Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <math.h>
#include "par.h"
#include "segy.h"
#define MIN(x,y) ((x) < (y) ? (x) : (y))
#define MAX(x,y) ((x) > (y) ? (x) : (y))
#define NINT(x) ((int)((x)>0.0?(x)+0.5:(x)-0.5))
#ifndef PI
#define PI (3.141592653589793)
#endif
#ifdef _OPENMP
int omp_get_thread_num(void);
#endif
double wallclock_time(void);
void name_ext(char *filename, char *extension);
int compare(const void *a, const void *b)
{ return (*(float *)b-*(float *)a); }
typedef struct { /* complex number */
float r,i;
} complex;
void cr1fft(complex *cdata, float *rdata, int n, int sign);
int optncr(int n);
int getFileInfo(char *filename, int *n1, int *n2, int *ngath, float *d1, float *d2, float *f1, float *f2, float *xmin, float *xmax, float *sclsxgx, int *nxm);
int readDataTD(char *filename, float xmin, float dx, float *xrcv, float *xsrc, int *xnx, float *rdata, int nw, int nw_low, int ngath, int nx, int nxm, int ntfft, float alpha, float scale, int transpose, int verbose);
int readReflData(char *filename, float xmin, float dx, float *xrcv, float *xsrc, int *xnx, complex *cdata, complex *cdata2, int nw, int nw_low, int ngath, int nx, int nxm, int ntfft, float alpha, float scl, float conjg, int transpose, int verbose);
int writeData(FILE *fp, float *data, segy *hdrs, int n1, int n2);
int Marchenko_Iterations(float *inif, float *WinA, float *WinB, float *rdatavp, float *rdatavm, float *rdatagm, float *rdatagp, complex *Reflw, complex *cjReflw, float fftscl, int ntfft, int nw, int nw_low, int nblock, size_t nstationA, size_t nstationB, int niter, int squaremat, int verbose);
/*********************** self documentation **********************/
char *sdoc[] = {
" ",
" Marchenko (f and v) based on CBLAS routines (OpenMP)",
" ",
" invmar file_inif= file_Refl= file_WinA= fileWinB= file_fm= file_fp= file_gm= file_gp= [optional parameters]",
" ",
" Required parameters: ",
" ",
" file_inif= ................... name of file(s) which store the initial focusing function data",
" file_Refl= .................. name of file(s) which store the Refl data",
" file_WinA= ............... name of file which store the Mute window A data",
" ",
" Optional parameters: ",
" ",
" file_WinB= ............... name of file which store the Mute window B data, if empty winB=winA",
" ",
" OUTPUT FILES ",
" file_fp= ................. output downgoing focusing function ",
" file_fm= ................. output upgoing focusing function ",
" file_gp= ................. output downgoing Green's function ",
" file_gm= ................. output upgoing Green's function ",
" ",
" INPUT DEFINITION ",
" ntc=nt ................... number of output time samples",
" ntfft=nt ................. number of samples used in fft",
" fmin=0 ................... minimum frequency",
" fmax=125 ................. maximum frequency to use in deconvolution",
" ",
" scaling=1.0 .............. 1 => pressure norm and 0 => flux norm ",
" cjRefl=1 ................. -1 => apply complex conjugate to specific input",
" sclinif/Win*=1 ........... apply scaling factor to inif/WinA/WinB",
" sclRefl=2.0 / 1.0 ........ Scaling factor R (defaults: 2.0 for pressure / 1.0 for flux norm)",
" tranposeinif/Refl/Win*=0 . 1 => apply transpose to inif/Refl/WinA/WinB",
" ITERATION PARAMETERS ",
" niter=20 ................. Number of iterations",
" ntap=0 ................... number of taper points matrix",
" ftap=0 ................... percentage for tapering",
" square=1 ................. square=0 => no. shots =/= no. receivers ",
" OUTPUT DEFINITION ",
" verbose=0 ................ silent option; >0 displays info",
" ",
" Notes: ",
" ntc output samples of deconvolution result",
" nt (the number of samples read by the IO routine)",
" ",
" author : Johno van IJsseldijk : 2020 (j.e.vanijsseldijk@tudelft.nl)",
" based on MDD scripts by Jan Thorbecke",
" ",
NULL};
/************************** end self doc *************************/
int main (int argc, char **argv)
{
FILE *fpin, *fpout, *fmout, *gpout, *gmout;
int i, j, k, ret, tracf, nshots, ntraces;
int size, n1, n2, ntfft, nf;
int verbose, fullcorr, ncorstat, err;
int nt, nc, ncc, ntc, nshotA, nshotB, nshotC, nshotD;
size_t nstationA, nstationB, nstationC, nstationD, nfreq, istation, jstation, iw, it;
int ntap, nxm, ngath, nw, nw_low, nw_high, distance;
size_t nwrite, cdatainSize, datainSize, cdataoutSize, stationSize, is;
float dx, dt, fmin, fmax, df, ftap;
float scl;
float f1, f2, d1, d2, sclsxgx, xmin, xmax, alpha, wshot, wpi, wrec;
float *xrcvA, *xsrcA, *xrcvB, *xsrcB, *xsrcC, *xrcvC, *xsrcD, *xrcvD;
int *xnx;
float sclinif,sclRefl, cjRefl, sclWinA, sclWinB;
int transposeinif, transposeRefl, transposeWinA, transposeWinB;
float scaling;
int npad;
float *rdatavp, *rdatavm, *rdatagp, *rdatagm;
double t0, t1, t2, t3, tinit, twrite, tread, tdec;
char *file_inif, *file_Refl, *file_WinA, *file_WinB, *file_fp, *file_fm, *file_gp, *file_gm, filename[1024], number[128];
int pe=0, root_pe=0, npes=1, ipe, size_s, one_file;
segy *hdrs_out;
complex *Reflw, *cjReflw;
float *inif, *WinA, *WinB;
float fftscl;
int niter, squaremat;
t0 = wallclock_time();
initargs(argc, argv);
requestdoc(1);
if (!getparfloat("scaling", &scaling)) scaling = 1.;
if (!getparstring("file_inif", &file_inif)) file_inif=NULL;
assert(file_inif != NULL);
if (!getparstring("file_Refl", &file_Refl)) file_Refl=NULL;
assert(file_Refl != NULL);
if (!getparstring("file_WinA", &file_WinA)) file_WinA=NULL;
assert(file_WinA != NULL);
if (!getparstring("file_WinB", &file_WinB)) file_WinB=NULL;
if (!getparstring("file_fp", &file_fp)) file_fp=NULL;
if (!getparstring("file_fm", &file_fm)) file_fm=NULL;
if (!getparstring("file_gp", &file_gp)) file_gp=NULL;
if (!getparstring("file_gm", &file_gm)) file_gm=NULL;
if (!getparint("one_file", &one_file)) one_file = 1;
if (!getparfloat("fmin", &fmin)) fmin = 0.0;
if (!getparint("niter", &niter)) niter = 10;
if (!getparint("square", &squaremat)) squaremat = 1;
if (!getparfloat("sclinif", &sclinif)) sclinif = 1.;
if (!getparint("transposeinif", &transposeinif)) transposeinif = 0;
if (!getparint("transposeRefl", &transposeRefl)) transposeRefl = 0;
if (!getparfloat("cjRefl", &cjRefl)) cjRefl = 1.;
if (!getparint("transposeWinA", &transposeWinA)) transposeWinA = 0;
if (!getparfloat("sclWinA", &sclWinA)) sclWinA = 1.;
if (!getparint("transposeWinB", &transposeWinB)) transposeWinB = 0;
if (!getparfloat("sclWinB", &sclWinB)) sclWinB = 1.;
if (!getparint("npad", &npad)) npad = 0;
if (!getparint("verbose", &verbose)) verbose = 0;
#ifdef _OPENMP
npes = atoi(getenv("OMP_NUM_THREADS"));
assert(npes != 0);
if (verbose) fprintf(stderr,"Number of OpenMP thread's is %d\n", npes);
#else
npes=1;
#endif
/* get information from input files */
nshotA = 0;
getFileInfo(file_inif, &n1, &n2, &nshotA, &d1, &d2, &f1, &f2, &xmin, &xmax, &sclsxgx, &nxm);
if (!getparint("nt", &nt)) nt=n1;
if (!getparint("ntc", &ntc)) ntc = n1;
if (!getparfloat("dt", &dt)) dt = d1;
if (!getparfloat("dx", &dx)) dx = d2;
if (!getparfloat("fmax", &fmax)) fmax = 125;
nstationA = n2;
nshotB = 0;
getFileInfo(file_Refl, &n1, &n2, &nshotB, &d1, &d2, &f1, &f2, &xmin, &xmax, &sclsxgx, &nxm);
assert( n1 == nt);
nstationB = n2;
if (squaremat) assert( nshotA == nshotB);
nshotC = 0;
getFileInfo(file_WinA, &n1, &n2, &nshotC, &d1, &d2, &f1, &f2, &xmin, &xmax, &sclsxgx, &nxm);
assert( n1 == nt);
nstationC = n2;
if (squaremat) assert( nshotA == nshotC);
if (file_WinB != NULL) {
nshotD = 0;
getFileInfo(file_WinB, &n1, &n2, &nshotD, &d1, &d2, &f1, &f2, &xmin, &xmax, &sclsxgx, &nxm);
assert( n1 == nt);
nstationD = n2;
if (squaremat) assert( nshotA == nshotD);
}
if (!getparint("ntap", &ntap)) ntap = 0;
if (!getparfloat("ftap", &ftap)) ftap = 0.;
if (ntap != 0) ftap = (float)ntap / (float)nstationA;
else if (ftap != 0) ntap = NINT(ftap*nstationA);
/*================ initializations ================*/
tinit = 0.0;
tread = 0.0;
tdec = 0.0;
if (!getparint("ntfft", &ntfft)) ntfft = nt;
ntfft = optncr(ntfft);
nf = ntfft/2+1;
df = 1.0/(ntfft*dt);
nw_high = MIN( (int)((fmax)/df), nf );
nw_low = MAX( (int)(fmin/df), 1 );
nw = nw_high - nw_low + 1;
nfreq = MIN(nf,nw);
if (scaling==1.) fftscl=dt*dx/((float)ntfft); //Pressure Normalized
else if (scaling==0.) fftscl=1/((float)ntfft); //Flux Normalized
if (!getparfloat("sclRefl", &sclRefl)) sclRefl = ((scaling==1.) ? 2. : 1.);
/* allocate in shared memory the in- and output data */
cdatainSize = nt*sizeof(float);
cdataoutSize = 0;
if (file_fp != NULL) cdataoutSize += nstationA*nshotA*ntfft*sizeof(float);
if (file_fm != NULL) cdataoutSize += nstationA*nshotA*ntfft*sizeof(float);
if (file_gp != NULL) cdataoutSize += nstationA*nshotA*ntfft*sizeof(float);
if (file_gm != NULL) cdataoutSize += nstationA*nshotA*ntfft*sizeof(float);
rdatavp = (float *)malloc(nstationA*nshotA*ntfft*sizeof(float));
rdatavm = (float *)malloc(nstationA*nshotA*ntfft*sizeof(float));
rdatagp = (float *)malloc(nstationA*nshotA*ntfft*sizeof(float));
rdatagm = (float *)malloc(nstationA*nshotA*ntfft*sizeof(float));
Reflw = (complex *)malloc(nstationB*nfreq*nshotB*sizeof(complex));
cjReflw = (complex *)malloc(nstationB*nfreq*nshotB*sizeof(complex));
inif = (float *)malloc(nstationA*ntfft*nshotA*sizeof(float));
WinA = (float *)malloc(nstationC*ntfft*nshotC*sizeof(float));
WinB = (float *)malloc(nstationC*ntfft*nshotC*sizeof(float));
// taper = (float *)malloc(nstationA*2*sizeof(float));
assert(rdatavp != NULL);
assert(rdatavm != NULL);
assert(rdatagp != NULL);
assert(rdatagm != NULL);
assert(inif != NULL);
assert(Reflw != NULL);
assert(cjReflw != NULL);
assert(WinA != NULL);
assert(WinB != NULL);
/* for first touch binding of allocated memory */
#pragma omp parallel for schedule(static) private(jstation) default(shared)
for (jstation=0; jstation<nstationB; jstation++) {
memset(&Reflw[jstation*nfreq*nshotB],0,nfreq*nshotB*sizeof(complex));
memset(&cjReflw[jstation*nfreq*nshotB],0,nfreq*nshotB*sizeof(complex));
}
#pragma omp parallel for schedule(static) private(jstation) default(shared)
for (jstation=0; jstation<nstationA; jstation++) {
memset(&inif[jstation*ntfft*nshotA],0,ntfft*nshotA*sizeof(float));
memset(&rdatavp[jstation*ntfft*nshotA],0,ntfft*nshotA*sizeof(float));
memset(&rdatavm[jstation*ntfft*nshotA],0,ntfft*nshotA*sizeof(float));
memset(&rdatagp[jstation*ntfft*nshotA],0,ntfft*nshotA*sizeof(float));
memset(&rdatagm[jstation*ntfft*nshotA],0,ntfft*nshotA*sizeof(float));
memset(&WinA[jstation*ntfft*nshotC],0,ntfft*nshotC*sizeof(float));
memset(&WinB[jstation*ntfft*nshotC],0,ntfft*nshotC*sizeof(float));
}
if (verbose) {
fprintf(stderr,"--- Input Information ---\n");
fprintf(stderr," dt nt ............ : %f : %d\n", dt, nt);
fprintf(stderr," dx ............... : %f\n", dx);
fprintf(stderr," nshotA ........... : %d\n", nshotA );
fprintf(stderr," nstationA ........ : %ld\n", nstationA );
fprintf(stderr," nshotB ........... : %d\n", nshotB );
fprintf(stderr," nstationB ........ : %ld\n", nstationB );
fprintf(stderr," nshotC ........... : %d\n", nshotC );
fprintf(stderr," nstationC ........ : %ld\n", nstationC );
if (file_WinB != 0) {
fprintf(stderr," nshotD ........... : %d\n", nshotD );
fprintf(stderr," nstationD ........ : %ld\n", nstationD );
}
fprintf(stderr," Scaling .......... : %e\n", fftscl);
fprintf(stderr," Refl Scaling...... : %.1f\n", sclRefl);
fprintf(stderr," number t-fft ..... : %d\n", ntfft);
fprintf(stderr," Input size ...... : %ld MB\n", ((file_WinB != NULL) ? (nstationA*nshotA+nstationB*nshotB+nstationC*nshotC+nstationD*nshotD)*cdatainSize/((size_t)1024*1024) : (nstationA*nshotA+nstationB*nshotB+nstationC*nshotC)*cdatainSize/((size_t)1024*1024)));
fprintf(stderr," Output size ...... : %ld MB\n", (cdataoutSize/((size_t)1024*1024)));
if (ntap != 0) fprintf(stderr," taper points ..... : %d (%.0f %%)\n", ntap, ftap*100.0);
fprintf(stderr," process number ... : %d\n", pe);
fprintf(stderr," fmin ............. : %.3f (%d)\n", fmin, nw_low);
fprintf(stderr," fmax ............. : %.3f (%d)\n", fmax, nw_high);
fprintf(stderr," nfreq ........... : %ld\n", nfreq);
fprintf(stderr," niter ............ : %d\n", niter);
fprintf(stderr," square ........... : %d\n", squaremat);
}
t1 = wallclock_time();
tinit += t1-t0;
/* read in first nt samples, and store in data */
xsrcA = (float *)calloc(nshotA,sizeof(float));
xrcvA = (float *)calloc(nshotA*nstationA,sizeof(float));
xnx = (int *)calloc(nshotA,sizeof(int));
alpha = 0.0;
readDataTD(file_inif, xmin, dx, xrcvA, xsrcA, xnx, inif, nw, nw_low, nshotA, nstationA, nstationA, ntfft, alpha, sclinif, transposeinif, verbose);
if (verbose >= 2) fprintf(stderr," inif data read!!! \n");
xsrcB = (float *)calloc(nshotB,sizeof(float));
xrcvB = (float *)calloc(nshotB*nstationB,sizeof(float));
xnx = (int *)calloc(nshotB,sizeof(int));
alpha = 0.0;
readReflData(file_Refl, xmin, dx, xrcvB, xsrcB, xnx, Reflw, cjReflw, nw, nw_low, nshotB, nstationB, nstationB, ntfft, alpha, sclRefl, cjRefl, transposeRefl, verbose);
if (verbose >= 2) fprintf(stderr," Refl data read!!! \n");
xsrcC = (float *)calloc(nshotC,sizeof(float));
xrcvC = (float *)calloc(nshotC*nstationC,sizeof(float));
xnx = (int *)calloc(nshotC,sizeof(int));
alpha = 0.0;
readDataTD(file_WinA, xmin, dx, xrcvC, xsrcC, xnx, WinA, nw, nw_low, nshotC, nstationC, nstationC, ntfft, alpha, sclWinA, transposeWinA, verbose);
if (verbose >= 2) fprintf(stderr," WinA data read!!! \n");
if (file_WinB != NULL) {
xsrcD = (float *)calloc(nshotD,sizeof(float));
xrcvD = (float *)calloc(nshotD*nstationD,sizeof(float));
xnx = (int *)calloc(nshotD,sizeof(int));
alpha = 0.0;
readDataTD(file_WinB, xmin, dx, xrcvD, xsrcD, xnx, WinB, nw, nw_low, nshotD, nstationD, nstationD, ntfft, alpha, sclWinB, transposeWinB, verbose);
if (verbose >= 2) fprintf(stderr," WinB data read!!! \n");
}
else {
#pragma omp parallel for schedule(static) private(jstation) default(shared)
for (jstation=0; jstation<nshotC; jstation++) {
memcpy(&WinB[jstation*ntfft*nstationC], &WinA[jstation*ntfft*nstationC], sizeof(float)*nstationC*ntfft);
}
}
#pragma omp parallel for schedule(static) private(jstation) default(shared)
for (jstation=0; jstation<nshotA; jstation++) {
memcpy(&rdatavp[jstation*ntfft*nstationA], &inif[jstation*ntfft*nstationA], sizeof(float)*nstationA*ntfft);
}
t2 = wallclock_time();
tread += t2-t1;
/* Use CGEMM or CGEMV to iterate multidimensional marchenko equation */
Marchenko_Iterations(inif, WinA, WinB, rdatavp, rdatavm, rdatagm, rdatagp, Reflw, cjReflw, fftscl, ntfft, nfreq, nw_low, nshotB, nstationA, nstationB, niter, squaremat, verbose);
fflush(stderr);
fflush(stdout);
t3 = wallclock_time();
tdec += t3-t2;
if (verbose>=1) {
fprintf(stderr,"************* PE %d ************* \n", pe);
fprintf(stderr,"CPU-time read data = %.3f\n", tread);
fprintf(stderr,"CPU-time Marchenko scheme = %.3f\n", tdec);
}
free(inif);
free(WinA);
free(WinB);
free(Reflw);
free(cjReflw);
pe = 0;
hdrs_out = (segy *)calloc(nstationA,sizeof(segy));
assert(hdrs_out != NULL);
twrite = 0.0;
if (one_file && pe==0) {
if (file_fp != NULL) {
strcpy(filename, file_fp);
if (verbose>=2) fprintf(stderr,"writing downgoing focusing function into file %s\n", filename);
fpout = fopen( filename, "w+" );
assert(fpout != NULL);
}
if (file_fm != NULL) {
strcpy(filename, file_fm);
if (verbose>=2) fprintf(stderr,"writing upgoing focusing function into file %s\n", filename);
fmout = fopen( filename, "w+" );
assert(fmout != NULL);
}
if (file_gp != NULL) {
strcpy(filename, file_gp);
if (verbose>=2) fprintf(stderr,"writing downgoing Green's function into file %s\n", filename);
gpout = fopen( filename, "w+" );
assert(gpout != NULL);
}
if (file_gm != NULL) {
strcpy(filename, file_gm);
if (verbose>=2) fprintf(stderr,"writing upgoing Green's function into file %s\n", filename);
gmout = fopen( filename, "w+" );
assert(gmout != NULL);
}
}
for (i = 0; i < nstationA; i++) {
hdrs_out[i].ns = ntfft;
hdrs_out[i].trid = 1;
hdrs_out[i].dt = dt*1000000;
hdrs_out[i].f1 = -0.5*ntfft*dt;
hdrs_out[i].f2 = f2;
hdrs_out[i].d1 = d1;
hdrs_out[i].d2 = d2;
hdrs_out[i].trwf = nstationA*nshotA;
hdrs_out[i].scalco = -1000;
hdrs_out[i].gx = NINT(1000*(f2+i*d2));
hdrs_out[i].scalel = -1000;
hdrs_out[i].tracl = i+1;
}
tracf = 1;
for (jstation=0; jstation<nshotA; jstation++) {
t1 = wallclock_time();
for (i = 0; i < nstationA; i++) {
hdrs_out[i].fldr = jstation+1;
hdrs_out[i].sx = NINT((f2+dx*jstation)*1000);;
hdrs_out[i].offset = hdrs_out[i].sx - hdrs_out[i].gx;
hdrs_out[i].tracf = tracf++;
}
if (file_fp != NULL) {
ret = writeData(fpout, (float *)&rdatavp[jstation*nstationA*ntfft], hdrs_out, ntfft, nstationA);
if (ret < 0 ) verr("error on writing output file.");
}
if (file_fm != NULL) {
ret = writeData(fmout, (float *)&rdatavm[jstation*nstationA*ntfft], hdrs_out, ntfft, nstationA);
if (ret < 0 ) verr("error on writing output file.");
}
if (file_gp != NULL) {
ret = writeData(gpout, (float *)&rdatagp[jstation*nstationA*ntfft], hdrs_out, ntfft, nstationA);
if (ret < 0 ) verr("error on writing output file.");
}
if (file_gm != NULL) {
ret = writeData(gmout, (float *)&rdatagm[jstation*nstationA*ntfft], hdrs_out, ntfft, nstationA);
if (ret < 0 ) verr("error on writing output file.");
}
t2 = wallclock_time();
twrite += t2-t1;
}
//****************************************************************************************************************************************************************************************************************************************************************************************************************//
if (one_file) {
if (file_fp != NULL) {fclose(fpout);}
if (file_fm != NULL) {fclose(fmout);}
if (file_gp != NULL) {fclose(gpout);}
if (file_gm != NULL) {fclose(gmout);}
}
free(rdatavp);
free(rdatavm);
free(rdatagp);
free(rdatagm);
free(hdrs_out);
/*================ end ================*/
if (verbose) {
t3 = wallclock_time();
fprintf(stderr,"CPU-time write data = %.3f\n", twrite);
fprintf(stderr,"CPU-time initialization = %.3f\n", tinit);
fprintf(stderr,"Total CPU-time = %.3f\n", t3-t0);
}
exit(0);
}