Skip to content
Snippets Groups Projects
marchenko.c 43.2 KiB
Newer Older
#include "par.h"
#include "segy.h"
#include <time.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <assert.h>
#include <genfft.h>

int omp_get_max_threads(void);
int omp_get_num_threads(void);
void omp_set_num_threads(int num_threads);

#ifndef MAX
#define MAX(x,y) ((x) > (y) ? (x) : (y))
#endif
#ifndef MIN
#define MIN(x,y) ((x) < (y) ? (x) : (y))
#endif
#define NINT(x) ((int)((x)>0.0?(x)+0.5:(x)-0.5))

#ifndef COMPLEX
typedef struct _complexStruct { /* complex number */
    float r,i;
} complex;
#endif/* complex */

Jan Thorbecke's avatar
Jan Thorbecke committed
int readShotData(char *filename, float *xrcv, float *xsrc, float *zsrc, int *xnx, complex *cdata, int nw, int nw_low, int ngath, int nx, int nxm, int ntfft, int mode, float weight, int verbose);
int readTinvData(char *filename, float *xrcv, float *xsrc, float *zsrc, int *xnx, complex *cdata, int nw, int nw_low, int ngath, int nx, int ntfft, int mode, float *maxval, float *tinv, int hw, int verbose);
int writeDataIter(char *file_iter, float *data, segy *hdrs, int n1, int n2, float d2, float f2, int n2out, int Nsyn, float *xsyn, float *zsyn, int iter);
void name_ext(char *filename, char *extension);

void applyMute( float *data, float *mute, int smooth, int above, int Nsyn, int nxs, int nts, float *xsrc, int *xrcvsyn, int nx, int shift);

int getFileInfo(char *filename, int *n1, int *n2, int *ngath, float *d1, float *d2, float *f1, float *f2, float *xmin, float *xmax, float *sclsxgx, int *nxm);
int readData(FILE *fp, float *data, segy *hdrs, int n1);
int writeData(FILE *fp, float *data, segy *hdrs, int n1, int n2);
int disp_fileinfo(char *file, int n1, int n2, float f1, float f2, float d1, float d2, segy *hdrs);
double wallclock_time(void);

Jan Thorbecke's avatar
Jan Thorbecke committed
void synthesis(complex *Refl, complex *Fop, float *syndata, int nx, int nt, int nxs, int nts, float dt, float *xsyn, int Nsyn, float *xrcv, float *xsrc, float fxs2, float fxs, float dxs, float dxsrc, float dx, int ixa, int ixb, int ntfft, int nw, int nw_low, int nw_high,  int reci, int nshots, int verbose);
Jan Thorbecke's avatar
Jan Thorbecke committed
void synthesisPosistions(int nx, int nt, int nxs, int nts, float dt, float *xsyn, int Nsyn, float *xrcv, float *xsrc, float fxs2, float fxs, float dxs, float dxsrc, float dx, int ixa, int ixb,  int reci, int nshots, int *ixpossyn, int *npossyn, int verbose);

/*********************** self documentation **********************/
char *sdoc[] = {
" ",
" MARCHENKO - Iterative Green's functions retrieval in frequency domain",
" ",
" marchenko file_tinv= file_shot= nshots= [optional parameters]",
" ",
" Required parameters: ",
" ",
Jan Thorbecke's avatar
Jan Thorbecke committed
"   file_tinv= ............... focusing operator(s)",
"   file_shot= ............... shot records with Reflection data",
" ",
" Optional parameters: ",
" ",
" SYNTHESIS ",
"   ixa=0 .................... number of traces after focus point",
"   ixb=ixa .................. number of traces before focus point",
"   tap=0 .................... lateral taper focusing(1), shot(2) or both(3)",
"   ntap=0 ................... number of taper points at boundaries",
"   reci=0 ................... 1; add focusing in emission 2; emission only",
Jan Thorbecke's avatar
Jan Thorbecke committed
"   fmin=0 ................... minimum frequency",
"   fmax=70 .................. maximum frequency",
" MARCHENKO ITERATIONS ",
"   niter=10 ................. number of iterations",
" MUTE WINDOW ",
"   above=0 .................. mute above(1), around(0) or below(-1) the first travel times of file_tinv",
"   shift=12 ................. number of points above(positive) / below(negative) travel time for mute",
"   hw=8 ..................... window in time samples to look for maximum in next trace",
"   smooth=5 ................. number of points to smooth mute with cosine window",
"   weight=1 ................. weight factor for summation of muted field with Tinv",
" OUTPUT DEFINITION ",
"   file_green= .............. output file with full Green function(s)",
"   file_gplus= .............. output file with G+ ",
"   file_gmin= ............... output file with G- ",
"   file_f1plus= ............. output file with f1+ ",
"   file_f1min= .............. output file with f1- ",
"   file_pplus= .............. output file with p+ ",
"   file_f2= ................. output file with f2 (=p+) ",
"   file_pmin= ............... output file with p- ",
"   file_iter= ............... output file with N for each iteration",
"   verbose=0 ................ silent option; >0 displays info",
" ",
"  Note that if ixa=0 and ixb=0 all shots are used.",
" ",
" author  : Jan Thorbecke : 2013 (j.w.thorbecke@tudelft.nl)",
" ",
NULL};
/**************** end self doc ***********************************/

int main (int argc, char **argv)
{
    FILE    *fp_syn, *fp_shot, *fp_out, *fp_f1plus, *fp_f1min;
    FILE    *fp_gmin, *fp_gplus, *fp_f2, *fp_pmin;
    int        i, j, k, l, ret, nshots, Nsyn, nt, nx, nts, nxs, more, ngath;
Jan Thorbecke's avatar
Jan Thorbecke committed
    int        size, n1, n2, ntap, tap, di, ixrcv, ixsrc, ntraces;
    int     nf, nw, nw_low, nw_high, nfreq, *xnx, *xnxsyn;
    int        reci, mode, ixa, ixb, n2out, verbose, ntfft;
    int     iter, niter, iw, tracf;
    int     hw, smooth, above, shift, *ixpossyn, npossyn, ix;
    float    fmin, fmax, df, *tapersh, *tapersy, fxf, dxf, fxs2, *xsrc, *xrcv, *zsyn, *zsrc, *xrcvsyn;
    double  t0, t1, t2, t3, tsyn, tread, tfft;
Jan Thorbecke's avatar
Jan Thorbecke committed
    float    *shotdata, d1, d2, f1, f2, fts, fxs, ft, fx, *xsyn, dxsrc;
    float   *green, *pplus, *f2p, *pmin, *tinv, *mute, dt, dx, dts, dxs, scl, mem;
    float   *f1plus, *f1min, *Nk, *Nk_1, *trace, *Gmin, *Gplus;
    float   max, scel, xmin, xmax, weight;
    complex *Refl, *Fop, *ctrace;
    char    *file_tinv, *file_shot, *file_green, *file_iter;
    char    *file_f1plus, *file_f1min, *file_gmin, *file_gplus, *file_f2, *file_pmin;
    char     number[16], filename[1024];
    segy    *hdrs, *hdrs_in, *hdrs_out;

    initargs(argc, argv);
    requestdoc(1);

    tsyn = tread = tfft = 0.0;
    t0   = wallclock_time();

    if (!getparstring("file_shot", &file_shot)) file_shot = NULL;
    if (!getparstring("file_tinv", &file_tinv)) file_tinv = NULL;
    if (!getparstring("file_f1plus", &file_f1plus)) file_f1plus = NULL;
    if (!getparstring("file_f1min", &file_f1min)) file_f1min = NULL;
    if (!getparstring("file_gplus", &file_gplus)) file_gplus = NULL;
    if (!getparstring("file_gmin", &file_gmin)) file_gmin = NULL;
    if (!getparstring("file_pplus", &file_f2)) file_f2 = NULL;
    if (!getparstring("file_f2", &file_f2)) file_f2 = NULL;
    if (!getparstring("file_pmin", &file_pmin)) file_pmin = NULL;
    if (!getparstring("file_iter", &file_iter)) file_iter = NULL;
    if (!getparint("verbose", &verbose)) verbose = 0;
    if (file_tinv == NULL && file_shot == NULL) 
        verr("file_tinv and file_shot cannot be both input pipe");
    if (!getparstring("file_green", &file_green)) {
        if (verbose) vwarn("parameter file_green not found, assume pipe");
        file_green = NULL;
    }
    if (!getparfloat("fmin", &fmin)) fmin = 0.0;
    if (!getparfloat("fmax", &fmax)) fmax = 70.0;
    if (!getparint("ixa", &ixa)) ixa = 0;
    if (!getparint("ixb", &ixb)) ixb = ixa;
    if (!getparint("reci", &reci)) reci = 0;
    if (!getparfloat("weight", &weight)) weight = 1.0;
    if (!getparint("tap", &tap)) tap = 0;
    if (!getparint("ntap", &ntap)) ntap = 0;

    if(!getparint("niter", &niter)) niter = 10;
    if(!getparint("hw", &hw)) hw = 15;
    if(!getparint("smooth", &smooth)) smooth = 5;
    if(!getparint("above", &above)) above = 0;
    if(!getparint("shift", &shift)) shift=12;

    if (reci && ntap) vwarn("tapering influences the reciprocal result");

/*================ Reading info about shot and focusing operator sizes ================*/

    ngath = 0; /* setting ngath=0 scans all traces; n2 contains maximum traces/gather */
    ret = getFileInfo(file_tinv, &n1, &n2, &ngath, &d1, &d2, &f1, &f2, &xmin, &xmax, &scl, &ntraces);
    Nsyn = ngath;
    nxs = n2; 
    nts = n1;
    dxs = d2; dts = d1;
    fxs = f2; fts = f1;

    ngath = 0; /* setting ngath=0 scans all traces; nx contains maximum traces/gather */
    ret = getFileInfo(file_shot, &nt, &nx, &ngath, &d1, &dx, &ft, &fx, &xmin, &xmax, &scl, &ntraces);
    nshots = ngath;
Jan Thorbecke's avatar
Jan Thorbecke committed
	assert (nxs >= nshots);

    if (!getparfloat("dt", &dt)) dt = d1;

    ntfft = optncr(MAX(nt, nts)); 
    nts   = ntfft;
    nf    = ntfft/2+1;
    df    = 1.0/(ntfft*dt);
    nfreq = ntfft/2+1;
    nw_low = (int)MIN((fmin*ntfft*dt), nfreq-1);
    nw_low = MAX(nw_low, 1);
    nw_high = MIN((int)(fmax*ntfft*dt), nfreq-1);
    nw  = nw_high - nw_low + 1;
    scl   = 1.0/((float)ntfft);
    
/*================ Reading all focusing operator(s) ================*/

    Fop     = (complex *)malloc(nxs*nw*Nsyn*sizeof(complex));
    xrcvsyn = (float *)calloc(Nsyn*nxs,sizeof(float));
    xsyn    = (float *)malloc(Nsyn*sizeof(float));
    zsyn    = (float *)malloc(Nsyn*sizeof(float));
    tapersy = (float *)malloc(nxs*sizeof(float));
    xnxsyn  = (int *)calloc(Nsyn,sizeof(int));
    green   = (float *)calloc(Nsyn*nxs*ntfft,sizeof(float));
    f2p     = (float *)calloc(Nsyn*nxs*ntfft,sizeof(float));
    pmin    = (float *)calloc(Nsyn*nxs*ntfft,sizeof(float));
    Gmin    = (float *)calloc(Nsyn*nxs*ntfft,sizeof(float));
    Gplus   = (float *)calloc(Nsyn*nxs*ntfft,sizeof(float));
    f1plus  = (float *)calloc(Nsyn*nxs*ntfft,sizeof(float));
    f1min   = (float *)calloc(Nsyn*nxs*ntfft,sizeof(float));
    Nk      = (float *)calloc(Nsyn*nxs*ntfft,sizeof(float));
    Nk_1    = (float *)calloc(Nsyn*nxs*ntfft,sizeof(float));
    ctrace  = (complex *)malloc(ntfft*sizeof(complex));
    trace  = (float *)malloc(ntfft*sizeof(float));
    mute = (float *)calloc(Nsyn*nxs,sizeof(float));
    tinv = (float *)malloc(Nsyn*nxs*ntfft*sizeof(float));
    ixpossyn = (int *)malloc(nxs*sizeof(int));

/*================ Read and define mute window based on focusing operator(s) ================*/
/* Fop = p_0^+ = G_d (-t) ~ Tinv */

    mode=-1; /* apply complex conjugate to read in data */
    readTinvData(file_tinv, xrcvsyn, xsyn, zsyn, xnxsyn, Fop, nw, nw_low, Nsyn, nxs, ntfft, 
Jan Thorbecke's avatar
Jan Thorbecke committed
         mode, mute, tinv, hw, verbose);
                             
    if (tap == 1 || tap == 3) {
        for (j = 0; j < ntap; j++)
            tapersy[j] = (cos(PI*(j-ntap)/ntap)+1)/2.0;
        for (j = ntap; j < nxs-ntap; j++)
            tapersy[j] = 1.0;
        for (j = nxs-ntap; j < nxs; j++)
            tapersy[j] =(cos(PI*(j-(nxs-ntap))/ntap)+1)/2.0;
    }
    else {
        for (j = 0; j < nxs; j++) tapersy[j] = 1.0;
    }
    if (tap == 1 || tap == 3) {
        if (verbose) vmess("Taper for operator applied ntap=%d", ntap);
        for (l = 0; l < Nsyn; l++) {
            for (j = 1; j < nw; j++) {
                for (i = 0; i < nxs; i++) {
                    Fop[l*nxs*nw+j*nxs+i].r *= tapersy[i];
                    Fop[l*nxs*nw+j*nxs+i].i *= tapersy[i];
                }   
            }   
        }   
    }

    if (xrcvsyn[0] != 0 || xrcvsyn[1] != 0 ) fxs = xrcvsyn[0];
    fxs2 = fxs + (float)(nxs-1)*dxs;
    dxf = (xrcvsyn[nxs-1] - xrcvsyn[0])/(float)(nxs-1);
    if (NINT(dxs*1e3) != NINT(fabs(dxf)*1e3)) {
        vmess("dx in hdr.d1 (%.3f) and hdr.gx (%.3f) not equal",d2, dxf);
        if (dxf != 0) dxs = fabs(dxf);
        vmess("dx in operator => %f", dxs);
    }

/*================ Reading shot records ================*/

    Refl    = (complex *)malloc(nw*nx*nshots*sizeof(complex));
    tapersh = (float *)malloc(nx*sizeof(float));
    xsrc    = (float *)calloc(nshots,sizeof(float));
    zsrc    = (float *)calloc(nshots,sizeof(float));
    xrcv    = (float *)calloc(nshots*nx,sizeof(float));
    xnx     = (int *)calloc(nshots,sizeof(int));

    mode=1;
    readShotData(file_shot, xrcv, xsrc, zsrc, xnx, Refl, nw, nw_low, ngath, nx, nx, ntfft, 
Jan Thorbecke's avatar
Jan Thorbecke committed
         mode, weight, verbose);

    tapersh = (float *)malloc(nx*sizeof(float));
    if (tap == 2 || tap == 3) {
        for (j = 0; j < ntap; j++)
            tapersh[j] = (cos(PI*(j-ntap)/ntap)+1)/2.0;
        for (j = ntap; j < nx-ntap; j++)
            tapersh[j] = 1.0;
        for (j = nx-ntap; j < nx; j++)
            tapersh[j] =(cos(PI*(j-(nx-ntap))/ntap)+1)/2.0;
    }
    else {
        for (j = 0; j < nx; j++) tapersh[j] = 1.0;
    }
    if (tap == 2 || tap == 3) {
        if (verbose) vmess("Taper for shots applied ntap=%d", ntap);
        for (l = 0; l < nshots; l++) {
            for (j = 1; j < nw; j++) {
                for (i = 0; i < nx; i++) {
                    Refl[l*nx*nw+j*nx+i].r *= tapersh[i];
                    Refl[l*nx*nw+j*nx+i].i *= tapersh[i];
                }   
            }   
        }
    }
    free(tapersh);

    fxf = xsrc[0];
    if (nx > 1) dxf = (xrcv[0] - xrcv[nx-1])/(float)(nx-1);
    else dxf = d2;
    if (NINT(dx*1e3) != NINT(fabs(dxf)*1e3)) {
        vmess("dx in hdr.d1 (%.3f) and hdr.gx (%.3f) not equal",dx, dxf);
        if (dxf != 0) dx = fabs(dxf);
        else verr("gx hdrs not set");
        vmess("dx used => %f", dx);
    }
    
    dxsrc = (float)xsrc[1] - xsrc[0];
    if (dxsrc == 0) {
        vwarn("sx hdrs are not filled in!!");
        dxsrc = dx;
    }

/*================ Check the size of the files ================*/

    if (NINT(dxsrc/dx)*dx != NINT(dxsrc)) {
        vwarn("source (%.2f) and receiver step (%.2f) don't match",dxsrc,dx);
        if (reci == 2) vwarn("step used from operator (%.2f) ",dxs);
    }
    di = NINT(dxf/dxs);
    if ((NINT(di*dxs) != NINT(dxf)) && verbose) 
        vwarn("dx in receiver (%.2f) and operator (%.2f) don't match",dx,dxs);
    if (nt != nts) 
        vmess("Time samples in shot (%d) and focusing operator (%d) are not equal",nt, nts);
    if (verbose) {
        vmess("Number of focusing operators   = %d", Nsyn);
        vmess("Number of receivers in focusop = %d", nxs);
        vmess("number of shots                = %d", nshots);
        vmess("number of receiver/shot        = %d", nx);
        vmess("first model position           = %.2f", fxs);
        vmess("last model position            = %.2f", fxs2);
        vmess("first source position fxf      = %.2f", fxf);
        vmess("source distance dxsrc          = %.2f", dxsrc);
        vmess("last source position           = %.2f", fxf+(nshots-1)*dxsrc);
        vmess("receiver distance     dxf      = %.2f", dxf);
        vmess("direction of increasing traces = %d", di);
        vmess("number of time samples (ntfft) = %d (%d)", nt, ntfft);
        vmess("time sampling                  = %e ", dt);
        if (file_green != NULL) vmess("Green output file              = %s ", file_green);
        if (file_gmin != NULL)  vmess("Gmin output file               = %s ", file_gmin);
        if (file_gplus != NULL) vmess("Gplus output file              = %s ", file_gplus);
        if (file_pmin != NULL)  vmess("Pmin output file               = %s ", file_pmin);
        if (file_f2 != NULL)    vmess("f2 (=pplus) output file        = %s ", file_f2);
        if (file_f1min != NULL) vmess("f1min output file              = %s ", file_f1min);
        if (file_f1plus != NULL)vmess("f1plus output file             = %s ", file_f1plus);
        if (file_iter != NULL)  vmess("Iterations output file         = %s ", file_iter);
    }
    t1    = wallclock_time();
    tread = t1-t0;

/*================ initializations ================*/

    if (ixa || ixb) n2out = ixa + ixb + 1;
    else if (reci) n2out = nxs;
    else n2out = nshots;
    mem = Nsyn*n2out*ntfft*sizeof(float)/1048576.0;
    if (verbose) {
        vmess("number of output traces        = %d", n2out);
        vmess("number of output samples       = %d", ntfft);
        vmess("Size of output data            = %.1f Mb", mem);
    }

    /* dry-run of synthesis to get all x-positions calcalated by the integration */
    synthesisPosistions(nx, nt, nxs, nts, dt, xsyn, Nsyn, xrcv, xsrc, fxs2, fxs, 
Jan Thorbecke's avatar
Jan Thorbecke committed
        dxs, dxsrc, dx, ixa, ixb,  reci, nshots, ixpossyn, &npossyn, verbose);
    if (verbose) {
        vmess("synthesisPosistions: nshots=%d npossyn=%d", nshots, npossyn);
    }

/*================ set variables for output data ================*/

    n1 = nts; n2 = n2out;
    f1 = ft; f2 = fxs+dxs*ixpossyn[0];
    d1 = dt;
    if (reci == 0) d2 = dxsrc;
    else if (reci == 1) d2 = dxs;
    else if (reci == 2) d2 = dx;

    hdrs_out = (segy *) calloc(n2,sizeof(segy));
    if (hdrs_out == NULL) verr("allocation for hdrs_out");
    size  = nxs*nts;

    for (i = 0; i < n2; i++) {
        hdrs_out[i].ns     = n1;
        hdrs_out[i].trid   = 1;
        hdrs_out[i].dt     = dt*1000000;
        hdrs_out[i].f1     = f1;
        hdrs_out[i].f2     = f2;
        hdrs_out[i].d1     = d1;
        hdrs_out[i].d2     = d2;
        hdrs_out[i].trwf   = n2out;
        hdrs_out[i].scalco = -1000;
        hdrs_out[i].gx = NINT(1000*(f2+i*d2));
        hdrs_out[i].scalel = -1000;
        hdrs_out[i].tracl = i+1;
    }

/*================ number of Marchenko iterations ================*/

    for (iter=0; iter<niter; iter++) {

        t2    = wallclock_time();
    
/*================ construction of Nk(-t) = - \int R(x,t) Fop(t)  ================*/

        synthesis(Refl, Fop, Nk, nx, nt, nxs, nts, dt, xsyn, Nsyn, 
            xrcv, xsrc, fxs2, fxs, dxs, dxsrc, dx, ixa, ixb, ntfft, nw, nw_low, nw_high, 
Jan Thorbecke's avatar
Jan Thorbecke committed
            reci, nshots, verbose);

        /* set Fop to zero, so new operator can be defined within ixpossyn points */
        memset(&Fop[0].r, 0, Nsyn*nxs*nw*2*sizeof(float));

        if (file_iter != NULL) {
            writeDataIter(file_iter, Nk, hdrs_out, ntfft, nxs, d2, f2, n2out, Nsyn, xsyn, zsyn, iter);
        }

        /* copy initialization value */
        if (iter==0) {
            /* N_0(t) = M_0(t) = -p0^-(x,-t)  = R * T_d^inv */
            for (l = 0; l < Nsyn; l++) {
                for (i = 0; i < npossyn; i++) {
                    j = 0;
                    Nk_1[l*nxs*nts+i*nts+j] = -Nk[l*nxs*nts+i*nts+j];
                    for (j = 1; j < nts; j++) {
                        Nk_1[l*nxs*nts+i*nts+j] = -Nk[l*nxs*nts+i*nts+nts-j];
                    }
                }
            }
            /* p0^- = Int R P0^+ = Nk */
            for (l = 0; l < Nsyn; l++) {
                for (i = 0; i < npossyn; i++) {
                    j = 0;
                    pmin[l*nxs*nts+i*nts+j] = Nk[l*nxs*nts+i*nts+j];
                    for (j = 1; j < nts; j++) {
                        pmin[l*nxs*nts+i*nts+j] = Nk[l*nxs*nts+i*nts+j];
                    }
                }
            }

            applyMute(Nk_1, mute, smooth, above, Nsyn, nxs, nts, xsrc, ixpossyn, npossyn, shift);

            /* even iterations:  => - f_1^- (-t) = windowed(pmin(t)) */
            for (l = 0; l < Nsyn; l++) {
                for (i = 0; i < npossyn; i++) {
                    j = 0;
                    f1min[l*nxs*nts+i*nts+j] -= Nk_1[l*nxs*nts+i*nts+j];
                    for (j = 1; j < nts; j++) {
                        f1min[l*nxs*nts+i*nts+j] -= Nk_1[l*nxs*nts+i*nts+nts-j];
                    }
                }
            }

            for (l = 0; l < Nsyn; l++) {
                for (i = 0; i < npossyn; i++) {
                    j = 0;
                    //ix = NINT((xsrc[i]-fxs)/dxs);
                    ix = ixpossyn[i];
                    //fprintf(stderr,"i=%d xsrc=%f ix=%d ixpossyn=%d\n", i, xsrc[i], ix, ixpossyn[i]);
                    f2p[l*nxs*nts+i*nts+j] = tinv[l*nxs*nts+ix*nts+j] + Nk_1[l*nxs*nts+i*nts+j];
                    for (j = 1; j < nts; j++) {
                        f2p[l*nxs*nts+i*nts+j] = tinv[l*nxs*nts+ix*nts+j] + Nk_1[l*nxs*nts+i*nts+j];
                    }
                }
            }
            /* Pressure based scheme */
            for (l = 0; l < Nsyn; l++) {
                for (i = 0; i < npossyn; i++) {
                    j=0;
                    //ix = NINT((xsrc[i]-fxs)/dxs);
                    ix = ixpossyn[i];
                    green[l*nxs*nts+i*nts+j] = tinv[l*nxs*nts+ix*nts+j] + pmin[l*nxs*nts+i*nts+j];
                    for (j = 1; j < nts; j++) {
                        green[l*nxs*nts+i*nts+j] = tinv[l*nxs*nts+ix*nts+j] + pmin[l*nxs*nts+i*nts+j];
                    }
                }
            }
        }
        else if (iter==1) {
            /* Nk_1(x,t) = -\int R(x,t) M_0(x,-t) dxdt*/
            for (l = 0; l < Nsyn; l++) {
                for (i = 0; i < npossyn; i++) {
                    j = 0;
                    Nk_1[l*nxs*nts+i*nts+j] = -Nk[l*nxs*nts+i*nts+j];
                    for (j = 1; j < nts; j++) {
                        Nk_1[l*nxs*nts+i*nts+j] = -Nk[l*nxs*nts+i*nts+nts-j];
                    }
                }
            }
            for (l = 0; l < Nsyn; l++) {
                for (i = 0; i < npossyn; i++) {
                    j = 0;
                    pmin[l*nxs*nts+i*nts+j] -= Nk_1[l*nxs*nts+i*nts+j];
                    for (j = 1; j < nts; j++) {
                        pmin[l*nxs*nts+i*nts+j] -= Nk_1[l*nxs*nts+i*nts+nts-j];
                    }
                }
            }
            applyMute(Nk_1, mute, smooth, above, Nsyn, nxs, nts, xsrc, ixpossyn, npossyn, shift);
            /* Pressure based scheme */
            for (l = 0; l < Nsyn; l++) {
                for (i = 0; i < npossyn; i++) {
                    j=0;
                    green[l*nxs*nts+i*nts+j] = f2p[l*nxs*nts+i*nts+j] + pmin[l*nxs*nts+i*nts+j];
                    for (j = 1; j < nts; j++) {
                        green[l*nxs*nts+i*nts+j] = f2p[l*nxs*nts+i*nts+nts-j] + pmin[l*nxs*nts+i*nts+j];
                    }
                }
            }
            for (l = 0; l < Nsyn; l++) {
                for (i = 0; i < npossyn; i++) {
                    j = 0;
                    f2p[l*nxs*nts+i*nts+j] += Nk_1[l*nxs*nts+i*nts+j];
                    for (j = 1; j < nts; j++) {
                        f2p[l*nxs*nts+i*nts+j] += Nk_1[l*nxs*nts+i*nts+j];
                    }
                }
            }
            /* odd iterations: M_m^+  */
            for (l = 0; l < Nsyn; l++) {
                for (i = 0; i < npossyn; i++) {
                    j = 0;
                    //ix = NINT((xsrc[i]-fxs)/dxs);
                    ix = ixpossyn[i];
                    f1plus[l*nxs*nts+i*nts+j] = tinv[l*nxs*nts+ix*nts+j] + Nk_1[l*nxs*nts+i*nts+j];
                    for (j = 1; j < nts; j++) {
                        f1plus[l*nxs*nts+i*nts+j] = tinv[l*nxs*nts+ix*nts+j] + Nk_1[l*nxs*nts+i*nts+j];
                    }
                }
            }
        }
        else {
            /* in next iteration use time reversal (and scale with scalar w)*/
            /* N_k(x,t) = -N_(k-1)(x,-t) */
            for (l = 0; l < Nsyn; l++) {
                for (i = 0; i < npossyn; i++) {
                    j = 0;
                    Nk_1[l*nxs*nts+i*nts+j] = -Nk[l*nxs*nts+i*nts+j];
                    for (j = 1; j < nts; j++) {
                        Nk_1[l*nxs*nts+i*nts+j] = -Nk[l*nxs*nts+i*nts+nts-j];
                    }
                }
            }
            for (l = 0; l < Nsyn; l++) {
                for (i = 0; i < npossyn; i++) {
                    j = 0;
                    pmin[l*nxs*nts+i*nts+j] -= Nk_1[l*nxs*nts+i*nts+j];
                    for (j = 1; j < nts; j++) {
                        pmin[l*nxs*nts+i*nts+j] -= Nk_1[l*nxs*nts+i*nts+nts-j];
                    }
                }
            }
            applyMute(Nk_1, mute, smooth, above, Nsyn, nxs, nts, xsrc, ixpossyn, npossyn, shift);

            /* compute full Green's function G = p^+(-t) + p^-(t) */
            if (iter == niter-1) {
                /* Pressure based scheme */
                for (l = 0; l < Nsyn; l++) {
                    for (i = 0; i < npossyn; i++) {
                        j=0;
                        green[l*nxs*nts+i*nts+j] = f2p[l*nxs*nts+i*nts+j] + pmin[l*nxs*nts+i*nts+j];
                        for (j = 1; j < nts; j++) {
                            green[l*nxs*nts+i*nts+j] = f2p[l*nxs*nts+i*nts+nts-j] + pmin[l*nxs*nts+i*nts+j];
                        }
                    }
                }
            } /* end if for last iteration */

            for (l = 0; l < Nsyn; l++) {
                for (i = 0; i < npossyn; i++) {
                    j = 0;
                    f2p[l*nxs*nts+i*nts+j] += Nk_1[l*nxs*nts+i*nts+j];
                    for (j = 1; j < nts; j++) {
                        f2p[l*nxs*nts+i*nts+j] += Nk_1[l*nxs*nts+i*nts+j];
                    }
                }
            }


            if (iter % 2 == 0) { /* even iterations: => - f_1^- (-t) = pmin(t) */
                for (l = 0; l < Nsyn; l++) {
                    for (i = 0; i < npossyn; i++) {
                        j = 0;
                        f1min[l*nxs*nts+i*nts+j] -= Nk_1[l*nxs*nts+i*nts+j];
                        for (j = 1; j < nts; j++) {
                            f1min[l*nxs*nts+i*nts+j] -= Nk_1[l*nxs*nts+i*nts+nts-j];
                        }
                    }
                }
            }
            else {/* odd iterations: M_m^+  */
                for (l = 0; l < Nsyn; l++) {
                    for (i = 0; i < npossyn; i++) {
                        j = 0;
                        f1plus[l*nxs*nts+i*nts+j] += Nk_1[l*nxs*nts+i*nts+j];
                        for (j = 1; j < nts; j++) {
                            f1plus[l*nxs*nts+i*nts+j] += Nk_1[l*nxs*nts+i*nts+j];
                        }
                    }
                }
            }

        } /* end else (iter!=0) branch */

        t3 = wallclock_time();
        tsyn +=  t3 - t2;

        /* compute up and downgoing Green's function G^+,- G^+,+ */
        /* f1 based scheme */
        if (iter == niter-1) {
            /* transform f1+ to frequency domain */
            for (l = 0; l < Nsyn; l++) {
                for (i = 0; i < npossyn; i++) {
                    for (j = 0; j < nts; j++) {
                        trace[j] = f1plus[l*nxs*nts+i*nts+j];
                    }
                    rc1fft(&trace[0],ctrace,ntfft,-1);
                    ix = ixpossyn[i];
                       for (iw=0; iw<nw; iw++) {
                           Fop[l*nxs*nw+iw*nxs+ix].r = ctrace[nw_low+iw].r;
                           Fop[l*nxs*nw+iw*nxs+ix].i = ctrace[nw_low+iw].i;
                      }
                }
            }

            synthesis(Refl, Fop, Nk, nx, nt, nxs, nts, dt, xsyn, Nsyn, 
                xrcv, xsrc, fxs2, fxs, dxs, dxsrc, dx, ixa, ixb, ntfft, nw, nw_low, nw_high, 
Jan Thorbecke's avatar
Jan Thorbecke committed
                reci, nshots, verbose);

            /* compute upgoing Green's G^-,+ */
            for (l = 0; l < Nsyn; l++) {
                for (i = 0; i < npossyn; i++) {
                    j=0;
                    Gmin[l*nxs*nts+i*nts+j] = Nk[l*nxs*nts+i*nts+j] - f1min[l*nxs*nts+i*nts+j];
                    for (j = 1; j < nts; j++) {
                        Gmin[l*nxs*nts+i*nts+j] = Nk[l*nxs*nts+i*nts+j] - f1min[l*nxs*nts+i*nts+j];
                    }
                }
            }
            /* Apply mute with window for Gmin */
            applyMute(Gmin, mute, smooth, 1, Nsyn, nxs, nts, xsrc, ixpossyn, npossyn, shift);

            /* transform f1- to frequency domain */
            for (l = 0; l < Nsyn; l++) {
                for (i = 0; i < npossyn; i++) {
                    for (j = 0; j < nts; j++) {
                        trace[j] = f1min[l*nxs*nts+i*nts+j];
                    }
                       rc1fft(&trace[0],ctrace,ntfft,-1);
                    ix = ixpossyn[i];
                       for (iw=0; iw<nw; iw++) {
                           Fop[l*nxs*nw+iw*nxs+ix].r = ctrace[nw_low+iw].r;
                           Fop[l*nxs*nw+iw*nxs+ix].i = -ctrace[nw_low+iw].i;
                       }
                }
            }

            synthesis(Refl, Fop, Nk, nx, nt, nxs, nts, dt, xsyn, Nsyn, 
                xrcv, xsrc, fxs2, fxs, dxs, dxsrc, dx, ixa, ixb, ntfft, nw, nw_low, nw_high, 
Jan Thorbecke's avatar
Jan Thorbecke committed
                reci, nshots, verbose);

            /* compute downgoing Green's G^+,+ */
            for (l = 0; l < Nsyn; l++) {
                for (i = 0; i < npossyn; i++) {
                    j=0;
                    Gplus[l*nxs*nts+i*nts+j] = -Nk[l*nxs*nts+i*nts+j] + f1plus[l*nxs*nts+i*nts+j];
                    for (j = 1; j < nts; j++) {
                        Gplus[l*nxs*nts+i*nts+j] = -Nk[l*nxs*nts+i*nts+j] + f1plus[l*nxs*nts+i*nts+nts-j];
                    }
                }
            }
        } /* end if for last iteration */

        /* transform muted Nk_1 to frequency domain */
        for (l = 0; l < Nsyn; l++) {
            for (i = 0; i < npossyn; i++) {
                rc1fft(&Nk_1[l*nxs*nts+i*nts],ctrace,ntfft,-1);
                ix = ixpossyn[i];
                for (iw=0; iw<nw; iw++) {
                    Fop[l*nxs*nw+iw*nxs+ix].r = ctrace[nw_low+iw].r;
                    Fop[l*nxs*nw+iw*nxs+ix].i = ctrace[nw_low+iw].i;
                }
            }
        }
        t2 = wallclock_time();
        tfft +=  t2 - t3;

        if (verbose) vmess("*** Iteration %d finished ***", iter);

    } /* end of iterations */

    t2 = wallclock_time();
    if (verbose) {
        vmess("Total CPU-time marchenko = %.3f", t2-t0);
        vmess("with CPU-time synthesis  = %.3f", tsyn);
        vmess("and CPU-time fft data    = %.3f", tfft);
        vmess("and CPU-time read data   = %.3f", tread);
    }

/*================ write output files ================*/

/*
    n1 = nts; n2 = n2out;
    f1 = ft; f2 = fxs;
    d1 = dt;
    if (reci == 0) d2 = dxsrc;
    else if (reci == 1) d2 = dxs;
    else if (reci == 2) d2 = dx;

    hdrs_out = (segy *) calloc(n2,sizeof(segy));
    if (hdrs_out == NULL) verr("allocation for hdrs_out");
    size  = nxs*nts;
*/

    fp_out = fopen(file_green, "w+");
    if (fp_out==NULL) verr("error on creating output file %s", file_green);
    if (file_gmin != NULL) {
        fp_gmin = fopen(file_gmin, "w+");
        if (fp_gmin==NULL) verr("error on creating output file %s", file_gmin);
    }
    if (file_gplus != NULL) {
        fp_gplus = fopen(file_gplus, "w+");
        if (fp_gplus==NULL) verr("error on creating output file %s", file_gplus);
    }
    if (file_f2 != NULL) {
        fp_f2 = fopen(file_f2, "w+");
        if (fp_f2==NULL) verr("error on creating output file %s", file_f2);
    }
    if (file_pmin != NULL) {
        fp_pmin = fopen(file_pmin, "w+");
        if (fp_pmin==NULL) verr("error on creating output file %s", file_pmin);
    }
    if (file_f1plus != NULL) {
        fp_f1plus = fopen(file_f1plus, "w+");
        if (fp_f1plus==NULL) verr("error on creating output file %s", file_f1plus);
    }
    if (file_f1min != NULL) {
        fp_f1min = fopen(file_f1min, "w+");
        if (fp_f1min==NULL) verr("error on creating output file %s", file_f1min);
    }


    tracf = 1;
    for (l = 0; l < Nsyn; l++) {
        if (ixa || ixb) f2 = xsyn[l]-ixb*d2;
        else {
            if (reci) f2 = fxs;
            else f2 = fxf;
        }

        for (i = 0; i < n2; i++) {
            hdrs_out[i].fldr   = l+1;
            hdrs_out[i].sx = NINT(xsyn[l]*1000);
            hdrs_out[i].offset = (long)NINT((f2+i*d2) - xsyn[l]);
            hdrs_out[i].tracf = tracf++;
            hdrs_out[i].selev  = NINT(zsyn[l]*1000);
            hdrs_out[i].sdepth = NINT(-zsyn[l]*1000);
        }

        ret = writeData(fp_out, (float *)&green[l*size], hdrs_out, n1, n2);
        if (ret < 0 ) verr("error on writing output file.");

        if (file_gmin != NULL) {
            ret = writeData(fp_gmin, (float *)&Gmin[l*size], hdrs_out, n1, n2);
            if (ret < 0 ) verr("error on writing output file.");
        }
        if (file_gplus != NULL) {
            ret = writeData(fp_gplus, (float *)&Gplus[l*size], hdrs_out, n1, n2);
            if (ret < 0 ) verr("error on writing output file.");
        }
        if (file_f2 != NULL) {
            ret = writeData(fp_f2, (float *)&f2p[l*size], hdrs_out, n1, n2);
            if (ret < 0 ) verr("error on writing output file.");
        }
        if (file_pmin != NULL) {
            ret = writeData(fp_pmin, (float *)&pmin[l*size], hdrs_out, n1, n2);
            if (ret < 0 ) verr("error on writing output file.");
        }
        if (file_f1plus != NULL) {
            /* rotate to get t=0 in the middle */
            for (i = 0; i < n2; i++) {
                hdrs_out[i].f1     = -n1*0.5*dt;
                memcpy(&trace[0],&f1plus[l*size+i*nts],nts*sizeof(float));
                for (j = 0; j < n1/2; j++) {
                    f1plus[l*size+i*nts+n1/2+j] = trace[j];
                }
                for (j = n1/2; j < n1; j++) {
                    f1plus[l*size+i*nts+j-n1/2] = trace[j];
                }
            }
            ret = writeData(fp_f1plus, (float *)&f1plus[l*size], hdrs_out, n1, n2);
            if (ret < 0 ) verr("error on writing output file.");
        }
        if (file_f1min != NULL) {
            /* rotate to get t=0 in the middle */
            for (i = 0; i < n2; i++) {
                hdrs_out[i].f1     = -n1*0.5*dt;
                memcpy(&trace[0],&f1min[l*size+i*nts],nts*sizeof(float));
                for (j = 0; j < n1/2; j++) {
                    f1min[l*size+i*nts+n1/2+j] = trace[j];
                }
                for (j = n1/2; j < n1; j++) {
                    f1min[l*size+i*nts+j-n1/2] = trace[j];
                }
            }
            ret = writeData(fp_f1min, (float *)&f1min[l*size], hdrs_out, n1, n2);
            if (ret < 0 ) verr("error on writing output file.");
        }
    }
    ret = fclose(fp_out);
    if (file_gplus != NULL) {ret += fclose(fp_gplus);}
    if (file_gmin != NULL) {ret += fclose(fp_gmin);}
    if (file_f2 != NULL) {ret += fclose(fp_f2);}
    if (file_pmin != NULL) {ret += fclose(fp_pmin);}
    if (file_f1plus != NULL) {ret += fclose(fp_f1plus);}
    if (file_f1min != NULL) {ret += fclose(fp_f1min);}
    if (ret < 0) verr("err %d on closing output file",ret);

    if (verbose) {
        t1 = wallclock_time();
        vmess("and CPU-time write data  = %.3f", t1-t2);
    }

/*================ free memory ================*/

    free(hdrs_out);
    free(tapersy);

    exit(0);
}

Jan Thorbecke's avatar
Jan Thorbecke committed
void synthesis(complex *Refl, complex *Fop, float *syndata, int nx, int nt, int nxs, int nts, float dt, float *xsyn, int Nsyn, float *xrcv, float *xsrc, float fxs2, float fxs, float dxs, float dxsrc, float dx, int ixa, int ixb, int ntfft, int nw, int nw_low, int nw_high,  int reci, int nshots, int verbose)
{
    int nfreq, size, iox, inx;
    float scl;
    int     i, j, l, m, ixsrc, ix, ixrcv, dosrc, k;
    float    *rdata, *p, **dum, x0, x1;
    static double t0, t1, tfft, t;
    complex *sum, *cdata, tmp, ts, to;
    int      npe;

    size  = nxs*nts;
    nfreq = ntfft/2+1;
    /* scale factor 1/N for backward FFT,
     * scale dt for correlation/convolution along time, 
     * scale dx (or dxsrc) for integration over receiver (or shot) coordinates */
    scl   = 1.0*dt/((float)ntfft);

    t0 = wallclock_time();

    /* reset output data to zero */
    memset(&syndata[0], 0, Nsyn*nxs*nts*sizeof(float));

    for (k=0; k<nshots; k++) {

        ixsrc = NINT((xsrc[k] - fxs)/dxs);
/*        if (verbose>=3) {
            vmess("source position:     %.2f in operator %d", xsrc[k], ixsrc);
            vmess("receiver positions:  %.2f <--> %.2f", xrcv[k*nx+0], xrcv[k*nx+nx-1]);
        }
*/
        if ((NINT(xsrc[k]-fxs2) > 0) || (NINT(xrcv[k*nx+nx-1]-fxs2) > 0) ||
            (NINT(xrcv[k*nx+nx-1]-fxs) < 0) || (NINT(xsrc[k]-fxs) < 0) || 
            (NINT(xrcv[k*nx+0]-fxs) < 0) || (NINT(xrcv[k*nx+0]-fxs2) > 0) ) {
            vwarn("source/receiver positions are outside synthesis model");
            vwarn("integration calculation is stopped at gather %d", k);
            vmess("xsrc = %.2f xrcv_1 = %.2f xrvc_N = %.2f", xsrc[k], xrcv[k*nx+0], xrcv[k*nx+nx-1]);
            break;
        }
    

Jan Thorbecke's avatar
Jan Thorbecke committed
		iox = 0; inx = nx;

/*================ SYNTHESIS ================*/

#ifdef _OPENMP
    npe   = omp_get_max_threads();
    /* parallelisation is over number of virtual source positions (Nsyn) */
    if (npe > Nsyn) {
        vmess("Number of OpenMP threads set to %d (was %d)", Nsyn, npe);
        omp_set_num_threads(Nsyn);
    }
#endif

#pragma omp parallel default(none) \
 shared(syndata, dx, npe, nw, verbose) \
 shared(Refl, Nsyn, reci, xrcv, xsrc, xsyn, fxs, nxs, dxs) \
 shared(nx, ixa, ixb, dxsrc, iox, inx, k, nfreq, nw_low, nw_high) \
 shared(Fop, size, nts, ntfft, scl, ixsrc, stderr) \
 private(l, x0, x1, ix, dosrc, j, m, i, ixrcv, sum, rdata, tmp, ts, to)
    { /* start of parallel region */
    sum   = (complex *)malloc(nfreq*sizeof(complex));
    rdata = (float *)calloc(ntfft,sizeof(float));
#pragma omp for 
    for (l = 0; l < Nsyn; l++) {

/*
        if (ixa || ixb) { 
            if (reci == 0) {
                x0 = xsyn[l]-ixb*dxsrc; 
                x1 = xsyn[l]+ixa*dxsrc; 
                if ((xsrc[k] < x0) || (xsrc[k] > x1)) continue;
                ix = NINT((xsrc[k]-x0)/dxsrc);
                dosrc = 1;
            }
            else if (reci == 1) {
                x0 = xsyn[l]-ixb*dxs; 
                x1 = xsyn[l]+ixa*dxs; 
                if (((xsrc[k] < x0) || (xsrc[k] > x1)) && 
                    (xrcv[k*nx+0] < x0) && (xrcv[k*nx+nx-1] < x0)) continue;
                if (((xsrc[k] < x0) || (xsrc[k] > x1)) && 
                    (xrcv[k*nx+0] > x1) && (xrcv[k*nx+nx-1] > x1)) continue;
                if ((xsrc[k] < x0) || (xsrc[k] > x1)) dosrc = 0;
                else dosrc = 1;
                ix = NINT((xsrc[k]-x0)/dxs);
            }
            else if (reci == 2) {
                if (NINT(dxsrc/dx)*dx != NINT(dxsrc)) dx = dxs;
                x0 = xsyn[l]-ixb*dx; 
                x1 = xsyn[l]+ixa*dx; 
                if ((xrcv[k*nx+0] < x0) && (xrcv[k*nx+nx-1] < x0)) continue;
                if ((xrcv[k*nx+0] > x1) && (xrcv[k*nx+nx-1] > x1)) continue;
            }
        }
        else { 
*/
            ix = k; 
            x0 = fxs; 
            x1 = fxs+dxs*nxs;
            dosrc = 1;
//        }
//        if (reci == 1 && dosrc) ix = NINT((xsrc[k]-x0)/dxs);

//        if (reci < 2 && dosrc) {
            for (j = 0; j < nfreq; j++) sum[j].r = sum[j].i = 0.0;
            for (j = nw_low, m = 0; j <= nw_high; j++, m++) {
                for (i = iox; i < inx; i++) {
                    ixrcv = NINT((xrcv[k*nx+i]-fxs)/dxs);
                    tmp = Fop[l*nw*nxs+m*nxs+ixrcv];
                    sum[j].r += Refl[k*nw*nx+m*nx+i].r*tmp.r -
                                Refl[k*nw*nx+m*nx+i].i*tmp.i;
                    sum[j].i += Refl[k*nw*nx+m*nx+i].i*tmp.r +
                                Refl[k*nw*nx+m*nx+i].r*tmp.i;
                }
            }
#pragma omp critical
{
            cr1fft(sum, rdata, ntfft, 1);
}
//            fprintf(stderr,"synthesis[%d] = %d ix=%d\n", k,  ixsrc, ix);
            /* dx = receiver distance */
            for (j = 0; j < nts; j++) 
                syndata[l*size+ix*nts+j] += rdata[j]*scl*dx;
//        }

/*
        if (reci == 1 || reci == 2) {
            for (j = 0; j < nfreq; j++) sum[j].r = sum[j].i = 0.0;
            for (i = iox; i < inx; i++) {
                if ((xrcv[k*nx+i] < x0) || (xrcv[k*nx+i] > x1)) continue;
                if (reci == 1) ix = NINT((xrcv[k*nx+i]-x0)/dxs);
                else ix = NINT((xrcv[k*nx+i]-x0)/dx);

                for (j = nw_low, m = 0; j < nw_high; j++, m++) {
                    tmp = Fop[l*nw*nxs+m*nxs+ixsrc];
                    sum[j].r = Refl[k*nw*nx+m*nx+i].r*tmp.r -
                               Refl[k*nw*nx+m*nx+i].i*tmp.i;
                    sum[j].i = Refl[k*nw*nx+m*nx+i].i*tmp.r +
                               Refl[k*nw*nx+m*nx+i].r*tmp.i;
                }
#pragma omp critical
{
                cr1fft(sum, rdata, ntfft, 1);
}
                // dxsrc = source distance
                for (j = 0; j < nts; j++) 
                    syndata[l*size+ix*nts+j] += rdata[j]*scl*dxsrc;
            }
        }
*/

    } /* end of parallel Nsyn loop */

    free(sum);
    free(rdata);

#pragma omp single 
{ 
#ifdef _OPENMP
    npe   = omp_get_num_threads();
#endif
}
    } /* end of parallel region */

        if (verbose>3) vmess("*** Shot gather %d processed ***", k);

    } /* end of nshots (k) loop */

    t = wallclock_time() - t0;
    if (verbose) {
        vmess("OMP: parallel region = %f seconds (%d threads)", t, npe);
    }

    return;
}

Jan Thorbecke's avatar
Jan Thorbecke committed
void synthesisPosistions(int nx, int nt, int nxs, int nts, float dt, float *xsyn, int Nsyn, float *xrcv, float *xsrc, float fxs2, float fxs, float dxs, float dxsrc, float dx, int ixa, int ixb,  int reci, int nshots, int *ixpossyn, int *npossyn, int verbose)
{
    int nfreq, size, iox, inx;
    float scl;
    int     i, j, l, m, ixsrc, ix, ixrcv, dosrc, k;
    float    *rdata, *p, **dum, x0, x1;
    static double t0, t1, tfft, t;
    complex *sum, *cdata, tmp, ts, to;
    int      npe;