california_housing.jl 813 B
counterfactual_data, test_data = train_test_split(load_california_housing(nothing); test_size=TEST_SIZE)
nobs = size(counterfactual_data.X, 2)
# Default builder:
n_hidden = 32
activation = Flux.relu
builder = MLJFlux.@builder Flux.Chain(
Dense(n_in, n_hidden, activation),
Dense(n_hidden, n_hidden, activation),
Dense(n_hidden, n_out),
)
# Number of individuals:
n_ind = N_IND_SPECIFIED ? N_IND : 100
run_experiment(
counterfactual_data, test_data;
dataname="California Housing",
epochs=100,
builder=builder,
α=[1.0, 1.0, 1e-1],
sampling_batch_size=10,
sampling_steps=30,
use_ensembling=true,
opt=Flux.Optimise.Descent(0.05),
n_individuals=n_ind,
min_batch_size=250,
use_variants=true,
Λ=[0.1, 0.2, 0.2],
nsamples=100,
niter_eccco=100
)