z`@;>?J7CR6>|w*eM=li^vrL~DvByc>Te256G2KsJ;xmHsg?g@W<<a4%efL$5UXG!y
zLaA0q>EDp3ZRN$=+0pY^e>TgoT!+DfGgZ+=92j$nZ24ip*@WtOpXcIKyGazyG&aXU
zeVj2L<|w4aQHYQYJrJUkKbutVEqRCx(4z)7D%opOzt`rFxQg&jg>g$H^|~cwf-<o=
zi(H3$q&@Z9g;JFzSPDg^9{tgCcU)~i{1qECFoI&U_L8D|MLiS^Q^&O#CMW8X{xZ`_
zp~g6(R>ceK>ha*%VJw)m@a|E#iOP;bsE1TXp6c1k4;$9m$G3&1uBI3w{To-f-sw5T
zuqND~teP-e=ysF!*wU&|_<4}P?L$h97>uFrm9RlxAsUn=LmmA~PkX0*5lMEU<rch^
zz5m=UMoz=mc0`pD`JHr&vsXJVT^@~x1N4->fIu2Z&8@E#$TuxncL@00Ar^`86>*1)
z!*#<;-eZpQmyq!s0116Ob)r?5f<@COO)h_A_KaRO?>yP7(R$cvU^47GA{UZte>7j(
zF8OyP3S|?Q*<A|CqiCf)v_^cBuQeXpP3+X2f&Wz(nD8$=B8GV@&y7ySOp6t$)i3bU
zgxv;^UCek^KO2P^O#Z^W`jx?>tZzIGNCYr-Y_mls$2MDlRCK&o*=I&NZfXZkx#EqD
zv$GrOG1<0>kLtio1_Ri7cY~h=EF|X$<hP`#&L0X^9Xp_#G`bhqOzvIZRubi~n;iOd
z^cmQyOH=`FE@?-p(cZJmngPAK>L%PtOEN%y5OnSr!oB$xI(BO(N4P$U-Nh4&$u?W-
zPk2FF<)~ZILNuO@joy|^|E2V;d8s&$0lV>WM>_3H@tKJ+zSh*ojyt5mkOE9-0R&E)
zqzt$pm#%lg?UF(nY|VwCYq+oXGatbE0a6{?h!@oSnunbzb{fE=li{+i)#OIrDh&Yq
zv@CxoOg`(p1I71+33S)h!g5a9s&K)S#m5)FnwS!3YymiVA@+3FVpsZ>e!g{*J@SgE
zKv<?z38WC7!6?soV_B0zdKY=|E4zL27U7oM^_)q34W0I}$3155P^R{N08n<9E5nt?
zb@yTk?F>CL7K=I=ZM;U(0=XHh0Nhf=8IP3EGoa2Dn1z~YFHJWZ2)rC)hTRCznkord
zPj6d3nls3amvf5ok-o`s5)pY2&dnX>FrCcSYi_Q~k-St5c6#Uz8&477=a5Xuafb{9
zbAUy-zSK4)h7gU}R!RRnTR0dOu+UdeY4zZ{$}%_vm29)t+CZ8N4W7+51zgxqXw!d!
zrv6D3Y*H>`=iOfAGB79C^x1t_2<>4M=m1_^9r!2CYC_xJ$@}iggq}jiatN~orCJJn
zf8(ke+#ToKQLq+BGLb60O)xE%D#)O8T904SIXIodc<yYEJUR|~a#1J9SimP4o$)ea
z9@il71gsoFCJ=fIgO9UI03Vdlm5DN7Eqepl$dJ1~j4Zbp7A_oEa9dtmCc*@eLMIOz
z%e;1ac3S&~$<$Fh8j2IyX9DylrkCPuP^TUuxIDebEZ09!KU(fn(OJt!Hre)#j0MlL
zxHm@8$nsU;yh&YaMu?v|cs11-S(Y?%8Y~h%B0xBtISyTGU==wBfS=In0;>2lesIl!
zHU2agW4lkOJAAJ!Z+k*|C2hf_oC|xnJuL%w9LC2KWa4K%V6rhSjp4<qHt}Zi%Zcm8
z1#;7p-UMJgu+K%^dsDnFu+$|bM8kgu2Dd-&XI?P2ty(yyP4_)aGVlU;Au(o^raWVt
z66u4m$?rsE4u#TJ06oGvp9%b~6xZ>77IWHasWd3AOpOh>i5{ni^sx0{dEXGmlgIC(
ze9&uSj9!&@XF0@|rjpvT%z9sg`^O)z_uoMe=SUvCscx}6`9G4_9me)N=0Y2i$z~O3
zP^_a(YKa6nM#?w3HXjnysp2^Nh+y06e=TjG@PzVL3^&V20a^_#3Uq04Cll=t@&a;L
z)~d6c21oF-qAI;c7>O}kQ#J9k_(S>RG=V>wccNC2{G_cI639dw6}nEQnn(iBlq3lM
z_ECsk=R1m;XeqqVdO<7^BY|2yEPq18>W1<li({lwpU{i-OqN(Z?P7fss^R<<307#8
z@#^wcugww61l(OCIsqv$GSUI12qcKc6*PB$_LBkZB?A10^+kkL&tOP7^*oIf$M`X&
zSB1{r*|h4b1?S3<zQ%#++=y=q=P)#>aPTAd1AmG_G@yg2o7DG<5W24z-ww2|qbf7e
zmf>3GgDB4Ph3QvSX8rRf-?O1Zcu86gQmuJd(!Jl202KZl4$15eXI0h2{V;OPw%o|Q
zOGkcrAzgMUIV86wdN$#{YE}6Tm|P8!=G(&tT3!ZpLTD33dE<E%O4mjo3I6+@4qUAC
zA6=LXM`z#vW=!HIkuiC<U&dpw?f%0#tDs)mhzZw)*TAPV7oR4wA0#H2{%$#5w&>p9
zbsLR51JFU)3OQn<H{3TYSejGYRWIo6KJ<ii!qOS^q-X;7V;>;dFjE~dygaEB1=}4N
zbfEoePXj)xjsGau2YY57>11;~A93Y#RaxMZEp#C8>{$w{aA@+=lzJvtoWResdCDg$
z=Mev?rV3LFozdrZDA_^Ea#&w2m~NZ*SA5bX0elhOe)}1T5ff`WbRWh4V(;mQ8i_x2
z2zt)I4|3Z&?Z1*A^i6olBBvdI`n4xa^-;TbExac0d6vm|UvIiYTj&tXSMb>3`tWvW
zMfNVzMB8aiunD`_sWnG)7eKUGzPI=~2#GAqr&M7B_HZmpd#^}I@iSIyexkCl9n*vk
z2QYRHY58+fv6?Z_$t0Zkb5xG0E-NnnOglENfV`UawwTf=I>$!Xf+@j@Oq<)d`Pc%_
zEj=8khh0=4ht;vNQ~gMfX$I`4*I*}W4>;A}i1#Aoi|M!XDO78-R)0vU^0{-?B)@y?
zSeQm53X}{uUBhy7WnQ}2-<t@(G$%%9j{r85xRi74PpYdx1-?kZU4isViFH~17QV$X
zjr#zB`9wpVxbI{QEq>6(Nr%Yx;I)AEl5`r;l3;P%NyFMdqC?%QG|jjkw+-lfriD@9
zd6?i;A1R$yyn+;wnMd;V@i$a4XfeIb<hr58gq<Yv&9bu$PzL9AWwa&niy2+R4ZyTD
z1b85=F#nQk#FL0Q&k#@fhX-$6N(@+xM1LJ)T1l^Y&5zdQbYV&$s|u>U<%zJzSfd&7
zFfUGgw(HRV7N6^b^)oIYD$HIpO-wDfqod-y87Z`9b`5z(n=HGouD6<L9&<>W3D3OU
zF13lb_7mHpL6lV?g3e=^I711g0LTU0r-*~{l&X0<LtfU@-I^wc{w?ySSmVfg|5uyF
zY7PFC+84j^l<-0{M?A9Mu}}M02=2_X_CcOd$w`Q|+Eyms-ePyE*gQ*lOlCs8&IWO7
z^1*T0JOMYG#!h`p+0|sxIBW>wnB}P%OL2D6?KjD9NjxY1nU%j>ADs!o0bO`}#)9hJ
z;Z#F)YuqWetf%Hu#8o=yzWXG}wB}9&($&$wRoX2@+mY~+IZ#A~GchFeGiGz}QA3dA
zTh-;|J18}Kgoh)^r?B2eVHVinQ<pW@lZX_uc55JWrI;{{Dp;rLOD%<?Na_C1-j`7F
zlMzo9d$1)-!&Jnu49s&Az=AGsxR&B_l8S2(RG9tj`1^z-UEsLF(-7+D!w$|o!;>EJ
z(tAG1;X-9ZmZd9A7!>S6wTt_ziMWc&&ck>7>@#s05&psq4ZXO6PbmXtB_g3H2$d*V
zcx?leG09h1&Z@dSzF{@-=?Nq7jf}%t-*4lIl`e%EKGnaxKib0D0S7<qF`Yu7%_h@t
zTxnp_v4idMdsK&p8qFaUs&e?uJJD_v_@VzVmL%kIRv>duh6lWw4JwI_3BwET+>dw8
z*5C9v8jL+Wzc$18)=H4u_izyHXPBI~D~okiy)!0s6sH|ot-nzr*=-x-L^@_>IrqJ}
zftf5G*T@Qt2db(jpeCfnR)BPO>{AJLb5!@O53Mbb{wmUl<(s_j=#ye_?jH62@{o3~
zhSnSg-GeJxl=Nz-y5!VVKd8jC+><pDw41(4P_OVB$EF$^+;-*&9C^>@JUJ<&^Fe)m
z21+)ogkb^|N_L;h&oXIO$8oo7HcTr<f8UB@Q->($(-~6}Ae;)uhW}cyx}@ewjq;5Q
zdbw}@mQf&7ZxqhrG#Geo|JvQ?S?WK+h7=&ExEAp9^d4zZdV<?PZ+m$#OWU;eaWX$T
z`?&uWkUnZuj`1UOI{n$Ulu*jF)FRb7hJ&Ar17riWFHwHNHJ}UPhfu#RAIN8|5Sacb
z`QN6CA10B}K%^n3sHOE!1nav~Pv5Dz{{15CrxHW)V50VX5i~8z4^zYkOg=Wm6J@<c
z5`7iF8<rJ64E!o|Kx3)z1+Pq3vLbz)kf_hn&|fiQykTUWOW#X#LrrMp`;#JMLz<O^
zJa6Nwow_8F4h!3YHkM={LwV+uX#sKEN-Zk|T^s@rFp-o{K3N~!561Xx*hW9kQbR+f
zshfiPsbPmYB^S-9RcsTWO|P%;ffd7$M&^zPJ1g(3`anfzZVELPgIva%j0Jrba1})`
zrzhYs9DWHaIhFCNPI`$yOcvzPV$Fo*nFjw4`kVhlMe}t|1k)S1s>Vx2OJt^6#7Is1
zS~MICkQdgn`6{V3rQ=k^6T8W|;LJ#ZY8!12WshWK)1YCFdlt)vsTLb}<79qzWTqJ>
zG+=KvVp}O6K*J-tGngQ=Fm7A!VFpu_isvf)WQMSSpkG7Ff^w2d$a^1P&kH9zJMWh|
zLa{yAMMt4jS)-u}K3oye=eF~U33MrRXZuh9P`58q^X`o5hyK;A7Zc&|OeKVchP<9(
z5t452y9A=7C;+p^8NTb0hl4fVqsi%eO;3WX{a$@PKmW>x;6TFBH{g@)>dSSV)jeD^
zT|jp3bdi1KE38Ylnn_kACjXtWAC@<K!tW{hc1}amc@l{kMtc3Mr_t}jHHi}1D>nrM
z7#RPNFWT}ebUHBXW8Uy-UvJaBCpVqzQJJ_lWF&wCTk#}a8bx67Eh%OrX|)Z0{{=1!
zLS==iNkL%TUYj$%Sj@nm@ZT(mJ?+r9*CD!rIc^aQ`4&<HPVw4On(|Jl@}CfvHeVJ{
zTH8)=c<65DaM<(}o-^70Wv)A3t1Iloz;7`=YQj6q?YDE>l^F~Ux1`^+wtY{w5ASFS
zi#{_^sKz1WE?mP8M<#$h@km?iQ?x1AW-(MDE)U2EEp{PUH0{FOZW;xP;l(qY8{wc9
zW0zUkrY?I*aL~t-C63vrpVt%4-DdH1bQQC?)Rp@48V^-jSgoORZ^njhgOVIHKzFvs
znW8_-^*8b`ImsYpNT0#|&GipnXSBF-#kPnJ>>9cWGmgz0C_0o0mdHbxJNz)TJ~&?$
z+WcsP-HmD;n6H1o?4>rcq$OQ27TfNcZ9C5B_(6$CM-B^@dUPHw0`b!7;b)AMlt_39
zT&Si7+hT?mS*j>bRg8K3ERdc6Fq25NPNuea{mafYN6kW1;MJ4_r5BFPQYuMoF%=9j
z$0FsCC-d9XNIYC7EPD!YFm<w_kz_M^nY{Iur_THly{+>1Y0$P-qDF}w)*Z<rxkV3|
z0~eFwgq{`Zz^QX19#nZ&C#(zJdv>A!kRP+#hx)c(ENESm7+O3*JbH!*Fa)w4;Ol;C
zlgS=^G%?1Lt?@cD#ejfcHs2WbpLiW&^k~=l;E1>TSTVEmR=sG6oST5pt|yAHHs4vU
zKF9u~riH_560AK?%XE$&53u%ZJ?p{Lu(eOs;j-?I4IW)jl{hr|I_i&x`&ueguuC_Y
zAt@w9<gHz226feMs)AVs!g$C)S<ncCDxlG4pqQM0;F$}gj5;qk)S&W06WkGpg4DeT
zn+(-SO{T5>>Sh8-6bx(4Zx`38k)Zu>*F|KE9NZoKh~#;Nx%{w8i;09A%D(<cr_}vo
zt$QyKKSJxt(7mp_&WOx19xC?Vj39msEhASjh(<}5OZKfKd&a#1irA|2*Pb*UUbq~(
zY^^v9k@5)gximS;Z(JG~TO+}hW!_w*zNwR~ruBHEA{8*DzbnLP;mNSnnsjW%Ha%1h
zKjgLiAXBerJYqR@EN4phBuFr(lgWwcq|R<Rc6vriDe2!J@Jl`=<d%ZwvIq7Nn*%!S
zR@I7BIOv9pU;<Wv;fQLS@@lkBB*OyiiVdEzTl(+M7uaL=)rv(DL(24(!8+INpONq4
zl_J=kOccQis#sh2dDnAimD^!UNDWu8up&JhynK`Lsh{6U%w6(GW0*2)WfQPUqwU!2
z{5e@`?uy?s7r-RoF~9zw!oDgh4lZaC_n^TUoZx}M-66QUySqzZa0zai!QEkS1_A^p
zc#z-(cS~>xwtTz)?(4qX)7{m#`{h2>Ik(CqmWlGPf>%t6FYGvVkgNs~UcJ&7G(R@=
zh_|QlJxl#oh2ZM<9~5%Jp;N6=eKj_IHJOp|<o)pny5<0L%PjjjJeAMi+_#&{BKsXw
z?DM?Hc?gztgtI^AX`o@C&UeZ<@E)V6B!s)qTeqd?1C734+*39_7L;I`t#^Tgw#p$7
zhj%l*n|Dmb{p-0DtAFf`qi(EmKn=JLR_D4(X<5=cJ>m_h6fAvLdl;|oYKCX3T2en~
za)aVdzj12|5-~~3A=4df7|<u0-F41e)al1+r8FDH_veSl?Y3+@e$x;g)?})2X`I)(
zhAmXPdb4eu97LeQ8VcyFJ-9ATecB2y<1i+xmSj^p$0G$!%4ZN&;PH{HL5W33_7uN;
zvh}2>y|_@A03^m&HsiCEap+m)(ODYNNE&ZMRABQVl(22?Ku~vq0<S&N#6(s_<>ub6
z${xV*ecN$uvlZ*%h{9*pG*A6^<4+Om6NY@m2~~rx%HVj)p0bDtm$2Jn0SWOo@hr&t
zb6!!~GMP%##-aoz#-h<F=*um~MMK&e>KB5>lZ&8jcuT%K7c&yoAQd7hqD_Gc4rg3U
z6<Xm;@*~i1t&2b1Nt~6oJOqcjf%hj*+qgH3SSry>TWjY}zWYR>?V?c82`lq)y?&xi
zorV{c@yZV<H>b=cz3o`y5JNCbojTwmAScGippE4VJ2F&8IAm-EG=8?N!bIu><?h`j
zjua(Nk0&qaT{-TvjE1wk$~N=*$7Z^191aJRY|aK?L&xWxBc=%roqG$6N7>~AeCjF`
zeF-?eXMFxjlo+To7fc$DiefK@gZZJ%*opeh>oWV#=S5aJ#cxT*kYl~QgfS$}L)oeI
z_rXshi20_RHPh!upg|ld-6g8eZBs3-g)$E+)RB_*w*Co%4OXI;@(U`jY`YcCHPhTM
zEP_cq3?cpC-Qgg4P74u?C;oY_bm1mPH1at*K6_(kQD@t_Uxl1viYPNbbgBB>9b>Mm
zhVEfr%-Bl&Kz_0P6Bfp~Yf4Xg;)h#H^eSWl!Jpwe<#=LyAeqLGN?74b71pw!-7D+n
z#a)-R-0NKd@85oTC17jDyqqTLnSffvmq<Ge2-xRmOWZIXkk6X8s#~J(m!Re0n+8&Q
z@8UN7Sz?x*T5i;$O@0G5br|qVT~pe7yn%_~0}}hbG@h7znArn?<d^!<9?xPEL|Hmn
zf<3LXh~yz3K+Fg!Xr@Aa1s4)##YtR9R35l4xBfhVka%TjcFgFADUMTnKLTyb)WirV
zo|wVE&}sH;+|9Ih0pwar2cu7x;`=MXsw}GFy(H(CBC0Qt61)$1Yn#NxR#J5pRMr6*
zFN5r@*NbxRN)6yfqkH9kC9;p7x*!<T*hJr9l8q%+gPaCF4@uUzU{$=-lQuf4)@OJ&
zwgB^@j`?Luc#$z~#z(@%vk;M~5yf@~(dw}Er^K6Z_Sg;SioIEu^7#U+B^8pKl3;kn
zDU?6kTWG~CFA4(?_ckm2*ce%>3Y~||7yh<HC=rYs{YY`tDq%7FVp}avj^Xf=G^ccU
z+{y1q9@HO|zhCod#v==|@GVj9v&t!<1JP(WaKguBj35zoOC0*cjaCb(X|2Kdm(i0u
z`UAY)?A1~^MzH-+fb0MorffaARe>$U@F!=u8dYcC%%T)Z&h}~;nV41&76mlF6Ms{2
zVzR`4)>fk=&$&0Kka<3=A4dYCF7zlRSzCk20%V77dg-G2kd$_y_7X8%VOm1t(BkXk
zLC*8(Kn^PzVXgwzKz|=b|8t~(_Gs}(gB*0cbv!vKUC=G2<jh(;vztY1GPr7bj&90O
zp7Hm;ZG(k!MYduz?Jw-B)j5A+Z~P{;Lm<e%#wvCLue{>hualjvro^CHq)Bii*(I5)
zZ6KDRHWiDZE=Pp)<Op*%!xAo!F<VNZ%7o;v)KAJNaD6`VnV`~>mv#<eu0C$RKPTOH
zIHQSD+~)BOjGnq-(pxHdGTMW&2UW%f!_q?PSFLQmS>ok{!!b6l#Mn$xmU1ik@<1-5
zO0_%!^YSk=sIu`*Jg$j^stY@?{v}xb9Vp4RE~N7zFJt>3-f+eyTf)K__m{vaozTpC
zHk3v6u$<yH$QbqmiIHh`*S8a#6MDDWtf`-^ytKe_@0O=Ghj0`IJkkST6w@ZyIaCo+
zBcxQgSuoARN0?E?_$NRA(|PlEpDJi^zV^4pCL>x|h3j98ePa|(%)KhA<Zk*sec17l
z;Q-V>>9?<Nzk6to!9|*Y_y0%g;62Rp8%2#87^DWkhf!ewSfs!wIsgKgu`+-b5zMR)
zcn^LHTVQhP09ORCo#Fq<#lZURfcG#mEx<Ga*xlqUe9-~0A%FwS->!=416UEjVO9V_
zSg;}B8UY+<3m^a|m;;(&{H6dY1aP;*Ti08Dg8-g${=d*C>;E9s|HkIo0;mzeB3^G@
z(+&UxL@=)3+uB@PfE<j?1+anu-U<9~xjTRc5!@c~7OHsx`VqlO;cpk{{Q$j)|1Bo~
zzg54%8iN3+i10jM=4t?dgcE~9&cV~mn_7U6>;LK{Q1f!~rQ<R)gU*bN+|~q|Lf$0Y
zcLYfWyEa1m5PU^cPY2^TE_S&fF>UOtqI1M*enDxc_2N3RiYf~1KV0t4EyE%t-pi(H
z&+C~H#%l^UZALL6yoaW&5cLx&K1i+f+Z)Jh>6c+LV7SQ^`Qs(9yuVJHB_4Y(rSQE>
ziY6h_lu~ZMpM)_N8x%zp^;g|qFBb0E!grK`11rXh6WKepzq21ArAW6K7Nu?IV$kkZ
z%7V29L!b}!MMW^sk>~hq0g$J)v5?fJ@!q13#o885QNL0bXs_>Pr&!~katpwwjad8m
ze#}A3U%k)C#Giy%g7mPuBP9wo6)DCSSErX6PF4xqPF-?f02Gcy*s_j6HpMAeZC<3+
z;D0OYUdR&TOY%qJ92Wx-fe2wg6r*rZLm`U2iBlKx(3nscsWa+l>y(o{FiHyzFo8r!
zfn1H8Oo-FOLP3b}2iG=i7Ty$rl7P*eP67vlStxB?NP0@w`$1|t_t!w^`7|~!>U0G2
z1%?EkX1aw%El7sID9nWtCl{WoR)7ROAqf=%{~>C?Glfc_sH<0uQ_8EMKmwT;g0CcC
zFZQ|ZHVqoamwO&akGl{`Mol@TtVdKxbT2~?xf1R~4M~&dFU>~H($GhxXG54c%SEXC
zi&d_%ge&3j>z5ZN*O%Qgsjm{qmFk5O>u9j3OMfQ~Gf<^}=z6b+7)c9a12}>@Rwkto
zfQ^NL7XA(;IvlId&>VP;9SPrtR00cm35XBA578q!^>^2DZ3NGa7U#0<zx|^V{%u*Y
z_c>6!lkH$L;+MO&={wZUIkzD<3Np6Xo$#k%%;=xy6ilkWUoLR61E_3SLtZ+}A43y{
zh4qma%0MjbwRMJqa0E4Q5o$W#ht-5t;N!!FV#iM(w0&9x<|W~LMRH8@Gvl}U)m`0s
z%&ErQ;<xV<+cFI?H#Ano)c(wmeVjR*aj#O)8ld>lVll7Grg%nqmU~Rnp$XWjaFl+M
z$t`u-p`Yx*sh|}3+Hxez6~Pu$0$(8Wsk-6e`USL|e946oz!~lO&tj>NfcoYV^)K^s
zwAzJA-{Oy4igc`2tVL59&ti7=CM1k(kEoLs_~PnWlV+%`J+Z65#1h&XppE6~PrPl1
zDA$);$cKXmL+440;9@<e^}f+pCHpJ_7HO7<EmX<PDhyv;-sg536>(Z;NwKO<+Qly-
zI=i5$FQsSYGV6s9IqyL%a_QTSrsXzgIX6W<J5IclnDjI0Cf6qx#zT*P^YKP>I|2LK
zF2ZeGuVhBNC4#5mG)q*gcaMoGGQLhL)%rIgI=XVVVx4=#W6n$I8P*yc{C1SbO(XfA
zo)}{C9WPbiHzvo^CW!;hP9jc!1caavI6H$}^y4Jc4I7ZbIfdybwK%HI808|Gy(p7M
z2TOB4r$>CYKi@$yz7seYFA1D|^KOXZ&MAyobh+qWgWT85Mpg8$jk<L|;EX-w5L%Mg
zHnV|Z_^^MzzV7tkpr<S`wX)L`aj#<Ez7d7Jr7nTM_Oq?;*cRmW;S9$W?5*E6VeFt>
zWbj8{Zc3CgO??Pkrt0=}-mE{es8tq>RrYMydB=zo(#aArprI{f6ZW~0C+&QgD~Fo{
z099J1X<u0VCe%UQX2No%p&OvyWfYjy<fBBRFztQ0OI;Ni8x_+UJ2Fsqcb)JlqY9MW
z86vlzpWpC4{3HG;lCvZJhkVL!+dLp@IL!|#cy?#3QRPtdsQn#Efv72_O>KF*M2_T4
zliQj=r3}VA&Xv9W*kD=(Bw|NlHZ|)FZ>ebsl&Cp`JwmZXp+h32gQ7ZhUBq>N72ZTP
zZQZ_KjV)Z814vC9DFkJKDZQLgQ)zNTw>*4pL2=Me?BT*u8KtTZp-ZDozeYhRAhPME
z0DdNTD=X2PPZ|<5IF_M@7&>u2JCkGotQ6tK7Y7yqPnA`3Rj;Zqr~7%s)3!M~u{vy2
zB&EGyzfoGzV3gw@TG7V;m2vtgH=sQ%hK}7N!@|w5-5lY*3K=RatJ^))q&%{UDofcK
z{X&U;B(j3PkLnrVDF(yRl{y01`xXmN!xv-YOrslx_M{XFCPk#kQy0eC#A4)Jv;D#w
zC<L=W_j>Wolgi+*q^TpdAipRW=f^Cl(U?-(&@#9VwNkH{-TS3!vU+iJeyvJ;K;Z5p
zz3AmTtP<=%#c*MOiZ0*=^?^NXmHg1fkAM@H-gt4{iE<SOxv+Q=5ls+UU%jal#e=@y
z&xTskAv|V736YL(!<($kGH_bB*52j^E=}TWPNDSX_S1IV*t-=JDtiK!KY_dLmFdH4
zi3F^b1?rLIsxQXuE|MpaXoZSiTP8+KhPaoWaf-&#iG%7T471X#*?5o``I5ZWPYSI{
zcqQt<HEHXlXJ;D3rdiOy0#Xx7?m)>)bjcLiJ-RRQ;})YLjun%xl`H&JZ?J;UEZ`*N
zk<Z?6T>*Q7`|n3&C1VsxFNKh@X*)J*3=%|Ib5eQD)Ls&FL|H+4FSwe)##jMr1!cpd
zt)usJ7Hn7Qm$_U8%^bsql3!8DcNkq-8i^03B^?Z*Gpl*@-|s<7s-`3CWptZMAEwhv
zrym1O`+1{@m6EW$2T^Hx*75V&dwaKeX0q*%aRc@3cqWsV3}f>C@`V@<w=!_#j2sCl
zw7~xunnc@8MIS^>B#o8^@iHm4bnFY2`I!UH?H>qQ;4rlZFWTh=jfa77$i<>I{JZWg
zU7z$$7qo_nu4F+hSI+c8E!%j*(AAwMVAqTepRg(FN2{eDXa`MbjS0XD;JD#B>)j6<
z9)&xui+r+*OZ&`<X>`iSk5GRN_L`9#CPxzOiBue`9*9wvvRdruy-N?5q;pB5!!6`9
z!KTBDP{-Gsop*1xq?$9n>=B_Klom#gvu-L|Ewnmv2M$2OG2i@7i|qTf2WzcUPF*cE
zS4P{Z*pNSVUb!n=z{*!jVni)9S#)8#Kb_c<&RieFENt}R0)RKC%X#Jq8ILBXsSg_G
zHK`KUJZnNy%5Rh{v7!qTP`(Y91PPei>t#>MrM)76!-h?A4S2Cf(z8~pfnbivk&isb
zwVGP(TY%^kc%nrnxJ1reL`&r^G+2h1WHs(S88uThWf1s`VLY$h<(N|b-~dn$y-TM>
zvpu;dpsk9n&c@fQC65=}_8Q}{)9p`p&n$<5#l_y&=~T%CjOJnOi8dy%=U+-quzRQs
zK(@LIPnqQ~Wsg{(=<rwRBntM{n;D41r(fsLJ3;;!CJ@6o?K`5mK}T_HQKpO`R7|`#
zE3?8`4eI2y)!OxiF^FS2m0wTQM-N%844uu`CBrQVd@myyQXq1g+(Ne%&Y8NOOJ(VA
zlMsGO!jndxqi4gjx%(aNC`s%A>N;9)cNX?;lA)k6RL9h7mVg`aZyeq<Dz#1>34mUi
z2@vY>!%^0ViNDl5)lY#}D?O+qWp0U(eQM?|!9@e)b>tt}iGRxH?6%EPsxk0g-4yV2
z^<VZsi_S*gkCEiLG^}-d)z*V{+6Tt`wL2QEojh$tRF?Vs_4^W}7YV3q(n=o`Sd@yr
zO_a!L;$txqKSwfL5J$8!bi5WZT%fD9T7#lcrZfOdb}6Iy3%s>j2Bl5(#o9(p^XM~U
zo}*)eh~@`ci;dm=k=Lz7ZPu=R$GJxBUq$DCV|25UdMSIxr_18G)ebCA|G{EW(iSC)
z2WG`G`fej1=dCu_#*ON_osx*u|6U%w&t}c{YIVG6IuLwfsA+EPsA-c={S_U|%?Jve
z)}9Mr8RAldV&`QQ2NxPzzl;^lrOwsQmj03G2>e4jYnMsa7Z61^^C@NQ9Tg#dDm6O%
zh*S1ahFg^+KLF&bT*^;B9|qL8SRrs+VAMCUWKW~r&&)rcr`&#OG7D!bU@Z4vF703?
z<;a$tSvpia%7rajY5uMV^y#5YUjiBZcIr&)H-q)lhT72ujAtqf*PpfHo9w<G=ewAF
z$^0RlK9Q>+>=`?@?PIj3j4j{s6dhx>dOP;8=j;!IOl>d1{33vBf`Vcjg3HfGdo$;Z
zeOtr!?%W*Sr;SQfSEiw+94QJ?g^VN+$k_zPMLMN(B5Y~A@ArwPzgK6k9*E8eiz?#I
z6s;?ufg~XsES#RBVbFVR7w`GR`a%*EAFLPw=Ly;I<sA4E^g4jO#CRJuxx{~)_niLR
zoU8K6kI^h1$t?3UvGF9aT)(zFda?e1$84v2QXVj?5~Lh>cIBg0tq1#~qB9{>-4)o`
ze04-uwH-KNoyKyX<6}2?1=2}{>JjqbXH{0E8GR~Cj-kTAHVaeixz<#3oMzrs`_~G8
zF4&>1cxB9(?_e$XXGZ=2gE^Je8%S>awd69;1K1Tu%zYZI2a6b5+|n66|10b}Zxhg{
zzd-EQXo@olC0a(l&e=%*5i#U0)Im1&M=pYhw_ivgKc6bUD^ObC7NjmMABhM0?#3Wv
z3hrpYJ{dR+;7CBPiRQcTD^8x@AJ}^2kNG2+QxYMj%ajF~YJHWI(8K{gBM%o<rlohY
zbXy0VrgU4lE#p1*qLg&5!guC|-{=SMQzexX^o<RLnl$IY^Q}*e^%dtfiZ2yJbauj%
zzZ)jjb7wj5;`?q#079XFcU7rhGIO5VA0Q`bHjg*TwE~i3t8>vR5Dc_#ug^UCx%v8{
z4a|F}bwpCXC`{VoVm+7ouWH-WwZpC)55~7XX_h6g%^&X$Mr&Ub>t%}GD$z=p_Trw3
zNR`N?r;+BYKnd}a#d-umH`y&WI5IMtdVf_sHtwq9OB0Y>K`gDhp98yJZSNSM{T0F3
zCiVTf;_*p7kxfMf2{Tk1$>TZj<m#2L&Bo@}(Bs|UQ%`};E-JI+F*kF^zn;1;KH?;e
zCtDi~o$#H>OC+aaHggJXT-Lz+--+i3DI*i(7o4gM?Rl9DMxXQg$CeeGe;G<%K8=qW
zDLShLU6N_gfU574J^5akWP-(uEA6$wt>N<rJI(1hc9rpGMW4&!(H!Yc|5ob}x7fN=
zlxsRg)p3~JiU$w#KD018j<O)^m{GV&F)z9mju_LjczTWwe8gP*qT5+;n`BxLo@Q4N
zM9{9@g?6FFb)l7LP>n7m&Tj1RV(uL>zTU_^q9!gK4HAM(mYa=oR1rOUa>nch2)q)^
z)*JZ(A?#W`Y=5k#IZ-s0+&x8ev4}Su;FBeiQ2nlkG7@75;JmonN!~3Xg`<D)x|%T$
z$st1gRhpZr*D#zMQ_@$9er<?%{rlo#YYQE|du4-WC=l;3Spi6gVTs5|zKVJEu`}o0
zk4bv9dJtjHtuH9}`IwIR7p!`~HJVHJ$;kd-??WsB<+Ob=nwEj+if`0cC)u|2ZX7DJ
z@BfYto$o6B+}=5E=eRy;xqZILW!P^cMCsR@Tz^(MC)3>{%jdh%XNBZZP;`j|yv{AZ
z9N~R$Is}rO3ej*A3v{rDdn)Pt^K}e%gha<&8H3(k?$jJDD%Aeo;GH*Q{oE}qzV_I1
zH`lp!za0|7lh+m8C=4*Uv1Y>P=lwo<d4Dzf*^QmtmP>BmIit<ZZIWEj*4|Yhq^Q<2
z8$m&9s1@M{`0Dr7&a?5*+~xjDm`ZU!m6*p<o;|eKq59C1&_k^|JE0>QZBTPSny(P+
z_&ca5+kiEaqU*K2$17J`I4@~KWnh)~p5U7DtQIx!_}YW?Yw71c7nF<?JDIc?F#^8s
zIy^OB>f)}_J^O-g%lc)>?ugGn)|;(-`&BJc|MgBSf0~e7wiyHNly85@Oel|1*}LH^
z&t05*B;Cz}o!&nFb`gZXe^F*Wv_``W8j}Xq1fxN(fYHxBW>X$E;bY#Z3vHyXBI7+4
zUmyOGyNK09ZstEve!uMw;&wvrSv12|#hx;{4G0akr#fPNl+Rm6<!8zYP8d0(`)53n
zGa(W!J}J@@9;W$GgAv=jKK^m0(%5^#mp2j_B$m5)%lbnPf}24gWV1k_gVN1xx6=pO
zJ+|ce>GJp~*+=i3dyG^nHAf5viiiJODv$uRhhlSAzZ*}Z1J(zKXe}6;-m2cN=K*TX
zF|u2e+2MD9=OnT@>}{h&T@$m2^Qt%#V=fILEy7fcP?>T#rD5|}LCAHSYj^q4k*uc8
zR=HKZQww4I0Z01y(Y(7SA})4)eHdts;3=YDgML(;C8K5;rY&4Dr&#2~Pg^c$pLVNI
zz$Ab{a%V*y@GESZc1>P<mWNhRU#C{(iM_VED6I10eSJ(6tycy~)l9;ob@Q5jgMLJP
z5j>IL#Jxq)o<Fm1DFl}e>E)H(=eqZ`$>yjpDuX2+zejvbLQ?NxhRf<-_X#Lj;`uQi
z*~F60J;aZb<4CPph$@=wT<Ns{`*~*Z#huTru;M-0)4>_FNiWnlKA6Ik-Syy_>RNpR
zXYL9evX3#kkUlIzuW{m}YDB$CBriXcBL52?c@=Nu@&?&4INbqrcNO6wBvM9?y79Zj
z83zk{9KD;;Aa_`}+4fH7_6X=^$RQYFuSB;xi?l(Pbo8ZUfw<z?rifiFW~R80N}0zo
zs0u0*7#wH#=V%qdhvdxpLyFND!8dH%$$#4|>#eY%qrV0`_X&`N`$MS2E&4r=SquzG
z6Ci{MM$dTcJpHosHt&YElU+6D&7$U9P=s|m*~~0|-)OT<;5S^}xN`(Cp%9dHlAzz~
zO4QXT8ykG#qRgIXurlUnl^i7H?D{>_MQMj>aQMrFHtS%3l(lOQiwk-wRl>w|P@G{Q
zv~`WZ((5GC(une5^Vs!DeWdeJghl|ij@Gs}g9A10c#~)QJ)ipU3g^E`3J2aQeq$7w
zssUKAp%6ecBKW8PU<4}<2Q(mnum6Mo<^tqlY}tTD1TaGR8?E@3-y^^afbsm^h{gXv
z@EeE@Qz-;gARq_;VYkHqOvE?b!{n`*upICX@r_=ks{*JZ^YIAs@PmD;0F?g|W>o=_
z;rad}Bq@mBSjhh&B>DdzAIT#i@V~vCL3zK-+;TW^;r{x8z62$+2>cZ<t)4{~AO2cO
zgFg1l0jH(#ebo?QN=)#hpnwZW!^i8<MlZ3Drk^oreC{|YT;}-3yAolF@K^$$HmOZe
zG7we{5x6AY3rQs>t<yV8fIE@Of|RM@%95-{Ms9c;+j`8n8f>d8<5~sR7ALRUV?l%2
zA9Q@5P-~f%&Yw8ahiu>cnR&J(bwx8Cl<E}oGMzRI>kn*n9+MT&XK5Bh98`P*48?T~
zN0bkBhh$$0XR*{FWjQ%`g*H#@_jt-*AFiH@3@a@|cy-hq%!W^)37227@HXt%nXkQy
z3<4Tak8Y|gMQ%Rk57!vve4DzBfd^I3m0|oN*2%5%hu2A}h=z48SIozK)BUNmH(5_)
zkd0&Sptt(nBUt@__0s`D9lz=0&BuiP_LAox%a?a8Njq&V#JP1XKb#_%^j-VmUGy2%
z5G^0hAB5@{qln)_2QRjnu$~Wno3iR|N?<Yh!9NdMSr@Dh!pi`~2e)ym1?>)sw+6Co
zW&j>}@iiSy+kcCVnY^n#2M);MIf>t*v-=#NhIjJZxweyWPyggS9h<b$e_s=rtBfPK
z+UAA`2=hBcJ;XY2n2%v9)62i~oHCis6?tfIqXn5)6dVR>1zBo#1$a+Tz0wS&{3m2g
zfFQsJ7Oe%)g7{4^IJ6uBZK#0)Z;wKc+6YL^O$~f2YPz|3zZH4jtWq>FI22rM-QF_Z
z|H)*ijYK#lf&7xPvT|}fZznIefHc31fGi&mw-mo5kXuR?C`SGNZ!y98e-DxOO=|c*
zlW`EkoQk}*2FdWnRl<&dU->zYW7!?u_?R;L<20MrkMg5|2~F<2S>?Jyyb`p?!YK7H
zc1Mjc683+g)WESZ8zeIJ6{OY{7hIyVe&6}WF4vH!ji4z}ijUmGBv%~f3GXb;l_%s?
zY*ML5_oYye=$?1q6Sx07|G>DJ%y;M{NbvxI0z%{Tj=yr3remd~mtuanP}RG+r&c}+
zPwJM~;b#|RLCTmv^3N@elkIQ7SNVp^fTy3A>|?C>wU;cggcu{0vtTIpos+fd-OwnP
z{@p%S?LjljjJ6E%rToX*3qC-QzeH$j?(RT#Eq}woCvP7H1NcYjuSrp*aJRYZHeWVC
z-iq}n_^21F;@%q$gFlM)2yiZh351AJbz+lEraj&nykqRT_gF}?6hJl+g3_H?i!#%Y
zj{r3l`O>&FRar(pyh&`Pv0Jk)%eAGmXsY<8kTs>B(zd!QmfxUsZnY#h&i9Sdw;XS+
zoh~|ta%)s(hF-lS>(b?J1Q-Tw4u?2`7`AkEoX(<F1I<{G?}q*Ag59Zf?9XBzeN9i`
z*6P16Nct}qv}SJ-a;$ISc3CIua(C^wELixTk=7CUM?4sQ+BA8r^m)I2N?fOV-{IG~
zvg!Ak>+hUoQK#-<H~n?@dz29L1ER<)P*hQhyT*&?%U&sGE)jGMA3B9bXVrhhobcCN
z-(QqTWCAaL7hNqr(r&NcI`J=USx+unTtCQ1H(%u^<P~J%Dh1}O2T)=12>|&q7#L*L
H<S_mh;kE@Z

delta 88823
zcmV(xK<K~e?{?bWc90|jF*lcCKM5#*wHn!u<hJqMUom+IqCut=iJ~qWL9pJelQnjc
zz&n8*!~vp~IMc+arM3?5j=w&2Q7v_IY$HIPR4h_tu~;|x<^5-W_$p0rVjU(rQ#bby
zH!4oUEYEMUA_?O-ySZ;}{uR7={rYu3-tJTy1rNh*Tm=1*ThqZX@MT-oPXhLTpFY3+
z_x;y5I~8V0d9#BlOC9r6U)`!SsO)rjm|GtH=F_RIx@xk0H@ZoAjrsAw^Q385#9Ag2
zk~#x}qTum)_ZohjhRSxP;r{{gfXnp5v1%P^?j|!lRP{7h?TFLz&f~C5Q`&h^gu2Lq
z=rUBf;#FRCefNCqXCZ8y_eVQ_jzH-$K^c~r%JBbP8HHt;5w)cf&b`_rY4s%Ii<<(*
zXWEU=Vd-65gmGE$ct<C0jcJ9IRUDYxI1RRp0&Gv)d;m^Rv+D301-6@JJ6Y`e5&tu;
zyJ3L1^>~;b`r#Ia?}*6}5QKYSIzAEs1OAXl(t5^5985ib7m{qpqxL9&0=s?xiTjUz
zW7?6sc<FpgG2+|DegI)O+Imey!bA+F?&o1d^0S23%@pje;jP&Qk22)m``aQ4WJJ|8
zgBeHpjU*JXogw)E6z-b<AbuY0zLgQYBOg1?jK90xC1oZ<?Ks))kuk)het6>6p&A)D
z4fYmzQ4O|zX3St(i<BUL41z@8aUO>L@fI{=G9E@OtSp56@NG>sbPOJP<i|(pr~MYl
zr_($!uBoPqAuF>qK>A?!c>MEZnvk*g2iI@poa&v2oV94tu8IP7Rkdwj1O2%1B4;|V
zXR5|0hT!n&OQbX7U?Bd9jI6oyO46@SgU&B0GPg!18%zoyc|g;DwCN=7F=(gJv=7qX
zZ^osYLkPJKO^fld;D_0C6YM=p1CR(E3*QlVG+>%wiiVrlnv2*YY7+vZF-L}0!btP=
zo@Ed7u_EP<;y@0M8zS5hh<U%DYES|ZJVZ2Rtl`WJw^&Z#hrKyeIMt69l#ToFpxl^i
z_OJCkDI9xMQU+{)wou^7zB7M9?)w%M)bKA4WSQ+K&56Yh1_AMCTnS4=;9#C~I{3~3
zR_R#P(-i#%`3z|o2EZB)eKXfGbDHtY&{N6C%C`N$&I64l$u@eacCOq{X>c@?kAMN?
zR>hf^xEM9QKlQY=n3n)t*P|4O#>n`U=_AC$P#p~`va=+AI0G9i=oh&{y>ZUx>`b;N
z^v2_Ez$q0ljQYuU7U(-YQ>i3W;H_ooYtK|!sB`TGteo%lTsjU_qJL?w<UAKkhG(WE
z17~@rs`pG4ga1u)H{{ZfqT(e<@O_j<9L@j~b9fOaF~mAs6L+XkjY@DP10H3W0CA*9
zh#L93b{{Z*z@b_40C1WCeJ3yj!Eglo6Efm{k=4@ccpM$38#j(Tfeo4C$%5QrY=F&i
znj34#GePU43~J1gk7g1CZwVn6&LKQpn0Vz*qPDoNBy$E505&oRu?0rJDd(byh$US>
zKsaPuJ2_i`=(nA8R|DAn*|+hw8g6xj##N;SZAztoc`%+`U0S$9N()gE7_fLs{0Ycn
z=y9lkL*2w<su~TW%xq-_G+Oc>XzyruUc*PMOxbnB8fH3JvppSfBNMQE*FWrlZ#&o^
z4?Te}qHK4y3`6Srd6Ef<#W0Lm>@jo1Z<TKY1;B{;MXADW7X=~Q^gLkf?-)Vm9RZJ}
z!GRQin2fSc-=b^3ri9F4R*;o5aC&Csc4NMeBE?=E+Y)va8*h>2i%w+4;*4q3Gk@C^
zJBRAgcM2Rhq!>8VbfyWMS=F$~2KJ8Ji%}`|n6t6lS0f3qlap4aDnwubUy}*Cii%wv
zM&Wn~rwQ)Dl1CwRPS4>dbg~--;HhJ2ZB6rkXzqBR_&VryUojUtKn4!u#N(I+5XcYG
zYdfELpxF{2x3Rzu_Et$;I)RDSUW3|eh2^2OC*{DAtH8x~3>3_u*hLsO&SZWfF+UL|
z8=%?t#9~UJ1X&+|(E5O~kpY5cjadr<qZt-8!U;y6u;M13o!3r)=fQm_*)jq%b1i{?
zC<^ib2sZ0O$XzZ7L3oeizExhe7)d4C0#mG%1koqcjSO<s<Ri*-GwFpEs+3L^O3WZV
z956u72@^z%{9O7VDtuy9g2vSMWYV<cKpJVE;K)3u(r`*L+wmZ|^e~T;Yyr$+8a%r+
z-lgz!hl*dZ8-unpD4rBK%fq6GDMc=S;*wX4Z+CG7=kylBEXvwlsO22=DnriUf6aM(
z?0DtPc%#IZ@kYoij-+g37*PqHH4WyO+dD>qIwg{(@!ld$JQt=>v`{#ca+NTr@ha`b
z2C^Q%6kj92@c=@bOc)U>n}<#3l+ySdwXdlVPC|?VYiJ0`52igaRJlBi^NHwxD*a{T
z68Un&FmN=KEFg#>FU<#0=gznI5{f2}I=aL=<mOw5BTUtBgOfN`1j*r)%b^tST)_U*
z9Ybhgyo+9*yVlB=FX^=s;+VN>u!4XfZx%*?Nj_3Wfmqru>Ji01-nAbwfWi~hsY34z
zHe*lw!M1oQ1SyRk8AchvFRc%MejYXWV))*_+BU^fCB>m+jUa|VRhC!>-0*t~y4}L;
z&2-0OrEpUO-^?Sp%$Bi`pye3DhTMF6DZ^*?y(VNlnF>t{O|3YvQpu9EGS*jZQshx_
zthg|R2Mel8V<$$C8&?<#KS`c)x&B8muse$~lxfVOM_B-yy`UxF)L=Y++m;oZB@IwO
z5g7N+x$&RBk&y<dMu&`+8-mQij!(X&T^#@d?i#`<PT-*#J9j>Er}%&}cJ8&j)H?2U
zePj`6RwBZC{#y$yS#g>K-%1FZ1eTIg-h3=(8odUXQ%+5(lw}77A-10mtqhXmGC(6T
zXXJ_Y&puNZN5B2k@2G=+{nZZ4dy+{}^<MT{$lmf`dOkTlA@uRonj>(I3s^ZFICiYV
zKg3szo+^&L%*1U7c$qyrxB7}lb$>MMHFUZ18cK&rl)AL;nMbGuGRHDc3eF)_l-(p@
z7N<Pu_dF<xR@0!%%5Qe7Q3~UnIQXZ>Q>iG7fQV=neXCqURD48#4at*BdAO#!fQ=PP
z=KIM@kXm*nq<klv(`!;<pm@oU|0qjks}aOQ<wkrXb7U(9<zZZ=YX<$<vuA+PWWyj=
zFlwZlA4OrJ^!Cv9?m+T2MM-!r5ct-L6`bipay6}LkrYVgE`kN%<H6Pk2H7wGz^d$9
z7^FE`$^`E{yePweEK6Yzp>|gZ-$zP$7!L!}{AM-obI&2>VHqzahwpB8S(XI(Z_w4}
zUcu5JSW6kkc9LcSwgBpMo`q48yZD;bj;aTXeZowjVq{}oEuAx4$~-1iqR)Mt(TarN
z7dVss8qVl2jW(P?XXep?BrNhv71&G!+tmyATs`KB!&)zY;-7gYi7s_xO#)iC^8x+5
z@yIsDV{>d7bZgcP86{;LiC)hM<1Q{C$j!>FmTc=#3WS5pN-@>RJBB1bXt+hL6uw80
zlB4~Jvw=A0ieetLJykuyxIWBXJwZanmC9JkA|4+EqH(I&J-Dh40wP>|Ig*_d^bEy`
zuMo0KZeLb^zpYKX3|?gK(&;=CwI16Rg}O*q0uXs5cOyl=Ah+qSl-u<GBDXJ-{e@>0
z9coqlFK+FEltnVrOL{gUjPxw(PvxRC_+Ysl1)#qQka|MFWL-ESk<Sy*(PArXT#q0F
zR^+Y}=WbgNwXO>lQjodhF;acE4R>9WHgZSRz8q_RRnJIjqFm(da{MI5JA;<{@WM(!
z3}1i(tW(k;3TzSzaUqFtw+D#%2r0a|`pH8F7kE+^8<B#QnUsm$1qJmZagT#BJb+XU
z@Z$Io^aSKM(+SeyPxiRFG~8rY2f2heSF1)w&;^LQok%xF0ZnHC07M0O-$NMOR&+Rk
z`f#X!hGTVizVz^{Ow};DjZP!TQ&jW?gYWyctA+)wIDOd$qiH6SyzTgsc7&jI*>$$?
zpDuFgBoSI4A6*j5?Qg}O!Td0TKw{*2$C&!caC;)si)(oGYp&rHt*P+-dysUB&gnE*
z$**FpuFi6^q&Ta@@0(9vai+QgmuKR#3|<X?6V|G6!?i`a5DCd2mNOxXt7%w4C->c}
zw`2@x2zZ5#p&q@(0jb5-sXxtFY^O$b@{=(1kfxI7h(K%X({0Rmc~KI)d;9(k<8jGv
zAY8OVFC`eTFOP>i?&TyFkbl9XZ=hrn(2&JuOe9rv{POhSudn`&g)dEOyo2<6FGXE{
z#!4wI4c?Is0mdcAcieQUq^XXo(H_9T_wDjL0y@MP;51Za_g4*E>0Onp(z^oIeMz3O
zEP_={v15#gDV@qnOyMUs5rtgZ0#Na1oJpkkkR`msN-bm^{z8geQ@Xbem=t!f3yvBn
zb#!@V)oqeSC(82osyghlOP2+VOA_jTqu}xuS<3~k=7>cLw?anUGdY?QO~mX?UCnfB
zibLmivL`CqL6_VHJaZpcIBRc&<Et4KTwzubNH-lrL=O-eMv?AC?z#eiv7!_&Di<>t
z6)OXJ$9-lz`RhEji`pR~`pA(TKn*@|;G2=m`9gpWMp)+lfba~K2eV{<+Js|&Bj24Y
zisuQj8e>j)UyiqQ^FV@}qyW3x?-N~kCE2110CEfp!&X^7;<>zaGPOkkBuW6ge}37?
zfIXKtCIE413zW>ZW503&UTdFkjlG1I`l7T1JtR$M!@Z6M?)Vq^7m{<}x0{aS4C_X{
zV3;3_T;IF;?EglRvPc+~xo2;G0EoCypB;@G*B*Pi$N`uNR@Le)1mIrrM^00!J%D)V
z>v{Bs5)^y5dqM!fgkZgn?>V5&?~QoGU><sh-y7q8?fDDL=_dQ|?1s}*g(S(&%HtL6
zGam}~)}cr*9x)WzQaK)7v`75Mk;FQBjYFI%vW;8xNVMG6p*<!k(j2dUz~}f3Ke?_4
z{(_Z)oeeC6WWw3tryOtTET|y~F&$9G7rlV-)?ht*zo^KTa$ktRxgraVwbMZ(4(dFL
zsb`1$p*}2L!WsNl{0C@A%s>0C2FUnSa*+<vLQeDjW1Qwr%Eli~6*${XC0XjmdGOB8
zi~$Nu@wR|o>dMPCz4z#Uc}Y?1ulw;}xk+0{BiRBeInVxcN}iz6<uaqYVFBZG#~plm
zSO(2dp)h{r79HHcKU8oMoy6i|zLT@9#t~~5_OfQnqoD{SwwfpwLYQMD73Et;9ZArR
zU;Zr8HXj+mZa4BKE1^%im*-H$IYD5xxPDSW`ZI3wr;DsXp0go;-r09RUDC39;nqol
zDAG`!Qpy8PmctGVp4eeg7{zYeB`<(-UJ}3qYg)?h`&f5j+C9B;a6fq{K+ho(MD=_G
zwx$sf=ns}6;rXdB6ODj-p1fQcj9iM)RASi0d8jjy!|#<!Z+B@FolhYv*KbSmXz?87
zMQR~2TQ2zxwmVOMv<7(ZLo)ae9Q+{9T??S;vQk84Pe?$$SuZD@U`Up`ei)gsMq?kp
zV@TrjBQ(PD$JOXvvB+~2d`;++K^-}3j?m-ko=G|fzI=;V67kCk5JKZ@C(d99PYm$-
zxy|12IQ7|{>>Rgr`0_#OGG8A2QIk{_u@_J95Vi4M+9lL~6{-()+aq1NA~?NtUhDT2
z8cgY%^K+BUyL9Y(y}WOeCa0jW%QO9<y_~$5{MFkv!pUWoDz0L8?A_c<Bf=R<m0v{c
zF9aQU2Acy(J%<s$bQ%f8&Z`@HwAB*TT|I1rvFnFzk;|koV5yyBSRS>>_2Or5?mzo4
zK7b#<3T1AW1fm@g79cPnZ(?c+JUj|7Ol59obZ8(oIXO6&VLu5fe_3<nHhS;=70O$y
zqUI6+&vE5J9*@1YXR=c(?UAfERcw+{)59j)JXY5H`g|973GMMwmCB0<en5i&zWac_
zxc}@AUxmq4>ZOs6uI?YMqR2}_brtKx^G$qpUtIlTHypF!dasjo_vZEM*KLpOWcP5b
z{9RTJ$A_`5pSi!he^%k{r*oZE4G%iCMOky-p*&{S+TZ=FYR8Uyv!>v_Y}jA_^Zwf_
z|7x#%SU@Tt=6OPY2UCuHb*SoUcxFi3)Y5u7mNF_kpS$+lRoPH7;Cnyx@5+3rS{V@m
zM0xbBz4p>1fe!|rR<hIk>jY-L-kZ?uXq6@mb|0GdT8F!*f4VFl%Ny<-j#bYseg*(3
z8SuUD>#iU8<zILpWiyOj$-{6%%L#&AQ9+;D<$MBrM1|QL11~>FcMomHjmNSnyKJbM
zN9kA~gCTi4HbdEQM?Q>M-Fw_~e;oT8Za$U#%$lLfD<=-le3&qckO8zNGJtlTHQeaS
zj(5wine=D;e>h})Syzp8@;;Q>J&XhFolXZ|yRt8{E<bv!l_b29zaer6u?C2#u1dtp
z^hrViEzsf)8&A0Xw)-I9bJ_GfmPwJZGnPH~^Rl2}*HLzMI8dtVa5^~J3h_fDjf&wI
z$`6DVqoUo=wza^AmO+Pd0JJcysCq=<SoKF4)Q$Zhe`_9&*WvEj_0@;2Jux|tO$P^&
z9crO>Vz-`75BNH~QVM<*YGmv<@e&gO)oV|u0Z*i_VP4<geUarK9=mImz`^lGH&S75
zf31wCCwv?${H`(DL2L}4<Uy0+A@vMJu6+FlIZ=L%B!ms1(Uw~Wn%FR%BdVOV38V=E
z!~~i#e}|2%J5)oLb<g;Uh{P2<0zP|UA{@ep#BCA~=N9qDfO3#|YL92ozE-%@8`lDO
ze~d-M;F93*?U)hvH4sX5%DM_g7Q!FeeC%oM@Ivc?XI^KpN)#V?#w?FekZ1?z=Iio=
z9BqIJ-omO0X~th5El{2hqQvLn|HUJ8uowa4e}OF-@gLXw00<P1#FxSGVzBnTIGm>Y
z+%a9?1v;?<=+I<PbOl-^HVF;_LJFfR<3%duf!{gk4fhE$dA}G|lue702=~jf78-!J
z{jnYPWs?I^3jvP9c^pKV#$FU`#A(r<G8V(h?g>PuW3OT0#U`*@ajsB%@ic%iR}wa0
zf6jZ-N7y>GtOpV|g8-c6xQPBJ_5zr6E&E#%ECI?!q8^}4CS(O<ofQ=*7k(?sK9?8G
z(guL-d8kg+$5Mt=4=6Jq%5EA6<Yq(`!XJ>Ey^Ge`2bM2%@Yr~0>zcJ9s~`Zmwuo?+
zq@uJBKcF_A1@|jH+8|vVEqq%WvO?(FfB!A`Nf$&Ed%mxL-jp&t$aj!q=!K|B7o&i}
zbqr=l2TP88zz>iCqt;(ct|L#yDabs}599S368L7C;B+*-4-(c()6E)|3)NnfhH#ei
zC~fBo7jq#a#%ej)TOOsBR0-3n^a@0<G9tjg_m%G;&d^Jgy4r&YC+mN%+rD=ke-ZF>
zkW4&{obO-;<0UhxzjLs3>O~Ri1}{jbb!qJs5FxB+HSW`2d~l)`PW8pAS5$;^Ok;jC
z4FQ)U{uZN9tSv;_a@jG6gmfbyS8G}c$Y+_sEY=ix+K-lN`gg~gA`ptfi!}jhYdwu$
zE=xr~$Z9?=9bP0EE6-4FIn)JCfAnjJ<#(Vi_!R2&??s(@iMp9#fU%Uz4)VPSmH;-h
z7X*6V#565*!6~I$txeZImSo{3`XVO=ASsqevIn!$=&OSP$*tVmj^f2Uu5ADXC6n4`
z#oF`oSimRNV0q>jS~ImC#)iD98yB6K)C+v`>yiJP_L%&FJx<@MWciuke+cjwO*pbv
zwQLPWn#tMG>F$)BdxnYK4KO|?b3y6BfPP@N35N9NEHC9}t)0Ad+Vy3|j-pDn{TVjN
zO~%FrzD(d)qyM904ZS!?mdA?gD#40E1DX~q%Llulmi2?zmDT9C<4a59j2)MQAyH1g
zZ{nHM>HCJM*dVFQR<X~Pe@;#xII+ZI&|uS=I$M5Lr*qp&Zw`J4cnDQ9Ofz)t_;_?-
zMBIn52HX838Rcl>fyeab$I;s8@P@)SP0?#awD$~TBh_EJzW7EliVO`R8q~TzYYn?S
z{*<g*<+dOJZp|xfWAvk)esMr^5p)9i&G1EZI|F~`bY$LD;FZ>}fBa&&0XHC!*h~<_
zyFZU$+txKhk-D_6V%9j=jg~a_uq9hF5ZtkoOw;odj=O7}eoQgu?8QaA;vn4J*29TT
z{+ZpfNZhi}x@D0pL>rFhP~Q~1!SUjFR(UnlGHaI88S(&h7+n!3V(b(==@Dp*fB(!7
zqQ6wV@M&)x8cZ4Gf9W9lv<^cDC%UY|BG32%yFrmPVPEn#SdT!*8@anNJiyYl13o%T
zxX|-cy)xlyrx5W$7%T=oI;O&Jt*3hHkR#{@hRdmDH3Vm!H4gm}gdnsh_43v!^W%A&
zB2%;pJ(X--!0J>s7!j~eO4fCm4J<x<!k-}?=LnS}Sa(lse-AGIg6)->*#3q)pN<tV
zEjDHRQ-w^1V|x%+94XKsQyw^4Bt9KHGqE2cy|hf0OPK;@D35cbS7QE`2WG(PNG59m
zgMuayi9)C_B&P`|@*LaFlQ9^{yhb-QCyqk^MQ=@D)n$MhPS7G>UNav@N&VO=KjTL%
zhY&_`zv@}Me@44%=oyYdw5-YHmvl(bEz&mzeN#PFglBwPtl4w%|2GXYIfrMll>-`G
z)((graB}|N7&~#SR>n>`lM(Mn<XQ!MHi%49OPdGYG8_9_OP4@-Cfdrf7vUN|oxO)e
z#16d@kG#W`TJ6tmQ&4Qo7nF%ng@DNpLZ~GLfCI|QfBL~=_&bmhs3EwkC_9NNz@Kax
zVc>onmb)0;Frc+wC`y1P8`X&8m?W2~(Y#QN*nM0CnR(2lpdG7dD4zWU1EbItmLWJT
zH42vY2SC*gKTEbN7USSdPYfx_zItp()505_IXtt%t&=fe%Bh+DT;?2<bV!{Ltn4VA
zJ&7L3f2+g&W<%znlOO<}Y~q<Yt>nm6a0l9DGKNe!c%I5qVtdL5^$~5XcoI3V@wUU2
zK-2Iq0fdKNcEk|?U8XCb^Uw}QZry&v12(aJ?BaY?go3SL606+j$2%|zej*XKoI}+B
zAtMKS>PL`G!|_z*3@G5BQ77$Bnav=8+<oo`e+l%$V(;CK1Bk_elSzbkOe!%d5Dk)c
z%ImQxCFOKLq8jBVHV*~rmm76;s(7`SQ=x1a5DbWR&Txf`;NRYrr-8M<f`JK%@vcW<
z1C)j&nnZ|%pK$(X9)V2bU^^JNVY|e#T{5$s<0LEtk}8Xkm{7@2c|*g7<6rt=Y-mWl
zf4e(p&Es+UH2sRu42`$d$PJh_ou);VGs~CD*@>QanesQ^0fAL@R^w*UaCdjix>I(;
z{k$`1kO@oK5EugHtuG(NzI6)JPWx@!A1h~S0<akvv6!)ed-$B2?_1=w=PD~cRt#~B
z*1n9s%a7x5d6;BJ==Fk$&-B(04NH|se=!!$SwT6j%o2!>{2guRhDQm%`MbB-hYwko
z{V*~dzxp{h-;=b#KTl<ye|-LM@hns#%Z3I_pmBF9-S`^V=^Aas;ZfExf<_Mb$QT<q
z5pL-_@Dop!)5C&OB(MSxItFcup)^+MnoR=?E+t0e!*;dx2hv;ThZ{}?F`<B1fB5UQ
zLZh+<7Uv#|2#@=}+(h~@z2tHrVJJ9mqN){`?!hMifHH(q5P^@{f)oP@CwvF(f?jpt
zgY+oNLPo9C9zqT!W<;>X&eMR#_sl{llCiTNFEf)&M|i?BFd~hyQO=sb9wjFz)+au>
zr>okrX8>@2LGc58LA3E{mcoz*e~&MxlLyH!v91@XM=o7ZyFY@7Puj}2JcCds1O}G_
z!-$?X<6e@l>nE1t9m4ju11UMMXHv?Oe--)@pFs2Lu`1eOsHP4*S3+F$V!&Vqtsr5J
zgp~_g;%i9+kV<TEOh9$k)@Hj7`A7iv_hOqTlff`si;ks$4)fTU`3ld8e-gb>Ae5AW
ziAyyZsJP`Qs8^mGFNgvgFHmBg5yaPxHHXL)LFj64t^mRFxymyxc)_{=%2;EoF0(?4
z1qK0u{oS>=OeWrfp<TNahaLm(fLiJdjT4cCAur{EVwn`0PB_P`b!^uHAm%rO<!#f5
z?SUP%G6c_}3&E9)W-kE%e?2g$H0fwur4M{iQ~}^jaFSUOldTUckWutqZg*wP0hD8P
z?ioaSGIQ?vnEjBE$_DBcEh%rziO^t`Y6+YbHWRpxL$DOhRb;TLNjT><e7gK`1d5$c
z-S~587dD8cDc5`Oq@XdMxse!wGyE%|Vnzxy2o)De`_!T+4UHT<e>SGTJH7z=^0LFa
z34Eg>2W%|LQ#^*;=0~ZALE(HEU9yKTh=^xH@KWFm7OqoG`U3lrR`3a=Fm@#JaWr!Z
z_0x(0B(+Fxuf|Om6wj0(2ec^*Pc6ypE3AZ(7K?dkj7@u(toDLqn*~S*C%r5Sq)bSm
z(VVOgd_g+<^6U3je_sN`))ryAC`mNXo0fwE0+{4oNaZFc5(17d+mba2A%y;_2uTW~
zRw?xU)l{&v%7TMF4wQt)zT`z!ER6#sanBhEFkUdbSh&&mGo#|qUcW@hBB&6q!it#f
zn!*#F!~aXXDKg=%K~b@%)f5H!J1`Sa&JV7Lsq&05pU#age?p<I+^901A1hbHbQQco
z*7V|V<2#<6K^$M1Uz4x=$#Dvi=Lb`i&9(bg((X5JUJ}ELQ8Q*&Xp4xh{B>cC4ntet
z5eoZZ3q(*sRLAkpfZ}akB`&07XF`dZf(=I+xtAaxY`}yL_K2;n!A90yg9Ljdduw1A
z71TJ+DGrw8fAnh(YP0|CL3#XLF5SVF<OjBKbnO`xZ&1Ao>oclfhV|EB6E6(S>ieXa
z;j;%h6iiZ)X#^)j${S#)+Tv(o763Eh!Roa|D7?N5VKbkLzI>8SwAfwcH%e<SjMHDX
z$#AvF713k)jb4>-eeWBeD{y{B5NPEka}~wUqd5FUe<%)D@@t*XS0RY7G+4`8n@9>m
zGbuNG3zkL?b~=>X4fj0B52j*Z1mcM^Skitjo8ZS0i*X;&&<HG-1j&XCgV@D}0h`!3
z+_E77t7bD9vYf({ozt>o<^vj0m%`Q>Q!42%mFoJpAak3`-yl;|w_d1j9ZDrB0tcxH
z*J!>>e-*}|p3=oi_&_f(j8H-8!X*h(&jj0AfwjRGPW1xBbP{$)UL(V1-M>ZLMIY=>
zXo6rxCZ($%j|0dgG9|LE;0}I!<`)zp0Tvav@=o>#w(N6|o{^k(tW_Snu6?}5aBX>!
zAZ@v<HlY+q&lw$16j}el<0glqsGH=tjT2!*e}dz45G}BCg&R)}A^rIHSoVWEK}+Xo
zz#wn>0er5dL2k3*T$5<jW&4~nQ#LOGjVb3qvrx|ACEah<@^@!mGmOGTLM`yQ%0BQD
zrcMM*OUD;L?i?@adKsH>C%8ytkRzx(9m=8*`+jR@rC`ql!OtdXwCAsD{V<7Ovoy%5
zf9Xb(h^=W7DdwdnBLG{NUb6Z1z+e==phN+R9UfV7159lSuz37BiC1WY*W5L$;kak_
zWe_?D4F>ac5J)bXJrPa?VXx#^xNGEK6~Z%ySjS*>c>vn>rV0${$J|*BlF7z0en<=s
zubYTm#?{}BL(ApJ9S@TL6Oi@o8xdOwe||5afr{#uR|i0B>Go=bS3!!KX~h9wLeT-{
zlIwauWo*jghPz?rs^jKdB7$#oF$%t6T%#-;%5<}eKfn3wH+OGb>Ew`z$L0YkkPSrq
zT$OdfdAMcNz)xS)Qb=y^Ps35}Q~28?8uXs+;q2vmYa?EErwt}RF{r{XcB>_Le_I6j
zvOOI-alk%M#2J8JmmLTG8Ub*00UF=o$PyC|F2t<EOIo?uS}VaZc4Kt_w`_fw;s6_h
zGJZ7VWmX@VgjGUW!B(<_^o>@gXlpqj$I|9hVE|4v#sl%WNdW+a!roe9j@Xbr`NI3?
zfs=I7=pr|q-Jl=#Lv`XP@r9Fdf0hEP`EJ7hxLh<J?7&Hqx?Ho=3uce;l|v}T8!IJD
z{ayTTt`vLhnaQgEhyM#pdw=Hc!#^F&fm5vW_<Ivb_S-DV(gaL_kl;dy34g#P{yyQN
zoGuXPt-mEDY<&9$3pzGM8D^>a3{&IhJOXI{hM^RDpn!)Bl$o8)b<j|of8EgdY48<(
zb$Uaz5Ok*TS_?^X%xrQVsoutPv8b@`$5Y9@t807GeP}7`nM$E6!r;(HI97~WyKG?z
zSWcI#w$_}r9{bG&iGsq`7c9G5HowqPEICAlud^`5?9w2N&h}o<L)K9|gorv;u~>N+
zZbyUnvV)P=AR$R-Cn*PEe@Ou)934iWSdIXhBUcEY%@+P8<xp@K3714FIIwZ3v;2cQ
z71;g+L*l@mW)O#ST?fK#wlQWa68l*q#oHi0Li(eXhd59UBjyl1LZ)f~SDhc$Xl!yB
z;K#hUqrwB9<jGDP4&;P6Mo?cA8^(5fM%*rEobXJ<n8Xg3fWYrte~dde62wd-qmtMJ
z3N*$BQz#u@07O99JXWy6?m`rJk&Wn%j7szm8mYm=mje-2xb_XGhaG_%>s?rz3*RQ2
zi@V$z12Thwp7<gYwuo+&a1A!BNy%@gssRbpTkWOT%*W@sD~oD_B!rI`F29&V#OuVI
zvC@{7$>1;;_dx>*e>-R^Ht0{NhW=AI9NVI;+sCPv0id>s&zB-T1XY{5gv3f=D&q@$
z#iZ$9DB}wv(0Y?nyW`ruad4;;t-N$qx`%U5hCt8XSm=J}Rs0|f`*?i}NV($Vt48Tl
zKU=cdM|j_JeR|(!d3&g`X8#2jC1Vly9hfIz><T4dJ@>opf6QIC!vHd%=NGC}xO;cY
zjEmz?3t<nT9vfB*x$<3NA;pn(sG*g2ZQt)P-`JkXlwq)3RfugBM~r+bfiqi%PQ8OX
zYjRPcb$^s^T*$fs1yCK3AA!m}v9=~toU0An4n(=l4Ej>7f_>%bTy=9#WR(a1jO=n8
zes<r!w&r;nf3X=&wSD0Q$2N_`tA>UUCpM+{&-ys7tDPamI6iU5E4*;WYh&gFVX!Rh
z1zug00tV5x5;vzh{Ky8Mv1n}$Pf<sm9qh7K(WS(AAa8zmbSd?8xDHebmBFWv)uXh)
zK0_-AtgXECc%5q(&ThfpWJtDGIj#K=r*a>~clv8_e`@P0aD*GtvAyk(EL<vQLF+wd
zp-{G7qunmo@i9bFN(aRbZT%%*-3Ke`EI~y-U0nR<A-+}cq|6aM5tf5~?Gf2z7;YK3
zp*nERkpI1dL!R^fc97>*Y*UE?`x>SDj=KT+O8Aa@6bmkm+;RWg(Z&d1ny+9z^S_d?
zc{)<)f7p1_VBz5_ez~Q68H^M21^6@&q5iIg6)W=b{9QII%E{kwILmpHUU`P<<AL51
zxk7f^vr!6mK#sL-1;3InV2gJd0MZV0HQ&G@&|C!zFOtHo<oAw>A6HakDjS$83GhF9
zFo;Qht`s=Plf4yQ$t(U5=$=t7`Ol>W$wCF;f17fyfNFi?aLRhn0mM^E8nf>Lq5Jgk
z>{}{ISwQ%Z!1QBjK`<dJI~`SC#^EJ{%<^Xh^qdV+0UueSkJLsk`5Y+sxP901^NIf{
z0ybA?7x}ai-^OgE4(^iJN86f&!KD~xtSnnXOX{*Lxa7vF?g;_QqELLV8n>b&8ndhk
ze?HS}G)ja!lN5K|wvyE5Z}o!>d~a@=Q@(rpuN7RTOm{8l-dGs!E*B!%V4+UeYBw-8
z#g1Jpv9U!lR^xA?$~30r=cYal=Rv<)>KB}K8hD4va6x^^ZID8b(wzTqgS}(1z82{x
zpr-V1y+FN*E~k2_TgkEu#EQZONmuLn88)trz4qdHE&ut=-8~Na?9KgW{|hu_&bgE1
zC?^6rH<$5~2`PWwJZW#-MwZ|GE3}_NA!>$I#nZuHk;4ug*g>)uHVe!Q5Oy~uF=mr(
z9wTdh{l2Ssb+xQGp21=v2&{|6s#ouRuUcIM@TV@4#80D(I179eBp18Gv-i*ZAj)D*
z{j(x<865;vOXUfzU%fi0i|?Cfzrdf8SvNfGW;XA)*Ux{xdKsk`nGZ9@7uPozQFsw2
z+K&@+alOCztM{_J9oph@6PnOd&-wXXGt_<2-dw7{%Xj^dR~>iUG%Xe)uOHgFtZ%tB
z=SRkmzXeeMeFZ!fx0H3?%tl6Da{2e`A7RNG75G_{@j~#uuDH~Z_m4{zc}0yA;DW-;
zYufU*tn+^gYpGWr^4o$t@TID_>2d7W+|=I{HJ5JM=D=^@5b16B2@~G+;|q)Rq`aP;
z3kXpVdACJfw0U3bxjJ+R2$<ljmvCqkpp}VzmBcVDP50|%rePl3+8s>GFDy>Rz^SB(
z9e?GRGVvoF*#U2PuAz5Kr4wJ<ae2LWtuFJ!amasvz1R>0Hd-4$2-4-j{P(N3FI?XU
z{1A{xrtoC~ZrqsAPcqG2`@GM)0)VZuln(55@!e2kHS^#<m2<}4oLk=v)ur<Ka`QTW
z08mle&qcc{j(ywI(?rgFMSc{gc3E#;|Lj;gY(AR+$%u+`-k1HI>_bI<n3*LY@@<14
zXY_vr+(`p33-GDDBd)IQxv?)gDdoG}(DI=_T*eVViAMj_aQC6eJ0QM}Yj^pj4ra3}
zZ(9H=J4mI^-yv2O1PVhqtummq!?9hgkUH-Q?maa7qWa=8ioA|{@;#4hySy!twy?2n
zwz!I+>+7QH_|2x}zOt8wUA}QG>zMD#{^5UeV}L4%Q()oP7W;D7mlI)Qd*}`Iu4wxl
zc!Rw0e#q;-{96#{UEY^X?Q`?>T_H0PA<C>o(9R{)MTJ8WuerfzJTkag8BcLnch}%@
z?mMpLJg@~yL54vi^24zzxP9N|xbFL!yO^tBY0WsY1-|3@BO~jF!cgyvwt670X(E3B
zVwHCt?H5rTN9>xmEp~nNz*T`<$F-j43BAe<{4MPpaO^i^zF%;ePazKB?Xu%0VxB&i
zU*f)aNF*PCvA46cs%4&u3C?EWqVShB`y_O`y4+~M<NE@iYYfMpp(|Y6DUJP1rGJoh
zrjN1C$k%E7B-R=FEPNkho{6v08TWrY!y!!sVs;#cREk?B@quu#JU7sOvgWxUUI4l<
zsHw4_GKV<g0Y$#M;}K=eEqstz0BTVwe6W`(5aYP(w}qtr!spg&H$nq*19`tifv2;W
z&%VPl96nMOHd>OZxeBX>nLqSgqpfFxV%V_Q#W<(*A$>Vk!7|)v=66PiR)&9L6Yt$j
z#2zM|@_E>I`4Ra^$0M5BPIBaK;uG2um_~JF&lFJZaea=Zj1bTnjo#65VU2fa0;?n-
zabbI2HAweZBq1{!3<aTd0x-M_Tzu=K@qAlW#9?&=K)uTmyip?aL=zOD4cGyEv6BHH
zO`FBoWPu#`E+L1{eXnY6%d3CNzSR~^)Yt*1>lm+PJt?n$S}JsvGGrw{u?YpJo(oW%
z0I7~zA82(nxr|3LaKh$9Rnt-6RZa7bOCstXxVA5E@Pu!QmcI#2%+|5Q6osV*KHH+i
zWbFni8&v}3CvhU2qy#bM;1Iw?W?IM-7+B<+a2!wY3IR21lm%GYH7I{BYr+ty3JyUD
zVEv&yAf$m6UvV1)3kraQ!erviPm^p3F{{Left$NvJFX-QKryQh4JkDNV|>?x92?5+
zF5jY<#Aea9gY2AKoK22+29kzkBNjlwdPkr~<+X^ad;rkCec<QY9WrYw7V?xy3@L)Z
zLlvuWG=zB1u^`#W)6;+BzNo5=Q`OI_ax2i#I%V0#MZszy(p_G2lhyyZ=F)GleWBmr
z`$gx*TOe9c7?D?HiQp3zMPx&XpQ%?jz3q}QNPbtVwwZZ?FUiSH0_XgxFqDvH2yUQd
zm8@q96l-~|^+p`ZFej}^4)-M*Y}JUDvBgWMKaq%Ga1zh=gH?Y(iBodRLO+bmlLWFJ
zwE(+OnDj6Z#$l-;i3X)(m4j)A=uH%)OyCD=5(4Z%agwG2ekd@{;I@0*OXG9xTf|^2
z&~f5Z>cFiUF7d~)#83b#zZoi-tXX|%TR1@|I#$^XD0++``9{y7b?HT^pQPbvF8%cC
z?X?SV3fRY}$;^K>*Z<_nubE7sM7#^00#Y#gD>5XoZC4e!tjex_lLdYp#cQbodLgo4
zt1^Jv3x-nL++Iek8etddj#P5ugi_jv&p!nzLNyKpdTpEiup_AkQ{S{m+)e$QS7BM(
zMumwVhbygZj;a$Ms`5G)1q55`#?o1Ri<pAteQ_-6#an;73XpH&DU~q7rk+U2Wdv0D
z?%ihFd|>%y`4|+zb}Ooz^KuNa3sjH$yOPvND3V@etU3t=r$YogSTta1j<#gR7&Sqm
z1PJhv%l8+AB<AY2SRgQ&pEuk!Hi(*oZ7Wp7rk5pbnp6)qRcm6K*mGA@M{XTDmlz;5
z)kNMQAK8B%y1E3lWAFE2e_I?tW4Pj;ZDA1=Dy%C(f$5Dfm-}KT<j#|>6(SkP)PZKr
z(9soW*%$i}u<`nC=&nxssZL}FPvTDjoId~`%q<kLp!&o#epizAgWX~cXxzs@*y>u~
zq3D4e7@-JQ@C5iXeMf;M)+HX)V>dwtp5MLjg${ospi-DV(pCpT_oa^fC{+B#5EdN3
z`o7^ee=6>!(9jwe)4rtT&pvue>l^zG75gR;|I~Ltnt(GcS>`$r7OTO)uTZlZX%~9v
zQ$f0fHhK`Ge_tG6Y;So0w4h;P=X9VPXb)^^Gy^#!l-Cu+Z?3ootfOjfrIUe<&EFTe
zg1UcXAYhC3mArCa@N?v3PD_G8R@2u7rnLj6?t?7r)p>(@+D{hW;;5gGM?D=wKnD=T
za>&cwgsJvIUpY=MhGsMK+6Cml7^Nh>=<r;VUU<3&6-0ijm;TGOR^bQJ_g)v`Eil2-
z6A+ovllVV80=i;9OH9f>TNNa*Uq8%3yK;Z69aDkD00U>^e&<19Hn%H?Wy|M8>cJ+a
z&&9qD;tS))D&|37%Aj!Jn)YMlz_Ve0kzvW4TEH0flSr*l*0IS5Af<Ve(R!1MFXJZD
zi^VwW#$D{wfW9%x<PQ#L#eNWufcTS;iq1nShVGC770tZGr?`T?{t*xM1<(@lertcZ
z8nj%&ZbB3%#TFXSifT*X%G*noc>@~hOn=Y^^mDo;6=wcqRDN*z&A^IGCRJv&0yOz2
zzmv)`(2rIM49PvB;Z)p3j<W%jjy?slD}b#bi;^tLKm`G<$Ru9jz(~+TW346@U~%ju
zN|G&)qT{KBUxCqv&JSQ6Akg4ru;+h{+nH@;qBxy?Ul~9vHA47}gB0M1;^+)1ES5RZ
zd$bIp7{KjdWoTSeP|Lv5(534*lhlv1HEIA9=7)j=GXr<vJQM>6Ha`@SIPlpmd7sgo
zWMN4swCBEDRyNry(P($xFc-e!A@`y^N6J@fg?n{T?4P>`IfT_DpR%<D!@z&AkXcc(
zLFZGFI{7wm_E_uB%DB^i0nzv_Ehjd9mMRglJPuuYp-#Mg!(m$;lY`-kTTy4g=b;d%
zAXm$pN0L7d8|on^{{)tan6N;;sbkMWnQ=LFd@-o4UocCE`7eb(wt^}nz8t6^Hz>F$
z-s5CaR5Fh8=q&YqBgE`_)M$Sl`i?lvCLWMcnC1&Ef+F7>ER&ee#0+VC_g-ACvstW(
z6=QUxbNj7xaonM{ylsYlr99C>W*RZP8)S-*CI+m%h=I5RBZeAkMywM5Lh-U24k#@q
ze8Z7Gpit4*eqg(_L{9e)YuZ5j&ve=i`u86kc!V1X{V<SBf$PgOAUA(9=vkxI4`rua
zh#dkrD78h0?l`XWGRNxVS?#-$SDjibvIz8Q5z7ey2IOGLAGnQJ6+GVyV0ei5#WL>*
zRw^j@6z<Bhr8vfcERH$)dB#)6R?%7}q@V(hr2P@?D14%J6#n1Qj^Zb2NAX%aTKZUE
z!O^5@b6{7{3CqBWK>L5`xKh;nD=ytj=+{PIxyB|>2uQUP`!yn;BwBwpIc~6}tVPr$
zei*J)Sc<?QpL^JB^NxMsF_Ut|>=7nF*uVJp4escQ2jtw*4cmQl$cZ@y#PRs`e0NvY
z#aR}>f!{b0hk}V?_5{Ys+`ErerW+h^YYBHAJckh+vrW9a%gBFw*tVs-2s?0MuH6<W
zhqSF9V9q;sPTrxo4r5aKu$$cK*q{R)e9dj&57LKX0Q=rFEif%|6hX5NREALUx%#Sh
z2j<(p+zk~dUSUA09+;@2B?sC%S<q~~;pe^dAdmRqQihcV0iCUIc!71PuhlaA3iGmG
z6hAo+fI)}#eiVO>k0shqGxaIrduhNrb>7)#F~%T4VG!MsUb#glmPP)+B$-hL)@<l>
z#i2ma&ocA>mqUG`{kA@u$ydA;=yFDgg>{LdDzD0aj`?1T1%s>v>m-VnXZFFla@_kI
z+JR$5V8+1yW`mggh+C2|Fy@|7@onGiKm+N~KZo2AXncQPj{Na;Uf+tRNnZW_q0SHG
zuCvh%KsR%mkoWe7*WZgWM!r7r3N=+F88lZ8NPr2HCG2a{D=@^5g5h@uu;A#jk;=bR
zE+35X4Xk~El%WeLfn!VwYkz1(E7T2vSQeiP0+(U{Mh={4;-_ZBJ(W1N7{X`6IVNkz
z+JK)T#;1R?bv=7={p|gi{b^FL0Yh^UrJz8^F=l`M_3y#O9y);=`v%Ozdm4HG#u$-f
ztGamm>=(`vT~Lk50#N(1iwOCib;Y_&pTy5X4U0^TfZ~Od2Gu;*?y2nJ6HW&7$1MF!
zE;N`+g&$=svr$4OT94xw$N)QtW}b@?5#kd>*nEFv11Gy|ol_+$brM(d*i>JOaq+uj
z%R2BUJNz$fIV;yzF?DiOh;c?xO`bo0PNmrU(ZTCNAYnL|Af9;zwdK^9jR_mmpu}lR
zD-~6fEknooBI6vz{yErW3m1(GnOJ*R_;Ju*0OpYQlM6a9GKl{Op1XKP<R_C(^R@Hv
z!Q_9o170~Lv<a7~tuE0Lm~5VGVw4RmD=-@8k_0=7_P{+XftF*7qYdOH0I*dcw=4fy
zxJ{<;(}`iV6%{R<FC6#+E&JhE?nF_7>anRF>gG^RE&F1ZKX6VPYsJ5!L1I;9Y~(Z~
zC|qAA&|_1BLA<RsGtlAGr~(I)^BF1zokM?upp$S!(K9?V%$|Tu(Z`r({P~z>`tQ@m
z0F~nS#D$BX?Ja1<@q%rWImca~CtDvkiu^QO<>!(PZH+CmCS!}z@iH+EJ8ae@bXED*
zx`mgDg-JifmR{zh2fl{moEy_N7!QlMm&KtQg<Kn0$*uAh0ar+sBciTNCaIX5IkA7t
zQi9H^xh;DxQuc9oL>q$$z+@5-&!)K+Hj^1MN@=Duu)!+@D$V{hd`^80kNV54b3rSN
z%r_F|#46`RV}YDU=oI2Q<$S~5ueeGer}4}8B~KL5>~P?0Qtchve0Roaw39S)n~%P`
zYnn-I=h>i{IO#cl38FXC@n>R~8svY&saX-vmjZ2hE7rzd?1m{TV1r>0t)it<#T~Lz
zMC-wm6qV?)Rinl_8`KrY9K-CD&4)0?c)#A2mD7ATuw3;-{Zc;gqtl^)NtCleBs(#;
zs^)AL<J}Ihth#4MrD10$w$Htbz0D!Q<cD;9$)s~40I2j&G~hoTfK8qlfQ^4XX28cE
zGvNQNA|sgs@#T%n4FbkWdP+l!U1gv>jlAkVT%q#_L{qX-;nqkJp57l=>pyz(e*EaN
zX%)z=WLn530$g%!TSxws#BjAp5lp;oncG}Ln+&qIA_ENm_5CK{jC2hPAKihHnv707
z@zlGRQvzmgVou?@Ivt}H3MYR|FM_EmZz;=?zQcL^De+Tbotp1@y&2jgxjVT@2ikni
zdr3f>TvO4?!-)dQ$}CPCh5~vxMQOw8H%H9DD?dn$ANE33xi3V{<@<RQKl93i`z};P
znPRzQ=%g|5(LOIJWiGWBb5abg@#Qe8^m+GA2DC*bIlO5sxu5Z=-`anbqh-C=>s&wJ
zHUb-QDzga6yu(oSrQCMP<mOYymC?VHdFTn^Qhzr{_d{7!dnsGbrTrj!Ohv*Jhhy2I
zGLAVq;gS`OF%^|8^LYV%v>$~c>$gsa8;5jf!(4&flyq$voThrl8o_+A238a-xROau
zvKut;%`628L>x3tQGkD<OZ72rE;Ardf(h*G;zj`EN6y;Md%pS?N?;MNc$Q$Qkp;(&
z!$rJHDB1{xbQWKPRvTY5HjB+5O&x6;h8lftWm!qBoG4-gtR`Kgb2(6qVy<AxzxehI
zWp>+KbuA$cd=A|prWRE8bc+cG?gvS;gVw&y%bN8qtdb8Lo&bNFW7Elaz<kF7+TsY@
zfCmN2ejU^05VCxG0BYmMC>xG0d+Z8Zm1sb_ryN|IMFIq?R7iLFTrKh3*<FBDw%kbu
z?m8RT8SxF!+2My))`h+nhs+C#+j4TI4fy`N45&xJw5})QLaw8`6wb%IcTixes-P?1
zm~UV7_XXXkP9lE}o?z>K7Q2;!6bGB~=4Dmbvc4g>xOp(oEi|ddORS_zr8X#JfGS8A
zPdPq91)DRkJxajELRTKjitdNP3x6b^l`e9Hj1utNHhe!T<jYMym*rvx7Wp9g3JkZf
zplRQ6jVV*(ZTX$#sKYw$3eN6zN{f<X3<2kN!*c{8CWU`ZmwS?cZVk{#dxNRtdd?5{
zAR}L#p&sALB5}$FlmMU0uk2?iD(ActGYi$B9{a;k?wcMANXqG!J2&j2qyA;?GPVdE
z@A(ZnIK#&~#}90SV{k%+bB&YCMhBrZ-I(U~f(s~8I5P!n#GmHfuG>x6E_c45gjbuL
z2?u#gm$`p2mAWp<+q*5t4>P`QiBCyOSsBM!Hr=R$@;99wY!kC*OP-}`x9&?Fq`4si
zsB`HS(7_*8%HCmtrs)m~Rp|;c7kSl+GC79B@qEGq-PY*G>m4E^%nUSCnLuNVTsBzV
z2bnL$7?C;Sd?6Tgbyu8~HlXpX(nU}Qq+A$EhKGOJtJ>b!qEAA}lI4|LytFs7y26f>
z!eru?_LgS8&yT%Z!&;*-@p<AT6b!pC#>a#MjlNtxz2Y(^zz#^%r^H51)89hMs5|Re
z25Sr~zRhgZIq!11%4S|@N2kiv<0_JV%(7GHE=CP$5kN^&PDZ}apx4J3T}q5VUY$n0
zLJfZk8-QD-DV$L9Skwy+L{VH~7WP_tLhW2h=Euf7(X{>iU|QMPD=_`;(3jDX5Jwnf
z(ph?bSsUD+CKbb^*?Ei#VSgi9YR5#8Z{lnX05#hh92(x_fX~E_?LSD!^K5S+ed)IA
zlLQ?gX&74nZP&YqDTLFGKE-FAo%qZ@KQVuOa8kf52jYxd1CTbxlw5S~&EoRL6&!<8
z38Ie##{fgpPfDg;#_RkfTzX|jC%wvIdz&kA3SJyAx<yv;dF98`FXns>!g|C+ODWtq
zx6n#ie$I>UhAkMwW43%i*$f+U#U-PWe@5f5whiBBN3%=xjCwtAt~4as*`#~;Caixq
z`IorS>BHYX@N=fewfU{2y1=%9C#Gq#63x?X{+2IePrd}ar8xQ$u&W%eE|$`A$ZK?H
zNIn={(B=+V1OEI)xnJBJHlP%C?`%`vJFoGvLKe)mw_vHg1!ug~LEy*XpC=EX*)&>^
z$EXp(r&-qv_&PTh=BiOfKN<vP=>&gyz&LYq@mOx(t&}2YA*Bcl$R-N^)*6O#FKg(l
zvS``ub;dvR;{7mlTN!pG&VLl9;~qGPV(FjCdF;#*i(LS4K##wc7`5BGg!qEoX>ewZ
z5B1tk^!e9!I9!Y66!X^UiY)zf4<`j5xrf{#_Q!gtg~?j{UG`^!Qu<Ycjnyyy7b&>{
zqF=MDKauK}v0xn&1T{A{IhSES2`YbSliS8}-}Ni_E!>wSJQpszTop-{9lNZ=FH*`$
zo?q1iN$e6a2+#m1Y5nWd*MI;yT&-NTE5#3(qcKN!PfuUqi?`1{`#R1Rd6Xw6S-ibl
z#BPzAEK)XIyxlJTwtQD@k44?ztW2CPs|KIRa@dvJFcjU5&X)J(z#W^q=mmfFuI;$3
z;Cg>t_W<_yx8HsCwN589>exoHjTa`0UBZ*D8O-Gqu$7MD#4c77u>WGPSS^w$Pi=-^
zS(GFOfwRmo)B{5qvv5(KX^T(}y5oh8^4v1eKg&>4RKQRv45cEiHAA&`vTfdf0vm72
zt{BQKz7DgdF4DP%f{OAu=a+vrZL_V0s%?rIUsB7y*dOY$|D4{jE=o-b+lnJ?Vt(V;
z+}&ukEUIBAYj=}n0d+JqD2Dw>#VUX;8)a$iVLr$x`2<f%qyUYuT<sW0Mln;;m?+KT
z#cBfeMSy@YpwT>ueC`h>-waO)tU8&I4{)V{1ZlSXl5lTKWON3AsqBAFWAn3DZ=e10
zOat=NLN9b`BBjkD$z9}}TWt2v{`PmZ*h1%b3l-TsTf8UG{Xzq}@U?pJ=GkALy}+Y2
z!{#_t2DH|~9gVC!nIHiWn&yZEm&?Ll1<y^C14(rXM6%a0x=JGJ0Hwx8&e-b=0eqNf
z&oM?QsAnAGvJ8-(ddh#SL$hhx+G+yk7o{fzM3m>q3^q$1BeMcL02-3?`YDC&r^!MC
zOQZs|t@<Ir4*+8G<O%1-eeB$%zxmwE<^qN?+4)>^4#v6Egn2KwZ(wO~7FKbjlK8YW
z=fMHV8bFLD5u=Q--J3(XseV$*Y>K*mxJlyWEu4%zS-wZfmXm+@-g9Z#RXz8K2&dL{
z(Sy{Z=C<*GWdIjCOQXb$+qlB-8MAvlWB1uc^C+P+KLU~Ly)kOJ^82)riQ~EOCD}Zc
zx?FjWqLoS_%GI)NZ%ho^?+32a=y<mgb|P63tN_GL92=3ud5VZNfMDVF_y*=zYWa#@
zSMd7kW!v;aS5$wEUkWtb;beefxD#;kG2FO#*T5EXm+?q1+ha47-CeO6=mx$-$qG=b
zoaNVILCZH44*l*%$FK#yrP`xh#fPpvv`n`+UN$Y>N&<4n&++29JJwCv_qW{qUhcbw
zk;Ij4*>AdPEkp;geOj5CQ{mOimoMAE2CR;hvYs_yE@yvpUafO#vRZ7u>xzBJv%?bG
z?q>!fH3R$QDz2J)?szrQPxwP7n=NccnmE=(8YT-=%}4{niqL`J@Ql%}dOT<mH-0<t
zTNM%O90_t_Y|1AFpTvAvICSN{>Pz2R3|!iTrpJzc*B)yb3{P>_(;MlsXttrbVNd10
zCDu;ta*cn~Ow5ef5qJGi7stL@S9LXvQURKap5G|A+Lx%*6x{<?p|UBvMqtCchppnK
z6Ho+)s;;?M3<Kc4Sl8t(H>~kIA8{{923P{gM9o7hPr?@zwk7iSeOH#ggHUz?$(HN7
z*!;YjEkzF2y8QqkCR^^?ZCP`%8v3%n<MIx7i-mu>EIQ&0tQ;6Kb;(s)zz1k-3Oq&f
z263Y`xtE3KSU5J@va276Nl_APi=iOVLWe?_GZ9hp<4p!)2v|y`NHW|oD&SOo;AcMw
z$76*K4i-)ahnm;_TW*GlRKR9f>ap1jH+l(+zvTlmS%P2h`(3pGL1|r%x<8z%cSxYN
z=7E23(<nlVss{erGF;uF1%M^wMFKdKp!*IF+)DEb#$4_xhcY>cvG>F*22R(AakfIV
zSR-bMyI?5}EZx>3$N?=8!+k68hoT#*&9MfX1$J`FjV#&x=tJ3Td7xLn9E%|Lc$uk|
znjeMSDW|DfwLiP<RirXhdD6&wb>@Ep`UQVTbY)1tuyg&w%{1;9wd4uZm#o(o9q>W|
z)ZJH2Ksy6v0rcG!%n_e0A)BaOFuHQ2U7Pt5rt36Of-24g%J{M3$yjh(q7gL#`<|h!
zn(fB`dM7H(UEs2yLH%9vKx`H;judFA_EO24sU$Nc?{z>S0bL`BXBx>*%9y}(4p4uU
zEoN{ZpYbk8(LDYX)$}*B&O|k}C&lulT+WuAlA5lbsKR;`-p<rzqvGkB!j@X1FV_Sd
zZOjNiQz=0)o?y$wfr;ZN(`H6O9povO<Wu^6qV4d95IO!Bk@asQ@|7jWA0u%3$u<hA
z#3ph!A>G)jY)<=hrq<(q_heeSnSFnHg_iEgZj|^>BIy&)t$Pwl-A764&Pe)axNG!N
z+%@JmxN9C00{W9V#|EYN8Rz_@w7J3&aG|M@-(Lpqjx;)(@sX<|olkm|1>^t6EciuW
z%^95e$)VOZNN=a7a^u9#Gu2>r1>FaZy@p~62uHePCoIGP2M8(G!d!1rV|0IsJDE=o
zY?o0}#U8M{_FS6lzNl~q7{lh#=`MVPAN5CXrJPj72~gE+j~i6CaWSCXf2j6opRvz5
z0fM+Qy}hn}M$v~`G^D!IlMIStvxAL^2JEa_zOII$tih7l4z~<PiaQqm<Jf~)RC5Kf
zYLrgJ;KinYCsQ59*p{oH*-3x$_gIsL@0OcgTWv}%v!xWr*KXWQMd|cn@O(XEju~GA
zA$6E*lk6i-v@~)jH$>I*3fYo`!uOh2`fubC!<Ow)y2vnvCzy|1=)uV7fi~iE$U*d}
zbdD4vCK+uOj0LpSO0Y}HKH>&qOf0aGEl{Hc1r_E?EIoxU4P10a=f8i;6}vLlMapWl
z6<u=9oW|%2{}Ib?G*_{A<J~Q607DDA-vDIdZlexzNKFCG+<hwO=L4Kv`b@Ar0aLc@
zN(OmcG0+xlo9qdk7e9gXKIXnn$X%{{q^Rr4{s2_(d7;Q&xOPE8yxf<AaF%v)<lI@P
zsjD`?7#3Y~DAw3_0abq#0Qf|smhD$-<E4wZl{wDhG*u^Wu<dTyyF`&Iten^op^*&(
zq<9KbIvwdmKV4YPFYmJ`ow8<nk5<jlwZf7%PSIy&<80Z8^N`xeV|5rl=dNntXL+NS
zO@Hk8&202dWZuO<n2*6u1^alm=TjVTWpfkcL7Q6^Ezn=|eY=0DPVnrG#!~GatO$PS
z%561w-2@yGM|8fSA8im%^~$Pb`5dQGDR4}K6sMV#Z~{EvlpA3LsF+)ZeY4q-?+uzt
zc@}lVeJuUWcuk*EeODmCy@QFO1v}nL!&OEmmL{GwtOlK&)KSQ*Yk{0cThG~Uf2gZX
zHPqykMB;Vr@g9G@{7D|dBmqrvM-6+BP5bIsIwcXm`=8C~ic57kHn5s8e4_JMf+bk$
z%DO70jELsmk_*59$NhmRz#WL32}t6dlh`KC$-p8QMVY~C1h@6B+TzYK9o{hj&UXwA
zWj|DV*ao@!;YD%zVb{J8n03%KH?%E#zTm(N-Nj_kQHg)2?9c&W;p)G1b$V?KH4_{y
zOAv9z2P}GQV&e&6x7<a3JLss()1+N-Uvh6(Zh-IQ)$Kb3DH^_{GCBm;9G;t#|DRlj
zg2h%`h<FNK{(xuTR-Av*Q5=8*1tAV<B)8)$M1Xc8!qvNMqz)WA5ZG{jIZ!9dP~P2b
z;Czy=8k>K3$F;n6e*+tqfD<}|+XK2iD?ci3<9V2^@5{P9w8y$7T!}7-g%`*pcn;MP
z<-ix*`nqV^pLaxOs6mGj^$@EsJ5Y2ezDTd3$`_cC+}742x1jr#{p~qo6wY%YB**@j
zKX4C8QK-`iSrzw93oN{mxA@*td@`^Q=3N?{17Uw~TOK>{$Rlsufu7K8B;bXTxjjmD
z3ka^w2ngc?K_9p>o&fS|Q$Vc=O*=*$Kpu)7L~38U{I(g6)s$04v4X(7^>mDV_1sM1
z1nyyN)l5T4(Aoy2#&GOJ14|8DYp{Dpph>L+1$*uzB`iG`8UO{Qmb<#@z6C+sbNka6
z+k$_18^sP*IiP{fU3n-`!q-yot2+*GSPC$UNVmC<onfn2C<AvR##dN{qHH9?*+>Qh
zNLyqsRvPiDsjGG8PZ%`di+wpnT$@A%@ny<#qC;7B!C=>c6%f2X)R_#)L9ZWr?%@=v
z1UY}pl&54X2CJIG(F4kPC&*2G+{(ysw8DP}YB=yco-OMFG?z78Bc$9=_)v|C4U{(6
z-*6ePS$uY7(YF|td*G|T7=X7WGRJyE#)gmbYzGar+$gjhP%oJsm2BPWe93_pY@?Bk
z;@P36_9<l@w@XM(jR>LFc>~b8mDho9xgZie98038e<rpa6;9R&TpK`jKu5t9k$it{
zS#$!t*%f$^m0k5~DSc$wz;joTs*%M)?lAvfT#y&Ko8%w)>?7D~6fcrAi)@-;?$IyL
zFefIa?o)|6tWt_<X{>zfXW#D4;;Z)AU*YG+T=Af*$*3<b(g0=R1gvl;F66JP`y*k(
z*`@iMpWk%Fw&I%>YIGuMGG3s@_;Y_YY>`3xp%``o%O}BsWnEEb#N8uOgr`f#h=1Gl
zbl)g8WUwa?^2BCRCg4f33*fyz$*l!H{Azibney7gWjq@Xp<DiAT_4MT;<8VFOq@U4
zjzi{7(odwXYxi6_jnZ~Sb3Yp=;_?fSu)86&gom=OPx%-QgTY<TMHDC--Wh-TUFI2x
zZkh|@rnZYAw+9Q^z=UtU`Tnbj8TajO<luQkdny}636%I~!H@6Ss*x0%S5uoG>aX#3
zoau;QiYu=pVi?zH2a=pFJ*U||#^;HU2oN+V2%Mw_g3yu1rimqXp%P|OsbRBhVw`1Z
zP`5*%vm<@Wt?zv=iNcJnQmB9T`?mGNQ*IR%K)wX8mC^hr5{sF;<@#FM-wem$S1y*~
zcVi<icHW3H>{;hg&YWGqD}%(s+3OWnA!d5A8pY`6A%6<k<|+YNrl;5cEC+iQcCddu
z<?m{UE9CB;1<5|e-7UGO^w<|40>K)mBZIloDpEc>SdH`mgjx~K{}O+4p+>33%;HF$
z2lCTvVfApl$WncD_yw~}Rg_VBgN}UW_(L$s6eB@C$@ITN<Tp|79A(+5_*0nxt~S4g
z+3FIy=+45_^B9WF>~H0j<RU$Ey09uRoh6h`fUa>>_K92-@KnNzvdJ(?T?xWYk|vA`
zvH|RT%7;3{htES<ewcsylFS$p(VK))RDsPzMEon5VYeZFc1&LjTr76BX%JPZF{f<i
zRjgDncm@+EYGjRT=fj+zes}HkhbS-`;XeGK!O7uF)@@4HB|dgw$v+%K9Xb@41UZmu
zj3AuscYcBtkSa@_CPL%i_w>ZS+v$m)a(d!F;`CfbJg|J}c5{E4jTU^O>!JgVfV3!V
zK(~xjoCin^U=pqi$*ZIWw5{=37wfVPAWP?pvWn+;pNBqGWU?`Our4|Gm6qdkq7~d9
z`uu|wv>;L2v*Mw%KFngztW`@UTf`vWN{i@USR_T-Vq9krwwa6|PCID!`byY)D#oRE
zqhN(|HaR~Neb;~DEm5LBkvqF9y<OUrY>lR)H45j1^VVr(ezUKxIJzj4Ge5KaZ4MS3
zDe>%M7#$8VjR$SJw%(FQh};wYi>A5sNrAIY;f=3G(oIhwX0uQ4iA_<5MT428CPX~(
zb5@*>WTlgu$x)%)L}_}K1J6zniWl}0L3}t=ocK@Gf{lOsW?M9awD`ay>4zA2qU2%p
zFNt3c>|}Bj-FmMRdU&r`y=_yHVFH{f36@HXFla%1a*6$HiY+mMrG#azyc<X5tRrKS
z@C`Y{3Lp5u4ovATe>t)<bi~Zrn$Vwy`OKIVO@4Eq&uS8X7N~dh>T!dA3WN`L?kf&D
zh{G%~SK@yS201!x)7FGY2ZIg#WQ80G{l1`dX^W<5FTFSqK4FDr_l_N8j_(Y7MZVLR
zLXP7}oCb+p)tGu6T92@dmCyLFFgYd>x4hl4CpMjC)(R|{IX30#Z926Vtj!QV!Q|SL
z=*crS9P=DDc~^EFe{I5^Cwvyt`<EX0ap1P8Rg!;a6Iu2bhQ)j74g2qdPGJhWI*JF<
zGnn#hj9t>4gG8~t8E<CpB&d1s<LECn><%za!v1G3T_FVXyh_ER!lDhG|8uV;v`@U2
zQ2YAW!NNM}Dltu4f(7i+;!JTLHrif^<&u5(`~b3iTYcc#i;FmphaY`Jpl%s_=w(&c
zM+|@ZbM!#rf%iTO<<A<lo*X~y-%)(4faqujd65<a?Wff2Py|P?p*4PrgO5T6-V9vl
zDYXv!rJ%hpi;f~WP-ZudW~U(bJv8t>d&{9ZB0TK(#4H&-bCEc6?jk`5<aB%%3?MEN
zY?-=9u>P8_L@b_^tl6hG2EPkD<tBXh>UDoOY09Wj+NO;ootbl27YQYd4c>@qgO#B}
zUnvKfsNV8ZPMtK8*nz_6l+KiQlVLM%!h6sNtmEfD+DCFd&`~BXj9klI1%;Cr2x~OS
zYUcXF=F#<q(RQ5u8+c{Mag|-roz7pp8TO)J!6>7Alnbi<GYtcypGUzBI()WVy5oP(
zu%L9#>$y4kGPw%OVZETni}5VX;6FtmwMU=A4Ol7o5llf)MiKx#VW2Q#U+IxBN_z!O
z#xvf38B*oQn`ylmv>@(I-b`%fQT6ik0JmzTK${<J&mV6P(Hq1cWvK;>NlebkCZCMq
zeEu^Pm`pwzf)Zf9=WbcoDc6s6C2M~vmpbfXL(lKEjLbN4HvQ!M^N^1UzunbSQ|8NS
z9x?sNnT7Ug^TB;=z2Q5T5tv{*&A{`io-+bwVAGA{;P3oK+%-~u_2Tul#5)@$v71m6
z!N&{)jP7vEp5r_6jlGFXo?f^kIk60*2xrM;6qpDSGSyM?JCV`Y^bD=&(+hv16}Tr)
zKaSS;l#%Gs>dXnPu&a|IbDmTNLOhva)s1Ha2MOvmf?TlC_1TTuP?DqQ-ZoL}pQfgX
zM>@ZT<;>ED<G)9uHr!hA%uNS)cEB7#Jf~5t<2jybnQ&j+@;)TDZDJ>!Q6Yhor{`37
z!bhw)31eGq@GMf9ek@6DR4sqOXeMp{WIb2DeUj3LRd2YTQu?qKi>>~=>*P~34=wSa
zfcz$w;?D~)Yh-G)h?Cmo%X<m*QM@kmkyMAud4FKl%8737#Or|#p+MZ^8$hlV!RXfc
zC5dT7s2BC~)S~hG?YpuVSog$_y$?ko+sF_7<F2YhUoGP&Av*blyC{DlD_+fW0Lg!s
zvHva;ORKKvW8FM(E#ER6<sibd#N<!nn-u?%;VjSactAT6|7WG`OD+=56Q3iRfXUTW
z_Z5fwpc#XLVyHmvAi*~r0z_uj52ddQNugA6+5vt!8Z^?*NE!t&31`CO7xD{E*(krD
z{K&O{->8ft<8bVEY@2__ewSC$e4+hLj2;$e3M6xWar9VI^(iD+nEZ_m2Isczp6(Lr
z6JW^<lsCfBzw|Qt7y1y~f8?yuoaKB!{Cal)gQw(HP9hw?mBuDYaKN@PeKO*Xw|;~W
zN;H|lZBUPv;Gu#0fBg_5Vivh`@kh`j5v_aV5=tX``bv*of|h@BNic<C%WqTqgtgxN
zXlKD_sDjq%^PSPFt<L<g62#8TEZH=(EFCa$k%Q+{o`lQATLge_Do*vv%<1nd<_c<@
z(7%v8YEBswDKlb<bMj!s@%wR{$$t?JcPxmRNB$zn;y3gS8%v3!?<2<a8}?BGz$`}x
z>hDYbrd}eti4{gSEViIG=Jsk11AAve|1)4Sb`&7QnxoX{5SnE83lQhr%{dc0zOLrC
zD`vL*A87jV)(T~AWOH<KWnpa!Wo~3|VrmLAFqeVp4lsunK>>#rK>~*sK?8>tK?H{u
zK?R2vK?a8wK?k=MK?q6y0x&g~VLu5df8AVdZ`?Mv{+?gqk7HbquJ|HKO14<EZW5%M
zbh~x1dx5qW(9FmlZ8Varmvx+9f6w6|B~rt&oiqz9E?Q(Ll0%V)=jAyMIsW|_JB#5z
zc9zJqRHTuL+1d8+?3dr-vmMm`a27{to}S(5UWc<Jmhf4hT|N8Tv+v$N`|npte{z;b
zx#H^V{k0y0XOWQbv^)D{^=*CAcGa*yoUeHjuh{u-?|*==WZqXIE)<NZzwmxvQXj>g
zJ}iy$OxQjzFE20Kz(_(wGMBd3P1%%PF|-}_eD?DFv){dyauMZuwp^)zs;94%u_((J
zz3xqOI}XojRx)>I#UmEyc2*y$e+N&U9x94uYCF6L3?U=QGuz?bj3D59c`7m*fye4h
zM2aQU>A!-nQB0n#on9}_*G#3Wcc!y)Mr1OIb8)t2AX3x&*O>Fburf;G^vvmJM!h~?
zC)_TFOLsS6#}jVX^J^Rn(2g`)eM29=1YW{96!ZBjJPAl4i898$DYM{we<h4`Jl_+8
zvN(dtyMyw7$Dkr0r=vlC3rQwQm7_f7tqepetnfwb3O|Xsn#}F{z=$c979+ktUuVKu
z6ocUt``nm8a%Y8tMV#f{62A+)D~WPg^0C~SkV?jpj5BY@mjN%3N1QWv$h&>nl_ANg
zDC3h(g^VDNluAz7fPBaXe}0XVIOGeWEKQcKK%R01FbE6mAlR{FwvP%765Gaa0#g7f
zCQN;aGx6NtTEw6yX$sPT#ix>b{&gHqdBHpqF<&k{_g;%jcU~J$o14KfO6u22@X?Ex
zvgZLU0N0!+lO*3X)le06^{EU^4Hgnl?)6h(Y6<v49+;Z9ElHGsf7!V1_19R&0li~j
zvQsR(4!#c5$Qvh)!~4Xi6|$55!=KSfwUl3=mcBV9Fz-41MuAO9BbiP*@UFNeP%yOg
zxoyX0D7))(7O#r!Fcvk{_d_w1rg&Ry%P6E5LWziH=>2iyt*1Vz8Pj&ZCX`_Gg1HM4
zStMlwF9Fjw3ukdqe>g&dGY2gaoI3t*K*npZJ0b9c;r6+bR!3H_Mqt4mm$Mekdh;aq
zx{LJ4m^tixo-si>kYx#Yrab4KF*6?-FmMUz_os!jz}zstGMF2WVk=?mr!()BIoDn@
zj=AUgJ#zu!LIJ;(KHXYwgR_EY_qCn$(i#>*U+&T8NPeL^e<*oW3ihCJu>@Y9izgeG
zuhu-E*0H~V3;&aaBDeQC7=?L}yDtv6b=i}lj(yeKQ1R;Z+wZA_@_zaISPWI$Pz}fB
zhV40lI1Z}42E3AT3z8o9^j84*L&nTOO)>>&DY2=^CS;@xoH*FB)9rr(3XlOV;G_WT
z^A%uW23ba4e__@DYX|Ju4xZ$U5^_fDY0fDBs?I2Rnllnla7Ib~s5jz&z#I9&3vdO8
zVCndyM{VqK-?n|w!Z-*bTUwY3T9|wakTsp^_M9iHyRskFXx`^6Tix87z(~dyg&|X-
zwE;zy=0+>z<EHfU*o0E?9Kg_ony)T@3XH=+nDOL7f3GP8UwSkNX>s~Q^evZ;-FuzV
znY`1Fyw9<*aY$;jhf*Jw=HLLH?q)9mQ*OEmo*dd;X+X=c@7nQZZ(&Pa4Ho1yAdiE^
zHn&~5tG4J6gImXQ5izu9K<$$~B%hCWef9M4?hwo{gi2<(Cqs_Li_1Z%uCQ#TZV-=p
z9!Mqpf2rT?t2#shfdgmR1a+Ermgl*QSN{TY5b5d$v17Rlu}t8zXBH-`kw|pSV$od0
zpXlR#VA_yACh0WoT^kxPivgTGS({#+vjnH+Eez|7t(VQVoEmo(YK;lEeQ6rLy}d1=
z=_5T|hC?fuCz5>V4>B9Q(@@d|OU&o_Kb#q<e}^+8L3xN;>Xe_Gx;pg-UKhvt;&pKd
zTIMd%p-GL<U?QGOp$lRG%xhgQ^(h#IVwSmBAT)8X^;`#KnHzg~8;tN-%A8#6QJ&#*
z1i7S^Ks{VR{y}n5J&Bz3-^CVm5d^TW4&oj`@hSjWPN8_VAmU;X@(WBe<N?wy;Ai6~
ze-qhbxp%BwNAjqrd4HZkj{QM<OL7%AU9qdmX0R!DX_E8y+SG(&35$geOh-oKJ72Jo
z05RZVlpMUN@Z((eJWSd-F6ncE*U6-E2uPj4Wo);6%{g}tFPw=(`jTl<(wTVvc$5Pt
zO>%X@oj)*x9hLsLEDkwo>i8sL?F)VMf8*?xFS<N=f_su*<eub%?&*Ye2mvlN`vPWa
zQ*1x@9MyGM3}bi1Mjah5B`LraSkh-5FZrip@IQz_8iz9M;iZy;L5{<=J(!0HT6<6_
zh4?<J+R4*01XPpd)@}Qtr$PJbP}N0;=;MNFHs|oqIMBm1lVV301h6cOj;ab)e<PKz
zv;CoM2Y|tnDL^SW1WU=8=qf-fMLpb8bzK&_p6XHFx+g9blb(GsPz%w6;GjC{vA{_%
zueF{|>?2PNp7dU65eQ8b3ft-&Q_2`E9X{A<SN7Yk+90QawR=jx=%K{-eJr*^eIH7a
zWDeO4f5H~TGrG9Lm9^am$l~-Xe=Hm%;pP%ke^0iw6OfGelPkw3blJMLf}F70R_AP`
zB@9&sx*aUs!D3szqwr9-eeZvj&Q2j|xj$El)&l%a=?T_Mq6Tfjr~zBkj)+}hPl{oH
zP(mz^*-Wf9C$hv0L485hn5@+$RRuWU04#+Zl*unTOjvlTC1d|hz<aDYf4Gk{Vg9oJ
zV?Cd*U@i^>wE`{DC+xZq;@bg$8ooVras*H$`67JoO-e>76x`WYJ<X_^($*bSZ0>1F
zw?$8cB32G`MF93g@Q5era$_D+9oWi5Ef3=ttc#jyi7AU0Ns8(U4uj09q^c<#;KR@r
zO^?Za8O$ydKuRos(z%a%fAri(EzW%w0!G%(87QI&{zy)1xFGRyOnBu&ukX-_q?4_N
zFkb?gc$VSA1hPC$Aj4Z#>d`h+R*Ra5ldzQXu?1xKGVlO1fBAK2PWH8EP8A@2m&?ym
zFJ~~EIWAmt=A`4WQnmzw3nD#Dh)AcR_VGNGV8^XSDo{7<!{9xIf7C2}gs4pOCoq*#
zc{^D(;6xzc_Vjv;HuFUE<Yq3D8p>vE7R))I7wJduiR^@E1j@{Fw)zLAFeQ~?RFp%`
zS6hdWqXsGvGZzqn$n@#m7hVEbV#wILt}%0fFayg0LXkMY8LF&Vl0=d%vIxx)3MD;`
z5Gs<@D-7wdV2I~Xf2eC4q_GX{7r)e(MYr8k`Pk9-)Y(qZhINMzn)5*^a*c%OLB{TV
z3NMAobIrrX|Iet4<SEoe@*hfFB>xubBK>33#o`>%xeK-{n|9E68<Y;=q`|&;^JkG*
z5NH(wg7DaE$rB2pU<jBwZxBIXV`ZvmcZs!0M70_VVZ~%Fe^3TfIaEzCP~chO-By#Z
zEYFQ|i65Y9u@__zFkm$vs4qdCe09KF2n(9;jZIpmTZ)g>!FF%PLol7$VEV(sgf%~-
z)Cylx5F;GWP>68CA%8+1Jd;yM-xoa%zA3d|h2aS~?28c+uU$l~KepP<YCnS68TKQY
zK-G5NR$GJ9e;^me$m)v`=bftuXl`tDWCxElFDL*4YdZ)q!}JJwPGR|QsL^3DR})l>
zm+=!c#2&$%x^{B6ueRp==FTMiB!%0$sLc7b{X9XtC&c=Ie&Z&vNWreGxr{iom$zVA
zu*)wGw^au#FmL`A=62s#ePEx~b`+LqSYU2lbreKze_A~Rl&Z$Y+see?z62wIaA6UH
zt=GvJw(rXwmFntdZ=!PBcwswPUAMJ~+?2&ZRadS<GPV|l3;KP8IFGv%BF17m<Cn&h
z{aoTVQ4z=<lhxnMx9JHSR!D#ID0T0LCb7<*3jiM1W8IW}@3<fD8gHUWcb^*aa`_Bw
zC!K8ve?Ue{Ga*g_OC`qgkAseo_+042D4V4y4lX$NrK1@E^mC~KY+}0Wr)xcD*r>6l
z3NWsQN>)>+7><><-MNH~+KpS>Kdjl@2loTBx^;WKhP_-DogsSZz)T+|!?f|TG(7iz
zeqfteXq!0XMe{b{6GYC?HUUPOFQ4KzeOJ@~e-zDSk!<zX%|ErCf`*YxIJIv%1V5HM
zv~OvY%xThPd$={bva>-2(8v*^g2s@kkg%XOEUXJ^+_!gB*qJfx7Grs%SBW;1rKg<I
zaA!D1!{vy0We)dS63V~q<r>S$UpwkeHHD>>!AC(lv8j;4`E$_U69?w(=zC(5kfy^#
ze~ik%Pn#++nD$hAXzdnp6hvt{Z|>=Hup?E?Fjn)|b(qk?x353S+r0(J)GP=J?t-YM
z-?w9JTDNTlO0+BK=~~BBC}`AgMw(u}5c|GB<0WMy+0~%f8b3IKtd|j>DV*b1yCLKz
zp|C54!U+QKx)?8BXe)yJhBJE}4$jPke}Ip-5a|x!LTnVcDu?kluywKT{Pj@|dZajC
z6@9NIr^_fg5oZv@o9+HkbRVc*&k+moK7A8G>m^p;D)c9Y6Wyb0Z`<A&%tCDQuPZcW
zDsIlv+cy1RFw_LB=<+5O_4sZZ7}f=qbk-uWnRU>$hp`^2+qw(^pkPiTC8N#9e>7!R
zU88zlL$X4d3!C%-%S44r+N-`CH0uiWZyNeUcX31}TT`vJ<IIo?A<Y6X)j~fLy1$T#
zNXo|<VHt_}PCD%&3|kF770BYc3b2o<8FVxfR;tno(KfqeX_Tf5{6$nloCM(y)=wMU
z(=%Z_EZt%Hr%Pbp-4uCZwJJ6(f7%Bb)ALivtLumQ{zd4DM-FMv6pOF6ILv+=LKlnx
zR%KIWfqRe$3)n;=XDXdq#%70j8Cyt9PzPD{q3TPj)v5`VfcvXM^~ne>fox2K<i_%J
z%F5?Zh4mS{Yg+;~1<~BUpq}JUZI&K7EPzZcpYr0LU;h2gRfuH~JW_M&e|15Fn?>WB
zDYY;rM@z`)w;VEYPLjN+mdBQyfl^oYw-9LPL5ITJk0dXs3e@s~N(M-uUK@`EDD<TE
z|3LUu(8dmyCOukY<}8w!N}=dZhsRXT_`EMWgBDB}w0?Q)>_J{%)>U(S0HnB`7_mtL
zu+*rvLdw-fpIl*8f8T)2f57aif$UNu_ATnQQMP(Vjn<z~kL#{IPzn6e`gHU&UMk@N
z0K@@3=><K3bg9r@)2CUtZbL)F!tJ<$3<$P?swtwOr>N>e$1Yvn1U)&ptV7%2cX=*w
z@fi7XX%s*pt*x_(T$pH#y!;$fuzp)3Kaa|=wVWh$D(agy=sxvHe;fK+A-N-YK8sna
zl&*3j0z4J;VMI(1U|eW!+AxKL`O<y_lyNbQx1bP3rx(sSgj@9Z2<$e_fxH7JvuO5B
zufZnz3UN7pbz5UvjE<6X=I~nnuc~CE=0u|jaoT{zviYYw`r;XzjsScsi6NM{Od7kO
zsT5`scO|NgsWEt$e@8-Jm|dPAa+T};Ye+giAgkC=_z2zpRLK2L=6P9ZNWGmndVi8E
zinHvP?(@&)VN%&cQpsVE+>r{b;Q^_n^RGk=Bd&6*_)FI$qBxnE-*%!-{73_d<@}?T
z2Nscj?jpc1om_-ml4j@w@w|TFHV9|p3FYdlq69-|*1IpMe-=AXrS=tAWi4t)j|kea
zeOL8ESDBN318s$Yw$N;V$9<5EBHLrg6Qc#)bR~LX*jNgz(15t8Ch$BTDq{!KK&ZW^
zZiR&|)HwE3tuYQfPxuz<_H)PlR7&My7%x4V0>cDx4Z5F_n%e!D!l4AwY|S8$j_+(b
zfb`07Ofhupf47=pQ6?QpkD~=P;s#w%QL{|C|11Uk+SL|8kZvl?XHiE~K!xNnXZH9<
zO<q0}Wpre7c(H{=2=7|jyC2_Ny$?rd>7R4IEiXqyxUoFX%v|zh_S1&xoBTAfcEybj
z*tupg^_-Q6vgL^+%KHvN#-O=K0BgJIM&n_gKwusTe*;Jp^DR{c73PKp9oAw+zqfu(
zcl5w2^{7nKtLi2gxaj5&hh;|e`ASE3EYWK@-dNdII)#JEep{916pSkq*DvVd&Wr?B
zTaP>Q@Y+L@INH0QUSH`8Kmri>C8E%Q%CmFwc6Gi9^!nY^Wyr;)kr4i``=;^!Qrzgf
z8Tia&f2Q^9IX>#!8(2FO<TEfI(iL-XwpoMT+Dz)Vcz(kW&2l1|@$$jAtF%2TyM?gv
zy(1VMu%V~kEG2CW6RVmyaM~njXibO0UhV<-7D6Kc&&N(<zL*T^Ck+Ge9|()vPxl|F
ziPmI{j|4)77g7Bi(+-N>gEQ^viLz=?8AhMYe|UgIKR6R}o4_S3h~3aY0}2~Ma2Sw=
zomxYWP&Q(}Y5Hxd23$6lGrTu;jz^D&lAdiQ8B}xvjj-V$<(;P1wbjNP5C35JjvBiX
zEV`zKP1|+mOjo;GXf|XCEZ0!_(2X*NM%zf>#X1Usk3Z>Dr#tcj1~Xg+3npXOK_~n*
ze}yOPU-TakSL0XiOcz4?P?+v@K)ET$&R%PC{ixB~rX1W1Q=POuDcrjP@7{)fEW@D4
z)x!LgImgGs4{fE1Wl-gp&d+|Z>75}o9+(1V|1hQ<|A&|F!gFvg0$82KqvlE6Dse8}
z<dCT+i+t>$ZyR8y;{^Msrb&0^t3}<ne_j@bHv{_eu&K>2dX@^K&-Xx`%R=Y=+FJTD
zqRQ_~0++7-i8AzlHHGc2dRVei5BA_Iea2Aasc~N-*9ZmuzeZQsLdi9jK)X68;FxxM
zCC*b^7zc4l*$q|r4AQ6uyl!U>&U)m8^nHPJ)wSf2`+;~=?1;+oy2I-N!=5%`e_vCJ
z_G&nk_G<8Tu+sPi)x9k~^!uQLzys2*xG%tzF`y~F`Uza@r?NIrgtVaWU5(_6PDbDf
zyn?dX3OwRo<EIXWicbzhJ2EBc^eV)^=`*XG{2^pX0O6`(86r|don2Sf2J6DJy@!(7
z1Fd|?E2l(*;wSO<QRw{>=L(rtf3ejJ8a-&JCm`$Uhjt6m4N_SL?sDUGICIllc$$b#
z{awSzon#*u_c&r{UJC_d1yC9abC^2Nvrf@3s62DGhQNe6^V2mf8s>O1(Vz&fV3$nB
zKVLwZ_Yz_Q4AUMcSaWleD|i71(T95UHd*jm+~P<>_!roR>Y!sOyq;JXf1H*<3oxT`
zgDAz^zd>qk@mn<=xOt`{pjNGFXCw}lW}~x-bmT^-uyEt3VnbC{ygak9s$YDmX`3+D
z>~171KyPH|E(_$C$Jf&GhyJd|2|>c!g}tC@Zv!n>WCbZeklV2%?n>8AvyG^AqIaOt
z$oohGxchfl9@K#2KZqgyf4eD(%oi7W*D{kU`$u^Evvkg2V72&lCGBjI5%GrCCW#!*
z%()2O0Cm_vXt$B<BDgrIukw7A#mV$|acR0@p-to}if5sQe<y&)NZBLFfdJ9C#}T3X
z(OgE1Ev_j3k(J`Lq2y?#OstadZ;j(bJ+e><Bl5=*Tb@N}=KO{Vf6P*>UX5A}ke1b8
zx3@kTX?{aGA~~yd1DRL|i-*#1+mQ9(FHaU4Mpt9>xiQ|D>87Mu;c0%mEq5jfQ1<*&
zsp+T1*vCD%!wSj|l+F)A@dDz>?xFiC-#>IzDTF<$<mRaI=dy=*W!MmX#%6!BdNmt{
z9v8`{lLweyFf|DWSYQsr+1X^hr`n0AG>79v8DUE|%?4VDYH|BJwu<#L>eP+pZ8-fg
z{1`f|%{_fu53aZdQ|2Jc_~f=84~>QH%;GcVosue|hVALPcAag#wm%>GKU<Z>xtF1A
z2@{v1RtXdXHZe4pVLu5df0bKFbL2LbzWZ0`)~N_38w7XvVZzqP9=ly*w@c9#(c_62
zCJ8C&Vv;f!%kr<Ew}D$CtFjML0uLYw0&n@=!ml5{`0F=OdXsrstmB)<r<*9eNp$L|
zAh~%gZ~kXDo|<1&<a@XKQ2D#ZqrryWHRH*2Rgu?BFWMR=_T1@@f9<V~cCS3M&rdJ4
z;gS4StKILnezY@P{%m@lkvHY-|2}?yqi*)T^0Fx7C-(yk<Xw5Y*KxWl4c_zjDj%vA
zAB42_Nq)zU8y|0dwKI7CHzx2!_%E+Vx|HcBGr;QUHW@7b^fC@+y@-?-kr!Rt<Gc`7
zU)R{saKYFNrhCGtf91t6=5_D!ln=KlE`Zv{#oO|A$Ljf5!yi72rVK}!docaLbJ}s(
zyLJN>33CIT?Vj3>8zwJ~+&Z<Tsj->TW-^Ulk=s?nzlXLiJ#IeYN?UHfbS<v(_o|df
z^!PB>k(j2(6~lYc-ovkX!rgr`#lZc(`qT7x+<uk0o1K7me_ocf2iWXkE35uv&)uQL
zUmuoS0(%X&K3{@+1wF@_av0A1-E+l9jn8P9WX~OMkf~kOGdUmlw>Eh%&9*Vz09IG{
zkiUKtsD)7Ye&R(*2#=;m{-RXCvsR)LdRgkvb0S}E-tq77iu}^@VlF%=NWCywKIX!s
zuoav?Y9TVvf15;x8EWq*ux)9&-aac%k=oTPwx;7QY<Oc^h8u^xH+9uWZ+?eZuQn_5
zqS!9(!)*o<Uf{U^-*=983AC5_$?|19S#PMl$Pc06drCz-{(i{2p=zFiQDHY<tKrBk
zT4Uh*BxL*A%-m4(gwFJ1J@njR8N%ZjJJ%~D0qm4rf6@=|#(7u2@fGjQi`~x@W`)6q
z9XotzeyEM(RY9>v_O4|<<R~X`#Bu_^aM&6c9(ElL4@u#~^_vAIzBldI!~Okz>)O}A
zi^GW@LB`9mFg-tsPZSy_cwS3l03B9nu%%C9Ew2bSN#Q0NRdlBQU~8gKb~TDX&(N^|
z=}_mzf5-iy{e!!ts8CtrtjA*|7xHfecW(Nscj~{vG`PyZo;kKy?+3`~ef8Whv9FrK
zxXx6;t7KPfn$D)JEvpU`8=gGg*);HiyoJzPZkA<;Ao2V(SueaXXg>m#z@~TY_>3E)
zQea2qljpI{yXsG}Odij=@5Z76Q}f32h9h2cf9HCkH1&cs{OlWro{A@NgtKaSv07^{
zjMi(NnIs4U5h<`qC*lw!z0~>GSBIL_GE&^k02eVczzksqXu;__&z4yNO);|s*?SO=
z-V98(#J=TzUoob@Hc80R*jo!gV@^&0Js9greZKqQCzq&dFIJQE9CN`6U^Kc$pu*nI
ze}G$bxY<M5B3xdYG8*{<h|Ppt(u}QVnu;7kqiO(xa1-C$<7xkD+Y{+Jp2EL`Vbba4
zwut4q%Nyh>WS<ZuW5_Ey5@qF61sC=ui#%V&4y^~5g4X+_W=qwQ%S5-~h0H|Iu=-a_
z5j-o=>z%{pIZi9`k}O(t`9AbBGCvKre*rbz|3pUcd|iq5(s<J3f;7(r3GCJ9p78MX
zy9<wiSC7^72*E9e?=XQDFcyiI2JuFz@$pBym$t8l1%hGfWU{c6cS0?ZCvwJ+&^^5I
z?{u#fB7;8jTD1FZ%$uQldUJ{(b6FNJe#FMogaTNfCh&8zfOYv_Zb5DLOn5d8f6Uyx
z2GBvPyqIplb!H)Ls%)m`TFHHjYW75)MS$4Uz=kq%4+FrrHGwr8Y8&KEY=KmkJ&z-P
zMA8Y_H3eAMur5Vfb#lJDg}=1qlCjNFyR!yIDsK)nM98bUg4Y7e$#24_Yz0@?Ve$jA
z?Z6t%Gp^GYS;PUiEF!ne^7O7nf6d|0?Y^gjmDG{S#M=_P;DZibo0qf$Kt&ybL;`Wl
zmpTK<-Pi$vRf&aFiCV26`>2ZXmp7{WQhKCe<T{6>fidzYQThJio#UNA8dEjdX_w)P
zL3N~8n7w$q%UfmY(k^^F>}U0zM#;I?If(s5m-W<k;_?bh+@dRj0BQ1Fe`(%A?XyGd
zFpGErp=y^KL(XLY4j^n@$4wEawj=Whgl~{VTN%Bu#lU@O7=GHg0YcAoH19Fp&%yFQ
zt>pKVR}Gkw+4ceNC9uP*mpGuGM|LcT-CKYItjVC!v@&(tJdgVV1EA$X^Eya&FZlrX
zcJ3ryn#MEZ>ogH$DIgLCe+5KB%kDQ!;<H8~h6HLh-AoYK>UrX&h{gEw(so+~D84d!
zf`nIr(B$1(QQnFFCf;E+tX)?296MSvkf%5Th~t+$<Kf<^+CVno7QpC>4Ztn&$tgQl
zX1P?HhPUR{mL2Yx{Ccd4<1bn#AV<HVjd4H_^5Mh8hBsm~J)|j#e@eRnL>WzN^a5$s
z01oC8-o9u7$5$nxZI~nH6~?kcq#@Th-+HZ?0eU98uR(0zxQS;Apu2AyC#qJ;3)4xx
z{QU6G@7_PS^h@joIz3Y`_N@b0sfEqSLOF=+#9r#h*LYQ_jrXLN&}@e4Fu6kB<AuEA
z?IvNxP9?u(Yvi${f8gOaALgf1qu|$K6wB}9!y44a5#I6-indZygv`$}c1DQW9(vPF
zBBPW=^-3%d&XyRNTDbDqaid195--f+&smARowxDfi8HgUh)~on1rZ?s0><G`2^NK!
zcsV%yVgPasmEo9Rw)+wNQNG>tE#SCHE?#(cXU;AMGZH7He+mHBAP)l$LT!fA7MP01
z$zQ>docsOIwav5Xm<ZleUJN|aHWwE_K<6BoM#}?;#OB*DkxQT=FG_=d$LQPmj~{xW
z&enixGJ#<jUU(vy{=}bdc3*Y3U@(f>^zPtOItNL_Z^2umK!hP2*UJmILA`yRGa3V6
zEtyw;S!E<1e>h)LKn7$TaIQE+T4^r|wlK`pH5uo0X;~AF7XcCMr(ueS3(zW=Bb>w0
ziqytJtCB}A*yfZmwSys!dHsaCEF|?EgppNquqhQqro)KXus1^f3N{V^;~zZqz(ffO
zM8ucSXFEH{^$Qr@{mz2->ULI&dMr5z2<}H-mK8b(f9NuB6zOzAcLCe31OU<{0U)Uj
zjz-}sqIfqpPNPy9aE9rb2;=^F>j%;9s|QAVY@Lu^8s1Y74<>-A$>Cw9ljI0VCS_1s
znUR+U?BihE8*c*+goaow1BN4es~kuLAtvhDLKH1b`SEFjVO>uEBZ!4NVnKBYiuY`n
zTvj|*f2b{%4iXccz8=tpt8><Qv6_Qk*g1m!dxI&{rZ{!a*zhYQ;ezcG<TzS3kQtdt
zVhIV8^^gg)cDSUf>k)Jx`Qt=)3$ULl&yTN=;0Rp(X<BLaHk1~5NwNv7BllBIBjSjS
zw#TQV1s>AkpKHQCOz6k1Yspj$1c-t3T~ivoe<9;nn9LVhuOA7Y&KrsBoxgghJQYTt
ze{=1{b7ta>?<je`WuV|TRCZJpM6igw1GQ}Vm)IX0pfFAnZ<L`*1aP0gL$ghg$VOL!
zFuQb`A)L}R{$V)7CIGWb#}9A5VS8GB>Tr^9uJs4@De%$Oqg=%b05|y-(Ot5b7)w*v
zf7>suRyhTapJ8zpKc;FvGMQxvTQ2~x=}=Nmx*;vMh8OPYZ{nJDb*cudLBm+=K+H}J
zHk_&!VX)1$Vh2Q#+^v8d0Ct7Xgfa5KKe^@rqsekt!z7CtaB8s4Th>osTE`rdy^|i_
zWTbgcSs^nNHa{(AUW*2&2oqjfkQHSje}{9FK8woA3jXi4%R%eG1?68Pd%FnJ1p($k
z`?jb!u7~3igMn62b%jK9VIH0_)6v|1TVdRQu6O&S|CKkSO1h!3i9M}+HHF_`SEC!e
zKxIB|D_pJtZY7#82QLTEw*s8~^9u9f+AZ$;+2r;9!)=0;S^{MMiK{$6G+bQhf2lNH
zM#mz5RuS0Yy^J)o77xP{#0kbHAZ_-@vB%-AXf8fzxJv;qxD}<lbEk%+m`#wSJB^}~
zS-_5z8L%Ur6&jFNv9K&%#C&-gxlCDVFUV#U;EuhLUho4JDPJ?o_e`tgcMHU8xu$5l
z&eXy-aIMXV+Vl-h0nRIy54i~Ve*uFn5_Xz=Sn<sx@#<rg4vc}p>yK40PWdwF0aKs4
z_9PDdiHAP1^E%}02c-qI1!6!g^4^a3{40X`#uE#~Mm%sSbpQrr;T!+=ckdrvsh-S>
z!b#tL$#<O2Ky&CFm!Ae6fQXwoSk%X?<0=|Jp+u1an@@$!l9VbDC9NJ<f7=~Im(X}*
z^Ks6~6pH&R(ZAR@n5H<M^6n#clSS~5hdFkw2!&K~$=Wp0Rb5_=WCUG|dTtWQq}a43
zbg)3=bf_7dqeY=|6lna4=4Ov;qOd$!Le1=jvz@7c?{HVZ>xc20f;osR0L3|sa1ux~
z0mtW;psr)t$t9N2IsoIle+d6fW`*gi^<BV9S^=~OW@nZ{h7!_*mem&071s@;ibCNN
zO(ig9uUfyvoxPaPGEMQk?OOTy>lEu*6aj7FtQbJSgQwfId2yr-Qohw=isP3|F-%w@
zR34iBA?%I4aT=q;n@dVVFYv>E6M<qqT9AkV0f%Pcj{zB2rmndOf4F$^v}q<A6+%>C
zax2v3?3@L7G`xdh43G7<8j=o>tP!Q|$*PujOv`0VN^S(GqcLMu7};VkB#E3`vfCwz
zm3KvQKk%X%{xvHkPIv!ptOgr(%wVIp8UN16iECfW3Vo{Clh!u$?)&U|z|cl{04498
zN;m-&A76LA=~8Ooe~ur}pWx6h^g8nd?*)KuO5iAXqYX|q?0PCr1>)}<iNM|i|Gdg1
ziJ?%X1&17MR-TG9ra)tQ$;PDMZOnn-_gv{T4lcbAdOFDF!y>Pq*C}$Fd1<`y9uDM3
z6DDOdL4`q@87}tOqlbP6Mv5#D(3Z76dKLPKFJz{0p8Neae^%$B4Nbiy)r->$R0hD1
zfXS@8eXa?_F~(5bz90e_G_R=GK|DE$03iisu^Ix#hD#VSF^HCRV(q2THXTohR!`Aq
zKiisjtXEvegr#f|EK$v^X}jkH1m5TyNksEb;KWKQCM&tcoaAw6PGD1s^Z1`|dzBww
zp)mrLII6+|e-~>oy*hERF6IGk^_4$)I{PH`0==;}ww91W_Lw=}`dJiQmfZd}ygY&k
zcbIG>#j*@BbCwhuwvcR@c3(VxPLwK(v#^nKJc)cMBow%Sf!lMzk%}&tHYVU0Pp19b
zckl0AvXFQ|kZh_m;imRUbl~{gfGcb{3s-Z@r%JLYfAk`MyQik%GK?^a*$c&JWlxSz
zvMY^wVNzqpj>;#fEoG<O$DS$d5rG}-O4BXxm7HY+9enuQwj~FgP$6{{m7=T<5XRO~
zKp^0Le%)fyjUfyXjl{C@+T(^+TK|ok-*%Nd4BP)X<i9p|j8=bq1BPgAPY`a3V8BP0
zu>Eb!f5$&~5bte|Vw&nsu;4BD4Q5-jS%rNy$-PXD^r|!?obC62TvIN5$2SC{^J0pP
zuV)oW0-zXwQ+s|$B17k&pC1t=U+O1kMJulK=RSzNa9a-Y30;!Sj?)~_*tn@Wi{YgJ
ziFBkyvS<sva00yp{GPu9%onc9h_e;|Ko+pFe^3j?gY#w0f!-14=dcVj?>}-jGTFVa
zWM*vf9T4qr&I2fxljzwSaBEd@=wK6mdZ2dSqxXZHo$VeLE)WjABTaV4gO${{R#Ifj
z6%tsHKXxx5K4JrGnfz=<i6%)P_1SfC>e1!?pvl!&*^uenTi!yj2#fq?pk0PCpc3`L
zf9%_*J!s{9-VNuqCvvtiR^s~SwX}C!!bo*E((L(nhWc2ZS~Ah?a$rXBnk0X;C>g#`
zJeYXlRp2l3{8`*3N}~dDCUzw7woWkfqA1$}lTVbLxgvPVQ%Pncc%ek_{*H%X#H2n_
zT|R#>^P0c)7lL)*_4*PDoW2-|6~ZD+f59Qfil?A5(0fCrdUxD=mGOQ&ov_T=FqtF9
z@usFMmNc4!T?zLyu8&gA6GW*b7?98cz9-4R&Tk_|3;?!yJnPZUn!r3#DR$(Ja+Kx-
zSARZf6lb2VuBpOLW-zdUlW=o~lqAtwN`x_#roygGrNXc*!<&lJte_-{9EBj3e+rL8
zU}i4Ga9B7G*E~~(k?QuOtdG((F~^vHHa%=sAr*oDfc<q>=ySwhX<#|uCRU;M75`uW
zfIxr0loFT6f~hf}0bn<$5(el_yda}J|6cNrvFP?X-@x}bMLO(j`JtDr4F^?KQOGD;
z#xt>dUc^n4=Fg@|rbx&nVgG|aL&M%uy?<R|Iz&_K?CB}$8iW2a^7T|DU%Bbcnc$><
z2+#9)?CC{#-%%EmTv-;gaYbF8&y<zbwp^LpV60H&YsqmQ<kwkLJf|_EO;Irb!6~ez
zJ`>Plhe9fi*SgV%%OWkQwM0i4&YM#liKxdPrUaKu8Sd?+OO^OAe{GQ1Pc^WeaesIr
zNw=TA;Ve<Q4NoME07x$9;CX`ICgx!6SrbSQ1LpO^SiZU9z|0mAvExhIa{)7b{&#H4
zwr&Y$MCq=`L5+?J7ZfJdi&rK>!Jm9(HiCxDgVPb95EnzZk}3`|My5fEB@aWz87s~P
z;~>|pWZMl1Fs?E(f|<VM2r?TR&wo~~gku?;%{VjfUX=J(C<mRytH6Oy=@Z9I#S`Y*
zNH4<hc?AQf=#Fhw7|vj%v=K;Uh|Up3KoVi%u<C&ewgb^oemR%^Sihy_oCARTTnc;a
zJ*fz->ZkG`+3WJs*Hw&|L;N(30+!(vFd>DF1N<Rx&tpB+pK@8bnu??|$$xHy_JcfZ
zeCC<t-%F5G?bfk}NX;K{UUv5HLGguCbfGtMya`KZ4gaqBF31F1<B%{QHf`?Cmx?*E
z2hfx4M14ia=~%_`Lk0Z)iDC)Vz%OFCNymf@*d(zI&_PeybPa0&B+Q<a$Alj_$F5f&
z(VP`U*(9Xap_L?P-T%bD@_*rkmUJ5awoe18Ast#rBLu8Q4@bc+Dk(RSdKw)%SXD35
zG0tP2b2PSG9vkPrD38}xiDHjqh3H9qY&f1&oATK#kb!*7R5^D9Bdo}-vE=LlaiW36
zezo8jP<4{ZD0xu0nTnTM%54#!$BR@KcAmyz?3|TTHsW%TV?P`#I)7_la@?4gwdofo
zbJ`aVJTEJo>xC&bobkb4OG?StQ=SOtOc>h5qnH@uL#5KjqM(Dpc3sK0^Hk?3u_T~R
zu_S8Gv7|dD$ySBY^v>M7d?2h%SW$(3Y!w-)Dx_20r7tll=u3G%l1|8djm)FEIF5$-
zQ>M&WlTRRNkzOlJ0e_OrU(vxjI>VK^(B8(Y`NIJ&CZx7R0&MCIOE%m^S5n7;-#bab
zGz)ff@^g<LQp@<10_91I+D05*nxo2oLL~`<?VA>Pjd{T!0?z2b4VMB*U?y;9@&f{W
z5VwkyQDkK?(&x{hJGA_}Hh334&F$>>QC!d+Q8KX>PjhHp9~dwzPp6*`R%79Buqq4w
z;^Fa&{|9LE!!MViYzZg=H8+=GKM5#*<y^~l+enh#`zyGFJSGbH1W>cGW!aW(d1@?m
zSNG}aGY29e5yv2*0zkXuub+sF#DhdoqCDQs!bT$B85waS@+PQPSI>TVW0F}KrdHb7
z)y>T4S*)T^$#izLoc$}fI!U4+yDsySxlEHl{7TQyd9y9shF)%}ni9?Zrd{QKZLy%&
zW!7d*-Zs8XldbQ%ezFr81z%5u3GzC-&3#Az@ynbN)yCIr+HAAT>ZR{6KanQ*T4Zfe
zZG1<Ix@vs$MYY|ud3|#tV9JYjo0UySC9m?P^*wLfMYZk*%<BB)-&gNv(QGcFFg1SB
ztKxQ5!oN1hfvpOP4Lz@`av4&8@?`@<70nmy$!e&vEEZXtQ(?Qx+Aig@ZVNYew`AYj
zSIo)Et*=ou^jueUPMtzGzA6a>5`RP{dJg{ypI`f7zTu*)QJub$9t#mlcZBGN%y3$+
zi|n3qZt7}1tbmcxHEeBJxM`Wl4f(rMl?6zx#<4?e_3Z5GnSiFzOrUCi*+hpjlC#D7
z*`LqC#H7lV4JlX9HISiB#cU4Rn5J0ruYX6gC6vHi!Z?j*-(0=*%s{V^i6LFiE}#8(
z-+m4w&PPMOnrOQeX{Zx9v#|_QZD?g5VO3dO-qXr1^Si7j0}zn}30+i9Y(m1Y!D&%1
zO3)_1)M4%-QK5;|%-R@#=BoCmFJVR9^o5Q?rBy%up%bNSn56pu)`?D`rZ7L!$y8t#
z_QWPLYvNEOn&fp+E%Oou5=Ft=d;<pEqFQRJ<KS-_vc{ra-E7NE-Z)YH^2WxaPDNru
zp*0Na`uiWMvNNu*VXACb;~an_+cw2@Q5Nkz)1yhk$GbCKjiV-iX$9!m|MMyCs<^Sv
zJ}sDfs>Hrt=`=ZLpi{jP5ww7*SuH{-6^(gzdU{&<WtdUrQ~)CM3ys1^c@UCTPzv%a
zvwm$tqq=s_pEF%65eg-Su4Tk@ogC;IeCAX7R$|(>iXNTzqdg0D*1{Y!>$wy%f!ang
zbF(LN1>@iVOtE%<5}(bL1ucv0uD77A>|Mpir%!+Dyi{xtZX`_$#yzwhzJi-$%*ph*
z^JH$~jLbzm8o_9$gLGK9IJofWs1={Rx}YVCSV<h*G7}PhJQ$jpj-csaGUZfA_Op$d
zVrlx$V@8@v^{o|G9CK^^eD?SA%d?ZYv2pAtIN2rD538AfSw&*BiE+YAdzhDD_E=iZ
zEYbwVjR%X<Ovl1LZWo74P7YnChTVyyx`seS!V+Y>E7i-zY70@MP14jW;Y4cju$PKc
z>|RkUC$o4EDYMm5c4os{g&uZ9GIBM_!$Ay7Ptf&f<rnt;?824#qPc{q1H6SR8wHV|
zPf6_7!EIZAH0YClaOsI#o9K#ly1R5%*>vBzWr~#^Y(yQ}cGg##1cVivhhnhfeWi(E
zdf>31<SQkoM&<}#*?9)}7)B?IE?McfLxh%@fF3r}8djA$c?(950Z*K!35b?cX@11<
z@KRyDxUc{!#*QSaSi}4&Awrz8vYhrETM+Ch0^rntR!e3?Y^X*E$qcB>5d(6V4~FSB
zM#nmgW%5J*QCn7DJ9XiZC(^wy5v&8%gY~m=8c;Q1S{pIo9%udH2oGr<UKQ^ldlS;;
zkgWIBNrC|4c%&Bk(1f||9n`{b0Dn-O#1FVdrzAE_9&&-2ho0U`>G)vKdPr=>432>5
z9Rmh`zbBjsRQ#YSXvPJ4H+S*zx2X$^54%9aX~f{AG=EI#R<0zAn!ORE4@8k*1kBP*
zG_0J_DZtZ%E>Pe`{Ro}2%O5?3=79<(0_PCh38|^23goZ&lmn@WnU2)NM4e~loanW>
zTvE*uvx!wYW)ssBW|Kh!;yDxRX}!dZDLTl1-sd@?LeFzT@d2I_YI&X$d)~HlZfH+_
zDljM{KV4#n?!*kFJMro1PE3yIPO8z-o%lv{C#6`jaG(6t@ecW^Es>v)y#}$1Ag344
ze?p1`1@*@KC+63bJ@B89xx;@#;Yhep+6$MJPe+P^8t;*!kmE^FND-|Ii65dt0R}pM
z%H+>y0HoGZ;VAh-M5s1s*E|n88k6BcbqYu+W*TtF#vQNs>HP8v9I;YS8oa%@JmpwU
z0~l$corJlI2f0O)gt0ap%W3dnpB&eTf>Y}e1f>=N4##STpwx*<#{{L&A~}|zOab5@
zV%A{l_9v2myWRa9@=qeMV16?BrvX-ft$m35+tW$rI0IojICwa%8!$up@Nou)jfWGx
zNSOf8V5l@*zCkA{#s?Y^M^T^z#HN#IOi3^YHu?v>ie=wToH7IsRIyzAZ;TV!cm_6&
z1CbzmvDb%&lgx8Z4oHZMwB_ST=plg~5{Ao>77otr8k7c2=!Ga@Ud#j>DKK4sghlVY
zb1rnezep?-gveyzVRvQ_!Nzrc7$!ys@h8Xew-8++c1bpFlqvXPiTg1LfB@(O#x*hm
z|DSRZxyI8qsR>kpGk2OW>vIPtR3yugD3W+BH%-_?35o+c5bx0-zGOa*4|ifffFBV^
zz=V|BWH)nM1^{@NOy;OkfZc9?p`h&1qy|V;VQ37N8X$@=yJ3=p2%rpvuu?vR+Q&lx
z-aiTTBnSY|n1rv2r~eN?fK2gtI_U#k>j4H}7XuQ-fRIoFC3y@6#0;~HR)0JO#40os
zK}aN2o*x4O+A^mEIGt$w1P}m0PEP~Mc!uU75YWs?QSc&s90U>u1S0K!j)HsQQK8Ty
z5SSj1!FqH$fIz|=B0-Qg>Onxr=`zwsK!AvkO_Q(jNb&?o5HUmS!lE3fNsyqJlPN4p
zcFRWKo^m%z5t87pTJEAi>xXDgg<G5GpMnW8O<<AcDVPAhYpP9__h$z%!K8vY@xzp)
zJ|ZdrOqvKCpjXCELxgC5ifh6gjR?w`Fqvv2g8fl|kTPT-Mg`_6fB^eqm`<d591u9}
z%|<^fDo_x**=gt&Q#{uJLNu{1EfG;WKoH>JBW8WV^nftEoj_7@3J80|&<+BmhY&!4
z^+r?Rw1h}~P@tGqh@=k+5+(vOih@GiMi6kqA)`9X@<@wlYJLuX0+`5M<2?ZZlwin0
zh1aD=BLIFjGmWM&Y)p?p0KiYnAb?d*LV#3GV*+<ueIx>a|Bf|tJW0}{5P<V8DnUPb
zGy=$ojcgQx+oR`#>D8RXd%vHB07f%+RS>v2gL0OU80H2><E`Hi5*Q|~fa4?H;X4F~
z8HA7{9G`{+2mwET8WJeWT^fPrx$9#G2oSHw93Yr}*&u`Imjg!A<s0rQsCP6O#A@$h
zc|bq|flYfld$r4#J;rL888SZxc?8sG*g()|83Rryp8QSlLq1r<X|-9D+Xfj{<~kw~
zuH_tH&U#MbYUN1EGz~l({N-e>prbM$$j$y^)-<T|MZRf&DV;5e?%XUK`3jBP7o|{w
zbkvDRg4_E!Qi)3{T~|w%oy^O!*xW)LW1+JpB^K4@rmELjiLWNOtMg^CAm$j03;%SK
zrLW)SINQHk%BXJWdG^;`nH3v$Wd8}U6~W88E&hlixhQZ%0Q%q@`h$tx=CHhwDml%}
zsdzP_#HsXuuCDH?hCZ$pK}OX!PK@6uZ}csy2-=F}l!?j1ML}zZ6Q=^tO+$+KZb+=N
zzX}i+e&LC)V{*;6sqiTde)?Kwi!bx*>MvA$q^upih)HY!%XD;c0)4K1c12H;x)X9p
zIsdh-DKQcWw4}B11a(!P=qPyMDLc9Qd7m&n!#DPSl*#TLa}@Px`2rQr?Z|T5E2pOh
zamTT6BHI%YIPpSRaYIkiMrd1Y%KPrx7pAj!q35b=>6H-@BUvh~I$2^#(KdPMtFN+#
z5@nv%8)qf(f;Tfo<32aXw!L&Wk5K#Cf3a?K$Kz{vqw@ljD)_c47AwmA=1ccf80+V2
z=&eP61zdJr)z$XaH>``>-8p!~uAmOi0VJ8P?~1xuI3p4$z^uG)3U`wOr5<b`)vT&5
z-aBEXeB<p9^6R_-VJud8-E=)Hxn<wguxAA>o@#=6kv=BDwsEUTdF#O%4yNE))yurz
zZM-a+MP6^HgSOr_{DqUp%64@^b|D3Aa^rk|Nq40Jx!X;hmxW)SL`BM-Freu7RYAGJ
zZx|Fei|WqjA%0O=(L68(2iIv(7VDyIDBUN>;L75A<_U3Y$TU)?1Ngj#*^Q8%G99`w
zmY7P2EySayh;&?Uiq*~B2X@jz=&5%XapQImEi9u)Q<a6cId=&KM(OUMFvID$OKjVJ
zZS6C6y_Rzi(FFaXeJJHkY3tP1L}R0K_7(PF-N+9snT8PrFB(JO?z8dK`{9?1FPjR-
z`c~%4+co&ihI7bPxyzwBbdeZO5nfhn=TTx(0c*RTTL36S<V5;DD!uv}y}t%vX({<F
zrypC`;4TBlMqU96Znm2xd8jzJzUPF0aDMvo9Lkjq=ozCd@eWc1HRZo4K#&eg;N`Qo
z*BA8aZZ@IK`KPy(@rT5((lF(w3D0htP-{_@Wp-V$n^8N-vw~0I92Dc{1<L)7fQ|_H
z4TT)Ji$)kxcdbCwrn``NS+;BPZMpY9bD6}!Zzpi_3Bv!xw<LJExy{SW7rpI&a$jwm
z@Au2H_~Hv*b_K7i>tgXe@A5x%`94<S@bh)Pt($y<En?|=ioN&2oR3Am_Jyb6_$eS%
z2PvFD#E60QvI2`ID26H*c)Py5XQjKz*2TiR4MIZ=!nmz!FqyUcr4wX)&cSG4Vt82|
zD+q`<OhAe??l1LlI@I|5?CgwxQV^2j-oSq2-uSQDe6yWNq4Da(1ef_@OZDm9$w4PN
zxH^GI5Ha~1Lhn75!ZL9OR}LmH<0E=g7f|9GUS3~jR~H}M%{g;{2<P!AN{7gSz{=<D
z%ukC1)Y)o?H3%kfjbSfd{Jz7Ruu~ZbeYR!QAmADZFj0y|2A^<uF~diHx-xhL-nOfC
z>1%-;aS#g&cu6I&v#kqVpcD+S=B)<89shMjAE51o(iD^pp|tEmZY%)b*Ve@~1_fIz
zp5N4YPDNYTxf%<2;Dpex^<NYGxy?2{lpb5~j?y@Or`MUR{zvhZ8sE{j-_?aXW8mis
zSokYM25{nxjo@}r;K6i%a5$mgLA-%f>E6E75Yx9W=!03ZGZ^FV&fK#<w|Q3tIWi4)
z%fV4rx8>H?`0NTH@vhh`2k?N}Z}5=NmA-<Ne5tGQ#uvVa0!Dyvf-l@5=mmY-aY5~4
zzc-NcE?cjMVW8wyNCjR~P%X~7uTMbmsQy^3u4q4-w!2~9AKRUOlOQmdMoW}G^@a0T
zCWp`f&g9yR&_GZpga(+pykEnSpxCZEAfOhz;>hbF_us3Kmg2#7eYb7h6gn^6ozQT`
z4qE!JRW2`2&kxwUh+~KU!%4xBumUYRN+*Ur@9OX9(JKJTrb5Ad?P4l$J%iTZ+s8a#
zXPb>HO98rK-4|Vd=6@&^m;HWX-iNO6UADdTdG9GNMTcbkmpgg6_<sN81-Fx=HBqNE
zkqtg%%_d(IFDUzMNKe=n8B%!gI?wMYa|1re2^N}d^0o`Bnw=g2Q!>)0GOJnqfddEr
zFjgmsTli?UwGS=b5fY@uA%ewAfd0!2?>nG1A--GvrpXq6-C;*3q!;k~1oL*~W%rKW
z;ft@;ogU_XfSt(>j>7#U^1f;FH5WR>c#&@Q@Wp5DsKx7QeO*`Xz~6j9scVbweD3xZ
z({FPKRGqf^!uKIP&$=4q>mcy~y8)BUOJCIoCHSJe)iWFL8qT87@FuU;ReiTYSFR&P
zB*>=wajcGi;1F1x;Msy+J~{VLd?&97_1~0!88BV~-iNjJy(s4V^x`9`s|kKTNu^Vs
zRdt6smf~_Kfqp>czvd8>(m@=`#yg00x*dGsi~ZbK&(rT7O!!;ljoCZ2$gR3q6yBA5
zEJ*fcv8pOx<AM%t+>Z*=Fd3-t4h($m?yjRx(Aorl|LpA_-)JWxaRJB7taTwWzMhBl
zl#xKVNg=Mm&z5MOSl}rj=byE<hfcu5;f|^rL!USrlQ8@nmeL88Gd~e0p%Hry8Jp}l
zWRHig>Mo7uoU}+Ig@k01ayBHxc=%?!vmwgdk>*=)gt(8XCis)7@*4^{?=skL5N+LV
z24@I=6<&u_4l<1(X^;pl>V-ooR{?Q}st`q~gF85AwvMP^WZNtX?@&~yPLNnt9haww
zO>>!0T>6?t%L-S32Z?)+^Bcwo{ot<MOV5&UHxMbbO~>8}zkN>7$tm=3zfuku3OX>q
zMG10LdwYbxy5>UFx1ee(Li?428fnRXogT}7*wgVYG{LeD;rx_}Z16r?RM&KHaj)V0
zUDxXM)_)h9ZI`UGdhL9ha@bRCzav`W+XZF&J;$6&ILtO*dhg-ueF*6ZK!`hTAtC|u
z!&M;nh$V|MYZ@1b=01n#QJQ>F=dC*+r!gI1(|BY-^zO|F|GYxSjHaDigv5Qdr9{si
zYeBlLbN2@mAX)f7)KGd1Vgs>F-hWp6zX{QuXqTaE2@{vwe+d%<G%+xjU_S{df3+IR
za@#oaK40O}7FA_21i`2GuqE4xqu8FLEN5q@cJ=^Kh=rIUwR|Lzzka*X07cT&ZsxET
z5ok1C{qBY?AAfoCE=<l+H;w%0?D5N47@Wm^;(9zjd)%D;)48csQNJ|eYjHlC`)Tal
zxqrn*<a|7cJTEQyErDZ46dP*%e|^Rnb3|4CyA|z^bDDJH(xC78J~Tt-IlpaZp>vr1
z>+!>xcQ$99n}#XveO)3la~@|rbSf$5m!g(>b<epkH!`njeATEtr{>4D*~{unS?vhz
zTFO0*+(}Uts(7MaSqwHzXv4=@;yGeH^F61{MFprKEFl{4w+=gWecw=~e^r~ZX_O(r
zgT7gEyqWJ@m2J_$X=ZRsku|Nz302Nm==|8{q7aQLi<%~Ogxi)gKXkqmv?-@3^M~j8
z8r=hot=wH;Gj(zW+li*FBn`nAR{Ex-T@Y}Dowt@nw%v*98HnQICU4$Feoqou61y>r
zU~6Iqkbx%ND@{i{*4!cue@;hR0O@Xv@_Q~fPe=f1sHy6##Qrx~9cb5q{4p<Z)1ce+
zoMy2<d_M|9*KBHV`rP<X)>~u+O4JHv5gWHCIC{5({92mPk9PF$v&eJQSJeO|zJi<<
z&j#bSS?W988fs_2mjq(^eiKZ&*}@qBm&1WSfC%s)1!-U@G$W8Je=S^wwI~qPrY4+9
zid@x=%4n)8Hj3D`(Gr8ON@itS)slKA_6HFIX%g!k(SmS7%n+((%qgh3&PDb-Uzb0q
zyOEiy0g-w;@vOB4+x4NIPwm*qT|Ff_e&8l)$3s#5LwzGY?yDIG`QL+4X$YbRFIeiu
zu9rqEoDvD{yDZ^$e>p1zA<T$V5&~upbSs{oa*3LlFr+<$W)P;%4N(*cB5Cm6d{^bp
zw5}?-QO!AZmb-mbB6@!gk_Nw^ab|KO8aYLn@(U0yjtCPQi>jf9D(FkQQG1n@710_x
z>jQm1Ap&re;IY#H-?p<kbEF+F*J7<e<tJ_D<5uX^6Me&Vf4R}irXbq^h!~nn9DDl%
ztfc}&AgTXO6{5(L7CS%&Wo;^1*EC2+PxYlHb}UHV3}3ahYe6pw@H@1@3W$m%W@Jon
zMWuGAzd`Id3wQn=bq(8>qJsT!AObd8=qlUlMYL$d?96k$&{#&;iv+}T6Yk^34wd<{
zKF|J(+2_(Of2R!=HjK~8Wd+n025o62jx(3@ba-np_Z|uvhhxJ<W8Yb|l@S_-eoezr
z9`L)!pMcfPc8AK2fCr=47u3C$+OjLHujd4NhwGFTI;BY^+<~j=@PW{)GH?6+&KiTn
z)O(pVLk1jG$8f;syyF12Ev@6o4U+&#9i*peZN~=0f5v4l?Rs<`?)Qi-49?P}FAx<q
zm;1b<7+rlHhi)ADBLa}+jQhmoVdT84${h_%Iby_kJG72~3GP;ZmxzCo<iy`X&qM1D
zg1syz>|n^<h{e`$eX3?)OUq1xVi!-iA=o5sDd0<%0vdRCYAt3UR9E-Zxhjh<lB_3b
zE6$}Le`apB865H5EDjx^sshy42*M)EkPg;pgrPH*kVgbocsWtjdttYm^wTkSIY5Sf
znui=cHIIC&GX`y->u~#>R<0;;u3h?m(!!t>GBPrP;7g15!Qg>W51<JlK;SGk0wW&;
zFX*$A&9*dCAqbq}UEP$~R*<{JBbWOI<o-nqf5DV5OB2`Uf5w#s%y*+S@urC8$1d=9
z<jH(LbOThM9*yqAa}8Fa5S2K9gcdriFiONjA7n{2FETga1%VCSaQrfF3kZ-c!j(&3
zpkCxoQDvoedyE_W)GBBifaZ&w!U+Uhhcxh{0RIf~STzF3a3H{2Ans1nla~2B3LZ?b
ze@(G?*v073dRx?T2OCbhh&y@J>TJW~=uG_7L2Ka!4oiVYxIhYCPZGlYugldVH8&8r
zu0<^gSzBU&ZsC^SfryPPXkeqBR5KaPj7YU@n*GI_H^7#{rDNwZYi&C#cW)#bjvt%#
zn_U48^v#qY1fI*|u^?FJ;MTy$HM*n3e|gfe34{wezKNZCZBYS041>m<lpW4|Y0!Y@
zF)9y6AvE~8Q0QiKDg_9OJ;XY~Sov{;2lkMq#vbk~N%06mbOJ_AD;Z=B{UDmQhAfEO
z<DFkwLtF{DgI{e8vB6p0SmNl}gVX6#k^R=W723;@o%BIYv>?LRud*fMW^k7Ue<q4n
zQn`0LQ(fB(XRIfO8iU>mmO^k425e*xf#?Yu#2}7i!(@Zk=kdMRimzJ71IEE3{*@Y(
zjau-P1(R)r#%e1nvZD-50DVouktAp%WG$<2<C_@u%S2lvAy6(d;9OIo3fBmTb*M)J
zuN^0jzfLU>8!fIL-ib-KnQc{pe=Ok%s7#lQLodq(P#k3v!Y)}&Y9S_lUX+e4G0YxW
zVu0AB0xYq|{WzXXDj4LDV@u2<*Yna5bBgjA4z4XJ!=QyM4_aB1>qiMXAjlcN%UY)s
zIEI3V(v{P^qmJkaAp}o;u>3MbrbF4n91#9iCwyr%T0D&hiw_j=oF;%Re;2jE%~WGr
zI^Vz&O+B^kTIMD@jY7B}1ipC0DNB4`=HQqxkvK;!4YYf~FVW*Q@1hjuc5#rgC7Njs
z`4^mgFEW%Wk`V-S6`N^C%8#`P9X3L;P4h6Zvd$dNokH9i@X-aDt;$8Njb%!u8~EOm
zK~0aEg`I_k8Z(>r6cc+_e`dDtVRlB@0Pt7Gmd8rTNc-TjbWtAgUTKO$RCCoS184#v
zG~23dpSIMw?s;G;3E-rGqE0946!vm92zyZ){S)D9>bW70PKU3sln!6HNr^evD&Y}m
zWQjF1%!<QYxgcBle~(y`&`p>>ve1ziqk)c?wa*r9ATMpTrz&Nne~-W+M7>2Da12}t
z2)F0%G$qqy?D{BuH-#UVyz46fE^UqE1&uE@^NxzR+At-7yj>ciH054pQ$8vT+z_(i
zqt@`qbMBXqHlhW}8!8ygJ`p}?D&x<0nP)Ettd?;<pfCi}kxM0W8n2&~8C=m|0P^Z1
zj|g)k3xd9vEeUdNfABxp#U50)#S}~%nW_55EDm(K03^3HO&^ljx{#U9Vxgyt%^tIw
z$#jSYsg$U4aX}~x`g}S--cV5cPOU3Z9jJrx4}LGPSUR14i|QG07#}6~0C?!CcE0u7
z*qAH}1H7k}QzoNZelj|q<PI}IBA807-!{SkJL2Jh;mn+ve*&XJrT_*p1xAkK#U55;
zrpl1|o<WK^%roRKUt45HkT~yMf*Y@iX?9n{LM;$^ejtp8l4|gEWBOfUKe6Ah0&%~o
zCs0s9@u?r#B3)!(55z{!!C1jnzhJ!`<bExi?@~wq5gMzysi{flhsN;~g|2}iOchf{
z7;+v|$sType-;ET55hl@QTmXtK<ERZ<j)pIdE%xJD@VNdkn@S^;7V*>Gy^$4Ss-6I
zmI$d>lbeCtZa@@GS<fHJO{Jb%`7)k(EeQase@+l9S`z|H$*C7R?{e^d=hQx$PcN~>
zG;r7G4KSzz^}l+1VWvS$qo}&=#mCha{jxVKg6egme_B1N00rSIR|r;jI(K2*P5l4j
z3j<Ti32Z3`8jHnZ`Nmdp$hnwh2IqQ}vS3xhIK{=%_^G!Lv1G4GdaE*1vYGUD;lSnC
z`b-e$`V0)(D!TC{Jam~Yls>4nR29CL1o+(J(zi1j*jd4~w+3Nlfs~m*<EE96Pw1E#
zyH{off2uyrlPJ=m<>`mN)wXPNTnhwYNgvW;Z4t2hJBSTXsr?%+grJ}waA_3H25j`w
zQvx8PaK@sb679qZ`au|m7;x;^=O?Osi5q+Tv}i=MBYJca4Ga|Y^BvcfD_i9Q@M?K;
zdwosqrIF&fS${0c$Gn%biTWT5v=HIg=ot=&e}>O+8jBPP8v3Pgf+ojzzmcr@aKKlh
z2BIFKtT7e@HoYRefvl~vZL1$$Fb>xK92&Q1r%nBwA})k}q+#E=&j@f+iDqjCAM9MT
z<N|V;yd1B(65wK_DBANW>qMnBAKaRtU?j0sCIgoZeMRolu&Gi*1nJz!0v}!}hWC5r
ze-dMs{KR_wlQrdGH~_aC7N`AyIhO|-S?>0^%2Y#8WXn#~wu}*&*9Kf+udrGHPU)nZ
z=8#+hO&V}t8Fi24JcV^QID2}+B>JHnrNgYQUyF%e8#aL1nzfxh^rKayb&g)3P>OKX
zJXa*Topn6gzXmqM*r7gAWQ$+DB*$T-f5kG60#ma4bbt5ItH8mOp@i<svape;et$iN
zPY|12%jz34m0k-~W^k_U_+42%b&tXZw%SU_RW@Vr)m9cg*eRy5G=%(7hdVDXvQXy)
zy4Fc}WW^FiV=B@_)Ys)3gzEAQt{_fJ=~^`u9OHyauk(aygO)vn?ezaLP8D!ce>N`Q
z;GALLgAfz=FfVdh=rjLB0mn;E6>tU&Y})2UC+i`x#ZSNhep6q|W-E4P;MN@=fI*eJ
zCq)&4Kv&lgc+5JI(AEQBPT6L%F$*mw>+3e=g}Af#M-*W6M|^&;(%viU=x)Cf&@HR4
z7SOVv_hO^HsOVBt-?K@V*ZnDif3x%mBs&j{eteF7jL#9%2v7+3p8C(i#O((0dS5>u
zWUkB$0tPexHB9dAX4v+*Zm8Z5@<5M=_$09x5O{Rjh+|ZrNyFp2#hq%+*zuhp4Q**O
z^!OlV#GwZ{U9hz28<0X3#NRte&-Gt}l76WsGw(<GnfgTa8%#@@o(vOke?4uulhFRb
z0LwZy2(Z(KK4V~A@twJ_Z^pw~3O+qg)>2}dJVWD8)KYwwxI7H{wiOm&9$HqTi3VeE
zUZnp7r|BVBQpt^bR#rXy145=V6OezZZ34_>qgIds@*Y@Hn^9es@zO4p&|3AAwJ{xM
z54|oxv{}SPSF^*;-LW>Ke?{90^xzLyx{x|?;oo!tu~*>Gxuw1}W~TS}ER{nTvuVr_
z$^S7qg`L{EruRLazPbc8Z#_H>Psba{M7+UY-5ep`L08MRp#t{Dy)-pStT1iOUy&~H
zFGQwU{<t92MLSL8awi(8A1E<%q(2*(cX#t}nb?&fhq(UqFzH5uf5i1WHF__=`=U*z
zNgwWLxxY~N5$ooXs%q|p7{|;Fj*q+NG>NkdE5fN8vr*uk1ne|RF;pRMk6hGp8d*7w
zbld<qTQlC-ChX8(&Zuqvw-htqxfBOkD_u5=yxyY;_P#0czuvcll!1E|8zs@PV($*j
zr;$;7;(<*!heGTye}K|iI7IFK3Hz0#E(=a(z@~OeIIsQ-6?i81!G@nSTWoQ#se_mi
z2eVPkh%mHj_#G5T5s>#@2wwk1GW3>L_jhn5XtD|J2fY9PMq3X~^nVSbBr(z9m1<-y
zZ5F7nX(o>Num4wN%oIy>$bjFQqgT}iDNg8>8pkqvq=A+;C^FdSaU6OZ{WOl#?Nxu`
zf%<1kN}k8y>}mS5|F`?)?c*>10p7b{c9-}=3m=!gU>yhpH#RqyVLu5dmywtWO##xE
z-<S!?e<iFm&m4qW1W^WSn@Rs6RrL5?;!KKIChNU~S^6=13ABha*i0%#l*P2}w^dW-
zUH!ngmT($$W>KWlt(F&8VJf3-Bza>}1QPMw=v1h5bA>#hX{y(4+w|*!!P&qoz+3Z3
zMI&#jZeN#ntirL{jGYI|fCei#j@VuHzrT6&f7T9-&X?tpFi^Vqe*OB*%?Hta<UDjF
z;!u4&Z$+CR5E-m#4kUptcpx$qf#t3*FI2QWoyw*#*T682bJwnvQf3$+Dw2>d+X1gx
zkiw0r>lUZDubMjqCEI+S&2%|+EncEus)EPlMNth^+vGJ3D9RzPYVJK8@`2~+xPMmy
ze}ljhzu<p)GjPY2x(ybUQx4bkB8s+xp1*YPNMNV5dQ(v2If40x*Ll_04hVVRRr3C4
z9uH{bLs^*9l|T&%gk{-dZ~^3AG=Kq&x_h{K4tKU7=<Bv9>ze4JVnzVq|I?L#-cZrr
zV9k=?e{1$-2PA2R2Lk+cgk4wvkW%e)e<U11heOwncL#d7X&Vq;M?+Fr!%p2cm-N0X
z`%~$x1$QteS^<b@^^Pa=?QwC8KoG5!bB_2tl>0+d?deg|J`r9WPj!jnlaWW*bmnHF
zT{{jm$OvA9!E&e8kPx5lN}y~$fOrn&_L8_1Zu88gI!Z*GSn2lS=H{mL@Ujksf0Uu^
zb;;;8`+6+Q@!(@u-j-e2>}i+UoGro;Gb0jon!-|{OPv<zchy6my*c$H-R@h%@6g%-
zD+p>L4<;GBLy`>qp6F^0rTe8atbWgLZu!@!BWSql$ecDnK|72mnwjW&5p0Rw05Xk5
zQEL?+;zx?_lAeYR_>ISyD+~J=e>)NgYfhkp4K=I*=WmW19(HxU|M_ayzQf0Gdqk$E
zH-N6;O`s_O_Ibl&7;xK;^PDt(=17EoCFu8M1>8oQdr1(t-wPVtm8Z5FdV;|KY9KYu
zui-IhoKe%WS)jpK4{RS85dpu)wqrAc=q;GnK-|JmnHl{jQFMybihnqIe^4-zWrSSH
z2$*M<5$9Yh9nt%yGIUg+J?_nK2)`Xensy)%8$tjwvI!t?Z$XIMJ`i*ka`1}iQ1t^b
z0K8tXGj-|P+u<J3&h1iUE5R#|(37svgH9~g5ow&I9qWQ#?07nmZkq96)B&%?2)IWC
zu2vy%lHq5qq6tK&3xK99e+y)91R|yI_mE#GISE_rRg?>n2-_~GV@~Ig#!IU+NkkY0
zR(!k~>nisN88Ebz?R0`mk>By^w_SUrRr`I17Mmcr(WVG?dLQzh8oRP==>1a4@XmI)
zAtOB(G~ivre{EH;Ap_)#l7PvW5_Twu0H><wo3B}$LZfI$IESkpe;i>!kd7#|5Kx)~
zMNdLR6F-`sw;icdc%V&lXVxIoa(s~zy!S>%uzCZ4;TMBZ)l;h<fHs2K-*7LMZhC!=
zc%glaV^EBO6(bn`pd?U5#%ZuEx*T8MH}u%@-6skGV0CNYRb36Jr9f_8PXb}VK477#
zS^NCi!#coUNoqTQf1cfU)s9!&mHj}goVpwoIr}WZ?6Zt~iU4D$XYrC1sB3FLhoilw
zf28NHq0@n`=%HrLkzmKC%B3UvBPz^5xZ;6?Dcs*kD)@unfL^(V6#x#c<s9fwC<4?d
z1B95J0$?N=0xcuDLRL=PyUzRGm_lXO6X>TFEG2VjVaglEf3fD608&&)#v>?>)$S4d
zhF9{ECuH+aP@nJ7!Q_D}_JN)TYoDZ|yPa)&P`=b!-13YN#>T9H@riUSG~iy4IdVzQ
z^L^Kb7dxIOw~fBF>ww(_TF@BG_*hi8xV?pSgVUA6J&TuY#+5{UOAmVx>b>od53A*<
zXE%7o^r5;tf7I}Az9NXQ@LUcYn1cU2Ir9l<aU#eyE~K`vkl1+C_^20ZlwKQs<MUt0
z@tv-n2@|w5hWQGoW32(ptd~gFOPDq(6tG~rHZN-KFgru^lIf|?C4zqFq2m)6yKv)3
z)3Ct<P|wY?sGr?DtrEI<*jU~?1By|h^d-GLPDm&Af6x-zI3bX*(uhI13~)_;<t{n>
zn5fCFtGI8w`>9-cEM^Mkix_tkTGdlim)@BWgm_cr9nUvkXY1MEBz4>KAXHFo!?OH~
zmnvDY%z`f8PG=vBECG)ny2Jv+=~W=YjE$##eakb2j@V73c(dq+B=xMQMVf?*2#WH|
z6#_<!e?CSSf<^r&>Z+w<Pr&IWb6+Vv^JOBGQ`Dwz?>uM)p@`Jf=fpkY1sx(G1MLvv
zQS2j`_$d))D@sIm#Rt#cP}NNxe)7zqL=sP`?wtpfSjaGO2zh?DW1-_{(MOizPH<eW
z117ox&H+CXFBM0ekhS<!;3;Rj{=P&XVF}6Kf2TGjbEsM8Jshf{P{eYw1)s#Bu%d?;
zXuQSQ|Fh^vvS|44GMK~Xf~0b&0fjgQTmunBv8z^;&L+c=o<Q%POt4XbU^K??IeD@`
zNS%C$JnE_BNq<Z7EW;_dUt?jzZ&#8{W@G648Vpn?{A9WrvsznwO=E1NS%e2+xFH}J
ze-Q9`R;7m2Y$F%+Sn*`8E+r%e9&Zd*XgCHdsaq8a9Yn5LA%haEkzG3+sI`ohglt1X
zW3tq)>6yHt5O0m@jPagCGjE)qNRVowW|`=ds&LbSbUqX9lK_Z(yk@24!O~5WPv?#Y
zFLx*ze^5HdvksWZ1P9$vi*ANz^*90ge<v&EToFP=Pa;I{yI-o6T3lSJ$JAo-NePdr
zuI~d7-`odeUvnRzv2fnt>6a>}#*2TBlT!|zI0PD|BGTE)wXX1jXqjxw*>FB5K_o>o
zAMOk97K1SR7zX{VD1D_<ZPld9YRHd^zAE-`8(<{$?<>N8@Le{OS$ZlRe)O<ge<V^h
z;c;(VQjaZ^2%UX05~V`J^P=Cimj$A9!t3uBS73o`lmB26ECYKgHu*5_`JD$bFoUuP
z2p$Kl@Bho^X#!_srg71&D~GYeEG1qGatEPNn<OZ;PgADG^oq@4gAr8?Y^P!;6S>CU
zkw-1VAU<M)-6r)U<X?Msl!-Wwe;y&Vv#T?EOArd*AF8^X(IV3*O5j$-tHjY1?!fSI
z-J`oH!7dt4Hb@Wfv2pZ1f~?-Zr2h9jgUuBL(lr&#oRg`5uZ?31zZ|0Y+0IiN&lzCf
z4D?&|6LJ^9){Zhh0fDPK@|F?IQZC!xytwqmJbI4LFVY1Z!ZhAOGmtqne^}3h{f%xK
zGr$Gv2b&nMb4+`kLMf|&Bs6l8x+TwTn1qa0N<%vq>z5o=#YibkTNXABJE>^`?Aqdi
zW39JNj5y?stI5c%;=i>W!n5T(SH%eejOH5c-%YD7!UmIV)tmZ&VVVwen8fuw38jSV
zvE<E6*4l(VQ1ZmBsW8I1e=A`M?QCHX1&J>U9%k?m#hy%<a|UyGgR(;uGA9k{Gf_aW
z$c2d3+Osz3+HjIi<`CQ!+x;Q$hicC+%I-L^&WflWqf@0q&N1iCD*%!pn|&ZN^-B|s
z!+i6UjC0Cnrh|^;;-E2jO}Rk64&$kS)9qc?dyb;@*B;S-m4VL;f5I603Z<Eu|JSp%
zEAW{?2EtFEQ&&l@bPg!Vr66Q$LFq*=EM=L9@Q1+XDr=!5?W*n2=Pn0m<^#XYXnhXs
zSDG*k0v9#uHJJku10bG~jrKOI%2HzVfb~YDiAVv-RauH&lnI3*O9Qtk#UaKtRgxO3
z$E>QnTL==|c&fwqe_D>w+HeFELcC%?$Lwk3&i-9;hhQx@2HcbFPwlLQb{EVQ@GO7u
z?l^|mSBqY3!z(rQcTN~~FsCqQfwM9RXZNA=Pyr=E>b)|_`>60o&Vc{q*@ptcClg+O
zqKH)B+du>pPISX5<79h%eQjFt_La{rOEgH?5D!;pdghK~e|G)DREbapnCt@IiG|7y
z*kl#x56lMyS<I?G$dYw@0biN|y^O>12w27!F6kZWM||aGj}Wp{Y#wt?2SR%^)QS_*
zU`;^frG^OS@E>Y0FPG?0pL5B|22bZ;1TQE*cw#=0?!<zn&!fdEw#i9BMS(;!DiG;f
zl((idVXXP2f0kweb}(iEzA&{Q2thT90Hd+Y`FRRG!IW26&#}tDQ1M$BZkzGAGl~t`
zMlZwf&{A0rG`Un0TD>XN^pHja+r<;1UwM^(Hb-k{UtLAv#BjTNpx?rlh~fh>-m(}L
zK$>$y*e2EOR_)<blwXF{lwZE2=X;)nt9>Rb%9Um@f9&Mk8`bZXozfe-aKhXjFlc+M
zA1n&=8~vwCbUaqN$3bkWBAxT%1g1&@HrP^SV^0Ri6$<#8UQ&+LW=rXnSsJ^TOaU}n
zOukZovw$ElF$XlxCsA8)>dN|-CuEcsJ2cA>k;!_3A&habz3cK~H1-xhvW-ODOsd@O
zAlM%Be|Ob!Jo@|-Yd{9_5{-a`iN^L<F?N%Wu?TgNh2}A5Fct)=`6&ukJxRgF4wLvV
zg~VE`xs&y;z!>h<o>Q6I(&+Nk+U6WmanjIOL^}tk{_M4e$)KT<-c?*J;y5$Xs%BGp
zPR&v^MWjWdTvyEap&*ouABw+=#C^sI+6?Ppe+^?WkW#MDS~$InISO#;XqY`ugc2>x
z__^Ew;YgWFYTq9!+v%A9jGHql+$>#<v6*scI+=2Ko|Eym0(#{l-!+`{<;sm1D{{KR
z+!JWS=J4=hg>El7F{mq>DJ=kfnsV%H+o=i>1Tz&v@XN;!bJ^oJ3zXF01fSs<ctp0?
ze{n56Jhr!NO~qDXV26GVySi~Zr9fCmpUtxO-vqFF&Tayr&Q&zfGJX|o09@(8Zp&t}
zupm706|6{qO$<grI6E)1IrnKpG|V{xrA70u<c`(AjdIB-Hbf(*!V+kiP#0dPU0-&z
zY_SOL*b;R&5DIrnC+md4O06tHq1PT&e;kQ4`ed2f^og0;=n0uxy$(UAkA<Lhn10F-
z^hehLJQjkEKT8POO)7wcn|adIt9(!>gU?Q(g}<3TO&zBH2X(m0=tXh3!sRo?`W>&8
zRazuLm&sK&=r1-DbUWJG3fGwMloFYsWzK4QXX9Jr@dzgGuU4&l!bF$8(@xN|e})^Y
zLO9aYx!0>LC+T^z=~G<QMN!2HH4)6&%lFHg=xKFJ(Pt?Nc~T7FN%((IR{o9~z)#_P
zn+Wi;C*^FTGhX7Iw+2RK*=O5{&x;R5oMtFMaN%jm)DzPHe$zH;_Go$zjw}d1O8-5D
z7~yY143Jv0ayJH$PK_r7Ki^fwe_ct<QwheS`KC%!z4Et;N<o^oJ2J=U=?gTS+8vHH
z$RBbc0k||_@cEd7F*}TfeNQO}XmG&@v|L-pRG}EJPN$Cj36HZQ#wdDxlu$)Nr~1iG
z%EI{wGq4x4RVnvW*No-4XJzr@6vyY_!^0%O3nEWfTF=qCmP@+*YO4p#e*p8X&Z7ye
zIgH_WXfC5>(J~)lzhgZ!i}hT0XC1-y7s5-gECVeOrLJ3c(>9>8I<8`(VsyDK`w!>*
z;<5lLJfkH*=<6Ju>*0jo$=L!aTk&p5fvbS8({V-A5wxatN<yY`=%~|>XvZ~XR06-4
zjF}9-3UdqGr$WYXRmkXdf7_<gbD)+@!>UZ%3j;v=2?79fg7o8#PBi0aO=k0l09bAe
z;Pib_Z#xgBPRPt*qA12;tV}c(dsqB6ABKqz8GZ+{=PseYdNW&nkcJ)CA+u}|GK2na
zF@NhTZ#T#)y*-rmiN5yK{4FRZL5tDMZwtY(fkYnZJ4pIeQ!`b;fA?+ZnU2qvq$|ar
z(wS%+K-tH_W`E$%sGw~<b$Y4>`YrRmD!cW(7`W=!$ey}(#+R4YhUVtRazJ!NfS1*s
z`ACrN6WeDtCmOQ-Hh=ap7u34BLEqQ+=bv~6nN!G5-(h=d5|xnW;ca)O7!=QB=F)fM
z9#c0H@m$x6_lvWfJcelIL!9M@&2!OkUp9T|N<<)e)xE!@7(aL|yMe#T<(%8U04k$S
zl?r8UWOH<KWnpa!Wo~3|VrmLCIF~=G2|$0nZi6rsMt7dVV>00Q`Y&<Ewjd=^Dph4`
zI=IC_NPt^RhQ56r42Xyfl_m3Wxjxv(fQTP}0Jey6iIouOtB!smOa<+~O`$J?AS5gq
zgD-FPHABxfdi4VaV0<OUGvs3yZBnsA3M)w^%FZ64umC`eD$FRLEJyFFv@9;IS;v1=
zkQI9f&nMgDWmnopSJiJQ6{az*?o7V^$PSxS(m9uH{ieC!Mo&Dx?BBA`cJq5iF=1-#
zDr;RB7vN{xhF~v4I3&jqlE#_(voiP!jFN0RFYNqGnWw8kARqkknLas4<2Um7Ql6*9
zGu$0{oM6Qz0wOVEVkwXRM_&Kxbp113jb}d*L0qR>=L6i)vD8id^#R#Ux~*;89o@c5
zl1X>2I~|}GS2jh6dXhcq{R1pRpY@laYzY$qIhTRy4l#%ItO>XEtO^#F0Wg<==?*Z5
zJVXnJJVXqKJVXt*JVXx2fR}*j4h)xmUL6MnH8eCgmtj8%C??%IU6158a_{~Xlc(ze
zrWH!m=PdlN-d!7OoO7F-36jI@1yHNmmubZgCV!G#6+w|k>DB$=Dv7VMC=Z0puI~3&
zf8D%q530Wo^NngNb$h*yWVZSDscgsk@Km=C1o)}jt7iBERen&d>dUdd4#nmd{80q|
zpoi(ssvn=O|91Z)Oq@FtM^Xk!dL?Mu*CTyY<McQ+Rmb|IZm9UkpmG?d6PMeL{?C2g
z^?y|S1h6RCJT_|oV7}OO6AwQg8Fs=I{NXxDHUr{zwPkd+p$LkkAfz75%3wfPS)x}a
z5}1xxl_r~jK=;Rbz*4+9sj?jiI3CN9N{{^IzN1cU#|>k-qe9(|o%xD8E1dFI7&nA{
z&|43{-E|~3(*aS!gVM0>K>v)d+EaBXPk-k|F<OVtbe_2IV+V6m@m))2{_sSd>3nb8
z8ArWMf;T9q4XWE=R3%QA6n1u~rD9Wc?Y<uCt}PpCp0R<-q3=%AZ>Zp#>KG9GKaX|8
z1L!RS(6Pk%?e+ttS52+g2)(+NV6<rf*sBB5U^z7-wfurxRW_3vhzO(1AwrpDL4TO$
zh6+E5Fymga(<=>%JT`s4g<*?i6M0BF%!3G+i#wL>-ZNtegJt17p_HBp^Pnig)r7(~
zSQ4a}>38cHC<?N9bt3fP90f^i$0(bjqix$yJ<^=!jW{U+34&t59F|j&Ow!n#K(cA4
z(@s++05xR-Z0tr&2LQVJ;g4?#2!FJ59tilT&un108hOahv*sv_okjoXS#%L3Vdm_f
z1R_p^@X4S&kZEMP)-6q2HVq+Cm4h01d3s+Ex%#24KME05AQPJ>YCP5tM_RIGdLD<j
zkf428w@?eH>3bySj=#Y9NCqW%7{zj*aSNpo#J5s}o8hU2y&mg|;QMj}G!(~yYDjdt
z*U7LjLXns7-w_blClQw($POWY#%UUaxt0AbcS(`aGMQ_&1S|*p5X417o!)s48n!8h
zlG6)MI}0~a;yLVXoWu4O(Q<nmQWt6%x5|}*nU$Y-WLa!QQ<e~+0O;J86`X^Cj`Xi-
zxtp3jb=q<BKtfxSPOVz*tc5=G(ux7=q(`9CkrK>|=mwA~t0RH*=@L+X9}gCo5N@c)
zBTu^$p8%<j-Jo~{#9>yf^PYfm!xKj8%xD*wj#J>xbBPp0l%FwfP+;7k1ctx{=t(Qh
zdOs20XFwWLJHo)4)2q?KiR&`fOE3kgJ-`8Ue>)D;s`m;0%Sw+!J?-Sf*j2}JfU~G)
ztqkz{>l}`P%170l>9byc?Waol7H+jj)t%1MSX%uBAX0<<UT<A0%;dr#9>Ta~v!&DT
z8`e)VcUqkW|Eohu7o16IjW$?pLgCY=Fx#w8q1EiZ&=wPwh%lfq4Q5!DYyyRffBAUm
ziJ(JC%-Ry+KRtjCs_a>Ni_L!wL?=)@b-m&qgy#*_w2V)TcE_E6svl}tlU^>=_w}B8
z9?7l{WaQyMAZSK3M9tjw=?tjwIBSG^HGl~K%u9kGL19q{(5fH_1e$w67O~0u-8Jk2
z2&*?;t63CC-%LR^tlHNVZoNmS;0~riB6DLsqX3GTjj{Cld{%IBzf$cx`qT1Q3y=<J
z0N8{9LwDj5Z6KC^c4hVHp@;q7Q@!Ik-h80{(ljvRG-b^_G$%ek@LqweZm4`DF}Or;
zNu~%PQo>TNDimTKDk}G6a)JCBmehnB>}>A+wM;g>Q5Ogyo^p@zJoRS~SI#*u_a1aT
zR`fCIebPS1L^3fWvdD7WtIM-1!XOjYTzlV+Q|;RNjg};TH#87#HV(w>{b?XDOr-Tb
zw2<t`&>2yudQb$_1`q(pspn+^@TkBt7_<h*HgE=jxOhbRAcv7Fa4}$W#wTiE2LYOZ
zWjde-ivo1SbJ~&-!K+#_wizdu8_;z12_y}E9!HxUgL`#WD1RER5A}ha4(K!<VZMhW
zwa`KVin1*VAlUnn{wr<!;INlP%MLDoMYv&c3?&{pY`s-j9>KOPio08I2(H21-3jjQ
z?!lpPcl&YoKyU~U2=4Cg?oRN-U3;(la?Znem|u6z*)QGIRW;@qYih`zsa*_qOXGgl
z{{rYdI4aC&Ziqv&N{O90R40GjZfAM?a|~eyGx*4Ox6SqO<z2)c73c$-_uHhqc+-lP
z!WS-b5Bvfbr(dK<sxE-IaQ2f!EmWLrS)m7r<-*Byf$E$7K!&@@d>3wq)K^qkRwasq
zpg^*dQZNLSyHi>b+b4=<;Ru&!8sX_M2tT3Ng(hZMIt-q`9^%%%D^u)TjKlszgjf1h
zZK$+vhWwOgQ6))c&(ts-R_Shk&8Zv#@r<ER0*TCixO>Xtvzs~U{fF~oWa4{Se2ik^
zfji6#e2AFr6t*xYtXmg&hMU|?U{Z?Y;8dZu9~KyWd8tN@0`6`&#a^OeZhsn^LGKoD
znbXI2)sCFt{;3=*sJX@_%qv8ToW>wTe*D2*l$){VnZMr5ijd&%<<ZXPu4|C+g1NKD
zK&s_0+%?G4H^H}GtvmC26?~x5<x%9GlI32{D|xAx-7H1kjzUsY#M92OT<0wcaR-4l
z&6bvy8sBDk8Y$W@gEm3(JhhFb%u#0OR@v$-jro}Vt$h%L2T%VtR%C>voV@i&yk$ti
zx9%v6c}!sm)h@ls9}<NANbi#kMeRL)1)#-zltzNt>GWbEMq47`g2k%{Z+*sdjAb{R
zzMC^{1Quyuf{R~rzn|LYllf(E_pJL*>I=t<zF?{g^Ca{MD^KfCgV~tHqe_86&n=qt
zWB3PRdtJe`_QmTFzk41vlitP}Nl7CjL_v8gY_Byf5z#R-gzJ(RMv!80j<_7g1515R
zgmq6U%gF-NJ}@;-nMIO$i3-DV^|Wt7)LHdRDGJw%!=*bs%UI)8rGL|&ivv{ak8BWA
zl#BCro5;Y#U|?cm=Uvn~n6$7;L^$)JF3lQ9(-g7PR)=oknf5i&5Tic;FN@J&il*d_
zo0wYemcRe%hO-0eAK7O}V;So#fRCQN#BaUz8SDb@XX~A66Nz&6YC&uzD3zDP5i!d<
zic^ORn`Md7L4Aem8b%wo8OK&ozRqA}J9yz-GLW<kl+be@pL@5&USKhhNqoF2(eAc8
zdp+451qU;}?!41gn!2<_q>LJI@;}aKHqs8Lz)bmT8cEUnVlALQ&wOFufe%6CBBmJP
zQBqgV-cjP?(Xn(0dxq-rYNX!ScnDGERy|!A&)%2(Lqz&}|C@YhwS;fbGg9ah2FIX?
zrtE*PS(Z#uC4apS#1tb8FoKUS^DZ4bt^WGpxtLl>8BX)C&os#^Y!S%!2K97-9e-{v
zy{7so?t1Oi1l|b0<giFf0R=PJVrl)a&MgE}EfSQShXDW-l@5(2`mswH{-lP)mKlX%
z8EYCL;U1{?s?ASH!Q-N|)O0gEhK0s=up5F#k__RR0@BqI-|V@q#~J86v?6{Hh+GVw
z5A2<mHzNx@(CCiEByI~MzuP;j=AnQTgouUmgG^*WaQx%1gd6$+AjRB_*sgN(9u~os
z7(Rp`Ru|3ZFQx@`NY|$_Hq|Rcy#~>0J|;J~x7{0MLq*EJgD)(7RF?f-+pt2x_LuxA
z<(fzHpsyV&!p?RL_*_Ac(q@G}E!zg|nVehxx+pMi{mnrZ5oNORIaMio7}p)ZT^&W8
z%|Pj{kp(NT>26K}WQ>~9OimDm4dJbt_EM}80~6TWL4x&NluzOz{xx9V?{8(XD9(K6
z|CNlnMt<~gExlK<ncVs1$2@VG`^mQQUFR%@AohY9pzCS=^!e{MSvc1-LsM$2u}*h?
zhxR9>VPn)OfMyVvO^f8h4M#5DwLRo!H!26RKrMDU&-+t=DA$8h`D&%+!Ga#ufm03h
zPbj2ZU!sh2_x)cEHbhy9Dn+rF$>orwc@IMe!d)YA!RH8!mw&Ex4qH<Uw_(2Zz=MKd
z%f0RlmBPKwJU$6da8OotJD(yVBwwqr&(L$G`h3(LI$UMy4&SCgcDYR<5N1Da=6`CJ
zMVYyv6EAxJW_V`VQz3^ETsruz{y)-8g)%TE@(J=9+(qHz_H-x!fsJS}nn__V^B;Gm
zP{(#4W<zM7T=Nc52C`g3Q>oBE>7o+s`?6)VKa%v*6!H>J2Sh`}7El3S?gnEZ$1jKo
z*ncZ~RJA{9DtEGMC4I0IATnJv$GUv$DZl(hXfwVDOkJ`czgW<4+*2pt!gBbXgZmAa
z_8y>wNC=xFD2V)YB^T4wAe8VZlF=zNJI;R1R~};)Z60Bqg2xMKj*k;XItewzp4YCU
z$xV`bMR0V7?TM<va@&9r`6q~W%P2dBsqD6I`Aj0;DK(5}j^pmin=Jz4`ZND`zw|Xj
zoeE(-kk{VlR_sh8Vki}AIojP)7L9A{7*$|~g0~p)!_B@}QKu@?dNM~*m2JTr{uy)6
zmN?>@Q~uT-cK;tYhE$7OKY_!cBdAWV`gD%&ZU(qR5?(eeRHH@Vl~H}<8HFa<199$s
z&Hgl+9QW@jvmI$A{Fq~btX@>SB(l!+^SjqNfRq#Z&=Z)FN_LxetXd6^Yg8d6WlU!l
zW~2M-lhaHFfmSixkkM_eFM0zZ!!(6gw@sJQXQ`jRh-~~)6_)67s|Y<=a+nS><%qgJ
z{@91|GP^ZUo8#E~4tsv3>t4E^L=PS`jZK1y?s)d9^l5Mt6WErYuah>aO^r2ni!)LH
z#99J_hi#lwQk?}ne7S~f<QSL|hJWl+;Ix&@>*J&$5gtx*N?7c@rd}bs;BG9yX88*&
zScu1S<n$gdV|H?ZGbiUZ#MonHjVL2%{rE-1-2;v|C8LZbrMkONI(`Aq=?DRUGYD@Y
z%@yp`#d}(V>0G6?vmkJIkc)v6C~lnri`k7`r`iXJPHEcU{B1?-c(UF!*>2cXN66pY
zToABfW)vlS>t@JG3DSDB8kQ{4e=;m>gnoo~u9=o@;IQXyz^pGP!-lG^@Y9t0rh8JP
zS@J5oXG^e{bPL!FL^Vs8B9T8)OlB95yQD?(FltAch!iC`jKI*%BW0Y!RE2^AZ?0q~
z+)a(^lFc|-?auf>ks^hf$WN|UY#m;sUU6S9)CBcPG+`Q%2zD5KcJ~y1@kgJ39!H~?
zcrA9R%;|HXwxga8rl|t#1R^Tw>=pq;1*!ZB#<4m56<SogRU%f8n_F^8aK7}g>tPvi
z1@^zT;5bPVPlT8$l^0uV%F8hT>}(duDI#5YU$*emV^5t<o|p*NmW@@e@S*M=GM6Y;
zQ;;~79x<LPA?b^E`7=I$?>#2$nHoyo(%J4OABL0Q6iM?U=Z`o$tp}iq$ib`h*MK8?
z6W7@eD*(}!!=q|GVC7?u_1D<U@51|ko#*9#n#81*hhsjzR0*qgYa`Tv8KnUO_C>#n
zagsA)#Xb=NJS--;wyZ3<#@Nh&T5!DEPV%5LayQd`=)VO;lcTU2%db?+RkfomW+&1O
zGqQZ`yI1QcF!+=+!)BB#v%NL2Cx-Db%(p&<g0(dIR<cI|>5NkcxEZ<HxZ>BcGMCul
z$T4L`H|~jQH01dCM)sQkuA-#{ZQ1n_USSJ<<Z8OYcYUt<2GM_{Jjzax!bZKI@gar|
z&EJ^S#=<*oO{1x8vHfF;?GBT@M~sUK97XQmCOKCTbhXZMEx>olcM@6sWPXGpp3Mvy
zoHEkTVvAt)pTZ6CV)*01ZH`PqNn+Mr#hRu0e`C&sVg-E&?d(ecb**m;mfxd=2S7~j
zJ$C4tBRyAisN(MEF?#FYw)}Ednb0@#f8@S3^iMW`b`FoDuU!+rFiE=R=$>w3kNf!p
zmjaO}8F7!Jq{y>~zI!I9MPAzl;mk&sGY|mgD9MJ0)<2YLC)(a;_faQFLUC7^fn=`!
z?pCe1h^mhr*Oq!fcuZTBi^3#Vt|vj6)XZfV^7O1i{M*h{#c)dhBf@=e#ZPVb*2UXx
z*E&ae%8cNqM*|Yhyjh;H7|J*6%a^f=>3>%HA<j+@SVc5&yXr%c$V^<werjd6*&ETn
zNWwZ5n%gFfDCxD^eb2B}{zMo0P806m7Dsg+QdpRZI@kXIT80|Z8eoDYXN-7-UbvD)
z$MIv%)sD;(dh8r86s1L0XWYt43)qI2R-_N@Y$lE_bmn+bRShrjbEiScg!Y*ZxaI5F
z7qQwA&7%c~`0bMtukI_35o4H;=yl1Mfg9nF6~Dc<>w~vHm(%>^?Tyc(8Bp7Hk8gL5
zmzTc9P*}OZSW98LlaCm=&`lq#e_&vQ^BH*Jewjle^7Ze&SdI}7$078ng@aV0M9ZfV
zVk+;@FZRqK`H%>>`}xf3dwo|bQ#{HSeswXuVWF4f*f36Y(D8&H&OeNeZ@|%mG{WB<
zj}58yO}BUSaUNY<GVU$5oKDM>mQwQ&jiv>Gz9<8reZbm($?AF5hm&yH4oM+uTZur(
zKtOh3LDRvc%<E(o+J>1p``~5GKxn^$XOU)d%~&HFjJec{h6e*#>Oy#>OVHWW)bi+P
zlhUNCus8d1^-FEeCbqYoghV4P*KCGZg=`MI%IOqwYR1G~kJR*fyQ+0AqR2e2-x5ga
zxIzUWo4L~i1$Vn~)ZzLi9v6PS)s=ni%N6pIhzUmJ9}$s5uHw)9_sNj$I<-8|;;Q+3
z&(9by7=%FUb2*_VkUgzY;OHdTI4wEp>f<tyJdWt^289-mR%f$u1+C^czIjY-_tX!0
z|GAoU+rske21*NiJmGnSkTbJllEKd0#C`z&Vz4BP+TULsye`BQ?&M=|2FnN>lN^4|
zZ4|>Ua9YRDz<x=r4ItfIM15_f+@QF#Ot;V~ey#TXyR-&BSU0a$w;&M98&mGXeeJkl
zzrhrvSm4NFGeck0YI6IV>Vc->pNfoEb8xt&{>CEeV4{>qb-)ZrFvBL$)S%$+%P<IV
z#DTFk9>*l=XTb@3(YtoJf>MPY^8i9>MmG4hT6-T`JjJ~WHoBaYr8Q%{426R*5f+;D
zI)i<CFG)8$ylzWh>RaNTtqFv*2XwuDKCm6223$Pj6KM`#E-|05Bfs{OHRMoY{PmeQ
zpss;L9?}fNTW9S7taG0jH<V9g?q;P2yfA!q&GR;wLEfAJ(UYf2g4P!%7^N+q#D#T^
zm;&2!{^#Y7-#l);*qC3cK5lpC=1Ss?x^l;Fd0KG1eQz(`vp&Gz^WND(*L^5dP;6YR
z|6^Ya+Fn8N0CxvzucE{Nm8ybC?q_Je_uo{agOgX{P5I4xo?s%(^zXsk8m}D2XivWt
zKSWq&w)5U`U(d2TxklR!`RZ_AC&T@chwhX$A%1mBgqw6Aq6ueudLmN3l(&bOWuXyj
zHh1v8xbiOu98>MxieaLjP36e`@g1@A_d7d00$dOZIZ1P$D5#Vbkkz_4po-4TDR^au
zb_gXYrqC05XK;s(=>mUt#=pFPui3CpsKG^1J*!+FZ?&4R6--k|r8AT`R)k$a1<yd)
z(`8#TlwQ($%;0*c9F5;Mx(VFV7@>gMnu9ps9#0$3Sv?AJPW)#a;TGueb<#`In)mvb
z+mVzE^R*x*e9;^TxZz<}*_LCZ#)yBU4J4u6%}J{uDT#V~!YK}#lcWR3NS&vqhU6+1
zgL-dc_-woVm#4sUM{wm>4?Ei$sF^?TMb_u<cDy<<{%;3w)lCNmXFr?UqO5mbf}354
z{psnGh!D|HG{t|fN}>tLWg$D)72>3Zr0zOU{)FY!^D#fjft0$NVzeETnjaJbc=~5W
za1?^Smte_|JKj6b;-RAXk!OpT#eLIhLrQVzjBsBf4QxLKo9(^Z!5B_(;O0yM#Rm*5
zE3acZbB}+990k`OF&i*lm7d*<+{HiE>g+uEEYUN|Tl)NacpIlC#aM=Rf(|T$vb)B(
z@seAzr)g`O2QUo%{&?+bzy<xgMmW)??}8ViRWpLv!h7c`wJ=|M?}9jP@<77Y0yB=C
zq+be=?QmS}c0#;|&2!90M^K`#l{ZS*ew<)`N;?Os1oA}WT<1~SWTr1giZ`7-EjL1P
zg@vnTSYp$GxkuMe4t7dChOT>y?-xg=Rc~9-1`-f00gzg<=iRLSe#6MU7U0Y2R4uzX
z<kGVkm+9JRBhPd0VhczNt`3^?8DQC!W?y0*XenVwC!L2@R|38SIc&XkuplvI88hUB
zifZ7>!wC6oO-$Vsznk6M7zIA54oa)}<SMVscbhN76$C>Q@y(K~RvL||E^b(~n5!E|
zJJKk807>2F;z=ktpYF-ATL_$F;gMrkT}k;np%ejY6-H4Iia6wYQF%;zApy$By8)+}
z&JaS8V&S`K@a~Cu10tgCbDCrj>`L5{&zR)UCf0VwxNgRQ_oD+k`H#~St%heh$2N@M
z2lgToc4r9X#okRg{nqj7lsCcRt@~QuuBHeGfHP?d6nIbC-2m|~J$Oe$TqFdZ?AcK{
zKi_|>^1cFtjzaJiT-?&Wl&ayg@n<gyPMlXW46yjnPEg3FC=?ZF(Pr4aG7n&hL=NgW
zAf&%}hw7oWoPOF)+%5TQ!Gpn}%Z=eqp0dA6kg&<X+I_~Z(6Tp3&E)72@&-4!Ud=GU
zf!Njh;Wk)4bWzks#JW9c3}at#tZ+R+g<N}0e)||2-Kib#TEx=5>kcU1E3tz28f>|0
ztsFE8_+yF|U_GBAv0%tJf^l@WY*>6}pOfu2tr?qKmMX*rgVIHdWrQIlSz~HS+o1km
zA(KM(9Tor6QlZ5f)7tlN(NHofGOj2h;QR=ZdlKIv!3ti$oXafII;0UI7q#Ro4^;6W
zug!338vZGSQPB3g%7RrhyyAolalCMn>lKpu_iMIm@M1)@JZZiKHh;Iim7IPksyMU;
zh%BPM$t=ZP9DN-u&q0hFrambnPI=Bo{fyf#I9`}vUwkPU581Hp@e;otQei@n0$J49
zZ<LQ*kMXX;_6nfs>9533GM+bH<UMBr)b)1F`J>6SR3d6o>S%GA!2zn!QmL_i@PTcU
zq_Q@;k`0oG{wprG{AbnSkse1Y__{3VZL`BhE*`_=RtncV{ZJ8ijb0G)Z7!ZBYJ1Au
z0RnASo*O^3l}$3oQjD5@jgyXt0Cq_O0GGb47ujtDx4OA?3=!7^t3z~HC^BKrH7dW!
zDAM6-i^r@xE(5fRSKdE<v#nO@1QU*9Jkv%e74V}?V|<y2wQx6bTP10<g^VgAW*Hh`
zi=5;M0kB3IR5-zO6i(A)yMO%RO~lcW8}BAJ=HiE*&2u-OO{i%mdTY{D0IhbWv3TrP
zk=oGYQ!dAi#&@Rqu<MyR66$2wCviR`%GxPq#Gtk+0^9)*`FaUiUZ})hXp&*ZwC_;{
z+RN47rnSUcz^Y>sE61Wt291(i-o%8`y>${=aB{FkXPj7%Nd_v%I3KW$)~ygU6}8`a
z+KX;cN|3b^0)0k*EVK@s0REM*&GRA{L3s)bhlUJeZu7a)Bv@vUdcS(HpvEy4^_3RC
znx?xEO>49%lKxhls>YYEDC!SHwct93qcR0_Q{%h`M?nJ!G&AALt;fTC-~$~wtDI)>
z`Ov#V7mnt}gqU|=m3ikujH;q}Jz3xi0ko+1s#I-kWz9??)b?M4fFhA?B&x<|@VJeI
zlek`|6GH?2aktgF$6g$U^vy%cmExZlQF}k)t=TBXb@cs!x0CZh+rQtcs>BSU7~rnn
z7|vv$b+oCUA57xCIy?k22;zk5Bw1t1khQysLOXGWi&)8@&k{(Y8^{NVr|`DndY9`b
z9!1Du3Dy(+qGd8z0XkJ3jGT%p?>?I-eeJ)cG_J~}6f`GCyBKz8(n8KViqH|rISFXK
zp`$AFs(-k0)@@;XRu@uK29NZ<LR`|0FjkR?k9-g4lZE)*iBD|=U0F4(?OEW1&xeLw
z*)tHS9?iYqD?9}L`Qo)YTR`ZNGT{ng(Kx>kXsCmU6wf)30D4o)OVu}!O&bi=VjA--
z>i3K-2RY>NKXcd`9Fn)ly(hL!?;OP>C|xI{3;R%m8Zwuw>rjRVsKFUN^q)e<VLa>w
z+3SVSE(G(T@tWqXF)#vZNid1|!bem{QR9lF_|ThOEwd(~eg*4DKka4fy#7YNGF{6W
zs|Z~}nCtcm0Wjly$=Y%?o^D}6r%>nRw-2ky60eetqH1_7x;k!)YRbg^Awc}>96M8H
zw_jex6mDPPTu_ge$ZVVlB4@sFX20Zy<NOzzmMMP8q;)CZVQ=G4aYwR`Jv$*$Tjy%S
zn8at@-z&>ph8`JocFuq}5f!wj5xS6X`^hkUlRc`l0v^|R8oya&4s7??RDP$8`Ix3v
zse_fIA(m`A%V_j?dnOmFbm`hcVqdZBqE~UVQZj~DdU`_yvw<U|Yj2zP8Qkf6tlNzu
z*oHiP(XDK8gzmpx5QhNIv**2puho>$aQ!KOoG^Nqf(-@})w2oqw=+K-O2n=V?Ec5V
z_r5?(6yO@-YSZ%1{wPh?%<ECS>RqJtM9Ou3#wMp)k&iB{(-mC8)DkVn5~wb#neDtA
zXEE)*tD24=B-UQjQZIWpXwv`b;*`N%V#<wZsx#PB$az}Y={eN(-&^#gfRk`X$;4RO
z7yAb~4%;<uZq{nQ7uIzDbod)v!IWz-+tN;?dtks;a9=_X@?@}WqAlqyQo})PgwH@2
z7yN~46XEe_1EO+YSNL(^mdCu3XLJkxQEF|`-HS>E5n5e0v>mtpwW3oAR~nv3Dh>Tu
z1Yt%SeBme<c64j$7T#q$lE{hSjWl)v<j>ZaAoB=G)o%u8KQPeIQaY*Ge0lJ*Wg%V5
z8Q5$NrPE##E#W$m%xrE3C0HG$B5DzVY5k*FXH59Ug)`R~mu$&UrZHOaaqiN6aBoAz
z2oj4&e%?m$y%{2n>8R_3FI=zM2|`$bo9b)dUYg``dpkYaz#<)5c^kgBwhgO&yKlCu
zlzx#N`S6Us;n6KFANI~$`hM>v>cm{d3+Q<kQb&8U=LF4o3qljtp0o-x$~NY<o;!C0
z>)86mYHVXFgOM9W&!DH#SI%VDxki(i+VxM7@(*K?emEtH9_1EQ3lu6W!?AF{Wf_D~
z5o}6!Im0GXeSRrw9=R4*r){tll_yH}F=u<HFQB4j2>2lpO-42y(^s9Bv_wMv0S0Qx
zi}(`y;&A5^sb_`|r{S!Q;<o}e3wqq}5aIFVe<W2T<Co8beguKG+usa+`>IDTWAGt?
z^x`^hc}N@tJ9jje?;z(L(;QIk)}N$EvA|yypE=5s*|J`szR5$KLW~eRSn3{7-HW7^
zJx9u2edP)WHYEx3g1{l8wT#e)1DyF!<tDh8E4EsKQF43<wsOq_K;P7N4xcGuMXBzC
zIBPI{qM5{<9Aq}X8fU71&(Qjmoo|Gn%9`h*OebG<lzq_9@$5Z?i!lulZq3Zi#Gsq%
zhlQzfrRyW&WYex77ebq6n`sxP7=4ZFL=$PV68+Nu#XzuZ#&**+UR8Y;380lPw8AEM
z<y@Norv68{UG4f#HoRq8t1|5C`qGkSH@rWtYZ{YgwV%DcP(xvSE$c-OU4s6MzHm(`
zFMa>)SL*i%R~G3D?-y*mDrgA%vq#g%hlbh=ONNT2%fV9AzcgFAzPJ5#gU_lBu}d_4
zi<%1lA>3!T?E4$M`BMAC2Y_C6dyil4ek0qmocXD!(~3sX;hh~Lj<DXyVMM4_D!1Mc
zO3LPT!Pr3G&Abr%RO!}mXenrdQ$1@lx)pb^vl>fpqs7?Ky!3ZVqZC+%hLAQhqU-my
zf1v{-V2DUpOtTFE|6m*G+#}g?q~7(7^s*(Mf2E96Dd`xwqL?fn_;NCF+2z-su7Vu7
z&W(Q`s+_06Bay;L@2XcuZ&tk$Xx4O-{y&&QJmH_rmrtO!1RkSV7lU(xzLpSSLUMC)
zgTUj^Z6J0fTI}P{@xTECmfUXUfvW?XOp6h%ENQqvh4UjT6FqgBR2ji<T;>MVg;xzX
zf;E}hW;GIF`B+g^!@D?M&({yud!sQqCi-LPYD`9U*fcf7Y?2eBM~mHkzh%>~>f%<%
zFRcB^xj|3Xr~_@9J7xS@rZ8Cd`fGk)JPdDdzj^(wic)_9SSSE!gHTPAAyn=JKFg!|
z#DYbsus<tKDz9g)Rk=wvD2wpEP0OjLrKQ9{l<h{tD3vlQ1#lE)roqK97;A2p3SX>d
z+qNm3)Sy6V!pbGbo51)1V?Fd>SKp7#7tB3l5~&NkG?DhU{Eiv18BQ=Bzi+{(W==VV
z4#F_^DM&?1Wvl?w9G)f2q$C~#W_<y5Z}{<<A7WMO-}1u|X7@>Gynhfo7<UBvwOPnh
z=(t~?{u*4VprXKXqQHLkSZnXUh$Vj{x_oR0=6_q^he?@t$TwfCR;Y*VyN3!UaK*{l
z=G_@|8IWaGfv<e|>pe&Pbi%c$m}9pH6Vab|-dU5BKqLiYZ!_EXMgc-dM301`F{|1K
zU4qa_K+TEhVgS+rkHg8h1BT;seIv+WQy0&y2q%F)l6#`&QkuNFZt)trczTR$GsXhO
zVT9}NhDE;_I^zvRUP_jXhIj*6&R8;8)a+An6*U0;T_!1XmLcx*cYme|u}lUB76=PT
z2$1QQ_&|{$s_x|9Nh(&xPrSOk*`>&pH|EM>oR}621!Q2r1Z;t*e*~#M8@r$K+S*tI
z(p%ZFJdoyBi4xIxZNH1^QDkt=Dv)H*nJwAkTwz|Lc$^wwE*Yket0JO&FY<?Y)>F#`
zW?@%Y2Aw2+5`2B{AHP)5L-h)AHf%7sE#p>9=kJHWO8P4xW8jVg#fz;fJER#Bb?oys
z<96EiQtpCgFZz^lGM~gFW*&tvQbo`A_ltAtM(<R01|(V*Xpi)li`61ILob9K$35-e
z04tLlqyGDRLF$PRjo8s%)$D#gRO@_UVc&f1IFLv(IwtUk+L@V=VAyK>g%Lk(n;%7M
z{;m*vHCRml!EL?%nJx?aG~^DZBKlwNxZG$0w@x3T$qB&Q;3udcobp@6FiaH#a!j){
zOyeh_esJ8EDTjrvG)GunbqaX-DGFpYa(T^5Y}pL!-pj_-rZJhb^*|HsBw?g2mZKk5
zZT^@^-1$H%vDHr{b4W@np1t7+NZKeG>I%p8`QA5EuRt5wLVjSnvZC||*kmrwhG}zN
z3-7e37ubUC>U7md;3fRc!)x+enmX86#O3m6*CiBp)SwQ<;S8e54t<~02?zZINc0``
zIazmi8%@cQwZ_55Gb8>*=c+F5$M)jejz_zu`vQ>F@T^B|aG{@{Hr&ce9~I;r#qVoI
zf)5Nl`Qh4Lx-BA9X9O3fVvSf!dpsqYJCG@U_gXFG3?)>YWq?2Umt;pxfkkLH6VS{k
zt5A~OvTuVk767oJuAr#7Vpb)3$jce<+;*rslv`IjmcC~fW2`%Xt)M$hmSb577P8({
z83BJfZ&H^anlz;PjjPiI_b+i>&(@DatMrC`S0iAgXcba;z84Le{>mDkdSI3Yx-tK#
z7P+9>OTzXq{@H)tiZg`E8n;%7F&o#4|C#yIMrp)=p1WsazDkpD*1>KC^2EimNT8#s
zd>#Ga@yJSQJbkp@2rG%iq==CJ?-yBu32k7TdsnAE&4!QPs3_FO^a&@dvD9zh-L~`*
zcT&qTMFZ>iH{6OpodIyDvNhMQsq@TKT_BmhZHVbOW$4){7Ii*^50>WuzM;j?gx2XC
zYLW3VLt#fYRNa%lAqNyZv-%(aIvvi_NEPW4xoE|!@kDJ`wmxo!ATw(kW+A`n;RrbR
zxp-x7D&z}xAtQW23VDEuTL2~&4xM5EjSChj!SOxLxpxKfm5nAn^*MwO%9VlJ8UnYh
z+fTw*s$n+%Wi&!12d&N7c2>{58~A73XY|Lo@H(sWbrKbpeArLAwvz)A$A)_{sD;LB
z08pIG`DH$an#61B<N{6}H8}CUyoJ;ld^KM0dn;6L4v7l_C8AS-0@Kj>F-GE6SBe$d
z%rjcdVN2(dXxz#{lWFM00AA81)OKZ;8Ms55T;#qeL;GnDNlh~(>?EhxZLs({1A-;j
zNc@lbm0AQi3hw=UK`;$46_&nQupfwmTaq3Ps@9TnC{MlS-?o!;#*5d!QsRzSWSR@X
zY#Hf4YhP**C^}NWqth_Sk(em2{k7XX4R~{&pdIo1Bi-bZB%+qd2`sHV<?<FqC_nhv
zw`_##+Okz{|J3w|;g(d>+s*I#%e!t({$f-DyIk>)1~1pJhlTRWN_Avwxlf#mbe4sz
zIxQ!bjxhJ$?G=`NfhSd8^a<Dsy=?fv4N5es+uR+_)X19HMe=zyDD&H%TeViPUm6-%
zX2H>e<1UPrs{fTt^5y9@wdntzTDkr|t|&`5TRQqDFg}6#39L_Ge*)(dUp|4`!j_KL
z=LB*{L&pLk!s9anx~{v;*#3_-Q$=TSxP)toEmiHq6v^il+FX9pvvCUx796SPYDrwl
zz$Ro67UeBD^oZL+h9Jel4Fm)%>}IQ9*Uz5~lb!7T7*R$gIeHy=xB||ySh8Wm^W%GE
z$MdaUW}n*UcYI45bK53&4LROSnq<E$M348{w99;W0)G_&p@ZY*%#E>@+i{cjCw~3S
zF-M>}D>F}y<;_#kqD^ZO&{k7;-EYwLzJ34Y?a+|3xjweYb!^BL?P^_00=hlFdH<&0
z7H_YHT;g%~<MP)f$whPY{fq04h@K<K!B2(6i$6Mc&GV<ItEaA+8=DLI=`~*tg$(`J
z(39~ZKc!Uw43f0JpB7=jDzt}$4u}3m$=}NhO)iP&r~a_N&1<igm>(5Sky-oqzU|Un
zEhGo4&ze7uLFPP}^_S|lB)h3kCk5W0z94|(<zn<44VS8bP87}izcS{Xpbx3}`ycli
zn>)WRA9I%l8krV6ABC&tsSoRP%`tB`XHy?fUsf#uC}GJ<&w9<#dR@tsyjQ6Tp+$zK
zAFuA{o4h`LKO|o()6q_KzlLOM)gTT7HI9?-J{sINoC39v4S&@CQXvvqv6@OCf8BUG
zwq$AD=36W3f#!Ou_Pua731<3J_v*vp<@4}%@uq#hzPu4`*n|`85t`y)lEV<hX&vEs
z;fPZO=nv@fz0uopeNYsX88TjI#kMHlg=zf(Jysd=FHCkeI@Cy5+lx>=6xy9_9w!FJ
z+t4+#-(v!Q<wn}q{5?Nv+jQ+X^VQ`-nf>f#wYAJosXGrOxPc{xO-9Yp^UHjJUBva(
zY??;(drTn)2V$+%Pua)Lt^+d>@5QaZ!ohn0LUra>L#Bn*ryG=qPh)xM`Bgqut#-`8
z_(SnNL>sT*!AdQ3b|SZLCzeGv1NFb^!gMs3@`>rQP&!qYR}d(hXbFXkTc@{vJRh8n
zj>;JnXAUW7`}}C~EH1f|!%6~Zsdv7UuePKzI{u`sYio8q_0%n2`pum;twzXSDE5aK
zsFArm&5PIBvXvRL0LU7d$}`|kfLq~SWK{AwCIh_`X$+9EaY`jvKgm$3WODn-<Gu%W
zf;DZ?nAzX40BLnAGszs*Q}iJxFYR8gyNDas&^-x1ur8t-@3#{L3|#2h5(zVR2-kc|
z*>kAUDf>qx2*fo^uFNjCt<eoagtKs9QON)8f#Xp?x_=xRHmp?SFhY~LCg+);iiJ30
zj`)($N_V-3ewm#J=_qB)Dl<?0U=MG5wMWt%yhR%%n<0C+d^c4fzi9w?8hw|#wTWx6
z=)O_uh*srlqYBiD6&1zoOc>x$N#1Ioag$a!hmXzX61!u+68FJ()Nd$ojtK^I>TuK)
z2f1oCQ@C>IXn2^usV$gJc0>3@=SJ80=v1;b&B<}n&;79y(8J}ER#KA4gMn{?fN5-W
zTUEh~X5bcJ>BhFZB+jxK{<SlqhWWUhfuuSfNBm++oMD6571X2HP#svQ8y(ZNnhBF}
z63_`avsBjQ&b!kOPVhI6&J_XnuvRBp#Kw--Hq7kiym#zpjDiqMk|mRB;=#N~lyus`
z?8~zhnMkX&X}U$koWJ50(SCYZMWxa1%Z7Kgl(gZ_yEV*5%o?GtcMWQ+xFZ#@(hgZj
zvxkp-c_9VaTM?OxVVWS-VyDHX%w#Y<tVH3-6vSy+8icYipRrH87M}v@)D*)rv!@!=
zIp*0Mp2@GuyGUOO&0Kk+q^HT4Af8m`mJphEd?TR-e|9Fl?YsDO=%k>(_B9}bSisT8
z<;_PoeP8tL4}#Oa*WZ>GeeIp_VP;Y8Kf#llwjP2;gT((5vPZ18t%u{^Wwb8+J}Ri4
z2b(}tH7GpF=LI%9qRR!uYDeRkT!~AU%N0Ym%kWJ(ea-BVVroz@E-Ms}8%XJ0F?^dQ
zOn^1`rAQRvV24tQ$W1wXf0E4i^4`OW@DQSkz;Mgm)$y*IUokV7zKyGsHS^}n;IrRQ
zn_R#~{*ATEj~0^wul_hLIzZX!&l$cx2t{&JoAav`S1Ls77{fd;Q-L6<z*viKM+<jq
zKNX7F83+gaOsxmw-Y_hin0o5`__AM#{h0i=gpjW6)c4&pEDpztHDsBY1I4?9*PV8S
zU#1O>ar;_2g*MM<+Zi?RAhmP`dDMw!a#Z9pqaS6sQDT&?=zI4dulNpVSyOE{L^{(4
zvjhKA01rxup_32@xI=*YC??z4hb)F%7SOli10!X8NEiSc($cVkq^KzU`17zrrI~?C
zLkua6yr$hVLx4@%+W=V%<`9A<1~voPTkU4tk3uTbZ2pB6d?uJ#H2o_We9#hxD=XMc
ztxBRbxETV~C1>=i)@W>eSS7?lEGP_@Njp@xW14qA*v%a1T@`6j3H|=PmRVUeBTK0y
zVm=R=#oUN;mi#M~j{_BML^{OplnwLNlu|hRa5<@P6Eu@3PP1gZfOKgefgXCCYNUq@
zj8|gFZ&%VK8<2Vnj|)&%Hmrkw0nznL8ZmIcM;=4QVKcjp&GXT1sRe7>ekX6?@8A3(
z09&LGdGt~QMts$RY?05(XUbk0ieb7qhR15%?_|M?BC2aQwy{JbFPah8o1n0nuvI+K
zruA8snsynARMzmObJ`a)d>lkWS*D1%4SR?s9y_aWB|Y|^I-7R$+v|PDxdSemYb#?f
zIGK#QsOBNuT5QnTV3!}lhxd#4MxM?K{|ce3J9l;i;Ky|B1f5vS#7eP`OCU$5^K{<Q
z?~>vk(5Es?1nVUM(|2H&Ybj7^Qeb4N3E0!?f!o7-iF^4zLt`PG>~1aS=3dB{AF&~|
zHwT)I8wP1D_LV4;(&)kK#Q(&kHeKEP`=%|&Y;Jk06pExvg#+gzrz;Zh6u`;V_+0AR
zAa+531489ook<|f@t_P5J?D57#GY4yXl}4PCQ7OmQ%ii0q49TmC;rmR{CS3fp^BjW
z9+BUCI?a(RHMnYC%H7xlzmreqJrz%EaB+Nj+%*?=YVYW_kyJly&~~Gx5QisLWtuF-
z5y{&zziXDtQ*P6&cc<afWZHmD=5y!jv!Le#!QgZbHh<aE%LxKhJpSy!^qMze64<ni
z&5=x3<ft067_$ejNl-of0<DG8fLDISs07RD_qJ0sH!;duGbe4ON70G<i8)QDX2!6p
zFu>YXWg}7`)-!jt2^V@-nBl(;F0)hdaHod84HiYRdlWGMpa0J_v;iSw+{lGiB7VFS
zK!U8VkC)fYq+5>tfV2$ut!kW=BWL6fJi&IWvG3{`T(<-k(*?}VW4VPwzu$yUjvTwO
z(0fO2tn_dw2cwd0ruDbWuacvU>*?{+o7&Z`r|Iv_kh`zmjiRic>y^g1r-!L(+lzB@
zk<Hq8nDG+`X_{v5zC^l&@s`=8E#s5{>GrjTGy{bq0$)6$#e~P>w!l43SNGRVIt|`(
z4gA{w{pieHMCZKbPF2Oukh@Q4eSU>H(XTveo{DYT?qUR`hi++$5<73<8s^E56?TQi
zk8w}`Xe|6gjB;Bw(pC}GwC0{WDS1J5gH?Vt9><3O_9&lx!z0}=;8hS@tenjVNboPx
zl$F?7<f`{dSdlW)$@X3{vPy$My{*lAOT8Wu&yGJ|fnz#vR0uKa<+{+HDiT4x4%)J&
zXrZxm>^|8mkxP(>2XFP_#?tu~K;Zcfro6?Pf9s}`rww~oVG2=?DrsY<S!!>b76T8z
zHGLbxpMd(LqOV9!PGM6{@CoGr4euphR$94>pxc+$^g1>1!#-lQPBdgBoX%oo)dd1H
zJk|b;NN+|jVesRoy40&>0%?ly!5*d-r;%)lUjdYiAjgt)m<!u8q#kLx=3R1oUs|@&
z1xUC38m-uqI$lV9WF_9vTM*F^T`&xvpt}5~dV-VM4aTh`ue&!P#2Fj#rQT-Fez79v
zJIas9wyJ&mBF5d)qG-aU*ydVB(Jzoebw-+^sI7Y-&6QXyy@%u4Q?MI2o?5c`ZxkoR
zZ1C<xwX}6d)q;#?2+Tjt?F5a);L+FglASaM{A~TP+_m9*M*>o%u@9?4j9rZKa@4HT
zFp=mJ$hL+PGME_(sCX9v8oHIc{5E6ms}(h4Lac{64|}BMs-kn`5FM#H!hR!#u6nIA
zmmfy8@KBtvv{{U9f9|CtKtWyjyc(QOQOYdXgWjDA7_s8l3}7e$U$EZ{*zmy`ScJnR
z*tMZHTbJLg!H`;}kw0B)M3Js?p2%Z2ZH3c&{Uaap@B_ASW|*OX0Ob<hla*_8jzTf8
zu#_6&p{60OmI^mR8%|j4b7k?1q@_n+Y&1Z7Y)I$LNytkzO;mm)#pJ~3u>MdG!%OZq
zdQMW099fI``VQBb(AiWJ-Yx_V(glInLXjU1X7t%OZOj<sU6u6LrKlcwGq0BZDdkJq
z`K+_2iQkZ@-kvl-vuXBiP*^X;ddVKImk)9d?i-WrlQbKcvjP~bvlF-79*Q%zumaKU
z>-V_dbZo%@{!UtWKt@!Uy5rp2>Y`%}2I{C&u{#9nPd>J8osA7@xz1sEnrJP1wUSm@
z-?;WQG(m#oXl$B6#~(#Q5%-HZ4>=Mx2h!P<+JqJE=R3?mcYx|?_D(I?5v{=69kF}@
z#Vw%PImUBlD_qiQnv^BWCR;(P{H5l~+A#9tRgbV5^!0KU74eoxqFr_?kT>pKh8iY+
zy?K9iQtZVWzDIE)?!v56iV>&nQH|lyc%%S_E-I%)AQT&m*71Gv>%2qKb6hNy&t#~`
zA;<6mJEk}=mvmFu@T-G~Grl#pY`%%oNx5yZ%ck<{ptKEj4h6)d#@M!$@RC(AG6(-h
zK2@Z)D|Id|rz^_|fwk-5m@6|Kn2!QPJ;{7_;<w@^<dhY#oL}J7VcnS7cXB+;Nb2V0
z*Qws9NMft}Rb$-DNR(uazB7qh&;8k7Bok-|%u1XAD4FFp?P4YFWoo|%;+s3zguf@d
zJ%obPHE!@lXj2(B%y!&s=#u#eIv`m^J|;VAZmY;C)`+LX<OjlWw-CY8@6udG8_i>t
z=kx}RL>OG9b;w70EP2Tm!p_<J{=b$Qi0PZzwhQS8VzgmYFN6g0vpZVjE$cMHLs>|L
zLJcM9r=+ecMIe@)3C&y1hlRE<bGVS=p*-pS+DS6_^X`lPdl0$X%zHz{G_-XA?ZM$w
zLvrwN|Hn8G1j5Ca2ET6E!o{Bi2NvvOX{xJ-`ml?;-!n*-Gt^W|yk?#w|9-3Qo6sN;
z;vfGqyN?lLQ-M+HC{IiO^XxgYMhl(#`{?q^vTyS<WQ?V6iBC9YYO~E-AL?v7HBLdl
zeF`Rbc9pc_!Xqj(DNiX6JNu?0iDvRL#5cw8k)ii}yi)huzIc#$N&pz<Pr!|`aZOtv
zYfN$?Mj^<e`lp@JB&7oECatx7WYUV-w-H`c{67<}ovodn7Uy%~4r7HsZL1U0Zc@uB
z3_q7hC5h*&Bc-c0@(eZStGpXHBex}J=c~tD$NHD&?4E<?5m1_D^p_O_kblLN@F8*T
z@9#Z0Uae@!yX*6ex=^w4g8*xq?sx8>AN`0+{eMxsH~;u&!Iv7fH7AUP8NpJi+lbYQ
zwyZzFmnvzKd%(YMkH;H!`1HEMZpdsPqQcEKg=O0NSzd!yYEr+=E@pzzc=0VZVQ39H
zAcE=B#3{4tsxJzyH<vWWuv|61CQY!p&3@C|T=(}iK@}lLHE0p;QU_|hk0f=b(r`n6
zQ~6SkFQiE`*Ra1V513s1;ZbQxsR~geulA(3?R~k=YB?@d#iraHSJH(%N^=FLiC$P;
z3S+j<e{O=mO-f8{hJwFRIhJGzM56a{?_cB4=wm=sjFWdtRk~<xN;;#nufo309LCb3
zcXwYB^f9Zhf*eC4I0hPFqBb+lp*9xO?5ZI$`A!&#tZI5h9uTw$>j{!Lv{G4-hqsy+
z`c;C=7IBjJ*GxoGt>qhGam~uRNsDpSWLX1SOJtc{6NYb=%#Mkfk2tj9Ktf*0^SPP&
z8t2XB7{Qhn@K`St36SV<YP{7%(Xpqg?7Mu~c@8qO5(|pKT);5usshyv$Ms;Vm(3qz
zXu`y;-$RT19k~J<6Q}$zu)h`SF_vQXc_Q8p+M5`W310|J<)=qP16l3^wk6s5A`3qy
zH}PQFlf&_6d2iT~KFoEeE#;!gg~a~o+vT@xYkHjyu)sKo5V`7#;*p~Sr>;PKPC%HA
zFRZH`oRjC(%s|+15}yf<aW4PWlbeC?-LY(~4$>Z<PfrgkAo|_6ARtK+p#`p1n7AZf
z3As`2X(TGPIb&}`;IQ+CItCNTiBRQ_zgqTG=@{?AulpOVRKghQ=q+k1E(^HIAXqzv
zTt#LZyW|7G!yHnERuN6X5EytutvsjDt8{W?54Ym46#&AXadG!|&%>3iAtm$PCGI1%
zli$Tw4HU<+jlTzr#q*RTYonL>NWF*WKF?v9ZF8|r2D95mXM0(Tvc90kb2XY4%$~4c
zhaJpIm#|1SGYhl4$TH8+qai0p<!i<zqEKYJm7Ig)TGxfUV#LHmo^VPg*}xf{+pcPu
zn=CbbAqSRm(;to!0P6lBC-)evF5`q9w3xdtZ~F1IRU?XF&P&m+lHO=g@UCc*LBH9$
z6~QI(ap*PH4skQY`uknHNo+%|l?|HF>QPydS<LFOS~QA&Ow=5$B(&_Bm2jJU|IW;%
zoS71?6ghYTK(m`0(aussC_HS+Go!IXJ27<7I|1|x*eimdxNrR;3A8KeIX%y;UE)cn
zuwbQw0r1(f6^7LkEPd!YNs<b5jbE6QE&6g<AFKFdbSGm$G{gJr;GQxVRk6#NePp{O
zFlq9~1;msUVpB<bTf$V{DI0TE$4-B8uBIV;=Yp;i-y(nMj~mCqJjlMBX^U_0{1Ni$
zJp>@^LSlGeIq4=R0-DOYCC#6>cELDTMk+Zub+iLw?cx}^B!8mx43Mr~n8`+eF(#Mw
zq`du+8L$ezL8CibfHj4u5xYA_;Lz?ajdu%69U>Vjhk1z70v!W`>O`q<aQ&-0g-3em
zgi-jnLMg)vN+^80t5K10AeTYhQ2E?mQW)@lbKZXHwt8T*iA`G>vlOIw^eKOV)=o5z
zFCBaeH{S5@bx}OCYLOO|R`@~Oyh4bRotl>|X<=Eee+_9SkIJXQEMyJrMMEhT?m0c|
z&244mYtfe6(yW?F0w=<UjJnFmBPa*a_MZ+ao$k(?wx-4v6@{R<!qJY|czLhdS7rbq
z{kDP5>9fIjo=+KZLL;(;KD3CnEajp+l4OXQ(TwuEb=k~>s#}-~ECo<=vB|nY{oDY)
zO9hnFH6s|E#mLKIZit<Ab%8l`s*$8~vmO6?&i(xTpQWL4&}V7$5IbsL)ta+hknBbx
z#Ye>`La=suQe`3%S<Pux*y7F|1^^a)3$1_~VT2*h=a3$vI%CiR(a;Y&W>=Wdo^B)|
z4O*!(cni<A5$#Yrr-1XXl$=^&-SCnbT*~eQ36PJGz6_|d(HxXlRPc`BOLO@?=TH`O
z7kEbTOJ`PX_<Gncjk>~(yHiX^tfLxtoD(*P=AOvp<=Cw1aR`i2!uIWjRls9qnV0+D
zM2Ussa$|H3e8lxFx^3ZKRfA;zwmWuSKHEzXYOXanU<f*y*sM|9he29e&SZ#kQTB!W
zN_<stv{tLf2TvBw>59aMz+U*K0+7S6xDd#E{hX@$!zcd4`tq1<a_*<*(L*!tHrmfd
zb!w!$S)*FHKm}Oc>13$(X#hpW*rOqAq^(W`KjLq59Uj55PNnbeARAVrD+1LF(o9(5
z6CW9thj=24{if_qywA@mBd<70X)a1c*8>#c$=tlt@}Y!eQ!4a34V{eBpVly!;BPY;
zDx$NMGz!{GYMDPWuC$N4Nu`_6<*+Kt9wM6t{9?@aHHh=@e!@_Y5CQTQ1gg2d#c0A;
z1U`Oh9qz;VWI6%)OP!JRD(-MnLth$ly=<M?ovqsAPaPgbn(!#?aaEHH6CNJb<jVG(
zhA~qnyd&u(A&G0J(t{?!>pi{BJW*bC0vgRuy$frgRh}2T!Ls<}+8cOq-eiqt!G@K&
zzegCW!XVc}&{+)FYy-RyT$C61wTIo~V9uXD!<N3}8CdEq>+opNLp8Di$;gD|d+q=F
zcPau@UCa<!9}dpC@azb<e{h3wcbJP?$9`S@t_4(*R>S0>RcN7m;q9q0ha^7qX9Zv+
zh>}FvrENnM@2NO`u%%V5)g=b1L6ov3*eJskBe*lr<0BOZ76G2vior#K52cODa|n=~
zSu?yiYLA8GlDLU09&*ZaP!J1J%WLYMSYbOgLKFKwqDbZuwvcE)t@KsnLo!ETj6Q;w
zj#|T@^&S#>{P|`<o!?GR>j-^Y!EtegU3j8wcwp$7h4Y75#J3=PNQAz_&1rpslr3aY
zV3ezp8`R`Ja08Aa>8(_VHn8@5GK0LYW&#9V9-^uYqb*)%1|h^b2nJ`N=IXw>Ue`!}
zdz*5^<>e*Sc2=C*DSDEy=`D%8_l4zkWg$K9q2v=T-{e<f(K|^`u<~g8-G;f({X1p*
zFJUE{UXbuWRU+NPSs`&j`BUf6t~gN&KSgV@S2htz%L>5elMS8^kL_q6s#`50nvE5%
zMIhHFsQaSIz0WH|$JaDS>mrSa@<?NYbL0Hlrfv1Mztdva(LU@xaU~4d7HXF#wc_xH
z0(9<|WD!@oGOT3rG{8zvE`kzf570<zVXf$Lv48c(&ibb~_v+g35I6Hn-;*LeX}YcW
zsyskM85$sKZh3_D*hzc>XbO-SwA{~BRcqDC?Z_6)v3-|NT0!UF-q)2ym*sHt{D^bT
zXHxG8cz%TG8~zm*`D`JwPe)J%KB%S6#6F`OhDzns=Lw}Kl6u=hshCJ`X5ptyi>H{%
zc4h4SEy~+TP8J>NZQ^)Cb{PhRZr0)qb*mlrqCjvQo-mPWeetASJXTNX(2gmLkyO{!
z-gIg-%UGl!Z2JuhHF#SHg;h)8k38`&8_O_L47^>EDY?s#-(9CA%36^G>tXi~Dt1#q
z={<12{_1axpmZbZ68$);rD2Tcy(>*nh=HfY5?otAKVw3w$3YItscz%(hn~^%W!E1>
zX8_8$Gf^(dL(i7QN0iXYvl=?40{Qo)a0^f(>w`(csBW3B66tw573v`RI#8|xa8ib%
z!{hDzz=L&oZDzmmJ=bn^yHM;7?w3yP15ZWnJ6zU$>pYGmJ2I{JGJHBOraI1W#s6-U
zd2FFmh+s>9n7TfpyVdHCp~mskTDXN1jv=-C;9Na^`2go=y7dNu-{E6IeA*?Et`cCi
zj8fruQh~GnPmrsCUqk@T{y%|+H9j)QCj;g`w|Pe37m`A-aQ{!lT!BA~|EUV|pGzox
z_^{0X%|LgD-~0b(fIuVQp!jbFd3FLtLI~FXWWZ^uS0dnI|8Iu(5CUd`|7H-&CnzWU
z-)Cs<ARr+I=WO|`Q%?uM_P^DSpb51JL4_Ld7%i$~govd79qB4ccnAm1-l8i<hz9%L
zvH>cDsb3)2|92?84Pid+|CR-91ree`GIO$nL@MyHpjkM0SXe+`^N6T{>ffer=JqXA
z*~KQSOLg|ERZ9zT_6;Wg2V_8-zuUHLJC#&yRZvOAcG7v?w@;rQ=j-oJ_xZ8MSoh>L
z=QZy+*4pI6N-FfiruN2W683g3^vn!QJOBltt+A`Kvc0W>J+~aayqPHw@Fi!5B_|hk
zGBa`k+S`d4xtQ?)G|Wr^VrC`)7Jn81GdDLkEIB~b-oeueXkqCBpi)!Tpr)mz`%lR~
zCIDm4|ImDSIs+~202E&jZe}+24z^}?E?*)3uN_s)%m6NyW&m@bjTt~xQAtZ$K@vbE
zsh|dsG_x~vGO__Exf<I5O#pI06Eiz!Girdjy%WIZ-v@w+y`3rWpVFKezJFo~I|GaW
z&JJcKz%Ms54-+$oe^hh;2Qw#IptJMWGXUreuy8W6bNT9li#-5nXJX@O`VW9Fxw-wn
z0693>e_7am>Ar#~**m*9n>Ya-TmWBLmBb|ejnl=_$mO5h&cH7<z~21J($wC>^`Dad
zrTYr=rFAg^+BpMU%sgEF$$w>R1~3IWJJ=X`e&zlO=HLYU7YtWtpq<5kBA^2}nOPV)
zncA2+JAZ}wiv3S_{<BWN|5m+`gM*Fdzr5}LW%a)>09~BTY|I&8nOVManz(%BwgB3}
zGX66w(st(d0A{9t%S~M!{zK<x=Jc-yQT;PB)L$TsOzrJ#JOQR==6|q^3id8vDFIaf
zcPumf_mTYHK=FSI!T&Av{=bp?Upe~UF7f~Ceg3bZC0uQ66pU=Y2H@X22Jp3HjO+kk
zdj=o}_-E0$+WvoBjBJ56p8tPN|J7Q<?B8fb>}^c{t4`X*=&L2db{1c>FflOwTL^TP
z0D732Dgj+gECJ?5Hh*9J`j=eI&eY7w254vY#p}OX3ZQ3ZV)`#SRZF0WwcS4iu>V_S
zW@q|e;eS!}FYt`A;@S$|rD*>T%k^J|N?$|ZqU!1Jh3$WqB5!Z{zYhO|5fQQX0C>|g
zb8rFZS=pGs?%o$5ZVo2j|3k`u1!Dfsv%Hau6VL;o^Hnz!^MAjp|DV7AJn8+HFyeM5
z_NM=gjf#tro$1%4{V%~kY7<u{r!Rv4b@{)l{*Uv&X5P%q!^{MBZQ0(0H^eGEE5oH8
zD{pjKOlPp4`P*oyLs^q*abZBMeV>2&k6rF6!?(InhUOWbj}FhJzYgyQGBk(d{g^hC
zeW_*_1^B+C)PDnoC|eX=oV15QjQV8=8K)Z2-j|DVJK)+JOzMYw)8Cc#OWz;~X1Z9N
zpf4Y(14!Kp1JKDH91#6X(i-D1x{;efQ0t5So>C+oKR!?nPmGO@^j$*?9N^LB#=(&D
z8e#dR{3T9y@icV0YclzOcyZ%&08yK8b<mbs6J<y+ZGY*^lsB*0qVdmS9HOn!WY}A(
zt9`h&l}}L*(u)?ceJB<C?pk*|-yrD--ZnhEL;%thpGjN+@uC*r{}|Ka0v<kb^Z@&d
zlZl<N9zuq-y1tz%!lEB7;sk`A2)ta@gDrl-i=Tx(Wwto5!Pt*o;Z49e^DxS+=WgHx
zlt(0t`+po<E7NQBDsUXh7;?Qtvyu<`nkYuRxogE0`zNJ;czQ06Tt4@@7uD7Fxbax}
zw|rDcp*!A$MCu96*qU8q9<1?_2a=+<?K~d(+F!@(RxqBhSTn%&W%P{0?NrS>i)#9<
zPky}5m0%o(sb^69#gaKW+H;~02_#XoDwZIFdw-@^aejhIdxY-}Q#9Nb8|(lbE@;#w
zeMi|g$Y0zo16V^_n7N>PK#HQVwDkP*wDc3gMTP+k$wnHNS9vx?;4*4T{+|uiAkRQo
z{;VGS5yeOsyfVjM^V`jePS6C|k!MHN4Bfm!?LHj-LgaVN)s_LSXgz_@ec2JJ=M4Co
zbAL19m<hB(^U6ZrKq*%Ja~S=t_;j0JpL2Rro^8YR!MyQS3l9>eVz|693{~pV28O!x
zj%q3QkS`Ad!5a)*g-|Z>InIB(%;8}M?fRw#))wuKUw0lr^ggs>?-E*kvg7M^%sD0D
z0;YDW7{!W51RJwXuA?kzLJdC5`^Fg^(toNaZ8J;nn(n{1TyI^l(5v7+PIgk*zp|Os
z_~0#s5U(3T8aE-k)4FqO<PT!~!szrsO2}Ou3N?zSHY7+rFK2a6w8G;Tq^Wm$T*oC7
zYVQ+KS!X<P&UGmB?<Kw$<@PjSeE?B`4%mfB1GTr?$_~<!stna(eb;$u{I;C*{(reY
zh~1};xl?TFn?P@PJHw}^p2qa;GtJUPW~S`W9<D;5A8Iw=$^)V|>IC&Zyxe#VU+JKs
zrK`?Eat5R$TAqj0!lIQHgKogGsUsd7<PQYk0x{P);5W<Q7N5ML!@0>6g9-Lpz}!{j
zC$>L|wX>{p)00->0gCI#>Iw%*<bRtVLUvSzh-qg-biMo}beGaFG@(vG8Tut?OgGLt
zCdNb9l;>}L9Z#zaHtw8kJ&Ny+`TW$)=m86w!0Y}8yn>|bLOr#${Y3w^9i#Z}5_K?Z
zgJN$&;@G$Ay2~sK6hEu$lE-8JUpqaU1f>KQcmfg<p-xXSHom?Zt+WlUD1R{$@r98D
zz8%wgSW{Pfsk*V;1v861ax|Z*(&+lwJJA=ixmq)1fbVS22P?;*)!yjhx&F~>S-fjT
z<rqjm^)pd);#Tf?oQ?5wvo{8&UT3=~d4mgB6*iSAIF{O8?Y!F@h$k<}C7y4?I6?Ep
z8Q!avWZ%yz6InM0@z1X-Ykww>RQHf{V0Ze_1RMo0KHn3nl6TjBQMpq__^`M?L4-ZC
zg_(i2|1BwG_dNCY8!LnW0WM+CUH^6z?D2MOo4u^yFjrQcd7}}`KBYK<gJ^&_J@s;N
zTV<Z_=Mv=RWrw^Uro)l^F%RoFRu!p_cs1K3SC>LgnZgk$Bz9NpTYuRtTFCTX&Afx0
z*=B;rf~rYHP`OTmFaNExU_1>vdK-;&6dbAjW}Xj@HW%S7FT8lOYie?LZqQprWSQ0y
zCenwbCqy9nD3zGlqUJZP2G#v@!x41EntwH&W05}llM5&(SJ-FPhf*|;E3yW&&Bvo6
zjI&RX^tn_p3-TS~bAQrS$9Uhk6=fIdXBKx(L!E3ziGv#0y}sP6%dM5p_u83|kzHA9
z{f^&Ck18m=Lq!Rr&1BaLIVcuz<yq7*2Z#xCQ?*-auch0YW@a^3oaF0T7*2PU%SH@s
z<Ia>8=wyM4w6o9x9-sq@;o_VGKXOUF>6VyAq71Xb;=kL$;(yNZ$EgxFPHbUB`oA4V
zwc)zx$hLPqJcs6Q52R!sGI>COs5j*2cibq=UgeYIS)>vFe34;{3n&b(Z!RZSgPJ`*
z3c3oJ=i=h~xKchMaau_g2QgI*FqQKMBTFS#Dupt$=G>`r*>$GhJj~v!Nj3iXmW&*L
zmL1!&Lt2K#On+f8!hSNI)+jjExc+I(@zb3(Y~T3If8a4Y-%9sfW%pF1nI~Q%*qpkr
z>vp9ZKS;w(3@+XDkHj6T+tYnA?|tv(^|K&BsP1`hNZfMXGZ#~6qXAXaam%bxfKEdg
z$^@M?=o;oC!3Il_K2sv-B%~^5T(=?#tikBi=j5S~>3`I@-Gn+E|NVu*d(Z_`)1|DQ
zbWMw>8`nvvE=t}orK}B7c!bnvIrr_?s0t+Bk8vhGNg!4%j)5_hUhfo551Of?&!>jt
zLDvB+cql}63AtnLZuOP_s%No^U+=qNq`GmEAw>=)oK9E3Yq}p6$Oy8(CeB6wTn_ZX
zs!*ifJAW838XCH4ODfr|VY@c2R_dKrULhVAKE<Puz@|O#UxIt;;n*(sL1N+Ggu6Mx
z2{aQ{P1kZ6jzdsiD9)AGso9JK<vqO*1W%q^Jy&7;F&Qn&0-n2)pq^Jc)IV2xW2JgI
zH$Vg*VtWbH7Ega(n21X!j;3~q_T(>Bq8Nh!?0;)z%3@m>nR``gBtpJjsUTYNq}I}D
zMS&7HQZVo(P7e|!WBbwci>vDzONKQ&gk*i@60uWUOF{`>9mPlEVf3Z5MY^!%6rxB_
z``J^Ar9kU=X6Kkw=Hv}+;!!^EjoQaq%o)GyVHbt%7VW1kZ&4W3XocYqFeeY*-*UZA
z%zvVEmcNWN|H-5_pUgW?S>XT@nFi-p6$#t|N1B|>?KnCW8n69|L&zw&1)H*oAU@-m
z=eKXYJKBR;6_o@=69p<?x5S7Xxoc;Gu=IY1#i4dg8phd<r*!qqTz0wO{^6fLf3JYZ
znkM-Z)FReg7kKmvd+0?5l>Y2s^rOnDcYo^!O);{ve|t*gO@n`W!9=h1nNXJ(kSZ}t
zl(=@=#Pfx=+zk>)X9Nvk=&Kby+ew@wh@0%k4?H>`_jqB9_Dqq$_77L|73FHh)}c}+
zqk4g#4DE%{uGRy+>0vC^=&MCSAhKS7%)oyytC$wpc>Z}{<#e-)FY}-yVk=8<V}F9T
zFc0NA(z$G|CnQeZvhc)fSxmNxS35AR?r=hU2$&jENp=`B(Y_=pNdJEPOBDrVf9F~x
zZnAiCr%wj@ufiX}gR1VrHe@KX;qpeBhItfyr~DxrIWC)R^LVo0!F|LeeqxQZpvY9C
z!r^UuF%^@GWu~UKK%8kcpOa?Tn|~ig)L>arM9%Pk`5w=yFpzP&&s?AirNZM(oT7Ge
z85~iT#2!Y#h?A;0*AX$V_oGEjJRn{W-IAnES`6Th&u}wCit>X&ndN>MU3XMI335ML
z^v39v&Rvp~-5PPyi5@OOzluixw8l7Yq@t?mSoR8tRbP4gZFxZasL@3O`hU$Ir^{=}
zvi6>T`{2Vtb*~C~dPIz%$q2Q@KKJZ4W_xE14O3>G>Q=m8ns5;iN8?9|@-u#OYllk9
zlECi=8)r?gc?s_yso_6Bwq>s(ixh)JKg;XGiKf{5C9;!T`o+<yyda_g4HP3Pp>aGO
z7B<a*s2W&_aJ_uZ<EidLCVygUP;zx*iaVPS2UTX7)`nW$fmF7W0@Vmy4n7<!8zMEu
zMJ(8t^0dW+#Ws;C3%p%IJKr%M`PG+X{TYpM5p%+G?Vo~#WY_0eT5bdMAdcBqOB)7n
z@aj>?&=r*G-(b9Z4CLT|Z<8P5Nc6pJwWA4r7AqKRD<Suq8{2^tsDCLdGMaE6kZa>o
z7Sk1>P6Ogl(NNaB{67%L%5VDMliBhJQ?6uYUS{d*8+>07(O9B?6^ax&d9{K~;1`AY
zGjP017Mc>L&-I0L-OJ`UViEVsIxDMm4LdIZyI7A4EZn!Ld1~FDr%eno`vb^|<K@lW
z;U+)twFikDh!9s%u77H2KemKP?b5DRG1qj~;ns48lNj*p(?tU#M;m4YkqH_@@yW$g
zM`(mKR&F}%^w|9nHArZiGbu+<{7H4#UT4u<D<}yqQCN%8SS00sY?K%`6g3+?+_Cd-
zCIo*YB<E=&;V__DMSaE^a28ELGTS0XYsDy<ZMhZ?!AtdDcYg%G={9zc*hN+Lr_Te0
zUI?*2i1hZVO*s(W*8KH|bQFNoLRHdXbzeJt5>J^)%z$Jk4P}U*0_#i?IE%1c;E9iR
z{xohJfT5(l7Ps#e<J$RjwjYDTfGwjlR_C##Y}Fgko$^ci+*>r*tMX{%e3BOc8`=^4
z)x!ZR0|e}An|~XFKvALR9-@H*=3IGV|2Z`rC^2TmZ`7)bmsyohaK;vSe$O}-b$GPu
zJSskc30JyH{&p8-k#NPmDFD$WY`D4KG@9Ufj>(yXOwR~TZVdGWaueVzvL{L{=<vJA
zVv})U%-2t*g7ck44*sOw@S6*8rw3?;IxkM>Cr3*Q=zrQ6diO|kq`e;YF}5i$MeC_b
zc`{6gD1kAjbfkrw+JhX97l0df2%}gkb%KJa=oun;iD1Zj{tn2nc}_@5B4tlQe!pdG
zP)v=o5&q9%W-8b4&?77d6@^91*SqNxOJ5z8g0>B11xo<`tE*~~PWrg_qk7Ws*2f3=
zXE5TgFMppfe!H^zx)TmM`15OTgR7?__};2C5P%O_kE{2>!es|OlHGCSa2P3FsSyL|
zydpaj<Gw1rLunOcMGOk5r<Cp%N&*pP9=)C4^v9|7z`RM(W8ULZEP`Q&BvbFf+u!tD
z#X{=C0%wht7_akU?xdzn@lx+dew8q11of%z4u6<7VTKpPDu%^xs~yBqh7`Qr)jcji
zl_Y|$MnLYRv$_F40?qaDXK%aWgI?s;CQM2L7D#Sx@%v6)`M^M;MU5Cn;7YN;5R2R=
zf0ZAGpI!L8Py)eKrZ)$@PjCGsRl#BUvEyG<WQYyf&9um<gH=1N7ObSp-Kxq|BQTXR
z27eRDoW9-H0O4}yh+vj(!mv%1r<c%6)f4A1+V`rL)^Bdxd@gM)@RMs!<SBooofC(K
zZ48FtnvoIdUoL;8b4saJ@)UgUQQe+#dpTdZZKBco$lPw_V7(qBR28nLXSKbo`%#rb
zS>A!q1#pgZsK!jwSX&U0ft(GTW-N?jJAZ95FF}N`cmLF6Z_%nO3Y6*oHXAWX#|aTJ
zFIfK_jjg3!c7sB@H-|bIx21BVV96%D@L&tTqy;z7pVgv?2A%-dL+GJyoLIhUuHfEU
zkK`+4P7Q_B7=5dSL-phzeob3&Zx}19ysitzmy|V2w?7Pza-*?UDL`lBPn_ZGKz}-m
zDuzPp*z&>3K?*yZ=~c}povodH@UyoV4=PwOwV+`DohH7It@O^0UH!Hcr0e|`CYwgf
zHKt+}Nr{(VVnnqp5(vC@Mao8!R;f%5Jtt@QOJ_;v#SF*QC?K!+uG|7Dgp~6qQEG~y
zmS4#)COg=!#+nN?C9Q`)MsNikD1W|5ZIrr6wkOH)G;$(36(DnnPDx%N8(sHfFD?^!
zAx=7T&iU3MgQuvKGftYfa*_%;He=(C(!|$?zGtqc{JeQB?5*Jq$a%Z9Q3bDbDlE|C
zQv?Y4T)?T?7wmf?zp&3^+`j>~kL}&#A%%WUtzA@<cFe@s%qI(^p`n{uFn{PSNj-s{
z(6m6eDy<@dLD7qh=Iis9Nh|ut2<(}Zo0<GD6!O$bp2S*9WwwrHRHDezX!k<N#eyC5
z=U8!rVI$a4RMF+ThmBX&pFUWl3u0}WFYNaXDr@aQu-u{1!#_pIoc-2P{5MB}bjG3$
zak1+j4Gpr94EnB^;E_VeYk%*yZ=wvw;<70AP&D}*7l?f0Zto9wpZzCVqO1&6(4SNb
ztcE}d$~T$>?ZAz)0yUx$i-yX`z;-&CbYnGt6pw+DQJu}jtcPOh^BwswmMTZik}0Q>
z_DC}DctgC8gF&2|2Mpf*CMmg5C!20n!9B}mcY33qcE)jLHhZqZo`2cN#FTQT+~lj4
zgd5_q;NKJ@?W)?II}+zs23i$drJrn39^CNv9k%TwT=Dfj2cd7wcb3$GZ)4`SPF!}9
zQyYOKtX5nl7!~7HTVXi)oS>H<WOM#KMx_7-T~5ofC|AB3h+bB_;74Q2ok{|Jnfnfl
zEwhn8C|L#hQcYX?kALd^Y<Wcx77dKbpecBiQd-m=j6cusD?!24i2QU`yIT1qvi>mP
zyA%Z=N+Gf>fLtgM<Qt|X&mrDq^|9Jp)eM1Gq;k8Vf-_%4O?Y4*(DlqRI}##yt%I~D
z6xS9;L|B7vk84^(+KiX8bE<a&TC6rzx9u0aca|9qXU#5@0)NQB4wHRmA_?j--Bg^d
zkXRYq)ACNe@u@u;uJ35U3vl2xqf3VN+pLFdF|{4mL;OAyZ;RK#OWFEHU&6Z3z;J6O
zQV=_nk8@v+>aElg!8_@w7rq5cSVUuo9GlVn;faiAPV3{12rNHGTLM3t4wVD3cf-tA
zpGho-N)mq4V1FCjRAf($otcGi&-CdjoAM<4rqNFTAv<5ZU#GhvDBw<vQ$ZLP-n|+h
z3N`zj)N(frvub$bn}=TG<p6?jkTv@#d94f{*>*r<-h5=3)5I^Vprjixa?xE7Xyr#4
z!&5u7xocg7${(v-Q2zRG-&zuDsJlqygC(l8;-z!A1b_T^ljFplskK*-Me;*6%0i<j
z@Vy=KWB*;#*<ITp%Qj#2B9O5jk+B5coV5T)q~g^8^RNkmG?gEb;WLd-OZhB`6}K2)
z2?_EpXF5H@d91JEZCRRBvpgA?)m;;Zr`(IGSa(OO4o?%1iLQBi7#7rK;tn3sAY(SY
z4Qd=EqJLGyg7d12J3c<v{##0QrKJR`F4f}`Hhfh_n^$gNG!I48^@C9c_7}3-pmant
zqe#@*s@i0`!@Zh?aXFg3hrR9Z_OZ!haQL9cG`62Dhx_ELZ3u)$e&pIRUZSaXbM<dy
zK0Vks-X*sNcN}*ex}ZepNeJL<=IMRE6O&tWDu0>N=e2(RJmFC73fD62T6BoFJ`;OO
zD$QPgQtD{mF~}f47B({;>$W@-FKCW-zNc%tm~^%2Sswma>OeGBe57s!vpyBv{RZD_
zXuw*xR9Df1=M8;~cvCR@{^@qE_g2G;G>y)17F4Xx{qeS*CFzJ=t*NgFQJvfsBP5Pp
z7Jnb=lp0M2Q#rI{Iy0fEM$B~sSvpl}A$3GM_uNqDjsk(2huNb;KT_lbj`!;EkjE&8
zYOKa9Szs8ES-*aKa1f$m;gy*cLbnQPRN^x*LwY9^99<NWdulu*9T+M;wQ_S-J^nKW
z6mp)#hTn>ml*#aDm#&lR*~Oqo+zU6g=YR39)}ZM8?|7Vo;yp&DC_@-~kzn}fE?u+}
z(W9Kp&z8HpM|bvs0b0@~by6MALhcC2pvShC)h)?Qu3QHifcl@m2_obqaM3ML3op10
zpgl)rC#@fQ`>9ayEYxW7Znh|rVWi_cBp8yN)N!9E)Ncim*t-`Kzi^{8q#OGkHGh<B
z$V*54ul1H9<xsAf&5PN}!PNT)85(F|fTvkOrugF)W6MHMWr(p658!+VbeVG9<p#-e
zg-LOXE}&UOT93Dpw#lPl^QQ+j5vt?|udEoorN2wWc%XR|hUd8Dn2+ih>JHrC;JrLZ
zp$UaFMZG8P8}t)JUZQO8pEcN4Z+|J-E}0hjdnO_?jN18T6GU$d^4|%5=*-D33y_0I
zo*+XAiCRd<^NCF{afzK#y0HBIEcf7I_J+t74mLcHtLv>F9HG&KDQai3O%z=7S#xe_
zG#-+cs@qAJDe>)FUUuBC@c1L@Ix*Jj(5SS7(I|+mBOs^RLnq5EAxssiP=D7&53T;h
zJpdLBU|g82bk*s=RnTvXThsvwg*>6#a!X$OHPz?lWL4OKrDL>NjZG8D6{MZU7Rvej
ztIXVTPvm;1v|WjcAl)pMsS%nhI2abIyLQt+RNEZ$PX<DGhUDml`xwEK^(ix^29Klp
zR6|afHW<#X3`A#as3S+o?|+7$H9<(TL@R;X>=hrfBY1NoutPcG^|ar+u&F<`^N0O$
zWAV1Gt5v#8;=XstEfn_oZ*L(8ofh*I2LTaLOpc<qWaEzdOb+0}#In*+&2O~{!qd9d
zjf-RW(ZU1xgG9Ax!Xlnt3HbXSi>wbBcrj7*B1p#}%SJ|iKe1!e5Pv0_z3XJ*yf6Uh
zRdw5jxL9efW#ES~W}Ztn;l#s+G8jh$3Fp90fYZPIVy-YUUIj2{93h@XHt|`6Juk!G
zO&m5QJgu}%Il6#Q;q<1Z>d-&MarzA7v#ipvil1)@FFtNeOu|uqN3#lUo7H7u2)@H1
zeh+&{&J6IHT1Jf1Fn{Jyew>QV#VdV8qW{fmSAj*Go|#QYaIjX(4V!3D#7ItDK<d7d
z#MVdFu(yjYv6Zb~#rroL-I~}138KiSzvwA*ekcRu0S9~(O*xQZswlmPN4Be>^1z=w
zAb*f&2RZc{!3~F2%N>y_ae7ew-E92wR>%^jW2VY!XN>VpI)CAeV92}c6vqwUV=`@w
zOw03<imB!q>o&gQGt;UJ+J{53+!E|o!IlsWI-jUCPhDJIa)~I(Rwn$c4@w#dKVX@=
z8n+MB#*J9tpeLxu+P#n93}XPBJ+fy<FNAEQLxt|r;FjQ7K+9+Yy9QIcukjYYluld@
zI!#5`$fzJ6+<&%P>J~d@I-Px;n8$>H8OgBylW8wfWZ3uD3*o*pe!8Q=@b@acd@kzo
zZKNj}(Pc%6Xy-zOLKB~WOPGOs@SxgOq`D~4XQ3p>{_Q*R&2y*jL?9}ywxXkPy>N#_
z%;GnYo2*iUx5e2j8=Yi3;?m`1G7c}L;7!~tIN?9m9e-}HstIU_%nXaZ6B4o7N==wb
zQ;Y|s6SZYx=ef{qw4X!){gihv+af}J*>$YK((%_PBgt+2X2S)xk}-o;l!#*vI124S
z-w1I+ybH75XOw7b%-$E^ZBGpH8|@IF<is{uXrbod8hElLztz~HYk36}+CdU98YVF5
z(cLDkiGLnOH)T7WmxYvh5dWyzTrTfo{oxWN(36R!tYe7iQkpke3+Lb*KRDIT@=4^A
z@I?IKp+VA7%AR<m>`5mqJ%V7V00R=Q(y^!JsRP2$F_F5MF(T^IWf#pwyTFatdUGgM
zeX5rGIWWz-E8NC3CHS(a-|$d~sZkU<P_4WwE`Q6d64o)G2GB|Slp-<pe^H_p0w!N|
zV!iE!GYdB(Bb3S+(;+!H^#itD7Zl%IgtLVSo^KVbB7hMZI3_hTWBbH(gv9sJDw9}A
zBFIBD?5)ucxJ3H|-}=U<0D8wx0RX!mmM(Bci6HqxC8k^JzjN74z2EBFKMZ0Q)AD~j
z@PFFr&mEVMX*96o-8<(r>3e7z!k#dZ<QwLM(41{4Jb6?rjJp1L-y4POZq5Nor&&BS
zh2hP(3R&?xlX6MJSw-TC{>JV~VVxc0qg0Fg2NG))V!Z!>ZL+h=TT(my<}+bt)Jmy>
zEw8CzurwtJ7AGLf!6T%-#{sila45s~qkllF7~#;Wg&~j$*`(^acz8{|S@JJxb7W{=
zey`SkH6odHAXzzFAH_g-uSQyk)PMYSWNf)D$x1w-K8!#Gv$Q%=<vC&&Q5s(HOj%6g
z^hC|+b0&>}V0dQ6|6D?Ok|bjvr6)YCv#b%;44H--L$<TY#J~5WY3oJbe#%v{9)C)B
zwv!s0W--2@UVU95yk%(Bp|&M_z1D<GW{V`L$h2Ba0)nng?hI7WqR3kX0;1)z_<kf;
zj-n8!@~!`cOxJ?B@c7VZl-GL*-8;?ThP`LYfGj!tG@^nVbKIIH=Z|F<wFZvOlKu56
zn$x91$)%LuR5gKcGoRh3oPYPW#DDeL(H~yCW#gui3{RS6;Neok*kAZ`QN>zrF0G2V
z{-(b?@U`CxnEj3HQZf#p@lK>A(|_c-DQXi6g*TsZ@O2orGajn#6s%s7{OLZRu~VlL
z?jA6FCGZp$**h<ft3u{d9t>i92~lh5DEwJ%yy=|d#;HQG(AJ8YN|Q6(u77t{#PuRa
zH>WyARDra=Sh!(3<mlg&);pkgV`H9CqFg=trWb9&C`4=1fr*aV?m*wRTO-(2pz|nn
zIhPgsJy1{#=_UFv@|7uWZC2b$0dbh7+(l)j9H?}Qy7T$py)xIj*ODpA5B^Q9xaJEu
zToo3g=ubp(ut-;2JC(qyN`J^!p~1lKhljfCW*-#}O!|M3S;dI{#4y1NPb4(>8O9XZ
zY2B1IAtqSXo8#J7ZA><~azFVr3G^>p{bE&~!6;}b0XMUgrEj0eq|{!bJsb@f<AYf+
zc9}RQC-oHyw$_w^kmoF-=j~L~VU~7>cFyaRueH#5K7qWzunx(UYkw+irB-#Rbzs#(
zaMn2ooBcxuuT8`J^Xl~5{#i$@X58rsJ8HW<ge0F|P!|Jnk|Ly<4}ucb65YsT#wT<h
z&h}{qctp*w1R1qPeU8^um#S5(V5aO3cOn^s$aNNB!~IY6EHDZ7)E){C{`0vN_VtMa
zb5m<2ZY7ka0^T{Xo`09hUID>OT1<9TxWMyae$YHiH<OwoH${}L#*g1Di#Vj`ooIBA
z!ZqHrA4H!YaXM_8c-16|v6y^J){Ul}>=`G<S47G?w(sC3^h>Z-aQa9+;{Zx}OFY+*
z8;sGpIx_|l8nAgzrVH2W88K%}8}J=A#XO$)&%Ux5IQ8rAiGO<tv-%~vsKnWkSK0o5
z?U!KPM+LqqssHTixZ8*@%Mob+3FVzyoYN<(edZ4v$X~ZE3B-9T)POOafDlo3k|(n8
z8ahbxODS#^G{l*d=xmndKFP(}iwYHYbcJP(0-urRjwUQk^-h(azR@F&SJM7w$WAv(
ze|I)#@JmQr9)DRmn88+suL8qg7#2yW>DNHS-y1x(9kk-MU{$e~M|$!T&3C1dx5SJY
z%W`@(91Sk?g-8HrER6YvF6g4Ux7;i(8}jIus)4^y2KC80@vjQ78+-#L_<P#nDLSQ}
zo1f|(I!QQjA)d{yedz@8a$>(L8!oy9HVv@bE9Mc1RDa}11L{^;C*-OP5}Z+g@gn{j
z$9!hp+KeE~U1xo$GGV2_&c@K^w|7Uz*Lt8iMQ*dRX);&O+f__C(A-<xBH(hfwtAiA
zdyeXx5Y6Ni#+9&o@KbU60P)$h{gqYax55abwXgSaUw$VxOu&SwilE}e3);mnCBY_6
z>L_>8Pk#fs##gQ-NnXrgAJ^`=S1=GA{d}U8@UEs!tV_Jf5OhOx6_dl|o?dfNi8HQH
zgsgv&s8J0CJVN*U$phB=ZA7g;AV#P|W&TV(+{`t&Jo6j_XVl}NkS&RKP46Qbdq;+^
zUkmc_Ne}ezVuT-*Np}xL5kKa4HGQe5s0xnxrGNL0D7+nExKF=)=Yoi!s1fZeYQf)r
zz!=#N>`*AI7Tjw1MwNP6wOwPh327YFxpJixwe#iMx-wV!b;izUJYC>shVXXdUXSz`
zrZOcHW^dUdoKRDfaV4*NwB)hI!C<wC-e+-t&r?>hqkzSq{t$~%Bf<C~q}*|BPSK_3
zm49;x0mJm)g5jFXqr<$yy)wyBZ1I1u4jNsE9qta#2wwKYFAWh}&_ub7-$Q$g24A^_
zfyNZ%Hxr-hA;cFbH5*uiP<u+NTLby+{*+t?xi|!-$@R|(ii^w{fvn<k4j)IoG11(#
z7#6_#@9=~{>OD^1#a5GXQ(XkE4TYMhM1MP)1ZU4V>$J|y6CMp33j{&DQ$_QC3yK!&
z!sYOV)hXZW4Y&6&3EPDWCl@xL%x8F+Ux<BR5HPq7yD8Duva1EJk~Mb0b6NH92kJWm
zPp9}Go52HfrTRdw%b2qn0)fwbXvXjOrJg68^uMMNNw!g?@!R!tFEr^PDUx<#Nq_jZ
zFxneJE8`2pjVI>x(5;C)C1TK&#Eg~A52Lc`upL|1280AE<g!wyzgt$-#BEnp&`N+N
z`pzV3zMMREvS_i^(eR}|`OaHHRjQj2l%n{W3$PuQZPW8Cm||RnLaBjVn10(<pks7B
z1ef)k0G##sq$N!hZfUMr9OD>_lYeHplJN>XYxJnW;3am|g<-Sehff8UsyS9kG0^|k
zSg|}vO+gj{z?5+ry?{_-$4k-1?C+y^xE_`c&+5p!S$3>^eY7o+)!n`oj4@Mp217hV
z2S@cIu%&1$;d!IVnI1=gy?2k;NC|T{l316dLlqx3O@l;#A7D4U7Tzt04}bRQRXYxh
zG!+yS{Lw|?7q5zk8QMKF=z|x=T;$t#kJuFRy+b{HNSy0&c)NoA55wz2eTTu10?U$M
zYGp_U2;Zt!Lnet$+lJe@WQap8$inAYUJ~oAKz3=N0}HC*Otj$1qPA>*huj}Y?^)G-
za=3aie77+1j&MHI?og8>-+wWok_moDNDNVpQC^*oiqdvhp$F-}KxhP8J@<OrQEG@J
zp|5ErPx|L-Jz4`VraAi){~9*x=rbS)auxmkk=^yCL2rF8Ss<@P=Ae^2%|mrhWFDXg
zK66e}vvEJlV&?Db8gmFKJ>%__+$j>4iA)0j`<w=i$h!yytF&Coihp9ZNRQrNzvGy)
zsB6Xhh57ud^cJ%m^~cO-q#R5>(0<<~#!AHp(<CWk7koR+1#H`#7aUfOjnG^mgBNOT
zd(w+^e27E7CiXE`kjK76ltv)Y4jwHyil?57ec{&A1HtOIWb;EE4XFw9$xSjMUgtsN
z1}v$^afVT;xR>9LHGgT*VtA24qZI8fdK)m}n}r1kg-nnZ6)teDwn~Q~7h^Oznx{{F
zmG5e`G=6YEhfDlS)%o%=)xF0`Y&@gK(i^`}kQkBv0v17MKShYgFda3<O9_6dSmhKH
zU^dl<dye_^xk*Km7Eq5IuW*8t=DGKtgKd#Un~2P!{0#w}v47)8iNy7VA8(a8@b)t=
z;O&CudE0g~uP3pl$IP-$aF+R(&XAR;nF-=9M_?)0q_wg8YXwmNAd6`6Y!@Ur^Ykxv
zW?Ln^%xi7*yK@P@#?xpRDZL}o+sx74WMgavyCm~7^ci=m;f&0)Yjpy5ko@i_m4E+7
z*O3;7ey~-4R)38_eA0Wm9-irj0@ToDx6k9x8NQ_$YQ4p<XYvp0AU+cRl@<spY9wUK
zLSJLOsm5X<FLZv%>ClSbBsf5*`HF<?&%Zk>t%kW9y+I&!dVhS@dVq$%428VOo;(^p
zu}V=7lvuNoZiuU8ygNO9GdK~PcRd^IamU!<bzjt;c7Nb2y$e)bmK;F&H{RqA+MW!i
z=u;Z8IxIg(p%5&rIW8EF_GjSOdLC_Krs=M<i>eVhFB!fabb)E9{)rKgQjhKQbZ_;n
zZrLXPu8`6)-MrW55R5HirB%Jl@KA+Gcp!-2lF)88a*ZtDyNV-#^`VIR(~4!|(I~nQ
zhZycifq&<_q>EDmAuU#4a_sNE4<`<S(lqK}*^trn^nE1Y>X2E8j+5=2R7DUSMV&$a
zWCkg-WEuush%?4mG}rzP54$$@R-fBqWYr!pQ3${A=`0|uXr}{(GU3(FD#x@Jc<U9m
zn|XyrPPn(LFnZnN?BTH~qh7^~Ub6q376bh4qJNrp_kGF5XA%xa_*Onp#(uQ(1NX#7
zHv()~=i?7<{b<#nBQ#)w$*kUQoMRUbFv`7`PDY@x$*Qq##2G{%2My2M6AyYPxVgcT
z4PAB~-_wK}gO5gqCe4fX=*!$U`;xIFm2c2)Meq7^KH!Vua<R=nf_B@yhN{-Wb=6Mq
za(}90c0|q}SZk}VCW8f_Htc!h;<w%}423g0uM2>=WExpA02lA`W{WKBY_4LvhP!>c
z)N-vIBd`gYA_nUa$p$&soCp}wR4#z`6+C8iLHTBrj`6U)R6*zgJs;*}F3SfyW=mNb
zQJ%&D=sI`KpaeZ~u=z~CBg0YK8iU6ZP=5=cJxf|$V~hd4eh(o|0+O3n)IfAa|E-{t
zoZhW`U*5x4GYE3TBO9euN5w|HCKusAEYajpxYI@N<`N}zKb;tOhJoe(Drl!8k8W1)
z7@InN{Kpdff(&vT$ZLrjCjoIp+-e%5+5P&ru-8Xlir~cvlEx-~{CJDQDyHIluzx)$
z)@!oO+=MDq(|4B)h-qnW6DIX7_pKLfD#A*1Qt3Yl0xyW|hZ#_|`coEuIopH$D|!zc
z5k)Pt@=;+;zTr>V5QgIU9C?p|$UWLvlH~QFF-ZP|=!esj4h06v!blnCZM1^O5;CTq
z0n2dBuAP>HZ4de{zTv+u`*!WWt$$%%jd#JLBG}zN(L5F%LUswJV;5`EGz(B}GDIu;
zKdoNS?jBq>F2a?K3{LrT(~#^x_@L&69`1sLTFu_T`W1(j!4b0$VF_Bf!(v?Aq9nyJ
zg1r)9-P~mf@(Oo%)(F(p$}5~{*$T(0hhK=NntJH3MWqMIbqSl=HVhu`Pk*hLz~=w9
zfq+1D-(tgM3k8)N#E->MbT0hpKgB8~5@xg~PM^A}YHn!DorZzdz?sTUJ=&{uE40<9
z9p@PO))~g$x+M2QoLd}i{CK^cM?RXBfh5+a72D+zRZuqalBtsAmcO{kfo}jZL?qOe
zb{Uh4TR?oiAmUjrf}--ym4AtsLGu!yMVXV>Ie1YVSk%;xyDBg#l6vm=6VSlV9&~pY
z;>PnW4cq1VpkK-=i8OFaPJGYib?Fe?;a+>@vjQ``OgIMypV0Fini1qJUmgdoM%8sG
zm&cPe6x#;fZpe}0o58@!w_FnhSnrNKCyob>da=Lt3Fl`Sc5>-#Qh#es>se(MY_-GT
zT@BR()w^@0B#EwS#S+ss3N3neK7og?qBTCJm4uPzLd5DDa~$#>)<wh4<FeTw4}>BI
zPA0w<G8e<R0@CkxWkvHblHVKuRF&cPUNSvdV3JDdr_5BTy!i;7H7=ckp^OSA@8<8l
zz0~q<-6jp7UiH5M%761*bY<2OnBJ$|kMNcl<pw&h&J$uu-PIlqn1@QjZFO7A+z-*(
zse==>CHp)yOr_pZxvgPM;ODbSRdeF%TDVMF1>{+Sgi=;c1^qYlg|Qe>#D7Xg3R7(S
z414Fgo{!P?W`qgmXp5*LHpSbI<AewT&?W9+;41t<^M$Xj6@SEb9i_B&H8eUF=@3+R
z(*Z;~8(fyU5w~wbGSzW7Q4mkup})|0&bt3xD%Cu)zH6E9!aB(ZW525Fz?`-|cJcTo
z@Q%lq=_C1R6s)VeemGwNGX@zBlG-5V-EWP!-Z94+Q<?+MSNt)jq}^eWM5q&Dc$)Xw
zsw_~C#Ek4|;eTSQQ|XG0MzJQ`Dun!9#_(9e%9}Z-yY2|Lt96<w8E<z(_$750W0UoB
zN_#dl_VB0~F2JBQIr4|7wHP4HRRo;V$!S+E$-U2;XU`LqhW_O3T0sSIM-7&0cko-c
z_Wr0Y;pn|IQ<4^7|6?1+)~Uh=a`!trFs7VTWHbOOQh%b=0=^}<^u*5iHlw&l*Bn>!
zN15gi7EU9ZHBUP|lE9I30#C$kh1)yXv4=6+YRs9uTo`ws*2e9!&KuIUhcd#ADwiZE
zf1I`lIaoJy&6H_c5O`XP=;x}^!d<TZr6#~SjWB(>|G-i2T(b&4Xzx<Y4K=kanhN5N
zSAUK*et-3Hk6)y~)WJEeA2RCrN(Mss#%-~j_9K|Ao&f>*;W#mu^!L)KzGG?!T)s0$
zzuo(*4D<Tp`X+1LHn5T*?=&DB)4i>=9^P#Ane)XQkHue{DQDX3xn_S_#4Tt4NlAZA
zpCQ>S=Ep0;XTlJCoJdh)-2C42#-&TMCS68*Nq>uZ9x+WG<XBKTmOS6*vh`UvQJpYt
zJppOCF)Rg9h{Z43QPWOit@5i*!oV3*Ml?<{JE;|?ZSg#%$p?DlSEaO4js```Ctui0
z)-??O-iirNYoAT|@B#PGu=03)tXehX^+MZsk7_uw)A7BgxCkv1yBx2;??ZpsN&hed
zQGcN8*ZE5G%$h7uK<A*7uW17WlxrsYI#)LqrWMUl6?SZJN3tbh>u)=QD!MbWS}|_|
zyt9)tD`?7}+qgp>pG%*ihoF8(iu^oIcaDa6C7M3znA-IEHOQFvz(U_V>@@NhD{o4g
zmakQ?t%M)3G_@s-Y9F0EQfZzrzP|yrV1Gw45HE)ZQHtAqH`#Skc0P7uGlTQ#-mLfu
z*3EeFhWVYlK`vY|Q&^-D0Uw98jS}QTB(e`q$RFdmtm|M+G$J`@dN32me+#Z9=_1_1
zzE@4!c}cd!bqTZ*n&g&w`ll>GsDig+61&K`i<PKL*orbdFI8l+gKx8kK#FwhpMS&#
zr9b}33Ev4nmwyIs)g?JupFmmGyDO*eJhWFS)<4h{47&Md*_<@?v9k8!;lRgA{oy#p
z0>wjJZi@NgVy;j-brE&PJ4Cp^yIAhcwR+&_p^tDpF@IBXljOHhpnLDTj>Y~gvF)`w
zw>>`&)78x&QwHWesUVAV|GlcSU4QRXF$`%H2t7s)m3@ht5SGFxu?+1$v^<=iQ`-Tq
zsywK-uWRlmahxvXf_mL!+<uypiQM==m`|NYZF=17YgEE6j++{4gJnEBhI(V=E9ZCa
ze-tU<mfG}IhFydD%a~O2N7CV>RKSZ+fJDy`a%!GY_9Z`FFf}_J<&+1u9DkMQ5Sh(#
z6oyFXp{_D&elsaFq<;J_uA7CCmuAHQ(vA|Egk8dbIiZGy<GHewFi<{0tYdGtmpame
z-NIxdxUn77%e9a8k-tp=v5G5f%k@&Us05%OFJbDUACEa*r5h^vx#_E`SNr?$i_>Hs
zhLR>f#0)XaDA;ue2!rML=YOQ;xtu-lFn<f5O7|o!sXKLpxHj`t$K{Yv3gSz4>*a%Y
zT`oC=GU|I+Nj*|{E@lHH4lBo=<|Vl=qfj<H(G5;iAqR6^TAS%7=eb8hdC4gi+D7|U
z8g`kmT#sll@xZ`?A!^)DD5Q?PbUo(*fSd0dJ`hglG>xpcIHvfkq<^-DXj&2h(ctOi
z;9aqYrM~KR2fx9bx-Ca(3i)j!1ekslRxn&SLJ;jBUZv7SFk~pJxJ0_nQvim2Pl0SL
zWMYufL<*Fw1L8jn4qZ&pIDOS}u@XkD8>lZEF^lrUhUW|$i&VP*xC+`M;R-YwW2A5s
z-ga*&Q28G~0YO>5k$>K86<va9#*x8BpLC{M3{B}7PL;nTTvVSWiC&fWI-xLFbdW>e
z>seX*5>r>xPX0j&3-98v9SYGp>Gf}N$7k=8P-xgWlBj(g$9bmSz>Z{TKk}~s+jcTl
zL}<SZF5l`9Wm%0Uu_1pW(C(bzBEkFa?+t@X{KnEwJl3z?aeo0FUXt!~#u@$bhIxu7
zCPqwZ&{eOkAEQzrD5eaulo*OWK0W@!$P?U@juz%&QamU)rVF9Cc)LfH`6}+b)wGWg
z^u>(fqWCC0b!e_=TZV=~kqnv066OdGi5=HdMdUIRIL21Q;~uw?Twi6qh+_U;;6YYU
zg!aOAwPr6zoPSgq^mCv)F4dCz6!)(#^DW1RyA3@}yoat>mroV=G(%|XCLL>Z2h{E$
z$K1ZkCLJz%A7jht<nD0w_Y5^zM4F9^oBW>(@Bu<|0b`GbeL7O1c4&wJd>%U_b$>4<
zTighxAzSjoZx41DZ^mE=W)YfbO4+Sl$G`h`1gvpVmVa@;^dezH^%9`;7JBit_&cyv
ztgBv=JBT?~!bT}40Tb(gk}<`(wDZvKMOoOi60N#K3$EGnQB$2hooHYYDY8^ls+VV^
zw28O*PqZy26zU@qdwCFG2HAkx$8d%th?26GKq6r|toP-oF<GOTANT2hlElNsA4_Gr
z(chGiDu1kog|}Rn>29`e2$><z(vwM<pJl#;5%mM!sZ&q?x)B+xITn)eD@oIhloIW6
zj}V+ed13meA%}Uk$wmJ-@?2AYy`&1-hp__vb^+J*tIl|8K{{+L$|})Mnp}k<q&S$M
zxJ@1-JzBoVS`QQlx}RLAShx?heo*<Xcu9;EpnnuVNaofvXYu4bcd<6@>s~EBuNCJu
z)%(!oE(W?OW3O7<7!~%|A)`KbqKf&b?M-@MN<rJ%@oP_7%D;0TeDV$Xelr3c7q*~%
zys6$z>n#0Sa2KlmhxKo6WZ7le(h;8mA|n#eO0M>qvU?t2xTzuSZtuoTuoWt$8M?zs
zyMG>=Oc=@ZpZ8!-K!JP?+NErmJ<=7LgV=6+a}_8g*lei4$`AP@jdpd{kh5Ws%^l%J
z1`^MltFY1fw`%$1bDzPDBh3qdOkFH``QmZF@QtSJJ>5ui^V(a?kDY@TQz8-_KA4US
zUPQL@1YzEZQ5KYp19hL*oG|}(sF5&WfPYaUj06G=`L_5`+3t*&cPy-`7#Ql24btZM
zL8syo*{9aYN<IU3>dwL%0)d~UrgjlaS3fG&mgdzc0Qm~5RZ(if(s(BTOz=#VYVK+l
zo0t5jvWQm?z;L&1VIIb;i{hAdA*9{dNig7hdHitLf&+x&0Js{uJ@sFBRL_Gj27fCp
z0+2LZh_*(NaX)|0es1{m`l*2#3u!)*tXAJs9xN~f#=l;;y6W%(qHVutin9DV_UO&R
zC1#`+q!Jg=n<Ul8j_RokN^RU|0PdjFgczzdE237*G=C|5nPYA6pzM2Uj0hTs5F=sj
zlN43JL<}F%@TVHJTLY*yL!mrIWq;iZ^b=nyRAzWX*veLd+pmoRaewGS7ZwiS-Qv0L
z2}V7afZl^DpmUQRGeM5<kK!kkW?$8ej<FkdF*Bg;>@V3S{;Y%2A-X|GKGPnw$LFj!
zY<Qh*cV-AgU&B5>V$sqXt}<8Nf9|FU=F{)pT$si+0fVPOGE}>)+blprXn(51tqPX#
zU~Voc-ZS>DOm&F04+>sf=u7ZIMLsuV__<OfJ}S#^iT8Gj_q{!sZO1MtKf%&t*^LNT
zcx~QlZ9mCeeyk&emY5RRJ&&Adl$i>fb4vQSGroK3|BcD!hc6vVoUxSD6;C>f7cO_}
zcf#x=m!a4yGVE1(3c^n%5r2lR_$Aed*<9OJduh*tu|RSsVTodf&Sm0!#{;+p3&_Ni
z_!EGGt{QaQiQ=<Q%MtB@wl$BfmO$fn?z^=m=14s=ZO3Md)P-Mj=8)PxXWzwolhrX~
zaTYA~3w+2AuF!h+_1Ey3aqq)02QH39gpaY@p``Z^fl1fj%qoJ9M}HJ3hsiK4xj&Ek
zlI<7Ld5@mSw1jLneT+>yI5C_;;{18*?)LujCfY2KXp$*T%8FOr0}BoQ7}3aaRGly#
zUYE*vLPkV+m@;I$paDO=UP5zq2fb$l1SK^|?Wdl{!w4yDWYb+R^u>RHZJsc=*mDOP
zU8a39`X#*$Z;fW}gnxtho<H+up?d6w353yBwMx9}!GMGZ{#X?7xPdJyFAQQzFp;NJ
zi(@fc!JCh>@?TVjk>~i9q{#U$j9+LGnz=aoQHtYXXWXrMAT)7&;XU&E_-qunw<Phe
z8bw4xeG1GfIdNd}A>H<ZuF6loOw&@x_GHzy+5E70e3;yg9DhfH1rvCR7BJSxzD<7g
zzKC2crzyyi*E9Tqx9p|R+Tfzy?X>CQZf4LhUxTVNGZky7f+gO()+wf!Bc+Hy`gk0C
z=5Vd>nK3>!7P<FWc+jSq9>?5MF2aCJXm}c<>HLils)3MDJOYDxAfgYZE>aRH(0Asx
zoOV_3S97nPqJN_-+vyY4=O0j(;Jml9(aRi1e^NHGPX)G7yX83RMWzA+HN&R^y)_Mw
zbgwyo8&i&?Hv}Cwd^%UlD;4caOSg+Cvip16K)=aN*<|T1QAKT|=D(c9Q1t+7H3yK|
z*Tq8b9R2~UHz%bHeUhI`*qpm+a^tuecr|vq1utB`n<9nY^uTBK<M{AbSUgTY>{J}?
zdx$TxY}jmWv$*~TUqF^}mjUz|69P3dmmu346u0TZ9IH<OG?yUT8x*&x5*;T(mr|Gs
z6PHh09X^*=SRHn^msK5Z0+*8#9TS&MTOB{QS6Ch70s=KSm(f%mP?z6$9Tc~rTOH5>
zm(Nrk6t{(59V`Nu23Q>vx5Qu_D*~51TOAX(0%INa0+(`L9TT?;W*zkcm$6_S6PF8S
z9kaK_X&piWm+xX76}KI19rFU0_+=dvmu+<&Mz?8i9oqtyX&n={S8^Q!1D6ME9Tc~1
zbsZoBmk)0p6}O^z9UudjLvkGymwtmCy0?&g9S8%LT6G;0x2u00zyp_#cpVeBeuEvs
z1DC>k9Tc~Un;m}xmzaMY6PG}!9Y~jar5y>kZJ!;d0s%9ZK!+VD4KNBXOl59obZ8(o
zF*BF(e+emn?Of?k+{m{7&R^k=?`jlW`y!351R*4lKv=?L8RbI*270C!rn{LW^Vi>V
zPL=Jl-R{uPS5HrRid-(&=Cl0HQspKhV;Rpp6ebf=Wn5=cK-FYgvP|gA2mvjbGdz<p
zP|Hl3j0@p1sWUDG+maq;36)6)i@-8UWZW{DDGqmkuQO#c?i@VBJa2WTMJAYHndX^*
z1u|{n%^dFVTE)~Byh&(S$H4mybA_E%SQJpVhG`rcqy%Odx?$*!p&JQ_5or<WZWxAc
z5C(=61nDk8q>&EkR6;;dI%Oyi=lTEV+@8Djt!MAM@9JG^e>+=0+kMK-j$Otu8)4#Q
zFKoMc6k@+Q-<LCv^_D`4ubHPr$RQ1u!#5OW2VS|+h85DQzav@j=*c=~_v&eE?O`52
z2OW`^PC+K$X!go{+a%e4^nxzjIlxK<@wKB*x*0oxZVyp{6qh;|o2APN<8QkqQlA?{
zKxj`6p3fy>8*-Ac3#B4geuDX{WRvwxG2?`Yaf%$CJ>O%PY*e5i>xHsgcsTdEroI@I
z)V&0=PO`~q@QTVIFeF;9BLg=e5z^1GXdp@uR;?aWGMP`CQOvtog9PvxR)Q?1>_Lh_
zO@R6IpBaqPJjh1d+D{7muqzCxdUMew8Rn?FgCRso^5Df(?OTSKV%*wlGU#aUYATJ3
z2R{b!RAlg5f1$xWJ_aj&drqY)1da1lp&RQA%npZ#1c_U|lZ;Rxdklo{p~l>1*(JdY
zPmn%5$Q%@;F5Dxp0K<U_fWJi4O(*Q6-gXLAs6w^_g?YdMILSI;pw%h?+lJ^$i0M=4
zy${d7ldZ1dv-Dn<hK%k!UFrcl!EdazKbDO{jmOJKo2qO`sMU$p1}@#}rSIS0PZsuK
z3@jwny@Z6|oh#^y9IXE<&G>8Ga<FLG6wH`a464TZW%J^LzapFp$JUlAaV4XM;5x~c
zJmGZ{wD+r2U)Z0MnL9hNPALKE<>Q{Iwa`pBXO}=@9h<C{<j$x5%1}_9Xarz&>~m#>
zn`ee5o~T7_3<2*d&{1MRRFQoS!N}BZAi6QL?X}G+<w-%GZm45kHy#*iD7?fmuN++A
zKvzWRpxcmNTmjGYyt#NdOZmx777U5zZ-GTZo_xGI<9JLU-A@ZPEYc3p#+e^-<!(_n
z=xp2Gt652N<m8)w&8TWPkV$tCPcOr=8rvp4oN?2=F<~%h7+YGTy^(WM4+B)#EhxM4
z9dN+fY=DxVb$W$1ohlmSGq#i2Du&F`X5{@esng0{T*E`TCu)_NmT4!xvFZBZREo1d
z9}aDS9YVnHnZWE#-qzF|=!bXQACGpp&h|L9{-Kcb7a^%VYSE;F+_Utj5vt7rf(HQ|
zyq6KOfm#_Ed-WVy99;r0-t_yihC(h=M5EuAdlgH2rsXaMC<V(3-3El`4Fkj?26;1}
zPhs_)mvDMS`f==toTheW-3~YJkwQVS-s*H&MlQ2=I-=J%I7u|O$Sb2xFq<kDBXSFP
zb3eFeNu5~0`KD~eTk5o1efK!}+~qynj){Zq$-}?yhhq&a&IJQk!r1k|)xNcU1z>73
z--nA;lADabt8&E@Xv1h&jo&KXQ64~xn2vOd77hyP6RLkb=YR7=4r@Q{Q>rQ5nd=e<
z6NXg+SibR&@lvUs-@BZLd<}t$c#~VLcdT4`(#(}SBwcGciC%tD8{vec`4oisHPDZH
zXU0_drg}@|0wHKEe-?95Vml_?sg?UDd+_nCW`?=Ct3QmuR<m7`?i9EqyF<M1pK&NQ
z33oY(5lY!dInkbB#`EtfMLFUBNnsPmNHB#V6n-ODG-#iVHUrBCeQR0~!i1b$T5cZH
z8OC((EFb2=1C_F?voonhaxC(=T53jfFB$fTUQ3Os<C7g_CNsJGNF!txS!4LzZi>Zx
zB811**zTRYb{Z>`oZ@71tj<uwV&<t!3fDhiU0V9;(^eB`Bhnl3(c7H4dd0+3MX8uF
zr|zZ4dA?Z~7vnL3UVTZ$P)0HC%u_dqn+mDEEDVatw(nP$Nf-2P-bCL%U}xg)vYmDg
z_SHX!;k#suL<abm<|tBXvRMCqPPcjbnqj(b1UT4E69$QM6__MA^l)|X!^-DuafjQp
zDW>6-JnaMXz2ne%Z;Xwaun<6hiocWqX<$Y(q#}}^ngM(cFJ^9RHOVroN^7Li`dULT
z;d(bm_IkFCO%p=M7n~;AX@y!ZCIrd8*#J(aF;yP7?EqUa-u^63k{M;*r|f-SWLpb;
ztMq48AtGEcCxYKoAEQ@QV#1n9eBgk6>^6pH1vU9pDDLw74H9>Zx_%j=KI$HU?aIte
zRvZelVWr>L{Zd_o0m|Zgkwj+C3UN|xhcWvpJujx}X!$EYs;F(eV}AYoxk0fG?v&aP
zKwu!nojZAfx?6~uP9L;{$3n$&u27WJ!`tVeD6k|{>s*f7=3r<KNM>htZ-yH?To5%y
z+mq+1c{8ODt@(hfcUK&v+DqA#H1sh%?EVns*MVs;)uBwqm@nTHJup=xSOsN@C!}^p
zbe~m@3L#~cP`2251WoR$<%J&RX(BJ0cZHe*N{W;fDx0aVY_8R0OJDP4kVUsBm=xpm
zDQUpSQ)ALpWqD$d-1M?|q42f=xs!2g2G-Xg{oi2RushO4_u+2);U=u$a0@7W%9UZ9
z$uj9Tu)1H62@0whGX2_h8s8^9jd;d#mDcnX@+6P2kta^fR-p)NoBG57&k(G8&5ERp
zvAQbEfY7j!q_MK{wVe19zK0+ycmi~@YnOLzi8&@Bl0S%)+YU`f!#j*9Yo}Lgz#VN<
zy2isqB`j7;D~9T64)?r7)&xHin3V7&eiG`7Op@i%stwst_2yVP>R*t(p{z-16s5+u
z7I&Doa@H6t-8M31-3zmJpJnj)D7y)@j<%k*5KW`-uFZ=74RlB}BY@{&LDW=v38AAl
zv}*X<fGgyW)LwmmIBDrp%}^rWc7jpqvO2_JB%Jn(eab%mUsb)4KgeET^6zqi61o1d
zD?^csb1mLRjwvnTaUp;Jy-UN2R!ze_P7vj*Sbqc`%Sg_!lY`xO8u3<J>dW7edM6`f
zW!zMeVmb6Cq$A=0nOaM>#iGDYd%>qQ&s-KM$fs=d={01h;h+{VZ|*;$=IvhPsxjng
zSf#9XDp9PR<Qg7&j&KSB=b5H<)_*Udhtsp522QH6msNZ|!V;fiN^T=dlyH9yh%~<O
z>l0e2{{mrdD4sLM4%>6_e}W;WK~KPsTzPIo=F>Y3D3V6}ef~Ig%&8~A!S}xLM~*|7
zrQ>ZDSm=^C;O883Qc>A40I>ev8Dz}eTXPdEN>G<Jt)_9-F29;n!ki$fUsf$X(Q+tW
zBQst{489=-%098*zn<k{0#wFR7*sn&NdEL1ZL>G%%Y|reAqH6ZH5#}x)djNCOFKA_
z9|rU-Vn4GDid;OK^cZ~~-kOT6wb4GwD!|cG6qYT9GeGQG6I~^~zT5Aciyvwi&SKBJ
z^`M2;@^)mMW6UVvW@Iu16n<yD6f=RLa_{PIlY9{5ItIoFVMQk{{GzPv%7IyO^*pmA
z5*DP&T1IJ_uism@)EDJ321DsHXIW)3?ES?BM}pa6+=Obn-n{3rwn9gyA=-oA^-@Mo
zi1lRQ>^vzs?n!5gQk}6w=7VC%U87sIXIVrkg_T=%re#}|XQsTM4<$oRAUK?Mf5~Dr
z@>;Y@id`#ZXf!A=*mxSW?+aLGORCVG*%FcBR|>EN9_4iXMCEX*iI_`N#10h82P<?L
z0*%$&rB2ZjQ_{xy88C7ZwLaO`RW<?v1q1N)Aedpr7iU7UI2Q>qNoyPhllnqmi#H}a
zB@{231=I>IokL)Bb(EoO93eC_^Q&cX1+SxV{<1|Yum2nso>a>hXHh7^0n>>^)H^jm
z^D|{{d$O<QccOk*+GVgAm8aOWkheUEPfe2eQ^otWJ<y!etX)@~C{4xCa3)z?FRuj-
zD5X4p8zjoH@TwYhKc5%7)>!AFnL74b5z_9|3oHG&y8L_yxyN*GlH|N<P%g8UrEH@;
zng&JE)vajSHe!t4(1Su<9=GF6nl|rkqzEn7lksi$BxOG@N&dLs*_l4#m@KpvY0H1Z
zow!tz5+D#(M-$6BIZYwLn|C~3cajbVIhTJrLq*(*51d@NBIy6rFjz)}2uS#Xc=3ui
z=O?#)jqK|0&_%TW@Cc#b$|L~FBu?Ln?XN?Q;b#$dh7W87JL~6+XnC~!fb&hA!uSJO
z=Ei0#(F7^-emuY6{lO~+a<4#1w|JE`WWUjfOo2F8P{8f9ol158=)Rw{bOBtBg6ET(
zj#MKvB>L?`uyN$!YupTFZpX%t3)a84Hishm7kg%^EcO7nG64}c(_ykaj-`}Z0X6`&
z=mt=-(P-*6mlCR}_k|$0D>bTr^#syyeeEr78cc6NgO&{);*XglO=$0GBfWHVJZn}5
zS$)5=mI3ib&yHNWhsx767s9O<-fb-pZ2sPFWgP-JV9Y5bUatnR^qjAJjm)sLOiaFv
z7aXk|NqQNROB!>$4(h^pO(wZ{&ZMF&Wq8CvqEV}OLwKQtVB-li3(P*=i9xU4y$VIb
zhw+PVzd%DpaSwL}?t>+Abp0)O@z6S<(mjK#W`d@aO?N4G-+J%w!Ei?6LDZr<&#&{~
zyHq{To+nmLf%*S3zMZ2_sDJUE4FGE!vWW53pCLXnDK%uSO9#U5eBZ>_wS7O<pl9RE
zSWm?Xk>^|!H8UGKKI~XSdtSdY{f+JSET4Csj3@bTV<W0N-s%Y%ZTNe&^0`6-1Kae~
z7W1FeyR9^J>twC2QEG5jU&&R<t5*VFo{VB_up2s|%fxTp{48xK<@Sa5xCw->cqNQM
zqt~Gjyr5uteph^SnE8Fd09L1;8OQ!uU361b%;`k=HAy8N&$onb5MJ?}{k7k__3$+{
zH0_1lL|Hnk5UZSAH>2!0)4Ob%Eo)ON4{@IO;8PcZcTMR_u`Tet?E%!RA95-0a$B?m
zS#Bpkw!Bo#`sao%K2gm7os(qMH;&yh#>sayv)Je~nxh@nsZBcpf$|AWJ)P18&zF{6
z2k@IjL3H(yQ``)8vHW)&!%vn_%+EMRU+t3mNeFgeYmR?s*QRrYt<LVe+^}|=Xpr63
zk0Zj`Wt{f~ziQ!>FMsE+?+l?Ox62Bclz`**vu<`MBSK%vEG2)?<iE&^eg1BS@jr6{
zBe$LowAfr|cTeFwA{u$lFnnk-{@?Qf5k^uD@c77vr^qnJhBhQSHwEwf3oTJ<x{a~9
zQX(U%T7;S5lvBXeR(g7WzahniXAlh;j_myeo4xXTHwF0k%0+yDcy|Hu&;+Yq?N0ZV
zFFfe{hDC6WX5Ly{=^4)hy2{7qY0oK-#0pCf5=Pp7=vlFF=3ExUDAyHyKQ@g%(m!6K
zTl!i+PEf)6P%EG@t}{k_oinj^uj5FkTFUTV6m2?|oeyH@kO}!WhJIKk2bo=P68Yw*
zW^Y;IIKk5c-Z~lI_&SC-??p#7A&DO|pnkV%l*@h>Uxtl^04*7gLRM~f{3W`Avlw+a
zjx7#!)fQ!+#pC!TahQ?7y-`OsDoQ%A1j?koi^Cc-mZ6IY;vt?<?y~83B4*}e9>JfN
zIwh9%%w%|68I7GO*dENIH|q!useRH_avNiV{=j#vv?Z0Ha}1zg*rSD@oa&k##kH;*
z&)^&OMqe=?qu%`&n(L<*prb@=|H^9(3Pl4t_gs>JvS;tCy7Z!SoSd%HfhU{-TnvZ1
zb?4$}XiJ35<oYfL`fVs4^pDa5x$x8-w|&-Pz`I$``s|Kp(MIR?H;{<nbN=pI54ef8
z0^AusIOio483sE4=J^kCDtleq4T_gkWi8jH5iFf>?>D<6t{RV7e>-c&jzx-IN4L5c
z&gud#VEo4usEFB!giK>&E0Pvw^9rgD6g3;4Sf}HERT%phSWD(}sx*~x?lAu&rhF<K
z%l!&N_LW?s>Ohf!$r7f;?xNC@^YhJ)naA%^y9PxHv!?i_cgl@+T?FY#*%wj80hP=0
zf!<%d{q)D5Q&#*mJZ!xnbt9PFi(B}!QS`lZ?g?O7n^ZRw{JN&F(XZVvIJ6#zt9(JO
z+5e*Ng3-Bo+J<h|^dgHDw=th`uO!#<(t$-T&J>`IiA;o&dp&<^^9UzEwsTIE@8QWQ
zn#AH0fv-yV0NHiyCbRpS+tkVu9iK7X^-jJ8hteqj<4pggXgT4FRaT;GVy~=DTom_R
zEfi~0-D)Wca|eN+Mm>^r&7vEjtYOUN$Py~d!ZRJV=pR3?<gZS|=I>y%Mf{uh1$CrD
zy{J(SGnMdQW9FvHI(dlV3E8u@?ooKq2Hf4?r8|41cE{I6HLl?*A)d<fk9DttaQ5WQ
z`S-}_G0(q51VG`b^Js=Sh~<r&!=7H}RZJ5ai;vCFO8yw{6!WU_C3<M{@~5lrzkK4P
zdq`(im}4!uv+T$icRXy}eFbMk3~GLYr_xb0JjM_84GD)?+N|LG7K7I6DZ<zMetYcC
z&ORj0un&I%*Z^eL=C`x>B|}3zVU{c_bJt>`YnQ1kQronj<RlNj0r&!y@uxa48OMdW
z70&rpf<xkAG3PGfQemIinT8iGu4_Y{HONWUU|)$z0wvDz^7KnHf-@bo<)CsC!Y5)-
zpoCX088Yk3ehx~1KYdoJ6YiQm+uP)98pI8nFHx)0(>vd5RY^X$*+qhaIj5T<b2$8W
ze{H(t=8$BbJ}E6y<!GOI<@kOhC%3HD#qmOOnf85o<vzj0QyH(@;AWjE&2QTBY2{B~
z%mp0RzZN8IazWifZMk1B+ejp@09~Jb2$q=DPBRcZExZeCyMW}+ArSM$(y|D94vKK|
zoEvXp;#-`>??DRlrPbK1uj$k^iTFtPgonp{KDhFf-7~I5DHx$JiyncbQ^bEDqkd~Z
z5wQG!DJB&PQ~=a#jVgJ>ji@IDKy#FP5fFfS)O4*?<-jB?6y@W^R_!Vv8Vdz3c`VIp
zfyCI438ilufV#LM5Md!<RC@yu^xyJF126@Jl|@d03T*@uQa_SQ)wiBr-e7UT|6`aU
zLMZ*0KyG+GQY$4KLK*e<p32XS=(}7P`(RX^dhqxLOS(ihF1LQ#JG!2MyIZcga`K^}
z>J={sQp?p<0!%S?1sW*E78WP=V|)_6np7Br%!dpNF3vrugV$l87+9!OdIcKyaT>gE
z@P-jFZ>XVL{o6Vl)d+cKS_4Ul7qH^{Rf7(y6N4xFjVXy4jMU4;iQyYe?kg{IC;k1b
zd6`mzm+K&}+tkrXZ0Ii85WT4nZvT1{yNDLU{wA#SWkj=P%MSa!ZDMu~N5d6!r<?_B
z;um3g#E}idMN0Y87J44Z>XafM^Aak59W4RtAHuvVX8_o)&&op|=^dKt@UWBW0K`{v
z5Dve}?)0%NJH*L9o$H3~?{5Ajw(;<TbIFoxo#NF0m2%&>J=~}fJJeBiSiMRLuK|ya
zg=hRsj5Ud!sbwDJ{u$I3CuGwy55<;L-WQqa{3(_>i+?H=p$B`?<2kRO)1Nq!Tsi)5
zqbDH_?U3;xQw0<=h!De({12Lbqh6R^ChWaPsw}3B2DOHP1S`)eoUEr@7BzpyearW?
zU1H-T5PO2%A3xcd{|C%V2&29>1DW9>uLuMT-v+)03rdI(2$+Ch3W9~ff{#rDH#hIc
zrXUysHXsntaJ6@PR6_q%%HWqW5=!DwRj7&zR8mP&2%@Z_Dx|C|sR)INK}D1yP)Sue
z@c)107195hNK`}^<<au!qM0!*BWqf`ljBpVp||!@KdQYZKl)B{HQf%_j}MBt(9JfM
zHgIXFkwq32Mx`z#@o$vED4*z4QW=F4#ubh+l2MWKGlx?*#T6RA0*4=jtS#U9zyBM&
zz8U3}C}`i_lZ6qB5M*L`8}3sS*2M3b#lVEGk;wpl8!1qFp(^Oa1m_BCu+7808J3&T
zYS)O5A+-M4dJ${E6CQUr9T<Cnn-lt$kBv>Crp!maA(qrwrdU{>D<VVJi8%FHee$ct
zns{}<8zzcKpQ|Q>5Bz)2`iY_2k{x@s(<Mx}<HK9AY}|c|Bq(IDtm(5INw`3_6CcMp
zSzdc#O93zV+}bj*7~TZxs-wJ`&of3z)T^nrM91OZYQ`)OG?J0XIn*#`xF6g(CJeha
zX7Ms<jerbv9MvOvS;jQ@%%FdUH5=or*`0=Ajmgy<^uwx+adZ6@Z6D~Jqi3bcxd=F3
zmT=+inm3i=N%%cDu3+sBsOcoRckOiV7`Jt`=KOTu9~Bkth3gPGt>F1>XO!Bv*+O;r
z+zUDunt?}i&85a||JX%adcDr+55j1i=8$2F6!XnbErcq#00Or!4W&CahjM&-gEHYO
z2={DDLyo>f7rf0$@()f1>LFC^EQ<CDdy@PYB!K%jk%+Or4X@3;piSilcOh<~s7OP}
z%?rcLU`5&>Fo#SfwQDGaE1dl3feb`@uNU%F@!Gm%e6aYJJo6714ODk4kdaVCOjv|~
LjZH;QmEeB>E;4vi

diff --git a/paper/aaai/paper.tex b/paper/aaai/paper.tex
index d481f00a..c1561ad4 100644
--- a/paper/aaai/paper.tex
+++ b/paper/aaai/paper.tex
@@ -117,8 +117,7 @@
 % nouns, adverbs, adjectives should be capitalized, including both words in hyphenated terms, while
 % articles, conjunctions, and prepositions are lower case unless they
 % directly follow a colon or long dash
-\title{ECCCos from the Black Box:\\
-Faithful Explanations through\\
+\title{Faithful Model Explanations through\\
 Energy-Constrained Conformal Counterfactuals}
 \author{
     %Authors
diff --git a/paper/appendix.tex b/paper/appendix.tex
index 9a44cb0e..623aa6c3 100644
--- a/paper/appendix.tex
+++ b/paper/appendix.tex
@@ -75,7 +75,7 @@ where $\hat{q}$ denotes the $(1-\alpha)$-quantile of $\mathcal{S}$ and $\alpha$
 
 Observe from Equation~\ref{eq:scp} that Conformal Prediction works on an instance-level basis, much like CE are local. The prediction set for an individual instance $\mathbf{x}_i$ depends only on the characteristics of that sample and the specified error rate. Intuitively, the set is more likely to include multiple labels for samples that are difficult to classify, so the set size is indicative of predictive uncertainty. To see why this effect is exacerbated by small choices for $\alpha$ consider the case of $\alpha=0$, which requires that the true label is covered by the prediction set with probability equal to 1.
 
-\subsubsection{Differentiability}
+\subsubsection{Differentiability}\label{app:cp-diff}
 
 The fact that conformal classifiers produce set-valued predictions introduces a challenge: it is not immediately obvious how to use such classifiers in the context of gradient-based counterfactual search. Put differently, it is not clear how to use prediction sets in Equation~\ref{eq:general}. Fortunately, \citet{stutz2022learning} have recently proposed a framework for Conformal Training that also hinges on differentiability. Specifically, they show how Stochastic Gradient Descent can be used to train classifiers not only for the discriminative task but also for additional objectives related to Conformal Prediction. One such objective is \textit{efficiency}: for a given target error rate $\alpha$, the efficiency of a conformal classifier improves as its average prediction set size decreases. To this end, the authors introduce a smooth set size penalty defined in Equation~\ref{eq:setsize} in the body of this paper. Formally, it is defined as $C_{\theta,\mathbf{y}}(\mathbf{x}_i;\alpha):=\sigma\left((s(\mathbf{x}_i,\mathbf{y})-\alpha) T^{-1}\right)$ for $\mathbf{y}\in\mathcal{Y}$, where $\sigma$ is the sigmoid function and $T$ is a hyper-parameter used for temperature scaling~\citep{stutz2022learning}.
 
diff --git a/paper/bib.bib b/paper/bib.bib
index f7795afd..fbc56554 100644
--- a/paper/bib.bib
+++ b/paper/bib.bib
@@ -3125,6 +3125,20 @@
   keywords  = {Computers / Data Science / Machine Learning, Computers / Image Processing, Computers / Computer Science, Computers / Machine Theory, Computers / Data Science / Neural Networks, Computers / Programming / General, Computers / Languages / Python, Computers / Data Science / Data Visualization},
 }
 
+@Article{samoilescu2021model,
+  author  = {Samoilescu, Robert-Florian and Van Looveren, Arnaud and Klaise, Janis},
+  title   = {Model-agnostic and scalable counterfactual explanations via reinforcement learning},
+  journal = {arXiv preprint arXiv:2106.02597},
+  year    = {2021},
+}
+
+@Article{chen2021seven,
+  author  = {Chen, Jiahao and Storchan, Victor},
+  title   = {Seven challenges for harmonizing explainability requirements},
+  journal = {arXiv preprint arXiv:2108.05390},
+  year    = {2021},
+}
+
 @Comment{jabref-meta: databaseType:biblatex;}
 
 @Comment{jabref-meta: keypatterndefault:[auth:lower][year][veryshorttitle:lower];}
diff --git a/paper/body.tex b/paper/body.tex
index 750f31d5..46f4aa15 100644
--- a/paper/body.tex
+++ b/paper/body.tex
@@ -2,7 +2,7 @@
 
 
 \begin{abstract}
-  Counterfactual explanations offer an intuitive and straightforward way to explain black-box models and offer algorithmic recourse to individuals. To address the need for plausible explanations, existing work has primarily relied on surrogate models to learn how the input data is distributed. This effectively reallocates the task of learning realistic explanations for the data from the model itself to the surrogate. Consequently, the generated explanations may seem plausible to humans but need not necessarily describe the behaviour of the black-box model faithfully. We formalise this notion of faithfulness through the introduction of a tailored evaluation metric and propose a novel algorithmic framework for generating \textbf{E}nergy-\textbf{C}onstrained \textbf{C}onformal \textbf{Co}unterfactuals (ECCCos) that are only as plausible as the model permits. Through extensive empirical studies, we demonstrate that ECCCos reconcile the need for faithfulness and plausibility. In particular, we show that for models with gradient access, it is possible to achieve state-of-the-art performance without the need for surrogate models. To do so, our framework relies solely on properties defining the black-box model itself by leveraging recent advances in energy-based modelling and conformal prediction. To our knowledge, this is the first venture in this direction for generating faithful counterfactual explanations. Thus, we anticipate that ECCCos can serve as a baseline for future research. We believe that our work opens avenues for researchers and practitioners seeking tools to better distinguish trustworthy from unreliable models.
+  Counterfactual explanations offer an intuitive and straightforward way to explain black-box models and offer algorithmic recourse to individuals. To address the need for plausible explanations, existing work has primarily relied on surrogate models to learn how the input data is distributed. This effectively reallocates the task of learning realistic explanations for the data from the model itself to the surrogate. Consequently, the generated explanations may seem plausible to humans but need not necessarily describe the behaviour of the black-box model faithfully. We formalise this notion of faithfulness through the introduction of a tailored evaluation metric and propose a novel algorithmic framework for generating \textbf{E}nergy-\textbf{C}onstrained \textbf{C}onformal \textbf{Co}unterfactuals that are only as plausible as the model permits. Through extensive empirical studies, we demonstrate that \textit{ECCCo} reconciles the need for faithfulness and plausibility. In particular, we show that for models with gradient access, it is possible to achieve state-of-the-art performance without the need for surrogate models. To do so, our framework relies solely on properties defining the black-box model itself by leveraging recent advances in energy-based modelling and conformal prediction. To our knowledge, this is the first venture in this direction for generating faithful counterfactual explanations. Thus, we anticipate that \textit{ECCCo} can serve as a baseline for future research. We believe that our work opens avenues for researchers and practitioners seeking tools to better distinguish trustworthy from unreliable models.
 \end{abstract}
 
 \section{Introduction}\label{intro}
@@ -19,11 +19,11 @@ In this work, we draw closer attention to model faithfulness rather than fidelit
 
 \begin{itemize}
   \item We show that fidelity is an insufficient evaluation metric for counterfactuals (Section~\ref{fidelity}) and propose a definition of faithfulness that gives rise to more suitable metrics (Section~\ref{faithfulness}).
-  \item We introduce a novel algorithmic approach aimed at generating Energy-Constrained Conformal Counterfactuals (ECCCos) that faithfully explain model behaviour in Section~\ref{meth}.
-  \item We provide extensive empirical evidence demonstrating that ECCCos faithfully explain model behaviour and attain plausibility only when appropriate (Section~\ref{emp}).
+  \item We introduce a ECCCo: a novel algorithmic approach aimed at generating Energy-Constrained Conformal Counterfactuals that faithfully explain model behaviour in Section~\ref{meth}.
+  \item We provide extensive empirical evidence demonstrating that ecccos faithfully explain model behaviour and attain plausibility only when appropriate (Section~\ref{emp}).
 \end{itemize}
 
-To our knowledge, this is the first venture in this direction for generating faithful counterfactuals. Thus, we anticipate that ECCCos can serve as a baseline for future research. We believe that our work opens avenues for researchers and practitioners seeking tools to better distinguish trustworthy from unreliable models.
+To our knowledge, this is the first venture in this direction for generating faithful counterfactuals. Thus, we anticipate that \textit{ECCCo} can serve as a baseline for future research. We believe that our work opens avenues for researchers and practitioners seeking tools to better distinguish trustworthy from unreliable models.
 
 \section{Background}\label{background}
 
@@ -70,7 +70,7 @@ Since \textit{Wachter} is only concerned with proximity, the generated counterfa
 
 So which of the counterfactuals most faithfully explains the behaviour of our image classifier? Fidelity cannot help us to make that judgement, because all of these counterfactuals have full fidelity. Thus, fidelity is an insufficient evaluation metric to assess the faithfulness of CE. 
 
-\section{A New Notion of Faithfulness}\label{faithfulness}
+\section{Faithful first, Plausible second}\label{faithfulness}
 
 Considering the limitations of fidelity as demonstrated in the previous section, analogous to Definition~\ref{def:plausible}, we introduce a new notion of faithfulness in the context of CE:
 
@@ -95,6 +95,33 @@ where $\mathbf{r}_j \sim \mathcal{N}(\mathbf{0},\mathbf{I})$ is the stochastic t
 
 Generating multiple samples using SGLD thus yields an empirical distribution $\widehat{\mathbf{X}}_{\theta,\mathbf{y}^+}$ that approximates what the model has learned about the input data. While in the context of EBM, this is usually done during training, we propose to repurpose this approach during inference in order to evaluate and generate faithful model explanations.
 
+\subsection{Quantifying the Model's Predictive Uncertainty}
+
+Faithful counterfactuals can be expected to also be plausible if the learned conditional distribution $\mathcal{X}_{\theta}|\mathbf{y}^+$ (Defintion~\ref{def:faithful}) is close to the true conditional distribution $\mathcal{X}|\mathbf{y}^+$ (Definition~\ref{def:plausible}). We can further improve plausibility of counterfactuals without the need for surrogate models that may interfer with faithfulness by minimizing predictive uncertainty~\citep{schut2021generating}.
+Unfortunately, this approach relies on the assumption that the model itself can provide predictive uncertainty estimates, which may be too restrictive in practice. 
+
+To relax this assumption, we use conformal prediction (CP), an approach to predictive uncertainty quantification that has recently gained popularity~\citep{angelopoulos2021gentle,manokhin2022awesome}. Crucially for our intended application, CP is model-agnostic and can be applied during inference without placing any restrictions on model training. Intuitively, CP works under the premise of turning heuristic notions of uncertainty into rigorous uncertainty estimates by repeatedly sifting through the training data or a dedicated calibration dataset. 
+
+Conformal classifiers produce prediction sets for individual inputs that include all output labels that can be reasonably attributed to the input. Finally, classification sets are formed as follows,
+
+\begin{equation}\label{eq:scp}
+  \begin{aligned}
+    C_{\theta}(\mathbf{x}_i;\alpha)=\{\mathbf{y}: s(\mathbf{x}_i,\mathbf{y}) \le \hat{q}\}
+  \end{aligned}
+\end{equation}
+
+where $\hat{q}$ denotes the $(1-\alpha)$-quantile of $\mathcal{S}$ and $\alpha$ is a predetermined error rate.
+
+These sets tend to be larger for inputs that do not conform with the training data and are characterized by high predictive uncertainty. To leverage this notion of predictive uncertainty in the context of gradient-based counterfactual search, we use a smooth set size penalty introduced by~\citet{stutz2022learning}:
+
+\begin{equation}\label{eq:setsize}
+  \begin{aligned}
+    \Omega(C_{\theta}(\mathbf{x};\alpha))&=\max \left(0, \sum_{\mathbf{y}\in\mathcal{Y}}C_{\theta,\mathbf{y}}(\mathbf{x}_i;\alpha) - \kappa \right)
+  \end{aligned}
+\end{equation}
+
+Here, $\kappa \in \{0,1\}$ is a hyper-parameter and $C_{\theta,\mathbf{y}}(\mathbf{x}_i;\alpha)$ can be interpreted as the probability of label $\mathbf{y}$ being included in the prediction set (see Appendix~\ref{app:cp-diff} for details). In order to compute this penalty for any black-box model we merely need to perform a single calibration pass through a holdout set $\mathcal{D}_{\text{cal}}$. Arguably, data is typically abundant and in most applications, practitioners tend to hold out a test data set anyway. Consequently, CP removes the restriction on the family of predictive models, at the small cost of reserving a subset of the available data for calibration. This particular case of conformal prediction is referred to as *split conformal prediction* (SCP) as it involves splitting the training data into a proper training dataset and a calibration dataset.
+
 \subsection{Evaluating Plausibility and Faithfulness}
 
 The parallels between our definitions of plausibility and faithfulness imply that we can also use similar evaluation metrics in both cases. Since existing work has focused heavily on plausibility, it offers a useful starting point. In particular,~\citet{guidotti2022counterfactual} have proposed an implausibility metric that measures the distance of the counterfactual from its nearest neighbour in the target class. As this distance is reduced, counterfactuals get more plausible under the assumption that the nearest neighbour itself is plausible in the sense of Definition~\ref{def:plausible}. In this work, we use the following adapted implausibility metric,
@@ -119,7 +146,7 @@ Specifically, we form this subset based on the $n_E$ generated samples with the
 
 \section{Energy-Constrained Conformal Counterfactuals}\label{meth}
 
-Given our proposed notion of faithfulness, we now describe \textit{ECCCo}, our proposed framework for generating Energy-Constrained Conformal Counterfactuals (ECCCos). It is based on the premise that counterfactuals should first and foremost be faithful. Plausibility, as a secondary concern, is then still attainable, but only to the degree that the black-box model itself has learned plausible explanations for the underlying data. 
+Given our proposed notion of faithfulness, we now describe \textit{ECCCo}, our proposed framework for generating Energy-Constrained Conformal Counterfactuals. It is based on the premise that counterfactuals should first and foremost be faithful. Plausibility, as a secondary concern, is then still attainable, but only to the degree that the black-box model itself has learned plausible explanations for the underlying data. 
 
 We begin by stating our proposed objective function, which involves tailored loss and penalty functions that we will explain in the following. In particular, we extend Equation~\ref{eq:general} as follows:
 
@@ -130,19 +157,7 @@ We begin by stating our proposed objective function, which involves tailored los
   \end{aligned} 
 \end{equation}
 
-The first penalty term involving $\lambda_1$ induces proximity like in~\citet{wachter2017counterfactual}. Our default choice for $\text{dist}(\cdot)$ is the L1 Norm due to its sparsity-inducing properties. The second penalty term involving $\lambda_2$ induces faithfulness by constraining the energy of the generated counterfactual where $\text{unfaith}(\cdot)$ corresponds to the metric defined in Equation~\ref{eq:faith}. The third and final penalty term involving $\lambda_3$ introduces a new concept: it ensures that the generated counterfactual is associated with low predictive uncertainty. As mentioned in Section~\ref{background},~\citet{schut2021generating} have shown that plausible counterfactuals can be generated implicitly through predictive uncertainty minimization. Unfortunately, this relies on the assumption that the model itself can provide predictive uncertainty estimates, which may be too restrictive in practice. 
-
-To relax this assumption, we leverage recent advances in conformal prediction (CP), an approach to predictive uncertainty quantification that has recently gained popularity~\citep{angelopoulos2021gentle,manokhin2022awesome}. Crucially for our intended application, CP is model-agnostic and can be applied during inference without placing any restrictions on model training. Intuitively, CP works under the premise of turning heuristic notions of uncertainty into rigorous uncertainty estimates by repeatedly sifting through the training data or a dedicated calibration dataset. Conformal classifiers produce prediction sets for individual inputs that include all output labels that can be reasonably attributed to the input. These sets tend to be larger for inputs that do not conform with the training data and are characterized by high predictive uncertainty. 
-
-In order to generate counterfactuals that are associated with low predictive uncertainty, we use a smooth set size penalty introduced by~\citet{stutz2022learning} in the context of conformal training:
-
-\begin{equation}\label{eq:setsize}
-  \begin{aligned}
-    \Omega(C_{\theta}(\mathbf{x};\alpha))&=\max \left(0, \sum_{\mathbf{y}\in\mathcal{Y}}C_{\theta,\mathbf{y}}(\mathbf{x}_i;\alpha) - \kappa \right)
-  \end{aligned}
-\end{equation}
-
-Here, $\kappa \in \{0,1\}$ is a hyper-parameter and $C_{\theta,\mathbf{y}}(\mathbf{x}_i;\alpha)$ can be interpreted as the probability of label $\mathbf{y}$ being included in the prediction set. In order to compute this penalty for any black-box model we merely need to perform a single calibration pass through a holdout set $\mathcal{D}_{\text{cal}}$. Arguably, data is typically abundant and in most applications, practitioners tend to hold out a test data set anyway. Consequently, CP removes the restriction on the family of predictive models, at the small cost of reserving a subset of the available data for calibration. This particular case of conformal prediction is referred to as *split conformal prediction* (SCP) as it involves splitting the training data into a proper training dataset and a calibration dataset. Further details are provided in Appendix~\ref{app:cp}.
+The first penalty term involving $\lambda_1$ induces proximity like in~\citet{wachter2017counterfactual}. Our default choice for $\text{dist}(\cdot)$ is the L1 Norm due to its sparsity-inducing properties. The second penalty term involving $\lambda_2$ induces faithfulness by constraining the energy of the generated counterfactual where $\text{unfaith}(\cdot)$ corresponds to the metric defined in Equation~\ref{eq:faith}. The third and final penalty term involving $\lambda_3$ ensures that the generated counterfactual is associated with low predictive uncertainty.
 
 \begin{figure}
   \centering
@@ -179,11 +194,11 @@ Algorithm~\ref{alg:eccco} describes how exactly \textit{ECCCo} works. For the sa
 Our goal in this section is to shed light on the following research questions:
 
 \begin{question}[Faithfulness]\label{rq:faithfulness}
-  To what extent are ECCCos more faithful than counterfactuals produced by state-of-the-art generators?
+  To what extent are counterfactuals generated by \textit{ECCCo} more faithful than those produced by state-of-the-art generators?
 \end{question}
 
 \begin{question}[Balancing Objectives]\label{rq:plausibility}
-  Compared to state-of-the-art generators, how do ECCCos balance the two key objectives of faithfulness and plausibility?
+  Compared to state-of-the-art generators, how does \textit{ECCCo} balance the two key objectives of faithfulness and plausibility?
 \end{question}
 
 The second question is motivated by the intuition that faithfulness and plausibility should coincide for models that have learned plausible explanations of the data.
@@ -196,7 +211,7 @@ We use both synthetic and real-world datasets from different domains, all of whi
 
 As for real-world data, we follow~\citet{schut2021generating} and use the \textit{MNIST}~\citep{lecun1998mnist} dataset containing images of handwritten digits such as the example shown above in Figure~\ref{fig:motiv}. From the social sciences domain, we include Give Me Some Credit (\textit{GMSC})~\citep{kaggle2011give}: a tabular dataset that has been studied extensively in the literature on algorithmic recourse~\citep{pawelczyk2021carla}. It consists of 11 numeric features that can be used to predict the binary outcome variable indicating whether retail borrowers experience financial distress. 
 
-For the predictive modelling tasks, we use simple neural networks (\textit{MLP}) and Joint Energy Models (\textit{JEM}). For the more complex real-world datasets we also use ensembling in each case. Both joint-energy modelling and ensembling have been associated with improved generative properties and adversarial robustness~\citep{grathwohl2020your,lakshminarayanan2016simple}, so we expect this to be positively correlated with the plausibility of ECCCos. To account for stochasticity, we generate multiple counterfactuals for each target class, generator, model and dataset. Specifically, we randomly sample $n^{-}$ times from the subset of individuals for which the given model predicts the non-target class $\mathbf{y}^{-}$ given the current target. We set $n^{-}=25$ for all of our synthetic datasets, $n^{-}=10$ for \textit{GMSC} and $n^{-}=5$ for \textit{MNIST}. Full details concerning our parameter choices, training procedures and model performance can be found in Appendix~\ref{app:setup}.
+For the predictive modelling tasks, we use simple neural networks (\textit{MLP}) and Joint Energy Models (\textit{JEM}). For the more complex real-world datasets we also use ensembling in each case. Both joint-energy modelling and ensembling have been associated with improved generative properties and adversarial robustness~\citep{grathwohl2020your,lakshminarayanan2016simple}, so we expect this to be positively correlated with the plausibility of \textit{ECCCo}. To account for stochasticity, we generate multiple counterfactuals for each target class, generator, model and dataset. Specifically, we randomly sample $n^{-}$ times from the subset of individuals for which the given model predicts the non-target class $\mathbf{y}^{-}$ given the current target. We set $n^{-}=25$ for all of our synthetic datasets, $n^{-}=10$ for \textit{GMSC} and $n^{-}=5$ for \textit{MNIST}. Full details concerning our parameter choices, training procedures and model performance can be found in Appendix~\ref{app:setup}.
 
 \subsection{Results for Synthetic Data}
 
@@ -204,7 +219,7 @@ Table~\ref{tab:results-synthetic} shows the key results for the synthetic datase
 
 Starting with the high-level results for our \textit{Linearly Separable} data, we find that \textit{ECCCo} produces the most faithful counterfactuals for both black-box models. This is consistent with our design since \textit{ECCCo} directly enforces faithfulness through regularization. Crucially though, \textit{ECCCo} also produces the most plausible counterfactuals for both models. This dataset is so simple that even the \textit{MLP} has learned plausible explanations of the input data. Zooming in on the granular details for the \textit{Linearly Separable} data, the results for \textit{ECCCo (no CP)} and \textit{ECCCo (no EBM)} indicate that the positive results are dominated by the effect of quantifying and leveraging the model's generative property (EBM). Conformal prediction alone only leads to marginally improved faithfulness and plausibility.
 
-The findings for the \textit{Moons} dataset are broadly in line with the findings so far: for the \textit{JEM}, \textit{ECCCo} yields substantially more faithful and plausible counterfactuals than all other generators. For the \textit{MLP}, faithfulness is maintained but counterfactuals are not plausible. This high-level pattern is broadly consistent with other more complex datasets and supportive of our narrative, so it is worth highlighting: ECCCos consistently achieve high faithfulness, which---subject to the quality of the model itself---coincides with high plausibility. By comparison, \textit{REVISE} yields the most plausible counterfactuals for the \textit{MLP}, but it does so at the cost of faithfulness. We also observe that the best results for \textit{ECCCo} are achieved when using both penalties. Once again though, the generative component (EBM) has a stronger impact on the positive results for the \textit{JEM}.
+The findings for the \textit{Moons} dataset are broadly in line with the findings so far: for the \textit{JEM}, \textit{ECCCo} yields substantially more faithful and plausible counterfactuals than all other generators. For the \textit{MLP}, faithfulness is maintained but counterfactuals are not plausible. This high-level pattern is broadly consistent with other more complex datasets and supportive of our narrative, so it is worth highlighting: \textit{ECCCo} consistently achieves high faithfulness, which---subject to the quality of the model itself---coincides with high plausibility. By comparison, \textit{REVISE} yields the most plausible counterfactuals for the \textit{MLP}, but it does so at the cost of faithfulness. We also observe that the best results for \textit{ECCCo} are achieved when using both penalties. Once again though, the generative component (EBM) has a stronger impact on the positive results for the \textit{JEM}.
 
 For the \textit{Circles} data, it appears that \textit{REVISE} performs well, but we note that it generates valid counterfactuals only half of the time (see Appendix~\ref{app:results} for a complete overview including additional common evaluation metrics). The underlying VAE with default parameters has not adequately learned the data-generating process. Of course, it is possible to improve generative performance through hyperparameter tuning but this example serves to illustrate that \textit{REVISE} depends on the quality of its surrogate. Independent of the outcome for \textit{REVISE}, however, the results do not seem to indicate that \textit{ECCCo} substantially improves faithfulness and plausibility for the \textit{Circles} data. We think this points to a limitation of our evaluation metrics rather than \textit{ECCCo} itself: computing average distances fails to account for the `wraparound' effect associated with circular data~\citep{gill2010circular}.
 
@@ -212,9 +227,9 @@ For the \textit{Circles} data, it appears that \textit{REVISE} performs well, bu
 
 \subsection{Results for Real-World Data}
 
-The results for our real-world datasets are shown in Table~\ref{tab:results-real-world}. Once again the findings indicate that the plausibility of ECCCos is positively correlated with the capacity of the black-box model to distinguish plausible from implausible inputs. The case is very clear for \textit{MNIST}: ECCCos are consistently more faithful than the counterfactuals produced by our benchmark generators and their plausibility gradually improves through ensembling and joint-energy modelling. Interestingly, faithfulness also gradually improves for \textit{REVISE}. This indicates that as our models improve, their generative capacity approaches that of the surrogate VAE used by \textit{REVISE}. The VAE still outperforms our classifiers in this regard, as evident from the fact that \textit{ECCCo} never quite reaches the same level of plausibility as \textit{REVISE}. With reference to Appendix~\ref{app:results} we note that the results for \textit{Schut} need to be discounted as it rarely produces valid counterfactuals for \textit{MNIST}. Relatedly, we find that \textit{ECCCo} is the only generator that consistently achieves full validity. Finally, it is worth noting that \textit{ECCCo} produces counterfactual images with the lowest average predictive uncertainty for all models. 
+The results for our real-world datasets are shown in Table~\ref{tab:results-real-world}. Once again the findings indicate that the plausibility attained by \textit{ECCCo} is positively correlated with the capacity of the black-box model to distinguish plausible from implausible inputs. The case is very clear for \textit{MNIST}: \textit{ECCCo} consistently generates more faithful counterfactuals than other generators and plausibility gradually improves through ensembling and joint-energy modelling. Interestingly, faithfulness also gradually improves for \textit{REVISE}. This indicates that as our models improve, their generative capacity approaches that of the surrogate VAE used by \textit{REVISE}. The VAE still outperforms our classifiers in this regard, as evident from the fact that \textit{ECCCo} never quite reaches the same level of plausibility as \textit{REVISE}. With reference to Appendix~\ref{app:results} we note that the results for \textit{Schut} need to be discounted as it rarely produces valid counterfactuals for \textit{MNIST}. Relatedly, we find that \textit{ECCCo} is the only generator that consistently achieves full validity. Finally, it is worth noting that \textit{ECCCo} produces counterfactual images with the lowest average predictive uncertainty for all models. 
 
-For the tabular credit dataset (\textit{GMSC}) it is inherently challenging to use deep neural networks in order to achieve good discriminative performance~\citep{borisov2022deep,grinsztajn2022why} and generative performance~\citep{liu2023goggle}, respectively. In order to achieve high plausibility, \textit{ECCCo} effectively requires classifiers to achieve good performance for both tasks. Since this is a challenging task even for Joint Energy Models, it is not surprising to find that even though \textit{ECCCo} once again achieves state-of-the-art faithfulness, it is outperformed by \textit{REVISE} and \textit{Schut} with respect to plausibility.
+For the tabular credit dataset (\textit{GMSC}) it is inherently challenging to use deep neural networks in order to achieve good discriminative performance~\citep{borisov2022deep,grinsztajn2022why} and generative performance~\citep{liu2022goggle}, respectively. In order to achieve high plausibility, \textit{ECCCo} effectively requires classifiers to achieve good performance for both tasks. Since this is a challenging task even for Joint Energy Models, it is not surprising to find that even though \textit{ECCCo} once again achieves state-of-the-art faithfulness, it is outperformed by \textit{REVISE} and \textit{Schut} with respect to plausibility.
 
 \subsection{Key Takeways}
 
@@ -224,12 +239,24 @@ To conclude this section, we summarize our findings with reference to the openin
 
 \section{Limitations}
 
-Even though we have taken considerable measures to study our proposed methodology carefully, limitations can still be identified. In particular, we have found that the performance of \textit{ECCCo} is sensitive to hyperparameter choices. In order to achieve faithfulness, we generally had to penalise the distance from generated samples slightly more than the distance from factual values.
+Even though we have taken considerable measures to study our proposed methodology carefully, limitations can still be identified. 
+
+\subsection{Evaluation Metrics}
+
+Our proposed distance-based evaluation metrics for plausibility and faithfulness may not be universally applicable to all types of data. In any case, they depend on choosing a distance metric on a case-by-base basis for different datasets. Arguably, commonly used metrics for measuring other desiderata such as closeness suffer from the same pitfall. We therefore think that future work on counterfactual explanations could benefit from defining universal evaluation metrics. 
 
-Conversely, we have not found that strongly penalising prediction set sizes had any discernable effect. Our results indicate that CP alone is often not sufficient to achieve faithfulness and plausibility, although we acknowledge that this needs to be investigated more thoroughly through future work.
+\subsection{Experiments}
+
+While we have employed various datasets in our experiments that are commonly used in the related literature, we acknowledge that additional real-world data and application is needed to test \textit{ECCCo} and improve upon the ideas we have presented in this work. One challenge in this context is that counterfactual explanations do not scale very well to high-dimensional input data like images~\citep{samoilescu2021model,chen2021seven}. Consequently, we have limited ourselves to studying small image datasets only. 
+
+\subsection{Generalizability}
 
 While our approach is readily applicable to models with gradient access like deep neural networks, more work is needed to generalise it to other machine learning models such as decision trees. Relatedly, common challenges associated with energy-based modelling including sensitivity to scale, training instabilities and sensitivity to hyperparameters also apply to \textit{ECCCo}.
 
+\subsection{Ablation Studies}
+
+In our experiments we have used ablation to understand the roles of the different components of \textit{ECCCo}. Our results here indicate that conformal prediction alone is often not sufficient to achieve faithfulness and plausibility. To test this initial finding more throughly, future work could benefit from more extensive abalation studies that thoroughly tune hyperparameters and investigate different approaches to conformal prediction. 
+
 \section{Conclusion}
 
 This work leverages recent advances in energy-based modelling and conformal prediction in the context of Explainable Artificial Intelligence. We have proposed a new way to generate counterfactuals that are maximally faithful to the black-box model they aim to explain. Our proposed generator, \textit{ECCCo}, produces plausible counterfactuals if and only if the black-box model itself has learned realistic explanations for the data, which we have demonstrated through rigorous empirical analysis. This should enable researchers and practitioners to use counterfactuals in order to discern trustworthy models from unreliable ones. While the scope of this work limits its generalizability, we believe that \textit{ECCCo} offers a solid baseline for future work on faithful counterfactual explanations.
\ No newline at end of file
-- 
GitLab