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Abstract—Existing work on Counterfactual Explanations (CE)
and Algorithmic Recourse (AR) has largely focused on single
individuals in a static environment: given some estimated model,
the goal is to find valid counterfactuals for an individual
instance that fulfill various desiderata. The ability of such
counterfactuals to handle dynamics like data and model drift
remains a largely unexplored research challenge. There has also
been surprisingly little work on the related question of how
the actual implementation of recourse by one individual may
affect other individuals. Through this work we aim to close
that gap. We first show that many of the existing methodologies
can be collectively described by a generalized framework. We
then argue that the existing framework does not account for
a hidden external cost of recourse, that only reveals itself when
studying the endogenous dynamics of recourse at the group level.
Through simulation experiments involving various state-of-the-
art counterfactual generators and several benchmark datasets,
we generate large numbers of counterfactuals and study the
resulting domain and model shifts. We find that the induced
shifts are substantial enough to likely impede the applicability of
Algorithmic Recourse in some situations. Fortunately, we find
various strategies to mitigate these concerns. Our simulation
framework for studying recourse dynamics is fast and open-
sourced.

Index Terms—Algorithmic Recourse; Counterfactual Explana-
tions; Explainable AI; Dynamic Systems

I. INTRODUCTION

Recent advances in Artificial Intelligence (AI) have pro-
pelled its adoption in scientific domains outside of Computer
Science including Healthcare, Bioinformatics, Genetics and
the Social Sciences. While this has in many cases brought
benefits in terms of efficiency, state-of-the-art models like
Deep Neural Networks (DNN) have also given rise to a
new type of problem in the context of data-driven decision-
making. They are essentially black boxes: so complex, opaque
and underspecified in the data that it is often impossible to

understand how they actually arrive at their decision without
auxiliary tools. Despite this shortcoming, black-box mod-
els have grown in popularity in recent years and have at
times created undesirable societal outcomes [1]. The scientific
community has tackled this issue from two different angles:
while some have appealed for a strict focus on inherently
interpretable models [2], others have investigated different
ways to explain the behaviour of black-box models. These
two sub-domains can be broadly referred to as interpretable
AI and explainable AI (XAI), respectively.

Among the approaches to XAI that have recently grown
in popularity are Counterfactual Explanations (CE). They
explain how inputs into a model need to change for it to
produce different outputs. Counterfactual Explanations that
involve realistic and actionable changes can be used for the
purpose of Algorithmic Recourse (AR) to help individuals
who face adverse outcomes. An example relevant to the Social
Sciences is consumer credit: in this context, AR can be
used to guide individuals in improving their creditworthiness,
should they have previously been denied access to credit
based on an automated decision-making system. A meaningful
recourse recommendation for a denied applicant could be:
“If your net savings rate had been 10% of your monthly
income instead of the actual 8%, your application would
have been successful. See if you can temporarily cut down on
consumption.” In the remainder of this paper we will use both
terminologies—recourse and counterfactual—interchangeably
to refer to situations where counterfactuals are generated with
the intent to provide individual recourse.

Existing work in this field has largely worked in a static
setting: various approaches have been proposed to generate
counterfactuals for a given individual that is subject to some
pre-trained model. More recent work has compared different



Fig. 1. Dynamics in Algorithmic Recourse: (a) we have a simple linear
classifier trained for binary classification where samples from the negative
class (y = 0) are marked in blue and samples of the positive class (y = 1)
are marked in orange; (b) the implementation of AR for a random subset of
individuals leads to a noticable domain shift; (c) as the classifier is retrained
we observe a corresponding model shift; (d) as this process is repeated, the
decision boundary moves away from the target class.

approaches within this static setting [3]. In this work, we go
one step further and ask ourselves: what happens if recourse
is provided and implemented repeatedly? What types of dy-
namics are introduced and how do different counterfactual
generators compare in this context?

Research on Algorithmic Recourse has also so far typically
addressed the issue from the perspective of a single individual.
Arguably though, most real-world applications that warrant
AR involve potentially large groups of individuals typically
competing for scarce resources. Our work demonstrates that
in such scenarios, choices made by or for a single individual
are likely to affect the broader collective of individuals in ways
that many current approaches to AR fail to account for. More
specifically, we argue that a strict focus on minimizing the
private costs to individuals may be too narrow an objective.

Figure 1 illustrates this idea for a binary problem involving
a linear classifier and the counterfactual generator proposed
by Wachter et al. [4]: the implementation of AR for a subset
of individuals immediately leads to a visible domain shift in
the (orange) target class (b), which in turn triggers a model
shift (c). As this game of implementing AR and updating the
classifier is repeated, the decision boundary moves away from
training samples that were originally in the target class (d). We
refer to these types of dynamics as endogenous because they
are induced by the implementation of recourse itself. The term
macrodynamics is borrowed from the economics literature
and used to describe processes involving whole groups or
societies.

We think that these types of endogenous dynamics may be
problematic and deserve our attention. From a purely technical
perspective we note the following: firstly, model shifts may
inadvertently change classification outcomes for individuals
who never received and implemented recourse. Secondly, we
observe in Figure 1 that as the decision boundary moves in the
direction of the non-target class, counterfactual paths become
shorter. We think that in some practical applications, this can
be expected to generate costs for involved stakeholders. To
follow our argument, consider the following two examples:

Example I.1 (Consumer Credit). Suppose Figure 1 relates to
an automated decision-making system used by a retail bank
to evaluate credit applicants with respect to their creditwor-
thiness. Assume that the two features are actually meaningful

in the sense that creditworthiness increases in the south-east
direction. Then we can think of the outcome in panel (d) as
representing a situation where the bank supplies credit to more
borrowers (orange), but these borrowers are on average less
creditworthy and more of them can be expected to default on
their loan. This represents a cost to the retail bank.

Example I.2 (Student Admission). Suppose Figure 1 relates to
an automated decision-making system used by a university in
their student admission process. Assume that the two features
are actually meaningful in the sense that the likelihood of
students successfully completing their degree increases in the
south-east direction. Then we can think of the outcome in
panel (b) as representing a situation where more students are
admitted to university (orange), but they are more likely to
fail their degree than students that were admitted in previous
years. The university admission committee catches on to this
and suspends its efforts to offer Algorithmic Recourse. This
represents an opportunity cost to future student applicants, that
may have derived utility from being offered recourse.

Both examples are exaggerated simplifications of potential
real-world scenarios, but they serve to illustrate the point
that recourse for one single individual may exert negative
externalities on other individuals.

To the best of our knowledge this is the first work investi-
gating endogenous macrodynamics in AR. Our contributions
to the state of knowledge are as follows: firstly, we posit
a compelling argument that calls for a novel perspective on
Algorithmic Recourse extending our focus from single individ-
uals to groups (Sections II and III). Secondly, we introduce an
experimental framework extending previous work by Altmeyer
[5], which enables us to study macrodynamics of Algorithmic
Recourse through simulations that can be fully parallelized
(Section IV). Thirdly, we use this framework to provide a first
in-depth analysis of endogenous recourse dynamics induced
by various popular counterfactual generators including [4], [6],
[7], [8] and [9] (Sections V and VI). Fourthly, given that we
find substantial impact of recourse, we propose key mitigation
strategies and measure their impact experimentally (Section
VII). Finally, we discuss our findings in the broader context
of the literature in Section VIII, before pointing to some of the
limitations of our work as well as avenues for future research
in Section IX. Section X concludes.

II. BACKGROUND

In this section we provide a review of the relevant literature.
First, Subsection II-A discusses the existing research within
the domain of Counterfactual Explanations and Algorithmic
Recourse. Then, Subsection II-B presents some of the previous
work on the measurement of dataset and model shifts.

A. Algorithmic Recourse

A framework for Counterfactual Explanations was first
proposed in 2017 by Wachter et al. [4] and has served as
the baseline for most methodologies that have been proposed
since then. Let M : X 7→ Y denote some pre-trained model



that maps from inputs X ∈ X to outputs Y ∈ Y . Then we
are interested in minimizing the cost1 C = cost(x′) incurred
by individual x when moving to a counterfactual state x′ such
that the predicted outcome M(x′) corresponds to some target
outcome y∗:

min
x′∈X

cost(x′) s. t. M(x′) = y∗ (1)

For implementation purposes, (1) is typically approximated
through regularization:

x′ = argmin
x′

yloss(M(x′), y∗) + λcost(x′) (2)

In the baseline work [4], the cost function is proxied
by some distance metric based on the simple intuition that
perturbations of x are costly to the individual. For models
that are differentiable and produce smooth predictions, (2)
can be solved through gradient descent. This summarizes the
approach followed in [4] which we refer to simply as Wachter,
the name of the first author, in the remainder of this paper.

Many approaches for the generation of Algorithmic Re-
course have been described in the literature since 2017. An
October 2020 survey by Karimi et al. laid out 60 algorithms
that have been proposed since 2014 [10]. Another survey
published around the same time by Verma et al. described 29
algorithms [11]. Different approaches vary primarily in terms
of the objective functions they impose, how they optimize said
objective (from brute force through gradient-based approaches
to graph traversal algorithms), and how they ensure that
certain requirements for CE are met. Regarding the latter,
the literature has produced an extensive list of desiderata
each addressing different needs. To name but a few, we are
interested in generating counterfactuals that are close [4],
actionable [12], realistic [6], sparse, diverse [8] and if possible
causally founded [13].

Efforts so far have largely been directed at improving the
quality of Counterfactual Explanations within a static context:
given some pre-trained classifier M : X 7→ Y , we are inter-
ested in generating one or multiple meaningful Counterfactual
Explanations for some individual characterized by x. The
ability of Counterfactual Explanations to handle dynamics like
data and model shifts remains a largely unexplored research
challenge at this point [11]. We have been able to identify
only one recent work by Upadhyay et al. that considers the
implications of exogenous domain and model shifts in the
context of AR [14]. Exogenous shifts are strictly of external
origin. For example, they might stem from data correction,
temporal shifts or geospatial changes [14]. Upadhyay et al.
[14] propose ROAR: a framework for Algorithmic Recourse
that evidently improves robustness to such exogenous shifts.

As mentioned earlier, research has so far also generally
focused on generating counterfactuals for single individuals
or instances. We have been able to identify only one existing
work that investigates black-box model behavior towards a

1Equivalently, others have referred to this quantity as complexity or simply
distance.

group of individuals [15]. The authors propose an optimiza-
tion framework that generates collective counterfactuals. We
provide a motivation for doing so from the perspective of
endogenous macrodynamics of Algorithmic Recourse.

B. Domain and Model Shifts

Much attention has been paid to the detection of dataset
shifts – situations where the distribution of data changes over
time. Rabanser et al. suggest a framework to detect data drift
from a minimal number of samples through the application
of two-sample tests [16]. This task is a generalization of the
anomaly detection problem for large datasets, which aims to
answer the question if two sets of samples could have been
generated from the same probability distribution. Numerous
approaches to anomaly detection have been summarized [17].
Another well-established research topic is that of concept
drift: situations where external variables influence the patterns
between the input and the output of a model [18]. For instance,
Gama et al. offer a review of the adaptive learning techniques
which can handle concept drift [19]. Less previous work is
available on the related topic of model drift: changes in model
performance over time. Nelson et al. review how resistant
different machine learning models are to the model drift [20].
Ackerman et al. offer a method to detect changes in model
performance when ground truth is not available [21].

In the context of Algorithmic Recourse, domain and model
shifts were first brought up by the authors behind ROAR
[14]. In their work they refer to model shifts as simply any
perturbation ∆ to the parameters of the model in question: M .
While this also sets the baseline for our analysis here, it is
worth noting that in [14] these perturbations are mechanically
introduced. In contrast, we are interested in quantifying model
shifts that arise endogenously as part of a dynamic recourse
process. In addition to quantifying the magnitude of shifts ∆,
we aim to also analyse the characteristics of changes to the
model, such as the position of the decision boundary and the
overall decisiveness of the model. We have not been able to
identify previous work on this topic.

C. Benchmarking Counterfactual Generators

Despite the large and growing number of approaches
to counterfactual search, there have been surprisingly few
benchmark studies that compare different methodologies. This
may be partially due to limited software availability in
this space. Recent work has started to address this gap:
firstly, [22] run a large benchmarking study using differ-
ent algorithmic approaches and numerous tabular datasets;
secondly, [3] introduce a Python framework—CARLA—that
can be used to apply and benchmark different methodolo-
gies; finally, CounterfactualExplanations.jl [5]
provides an extensible, fast and language-agnostic imple-
mentation in Julia. Since the experiments presented here
involve extensive simulations, we have relied on and ex-
tended the Julia implementation due to the associated perfor-
mance benefits. In particular, we have built a framework on
top of CounterfactualExplanations.jl that extends

https://github.com/pat-alt/CounterfactualExplanations.jl
https://github.com/pat-alt/CounterfactualExplanations.jl


the functionality from static benchmarks to simulation ex-
periments: AlgorithmicRecourseDynamics.jl2. The
core concepts implemented in that package reflect what is
presented in Section IV of this paper.

III. GRADIENT-BASED RECOURSE REVISITED

In this section we first set out a generalized framework
for gradient-based counterfactual search that encapsulates the
various individual recourse methods we have chosen to use in
our experiments (Section III-A). We then introduce the notion
of a hidden external cost in algorithmic recourse and extend
the existing framework to explicitly address this cost in the
counterfactual search objective (Section III-B).

A. From individual recourse . . .

We have chosen to focus on gradient-based counterfac-
tual search for two reasons: firstly, they can be seen as
direct descendants of our baseline method (Wachter); sec-
ondly, gradient-based search is particularly well-suited for
differentiable black-box models like deep neural networks,
which we focus on in this work. In particular, we include
the following generators in our simulation experiments below:
REVISE [7], CLUE [9], DiCE [8] and a greedy approach
that relies on probabilistic models [6]. Our motivation for
including these different generators in our analysis, is that
they all offer slightly different approaches to generate mean-
ingful counterfactuals for differentiable black-box models. We
hypothesize that generating more meaningful counterfactuals
should mitigate the endogenous dynamics illustrated in Figure
1 in Section I. This intuition stems from the underlying idea
that more meaningful counterfactuals are generated by the
same or at least a very similar data generating process as the
training data. All else equal, counterfactuals that fulfill this
basic requirement should be less prone to trigger shifts.

As we will see next, all of them can be described by the
following generalized form of Equation (3):

s′ = arg min
s′∈S
{yloss(M(f(s′)), y∗) + λcost(f(s′))} (3)

Here s′ = {s′k}K is a K-dimensional array of counterfac-
tual states and f : S 7→ X maps from the counterfactual state
space to the feature space. In Wachter, the state space is the
feature space: f is the identity function and the number of
counterfactuals K is one. Both REVISE and CLUE search
counterfactuals in some latent space S instead of the feature
space directly. The latent embedding is learned by a separate
generative model that is tasked with learning the data gen-
erating process (DGP) of X . In this case, f in Equation (3)
corresponds to the decoder part of the generative model, that
is the function that maps back from the latent space to inputs.
Provided the generative model is well-specified, traversing the
latent embedding typically yields meaningful counterfactuals,
since they are implicitly generated by the (learned) DGP [7].

2The code has been released as a package: https://github.com/pat-alt/
AlgorithmicRecourseDynamics.jl.

CLUE distinguishes itself from REVISE and other coun-
terfactual generators in that it aims to minimize the predictive
uncertainty of the model in question, M . To quantify predictive
uncertainty, Antoran et al. [9] rely on entropy estimates for
probabilistic models. The greedy approach proposed by Schut
et al. [6], which we refer to as Greedy, also works with the
subclass of models M̃ ⊂ M that can produce predictive
uncertainty estimates. The authors show that in this setting
the cost function cost(·) in Equation (3) is redundant and
meaningful counterfactuals can be generated in a fast and
efficient manner through a modified Jacobian-based Saliency
Map Attack (JSMA). Schut et al. [6] also show that by
maximizing the predicted probability of x′ being assigned to
target class y∗, we also implicitly minimize predictive entropy
(as in CLUE). In that sense, CLUE can be seen as equivalent to
REVISE in the Bayesian context and we shall therefore refer
to both approaches collectively as Latent Space generators3.

Finally, DiCE [8] distinguishes itself from all other gener-
ators considered here in that it aims to generate a diverse set
of K > 1 counterfactuals. Wachter et al. [4] show that di-
verse outcomes can in principal be achieved simply rerunning
counterfactual search multiple times using stochastic gradient
descent (or by randomly initializing the counterfactual)4. In
[8] diversity is explicitly proxied via Determinantal Point
Processes (DDP): the authors simply introduce DDP as a
component of the cost function cost(s′) and thereby produce
counterfactuals s1, ..., sK that look as different from each
other as possible. The implementation of DiCE in our library
of choice—CounterfactualExplanations.jl—uses
that exact approach. It is worth noting that for k = 1, DiCE
reduces to Wachter since the DDP is constant and therefore
does not affect the objective function in Equation (3).

B. . . . towards collective recourse

All of the different approaches introduced above tackle
the problem of Algorithmic Recourse from the perspective
of one single individual5. To explicitly address the issue
that individual recourse may affect the outcome and prospect
of other individuals, we propose to extend Equation (3) as
follows:

s′ = arg min
s′∈S
{yloss(M(f(s′)), y∗)

+ λ1cost(f(s′)) + λ2extcost(f(s′))}
(4)

Here cost(f(s′)) denotes the proxy for private costs faced
by the individual as before and λ1 governs to what extent

3In fact, there are a number of other recently proposed approaches to
counterfactual search that also broadly fall in this same category. They largely
differ with respect to the chosen generative model: for example, the generator
proposed by Dombrowski et al. [23] relies on normalizing flows.

4Note, in fact, that (3) naturally lends itself to that idea: setting K to some
value greater than one and using the Wachter objective essentially boils down
to computing multiple counterfactuals in parallel. Here, yloss(·) is first broad-
casted over elements of s′ and then aggregated. This is exactly how counter-
factual search is implemented in CounterfactualExplanations.jl.

5DiCE recognizes that different individuals may have different objective
functions, but it does not address the interdependencies between different
individuals.

(https://github.com/pat-alt/AlgorithmicRecourseDynamics.jl)
https://github.com/pat-alt/AlgorithmicRecourseDynamics.jl
https://github.com/pat-alt/AlgorithmicRecourseDynamics.jl
https://github.com/pat-alt/CounterfactualExplanations.jl
https://github.com/pat-alt/CounterfactualExplanations.jl


that private cost ought to be penalized. The newly introduced
term extcost(f(s′)) is meant to capture and address external
costs incurred by the collective of individuals in response to
changes in s′. The underlying concept of private and external
costs is borrowed from Economics and well-established in that
field: when the decisions or actions by some individual market
participant generate external costs, then the market is said to
suffer from negative externalities and considered inefficient
[24]. We think that this concept describes the endogenous
dynamics of algorithmic recourse observed here very well. As
with individual recourse, the exact choice of extcost(·) is not
obvious, nor do we intend to provide a definite answer in this
work, if such even exists. That being said, we do propose a
few potential mitigation strategies in Section VII.

IV. MODELING ENDOGENOUS MACRODYNAMICS IN
ALGORITHMIC RECOURSE

In the following we describe the framework we propose
for modeling and analyzing endogenous macrodynamics in
Algorithmic Recourse. We introduce this framework with the
ambition to shed light on the following research questions:

Proposition IV.1 (Endogenous Shifts). Does the repeated
implementation of recourse provided by state-of-the-art gen-
erators lead to shifts in the domain and model?

Proposition IV.2 (Costs). If so, are these dynamics substantial
enough to be considered costly to stakeholders involved in
real-world automated decision-making processes?

Proposition IV.3 (Heterogeneity). Do different counterfactual
generators yield significantly different outcomes in this con-
text? Furthermore, is there any heterogeneity with respect to
the chosen classifier and dataset?

Proposition IV.4 (Drivers). What are drivers of endogenous
dynamics in Algorithmic Recourse?

Below we first describe the basic simulations that were gen-
erated to produce the findings in this work and also constitute
the core of AlgorithmicRecourseDynamics.jl—the
Julia package we introduced earlier. The remainder of this
section then introduces various evaluation metrics that can
be used to benchmark different counterfactual generators with
respect to how they perform in the dynamic setting.

A. Simulations

The dynamics illustrated in Figure 1 in were generated
through a simple experiment that aims to simulate the process
of Algorithmic Recourse in practice. We begin in the static
setting at time time t = 0: firstly, we have some binary
classifier M that was pre-trained on data D = D0∪D1, where
D0 and D1 denote samples in the non-target and target class,
respectively; secondly, we generate recourse for a random
batch of B individuals in the non-target class (D0). Note

that we focus our attention on classification problems, since
classification poses the most common use-case for recourse6.

In order to simulate the dynamic process, we suppose that
the model M is retrained following the actual implementation
of recourse in time t = 0. Following the update to the model,
we assume that at time t = 1 recourse is generated for yet
another random subset of individuals in the non-target class.
This process is repeated for a number of time periods T .
To get a clean read on endogenous dynamics we keep the
total population of samples closed: we allow existing samples
to move from factual to counterfactual states, but do not
allow any entirely new samples to enter the population. The
experimental setup is summarized in Algorithm 1.

Algorithm 1 Simulation Experiment
1: procedure EXPERIMENT(M,D, G)
2: E ← ∅ ▷ Initialize evaluation E.
3: t← 0
4: while t < T do
5: batch ⊂ D0 ▷ Sample from D0 (assignment).
6: batch← G(batch) ▷ Generate counterfactuals.
7: M ←M(D) ▷ Retrain model.
8: E ← eval(M,D) ∪ E ▷ Update evaluation.
9: t← t+ 1 ▷ Increment t.

10: end while
11: return E,M,D
12: end procedure

Note that the operation in line 4 is an assignment, rather than
a copy operation, so any updates to ‘batch’ will also affect D.
The function eval(M,D) loosely denotes the computation of
various evaluation metrics introduced below. In practice, these
metrics can also be computed at regular intervals as opposed
to every round.

Along with any other fixed parameters affecting the counter-
factual search, the parameters T and B are assumed as given
in Algorithm 1. Still, it worth noting that the higher these
values, the more factual instances undergo recourse throughout
the entire experiment. Of course, this is likely to lead to
more pronounced domain and model shifts by time T . In our
experiments, we choose the values such that T ·B corresponds
to the application of recourse on ≈ 50% of the negative
instances from the initial dataset. As we compute evaluation
metrics at regular intervals throughout the procedure, we can
also verify the impact of recourse when it is implemented for
a smaller number of individuals.

Algorithm 1 summarizes the proposed simulation experi-
ment for a given dataset D, model M and generator G, but
naturally we are interested in comparing simulation outcomes
for different sources of data, models and generators. The
framework we have built facilitates this, making use of multi-
threading in order to speed up computations. Holding the
initial model and dataset constant, the experiments are run for

6To keep notation simple, we have also restricted ourselves to binary
classification here, but AlgorithmicRecourseDynamics.jl can also
be used for multi-class problems.

https://anonymous.4open.science/r/AlgorithmicRecourseDynamics/README.md


all generators, since our primary concern is to benchmark dif-
ferent recourse methods. To ensure that each generator is faced
with the same initial conditions in each round t, the candidate
batch of individuals from the non-target class is randomly
drawn from the intersection of all non-target class individuals
across all experiments {EXPERIMENT(M,D, G)}Jj=1 where J
is the total number of generators.

B. Evaluation Metrics

We formulate two desiderata for the set of metrics used to
measure domain and model shifts induced by recourse. First,
the metrics should be applicable regardless of the dataset or
classification technique so that they allow for the meaningful
comparison of the generators in various scenarios. As the
knowledge of the underlying probability distribution is rarely
available, the metrics should be empirical and non-parametric.
This further ensures that we can also measure large datasets
by sampling from the available data. Moreover, while our
study was conducted in a two-class classification setting,
our choice of metrics should remain applicable in the future
research on multi- class recourse problems. Second, the set
of metrics should allow to capture various aspects of the
previously mentioned magnitude, path, and tempo of changes
while remaining as small as possible.

1) Domain Shifts: To quantify the magnitude of domain
shifts we rely on an unbiased estimate of the squared popula-
tion Maximum Mean Discrepancy (MMD) given as:

MMD(X ′, X̃ ′) =
1

m(m− 1)

m∑
i=1

m∑
j ̸=i

k(xi, xj)

+
1

n(n− 1)

n∑
i=1

n∑
j ̸=i

k(x̃i, x̃j)

− 2

mn

m∑
i=1

n∑
j=1

k(xi, x̃j)

(5)

where X = {x1, ..., xm}, X̃ = {x̃1, ..., x̃n} represent
independent and identically distributed samples drawn from
probability distributions X and X̃ respectively [25]. MMD is a
measure of the distance between the kernel mean embeddings
of X and X̃ in a Reproducing Kernel Hilbert Space, H [26].
An important consideration is the choice of the kernel function
k(·, ·). In our implementation we make use of a Gaussian
kernel with a constant length-scale parameter of 0.5. As the
Gaussian kernel captures all moments of distributions X and
X̃ , we have that MMD(X, X̃) = 0 if and only if X = X̃ .
Conversely, larger values MMD(X, X̃) > 0 indicate that it
is more likely that X and X̃ are different distributions. In
our context, large values therefore indicate that a domain shift
indeed seems to have occurred.

To assess the statistical significance of the observed shifts
under the null hypothesis that samples X and X̃ were drawn
from the same probability distribution, we follow [27]. To
that end, we combine the two samples and generate a large
number of permutations of X+X̃ . Then, we split the permuted

data into two new samples X ′ and X̃ ′ having the same
size as the original samples. Then under the null hypothesis,
we should have that MMD(X ′, X̃ ′) be approximately equal
to MMD(X, X̃). The corresponding p-value can then be
calculated by counting how these two quantities are not equal.

We calculate the MMD for both classes individually based
on the ground truth labels, i.e. the labels that samples were
assigned in time t = 0. Throughout our experiments, we
generally do not expect the distribution of the negative class
to change over time – application of recourse reduces the size
of this class, but since individuals are sampled uniformly the
distribution should remain unaffected. Conversely, unless a
recourse generator can perfectly replicate the original prob-
ability distribution, we expect the MMD of the positive class
to increase. Thus, when discussing MMD, we generally mean
the shift in the distribution of the positive class.

2) Model Shifts: As our baseline for quantifying model
shifts we measure perturbations to the model parameters at
each point in time t following [14]. We define ∆ = ||θt+1 −
θt||2, that is the euclidean distance between the vectors of
parameters before and after retraining the model M . We shall
refer to this baseline metric simply as Perturbations.

We extend the metric in Equation (5) for the purpose of
quantifying model shifts. Specifically, we introduce Predicted
Probability MMD (PP MMD): instead of applying Equation
(5) to features directly, we apply it to the predicted prob-
abilities assigned to a set of samples by the model M . If
the model shifts, the probabilities assigned to each sample
will change; again, this metric will equal 0 only if the two
classifiers are the same. We compute PP MMD in two ways:
firstly, we compute it over samples drawn uniformly from the
dataset, and, secondly, we compute it over points spanning
a mesh grid over a subspace of the entire feature space. For
the latter approach we bound the subspace by the extrema of
each feature. While this approach is theoretically more robust,
unfortunately, it suffers from the curse of dimensionality, since
it becomes increasingly difficult to select enough points to
overcome noise as the dimension D grows.

As an alternative to PP MMD, we use a pseudo-distance
for the Disagreement Coefficient (Disagreement). This metric
was introduced in [28] and estimates p(M(x) ̸= M ′(x)), that
is the probability that two classifiers disagree on the predicted
outcome for a randomly chosen sample. Thus, it is not relevant
whether the classification is correct according to the ground
truth, but only whether the sample lies on the same side of the
two respective decision boundaries. In our context, this metric
quantifies the overlap between the initial model (trained before
the application of AR) and the updated model. A Disagreement
Coefficient unequal to zero is indicative of a model shift. The
opposite is not true: even if the Disagreement Coefficient is
equal to zero, a model shift may still have occured. This is
one reason for why PP MMD is our preferred metric.

We further introduce Decisiveness as a metric that quantifies
the likelihood that a model assigns a high probability to its
classification of any given sample. We define the metric simply
as 1

N

∑N
i=0(σ(M(x))−0.5)2 where M(x) are predicted logits



from a binary classifier and σ denotes the sigmoid function.
This metric provides an unbiased estimate of the binary
classifier’s tendency to produce high-confidence predictions
in either one of the two classes. Although the exact values
for this metric are not important for our study, they can be
used to detect model shifts. If decisiveness changes over time,
then this is indicative of the decision boundary moves towards
either one of the two classes. A potential caveat of this metric
in the context of our experiments is that it will to some degree
get inflated simply through retraining the model.

Finally, we also take a look at the out-of-sample Perfor-
mance of our models. To this end, we compute their F-score
on a test sample that we leave untouched throughout the
experiment.

V. EXPERIMENT SETUP

This section presents the exact ingredients and parameter
choices describing the simulation experiments we ran to
produce the findings presented in the next section (VI). For
convenience, we use Algorithm 1 as a template to guide us
through this section. A few high-level details upfront: each
experiment is run for a total of T = 50 rounds, where in each
round we provide recourse to five percent of all individuals in
the non-target class, so Bt = 0.05 ∗ND0

t
7. All classifiers and

generative models are retrained for 10 epochs in each round t
of the experiment. Rather than retraining models from scratch,
we initialize all parameters at their previous levels (t− 1) and
compute backpropagate for 10 epochs using the new training
data as inputs into the existing model. Evaluation metrics are
computed and stored every 10 rounds. To account for noise,
each individual experiment is repeated five times.8

A. M—Classifiers and Generative Models

For each dataset and generator, we look at three differ-
ent types of classifiers, all of them built and trained using
Flux.jl [29]: firstly, a simple linear classifier—Logistic
Regression—implemented as a single linear layer with sig-
moid activation; secondly, a multilayer perceptron (MLP); and
finally, a Deep Ensemble composed of five MLPs following
[30] that serves as our only probabilistic classifier. We have
chosen to work with deep ensembles both for their simplicity
and effectiveness at modelling predictive uncertainty. They are
also the model of choice in [6]. The network architectures are
kept simple (top half of Table I), since we are only marginally
concerned with achieving good initial classifier performance.

The Latent Space generator relies on a separate generative
model. Following the authors of both REVISE and CLUE
we use Variational Autoencoders (VAE) for this purpose. As
with the classifiers, we deliberately choose to work with fairly
simple architectures (bottom half of Table I). More expressive
generative models generally also lead to more meaningful

7As mentioned in the previous section, we end up providing recourse to a
total of ≈ 50% by the end of round T = 50.

8In the current implementation, we use the train-test split each time to only
account for stochasticity associated with randomly selecting individuals for
recourse. An interesting alternative may be to also perform data splitting each
time, thereby adding an additional layer of randomness.

TABLE I
NEURAL NETWORK ARCHITECTURES AND TRAINING PARAMETERS.

Data Hidden Dim. Latent Dim. Hidden Layers Batch Dropout Epochs

MLP
Synthetic 32 - 1 - - 100

Real-World 64 - 2 500 0.1 100

VAE
Synthetic 32 2 1 - - 100

Real-World 32 8 1 - - 250

Fig. 2. Synthetic classification datasets used in our experiments. Samples
from the negative class (y = 0) are marked in blue while samples of the
positive class (y = 1) are marked in orange.

counterfactuals produced by Latent Space generators. But in
our view this should simply be considered as a vulnerability
of counterfactual generators that rely on surrogate models to
learn what realistic representations of the underlying data.

B. D—Data

We have chosen to work with both synthetic and real-
world datasets. Using synthetic data allows us to impose
distributional properties that may affect the resulting recourse
dynamics. Following [14], we generate synthetic data in R2 to
also allow for a visual interpretation of the results. Real-world
data is used in order to assess if endogenous dynamics also
occur in higher-dimensional settings.

1) Synthetic data: We use four synthetic binary classifica-
tion datasets consisting of 1000 samples each: Overlapping,
Linearly Separable, Circles and Moons (2).

Ex-ante we expect to see that by construction, Wachter
will create a new cluster of counterfactual instances in the
proximity of the initial decision boundary as we saw in Figure
1. Thus, the choice of a black-box model may have an impact
on the paths of the recourse. For generators that use latent
space search (REVISE [7], CLUE [9]) or rely on (and have
access to) probabilistic models (CLUE [9], Greedy [6]) we
expect that counterfactuals will end up in regions of the
target domain that are densely populated by training samples.
Of course, this expectation hinges on how effective said
probabilistic models are at capturing predictive uncertainty.
Finally, we expect to see the counterfactuals generated by
DiCE to be uniformly spread around the feature space inside
the target class9. In summary, we expect that the endogenous
shifts induced by Wachter outsize those of all other generators,
since Wachter is not explicitly concerned with generating what
we have defined as meaningful counterfactuals.

9As we mentioned earlier, the diversity constraint used by DiCE is only
effective for when at least two counterfactuals are being generated. We have
therefore decided to always generate 5 counterfactuals for each generator and
randomly pick one of them.



2) Real-world data: We use three different real-world
datasets from the Finance and Economics domain, all of which
are tabular and can be used for binary classification. Firstly,
we use the Give Me Some Credit dataset which was open-
sourced on Kaggle for the task to predict whether a borrower
is likely to experience financial difficulties in the next two
years [31], originally consisting of 250,000 instances with 11
numerical attributes. Secondly, we use the UCI defaultCredit
dataset [32], a benchmark dataset that can be used to train bi-
nary classifiers to predict the binary outcome variable whether
credit card clients default on their payment. In its raw form
it consists of 23 explanatory variables: 4 categorical features
relating to demographic attributes10 and 19 continuous features
largely relating to individuals’ payment histories and amount
of credit outstanding. Both datasets have been used in the
literature on AR before (see for example [3], [7] and [12]),
presumably because they constitute real-world classification
tasks involving individuals that compete for access to credit.

As a third dataset we include the California Housing
dataset derived from the 1990 U.S. census and sourced through
scikit-learn [34]. It consists of 8 continuous features that can
be used to predict the median house price for California
districts. The continuous outcome variable is binarized as
ỹ = Iy>median(Y ) indicating whether or not the median house
price of a given district is above or below the median of
all districts. While we have not seen this dataset used in
the previous literature on AR, others have used the Boston
Housing dataset in a similar fashion [6]. While we initially
also conducted experiments on that dataset, we eventually
discarded this dataset due to surrounding ethical concerns [35].

Since the simulations involve generating counterfactuals for
a significant proportion of the entire sample of individuals, we
have randomly undersampled each dataset to yield balanced
subsamples consisting of 5,000 individuals each. We have
also standardized all explanatory features since our chosen
classifiers are sensitive to scale.

C. G—Generators

All generators introduced earlier are included in the ex-
periments: Wachter [4], REVISE [7], CLUE [9], DiCE [8]
and Greedy [6]. In addition, we introduce two new generators
in Section VII that directly address the issue of endogenous
domain and model shifts. We also test to what extent it may be
beneficial to combine ideas underlying the various generators.

VI. EXPERIMENTS

Below, we first present our main experimental findings
regarding these questions. We conclude this section with a
brief recap providing answers to all of these questions.

A. Endogenous Macrodynamics

We start this section off with the key high-level observa-
tions. Across all datasets (synthetic and real), classifiers and
counterfactual generators we observe either most or all of the
following dynamics at varying degrees:

10These have been omitted from the analysis. See Section IX-E for details.

• Statistically significant domain and model shift as mea-
sured by MMD.

• A deterioration in out-of-sample model performance as
measured by the F-Score evaluated on a test sample. In
many cases this drop in performance is substantial.

• Significant perturbations to the model parameters as well
as an increase in the model’s decisiveness.

• Disagreement between the original and retrained model,
in some cases large.

There is also some clear heterogeneity across the results:
• The observed dynamics are generally of the highest

magnitude for the linear classifier. Differences in results
for the MLP and Deep Ensemble are mostly negligible.

• The reduction in model performance appears to be most
severe when classes are not perfectly separable or the
initial model performance was weak to begin with.

• With the exception of the Greedy generator, all other
generators generally perform somewhat better overall
than the baseline (Wachter) as expected.

Focusing first on synthetic data, Figure 3 presents our
findings for the dataset with overlapping classes. It shows the
resulting values for some of our evaluation metrics at the end
of the experiment, so after all T = 50 rounds, along with error
bars indicating the variation across folds.

The top row shows the estimated domain shifts. While it
is difficult to interpret the exact magnitude of MMD, we can
see that the values are clearly different from zero and there is
essentially no variation across our five folds. With respect to
the domain shifts, the Greedy generator actually induces the
smallest shifts. In general, we have observed the opposite.

The second row shows the estimated model shifts, where
here we have used the grid approach explained earlier. As with
the domain shifts, the observed values are clearly different
from zero and variation across folds is once again small. In
this case, the results for this particular dataset very much
reflect the broader patterns we have observed: Latent Space
(LS) generators induce the smallest shifts, followed by DiCE,
then Wachter and finally Greedy.

The same broad pattern also emerges in the third row: we
observe the smallest deterioration in model performance for
LS generators, albeit we still find a reduction in the F-Score of
around 5-10 percentage points on average. Related to this, the
bottom two rows indicate that the retrained classifiers disagree
with their initial counterparts on the classification of up to
nearly 25 percent of the individuals. We also note that the
final classifiers are more decisive, although as we noted earlier
this may to some extent just be a byproduct of retraining the
model throughout the course of the experiment.

Figure 3 also indicates that the estimated effects are
strongest for the simplest linear classifier, a pattern that we
have observed fairly consistently. Conversely, there is virtually
no difference in outcomes between the deep ensemble and the
MLP. It is possible that the deep ensembles simply fail to
capture predictive uncertainty well and hence counterfactual
generators like Greedy, that explicitly address this quantity,
fail to work as expected.



Fig. 3. Results for synthetic data with overlapping classes. The shown model
MMD (PP MMD) was computed over a mesh grid of 1,000 points. Error bars
indicate the standard deviation across folds.

The findings for the other synthetic datasets are broadly
consistent with the observations above. For the Moons data
the same broad patterns emerge, although in this case the
Greedy generator induces comparably strong shifts in some
cases. For the Circles data, it also appears that Latent Space
search yields better results. Model shifts and performance
deterioration are also quantitatively smaller than in what we
can observe in Figure 3. For the Linearly Separable data we
also find substantial domain and model shifts, but no reduction
in model performance.11

Finally, it is also worth noting that the observed dynamics
and patterns are consistent throughout the course of the exper-
iment. That is to say that we start observing shifts already after
just a few rounds and these tends to increase proportionately
for the different generators over the course of the experiment.

Turning to the real-world data we will go through the
findings presented in Figure 4, where each column corresponds
to one of the three data sets. The results shown here are for
the deep ensemble, which once again largely resemble those
for the MLP. Starting from the top row, we find significant
domain shifts of varying magnitudes. Latent Space search
induces shifts that are orders of magnitude higher than for
the other generators, which generally induce significant but
small shifts.

11You can find a granular overview of all results including
bootstraps in our online companion: https://www.paltmeyer.com/
endogenous-macrodynamics-in-algorithmic-recourse/.

Fig. 4. Results for deep ensemble using real-world datasets. The shown model
MMD (PP MMD) was computed over actual samples, rather than a mesh grid.
Error bars indicate the standard deviation across folds.

Model shifts are shown the middle row of Figure 4: the
estimated PP MMD is statistically significant across the board
and in some cases much larger than in others. We find no
evidence that LS search helps to mitigate model shifts, as
we did before for the synthetic data. Since these real-world
datasets are arguably more complex than the synthetic data,
the generative model can be expected to have a harder time
learning the data generating process and hence this increased
difficulty appears to affect the performance of REVISE/CLUE.

Out-of-sample model performance also deteriorates across
the board and substantially so: the largest average reduction in
F-Scores of around 15-20 percentage points is observed for the
Credit Default dataset. For this dataset we achieved the lowest
initial model performance, indicating once again that weaker
classifiers may be more exposed to endogenous dynamics. As
with the synthetic data, the estimates for logistic regression
are qualitatively in line with the above, but quantitatively even
more pronounced.

To recap, we answer our research questions: firstly, endoge-
nous dynamics do emerge in our experiments (RQ IV.1) and
we find them substantial enough to be considered costly (RQ
IV.2); secondly, the choice of the counterfactual generator mat-
ters, with Latent Space search generally having a dampening
effect (RQ IV.3). The observed dynamics therefore seem to be
driven by a discrepancy between counterfactual outcomes that
minimize costs to individuals and outcomes that comply with
the data generating process (RQ IV.4).

VII. MITIGATION STRATEGIES AND EXPERIMENTS

Having established in the previous section that endogenous
macrodynamics in AR are substantial enough to warrant our
attention, in this section we ask ourselves:

Proposition VII.1 (Mitigation Strategies). What are potential
mitigation strategies with respect to endogenous macrodynam-
ics in AR?

https://www.paltmeyer.com/endogenous-macrodynamics-in-algorithmic-recourse/
https://www.paltmeyer.com/endogenous-macrodynamics-in-algorithmic-recourse/


We proposed and test a number of simple mitigation strate-
gies. All of them essentially boil down to one simple principle:
to avoid substantial domain and model shifts, the generated
counterfactuals should comply as much as possible with the
true data generating process. This principle is really at the
core of Latent Space (LS) generators, and hence it is not
surprising that we have found these types of generators to
perform comparably well in the previous section. But as
we have mentioned earlier, generators that rely on separate
generative models carry an additional computational burden
and, perhaps more importantly, their performance hinges on
the performance of said generative models. Fortunately, it turns
out that we can use a number of other, much simpler strategies.

A. More Conservative Decision Thresholds

The most obvious and trivial mitigation strategy is to
simply choose a higher decision threshold γ. This threshold
determines when a counterfactual should be considered as
valid. Under γ = 0.5, counterfactuals will end up near the
decision boundary by construction. Since this is the region
of maximal aleatoric uncertainty, the classifier is bound to be
thrown off. By setting a more conservative threshold, we can
avoid this issue to some extent. A drawback of this approach
is that a classifier with high decisiveness may classify samples
with high confidence even far away from the training data.

B. Classifier Preserving ROAR (ClaPROAR)

Another strategy draws inspiration from ROAR [14]: to
preserve the classifier, we propose to explicitly penalize the
loss it incurs when evaluated on the counterfactual x′ at given
parameter values. Recall that extcost(·) denotes what we had
defined as the external cost in Equation (4). Formally, we let

extcost(f(s′)) = l(M(f(s′)), y′) (6)

for each counterfactual k where l denotes the loss func-
tion used to train M . This approach, which we refer to
as ClaPROAR, is based on the intuition that (endogenous)
model shifts will be triggered by counterfactuals that increase
classifier loss. It is closely linked to the idea of choosing a
higher decision threshold, but likely better at avoiding the
potential pitfalls associated with highly decisive classifiers. It
also makes the private vs. external cost trade-off more explicit
and hence manageable.

C. Gravitational Counterfactual Explanations

Yet another strategy extends Wachter as follows: instead of
only penalizing the distance of the individuals’ counterfactual
to its factual, we propose penalizing its distance to some
sensible point in the target domain, for example the subsample
average x̄∗ = mean(x), x ∈ D1:

extcost(f(s′)) = dist(f(s′), x̄∗) (7)

Once again we can putting this in the context of Equation
(4): the former penalty can be thought of here as the private
cost incurred by the individual, while the latter reflects the

Fig. 5. Illustrative example demonstrating the properties of the various
mitigation strategies. Samples from the negative class (y = 0) are marked
in blue while samples of the positive class (y = 1) are marked in orange.

external cost incurred by other individuals. Higher choices of
λ2 relative to λ1 will lead counterfactuals to gravitate towards
the specified point x̄ in the target domain. In the remainder
of this paper, we will therefore refer to this approach as
Gravitational generator, when we investigate its usefulness
for mitigating endogenous macrodynamics12.

Figure 5 shows an illustrative example that demonstrates the
differences in counterfactual outcomes when using the various
mitigation strategies compared to the baseline approach, that
is, Wachter with γ = 0.5: choosing a higher decision threshold
pushes the counterfactual a little further into the target domain;
this effect is even stronger for ClaPROAR; finally, using the
Gravitational generator the counterfactual ends up all the way
inside the target domain in the neighbourhood of x̄13. Linking
these ideas back to Example I.2, the mitigation strategies help
ensure that the recommended recourse actions are substantial
enough to truly lead to an increase in the probability that the
admitted student eventually graduates.

Our findings indicate that all three mitigation strategies
are at least at par with LS generators with respect to their
effectiveness at mitigating domain and model shifts. Figure 6
presents a subset of the evaluation metrics for our synthetic
data with overlapping classes. The top row in Figure 6
indicates that while domain shifts are of roughly the same
magnitude for both Wachter and LS generators, our proposed
strategies effectively mitigate these shifts. ClaPROAR appears
to be particularly effective, which is positively surprising, since
it is designed to explicitly address model shifts, not domain
shifts. As evident from the middle row in Figure 6 model shifts
can also be reduced: for the deep ensemble LS search yields
results that are at par with the mitigation strategies, while
for both the simple MLP and logistic regression our simple
strategies are actually more effective. The same overall pattern
can be observed for out-of-sample model performance. With
respect to the other synthetic datasets, for the Moons dataset,
the emerging patterns are largely the same, but the estimated
model shifts are insignificant as noted earlier; the same holds
for the Circles dataset, but there is no significant reduction
in model performance for our neural networks; in the case of

12Note that despite the naming conventions, our goal here is not to
provide yet more counterfactual generators. Rather than looking at them as
isolated entities, we believe and demonstrate that different approaches can be
effectively combined.

13In order for the Gravitational generator and ClaPROAR to work as ex-
pected, one needs to ensure that counterfactual search continues, independent
of the threshold probability γ.



Fig. 6. The differences in counterfactual outcomes when using the various
mitigation strategies compared to the baseline approach, that is Wachter with
γ = 0.5. Results for synthetic data with overlapping classes. The shown
model MMD (PP MMD) was computed over a mesh grid of points. Error
bars indicate the standard deviation across folds.

Fig. 7. Combinining various mitigation strategies with LS search. Results for
synthetic data with overlapping classes. The shown model MMD (PP MMD)
was computed over a mesh grid of points. Error bars indicate the standard
deviation across folds.

linearly separable data we find the Gravitational generator to
be most effective at mitigating shifts.

An interesting finding is also that the proposed strategies
have a complementary effect when used in combination with
LS generators. In experiments we conducted on the synthetic
data, the benefits of LS generators were exacerbated further
when using a more conservative threshold or combining it
with the penalties underlying Gravitational and ClaPROAR. In
Figure 7 the conventional LS generator with γ = 0.5 serves
as our baseline. Evidently, being more conservative or using
one of our proposed penalties decreases the estimated domain
and model shifts, in some cases beyond significance.

Finally, Figure 8 shows the results for our real-world data.
We note that for both California Housing and Credit Default

Fig. 8. The differences in counterfactual outcomes when using the various
mitigation strategies compared to the baseline approach, that is Wachter with
γ = 0.5. Results for the MLP using real-world datasets. The shown model
MMD (PP MMD) was computed over actual samples, rather than a mesh
grid. Error bars indicate the standard deviation across folds.

data our proposed strategies do have a significant attenuating
effect on both model shifts and performance deterioration that
is on par with Latent Space search14. Both ClaPROAR and
Gravitational reduce the negative impact on out-of-sample
model performance by around two thirds compared to the
baseline approach for the California Housing data. For the
GMSC dataset we observe no notable differences.

VIII. DISCUSSION

Our results in Section VI indicate that state-of-the-art ap-
proaches to Algorithmic Recourse induce substantial domain
and model shift, if implemented at scale in practice. These
induced shifts can and should be considered as an (expected)
external cost of individual recourse. While they do not affect
the individual directly as long as we look at the individual
in isolation, they can been seen to affect the broader group
of stakeholders in automated data-driven decision-making. We
have seen, for example, that out-of-sample model performance
generally deteriorates in our simulation experiments. In prac-
tice, this can be seen as a cost to model owners, that is the
group of stakeholders using the model as decision-making
tool. As we have set out in Example I.2 of our introduction,
these model owners may be unwilling to carry that cost, and
hence can be expected to stop offering recourse to individuals
altogether. This in turn is costly to those individuals that would
otherwise derive utility from being offered recourse.

So, where does this leave us? We would argue that the
expected external costs of individual recourse should be
shared by all stakeholders. The most straightforward way
to achieve this is to introduce a penalty for external costs
in the counterfactual search objective function, as we have
set out in Equation (4). This will on average lead to more
costly counterfactual outcomes, but may help to avoid extreme
scenarios, in which minimal-cost recourse is reserved to a tiny
minority of individuals. We have shown various types of shift-
mitigating strategies that can be used to this end. Since all

14Estimated domain shifts (not shown) were largely insubstantial, as in
Figure 4 in the previous section.



of these strategies can be seen simply as specific adaption
of Equation (4), they can be applied to any of the various
counterfactual generators studied here.

IX. LIMITATIONS AND FUTURE WORK

While we believe that this work constitutes a valuable
starting point for addressing existing issues in Algorithmic
Recourse from a fresh perspective, we are aware of several of
its limitations. In the following, we highlight some of these
limitations and point to avenues for future research.

A. Private vs. External Costs

Perhaps the most crucial shortcoming of our work is that we
merely point out that there exists a trade-off between private
costs to the individual and external costs to the collective of
stakeholders. We fall short of providing any definite answers
as to how that trade-off may be resolved in practice. The
mitigation strategies we have proposed here provide a good
starting point, but they are ad-hoc, mechanical extensions of
the existing AR framework. An interesting idea to explore
in future work could be the potential for Pareto optimal
Algorithmic Recourse, that is, a collective recourse outcome
in which no single individual can be made better off, without
making at least one other individual worse off. This type of
work would be interdisciplinary and could help to formalize
some of the concepts presented in this work.

B. Experimental Setup

The experimental setup proposed here is designed to mimic
a real-world recourse process in a simple fashion. In practice,
models are in fact updated on a regular basis [14]. We also
find it plausible to assume that the implementation of recourse
happens periodically for different individuals, rather that all at
once at time t = 0. That being said, our experimental design
is a vast over-simplification of potential real-world scenarios.
In practice, any endogenous shifts that may occur can be
expected to be entangled with exogenous shifts of the nature
investigated in Upadhyay et al. [14]. We also make implicit
assumptions about the utility functions of the involved agents
that may well be too simple: individuals seeking recourse are
assumed to always implement the proposed Counterfactual
Explanations; conversely, the agent in charge of the model M
is assumed to always treat individuals that have implemented
valid recourse as if they were truly now in the target class.

C. Causal Modelling

In this work we have focused on popular counterfactual
generators that do not incorporate any causal knowledge.
The generated perturbations therefore may involve changes to
variables that affect the outcome predicted by the black-box
model, but not the true outcome. The implementation of such
changes is typically described as gaming [36], although they
need not be driven by adversarial intentions: in Example I.2,
student applicants may dutifully focus on acquiring credentials
that help them to be admitted to university, but ultimately
not to improve their chances of success at completing their

degree [37]. Preventing such actions may help to avoid the
dynamics we have pointed to in this work. Future work would
likely benefit from including recent approaches to AR that
incorporate causal knowledge such as Karimi et al. [13].

D. Classifiers

For reasons stated earlier we have limited our analysis to
differentiable linear and non-linear classifiers, in particular
logistic regression and deep neural networks. While these sorts
of classifiers have also typically been analyzed in the existing
literature on Counterfactual Explanations and Algorithmic
Recourse, they represent only a subset of popular machine
learning models employed in practice. Despite the success and
popularity of deep learning in the context of high-dimensional
data such as image, audio and video, empirical evidence
suggests that other models such as boosted decision trees may
have an edge when it comes to lower-dimensional tabular
datasets, such as the ones considered here ([38], [39]).

E. Data

Largely in line with the existing literature on Algorithmic
Recourse, we have limited our analysis of real-world data to
three commonly used benchmark datasets that involve binary
prediction tasks. Future work may benefit from including novel
datasets or extending the analysis to multi-class or regression
problems, the latter arguably representing the most common
objective in Finance and Economics.

X. CONCLUDING REMARKS

This work has revisited and extended some of the most
general and defining concepts underlying the literature on
Counterfactual Explanations and, in particular, Algorithmic
Recourse. We demonstrate that long-held beliefs as to what
defines optimality in AR, may not always be suitable. Specif-
ically, we run experiments that simulate the application of
recourse in practice using various state-of-the-art counterfac-
tual generators and find that all of them induce substantial
domain and model shifts. We argue that these shifts should
be considered as an expected external cost of individual
recourse and call for a paradigm shift from individual to
collective recourse in these types of situations. By proposing
an adapted counterfactual search objective that incorporates
this cost, we make that paradigm shift explicit. We show that
this modified objective lends itself to mitigation strategies that
can be used to effectively decrease the magnitude of induced
domain and model shifts. Through our work we hope to
inspire future research on this important topic. To this end
we have open-sourced all of our code along with a Julia
package: AlgorithmicRecourseDynamics.jl. Future
researchers should find it relatively easy to replicate, modify
and extend the simulation experiments presented here and
apply to their own custom counterfactual generators.
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APPENDIX

Granular results for all of our experiments can be found
in this online companion: https://www.paltmeyer.com/
endogenous-macrodynamics-in-algorithmic-recourse/. The
Github repository containing all the code used to produce the
results in this paper can be found here: https://github.com/
pat-alt/endogenous-macrodynamics-in-algorithmic-recourse.
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