-
Joeri Brackenhoff authoredJoeri Brackenhoff authored
raytime.c 8.39 KiB
#include<stdlib.h>
#include<stdio.h>
#include<math.h>
#include<assert.h>
#include<string.h>
#include"par.h"
#include"raytime.h"
#include "segy.h"
#define MAX(x,y) ((x) > (y) ? (x) : (y))
#define MIN(x,y) ((x) < (y) ? (x) : (y))
#define NINT(x) ((int)((x)>0.0?(x)+0.5:(x)-0.5))
typedef struct _icoord { /* 3D coordinate integer */
int z;
int x;
int y;
} icoord;
typedef struct _fcoord { /* 3D coordinate float */
float z;
float x;
float y;
} fcoord;
double wallclock_time(void);
void name_ext(char *filename, char *extension);
void threadAffinity(void);
int getParameters(modPar *mod, recPar *rec, srcPar *src, shotPar *shot, rayPar *ray, int verbose);
int getWaveParameter(float *slowness, icoord size, float dgrid, fcoord s, fcoord r, rayPar ray, fcoord *T, float *Jr);
void applyMovingAverageFilter(float *slowness, icoord size, int window, int dim, float *averageModel);
int readModel(modPar mod, float *velocity, float *slowness, int nw);
int defineSource(wavPar wav, srcPar src, modPar mod, float **src_nwav, int reverse, int verbose);
int writeSrcRecPos(modPar *mod, recPar *rec, srcPar *src, shotPar *shot);
int raytime(float *time, float *ampl, int *xnx, float *xrcv, float *xsrc, float *zsrc, float xloc, float zloc)
{
modPar mod;
recPar rec;
srcPar src;
shotPar shot;
rayPar ray;
float *velocity, *slowness, *smooth;
double t0, t1, t2, tinit, tray, tio;
size_t size;
int nw, n1, ix, iz, ir, ixshot, izshot;
int irec;
fcoord coordsx, coordgx, Time;
icoord grid;
float Jr;
segy hdr;
char filetime[1024], fileamp[1024];
size_t nwrite;
int verbose;
FILE *fpt, *fpa;
t0= wallclock_time();
//initargs(argc,argv);
requestdoc(0);
if (!getparint("verbose",&verbose)) verbose=0;
getParameters(&mod, &rec, &src, &shot, &ray, verbose);
if (xloc!=-123456.0 && zloc!=-123456.0) {
if (verbose > 3) vmess("Setting source ray to x = %.3f, z = %.3f",xloc,zloc);
shot.nx = 1;
shot.nz = 1;
shot.n = 1;
shot.x[0] = NINT((xloc-mod.x0)/mod.dx);
shot.z[0] = NINT((zloc-mod.z0)/mod.dz);
}
/* allocate arrays for model parameters: the different schemes use different arrays */
n1 = mod.nz;
nw = ray.smoothwindow;
velocity = (float *)calloc(mod.nx*mod.nz,sizeof(float));
slowness = (float *)calloc((mod.nx+2*nw)*(mod.nz+2*nw),sizeof(float));
// slowness = (float *)calloc(mod.nx*mod.nz,sizeof(float));
/* read velocity and density files */
readModel(mod, velocity, slowness, nw);
/* allocate arrays for wavefield and receiver arrays */
size = shot.n*rec.n;
//time = (float *)calloc(size,sizeof(float));
//ampl = (float *)calloc(size,sizeof(float));
/* Sinking source and receiver arrays:
If P-velocity==0 the source and receiver
postions are placed deeper until the P-velocity changes.
Setting the option rec.sinkvel only sinks the receiver position
(not the source) and uses the velocity
of the first receiver to sink through to the next layer. */
/* sink receivers to value different than sinkvel */
for (ir=0; ir<rec.n; ir++) {
iz = rec.z[ir];
ix = rec.x[ir];
while(velocity[(ix)*n1+iz] == rec.sinkvel) iz++;
rec.z[ir]=iz+rec.sinkdepth;
rec.zr[ir]=rec.zr[ir]+(rec.z[ir]-iz)*mod.dz;
// rec.zr[ir]=rec.z[ir]*mod.dz;
if (verbose>3) vmess("receiver position %d at grid[ix=%d, iz=%d] = (x=%f z=%f)", ir, ix, rec.z[ir], rec.xr[ir]+mod.x0, rec.zr[ir]+mod.z0);
}
/*
*/
/* sink sources to value different than zero */
for (izshot=0; izshot<shot.nz; izshot++) {
for (ixshot=0; ixshot<shot.nx; ixshot++) {
iz = shot.z[izshot];
ix = shot.x[ixshot];
while(velocity[(ix)*n1+iz] == 0.0) iz++;
shot.z[izshot]=iz+src.sinkdepth;
}
}
if (verbose>3) writeSrcRecPos(&mod, &rec, &src, &shot);
/* smooth slowness grid */
grid.x = mod.nx;
grid.z = mod.nz;
grid.y = 1;
if ( (ray.smoothwindow) != 0 ) { /* smooth slowness */
smooth = (float *)calloc(grid.x*grid.z,sizeof(float));
applyMovingAverageFilter(slowness, grid, ray.smoothwindow, 2, smooth);
memcpy(slowness,smooth,grid.x*grid.z*sizeof(float));
free(smooth);
}
/* prepare output file and headers */
/*strcpy(filetime, rec.file_rcv);
name_ext(filetime, "_time");
fpt = fopen(filetime, "w");
assert(fpt != NULL);
if (ray.geomspread) {
strcpy(fileamp, rec.file_rcv);
name_ext(fileamp, "_amp");
fpa = fopen(fileamp, "w");
assert(fpa != NULL);
}
hdr.dt = (unsigned short)1;
hdr.scalco = -1000;
hdr.scalel = -1000;
hdr.trid = 1;
hdr.trwf = shot.n;
hdr.ns = rec.n;*/
t1=wallclock_time();
tinit = t1-t0;
tray=0.0;
tio=0.0;
/* Outer loop over number of shots */
for (izshot=0; izshot<shot.nz; izshot++) {
for (ixshot=0; ixshot<shot.nx; ixshot++) {
t2=wallclock_time();
if (verbose) {
vmess("Modeling source %d at gridpoints ix=%d iz=%d", (izshot*shot.nx)+ixshot, shot.x[ixshot], shot.z[izshot]);
vmess(" which are actual positions x=%.2f z=%.2f", mod.x0+mod.dx*shot.x[ixshot], mod.z0+mod.dz*shot.z[izshot]);
vmess("Receivers at gridpoint x-range ix=%d - %d", rec.x[0], rec.x[rec.n-1]);
vmess(" which are actual positions x=%.2f - %.2f", mod.x0+rec.xr[0], mod.x0+rec.xr[rec.n-1]);
vmess("Receivers at gridpoint z-range iz=%d - %d", rec.z[0], rec.z[rec.n-1]);
vmess(" which are actual positions z=%.2f - %.2f", mod.z0+rec.zr[0], mod.z0+rec.zr[rec.n-1]);
}
coordsx.x = mod.x0+shot.x[ixshot]*mod.dx;
coordsx.z = mod.z0+shot.z[izshot]*mod.dz;
coordsx.y = 0;
xnx[ (izshot*shot.nx)+ixshot] = rec.n;
xsrc[(izshot*shot.nx)+ixshot] = mod.x0+mod.dx*shot.x[ixshot];
zsrc[(izshot*shot.nx)+ixshot] = mod.z0+mod.dz*shot.z[izshot];
t1=wallclock_time();
tio += t1-t2;
#pragma omp parallel for default(shared) \
private (coordgx,irec,Time,Jr)
for (irec=0; irec<rec.n; irec++) {
coordgx.x=mod.x0+rec.xr[irec];
coordgx.z=mod.z0+rec.zr[irec];
coordgx.y = 0;
getWaveParameter(slowness, grid, mod.dx, coordsx, coordgx, ray, &Time, &Jr);
xrcv[((izshot*shot.nx)+ixshot)*rec.n + irec] = (mod.x0+rec.x[0]*mod.dx) + ((rec.x[1]-rec.x[0])*mod.dx*((float)irec));
time[((izshot*shot.nx)+ixshot)*rec.n + irec] = Time.x + Time.y + Time.z;
ampl[((izshot*shot.nx)+ixshot)*rec.n + irec] = Jr;
if (verbose>4) vmess("shot=%f,%f receiver at %f,%f T0=%f T1=%f T2=%f Jr=%f",coordsx.x, coordsx.z, coordgx.x, coordgx.z, Time.x, Time.y, Time.z, Jr);
}
t2=wallclock_time();
tray += t2-t1;
/*hdr.sx = 1000*(mod.x0+mod.dx*shot.x[ixshot]);
hdr.sdepth = 1000*(mod.z0+mod.dz*shot.z[izshot]);
hdr.selev = (int)(-1000.0*(mod.z0+mod.dz*shot.z[izshot]));
hdr.fldr = ((izshot*shot.nx)+ixshot)+1;
hdr.tracl = ((izshot*shot.nx)+ixshot)+1;
hdr.tracf = ((izshot*shot.nx)+ixshot)+1;
hdr.ntr = shot.n;
hdr.d1 = (rec.x[1]-rec.x[0])*mod.dx;
hdr.f1 = mod.x0+rec.x[0]*mod.dx;
hdr.d2 = (shot.x[1]-shot.x[0])*mod.dx;
hdr.f2 = mod.x0+shot.x[0]*mod.dx;
nwrite = fwrite( &hdr, 1, TRCBYTES, fpt);
assert(nwrite == TRCBYTES);
nwrite = fwrite( &time[((izshot*shot.nx)+ixshot)*rec.n], sizeof(float), rec.n, fpt);
assert(nwrite == rec.n);
fflush(fpt);
if (ray.geomspread) {
nwrite = fwrite( &hdr, 1, TRCBYTES, fpa);
assert(nwrite == TRCBYTES);
nwrite = fwrite( &l[((izshot*shot.nx)+ixshot)*rec.n], sizeof(float), rec.n, fpa);
assert(nwrite == rec.n);
fflush(fpa);
}*/
t1=wallclock_time();
tio += t1-t2;
}
} /* end of loop over number of shots */
//fclose(fpt);
//if (ray.geomspread) fclose(fpa);
t1= wallclock_time();
if (verbose) {
vmess("*******************************************");
vmess("************* runtime info ****************");
vmess("*******************************************");
vmess("Total compute time ray-tracing = %.2f s.", t1-t0);
vmess(" - intializing arrays and model = %.3f", tinit);
vmess(" - ray tracing = %.3f", tray);
vmess(" - writing data to file = %.3f", tio);
}
/* free arrays */
//initargs(argc,argv); /* this will free the arg arrays declared */
free(velocity);
free(slowness);
return 0;
}