Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
import geopandas as gpd
import matplotlib.pyplot as plt
import folium
from folium.plugins import HeatMap
from shapely.geometry import Polygon, LineString, Point
import matplotlib as mpl
import numpy as np
import pandas as pd
import datetime
import os
os.environ["RAY_DEDUP_LOGS"] = "0"
import ray
import multiprocessing
import pickle
from tqdm import tqdm
from scipy import stats, sparse
import plotly.express as px
import plotly.graph_objs as go
from scipy.spatial.distance import cdist
try:
from config_mapmatch import *
except ModuleNotFoundError:
raise Warning('config file for map matchingnot found')
def write_log(txt_to_write,txt_file="log.txt", mode="a"):
with open(txt_file, mode) as file:
file.write(txt_to_write)
def generate_color(nb_color):
distinct_colors = []
while len(distinct_colors)<nb_color:
color = tuple(np.random.randint(0, 256, size=3))
if color not in distinct_colors:
distinct_colors.append(color)
hex_colors = ['#%02x%02x%02x' % (r, g, b)
for [r, g, b] in distinct_colors]
return hex_colors
def get_accurate_start_end_point(df, streetmap, edgesDf):
# Here direction is not important
# Because we first projected the points to the edge
# Then we analyzed the direction of the trip
coarse2full_edge = {i:[] for i in edgesDf.index}
full2coarse_edge = dict(streetmap.c_edge)
for full_edge in full2coarse_edge:
coarse_edge = full2coarse_edge[full_edge]
coarse2full_edge[coarse_edge].append(full_edge)
coords = np.asarray([[list(row["geometry"].coords[0]), list(row["geometry"].coords[-1])] for index, row in streetmap.iterrows()])
start = coords[:,0, :]
end = coords[:,1, :]
accu_dist = streetmap["accu_dist"].to_numpy()
full_edge_km = streetmap["km"].to_numpy()
coarse_edge = df["edge"].to_numpy()
travelled_dist = df["km"].to_numpy()*df["frcalong"].to_numpy()
edge_index = []
fracs = []
for i in range(len(coarse_edge)):
max_dist = -1
for j in coarse2full_edge[coarse_edge[i]]:
accu = accu_dist[j]
if accu<=travelled_dist[i] and accu>max_dist:
max_dist = accu
min_edge = j
frac_ = max(0, min(1, (travelled_dist[i]-accu)/full_edge_km[j]))
edge_index.append(min_edge)
fracs.append(frac_)
fracs=np.expand_dims(np.asarray(fracs), axis=-1)
projected_points = start[edge_index]*(1-fracs) + end[edge_index]*fracs
return edge_index, fracs, projected_points[:, 0], projected_points[:, 1]
def tracetable(tracesTable):
df = read_h5(tracesTable)
df = df.sort_values(by=["tripID", "timestamp"])
df["timestamp"] = (df.timestamp-datetime.datetime(2020, 10, 1)).dt.total_seconds()
return df
def distanceLL(distance):
"""Geometric log likelihood function for how to penalize edges that are further from the point
Similar to Newson and Krummer 2009
This can take a scalar or a numpy array"""
# return stats.t(df=20, scale=15).logpdf(distance)+(stats.t(df-20, scale))
# return stats.t(df=20, scale=sigma_z).logpdf(distance)
return (stats.t(df=20, scale=sigma_z).logpdf(distance)-stats.t(df=20, scale=sigma_z).logpdf(dist_threshold)+stats.t(df=20, scale=20).logpdf(dist_threshold))*(distance>=dist_threshold)+stats.t(df=20, scale=20).logpdf(distance)*(distance<dist_threshold)
# return (stats.t(df=20, scale=sigma_z).logpdf(distance)-stats.t(df=20, scale=sigma_t).logpdf(dist_threshold)+stats.t(df=20, scale=15).logpdf(dist_threshold))*(distance>=dist_threshold)+stats.t(df=20, scale=15).logpdf(distance)*(distance<dist_threshold)
def temporalLL(travelcostratio):
"""Log likelihood function for the transition between different edges
Input is ratio of implied speed to speed limit"""
return stats.t(df=20, scale=sigma_t).logpdf(travelcostratio)
def speedLL(speed):
"""Log likelihood function for the transition between different edges
Input is ratio of implied speed to speed limit"""
return stats.norm(loc=6, scale=2).logpdf(speed)*((speed>10).astype(float))#*((speed<3.6).astype(float)+(speed>11).astype(float))
def topologicalLL(distratio):
"""this is the topological log likelihood function, based on the distance ratio between GPS trace and matched line"""
dr = np.maximum(0, np.array(distratio)-1) # distratio can be less than 1 if there is a U-turn, so enforce a minimum
return stats.t(df=20, scale=sigma_topol).logpdf(dr)*topol_weight
# ensures that the two distributions match at 1
temporalLL_ratio = (stats.expon(scale=temporal_scale).logpdf(1)-stats.norm(scale=sigma_t).logpdf(0))
def geo_dist(v1, v2):
# distance by m
R = 6371000
v1, v2 = np.radians(v1), np.radians(v2)
lon1, lat1 = v1[:, :, 0], v1[:, :, 1]
lon2, lat2 = v2[:, :, 0], v2[:, :, 1]
dlat = lat2-lat1
dlon = lon2-lon1
a = np.sin(dlat / 2)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon / 2)**2
c = 2 * np.arctan2(np.sqrt(a), np.sqrt(1 - a))
return R*c
def geo_dist_arr(v1, v2):
# distance by m
R = 6371000
v1, v2 = np.radians(v1), np.radians(v2)
lon1, lat1 = v1[:, 0], v1[:, 1]
lon2, lat2 = v2[:, 0], v2[:, 1]
dlat = lat2-lat1
dlon = lon2-lon1
a = np.sin(dlat / 2)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon / 2)**2
c = 2 * np.arctan2(np.sqrt(a), np.sqrt(1 - a))
return R*c
def geo_dist_single(v1, v2):
# distance by m
R = 6371000
v1, v2 = np.radians(v1), np.radians(v2)
lon1, lat1 = v1
lon2, lat2 = v2
dlat = lat2-lat1
dlon = lon2-lon1
a = np.sin(dlat / 2)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon / 2)**2
c = 2 * np.arctan2(np.sqrt(a), np.sqrt(1 - a))
return R*c
def colorFader(arr, c1="#FFFFFF", c2="#040404"): #fade (linear interpolate) from color c1 (at mix=1) to c2 (mix=0)
mix = (arr-min(arr))/(max(arr)-min(arr))
if max(arr)==min(arr):
mix = np.ones_like(arr)
c1=np.array(mpl.colors.to_rgb(c1))
c2=np.array(mpl.colors.to_rgb(c2))
return [mpl.colors.to_hex(i*c1 + (1-i)*c2) for i in mix]
def store_h5(file_path, data, key="my_dataframe"):
store = pd.HDFStore(file_path)
store[key] = data
store.close()
def read_h5(file_path, time_converse=True, key="my_dataframe"):
store = pd.HDFStore(file_path)
read_data = store[key]
store.close()
if time_converse:
read_data["timestamp"] = pd.to_datetime(read_data["timestamp"])
return read_data
def get_map_dict(map_, raw_dict_path):
puntid_dict_path, idpunt_dict_path, punttype_dict_path, roadtype_dict_path=raw_dict_path+"punt_id.json", raw_dict_path+"id_punt.json", raw_dict_path+"punt_type.json", raw_dict_path+"roadtype.json"
if os.path.exists(puntid_dict_path):
with open(puntid_dict_path, 'rb') as f:
puntid_dict = pickle.load(f)
with open(idpunt_dict_path, 'rb') as f:
idpunt_dict = pickle.load(f)
with open(punttype_dict_path, 'rb') as f:
punttype_dict = pickle.load(f)
with open(roadtype_dict_path, 'rb') as f:
roadtype_dict = pickle.load(f)
print("No new road dictionary is written.")
return puntid_dict, idpunt_dict, punttype_dict, roadtype_dict
puntid_dict, punttype_dict = {}, {}
for index, row in tqdm(map_.iterrows()):
for j in row.geometry.coords:
punt = str(j)
if punt not in puntid_dict:
puntid_dict[punt] = len(puntid_dict)
if puntid_dict[punt] not in punttype_dict:
punttype_dict[puntid_dict[punt]] = [row["type"]]
elif row["type"] not in punttype_dict[puntid_dict[punt]]:
punttype_dict[puntid_dict[punt]].append(row["type"])
idpunt_dict = {puntid_dict[i]:i for i in puntid_dict}
roadtype_dict = {value:i for i, value in enumerate(map_["type"].unique())}
with open(puntid_dict_path, 'wb') as f:
pickle.dump(puntid_dict, f)
with open(idpunt_dict_path, 'wb') as f:
pickle.dump(idpunt_dict, f)
with open(punttype_dict_path, 'wb') as f:
pickle.dump(punttype_dict, f)
with open(roadtype_dict_path, 'wb') as f:
pickle.dump(roadtype_dict, f)
print("New road dictionary is written.")
return puntid_dict, idpunt_dict, punttype_dict, roadtype_dict
def add_intermediate_coords(lst, step_size = 1e-4):
start, end = lst
# Calculate the number of intermediate points
num_points = int(np.ceil(np.linalg.norm(end - start) / step_size))
return [start + i * (end - start) / num_points for i in range(num_points + 1)]
def str2lst(input_string):
coordinates_str = input_string.strip('()').split(',')
coordinates_list = np.array([float(coord.strip()) for coord in coordinates_str])
return coordinates_list
class Plot_html():
def __init__(self) -> None:
pass
def shp_plot_box(self, shapefile, colorby="type"):
geo_list, info, color = [], [], []
colors_ = generate_color(shapefile[colorby].nunique())
color_mapping = {value: index for index, value in enumerate(shapefile[colorby].unique())}
for index, row in shapefile.iterrows():
for j in row.geometry.coords:
geo_list += [list(j)]
geo_list += [[None, None]]
color = color + [colors_[color_mapping[row[colorby]]] for i in range(len(row.geometry.coords))] + ["#000000"]
if "osm_id" not in shapefile.columns:
info = info + ['idx: '+str(index) for i in range(len(row.geometry.coords))] + [' ']
else:
info = info + ['osm_id: '+str(row["osm_id"])+"<br>Roadtype: "+str(row[colorby]) for i in range(len(row.geometry.coords))] + [' ']
geo_list = np.asarray(geo_list)
lons, lats, color, info = geo_list[:,0], geo_list[:,1], color, info
return lons, lats, color, info
def shp_plot_selective(self, shapefile, outputfile=None, colorby="type"):
colors_ = generate_color(shapefile[colorby].nunique())
color_mapping = {value: index for index, value in enumerate(shapefile[colorby].unique())}
plot_dict = {}
for type_ in shapefile[colorby].unique():
geo_list, info, color = [], [], []
df=shapefile[shapefile[colorby]==type_]
for index, row in df.iterrows():
for j in row.geometry.coords:
geo_list += [list(j)]
geo_list += [[None, None]]
color = color + [colors_[color_mapping[row[colorby]]] for i in range(len(row.geometry.coords))] + ["#000000"]
info = info + ['Full edge: '+str(row.index)+"<br>Roadtype: "+str(row[colorby]) for i in range(len(row.geometry.coords))] + [' ']
geo_list = np.asarray(geo_list)
lons, lats, color, info = geo_list[:,0], geo_list[:,1], color, info
plot_dict[type_] = [lons, lats, color, info]
if outputfile:
self.plot_trace(multipleRoutes=plot_dict, outputpath=outputfile)
return plot_dict
def poi_plot_box(self, shapefile):
geo_list, info = [], []
for index, row in shapefile.iterrows():
for j in row.geometry.coords:
geo_list += [list(j)]
info = info + ['osm_id: '+str(row["osm_id"])+"<br>Type: "+row["type"]]
geo_list = np.asarray(geo_list)
lons, lats, info = geo_list[:,0], geo_list[:,1], info
return lons, lats, info
def plot_map_objs(self, outputpath, line_box=False, marker_box=False, line_width=10, line_color='#6785C0'):
# if os.path.exists(outputpath):
# return
line_marker_size, marker_size = 20, 10
zoom_center = {"lat": 51.925818, "lon":4.464207}
fig = go.Figure()
if line_box:
lons, lats, color, info = line_box
if color == None:
color = line_color
line_trace = go.Scattermapbox(
mode = "markers+lines+text",
lon = lons, lat = lats,
marker = {'size': line_marker_size, 'color': color},line={'width':line_width, 'color':line_color},
name = "Line",
text=info)
fig.add_trace(line_trace)
if marker_box:
lons, lats, info = marker_box
marker_trace = go.Scattermapbox(
mode = "markers+text",
lon = lons, lat = lats,
marker = {'size': marker_size, 'color': "#FF0000"},
name = "Marker",
text=info)
fig.add_trace(marker_trace)
fig.update_layout(mapbox_style="open-street-map")
fig.update_layout(margin={"r":0,"t":0,"l":0,"b":0}, mapbox = {
'center': zoom_center,
'zoom': 12})
fig.update_layout(legend={"orientation":"h"})
fig.update_layout(height=1000, width=2500)
fig.write_html(outputpath)
def plot_trace(self, outputpath, line_marker_size=20, marker_size=10, background=None, traces=None, routes=None, multipleTraces=None, multipleRoutes=None, multipleProjection=None):
# if os.path.exists(outputpath):
# return
zoom_center = {"lat": 51.9248025, "lon":4.5}
fig = go.Figure()
if background:
lons, lats, color, info = background
line_trace0 = go.Scattermapbox(
mode = "markers+lines+text",
lon = lons, lat = lats,
marker = {'size': line_marker_size, 'color': '#CCFFFF'},line={'width':10, 'color':'#CCFFFF'},
name = "Background",
text=info)
fig.add_trace(line_trace0)
if traces:
lons, lats, color, info = traces
line_trace1 = go.Scattermapbox(
mode = "markers+lines+text",
lon = lons, lat = lats,
marker = {'size': line_marker_size, 'color': color},line={'width':5, 'color':'#FFCCE5'},
name = "Trace",
text=info)
fig.add_trace(line_trace1)
if routes:
lons, lats, color, info = routes
if color is None:
color, edge_color="#5CA961", "#5CA961"
else:
edge_color="#CCFFFF"
line_trace2 = go.Scattermapbox(
mode = "markers+lines+text",
lon = lons, lat = lats,
marker = {'size': line_marker_size, 'color': color},line={'width':10, 'color':edge_color},
name = "Selected_edge",
text=info)
fig.add_trace(line_trace2)
if multipleTraces:
for tripID in multipleTraces.keys():
lons, lats, color, info, = multipleTraces[tripID]
line_trace = go.Scattermapbox(
mode = "markers+lines+text",
lon = lons, lat = lats,
marker = {'size': line_marker_size, 'color': color},line={'width':5, 'color':'#FFCCE5'},
name = str(tripID),
text=info)
fig.add_trace(line_trace)
if multipleRoutes:
for tripID in multipleRoutes.keys():
lons, lats, color, info, = multipleRoutes[tripID]
line_trace = go.Scattermapbox(
mode = "markers+lines+text",
lon = lons, lat = lats,
marker = {'size': line_marker_size, 'color': color},line={'width':5, 'color':'#5CA961'},
name = str(tripID),
text=info)
fig.add_trace(line_trace)
if multipleProjection:
for tripID in multipleProjection.keys():
lons, lats = multipleProjection[tripID]
point_trace = go.Scattermapbox(
mode = "markers",
lon = lons, lat = lats,
marker = {'size': marker_size, 'color': "#FF0000"},
name = str(tripID))
fig.add_trace(point_trace)
fig.update_layout(mapbox_style="open-street-map")
fig.update_layout(margin={"r":0,"t":0,"l":0,"b":0}, mapbox = {
'center': zoom_center,
'zoom': 13})
fig.update_layout(legend={"orientation":"h"})
fig.update_layout(height=800, width=2500)
fig.for_each_trace(lambda trace: trace.update(visible="legendonly"))
fig.write_html(outputpath)
def plot_point(df: pd.DataFrame, outputpath, col_color=None, color_scale=None):
# if os.path.exists(outputpath):
# return
df = df.copy()
df["size"] = 0.3
myzoom = 14
# minmaxcolor = [0,30]
mycenter = {"lat": df["lat"].unique()[0], "lon": df["lon"].unique()[0]}
fig = px.scatter_mapbox(df, lat="lat", lon="lon", color=col_color, color_continuous_scale=color_scale,
size="size", size_max=13,
# range_color=minmaxcolor,
zoom=myzoom, center=mycenter)
fig.update_layout(mapbox_style="open-street-map")
fig.update_layout(margin={"r":0,"t":0,"l":0,"b":0})
fig.update_layout(legend={"orientation":"h"})
fig.update_layout(height=1000, width=2500)
fig.write_html(outputpath)
def heatmap_plot(self, data:pd.DataFrame, outputpath, min_lat=51.899736, max_lat=51.952686, min_lon=4.430277, max_lon=4.504152):
if os.path.exists(outputpath):
return
map_obj = folium.Map(location = [(min_lat+max_lat)/2, (min_lon+max_lon)/2], zoom_start = 14)
lats_longs_weight = list(map(list, zip(data.lat,
data.lon,
[1 for j in range(len(data))])))
HeatMap(lats_longs_weight).add_to(map_obj)
map_obj.save(outputpath)
class Plot_plt():
def __init__(self) -> None:
pass
def count_time_interval(self, data:pd.DataFrame):
df = data.sort_values(by=['tripID', 'timestamp'])
df['time_difference'] = df.groupby('tripID')['timestamp'].diff()
arr = df["time_difference"].dt.total_seconds().to_numpy()/60
arr[arr>10]=10
return arr
def hist_density_plot(self, data:np.ndarray, x_label, y_label, title, bin=100, outputpath=None):
fig, ax = plt.subplots(1, 1)
ax.hist(data, bins=bin, density=True)
ax.set_ylabel(y_label)
ax.set_xlabel(x_label)
ax.set_title(title)
if outputpath: # and not os.path.exists(outputpath):
plt.savefig(outputpath, dpi=800)
def bar_plot(self, x_values, y_values, x_label, y_label, title, outputpath=None, show_tick=True):
fig, ax = plt.subplots(1, 1)
ax.bar(x_values, y_values)
ax.set_xlabel(x_label)
ax.set_ylabel(y_label)
ax.set_title(title)
if show_tick:
for x, y in zip(x_values, y_values):
ax.text(x, y, str(y), ha='center', va='bottom')
ax.set_xticks(x_values)
ax.tick_params(axis='x', rotation=45, labelsize=8)
if outputpath and not os.path.exists(outputpath):
plt.savefig(outputpath, dpi=800)
def plot_given_area(self, left_top=[51.926018, 4.482589], right_bottom=[51.924060, 4.488257], streetmap="mapMatch_result/full_roads.shp", outputpath=None):
## defi1: 51°55'49.1"N 4°29'05.6"E 51°55'46.5"N 4°29'15.3"E
## case1: left_top=[51.926026, 4.480273], right_bottom=[51.924508,4.486673]
up_lat, left_lon=left_top
down_lat, right_lon=right_bottom
rotterdam_map = gpd.read_file(streetmap)
forbidden_type = ["primary", "primary_link"]
suspicious_type = ["secondary", "secondary_link", "tertiary"]
puntid_dict, idpunt_dict, punttype_dict, roadtype_dict = get_map_dict(None, "graph/raw/")
F, S, B = [], [], []
polygon = Polygon([(left_lon,up_lat), (left_lon,down_lat), (right_lon,down_lat), (right_lon,up_lat)])
for index,row in rotterdam_map.iterrows():
# print(LineString([i for i in row.geometry.coords]))
line = LineString([i for i in row.geometry.coords])
if line.within(polygon):
if row["type"] in forbidden_type:
F.append(line)
F+=[Point(i) for i in row.geometry.coords]
elif row["type"] in suspicious_type:
S.append(line)
S+=[Point(i) for i in row.geometry.coords]
else:
B.append(line)
B+=[Point(i) for i in row.geometry.coords]
Important=[Point(str2lst(idpunt_dict[3116])), Point(str2lst(idpunt_dict[3498]))]
I_df = gpd.GeoDataFrame(geometry=Important)
I_df.crs = 'EPSG:4326'
S_df = gpd.GeoDataFrame(geometry=S)
S_df.crs = 'EPSG:4326'
B_df = gpd.GeoDataFrame(geometry=B)
B_df.crs = 'EPSG:4326'
F_df = gpd.GeoDataFrame(geometry=F)
F_df.crs = 'EPSG:4326'
fig, ax = plt.subplots(figsize=(15, 11))
B_df.plot(ax=ax, alpha=0.4, color='green')
# all_df.plot(ax=ax, alpha=0.4, color='grey')
if len(F):
F_df.plot(ax=ax, alpha=0.4, color='red')
if len(S):
S_df.plot(ax=ax, alpha=0.4, color='blue')
I_df.plot(ax=ax, alpha=0.4, color='red', markersize=200, marker='*')
if len(F):
ax.legend(["Bicycle Roads", "Forbidden Roads", "Suspicious Roads"], loc='lower center', ncols=3)
else:
ax.legend(["Bicycle Roads", "Bicycle Road Node","Suspicious Roads","Suspicious Road Nodes","Considered road"],bbox_to_anchor=(0.5, -0.2), loc='lower center', ncols=5)
plt.xlabel("Longitude")
plt.ylabel("Latitude")
locs, _= plt.xticks()
# plt.xticks([locs[0],locs[-1]],["4°29'20.9\"E", "4°29'39.9\"E"])
# locs, _=plt.yticks()
# plt.yticks([locs[0],locs[-1]],["51°55'34.8\"N", "51°55'32.0\"N" ])
# plt.show()
plt.savefig('/Users/tinggao/Desktop/cplcate3.png', dpi=600)
return