Skip to content
Snippets Groups Projects
Commit ca9e323b authored by David Sidrane's avatar David Sidrane Committed by Daniel Agar
Browse files

ardrone_interface:Removed ardrone_interface from PX4 only used PX4v1

  Removed that driver was only referenced from the now depricated
  px4fmuv-1
parent 1e0489f4
No related branches found
No related tags found
No related merge requests found
############################################################################
#
# Copyright (c) 2015 PX4 Development Team. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
# 3. Neither the name PX4 nor the names of its contributors may be
# used to endorse or promote products derived from this software
# without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
# OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
# AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
############################################################################
px4_add_module(
MODULE drivers__ardrone_interface
MAIN ardrone_interface
STACK_MAIN 1200
COMPILE_FLAGS
SRCS
ardrone_interface.c
ardrone_motor_control.c
DEPENDS
platforms__common
)
# vim: set noet ft=cmake fenc=utf-8 ff=unix :
/****************************************************************************
*
* Copyright (C) 2012 PX4 Development Team. All rights reserved.
* Author: Lorenz Meier <lm@inf.ethz.ch>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file ardrone_interface.c
* Implementation of AR.Drone 1.0 / 2.0 motor control interface.
*/
#include <px4_config.h>
#include <px4_tasks.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <unistd.h>
#include <math.h>
#include <fcntl.h>
#include <errno.h>
#include <debug.h>
#include <termios.h>
#include <time.h>
#include <systemlib/err.h>
#include <sys/prctl.h>
#include <drivers/drv_hrt.h>
#include <uORB/uORB.h>
#include <uORB/topics/safety.h>
#include <uORB/topics/actuator_controls.h>
#include <uORB/topics/actuator_armed.h>
#include <uORB/topics/vehicle_control_mode.h>
#include <systemlib/systemlib.h>
#include "ardrone_motor_control.h"
__EXPORT int ardrone_interface_main(int argc, char *argv[]);
static bool thread_should_exit = false; /**< Deamon exit flag */
static bool thread_running = false; /**< Deamon status flag */
static int ardrone_interface_task; /**< Handle of deamon task / thread */
static int ardrone_write; /**< UART to write AR.Drone commands to */
/**
* Mainloop of ardrone_interface.
*/
int ardrone_interface_thread_main(int argc, char *argv[]);
/**
* Open the UART connected to the motor controllers
*/
static int ardrone_open_uart(char *uart_name, struct termios *uart_config_original);
/**
* Print the correct usage.
*/
static void usage(const char *reason);
static void
usage(const char *reason)
{
if (reason) {
warnx("%s\n", reason);
}
warnx("usage: {start|stop|status} [-d <UART>]\n\n");
exit(1);
}
/**
* The deamon app only briefly exists to start
* the background job. The stack size assigned in the
* Makefile does only apply to this management task.
*
* The actual stack size should be set in the call
* to task_create().
*/
int ardrone_interface_main(int argc, char *argv[])
{
if (argc < 2) {
usage("missing command");
}
if (!strcmp(argv[1], "start")) {
if (thread_running) {
warnx("already running\n");
/* this is not an error */
exit(0);
}
thread_should_exit = false;
ardrone_interface_task = px4_task_spawn_cmd("ardrone_interface",
SCHED_DEFAULT,
SCHED_PRIORITY_MAX - 15,
1100,
ardrone_interface_thread_main,
(argv) ? (char *const *)&argv[2] : (char *const *)NULL);
exit(0);
}
if (!strcmp(argv[1], "stop")) {
thread_should_exit = true;
exit(0);
}
if (!strcmp(argv[1], "status")) {
if (thread_running) {
warnx("running");
} else {
warnx("not started");
}
exit(0);
}
usage("unrecognized command");
exit(1);
}
static int ardrone_open_uart(char *uart_name, struct termios *uart_config_original)
{
/* baud rate */
int speed = B115200;
int uart;
/* open uart */
uart = open(uart_name, O_RDWR | O_NOCTTY);
/* Try to set baud rate */
struct termios uart_config;
int termios_state;
/* Back up the original uart configuration to restore it after exit */
if ((termios_state = tcgetattr(uart, uart_config_original)) < 0) {
warnx("ERR: TCGETATTR %s: %d", uart_name, termios_state);
close(uart);
return -1;
}
/* Fill the struct for the new configuration */
tcgetattr(uart, &uart_config);
/* Clear ONLCR flag (which appends a CR for every LF) */
uart_config.c_oflag &= ~ONLCR;
/* Set baud rate */
if (cfsetispeed(&uart_config, speed) < 0 || cfsetospeed(&uart_config, speed) < 0) {
warnx("ERR: cfsetispeed %s: %d", uart_name, termios_state);
close(uart);
return -1;
}
if ((termios_state = tcsetattr(uart, TCSANOW, &uart_config)) < 0) {
warnx("ERR: tcsetattr: %s", uart_name);
close(uart);
return -1;
}
return uart;
}
int ardrone_interface_thread_main(int argc, char *argv[])
{
thread_running = true;
char *device = "/dev/ttyS1";
/* File descriptors */
int gpios;
char *commandline_usage = "\tusage: ardrone_interface start|status|stop [-t for motor test (10%% thrust)]\n";
bool motor_test_mode = false;
int test_motor = -1;
/* read commandline arguments */
for (int i = 0; i < argc && argv[i]; i++) {
if (strcmp(argv[i], "-t") == 0 || strcmp(argv[i], "--test") == 0) {
motor_test_mode = true;
}
if (strcmp(argv[i], "-m") == 0 || strcmp(argv[i], "--motor") == 0) {
if (i + 1 < argc) {
int motor = atoi(argv[i + 1]);
if (motor > 0 && motor < 5) {
test_motor = motor;
} else {
thread_running = false;
errx(1, "supply a motor # between 1 and 4. Example: -m 1\n %s", commandline_usage);
}
} else {
thread_running = false;
errx(1, "missing parameter to -m 1..4\n %s", commandline_usage);
}
}
if (strcmp(argv[i], "-d") == 0 || strcmp(argv[i], "--device") == 0) { //device set
if (argc > i + 1) {
device = argv[i + 1];
} else {
thread_running = false;
errx(1, "missing parameter to -m 1..4\n %s", commandline_usage);
}
}
}
struct termios uart_config_original;
if (motor_test_mode) {
warnx("setting 10 %% thrust.\n");
}
/* Led animation */
int counter = 0;
int led_counter = 0;
/* declare and safely initialize all structs */
struct actuator_controls_s actuator_controls;
memset(&actuator_controls, 0, sizeof(actuator_controls));
struct actuator_armed_s armed;
//XXX is this necessairy?
armed.armed = false;
/* subscribe to attitude, motor setpoints and system state */
int actuator_controls_sub = orb_subscribe(ORB_ID_VEHICLE_ATTITUDE_CONTROLS);
int armed_sub = orb_subscribe(ORB_ID(actuator_armed));
/* enable UART, writes potentially an empty buffer, but multiplexing is disabled */
ardrone_write = ardrone_open_uart(device, &uart_config_original);
/* initialize multiplexing, deactivate all outputs - must happen after UART open to claim GPIOs on PX4FMU */
gpios = ar_multiplexing_init();
if (ardrone_write < 0) {
warnx("No UART, exiting.");
thread_running = false;
exit(ERROR);
}
/* initialize motors */
if (OK != ar_init_motors(ardrone_write, gpios)) {
close(ardrone_write);
warnx("motor init fail");
thread_running = false;
exit(ERROR);
}
ardrone_write_motor_commands(ardrone_write, 0, 0, 0, 0);
// XXX Re-done initialization to make sure it is accepted by the motors
// XXX should be removed after more testing, but no harm
/* close uarts */
close(ardrone_write);
/* enable UART, writes potentially an empty buffer, but multiplexing is disabled */
ardrone_write = ardrone_open_uart(device, &uart_config_original);
/* initialize multiplexing, deactivate all outputs - must happen after UART open to claim GPIOs on PX4FMU */
gpios = ar_multiplexing_init();
if (ardrone_write < 0) {
warnx("write fail");
thread_running = false;
exit(ERROR);
}
/* initialize motors */
if (OK != ar_init_motors(ardrone_write, gpios)) {
close(ardrone_write);
warnx("motor init fail");
thread_running = false;
exit(ERROR);
}
while (!thread_should_exit) {
if (motor_test_mode) {
/* set motors to idle speed */
if (test_motor > 0 && test_motor < 5) {
int motors[4] = {0, 0, 0, 0};
motors[test_motor - 1] = 10;
ardrone_write_motor_commands(ardrone_write, motors[0], motors[1], motors[2], motors[3]);
} else {
ardrone_write_motor_commands(ardrone_write, 10, 10, 10, 10);
}
} else {
/* MAIN OPERATION MODE */
/* get a local copy of the actuator controls */
orb_copy(ORB_ID_VEHICLE_ATTITUDE_CONTROLS, actuator_controls_sub, &actuator_controls);
orb_copy(ORB_ID(actuator_armed), armed_sub, &armed);
/* for now only spin if armed and immediately shut down
* if in failsafe
*/
if (armed.armed && !(armed.lockdown || armed.manual_lockdown)) {
ardrone_mixing_and_output(ardrone_write, &actuator_controls);
} else {
/* Silently lock down motor speeds to zero */
ardrone_write_motor_commands(ardrone_write, 0, 0, 0, 0);
}
}
if (counter % 24 == 0) {
if (led_counter == 0) { ar_set_leds(ardrone_write, 0, 1, 0, 0, 0, 0, 0, 0); }
if (led_counter == 1) { ar_set_leds(ardrone_write, 1, 1, 0, 0, 0, 0, 0, 0); }
if (led_counter == 2) { ar_set_leds(ardrone_write, 1, 0, 0, 0, 0, 0, 0, 0); }
if (led_counter == 3) { ar_set_leds(ardrone_write, 0, 0, 0, 1, 0, 0, 0, 0); }
if (led_counter == 4) { ar_set_leds(ardrone_write, 0, 0, 1, 1, 0, 0, 0, 0); }
if (led_counter == 5) { ar_set_leds(ardrone_write, 0, 0, 1, 0, 0, 0, 0, 0); }
if (led_counter == 6) { ar_set_leds(ardrone_write, 0, 0, 0, 0, 0, 1, 0, 0); }
if (led_counter == 7) { ar_set_leds(ardrone_write, 0, 0, 0, 0, 1, 1, 0, 0); }
if (led_counter == 8) { ar_set_leds(ardrone_write, 0, 0, 0, 0, 1, 0, 0, 0); }
if (led_counter == 9) { ar_set_leds(ardrone_write, 0, 0, 0, 0, 0, 0, 0, 1); }
if (led_counter == 10) { ar_set_leds(ardrone_write, 0, 0, 0, 0, 0, 0, 1, 1); }
if (led_counter == 11) { ar_set_leds(ardrone_write, 0, 0, 0, 0, 0, 0, 1, 0); }
led_counter++;
if (led_counter == 12) { led_counter = 0; }
}
/* run at approximately 200 Hz */
usleep(4500);
counter++;
}
/* restore old UART config */
int termios_state;
if ((termios_state = tcsetattr(ardrone_write, TCSANOW, &uart_config_original)) < 0) {
warnx("ERR: tcsetattr");
}
/* close uarts */
close(ardrone_write);
ar_multiplexing_deinit(gpios);
fflush(stdout);
thread_running = false;
return OK;
}
/****************************************************************************
*
* Copyright (C) 2012 PX4 Development Team. All rights reserved.
* Author: Lorenz Meier <lm@inf.ethz.ch>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file ardrone_motor_control.c
* Implementation of AR.Drone 1.0 / 2.0 motor control interface
*/
#include <px4_config.h>
#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <math.h>
#include <drivers/drv_gpio.h>
#include <drivers/drv_hrt.h>
#include <uORB/uORB.h>
#include <uORB/topics/actuator_outputs.h>
#include <systemlib/err.h>
#include "ardrone_motor_control.h"
static unsigned long motor_gpios = GPIO_EXT_1 | GPIO_EXT_2 | GPIO_MULTI_1 | GPIO_MULTI_2;
static unsigned long motor_gpio[4] = { GPIO_EXT_1, GPIO_EXT_2, GPIO_MULTI_1, GPIO_MULTI_2 };
typedef union {
uint16_t motor_value;
uint8_t bytes[2];
} motor_union_t;
#define UART_TRANSFER_TIME_BYTE_US (9+50) /**< 9 us per byte at 115200k plus overhead */
/**
* @brief Generate the 8-byte motor set packet
*
* @return the number of bytes (8)
*/
void ar_get_motor_packet(uint8_t *motor_buf, uint16_t motor1, uint16_t motor2, uint16_t motor3, uint16_t motor4)
{
motor_buf[0] = 0x20;
motor_buf[1] = 0x00;
motor_buf[2] = 0x00;
motor_buf[3] = 0x00;
motor_buf[4] = 0x00;
/*
* {0x20, 0x00, 0x00, 0x00, 0x00};
* 0x20 is start sign / motor command
*/
motor_union_t curr_motor;
uint16_t nineBitMask = 0x1FF;
/* Set motor 1 */
curr_motor.motor_value = (motor1 & nineBitMask) << 4;
motor_buf[0] |= curr_motor.bytes[1];
motor_buf[1] |= curr_motor.bytes[0];
/* Set motor 2 */
curr_motor.motor_value = (motor2 & nineBitMask) << 3;
motor_buf[1] |= curr_motor.bytes[1];
motor_buf[2] |= curr_motor.bytes[0];
/* Set motor 3 */
curr_motor.motor_value = (motor3 & nineBitMask) << 2;
motor_buf[2] |= curr_motor.bytes[1];
motor_buf[3] |= curr_motor.bytes[0];
/* Set motor 4 */
curr_motor.motor_value = (motor4 & nineBitMask) << 1;
motor_buf[3] |= curr_motor.bytes[1];
motor_buf[4] |= curr_motor.bytes[0];
}
void ar_enable_broadcast(int fd)
{
ar_select_motor(fd, 0);
}
int ar_multiplexing_init()
{
int fd;
fd = open(PX4FMU_DEVICE_PATH, 0);
if (fd < 0) {
warn("GPIO: open fail");
return fd;
}
/* deactivate all outputs */
if (ioctl(fd, GPIO_SET, motor_gpios)) {
warn("GPIO: clearing pins fail");
close(fd);
return -1;
}
/* configure all motor select GPIOs as outputs */
if (ioctl(fd, GPIO_SET_OUTPUT, motor_gpios) != 0) {
warn("GPIO: output set fail");
close(fd);
return -1;
}
return fd;
}
int ar_multiplexing_deinit(int fd)
{
if (fd < 0) {
printf("GPIO: no valid descriptor\n");
return fd;
}
int ret = 0;
/* deselect motor 1-4 */
ret += ioctl(fd, GPIO_SET, motor_gpios);
if (ret != 0) {
printf("GPIO: clear failed %d times\n", ret);
}
if (ioctl(fd, GPIO_SET_INPUT, motor_gpios) != 0) {
printf("GPIO: input set fail\n");
return -1;
}
close(fd);
return ret;
}
int ar_select_motor(int fd, uint8_t motor)
{
int ret = 0;
/*
* Four GPIOS:
* GPIO_EXT1
* GPIO_EXT2
* GPIO_UART2_CTS
* GPIO_UART2_RTS
*/
/* select motor 0 to enable broadcast */
if (motor == 0) {
/* select motor 1-4 */
ret += ioctl(fd, GPIO_CLEAR, motor_gpios);
} else {
/* select reqested motor */
ret += ioctl(fd, GPIO_CLEAR, motor_gpio[motor - 1]);
}
return ret;
}
int ar_deselect_motor(int fd, uint8_t motor)
{
int ret = 0;
/*
* Four GPIOS:
* GPIO_EXT1
* GPIO_EXT2
* GPIO_UART2_CTS
* GPIO_UART2_RTS
*/
if (motor == 0) {
/* deselect motor 1-4 */
ret += ioctl(fd, GPIO_SET, motor_gpios);
} else {
/* deselect reqested motor */
ret = ioctl(fd, GPIO_SET, motor_gpio[motor - 1]);
}
return ret;
}
int ar_init_motors(int ardrone_uart, int gpios)
{
/* Write ARDrone commands on UART2 */
uint8_t initbuf[] = {0xE0, 0x91, 0xA1, 0x00, 0x40};
uint8_t multicastbuf[] = {0xA0, 0xA0, 0xA0, 0xA0, 0xA0, 0xA0};
/* deselect all motors */
ar_deselect_motor(gpios, 0);
/* initialize all motors
* - select one motor at a time
* - configure motor
*/
int i;
int errcounter = 0;
/* initial setup run */
for (i = 1; i < 5; ++i) {
/* Initialize motors 1-4 */
errcounter += ar_select_motor(gpios, i);
usleep(200);
/*
* write 0xE0 - request status
* receive one status byte
*/
write(ardrone_uart, &(initbuf[0]), 1);
fsync(ardrone_uart);
usleep(UART_TRANSFER_TIME_BYTE_US * 1);
/*
* write 0x91 - request checksum
* receive 120 status bytes
*/
write(ardrone_uart, &(initbuf[1]), 1);
fsync(ardrone_uart);
usleep(UART_TRANSFER_TIME_BYTE_US * 120);
/*
* write 0xA1 - set status OK
* receive one status byte - should be A0
* to confirm status is OK
*/
write(ardrone_uart, &(initbuf[2]), 1);
fsync(ardrone_uart);
usleep(UART_TRANSFER_TIME_BYTE_US * 1);
/*
* set as motor i, where i = 1..4
* receive nothing
*/
initbuf[3] = (uint8_t)i;
write(ardrone_uart, &(initbuf[3]), 1);
fsync(ardrone_uart);
/*
* write 0x40 - check version
* receive 11 bytes encoding the version
*/
write(ardrone_uart, &(initbuf[4]), 1);
fsync(ardrone_uart);
usleep(UART_TRANSFER_TIME_BYTE_US * 11);
ar_deselect_motor(gpios, i);
/* sleep 200 ms */
usleep(200000);
}
/* start the multicast part */
errcounter += ar_select_motor(gpios, 0);
usleep(200);
/*
* first round
* write six times A0 - enable broadcast
* receive nothing
*/
write(ardrone_uart, multicastbuf, sizeof(multicastbuf));
fsync(ardrone_uart);
usleep(UART_TRANSFER_TIME_BYTE_US * sizeof(multicastbuf));
/*
* second round
* write six times A0 - enable broadcast
* receive nothing
*/
write(ardrone_uart, multicastbuf, sizeof(multicastbuf));
fsync(ardrone_uart);
usleep(UART_TRANSFER_TIME_BYTE_US * sizeof(multicastbuf));
/* set motors to zero speed (fsync is part of the write command */
ardrone_write_motor_commands(ardrone_uart, 0, 0, 0, 0);
if (errcounter != 0) {
warnx("Failed %d times", -errcounter);
fflush(stdout);
}
return errcounter;
}
/**
* Sets the leds on the motor controllers, 1 turns led on, 0 off.
*/
void ar_set_leds(int ardrone_uart, uint8_t led1_red, uint8_t led1_green, uint8_t led2_red, uint8_t led2_green,
uint8_t led3_red, uint8_t led3_green, uint8_t led4_red, uint8_t led4_green)
{
/*
* 2 bytes are sent. The first 3 bits describe the command: 011 means led control
* the following 4 bits are the red leds for motor 4, 3, 2, 1
* then 4 bits with unknown function, then 4 bits for green leds for motor 4, 3, 2, 1
* the last bit is unknown.
*
* The packet is therefore:
* 011 rrrr 0000 gggg 0
*/
uint8_t leds[2];
leds[0] = 0x60 | ((led4_red & 0x01) << 4) | ((led3_red & 0x01) << 3) | ((led2_red & 0x01) << 2) | ((
led1_red & 0x01) << 1);
leds[1] = ((led4_green & 0x01) << 4) | ((led3_green & 0x01) << 3) | ((led2_green & 0x01) << 2) | ((
led1_green & 0x01) << 1);
write(ardrone_uart, leds, 2);
}
int ardrone_write_motor_commands(int ardrone_fd, uint16_t motor1, uint16_t motor2, uint16_t motor3, uint16_t motor4)
{
const unsigned int min_motor_interval = 4900;
static uint64_t last_motor_time = 0;
static struct actuator_outputs_s outputs;
outputs.timestamp = hrt_absolute_time();
outputs.output[0] = motor1;
outputs.output[1] = motor2;
outputs.output[2] = motor3;
outputs.output[3] = motor4;
static orb_advert_t pub = 0;
if (pub == 0) {
/* advertise to channel 0 / primary */
pub = orb_advertise(ORB_ID(actuator_outputs), &outputs);
}
if (hrt_absolute_time() - last_motor_time > min_motor_interval) {
uint8_t buf[5] = {0};
ar_get_motor_packet(buf, motor1, motor2, motor3, motor4);
int ret;
ret = write(ardrone_fd, buf, sizeof(buf));
fsync(ardrone_fd);
/* publish just written values */
orb_publish(ORB_ID(actuator_outputs), pub, &outputs);
if (ret == sizeof(buf)) {
return OK;
} else {
return ret;
}
} else {
return -ERROR;
}
}
void ardrone_mixing_and_output(int ardrone_write, const struct actuator_controls_s *actuators)
{
float roll_control = actuators->control[0];
float pitch_control = actuators->control[1];
float yaw_control = actuators->control[2];
float motor_thrust = actuators->control[3];
const float min_thrust = 0.02f; /**< 2% minimum thrust */
const float max_thrust = 1.0f; /**< 100% max thrust */
const float scaling = 510.0f; /**< 100% thrust equals a value of 510 which works, 512 leads to cutoff */
const float min_gas = min_thrust * scaling; /**< value range sent to motors, minimum */
const float max_gas = max_thrust * scaling; /**< value range sent to motors, maximum */
/* initialize all fields to zero */
uint16_t motor_pwm[4] = {0};
float motor_calc[4] = {0};
float output_band = 0.0f;
const float startpoint_full_control = 0.25f; /**< start full control at 25% thrust */
/* linearly scale the control inputs from 0 to startpoint_full_control */
if (motor_thrust < startpoint_full_control) {
output_band = motor_thrust / startpoint_full_control; // linear from 0 to 1
} else {
output_band = 1.0f;
}
roll_control *= output_band;
pitch_control *= output_band;
yaw_control *= output_band;
//add the yaw, nick and roll components to the basic thrust //TODO:this should be done by the mixer
// FRONT (MOTOR 1)
motor_calc[0] = motor_thrust + (roll_control / 2 + pitch_control / 2 - yaw_control);
// RIGHT (MOTOR 2)
motor_calc[1] = motor_thrust + (-roll_control / 2 + pitch_control / 2 + yaw_control);
// BACK (MOTOR 3)
motor_calc[2] = motor_thrust + (-roll_control / 2 - pitch_control / 2 - yaw_control);
// LEFT (MOTOR 4)
motor_calc[3] = motor_thrust + (roll_control / 2 - pitch_control / 2 + yaw_control);
/* if one motor is saturated, reduce throttle */
float saturation = fmaxf(fmaxf(motor_calc[0], motor_calc[1]), fmaxf(motor_calc[2], motor_calc[3])) - max_thrust;
if (saturation > 0.0f) {
/* reduce the motor thrust according to the saturation */
motor_thrust = motor_thrust - saturation;
// FRONT (MOTOR 1)
motor_calc[0] = motor_thrust + (roll_control / 2 + pitch_control / 2 - yaw_control);
// RIGHT (MOTOR 2)
motor_calc[1] = motor_thrust + (-roll_control / 2 + pitch_control / 2 + yaw_control);
// BACK (MOTOR 3)
motor_calc[2] = motor_thrust + (-roll_control / 2 - pitch_control / 2 - yaw_control);
// LEFT (MOTOR 4)
motor_calc[3] = motor_thrust + (roll_control / 2 - pitch_control / 2 + yaw_control);
}
/* set the motor values */
/* scale up from 0..1 to 10..500) */
motor_pwm[0] = (uint16_t)(motor_calc[0] * ((float)max_gas - min_gas) + min_gas);
motor_pwm[1] = (uint16_t)(motor_calc[1] * ((float)max_gas - min_gas) + min_gas);
motor_pwm[2] = (uint16_t)(motor_calc[2] * ((float)max_gas - min_gas) + min_gas);
motor_pwm[3] = (uint16_t)(motor_calc[3] * ((float)max_gas - min_gas) + min_gas);
/* scale up from 0..1 to 10..500) */
motor_pwm[0] = (uint16_t)(motor_calc[0] * (float)((max_gas - min_gas) + min_gas));
motor_pwm[1] = (uint16_t)(motor_calc[1] * (float)((max_gas - min_gas) + min_gas));
motor_pwm[2] = (uint16_t)(motor_calc[2] * (float)((max_gas - min_gas) + min_gas));
motor_pwm[3] = (uint16_t)(motor_calc[3] * (float)((max_gas - min_gas) + min_gas));
/* Failsafe logic for min values - should never be necessary */
motor_pwm[0] = (motor_pwm[0] > 0) ? motor_pwm[0] : min_gas;
motor_pwm[1] = (motor_pwm[1] > 0) ? motor_pwm[1] : min_gas;
motor_pwm[2] = (motor_pwm[2] > 0) ? motor_pwm[2] : min_gas;
motor_pwm[3] = (motor_pwm[3] > 0) ? motor_pwm[3] : min_gas;
/* Failsafe logic for max values - should never be necessary */
motor_pwm[0] = (motor_pwm[0] <= max_gas) ? motor_pwm[0] : max_gas;
motor_pwm[1] = (motor_pwm[1] <= max_gas) ? motor_pwm[1] : max_gas;
motor_pwm[2] = (motor_pwm[2] <= max_gas) ? motor_pwm[2] : max_gas;
motor_pwm[3] = (motor_pwm[3] <= max_gas) ? motor_pwm[3] : max_gas;
/* send motors via UART */
ardrone_write_motor_commands(ardrone_write, motor_pwm[0], motor_pwm[1], motor_pwm[2], motor_pwm[3]);
}
/****************************************************************************
*
* Copyright (C) 2012 PX4 Development Team. All rights reserved.
* Author: Lorenz Meier <lm@inf.ethz.ch>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file ardrone_motor_control.h
* Definition of AR.Drone 1.0 / 2.0 motor control interface
*/
#include <uORB/uORB.h>
#include <uORB/topics/actuator_controls.h>
/**
* Generate the 5-byte motor set packet.
*
* @return the number of bytes (5)
*/
void ar_get_motor_packet(uint8_t *motor_buf, uint16_t motor1, uint16_t motor2, uint16_t motor3, uint16_t motor4);
/**
* Select a motor in the multiplexing.
*
* @param fd GPIO file descriptor
* @param motor Motor number, from 1 to 4, 0 selects all
*/
int ar_select_motor(int fd, uint8_t motor);
/**
* Deselect a motor in the multiplexing.
*
* @param fd GPIO file descriptor
* @param motor Motor number, from 1 to 4, 0 deselects all
*/
int ar_deselect_motor(int fd, uint8_t motor);
void ar_enable_broadcast(int fd);
int ar_multiplexing_init(void);
int ar_multiplexing_deinit(int fd);
/**
* Write four motor commands to an already initialized port.
*
* Writing 0 stops a motor, values from 1-512 encode the full thrust range.
* on some motor controller firmware revisions a minimum value of 10 is
* required to spin the motors.
*/
int ardrone_write_motor_commands(int ardrone_fd, uint16_t motor1, uint16_t motor2, uint16_t motor3, uint16_t motor4);
/**
* Initialize the motors.
*/
int ar_init_motors(int ardrone_uart, int gpio);
/**
* Set LED pattern.
*/
void ar_set_leds(int ardrone_uart, uint8_t led1_red, uint8_t led1_green, uint8_t led2_red, uint8_t led2_green,
uint8_t led3_red, uint8_t led3_green, uint8_t led4_red, uint8_t led4_green);
/**
* Mix motors and output actuators
*/
void ardrone_mixing_and_output(int ardrone_write, const struct actuator_controls_s *actuators);
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment