Newer
Older
#include "par.h"
#include "segy.h"
#include <time.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <assert.h>
#include <genfft.h>
int omp_get_max_threads(void);
int omp_get_num_threads(void);
void omp_set_num_threads(int num_threads);
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#ifndef MAX
#define MAX(x,y) ((x) > (y) ? (x) : (y))
#endif
#ifndef MIN
#define MIN(x,y) ((x) < (y) ? (x) : (y))
#endif
#define NINT(x) ((int)((x)>0.0?(x)+0.5:(x)-0.5))
#ifndef COMPLEX
typedef struct _complexStruct { /* complex number */
float r,i;
} complex;
#endif/* complex */
int getFileInfo(char *filename, int *n1, int *n2, int *ngath, float *d1, float *d2, float *f1, float *f2, float *xmin, float *xmax, float *sclsxgx, int *nxm);
int readData(FILE *fp, float *data, segy *hdrs, int n1);
int writeData(FILE *fp, float *data, segy *hdrs, int n1, int n2);
int disp_fileinfo(char *file, int n1, int n2, float f1, float f2, float d1, float d2, segy *hdrs);
double wallclock_time(void);
void synthesis(float *shotdata, float *syndata, int nx, int nt, int nxs, int nts, float dt, float *xsyn, int Nsyn, float *xrcv, float xsrc, float fxs, float dxs, float dxsrc, float dx, int ixa, int ixb, int di, float fmin, float fmax, int mode, int reci, int k, int off, int nmo, int nshots, int verbose);
/*********************** self documentation **********************/
char *sdoc[] = {
" ",
" SYN2D - synthesize shots records to CFP gathers in frequency domain",
" ",
" syn2d file_syn= file_shot= nshots= [optional parameters]",
" ",
" Required parameters: ",
" ",
" file_syn= ................ synthesis operator(s)",
" file_shot= ............... shot records (can be input pipe) ",
" nshots= .................. number of shot records",
" ",
" Optional parameters: ",
" ",
" INPUT DEFINITION ",
" nxmax=512 ................ maximum number of traces in input files",
" ntmax=1024 ............... maximum number of samples/trace in input files",
" SYNTHESIS ",
" ixa=0 .................... number of traces after focus point",
" ixb=ixa .................. number of traces before focus point",
" tap=0 .................... lateral taper synthesis(1), shot(2) or both(3)",
" ntap=0 ................... number of taper points at boundaries",
" nmo=0 .................... 1; corrects CFP-gather with operator times",
" reci=0 ................... 1; add focusing in emission 2; emission only",
" mode=-1 .................. -1; inverse 1; forward",
" off=0 .................... trace offset to start synthesis",
" alpha=0 .................. Laplace factor (good default = -2)",
" fmin=0 ................... minimum frequency",
" fmax=70 .................. maximum frequency",
" OUTPUT DEFINITION ",
" file_cfp= ................ output file with areal shot records",
" file_fresnel= ............ output file with shot records convolved with operator",
" verbose=0 ................ silent option; >0 displays info",
" ",
" The nmo option determines the display of the calculated CFP-gather.",
" nmo = 0: displays CFP-gather at operator times,",
" nmo = 1: displays CFP-gather corrected with operator times,",
" ",
" Note that if ixa=0 and ixb=0 all shots are used.",
" ",
" author : Jan Thorbecke : 4-9-1995 (jan@delphi.tn.tudelft.nl)",
" product : Originates from DELPHI software",
" : revision 2012",
" ",
NULL};
/**************** end self doc ***********************************/
int main (int argc, char **argv)
{
FILE *fp_syn, *fp_shot, *fp_out, *fp_fres;
int i, j, k, l, ret, nshots, Nsyn, nt, nx, nts, nxs, more, ngath;
int size, n1, n2, ntap, tap, di, off, optn, ntraces;
int nxmax, ntmax, reci, mode, nmo, ixa, ixb, n2out, verbose;
float fmin, fmax, *taper, fxf, dxf, fxs2, xsrc, *xrcv;
double t0, t1, t2, t3, tsyn, tread;
float *shotdata, d1, d2, f1, f2, fxs, ft, fx, *etap, *xsyn, dxsrc;
float *syndata, *tmpdata, dt, dx, dxs, scl, alpha, mem;
float *zsyn, scel, xmin, xmax;
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
char *file_syn, *file_shot, *file_cfp, *file_fresnel;
segy *hdrs, *hdrs_in, *hdrs_out;
initargs(argc, argv);
requestdoc(1);
if (!getparstring("file_shot", &file_shot)) file_shot = NULL;
if (!getparstring("file_syn", &file_syn)) file_syn = NULL;
if (!getparstring("file_fresnel", &file_fresnel)) file_fresnel = NULL;
if (!getparint("verbose", &verbose)) verbose = 0;
if (file_syn == NULL && file_shot == NULL)
verr("file_syn and file_shot cannot be both input pipe");
if (!getparstring("file_cfp", &file_cfp)) {
if (verbose) vwarn("parameter file_cfp not found, assume pipe");
file_cfp = NULL;
}
if (!getparint("nshots", &nshots)) verr("nshots should be given");
if (!getparfloat("fmin", &fmin)) fmin = 0.0;
if (!getparfloat("fmax", &fmax)) fmax = 70.0;
if (!getparint("ixa", &ixa)) ixa = 0;
if (!getparint("ixb", &ixb)) ixb = ixa;
if (!getparint("reci", &reci)) reci = 0;
if (!getparint("off", &off)) off = 0;
if (!getparint("mode", &mode)) mode = -1;
if (!getparfloat("alpha", &alpha)) alpha = 0.0;
if (!getparint("tap", &tap)) tap = 0;
if (!getparint("ntap", &ntap)) ntap = 0;
if (!getparint("nmo", &nmo)) nmo = 0;
if(mode >= 0) mode = 1;
if(mode < 0) mode = -1;
if (nmo && mode > 0) verr("nmo = 1 cannot be used with mode = 1");
if (reci && ntap) vwarn("tapering influences the reciprocal result");
/*================ Reading all synthesis operator(s) ================*/
ngath = 1;
ret = getFileInfo(file_syn, &n1, &n2, &ngath, &d1, &d2, &f1, &f2, &xmin, &xmax, &scl, &ntraces);
if (ret == 0) {
if (!getparint("ntmax", &ntmax)) ntmax = n1;
if (!getparint("nxmax", &nxmax)) nxmax = n2;
if (verbose>=2 && (ntmax!=n1 || nxmax!=n2))
vmess("dimensions overruled: %d x %d",ntmax,nxmax);
}
else {
if (verbose>=2) vmess("dimensions used: %d x %d",ntmax,nxmax);
}
size = ntmax * nxmax;
tmpdata = (float *)malloc(size*sizeof(float));
hdrs = (segy *) calloc(nxmax,sizeof(segy));
fp_syn = fopen(file_syn, "r");
if (fp_syn == NULL) verr("error on opening input file_syn=%s", file_syn);
n2 = readData(fp_syn, tmpdata, hdrs, n1);
if (n2 == 0) {
fclose(fp_syn);
if (verbose) vmess("end of file_syn data reached");
}
if (verbose) {
disp_fileinfo(file_syn, n1, n2, f1, f2, d1, d2, hdrs);
}
nxs = n2;
nts = n1;
if (hdrs[0].scalco < 0) scl = 1.0/fabs((float)hdrs[0].scalco);
else if (hdrs[0].scalco == 0) scl = 1.0;
else scl = hdrs[0].scalco;
if (hdrs[0].scalel < 0) scel = 1.0/fabs((float)hdrs[0].scalel);
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
else if (hdrs[0].scalel == 0) scel = 1.0;
else scel = hdrs[0].scalel;
taper = (float *)malloc(n2*sizeof(float));
if (tap == 1 || tap == 3) {
for (j = 0; j < ntap; j++)
taper[j] = (cos(PI*(j-ntap)/ntap)+1)/2.0;
for (j = ntap; j < n2-ntap; j++)
taper[j] = 1.0;
for (j = n2-ntap; j < n2; j++)
taper[j] =(cos(PI*(j-(n2-ntap))/ntap)+1)/2.0;
}
else {
for (j = 0; j < n2; j++) taper[j] = 1.0;
}
etap = (float *)malloc(n1*sizeof(float));
for (j = 0; j < n1; j++) etap[j] = exp(alpha*j*d1);
syndata = (float *)malloc(n1*n2*sizeof(float));
xsyn = (float *)malloc(sizeof(float));
zsyn = (float *)malloc(sizeof(float));
Nsyn = 0;
while (n2 > 0) {
syndata = (float *)realloc(syndata, (Nsyn+1)*n1*n2*sizeof(float));
if (syndata == NULL) verr("Out of memory for syndata array!");
xsyn = (float *)realloc(xsyn, (Nsyn+1)*sizeof(float));
if (xsyn == NULL) verr("Out of memory for xsyn array!");
zsyn = (float *)realloc(zsyn, (Nsyn+1)*sizeof(float));
if (zsyn == NULL) verr("Out of memory for zsyn array!");
xsyn[Nsyn] = hdrs[0].sx*scl;
zsyn[Nsyn] = hdrs[0].selev*scel;
for (i = 0; i < n2; i++) {
for (j = 0; j < n1; j++)
syndata[Nsyn*n1*n2+i*n1+j] = tmpdata[i*n1+j]*taper[i]*etap[j];
}
Nsyn += 1;
n2 = readData(fp_syn, tmpdata, hdrs, n1);
if (verbose>=2 && n2!=0) disp_fileinfo(file_syn, n1, n2, f1, f2, d1, d2, hdrs);
}
fclose(fp_syn);
dxs = d2;
fxs = f2;
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
if (hdrs[0].gx != 0 || hdrs[1].gx != 0 ) fxs = hdrs[0].gx*scl;
fxs2 = fxs + (float)(nxs-1)*dxs;
dxf = (hdrs[nxs-1].gx - hdrs[0].gx)*scl/(float)(nxs-1);
if (NINT(dxs*1e3) != NINT(fabs(dxf)*1e3)) {
vmess("dx in hdr.d1 (%.3f) and hdr.gx (%.3f) not equal",d2, dxf);
if (dxf != 0) dxs = fabs(dxf);
vmess("dx in operator => %f", dxs);
}
free(tmpdata);
free(taper);
free(etap);
free(hdrs);
/*================ Reading first shot record ================*/
ngath = 1;
ret = getFileInfo(file_shot, &nt, &nx, &ngath, &d1, &dx, &ft, &fx, &xmin, &xmax, &scl, &ntraces);
if (ret == 0) {
if (!getparint("ntmax", &ntmax)) ntmax = nt;
if (!getparint("nxmax", &nxmax)) nxmax = nx;
if (verbose>=2 && (ntmax!=nt || nxmax!=nx))
vmess("dimensions overruled: %d x %d",ntmax,nxmax);
}
else {
if (verbose>=2) vmess("dimensions used: %d x %d",ntmax,nxmax);
}
if (!getparfloat("dt", &dt)) dt = d1;
size = ntmax * nxmax;
xrcv = (float *)malloc(nxmax*sizeof(float));
tmpdata = (float *)malloc(size*sizeof(float));
hdrs_in = (segy *) calloc(nxmax,sizeof(segy));
if (tmpdata == NULL || hdrs_in == NULL)
verr("memory allocation error for input data");
fp_shot = fopen(file_shot, "r");
if (fp_shot == NULL) verr("error on opening input file_shot=%s", file_shot);
nx = readData(fp_shot, tmpdata, hdrs_in, nt);
if (nx == 0) {
fclose(fp_shot);
if (verbose) verr("end of file_shot data reached");
}
if (verbose) {
disp_fileinfo(file_shot, nt, nx, ft, fx, dt, dx, hdrs_in);
}
taper = (float *)malloc(nx*sizeof(float));
if (tap == 2 || tap == 3) {
for (j = 0; j < ntap; j++)
taper[j] = (cos(PI*(j-ntap)/ntap)+1)/2.0;
for (j = ntap; j < nx-ntap; j++)
taper[j] = 1.0;
for (j = nx-ntap; j < nx; j++)
taper[j] =(cos(PI*(j-(nx-ntap))/ntap)+1)/2.0;
}
else {
for (j = 0; j < nx; j++) taper[j] = 1.0;
}
optn = optncr(MAX(nt, nts));
etap = (float *)malloc(optn*sizeof(float));
for (j = 0; j < optn; j++) etap[j] = exp(alpha*j*dt);
shotdata = (float *)malloc(optn*nxmax*sizeof(float));
for (i = 0; i < nx; i++) {
for (j = 0; j < nt; j++)
shotdata[i*optn+j] = tmpdata[i*nt+j]*taper[i]*etap[j];
for (j = nt; j < optn; j++) shotdata[i*optn+j] = 0.0;
}
if (hdrs_in[0].scalco < 0) scl = 1.0/fabs((float)hdrs_in[0].scalco);
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
else if (hdrs_in[0].scalco == 0) scl = 1.0;
else scl = hdrs_in[0].scalco;
fxf = (float)hdrs_in[0].sx*scl;
if (nx > 1) dxf = (hdrs_in[nx-1].gx - hdrs_in[0].gx)*scl/(float)(nx-1);
else dxf = d2;
if (NINT(dx*1e3) != NINT(fabs(dxf)*1e3)) {
vmess("dx in hdr.d1 (%.3f) and hdr.gx (%.3f) not equal",dx, dxf);
if (dxf != 0) dx = fabs(dxf);
else verr("gx hdrs not set");
vmess("dx used => %f", dx);
}
/*=========== Reading second shot record (for source sampling) ===========*/
hdrs = (segy *) calloc(nxmax,sizeof(segy));
if (hdrs == NULL)
verr("memory allocation error for input data");
n2 = readData(fp_shot, tmpdata, hdrs, nt);
if (n2 == 0) {
fclose(fp_shot);
vwarn("only one shot record is available");
dxsrc = dx;
more = 0;
}
else {
if (verbose>=3) {
disp_fileinfo(file_shot, nt, n2, ft, fx, dt, dx, hdrs);
}
dxsrc = (float)hdrs[0].sx*scl - fxf;
if (dxsrc == 0) {
vwarn("sx hdrs are not filled in!!");
dxsrc = dx;
}
more = 1;
nx = n2;
}
/*================ Check the size of the files ================*/
if (NINT(dxsrc/dx)*dx != NINT(dxsrc)) {
vwarn("source (%.2f) and receiver step (%.2f) don't match",dxsrc,dx);
if (reci == 2) vwarn("step used from operator (%.2f) ",dxs);
}
di = NINT(dxf/dxs);
if ((NINT(di*dxs) != NINT(dxf)) && verbose)
vwarn("dx in receiver (%.2f) and operator (%.2f) don't match",dx,dxs);
if (nt != nts)
vmess("Time samples in shot (%d) and synthesis operator (%d) are not equal",nt, nts);
if (verbose) {
vmess("Number of synthesis operators = %d", Nsyn);
vmess("number of shots = %d", nshots);
vmess("first model position = %.2f", fxs);
vmess("last model position = %.2f", fxs2);
vmess("first source position fxf = %.2f", fxf);
vmess("source distance dxsrc = %.2f", dxsrc);
vmess("last source position = %.2f", fxf+(nshots-1)*dxsrc);
vmess("receiver distance dxf = %.2f", dxf);
vmess("direction of increasing traces = %d", di);
vmess("number of time samples(fft) s = %d %d", nt, optn);
}
/*================ initializations ================*/
if (ixa || ixb) n2out = ixa + ixb + 1;
else if (reci) n2out = nxs;
else n2out = nshots;
mem = Nsyn*n2out*nts*sizeof(float)/1048576.0;
if (verbose) {
vmess("number of output traces = %d", n2out);
vmess("number of output samples = %d", nts);
vmess("Size of output data = %.1f Mb", mem);
}
t0 = wallclock_time();
tsyn = tread = 0.0;
ret = 0;
k = 0;
size = ntmax*nxmax;
if (file_fresnel) {
fp_fres = fopen(file_fresnel, "w+");
}
/*================ loop over all shot records ================*/
while (nx > 0) {
t1 = wallclock_time();
xsrc = (float)hdrs_in[0].sx*scl;
for (i = 0; i < nx; i++) xrcv[i] = (float)hdrs_in[i].gx*scl;
if (verbose>=2) {
vmess("source position: %.2f", xsrc);
vmess("receiver positions: %.2f <--> %.2f", xrcv[0], xrcv[nx-1]);
}
if ((NINT(xsrc-fxs2) > 0) || (NINT(xrcv[nx-1]-fxs2) > 0) ||
(NINT(xrcv[nx-1]-fxs) < 0) || (NINT(xsrc-fxs) < 0) ||
(NINT(xrcv[0]-fxs) < 0) || (NINT(xrcv[0]-fxs2) > 0) ) {
vwarn("source/receiver positions are outside synthesis model");
vwarn("CFP calculation is stopped at gather %d", k);
vmess("xsrc = %.2f xrcv_1 = %.2f xrvc_N = %.2f", xsrc, xrcv[0], xrcv[nx-1]);
fclose(fp_shot);
break;
}
synthesis(shotdata, syndata, nx, nt, nxs, nts, dt, xsyn, Nsyn,
xrcv, xsrc, fxs, dxs, dxsrc, dx, ixa, ixb, di, fmin, fmax, mode,
reci, k, off, nmo, nshots, verbose);
t3 = wallclock_time();
tsyn += t3 - t1;
if (file_fresnel) {
for (i = 0; i < nx; i++) {
hdrs_in[i].ns = optn;
}
ret = writeData(fp_fres, (float *)&shotdata[0], hdrs_in, optn, nx);
if (ret < 0 ) verr("error on writing output file.");
}
if (k == 0 && more) {
nx = n2;
for (i = 0; i < nx; i++) {
hdrs_in[i] = hdrs[i];
for (j = 0; j < nt; j++)
shotdata[i*optn+j] = tmpdata[i*nt+j];
for (j = nt; j < optn; j++)
shotdata[i*optn+j] = 0.0;
}
free(hdrs);
t2 = wallclock_time();
if (verbose>=3) {
vmess("CPU-time one gather = %.3f s.", t2-t1);
vmess("with CPU-time synthesis = %.3f", tsyn);
vmess("and CPU-time read data = %.3f", t2-t3);
}
}
else {
nx = readData(fp_shot, tmpdata, hdrs_in, nt);
for (i = 0; i < nx; i++) {
for (j = 0; j < nt; j++) shotdata[i*optn+j] = tmpdata[i*nt+j];
for (j = nt; j < optn; j++) shotdata[i*optn+j] = 0.0;
}
}
k++;
if (verbose) vmess("*** Shot gather %d processed ***", k);
if (nx <= 0 ) {
ret = fclose(fp_shot);
if (ret < 0) vwarn("err %d on closing input file",ret);
if (verbose) vmess("end of data reached");
break;
}
for (i = 0; i < nx; i++) {
for (j = 0; j < nt; j++) shotdata[i*optn+j] *= (taper[i]*etap[j]);
for (j = nt; j < optn; j++) shotdata[i*optn+j] = 0.0;
}
if (verbose>=3) disp_fileinfo(file_shot, nt, nx, ft, fx, dt, dx, hdrs_in);
tread += wallclock_time() - t3;
}
if (file_fresnel) {
ret = fclose(fp_fres);
if (ret < 0) verr("err %d on closing fresnel output file",ret);
}
t2 = wallclock_time();
if (verbose) {
vmess("Total CPU-time synthesis = %.3f", t2-t0);
vmess("with CPU-time synthesis = %.3f", tsyn);
vmess("and CPU-time read data = %.3f", tread);
}
if (k != nshots) {
vwarn("number of shots given not equal to shots read in (%d)", k);
if (ixa == 0 && ixb == 0 && reci == 0) n2out = k;
}
/*================ write output files and free memory ================*/
n1 = nts; n2 = n2out;
f1 = ft; f2 = fxs;
d1 = dt;
if (reci == 0) d2 = dxsrc;
else if (reci == 1) d2 = dxs;
else if (reci == 2) d2 = dx;
hdrs_out = (segy *) calloc(n2,sizeof(segy));
if (hdrs_out == NULL) verr("allocation for hdrs_out");
size = nxs*nts;
free(etap);
etap = (float *)malloc(n1*sizeof(float));
for (j = 0; j < n1; j++) etap[j] = exp(-alpha*j*dt);
fp_out = fopen(file_cfp, "w+");
if (fp_out==NULL) verr("error on ceating output file");
for (l = 0; l < Nsyn; l++) {
if (ixa || ixb) f2 = xsyn[l]-ixb*d2;
else {
if (reci) f2 = fxs;
else f2 = fxf;
}
for (i = 0; i < n2; i++) {
hdrs_out[i].ns = n1;
hdrs_out[i].dt = (unsigned short)(dt*1000000);
hdrs_out[i].trid = hdrs_in[i].trid;
hdrs_out[i].f1 = f1;
hdrs_out[i].f2 = f2;
hdrs_out[i].d1 = d1;
hdrs_out[i].d2 = d2;
hdrs_out[i].fldr = l+1;
hdrs_out[i].trwf = n2out;
hdrs_out[i].scalco = -1000;
hdrs_out[i].sx = NINT(xsyn[l]*1000);
hdrs_out[i].gx = NINT(1000.0*(f2+i*d2));
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
hdrs_out[i].offset = (long)NINT((f2+i*d2) - xsyn[l]);
hdrs_out[i].scalel = -1000;
hdrs_out[i].selev = NINT(zsyn[l]*1000);
hdrs_out[i].sdepth = NINT(zsyn[l]*1000);
for (j = 0; j < n1; j++) syndata[l*size+i*n1+j] *= etap[j];
}
ret = writeData(fp_out, (float *)&syndata[l*size], hdrs_out, n1, n2);
if (ret < 0 ) verr("error on writing output file.");
}
ret = fclose(fp_out);
if (ret < 0) verr("err %d on closing output file",ret);
if (verbose) {
t1 = wallclock_time();
vmess("and CPU-time write data = %.3f", t1-t2);
}
free(hdrs_in);
free(hdrs_out);
free(tmpdata);
exit(0);
}
void synthesis(float *shotdata, float *syndata, int nx, int nt, int nxs, int nts, float dt, float *xsyn, int Nsyn, float *xrcv, float xsrc, float fxs, float dxs, float dxsrc, float dx, int ixa, int ixb, int di, float fmin, float fmax, int mode, int reci, int k, int off, int nmo, int nshots, int verbose)
{
static int first=0, iomin, iomax, nfreq, optn, Niom, size, iox, inx;
static complex *syncdata;
static float scl;
int i, j, l, m, ixsrc, ixsyn, ix, ixrcv, dosrc;
float *rdata, *p, x0, x1;
static double t0, t1, tfft, t;
complex *sum, *cdata, *shotcdata, tmp, ts, to;
int npe;
#ifdef _OPENMP
npe = omp_get_max_threads();
/* parallelisation is over number of virtual source positions (Nsyn) */
if (npe > Nsyn) {
vmess("Number of OpenMP threads set to %d (was %d)", Nsyn, npe);
omp_set_num_threads(Nsyn);
}
#endif
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
/*============= Transform synthesis operator(s), only one time =============*/
if (first == 0) {
t = 0.0;
tfft = 0.0;
size = nxs*nts;
optn = optncr(MAX(nt, nts));
scl = 1.0/optn;
nfreq = (optn+2)/2;
iomin = (int)MIN((fmin*optn*dt), nfreq-1);
iomin = MAX(iomin, 1);
iomax = MIN((int)(fmax*optn*dt), nfreq-1);
Niom = iomax - iomin + 1;
if (verbose>=3)
vmess("iomin = %d iomax =%d Niom = %d",iomin,iomax,Niom);
mode *= -1;
syncdata = (complex *)malloc(nxs*Niom*Nsyn*sizeof(complex));
cdata = (complex *)malloc(nfreq*nxs*sizeof(complex));
rdata = (float *)malloc(nxs*optn*sizeof(float));
for (l = 0; l < Nsyn; l++) {
for(i = 0; i < nxs; i++) {
for (j = 0; j < nts; j++)
rdata[i*optn+j] = syndata[l*size+i*nts+j];
for (j = nts; j < optn; j++)
rdata[i*optn+j] = 0.0;
}
rcmfft(rdata, cdata, optn, nxs, optn, nfreq, -1);
for(i = 0; i < nxs; i++) {
for (j = iomin, m = 0; j < iomax; j++, m++) {
syncdata[l*Niom*nxs+m*nxs+i].r = cdata[i*nfreq+j].r;
syncdata[l*Niom*nxs+m*nxs+i].i = mode*cdata[i*nfreq+j].i;
}
}
}
free(cdata);
free(rdata);
p = (float *) &syndata[0];
for (i = 0; i < size*Nsyn; i++) *p++ = 0.0;
first = 1;
if (verbose >= 2) {
vmess("Operators are transformed to x-w");
vmess("nt = %d nts = %d, optn = %d", nt, nts, optn);
}
}
/*============= FFT of shot to frequency domain =============*/
t1 = wallclock_time();
shotcdata = (complex *)calloc(nx*nfreq,sizeof(complex));
#pragma omp parallel default(none) \
shared(shotdata, nx, optn) \
shared(shotcdata, nfreq) \
private(j, i, cdata)
{ /* start of parallel region */
cdata = (complex *)malloc(nfreq*sizeof(complex));
#pragma omp for
for(i = 0; i < nx; i++) {
//#pragma omp critical
{
rc1fft(&shotdata[i*optn], cdata, optn, -1);
}
for (j = 0; j < nfreq; j++) {
shotcdata[j*nx+i] = cdata[j];
}
}
free(cdata);
} /* end of parallel region */
tfft += wallclock_time() - t1;
// xt2wx(shotdata, shotcdata, optn, nx, optn, nx);
/*================ SYNTHESIS ================*/
ixsrc = NINT((xsrc - fxs)/dxs);
if (fabsf(xrcv[0]-xsrc) > 0.5*nx*dx) { iox = 0; inx = nx-off; }
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
else { iox = off; inx = nx; }
t0 = wallclock_time();
#pragma omp parallel default(none) \
shared(syndata, dx, npe, Niom) \
shared(shotcdata, Nsyn, reci, xrcv, xsrc, xsyn, fxs, nxs, dxs) \
shared(nx, ixa, ixb, dxsrc, nmo, iox, inx, k, nfreq, iomin, iomax) \
shared(syncdata, size, nts, optn, scl, ixsrc) \
private(l, ixsyn, x0, x1, ix, dosrc, j, m, i, ixrcv, sum, rdata, tmp, ts, to)
{ /* start of parallel region */
sum = (complex *)malloc(nfreq*sizeof(complex));
rdata = (float *)calloc(optn,sizeof(float));
#pragma omp for
for (l = 0; l < Nsyn; l++) {
ixsyn = NINT((xsyn[l] - fxs)/dxs);
if (ixa || ixb) {
if (reci == 0) {
x0 = xsyn[l]-ixb*dxsrc;
x1 = xsyn[l]+ixa*dxsrc;
if ((xsrc < x0) || (xsrc > x1)) continue;
ix = NINT((xsrc-x0)/dxsrc);
dosrc = 1;
}
else if (reci == 1) {
x0 = xsyn[l]-ixb*dxs;
x1 = xsyn[l]+ixa*dxs;
if (((xsrc < x0) || (xsrc > x1)) &&
(xrcv[0] < x0) && (xrcv[nx-1] < x0)) continue;
if (((xsrc < x0) || (xsrc > x1)) &&
(xrcv[0] > x1) && (xrcv[nx-1] > x1)) continue;
if ((xsrc < x0) || (xsrc > x1)) dosrc = 0;
else dosrc = 1;
ix = NINT((xsrc-x0)/dxs);
}
else if (reci == 2) {
if (NINT(dxsrc/dx)*dx != NINT(dxsrc)) dx = dxs;
x0 = xsyn[l]-ixb*dx;
x1 = xsyn[l]+ixa*dx;
if ((xrcv[0] < x0) && (xrcv[nx-1] < x0)) continue;
if ((xrcv[0] > x1) && (xrcv[nx-1] > x1)) continue;
}
}
else {
ix = k;
x0 = fxs;
x1 = fxs+dxs*nxs;
dosrc = 1;
}
if (reci == 1 && dosrc) ix = NINT((xsrc-x0)/dxs);
if (reci < 2 && dosrc) {
for (j = 0; j < nfreq; j++) sum[j].r = sum[j].i = 0.0;
for (j = iomin, m = 0; j < iomax; j++, m++) {
for (i = iox; i < inx; i++) {
ixrcv = NINT((xrcv[i]-fxs)/dxs);
tmp = syncdata[l*Niom*nxs+m*nxs+ixrcv];
sum[j].r += shotcdata[j*nx+i].r*tmp.r +
shotcdata[j*nx+i].i*tmp.i;
sum[j].i += shotcdata[j*nx+i].i*tmp.r -
shotcdata[j*nx+i].r*tmp.i;
}
if (nmo) {
ts = syncdata[l*Niom*nxs+m*nxs+ixsrc];
to = syncdata[l*Niom*nxs+m*nxs+ixsyn];
tmp.r = sum[j].r*to.r - sum[j].i*to.i;
tmp.i = sum[j].i*to.r + sum[j].r*to.i;
sum[j].r = tmp.r*ts.r + tmp.i*ts.i;
sum[j].i = tmp.i*ts.r - tmp.r*ts.i;
}
}
//#pragma omp critical
{
cr1fft(sum, rdata, optn, 1);
}
/* dx = receiver distance */
for (j = 0; j < nts; j++)
syndata[l*size+ix*nts+j] += rdata[j]*scl*dx;
}
if (reci == 1 || reci == 2) {
for (j = 0; j < nfreq; j++) sum[j].r = sum[j].i = 0.0;
for (i = iox; i < inx; i++) {
if ((xrcv[i] < x0) || (xrcv[i] > x1)) continue;
if (reci == 1) ix = NINT((xrcv[i]-x0)/dxs);
else ix = NINT((xrcv[i]-x0)/dx);
for (j = iomin, m = 0; j < iomax; j++, m++) {
tmp = syncdata[l*Niom*nxs+m*nxs+ixsrc];
sum[j].r = shotcdata[j*nx+i].r*tmp.r +
shotcdata[j*nx+i].i*tmp.i;
sum[j].i = shotcdata[j*nx+i].i*tmp.r -
shotcdata[j*nx+i].r*tmp.i;
}
//#pragma omp critical
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
{
cr1fft(sum, rdata, optn, 1);
}
/* dxsrc = source distance */
for (j = 0; j < nts; j++)
syndata[l*size+ix*nts+j] += rdata[j]*scl*dxsrc;
}
}
} /* end of Nsyn loop */
free(sum);
free(rdata);
} /* end of parallel region */
t += wallclock_time() - t0;
if (k == nshots-1) {
#pragma omp single
{
#ifdef __OPENMP
npe = omp_get_num_threads();
#endif
}
vmess("OMP: parallel region = %f seconds (%d threads)", t, npe);
vmess("FFT: parallel region = %f seconds (%d threads)", tfft, npe);
}
free(shotcdata);
return;
}