Skip to content
Snippets Groups Projects
Commit 8f6f1a37 authored by Frans van der Meer's avatar Frans van der Meer
Browse files

Add some mathbfs

parent e7abaaf9
No related branches found
No related tags found
1 merge request!23GA 2.2 Report from Isabel
......@@ -64,12 +64,12 @@ $$\nabla w^h = \mathbf{B}\mathbf{w}$$
5. Substitute and take $\mathbf{u,w}$ out of the integral as they don't depend on $x$ and $y$
$$
\mathbf{w^T} \int_{\Omega} N^T N d\Omega \frac{\partial \mathbf{u}}{\partial t} + \mathbf{w^T} \int_{\Omega} \nu B^T B d\Omega \mathbf{u} = \mathbf{w^T} \int_{\Gamma N} N^T h d\Gamma_N + w^T \int_{\Omega} N^T q d\Omega
\mathbf{w^T} \int_{\Omega} \mathbf{N}^T \mathbf{N} d\Omega \frac{\partial \mathbf{u}}{\partial t} + \mathbf{w^T} \int_{\Omega} \nu \mathbf{B}^T \mathbf{B} d\Omega \mathbf{u} = \mathbf{w^T} \int_{\Gamma \mathbf{N}} \mathbf{N}^T h d\Gamma_\mathbf{N} + \mathbf{w}^T \int_{\Omega} \mathbf{N}^T q d\Omega
$$
6. Eliminate $w^T$
6. Eliminate $\mathbf{w}^T$
$$ \int_{\Omega} N^T N d\Omega \frac{\partial \mathbf{u}}{\partial t}+ \int_{\Omega} \nu B^T B d\Omega \mathbf{u} = \int_{\Gamma N} N^T h d\Gamma_N + \int_{\Omega} N^T q d\Omega
$$ \int_{\Omega} \mathbf{N}^T \mathbf{N} d\Omega \frac{\partial \mathbf{u}}{\partial t}+ \int_{\Omega} \nu \mathbf{B}^T \mathbf{B} d\Omega \mathbf{u} = \int_{\Gamma \mathbf{N}} \mathbf{N}^T h d\Gamma_\mathbf{N} + \int_{\Omega} \mathbf{N}^T q d\Omega
$$
......@@ -165,7 +165,7 @@ $$
The derivatives $b_i$ and $c_i$ are constants because $N_i$ is linear, and the derivative removes the dependence on $x$ and $y$.
The $\mathbf{B}$-matrix is therefore constant within a single element and does not vary with $x$ or $y$. This simplifies the computation of the stiffness matrix $\mathbf{K}_e$ because $\mathbf{B}^T \nu \mathbf{B}$ remains constant and only needs to be multiplied by the area of the triangle.
The $\mathbf{B}$-matrix is therefore constant within a single element and does not vary with $x$ or $y$. This simplifies the computation of the stiffness matrix $\mathbf{K}$ because $\mathbf{B}^T \nu \mathbf{B}$ remains constant and only needs to be multiplied by the area of the triangle.
**Question 4: Shape functions**
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment