-
Jan Thorbecke authoredJan Thorbecke authored
freqwave.c 15.28 KiB
#include <genfft.h>
#include <stdlib.h>
#include <string.h>
#include "par.h"
#define NINT(x) ((int)((x)>0.0?(x)+0.5:(x)-0.5))
#ifndef COMPLEX
typedef struct _complexStruct { /* complex number */
float r,i;
} complex;
#endif/* complex */
/**
* compute wavelets in frequency domain, used in makewave
*
* AUTHOR:
* Jan Thorbecke (janth@xs4all.nl)
* The Netherlands
**/
void verr(char *fmt, ...);
void vwarn(char *fmt, ...);
void vmess(char *fmt, ...);
float gauss2time(float t, float f);
float gauss1time(float t, float f);
float gauss0time(float t, float f);
float gauss2freq(float f, float freq);
float gauss1freq(float f, float freq);
float gauss0freq(float f, float freq);
void hilbertTrans(float *data, int nsam);
void freqwave(float *wave, int nt, float dt, float fp, float fmin, float flef, float frig, float fmax, float t0, float db, int shift, int cm, int cn, char *w, float scale, int scfft, int inverse, float eps, float alpha, int verbose)
{
int it, iof, nfreq, nf, i, j, sign, optn, stored;
int ifmin1, ifmin2, ifmax1, ifmax2;
float df, fact, alfa, f, max, freq, att, ampl, phase;
float tt, dum;
float *rwave, *amplitude;
complex *cwave, tmp, *mpwave;
optn = optncr(nt);
nfreq = 1+(optn/2);
df = 1.0/(dt*optn);
iof = MAX(NINT(fmax/df), NINT(fp/df));
att = pow(10.0, db/20.0);
if (iof > nfreq) verr("characterizing frequency aliased");
cwave = (complex *)malloc(nfreq*sizeof(complex));
rwave = (float *)malloc((optn+2)*sizeof(float));
stored = 0;
if (strstr(w, "g0") != NULL) {
i = NINT(fmax/df);
for (iof = i; iof > 0; iof--) {
f = iof*df;
if((gauss0freq(fmax, f) < att)&&(stored != 1)) {
freq = f;
stored = 1;
}
}
if (stored == 0) verr("No valid wavelet found.");
stored = 0;
if (shift == 1) {
for (i = 0; i < optn; i++) {
if ((fabs(gauss0time((float)i*dt,freq))<1e-3)&&(stored != 1)) {
t0 = (float)i*dt;
stored = 1;
}
}
}
for (iof = 0; iof < nfreq; iof++) {
f = iof*df;
fact = f*f/(freq*freq);
fact = exp(-fact);
cwave[iof].r = fact*cos(2.0*M_PI*f*t0);
cwave[iof].i = -fact*sin(2.0*M_PI*f*t0);
}
if (verbose >= 1) {
vmess("Gaussian wavelet");
vmess("----------------");
vmess("Number of time samples .. = %d", nt);
vmess("time step ............... = %f (s)", dt);
vmess("maximum frequency at ... = %f (Hz)",fmax);
vmess("with attenutation ....... = %f", att);
vmess("time shift .............. = %f (s)", t0);
}
}
else if (strstr(w, "g1") != NULL) {
if (fp < 0.0) {
i = NINT(fmax/df);
for (iof = i; iof > 0; iof--) {
f = iof*df;
if((gauss1freq(fmax, f) < att)&&(stored != 1)) {
freq = f;
stored = 1;
}
}
if (stored == 0) verr("No valid wavelet found.");
}
else freq = fp;
alfa = sqrt(2.0)*freq;
stored = 0;
if (shift == 1) {
for (i = 1; i < optn; i++) {
tt=(float)i*dt;
dum = fabs(gauss1time(tt,freq))+fabs(gauss1time((tt+dt),freq));
if ((dum<1e-4)&&(stored != 1)) {
t0 = (float)i*dt;
stored = 1;
}
}
}
for (iof = 0; iof < nfreq; iof++) {
f = iof*df;
fact = f*f/(alfa*alfa);
fact = f*exp(-fact)/alfa;
cwave[iof].r = fact*sin(2.0*M_PI*f*t0);
cwave[iof].i = fact*cos(2.0*M_PI*f*t0);
}
if (verbose >= 1) {
vmess("Derivative of Gaussian wavelet");
vmess("------------------------------");
vmess("Number of time samples .. = %d",nt);
vmess("time step ............... = %f (s)",dt);
if (fp < 0) {
vmess("maximum frequency at ... = %f (Hz)",fmax);
vmess("with attenutation ....... = %f", att);
}
vmess("frequency peak at ....... = %f Hz", freq);
vmess("time shift .............. = %f (s)", t0);
}
}
else if (strstr(w, "cs") != NULL) {
freq = acos((float)(cm-cn)/(float)(cm+cn))/(2.0*M_PI*dt);
fact = 1.0/(cos(freq*2.0*M_PI*dt)+sin(freq*2.0*M_PI*dt));
if (shift == 1) t0 = (cn+cm)*dt;
for (iof = 0; iof < nfreq; iof++) {
f = 2.0*M_PI*iof/(float)nt;
ampl = pow((1.0-cos(f)), cn/2.0)*pow((1.0+cos(f)), cm/2.0);
phase = atan((fact*sin(f))/(1.0+fact*cos(f)));
cwave[iof].r = ampl*cos(phase-f*nt*t0);
cwave[iof].i = ampl*sin(phase-f*nt*t0);
}
if (verbose >= 1) {
vmess("Neidell Type of wavelet");
vmess("-----------------------");
vmess("Number of time samples .. = %d", nt);
vmess("time step ............... = %f (s)", dt);
vmess("frequency peak at ....... = %f Hz", freq);
vmess("time shift .............. = %f (s)", t0);
}
}
else if (strstr(w, "fw") != NULL) {
ifmin1 = (int) (fmin/df);
ifmin2 = (int) (flef/df);
ifmax2 = (int) (frig/df);
ifmax1 = (int) (fmax/df);
for (j = 0; j < ifmin1; j++) {
cwave[j].r = 0.0;
cwave[j].i = 0.0;
}
for (j = ifmin1; j < ifmin2; j++) {
cwave[j].r = (cos(M_PI*(j-ifmin2)/(ifmin1-ifmin2))+1.0)/2.0;
cwave[j].i = 0.0;
}
for (j = ifmin2; j < ifmax2; j++) {
cwave[j].r = 1.0;
cwave[j].i = 0.0;
}
for (j = ifmax2; j < ifmax1; j++) {
cwave[j].r =(cos(M_PI*(j-ifmax2)/(ifmax1-ifmax2))+1.0)/2.0;
cwave[j].i = 0.0;
}
for (j = ifmax1; j < nfreq; j++) {
cwave[j].r = 0.0;
cwave[j].i = 0.0;
}
if (shift == 1) {
sign = 1;
cr1fft(cwave, rwave, optn, sign);
max = rwave[0]*rwave[0];
for (i = 1; i < optn; i++) {
if (rwave[i] < 0.0) { it=i; break;}
}
it = it;
dum = 0.0;
for (j = 0; j < it; j++)
dum += fabs(rwave[j]);
max = dum;
for (i = 1; i < optn/2; i++) {
dum = dum - fabs(rwave[i-1]) + fabs(rwave[i+it-1]);
if ((dum)>(0.03*max*att/it)) {
t0 = (float)i*dt;
}
}
}
for (iof = 0; iof < nfreq; iof++) {
f = iof*df;
tmp.r = cwave[iof].r*cos(2.0*M_PI*f*t0);
tmp.i = -cwave[iof].r*sin(2.0*M_PI*f*t0);
cwave[iof].r = tmp.r;
cwave[iof].i = tmp.i;
/* older version has multiplication with dt changed in april 2014
cwave[iof].r = dt*tmp.r;
cwave[iof].i = dt*tmp.i; */
}
if (verbose >= 1) {
vmess("Flat spectrum wavelet");
vmess("---------------------");
vmess("Number of time samples .. = %d", nt);
vmess("time step ............... = %f (s)", dt);
vmess("maximum frequency ....... = %f Hz", fmax);
vmess("left cut-off frequency .. = %f Hz", flef);
vmess("right cut-off frequency . = %f Hz", frig);
vmess("minimum frequency ....... = %f Hz", fmin);
vmess("time shift .............. = %f (s)", t0);
}
}
else if (strstr(w, "mon") != NULL) {
for (j = 0; j < nfreq; j++) {
cwave[j].r = 0.0;
cwave[j].i = 0.0;
}
i = NINT(fp/df);
cwave[i].r = 0.5*cos(2.0*M_PI*i*df*t0);
cwave[i].i = -0.5*sin(2.0*M_PI*i*df*t0);
if (verbose >= 1) {
vmess("Monochromatic wavelet");
vmess("---------------------");
vmess("Number of time samples .. = %d", nt);
vmess("time step ............... = %e (s)", dt);
vmess("frequency ............... = %f Hz", i*df);
vmess("time shift .............. = %e (s)", t0);
}
}
else if (strstr(w, "sqrtg2") != NULL) {
if (fp < 0.0) {
i = NINT(fmax/(2.0*df));
for (iof = i; iof > 0; iof--) {
f = iof*df;
if((gauss2freq(fmax, f) < att)&&(stored != 1)) {
freq = f;
stored = 1;
}
}
if (stored == 0) verr("No valid wavelet found.");
}
else freq = fp;
stored = 0;
if (shift == 1) {
for (i = 0; i < optn; i++) {
tt=(float)i*dt;
dum = fabs(gauss2time(tt,freq))+fabs(gauss2time((tt+dt),freq));
if ((dum<1e-3)&&(stored != 1)) {
t0 = (float)i*dt;
stored = 1;
}
}
}
for (iof = 0; iof < nfreq; iof++) {
f = iof*df;
fact = f/(freq);
fact *= exp(-0.5*fact*fact);
cwave[iof].r = fact*cos(2.0*M_PI*f*t0);
cwave[iof].i = -fact*sin(2.0*M_PI*f*t0);
}
if (verbose >= 1) {
vmess("Sqrt of Second derivative of Gaussian wavelet");
vmess("-------------------------------------");
vmess("Number of time samples .. = %d", nt);
vmess("time step ............... = %f (s)", dt);
if (fp < 0) {
vmess("maximum frequency at ... = %f (Hz)",fmax);
vmess("with attenutation ....... = %f", att);
}
vmess("frequency peak at ....... = %f Hz", freq);
vmess("time shift .............. = %f (s)", t0);
}
}
else {
if (fp < 0.0) {
i = NINT(fmax/(2.0*df));
for (iof = i; iof > 0; iof--) {
f = iof*df;
if((gauss2freq(fmax, f) < att)&&(stored != 1)) {
freq = f;
stored = 1;
}
}
if (stored == 0) verr("No valid wavelet found.");
}
else freq = fp;
stored = 0;
if (shift == 1) {
for (i = 0; i < optn; i++) {
tt=(float)i*dt;
dum = fabs(gauss2time(tt,freq))+fabs(gauss2time((tt+dt),freq));
if ((dum<1e-3)&&(stored != 1)) {
t0 = (float)i*dt;
stored = 1;
}
}
}
for (iof = 0; iof < nfreq; iof++) {
f = iof*df;
fact = f*f/(freq*freq);
fact *= exp(-fact);
cwave[iof].r = fact*cos(2.0*M_PI*f*t0);
cwave[iof].i = -fact*sin(2.0*M_PI*f*t0);
}
if (verbose >= 1) {
vmess("Second derivative of Gaussian wavelet");
vmess("-------------------------------------");
vmess("Number of time samples .. = %d", nt);
vmess("time step ............... = %f (s)", dt);
if (fp < 0) {
vmess("maximum frequency at ... = %f (Hz)",fmax);
vmess("with attenutation ....... = %f", att);
}
vmess("frequency peak at ....... = %f Hz", freq);
vmess("time shift .............. = %f (s)", t0);
}
}
if (inverse==1) {
vmess("inverse with eps ....... = %f (s)", eps);
for (iof = 1; iof < nfreq; iof++) {
fact = cwave[iof].r*cwave[iof].r + cwave[iof].i*cwave[iof].i;
cwave[iof].r = cwave[iof].r/(fact+eps);
cwave[iof].i = -cwave[iof].i/(fact+eps);
}
cwave[0].r = 0.0;
cwave[0].i = 0.0;
}
/* minimum phase calculation */
if (inverse==2) {
vmess("minimum phase calculation ");
nf = (2*(nfreq-1));
mpwave = (complex *)calloc(nf,sizeof(complex));
fprintf(stderr,"nf=%d\n", nf);
amplitude = (float *)calloc(2*nf,sizeof(float));
for (iof = 0; iof < nfreq; iof++) {
fact = sqrt(cwave[iof].r*cwave[iof].r + cwave[iof].i*cwave[iof].i);
if (fact > 0.0) amplitude[iof] = log(fact);
else amplitude[iof] = 0.0;
amplitude[nf+iof] = fact;
}
hilbertTrans(amplitude, nf);
for (iof = 0; iof < nfreq; iof++) {
fact = amplitude[nf+iof];
fprintf(stderr,"amplitude[%d] = %f phase = %f\n", iof, fact, amplitude[iof]);
if (fact != 0.0) {
mpwave[iof].r = (float) fact*cos(amplitude[iof]);
mpwave[iof].i = (float) -fact*sin(amplitude[iof]);
}
else {
mpwave[iof].r=0.0;
mpwave[iof].i=0.0;
}
}
for (iof = nf-1; iof > nfreq; iof--) {
mpwave[iof].r=mpwave[nf-iof].r;
mpwave[iof].i=-1.0*mpwave[nf-iof].i;
}
cc1fft(mpwave, nf, 1);
for (i = 0; i < nt; i++) rwave[i] = mpwave[i].r;
free(amplitude);
free(mpwave);
}
else {
sign = 1;
cr1fft(cwave, rwave, optn, sign);
}
max = rwave[0];
for (i = 0; i < nt; i++) if (rwave[i] > max) max = rwave[i];
max = scale/max;
if (scale == 0) {
if (scfft == 0) max = 1.0/(float)nt;
else max = df;
}
//fprintf(stderr,"scaling factor back FFT=%e\n", max);
for (i = 0; i < nt; i++) {
wave[i]= rwave[i]*max*exp(alpha*i*dt);
}
free(cwave);
free(rwave);
return;
}
float gauss2time(float t, float f)
{
float value;
value = ((1.0-2.0*M_PI*M_PI*f*f*t*t)*exp(-M_PI*M_PI*f*f*t*t));
return value;
}
float gauss1time(float t, float f)
{
float value;
value = (-t*exp(-M_PI*M_PI*f*f*t*t))*(sqrt(2.0)*f*M_PI*exp(0.5));
return value;
}
float gauss0time(float t, float f)
{
float value;
value = exp(-M_PI*M_PI*f*f*t*t);
return value;
}
float gauss2freq(float f, float freq)
{
float value;
value = f*f/(freq*freq);
value *= exp(1.0)*exp(-value);
return value;
}
float gauss1freq(float f, float freq)
{
float value;
value = f*f/(2.0*freq*freq);
value = sqrt(2.0*exp(1))*f*exp(-value)/(sqrt(2.0)*freq);
return value;
}
float gauss0freq(float f, float freq)
{
float value;
value = f*f/(freq*freq);
value = exp(-value);
return value;
}
void hilbertTrans(float *data, int nsam)
{
int optn, j, sign, nfreq;
float scale;
complex *cdata;
optn = optncr(nsam);
nfreq = optn/2+1;
fprintf(stderr,"Hilbert optn=%d nsam=%d nfreq=%d\n", optn, nsam, nfreq);
cdata = (complex *)malloc(optn*sizeof(complex));
if (cdata == NULL) verr("memory allocation error for cdata");
for(j = 0; j < nsam; j++){
cdata[j].r = data[j];
cdata[j].i = 0.0;
}
for(j = nsam; j < optn; j++){
cdata[j].r = 0.0;
cdata[j].i = 0.0;
}
sign = -1;
cc1fft(&cdata[0], optn, sign);
for(j = nfreq; j < optn; j++){
cdata[j].r = 0.0;
cdata[j].i = 0.0;
}
sign = 1;
cc1fft(&cdata[0], optn, sign);
scale= 1.0/(float)optn;
for (j = 0 ; j < nsam ; j++) data[j] = cdata[j].i*scale;
free(cdata);
return;
}