Skip to content
Snippets Groups Projects
Commit 26a4cf57 authored by Frans van der Meer's avatar Frans van der Meer
Browse files

Clean up derivation

parent 7d6bd7ff
No related branches found
No related tags found
1 merge request!23GA 2.2 Report from Isabel
......@@ -34,49 +34,49 @@ $$
\frac{\partial u}{\partial t} = \nu \nabla^{2} u + q
$$
1. integrate and introduce weight functions
1. Integrate and introduce weight functions
$$
\int_{\Omega} w \frac{\partial u}{\partial t} d\Omega = \int_{\Omega} w \nu \nabla^2 u d\Omega + \int_{\Omega} wq d\Omega
$$
2. Integration by parts: changing the second derivative, changing sign and introducing boundary condition
2. Integration by parts: changing the second derivative, changing sign and introducing boundary condition (not necessary for the term with time-derivative)
$$
\int_{\Omega} w \frac{\partial u}{\partial t} d\Omega = - \int_{\Omega} \nu \nabla w \cdot \nabla u d\Omega + \int_{\Gamma} w \mu \nabla u \cdot \bar{n} d\Gamma + \int_{\Omega} w q d\Omega
$$
3. substitute boundary condition (w= 0 on $\Gamma_D$ and $\mu \nabla u \cdot \mathbf{n}$ on $\Gamma_N$):
3. Substitute boundary condition (w= 0 on $\Gamma_D$ and $\mu \nabla u \cdot \mathbf{n}$ on $\Gamma_N$) (not necessary for the term with time-derivative):
$$\int_{\Omega} w \frac{\partial u}{\partial t} d\Omega + \int_{\Omega} \nu \nabla w \cdot \nabla u d\Omega = \int_{\Gamma N} w h d\Gamma_N + \int_{\Omega} w q d\Omega$$
4. discretization:
4. Discretization:
$$
u^h = N\mathbf{u}
u^h = \mathbf{N}\mathbf{u}
$$
$$w^h = N\mathbf{w}$$
$$w^h = \mathbf{N}\mathbf{w}$$
$$\nabla u^h = B\mathbf{u}$$
$$\nabla w^h = B\mathbf{w}$$
$$\nabla u^h = \mathbf{B}\mathbf{u}$$
$$\nabla w^h = \mathbf{B}\mathbf{w}$$
5. Substitute and take $\mathbf{u,w}$ out of the integral as they don't depend on x and y
5. Substitute and take $\mathbf{u,w}$ out of the integral as they don't depend on $x$ and $y$
$$
\mathbf{w^T} \int_{\Omega} N^T N d\Omega \frac{\partial u}{\partial t} + \mathbf{w^T} \int_{\Omega} \nu B^T B d\Omega \mathbf{u} = \mathbf{w^T} \int_{\Gamma N} N^T h d\Gamma_N + w^T \int_{\Omega} N^T q d\Omega
\mathbf{w^T} \int_{\Omega} N^T N d\Omega \frac{\partial \mathbf{u}}{\partial t} + \mathbf{w^T} \int_{\Omega} \nu B^T B d\Omega \mathbf{u} = \mathbf{w^T} \int_{\Gamma N} N^T h d\Gamma_N + w^T \int_{\Omega} N^T q d\Omega
$$
6. "Devide" by $w^T$
6. Eliminate $w^T$
$$ \int_{\Omega} N^T N d\Omega \frac{\partial u}{\partial t}+ \int_{\Omega} \nu B^T B d\Omega \mathbf{u} = \int_{\Gamma N} N^T h d\Gamma_N + \int_{\Omega} N^T q d\Omega
$$ \int_{\Omega} N^T N d\Omega \frac{\partial \mathbf{u}}{\partial t}+ \int_{\Omega} \nu B^T B d\Omega \mathbf{u} = \int_{\Gamma N} N^T h d\Gamma_N + \int_{\Omega} N^T q d\Omega
$$
7. write as a system of equations:
$$
M \frac{\partial u}{\partial t} + \mathbf{K u} = \mathbf{q}$$
\mathbf{M} \frac{\partial \mathbf{u}}{\partial t} + \mathbf{K u} = \mathbf{q}$$
$$ \mathbf{M \dot{u}} + \mathbf{K u} = \mathbf{q}$$
......@@ -293,4 +293,4 @@ _Use this space to let us know if you encountered any issues completing this ass
**End of file.**
<span style="font-size: 75%">
&copy; Copyright 2024 <a rel="MUDE" href="http://mude.citg.tudelft.nl/">MUDE</a>, TU Delft. This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by/4.0/">CC BY 4.0 License</a>.
\ No newline at end of file
&copy; Copyright 2024 <a rel="MUDE" href="http://mude.citg.tudelft.nl/">MUDE</a>, TU Delft. This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by/4.0/">CC BY 4.0 License</a>.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment