-
Oleg Kalachev authoredOleg Kalachev authored
flow.cpp 5.65 KiB
#include "../BlockLocalPositionEstimator.hpp"
#include <systemlib/mavlink_log.h>
#include <matrix/math.hpp>
// mavlink pub
extern orb_advert_t mavlink_log_pub;
// required number of samples for sensor
// to initialize
static const uint32_t REQ_FLOW_INIT_COUNT = 10;
static const uint32_t FLOW_TIMEOUT = 1000000; // 1 s
void BlockLocalPositionEstimator::flowInit()
{
// measure
Vector<float, n_y_flow> y;
if (flowMeasure(y) != OK) {
_flowQStats.reset();
return;
}
// if finished
if (_flowQStats.getCount() > REQ_FLOW_INIT_COUNT) {
mavlink_and_console_log_info(&mavlink_log_pub, "[lpe] flow init: "
"quality %d std %d",
int(_flowQStats.getMean()(0)),
int(_flowQStats.getStdDev()(0)));
_sensorTimeout &= ~SENSOR_FLOW;
_sensorFault &= ~SENSOR_FLOW;
}
}
int BlockLocalPositionEstimator::flowMeasure(Vector<float, n_y_flow> &y)
{
matrix::Eulerf euler(matrix::Quatf(_sub_att.get().q));
// check for sane pitch/roll
if (euler.phi() > 0.5f || euler.theta() > 0.5f) {
return -1;
}
// check for agl
if (agl() < _sub_flow.get().min_ground_distance) {
return -1;
}
// check quality
float qual = _sub_flow.get().quality;
if (qual < _param_lpe_flw_qmin.get()) {
return -1;
}
// calculate range to center of image for flow
if (!(_estimatorInitialized & EST_TZ)) {
return -1;
}
float d = agl() * cosf(euler.phi()) * cosf(euler.theta());
// optical flow in x, y axis
// TODO consider making flow scale a states of the kalman filter
float flow_x_rad = _sub_flow.get().pixel_flow_x_integral * _param_lpe_flw_scale.get();
float flow_y_rad = _sub_flow.get().pixel_flow_y_integral * _param_lpe_flw_scale.get();
float dt_flow = _sub_flow.get().integration_timespan / 1.0e6f;
if (dt_flow > 0.5f || dt_flow < 1.0e-6f) {
return -1;
}
// angular rotation in x, y axis
float gyro_x_rad = 0;
float gyro_y_rad = 0;
if (_param_lpe_fusion.get() & FUSE_FLOW_GYRO_COMP) {
gyro_x_rad = _flow_gyro_x_high_pass.update(
_sub_flow.get().gyro_x_rate_integral);
gyro_y_rad = _flow_gyro_y_high_pass.update(
_sub_flow.get().gyro_y_rate_integral);
}
//warnx("flow x: %10.4f y: %10.4f gyro_x: %10.4f gyro_y: %10.4f d: %10.4f",
//double(flow_x_rad), double(flow_y_rad), double(gyro_x_rad), double(gyro_y_rad), double(d));
// compute velocities in body frame using ground distance
// note that the integral rates in the optical_flow uORB topic are RH rotations about body axes
Vector3f delta_b(
+(flow_y_rad - gyro_y_rad) * d,
-(flow_x_rad - gyro_x_rad) * d,
0);
// rotation of flow from body to nav frame
Vector3f delta_n = _R_att * delta_b;
// imporant to timestamp flow even if distance is bad
_time_last_flow = _timeStamp;
// measurement
y(Y_flow_vx) = delta_n(0) / dt_flow;
y(Y_flow_vy) = delta_n(1) / dt_flow;
_flowQStats.update(Scalarf(_sub_flow.get().quality));
return OK;
}
void BlockLocalPositionEstimator::flowCorrect()
{
// measure flow
Vector<float, n_y_flow> y;
if (flowMeasure(y) != OK) { return; }
// flow measurement matrix and noise matrix
Matrix<float, n_y_flow, n_x> C;
C.setZero();
C(Y_flow_vx, X_vx) = 1;
C(Y_flow_vy, X_vy) = 1;
SquareMatrix<float, n_y_flow> R;
R.setZero();
// polynomial noise model, found using least squares fit
// h, h**2, v, v*h, v*h**2
const float p[5] = {0.04005232f, -0.00656446f, -0.26265873f, 0.13686658f, -0.00397357f};
// prevent extrapolation past end of polynomial fit by bounding independent variables
float h = agl();
float v = y.norm();
const float h_min = 2.0f;
const float h_max = 8.0f;
const float v_min = 0.5f;
const float v_max = 1.0f;
if (h > h_max) {
h = h_max;
}
if (h < h_min) {
h = h_min;
}
if (v > v_max) {
v = v_max;
}
if (v < v_min) {
v = v_min;
}
// compute polynomial value
float flow_vxy_stddev = p[0] * h + p[1] * h * h + p[2] * v + p[3] * v * h + p[4] * v * h * h;
float rotrate_sq = _sub_att.get().rollspeed * _sub_att.get().rollspeed
+ _sub_att.get().pitchspeed * _sub_att.get().pitchspeed
+ _sub_att.get().yawspeed * _sub_att.get().yawspeed;
matrix::Eulerf euler(matrix::Quatf(_sub_att.get().q));
float rot_sq = euler.phi() * euler.phi() + euler.theta() * euler.theta();
R(Y_flow_vx, Y_flow_vx) = flow_vxy_stddev * flow_vxy_stddev +
_param_lpe_flw_r.get() * _param_lpe_flw_r.get() * rot_sq +
_param_lpe_flw_rr.get() * _param_lpe_flw_rr.get() * rotrate_sq;
R(Y_flow_vy, Y_flow_vy) = R(Y_flow_vx, Y_flow_vx);
// residual
Vector<float, 2> r = y - C * _x;
// residual covariance
Matrix<float, n_y_flow, n_y_flow> S = C * _P * C.transpose() + R;
// publish innovations
_pub_innov.get().flow_innov[0] = r(0);
_pub_innov.get().flow_innov[1] = r(1);
_pub_innov.get().flow_innov_var[0] = S(0, 0);
_pub_innov.get().flow_innov_var[1] = S(1, 1);
// residual covariance, (inverse)
Matrix<float, n_y_flow, n_y_flow> S_I = inv<float, n_y_flow>(S);
// fault detection
float beta = (r.transpose() * (S_I * r))(0, 0);
if (beta > BETA_TABLE[n_y_flow]) {
if (!(_sensorFault & SENSOR_FLOW)) {
mavlink_and_console_log_info(&mavlink_log_pub, "[lpe] flow fault, beta %5.2f", double(beta));
_sensorFault |= SENSOR_FLOW;
}
} else if (_sensorFault & SENSOR_FLOW) {
_sensorFault &= ~SENSOR_FLOW;
mavlink_and_console_log_info(&mavlink_log_pub, "[lpe] flow OK");
}
if (!(_sensorFault & SENSOR_FLOW)) {
Matrix<float, n_x, n_y_flow> K =
_P * C.transpose() * S_I;
Vector<float, n_x> dx = K * r;
_x += dx;
_P -= K * C * _P;
}
}
void BlockLocalPositionEstimator::flowCheckTimeout()
{
if (_timeStamp - _time_last_flow > FLOW_TIMEOUT) {
if (!(_sensorTimeout & SENSOR_FLOW)) {
_sensorTimeout |= SENSOR_FLOW;
_flowQStats.reset();
mavlink_log_critical(&mavlink_log_pub, "[lpe] flow timeout ");
}
}
}