Skip to content
Snippets Groups Projects
Commit a2751086 authored by Jan Thorbecke's avatar Jan Thorbecke
Browse files

clean of old files

parent 8c81d1c8
No related branches found
No related tags found
No related merge requests found
#include "par.h"
#include "segy.h"
#include <time.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <assert.h>
#include <genfft.h>
int omp_get_max_threads(void);
int omp_get_num_threads(void);
void omp_set_num_threads(int num_threads);
#ifndef MAX
#define MAX(x,y) ((x) > (y) ? (x) : (y))
#endif
#ifndef MIN
#define MIN(x,y) ((x) < (y) ? (x) : (y))
#endif
#define NINT(x) ((int)((x)>0.0?(x)+0.5:(x)-0.5))
#ifndef COMPLEX
typedef struct _complexStruct { /* complex number */
float r,i;
} complex;
#endif/* complex */
int readShotData(char *filename, float *xrcv, float *xsrc, float *zsrc, int *xnx, complex *cdata, int nw, int nw_low, int ngath, int nx, int nxm, int ntfft, int mode, float weight, int verbose);
int readTinvData(char *filename, float *xrcv, float *xsrc, float *zsrc, int *xnx, complex *cdata, int nw, int nw_low, int ngath, int nx, int ntfft, int mode, float *maxval, float *G_d, int hw, int verbose);
int writeDataIter(char *file_iter, float *data, segy *hdrs, int n1, int n2, float d2, float f2, int n2out, int Nsyn, float *xsyn, float *zsyn, int iter);
void name_ext(char *filename, char *extension);
void applyMute( float *data, float *muteW, int smooth, int above, int Nsyn, int nxs, int nts, float *xsrc, int *xrcvsyn, int nx, int shift);
int getFileInfo(char *filename, int *n1, int *n2, int *ngath, float *d1, float *d2, float *f1, float *f2, float *xmin, float *xmax, float *sclsxgx, int *nxm);
int readData(FILE *fp, float *data, segy *hdrs, int n1);
int writeData(FILE *fp, float *data, segy *hdrs, int n1, int n2);
int disp_fileinfo(char *file, int n1, int n2, float f1, float f2, float d1, float d2, segy *hdrs);
double wallclock_time(void);
void synthesis(complex *Refl, complex *Fop, float *iRN, int nx, int nt, int nxs, int nts, float dt, float *xsyn, int Nsyn, float *xrcv, float *xsrc, float fxs2, float fxs, float dxs, float dxsrc, float dx, int ixa, int ixb, int ntfft, int nw, int nw_low, int nw_high, int reci, int nshots, int verbose);
void synthesisPosistions(int nx, int nt, int nxs, int nts, float dt, float *xsyn, int Nsyn, float *xrcv, float *xsrc, float fxs2, float fxs, float dxs, float dxsrc, float dx, int ixa, int ixb, int reci, int nshots, int *ixpossyn, int *npossyn, int verbose);
/*********************** self documentation **********************/
char *sdoc[] = {
" ",
" MARCHENKO - Iterative Green's functions retrieval in frequency domain",
" ",
" marchenko file_tinv= file_shot= nshots= [optional parameters]",
" ",
" Required parameters: ",
" ",
" file_tinv= ............... focusing operator(s)",
" file_shot= ............... shot records with Reflection data",
" ",
" Optional parameters: ",
" ",
" INTEGRATION ",
" tap=0 .................... lateral taper focusing(1), shot(2) or both(3)",
" ntap=0 ................... number of taper points at boundaries",
" fmin=0 ................... minimum frequency",
" fmax=70 .................. maximum frequency",
" MARCHENKO ITERATIONS ",
" niter=10 ................. number of iterations",
" MUTE WINDOW ",
" above=0 .................. mute above(1), around(0) or below(-1) the first travel times of file_tinv",
" shift=12 ................. number of points above(positive) / below(negative) travel time for mute",
" hw=8 ..................... window in time samples to look for maximum in next trace",
" smooth=5 ................. number of points to smooth mute with cosine window",
" weight=1 ................. weight factor for summation of muted field with Tinv",
" OUTPUT DEFINITION ",
" file_green= .............. output file with full Green function(s)",
" file_gplus= .............. output file with G+ ",
" file_gmin= ............... output file with G- ",
" file_f1plus= ............. output file with f1+ ",
" file_f1min= .............. output file with f1- ",
" file_pplus= .............. output file with p+ ",
" file_f2= ................. output file with f2 (=p+) ",
" file_pmin= ............... output file with p- ",
" file_iter= ............... output file with N for each iteration",
" verbose=0 ................ silent option; >0 displays info",
" ",
" ",
" author : Jan Thorbecke : 2016 (j.w.thorbecke@tudelft.nl)",
" ",
NULL};
/**************** end self doc ***********************************/
int main (int argc, char **argv)
{
FILE *fp_syn, *fp_shot, *fp_out, *fp_f1plus, *fp_f1min;
FILE *fp_gmin, *fp_gplus, *fp_f2, *fp_pmin;
int i, j, k, l, ret, nshots, Nsyn, nt, nx, nts, nxs, more, ngath;
int size, n1, n2, ntap, tap, di, ixrcv, ixsrc, ntraces;
int nf, nw, nw_low, nw_high, nfreq, *xnx, *xnxsyn;
int reci, mode, ixa, ixb, n2out, verbose, ntfft;
int iter, niter, iw, tracf;
int hw, smooth, above, shift, *ixpossyn, npossyn, ix;
float fmin, fmax, df, *tapersh, *tapersy, fxf, dxf, fxs2, *xsrc, *xrcv, *zsyn, *zsrc, *xrcvsyn;
double t0, t1, t2, t3, tsyn, tread, tfft;
float *shotdata, d1, d2, f1, f2, fts, fxs, ft, fx, *xsyn, dxsrc;
float *green, *pplus, *f2p, *pmin, *G_d, *muteW, dt, dx, dts, dxs, scl, mem;
float *f1plus, *f1min, *iRN, *Ni, *trace, *Gmin, *Gplus;
float max, scel, xmin, xmax, weight;
complex *Refl, *Fop, *ctrace;
char *file_tinv, *file_shot, *file_green, *file_iter;
char *file_f1plus, *file_f1min, *file_gmin, *file_gplus, *file_f2, *file_pmin;
char number[16], filename[1024];
segy *hdrs, *hdrs_in, *hdrs_out;
initargs(argc, argv);
requestdoc(1);
tsyn = tread = tfft = 0.0;
t0 = wallclock_time();
if (!getparstring("file_shot", &file_shot)) file_shot = NULL;
if (!getparstring("file_tinv", &file_tinv)) file_tinv = NULL;
if (!getparstring("file_f1plus", &file_f1plus)) file_f1plus = NULL;
if (!getparstring("file_f1min", &file_f1min)) file_f1min = NULL;
if (!getparstring("file_gplus", &file_gplus)) file_gplus = NULL;
if (!getparstring("file_gmin", &file_gmin)) file_gmin = NULL;
if (!getparstring("file_pplus", &file_f2)) file_f2 = NULL;
if (!getparstring("file_f2", &file_f2)) file_f2 = NULL;
if (!getparstring("file_pmin", &file_pmin)) file_pmin = NULL;
if (!getparstring("file_iter", &file_iter)) file_iter = NULL;
if (!getparint("verbose", &verbose)) verbose = 0;
if (file_tinv == NULL && file_shot == NULL)
verr("file_tinv and file_shot cannot be both input pipe");
if (!getparstring("file_green", &file_green)) {
if (verbose) vwarn("parameter file_green not found, assume pipe");
file_green = NULL;
}
if (!getparfloat("fmin", &fmin)) fmin = 0.0;
if (!getparfloat("fmax", &fmax)) fmax = 70.0;
if (!getparint("ixa", &ixa)) ixa = 0;
if (!getparint("ixb", &ixb)) ixb = ixa;
if (!getparint("reci", &reci)) reci = 0;
if (!getparfloat("weight", &weight)) weight = 1.0;
if (!getparint("tap", &tap)) tap = 0;
if (!getparint("ntap", &ntap)) ntap = 0;
if(!getparint("niter", &niter)) niter = 10;
if(!getparint("hw", &hw)) hw = 15;
if(!getparint("smooth", &smooth)) smooth = 5;
if(!getparint("above", &above)) above = 0;
if(!getparint("shift", &shift)) shift=12;
if (reci && ntap) vwarn("tapering influences the reciprocal result");
/*================ Reading info about shot and initial operator sizes ================*/
ngath = 0; /* setting ngath=0 scans all traces; n2 contains maximum traces/gather */
ret = getFileInfo(file_tinv, &n1, &n2, &ngath, &d1, &d2, &f1, &f2, &xmin, &xmax, &scl, &ntraces);
Nsyn = ngath;
nxs = n2;
nts = n1;
dxs = d2; dts = d1;
fxs = f2; fts = f1;
ngath = 0; /* setting ngath=0 scans all traces; nx contains maximum traces/gather */
ret = getFileInfo(file_shot, &nt, &nx, &ngath, &d1, &dx, &ft, &fx, &xmin, &xmax, &scl, &ntraces);
nshots = ngath;
assert (nxs >= nshots);
if (!getparfloat("dt", &dt)) dt = d1;
ntfft = optncr(MAX(nt, nts));
nf = ntfft/2+1;
df = 1.0/(ntfft*dt);
nfreq = ntfft/2+1;
nw_low = (int)MIN((fmin*ntfft*dt), nfreq-1);
nw_low = MAX(nw_low, 1);
nw_high = MIN((int)(fmax*ntfft*dt), nfreq-1);
nw = nw_high - nw_low + 1;
scl = 1.0/((float)ntfft);
/*================ Allocating all data arrays ================*/
Fop = (complex *)malloc(nxs*nw*Nsyn*sizeof(complex));
xrcvsyn = (float *)calloc(Nsyn*nxs,sizeof(float));
xsyn = (float *)malloc(Nsyn*sizeof(float));
zsyn = (float *)malloc(Nsyn*sizeof(float));
tapersy = (float *)malloc(nxs*sizeof(float));
xnxsyn = (int *)calloc(Nsyn,sizeof(int));
green = (float *)calloc(Nsyn*nxs*ntfft,sizeof(float));
f2p = (float *)calloc(Nsyn*nxs*ntfft,sizeof(float));
pmin = (float *)calloc(Nsyn*nxs*ntfft,sizeof(float));
Gmin = (float *)calloc(Nsyn*nxs*ntfft,sizeof(float));
Gplus = (float *)calloc(Nsyn*nxs*ntfft,sizeof(float));
f1plus = (float *)calloc(Nsyn*nxs*ntfft,sizeof(float));
f1min = (float *)calloc(Nsyn*nxs*ntfft,sizeof(float));
iRN = (float *)calloc(Nsyn*nxs*ntfft,sizeof(float));
Ni = (float *)calloc(Nsyn*nxs*ntfft,sizeof(float));
ctrace = (complex *)malloc(ntfft*sizeof(complex));
trace = (float *)malloc(ntfft*sizeof(float));
muteW = (float *)calloc(Nsyn*nxs,sizeof(float));
G_d = (float *)calloc(Nsyn*nxs*ntfft,sizeof(float));
ixpossyn = (int *)malloc(nxs*sizeof(int));
Refl = (complex *)malloc(nw*nx*nshots*sizeof(complex));
tapersh = (float *)malloc(nx*sizeof(float));
xsrc = (float *)calloc(nshots,sizeof(float));
zsrc = (float *)calloc(nshots,sizeof(float));
xrcv = (float *)calloc(nshots*nx,sizeof(float));
xnx = (int *)calloc(nshots,sizeof(int));
/*================ Read and define mute window based on focusing operator(s) ================*/
/* Fop = p_0^+ = G_d (-t) ~ Tinv */
mode=-1; /* apply complex conjugate to read in data */
readTinvData(file_tinv, xrcvsyn, xsyn, zsyn, xnxsyn, Fop, nw, nw_low, Nsyn, nxs, ntfft,
mode, muteW, G_d, hw, verbose);
/* reading data added zero's to the number of time samples to be the same as ntfft */
nts = ntfft;
/* define tapers to taper edges of acquisition */
if (tap == 1 || tap == 3) {
for (j = 0; j < ntap; j++)
tapersy[j] = (cos(PI*(j-ntap)/ntap)+1)/2.0;
for (j = ntap; j < nxs-ntap; j++)
tapersy[j] = 1.0;
for (j = nxs-ntap; j < nxs; j++)
tapersy[j] =(cos(PI*(j-(nxs-ntap))/ntap)+1)/2.0;
}
else {
for (j = 0; j < nxs; j++) tapersy[j] = 1.0;
}
if (tap == 1 || tap == 3) {
if (verbose) vmess("Taper for operator applied ntap=%d", ntap);
for (l = 0; l < Nsyn; l++) {
for (j = 1; j < nw; j++) {
for (i = 0; i < nxs; i++) {
Fop[l*nxs*nw+j*nxs+i].r *= tapersy[i];
Fop[l*nxs*nw+j*nxs+i].i *= tapersy[i];
}
}
}
}
/* check consistency of header values */
if (xrcvsyn[0] != 0 || xrcvsyn[1] != 0 ) fxs = xrcvsyn[0];
fxs2 = fxs + (float)(nxs-1)*dxs;
dxf = (xrcvsyn[nxs-1] - xrcvsyn[0])/(float)(nxs-1);
if (NINT(dxs*1e3) != NINT(fabs(dxf)*1e3)) {
vmess("dx in hdr.d1 (%.3f) and hdr.gx (%.3f) not equal",d2, dxf);
if (dxf != 0) dxs = fabs(dxf);
vmess("dx in operator => %f", dxs);
}
/*================ Reading shot records ================*/
mode=1;
readShotData(file_shot, xrcv, xsrc, zsrc, xnx, Refl, nw, nw_low, ngath, nx, nx, ntfft,
mode, weight, verbose);
tapersh = (float *)malloc(nx*sizeof(float));
if (tap == 2 || tap == 3) {
for (j = 0; j < ntap; j++)
tapersh[j] = (cos(PI*(j-ntap)/ntap)+1)/2.0;
for (j = ntap; j < nx-ntap; j++)
tapersh[j] = 1.0;
for (j = nx-ntap; j < nx; j++)
tapersh[j] =(cos(PI*(j-(nx-ntap))/ntap)+1)/2.0;
}
else {
for (j = 0; j < nx; j++) tapersh[j] = 1.0;
}
if (tap == 2 || tap == 3) {
if (verbose) vmess("Taper for shots applied ntap=%d", ntap);
for (l = 0; l < nshots; l++) {
for (j = 1; j < nw; j++) {
for (i = 0; i < nx; i++) {
Refl[l*nx*nw+j*nx+i].r *= tapersh[i];
Refl[l*nx*nw+j*nx+i].i *= tapersh[i];
}
}
}
}
free(tapersh);
/* check consistency of header values */
fxf = xsrc[0];
if (nx > 1) dxf = (xrcv[0] - xrcv[nx-1])/(float)(nx-1);
else dxf = d2;
if (NINT(dx*1e3) != NINT(fabs(dxf)*1e3)) {
vmess("dx in hdr.d1 (%.3f) and hdr.gx (%.3f) not equal",dx, dxf);
if (dxf != 0) dx = fabs(dxf);
else verr("gx hdrs not set");
vmess("dx used => %f", dx);
}
dxsrc = (float)xsrc[1] - xsrc[0];
if (dxsrc == 0) {
vwarn("sx hdrs are not filled in!!");
dxsrc = dx;
}
/*================ Check the size of the files ================*/
if (NINT(dxsrc/dx)*dx != NINT(dxsrc)) {
vwarn("source (%.2f) and receiver step (%.2f) don't match",dxsrc,dx);
if (reci == 2) vwarn("step used from operator (%.2f) ",dxs);
}
di = NINT(dxf/dxs);
if ((NINT(di*dxs) != NINT(dxf)) && verbose)
vwarn("dx in receiver (%.2f) and operator (%.2f) don't match",dx,dxs);
if (nt != nts)
vmess("Time samples in shot (%d) and focusing operator (%d) are not equal",nt, nts);
if (verbose) {
vmess("Number of focusing operators = %d", Nsyn);
vmess("Number of receivers in focusop = %d", nxs);
vmess("number of shots = %d", nshots);
vmess("number of receiver/shot = %d", nx);
vmess("first model position = %.2f", fxs);
vmess("last model position = %.2f", fxs2);
vmess("first source position fxf = %.2f", fxf);
vmess("source distance dxsrc = %.2f", dxsrc);
vmess("last source position = %.2f", fxf+(nshots-1)*dxsrc);
vmess("receiver distance dxf = %.2f", dxf);
vmess("direction of increasing traces = %d", di);
vmess("number of time samples (nt,nts) = %d (%d,%d)", ntfft, nt, nts);
vmess("time sampling = %e ", dt);
if (file_green != NULL) vmess("Green output file = %s ", file_green);
if (file_gmin != NULL) vmess("Gmin output file = %s ", file_gmin);
if (file_gplus != NULL) vmess("Gplus output file = %s ", file_gplus);
if (file_pmin != NULL) vmess("Pmin output file = %s ", file_pmin);
if (file_f2 != NULL) vmess("f2 (=pplus) output file = %s ", file_f2);
if (file_f1min != NULL) vmess("f1min output file = %s ", file_f1min);
if (file_f1plus != NULL)vmess("f1plus output file = %s ", file_f1plus);
if (file_iter != NULL) vmess("Iterations output file = %s ", file_iter);
}
t1 = wallclock_time();
tread = t1-t0;
/*================ initializations ================*/
if (ixa || ixb) n2out = ixa + ixb + 1;
else if (reci) n2out = nxs;
else n2out = nshots;
mem = Nsyn*n2out*ntfft*sizeof(float)/1048576.0;
if (verbose) {
vmess("number of output traces = %d", n2out);
vmess("number of output samples = %d", ntfft);
vmess("Size of output data = %.1f Mb", mem);
}
/* dry-run of synthesis to get all x-positions calcalated by the integration */
synthesisPosistions(nx, nt, nxs, nts, dt, xsyn, Nsyn, xrcv, xsrc, fxs2, fxs,
dxs, dxsrc, dx, ixa, ixb, reci, nshots, ixpossyn, &npossyn, verbose);
if (verbose) {
vmess("synthesisPosistions: nshots=%d npossyn=%d", nshots, npossyn);
}
/*================ set variables for output data ================*/
n1 = nts; n2 = n2out;
f1 = ft; f2 = fxs+dxs*ixpossyn[0];
d1 = dt;
if (reci == 0) d2 = dxsrc;
else if (reci == 1) d2 = dxs;
else if (reci == 2) d2 = dx;
hdrs_out = (segy *) calloc(n2,sizeof(segy));
if (hdrs_out == NULL) verr("allocation for hdrs_out");
size = nxs*nts;
for (i = 0; i < n2; i++) {
hdrs_out[i].ns = n1;
hdrs_out[i].trid = 1;
hdrs_out[i].dt = dt*1000000;
hdrs_out[i].f1 = f1;
hdrs_out[i].f2 = f2;
hdrs_out[i].d1 = d1;
hdrs_out[i].d2 = d2;
hdrs_out[i].trwf = n2out;
hdrs_out[i].scalco = -1000;
hdrs_out[i].gx = NINT(1000*(f2+i*d2));
hdrs_out[i].scalel = -1000;
hdrs_out[i].tracl = i+1;
}
/*================ number of Marchenko iterations ================*/
for (iter=0; iter<niter; iter++) {
t2 = wallclock_time();
/*================ construction of Ni(-t) = - \int R(x,t) Fop(t) ================*/
synthesis(Refl, Fop, iRN, nx, nt, nxs, nts, dt, xsyn, Nsyn,
xrcv, xsrc, fxs2, fxs, dxs, dxsrc, dx, ixa, ixb, ntfft, nw, nw_low, nw_high,
reci, nshots, verbose);
/* set Fop to zero, so new operator can be defined within ixpossyn points */
memset(&Fop[0].r, 0, Nsyn*nxs*nw*2*sizeof(float));
if (file_iter != NULL) {
writeDataIter(file_iter, iRN, hdrs_out, ntfft, nxs, d2, f2, n2out, Nsyn, xsyn, zsyn, iter);
}
/* N_k(x,t) = -N_(k-1)(x,-t) */
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j = 0;
Ni[l*nxs*nts+i*nts+j] = -iRN[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
Ni[l*nxs*nts+i*nts+j] = -iRN[l*nxs*nts+i*nts+nts-j];
}
}
}
/* initialization */
if (iter==0) {
/* N_0(t) = M_0(t) = -p0^-(x,-t) = -(R * T_d^inv)(-t) */
/* p0^-(x,t) = iRN = (R * T_d^inv)(t) */
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j = 0;
pmin[l*nxs*nts+i*nts+j] = iRN[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
pmin[l*nxs*nts+i*nts+j] = iRN[l*nxs*nts+i*nts+j];
}
}
}
applyMute(Ni, muteW, smooth, above, Nsyn, nxs, nts, xsrc, ixpossyn, npossyn, shift);
/* even iterations: => - f_1^-(-t) = windowed(iRN) */
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j = 0;
f1min[l*nxs*nts+i*nts+j] -= Ni[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
f1min[l*nxs*nts+i*nts+j] -= Ni[l*nxs*nts+i*nts+nts-j];
}
}
}
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j = 0;
//ix = NINT((xsrc[i]-fxs)/dxs);
ix = ixpossyn[i];
//fprintf(stderr,"i=%d xsrc=%f ix=%d ixpossyn=%d\n", i, xsrc[i], ix, ixpossyn[i]);
f2p[l*nxs*nts+i*nts+j] = G_d[l*nxs*nts+ix*nts+j] + Ni[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
f2p[l*nxs*nts+i*nts+j] = G_d[l*nxs*nts+ix*nts+j] + Ni[l*nxs*nts+i*nts+j];
}
}
}
/* Pressure based scheme */
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j=0;
ix = ixpossyn[i];
green[l*nxs*nts+i*nts+j] = G_d[l*nxs*nts+ix*nts+j] + pmin[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
green[l*nxs*nts+i*nts+j] = G_d[l*nxs*nts+ix*nts-j]+ pmin[l*nxs*nts+i*nts+j];
}
}
}
}
else if (iter==1) {
/* Ni(x,t) = -\int R(x,t) M_0(x,-t) dxdt*/
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j = 0;
pmin[l*nxs*nts+i*nts+j] -= Ni[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
pmin[l*nxs*nts+i*nts+j] -= Ni[l*nxs*nts+i*nts+nts-j];
}
}
}
applyMute(Ni, muteW, smooth, above, Nsyn, nxs, nts, xsrc, ixpossyn, npossyn, shift);
/* Pressure based scheme */
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j=0;
green[l*nxs*nts+i*nts+j] = f2p[l*nxs*nts+i*nts+j] + pmin[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
green[l*nxs*nts+i*nts+j] = f2p[l*nxs*nts+i*nts+nts-j] + pmin[l*nxs*nts+i*nts+j];
}
}
}
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j = 0;
f2p[l*nxs*nts+i*nts+j] += Ni[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
f2p[l*nxs*nts+i*nts+j] += Ni[l*nxs*nts+i*nts+j];
}
}
}
/* odd iterations: M_m^+ */
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j = 0;
ix = ixpossyn[i];
f1plus[l*nxs*nts+i*nts+j] = G_d[l*nxs*nts+ix*nts+j] + Ni[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
f1plus[l*nxs*nts+i*nts+j] = G_d[l*nxs*nts+ix*nts+j] + Ni[l*nxs*nts+i*nts+j];
}
}
}
}
else {
/* next iterations */
/* N_k(x,t) = -N_(k-1)(x,-t) */
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j = 0;
pmin[l*nxs*nts+i*nts+j] -= Ni[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
pmin[l*nxs*nts+i*nts+j] -= Ni[l*nxs*nts+i*nts+nts-j];
}
}
}
applyMute(Ni, muteW, smooth, above, Nsyn, nxs, nts, xsrc, ixpossyn, npossyn, shift);
/* compute full Green's function G = p^+(-t) + p^-(t) */
if (iter == niter-1) {
/* Pressure based scheme */
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j=0;
green[l*nxs*nts+i*nts+j] = f2p[l*nxs*nts+i*nts+j] + pmin[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
green[l*nxs*nts+i*nts+j] = f2p[l*nxs*nts+i*nts+nts-j] + pmin[l*nxs*nts+i*nts+j];
}
}
}
} /* end if for last iteration */
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j = 0;
f2p[l*nxs*nts+i*nts+j] += Ni[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
f2p[l*nxs*nts+i*nts+j] += Ni[l*nxs*nts+i*nts+j];
}
}
}
if (iter % 2 == 0) { /* even iterations: => - f_1^- (-t) = pmin(t) */
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j = 0;
f1min[l*nxs*nts+i*nts+j] -= Ni[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
f1min[l*nxs*nts+i*nts+j] -= Ni[l*nxs*nts+i*nts+nts-j];
}
}
}
}
else {/* odd iterations: M_m^+ */
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j = 0;
f1plus[l*nxs*nts+i*nts+j] += Ni[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
f1plus[l*nxs*nts+i*nts+j] += Ni[l*nxs*nts+i*nts+j];
}
}
}
}
} /* end else (iter!=0) branch */
t3 = wallclock_time();
tsyn += t3 - t2;
/* compute up and downgoing Green's function G^+,- G^+,+ */
/* f1 based scheme */
if (iter == niter-1) {
/* transform f1+ to frequency domain */
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
for (j = 0; j < nts; j++) {
trace[j] = f1plus[l*nxs*nts+i*nts+j];
}
rc1fft(&trace[0],ctrace,ntfft,-1);
ix = ixpossyn[i];
for (iw=0; iw<nw; iw++) {
Fop[l*nxs*nw+iw*nxs+ix].r = ctrace[nw_low+iw].r;
Fop[l*nxs*nw+iw*nxs+ix].i = ctrace[nw_low+iw].i;
}
}
}
synthesis(Refl, Fop, iRN, nx, nt, nxs, nts, dt, xsyn, Nsyn,
xrcv, xsrc, fxs2, fxs, dxs, dxsrc, dx, ixa, ixb, ntfft, nw, nw_low, nw_high,
reci, nshots, verbose);
/* compute upgoing Green's G^-,+ */
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j=0;
Gmin[l*nxs*nts+i*nts+j] = iRN[l*nxs*nts+i*nts+j] - f1min[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
Gmin[l*nxs*nts+i*nts+j] = iRN[l*nxs*nts+i*nts+j] - f1min[l*nxs*nts+i*nts+j];
}
}
}
/* Apply mute with window for Gmin */
applyMute(Gmin, muteW, smooth, 1, Nsyn, nxs, nts, xsrc, ixpossyn, npossyn, shift);
/* transform f1- to frequency domain */
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
for (j = 0; j < nts; j++) {
trace[j] = f1min[l*nxs*nts+i*nts+j];
}
rc1fft(&trace[0],ctrace,ntfft,-1);
ix = ixpossyn[i];
for (iw=0; iw<nw; iw++) {
Fop[l*nxs*nw+iw*nxs+ix].r = ctrace[nw_low+iw].r;
Fop[l*nxs*nw+iw*nxs+ix].i = -ctrace[nw_low+iw].i;
}
}
}
synthesis(Refl, Fop, iRN, nx, nt, nxs, nts, dt, xsyn, Nsyn,
xrcv, xsrc, fxs2, fxs, dxs, dxsrc, dx, ixa, ixb, ntfft, nw, nw_low, nw_high,
reci, nshots, verbose);
/* compute downgoing Green's G^+,+ */
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
j=0;
Gplus[l*nxs*nts+i*nts+j] = -iRN[l*nxs*nts+i*nts+j] + f1plus[l*nxs*nts+i*nts+j];
for (j = 1; j < nts; j++) {
Gplus[l*nxs*nts+i*nts+j] = -iRN[l*nxs*nts+i*nts+j] + f1plus[l*nxs*nts+i*nts+nts-j];
}
}
}
} /* end if for last iteration */
/* transform muted Ni to frequency domain */
for (l = 0; l < Nsyn; l++) {
for (i = 0; i < npossyn; i++) {
rc1fft(&Ni[l*nxs*nts+i*nts],ctrace,ntfft,-1);
ix = ixpossyn[i];
for (iw=0; iw<nw; iw++) {
Fop[l*nxs*nw+iw*nxs+ix].r = ctrace[nw_low+iw].r;
Fop[l*nxs*nw+iw*nxs+ix].i = ctrace[nw_low+iw].i;
}
}
}
t2 = wallclock_time();
tfft += t2 - t3;
if (verbose) vmess("*** Iteration %d finished ***", iter);
} /* end of iterations */
t2 = wallclock_time();
if (verbose) {
vmess("Total CPU-time marchenko = %.3f", t2-t0);
vmess("with CPU-time synthesis = %.3f", tsyn);
vmess("and CPU-time fft data = %.3f", tfft);
vmess("and CPU-time read data = %.3f", tread);
}
/*================ write output files ================*/
/*
n1 = nts; n2 = n2out;
f1 = ft; f2 = fxs;
d1 = dt;
if (reci == 0) d2 = dxsrc;
else if (reci == 1) d2 = dxs;
else if (reci == 2) d2 = dx;
hdrs_out = (segy *) calloc(n2,sizeof(segy));
if (hdrs_out == NULL) verr("allocation for hdrs_out");
size = nxs*nts;
*/
fp_out = fopen(file_green, "w+");
if (fp_out==NULL) verr("error on creating output file %s", file_green);
if (file_gmin != NULL) {
fp_gmin = fopen(file_gmin, "w+");
if (fp_gmin==NULL) verr("error on creating output file %s", file_gmin);
}
if (file_gplus != NULL) {
fp_gplus = fopen(file_gplus, "w+");
if (fp_gplus==NULL) verr("error on creating output file %s", file_gplus);
}
if (file_f2 != NULL) {
fp_f2 = fopen(file_f2, "w+");
if (fp_f2==NULL) verr("error on creating output file %s", file_f2);
}
if (file_pmin != NULL) {
fp_pmin = fopen(file_pmin, "w+");
if (fp_pmin==NULL) verr("error on creating output file %s", file_pmin);
}
if (file_f1plus != NULL) {
fp_f1plus = fopen(file_f1plus, "w+");
if (fp_f1plus==NULL) verr("error on creating output file %s", file_f1plus);
}
if (file_f1min != NULL) {
fp_f1min = fopen(file_f1min, "w+");
if (fp_f1min==NULL) verr("error on creating output file %s", file_f1min);
}
tracf = 1;
for (l = 0; l < Nsyn; l++) {
if (ixa || ixb) f2 = xsyn[l]-ixb*d2;
else {
if (reci) f2 = fxs;
else f2 = fxf;
}
for (i = 0; i < n2; i++) {
hdrs_out[i].fldr = l+1;
hdrs_out[i].sx = NINT(xsyn[l]*1000);
hdrs_out[i].offset = (long)NINT((f2+i*d2) - xsyn[l]);
hdrs_out[i].tracf = tracf++;
hdrs_out[i].selev = NINT(zsyn[l]*1000);
hdrs_out[i].sdepth = NINT(-zsyn[l]*1000);
hdrs_out[i].f1 = f1;
}
ret = writeData(fp_out, (float *)&green[l*size], hdrs_out, n1, n2);
if (ret < 0 ) verr("error on writing output file.");
if (file_gmin != NULL) {
ret = writeData(fp_gmin, (float *)&Gmin[l*size], hdrs_out, n1, n2);
if (ret < 0 ) verr("error on writing output file.");
}
if (file_gplus != NULL) {
ret = writeData(fp_gplus, (float *)&Gplus[l*size], hdrs_out, n1, n2);
if (ret < 0 ) verr("error on writing output file.");
}
if (file_f2 != NULL) {
ret = writeData(fp_f2, (float *)&f2p[l*size], hdrs_out, n1, n2);
if (ret < 0 ) verr("error on writing output file.");
}
if (file_pmin != NULL) {
ret = writeData(fp_pmin, (float *)&pmin[l*size], hdrs_out, n1, n2);
if (ret < 0 ) verr("error on writing output file.");
}
if (file_f1plus != NULL) {
/* rotate to get t=0 in the middle */
for (i = 0; i < n2; i++) {
hdrs_out[i].f1 = -n1*0.5*dt;
memcpy(&trace[0],&f1plus[l*size+i*nts],nts*sizeof(float));
for (j = 0; j < n1/2; j++) {
f1plus[l*size+i*nts+n1/2+j] = trace[j];
}
for (j = n1/2; j < n1; j++) {
f1plus[l*size+i*nts+j-n1/2] = trace[j];
}
}
ret = writeData(fp_f1plus, (float *)&f1plus[l*size], hdrs_out, n1, n2);
if (ret < 0 ) verr("error on writing output file.");
}
if (file_f1min != NULL) {
/* rotate to get t=0 in the middle */
for (i = 0; i < n2; i++) {
hdrs_out[i].f1 = -n1*0.5*dt;
memcpy(&trace[0],&f1min[l*size+i*nts],nts*sizeof(float));
for (j = 0; j < n1/2; j++) {
f1min[l*size+i*nts+n1/2+j] = trace[j];
}
for (j = n1/2; j < n1; j++) {
f1min[l*size+i*nts+j-n1/2] = trace[j];
}
}
ret = writeData(fp_f1min, (float *)&f1min[l*size], hdrs_out, n1, n2);
if (ret < 0 ) verr("error on writing output file.");
}
}
ret = fclose(fp_out);
if (file_gplus != NULL) {ret += fclose(fp_gplus);}
if (file_gmin != NULL) {ret += fclose(fp_gmin);}
if (file_f2 != NULL) {ret += fclose(fp_f2);}
if (file_pmin != NULL) {ret += fclose(fp_pmin);}
if (file_f1plus != NULL) {ret += fclose(fp_f1plus);}
if (file_f1min != NULL) {ret += fclose(fp_f1min);}
if (ret < 0) verr("err %d on closing output file",ret);
if (verbose) {
t1 = wallclock_time();
vmess("and CPU-time write data = %.3f", t1-t2);
}
/*================ free memory ================*/
free(hdrs_out);
free(tapersy);
free(Ni);
exit(0);
}
/*================ Convolution and Integration ================*/
void synthesis(complex *Refl, complex *Fop, float *iRN, int nx, int nt, int nxs, int nts, float dt, float *xsyn, int Nsyn, float *xrcv, float *xsrc, float fxs2, float fxs, float dxs, float dxsrc, float dx, int ixa, int ixb, int ntfft, int nw, int nw_low, int nw_high, int reci, int nshots, int verbose)
{
int nfreq, size, iox, inx;
float scl;
int i, j, l, m, ixsrc, ix, ixrcv, dosrc, k;
float *rdata, *p, **dum, x0, x1;
static double t0, t1, tfft, t;
complex *sum, *cdata, tmp, ts, to;
int npe;
size = nxs*nts;
nfreq = ntfft/2+1;
/* scale factor 1/N for backward FFT,
* scale dt for correlation/convolution along time,
* scale dx (or dxsrc) for integration over receiver (or shot) coordinates */
scl = 1.0*dt/((float)ntfft);
t0 = wallclock_time();
/* reset output data to zero */
memset(&iRN[0], 0, Nsyn*nxs*nts*sizeof(float));
for (k=0; k<nshots; k++) {
ixsrc = NINT((xsrc[k] - fxs)/dxs);
/* if (verbose>=3) {
vmess("source position: %.2f in operator %d", xsrc[k], ixsrc);
vmess("receiver positions: %.2f <--> %.2f", xrcv[k*nx+0], xrcv[k*nx+nx-1]);
}
*/
if ((NINT(xsrc[k]-fxs2) > 0) || (NINT(xrcv[k*nx+nx-1]-fxs2) > 0) ||
(NINT(xrcv[k*nx+nx-1]-fxs) < 0) || (NINT(xsrc[k]-fxs) < 0) ||
(NINT(xrcv[k*nx+0]-fxs) < 0) || (NINT(xrcv[k*nx+0]-fxs2) > 0) ) {
vwarn("source/receiver positions are outside synthesis model");
vwarn("integration calculation is stopped at gather %d", k);
vmess("xsrc = %.2f xrcv_1 = %.2f xrvc_N = %.2f", xsrc[k], xrcv[k*nx+0], xrcv[k*nx+nx-1]);
break;
}
iox = 0; inx = nx;
/*================ SYNTHESIS ================*/
#ifdef _OPENMP
npe = omp_get_max_threads();
/* parallelisation is over number of virtual source positions (Nsyn) */
if (npe > Nsyn) {
vmess("Number of OpenMP threads set to %d (was %d)", Nsyn, npe);
omp_set_num_threads(Nsyn);
}
#endif
#pragma omp parallel default(none) \
shared(iRN, dx, npe, nw, verbose) \
shared(Refl, Nsyn, reci, xrcv, xsrc, xsyn, fxs, nxs, dxs) \
shared(nx, ixa, ixb, dxsrc, iox, inx, k, nfreq, nw_low, nw_high) \
shared(Fop, size, nts, ntfft, scl, ixsrc, stderr) \
private(l, x0, x1, ix, dosrc, j, m, i, ixrcv, sum, rdata, tmp, ts, to)
{ /* start of parallel region */
sum = (complex *)malloc(nfreq*sizeof(complex));
rdata = (float *)calloc(ntfft,sizeof(float));
#pragma omp for
for (l = 0; l < Nsyn; l++) {
ix = k;
x0 = fxs;
x1 = fxs+dxs*nxs;
dosrc = 1;
for (j = 0; j < nfreq; j++) sum[j].r = sum[j].i = 0.0;
for (j = nw_low, m = 0; j <= nw_high; j++, m++) {
for (i = iox; i < inx; i++) {
ixrcv = NINT((xrcv[k*nx+i]-fxs)/dxs);
tmp = Fop[l*nw*nxs+m*nxs+ixrcv];
sum[j].r += Refl[k*nw*nx+m*nx+i].r*tmp.r -
Refl[k*nw*nx+m*nx+i].i*tmp.i;
sum[j].i += Refl[k*nw*nx+m*nx+i].i*tmp.r +
Refl[k*nw*nx+m*nx+i].r*tmp.i;
}
}
#pragma omp critical
{
cr1fft(sum, rdata, ntfft, 1);
}
/* dx = receiver distance */
for (j = 0; j < nts; j++)
iRN[l*size+ix*nts+j] += rdata[j]*scl*dx;
} /* end of parallel Nsyn loop */
free(sum);
free(rdata);
#pragma omp single
{
#ifdef _OPENMP
npe = omp_get_num_threads();
#endif
}
} /* end of parallel region */
if (verbose>3) vmess("*** Shot gather %d processed ***", k);
} /* end of nshots (k) loop */
t = wallclock_time() - t0;
if (verbose) {
vmess("OMP: parallel region = %f seconds (%d threads)", t, npe);
}
return;
}
void synthesisPosistions(int nx, int nt, int nxs, int nts, float dt, float *xsyn, int Nsyn, float *xrcv, float *xsrc, float fxs2, float fxs, float dxs, float dxsrc, float dx, int ixa, int ixb, int reci, int nshots, int *ixpossyn, int *npossyn, int verbose)
{
int nfreq, size, iox, inx;
float scl;
int i, j, l, m, ixsrc, ix, ixrcv, dosrc, k;
float *rdata, *p, **dum, x0, x1;
static double t0, t1, tfft, t;
complex *sum, *cdata, tmp, ts, to;
int npe;
/*================ SYNTHESIS ================*/
for (l = 0; l < 1; l++) { /* assuming all synthesis operators cover the same lateral area */
// for (l = 0; l < Nsyn; l++) {
*npossyn=0;
for (k=0; k<nshots; k++) {
ixsrc = NINT((xsrc[k] - fxs)/dxs);
if (verbose>=3) {
vmess("source position: %.2f in operator %d", xsrc[k], ixsrc);
vmess("receiver positions: %.2f <--> %.2f", xrcv[k*nx+0], xrcv[k*nx+nx-1]);
}
if ((NINT(xsrc[k]-fxs2) > 0) || (NINT(xrcv[k*nx+nx-1]-fxs2) > 0) ||
(NINT(xrcv[k*nx+nx-1]-fxs) < 0) || (NINT(xsrc[k]-fxs) < 0) ||
(NINT(xrcv[k*nx+0]-fxs) < 0) || (NINT(xrcv[k*nx+0]-fxs2) > 0) ) {
vwarn("source/receiver positions are outside synthesis model");
vwarn("integration calculation is stopped at gather %d", k);
vmess("xsrc = %.2f xrcv_1 = %.2f xrvc_N = %.2f", xsrc[k], xrcv[k*nx+0], xrcv[k*nx+nx-1]);
break;
}
iox = 0; inx = nx;
if (ixa || ixb) {
if (reci == 0) {
x0 = xsyn[l]-ixb*dxsrc;
x1 = xsyn[l]+ixa*dxsrc;
if ((xsrc[k] < x0) || (xsrc[k] > x1)) continue;
ix = NINT((xsrc[k]-x0)/dxsrc);
dosrc = 1;
}
else if (reci == 1) {
x0 = xsyn[l]-ixb*dxs;
x1 = xsyn[l]+ixa*dxs;
if (((xsrc[k] < x0) || (xsrc[k] > x1)) &&
(xrcv[k*nx+0] < x0) && (xrcv[k*nx+nx-1] < x0)) continue;
if (((xsrc[k] < x0) || (xsrc[k] > x1)) &&
(xrcv[k*nx+0] > x1) && (xrcv[k*nx+nx-1] > x1)) continue;
if ((xsrc[k] < x0) || (xsrc[k] > x1)) dosrc = 0;
else dosrc = 1;
ix = NINT((xsrc[k]-x0)/dxs);
}
else if (reci == 2) {
if (NINT(dxsrc/dx)*dx != NINT(dxsrc)) dx = dxs;
x0 = xsyn[l]-ixb*dx;
x1 = xsyn[l]+ixa*dx;
if ((xrcv[k*nx+0] < x0) && (xrcv[k*nx+nx-1] < x0)) continue;
if ((xrcv[k*nx+0] > x1) && (xrcv[k*nx+nx-1] > x1)) continue;
}
}
else {
ix = k;
x0 = fxs;
x1 = fxs+dxs*nxs;
dosrc = 1;
}
if (reci == 1 && dosrc) ix = NINT((xsrc[k]-x0)/dxs);
if (reci < 2 && dosrc) {
ixpossyn[*npossyn]=ixsrc;
*npossyn += 1;
}
// fprintf(stderr,"ixpossyn[%d] = %d ixsrc=%d ix=%d\n", *npossyn-1, ixpossyn[*npossyn-1], ixsrc, ix);
if (reci == 1 || reci == 2) {
for (i = iox; i < inx; i++) {
if ((xrcv[k*nx+i] < x0) || (xrcv[k*nx+i] > x1)) continue;
if (reci == 1) ix = NINT((xrcv[k*nx+i]-x0)/dxs);
else ix = NINT((xrcv[k*nx+i]-x0)/dx);
ixpossyn[*npossyn]=ix;
*npossyn += 1;
}
}
} /* end of Nsyn loop */
} /* end of nshots (k) loop */
return;
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment