load_mon.cpp 9.06 KiB
/****************************************************************************
*
* Copyright (c) 2012-2018 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file load_mon.cpp
*
* @author Jonathan Challinger <jonathan@3drobotics.com>
* @author Julian Oes <julian@oes.ch
* @author Andreas Antener <andreas@uaventure.com>
*/
#include <drivers/drv_hrt.h>
#include <lib/perf/perf_counter.h>
#include <px4_config.h>
#include <px4_defines.h>
#include <px4_module.h>
#include <px4_module_params.h>
#include <px4_workqueue.h>
#include <systemlib/cpuload.h>
#include <uORB/topics/cpuload.h>
#include <uORB/topics/task_stack_info.h>
#include <uORB/uORB.h>
#if defined(__PX4_NUTTX) && !defined(CONFIG_SCHED_INSTRUMENTATION)
# error load_mon support requires CONFIG_SCHED_INSTRUMENTATION
#endif
extern struct system_load_s system_load;
#define STACK_LOW_WARNING_THRESHOLD 300 ///< if free stack space falls below this, print a warning
#define FDS_LOW_WARNING_THRESHOLD 3 ///< if free file descriptors fall below this, print a warning
namespace load_mon
{
extern "C" __EXPORT int load_mon_main(int argc, char *argv[]);
// Run it at 1 Hz.
const unsigned LOAD_MON_INTERVAL_US = 1000000;
class LoadMon : public ModuleBase<LoadMon>, public ModuleParams
{
public:
LoadMon();
~LoadMon();
static int task_spawn(int argc, char *argv[]);
/** @see ModuleBase */
static int custom_command(int argc, char *argv[])
{
return print_usage("unknown command");
}
/** @see ModuleBase */
static int print_usage(const char *reason = nullptr);
/** @see ModuleBase::print_status() */
int print_status() override;
/** Trampoline for the work queue. */
static void cycle_trampoline(void *arg);
private:
/** Do a compute and schedule the next cycle. */
void _cycle();
/** Do a calculation of the CPU load and publish it. */
void _cpuload();
/** Calculate the memory usage */
float _ram_used();
#ifdef __PX4_NUTTX
/* Calculate stack usage */
void _stack_usage();
int _stack_task_index{0};
orb_advert_t _task_stack_info_pub{nullptr};
#endif
DEFINE_PARAMETERS(
(ParamBool<px4::params::SYS_STCK_EN>) _param_sys_stck_en
)
work_s _work{};
orb_advert_t _cpuload_pub{nullptr};
hrt_abstime _last_idle_time{0};
hrt_abstime _last_idle_time_sample{0};
perf_counter_t _stack_perf;
};
LoadMon::LoadMon() :
ModuleParams(nullptr),
_stack_perf(perf_alloc(PC_ELAPSED, "stack_check"))
{
}
LoadMon::~LoadMon()
{
perf_free(_stack_perf);
}
int LoadMon::task_spawn(int argc, char *argv[])
{
LoadMon *obj = new LoadMon();
if (!obj) {
PX4_ERR("alloc failed");
return -1;
}
/* Schedule a cycle to start things. */
int ret = work_queue(LPWORK, &obj->_work, (worker_t)&LoadMon::cycle_trampoline, obj, 0);
if (ret < 0) {
delete obj;
return ret;
}
_object.store(obj);
_task_id = task_id_is_work_queue;
return 0;
}
void
LoadMon::cycle_trampoline(void *arg)
{
LoadMon *dev = reinterpret_cast<LoadMon *>(arg);
dev->_cycle();
}
void LoadMon::_cycle()
{
_cpuload();
#ifdef __PX4_NUTTX
if (_param_sys_stck_en.get()) {
_stack_usage();
}
#endif
if (!should_exit()) {
work_queue(LPWORK, &_work, (worker_t)&LoadMon::cycle_trampoline, this,
USEC2TICK(LOAD_MON_INTERVAL_US));
} else {
exit_and_cleanup();
}
}
void LoadMon::_cpuload()
{
if (_last_idle_time == 0) {
/* Just get the time in the first iteration */
_last_idle_time = system_load.tasks[0].total_runtime;
return;
}
/* compute system load */
const hrt_abstime total_runtime = system_load.tasks[0].total_runtime;
const hrt_abstime interval = hrt_elapsed_time(&_last_idle_time_sample);
const hrt_abstime interval_idletime = total_runtime - _last_idle_time;
_last_idle_time = total_runtime;
_last_idle_time_sample = hrt_absolute_time();
cpuload_s cpuload = {};
cpuload.load = 1.0f - (float)interval_idletime / (float)interval;
cpuload.ram_usage = _ram_used();
cpuload.timestamp = hrt_absolute_time();
if (_cpuload_pub == nullptr) {
_cpuload_pub = orb_advertise(ORB_ID(cpuload), &cpuload);
} else {
orb_publish(ORB_ID(cpuload), _cpuload_pub, &cpuload);
}
}
float LoadMon::_ram_used()
{
#ifdef __PX4_NUTTX
struct mallinfo mem;
#ifdef CONFIG_CAN_PASS_STRUCTS
mem = mallinfo();
#else
(void)mallinfo(&mem);
#endif /* CONFIG_CAN_PASS_STRUCTS */
// mem.arena: total ram (bytes)
// mem.uordblks: used (bytes)
// mem.fordblks: free (bytes)
// mem.mxordblk: largest remaining block (bytes)
return (float)mem.uordblks / mem.arena;
#else
return 0.0f;
#endif
}
#ifdef __PX4_NUTTX
void LoadMon::_stack_usage()
{
int task_index = 0;
/* Scan maximum num_tasks_per_cycle tasks to reduce load. */
const int num_tasks_per_cycle = 2;
for (int i = _stack_task_index; i < _stack_task_index + num_tasks_per_cycle; i++) {
task_index = i % CONFIG_MAX_TASKS;
unsigned stack_free = 0;
unsigned fds_free = FDS_LOW_WARNING_THRESHOLD + 1;
bool checked_task = false;
perf_begin(_stack_perf);
sched_lock();
task_stack_info_s task_stack_info = {};
if (system_load.tasks[task_index].valid && system_load.tasks[task_index].tcb->pid > 0) {
stack_free = up_check_tcbstack_remain(system_load.tasks[task_index].tcb);
strncpy((char *)task_stack_info.task_name, system_load.tasks[task_index].tcb->name,
task_stack_info_s::MAX_REPORT_TASK_NAME_LEN);
#if CONFIG_NFILE_DESCRIPTORS > 0
FAR struct task_group_s *group = system_load.tasks[task_index].tcb->group;
unsigned tcb_num_used_fds = 0;
if (group) {
for (int fd_index = 0; fd_index < CONFIG_NFILE_DESCRIPTORS; ++fd_index) {
if (group->tg_filelist.fl_files[fd_index].f_inode) {
++tcb_num_used_fds;
}
}
fds_free = CONFIG_NFILE_DESCRIPTORS - tcb_num_used_fds;
}
#endif
checked_task = true;
}
sched_unlock();
perf_end(_stack_perf);
if (checked_task) {
task_stack_info.stack_free = stack_free;
task_stack_info.timestamp = hrt_absolute_time();
if (_task_stack_info_pub == nullptr) {
_task_stack_info_pub = orb_advertise_queue(ORB_ID(task_stack_info), &task_stack_info, num_tasks_per_cycle);
} else {
orb_publish(ORB_ID(task_stack_info), _task_stack_info_pub, &task_stack_info);
}
/*
* Found task low on stack, report and exit. Continue here in next cycle.
*/
if (stack_free < STACK_LOW_WARNING_THRESHOLD) {
PX4_WARN("%s low on stack! (%i bytes left)", task_stack_info.task_name, stack_free);
break;
}
/*
* Found task low on file descriptors, report and exit. Continue here in next cycle.
*/
if (fds_free < FDS_LOW_WARNING_THRESHOLD) {
PX4_WARN("%s low on FDs! (%i FDs left)", task_stack_info.task_name, fds_free);
break;
}
} else {
/* No task here, check one more task in same cycle. */
_stack_task_index++;
}
}
/* Continue after last checked task next cycle. */
_stack_task_index = task_index + 1;
}
#endif
int LoadMon::print_status()
{
PX4_INFO("running");
perf_print_counter(_stack_perf);
return 0;
}
int LoadMon::print_usage(const char *reason)
{
if (reason) {
PX4_ERR("%s\n", reason);
}
PRINT_MODULE_DESCRIPTION(
R"DESCR_STR(
### Description
Background process running periodically with 1 Hz on the LP work queue to calculate the CPU load and RAM
usage and publish the `cpuload` topic.
On NuttX it also checks the stack usage of each process and if it falls below 300 bytes, a warning is output,
which will also appear in the log file.
)DESCR_STR");
PRINT_MODULE_USAGE_NAME("load_mon", "system");
PRINT_MODULE_USAGE_COMMAND_DESCR("start", "Start the background task");
PRINT_MODULE_USAGE_DEFAULT_COMMANDS();
return 0;
}
int load_mon_main(int argc, char *argv[])
{
return LoadMon::main(argc, argv);
}
} // namespace load_mon