Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
O
OpenSource
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Jan Willem Thorbecke
OpenSource
Commits
3f07253d
Commit
3f07253d
authored
7 years ago
by
Jan Thorbecke
Browse files
Options
Downloads
Patches
Plain Diff
cleaning
parent
972852ff
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
fdelmodc/decomposition.c.new
+0
-247
0 additions, 247 deletions
fdelmodc/decomposition.c.new
fdelmodc/writeSnapTimes.c.org
+0
-172
0 additions, 172 deletions
fdelmodc/writeSnapTimes.c.org
with
0 additions
and
419 deletions
fdelmodc/decomposition.c.new
deleted
100644 → 0
+
0
−
247
View file @
972852ff
/*
* decomposition.c
*
* Kees Wapenaar "Reciprocity properties of one-way propagators"
* GEOPHYSICS, VOL. 63, NO. 4 (JULY-AUGUST 1998); P. 1795–1798
*
* Created by Jan Thorbecke on 17/03/2014.
* Copyright 2014 TU Delft. All rights reserved.
*
*/
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <math.h>
#include <string.h>
#define MAX(x,y) ((x) > (y) ? (x) : (y))
#define MIN(x,y) ((x) < (y) ? (x) : (y))
#ifndef COMPLEX
typedef struct _complexStruct { /* complex number */
float r,i;
} complex;
typedef struct _dcomplexStruct { /* complex number */
double r,i;
} dcomplex;
#endif/* complex */
complex firoot(float x, float stab)
complex ciroot(complex x, float stab);
complex cwp_csqrt(complex z);
void decud(float om, float rho, float cp, float dx, int nkx, complex *pu);
void kxwfilter(complex *data, float k, float dx, int nkx,
float alfa1, float alfa2, float perc);
void kxwdecomp(complex *rp, complex *rvz, complex *up, complex *down,
int nkx, float dx, int nt, float dt, float fmin, float fmax,
float cp, float rho)
{
int iom, iomin, iomax, ikx, nfreq;
float omin, omax, deltom, om, kp, df;
float alpha, eps;
complex *pu, w;
complex ax, az;
df = 1.0/((float)nt*dt);
deltom = 2.*M_PI*df;
omin = 2.*M_PI*fmin;
omax = 2.*M_PI*fmax;
nfreq = nt/2+1;
eps = 0.01;
alpha = 0.1;
iomin = (int)MIN((omin/deltom), (nfreq-1));
iomin = MAX(iomin, 1);
iomax = MIN((int)(omax/deltom), (nfreq-1));
pu = (complex *)malloc(nkx*sizeof(complex));
for (iom = iomin; iom <= iomax; iom++) {
om = iom*deltom;
decud(om, rho, cp, dx, nkx, alpha, eps, pu);
/*
kxwfilter(dpux, kp, dx, nkx, alfa1, alfa2, perc);
kxwfilter(dpuz, kp, dx, nkx, alfa1, alfa2, perc);
*/
for (ikx = 0; ikx < nkx; ikx++) {
ax.r = 0.5*rp[iom*nkx+ikx].r;
ax.i = 0.5*rp[iom*nkx+ikx].i;
az.r = 0.5*(rvz[iom*nkx+ikx].r*pu[ikx].r - rvz[iom*nkx+ikx].i*pu[ikx].i);
az.i = 0.5*(rvz[iom*nkx+ikx].i*pu[ikx].r + rvz[iom*nkx+ikx].r*pu[ikx].i);
down[iom*nkx+ikx].r = ax.r + az.r;
down[iom*nkx+ikx].i = ax.i + az.i;
up[iom*nkx+ikx].r = ax.r - az.r;
up[iom*nkx+ikx].i = ax.i - az.i;
}
}
free(pu);
return;
}
void decud(float om, float rho, float cp, float dx, int nkx, float alpha, float eps, complex *pu);
{
int ikx, ikxmax1, ikxmax2, filterpoints, filterppos;
float mu, kp, kp2, ks, ks2, ksk;
float kx, kx2, kzp2, kzs2, dkx;
float kxfmax, kxnyq, kpos, kneg, alfa, kfilt, perc, band, *filter;
complex kzp, kzs, cste, ckp, ckp2, ckzp2;
/* with complex frequency
wom.r=om;
wom.i=alpha;
ckp.r = wom.r/cp;
ckp.i = wom.i/cp;
ckp2.r = ckp.r*ckp.r-ckp.i*ckp.i;
ckp2.i = 2.0*ckp.r*ckp.i;
stab = eps*eps*(ckp.r*ckp.r+ckp.i*ckp.i);
*/
kp = om/cp;
kp2 = kp*kp;
dkx = 2.0*M_PI/(nkx*dx);
stab = eps*eps*kp*kp;
/* make kw filter at maximum angle alfa */
alfa = 90.0;
perc = 0.10; /* percentage of band to use for smooth filter */
filter = (float *)malloc(nkx*sizeof(float));
kpos = kp*sin(M_PI*alfa/180.0);
kneg = -kpos;
kxnyq = M_PI/dx;
if (kpos > kxnyq) kpos = kxnyq;
band = kpos;
filterpoints = (int)fabs((int)(perc*band/dkx));
kfilt = fabs(dkx*filterpoints);
if (kpos+kfilt < kxnyq) {
kxfmax = kpos+kfilt;
filterppos = filterpoints;
}
else {
kxfmax = kxnyq;
filterppos = (int)(0.15*nkx/2);
}
ikxmax1 = (int) (kxfmax/dkx);
ikxmax2 = ikxmax1 - filterppos;
// fprintf(stderr,"ikxmax1=%d ikxmax2=%d nkp=%d nkx=%d\n", ikxmax1, ikxmax2, (int)(kp/dkx), nkx);
for (ikx = 0; ikx < ikxmax2; ikx++)
filter[ikx]=1.0;
for (ikx = ikxmax2; ikx < ikxmax1; ikx++)
filter[ikx] =(cos(M_PI*(ikx-ikxmax2)/(ikxmax1-ikxmax2))+1)/2.0;
for (ikx = ikxmax1; ikx <= nkx/2; ikx++)
filter[ikx] = 0.0;
/* end of kxfilter */
for (ikx = 0; ikx <= (nkx/2); ikx++) {
kx = ikx*dkx;
kx2 = kx*kx;
kzp2 = kp2 - kx2;
kzp = firoot(kzp2);
/* with complex frequency
kzp2.r = kp2.r - kx2;
kzp2.i = kp2.i;
kzp = ciroot(kzp2, stab);
*/
if (kzp2 != 0) {
pu[ikx].r = filter[ikx]*om*rho*kzp.r;
pu[ikx].i = filter[ikx]*om*rho*kzp.i;
// pu[ikx].r = om*rho*kzp.r;
// pu[ikx].i = om*rho*kzp.i;
}
else {
pu[ikx].r = 0.0;
pu[ikx].i = 0.0;
}
}
/* operators are symmetric in kx-w domain */
for (ikx = (nkx/2+1); ikx < nkx; ikx++) {
pu[ikx] = pu[nkx-ikx];
}
free(filter);
return;
}
/* compute 1/x */
complex firoot(float x, float stab)
{
complex z;
if (x > 0.0) {
z.r = 1.0/sqrt(x+stab);
z.i = 0.0;
}
else if (x == 0.0) {
z.r = 0.0;
z.i = 0.0;
}
else {
z.r = 0.0;
z.i = 1.0/sqrt(-x+stab);
}
return z;
}
complex ciroot(complex x, float stab)
{
complex z, kz, kzz;
float kd;
if (x.r == 0.0) {
z.r = 0.0;
z.i = 0.0;
}
else {
kzz = cwp_csqrt(x);
kz.r = kzz.r;
kz.i = -abs(kzz.i);
kd = kz.r*kz.r+kz.i*kz.i+stab;
z.r = kz.r/kd;
z.i = -kz.i/kd;
}
return z;
}
complex cwp_csqrt(complex z)
{
complex c;
float x,y,w,r;
if (z.r==0.0 && z.i==0.0) {
c.r = c.i = 0.0;
return c;
} else {
x = fabs(z.r);
y = fabs(z.i);
if (x>=y) {
r = y/x;
w = sqrt(x)*sqrt(0.5*(1.0+sqrt(1.0+r*r)));
} else {
r = x/y;
w = sqrt(y)*sqrt(0.5*(r+sqrt(1.0+r*r)));
}
if (z.r>=0.0) {
c.r = w;
c.i = z.i/(2.0*w);
} else {
c.i = (z.i>=0.0) ? w : -w;
c.r = z.i/(2.0*c.i);
}
return c;
}
}
This diff is collapsed.
