diff --git a/experiments/experiment.jl b/experiments/experiment.jl index f3388c04723f4b99bb5dc2db51e976250ebd5292..baf73b49845f7109dc29195860254bca3791fd37 100644 --- a/experiments/experiment.jl +++ b/experiments/experiment.jl @@ -91,7 +91,7 @@ function run_experiment(exper::Experiment; save_output::Bool=true, only_models:: # Model tuning: if TUNE_MODEL - mach = tune_model(exper) + mach = tune_mlp(exper) return mach end diff --git a/experiments/jobscripts/tuning/generators/tabular.sh b/experiments/jobscripts/tuning/generators/tabular.sh index 8cf5e9666b41cdcb0091109a2bcf5f14a18970c2..6769aebdea7ea30c70d635b4b649ce7055a73d5c 100644 --- a/experiments/jobscripts/tuning/generators/tabular.sh +++ b/experiments/jobscripts/tuning/generators/tabular.sh @@ -2,10 +2,10 @@ #SBATCH --job-name="Grid-search Tabular (ECCCo)" #SBATCH --time=06:00:00 -#SBATCH --ntasks=1000 +#SBATCH --ntasks=100 #SBATCH --cpus-per-task=1 #SBATCH --partition=compute -#SBATCH --mem-per-cpu=4GB +#SBATCH --mem-per-cpu=8GB #SBATCH --account=research-eemcs-insy #SBATCH --mail-type=END # Set mail type to 'END' to receive a mail when the job finishes. diff --git a/experiments/mnist.jl b/experiments/mnist.jl index 12cc30f3223c32d81390a571ef65947b0aa44fa4..965b68c2148e81a0c2ab53d8797ff8605a25a454 100644 --- a/experiments/mnist.jl +++ b/experiments/mnist.jl @@ -28,7 +28,7 @@ add_models = Dict( # Parameter choices: params = ( n_individuals=N_IND_SPECIFIED ? N_IND : 10, - builder=default_builder(n_hidden=128, n_layers=2, activation=Flux.swish), + builder=default_builder(n_hidden=128, n_layers=1, activation=Flux.swish), ð’Ÿx=Uniform(-1.0, 1.0), α=[1.0, 1.0, 1e-2], sampling_batch_size=10, diff --git a/experiments/model_tuning.jl b/experiments/model_tuning.jl index 41efa91cb3d2c8d4052a2e0ef6980ab1e214774b..dfabfbaa0111dd98e0082675f0272b20a2fa38bf 100644 --- a/experiments/model_tuning.jl +++ b/experiments/model_tuning.jl @@ -6,11 +6,11 @@ Output path for tuned model. tuned_model_path(exper::Experiment) = joinpath(exper.output_path, "tuned_model") """ - tune_model(exper::Experiment; kwargs...) + tune_mlp(exper::Experiment; kwargs...) Tunes MLP in place and saves the tuned model to disk. """ -function tune_model(exper::Experiment; kwargs...) +function tune_mlp(exper::Experiment; kwargs...) if !(is_multi_processed(exper) && MPI.Comm_rank(exper.parallelizer.comm) != 0) @info "Tuning models." # Output path: @@ -28,7 +28,7 @@ function tune_model(exper::Experiment; kwargs...) X, y, _ = prepare_data(exper::Experiment) # Tune model: measure = collect(values(exper.model_measures)) - mach = tune_model(model, X, y; tuning_params=exper.model_tuning_params, measure=measure, kwargs...) + mach = tune_mlp(model, X, y; tuning_params=exper.model_tuning_params, measure=measure, kwargs...) # Machine is still on GPU, save CPU version of model: best_results = fitted_params(mach) Serialization.serialize(joinpath(model_tuning_path, "$(exper.save_name)_best_mlp.jls"), best_results) @@ -39,11 +39,11 @@ function tune_model(exper::Experiment; kwargs...) end """ - tune_model(mod::Supervised, X, y; tuning_params::NamedTuple, kwargs...) + tune_mlp(mod::Supervised, X, y; tuning_params::NamedTuple, kwargs...) Tunes a model by performing a grid search over the parameters specified in `tuning_params`. """ -function tune_model( +function tune_mlp( model::Supervised, X, y; tuning_params::NamedTuple, measure::Vector=MODEL_MEASURE_VEC,