Skip to content
Snippets Groups Projects
utils.py 22.1 KiB
Newer Older
Ting Gao's avatar
Ting Gao committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
import geopandas as gpd
import matplotlib.pyplot as plt
import folium
from folium.plugins import HeatMap
from shapely.geometry import Polygon, LineString, Point
import matplotlib as mpl
import numpy as np
import pandas as pd
import datetime
import os
os.environ["RAY_DEDUP_LOGS"] = "0"
import ray
import multiprocessing
import pickle
from tqdm import tqdm
from scipy import stats, sparse
import plotly.express as px
import plotly.graph_objs as go
from scipy.spatial.distance import cdist


try:
    from config_mapmatch import *
except ModuleNotFoundError:
    raise Warning('config file for map matchingnot found')

def write_log(txt_to_write,txt_file="log.txt", mode="a"):
    with open(txt_file, mode) as file:
        file.write(txt_to_write)

def generate_color(nb_color):
    distinct_colors = [] 
    while len(distinct_colors)<nb_color:
        color = tuple(np.random.randint(0, 256, size=3))
        if color not in distinct_colors:
            distinct_colors.append(color)
    hex_colors = ['#%02x%02x%02x' % (r, g, b)
                for [r, g, b] in distinct_colors]
    return hex_colors

def get_accurate_start_end_point(df, streetmap, edgesDf):
    # Here direction is not important
    # Because we first projected the points to the edge
    # Then we analyzed the direction of the trip

    coarse2full_edge = {i:[] for i in edgesDf.index}
    full2coarse_edge = dict(streetmap.c_edge)
    for full_edge in full2coarse_edge:
        coarse_edge = full2coarse_edge[full_edge]
        coarse2full_edge[coarse_edge].append(full_edge)

    coords = np.asarray([[list(row["geometry"].coords[0]), list(row["geometry"].coords[-1])] for index, row in streetmap.iterrows()])
    start = coords[:,0, :]
    end = coords[:,1, :]

    accu_dist = streetmap["accu_dist"].to_numpy()
    full_edge_km = streetmap["km"].to_numpy()
    coarse_edge = df["edge"].to_numpy()
    travelled_dist = df["km"].to_numpy()*df["frcalong"].to_numpy()

    edge_index = []
    fracs = []
    for i in range(len(coarse_edge)):
        max_dist = -1
        for j in coarse2full_edge[coarse_edge[i]]:
            accu = accu_dist[j]
            if accu<=travelled_dist[i] and accu>max_dist:
                max_dist = accu
                min_edge = j
                frac_ = max(0, min(1, (travelled_dist[i]-accu)/full_edge_km[j]))
        edge_index.append(min_edge)
        fracs.append(frac_)
    
    fracs=np.expand_dims(np.asarray(fracs), axis=-1)
    projected_points = start[edge_index]*(1-fracs) + end[edge_index]*fracs
    return edge_index, fracs, projected_points[:, 0], projected_points[:, 1]

def tracetable(tracesTable):
    df = read_h5(tracesTable)
    df = df.sort_values(by=["tripID", "timestamp"])
    df["timestamp"] = (df.timestamp-datetime.datetime(2020, 10, 1)).dt.total_seconds()
    return df

def distanceLL(distance):
    """Geometric log likelihood function for how to penalize edges that are further from the point
    Similar to Newson and Krummer 2009
    This can take a scalar or a numpy array"""
    # return stats.t(df=20, scale=15).logpdf(distance)+(stats.t(df-20, scale))
    # return stats.t(df=20, scale=sigma_z).logpdf(distance)
    return (stats.t(df=20, scale=sigma_z).logpdf(distance)-stats.t(df=20, scale=sigma_z).logpdf(dist_threshold)+stats.t(df=20, scale=20).logpdf(dist_threshold))*(distance>=dist_threshold)+stats.t(df=20, scale=20).logpdf(distance)*(distance<dist_threshold)
    # return (stats.t(df=20, scale=sigma_z).logpdf(distance)-stats.t(df=20, scale=sigma_t).logpdf(dist_threshold)+stats.t(df=20, scale=15).logpdf(dist_threshold))*(distance>=dist_threshold)+stats.t(df=20, scale=15).logpdf(distance)*(distance<dist_threshold)

def temporalLL(travelcostratio):
    """Log likelihood function for the transition between different edges
    Input is ratio of implied speed to speed limit"""
    return stats.t(df=20, scale=sigma_t).logpdf(travelcostratio)

def speedLL(speed):
    """Log likelihood function for the transition between different edges
    Input is ratio of implied speed to speed limit"""
    return stats.norm(loc=6, scale=2).logpdf(speed)*((speed>10).astype(float))#*((speed<3.6).astype(float)+(speed>11).astype(float))

def topologicalLL(distratio):
    """this is the topological log likelihood function, based on the distance ratio between GPS trace and matched line"""
    dr = np.maximum(0, np.array(distratio)-1)    # distratio can be less than 1 if there is a U-turn, so enforce a minimum
    return stats.t(df=20, scale=sigma_topol).logpdf(dr)*topol_weight

# ensures that the two distributions match at 1
temporalLL_ratio = (stats.expon(scale=temporal_scale).logpdf(1)-stats.norm(scale=sigma_t).logpdf(0))

def geo_dist(v1, v2):
    # distance by m
    R = 6371000
    v1, v2 = np.radians(v1), np.radians(v2)
    lon1, lat1 = v1[:, :, 0], v1[:, :, 1]
    lon2, lat2 = v2[:, :, 0], v2[:, :, 1]
    dlat = lat2-lat1
    dlon = lon2-lon1
    a = np.sin(dlat / 2)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon / 2)**2
    c = 2 * np.arctan2(np.sqrt(a), np.sqrt(1 - a)) 
    return R*c

def geo_dist_arr(v1, v2):
    # distance by m
    R = 6371000
    v1, v2 = np.radians(v1), np.radians(v2)
    lon1, lat1 = v1[:, 0], v1[:, 1]
    lon2, lat2 = v2[:, 0], v2[:, 1]
    dlat = lat2-lat1
    dlon = lon2-lon1
    a = np.sin(dlat / 2)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon / 2)**2
    c = 2 * np.arctan2(np.sqrt(a), np.sqrt(1 - a)) 
    return R*c

def geo_dist_single(v1, v2):
    # distance by m
    R = 6371000
    v1, v2 = np.radians(v1), np.radians(v2)
    lon1, lat1 = v1
    lon2, lat2 = v2
    dlat = lat2-lat1
    dlon = lon2-lon1
    a = np.sin(dlat / 2)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon / 2)**2
    c = 2 * np.arctan2(np.sqrt(a), np.sqrt(1 - a)) 
    return R*c

def colorFader(arr, c1="#FFFFFF", c2="#040404"): #fade (linear interpolate) from color c1 (at mix=1) to c2 (mix=0)
    mix = (arr-min(arr))/(max(arr)-min(arr))
    if max(arr)==min(arr):
        mix = np.ones_like(arr)
    c1=np.array(mpl.colors.to_rgb(c1))
    c2=np.array(mpl.colors.to_rgb(c2))
    return [mpl.colors.to_hex(i*c1 + (1-i)*c2) for i in mix]

def store_h5(file_path, data, key="my_dataframe"):
    store = pd.HDFStore(file_path)
    store[key] = data
    store.close()

def read_h5(file_path, time_converse=True, key="my_dataframe"):
    store = pd.HDFStore(file_path)
    read_data = store[key]
    store.close()
    if time_converse:
        read_data["timestamp"] = pd.to_datetime(read_data["timestamp"])
    return read_data

