diff --git a/experiments/mnist.sh b/experiments/mnist.sh index 8823002ac8addd0a41b6f90d0b7d20dfb903aa25..87dd05d7fc4608cd967bfc06f0681ea9f13eb438 100644 --- a/experiments/mnist.sh +++ b/experiments/mnist.sh @@ -11,4 +11,4 @@ module load 2023r1 openmpi -srun julia --project=experiments experiments/run_experiments.jl -- data=mnist output_path=results mpi > experiments/mnist.log +srun julia --project=experiments experiments/run_experiments.jl -- data=mnist output_path=results mpi retrain > experiments/mnist.log diff --git a/experiments/models/models.jl b/experiments/models/models.jl index 63c1c4eb07735a3059148fe04355fe5e9d4f5f48..8c3941443c50f4721e3046c8cdc11385236fd295 100644 --- a/experiments/models/models.jl +++ b/experiments/models/models.jl @@ -47,20 +47,9 @@ function prepare_models(exper::Experiment) @info "Training models." model_dict = train_models(models, X, labels; parallelizer=exper.parallelizer, train_parallel=exper.train_parallel, cov=exper.coverage) else - # Pre-trained models: - if !(is_multi_processed(exper) && MPI.Comm_rank(exper.parallelizer.comm) != 0) - # Load models on root process: - @info "Loading pre-trained models." - model_dict = Serialization.deserialize(joinpath(pretrained_path(exper), "$(exper.save_name)_models.jls")) - else - # Dummy model on other processes: - model_dict = nothing - end - # Broadcast models: - if is_multi_processed(exper) - model_dict = MPI.bcast(model_dict, exper.parallelizer.comm; root=0) - MPI.Barrier(exper.parallelizer.comm) - end + # Load models on root process: + @info "Loading pre-trained models." + model_dict = Serialization.deserialize(joinpath(pretrained_path(exper), "$(exper.save_name)_models.jls")) end # Save models: