diff --git a/pulse_lib/sequencer.py b/pulse_lib/sequencer.py index 3df3149959720154ae567104ef2546b34b8f4009..e0f9bfe93e8e04ca168e53062e11ca5e67c28c61 100644 --- a/pulse_lib/sequencer.py +++ b/pulse_lib/sequencer.py @@ -184,14 +184,13 @@ class sequencer(): logger.info(msg) # update dimensionality of all sequence objects - logger.debug('Enter pre-rendering') start = time.perf_counter() setpoint_data = setpoint_mgr() for seg_container in self.sequence: seg_container.enter_rendering_mode() self._shape = find_common_dimension(self._shape, seg_container.shape) setpoint_data += seg_container.setpoint_data - logger.debug(f'Done pre-render {(time.perf_counter()-start)*1000:.0f} ms') + logger.debug(f'Pre-render {(time.perf_counter()-start)*1000:.0f} ms') # Set the waveform cache equal to the sum over all channels and segments of the max axis length. # The cache will than be big enough for 1D iterations along every axis. This gives best performance total_axis_length = 0 @@ -211,7 +210,7 @@ class sequencer(): # limit cache to 8 GB max_cache = int(1e9 / n_samples) cache_size = min(total_axis_length, max_cache) - logger.info(f'waveform cache: {cache_size} waveforms of max {n_samples} samples') + logger.debug(f'waveform cache: {cache_size} waveforms of max {n_samples} samples') parent_data.set_waveform_cache_size(cache_size) self._setpoints = setpoint_data @@ -714,7 +713,7 @@ class sequencer(): if index is None: index = self.sweep_index[::-1] mc = self._get_measurement_converter() - mc.set_channel_data(self.get_channel_data(index)) + mc.set_channel_data(self.get_channel_data(index), index) if iq_complex == False: iq_mode = 'I+Q' selection = DataSelection(raw=raw, states=states, values=values,