Click to expand it.
fdelmodc/writeSnapTimes.c.org
deleted
100644 → 0
+
0
−
172
View file @
972852ff
#define _FILE_OFFSET_BITS 64
#define _LARGEFILE_SOURCE
#define _LARGEFILE64_SOURCE
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <math.h>
#include <string.h>
#include "par.h"
#include "segy.h"
#include "fdelmodc.h"
/**
* Writes gridded wavefield(s) at a desired time to output file(s)
*
* AUTHOR:
* Jan Thorbecke (janth@xs4all.nl)
* The Netherlands
**/
FILE *fileOpen(char *file, char *ext, int append);
int traceWrite(segy *hdr, float *data, int n, FILE *fp);
#define MAX(x,y) ((x) > (y) ? (x) : (y))
#define MIN(x,y) ((x) < (y) ? (x) : (y))
#define NINT(x) ((int)((x)>0.0?(x)+0.5:(x)-0.5))
int writeSnapTimes(modPar mod, snaPar sna, int ixsrc, int izsrc, int itime, float *vx, float *vz, float *tzz, float *txx, float *txz, int verbose)
{
FILE *fpvx, *fpvz, *fptxx, *fptzz, *fptxz, *fpp, *fppp, *fpss;
int append, isnap;
int n1, ibnd, ixs, izs, ize, i, j;
int ix, iz, ix2, iz2;
float *snap, sdx;
segy hdr;
if (sna.nsnap==0) return 0;
ibnd = mod.iorder/2-1;
n1 = mod.naz;
sdx = 1.0/mod.dx;
/* check if this itime is a desired snapshot time */
if ( (((itime-sna.delay) % sna.skipdt)==0) &&
(itime >= sna.delay) &&
(itime <= sna.delay+(sna.nsnap-1)*sna.skipdt) ) {
isnap = NINT((itime-sna.delay)/sna.skipdt);
if (verbose) vmess("Writing snapshot(%d) at time=%.3f", isnap+1, itime*mod.dt);
if (isnap) append=1;
else append=0;
if (sna.type.vx) fpvx = fileOpen(sna.file_snap, "_svx", append);
if (sna.type.vz) fpvz = fileOpen(sna.file_snap, "_svz", append);
if (sna.type.p) fpp = fileOpen(sna.file_snap, "_sp", append);
if (sna.type.txx) fptxx = fileOpen(sna.file_snap, "_stxx", append);
if (sna.type.tzz) fptzz = fileOpen(sna.file_snap, "_stzz", append);
if (sna.type.txz) fptxz = fileOpen(sna.file_snap, "_stxz", append);
if (sna.type.pp) fppp = fileOpen(sna.file_snap, "_spp", append);
if (sna.type.ss) fpss = fileOpen(sna.file_snap, "_sss", append);
memset(&hdr,0,TRCBYTES);
hdr.dt = 1000000*(mod.dt);
hdr.scalco = -1000;
hdr.scalel = -1000;
hdr.sx = 1000*(mod.x0+ixsrc*mod.dx);
hdr.sdepth = 1000*(mod.z0+izsrc*mod.dz);
hdr.fldr = isnap+1;
hdr.trid = 1;
hdr.ns = sna.nz;
hdr.trwf = sna.nx;
hdr.ntr = (isnap+1)*sna.nx;
hdr.f1 = sna.z1*mod.dz+mod.z0;
hdr.f2 = sna.x1*mod.dx+mod.x0;
hdr.d1 = mod.dz*sna.skipdz;
hdr.d2 = mod.dx*sna.skipdx;
/***********************************************************************
* vx velocities have one sample less in x-direction
* vz velocities have one sample less in z-direction
* txz stresses have one sample less in z-direction and x-direction
***********************************************************************/
snap = (float *)malloc(sna.nz*sizeof(float));
/* Decimate, with skipdx and skipdz, the number of gridpoints written to file
and write to file. */
for (ixs=sna.x1, i=0; ixs<=sna.x2; ixs+=sna.skipdx, i++) {
hdr.tracf = i+1;
hdr.tracl = isnap*sna.nx+i+1;
hdr.gx = 1000*(mod.x0+ixs*mod.dx);
ix = ixs+ibnd;
ix2 = ix+1;
izs = sna.z1+ibnd;
ize = sna.z2+ibnd;
if (sna.type.vx) {
for (iz=izs, j=0; iz<=ize; iz+=sna.skipdz, j++) {
snap[j] = vx[ix2*n1+iz];
}
traceWrite(&hdr, snap, sna.nz, fpvx);
}
if (sna.type.vz) {
for (iz=izs, j=0; iz<=ize; iz+=sna.skipdz, j++) {
snap[j] = vz[ix*n1+iz+1];
}
traceWrite(&hdr, snap, sna.nz, fpvz);
}
if (sna.type.p) {
for (iz=izs, j=0; iz<=ize; iz+=sna.skipdz, j++) {
snap[j] = tzz[ix*n1+iz];
}
traceWrite(&hdr, snap, sna.nz, fpp);
}
if (sna.type.tzz) {
for (iz=izs, j=0; iz<=ize; iz+=sna.skipdz, j++) {
snap[j] = tzz[ix*n1+iz];
}
traceWrite(&hdr, snap, sna.nz, fptzz);
}
if (sna.type.txx) {
for (iz=izs, j=0; iz<=ize; iz+=sna.skipdz, j++) {
snap[j] = txx[ix*n1+iz];
}
traceWrite(&hdr, snap, sna.nz, fptxx);
}
if (sna.type.txz) {
for (iz=izs, j=0; iz<=ize; iz+=sna.skipdz, j++) {
snap[j] = txz[ix2*n1+iz+1];
}
traceWrite(&hdr, snap, sna.nz, fptxz);
}
/* calculate divergence of velocity field */
if (sna.type.pp) {
for (iz=izs, j=0; iz<=ize; iz+=sna.skipdz, j++) {
iz2 = iz+1;
snap[j] = sdx*((vx[ix2*n1+iz]-vx[ix*n1+iz])+
(vz[ix*n1+iz2]-vz[ix*n1+iz]));
}
traceWrite(&hdr, snap, sna.nz, fppp);
}
/* calculate rotation of velocity field */
if (sna.type.ss) {
for (iz=izs, j=0; iz<=ize; iz+=sna.skipdz, j++) {
iz2 = iz+1;
snap[j] = sdx*((vx[ix2*n1+iz2]-vx[ix2*n1+iz])-
(vz[ix2*n1+iz2]-vz[ix*n1+iz2]));
}
traceWrite(&hdr, snap, sna.nz, fpss);
}
}
if (sna.type.vx) fclose(fpvx);
if (sna.type.vz) fclose(fpvz);
if (sna.type.p) fclose(fpp);
if (sna.type.txx) fclose(fptxx);
if (sna.type.tzz) fclose(fptzz);
if (sna.type.txz) fclose(fptxz);
if (sna.type.pp) fclose(fppp);
if (sna.type.ss) fclose(fpss);
free(snap);
}
return 0;
}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment