Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
DEMOSES-distributed-optimization
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
This is an archived project. Repository and other project resources are read-only.
Show more breadcrumbs
DEMOSES
DEMOSES-distributed-optimization
Commits
481cc616
Commit
481cc616
authored
8 months ago
by
Christian Doh Dinga
Browse files
Options
Downloads
Patches
Plain Diff
add centralized optimization solution approach
parent
5ffa67cb
No related branches found
No related tags found
1 merge request
!1
Solve distributed admm problem using centralized optimization
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/demoses_distibuted_optimization/centralized_optimization.py
+109
-0
109 additions, 0 deletions
...moses_distibuted_optimization/centralized_optimization.py
with
109 additions
and
0 deletions
src/demoses_distibuted_optimization/centralized_optimization.py
0 → 100644
+
109
−
0
View file @
481cc616
import
yaml
import
numpy
as
np
import
pandas
as
pd
from
typing
import
Dict
import
pyomo.environ
as
pyo
def
create_centralized_optimization_problem
(
data
:
Dict
,
ts
:
pd
.
DataFrame
)
->
pyo
.
ConcreteModel
:
"""
Create optimization problem to solve the equilibrium problem in a centralized manner.
"""
model
=
pyo
.
ConcreteModel
(
name
=
'
Optimization-problem
'
)
# Define sets
number_of_timesteps
=
data
[
"
General
"
][
"
nTimesteps
"
]
generator_list
=
data
[
"
Generators
"
].
keys
()
model
.
time
=
pyo
.
Set
(
initialize
=
list
(
range
(
number_of_timesteps
)),
name
=
'
timesteps
'
)
model
.
generators
=
pyo
.
Set
(
initialize
=
list
(
generator_list
),
name
=
'
generators
'
)
# Generator-specific parameters
generator_cost_param_a_value
=
{
gen
:
data
[
'
Generators
'
][
gen
][
'
a
'
]
for
gen
in
data
[
'
Generators
'
]}
generator_cost_param_b_value
=
{
gen
:
data
[
'
Generators
'
][
gen
][
'
b
'
]
for
gen
in
data
[
'
Generators
'
]}
generator_capacity_value
=
{
gen
:
data
[
'
Generators
'
][
gen
][
'
C
'
]
for
gen
in
data
[
'
Generators
'
]}
model
.
generator_cost_param_a
=
pyo
.
Param
(
model
.
generators
,
name
=
'
generator_cost_param_a
'
,
initialize
=
generator_cost_param_a_value
,
mutable
=
False
)
model
.
generator_cost_param_b
=
pyo
.
Param
(
model
.
generators
,
name
=
'
generator_cost_param_b
'
,
initialize
=
generator_cost_param_b_value
,
mutable
=
False
)
model
.
generator_capacity
=
pyo
.
Param
(
model
.
generators
,
name
=
'
generator_capacity
'
,
initialize
=
generator_capacity_value
,
mutable
=
False
)
# Consumer-specific parameters
demand_timeseries
=
dict
(
enumerate
(
ts
.
loc
[:,
'
LOAD
'
].
values
))
# combined demand from all consumers
model
.
demand_profile
=
pyo
.
Param
(
model
.
time
,
name
=
'
demand_profile
'
,
initialize
=
demand_timeseries
,
mutable
=
False
)
# For each consumer, we want to get their pv generation timeseries, then combined all together
consumer_list
=
data
[
"
Consumers
"
].
keys
()
total_consumers
=
data
[
'
General
'
][
'
totConsumers
'
]
all_pv_profile
=
np
.
zeros
(
data
[
"
General
"
][
"
nTimesteps
"
])
for
con
in
consumer_list
:
pv_availability_factor
=
ts
.
loc
[:,
data
[
'
Consumers
'
][
con
][
'
PV_AF
'
]].
values
pv_capacity
=
data
[
'
Consumers
'
][
con
][
'
PV_cap
'
]
share_of_agent
=
data
[
'
Consumers
'
][
con
][
'
Share
'
]
pv_profile
=
total_consumers
*
share_of_agent
*
pv_capacity
*
pv_availability_factor
try
:
pv_profile
.
reshape
(
1
,
24
)
all_pv_profile
=
np
.
add
(
all_pv_profile
,
pv_profile
)
except
ValueError
:
print
(
"
Error: trying to add np.zeros(24) array with a different shape array
"
)
return
0
model
.
pv_profile
=
pyo
.
Param
(
model
.
time
,
name
=
'
demand_profile
'
,
initialize
=
dict
(
enumerate
(
all_pv_profile
)),
mutable
=
False
)
# Decision variables for generators
model
.
var_g
=
pyo
.
Var
(
model
.
generators
,
model
.
time
,
name
=
'
generation
'
,
domain
=
pyo
.
NonNegativeReals
,
initialize
=
0
)
# Define generator capacity limit constraint
def
available_capacity_value
(
model
,
gen
,
t
):
if
'
AF
'
in
data
[
'
Generators
'
][
gen
].
keys
():
return
model
.
generator_capacity
[
gen
]
*
ts
.
loc
[
t
,
data
[
'
Generators
'
][
gen
][
"
AF
"
]]
else
:
return
model
.
generator_capacity
[
gen
]
model
.
available_capacity
=
pyo
.
Param
(
model
.
generators
,
model
.
time
,
name
=
'
available_capacity
'
,
initialize
=
available_capacity_value
,
mutable
=
False
)
# Define objective function (OPEX are parametrized as a/2 * g**2 + b * g)
def
generation_cost_rule
(
model
):
return
sum
(
model
.
generator_cost_param_a
[
gen
]
/
2
*
model
.
var_g
[
gen
,
t
]
**
2
+
model
.
generator_cost_param_b
[
gen
]
*
model
.
var_g
[
gen
,
t
]
for
gen
in
model
.
generators
for
t
in
model
.
time
)
model
.
objective_function
=
pyo
.
Objective
(
rule
=
generation_cost_rule
,
sense
=
pyo
.
minimize
)
# Define generator capacity limit constraint
def
capacity_limit_rule
(
model
,
gen
,
t
):
return
model
.
var_g
[
gen
,
t
]
<=
model
.
available_capacity
[
gen
,
t
]
model
.
capacity_limit
=
pyo
.
Constraint
(
model
.
generators
,
model
.
time
,
rule
=
capacity_limit_rule
)
# Define energy balance constraint
def
energy_balance_rule
(
model
,
t
):
return
(
sum
(
model
.
var_g
[
gen
,
t
]
for
gen
in
model
.
generators
)
>=
model
.
demand_profile
[
t
]
-
model
.
pv_profile
[
t
])
model
.
energy_balance
=
pyo
.
Constraint
(
model
.
time
,
rule
=
energy_balance_rule
)
return
model
def
solve_model
():
"""
Solve model and return results.
"""
def
read_config
(
config_file
):
with
open
(
config_file
,
'
r
'
)
as
file
:
config
=
yaml
.
safe_load
(
file
)
return
config
data
=
read_config
(
'
config.yaml
'
)
ts
=
pd
.
read_csv
(
'
timeseries.csv
'
,
delimiter
=
'
;
'
)
model
=
create_centralized_optimization_problem
(
data
,
ts
)
solver
=
pyo
.
SolverFactory
(
'
gurobi
'
)
model
.
dual
=
pyo
.
Suffix
(
direction
=
pyo
.
Suffix
.
IMPORT
)
solver
.
solve
(
model
)
print
(
'
############## Objective function value ###########
'
)
model
.
objective_function
.
display
()
print
()
print
(
'
############## Generator output ###########
'
)
model
.
var_g
.
display
()
print
()
dual_values
=
[]
for
t
in
model
.
time
:
dual_values
.
append
(
model
.
dual
[
model
.
energy_balance
[
t
]])
market_prices
=
pd
.
DataFrame
(
data
=
{
"
market-prices
"
:
dual_values
},
index
=
model
.
time
)
market_prices
.
index
.
name
=
'
timesteps
'
print
(
'
############## Market prices ###########
'
)
print
(
market_prices
)
if
__name__
==
"
__main__
"
:
solve_model
()
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment