Skip to content
Snippets Groups Projects
Additional Programming Concepts in Python.ipynb 49.4 KiB
Newer Older
Gary Steele's avatar
Gary Steele committed
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Additional Programming Concepts in Python\n",
    "\n",
    "In this notebook, you will learn about additional programming concepts in Python. They are not part of the learning objectives of the course, but you may run into them at some point, or wonder what they are, or find them fun and useful if you already have some programming experience. \n",
    "\n",
    "*(Much of this material we wrote up in an earlier version of the notebooks, but then moved here when we tweaked the course to fit in the time we have available.)*\n",
    "\n",
    "## Tuples\n",
    "\n",
    "### What is a tuple?\n",
    "\n",
    "The first more complicated data structure we will discuss is a `tuple`. A tuple is a collection of values inside curved brackets. Here is the basic syntax for making a tuple: \n",
    "\n",
    "```\n",
    "my_tuple = (a, b, c, ...etc...)\n",
    "```\n",
    "\n",
    "As a concrete example, this will create a tuple of three integers:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "(5, 6, 7)\n"
     ]
    }
   ],
   "source": [
    "tup1 = (5,6,7)\n",
    "print(tup1)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Like the other data types we've see, we can see the tuples we create using `%whos`:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Variable   Type     Data/Info\n",
      "-----------------------------\n",
      "tup1       tuple    n=3\n"
     ]
    }
   ],
   "source": [
    "%whos"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Tuples are like lists, but behave a bit differently than python lists. In fact, we've already seen tuples before in the previous notebook when we were looking at `for` loops!\n",
    "\n",
    "If you are given a tuple, you can check how long it by using the `len()` function built into python:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "len(tup1)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Note that tuples do not have to contain integers, they can contain any type of data:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# A tuple of strings\n",
    "str_tup = ('foo', 'bar')\n",
    "print(str_tup)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Different than how numpy arrays are typically used, tuples can even be mixed, with each element of a different type:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "mixed_tup = (1, 1.05, 7+3j, 'foo')\n",
    "print(mixed_tup)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "And you can even have tuples of tuples:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "tup_of_tup = (str_tup, mixed_tup)\n",
    "print(tup_of_tup)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Tuples support all the same indexing and slicing as arrays. "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Tuples can also contain other tuples! If your tuple contains another tuple, like the example `tup_of_tup`, you can use the square brackets a second time to index into the tuple you extract by the first set of square brackets:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print(tup_of_tup)\n",
    "print(tup_of_tup[0])\n",
    "print(tup_of_tup[0][0])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Looping over tuples without using indices\n",
    "\n",
    "As mentioned briefly in Notebook 2, python `for` loops can also directly iterate over \"iteratable\" objects. \n",
    "\n",
    "The `tuple` (along with lists, which we will see in a bit, and numpy arrays, which we will see in the next notebook), is one such iteratable objecte. \n",
    "\n",
    "For example, to print all of entries of a `tuple` out in order, we can use directly following:\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "for n in tup1:\n",
    "    print(n)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "During each subsequent iteartion of the loop, the variable `n` will be assigned to the next item that is stored in the tuple. "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Lists\n",
    "\n",
Gary Steele's avatar
Gary Steele committed
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
    "In this section, we will introduce a very commonly used data structure in python: the `list`. \n",
    "\n",
    "A list is a list of values, like a `tuple`, but that is made using square brackets:\n",
    "\n",
    "```\n",
    "my_list = [a, b, c, ...etc...]\n",
    "```"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "l1 = list(range(10))\n",
    "l1"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Like tuples, you can extract single elements of the list using indexing, and extract portions of the list using slicing:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print(l1[0])\n",
    "print(l1[0:5])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "OK, so far so good. But if I have `tuple`, why would I ever want a list?\n",
    "\n",
    "### Lists vs tupples: Tupples are \"immutable\", lists are \"mutable\"\n",
    "\n",
    "This is a bit of python-speak for saying that you cannot change the values of a tupple, but you can change the values of a list.\n",
    "\n",
    "What does this mean? It means if I have a list `[5,6,7]` and I want to change the last number in my list to an 8, I can just directly do this:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "l1 = [5,6,7]\n",
    "l1[2] = 8"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "If I try this with a tuple, I will find that I can't do it!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "ename": "TypeError",
     "evalue": "'tuple' object does not support item assignment",
     "output_type": "error",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mTypeError\u001b[0m                                 Traceback (most recent call last)",
      "\u001b[1;32m<ipython-input-3-9c8e47fcf882>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[0;32m      1\u001b[0m \u001b[0mt1\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m(\u001b[0m\u001b[1;36m5\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m6\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m7\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0mt1\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m2\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;36m8\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
      "\u001b[1;31mTypeError\u001b[0m: 'tuple' object does not support item assignment"
     ]
    }
   ],
   "source": [
    "t1 = (5,6,7)\n",
    "t1[2] = 8"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Because of this functionality, **lists are much more powerful as we can change them once we've made them!**\n",
    "\n",
    "In addition to changing lists by individual indexing, we can also change whole parts of the list using slicing:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "l2 = list(range(10))\n",
    "print(l2)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Replace three entries by zeros\n",
    "l2 = list(range(10))\n",
    "l2[4:7] = [0,0,0]\n",
    "print(l2)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Remove entries from a list by replacing them with an empty list []\n",
    "l2 = list(range(10))\n",
    "l2[4:7] = [] \n",
    "print(l2)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Functions for manipulating lists\n",
    "\n",
    "In fact, our list object itself has functions built in that allow you to change it! Some examples of things we can do:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# This will add an element to the end of the list\n",
    "l1.append(10)\n",
    "l1"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# This will remove an element from the end of the list\n",
    "l1.pop()\n",
    "l1"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "There are many more functions built into lists, some of which you can find here:\n",
    "\n",
    "https://docs.python.org/3/tutorial/datastructures.html"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### The problem with lists for scientific computing\n",
    "\n",
    "Lists look an awful lot like numpy arrays: why don't we just use lists? \n",
    "\n",
    "In scientific computing, it is very common to want to perform numerical operations on <a href=https://en.wikipedia.org/wiki/Row_and_column_vectors>vectors and matrices</a> of numbers. And also, many times in experiments, the data you will take will be represented by a vector of numbers: for example, the position of a particle as a function of time.\n",
    "\n",
    "A vector is a collection of numbers in a one-dimentional array:\n",
    "\n",
    "$$\n",
    "x = [1, 2, 3, 4, 5]\n",
    "$$\n",
    "\n",
    "In Notebook 3, we already introduced python `list`s. A list is also a vector, right? It certainly looks the same! Why do we need something new? \n",
    "\n",
    "The reason we need something new is that python `list`s are not designed to work in the same way as we expect vectors to from our mathematics classes. For example, in math:\n",
    "\n",
    "$$\n",
    "2x = [2,4,6,8,10]\n",
    "$$\n",
    "\n",
    "Let's check if this works with lists"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[1, 2, 3, 4, 5, 1, 2, 3, 4, 5]\n"
     ]
    }
   ],
   "source": [
    "l = [1, 2, 3, 4, 5]\n",
    "print(2*l)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This certainly does something, but it does not do what we want! It has made the list twice as long by appending two of them together!\n",
    "\n",
    "Also addition and subtraction doesn't work like we would expect:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print(l+l)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Addition makes the list twice as long? And:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "print(l-l)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "And subtraction doesn't work at all...clearly, although they look a lot like vectors, in terms of mathematics, lists do not act much like vectors. This is one of the reasons numpy arrays were created."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Dictionaries\n",
    "\n",
    "Another useful data type in python is a \"dictionary\":\n",
    "\n",
