tables.Rmd 19.80 KiB
library(data.table)
library(kableExtra)
res_path <- "results/"
files <- list.files(res_path)
dt <- lapply(files[grepl("_bmk.csv", files)], function(x) {
fread(file.path(res_path, x))
})
dt <- Reduce(function(x,y) {rbind(x,y, fill=TRUE)}, dt)
dt[,ce:=NULL]
synth <- c("Moons", "Circles", "Linearly Separable")
tabular <- c("GMSC", "German Credit", "California Housing")
dt[,source:=ifelse(dataname %in% synth, "synthetic", ifelse(dataname %in% tabular, "tabular", "vision"))]
# Generator names
dt[,generator:=factor(generator)]
levels(dt$generator)[match("ECCCo",levels(dt$generator))] <- "ECCCo-L1"
levels(dt$generator)[match("ECCCo (no CP)",levels(dt$generator))] <- "ECCCo-L1 (no CP)"
levels(dt$generator)[match("ECCCo (no EBM)",levels(dt$generator))] <- "ECCCo-L1 (no EBM)"
levels(dt$generator)[match("ECCCo-Δ",levels(dt$generator))] <- "ECCCo"
levels(dt$generator)[match("ECCCo-Δ (latent)",levels(dt$generator))] <- "ECCCo+"
levels(dt$generator)[match("ECCCo-Δ (no CP)",levels(dt$generator))] <- "ECCCo (no CP)"
levels(dt$generator)[match("ECCCo-Δ (no EBM)",levels(dt$generator))] <- "ECCCo (no EBM)"
# Adjust measure names
dt[source=="vision" & variable=="distance_from_targets_ssim", variable:="implausibility"]
dt[source=="vision" & variable=="distance_from_energy_ssim", variable:="unfaithfulness"]
dt[source!="vision" & variable=="distance_from_targets_l2", variable:="implausibility"]
dt[source!="vision" & variable=="distance_from_energy_l2", variable:="unfaithfulness"]
dt[,non_valid:=variable=="validity" & value==0.0,.(sample,dataname,generator,model,target,factual,source)]
dt[,non_valid:=any(non_valid==TRUE),.(sample,dataname,generator,model,target,factual,source)]
dt_valid <- dt[non_valid==FALSE]
generators <- unique(dt$generator)[sapply(unique(dt$generator), function(x) {!grepl("L1",x)})]
tab <- dt[
generator %in% generators,
.(
value=sprintf("%1.2f ± %1.2f", mean(value), sd(value)),
val = mean(value),
std = sd(value)
),
.(dataname, generator, model, variable, source)
]
tab$top_val = F
tab$one_std_wachter = F
tab$two_std_wachter = F
# Measures to be minimized:
min_measures <- c(
"distance",
"implausibility",
"unfaithfulness",
"distance_from_energy",
"distance_from_energy_l2",
"distance_from_targets",
"distance_from_targets_l2",
"set_size_penalty"
)
tab[variable %in% min_measures,top_val:=val==min(val),.(model, dataname, variable)]
tab[variable %in% min_measures,top_val:=ifelse(rep(all(top_val),length(top_val)),F,top_val),.(model, dataname, variable)]
tab[variable %in% min_measures,two_std_wachter:=val+2*std<val[generator=="Wachter"],.(model, dataname, variable)]
tab[variable %in% min_measures,one_std_wachter:=val+1*std<val[generator=="Wachter"],.(model, dataname, variable)]
# Measures to be maximized:
max_measures <- c(
"validity",
"redundancy"
)
tab[variable %in% max_measures,top_val:=val==max(val),.(model, dataname, variable)]
tab[variable %in% max_measures,top_val:=ifelse(rep(all(top_val),length(top_val)),F,top_val),.(model, dataname, variable)]
tab[variable %in% max_measures,two_std_wachter:=val-2*std>val[generator=="Wachter"],.(model, dataname, variable)]
tab[variable %in% max_measures,one_std_wachter:=val-1*std>val[generator=="Wachter"],.(model, dataname, variable)]
# Add conditional formatting:
tab$value <- cell_spec(tab$value, "latex", bold=tab$top_val)
tab[one_std_wachter==T,value:=paste0(value,"*")]
tab[one_std_wachter==F,value:=paste0(value,"\\hphantom{*}")]
tab[two_std_wachter==T,value:=paste0(value,"*")]
tab[two_std_wachter==F,value:=paste0(value,"\\hphantom{*}")]
# Remove redundant columns:
tab[,val:=NULL]
tab[,std:=NULL]
tab[,top_val:=NULL]
tab[,two_std_wachter:=NULL]
tab[,one_std_wachter:=NULL]
generators <- unique(dt$generator)[sapply(unique(dt$generator), function(x) {!grepl("L1",x)})]
tab_valid <- dt_valid[
generator %in% generators,
.(
value=sprintf("%1.2f ± %1.2f", mean(value), sd(value)),
val = mean(value),
std = sd(value)
),
.(dataname, generator, model, variable, source)
]
tab_valid$top_val = F
tab_valid$one_std_wachter = F
tab_valid$two_std_wachter = F
# Measures to be minimized:
min_measures <- c(
"distance",
"implausibility",
"unfaithfulness",
"distance_from_energy",
"distance_from_energy_l2",
"distance_from_targets",
"distance_from_targets_l2",
"set_size_penalty"
)
tab_valid[variable %in% min_measures,top_val:=val==min(val),.(model, dataname, variable)]
tab_valid[variable %in% min_measures,top_val:=ifelse(rep(all(top_val),length(top_val)),F,top_val),.(model, dataname, variable)]
tab_valid[variable %in% min_measures,two_std_wachter:=val+2*std<val[generator=="Wachter"],.(model, dataname, variable)]
tab_valid[variable %in% min_measures,one_std_wachter:=val+1*std<val[generator=="Wachter"],.(model, dataname, variable)]
# Measures to be maximized:
max_measures <- c(
"validity",
"redundancy"
)
tab_valid[variable %in% max_measures,top_val:=val==max(val),.(model, dataname, variable)]
tab_valid[variable %in% max_measures,top_val:=ifelse(rep(all(top_val),length(top_val)),F,top_val),.(model, dataname, variable)]
tab_valid[variable %in% max_measures,two_std_wachter:=val-2*std>val[generator=="Wachter"],.(model, dataname, variable)]
tab_valid[variable %in% max_measures,one_std_wachter:=val-1*std>val[generator=="Wachter"],.(model, dataname, variable)]
# Add conditional formatting:
tab_valid$value <- cell_spec(tab_valid$value, "latex", bold=tab_valid$top_val)
tab_valid[one_std_wachter==T,value:=paste0(value,"*")]
tab_valid[one_std_wachter==F,value:=paste0(value,"\\hphantom{*}")]
tab_valid[two_std_wachter==T,value:=paste0(value,"*")]
tab_valid[two_std_wachter==F,value:=paste0(value,"\\hphantom{*}")]
# Remove redundant columns:
tab_valid[,val:=NULL]
tab_valid[,std:=NULL]
tab_valid[,top_val:=NULL]
tab_valid[,two_std_wachter:=NULL]
tab_valid[,one_std_wachter:=NULL]
Main tables
# Choices:
measures <- c(
"unfaithfulness",
"implausibility",
"set_size_penalty"
)
measure_names <- c(
"Unfaithfulness ↓",
"Implausibility ↓",
"Uncertainty ↓"
)
chosen_source <- "tabular"
# Order:
chosen_data <- c(
"California Housing",
"GMSC"
)
chosen_model <- c(
"MLP",
"JEM Ensemble"
)
tab_i <- tab
# Logic:
tab_i <- tab_i[variable %in% measures]
tab_i[,variable:=factor(variable, levels=measures)]
tab_i <- tab_i[dataname %in% chosen_data]
tab_i <- tab_i[model %in% chosen_model]
tab_i[,model:=factor(model,levels=chosen_model)]
tab_i[,dataname:=factor(dataname,levels=chosen_data)]
tab_i <- dcast(tab_i, model + generator ~ dataname + variable)
col_names <- c(
"Model",
"Generator",
rep(measure_names,length(chosen_data))
)
caption <- sprintf(
"Results for %s datasets: sample averages +/- one standard deviation across counterfactuals. Best outcomes are highlighted in bold. Asterisks indicate that the given value is more than one (*) or two (**) standard deviations away from the baseline (\\textit{Wachter}). \\label{tab:results-%s} \\newline",
chosen_source,
chosen_source
)
file_name <- sprintf(
"paper/contents/table-%s.tex",
chosen_source
)
sub_header <- rep(length(measures), length(chosen_data))
names(sub_header) <- chosen_data
header <- c(
" " = 2, sub_header
)
line_sep <- c(rep("",length(measures)-1),"\\addlinespace")
algin_cols <- c(rep('l',2),rep('c',ncol(tab_i)-2))
kbl(
tab_i, caption = caption,
align = algin_cols, col.names=col_names, booktabs = T, escape=F,
format="latex", linesep = line_sep, table.env="table*"
) %>%
kable_styling(
latex_options = c("scale_down")
) %>%
kable_paper(full_width = F) %>%
add_header_above(header) %>%
collapse_rows(columns = 1:2, latex_hline = "major", valign = "middle") %>%
save_kable(file_name)
# Choices:
measures <- c(
"unfaithfulness",
"implausibility"
)
measure_names <- c(
"Unfaithfulness ↓",
"Implausibility ↓"
)
chosen_source <- "vision"
# Order:
chosen_data <- c(
"MNIST"
)
chosen_model <- c(
"MLP",
"LeNet-5"
)
tab_i <- tab
# Logic:
tab_i <- tab_i[variable %in% measures]
tab_i[,variable:=factor(variable, levels=measures)]
tab_i <- tab_i[dataname %in% chosen_data]
tab_i <- tab_i[model %in% chosen_model]
tab_i[,model:=factor(model,levels=chosen_model)]
tab_i[,dataname:=factor(dataname,levels=chosen_data)]
tab_i <- dcast(tab_i, model + generator ~ dataname + variable)
col_names <- c(
"Model",
"Generator",
rep(measure_names,length(chosen_data))
)
caption <- sprintf(
"Results for %s dataset. Formatting details are the same as in Table~\\ref{tab:results-tabular}. \\label{tab:results-%s} \\newline",
chosen_source,
chosen_source
)
file_name <- sprintf(
"paper/contents/table-%s.tex",
chosen_source
)
sub_header <- rep(length(measures), length(chosen_data))
names(sub_header) <- chosen_data
header <- c(
" " = 2, sub_header
)
line_sep <- c(rep("",length(measures)-1),"\\addlinespace")
algin_cols <- c(rep('l',2),rep('c',ncol(tab_i)-2))
kbl(
tab_i, caption = caption,
align = algin_cols, col.names=col_names, booktabs = T, escape=F,
format="latex", linesep = line_sep
) %>%
kable_styling(
latex_options = c("scale_down")
) %>%
kable_paper(full_width = F) %>%
add_header_above(header) %>%
collapse_rows(columns = 1:2, latex_hline = "major", valign = "middle") %>%
save_kable(file_name)
Full tables
tab <- dt[
,
.(
value=sprintf("%1.2f ± %1.2f", mean(value), sd(value)),
val = mean(value),
std = sd(value)
),
.(dataname, generator, model, variable, source)
]
tab$top_val = F
tab$one_std_wachter = F
tab$two_std_wachter = F
# Measures to be minimized:
min_measures <- c(
"distance",
"implausibility",
"unfaithfulness",
"distance_from_energy",
"distance_from_energy_l2",
"distance_from_targets",
"distance_from_targets_l2",
"set_size_penalty"
)
tab[variable %in% min_measures,top_val:=val==min(val),.(model, dataname, variable)]
tab[variable %in% min_measures,top_val:=ifelse(rep(all(top_val),length(top_val)),F,top_val),.(model, dataname, variable)]
tab[variable %in% min_measures,two_std_wachter:=val+2*std<val[generator=="Wachter"],.(model, dataname, variable)]
tab[variable %in% min_measures,one_std_wachter:=val+1*std<val[generator=="Wachter"],.(model, dataname, variable)]
# Measures to be maximized:
max_measures <- c(
"validity",
"redundancy"
)
tab[variable %in% max_measures,top_val:=val==max(val),.(model, dataname, variable)]
tab[variable %in% max_measures,top_val:=ifelse(rep(all(top_val),length(top_val)),F,top_val),.(model, dataname, variable)]
tab[variable %in% max_measures,two_std_wachter:=val-2*std>val[generator=="Wachter"],.(model, dataname, variable)]
tab[variable %in% max_measures,one_std_wachter:=val-1*std>val[generator=="Wachter"],.(model, dataname, variable)]
# Add conditional formatting:
tab$value <- cell_spec(tab$value, "latex", bold=tab$top_val)
tab[one_std_wachter==T,value:=paste0(value,"*")]
tab[one_std_wachter==F,value:=paste0(value,"\\hphantom{*}")]
tab[two_std_wachter==T,value:=paste0(value,"*")]
tab[two_std_wachter==F,value:=paste0(value,"\\hphantom{*}")]
# Remove redundant columns:
tab[,val:=NULL]
tab[,std:=NULL]
tab[,top_val:=NULL]
tab[,two_std_wachter:=NULL]
tab[,one_std_wachter:=NULL]
# Measures:
measures <- c(
"unfaithfulness",
"implausibility",
"set_size_penalty",
"distance",
"redundancy",
"validity"
)
measure_names <- c(
"Unfaithfulness ↓",
"Implausibility ↓",
"Uncertainty ↓",
"Cost ↓",
"Redundancy ↑",
"Validity ↑"
)
tab <- tab[variable %in% measures]
tab[,variable:=factor(variable, levels=measures)]
tab_valid <- dt_valid[
,
.(
value=sprintf("%1.2f ± %1.2f", mean(value), sd(value)),
val = mean(value),
std = sd(value)
),
.(dataname, generator, model, variable, source)
]
tab_valid$top_val = F
tab_valid$one_std_wachter = F
tab_valid$two_std_wachter = F
# Measures to be minimized:
min_measures <- c(
"distance",
"implausibility",
"unfaithfulness",
"distance_from_energy",
"distance_from_energy_l2",
"distance_from_targets",
"distance_from_targets_l2",
"set_size_penalty"
)
tab_valid[variable %in% min_measures,top_val:=val==min(val),.(model, dataname, variable)]
tab_valid[variable %in% min_measures,top_val:=ifelse(rep(all(top_val),length(top_val)),F,top_val),.(model, dataname, variable)]
tab_valid[variable %in% min_measures,two_std_wachter:=val+2*std<val[generator=="Wachter"],.(model, dataname, variable)]
tab_valid[variable %in% min_measures,one_std_wachter:=val+1*std<val[generator=="Wachter"],.(model, dataname, variable)]
# Measures to be maximized:
max_measures <- c(
"validity",
"redundancy"
)
tab_valid[variable %in% max_measures,top_val:=val==max(val),.(model, dataname, variable)]
tab_valid[variable %in% max_measures,top_val:=ifelse(rep(all(top_val),length(top_val)),F,top_val),.(model, dataname, variable)]
tab_valid[variable %in% max_measures,two_std_wachter:=val-2*std>val[generator=="Wachter"],.(model, dataname, variable)]
tab_valid[variable %in% max_measures,one_std_wachter:=val-1*std>val[generator=="Wachter"],.(model, dataname, variable)]
# Add conditional formatting:
tab_valid$value <- cell_spec(tab_valid$value, "latex", bold=tab_valid$top_val)
tab_valid[one_std_wachter==T,value:=paste0(value,"*")]
tab_valid[one_std_wachter==F,value:=paste0(value,"\\hphantom{*}")]
tab_valid[two_std_wachter==T,value:=paste0(value,"*")]
tab_valid[two_std_wachter==F,value:=paste0(value,"\\hphantom{*}")]
# Remove redundant columns:
tab_valid[,val:=NULL]
tab_valid[,std:=NULL]
tab_valid[,top_val:=NULL]
tab_valid[,two_std_wachter:=NULL]
tab_valid[,one_std_wachter:=NULL]
# Measures:
measures <- c(
"unfaithfulness",
"implausibility",
"set_size_penalty",
"distance",
"redundancy",
"validity"
)
measure_names <- c(
"Unfaithfulness ↓",
"Implausibility ↓",
"Uncertainty ↓",
"Cost ↓",
"Redundancy ↑",
"Validity ↑"
)
tab_valid <- tab_valid[variable %in% measures]
tab_valid[,variable:=factor(variable, levels=measures)]
Tables (all)
for (name in unique(tab$dataname)) {
data_indicator <- gsub(" ", "-", tolower(unique(name)))
# Choices:
tab_full <- dcast(tab[dataname==name], model + generator ~ variable)
col_names <- c(
"Model",
"Generator",
measure_names
)
algin_cols <- c(rep('l',3),rep('c',ncol(tab_full)-3))
file_name <- sprintf(
"paper/contents/table-%s.tex",
data_indicator
)
cap <- sprintf(
"All results for %s dataset: sample averages +/- one standard deviation over all counterfactuals. Best outcomes are highlighted in bold. Asterisks indicate that the given value is more than one (*) or two (**) standard deviations away from the baseline (\\textit{Wachter}). \\label{tab:results-%s} \\newline",
name,
data_indicator
)
kbl(
tab_full, caption = cap,
align = "c", col.names=col_names, booktabs = T, escape=F,
format="latex"
) %>%
kable_styling(latex_options = c("scale_down")) %>%
kable_paper(full_width = F) %>%
collapse_rows(columns = 1:2, latex_hline = "custom", valign = "top") %>%
save_kable(file_name)
}
Full table (valid only)
for (name in unique(tab_valid$dataname)) {
data_indicator <- gsub(" ", "-", tolower(unique(name)))
# Choices:
tab_full <- dcast(tab_valid[dataname==name], model + generator ~ variable)
col_names <- c(
"Model",
"Generator",
measure_names
)
algin_cols <- c(rep('l',3),rep('c',ncol(tab_full)-3))
file_name <- sprintf(
"paper/contents/table-%s-valid.tex",
data_indicator
)
cap <- sprintf(
"All results for %s dataset: sample averages +/- one standard deviation over all valid counterfactuals. Best outcomes are highlighted in bold. Asterisks indicate that the given value is more than one (*) or two (**) standard deviations away from the baseline (\\textit{Wachter}). \\label{tab:results-%s-valid} \\newline",
name,
data_indicator
)
kbl(
tab_full, caption = cap,
align = "c", col.names=col_names, booktabs = T, escape=F,
format="latex"
) %>%
kable_styling(latex_options = c("scale_down")) %>%
kable_paper(full_width = F) %>%
collapse_rows(columns = 1:2, latex_hline = "custom", valign = "top") %>%
save_kable(file_name)
}
EBM
files <- list.files(paste0(res_path,"params"))
dt <- lapply(files[sapply(files, function(x) grepl("model_params.csv",x))], function(x) {
fread(file.path(paste0(res_path,"params"), x))
})
dt <- Reduce(function(x,y) {rbind(x,y, fill=TRUE)}, dt)
setcolorder(
dt,
c(
"dataname", "n_obs",
"n_hidden", "n_layers", "activation", "n_ens",
"epochs", "batch_size",
"jem_sampling_steps", "sgld_batch_size", "lambda"
)
)
dataset_order = c(
"Linearly Separable", "Moons", "Circles",
"California Housing", "GMSC", "German Credit",
"MNIST", "Fashion MNIST"
)
dt[,dataname:=factor(dataname, levels=dataset_order)]
dt <- dt[order(dataname)]
dt_ebm <- dt[,.(dataname, jem_sampling_steps, sgld_batch_size, lambda)]
col_names <- c(
"Dataset",
"SGLD Steps", "Batch Size", "$\\lambda$"
)
kbl(
dt_ebm, caption = "EBM hyperparemeter choices for our experiments. \\label{tab:ebmparams} \\newline",
align = "r", col.names=col_names, booktabs = T, escape=F,
format="latex", linesep = ""
) %>%
kable_styling(font_size = 8) %>%
kable_paper(full_width = F) %>%
save_kable("paper/contents/table_ebm_params.tex")
Experimental setup
dt_exp <- dt[,.(dataname, n_obs, n_hidden, n_layers, activation, n_ens, epochs, batch_size)]
col_names <- c(
"Dataset", "Sample Size",
"Hidden Units", "Hidden Layers", "Activation", "Ensemble Size",
"Epochs", "Batch Size"
)
header <- c(" " = 2, "Network Architecture" = 4, "Training" = 2)
kbl(
dt_exp, caption = "Paremeter choices for our experiments. \\label{tab:params} \\newline",
align = "r", col.names=col_names, booktabs = T, escape=F,
format="latex", linesep = ""
) %>%
kable_styling(latex_options = c("scale_down")) %>%
kable_paper(full_width = F) %>%
add_header_above(header) %>%
save_kable("paper/contents/table_params.tex")
dt <- lapply(files[sapply(files, function(x) grepl("generator_params.csv",x))], function(x) {
fread(file.path(paste0(res_path,"params"), x))
})
dt <- Reduce(function(x,y) {rbind(x,y, fill=TRUE)}, dt)
dt[is.na(reg_strength),reg_strength:=0]
dt <- dt[,.(dataname,eta,lambda_1_Δ,lambda_2_Δ,lambda_3_Δ,reg_strength)]
dt[,dataname:=factor(dataname, levels=dataset_order)]
dt <- dt[order(dataname)]
col_names <- c(
"Dataset",
"$\\eta$", "$\\lambda_1$", "$\\lambda_2$", "$\\lambda_3$", "Ridge penalty"
)
kbl(
dt, caption = "Generator hyperparameters: the optimiser step size ($\\eta$); penalty strengths where $\\lambda_1$ applies to all generators but \\textit{Schut} and the other parameter are specific to \\textit{ECCCo}; finally, the strength for the Ridge penalty on energy for \\textit{ECCCo}.\\label{tab:genparams} \\newline",
align = "r", col.names=col_names, booktabs = T, escape=F,
format="latex", linesep = ""
) %>%
kable_styling(font_size = 8) %>%
kable_paper(full_width = F) %>%
save_kable("paper/contents/table_gen_params.tex")
dt <- lapply(files[grepl("_model_performance.csv", files)], function(x) {
fread(file.path(paste0(res_path,"params"), x))
})
dt <- Reduce(function(x,y) {rbind(x,y, fill=TRUE)}, dt)
dt[,dataname:=factor(dataname, levels=dataset_order)]
dt <- dt[order(dataname,mod_name)]
setcolorder(
dt,
c(
"dataname", "mod_name",
"acc", "precision", "f1score"
)
)
col_names <- c("Dataset", "Model", "Accuracy", "Precision", "F1-Score")
kbl(
dt, caption = "Various standard performance metrics for our different models grouped by dataset. \\label{tab:perf} \\newline",
align = "r", col.names=col_names, booktabs = T, escape=F,
format="latex", digits=2, linesep = ""
) %>%
kable_styling(font_size = 8) %>%
kable_paper(full_width = F) %>%
add_header_above(c(" "=2, "Performance Metrics" = 3)) %>%
collapse_rows(columns = 1, latex_hline = "custom", valign = "top", custom_latex_hline = 1) %>%
save_kable("paper/contents/table_perf.tex")