Newer
Older
Jan Thorbecke
committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
/* Copyright (c) Colorado School of Mines, 2011.*/
/* All rights reserved. */
/* segy.h - include file for SEGY traces
*
* declarations for:
* typedef struct {} segy - the trace identification header
* typedef struct {} bhed - binary header
*
* Note:
* If header words are added, run the makefile in this directory
* to recreate hdr.h.
*
* Reference:
* K. M. Barry, D. A. Cavers and C. W. Kneale, "Special Report:
* Recommended Standards for Digital Tape Formats",
* Geophysics, vol. 40, no. 2 (April 1975), P. 344-352.
*
* $Author: john $
* $Source: /usr/local/cwp/src/su/include/RCS/segy.h,v $
* $Revision: 1.33 $ ; $Date: 2011/11/11 23:56:14 $
*/
#include <limits.h>
#include "par.h"
#ifndef SEGY_H
#define SEGY_H
#define TRCBYTES 240
#define SU_NFLTS 32767 /* Arbitrary limit on data array size */
/* TYPEDEFS */
typedef struct { /* segy - trace identification header */
int tracl; /* Trace sequence number within line
--numbers continue to increase if the
same line continues across multiple
SEG Y files.
byte# 1-4
*/
int tracr; /* Trace sequence number within SEG Y file
---each file starts with trace sequence
one
byte# 5-8
*/
int fldr; /* Original field record number
byte# 9-12
*/
int tracf; /* Trace number within original field record
byte# 13-16
*/
int ep; /* energy source point number
---Used when more than one record occurs
at the same effective surface location.
byte# 17-20
*/
int cdp; /* Ensemble number (i.e. CDP, CMP, CRP,...)
byte# 21-24
*/
int cdpt; /* trace number within the ensemble
---each ensemble starts with trace number one.
byte# 25-28
*/
short trid; /* trace identification code:
-1 = Other
0 = Unknown
1 = Seismic data
2 = Dead
3 = Dummy
4 = Time break
5 = Uphole
6 = Sweep
7 = Timing
8 = Water break
9 = Near-field gun signature
10 = Far-field gun signature
11 = Seismic pressure sensor
12 = Multicomponent seismic sensor
- Vertical component
13 = Multicomponent seismic sensor
- Cross-line component
14 = Multicomponent seismic sensor
- in-line component
15 = Rotated multicomponent seismic sensor
- Vertical component
16 = Rotated multicomponent seismic sensor
- Transverse component
17 = Rotated multicomponent seismic sensor
- Radial component
18 = Vibrator reaction mass
19 = Vibrator baseplate
20 = Vibrator estimated ground force
21 = Vibrator reference
22 = Time-velocity pairs
23 ... N = optional use
(maximum N = 32,767)
Following are CWP id flags:
109 = autocorrelation
110 = Fourier transformed - no packing
xr[0],xi[0], ..., xr[N-1],xi[N-1]
111 = Fourier transformed - unpacked Nyquist
xr[0],xi[0],...,xr[N/2],xi[N/2]
112 = Fourier transformed - packed Nyquist
even N:
xr[0],xr[N/2],xr[1],xi[1], ...,
xr[N/2 -1],xi[N/2 -1]
(note the exceptional second entry)
odd N:
xr[0],xr[(N-1)/2],xr[1],xi[1], ...,
xr[(N-1)/2 -1],xi[(N-1)/2 -1],xi[(N-1)/2]
(note the exceptional second & last entries)
113 = Complex signal in the time domain
xr[0],xi[0], ..., xr[N-1],xi[N-1]
114 = Fourier transformed - amplitude/phase
a[0],p[0], ..., a[N-1],p[N-1]
115 = Complex time signal - amplitude/phase
a[0],p[0], ..., a[N-1],p[N-1]
116 = Real part of complex trace from 0 to Nyquist
117 = Imag part of complex trace from 0 to Nyquist
118 = Amplitude of complex trace from 0 to Nyquist
119 = Phase of complex trace from 0 to Nyquist
121 = Wavenumber time domain (k-t)
122 = Wavenumber frequency (k-omega)
123 = Envelope of the complex time trace
124 = Phase of the complex time trace
125 = Frequency of the complex time trace
130 = Depth-Range (z-x) traces
201 = Seismic data packed to bytes (by supack1)
202 = Seismic data packed to 2 bytes (by supack2)
byte# 29-30
*/
short nvs; /* Number of vertically summed traces yielding
this trace. (1 is one trace,
2 is two summed traces, etc.)
byte# 31-32
*/
short nhs; /* Number of horizontally summed traces yielding
this trace. (1 is one trace
2 is two summed traces, etc.)
byte# 33-34
*/
short duse; /* Data use:
1 = Production
2 = Test
byte# 35-36
*/
int offset; /* Distance from the center of the source point
to the center of the receiver group
(negative if opposite to direction in which
the line was shot).
byte# 37-40
*/
int gelev; /* Receiver group elevation from sea level
(all elevations above the Vertical datum are
positive and below are negative).
byte# 41-44
*/
int selev; /* Surface elevation at source.
byte# 45-48
*/
int sdepth; /* Source depth below surface (a positive number).
byte# 49-52
*/
int gdel; /* Datum elevation at receiver group.
byte# 53-56
*/
int sdel; /* Datum elevation at source.
byte# 57-60
*/
int swdep; /* Water depth at source.
byte# 61-64
*/
int gwdep; /* Water depth at receiver group.
byte# 65-68
*/
short scalel; /* Scalar to be applied to the previous 7 entries
to give the real value.
Scalar = 1, +10, +100, +1000, +10000.
If positive, scalar is used as a multiplier,
if negative, scalar is used as a divisor.
byte# 69-70
*/
short scalco; /* Scalar to be applied to the next 4 entries
to give the real value.
Scalar = 1, +10, +100, +1000, +10000.
If positive, scalar is used as a multiplier,
if negative, scalar is used as a divisor.
byte# 71-72
*/
int sx; /* Source coordinate - X
byte# 73-76
*/
int sy; /* Source coordinate - Y
byte# 77-80
*/
int gx; /* Group coordinate - X
byte# 81-84
*/
int gy; /* Group coordinate - Y
byte# 85-88
*/
short counit; /* Coordinate units: (for previous 4 entries and
for the 7 entries before scalel)
1 = Length (meters or feet)
2 = Seconds of arc
3 = Decimal degrees
4 = Degrees, minutes, seconds (DMS)
In case 2, the X values are longitude and
the Y values are latitude, a positive value designates
the number of seconds east of Greenwich
or north of the equator
In case 4, to encode +-DDDMMSS
counit = +-DDD*10^4 + MM*10^2 + SS,
with scalco = 1. To encode +-DDDMMSS.ss
counit = +-DDD*10^6 + MM*10^4 + SS*10^2
with scalco = -100.
byte# 89-90
*/
short wevel; /* Weathering velocity.
byte# 91-92
*/
short swevel; /* Subweathering velocity.
byte# 93-94
*/
short sut; /* Uphole time at source in milliseconds.
byte# 95-96
*/
short gut; /* Uphole time at receiver group in milliseconds.
byte# 97-98
*/
short sstat; /* Source static correction in milliseconds.
byte# 99-100
*/
short gstat; /* Group static correction in milliseconds.
byte# 101-102
*/
short tstat; /* Total static applied in milliseconds.
(Zero if no static has been applied.)
byte# 103-104
*/
short laga; /* Lag time A, time in ms between end of 240-
byte trace identification header and time
break, positive if time break occurs after
end of header, time break is defined as
the initiation pulse which maybe recorded
on an auxiliary trace or as otherwise
specified by the recording system
byte# 105-106
*/
short lagb; /* lag time B, time in ms between the time break
and the initiation time of the energy source,
may be positive or negative
byte# 107-108
*/
short delrt; /* delay recording time, time in ms between
initiation time of energy source and time
when recording of data samples begins
(for deep water work if recording does not
start at zero time)
byte# 109-110
*/
short muts; /* mute time--start
byte# 111-112
*/
short mute; /* mute time--end
byte# 113-114
*/
unsigned short ns; /* number of samples in this trace
byte# 115-116
*/
unsigned short dt; /* sample interval; in micro-seconds
byte# 117-118
*/
short gain; /* gain type of field instruments code:
1 = fixed
2 = binary
3 = floating point
4 ---- N = optional use
byte# 119-120
*/
short igc; /* instrument gain constant
byte# 121-122
*/
short igi; /* instrument early or initial gain
byte# 123-124
*/
short corr; /* correlated:
1 = no
2 = yes
byte# 125-126
*/
short sfs; /* sweep frequency at start
byte# 127-128
*/
short sfe; /* sweep frequency at end
byte# 129-130
*/
short slen; /* sweep length in ms
byte# 131-132
*/
short styp; /* sweep type code:
1 = linear
2 = cos-squared
3 = other
byte# 133-134
*/
short stas; /* sweep trace length at start in ms
byte# 135-136
*/
short stae; /* sweep trace length at end in ms
byte# 137-138
*/
short tatyp; /* taper type: 1=linear, 2=cos^2, 3=other
byte# 139-140
*/
short afilf; /* alias filter frequency if used
byte# 141-142
*/
short afils; /* alias filter slope
byte# 143-144
*/
short nofilf; /* notch filter frequency if used
byte# 145-146
*/
short nofils; /* notch filter slope
byte# 147-148
*/
short lcf; /* low cut frequency if used
byte# 149-150
*/
short hcf; /* high cut frequncy if used
byte# 151-152
*/
short lcs; /* low cut slope
byte# 153-154
*/
short hcs; /* high cut slope
byte# 155-156
*/
short year; /* year data recorded
byte# 157-158
*/
short day; /* day of year
byte# 159-160
*/
short hour; /* hour of day (24 hour clock)
byte# 161-162
*/
short minute; /* minute of hour
byte# 163-164
*/
short sec; /* second of minute
byte# 165-166
*/
short timbas; /* time basis code:
1 = local
2 = GMT
3 = other
byte# 167-168
*/
short trwf; /* trace weighting factor, defined as 1/2^N
volts for the least sigificant bit
byte# 169-170
*/
short grnors; /* geophone group number of roll switch
position one
byte# 171-172
*/
short grnofr; /* geophone group number of trace one within
original field record
byte# 173-174
*/
short grnlof; /* geophone group number of last trace within
original field record
byte# 175-176
*/
short gaps; /* gap size (total number of groups dropped)
byte# 177-178
*/
short otrav; /* overtravel taper code:
1 = down (or behind)
2 = up (or ahead)
byte# 179-180
*/
#ifdef SLTSU_SEGY_H /* begin Unocal SU segy.h differences */
/* cwp local assignments */
float d1; /* sample spacing for non-seismic data
byte# 181-184
*/
float f1; /* first sample location for non-seismic data
byte# 185-188
*/
float d2; /* sample spacing between traces
byte# 189-192
*/
float f2; /* first trace location
byte# 193-196
*/
float ungpow; /* negative of power used for dynamic
range compression
byte# 197-200
*/
float unscale; /* reciprocal of scaling factor to normalize
range
byte# 201-204
*/
short mark; /* mark selected traces
byte# 205-206
*/
/* SLTSU local assignments */
short mutb; /* mute time at bottom (start time)
bottom mute ends at last sample
byte# 207-208
*/
float dz; /* depth sampling interval in (m or ft)
if =0.0, input are time samples
byte# 209-212
*/
float fz; /* depth of first sample in (m or ft)
byte# 213-116
*/
short n2; /* number of traces per cdp or per shot
byte# 217-218
*/
short shortpad; /* alignment padding
byte# 219-220
*/
int ntr; /* number of traces
byte# 221-224
*/
/* SLTSU local assignments end */
short unass[8]; /* unassigned
byte# 225-240
*/
#else
/* cwp local assignments */
float d1; /* sample spacing for non-seismic data
byte# 181-184
*/
float f1; /* first sample location for non-seismic data
byte# 185-188
*/
float d2; /* sample spacing between traces
byte# 189-192
*/
float f2; /* first trace location
byte# 193-196
*/
float ungpow; /* negative of power used for dynamic
range compression
byte# 197-200
*/
float unscale; /* reciprocal of scaling factor to normalize
range
byte# 201-204
*/
int ntr; /* number of traces
byte# 205-208
*/
short mark; /* mark selected traces
byte# 209-210
*/
short shortpad; /* alignment padding
byte# 211-212
*/
short unass[14]; /* unassigned--NOTE: last entry causes
a break in the word alignment, if we REALLY
want to maintain 240 bytes, the following
entry should be an odd number of short/UINT2
OR do the insertion above the "mark" keyword
entry
byte# 213-240
*/
#endif
} segy;
typedef struct { /* bhed - binary header */
int jobid; /* job identification number */
int lino; /* line number (only one line per reel) */
int reno; /* reel number */
short ntrpr; /* number of data traces per record */
short nart; /* number of auxiliary traces per record */
unsigned short hdt; /* sample interval in micro secs for this reel */
unsigned short dto; /* same for original field recording */
unsigned short hns; /* number of samples per trace for this reel */
unsigned short nso; /* same for original field recording */
short format; /* data sample format code:
1 = floating point, 4 byte (32 bits)
2 = fixed point, 4 byte (32 bits)
3 = fixed point, 2 byte (16 bits)
4 = fixed point w/gain code, 4 byte (32 bits)
5 = IEEE floating point, 4 byte (32 bits)
8 = two's complement integer, 1 byte (8 bits)
*/
short fold; /* CDP fold expected per CDP ensemble */
short tsort; /* trace sorting code:
1 = as recorded (no sorting)
2 = CDP ensemble
3 = single fold continuous profile
4 = horizontally stacked */
short vscode; /* vertical sum code:
1 = no sum
2 = two sum ...
N = N sum (N = 32,767) */
short hsfs; /* sweep frequency at start */
short hsfe; /* sweep frequency at end */
short hslen; /* sweep length (ms) */
short hstyp; /* sweep type code:
1 = linear
2 = parabolic
3 = exponential
4 = other */
short schn; /* trace number of sweep channel */
short hstas; /* sweep trace taper length at start if
tapered (the taper starts at zero time
and is effective for this length) */
short hstae; /* sweep trace taper length at end (the ending
taper starts at sweep length minus the taper
length at end) */
short htatyp; /* sweep trace taper type code:
1 = linear
2 = cos-squared
3 = other */
short hcorr; /* correlated data traces code:
1 = no
2 = yes */
short bgrcv; /* binary gain recovered code:
1 = yes
2 = no */
short rcvm; /* amplitude recovery method code:
1 = none
2 = spherical divergence
3 = AGC
4 = other */
short mfeet; /* measurement system code:
1 = meters
2 = feet */
short polyt; /* impulse signal polarity code:
1 = increase in pressure or upward
geophone case movement gives
negative number on tape
2 = increase in pressure or upward
geophone case movement gives
positive number on tape */
short vpol; /* vibratory polarity code:
code seismic signal lags pilot by
1 337.5 to 22.5 degrees
2 22.5 to 67.5 degrees
3 67.5 to 112.5 degrees
4 112.5 to 157.5 degrees
5 157.5 to 202.5 degrees
6 202.5 to 247.5 degrees
7 247.5 to 292.5 degrees
8 293.5 to 337.5 degrees */
short hunass[170]; /* unassigned */
} bhed;
/* DEFINES */
#define gettr(x) fgettr(stdin, (x))
#define vgettr(x) fvgettr(stdin, (x))
#define puttr(x) fputtr(stdout, (x))
#define vputtr(x) fvputtr(stdout, (x))
#define gettra(x, y) fgettra(stdin, (x), (y))
/* TOTHER represents "other" */
#define TOTHER -1
/* TUNK represents time traces of an unknown type */
#define TUNK 0
/* TREAL represents real time traces */
#define TREAL 1
/* TDEAD represents dead time traces */
#define TDEAD 2
/* TDUMMY represents dummy time traces */
#define TDUMMY 3
/* TBREAK represents time break traces */
#define TBREAK 4
/* UPHOLE represents uphole traces */
#define UPHOLE 5
/* SWEEP represents sweep traces */
#define SWEEP 6
/* TIMING represents timing traces */
#define TIMING 7
/* WBREAK represents timing traces */
#define WBREAK 8
/* NFGUNSIG represents near field gun signature */
#define NFGUNSIG 9
/* FFGUNSIG represents far field gun signature */
#define FFGUNSIG 10
/* SPSENSOR represents seismic pressure sensor */
#define SPSENSOR 11
/* TVERT represents multicomponent seismic sensor
- vertical component */
#define TVERT 12
/* TXLIN represents multicomponent seismic sensor
- cross-line component */
#define TXLIN 13
/* TINLIN represents multicomponent seismic sensor
- in-line component */
#define TINLIN 14
/* ROTVERT represents rotated multicomponent seismic sensor
- vertical component */
#define ROTVERT 15
/* TTRANS represents rotated multicomponent seismic sensor
- transverse component */
#define TTRANS 16
/* TRADIAL represents rotated multicomponent seismic sensor
- radial component */
#define TRADIAL 17
/* VRMASS represents vibrator reaction mass */
#define VRMASS 18
/* VBASS represents vibrator baseplate */
#define VBASS 19
/* VEGF represents vibrator estimated ground force */
#define VEGF 20
/* VREF represents vibrator reference */
#define VREF 21
/*** CWP trid assignments ***/
/* ACOR represents autocorrelation */
#define ACOR 109
/* FCMPLX represents fourier transformed - no packing
xr[0],xi[0], ..., xr[N-1],xi[N-1] */
#define FCMPLX 110
/* FUNPACKNYQ represents fourier transformed - unpacked Nyquist
xr[0],xi[0],...,xr[N/2],xi[N/2] */
#define FUNPACKNYQ 111
/* FTPACK represents fourier transformed - packed Nyquist
even N: xr[0],xr[N/2],xr[1],xi[1], ...,
xr[N/2 -1],xi[N/2 -1]
(note the exceptional second entry)
odd N:
xr[0],xr[(N-1)/2],xr[1],xi[1], ...,
xr[(N-1)/2 -1],xi[(N-1)/2 -1],xi[(N-1)/2]
(note the exceptional second & last entries)
*/
#define FTPACK 112
/* TCMPLX represents complex time traces */
#define TCMPLX 113
/* FAMPH represents freq domain data in amplitude/phase form */
#define FAMPH 114
/* TAMPH represents time domain data in amplitude/phase form */
#define TAMPH 115
/* REALPART represents the real part of a trace to Nyquist */
#define REALPART 116
/* IMAGPART represents the real part of a trace to Nyquist */
#define IMAGPART 117
/* AMPLITUDE represents the amplitude of a trace to Nyquist */
#define AMPLITUDE 118
/* PHASE represents the phase of a trace to Nyquist */
#define PHASE 119
/* KT represents wavenumber-time domain data */
#define KT 121
/* KOMEGA represents wavenumber-frequency domain data */
#define KOMEGA 122
/* ENVELOPE represents the envelope of the complex time trace */
#define ENVELOPE 123
/* INSTPHASE represents the phase of the complex time trace */
#define INSTPHASE 124
/* INSTFREQ represents the frequency of the complex time trace */
#define INSTFREQ 125
/* DEPTH represents traces in depth-range (z-x) */
#define TRID_DEPTH 130
/* 3C data... v,h1,h2=(11,12,13)+32 so a bitmask will convert */
/* between conventions */
/* CHARPACK represents byte packed seismic data from supack1 */
#define CHARPACK 201
/* SHORTPACK represents 2 byte packed seismic data from supack2 */
#define SHORTPACK 202
#define ISSEISMIC(id) (( (id)==TUNK || (id)==TREAL || (id)==TDEAD || (id)==TDUMMY || (id)==TBREAK || (id)==UPHOLE || (id)==SWEEP || (id)==TIMING || (id)==WBREAK || (id)==NFGUNSIG || (id)==FFGUNSIG || (id)==SPSENSOR || (id)==TVERT || (id)==TXLIN || (id)==TINLIN || (id)==ROTVERT || (id)==TTRANS || (id)==TRADIAL || (id)==ACOR ) ? cwp_true : cwp_false )
/* FUNCTION PROTOTYPES */
#ifdef __cplusplus /* if C++, specify external linkage to C functions */
extern "C" {
#endif
/* get trace and put trace */
int fgettr(FILE *fp, segy *tp);
int fvgettr(FILE *fp, segy *tp);
void fputtr(FILE *fp, segy *tp);
void fvputtr(FILE *fp, segy *tp);
int fgettra(FILE *fp, segy *tp, int itr);
/* get gather and put gather */
segy **fget_gather(FILE *fp, cwp_String *key,cwp_String *type,Value *n_val,
int *nt,int *ntr, float *dt,int *first);
segy **get_gather(cwp_String *key, cwp_String *type, Value *n_val,
int *nt, int *ntr, float *dt, int *first);
segy **fput_gather(FILE *fp, segy **rec,int *nt, int *ntr);
segy **put_gather(segy **rec,int *nt, int *ntr);
/* hdrpkge */
void gethval(const segy *tp, int index, Value *valp);
void puthval(segy *tp, int index, Value *valp);
void getbhval(const bhed *bhp, int index, Value *valp);
void putbhval(bhed *bhp, int index, Value *valp);
void gethdval(const segy *tp, char *key, Value *valp);
void puthdval(segy *tp, char *key, Value *valp);
char *hdtype(const char *key);
char *getkey(const int index);
int getindex(const char *key);
void swaphval(segy *tp, int index);
void swapbhval(bhed *bhp, int index);
void printheader(const segy *tp);
void tabplot(segy *tp, int itmin, int itmax);
#ifdef __cplusplus /* if C++, end external linkage specification */
}
#endif
#endif