    "https://docs.python.org/3/tutorial/datastructures.html#dictionaries\n",
    "\n",
    "At a basic level, a dictionary is a bit like a list that supports non-numeric indices. Dictionaries can be created using the curly brackets in python `{` and `}`. \n",
    "\n",
    "Here we will create an empty dictionary and start filling it:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "delft_lunch_rating = {}\n",
    "delft_lunch_rating['greek olive'] = 10\n",
    "delft_lunch_rating['brandmeester'] = 7\n",
    "delft_lunch_rating['aula'] = \"expensive\"\n",
    "delft_lunch_rating['citg'] = \"bad\"\n",
    "delft_lunch_rating['doner'] = \"good but a bit salty\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This is what our dictionary looks like:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'greek olive': 10, 'brandmeester': 7, 'aula': 'expensive', 'citg': 'bad', 'doner': 'good but a bit salty'}\n"
     ]
    }
   ],
   "source": [
    "print(delft_lunch_rating)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "I can then look up values in my dictionary using the \"keys\":"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'expensive'"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "delft_lunch_rating['aula']"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "There are also functions for getting all the keys:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "delft_lunch_rating.keys()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "My dictionaries can also hold lists if I want:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "delft_lunch_rating[\"greek olive\"] = ['good', 10]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Dictionaries are actually a way to implement a basic database in python (I use them in my grading scripts to look up the email addresses and student numbers of a given netid...)\n",
    "\n",
    "And the Jupyter notebook files actually store a list cells, and each cell consist of a dictionary that contains the text of the cell (and other fun things like metadata). You can see this in action using the <a href=https://nbformat.readthedocs.io/en/latest/api.html>nbformat</a> library, you can actually load a notebook file into your python kernel and poke around it to see what it looks like. "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Strings\n",
    "\n",
    "In notebook 1, we already saw strings as variable types. \n",
    "\n",
    "It turns out that strings are not just simple (immutable) variables like `int`s and `float`s: `str`s are actually data structures that are indexable (like `tuple`s and `list`s). \n",
    "\n",
    "Strings are immutable, which means they cannot be changed. But they do have lots of built-in functions that can return a new string (or lots of other things!). \n",
    "\n",
    "Let's look at an example:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "s1 = \"This is a string\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Indexing a string returns the characters of the string:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print(s1[0])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can also slice:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print(s1[0:6])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Strings do not allow you to directly change "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Built-in string functions\n",
    "\n",
    "Strings have a bunch of useful built-in functions: \n",
    "\n",
    "https://docs.python.org/3/library/stdtypes.html#string-methods\n",
    "\n",
    "some of which we will look at here:\n",
    "\n",
    "### Splitting a string\n",
    "\n",
    "Strings have a built-in function `split()`. By default, it will return a list of \"words\" by using whitespaces as the separator:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "s1.split()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Passing `.` as an argument, `split()` will use that as a separator, which is useful for working with filenames:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "input_file = 'myfile.dat'\n",
    "output_file = input_file.split('.')[0]\n",
    "output_file += \"_processed.dat\"\n",
    "print(output_file)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Replacing parts of strings\n",
    "\n",
    "The function `replace()` replace substrings in your string for you:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "s2 = \"This is a long sentence. It is a good idea to end it.\"\n",
    "print(s2)\n",
    "print(s2.replace(\" is\", \" was\"))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Note that without the space, it will also replace the \"is\" in \"This\":"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print(s2)\n",
    "print(s2.replace(\"is\", \"was\"))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Testing for the contents of a string\n",
    "\n",
    "You can check if a substring is found inside a string using the `in` logical operator:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "if \"this\" in \"somewhere in this sentence\":\n",
    "    print(\"We found a 'this'\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# It is case sensitive:\n",
    "if \"this\" in \"This is a sentence\":\n",
    "    print(\"This will not get printed\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# But you can use the .lower() function of a string to do case insensitive checks\n",
    "s3 = \"This is a sentence\"\n",
    "if \"this\" in s3.lower():\n",
    "    print(\"Using .lower(), s3 is converted to all lower-case:\\n\")\n",
    "    print(\"s3.lower = '%s'\\n\" % s3.lower())\n",
    "    print(\"And now we do find the substring 'this'\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Here, we can also see an example of special characters in strings: a `\\n` in a string specifies a \"new line\":\n",
    "\n",
    "https://docs.python.org/3/reference/lexical_analysis.html#strings\n",
    "\n",
    "Note that if you want to print a backslash `\\`, you need to put a double backslash in your string: `\\\\`."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### String formatting\n",
    "\n",
    "Until now, we have been printing values of our variables using the standard `str()` conversion of numbers to strings:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "a = 11/300\n",
    "print(\"The value of a is\", a)\n",
    "\n",
    "# The above print() statement is equivalent to:\n",
    "\n",
    "output = \"The value of a is\"\n",
    "output += \" \"\n",
    "output += str(a)\n",
    "print(output)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "But maybe we don't want so many digits in our text output. Say I want only two digits. How can I do this? \n",
    "\n",
    "For this, python supports \"string formatting\". My personal preference is to work with traditional \"printf-style\" formatting, inherited from the C programming language:\n",
    "\n",
    "https://docs.python.org/3/library/stdtypes.html#printf-style-bytes-formatting\n",
    "\n",
    "It sounds a bit scary at first, but it's actually pretty easy to use. It works by using a special operator `%` that works with strings. \n",
    "\n",
    "To use it, you include a special text in your string that starts with `%`, followed by a sequence of numbers and letters that you use to tell python how you want the string to be formatted. \n",
    "\n",
    "Here are some examples:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Floating point format with 4 digits\n",
    "print(\"The value of a is %.4f\" % a)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Exponential notation with two digits\n",
    "print(\"The value of a is %.2e\" % a)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# A string with the formatting not at the end\n",
    "print(\"The value of a is %.2e seconds\" % a)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Some additional matrix creation routines\n",
    "\n",
    "There are several functions for making matrices which you may find useful someday: \n",
    "\n",
    "https://docs.scipy.org/doc/numpy/reference/routines.array-creation.html\n",
    "\n",
    "including this one which I use often:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# The identity matrix\n",
    "print(np.eye(10))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "# A band diagonal matrix\n",
    "print(np.eye(10,k=-1))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Mutable objects and \"call by reference\"\n",
    "\n",
    "### The `=` operator\n",
    "\n",
    "Now that we have introduced some more advanced data types, it is time to go back and revisit one of our first topics: the `=` opeartor.\n",
    "\n",
    "At the start of the first notebook, we introduced the **assignment operator** `=`, and saw that it could be used to give new values to a variable based on the value of another variable:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "a = 5\n",
    "b = a\n",
    "print(b)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "What happens if we change the value of `a` after the statment `b = a`? For example:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "a = 5\n",
    "b = a\n",
    "a = 6"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "What value does `b` have? Does it have the value of `5` that `a` had when we performed the assignment operation, or does it have `6` (the new values of `a`)?  \n",
    "\n",
    "The obvious answer would be that `b` should have the answer `5`, right? Let's check it:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "5\n"
     ]
    }
   ],
   "source": [
    "a = 5\n",
    "b = a\n",
    "a = 6\n",
    "print(b)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "OK, that seems to make sense. \n",
    "\n",
    "Now let's take a look at and examples with lists. We will create a list `a`, using the assignment operator to make a list variable `b = a`, and then change the values in the list `a`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "a = [2,1]\n",
    "b = a\n",
    "a[0] = 1"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now question: did `a[0] = 1` change the value of of `b`? Let's check:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[1, 1]\n"
     ]
    }
   ],
   "source": [
    "print(b)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Changing the values of `a` also changed list `b` for some reason? **WHY!!!!?????!!! WHAT IS GOING ON?!!?**\n",
    "\n",
    "### \"Call by value\" and \"Call by reference\"\n",
    "\n",
    "To understand what is going on here, we have to understand how computer programs store variables and their values. \n",
    "\n",
    "When I create a variable `a` in a python by giving it a value `5`, for example, python creates a space in your computers memory where it puts the value `5` and then makes a name for that variable `a` in the kernel's list of variables that points to that spot in memory. \n",
    "\n",
    "For some types of objects in python, specifically \"immutable\" (\"unchangeable\") object types, when you execute the statement `b = a`, python will create a new spot in your computers memory for variable `b`, copy the value `5` into that memory spot, and then makes variable `b` point to this new spot in the kernel's list of variables. \n",
    "\n",
    "This procedure is called \"call by value\" in programming languages, and is illustrated here: \n",
    "\n",
    "<img src=\"call_by_value.png\"></img>\n",
    "\n",
    "For \"mutable\" objects, python uses a different concept: \"call by reference\". In call by reference, `b = a` instead does the following: it make a new variable `b` in the list of variables, and make it point to the spot in memory where variable `a` is stored, illustrated here:\n",
    "\n",
    "<img src=\"call_by_reference.png\"></img>\n",
    "\n",
    "It is now obvious why changing the values in `a` will also changes the values in `b`: it is because they point to the same data in your computers memory.\n",
    "\n",
    "\"Call by reference\" also holds for when you are passing variables to functions:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[0, 2]\n"
     ]
    }
   ],
   "source": [
    "def set_first_entry_to_zero(x):\n",
    "    x[0] = 0\n",
    "\n",
    "a = [1,2]\n",
    "set_first_entry_to_zero(a)\n",
    "print(a)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can see that our function changed the value of the variable mylist! This was not possible with integers for example:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "1\n"
     ]
    }
   ],
   "source": [
    "def set_to_zero(x):\n",
    "    x = 0\n",
    "\n",
    "a = 1\n",
    "set_to_zero(a)\n",
    "print(a)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Why use \"call by reference\" at all? I find it confusing!\n",
    "\n",
    "You might ask: why python does this? Well, one reason is that it is that lists, and in particular numpy arrays that we will look at next, can sometime become very big, taking up 100 MB of memory or more. If python used \"call by value\" for such big things all the time, it would use up massive amounts of memory! Every function call or assignment statement would accdientally use up another 100 MB of memory! By using \"call by reference\", it can avoid accidentally filling up your computers memory every time you use the `=` operator. \n",
    "\n",
    "If you really want to have a *copy* of a list (or a numpy array), these objects typically have `copy()` functions built in that return instead a copy of the object, for when you really need one. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "a = [2,1]\n",
    "b = a.copy()\n",
    "print(b)\n",
    "a[0] = 1\n",
    "print(b)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now, `b` is unaffected by your changes to `a` because the name `b` points to a new copy of the array in memory."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Interactive plots with ipywidgets\n",
    "\n",
    "One of the cool things that is easy to do in Jupter notebooks is to make \"interactive\" plots. \n",
    "\n",
    "For example, in the projectile example above, I may want to be able to play with the angle and see how this changes my trajectory. For this, there is a very easy to use and convenient library called `ipywidgets`.\n",
    "\n",
    "The way it works is we make a function that generates our plot that takes the parameter we want to play with as an argument. We then call an `ipywidgets` function called `interact()`, and it will automatically make a \"live update\" plot in your web browser in which you can adjust the parameter an see how the plot changes. \n",
    "\n",
    "Let's look at an example:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from ipywidgets import interact\n",
    "\n",
    "v0 = 10 # m/s\n",
    "g = 9.8 # m/s^2\n",
    "\n",
    "# We will allow theta to be adjusted and start it at 45 degrees\n",
    "def update_plot(theta=45):\n",
    "    theta *= np.pi/180 # convert to radians\n",
    "    y = -g/(2*v0**2*np.cos(theta)**2)*x**2 + x*np.tan(theta)\n",
    "    plt.plot(x,y)\n",
    "    plt.ylim(-1,6) # Manually set the ylimits\n",
    "    plt.xlabel(\"Distance (m)\")\n",
    "    plt.ylabel(\"Height (m)\")\n",
    "    plt.axhline(0, ls=\":\", c=\"grey\")\n",
    "    plt.show()\n",
    "    \n",
    "# Now we call interact, and give it a tuple specifiying the min, max and step for the theta slider\n",
    "interact(update_plot, theta=(0,89,2))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "It is a bit slow in updating if you wiggle it too much with the mouse, but if you click on the slider and adjust it using the arrow keys on your keyboard, it works pretty well. \n",
    "\n",
    "If you are fitting a line to your data, this can also be very useful for getting a good initial guess:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def update_plot2(slope=0.5):\n",
    "    line = t*slope\n",
    "    plt.plot(t,v, '.')\n",
    "    plt.plot(t,line, lw=4)\n",
    "    plt.xlabel(\"Time (s)\")\n",
    "    plt.ylabel(\"Voltage (V)\")\n",
    "    plt.show()\n",
    "\n",
    "interact(update_plot2, slope=(0,10,0.1))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "It is also easy to make two sliders:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def update_plot3(slope=0.5, offset=0):\n",
    "    line = t*slope+offset\n",
    "    plt.plot(t,v, '.')\n",
    "    plt.plot(t,line, lw=4)\n",
    "    plt.xlabel(\"Time (s)\")\n",
    "    plt.ylabel(\"Voltage (V)\")\n",
    "    plt.show()\n",
    "\n",
    "interact(update_plot3, slope=(0,10,0.1), offset=(-4,3,0.2))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Functions\n",
    "\n",
    "### Keyword and optional arguments\n",
    "\n",
    "In addition to the \"positional\" arguments we introduced earlier, python also supports another type of argument: the \"keyword\" argument. These are often used for \"optional\" arguments that you don't neccessarily need but may want to give the user the option of using. The syntax is:\n",
    "\n",
    "```\n",
    "def function_name(var1, optional_var2 = default_value)\n",
    "    ...\n",
    "```\n",
    "\n",
    "The \"default_value\" is the value that the optional argument will have if it is not specified by the user. \n",
    "\n",
    "In python-speak, these \"optional\" arguement as called \"keyword\" arguments, and the normal arguments we introduced above are called \"positional\" arguments. In python, in both defining and using functions, keyword arguments must always come after all of the positional arguments. \n",
    "\n",
    "Here, we will show an example where we use an optional parameter to change the way we print the status sentence. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The value of the first input variable is  1\n",
      "The value of the first input variable is  2.5\n",
      "Val is  2.4\n"
     ]
    }
   ],
   "source": [
    "def print_status4(x, long=True):\n",
    "    if long:\n",
    "        print(\"The value of the first input variable is \", x)\n",
    "    else:\n",
    "        print(\"Val is \", x)\n",
    "\n",
    "print_status4(1)\n",
    "print_status4(2.5, long=True)\n",
    "print_status4(2.4, long=False)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Because python assigns the value of keyword argument variables in the function by matching the keyword and not their position in the list, if you have multiple keyword arguments, you can also change the order of them when you use the function. \n",
    "\n",
    "For example, if I define a function:\n",
    "\n",
    "```\n",
    "def myfunction(x, var1=1, var2=4):\n",
    "    ...\n",
    "```\n",
    "\n",
    "then both of these would do the same thing:\n",
    "\n",
    "```\n",
    "myfunction(1,var1=3, var2=54)\n",
    "myfunction(1,var2=54, var2=3)\n",
    "```\n",
    "\n",
    "Finally, one can also use keywords as a way to send values to functions even if the functions are not defined with keyword arguments. This allows you to change to order of variables you send to a function if you  want. For example:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [],
   "source": [
    "def myfun(x,y):\n",
    "    print(\"x is\", x)\n",
    "    print(\"y is\", y)    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "x is 1\n",
      "y is 2\n"
     ]
    }
   ],
   "source": [
    "myfun(1,2)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "x is 2\n",
      "y is 1\n"
     ]
    }
   ],
   "source": [
    "myfun(2,1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "x is 1\n",
      "y is 2\n"
     ]
    }
   ],
   "source": [
    "myfun(x=1,y=2)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "x is 1\n",
      "y is 2\n"
     ]
    }
   ],
   "source": [
    "myfun(y=2,x=1)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Python Error Messages with functions\n",
    "\n",
    "In the first notebook, we learned some of the basics of how to understand python errors.\n",
    "\n",
    "Sometimes, though, if you are using functions from a library, the error messages can get very long, and trickier to understand. \n",
    "\n",
    "Here, we will look at how to dissect an example of a more complicated error you can get from a function in a library and how to figure out where the useful information is."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {
    "scrolled": false
   },
   "outputs": [
    {
     "ename": "ValueError",
     "evalue": "x and y must have same first dimension, but have shapes (2,) and (3,)",
     "output_type": "error",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mValueError\u001b[0m                                Traceback (most recent call last)",
      "\u001b[1;32m<ipython-input-11-19f47447b05c>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[0;32m      1\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mmatplotlib\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpyplot\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0mplt\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m2\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m2\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m3\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
      "\u001b[1;32mC:\\Programs\\Anaconda3\\lib\\site-packages\\matplotlib\\pyplot.py\u001b[0m in \u001b[0;36mplot\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m   3356\u001b[0m                       mplDeprecation)\n\u001b[0;32m   3357\u001b[0m     \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 3358\u001b[1;33m         \u001b[0mret\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0max\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m   3359\u001b[0m     \u001b[1;32mfinally\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m   3360\u001b[0m         \u001b[0max\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_hold\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mwashold\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;32mC:\\Programs\\Anaconda3\\lib\\site-packages\\matplotlib\\__init__.py\u001b[0m in \u001b[0;36minner\u001b[1;34m(ax, *args, **kwargs)\u001b[0m\n\u001b[0;32m   1853\u001b[0m                         \u001b[1;34m\"the Matplotlib list!)\"\u001b[0m \u001b[1;33m%\u001b[0m \u001b[1;33m(\u001b[0m\u001b[0mlabel_namer\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfunc\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m__name__\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m   1854\u001b[0m                         RuntimeWarning, stacklevel=2)\n\u001b[1;32m-> 1855\u001b[1;33m             \u001b[1;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0max\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m   1856\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m   1857\u001b[0m         inner.__doc__ = _add_data_doc(inner.__doc__,\n",
      "\u001b[1;32mC:\\Programs\\Anaconda3\\lib\\site-packages\\matplotlib\\axes\\_axes.py\u001b[0m in \u001b[0;36mplot\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m   1525\u001b[0m         \u001b[0mkwargs\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mcbook\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mnormalize_kwargs\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0m_alias_map\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m   1526\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1527\u001b[1;33m         \u001b[1;32mfor\u001b[0m \u001b[0mline\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_get_lines\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m   1528\u001b[0m             \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0madd_line\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mline\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m   1529\u001b[0m             \u001b[0mlines\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mline\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;32mC:\\Programs\\Anaconda3\\lib\\site-packages\\matplotlib\\axes\\_base.py\u001b[0m in \u001b[0;36m_grab_next_args\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m    404\u001b[0m                 \u001b[0mthis\u001b[0m \u001b[1;33m+=\u001b[0m \u001b[0margs\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    405\u001b[0m                 \u001b[0margs\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0margs\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 406\u001b[1;33m             \u001b[1;32mfor\u001b[0m \u001b[0mseg\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_plot_args\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mthis\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m    407\u001b[0m                 \u001b[1;32myield\u001b[0m \u001b[0mseg\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    408\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;32mC:\\Programs\\Anaconda3\\lib\\site-packages\\matplotlib\\axes\\_base.py\u001b[0m in \u001b[0;36m_plot_args\u001b[1;34m(self, tup, kwargs)\u001b[0m\n\u001b[0;32m    381\u001b[0m             \u001b[0mx\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mindex_of\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mtup\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m-\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    382\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 383\u001b[1;33m         \u001b[0mx\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_xy_from_xy\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m    384\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    385\u001b[0m         \u001b[1;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcommand\u001b[0m \u001b[1;33m==\u001b[0m \u001b[1;34m'plot'\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;32mC:\\Programs\\Anaconda3\\lib\\site-packages\\matplotlib\\axes\\_base.py\u001b[0m in \u001b[0;36m_xy_from_xy\u001b[1;34m(self, x, y)\u001b[0m\n\u001b[0;32m    240\u001b[0m         \u001b[1;32mif\u001b[0m \u001b[0mx\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m!=\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    241\u001b[0m             raise ValueError(\"x and y must have same first dimension, but \"\n\u001b[1;32m--> 242\u001b[1;33m                              \"have shapes {} and {}\".format(x.shape, y.shape))\n\u001b[0m\u001b[0;32m    243\u001b[0m         \u001b[1;32mif\u001b[0m \u001b[0mx\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mndim\u001b[0m \u001b[1;33m>\u001b[0m \u001b[1;36m2\u001b[0m \u001b[1;32mor\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mndim\u001b[0m \u001b[1;33m>\u001b[0m \u001b[1;36m2\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    244\u001b[0m             raise ValueError(\"x and y can be no greater than 2-D, but have \"\n",
      "\u001b[1;31mValueError\u001b[0m: x and y must have same first dimension, but have shapes (2,) and (3,)"
     ]
    }
   ],
   "source": [
    "import matplotlib.pyplot as plt\n",
    "plt.plot([1,2], [1,2,3])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Wow, that was a really big error message. What do I do with all of this? \n",
    "\n",
    "The most important information is at the very top and at the very bottom (you can just skip the rest for now...). \n",
    "\n",
    "At the top, it shows us the part of our code that triggered the error:\n",
    "\n",
    "<img src=\"big_error_1.png\"></img>\n",
    "\n",
    "The error type is a `ValueError`, which according to the documentation, indicates \"an argument that has the right type but an inappropriate value\". \n",
    "\n",
    "In the middle there is then a whole bunch of stuff we won't easily understand. What is all of this? This is showing us what is happening inside all the functions of the matplotlib library...probably unless you are a bit of an expert, you will not really understand all of this. \n",
    "\n",
    "We can learn more, though, by looking at the last line:\n",
    "\n",
    "<img src=\"big_error_2.png\"></img>\n",
    "\n",
    "What are `x` and `y`? They are the variable names in the library function in matplotlib where we ended up, so probably also maybe not immediately obvious what they are. But we can see more about the problem: it is complaining that two of the variables do not have the same shape. \n",
    "\n",
    "If we look up at the line in our code that triggered the error, we can see that we have supplied two arguments that have a different number of elements: `plt.plot([1,2], [1,2,3])`\n",
    "\n",
    "It would seem that both the first and second variables of the `plot` function should have the same number of elements. Indeed, if we try:\n",
    "\n",
    "`plt.plot([1,2,3], [1,2,3,])`\n",
    "\n",
    "then the error goes away:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "plt.plot([1,2,3], [1,2,3,])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Learning objectives list\n",
    "\n",
    "Not crucial since this notebook is optional, but maybe useful to have.\n",
    "\n",
    "**Learning objectives for this notebook:**\n",
    "\n",
    "* Student is able to create and index tuples and lists by hand and using the `range()` operator\n",
    "* Student is able to loop over tuples and lists without indexing\n",
    "* Student is able to extract subsets of lists and tuples using slicing\n",
    "* Student is able to change individual entries of a list using indexing and the assignment operator\n",
    "* Student is able to use built-in functions of lists \n",
    "* Student is able to use indexing to extract substrings from a string\n",
    "* Student is able to use built-in string functions\n",
    "* Student is able to split a string into a list of strings using the `.split()` function\n",
    "* Student is able to search in strings using the `in` operator\n",
    "* Student is able to use formating and the `%` opereator to control how variables are translated into strings\n",
    "* Student is able to predict how variables behave differently for \"mutable\" and \"non-mutable\" objects (call-by-value vs. call-by-reference)\n",
    "* Student is able to use the `ipywidgets` `interact()` function to explore functions using sliders\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
Gary Steele's avatar
Gary Steele committed
  "jupytext": {
   "formats": "ipynb,md"
  },
Gary Steele's avatar
Gary Steele committed
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.4"
  },
  "toc": {
   "base_numbering": "1",
   "nav_menu": {},
   "number_sections": true,
   "sideBar": true,
   "skip_h1_title": true,
   "title_cell": "Table of Contents",
   "title_sidebar": "Contents",
   "toc_cell": false,
   "toc_position": {
    "height": "calc(100% - 180px)",
    "left": "10px",
    "top": "150px",
    "width": "303.797px"
   },
   "toc_section_display": true,
   "toc_window_display": true
  },
  "widgets": {
   "application/vnd.jupyter.widget-state+json": {
    "state": {},
    "version_major": 2,
    "version_minor": 0
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}