def get_map_dict(map_, raw_dict_path):
    puntid_dict_path, idpunt_dict_path, punttype_dict_path, roadtype_dict_path=raw_dict_path+"punt_id.json", raw_dict_path+"id_punt.json", raw_dict_path+"punt_type.json", raw_dict_path+"roadtype.json"
    if os.path.exists(puntid_dict_path):
        with open(puntid_dict_path, 'rb') as f:
            puntid_dict = pickle.load(f)
        with open(idpunt_dict_path, 'rb') as f:
            idpunt_dict = pickle.load(f)
        with open(punttype_dict_path, 'rb') as f:
            punttype_dict = pickle.load(f)
        with open(roadtype_dict_path, 'rb') as f:
            roadtype_dict = pickle.load(f)
        print("No new road dictionary is written.")
        return puntid_dict, idpunt_dict, punttype_dict, roadtype_dict
    puntid_dict, punttype_dict = {}, {}
    for index, row in tqdm(map_.iterrows()):
        for j in row.geometry.coords:
            punt = str(j)
            if punt not in puntid_dict:
                puntid_dict[punt] = len(puntid_dict)
            if puntid_dict[punt] not in punttype_dict:
                punttype_dict[puntid_dict[punt]] = [row["type"]]
            elif row["type"] not in punttype_dict[puntid_dict[punt]]:
                punttype_dict[puntid_dict[punt]].append(row["type"])
    idpunt_dict = {puntid_dict[i]:i for i in puntid_dict}
    roadtype_dict = {value:i for i, value in enumerate(map_["type"].unique())}
    with open(puntid_dict_path, 'wb') as f:
        pickle.dump(puntid_dict, f)
    with open(idpunt_dict_path, 'wb') as f:
        pickle.dump(idpunt_dict, f)
    with open(punttype_dict_path, 'wb') as f:
        pickle.dump(punttype_dict, f)
    with open(roadtype_dict_path, 'wb') as f:
        pickle.dump(roadtype_dict, f)
    print("New road dictionary is written.")
    return puntid_dict, idpunt_dict, punttype_dict, roadtype_dict

def add_intermediate_coords(lst, step_size = 1e-4):
    start, end = lst
    # Calculate the number of intermediate points
    num_points = int(np.ceil(np.linalg.norm(end - start) / step_size))
    return [start + i * (end - start) / num_points for i in range(num_points + 1)]

def str2lst(input_string):
    coordinates_str = input_string.strip('()').split(',')
    coordinates_list = np.array([float(coord.strip()) for coord in coordinates_str])
    return coordinates_list

class Plot_html():
    def __init__(self) -> None:
        pass

    def shp_plot_box(self, shapefile, colorby="type"):
        geo_list, info, color = [], [], []
        colors_ = generate_color(shapefile[colorby].nunique())
        color_mapping = {value: index for index, value in enumerate(shapefile[colorby].unique())}

        for index, row in shapefile.iterrows():
            for j in row.geometry.coords:
                geo_list += [list(j)]
            geo_list += [[None, None]]
            color = color + [colors_[color_mapping[row[colorby]]] for i in range(len(row.geometry.coords))] + ["#000000"]
            if "osm_id" not in shapefile.columns:
                info = info + ['idx: '+str(index) for i in range(len(row.geometry.coords))] + [' ']
            else:
                info = info + ['osm_id: '+str(row["osm_id"])+"<br>Roadtype: "+str(row[colorby]) for i in range(len(row.geometry.coords))] + [' ']

        geo_list = np.asarray(geo_list)
        lons, lats, color, info = geo_list[:,0], geo_list[:,1], color, info
        return lons, lats, color, info
    
    def shp_plot_selective(self, shapefile, outputfile=None, colorby="type"):
        
        colors_ = generate_color(shapefile[colorby].nunique())
        color_mapping = {value: index for index, value in enumerate(shapefile[colorby].unique())}

        plot_dict = {}
        for type_ in shapefile[colorby].unique():
            geo_list, info, color = [], [], []
            df=shapefile[shapefile[colorby]==type_]
            for index, row in df.iterrows():
                for j in row.geometry.coords:
                    geo_list += [list(j)]
                geo_list += [[None, None]]
                color = color + [colors_[color_mapping[row[colorby]]] for i in range(len(row.geometry.coords))] + ["#000000"]
                info = info + ['Full edge: '+str(row.index)+"<br>Roadtype: "+str(row[colorby]) for i in range(len(row.geometry.coords))] + [' ']

            geo_list = np.asarray(geo_list)
            lons, lats, color, info = geo_list[:,0], geo_list[:,1], color, info
            plot_dict[type_] = [lons, lats, color, info]
        if outputfile:
            self.plot_trace(multipleRoutes=plot_dict, outputpath=outputfile)
        return plot_dict
    
    def poi_plot_box(self, shapefile):
        geo_list, info = [], []
        for index, row in shapefile.iterrows():
            for j in row.geometry.coords:
                geo_list += [list(j)]
            info = info + ['osm_id: '+str(row["osm_id"])+"<br>Type: "+row["type"]]
        geo_list = np.asarray(geo_list)
        lons, lats,  info = geo_list[:,0], geo_list[:,1], info
        return lons, lats, info
    
    def plot_map_objs(self, outputpath, line_box=False, marker_box=False, line_width=10, line_color='#6785C0'):
        # if os.path.exists(outputpath):
        #     return
        line_marker_size, marker_size = 20, 10
        zoom_center = {"lat": 51.925818, "lon":4.464207}
        fig = go.Figure()
        if line_box:
            lons, lats, color, info = line_box
            if color == None:
                color = line_color
            line_trace = go.Scattermapbox(      
                        mode = "markers+lines+text",
                        lon = lons, lat = lats,
                        marker = {'size': line_marker_size, 'color': color},line={'width':line_width, 'color':line_color},
                        name = "Line",
                        text=info)
            fig.add_trace(line_trace)
        if marker_box:
            lons, lats, info = marker_box
            marker_trace = go.Scattermapbox(      
                        mode = "markers+text",
                        lon = lons, lat = lats,
                        marker = {'size': marker_size, 'color': "#FF0000"},
                        name = "Marker",
                        text=info)
            fig.add_trace(marker_trace)
        fig.update_layout(mapbox_style="open-street-map")
        fig.update_layout(margin={"r":0,"t":0,"l":0,"b":0}, mapbox = {
            'center': zoom_center,
            'zoom': 12})
        fig.update_layout(legend={"orientation":"h"})
        fig.update_layout(height=1000, width=2500)
        fig.write_html(outputpath)

    def plot_trace(self, outputpath, line_marker_size=20, marker_size=10, background=None, traces=None, routes=None, multipleTraces=None, multipleRoutes=None, multipleProjection=None):
        # if os.path.exists(outputpath):
        #     return
        zoom_center = {"lat": 51.9248025, "lon":4.5}
        fig = go.Figure()
        if background: 
            lons, lats, color, info = background
            line_trace0 = go.Scattermapbox(      
                        mode = "markers+lines+text",
                        lon = lons, lat = lats,
                        marker = {'size': line_marker_size, 'color': '#CCFFFF'},line={'width':10, 'color':'#CCFFFF'},
                        name = "Background",
                        text=info)
            fig.add_trace(line_trace0)
        if traces:
            lons, lats, color, info = traces
            line_trace1 = go.Scattermapbox(      
                        mode = "markers+lines+text",
                        lon = lons, lat = lats,
                        marker = {'size': line_marker_size, 'color': color},line={'width':5, 'color':'#FFCCE5'},
                        name = "Trace",
                        text=info)
            fig.add_trace(line_trace1)
        if routes:
            lons, lats, color, info = routes
            if color is None:
                color, edge_color="#5CA961", "#5CA961"
            else:  
                edge_color="#CCFFFF"
            line_trace2 = go.Scattermapbox(      
                        mode = "markers+lines+text",
                        lon = lons, lat = lats,
                        marker = {'size': line_marker_size, 'color': color},line={'width':10, 'color':edge_color},
                        name = "Selected_edge",
                        text=info)
            fig.add_trace(line_trace2)

        if multipleTraces:
            for tripID in multipleTraces.keys():
                lons, lats, color, info, = multipleTraces[tripID]
                line_trace = go.Scattermapbox(      
                            mode = "markers+lines+text",
                            lon = lons, lat = lats,
                            marker = {'size': line_marker_size, 'color': color},line={'width':5, 'color':'#FFCCE5'},
                            name = str(tripID),
                            text=info)
                fig.add_trace(line_trace)
        if multipleRoutes:
            for tripID in multipleRoutes.keys():
                lons, lats, color, info, = multipleRoutes[tripID]
                line_trace = go.Scattermapbox(      
                            mode = "markers+lines+text",
                            lon = lons, lat = lats,
                            marker = {'size': line_marker_size, 'color': color},line={'width':5, 'color':'#5CA961'},
                            name = str(tripID),
                            text=info)
                fig.add_trace(line_trace)
        if multipleProjection:
            for tripID in multipleProjection.keys():
                lons, lats = multipleProjection[tripID]
                point_trace = go.Scattermapbox(
                            mode = "markers",
                            lon = lons, lat = lats,
                            marker = {'size': marker_size, 'color': "#FF0000"},
                            name = str(tripID))
                fig.add_trace(point_trace) 
        
        fig.update_layout(mapbox_style="open-street-map")
        fig.update_layout(margin={"r":0,"t":0,"l":0,"b":0}, mapbox = {
            'center': zoom_center,
            'zoom': 13})
        fig.update_layout(legend={"orientation":"h"})
        fig.update_layout(height=800, width=2500)
        fig.for_each_trace(lambda trace: trace.update(visible="legendonly"))
        fig.write_html(outputpath)  
      

    
    def plot_point(df: pd.DataFrame, outputpath, col_color=None, color_scale=None):
        # if os.path.exists(outputpath):
        #     return
        df = df.copy()
        df["size"] = 0.3
        myzoom = 14 
        # minmaxcolor = [0,30]
        mycenter = {"lat": df["lat"].unique()[0], "lon": df["lon"].unique()[0]}
        fig = px.scatter_mapbox(df, lat="lat", lon="lon", color=col_color, color_continuous_scale=color_scale,
                                size="size", size_max=13, 
                                # range_color=minmaxcolor, 
                                zoom=myzoom, center=mycenter)

        fig.update_layout(mapbox_style="open-street-map")
        fig.update_layout(margin={"r":0,"t":0,"l":0,"b":0})
        fig.update_layout(legend={"orientation":"h"})
        fig.update_layout(height=1000, width=2500)
        fig.write_html(outputpath)  

    def heatmap_plot(self, data:pd.DataFrame, outputpath, min_lat=51.899736, max_lat=51.952686, min_lon=4.430277, max_lon=4.504152):
        if os.path.exists(outputpath):
            return
        map_obj = folium.Map(location = [(min_lat+max_lat)/2, (min_lon+max_lon)/2], zoom_start = 14)
        lats_longs_weight = list(map(list, zip(data.lat,
                                data.lon,
                                [1 for j in range(len(data))])))
        HeatMap(lats_longs_weight).add_to(map_obj)
        map_obj.save(outputpath)


class Plot_plt():
    def __init__(self) -> None:
        pass

    def count_time_interval(self, data:pd.DataFrame):
        df = data.sort_values(by=['tripID', 'timestamp'])
        df['time_difference'] = df.groupby('tripID')['timestamp'].diff()
        arr =  df["time_difference"].dt.total_seconds().to_numpy()/60
        arr[arr>10]=10
        return arr

    def hist_density_plot(self, data:np.ndarray, x_label, y_label, title, bin=100, outputpath=None):
        fig, ax = plt.subplots(1, 1)
        ax.hist(data, bins=bin, density=True)
        ax.set_ylabel(y_label)
        ax.set_xlabel(x_label)
        ax.set_title(title)
        if outputpath: # and not os.path.exists(outputpath):
            plt.savefig(outputpath, dpi=800)
    
    def bar_plot(self, x_values, y_values, x_label, y_label, title, outputpath=None, show_tick=True):
        fig, ax = plt.subplots(1, 1)
        ax.bar(x_values, y_values)
        ax.set_xlabel(x_label)
        ax.set_ylabel(y_label)
        ax.set_title(title)
        if show_tick:
            for x, y in zip(x_values, y_values):
                ax.text(x, y, str(y), ha='center', va='bottom')
            ax.set_xticks(x_values)
            ax.tick_params(axis='x', rotation=45, labelsize=8)
        if outputpath and not os.path.exists(outputpath):
            plt.savefig(outputpath, dpi=800)
    
    def plot_given_area(self, left_top=[51.926018, 4.482589], right_bottom=[51.924060, 4.488257], streetmap="mapMatch_result/full_roads.shp", outputpath=None):
        ## defi1: 51°55'49.1"N 4°29'05.6"E 51°55'46.5"N 4°29'15.3"E
        ## case1: left_top=[51.926026, 4.480273], right_bottom=[51.924508,4.486673]
        up_lat, left_lon=left_top
        down_lat, right_lon=right_bottom
        rotterdam_map = gpd.read_file(streetmap)
        forbidden_type = ["primary", "primary_link"]
        suspicious_type = ["secondary", "secondary_link", "tertiary"]
        puntid_dict, idpunt_dict, punttype_dict, roadtype_dict = get_map_dict(None, "graph/raw/")
        F, S, B = [], [], []
        polygon = Polygon([(left_lon,up_lat), (left_lon,down_lat), (right_lon,down_lat), (right_lon,up_lat)])
        for index,row in rotterdam_map.iterrows():
            # print(LineString([i for i in row.geometry.coords]))
            line = LineString([i for i in row.geometry.coords])
            if line.within(polygon):
                if row["type"] in forbidden_type:
                    F.append(line)
                    F+=[Point(i) for i in row.geometry.coords]
                elif row["type"] in suspicious_type:
                    S.append(line)
                    S+=[Point(i) for i in row.geometry.coords]
                else:
                    B.append(line)
                    B+=[Point(i) for i in row.geometry.coords]
        
        Important=[Point(str2lst(idpunt_dict[3116])), Point(str2lst(idpunt_dict[3498]))]
        I_df = gpd.GeoDataFrame(geometry=Important)
        I_df.crs = 'EPSG:4326'

        S_df = gpd.GeoDataFrame(geometry=S) 
        S_df.crs = 'EPSG:4326'
        B_df = gpd.GeoDataFrame(geometry=B)
        B_df.crs = 'EPSG:4326'

        F_df = gpd.GeoDataFrame(geometry=F)
        F_df.crs = 'EPSG:4326'


        fig, ax = plt.subplots(figsize=(15, 11))
        B_df.plot(ax=ax, alpha=0.4, color='green')
        
        # all_df.plot(ax=ax, alpha=0.4, color='grey')
        if len(F):
            F_df.plot(ax=ax, alpha=0.4, color='red')
        if len(S):
            S_df.plot(ax=ax, alpha=0.4, color='blue')
        I_df.plot(ax=ax, alpha=0.4, color='red', markersize=200, marker='*')
        if len(F):
            ax.legend(["Bicycle Roads", "Forbidden Roads", "Suspicious Roads"], loc='lower center', ncols=3)
        else:
            ax.legend(["Bicycle Roads", "Bicycle Road Node","Suspicious Roads","Suspicious Road Nodes","Considered road"],bbox_to_anchor=(0.5, -0.2), loc='lower center', ncols=5)

        plt.xlabel("Longitude")
        plt.ylabel("Latitude")
        locs, _= plt.xticks()
        # plt.xticks([locs[0],locs[-1]],["4°29'20.9\"E", "4°29'39.9\"E"])
        # locs, _=plt.yticks()
        # plt.yticks([locs[0],locs[-1]],["51°55'34.8\"N", "51°55'32.0\"N" ])
        # plt.show()
        plt.savefig('/Users/tinggao/Desktop/cplcate3.png', dpi=600)
        return